]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - kernel/bpf/verifier.c
route: Set lwtstate for local traffic and cached input dsts
[mirror_ubuntu-bionic-kernel.git] / kernel / bpf / verifier.c
CommitLineData
51580e79 1/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
969bf05e 2 * Copyright (c) 2016 Facebook
51580e79
AS
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 */
13#include <linux/kernel.h>
14#include <linux/types.h>
15#include <linux/slab.h>
16#include <linux/bpf.h>
58e2af8b 17#include <linux/bpf_verifier.h>
51580e79
AS
18#include <linux/filter.h>
19#include <net/netlink.h>
20#include <linux/file.h>
21#include <linux/vmalloc.h>
ebb676da 22#include <linux/stringify.h>
51580e79
AS
23
24/* bpf_check() is a static code analyzer that walks eBPF program
25 * instruction by instruction and updates register/stack state.
26 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
27 *
28 * The first pass is depth-first-search to check that the program is a DAG.
29 * It rejects the following programs:
30 * - larger than BPF_MAXINSNS insns
31 * - if loop is present (detected via back-edge)
32 * - unreachable insns exist (shouldn't be a forest. program = one function)
33 * - out of bounds or malformed jumps
34 * The second pass is all possible path descent from the 1st insn.
35 * Since it's analyzing all pathes through the program, the length of the
36 * analysis is limited to 32k insn, which may be hit even if total number of
37 * insn is less then 4K, but there are too many branches that change stack/regs.
38 * Number of 'branches to be analyzed' is limited to 1k
39 *
40 * On entry to each instruction, each register has a type, and the instruction
41 * changes the types of the registers depending on instruction semantics.
42 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
43 * copied to R1.
44 *
45 * All registers are 64-bit.
46 * R0 - return register
47 * R1-R5 argument passing registers
48 * R6-R9 callee saved registers
49 * R10 - frame pointer read-only
50 *
51 * At the start of BPF program the register R1 contains a pointer to bpf_context
52 * and has type PTR_TO_CTX.
53 *
54 * Verifier tracks arithmetic operations on pointers in case:
55 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
56 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
57 * 1st insn copies R10 (which has FRAME_PTR) type into R1
58 * and 2nd arithmetic instruction is pattern matched to recognize
59 * that it wants to construct a pointer to some element within stack.
60 * So after 2nd insn, the register R1 has type PTR_TO_STACK
61 * (and -20 constant is saved for further stack bounds checking).
62 * Meaning that this reg is a pointer to stack plus known immediate constant.
63 *
64 * Most of the time the registers have UNKNOWN_VALUE type, which
65 * means the register has some value, but it's not a valid pointer.
66 * (like pointer plus pointer becomes UNKNOWN_VALUE type)
67 *
68 * When verifier sees load or store instructions the type of base register
69 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, FRAME_PTR. These are three pointer
70 * types recognized by check_mem_access() function.
71 *
72 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
73 * and the range of [ptr, ptr + map's value_size) is accessible.
74 *
75 * registers used to pass values to function calls are checked against
76 * function argument constraints.
77 *
78 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
79 * It means that the register type passed to this function must be
80 * PTR_TO_STACK and it will be used inside the function as
81 * 'pointer to map element key'
82 *
83 * For example the argument constraints for bpf_map_lookup_elem():
84 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
85 * .arg1_type = ARG_CONST_MAP_PTR,
86 * .arg2_type = ARG_PTR_TO_MAP_KEY,
87 *
88 * ret_type says that this function returns 'pointer to map elem value or null'
89 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
90 * 2nd argument should be a pointer to stack, which will be used inside
91 * the helper function as a pointer to map element key.
92 *
93 * On the kernel side the helper function looks like:
94 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
95 * {
96 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
97 * void *key = (void *) (unsigned long) r2;
98 * void *value;
99 *
100 * here kernel can access 'key' and 'map' pointers safely, knowing that
101 * [key, key + map->key_size) bytes are valid and were initialized on
102 * the stack of eBPF program.
103 * }
104 *
105 * Corresponding eBPF program may look like:
106 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
107 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
108 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
109 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
110 * here verifier looks at prototype of map_lookup_elem() and sees:
111 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
112 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
113 *
114 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
115 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
116 * and were initialized prior to this call.
117 * If it's ok, then verifier allows this BPF_CALL insn and looks at
118 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
119 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
120 * returns ether pointer to map value or NULL.
121 *
122 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
123 * insn, the register holding that pointer in the true branch changes state to
124 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
125 * branch. See check_cond_jmp_op().
126 *
127 * After the call R0 is set to return type of the function and registers R1-R5
128 * are set to NOT_INIT to indicate that they are no longer readable.
129 */
130
17a52670 131/* verifier_state + insn_idx are pushed to stack when branch is encountered */
58e2af8b 132struct bpf_verifier_stack_elem {
17a52670
AS
133 /* verifer state is 'st'
134 * before processing instruction 'insn_idx'
135 * and after processing instruction 'prev_insn_idx'
136 */
58e2af8b 137 struct bpf_verifier_state st;
17a52670
AS
138 int insn_idx;
139 int prev_insn_idx;
58e2af8b 140 struct bpf_verifier_stack_elem *next;
cbd35700
AS
141};
142
07016151
DB
143#define BPF_COMPLEXITY_LIMIT_INSNS 65536
144#define BPF_COMPLEXITY_LIMIT_STACK 1024
145
33ff9823
DB
146struct bpf_call_arg_meta {
147 struct bpf_map *map_ptr;
435faee1 148 bool raw_mode;
36bbef52 149 bool pkt_access;
435faee1
DB
150 int regno;
151 int access_size;
33ff9823
DB
152};
153
cbd35700
AS
154/* verbose verifier prints what it's seeing
155 * bpf_check() is called under lock, so no race to access these global vars
156 */
157static u32 log_level, log_size, log_len;
158static char *log_buf;
159
160static DEFINE_MUTEX(bpf_verifier_lock);
161
162/* log_level controls verbosity level of eBPF verifier.
163 * verbose() is used to dump the verification trace to the log, so the user
164 * can figure out what's wrong with the program
165 */
1d056d9c 166static __printf(1, 2) void verbose(const char *fmt, ...)
cbd35700
AS
167{
168 va_list args;
169
170 if (log_level == 0 || log_len >= log_size - 1)
171 return;
172
173 va_start(args, fmt);
174 log_len += vscnprintf(log_buf + log_len, log_size - log_len, fmt, args);
175 va_end(args);
176}
177
17a52670
AS
178/* string representation of 'enum bpf_reg_type' */
179static const char * const reg_type_str[] = {
180 [NOT_INIT] = "?",
181 [UNKNOWN_VALUE] = "inv",
182 [PTR_TO_CTX] = "ctx",
183 [CONST_PTR_TO_MAP] = "map_ptr",
184 [PTR_TO_MAP_VALUE] = "map_value",
185 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
48461135 186 [PTR_TO_MAP_VALUE_ADJ] = "map_value_adj",
17a52670
AS
187 [FRAME_PTR] = "fp",
188 [PTR_TO_STACK] = "fp",
189 [CONST_IMM] = "imm",
969bf05e
AS
190 [PTR_TO_PACKET] = "pkt",
191 [PTR_TO_PACKET_END] = "pkt_end",
17a52670
AS
192};
193
ebb676da
TG
194#define __BPF_FUNC_STR_FN(x) [BPF_FUNC_ ## x] = __stringify(bpf_ ## x)
195static const char * const func_id_str[] = {
196 __BPF_FUNC_MAPPER(__BPF_FUNC_STR_FN)
197};
198#undef __BPF_FUNC_STR_FN
199
200static const char *func_id_name(int id)
201{
202 BUILD_BUG_ON(ARRAY_SIZE(func_id_str) != __BPF_FUNC_MAX_ID);
203
204 if (id >= 0 && id < __BPF_FUNC_MAX_ID && func_id_str[id])
205 return func_id_str[id];
206 else
207 return "unknown";
208}
209
58e2af8b 210static void print_verifier_state(struct bpf_verifier_state *state)
17a52670 211{
58e2af8b 212 struct bpf_reg_state *reg;
17a52670
AS
213 enum bpf_reg_type t;
214 int i;
215
216 for (i = 0; i < MAX_BPF_REG; i++) {
1a0dc1ac
AS
217 reg = &state->regs[i];
218 t = reg->type;
17a52670
AS
219 if (t == NOT_INIT)
220 continue;
221 verbose(" R%d=%s", i, reg_type_str[t]);
222 if (t == CONST_IMM || t == PTR_TO_STACK)
969bf05e
AS
223 verbose("%lld", reg->imm);
224 else if (t == PTR_TO_PACKET)
225 verbose("(id=%d,off=%d,r=%d)",
226 reg->id, reg->off, reg->range);
227 else if (t == UNKNOWN_VALUE && reg->imm)
228 verbose("%lld", reg->imm);
17a52670 229 else if (t == CONST_PTR_TO_MAP || t == PTR_TO_MAP_VALUE ||
48461135
JB
230 t == PTR_TO_MAP_VALUE_OR_NULL ||
231 t == PTR_TO_MAP_VALUE_ADJ)
57a09bf0 232 verbose("(ks=%d,vs=%d,id=%u)",
1a0dc1ac 233 reg->map_ptr->key_size,
57a09bf0
TG
234 reg->map_ptr->value_size,
235 reg->id);
48461135 236 if (reg->min_value != BPF_REGISTER_MIN_RANGE)
f23cc643
JB
237 verbose(",min_value=%lld",
238 (long long)reg->min_value);
48461135
JB
239 if (reg->max_value != BPF_REGISTER_MAX_RANGE)
240 verbose(",max_value=%llu",
241 (unsigned long long)reg->max_value);
17a52670 242 }
9c399760 243 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
1a0dc1ac 244 if (state->stack_slot_type[i] == STACK_SPILL)
17a52670 245 verbose(" fp%d=%s", -MAX_BPF_STACK + i,
1a0dc1ac 246 reg_type_str[state->spilled_regs[i / BPF_REG_SIZE].type]);
17a52670
AS
247 }
248 verbose("\n");
249}
250
cbd35700
AS
251static const char *const bpf_class_string[] = {
252 [BPF_LD] = "ld",
253 [BPF_LDX] = "ldx",
254 [BPF_ST] = "st",
255 [BPF_STX] = "stx",
256 [BPF_ALU] = "alu",
257 [BPF_JMP] = "jmp",
258 [BPF_RET] = "BUG",
259 [BPF_ALU64] = "alu64",
260};
261
687f0715 262static const char *const bpf_alu_string[16] = {
cbd35700
AS
263 [BPF_ADD >> 4] = "+=",
264 [BPF_SUB >> 4] = "-=",
265 [BPF_MUL >> 4] = "*=",
266 [BPF_DIV >> 4] = "/=",
267 [BPF_OR >> 4] = "|=",
268 [BPF_AND >> 4] = "&=",
269 [BPF_LSH >> 4] = "<<=",
270 [BPF_RSH >> 4] = ">>=",
271 [BPF_NEG >> 4] = "neg",
272 [BPF_MOD >> 4] = "%=",
273 [BPF_XOR >> 4] = "^=",
274 [BPF_MOV >> 4] = "=",
275 [BPF_ARSH >> 4] = "s>>=",
276 [BPF_END >> 4] = "endian",
277};
278
279static const char *const bpf_ldst_string[] = {
280 [BPF_W >> 3] = "u32",
281 [BPF_H >> 3] = "u16",
282 [BPF_B >> 3] = "u8",
283 [BPF_DW >> 3] = "u64",
284};
285
687f0715 286static const char *const bpf_jmp_string[16] = {
cbd35700
AS
287 [BPF_JA >> 4] = "jmp",
288 [BPF_JEQ >> 4] = "==",
289 [BPF_JGT >> 4] = ">",
290 [BPF_JGE >> 4] = ">=",
291 [BPF_JSET >> 4] = "&",
292 [BPF_JNE >> 4] = "!=",
293 [BPF_JSGT >> 4] = "s>",
294 [BPF_JSGE >> 4] = "s>=",
295 [BPF_CALL >> 4] = "call",
296 [BPF_EXIT >> 4] = "exit",
297};
298
299static void print_bpf_insn(struct bpf_insn *insn)
300{
301 u8 class = BPF_CLASS(insn->code);
302
303 if (class == BPF_ALU || class == BPF_ALU64) {
304 if (BPF_SRC(insn->code) == BPF_X)
305 verbose("(%02x) %sr%d %s %sr%d\n",
306 insn->code, class == BPF_ALU ? "(u32) " : "",
307 insn->dst_reg,
308 bpf_alu_string[BPF_OP(insn->code) >> 4],
309 class == BPF_ALU ? "(u32) " : "",
310 insn->src_reg);
311 else
312 verbose("(%02x) %sr%d %s %s%d\n",
313 insn->code, class == BPF_ALU ? "(u32) " : "",
314 insn->dst_reg,
315 bpf_alu_string[BPF_OP(insn->code) >> 4],
316 class == BPF_ALU ? "(u32) " : "",
317 insn->imm);
318 } else if (class == BPF_STX) {
319 if (BPF_MODE(insn->code) == BPF_MEM)
320 verbose("(%02x) *(%s *)(r%d %+d) = r%d\n",
321 insn->code,
322 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
323 insn->dst_reg,
324 insn->off, insn->src_reg);
325 else if (BPF_MODE(insn->code) == BPF_XADD)
326 verbose("(%02x) lock *(%s *)(r%d %+d) += r%d\n",
327 insn->code,
328 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
329 insn->dst_reg, insn->off,
330 insn->src_reg);
331 else
332 verbose("BUG_%02x\n", insn->code);
333 } else if (class == BPF_ST) {
334 if (BPF_MODE(insn->code) != BPF_MEM) {
335 verbose("BUG_st_%02x\n", insn->code);
336 return;
337 }
338 verbose("(%02x) *(%s *)(r%d %+d) = %d\n",
339 insn->code,
340 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
341 insn->dst_reg,
342 insn->off, insn->imm);
343 } else if (class == BPF_LDX) {
344 if (BPF_MODE(insn->code) != BPF_MEM) {
345 verbose("BUG_ldx_%02x\n", insn->code);
346 return;
347 }
348 verbose("(%02x) r%d = *(%s *)(r%d %+d)\n",
349 insn->code, insn->dst_reg,
350 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
351 insn->src_reg, insn->off);
352 } else if (class == BPF_LD) {
353 if (BPF_MODE(insn->code) == BPF_ABS) {
354 verbose("(%02x) r0 = *(%s *)skb[%d]\n",
355 insn->code,
356 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
357 insn->imm);
358 } else if (BPF_MODE(insn->code) == BPF_IND) {
359 verbose("(%02x) r0 = *(%s *)skb[r%d + %d]\n",
360 insn->code,
361 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
362 insn->src_reg, insn->imm);
363 } else if (BPF_MODE(insn->code) == BPF_IMM) {
364 verbose("(%02x) r%d = 0x%x\n",
365 insn->code, insn->dst_reg, insn->imm);
366 } else {
367 verbose("BUG_ld_%02x\n", insn->code);
368 return;
369 }
370 } else if (class == BPF_JMP) {
371 u8 opcode = BPF_OP(insn->code);
372
373 if (opcode == BPF_CALL) {
ebb676da
TG
374 verbose("(%02x) call %s#%d\n", insn->code,
375 func_id_name(insn->imm), insn->imm);
cbd35700
AS
376 } else if (insn->code == (BPF_JMP | BPF_JA)) {
377 verbose("(%02x) goto pc%+d\n",
378 insn->code, insn->off);
379 } else if (insn->code == (BPF_JMP | BPF_EXIT)) {
380 verbose("(%02x) exit\n", insn->code);
381 } else if (BPF_SRC(insn->code) == BPF_X) {
382 verbose("(%02x) if r%d %s r%d goto pc%+d\n",
383 insn->code, insn->dst_reg,
384 bpf_jmp_string[BPF_OP(insn->code) >> 4],
385 insn->src_reg, insn->off);
386 } else {
387 verbose("(%02x) if r%d %s 0x%x goto pc%+d\n",
388 insn->code, insn->dst_reg,
389 bpf_jmp_string[BPF_OP(insn->code) >> 4],
390 insn->imm, insn->off);
391 }
392 } else {
393 verbose("(%02x) %s\n", insn->code, bpf_class_string[class]);
394 }
395}
396
58e2af8b 397static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx)
17a52670 398{
58e2af8b 399 struct bpf_verifier_stack_elem *elem;
17a52670
AS
400 int insn_idx;
401
402 if (env->head == NULL)
403 return -1;
404
405 memcpy(&env->cur_state, &env->head->st, sizeof(env->cur_state));
406 insn_idx = env->head->insn_idx;
407 if (prev_insn_idx)
408 *prev_insn_idx = env->head->prev_insn_idx;
409 elem = env->head->next;
410 kfree(env->head);
411 env->head = elem;
