]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - kernel/bpf/verifier.c
bpf: Fix swapped arguments in calls to check_buffer_access
[mirror_ubuntu-hirsute-kernel.git] / kernel / bpf / verifier.c
CommitLineData
5b497af4 1// SPDX-License-Identifier: GPL-2.0-only
51580e79 2/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
969bf05e 3 * Copyright (c) 2016 Facebook
fd978bf7 4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
51580e79 5 */
838e9690 6#include <uapi/linux/btf.h>
51580e79
AS
7#include <linux/kernel.h>
8#include <linux/types.h>
9#include <linux/slab.h>
10#include <linux/bpf.h>
838e9690 11#include <linux/btf.h>
58e2af8b 12#include <linux/bpf_verifier.h>
51580e79
AS
13#include <linux/filter.h>
14#include <net/netlink.h>
15#include <linux/file.h>
16#include <linux/vmalloc.h>
ebb676da 17#include <linux/stringify.h>
cc8b0b92
AS
18#include <linux/bsearch.h>
19#include <linux/sort.h>
c195651e 20#include <linux/perf_event.h>
d9762e84 21#include <linux/ctype.h>
6ba43b76 22#include <linux/error-injection.h>
9e4e01df 23#include <linux/bpf_lsm.h>
51580e79 24
f4ac7e0b
JK
25#include "disasm.h"
26
00176a34 27static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
91cc1a99 28#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
00176a34
JK
29 [_id] = & _name ## _verifier_ops,
30#define BPF_MAP_TYPE(_id, _ops)
f2e10bff 31#define BPF_LINK_TYPE(_id, _name)
00176a34
JK
32#include <linux/bpf_types.h>
33#undef BPF_PROG_TYPE
34#undef BPF_MAP_TYPE
f2e10bff 35#undef BPF_LINK_TYPE
00176a34
JK
36};
37
51580e79
AS
38/* bpf_check() is a static code analyzer that walks eBPF program
39 * instruction by instruction and updates register/stack state.
40 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
41 *
42 * The first pass is depth-first-search to check that the program is a DAG.
43 * It rejects the following programs:
44 * - larger than BPF_MAXINSNS insns
45 * - if loop is present (detected via back-edge)
46 * - unreachable insns exist (shouldn't be a forest. program = one function)
47 * - out of bounds or malformed jumps
48 * The second pass is all possible path descent from the 1st insn.
49 * Since it's analyzing all pathes through the program, the length of the
eba38a96 50 * analysis is limited to 64k insn, which may be hit even if total number of
51580e79
AS
51 * insn is less then 4K, but there are too many branches that change stack/regs.
52 * Number of 'branches to be analyzed' is limited to 1k
53 *
54 * On entry to each instruction, each register has a type, and the instruction
55 * changes the types of the registers depending on instruction semantics.
56 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
57 * copied to R1.
58 *
59 * All registers are 64-bit.
60 * R0 - return register
61 * R1-R5 argument passing registers
62 * R6-R9 callee saved registers
63 * R10 - frame pointer read-only
64 *
65 * At the start of BPF program the register R1 contains a pointer to bpf_context
66 * and has type PTR_TO_CTX.
67 *
68 * Verifier tracks arithmetic operations on pointers in case:
69 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
70 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
71 * 1st insn copies R10 (which has FRAME_PTR) type into R1
72 * and 2nd arithmetic instruction is pattern matched to recognize
73 * that it wants to construct a pointer to some element within stack.
74 * So after 2nd insn, the register R1 has type PTR_TO_STACK
75 * (and -20 constant is saved for further stack bounds checking).
76 * Meaning that this reg is a pointer to stack plus known immediate constant.
77 *
f1174f77 78 * Most of the time the registers have SCALAR_VALUE type, which
51580e79 79 * means the register has some value, but it's not a valid pointer.
f1174f77 80 * (like pointer plus pointer becomes SCALAR_VALUE type)
51580e79
AS
81 *
82 * When verifier sees load or store instructions the type of base register
c64b7983
JS
83 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
84 * four pointer types recognized by check_mem_access() function.
51580e79
AS
85 *
86 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
87 * and the range of [ptr, ptr + map's value_size) is accessible.
88 *
89 * registers used to pass values to function calls are checked against
90 * function argument constraints.
91 *
92 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
93 * It means that the register type passed to this function must be
94 * PTR_TO_STACK and it will be used inside the function as
95 * 'pointer to map element key'
96 *
97 * For example the argument constraints for bpf_map_lookup_elem():
98 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
99 * .arg1_type = ARG_CONST_MAP_PTR,
100 * .arg2_type = ARG_PTR_TO_MAP_KEY,
101 *
102 * ret_type says that this function returns 'pointer to map elem value or null'
103 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
104 * 2nd argument should be a pointer to stack, which will be used inside
105 * the helper function as a pointer to map element key.
106 *
107 * On the kernel side the helper function looks like:
108 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
109 * {
110 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
111 * void *key = (void *) (unsigned long) r2;
112 * void *value;
113 *
114 * here kernel can access 'key' and 'map' pointers safely, knowing that
115 * [key, key + map->key_size) bytes are valid and were initialized on
116 * the stack of eBPF program.
117 * }
118 *
119 * Corresponding eBPF program may look like:
120 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
121 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
122 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
123 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
124 * here verifier looks at prototype of map_lookup_elem() and sees:
125 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
126 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
127 *
128 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
129 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
130 * and were initialized prior to this call.
131 * If it's ok, then verifier allows this BPF_CALL insn and looks at
132 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
133 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
134 * returns ether pointer to map value or NULL.
135 *
136 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
137 * insn, the register holding that pointer in the true branch changes state to
138 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
139 * branch. See check_cond_jmp_op().
140 *
141 * After the call R0 is set to return type of the function and registers R1-R5
142 * are set to NOT_INIT to indicate that they are no longer readable.
fd978bf7
JS
143 *
144 * The following reference types represent a potential reference to a kernel
145 * resource which, after first being allocated, must be checked and freed by
146 * the BPF program:
147 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
148 *
149 * When the verifier sees a helper call return a reference type, it allocates a
150 * pointer id for the reference and stores it in the current function state.
151 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
152 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
153 * passes through a NULL-check conditional. For the branch wherein the state is
154 * changed to CONST_IMM, the verifier releases the reference.
6acc9b43
JS
155 *
156 * For each helper function that allocates a reference, such as
157 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
158 * bpf_sk_release(). When a reference type passes into the release function,
159 * the verifier also releases the reference. If any unchecked or unreleased
160 * reference remains at the end of the program, the verifier rejects it.
51580e79
AS
161 */
162
17a52670 163/* verifier_state + insn_idx are pushed to stack when branch is encountered */
58e2af8b 164struct bpf_verifier_stack_elem {
17a52670
AS
165 /* verifer state is 'st'
166 * before processing instruction 'insn_idx'
167 * and after processing instruction 'prev_insn_idx'
168 */
58e2af8b 169 struct bpf_verifier_state st;
17a52670
AS
170 int insn_idx;
171 int prev_insn_idx;
58e2af8b 172 struct bpf_verifier_stack_elem *next;
6f8a57cc
AN
173 /* length of verifier log at the time this state was pushed on stack */
174 u32 log_pos;
cbd35700
AS
175};
176
b285fcb7 177#define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192
ceefbc96 178#define BPF_COMPLEXITY_LIMIT_STATES 64
07016151 179
d2e4c1e6
DB
180#define BPF_MAP_KEY_POISON (1ULL << 63)
181#define BPF_MAP_KEY_SEEN (1ULL << 62)
182
c93552c4
DB
183#define BPF_MAP_PTR_UNPRIV 1UL
184#define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \
185 POISON_POINTER_DELTA))
186#define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
187
188static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
189{
d2e4c1e6 190 return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON;
c93552c4
DB
191}
192
193static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
194{
d2e4c1e6 195 return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV;
c93552c4
DB
196}
197
198static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
199 const struct bpf_map *map, bool unpriv)
200{
201 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
202 unpriv |= bpf_map_ptr_unpriv(aux);
d2e4c1e6
DB
203 aux->map_ptr_state = (unsigned long)map |
204 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
205}
206
207static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
208{
209 return aux->map_key_state & BPF_MAP_KEY_POISON;
210}
211
212static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
213{
214 return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
215}
216
217static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
218{
219 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
220}
221
222static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
223{
224 bool poisoned = bpf_map_key_poisoned(aux);
225
226 aux->map_key_state = state | BPF_MAP_KEY_SEEN |
227 (poisoned ? BPF_MAP_KEY_POISON : 0ULL);
c93552c4 228}
fad73a1a 229
33ff9823
DB
230struct bpf_call_arg_meta {
231 struct bpf_map *map_ptr;
435faee1 232 bool raw_mode;
36bbef52 233 bool pkt_access;
435faee1
DB
234 int regno;
235 int access_size;
457f4436 236 int mem_size;
10060503 237 u64 msize_max_value;
1b986589 238 int ref_obj_id;
d83525ca 239 int func_id;
a7658e1a 240 u32 btf_id;
33ff9823
DB
241};
242
8580ac94
AS
243struct btf *btf_vmlinux;
244
cbd35700
AS
245static DEFINE_MUTEX(bpf_verifier_lock);
246
d9762e84
MKL
247static const struct bpf_line_info *
248find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
249{
250 const struct bpf_line_info *linfo;
251 const struct bpf_prog *prog;
252 u32 i, nr_linfo;
253
254 prog = env->prog;
255 nr_linfo = prog->aux->nr_linfo;
256
257 if (!nr_linfo || insn_off >= prog->len)
258 return NULL;
259
260 linfo = prog->aux->linfo;
261 for (i = 1; i < nr_linfo; i++)
262 if (insn_off < linfo[i].insn_off)
263 break;
264
265 return &linfo[i - 1];
266}
267
77d2e05a
MKL
268void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
269 va_list args)
cbd35700 270{
a2a7d570 271 unsigned int n;
cbd35700 272
a2a7d570 273 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
a2a7d570
JK
274
275 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
276 "verifier log line truncated - local buffer too short\n");
277
278 n = min(log->len_total - log->len_used - 1, n);
279 log->kbuf[n] = '\0';
280
8580ac94
AS
281 if (log->level == BPF_LOG_KERNEL) {
282 pr_err("BPF:%s\n", log->kbuf);
283 return;
284 }
a2a7d570
JK
285 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
286 log->len_used += n;
287 else
288 log->ubuf = NULL;
cbd35700 289}
abe08840 290
6f8a57cc
AN
291static void bpf_vlog_reset(struct bpf_verifier_log *log, u32 new_pos)
292{
293 char zero = 0;
294
295 if (!bpf_verifier_log_needed(log))
296 return;
297
298 log->len_used = new_pos;
299 if (put_user(zero, log->ubuf + new_pos))
300 log->ubuf = NULL;
301}
302
abe08840
JO
303/* log_level controls verbosity level of eBPF verifier.
304 * bpf_verifier_log_write() is used to dump the verification trace to the log,
305 * so the user can figure out what's wrong with the program
430e68d1 306 */
abe08840
JO
307__printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
308 const char *fmt, ...)
309{
310 va_list args;
311
77d2e05a
MKL
312 if (!bpf_verifier_log_needed(&env->log))
313 return;
314
abe08840 315 va_start(args, fmt);
77d2e05a 316 bpf_verifier_vlog(&env->log, fmt, args);
abe08840
JO
317 va_end(args);
318}
319EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
320
321__printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
322{
77d2e05a 323 struct bpf_verifier_env *env = private_data;
abe08840
JO
324 va_list args;
325
77d2e05a
MKL
326 if (!bpf_verifier_log_needed(&env->log))
327 return;
328
abe08840 329 va_start(args, fmt);
77d2e05a 330 bpf_verifier_vlog(&env->log, fmt, args);
abe08840
JO
331 va_end(args);
332}
cbd35700 333
9e15db66
AS
334__printf(2, 3) void bpf_log(struct bpf_verifier_log *log,
335 const char *fmt, ...)
336{
337 va_list args;
338
339 if (!bpf_verifier_log_needed(log))
340 return;
341
342 va_start(args, fmt);
343 bpf_verifier_vlog(log, fmt, args);
344 va_end(args);
345}
346
d9762e84
MKL
347static const char *ltrim(const char *s)
348{
349 while (isspace(*s))
350 s++;
351
352 return s;
353}
354
355__printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
356 u32 insn_off,
357 const char *prefix_fmt, ...)
358{
359 const struct bpf_line_info *linfo;
360
361 if (!bpf_verifier_log_needed(&env->log))
362 return;
363
364 linfo = find_linfo(env, insn_off);
365 if (!linfo || linfo == env->prev_linfo)
366 return;
367
368 if (prefix_fmt) {
369 va_list args;
370
371 va_start(args, prefix_fmt);
372 bpf_verifier_vlog(&env->log, prefix_fmt, args);
373 va_end(args);
374 }
375
376 verbose(env, "%s\n",
377 ltrim(btf_name_by_offset(env->prog->aux->btf,
378 linfo->line_off)));
379
380 env->prev_linfo = linfo;
381}
382
de8f3a83
DB
383static bool type_is_pkt_pointer(enum bpf_reg_type type)
384{
385 return type == PTR_TO_PACKET ||
386 type == PTR_TO_PACKET_META;
387}
388
46f8bc92
MKL
389static bool type_is_sk_pointer(enum bpf_reg_type type)
390{
391 return type == PTR_TO_SOCKET ||
655a51e5 392 type == PTR_TO_SOCK_COMMON ||
fada7fdc
JL
393 type == PTR_TO_TCP_SOCK ||
394 type == PTR_TO_XDP_SOCK;
46f8bc92
MKL
395}
396
cac616db
JF
397static bool reg_type_not_null(enum bpf_reg_type type)
398{
399 return type == PTR_TO_SOCKET ||
400 type == PTR_TO_TCP_SOCK ||
401 type == PTR_TO_MAP_VALUE ||
01c66c48 402 type == PTR_TO_SOCK_COMMON;
cac616db
JF
403}
404
840b9615
JS
405static bool reg_type_may_be_null(enum bpf_reg_type type)
406{
fd978bf7 407 return type == PTR_TO_MAP_VALUE_OR_NULL ||
46f8bc92 408 type == PTR_TO_SOCKET_OR_NULL ||
655a51e5 409 type == PTR_TO_SOCK_COMMON_OR_NULL ||
b121b341 410 type == PTR_TO_TCP_SOCK_OR_NULL ||
457f4436 411 type == PTR_TO_BTF_ID_OR_NULL ||
afbf21dc
YS
412 type == PTR_TO_MEM_OR_NULL ||
413 type == PTR_TO_RDONLY_BUF_OR_NULL ||
414 type == PTR_TO_RDWR_BUF_OR_NULL;
fd978bf7
JS
415}
416
d83525ca
AS
417static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
418{
419 return reg->type == PTR_TO_MAP_VALUE &&
420 map_value_has_spin_lock(reg->map_ptr);
421}
422
cba368c1
MKL
423static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type)
424{
425 return type == PTR_TO_SOCKET ||
426 type == PTR_TO_SOCKET_OR_NULL ||
427 type == PTR_TO_TCP_SOCK ||
457f4436
AN
428 type == PTR_TO_TCP_SOCK_OR_NULL ||
429 type == PTR_TO_MEM ||
430 type == PTR_TO_MEM_OR_NULL;
cba368c1
MKL
431}
432
1b986589 433static bool arg_type_may_be_refcounted(enum bpf_arg_type type)
fd978bf7 434{
1b986589 435 return type == ARG_PTR_TO_SOCK_COMMON;
fd978bf7
JS
436}
437
438/* Determine whether the function releases some resources allocated by another
439 * function call. The first reference type argument will be assumed to be
440 * released by release_reference().
441 */
442static bool is_release_function(enum bpf_func_id func_id)
443{
457f4436
AN
444 return func_id == BPF_FUNC_sk_release ||
445 func_id == BPF_FUNC_ringbuf_submit ||
446 func_id == BPF_FUNC_ringbuf_discard;
840b9615
JS
447}
448
64d85290 449static bool may_be_acquire_function(enum bpf_func_id func_id)
46f8bc92
MKL
450{
451 return func_id == BPF_FUNC_sk_lookup_tcp ||
edbf8c01 452 func_id == BPF_FUNC_sk_lookup_udp ||
64d85290 453 func_id == BPF_FUNC_skc_lookup_tcp ||
457f4436
AN
454 func_id == BPF_FUNC_map_lookup_elem ||
455 func_id == BPF_FUNC_ringbuf_reserve;
64d85290
JS
456}
457
458static bool is_acquire_function(enum bpf_func_id func_id,
459 const struct bpf_map *map)
460{
461 enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC;
462
463 if (func_id == BPF_FUNC_sk_lookup_tcp ||
464 func_id == BPF_FUNC_sk_lookup_udp ||
457f4436
AN
465 func_id == BPF_FUNC_skc_lookup_tcp ||
466 func_id == BPF_FUNC_ringbuf_reserve)
64d85290
JS
467 return true;
468
469 if (func_id == BPF_FUNC_map_lookup_elem &&
470 (map_type == BPF_MAP_TYPE_SOCKMAP ||
471 map_type == BPF_MAP_TYPE_SOCKHASH))
472 return true;
473
474 return false;
46f8bc92
MKL
475}
476
1b986589
MKL
477static bool is_ptr_cast_function(enum bpf_func_id func_id)
478{
479 return func_id == BPF_FUNC_tcp_sock ||
480 func_id == BPF_FUNC_sk_fullsock;
481}
482
17a52670
AS
483/* string representation of 'enum bpf_reg_type' */
484static const char * const reg_type_str[] = {
485 [NOT_INIT] = "?",
f1174f77 486 [SCALAR_VALUE] = "inv",
17a52670
AS
487 [PTR_TO_CTX] = "ctx",
488 [CONST_PTR_TO_MAP] = "map_ptr",
489 [PTR_TO_MAP_VALUE] = "map_value",
490 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
17a52670 491 [PTR_TO_STACK] = "fp",
969bf05e 492 [PTR_TO_PACKET] = "pkt",
de8f3a83 493 [PTR_TO_PACKET_META] = "pkt_meta",
969bf05e 494 [PTR_TO_PACKET_END] = "pkt_end",
d58e468b 495 [PTR_TO_FLOW_KEYS] = "flow_keys",
c64b7983
JS
496 [PTR_TO_SOCKET] = "sock",
497 [PTR_TO_SOCKET_OR_NULL] = "sock_or_null",
46f8bc92
MKL
498 [PTR_TO_SOCK_COMMON] = "sock_common",
499 [PTR_TO_SOCK_COMMON_OR_NULL] = "sock_common_or_null",
655a51e5
MKL
500 [PTR_TO_TCP_SOCK] = "tcp_sock",
501 [PTR_TO_TCP_SOCK_OR_NULL] = "tcp_sock_or_null",
9df1c28b 502 [PTR_TO_TP_BUFFER] = "tp_buffer",
fada7fdc 503 [PTR_TO_XDP_SOCK] = "xdp_sock",
9e15db66 504 [PTR_TO_BTF_ID] = "ptr_",
b121b341 505 [PTR_TO_BTF_ID_OR_NULL] = "ptr_or_null_",
457f4436
AN
506 [PTR_TO_MEM] = "mem",
507 [PTR_TO_MEM_OR_NULL] = "mem_or_null",
afbf21dc
YS
508 [PTR_TO_RDONLY_BUF] = "rdonly_buf",
509 [PTR_TO_RDONLY_BUF_OR_NULL] = "rdonly_buf_or_null",
510 [PTR_TO_RDWR_BUF] = "rdwr_buf",
511 [PTR_TO_RDWR_BUF_OR_NULL] = "rdwr_buf_or_null",
17a52670
AS
512};
513
8efea21d
EC
514static char slot_type_char[] = {
515 [STACK_INVALID] = '?',
516 [STACK_SPILL] = 'r',
517 [STACK_MISC] = 'm',
518 [STACK_ZERO] = '0',
519};
520
4e92024a
AS
521static void print_liveness(struct bpf_verifier_env *env,
522 enum bpf_reg_liveness live)
523{
9242b5f5 524 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
4e92024a
AS
525 verbose(env, "_");
526 if (live & REG_LIVE_READ)
527 verbose(env, "r");
528 if (live & REG_LIVE_WRITTEN)
529 verbose(env, "w");
9242b5f5
AS
530 if (live & REG_LIVE_DONE)
531 verbose(env, "D");
4e92024a
AS
532}
533
f4d7e40a
AS
534static struct bpf_func_state *func(struct bpf_verifier_env *env,
535 const struct bpf_reg_state *reg)
536{
537 struct bpf_verifier_state *cur = env->cur_state;
538
539 return cur->frame[reg->frameno];
540}
541
9e15db66
AS
542const char *kernel_type_name(u32 id)
543{
544 return btf_name_by_offset(btf_vmlinux,
545 btf_type_by_id(btf_vmlinux, id)->name_off);
546}
547
61bd5218 548static void print_verifier_state(struct bpf_verifier_env *env,
f4d7e40a 549 const struct bpf_func_state *state)
17a52670 550{
f4d7e40a 551 const struct bpf_reg_state *reg;
17a52670
AS
552 enum bpf_reg_type t;
553 int i;
554
f4d7e40a
AS
555 if (state->frameno)
556 verbose(env, " frame%d:", state->frameno);
17a52670 557 for (i = 0; i < MAX_BPF_REG; i++) {
1a0dc1ac
AS
558 reg = &state->regs[i];
559 t = reg->type;
17a52670
AS
560 if (t == NOT_INIT)
561 continue;
4e92024a
AS
562 verbose(env, " R%d", i);
563 print_liveness(env, reg->live);
564 verbose(env, "=%s", reg_type_str[t]);
b5dc0163
AS
565 if (t == SCALAR_VALUE && reg->precise)
566 verbose(env, "P");
f1174f77
EC
567 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
568 tnum_is_const(reg->var_off)) {
569 /* reg->off should be 0 for SCALAR_VALUE */
61bd5218 570 verbose(env, "%lld", reg->var_off.value + reg->off);
f1174f77 571 } else {
b121b341 572 if (t == PTR_TO_BTF_ID || t == PTR_TO_BTF_ID_OR_NULL)
9e15db66 573 verbose(env, "%s", kernel_type_name(reg->btf_id));
cba368c1
MKL
574 verbose(env, "(id=%d", reg->id);
575 if (reg_type_may_be_refcounted_or_null(t))
576 verbose(env, ",ref_obj_id=%d", reg->ref_obj_id);
f1174f77 577 if (t != SCALAR_VALUE)
61bd5218 578 verbose(env, ",off=%d", reg->off);
de8f3a83 579 if (type_is_pkt_pointer(t))
61bd5218 580 verbose(env, ",r=%d", reg->range);
f1174f77
EC
581 else if (t == CONST_PTR_TO_MAP ||
582 t == PTR_TO_MAP_VALUE ||
583 t == PTR_TO_MAP_VALUE_OR_NULL)
61bd5218 584 verbose(env, ",ks=%d,vs=%d",
f1174f77
EC
585 reg->map_ptr->key_size,
586 reg->map_ptr->value_size);
7d1238f2
EC
587 if (tnum_is_const(reg->var_off)) {
588 /* Typically an immediate SCALAR_VALUE, but
589 * could be a pointer whose offset is too big
590 * for reg->off
591 */
61bd5218 592 verbose(env, ",imm=%llx", reg->var_off.value);
7d1238f2
EC
593 } else {
594 if (reg->smin_value != reg->umin_value &&
595 reg->smin_value != S64_MIN)
61bd5218 596 verbose(env, ",smin_value=%lld",
7d1238f2
EC
597 (long long)reg->smin_value);
598 if (reg->smax_value != reg->umax_value &&
599 reg->smax_value != S64_MAX)
61bd5218 600 verbose(env, ",smax_value=%lld",
7d1238f2
EC
601 (long long)reg->smax_value);
602 if (reg->umin_value != 0)
61bd5218 603 verbose(env, ",umin_value=%llu",
7d1238f2
EC
604 (unsigned long long)reg->umin_value);
605 if (reg->umax_value != U64_MAX)
61bd5218 606 verbose(env, ",umax_value=%llu",
7d1238f2
EC
607 (unsigned long long)reg->umax_value);
608 if (!tnum_is_unknown(reg->var_off)) {
609 char tn_buf[48];
f1174f77 610
7d1238f2 611 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 612 verbose(env, ",var_off=%s", tn_buf);
7d1238f2 613 }
3f50f132
JF
614 if (reg->s32_min_value != reg->smin_value &&
615 reg->s32_min_value != S32_MIN)
616 verbose(env, ",s32_min_value=%d",
617 (int)(reg->s32_min_value));
618 if (reg->s32_max_value != reg->smax_value &&
619 reg->s32_max_value != S32_MAX)
620 verbose(env, ",s32_max_value=%d",
621 (int)(reg->s32_max_value));
622 if (reg->u32_min_value != reg->umin_value &&
623 reg->u32_min_value != U32_MIN)
624 verbose(env, ",u32_min_value=%d",
625 (int)(reg->u32_min_value));
626 if (reg->u32_max_value != reg->umax_value &&
627 reg->u32_max_value != U32_MAX)
628 verbose(env, ",u32_max_value=%d",
629 (int)(reg->u32_max_value));
f1174f77 630 }
61bd5218 631 verbose(env, ")");
f1174f77 632 }
17a52670 633 }
638f5b90 634 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
8efea21d
EC
635 char types_buf[BPF_REG_SIZE + 1];
636 bool valid = false;
637 int j;
638
639 for (j = 0; j < BPF_REG_SIZE; j++) {
640 if (state->stack[i].slot_type[j] != STACK_INVALID)
641 valid = true;
642 types_buf[j] = slot_type_char[
643 state->stack[i].slot_type[j]];
644 }
645 types_buf[BPF_REG_SIZE] = 0;
646 if (!valid)
647 continue;
648 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
649 print_liveness(env, state->stack[i].spilled_ptr.live);
b5dc0163
AS
650 if (state->stack[i].slot_type[0] == STACK_SPILL) {
651 reg = &state->stack[i].spilled_ptr;
652 t = reg->type;
653 verbose(env, "=%s", reg_type_str[t]);
654 if (t == SCALAR_VALUE && reg->precise)
655 verbose(env, "P");
656 if (t == SCALAR_VALUE && tnum_is_const(reg->var_off))
657 verbose(env, "%lld", reg->var_off.value + reg->off);
658 } else {
8efea21d 659 verbose(env, "=%s", types_buf);
b5dc0163 660 }
17a52670 661 }
fd978bf7
JS
662 if (state->acquired_refs && state->refs[0].id) {
663 verbose(env, " refs=%d", state->refs[0].id);
664 for (i = 1; i < state->acquired_refs; i++)
665 if (state->refs[i].id)
666 verbose(env, ",%d", state->refs[i].id);
667 }
61bd5218 668 verbose(env, "\n");
17a52670
AS
669}
670
84dbf350
JS
671#define COPY_STATE_FN(NAME, COUNT, FIELD, SIZE) \
672static int copy_##NAME##_state(struct bpf_func_state *dst, \
673 const struct bpf_func_state *src) \
674{ \
675 if (!src->FIELD) \
676 return 0; \
677 if (WARN_ON_ONCE(dst->COUNT < src->COUNT)) { \
678 /* internal bug, make state invalid to reject the program */ \
679 memset(dst, 0, sizeof(*dst)); \
680 return -EFAULT; \
681 } \
682 memcpy(dst->FIELD, src->FIELD, \
683 sizeof(*src->FIELD) * (src->COUNT / SIZE)); \
684 return 0; \
638f5b90 685}
fd978bf7
JS
686/* copy_reference_state() */
687COPY_STATE_FN(reference, acquired_refs, refs, 1)
84dbf350
JS
688/* copy_stack_state() */
689COPY_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
690#undef COPY_STATE_FN
691
692#define REALLOC_STATE_FN(NAME, COUNT, FIELD, SIZE) \
693static int realloc_##NAME##_state(struct bpf_func_state *state, int size, \
694 bool copy_old) \
695{ \
696 u32 old_size = state->COUNT; \
697 struct bpf_##NAME##_state *new_##FIELD; \
698 int slot = size / SIZE; \
699 \
700 if (size <= old_size || !size) { \
701 if (copy_old) \
702 return 0; \
703 state->COUNT = slot * SIZE; \
704 if (!size && old_size) { \
705 kfree(state->FIELD); \
706 state->FIELD = NULL; \
707 } \
708 return 0; \
709 } \
710 new_##FIELD = kmalloc_array(slot, sizeof(struct bpf_##NAME##_state), \
711 GFP_KERNEL); \
712 if (!new_##FIELD) \
713 return -ENOMEM; \
714 if (copy_old) { \
715 if (state->FIELD) \
716 memcpy(new_##FIELD, state->FIELD, \
717 sizeof(*new_##FIELD) * (old_size / SIZE)); \
718 memset(new_##FIELD + old_size / SIZE, 0, \
719 sizeof(*new_##FIELD) * (size - old_size) / SIZE); \
720 } \
721 state->COUNT = slot * SIZE; \
722 kfree(state->FIELD); \
723 state->FIELD = new_##FIELD; \
724 return 0; \
725}
fd978bf7
JS
726/* realloc_reference_state() */
727REALLOC_STATE_FN(reference, acquired_refs, refs, 1)
84dbf350
JS
728/* realloc_stack_state() */
729REALLOC_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
730#undef REALLOC_STATE_FN
638f5b90
AS
731
732/* do_check() starts with zero-sized stack in struct bpf_verifier_state to
733 * make it consume minimal amount of memory. check_stack_write() access from
f4d7e40a 734 * the program calls into realloc_func_state() to grow the stack size.
84dbf350
JS
735 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
736 * which realloc_stack_state() copies over. It points to previous
737 * bpf_verifier_state which is never reallocated.
638f5b90 738 */
fd978bf7
JS
739static int realloc_func_state(struct bpf_func_state *state, int stack_size,
740 int refs_size, bool copy_old)
638f5b90 741{
fd978bf7
JS
742 int err = realloc_reference_state(state, refs_size, copy_old);
743 if (err)
744 return err;
745 return realloc_stack_state(state, stack_size, copy_old);
746}
747
748/* Acquire a pointer id from the env and update the state->refs to include
749 * this new pointer reference.
750 * On success, returns a valid pointer id to associate with the register
751 * On failure, returns a negative errno.
638f5b90 752 */
fd978bf7 753static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
638f5b90 754{
fd978bf7
JS
755 struct bpf_func_state *state = cur_func(env);
756 int new_ofs = state->acquired_refs;
757 int id, err;
758
759 err = realloc_reference_state(state, state->acquired_refs + 1, true);
760 if (err)
761 return err;
762 id = ++env->id_gen;
763 state->refs[new_ofs].id = id;
764 state->refs[new_ofs].insn_idx = insn_idx;
638f5b90 765
fd978bf7
JS
766 return id;
767}
768
769/* release function corresponding to acquire_reference_state(). Idempotent. */
46f8bc92 770static int release_reference_state(struct bpf_func_state *state, int ptr_id)
fd978bf7
JS
771{
772 int i, last_idx;
773
fd978bf7
JS
774 last_idx = state->acquired_refs - 1;
775 for (i = 0; i < state->acquired_refs; i++) {
776 if (state->refs[i].id == ptr_id) {
777 if (last_idx && i != last_idx)
778 memcpy(&state->refs[i], &state->refs[last_idx],
779 sizeof(*state->refs));
780 memset(&state->refs[last_idx], 0, sizeof(*state->refs));
781 state->acquired_refs--;
638f5b90 782 return 0;
638f5b90 783 }
638f5b90 784 }
46f8bc92 785 return -EINVAL;
fd978bf7
JS
786}
787
788static int transfer_reference_state(struct bpf_func_state *dst,
789 struct bpf_func_state *src)
790{
791 int err = realloc_reference_state(dst, src->acquired_refs, false);
792 if (err)
793 return err;
794 err = copy_reference_state(dst, src);
795 if (err)
796 return err;
638f5b90
AS
797 return 0;
798}
799
f4d7e40a
AS
800static void free_func_state(struct bpf_func_state *state)
801{
5896351e
AS
802 if (!state)
803 return;
fd978bf7 804 kfree(state->refs);
f4d7e40a
AS
805 kfree(state->stack);
806 kfree(state);
807}
808
b5dc0163
AS
809static void clear_jmp_history(struct bpf_verifier_state *state)
810{
811 kfree(state->jmp_history);
812 state->jmp_history = NULL;
813 state->jmp_history_cnt = 0;
814}
815
1969db47
AS
816static void free_verifier_state(struct bpf_verifier_state *state,
817 bool free_self)
638f5b90 818{
f4d7e40a
AS
819 int i;
820
821 for (i = 0; i <= state->curframe; i++) {
822 free_func_state(state->frame[i]);
823 state->frame[i] = NULL;
824 }
b5dc0163 825 clear_jmp_history(state);
1969db47
AS
826 if (free_self)
827 kfree(state);
638f5b90
AS
828}
829
830/* copy verifier state from src to dst growing dst stack space
831 * when necessary to accommodate larger src stack
832 */
f4d7e40a
AS
833static int copy_func_state(struct bpf_func_state *dst,
834 const struct bpf_func_state *src)
638f5b90
AS
835{
836 int err;
837
fd978bf7
JS
838 err = realloc_func_state(dst, src->allocated_stack, src->acquired_refs,
839 false);
840 if (err)
841 return err;
842 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
843 err = copy_reference_state(dst, src);
638f5b90
AS
844 if (err)
845 return err;
638f5b90
AS
846 return copy_stack_state(dst, src);
847}
848
f4d7e40a
AS
849static int copy_verifier_state(struct bpf_verifier_state *dst_state,
850 const struct bpf_verifier_state *src)
851{
852 struct bpf_func_state *dst;
b5dc0163 853 u32 jmp_sz = sizeof(struct bpf_idx_pair) * src->jmp_history_cnt;
f4d7e40a
AS
854 int i, err;
855
b5dc0163
AS
856 if (dst_state->jmp_history_cnt < src->jmp_history_cnt) {
857 kfree(dst_state->jmp_history);
858 dst_state->jmp_history = kmalloc(jmp_sz, GFP_USER);
859 if (!dst_state->jmp_history)
860 return -ENOMEM;
861 }
862 memcpy(dst_state->jmp_history, src->jmp_history, jmp_sz);
863 dst_state->jmp_history_cnt = src->jmp_history_cnt;
864
f4d7e40a
AS
865 /* if dst has more stack frames then src frame, free them */
866 for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
867 free_func_state(dst_state->frame[i]);
868 dst_state->frame[i] = NULL;
869 }
979d63d5 870 dst_state->speculative = src->speculative;
f4d7e40a 871 dst_state->curframe = src->curframe;
d83525ca 872 dst_state->active_spin_lock = src->active_spin_lock;
2589726d
AS
873 dst_state->branches = src->branches;
874 dst_state->parent = src->parent;
b5dc0163
AS
875 dst_state->first_insn_idx = src->first_insn_idx;
876 dst_state->last_insn_idx = src->last_insn_idx;
f4d7e40a
AS
877 for (i = 0; i <= src->curframe; i++) {
878 dst = dst_state->frame[i];
879 if (!dst) {
880 dst = kzalloc(sizeof(*dst), GFP_KERNEL);
881 if (!dst)
882 return -ENOMEM;
883 dst_state->frame[i] = dst;
884 }
885 err = copy_func_state(dst, src->frame[i]);
886 if (err)
887 return err;
888 }
889 return 0;
890}
891
2589726d
AS
892static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
893{
894 while (st) {
895 u32 br = --st->branches;
896
897 /* WARN_ON(br > 1) technically makes sense here,
898 * but see comment in push_stack(), hence:
899 */
900 WARN_ONCE((int)br < 0,
901 "BUG update_branch_counts:branches_to_explore=%d\n",
902 br);
903 if (br)
904 break;
905 st = st->parent;
906 }
907}
908
638f5b90 909static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
6f8a57cc 910 int *insn_idx, bool pop_log)
638f5b90
AS
911{
912 struct bpf_verifier_state *cur = env->cur_state;
913 struct bpf_verifier_stack_elem *elem, *head = env->head;
914 int err;
17a52670
AS
915
916 if (env->head == NULL)
638f5b90 917 return -ENOENT;
17a52670 918
638f5b90
AS
919 if (cur) {
920 err = copy_verifier_state(cur, &head->st);
921 if (err)
922 return err;
923 }
6f8a57cc
AN
924 if (pop_log)
925 bpf_vlog_reset(&env->log, head->log_pos);
638f5b90
AS
926 if (insn_idx)
927 *insn_idx = head->insn_idx;
17a52670 928 if (prev_insn_idx)
638f5b90
AS
929 *prev_insn_idx = head->prev_insn_idx;
930 elem = head->next;
1969db47 931 free_verifier_state(&head->st, false);
638f5b90 932 kfree(head);
17a52670
AS
933 env->head = elem;
934 env->stack_size--;
638f5b90 935 return 0;
17a52670
AS
936}
937
58e2af8b 938static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
979d63d5
DB
939 int insn_idx, int prev_insn_idx,
940 bool speculative)
17a52670 941{
638f5b90 942 struct bpf_verifier_state *cur = env->cur_state;
58e2af8b 943 struct bpf_verifier_stack_elem *elem;
638f5b90 944 int err;
17a52670 945
638f5b90 946 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
17a52670
AS
947 if (!elem)
948 goto err;
949
17a52670
AS
950 elem->insn_idx = insn_idx;
951 elem->prev_insn_idx = prev_insn_idx;
952 elem->next = env->head;
6f8a57cc 953 elem->log_pos = env->log.len_used;
17a52670
AS
954 env->head = elem;
955 env->stack_size++;
1969db47
AS
956 err = copy_verifier_state(&elem->st, cur);
957 if (err)
958 goto err;
979d63d5 959 elem->st.speculative |= speculative;
b285fcb7
AS
960 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
961 verbose(env, "The sequence of %d jumps is too complex.\n",
962 env->stack_size);
17a52670
AS
963 goto err;
964 }
2589726d
AS
965 if (elem->st.parent) {
966 ++elem->st.parent->branches;
967 /* WARN_ON(branches > 2) technically makes sense here,
968 * but
969 * 1. speculative states will bump 'branches' for non-branch
970 * instructions
971 * 2. is_state_visited() heuristics may decide not to create
972 * a new state for a sequence of branches and all such current
973 * and cloned states will be pointing to a single parent state
974 * which might have large 'branches' count.
975 */
976 }
17a52670
AS
977 return &elem->st;
978err:
5896351e
AS
979 free_verifier_state(env->cur_state, true);
980 env->cur_state = NULL;
17a52670 981 /* pop all elements and return */
6f8a57cc 982 while (!pop_stack(env, NULL, NULL, false));
17a52670
AS
983 return NULL;
984}
985
986#define CALLER_SAVED_REGS 6
987static const int caller_saved[CALLER_SAVED_REGS] = {
988 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
989};
990
f54c7898
DB
991static void __mark_reg_not_init(const struct bpf_verifier_env *env,
992 struct bpf_reg_state *reg);
f1174f77 993
b03c9f9f
EC
994/* Mark the unknown part of a register (variable offset or scalar value) as
995 * known to have the value @imm.
996 */
997static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
998{
a9c676bc
AS
999 /* Clear id, off, and union(map_ptr, range) */
1000 memset(((u8 *)reg) + sizeof(reg->type), 0,
1001 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
b03c9f9f
EC
1002 reg->var_off = tnum_const(imm);
1003 reg->smin_value = (s64)imm;
1004 reg->smax_value = (s64)imm;
1005 reg->umin_value = imm;
1006 reg->umax_value = imm;
3f50f132
JF
1007
1008 reg->s32_min_value = (s32)imm;
1009 reg->s32_max_value = (s32)imm;
1010 reg->u32_min_value = (u32)imm;
1011 reg->u32_max_value = (u32)imm;
1012}
1013
1014static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm)
1015{
1016 reg->var_off = tnum_const_subreg(reg->var_off, imm);
1017 reg->s32_min_value = (s32)imm;
1018 reg->s32_max_value = (s32)imm;
1019 reg->u32_min_value = (u32)imm;
1020 reg->u32_max_value = (u32)imm;
b03c9f9f
EC
1021}
1022
f1174f77
EC
1023/* Mark the 'variable offset' part of a register as zero. This should be
1024 * used only on registers holding a pointer type.
1025 */
1026static void __mark_reg_known_zero(struct bpf_reg_state *reg)
a9789ef9 1027{
b03c9f9f 1028 __mark_reg_known(reg, 0);
f1174f77 1029}
a9789ef9 1030
cc2b14d5
AS
1031static void __mark_reg_const_zero(struct bpf_reg_state *reg)
1032{
1033 __mark_reg_known(reg, 0);
cc2b14d5
AS
1034 reg->type = SCALAR_VALUE;
1035}
1036
61bd5218
JK
1037static void mark_reg_known_zero(struct bpf_verifier_env *env,
1038 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
1039{
1040 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 1041 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
f1174f77
EC
1042 /* Something bad happened, let's kill all regs */
1043 for (regno = 0; regno < MAX_BPF_REG; regno++)
f54c7898 1044 __mark_reg_not_init(env, regs + regno);
f1174f77
EC
1045 return;
1046 }
1047 __mark_reg_known_zero(regs + regno);
1048}
1049
de8f3a83
DB
1050static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
1051{
1052 return type_is_pkt_pointer(reg->type);
1053}
1054
1055static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
1056{
1057 return reg_is_pkt_pointer(reg) ||
1058 reg->type == PTR_TO_PACKET_END;
1059}
1060
1061/* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
1062static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
1063 enum bpf_reg_type which)
1064{
1065 /* The register can already have a range from prior markings.
1066 * This is fine as long as it hasn't been advanced from its
1067 * origin.
1068 */
1069 return reg->type == which &&
1070 reg->id == 0 &&
1071 reg->off == 0 &&
1072 tnum_equals_const(reg->var_off, 0);
1073}
1074
3f50f132
JF
1075/* Reset the min/max bounds of a register */
1076static void __mark_reg_unbounded(struct bpf_reg_state *reg)
1077{
1078 reg->smin_value = S64_MIN;
1079 reg->smax_value = S64_MAX;
1080 reg->umin_value = 0;
1081 reg->umax_value = U64_MAX;
1082
1083 reg->s32_min_value = S32_MIN;
1084 reg->s32_max_value = S32_MAX;
1085 reg->u32_min_value = 0;
1086 reg->u32_max_value = U32_MAX;
1087}
1088
1089static void __mark_reg64_unbounded(struct bpf_reg_state *reg)
1090{
1091 reg->smin_value = S64_MIN;
1092 reg->smax_value = S64_MAX;
1093 reg->umin_value = 0;
1094 reg->umax_value = U64_MAX;
1095}
1096
1097static void __mark_reg32_unbounded(struct bpf_reg_state *reg)
1098{
1099 reg->s32_min_value = S32_MIN;
1100 reg->s32_max_value = S32_MAX;
1101 reg->u32_min_value = 0;
1102 reg->u32_max_value = U32_MAX;
1103}
1104
1105static void __update_reg32_bounds(struct bpf_reg_state *reg)
1106{
1107 struct tnum var32_off = tnum_subreg(reg->var_off);
1108
1109 /* min signed is max(sign bit) | min(other bits) */
1110 reg->s32_min_value = max_t(s32, reg->s32_min_value,
1111 var32_off.value | (var32_off.mask & S32_MIN));
1112 /* max signed is min(sign bit) | max(other bits) */
1113 reg->s32_max_value = min_t(s32, reg->s32_max_value,
1114 var32_off.value | (var32_off.mask & S32_MAX));
1115 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value);
1116 reg->u32_max_value = min(reg->u32_max_value,
1117 (u32)(var32_off.value | var32_off.mask));
1118}
1119
1120static void __update_reg64_bounds(struct bpf_reg_state *reg)
b03c9f9f
EC
1121{
1122 /* min signed is max(sign bit) | min(other bits) */
1123 reg->smin_value = max_t(s64, reg->smin_value,
1124 reg->var_off.value | (reg->var_off.mask & S64_MIN));
1125 /* max signed is min(sign bit) | max(other bits) */
1126 reg->smax_value = min_t(s64, reg->smax_value,
1127 reg->var_off.value | (reg->var_off.mask & S64_MAX));
1128 reg->umin_value = max(reg->umin_value, reg->var_off.value);
1129 reg->umax_value = min(reg->umax_value,
1130 reg->var_off.value | reg->var_off.mask);
1131}
1132
3f50f132
JF
1133static void __update_reg_bounds(struct bpf_reg_state *reg)
1134{
1135 __update_reg32_bounds(reg);
1136 __update_reg64_bounds(reg);
1137}
1138
b03c9f9f 1139/* Uses signed min/max values to inform unsigned, and vice-versa */
3f50f132
JF
1140static void __reg32_deduce_bounds(struct bpf_reg_state *reg)
1141{
1142 /* Learn sign from signed bounds.
1143 * If we cannot cross the sign boundary, then signed and unsigned bounds
1144 * are the same, so combine. This works even in the negative case, e.g.
1145 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1146 */
1147 if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) {
1148 reg->s32_min_value = reg->u32_min_value =
1149 max_t(u32, reg->s32_min_value, reg->u32_min_value);
1150 reg->s32_max_value = reg->u32_max_value =
1151 min_t(u32, reg->s32_max_value, reg->u32_max_value);
1152 return;
1153 }
1154 /* Learn sign from unsigned bounds. Signed bounds cross the sign
1155 * boundary, so we must be careful.
