]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - kernel/bpf/verifier.c
bpf: allow adjusted map element values to spill
[mirror_ubuntu-hirsute-kernel.git] / kernel / bpf / verifier.c
CommitLineData
51580e79 1/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
969bf05e 2 * Copyright (c) 2016 Facebook
51580e79
AS
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 */
13#include <linux/kernel.h>
14#include <linux/types.h>
15#include <linux/slab.h>
16#include <linux/bpf.h>
58e2af8b 17#include <linux/bpf_verifier.h>
51580e79
AS
18#include <linux/filter.h>
19#include <net/netlink.h>
20#include <linux/file.h>
21#include <linux/vmalloc.h>
ebb676da 22#include <linux/stringify.h>
51580e79
AS
23
24/* bpf_check() is a static code analyzer that walks eBPF program
25 * instruction by instruction and updates register/stack state.
26 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
27 *
28 * The first pass is depth-first-search to check that the program is a DAG.
29 * It rejects the following programs:
30 * - larger than BPF_MAXINSNS insns
31 * - if loop is present (detected via back-edge)
32 * - unreachable insns exist (shouldn't be a forest. program = one function)
33 * - out of bounds or malformed jumps
34 * The second pass is all possible path descent from the 1st insn.
35 * Since it's analyzing all pathes through the program, the length of the
36 * analysis is limited to 32k insn, which may be hit even if total number of
37 * insn is less then 4K, but there are too many branches that change stack/regs.
38 * Number of 'branches to be analyzed' is limited to 1k
39 *
40 * On entry to each instruction, each register has a type, and the instruction
41 * changes the types of the registers depending on instruction semantics.
42 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
43 * copied to R1.
44 *
45 * All registers are 64-bit.
46 * R0 - return register
47 * R1-R5 argument passing registers
48 * R6-R9 callee saved registers
49 * R10 - frame pointer read-only
50 *
51 * At the start of BPF program the register R1 contains a pointer to bpf_context
52 * and has type PTR_TO_CTX.
53 *
54 * Verifier tracks arithmetic operations on pointers in case:
55 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
56 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
57 * 1st insn copies R10 (which has FRAME_PTR) type into R1
58 * and 2nd arithmetic instruction is pattern matched to recognize
59 * that it wants to construct a pointer to some element within stack.
60 * So after 2nd insn, the register R1 has type PTR_TO_STACK
61 * (and -20 constant is saved for further stack bounds checking).
62 * Meaning that this reg is a pointer to stack plus known immediate constant.
63 *
64 * Most of the time the registers have UNKNOWN_VALUE type, which
65 * means the register has some value, but it's not a valid pointer.
66 * (like pointer plus pointer becomes UNKNOWN_VALUE type)
67 *
68 * When verifier sees load or store instructions the type of base register
69 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, FRAME_PTR. These are three pointer
70 * types recognized by check_mem_access() function.
71 *
72 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
73 * and the range of [ptr, ptr + map's value_size) is accessible.
74 *
75 * registers used to pass values to function calls are checked against
76 * function argument constraints.
77 *
78 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
79 * It means that the register type passed to this function must be
80 * PTR_TO_STACK and it will be used inside the function as
81 * 'pointer to map element key'
82 *
83 * For example the argument constraints for bpf_map_lookup_elem():
84 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
85 * .arg1_type = ARG_CONST_MAP_PTR,
86 * .arg2_type = ARG_PTR_TO_MAP_KEY,
87 *
88 * ret_type says that this function returns 'pointer to map elem value or null'
89 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
90 * 2nd argument should be a pointer to stack, which will be used inside
91 * the helper function as a pointer to map element key.
92 *
93 * On the kernel side the helper function looks like:
94 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
95 * {
96 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
97 * void *key = (void *) (unsigned long) r2;
98 * void *value;
99 *
100 * here kernel can access 'key' and 'map' pointers safely, knowing that
101 * [key, key + map->key_size) bytes are valid and were initialized on
102 * the stack of eBPF program.
103 * }
104 *
105 * Corresponding eBPF program may look like:
106 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
107 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
108 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
109 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
110 * here verifier looks at prototype of map_lookup_elem() and sees:
111 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
112 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
113 *
114 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
115 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
116 * and were initialized prior to this call.
117 * If it's ok, then verifier allows this BPF_CALL insn and looks at
118 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
119 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
120 * returns ether pointer to map value or NULL.
121 *
122 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
123 * insn, the register holding that pointer in the true branch changes state to
124 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
125 * branch. See check_cond_jmp_op().
126 *
127 * After the call R0 is set to return type of the function and registers R1-R5
128 * are set to NOT_INIT to indicate that they are no longer readable.
129 */
130
17a52670 131/* verifier_state + insn_idx are pushed to stack when branch is encountered */
58e2af8b 132struct bpf_verifier_stack_elem {
17a52670
AS
133 /* verifer state is 'st'
134 * before processing instruction 'insn_idx'
135 * and after processing instruction 'prev_insn_idx'
136 */
58e2af8b 137 struct bpf_verifier_state st;
17a52670
AS
138 int insn_idx;
139 int prev_insn_idx;
58e2af8b 140 struct bpf_verifier_stack_elem *next;
cbd35700
AS
141};
142
07016151
DB
143#define BPF_COMPLEXITY_LIMIT_INSNS 65536
144#define BPF_COMPLEXITY_LIMIT_STACK 1024
145
33ff9823
DB
146struct bpf_call_arg_meta {
147 struct bpf_map *map_ptr;
435faee1 148 bool raw_mode;
36bbef52 149 bool pkt_access;
435faee1
DB
150 int regno;
151 int access_size;
33ff9823
DB
152};
153
cbd35700
AS
154/* verbose verifier prints what it's seeing
155 * bpf_check() is called under lock, so no race to access these global vars
156 */
157static u32 log_level, log_size, log_len;
158static char *log_buf;
159
160static DEFINE_MUTEX(bpf_verifier_lock);
161
162/* log_level controls verbosity level of eBPF verifier.
163 * verbose() is used to dump the verification trace to the log, so the user
164 * can figure out what's wrong with the program
165 */
1d056d9c 166static __printf(1, 2) void verbose(const char *fmt, ...)
cbd35700
AS
167{
168 va_list args;
169
170 if (log_level == 0 || log_len >= log_size - 1)
171 return;
172
173 va_start(args, fmt);
174 log_len += vscnprintf(log_buf + log_len, log_size - log_len, fmt, args);
175 va_end(args);
176}
177
17a52670
AS
178/* string representation of 'enum bpf_reg_type' */
179static const char * const reg_type_str[] = {
180 [NOT_INIT] = "?",
181 [UNKNOWN_VALUE] = "inv",
182 [PTR_TO_CTX] = "ctx",
183 [CONST_PTR_TO_MAP] = "map_ptr",
184 [PTR_TO_MAP_VALUE] = "map_value",
185 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
48461135 186 [PTR_TO_MAP_VALUE_ADJ] = "map_value_adj",
17a52670
AS
187 [FRAME_PTR] = "fp",
188 [PTR_TO_STACK] = "fp",
189 [CONST_IMM] = "imm",
969bf05e
AS
190 [PTR_TO_PACKET] = "pkt",
191 [PTR_TO_PACKET_END] = "pkt_end",
17a52670
AS
192};
193
ebb676da
TG
194#define __BPF_FUNC_STR_FN(x) [BPF_FUNC_ ## x] = __stringify(bpf_ ## x)
195static const char * const func_id_str[] = {
196 __BPF_FUNC_MAPPER(__BPF_FUNC_STR_FN)
197};
198#undef __BPF_FUNC_STR_FN
199
200static const char *func_id_name(int id)
201{
202 BUILD_BUG_ON(ARRAY_SIZE(func_id_str) != __BPF_FUNC_MAX_ID);
203
204 if (id >= 0 && id < __BPF_FUNC_MAX_ID && func_id_str[id])
205 return func_id_str[id];
206 else
207 return "unknown";
208}
209
58e2af8b 210static void print_verifier_state(struct bpf_verifier_state *state)
17a52670 211{
58e2af8b 212 struct bpf_reg_state *reg;
17a52670
AS
213 enum bpf_reg_type t;
214 int i;
215
216 for (i = 0; i < MAX_BPF_REG; i++) {
1a0dc1ac
AS
217 reg = &state->regs[i];
218 t = reg->type;
17a52670
AS
219 if (t == NOT_INIT)
220 continue;
221 verbose(" R%d=%s", i, reg_type_str[t]);
222 if (t == CONST_IMM || t == PTR_TO_STACK)
969bf05e
AS
223 verbose("%lld", reg->imm);
224 else if (t == PTR_TO_PACKET)
225 verbose("(id=%d,off=%d,r=%d)",
226 reg->id, reg->off, reg->range);
227 else if (t == UNKNOWN_VALUE && reg->imm)
228 verbose("%lld", reg->imm);
17a52670 229 else if (t == CONST_PTR_TO_MAP || t == PTR_TO_MAP_VALUE ||
48461135
JB
230 t == PTR_TO_MAP_VALUE_OR_NULL ||
231 t == PTR_TO_MAP_VALUE_ADJ)
57a09bf0 232 verbose("(ks=%d,vs=%d,id=%u)",
1a0dc1ac 233 reg->map_ptr->key_size,
57a09bf0
TG
234 reg->map_ptr->value_size,
235 reg->id);
48461135 236 if (reg->min_value != BPF_REGISTER_MIN_RANGE)
f23cc643
JB
237 verbose(",min_value=%lld",
238 (long long)reg->min_value);
48461135
JB
239 if (reg->max_value != BPF_REGISTER_MAX_RANGE)
240 verbose(",max_value=%llu",
241 (unsigned long long)reg->max_value);
17a52670 242 }
9c399760 243 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
1a0dc1ac 244 if (state->stack_slot_type[i] == STACK_SPILL)
17a52670 245 verbose(" fp%d=%s", -MAX_BPF_STACK + i,
1a0dc1ac 246 reg_type_str[state->spilled_regs[i / BPF_REG_SIZE].type]);
17a52670
AS
247 }
248 verbose("\n");
249}
250
cbd35700
AS
251static const char *const bpf_class_string[] = {
252 [BPF_LD] = "ld",
253 [BPF_LDX] = "ldx",
254 [BPF_ST] = "st",
255 [BPF_STX] = "stx",
256 [BPF_ALU] = "alu",
257 [BPF_JMP] = "jmp",
258 [BPF_RET] = "BUG",
259 [BPF_ALU64] = "alu64",
260};
261
687f0715 262static const char *const bpf_alu_string[16] = {
cbd35700
AS
263 [BPF_ADD >> 4] = "+=",
264 [BPF_SUB >> 4] = "-=",
265 [BPF_MUL >> 4] = "*=",
266 [BPF_DIV >> 4] = "/=",
267 [BPF_OR >> 4] = "|=",
268 [BPF_AND >> 4] = "&=",
269 [BPF_LSH >> 4] = "<<=",
270 [BPF_RSH >> 4] = ">>=",
271 [BPF_NEG >> 4] = "neg",
272 [BPF_MOD >> 4] = "%=",
273 [BPF_XOR >> 4] = "^=",
274 [BPF_MOV >> 4] = "=",
275 [BPF_ARSH >> 4] = "s>>=",
276 [BPF_END >> 4] = "endian",
277};
278
279static const char *const bpf_ldst_string[] = {
280 [BPF_W >> 3] = "u32",
281 [BPF_H >> 3] = "u16",
282 [BPF_B >> 3] = "u8",
283 [BPF_DW >> 3] = "u64",
284};
285
687f0715 286static const char *const bpf_jmp_string[16] = {
cbd35700
AS
287 [BPF_JA >> 4] = "jmp",
288 [BPF_JEQ >> 4] = "==",
289 [BPF_JGT >> 4] = ">",
290 [BPF_JGE >> 4] = ">=",
291 [BPF_JSET >> 4] = "&",
292 [BPF_JNE >> 4] = "!=",
293 [BPF_JSGT >> 4] = "s>",
294 [BPF_JSGE >> 4] = "s>=",
295 [BPF_CALL >> 4] = "call",
296 [BPF_EXIT >> 4] = "exit",
297};
298
299static void print_bpf_insn(struct bpf_insn *insn)
300{
301 u8 class = BPF_CLASS(insn->code);
302
303 if (class == BPF_ALU || class == BPF_ALU64) {
304 if (BPF_SRC(insn->code) == BPF_X)
305 verbose("(%02x) %sr%d %s %sr%d\n",
306 insn->code, class == BPF_ALU ? "(u32) " : "",
307 insn->dst_reg,
308 bpf_alu_string[BPF_OP(insn->code) >> 4],
309 class == BPF_ALU ? "(u32) " : "",
310 insn->src_reg);
311 else
312 verbose("(%02x) %sr%d %s %s%d\n",
313 insn->code, class == BPF_ALU ? "(u32) " : "",
314 insn->dst_reg,
315 bpf_alu_string[BPF_OP(insn->code) >> 4],
316 class == BPF_ALU ? "(u32) " : "",
317 insn->imm);
318 } else if (class == BPF_STX) {
319 if (BPF_MODE(insn->code) == BPF_MEM)
320 verbose("(%02x) *(%s *)(r%d %+d) = r%d\n",
321 insn->code,
322 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
323 insn->dst_reg,
324 insn->off, insn->src_reg);
325 else if (BPF_MODE(insn->code) == BPF_XADD)
326 verbose("(%02x) lock *(%s *)(r%d %+d) += r%d\n",
327 insn->code,
328 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
329 insn->dst_reg, insn->off,
330 insn->src_reg);
331 else
332 verbose("BUG_%02x\n", insn->code);
333 } else if (class == BPF_ST) {
334 if (BPF_MODE(insn->code) != BPF_MEM) {
335 verbose("BUG_st_%02x\n", insn->code);
336 return;
337 }
338 verbose("(%02x) *(%s *)(r%d %+d) = %d\n",
339 insn->code,
340 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
341 insn->dst_reg,
342 insn->off, insn->imm);
343 } else if (class == BPF_LDX) {
344 if (BPF_MODE(insn->code) != BPF_MEM) {
345 verbose("BUG_ldx_%02x\n", insn->code);
346 return;
347 }
348 verbose("(%02x) r%d = *(%s *)(r%d %+d)\n",
349 insn->code, insn->dst_reg,
350 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
351 insn->src_reg, insn->off);
352 } else if (class == BPF_LD) {
353 if (BPF_MODE(insn->code) == BPF_ABS) {
354 verbose("(%02x) r0 = *(%s *)skb[%d]\n",
355 insn->code,
356 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
357 insn->imm);
358 } else if (BPF_MODE(insn->code) == BPF_IND) {
359 verbose("(%02x) r0 = *(%s *)skb[r%d + %d]\n",
360 insn->code,
361 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
362 insn->src_reg, insn->imm);
363 } else if (BPF_MODE(insn->code) == BPF_IMM) {
364 verbose("(%02x) r%d = 0x%x\n",
365 insn->code, insn->dst_reg, insn->imm);
366 } else {
367 verbose("BUG_ld_%02x\n", insn->code);
368 return;
369 }
370 } else if (class == BPF_JMP) {
371 u8 opcode = BPF_OP(insn->code);
372
373 if (opcode == BPF_CALL) {
ebb676da
TG
374 verbose("(%02x) call %s#%d\n", insn->code,
375 func_id_name(insn->imm), insn->imm);
cbd35700
AS
376 } else if (insn->code == (BPF_JMP | BPF_JA)) {
377 verbose("(%02x) goto pc%+d\n",
378 insn->code, insn->off);
379 } else if (insn->code == (BPF_JMP | BPF_EXIT)) {
380 verbose("(%02x) exit\n", insn->code);
381 } else if (BPF_SRC(insn->code) == BPF_X) {
382 verbose("(%02x) if r%d %s r%d goto pc%+d\n",
383 insn->code, insn->dst_reg,
384 bpf_jmp_string[BPF_OP(insn->code) >> 4],
385 insn->src_reg, insn->off);
386 } else {
387 verbose("(%02x) if r%d %s 0x%x goto pc%+d\n",
388 insn->code, insn->dst_reg,
389 bpf_jmp_string[BPF_OP(insn->code) >> 4],
390 insn->imm, insn->off);
391 }
392 } else {
393 verbose("(%02x) %s\n", insn->code, bpf_class_string[class]);
394 }
395}
396
58e2af8b 397static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx)
17a52670 398{
58e2af8b 399 struct bpf_verifier_stack_elem *elem;
17a52670
AS
400 int insn_idx;
401
402 if (env->head == NULL)
403 return -1;
404
405 memcpy(&env->cur_state, &env->head->st, sizeof(env->cur_state));
406 insn_idx = env->head->insn_idx;
407 if (prev_insn_idx)
408 *prev_insn_idx = env->head->prev_insn_idx;
409 elem = env->head->next;
410 kfree(env->head);
411 env->head = elem;
412 env->stack_size--;
413 return insn_idx;
414}
415
58e2af8b
JK
416static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
417 int insn_idx, int prev_insn_idx)
17a52670 418{
58e2af8b 419 struct bpf_verifier_stack_elem *elem;
17a52670 420
58e2af8b 421 elem = kmalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
17a52670
AS
422 if (!elem)
423 goto err;
424
425 memcpy(&elem->st, &env->cur_state, sizeof(env->cur_state));
426 elem->insn_idx = insn_idx;
427 elem->prev_insn_idx = prev_insn_idx;
428 elem->next = env->head;
429 env->head = elem;
430 env->stack_size++;