412 env->stack_size--;
413 return insn_idx;
414}
415
58e2af8b
JK
416static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
417 int insn_idx, int prev_insn_idx)
17a52670 418{
58e2af8b 419 struct bpf_verifier_stack_elem *elem;
17a52670 420
58e2af8b 421 elem = kmalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
17a52670
AS
422 if (!elem)
423 goto err;
424
425 memcpy(&elem->st, &env->cur_state, sizeof(env->cur_state));
426 elem->insn_idx = insn_idx;
427 elem->prev_insn_idx = prev_insn_idx;
428 elem->next = env->head;
429 env->head = elem;
430 env->stack_size++;
07016151 431 if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) {
17a52670
AS
432 verbose("BPF program is too complex\n");
433 goto err;
434 }
435 return &elem->st;
436err:
437 /* pop all elements and return */
438 while (pop_stack(env, NULL) >= 0);
439 return NULL;
440}
441
442#define CALLER_SAVED_REGS 6
443static const int caller_saved[CALLER_SAVED_REGS] = {
444 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
445};
446
58e2af8b 447static void init_reg_state(struct bpf_reg_state *regs)
17a52670
AS
448{
449 int i;
450
451 for (i = 0; i < MAX_BPF_REG; i++) {
452 regs[i].type = NOT_INIT;
453 regs[i].imm = 0;
48461135
JB
454 regs[i].min_value = BPF_REGISTER_MIN_RANGE;
455 regs[i].max_value = BPF_REGISTER_MAX_RANGE;
17a52670
AS
456 }
457
458 /* frame pointer */
459 regs[BPF_REG_FP].type = FRAME_PTR;
460
461 /* 1st arg to a function */
462 regs[BPF_REG_1].type = PTR_TO_CTX;
463}
464
58e2af8b 465static void mark_reg_unknown_value(struct bpf_reg_state *regs, u32 regno)
17a52670
AS
466{
467 BUG_ON(regno >= MAX_BPF_REG);
468 regs[regno].type = UNKNOWN_VALUE;
57a09bf0 469 regs[regno].id = 0;
17a52670 470 regs[regno].imm = 0;
17a52670
AS
471}
472
48461135
JB
473static void reset_reg_range_values(struct bpf_reg_state *regs, u32 regno)
474{
475 regs[regno].min_value = BPF_REGISTER_MIN_RANGE;
476 regs[regno].max_value = BPF_REGISTER_MAX_RANGE;
477}
478
17a52670
AS
479enum reg_arg_type {
480 SRC_OP, /* register is used as source operand */
481 DST_OP, /* register is used as destination operand */
482 DST_OP_NO_MARK /* same as above, check only, don't mark */
483};
484
58e2af8b 485static int check_reg_arg(struct bpf_reg_state *regs, u32 regno,
17a52670
AS
486 enum reg_arg_type t)
487{
488 if (regno >= MAX_BPF_REG) {
489 verbose("R%d is invalid\n", regno);
490 return -EINVAL;
491 }
492
493 if (t == SRC_OP) {
494 /* check whether register used as source operand can be read */
495 if (regs[regno].type == NOT_INIT) {
496 verbose("R%d !read_ok\n", regno);
497 return -EACCES;
498 }
499 } else {
500 /* check whether register used as dest operand can be written to */
501 if (regno == BPF_REG_FP) {
502 verbose("frame pointer is read only\n");
503 return -EACCES;
504 }
505 if (t == DST_OP)
506 mark_reg_unknown_value(regs, regno);
507 }
508 return 0;
509}
510
511static int bpf_size_to_bytes(int bpf_size)
512{
513 if (bpf_size == BPF_W)
514 return 4;
515 else if (bpf_size == BPF_H)
516 return 2;
517 else if (bpf_size == BPF_B)
518 return 1;
519 else if (bpf_size == BPF_DW)
520 return 8;
521 else
522 return -EINVAL;
523}
524
1be7f75d
AS
525static bool is_spillable_regtype(enum bpf_reg_type type)
526{
527 switch (type) {
528 case PTR_TO_MAP_VALUE:
529 case PTR_TO_MAP_VALUE_OR_NULL:
530 case PTR_TO_STACK:
531 case PTR_TO_CTX:
969bf05e
AS
532 case PTR_TO_PACKET:
533 case PTR_TO_PACKET_END:
1be7f75d
AS
534 case FRAME_PTR:
535 case CONST_PTR_TO_MAP:
536 return true;
537 default:
538 return false;
539 }
540}
541
17a52670
AS
542/* check_stack_read/write functions track spill/fill of registers,
543 * stack boundary and alignment are checked in check_mem_access()
544 */
58e2af8b
JK
545static int check_stack_write(struct bpf_verifier_state *state, int off,
546 int size, int value_regno)
17a52670 547{
17a52670 548 int i;
9c399760
AS
549 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
550 * so it's aligned access and [off, off + size) are within stack limits
551 */
17a52670
AS
552
553 if (value_regno >= 0 &&
1be7f75d 554 is_spillable_regtype(state->regs[value_regno].type)) {
17a52670
AS
555
556 /* register containing pointer is being spilled into stack */
9c399760 557 if (size != BPF_REG_SIZE) {
17a52670
AS
558 verbose("invalid size of register spill\n");
559 return -EACCES;
560 }
561
17a52670 562 /* save register state */
9c399760
AS
563 state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE] =
564 state->regs[value_regno];
17a52670 565
9c399760
AS
566 for (i = 0; i < BPF_REG_SIZE; i++)
567 state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_SPILL;
568 } else {
17a52670 569 /* regular write of data into stack */
9c399760 570 state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE] =
58e2af8b 571 (struct bpf_reg_state) {};
9c399760
AS
572
573 for (i = 0; i < size; i++)
574 state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_MISC;
17a52670
AS
575 }
576 return 0;
577}
578
58e2af8b 579static int check_stack_read(struct bpf_verifier_state *state, int off, int size,
17a52670
AS
580 int value_regno)
581{
9c399760 582 u8 *slot_type;
17a52670 583 int i;
17a52670 584
9c399760 585 slot_type = &state->stack_slot_type[MAX_BPF_STACK + off];
17a52670 586
9c399760
AS
587 if (slot_type[0] == STACK_SPILL) {
588 if (size != BPF_REG_SIZE) {
17a52670
AS
589 verbose("invalid size of register spill\n");
590 return -EACCES;
591 }
9c399760
AS
592 for (i = 1; i < BPF_REG_SIZE; i++) {
593 if (slot_type[i] != STACK_SPILL) {
17a52670
AS
594 verbose("corrupted spill memory\n");
595 return -EACCES;
596 }
597 }
598
599 if (value_regno >= 0)
600 /* restore register state from stack */
9c399760
AS
601 state->regs[value_regno] =
602 state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE];
17a52670
AS
603 return 0;
604 } else {
605 for (i = 0; i < size; i++) {
9c399760 606 if (slot_type[i] != STACK_MISC) {
17a52670
AS
607 verbose("invalid read from stack off %d+%d size %d\n",
608 off, i, size);
609 return -EACCES;
610 }
611 }
612 if (value_regno >= 0)
613 /* have read misc data from the stack */
614 mark_reg_unknown_value(state->regs, value_regno);
615 return 0;
616 }
617}
618
619/* check read/write into map element returned by bpf_map_lookup_elem() */
58e2af8b 620static int check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
17a52670
AS
621 int size)
622{
623 struct bpf_map *map = env->cur_state.regs[regno].map_ptr;
624
625 if (off < 0 || off + size > map->value_size) {
626 verbose("invalid access to map value, value_size=%d off=%d size=%d\n",
627 map->value_size, off, size);
628 return -EACCES;
629 }
630 return 0;
631}
632
969bf05e
AS
633#define MAX_PACKET_OFF 0xffff
634
58e2af8b 635static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
36bbef52 636 const struct bpf_call_arg_meta *meta)
4acf6c0b 637{
36bbef52
DB
638 switch (env->prog->type) {
639 case BPF_PROG_TYPE_SCHED_CLS:
640 case BPF_PROG_TYPE_SCHED_ACT:
4acf6c0b 641 case BPF_PROG_TYPE_XDP:
36bbef52
DB
642 if (meta)
643 return meta->pkt_access;
644
645 env->seen_direct_write = true;
4acf6c0b
BB
646 return true;
647 default:
648 return false;
649 }
650}
651
58e2af8b 652static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
969bf05e
AS
653 int size)
654{
58e2af8b
JK
655 struct bpf_reg_state *regs = env->cur_state.regs;
656 struct bpf_reg_state *reg = &regs[regno];
969bf05e 657
d91b28ed 658 off += reg->off;
b399cf64 659 if (off < 0 || size <= 0 || off + size > reg->range) {
d91b28ed
AS
660 verbose("invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
661 off, size, regno, reg->id, reg->off, reg->range);
969bf05e
AS
662 return -EACCES;
663 }
664 return 0;
665}
666
17a52670 667/* check access to 'struct bpf_context' fields */
58e2af8b 668static int check_ctx_access(struct bpf_verifier_env *env, int off, int size,
19de99f7 669 enum bpf_access_type t, enum bpf_reg_type *reg_type)
17a52670 670{
13a27dfc
JK
671 /* for analyzer ctx accesses are already validated and converted */
672 if (env->analyzer_ops)
673 return 0;
674
17a52670 675 if (env->prog->aux->ops->is_valid_access &&
19de99f7 676 env->prog->aux->ops->is_valid_access(off, size, t, reg_type)) {
32bbe007
AS
677 /* remember the offset of last byte accessed in ctx */
678 if (env->prog->aux->max_ctx_offset < off + size)
679 env->prog->aux->max_ctx_offset = off + size;
17a52670 680 return 0;
32bbe007 681 }
17a52670
AS
682
683 verbose("invalid bpf_context access off=%d size=%d\n", off, size);
684 return -EACCES;
685}
686
58e2af8b 687static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
1be7f75d
AS
688{
689 if (env->allow_ptr_leaks)
690 return false;
691
692 switch (env->cur_state.regs[regno].type) {
693 case UNKNOWN_VALUE:
694 case CONST_IMM:
695 return false;
696 default:
697 return true;
698 }
699}
700
58e2af8b
JK
701static int check_ptr_alignment(struct bpf_verifier_env *env,
702 struct bpf_reg_state *reg, int off, int size)
969bf05e 703{
48461135 704 if (reg->type != PTR_TO_PACKET && reg->type != PTR_TO_MAP_VALUE_ADJ) {
969bf05e 705 if (off % size != 0) {
58e2af8b
JK
706 verbose("misaligned access off %d size %d\n",
707 off, size);
969bf05e
AS
708 return -EACCES;
709 } else {
710 return 0;
711 }
712 }
713
969bf05e
AS
714 if (IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
715 /* misaligned access to packet is ok on x86,arm,arm64 */
716 return 0;
717
718 if (reg->id && size != 1) {
719 verbose("Unknown packet alignment. Only byte-sized access allowed\n");
720 return -EACCES;
721 }
722
723 /* skb->data is NET_IP_ALIGN-ed */
48461135
JB
724 if (reg->type == PTR_TO_PACKET &&
725 (NET_IP_ALIGN + reg->off + off) % size != 0) {
969bf05e
AS
726 verbose("misaligned packet access off %d+%d+%d size %d\n",
727 NET_IP_ALIGN, reg->off, off, size);
728 return -EACCES;
729 }
730 return 0;
731}
732
17a52670
AS
733/* check whether memory at (regno + off) is accessible for t = (read | write)
734 * if t==write, value_regno is a register which value is stored into memory
735 * if t==read, value_regno is a register which will receive the value from memory
736 * if t==write && value_regno==-1, some unknown value is stored into memory
737 * if t==read && value_regno==-1, don't care what we read from memory
738 */
58e2af8b 739static int check_mem_access(struct bpf_verifier_env *env, u32 regno, int off,
17a52670
AS
740 int bpf_size, enum bpf_access_type t,
741 int value_regno)
742{
58e2af8b
JK
743 struct bpf_verifier_state *state = &env->cur_state;
744 struct bpf_reg_state *reg = &state->regs[regno];
17a52670
AS
745 int size, err = 0;
746
1a0dc1ac
AS
747 if (reg->type == PTR_TO_STACK)
748 off += reg->imm;
24b4d2ab 749
17a52670
AS
750 size = bpf_size_to_bytes(bpf_size);
751 if (size < 0)
752 return size;
753
969bf05e
AS
754 err = check_ptr_alignment(env, reg, off, size);
755 if (err)
756 return err;
17a52670 757
48461135
JB
758 if (reg->type == PTR_TO_MAP_VALUE ||
759 reg->type == PTR_TO_MAP_VALUE_ADJ) {
1be7f75d
AS
760 if (t == BPF_WRITE && value_regno >= 0 &&
761 is_pointer_value(env, value_regno)) {
762 verbose("R%d leaks addr into map\n", value_regno);
763 return -EACCES;
764 }
48461135
JB
765
766 /* If we adjusted the register to this map value at all then we
767 * need to change off and size to min_value and max_value
768 * respectively to make sure our theoretical access will be
769 * safe.
770 */
771 if (reg->type == PTR_TO_MAP_VALUE_ADJ) {
772 if (log_level)
773 print_verifier_state(state);
774 env->varlen_map_value_access = true;
775 /* The minimum value is only important with signed
776 * comparisons where we can't assume the floor of a
777 * value is 0. If we are using signed variables for our
778 * index'es we need to make sure that whatever we use
779 * will have a set floor within our range.
780 */
f23cc643 781 if (reg->min_value < 0) {
48461135
JB
782 verbose("R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
783 regno);
784 return -EACCES;
785 }
786 err = check_map_access(env, regno, reg->min_value + off,
787 size);
788 if (err) {
789 verbose("R%d min value is outside of the array range\n",
790 regno);
791 return err;
792 }
793
794 /* If we haven't set a max value then we need to bail
795 * since we can't be sure we won't do bad things.
796 */
797 if (reg->max_value == BPF_REGISTER_MAX_RANGE) {
798 verbose("R%d unbounded memory access, make sure to bounds check any array access into a map\n",
799 regno);
800 return -EACCES;
801 }
802 off += reg->max_value;
803 }
17a52670
AS
804 err = check_map_access(env, regno, off, size);
805 if (!err && t == BPF_READ && value_regno >= 0)
806 mark_reg_unknown_value(state->regs, value_regno);
807
1a0dc1ac 808 } else if (reg->type == PTR_TO_CTX) {
19de99f7
AS
809 enum bpf_reg_type reg_type = UNKNOWN_VALUE;
810
1be7f75d
AS
811 if (t == BPF_WRITE && value_regno >= 0 &&
812 is_pointer_value(env, value_regno)) {
813 verbose("R%d leaks addr into ctx\n", value_regno);
814 return -EACCES;
815 }
19de99f7 816 err = check_ctx_access(env, off, size, t, &reg_type);
969bf05e 817 if (!err && t == BPF_READ && value_regno >= 0) {
17a52670 818 mark_reg_unknown_value(state->regs, value_regno);
1955351d
MS
819 /* note that reg.[id|off|range] == 0 */
820 state->regs[value_regno].type = reg_type;
969bf05e 821 }
17a52670 822
1a0dc1ac 823 } else if (reg->type == FRAME_PTR || reg->type == PTR_TO_STACK) {
17a52670
AS
824 if (off >= 0 || off < -MAX_BPF_STACK) {
825 verbose("invalid stack off=%d size=%d\n", off, size);
826 return -EACCES;
827 }
1be7f75d
AS
828 if (t == BPF_WRITE) {
829 if (!env->allow_ptr_leaks &&
830 state->stack_slot_type[MAX_BPF_STACK + off] == STACK_SPILL &&
831 size != BPF_REG_SIZE) {
832 verbose("attempt to corrupt spilled pointer on stack\n");
833 return -EACCES;
834 }
17a52670 835 err = check_stack_write(state, off, size, value_regno);
1be7f75d 836 } else {
17a52670 837 err = check_stack_read(state, off, size, value_regno);
1be7f75d 838 }
969bf05e 839 } else if (state->regs[regno].type == PTR_TO_PACKET) {
36bbef52 840 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL)) {
969bf05e
AS
841 verbose("cannot write into packet\n");
842 return -EACCES;
843 }
4acf6c0b
BB
844 if (t == BPF_WRITE && value_regno >= 0 &&
845 is_pointer_value(env, value_regno)) {
846 verbose("R%d leaks addr into packet\n", value_regno);
847 return -EACCES;
848 }
969bf05e
AS
849 err = check_packet_access(env, regno, off, size);
850 if (!err && t == BPF_READ && value_regno >= 0)
851 mark_reg_unknown_value(state->regs, value_regno);
17a52670
AS
852 } else {
853 verbose("R%d invalid mem access '%s'\n",
1a0dc1ac 854 regno, reg_type_str[reg->type]);
17a52670
AS
855 return -EACCES;
856 }
969bf05e
AS
857
858 if (!err && size <= 2 && value_regno >= 0 && env->allow_ptr_leaks &&
859 state->regs[value_regno].type == UNKNOWN_VALUE) {
860 /* 1 or 2 byte load zero-extends, determine the number of
861 * zero upper bits. Not doing it fo 4 byte load, since
862 * such values cannot be added to ptr_to_packet anyway.
