]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - kernel/bpf/verifier.c
leds: pm8058: Silence pointer to integer size warning
[mirror_ubuntu-bionic-kernel.git] / kernel / bpf / verifier.c
CommitLineData
51580e79 1/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
969bf05e 2 * Copyright (c) 2016 Facebook
51580e79
AS
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 */
13#include <linux/kernel.h>
14#include <linux/types.h>
15#include <linux/slab.h>
16#include <linux/bpf.h>
58e2af8b 17#include <linux/bpf_verifier.h>
51580e79
AS
18#include <linux/filter.h>
19#include <net/netlink.h>
20#include <linux/file.h>
21#include <linux/vmalloc.h>
ebb676da 22#include <linux/stringify.h>
51580e79 23
f4ac7e0b
JK
24#include "disasm.h"
25
00176a34
JK
26static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
27#define BPF_PROG_TYPE(_id, _name) \
28 [_id] = & _name ## _verifier_ops,
29#define BPF_MAP_TYPE(_id, _ops)
30#include <linux/bpf_types.h>
31#undef BPF_PROG_TYPE
32#undef BPF_MAP_TYPE
33};
34
51580e79
AS
35/* bpf_check() is a static code analyzer that walks eBPF program
36 * instruction by instruction and updates register/stack state.
37 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
38 *
39 * The first pass is depth-first-search to check that the program is a DAG.
40 * It rejects the following programs:
41 * - larger than BPF_MAXINSNS insns
42 * - if loop is present (detected via back-edge)
43 * - unreachable insns exist (shouldn't be a forest. program = one function)
44 * - out of bounds or malformed jumps
45 * The second pass is all possible path descent from the 1st insn.
46 * Since it's analyzing all pathes through the program, the length of the
eba38a96 47 * analysis is limited to 64k insn, which may be hit even if total number of
51580e79
AS
48 * insn is less then 4K, but there are too many branches that change stack/regs.
49 * Number of 'branches to be analyzed' is limited to 1k
50 *
51 * On entry to each instruction, each register has a type, and the instruction
52 * changes the types of the registers depending on instruction semantics.
53 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
54 * copied to R1.
55 *
56 * All registers are 64-bit.
57 * R0 - return register
58 * R1-R5 argument passing registers
59 * R6-R9 callee saved registers
60 * R10 - frame pointer read-only
61 *
62 * At the start of BPF program the register R1 contains a pointer to bpf_context
63 * and has type PTR_TO_CTX.
64 *
65 * Verifier tracks arithmetic operations on pointers in case:
66 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
67 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
68 * 1st insn copies R10 (which has FRAME_PTR) type into R1
69 * and 2nd arithmetic instruction is pattern matched to recognize
70 * that it wants to construct a pointer to some element within stack.
71 * So after 2nd insn, the register R1 has type PTR_TO_STACK
72 * (and -20 constant is saved for further stack bounds checking).
73 * Meaning that this reg is a pointer to stack plus known immediate constant.
74 *
f1174f77 75 * Most of the time the registers have SCALAR_VALUE type, which
51580e79 76 * means the register has some value, but it's not a valid pointer.
f1174f77 77 * (like pointer plus pointer becomes SCALAR_VALUE type)
51580e79
AS
78 *
79 * When verifier sees load or store instructions the type of base register
f1174f77 80 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK. These are three pointer
51580e79
AS
81 * types recognized by check_mem_access() function.
82 *
83 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
84 * and the range of [ptr, ptr + map's value_size) is accessible.
85 *
86 * registers used to pass values to function calls are checked against
87 * function argument constraints.
88 *
89 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
90 * It means that the register type passed to this function must be
91 * PTR_TO_STACK and it will be used inside the function as
92 * 'pointer to map element key'
93 *
94 * For example the argument constraints for bpf_map_lookup_elem():
95 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
96 * .arg1_type = ARG_CONST_MAP_PTR,
97 * .arg2_type = ARG_PTR_TO_MAP_KEY,
98 *
99 * ret_type says that this function returns 'pointer to map elem value or null'
100 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
101 * 2nd argument should be a pointer to stack, which will be used inside
102 * the helper function as a pointer to map element key.
103 *
104 * On the kernel side the helper function looks like:
105 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
106 * {
107 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
108 * void *key = (void *) (unsigned long) r2;
109 * void *value;
110 *
111 * here kernel can access 'key' and 'map' pointers safely, knowing that
112 * [key, key + map->key_size) bytes are valid and were initialized on
113 * the stack of eBPF program.
114 * }
115 *
116 * Corresponding eBPF program may look like:
117 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
118 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
119 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
120 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
121 * here verifier looks at prototype of map_lookup_elem() and sees:
122 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
123 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
124 *
125 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
126 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
127 * and were initialized prior to this call.
128 * If it's ok, then verifier allows this BPF_CALL insn and looks at
129 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
130 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
131 * returns ether pointer to map value or NULL.
132 *
133 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
134 * insn, the register holding that pointer in the true branch changes state to
135 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
136 * branch. See check_cond_jmp_op().
137 *
138 * After the call R0 is set to return type of the function and registers R1-R5
139 * are set to NOT_INIT to indicate that they are no longer readable.
140 */
141
17a52670 142/* verifier_state + insn_idx are pushed to stack when branch is encountered */
58e2af8b 143struct bpf_verifier_stack_elem {
17a52670
AS
144 /* verifer state is 'st'
145 * before processing instruction 'insn_idx'
146 * and after processing instruction 'prev_insn_idx'
147 */
58e2af8b 148 struct bpf_verifier_state st;
17a52670
AS
149 int insn_idx;
150 int prev_insn_idx;
58e2af8b 151 struct bpf_verifier_stack_elem *next;
cbd35700
AS
152};
153
8e17c1b1 154#define BPF_COMPLEXITY_LIMIT_INSNS 131072
07016151
DB
155#define BPF_COMPLEXITY_LIMIT_STACK 1024
156
fad73a1a
MKL
157#define BPF_MAP_PTR_POISON ((void *)0xeB9F + POISON_POINTER_DELTA)
158
33ff9823
DB
159struct bpf_call_arg_meta {
160 struct bpf_map *map_ptr;
435faee1 161 bool raw_mode;
36bbef52 162 bool pkt_access;
435faee1
DB
163 int regno;
164 int access_size;
33ff9823
DB
165};
166
cbd35700
AS
167static DEFINE_MUTEX(bpf_verifier_lock);
168
169/* log_level controls verbosity level of eBPF verifier.
170 * verbose() is used to dump the verification trace to the log, so the user
171 * can figure out what's wrong with the program
172 */
61bd5218
JK
173static __printf(2, 3) void verbose(struct bpf_verifier_env *env,
174 const char *fmt, ...)
cbd35700 175{
61bd5218 176 struct bpf_verifer_log *log = &env->log;
a2a7d570 177 unsigned int n;
cbd35700
AS
178 va_list args;
179
a2a7d570 180 if (!log->level || !log->ubuf || bpf_verifier_log_full(log))
cbd35700
AS
181 return;
182
183 va_start(args, fmt);
a2a7d570 184 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
cbd35700 185 va_end(args);
a2a7d570
JK
186
187 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
188 "verifier log line truncated - local buffer too short\n");
189
190 n = min(log->len_total - log->len_used - 1, n);
191 log->kbuf[n] = '\0';
192
193 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
194 log->len_used += n;
195 else
196 log->ubuf = NULL;
cbd35700
AS
197}
198
de8f3a83
DB
199static bool type_is_pkt_pointer(enum bpf_reg_type type)
200{
201 return type == PTR_TO_PACKET ||
202 type == PTR_TO_PACKET_META;
203}
204
17a52670
AS
205/* string representation of 'enum bpf_reg_type' */
206static const char * const reg_type_str[] = {
207 [NOT_INIT] = "?",
f1174f77 208 [SCALAR_VALUE] = "inv",
17a52670
AS
209 [PTR_TO_CTX] = "ctx",
210 [CONST_PTR_TO_MAP] = "map_ptr",
211 [PTR_TO_MAP_VALUE] = "map_value",
212 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
17a52670 213 [PTR_TO_STACK] = "fp",
969bf05e 214 [PTR_TO_PACKET] = "pkt",
de8f3a83 215 [PTR_TO_PACKET_META] = "pkt_meta",
969bf05e 216 [PTR_TO_PACKET_END] = "pkt_end",
17a52670
AS
217};
218
61bd5218
JK
219static void print_verifier_state(struct bpf_verifier_env *env,
220 struct bpf_verifier_state *state)
17a52670 221{
58e2af8b 222 struct bpf_reg_state *reg;
17a52670
AS
223 enum bpf_reg_type t;
224 int i;
225
226 for (i = 0; i < MAX_BPF_REG; i++) {
1a0dc1ac
AS
227 reg = &state->regs[i];
228 t = reg->type;
17a52670
AS
229 if (t == NOT_INIT)
230 continue;
61bd5218 231 verbose(env, " R%d=%s", i, reg_type_str[t]);
f1174f77
EC
232 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
233 tnum_is_const(reg->var_off)) {
234 /* reg->off should be 0 for SCALAR_VALUE */
61bd5218 235 verbose(env, "%lld", reg->var_off.value + reg->off);
f1174f77 236 } else {
61bd5218 237 verbose(env, "(id=%d", reg->id);
f1174f77 238 if (t != SCALAR_VALUE)
61bd5218 239 verbose(env, ",off=%d", reg->off);
de8f3a83 240 if (type_is_pkt_pointer(t))
61bd5218 241 verbose(env, ",r=%d", reg->range);
f1174f77
EC
242 else if (t == CONST_PTR_TO_MAP ||
243 t == PTR_TO_MAP_VALUE ||
244 t == PTR_TO_MAP_VALUE_OR_NULL)
61bd5218 245 verbose(env, ",ks=%d,vs=%d",
f1174f77
EC
246 reg->map_ptr->key_size,
247 reg->map_ptr->value_size);
7d1238f2
EC
248 if (tnum_is_const(reg->var_off)) {
249 /* Typically an immediate SCALAR_VALUE, but
250 * could be a pointer whose offset is too big
251 * for reg->off
252 */
61bd5218 253 verbose(env, ",imm=%llx", reg->var_off.value);
7d1238f2
EC
254 } else {
255 if (reg->smin_value != reg->umin_value &&
256 reg->smin_value != S64_MIN)
61bd5218 257 verbose(env, ",smin_value=%lld",
7d1238f2
EC
258 (long long)reg->smin_value);
259 if (reg->smax_value != reg->umax_value &&
260 reg->smax_value != S64_MAX)
61bd5218 261 verbose(env, ",smax_value=%lld",
7d1238f2
EC
262 (long long)reg->smax_value);
263 if (reg->umin_value != 0)
61bd5218 264 verbose(env, ",umin_value=%llu",
7d1238f2
EC
265 (unsigned long long)reg->umin_value);
266 if (reg->umax_value != U64_MAX)
61bd5218 267 verbose(env, ",umax_value=%llu",
7d1238f2
EC
268 (unsigned long long)reg->umax_value);
269 if (!tnum_is_unknown(reg->var_off)) {
270 char tn_buf[48];
f1174f77 271
7d1238f2 272 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 273 verbose(env, ",var_off=%s", tn_buf);
7d1238f2 274 }
f1174f77 275 }
61bd5218 276 verbose(env, ")");
f1174f77 277 }
17a52670 278 }
638f5b90
AS
279 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
280 if (state->stack[i].slot_type[0] == STACK_SPILL)
281 verbose(env, " fp%d=%s",
282 -MAX_BPF_STACK + i * BPF_REG_SIZE,
283 reg_type_str[state->stack[i].spilled_ptr.type]);
17a52670 284 }
61bd5218 285 verbose(env, "\n");
17a52670
AS
286}
287
638f5b90
AS
288static int copy_stack_state(struct bpf_verifier_state *dst,
289 const struct bpf_verifier_state *src)
17a52670 290{
638f5b90
AS
291 if (!src->stack)
292 return 0;
293 if (WARN_ON_ONCE(dst->allocated_stack < src->allocated_stack)) {
294 /* internal bug, make state invalid to reject the program */
295 memset(dst, 0, sizeof(*dst));
296 return -EFAULT;
297 }
298 memcpy(dst->stack, src->stack,
299 sizeof(*src->stack) * (src->allocated_stack / BPF_REG_SIZE));
300 return 0;
301}
302
303/* do_check() starts with zero-sized stack in struct bpf_verifier_state to
304 * make it consume minimal amount of memory. check_stack_write() access from
305 * the program calls into realloc_verifier_state() to grow the stack size.
306 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
307 * which this function copies over. It points to previous bpf_verifier_state
308 * which is never reallocated
309 */
310static int realloc_verifier_state(struct bpf_verifier_state *state, int size,
311 bool copy_old)
312{
313 u32 old_size = state->allocated_stack;
314 struct bpf_stack_state *new_stack;
315 int slot = size / BPF_REG_SIZE;
316
317 if (size <= old_size || !size) {
318 if (copy_old)
319 return 0;
320 state->allocated_stack = slot * BPF_REG_SIZE;
321 if (!size && old_size) {
322 kfree(state->stack);
323 state->stack = NULL;
324 }
325 return 0;
326 }
327 new_stack = kmalloc_array(slot, sizeof(struct bpf_stack_state),
328 GFP_KERNEL);
329 if (!new_stack)
330 return -ENOMEM;
331 if (copy_old) {
332 if (state->stack)
333 memcpy(new_stack, state->stack,
334 sizeof(*new_stack) * (old_size / BPF_REG_SIZE));
335 memset(new_stack + old_size / BPF_REG_SIZE, 0,
336 sizeof(*new_stack) * (size - old_size) / BPF_REG_SIZE);
337 }
338 state->allocated_stack = slot * BPF_REG_SIZE;
339 kfree(state->stack);
340 state->stack = new_stack;
341 return 0;
342}
343
1969db47
AS
344static void free_verifier_state(struct bpf_verifier_state *state,
345 bool free_self)
638f5b90
AS
346{
347 kfree(state->stack);
1969db47
AS
348 if (free_self)
349 kfree(state);
638f5b90
AS
350}
351
352/* copy verifier state from src to dst growing dst stack space
353 * when necessary to accommodate larger src stack
354 */
355static int copy_verifier_state(struct bpf_verifier_state *dst,
356 const struct bpf_verifier_state *src)
357{
358 int err;
359
360 err = realloc_verifier_state(dst, src->allocated_stack, false);
361 if (err)
362 return err;
363 memcpy(dst, src, offsetof(struct bpf_verifier_state, allocated_stack));
364 return copy_stack_state(dst, src);
365}
366
367static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
368 int *insn_idx)
369{
370 struct bpf_verifier_state *cur = env->cur_state;
371 struct bpf_verifier_stack_elem *elem, *head = env->head;
372 int err;
17a52670
AS
373
374 if (env->head == NULL)
638f5b90 375 return -ENOENT;
17a52670 376
638f5b90
AS
377 if (cur) {
378 err = copy_verifier_state(cur, &head->st);
379 if (err)
380 return err;
381 }
382 if (insn_idx)
383 *insn_idx = head->insn_idx;
17a52670 384 if (prev_insn_idx)
638f5b90
AS
385 *prev_insn_idx = head->prev_insn_idx;
386 elem = head->next;
1969db47 387 free_verifier_state(&head->st, false);
638f5b90 388 kfree(head);
17a52670
AS
389 env->head = elem;
390 env->stack_size--;
638f5b90 391 return 0;
17a52670
AS
392}
393
58e2af8b
JK
394static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
395 int insn_idx, int prev_insn_idx)
17a52670 396{
638f5b90 397 struct bpf_verifier_state *cur = env->cur_state;
58e2af8b 398 struct bpf_verifier_stack_elem *elem;
638f5b90 399 int err;
17a52670 400
638f5b90 401 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
17a52670
AS
402 if (!elem)
403 goto err;
404
17a52670
AS
405 elem->insn_idx = insn_idx;
406 elem->prev_insn_idx = prev_insn_idx;
407 elem->next = env->head;
408 env->head = elem;
409 env->stack_size++;
1969db47
AS
410 err = copy_verifier_state(&elem->st, cur);
411 if (err)
412 goto err;
07016151 413 if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) {
61bd5218 414 verbose(env, "BPF program is too complex\n");
17a52670
AS
415 goto err;
416 }
417 return &elem->st;
418err:
419 /* pop all elements and return */
638f5b90 420 while (!pop_stack(env, NULL, NULL));
17a52670
AS
421 return NULL;
422}
423
424#define CALLER_SAVED_REGS 6
425static const int caller_saved[CALLER_SAVED_REGS] = {
426 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
427};
428
f1174f77
EC
429static void __mark_reg_not_init(struct bpf_reg_state *reg);
430
b03c9f9f
EC
431/* Mark the unknown part of a register (variable offset or scalar value) as
432 * known to have the value @imm.
433 */
434static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
435{
436 reg->id = 0;
437 reg->var_off = tnum_const(imm);
438 reg->smin_value = (s64)imm;
439 reg->smax_value = (s64)imm;
440 reg->umin_value = imm;
441 reg->umax_value = imm;
442}
443
f1174f77
EC
444/* Mark the 'variable offset' part of a register as zero. This should be
445 * used only on registers holding a pointer type.
446 */
447static void __mark_reg_known_zero(struct bpf_reg_state *reg)
a9789ef9 448{
b03c9f9f 449 __mark_reg_known(reg, 0);
f1174f77 450}
a9789ef9 451
61bd5218
JK
452static void mark_reg_known_zero(struct bpf_verifier_env *env,
453 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
454{
455 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 456 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
f1174f77
EC
457 /* Something bad happened, let's kill all regs */
458 for (regno = 0; regno < MAX_BPF_REG; regno++)
459 __mark_reg_not_init(regs + regno);
460 return;
461 }
462 __mark_reg_known_zero(regs + regno);
463}
464
de8f3a83
DB
465static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
466{
467 return type_is_pkt_pointer(reg->type);
468}
469
470static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
471{
472 return reg_is_pkt_pointer(reg) ||
473 reg->type == PTR_TO_PACKET_END;
474}
475
476/* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
477static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
478 enum bpf_reg_type which)
479{
480 /* The register can already have a range from prior markings.
481 * This is fine as long as it hasn't been advanced from its
482 * origin.
483 */
484 return reg->type == which &&
485 reg->id == 0 &&
486 reg->off == 0 &&
487 tnum_equals_const(reg->var_off, 0);
488}
489
b03c9f9f
EC
490/* Attempts to improve min/max values based on var_off information */
491static void __update_reg_bounds(struct bpf_reg_state *reg)
492{
493 /* min signed is max(sign bit) | min(other bits) */
494 reg->smin_value = max_t(s64, reg->smin_value,
495 reg->var_off.value | (reg->var_off.mask & S64_MIN));
496 /* max signed is min(sign bit) | max(other bits) */
497 reg->smax_value = min_t(s64, reg->smax_value,
498 reg->var_off.value | (reg->var_off.mask & S64_MAX));
499 reg->umin_value = max(reg->umin_value, reg->var_off.value);
500 reg->umax_value = min(reg->umax_value,
501 reg->var_off.value | reg->var_off.mask);
502}
503
504/* Uses signed min/max values to inform unsigned, and vice-versa */
505static void __reg_deduce_bounds(struct bpf_reg_state *reg)
506{
507 /* Learn sign from signed bounds.
508 * If we cannot cross the sign boundary, then signed and unsigned bounds
509 * are the same, so combine. This works even in the negative case, e.g.
510 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
511 */
512 if (reg->smin_value >= 0 || reg->smax_value < 0) {
513 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
514 reg->umin_value);
515 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
516 reg->umax_value);
517 return;
518 }
519 /* Learn sign from unsigned bounds. Signed bounds cross the sign
520 * boundary, so we must be careful.
521 */
522 if ((s64)reg->umax_value >= 0) {
523 /* Positive. We can't learn anything from the smin, but smax
524 * is positive, hence safe.
525 */
526 reg->smin_value = reg->umin_value;
527 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
528 reg->umax_value);
529 } else if ((s64)reg->umin_value < 0) {
530 /* Negative. We can't learn anything from the smax, but smin
531 * is negative, hence safe.