07016151 431 if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) {
17a52670
AS
432 verbose("BPF program is too complex\n");
433 goto err;
434 }
435 return &elem->st;
436err:
437 /* pop all elements and return */
438 while (pop_stack(env, NULL) >= 0);
439 return NULL;
440}
441
442#define CALLER_SAVED_REGS 6
443static const int caller_saved[CALLER_SAVED_REGS] = {
444 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
445};
446
58e2af8b 447static void init_reg_state(struct bpf_reg_state *regs)
17a52670
AS
448{
449 int i;
450
451 for (i = 0; i < MAX_BPF_REG; i++) {
452 regs[i].type = NOT_INIT;
453 regs[i].imm = 0;
48461135
JB
454 regs[i].min_value = BPF_REGISTER_MIN_RANGE;
455 regs[i].max_value = BPF_REGISTER_MAX_RANGE;
17a52670
AS
456 }
457
458 /* frame pointer */
459 regs[BPF_REG_FP].type = FRAME_PTR;
460
461 /* 1st arg to a function */
462 regs[BPF_REG_1].type = PTR_TO_CTX;
463}
464
6760bf2d 465static void __mark_reg_unknown_value(struct bpf_reg_state *regs, u32 regno)
17a52670 466{
17a52670 467 regs[regno].type = UNKNOWN_VALUE;
57a09bf0 468 regs[regno].id = 0;
17a52670 469 regs[regno].imm = 0;
17a52670
AS
470}
471
6760bf2d
DB
472static void mark_reg_unknown_value(struct bpf_reg_state *regs, u32 regno)
473{
474 BUG_ON(regno >= MAX_BPF_REG);
475 __mark_reg_unknown_value(regs, regno);
476}
477
48461135
JB
478static void reset_reg_range_values(struct bpf_reg_state *regs, u32 regno)
479{
480 regs[regno].min_value = BPF_REGISTER_MIN_RANGE;
481 regs[regno].max_value = BPF_REGISTER_MAX_RANGE;
482}
483
f0318d01
GB
484static void mark_reg_unknown_value_and_range(struct bpf_reg_state *regs,
485 u32 regno)
486{
487 mark_reg_unknown_value(regs, regno);
488 reset_reg_range_values(regs, regno);
489}
490
17a52670
AS
491enum reg_arg_type {
492 SRC_OP, /* register is used as source operand */
493 DST_OP, /* register is used as destination operand */
494 DST_OP_NO_MARK /* same as above, check only, don't mark */
495};
496
58e2af8b 497static int check_reg_arg(struct bpf_reg_state *regs, u32 regno,
17a52670
AS
498 enum reg_arg_type t)
499{
500 if (regno >= MAX_BPF_REG) {
501 verbose("R%d is invalid\n", regno);
502 return -EINVAL;
503 }
504
505 if (t == SRC_OP) {
506 /* check whether register used as source operand can be read */
507 if (regs[regno].type == NOT_INIT) {
508 verbose("R%d !read_ok\n", regno);
509 return -EACCES;
510 }
511 } else {
512 /* check whether register used as dest operand can be written to */
513 if (regno == BPF_REG_FP) {
514 verbose("frame pointer is read only\n");
515 return -EACCES;
516 }
517 if (t == DST_OP)
518 mark_reg_unknown_value(regs, regno);
519 }
520 return 0;
521}
522
523static int bpf_size_to_bytes(int bpf_size)
524{
525 if (bpf_size == BPF_W)
526 return 4;
527 else if (bpf_size == BPF_H)
528 return 2;
529 else if (bpf_size == BPF_B)
530 return 1;
531 else if (bpf_size == BPF_DW)
532 return 8;
533 else
534 return -EINVAL;
535}
536
1be7f75d
AS
537static bool is_spillable_regtype(enum bpf_reg_type type)
538{
539 switch (type) {
540 case PTR_TO_MAP_VALUE:
541 case PTR_TO_MAP_VALUE_OR_NULL:
f0318d01 542 case PTR_TO_MAP_VALUE_ADJ:
1be7f75d
AS
543 case PTR_TO_STACK:
544 case PTR_TO_CTX:
969bf05e
AS
545 case PTR_TO_PACKET:
546 case PTR_TO_PACKET_END:
1be7f75d
AS
547 case FRAME_PTR:
548 case CONST_PTR_TO_MAP:
549 return true;
550 default:
551 return false;
552 }
553}
554
17a52670
AS
555/* check_stack_read/write functions track spill/fill of registers,
556 * stack boundary and alignment are checked in check_mem_access()
557 */
58e2af8b
JK
558static int check_stack_write(struct bpf_verifier_state *state, int off,
559 int size, int value_regno)
17a52670 560{
17a52670 561 int i;
9c399760
AS
562 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
563 * so it's aligned access and [off, off + size) are within stack limits
564 */
17a52670
AS
565
566 if (value_regno >= 0 &&
1be7f75d 567 is_spillable_regtype(state->regs[value_regno].type)) {
17a52670
AS
568
569 /* register containing pointer is being spilled into stack */
9c399760 570 if (size != BPF_REG_SIZE) {
17a52670
AS
571 verbose("invalid size of register spill\n");
572 return -EACCES;
573 }
574
17a52670 575 /* save register state */
9c399760
AS
576 state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE] =
577 state->regs[value_regno];
17a52670 578
9c399760
AS
579 for (i = 0; i < BPF_REG_SIZE; i++)
580 state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_SPILL;
581 } else {
17a52670 582 /* regular write of data into stack */
9c399760 583 state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE] =
58e2af8b 584 (struct bpf_reg_state) {};
9c399760
AS
585
586 for (i = 0; i < size; i++)
587 state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_MISC;
17a52670
AS
588 }
589 return 0;
590}
591
58e2af8b 592static int check_stack_read(struct bpf_verifier_state *state, int off, int size,
17a52670
AS
593 int value_regno)
594{
9c399760 595 u8 *slot_type;
17a52670 596 int i;
17a52670 597
9c399760 598 slot_type = &state->stack_slot_type[MAX_BPF_STACK + off];
17a52670 599
9c399760
AS
600 if (slot_type[0] == STACK_SPILL) {
601 if (size != BPF_REG_SIZE) {
17a52670
AS
602 verbose("invalid size of register spill\n");
603 return -EACCES;
604 }
9c399760
AS
605 for (i = 1; i < BPF_REG_SIZE; i++) {
606 if (slot_type[i] != STACK_SPILL) {
17a52670
AS
607 verbose("corrupted spill memory\n");
608 return -EACCES;
609 }
610 }
611
612 if (value_regno >= 0)
613 /* restore register state from stack */
9c399760
AS
614 state->regs[value_regno] =
615 state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE];
17a52670
AS
616 return 0;
617 } else {
618 for (i = 0; i < size; i++) {
9c399760 619 if (slot_type[i] != STACK_MISC) {
17a52670
AS
620 verbose("invalid read from stack off %d+%d size %d\n",
621 off, i, size);
622 return -EACCES;
623 }
624 }
625 if (value_regno >= 0)
626 /* have read misc data from the stack */
f0318d01
GB
627 mark_reg_unknown_value_and_range(state->regs,
628 value_regno);
17a52670
AS
629 return 0;
630 }
631}
632
633/* check read/write into map element returned by bpf_map_lookup_elem() */
58e2af8b 634static int check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
17a52670
AS
635 int size)
636{
637 struct bpf_map *map = env->cur_state.regs[regno].map_ptr;
638
5722569b 639 if (off < 0 || size <= 0 || off + size > map->value_size) {
17a52670
AS
640 verbose("invalid access to map value, value_size=%d off=%d size=%d\n",
641 map->value_size, off, size);
642 return -EACCES;
643 }
644 return 0;
645}
646
dbcfe5f7
GB
647/* check read/write into an adjusted map element */
648static int check_map_access_adj(struct bpf_verifier_env *env, u32 regno,
649 int off, int size)
650{
651 struct bpf_verifier_state *state = &env->cur_state;
652 struct bpf_reg_state *reg = &state->regs[regno];
653 int err;
654
655 /* We adjusted the register to this map value, so we
656 * need to change off and size to min_value and max_value
657 * respectively to make sure our theoretical access will be
658 * safe.
659 */
660 if (log_level)
661 print_verifier_state(state);
662 env->varlen_map_value_access = true;
663 /* The minimum value is only important with signed
664 * comparisons where we can't assume the floor of a
665 * value is 0. If we are using signed variables for our
666 * index'es we need to make sure that whatever we use
667 * will have a set floor within our range.
668 */
669 if (reg->min_value < 0) {
670 verbose("R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
671 regno);
672 return -EACCES;
673 }
674 err = check_map_access(env, regno, reg->min_value + off, size);
675 if (err) {
676 verbose("R%d min value is outside of the array range\n",
677 regno);
678 return err;
679 }
680
681 /* If we haven't set a max value then we need to bail
682 * since we can't be sure we won't do bad things.
683 */
684 if (reg->max_value == BPF_REGISTER_MAX_RANGE) {
685 verbose("R%d unbounded memory access, make sure to bounds check any array access into a map\n",
686 regno);
687 return -EACCES;
688 }
689 return check_map_access(env, regno, reg->max_value + off, size);
690}
691
969bf05e
AS
692#define MAX_PACKET_OFF 0xffff
693
58e2af8b 694static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
3a0af8fd
TG
695 const struct bpf_call_arg_meta *meta,
696 enum bpf_access_type t)
4acf6c0b 697{
36bbef52 698 switch (env->prog->type) {
3a0af8fd
TG
699 case BPF_PROG_TYPE_LWT_IN:
700 case BPF_PROG_TYPE_LWT_OUT:
701 /* dst_input() and dst_output() can't write for now */
702 if (t == BPF_WRITE)
703 return false;
36bbef52
DB
704 case BPF_PROG_TYPE_SCHED_CLS:
705 case BPF_PROG_TYPE_SCHED_ACT:
4acf6c0b 706 case BPF_PROG_TYPE_XDP:
3a0af8fd 707 case BPF_PROG_TYPE_LWT_XMIT:
36bbef52
DB
708 if (meta)
709 return meta->pkt_access;
710
711 env->seen_direct_write = true;
4acf6c0b
BB
712 return true;
713 default:
714 return false;
715 }
716}
717
58e2af8b 718static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
969bf05e
AS
719 int size)
720{
58e2af8b
JK
721 struct bpf_reg_state *regs = env->cur_state.regs;
722 struct bpf_reg_state *reg = &regs[regno];
969bf05e 723
d91b28ed 724 off += reg->off;
b399cf64 725 if (off < 0 || size <= 0 || off + size > reg->range) {
d91b28ed
AS
726 verbose("invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
727 off, size, regno, reg->id, reg->off, reg->range);
969bf05e
AS
728 return -EACCES;
729 }
730 return 0;
731}
732
17a52670 733/* check access to 'struct bpf_context' fields */
58e2af8b 734static int check_ctx_access(struct bpf_verifier_env *env, int off, int size,
19de99f7 735 enum bpf_access_type t, enum bpf_reg_type *reg_type)
17a52670 736{
13a27dfc
JK
737 /* for analyzer ctx accesses are already validated and converted */
738 if (env->analyzer_ops)
739 return 0;
740
17a52670 741 if (env->prog->aux->ops->is_valid_access &&
19de99f7 742 env->prog->aux->ops->is_valid_access(off, size, t, reg_type)) {
32bbe007
AS
743 /* remember the offset of last byte accessed in ctx */
744 if (env->prog->aux->max_ctx_offset < off + size)
745 env->prog->aux->max_ctx_offset = off + size;
17a52670 746 return 0;
32bbe007 747 }
17a52670
AS
748
749 verbose("invalid bpf_context access off=%d size=%d\n", off, size);
750 return -EACCES;
751}
752
58e2af8b 753static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
1be7f75d
AS
754{
755 if (env->allow_ptr_leaks)
756 return false;
757
758 switch (env->cur_state.regs[regno].type) {
759 case UNKNOWN_VALUE:
760 case CONST_IMM:
761 return false;
762 default:
763 return true;
764 }
765}
766
58e2af8b
JK
767static int check_ptr_alignment(struct bpf_verifier_env *env,
768 struct bpf_reg_state *reg, int off, int size)
969bf05e 769{
48461135 770 if (reg->type != PTR_TO_PACKET && reg->type != PTR_TO_MAP_VALUE_ADJ) {
969bf05e 771 if (off % size != 0) {
58e2af8b
JK
772 verbose("misaligned access off %d size %d\n",
773 off, size);
969bf05e
AS
774 return -EACCES;
775 } else {
776 return 0;
777 }
778 }
779
969bf05e
AS
780 if (IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
781 /* misaligned access to packet is ok on x86,arm,arm64 */
782 return 0;
783
784 if (reg->id && size != 1) {
785 verbose("Unknown packet alignment. Only byte-sized access allowed\n");
786 return -EACCES;
787 }
788
789 /* skb->data is NET_IP_ALIGN-ed */
48461135
JB
790 if (reg->type == PTR_TO_PACKET &&
791 (NET_IP_ALIGN + reg->off + off) % size != 0) {
969bf05e
AS
792 verbose("misaligned packet access off %d+%d+%d size %d\n",
793 NET_IP_ALIGN, reg->off, off, size);
794 return -EACCES;
795 }
796 return 0;
797}
798
17a52670
AS
799/* check whether memory at (regno + off) is accessible for t = (read | write)
800 * if t==write, value_regno is a register which value is stored into memory
801 * if t==read, value_regno is a register which will receive the value from memory
802 * if t==write && value_regno==-1, some unknown value is stored into memory
803 * if t==read && value_regno==-1, don't care what we read from memory
804 */
58e2af8b 805static int check_mem_access(struct bpf_verifier_env *env, u32 regno, int off,
17a52670
AS
806 int bpf_size, enum bpf_access_type t,
807 int value_regno)
808{
58e2af8b
JK
809 struct bpf_verifier_state *state = &env->cur_state;
810 struct bpf_reg_state *reg = &state->regs[regno];
17a52670
AS
811 int size, err = 0;
812
1a0dc1ac
AS
813 if (reg->type == PTR_TO_STACK)
814 off += reg->imm;
24b4d2ab 815
17a52670
AS
816 size = bpf_size_to_bytes(bpf_size);
817 if (size < 0)
818 return size;
819
969bf05e
AS
820 err = check_ptr_alignment(env, reg, off, size);
821 if (err)
822 return err;
17a52670 823
48461135
JB
824 if (reg->type == PTR_TO_MAP_VALUE ||
825 reg->type == PTR_TO_MAP_VALUE_ADJ) {
1be7f75d
AS
826 if (t == BPF_WRITE && value_regno >= 0 &&
827 is_pointer_value(env, value_regno)) {
828 verbose("R%d leaks addr into map\n", value_regno);
829 return -EACCES;
830 }
48461135 831
dbcfe5f7
GB
832 if (reg->type == PTR_TO_MAP_VALUE_ADJ)
833 err = check_map_access_adj(env, regno, off, size);
834 else
835 err = check_map_access(env, regno, off, size);
17a52670 836 if (!err && t == BPF_READ && value_regno >= 0)
f0318d01
GB
837 mark_reg_unknown_value_and_range(state->regs,
838 value_regno);
17a52670 839
1a0dc1ac 840 } else if (reg->type == PTR_TO_CTX) {
19de99f7
AS
841 enum bpf_reg_type reg_type = UNKNOWN_VALUE;
842
1be7f75d
AS
843 if (t == BPF_WRITE && value_regno >= 0 &&
844 is_pointer_value(env, value_regno)) {
845 verbose("R%d leaks addr into ctx\n", value_regno);
846 return -EACCES;
847 }
19de99f7 848 err = check_ctx_access(env, off, size, t, &reg_type);
969bf05e 849 if (!err && t == BPF_READ && value_regno >= 0) {
f0318d01
GB
850 mark_reg_unknown_value_and_range(state->regs,
851 value_regno);
1955351d
MS
852 /* note that reg.[id|off|range] == 0 */
853 state->regs[value_regno].type = reg_type;
969bf05e 854 }
17a52670 855
1a0dc1ac 856 } else if (reg->type == FRAME_PTR || reg->type == PTR_TO_STACK) {
17a52670
AS
857 if (off >= 0 || off < -MAX_BPF_STACK) {
858 verbose("invalid stack off=%d size=%d\n", off, size);
859 return -EACCES;
860 }
1be7f75d
AS
861 if (t == BPF_WRITE) {
862 if (!env->allow_ptr_leaks &&
863 state->stack_slot_type[MAX_BPF_STACK + off] == STACK_SPILL &&
864 size != BPF_REG_SIZE) {
865 verbose("attempt to corrupt spilled pointer on stack\n");
866 return -EACCES;
867 }
17a52670 868 err = check_stack_write(state, off, size, value_regno);
1be7f75d 869 } else {
17a52670 870 err = check_stack_read(state, off, size, value_regno);
1be7f75d 871 }
969bf05e 872 } else if (state->regs[regno].type == PTR_TO_PACKET) {
3a0af8fd 873 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
969bf05e
AS
874 verbose("cannot write into packet\n");
875 return -EACCES;
876 }
4acf6c0b
BB
877 if (t == BPF_WRITE && value_regno >= 0 &&
878 is_pointer_value(env, value_regno)) {
879 verbose("R%d leaks addr into packet\n", value_regno);
880 return -EACCES;
881 }
969bf05e
AS
882 err = check_packet_access(env, regno, off, size);
883 if (!err && t == BPF_READ && value_regno >= 0)
f0318d01
GB
884 mark_reg_unknown_value_and_range(state->regs,
885 value_regno);
17a52670
AS
886 } else {
887 verbose("R%d invalid mem access '%s'\n",
1a0dc1ac 888 regno, reg_type_str[reg->type]);
17a52670
AS
889 return -EACCES;
890 }
969bf05e
AS
891
892 if (!err && size <= 2 && value_regno >= 0 && env->allow_ptr_leaks &&
893 state->regs[value_regno].type == UNKNOWN_VALUE) {
894 /* 1 or 2 byte load zero-extends, determine the number of
895 * zero upper bits. Not doing it fo 4 byte load, since
896 * such values cannot be added to ptr_to_packet anyway.