863 */
864 state->regs[value_regno].imm = 64 - size * 8;
865 }
17a52670
AS
866 return err;
867}
868
58e2af8b 869static int check_xadd(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 870{
58e2af8b 871 struct bpf_reg_state *regs = env->cur_state.regs;
17a52670
AS
872 int err;
873
874 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
875 insn->imm != 0) {
876 verbose("BPF_XADD uses reserved fields\n");
877 return -EINVAL;
878 }
879
880 /* check src1 operand */
881 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
882 if (err)
883 return err;
884
885 /* check src2 operand */
886 err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
887 if (err)
888 return err;
889
890 /* check whether atomic_add can read the memory */
891 err = check_mem_access(env, insn->dst_reg, insn->off,
892 BPF_SIZE(insn->code), BPF_READ, -1);
893 if (err)
894 return err;
895
896 /* check whether atomic_add can write into the same memory */
897 return check_mem_access(env, insn->dst_reg, insn->off,
898 BPF_SIZE(insn->code), BPF_WRITE, -1);
899}
900
901/* when register 'regno' is passed into function that will read 'access_size'
902 * bytes from that pointer, make sure that it's within stack boundary
903 * and all elements of stack are initialized
904 */
58e2af8b 905static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
435faee1
DB
906 int access_size, bool zero_size_allowed,
907 struct bpf_call_arg_meta *meta)
17a52670 908{
58e2af8b
JK
909 struct bpf_verifier_state *state = &env->cur_state;
910 struct bpf_reg_state *regs = state->regs;
17a52670
AS
911 int off, i;
912
8e2fe1d9
DB
913 if (regs[regno].type != PTR_TO_STACK) {
914 if (zero_size_allowed && access_size == 0 &&
915 regs[regno].type == CONST_IMM &&
916 regs[regno].imm == 0)
917 return 0;
918
919 verbose("R%d type=%s expected=%s\n", regno,
920 reg_type_str[regs[regno].type],
921 reg_type_str[PTR_TO_STACK]);
17a52670 922 return -EACCES;
8e2fe1d9 923 }
17a52670
AS
924
925 off = regs[regno].imm;
926 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
927 access_size <= 0) {
928 verbose("invalid stack type R%d off=%d access_size=%d\n",
929 regno, off, access_size);
930 return -EACCES;
931 }
932
435faee1
DB
933 if (meta && meta->raw_mode) {
934 meta->access_size = access_size;
935 meta->regno = regno;
936 return 0;
937 }
938
17a52670 939 for (i = 0; i < access_size; i++) {
9c399760 940 if (state->stack_slot_type[MAX_BPF_STACK + off + i] != STACK_MISC) {
17a52670
AS
941 verbose("invalid indirect read from stack off %d+%d size %d\n",
942 off, i, access_size);
943 return -EACCES;
944 }
945 }
946 return 0;
947}
948
58e2af8b 949static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
33ff9823
DB
950 enum bpf_arg_type arg_type,
951 struct bpf_call_arg_meta *meta)
17a52670 952{
58e2af8b 953 struct bpf_reg_state *regs = env->cur_state.regs, *reg = &regs[regno];
6841de8b 954 enum bpf_reg_type expected_type, type = reg->type;
17a52670
AS
955 int err = 0;
956
80f1d68c 957 if (arg_type == ARG_DONTCARE)
17a52670
AS
958 return 0;
959
6841de8b 960 if (type == NOT_INIT) {
17a52670
AS
961 verbose("R%d !read_ok\n", regno);
962 return -EACCES;
963 }
964
1be7f75d
AS
965 if (arg_type == ARG_ANYTHING) {
966 if (is_pointer_value(env, regno)) {
967 verbose("R%d leaks addr into helper function\n", regno);
968 return -EACCES;
969 }
80f1d68c 970 return 0;
1be7f75d 971 }
80f1d68c 972
36bbef52
DB
973 if (type == PTR_TO_PACKET && !may_access_direct_pkt_data(env, meta)) {
974 verbose("helper access to the packet is not allowed\n");
6841de8b
AS
975 return -EACCES;
976 }
977
8e2fe1d9 978 if (arg_type == ARG_PTR_TO_MAP_KEY ||
17a52670
AS
979 arg_type == ARG_PTR_TO_MAP_VALUE) {
980 expected_type = PTR_TO_STACK;
6841de8b
AS
981 if (type != PTR_TO_PACKET && type != expected_type)
982 goto err_type;
8e2fe1d9
DB
983 } else if (arg_type == ARG_CONST_STACK_SIZE ||
984 arg_type == ARG_CONST_STACK_SIZE_OR_ZERO) {
17a52670 985 expected_type = CONST_IMM;
6841de8b
AS
986 if (type != expected_type)
987 goto err_type;
17a52670
AS
988 } else if (arg_type == ARG_CONST_MAP_PTR) {
989 expected_type = CONST_PTR_TO_MAP;
6841de8b
AS
990 if (type != expected_type)
991 goto err_type;
608cd71a
AS
992 } else if (arg_type == ARG_PTR_TO_CTX) {
993 expected_type = PTR_TO_CTX;
6841de8b
AS
994 if (type != expected_type)
995 goto err_type;
435faee1
DB
996 } else if (arg_type == ARG_PTR_TO_STACK ||
997 arg_type == ARG_PTR_TO_RAW_STACK) {
8e2fe1d9
DB
998 expected_type = PTR_TO_STACK;
999 /* One exception here. In case function allows for NULL to be
1000 * passed in as argument, it's a CONST_IMM type. Final test
1001 * happens during stack boundary checking.
1002 */
6841de8b
AS
1003 if (type == CONST_IMM && reg->imm == 0)
1004 /* final test in check_stack_boundary() */;
1005 else if (type != PTR_TO_PACKET && type != expected_type)
1006 goto err_type;
435faee1 1007 meta->raw_mode = arg_type == ARG_PTR_TO_RAW_STACK;
17a52670
AS
1008 } else {
1009 verbose("unsupported arg_type %d\n", arg_type);
1010 return -EFAULT;
1011 }
1012
17a52670
AS
1013 if (arg_type == ARG_CONST_MAP_PTR) {
1014 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
33ff9823 1015 meta->map_ptr = reg->map_ptr;
17a52670
AS
1016 } else if (arg_type == ARG_PTR_TO_MAP_KEY) {
1017 /* bpf_map_xxx(..., map_ptr, ..., key) call:
1018 * check that [key, key + map->key_size) are within
1019 * stack limits and initialized
1020 */
33ff9823 1021 if (!meta->map_ptr) {
17a52670
AS
1022 /* in function declaration map_ptr must come before
1023 * map_key, so that it's verified and known before
1024 * we have to check map_key here. Otherwise it means
1025 * that kernel subsystem misconfigured verifier
1026 */
1027 verbose("invalid map_ptr to access map->key\n");
1028 return -EACCES;
1029 }
6841de8b
AS
1030 if (type == PTR_TO_PACKET)
1031 err = check_packet_access(env, regno, 0,
1032 meta->map_ptr->key_size);
1033 else
1034 err = check_stack_boundary(env, regno,
1035 meta->map_ptr->key_size,
1036 false, NULL);
17a52670
AS
1037 } else if (arg_type == ARG_PTR_TO_MAP_VALUE) {
1038 /* bpf_map_xxx(..., map_ptr, ..., value) call:
1039 * check [value, value + map->value_size) validity
1040 */
33ff9823 1041 if (!meta->map_ptr) {
17a52670
AS
1042 /* kernel subsystem misconfigured verifier */
1043 verbose("invalid map_ptr to access map->value\n");
1044 return -EACCES;
1045 }
6841de8b
AS
1046 if (type == PTR_TO_PACKET)
1047 err = check_packet_access(env, regno, 0,
1048 meta->map_ptr->value_size);
1049 else
1050 err = check_stack_boundary(env, regno,
1051 meta->map_ptr->value_size,
1052 false, NULL);
8e2fe1d9
DB
1053 } else if (arg_type == ARG_CONST_STACK_SIZE ||
1054 arg_type == ARG_CONST_STACK_SIZE_OR_ZERO) {
1055 bool zero_size_allowed = (arg_type == ARG_CONST_STACK_SIZE_OR_ZERO);
17a52670 1056
17a52670
AS
1057 /* bpf_xxx(..., buf, len) call will access 'len' bytes
1058 * from stack pointer 'buf'. Check it
1059 * note: regno == len, regno - 1 == buf
1060 */
1061 if (regno == 0) {
1062 /* kernel subsystem misconfigured verifier */
1063 verbose("ARG_CONST_STACK_SIZE cannot be first argument\n");
1064 return -EACCES;
1065 }
6841de8b
AS
1066 if (regs[regno - 1].type == PTR_TO_PACKET)
1067 err = check_packet_access(env, regno - 1, 0, reg->imm);
1068 else
1069 err = check_stack_boundary(env, regno - 1, reg->imm,
1070 zero_size_allowed, meta);
17a52670
AS
1071 }
1072
1073 return err;
6841de8b
AS
1074err_type:
1075 verbose("R%d type=%s expected=%s\n", regno,
1076 reg_type_str[type], reg_type_str[expected_type]);
1077 return -EACCES;
17a52670
AS
1078}
1079
35578d79
KX
1080static int check_map_func_compatibility(struct bpf_map *map, int func_id)
1081{
35578d79
KX
1082 if (!map)
1083 return 0;
1084
6aff67c8
AS
1085 /* We need a two way check, first is from map perspective ... */
1086 switch (map->map_type) {
1087 case BPF_MAP_TYPE_PROG_ARRAY:
1088 if (func_id != BPF_FUNC_tail_call)
1089 goto error;
1090 break;
1091 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
1092 if (func_id != BPF_FUNC_perf_event_read &&
1093 func_id != BPF_FUNC_perf_event_output)
1094 goto error;
1095 break;
1096 case BPF_MAP_TYPE_STACK_TRACE:
1097 if (func_id != BPF_FUNC_get_stackid)
1098 goto error;
1099 break;
4ed8ec52 1100 case BPF_MAP_TYPE_CGROUP_ARRAY:
60747ef4 1101 if (func_id != BPF_FUNC_skb_under_cgroup &&
60d20f91 1102 func_id != BPF_FUNC_current_task_under_cgroup)
4a482f34
MKL
1103 goto error;
1104 break;
6aff67c8
AS
1105 default:
1106 break;
1107 }
1108
1109 /* ... and second from the function itself. */
1110 switch (func_id) {
1111 case BPF_FUNC_tail_call:
1112 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
1113 goto error;
1114 break;
1115 case BPF_FUNC_perf_event_read:
1116 case BPF_FUNC_perf_event_output:
1117 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
1118 goto error;
1119 break;
1120 case BPF_FUNC_get_stackid:
1121 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
1122 goto error;
1123 break;
60d20f91 1124 case BPF_FUNC_current_task_under_cgroup:
747ea55e 1125 case BPF_FUNC_skb_under_cgroup:
4a482f34
MKL
1126 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
1127 goto error;
1128 break;
6aff67c8
AS
1129 default:
1130 break;
35578d79
KX
1131 }
1132
1133 return 0;
6aff67c8 1134error:
ebb676da
TG
1135 verbose("cannot pass map_type %d into func %s#%d\n",
1136 map->map_type, func_id_name(func_id), func_id);
6aff67c8 1137 return -EINVAL;
35578d79
KX
1138}
1139
435faee1
DB
1140static int check_raw_mode(const struct bpf_func_proto *fn)
1141{
1142 int count = 0;
1143
1144 if (fn->arg1_type == ARG_PTR_TO_RAW_STACK)
1145 count++;
1146 if (fn->arg2_type == ARG_PTR_TO_RAW_STACK)
1147 count++;
1148 if (fn->arg3_type == ARG_PTR_TO_RAW_STACK)
1149 count++;
1150 if (fn->arg4_type == ARG_PTR_TO_RAW_STACK)
1151 count++;
1152 if (fn->arg5_type == ARG_PTR_TO_RAW_STACK)
1153 count++;
1154
1155 return count > 1 ? -EINVAL : 0;
1156}
1157
58e2af8b 1158static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
969bf05e 1159{
58e2af8b
JK
1160 struct bpf_verifier_state *state = &env->cur_state;
1161 struct bpf_reg_state *regs = state->regs, *reg;
969bf05e
AS
1162 int i;
1163
1164 for (i = 0; i < MAX_BPF_REG; i++)
1165 if (regs[i].type == PTR_TO_PACKET ||
1166 regs[i].type == PTR_TO_PACKET_END)
1167 mark_reg_unknown_value(regs, i);
1168
1169 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
1170 if (state->stack_slot_type[i] != STACK_SPILL)
1171 continue;
1172 reg = &state->spilled_regs[i / BPF_REG_SIZE];
1173 if (reg->type != PTR_TO_PACKET &&
1174 reg->type != PTR_TO_PACKET_END)
1175 continue;
1176 reg->type = UNKNOWN_VALUE;
1177 reg->imm = 0;
1178 }
1179}
1180
58e2af8b 1181static int check_call(struct bpf_verifier_env *env, int func_id)
17a52670 1182{
58e2af8b 1183 struct bpf_verifier_state *state = &env->cur_state;
17a52670 1184 const struct bpf_func_proto *fn = NULL;
58e2af8b
JK
1185 struct bpf_reg_state *regs = state->regs;
1186 struct bpf_reg_state *reg;
33ff9823 1187 struct bpf_call_arg_meta meta;
969bf05e 1188 bool changes_data;
17a52670
AS
1189 int i, err;
1190
1191 /* find function prototype */
1192 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
ebb676da 1193 verbose("invalid func %s#%d\n", func_id_name(func_id), func_id);
17a52670
AS
1194 return -EINVAL;
1195 }
1196
1197 if (env->prog->aux->ops->get_func_proto)
1198 fn = env->prog->aux->ops->get_func_proto(func_id);
1199
1200 if (!fn) {
ebb676da 1201 verbose("unknown func %s#%d\n", func_id_name(func_id), func_id);
17a52670
AS
1202 return -EINVAL;
1203 }
1204
1205 /* eBPF programs must be GPL compatible to use GPL-ed functions */
24701ece 1206 if (!env->prog->gpl_compatible && fn->gpl_only) {
17a52670
AS
1207 verbose("cannot call GPL only function from proprietary program\n");
1208 return -EINVAL;
1209 }
1210
969bf05e
AS
1211 changes_data = bpf_helper_changes_skb_data(fn->func);
1212
33ff9823 1213 memset(&meta, 0, sizeof(meta));
36bbef52 1214 meta.pkt_access = fn->pkt_access;
33ff9823 1215
435faee1
DB
1216 /* We only support one arg being in raw mode at the moment, which
1217 * is sufficient for the helper functions we have right now.