1156 */
1157 if ((s32)reg->u32_max_value >= 0) {
1158 /* Positive. We can't learn anything from the smin, but smax
1159 * is positive, hence safe.
1160 */
1161 reg->s32_min_value = reg->u32_min_value;
1162 reg->s32_max_value = reg->u32_max_value =
1163 min_t(u32, reg->s32_max_value, reg->u32_max_value);
1164 } else if ((s32)reg->u32_min_value < 0) {
1165 /* Negative. We can't learn anything from the smax, but smin
1166 * is negative, hence safe.
1167 */
1168 reg->s32_min_value = reg->u32_min_value =
1169 max_t(u32, reg->s32_min_value, reg->u32_min_value);
1170 reg->s32_max_value = reg->u32_max_value;
1171 }
1172}
1173
1174static void __reg64_deduce_bounds(struct bpf_reg_state *reg)
b03c9f9f
EC
1175{
1176 /* Learn sign from signed bounds.
1177 * If we cannot cross the sign boundary, then signed and unsigned bounds
1178 * are the same, so combine. This works even in the negative case, e.g.
1179 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1180 */
1181 if (reg->smin_value >= 0 || reg->smax_value < 0) {
1182 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1183 reg->umin_value);
1184 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1185 reg->umax_value);
1186 return;
1187 }
1188 /* Learn sign from unsigned bounds. Signed bounds cross the sign
1189 * boundary, so we must be careful.
1190 */
1191 if ((s64)reg->umax_value >= 0) {
1192 /* Positive. We can't learn anything from the smin, but smax
1193 * is positive, hence safe.
1194 */
1195 reg->smin_value = reg->umin_value;
1196 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1197 reg->umax_value);
1198 } else if ((s64)reg->umin_value < 0) {
1199 /* Negative. We can't learn anything from the smax, but smin
1200 * is negative, hence safe.
1201 */
1202 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1203 reg->umin_value);
1204 reg->smax_value = reg->umax_value;
1205 }
1206}
1207
3f50f132
JF
1208static void __reg_deduce_bounds(struct bpf_reg_state *reg)
1209{
1210 __reg32_deduce_bounds(reg);
1211 __reg64_deduce_bounds(reg);
1212}
1213
b03c9f9f
EC
1214/* Attempts to improve var_off based on unsigned min/max information */
1215static void __reg_bound_offset(struct bpf_reg_state *reg)
1216{
3f50f132
JF
1217 struct tnum var64_off = tnum_intersect(reg->var_off,
1218 tnum_range(reg->umin_value,
1219 reg->umax_value));
1220 struct tnum var32_off = tnum_intersect(tnum_subreg(reg->var_off),
1221 tnum_range(reg->u32_min_value,
1222 reg->u32_max_value));
1223
1224 reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off);
b03c9f9f
EC
1225}
1226
3f50f132 1227static void __reg_assign_32_into_64(struct bpf_reg_state *reg)
b03c9f9f 1228{
3f50f132
JF
1229 reg->umin_value = reg->u32_min_value;
1230 reg->umax_value = reg->u32_max_value;
1231 /* Attempt to pull 32-bit signed bounds into 64-bit bounds
1232 * but must be positive otherwise set to worse case bounds
1233 * and refine later from tnum.
1234 */
3a71dc36 1235 if (reg->s32_min_value >= 0 && reg->s32_max_value >= 0)
3f50f132
JF
1236 reg->smax_value = reg->s32_max_value;
1237 else
1238 reg->smax_value = U32_MAX;
3a71dc36
JF
1239 if (reg->s32_min_value >= 0)
1240 reg->smin_value = reg->s32_min_value;
1241 else
1242 reg->smin_value = 0;
3f50f132
JF
1243}
1244
1245static void __reg_combine_32_into_64(struct bpf_reg_state *reg)
1246{
1247 /* special case when 64-bit register has upper 32-bit register
1248 * zeroed. Typically happens after zext or <<32, >>32 sequence
1249 * allowing us to use 32-bit bounds directly,
1250 */
1251 if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) {
1252 __reg_assign_32_into_64(reg);
1253 } else {
1254 /* Otherwise the best we can do is push lower 32bit known and
1255 * unknown bits into register (var_off set from jmp logic)
1256 * then learn as much as possible from the 64-bit tnum
1257 * known and unknown bits. The previous smin/smax bounds are
1258 * invalid here because of jmp32 compare so mark them unknown
1259 * so they do not impact tnum bounds calculation.
1260 */
1261 __mark_reg64_unbounded(reg);
1262 __update_reg_bounds(reg);
1263 }
1264
1265 /* Intersecting with the old var_off might have improved our bounds
1266 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1267 * then new var_off is (0; 0x7f...fc) which improves our umax.
1268 */
1269 __reg_deduce_bounds(reg);
1270 __reg_bound_offset(reg);
1271 __update_reg_bounds(reg);
1272}
1273
1274static bool __reg64_bound_s32(s64 a)
1275{
1276 if (a > S32_MIN && a < S32_MAX)
1277 return true;
1278 return false;
1279}
1280
1281static bool __reg64_bound_u32(u64 a)
1282{
1283 if (a > U32_MIN && a < U32_MAX)
1284 return true;
1285 return false;
1286}
1287
1288static void __reg_combine_64_into_32(struct bpf_reg_state *reg)
1289{
1290 __mark_reg32_unbounded(reg);
1291
1292 if (__reg64_bound_s32(reg->smin_value))
1293 reg->s32_min_value = (s32)reg->smin_value;
1294 if (__reg64_bound_s32(reg->smax_value))
1295 reg->s32_max_value = (s32)reg->smax_value;
1296 if (__reg64_bound_u32(reg->umin_value))
1297 reg->u32_min_value = (u32)reg->umin_value;
1298 if (__reg64_bound_u32(reg->umax_value))
1299 reg->u32_max_value = (u32)reg->umax_value;
1300
1301 /* Intersecting with the old var_off might have improved our bounds
1302 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1303 * then new var_off is (0; 0x7f...fc) which improves our umax.
1304 */
1305 __reg_deduce_bounds(reg);
1306 __reg_bound_offset(reg);
1307 __update_reg_bounds(reg);
b03c9f9f
EC
1308}
1309
f1174f77 1310/* Mark a register as having a completely unknown (scalar) value. */
f54c7898
DB
1311static void __mark_reg_unknown(const struct bpf_verifier_env *env,
1312 struct bpf_reg_state *reg)
f1174f77 1313{
a9c676bc
AS
1314 /*
1315 * Clear type, id, off, and union(map_ptr, range) and
1316 * padding between 'type' and union
1317 */
1318 memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
f1174f77 1319 reg->type = SCALAR_VALUE;
f1174f77 1320 reg->var_off = tnum_unknown;
f4d7e40a 1321 reg->frameno = 0;
2c78ee89 1322 reg->precise = env->subprog_cnt > 1 || !env->bpf_capable;
b03c9f9f 1323 __mark_reg_unbounded(reg);
f1174f77
EC
1324}
1325
61bd5218
JK
1326static void mark_reg_unknown(struct bpf_verifier_env *env,
1327 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
1328{
1329 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 1330 verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
19ceb417
AS
1331 /* Something bad happened, let's kill all regs except FP */
1332 for (regno = 0; regno < BPF_REG_FP; regno++)
f54c7898 1333 __mark_reg_not_init(env, regs + regno);
f1174f77
EC
1334 return;
1335 }
f54c7898 1336 __mark_reg_unknown(env, regs + regno);
f1174f77
EC
1337}
1338
f54c7898
DB
1339static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1340 struct bpf_reg_state *reg)
f1174f77 1341{
f54c7898 1342 __mark_reg_unknown(env, reg);
f1174f77
EC
1343 reg->type = NOT_INIT;
1344}
1345
61bd5218
JK
1346static void mark_reg_not_init(struct bpf_verifier_env *env,
1347 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
1348{
1349 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 1350 verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
19ceb417
AS
1351 /* Something bad happened, let's kill all regs except FP */
1352 for (regno = 0; regno < BPF_REG_FP; regno++)
f54c7898 1353 __mark_reg_not_init(env, regs + regno);
f1174f77
EC
1354 return;
1355 }
f54c7898 1356 __mark_reg_not_init(env, regs + regno);
a9789ef9
DB
1357}
1358
41c48f3a
AI
1359static void mark_btf_ld_reg(struct bpf_verifier_env *env,
1360 struct bpf_reg_state *regs, u32 regno,
1361 enum bpf_reg_type reg_type, u32 btf_id)
1362{
1363 if (reg_type == SCALAR_VALUE) {
1364 mark_reg_unknown(env, regs, regno);
1365 return;
1366 }
1367 mark_reg_known_zero(env, regs, regno);
1368 regs[regno].type = PTR_TO_BTF_ID;
1369 regs[regno].btf_id = btf_id;
1370}
1371
5327ed3d 1372#define DEF_NOT_SUBREG (0)
61bd5218 1373static void init_reg_state(struct bpf_verifier_env *env,
f4d7e40a 1374 struct bpf_func_state *state)
17a52670 1375{
f4d7e40a 1376 struct bpf_reg_state *regs = state->regs;
17a52670
AS
1377 int i;
1378
dc503a8a 1379 for (i = 0; i < MAX_BPF_REG; i++) {
61bd5218 1380 mark_reg_not_init(env, regs, i);
dc503a8a 1381 regs[i].live = REG_LIVE_NONE;
679c782d 1382 regs[i].parent = NULL;
5327ed3d 1383 regs[i].subreg_def = DEF_NOT_SUBREG;
dc503a8a 1384 }
17a52670
AS
1385
1386 /* frame pointer */
f1174f77 1387 regs[BPF_REG_FP].type = PTR_TO_STACK;
61bd5218 1388 mark_reg_known_zero(env, regs, BPF_REG_FP);
f4d7e40a 1389 regs[BPF_REG_FP].frameno = state->frameno;
6760bf2d
DB
1390}
1391
f4d7e40a
AS
1392#define BPF_MAIN_FUNC (-1)
1393static void init_func_state(struct bpf_verifier_env *env,
1394 struct bpf_func_state *state,
1395 int callsite, int frameno, int subprogno)
1396{
1397 state->callsite = callsite;
1398 state->frameno = frameno;
1399 state->subprogno = subprogno;
1400 init_reg_state(env, state);
1401}
1402
17a52670
AS
1403enum reg_arg_type {
1404 SRC_OP, /* register is used as source operand */
1405 DST_OP, /* register is used as destination operand */
1406 DST_OP_NO_MARK /* same as above, check only, don't mark */
1407};
1408
cc8b0b92
AS
1409static int cmp_subprogs(const void *a, const void *b)
1410{
9c8105bd
JW
1411 return ((struct bpf_subprog_info *)a)->start -
1412 ((struct bpf_subprog_info *)b)->start;
cc8b0b92
AS
1413}
1414
1415static int find_subprog(struct bpf_verifier_env *env, int off)
1416{
9c8105bd 1417 struct bpf_subprog_info *p;
cc8b0b92 1418
9c8105bd
JW
1419 p = bsearch(&off, env->subprog_info, env->subprog_cnt,
1420 sizeof(env->subprog_info[0]), cmp_subprogs);
cc8b0b92
AS
1421 if (!p)
1422 return -ENOENT;
9c8105bd 1423 return p - env->subprog_info;
cc8b0b92
AS
1424
1425}
1426
1427static int add_subprog(struct bpf_verifier_env *env, int off)
1428{
1429 int insn_cnt = env->prog->len;
1430 int ret;
1431
1432 if (off >= insn_cnt || off < 0) {
1433 verbose(env, "call to invalid destination\n");
1434 return -EINVAL;
1435 }
1436 ret = find_subprog(env, off);
1437 if (ret >= 0)
1438 return 0;
4cb3d99c 1439 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
cc8b0b92
AS
1440 verbose(env, "too many subprograms\n");
1441 return -E2BIG;
1442 }
9c8105bd
JW
1443 env->subprog_info[env->subprog_cnt++].start = off;
1444 sort(env->subprog_info, env->subprog_cnt,
1445 sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
cc8b0b92
AS
1446 return 0;
1447}
1448
1449static int check_subprogs(struct bpf_verifier_env *env)
1450{
1451 int i, ret, subprog_start, subprog_end, off, cur_subprog = 0;
9c8105bd 1452 struct bpf_subprog_info *subprog = env->subprog_info;
cc8b0b92
AS
1453 struct bpf_insn *insn = env->prog->insnsi;
1454 int insn_cnt = env->prog->len;
1455
f910cefa
JW
1456 /* Add entry function. */
1457 ret = add_subprog(env, 0);
1458 if (ret < 0)
1459 return ret;
1460
cc8b0b92
AS
1461 /* determine subprog starts. The end is one before the next starts */
1462 for (i = 0; i < insn_cnt; i++) {
1463 if (insn[i].code != (BPF_JMP | BPF_CALL))
1464 continue;
1465 if (insn[i].src_reg != BPF_PSEUDO_CALL)
1466 continue;
2c78ee89
AS
1467 if (!env->bpf_capable) {
1468 verbose(env,
1469 "function calls to other bpf functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n");
cc8b0b92
AS
1470 return -EPERM;
1471 }
cc8b0b92
AS
1472 ret = add_subprog(env, i + insn[i].imm + 1);
1473 if (ret < 0)
1474 return ret;
1475 }
1476
4cb3d99c
JW
1477 /* Add a fake 'exit' subprog which could simplify subprog iteration
1478 * logic. 'subprog_cnt' should not be increased.
1479 */
1480 subprog[env->subprog_cnt].start = insn_cnt;
1481
06ee7115 1482 if (env->log.level & BPF_LOG_LEVEL2)
cc8b0b92 1483 for (i = 0; i < env->subprog_cnt; i++)
9c8105bd 1484 verbose(env, "func#%d @%d\n", i, subprog[i].start);
cc8b0b92
AS
1485
1486 /* now check that all jumps are within the same subprog */
4cb3d99c
JW
1487 subprog_start = subprog[cur_subprog].start;
1488 subprog_end = subprog[cur_subprog + 1].start;
cc8b0b92
AS
1489 for (i = 0; i < insn_cnt; i++) {
1490 u8 code = insn[i].code;
1491
092ed096 1492 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
cc8b0b92
AS
1493 goto next;
1494 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
1495 goto next;
1496 off = i + insn[i].off + 1;
1497 if (off < subprog_start || off >= subprog_end) {
1498 verbose(env, "jump out of range from insn %d to %d\n", i, off);
1499 return -EINVAL;
1500 }
1501next:
1502 if (i == subprog_end - 1) {
1503 /* to avoid fall-through from one subprog into another
1504 * the last insn of the subprog should be either exit
1505 * or unconditional jump back
1506 */
1507 if (code != (BPF_JMP | BPF_EXIT) &&
1508 code != (BPF_JMP | BPF_JA)) {
1509 verbose(env, "last insn is not an exit or jmp\n");
1510 return -EINVAL;
1511 }
1512 subprog_start = subprog_end;
4cb3d99c
JW
1513 cur_subprog++;
1514 if (cur_subprog < env->subprog_cnt)
9c8105bd 1515 subprog_end = subprog[cur_subprog + 1].start;
cc8b0b92
AS
1516 }
1517 }
1518 return 0;
1519}
1520
679c782d
EC
1521/* Parentage chain of this register (or stack slot) should take care of all
1522 * issues like callee-saved registers, stack slot allocation time, etc.
1523 */
f4d7e40a 1524static int mark_reg_read(struct bpf_verifier_env *env,
679c782d 1525 const struct bpf_reg_state *state,
5327ed3d 1526 struct bpf_reg_state *parent, u8 flag)
f4d7e40a
AS
1527{
1528 bool writes = parent == state->parent; /* Observe write marks */
06ee7115 1529 int cnt = 0;
dc503a8a
EC
1530
1531 while (parent) {
1532 /* if read wasn't screened by an earlier write ... */
679c782d 1533 if (writes && state->live & REG_LIVE_WRITTEN)
dc503a8a 1534 break;
9242b5f5
AS
1535 if (parent->live & REG_LIVE_DONE) {
1536 verbose(env, "verifier BUG type %s var_off %lld off %d\n",
1537 reg_type_str[parent->type],
1538 parent->var_off.value, parent->off);
1539 return -EFAULT;
1540 }
5327ed3d
JW
1541 /* The first condition is more likely to be true than the
1542 * second, checked it first.
1543 */
1544 if ((parent->live & REG_LIVE_READ) == flag ||
1545 parent->live & REG_LIVE_READ64)
25af32da
AS
1546 /* The parentage chain never changes and
1547 * this parent was already marked as LIVE_READ.
1548 * There is no need to keep walking the chain again and
1549 * keep re-marking all parents as LIVE_READ.
1550 * This case happens when the same register is read
1551 * multiple times without writes into it in-between.
5327ed3d
JW
1552 * Also, if parent has the stronger REG_LIVE_READ64 set,
1553 * then no need to set the weak REG_LIVE_READ32.
25af32da
AS
1554 */
1555 break;
dc503a8a 1556 /* ... then we depend on parent's value */
5327ed3d
JW
1557 parent->live |= flag;
1558 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
1559 if (flag == REG_LIVE_READ64)
1560 parent->live &= ~REG_LIVE_READ32;
dc503a8a
EC
1561 state = parent;
1562 parent = state->parent;
f4d7e40a 1563 writes = true;
06ee7115 1564 cnt++;
dc503a8a 1565 }
06ee7115
AS
1566
1567 if (env->longest_mark_read_walk < cnt)
1568 env->longest_mark_read_walk = cnt;
f4d7e40a 1569 return 0;
dc503a8a
EC
1570}
1571
5327ed3d
JW
1572/* This function is supposed to be used by the following 32-bit optimization
1573 * code only. It returns TRUE if the source or destination register operates
1574 * on 64-bit, otherwise return FALSE.
1575 */
1576static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
1577 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
1578{
1579 u8 code, class, op;
1580
1581 code = insn->code;
1582 class = BPF_CLASS(code);
1583 op = BPF_OP(code);
1584 if (class == BPF_JMP) {
1585 /* BPF_EXIT for "main" will reach here. Return TRUE
1586 * conservatively.
1587 */
1588 if (op == BPF_EXIT)
1589 return true;
1590 if (op == BPF_CALL) {
1591 /* BPF to BPF call will reach here because of marking
1592 * caller saved clobber with DST_OP_NO_MARK for which we
1593 * don't care the register def because they are anyway
1594 * marked as NOT_INIT already.
1595 */
1596 if (insn->src_reg == BPF_PSEUDO_CALL)
1597 return false;
1598 /* Helper call will reach here because of arg type
1599 * check, conservatively return TRUE.
1600 */
1601 if (t == SRC_OP)
1602 return true;
1603
1604 return false;
1605 }
1606 }
1607
1608 if (class == BPF_ALU64 || class == BPF_JMP ||
1609 /* BPF_END always use BPF_ALU class. */
1610 (class == BPF_ALU && op == BPF_END && insn->imm == 64))
1611 return true;
1612
1613 if (class == BPF_ALU || class == BPF_JMP32)
1614 return false;
1615
1616 if (class == BPF_LDX) {
1617 if (t != SRC_OP)
1618 return BPF_SIZE(code) == BPF_DW;
1619 /* LDX source must be ptr. */
1620 return true;
1621 }
1622
1623 if (class == BPF_STX) {
1624 if (reg->type != SCALAR_VALUE)
1625 return true;
1626 return BPF_SIZE(code) == BPF_DW;
1627 }
1628
1629 if (class == BPF_LD) {
1630 u8 mode = BPF_MODE(code);
1631
1632 /* LD_IMM64 */
1633 if (mode == BPF_IMM)
1634 return true;
1635
1636 /* Both LD_IND and LD_ABS return 32-bit data. */
1637 if (t != SRC_OP)
1638 return false;
1639
1640 /* Implicit ctx ptr. */
1641 if (regno == BPF_REG_6)
1642 return true;
1643
1644 /* Explicit source could be any width. */
1645 return true;
1646 }
1647
1648 if (class == BPF_ST)
1649 /* The only source register for BPF_ST is a ptr. */
1650 return true;
1651
1652 /* Conservatively return true at default. */
1653 return true;
1654}
1655
b325fbca
JW
1656/* Return TRUE if INSN doesn't have explicit value define. */
1657static bool insn_no_def(struct bpf_insn *insn)
1658{
1659 u8 class = BPF_CLASS(insn->code);
1660
1661 return (class == BPF_JMP || class == BPF_JMP32 ||
1662 class == BPF_STX || class == BPF_ST);
1663}
1664
1665/* Return TRUE if INSN has defined any 32-bit value explicitly. */
1666static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
1667{
1668 if (insn_no_def(insn))
1669 return false;
1670
1671 return !is_reg64(env, insn, insn->dst_reg, NULL, DST_OP);
1672}
1673
5327ed3d
JW
1674static void mark_insn_zext(struct bpf_verifier_env *env,
1675 struct bpf_reg_state *reg)
1676{
1677 s32 def_idx = reg->subreg_def;
1678
1679 if (def_idx == DEF_NOT_SUBREG)
1680 return;
1681
1682 env->insn_aux_data[def_idx - 1].zext_dst = true;
1683 /* The dst will be zero extended, so won't be sub-register anymore. */
1684 reg->subreg_def = DEF_NOT_SUBREG;
1685}
1686
dc503a8a 1687static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
17a52670
AS
1688 enum reg_arg_type t)
1689{
f4d7e40a
AS
1690 struct bpf_verifier_state *vstate = env->cur_state;
1691 struct bpf_func_state *state = vstate->frame[vstate->curframe];
5327ed3d 1692 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
c342dc10 1693 struct bpf_reg_state *reg, *regs = state->regs;
5327ed3d 1694 bool rw64;
dc503a8a 1695
17a52670 1696 if (regno >= MAX_BPF_REG) {
61bd5218 1697 verbose(env, "R%d is invalid\n", regno);
17a52670
AS
1698 return -EINVAL;
1699 }
1700
c342dc10 1701 reg = &regs[regno];
5327ed3d 1702 rw64 = is_reg64(env, insn, regno, reg, t);
17a52670
AS
1703 if (t == SRC_OP) {
1704 /* check whether register used as source operand can be read */
c342dc10 1705 if (reg->type == NOT_INIT) {
61bd5218 1706 verbose(env, "R%d !read_ok\n", regno);
17a52670
AS
1707 return -EACCES;
1708 }
679c782d 1709 /* We don't need to worry about FP liveness because it's read-only */
c342dc10
JW
1710 if (regno == BPF_REG_FP)
1711 return 0;
1712
5327ed3d
JW
1713 if (rw64)
1714 mark_insn_zext(env, reg);
1715
1716 return mark_reg_read(env, reg, reg->parent,
1717 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
17a52670
AS
1718 } else {
1719 /* check whether register used as dest operand can be written to */
1720 if (regno == BPF_REG_FP) {
61bd5218 1721 verbose(env, "frame pointer is read only\n");
17a52670
AS
1722 return -EACCES;
1723 }
c342dc10 1724 reg->live |= REG_LIVE_WRITTEN;
5327ed3d 1725 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
17a52670 1726 if (t == DST_OP)
61bd5218 1727 mark_reg_unknown(env, regs, regno);
17a52670
AS
1728 }
1729 return 0;
1730}
1731
b5dc0163
AS
1732/* for any branch, call, exit record the history of jmps in the given state */
1733static int push_jmp_history(struct bpf_verifier_env *env,
1734 struct bpf_verifier_state *cur)
1735{
1736 u32 cnt = cur->jmp_history_cnt;
1737 struct bpf_idx_pair *p;
1738
1739 cnt++;
1740 p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER);
1741 if (!p)
1742 return -ENOMEM;
1743 p[cnt - 1].idx = env->insn_idx;
1744 p[cnt - 1].prev_idx = env->prev_insn_idx;
1745 cur->jmp_history = p;
1746 cur->jmp_history_cnt = cnt;
1747 return 0;
1748}
1749
1750/* Backtrack one insn at a time. If idx is not at the top of recorded
1751 * history then previous instruction came from straight line execution.
1752 */
1753static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
1754 u32 *history)
1755{
1756 u32 cnt = *history;
1757
1758 if (cnt && st->jmp_history[cnt - 1].idx == i) {
1759 i = st->jmp_history[cnt - 1].prev_idx;
1760 (*history)--;
1761 } else {
1762 i--;
1763 }
1764 return i;
1765}
1766
1767/* For given verifier state backtrack_insn() is called from the last insn to
1768 * the first insn. Its purpose is to compute a bitmask of registers and
1769 * stack slots that needs precision in the parent verifier state.
1770 */
1771static int backtrack_insn(struct bpf_verifier_env *env, int idx,
1772 u32 *reg_mask, u64 *stack_mask)
1773{
1774 const struct bpf_insn_cbs cbs = {
1775 .cb_print = verbose,
1776 .private_data = env,
1777 };
1778 struct bpf_insn *insn = env->prog->insnsi + idx;
1779 u8 class = BPF_CLASS(insn->code);
1780 u8 opcode = BPF_OP(insn->code);
1781 u8 mode = BPF_MODE(insn->code);
1782 u32 dreg = 1u << insn->dst_reg;
1783 u32 sreg = 1u << insn->src_reg;
1784 u32 spi;
1785
1786 if (insn->code == 0)
1787 return 0;
1788 if (env->log.level & BPF_LOG_LEVEL) {
1789 verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask);
1790 verbose(env, "%d: ", idx);
1791 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
1792 }
1793
1794 if (class == BPF_ALU || class == BPF_ALU64) {
1795 if (!(*reg_mask & dreg))
1796 return 0;
1797 if (opcode == BPF_MOV) {
1798 if (BPF_SRC(insn->code) == BPF_X) {
1799 /* dreg = sreg
1800 * dreg needs precision after this insn
1801 * sreg needs precision before this insn
1802 */
1803 *reg_mask &= ~dreg;
1804 *reg_mask |= sreg;
1805 } else {
1806 /* dreg = K
1807 * dreg needs precision after this insn.
1808 * Corresponding register is already marked
1809 * as precise=true in this verifier state.
1810 * No further markings in parent are necessary
1811 */
1812 *reg_mask &= ~dreg;
1813 }
1814 } else {
1815 if (BPF_SRC(insn->code) == BPF_X) {
1816 /* dreg += sreg
1817 * both dreg and sreg need precision
1818 * before this insn
1819 */
1820 *reg_mask |= sreg;
1821 } /* else dreg += K
1822 * dreg still needs precision before this insn
1823 */
1824 }
1825 } else if (class == BPF_LDX) {
1826 if (!(*reg_mask & dreg))
1827 return 0;
1828 *reg_mask &= ~dreg;
1829
1830 /* scalars can only be spilled into stack w/o losing precision.
1831 * Load from any other memory can be zero extended.
1832 * The desire to keep that precision is already indicated
1833 * by 'precise' mark in corresponding register of this state.
1834 * No further tracking necessary.
1835 */
1836 if (insn->src_reg != BPF_REG_FP)
1837 return 0;
1838 if (BPF_SIZE(insn->code) != BPF_DW)
1839 return 0;
1840
1841 /* dreg = *(u64 *)[fp - off] was a fill from the stack.
1842 * that [fp - off] slot contains scalar that needs to be
1843 * tracked with precision
1844 */
1845 spi = (-insn->off - 1) / BPF_REG_SIZE;
1846 if (spi >= 64) {
1847 verbose(env, "BUG spi %d\n", spi);
1848 WARN_ONCE(1, "verifier backtracking bug");
1849 return -EFAULT;
1850 }
1851 *stack_mask |= 1ull << spi;
b3b50f05 1852 } else if (class == BPF_STX || class == BPF_ST) {
b5dc0163 1853 if (*reg_mask & dreg)
b3b50f05 1854 /* stx & st shouldn't be using _scalar_ dst_reg
b5dc0163
AS
1855 * to access memory. It means backtracking
1856 * encountered a case of pointer subtraction.
1857 */
1858 return -ENOTSUPP;
1859 /* scalars can only be spilled into stack */
1860 if (insn->dst_reg != BPF_REG_FP)
1861 return 0;
1862 if (BPF_SIZE(insn->code) != BPF_DW)
1863 return 0;
1864 spi = (-insn->off - 1) / BPF_REG_SIZE;
1865 if (spi >= 64) {
1866 verbose(env, "BUG spi %d\n", spi);
1867 WARN_ONCE(1, "verifier backtracking bug");
1868 return -EFAULT;
1869 }
1870 if (!(*stack_mask & (1ull << spi)))
1871 return 0;
1872 *stack_mask &= ~(1ull << spi);
b3b50f05
AN
1873 if (class == BPF_STX)
1874 *reg_mask |= sreg;
b5dc0163
AS
1875 } else if (class == BPF_JMP || class == BPF_JMP32) {
1876 if (opcode == BPF_CALL) {
1877 if (insn->src_reg == BPF_PSEUDO_CALL)
1878 return -ENOTSUPP;
1879 /* regular helper call sets R0 */
1880 *reg_mask &= ~1;
1881 if (*reg_mask & 0x3f) {
1882 /* if backtracing was looking for registers R1-R5
1883 * they should have been found already.
1884 */
1885 verbose(env, "BUG regs %x\n", *reg_mask);
1886 WARN_ONCE(1, "verifier backtracking bug");
1887 return -EFAULT;
1888 }
1889 } else if (opcode == BPF_EXIT) {
1890 return -ENOTSUPP;
1891 }
1892 } else if (class == BPF_LD) {
1893 if (!(*reg_mask & dreg))
1894 return 0;
1895 *reg_mask &= ~dreg;
1896 /* It's ld_imm64 or ld_abs or ld_ind.
1897 * For ld_imm64 no further tracking of precision
1898 * into parent is necessary
1899 */
1900 if (mode == BPF_IND || mode == BPF_ABS)
1901 /* to be analyzed */
1902 return -ENOTSUPP;
b5dc0163
AS
1903 }
1904 return 0;
1905}
1906
1907/* the scalar precision tracking algorithm:
1908 * . at the start all registers have precise=false.
1909 * . scalar ranges are tracked as normal through alu and jmp insns.
1910 * . once precise value of the scalar register is used in:
1911 * . ptr + scalar alu
1912 * . if (scalar cond K|scalar)
1913 * . helper_call(.., scalar, ...) where ARG_CONST is expected
1914 * backtrack through the verifier states and mark all registers and
1915 * stack slots with spilled constants that these scalar regisers
1916 * should be precise.
1917 * . during state pruning two registers (or spilled stack slots)
1918 * are equivalent if both are not precise.
1919 *
1920 * Note the verifier cannot simply walk register parentage chain,
1921 * since many different registers and stack slots could have been
1922 * used to compute single precise scalar.
1923 *
1924 * The approach of starting with precise=true for all registers and then
1925 * backtrack to mark a register as not precise when the verifier detects
1926 * that program doesn't care about specific value (e.g., when helper
1927 * takes register as ARG_ANYTHING parameter) is not safe.
1928 *
1929 * It's ok to walk single parentage chain of the verifier states.
1930 * It's possible that this backtracking will go all the way till 1st insn.
1931 * All other branches will be explored for needing precision later.
1932 *
1933 * The backtracking needs to deal with cases like:
1934 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
1935 * r9 -= r8
1936 * r5 = r9
1937 * if r5 > 0x79f goto pc+7
1938 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
1939 * r5 += 1
1940 * ...
1941 * call bpf_perf_event_output#25
1942 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO
1943 *
1944 * and this case:
1945 * r6 = 1
1946 * call foo // uses callee's r6 inside to compute r0
1947 * r0 += r6
1948 * if r0 == 0 goto
1949 *
1950 * to track above reg_mask/stack_mask needs to be independent for each frame.
1951 *
1952 * Also if parent's curframe > frame where backtracking started,
1953 * the verifier need to mark registers in both frames, otherwise callees
1954 * may incorrectly prune callers. This is similar to
1955 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
1956 *
1957 * For now backtracking falls back into conservative marking.
1958 */
1959static void mark_all_scalars_precise(struct bpf_verifier_env *env,
1960 struct bpf_verifier_state *st)
1961{
1962 struct bpf_func_state *func;
1963 struct bpf_reg_state *reg;
1964 int i, j;
1965
1966 /* big hammer: mark all scalars precise in this path.
1967 * pop_stack may still get !precise scalars.
1968 */
1969 for (; st; st = st->parent)
1970 for (i = 0; i <= st->curframe; i++) {
1971 func = st->frame[i];
1972 for (j = 0; j < BPF_REG_FP; j++) {
1973 reg = &func->regs[j];
1974 if (reg->type != SCALAR_VALUE)
1975 continue;
1976 reg->precise = true;
1977 }
1978 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
1979 if (func->stack[j].slot_type[0] != STACK_SPILL)
1980 continue;
1981 reg = &func->stack[j].spilled_ptr;
1982 if (reg->type != SCALAR_VALUE)
1983 continue;
1984 reg->precise = true;
1985 }
1986 }
1987}
1988
a3ce685d
AS
1989static int __mark_chain_precision(struct bpf_verifier_env *env, int regno,
1990 int spi)
b5dc0163
AS
1991{
1992 struct bpf_verifier_state *st = env->cur_state;
1993 int first_idx = st->first_insn_idx;
1994 int last_idx = env->insn_idx;
1995 struct bpf_func_state *func;
1996 struct bpf_reg_state *reg;
a3ce685d
AS
1997 u32 reg_mask = regno >= 0 ? 1u << regno : 0;
1998 u64 stack_mask = spi >= 0 ? 1ull << spi : 0;
b5dc0163 1999 bool skip_first = true;
a3ce685d 2000 bool new_marks = false;
b5dc0163
AS
2001 int i, err;
2002
2c78ee89 2003 if (!env->bpf_capable)
b5dc0163
AS
2004 return 0;
2005
2006 func = st->frame[st->curframe];
a3ce685d
AS
2007 if (regno >= 0) {
2008 reg = &func->regs[regno];
2009 if (reg->type != SCALAR_VALUE) {
2010 WARN_ONCE(1, "backtracing misuse");
2011 return -EFAULT;
2012 }
2013 if (!reg->precise)
2014 new_marks = true;
2015 else
2016 reg_mask = 0;
2017 reg->precise = true;
b5dc0163 2018 }
b5dc0163 2019
a3ce685d
AS
2020 while (spi >= 0) {
2021 if (func->stack[spi].slot_type[0] != STACK_SPILL) {
2022 stack_mask = 0;
2023 break;
2024 }
2025 reg = &func->stack[spi].spilled_ptr;
2026 if (reg->type != SCALAR_VALUE) {
2027 stack_mask = 0;
2028 break;
2029 }
2030 if (!reg->precise)
2031 new_marks = true;
2032 else
2033 stack_mask = 0;
2034 reg->precise = true;
2035 break;
2036 }
2037
2038 if (!new_marks)
2039 return 0;
2040 if (!reg_mask && !stack_mask)
2041 return 0;
b5dc0163
AS
2042 for (;;) {
2043 DECLARE_BITMAP(mask, 64);
b5dc0163
AS
2044 u32 history = st->jmp_history_cnt;
2045
2046 if (env->log.level & BPF_LOG_LEVEL)
2047 verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx);
2048 for (i = last_idx;;) {
2049 if (skip_first) {
2050 err = 0;
2051 skip_first = false;
2052 } else {
2053 err = backtrack_insn(env, i, &reg_mask, &stack_mask);
2054 }
2055 if (err == -ENOTSUPP) {
2056 mark_all_scalars_precise(env, st);
2057 return 0;
2058 } else if (err) {
2059 return err;
2060 }
2061 if (!reg_mask && !stack_mask)
2062 /* Found assignment(s) into tracked register in this state.
2063 * Since this state is already marked, just return.
2064 * Nothing to be tracked further in the parent state.
2065 */
2066 return 0;
2067 if (i == first_idx)
2068 break;
2069 i = get_prev_insn_idx(st, i, &history);
2070 if (i >= env->prog->len) {
2071 /* This can happen if backtracking reached insn 0
2072 * and there are still reg_mask or stack_mask
2073 * to backtrack.
2074 * It means the backtracking missed the spot where
2075 * particular register was initialized with a constant.
2076 */
2077 verbose(env, "BUG backtracking idx %d\n", i);
2078 WARN_ONCE(1, "verifier backtracking bug");
2079 return -EFAULT;
2080 }
2081 }
2082 st = st->parent;
2083 if (!st)
2084 break;
2085
a3ce685d 2086 new_marks = false;
b5dc0163
AS
2087 func = st->frame[st->curframe];
2088 bitmap_from_u64(mask, reg_mask);
2089 for_each_set_bit(i, mask, 32) {
2090 reg = &func->regs[i];
a3ce685d
AS
2091 if (reg->type != SCALAR_VALUE) {
2092 reg_mask &= ~(1u << i);
b5dc0163 2093 continue;
a3ce685d 2094 }
b5dc0163
AS
2095 if (!reg->precise)
2096 new_marks = true;
2097 reg->precise = true;
2098 }
2099
2100 bitmap_from_u64(mask, stack_mask);
2101 for_each_set_bit(i, mask, 64) {
2102 if (i >= func->allocated_stack / BPF_REG_SIZE) {
2339cd6c
AS
2103 /* the sequence of instructions:
2104 * 2: (bf) r3 = r10
2105 * 3: (7b) *(u64 *)(r3 -8) = r0
2106 * 4: (79) r4 = *(u64 *)(r10 -8)
2107 * doesn't contain jmps. It's backtracked
2108 * as a single block.
2109 * During backtracking insn 3 is not recognized as
2110 * stack access, so at the end of backtracking
2111 * stack slot fp-8 is still marked in stack_mask.
2112 * However the parent state may not have accessed
2113 * fp-8 and it's "unallocated" stack space.
2114 * In such case fallback to conservative.
b5dc0163 2115 */
2339cd6c
AS
2116 mark_all_scalars_precise(env, st);
2117 return 0;
b5dc0163
AS
2118 }
2119
a3ce685d
AS
2120 if (func->stack[i].slot_type[0] != STACK_SPILL) {
2121 stack_mask &= ~(1ull << i);
b5dc0163 2122 continue;
a3ce685d 2123 }
b5dc0163 2124 reg = &func->stack[i].spilled_ptr;
a3ce685d
AS
2125 if (reg->type != SCALAR_VALUE) {
2126 stack_mask &= ~(1ull << i);
b5dc0163 2127 continue;
a3ce685d 2128 }
b5dc0163
AS
2129 if (!reg->precise)
2130 new_marks = true;
2131 reg->precise = true;
2132 }
2133 if (env->log.level & BPF_LOG_LEVEL) {
2134 print_verifier_state(env, func);
2135 verbose(env, "parent %s regs=%x stack=%llx marks\n",
2136 new_marks ? "didn't have" : "already had",
2137 reg_mask, stack_mask);
2138 }
2139
a3ce685d
AS
2140 if (!reg_mask && !stack_mask)
2141 break;
b5dc0163
AS
2142 if (!new_marks)
2143 break;
2144
2145 last_idx = st->last_insn_idx;
2146 first_idx = st->first_insn_idx;
2147 }
2148 return 0;
2149}
2150
a3ce685d
AS
2151static int mark_chain_precision(struct bpf_verifier_env *env, int regno)
2152{
2153 return __mark_chain_precision(env, regno, -1);
2154}
2155
2156static int mark_chain_precision_stack(struct bpf_verifier_env *env, int spi)
2157{
2158 return __mark_chain_precision(env, -1, spi);
2159}
b5dc0163 2160
1be7f75d
AS
2161static bool is_spillable_regtype(enum bpf_reg_type type)
2162{
2163 switch (type) {
2164 case PTR_TO_MAP_VALUE:
2165 case PTR_TO_MAP_VALUE_OR_NULL:
2166 case PTR_TO_STACK:
2167 case PTR_TO_CTX:
969bf05e 2168 case PTR_TO_PACKET:
de8f3a83 2169 case PTR_TO_PACKET_META:
969bf05e 2170 case PTR_TO_PACKET_END:
d58e468b 2171 case PTR_TO_FLOW_KEYS:
1be7f75d 2172 case CONST_PTR_TO_MAP:
c64b7983
JS
2173 case PTR_TO_SOCKET:
2174 case PTR_TO_SOCKET_OR_NULL:
46f8bc92
MKL
2175 case PTR_TO_SOCK_COMMON:
2176 case PTR_TO_SOCK_COMMON_OR_NULL:
655a51e5
MKL
2177 case PTR_TO_TCP_SOCK:
2178 case PTR_TO_TCP_SOCK_OR_NULL:
fada7fdc 2179 case PTR_TO_XDP_SOCK:
65726b5b 2180 case PTR_TO_BTF_ID:
b121b341 2181 case PTR_TO_BTF_ID_OR_NULL:
afbf21dc
YS
2182 case PTR_TO_RDONLY_BUF:
2183 case PTR_TO_RDONLY_BUF_OR_NULL:
2184 case PTR_TO_RDWR_BUF:
2185 case PTR_TO_RDWR_BUF_OR_NULL:
1be7f75d
AS
2186 return true;
2187 default:
2188 return false;
2189 }
2190}
2191
cc2b14d5
AS
2192/* Does this register contain a constant zero? */
2193static bool register_is_null(struct bpf_reg_state *reg)
2194{
2195 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
2196}
2197
f7cf25b2
AS
2198static bool register_is_const(struct bpf_reg_state *reg)
2199{
2200 return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off);
2201}
2202
6e7e63cb
JH
2203static bool __is_pointer_value(bool allow_ptr_leaks,
2204 const struct bpf_reg_state *reg)
2205{
2206 if (allow_ptr_leaks)
2207 return false;
2208
2209 return reg->type != SCALAR_VALUE;
2210}
2211
f7cf25b2
AS
2212static void save_register_state(struct bpf_func_state *state,
2213 int spi, struct bpf_reg_state *reg)
2214{
2215 int i;
2216
2217 state->stack[spi].spilled_ptr = *reg;
2218 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
2219
2220 for (i = 0; i < BPF_REG_SIZE; i++)
2221 state->stack[spi].slot_type[i] = STACK_SPILL;
2222}
2223
17a52670
AS
2224/* check_stack_read/write functions track spill/fill of registers,
2225 * stack boundary and alignment are checked in check_mem_access()
2226 */
61bd5218 2227static int check_stack_write(struct bpf_verifier_env *env,
f4d7e40a 2228 struct bpf_func_state *state, /* func where register points to */
af86ca4e 2229 int off, int size, int value_regno, int insn_idx)
17a52670 2230{
f4d7e40a 2231 struct bpf_func_state *cur; /* state of the current function */
638f5b90 2232 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
b5dc0163 2233 u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg;
f7cf25b2 2234 struct bpf_reg_state *reg = NULL;
638f5b90 2235
f4d7e40a 2236 err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE),
fd978bf7 2237 state->acquired_refs, true);
638f5b90
AS
2238 if (err)
2239 return err;
9c399760
AS
2240 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
2241 * so it's aligned access and [off, off + size) are within stack limits
2242 */
638f5b90
AS
2243 if (!env->allow_ptr_leaks &&
2244 state->stack[spi].slot_type[0] == STACK_SPILL &&
2245 size != BPF_REG_SIZE) {
2246 verbose(env, "attempt to corrupt spilled pointer on stack\n");
2247 return -EACCES;
2248 }
17a52670 2249
f4d7e40a 2250 cur = env->cur_state->frame[env->cur_state->curframe];
f7cf25b2
AS
2251 if (value_regno >= 0)
2252 reg = &cur->regs[value_regno];
17a52670 2253
f7cf25b2 2254 if (reg && size == BPF_REG_SIZE && register_is_const(reg) &&
2c78ee89 2255 !register_is_null(reg) && env->bpf_capable) {
b5dc0163
AS
2256 if (dst_reg != BPF_REG_FP) {
2257 /* The backtracking logic can only recognize explicit
2258 * stack slot address like [fp - 8]. Other spill of
2259 * scalar via different register has to be conervative.
2260 * Backtrack from here and mark all registers as precise
2261 * that contributed into 'reg' being a constant.
2262 */
2263 err = mark_chain_precision(env, value_regno);
2264 if (err)
2265 return err;
2266 }
f7cf25b2
AS
2267 save_register_state(state, spi, reg);
2268 } else if (reg && is_spillable_regtype(reg->type)) {
17a52670 2269 /* register containing pointer is being spilled into stack */
9c399760 2270 if (size != BPF_REG_SIZE) {
f7cf25b2 2271 verbose_linfo(env, insn_idx, "; ");
61bd5218 2272 verbose(env, "invalid size of register spill\n");
17a52670
AS
2273 return -EACCES;
2274 }
2275
f7cf25b2 2276 if (state != cur && reg->type == PTR_TO_STACK) {
f4d7e40a
AS
2277 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
2278 return -EINVAL;
2279 }
2280
2c78ee89 2281 if (!env->bypass_spec_v4) {
f7cf25b2 2282 bool sanitize = false;
17a52670 2283
f7cf25b2
AS
2284 if (state->stack[spi].slot_type[0] == STACK_SPILL &&
2285 register_is_const(&state->stack[spi].spilled_ptr))
2286 sanitize = true;
2287 for (i = 0; i < BPF_REG_SIZE; i++)
2288 if (state->stack[spi].slot_type[i] == STACK_MISC) {
2289 sanitize = true;
2290 break;
2291 }
2292 if (sanitize) {
af86ca4e
AS
2293 int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off;
2294 int soff = (-spi - 1) * BPF_REG_SIZE;
2295
2296 /* detected reuse of integer stack slot with a pointer
2297 * which means either llvm is reusing stack slot or
2298 * an attacker is trying to exploit CVE-2018-3639
2299 * (speculative store bypass)
2300 * Have to sanitize that slot with preemptive
2301 * store of zero.