897 */
898 state->regs[value_regno].imm = 64 - size * 8;
899 }
17a52670
AS
900 return err;
901}
902
58e2af8b 903static int check_xadd(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 904{
58e2af8b 905 struct bpf_reg_state *regs = env->cur_state.regs;
17a52670
AS
906 int err;
907
908 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
909 insn->imm != 0) {
910 verbose("BPF_XADD uses reserved fields\n");
911 return -EINVAL;
912 }
913
914 /* check src1 operand */
915 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
916 if (err)
917 return err;
918
919 /* check src2 operand */
920 err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
921 if (err)
922 return err;
923
924 /* check whether atomic_add can read the memory */
925 err = check_mem_access(env, insn->dst_reg, insn->off,
926 BPF_SIZE(insn->code), BPF_READ, -1);
927 if (err)
928 return err;
929
930 /* check whether atomic_add can write into the same memory */
931 return check_mem_access(env, insn->dst_reg, insn->off,
932 BPF_SIZE(insn->code), BPF_WRITE, -1);
933}
934
935/* when register 'regno' is passed into function that will read 'access_size'
936 * bytes from that pointer, make sure that it's within stack boundary
937 * and all elements of stack are initialized
938 */
58e2af8b 939static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
435faee1
DB
940 int access_size, bool zero_size_allowed,
941 struct bpf_call_arg_meta *meta)
17a52670 942{
58e2af8b
JK
943 struct bpf_verifier_state *state = &env->cur_state;
944 struct bpf_reg_state *regs = state->regs;
17a52670
AS
945 int off, i;
946
8e2fe1d9
DB
947 if (regs[regno].type != PTR_TO_STACK) {
948 if (zero_size_allowed && access_size == 0 &&
949 regs[regno].type == CONST_IMM &&
950 regs[regno].imm == 0)
951 return 0;
952
953 verbose("R%d type=%s expected=%s\n", regno,
954 reg_type_str[regs[regno].type],
955 reg_type_str[PTR_TO_STACK]);
17a52670 956 return -EACCES;
8e2fe1d9 957 }
17a52670
AS
958
959 off = regs[regno].imm;
960 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
961 access_size <= 0) {
962 verbose("invalid stack type R%d off=%d access_size=%d\n",
963 regno, off, access_size);
964 return -EACCES;
965 }
966
435faee1
DB
967 if (meta && meta->raw_mode) {
968 meta->access_size = access_size;
969 meta->regno = regno;
970 return 0;
971 }
972
17a52670 973 for (i = 0; i < access_size; i++) {
9c399760 974 if (state->stack_slot_type[MAX_BPF_STACK + off + i] != STACK_MISC) {
17a52670
AS
975 verbose("invalid indirect read from stack off %d+%d size %d\n",
976 off, i, access_size);
977 return -EACCES;
978 }
979 }
980 return 0;
981}
982
58e2af8b 983static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
33ff9823
DB
984 enum bpf_arg_type arg_type,
985 struct bpf_call_arg_meta *meta)
17a52670 986{
58e2af8b 987 struct bpf_reg_state *regs = env->cur_state.regs, *reg = &regs[regno];
6841de8b 988 enum bpf_reg_type expected_type, type = reg->type;
17a52670
AS
989 int err = 0;
990
80f1d68c 991 if (arg_type == ARG_DONTCARE)
17a52670
AS
992 return 0;
993
6841de8b 994 if (type == NOT_INIT) {
17a52670
AS
995 verbose("R%d !read_ok\n", regno);
996 return -EACCES;
997 }
998
1be7f75d
AS
999 if (arg_type == ARG_ANYTHING) {
1000 if (is_pointer_value(env, regno)) {
1001 verbose("R%d leaks addr into helper function\n", regno);
1002 return -EACCES;
1003 }
80f1d68c 1004 return 0;
1be7f75d 1005 }
80f1d68c 1006
3a0af8fd
TG
1007 if (type == PTR_TO_PACKET &&
1008 !may_access_direct_pkt_data(env, meta, BPF_READ)) {
36bbef52 1009 verbose("helper access to the packet is not allowed\n");
6841de8b
AS
1010 return -EACCES;
1011 }
1012
8e2fe1d9 1013 if (arg_type == ARG_PTR_TO_MAP_KEY ||
17a52670
AS
1014 arg_type == ARG_PTR_TO_MAP_VALUE) {
1015 expected_type = PTR_TO_STACK;
6841de8b
AS
1016 if (type != PTR_TO_PACKET && type != expected_type)
1017 goto err_type;
8e2fe1d9
DB
1018 } else if (arg_type == ARG_CONST_STACK_SIZE ||
1019 arg_type == ARG_CONST_STACK_SIZE_OR_ZERO) {
17a52670 1020 expected_type = CONST_IMM;
6841de8b
AS
1021 if (type != expected_type)
1022 goto err_type;
17a52670
AS
1023 } else if (arg_type == ARG_CONST_MAP_PTR) {
1024 expected_type = CONST_PTR_TO_MAP;
6841de8b
AS
1025 if (type != expected_type)
1026 goto err_type;
608cd71a
AS
1027 } else if (arg_type == ARG_PTR_TO_CTX) {
1028 expected_type = PTR_TO_CTX;
6841de8b
AS
1029 if (type != expected_type)
1030 goto err_type;
435faee1
DB
1031 } else if (arg_type == ARG_PTR_TO_STACK ||
1032 arg_type == ARG_PTR_TO_RAW_STACK) {
8e2fe1d9
DB
1033 expected_type = PTR_TO_STACK;
1034 /* One exception here. In case function allows for NULL to be
1035 * passed in as argument, it's a CONST_IMM type. Final test
1036 * happens during stack boundary checking.
1037 */
6841de8b
AS
1038 if (type == CONST_IMM && reg->imm == 0)
1039 /* final test in check_stack_boundary() */;
5722569b
GB
1040 else if (type != PTR_TO_PACKET && type != PTR_TO_MAP_VALUE &&
1041 type != PTR_TO_MAP_VALUE_ADJ && type != expected_type)
6841de8b 1042 goto err_type;
435faee1 1043 meta->raw_mode = arg_type == ARG_PTR_TO_RAW_STACK;
17a52670
AS
1044 } else {
1045 verbose("unsupported arg_type %d\n", arg_type);
1046 return -EFAULT;
1047 }
1048
17a52670
AS
1049 if (arg_type == ARG_CONST_MAP_PTR) {
1050 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
33ff9823 1051 meta->map_ptr = reg->map_ptr;
17a52670
AS
1052 } else if (arg_type == ARG_PTR_TO_MAP_KEY) {
1053 /* bpf_map_xxx(..., map_ptr, ..., key) call:
1054 * check that [key, key + map->key_size) are within
1055 * stack limits and initialized
1056 */
33ff9823 1057 if (!meta->map_ptr) {
17a52670
AS
1058 /* in function declaration map_ptr must come before
1059 * map_key, so that it's verified and known before
1060 * we have to check map_key here. Otherwise it means
1061 * that kernel subsystem misconfigured verifier
1062 */
1063 verbose("invalid map_ptr to access map->key\n");
1064 return -EACCES;
1065 }
6841de8b
AS
1066 if (type == PTR_TO_PACKET)
1067 err = check_packet_access(env, regno, 0,
1068 meta->map_ptr->key_size);
1069 else
1070 err = check_stack_boundary(env, regno,
1071 meta->map_ptr->key_size,
1072 false, NULL);
17a52670
AS
1073 } else if (arg_type == ARG_PTR_TO_MAP_VALUE) {
1074 /* bpf_map_xxx(..., map_ptr, ..., value) call:
1075 * check [value, value + map->value_size) validity
1076 */
33ff9823 1077 if (!meta->map_ptr) {
17a52670
AS
1078 /* kernel subsystem misconfigured verifier */
1079 verbose("invalid map_ptr to access map->value\n");
1080 return -EACCES;
1081 }
6841de8b
AS
1082 if (type == PTR_TO_PACKET)
1083 err = check_packet_access(env, regno, 0,
1084 meta->map_ptr->value_size);
1085 else
1086 err = check_stack_boundary(env, regno,
1087 meta->map_ptr->value_size,
1088 false, NULL);
8e2fe1d9
DB
1089 } else if (arg_type == ARG_CONST_STACK_SIZE ||
1090 arg_type == ARG_CONST_STACK_SIZE_OR_ZERO) {
1091 bool zero_size_allowed = (arg_type == ARG_CONST_STACK_SIZE_OR_ZERO);
17a52670 1092
17a52670
AS
1093 /* bpf_xxx(..., buf, len) call will access 'len' bytes
1094 * from stack pointer 'buf'. Check it
1095 * note: regno == len, regno - 1 == buf
1096 */
1097 if (regno == 0) {
1098 /* kernel subsystem misconfigured verifier */
1099 verbose("ARG_CONST_STACK_SIZE cannot be first argument\n");
1100 return -EACCES;
1101 }
6841de8b
AS
1102 if (regs[regno - 1].type == PTR_TO_PACKET)
1103 err = check_packet_access(env, regno - 1, 0, reg->imm);
5722569b
GB
1104 else if (regs[regno - 1].type == PTR_TO_MAP_VALUE)
1105 err = check_map_access(env, regno - 1, 0, reg->imm);
1106 else if (regs[regno - 1].type == PTR_TO_MAP_VALUE_ADJ)
1107 err = check_map_access_adj(env, regno - 1, 0, reg->imm);
6841de8b
AS
1108 else
1109 err = check_stack_boundary(env, regno - 1, reg->imm,
1110 zero_size_allowed, meta);
17a52670
AS
1111 }
1112
1113 return err;
6841de8b
AS
1114err_type:
1115 verbose("R%d type=%s expected=%s\n", regno,
1116 reg_type_str[type], reg_type_str[expected_type]);
1117 return -EACCES;
17a52670
AS
1118}
1119
35578d79
KX
1120static int check_map_func_compatibility(struct bpf_map *map, int func_id)
1121{
35578d79
KX
1122 if (!map)
1123 return 0;
1124
6aff67c8
AS
1125 /* We need a two way check, first is from map perspective ... */
1126 switch (map->map_type) {
1127 case BPF_MAP_TYPE_PROG_ARRAY:
1128 if (func_id != BPF_FUNC_tail_call)
1129 goto error;
1130 break;
1131 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
1132 if (func_id != BPF_FUNC_perf_event_read &&
1133 func_id != BPF_FUNC_perf_event_output)
1134 goto error;
1135 break;
1136 case BPF_MAP_TYPE_STACK_TRACE:
1137 if (func_id != BPF_FUNC_get_stackid)
1138 goto error;
1139 break;
4ed8ec52 1140 case BPF_MAP_TYPE_CGROUP_ARRAY:
60747ef4 1141 if (func_id != BPF_FUNC_skb_under_cgroup &&
60d20f91 1142 func_id != BPF_FUNC_current_task_under_cgroup)
4a482f34
MKL
1143 goto error;
1144 break;
6aff67c8
AS
1145 default:
1146 break;
1147 }
1148
1149 /* ... and second from the function itself. */
1150 switch (func_id) {
1151 case BPF_FUNC_tail_call:
1152 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
1153 goto error;
1154 break;
1155 case BPF_FUNC_perf_event_read:
1156 case BPF_FUNC_perf_event_output:
1157 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
1158 goto error;
1159 break;
1160 case BPF_FUNC_get_stackid:
1161 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
1162 goto error;
1163 break;
60d20f91 1164 case BPF_FUNC_current_task_under_cgroup:
747ea55e 1165 case BPF_FUNC_skb_under_cgroup:
4a482f34
MKL
1166 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
1167 goto error;
1168 break;
6aff67c8
AS
1169 default:
1170 break;
35578d79
KX
1171 }
1172
1173 return 0;
6aff67c8 1174error:
ebb676da
TG
1175 verbose("cannot pass map_type %d into func %s#%d\n",
1176 map->map_type, func_id_name(func_id), func_id);
6aff67c8 1177 return -EINVAL;
35578d79
KX
1178}
1179
435faee1
DB
1180static int check_raw_mode(const struct bpf_func_proto *fn)
1181{
1182 int count = 0;
1183
1184 if (fn->arg1_type == ARG_PTR_TO_RAW_STACK)
1185 count++;
1186 if (fn->arg2_type == ARG_PTR_TO_RAW_STACK)
1187 count++;
1188 if (fn->arg3_type == ARG_PTR_TO_RAW_STACK)
1189 count++;
1190 if (fn->arg4_type == ARG_PTR_TO_RAW_STACK)
1191 count++;
1192 if (fn->arg5_type == ARG_PTR_TO_RAW_STACK)
1193 count++;
1194
1195 return count > 1 ? -EINVAL : 0;
1196}
1197
58e2af8b 1198static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
969bf05e 1199{
58e2af8b
JK
1200 struct bpf_verifier_state *state = &env->cur_state;
1201 struct bpf_reg_state *regs = state->regs, *reg;
969bf05e
AS
1202 int i;
1203
1204 for (i = 0; i < MAX_BPF_REG; i++)
1205 if (regs[i].type == PTR_TO_PACKET ||
1206 regs[i].type == PTR_TO_PACKET_END)
1207 mark_reg_unknown_value(regs, i);
1208
1209 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
1210 if (state->stack_slot_type[i] != STACK_SPILL)
1211 continue;
1212 reg = &state->spilled_regs[i / BPF_REG_SIZE];
1213 if (reg->type != PTR_TO_PACKET &&
1214 reg->type != PTR_TO_PACKET_END)
1215 continue;
1216 reg->type = UNKNOWN_VALUE;
1217 reg->imm = 0;
1218 }
1219}
1220
58e2af8b 1221static int check_call(struct bpf_verifier_env *env, int func_id)
17a52670 1222{
58e2af8b 1223 struct bpf_verifier_state *state = &env->cur_state;
17a52670 1224 const struct bpf_func_proto *fn = NULL;
58e2af8b
JK
1225 struct bpf_reg_state *regs = state->regs;
1226 struct bpf_reg_state *reg;
33ff9823 1227 struct bpf_call_arg_meta meta;
969bf05e 1228 bool changes_data;
17a52670
AS
1229 int i, err;
1230
1231 /* find function prototype */
1232 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
ebb676da 1233 verbose("invalid func %s#%d\n", func_id_name(func_id), func_id);
17a52670
AS
1234 return -EINVAL;
1235 }
1236
1237 if (env->prog->aux->ops->get_func_proto)
1238 fn = env->prog->aux->ops->get_func_proto(func_id);
1239
1240 if (!fn) {
ebb676da 1241 verbose("unknown func %s#%d\n", func_id_name(func_id), func_id);
17a52670
AS
1242 return -EINVAL;
1243 }
1244
1245 /* eBPF programs must be GPL compatible to use GPL-ed functions */
24701ece 1246 if (!env->prog->gpl_compatible && fn->gpl_only) {
17a52670
AS
1247 verbose("cannot call GPL only function from proprietary program\n");
1248 return -EINVAL;
1249 }
1250
17bedab2 1251 changes_data = bpf_helper_changes_pkt_data(fn->func);
969bf05e 1252
33ff9823 1253 memset(&meta, 0, sizeof(meta));
36bbef52 1254 meta.pkt_access = fn->pkt_access;
33ff9823 1255
435faee1
DB
1256 /* We only support one arg being in raw mode at the moment, which
1257 * is sufficient for the helper functions we have right now.