1218 */
1219 err = check_raw_mode(fn);
1220 if (err) {
ebb676da
TG
1221 verbose("kernel subsystem misconfigured func %s#%d\n",
1222 func_id_name(func_id), func_id);
435faee1
DB
1223 return err;
1224 }
1225
17a52670 1226 /* check args */
33ff9823 1227 err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
17a52670
AS
1228 if (err)
1229 return err;
33ff9823 1230 err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
17a52670
AS
1231 if (err)
1232 return err;
33ff9823 1233 err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
17a52670
AS
1234 if (err)
1235 return err;
33ff9823 1236 err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
17a52670
AS
1237 if (err)
1238 return err;
33ff9823 1239 err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
17a52670
AS
1240 if (err)
1241 return err;
1242
435faee1
DB
1243 /* Mark slots with STACK_MISC in case of raw mode, stack offset
1244 * is inferred from register state.
1245 */
1246 for (i = 0; i < meta.access_size; i++) {
1247 err = check_mem_access(env, meta.regno, i, BPF_B, BPF_WRITE, -1);
1248 if (err)
1249 return err;
1250 }
1251
17a52670
AS
1252 /* reset caller saved regs */
1253 for (i = 0; i < CALLER_SAVED_REGS; i++) {
1254 reg = regs + caller_saved[i];
1255 reg->type = NOT_INIT;
1256 reg->imm = 0;
1257 }
1258
1259 /* update return register */
1260 if (fn->ret_type == RET_INTEGER) {
1261 regs[BPF_REG_0].type = UNKNOWN_VALUE;
1262 } else if (fn->ret_type == RET_VOID) {
1263 regs[BPF_REG_0].type = NOT_INIT;
1264 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) {
1265 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
48461135 1266 regs[BPF_REG_0].max_value = regs[BPF_REG_0].min_value = 0;
17a52670
AS
1267 /* remember map_ptr, so that check_map_access()
1268 * can check 'value_size' boundary of memory access
1269 * to map element returned from bpf_map_lookup_elem()
1270 */
33ff9823 1271 if (meta.map_ptr == NULL) {
17a52670
AS
1272 verbose("kernel subsystem misconfigured verifier\n");
1273 return -EINVAL;
1274 }
33ff9823 1275 regs[BPF_REG_0].map_ptr = meta.map_ptr;
57a09bf0 1276 regs[BPF_REG_0].id = ++env->id_gen;
17a52670 1277 } else {
ebb676da
TG
1278 verbose("unknown return type %d of func %s#%d\n",
1279 fn->ret_type, func_id_name(func_id), func_id);
17a52670
AS
1280 return -EINVAL;
1281 }
04fd61ab 1282
33ff9823 1283 err = check_map_func_compatibility(meta.map_ptr, func_id);
35578d79
KX
1284 if (err)
1285 return err;
04fd61ab 1286
969bf05e
AS
1287 if (changes_data)
1288 clear_all_pkt_pointers(env);
1289 return 0;
1290}
1291
58e2af8b
JK
1292static int check_packet_ptr_add(struct bpf_verifier_env *env,
1293 struct bpf_insn *insn)
969bf05e 1294{
58e2af8b
JK
1295 struct bpf_reg_state *regs = env->cur_state.regs;
1296 struct bpf_reg_state *dst_reg = &regs[insn->dst_reg];
1297 struct bpf_reg_state *src_reg = &regs[insn->src_reg];
1298 struct bpf_reg_state tmp_reg;
969bf05e
AS
1299 s32 imm;
1300
1301 if (BPF_SRC(insn->code) == BPF_K) {
1302 /* pkt_ptr += imm */
1303 imm = insn->imm;
1304
1305add_imm:
1306 if (imm <= 0) {
1307 verbose("addition of negative constant to packet pointer is not allowed\n");
1308 return -EACCES;
1309 }
1310 if (imm >= MAX_PACKET_OFF ||
1311 imm + dst_reg->off >= MAX_PACKET_OFF) {
1312 verbose("constant %d is too large to add to packet pointer\n",
1313 imm);
1314 return -EACCES;
1315 }
1316 /* a constant was added to pkt_ptr.
1317 * Remember it while keeping the same 'id'
1318 */
1319 dst_reg->off += imm;
1320 } else {
1b9b69ec
AS
1321 if (src_reg->type == PTR_TO_PACKET) {
1322 /* R6=pkt(id=0,off=0,r=62) R7=imm22; r7 += r6 */
1323 tmp_reg = *dst_reg; /* save r7 state */
1324 *dst_reg = *src_reg; /* copy pkt_ptr state r6 into r7 */
1325 src_reg = &tmp_reg; /* pretend it's src_reg state */
1326 /* if the checks below reject it, the copy won't matter,
1327 * since we're rejecting the whole program. If all ok,
1328 * then imm22 state will be added to r7
1329 * and r7 will be pkt(id=0,off=22,r=62) while
1330 * r6 will stay as pkt(id=0,off=0,r=62)
1331 */
1332 }
1333
969bf05e
AS
1334 if (src_reg->type == CONST_IMM) {
1335 /* pkt_ptr += reg where reg is known constant */
1336 imm = src_reg->imm;
1337 goto add_imm;
1338 }
1339 /* disallow pkt_ptr += reg
1340 * if reg is not uknown_value with guaranteed zero upper bits
1341 * otherwise pkt_ptr may overflow and addition will become
1342 * subtraction which is not allowed
1343 */
1344 if (src_reg->type != UNKNOWN_VALUE) {
1345 verbose("cannot add '%s' to ptr_to_packet\n",
1346 reg_type_str[src_reg->type]);
1347 return -EACCES;
1348 }
1349 if (src_reg->imm < 48) {
1350 verbose("cannot add integer value with %lld upper zero bits to ptr_to_packet\n",
1351 src_reg->imm);
1352 return -EACCES;
1353 }
1354 /* dst_reg stays as pkt_ptr type and since some positive
1355 * integer value was added to the pointer, increment its 'id'
1356 */
1f415a74 1357 dst_reg->id = ++env->id_gen;
969bf05e
AS
1358
1359 /* something was added to pkt_ptr, set range and off to zero */
1360 dst_reg->off = 0;
1361 dst_reg->range = 0;
1362 }
1363 return 0;
1364}
1365
58e2af8b 1366static int evaluate_reg_alu(struct bpf_verifier_env *env, struct bpf_insn *insn)
969bf05e 1367{
58e2af8b
JK
1368 struct bpf_reg_state *regs = env->cur_state.regs;
1369 struct bpf_reg_state *dst_reg = &regs[insn->dst_reg];
969bf05e
AS
1370 u8 opcode = BPF_OP(insn->code);
1371 s64 imm_log2;
1372
1373 /* for type == UNKNOWN_VALUE:
1374 * imm > 0 -> number of zero upper bits
1375 * imm == 0 -> don't track which is the same as all bits can be non-zero
1376 */
1377
1378 if (BPF_SRC(insn->code) == BPF_X) {
58e2af8b 1379 struct bpf_reg_state *src_reg = &regs[insn->src_reg];
969bf05e
AS
1380
1381 if (src_reg->type == UNKNOWN_VALUE && src_reg->imm > 0 &&
1382 dst_reg->imm && opcode == BPF_ADD) {
1383 /* dreg += sreg
1384 * where both have zero upper bits. Adding them
1385 * can only result making one more bit non-zero
1386 * in the larger value.
1387 * Ex. 0xffff (imm=48) + 1 (imm=63) = 0x10000 (imm=47)
1388 * 0xffff (imm=48) + 0xffff = 0x1fffe (imm=47)
1389 */
1390 dst_reg->imm = min(dst_reg->imm, src_reg->imm);
1391 dst_reg->imm--;
1392 return 0;
1393 }
1394 if (src_reg->type == CONST_IMM && src_reg->imm > 0 &&
1395 dst_reg->imm && opcode == BPF_ADD) {
1396 /* dreg += sreg
1397 * where dreg has zero upper bits and sreg is const.
1398 * Adding them can only result making one more bit
1399 * non-zero in the larger value.
1400 */
1401 imm_log2 = __ilog2_u64((long long)src_reg->imm);
1402 dst_reg->imm = min(dst_reg->imm, 63 - imm_log2);
1403 dst_reg->imm--;
1404 return 0;
1405 }
1406 /* all other cases non supported yet, just mark dst_reg */
1407 dst_reg->imm = 0;
1408 return 0;
1409 }
1410
1411 /* sign extend 32-bit imm into 64-bit to make sure that
1412 * negative values occupy bit 63. Note ilog2() would have
1413 * been incorrect, since sizeof(insn->imm) == 4
1414 */
1415 imm_log2 = __ilog2_u64((long long)insn->imm);
1416
1417 if (dst_reg->imm && opcode == BPF_LSH) {
1418 /* reg <<= imm
1419 * if reg was a result of 2 byte load, then its imm == 48
1420 * which means that upper 48 bits are zero and shifting this reg
1421 * left by 4 would mean that upper 44 bits are still zero
1422 */
1423 dst_reg->imm -= insn->imm;
1424 } else if (dst_reg->imm && opcode == BPF_MUL) {
1425 /* reg *= imm
1426 * if multiplying by 14 subtract 4
1427 * This is conservative calculation of upper zero bits.
1428 * It's not trying to special case insn->imm == 1 or 0 cases
1429 */
1430 dst_reg->imm -= imm_log2 + 1;
1431 } else if (opcode == BPF_AND) {
1432 /* reg &= imm */
1433 dst_reg->imm = 63 - imm_log2;
1434 } else if (dst_reg->imm && opcode == BPF_ADD) {
1435 /* reg += imm */
1436 dst_reg->imm = min(dst_reg->imm, 63 - imm_log2);
1437 dst_reg->imm--;
1438 } else if (opcode == BPF_RSH) {
1439 /* reg >>= imm
1440 * which means that after right shift, upper bits will be zero
1441 * note that verifier already checked that
1442 * 0 <= imm < 64 for shift insn
1443 */
1444 dst_reg->imm += insn->imm;
1445 if (unlikely(dst_reg->imm > 64))
1446 /* some dumb code did:
1447 * r2 = *(u32 *)mem;
1448 * r2 >>= 32;
1449 * and all bits are zero now */
1450 dst_reg->imm = 64;
1451 } else {
1452 /* all other alu ops, means that we don't know what will
1453 * happen to the value, mark it with unknown number of zero bits
1454 */
1455 dst_reg->imm = 0;
1456 }
1457
1458 if (dst_reg->imm < 0) {
1459 /* all 64 bits of the register can contain non-zero bits
1460 * and such value cannot be added to ptr_to_packet, since it
1461 * may overflow, mark it as unknown to avoid further eval
1462 */
1463 dst_reg->imm = 0;
1464 }
1465 return 0;
1466}
1467
58e2af8b
JK
1468static int evaluate_reg_imm_alu(struct bpf_verifier_env *env,
1469 struct bpf_insn *insn)
969bf05e 1470{
58e2af8b
JK
1471 struct bpf_reg_state *regs = env->cur_state.regs;
1472 struct bpf_reg_state *dst_reg = &regs[insn->dst_reg];
1473 struct bpf_reg_state *src_reg = &regs[insn->src_reg];
969bf05e
AS
1474 u8 opcode = BPF_OP(insn->code);
1475
1476 /* dst_reg->type == CONST_IMM here, simulate execution of 'add' insn.
1477 * Don't care about overflow or negative values, just add them
1478 */
1479 if (opcode == BPF_ADD && BPF_SRC(insn->code) == BPF_K)
1480 dst_reg->imm += insn->imm;
1481 else if (opcode == BPF_ADD && BPF_SRC(insn->code) == BPF_X &&
1482 src_reg->type == CONST_IMM)
1483 dst_reg->imm += src_reg->imm;
1484 else
1485 mark_reg_unknown_value(regs, insn->dst_reg);
17a52670
AS
1486 return 0;
1487}
1488
48461135
JB
1489static void check_reg_overflow(struct bpf_reg_state *reg)
1490{
1491 if (reg->max_value > BPF_REGISTER_MAX_RANGE)
1492 reg->max_value = BPF_REGISTER_MAX_RANGE;
f23cc643
JB
1493 if (reg->min_value < BPF_REGISTER_MIN_RANGE ||
1494 reg->min_value > BPF_REGISTER_MAX_RANGE)
48461135
JB
1495 reg->min_value = BPF_REGISTER_MIN_RANGE;
1496}
1497
1498static void adjust_reg_min_max_vals(struct bpf_verifier_env *env,
1499 struct bpf_insn *insn)
1500{
1501 struct bpf_reg_state *regs = env->cur_state.regs, *dst_reg;
f23cc643
JB
1502 s64 min_val = BPF_REGISTER_MIN_RANGE;
1503 u64 max_val = BPF_REGISTER_MAX_RANGE;
48461135
JB
1504 u8 opcode = BPF_OP(insn->code);
1505
1506 dst_reg = &regs[insn->dst_reg];
1507 if (BPF_SRC(insn->code) == BPF_X) {
1508 check_reg_overflow(&regs[insn->src_reg]);
1509 min_val = regs[insn->src_reg].min_value;
1510 max_val = regs[insn->src_reg].max_value;
1511
1512 /* If the source register is a random pointer then the
1513 * min_value/max_value values represent the range of the known
1514 * accesses into that value, not the actual min/max value of the
1515 * register itself. In this case we have to reset the reg range
1516 * values so we know it is not safe to look at.
1517 */
1518 if (regs[insn->src_reg].type != CONST_IMM &&
1519 regs[insn->src_reg].type != UNKNOWN_VALUE) {
1520 min_val = BPF_REGISTER_MIN_RANGE;
1521 max_val = BPF_REGISTER_MAX_RANGE;
1522 }
1523 } else if (insn->imm < BPF_REGISTER_MAX_RANGE &&
1524 (s64)insn->imm > BPF_REGISTER_MIN_RANGE) {
1525 min_val = max_val = insn->imm;
48461135
JB
1526 }
1527
1528 /* We don't know anything about what was done to this register, mark it
1529 * as unknown.
1530 */
1531 if (min_val == BPF_REGISTER_MIN_RANGE &&
1532 max_val == BPF_REGISTER_MAX_RANGE) {
1533 reset_reg_range_values(regs, insn->dst_reg);
1534 return;
1535 }
1536
f23cc643
JB
1537 /* If one of our values was at the end of our ranges then we can't just
1538 * do our normal operations to the register, we need to set the values
1539 * to the min/max since they are undefined.
1540 */
1541 if (min_val == BPF_REGISTER_MIN_RANGE)
1542 dst_reg->min_value = BPF_REGISTER_MIN_RANGE;
1543 if (max_val == BPF_REGISTER_MAX_RANGE)
1544 dst_reg->max_value = BPF_REGISTER_MAX_RANGE;
1545
48461135
JB
1546 switch (opcode) {
1547 case BPF_ADD:
f23cc643
JB
1548 if (dst_reg->min_value != BPF_REGISTER_MIN_RANGE)
1549 dst_reg->min_value += min_val;
1550 if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)
1551 dst_reg->max_value += max_val;
48461135
JB
1552 break;
1553 case BPF_SUB:
f23cc643
JB
1554 if (dst_reg->min_value != BPF_REGISTER_MIN_RANGE)
1555 dst_reg->min_value -= min_val;
1556 if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)
1557 dst_reg->max_value -= max_val;
48461135
JB
1558 break;
1559 case BPF_MUL:
f23cc643
JB
1560 if (dst_reg->min_value != BPF_REGISTER_MIN_RANGE)
1561 dst_reg->min_value *= min_val;
1562 if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)
1563 dst_reg->max_value *= max_val;
48461135
JB
1564 break;
1565 case BPF_AND:
f23cc643
JB
1566 /* Disallow AND'ing of negative numbers, ain't nobody got time
1567 * for that. Otherwise the minimum is 0 and the max is the max
1568 * value we could AND against.
1569 */
1570 if (min_val < 0)
1571 dst_reg->min_value = BPF_REGISTER_MIN_RANGE;
1572 else
1573 dst_reg->min_value = 0;
48461135
JB
1574 dst_reg->max_value = max_val;
1575 break;
1576 case BPF_LSH:
1577 /* Gotta have special overflow logic here, if we're shifting
1578 * more than MAX_RANGE then just assume we have an invalid
1579 * range.