532 */
533 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
534 reg->umin_value);
535 reg->smax_value = reg->umax_value;
536 }
537}
538
539/* Attempts to improve var_off based on unsigned min/max information */
540static void __reg_bound_offset(struct bpf_reg_state *reg)
541{
542 reg->var_off = tnum_intersect(reg->var_off,
543 tnum_range(reg->umin_value,
544 reg->umax_value));
545}
546
547/* Reset the min/max bounds of a register */
548static void __mark_reg_unbounded(struct bpf_reg_state *reg)
549{
550 reg->smin_value = S64_MIN;
551 reg->smax_value = S64_MAX;
552 reg->umin_value = 0;
553 reg->umax_value = U64_MAX;
554}
555
f1174f77
EC
556/* Mark a register as having a completely unknown (scalar) value. */
557static void __mark_reg_unknown(struct bpf_reg_state *reg)
558{
559 reg->type = SCALAR_VALUE;
560 reg->id = 0;
561 reg->off = 0;
562 reg->var_off = tnum_unknown;
b03c9f9f 563 __mark_reg_unbounded(reg);
f1174f77
EC
564}
565
61bd5218
JK
566static void mark_reg_unknown(struct bpf_verifier_env *env,
567 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
568{
569 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 570 verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
f1174f77
EC
571 /* Something bad happened, let's kill all regs */
572 for (regno = 0; regno < MAX_BPF_REG; regno++)
573 __mark_reg_not_init(regs + regno);
574 return;
575 }
576 __mark_reg_unknown(regs + regno);
577}
578
579static void __mark_reg_not_init(struct bpf_reg_state *reg)
580{
581 __mark_reg_unknown(reg);
582 reg->type = NOT_INIT;
583}
584
61bd5218
JK
585static void mark_reg_not_init(struct bpf_verifier_env *env,
586 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
587{
588 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 589 verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
f1174f77
EC
590 /* Something bad happened, let's kill all regs */
591 for (regno = 0; regno < MAX_BPF_REG; regno++)
592 __mark_reg_not_init(regs + regno);
593 return;
594 }
595 __mark_reg_not_init(regs + regno);
a9789ef9
DB
596}
597
61bd5218
JK
598static void init_reg_state(struct bpf_verifier_env *env,
599 struct bpf_reg_state *regs)
17a52670
AS
600{
601 int i;
602
dc503a8a 603 for (i = 0; i < MAX_BPF_REG; i++) {
61bd5218 604 mark_reg_not_init(env, regs, i);
dc503a8a
EC
605 regs[i].live = REG_LIVE_NONE;
606 }
17a52670
AS
607
608 /* frame pointer */
f1174f77 609 regs[BPF_REG_FP].type = PTR_TO_STACK;
61bd5218 610 mark_reg_known_zero(env, regs, BPF_REG_FP);
17a52670
AS
611
612 /* 1st arg to a function */
613 regs[BPF_REG_1].type = PTR_TO_CTX;
61bd5218 614 mark_reg_known_zero(env, regs, BPF_REG_1);
6760bf2d
DB
615}
616
17a52670
AS
617enum reg_arg_type {
618 SRC_OP, /* register is used as source operand */
619 DST_OP, /* register is used as destination operand */
620 DST_OP_NO_MARK /* same as above, check only, don't mark */
621};
622
dc503a8a
EC
623static void mark_reg_read(const struct bpf_verifier_state *state, u32 regno)
624{
625 struct bpf_verifier_state *parent = state->parent;
626
8fe2d6cc
AS
627 if (regno == BPF_REG_FP)
628 /* We don't need to worry about FP liveness because it's read-only */
629 return;
630
dc503a8a
EC
631 while (parent) {
632 /* if read wasn't screened by an earlier write ... */
633 if (state->regs[regno].live & REG_LIVE_WRITTEN)
634 break;
635 /* ... then we depend on parent's value */
636 parent->regs[regno].live |= REG_LIVE_READ;
637 state = parent;
638 parent = state->parent;
639 }
640}
641
642static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
17a52670
AS
643 enum reg_arg_type t)
644{
638f5b90 645 struct bpf_reg_state *regs = env->cur_state->regs;
dc503a8a 646
17a52670 647 if (regno >= MAX_BPF_REG) {
61bd5218 648 verbose(env, "R%d is invalid\n", regno);
17a52670
AS
649 return -EINVAL;
650 }
651
652 if (t == SRC_OP) {
653 /* check whether register used as source operand can be read */
654 if (regs[regno].type == NOT_INIT) {
61bd5218 655 verbose(env, "R%d !read_ok\n", regno);
17a52670
AS
656 return -EACCES;
657 }
638f5b90 658 mark_reg_read(env->cur_state, regno);
17a52670
AS
659 } else {
660 /* check whether register used as dest operand can be written to */
661 if (regno == BPF_REG_FP) {
61bd5218 662 verbose(env, "frame pointer is read only\n");
17a52670
AS
663 return -EACCES;
664 }
dc503a8a 665 regs[regno].live |= REG_LIVE_WRITTEN;
17a52670 666 if (t == DST_OP)
61bd5218 667 mark_reg_unknown(env, regs, regno);
17a52670
AS
668 }
669 return 0;
670}
671
1be7f75d
AS
672static bool is_spillable_regtype(enum bpf_reg_type type)
673{
674 switch (type) {
675 case PTR_TO_MAP_VALUE:
676 case PTR_TO_MAP_VALUE_OR_NULL:
677 case PTR_TO_STACK:
678 case PTR_TO_CTX:
969bf05e 679 case PTR_TO_PACKET:
de8f3a83 680 case PTR_TO_PACKET_META:
969bf05e 681 case PTR_TO_PACKET_END:
1be7f75d
AS
682 case CONST_PTR_TO_MAP:
683 return true;
684 default:
685 return false;
686 }
687}
688
17a52670
AS
689/* check_stack_read/write functions track spill/fill of registers,
690 * stack boundary and alignment are checked in check_mem_access()
691 */
61bd5218
JK
692static int check_stack_write(struct bpf_verifier_env *env,
693 struct bpf_verifier_state *state, int off,
58e2af8b 694 int size, int value_regno)
17a52670 695{
638f5b90
AS
696 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
697
698 err = realloc_verifier_state(state, round_up(slot + 1, BPF_REG_SIZE),
699 true);
700 if (err)
701 return err;
9c399760
AS
702 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
703 * so it's aligned access and [off, off + size) are within stack limits
704 */
638f5b90
AS
705 if (!env->allow_ptr_leaks &&
706 state->stack[spi].slot_type[0] == STACK_SPILL &&
707 size != BPF_REG_SIZE) {
708 verbose(env, "attempt to corrupt spilled pointer on stack\n");
709 return -EACCES;
710 }
17a52670
AS
711
712 if (value_regno >= 0 &&
1be7f75d 713 is_spillable_regtype(state->regs[value_regno].type)) {
17a52670
AS
714
715 /* register containing pointer is being spilled into stack */
9c399760 716 if (size != BPF_REG_SIZE) {
61bd5218 717 verbose(env, "invalid size of register spill\n");
17a52670
AS
718 return -EACCES;
719 }
720
17a52670 721 /* save register state */
638f5b90
AS
722 state->stack[spi].spilled_ptr = state->regs[value_regno];
723 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
17a52670 724
9c399760 725 for (i = 0; i < BPF_REG_SIZE; i++)
638f5b90 726 state->stack[spi].slot_type[i] = STACK_SPILL;
9c399760 727 } else {
17a52670 728 /* regular write of data into stack */
638f5b90 729 state->stack[spi].spilled_ptr = (struct bpf_reg_state) {};
9c399760
AS
730
731 for (i = 0; i < size; i++)
638f5b90
AS
732 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
733 STACK_MISC;
17a52670
AS
734 }
735 return 0;
736}
737
dc503a8a
EC
738static void mark_stack_slot_read(const struct bpf_verifier_state *state, int slot)
739{
740 struct bpf_verifier_state *parent = state->parent;
741
742 while (parent) {
743 /* if read wasn't screened by an earlier write ... */
638f5b90 744 if (state->stack[slot].spilled_ptr.live & REG_LIVE_WRITTEN)
dc503a8a
EC
745 break;
746 /* ... then we depend on parent's value */
638f5b90 747 parent->stack[slot].spilled_ptr.live |= REG_LIVE_READ;
dc503a8a
EC
748 state = parent;
749 parent = state->parent;
750 }
751}
752
61bd5218
JK
753static int check_stack_read(struct bpf_verifier_env *env,
754 struct bpf_verifier_state *state, int off, int size,
17a52670
AS
755 int value_regno)
756{
638f5b90
AS
757 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
758 u8 *stype;
17a52670 759
638f5b90
AS
760 if (state->allocated_stack <= slot) {
761 verbose(env, "invalid read from stack off %d+0 size %d\n",
762 off, size);
763 return -EACCES;
764 }
765 stype = state->stack[spi].slot_type;
17a52670 766
638f5b90 767 if (stype[0] == STACK_SPILL) {
9c399760 768 if (size != BPF_REG_SIZE) {
61bd5218 769 verbose(env, "invalid size of register spill\n");
17a52670
AS
770 return -EACCES;
771 }
9c399760 772 for (i = 1; i < BPF_REG_SIZE; i++) {
638f5b90 773 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
61bd5218 774 verbose(env, "corrupted spill memory\n");
17a52670
AS
775 return -EACCES;
776 }
777 }
778
dc503a8a 779 if (value_regno >= 0) {
17a52670 780 /* restore register state from stack */
638f5b90 781 state->regs[value_regno] = state->stack[spi].spilled_ptr;
dc503a8a
EC
782 mark_stack_slot_read(state, spi);
783 }
17a52670
AS
784 return 0;
785 } else {
786 for (i = 0; i < size; i++) {
638f5b90 787 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_MISC) {
61bd5218 788 verbose(env, "invalid read from stack off %d+%d size %d\n",
17a52670
AS
789 off, i, size);
790 return -EACCES;
791 }
792 }
793 if (value_regno >= 0)
794 /* have read misc data from the stack */
61bd5218 795 mark_reg_unknown(env, state->regs, value_regno);
17a52670
AS
796 return 0;
797 }
798}
799
800/* check read/write into map element returned by bpf_map_lookup_elem() */
f1174f77 801static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
9fd29c08 802 int size, bool zero_size_allowed)
17a52670 803{
638f5b90
AS
804 struct bpf_reg_state *regs = cur_regs(env);
805 struct bpf_map *map = regs[regno].map_ptr;
17a52670 806
9fd29c08
YS
807 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
808 off + size > map->value_size) {
61bd5218 809 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
17a52670
AS
810 map->value_size, off, size);
811 return -EACCES;
812 }
813 return 0;
814}
815
f1174f77
EC
816/* check read/write into a map element with possible variable offset */
817static int check_map_access(struct bpf_verifier_env *env, u32 regno,
9fd29c08 818 int off, int size, bool zero_size_allowed)
dbcfe5f7 819{
638f5b90 820 struct bpf_verifier_state *state = env->cur_state;
dbcfe5f7
GB
821 struct bpf_reg_state *reg = &state->regs[regno];
822 int err;
823
f1174f77
EC
824 /* We may have adjusted the register to this map value, so we
825 * need to try adding each of min_value and max_value to off
826 * to make sure our theoretical access will be safe.
dbcfe5f7 827 */
61bd5218
JK
828 if (env->log.level)
829 print_verifier_state(env, state);
dbcfe5f7
GB
830 /* The minimum value is only important with signed
831 * comparisons where we can't assume the floor of a
832 * value is 0. If we are using signed variables for our
833 * index'es we need to make sure that whatever we use
834 * will have a set floor within our range.
835 */
b03c9f9f 836 if (reg->smin_value < 0) {
61bd5218 837 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
dbcfe5f7
GB
838 regno);
839 return -EACCES;
840 }
9fd29c08
YS
841 err = __check_map_access(env, regno, reg->smin_value + off, size,
842 zero_size_allowed);
dbcfe5f7 843 if (err) {
61bd5218
JK
844 verbose(env, "R%d min value is outside of the array range\n",
845 regno);
dbcfe5f7
GB
846 return err;
847 }
848
b03c9f9f
EC
849 /* If we haven't set a max value then we need to bail since we can't be
850 * sure we won't do bad things.
851 * If reg->umax_value + off could overflow, treat that as unbounded too.
dbcfe5f7 852 */
b03c9f9f 853 if (reg->umax_value >= BPF_MAX_VAR_OFF) {
61bd5218 854 verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n",
dbcfe5f7
GB
855 regno);
856 return -EACCES;
857 }
9fd29c08
YS
858 err = __check_map_access(env, regno, reg->umax_value + off, size,
859 zero_size_allowed);
f1174f77 860 if (err)
61bd5218
JK
861 verbose(env, "R%d max value is outside of the array range\n",
862 regno);
f1174f77 863 return err;
dbcfe5f7
GB
864}
865
969bf05e
AS
866#define MAX_PACKET_OFF 0xffff
867
58e2af8b 868static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
3a0af8fd
TG
869 const struct bpf_call_arg_meta *meta,
870 enum bpf_access_type t)
4acf6c0b 871{
36bbef52 872 switch (env->prog->type) {
3a0af8fd
TG
873 case BPF_PROG_TYPE_LWT_IN:
874 case BPF_PROG_TYPE_LWT_OUT:
875 /* dst_input() and dst_output() can't write for now */
876 if (t == BPF_WRITE)
877 return false;
7e57fbb2 878 /* fallthrough */
36bbef52
DB
879 case BPF_PROG_TYPE_SCHED_CLS:
880 case BPF_PROG_TYPE_SCHED_ACT:
4acf6c0b 881 case BPF_PROG_TYPE_XDP:
3a0af8fd 882 case BPF_PROG_TYPE_LWT_XMIT:
8a31db56 883 case BPF_PROG_TYPE_SK_SKB:
36bbef52
DB
884 if (meta)
885 return meta->pkt_access;
886
887 env->seen_direct_write = true;
4acf6c0b
BB
888 return true;
889 default:
890 return false;
891 }
892}
893
f1174f77 894static int __check_packet_access(struct bpf_verifier_env *env, u32 regno,
9fd29c08 895 int off, int size, bool zero_size_allowed)
969bf05e 896{
638f5b90 897 struct bpf_reg_state *regs = cur_regs(env);
58e2af8b 898 struct bpf_reg_state *reg = &regs[regno];
969bf05e 899
9fd29c08
YS
900 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
901 (u64)off + size > reg->range) {
61bd5218 902 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
d91b28ed 903 off, size, regno, reg->id, reg->off, reg->range);
969bf05e
AS
904 return -EACCES;
905 }
906 return 0;
907}
908
f1174f77 909static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
9fd29c08 910 int size, bool zero_size_allowed)
f1174f77 911{
638f5b90 912 struct bpf_reg_state *regs = cur_regs(env);
f1174f77
EC
913 struct bpf_reg_state *reg = &regs[regno];
914 int err;
915
916 /* We may have added a variable offset to the packet pointer; but any
917 * reg->range we have comes after that. We are only checking the fixed
918 * offset.
919 */
920
921 /* We don't allow negative numbers, because we aren't tracking enough
922 * detail to prove they're safe.
923 */
b03c9f9f 924 if (reg->smin_value < 0) {
61bd5218 925 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
f1174f77
EC
926 regno);
927 return -EACCES;
928 }
9fd29c08 929 err = __check_packet_access(env, regno, off, size, zero_size_allowed);
f1174f77 930 if (err) {
61bd5218 931 verbose(env, "R%d offset is outside of the packet\n", regno);
f1174f77
EC
932 return err;
933 }
934 return err;
935}
936
937/* check access to 'struct bpf_context' fields. Supports fixed offsets only */
31fd8581 938static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
19de99f7 939 enum bpf_access_type t, enum bpf_reg_type *reg_type)
17a52670 940{
f96da094
DB
941 struct bpf_insn_access_aux info = {
942 .reg_type = *reg_type,
943 };
31fd8581 944
4f9218aa
JK
945 if (env->ops->is_valid_access &&
946 env->ops->is_valid_access(off, size, t, &info)) {
f96da094
DB
947 /* A non zero info.ctx_field_size indicates that this field is a
948 * candidate for later verifier transformation to load the whole
949 * field and then apply a mask when accessed with a narrower
950 * access than actual ctx access size. A zero info.ctx_field_size
951 * will only allow for whole field access and rejects any other
952 * type of narrower access.
31fd8581 953 */
23994631 954 *reg_type = info.reg_type;
31fd8581 955
4f9218aa 956 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
32bbe007
AS
957 /* remember the offset of last byte accessed in ctx */
958 if (env->prog->aux->max_ctx_offset < off + size)
959 env->prog->aux->max_ctx_offset = off + size;
17a52670 960 return 0;
32bbe007 961 }
17a52670 962
61bd5218 963 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
17a52670
AS
964 return -EACCES;
965}
966
4cabc5b1
DB
967static bool __is_pointer_value(bool allow_ptr_leaks,
968 const struct bpf_reg_state *reg)
1be7f75d 969{
4cabc5b1 970 if (allow_ptr_leaks)
1be7f75d
AS
971 return false;
972
f1174f77 973 return reg->type != SCALAR_VALUE;
1be7f75d
AS
974}
975
4cabc5b1
DB
976static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
977{
638f5b90 978 return __is_pointer_value(env->allow_ptr_leaks, cur_regs(env) + regno);
4cabc5b1
DB
979}
980
f37a8cb8
DB
981static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
982{
983 const struct bpf_reg_state *reg = cur_regs(env) + regno;
984
985 return reg->type == PTR_TO_CTX;
986}
987
57b4a36e
DB
988static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
989{
990 const struct bpf_reg_state *reg = cur_regs(env) + regno;
991
992 return type_is_pkt_pointer(reg->type);
993}
994
61bd5218
JK
995static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
996 const struct bpf_reg_state *reg,
d1174416 997 int off, int size, bool strict)
969bf05e 998{
f1174f77 999 struct tnum reg_off;
e07b98d9 1000 int ip_align;
d1174416
DM
1001
1002 /* Byte size accesses are always allowed. */
1003 if (!strict || size == 1)
1004 return 0;
1005
e4eda884
DM
1006 /* For platforms that do not have a Kconfig enabling
1007 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
1008 * NET_IP_ALIGN is universally set to '2'. And on platforms
1009 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
1010 * to this code only in strict mode where we want to emulate
1011 * the NET_IP_ALIGN==2 checking. Therefore use an
1012 * unconditional IP align value of '2'.
e07b98d9 1013 */
e4eda884 1014 ip_align = 2;
f1174f77
EC
1015
1016 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
1017 if (!tnum_is_aligned(reg_off, size)) {
1018 char tn_buf[48];
1019
1020 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218
JK
1021 verbose(env,
1022 "misaligned packet access off %d+%s+%d+%d size %d\n",
f1174f77 1023 ip_align, tn_buf, reg->off, off, size);
969bf05e
AS
1024 return -EACCES;
1025 }
79adffcd 1026
969bf05e
AS
1027 return 0;
1028}
1029
61bd5218
JK
1030static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
1031 const struct bpf_reg_state *reg,
f1174f77
EC
1032 const char *pointer_desc,
1033 int off, int size, bool strict)
79adffcd 1034{
f1174f77
EC
1035 struct tnum reg_off;
1036
1037 /* Byte size accesses are always allowed. */
1038 if (!strict || size == 1)
1039 return 0;
1040
1041 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
1042 if (!tnum_is_aligned(reg_off, size)) {
1043 char tn_buf[48];
1044
1045 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 1046 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
f1174f77 1047 pointer_desc, tn_buf, reg->off, off, size);
79adffcd
DB
1048 return -EACCES;
1049 }
1050
969bf05e
AS
1051 return 0;
1052}
1053
e07b98d9 1054static int check_ptr_alignment(struct bpf_verifier_env *env,
57b4a36e
DB
1055 const struct bpf_reg_state *reg, int off,
1056 int size, bool strict_alignment_once)
79adffcd 1057{
57b4a36e 1058 bool strict = env->strict_alignment || strict_alignment_once;
f1174f77 1059 const char *pointer_desc = "";
d1174416 1060
79adffcd
DB
1061 switch (reg->type) {
1062 case PTR_TO_PACKET:
de8f3a83
DB
1063 case PTR_TO_PACKET_META:
1064 /* Special case, because of NET_IP_ALIGN. Given metadata sits
1065 * right in front, treat it the very same way.
1066 */
61bd5218 1067 return check_pkt_ptr_alignment(env, reg, off, size, strict);
f1174f77
EC
1068 case PTR_TO_MAP_VALUE:
1069 pointer_desc = "value ";
1070 break;
1071 case PTR_TO_CTX:
1072 pointer_desc = "context ";
1073 break;
1074 case PTR_TO_STACK:
1075 pointer_desc = "stack ";
a5ec6ae1
JH
1076 /* The stack spill tracking logic in check_stack_write()
1077 * and check_stack_read() relies on stack accesses being
1078 * aligned.
1079 */
1080 strict = true;
f1174f77 1081 break;
79adffcd 1082 default:
f1174f77 1083 break;
79adffcd 1084 }
61bd5218
JK
1085 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
1086 strict);
79adffcd
DB
1087}
1088
0c17d1d2
JH
1089/* truncate register to smaller size (in bytes)
1090 * must be called with size < BPF_REG_SIZE
1091 */
1092static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
1093{
1094 u64 mask;
1095
1096 /* clear high bits in bit representation */
1097 reg->var_off = tnum_cast(reg->var_off, size);
1098
1099 /* fix arithmetic bounds */
1100 mask = ((u64)1 << (size * 8)) - 1;
1101 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
1102 reg->umin_value &= mask;
1103 reg->umax_value &= mask;
1104 } else {
1105 reg->umin_value = 0;
1106 reg->umax_value = mask;
1107 }
1108 reg->smin_value = reg->umin_value;
1109 reg->smax_value = reg->umax_value;
1110}
1111
17a52670
AS
1112/* check whether memory at (regno + off) is accessible for t = (read | write)
1113 * if t==write, value_regno is a register which value is stored into memory
1114 * if t==read, value_regno is a register which will receive the value from memory
1115 * if t==write && value_regno==-1, some unknown value is stored into memory
1116 * if t==read && value_regno==-1, don't care what we read from memory
1117 */
57b4a36e
DB
1118static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
1119 int off, int bpf_size, enum bpf_access_type t,
1120 int value_regno, bool strict_alignment_once)
17a52670 1121{
638f5b90
AS
1122 struct bpf_verifier_state *state = env->cur_state;
1123 struct bpf_reg_state *regs = cur_regs(env);
1124 struct bpf_reg_state *reg = regs + regno;
17a52670
AS
1125 int size, err = 0;
1126
1127 size = bpf_size_to_bytes(bpf_size);
1128 if (size < 0)
1129 return size;
1130
f1174f77 1131 /* alignment checks will add in reg->off themselves */
57b4a36e 1132 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
969bf05e
AS
1133 if (err)
1134 return err;
17a52670 1135
f1174f77
EC
1136 /* for access checks, reg->off is just part of off */
1137 off += reg->off;
1138
1139 if (reg->type == PTR_TO_MAP_VALUE) {
1be7f75d
AS
1140 if (t == BPF_WRITE && value_regno >= 0 &&
1141 is_pointer_value(env, value_regno)) {
61bd5218 1142 verbose(env, "R%d leaks addr into map\n", value_regno);
1be7f75d
AS
1143 return -EACCES;
1144 }
48461135 1145
9fd29c08 1146 err = check_map_access(env, regno, off, size, false);
17a52670 1147 if (!err && t == BPF_READ && value_regno >= 0)
638f5b90 1148 mark_reg_unknown(env, regs, value_regno);
17a52670 1149
1a0dc1ac 1150 } else if (reg->type == PTR_TO_CTX) {
f1174f77 1151 enum bpf_reg_type reg_type = SCALAR_VALUE;
19de99f7 1152
1be7f75d
AS
1153 if (t == BPF_WRITE && value_regno >= 0 &&
1154 is_pointer_value(env, value_regno)) {
61bd5218 1155 verbose(env, "R%d leaks addr into ctx\n", value_regno);
1be7f75d
AS
1156 return -EACCES;
1157 }
f1174f77
EC
1158 /* ctx accesses must be at a fixed offset, so that we can
1159 * determine what type of data were returned.
1160 */
28e33f9d 1161 if (reg->off) {
f8ddadc4
DM
1162 verbose(env,
1163 "dereference of modified ctx ptr R%d off=%d+%d, ctx+const is allowed, ctx+const+const is not\n",
28e33f9d
JK
1164 regno, reg->off, off - reg->off);
1165 return -EACCES;
1166 }
1167 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
f1174f77
EC
1168 char tn_buf[48];
1169
1170 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218
JK
1171 verbose(env,
1172 "variable ctx access var_off=%s off=%d size=%d",
f1174f77
EC
1173 tn_buf, off, size);
1174 return -EACCES;
1175 }
31fd8581 1176 err = check_ctx_access(env, insn_idx, off, size, t, &reg_type);
969bf05e 1177 if (!err && t == BPF_READ && value_regno >= 0) {
f1174f77 1178 /* ctx access returns either a scalar, or a
de8f3a83
DB
1179 * PTR_TO_PACKET[_META,_END]. In the latter
1180 * case, we know the offset is zero.
f1174f77
EC
1181 */
1182 if (reg_type == SCALAR_VALUE)
638f5b90 1183 mark_reg_unknown(env, regs, value_regno);
f1174f77 1184 else
638f5b90 1185 mark_reg_known_zero(env, regs,
61bd5218 1186 value_regno);
638f5b90
AS
1187 regs[value_regno].id = 0;
1188 regs[value_regno].off = 0;
1189 regs[value_regno].range = 0;
1190 regs[value_regno].type = reg_type;
969bf05e 1191 }
17a52670 1192
f1174f77
EC
1193 } else if (reg->type == PTR_TO_STACK) {
1194 /* stack accesses must be at a fixed offset, so that we can
1195 * determine what type of data were returned.
1196 * See check_stack_read().
1197 */
1198 if (!tnum_is_const(reg->var_off)) {
1199 char tn_buf[48];
1200
1201 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 1202 verbose(env, "variable stack access var_off=%s off=%d size=%d",
f1174f77
EC
1203 tn_buf, off, size);
1204 return -EACCES;
1205 }
1206 off += reg->var_off.value;
17a52670 1207 if (off >= 0 || off < -MAX_BPF_STACK) {
61bd5218
JK
1208 verbose(env, "invalid stack off=%d size=%d\n", off,
1209 size);
17a52670
AS
1210 return -EACCES;
1211 }
8726679a
AS
1212
1213 if (env->prog->aux->stack_depth < -off)
1214 env->prog->aux->stack_depth = -off;
1215
638f5b90 1216 if (t == BPF_WRITE)
61bd5218
JK
1217 err = check_stack_write(env, state, off, size,
1218 value_regno);
638f5b90 1219 else
61bd5218
JK
1220 err = check_stack_read(env, state, off, size,
1221 value_regno);
de8f3a83 1222 } else if (reg_is_pkt_pointer(reg)) {
3a0af8fd 1223 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
61bd5218 1224 verbose(env, "cannot write into packet\n");
969bf05e
AS
1225 return -EACCES;
1226 }
4acf6c0b
BB
1227 if (t == BPF_WRITE && value_regno >= 0 &&
1228 is_pointer_value(env, value_regno)) {
61bd5218
JK
1229 verbose(env, "R%d leaks addr into packet\n",
1230 value_regno);
4acf6c0b
BB
1231 return -EACCES;
1232 }
9fd29c08 1233 err = check_packet_access(env, regno, off, size, false);
969bf05e 1234 if (!err && t == BPF_READ && value_regno >= 0)
638f5b90 1235 mark_reg_unknown(env, regs, value_regno);
17a52670 1236 } else {
61bd5218
JK
1237 verbose(env, "R%d invalid mem access '%s'\n", regno,
1238 reg_type_str[reg->type]);
17a52670
AS
1239 return -EACCES;
1240 }
969bf05e 1241
f1174f77 1242 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
638f5b90 1243 regs[value_regno].type == SCALAR_VALUE) {
f1174f77 1244 /* b/h/w load zero-extends, mark upper bits as known 0 */
0c17d1d2 1245 coerce_reg_to_size(&regs[value_regno], size);
969bf05e 1246 }
17a52670
AS
1247 return err;
1248}
1249
31fd8581 1250static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
17a52670 1251{
17a52670
AS
1252 int err;
1253
1254 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
1255 insn->imm != 0) {
61bd5218 1256 verbose(env, "BPF_XADD uses reserved fields\n");
17a52670
AS
1257 return -EINVAL;
1258 }
1259
1260 /* check src1 operand */
dc503a8a 1261 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
1262 if (err)
1263 return err;
1264
1265 /* check src2 operand */
dc503a8a 1266 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
1267 if (err)
1268 return err;
1269
6bdf6abc 1270 if (is_pointer_value(env, insn->src_reg)) {
61bd5218 1271 verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
6bdf6abc
DB
1272 return -EACCES;
1273 }
1274
57b4a36e
DB
1275 if (is_ctx_reg(env, insn->dst_reg) ||
1276 is_pkt_reg(env, insn->dst_reg)) {
1277 verbose(env, "BPF_XADD stores into R%d %s is not allowed\n",
1278 insn->dst_reg, is_ctx_reg(env, insn->dst_reg) ?