1258 */
1259 err = check_raw_mode(fn);
1260 if (err) {
ebb676da
TG
1261 verbose("kernel subsystem misconfigured func %s#%d\n",
1262 func_id_name(func_id), func_id);
435faee1
DB
1263 return err;
1264 }
1265
17a52670 1266 /* check args */
33ff9823 1267 err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
17a52670
AS
1268 if (err)
1269 return err;
33ff9823 1270 err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
17a52670
AS
1271 if (err)
1272 return err;
33ff9823 1273 err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
17a52670
AS
1274 if (err)
1275 return err;
33ff9823 1276 err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
17a52670
AS
1277 if (err)
1278 return err;
33ff9823 1279 err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
17a52670
AS
1280 if (err)
1281 return err;
1282
435faee1
DB
1283 /* Mark slots with STACK_MISC in case of raw mode, stack offset
1284 * is inferred from register state.
1285 */
1286 for (i = 0; i < meta.access_size; i++) {
1287 err = check_mem_access(env, meta.regno, i, BPF_B, BPF_WRITE, -1);
1288 if (err)
1289 return err;
1290 }
1291
17a52670
AS
1292 /* reset caller saved regs */
1293 for (i = 0; i < CALLER_SAVED_REGS; i++) {
1294 reg = regs + caller_saved[i];
1295 reg->type = NOT_INIT;
1296 reg->imm = 0;
1297 }
1298
1299 /* update return register */
1300 if (fn->ret_type == RET_INTEGER) {
1301 regs[BPF_REG_0].type = UNKNOWN_VALUE;
1302 } else if (fn->ret_type == RET_VOID) {
1303 regs[BPF_REG_0].type = NOT_INIT;
1304 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) {
1305 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
48461135 1306 regs[BPF_REG_0].max_value = regs[BPF_REG_0].min_value = 0;
17a52670
AS
1307 /* remember map_ptr, so that check_map_access()
1308 * can check 'value_size' boundary of memory access
1309 * to map element returned from bpf_map_lookup_elem()
1310 */
33ff9823 1311 if (meta.map_ptr == NULL) {
17a52670
AS
1312 verbose("kernel subsystem misconfigured verifier\n");
1313 return -EINVAL;
1314 }
33ff9823 1315 regs[BPF_REG_0].map_ptr = meta.map_ptr;
57a09bf0 1316 regs[BPF_REG_0].id = ++env->id_gen;
17a52670 1317 } else {
ebb676da
TG
1318 verbose("unknown return type %d of func %s#%d\n",
1319 fn->ret_type, func_id_name(func_id), func_id);
17a52670
AS
1320 return -EINVAL;
1321 }
04fd61ab 1322
33ff9823 1323 err = check_map_func_compatibility(meta.map_ptr, func_id);
35578d79
KX
1324 if (err)
1325 return err;
04fd61ab 1326
969bf05e
AS
1327 if (changes_data)
1328 clear_all_pkt_pointers(env);
1329 return 0;
1330}
1331
58e2af8b
JK
1332static int check_packet_ptr_add(struct bpf_verifier_env *env,
1333 struct bpf_insn *insn)
969bf05e 1334{
58e2af8b
JK
1335 struct bpf_reg_state *regs = env->cur_state.regs;
1336 struct bpf_reg_state *dst_reg = &regs[insn->dst_reg];
1337 struct bpf_reg_state *src_reg = &regs[insn->src_reg];
1338 struct bpf_reg_state tmp_reg;
969bf05e
AS
1339 s32 imm;
1340
1341 if (BPF_SRC(insn->code) == BPF_K) {
1342 /* pkt_ptr += imm */
1343 imm = insn->imm;
1344
1345add_imm:
1346 if (imm <= 0) {
1347 verbose("addition of negative constant to packet pointer is not allowed\n");
1348 return -EACCES;
1349 }
1350 if (imm >= MAX_PACKET_OFF ||
1351 imm + dst_reg->off >= MAX_PACKET_OFF) {
1352 verbose("constant %d is too large to add to packet pointer\n",
1353 imm);
1354 return -EACCES;
1355 }
1356 /* a constant was added to pkt_ptr.
1357 * Remember it while keeping the same 'id'
1358 */
1359 dst_reg->off += imm;
1360 } else {
1b9b69ec
AS
1361 if (src_reg->type == PTR_TO_PACKET) {
1362 /* R6=pkt(id=0,off=0,r=62) R7=imm22; r7 += r6 */
1363 tmp_reg = *dst_reg; /* save r7 state */
1364 *dst_reg = *src_reg; /* copy pkt_ptr state r6 into r7 */
1365 src_reg = &tmp_reg; /* pretend it's src_reg state */
1366 /* if the checks below reject it, the copy won't matter,
1367 * since we're rejecting the whole program. If all ok,
1368 * then imm22 state will be added to r7
1369 * and r7 will be pkt(id=0,off=22,r=62) while
1370 * r6 will stay as pkt(id=0,off=0,r=62)
1371 */
1372 }
1373
969bf05e
AS
1374 if (src_reg->type == CONST_IMM) {
1375 /* pkt_ptr += reg where reg is known constant */
1376 imm = src_reg->imm;
1377 goto add_imm;
1378 }
1379 /* disallow pkt_ptr += reg
1380 * if reg is not uknown_value with guaranteed zero upper bits
1381 * otherwise pkt_ptr may overflow and addition will become
1382 * subtraction which is not allowed
1383 */
1384 if (src_reg->type != UNKNOWN_VALUE) {
1385 verbose("cannot add '%s' to ptr_to_packet\n",
1386 reg_type_str[src_reg->type]);
1387 return -EACCES;
1388 }
1389 if (src_reg->imm < 48) {
1390 verbose("cannot add integer value with %lld upper zero bits to ptr_to_packet\n",
1391 src_reg->imm);
1392 return -EACCES;
1393 }
1394 /* dst_reg stays as pkt_ptr type and since some positive
1395 * integer value was added to the pointer, increment its 'id'
1396 */
1f415a74 1397 dst_reg->id = ++env->id_gen;
969bf05e
AS
1398
1399 /* something was added to pkt_ptr, set range and off to zero */
1400 dst_reg->off = 0;
1401 dst_reg->range = 0;
1402 }
1403 return 0;
1404}
1405
58e2af8b 1406static int evaluate_reg_alu(struct bpf_verifier_env *env, struct bpf_insn *insn)
969bf05e 1407{
58e2af8b
JK
1408 struct bpf_reg_state *regs = env->cur_state.regs;
1409 struct bpf_reg_state *dst_reg = &regs[insn->dst_reg];
969bf05e
AS
1410 u8 opcode = BPF_OP(insn->code);
1411 s64 imm_log2;
1412
1413 /* for type == UNKNOWN_VALUE:
1414 * imm > 0 -> number of zero upper bits
1415 * imm == 0 -> don't track which is the same as all bits can be non-zero
1416 */
1417
1418 if (BPF_SRC(insn->code) == BPF_X) {
58e2af8b 1419 struct bpf_reg_state *src_reg = &regs[insn->src_reg];
969bf05e
AS
1420
1421 if (src_reg->type == UNKNOWN_VALUE && src_reg->imm > 0 &&
1422 dst_reg->imm && opcode == BPF_ADD) {
1423 /* dreg += sreg
1424 * where both have zero upper bits. Adding them
1425 * can only result making one more bit non-zero
1426 * in the larger value.
1427 * Ex. 0xffff (imm=48) + 1 (imm=63) = 0x10000 (imm=47)
1428 * 0xffff (imm=48) + 0xffff = 0x1fffe (imm=47)
1429 */
1430 dst_reg->imm = min(dst_reg->imm, src_reg->imm);
1431 dst_reg->imm--;
1432 return 0;
1433 }
1434 if (src_reg->type == CONST_IMM && src_reg->imm > 0 &&
1435 dst_reg->imm && opcode == BPF_ADD) {
1436 /* dreg += sreg
1437 * where dreg has zero upper bits and sreg is const.
1438 * Adding them can only result making one more bit
1439 * non-zero in the larger value.
1440 */
1441 imm_log2 = __ilog2_u64((long long)src_reg->imm);
1442 dst_reg->imm = min(dst_reg->imm, 63 - imm_log2);
1443 dst_reg->imm--;
1444 return 0;
1445 }
1446 /* all other cases non supported yet, just mark dst_reg */
1447 dst_reg->imm = 0;
1448 return 0;
1449 }
1450
1451 /* sign extend 32-bit imm into 64-bit to make sure that
1452 * negative values occupy bit 63. Note ilog2() would have
1453 * been incorrect, since sizeof(insn->imm) == 4
1454 */
1455 imm_log2 = __ilog2_u64((long long)insn->imm);
1456
1457 if (dst_reg->imm && opcode == BPF_LSH) {
1458 /* reg <<= imm
1459 * if reg was a result of 2 byte load, then its imm == 48
1460 * which means that upper 48 bits are zero and shifting this reg
1461 * left by 4 would mean that upper 44 bits are still zero
1462 */
1463 dst_reg->imm -= insn->imm;
1464 } else if (dst_reg->imm && opcode == BPF_MUL) {
1465 /* reg *= imm
1466 * if multiplying by 14 subtract 4
1467 * This is conservative calculation of upper zero bits.
1468 * It's not trying to special case insn->imm == 1 or 0 cases
1469 */
1470 dst_reg->imm -= imm_log2 + 1;
1471 } else if (opcode == BPF_AND) {
1472 /* reg &= imm */
1473 dst_reg->imm = 63 - imm_log2;
1474 } else if (dst_reg->imm && opcode == BPF_ADD) {
1475 /* reg += imm */
1476 dst_reg->imm = min(dst_reg->imm, 63 - imm_log2);
1477 dst_reg->imm--;
1478 } else if (opcode == BPF_RSH) {
1479 /* reg >>= imm
1480 * which means that after right shift, upper bits will be zero
1481 * note that verifier already checked that
1482 * 0 <= imm < 64 for shift insn
1483 */
1484 dst_reg->imm += insn->imm;
1485 if (unlikely(dst_reg->imm > 64))
1486 /* some dumb code did:
1487 * r2 = *(u32 *)mem;
1488 * r2 >>= 32;
1489 * and all bits are zero now */
1490 dst_reg->imm = 64;
1491 } else {
1492 /* all other alu ops, means that we don't know what will
1493 * happen to the value, mark it with unknown number of zero bits
1494 */
1495 dst_reg->imm = 0;
1496 }
1497
1498 if (dst_reg->imm < 0) {
1499 /* all 64 bits of the register can contain non-zero bits
1500 * and such value cannot be added to ptr_to_packet, since it
1501 * may overflow, mark it as unknown to avoid further eval
1502 */
1503 dst_reg->imm = 0;
1504 }
1505 return 0;
1506}
1507
58e2af8b
JK
1508static int evaluate_reg_imm_alu(struct bpf_verifier_env *env,
1509 struct bpf_insn *insn)
969bf05e 1510{
58e2af8b
JK
1511 struct bpf_reg_state *regs = env->cur_state.regs;
1512 struct bpf_reg_state *dst_reg = &regs[insn->dst_reg];
1513 struct bpf_reg_state *src_reg = &regs[insn->src_reg];
969bf05e
AS
1514 u8 opcode = BPF_OP(insn->code);
1515
3c839744
GB
1516 /* dst_reg->type == CONST_IMM here, simulate execution of 'add'/'or'
1517 * insn. Don't care about overflow or negative values, just add them
969bf05e
AS
1518 */
1519 if (opcode == BPF_ADD && BPF_SRC(insn->code) == BPF_K)
1520 dst_reg->imm += insn->imm;
1521 else if (opcode == BPF_ADD && BPF_SRC(insn->code) == BPF_X &&
1522 src_reg->type == CONST_IMM)
1523 dst_reg->imm += src_reg->imm;
3c839744
GB
1524 else if (opcode == BPF_OR && BPF_SRC(insn->code) == BPF_K)
1525 dst_reg->imm |= insn->imm;
1526 else if (opcode == BPF_OR && BPF_SRC(insn->code) == BPF_X &&
1527 src_reg->type == CONST_IMM)
1528 dst_reg->imm |= src_reg->imm;
969bf05e
AS
1529 else
1530 mark_reg_unknown_value(regs, insn->dst_reg);
17a52670
AS
1531 return 0;
1532}
1533
48461135
JB
1534static void check_reg_overflow(struct bpf_reg_state *reg)
1535{
1536 if (reg->max_value > BPF_REGISTER_MAX_RANGE)
1537 reg->max_value = BPF_REGISTER_MAX_RANGE;
f23cc643
JB
1538 if (reg->min_value < BPF_REGISTER_MIN_RANGE ||
1539 reg->min_value > BPF_REGISTER_MAX_RANGE)
48461135
JB
1540 reg->min_value = BPF_REGISTER_MIN_RANGE;
1541}
1542
1543static void adjust_reg_min_max_vals(struct bpf_verifier_env *env,
1544 struct bpf_insn *insn)
1545{
1546 struct bpf_reg_state *regs = env->cur_state.regs, *dst_reg;
f23cc643
JB
1547 s64 min_val = BPF_REGISTER_MIN_RANGE;
1548 u64 max_val = BPF_REGISTER_MAX_RANGE;
48461135
JB
1549 u8 opcode = BPF_OP(insn->code);
1550
1551 dst_reg = &regs[insn->dst_reg];
1552 if (BPF_SRC(insn->code) == BPF_X) {
1553 check_reg_overflow(&regs[insn->src_reg]);
1554 min_val = regs[insn->src_reg].min_value;
1555 max_val = regs[insn->src_reg].max_value;
1556
1557 /* If the source register is a random pointer then the
1558 * min_value/max_value values represent the range of the known
1559 * accesses into that value, not the actual min/max value of the
1560 * register itself. In this case we have to reset the reg range
1561 * values so we know it is not safe to look at.
1562 */
1563 if (regs[insn->src_reg].type != CONST_IMM &&
1564 regs[insn->src_reg].type != UNKNOWN_VALUE) {
1565 min_val = BPF_REGISTER_MIN_RANGE;
1566 max_val = BPF_REGISTER_MAX_RANGE;
1567 }
1568 } else if (insn->imm < BPF_REGISTER_MAX_RANGE &&
1569 (s64)insn->imm > BPF_REGISTER_MIN_RANGE) {
1570 min_val = max_val = insn->imm;
48461135
JB
1571 }
1572
1573 /* We don't know anything about what was done to this register, mark it
1574 * as unknown.
1575 */
1576 if (min_val == BPF_REGISTER_MIN_RANGE &&
1577 max_val == BPF_REGISTER_MAX_RANGE) {
1578 reset_reg_range_values(regs, insn->dst_reg);
1579 return;
1580 }
1581
f23cc643
JB
1582 /* If one of our values was at the end of our ranges then we can't just
1583 * do our normal operations to the register, we need to set the values
1584 * to the min/max since they are undefined.
1585 */
1586 if (min_val == BPF_REGISTER_MIN_RANGE)
1587 dst_reg->min_value = BPF_REGISTER_MIN_RANGE;
1588 if (max_val == BPF_REGISTER_MAX_RANGE)
1589 dst_reg->max_value = BPF_REGISTER_MAX_RANGE;
1590
48461135
JB
1591 switch (opcode) {
1592 case BPF_ADD:
f23cc643
JB
1593 if (dst_reg->min_value != BPF_REGISTER_MIN_RANGE)
1594 dst_reg->min_value += min_val;
1595 if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)
1596 dst_reg->max_value += max_val;
48461135
JB
1597 break;
1598 case BPF_SUB:
f23cc643
JB
1599 if (dst_reg->min_value != BPF_REGISTER_MIN_RANGE)
1600 dst_reg->min_value -= min_val;
1601 if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)
1602 dst_reg->max_value -= max_val;
48461135
JB
1603 break;
1604 case BPF_MUL:
f23cc643
JB
1605 if (dst_reg->min_value != BPF_REGISTER_MIN_RANGE)
1606 dst_reg->min_value *= min_val;
1607 if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)
1608 dst_reg->max_value *= max_val;
48461135
JB
1609 break;
1610 case BPF_AND:
f23cc643
JB
1611 /* Disallow AND'ing of negative numbers, ain't nobody got time
1612 * for that. Otherwise the minimum is 0 and the max is the max
1613 * value we could AND against.