2302 */
2303 if (*poff && *poff != soff) {
2304 /* disallow programs where single insn stores
2305 * into two different stack slots, since verifier
2306 * cannot sanitize them
2307 */
2308 verbose(env,
2309 "insn %d cannot access two stack slots fp%d and fp%d",
2310 insn_idx, *poff, soff);
2311 return -EINVAL;
2312 }
2313 *poff = soff;
2314 }
af86ca4e 2315 }
f7cf25b2 2316 save_register_state(state, spi, reg);
9c399760 2317 } else {
cc2b14d5
AS
2318 u8 type = STACK_MISC;
2319
679c782d
EC
2320 /* regular write of data into stack destroys any spilled ptr */
2321 state->stack[spi].spilled_ptr.type = NOT_INIT;
0bae2d4d
JW
2322 /* Mark slots as STACK_MISC if they belonged to spilled ptr. */
2323 if (state->stack[spi].slot_type[0] == STACK_SPILL)
2324 for (i = 0; i < BPF_REG_SIZE; i++)
2325 state->stack[spi].slot_type[i] = STACK_MISC;
9c399760 2326
cc2b14d5
AS
2327 /* only mark the slot as written if all 8 bytes were written
2328 * otherwise read propagation may incorrectly stop too soon
2329 * when stack slots are partially written.
2330 * This heuristic means that read propagation will be
2331 * conservative, since it will add reg_live_read marks
2332 * to stack slots all the way to first state when programs
2333 * writes+reads less than 8 bytes
2334 */
2335 if (size == BPF_REG_SIZE)
2336 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
2337
2338 /* when we zero initialize stack slots mark them as such */
b5dc0163
AS
2339 if (reg && register_is_null(reg)) {
2340 /* backtracking doesn't work for STACK_ZERO yet. */
2341 err = mark_chain_precision(env, value_regno);
2342 if (err)
2343 return err;
cc2b14d5 2344 type = STACK_ZERO;
b5dc0163 2345 }
cc2b14d5 2346
0bae2d4d 2347 /* Mark slots affected by this stack write. */
9c399760 2348 for (i = 0; i < size; i++)
638f5b90 2349 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
cc2b14d5 2350 type;
17a52670
AS
2351 }
2352 return 0;
2353}
2354
61bd5218 2355static int check_stack_read(struct bpf_verifier_env *env,
f4d7e40a
AS
2356 struct bpf_func_state *reg_state /* func where register points to */,
2357 int off, int size, int value_regno)
17a52670 2358{
f4d7e40a
AS
2359 struct bpf_verifier_state *vstate = env->cur_state;
2360 struct bpf_func_state *state = vstate->frame[vstate->curframe];
638f5b90 2361 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
f7cf25b2 2362 struct bpf_reg_state *reg;
638f5b90 2363 u8 *stype;
17a52670 2364
f4d7e40a 2365 if (reg_state->allocated_stack <= slot) {
638f5b90
AS
2366 verbose(env, "invalid read from stack off %d+0 size %d\n",
2367 off, size);
2368 return -EACCES;
2369 }
f4d7e40a 2370 stype = reg_state->stack[spi].slot_type;
f7cf25b2 2371 reg = &reg_state->stack[spi].spilled_ptr;
17a52670 2372
638f5b90 2373 if (stype[0] == STACK_SPILL) {
9c399760 2374 if (size != BPF_REG_SIZE) {
f7cf25b2
AS
2375 if (reg->type != SCALAR_VALUE) {
2376 verbose_linfo(env, env->insn_idx, "; ");
2377 verbose(env, "invalid size of register fill\n");
2378 return -EACCES;
2379 }
2380 if (value_regno >= 0) {
2381 mark_reg_unknown(env, state->regs, value_regno);
2382 state->regs[value_regno].live |= REG_LIVE_WRITTEN;
2383 }
2384 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2385 return 0;
17a52670 2386 }
9c399760 2387 for (i = 1; i < BPF_REG_SIZE; i++) {
638f5b90 2388 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
61bd5218 2389 verbose(env, "corrupted spill memory\n");
17a52670
AS
2390 return -EACCES;
2391 }
2392 }
2393
dc503a8a 2394 if (value_regno >= 0) {
17a52670 2395 /* restore register state from stack */
f7cf25b2 2396 state->regs[value_regno] = *reg;
2f18f62e
AS
2397 /* mark reg as written since spilled pointer state likely
2398 * has its liveness marks cleared by is_state_visited()
2399 * which resets stack/reg liveness for state transitions
2400 */
2401 state->regs[value_regno].live |= REG_LIVE_WRITTEN;
6e7e63cb
JH
2402 } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) {
2403 /* If value_regno==-1, the caller is asking us whether
2404 * it is acceptable to use this value as a SCALAR_VALUE
2405 * (e.g. for XADD).
2406 * We must not allow unprivileged callers to do that
2407 * with spilled pointers.
2408 */
2409 verbose(env, "leaking pointer from stack off %d\n",
2410 off);
2411 return -EACCES;
dc503a8a 2412 }
f7cf25b2 2413 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
17a52670 2414 } else {
cc2b14d5
AS
2415 int zeros = 0;
2416
17a52670 2417 for (i = 0; i < size; i++) {
cc2b14d5
AS
2418 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC)
2419 continue;
2420 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) {
2421 zeros++;
2422 continue;
17a52670 2423 }
cc2b14d5
AS
2424 verbose(env, "invalid read from stack off %d+%d size %d\n",
2425 off, i, size);
2426 return -EACCES;
2427 }
f7cf25b2 2428 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
cc2b14d5
AS
2429 if (value_regno >= 0) {
2430 if (zeros == size) {
2431 /* any size read into register is zero extended,
2432 * so the whole register == const_zero
2433 */
2434 __mark_reg_const_zero(&state->regs[value_regno]);
b5dc0163
AS
2435 /* backtracking doesn't support STACK_ZERO yet,
2436 * so mark it precise here, so that later
2437 * backtracking can stop here.
2438 * Backtracking may not need this if this register
2439 * doesn't participate in pointer adjustment.
2440 * Forward propagation of precise flag is not
2441 * necessary either. This mark is only to stop
2442 * backtracking. Any register that contributed
2443 * to const 0 was marked precise before spill.
2444 */
2445 state->regs[value_regno].precise = true;
cc2b14d5
AS
2446 } else {
2447 /* have read misc data from the stack */
2448 mark_reg_unknown(env, state->regs, value_regno);
2449 }
2450 state->regs[value_regno].live |= REG_LIVE_WRITTEN;
17a52670 2451 }
17a52670 2452 }
f7cf25b2 2453 return 0;
17a52670
AS
2454}
2455
e4298d25
DB
2456static int check_stack_access(struct bpf_verifier_env *env,
2457 const struct bpf_reg_state *reg,
2458 int off, int size)
2459{
2460 /* Stack accesses must be at a fixed offset, so that we
2461 * can determine what type of data were returned. See
2462 * check_stack_read().
2463 */
2464 if (!tnum_is_const(reg->var_off)) {
2465 char tn_buf[48];
2466
2467 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1fbd20f8 2468 verbose(env, "variable stack access var_off=%s off=%d size=%d\n",
e4298d25
DB
2469 tn_buf, off, size);
2470 return -EACCES;
2471 }
2472
2473 if (off >= 0 || off < -MAX_BPF_STACK) {
2474 verbose(env, "invalid stack off=%d size=%d\n", off, size);
2475 return -EACCES;
2476 }
2477
2478 return 0;
2479}
2480
591fe988
DB
2481static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
2482 int off, int size, enum bpf_access_type type)
2483{
2484 struct bpf_reg_state *regs = cur_regs(env);
2485 struct bpf_map *map = regs[regno].map_ptr;
2486 u32 cap = bpf_map_flags_to_cap(map);
2487
2488 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
2489 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
2490 map->value_size, off, size);
2491 return -EACCES;
2492 }
2493
2494 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
2495 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
2496 map->value_size, off, size);
2497 return -EACCES;
2498 }
2499
2500 return 0;
2501}
2502
457f4436
AN
2503/* check read/write into memory region (e.g., map value, ringbuf sample, etc) */
2504static int __check_mem_access(struct bpf_verifier_env *env, int regno,
2505 int off, int size, u32 mem_size,
2506 bool zero_size_allowed)
17a52670 2507{
457f4436
AN
2508 bool size_ok = size > 0 || (size == 0 && zero_size_allowed);
2509 struct bpf_reg_state *reg;
2510
2511 if (off >= 0 && size_ok && (u64)off + size <= mem_size)
2512 return 0;
17a52670 2513
457f4436
AN
2514 reg = &cur_regs(env)[regno];
2515 switch (reg->type) {
2516 case PTR_TO_MAP_VALUE:
61bd5218 2517 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
457f4436
AN
2518 mem_size, off, size);
2519 break;
2520 case PTR_TO_PACKET:
2521 case PTR_TO_PACKET_META:
2522 case PTR_TO_PACKET_END:
2523 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
2524 off, size, regno, reg->id, off, mem_size);
2525 break;
2526 case PTR_TO_MEM:
2527 default:
2528 verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n",
2529 mem_size, off, size);
17a52670 2530 }
457f4436
AN
2531
2532 return -EACCES;
17a52670
AS
2533}
2534
457f4436
AN
2535/* check read/write into a memory region with possible variable offset */
2536static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno,
2537 int off, int size, u32 mem_size,
2538 bool zero_size_allowed)
dbcfe5f7 2539{
f4d7e40a
AS
2540 struct bpf_verifier_state *vstate = env->cur_state;
2541 struct bpf_func_state *state = vstate->frame[vstate->curframe];
dbcfe5f7
GB
2542 struct bpf_reg_state *reg = &state->regs[regno];
2543 int err;
2544
457f4436 2545 /* We may have adjusted the register pointing to memory region, so we
f1174f77
EC
2546 * need to try adding each of min_value and max_value to off
2547 * to make sure our theoretical access will be safe.
dbcfe5f7 2548 */
06ee7115 2549 if (env->log.level & BPF_LOG_LEVEL)
61bd5218 2550 print_verifier_state(env, state);
b7137c4e 2551
dbcfe5f7
GB
2552 /* The minimum value is only important with signed
2553 * comparisons where we can't assume the floor of a
2554 * value is 0. If we are using signed variables for our
2555 * index'es we need to make sure that whatever we use
2556 * will have a set floor within our range.
2557 */
b7137c4e
DB
2558 if (reg->smin_value < 0 &&
2559 (reg->smin_value == S64_MIN ||
2560 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
2561 reg->smin_value + off < 0)) {
61bd5218 2562 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
dbcfe5f7
GB
2563 regno);
2564 return -EACCES;
2565 }
457f4436
AN
2566 err = __check_mem_access(env, regno, reg->smin_value + off, size,
2567 mem_size, zero_size_allowed);
dbcfe5f7 2568 if (err) {
457f4436 2569 verbose(env, "R%d min value is outside of the allowed memory range\n",
61bd5218 2570 regno);
dbcfe5f7
GB
2571 return err;
2572 }
2573
b03c9f9f
EC
2574 /* If we haven't set a max value then we need to bail since we can't be
2575 * sure we won't do bad things.
2576 * If reg->umax_value + off could overflow, treat that as unbounded too.
dbcfe5f7 2577 */
b03c9f9f 2578 if (reg->umax_value >= BPF_MAX_VAR_OFF) {
457f4436 2579 verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n",
dbcfe5f7
GB
2580 regno);
2581 return -EACCES;
2582 }
457f4436
AN
2583 err = __check_mem_access(env, regno, reg->umax_value + off, size,
2584 mem_size, zero_size_allowed);
2585 if (err) {
2586 verbose(env, "R%d max value is outside of the allowed memory range\n",
61bd5218 2587 regno);
457f4436
AN
2588 return err;
2589 }
2590
2591 return 0;
2592}
d83525ca 2593
457f4436
AN
2594/* check read/write into a map element with possible variable offset */
2595static int check_map_access(struct bpf_verifier_env *env, u32 regno,
2596 int off, int size, bool zero_size_allowed)
2597{
2598 struct bpf_verifier_state *vstate = env->cur_state;
2599 struct bpf_func_state *state = vstate->frame[vstate->curframe];
2600 struct bpf_reg_state *reg = &state->regs[regno];
2601 struct bpf_map *map = reg->map_ptr;
2602 int err;
2603
2604 err = check_mem_region_access(env, regno, off, size, map->value_size,
2605 zero_size_allowed);
2606 if (err)
2607 return err;
2608
2609 if (map_value_has_spin_lock(map)) {
2610 u32 lock = map->spin_lock_off;
d83525ca
AS
2611
2612 /* if any part of struct bpf_spin_lock can be touched by
2613 * load/store reject this program.
2614 * To check that [x1, x2) overlaps with [y1, y2)
2615 * it is sufficient to check x1 < y2 && y1 < x2.
2616 */
2617 if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) &&
2618 lock < reg->umax_value + off + size) {
2619 verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n");
2620 return -EACCES;
2621 }
2622 }
f1174f77 2623 return err;
dbcfe5f7
GB
2624}
2625
969bf05e
AS
2626#define MAX_PACKET_OFF 0xffff
2627
58e2af8b 2628static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
3a0af8fd
TG
2629 const struct bpf_call_arg_meta *meta,
2630 enum bpf_access_type t)
4acf6c0b 2631{
36bbef52 2632 switch (env->prog->type) {
5d66fa7d 2633 /* Program types only with direct read access go here! */
3a0af8fd
TG
2634 case BPF_PROG_TYPE_LWT_IN:
2635 case BPF_PROG_TYPE_LWT_OUT:
004d4b27 2636 case BPF_PROG_TYPE_LWT_SEG6LOCAL:
2dbb9b9e 2637 case BPF_PROG_TYPE_SK_REUSEPORT:
5d66fa7d 2638 case BPF_PROG_TYPE_FLOW_DISSECTOR:
d5563d36 2639 case BPF_PROG_TYPE_CGROUP_SKB:
3a0af8fd
TG
2640 if (t == BPF_WRITE)
2641 return false;
7e57fbb2 2642 /* fallthrough */
5d66fa7d
DB
2643
2644 /* Program types with direct read + write access go here! */
36bbef52
DB
2645 case BPF_PROG_TYPE_SCHED_CLS:
2646 case BPF_PROG_TYPE_SCHED_ACT:
4acf6c0b 2647 case BPF_PROG_TYPE_XDP:
3a0af8fd 2648 case BPF_PROG_TYPE_LWT_XMIT:
8a31db56 2649 case BPF_PROG_TYPE_SK_SKB:
4f738adb 2650 case BPF_PROG_TYPE_SK_MSG:
36bbef52
DB
2651 if (meta)
2652 return meta->pkt_access;
2653
2654 env->seen_direct_write = true;
4acf6c0b 2655 return true;
0d01da6a
SF
2656
2657 case BPF_PROG_TYPE_CGROUP_SOCKOPT:
2658 if (t == BPF_WRITE)
2659 env->seen_direct_write = true;
2660
2661 return true;
2662
4acf6c0b
BB
2663 default:
2664 return false;
2665 }
2666}
2667
f1174f77 2668static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
9fd29c08 2669 int size, bool zero_size_allowed)
f1174f77 2670{
638f5b90 2671 struct bpf_reg_state *regs = cur_regs(env);
f1174f77
EC
2672 struct bpf_reg_state *reg = &regs[regno];
2673 int err;
2674
2675 /* We may have added a variable offset to the packet pointer; but any
2676 * reg->range we have comes after that. We are only checking the fixed
2677 * offset.
2678 */
2679
2680 /* We don't allow negative numbers, because we aren't tracking enough
2681 * detail to prove they're safe.
2682 */
b03c9f9f 2683 if (reg->smin_value < 0) {
61bd5218 2684 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
f1174f77
EC
2685 regno);
2686 return -EACCES;
2687 }
457f4436
AN
2688 err = __check_mem_access(env, regno, off, size, reg->range,
2689 zero_size_allowed);
f1174f77 2690 if (err) {
61bd5218 2691 verbose(env, "R%d offset is outside of the packet\n", regno);
f1174f77
EC
2692 return err;
2693 }
e647815a 2694
457f4436 2695 /* __check_mem_access has made sure "off + size - 1" is within u16.
e647815a
JW
2696 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
2697 * otherwise find_good_pkt_pointers would have refused to set range info
457f4436 2698 * that __check_mem_access would have rejected this pkt access.
e647815a
JW
2699 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
2700 */
2701 env->prog->aux->max_pkt_offset =
2702 max_t(u32, env->prog->aux->max_pkt_offset,
2703 off + reg->umax_value + size - 1);
2704
f1174f77
EC
2705 return err;
2706}
2707
2708/* check access to 'struct bpf_context' fields. Supports fixed offsets only */
31fd8581 2709static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
9e15db66
AS
2710 enum bpf_access_type t, enum bpf_reg_type *reg_type,
2711 u32 *btf_id)
17a52670 2712{
f96da094
DB
2713 struct bpf_insn_access_aux info = {
2714 .reg_type = *reg_type,
9e15db66 2715 .log = &env->log,
f96da094 2716 };
31fd8581 2717
4f9218aa 2718 if (env->ops->is_valid_access &&
5e43f899 2719 env->ops->is_valid_access(off, size, t, env->prog, &info)) {
f96da094
DB
2720 /* A non zero info.ctx_field_size indicates that this field is a
2721 * candidate for later verifier transformation to load the whole
2722 * field and then apply a mask when accessed with a narrower
2723 * access than actual ctx access size. A zero info.ctx_field_size
2724 * will only allow for whole field access and rejects any other
2725 * type of narrower access.
31fd8581 2726 */
23994631 2727 *reg_type = info.reg_type;
31fd8581 2728
b121b341 2729 if (*reg_type == PTR_TO_BTF_ID || *reg_type == PTR_TO_BTF_ID_OR_NULL)
9e15db66
AS
2730 *btf_id = info.btf_id;
2731 else
2732 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
32bbe007
AS
2733 /* remember the offset of last byte accessed in ctx */
2734 if (env->prog->aux->max_ctx_offset < off + size)
2735 env->prog->aux->max_ctx_offset = off + size;
17a52670 2736 return 0;
32bbe007 2737 }
17a52670 2738
61bd5218 2739 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
17a52670
AS
2740 return -EACCES;
2741}
2742
d58e468b
PP
2743static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
2744 int size)
2745{
2746 if (size < 0 || off < 0 ||
2747 (u64)off + size > sizeof(struct bpf_flow_keys)) {
2748 verbose(env, "invalid access to flow keys off=%d size=%d\n",
2749 off, size);
2750 return -EACCES;
2751 }
2752 return 0;
2753}
2754
5f456649
MKL
2755static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
2756 u32 regno, int off, int size,
2757 enum bpf_access_type t)
c64b7983
JS
2758{
2759 struct bpf_reg_state *regs = cur_regs(env);
2760 struct bpf_reg_state *reg = &regs[regno];
5f456649 2761 struct bpf_insn_access_aux info = {};
46f8bc92 2762 bool valid;
c64b7983
JS
2763
2764 if (reg->smin_value < 0) {
2765 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
2766 regno);
2767 return -EACCES;
2768 }
2769
46f8bc92
MKL
2770 switch (reg->type) {
2771 case PTR_TO_SOCK_COMMON:
2772 valid = bpf_sock_common_is_valid_access(off, size, t, &info);
2773 break;
2774 case PTR_TO_SOCKET:
2775 valid = bpf_sock_is_valid_access(off, size, t, &info);
2776 break;
655a51e5
MKL
2777 case PTR_TO_TCP_SOCK:
2778 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
2779 break;
fada7fdc
JL
2780 case PTR_TO_XDP_SOCK:
2781 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
2782 break;
46f8bc92
MKL
2783 default:
2784 valid = false;
c64b7983
JS
2785 }
2786
5f456649 2787
46f8bc92
MKL
2788 if (valid) {
2789 env->insn_aux_data[insn_idx].ctx_field_size =
2790 info.ctx_field_size;
2791 return 0;
2792 }
2793
2794 verbose(env, "R%d invalid %s access off=%d size=%d\n",
2795 regno, reg_type_str[reg->type], off, size);
2796
2797 return -EACCES;
c64b7983
JS
2798}
2799
2a159c6f
DB
2800static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
2801{
2802 return cur_regs(env) + regno;
2803}
2804
4cabc5b1
DB
2805static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
2806{
2a159c6f 2807 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
4cabc5b1
DB
2808}
2809
f37a8cb8
DB
2810static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
2811{
2a159c6f 2812 const struct bpf_reg_state *reg = reg_state(env, regno);
f37a8cb8 2813
46f8bc92
MKL
2814 return reg->type == PTR_TO_CTX;
2815}
2816
2817static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
2818{
2819 const struct bpf_reg_state *reg = reg_state(env, regno);
2820
2821 return type_is_sk_pointer(reg->type);
f37a8cb8
DB
2822}
2823
ca369602
DB
2824static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
2825{
2a159c6f 2826 const struct bpf_reg_state *reg = reg_state(env, regno);
ca369602
DB
2827
2828 return type_is_pkt_pointer(reg->type);
2829}
2830
4b5defde
DB
2831static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
2832{
2833 const struct bpf_reg_state *reg = reg_state(env, regno);
2834
2835 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
2836 return reg->type == PTR_TO_FLOW_KEYS;
2837}
2838
61bd5218
JK
2839static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
2840 const struct bpf_reg_state *reg,
d1174416 2841 int off, int size, bool strict)
969bf05e 2842{
f1174f77 2843 struct tnum reg_off;
e07b98d9 2844 int ip_align;
d1174416
DM
2845
2846 /* Byte size accesses are always allowed. */
2847 if (!strict || size == 1)
2848 return 0;
2849
e4eda884
DM
2850 /* For platforms that do not have a Kconfig enabling
2851 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
2852 * NET_IP_ALIGN is universally set to '2'. And on platforms
2853 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
2854 * to this code only in strict mode where we want to emulate
2855 * the NET_IP_ALIGN==2 checking. Therefore use an
2856 * unconditional IP align value of '2'.
e07b98d9 2857 */
e4eda884 2858 ip_align = 2;
f1174f77
EC
2859
2860 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
2861 if (!tnum_is_aligned(reg_off, size)) {
2862 char tn_buf[48];
2863
2864 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218
JK
2865 verbose(env,
2866 "misaligned packet access off %d+%s+%d+%d size %d\n",
f1174f77 2867 ip_align, tn_buf, reg->off, off, size);
969bf05e
AS
2868 return -EACCES;
2869 }
79adffcd 2870
969bf05e
AS
2871 return 0;
2872}
2873
61bd5218
JK
2874static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
2875 const struct bpf_reg_state *reg,
f1174f77
EC
2876 const char *pointer_desc,
2877 int off, int size, bool strict)
79adffcd 2878{
f1174f77
EC
2879 struct tnum reg_off;
2880
2881 /* Byte size accesses are always allowed. */
2882 if (!strict || size == 1)
2883 return 0;
2884
2885 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
2886 if (!tnum_is_aligned(reg_off, size)) {
2887 char tn_buf[48];
2888
2889 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 2890 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
f1174f77 2891 pointer_desc, tn_buf, reg->off, off, size);
79adffcd
DB
2892 return -EACCES;
2893 }
2894
969bf05e
AS
2895 return 0;
2896}
2897
e07b98d9 2898static int check_ptr_alignment(struct bpf_verifier_env *env,
ca369602
DB
2899 const struct bpf_reg_state *reg, int off,
2900 int size, bool strict_alignment_once)
79adffcd 2901{
ca369602 2902 bool strict = env->strict_alignment || strict_alignment_once;
f1174f77 2903 const char *pointer_desc = "";
d1174416 2904
79adffcd
DB
2905 switch (reg->type) {
2906 case PTR_TO_PACKET:
de8f3a83
DB
2907 case PTR_TO_PACKET_META:
2908 /* Special case, because of NET_IP_ALIGN. Given metadata sits
2909 * right in front, treat it the very same way.
2910 */
61bd5218 2911 return check_pkt_ptr_alignment(env, reg, off, size, strict);
d58e468b
PP
2912 case PTR_TO_FLOW_KEYS:
2913 pointer_desc = "flow keys ";
2914 break;
f1174f77
EC
2915 case PTR_TO_MAP_VALUE:
2916 pointer_desc = "value ";
2917 break;
2918 case PTR_TO_CTX:
2919 pointer_desc = "context ";
2920 break;
2921 case PTR_TO_STACK:
2922 pointer_desc = "stack ";
a5ec6ae1
JH
2923 /* The stack spill tracking logic in check_stack_write()
2924 * and check_stack_read() relies on stack accesses being
2925 * aligned.
2926 */
2927 strict = true;
f1174f77 2928 break;
c64b7983
JS
2929 case PTR_TO_SOCKET:
2930 pointer_desc = "sock ";
2931 break;
46f8bc92
MKL
2932 case PTR_TO_SOCK_COMMON:
2933 pointer_desc = "sock_common ";
2934 break;
655a51e5
MKL
2935 case PTR_TO_TCP_SOCK:
2936 pointer_desc = "tcp_sock ";
2937 break;
fada7fdc
JL
2938 case PTR_TO_XDP_SOCK:
2939 pointer_desc = "xdp_sock ";
2940 break;
79adffcd 2941 default:
f1174f77 2942 break;
79adffcd 2943 }
61bd5218
JK
2944 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
2945 strict);
79adffcd
DB
2946}
2947
f4d7e40a
AS
2948static int update_stack_depth(struct bpf_verifier_env *env,
2949 const struct bpf_func_state *func,
2950 int off)
2951{
9c8105bd 2952 u16 stack = env->subprog_info[func->subprogno].stack_depth;
f4d7e40a
AS
2953
2954 if (stack >= -off)
2955 return 0;
2956
2957 /* update known max for given subprogram */
9c8105bd 2958 env->subprog_info[func->subprogno].stack_depth = -off;
70a87ffe
AS
2959 return 0;
2960}
f4d7e40a 2961
70a87ffe
AS
2962/* starting from main bpf function walk all instructions of the function
2963 * and recursively walk all callees that given function can call.
2964 * Ignore jump and exit insns.
2965 * Since recursion is prevented by check_cfg() this algorithm
2966 * only needs a local stack of MAX_CALL_FRAMES to remember callsites
2967 */
2968static int check_max_stack_depth(struct bpf_verifier_env *env)
2969{
9c8105bd
JW
2970 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
2971 struct bpf_subprog_info *subprog = env->subprog_info;
70a87ffe 2972 struct bpf_insn *insn = env->prog->insnsi;
70a87ffe
AS
2973 int ret_insn[MAX_CALL_FRAMES];
2974 int ret_prog[MAX_CALL_FRAMES];
f4d7e40a 2975
70a87ffe
AS
2976process_func:
2977 /* round up to 32-bytes, since this is granularity
2978 * of interpreter stack size
2979 */
9c8105bd 2980 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
70a87ffe 2981 if (depth > MAX_BPF_STACK) {
f4d7e40a 2982 verbose(env, "combined stack size of %d calls is %d. Too large\n",
70a87ffe 2983 frame + 1, depth);
f4d7e40a
AS
2984 return -EACCES;
2985 }
70a87ffe 2986continue_func:
4cb3d99c 2987 subprog_end = subprog[idx + 1].start;
70a87ffe
AS
2988 for (; i < subprog_end; i++) {
2989 if (insn[i].code != (BPF_JMP | BPF_CALL))
2990 continue;
2991 if (insn[i].src_reg != BPF_PSEUDO_CALL)
2992 continue;
2993 /* remember insn and function to return to */
2994 ret_insn[frame] = i + 1;
9c8105bd 2995 ret_prog[frame] = idx;
70a87ffe
AS
2996
2997 /* find the callee */
2998 i = i + insn[i].imm + 1;
9c8105bd
JW
2999 idx = find_subprog(env, i);
3000 if (idx < 0) {
70a87ffe
AS
3001 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
3002 i);
3003 return -EFAULT;
3004 }
70a87ffe
AS
3005 frame++;
3006 if (frame >= MAX_CALL_FRAMES) {
927cb781
PC
3007 verbose(env, "the call stack of %d frames is too deep !\n",
3008 frame);
3009 return -E2BIG;
70a87ffe
AS
3010 }
3011 goto process_func;
3012 }
3013 /* end of for() loop means the last insn of the 'subprog'
3014 * was reached. Doesn't matter whether it was JA or EXIT
3015 */
3016 if (frame == 0)
3017 return 0;
9c8105bd 3018 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
70a87ffe
AS
3019 frame--;
3020 i = ret_insn[frame];
9c8105bd 3021 idx = ret_prog[frame];
70a87ffe 3022 goto continue_func;
f4d7e40a
AS
3023}
3024
19d28fbd 3025#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1ea47e01
AS
3026static int get_callee_stack_depth(struct bpf_verifier_env *env,
3027 const struct bpf_insn *insn, int idx)
3028{
3029 int start = idx + insn->imm + 1, subprog;
3030
3031 subprog = find_subprog(env, start);
3032 if (subprog < 0) {
3033 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
3034 start);
3035 return -EFAULT;
3036 }
9c8105bd 3037 return env->subprog_info[subprog].stack_depth;
1ea47e01 3038}
19d28fbd 3039#endif
1ea47e01 3040
51c39bb1
AS
3041int check_ctx_reg(struct bpf_verifier_env *env,
3042 const struct bpf_reg_state *reg, int regno)
58990d1f
DB
3043{
3044 /* Access to ctx or passing it to a helper is only allowed in
3045 * its original, unmodified form.
3046 */
3047
3048 if (reg->off) {
3049 verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n",
3050 regno, reg->off);
3051 return -EACCES;
3052 }
3053
3054 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3055 char tn_buf[48];
3056
3057 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3058 verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf);
3059 return -EACCES;
3060 }
3061
3062 return 0;
3063}
3064
afbf21dc
YS
3065static int __check_buffer_access(struct bpf_verifier_env *env,
3066 const char *buf_info,
3067 const struct bpf_reg_state *reg,
3068 int regno, int off, int size)
9df1c28b
MM
3069{
3070 if (off < 0) {
3071 verbose(env,
afbf21dc
YS
3072 "R%d invalid %s buffer access: off=%d, size=%d",
3073 regno, buf_info, off, size);
9df1c28b
MM
3074 return -EACCES;
3075 }
3076 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3077 char tn_buf[48];
3078
3079 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3080 verbose(env,
3081 "R%d invalid variable buffer offset: off=%d, var_off=%s",
3082 regno, off, tn_buf);
3083 return -EACCES;
3084 }
afbf21dc
YS
3085
3086 return 0;
3087}
3088
3089static int check_tp_buffer_access(struct bpf_verifier_env *env,
3090 const struct bpf_reg_state *reg,
3091 int regno, int off, int size)
3092{
3093 int err;
3094
3095 err = __check_buffer_access(env, "tracepoint", reg, regno, off, size);
3096 if (err)
3097 return err;
3098
9df1c28b
MM
3099 if (off + size > env->prog->aux->max_tp_access)
3100 env->prog->aux->max_tp_access = off + size;
3101
3102 return 0;
3103}
3104
afbf21dc
YS
3105static int check_buffer_access(struct bpf_verifier_env *env,
3106 const struct bpf_reg_state *reg,
3107 int regno, int off, int size,
3108 bool zero_size_allowed,
3109 const char *buf_info,
3110 u32 *max_access)
3111{
3112 int err;
3113
3114 err = __check_buffer_access(env, buf_info, reg, regno, off, size);
3115 if (err)
3116 return err;
3117
3118 if (off + size > *max_access)
3119 *max_access = off + size;
3120
3121 return 0;
3122}
3123
3f50f132
JF
3124/* BPF architecture zero extends alu32 ops into 64-bit registesr */
3125static void zext_32_to_64(struct bpf_reg_state *reg)
3126{
3127 reg->var_off = tnum_subreg(reg->var_off);
3128 __reg_assign_32_into_64(reg);
3129}
9df1c28b 3130
0c17d1d2
JH
3131/* truncate register to smaller size (in bytes)
3132 * must be called with size < BPF_REG_SIZE
3133 */
3134static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
3135{
3136 u64 mask;
3137
3138 /* clear high bits in bit representation */
3139 reg->var_off = tnum_cast(reg->var_off, size);
3140
3141 /* fix arithmetic bounds */
3142 mask = ((u64)1 << (size * 8)) - 1;
3143 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
3144 reg->umin_value &= mask;
3145 reg->umax_value &= mask;
3146 } else {
3147 reg->umin_value = 0;
3148 reg->umax_value = mask;
3149 }
3150 reg->smin_value = reg->umin_value;
3151 reg->smax_value = reg->umax_value;
3f50f132
JF
3152
3153 /* If size is smaller than 32bit register the 32bit register
3154 * values are also truncated so we push 64-bit bounds into
3155 * 32-bit bounds. Above were truncated < 32-bits already.
3156 */
3157 if (size >= 4)
3158 return;
3159 __reg_combine_64_into_32(reg);
0c17d1d2
JH
3160}
3161
a23740ec
AN
3162static bool bpf_map_is_rdonly(const struct bpf_map *map)
3163{
3164 return (map->map_flags & BPF_F_RDONLY_PROG) && map->frozen;
3165}
3166
3167static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val)
3168{
3169 void *ptr;
3170 u64 addr;
3171 int err;
3172
3173 err = map->ops->map_direct_value_addr(map, &addr, off);
3174 if (err)
3175 return err;
2dedd7d2 3176 ptr = (void *)(long)addr + off;
a23740ec
AN
3177
3178 switch (size) {
3179 case sizeof(u8):
3180 *val = (u64)*(u8 *)ptr;
3181 break;
3182 case sizeof(u16):
3183 *val = (u64)*(u16 *)ptr;
3184 break;
3185 case sizeof(u32):
3186 *val = (u64)*(u32 *)ptr;
3187 break;
3188 case sizeof(u64):
3189 *val = *(u64 *)ptr;
3190 break;
3191 default:
3192 return -EINVAL;
3193 }
3194 return 0;
3195}
3196
9e15db66
AS
3197static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
3198 struct bpf_reg_state *regs,
3199 int regno, int off, int size,
3200 enum bpf_access_type atype,
3201 int value_regno)
3202{
3203 struct bpf_reg_state *reg = regs + regno;
3204 const struct btf_type *t = btf_type_by_id(btf_vmlinux, reg->btf_id);
3205 const char *tname = btf_name_by_offset(btf_vmlinux, t->name_off);
3206 u32 btf_id;
3207 int ret;
3208
9e15db66
AS
3209 if (off < 0) {
3210 verbose(env,
3211 "R%d is ptr_%s invalid negative access: off=%d\n",
3212 regno, tname, off);
3213 return -EACCES;
3214 }
3215 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3216 char tn_buf[48];
3217
3218 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3219 verbose(env,
3220 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
3221 regno, tname, off, tn_buf);
3222 return -EACCES;
3223 }
3224
27ae7997
MKL
3225 if (env->ops->btf_struct_access) {
3226 ret = env->ops->btf_struct_access(&env->log, t, off, size,
3227 atype, &btf_id);
3228 } else {
3229 if (atype != BPF_READ) {
3230 verbose(env, "only read is supported\n");
3231 return -EACCES;
3232 }
3233
3234 ret = btf_struct_access(&env->log, t, off, size, atype,
3235 &btf_id);
3236 }
3237
9e15db66
AS
3238 if (ret < 0)
3239 return ret;
3240
41c48f3a
AI
3241 if (atype == BPF_READ && value_regno >= 0)
3242 mark_btf_ld_reg(env, regs, value_regno, ret, btf_id);
3243
3244 return 0;
3245}
3246
3247static int check_ptr_to_map_access(struct bpf_verifier_env *env,
3248 struct bpf_reg_state *regs,
3249 int regno, int off, int size,
3250 enum bpf_access_type atype,
3251 int value_regno)
3252{
3253 struct bpf_reg_state *reg = regs + regno;
3254 struct bpf_map *map = reg->map_ptr;
3255 const struct btf_type *t;
3256 const char *tname;
3257 u32 btf_id;
3258 int ret;
3259
3260 if (!btf_vmlinux) {
3261 verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n");
3262 return -ENOTSUPP;
3263 }
3264
3265 if (!map->ops->map_btf_id || !*map->ops->map_btf_id) {
3266 verbose(env, "map_ptr access not supported for map type %d\n",
3267 map->map_type);
3268 return -ENOTSUPP;
3269 }
3270
3271 t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id);
3272 tname = btf_name_by_offset(btf_vmlinux, t->name_off);
3273
3274 if (!env->allow_ptr_to_map_access) {
3275 verbose(env,
3276 "%s access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
3277 tname);
3278 return -EPERM;
9e15db66 3279 }
27ae7997 3280
41c48f3a
AI
3281 if (off < 0) {
3282 verbose(env, "R%d is %s invalid negative access: off=%d\n",
3283 regno, tname, off);
3284 return -EACCES;
3285 }
3286
3287 if (atype != BPF_READ) {
3288 verbose(env, "only read from %s is supported\n", tname);
3289 return -EACCES;
3290 }
3291
3292 ret = btf_struct_access(&env->log, t, off, size, atype, &btf_id);
3293 if (ret < 0)
3294 return ret;
3295
3296 if (value_regno >= 0)
3297 mark_btf_ld_reg(env, regs, value_regno, ret, btf_id);
3298
9e15db66
AS
3299 return 0;
3300}
3301
41c48f3a 3302
17a52670
AS
3303/* check whether memory at (regno + off) is accessible for t = (read | write)
3304 * if t==write, value_regno is a register which value is stored into memory
3305 * if t==read, value_regno is a register which will receive the value from memory
3306 * if t==write && value_regno==-1, some unknown value is stored into memory
3307 * if t==read && value_regno==-1, don't care what we read from memory
3308 */
ca369602
DB
3309static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
3310 int off, int bpf_size, enum bpf_access_type t,
3311 int value_regno, bool strict_alignment_once)
17a52670 3312{
638f5b90
AS
3313 struct bpf_reg_state *regs = cur_regs(env);
3314 struct bpf_reg_state *reg = regs + regno;
f4d7e40a 3315 struct bpf_func_state *state;
17a52670
AS
3316 int size, err = 0;
3317
3318 size = bpf_size_to_bytes(bpf_size);
3319 if (size < 0)
3320 return size;
3321
f1174f77 3322 /* alignment checks will add in reg->off themselves */
ca369602 3323 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
969bf05e
AS
3324 if (err)
3325 return err;
17a52670 3326
f1174f77
EC
3327 /* for access checks, reg->off is just part of off */
3328 off += reg->off;
3329
3330 if (reg->type == PTR_TO_MAP_VALUE) {
1be7f75d
AS
3331 if (t == BPF_WRITE && value_regno >= 0 &&
3332 is_pointer_value(env, value_regno)) {
61bd5218 3333 verbose(env, "R%d leaks addr into map\n", value_regno);
1be7f75d
AS
3334 return -EACCES;
3335 }
591fe988
DB
3336 err = check_map_access_type(env, regno, off, size, t);
3337 if (err)
3338 return err;
9fd29c08 3339 err = check_map_access(env, regno, off, size, false);
a23740ec
AN
3340 if (!err && t == BPF_READ && value_regno >= 0) {
3341 struct bpf_map *map = reg->map_ptr;
3342
3343 /* if map is read-only, track its contents as scalars */
3344 if (tnum_is_const(reg->var_off) &&
3345 bpf_map_is_rdonly(map) &&
3346 map->ops->map_direct_value_addr) {
3347 int map_off = off + reg->var_off.value;
3348 u64 val = 0;
3349
3350 err = bpf_map_direct_read(map, map_off, size,
3351 &val);
3352 if (err)
3353 return err;
3354
3355 regs[value_regno].type = SCALAR_VALUE;
3356 __mark_reg_known(&regs[value_regno], val);
3357 } else {
3358 mark_reg_unknown(env, regs, value_regno);
3359 }
3360 }
457f4436
AN
3361 } else if (reg->type == PTR_TO_MEM) {
3362 if (t == BPF_WRITE && value_regno >= 0 &&
3363 is_pointer_value(env, value_regno)) {
3364 verbose(env, "R%d leaks addr into mem\n", value_regno);
3365 return -EACCES;
3366 }
3367 err = check_mem_region_access(env, regno, off, size,
3368 reg->mem_size, false);
3369 if (!err && t == BPF_READ && value_regno >= 0)
3370 mark_reg_unknown(env, regs, value_regno);
1a0dc1ac 3371 } else if (reg->type == PTR_TO_CTX) {
f1174f77 3372 enum bpf_reg_type reg_type = SCALAR_VALUE;
9e15db66 3373 u32 btf_id = 0;
19de99f7 3374
1be7f75d
AS
3375 if (t == BPF_WRITE && value_regno >= 0 &&
3376 is_pointer_value(env, value_regno)) {
61bd5218 3377 verbose(env, "R%d leaks addr into ctx\n", value_regno);
1be7f75d
AS
3378 return -EACCES;
3379 }
f1174f77 3380
58990d1f
DB
3381 err = check_ctx_reg(env, reg, regno);
3382 if (err < 0)
3383 return err;
3384
9e15db66
AS
3385 err = check_ctx_access(env, insn_idx, off, size, t, &reg_type, &btf_id);
3386 if (err)
3387 verbose_linfo(env, insn_idx, "; ");
969bf05e 3388 if (!err && t == BPF_READ && value_regno >= 0) {
f1174f77 3389 /* ctx access returns either a scalar, or a
de8f3a83
DB
3390 * PTR_TO_PACKET[_META,_END]. In the latter
3391 * case, we know the offset is zero.
f1174f77 3392 */
46f8bc92 3393 if (reg_type == SCALAR_VALUE) {
638f5b90 3394 mark_reg_unknown(env, regs, value_regno);
46f8bc92 3395 } else {
638f5b90 3396 mark_reg_known_zero(env, regs,
61bd5218 3397 value_regno);
46f8bc92
MKL
3398 if (reg_type_may_be_null(reg_type))
3399 regs[value_regno].id = ++env->id_gen;
5327ed3d
JW
3400 /* A load of ctx field could have different
3401 * actual load size with the one encoded in the
3402 * insn. When the dst is PTR, it is for sure not
3403 * a sub-register.