1279 "context" : "packet");
f37a8cb8
DB
1280 return -EACCES;
1281 }
1282
17a52670 1283 /* check whether atomic_add can read the memory */
31fd8581 1284 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
57b4a36e 1285 BPF_SIZE(insn->code), BPF_READ, -1, true);
17a52670
AS
1286 if (err)
1287 return err;
1288
1289 /* check whether atomic_add can write into the same memory */
31fd8581 1290 return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
57b4a36e 1291 BPF_SIZE(insn->code), BPF_WRITE, -1, true);
17a52670
AS
1292}
1293
f1174f77
EC
1294/* Does this register contain a constant zero? */
1295static bool register_is_null(struct bpf_reg_state reg)
1296{
1297 return reg.type == SCALAR_VALUE && tnum_equals_const(reg.var_off, 0);
1298}
1299
17a52670
AS
1300/* when register 'regno' is passed into function that will read 'access_size'
1301 * bytes from that pointer, make sure that it's within stack boundary
f1174f77
EC
1302 * and all elements of stack are initialized.
1303 * Unlike most pointer bounds-checking functions, this one doesn't take an
1304 * 'off' argument, so it has to add in reg->off itself.
17a52670 1305 */
58e2af8b 1306static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
435faee1
DB
1307 int access_size, bool zero_size_allowed,
1308 struct bpf_call_arg_meta *meta)
17a52670 1309{
638f5b90 1310 struct bpf_verifier_state *state = env->cur_state;
58e2af8b 1311 struct bpf_reg_state *regs = state->regs;
638f5b90 1312 int off, i, slot, spi;
17a52670 1313
8e2fe1d9 1314 if (regs[regno].type != PTR_TO_STACK) {
f1174f77 1315 /* Allow zero-byte read from NULL, regardless of pointer type */
8e2fe1d9 1316 if (zero_size_allowed && access_size == 0 &&
f1174f77 1317 register_is_null(regs[regno]))
8e2fe1d9
DB
1318 return 0;
1319
61bd5218 1320 verbose(env, "R%d type=%s expected=%s\n", regno,
8e2fe1d9
DB
1321 reg_type_str[regs[regno].type],
1322 reg_type_str[PTR_TO_STACK]);
17a52670 1323 return -EACCES;
8e2fe1d9 1324 }
17a52670 1325
f1174f77
EC
1326 /* Only allow fixed-offset stack reads */
1327 if (!tnum_is_const(regs[regno].var_off)) {
1328 char tn_buf[48];
1329
1330 tnum_strn(tn_buf, sizeof(tn_buf), regs[regno].var_off);
61bd5218 1331 verbose(env, "invalid variable stack read R%d var_off=%s\n",
f1174f77 1332 regno, tn_buf);
ea25f914 1333 return -EACCES;
f1174f77
EC
1334 }
1335 off = regs[regno].off + regs[regno].var_off.value;
17a52670 1336 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
9fd29c08 1337 access_size < 0 || (access_size == 0 && !zero_size_allowed)) {
61bd5218 1338 verbose(env, "invalid stack type R%d off=%d access_size=%d\n",
17a52670
AS
1339 regno, off, access_size);
1340 return -EACCES;
1341 }
1342
8726679a
AS
1343 if (env->prog->aux->stack_depth < -off)
1344 env->prog->aux->stack_depth = -off;
1345
435faee1
DB
1346 if (meta && meta->raw_mode) {
1347 meta->access_size = access_size;
1348 meta->regno = regno;
1349 return 0;
1350 }
1351
17a52670 1352 for (i = 0; i < access_size; i++) {
638f5b90
AS
1353 slot = -(off + i) - 1;
1354 spi = slot / BPF_REG_SIZE;
1355 if (state->allocated_stack <= slot ||
1356 state->stack[spi].slot_type[slot % BPF_REG_SIZE] !=
1357 STACK_MISC) {
61bd5218 1358 verbose(env, "invalid indirect read from stack off %d+%d size %d\n",
17a52670
AS
1359 off, i, access_size);
1360 return -EACCES;
1361 }
1362 }
1363 return 0;
1364}
1365
06c1c049
GB
1366static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
1367 int access_size, bool zero_size_allowed,
1368 struct bpf_call_arg_meta *meta)
1369{
638f5b90 1370 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
06c1c049 1371
f1174f77 1372 switch (reg->type) {
06c1c049 1373 case PTR_TO_PACKET:
de8f3a83 1374 case PTR_TO_PACKET_META:
9fd29c08
YS
1375 return check_packet_access(env, regno, reg->off, access_size,
1376 zero_size_allowed);
06c1c049 1377 case PTR_TO_MAP_VALUE:
9fd29c08
YS
1378 return check_map_access(env, regno, reg->off, access_size,
1379 zero_size_allowed);
f1174f77 1380 default: /* scalar_value|ptr_to_stack or invalid ptr */
06c1c049
GB
1381 return check_stack_boundary(env, regno, access_size,
1382 zero_size_allowed, meta);
1383 }
1384}
1385
58e2af8b 1386static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
33ff9823
DB
1387 enum bpf_arg_type arg_type,
1388 struct bpf_call_arg_meta *meta)
17a52670 1389{
638f5b90 1390 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
6841de8b 1391 enum bpf_reg_type expected_type, type = reg->type;
17a52670
AS
1392 int err = 0;
1393
80f1d68c 1394 if (arg_type == ARG_DONTCARE)
17a52670
AS
1395 return 0;
1396
dc503a8a
EC
1397 err = check_reg_arg(env, regno, SRC_OP);
1398 if (err)
1399 return err;
17a52670 1400
1be7f75d
AS
1401 if (arg_type == ARG_ANYTHING) {
1402 if (is_pointer_value(env, regno)) {
61bd5218
JK
1403 verbose(env, "R%d leaks addr into helper function\n",
1404 regno);
1be7f75d
AS
1405 return -EACCES;
1406 }
80f1d68c 1407 return 0;
1be7f75d 1408 }
80f1d68c 1409
de8f3a83 1410 if (type_is_pkt_pointer(type) &&
3a0af8fd 1411 !may_access_direct_pkt_data(env, meta, BPF_READ)) {
61bd5218 1412 verbose(env, "helper access to the packet is not allowed\n");
6841de8b
AS
1413 return -EACCES;
1414 }
1415
8e2fe1d9 1416 if (arg_type == ARG_PTR_TO_MAP_KEY ||
17a52670
AS
1417 arg_type == ARG_PTR_TO_MAP_VALUE) {
1418 expected_type = PTR_TO_STACK;
de8f3a83
DB
1419 if (!type_is_pkt_pointer(type) &&
1420 type != expected_type)
6841de8b 1421 goto err_type;
39f19ebb
AS
1422 } else if (arg_type == ARG_CONST_SIZE ||
1423 arg_type == ARG_CONST_SIZE_OR_ZERO) {
f1174f77
EC
1424 expected_type = SCALAR_VALUE;
1425 if (type != expected_type)
6841de8b 1426 goto err_type;
17a52670
AS
1427 } else if (arg_type == ARG_CONST_MAP_PTR) {
1428 expected_type = CONST_PTR_TO_MAP;
6841de8b
AS
1429 if (type != expected_type)
1430 goto err_type;
608cd71a
AS
1431 } else if (arg_type == ARG_PTR_TO_CTX) {
1432 expected_type = PTR_TO_CTX;
6841de8b
AS
1433 if (type != expected_type)
1434 goto err_type;
39f19ebb 1435 } else if (arg_type == ARG_PTR_TO_MEM ||
db1ac496 1436 arg_type == ARG_PTR_TO_MEM_OR_NULL ||
39f19ebb 1437 arg_type == ARG_PTR_TO_UNINIT_MEM) {
8e2fe1d9
DB
1438 expected_type = PTR_TO_STACK;
1439 /* One exception here. In case function allows for NULL to be
f1174f77 1440 * passed in as argument, it's a SCALAR_VALUE type. Final test
8e2fe1d9
DB
1441 * happens during stack boundary checking.
1442 */
db1ac496
GB
1443 if (register_is_null(*reg) &&
1444 arg_type == ARG_PTR_TO_MEM_OR_NULL)
6841de8b 1445 /* final test in check_stack_boundary() */;
de8f3a83
DB
1446 else if (!type_is_pkt_pointer(type) &&
1447 type != PTR_TO_MAP_VALUE &&
f1174f77 1448 type != expected_type)
6841de8b 1449 goto err_type;
39f19ebb 1450 meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
17a52670 1451 } else {
61bd5218 1452 verbose(env, "unsupported arg_type %d\n", arg_type);
17a52670
AS
1453 return -EFAULT;
1454 }
1455
17a52670
AS
1456 if (arg_type == ARG_CONST_MAP_PTR) {
1457 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
33ff9823 1458 meta->map_ptr = reg->map_ptr;
17a52670
AS
1459 } else if (arg_type == ARG_PTR_TO_MAP_KEY) {
1460 /* bpf_map_xxx(..., map_ptr, ..., key) call:
1461 * check that [key, key + map->key_size) are within
1462 * stack limits and initialized
1463 */
33ff9823 1464 if (!meta->map_ptr) {
17a52670
AS
1465 /* in function declaration map_ptr must come before
1466 * map_key, so that it's verified and known before
1467 * we have to check map_key here. Otherwise it means
1468 * that kernel subsystem misconfigured verifier
1469 */
61bd5218 1470 verbose(env, "invalid map_ptr to access map->key\n");
17a52670
AS
1471 return -EACCES;
1472 }
de8f3a83 1473 if (type_is_pkt_pointer(type))
f1174f77 1474 err = check_packet_access(env, regno, reg->off,
9fd29c08
YS
1475 meta->map_ptr->key_size,
1476 false);
6841de8b
AS
1477 else
1478 err = check_stack_boundary(env, regno,
1479 meta->map_ptr->key_size,
1480 false, NULL);
17a52670
AS
1481 } else if (arg_type == ARG_PTR_TO_MAP_VALUE) {
1482 /* bpf_map_xxx(..., map_ptr, ..., value) call:
1483 * check [value, value + map->value_size) validity
1484 */
33ff9823 1485 if (!meta->map_ptr) {
17a52670 1486 /* kernel subsystem misconfigured verifier */
61bd5218 1487 verbose(env, "invalid map_ptr to access map->value\n");
17a52670
AS
1488 return -EACCES;
1489 }
de8f3a83 1490 if (type_is_pkt_pointer(type))
f1174f77 1491 err = check_packet_access(env, regno, reg->off,
9fd29c08
YS
1492 meta->map_ptr->value_size,
1493 false);
6841de8b
AS
1494 else
1495 err = check_stack_boundary(env, regno,
1496 meta->map_ptr->value_size,
1497 false, NULL);
39f19ebb
AS
1498 } else if (arg_type == ARG_CONST_SIZE ||
1499 arg_type == ARG_CONST_SIZE_OR_ZERO) {
1500 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
17a52670 1501
17a52670
AS
1502 /* bpf_xxx(..., buf, len) call will access 'len' bytes
1503 * from stack pointer 'buf'. Check it
1504 * note: regno == len, regno - 1 == buf
1505 */
1506 if (regno == 0) {
1507 /* kernel subsystem misconfigured verifier */
61bd5218
JK
1508 verbose(env,
1509 "ARG_CONST_SIZE cannot be first argument\n");
17a52670
AS
1510 return -EACCES;
1511 }
06c1c049 1512
f1174f77
EC
1513 /* The register is SCALAR_VALUE; the access check
1514 * happens using its boundaries.
06c1c049 1515 */
f1174f77
EC
1516
1517 if (!tnum_is_const(reg->var_off))
06c1c049
GB
1518 /* For unprivileged variable accesses, disable raw
1519 * mode so that the program is required to
1520 * initialize all the memory that the helper could
1521 * just partially fill up.
1522 */
1523 meta = NULL;
1524
b03c9f9f 1525 if (reg->smin_value < 0) {
61bd5218 1526 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
f1174f77
EC
1527 regno);
1528 return -EACCES;
1529 }
06c1c049 1530
b03c9f9f 1531 if (reg->umin_value == 0) {
f1174f77
EC
1532 err = check_helper_mem_access(env, regno - 1, 0,
1533 zero_size_allowed,
1534 meta);
06c1c049
GB
1535 if (err)
1536 return err;
06c1c049 1537 }
f1174f77 1538
b03c9f9f 1539 if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
61bd5218 1540 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
f1174f77
EC
1541 regno);
1542 return -EACCES;
1543 }
1544 err = check_helper_mem_access(env, regno - 1,
b03c9f9f 1545 reg->umax_value,
f1174f77 1546 zero_size_allowed, meta);
17a52670
AS
1547 }
1548
1549 return err;
6841de8b 1550err_type:
61bd5218 1551 verbose(env, "R%d type=%s expected=%s\n", regno,
6841de8b
AS
1552 reg_type_str[type], reg_type_str[expected_type]);
1553 return -EACCES;
17a52670
AS
1554}
1555
61bd5218
JK
1556static int check_map_func_compatibility(struct bpf_verifier_env *env,
1557 struct bpf_map *map, int func_id)
35578d79 1558{
35578d79
KX
1559 if (!map)
1560 return 0;
1561
6aff67c8
AS
1562 /* We need a two way check, first is from map perspective ... */
1563 switch (map->map_type) {
1564 case BPF_MAP_TYPE_PROG_ARRAY:
1565 if (func_id != BPF_FUNC_tail_call)
1566 goto error;
1567 break;
1568 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
1569 if (func_id != BPF_FUNC_perf_event_read &&
908432ca
YS
1570 func_id != BPF_FUNC_perf_event_output &&
1571 func_id != BPF_FUNC_perf_event_read_value)
6aff67c8
AS
1572 goto error;
1573 break;
1574 case BPF_MAP_TYPE_STACK_TRACE:
1575 if (func_id != BPF_FUNC_get_stackid)
1576 goto error;
1577 break;
4ed8ec52 1578 case BPF_MAP_TYPE_CGROUP_ARRAY:
60747ef4 1579 if (func_id != BPF_FUNC_skb_under_cgroup &&
60d20f91 1580 func_id != BPF_FUNC_current_task_under_cgroup)
4a482f34
MKL
1581 goto error;
1582 break;
546ac1ff
JF
1583 /* devmap returns a pointer to a live net_device ifindex that we cannot
1584 * allow to be modified from bpf side. So do not allow lookup elements
1585 * for now.
1586 */
1587 case BPF_MAP_TYPE_DEVMAP:
2ddf71e2 1588 if (func_id != BPF_FUNC_redirect_map)
546ac1ff
JF
1589 goto error;
1590 break;
6710e112
JDB
1591 /* Restrict bpf side of cpumap, open when use-cases appear */
1592 case BPF_MAP_TYPE_CPUMAP:
1593 if (func_id != BPF_FUNC_redirect_map)
1594 goto error;
1595 break;
56f668df 1596 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
bcc6b1b7 1597 case BPF_MAP_TYPE_HASH_OF_MAPS:
56f668df
MKL
1598 if (func_id != BPF_FUNC_map_lookup_elem)
1599 goto error;
16a43625 1600 break;
174a79ff
JF
1601 case BPF_MAP_TYPE_SOCKMAP:
1602 if (func_id != BPF_FUNC_sk_redirect_map &&
1603 func_id != BPF_FUNC_sock_map_update &&
1604 func_id != BPF_FUNC_map_delete_elem)
1605 goto error;
1606 break;
6aff67c8
AS
1607 default:
1608 break;
1609 }
1610
1611 /* ... and second from the function itself. */
1612 switch (func_id) {
1613 case BPF_FUNC_tail_call:
1614 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
1615 goto error;
1616 break;
1617 case BPF_FUNC_perf_event_read:
1618 case BPF_FUNC_perf_event_output:
908432ca 1619 case BPF_FUNC_perf_event_read_value:
6aff67c8
AS
1620 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
1621 goto error;
1622 break;
1623 case BPF_FUNC_get_stackid:
1624 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
1625 goto error;
1626 break;
60d20f91 1627 case BPF_FUNC_current_task_under_cgroup:
747ea55e 1628 case BPF_FUNC_skb_under_cgroup:
4a482f34
MKL
1629 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
1630 goto error;
1631 break;
97f91a7c 1632 case BPF_FUNC_redirect_map:
9c270af3
JDB
1633 if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
1634 map->map_type != BPF_MAP_TYPE_CPUMAP)
97f91a7c
JF
1635 goto error;
1636 break;
174a79ff
JF
1637 case BPF_FUNC_sk_redirect_map:
1638 if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
1639 goto error;
1640 break;
1641 case BPF_FUNC_sock_map_update:
1642 if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
1643 goto error;
1644 break;
6aff67c8
AS
1645 default:
1646 break;
35578d79
KX
1647 }
1648
1649 return 0;
6aff67c8 1650error:
61bd5218 1651 verbose(env, "cannot pass map_type %d into func %s#%d\n",
ebb676da 1652 map->map_type, func_id_name(func_id), func_id);
6aff67c8 1653 return -EINVAL;
35578d79
KX
1654}
1655
435faee1
DB
1656static int check_raw_mode(const struct bpf_func_proto *fn)
1657{
1658 int count = 0;
1659
39f19ebb 1660 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 1661 count++;
39f19ebb 1662 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 1663 count++;
39f19ebb 1664 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 1665 count++;
39f19ebb 1666 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 1667 count++;
39f19ebb 1668 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
435faee1
DB
1669 count++;
1670
1671 return count > 1 ? -EINVAL : 0;
1672}
1673
de8f3a83
DB
1674/* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
1675 * are now invalid, so turn them into unknown SCALAR_VALUE.
f1174f77 1676 */
58e2af8b 1677static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
969bf05e 1678{
638f5b90 1679 struct bpf_verifier_state *state = env->cur_state;
58e2af8b 1680 struct bpf_reg_state *regs = state->regs, *reg;
969bf05e
AS
1681 int i;
1682
1683 for (i = 0; i < MAX_BPF_REG; i++)
de8f3a83 1684 if (reg_is_pkt_pointer_any(&regs[i]))
61bd5218 1685 mark_reg_unknown(env, regs, i);
969bf05e 1686
638f5b90
AS
1687 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
1688 if (state->stack[i].slot_type[0] != STACK_SPILL)
969bf05e 1689 continue;
638f5b90 1690 reg = &state->stack[i].spilled_ptr;
de8f3a83
DB
1691 if (reg_is_pkt_pointer_any(reg))
1692 __mark_reg_unknown(reg);
969bf05e
AS
1693 }
1694}
1695
81ed18ab 1696static int check_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
17a52670 1697{
17a52670 1698 const struct bpf_func_proto *fn = NULL;
638f5b90 1699 struct bpf_reg_state *regs;
33ff9823 1700 struct bpf_call_arg_meta meta;
969bf05e 1701 bool changes_data;
17a52670
AS
1702 int i, err;
1703
1704 /* find function prototype */
1705 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
61bd5218
JK
1706 verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
1707 func_id);
17a52670
AS
1708 return -EINVAL;
1709 }
1710
00176a34
JK
1711 if (env->ops->get_func_proto)
1712 fn = env->ops->get_func_proto(func_id);
17a52670
AS
1713
1714 if (!fn) {
61bd5218
JK
1715 verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
1716 func_id);
17a52670
AS
1717 return -EINVAL;
1718 }
1719
1720 /* eBPF programs must be GPL compatible to use GPL-ed functions */
24701ece 1721 if (!env->prog->gpl_compatible && fn->gpl_only) {
61bd5218 1722 verbose(env, "cannot call GPL only function from proprietary program\n");
17a52670
AS
1723 return -EINVAL;
1724 }
1725
04514d13 1726 /* With LD_ABS/IND some JITs save/restore skb from r1. */
17bedab2 1727 changes_data = bpf_helper_changes_pkt_data(fn->func);
04514d13
DB
1728 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
1729 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
1730 func_id_name(func_id), func_id);
1731 return -EINVAL;
1732 }
969bf05e 1733
33ff9823 1734 memset(&meta, 0, sizeof(meta));
36bbef52 1735 meta.pkt_access = fn->pkt_access;
33ff9823 1736
435faee1
DB
1737 /* We only support one arg being in raw mode at the moment, which
1738 * is sufficient for the helper functions we have right now.
1739 */
1740 err = check_raw_mode(fn);
1741 if (err) {
61bd5218 1742 verbose(env, "kernel subsystem misconfigured func %s#%d\n",
ebb676da 1743 func_id_name(func_id), func_id);
435faee1
DB
1744 return err;
1745 }
1746
17a52670 1747 /* check args */
33ff9823 1748 err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
17a52670
AS
1749 if (err)
1750 return err;
33ff9823 1751 err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
17a52670
AS
1752 if (err)
1753 return err;
b2157399
AS
1754 if (func_id == BPF_FUNC_tail_call) {
1755 if (meta.map_ptr == NULL) {
1756 verbose(env, "verifier bug\n");
1757 return -EINVAL;
1758 }
1759 env->insn_aux_data[insn_idx].map_ptr = meta.map_ptr;
1760 }
33ff9823 1761 err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
17a52670
AS
1762 if (err)
1763 return err;
33ff9823 1764 err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
17a52670
AS
1765 if (err)
1766 return err;
33ff9823 1767 err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
17a52670
AS
1768 if (err)
1769 return err;
1770
435faee1
DB
1771 /* Mark slots with STACK_MISC in case of raw mode, stack offset
1772 * is inferred from register state.