1614 */
1615 if (min_val < 0)
1616 dst_reg->min_value = BPF_REGISTER_MIN_RANGE;
1617 else
1618 dst_reg->min_value = 0;
48461135
JB
1619 dst_reg->max_value = max_val;
1620 break;
1621 case BPF_LSH:
1622 /* Gotta have special overflow logic here, if we're shifting
1623 * more than MAX_RANGE then just assume we have an invalid
1624 * range.
1625 */
1626 if (min_val > ilog2(BPF_REGISTER_MAX_RANGE))
1627 dst_reg->min_value = BPF_REGISTER_MIN_RANGE;
f23cc643 1628 else if (dst_reg->min_value != BPF_REGISTER_MIN_RANGE)
48461135
JB
1629 dst_reg->min_value <<= min_val;
1630
1631 if (max_val > ilog2(BPF_REGISTER_MAX_RANGE))
1632 dst_reg->max_value = BPF_REGISTER_MAX_RANGE;
f23cc643 1633 else if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)
48461135
JB
1634 dst_reg->max_value <<= max_val;
1635 break;
1636 case BPF_RSH:
f23cc643
JB
1637 /* RSH by a negative number is undefined, and the BPF_RSH is an
1638 * unsigned shift, so make the appropriate casts.
48461135 1639 */
f23cc643
JB
1640 if (min_val < 0 || dst_reg->min_value < 0)
1641 dst_reg->min_value = BPF_REGISTER_MIN_RANGE;
1642 else
1643 dst_reg->min_value =
1644 (u64)(dst_reg->min_value) >> min_val;
1645 if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)
1646 dst_reg->max_value >>= max_val;
48461135
JB
1647 break;
1648 default:
1649 reset_reg_range_values(regs, insn->dst_reg);
1650 break;
1651 }
1652
1653 check_reg_overflow(dst_reg);
1654}
1655
17a52670 1656/* check validity of 32-bit and 64-bit arithmetic operations */
58e2af8b 1657static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 1658{
58e2af8b 1659 struct bpf_reg_state *regs = env->cur_state.regs, *dst_reg;
17a52670
AS
1660 u8 opcode = BPF_OP(insn->code);
1661 int err;
1662
1663 if (opcode == BPF_END || opcode == BPF_NEG) {
1664 if (opcode == BPF_NEG) {
1665 if (BPF_SRC(insn->code) != 0 ||
1666 insn->src_reg != BPF_REG_0 ||
1667 insn->off != 0 || insn->imm != 0) {
1668 verbose("BPF_NEG uses reserved fields\n");
1669 return -EINVAL;
1670 }
1671 } else {
1672 if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
1673 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64)) {
1674 verbose("BPF_END uses reserved fields\n");
1675 return -EINVAL;
1676 }
1677 }
1678
1679 /* check src operand */
1680 err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
1681 if (err)
1682 return err;
1683
1be7f75d
AS
1684 if (is_pointer_value(env, insn->dst_reg)) {
1685 verbose("R%d pointer arithmetic prohibited\n",
1686 insn->dst_reg);
1687 return -EACCES;
1688 }
1689
17a52670
AS
1690 /* check dest operand */
1691 err = check_reg_arg(regs, insn->dst_reg, DST_OP);
1692 if (err)
1693 return err;
1694
1695 } else if (opcode == BPF_MOV) {
1696
1697 if (BPF_SRC(insn->code) == BPF_X) {
1698 if (insn->imm != 0 || insn->off != 0) {
1699 verbose("BPF_MOV uses reserved fields\n");
1700 return -EINVAL;
1701 }
1702
1703 /* check src operand */
1704 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
1705 if (err)
1706 return err;
1707 } else {
1708 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
1709 verbose("BPF_MOV uses reserved fields\n");
1710 return -EINVAL;
1711 }
1712 }
1713
1714 /* check dest operand */
1715 err = check_reg_arg(regs, insn->dst_reg, DST_OP);
1716 if (err)
1717 return err;
1718
48461135
JB
1719 /* we are setting our register to something new, we need to
1720 * reset its range values.
1721 */
1722 reset_reg_range_values(regs, insn->dst_reg);
1723
17a52670
AS
1724 if (BPF_SRC(insn->code) == BPF_X) {
1725 if (BPF_CLASS(insn->code) == BPF_ALU64) {
1726 /* case: R1 = R2
1727 * copy register state to dest reg
1728 */
1729 regs[insn->dst_reg] = regs[insn->src_reg];
1730 } else {
1be7f75d
AS
1731 if (is_pointer_value(env, insn->src_reg)) {
1732 verbose("R%d partial copy of pointer\n",
1733 insn->src_reg);
1734 return -EACCES;
1735 }
57a09bf0 1736 mark_reg_unknown_value(regs, insn->dst_reg);
17a52670
AS
1737 }
1738 } else {
1739 /* case: R = imm
1740 * remember the value we stored into this reg
1741 */
1742 regs[insn->dst_reg].type = CONST_IMM;
1743 regs[insn->dst_reg].imm = insn->imm;
48461135
JB
1744 regs[insn->dst_reg].max_value = insn->imm;
1745 regs[insn->dst_reg].min_value = insn->imm;
17a52670
AS
1746 }
1747
1748 } else if (opcode > BPF_END) {
1749 verbose("invalid BPF_ALU opcode %x\n", opcode);
1750 return -EINVAL;
1751
1752 } else { /* all other ALU ops: and, sub, xor, add, ... */
1753
17a52670
AS
1754 if (BPF_SRC(insn->code) == BPF_X) {
1755 if (insn->imm != 0 || insn->off != 0) {
1756 verbose("BPF_ALU uses reserved fields\n");
1757 return -EINVAL;
1758 }
1759 /* check src1 operand */
1760 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
1761 if (err)
1762 return err;
1763 } else {
1764 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
1765 verbose("BPF_ALU uses reserved fields\n");
1766 return -EINVAL;
1767 }
1768 }
1769
1770 /* check src2 operand */
1771 err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
1772 if (err)
1773 return err;
1774
1775 if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
1776 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
1777 verbose("div by zero\n");
1778 return -EINVAL;
1779 }
1780
229394e8
RV
1781 if ((opcode == BPF_LSH || opcode == BPF_RSH ||
1782 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
1783 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
1784
1785 if (insn->imm < 0 || insn->imm >= size) {
1786 verbose("invalid shift %d\n", insn->imm);
1787 return -EINVAL;
1788 }
1789 }
1790
1a0dc1ac
AS
1791 /* check dest operand */
1792 err = check_reg_arg(regs, insn->dst_reg, DST_OP_NO_MARK);
1793 if (err)
1794 return err;
1795
1796 dst_reg = &regs[insn->dst_reg];
1797
48461135
JB
1798 /* first we want to adjust our ranges. */
1799 adjust_reg_min_max_vals(env, insn);
1800
17a52670
AS
1801 /* pattern match 'bpf_add Rx, imm' instruction */
1802 if (opcode == BPF_ADD && BPF_CLASS(insn->code) == BPF_ALU64 &&
1a0dc1ac
AS
1803 dst_reg->type == FRAME_PTR && BPF_SRC(insn->code) == BPF_K) {
1804 dst_reg->type = PTR_TO_STACK;
1805 dst_reg->imm = insn->imm;
1806 return 0;
969bf05e
AS
1807 } else if (opcode == BPF_ADD &&
1808 BPF_CLASS(insn->code) == BPF_ALU64 &&
1b9b69ec
AS
1809 (dst_reg->type == PTR_TO_PACKET ||
1810 (BPF_SRC(insn->code) == BPF_X &&
1811 regs[insn->src_reg].type == PTR_TO_PACKET))) {
969bf05e
AS
1812 /* ptr_to_packet += K|X */
1813 return check_packet_ptr_add(env, insn);
1814 } else if (BPF_CLASS(insn->code) == BPF_ALU64 &&
1815 dst_reg->type == UNKNOWN_VALUE &&
1816 env->allow_ptr_leaks) {
1817 /* unknown += K|X */
1818 return evaluate_reg_alu(env, insn);
1819 } else if (BPF_CLASS(insn->code) == BPF_ALU64 &&
1820 dst_reg->type == CONST_IMM &&
1821 env->allow_ptr_leaks) {
1822 /* reg_imm += K|X */
1823 return evaluate_reg_imm_alu(env, insn);
1be7f75d
AS
1824 } else if (is_pointer_value(env, insn->dst_reg)) {
1825 verbose("R%d pointer arithmetic prohibited\n",
1826 insn->dst_reg);
1827 return -EACCES;
1828 } else if (BPF_SRC(insn->code) == BPF_X &&
1829 is_pointer_value(env, insn->src_reg)) {
1830 verbose("R%d pointer arithmetic prohibited\n",
1831 insn->src_reg);
1832 return -EACCES;
1833 }
17a52670 1834
48461135
JB
1835 /* If we did pointer math on a map value then just set it to our
1836 * PTR_TO_MAP_VALUE_ADJ type so we can deal with any stores or
1837 * loads to this register appropriately, otherwise just mark the
1838 * register as unknown.
1839 */
1840 if (env->allow_ptr_leaks &&
1841 (dst_reg->type == PTR_TO_MAP_VALUE ||
1842 dst_reg->type == PTR_TO_MAP_VALUE_ADJ))
1843 dst_reg->type = PTR_TO_MAP_VALUE_ADJ;
1844 else
1845 mark_reg_unknown_value(regs, insn->dst_reg);
17a52670
AS
1846 }
1847
1848 return 0;
1849}
1850
58e2af8b
JK
1851static void find_good_pkt_pointers(struct bpf_verifier_state *state,
1852 struct bpf_reg_state *dst_reg)
969bf05e 1853{
58e2af8b 1854 struct bpf_reg_state *regs = state->regs, *reg;
969bf05e 1855 int i;
2d2be8ca
DB
1856
1857 /* LLVM can generate two kind of checks:
1858 *
1859 * Type 1:
1860 *
1861 * r2 = r3;
1862 * r2 += 8;
1863 * if (r2 > pkt_end) goto <handle exception>
1864 * <access okay>
1865 *
1866 * Where:
1867 * r2 == dst_reg, pkt_end == src_reg
1868 * r2=pkt(id=n,off=8,r=0)
1869 * r3=pkt(id=n,off=0,r=0)
1870 *
1871 * Type 2:
1872 *
1873 * r2 = r3;
1874 * r2 += 8;
1875 * if (pkt_end >= r2) goto <access okay>
1876 * <handle exception>
1877 *
1878 * Where:
1879 * pkt_end == dst_reg, r2 == src_reg
1880 * r2=pkt(id=n,off=8,r=0)
1881 * r3=pkt(id=n,off=0,r=0)
1882 *
1883 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
1884 * so that range of bytes [r3, r3 + 8) is safe to access.
969bf05e 1885 */
2d2be8ca 1886
969bf05e
AS
1887 for (i = 0; i < MAX_BPF_REG; i++)
1888 if (regs[i].type == PTR_TO_PACKET && regs[i].id == dst_reg->id)
1889 regs[i].range = dst_reg->off;
1890
1891 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
1892 if (state->stack_slot_type[i] != STACK_SPILL)
1893 continue;
1894 reg = &state->spilled_regs[i / BPF_REG_SIZE];
1895 if (reg->type == PTR_TO_PACKET && reg->id == dst_reg->id)
1896 reg->range = dst_reg->off;
1897 }
1898}
1899
48461135
JB
1900/* Adjusts the register min/max values in the case that the dst_reg is the
1901 * variable register that we are working on, and src_reg is a constant or we're
1902 * simply doing a BPF_K check.
1903 */
1904static void reg_set_min_max(struct bpf_reg_state *true_reg,
1905 struct bpf_reg_state *false_reg, u64 val,
1906 u8 opcode)
1907{
1908 switch (opcode) {
1909 case BPF_JEQ:
1910 /* If this is false then we know nothing Jon Snow, but if it is
1911 * true then we know for sure.
1912 */
1913 true_reg->max_value = true_reg->min_value = val;
1914 break;
1915 case BPF_JNE:
1916 /* If this is true we know nothing Jon Snow, but if it is false
1917 * we know the value for sure;
1918 */
1919 false_reg->max_value = false_reg->min_value = val;
1920 break;
1921 case BPF_JGT:
1922 /* Unsigned comparison, the minimum value is 0. */
1923 false_reg->min_value = 0;
1924 case BPF_JSGT:
1925 /* If this is false then we know the maximum val is val,
1926 * otherwise we know the min val is val+1.
1927 */
1928 false_reg->max_value = val;
1929 true_reg->min_value = val + 1;
1930 break;
1931 case BPF_JGE:
1932 /* Unsigned comparison, the minimum value is 0. */
1933 false_reg->min_value = 0;
1934 case BPF_JSGE:
1935 /* If this is false then we know the maximum value is val - 1,
1936 * otherwise we know the mimimum value is val.
1937 */
1938 false_reg->max_value = val - 1;
1939 true_reg->min_value = val;
1940 break;
1941 default:
1942 break;
1943 }
1944
1945 check_reg_overflow(false_reg);
1946 check_reg_overflow(true_reg);
1947}
1948
1949/* Same as above, but for the case that dst_reg is a CONST_IMM reg and src_reg
1950 * is the variable reg.
1951 */
1952static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
1953 struct bpf_reg_state *false_reg, u64 val,
1954 u8 opcode)
1955{
1956 switch (opcode) {
1957 case BPF_JEQ:
1958 /* If this is false then we know nothing Jon Snow, but if it is
1959 * true then we know for sure.
1960 */
1961 true_reg->max_value = true_reg->min_value = val;
1962 break;
1963 case BPF_JNE:
1964 /* If this is true we know nothing Jon Snow, but if it is false
1965 * we know the value for sure;
1966 */
1967 false_reg->max_value = false_reg->min_value = val;
1968 break;
1969 case BPF_JGT:
1970 /* Unsigned comparison, the minimum value is 0. */
1971 true_reg->min_value = 0;
1972 case BPF_JSGT:
1973 /*
1974 * If this is false, then the val is <= the register, if it is
1975 * true the register <= to the val.
1976 */
1977 false_reg->min_value = val;
1978 true_reg->max_value = val - 1;
1979 break;
1980 case BPF_JGE:
1981 /* Unsigned comparison, the minimum value is 0. */
1982 true_reg->min_value = 0;
1983 case BPF_JSGE:
1984 /* If this is false then constant < register, if it is true then
1985 * the register < constant.
1986 */
1987 false_reg->min_value = val + 1;
1988 true_reg->max_value = val;
1989 break;
1990 default:
1991 break;
1992 }
1993
1994 check_reg_overflow(false_reg);
1995 check_reg_overflow(true_reg);
1996}
1997
57a09bf0
TG
1998static void mark_map_reg(struct bpf_reg_state *regs, u32 regno, u32 id,
1999 enum bpf_reg_type type)
2000{
2001 struct bpf_reg_state *reg = &regs[regno];
2002
2003 if (reg->type == PTR_TO_MAP_VALUE_OR_NULL && reg->id == id) {
2004 reg->type = type;
a08dd0da
DB
2005 /* We don't need id from this point onwards anymore, thus we
2006 * should better reset it, so that state pruning has chances
2007 * to take effect.
2008 */
2009 reg->id = 0;
57a09bf0 2010 if (type == UNKNOWN_VALUE)
6760bf2d 2011 __mark_reg_unknown_value(regs, regno);
57a09bf0
TG
2012 }
2013}
2014
2015/* The logic is similar to find_good_pkt_pointers(), both could eventually
2016 * be folded together at some point.