3404 */
3405 regs[value_regno].subreg_def = DEF_NOT_SUBREG;
b121b341
YS
3406 if (reg_type == PTR_TO_BTF_ID ||
3407 reg_type == PTR_TO_BTF_ID_OR_NULL)
9e15db66 3408 regs[value_regno].btf_id = btf_id;
46f8bc92 3409 }
638f5b90 3410 regs[value_regno].type = reg_type;
969bf05e 3411 }
17a52670 3412
f1174f77 3413 } else if (reg->type == PTR_TO_STACK) {
f1174f77 3414 off += reg->var_off.value;
e4298d25
DB
3415 err = check_stack_access(env, reg, off, size);
3416 if (err)
3417 return err;
8726679a 3418
f4d7e40a
AS
3419 state = func(env, reg);
3420 err = update_stack_depth(env, state, off);
3421 if (err)
3422 return err;
8726679a 3423
638f5b90 3424 if (t == BPF_WRITE)
61bd5218 3425 err = check_stack_write(env, state, off, size,
af86ca4e 3426 value_regno, insn_idx);
638f5b90 3427 else
61bd5218
JK
3428 err = check_stack_read(env, state, off, size,
3429 value_regno);
de8f3a83 3430 } else if (reg_is_pkt_pointer(reg)) {
3a0af8fd 3431 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
61bd5218 3432 verbose(env, "cannot write into packet\n");
969bf05e
AS
3433 return -EACCES;
3434 }
4acf6c0b
BB
3435 if (t == BPF_WRITE && value_regno >= 0 &&
3436 is_pointer_value(env, value_regno)) {
61bd5218
JK
3437 verbose(env, "R%d leaks addr into packet\n",
3438 value_regno);
4acf6c0b
BB
3439 return -EACCES;
3440 }
9fd29c08 3441 err = check_packet_access(env, regno, off, size, false);
969bf05e 3442 if (!err && t == BPF_READ && value_regno >= 0)
638f5b90 3443 mark_reg_unknown(env, regs, value_regno);
d58e468b
PP
3444 } else if (reg->type == PTR_TO_FLOW_KEYS) {
3445 if (t == BPF_WRITE && value_regno >= 0 &&
3446 is_pointer_value(env, value_regno)) {
3447 verbose(env, "R%d leaks addr into flow keys\n",
3448 value_regno);
3449 return -EACCES;
3450 }
3451
3452 err = check_flow_keys_access(env, off, size);
3453 if (!err && t == BPF_READ && value_regno >= 0)
3454 mark_reg_unknown(env, regs, value_regno);
46f8bc92 3455 } else if (type_is_sk_pointer(reg->type)) {
c64b7983 3456 if (t == BPF_WRITE) {
46f8bc92
MKL
3457 verbose(env, "R%d cannot write into %s\n",
3458 regno, reg_type_str[reg->type]);
c64b7983
JS
3459 return -EACCES;
3460 }
5f456649 3461 err = check_sock_access(env, insn_idx, regno, off, size, t);
c64b7983
JS
3462 if (!err && value_regno >= 0)
3463 mark_reg_unknown(env, regs, value_regno);
9df1c28b
MM
3464 } else if (reg->type == PTR_TO_TP_BUFFER) {
3465 err = check_tp_buffer_access(env, reg, regno, off, size);
3466 if (!err && t == BPF_READ && value_regno >= 0)
3467 mark_reg_unknown(env, regs, value_regno);
9e15db66
AS
3468 } else if (reg->type == PTR_TO_BTF_ID) {
3469 err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
3470 value_regno);
41c48f3a
AI
3471 } else if (reg->type == CONST_PTR_TO_MAP) {
3472 err = check_ptr_to_map_access(env, regs, regno, off, size, t,
3473 value_regno);
afbf21dc
YS
3474 } else if (reg->type == PTR_TO_RDONLY_BUF) {
3475 if (t == BPF_WRITE) {
3476 verbose(env, "R%d cannot write into %s\n",
3477 regno, reg_type_str[reg->type]);
3478 return -EACCES;
3479 }
f6dfbe31
CIK
3480 err = check_buffer_access(env, reg, regno, off, size, false,
3481 "rdonly",
afbf21dc
YS
3482 &env->prog->aux->max_rdonly_access);
3483 if (!err && value_regno >= 0)
3484 mark_reg_unknown(env, regs, value_regno);
3485 } else if (reg->type == PTR_TO_RDWR_BUF) {
f6dfbe31
CIK
3486 err = check_buffer_access(env, reg, regno, off, size, false,
3487 "rdwr",
afbf21dc
YS
3488 &env->prog->aux->max_rdwr_access);
3489 if (!err && t == BPF_READ && value_regno >= 0)
3490 mark_reg_unknown(env, regs, value_regno);
17a52670 3491 } else {
61bd5218
JK
3492 verbose(env, "R%d invalid mem access '%s'\n", regno,
3493 reg_type_str[reg->type]);
17a52670
AS
3494 return -EACCES;
3495 }
969bf05e 3496
f1174f77 3497 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
638f5b90 3498 regs[value_regno].type == SCALAR_VALUE) {
f1174f77 3499 /* b/h/w load zero-extends, mark upper bits as known 0 */
0c17d1d2 3500 coerce_reg_to_size(&regs[value_regno], size);
969bf05e 3501 }
17a52670
AS
3502 return err;
3503}
3504
31fd8581 3505static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
17a52670 3506{
17a52670
AS
3507 int err;
3508
3509 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
3510 insn->imm != 0) {
61bd5218 3511 verbose(env, "BPF_XADD uses reserved fields\n");
17a52670
AS
3512 return -EINVAL;
3513 }
3514
3515 /* check src1 operand */
dc503a8a 3516 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
3517 if (err)
3518 return err;
3519
3520 /* check src2 operand */
dc503a8a 3521 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
3522 if (err)
3523 return err;
3524
6bdf6abc 3525 if (is_pointer_value(env, insn->src_reg)) {
61bd5218 3526 verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
6bdf6abc
DB
3527 return -EACCES;
3528 }
3529
ca369602 3530 if (is_ctx_reg(env, insn->dst_reg) ||
4b5defde 3531 is_pkt_reg(env, insn->dst_reg) ||
46f8bc92
MKL
3532 is_flow_key_reg(env, insn->dst_reg) ||
3533 is_sk_reg(env, insn->dst_reg)) {
ca369602 3534 verbose(env, "BPF_XADD stores into R%d %s is not allowed\n",
2a159c6f
DB
3535 insn->dst_reg,
3536 reg_type_str[reg_state(env, insn->dst_reg)->type]);
f37a8cb8
DB
3537 return -EACCES;
3538 }
3539
17a52670 3540 /* check whether atomic_add can read the memory */
31fd8581 3541 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
ca369602 3542 BPF_SIZE(insn->code), BPF_READ, -1, true);
17a52670
AS
3543 if (err)
3544 return err;
3545
3546 /* check whether atomic_add can write into the same memory */
31fd8581 3547 return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
ca369602 3548 BPF_SIZE(insn->code), BPF_WRITE, -1, true);
17a52670
AS
3549}
3550
2011fccf
AI
3551static int __check_stack_boundary(struct bpf_verifier_env *env, u32 regno,
3552 int off, int access_size,
3553 bool zero_size_allowed)
3554{
3555 struct bpf_reg_state *reg = reg_state(env, regno);
3556
3557 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
3558 access_size < 0 || (access_size == 0 && !zero_size_allowed)) {
3559 if (tnum_is_const(reg->var_off)) {
3560 verbose(env, "invalid stack type R%d off=%d access_size=%d\n",
3561 regno, off, access_size);
3562 } else {
3563 char tn_buf[48];
3564
3565 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3566 verbose(env, "invalid stack type R%d var_off=%s access_size=%d\n",
3567 regno, tn_buf, access_size);
3568 }
3569 return -EACCES;
3570 }
3571 return 0;
3572}
3573
17a52670
AS
3574/* when register 'regno' is passed into function that will read 'access_size'
3575 * bytes from that pointer, make sure that it's within stack boundary
f1174f77
EC
3576 * and all elements of stack are initialized.
3577 * Unlike most pointer bounds-checking functions, this one doesn't take an
3578 * 'off' argument, so it has to add in reg->off itself.
17a52670 3579 */
58e2af8b 3580static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
435faee1
DB
3581 int access_size, bool zero_size_allowed,
3582 struct bpf_call_arg_meta *meta)
17a52670 3583{
2a159c6f 3584 struct bpf_reg_state *reg = reg_state(env, regno);
f4d7e40a 3585 struct bpf_func_state *state = func(env, reg);
f7cf25b2 3586 int err, min_off, max_off, i, j, slot, spi;
17a52670 3587
914cb781 3588 if (reg->type != PTR_TO_STACK) {
f1174f77 3589 /* Allow zero-byte read from NULL, regardless of pointer type */
8e2fe1d9 3590 if (zero_size_allowed && access_size == 0 &&
914cb781 3591 register_is_null(reg))
8e2fe1d9
DB
3592 return 0;
3593
61bd5218 3594 verbose(env, "R%d type=%s expected=%s\n", regno,
914cb781 3595 reg_type_str[reg->type],
8e2fe1d9 3596 reg_type_str[PTR_TO_STACK]);
17a52670 3597 return -EACCES;
8e2fe1d9 3598 }
17a52670 3599
2011fccf
AI
3600 if (tnum_is_const(reg->var_off)) {
3601 min_off = max_off = reg->var_off.value + reg->off;
3602 err = __check_stack_boundary(env, regno, min_off, access_size,
3603 zero_size_allowed);
3604 if (err)
3605 return err;
3606 } else {
088ec26d
AI
3607 /* Variable offset is prohibited for unprivileged mode for
3608 * simplicity since it requires corresponding support in
3609 * Spectre masking for stack ALU.
3610 * See also retrieve_ptr_limit().
3611 */
2c78ee89 3612 if (!env->bypass_spec_v1) {
088ec26d 3613 char tn_buf[48];
f1174f77 3614
088ec26d
AI
3615 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3616 verbose(env, "R%d indirect variable offset stack access prohibited for !root, var_off=%s\n",
3617 regno, tn_buf);
3618 return -EACCES;
3619 }
f2bcd05e
AI
3620 /* Only initialized buffer on stack is allowed to be accessed
3621 * with variable offset. With uninitialized buffer it's hard to
3622 * guarantee that whole memory is marked as initialized on
3623 * helper return since specific bounds are unknown what may
3624 * cause uninitialized stack leaking.
3625 */
3626 if (meta && meta->raw_mode)
3627 meta = NULL;
3628
107c26a7
AI
3629 if (reg->smax_value >= BPF_MAX_VAR_OFF ||
3630 reg->smax_value <= -BPF_MAX_VAR_OFF) {
3631 verbose(env, "R%d unbounded indirect variable offset stack access\n",
3632 regno);
3633 return -EACCES;
3634 }
2011fccf 3635 min_off = reg->smin_value + reg->off;
107c26a7 3636 max_off = reg->smax_value + reg->off;
2011fccf
AI
3637 err = __check_stack_boundary(env, regno, min_off, access_size,
3638 zero_size_allowed);
107c26a7
AI
3639 if (err) {
3640 verbose(env, "R%d min value is outside of stack bound\n",
3641 regno);
2011fccf 3642 return err;
107c26a7 3643 }
2011fccf
AI
3644 err = __check_stack_boundary(env, regno, max_off, access_size,
3645 zero_size_allowed);
107c26a7
AI
3646 if (err) {
3647 verbose(env, "R%d max value is outside of stack bound\n",
3648 regno);
2011fccf 3649 return err;
107c26a7 3650 }
17a52670
AS
3651 }
3652
435faee1
DB
3653 if (meta && meta->raw_mode) {
3654 meta->access_size = access_size;
3655 meta->regno = regno;
3656 return 0;
3657 }
3658
2011fccf 3659 for (i = min_off; i < max_off + access_size; i++) {
cc2b14d5
AS
3660 u8 *stype;
3661
2011fccf 3662 slot = -i - 1;
638f5b90 3663 spi = slot / BPF_REG_SIZE;
cc2b14d5
AS
3664 if (state->allocated_stack <= slot)
3665 goto err;
3666 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
3667 if (*stype == STACK_MISC)
3668 goto mark;
3669 if (*stype == STACK_ZERO) {
3670 /* helper can write anything into the stack */
3671 *stype = STACK_MISC;
3672 goto mark;
17a52670 3673 }
1d68f22b
YS
3674
3675 if (state->stack[spi].slot_type[0] == STACK_SPILL &&
3676 state->stack[spi].spilled_ptr.type == PTR_TO_BTF_ID)
3677 goto mark;
3678
f7cf25b2
AS
3679 if (state->stack[spi].slot_type[0] == STACK_SPILL &&
3680 state->stack[spi].spilled_ptr.type == SCALAR_VALUE) {
f54c7898 3681 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
f7cf25b2
AS
3682 for (j = 0; j < BPF_REG_SIZE; j++)
3683 state->stack[spi].slot_type[j] = STACK_MISC;
3684 goto mark;
3685 }
3686
cc2b14d5 3687err:
2011fccf
AI
3688 if (tnum_is_const(reg->var_off)) {
3689 verbose(env, "invalid indirect read from stack off %d+%d size %d\n",
3690 min_off, i - min_off, access_size);
3691 } else {
3692 char tn_buf[48];
3693
3694 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3695 verbose(env, "invalid indirect read from stack var_off %s+%d size %d\n",
3696 tn_buf, i - min_off, access_size);
3697 }
cc2b14d5
AS
3698 return -EACCES;
3699mark:
3700 /* reading any byte out of 8-byte 'spill_slot' will cause
3701 * the whole slot to be marked as 'read'
3702 */
679c782d 3703 mark_reg_read(env, &state->stack[spi].spilled_ptr,
5327ed3d
JW
3704 state->stack[spi].spilled_ptr.parent,
3705 REG_LIVE_READ64);
17a52670 3706 }
2011fccf 3707 return update_stack_depth(env, state, min_off);
17a52670
AS
3708}
3709
06c1c049
GB
3710static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
3711 int access_size, bool zero_size_allowed,
3712 struct bpf_call_arg_meta *meta)
3713{
638f5b90 3714 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
06c1c049 3715
f1174f77 3716 switch (reg->type) {
06c1c049 3717 case PTR_TO_PACKET:
de8f3a83 3718 case PTR_TO_PACKET_META:
9fd29c08
YS
3719 return check_packet_access(env, regno, reg->off, access_size,
3720 zero_size_allowed);
06c1c049 3721 case PTR_TO_MAP_VALUE:
591fe988
DB
3722 if (check_map_access_type(env, regno, reg->off, access_size,
3723 meta && meta->raw_mode ? BPF_WRITE :
3724 BPF_READ))
3725 return -EACCES;
9fd29c08
YS
3726 return check_map_access(env, regno, reg->off, access_size,
3727 zero_size_allowed);
457f4436
AN
3728 case PTR_TO_MEM:
3729 return check_mem_region_access(env, regno, reg->off,
3730 access_size, reg->mem_size,
3731 zero_size_allowed);
afbf21dc
YS
3732 case PTR_TO_RDONLY_BUF:
3733 if (meta && meta->raw_mode)
3734 return -EACCES;
3735 return check_buffer_access(env, reg, regno, reg->off,
3736 access_size, zero_size_allowed,
3737 "rdonly",
3738 &env->prog->aux->max_rdonly_access);
3739 case PTR_TO_RDWR_BUF:
3740 return check_buffer_access(env, reg, regno, reg->off,
3741 access_size, zero_size_allowed,
3742 "rdwr",
3743 &env->prog->aux->max_rdwr_access);
f1174f77 3744 default: /* scalar_value|ptr_to_stack or invalid ptr */
06c1c049
GB
3745 return check_stack_boundary(env, regno, access_size,
3746 zero_size_allowed, meta);
3747 }
3748}
3749
d83525ca
AS
3750/* Implementation details:
3751 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL
3752 * Two bpf_map_lookups (even with the same key) will have different reg->id.
3753 * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after
3754 * value_or_null->value transition, since the verifier only cares about
3755 * the range of access to valid map value pointer and doesn't care about actual
3756 * address of the map element.
3757 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
3758 * reg->id > 0 after value_or_null->value transition. By doing so
3759 * two bpf_map_lookups will be considered two different pointers that
3760 * point to different bpf_spin_locks.
3761 * The verifier allows taking only one bpf_spin_lock at a time to avoid
3762 * dead-locks.
3763 * Since only one bpf_spin_lock is allowed the checks are simpler than
3764 * reg_is_refcounted() logic. The verifier needs to remember only
3765 * one spin_lock instead of array of acquired_refs.
3766 * cur_state->active_spin_lock remembers which map value element got locked
3767 * and clears it after bpf_spin_unlock.
3768 */
3769static int process_spin_lock(struct bpf_verifier_env *env, int regno,
3770 bool is_lock)
3771{
3772 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
3773 struct bpf_verifier_state *cur = env->cur_state;
3774 bool is_const = tnum_is_const(reg->var_off);
3775 struct bpf_map *map = reg->map_ptr;
3776 u64 val = reg->var_off.value;
3777
3778 if (reg->type != PTR_TO_MAP_VALUE) {
3779 verbose(env, "R%d is not a pointer to map_value\n", regno);
3780 return -EINVAL;
3781 }
3782 if (!is_const) {
3783 verbose(env,
3784 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
3785 regno);
3786 return -EINVAL;
3787 }
3788 if (!map->btf) {
3789 verbose(env,
3790 "map '%s' has to have BTF in order to use bpf_spin_lock\n",
3791 map->name);
3792 return -EINVAL;
3793 }
3794 if (!map_value_has_spin_lock(map)) {
3795 if (map->spin_lock_off == -E2BIG)
3796 verbose(env,
3797 "map '%s' has more than one 'struct bpf_spin_lock'\n",
3798 map->name);
3799 else if (map->spin_lock_off == -ENOENT)
3800 verbose(env,
3801 "map '%s' doesn't have 'struct bpf_spin_lock'\n",
3802 map->name);
3803 else
3804 verbose(env,
3805 "map '%s' is not a struct type or bpf_spin_lock is mangled\n",
3806 map->name);
3807 return -EINVAL;
3808 }
3809 if (map->spin_lock_off != val + reg->off) {
3810 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n",
3811 val + reg->off);
3812 return -EINVAL;
3813 }
3814 if (is_lock) {
3815 if (cur->active_spin_lock) {
3816 verbose(env,
3817 "Locking two bpf_spin_locks are not allowed\n");
3818 return -EINVAL;
3819 }
3820 cur->active_spin_lock = reg->id;
3821 } else {
3822 if (!cur->active_spin_lock) {
3823 verbose(env, "bpf_spin_unlock without taking a lock\n");
3824 return -EINVAL;
3825 }
3826 if (cur->active_spin_lock != reg->id) {
3827 verbose(env, "bpf_spin_unlock of different lock\n");
3828 return -EINVAL;
3829 }
3830 cur->active_spin_lock = 0;
3831 }
3832 return 0;
3833}
3834
90133415
DB
3835static bool arg_type_is_mem_ptr(enum bpf_arg_type type)
3836{
3837 return type == ARG_PTR_TO_MEM ||
3838 type == ARG_PTR_TO_MEM_OR_NULL ||
3839 type == ARG_PTR_TO_UNINIT_MEM;
3840}
3841
3842static bool arg_type_is_mem_size(enum bpf_arg_type type)
3843{
3844 return type == ARG_CONST_SIZE ||
3845 type == ARG_CONST_SIZE_OR_ZERO;
3846}
3847
457f4436
AN
3848static bool arg_type_is_alloc_mem_ptr(enum bpf_arg_type type)
3849{
3850 return type == ARG_PTR_TO_ALLOC_MEM ||
3851 type == ARG_PTR_TO_ALLOC_MEM_OR_NULL;
3852}
3853
3854static bool arg_type_is_alloc_size(enum bpf_arg_type type)
3855{
3856 return type == ARG_CONST_ALLOC_SIZE_OR_ZERO;
3857}
3858
57c3bb72
AI
3859static bool arg_type_is_int_ptr(enum bpf_arg_type type)
3860{
3861 return type == ARG_PTR_TO_INT ||
3862 type == ARG_PTR_TO_LONG;
3863}
3864
3865static int int_ptr_type_to_size(enum bpf_arg_type type)
3866{
3867 if (type == ARG_PTR_TO_INT)
3868 return sizeof(u32);
3869 else if (type == ARG_PTR_TO_LONG)
3870 return sizeof(u64);
3871
3872 return -EINVAL;
3873}
3874
af7ec138
YS
3875static int check_func_arg(struct bpf_verifier_env *env, u32 arg,
3876 struct bpf_call_arg_meta *meta,
3877 const struct bpf_func_proto *fn)
17a52670 3878{
af7ec138 3879 u32 regno = BPF_REG_1 + arg;
638f5b90 3880 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
6841de8b 3881 enum bpf_reg_type expected_type, type = reg->type;
af7ec138 3882 enum bpf_arg_type arg_type = fn->arg_type[arg];
17a52670
AS
3883 int err = 0;
3884
80f1d68c 3885 if (arg_type == ARG_DONTCARE)
17a52670
AS
3886 return 0;
3887
dc503a8a
EC
3888 err = check_reg_arg(env, regno, SRC_OP);
3889 if (err)
3890 return err;
17a52670 3891
1be7f75d
AS
3892 if (arg_type == ARG_ANYTHING) {
3893 if (is_pointer_value(env, regno)) {
61bd5218
JK
3894 verbose(env, "R%d leaks addr into helper function\n",
3895 regno);
1be7f75d
AS
3896 return -EACCES;
3897 }
80f1d68c 3898 return 0;
1be7f75d 3899 }
80f1d68c 3900
de8f3a83 3901 if (type_is_pkt_pointer(type) &&
3a0af8fd 3902 !may_access_direct_pkt_data(env, meta, BPF_READ)) {
61bd5218 3903 verbose(env, "helper access to the packet is not allowed\n");
6841de8b
AS
3904 return -EACCES;
3905 }
3906
8e2fe1d9 3907 if (arg_type == ARG_PTR_TO_MAP_KEY ||
2ea864c5 3908 arg_type == ARG_PTR_TO_MAP_VALUE ||
6ac99e8f
MKL
3909 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE ||
3910 arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) {
17a52670 3911 expected_type = PTR_TO_STACK;
6ac99e8f
MKL
3912 if (register_is_null(reg) &&
3913 arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL)
3914 /* final test in check_stack_boundary() */;
3915 else if (!type_is_pkt_pointer(type) &&
3916 type != PTR_TO_MAP_VALUE &&
3917 type != expected_type)
6841de8b 3918 goto err_type;
39f19ebb 3919 } else if (arg_type == ARG_CONST_SIZE ||
457f4436
AN
3920 arg_type == ARG_CONST_SIZE_OR_ZERO ||
3921 arg_type == ARG_CONST_ALLOC_SIZE_OR_ZERO) {
f1174f77
EC
3922 expected_type = SCALAR_VALUE;
3923 if (type != expected_type)
6841de8b 3924 goto err_type;
17a52670
AS
3925 } else if (arg_type == ARG_CONST_MAP_PTR) {
3926 expected_type = CONST_PTR_TO_MAP;
6841de8b
AS
3927 if (type != expected_type)
3928 goto err_type;
f318903c
DB
3929 } else if (arg_type == ARG_PTR_TO_CTX ||
3930 arg_type == ARG_PTR_TO_CTX_OR_NULL) {
608cd71a 3931 expected_type = PTR_TO_CTX;
f318903c
DB
3932 if (!(register_is_null(reg) &&
3933 arg_type == ARG_PTR_TO_CTX_OR_NULL)) {
3934 if (type != expected_type)
3935 goto err_type;
3936 err = check_ctx_reg(env, reg, regno);
3937 if (err < 0)
3938 return err;
3939 }
46f8bc92
MKL
3940 } else if (arg_type == ARG_PTR_TO_SOCK_COMMON) {
3941 expected_type = PTR_TO_SOCK_COMMON;
3942 /* Any sk pointer can be ARG_PTR_TO_SOCK_COMMON */
3943 if (!type_is_sk_pointer(type))
3944 goto err_type;
1b986589
MKL
3945 if (reg->ref_obj_id) {
3946 if (meta->ref_obj_id) {
3947 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
3948 regno, reg->ref_obj_id,
3949 meta->ref_obj_id);
3950 return -EFAULT;
3951 }
3952 meta->ref_obj_id = reg->ref_obj_id;
fd978bf7 3953 }
e9ddbb77
JS
3954 } else if (arg_type == ARG_PTR_TO_SOCKET ||
3955 arg_type == ARG_PTR_TO_SOCKET_OR_NULL) {
6ac99e8f 3956 expected_type = PTR_TO_SOCKET;
e9ddbb77
JS
3957 if (!(register_is_null(reg) &&
3958 arg_type == ARG_PTR_TO_SOCKET_OR_NULL)) {
3959 if (type != expected_type)
3960 goto err_type;
3961 }
a7658e1a
AS
3962 } else if (arg_type == ARG_PTR_TO_BTF_ID) {
3963 expected_type = PTR_TO_BTF_ID;
3964 if (type != expected_type)
3965 goto err_type;
af7ec138
YS
3966 if (!fn->check_btf_id) {
3967 if (reg->btf_id != meta->btf_id) {
3968 verbose(env, "Helper has type %s got %s in R%d\n",
3969 kernel_type_name(meta->btf_id),
3970 kernel_type_name(reg->btf_id), regno);
3971
3972 return -EACCES;
3973 }
3974 } else if (!fn->check_btf_id(reg->btf_id, arg)) {
3975 verbose(env, "Helper does not support %s in R%d\n",
a7658e1a
AS
3976 kernel_type_name(reg->btf_id), regno);
3977
3978 return -EACCES;
3979 }
3980 if (!tnum_is_const(reg->var_off) || reg->var_off.value || reg->off) {
3981 verbose(env, "R%d is a pointer to in-kernel struct with non-zero offset\n",
3982 regno);
3983 return -EACCES;
3984 }
d83525ca
AS
3985 } else if (arg_type == ARG_PTR_TO_SPIN_LOCK) {
3986 if (meta->func_id == BPF_FUNC_spin_lock) {
3987 if (process_spin_lock(env, regno, true))
3988 return -EACCES;
3989 } else if (meta->func_id == BPF_FUNC_spin_unlock) {
3990 if (process_spin_lock(env, regno, false))
3991 return -EACCES;
3992 } else {
3993 verbose(env, "verifier internal error\n");
3994 return -EFAULT;
3995 }
90133415 3996 } else if (arg_type_is_mem_ptr(arg_type)) {
8e2fe1d9
DB
3997 expected_type = PTR_TO_STACK;
3998 /* One exception here. In case function allows for NULL to be
f1174f77 3999 * passed in as argument, it's a SCALAR_VALUE type. Final test
8e2fe1d9
DB
4000 * happens during stack boundary checking.
4001 */
914cb781 4002 if (register_is_null(reg) &&
457f4436
AN
4003 (arg_type == ARG_PTR_TO_MEM_OR_NULL ||
4004 arg_type == ARG_PTR_TO_ALLOC_MEM_OR_NULL))
6841de8b 4005 /* final test in check_stack_boundary() */;
de8f3a83
DB
4006 else if (!type_is_pkt_pointer(type) &&
4007 type != PTR_TO_MAP_VALUE &&
457f4436 4008 type != PTR_TO_MEM &&
afbf21dc
YS
4009 type != PTR_TO_RDONLY_BUF &&
4010 type != PTR_TO_RDWR_BUF &&
f1174f77 4011 type != expected_type)
6841de8b 4012 goto err_type;
39f19ebb 4013 meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
457f4436
AN
4014 } else if (arg_type_is_alloc_mem_ptr(arg_type)) {
4015 expected_type = PTR_TO_MEM;
4016 if (register_is_null(reg) &&
4017 arg_type == ARG_PTR_TO_ALLOC_MEM_OR_NULL)
4018 /* final test in check_stack_boundary() */;
4019 else if (type != expected_type)
4020 goto err_type;
4021 if (meta->ref_obj_id) {
4022 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
4023 regno, reg->ref_obj_id,
4024 meta->ref_obj_id);
4025 return -EFAULT;
4026 }
4027 meta->ref_obj_id = reg->ref_obj_id;
57c3bb72
AI
4028 } else if (arg_type_is_int_ptr(arg_type)) {
4029 expected_type = PTR_TO_STACK;
4030 if (!type_is_pkt_pointer(type) &&
4031 type != PTR_TO_MAP_VALUE &&
4032 type != expected_type)
4033 goto err_type;
17a52670 4034 } else {
61bd5218 4035 verbose(env, "unsupported arg_type %d\n", arg_type);
17a52670
AS
4036 return -EFAULT;
4037 }
4038
17a52670
AS
4039 if (arg_type == ARG_CONST_MAP_PTR) {
4040 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
33ff9823 4041 meta->map_ptr = reg->map_ptr;
17a52670
AS
4042 } else if (arg_type == ARG_PTR_TO_MAP_KEY) {
4043 /* bpf_map_xxx(..., map_ptr, ..., key) call:
4044 * check that [key, key + map->key_size) are within
4045 * stack limits and initialized
4046 */
33ff9823 4047 if (!meta->map_ptr) {
17a52670
AS
4048 /* in function declaration map_ptr must come before
4049 * map_key, so that it's verified and known before
4050 * we have to check map_key here. Otherwise it means
4051 * that kernel subsystem misconfigured verifier
4052 */
61bd5218 4053 verbose(env, "invalid map_ptr to access map->key\n");
17a52670
AS
4054 return -EACCES;
4055 }
d71962f3
PC
4056 err = check_helper_mem_access(env, regno,
4057 meta->map_ptr->key_size, false,
4058 NULL);
2ea864c5 4059 } else if (arg_type == ARG_PTR_TO_MAP_VALUE ||
6ac99e8f
MKL
4060 (arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL &&
4061 !register_is_null(reg)) ||
2ea864c5 4062 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) {
17a52670
AS
4063 /* bpf_map_xxx(..., map_ptr, ..., value) call:
4064 * check [value, value + map->value_size) validity
4065 */
33ff9823 4066 if (!meta->map_ptr) {
17a52670 4067 /* kernel subsystem misconfigured verifier */
61bd5218 4068 verbose(env, "invalid map_ptr to access map->value\n");
17a52670
AS
4069 return -EACCES;
4070 }
2ea864c5 4071 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE);
d71962f3
PC
4072 err = check_helper_mem_access(env, regno,
4073 meta->map_ptr->value_size, false,
2ea864c5 4074 meta);
90133415 4075 } else if (arg_type_is_mem_size(arg_type)) {
39f19ebb 4076 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
17a52670 4077
10060503
JF
4078 /* This is used to refine r0 return value bounds for helpers
4079 * that enforce this value as an upper bound on return values.
4080 * See do_refine_retval_range() for helpers that can refine
4081 * the return value. C type of helper is u32 so we pull register
4082 * bound from umax_value however, if negative verifier errors
4083 * out. Only upper bounds can be learned because retval is an
4084 * int type and negative retvals are allowed.
849fa506 4085 */
10060503 4086 meta->msize_max_value = reg->umax_value;
849fa506 4087
f1174f77
EC
4088 /* The register is SCALAR_VALUE; the access check
4089 * happens using its boundaries.
06c1c049 4090 */
f1174f77 4091 if (!tnum_is_const(reg->var_off))
06c1c049
GB
4092 /* For unprivileged variable accesses, disable raw
4093 * mode so that the program is required to
4094 * initialize all the memory that the helper could
4095 * just partially fill up.
4096 */
4097 meta = NULL;
4098
b03c9f9f 4099 if (reg->smin_value < 0) {
61bd5218 4100 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
f1174f77
EC
4101 regno);
4102 return -EACCES;
4103 }
06c1c049 4104
b03c9f9f 4105 if (reg->umin_value == 0) {
f1174f77
EC
4106 err = check_helper_mem_access(env, regno - 1, 0,
4107 zero_size_allowed,
4108 meta);
06c1c049
GB
4109 if (err)
4110 return err;
06c1c049 4111 }
f1174f77 4112
b03c9f9f 4113 if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
61bd5218 4114 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
f1174f77
EC
4115 regno);
4116 return -EACCES;
4117 }
4118 err = check_helper_mem_access(env, regno - 1,
b03c9f9f 4119 reg->umax_value,
f1174f77 4120 zero_size_allowed, meta);
b5dc0163
AS
4121 if (!err)
4122 err = mark_chain_precision(env, regno);
457f4436
AN
4123 } else if (arg_type_is_alloc_size(arg_type)) {
4124 if (!tnum_is_const(reg->var_off)) {
4125 verbose(env, "R%d unbounded size, use 'var &= const' or 'if (var < const)'\n",
4126 regno);
4127 return -EACCES;
4128 }
4129 meta->mem_size = reg->var_off.value;
57c3bb72
AI
4130 } else if (arg_type_is_int_ptr(arg_type)) {
4131 int size = int_ptr_type_to_size(arg_type);
4132
4133 err = check_helper_mem_access(env, regno, size, false, meta);
4134 if (err)
4135 return err;
4136 err = check_ptr_alignment(env, reg, 0, size, true);
17a52670
AS
4137 }
4138
4139 return err;
6841de8b 4140err_type:
61bd5218 4141 verbose(env, "R%d type=%s expected=%s\n", regno,
6841de8b
AS
4142 reg_type_str[type], reg_type_str[expected_type]);
4143 return -EACCES;
17a52670
AS
4144}
4145
61bd5218
JK
4146static int check_map_func_compatibility(struct bpf_verifier_env *env,
4147 struct bpf_map *map, int func_id)
35578d79 4148{
35578d79
KX
4149 if (!map)
4150 return 0;
4151
6aff67c8
AS
4152 /* We need a two way check, first is from map perspective ... */
4153 switch (map->map_type) {
4154 case BPF_MAP_TYPE_PROG_ARRAY:
4155 if (func_id != BPF_FUNC_tail_call)
4156 goto error;
4157 break;
4158 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
4159 if (func_id != BPF_FUNC_perf_event_read &&
908432ca 4160 func_id != BPF_FUNC_perf_event_output &&
a7658e1a 4161 func_id != BPF_FUNC_skb_output &&
d831ee84
EC
4162 func_id != BPF_FUNC_perf_event_read_value &&
4163 func_id != BPF_FUNC_xdp_output)
6aff67c8
AS
4164 goto error;
4165 break;
457f4436
AN
4166 case BPF_MAP_TYPE_RINGBUF:
4167 if (func_id != BPF_FUNC_ringbuf_output &&
4168 func_id != BPF_FUNC_ringbuf_reserve &&
4169 func_id != BPF_FUNC_ringbuf_submit &&
4170 func_id != BPF_FUNC_ringbuf_discard &&
4171 func_id != BPF_FUNC_ringbuf_query)
4172 goto error;
4173 break;
6aff67c8
AS
4174 case BPF_MAP_TYPE_STACK_TRACE:
4175 if (func_id != BPF_FUNC_get_stackid)
4176 goto error;
4177 break;
4ed8ec52 4178 case BPF_MAP_TYPE_CGROUP_ARRAY:
60747ef4 4179 if (func_id != BPF_FUNC_skb_under_cgroup &&
60d20f91 4180 func_id != BPF_FUNC_current_task_under_cgroup)
4a482f34
MKL
4181 goto error;
4182 break;
cd339431 4183 case BPF_MAP_TYPE_CGROUP_STORAGE:
b741f163 4184 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
cd339431
RG
4185 if (func_id != BPF_FUNC_get_local_storage)
4186 goto error;
4187 break;
546ac1ff 4188 case BPF_MAP_TYPE_DEVMAP:
6f9d451a 4189 case BPF_MAP_TYPE_DEVMAP_HASH:
0cdbb4b0
THJ
4190 if (func_id != BPF_FUNC_redirect_map &&
4191 func_id != BPF_FUNC_map_lookup_elem)
546ac1ff
JF
4192 goto error;
4193 break;
fbfc504a
BT
4194 /* Restrict bpf side of cpumap and xskmap, open when use-cases
4195 * appear.
4196 */
6710e112
JDB
4197 case BPF_MAP_TYPE_CPUMAP:
4198 if (func_id != BPF_FUNC_redirect_map)
4199 goto error;
4200 break;
fada7fdc
JL
4201 case BPF_MAP_TYPE_XSKMAP:
4202 if (func_id != BPF_FUNC_redirect_map &&
4203 func_id != BPF_FUNC_map_lookup_elem)
4204 goto error;
4205 break;
56f668df 4206 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
bcc6b1b7 4207 case BPF_MAP_TYPE_HASH_OF_MAPS:
56f668df
MKL
4208 if (func_id != BPF_FUNC_map_lookup_elem)
4209 goto error;
16a43625 4210 break;
174a79ff
JF
4211 case BPF_MAP_TYPE_SOCKMAP:
4212 if (func_id != BPF_FUNC_sk_redirect_map &&
4213 func_id != BPF_FUNC_sock_map_update &&
4f738adb 4214 func_id != BPF_FUNC_map_delete_elem &&
9fed9000 4215 func_id != BPF_FUNC_msg_redirect_map &&
64d85290
JS
4216 func_id != BPF_FUNC_sk_select_reuseport &&
4217 func_id != BPF_FUNC_map_lookup_elem)
174a79ff
JF
4218 goto error;
4219 break;
81110384
JF
4220 case BPF_MAP_TYPE_SOCKHASH:
4221 if (func_id != BPF_FUNC_sk_redirect_hash &&
4222 func_id != BPF_FUNC_sock_hash_update &&
4223 func_id != BPF_FUNC_map_delete_elem &&
9fed9000 4224 func_id != BPF_FUNC_msg_redirect_hash &&
64d85290
JS
4225 func_id != BPF_FUNC_sk_select_reuseport &&
4226 func_id != BPF_FUNC_map_lookup_elem)
81110384
JF
4227 goto error;
4228 break;
2dbb9b9e
MKL
4229 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
4230 if (func_id != BPF_FUNC_sk_select_reuseport)
4231 goto error;
4232 break;
f1a2e44a
MV
4233 case BPF_MAP_TYPE_QUEUE:
4234 case BPF_MAP_TYPE_STACK:
4235 if (func_id != BPF_FUNC_map_peek_elem &&
4236 func_id != BPF_FUNC_map_pop_elem &&
4237 func_id != BPF_FUNC_map_push_elem)
4238 goto error;
4239 break;
6ac99e8f
MKL
4240 case BPF_MAP_TYPE_SK_STORAGE:
4241 if (func_id != BPF_FUNC_sk_storage_get &&
4242 func_id != BPF_FUNC_sk_storage_delete)
4243 goto error;
4244 break;
6aff67c8
AS
4245 default:
4246 break;
4247 }
4248
4249 /* ... and second from the function itself. */
4250 switch (func_id) {
4251 case BPF_FUNC_tail_call:
4252 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
4253 goto error;
f910cefa 4254 if (env->subprog_cnt > 1) {
f4d7e40a
AS
4255 verbose(env, "tail_calls are not allowed in programs with bpf-to-bpf calls\n");
4256 return -EINVAL;
4257 }
6aff67c8
AS
4258 break;
4259 case BPF_FUNC_perf_event_read:
4260 case BPF_FUNC_perf_event_output:
908432ca 4261 case BPF_FUNC_perf_event_read_value:
a7658e1a 4262 case BPF_FUNC_skb_output:
d831ee84 4263 case BPF_FUNC_xdp_output:
6aff67c8
AS
4264 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
4265 goto error;
4266 break;
4267 case BPF_FUNC_get_stackid:
4268 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
4269 goto error;
4270 break;
60d20f91 4271 case BPF_FUNC_current_task_under_cgroup:
747ea55e 4272 case BPF_FUNC_skb_under_cgroup:
4a482f34
MKL
4273 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
4274 goto error;
4275 break;
97f91a7c 4276 case BPF_FUNC_redirect_map:
9c270af3 4277 if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
6f9d451a 4278 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
fbfc504a
BT
4279 map->map_type != BPF_MAP_TYPE_CPUMAP &&
4280 map->map_type != BPF_MAP_TYPE_XSKMAP)
97f91a7c
JF
4281 goto error;
4282 break;
174a79ff 4283 case BPF_FUNC_sk_redirect_map:
4f738adb 4284 case BPF_FUNC_msg_redirect_map:
81110384 4285 case BPF_FUNC_sock_map_update:
174a79ff
JF
4286 if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
4287 goto error;
4288 break;
81110384
JF
4289 case BPF_FUNC_sk_redirect_hash:
4290 case BPF_FUNC_msg_redirect_hash:
4291 case BPF_FUNC_sock_hash_update:
4292 if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
174a79ff
JF
4293 goto error;
4294 break;
cd339431 4295 case BPF_FUNC_get_local_storage:
b741f163
RG
4296 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
4297 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
cd339431
RG
4298 goto error;
4299 break;
2dbb9b9e 4300 case BPF_FUNC_sk_select_reuseport:
9fed9000
JS
4301 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY &&
4302 map->map_type != BPF_MAP_TYPE_SOCKMAP &&
4303 map->map_type != BPF_MAP_TYPE_SOCKHASH)
2dbb9b9e
MKL
4304 goto error;
4305 break;
f1a2e44a
MV
4306 case BPF_FUNC_map_peek_elem:
4307 case BPF_FUNC_map_pop_elem:
4308 case BPF_FUNC_map_push_elem:
4309 if (map->map_type != BPF_MAP_TYPE_QUEUE &&
4310 map->map_type != BPF_MAP_TYPE_STACK)
4311 goto error;
4312 break;
6ac99e8f
MKL
4313 case BPF_FUNC_sk_storage_get:
4314 case BPF_FUNC_sk_storage_delete:
4315 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
4316 goto error;
4317 break;
6aff67c8
AS
4318 default:
4319 break;
35578d79
KX
4320 }
4321
4322 return 0;
6aff67c8 4323error:
61bd5218 4324 verbose(env, "cannot pass map_type %d into func %s#%d\n",
ebb676da 4325 map->map_type, func_id_name(func_id), func_id);
6aff67c8 4326 return -EINVAL;
35578d79
KX
4327}
4328
90133415 4329static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
435faee1
DB
4330{
4331 int count = 0;
4332
39f19ebb 4333 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 4334 count++;
39f19ebb 4335 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 4336 count++;
39f19ebb 4337 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 4338 count++;
39f19ebb 4339 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 4340 count++;
39f19ebb 4341 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
435faee1
DB
4342 count++;
4343
90133415
DB
4344 /* We only support one arg being in raw mode at the moment,
4345 * which is sufficient for the helper functions we have
4346 * right now.
4347 */
4348 return count <= 1;
4349}
4350
4351static bool check_args_pair_invalid(enum bpf_arg_type arg_curr,
4352 enum bpf_arg_type arg_next)
4353{
4354 return (arg_type_is_mem_ptr(arg_curr) &&
4355 !arg_type_is_mem_size(arg_next)) ||
4356 (!arg_type_is_mem_ptr(arg_curr) &&
4357 arg_type_is_mem_size(arg_next));
4358}
4359
4360static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
4361{
4362 /* bpf_xxx(..., buf, len) call will access 'len'
4363 * bytes from memory 'buf'. Both arg types need
4364 * to be paired, so make sure there's no buggy
4365 * helper function specification.
4366 */
4367 if (arg_type_is_mem_size(fn->arg1_type) ||
4368 arg_type_is_mem_ptr(fn->arg5_type) ||
4369 check_args_pair_invalid(fn->arg1_type, fn->arg2_type) ||
4370 check_args_pair_invalid(fn->arg2_type, fn->arg3_type) ||
4371 check_args_pair_invalid(fn->arg3_type, fn->arg4_type) ||
4372 check_args_pair_invalid(fn->arg4_type, fn->arg5_type))
4373 return false;
4374
4375 return true;
4376}
4377
1b986589 4378static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id)
fd978bf7
JS
4379{
4380 int count = 0;
4381
1b986589 4382 if (arg_type_may_be_refcounted(fn->arg1_type))
fd978bf7 4383 count++;
1b986589 4384 if (arg_type_may_be_refcounted(fn->arg2_type))
fd978bf7 4385 count++;
1b986589 4386 if (arg_type_may_be_refcounted(fn->arg3_type))
fd978bf7 4387 count++;
1b986589 4388 if (arg_type_may_be_refcounted(fn->arg4_type))
fd978bf7 4389 count++;
1b986589 4390 if (arg_type_may_be_refcounted(fn->arg5_type))
fd978bf7
JS
4391 count++;
4392
1b986589
MKL
4393 /* A reference acquiring function cannot acquire
4394 * another refcounted ptr.
4395 */
64d85290 4396 if (may_be_acquire_function(func_id) && count)
1b986589
MKL
4397 return false;
4398
fd978bf7
JS
4399 /* We only support one arg being unreferenced at the moment,
4400 * which is sufficient for the helper functions we have right now.
4401 */
4402 return count <= 1;
4403}
4404
1b986589 4405static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
90133415
DB
4406{
4407 return check_raw_mode_ok(fn) &&
fd978bf7 4408 check_arg_pair_ok(fn) &&
1b986589 4409 check_refcount_ok(fn, func_id) ? 0 : -EINVAL;
435faee1
DB
4410}
4411
de8f3a83
DB
4412/* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
4413 * are now invalid, so turn them into unknown SCALAR_VALUE.
f1174f77 4414 */
f4d7e40a
AS
4415static void __clear_all_pkt_pointers(struct bpf_verifier_env *env,
4416 struct bpf_func_state *state)
969bf05e 4417{
58e2af8b 4418 struct bpf_reg_state *regs = state->regs, *reg;
969bf05e
AS
4419 int i;
4420
4421 for (i = 0; i < MAX_BPF_REG; i++)
de8f3a83 4422 if (reg_is_pkt_pointer_any(&regs[i]))
61bd5218 4423 mark_reg_unknown(env, regs, i);
969bf05e 4424
f3709f69
JS
4425 bpf_for_each_spilled_reg(i, state, reg) {
4426 if (!reg)
969bf05e 4427 continue;
de8f3a83 4428 if (reg_is_pkt_pointer_any(reg))
f54c7898 4429 __mark_reg_unknown(env, reg);
969bf05e
AS
4430 }
4431}
4432
f4d7e40a
AS
4433static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
4434{
4435 struct bpf_verifier_state *vstate = env->cur_state;
4436 int i;
4437
4438 for (i = 0; i <= vstate->curframe; i++)
4439 __clear_all_pkt_pointers(env, vstate->frame[i]);
4440}
4441
fd978bf7 4442static void release_reg_references(struct bpf_verifier_env *env,
1b986589
MKL
4443 struct bpf_func_state *state,
4444 int ref_obj_id)
fd978bf7
JS
4445{
4446 struct bpf_reg_state *regs = state->regs, *reg;
4447 int i;
4448
4449 for (i = 0; i < MAX_BPF_REG; i++)
1b986589 4450 if (regs[i].ref_obj_id == ref_obj_id)
fd978bf7
JS
4451 mark_reg_unknown(env, regs, i);
4452
4453 bpf_for_each_spilled_reg(i, state, reg) {
4454 if (!reg)
4455 continue;
1b986589 4456 if (reg->ref_obj_id == ref_obj_id)
f54c7898 4457 __mark_reg_unknown(env, reg);
fd978bf7
JS
4458 }
4459}
4460
4461/* The pointer with the specified id has released its reference to kernel
4462 * resources. Identify all copies of the same pointer and clear the reference.