1773 */
1774 for (i = 0; i < meta.access_size; i++) {
57b4a36e
DB
1775 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
1776 BPF_WRITE, -1, false);
435faee1
DB
1777 if (err)
1778 return err;
1779 }
1780
638f5b90 1781 regs = cur_regs(env);
17a52670 1782 /* reset caller saved regs */
dc503a8a 1783 for (i = 0; i < CALLER_SAVED_REGS; i++) {
61bd5218 1784 mark_reg_not_init(env, regs, caller_saved[i]);
dc503a8a
EC
1785 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
1786 }
17a52670 1787
dc503a8a 1788 /* update return register (already marked as written above) */
17a52670 1789 if (fn->ret_type == RET_INTEGER) {
f1174f77 1790 /* sets type to SCALAR_VALUE */
61bd5218 1791 mark_reg_unknown(env, regs, BPF_REG_0);
17a52670
AS
1792 } else if (fn->ret_type == RET_VOID) {
1793 regs[BPF_REG_0].type = NOT_INIT;
1794 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) {
fad73a1a
MKL
1795 struct bpf_insn_aux_data *insn_aux;
1796
17a52670 1797 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
f1174f77 1798 /* There is no offset yet applied, variable or fixed */
61bd5218 1799 mark_reg_known_zero(env, regs, BPF_REG_0);
f1174f77 1800 regs[BPF_REG_0].off = 0;
17a52670
AS
1801 /* remember map_ptr, so that check_map_access()
1802 * can check 'value_size' boundary of memory access
1803 * to map element returned from bpf_map_lookup_elem()
1804 */
33ff9823 1805 if (meta.map_ptr == NULL) {
61bd5218
JK
1806 verbose(env,
1807 "kernel subsystem misconfigured verifier\n");
17a52670
AS
1808 return -EINVAL;
1809 }
33ff9823 1810 regs[BPF_REG_0].map_ptr = meta.map_ptr;
57a09bf0 1811 regs[BPF_REG_0].id = ++env->id_gen;
fad73a1a
MKL
1812 insn_aux = &env->insn_aux_data[insn_idx];
1813 if (!insn_aux->map_ptr)
1814 insn_aux->map_ptr = meta.map_ptr;
1815 else if (insn_aux->map_ptr != meta.map_ptr)
1816 insn_aux->map_ptr = BPF_MAP_PTR_POISON;
17a52670 1817 } else {
61bd5218 1818 verbose(env, "unknown return type %d of func %s#%d\n",
ebb676da 1819 fn->ret_type, func_id_name(func_id), func_id);
17a52670
AS
1820 return -EINVAL;
1821 }
04fd61ab 1822
61bd5218 1823 err = check_map_func_compatibility(env, meta.map_ptr, func_id);
35578d79
KX
1824 if (err)
1825 return err;
04fd61ab 1826
969bf05e
AS
1827 if (changes_data)
1828 clear_all_pkt_pointers(env);
1829 return 0;
1830}
1831
b03c9f9f
EC
1832static bool signed_add_overflows(s64 a, s64 b)
1833{
1834 /* Do the add in u64, where overflow is well-defined */
1835 s64 res = (s64)((u64)a + (u64)b);
1836
1837 if (b < 0)
1838 return res > a;
1839 return res < a;
1840}
1841
1842static bool signed_sub_overflows(s64 a, s64 b)
1843{
1844 /* Do the sub in u64, where overflow is well-defined */
1845 s64 res = (s64)((u64)a - (u64)b);
1846
1847 if (b < 0)
1848 return res < a;
1849 return res > a;
969bf05e
AS
1850}
1851
bb7f0f98
AS
1852static bool check_reg_sane_offset(struct bpf_verifier_env *env,
1853 const struct bpf_reg_state *reg,
1854 enum bpf_reg_type type)
1855{
1856 bool known = tnum_is_const(reg->var_off);
1857 s64 val = reg->var_off.value;
1858 s64 smin = reg->smin_value;
1859
1860 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
1861 verbose(env, "math between %s pointer and %lld is not allowed\n",
1862 reg_type_str[type], val);
1863 return false;
1864 }
1865
1866 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
1867 verbose(env, "%s pointer offset %d is not allowed\n",
1868 reg_type_str[type], reg->off);
1869 return false;
1870 }
1871
1872 if (smin == S64_MIN) {
1873 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
1874 reg_type_str[type]);
1875 return false;
1876 }
1877
1878 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
1879 verbose(env, "value %lld makes %s pointer be out of bounds\n",
1880 smin, reg_type_str[type]);
1881 return false;
1882 }
1883
1884 return true;
1885}
1886
f1174f77 1887/* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
f1174f77
EC
1888 * Caller should also handle BPF_MOV case separately.
1889 * If we return -EACCES, caller may want to try again treating pointer as a
1890 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks.
1891 */
1892static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
1893 struct bpf_insn *insn,
1894 const struct bpf_reg_state *ptr_reg,
1895 const struct bpf_reg_state *off_reg)
969bf05e 1896{
638f5b90 1897 struct bpf_reg_state *regs = cur_regs(env), *dst_reg;
f1174f77 1898 bool known = tnum_is_const(off_reg->var_off);
b03c9f9f
EC
1899 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
1900 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
1901 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
1902 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
969bf05e 1903 u8 opcode = BPF_OP(insn->code);
f1174f77 1904 u32 dst = insn->dst_reg;
969bf05e 1905
f1174f77 1906 dst_reg = &regs[dst];
969bf05e 1907
6f16101e
DB
1908 if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
1909 smin_val > smax_val || umin_val > umax_val) {
1910 /* Taint dst register if offset had invalid bounds derived from
1911 * e.g. dead branches.
1912 */
1913 __mark_reg_unknown(dst_reg);
1914 return 0;
f1174f77
EC
1915 }
1916
1917 if (BPF_CLASS(insn->code) != BPF_ALU64) {
1918 /* 32-bit ALU ops on pointers produce (meaningless) scalars */
82abbf8d
AS
1919 verbose(env,
1920 "R%d 32-bit pointer arithmetic prohibited\n",
1921 dst);
f1174f77 1922 return -EACCES;
969bf05e
AS
1923 }
1924
f1174f77 1925 if (ptr_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
82abbf8d
AS
1926 verbose(env, "R%d pointer arithmetic on PTR_TO_MAP_VALUE_OR_NULL prohibited, null-check it first\n",
1927 dst);
f1174f77
EC
1928 return -EACCES;
1929 }
1930 if (ptr_reg->type == CONST_PTR_TO_MAP) {
82abbf8d
AS
1931 verbose(env, "R%d pointer arithmetic on CONST_PTR_TO_MAP prohibited\n",
1932 dst);
f1174f77
EC
1933 return -EACCES;
1934 }
1935 if (ptr_reg->type == PTR_TO_PACKET_END) {
82abbf8d
AS
1936 verbose(env, "R%d pointer arithmetic on PTR_TO_PACKET_END prohibited\n",
1937 dst);
f1174f77
EC
1938 return -EACCES;
1939 }
1940
1941 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
1942 * The id may be overwritten later if we create a new variable offset.
969bf05e 1943 */
f1174f77
EC
1944 dst_reg->type = ptr_reg->type;
1945 dst_reg->id = ptr_reg->id;
969bf05e 1946
bb7f0f98
AS
1947 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
1948 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
1949 return -EINVAL;
1950
f1174f77
EC
1951 switch (opcode) {
1952 case BPF_ADD:
1953 /* We can take a fixed offset as long as it doesn't overflow
1954 * the s32 'off' field
969bf05e 1955 */
b03c9f9f
EC
1956 if (known && (ptr_reg->off + smin_val ==
1957 (s64)(s32)(ptr_reg->off + smin_val))) {
f1174f77 1958 /* pointer += K. Accumulate it into fixed offset */
b03c9f9f
EC
1959 dst_reg->smin_value = smin_ptr;
1960 dst_reg->smax_value = smax_ptr;
1961 dst_reg->umin_value = umin_ptr;
1962 dst_reg->umax_value = umax_ptr;
f1174f77 1963 dst_reg->var_off = ptr_reg->var_off;
b03c9f9f 1964 dst_reg->off = ptr_reg->off + smin_val;
f1174f77
EC
1965 dst_reg->range = ptr_reg->range;
1966 break;
1967 }
f1174f77
EC
1968 /* A new variable offset is created. Note that off_reg->off
1969 * == 0, since it's a scalar.
1970 * dst_reg gets the pointer type and since some positive
1971 * integer value was added to the pointer, give it a new 'id'
1972 * if it's a PTR_TO_PACKET.
1973 * this creates a new 'base' pointer, off_reg (variable) gets
1974 * added into the variable offset, and we copy the fixed offset
1975 * from ptr_reg.
969bf05e 1976 */
b03c9f9f
EC
1977 if (signed_add_overflows(smin_ptr, smin_val) ||
1978 signed_add_overflows(smax_ptr, smax_val)) {
1979 dst_reg->smin_value = S64_MIN;
1980 dst_reg->smax_value = S64_MAX;
1981 } else {
1982 dst_reg->smin_value = smin_ptr + smin_val;
1983 dst_reg->smax_value = smax_ptr + smax_val;
1984 }
1985 if (umin_ptr + umin_val < umin_ptr ||
1986 umax_ptr + umax_val < umax_ptr) {
1987 dst_reg->umin_value = 0;
1988 dst_reg->umax_value = U64_MAX;
1989 } else {
1990 dst_reg->umin_value = umin_ptr + umin_val;
1991 dst_reg->umax_value = umax_ptr + umax_val;
1992 }
f1174f77
EC
1993 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
1994 dst_reg->off = ptr_reg->off;
de8f3a83 1995 if (reg_is_pkt_pointer(ptr_reg)) {
f1174f77
EC
1996 dst_reg->id = ++env->id_gen;
1997 /* something was added to pkt_ptr, set range to zero */
1998 dst_reg->range = 0;
1999 }
2000 break;
2001 case BPF_SUB:
2002 if (dst_reg == off_reg) {
2003 /* scalar -= pointer. Creates an unknown scalar */
82abbf8d
AS
2004 verbose(env, "R%d tried to subtract pointer from scalar\n",
2005 dst);
f1174f77
EC
2006 return -EACCES;
2007 }
2008 /* We don't allow subtraction from FP, because (according to
2009 * test_verifier.c test "invalid fp arithmetic", JITs might not
2010 * be able to deal with it.
969bf05e 2011 */
f1174f77 2012 if (ptr_reg->type == PTR_TO_STACK) {
82abbf8d
AS
2013 verbose(env, "R%d subtraction from stack pointer prohibited\n",
2014 dst);
f1174f77
EC
2015 return -EACCES;
2016 }
b03c9f9f
EC
2017 if (known && (ptr_reg->off - smin_val ==
2018 (s64)(s32)(ptr_reg->off - smin_val))) {
f1174f77 2019 /* pointer -= K. Subtract it from fixed offset */
b03c9f9f
EC
2020 dst_reg->smin_value = smin_ptr;
2021 dst_reg->smax_value = smax_ptr;
2022 dst_reg->umin_value = umin_ptr;
2023 dst_reg->umax_value = umax_ptr;
f1174f77
EC
2024 dst_reg->var_off = ptr_reg->var_off;
2025 dst_reg->id = ptr_reg->id;
b03c9f9f 2026 dst_reg->off = ptr_reg->off - smin_val;
f1174f77
EC
2027 dst_reg->range = ptr_reg->range;
2028 break;
2029 }
f1174f77
EC
2030 /* A new variable offset is created. If the subtrahend is known
2031 * nonnegative, then any reg->range we had before is still good.
969bf05e 2032 */
b03c9f9f
EC
2033 if (signed_sub_overflows(smin_ptr, smax_val) ||
2034 signed_sub_overflows(smax_ptr, smin_val)) {
2035 /* Overflow possible, we know nothing */
2036 dst_reg->smin_value = S64_MIN;
2037 dst_reg->smax_value = S64_MAX;
2038 } else {
2039 dst_reg->smin_value = smin_ptr - smax_val;
2040 dst_reg->smax_value = smax_ptr - smin_val;
2041 }
2042 if (umin_ptr < umax_val) {
2043 /* Overflow possible, we know nothing */
2044 dst_reg->umin_value = 0;
2045 dst_reg->umax_value = U64_MAX;
2046 } else {
2047 /* Cannot overflow (as long as bounds are consistent) */
2048 dst_reg->umin_value = umin_ptr - umax_val;
2049 dst_reg->umax_value = umax_ptr - umin_val;
2050 }
f1174f77
EC
2051 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
2052 dst_reg->off = ptr_reg->off;
de8f3a83 2053 if (reg_is_pkt_pointer(ptr_reg)) {
f1174f77
EC
2054 dst_reg->id = ++env->id_gen;
2055 /* something was added to pkt_ptr, set range to zero */
b03c9f9f 2056 if (smin_val < 0)
f1174f77 2057 dst_reg->range = 0;
43188702 2058 }
f1174f77
EC
2059 break;
2060 case BPF_AND:
2061 case BPF_OR:
2062 case BPF_XOR:
82abbf8d
AS
2063 /* bitwise ops on pointers are troublesome, prohibit. */
2064 verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
2065 dst, bpf_alu_string[opcode >> 4]);
f1174f77
EC
2066 return -EACCES;
2067 default:
2068 /* other operators (e.g. MUL,LSH) produce non-pointer results */
82abbf8d
AS
2069 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
2070 dst, bpf_alu_string[opcode >> 4]);
f1174f77 2071 return -EACCES;
43188702
JF
2072 }
2073
bb7f0f98
AS
2074 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
2075 return -EINVAL;
2076
b03c9f9f
EC
2077 __update_reg_bounds(dst_reg);
2078 __reg_deduce_bounds(dst_reg);
2079 __reg_bound_offset(dst_reg);
43188702
JF
2080 return 0;
2081}
2082
468f6eaf
JH
2083/* WARNING: This function does calculations on 64-bit values, but the actual
2084 * execution may occur on 32-bit values. Therefore, things like bitshifts
2085 * need extra checks in the 32-bit case.
2086 */
f1174f77
EC
2087static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
2088 struct bpf_insn *insn,
2089 struct bpf_reg_state *dst_reg,
2090 struct bpf_reg_state src_reg)
969bf05e 2091{
638f5b90 2092 struct bpf_reg_state *regs = cur_regs(env);
48461135 2093 u8 opcode = BPF_OP(insn->code);
f1174f77 2094 bool src_known, dst_known;
b03c9f9f
EC
2095 s64 smin_val, smax_val;
2096 u64 umin_val, umax_val;
468f6eaf 2097 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
48461135 2098
b03c9f9f
EC
2099 smin_val = src_reg.smin_value;
2100 smax_val = src_reg.smax_value;
2101 umin_val = src_reg.umin_value;
2102 umax_val = src_reg.umax_value;
f1174f77
EC
2103 src_known = tnum_is_const(src_reg.var_off);
2104 dst_known = tnum_is_const(dst_reg->var_off);
f23cc643 2105
6f16101e
DB
2106 if ((src_known && (smin_val != smax_val || umin_val != umax_val)) ||
2107 smin_val > smax_val || umin_val > umax_val) {
2108 /* Taint dst register if offset had invalid bounds derived from
2109 * e.g. dead branches.
2110 */
2111 __mark_reg_unknown(dst_reg);
2112 return 0;
2113 }
2114
bb7f0f98
AS
2115 if (!src_known &&
2116 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
2117 __mark_reg_unknown(dst_reg);
2118 return 0;
2119 }
2120
48461135
JB
2121 switch (opcode) {
2122 case BPF_ADD:
b03c9f9f
EC
2123 if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
2124 signed_add_overflows(dst_reg->smax_value, smax_val)) {
2125 dst_reg->smin_value = S64_MIN;
2126 dst_reg->smax_value = S64_MAX;
2127 } else {
2128 dst_reg->smin_value += smin_val;
2129 dst_reg->smax_value += smax_val;
2130 }
2131 if (dst_reg->umin_value + umin_val < umin_val ||
2132 dst_reg->umax_value + umax_val < umax_val) {
2133 dst_reg->umin_value = 0;
2134 dst_reg->umax_value = U64_MAX;
2135 } else {
2136 dst_reg->umin_value += umin_val;
2137 dst_reg->umax_value += umax_val;
2138 }
f1174f77 2139 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
48461135
JB
2140 break;
2141 case BPF_SUB:
b03c9f9f
EC
2142 if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
2143 signed_sub_overflows(dst_reg->smax_value, smin_val)) {
2144 /* Overflow possible, we know nothing */
2145 dst_reg->smin_value = S64_MIN;
2146 dst_reg->smax_value = S64_MAX;
2147 } else {
2148 dst_reg->smin_value -= smax_val;
2149 dst_reg->smax_value -= smin_val;
2150 }
2151 if (dst_reg->umin_value < umax_val) {
2152 /* Overflow possible, we know nothing */
2153 dst_reg->umin_value = 0;
2154 dst_reg->umax_value = U64_MAX;
2155 } else {
2156 /* Cannot overflow (as long as bounds are consistent) */
2157 dst_reg->umin_value -= umax_val;
2158 dst_reg->umax_value -= umin_val;
2159 }
f1174f77 2160 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
48461135
JB
2161 break;
2162 case BPF_MUL:
b03c9f9f
EC
2163 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
2164 if (smin_val < 0 || dst_reg->smin_value < 0) {
f1174f77 2165 /* Ain't nobody got time to multiply that sign */
b03c9f9f
EC
2166 __mark_reg_unbounded(dst_reg);
2167 __update_reg_bounds(dst_reg);
f1174f77
EC
2168 break;
2169 }
b03c9f9f
EC
2170 /* Both values are positive, so we can work with unsigned and
2171 * copy the result to signed (unless it exceeds S64_MAX).
f1174f77 2172 */
b03c9f9f
EC
2173 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
2174 /* Potential overflow, we know nothing */
2175 __mark_reg_unbounded(dst_reg);
2176 /* (except what we can learn from the var_off) */
2177 __update_reg_bounds(dst_reg);
2178 break;
2179 }
2180 dst_reg->umin_value *= umin_val;
2181 dst_reg->umax_value *= umax_val;
2182 if (dst_reg->umax_value > S64_MAX) {
2183 /* Overflow possible, we know nothing */
2184 dst_reg->smin_value = S64_MIN;
2185 dst_reg->smax_value = S64_MAX;
2186 } else {
2187 dst_reg->smin_value = dst_reg->umin_value;
2188 dst_reg->smax_value = dst_reg->umax_value;
2189 }
48461135
JB
2190 break;
2191 case BPF_AND:
f1174f77 2192 if (src_known && dst_known) {
b03c9f9f
EC
2193 __mark_reg_known(dst_reg, dst_reg->var_off.value &
2194 src_reg.var_off.value);
f1174f77
EC
2195 break;
2196 }
b03c9f9f
EC
2197 /* We get our minimum from the var_off, since that's inherently
2198 * bitwise. Our maximum is the minimum of the operands' maxima.
f23cc643 2199 */
f1174f77 2200 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
b03c9f9f
EC
2201 dst_reg->umin_value = dst_reg->var_off.value;
2202 dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
2203 if (dst_reg->smin_value < 0 || smin_val < 0) {
2204 /* Lose signed bounds when ANDing negative numbers,
2205 * ain't nobody got time for that.
2206 */
2207 dst_reg->smin_value = S64_MIN;
2208 dst_reg->smax_value = S64_MAX;
2209 } else {
2210 /* ANDing two positives gives a positive, so safe to
2211 * cast result into s64.
2212 */
2213 dst_reg->smin_value = dst_reg->umin_value;
2214 dst_reg->smax_value = dst_reg->umax_value;
2215 }
2216 /* We may learn something more from the var_off */
2217 __update_reg_bounds(dst_reg);
f1174f77
EC
2218 break;
2219 case BPF_OR:
2220 if (src_known && dst_known) {
b03c9f9f
EC
2221 __mark_reg_known(dst_reg, dst_reg->var_off.value |
2222 src_reg.var_off.value);
f1174f77
EC
2223 break;
2224 }
b03c9f9f
EC
2225 /* We get our maximum from the var_off, and our minimum is the
2226 * maximum of the operands' minima
f1174f77
EC
2227 */
2228 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
b03c9f9f
EC
2229 dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
2230 dst_reg->umax_value = dst_reg->var_off.value |
2231 dst_reg->var_off.mask;
2232 if (dst_reg->smin_value < 0 || smin_val < 0) {
2233 /* Lose signed bounds when ORing negative numbers,
2234 * ain't nobody got time for that.
2235 */
2236 dst_reg->smin_value = S64_MIN;
2237 dst_reg->smax_value = S64_MAX;
f1174f77 2238 } else {
b03c9f9f
EC
2239 /* ORing two positives gives a positive, so safe to
2240 * cast result into s64.
2241 */
2242 dst_reg->smin_value = dst_reg->umin_value;
2243 dst_reg->smax_value = dst_reg->umax_value;
f1174f77 2244 }
b03c9f9f
EC
2245 /* We may learn something more from the var_off */
2246 __update_reg_bounds(dst_reg);
48461135
JB
2247 break;
2248 case BPF_LSH:
468f6eaf
JH
2249 if (umax_val >= insn_bitness) {
2250 /* Shifts greater than 31 or 63 are undefined.
2251 * This includes shifts by a negative number.
b03c9f9f 2252 */
61bd5218 2253 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77
EC
2254 break;
2255 }
b03c9f9f
EC
2256 /* We lose all sign bit information (except what we can pick
2257 * up from var_off)
48461135 2258 */
b03c9f9f
EC
2259 dst_reg->smin_value = S64_MIN;
2260 dst_reg->smax_value = S64_MAX;
2261 /* If we might shift our top bit out, then we know nothing */
2262 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
2263 dst_reg->umin_value = 0;
2264 dst_reg->umax_value = U64_MAX;
d1174416 2265 } else {
b03c9f9f
EC
2266 dst_reg->umin_value <<= umin_val;
2267 dst_reg->umax_value <<= umax_val;
d1174416 2268 }
b03c9f9f
EC
2269 if (src_known)
2270 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
2271 else
2272 dst_reg->var_off = tnum_lshift(tnum_unknown, umin_val);
2273 /* We may learn something more from the var_off */
2274 __update_reg_bounds(dst_reg);
48461135
JB
2275 break;
2276 case BPF_RSH:
468f6eaf
JH
2277 if (umax_val >= insn_bitness) {
2278 /* Shifts greater than 31 or 63 are undefined.
2279 * This includes shifts by a negative number.
b03c9f9f 2280 */
61bd5218 2281 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77
EC
2282 break;
2283 }
4374f256
EC
2284 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
2285 * be negative, then either:
2286 * 1) src_reg might be zero, so the sign bit of the result is
2287 * unknown, so we lose our signed bounds
2288 * 2) it's known negative, thus the unsigned bounds capture the
2289 * signed bounds
2290 * 3) the signed bounds cross zero, so they tell us nothing
2291 * about the result
2292 * If the value in dst_reg is known nonnegative, then again the
2293 * unsigned bounts capture the signed bounds.
2294 * Thus, in all cases it suffices to blow away our signed bounds
2295 * and rely on inferring new ones from the unsigned bounds and
2296 * var_off of the result.
2297 */
2298 dst_reg->smin_value = S64_MIN;
2299 dst_reg->smax_value = S64_MAX;
f1174f77 2300 if (src_known)
b03c9f9f
EC
2301 dst_reg->var_off = tnum_rshift(dst_reg->var_off,
2302 umin_val);
f1174f77 2303 else
b03c9f9f
EC
2304 dst_reg->var_off = tnum_rshift(tnum_unknown, umin_val);
2305 dst_reg->umin_value >>= umax_val;
2306 dst_reg->umax_value >>= umin_val;
2307 /* We may learn something more from the var_off */
2308 __update_reg_bounds(dst_reg);
48461135
JB
2309 break;
2310 default:
61bd5218 2311 mark_reg_unknown(env, regs, insn->dst_reg);
48461135
JB
2312 break;
2313 }
2314
468f6eaf
JH
2315 if (BPF_CLASS(insn->code) != BPF_ALU64) {
2316 /* 32-bit ALU ops are (32,32)->32 */
2317 coerce_reg_to_size(dst_reg, 4);
2318 coerce_reg_to_size(&src_reg, 4);
2319 }
2320
b03c9f9f
EC
2321 __reg_deduce_bounds(dst_reg);
2322 __reg_bound_offset(dst_reg);
f1174f77
EC
2323 return 0;
2324}
2325
2326/* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
2327 * and var_off.
2328 */
2329static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
2330 struct bpf_insn *insn)
2331{
638f5b90 2332 struct bpf_reg_state *regs = cur_regs(env), *dst_reg, *src_reg;
f1174f77
EC
2333 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
2334 u8 opcode = BPF_OP(insn->code);
f1174f77
EC
2335
2336 dst_reg = &regs[insn->dst_reg];
f1174f77
EC
2337 src_reg = NULL;
2338 if (dst_reg->type != SCALAR_VALUE)
2339 ptr_reg = dst_reg;
2340 if (BPF_SRC(insn->code) == BPF_X) {
2341 src_reg = &regs[insn->src_reg];
f1174f77
EC
2342 if (src_reg->type != SCALAR_VALUE) {
2343 if (dst_reg->type != SCALAR_VALUE) {
2344 /* Combining two pointers by any ALU op yields
82abbf8d
AS
2345 * an arbitrary scalar. Disallow all math except
2346 * pointer subtraction
f1174f77 2347 */
82abbf8d
AS
2348 if (opcode == BPF_SUB){
2349 mark_reg_unknown(env, regs, insn->dst_reg);
2350 return 0;
f1174f77 2351 }
82abbf8d
AS
2352 verbose(env, "R%d pointer %s pointer prohibited\n",
2353 insn->dst_reg,
2354 bpf_alu_string[opcode >> 4]);
2355 return -EACCES;
f1174f77
EC
2356 } else {
2357 /* scalar += pointer
2358 * This is legal, but we have to reverse our
2359 * src/dest handling in computing the range
2360 */
82abbf8d
AS
2361 return adjust_ptr_min_max_vals(env, insn,
2362 src_reg, dst_reg);
f1174f77
EC
2363 }
2364 } else if (ptr_reg) {
2365 /* pointer += scalar */
82abbf8d
AS
2366 return adjust_ptr_min_max_vals(env, insn,
2367 dst_reg, src_reg);
f1174f77
EC
2368 }
2369 } else {
2370 /* Pretend the src is a reg with a known value, since we only
2371 * need to be able to read from this state.