2017 */
2018static void mark_map_regs(struct bpf_verifier_state *state, u32 regno,
2019 enum bpf_reg_type type)
2020{
2021 struct bpf_reg_state *regs = state->regs;
a08dd0da 2022 u32 id = regs[regno].id;
57a09bf0
TG
2023 int i;
2024
2025 for (i = 0; i < MAX_BPF_REG; i++)
a08dd0da 2026 mark_map_reg(regs, i, id, type);
57a09bf0
TG
2027
2028 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
2029 if (state->stack_slot_type[i] != STACK_SPILL)
2030 continue;
a08dd0da 2031 mark_map_reg(state->spilled_regs, i / BPF_REG_SIZE, id, type);
57a09bf0
TG
2032 }
2033}
2034
58e2af8b 2035static int check_cond_jmp_op(struct bpf_verifier_env *env,
17a52670
AS
2036 struct bpf_insn *insn, int *insn_idx)
2037{
58e2af8b
JK
2038 struct bpf_verifier_state *other_branch, *this_branch = &env->cur_state;
2039 struct bpf_reg_state *regs = this_branch->regs, *dst_reg;
17a52670
AS
2040 u8 opcode = BPF_OP(insn->code);
2041 int err;
2042
2043 if (opcode > BPF_EXIT) {
2044 verbose("invalid BPF_JMP opcode %x\n", opcode);
2045 return -EINVAL;
2046 }
2047
2048 if (BPF_SRC(insn->code) == BPF_X) {
2049 if (insn->imm != 0) {
2050 verbose("BPF_JMP uses reserved fields\n");
2051 return -EINVAL;
2052 }
2053
2054 /* check src1 operand */
2055 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
2056 if (err)
2057 return err;
1be7f75d
AS
2058
2059 if (is_pointer_value(env, insn->src_reg)) {
2060 verbose("R%d pointer comparison prohibited\n",
2061 insn->src_reg);
2062 return -EACCES;
2063 }
17a52670
AS
2064 } else {
2065 if (insn->src_reg != BPF_REG_0) {
2066 verbose("BPF_JMP uses reserved fields\n");
2067 return -EINVAL;
2068 }
2069 }
2070
2071 /* check src2 operand */
2072 err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
2073 if (err)
2074 return err;
2075
1a0dc1ac
AS
2076 dst_reg = &regs[insn->dst_reg];
2077
17a52670
AS
2078 /* detect if R == 0 where R was initialized to zero earlier */
2079 if (BPF_SRC(insn->code) == BPF_K &&
2080 (opcode == BPF_JEQ || opcode == BPF_JNE) &&
1a0dc1ac 2081 dst_reg->type == CONST_IMM && dst_reg->imm == insn->imm) {
17a52670
AS
2082 if (opcode == BPF_JEQ) {
2083 /* if (imm == imm) goto pc+off;
2084 * only follow the goto, ignore fall-through
2085 */
2086 *insn_idx += insn->off;
2087 return 0;
2088 } else {
2089 /* if (imm != imm) goto pc+off;
2090 * only follow fall-through branch, since
2091 * that's where the program will go
2092 */
2093 return 0;
2094 }
2095 }
2096
2097 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx);
2098 if (!other_branch)
2099 return -EFAULT;
2100
48461135
JB
2101 /* detect if we are comparing against a constant value so we can adjust
2102 * our min/max values for our dst register.
2103 */
2104 if (BPF_SRC(insn->code) == BPF_X) {
2105 if (regs[insn->src_reg].type == CONST_IMM)
2106 reg_set_min_max(&other_branch->regs[insn->dst_reg],
2107 dst_reg, regs[insn->src_reg].imm,
2108 opcode);
2109 else if (dst_reg->type == CONST_IMM)
2110 reg_set_min_max_inv(&other_branch->regs[insn->src_reg],
2111 &regs[insn->src_reg], dst_reg->imm,
2112 opcode);
2113 } else {
2114 reg_set_min_max(&other_branch->regs[insn->dst_reg],
2115 dst_reg, insn->imm, opcode);
2116 }
2117
58e2af8b 2118 /* detect if R == 0 where R is returned from bpf_map_lookup_elem() */
17a52670 2119 if (BPF_SRC(insn->code) == BPF_K &&
1a0dc1ac
AS
2120 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
2121 dst_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
57a09bf0
TG
2122 /* Mark all identical map registers in each branch as either
2123 * safe or unknown depending R == 0 or R != 0 conditional.
2124 */
2125 mark_map_regs(this_branch, insn->dst_reg,
2126 opcode == BPF_JEQ ? PTR_TO_MAP_VALUE : UNKNOWN_VALUE);
2127 mark_map_regs(other_branch, insn->dst_reg,
2128 opcode == BPF_JEQ ? UNKNOWN_VALUE : PTR_TO_MAP_VALUE);
969bf05e
AS
2129 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGT &&
2130 dst_reg->type == PTR_TO_PACKET &&
2131 regs[insn->src_reg].type == PTR_TO_PACKET_END) {
2d2be8ca
DB
2132 find_good_pkt_pointers(this_branch, dst_reg);
2133 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGE &&
2134 dst_reg->type == PTR_TO_PACKET_END &&
2135 regs[insn->src_reg].type == PTR_TO_PACKET) {
2136 find_good_pkt_pointers(other_branch, &regs[insn->src_reg]);
1be7f75d
AS
2137 } else if (is_pointer_value(env, insn->dst_reg)) {
2138 verbose("R%d pointer comparison prohibited\n", insn->dst_reg);
2139 return -EACCES;
17a52670
AS
2140 }
2141 if (log_level)
2d2be8ca 2142 print_verifier_state(this_branch);
17a52670
AS
2143 return 0;
2144}
2145
0246e64d
AS
2146/* return the map pointer stored inside BPF_LD_IMM64 instruction */
2147static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn)
2148{
2149 u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32;
2150
2151 return (struct bpf_map *) (unsigned long) imm64;
2152}
2153
17a52670 2154/* verify BPF_LD_IMM64 instruction */
58e2af8b 2155static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 2156{
58e2af8b 2157 struct bpf_reg_state *regs = env->cur_state.regs;
17a52670
AS
2158 int err;
2159
2160 if (BPF_SIZE(insn->code) != BPF_DW) {
2161 verbose("invalid BPF_LD_IMM insn\n");
2162 return -EINVAL;
2163 }
2164 if (insn->off != 0) {
2165 verbose("BPF_LD_IMM64 uses reserved fields\n");
2166 return -EINVAL;
2167 }
2168
2169 err = check_reg_arg(regs, insn->dst_reg, DST_OP);
2170 if (err)
2171 return err;
2172
6b173873
JK
2173 if (insn->src_reg == 0) {
2174 /* generic move 64-bit immediate into a register,
2175 * only analyzer needs to collect the ld_imm value.
2176 */
2177 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
2178
2179 if (!env->analyzer_ops)
2180 return 0;
2181
2182 regs[insn->dst_reg].type = CONST_IMM;
2183 regs[insn->dst_reg].imm = imm;
17a52670 2184 return 0;
6b173873 2185 }
17a52670
AS
2186
2187 /* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
2188 BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD);
2189
2190 regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
2191 regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn);
2192 return 0;
2193}
2194
96be4325
DB
2195static bool may_access_skb(enum bpf_prog_type type)
2196{
2197 switch (type) {
2198 case BPF_PROG_TYPE_SOCKET_FILTER:
2199 case BPF_PROG_TYPE_SCHED_CLS:
94caee8c 2200 case BPF_PROG_TYPE_SCHED_ACT:
96be4325
DB
2201 return true;
2202 default:
2203 return false;
2204 }
2205}
2206
ddd872bc
AS
2207/* verify safety of LD_ABS|LD_IND instructions:
2208 * - they can only appear in the programs where ctx == skb
2209 * - since they are wrappers of function calls, they scratch R1-R5 registers,
2210 * preserve R6-R9, and store return value into R0
2211 *
2212 * Implicit input:
2213 * ctx == skb == R6 == CTX
2214 *
2215 * Explicit input:
2216 * SRC == any register
2217 * IMM == 32-bit immediate
2218 *
2219 * Output:
2220 * R0 - 8/16/32-bit skb data converted to cpu endianness
2221 */
58e2af8b 2222static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
ddd872bc 2223{
58e2af8b 2224 struct bpf_reg_state *regs = env->cur_state.regs;
ddd872bc 2225 u8 mode = BPF_MODE(insn->code);
58e2af8b 2226 struct bpf_reg_state *reg;
ddd872bc
AS
2227 int i, err;
2228
24701ece 2229 if (!may_access_skb(env->prog->type)) {
1a0dc1ac 2230 verbose("BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
ddd872bc
AS
2231 return -EINVAL;
2232 }
2233
2234 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
d82bccc6 2235 BPF_SIZE(insn->code) == BPF_DW ||
ddd872bc 2236 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
1a0dc1ac 2237 verbose("BPF_LD_[ABS|IND] uses reserved fields\n");
ddd872bc
AS
2238 return -EINVAL;
2239 }
2240
2241 /* check whether implicit source operand (register R6) is readable */
2242 err = check_reg_arg(regs, BPF_REG_6, SRC_OP);
2243 if (err)
2244 return err;
2245
2246 if (regs[BPF_REG_6].type != PTR_TO_CTX) {
2247 verbose("at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
2248 return -EINVAL;
2249 }
2250
2251 if (mode == BPF_IND) {
2252 /* check explicit source operand */
2253 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
2254 if (err)
2255 return err;
2256 }
2257
2258 /* reset caller saved regs to unreadable */
2259 for (i = 0; i < CALLER_SAVED_REGS; i++) {
2260 reg = regs + caller_saved[i];
2261 reg->type = NOT_INIT;
2262 reg->imm = 0;
2263 }
2264
2265 /* mark destination R0 register as readable, since it contains
2266 * the value fetched from the packet
2267 */
2268 regs[BPF_REG_0].type = UNKNOWN_VALUE;
2269 return 0;
2270}
2271
475fb78f
AS
2272/* non-recursive DFS pseudo code
2273 * 1 procedure DFS-iterative(G,v):
2274 * 2 label v as discovered
2275 * 3 let S be a stack
2276 * 4 S.push(v)
2277 * 5 while S is not empty
2278 * 6 t <- S.pop()
2279 * 7 if t is what we're looking for:
2280 * 8 return t
2281 * 9 for all edges e in G.adjacentEdges(t) do
2282 * 10 if edge e is already labelled
2283 * 11 continue with the next edge
2284 * 12 w <- G.adjacentVertex(t,e)
2285 * 13 if vertex w is not discovered and not explored
2286 * 14 label e as tree-edge
2287 * 15 label w as discovered
2288 * 16 S.push(w)
2289 * 17 continue at 5
2290 * 18 else if vertex w is discovered
2291 * 19 label e as back-edge
2292 * 20 else
2293 * 21 // vertex w is explored
2294 * 22 label e as forward- or cross-edge
2295 * 23 label t as explored
2296 * 24 S.pop()
2297 *
2298 * convention:
2299 * 0x10 - discovered
2300 * 0x11 - discovered and fall-through edge labelled
2301 * 0x12 - discovered and fall-through and branch edges labelled
2302 * 0x20 - explored
2303 */
2304
2305enum {
2306 DISCOVERED = 0x10,
2307 EXPLORED = 0x20,
2308 FALLTHROUGH = 1,
2309 BRANCH = 2,
2310};
2311
58e2af8b 2312#define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L)
f1bca824 2313
475fb78f
AS
2314static int *insn_stack; /* stack of insns to process */
2315static int cur_stack; /* current stack index */
2316static int *insn_state;
2317
2318/* t, w, e - match pseudo-code above:
2319 * t - index of current instruction
2320 * w - next instruction
2321 * e - edge
2322 */
58e2af8b 2323static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
475fb78f
AS
2324{
2325 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
2326 return 0;
2327
2328 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
2329 return 0;
2330
2331 if (w < 0 || w >= env->prog->len) {
2332 verbose("jump out of range from insn %d to %d\n", t, w);
2333 return -EINVAL;
2334 }
2335
f1bca824
AS
2336 if (e == BRANCH)
2337 /* mark branch target for state pruning */
2338 env->explored_states[w] = STATE_LIST_MARK;
2339
475fb78f
AS
2340 if (insn_state[w] == 0) {
2341 /* tree-edge */
2342 insn_state[t] = DISCOVERED | e;
2343 insn_state[w] = DISCOVERED;
2344 if (cur_stack >= env->prog->len)
2345 return -E2BIG;
2346 insn_stack[cur_stack++] = w;
2347 return 1;
2348 } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
2349 verbose("back-edge from insn %d to %d\n", t, w);
2350 return -EINVAL;
2351 } else if (insn_state[w] == EXPLORED) {
2352 /* forward- or cross-edge */
2353 insn_state[t] = DISCOVERED | e;
2354 } else {
2355 verbose("insn state internal bug\n");
2356 return -EFAULT;
2357 }
2358 return 0;
2359}
2360
2361/* non-recursive depth-first-search to detect loops in BPF program
2362 * loop == back-edge in directed graph
2363 */
58e2af8b 2364static int check_cfg(struct bpf_verifier_env *env)
475fb78f
AS
2365{
2366 struct bpf_insn *insns = env->prog->insnsi;
2367 int insn_cnt = env->prog->len;
2368 int ret = 0;
2369 int i, t;
2370
2371 insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
2372 if (!insn_state)
2373 return -ENOMEM;
2374
2375 insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
2376 if (!insn_stack) {
2377 kfree(insn_state);
2378 return -ENOMEM;
2379 }
2380
2381 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
2382 insn_stack[0] = 0; /* 0 is the first instruction */
2383 cur_stack = 1;
2384
2385peek_stack:
2386 if (cur_stack == 0)
2387 goto check_state;
2388 t = insn_stack[cur_stack - 1];
2389
2390 if (BPF_CLASS(insns[t].code) == BPF_JMP) {
2391 u8 opcode = BPF_OP(insns[t].code);
2392
2393 if (opcode == BPF_EXIT) {
2394 goto mark_explored;
2395 } else if (opcode == BPF_CALL) {
2396 ret = push_insn(t, t + 1, FALLTHROUGH, env);
2397 if (ret == 1)
2398 goto peek_stack;
2399 else if (ret < 0)
2400 goto err_free;
07016151
DB
2401 if (t + 1 < insn_cnt)
2402 env->explored_states[t + 1] = STATE_LIST_MARK;
475fb78f
AS
2403 } else if (opcode == BPF_JA) {
2404 if (BPF_SRC(insns[t].code) != BPF_K) {
2405 ret = -EINVAL;
2406 goto err_free;
2407 }
2408 /* unconditional jump with single edge */
2409 ret = push_insn(t, t + insns[t].off + 1,
2410 FALLTHROUGH, env);
2411 if (ret == 1)
2412 goto peek_stack;
2413 else if (ret < 0)
2414 goto err_free;
f1bca824
AS
2415 /* tell verifier to check for equivalent states
2416 * after every call and jump
2417 */
c3de6317
AS
2418 if (t + 1 < insn_cnt)
2419 env->explored_states[t + 1] = STATE_LIST_MARK;
475fb78f
AS
2420 } else {
2421 /* conditional jump with two edges */
2422 ret = push_insn(t, t + 1, FALLTHROUGH, env);
2423 if (ret == 1)
2424 goto peek_stack;
2425 else if (ret < 0)
2426 goto err_free;
2427
2428 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
2429 if (ret == 1)
2430 goto peek_stack;
2431 else if (ret < 0)
2432 goto err_free;
2433 }
2434 } else {
2435 /* all other non-branch instructions with single
2436 * fall-through edge
2437 */
2438 ret = push_insn(t, t + 1, FALLTHROUGH, env);
2439 if (ret == 1)
2440 goto peek_stack;
2441 else if (ret < 0)
2442 goto err_free;
2443 }
2444
2445mark_explored:
2446 insn_state[t] = EXPLORED;
2447 if (cur_stack-- <= 0) {
2448 verbose("pop stack internal bug\n");
2449 ret = -EFAULT;
2450 goto err_free;
2451 }
2452 goto peek_stack;
2453
2454check_state:
2455 for (i = 0; i < insn_cnt; i++) {
2456 if (insn_state[i] != EXPLORED) {
2457 verbose("unreachable insn %d\n", i);
2458 ret = -EINVAL;
2459 goto err_free;
2460 }
2461 }
2462 ret = 0; /* cfg looks good */
2463
2464err_free:
2465 kfree(insn_state);
2466 kfree(insn_stack);
2467 return ret;
2468}
2469
969bf05e
AS
2470/* the following conditions reduce the number of explored insns
2471 * from ~140k to ~80k for ultra large programs that use a lot of ptr_to_packet
2472 */
58e2af8b
JK
2473static bool compare_ptrs_to_packet(struct bpf_reg_state *old,
2474 struct bpf_reg_state *cur)
969bf05e
AS
2475{
2476 if (old->id != cur->id)
2477 return false;
2478
2479 /* old ptr_to_packet is more conservative, since it allows smaller
2480 * range. Ex:
2481 * old(off=0,r=10) is equal to cur(off=0,r=20), because
2482 * old(off=0,r=10) means that with range=10 the verifier proceeded
2483 * further and found no issues with the program. Now we're in the same
2484 * spot with cur(off=0,r=20), so we're safe too, since anything further
2485 * will only be looking at most 10 bytes after this pointer.