4463 */
4464static int release_reference(struct bpf_verifier_env *env,
1b986589 4465 int ref_obj_id)
fd978bf7
JS
4466{
4467 struct bpf_verifier_state *vstate = env->cur_state;
1b986589 4468 int err;
fd978bf7
JS
4469 int i;
4470
1b986589
MKL
4471 err = release_reference_state(cur_func(env), ref_obj_id);
4472 if (err)
4473 return err;
4474
fd978bf7 4475 for (i = 0; i <= vstate->curframe; i++)
1b986589 4476 release_reg_references(env, vstate->frame[i], ref_obj_id);
fd978bf7 4477
1b986589 4478 return 0;
fd978bf7
JS
4479}
4480
51c39bb1
AS
4481static void clear_caller_saved_regs(struct bpf_verifier_env *env,
4482 struct bpf_reg_state *regs)
4483{
4484 int i;
4485
4486 /* after the call registers r0 - r5 were scratched */
4487 for (i = 0; i < CALLER_SAVED_REGS; i++) {
4488 mark_reg_not_init(env, regs, caller_saved[i]);
4489 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
4490 }
4491}
4492
f4d7e40a
AS
4493static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
4494 int *insn_idx)
4495{
4496 struct bpf_verifier_state *state = env->cur_state;
51c39bb1 4497 struct bpf_func_info_aux *func_info_aux;
f4d7e40a 4498 struct bpf_func_state *caller, *callee;
fd978bf7 4499 int i, err, subprog, target_insn;
51c39bb1 4500 bool is_global = false;
f4d7e40a 4501
aada9ce6 4502 if (state->curframe + 1 >= MAX_CALL_FRAMES) {
f4d7e40a 4503 verbose(env, "the call stack of %d frames is too deep\n",
aada9ce6 4504 state->curframe + 2);
f4d7e40a
AS
4505 return -E2BIG;
4506 }
4507
4508 target_insn = *insn_idx + insn->imm;
4509 subprog = find_subprog(env, target_insn + 1);
4510 if (subprog < 0) {
4511 verbose(env, "verifier bug. No program starts at insn %d\n",
4512 target_insn + 1);
4513 return -EFAULT;
4514 }
4515
4516 caller = state->frame[state->curframe];
4517 if (state->frame[state->curframe + 1]) {
4518 verbose(env, "verifier bug. Frame %d already allocated\n",
4519 state->curframe + 1);
4520 return -EFAULT;
4521 }
4522
51c39bb1
AS
4523 func_info_aux = env->prog->aux->func_info_aux;
4524 if (func_info_aux)
4525 is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
4526 err = btf_check_func_arg_match(env, subprog, caller->regs);
4527 if (err == -EFAULT)
4528 return err;
4529 if (is_global) {
4530 if (err) {
4531 verbose(env, "Caller passes invalid args into func#%d\n",
4532 subprog);
4533 return err;
4534 } else {
4535 if (env->log.level & BPF_LOG_LEVEL)
4536 verbose(env,
4537 "Func#%d is global and valid. Skipping.\n",
4538 subprog);
4539 clear_caller_saved_regs(env, caller->regs);
4540
4541 /* All global functions return SCALAR_VALUE */
4542 mark_reg_unknown(env, caller->regs, BPF_REG_0);
4543
4544 /* continue with next insn after call */
4545 return 0;
4546 }
4547 }
4548
f4d7e40a
AS
4549 callee = kzalloc(sizeof(*callee), GFP_KERNEL);
4550 if (!callee)
4551 return -ENOMEM;
4552 state->frame[state->curframe + 1] = callee;
4553
4554 /* callee cannot access r0, r6 - r9 for reading and has to write
4555 * into its own stack before reading from it.
4556 * callee can read/write into caller's stack
4557 */
4558 init_func_state(env, callee,
4559 /* remember the callsite, it will be used by bpf_exit */
4560 *insn_idx /* callsite */,
4561 state->curframe + 1 /* frameno within this callchain */,
f910cefa 4562 subprog /* subprog number within this prog */);
f4d7e40a 4563
fd978bf7
JS
4564 /* Transfer references to the callee */
4565 err = transfer_reference_state(callee, caller);
4566 if (err)
4567 return err;
4568
679c782d
EC
4569 /* copy r1 - r5 args that callee can access. The copy includes parent
4570 * pointers, which connects us up to the liveness chain
4571 */
f4d7e40a
AS
4572 for (i = BPF_REG_1; i <= BPF_REG_5; i++)
4573 callee->regs[i] = caller->regs[i];
4574
51c39bb1 4575 clear_caller_saved_regs(env, caller->regs);
f4d7e40a
AS
4576
4577 /* only increment it after check_reg_arg() finished */
4578 state->curframe++;
4579
4580 /* and go analyze first insn of the callee */
4581 *insn_idx = target_insn;
4582
06ee7115 4583 if (env->log.level & BPF_LOG_LEVEL) {
f4d7e40a
AS
4584 verbose(env, "caller:\n");
4585 print_verifier_state(env, caller);
4586 verbose(env, "callee:\n");
4587 print_verifier_state(env, callee);
4588 }
4589 return 0;
4590}
4591
4592static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
4593{
4594 struct bpf_verifier_state *state = env->cur_state;
4595 struct bpf_func_state *caller, *callee;
4596 struct bpf_reg_state *r0;
fd978bf7 4597 int err;
f4d7e40a
AS
4598
4599 callee = state->frame[state->curframe];
4600 r0 = &callee->regs[BPF_REG_0];
4601 if (r0->type == PTR_TO_STACK) {
4602 /* technically it's ok to return caller's stack pointer
4603 * (or caller's caller's pointer) back to the caller,
4604 * since these pointers are valid. Only current stack
4605 * pointer will be invalid as soon as function exits,
4606 * but let's be conservative
4607 */
4608 verbose(env, "cannot return stack pointer to the caller\n");
4609 return -EINVAL;
4610 }
4611
4612 state->curframe--;
4613 caller = state->frame[state->curframe];
4614 /* return to the caller whatever r0 had in the callee */
4615 caller->regs[BPF_REG_0] = *r0;
4616
fd978bf7
JS
4617 /* Transfer references to the caller */
4618 err = transfer_reference_state(caller, callee);
4619 if (err)
4620 return err;
4621
f4d7e40a 4622 *insn_idx = callee->callsite + 1;
06ee7115 4623 if (env->log.level & BPF_LOG_LEVEL) {
f4d7e40a
AS
4624 verbose(env, "returning from callee:\n");
4625 print_verifier_state(env, callee);
4626 verbose(env, "to caller at %d:\n", *insn_idx);
4627 print_verifier_state(env, caller);
4628 }
4629 /* clear everything in the callee */
4630 free_func_state(callee);
4631 state->frame[state->curframe + 1] = NULL;
4632 return 0;
4633}
4634
849fa506
YS
4635static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
4636 int func_id,
4637 struct bpf_call_arg_meta *meta)
4638{
4639 struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
4640
4641 if (ret_type != RET_INTEGER ||
4642 (func_id != BPF_FUNC_get_stack &&
47cc0ed5
DB
4643 func_id != BPF_FUNC_probe_read_str &&
4644 func_id != BPF_FUNC_probe_read_kernel_str &&
4645 func_id != BPF_FUNC_probe_read_user_str))
849fa506
YS
4646 return;
4647
10060503 4648 ret_reg->smax_value = meta->msize_max_value;
fa123ac0 4649 ret_reg->s32_max_value = meta->msize_max_value;
849fa506
YS
4650 __reg_deduce_bounds(ret_reg);
4651 __reg_bound_offset(ret_reg);
10060503 4652 __update_reg_bounds(ret_reg);
849fa506
YS
4653}
4654
c93552c4
DB
4655static int
4656record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
4657 int func_id, int insn_idx)
4658{
4659 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
591fe988 4660 struct bpf_map *map = meta->map_ptr;
c93552c4
DB
4661
4662 if (func_id != BPF_FUNC_tail_call &&
09772d92
DB
4663 func_id != BPF_FUNC_map_lookup_elem &&
4664 func_id != BPF_FUNC_map_update_elem &&
f1a2e44a
MV
4665 func_id != BPF_FUNC_map_delete_elem &&
4666 func_id != BPF_FUNC_map_push_elem &&
4667 func_id != BPF_FUNC_map_pop_elem &&
4668 func_id != BPF_FUNC_map_peek_elem)
c93552c4 4669 return 0;
09772d92 4670
591fe988 4671 if (map == NULL) {
c93552c4
DB
4672 verbose(env, "kernel subsystem misconfigured verifier\n");
4673 return -EINVAL;
4674 }
4675
591fe988
DB
4676 /* In case of read-only, some additional restrictions
4677 * need to be applied in order to prevent altering the
4678 * state of the map from program side.
4679 */
4680 if ((map->map_flags & BPF_F_RDONLY_PROG) &&
4681 (func_id == BPF_FUNC_map_delete_elem ||
4682 func_id == BPF_FUNC_map_update_elem ||
4683 func_id == BPF_FUNC_map_push_elem ||
4684 func_id == BPF_FUNC_map_pop_elem)) {
4685 verbose(env, "write into map forbidden\n");
4686 return -EACCES;
4687 }
4688
d2e4c1e6 4689 if (!BPF_MAP_PTR(aux->map_ptr_state))
c93552c4 4690 bpf_map_ptr_store(aux, meta->map_ptr,
2c78ee89 4691 !meta->map_ptr->bypass_spec_v1);
d2e4c1e6 4692 else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr)
c93552c4 4693 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
2c78ee89 4694 !meta->map_ptr->bypass_spec_v1);
c93552c4
DB
4695 return 0;
4696}
4697
d2e4c1e6
DB
4698static int
4699record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
4700 int func_id, int insn_idx)
4701{
4702 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
4703 struct bpf_reg_state *regs = cur_regs(env), *reg;
4704 struct bpf_map *map = meta->map_ptr;
4705 struct tnum range;
4706 u64 val;
cc52d914 4707 int err;
d2e4c1e6
DB
4708
4709 if (func_id != BPF_FUNC_tail_call)
4710 return 0;
4711 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
4712 verbose(env, "kernel subsystem misconfigured verifier\n");
4713 return -EINVAL;
4714 }
4715
4716 range = tnum_range(0, map->max_entries - 1);
4717 reg = &regs[BPF_REG_3];
4718
4719 if (!register_is_const(reg) || !tnum_in(range, reg->var_off)) {
4720 bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
4721 return 0;
4722 }
4723
cc52d914
DB
4724 err = mark_chain_precision(env, BPF_REG_3);
4725 if (err)
4726 return err;
4727
d2e4c1e6
DB
4728 val = reg->var_off.value;
4729 if (bpf_map_key_unseen(aux))
4730 bpf_map_key_store(aux, val);
4731 else if (!bpf_map_key_poisoned(aux) &&
4732 bpf_map_key_immediate(aux) != val)
4733 bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
4734 return 0;
4735}
4736
fd978bf7
JS
4737static int check_reference_leak(struct bpf_verifier_env *env)
4738{
4739 struct bpf_func_state *state = cur_func(env);
4740 int i;
4741
4742 for (i = 0; i < state->acquired_refs; i++) {
4743 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
4744 state->refs[i].id, state->refs[i].insn_idx);
4745 }
4746 return state->acquired_refs ? -EINVAL : 0;
4747}
4748
f4d7e40a 4749static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
17a52670 4750{
17a52670 4751 const struct bpf_func_proto *fn = NULL;
638f5b90 4752 struct bpf_reg_state *regs;
33ff9823 4753 struct bpf_call_arg_meta meta;
969bf05e 4754 bool changes_data;
17a52670
AS
4755 int i, err;
4756
4757 /* find function prototype */
4758 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
61bd5218
JK
4759 verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
4760 func_id);
17a52670
AS
4761 return -EINVAL;
4762 }
4763
00176a34 4764 if (env->ops->get_func_proto)
5e43f899 4765 fn = env->ops->get_func_proto(func_id, env->prog);
17a52670 4766 if (!fn) {
61bd5218
JK
4767 verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
4768 func_id);
17a52670
AS
4769 return -EINVAL;
4770 }
4771
4772 /* eBPF programs must be GPL compatible to use GPL-ed functions */
24701ece 4773 if (!env->prog->gpl_compatible && fn->gpl_only) {
3fe2867c 4774 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
17a52670
AS
4775 return -EINVAL;
4776 }
4777
04514d13 4778 /* With LD_ABS/IND some JITs save/restore skb from r1. */
17bedab2 4779 changes_data = bpf_helper_changes_pkt_data(fn->func);
04514d13
DB
4780 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
4781 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
4782 func_id_name(func_id), func_id);
4783 return -EINVAL;
4784 }
969bf05e 4785
33ff9823 4786 memset(&meta, 0, sizeof(meta));
36bbef52 4787 meta.pkt_access = fn->pkt_access;
33ff9823 4788
1b986589 4789 err = check_func_proto(fn, func_id);
435faee1 4790 if (err) {
61bd5218 4791 verbose(env, "kernel subsystem misconfigured func %s#%d\n",
ebb676da 4792 func_id_name(func_id), func_id);
435faee1
DB
4793 return err;
4794 }
4795
d83525ca 4796 meta.func_id = func_id;
17a52670 4797 /* check args */
a7658e1a 4798 for (i = 0; i < 5; i++) {
af7ec138
YS
4799 if (!fn->check_btf_id) {
4800 err = btf_resolve_helper_id(&env->log, fn, i);
4801 if (err > 0)
4802 meta.btf_id = err;
4803 }
4804 err = check_func_arg(env, i, &meta, fn);
a7658e1a
AS
4805 if (err)
4806 return err;
4807 }
17a52670 4808
c93552c4
DB
4809 err = record_func_map(env, &meta, func_id, insn_idx);
4810 if (err)
4811 return err;
4812
d2e4c1e6
DB
4813 err = record_func_key(env, &meta, func_id, insn_idx);
4814 if (err)
4815 return err;
4816
435faee1
DB
4817 /* Mark slots with STACK_MISC in case of raw mode, stack offset
4818 * is inferred from register state.
4819 */
4820 for (i = 0; i < meta.access_size; i++) {
ca369602
DB
4821 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
4822 BPF_WRITE, -1, false);
435faee1
DB
4823 if (err)
4824 return err;
4825 }
4826
fd978bf7
JS
4827 if (func_id == BPF_FUNC_tail_call) {
4828 err = check_reference_leak(env);
4829 if (err) {
4830 verbose(env, "tail_call would lead to reference leak\n");
4831 return err;
4832 }
4833 } else if (is_release_function(func_id)) {
1b986589 4834 err = release_reference(env, meta.ref_obj_id);
46f8bc92
MKL
4835 if (err) {
4836 verbose(env, "func %s#%d reference has not been acquired before\n",
4837 func_id_name(func_id), func_id);
fd978bf7 4838 return err;
46f8bc92 4839 }
fd978bf7
JS
4840 }
4841
638f5b90 4842 regs = cur_regs(env);
cd339431
RG
4843
4844 /* check that flags argument in get_local_storage(map, flags) is 0,
4845 * this is required because get_local_storage() can't return an error.
4846 */
4847 if (func_id == BPF_FUNC_get_local_storage &&
4848 !register_is_null(&regs[BPF_REG_2])) {
4849 verbose(env, "get_local_storage() doesn't support non-zero flags\n");
4850 return -EINVAL;
4851 }
4852
17a52670 4853 /* reset caller saved regs */
dc503a8a 4854 for (i = 0; i < CALLER_SAVED_REGS; i++) {
61bd5218 4855 mark_reg_not_init(env, regs, caller_saved[i]);
dc503a8a
EC
4856 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
4857 }
17a52670 4858
5327ed3d
JW
4859 /* helper call returns 64-bit value. */
4860 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
4861
dc503a8a 4862 /* update return register (already marked as written above) */
17a52670 4863 if (fn->ret_type == RET_INTEGER) {
f1174f77 4864 /* sets type to SCALAR_VALUE */
61bd5218 4865 mark_reg_unknown(env, regs, BPF_REG_0);
17a52670
AS
4866 } else if (fn->ret_type == RET_VOID) {
4867 regs[BPF_REG_0].type = NOT_INIT;
3e6a4b3e
RG
4868 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL ||
4869 fn->ret_type == RET_PTR_TO_MAP_VALUE) {
f1174f77 4870 /* There is no offset yet applied, variable or fixed */
61bd5218 4871 mark_reg_known_zero(env, regs, BPF_REG_0);
17a52670
AS
4872 /* remember map_ptr, so that check_map_access()
4873 * can check 'value_size' boundary of memory access
4874 * to map element returned from bpf_map_lookup_elem()
4875 */
33ff9823 4876 if (meta.map_ptr == NULL) {
61bd5218
JK
4877 verbose(env,
4878 "kernel subsystem misconfigured verifier\n");
17a52670
AS
4879 return -EINVAL;
4880 }
33ff9823 4881 regs[BPF_REG_0].map_ptr = meta.map_ptr;
4d31f301
DB
4882 if (fn->ret_type == RET_PTR_TO_MAP_VALUE) {
4883 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE;
e16d2f1a
AS
4884 if (map_value_has_spin_lock(meta.map_ptr))
4885 regs[BPF_REG_0].id = ++env->id_gen;
4d31f301
DB
4886 } else {
4887 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
4888 regs[BPF_REG_0].id = ++env->id_gen;
4889 }
c64b7983
JS
4890 } else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) {
4891 mark_reg_known_zero(env, regs, BPF_REG_0);
4892 regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL;
0f3adc28 4893 regs[BPF_REG_0].id = ++env->id_gen;
85a51f8c
LB
4894 } else if (fn->ret_type == RET_PTR_TO_SOCK_COMMON_OR_NULL) {
4895 mark_reg_known_zero(env, regs, BPF_REG_0);
4896 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON_OR_NULL;
4897 regs[BPF_REG_0].id = ++env->id_gen;
655a51e5
MKL
4898 } else if (fn->ret_type == RET_PTR_TO_TCP_SOCK_OR_NULL) {
4899 mark_reg_known_zero(env, regs, BPF_REG_0);
4900 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK_OR_NULL;
4901 regs[BPF_REG_0].id = ++env->id_gen;
457f4436
AN
4902 } else if (fn->ret_type == RET_PTR_TO_ALLOC_MEM_OR_NULL) {
4903 mark_reg_known_zero(env, regs, BPF_REG_0);
4904 regs[BPF_REG_0].type = PTR_TO_MEM_OR_NULL;
4905 regs[BPF_REG_0].id = ++env->id_gen;
4906 regs[BPF_REG_0].mem_size = meta.mem_size;
af7ec138
YS
4907 } else if (fn->ret_type == RET_PTR_TO_BTF_ID_OR_NULL) {
4908 int ret_btf_id;
4909
4910 mark_reg_known_zero(env, regs, BPF_REG_0);
4911 regs[BPF_REG_0].type = PTR_TO_BTF_ID_OR_NULL;
4912 ret_btf_id = *fn->ret_btf_id;
4913 if (ret_btf_id == 0) {
4914 verbose(env, "invalid return type %d of func %s#%d\n",
4915 fn->ret_type, func_id_name(func_id), func_id);
4916 return -EINVAL;
4917 }
4918 regs[BPF_REG_0].btf_id = ret_btf_id;
17a52670 4919 } else {
61bd5218 4920 verbose(env, "unknown return type %d of func %s#%d\n",
ebb676da 4921 fn->ret_type, func_id_name(func_id), func_id);
17a52670
AS
4922 return -EINVAL;
4923 }
04fd61ab 4924
0f3adc28 4925 if (is_ptr_cast_function(func_id)) {
1b986589
MKL
4926 /* For release_reference() */
4927 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
64d85290 4928 } else if (is_acquire_function(func_id, meta.map_ptr)) {
0f3adc28
LB
4929 int id = acquire_reference_state(env, insn_idx);
4930
4931 if (id < 0)
4932 return id;
4933 /* For mark_ptr_or_null_reg() */
4934 regs[BPF_REG_0].id = id;
4935 /* For release_reference() */
4936 regs[BPF_REG_0].ref_obj_id = id;
4937 }
1b986589 4938
849fa506
YS
4939 do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
4940
61bd5218 4941 err = check_map_func_compatibility(env, meta.map_ptr, func_id);
35578d79
KX
4942 if (err)
4943 return err;
04fd61ab 4944
fa28dcb8
SL
4945 if ((func_id == BPF_FUNC_get_stack ||
4946 func_id == BPF_FUNC_get_task_stack) &&
4947 !env->prog->has_callchain_buf) {
c195651e
YS
4948 const char *err_str;
4949
4950#ifdef CONFIG_PERF_EVENTS
4951 err = get_callchain_buffers(sysctl_perf_event_max_stack);
4952 err_str = "cannot get callchain buffer for func %s#%d\n";
4953#else
4954 err = -ENOTSUPP;
4955 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
4956#endif
4957 if (err) {
4958 verbose(env, err_str, func_id_name(func_id), func_id);
4959 return err;
4960 }
4961
4962 env->prog->has_callchain_buf = true;
4963 }
4964
5d99cb2c
SL
4965 if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack)
4966 env->prog->call_get_stack = true;
4967
969bf05e
AS
4968 if (changes_data)
4969 clear_all_pkt_pointers(env);
4970 return 0;
4971}
4972
b03c9f9f
EC
4973static bool signed_add_overflows(s64 a, s64 b)
4974{
4975 /* Do the add in u64, where overflow is well-defined */
4976 s64 res = (s64)((u64)a + (u64)b);
4977
4978 if (b < 0)
4979 return res > a;
4980 return res < a;
4981}
4982
3f50f132
JF
4983static bool signed_add32_overflows(s64 a, s64 b)
4984{
4985 /* Do the add in u32, where overflow is well-defined */
4986 s32 res = (s32)((u32)a + (u32)b);
4987
4988 if (b < 0)
4989 return res > a;
4990 return res < a;
4991}
4992
4993static bool signed_sub_overflows(s32 a, s32 b)
b03c9f9f
EC
4994{
4995 /* Do the sub in u64, where overflow is well-defined */
4996 s64 res = (s64)((u64)a - (u64)b);
4997
4998 if (b < 0)
4999 return res < a;
5000 return res > a;
969bf05e
AS
5001}
5002
3f50f132
JF
5003static bool signed_sub32_overflows(s32 a, s32 b)
5004{
5005 /* Do the sub in u64, where overflow is well-defined */
5006 s32 res = (s32)((u32)a - (u32)b);
5007
5008 if (b < 0)
5009 return res < a;
5010 return res > a;
5011}
5012
bb7f0f98
AS
5013static bool check_reg_sane_offset(struct bpf_verifier_env *env,
5014 const struct bpf_reg_state *reg,
5015 enum bpf_reg_type type)
5016{
5017 bool known = tnum_is_const(reg->var_off);
5018 s64 val = reg->var_off.value;
5019 s64 smin = reg->smin_value;
5020
5021 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
5022 verbose(env, "math between %s pointer and %lld is not allowed\n",
5023 reg_type_str[type], val);
5024 return false;
5025 }
5026
5027 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
5028 verbose(env, "%s pointer offset %d is not allowed\n",
5029 reg_type_str[type], reg->off);
5030 return false;
5031 }
5032
5033 if (smin == S64_MIN) {
5034 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
5035 reg_type_str[type]);
5036 return false;
5037 }
5038
5039 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
5040 verbose(env, "value %lld makes %s pointer be out of bounds\n",
5041 smin, reg_type_str[type]);
5042 return false;
5043 }
5044
5045 return true;
5046}
5047
979d63d5
DB
5048static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
5049{
5050 return &env->insn_aux_data[env->insn_idx];
5051}
5052
5053static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
5054 u32 *ptr_limit, u8 opcode, bool off_is_neg)
5055{
5056 bool mask_to_left = (opcode == BPF_ADD && off_is_neg) ||
5057 (opcode == BPF_SUB && !off_is_neg);
5058 u32 off;
5059
5060 switch (ptr_reg->type) {
5061 case PTR_TO_STACK:
088ec26d
AI
5062 /* Indirect variable offset stack access is prohibited in
5063 * unprivileged mode so it's not handled here.
5064 */
979d63d5
DB
5065 off = ptr_reg->off + ptr_reg->var_off.value;
5066 if (mask_to_left)
5067 *ptr_limit = MAX_BPF_STACK + off;
5068 else
5069 *ptr_limit = -off;
5070 return 0;
5071 case PTR_TO_MAP_VALUE:
5072 if (mask_to_left) {
5073 *ptr_limit = ptr_reg->umax_value + ptr_reg->off;
5074 } else {
5075 off = ptr_reg->smin_value + ptr_reg->off;
5076 *ptr_limit = ptr_reg->map_ptr->value_size - off;
5077 }
5078 return 0;
5079 default:
5080 return -EINVAL;
5081 }
5082}
5083
d3bd7413
DB
5084static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
5085 const struct bpf_insn *insn)
5086{
2c78ee89 5087 return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K;
d3bd7413
DB
5088}
5089
5090static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
5091 u32 alu_state, u32 alu_limit)
5092{
5093 /* If we arrived here from different branches with different
5094 * state or limits to sanitize, then this won't work.
5095 */
5096 if (aux->alu_state &&
5097 (aux->alu_state != alu_state ||
5098 aux->alu_limit != alu_limit))
5099 return -EACCES;
5100
5101 /* Corresponding fixup done in fixup_bpf_calls(). */
5102 aux->alu_state = alu_state;
5103 aux->alu_limit = alu_limit;
5104 return 0;
5105}
5106
5107static int sanitize_val_alu(struct bpf_verifier_env *env,
5108 struct bpf_insn *insn)
5109{
5110 struct bpf_insn_aux_data *aux = cur_aux(env);
5111
5112 if (can_skip_alu_sanitation(env, insn))
5113 return 0;
5114
5115 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
5116}
5117
979d63d5
DB
5118static int sanitize_ptr_alu(struct bpf_verifier_env *env,
5119 struct bpf_insn *insn,
5120 const struct bpf_reg_state *ptr_reg,
5121 struct bpf_reg_state *dst_reg,
5122 bool off_is_neg)
5123{
5124 struct bpf_verifier_state *vstate = env->cur_state;
5125 struct bpf_insn_aux_data *aux = cur_aux(env);
5126 bool ptr_is_dst_reg = ptr_reg == dst_reg;
5127 u8 opcode = BPF_OP(insn->code);
5128 u32 alu_state, alu_limit;
5129 struct bpf_reg_state tmp;
5130 bool ret;
5131
d3bd7413 5132 if (can_skip_alu_sanitation(env, insn))
979d63d5
DB
5133 return 0;
5134
5135 /* We already marked aux for masking from non-speculative
5136 * paths, thus we got here in the first place. We only care
5137 * to explore bad access from here.
5138 */
5139 if (vstate->speculative)
5140 goto do_sim;
5141
5142 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
5143 alu_state |= ptr_is_dst_reg ?
5144 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
5145
5146 if (retrieve_ptr_limit(ptr_reg, &alu_limit, opcode, off_is_neg))
5147 return 0;
d3bd7413 5148 if (update_alu_sanitation_state(aux, alu_state, alu_limit))
979d63d5 5149 return -EACCES;
979d63d5
DB
5150do_sim:
5151 /* Simulate and find potential out-of-bounds access under
5152 * speculative execution from truncation as a result of
5153 * masking when off was not within expected range. If off
5154 * sits in dst, then we temporarily need to move ptr there
5155 * to simulate dst (== 0) +/-= ptr. Needed, for example,
5156 * for cases where we use K-based arithmetic in one direction
5157 * and truncated reg-based in the other in order to explore
5158 * bad access.
5159 */
5160 if (!ptr_is_dst_reg) {
5161 tmp = *dst_reg;
5162 *dst_reg = *ptr_reg;
5163 }
5164 ret = push_stack(env, env->insn_idx + 1, env->insn_idx, true);
0803278b 5165 if (!ptr_is_dst_reg && ret)
979d63d5
DB
5166 *dst_reg = tmp;
5167 return !ret ? -EFAULT : 0;
5168}
5169
f1174f77 5170/* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
f1174f77
EC
5171 * Caller should also handle BPF_MOV case separately.
5172 * If we return -EACCES, caller may want to try again treating pointer as a
5173 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks.
5174 */
5175static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
5176 struct bpf_insn *insn,
5177 const struct bpf_reg_state *ptr_reg,
5178 const struct bpf_reg_state *off_reg)
969bf05e 5179{
f4d7e40a
AS
5180 struct bpf_verifier_state *vstate = env->cur_state;
5181 struct bpf_func_state *state = vstate->frame[vstate->curframe];
5182 struct bpf_reg_state *regs = state->regs, *dst_reg;
f1174f77 5183 bool known = tnum_is_const(off_reg->var_off);
b03c9f9f
EC
5184 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
5185 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
5186 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
5187 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
9d7eceed 5188 u32 dst = insn->dst_reg, src = insn->src_reg;
969bf05e 5189 u8 opcode = BPF_OP(insn->code);
979d63d5 5190 int ret;
969bf05e 5191
f1174f77 5192 dst_reg = &regs[dst];
969bf05e 5193
6f16101e
DB
5194 if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
5195 smin_val > smax_val || umin_val > umax_val) {
5196 /* Taint dst register if offset had invalid bounds derived from
5197 * e.g. dead branches.
5198 */
f54c7898 5199 __mark_reg_unknown(env, dst_reg);
6f16101e 5200 return 0;
f1174f77
EC
5201 }
5202
5203 if (BPF_CLASS(insn->code) != BPF_ALU64) {
5204 /* 32-bit ALU ops on pointers produce (meaningless) scalars */
6c693541
YS
5205 if (opcode == BPF_SUB && env->allow_ptr_leaks) {
5206 __mark_reg_unknown(env, dst_reg);
5207 return 0;
5208 }
5209
82abbf8d
AS
5210 verbose(env,
5211 "R%d 32-bit pointer arithmetic prohibited\n",
5212 dst);
f1174f77 5213 return -EACCES;
969bf05e
AS
5214 }
5215
aad2eeaf
JS
5216 switch (ptr_reg->type) {
5217 case PTR_TO_MAP_VALUE_OR_NULL:
5218 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
5219 dst, reg_type_str[ptr_reg->type]);
f1174f77 5220 return -EACCES;
aad2eeaf
JS
5221 case CONST_PTR_TO_MAP:
5222 case PTR_TO_PACKET_END:
c64b7983
JS
5223 case PTR_TO_SOCKET:
5224 case PTR_TO_SOCKET_OR_NULL:
46f8bc92
MKL
5225 case PTR_TO_SOCK_COMMON:
5226 case PTR_TO_SOCK_COMMON_OR_NULL:
655a51e5
MKL
5227 case PTR_TO_TCP_SOCK:
5228 case PTR_TO_TCP_SOCK_OR_NULL:
fada7fdc 5229 case PTR_TO_XDP_SOCK:
aad2eeaf
JS
5230 verbose(env, "R%d pointer arithmetic on %s prohibited\n",
5231 dst, reg_type_str[ptr_reg->type]);
f1174f77 5232 return -EACCES;
9d7eceed
DB
5233 case PTR_TO_MAP_VALUE:
5234 if (!env->allow_ptr_leaks && !known && (smin_val < 0) != (smax_val < 0)) {
5235 verbose(env, "R%d has unknown scalar with mixed signed bounds, pointer arithmetic with it prohibited for !root\n",
5236 off_reg == dst_reg ? dst : src);
5237 return -EACCES;
5238 }
5239 /* fall-through */
aad2eeaf
JS
5240 default:
5241 break;
f1174f77
EC
5242 }
5243
5244 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
5245 * The id may be overwritten later if we create a new variable offset.
969bf05e 5246 */
f1174f77
EC
5247 dst_reg->type = ptr_reg->type;
5248 dst_reg->id = ptr_reg->id;
969bf05e 5249
bb7f0f98
AS
5250 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
5251 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
5252 return -EINVAL;
5253
3f50f132
JF
5254 /* pointer types do not carry 32-bit bounds at the moment. */
5255 __mark_reg32_unbounded(dst_reg);
5256
f1174f77
EC
5257 switch (opcode) {
5258 case BPF_ADD:
979d63d5
DB
5259 ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0);
5260 if (ret < 0) {
5261 verbose(env, "R%d tried to add from different maps or paths\n", dst);
5262 return ret;
5263 }
f1174f77
EC
5264 /* We can take a fixed offset as long as it doesn't overflow
5265 * the s32 'off' field
969bf05e 5266 */
b03c9f9f
EC
5267 if (known && (ptr_reg->off + smin_val ==
5268 (s64)(s32)(ptr_reg->off + smin_val))) {
f1174f77 5269 /* pointer += K. Accumulate it into fixed offset */
b03c9f9f
EC
5270 dst_reg->smin_value = smin_ptr;
5271 dst_reg->smax_value = smax_ptr;
5272 dst_reg->umin_value = umin_ptr;
5273 dst_reg->umax_value = umax_ptr;
f1174f77 5274 dst_reg->var_off = ptr_reg->var_off;
b03c9f9f 5275 dst_reg->off = ptr_reg->off + smin_val;
0962590e 5276 dst_reg->raw = ptr_reg->raw;
f1174f77
EC
5277 break;
5278 }
f1174f77
EC
5279 /* A new variable offset is created. Note that off_reg->off
5280 * == 0, since it's a scalar.
5281 * dst_reg gets the pointer type and since some positive
5282 * integer value was added to the pointer, give it a new 'id'
5283 * if it's a PTR_TO_PACKET.
5284 * this creates a new 'base' pointer, off_reg (variable) gets
5285 * added into the variable offset, and we copy the fixed offset
5286 * from ptr_reg.
969bf05e 5287 */
b03c9f9f
EC
5288 if (signed_add_overflows(smin_ptr, smin_val) ||
5289 signed_add_overflows(smax_ptr, smax_val)) {
5290 dst_reg->smin_value = S64_MIN;
5291 dst_reg->smax_value = S64_MAX;
5292 } else {
5293 dst_reg->smin_value = smin_ptr + smin_val;
5294 dst_reg->smax_value = smax_ptr + smax_val;
5295 }
5296 if (umin_ptr + umin_val < umin_ptr ||
5297 umax_ptr + umax_val < umax_ptr) {
5298 dst_reg->umin_value = 0;
5299 dst_reg->umax_value = U64_MAX;
5300 } else {
5301 dst_reg->umin_value = umin_ptr + umin_val;
5302 dst_reg->umax_value = umax_ptr + umax_val;
5303 }
f1174f77
EC
5304 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
5305 dst_reg->off = ptr_reg->off;
0962590e 5306 dst_reg->raw = ptr_reg->raw;
de8f3a83 5307 if (reg_is_pkt_pointer(ptr_reg)) {
f1174f77
EC
5308 dst_reg->id = ++env->id_gen;
5309 /* something was added to pkt_ptr, set range to zero */
0962590e 5310 dst_reg->raw = 0;
f1174f77
EC
5311 }
5312 break;
5313 case BPF_SUB:
979d63d5
DB
5314 ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0);
5315 if (ret < 0) {
5316 verbose(env, "R%d tried to sub from different maps or paths\n", dst);
5317 return ret;
5318 }
f1174f77
EC
5319 if (dst_reg == off_reg) {
5320 /* scalar -= pointer. Creates an unknown scalar */
82abbf8d
AS
5321 verbose(env, "R%d tried to subtract pointer from scalar\n",
5322 dst);
f1174f77
EC
5323 return -EACCES;
5324 }
5325 /* We don't allow subtraction from FP, because (according to
5326 * test_verifier.c test "invalid fp arithmetic", JITs might not
5327 * be able to deal with it.
969bf05e 5328 */
f1174f77 5329 if (ptr_reg->type == PTR_TO_STACK) {
82abbf8d
AS
5330 verbose(env, "R%d subtraction from stack pointer prohibited\n",
5331 dst);
f1174f77
EC
5332 return -EACCES;
5333 }
b03c9f9f
EC
5334 if (known && (ptr_reg->off - smin_val ==
5335 (s64)(s32)(ptr_reg->off - smin_val))) {
f1174f77 5336 /* pointer -= K. Subtract it from fixed offset */
b03c9f9f
EC
5337 dst_reg->smin_value = smin_ptr;
5338 dst_reg->smax_value = smax_ptr;
5339 dst_reg->umin_value = umin_ptr;
5340 dst_reg->umax_value = umax_ptr;
f1174f77
EC
5341 dst_reg->var_off = ptr_reg->var_off;
5342 dst_reg->id = ptr_reg->id;
b03c9f9f 5343 dst_reg->off = ptr_reg->off - smin_val;
0962590e 5344 dst_reg->raw = ptr_reg->raw;
f1174f77
EC
5345 break;
5346 }
f1174f77
EC
5347 /* A new variable offset is created. If the subtrahend is known
5348 * nonnegative, then any reg->range we had before is still good.
969bf05e 5349 */
b03c9f9f
EC
5350 if (signed_sub_overflows(smin_ptr, smax_val) ||
5351 signed_sub_overflows(smax_ptr, smin_val)) {
5352 /* Overflow possible, we know nothing */
5353 dst_reg->smin_value = S64_MIN;
5354 dst_reg->smax_value = S64_MAX;
5355 } else {
5356 dst_reg->smin_value = smin_ptr - smax_val;
5357 dst_reg->smax_value = smax_ptr - smin_val;
5358 }
5359 if (umin_ptr < umax_val) {
5360 /* Overflow possible, we know nothing */
5361 dst_reg->umin_value = 0;
5362 dst_reg->umax_value = U64_MAX;
5363 } else {
5364 /* Cannot overflow (as long as bounds are consistent) */
5365 dst_reg->umin_value = umin_ptr - umax_val;
5366 dst_reg->umax_value = umax_ptr - umin_val;
5367 }
f1174f77
EC
5368 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
5369 dst_reg->off = ptr_reg->off;
0962590e 5370 dst_reg->raw = ptr_reg->raw;
de8f3a83 5371 if (reg_is_pkt_pointer(ptr_reg)) {
f1174f77
EC
5372 dst_reg->id = ++env->id_gen;
5373 /* something was added to pkt_ptr, set range to zero */
b03c9f9f 5374 if (smin_val < 0)
0962590e 5375 dst_reg->raw = 0;
43188702 5376 }
f1174f77
EC
5377 break;
5378 case BPF_AND:
5379 case BPF_OR:
5380 case BPF_XOR:
82abbf8d
AS
5381 /* bitwise ops on pointers are troublesome, prohibit. */
5382 verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
5383 dst, bpf_alu_string[opcode >> 4]);
f1174f77
EC
5384 return -EACCES;
5385 default:
5386 /* other operators (e.g. MUL,LSH) produce non-pointer results */
82abbf8d
AS
5387 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
5388 dst, bpf_alu_string[opcode >> 4]);
f1174f77 5389 return -EACCES;
43188702
JF
5390 }
5391
bb7f0f98
AS
5392 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
5393 return -EINVAL;
5394
b03c9f9f
EC
5395 __update_reg_bounds(dst_reg);
5396 __reg_deduce_bounds(dst_reg);
5397 __reg_bound_offset(dst_reg);
0d6303db
DB
5398
5399 /* For unprivileged we require that resulting offset must be in bounds
5400 * in order to be able to sanitize access later on.
5401 */
2c78ee89 5402 if (!env->bypass_spec_v1) {
e4298d25
DB
5403 if (dst_reg->type == PTR_TO_MAP_VALUE &&
5404 check_map_access(env, dst, dst_reg->off, 1, false)) {
5405 verbose(env, "R%d pointer arithmetic of map value goes out of range, "
5406 "prohibited for !root\n", dst);
5407 return -EACCES;
5408 } else if (dst_reg->type == PTR_TO_STACK &&
5409 check_stack_access(env, dst_reg, dst_reg->off +
5410 dst_reg->var_off.value, 1)) {
5411 verbose(env, "R%d stack pointer arithmetic goes out of range, "
5412 "prohibited for !root\n", dst);
5413 return -EACCES;
5414 }
0d6303db
DB
5415 }
5416
43188702
JF
5417 return 0;
5418}
5419
3f50f132
JF
5420static void scalar32_min_max_add(struct bpf_reg_state *dst_reg,
5421 struct bpf_reg_state *src_reg)
5422{
5423 s32 smin_val = src_reg->s32_min_value;
5424 s32 smax_val = src_reg->s32_max_value;
5425 u32 umin_val = src_reg->u32_min_value;
5426 u32 umax_val = src_reg->u32_max_value;
5427
5428 if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) ||
5429 signed_add32_overflows(dst_reg->s32_max_value, smax_val)) {
5430 dst_reg->s32_min_value = S32_MIN;
5431 dst_reg->s32_max_value = S32_MAX;
5432 } else {
5433 dst_reg->s32_min_value += smin_val;
5434 dst_reg->s32_max_value += smax_val;
5435 }
5436 if (dst_reg->u32_min_value + umin_val < umin_val ||
5437 dst_reg->u32_max_value + umax_val < umax_val) {
5438 dst_reg->u32_min_value = 0;
5439 dst_reg->u32_max_value = U32_MAX;
5440 } else {
5441 dst_reg->u32_min_value += umin_val;
5442 dst_reg->u32_max_value += umax_val;
5443 }
5444}
5445
07cd2631
JF
5446static void scalar_min_max_add(struct bpf_reg_state *dst_reg,
5447 struct bpf_reg_state *src_reg)
5448{
5449 s64 smin_val = src_reg->smin_value;
5450 s64 smax_val = src_reg->smax_value;
5451 u64 umin_val = src_reg->umin_value;
5452 u64 umax_val = src_reg->umax_value;
5453
5454 if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
5455 signed_add_overflows(dst_reg->smax_value, smax_val)) {
5456 dst_reg->smin_value = S64_MIN;
5457 dst_reg->smax_value = S64_MAX;
5458 } else {
5459 dst_reg->smin_value += smin_val;
5460 dst_reg->smax_value += smax_val;
5461 }
5462 if (dst_reg->umin_value + umin_val < umin_val ||
5463 dst_reg->umax_value + umax_val < umax_val) {
5464 dst_reg->umin_value = 0;
5465 dst_reg->umax_value = U64_MAX;
5466 } else {
5467 dst_reg->umin_value += umin_val;
5468 dst_reg->umax_value += umax_val;
5469 }
3f50f132
JF
5470}
5471
5472static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg,
5473 struct bpf_reg_state *src_reg)
5474{
5475 s32 smin_val = src_reg->s32_min_value;
5476 s32 smax_val = src_reg->s32_max_value;
5477 u32 umin_val = src_reg->u32_min_value;
5478 u32 umax_val = src_reg->u32_max_value;
5479
5480 if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) ||
5481 signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) {
5482 /* Overflow possible, we know nothing */
5483 dst_reg->s32_min_value = S32_MIN;
5484 dst_reg->s32_max_value = S32_MAX;
5485 } else {
5486 dst_reg->s32_min_value -= smax_val;
5487 dst_reg->s32_max_value -= smin_val;
5488 }
5489 if (dst_reg->u32_min_value < umax_val) {
5490 /* Overflow possible, we know nothing */
5491 dst_reg->u32_min_value = 0;
5492 dst_reg->u32_max_value = U32_MAX;
5493 } else {
5494 /* Cannot overflow (as long as bounds are consistent) */
5495 dst_reg->u32_min_value -= umax_val;
5496 dst_reg->u32_max_value -= umin_val;
5497 }
07cd2631
JF
5498}
5499
5500static void scalar_min_max_sub(struct bpf_reg_state *dst_reg,
5501 struct bpf_reg_state *src_reg)
5502{
5503 s64 smin_val = src_reg->smin_value;
5504 s64 smax_val = src_reg->smax_value;
5505 u64 umin_val = src_reg->umin_value;
5506 u64 umax_val = src_reg->umax_value;
5507
5508 if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
5509 signed_sub_overflows(dst_reg->smax_value, smin_val)) {
5510 /* Overflow possible, we know nothing */
5511 dst_reg->smin_value = S64_MIN;
5512 dst_reg->smax_value = S64_MAX;
5513 } else {
5514 dst_reg->smin_value -= smax_val;
5515 dst_reg->smax_value -= smin_val;
5516 }
5517 if (dst_reg->umin_value < umax_val) {
5518 /* Overflow possible, we know nothing */
5519 dst_reg->umin_value = 0;
5520 dst_reg->umax_value = U64_MAX;
5521 } else {
5522 /* Cannot overflow (as long as bounds are consistent) */
5523 dst_reg->umin_value -= umax_val;
5524 dst_reg->umax_value -= umin_val;
5525 }
3f50f132
JF
5526}
5527
5528static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg,
5529 struct bpf_reg_state *src_reg)
5530{
5531 s32 smin_val = src_reg->s32_min_value;
5532 u32 umin_val = src_reg->u32_min_value;
5533 u32 umax_val = src_reg->u32_max_value;
5534
5535 if (smin_val < 0 || dst_reg->s32_min_value < 0) {
5536 /* Ain't nobody got time to multiply that sign */
5537 __mark_reg32_unbounded(dst_reg);
5538 return;
5539 }
5540 /* Both values are positive, so we can work with unsigned and
5541 * copy the result to signed (unless it exceeds S32_MAX).
5542 */
5543 if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) {
5544 /* Potential overflow, we know nothing */
5545 __mark_reg32_unbounded(dst_reg);
5546 return;
5547 }
5548 dst_reg->u32_min_value *= umin_val;
5549 dst_reg->u32_max_value *= umax_val;
5550 if (dst_reg->u32_max_value > S32_MAX) {
5551 /* Overflow possible, we know nothing */
5552 dst_reg->s32_min_value = S32_MIN;
5553 dst_reg->s32_max_value = S32_MAX;
5554 } else {
5555 dst_reg->s32_min_value = dst_reg->u32_min_value;
5556 dst_reg->s32_max_value = dst_reg->u32_max_value;
5557 }
07cd2631
JF
5558}
5559
5560static void scalar_min_max_mul(struct bpf_reg_state *dst_reg,
5561 struct bpf_reg_state *src_reg)
5562{
5563 s64 smin_val = src_reg->smin_value;
5564 u64 umin_val = src_reg->umin_value;
5565 u64 umax_val = src_reg->umax_value;
5566
07cd2631
JF
5567 if (smin_val < 0 || dst_reg->smin_value < 0) {
5568 /* Ain't nobody got time to multiply that sign */
3f50f132 5569 __mark_reg64_unbounded(dst_reg);
07cd2631
JF
5570 return;
5571 }
5572 /* Both values are positive, so we can work with unsigned and
5573 * copy the result to signed (unless it exceeds S64_MAX).