2372 */
2373 off_reg.type = SCALAR_VALUE;
b03c9f9f 2374 __mark_reg_known(&off_reg, insn->imm);
f1174f77 2375 src_reg = &off_reg;
82abbf8d
AS
2376 if (ptr_reg) /* pointer += K */
2377 return adjust_ptr_min_max_vals(env, insn,
2378 ptr_reg, src_reg);
f1174f77
EC
2379 }
2380
2381 /* Got here implies adding two SCALAR_VALUEs */
2382 if (WARN_ON_ONCE(ptr_reg)) {
638f5b90 2383 print_verifier_state(env, env->cur_state);
61bd5218 2384 verbose(env, "verifier internal error: unexpected ptr_reg\n");
f1174f77
EC
2385 return -EINVAL;
2386 }
2387 if (WARN_ON(!src_reg)) {
638f5b90 2388 print_verifier_state(env, env->cur_state);
61bd5218 2389 verbose(env, "verifier internal error: no src_reg\n");
f1174f77
EC
2390 return -EINVAL;
2391 }
2392 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
48461135
JB
2393}
2394
17a52670 2395/* check validity of 32-bit and 64-bit arithmetic operations */
58e2af8b 2396static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 2397{
638f5b90 2398 struct bpf_reg_state *regs = cur_regs(env);
17a52670
AS
2399 u8 opcode = BPF_OP(insn->code);
2400 int err;
2401
2402 if (opcode == BPF_END || opcode == BPF_NEG) {
2403 if (opcode == BPF_NEG) {
2404 if (BPF_SRC(insn->code) != 0 ||
2405 insn->src_reg != BPF_REG_0 ||
2406 insn->off != 0 || insn->imm != 0) {
61bd5218 2407 verbose(env, "BPF_NEG uses reserved fields\n");
17a52670
AS
2408 return -EINVAL;
2409 }
2410 } else {
2411 if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
e67b8a68
EC
2412 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
2413 BPF_CLASS(insn->code) == BPF_ALU64) {
61bd5218 2414 verbose(env, "BPF_END uses reserved fields\n");
17a52670
AS
2415 return -EINVAL;
2416 }
2417 }
2418
2419 /* check src operand */
dc503a8a 2420 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
2421 if (err)
2422 return err;
2423
1be7f75d 2424 if (is_pointer_value(env, insn->dst_reg)) {
61bd5218 2425 verbose(env, "R%d pointer arithmetic prohibited\n",
1be7f75d
AS
2426 insn->dst_reg);
2427 return -EACCES;
2428 }
2429
17a52670 2430 /* check dest operand */
dc503a8a 2431 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
2432 if (err)
2433 return err;
2434
2435 } else if (opcode == BPF_MOV) {
2436
2437 if (BPF_SRC(insn->code) == BPF_X) {
2438 if (insn->imm != 0 || insn->off != 0) {
61bd5218 2439 verbose(env, "BPF_MOV uses reserved fields\n");
17a52670
AS
2440 return -EINVAL;
2441 }
2442
2443 /* check src operand */
dc503a8a 2444 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
2445 if (err)
2446 return err;
2447 } else {
2448 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
61bd5218 2449 verbose(env, "BPF_MOV uses reserved fields\n");
17a52670
AS
2450 return -EINVAL;
2451 }
2452 }
2453
2454 /* check dest operand */
dc503a8a 2455 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
2456 if (err)
2457 return err;
2458
2459 if (BPF_SRC(insn->code) == BPF_X) {
2460 if (BPF_CLASS(insn->code) == BPF_ALU64) {
2461 /* case: R1 = R2
2462 * copy register state to dest reg
2463 */
2464 regs[insn->dst_reg] = regs[insn->src_reg];
8fe2d6cc 2465 regs[insn->dst_reg].live |= REG_LIVE_WRITTEN;
17a52670 2466 } else {
f1174f77 2467 /* R1 = (u32) R2 */
1be7f75d 2468 if (is_pointer_value(env, insn->src_reg)) {
61bd5218
JK
2469 verbose(env,
2470 "R%d partial copy of pointer\n",
1be7f75d
AS
2471 insn->src_reg);
2472 return -EACCES;
2473 }
61bd5218 2474 mark_reg_unknown(env, regs, insn->dst_reg);
0c17d1d2 2475 coerce_reg_to_size(&regs[insn->dst_reg], 4);
17a52670
AS
2476 }
2477 } else {
2478 /* case: R = imm
2479 * remember the value we stored into this reg
2480 */
f1174f77 2481 regs[insn->dst_reg].type = SCALAR_VALUE;
95a762e2
JH
2482 if (BPF_CLASS(insn->code) == BPF_ALU64) {
2483 __mark_reg_known(regs + insn->dst_reg,
2484 insn->imm);
2485 } else {
2486 __mark_reg_known(regs + insn->dst_reg,
2487 (u32)insn->imm);
2488 }
17a52670
AS
2489 }
2490
2491 } else if (opcode > BPF_END) {
61bd5218 2492 verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
17a52670
AS
2493 return -EINVAL;
2494
2495 } else { /* all other ALU ops: and, sub, xor, add, ... */
2496
17a52670
AS
2497 if (BPF_SRC(insn->code) == BPF_X) {
2498 if (insn->imm != 0 || insn->off != 0) {
61bd5218 2499 verbose(env, "BPF_ALU uses reserved fields\n");
17a52670
AS
2500 return -EINVAL;
2501 }
2502 /* check src1 operand */
dc503a8a 2503 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
2504 if (err)
2505 return err;
2506 } else {
2507 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
61bd5218 2508 verbose(env, "BPF_ALU uses reserved fields\n");
17a52670
AS
2509 return -EINVAL;
2510 }
2511 }
2512
2513 /* check src2 operand */
dc503a8a 2514 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
2515 if (err)
2516 return err;
2517
2518 if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
2519 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
61bd5218 2520 verbose(env, "div by zero\n");
17a52670
AS
2521 return -EINVAL;
2522 }
2523
7891a87e
DB
2524 if (opcode == BPF_ARSH && BPF_CLASS(insn->code) != BPF_ALU64) {
2525 verbose(env, "BPF_ARSH not supported for 32 bit ALU\n");
2526 return -EINVAL;
2527 }
2528
229394e8
RV
2529 if ((opcode == BPF_LSH || opcode == BPF_RSH ||
2530 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
2531 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
2532
2533 if (insn->imm < 0 || insn->imm >= size) {
61bd5218 2534 verbose(env, "invalid shift %d\n", insn->imm);
229394e8
RV
2535 return -EINVAL;
2536 }
2537 }
2538
1a0dc1ac 2539 /* check dest operand */
dc503a8a 2540 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
1a0dc1ac
AS
2541 if (err)
2542 return err;
2543
f1174f77 2544 return adjust_reg_min_max_vals(env, insn);
17a52670
AS
2545 }
2546
2547 return 0;
2548}
2549
58e2af8b 2550static void find_good_pkt_pointers(struct bpf_verifier_state *state,
de8f3a83 2551 struct bpf_reg_state *dst_reg,
f8ddadc4 2552 enum bpf_reg_type type,
fb2a311a 2553 bool range_right_open)
969bf05e 2554{
58e2af8b 2555 struct bpf_reg_state *regs = state->regs, *reg;
fb2a311a 2556 u16 new_range;
969bf05e 2557 int i;
2d2be8ca 2558
fb2a311a
DB
2559 if (dst_reg->off < 0 ||
2560 (dst_reg->off == 0 && range_right_open))
f1174f77
EC
2561 /* This doesn't give us any range */
2562 return;
2563
b03c9f9f
EC
2564 if (dst_reg->umax_value > MAX_PACKET_OFF ||
2565 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
f1174f77
EC
2566 /* Risk of overflow. For instance, ptr + (1<<63) may be less
2567 * than pkt_end, but that's because it's also less than pkt.
2568 */
2569 return;
2570
fb2a311a
DB
2571 new_range = dst_reg->off;
2572 if (range_right_open)
2573 new_range--;
2574
2575 /* Examples for register markings:
2d2be8ca 2576 *
fb2a311a 2577 * pkt_data in dst register:
2d2be8ca
DB
2578 *
2579 * r2 = r3;
2580 * r2 += 8;
2581 * if (r2 > pkt_end) goto <handle exception>
2582 * <access okay>
2583 *
b4e432f1
DB
2584 * r2 = r3;
2585 * r2 += 8;
2586 * if (r2 < pkt_end) goto <access okay>
2587 * <handle exception>
2588 *
2d2be8ca
DB
2589 * Where:
2590 * r2 == dst_reg, pkt_end == src_reg
2591 * r2=pkt(id=n,off=8,r=0)
2592 * r3=pkt(id=n,off=0,r=0)
2593 *
fb2a311a 2594 * pkt_data in src register:
2d2be8ca
DB
2595 *
2596 * r2 = r3;
2597 * r2 += 8;
2598 * if (pkt_end >= r2) goto <access okay>
2599 * <handle exception>
2600 *
b4e432f1
DB
2601 * r2 = r3;
2602 * r2 += 8;
2603 * if (pkt_end <= r2) goto <handle exception>
2604 * <access okay>
2605 *
2d2be8ca
DB
2606 * Where:
2607 * pkt_end == dst_reg, r2 == src_reg
2608 * r2=pkt(id=n,off=8,r=0)
2609 * r3=pkt(id=n,off=0,r=0)
2610 *
2611 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
fb2a311a
DB
2612 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
2613 * and [r3, r3 + 8-1) respectively is safe to access depending on
2614 * the check.
969bf05e 2615 */
2d2be8ca 2616
f1174f77
EC
2617 /* If our ids match, then we must have the same max_value. And we
2618 * don't care about the other reg's fixed offset, since if it's too big
2619 * the range won't allow anything.
2620 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
2621 */
969bf05e 2622 for (i = 0; i < MAX_BPF_REG; i++)
de8f3a83 2623 if (regs[i].type == type && regs[i].id == dst_reg->id)
b1977682 2624 /* keep the maximum range already checked */
fb2a311a 2625 regs[i].range = max(regs[i].range, new_range);
969bf05e 2626
638f5b90
AS
2627 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
2628 if (state->stack[i].slot_type[0] != STACK_SPILL)
969bf05e 2629 continue;
638f5b90 2630 reg = &state->stack[i].spilled_ptr;
de8f3a83 2631 if (reg->type == type && reg->id == dst_reg->id)
b06723da 2632 reg->range = max(reg->range, new_range);
969bf05e
AS
2633 }
2634}
2635
48461135
JB
2636/* Adjusts the register min/max values in the case that the dst_reg is the
2637 * variable register that we are working on, and src_reg is a constant or we're
2638 * simply doing a BPF_K check.
f1174f77 2639 * In JEQ/JNE cases we also adjust the var_off values.
48461135
JB
2640 */
2641static void reg_set_min_max(struct bpf_reg_state *true_reg,
2642 struct bpf_reg_state *false_reg, u64 val,
2643 u8 opcode)
2644{
f1174f77
EC
2645 /* If the dst_reg is a pointer, we can't learn anything about its
2646 * variable offset from the compare (unless src_reg were a pointer into
2647 * the same object, but we don't bother with that.
2648 * Since false_reg and true_reg have the same type by construction, we
2649 * only need to check one of them for pointerness.
2650 */
2651 if (__is_pointer_value(false, false_reg))
2652 return;
4cabc5b1 2653
48461135
JB
2654 switch (opcode) {
2655 case BPF_JEQ:
2656 /* If this is false then we know nothing Jon Snow, but if it is
2657 * true then we know for sure.
2658 */
b03c9f9f 2659 __mark_reg_known(true_reg, val);
48461135
JB
2660 break;
2661 case BPF_JNE:
2662 /* If this is true we know nothing Jon Snow, but if it is false
2663 * we know the value for sure;
2664 */
b03c9f9f 2665 __mark_reg_known(false_reg, val);
48461135
JB
2666 break;
2667 case BPF_JGT:
b03c9f9f
EC
2668 false_reg->umax_value = min(false_reg->umax_value, val);
2669 true_reg->umin_value = max(true_reg->umin_value, val + 1);
2670 break;
48461135 2671 case BPF_JSGT:
b03c9f9f
EC
2672 false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
2673 true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
48461135 2674 break;
b4e432f1
DB
2675 case BPF_JLT:
2676 false_reg->umin_value = max(false_reg->umin_value, val);
2677 true_reg->umax_value = min(true_reg->umax_value, val - 1);
2678 break;
2679 case BPF_JSLT:
2680 false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
2681 true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
2682 break;
48461135 2683 case BPF_JGE:
b03c9f9f
EC
2684 false_reg->umax_value = min(false_reg->umax_value, val - 1);
2685 true_reg->umin_value = max(true_reg->umin_value, val);
2686 break;
48461135 2687 case BPF_JSGE:
b03c9f9f
EC
2688 false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
2689 true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
48461135 2690 break;
b4e432f1
DB
2691 case BPF_JLE:
2692 false_reg->umin_value = max(false_reg->umin_value, val + 1);
2693 true_reg->umax_value = min(true_reg->umax_value, val);
2694 break;
2695 case BPF_JSLE:
2696 false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
2697 true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
2698 break;
48461135
JB
2699 default:
2700 break;
2701 }
2702
b03c9f9f
EC
2703 __reg_deduce_bounds(false_reg);
2704 __reg_deduce_bounds(true_reg);
2705 /* We might have learned some bits from the bounds. */
2706 __reg_bound_offset(false_reg);
2707 __reg_bound_offset(true_reg);
2708 /* Intersecting with the old var_off might have improved our bounds
2709 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2710 * then new var_off is (0; 0x7f...fc) which improves our umax.
2711 */
2712 __update_reg_bounds(false_reg);
2713 __update_reg_bounds(true_reg);
48461135
JB
2714}
2715
f1174f77
EC
2716/* Same as above, but for the case that dst_reg holds a constant and src_reg is
2717 * the variable reg.
48461135
JB
2718 */
2719static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
2720 struct bpf_reg_state *false_reg, u64 val,
2721 u8 opcode)
2722{
f1174f77
EC
2723 if (__is_pointer_value(false, false_reg))
2724 return;
4cabc5b1 2725
48461135
JB
2726 switch (opcode) {
2727 case BPF_JEQ:
2728 /* If this is false then we know nothing Jon Snow, but if it is
2729 * true then we know for sure.
2730 */
b03c9f9f 2731 __mark_reg_known(true_reg, val);
48461135
JB
2732 break;
2733 case BPF_JNE:
2734 /* If this is true we know nothing Jon Snow, but if it is false
2735 * we know the value for sure;
2736 */
b03c9f9f 2737 __mark_reg_known(false_reg, val);
48461135
JB
2738 break;
2739 case BPF_JGT:
b03c9f9f
EC
2740 true_reg->umax_value = min(true_reg->umax_value, val - 1);
2741 false_reg->umin_value = max(false_reg->umin_value, val);
2742 break;
48461135 2743 case BPF_JSGT:
b03c9f9f
EC
2744 true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
2745 false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
48461135 2746 break;
b4e432f1
DB
2747 case BPF_JLT:
2748 true_reg->umin_value = max(true_reg->umin_value, val + 1);
2749 false_reg->umax_value = min(false_reg->umax_value, val);
2750 break;
2751 case BPF_JSLT:
2752 true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
2753 false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
2754 break;
48461135 2755 case BPF_JGE:
b03c9f9f
EC
2756 true_reg->umax_value = min(true_reg->umax_value, val);
2757 false_reg->umin_value = max(false_reg->umin_value, val + 1);
2758 break;
48461135 2759 case BPF_JSGE:
b03c9f9f
EC
2760 true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
2761 false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
48461135 2762 break;
b4e432f1
DB
2763 case BPF_JLE:
2764 true_reg->umin_value = max(true_reg->umin_value, val);
2765 false_reg->umax_value = min(false_reg->umax_value, val - 1);
2766 break;
2767 case BPF_JSLE:
2768 true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
2769 false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
2770 break;
48461135
JB
2771 default:
2772 break;
2773 }
2774
b03c9f9f
EC
2775 __reg_deduce_bounds(false_reg);
2776 __reg_deduce_bounds(true_reg);
2777 /* We might have learned some bits from the bounds. */
2778 __reg_bound_offset(false_reg);
2779 __reg_bound_offset(true_reg);
2780 /* Intersecting with the old var_off might have improved our bounds
2781 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2782 * then new var_off is (0; 0x7f...fc) which improves our umax.
2783 */
2784 __update_reg_bounds(false_reg);
2785 __update_reg_bounds(true_reg);
f1174f77
EC
2786}
2787
2788/* Regs are known to be equal, so intersect their min/max/var_off */
2789static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
2790 struct bpf_reg_state *dst_reg)
2791{
b03c9f9f
EC
2792 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
2793 dst_reg->umin_value);
2794 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
2795 dst_reg->umax_value);
2796 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
2797 dst_reg->smin_value);
2798 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
2799 dst_reg->smax_value);
f1174f77
EC
2800 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
2801 dst_reg->var_off);
b03c9f9f
EC
2802 /* We might have learned new bounds from the var_off. */
2803 __update_reg_bounds(src_reg);
2804 __update_reg_bounds(dst_reg);
2805 /* We might have learned something about the sign bit. */
2806 __reg_deduce_bounds(src_reg);
2807 __reg_deduce_bounds(dst_reg);
2808 /* We might have learned some bits from the bounds. */
2809 __reg_bound_offset(src_reg);
2810 __reg_bound_offset(dst_reg);
2811 /* Intersecting with the old var_off might have improved our bounds
2812 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2813 * then new var_off is (0; 0x7f...fc) which improves our umax.
2814 */
2815 __update_reg_bounds(src_reg);
2816 __update_reg_bounds(dst_reg);
f1174f77
EC
2817}
2818
2819static void reg_combine_min_max(struct bpf_reg_state *true_src,
2820 struct bpf_reg_state *true_dst,
2821 struct bpf_reg_state *false_src,
2822 struct bpf_reg_state *false_dst,
2823 u8 opcode)
2824{
2825 switch (opcode) {
2826 case BPF_JEQ:
2827 __reg_combine_min_max(true_src, true_dst);
2828 break;
2829 case BPF_JNE:
2830 __reg_combine_min_max(false_src, false_dst);
b03c9f9f 2831 break;
4cabc5b1 2832 }
48461135
JB
2833}
2834
57a09bf0 2835static void mark_map_reg(struct bpf_reg_state *regs, u32 regno, u32 id,
f1174f77 2836 bool is_null)
57a09bf0
TG
2837{
2838 struct bpf_reg_state *reg = &regs[regno];
2839
2840 if (reg->type == PTR_TO_MAP_VALUE_OR_NULL && reg->id == id) {
f1174f77
EC
2841 /* Old offset (both fixed and variable parts) should
2842 * have been known-zero, because we don't allow pointer
2843 * arithmetic on pointers that might be NULL.
2844 */
b03c9f9f
EC
2845 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
2846 !tnum_equals_const(reg->var_off, 0) ||
f1174f77 2847 reg->off)) {
b03c9f9f
EC
2848 __mark_reg_known_zero(reg);
2849 reg->off = 0;
f1174f77
EC
2850 }
2851 if (is_null) {
2852 reg->type = SCALAR_VALUE;
56f668df
MKL
2853 } else if (reg->map_ptr->inner_map_meta) {
2854 reg->type = CONST_PTR_TO_MAP;
2855 reg->map_ptr = reg->map_ptr->inner_map_meta;
2856 } else {
f1174f77 2857 reg->type = PTR_TO_MAP_VALUE;
56f668df 2858 }
a08dd0da
DB
2859 /* We don't need id from this point onwards anymore, thus we
2860 * should better reset it, so that state pruning has chances
2861 * to take effect.
2862 */
2863 reg->id = 0;
57a09bf0
TG
2864 }
2865}
2866
2867/* The logic is similar to find_good_pkt_pointers(), both could eventually
2868 * be folded together at some point.