1580 */
1581 if (min_val > ilog2(BPF_REGISTER_MAX_RANGE))
1582 dst_reg->min_value = BPF_REGISTER_MIN_RANGE;
f23cc643 1583 else if (dst_reg->min_value != BPF_REGISTER_MIN_RANGE)
48461135
JB
1584 dst_reg->min_value <<= min_val;
1585
1586 if (max_val > ilog2(BPF_REGISTER_MAX_RANGE))
1587 dst_reg->max_value = BPF_REGISTER_MAX_RANGE;
f23cc643 1588 else if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)
48461135
JB
1589 dst_reg->max_value <<= max_val;
1590 break;
1591 case BPF_RSH:
f23cc643
JB
1592 /* RSH by a negative number is undefined, and the BPF_RSH is an
1593 * unsigned shift, so make the appropriate casts.
48461135 1594 */
f23cc643
JB
1595 if (min_val < 0 || dst_reg->min_value < 0)
1596 dst_reg->min_value = BPF_REGISTER_MIN_RANGE;
1597 else
1598 dst_reg->min_value =
1599 (u64)(dst_reg->min_value) >> min_val;
1600 if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)
1601 dst_reg->max_value >>= max_val;
48461135
JB
1602 break;
1603 default:
1604 reset_reg_range_values(regs, insn->dst_reg);
1605 break;
1606 }
1607
1608 check_reg_overflow(dst_reg);
1609}
1610
17a52670 1611/* check validity of 32-bit and 64-bit arithmetic operations */
58e2af8b 1612static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 1613{
58e2af8b 1614 struct bpf_reg_state *regs = env->cur_state.regs, *dst_reg;
17a52670
AS
1615 u8 opcode = BPF_OP(insn->code);
1616 int err;
1617
1618 if (opcode == BPF_END || opcode == BPF_NEG) {
1619 if (opcode == BPF_NEG) {
1620 if (BPF_SRC(insn->code) != 0 ||
1621 insn->src_reg != BPF_REG_0 ||
1622 insn->off != 0 || insn->imm != 0) {
1623 verbose("BPF_NEG uses reserved fields\n");
1624 return -EINVAL;
1625 }
1626 } else {
1627 if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
1628 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64)) {
1629 verbose("BPF_END uses reserved fields\n");
1630 return -EINVAL;
1631 }
1632 }
1633
1634 /* check src operand */
1635 err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
1636 if (err)
1637 return err;
1638
1be7f75d
AS
1639 if (is_pointer_value(env, insn->dst_reg)) {
1640 verbose("R%d pointer arithmetic prohibited\n",
1641 insn->dst_reg);
1642 return -EACCES;
1643 }
1644
17a52670
AS
1645 /* check dest operand */
1646 err = check_reg_arg(regs, insn->dst_reg, DST_OP);
1647 if (err)
1648 return err;
1649
1650 } else if (opcode == BPF_MOV) {
1651
1652 if (BPF_SRC(insn->code) == BPF_X) {
1653 if (insn->imm != 0 || insn->off != 0) {
1654 verbose("BPF_MOV uses reserved fields\n");
1655 return -EINVAL;
1656 }
1657
1658 /* check src operand */
1659 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
1660 if (err)
1661 return err;
1662 } else {
1663 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
1664 verbose("BPF_MOV uses reserved fields\n");
1665 return -EINVAL;
1666 }
1667 }
1668
1669 /* check dest operand */
1670 err = check_reg_arg(regs, insn->dst_reg, DST_OP);
1671 if (err)
1672 return err;
1673
48461135
JB
1674 /* we are setting our register to something new, we need to
1675 * reset its range values.
1676 */
1677 reset_reg_range_values(regs, insn->dst_reg);
1678
17a52670
AS
1679 if (BPF_SRC(insn->code) == BPF_X) {
1680 if (BPF_CLASS(insn->code) == BPF_ALU64) {
1681 /* case: R1 = R2
1682 * copy register state to dest reg
1683 */
1684 regs[insn->dst_reg] = regs[insn->src_reg];
1685 } else {
1be7f75d
AS
1686 if (is_pointer_value(env, insn->src_reg)) {
1687 verbose("R%d partial copy of pointer\n",
1688 insn->src_reg);
1689 return -EACCES;
1690 }
57a09bf0 1691 mark_reg_unknown_value(regs, insn->dst_reg);
17a52670
AS
1692 }
1693 } else {
1694 /* case: R = imm
1695 * remember the value we stored into this reg
1696 */
1697 regs[insn->dst_reg].type = CONST_IMM;
1698 regs[insn->dst_reg].imm = insn->imm;
48461135
JB
1699 regs[insn->dst_reg].max_value = insn->imm;
1700 regs[insn->dst_reg].min_value = insn->imm;
17a52670
AS
1701 }
1702
1703 } else if (opcode > BPF_END) {
1704 verbose("invalid BPF_ALU opcode %x\n", opcode);
1705 return -EINVAL;
1706
1707 } else { /* all other ALU ops: and, sub, xor, add, ... */
1708
17a52670
AS
1709 if (BPF_SRC(insn->code) == BPF_X) {
1710 if (insn->imm != 0 || insn->off != 0) {
1711 verbose("BPF_ALU uses reserved fields\n");
1712 return -EINVAL;
1713 }
1714 /* check src1 operand */
1715 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
1716 if (err)
1717 return err;
1718 } else {
1719 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
1720 verbose("BPF_ALU uses reserved fields\n");
1721 return -EINVAL;
1722 }
1723 }
1724
1725 /* check src2 operand */
1726 err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
1727 if (err)
1728 return err;
1729
1730 if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
1731 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
1732 verbose("div by zero\n");
1733 return -EINVAL;
1734 }
1735
229394e8
RV
1736 if ((opcode == BPF_LSH || opcode == BPF_RSH ||
1737 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
1738 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
1739
1740 if (insn->imm < 0 || insn->imm >= size) {
1741 verbose("invalid shift %d\n", insn->imm);
1742 return -EINVAL;
1743 }
1744 }
1745
1a0dc1ac
AS
1746 /* check dest operand */
1747 err = check_reg_arg(regs, insn->dst_reg, DST_OP_NO_MARK);
1748 if (err)
1749 return err;
1750
1751 dst_reg = &regs[insn->dst_reg];
1752
48461135
JB
1753 /* first we want to adjust our ranges. */
1754 adjust_reg_min_max_vals(env, insn);
1755
17a52670
AS
1756 /* pattern match 'bpf_add Rx, imm' instruction */
1757 if (opcode == BPF_ADD && BPF_CLASS(insn->code) == BPF_ALU64 &&
1a0dc1ac
AS
1758 dst_reg->type == FRAME_PTR && BPF_SRC(insn->code) == BPF_K) {
1759 dst_reg->type = PTR_TO_STACK;
1760 dst_reg->imm = insn->imm;
1761 return 0;
969bf05e
AS
1762 } else if (opcode == BPF_ADD &&
1763 BPF_CLASS(insn->code) == BPF_ALU64 &&
1b9b69ec
AS
1764 (dst_reg->type == PTR_TO_PACKET ||
1765 (BPF_SRC(insn->code) == BPF_X &&
1766 regs[insn->src_reg].type == PTR_TO_PACKET))) {
969bf05e
AS
1767 /* ptr_to_packet += K|X */
1768 return check_packet_ptr_add(env, insn);
1769 } else if (BPF_CLASS(insn->code) == BPF_ALU64 &&
1770 dst_reg->type == UNKNOWN_VALUE &&
1771 env->allow_ptr_leaks) {
1772 /* unknown += K|X */
1773 return evaluate_reg_alu(env, insn);
1774 } else if (BPF_CLASS(insn->code) == BPF_ALU64 &&
1775 dst_reg->type == CONST_IMM &&
1776 env->allow_ptr_leaks) {
1777 /* reg_imm += K|X */
1778 return evaluate_reg_imm_alu(env, insn);
1be7f75d
AS
1779 } else if (is_pointer_value(env, insn->dst_reg)) {
1780 verbose("R%d pointer arithmetic prohibited\n",
1781 insn->dst_reg);
1782 return -EACCES;
1783 } else if (BPF_SRC(insn->code) == BPF_X &&
1784 is_pointer_value(env, insn->src_reg)) {
1785 verbose("R%d pointer arithmetic prohibited\n",
1786 insn->src_reg);
1787 return -EACCES;
1788 }
17a52670 1789
48461135
JB
1790 /* If we did pointer math on a map value then just set it to our
1791 * PTR_TO_MAP_VALUE_ADJ type so we can deal with any stores or
1792 * loads to this register appropriately, otherwise just mark the
1793 * register as unknown.
1794 */
1795 if (env->allow_ptr_leaks &&
1796 (dst_reg->type == PTR_TO_MAP_VALUE ||
1797 dst_reg->type == PTR_TO_MAP_VALUE_ADJ))
1798 dst_reg->type = PTR_TO_MAP_VALUE_ADJ;
1799 else
1800 mark_reg_unknown_value(regs, insn->dst_reg);
17a52670
AS
1801 }
1802
1803 return 0;
1804}
1805
58e2af8b
JK
1806static void find_good_pkt_pointers(struct bpf_verifier_state *state,
1807 struct bpf_reg_state *dst_reg)
969bf05e 1808{
58e2af8b 1809 struct bpf_reg_state *regs = state->regs, *reg;
969bf05e 1810 int i;
2d2be8ca
DB
1811
1812 /* LLVM can generate two kind of checks:
1813 *
1814 * Type 1:
1815 *
1816 * r2 = r3;
1817 * r2 += 8;
1818 * if (r2 > pkt_end) goto <handle exception>
1819 * <access okay>
1820 *
1821 * Where:
1822 * r2 == dst_reg, pkt_end == src_reg
1823 * r2=pkt(id=n,off=8,r=0)
1824 * r3=pkt(id=n,off=0,r=0)
1825 *
1826 * Type 2:
1827 *
1828 * r2 = r3;
1829 * r2 += 8;
1830 * if (pkt_end >= r2) goto <access okay>
1831 * <handle exception>
1832 *
1833 * Where:
1834 * pkt_end == dst_reg, r2 == src_reg
1835 * r2=pkt(id=n,off=8,r=0)
1836 * r3=pkt(id=n,off=0,r=0)
1837 *
1838 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
1839 * so that range of bytes [r3, r3 + 8) is safe to access.
969bf05e 1840 */
2d2be8ca 1841
969bf05e
AS
1842 for (i = 0; i < MAX_BPF_REG; i++)
1843 if (regs[i].type == PTR_TO_PACKET && regs[i].id == dst_reg->id)
1844 regs[i].range = dst_reg->off;
1845
1846 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
1847 if (state->stack_slot_type[i] != STACK_SPILL)
1848 continue;
1849 reg = &state->spilled_regs[i / BPF_REG_SIZE];
1850 if (reg->type == PTR_TO_PACKET && reg->id == dst_reg->id)
1851 reg->range = dst_reg->off;
1852 }
1853}
1854
48461135
JB
1855/* Adjusts the register min/max values in the case that the dst_reg is the
1856 * variable register that we are working on, and src_reg is a constant or we're
1857 * simply doing a BPF_K check.
1858 */
1859static void reg_set_min_max(struct bpf_reg_state *true_reg,
1860 struct bpf_reg_state *false_reg, u64 val,
1861 u8 opcode)
1862{
1863 switch (opcode) {
1864 case BPF_JEQ:
1865 /* If this is false then we know nothing Jon Snow, but if it is
1866 * true then we know for sure.
1867 */
1868 true_reg->max_value = true_reg->min_value = val;
1869 break;
1870 case BPF_JNE:
1871 /* If this is true we know nothing Jon Snow, but if it is false
1872 * we know the value for sure;
1873 */
1874 false_reg->max_value = false_reg->min_value = val;
1875 break;
1876 case BPF_JGT:
1877 /* Unsigned comparison, the minimum value is 0. */
1878 false_reg->min_value = 0;
1879 case BPF_JSGT:
1880 /* If this is false then we know the maximum val is val,
1881 * otherwise we know the min val is val+1.
1882 */
1883 false_reg->max_value = val;
1884 true_reg->min_value = val + 1;
1885 break;
1886 case BPF_JGE:
1887 /* Unsigned comparison, the minimum value is 0. */
1888 false_reg->min_value = 0;
1889 case BPF_JSGE:
1890 /* If this is false then we know the maximum value is val - 1,
1891 * otherwise we know the mimimum value is val.
1892 */
1893 false_reg->max_value = val - 1;
1894 true_reg->min_value = val;
1895 break;
1896 default:
1897 break;
1898 }
1899
1900 check_reg_overflow(false_reg);
1901 check_reg_overflow(true_reg);
1902}
1903
1904/* Same as above, but for the case that dst_reg is a CONST_IMM reg and src_reg
1905 * is the variable reg.
1906 */
1907static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
1908 struct bpf_reg_state *false_reg, u64 val,
1909 u8 opcode)
1910{
1911 switch (opcode) {
1912 case BPF_JEQ:
1913 /* If this is false then we know nothing Jon Snow, but if it is
1914 * true then we know for sure.
1915 */
1916 true_reg->max_value = true_reg->min_value = val;
1917 break;
1918 case BPF_JNE:
1919 /* If this is true we know nothing Jon Snow, but if it is false
1920 * we know the value for sure;
1921 */
1922 false_reg->max_value = false_reg->min_value = val;
1923 break;
1924 case BPF_JGT:
1925 /* Unsigned comparison, the minimum value is 0. */
1926 true_reg->min_value = 0;
1927 case BPF_JSGT:
1928 /*
1929 * If this is false, then the val is <= the register, if it is
1930 * true the register <= to the val.
1931 */
1932 false_reg->min_value = val;
1933 true_reg->max_value = val - 1;
1934 break;
1935 case BPF_JGE:
1936 /* Unsigned comparison, the minimum value is 0. */
1937 true_reg->min_value = 0;
1938 case BPF_JSGE:
1939 /* If this is false then constant < register, if it is true then
1940 * the register < constant.
1941 */
1942 false_reg->min_value = val + 1;
1943 true_reg->max_value = val;
1944 break;
1945 default:
1946 break;
1947 }
1948
1949 check_reg_overflow(false_reg);
1950 check_reg_overflow(true_reg);
1951}
1952
57a09bf0
TG
1953static void mark_map_reg(struct bpf_reg_state *regs, u32 regno, u32 id,
1954 enum bpf_reg_type type)
1955{
1956 struct bpf_reg_state *reg = &regs[regno];
1957
1958 if (reg->type == PTR_TO_MAP_VALUE_OR_NULL && reg->id == id) {
1959 reg->type = type;
1960 if (type == UNKNOWN_VALUE)
1961 mark_reg_unknown_value(regs, regno);
1962 }
1963}
1964
1965/* The logic is similar to find_good_pkt_pointers(), both could eventually
1966 * be folded together at some point.