2486 */
2487 if (old->off == cur->off && old->range < cur->range)
2488 return true;
2489
2490 /* old(off=20,r=10) is equal to cur(off=22,re=22 or 5 or 0)
2491 * since both cannot be used for packet access and safe(old)
2492 * pointer has smaller off that could be used for further
2493 * 'if (ptr > data_end)' check
2494 * Ex:
2495 * old(off=20,r=10) and cur(off=22,r=22) and cur(off=22,r=0) mean
2496 * that we cannot access the packet.
2497 * The safe range is:
2498 * [ptr, ptr + range - off)
2499 * so whenever off >=range, it means no safe bytes from this pointer.
2500 * When comparing old->off <= cur->off, it means that older code
2501 * went with smaller offset and that offset was later
2502 * used to figure out the safe range after 'if (ptr > data_end)' check
2503 * Say, 'old' state was explored like:
2504 * ... R3(off=0, r=0)
2505 * R4 = R3 + 20
2506 * ... now R4(off=20,r=0) <-- here
2507 * if (R4 > data_end)
2508 * ... R4(off=20,r=20), R3(off=0,r=20) and R3 can be used to access.
2509 * ... the code further went all the way to bpf_exit.
2510 * Now the 'cur' state at the mark 'here' has R4(off=30,r=0).
2511 * old_R4(off=20,r=0) equal to cur_R4(off=30,r=0), since if the verifier
2512 * goes further, such cur_R4 will give larger safe packet range after
2513 * 'if (R4 > data_end)' and all further insn were already good with r=20,
2514 * so they will be good with r=30 and we can prune the search.
2515 */
2516 if (old->off <= cur->off &&
2517 old->off >= old->range && cur->off >= cur->range)
2518 return true;
2519
2520 return false;
2521}
2522
f1bca824
AS
2523/* compare two verifier states
2524 *
2525 * all states stored in state_list are known to be valid, since
2526 * verifier reached 'bpf_exit' instruction through them
2527 *
2528 * this function is called when verifier exploring different branches of
2529 * execution popped from the state stack. If it sees an old state that has
2530 * more strict register state and more strict stack state then this execution
2531 * branch doesn't need to be explored further, since verifier already
2532 * concluded that more strict state leads to valid finish.
2533 *
2534 * Therefore two states are equivalent if register state is more conservative
2535 * and explored stack state is more conservative than the current one.
2536 * Example:
2537 * explored current
2538 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
2539 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
2540 *
2541 * In other words if current stack state (one being explored) has more
2542 * valid slots than old one that already passed validation, it means
2543 * the verifier can stop exploring and conclude that current state is valid too
2544 *
2545 * Similarly with registers. If explored state has register type as invalid
2546 * whereas register type in current state is meaningful, it means that
2547 * the current state will reach 'bpf_exit' instruction safely
2548 */
48461135
JB
2549static bool states_equal(struct bpf_verifier_env *env,
2550 struct bpf_verifier_state *old,
58e2af8b 2551 struct bpf_verifier_state *cur)
f1bca824 2552{
e2d2afe1 2553 bool varlen_map_access = env->varlen_map_value_access;
58e2af8b 2554 struct bpf_reg_state *rold, *rcur;
f1bca824
AS
2555 int i;
2556
2557 for (i = 0; i < MAX_BPF_REG; i++) {
1a0dc1ac
AS
2558 rold = &old->regs[i];
2559 rcur = &cur->regs[i];
2560
2561 if (memcmp(rold, rcur, sizeof(*rold)) == 0)
2562 continue;
2563
48461135
JB
2564 /* If the ranges were not the same, but everything else was and
2565 * we didn't do a variable access into a map then we are a-ok.
2566 */
e2d2afe1 2567 if (!varlen_map_access &&
d2a4dd37 2568 memcmp(rold, rcur, offsetofend(struct bpf_reg_state, id)) == 0)
48461135
JB
2569 continue;
2570
e2d2afe1
JB
2571 /* If we didn't map access then again we don't care about the
2572 * mismatched range values and it's ok if our old type was
2573 * UNKNOWN and we didn't go to a NOT_INIT'ed reg.
2574 */
1a0dc1ac 2575 if (rold->type == NOT_INIT ||
e2d2afe1
JB
2576 (!varlen_map_access && rold->type == UNKNOWN_VALUE &&
2577 rcur->type != NOT_INIT))
1a0dc1ac
AS
2578 continue;
2579
969bf05e
AS
2580 if (rold->type == PTR_TO_PACKET && rcur->type == PTR_TO_PACKET &&
2581 compare_ptrs_to_packet(rold, rcur))
2582 continue;
2583
1a0dc1ac 2584 return false;
f1bca824
AS
2585 }
2586
2587 for (i = 0; i < MAX_BPF_STACK; i++) {
9c399760
AS
2588 if (old->stack_slot_type[i] == STACK_INVALID)
2589 continue;
2590 if (old->stack_slot_type[i] != cur->stack_slot_type[i])
2591 /* Ex: old explored (safe) state has STACK_SPILL in
2592 * this stack slot, but current has has STACK_MISC ->
2593 * this verifier states are not equivalent,
2594 * return false to continue verification of this path
2595 */
f1bca824 2596 return false;
9c399760
AS
2597 if (i % BPF_REG_SIZE)
2598 continue;
2599 if (memcmp(&old->spilled_regs[i / BPF_REG_SIZE],
2600 &cur->spilled_regs[i / BPF_REG_SIZE],
2601 sizeof(old->spilled_regs[0])))
2602 /* when explored and current stack slot types are
2603 * the same, check that stored pointers types
2604 * are the same as well.
2605 * Ex: explored safe path could have stored
58e2af8b 2606 * (bpf_reg_state) {.type = PTR_TO_STACK, .imm = -8}
9c399760 2607 * but current path has stored:
58e2af8b 2608 * (bpf_reg_state) {.type = PTR_TO_STACK, .imm = -16}
9c399760
AS
2609 * such verifier states are not equivalent.
2610 * return false to continue verification of this path
2611 */
2612 return false;
2613 else
2614 continue;
f1bca824
AS
2615 }
2616 return true;
2617}
2618
58e2af8b 2619static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
f1bca824 2620{
58e2af8b
JK
2621 struct bpf_verifier_state_list *new_sl;
2622 struct bpf_verifier_state_list *sl;
f1bca824
AS
2623
2624 sl = env->explored_states[insn_idx];
2625 if (!sl)
2626 /* this 'insn_idx' instruction wasn't marked, so we will not
2627 * be doing state search here
2628 */
2629 return 0;
2630
2631 while (sl != STATE_LIST_MARK) {
48461135 2632 if (states_equal(env, &sl->state, &env->cur_state))
f1bca824
AS
2633 /* reached equivalent register/stack state,
2634 * prune the search
2635 */
2636 return 1;
2637 sl = sl->next;
2638 }
2639
2640 /* there were no equivalent states, remember current one.
2641 * technically the current state is not proven to be safe yet,
2642 * but it will either reach bpf_exit (which means it's safe) or
2643 * it will be rejected. Since there are no loops, we won't be
2644 * seeing this 'insn_idx' instruction again on the way to bpf_exit
2645 */
58e2af8b 2646 new_sl = kmalloc(sizeof(struct bpf_verifier_state_list), GFP_USER);
f1bca824
AS
2647 if (!new_sl)
2648 return -ENOMEM;
2649
2650 /* add new state to the head of linked list */
2651 memcpy(&new_sl->state, &env->cur_state, sizeof(env->cur_state));
2652 new_sl->next = env->explored_states[insn_idx];
2653 env->explored_states[insn_idx] = new_sl;
2654 return 0;
2655}
2656
13a27dfc
JK
2657static int ext_analyzer_insn_hook(struct bpf_verifier_env *env,
2658 int insn_idx, int prev_insn_idx)
2659{
2660 if (!env->analyzer_ops || !env->analyzer_ops->insn_hook)
2661 return 0;
2662
2663 return env->analyzer_ops->insn_hook(env, insn_idx, prev_insn_idx);
2664}
2665
58e2af8b 2666static int do_check(struct bpf_verifier_env *env)
17a52670 2667{
58e2af8b 2668 struct bpf_verifier_state *state = &env->cur_state;
17a52670 2669 struct bpf_insn *insns = env->prog->insnsi;
58e2af8b 2670 struct bpf_reg_state *regs = state->regs;
17a52670
AS
2671 int insn_cnt = env->prog->len;
2672 int insn_idx, prev_insn_idx = 0;
2673 int insn_processed = 0;
2674 bool do_print_state = false;
2675
2676 init_reg_state(regs);
2677 insn_idx = 0;
48461135 2678 env->varlen_map_value_access = false;
17a52670
AS
2679 for (;;) {
2680 struct bpf_insn *insn;
2681 u8 class;
2682 int err;
2683
2684 if (insn_idx >= insn_cnt) {
2685 verbose("invalid insn idx %d insn_cnt %d\n",
2686 insn_idx, insn_cnt);
2687 return -EFAULT;
2688 }
2689
2690 insn = &insns[insn_idx];
2691 class = BPF_CLASS(insn->code);
2692
07016151 2693 if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
17a52670
AS
2694 verbose("BPF program is too large. Proccessed %d insn\n",
2695 insn_processed);
2696 return -E2BIG;
2697 }
2698
f1bca824
AS
2699 err = is_state_visited(env, insn_idx);
2700 if (err < 0)
2701 return err;
2702 if (err == 1) {
2703 /* found equivalent state, can prune the search */
2704 if (log_level) {
2705 if (do_print_state)
2706 verbose("\nfrom %d to %d: safe\n",
2707 prev_insn_idx, insn_idx);
2708 else
2709 verbose("%d: safe\n", insn_idx);
2710 }
2711 goto process_bpf_exit;
2712 }
2713
17a52670
AS
2714 if (log_level && do_print_state) {
2715 verbose("\nfrom %d to %d:", prev_insn_idx, insn_idx);
1a0dc1ac 2716 print_verifier_state(&env->cur_state);
17a52670
AS
2717 do_print_state = false;
2718 }
2719
2720 if (log_level) {
2721 verbose("%d: ", insn_idx);
2722 print_bpf_insn(insn);
2723 }
2724
13a27dfc
JK
2725 err = ext_analyzer_insn_hook(env, insn_idx, prev_insn_idx);
2726 if (err)
2727 return err;
2728
17a52670 2729 if (class == BPF_ALU || class == BPF_ALU64) {
1be7f75d 2730 err = check_alu_op(env, insn);
17a52670
AS
2731 if (err)
2732 return err;
2733
2734 } else if (class == BPF_LDX) {
3df126f3 2735 enum bpf_reg_type *prev_src_type, src_reg_type;
9bac3d6d
AS
2736
2737 /* check for reserved fields is already done */
2738
17a52670
AS
2739 /* check src operand */
2740 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
2741 if (err)
2742 return err;
2743
2744 err = check_reg_arg(regs, insn->dst_reg, DST_OP_NO_MARK);
2745 if (err)
2746 return err;
2747
725f9dcd
AS
2748 src_reg_type = regs[insn->src_reg].type;
2749
17a52670
AS
2750 /* check that memory (src_reg + off) is readable,
2751 * the state of dst_reg will be updated by this func
2752 */
2753 err = check_mem_access(env, insn->src_reg, insn->off,
2754 BPF_SIZE(insn->code), BPF_READ,
2755 insn->dst_reg);
2756 if (err)
2757 return err;
2758
ea2e7ce5
AS
2759 if (BPF_SIZE(insn->code) != BPF_W &&
2760 BPF_SIZE(insn->code) != BPF_DW) {
725f9dcd
AS
2761 insn_idx++;
2762 continue;
2763 }
9bac3d6d 2764
3df126f3
JK
2765 prev_src_type = &env->insn_aux_data[insn_idx].ptr_type;
2766
2767 if (*prev_src_type == NOT_INIT) {
9bac3d6d
AS
2768 /* saw a valid insn
2769 * dst_reg = *(u32 *)(src_reg + off)
3df126f3 2770 * save type to validate intersecting paths
9bac3d6d 2771 */
3df126f3 2772 *prev_src_type = src_reg_type;
9bac3d6d 2773
3df126f3 2774 } else if (src_reg_type != *prev_src_type &&
9bac3d6d 2775 (src_reg_type == PTR_TO_CTX ||
3df126f3 2776 *prev_src_type == PTR_TO_CTX)) {
9bac3d6d
AS
2777 /* ABuser program is trying to use the same insn
2778 * dst_reg = *(u32*) (src_reg + off)
2779 * with different pointer types:
2780 * src_reg == ctx in one branch and
2781 * src_reg == stack|map in some other branch.
2782 * Reject it.
2783 */
2784 verbose("same insn cannot be used with different pointers\n");
2785 return -EINVAL;
2786 }
2787
17a52670 2788 } else if (class == BPF_STX) {
3df126f3 2789 enum bpf_reg_type *prev_dst_type, dst_reg_type;
d691f9e8 2790
17a52670
AS
2791 if (BPF_MODE(insn->code) == BPF_XADD) {
2792 err = check_xadd(env, insn);
2793 if (err)
2794 return err;
2795 insn_idx++;
2796 continue;
2797 }
2798
17a52670
AS
2799 /* check src1 operand */
2800 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
2801 if (err)
2802 return err;
2803 /* check src2 operand */
2804 err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
2805 if (err)
2806 return err;
2807
d691f9e8
AS
2808 dst_reg_type = regs[insn->dst_reg].type;
2809
17a52670
AS
2810 /* check that memory (dst_reg + off) is writeable */
2811 err = check_mem_access(env, insn->dst_reg, insn->off,
2812 BPF_SIZE(insn->code), BPF_WRITE,
2813 insn->src_reg);
2814 if (err)
2815 return err;
2816
3df126f3
JK
2817 prev_dst_type = &env->insn_aux_data[insn_idx].ptr_type;
2818
2819 if (*prev_dst_type == NOT_INIT) {
2820 *prev_dst_type = dst_reg_type;
2821 } else if (dst_reg_type != *prev_dst_type &&
d691f9e8 2822 (dst_reg_type == PTR_TO_CTX ||
3df126f3 2823 *prev_dst_type == PTR_TO_CTX)) {
d691f9e8
AS
2824 verbose("same insn cannot be used with different pointers\n");
2825 return -EINVAL;
2826 }
2827
17a52670
AS
2828 } else if (class == BPF_ST) {
2829 if (BPF_MODE(insn->code) != BPF_MEM ||
2830 insn->src_reg != BPF_REG_0) {
2831 verbose("BPF_ST uses reserved fields\n");
2832 return -EINVAL;
2833 }
2834 /* check src operand */
2835 err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
2836 if (err)
2837 return err;
2838
2839 /* check that memory (dst_reg + off) is writeable */
2840 err = check_mem_access(env, insn->dst_reg, insn->off,
2841 BPF_SIZE(insn->code), BPF_WRITE,
2842 -1);
2843 if (err)
2844 return err;
2845
2846 } else if (class == BPF_JMP) {
2847 u8 opcode = BPF_OP(insn->code);
2848
2849 if (opcode == BPF_CALL) {
2850 if (BPF_SRC(insn->code) != BPF_K ||
2851 insn->off != 0 ||
2852 insn->src_reg != BPF_REG_0 ||
2853 insn->dst_reg != BPF_REG_0) {
2854 verbose("BPF_CALL uses reserved fields\n");
2855 return -EINVAL;
2856 }
2857
2858 err = check_call(env, insn->imm);
2859 if (err)
2860 return err;
2861
2862 } else if (opcode == BPF_JA) {
2863 if (BPF_SRC(insn->code) != BPF_K ||
2864 insn->imm != 0 ||
2865 insn->src_reg != BPF_REG_0 ||
2866 insn->dst_reg != BPF_REG_0) {
2867 verbose("BPF_JA uses reserved fields\n");
2868 return -EINVAL;
2869 }
2870
2871 insn_idx += insn->off + 1;
2872 continue;
2873
2874 } else if (opcode == BPF_EXIT) {
2875 if (BPF_SRC(insn->code) != BPF_K ||
2876 insn->imm != 0 ||
2877 insn->src_reg != BPF_REG_0 ||
2878 insn->dst_reg != BPF_REG_0) {
2879 verbose("BPF_EXIT uses reserved fields\n");
2880 return -EINVAL;
2881 }
2882
2883 /* eBPF calling convetion is such that R0 is used
2884 * to return the value from eBPF program.