2869 */
2870static void mark_map_regs(struct bpf_verifier_state *state, u32 regno,
f1174f77 2871 bool is_null)
57a09bf0
TG
2872{
2873 struct bpf_reg_state *regs = state->regs;
a08dd0da 2874 u32 id = regs[regno].id;
57a09bf0
TG
2875 int i;
2876
2877 for (i = 0; i < MAX_BPF_REG; i++)
f1174f77 2878 mark_map_reg(regs, i, id, is_null);
57a09bf0 2879
638f5b90
AS
2880 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
2881 if (state->stack[i].slot_type[0] != STACK_SPILL)
57a09bf0 2882 continue;
638f5b90 2883 mark_map_reg(&state->stack[i].spilled_ptr, 0, id, is_null);
57a09bf0
TG
2884 }
2885}
2886
5beca081
DB
2887static bool try_match_pkt_pointers(const struct bpf_insn *insn,
2888 struct bpf_reg_state *dst_reg,
2889 struct bpf_reg_state *src_reg,
2890 struct bpf_verifier_state *this_branch,
2891 struct bpf_verifier_state *other_branch)
2892{
2893 if (BPF_SRC(insn->code) != BPF_X)
2894 return false;
2895
2896 switch (BPF_OP(insn->code)) {
2897 case BPF_JGT:
2898 if ((dst_reg->type == PTR_TO_PACKET &&
2899 src_reg->type == PTR_TO_PACKET_END) ||
2900 (dst_reg->type == PTR_TO_PACKET_META &&
2901 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
2902 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */
2903 find_good_pkt_pointers(this_branch, dst_reg,
2904 dst_reg->type, false);
2905 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
2906 src_reg->type == PTR_TO_PACKET) ||
2907 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
2908 src_reg->type == PTR_TO_PACKET_META)) {
2909 /* pkt_end > pkt_data', pkt_data > pkt_meta' */
2910 find_good_pkt_pointers(other_branch, src_reg,
2911 src_reg->type, true);
2912 } else {
2913 return false;
2914 }
2915 break;
2916 case BPF_JLT:
2917 if ((dst_reg->type == PTR_TO_PACKET &&
2918 src_reg->type == PTR_TO_PACKET_END) ||
2919 (dst_reg->type == PTR_TO_PACKET_META &&
2920 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
2921 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */
2922 find_good_pkt_pointers(other_branch, dst_reg,
2923 dst_reg->type, true);
2924 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
2925 src_reg->type == PTR_TO_PACKET) ||
2926 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
2927 src_reg->type == PTR_TO_PACKET_META)) {
2928 /* pkt_end < pkt_data', pkt_data > pkt_meta' */
2929 find_good_pkt_pointers(this_branch, src_reg,
2930 src_reg->type, false);
2931 } else {
2932 return false;
2933 }
2934 break;
2935 case BPF_JGE:
2936 if ((dst_reg->type == PTR_TO_PACKET &&
2937 src_reg->type == PTR_TO_PACKET_END) ||
2938 (dst_reg->type == PTR_TO_PACKET_META &&
2939 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
2940 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
2941 find_good_pkt_pointers(this_branch, dst_reg,
2942 dst_reg->type, true);
2943 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
2944 src_reg->type == PTR_TO_PACKET) ||
2945 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
2946 src_reg->type == PTR_TO_PACKET_META)) {
2947 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
2948 find_good_pkt_pointers(other_branch, src_reg,
2949 src_reg->type, false);
2950 } else {
2951 return false;
2952 }
2953 break;
2954 case BPF_JLE:
2955 if ((dst_reg->type == PTR_TO_PACKET &&
2956 src_reg->type == PTR_TO_PACKET_END) ||
2957 (dst_reg->type == PTR_TO_PACKET_META &&
2958 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
2959 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
2960 find_good_pkt_pointers(other_branch, dst_reg,
2961 dst_reg->type, false);
2962 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
2963 src_reg->type == PTR_TO_PACKET) ||
2964 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
2965 src_reg->type == PTR_TO_PACKET_META)) {
2966 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
2967 find_good_pkt_pointers(this_branch, src_reg,
2968 src_reg->type, true);
2969 } else {
2970 return false;
2971 }
2972 break;
2973 default:
2974 return false;
2975 }
2976
2977 return true;
2978}
2979
58e2af8b 2980static int check_cond_jmp_op(struct bpf_verifier_env *env,
17a52670
AS
2981 struct bpf_insn *insn, int *insn_idx)
2982{
638f5b90 2983 struct bpf_verifier_state *other_branch, *this_branch = env->cur_state;
58e2af8b 2984 struct bpf_reg_state *regs = this_branch->regs, *dst_reg;
17a52670
AS
2985 u8 opcode = BPF_OP(insn->code);
2986 int err;
2987
b4e432f1 2988 if (opcode > BPF_JSLE) {
61bd5218 2989 verbose(env, "invalid BPF_JMP opcode %x\n", opcode);
17a52670
AS
2990 return -EINVAL;
2991 }
2992
2993 if (BPF_SRC(insn->code) == BPF_X) {
2994 if (insn->imm != 0) {
61bd5218 2995 verbose(env, "BPF_JMP uses reserved fields\n");
17a52670
AS
2996 return -EINVAL;
2997 }
2998
2999 /* check src1 operand */
dc503a8a 3000 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
3001 if (err)
3002 return err;
1be7f75d
AS
3003
3004 if (is_pointer_value(env, insn->src_reg)) {
61bd5218 3005 verbose(env, "R%d pointer comparison prohibited\n",
1be7f75d
AS
3006 insn->src_reg);
3007 return -EACCES;
3008 }
17a52670
AS
3009 } else {
3010 if (insn->src_reg != BPF_REG_0) {
61bd5218 3011 verbose(env, "BPF_JMP uses reserved fields\n");
17a52670
AS
3012 return -EINVAL;
3013 }
3014 }
3015
3016 /* check src2 operand */
dc503a8a 3017 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
3018 if (err)
3019 return err;
3020
1a0dc1ac
AS
3021 dst_reg = &regs[insn->dst_reg];
3022
17a52670
AS
3023 /* detect if R == 0 where R was initialized to zero earlier */
3024 if (BPF_SRC(insn->code) == BPF_K &&
3025 (opcode == BPF_JEQ || opcode == BPF_JNE) &&
f1174f77
EC
3026 dst_reg->type == SCALAR_VALUE &&
3027 tnum_equals_const(dst_reg->var_off, insn->imm)) {
17a52670
AS
3028 if (opcode == BPF_JEQ) {
3029 /* if (imm == imm) goto pc+off;
3030 * only follow the goto, ignore fall-through
3031 */
3032 *insn_idx += insn->off;
3033 return 0;
3034 } else {
3035 /* if (imm != imm) goto pc+off;
3036 * only follow fall-through branch, since
3037 * that's where the program will go
3038 */
3039 return 0;
3040 }
3041 }
3042
3043 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx);
3044 if (!other_branch)
3045 return -EFAULT;
3046
48461135
JB
3047 /* detect if we are comparing against a constant value so we can adjust
3048 * our min/max values for our dst register.
f1174f77
EC
3049 * this is only legit if both are scalars (or pointers to the same
3050 * object, I suppose, but we don't support that right now), because
3051 * otherwise the different base pointers mean the offsets aren't
3052 * comparable.
48461135
JB
3053 */
3054 if (BPF_SRC(insn->code) == BPF_X) {
f1174f77
EC
3055 if (dst_reg->type == SCALAR_VALUE &&
3056 regs[insn->src_reg].type == SCALAR_VALUE) {
3057 if (tnum_is_const(regs[insn->src_reg].var_off))
3058 reg_set_min_max(&other_branch->regs[insn->dst_reg],
3059 dst_reg, regs[insn->src_reg].var_off.value,
3060 opcode);
3061 else if (tnum_is_const(dst_reg->var_off))
3062 reg_set_min_max_inv(&other_branch->regs[insn->src_reg],
3063 &regs[insn->src_reg],
3064 dst_reg->var_off.value, opcode);
3065 else if (opcode == BPF_JEQ || opcode == BPF_JNE)
3066 /* Comparing for equality, we can combine knowledge */
3067 reg_combine_min_max(&other_branch->regs[insn->src_reg],
3068 &other_branch->regs[insn->dst_reg],
3069 &regs[insn->src_reg],
3070 &regs[insn->dst_reg], opcode);
3071 }
3072 } else if (dst_reg->type == SCALAR_VALUE) {
48461135
JB
3073 reg_set_min_max(&other_branch->regs[insn->dst_reg],
3074 dst_reg, insn->imm, opcode);
3075 }
3076
58e2af8b 3077 /* detect if R == 0 where R is returned from bpf_map_lookup_elem() */
17a52670 3078 if (BPF_SRC(insn->code) == BPF_K &&
1a0dc1ac
AS
3079 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
3080 dst_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
57a09bf0
TG
3081 /* Mark all identical map registers in each branch as either
3082 * safe or unknown depending R == 0 or R != 0 conditional.
3083 */
f1174f77
EC
3084 mark_map_regs(this_branch, insn->dst_reg, opcode == BPF_JNE);
3085 mark_map_regs(other_branch, insn->dst_reg, opcode == BPF_JEQ);
5beca081
DB
3086 } else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
3087 this_branch, other_branch) &&
3088 is_pointer_value(env, insn->dst_reg)) {
61bd5218
JK
3089 verbose(env, "R%d pointer comparison prohibited\n",
3090 insn->dst_reg);
1be7f75d 3091 return -EACCES;
17a52670 3092 }
61bd5218
JK
3093 if (env->log.level)
3094 print_verifier_state(env, this_branch);
17a52670
AS
3095 return 0;
3096}
3097
0246e64d
AS
3098/* return the map pointer stored inside BPF_LD_IMM64 instruction */
3099static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn)
3100{
3101 u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32;
3102
3103 return (struct bpf_map *) (unsigned long) imm64;
3104}
3105
17a52670 3106/* verify BPF_LD_IMM64 instruction */
58e2af8b 3107static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 3108{
638f5b90 3109 struct bpf_reg_state *regs = cur_regs(env);
17a52670
AS
3110 int err;
3111
3112 if (BPF_SIZE(insn->code) != BPF_DW) {
61bd5218 3113 verbose(env, "invalid BPF_LD_IMM insn\n");
17a52670
AS
3114 return -EINVAL;
3115 }
3116 if (insn->off != 0) {
61bd5218 3117 verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
17a52670
AS
3118 return -EINVAL;
3119 }
3120
dc503a8a 3121 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
3122 if (err)
3123 return err;
3124
6b173873 3125 if (insn->src_reg == 0) {
6b173873
JK
3126 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
3127
f1174f77 3128 regs[insn->dst_reg].type = SCALAR_VALUE;
b03c9f9f 3129 __mark_reg_known(&regs[insn->dst_reg], imm);
17a52670 3130 return 0;
6b173873 3131 }
17a52670
AS
3132
3133 /* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
3134 BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD);
3135
3136 regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
3137 regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn);
3138 return 0;
3139}
3140
96be4325
DB
3141static bool may_access_skb(enum bpf_prog_type type)
3142{
3143 switch (type) {
3144 case BPF_PROG_TYPE_SOCKET_FILTER:
3145 case BPF_PROG_TYPE_SCHED_CLS:
94caee8c 3146 case BPF_PROG_TYPE_SCHED_ACT:
96be4325
DB
3147 return true;
3148 default:
3149 return false;
3150 }
3151}
3152
ddd872bc
AS
3153/* verify safety of LD_ABS|LD_IND instructions:
3154 * - they can only appear in the programs where ctx == skb
3155 * - since they are wrappers of function calls, they scratch R1-R5 registers,
3156 * preserve R6-R9, and store return value into R0
3157 *
3158 * Implicit input:
3159 * ctx == skb == R6 == CTX
3160 *
3161 * Explicit input:
3162 * SRC == any register
3163 * IMM == 32-bit immediate
3164 *
3165 * Output:
3166 * R0 - 8/16/32-bit skb data converted to cpu endianness
3167 */
58e2af8b 3168static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
ddd872bc 3169{
638f5b90 3170 struct bpf_reg_state *regs = cur_regs(env);
ddd872bc 3171 u8 mode = BPF_MODE(insn->code);
ddd872bc
AS
3172 int i, err;
3173
24701ece 3174 if (!may_access_skb(env->prog->type)) {
61bd5218 3175 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
ddd872bc
AS
3176 return -EINVAL;
3177 }
3178
3179 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
d82bccc6 3180 BPF_SIZE(insn->code) == BPF_DW ||
ddd872bc 3181 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
61bd5218 3182 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
ddd872bc
AS
3183 return -EINVAL;
3184 }
3185
3186 /* check whether implicit source operand (register R6) is readable */
dc503a8a 3187 err = check_reg_arg(env, BPF_REG_6, SRC_OP);
ddd872bc
AS
3188 if (err)
3189 return err;
3190
3191 if (regs[BPF_REG_6].type != PTR_TO_CTX) {
61bd5218
JK
3192 verbose(env,
3193 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
ddd872bc
AS
3194 return -EINVAL;
3195 }
3196
3197 if (mode == BPF_IND) {
3198 /* check explicit source operand */
dc503a8a 3199 err = check_reg_arg(env, insn->src_reg, SRC_OP);
ddd872bc
AS
3200 if (err)
3201 return err;
3202 }
3203
3204 /* reset caller saved regs to unreadable */
dc503a8a 3205 for (i = 0; i < CALLER_SAVED_REGS; i++) {
61bd5218 3206 mark_reg_not_init(env, regs, caller_saved[i]);
dc503a8a
EC
3207 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
3208 }
ddd872bc
AS
3209
3210 /* mark destination R0 register as readable, since it contains
dc503a8a
EC
3211 * the value fetched from the packet.
3212 * Already marked as written above.
ddd872bc 3213 */
61bd5218 3214 mark_reg_unknown(env, regs, BPF_REG_0);
ddd872bc
AS
3215 return 0;
3216}
3217
390ee7e2
AS
3218static int check_return_code(struct bpf_verifier_env *env)
3219{
3220 struct bpf_reg_state *reg;
3221 struct tnum range = tnum_range(0, 1);
3222
3223 switch (env->prog->type) {
3224 case BPF_PROG_TYPE_CGROUP_SKB:
3225 case BPF_PROG_TYPE_CGROUP_SOCK:
3226 case BPF_PROG_TYPE_SOCK_OPS:
ebc614f6 3227 case BPF_PROG_TYPE_CGROUP_DEVICE:
390ee7e2
AS
3228 break;
3229 default:
3230 return 0;
3231 }
3232
638f5b90 3233 reg = cur_regs(env) + BPF_REG_0;
390ee7e2 3234 if (reg->type != SCALAR_VALUE) {
61bd5218 3235 verbose(env, "At program exit the register R0 is not a known value (%s)\n",
390ee7e2
AS
3236 reg_type_str[reg->type]);
3237 return -EINVAL;
3238 }
3239
3240 if (!tnum_in(range, reg->var_off)) {
61bd5218 3241 verbose(env, "At program exit the register R0 ");
390ee7e2
AS
3242 if (!tnum_is_unknown(reg->var_off)) {
3243 char tn_buf[48];
3244
3245 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 3246 verbose(env, "has value %s", tn_buf);
390ee7e2 3247 } else {
61bd5218 3248 verbose(env, "has unknown scalar value");
390ee7e2 3249 }
61bd5218 3250 verbose(env, " should have been 0 or 1\n");
390ee7e2
AS
3251 return -EINVAL;
3252 }
3253 return 0;
3254}
3255
475fb78f
AS
3256/* non-recursive DFS pseudo code
3257 * 1 procedure DFS-iterative(G,v):
3258 * 2 label v as discovered
3259 * 3 let S be a stack
3260 * 4 S.push(v)
3261 * 5 while S is not empty
3262 * 6 t <- S.pop()
3263 * 7 if t is what we're looking for:
3264 * 8 return t
3265 * 9 for all edges e in G.adjacentEdges(t) do
3266 * 10 if edge e is already labelled
3267 * 11 continue with the next edge
3268 * 12 w <- G.adjacentVertex(t,e)
3269 * 13 if vertex w is not discovered and not explored
3270 * 14 label e as tree-edge
3271 * 15 label w as discovered
3272 * 16 S.push(w)
3273 * 17 continue at 5
3274 * 18 else if vertex w is discovered
3275 * 19 label e as back-edge
3276 * 20 else
3277 * 21 // vertex w is explored
3278 * 22 label e as forward- or cross-edge
3279 * 23 label t as explored
3280 * 24 S.pop()
3281 *
3282 * convention:
3283 * 0x10 - discovered
3284 * 0x11 - discovered and fall-through edge labelled
3285 * 0x12 - discovered and fall-through and branch edges labelled
3286 * 0x20 - explored
3287 */
3288
3289enum {
3290 DISCOVERED = 0x10,
3291 EXPLORED = 0x20,
3292 FALLTHROUGH = 1,
3293 BRANCH = 2,
3294};
3295
58e2af8b 3296#define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L)
f1bca824 3297
475fb78f
AS
3298static int *insn_stack; /* stack of insns to process */
3299static int cur_stack; /* current stack index */
3300static int *insn_state;
3301
3302/* t, w, e - match pseudo-code above:
3303 * t - index of current instruction
3304 * w - next instruction
3305 * e - edge
3306 */
58e2af8b 3307static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
475fb78f
AS
3308{
3309 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
3310 return 0;
3311
3312 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
3313 return 0;
3314
3315 if (w < 0 || w >= env->prog->len) {
61bd5218 3316 verbose(env, "jump out of range from insn %d to %d\n", t, w);
475fb78f
AS
3317 return -EINVAL;
3318 }
3319
f1bca824
AS
3320 if (e == BRANCH)
3321 /* mark branch target for state pruning */
3322 env->explored_states[w] = STATE_LIST_MARK;
3323
475fb78f
AS
3324 if (insn_state[w] == 0) {
3325 /* tree-edge */
3326 insn_state[t] = DISCOVERED | e;
3327 insn_state[w] = DISCOVERED;
3328 if (cur_stack >= env->prog->len)
3329 return -E2BIG;
3330 insn_stack[cur_stack++] = w;
3331 return 1;
3332 } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
61bd5218 3333 verbose(env, "back-edge from insn %d to %d\n", t, w);
475fb78f
AS
3334 return -EINVAL;
3335 } else if (insn_state[w] == EXPLORED) {
3336 /* forward- or cross-edge */
3337 insn_state[t] = DISCOVERED | e;
3338 } else {
61bd5218 3339 verbose(env, "insn state internal bug\n");
475fb78f
AS
3340 return -EFAULT;
3341 }
3342 return 0;
3343}
3344
3345/* non-recursive depth-first-search to detect loops in BPF program
3346 * loop == back-edge in directed graph
3347 */
58e2af8b 3348static int check_cfg(struct bpf_verifier_env *env)
475fb78f
AS
3349{
3350 struct bpf_insn *insns = env->prog->insnsi;
3351 int insn_cnt = env->prog->len;
3352 int ret = 0;
3353 int i, t;
3354
3355 insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
3356 if (!insn_state)
3357 return -ENOMEM;
3358
3359 insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
3360 if (!insn_stack) {
3361 kfree(insn_state);
3362 return -ENOMEM;
3363 }
3364
3365 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
3366 insn_stack[0] = 0; /* 0 is the first instruction */
3367 cur_stack = 1;
3368
3369peek_stack:
3370 if (cur_stack == 0)
3371 goto check_state;
3372 t = insn_stack[cur_stack - 1];
3373
3374 if (BPF_CLASS(insns[t].code) == BPF_JMP) {
3375 u8 opcode = BPF_OP(insns[t].code);
3376
3377 if (opcode == BPF_EXIT) {
3378 goto mark_explored;
3379 } else if (opcode == BPF_CALL) {
3380 ret = push_insn(t, t + 1, FALLTHROUGH, env);
3381 if (ret == 1)
3382 goto peek_stack;
3383 else if (ret < 0)
3384 goto err_free;
07016151
DB
3385 if (t + 1 < insn_cnt)
3386 env->explored_states[t + 1] = STATE_LIST_MARK;
475fb78f
AS
3387 } else if (opcode == BPF_JA) {
3388 if (BPF_SRC(insns[t].code) != BPF_K) {
3389 ret = -EINVAL;
3390 goto err_free;
3391 }
3392 /* unconditional jump with single edge */
3393 ret = push_insn(t, t + insns[t].off + 1,
3394 FALLTHROUGH, env);
3395 if (ret == 1)
3396 goto peek_stack;
3397 else if (ret < 0)
3398 goto err_free;
f1bca824
AS
3399 /* tell verifier to check for equivalent states
3400 * after every call and jump
3401 */
c3de6317
AS
3402 if (t + 1 < insn_cnt)
3403 env->explored_states[t + 1] = STATE_LIST_MARK;
475fb78f
AS
3404 } else {
3405 /* conditional jump with two edges */
3c2ce60b 3406 env->explored_states[t] = STATE_LIST_MARK;
475fb78f
AS
3407 ret = push_insn(t, t + 1, FALLTHROUGH, env);
3408 if (ret == 1)
3409 goto peek_stack;
3410 else if (ret < 0)
3411 goto err_free;
3412
3413 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
3414 if (ret == 1)
3415 goto peek_stack;
3416 else if (ret < 0)
3417 goto err_free;
3418 }
3419 } else {
3420 /* all other non-branch instructions with single
3421 * fall-through edge
3422 */
3423 ret = push_insn(t, t + 1, FALLTHROUGH, env);
3424 if (ret == 1)
3425 goto peek_stack;
3426 else if (ret < 0)
3427 goto err_free;
3428 }
3429
3430mark_explored:
3431 insn_state[t] = EXPLORED;
3432 if (cur_stack-- <= 0) {
61bd5218 3433 verbose(env, "pop stack internal bug\n");
475fb78f
AS
3434 ret = -EFAULT;
3435 goto err_free;
3436 }
3437 goto peek_stack;
3438
3439check_state:
3440 for (i = 0; i < insn_cnt; i++) {
3441 if (insn_state[i] != EXPLORED) {
61bd5218 3442 verbose(env, "unreachable insn %d\n", i);
475fb78f
AS
3443 ret = -EINVAL;
3444 goto err_free;
3445 }
3446 }
3447 ret = 0; /* cfg looks good */
3448
3449err_free:
3450 kfree(insn_state);
3451 kfree(insn_stack);
3452 return ret;
3453}
3454
f1174f77
EC
3455/* check %cur's range satisfies %old's */
3456static bool range_within(struct bpf_reg_state *old,
3457 struct bpf_reg_state *cur)
3458{
b03c9f9f
EC
3459 return old->umin_value <= cur->umin_value &&
3460 old->umax_value >= cur->umax_value &&
3461 old->smin_value <= cur->smin_value &&
3462 old->smax_value >= cur->smax_value;
f1174f77
EC
3463}
3464
3465/* Maximum number of register states that can exist at once */
3466#define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
3467struct idpair {
3468 u32 old;
3469 u32 cur;
3470};
3471
3472/* If in the old state two registers had the same id, then they need to have
3473 * the same id in the new state as well. But that id could be different from
3474 * the old state, so we need to track the mapping from old to new ids.
3475 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
3476 * regs with old id 5 must also have new id 9 for the new state to be safe. But
3477 * regs with a different old id could still have new id 9, we don't care about
3478 * that.
3479 * So we look through our idmap to see if this old id has been seen before. If
3480 * so, we require the new id to match; otherwise, we add the id pair to the map.
969bf05e 3481 */
f1174f77 3482static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
969bf05e 3483{
f1174f77 3484 unsigned int i;
969bf05e 3485
f1174f77
EC
3486 for (i = 0; i < ID_MAP_SIZE; i++) {
3487 if (!idmap[i].old) {
3488 /* Reached an empty slot; haven't seen this id before */
3489 idmap[i].old = old_id;
3490 idmap[i].cur = cur_id;
3491 return true;
3492 }
3493 if (idmap[i].old == old_id)
3494 return idmap[i].cur == cur_id;
3495 }
3496 /* We ran out of idmap slots, which should be impossible */
3497 WARN_ON_ONCE(1);
3498 return false;
3499}
3500
3501/* Returns true if (rold safe implies rcur safe) */
1b688a19
EC
3502static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
3503 struct idpair *idmap)
f1174f77 3504{
dc503a8a
EC
3505 if (!(rold->live & REG_LIVE_READ))
3506 /* explored state didn't use this */
3507 return true;
3508
3509 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, live)) == 0)
969bf05e
AS
3510 return true;
3511
f1174f77
EC
3512 if (rold->type == NOT_INIT)
3513 /* explored state can't have used this */
969bf05e 3514 return true;
f1174f77
EC
3515 if (rcur->type == NOT_INIT)
3516 return false;
3517 switch (rold->type) {
3518 case SCALAR_VALUE:
3519 if (rcur->type == SCALAR_VALUE) {
3520 /* new val must satisfy old val knowledge */
3521 return range_within(rold, rcur) &&
3522 tnum_in(rold->var_off, rcur->var_off);
3523 } else {
179d1c56
JH
3524 /* We're trying to use a pointer in place of a scalar.
3525 * Even if the scalar was unbounded, this could lead to
3526 * pointer leaks because scalars are allowed to leak
3527 * while pointers are not. We could make this safe in
3528 * special cases if root is calling us, but it's
3529 * probably not worth the hassle.
f1174f77 3530 */
179d1c56 3531 return false;
f1174f77
EC
3532 }
3533 case PTR_TO_MAP_VALUE:
1b688a19
EC
3534 /* If the new min/max/var_off satisfy the old ones and
3535 * everything else matches, we are OK.
3536 * We don't care about the 'id' value, because nothing
3537 * uses it for PTR_TO_MAP_VALUE (only for ..._OR_NULL)
3538 */
3539 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
3540 range_within(rold, rcur) &&
3541 tnum_in(rold->var_off, rcur->var_off);
f1174f77
EC
3542 case PTR_TO_MAP_VALUE_OR_NULL:
3543 /* a PTR_TO_MAP_VALUE could be safe to use as a
3544 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
3545 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
3546 * checked, doing so could have affected others with the same
3547 * id, and we can't check for that because we lost the id when
3548 * we converted to a PTR_TO_MAP_VALUE.
3549 */
3550 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
3551 return false;
3552 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
3553 return false;
3554 /* Check our ids match any regs they're supposed to */
3555 return check_ids(rold->id, rcur->id, idmap);
de8f3a83 3556 case PTR_TO_PACKET_META:
f1174f77 3557 case PTR_TO_PACKET:
de8f3a83 3558 if (rcur->type != rold->type)
f1174f77
EC
3559 return false;
3560 /* We must have at least as much range as the old ptr
3561 * did, so that any accesses which were safe before are
3562 * still safe. This is true even if old range < old off,
3563 * since someone could have accessed through (ptr - k), or
3564 * even done ptr -= k in a register, to get a safe access.
3565 */
3566 if (rold->range > rcur->range)
3567 return false;
3568 /* If the offsets don't match, we can't trust our alignment;
3569 * nor can we be sure that we won't fall out of range.