1967 */
1968static void mark_map_regs(struct bpf_verifier_state *state, u32 regno,
1969 enum bpf_reg_type type)
1970{
1971 struct bpf_reg_state *regs = state->regs;
1972 int i;
1973
1974 for (i = 0; i < MAX_BPF_REG; i++)
1975 mark_map_reg(regs, i, regs[regno].id, type);
1976
1977 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
1978 if (state->stack_slot_type[i] != STACK_SPILL)
1979 continue;
1980 mark_map_reg(state->spilled_regs, i / BPF_REG_SIZE,
1981 regs[regno].id, type);
1982 }
1983}
1984
58e2af8b 1985static int check_cond_jmp_op(struct bpf_verifier_env *env,
17a52670
AS
1986 struct bpf_insn *insn, int *insn_idx)
1987{
58e2af8b
JK
1988 struct bpf_verifier_state *other_branch, *this_branch = &env->cur_state;
1989 struct bpf_reg_state *regs = this_branch->regs, *dst_reg;
17a52670
AS
1990 u8 opcode = BPF_OP(insn->code);
1991 int err;
1992
1993 if (opcode > BPF_EXIT) {
1994 verbose("invalid BPF_JMP opcode %x\n", opcode);
1995 return -EINVAL;
1996 }
1997
1998 if (BPF_SRC(insn->code) == BPF_X) {
1999 if (insn->imm != 0) {
2000 verbose("BPF_JMP uses reserved fields\n");
2001 return -EINVAL;
2002 }
2003
2004 /* check src1 operand */
2005 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
2006 if (err)
2007 return err;
1be7f75d
AS
2008
2009 if (is_pointer_value(env, insn->src_reg)) {
2010 verbose("R%d pointer comparison prohibited\n",
2011 insn->src_reg);
2012 return -EACCES;
2013 }
17a52670
AS
2014 } else {
2015 if (insn->src_reg != BPF_REG_0) {
2016 verbose("BPF_JMP uses reserved fields\n");
2017 return -EINVAL;
2018 }
2019 }
2020
2021 /* check src2 operand */
2022 err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
2023 if (err)
2024 return err;
2025
1a0dc1ac
AS
2026 dst_reg = &regs[insn->dst_reg];
2027
17a52670
AS
2028 /* detect if R == 0 where R was initialized to zero earlier */
2029 if (BPF_SRC(insn->code) == BPF_K &&
2030 (opcode == BPF_JEQ || opcode == BPF_JNE) &&
1a0dc1ac 2031 dst_reg->type == CONST_IMM && dst_reg->imm == insn->imm) {
17a52670
AS
2032 if (opcode == BPF_JEQ) {
2033 /* if (imm == imm) goto pc+off;
2034 * only follow the goto, ignore fall-through
2035 */
2036 *insn_idx += insn->off;
2037 return 0;
2038 } else {
2039 /* if (imm != imm) goto pc+off;
2040 * only follow fall-through branch, since
2041 * that's where the program will go
2042 */
2043 return 0;
2044 }
2045 }
2046
2047 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx);
2048 if (!other_branch)
2049 return -EFAULT;
2050
48461135
JB
2051 /* detect if we are comparing against a constant value so we can adjust
2052 * our min/max values for our dst register.
2053 */
2054 if (BPF_SRC(insn->code) == BPF_X) {
2055 if (regs[insn->src_reg].type == CONST_IMM)
2056 reg_set_min_max(&other_branch->regs[insn->dst_reg],
2057 dst_reg, regs[insn->src_reg].imm,
2058 opcode);
2059 else if (dst_reg->type == CONST_IMM)
2060 reg_set_min_max_inv(&other_branch->regs[insn->src_reg],
2061 &regs[insn->src_reg], dst_reg->imm,
2062 opcode);
2063 } else {
2064 reg_set_min_max(&other_branch->regs[insn->dst_reg],
2065 dst_reg, insn->imm, opcode);
2066 }
2067
58e2af8b 2068 /* detect if R == 0 where R is returned from bpf_map_lookup_elem() */
17a52670 2069 if (BPF_SRC(insn->code) == BPF_K &&
1a0dc1ac
AS
2070 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
2071 dst_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
57a09bf0
TG
2072 /* Mark all identical map registers in each branch as either
2073 * safe or unknown depending R == 0 or R != 0 conditional.
2074 */
2075 mark_map_regs(this_branch, insn->dst_reg,
2076 opcode == BPF_JEQ ? PTR_TO_MAP_VALUE : UNKNOWN_VALUE);
2077 mark_map_regs(other_branch, insn->dst_reg,
2078 opcode == BPF_JEQ ? UNKNOWN_VALUE : PTR_TO_MAP_VALUE);
969bf05e
AS
2079 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGT &&
2080 dst_reg->type == PTR_TO_PACKET &&
2081 regs[insn->src_reg].type == PTR_TO_PACKET_END) {
2d2be8ca
DB
2082 find_good_pkt_pointers(this_branch, dst_reg);
2083 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGE &&
2084 dst_reg->type == PTR_TO_PACKET_END &&
2085 regs[insn->src_reg].type == PTR_TO_PACKET) {
2086 find_good_pkt_pointers(other_branch, &regs[insn->src_reg]);
1be7f75d
AS
2087 } else if (is_pointer_value(env, insn->dst_reg)) {
2088 verbose("R%d pointer comparison prohibited\n", insn->dst_reg);
2089 return -EACCES;
17a52670
AS
2090 }
2091 if (log_level)
2d2be8ca 2092 print_verifier_state(this_branch);
17a52670
AS
2093 return 0;
2094}
2095
0246e64d
AS
2096/* return the map pointer stored inside BPF_LD_IMM64 instruction */
2097static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn)
2098{
2099 u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32;
2100
2101 return (struct bpf_map *) (unsigned long) imm64;
2102}
2103
17a52670 2104/* verify BPF_LD_IMM64 instruction */
58e2af8b 2105static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 2106{
58e2af8b 2107 struct bpf_reg_state *regs = env->cur_state.regs;
17a52670
AS
2108 int err;
2109
2110 if (BPF_SIZE(insn->code) != BPF_DW) {
2111 verbose("invalid BPF_LD_IMM insn\n");
2112 return -EINVAL;
2113 }
2114 if (insn->off != 0) {
2115 verbose("BPF_LD_IMM64 uses reserved fields\n");
2116 return -EINVAL;
2117 }
2118
2119 err = check_reg_arg(regs, insn->dst_reg, DST_OP);
2120 if (err)
2121 return err;
2122
6b173873
JK
2123 if (insn->src_reg == 0) {
2124 /* generic move 64-bit immediate into a register,
2125 * only analyzer needs to collect the ld_imm value.
2126 */
2127 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
2128
2129 if (!env->analyzer_ops)
2130 return 0;
2131
2132 regs[insn->dst_reg].type = CONST_IMM;
2133 regs[insn->dst_reg].imm = imm;
17a52670 2134 return 0;
6b173873 2135 }
17a52670
AS
2136
2137 /* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
2138 BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD);
2139
2140 regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
2141 regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn);
2142 return 0;
2143}
2144
96be4325
DB
2145static bool may_access_skb(enum bpf_prog_type type)
2146{
2147 switch (type) {
2148 case BPF_PROG_TYPE_SOCKET_FILTER:
2149 case BPF_PROG_TYPE_SCHED_CLS:
94caee8c 2150 case BPF_PROG_TYPE_SCHED_ACT:
96be4325
DB
2151 return true;
2152 default:
2153 return false;
2154 }
2155}
2156
ddd872bc
AS
2157/* verify safety of LD_ABS|LD_IND instructions:
2158 * - they can only appear in the programs where ctx == skb
2159 * - since they are wrappers of function calls, they scratch R1-R5 registers,
2160 * preserve R6-R9, and store return value into R0
2161 *
2162 * Implicit input:
2163 * ctx == skb == R6 == CTX
2164 *
2165 * Explicit input:
2166 * SRC == any register
2167 * IMM == 32-bit immediate
2168 *
2169 * Output:
2170 * R0 - 8/16/32-bit skb data converted to cpu endianness
2171 */
58e2af8b 2172static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
ddd872bc 2173{
58e2af8b 2174 struct bpf_reg_state *regs = env->cur_state.regs;
ddd872bc 2175 u8 mode = BPF_MODE(insn->code);
58e2af8b 2176 struct bpf_reg_state *reg;
ddd872bc
AS
2177 int i, err;
2178
24701ece 2179 if (!may_access_skb(env->prog->type)) {
1a0dc1ac 2180 verbose("BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
ddd872bc
AS
2181 return -EINVAL;
2182 }
2183
2184 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
d82bccc6 2185 BPF_SIZE(insn->code) == BPF_DW ||
ddd872bc 2186 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
1a0dc1ac 2187 verbose("BPF_LD_[ABS|IND] uses reserved fields\n");
ddd872bc
AS
2188 return -EINVAL;
2189 }
2190
2191 /* check whether implicit source operand (register R6) is readable */
2192 err = check_reg_arg(regs, BPF_REG_6, SRC_OP);
2193 if (err)
2194 return err;
2195
2196 if (regs[BPF_REG_6].type != PTR_TO_CTX) {
2197 verbose("at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
2198 return -EINVAL;
2199 }
2200
2201 if (mode == BPF_IND) {
2202 /* check explicit source operand */
2203 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
2204 if (err)
2205 return err;
2206 }
2207
2208 /* reset caller saved regs to unreadable */
2209 for (i = 0; i < CALLER_SAVED_REGS; i++) {
2210 reg = regs + caller_saved[i];
2211 reg->type = NOT_INIT;
2212 reg->imm = 0;
2213 }
2214
2215 /* mark destination R0 register as readable, since it contains
2216 * the value fetched from the packet
2217 */
2218 regs[BPF_REG_0].type = UNKNOWN_VALUE;
2219 return 0;
2220}
2221
475fb78f
AS
2222/* non-recursive DFS pseudo code
2223 * 1 procedure DFS-iterative(G,v):
2224 * 2 label v as discovered
2225 * 3 let S be a stack
2226 * 4 S.push(v)
2227 * 5 while S is not empty
2228 * 6 t <- S.pop()
2229 * 7 if t is what we're looking for:
2230 * 8 return t
2231 * 9 for all edges e in G.adjacentEdges(t) do
2232 * 10 if edge e is already labelled
2233 * 11 continue with the next edge
2234 * 12 w <- G.adjacentVertex(t,e)
2235 * 13 if vertex w is not discovered and not explored
2236 * 14 label e as tree-edge
2237 * 15 label w as discovered
2238 * 16 S.push(w)
2239 * 17 continue at 5
2240 * 18 else if vertex w is discovered
2241 * 19 label e as back-edge
2242 * 20 else
2243 * 21 // vertex w is explored
2244 * 22 label e as forward- or cross-edge
2245 * 23 label t as explored
2246 * 24 S.pop()
2247 *
2248 * convention:
2249 * 0x10 - discovered
2250 * 0x11 - discovered and fall-through edge labelled
2251 * 0x12 - discovered and fall-through and branch edges labelled
2252 * 0x20 - explored
2253 */
2254
2255enum {
2256 DISCOVERED = 0x10,
2257 EXPLORED = 0x20,
2258 FALLTHROUGH = 1,
2259 BRANCH = 2,
2260};
2261
58e2af8b 2262#define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L)
f1bca824 2263
475fb78f
AS
2264static int *insn_stack; /* stack of insns to process */
2265static int cur_stack; /* current stack index */
2266static int *insn_state;
2267
2268/* t, w, e - match pseudo-code above:
2269 * t - index of current instruction
2270 * w - next instruction
2271 * e - edge
2272 */
58e2af8b 2273static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
475fb78f
AS
2274{
2275 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
2276 return 0;
2277
2278 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
2279 return 0;
2280
2281 if (w < 0 || w >= env->prog->len) {
2282 verbose("jump out of range from insn %d to %d\n", t, w);
2283 return -EINVAL;
2284 }
2285
f1bca824
AS
2286 if (e == BRANCH)
2287 /* mark branch target for state pruning */
2288 env->explored_states[w] = STATE_LIST_MARK;
2289
475fb78f
AS
2290 if (insn_state[w] == 0) {
2291 /* tree-edge */
2292 insn_state[t] = DISCOVERED | e;
2293 insn_state[w] = DISCOVERED;
2294 if (cur_stack >= env->prog->len)
2295 return -E2BIG;
2296 insn_stack[cur_stack++] = w;
2297 return 1;
2298 } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
2299 verbose("back-edge from insn %d to %d\n", t, w);
2300 return -EINVAL;
2301 } else if (insn_state[w] == EXPLORED) {
2302 /* forward- or cross-edge */
2303 insn_state[t] = DISCOVERED | e;
2304 } else {
2305 verbose("insn state internal bug\n");
2306 return -EFAULT;
2307 }
2308 return 0;
2309}
2310
2311/* non-recursive depth-first-search to detect loops in BPF program
2312 * loop == back-edge in directed graph
2313 */
58e2af8b 2314static int check_cfg(struct bpf_verifier_env *env)
475fb78f
AS
2315{
2316 struct bpf_insn *insns = env->prog->insnsi;
2317 int insn_cnt = env->prog->len;
2318 int ret = 0;
2319 int i, t;
2320
2321 insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
2322 if (!insn_state)
2323 return -ENOMEM;
2324
2325 insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
2326 if (!insn_stack) {
2327 kfree(insn_state);
2328 return -ENOMEM;
2329 }
2330
2331 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
2332 insn_stack[0] = 0; /* 0 is the first instruction */
2333 cur_stack = 1;
2334
2335peek_stack:
2336 if (cur_stack == 0)
2337 goto check_state;
2338 t = insn_stack[cur_stack - 1];
2339
2340 if (BPF_CLASS(insns[t].code) == BPF_JMP) {
2341 u8 opcode = BPF_OP(insns[t].code);
2342
2343 if (opcode == BPF_EXIT) {
2344 goto mark_explored;
2345 } else if (opcode == BPF_CALL) {
2346 ret = push_insn(t, t + 1, FALLTHROUGH, env);
2347 if (ret == 1)
2348 goto peek_stack;
2349 else if (ret < 0)
2350 goto err_free;
07016151
DB
2351 if (t + 1 < insn_cnt)
2352 env->explored_states[t + 1] = STATE_LIST_MARK;
475fb78f
AS
2353 } else if (opcode == BPF_JA) {
2354 if (BPF_SRC(insns[t].code) != BPF_K) {
2355 ret = -EINVAL;
2356 goto err_free;
2357 }
2358 /* unconditional jump with single edge */
2359 ret = push_insn(t, t + insns[t].off + 1,
2360 FALLTHROUGH, env);
2361 if (ret == 1)
2362 goto peek_stack;
2363 else if (ret < 0)
2364 goto err_free;
f1bca824
AS
2365 /* tell verifier to check for equivalent states
2366 * after every call and jump
2367 */
c3de6317
AS
2368 if (t + 1 < insn_cnt)
2369 env->explored_states[t + 1] = STATE_LIST_MARK;
475fb78f
AS
2370 } else {
2371 /* conditional jump with two edges */
2372 ret = push_insn(t, t + 1, FALLTHROUGH, env);
2373 if (ret == 1)
2374 goto peek_stack;
2375 else if (ret < 0)
2376 goto err_free;
2377
2378 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
2379 if (ret == 1)
2380 goto peek_stack;
2381 else if (ret < 0)
2382 goto err_free;
2383 }
2384 } else {
2385 /* all other non-branch instructions with single
2386 * fall-through edge
2387 */
2388 ret = push_insn(t, t + 1, FALLTHROUGH, env);
2389 if (ret == 1)
2390 goto peek_stack;
2391 else if (ret < 0)
2392 goto err_free;
2393 }
2394
2395mark_explored:
2396 insn_state[t] = EXPLORED;
2397 if (cur_stack-- <= 0) {
2398 verbose("pop stack internal bug\n");
2399 ret = -EFAULT;
2400 goto err_free;
2401 }
2402 goto peek_stack;
2403
2404check_state:
2405 for (i = 0; i < insn_cnt; i++) {
2406 if (insn_state[i] != EXPLORED) {
2407 verbose("unreachable insn %d\n", i);
2408 ret = -EINVAL;
2409 goto err_free;
2410 }
2411 }
2412 ret = 0; /* cfg looks good */
2413
2414err_free:
2415 kfree(insn_state);
2416 kfree(insn_stack);
2417 return ret;
2418}
2419
969bf05e
AS
2420/* the following conditions reduce the number of explored insns
2421 * from ~140k to ~80k for ultra large programs that use a lot of ptr_to_packet
2422 */
58e2af8b
JK
2423static bool compare_ptrs_to_packet(struct bpf_reg_state *old,
2424 struct bpf_reg_state *cur)
969bf05e
AS
2425{
2426 if (old->id != cur->id)
2427 return false;
2428
2429 /* old ptr_to_packet is more conservative, since it allows smaller
2430 * range. Ex:
2431 * old(off=0,r=10) is equal to cur(off=0,r=20), because
2432 * old(off=0,r=10) means that with range=10 the verifier proceeded
2433 * further and found no issues with the program. Now we're in the same
2434 * spot with cur(off=0,r=20), so we're safe too, since anything further
2435 * will only be looking at most 10 bytes after this pointer.
2436 */
2437 if (old->off == cur->off && old->range < cur->range)
2438 return true;
2439
2440 /* old(off=20,r=10) is equal to cur(off=22,re=22 or 5 or 0)
2441 * since both cannot be used for packet access and safe(old)
2442 * pointer has smaller off that could be used for further
2443 * 'if (ptr > data_end)' check
2444 * Ex:
2445 * old(off=20,r=10) and cur(off=22,r=22) and cur(off=22,r=0) mean
2446 * that we cannot access the packet.