5574 */
5575 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
5576 /* Potential overflow, we know nothing */
3f50f132 5577 __mark_reg64_unbounded(dst_reg);
07cd2631
JF
5578 return;
5579 }
5580 dst_reg->umin_value *= umin_val;
5581 dst_reg->umax_value *= umax_val;
5582 if (dst_reg->umax_value > S64_MAX) {
5583 /* Overflow possible, we know nothing */
5584 dst_reg->smin_value = S64_MIN;
5585 dst_reg->smax_value = S64_MAX;
5586 } else {
5587 dst_reg->smin_value = dst_reg->umin_value;
5588 dst_reg->smax_value = dst_reg->umax_value;
5589 }
5590}
5591
3f50f132
JF
5592static void scalar32_min_max_and(struct bpf_reg_state *dst_reg,
5593 struct bpf_reg_state *src_reg)
5594{
5595 bool src_known = tnum_subreg_is_const(src_reg->var_off);
5596 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
5597 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
5598 s32 smin_val = src_reg->s32_min_value;
5599 u32 umax_val = src_reg->u32_max_value;
5600
5601 /* Assuming scalar64_min_max_and will be called so its safe
5602 * to skip updating register for known 32-bit case.
5603 */
5604 if (src_known && dst_known)
5605 return;
5606
5607 /* We get our minimum from the var_off, since that's inherently
5608 * bitwise. Our maximum is the minimum of the operands' maxima.
5609 */
5610 dst_reg->u32_min_value = var32_off.value;
5611 dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
5612 if (dst_reg->s32_min_value < 0 || smin_val < 0) {
5613 /* Lose signed bounds when ANDing negative numbers,
5614 * ain't nobody got time for that.
5615 */
5616 dst_reg->s32_min_value = S32_MIN;
5617 dst_reg->s32_max_value = S32_MAX;
5618 } else {
5619 /* ANDing two positives gives a positive, so safe to
5620 * cast result into s64.
5621 */
5622 dst_reg->s32_min_value = dst_reg->u32_min_value;
5623 dst_reg->s32_max_value = dst_reg->u32_max_value;
5624 }
5625
5626}
5627
07cd2631
JF
5628static void scalar_min_max_and(struct bpf_reg_state *dst_reg,
5629 struct bpf_reg_state *src_reg)
5630{
3f50f132
JF
5631 bool src_known = tnum_is_const(src_reg->var_off);
5632 bool dst_known = tnum_is_const(dst_reg->var_off);
07cd2631
JF
5633 s64 smin_val = src_reg->smin_value;
5634 u64 umax_val = src_reg->umax_value;
5635
3f50f132
JF
5636 if (src_known && dst_known) {
5637 __mark_reg_known(dst_reg, dst_reg->var_off.value &
5638 src_reg->var_off.value);
5639 return;
5640 }
5641
07cd2631
JF
5642 /* We get our minimum from the var_off, since that's inherently
5643 * bitwise. Our maximum is the minimum of the operands' maxima.
5644 */
07cd2631
JF
5645 dst_reg->umin_value = dst_reg->var_off.value;
5646 dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
5647 if (dst_reg->smin_value < 0 || smin_val < 0) {
5648 /* Lose signed bounds when ANDing negative numbers,
5649 * ain't nobody got time for that.
5650 */
5651 dst_reg->smin_value = S64_MIN;
5652 dst_reg->smax_value = S64_MAX;
5653 } else {
5654 /* ANDing two positives gives a positive, so safe to
5655 * cast result into s64.
5656 */
5657 dst_reg->smin_value = dst_reg->umin_value;
5658 dst_reg->smax_value = dst_reg->umax_value;
5659 }
5660 /* We may learn something more from the var_off */
5661 __update_reg_bounds(dst_reg);
5662}
5663
3f50f132
JF
5664static void scalar32_min_max_or(struct bpf_reg_state *dst_reg,
5665 struct bpf_reg_state *src_reg)
5666{
5667 bool src_known = tnum_subreg_is_const(src_reg->var_off);
5668 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
5669 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
5670 s32 smin_val = src_reg->smin_value;
5671 u32 umin_val = src_reg->umin_value;
5672
5673 /* Assuming scalar64_min_max_or will be called so it is safe
5674 * to skip updating register for known case.
5675 */
5676 if (src_known && dst_known)
5677 return;
5678
5679 /* We get our maximum from the var_off, and our minimum is the
5680 * maximum of the operands' minima
5681 */
5682 dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val);
5683 dst_reg->u32_max_value = var32_off.value | var32_off.mask;
5684 if (dst_reg->s32_min_value < 0 || smin_val < 0) {
5685 /* Lose signed bounds when ORing negative numbers,
5686 * ain't nobody got time for that.
5687 */
5688 dst_reg->s32_min_value = S32_MIN;
5689 dst_reg->s32_max_value = S32_MAX;
5690 } else {
5691 /* ORing two positives gives a positive, so safe to
5692 * cast result into s64.
5693 */
5694 dst_reg->s32_min_value = dst_reg->umin_value;
5695 dst_reg->s32_max_value = dst_reg->umax_value;
5696 }
5697}
5698
07cd2631
JF
5699static void scalar_min_max_or(struct bpf_reg_state *dst_reg,
5700 struct bpf_reg_state *src_reg)
5701{
3f50f132
JF
5702 bool src_known = tnum_is_const(src_reg->var_off);
5703 bool dst_known = tnum_is_const(dst_reg->var_off);
07cd2631
JF
5704 s64 smin_val = src_reg->smin_value;
5705 u64 umin_val = src_reg->umin_value;
5706
3f50f132
JF
5707 if (src_known && dst_known) {
5708 __mark_reg_known(dst_reg, dst_reg->var_off.value |
5709 src_reg->var_off.value);
5710 return;
5711 }
5712
07cd2631
JF
5713 /* We get our maximum from the var_off, and our minimum is the
5714 * maximum of the operands' minima
5715 */
07cd2631
JF
5716 dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
5717 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
5718 if (dst_reg->smin_value < 0 || smin_val < 0) {
5719 /* Lose signed bounds when ORing negative numbers,
5720 * ain't nobody got time for that.
5721 */
5722 dst_reg->smin_value = S64_MIN;
5723 dst_reg->smax_value = S64_MAX;
5724 } else {
5725 /* ORing two positives gives a positive, so safe to
5726 * cast result into s64.
5727 */
5728 dst_reg->smin_value = dst_reg->umin_value;
5729 dst_reg->smax_value = dst_reg->umax_value;
5730 }
5731 /* We may learn something more from the var_off */
5732 __update_reg_bounds(dst_reg);
5733}
5734
3f50f132
JF
5735static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
5736 u64 umin_val, u64 umax_val)
07cd2631 5737{
07cd2631
JF
5738 /* We lose all sign bit information (except what we can pick
5739 * up from var_off)
5740 */
3f50f132
JF
5741 dst_reg->s32_min_value = S32_MIN;
5742 dst_reg->s32_max_value = S32_MAX;
5743 /* If we might shift our top bit out, then we know nothing */
5744 if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) {
5745 dst_reg->u32_min_value = 0;
5746 dst_reg->u32_max_value = U32_MAX;
5747 } else {
5748 dst_reg->u32_min_value <<= umin_val;
5749 dst_reg->u32_max_value <<= umax_val;
5750 }
5751}
5752
5753static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
5754 struct bpf_reg_state *src_reg)
5755{
5756 u32 umax_val = src_reg->u32_max_value;
5757 u32 umin_val = src_reg->u32_min_value;
5758 /* u32 alu operation will zext upper bits */
5759 struct tnum subreg = tnum_subreg(dst_reg->var_off);
5760
5761 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
5762 dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val));
5763 /* Not required but being careful mark reg64 bounds as unknown so
5764 * that we are forced to pick them up from tnum and zext later and
5765 * if some path skips this step we are still safe.
5766 */
5767 __mark_reg64_unbounded(dst_reg);
5768 __update_reg32_bounds(dst_reg);
5769}
5770
5771static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg,
5772 u64 umin_val, u64 umax_val)
5773{
5774 /* Special case <<32 because it is a common compiler pattern to sign
5775 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are
5776 * positive we know this shift will also be positive so we can track
5777 * bounds correctly. Otherwise we lose all sign bit information except
5778 * what we can pick up from var_off. Perhaps we can generalize this
5779 * later to shifts of any length.
5780 */
5781 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0)
5782 dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32;
5783 else
5784 dst_reg->smax_value = S64_MAX;
5785
5786 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0)
5787 dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32;
5788 else
5789 dst_reg->smin_value = S64_MIN;
5790
07cd2631
JF
5791 /* If we might shift our top bit out, then we know nothing */
5792 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
5793 dst_reg->umin_value = 0;
5794 dst_reg->umax_value = U64_MAX;
5795 } else {
5796 dst_reg->umin_value <<= umin_val;
5797 dst_reg->umax_value <<= umax_val;
5798 }
3f50f132
JF
5799}
5800
5801static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg,
5802 struct bpf_reg_state *src_reg)
5803{
5804 u64 umax_val = src_reg->umax_value;
5805 u64 umin_val = src_reg->umin_value;
5806
5807 /* scalar64 calc uses 32bit unshifted bounds so must be called first */
5808 __scalar64_min_max_lsh(dst_reg, umin_val, umax_val);
5809 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
5810
07cd2631
JF
5811 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
5812 /* We may learn something more from the var_off */
5813 __update_reg_bounds(dst_reg);
5814}
5815
3f50f132
JF
5816static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg,
5817 struct bpf_reg_state *src_reg)
5818{
5819 struct tnum subreg = tnum_subreg(dst_reg->var_off);
5820 u32 umax_val = src_reg->u32_max_value;
5821 u32 umin_val = src_reg->u32_min_value;
5822
5823 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
5824 * be negative, then either:
5825 * 1) src_reg might be zero, so the sign bit of the result is
5826 * unknown, so we lose our signed bounds
5827 * 2) it's known negative, thus the unsigned bounds capture the
5828 * signed bounds
5829 * 3) the signed bounds cross zero, so they tell us nothing
5830 * about the result
5831 * If the value in dst_reg is known nonnegative, then again the
5832 * unsigned bounts capture the signed bounds.
5833 * Thus, in all cases it suffices to blow away our signed bounds
5834 * and rely on inferring new ones from the unsigned bounds and
5835 * var_off of the result.
5836 */
5837 dst_reg->s32_min_value = S32_MIN;
5838 dst_reg->s32_max_value = S32_MAX;
5839
5840 dst_reg->var_off = tnum_rshift(subreg, umin_val);
5841 dst_reg->u32_min_value >>= umax_val;
5842 dst_reg->u32_max_value >>= umin_val;
5843
5844 __mark_reg64_unbounded(dst_reg);
5845 __update_reg32_bounds(dst_reg);
5846}
5847
07cd2631
JF
5848static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg,
5849 struct bpf_reg_state *src_reg)
5850{
5851 u64 umax_val = src_reg->umax_value;
5852 u64 umin_val = src_reg->umin_value;
5853
5854 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
5855 * be negative, then either:
5856 * 1) src_reg might be zero, so the sign bit of the result is
5857 * unknown, so we lose our signed bounds
5858 * 2) it's known negative, thus the unsigned bounds capture the
5859 * signed bounds
5860 * 3) the signed bounds cross zero, so they tell us nothing
5861 * about the result
5862 * If the value in dst_reg is known nonnegative, then again the
5863 * unsigned bounts capture the signed bounds.
5864 * Thus, in all cases it suffices to blow away our signed bounds
5865 * and rely on inferring new ones from the unsigned bounds and
5866 * var_off of the result.
5867 */
5868 dst_reg->smin_value = S64_MIN;
5869 dst_reg->smax_value = S64_MAX;
5870 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
5871 dst_reg->umin_value >>= umax_val;
5872 dst_reg->umax_value >>= umin_val;
3f50f132
JF
5873
5874 /* Its not easy to operate on alu32 bounds here because it depends
5875 * on bits being shifted in. Take easy way out and mark unbounded
5876 * so we can recalculate later from tnum.
5877 */
5878 __mark_reg32_unbounded(dst_reg);
07cd2631
JF
5879 __update_reg_bounds(dst_reg);
5880}
5881
3f50f132
JF
5882static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg,
5883 struct bpf_reg_state *src_reg)
07cd2631 5884{
3f50f132 5885 u64 umin_val = src_reg->u32_min_value;
07cd2631
JF
5886
5887 /* Upon reaching here, src_known is true and
5888 * umax_val is equal to umin_val.
5889 */
3f50f132
JF
5890 dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val);
5891 dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val);
07cd2631 5892
3f50f132
JF
5893 dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32);
5894
5895 /* blow away the dst_reg umin_value/umax_value and rely on
5896 * dst_reg var_off to refine the result.
5897 */
5898 dst_reg->u32_min_value = 0;
5899 dst_reg->u32_max_value = U32_MAX;
5900
5901 __mark_reg64_unbounded(dst_reg);
5902 __update_reg32_bounds(dst_reg);
5903}
5904
5905static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg,
5906 struct bpf_reg_state *src_reg)
5907{
5908 u64 umin_val = src_reg->umin_value;
5909
5910 /* Upon reaching here, src_known is true and umax_val is equal
5911 * to umin_val.
5912 */
5913 dst_reg->smin_value >>= umin_val;
5914 dst_reg->smax_value >>= umin_val;
5915
5916 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64);
07cd2631
JF
5917
5918 /* blow away the dst_reg umin_value/umax_value and rely on
5919 * dst_reg var_off to refine the result.
5920 */
5921 dst_reg->umin_value = 0;
5922 dst_reg->umax_value = U64_MAX;
3f50f132
JF
5923
5924 /* Its not easy to operate on alu32 bounds here because it depends
5925 * on bits being shifted in from upper 32-bits. Take easy way out
5926 * and mark unbounded so we can recalculate later from tnum.
5927 */
5928 __mark_reg32_unbounded(dst_reg);
07cd2631
JF
5929 __update_reg_bounds(dst_reg);
5930}
5931
468f6eaf
JH
5932/* WARNING: This function does calculations on 64-bit values, but the actual
5933 * execution may occur on 32-bit values. Therefore, things like bitshifts
5934 * need extra checks in the 32-bit case.
5935 */
f1174f77
EC
5936static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
5937 struct bpf_insn *insn,
5938 struct bpf_reg_state *dst_reg,
5939 struct bpf_reg_state src_reg)
969bf05e 5940{
638f5b90 5941 struct bpf_reg_state *regs = cur_regs(env);
48461135 5942 u8 opcode = BPF_OP(insn->code);
b0b3fb67 5943 bool src_known;
b03c9f9f
EC
5944 s64 smin_val, smax_val;
5945 u64 umin_val, umax_val;
3f50f132
JF
5946 s32 s32_min_val, s32_max_val;
5947 u32 u32_min_val, u32_max_val;
468f6eaf 5948 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
d3bd7413
DB
5949 u32 dst = insn->dst_reg;
5950 int ret;
3f50f132 5951 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
b799207e 5952
b03c9f9f
EC
5953 smin_val = src_reg.smin_value;
5954 smax_val = src_reg.smax_value;
5955 umin_val = src_reg.umin_value;
5956 umax_val = src_reg.umax_value;
f23cc643 5957
3f50f132
JF
5958 s32_min_val = src_reg.s32_min_value;
5959 s32_max_val = src_reg.s32_max_value;
5960 u32_min_val = src_reg.u32_min_value;
5961 u32_max_val = src_reg.u32_max_value;
5962
5963 if (alu32) {
5964 src_known = tnum_subreg_is_const(src_reg.var_off);
3f50f132
JF
5965 if ((src_known &&
5966 (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) ||
5967 s32_min_val > s32_max_val || u32_min_val > u32_max_val) {
5968 /* Taint dst register if offset had invalid bounds
5969 * derived from e.g. dead branches.
5970 */
5971 __mark_reg_unknown(env, dst_reg);
5972 return 0;
5973 }
5974 } else {
5975 src_known = tnum_is_const(src_reg.var_off);
3f50f132
JF
5976 if ((src_known &&
5977 (smin_val != smax_val || umin_val != umax_val)) ||
5978 smin_val > smax_val || umin_val > umax_val) {
5979 /* Taint dst register if offset had invalid bounds
5980 * derived from e.g. dead branches.
5981 */
5982 __mark_reg_unknown(env, dst_reg);
5983 return 0;
5984 }
6f16101e
DB
5985 }
5986
bb7f0f98
AS
5987 if (!src_known &&
5988 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
f54c7898 5989 __mark_reg_unknown(env, dst_reg);
bb7f0f98
AS
5990 return 0;
5991 }
5992
3f50f132
JF
5993 /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops.
5994 * There are two classes of instructions: The first class we track both
5995 * alu32 and alu64 sign/unsigned bounds independently this provides the
5996 * greatest amount of precision when alu operations are mixed with jmp32
5997 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD,
5998 * and BPF_OR. This is possible because these ops have fairly easy to
5999 * understand and calculate behavior in both 32-bit and 64-bit alu ops.
6000 * See alu32 verifier tests for examples. The second class of
6001 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy
6002 * with regards to tracking sign/unsigned bounds because the bits may
6003 * cross subreg boundaries in the alu64 case. When this happens we mark
6004 * the reg unbounded in the subreg bound space and use the resulting
6005 * tnum to calculate an approximation of the sign/unsigned bounds.
6006 */
48461135
JB
6007 switch (opcode) {
6008 case BPF_ADD:
d3bd7413
DB
6009 ret = sanitize_val_alu(env, insn);
6010 if (ret < 0) {
6011 verbose(env, "R%d tried to add from different pointers or scalars\n", dst);
6012 return ret;
6013 }
3f50f132 6014 scalar32_min_max_add(dst_reg, &src_reg);
07cd2631 6015 scalar_min_max_add(dst_reg, &src_reg);
3f50f132 6016 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
48461135
JB
6017 break;
6018 case BPF_SUB:
d3bd7413
DB
6019 ret = sanitize_val_alu(env, insn);
6020 if (ret < 0) {
6021 verbose(env, "R%d tried to sub from different pointers or scalars\n", dst);
6022 return ret;
6023 }
3f50f132 6024 scalar32_min_max_sub(dst_reg, &src_reg);
07cd2631 6025 scalar_min_max_sub(dst_reg, &src_reg);
3f50f132 6026 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
48461135
JB
6027 break;
6028 case BPF_MUL:
3f50f132
JF
6029 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
6030 scalar32_min_max_mul(dst_reg, &src_reg);
07cd2631 6031 scalar_min_max_mul(dst_reg, &src_reg);
48461135
JB
6032 break;
6033 case BPF_AND:
3f50f132
JF
6034 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
6035 scalar32_min_max_and(dst_reg, &src_reg);
07cd2631 6036 scalar_min_max_and(dst_reg, &src_reg);
f1174f77
EC
6037 break;
6038 case BPF_OR:
3f50f132
JF
6039 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
6040 scalar32_min_max_or(dst_reg, &src_reg);
07cd2631 6041 scalar_min_max_or(dst_reg, &src_reg);
48461135
JB
6042 break;
6043 case BPF_LSH:
468f6eaf
JH
6044 if (umax_val >= insn_bitness) {
6045 /* Shifts greater than 31 or 63 are undefined.
6046 * This includes shifts by a negative number.
b03c9f9f 6047 */
61bd5218 6048 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77
EC
6049 break;
6050 }
3f50f132
JF
6051 if (alu32)
6052 scalar32_min_max_lsh(dst_reg, &src_reg);
6053 else
6054 scalar_min_max_lsh(dst_reg, &src_reg);
48461135
JB
6055 break;
6056 case BPF_RSH:
468f6eaf
JH
6057 if (umax_val >= insn_bitness) {
6058 /* Shifts greater than 31 or 63 are undefined.
6059 * This includes shifts by a negative number.
b03c9f9f 6060 */
61bd5218 6061 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77
EC
6062 break;
6063 }
3f50f132
JF
6064 if (alu32)
6065 scalar32_min_max_rsh(dst_reg, &src_reg);
6066 else
6067 scalar_min_max_rsh(dst_reg, &src_reg);
48461135 6068 break;
9cbe1f5a
YS
6069 case BPF_ARSH:
6070 if (umax_val >= insn_bitness) {
6071 /* Shifts greater than 31 or 63 are undefined.
6072 * This includes shifts by a negative number.
6073 */
6074 mark_reg_unknown(env, regs, insn->dst_reg);
6075 break;
6076 }
3f50f132
JF
6077 if (alu32)
6078 scalar32_min_max_arsh(dst_reg, &src_reg);
6079 else
6080 scalar_min_max_arsh(dst_reg, &src_reg);
9cbe1f5a 6081 break;
48461135 6082 default:
61bd5218 6083 mark_reg_unknown(env, regs, insn->dst_reg);
48461135
JB
6084 break;
6085 }
6086
3f50f132
JF
6087 /* ALU32 ops are zero extended into 64bit register */
6088 if (alu32)
6089 zext_32_to_64(dst_reg);
468f6eaf 6090
294f2fc6 6091 __update_reg_bounds(dst_reg);
b03c9f9f
EC
6092 __reg_deduce_bounds(dst_reg);
6093 __reg_bound_offset(dst_reg);
f1174f77
EC
6094 return 0;
6095}
6096
6097/* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
6098 * and var_off.
6099 */
6100static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
6101 struct bpf_insn *insn)
6102{
f4d7e40a
AS
6103 struct bpf_verifier_state *vstate = env->cur_state;
6104 struct bpf_func_state *state = vstate->frame[vstate->curframe];
6105 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
f1174f77
EC
6106 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
6107 u8 opcode = BPF_OP(insn->code);
b5dc0163 6108 int err;
f1174f77
EC
6109
6110 dst_reg = &regs[insn->dst_reg];
f1174f77
EC
6111 src_reg = NULL;
6112 if (dst_reg->type != SCALAR_VALUE)
6113 ptr_reg = dst_reg;
6114 if (BPF_SRC(insn->code) == BPF_X) {
6115 src_reg = &regs[insn->src_reg];
f1174f77
EC
6116 if (src_reg->type != SCALAR_VALUE) {
6117 if (dst_reg->type != SCALAR_VALUE) {
6118 /* Combining two pointers by any ALU op yields
82abbf8d
AS
6119 * an arbitrary scalar. Disallow all math except
6120 * pointer subtraction
f1174f77 6121 */
dd066823 6122 if (opcode == BPF_SUB && env->allow_ptr_leaks) {
82abbf8d
AS
6123 mark_reg_unknown(env, regs, insn->dst_reg);
6124 return 0;
f1174f77 6125 }
82abbf8d
AS
6126 verbose(env, "R%d pointer %s pointer prohibited\n",
6127 insn->dst_reg,
6128 bpf_alu_string[opcode >> 4]);
6129 return -EACCES;
f1174f77
EC
6130 } else {
6131 /* scalar += pointer
6132 * This is legal, but we have to reverse our
6133 * src/dest handling in computing the range
6134 */
b5dc0163
AS
6135 err = mark_chain_precision(env, insn->dst_reg);
6136 if (err)
6137 return err;
82abbf8d
AS
6138 return adjust_ptr_min_max_vals(env, insn,
6139 src_reg, dst_reg);
f1174f77
EC
6140 }
6141 } else if (ptr_reg) {
6142 /* pointer += scalar */
b5dc0163
AS
6143 err = mark_chain_precision(env, insn->src_reg);
6144 if (err)
6145 return err;
82abbf8d
AS
6146 return adjust_ptr_min_max_vals(env, insn,
6147 dst_reg, src_reg);
f1174f77
EC
6148 }
6149 } else {
6150 /* Pretend the src is a reg with a known value, since we only
6151 * need to be able to read from this state.
6152 */
6153 off_reg.type = SCALAR_VALUE;
b03c9f9f 6154 __mark_reg_known(&off_reg, insn->imm);
f1174f77 6155 src_reg = &off_reg;
82abbf8d
AS
6156 if (ptr_reg) /* pointer += K */
6157 return adjust_ptr_min_max_vals(env, insn,
6158 ptr_reg, src_reg);
f1174f77
EC
6159 }
6160
6161 /* Got here implies adding two SCALAR_VALUEs */
6162 if (WARN_ON_ONCE(ptr_reg)) {
f4d7e40a 6163 print_verifier_state(env, state);
61bd5218 6164 verbose(env, "verifier internal error: unexpected ptr_reg\n");
f1174f77
EC
6165 return -EINVAL;
6166 }
6167 if (WARN_ON(!src_reg)) {
f4d7e40a 6168 print_verifier_state(env, state);
61bd5218 6169 verbose(env, "verifier internal error: no src_reg\n");
f1174f77
EC
6170 return -EINVAL;
6171 }
6172 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
48461135
JB
6173}
6174
17a52670 6175/* check validity of 32-bit and 64-bit arithmetic operations */
58e2af8b 6176static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 6177{
638f5b90 6178 struct bpf_reg_state *regs = cur_regs(env);
17a52670
AS
6179 u8 opcode = BPF_OP(insn->code);
6180 int err;
6181
6182 if (opcode == BPF_END || opcode == BPF_NEG) {
6183 if (opcode == BPF_NEG) {
6184 if (BPF_SRC(insn->code) != 0 ||
6185 insn->src_reg != BPF_REG_0 ||
6186 insn->off != 0 || insn->imm != 0) {
61bd5218 6187 verbose(env, "BPF_NEG uses reserved fields\n");
17a52670
AS
6188 return -EINVAL;
6189 }
6190 } else {
6191 if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
e67b8a68
EC
6192 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
6193 BPF_CLASS(insn->code) == BPF_ALU64) {
61bd5218 6194 verbose(env, "BPF_END uses reserved fields\n");
17a52670
AS
6195 return -EINVAL;
6196 }
6197 }
6198
6199 /* check src operand */
dc503a8a 6200 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
6201 if (err)
6202 return err;
6203
1be7f75d 6204 if (is_pointer_value(env, insn->dst_reg)) {
61bd5218 6205 verbose(env, "R%d pointer arithmetic prohibited\n",
1be7f75d
AS
6206 insn->dst_reg);
6207 return -EACCES;
6208 }
6209
17a52670 6210 /* check dest operand */
dc503a8a 6211 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
6212 if (err)
6213 return err;
6214
6215 } else if (opcode == BPF_MOV) {
6216
6217 if (BPF_SRC(insn->code) == BPF_X) {
6218 if (insn->imm != 0 || insn->off != 0) {
61bd5218 6219 verbose(env, "BPF_MOV uses reserved fields\n");
17a52670
AS
6220 return -EINVAL;
6221 }
6222
6223 /* check src operand */
dc503a8a 6224 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
6225 if (err)
6226 return err;
6227 } else {
6228 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
61bd5218 6229 verbose(env, "BPF_MOV uses reserved fields\n");
17a52670
AS
6230 return -EINVAL;
6231 }
6232 }
6233
fbeb1603
AF
6234 /* check dest operand, mark as required later */
6235 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
17a52670
AS
6236 if (err)
6237 return err;
6238
6239 if (BPF_SRC(insn->code) == BPF_X) {
e434b8cd
JW
6240 struct bpf_reg_state *src_reg = regs + insn->src_reg;
6241 struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
6242
17a52670
AS
6243 if (BPF_CLASS(insn->code) == BPF_ALU64) {
6244 /* case: R1 = R2
6245 * copy register state to dest reg
6246 */
e434b8cd
JW
6247 *dst_reg = *src_reg;
6248 dst_reg->live |= REG_LIVE_WRITTEN;
5327ed3d 6249 dst_reg->subreg_def = DEF_NOT_SUBREG;
17a52670 6250 } else {
f1174f77 6251 /* R1 = (u32) R2 */
1be7f75d 6252 if (is_pointer_value(env, insn->src_reg)) {
61bd5218
JK
6253 verbose(env,
6254 "R%d partial copy of pointer\n",
1be7f75d
AS
6255 insn->src_reg);
6256 return -EACCES;
e434b8cd
JW
6257 } else if (src_reg->type == SCALAR_VALUE) {
6258 *dst_reg = *src_reg;
6259 dst_reg->live |= REG_LIVE_WRITTEN;
5327ed3d 6260 dst_reg->subreg_def = env->insn_idx + 1;
e434b8cd
JW
6261 } else {
6262 mark_reg_unknown(env, regs,
6263 insn->dst_reg);
1be7f75d 6264 }
3f50f132 6265 zext_32_to_64(dst_reg);
17a52670
AS
6266 }
6267 } else {
6268 /* case: R = imm
6269 * remember the value we stored into this reg
6270 */
fbeb1603
AF
6271 /* clear any state __mark_reg_known doesn't set */
6272 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77 6273 regs[insn->dst_reg].type = SCALAR_VALUE;
95a762e2
JH
6274 if (BPF_CLASS(insn->code) == BPF_ALU64) {
6275 __mark_reg_known(regs + insn->dst_reg,
6276 insn->imm);
6277 } else {
6278 __mark_reg_known(regs + insn->dst_reg,
6279 (u32)insn->imm);
6280 }
17a52670
AS
6281 }
6282
6283 } else if (opcode > BPF_END) {
61bd5218 6284 verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
17a52670
AS
6285 return -EINVAL;
6286
6287 } else { /* all other ALU ops: and, sub, xor, add, ... */
6288
17a52670
AS
6289 if (BPF_SRC(insn->code) == BPF_X) {
6290 if (insn->imm != 0 || insn->off != 0) {
61bd5218 6291 verbose(env, "BPF_ALU uses reserved fields\n");
17a52670
AS
6292 return -EINVAL;
6293 }
6294 /* check src1 operand */
dc503a8a 6295 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
6296 if (err)
6297 return err;
6298 } else {
6299 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
61bd5218 6300 verbose(env, "BPF_ALU uses reserved fields\n");
17a52670
AS
6301 return -EINVAL;
6302 }
6303 }
6304
6305 /* check src2 operand */
dc503a8a 6306 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
6307 if (err)
6308 return err;
6309
6310 if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
6311 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
61bd5218 6312 verbose(env, "div by zero\n");
17a52670
AS
6313 return -EINVAL;
6314 }
6315
229394e8
RV
6316 if ((opcode == BPF_LSH || opcode == BPF_RSH ||
6317 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
6318 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
6319
6320 if (insn->imm < 0 || insn->imm >= size) {
61bd5218 6321 verbose(env, "invalid shift %d\n", insn->imm);
229394e8
RV
6322 return -EINVAL;
6323 }
6324 }
6325
1a0dc1ac 6326 /* check dest operand */
dc503a8a 6327 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
1a0dc1ac
AS
6328 if (err)
6329 return err;
6330
f1174f77 6331 return adjust_reg_min_max_vals(env, insn);
17a52670
AS
6332 }
6333
6334 return 0;
6335}
6336
c6a9efa1
PC
6337static void __find_good_pkt_pointers(struct bpf_func_state *state,
6338 struct bpf_reg_state *dst_reg,
6339 enum bpf_reg_type type, u16 new_range)
6340{
6341 struct bpf_reg_state *reg;
6342 int i;
6343
6344 for (i = 0; i < MAX_BPF_REG; i++) {
6345 reg = &state->regs[i];
6346 if (reg->type == type && reg->id == dst_reg->id)
6347 /* keep the maximum range already checked */
6348 reg->range = max(reg->range, new_range);
6349 }
6350
6351 bpf_for_each_spilled_reg(i, state, reg) {
6352 if (!reg)
6353 continue;
6354 if (reg->type == type && reg->id == dst_reg->id)
6355 reg->range = max(reg->range, new_range);
6356 }
6357}
6358
f4d7e40a 6359static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
de8f3a83 6360 struct bpf_reg_state *dst_reg,
f8ddadc4 6361 enum bpf_reg_type type,
fb2a311a 6362 bool range_right_open)
969bf05e 6363{
fb2a311a 6364 u16 new_range;
c6a9efa1 6365 int i;
2d2be8ca 6366
fb2a311a
DB
6367 if (dst_reg->off < 0 ||
6368 (dst_reg->off == 0 && range_right_open))
f1174f77
EC
6369 /* This doesn't give us any range */
6370 return;
6371
b03c9f9f
EC
6372 if (dst_reg->umax_value > MAX_PACKET_OFF ||
6373 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
f1174f77
EC
6374 /* Risk of overflow. For instance, ptr + (1<<63) may be less
6375 * than pkt_end, but that's because it's also less than pkt.
6376 */
6377 return;
6378
fb2a311a
DB
6379 new_range = dst_reg->off;
6380 if (range_right_open)
6381 new_range--;
6382
6383 /* Examples for register markings:
2d2be8ca 6384 *
fb2a311a 6385 * pkt_data in dst register:
2d2be8ca
DB
6386 *
6387 * r2 = r3;
6388 * r2 += 8;
6389 * if (r2 > pkt_end) goto <handle exception>
6390 * <access okay>
6391 *
b4e432f1
DB
6392 * r2 = r3;
6393 * r2 += 8;
6394 * if (r2 < pkt_end) goto <access okay>
6395 * <handle exception>
6396 *
2d2be8ca
DB
6397 * Where:
6398 * r2 == dst_reg, pkt_end == src_reg
6399 * r2=pkt(id=n,off=8,r=0)
6400 * r3=pkt(id=n,off=0,r=0)
6401 *
fb2a311a 6402 * pkt_data in src register:
2d2be8ca
DB
6403 *
6404 * r2 = r3;
6405 * r2 += 8;
6406 * if (pkt_end >= r2) goto <access okay>
6407 * <handle exception>
6408 *
b4e432f1
DB
6409 * r2 = r3;
6410 * r2 += 8;
6411 * if (pkt_end <= r2) goto <handle exception>
6412 * <access okay>
6413 *
2d2be8ca
DB
6414 * Where:
6415 * pkt_end == dst_reg, r2 == src_reg
6416 * r2=pkt(id=n,off=8,r=0)
6417 * r3=pkt(id=n,off=0,r=0)
6418 *
6419 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
fb2a311a
DB
6420 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
6421 * and [r3, r3 + 8-1) respectively is safe to access depending on
6422 * the check.
969bf05e 6423 */
2d2be8ca 6424
f1174f77
EC
6425 /* If our ids match, then we must have the same max_value. And we
6426 * don't care about the other reg's fixed offset, since if it's too big
6427 * the range won't allow anything.
6428 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
6429 */
c6a9efa1
PC
6430 for (i = 0; i <= vstate->curframe; i++)
6431 __find_good_pkt_pointers(vstate->frame[i], dst_reg, type,
6432 new_range);
969bf05e
AS
6433}
6434
3f50f132 6435static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode)
4f7b3e82 6436{
3f50f132
JF
6437 struct tnum subreg = tnum_subreg(reg->var_off);
6438 s32 sval = (s32)val;
a72dafaf 6439
3f50f132
JF
6440 switch (opcode) {
6441 case BPF_JEQ:
6442 if (tnum_is_const(subreg))
6443 return !!tnum_equals_const(subreg, val);
6444 break;
6445 case BPF_JNE:
6446 if (tnum_is_const(subreg))
6447 return !tnum_equals_const(subreg, val);
6448 break;
6449 case BPF_JSET:
6450 if ((~subreg.mask & subreg.value) & val)
6451 return 1;
6452 if (!((subreg.mask | subreg.value) & val))
6453 return 0;
6454 break;
6455 case BPF_JGT:
6456 if (reg->u32_min_value > val)
6457 return 1;
6458 else if (reg->u32_max_value <= val)
6459 return 0;
6460 break;
6461 case BPF_JSGT:
6462 if (reg->s32_min_value > sval)
6463 return 1;
6464 else if (reg->s32_max_value < sval)
6465 return 0;
6466 break;
6467 case BPF_JLT:
6468 if (reg->u32_max_value < val)
6469 return 1;
6470 else if (reg->u32_min_value >= val)
6471 return 0;
6472 break;
6473 case BPF_JSLT:
6474 if (reg->s32_max_value < sval)
6475 return 1;
6476 else if (reg->s32_min_value >= sval)
6477 return 0;
6478 break;
6479 case BPF_JGE:
6480 if (reg->u32_min_value >= val)
6481 return 1;
6482 else if (reg->u32_max_value < val)
6483 return 0;
6484 break;
6485 case BPF_JSGE:
6486 if (reg->s32_min_value >= sval)
6487 return 1;
6488 else if (reg->s32_max_value < sval)
6489 return 0;
6490 break;
6491 case BPF_JLE:
6492 if (reg->u32_max_value <= val)
6493 return 1;
6494 else if (reg->u32_min_value > val)
6495 return 0;
6496 break;
6497 case BPF_JSLE:
6498 if (reg->s32_max_value <= sval)
6499 return 1;
6500 else if (reg->s32_min_value > sval)
6501 return 0;
6502 break;
6503 }
4f7b3e82 6504
3f50f132
JF
6505 return -1;
6506}
092ed096 6507
3f50f132
JF
6508
6509static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode)
6510{
6511 s64 sval = (s64)val;
a72dafaf 6512
4f7b3e82
AS
6513 switch (opcode) {
6514 case BPF_JEQ:
6515 if (tnum_is_const(reg->var_off))
6516 return !!tnum_equals_const(reg->var_off, val);
6517 break;
6518 case BPF_JNE:
6519 if (tnum_is_const(reg->var_off))
6520 return !tnum_equals_const(reg->var_off, val);
6521 break;
960ea056
JK
6522 case BPF_JSET:
6523 if ((~reg->var_off.mask & reg->var_off.value) & val)
6524 return 1;
6525 if (!((reg->var_off.mask | reg->var_off.value) & val))
6526 return 0;
6527 break;
4f7b3e82
AS
6528 case BPF_JGT:
6529 if (reg->umin_value > val)
6530 return 1;
6531 else if (reg->umax_value <= val)
6532 return 0;
6533 break;
6534 case BPF_JSGT:
a72dafaf 6535 if (reg->smin_value > sval)
4f7b3e82 6536 return 1;
a72dafaf 6537 else if (reg->smax_value < sval)
4f7b3e82
AS
6538 return 0;
6539 break;
6540 case BPF_JLT:
6541 if (reg->umax_value < val)
6542 return 1;
6543 else if (reg->umin_value >= val)
6544 return 0;
6545 break;
6546 case BPF_JSLT:
a72dafaf 6547 if (reg->smax_value < sval)
4f7b3e82 6548 return 1;
a72dafaf 6549 else if (reg->smin_value >= sval)
4f7b3e82
AS
6550 return 0;
6551 break;
6552 case BPF_JGE:
6553 if (reg->umin_value >= val)
6554 return 1;
6555 else if (reg->umax_value < val)
6556 return 0;
6557 break;
6558 case BPF_JSGE:
a72dafaf 6559 if (reg->smin_value >= sval)
4f7b3e82 6560 return 1;
a72dafaf 6561 else if (reg->smax_value < sval)
4f7b3e82
AS
6562 return 0;
6563 break;
6564 case BPF_JLE:
6565 if (reg->umax_value <= val)
6566 return 1;
6567 else if (reg->umin_value > val)
6568 return 0;
6569 break;
6570 case BPF_JSLE:
a72dafaf 6571 if (reg->smax_value <= sval)
4f7b3e82 6572 return 1;
a72dafaf 6573 else if (reg->smin_value > sval)
4f7b3e82
AS
6574 return 0;
6575 break;
6576 }
6577
6578 return -1;
6579}
6580
3f50f132
JF
6581/* compute branch direction of the expression "if (reg opcode val) goto target;"
6582 * and return:
6583 * 1 - branch will be taken and "goto target" will be executed
6584 * 0 - branch will not be taken and fall-through to next insn
6585 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value
6586 * range [0,10]
604dca5e 6587 */
3f50f132
JF
6588static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
6589 bool is_jmp32)
604dca5e 6590{
cac616db
JF
6591 if (__is_pointer_value(false, reg)) {
6592 if (!reg_type_not_null(reg->type))
6593 return -1;
6594
6595 /* If pointer is valid tests against zero will fail so we can
6596 * use this to direct branch taken.
6597 */
6598 if (val != 0)
6599 return -1;
6600
6601 switch (opcode) {
6602 case BPF_JEQ:
6603 return 0;
6604 case BPF_JNE:
6605 return 1;
6606 default:
6607 return -1;
6608 }
6609 }
604dca5e 6610
3f50f132
JF
6611 if (is_jmp32)
6612 return is_branch32_taken(reg, val, opcode);
6613 return is_branch64_taken(reg, val, opcode);
604dca5e
JH
6614}
6615
48461135
JB
6616/* Adjusts the register min/max values in the case that the dst_reg is the
6617 * variable register that we are working on, and src_reg is a constant or we're
6618 * simply doing a BPF_K check.
f1174f77 6619 * In JEQ/JNE cases we also adjust the var_off values.
48461135
JB
6620 */
6621static void reg_set_min_max(struct bpf_reg_state *true_reg,
3f50f132
JF
6622 struct bpf_reg_state *false_reg,
6623 u64 val, u32 val32,
092ed096 6624 u8 opcode, bool is_jmp32)
48461135 6625{
3f50f132
JF
6626 struct tnum false_32off = tnum_subreg(false_reg->var_off);
6627 struct tnum false_64off = false_reg->var_off;
6628 struct tnum true_32off = tnum_subreg(true_reg->var_off);
6629 struct tnum true_64off = true_reg->var_off;
6630 s64 sval = (s64)val;
6631 s32 sval32 = (s32)val32;
a72dafaf 6632
f1174f77
EC
6633 /* If the dst_reg is a pointer, we can't learn anything about its
6634 * variable offset from the compare (unless src_reg were a pointer into
6635 * the same object, but we don't bother with that.
6636 * Since false_reg and true_reg have the same type by construction, we
6637 * only need to check one of them for pointerness.
6638 */
6639 if (__is_pointer_value(false, false_reg))
6640 return;
4cabc5b1 6641
48461135
JB
6642 switch (opcode) {
6643 case BPF_JEQ:
48461135 6644 case BPF_JNE:
a72dafaf
JW
6645 {
6646 struct bpf_reg_state *reg =
6647 opcode == BPF_JEQ ? true_reg : false_reg;
6648
6649 /* For BPF_JEQ, if this is false we know nothing Jon Snow, but
6650 * if it is true we know the value for sure. Likewise for
6651 * BPF_JNE.
48461135 6652 */
3f50f132
JF
6653 if (is_jmp32)
6654 __mark_reg32_known(reg, val32);
6655 else
092ed096 6656 __mark_reg_known(reg, val);
48461135 6657 break;
a72dafaf 6658 }
960ea056 6659 case BPF_JSET:
3f50f132
JF
6660 if (is_jmp32) {
6661 false_32off = tnum_and(false_32off, tnum_const(~val32));
6662 if (is_power_of_2(val32))
6663 true_32off = tnum_or(true_32off,
6664 tnum_const(val32));
6665 } else {
6666 false_64off = tnum_and(false_64off, tnum_const(~val));
6667 if (is_power_of_2(val))
6668 true_64off = tnum_or(true_64off,
6669 tnum_const(val));
6670 }
960ea056 6671 break;
48461135 6672 case BPF_JGE:
a72dafaf
JW
6673 case BPF_JGT:
6674 {
3f50f132
JF
6675 if (is_jmp32) {
6676 u32 false_umax = opcode == BPF_JGT ? val32 : val32 - 1;
6677 u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32;
6678
6679 false_reg->u32_max_value = min(false_reg->u32_max_value,
6680 false_umax);
6681 true_reg->u32_min_value = max(true_reg->u32_min_value,
6682 true_umin);
6683 } else {
6684 u64 false_umax = opcode == BPF_JGT ? val : val - 1;
6685 u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
6686
6687 false_reg->umax_value = min(false_reg->umax_value, false_umax);
6688 true_reg->umin_value = max(true_reg->umin_value, true_umin);
6689 }
b03c9f9f 6690 break;
a72dafaf 6691 }
48461135 6692 case BPF_JSGE:
a72dafaf
JW
6693 case BPF_JSGT:
6694 {
3f50f132
JF
6695 if (is_jmp32) {
6696 s32 false_smax = opcode == BPF_JSGT ? sval32 : sval32 - 1;
6697 s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32;
a72dafaf 6698
3f50f132
JF
6699 false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax);
6700 true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin);
6701 } else {
6702 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1;
6703 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
6704
6705 false_reg->smax_value = min(false_reg->smax_value, false_smax);
6706 true_reg->smin_value = max(true_reg->smin_value, true_smin);
6707 }
48461135 6708 break;
a72dafaf 6709 }
b4e432f1 6710 case BPF_JLE:
a72dafaf
JW
6711 case BPF_JLT:
6712 {
3f50f132
JF
6713 if (is_jmp32) {
6714 u32 false_umin = opcode == BPF_JLT ? val32 : val32 + 1;
6715 u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32;
6716
6717 false_reg->u32_min_value = max(false_reg->u32_min_value,
6718 false_umin);
6719 true_reg->u32_max_value = min(true_reg->u32_max_value,
6720 true_umax);
6721 } else {
6722 u64 false_umin = opcode == BPF_JLT ? val : val + 1;
6723 u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
6724
6725 false_reg->umin_value = max(false_reg->umin_value, false_umin);
6726 true_reg->umax_value = min(true_reg->umax_value, true_umax);
6727 }
b4e432f1 6728 break;
a72dafaf 6729 }
b4e432f1 6730 case BPF_JSLE:
a72dafaf
JW
6731 case BPF_JSLT:
6732 {
3f50f132
JF
6733 if (is_jmp32) {
6734 s32 false_smin = opcode == BPF_JSLT ? sval32 : sval32 + 1;
6735 s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32;
a72dafaf 6736
3f50f132
JF
6737 false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin);
6738 true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax);
6739 } else {
6740 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1;
6741 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
6742
6743 false_reg->smin_value = max(false_reg->smin_value, false_smin);
6744 true_reg->smax_value = min(true_reg->smax_value, true_smax);
6745 }
b4e432f1 6746 break;
a72dafaf 6747 }
48461135 6748 default:
0fc31b10 6749 return;
48461135
JB
6750 }
6751
3f50f132
JF
6752 if (is_jmp32) {
6753 false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off),
6754 tnum_subreg(false_32off));
6755 true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off),
6756 tnum_subreg(true_32off));
6757 __reg_combine_32_into_64(false_reg);
6758 __reg_combine_32_into_64(true_reg);
6759 } else {
6760 false_reg->var_off = false_64off;
6761 true_reg->var_off = true_64off;
6762 __reg_combine_64_into_32(false_reg);
6763 __reg_combine_64_into_32(true_reg);
6764 }
48461135
JB
6765}
6766
f1174f77
EC
6767/* Same as above, but for the case that dst_reg holds a constant and src_reg is
6768 * the variable reg.