3570 */
3571 if (rold->off != rcur->off)
3572 return false;
3573 /* id relations must be preserved */
3574 if (rold->id && !check_ids(rold->id, rcur->id, idmap))
3575 return false;
3576 /* new val must satisfy old val knowledge */
3577 return range_within(rold, rcur) &&
3578 tnum_in(rold->var_off, rcur->var_off);
3579 case PTR_TO_CTX:
3580 case CONST_PTR_TO_MAP:
3581 case PTR_TO_STACK:
3582 case PTR_TO_PACKET_END:
3583 /* Only valid matches are exact, which memcmp() above
3584 * would have accepted
3585 */
3586 default:
3587 /* Don't know what's going on, just say it's not safe */
3588 return false;
3589 }
969bf05e 3590
f1174f77
EC
3591 /* Shouldn't get here; if we do, say it's not safe */
3592 WARN_ON_ONCE(1);
969bf05e
AS
3593 return false;
3594}
3595
638f5b90
AS
3596static bool stacksafe(struct bpf_verifier_state *old,
3597 struct bpf_verifier_state *cur,
3598 struct idpair *idmap)
3599{
3600 int i, spi;
3601
3602 /* if explored stack has more populated slots than current stack
3603 * such stacks are not equivalent
3604 */
3605 if (old->allocated_stack > cur->allocated_stack)
3606 return false;
3607
3608 /* walk slots of the explored stack and ignore any additional
3609 * slots in the current stack, since explored(safe) state
3610 * didn't use them
3611 */
3612 for (i = 0; i < old->allocated_stack; i++) {
3613 spi = i / BPF_REG_SIZE;
3614
3615 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
3616 continue;
3617 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
3618 cur->stack[spi].slot_type[i % BPF_REG_SIZE])
3619 /* Ex: old explored (safe) state has STACK_SPILL in
3620 * this stack slot, but current has has STACK_MISC ->
3621 * this verifier states are not equivalent,
3622 * return false to continue verification of this path
3623 */
3624 return false;
3625 if (i % BPF_REG_SIZE)
3626 continue;
3627 if (old->stack[spi].slot_type[0] != STACK_SPILL)
3628 continue;
3629 if (!regsafe(&old->stack[spi].spilled_ptr,
3630 &cur->stack[spi].spilled_ptr,
3631 idmap))
3632 /* when explored and current stack slot are both storing
3633 * spilled registers, check that stored pointers types
3634 * are the same as well.
3635 * Ex: explored safe path could have stored
3636 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
3637 * but current path has stored:
3638 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
3639 * such verifier states are not equivalent.
3640 * return false to continue verification of this path
3641 */
3642 return false;
3643 }
3644 return true;
3645}
3646
f1bca824
AS
3647/* compare two verifier states
3648 *
3649 * all states stored in state_list are known to be valid, since
3650 * verifier reached 'bpf_exit' instruction through them
3651 *
3652 * this function is called when verifier exploring different branches of
3653 * execution popped from the state stack. If it sees an old state that has
3654 * more strict register state and more strict stack state then this execution
3655 * branch doesn't need to be explored further, since verifier already
3656 * concluded that more strict state leads to valid finish.
3657 *
3658 * Therefore two states are equivalent if register state is more conservative
3659 * and explored stack state is more conservative than the current one.
3660 * Example:
3661 * explored current
3662 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
3663 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
3664 *
3665 * In other words if current stack state (one being explored) has more
3666 * valid slots than old one that already passed validation, it means
3667 * the verifier can stop exploring and conclude that current state is valid too
3668 *
3669 * Similarly with registers. If explored state has register type as invalid
3670 * whereas register type in current state is meaningful, it means that
3671 * the current state will reach 'bpf_exit' instruction safely
3672 */
48461135
JB
3673static bool states_equal(struct bpf_verifier_env *env,
3674 struct bpf_verifier_state *old,
58e2af8b 3675 struct bpf_verifier_state *cur)
f1bca824 3676{
f1174f77
EC
3677 struct idpair *idmap;
3678 bool ret = false;
f1bca824
AS
3679 int i;
3680
f1174f77
EC
3681 idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
3682 /* If we failed to allocate the idmap, just say it's not safe */
3683 if (!idmap)
1a0dc1ac 3684 return false;
f1174f77
EC
3685
3686 for (i = 0; i < MAX_BPF_REG; i++) {
1b688a19 3687 if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
f1174f77 3688 goto out_free;
f1bca824
AS
3689 }
3690
638f5b90
AS
3691 if (!stacksafe(old, cur, idmap))
3692 goto out_free;
f1174f77
EC
3693 ret = true;
3694out_free:
3695 kfree(idmap);
3696 return ret;
f1bca824
AS
3697}
3698
8e9cd9ce
EC
3699/* A write screens off any subsequent reads; but write marks come from the
3700 * straight-line code between a state and its parent. When we arrive at a
3701 * jump target (in the first iteration of the propagate_liveness() loop),
3702 * we didn't arrive by the straight-line code, so read marks in state must
3703 * propagate to parent regardless of state's write marks.
3704 */
dc503a8a
EC
3705static bool do_propagate_liveness(const struct bpf_verifier_state *state,
3706 struct bpf_verifier_state *parent)
3707{
63f45f84 3708 bool writes = parent == state->parent; /* Observe write marks */
dc503a8a
EC
3709 bool touched = false; /* any changes made? */
3710 int i;
3711
3712 if (!parent)
3713 return touched;
3714 /* Propagate read liveness of registers... */
3715 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
3716 /* We don't need to worry about FP liveness because it's read-only */
3717 for (i = 0; i < BPF_REG_FP; i++) {
3718 if (parent->regs[i].live & REG_LIVE_READ)
3719 continue;
63f45f84
EC
3720 if (writes && (state->regs[i].live & REG_LIVE_WRITTEN))
3721 continue;
3722 if (state->regs[i].live & REG_LIVE_READ) {
dc503a8a
EC
3723 parent->regs[i].live |= REG_LIVE_READ;
3724 touched = true;
3725 }
3726 }
3727 /* ... and stack slots */
638f5b90
AS
3728 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
3729 i < parent->allocated_stack / BPF_REG_SIZE; i++) {
3730 if (parent->stack[i].slot_type[0] != STACK_SPILL)
dc503a8a 3731 continue;
638f5b90 3732 if (state->stack[i].slot_type[0] != STACK_SPILL)
dc503a8a 3733 continue;
638f5b90 3734 if (parent->stack[i].spilled_ptr.live & REG_LIVE_READ)
dc503a8a 3735 continue;
638f5b90
AS
3736 if (writes &&
3737 (state->stack[i].spilled_ptr.live & REG_LIVE_WRITTEN))
63f45f84 3738 continue;
638f5b90
AS
3739 if (state->stack[i].spilled_ptr.live & REG_LIVE_READ) {
3740 parent->stack[i].spilled_ptr.live |= REG_LIVE_READ;
dc503a8a
EC
3741 touched = true;
3742 }
3743 }
3744 return touched;
3745}
3746
8e9cd9ce
EC
3747/* "parent" is "a state from which we reach the current state", but initially
3748 * it is not the state->parent (i.e. "the state whose straight-line code leads
3749 * to the current state"), instead it is the state that happened to arrive at
3750 * a (prunable) equivalent of the current state. See comment above
3751 * do_propagate_liveness() for consequences of this.
3752 * This function is just a more efficient way of calling mark_reg_read() or
3753 * mark_stack_slot_read() on each reg in "parent" that is read in "state",
3754 * though it requires that parent != state->parent in the call arguments.
3755 */
dc503a8a
EC
3756static void propagate_liveness(const struct bpf_verifier_state *state,
3757 struct bpf_verifier_state *parent)
3758{
3759 while (do_propagate_liveness(state, parent)) {
3760 /* Something changed, so we need to feed those changes onward */
3761 state = parent;
3762 parent = state->parent;
3763 }
3764}
3765
58e2af8b 3766static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
f1bca824 3767{
58e2af8b
JK
3768 struct bpf_verifier_state_list *new_sl;
3769 struct bpf_verifier_state_list *sl;
638f5b90 3770 struct bpf_verifier_state *cur = env->cur_state;
1969db47 3771 int i, err;
f1bca824
AS
3772
3773 sl = env->explored_states[insn_idx];
3774 if (!sl)
3775 /* this 'insn_idx' instruction wasn't marked, so we will not
3776 * be doing state search here
3777 */
3778 return 0;
3779
3780 while (sl != STATE_LIST_MARK) {
638f5b90 3781 if (states_equal(env, &sl->state, cur)) {
f1bca824 3782 /* reached equivalent register/stack state,
dc503a8a
EC
3783 * prune the search.
3784 * Registers read by the continuation are read by us.
8e9cd9ce
EC
3785 * If we have any write marks in env->cur_state, they
3786 * will prevent corresponding reads in the continuation
3787 * from reaching our parent (an explored_state). Our
3788 * own state will get the read marks recorded, but
3789 * they'll be immediately forgotten as we're pruning
3790 * this state and will pop a new one.
f1bca824 3791 */
638f5b90 3792 propagate_liveness(&sl->state, cur);
f1bca824 3793 return 1;
dc503a8a 3794 }
f1bca824
AS
3795 sl = sl->next;
3796 }
3797
3798 /* there were no equivalent states, remember current one.
3799 * technically the current state is not proven to be safe yet,
3800 * but it will either reach bpf_exit (which means it's safe) or
3801 * it will be rejected. Since there are no loops, we won't be
3802 * seeing this 'insn_idx' instruction again on the way to bpf_exit
3803 */
638f5b90 3804 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
f1bca824
AS
3805 if (!new_sl)
3806 return -ENOMEM;
3807
3808 /* add new state to the head of linked list */
1969db47
AS
3809 err = copy_verifier_state(&new_sl->state, cur);
3810 if (err) {
3811 free_verifier_state(&new_sl->state, false);
3812 kfree(new_sl);
3813 return err;
3814 }
f1bca824
AS
3815 new_sl->next = env->explored_states[insn_idx];
3816 env->explored_states[insn_idx] = new_sl;
dc503a8a 3817 /* connect new state to parentage chain */
638f5b90 3818 cur->parent = &new_sl->state;
8e9cd9ce
EC
3819 /* clear write marks in current state: the writes we did are not writes
3820 * our child did, so they don't screen off its reads from us.
3821 * (There are no read marks in current state, because reads always mark
3822 * their parent and current state never has children yet. Only
3823 * explored_states can get read marks.)
3824 */
dc503a8a 3825 for (i = 0; i < BPF_REG_FP; i++)
638f5b90
AS
3826 cur->regs[i].live = REG_LIVE_NONE;
3827 for (i = 0; i < cur->allocated_stack / BPF_REG_SIZE; i++)
3828 if (cur->stack[i].slot_type[0] == STACK_SPILL)
3829 cur->stack[i].spilled_ptr.live = REG_LIVE_NONE;
f1bca824
AS
3830 return 0;
3831}
3832
13a27dfc
JK
3833static int ext_analyzer_insn_hook(struct bpf_verifier_env *env,
3834 int insn_idx, int prev_insn_idx)
3835{
ab3f0063
JK
3836 if (env->dev_ops && env->dev_ops->insn_hook)
3837 return env->dev_ops->insn_hook(env, insn_idx, prev_insn_idx);
13a27dfc 3838
ab3f0063 3839 return 0;
13a27dfc
JK
3840}
3841
58e2af8b 3842static int do_check(struct bpf_verifier_env *env)
17a52670 3843{
638f5b90 3844 struct bpf_verifier_state *state;
17a52670 3845 struct bpf_insn *insns = env->prog->insnsi;
638f5b90 3846 struct bpf_reg_state *regs;
17a52670
AS
3847 int insn_cnt = env->prog->len;
3848 int insn_idx, prev_insn_idx = 0;
3849 int insn_processed = 0;
3850 bool do_print_state = false;
3851
638f5b90
AS
3852 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
3853 if (!state)
3854 return -ENOMEM;
3855 env->cur_state = state;
3856 init_reg_state(env, state->regs);
dc503a8a 3857 state->parent = NULL;
17a52670
AS
3858 insn_idx = 0;
3859 for (;;) {
3860 struct bpf_insn *insn;
3861 u8 class;
3862 int err;
3863
3864 if (insn_idx >= insn_cnt) {
61bd5218 3865 verbose(env, "invalid insn idx %d insn_cnt %d\n",
17a52670
AS
3866 insn_idx, insn_cnt);
3867 return -EFAULT;
3868 }
3869
3870 insn = &insns[insn_idx];
3871 class = BPF_CLASS(insn->code);
3872
07016151 3873 if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
61bd5218
JK
3874 verbose(env,
3875 "BPF program is too large. Processed %d insn\n",
17a52670
AS
3876 insn_processed);
3877 return -E2BIG;
3878 }
3879
f1bca824
AS
3880 err = is_state_visited(env, insn_idx);
3881 if (err < 0)
3882 return err;
3883 if (err == 1) {
3884 /* found equivalent state, can prune the search */
61bd5218 3885 if (env->log.level) {
f1bca824 3886 if (do_print_state)
61bd5218 3887 verbose(env, "\nfrom %d to %d: safe\n",
f1bca824
AS
3888 prev_insn_idx, insn_idx);
3889 else
61bd5218 3890 verbose(env, "%d: safe\n", insn_idx);
f1bca824
AS
3891 }
3892 goto process_bpf_exit;
3893 }
3894
3c2ce60b
DB
3895 if (need_resched())
3896 cond_resched();
3897
61bd5218
JK
3898 if (env->log.level > 1 || (env->log.level && do_print_state)) {
3899 if (env->log.level > 1)
3900 verbose(env, "%d:", insn_idx);
c5fc9692 3901 else
61bd5218 3902 verbose(env, "\nfrom %d to %d:",
c5fc9692 3903 prev_insn_idx, insn_idx);
638f5b90 3904 print_verifier_state(env, state);
17a52670
AS
3905 do_print_state = false;
3906 }
3907
61bd5218
JK
3908 if (env->log.level) {
3909 verbose(env, "%d: ", insn_idx);
f4ac7e0b
JK
3910 print_bpf_insn(verbose, env, insn,
3911 env->allow_ptr_leaks);
17a52670
AS
3912 }
3913
13a27dfc
JK
3914 err = ext_analyzer_insn_hook(env, insn_idx, prev_insn_idx);
3915 if (err)
3916 return err;
3917
638f5b90 3918 regs = cur_regs(env);
c131187d 3919 env->insn_aux_data[insn_idx].seen = true;
17a52670 3920 if (class == BPF_ALU || class == BPF_ALU64) {
1be7f75d 3921 err = check_alu_op(env, insn);
17a52670
AS
3922 if (err)
3923 return err;
3924
3925 } else if (class == BPF_LDX) {
3df126f3 3926 enum bpf_reg_type *prev_src_type, src_reg_type;
9bac3d6d
AS
3927
3928 /* check for reserved fields is already done */
3929
17a52670 3930 /* check src operand */
dc503a8a 3931 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
3932 if (err)
3933 return err;
3934
dc503a8a 3935 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
17a52670
AS
3936 if (err)
3937 return err;
3938
725f9dcd
AS
3939 src_reg_type = regs[insn->src_reg].type;
3940
17a52670
AS
3941 /* check that memory (src_reg + off) is readable,
3942 * the state of dst_reg will be updated by this func
3943 */
31fd8581 3944 err = check_mem_access(env, insn_idx, insn->src_reg, insn->off,
17a52670 3945 BPF_SIZE(insn->code), BPF_READ,
57b4a36e 3946 insn->dst_reg, false);
17a52670
AS
3947 if (err)
3948 return err;
3949
3df126f3
JK
3950 prev_src_type = &env->insn_aux_data[insn_idx].ptr_type;
3951
3952 if (*prev_src_type == NOT_INIT) {
9bac3d6d
AS
3953 /* saw a valid insn
3954 * dst_reg = *(u32 *)(src_reg + off)
3df126f3 3955 * save type to validate intersecting paths
9bac3d6d 3956 */
3df126f3 3957 *prev_src_type = src_reg_type;
9bac3d6d 3958
3df126f3 3959 } else if (src_reg_type != *prev_src_type &&
9bac3d6d 3960 (src_reg_type == PTR_TO_CTX ||
3df126f3 3961 *prev_src_type == PTR_TO_CTX)) {
9bac3d6d
AS
3962 /* ABuser program is trying to use the same insn
3963 * dst_reg = *(u32*) (src_reg + off)
3964 * with different pointer types:
3965 * src_reg == ctx in one branch and
3966 * src_reg == stack|map in some other branch.
3967 * Reject it.
3968 */
61bd5218 3969 verbose(env, "same insn cannot be used with different pointers\n");
9bac3d6d
AS
3970 return -EINVAL;
3971 }
3972
17a52670 3973 } else if (class == BPF_STX) {
3df126f3 3974 enum bpf_reg_type *prev_dst_type, dst_reg_type;
d691f9e8 3975
17a52670 3976 if (BPF_MODE(insn->code) == BPF_XADD) {
31fd8581 3977 err = check_xadd(env, insn_idx, insn);
17a52670
AS
3978 if (err)
3979 return err;
3980 insn_idx++;
3981 continue;
3982 }
3983
17a52670 3984 /* check src1 operand */
dc503a8a 3985 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
3986 if (err)
3987 return err;
3988 /* check src2 operand */
dc503a8a 3989 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
3990 if (err)
3991 return err;
3992
d691f9e8
AS
3993 dst_reg_type = regs[insn->dst_reg].type;
3994
17a52670 3995 /* check that memory (dst_reg + off) is writeable */
31fd8581 3996 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
17a52670 3997 BPF_SIZE(insn->code), BPF_WRITE,
57b4a36e 3998 insn->src_reg, false);
17a52670
AS
3999 if (err)
4000 return err;
4001
3df126f3
JK
4002 prev_dst_type = &env->insn_aux_data[insn_idx].ptr_type;
4003
4004 if (*prev_dst_type == NOT_INIT) {
4005 *prev_dst_type = dst_reg_type;
4006 } else if (dst_reg_type != *prev_dst_type &&
d691f9e8 4007 (dst_reg_type == PTR_TO_CTX ||
3df126f3 4008 *prev_dst_type == PTR_TO_CTX)) {
61bd5218 4009 verbose(env, "same insn cannot be used with different pointers\n");
d691f9e8
AS
4010 return -EINVAL;
4011 }
4012
17a52670
AS
4013 } else if (class == BPF_ST) {
4014 if (BPF_MODE(insn->code) != BPF_MEM ||
4015 insn->src_reg != BPF_REG_0) {
61bd5218 4016 verbose(env, "BPF_ST uses reserved fields\n");
17a52670
AS
4017 return -EINVAL;
4018 }
4019 /* check src operand */
dc503a8a 4020 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
4021 if (err)
4022 return err;
4023
f37a8cb8
DB
4024 if (is_ctx_reg(env, insn->dst_reg)) {
4025 verbose(env, "BPF_ST stores into R%d context is not allowed\n",
4026 insn->dst_reg);
4027 return -EACCES;
4028 }
4029
17a52670 4030 /* check that memory (dst_reg + off) is writeable */
31fd8581 4031 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
17a52670 4032 BPF_SIZE(insn->code), BPF_WRITE,
57b4a36e 4033 -1, false);
17a52670
AS
4034 if (err)
4035 return err;
4036
4037 } else if (class == BPF_JMP) {
4038 u8 opcode = BPF_OP(insn->code);
4039
4040 if (opcode == BPF_CALL) {
4041 if (BPF_SRC(insn->code) != BPF_K ||
4042 insn->off != 0 ||
4043 insn->src_reg != BPF_REG_0 ||
4044 insn->dst_reg != BPF_REG_0) {
61bd5218 4045 verbose(env, "BPF_CALL uses reserved fields\n");
17a52670
AS
4046 return -EINVAL;
4047 }
4048
81ed18ab 4049 err = check_call(env, insn->imm, insn_idx);
17a52670
AS
4050 if (err)
4051 return err;
4052
4053 } else if (opcode == BPF_JA) {
4054 if (BPF_SRC(insn->code) != BPF_K ||
4055 insn->imm != 0 ||
4056 insn->src_reg != BPF_REG_0 ||
4057 insn->dst_reg != BPF_REG_0) {
61bd5218 4058 verbose(env, "BPF_JA uses reserved fields\n");
17a52670
AS
4059 return -EINVAL;
4060 }
4061
4062 insn_idx += insn->off + 1;
4063 continue;
4064
4065 } else if (opcode == BPF_EXIT) {
4066 if (BPF_SRC(insn->code) != BPF_K ||
4067 insn->imm != 0 ||
4068 insn->src_reg != BPF_REG_0 ||
4069 insn->dst_reg != BPF_REG_0) {
61bd5218 4070 verbose(env, "BPF_EXIT uses reserved fields\n");
17a52670
AS
4071 return -EINVAL;
4072 }
4073
4074 /* eBPF calling convetion is such that R0 is used
4075 * to return the value from eBPF program.
4076 * Make sure that it's readable at this time
4077 * of bpf_exit, which means that program wrote
4078 * something into it earlier
4079 */
dc503a8a 4080 err = check_reg_arg(env, BPF_REG_0, SRC_OP);
17a52670
AS
4081 if (err)
4082 return err;
4083
1be7f75d 4084 if (is_pointer_value(env, BPF_REG_0)) {
61bd5218 4085 verbose(env, "R0 leaks addr as return value\n");
1be7f75d
AS
4086 return -EACCES;
4087 }
4088
390ee7e2
AS
4089 err = check_return_code(env);
4090 if (err)
4091 return err;
f1bca824 4092process_bpf_exit:
638f5b90
AS
4093 err = pop_stack(env, &prev_insn_idx, &insn_idx);
4094 if (err < 0) {
4095 if (err != -ENOENT)
4096 return err;
17a52670
AS
4097 break;
4098 } else {
4099 do_print_state = true;
4100 continue;
4101 }
4102 } else {
4103 err = check_cond_jmp_op(env, insn, &insn_idx);
4104 if (err)
4105 return err;
4106 }
4107 } else if (class == BPF_LD) {
4108 u8 mode = BPF_MODE(insn->code);
4109
4110 if (mode == BPF_ABS || mode == BPF_IND) {
ddd872bc
AS
4111 err = check_ld_abs(env, insn);
4112 if (err)
4113 return err;
4114
17a52670
AS
4115 } else if (mode == BPF_IMM) {
4116 err = check_ld_imm(env, insn);
4117 if (err)
4118 return err;
4119
4120 insn_idx++;
c131187d 4121 env->insn_aux_data[insn_idx].seen = true;
17a52670 4122 } else {
61bd5218 4123 verbose(env, "invalid BPF_LD mode\n");
17a52670
AS
4124 return -EINVAL;
4125 }
4126 } else {
61bd5218 4127 verbose(env, "unknown insn class %d\n", class);
17a52670
AS
4128 return -EINVAL;
4129 }
4130
4131 insn_idx++;
4132 }
4133
61bd5218
JK
4134 verbose(env, "processed %d insns, stack depth %d\n", insn_processed,
4135 env->prog->aux->stack_depth);
17a52670
AS
4136 return 0;
4137}
4138
56f668df
MKL
4139static int check_map_prealloc(struct bpf_map *map)
4140{
4141 return (map->map_type != BPF_MAP_TYPE_HASH &&
bcc6b1b7
MKL
4142 map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
4143 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
56f668df
MKL
4144 !(map->map_flags & BPF_F_NO_PREALLOC);
4145}
4146
61bd5218
JK
4147static int check_map_prog_compatibility(struct bpf_verifier_env *env,
4148 struct bpf_map *map,
fdc15d38
AS
4149 struct bpf_prog *prog)
4150
4151{
56f668df
MKL
4152 /* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
4153 * preallocated hash maps, since doing memory allocation
4154 * in overflow_handler can crash depending on where nmi got
4155 * triggered.