2447 * The safe range is:
2448 * [ptr, ptr + range - off)
2449 * so whenever off >=range, it means no safe bytes from this pointer.
2450 * When comparing old->off <= cur->off, it means that older code
2451 * went with smaller offset and that offset was later
2452 * used to figure out the safe range after 'if (ptr > data_end)' check
2453 * Say, 'old' state was explored like:
2454 * ... R3(off=0, r=0)
2455 * R4 = R3 + 20
2456 * ... now R4(off=20,r=0) <-- here
2457 * if (R4 > data_end)
2458 * ... R4(off=20,r=20), R3(off=0,r=20) and R3 can be used to access.
2459 * ... the code further went all the way to bpf_exit.
2460 * Now the 'cur' state at the mark 'here' has R4(off=30,r=0).
2461 * old_R4(off=20,r=0) equal to cur_R4(off=30,r=0), since if the verifier
2462 * goes further, such cur_R4 will give larger safe packet range after
2463 * 'if (R4 > data_end)' and all further insn were already good with r=20,
2464 * so they will be good with r=30 and we can prune the search.
2465 */
2466 if (old->off <= cur->off &&
2467 old->off >= old->range && cur->off >= cur->range)
2468 return true;
2469
2470 return false;
2471}
2472
f1bca824
AS
2473/* compare two verifier states
2474 *
2475 * all states stored in state_list are known to be valid, since
2476 * verifier reached 'bpf_exit' instruction through them
2477 *
2478 * this function is called when verifier exploring different branches of
2479 * execution popped from the state stack. If it sees an old state that has
2480 * more strict register state and more strict stack state then this execution
2481 * branch doesn't need to be explored further, since verifier already
2482 * concluded that more strict state leads to valid finish.
2483 *
2484 * Therefore two states are equivalent if register state is more conservative
2485 * and explored stack state is more conservative than the current one.
2486 * Example:
2487 * explored current
2488 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
2489 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
2490 *
2491 * In other words if current stack state (one being explored) has more
2492 * valid slots than old one that already passed validation, it means
2493 * the verifier can stop exploring and conclude that current state is valid too
2494 *
2495 * Similarly with registers. If explored state has register type as invalid
2496 * whereas register type in current state is meaningful, it means that
2497 * the current state will reach 'bpf_exit' instruction safely
2498 */
48461135
JB
2499static bool states_equal(struct bpf_verifier_env *env,
2500 struct bpf_verifier_state *old,
58e2af8b 2501 struct bpf_verifier_state *cur)
f1bca824 2502{
58e2af8b 2503 struct bpf_reg_state *rold, *rcur;
f1bca824
AS
2504 int i;
2505
2506 for (i = 0; i < MAX_BPF_REG; i++) {
1a0dc1ac
AS
2507 rold = &old->regs[i];
2508 rcur = &cur->regs[i];
2509
2510 if (memcmp(rold, rcur, sizeof(*rold)) == 0)
2511 continue;
2512
48461135
JB
2513 /* If the ranges were not the same, but everything else was and
2514 * we didn't do a variable access into a map then we are a-ok.
2515 */
2516 if (!env->varlen_map_value_access &&
2517 rold->type == rcur->type && rold->imm == rcur->imm)
2518 continue;
2519
1a0dc1ac
AS
2520 if (rold->type == NOT_INIT ||
2521 (rold->type == UNKNOWN_VALUE && rcur->type != NOT_INIT))
2522 continue;
2523
969bf05e
AS
2524 if (rold->type == PTR_TO_PACKET && rcur->type == PTR_TO_PACKET &&
2525 compare_ptrs_to_packet(rold, rcur))
2526 continue;
2527
1a0dc1ac 2528 return false;
f1bca824
AS
2529 }
2530
2531 for (i = 0; i < MAX_BPF_STACK; i++) {
9c399760
AS
2532 if (old->stack_slot_type[i] == STACK_INVALID)
2533 continue;
2534 if (old->stack_slot_type[i] != cur->stack_slot_type[i])
2535 /* Ex: old explored (safe) state has STACK_SPILL in
2536 * this stack slot, but current has has STACK_MISC ->
2537 * this verifier states are not equivalent,
2538 * return false to continue verification of this path
2539 */
f1bca824 2540 return false;
9c399760
AS
2541 if (i % BPF_REG_SIZE)
2542 continue;
2543 if (memcmp(&old->spilled_regs[i / BPF_REG_SIZE],
2544 &cur->spilled_regs[i / BPF_REG_SIZE],
2545 sizeof(old->spilled_regs[0])))
2546 /* when explored and current stack slot types are
2547 * the same, check that stored pointers types
2548 * are the same as well.
2549 * Ex: explored safe path could have stored
58e2af8b 2550 * (bpf_reg_state) {.type = PTR_TO_STACK, .imm = -8}
9c399760 2551 * but current path has stored:
58e2af8b 2552 * (bpf_reg_state) {.type = PTR_TO_STACK, .imm = -16}
9c399760
AS
2553 * such verifier states are not equivalent.
2554 * return false to continue verification of this path
2555 */
2556 return false;
2557 else
2558 continue;
f1bca824
AS
2559 }
2560 return true;
2561}
2562
58e2af8b 2563static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
f1bca824 2564{
58e2af8b
JK
2565 struct bpf_verifier_state_list *new_sl;
2566 struct bpf_verifier_state_list *sl;
f1bca824
AS
2567
2568 sl = env->explored_states[insn_idx];
2569 if (!sl)
2570 /* this 'insn_idx' instruction wasn't marked, so we will not
2571 * be doing state search here
2572 */
2573 return 0;
2574
2575 while (sl != STATE_LIST_MARK) {
48461135 2576 if (states_equal(env, &sl->state, &env->cur_state))
f1bca824
AS
2577 /* reached equivalent register/stack state,
2578 * prune the search
2579 */
2580 return 1;
2581 sl = sl->next;
2582 }
2583
2584 /* there were no equivalent states, remember current one.
2585 * technically the current state is not proven to be safe yet,
2586 * but it will either reach bpf_exit (which means it's safe) or
2587 * it will be rejected. Since there are no loops, we won't be
2588 * seeing this 'insn_idx' instruction again on the way to bpf_exit
2589 */
58e2af8b 2590 new_sl = kmalloc(sizeof(struct bpf_verifier_state_list), GFP_USER);
f1bca824
AS
2591 if (!new_sl)
2592 return -ENOMEM;
2593
2594 /* add new state to the head of linked list */
2595 memcpy(&new_sl->state, &env->cur_state, sizeof(env->cur_state));
2596 new_sl->next = env->explored_states[insn_idx];
2597 env->explored_states[insn_idx] = new_sl;
2598 return 0;
2599}
2600
13a27dfc
JK
2601static int ext_analyzer_insn_hook(struct bpf_verifier_env *env,
2602 int insn_idx, int prev_insn_idx)
2603{
2604 if (!env->analyzer_ops || !env->analyzer_ops->insn_hook)
2605 return 0;
2606
2607 return env->analyzer_ops->insn_hook(env, insn_idx, prev_insn_idx);
2608}
2609
58e2af8b 2610static int do_check(struct bpf_verifier_env *env)
17a52670 2611{
58e2af8b 2612 struct bpf_verifier_state *state = &env->cur_state;
17a52670 2613 struct bpf_insn *insns = env->prog->insnsi;
58e2af8b 2614 struct bpf_reg_state *regs = state->regs;
17a52670
AS
2615 int insn_cnt = env->prog->len;
2616 int insn_idx, prev_insn_idx = 0;
2617 int insn_processed = 0;
2618 bool do_print_state = false;
2619
2620 init_reg_state(regs);
2621 insn_idx = 0;
48461135 2622 env->varlen_map_value_access = false;
17a52670
AS
2623 for (;;) {
2624 struct bpf_insn *insn;
2625 u8 class;
2626 int err;
2627
2628 if (insn_idx >= insn_cnt) {
2629 verbose("invalid insn idx %d insn_cnt %d\n",
2630 insn_idx, insn_cnt);
2631 return -EFAULT;
2632 }
2633
2634 insn = &insns[insn_idx];
2635 class = BPF_CLASS(insn->code);
2636
07016151 2637 if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
17a52670
AS
2638 verbose("BPF program is too large. Proccessed %d insn\n",
2639 insn_processed);
2640 return -E2BIG;
2641 }
2642
f1bca824
AS
2643 err = is_state_visited(env, insn_idx);
2644 if (err < 0)
2645 return err;
2646 if (err == 1) {
2647 /* found equivalent state, can prune the search */
2648 if (log_level) {
2649 if (do_print_state)
2650 verbose("\nfrom %d to %d: safe\n",
2651 prev_insn_idx, insn_idx);
2652 else
2653 verbose("%d: safe\n", insn_idx);
2654 }
2655 goto process_bpf_exit;
2656 }
2657
17a52670
AS
2658 if (log_level && do_print_state) {
2659 verbose("\nfrom %d to %d:", prev_insn_idx, insn_idx);
1a0dc1ac 2660 print_verifier_state(&env->cur_state);
17a52670
AS
2661 do_print_state = false;
2662 }
2663
2664 if (log_level) {
2665 verbose("%d: ", insn_idx);
2666 print_bpf_insn(insn);
2667 }
2668
13a27dfc
JK
2669 err = ext_analyzer_insn_hook(env, insn_idx, prev_insn_idx);
2670 if (err)
2671 return err;
2672
17a52670 2673 if (class == BPF_ALU || class == BPF_ALU64) {
1be7f75d 2674 err = check_alu_op(env, insn);
17a52670
AS
2675 if (err)
2676 return err;
2677
2678 } else if (class == BPF_LDX) {
3df126f3 2679 enum bpf_reg_type *prev_src_type, src_reg_type;
9bac3d6d
AS
2680
2681 /* check for reserved fields is already done */
2682
17a52670
AS
2683 /* check src operand */
2684 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
2685 if (err)
2686 return err;
2687
2688 err = check_reg_arg(regs, insn->dst_reg, DST_OP_NO_MARK);
2689 if (err)
2690 return err;
2691
725f9dcd
AS
2692 src_reg_type = regs[insn->src_reg].type;
2693
17a52670
AS
2694 /* check that memory (src_reg + off) is readable,
2695 * the state of dst_reg will be updated by this func
2696 */
2697 err = check_mem_access(env, insn->src_reg, insn->off,
2698 BPF_SIZE(insn->code), BPF_READ,
2699 insn->dst_reg);
2700 if (err)
2701 return err;
2702
48461135 2703 reset_reg_range_values(regs, insn->dst_reg);
ea2e7ce5
AS
2704 if (BPF_SIZE(insn->code) != BPF_W &&
2705 BPF_SIZE(insn->code) != BPF_DW) {
725f9dcd
AS
2706 insn_idx++;
2707 continue;
2708 }
9bac3d6d 2709
3df126f3
JK
2710 prev_src_type = &env->insn_aux_data[insn_idx].ptr_type;
2711
2712 if (*prev_src_type == NOT_INIT) {
9bac3d6d
AS
2713 /* saw a valid insn
2714 * dst_reg = *(u32 *)(src_reg + off)
3df126f3 2715 * save type to validate intersecting paths
9bac3d6d 2716 */
3df126f3 2717 *prev_src_type = src_reg_type;
9bac3d6d 2718
3df126f3 2719 } else if (src_reg_type != *prev_src_type &&
9bac3d6d 2720 (src_reg_type == PTR_TO_CTX ||
3df126f3 2721 *prev_src_type == PTR_TO_CTX)) {
9bac3d6d
AS
2722 /* ABuser program is trying to use the same insn
2723 * dst_reg = *(u32*) (src_reg + off)
2724 * with different pointer types:
2725 * src_reg == ctx in one branch and
2726 * src_reg == stack|map in some other branch.
2727 * Reject it.
2728 */
2729 verbose("same insn cannot be used with different pointers\n");
2730 return -EINVAL;
2731 }
2732
17a52670 2733 } else if (class == BPF_STX) {
3df126f3 2734 enum bpf_reg_type *prev_dst_type, dst_reg_type;
d691f9e8 2735
17a52670
AS
2736 if (BPF_MODE(insn->code) == BPF_XADD) {
2737 err = check_xadd(env, insn);
2738 if (err)
2739 return err;
2740 insn_idx++;
2741 continue;
2742 }
2743
17a52670
AS
2744 /* check src1 operand */
2745 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
2746 if (err)
2747 return err;
2748 /* check src2 operand */
2749 err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
2750 if (err)
2751 return err;
2752
d691f9e8
AS
2753 dst_reg_type = regs[insn->dst_reg].type;
2754
17a52670
AS
2755 /* check that memory (dst_reg + off) is writeable */
2756 err = check_mem_access(env, insn->dst_reg, insn->off,
2757 BPF_SIZE(insn->code), BPF_WRITE,
2758 insn->src_reg);
2759 if (err)
2760 return err;
2761
3df126f3
JK
2762 prev_dst_type = &env->insn_aux_data[insn_idx].ptr_type;
2763
2764 if (*prev_dst_type == NOT_INIT) {
2765 *prev_dst_type = dst_reg_type;
2766 } else if (dst_reg_type != *prev_dst_type &&
d691f9e8 2767 (dst_reg_type == PTR_TO_CTX ||
3df126f3 2768 *prev_dst_type == PTR_TO_CTX)) {
d691f9e8
AS
2769 verbose("same insn cannot be used with different pointers\n");
2770 return -EINVAL;
2771 }
2772
17a52670
AS
2773 } else if (class == BPF_ST) {
2774 if (BPF_MODE(insn->code) != BPF_MEM ||
2775 insn->src_reg != BPF_REG_0) {
2776 verbose("BPF_ST uses reserved fields\n");
2777 return -EINVAL;
2778 }
2779 /* check src operand */
2780 err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
2781 if (err)
2782 return err;
2783
2784 /* check that memory (dst_reg + off) is writeable */
2785 err = check_mem_access(env, insn->dst_reg, insn->off,
2786 BPF_SIZE(insn->code), BPF_WRITE,
2787 -1);
2788 if (err)
2789 return err;
2790
2791 } else if (class == BPF_JMP) {
2792 u8 opcode = BPF_OP(insn->code);
2793
2794 if (opcode == BPF_CALL) {
2795 if (BPF_SRC(insn->code) != BPF_K ||
2796 insn->off != 0 ||
2797 insn->src_reg != BPF_REG_0 ||
2798 insn->dst_reg != BPF_REG_0) {
2799 verbose("BPF_CALL uses reserved fields\n");
2800 return -EINVAL;
2801 }
2802
2803 err = check_call(env, insn->imm);
2804 if (err)
2805 return err;
2806
2807 } else if (opcode == BPF_JA) {
2808 if (BPF_SRC(insn->code) != BPF_K ||
2809 insn->imm != 0 ||
2810 insn->src_reg != BPF_REG_0 ||
2811 insn->dst_reg != BPF_REG_0) {
2812 verbose("BPF_JA uses reserved fields\n");
2813 return -EINVAL;
2814 }
2815
2816 insn_idx += insn->off + 1;
2817 continue;
2818
2819 } else if (opcode == BPF_EXIT) {
2820 if (BPF_SRC(insn->code) != BPF_K ||
2821 insn->imm != 0 ||
2822 insn->src_reg != BPF_REG_0 ||
2823 insn->dst_reg != BPF_REG_0) {
2824 verbose("BPF_EXIT uses reserved fields\n");
2825 return -EINVAL;
2826 }
2827
2828 /* eBPF calling convetion is such that R0 is used
2829 * to return the value from eBPF program.