48461135
JB
6769 */
6770static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
3f50f132
JF
6771 struct bpf_reg_state *false_reg,
6772 u64 val, u32 val32,
092ed096 6773 u8 opcode, bool is_jmp32)
48461135 6774{
0fc31b10
JH
6775 /* How can we transform "a <op> b" into "b <op> a"? */
6776 static const u8 opcode_flip[16] = {
6777 /* these stay the same */
6778 [BPF_JEQ >> 4] = BPF_JEQ,
6779 [BPF_JNE >> 4] = BPF_JNE,
6780 [BPF_JSET >> 4] = BPF_JSET,
6781 /* these swap "lesser" and "greater" (L and G in the opcodes) */
6782 [BPF_JGE >> 4] = BPF_JLE,
6783 [BPF_JGT >> 4] = BPF_JLT,
6784 [BPF_JLE >> 4] = BPF_JGE,
6785 [BPF_JLT >> 4] = BPF_JGT,
6786 [BPF_JSGE >> 4] = BPF_JSLE,
6787 [BPF_JSGT >> 4] = BPF_JSLT,
6788 [BPF_JSLE >> 4] = BPF_JSGE,
6789 [BPF_JSLT >> 4] = BPF_JSGT
6790 };
6791 opcode = opcode_flip[opcode >> 4];
6792 /* This uses zero as "not present in table"; luckily the zero opcode,
6793 * BPF_JA, can't get here.
b03c9f9f 6794 */
0fc31b10 6795 if (opcode)
3f50f132 6796 reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32);
f1174f77
EC
6797}
6798
6799/* Regs are known to be equal, so intersect their min/max/var_off */
6800static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
6801 struct bpf_reg_state *dst_reg)
6802{
b03c9f9f
EC
6803 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
6804 dst_reg->umin_value);
6805 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
6806 dst_reg->umax_value);
6807 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
6808 dst_reg->smin_value);
6809 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
6810 dst_reg->smax_value);
f1174f77
EC
6811 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
6812 dst_reg->var_off);
b03c9f9f
EC
6813 /* We might have learned new bounds from the var_off. */
6814 __update_reg_bounds(src_reg);
6815 __update_reg_bounds(dst_reg);
6816 /* We might have learned something about the sign bit. */
6817 __reg_deduce_bounds(src_reg);
6818 __reg_deduce_bounds(dst_reg);
6819 /* We might have learned some bits from the bounds. */
6820 __reg_bound_offset(src_reg);
6821 __reg_bound_offset(dst_reg);
6822 /* Intersecting with the old var_off might have improved our bounds
6823 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
6824 * then new var_off is (0; 0x7f...fc) which improves our umax.
6825 */
6826 __update_reg_bounds(src_reg);
6827 __update_reg_bounds(dst_reg);
f1174f77
EC
6828}
6829
6830static void reg_combine_min_max(struct bpf_reg_state *true_src,
6831 struct bpf_reg_state *true_dst,
6832 struct bpf_reg_state *false_src,
6833 struct bpf_reg_state *false_dst,
6834 u8 opcode)
6835{
6836 switch (opcode) {
6837 case BPF_JEQ:
6838 __reg_combine_min_max(true_src, true_dst);
6839 break;
6840 case BPF_JNE:
6841 __reg_combine_min_max(false_src, false_dst);
b03c9f9f 6842 break;
4cabc5b1 6843 }
48461135
JB
6844}
6845
fd978bf7
JS
6846static void mark_ptr_or_null_reg(struct bpf_func_state *state,
6847 struct bpf_reg_state *reg, u32 id,
840b9615 6848 bool is_null)
57a09bf0 6849{
840b9615 6850 if (reg_type_may_be_null(reg->type) && reg->id == id) {
f1174f77
EC
6851 /* Old offset (both fixed and variable parts) should
6852 * have been known-zero, because we don't allow pointer
6853 * arithmetic on pointers that might be NULL.
6854 */
b03c9f9f
EC
6855 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
6856 !tnum_equals_const(reg->var_off, 0) ||
f1174f77 6857 reg->off)) {
b03c9f9f
EC
6858 __mark_reg_known_zero(reg);
6859 reg->off = 0;
f1174f77
EC
6860 }
6861 if (is_null) {
6862 reg->type = SCALAR_VALUE;
840b9615 6863 } else if (reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
64d85290
JS
6864 const struct bpf_map *map = reg->map_ptr;
6865
6866 if (map->inner_map_meta) {
840b9615 6867 reg->type = CONST_PTR_TO_MAP;
64d85290
JS
6868 reg->map_ptr = map->inner_map_meta;
6869 } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
fada7fdc 6870 reg->type = PTR_TO_XDP_SOCK;
64d85290
JS
6871 } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP ||
6872 map->map_type == BPF_MAP_TYPE_SOCKHASH) {
6873 reg->type = PTR_TO_SOCKET;
840b9615
JS
6874 } else {
6875 reg->type = PTR_TO_MAP_VALUE;
6876 }
c64b7983
JS
6877 } else if (reg->type == PTR_TO_SOCKET_OR_NULL) {
6878 reg->type = PTR_TO_SOCKET;
46f8bc92
MKL
6879 } else if (reg->type == PTR_TO_SOCK_COMMON_OR_NULL) {
6880 reg->type = PTR_TO_SOCK_COMMON;
655a51e5
MKL
6881 } else if (reg->type == PTR_TO_TCP_SOCK_OR_NULL) {
6882 reg->type = PTR_TO_TCP_SOCK;
b121b341
YS
6883 } else if (reg->type == PTR_TO_BTF_ID_OR_NULL) {
6884 reg->type = PTR_TO_BTF_ID;
457f4436
AN
6885 } else if (reg->type == PTR_TO_MEM_OR_NULL) {
6886 reg->type = PTR_TO_MEM;
afbf21dc
YS
6887 } else if (reg->type == PTR_TO_RDONLY_BUF_OR_NULL) {
6888 reg->type = PTR_TO_RDONLY_BUF;
6889 } else if (reg->type == PTR_TO_RDWR_BUF_OR_NULL) {
6890 reg->type = PTR_TO_RDWR_BUF;
56f668df 6891 }
1b986589
MKL
6892 if (is_null) {
6893 /* We don't need id and ref_obj_id from this point
6894 * onwards anymore, thus we should better reset it,
6895 * so that state pruning has chances to take effect.
6896 */
6897 reg->id = 0;
6898 reg->ref_obj_id = 0;
6899 } else if (!reg_may_point_to_spin_lock(reg)) {
6900 /* For not-NULL ptr, reg->ref_obj_id will be reset
6901 * in release_reg_references().
6902 *
6903 * reg->id is still used by spin_lock ptr. Other
6904 * than spin_lock ptr type, reg->id can be reset.
fd978bf7
JS
6905 */
6906 reg->id = 0;
56f668df 6907 }
57a09bf0
TG
6908 }
6909}
6910
c6a9efa1
PC
6911static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id,
6912 bool is_null)
6913{
6914 struct bpf_reg_state *reg;
6915 int i;
6916
6917 for (i = 0; i < MAX_BPF_REG; i++)
6918 mark_ptr_or_null_reg(state, &state->regs[i], id, is_null);
6919
6920 bpf_for_each_spilled_reg(i, state, reg) {
6921 if (!reg)
6922 continue;
6923 mark_ptr_or_null_reg(state, reg, id, is_null);
6924 }
6925}
6926
57a09bf0
TG
6927/* The logic is similar to find_good_pkt_pointers(), both could eventually
6928 * be folded together at some point.
6929 */
840b9615
JS
6930static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
6931 bool is_null)
57a09bf0 6932{
f4d7e40a 6933 struct bpf_func_state *state = vstate->frame[vstate->curframe];
c6a9efa1 6934 struct bpf_reg_state *regs = state->regs;
1b986589 6935 u32 ref_obj_id = regs[regno].ref_obj_id;
a08dd0da 6936 u32 id = regs[regno].id;
c6a9efa1 6937 int i;
57a09bf0 6938
1b986589
MKL
6939 if (ref_obj_id && ref_obj_id == id && is_null)
6940 /* regs[regno] is in the " == NULL" branch.
6941 * No one could have freed the reference state before
6942 * doing the NULL check.
6943 */
6944 WARN_ON_ONCE(release_reference_state(state, id));
fd978bf7 6945
c6a9efa1
PC
6946 for (i = 0; i <= vstate->curframe; i++)
6947 __mark_ptr_or_null_regs(vstate->frame[i], id, is_null);
57a09bf0
TG
6948}
6949
5beca081
DB
6950static bool try_match_pkt_pointers(const struct bpf_insn *insn,
6951 struct bpf_reg_state *dst_reg,
6952 struct bpf_reg_state *src_reg,
6953 struct bpf_verifier_state *this_branch,
6954 struct bpf_verifier_state *other_branch)
6955{
6956 if (BPF_SRC(insn->code) != BPF_X)
6957 return false;
6958
092ed096
JW
6959 /* Pointers are always 64-bit. */
6960 if (BPF_CLASS(insn->code) == BPF_JMP32)
6961 return false;
6962
5beca081
DB
6963 switch (BPF_OP(insn->code)) {
6964 case BPF_JGT:
6965 if ((dst_reg->type == PTR_TO_PACKET &&
6966 src_reg->type == PTR_TO_PACKET_END) ||
6967 (dst_reg->type == PTR_TO_PACKET_META &&
6968 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
6969 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */
6970 find_good_pkt_pointers(this_branch, dst_reg,
6971 dst_reg->type, false);
6972 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
6973 src_reg->type == PTR_TO_PACKET) ||
6974 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
6975 src_reg->type == PTR_TO_PACKET_META)) {
6976 /* pkt_end > pkt_data', pkt_data > pkt_meta' */
6977 find_good_pkt_pointers(other_branch, src_reg,
6978 src_reg->type, true);
6979 } else {
6980 return false;
6981 }
6982 break;
6983 case BPF_JLT:
6984 if ((dst_reg->type == PTR_TO_PACKET &&
6985 src_reg->type == PTR_TO_PACKET_END) ||
6986 (dst_reg->type == PTR_TO_PACKET_META &&
6987 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
6988 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */
6989 find_good_pkt_pointers(other_branch, dst_reg,
6990 dst_reg->type, true);
6991 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
6992 src_reg->type == PTR_TO_PACKET) ||
6993 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
6994 src_reg->type == PTR_TO_PACKET_META)) {
6995 /* pkt_end < pkt_data', pkt_data > pkt_meta' */
6996 find_good_pkt_pointers(this_branch, src_reg,
6997 src_reg->type, false);
6998 } else {
6999 return false;
7000 }
7001 break;
7002 case BPF_JGE:
7003 if ((dst_reg->type == PTR_TO_PACKET &&
7004 src_reg->type == PTR_TO_PACKET_END) ||
7005 (dst_reg->type == PTR_TO_PACKET_META &&
7006 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
7007 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
7008 find_good_pkt_pointers(this_branch, dst_reg,
7009 dst_reg->type, true);
7010 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
7011 src_reg->type == PTR_TO_PACKET) ||
7012 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
7013 src_reg->type == PTR_TO_PACKET_META)) {
7014 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
7015 find_good_pkt_pointers(other_branch, src_reg,
7016 src_reg->type, false);
7017 } else {
7018 return false;
7019 }
7020 break;
7021 case BPF_JLE:
7022 if ((dst_reg->type == PTR_TO_PACKET &&
7023 src_reg->type == PTR_TO_PACKET_END) ||
7024 (dst_reg->type == PTR_TO_PACKET_META &&
7025 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
7026 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
7027 find_good_pkt_pointers(other_branch, dst_reg,
7028 dst_reg->type, false);
7029 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
7030 src_reg->type == PTR_TO_PACKET) ||
7031 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
7032 src_reg->type == PTR_TO_PACKET_META)) {
7033 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
7034 find_good_pkt_pointers(this_branch, src_reg,
7035 src_reg->type, true);
7036 } else {
7037 return false;
7038 }
7039 break;
7040 default:
7041 return false;
7042 }
7043
7044 return true;
7045}
7046
58e2af8b 7047static int check_cond_jmp_op(struct bpf_verifier_env *env,
17a52670
AS
7048 struct bpf_insn *insn, int *insn_idx)
7049{
f4d7e40a
AS
7050 struct bpf_verifier_state *this_branch = env->cur_state;
7051 struct bpf_verifier_state *other_branch;
7052 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
fb8d251e 7053 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
17a52670 7054 u8 opcode = BPF_OP(insn->code);
092ed096 7055 bool is_jmp32;
fb8d251e 7056 int pred = -1;
17a52670
AS
7057 int err;
7058
092ed096
JW
7059 /* Only conditional jumps are expected to reach here. */
7060 if (opcode == BPF_JA || opcode > BPF_JSLE) {
7061 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
17a52670
AS
7062 return -EINVAL;
7063 }
7064
7065 if (BPF_SRC(insn->code) == BPF_X) {
7066 if (insn->imm != 0) {
092ed096 7067 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
17a52670
AS
7068 return -EINVAL;
7069 }
7070
7071 /* check src1 operand */
dc503a8a 7072 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
7073 if (err)
7074 return err;
1be7f75d
AS
7075
7076 if (is_pointer_value(env, insn->src_reg)) {
61bd5218 7077 verbose(env, "R%d pointer comparison prohibited\n",
1be7f75d
AS
7078 insn->src_reg);
7079 return -EACCES;
7080 }
fb8d251e 7081 src_reg = &regs[insn->src_reg];
17a52670
AS
7082 } else {
7083 if (insn->src_reg != BPF_REG_0) {
092ed096 7084 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
17a52670
AS
7085 return -EINVAL;
7086 }
7087 }
7088
7089 /* check src2 operand */
dc503a8a 7090 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
7091 if (err)
7092 return err;
7093
1a0dc1ac 7094 dst_reg = &regs[insn->dst_reg];
092ed096 7095 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1a0dc1ac 7096
3f50f132
JF
7097 if (BPF_SRC(insn->code) == BPF_K) {
7098 pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32);
7099 } else if (src_reg->type == SCALAR_VALUE &&
7100 is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) {
7101 pred = is_branch_taken(dst_reg,
7102 tnum_subreg(src_reg->var_off).value,
7103 opcode,
7104 is_jmp32);
7105 } else if (src_reg->type == SCALAR_VALUE &&
7106 !is_jmp32 && tnum_is_const(src_reg->var_off)) {
7107 pred = is_branch_taken(dst_reg,
7108 src_reg->var_off.value,
7109 opcode,
7110 is_jmp32);
7111 }
7112
b5dc0163 7113 if (pred >= 0) {
cac616db
JF
7114 /* If we get here with a dst_reg pointer type it is because
7115 * above is_branch_taken() special cased the 0 comparison.
7116 */
7117 if (!__is_pointer_value(false, dst_reg))
7118 err = mark_chain_precision(env, insn->dst_reg);
b5dc0163
AS
7119 if (BPF_SRC(insn->code) == BPF_X && !err)
7120 err = mark_chain_precision(env, insn->src_reg);
7121 if (err)
7122 return err;
7123 }
fb8d251e
AS
7124 if (pred == 1) {
7125 /* only follow the goto, ignore fall-through */
7126 *insn_idx += insn->off;
7127 return 0;
7128 } else if (pred == 0) {
7129 /* only follow fall-through branch, since
7130 * that's where the program will go
7131 */
7132 return 0;
17a52670
AS
7133 }
7134
979d63d5
DB
7135 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
7136 false);
17a52670
AS
7137 if (!other_branch)
7138 return -EFAULT;
f4d7e40a 7139 other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
17a52670 7140
48461135
JB
7141 /* detect if we are comparing against a constant value so we can adjust
7142 * our min/max values for our dst register.
f1174f77
EC
7143 * this is only legit if both are scalars (or pointers to the same
7144 * object, I suppose, but we don't support that right now), because
7145 * otherwise the different base pointers mean the offsets aren't
7146 * comparable.
48461135
JB
7147 */
7148 if (BPF_SRC(insn->code) == BPF_X) {
092ed096 7149 struct bpf_reg_state *src_reg = &regs[insn->src_reg];
092ed096 7150
f1174f77 7151 if (dst_reg->type == SCALAR_VALUE &&
092ed096
JW
7152 src_reg->type == SCALAR_VALUE) {
7153 if (tnum_is_const(src_reg->var_off) ||
3f50f132
JF
7154 (is_jmp32 &&
7155 tnum_is_const(tnum_subreg(src_reg->var_off))))
f4d7e40a 7156 reg_set_min_max(&other_branch_regs[insn->dst_reg],
092ed096 7157 dst_reg,
3f50f132
JF
7158 src_reg->var_off.value,
7159 tnum_subreg(src_reg->var_off).value,
092ed096
JW
7160 opcode, is_jmp32);
7161 else if (tnum_is_const(dst_reg->var_off) ||
3f50f132
JF
7162 (is_jmp32 &&
7163 tnum_is_const(tnum_subreg(dst_reg->var_off))))
f4d7e40a 7164 reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
092ed096 7165 src_reg,
3f50f132
JF
7166 dst_reg->var_off.value,
7167 tnum_subreg(dst_reg->var_off).value,
092ed096
JW
7168 opcode, is_jmp32);
7169 else if (!is_jmp32 &&
7170 (opcode == BPF_JEQ || opcode == BPF_JNE))
f1174f77 7171 /* Comparing for equality, we can combine knowledge */
f4d7e40a
AS
7172 reg_combine_min_max(&other_branch_regs[insn->src_reg],
7173 &other_branch_regs[insn->dst_reg],
092ed096 7174 src_reg, dst_reg, opcode);
f1174f77
EC
7175 }
7176 } else if (dst_reg->type == SCALAR_VALUE) {
f4d7e40a 7177 reg_set_min_max(&other_branch_regs[insn->dst_reg],
3f50f132
JF
7178 dst_reg, insn->imm, (u32)insn->imm,
7179 opcode, is_jmp32);
48461135
JB
7180 }
7181
092ed096
JW
7182 /* detect if R == 0 where R is returned from bpf_map_lookup_elem().
7183 * NOTE: these optimizations below are related with pointer comparison
7184 * which will never be JMP32.
7185 */
7186 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
1a0dc1ac 7187 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
840b9615
JS
7188 reg_type_may_be_null(dst_reg->type)) {
7189 /* Mark all identical registers in each branch as either
57a09bf0
TG
7190 * safe or unknown depending R == 0 or R != 0 conditional.
7191 */
840b9615
JS
7192 mark_ptr_or_null_regs(this_branch, insn->dst_reg,
7193 opcode == BPF_JNE);
7194 mark_ptr_or_null_regs(other_branch, insn->dst_reg,
7195 opcode == BPF_JEQ);
5beca081
DB
7196 } else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
7197 this_branch, other_branch) &&
7198 is_pointer_value(env, insn->dst_reg)) {
61bd5218
JK
7199 verbose(env, "R%d pointer comparison prohibited\n",
7200 insn->dst_reg);
1be7f75d 7201 return -EACCES;
17a52670 7202 }
06ee7115 7203 if (env->log.level & BPF_LOG_LEVEL)
f4d7e40a 7204 print_verifier_state(env, this_branch->frame[this_branch->curframe]);
17a52670
AS
7205 return 0;
7206}
7207
17a52670 7208/* verify BPF_LD_IMM64 instruction */
58e2af8b 7209static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 7210{
d8eca5bb 7211 struct bpf_insn_aux_data *aux = cur_aux(env);
638f5b90 7212 struct bpf_reg_state *regs = cur_regs(env);
d8eca5bb 7213 struct bpf_map *map;
17a52670
AS
7214 int err;
7215
7216 if (BPF_SIZE(insn->code) != BPF_DW) {
61bd5218 7217 verbose(env, "invalid BPF_LD_IMM insn\n");
17a52670
AS
7218 return -EINVAL;
7219 }
7220 if (insn->off != 0) {
61bd5218 7221 verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
17a52670
AS
7222 return -EINVAL;
7223 }
7224
dc503a8a 7225 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
7226 if (err)
7227 return err;
7228
6b173873 7229 if (insn->src_reg == 0) {
6b173873
JK
7230 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
7231
f1174f77 7232 regs[insn->dst_reg].type = SCALAR_VALUE;
b03c9f9f 7233 __mark_reg_known(&regs[insn->dst_reg], imm);
17a52670 7234 return 0;
6b173873 7235 }
17a52670 7236
d8eca5bb
DB
7237 map = env->used_maps[aux->map_index];
7238 mark_reg_known_zero(env, regs, insn->dst_reg);
7239 regs[insn->dst_reg].map_ptr = map;
7240
7241 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE) {
7242 regs[insn->dst_reg].type = PTR_TO_MAP_VALUE;
7243 regs[insn->dst_reg].off = aux->map_off;
7244 if (map_value_has_spin_lock(map))
7245 regs[insn->dst_reg].id = ++env->id_gen;
7246 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
7247 regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
7248 } else {
7249 verbose(env, "bpf verifier is misconfigured\n");
7250 return -EINVAL;
7251 }
17a52670 7252
17a52670
AS
7253 return 0;
7254}
7255
96be4325
DB
7256static bool may_access_skb(enum bpf_prog_type type)
7257{
7258 switch (type) {
7259 case BPF_PROG_TYPE_SOCKET_FILTER:
7260 case BPF_PROG_TYPE_SCHED_CLS:
94caee8c 7261 case BPF_PROG_TYPE_SCHED_ACT:
96be4325
DB
7262 return true;
7263 default:
7264 return false;
7265 }
7266}
7267
ddd872bc
AS
7268/* verify safety of LD_ABS|LD_IND instructions:
7269 * - they can only appear in the programs where ctx == skb
7270 * - since they are wrappers of function calls, they scratch R1-R5 registers,
7271 * preserve R6-R9, and store return value into R0
7272 *
7273 * Implicit input:
7274 * ctx == skb == R6 == CTX
7275 *
7276 * Explicit input:
7277 * SRC == any register
7278 * IMM == 32-bit immediate
7279 *
7280 * Output:
7281 * R0 - 8/16/32-bit skb data converted to cpu endianness
7282 */
58e2af8b 7283static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
ddd872bc 7284{
638f5b90 7285 struct bpf_reg_state *regs = cur_regs(env);
6d4f151a 7286 static const int ctx_reg = BPF_REG_6;
ddd872bc 7287 u8 mode = BPF_MODE(insn->code);
ddd872bc
AS
7288 int i, err;
7289
24701ece 7290 if (!may_access_skb(env->prog->type)) {
61bd5218 7291 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
ddd872bc
AS
7292 return -EINVAL;
7293 }
7294
e0cea7ce
DB
7295 if (!env->ops->gen_ld_abs) {
7296 verbose(env, "bpf verifier is misconfigured\n");
7297 return -EINVAL;
7298 }
7299
f910cefa 7300 if (env->subprog_cnt > 1) {
f4d7e40a
AS
7301 /* when program has LD_ABS insn JITs and interpreter assume
7302 * that r1 == ctx == skb which is not the case for callees
7303 * that can have arbitrary arguments. It's problematic
7304 * for main prog as well since JITs would need to analyze
7305 * all functions in order to make proper register save/restore
7306 * decisions in the main prog. Hence disallow LD_ABS with calls
7307 */
7308 verbose(env, "BPF_LD_[ABS|IND] instructions cannot be mixed with bpf-to-bpf calls\n");
7309 return -EINVAL;
7310 }
7311
ddd872bc 7312 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
d82bccc6 7313 BPF_SIZE(insn->code) == BPF_DW ||
ddd872bc 7314 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
61bd5218 7315 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
ddd872bc
AS
7316 return -EINVAL;
7317 }
7318
7319 /* check whether implicit source operand (register R6) is readable */
6d4f151a 7320 err = check_reg_arg(env, ctx_reg, SRC_OP);
ddd872bc
AS
7321 if (err)
7322 return err;
7323
fd978bf7
JS
7324 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
7325 * gen_ld_abs() may terminate the program at runtime, leading to
7326 * reference leak.
7327 */
7328 err = check_reference_leak(env);
7329 if (err) {
7330 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
7331 return err;
7332 }
7333
d83525ca
AS
7334 if (env->cur_state->active_spin_lock) {
7335 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
7336 return -EINVAL;
7337 }
7338
6d4f151a 7339 if (regs[ctx_reg].type != PTR_TO_CTX) {
61bd5218
JK
7340 verbose(env,
7341 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
ddd872bc
AS
7342 return -EINVAL;
7343 }
7344
7345 if (mode == BPF_IND) {
7346 /* check explicit source operand */
dc503a8a 7347 err = check_reg_arg(env, insn->src_reg, SRC_OP);
ddd872bc
AS
7348 if (err)
7349 return err;
7350 }
7351
6d4f151a
DB
7352 err = check_ctx_reg(env, &regs[ctx_reg], ctx_reg);
7353 if (err < 0)
7354 return err;
7355
ddd872bc 7356 /* reset caller saved regs to unreadable */
dc503a8a 7357 for (i = 0; i < CALLER_SAVED_REGS; i++) {
61bd5218 7358 mark_reg_not_init(env, regs, caller_saved[i]);
dc503a8a
EC
7359 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
7360 }
ddd872bc
AS
7361
7362 /* mark destination R0 register as readable, since it contains
dc503a8a
EC
7363 * the value fetched from the packet.
7364 * Already marked as written above.
ddd872bc 7365 */
61bd5218 7366 mark_reg_unknown(env, regs, BPF_REG_0);
5327ed3d
JW
7367 /* ld_abs load up to 32-bit skb data. */
7368 regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
ddd872bc
AS
7369 return 0;
7370}
7371
390ee7e2
AS
7372static int check_return_code(struct bpf_verifier_env *env)
7373{
5cf1e914 7374 struct tnum enforce_attach_type_range = tnum_unknown;
27ae7997 7375 const struct bpf_prog *prog = env->prog;
390ee7e2
AS
7376 struct bpf_reg_state *reg;
7377 struct tnum range = tnum_range(0, 1);
27ae7997
MKL
7378 int err;
7379
9e4e01df
KS
7380 /* LSM and struct_ops func-ptr's return type could be "void" */
7381 if ((env->prog->type == BPF_PROG_TYPE_STRUCT_OPS ||
7382 env->prog->type == BPF_PROG_TYPE_LSM) &&
27ae7997
MKL
7383 !prog->aux->attach_func_proto->type)
7384 return 0;
7385
7386 /* eBPF calling convetion is such that R0 is used
7387 * to return the value from eBPF program.
7388 * Make sure that it's readable at this time
7389 * of bpf_exit, which means that program wrote
7390 * something into it earlier
7391 */
7392 err = check_reg_arg(env, BPF_REG_0, SRC_OP);
7393 if (err)
7394 return err;
7395
7396 if (is_pointer_value(env, BPF_REG_0)) {
7397 verbose(env, "R0 leaks addr as return value\n");
7398 return -EACCES;
7399 }
390ee7e2
AS
7400
7401 switch (env->prog->type) {
983695fa
DB
7402 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
7403 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
1b66d253
DB
7404 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG ||
7405 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME ||
7406 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME ||
7407 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME ||
7408 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME)
983695fa 7409 range = tnum_range(1, 1);
ed4ed404 7410 break;
390ee7e2 7411 case BPF_PROG_TYPE_CGROUP_SKB:
5cf1e914 7412 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
7413 range = tnum_range(0, 3);
7414 enforce_attach_type_range = tnum_range(2, 3);
7415 }
ed4ed404 7416 break;
390ee7e2
AS
7417 case BPF_PROG_TYPE_CGROUP_SOCK:
7418 case BPF_PROG_TYPE_SOCK_OPS:
ebc614f6 7419 case BPF_PROG_TYPE_CGROUP_DEVICE:
7b146ceb 7420 case BPF_PROG_TYPE_CGROUP_SYSCTL:
0d01da6a 7421 case BPF_PROG_TYPE_CGROUP_SOCKOPT:
390ee7e2 7422 break;
15ab09bd
AS
7423 case BPF_PROG_TYPE_RAW_TRACEPOINT:
7424 if (!env->prog->aux->attach_btf_id)
7425 return 0;
7426 range = tnum_const(0);
7427 break;
15d83c4d 7428 case BPF_PROG_TYPE_TRACING:
e92888c7
YS
7429 switch (env->prog->expected_attach_type) {
7430 case BPF_TRACE_FENTRY:
7431 case BPF_TRACE_FEXIT:
7432 range = tnum_const(0);
7433 break;
7434 case BPF_TRACE_RAW_TP:
7435 case BPF_MODIFY_RETURN:
15d83c4d 7436 return 0;
2ec0616e
DB
7437 case BPF_TRACE_ITER:
7438 break;
e92888c7
YS
7439 default:
7440 return -ENOTSUPP;
7441 }
15d83c4d 7442 break;
e9ddbb77
JS
7443 case BPF_PROG_TYPE_SK_LOOKUP:
7444 range = tnum_range(SK_DROP, SK_PASS);
7445 break;
e92888c7
YS
7446 case BPF_PROG_TYPE_EXT:
7447 /* freplace program can return anything as its return value
7448 * depends on the to-be-replaced kernel func or bpf program.
7449 */
390ee7e2
AS
7450 default:
7451 return 0;
7452 }
7453
638f5b90 7454 reg = cur_regs(env) + BPF_REG_0;
390ee7e2 7455 if (reg->type != SCALAR_VALUE) {
61bd5218 7456 verbose(env, "At program exit the register R0 is not a known value (%s)\n",
390ee7e2
AS
7457 reg_type_str[reg->type]);
7458 return -EINVAL;
7459 }
7460
7461 if (!tnum_in(range, reg->var_off)) {
5cf1e914 7462 char tn_buf[48];
7463
61bd5218 7464 verbose(env, "At program exit the register R0 ");
390ee7e2 7465 if (!tnum_is_unknown(reg->var_off)) {
390ee7e2 7466 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 7467 verbose(env, "has value %s", tn_buf);
390ee7e2 7468 } else {
61bd5218 7469 verbose(env, "has unknown scalar value");
390ee7e2 7470 }
5cf1e914 7471 tnum_strn(tn_buf, sizeof(tn_buf), range);
983695fa 7472 verbose(env, " should have been in %s\n", tn_buf);
390ee7e2
AS
7473 return -EINVAL;
7474 }
5cf1e914 7475
7476 if (!tnum_is_unknown(enforce_attach_type_range) &&
7477 tnum_in(enforce_attach_type_range, reg->var_off))
7478 env->prog->enforce_expected_attach_type = 1;
390ee7e2
AS
7479 return 0;
7480}
7481
475fb78f
AS
7482/* non-recursive DFS pseudo code
7483 * 1 procedure DFS-iterative(G,v):
7484 * 2 label v as discovered
7485 * 3 let S be a stack
7486 * 4 S.push(v)
7487 * 5 while S is not empty
7488 * 6 t <- S.pop()
7489 * 7 if t is what we're looking for:
7490 * 8 return t
7491 * 9 for all edges e in G.adjacentEdges(t) do
7492 * 10 if edge e is already labelled
7493 * 11 continue with the next edge
7494 * 12 w <- G.adjacentVertex(t,e)
7495 * 13 if vertex w is not discovered and not explored
7496 * 14 label e as tree-edge
7497 * 15 label w as discovered
7498 * 16 S.push(w)
7499 * 17 continue at 5
7500 * 18 else if vertex w is discovered
7501 * 19 label e as back-edge
7502 * 20 else
7503 * 21 // vertex w is explored
7504 * 22 label e as forward- or cross-edge
7505 * 23 label t as explored
7506 * 24 S.pop()
7507 *
7508 * convention:
7509 * 0x10 - discovered
7510 * 0x11 - discovered and fall-through edge labelled
7511 * 0x12 - discovered and fall-through and branch edges labelled
7512 * 0x20 - explored
7513 */
7514
7515enum {
7516 DISCOVERED = 0x10,
7517 EXPLORED = 0x20,
7518 FALLTHROUGH = 1,
7519 BRANCH = 2,
7520};
7521
dc2a4ebc
AS
7522static u32 state_htab_size(struct bpf_verifier_env *env)
7523{
7524 return env->prog->len;
7525}
7526
5d839021
AS
7527static struct bpf_verifier_state_list **explored_state(
7528 struct bpf_verifier_env *env,
7529 int idx)
7530{
dc2a4ebc
AS
7531 struct bpf_verifier_state *cur = env->cur_state;
7532 struct bpf_func_state *state = cur->frame[cur->curframe];
7533
7534 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
5d839021
AS
7535}
7536
7537static void init_explored_state(struct bpf_verifier_env *env, int idx)
7538{
a8f500af 7539 env->insn_aux_data[idx].prune_point = true;
5d839021 7540}
f1bca824 7541
475fb78f
AS
7542/* t, w, e - match pseudo-code above:
7543 * t - index of current instruction
7544 * w - next instruction
7545 * e - edge
7546 */
2589726d
AS
7547static int push_insn(int t, int w, int e, struct bpf_verifier_env *env,
7548 bool loop_ok)
475fb78f 7549{
7df737e9
AS
7550 int *insn_stack = env->cfg.insn_stack;
7551 int *insn_state = env->cfg.insn_state;
7552
475fb78f
AS
7553 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
7554 return 0;
7555
7556 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
7557 return 0;
7558
7559 if (w < 0 || w >= env->prog->len) {
d9762e84 7560 verbose_linfo(env, t, "%d: ", t);
61bd5218 7561 verbose(env, "jump out of range from insn %d to %d\n", t, w);
475fb78f
AS
7562 return -EINVAL;
7563 }
7564
f1bca824
AS
7565 if (e == BRANCH)
7566 /* mark branch target for state pruning */
5d839021 7567 init_explored_state(env, w);
f1bca824 7568
475fb78f
AS
7569 if (insn_state[w] == 0) {
7570 /* tree-edge */
7571 insn_state[t] = DISCOVERED | e;
7572 insn_state[w] = DISCOVERED;
7df737e9 7573 if (env->cfg.cur_stack >= env->prog->len)
475fb78f 7574 return -E2BIG;
7df737e9 7575 insn_stack[env->cfg.cur_stack++] = w;
475fb78f
AS
7576 return 1;
7577 } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
2c78ee89 7578 if (loop_ok && env->bpf_capable)
2589726d 7579 return 0;
d9762e84
MKL
7580 verbose_linfo(env, t, "%d: ", t);
7581 verbose_linfo(env, w, "%d: ", w);
61bd5218 7582 verbose(env, "back-edge from insn %d to %d\n", t, w);
475fb78f
AS
7583 return -EINVAL;
7584 } else if (insn_state[w] == EXPLORED) {
7585 /* forward- or cross-edge */
7586 insn_state[t] = DISCOVERED | e;
7587 } else {
61bd5218 7588 verbose(env, "insn state internal bug\n");
475fb78f
AS
7589 return -EFAULT;
7590 }
7591 return 0;
7592}
7593
7594/* non-recursive depth-first-search to detect loops in BPF program
7595 * loop == back-edge in directed graph
7596 */
58e2af8b 7597static int check_cfg(struct bpf_verifier_env *env)
475fb78f
AS
7598{
7599 struct bpf_insn *insns = env->prog->insnsi;
7600 int insn_cnt = env->prog->len;
7df737e9 7601 int *insn_stack, *insn_state;
475fb78f
AS
7602 int ret = 0;
7603 int i, t;
7604
7df737e9 7605 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
475fb78f
AS
7606 if (!insn_state)
7607 return -ENOMEM;
7608
7df737e9 7609 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
475fb78f 7610 if (!insn_stack) {
71dde681 7611 kvfree(insn_state);
475fb78f
AS
7612 return -ENOMEM;
7613 }
7614
7615 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
7616 insn_stack[0] = 0; /* 0 is the first instruction */
7df737e9 7617 env->cfg.cur_stack = 1;
475fb78f
AS
7618
7619peek_stack:
7df737e9 7620 if (env->cfg.cur_stack == 0)
475fb78f 7621 goto check_state;
7df737e9 7622 t = insn_stack[env->cfg.cur_stack - 1];
475fb78f 7623
092ed096
JW
7624 if (BPF_CLASS(insns[t].code) == BPF_JMP ||
7625 BPF_CLASS(insns[t].code) == BPF_JMP32) {
475fb78f
AS
7626 u8 opcode = BPF_OP(insns[t].code);
7627
7628 if (opcode == BPF_EXIT) {
7629 goto mark_explored;
7630 } else if (opcode == BPF_CALL) {
2589726d 7631 ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
475fb78f
AS
7632 if (ret == 1)
7633 goto peek_stack;
7634 else if (ret < 0)
7635 goto err_free;
07016151 7636 if (t + 1 < insn_cnt)
5d839021 7637 init_explored_state(env, t + 1);
cc8b0b92 7638 if (insns[t].src_reg == BPF_PSEUDO_CALL) {
5d839021 7639 init_explored_state(env, t);
2589726d
AS
7640 ret = push_insn(t, t + insns[t].imm + 1, BRANCH,
7641 env, false);
cc8b0b92
AS
7642 if (ret == 1)
7643 goto peek_stack;
7644 else if (ret < 0)
7645 goto err_free;
7646 }
475fb78f
AS
7647 } else if (opcode == BPF_JA) {
7648 if (BPF_SRC(insns[t].code) != BPF_K) {
7649 ret = -EINVAL;
7650 goto err_free;
7651 }
7652 /* unconditional jump with single edge */
7653 ret = push_insn(t, t + insns[t].off + 1,
2589726d 7654 FALLTHROUGH, env, true);
475fb78f
AS
7655 if (ret == 1)
7656 goto peek_stack;
7657 else if (ret < 0)
7658 goto err_free;
b5dc0163
AS
7659 /* unconditional jmp is not a good pruning point,
7660 * but it's marked, since backtracking needs
7661 * to record jmp history in is_state_visited().
7662 */
7663 init_explored_state(env, t + insns[t].off + 1);
f1bca824
AS
7664 /* tell verifier to check for equivalent states
7665 * after every call and jump
7666 */
c3de6317 7667 if (t + 1 < insn_cnt)
5d839021 7668 init_explored_state(env, t + 1);
475fb78f
AS
7669 } else {
7670 /* conditional jump with two edges */
5d839021 7671 init_explored_state(env, t);
2589726d 7672 ret = push_insn(t, t + 1, FALLTHROUGH, env, true);
475fb78f
AS
7673 if (ret == 1)
7674 goto peek_stack;
7675 else if (ret < 0)
7676 goto err_free;
7677
2589726d 7678 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env, true);
475fb78f
AS
7679 if (ret == 1)
7680 goto peek_stack;
7681 else if (ret < 0)
7682 goto err_free;
7683 }
7684 } else {
7685 /* all other non-branch instructions with single
7686 * fall-through edge
7687 */
2589726d 7688 ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
475fb78f
AS
7689 if (ret == 1)
7690 goto peek_stack;
7691 else if (ret < 0)
7692 goto err_free;
7693 }
7694
7695mark_explored:
7696 insn_state[t] = EXPLORED;
7df737e9 7697 if (env->cfg.cur_stack-- <= 0) {
61bd5218 7698 verbose(env, "pop stack internal bug\n");
475fb78f
AS
7699 ret = -EFAULT;
7700 goto err_free;
7701 }
7702 goto peek_stack;
7703
7704check_state:
7705 for (i = 0; i < insn_cnt; i++) {
7706 if (insn_state[i] != EXPLORED) {
61bd5218 7707 verbose(env, "unreachable insn %d\n", i);
475fb78f
AS
7708 ret = -EINVAL;
7709 goto err_free;
7710 }
7711 }
7712 ret = 0; /* cfg looks good */
7713
7714err_free:
71dde681
AS
7715 kvfree(insn_state);
7716 kvfree(insn_stack);
7df737e9 7717 env->cfg.insn_state = env->cfg.insn_stack = NULL;
475fb78f
AS
7718 return ret;
7719}
7720
838e9690
YS
7721/* The minimum supported BTF func info size */
7722#define MIN_BPF_FUNCINFO_SIZE 8
7723#define MAX_FUNCINFO_REC_SIZE 252
7724
c454a46b
MKL
7725static int check_btf_func(struct bpf_verifier_env *env,
7726 const union bpf_attr *attr,
7727 union bpf_attr __user *uattr)
838e9690 7728{
d0b2818e 7729 u32 i, nfuncs, urec_size, min_size;
838e9690 7730 u32 krec_size = sizeof(struct bpf_func_info);
c454a46b 7731 struct bpf_func_info *krecord;
8c1b6e69 7732 struct bpf_func_info_aux *info_aux = NULL;
838e9690 7733 const struct btf_type *type;
c454a46b
MKL
7734 struct bpf_prog *prog;
7735 const struct btf *btf;
838e9690 7736 void __user *urecord;
d0b2818e 7737 u32 prev_offset = 0;
e7ed83d6 7738 int ret = -ENOMEM;
838e9690
YS
7739
7740 nfuncs = attr->func_info_cnt;
7741 if (!nfuncs)
7742 return 0;
7743
7744 if (nfuncs != env->subprog_cnt) {
7745 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
7746 return -EINVAL;
7747 }
7748
7749 urec_size = attr->func_info_rec_size;
7750 if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
7751 urec_size > MAX_FUNCINFO_REC_SIZE ||
7752 urec_size % sizeof(u32)) {
7753 verbose(env, "invalid func info rec size %u\n", urec_size);
7754 return -EINVAL;
7755 }
7756
c454a46b
MKL
7757 prog = env->prog;
7758 btf = prog->aux->btf;
838e9690
YS
7759
7760 urecord = u64_to_user_ptr(attr->func_info);
7761 min_size = min_t(u32, krec_size, urec_size);
7762
ba64e7d8 7763 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
c454a46b
MKL
7764 if (!krecord)
7765 return -ENOMEM;
8c1b6e69
AS
7766 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN);
7767 if (!info_aux)
7768 goto err_free;
ba64e7d8 7769
838e9690
YS
7770 for (i = 0; i < nfuncs; i++) {
7771 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
7772 if (ret) {
7773 if (ret == -E2BIG) {
7774 verbose(env, "nonzero tailing record in func info");
7775 /* set the size kernel expects so loader can zero
7776 * out the rest of the record.