4156 */
4157 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
4158 if (!check_map_prealloc(map)) {
61bd5218 4159 verbose(env, "perf_event programs can only use preallocated hash map\n");
56f668df
MKL
4160 return -EINVAL;
4161 }
4162 if (map->inner_map_meta &&
4163 !check_map_prealloc(map->inner_map_meta)) {
61bd5218 4164 verbose(env, "perf_event programs can only use preallocated inner hash map\n");
56f668df
MKL
4165 return -EINVAL;
4166 }
fdc15d38
AS
4167 }
4168 return 0;
4169}
4170
0246e64d
AS
4171/* look for pseudo eBPF instructions that access map FDs and
4172 * replace them with actual map pointers
4173 */
58e2af8b 4174static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
0246e64d
AS
4175{
4176 struct bpf_insn *insn = env->prog->insnsi;
4177 int insn_cnt = env->prog->len;
fdc15d38 4178 int i, j, err;
0246e64d 4179
f1f7714e 4180 err = bpf_prog_calc_tag(env->prog);
aafe6ae9
DB
4181 if (err)
4182 return err;
4183
0246e64d 4184 for (i = 0; i < insn_cnt; i++, insn++) {
9bac3d6d 4185 if (BPF_CLASS(insn->code) == BPF_LDX &&
d691f9e8 4186 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
61bd5218 4187 verbose(env, "BPF_LDX uses reserved fields\n");
9bac3d6d
AS
4188 return -EINVAL;
4189 }
4190
d691f9e8
AS
4191 if (BPF_CLASS(insn->code) == BPF_STX &&
4192 ((BPF_MODE(insn->code) != BPF_MEM &&
4193 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
61bd5218 4194 verbose(env, "BPF_STX uses reserved fields\n");
d691f9e8
AS
4195 return -EINVAL;
4196 }
4197
0246e64d
AS
4198 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
4199 struct bpf_map *map;
4200 struct fd f;
4201
4202 if (i == insn_cnt - 1 || insn[1].code != 0 ||
4203 insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
4204 insn[1].off != 0) {
61bd5218 4205 verbose(env, "invalid bpf_ld_imm64 insn\n");
0246e64d
AS
4206 return -EINVAL;
4207 }
4208
4209 if (insn->src_reg == 0)
4210 /* valid generic load 64-bit imm */
4211 goto next_insn;
4212
4213 if (insn->src_reg != BPF_PSEUDO_MAP_FD) {
61bd5218
JK
4214 verbose(env,
4215 "unrecognized bpf_ld_imm64 insn\n");
0246e64d
AS
4216 return -EINVAL;
4217 }
4218
4219 f = fdget(insn->imm);
c2101297 4220 map = __bpf_map_get(f);
0246e64d 4221 if (IS_ERR(map)) {
61bd5218 4222 verbose(env, "fd %d is not pointing to valid bpf_map\n",
0246e64d 4223 insn->imm);
0246e64d
AS
4224 return PTR_ERR(map);
4225 }
4226
61bd5218 4227 err = check_map_prog_compatibility(env, map, env->prog);
fdc15d38
AS
4228 if (err) {
4229 fdput(f);
4230 return err;
4231 }
4232
0246e64d
AS
4233 /* store map pointer inside BPF_LD_IMM64 instruction */
4234 insn[0].imm = (u32) (unsigned long) map;
4235 insn[1].imm = ((u64) (unsigned long) map) >> 32;
4236
4237 /* check whether we recorded this map already */
4238 for (j = 0; j < env->used_map_cnt; j++)
4239 if (env->used_maps[j] == map) {
4240 fdput(f);
4241 goto next_insn;
4242 }
4243
4244 if (env->used_map_cnt >= MAX_USED_MAPS) {
4245 fdput(f);
4246 return -E2BIG;
4247 }
4248
0246e64d
AS
4249 /* hold the map. If the program is rejected by verifier,
4250 * the map will be released by release_maps() or it
4251 * will be used by the valid program until it's unloaded
4252 * and all maps are released in free_bpf_prog_info()
4253 */
92117d84
AS
4254 map = bpf_map_inc(map, false);
4255 if (IS_ERR(map)) {
4256 fdput(f);
4257 return PTR_ERR(map);
4258 }
4259 env->used_maps[env->used_map_cnt++] = map;
4260
0246e64d
AS
4261 fdput(f);
4262next_insn:
4263 insn++;
4264 i++;
4265 }
4266 }
4267
4268 /* now all pseudo BPF_LD_IMM64 instructions load valid
4269 * 'struct bpf_map *' into a register instead of user map_fd.
4270 * These pointers will be used later by verifier to validate map access.
4271 */
4272 return 0;
4273}
4274
4275/* drop refcnt of maps used by the rejected program */
58e2af8b 4276static void release_maps(struct bpf_verifier_env *env)
0246e64d
AS
4277{
4278 int i;
4279
4280 for (i = 0; i < env->used_map_cnt; i++)
4281 bpf_map_put(env->used_maps[i]);
4282}
4283
4284/* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
58e2af8b 4285static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
0246e64d
AS
4286{
4287 struct bpf_insn *insn = env->prog->insnsi;
4288 int insn_cnt = env->prog->len;
4289 int i;
4290
4291 for (i = 0; i < insn_cnt; i++, insn++)
4292 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
4293 insn->src_reg = 0;
4294}
4295
8041902d
AS
4296/* single env->prog->insni[off] instruction was replaced with the range
4297 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying
4298 * [0, off) and [off, end) to new locations, so the patched range stays zero
4299 */
4300static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len,
4301 u32 off, u32 cnt)
4302{
4303 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
c131187d 4304 int i;
8041902d
AS
4305
4306 if (cnt == 1)
4307 return 0;
4308 new_data = vzalloc(sizeof(struct bpf_insn_aux_data) * prog_len);
4309 if (!new_data)
4310 return -ENOMEM;
4311 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
4312 memcpy(new_data + off + cnt - 1, old_data + off,
4313 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
c131187d
AS
4314 for (i = off; i < off + cnt - 1; i++)
4315 new_data[i].seen = true;
8041902d
AS
4316 env->insn_aux_data = new_data;
4317 vfree(old_data);
4318 return 0;
4319}
4320
4321static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
4322 const struct bpf_insn *patch, u32 len)
4323{
4324 struct bpf_prog *new_prog;
4325
4326 new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
4327 if (!new_prog)
4328 return NULL;
4329 if (adjust_insn_aux_data(env, new_prog->len, off, len))
4330 return NULL;
4331 return new_prog;
4332}
4333
c131187d
AS
4334/* The verifier does more data flow analysis than llvm and will not explore
4335 * branches that are dead at run time. Malicious programs can have dead code
4336 * too. Therefore replace all dead at-run-time code with nops.
4337 */
4338static void sanitize_dead_code(struct bpf_verifier_env *env)
4339{
4340 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
4341 struct bpf_insn nop = BPF_MOV64_REG(BPF_REG_0, BPF_REG_0);
4342 struct bpf_insn *insn = env->prog->insnsi;
4343 const int insn_cnt = env->prog->len;
4344 int i;
4345
4346 for (i = 0; i < insn_cnt; i++) {
4347 if (aux_data[i].seen)
4348 continue;
4349 memcpy(insn + i, &nop, sizeof(nop));
4350 }
4351}
4352
9bac3d6d
AS
4353/* convert load instructions that access fields of 'struct __sk_buff'
4354 * into sequence of instructions that access fields of 'struct sk_buff'
4355 */
58e2af8b 4356static int convert_ctx_accesses(struct bpf_verifier_env *env)
9bac3d6d 4357{
00176a34 4358 const struct bpf_verifier_ops *ops = env->ops;
f96da094 4359 int i, cnt, size, ctx_field_size, delta = 0;
3df126f3 4360 const int insn_cnt = env->prog->len;
36bbef52 4361 struct bpf_insn insn_buf[16], *insn;
9bac3d6d 4362 struct bpf_prog *new_prog;
d691f9e8 4363 enum bpf_access_type type;
f96da094
DB
4364 bool is_narrower_load;
4365 u32 target_size;
9bac3d6d 4366
36bbef52
DB
4367 if (ops->gen_prologue) {
4368 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
4369 env->prog);
4370 if (cnt >= ARRAY_SIZE(insn_buf)) {
61bd5218 4371 verbose(env, "bpf verifier is misconfigured\n");
36bbef52
DB
4372 return -EINVAL;
4373 } else if (cnt) {
8041902d 4374 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
36bbef52
DB
4375 if (!new_prog)
4376 return -ENOMEM;
8041902d 4377
36bbef52 4378 env->prog = new_prog;
3df126f3 4379 delta += cnt - 1;
36bbef52
DB
4380 }
4381 }
4382
4383 if (!ops->convert_ctx_access)
9bac3d6d
AS
4384 return 0;
4385
3df126f3 4386 insn = env->prog->insnsi + delta;
36bbef52 4387
9bac3d6d 4388 for (i = 0; i < insn_cnt; i++, insn++) {
62c7989b
DB
4389 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
4390 insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
4391 insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
ea2e7ce5 4392 insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
d691f9e8 4393 type = BPF_READ;
62c7989b
DB
4394 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
4395 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
4396 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
ea2e7ce5 4397 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
d691f9e8
AS
4398 type = BPF_WRITE;
4399 else
9bac3d6d
AS
4400 continue;
4401
8041902d 4402 if (env->insn_aux_data[i + delta].ptr_type != PTR_TO_CTX)
9bac3d6d 4403 continue;
9bac3d6d 4404
31fd8581 4405 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
f96da094 4406 size = BPF_LDST_BYTES(insn);
31fd8581
YS
4407
4408 /* If the read access is a narrower load of the field,
4409 * convert to a 4/8-byte load, to minimum program type specific
4410 * convert_ctx_access changes. If conversion is successful,
4411 * we will apply proper mask to the result.
4412 */
f96da094 4413 is_narrower_load = size < ctx_field_size;
31fd8581 4414 if (is_narrower_load) {
f96da094
DB
4415 u32 off = insn->off;
4416 u8 size_code;
4417
4418 if (type == BPF_WRITE) {
61bd5218 4419 verbose(env, "bpf verifier narrow ctx access misconfigured\n");
f96da094
DB
4420 return -EINVAL;
4421 }
31fd8581 4422
f96da094 4423 size_code = BPF_H;
31fd8581
YS
4424 if (ctx_field_size == 4)
4425 size_code = BPF_W;
4426 else if (ctx_field_size == 8)
4427 size_code = BPF_DW;
f96da094 4428
31fd8581
YS
4429 insn->off = off & ~(ctx_field_size - 1);
4430 insn->code = BPF_LDX | BPF_MEM | size_code;
4431 }
f96da094
DB
4432
4433 target_size = 0;
4434 cnt = ops->convert_ctx_access(type, insn, insn_buf, env->prog,
4435 &target_size);
4436 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
4437 (ctx_field_size && !target_size)) {
61bd5218 4438 verbose(env, "bpf verifier is misconfigured\n");
9bac3d6d
AS
4439 return -EINVAL;
4440 }
f96da094
DB
4441
4442 if (is_narrower_load && size < target_size) {
31fd8581
YS
4443 if (ctx_field_size <= 4)
4444 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
f96da094 4445 (1 << size * 8) - 1);
31fd8581
YS
4446 else
4447 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
f96da094 4448 (1 << size * 8) - 1);
31fd8581 4449 }
9bac3d6d 4450
8041902d 4451 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
9bac3d6d
AS
4452 if (!new_prog)
4453 return -ENOMEM;
4454
3df126f3 4455 delta += cnt - 1;
9bac3d6d
AS
4456
4457 /* keep walking new program and skip insns we just inserted */
4458 env->prog = new_prog;
3df126f3 4459 insn = new_prog->insnsi + i + delta;
9bac3d6d
AS
4460 }
4461
4462 return 0;
4463}
4464
79741b3b 4465/* fixup insn->imm field of bpf_call instructions
81ed18ab 4466 * and inline eligible helpers as explicit sequence of BPF instructions
e245c5c6
AS
4467 *
4468 * this function is called after eBPF program passed verification
4469 */
79741b3b 4470static int fixup_bpf_calls(struct bpf_verifier_env *env)
e245c5c6 4471{
79741b3b
AS
4472 struct bpf_prog *prog = env->prog;
4473 struct bpf_insn *insn = prog->insnsi;
e245c5c6 4474 const struct bpf_func_proto *fn;
79741b3b 4475 const int insn_cnt = prog->len;
81ed18ab
AS
4476 struct bpf_insn insn_buf[16];
4477 struct bpf_prog *new_prog;
4478 struct bpf_map *map_ptr;
4479 int i, cnt, delta = 0;
e245c5c6 4480
79741b3b 4481 for (i = 0; i < insn_cnt; i++, insn++) {
68fda450
AS
4482 if (insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
4483 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
4484 /* due to JIT bugs clear upper 32-bits of src register
4485 * before div/mod operation
4486 */
4487 insn_buf[0] = BPF_MOV32_REG(insn->src_reg, insn->src_reg);
4488 insn_buf[1] = *insn;
4489 cnt = 2;
4490 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
4491 if (!new_prog)
4492 return -ENOMEM;
4493
4494 delta += cnt - 1;
4495 env->prog = prog = new_prog;
4496 insn = new_prog->insnsi + i + delta;
4497 continue;
4498 }
4499
79741b3b
AS
4500 if (insn->code != (BPF_JMP | BPF_CALL))
4501 continue;
e245c5c6 4502
79741b3b
AS
4503 if (insn->imm == BPF_FUNC_get_route_realm)
4504 prog->dst_needed = 1;
4505 if (insn->imm == BPF_FUNC_get_prandom_u32)
4506 bpf_user_rnd_init_once();
79741b3b 4507 if (insn->imm == BPF_FUNC_tail_call) {
7b9f6da1
DM
4508 /* If we tail call into other programs, we
4509 * cannot make any assumptions since they can
4510 * be replaced dynamically during runtime in
4511 * the program array.
4512 */
4513 prog->cb_access = 1;
80a58d02 4514 env->prog->aux->stack_depth = MAX_BPF_STACK;
7b9f6da1 4515
79741b3b
AS
4516 /* mark bpf_tail_call as different opcode to avoid
4517 * conditional branch in the interpeter for every normal
4518 * call and to prevent accidental JITing by JIT compiler
4519 * that doesn't support bpf_tail_call yet
e245c5c6 4520 */
79741b3b 4521 insn->imm = 0;
71189fa9 4522 insn->code = BPF_JMP | BPF_TAIL_CALL;
b2157399
AS
4523
4524 /* instead of changing every JIT dealing with tail_call
4525 * emit two extra insns:
4526 * if (index >= max_entries) goto out;
4527 * index &= array->index_mask;
4528 * to avoid out-of-bounds cpu speculation
4529 */
4530 map_ptr = env->insn_aux_data[i + delta].map_ptr;
4531 if (map_ptr == BPF_MAP_PTR_POISON) {
40950343 4532 verbose(env, "tail_call abusing map_ptr\n");
b2157399
AS
4533 return -EINVAL;
4534 }
4535 if (!map_ptr->unpriv_array)
4536 continue;
4537 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
4538 map_ptr->max_entries, 2);
4539 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
4540 container_of(map_ptr,
4541 struct bpf_array,
4542 map)->index_mask);
4543 insn_buf[2] = *insn;
4544 cnt = 3;
4545 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
4546 if (!new_prog)
4547 return -ENOMEM;
4548
4549 delta += cnt - 1;
4550 env->prog = prog = new_prog;
4551 insn = new_prog->insnsi + i + delta;
79741b3b
AS
4552 continue;
4553 }
e245c5c6 4554
89c63074
DB
4555 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
4556 * handlers are currently limited to 64 bit only.
4557 */
4558 if (ebpf_jit_enabled() && BITS_PER_LONG == 64 &&
4559 insn->imm == BPF_FUNC_map_lookup_elem) {
81ed18ab 4560 map_ptr = env->insn_aux_data[i + delta].map_ptr;
fad73a1a
MKL
4561 if (map_ptr == BPF_MAP_PTR_POISON ||
4562 !map_ptr->ops->map_gen_lookup)
81ed18ab
AS
4563 goto patch_call_imm;
4564
4565 cnt = map_ptr->ops->map_gen_lookup(map_ptr, insn_buf);
4566 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
61bd5218 4567 verbose(env, "bpf verifier is misconfigured\n");
81ed18ab
AS
4568 return -EINVAL;
4569 }
4570
4571 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
4572 cnt);
4573 if (!new_prog)
4574 return -ENOMEM;
4575
4576 delta += cnt - 1;
4577
4578 /* keep walking new program and skip insns we just inserted */
4579 env->prog = prog = new_prog;
4580 insn = new_prog->insnsi + i + delta;
4581 continue;
4582 }
4583
109980b8 4584 if (insn->imm == BPF_FUNC_redirect_map) {
7c300131
DB
4585 /* Note, we cannot use prog directly as imm as subsequent
4586 * rewrites would still change the prog pointer. The only
4587 * stable address we can use is aux, which also works with
4588 * prog clones during blinding.
4589 */
4590 u64 addr = (unsigned long)prog->aux;
109980b8
DB
4591 struct bpf_insn r4_ld[] = {
4592 BPF_LD_IMM64(BPF_REG_4, addr),
4593 *insn,
4594 };
4595 cnt = ARRAY_SIZE(r4_ld);
4596
4597 new_prog = bpf_patch_insn_data(env, i + delta, r4_ld, cnt);
4598 if (!new_prog)
4599 return -ENOMEM;
4600
4601 delta += cnt - 1;
4602 env->prog = prog = new_prog;
4603 insn = new_prog->insnsi + i + delta;
4604 }
81ed18ab 4605patch_call_imm:
00176a34 4606 fn = env->ops->get_func_proto(insn->imm);
79741b3b
AS
4607 /* all functions that have prototype and verifier allowed
4608 * programs to call them, must be real in-kernel functions
4609 */
4610 if (!fn->func) {
61bd5218
JK
4611 verbose(env,
4612 "kernel subsystem misconfigured func %s#%d\n",
79741b3b
AS
4613 func_id_name(insn->imm), insn->imm);
4614 return -EFAULT;
e245c5c6 4615 }
79741b3b 4616 insn->imm = fn->func - __bpf_call_base;
e245c5c6 4617 }
e245c5c6 4618
79741b3b
AS
4619 return 0;
4620}
e245c5c6 4621
58e2af8b 4622static void free_states(struct bpf_verifier_env *env)
f1bca824 4623{
58e2af8b 4624 struct bpf_verifier_state_list *sl, *sln;
f1bca824
AS
4625 int i;
4626
4627 if (!env->explored_states)
4628 return;
4629
4630 for (i = 0; i < env->prog->len; i++) {
4631 sl = env->explored_states[i];
4632
4633 if (sl)
4634 while (sl != STATE_LIST_MARK) {
4635 sln = sl->next;
1969db47 4636 free_verifier_state(&sl->state, false);
f1bca824
AS
4637 kfree(sl);
4638 sl = sln;
4639 }
4640 }
4641
4642 kfree(env->explored_states);
4643}
4644
9bac3d6d 4645int bpf_check(struct bpf_prog **prog, union bpf_attr *attr)
51580e79 4646{
58e2af8b 4647 struct bpf_verifier_env *env;
61bd5218 4648 struct bpf_verifer_log *log;
51580e79
AS
4649 int ret = -EINVAL;
4650
eba0c929
AB
4651 /* no program is valid */
4652 if (ARRAY_SIZE(bpf_verifier_ops) == 0)
4653 return -EINVAL;
4654
58e2af8b 4655 /* 'struct bpf_verifier_env' can be global, but since it's not small,
cbd35700
AS
4656 * allocate/free it every time bpf_check() is called
4657 */
58e2af8b 4658 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
cbd35700
AS
4659 if (!env)
4660 return -ENOMEM;
61bd5218 4661 log = &env->log;
cbd35700 4662
3df126f3
JK
4663 env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
4664 (*prog)->len);
4665 ret = -ENOMEM;
4666 if (!env->insn_aux_data)
4667 goto err_free_env;
9bac3d6d 4668 env->prog = *prog;
00176a34 4669 env->ops = bpf_verifier_ops[env->prog->type];
0246e64d 4670
cbd35700
AS
4671 /* grab the mutex to protect few globals used by verifier */
4672 mutex_lock(&bpf_verifier_lock);
4673
4674 if (attr->log_level || attr->log_buf || attr->log_size) {
4675 /* user requested verbose verifier output
4676 * and supplied buffer to store the verification trace
4677 */
e7bf8249
JK
4678 log->level = attr->log_level;
4679 log->ubuf = (char __user *) (unsigned long) attr->log_buf;
4680 log->len_total = attr->log_size;
cbd35700
AS
4681
4682 ret = -EINVAL;
e7bf8249
JK
4683 /* log attributes have to be sane */
4684 if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 ||
4685 !log->level || !log->ubuf)
3df126f3 4686 goto err_unlock;
cbd35700 4687 }
1ad2f583
DB
4688
4689 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
4690 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
e07b98d9 4691 env->strict_alignment = true;
cbd35700 4692
ab3f0063
JK
4693 if (env->prog->aux->offload) {
4694 ret = bpf_prog_offload_verifier_prep(env);
4695 if (ret)
4696 goto err_unlock;
4697 }
4698
0246e64d
AS
4699 ret = replace_map_fd_with_map_ptr(env);
4700 if (ret < 0)
4701 goto skip_full_check;
4702
9bac3d6d 4703 env->explored_states = kcalloc(env->prog->len,
58e2af8b 4704 sizeof(struct bpf_verifier_state_list *),
f1bca824
AS
4705 GFP_USER);
4706 ret = -ENOMEM;
4707 if (!env->explored_states)
4708 goto skip_full_check;
4709
475fb78f
AS
4710 ret = check_cfg(env);
4711 if (ret < 0)
4712 goto skip_full_check;
4713
1be7f75d
AS
4714 env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
4715
17a52670 4716 ret = do_check(env);
8c01c4f8
CG
4717 if (env->cur_state) {
4718 free_verifier_state(env->cur_state, true);
4719 env->cur_state = NULL;
4720 }
cbd35700 4721
0246e64d 4722skip_full_check:
638f5b90 4723 while (!pop_stack(env, NULL, NULL));
f1bca824 4724 free_states(env);
0246e64d 4725
c131187d
AS
4726 if (ret == 0)
4727 sanitize_dead_code(env);
4728
9bac3d6d
AS
4729 if (ret == 0)
4730 /* program is valid, convert *(u32*)(ctx + off) accesses */
4731 ret = convert_ctx_accesses(env);
4732
e245c5c6 4733 if (ret == 0)
79741b3b 4734 ret = fixup_bpf_calls(env);
e245c5c6 4735
a2a7d570 4736 if (log->level && bpf_verifier_log_full(log))
cbd35700 4737 ret = -ENOSPC;
a2a7d570 4738 if (log->level && !log->ubuf) {
cbd35700 4739 ret = -EFAULT;
a2a7d570 4740 goto err_release_maps;
cbd35700
AS
4741 }
4742
0246e64d
AS
4743 if (ret == 0 && env->used_map_cnt) {
4744 /* if program passed verifier, update used_maps in bpf_prog_info */
9bac3d6d
AS
4745 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
4746 sizeof(env->used_maps[0]),
4747 GFP_KERNEL);
0246e64d 4748
9bac3d6d 4749 if (!env->prog->aux->used_maps) {
0246e64d 4750 ret = -ENOMEM;
a2a7d570 4751 goto err_release_maps;
0246e64d
AS
4752 }
4753
9bac3d6d 4754 memcpy(env->prog->aux->used_maps, env->used_maps,
0246e64d 4755 sizeof(env->used_maps[0]) * env->used_map_cnt);
9bac3d6d 4756 env->prog->aux->used_map_cnt = env->used_map_cnt;
0246e64d
AS
4757
4758 /* program is valid. Convert pseudo bpf_ld_imm64 into generic
4759 * bpf_ld_imm64 instructions
4760 */
4761 convert_pseudo_ld_imm64(env);
4762 }
cbd35700 4763
a2a7d570 4764err_release_maps:
9bac3d6d 4765 if (!env->prog->aux->used_maps)
0246e64d
AS
4766 /* if we didn't copy map pointers into bpf_prog_info, release
4767 * them now. Otherwise free_bpf_prog_info() will release them.
4768 */
4769 release_maps(env);
9bac3d6d 4770 *prog = env->prog;
3df126f3 4771err_unlock:
cbd35700 4772 mutex_unlock(&bpf_verifier_lock);
3df126f3
JK
4773 vfree(env->insn_aux_data);
4774err_free_env:
4775 kfree(env);
51580e79
AS
4776 return ret;
4777}