2885 * Make sure that it's readable at this time
2886 * of bpf_exit, which means that program wrote
2887 * something into it earlier
2888 */
2889 err = check_reg_arg(regs, BPF_REG_0, SRC_OP);
2890 if (err)
2891 return err;
2892
1be7f75d
AS
2893 if (is_pointer_value(env, BPF_REG_0)) {
2894 verbose("R0 leaks addr as return value\n");
2895 return -EACCES;
2896 }
2897
f1bca824 2898process_bpf_exit:
17a52670
AS
2899 insn_idx = pop_stack(env, &prev_insn_idx);
2900 if (insn_idx < 0) {
2901 break;
2902 } else {
2903 do_print_state = true;
2904 continue;
2905 }
2906 } else {
2907 err = check_cond_jmp_op(env, insn, &insn_idx);
2908 if (err)
2909 return err;
2910 }
2911 } else if (class == BPF_LD) {
2912 u8 mode = BPF_MODE(insn->code);
2913
2914 if (mode == BPF_ABS || mode == BPF_IND) {
ddd872bc
AS
2915 err = check_ld_abs(env, insn);
2916 if (err)
2917 return err;
2918
17a52670
AS
2919 } else if (mode == BPF_IMM) {
2920 err = check_ld_imm(env, insn);
2921 if (err)
2922 return err;
2923
2924 insn_idx++;
2925 } else {
2926 verbose("invalid BPF_LD mode\n");
2927 return -EINVAL;
2928 }
48461135 2929 reset_reg_range_values(regs, insn->dst_reg);
17a52670
AS
2930 } else {
2931 verbose("unknown insn class %d\n", class);
2932 return -EINVAL;
2933 }
2934
2935 insn_idx++;
2936 }
2937
1a0dc1ac 2938 verbose("processed %d insns\n", insn_processed);
17a52670
AS
2939 return 0;
2940}
2941
fdc15d38
AS
2942static int check_map_prog_compatibility(struct bpf_map *map,
2943 struct bpf_prog *prog)
2944
2945{
2946 if (prog->type == BPF_PROG_TYPE_PERF_EVENT &&
2947 (map->map_type == BPF_MAP_TYPE_HASH ||
2948 map->map_type == BPF_MAP_TYPE_PERCPU_HASH) &&
2949 (map->map_flags & BPF_F_NO_PREALLOC)) {
2950 verbose("perf_event programs can only use preallocated hash map\n");
2951 return -EINVAL;
2952 }
2953 return 0;
2954}
2955
0246e64d
AS
2956/* look for pseudo eBPF instructions that access map FDs and
2957 * replace them with actual map pointers
2958 */
58e2af8b 2959static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
0246e64d
AS
2960{
2961 struct bpf_insn *insn = env->prog->insnsi;
2962 int insn_cnt = env->prog->len;
fdc15d38 2963 int i, j, err;
0246e64d 2964
aafe6ae9
DB
2965 err = bpf_prog_calc_digest(env->prog);
2966 if (err)
2967 return err;
2968
0246e64d 2969 for (i = 0; i < insn_cnt; i++, insn++) {
9bac3d6d 2970 if (BPF_CLASS(insn->code) == BPF_LDX &&
d691f9e8 2971 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
9bac3d6d
AS
2972 verbose("BPF_LDX uses reserved fields\n");
2973 return -EINVAL;
2974 }
2975
d691f9e8
AS
2976 if (BPF_CLASS(insn->code) == BPF_STX &&
2977 ((BPF_MODE(insn->code) != BPF_MEM &&
2978 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
2979 verbose("BPF_STX uses reserved fields\n");
2980 return -EINVAL;
2981 }
2982
0246e64d
AS
2983 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
2984 struct bpf_map *map;
2985 struct fd f;
2986
2987 if (i == insn_cnt - 1 || insn[1].code != 0 ||
2988 insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
2989 insn[1].off != 0) {
2990 verbose("invalid bpf_ld_imm64 insn\n");
2991 return -EINVAL;
2992 }
2993
2994 if (insn->src_reg == 0)
2995 /* valid generic load 64-bit imm */
2996 goto next_insn;
2997
2998 if (insn->src_reg != BPF_PSEUDO_MAP_FD) {
2999 verbose("unrecognized bpf_ld_imm64 insn\n");
3000 return -EINVAL;
3001 }
3002
3003 f = fdget(insn->imm);
c2101297 3004 map = __bpf_map_get(f);
0246e64d
AS
3005 if (IS_ERR(map)) {
3006 verbose("fd %d is not pointing to valid bpf_map\n",
3007 insn->imm);
0246e64d
AS
3008 return PTR_ERR(map);
3009 }
3010
fdc15d38
AS
3011 err = check_map_prog_compatibility(map, env->prog);
3012 if (err) {
3013 fdput(f);
3014 return err;
3015 }
3016
0246e64d
AS
3017 /* store map pointer inside BPF_LD_IMM64 instruction */
3018 insn[0].imm = (u32) (unsigned long) map;
3019 insn[1].imm = ((u64) (unsigned long) map) >> 32;
3020
3021 /* check whether we recorded this map already */
3022 for (j = 0; j < env->used_map_cnt; j++)
3023 if (env->used_maps[j] == map) {
3024 fdput(f);
3025 goto next_insn;
3026 }
3027
3028 if (env->used_map_cnt >= MAX_USED_MAPS) {
3029 fdput(f);
3030 return -E2BIG;
3031 }
3032
0246e64d
AS
3033 /* hold the map. If the program is rejected by verifier,
3034 * the map will be released by release_maps() or it
3035 * will be used by the valid program until it's unloaded
3036 * and all maps are released in free_bpf_prog_info()
3037 */
92117d84
AS
3038 map = bpf_map_inc(map, false);
3039 if (IS_ERR(map)) {
3040 fdput(f);
3041 return PTR_ERR(map);
3042 }
3043 env->used_maps[env->used_map_cnt++] = map;
3044
0246e64d
AS
3045 fdput(f);
3046next_insn:
3047 insn++;
3048 i++;
3049 }
3050 }
3051
3052 /* now all pseudo BPF_LD_IMM64 instructions load valid
3053 * 'struct bpf_map *' into a register instead of user map_fd.
3054 * These pointers will be used later by verifier to validate map access.
3055 */
3056 return 0;
3057}
3058
3059/* drop refcnt of maps used by the rejected program */
58e2af8b 3060static void release_maps(struct bpf_verifier_env *env)
0246e64d
AS
3061{
3062 int i;
3063
3064 for (i = 0; i < env->used_map_cnt; i++)
3065 bpf_map_put(env->used_maps[i]);
3066}
3067
3068/* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
58e2af8b 3069static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
0246e64d
AS
3070{
3071 struct bpf_insn *insn = env->prog->insnsi;
3072 int insn_cnt = env->prog->len;
3073 int i;
3074
3075 for (i = 0; i < insn_cnt; i++, insn++)
3076 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
3077 insn->src_reg = 0;
3078}
3079
9bac3d6d
AS
3080/* convert load instructions that access fields of 'struct __sk_buff'
3081 * into sequence of instructions that access fields of 'struct sk_buff'
3082 */
58e2af8b 3083static int convert_ctx_accesses(struct bpf_verifier_env *env)
9bac3d6d 3084{
36bbef52 3085 const struct bpf_verifier_ops *ops = env->prog->aux->ops;
3df126f3 3086 const int insn_cnt = env->prog->len;
36bbef52 3087 struct bpf_insn insn_buf[16], *insn;
9bac3d6d 3088 struct bpf_prog *new_prog;
d691f9e8 3089 enum bpf_access_type type;
3df126f3 3090 int i, cnt, delta = 0;
9bac3d6d 3091
36bbef52
DB
3092 if (ops->gen_prologue) {
3093 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
3094 env->prog);
3095 if (cnt >= ARRAY_SIZE(insn_buf)) {
3096 verbose("bpf verifier is misconfigured\n");
3097 return -EINVAL;
3098 } else if (cnt) {
3099 new_prog = bpf_patch_insn_single(env->prog, 0,
3100 insn_buf, cnt);
3101 if (!new_prog)
3102 return -ENOMEM;
3103 env->prog = new_prog;
3df126f3 3104 delta += cnt - 1;
36bbef52
DB
3105 }
3106 }
3107
3108 if (!ops->convert_ctx_access)
9bac3d6d
AS
3109 return 0;
3110
3df126f3 3111 insn = env->prog->insnsi + delta;
36bbef52 3112
9bac3d6d 3113 for (i = 0; i < insn_cnt; i++, insn++) {
ea2e7ce5
AS
3114 if (insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
3115 insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
d691f9e8 3116 type = BPF_READ;
ea2e7ce5
AS
3117 else if (insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
3118 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
d691f9e8
AS
3119 type = BPF_WRITE;
3120 else
9bac3d6d
AS
3121 continue;
3122
3df126f3 3123 if (env->insn_aux_data[i].ptr_type != PTR_TO_CTX)
9bac3d6d 3124 continue;
9bac3d6d 3125
36bbef52
DB
3126 cnt = ops->convert_ctx_access(type, insn->dst_reg, insn->src_reg,
3127 insn->off, insn_buf, env->prog);
9bac3d6d
AS
3128 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
3129 verbose("bpf verifier is misconfigured\n");
3130 return -EINVAL;
3131 }
3132
3df126f3
JK
3133 new_prog = bpf_patch_insn_single(env->prog, i + delta, insn_buf,
3134 cnt);
9bac3d6d
AS
3135 if (!new_prog)
3136 return -ENOMEM;
3137
3df126f3 3138 delta += cnt - 1;
9bac3d6d
AS
3139
3140 /* keep walking new program and skip insns we just inserted */
3141 env->prog = new_prog;
3df126f3 3142 insn = new_prog->insnsi + i + delta;
9bac3d6d
AS
3143 }
3144
3145 return 0;
3146}
3147
58e2af8b 3148static void free_states(struct bpf_verifier_env *env)
f1bca824 3149{
58e2af8b 3150 struct bpf_verifier_state_list *sl, *sln;
f1bca824
AS
3151 int i;
3152
3153 if (!env->explored_states)
3154 return;
3155
3156 for (i = 0; i < env->prog->len; i++) {
3157 sl = env->explored_states[i];
3158
3159 if (sl)
3160 while (sl != STATE_LIST_MARK) {
3161 sln = sl->next;
3162 kfree(sl);
3163 sl = sln;
3164 }
3165 }
3166
3167 kfree(env->explored_states);
3168}
3169
9bac3d6d 3170int bpf_check(struct bpf_prog **prog, union bpf_attr *attr)
51580e79 3171{
cbd35700 3172 char __user *log_ubuf = NULL;
58e2af8b 3173 struct bpf_verifier_env *env;
51580e79
AS
3174 int ret = -EINVAL;
3175
58e2af8b 3176 /* 'struct bpf_verifier_env' can be global, but since it's not small,
cbd35700
AS
3177 * allocate/free it every time bpf_check() is called
3178 */
58e2af8b 3179 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
cbd35700
AS
3180 if (!env)
3181 return -ENOMEM;
3182
3df126f3
JK
3183 env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
3184 (*prog)->len);
3185 ret = -ENOMEM;
3186 if (!env->insn_aux_data)
3187 goto err_free_env;
9bac3d6d 3188 env->prog = *prog;
0246e64d 3189
cbd35700
AS
3190 /* grab the mutex to protect few globals used by verifier */
3191 mutex_lock(&bpf_verifier_lock);
3192
3193 if (attr->log_level || attr->log_buf || attr->log_size) {
3194 /* user requested verbose verifier output
3195 * and supplied buffer to store the verification trace
3196 */
3197 log_level = attr->log_level;
3198 log_ubuf = (char __user *) (unsigned long) attr->log_buf;
3199 log_size = attr->log_size;
3200 log_len = 0;
3201
3202 ret = -EINVAL;
3203 /* log_* values have to be sane */
3204 if (log_size < 128 || log_size > UINT_MAX >> 8 ||
3205 log_level == 0 || log_ubuf == NULL)
3df126f3 3206 goto err_unlock;
cbd35700
AS
3207
3208 ret = -ENOMEM;
3209 log_buf = vmalloc(log_size);
3210 if (!log_buf)
3df126f3 3211 goto err_unlock;
cbd35700
AS
3212 } else {
3213 log_level = 0;
3214 }
3215
0246e64d
AS
3216 ret = replace_map_fd_with_map_ptr(env);
3217 if (ret < 0)
3218 goto skip_full_check;
3219
9bac3d6d 3220 env->explored_states = kcalloc(env->prog->len,
58e2af8b 3221 sizeof(struct bpf_verifier_state_list *),
f1bca824
AS
3222 GFP_USER);
3223 ret = -ENOMEM;
3224 if (!env->explored_states)
3225 goto skip_full_check;
3226
475fb78f
AS
3227 ret = check_cfg(env);
3228 if (ret < 0)
3229 goto skip_full_check;
3230
1be7f75d
AS
3231 env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
3232
17a52670 3233 ret = do_check(env);
cbd35700 3234
0246e64d 3235skip_full_check:
17a52670 3236 while (pop_stack(env, NULL) >= 0);
f1bca824 3237 free_states(env);
0246e64d 3238
9bac3d6d
AS
3239 if (ret == 0)
3240 /* program is valid, convert *(u32*)(ctx + off) accesses */
3241 ret = convert_ctx_accesses(env);
3242
cbd35700
AS
3243 if (log_level && log_len >= log_size - 1) {
3244 BUG_ON(log_len >= log_size);
3245 /* verifier log exceeded user supplied buffer */
3246 ret = -ENOSPC;
3247 /* fall through to return what was recorded */
3248 }
3249
3250 /* copy verifier log back to user space including trailing zero */
3251 if (log_level && copy_to_user(log_ubuf, log_buf, log_len + 1) != 0) {
3252 ret = -EFAULT;
3253 goto free_log_buf;
3254 }
3255
0246e64d
AS
3256 if (ret == 0 && env->used_map_cnt) {
3257 /* if program passed verifier, update used_maps in bpf_prog_info */
9bac3d6d
AS
3258 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
3259 sizeof(env->used_maps[0]),
3260 GFP_KERNEL);
0246e64d 3261
9bac3d6d 3262 if (!env->prog->aux->used_maps) {
0246e64d
AS
3263 ret = -ENOMEM;
3264 goto free_log_buf;
3265 }
3266
9bac3d6d 3267 memcpy(env->prog->aux->used_maps, env->used_maps,
0246e64d 3268 sizeof(env->used_maps[0]) * env->used_map_cnt);
9bac3d6d 3269 env->prog->aux->used_map_cnt = env->used_map_cnt;
0246e64d
AS
3270
3271 /* program is valid. Convert pseudo bpf_ld_imm64 into generic
3272 * bpf_ld_imm64 instructions
3273 */
3274 convert_pseudo_ld_imm64(env);
3275 }
cbd35700
AS
3276
3277free_log_buf:
3278 if (log_level)
3279 vfree(log_buf);
9bac3d6d 3280 if (!env->prog->aux->used_maps)
0246e64d
AS
3281 /* if we didn't copy map pointers into bpf_prog_info, release
3282 * them now. Otherwise free_bpf_prog_info() will release them.
3283 */
3284 release_maps(env);
9bac3d6d 3285 *prog = env->prog;
3df126f3 3286err_unlock:
cbd35700 3287 mutex_unlock(&bpf_verifier_lock);
3df126f3
JK
3288 vfree(env->insn_aux_data);
3289err_free_env:
3290 kfree(env);
51580e79
AS
3291 return ret;
3292}
13a27dfc
JK
3293
3294int bpf_analyzer(struct bpf_prog *prog, const struct bpf_ext_analyzer_ops *ops,
3295 void *priv)
3296{
3297 struct bpf_verifier_env *env;
3298 int ret;
3299
3300 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
3301 if (!env)
3302 return -ENOMEM;
3303
3304 env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
3305 prog->len);
3306 ret = -ENOMEM;
3307 if (!env->insn_aux_data)
3308 goto err_free_env;
3309 env->prog = prog;
3310 env->analyzer_ops = ops;
3311 env->analyzer_priv = priv;
3312
3313 /* grab the mutex to protect few globals used by verifier */
3314 mutex_lock(&bpf_verifier_lock);
3315
3316 log_level = 0;
3317
3318 env->explored_states = kcalloc(env->prog->len,
3319 sizeof(struct bpf_verifier_state_list *),
3320 GFP_KERNEL);
3321 ret = -ENOMEM;
3322 if (!env->explored_states)
3323 goto skip_full_check;
3324
3325 ret = check_cfg(env);
3326 if (ret < 0)
3327 goto skip_full_check;
3328
3329 env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
3330
3331 ret = do_check(env);
3332
3333skip_full_check:
3334 while (pop_stack(env, NULL) >= 0);
3335 free_states(env);
3336
3337 mutex_unlock(&bpf_verifier_lock);
3338 vfree(env->insn_aux_data);
3339err_free_env:
3340 kfree(env);
3341 return ret;
3342}
3343EXPORT_SYMBOL_GPL(bpf_analyzer);