2830 * Make sure that it's readable at this time
2831 * of bpf_exit, which means that program wrote
2832 * something into it earlier
2833 */
2834 err = check_reg_arg(regs, BPF_REG_0, SRC_OP);
2835 if (err)
2836 return err;
2837
1be7f75d
AS
2838 if (is_pointer_value(env, BPF_REG_0)) {
2839 verbose("R0 leaks addr as return value\n");
2840 return -EACCES;
2841 }
2842
f1bca824 2843process_bpf_exit:
17a52670
AS
2844 insn_idx = pop_stack(env, &prev_insn_idx);
2845 if (insn_idx < 0) {
2846 break;
2847 } else {
2848 do_print_state = true;
2849 continue;
2850 }
2851 } else {
2852 err = check_cond_jmp_op(env, insn, &insn_idx);
2853 if (err)
2854 return err;
2855 }
2856 } else if (class == BPF_LD) {
2857 u8 mode = BPF_MODE(insn->code);
2858
2859 if (mode == BPF_ABS || mode == BPF_IND) {
ddd872bc
AS
2860 err = check_ld_abs(env, insn);
2861 if (err)
2862 return err;
2863
17a52670
AS
2864 } else if (mode == BPF_IMM) {
2865 err = check_ld_imm(env, insn);
2866 if (err)
2867 return err;
2868
2869 insn_idx++;
2870 } else {
2871 verbose("invalid BPF_LD mode\n");
2872 return -EINVAL;
2873 }
48461135 2874 reset_reg_range_values(regs, insn->dst_reg);
17a52670
AS
2875 } else {
2876 verbose("unknown insn class %d\n", class);
2877 return -EINVAL;
2878 }
2879
2880 insn_idx++;
2881 }
2882
1a0dc1ac 2883 verbose("processed %d insns\n", insn_processed);
17a52670
AS
2884 return 0;
2885}
2886
fdc15d38
AS
2887static int check_map_prog_compatibility(struct bpf_map *map,
2888 struct bpf_prog *prog)
2889
2890{
2891 if (prog->type == BPF_PROG_TYPE_PERF_EVENT &&
2892 (map->map_type == BPF_MAP_TYPE_HASH ||
2893 map->map_type == BPF_MAP_TYPE_PERCPU_HASH) &&
2894 (map->map_flags & BPF_F_NO_PREALLOC)) {
2895 verbose("perf_event programs can only use preallocated hash map\n");
2896 return -EINVAL;
2897 }
2898 return 0;
2899}
2900
0246e64d
AS
2901/* look for pseudo eBPF instructions that access map FDs and
2902 * replace them with actual map pointers
2903 */
58e2af8b 2904static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
0246e64d
AS
2905{
2906 struct bpf_insn *insn = env->prog->insnsi;
2907 int insn_cnt = env->prog->len;
fdc15d38 2908 int i, j, err;
0246e64d
AS
2909
2910 for (i = 0; i < insn_cnt; i++, insn++) {
9bac3d6d 2911 if (BPF_CLASS(insn->code) == BPF_LDX &&
d691f9e8 2912 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
9bac3d6d
AS
2913 verbose("BPF_LDX uses reserved fields\n");
2914 return -EINVAL;
2915 }
2916
d691f9e8
AS
2917 if (BPF_CLASS(insn->code) == BPF_STX &&
2918 ((BPF_MODE(insn->code) != BPF_MEM &&
2919 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
2920 verbose("BPF_STX uses reserved fields\n");
2921 return -EINVAL;
2922 }
2923
0246e64d
AS
2924 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
2925 struct bpf_map *map;
2926 struct fd f;
2927
2928 if (i == insn_cnt - 1 || insn[1].code != 0 ||
2929 insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
2930 insn[1].off != 0) {
2931 verbose("invalid bpf_ld_imm64 insn\n");
2932 return -EINVAL;
2933 }
2934
2935 if (insn->src_reg == 0)
2936 /* valid generic load 64-bit imm */
2937 goto next_insn;
2938
2939 if (insn->src_reg != BPF_PSEUDO_MAP_FD) {
2940 verbose("unrecognized bpf_ld_imm64 insn\n");
2941 return -EINVAL;
2942 }
2943
2944 f = fdget(insn->imm);
c2101297 2945 map = __bpf_map_get(f);
0246e64d
AS
2946 if (IS_ERR(map)) {
2947 verbose("fd %d is not pointing to valid bpf_map\n",
2948 insn->imm);
0246e64d
AS
2949 return PTR_ERR(map);
2950 }
2951
fdc15d38
AS
2952 err = check_map_prog_compatibility(map, env->prog);
2953 if (err) {
2954 fdput(f);
2955 return err;
2956 }
2957
0246e64d
AS
2958 /* store map pointer inside BPF_LD_IMM64 instruction */
2959 insn[0].imm = (u32) (unsigned long) map;
2960 insn[1].imm = ((u64) (unsigned long) map) >> 32;
2961
2962 /* check whether we recorded this map already */
2963 for (j = 0; j < env->used_map_cnt; j++)
2964 if (env->used_maps[j] == map) {
2965 fdput(f);
2966 goto next_insn;
2967 }
2968
2969 if (env->used_map_cnt >= MAX_USED_MAPS) {
2970 fdput(f);
2971 return -E2BIG;
2972 }
2973
0246e64d
AS
2974 /* hold the map. If the program is rejected by verifier,
2975 * the map will be released by release_maps() or it
2976 * will be used by the valid program until it's unloaded
2977 * and all maps are released in free_bpf_prog_info()
2978 */
92117d84
AS
2979 map = bpf_map_inc(map, false);
2980 if (IS_ERR(map)) {
2981 fdput(f);
2982 return PTR_ERR(map);
2983 }
2984 env->used_maps[env->used_map_cnt++] = map;
2985
0246e64d
AS
2986 fdput(f);
2987next_insn:
2988 insn++;
2989 i++;
2990 }
2991 }
2992
2993 /* now all pseudo BPF_LD_IMM64 instructions load valid
2994 * 'struct bpf_map *' into a register instead of user map_fd.
2995 * These pointers will be used later by verifier to validate map access.
2996 */
2997 return 0;
2998}
2999
3000/* drop refcnt of maps used by the rejected program */
58e2af8b 3001static void release_maps(struct bpf_verifier_env *env)
0246e64d
AS
3002{
3003 int i;
3004
3005 for (i = 0; i < env->used_map_cnt; i++)
3006 bpf_map_put(env->used_maps[i]);
3007}
3008
3009/* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
58e2af8b 3010static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
0246e64d
AS
3011{
3012 struct bpf_insn *insn = env->prog->insnsi;
3013 int insn_cnt = env->prog->len;
3014 int i;
3015
3016 for (i = 0; i < insn_cnt; i++, insn++)
3017 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
3018 insn->src_reg = 0;
3019}
3020
9bac3d6d
AS
3021/* convert load instructions that access fields of 'struct __sk_buff'
3022 * into sequence of instructions that access fields of 'struct sk_buff'
3023 */
58e2af8b 3024static int convert_ctx_accesses(struct bpf_verifier_env *env)
9bac3d6d 3025{
36bbef52 3026 const struct bpf_verifier_ops *ops = env->prog->aux->ops;
3df126f3 3027 const int insn_cnt = env->prog->len;
36bbef52 3028 struct bpf_insn insn_buf[16], *insn;
9bac3d6d 3029 struct bpf_prog *new_prog;
d691f9e8 3030 enum bpf_access_type type;
3df126f3 3031 int i, cnt, delta = 0;
9bac3d6d 3032
36bbef52
DB
3033 if (ops->gen_prologue) {
3034 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
3035 env->prog);
3036 if (cnt >= ARRAY_SIZE(insn_buf)) {
3037 verbose("bpf verifier is misconfigured\n");
3038 return -EINVAL;
3039 } else if (cnt) {
3040 new_prog = bpf_patch_insn_single(env->prog, 0,
3041 insn_buf, cnt);
3042 if (!new_prog)
3043 return -ENOMEM;
3044 env->prog = new_prog;
3df126f3 3045 delta += cnt - 1;
36bbef52
DB
3046 }
3047 }
3048
3049 if (!ops->convert_ctx_access)
9bac3d6d
AS
3050 return 0;
3051
3df126f3 3052 insn = env->prog->insnsi + delta;
36bbef52 3053
9bac3d6d 3054 for (i = 0; i < insn_cnt; i++, insn++) {
ea2e7ce5
AS
3055 if (insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
3056 insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
d691f9e8 3057 type = BPF_READ;
ea2e7ce5
AS
3058 else if (insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
3059 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
d691f9e8
AS
3060 type = BPF_WRITE;
3061 else
9bac3d6d
AS
3062 continue;
3063
3df126f3 3064 if (env->insn_aux_data[i].ptr_type != PTR_TO_CTX)
9bac3d6d 3065 continue;
9bac3d6d 3066
36bbef52
DB
3067 cnt = ops->convert_ctx_access(type, insn->dst_reg, insn->src_reg,
3068 insn->off, insn_buf, env->prog);
9bac3d6d
AS
3069 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
3070 verbose("bpf verifier is misconfigured\n");
3071 return -EINVAL;
3072 }
3073
3df126f3
JK
3074 new_prog = bpf_patch_insn_single(env->prog, i + delta, insn_buf,
3075 cnt);
9bac3d6d
AS
3076 if (!new_prog)
3077 return -ENOMEM;
3078
3df126f3 3079 delta += cnt - 1;
9bac3d6d
AS
3080
3081 /* keep walking new program and skip insns we just inserted */
3082 env->prog = new_prog;
3df126f3 3083 insn = new_prog->insnsi + i + delta;
9bac3d6d
AS
3084 }
3085
3086 return 0;
3087}
3088
58e2af8b 3089static void free_states(struct bpf_verifier_env *env)
f1bca824 3090{
58e2af8b 3091 struct bpf_verifier_state_list *sl, *sln;
f1bca824
AS
3092 int i;
3093
3094 if (!env->explored_states)
3095 return;
3096
3097 for (i = 0; i < env->prog->len; i++) {
3098 sl = env->explored_states[i];
3099
3100 if (sl)
3101 while (sl != STATE_LIST_MARK) {
3102 sln = sl->next;
3103 kfree(sl);
3104 sl = sln;
3105 }
3106 }
3107
3108 kfree(env->explored_states);
3109}
3110
9bac3d6d 3111int bpf_check(struct bpf_prog **prog, union bpf_attr *attr)
51580e79 3112{
cbd35700 3113 char __user *log_ubuf = NULL;
58e2af8b 3114 struct bpf_verifier_env *env;
51580e79
AS
3115 int ret = -EINVAL;
3116
9bac3d6d 3117 if ((*prog)->len <= 0 || (*prog)->len > BPF_MAXINSNS)
cbd35700
AS
3118 return -E2BIG;
3119
58e2af8b 3120 /* 'struct bpf_verifier_env' can be global, but since it's not small,
cbd35700
AS
3121 * allocate/free it every time bpf_check() is called
3122 */
58e2af8b 3123 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
cbd35700
AS
3124 if (!env)
3125 return -ENOMEM;
3126
3df126f3
JK
3127 env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
3128 (*prog)->len);
3129 ret = -ENOMEM;
3130 if (!env->insn_aux_data)
3131 goto err_free_env;
9bac3d6d 3132 env->prog = *prog;
0246e64d 3133
cbd35700
AS
3134 /* grab the mutex to protect few globals used by verifier */
3135 mutex_lock(&bpf_verifier_lock);
3136
3137 if (attr->log_level || attr->log_buf || attr->log_size) {
3138 /* user requested verbose verifier output
3139 * and supplied buffer to store the verification trace
3140 */
3141 log_level = attr->log_level;
3142 log_ubuf = (char __user *) (unsigned long) attr->log_buf;
3143 log_size = attr->log_size;
3144 log_len = 0;
3145
3146 ret = -EINVAL;
3147 /* log_* values have to be sane */
3148 if (log_size < 128 || log_size > UINT_MAX >> 8 ||
3149 log_level == 0 || log_ubuf == NULL)
3df126f3 3150 goto err_unlock;
cbd35700
AS
3151
3152 ret = -ENOMEM;
3153 log_buf = vmalloc(log_size);
3154 if (!log_buf)
3df126f3 3155 goto err_unlock;
cbd35700
AS
3156 } else {
3157 log_level = 0;
3158 }
3159
0246e64d
AS
3160 ret = replace_map_fd_with_map_ptr(env);
3161 if (ret < 0)
3162 goto skip_full_check;
3163
9bac3d6d 3164 env->explored_states = kcalloc(env->prog->len,
58e2af8b 3165 sizeof(struct bpf_verifier_state_list *),
f1bca824
AS
3166 GFP_USER);
3167 ret = -ENOMEM;
3168 if (!env->explored_states)
3169 goto skip_full_check;
3170
475fb78f
AS
3171 ret = check_cfg(env);
3172 if (ret < 0)
3173 goto skip_full_check;
3174
1be7f75d
AS
3175 env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
3176
17a52670 3177 ret = do_check(env);
cbd35700 3178
0246e64d 3179skip_full_check:
17a52670 3180 while (pop_stack(env, NULL) >= 0);
f1bca824 3181 free_states(env);
0246e64d 3182
9bac3d6d
AS
3183 if (ret == 0)
3184 /* program is valid, convert *(u32*)(ctx + off) accesses */
3185 ret = convert_ctx_accesses(env);
3186
cbd35700
AS
3187 if (log_level && log_len >= log_size - 1) {
3188 BUG_ON(log_len >= log_size);
3189 /* verifier log exceeded user supplied buffer */
3190 ret = -ENOSPC;
3191 /* fall through to return what was recorded */
3192 }
3193
3194 /* copy verifier log back to user space including trailing zero */
3195 if (log_level && copy_to_user(log_ubuf, log_buf, log_len + 1) != 0) {
3196 ret = -EFAULT;
3197 goto free_log_buf;
3198 }
3199
0246e64d
AS
3200 if (ret == 0 && env->used_map_cnt) {
3201 /* if program passed verifier, update used_maps in bpf_prog_info */
9bac3d6d
AS
3202 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
3203 sizeof(env->used_maps[0]),
3204 GFP_KERNEL);
0246e64d 3205
9bac3d6d 3206 if (!env->prog->aux->used_maps) {
0246e64d
AS
3207 ret = -ENOMEM;
3208 goto free_log_buf;
3209 }
3210
9bac3d6d 3211 memcpy(env->prog->aux->used_maps, env->used_maps,
0246e64d 3212 sizeof(env->used_maps[0]) * env->used_map_cnt);
9bac3d6d 3213 env->prog->aux->used_map_cnt = env->used_map_cnt;
0246e64d
AS
3214
3215 /* program is valid. Convert pseudo bpf_ld_imm64 into generic
3216 * bpf_ld_imm64 instructions
3217 */
3218 convert_pseudo_ld_imm64(env);
3219 }
cbd35700
AS
3220
3221free_log_buf:
3222 if (log_level)
3223 vfree(log_buf);
9bac3d6d 3224 if (!env->prog->aux->used_maps)
0246e64d
AS
3225 /* if we didn't copy map pointers into bpf_prog_info, release
3226 * them now. Otherwise free_bpf_prog_info() will release them.
3227 */
3228 release_maps(env);
9bac3d6d 3229 *prog = env->prog;
3df126f3 3230err_unlock:
cbd35700 3231 mutex_unlock(&bpf_verifier_lock);
3df126f3
JK
3232 vfree(env->insn_aux_data);
3233err_free_env:
3234 kfree(env);
51580e79
AS
3235 return ret;
3236}
13a27dfc
JK
3237
3238int bpf_analyzer(struct bpf_prog *prog, const struct bpf_ext_analyzer_ops *ops,
3239 void *priv)
3240{
3241 struct bpf_verifier_env *env;
3242 int ret;
3243
3244 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
3245 if (!env)
3246 return -ENOMEM;
3247
3248 env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
3249 prog->len);
3250 ret = -ENOMEM;
3251 if (!env->insn_aux_data)
3252 goto err_free_env;
3253 env->prog = prog;
3254 env->analyzer_ops = ops;
3255 env->analyzer_priv = priv;
3256
3257 /* grab the mutex to protect few globals used by verifier */
3258 mutex_lock(&bpf_verifier_lock);
3259
3260 log_level = 0;
3261
3262 env->explored_states = kcalloc(env->prog->len,
3263 sizeof(struct bpf_verifier_state_list *),
3264 GFP_KERNEL);
3265 ret = -ENOMEM;
3266 if (!env->explored_states)
3267 goto skip_full_check;
3268
3269 ret = check_cfg(env);
3270 if (ret < 0)
3271 goto skip_full_check;
3272
3273 env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
3274
3275 ret = do_check(env);
3276
3277skip_full_check:
3278 while (pop_stack(env, NULL) >= 0);
3279 free_states(env);
3280
3281 mutex_unlock(&bpf_verifier_lock);
3282 vfree(env->insn_aux_data);
3283err_free_env:
3284 kfree(env);
3285 return ret;
3286}
3287EXPORT_SYMBOL_GPL(bpf_analyzer);