7777 */
7778 if (put_user(min_size, &uattr->func_info_rec_size))
7779 ret = -EFAULT;
7780 }
c454a46b 7781 goto err_free;
838e9690
YS
7782 }
7783
ba64e7d8 7784 if (copy_from_user(&krecord[i], urecord, min_size)) {
838e9690 7785 ret = -EFAULT;
c454a46b 7786 goto err_free;
838e9690
YS
7787 }
7788
d30d42e0 7789 /* check insn_off */
838e9690 7790 if (i == 0) {
d30d42e0 7791 if (krecord[i].insn_off) {
838e9690 7792 verbose(env,
d30d42e0
MKL
7793 "nonzero insn_off %u for the first func info record",
7794 krecord[i].insn_off);
838e9690 7795 ret = -EINVAL;
c454a46b 7796 goto err_free;
838e9690 7797 }
d30d42e0 7798 } else if (krecord[i].insn_off <= prev_offset) {
838e9690
YS
7799 verbose(env,
7800 "same or smaller insn offset (%u) than previous func info record (%u)",
d30d42e0 7801 krecord[i].insn_off, prev_offset);
838e9690 7802 ret = -EINVAL;
c454a46b 7803 goto err_free;
838e9690
YS
7804 }
7805
d30d42e0 7806 if (env->subprog_info[i].start != krecord[i].insn_off) {
838e9690
YS
7807 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
7808 ret = -EINVAL;
c454a46b 7809 goto err_free;
838e9690
YS
7810 }
7811
7812 /* check type_id */
ba64e7d8 7813 type = btf_type_by_id(btf, krecord[i].type_id);
51c39bb1 7814 if (!type || !btf_type_is_func(type)) {
838e9690 7815 verbose(env, "invalid type id %d in func info",
ba64e7d8 7816 krecord[i].type_id);
838e9690 7817 ret = -EINVAL;
c454a46b 7818 goto err_free;
838e9690 7819 }
51c39bb1 7820 info_aux[i].linkage = BTF_INFO_VLEN(type->info);
d30d42e0 7821 prev_offset = krecord[i].insn_off;
838e9690
YS
7822 urecord += urec_size;
7823 }
7824
ba64e7d8
YS
7825 prog->aux->func_info = krecord;
7826 prog->aux->func_info_cnt = nfuncs;
8c1b6e69 7827 prog->aux->func_info_aux = info_aux;
838e9690
YS
7828 return 0;
7829
c454a46b 7830err_free:
ba64e7d8 7831 kvfree(krecord);
8c1b6e69 7832 kfree(info_aux);
838e9690
YS
7833 return ret;
7834}
7835
ba64e7d8
YS
7836static void adjust_btf_func(struct bpf_verifier_env *env)
7837{
8c1b6e69 7838 struct bpf_prog_aux *aux = env->prog->aux;
ba64e7d8
YS
7839 int i;
7840
8c1b6e69 7841 if (!aux->func_info)
ba64e7d8
YS
7842 return;
7843
7844 for (i = 0; i < env->subprog_cnt; i++)
8c1b6e69 7845 aux->func_info[i].insn_off = env->subprog_info[i].start;
ba64e7d8
YS
7846}
7847
c454a46b
MKL
7848#define MIN_BPF_LINEINFO_SIZE (offsetof(struct bpf_line_info, line_col) + \
7849 sizeof(((struct bpf_line_info *)(0))->line_col))
7850#define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE
7851
7852static int check_btf_line(struct bpf_verifier_env *env,
7853 const union bpf_attr *attr,
7854 union bpf_attr __user *uattr)
7855{
7856 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
7857 struct bpf_subprog_info *sub;
7858 struct bpf_line_info *linfo;
7859 struct bpf_prog *prog;
7860 const struct btf *btf;
7861 void __user *ulinfo;
7862 int err;
7863
7864 nr_linfo = attr->line_info_cnt;
7865 if (!nr_linfo)
7866 return 0;
7867
7868 rec_size = attr->line_info_rec_size;
7869 if (rec_size < MIN_BPF_LINEINFO_SIZE ||
7870 rec_size > MAX_LINEINFO_REC_SIZE ||
7871 rec_size & (sizeof(u32) - 1))
7872 return -EINVAL;
7873
7874 /* Need to zero it in case the userspace may
7875 * pass in a smaller bpf_line_info object.
7876 */
7877 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
7878 GFP_KERNEL | __GFP_NOWARN);
7879 if (!linfo)
7880 return -ENOMEM;
7881
7882 prog = env->prog;
7883 btf = prog->aux->btf;
7884
7885 s = 0;
7886 sub = env->subprog_info;
7887 ulinfo = u64_to_user_ptr(attr->line_info);
7888 expected_size = sizeof(struct bpf_line_info);
7889 ncopy = min_t(u32, expected_size, rec_size);
7890 for (i = 0; i < nr_linfo; i++) {
7891 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
7892 if (err) {
7893 if (err == -E2BIG) {
7894 verbose(env, "nonzero tailing record in line_info");
7895 if (put_user(expected_size,
7896 &uattr->line_info_rec_size))
7897 err = -EFAULT;
7898 }
7899 goto err_free;
7900 }
7901
7902 if (copy_from_user(&linfo[i], ulinfo, ncopy)) {
7903 err = -EFAULT;
7904 goto err_free;
7905 }
7906
7907 /*
7908 * Check insn_off to ensure
7909 * 1) strictly increasing AND
7910 * 2) bounded by prog->len
7911 *
7912 * The linfo[0].insn_off == 0 check logically falls into
7913 * the later "missing bpf_line_info for func..." case
7914 * because the first linfo[0].insn_off must be the
7915 * first sub also and the first sub must have
7916 * subprog_info[0].start == 0.
7917 */
7918 if ((i && linfo[i].insn_off <= prev_offset) ||
7919 linfo[i].insn_off >= prog->len) {
7920 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
7921 i, linfo[i].insn_off, prev_offset,
7922 prog->len);
7923 err = -EINVAL;
7924 goto err_free;
7925 }
7926
fdbaa0be
MKL
7927 if (!prog->insnsi[linfo[i].insn_off].code) {
7928 verbose(env,
7929 "Invalid insn code at line_info[%u].insn_off\n",
7930 i);
7931 err = -EINVAL;
7932 goto err_free;
7933 }
7934
23127b33
MKL
7935 if (!btf_name_by_offset(btf, linfo[i].line_off) ||
7936 !btf_name_by_offset(btf, linfo[i].file_name_off)) {
c454a46b
MKL
7937 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
7938 err = -EINVAL;
7939 goto err_free;
7940 }
7941
7942 if (s != env->subprog_cnt) {
7943 if (linfo[i].insn_off == sub[s].start) {
7944 sub[s].linfo_idx = i;
7945 s++;
7946 } else if (sub[s].start < linfo[i].insn_off) {
7947 verbose(env, "missing bpf_line_info for func#%u\n", s);
7948 err = -EINVAL;
7949 goto err_free;
7950 }
7951 }
7952
7953 prev_offset = linfo[i].insn_off;
7954 ulinfo += rec_size;
7955 }
7956
7957 if (s != env->subprog_cnt) {
7958 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
7959 env->subprog_cnt - s, s);
7960 err = -EINVAL;
7961 goto err_free;
7962 }
7963
7964 prog->aux->linfo = linfo;
7965 prog->aux->nr_linfo = nr_linfo;
7966
7967 return 0;
7968
7969err_free:
7970 kvfree(linfo);
7971 return err;
7972}
7973
7974static int check_btf_info(struct bpf_verifier_env *env,
7975 const union bpf_attr *attr,
7976 union bpf_attr __user *uattr)
7977{
7978 struct btf *btf;
7979 int err;
7980
7981 if (!attr->func_info_cnt && !attr->line_info_cnt)
7982 return 0;
7983
7984 btf = btf_get_by_fd(attr->prog_btf_fd);
7985 if (IS_ERR(btf))
7986 return PTR_ERR(btf);
7987 env->prog->aux->btf = btf;
7988
7989 err = check_btf_func(env, attr, uattr);
7990 if (err)
7991 return err;
7992
7993 err = check_btf_line(env, attr, uattr);
7994 if (err)
7995 return err;
7996
7997 return 0;
ba64e7d8
YS
7998}
7999
f1174f77
EC
8000/* check %cur's range satisfies %old's */
8001static bool range_within(struct bpf_reg_state *old,
8002 struct bpf_reg_state *cur)
8003{
b03c9f9f
EC
8004 return old->umin_value <= cur->umin_value &&
8005 old->umax_value >= cur->umax_value &&
8006 old->smin_value <= cur->smin_value &&
8007 old->smax_value >= cur->smax_value;
f1174f77
EC
8008}
8009
8010/* Maximum number of register states that can exist at once */
8011#define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
8012struct idpair {
8013 u32 old;
8014 u32 cur;
8015};
8016
8017/* If in the old state two registers had the same id, then they need to have
8018 * the same id in the new state as well. But that id could be different from
8019 * the old state, so we need to track the mapping from old to new ids.
8020 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
8021 * regs with old id 5 must also have new id 9 for the new state to be safe. But
8022 * regs with a different old id could still have new id 9, we don't care about
8023 * that.
8024 * So we look through our idmap to see if this old id has been seen before. If
8025 * so, we require the new id to match; otherwise, we add the id pair to the map.
969bf05e 8026 */
f1174f77 8027static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
969bf05e 8028{
f1174f77 8029 unsigned int i;
969bf05e 8030
f1174f77
EC
8031 for (i = 0; i < ID_MAP_SIZE; i++) {
8032 if (!idmap[i].old) {
8033 /* Reached an empty slot; haven't seen this id before */
8034 idmap[i].old = old_id;
8035 idmap[i].cur = cur_id;
8036 return true;
8037 }
8038 if (idmap[i].old == old_id)
8039 return idmap[i].cur == cur_id;
8040 }
8041 /* We ran out of idmap slots, which should be impossible */
8042 WARN_ON_ONCE(1);
8043 return false;
8044}
8045
9242b5f5
AS
8046static void clean_func_state(struct bpf_verifier_env *env,
8047 struct bpf_func_state *st)
8048{
8049 enum bpf_reg_liveness live;
8050 int i, j;
8051
8052 for (i = 0; i < BPF_REG_FP; i++) {
8053 live = st->regs[i].live;
8054 /* liveness must not touch this register anymore */
8055 st->regs[i].live |= REG_LIVE_DONE;
8056 if (!(live & REG_LIVE_READ))
8057 /* since the register is unused, clear its state
8058 * to make further comparison simpler
8059 */
f54c7898 8060 __mark_reg_not_init(env, &st->regs[i]);
9242b5f5
AS
8061 }
8062
8063 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
8064 live = st->stack[i].spilled_ptr.live;
8065 /* liveness must not touch this stack slot anymore */
8066 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
8067 if (!(live & REG_LIVE_READ)) {
f54c7898 8068 __mark_reg_not_init(env, &st->stack[i].spilled_ptr);
9242b5f5
AS
8069 for (j = 0; j < BPF_REG_SIZE; j++)
8070 st->stack[i].slot_type[j] = STACK_INVALID;
8071 }
8072 }
8073}
8074
8075static void clean_verifier_state(struct bpf_verifier_env *env,
8076 struct bpf_verifier_state *st)
8077{
8078 int i;
8079
8080 if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
8081 /* all regs in this state in all frames were already marked */
8082 return;
8083
8084 for (i = 0; i <= st->curframe; i++)
8085 clean_func_state(env, st->frame[i]);
8086}
8087
8088/* the parentage chains form a tree.
8089 * the verifier states are added to state lists at given insn and
8090 * pushed into state stack for future exploration.
8091 * when the verifier reaches bpf_exit insn some of the verifer states
8092 * stored in the state lists have their final liveness state already,
8093 * but a lot of states will get revised from liveness point of view when
8094 * the verifier explores other branches.
8095 * Example:
8096 * 1: r0 = 1
8097 * 2: if r1 == 100 goto pc+1
8098 * 3: r0 = 2
8099 * 4: exit
8100 * when the verifier reaches exit insn the register r0 in the state list of
8101 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
8102 * of insn 2 and goes exploring further. At the insn 4 it will walk the
8103 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
8104 *
8105 * Since the verifier pushes the branch states as it sees them while exploring
8106 * the program the condition of walking the branch instruction for the second
8107 * time means that all states below this branch were already explored and
8108 * their final liveness markes are already propagated.
8109 * Hence when the verifier completes the search of state list in is_state_visited()
8110 * we can call this clean_live_states() function to mark all liveness states
8111 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
8112 * will not be used.
8113 * This function also clears the registers and stack for states that !READ
8114 * to simplify state merging.
8115 *
8116 * Important note here that walking the same branch instruction in the callee
8117 * doesn't meant that the states are DONE. The verifier has to compare
8118 * the callsites
8119 */
8120static void clean_live_states(struct bpf_verifier_env *env, int insn,
8121 struct bpf_verifier_state *cur)
8122{
8123 struct bpf_verifier_state_list *sl;
8124 int i;
8125
5d839021 8126 sl = *explored_state(env, insn);
a8f500af 8127 while (sl) {
2589726d
AS
8128 if (sl->state.branches)
8129 goto next;
dc2a4ebc
AS
8130 if (sl->state.insn_idx != insn ||
8131 sl->state.curframe != cur->curframe)
9242b5f5
AS
8132 goto next;
8133 for (i = 0; i <= cur->curframe; i++)
8134 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite)
8135 goto next;
8136 clean_verifier_state(env, &sl->state);
8137next:
8138 sl = sl->next;
8139 }
8140}
8141
f1174f77 8142/* Returns true if (rold safe implies rcur safe) */
1b688a19
EC
8143static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
8144 struct idpair *idmap)
f1174f77 8145{
f4d7e40a
AS
8146 bool equal;
8147
dc503a8a
EC
8148 if (!(rold->live & REG_LIVE_READ))
8149 /* explored state didn't use this */
8150 return true;
8151
679c782d 8152 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0;
f4d7e40a
AS
8153
8154 if (rold->type == PTR_TO_STACK)
8155 /* two stack pointers are equal only if they're pointing to
8156 * the same stack frame, since fp-8 in foo != fp-8 in bar
8157 */
8158 return equal && rold->frameno == rcur->frameno;
8159
8160 if (equal)
969bf05e
AS
8161 return true;
8162
f1174f77
EC
8163 if (rold->type == NOT_INIT)
8164 /* explored state can't have used this */
969bf05e 8165 return true;
f1174f77
EC
8166 if (rcur->type == NOT_INIT)
8167 return false;
8168 switch (rold->type) {
8169 case SCALAR_VALUE:
8170 if (rcur->type == SCALAR_VALUE) {
b5dc0163
AS
8171 if (!rold->precise && !rcur->precise)
8172 return true;
f1174f77
EC
8173 /* new val must satisfy old val knowledge */
8174 return range_within(rold, rcur) &&
8175 tnum_in(rold->var_off, rcur->var_off);
8176 } else {
179d1c56
JH
8177 /* We're trying to use a pointer in place of a scalar.
8178 * Even if the scalar was unbounded, this could lead to
8179 * pointer leaks because scalars are allowed to leak
8180 * while pointers are not. We could make this safe in
8181 * special cases if root is calling us, but it's
8182 * probably not worth the hassle.
f1174f77 8183 */
179d1c56 8184 return false;
f1174f77
EC
8185 }
8186 case PTR_TO_MAP_VALUE:
1b688a19
EC
8187 /* If the new min/max/var_off satisfy the old ones and
8188 * everything else matches, we are OK.
d83525ca
AS
8189 * 'id' is not compared, since it's only used for maps with
8190 * bpf_spin_lock inside map element and in such cases if
8191 * the rest of the prog is valid for one map element then
8192 * it's valid for all map elements regardless of the key
8193 * used in bpf_map_lookup()
1b688a19
EC
8194 */
8195 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
8196 range_within(rold, rcur) &&
8197 tnum_in(rold->var_off, rcur->var_off);
f1174f77
EC
8198 case PTR_TO_MAP_VALUE_OR_NULL:
8199 /* a PTR_TO_MAP_VALUE could be safe to use as a
8200 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
8201 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
8202 * checked, doing so could have affected others with the same
8203 * id, and we can't check for that because we lost the id when
8204 * we converted to a PTR_TO_MAP_VALUE.
8205 */
8206 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
8207 return false;
8208 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
8209 return false;
8210 /* Check our ids match any regs they're supposed to */
8211 return check_ids(rold->id, rcur->id, idmap);
de8f3a83 8212 case PTR_TO_PACKET_META:
f1174f77 8213 case PTR_TO_PACKET:
de8f3a83 8214 if (rcur->type != rold->type)
f1174f77
EC
8215 return false;
8216 /* We must have at least as much range as the old ptr
8217 * did, so that any accesses which were safe before are
8218 * still safe. This is true even if old range < old off,
8219 * since someone could have accessed through (ptr - k), or
8220 * even done ptr -= k in a register, to get a safe access.
8221 */
8222 if (rold->range > rcur->range)
8223 return false;
8224 /* If the offsets don't match, we can't trust our alignment;
8225 * nor can we be sure that we won't fall out of range.
8226 */
8227 if (rold->off != rcur->off)
8228 return false;
8229 /* id relations must be preserved */
8230 if (rold->id && !check_ids(rold->id, rcur->id, idmap))
8231 return false;
8232 /* new val must satisfy old val knowledge */
8233 return range_within(rold, rcur) &&
8234 tnum_in(rold->var_off, rcur->var_off);
8235 case PTR_TO_CTX:
8236 case CONST_PTR_TO_MAP:
f1174f77 8237 case PTR_TO_PACKET_END:
d58e468b 8238 case PTR_TO_FLOW_KEYS:
c64b7983
JS
8239 case PTR_TO_SOCKET:
8240 case PTR_TO_SOCKET_OR_NULL:
46f8bc92
MKL
8241 case PTR_TO_SOCK_COMMON:
8242 case PTR_TO_SOCK_COMMON_OR_NULL:
655a51e5
MKL
8243 case PTR_TO_TCP_SOCK:
8244 case PTR_TO_TCP_SOCK_OR_NULL:
fada7fdc 8245 case PTR_TO_XDP_SOCK:
f1174f77
EC
8246 /* Only valid matches are exact, which memcmp() above
8247 * would have accepted
8248 */
8249 default:
8250 /* Don't know what's going on, just say it's not safe */
8251 return false;
8252 }
969bf05e 8253
f1174f77
EC
8254 /* Shouldn't get here; if we do, say it's not safe */
8255 WARN_ON_ONCE(1);
969bf05e
AS
8256 return false;
8257}
8258
f4d7e40a
AS
8259static bool stacksafe(struct bpf_func_state *old,
8260 struct bpf_func_state *cur,
638f5b90
AS
8261 struct idpair *idmap)
8262{
8263 int i, spi;
8264
638f5b90
AS
8265 /* walk slots of the explored stack and ignore any additional
8266 * slots in the current stack, since explored(safe) state
8267 * didn't use them
8268 */
8269 for (i = 0; i < old->allocated_stack; i++) {
8270 spi = i / BPF_REG_SIZE;
8271
b233920c
AS
8272 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
8273 i += BPF_REG_SIZE - 1;
cc2b14d5 8274 /* explored state didn't use this */
fd05e57b 8275 continue;
b233920c 8276 }
cc2b14d5 8277
638f5b90
AS
8278 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
8279 continue;
19e2dbb7
AS
8280
8281 /* explored stack has more populated slots than current stack
8282 * and these slots were used
8283 */
8284 if (i >= cur->allocated_stack)
8285 return false;
8286
cc2b14d5
AS
8287 /* if old state was safe with misc data in the stack
8288 * it will be safe with zero-initialized stack.
8289 * The opposite is not true
8290 */
8291 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
8292 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
8293 continue;
638f5b90
AS
8294 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
8295 cur->stack[spi].slot_type[i % BPF_REG_SIZE])
8296 /* Ex: old explored (safe) state has STACK_SPILL in
8297 * this stack slot, but current has has STACK_MISC ->
8298 * this verifier states are not equivalent,
8299 * return false to continue verification of this path
8300 */
8301 return false;
8302 if (i % BPF_REG_SIZE)
8303 continue;
8304 if (old->stack[spi].slot_type[0] != STACK_SPILL)
8305 continue;
8306 if (!regsafe(&old->stack[spi].spilled_ptr,
8307 &cur->stack[spi].spilled_ptr,
8308 idmap))
8309 /* when explored and current stack slot are both storing
8310 * spilled registers, check that stored pointers types
8311 * are the same as well.
8312 * Ex: explored safe path could have stored
8313 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
8314 * but current path has stored:
8315 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
8316 * such verifier states are not equivalent.
8317 * return false to continue verification of this path
8318 */
8319 return false;
8320 }
8321 return true;
8322}
8323
fd978bf7
JS
8324static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur)
8325{
8326 if (old->acquired_refs != cur->acquired_refs)
8327 return false;
8328 return !memcmp(old->refs, cur->refs,
8329 sizeof(*old->refs) * old->acquired_refs);
8330}
8331
f1bca824
AS
8332/* compare two verifier states
8333 *
8334 * all states stored in state_list are known to be valid, since
8335 * verifier reached 'bpf_exit' instruction through them
8336 *
8337 * this function is called when verifier exploring different branches of
8338 * execution popped from the state stack. If it sees an old state that has
8339 * more strict register state and more strict stack state then this execution
8340 * branch doesn't need to be explored further, since verifier already
8341 * concluded that more strict state leads to valid finish.
8342 *
8343 * Therefore two states are equivalent if register state is more conservative
8344 * and explored stack state is more conservative than the current one.
8345 * Example:
8346 * explored current
8347 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
8348 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
8349 *
8350 * In other words if current stack state (one being explored) has more
8351 * valid slots than old one that already passed validation, it means
8352 * the verifier can stop exploring and conclude that current state is valid too
8353 *
8354 * Similarly with registers. If explored state has register type as invalid
8355 * whereas register type in current state is meaningful, it means that
8356 * the current state will reach 'bpf_exit' instruction safely
8357 */
f4d7e40a
AS
8358static bool func_states_equal(struct bpf_func_state *old,
8359 struct bpf_func_state *cur)
f1bca824 8360{
f1174f77
EC
8361 struct idpair *idmap;
8362 bool ret = false;
f1bca824
AS
8363 int i;
8364
f1174f77
EC
8365 idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
8366 /* If we failed to allocate the idmap, just say it's not safe */
8367 if (!idmap)
1a0dc1ac 8368 return false;
f1174f77
EC
8369
8370 for (i = 0; i < MAX_BPF_REG; i++) {
1b688a19 8371 if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
f1174f77 8372 goto out_free;
f1bca824
AS
8373 }
8374
638f5b90
AS
8375 if (!stacksafe(old, cur, idmap))
8376 goto out_free;
fd978bf7
JS
8377
8378 if (!refsafe(old, cur))
8379 goto out_free;
f1174f77
EC
8380 ret = true;
8381out_free:
8382 kfree(idmap);
8383 return ret;
f1bca824
AS
8384}
8385
f4d7e40a
AS
8386static bool states_equal(struct bpf_verifier_env *env,
8387 struct bpf_verifier_state *old,
8388 struct bpf_verifier_state *cur)
8389{
8390 int i;
8391
8392 if (old->curframe != cur->curframe)
8393 return false;
8394
979d63d5
DB
8395 /* Verification state from speculative execution simulation
8396 * must never prune a non-speculative execution one.
8397 */
8398 if (old->speculative && !cur->speculative)
8399 return false;
8400
d83525ca
AS
8401 if (old->active_spin_lock != cur->active_spin_lock)
8402 return false;
8403
f4d7e40a
AS
8404 /* for states to be equal callsites have to be the same
8405 * and all frame states need to be equivalent
8406 */
8407 for (i = 0; i <= old->curframe; i++) {
8408 if (old->frame[i]->callsite != cur->frame[i]->callsite)
8409 return false;
8410 if (!func_states_equal(old->frame[i], cur->frame[i]))
8411 return false;
8412 }
8413 return true;
8414}
8415
5327ed3d
JW
8416/* Return 0 if no propagation happened. Return negative error code if error
8417 * happened. Otherwise, return the propagated bit.
8418 */
55e7f3b5
JW
8419static int propagate_liveness_reg(struct bpf_verifier_env *env,
8420 struct bpf_reg_state *reg,
8421 struct bpf_reg_state *parent_reg)
8422{
5327ed3d
JW
8423 u8 parent_flag = parent_reg->live & REG_LIVE_READ;
8424 u8 flag = reg->live & REG_LIVE_READ;
55e7f3b5
JW
8425 int err;
8426
5327ed3d
JW
8427 /* When comes here, read flags of PARENT_REG or REG could be any of
8428 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
8429 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
8430 */
8431 if (parent_flag == REG_LIVE_READ64 ||
8432 /* Or if there is no read flag from REG. */
8433 !flag ||
8434 /* Or if the read flag from REG is the same as PARENT_REG. */
8435 parent_flag == flag)
55e7f3b5
JW
8436 return 0;
8437
5327ed3d 8438 err = mark_reg_read(env, reg, parent_reg, flag);
55e7f3b5
JW
8439 if (err)
8440 return err;
8441
5327ed3d 8442 return flag;
55e7f3b5
JW
8443}
8444
8e9cd9ce 8445/* A write screens off any subsequent reads; but write marks come from the
f4d7e40a
AS
8446 * straight-line code between a state and its parent. When we arrive at an
8447 * equivalent state (jump target or such) we didn't arrive by the straight-line
8448 * code, so read marks in the state must propagate to the parent regardless
8449 * of the state's write marks. That's what 'parent == state->parent' comparison
679c782d 8450 * in mark_reg_read() is for.
8e9cd9ce 8451 */
f4d7e40a
AS
8452static int propagate_liveness(struct bpf_verifier_env *env,
8453 const struct bpf_verifier_state *vstate,
8454 struct bpf_verifier_state *vparent)
dc503a8a 8455{
3f8cafa4 8456 struct bpf_reg_state *state_reg, *parent_reg;
f4d7e40a 8457 struct bpf_func_state *state, *parent;
3f8cafa4 8458 int i, frame, err = 0;
dc503a8a 8459
f4d7e40a
AS
8460 if (vparent->curframe != vstate->curframe) {
8461 WARN(1, "propagate_live: parent frame %d current frame %d\n",
8462 vparent->curframe, vstate->curframe);
8463 return -EFAULT;
8464 }
dc503a8a
EC
8465 /* Propagate read liveness of registers... */
8466 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
83d16312 8467 for (frame = 0; frame <= vstate->curframe; frame++) {
3f8cafa4
JW
8468 parent = vparent->frame[frame];
8469 state = vstate->frame[frame];
8470 parent_reg = parent->regs;
8471 state_reg = state->regs;
83d16312
JK
8472 /* We don't need to worry about FP liveness, it's read-only */
8473 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
55e7f3b5
JW
8474 err = propagate_liveness_reg(env, &state_reg[i],
8475 &parent_reg[i]);
5327ed3d 8476 if (err < 0)
3f8cafa4 8477 return err;
5327ed3d
JW
8478 if (err == REG_LIVE_READ64)
8479 mark_insn_zext(env, &parent_reg[i]);
dc503a8a 8480 }
f4d7e40a 8481
1b04aee7 8482 /* Propagate stack slots. */
f4d7e40a
AS
8483 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
8484 i < parent->allocated_stack / BPF_REG_SIZE; i++) {
3f8cafa4
JW
8485 parent_reg = &parent->stack[i].spilled_ptr;
8486 state_reg = &state->stack[i].spilled_ptr;
55e7f3b5
JW
8487 err = propagate_liveness_reg(env, state_reg,
8488 parent_reg);
5327ed3d 8489 if (err < 0)
3f8cafa4 8490 return err;
dc503a8a
EC
8491 }
8492 }
5327ed3d 8493 return 0;
dc503a8a
EC
8494}
8495
a3ce685d
AS
8496/* find precise scalars in the previous equivalent state and
8497 * propagate them into the current state
8498 */
8499static int propagate_precision(struct bpf_verifier_env *env,
8500 const struct bpf_verifier_state *old)
8501{
8502 struct bpf_reg_state *state_reg;
8503 struct bpf_func_state *state;
8504 int i, err = 0;
8505
8506 state = old->frame[old->curframe];
8507 state_reg = state->regs;
8508 for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
8509 if (state_reg->type != SCALAR_VALUE ||
8510 !state_reg->precise)
8511 continue;
8512 if (env->log.level & BPF_LOG_LEVEL2)
8513 verbose(env, "propagating r%d\n", i);
8514 err = mark_chain_precision(env, i);
8515 if (err < 0)
8516 return err;
8517 }
8518
8519 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
8520 if (state->stack[i].slot_type[0] != STACK_SPILL)
8521 continue;
8522 state_reg = &state->stack[i].spilled_ptr;
8523 if (state_reg->type != SCALAR_VALUE ||
8524 !state_reg->precise)
8525 continue;
8526 if (env->log.level & BPF_LOG_LEVEL2)
8527 verbose(env, "propagating fp%d\n",
8528 (-i - 1) * BPF_REG_SIZE);
8529 err = mark_chain_precision_stack(env, i);
8530 if (err < 0)
8531 return err;
8532 }
8533 return 0;
8534}
8535
2589726d
AS
8536static bool states_maybe_looping(struct bpf_verifier_state *old,
8537 struct bpf_verifier_state *cur)
8538{
8539 struct bpf_func_state *fold, *fcur;
8540 int i, fr = cur->curframe;
8541
8542 if (old->curframe != fr)
8543 return false;
8544
8545 fold = old->frame[fr];
8546 fcur = cur->frame[fr];
8547 for (i = 0; i < MAX_BPF_REG; i++)
8548 if (memcmp(&fold->regs[i], &fcur->regs[i],
8549 offsetof(struct bpf_reg_state, parent)))
8550 return false;
8551 return true;
8552}
8553
8554
58e2af8b 8555static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
f1bca824 8556{
58e2af8b 8557 struct bpf_verifier_state_list *new_sl;
9f4686c4 8558 struct bpf_verifier_state_list *sl, **pprev;
679c782d 8559 struct bpf_verifier_state *cur = env->cur_state, *new;
ceefbc96 8560 int i, j, err, states_cnt = 0;
10d274e8 8561 bool add_new_state = env->test_state_freq ? true : false;
f1bca824 8562
b5dc0163 8563 cur->last_insn_idx = env->prev_insn_idx;
a8f500af 8564 if (!env->insn_aux_data[insn_idx].prune_point)
f1bca824
AS
8565 /* this 'insn_idx' instruction wasn't marked, so we will not
8566 * be doing state search here
8567 */
8568 return 0;
8569
2589726d
AS
8570 /* bpf progs typically have pruning point every 4 instructions
8571 * http://vger.kernel.org/bpfconf2019.html#session-1
8572 * Do not add new state for future pruning if the verifier hasn't seen
8573 * at least 2 jumps and at least 8 instructions.
8574 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
8575 * In tests that amounts to up to 50% reduction into total verifier
8576 * memory consumption and 20% verifier time speedup.
8577 */
8578 if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
8579 env->insn_processed - env->prev_insn_processed >= 8)
8580 add_new_state = true;
8581
a8f500af
AS
8582 pprev = explored_state(env, insn_idx);
8583 sl = *pprev;
8584
9242b5f5
AS
8585 clean_live_states(env, insn_idx, cur);
8586
a8f500af 8587 while (sl) {
dc2a4ebc
AS
8588 states_cnt++;
8589 if (sl->state.insn_idx != insn_idx)
8590 goto next;
2589726d
AS
8591 if (sl->state.branches) {
8592 if (states_maybe_looping(&sl->state, cur) &&
8593 states_equal(env, &sl->state, cur)) {
8594 verbose_linfo(env, insn_idx, "; ");
8595 verbose(env, "infinite loop detected at insn %d\n", insn_idx);
8596 return -EINVAL;
8597 }
8598 /* if the verifier is processing a loop, avoid adding new state
8599 * too often, since different loop iterations have distinct
8600 * states and may not help future pruning.
8601 * This threshold shouldn't be too low to make sure that
8602 * a loop with large bound will be rejected quickly.
8603 * The most abusive loop will be:
8604 * r1 += 1
8605 * if r1 < 1000000 goto pc-2
8606 * 1M insn_procssed limit / 100 == 10k peak states.
8607 * This threshold shouldn't be too high either, since states
8608 * at the end of the loop are likely to be useful in pruning.
8609 */
8610 if (env->jmps_processed - env->prev_jmps_processed < 20 &&
8611 env->insn_processed - env->prev_insn_processed < 100)
8612 add_new_state = false;
8613 goto miss;
8614 }
638f5b90 8615 if (states_equal(env, &sl->state, cur)) {
9f4686c4 8616 sl->hit_cnt++;
f1bca824 8617 /* reached equivalent register/stack state,
dc503a8a
EC
8618 * prune the search.
8619 * Registers read by the continuation are read by us.
8e9cd9ce
EC
8620 * If we have any write marks in env->cur_state, they
8621 * will prevent corresponding reads in the continuation
8622 * from reaching our parent (an explored_state). Our
8623 * own state will get the read marks recorded, but
8624 * they'll be immediately forgotten as we're pruning
8625 * this state and will pop a new one.
f1bca824 8626 */
f4d7e40a 8627 err = propagate_liveness(env, &sl->state, cur);
a3ce685d
AS
8628
8629 /* if previous state reached the exit with precision and
8630 * current state is equivalent to it (except precsion marks)
8631 * the precision needs to be propagated back in
8632 * the current state.
8633 */
8634 err = err ? : push_jmp_history(env, cur);
8635 err = err ? : propagate_precision(env, &sl->state);
f4d7e40a
AS
8636 if (err)
8637 return err;
f1bca824 8638 return 1;
dc503a8a 8639 }
2589726d
AS
8640miss:
8641 /* when new state is not going to be added do not increase miss count.
8642 * Otherwise several loop iterations will remove the state
8643 * recorded earlier. The goal of these heuristics is to have
8644 * states from some iterations of the loop (some in the beginning
8645 * and some at the end) to help pruning.
8646 */
8647 if (add_new_state)
8648 sl->miss_cnt++;
9f4686c4
AS
8649 /* heuristic to determine whether this state is beneficial
8650 * to keep checking from state equivalence point of view.
8651 * Higher numbers increase max_states_per_insn and verification time,
8652 * but do not meaningfully decrease insn_processed.
8653 */
8654 if (sl->miss_cnt > sl->hit_cnt * 3 + 3) {
8655 /* the state is unlikely to be useful. Remove it to
8656 * speed up verification
8657 */
8658 *pprev = sl->next;
8659 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) {
2589726d
AS
8660 u32 br = sl->state.branches;
8661
8662 WARN_ONCE(br,
8663 "BUG live_done but branches_to_explore %d\n",
8664 br);
9f4686c4
AS
8665 free_verifier_state(&sl->state, false);
8666 kfree(sl);
8667 env->peak_states--;
8668 } else {
8669 /* cannot free this state, since parentage chain may
8670 * walk it later. Add it for free_list instead to
8671 * be freed at the end of verification
8672 */
8673 sl->next = env->free_list;
8674 env->free_list = sl;
8675 }
8676 sl = *pprev;
8677 continue;
8678 }
dc2a4ebc 8679next:
9f4686c4
AS
8680 pprev = &sl->next;
8681 sl = *pprev;
f1bca824
AS
8682 }
8683
06ee7115
AS
8684 if (env->max_states_per_insn < states_cnt)
8685 env->max_states_per_insn = states_cnt;
8686
2c78ee89 8687 if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
b5dc0163 8688 return push_jmp_history(env, cur);
ceefbc96 8689
2589726d 8690 if (!add_new_state)
b5dc0163 8691 return push_jmp_history(env, cur);
ceefbc96 8692
2589726d
AS
8693 /* There were no equivalent states, remember the current one.
8694 * Technically the current state is not proven to be safe yet,
f4d7e40a 8695 * but it will either reach outer most bpf_exit (which means it's safe)
2589726d 8696 * or it will be rejected. When there are no loops the verifier won't be
f4d7e40a 8697 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
2589726d
AS
8698 * again on the way to bpf_exit.
8699 * When looping the sl->state.branches will be > 0 and this state
8700 * will not be considered for equivalence until branches == 0.
f1bca824 8701 */
638f5b90 8702 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
f1bca824
AS
8703 if (!new_sl)
8704 return -ENOMEM;
06ee7115
AS
8705 env->total_states++;
8706 env->peak_states++;
2589726d
AS
8707 env->prev_jmps_processed = env->jmps_processed;
8708 env->prev_insn_processed = env->insn_processed;
f1bca824
AS
8709
8710 /* add new state to the head of linked list */
679c782d
EC
8711 new = &new_sl->state;
8712 err = copy_verifier_state(new, cur);
1969db47 8713 if (err) {
679c782d 8714 free_verifier_state(new, false);
1969db47
AS
8715 kfree(new_sl);
8716 return err;
8717 }
dc2a4ebc 8718 new->insn_idx = insn_idx;
2589726d
AS
8719 WARN_ONCE(new->branches != 1,
8720 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
b5dc0163 8721
2589726d 8722 cur->parent = new;
b5dc0163
AS
8723 cur->first_insn_idx = insn_idx;
8724 clear_jmp_history(cur);
5d839021
AS
8725 new_sl->next = *explored_state(env, insn_idx);
8726 *explored_state(env, insn_idx) = new_sl;
7640ead9
JK
8727 /* connect new state to parentage chain. Current frame needs all
8728 * registers connected. Only r6 - r9 of the callers are alive (pushed
8729 * to the stack implicitly by JITs) so in callers' frames connect just
8730 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
8731 * the state of the call instruction (with WRITTEN set), and r0 comes
8732 * from callee with its full parentage chain, anyway.
8733 */
8e9cd9ce
EC
8734 /* clear write marks in current state: the writes we did are not writes
8735 * our child did, so they don't screen off its reads from us.
8736 * (There are no read marks in current state, because reads always mark
8737 * their parent and current state never has children yet. Only
8738 * explored_states can get read marks.)
8739 */
eea1c227
AS
8740 for (j = 0; j <= cur->curframe; j++) {
8741 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
8742 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
8743 for (i = 0; i < BPF_REG_FP; i++)
8744 cur->frame[j]->regs[i].live = REG_LIVE_NONE;
8745 }
f4d7e40a
AS
8746
8747 /* all stack frames are accessible from callee, clear them all */
8748 for (j = 0; j <= cur->curframe; j++) {
8749 struct bpf_func_state *frame = cur->frame[j];
679c782d 8750 struct bpf_func_state *newframe = new->frame[j];
f4d7e40a 8751
679c782d 8752 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
cc2b14d5 8753 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
679c782d
EC
8754 frame->stack[i].spilled_ptr.parent =
8755 &newframe->stack[i].spilled_ptr;
8756 }
f4d7e40a 8757 }
f1bca824
AS
8758 return 0;
8759}
8760
c64b7983
JS
8761/* Return true if it's OK to have the same insn return a different type. */
8762static bool reg_type_mismatch_ok(enum bpf_reg_type type)
8763{
8764 switch (type) {
8765 case PTR_TO_CTX:
8766 case PTR_TO_SOCKET:
8767 case PTR_TO_SOCKET_OR_NULL:
46f8bc92
MKL
8768 case PTR_TO_SOCK_COMMON:
8769 case PTR_TO_SOCK_COMMON_OR_NULL:
655a51e5
MKL
8770 case PTR_TO_TCP_SOCK:
8771 case PTR_TO_TCP_SOCK_OR_NULL:
fada7fdc 8772 case PTR_TO_XDP_SOCK:
2a02759e 8773 case PTR_TO_BTF_ID:
b121b341 8774 case PTR_TO_BTF_ID_OR_NULL:
c64b7983
JS
8775 return false;
8776 default:
8777 return true;
8778 }
8779}
8780
8781/* If an instruction was previously used with particular pointer types, then we
8782 * need to be careful to avoid cases such as the below, where it may be ok
8783 * for one branch accessing the pointer, but not ok for the other branch:
8784 *
8785 * R1 = sock_ptr
8786 * goto X;
8787 * ...
8788 * R1 = some_other_valid_ptr;
8789 * goto X;
8790 * ...
8791 * R2 = *(u32 *)(R1 + 0);
8792 */
8793static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
8794{
8795 return src != prev && (!reg_type_mismatch_ok(src) ||
8796 !reg_type_mismatch_ok(prev));
8797}
8798
58e2af8b 8799static int do_check(struct bpf_verifier_env *env)
17a52670 8800{
6f8a57cc 8801 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
51c39bb1 8802 struct bpf_verifier_state *state = env->cur_state;
17a52670 8803 struct bpf_insn *insns = env->prog->insnsi;
638f5b90 8804 struct bpf_reg_state *regs;
06ee7115 8805 int insn_cnt = env->prog->len;
17a52670 8806 bool do_print_state = false;
b5dc0163 8807 int prev_insn_idx = -1;
17a52670 8808
17a52670
AS
8809 for (;;) {
8810 struct bpf_insn *insn;
8811 u8 class;
8812 int err;
8813
b5dc0163 8814 env->prev_insn_idx = prev_insn_idx;
c08435ec 8815 if (env->insn_idx >= insn_cnt) {
61bd5218 8816 verbose(env, "invalid insn idx %d insn_cnt %d\n",
c08435ec 8817 env->insn_idx, insn_cnt);
17a52670
AS
8818 return -EFAULT;
8819 }
8820
c08435ec 8821 insn = &insns[env->insn_idx];
17a52670
AS
8822 class = BPF_CLASS(insn->code);
8823
06ee7115 8824 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
61bd5218
JK
8825 verbose(env,
8826 "BPF program is too large. Processed %d insn\n",
06ee7115 8827 env->insn_processed);
17a52670
AS
8828 return -E2BIG;
8829 }
8830
c08435ec 8831 err = is_state_visited(env, env->insn_idx);
f1bca824
AS
8832 if (err < 0)
8833 return err;
8834 if (err == 1) {
8835 /* found equivalent state, can prune the search */
06ee7115 8836 if (env->log.level & BPF_LOG_LEVEL) {
f1bca824 8837 if (do_print_state)
979d63d5
DB
8838 verbose(env, "\nfrom %d to %d%s: safe\n",
8839 env->prev_insn_idx, env->insn_idx,
8840 env->cur_state->speculative ?
8841 " (speculative execution)" : "");
f1bca824 8842 else
c08435ec 8843 verbose(env, "%d: safe\n", env->insn_idx);
f1bca824
AS
8844 }
8845 goto process_bpf_exit;
8846 }
8847
c3494801
AS
8848 if (signal_pending(current))
8849 return -EAGAIN;
8850
3c2ce60b
DB
8851 if (need_resched())
8852 cond_resched();
8853
06ee7115
AS
8854 if (env->log.level & BPF_LOG_LEVEL2 ||
8855 (env->log.level & BPF_LOG_LEVEL && do_print_state)) {
8856 if (env->log.level & BPF_LOG_LEVEL2)
c08435ec 8857 verbose(env, "%d:", env->insn_idx);
c5fc9692 8858 else
979d63d5
DB
8859 verbose(env, "\nfrom %d to %d%s:",
8860 env->prev_insn_idx, env->insn_idx,
8861 env->cur_state->speculative ?
8862 " (speculative execution)" : "");
f4d7e40a 8863 print_verifier_state(env, state->frame[state->curframe]);
17a52670
AS
8864 do_print_state = false;
8865 }
8866
06ee7115 8867 if (env->log.level & BPF_LOG_LEVEL) {
7105e828
DB
8868 const struct bpf_insn_cbs cbs = {
8869 .cb_print = verbose,
abe08840 8870 .private_data = env,
7105e828
DB
8871 };
8872
c08435ec
DB
8873 verbose_linfo(env, env->insn_idx, "; ");
8874 verbose(env, "%d: ", env->insn_idx);
abe08840 8875 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
17a52670
AS
8876 }
8877
cae1927c 8878 if (bpf_prog_is_dev_bound(env->prog->aux)) {
c08435ec
DB
8879 err = bpf_prog_offload_verify_insn(env, env->insn_idx,
8880 env->prev_insn_idx);
cae1927c
JK
8881 if (err)
8882 return err;
8883 }
13a27dfc 8884
638f5b90 8885 regs = cur_regs(env);
51c39bb1 8886 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
b5dc0163 8887 prev_insn_idx = env->insn_idx;
fd978bf7 8888
17a52670 8889 if (class == BPF_ALU || class == BPF_ALU64) {
1be7f75d 8890 err = check_alu_op(env, insn);
17a52670
AS
8891 if (err)
8892 return err;
8893
8894 } else if (class == BPF_LDX) {
3df126f3 8895 enum bpf_reg_type *prev_src_type, src_reg_type;
9bac3d6d
AS
8896
8897 /* check for reserved fields is already done */
8898
17a52670 8899 /* check src operand */
dc503a8a 8900 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
8901 if (err)
8902 return err;
8903
dc503a8a 8904 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
17a52670
AS
8905 if (err)
8906 return err;
8907
725f9dcd
AS
8908 src_reg_type = regs[insn->src_reg].type;
8909
17a52670
AS
8910 /* check that memory (src_reg + off) is readable,
8911 * the state of dst_reg will be updated by this func
8912 */
c08435ec
DB
8913 err = check_mem_access(env, env->insn_idx, insn->src_reg,
8914 insn->off, BPF_SIZE(insn->code),
8915 BPF_READ, insn->dst_reg, false);
17a52670
AS
8916 if (err)
8917 return err;
8918
c08435ec 8919 prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type;
3df126f3
JK
8920
8921 if (*prev_src_type == NOT_INIT) {
9bac3d6d
AS
8922 /* saw a valid insn
8923 * dst_reg = *(u32 *)(src_reg + off)
3df126f3 8924 * save type to validate intersecting paths
9bac3d6d 8925 */
3df126f3 8926 *prev_src_type = src_reg_type;
9bac3d6d 8927
c64b7983 8928 } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) {
9bac3d6d
AS
8929 /* ABuser program is trying to use the same insn
8930 * dst_reg = *(u32*) (src_reg + off)
8931 * with different pointer types:
8932 * src_reg == ctx in one branch and
8933 * src_reg == stack|map in some other branch.
8934 * Reject it.
8935 */
61bd5218 8936 verbose(env, "same insn cannot be used with different pointers\n");
9bac3d6d
AS
8937 return -EINVAL;
8938 }
8939
17a52670 8940 } else if (class == BPF_STX) {
3df126f3 8941 enum bpf_reg_type *prev_dst_type, dst_reg_type;
d691f9e8 8942
17a52670 8943 if (BPF_MODE(insn->code) == BPF_XADD) {
c08435ec 8944 err = check_xadd(env, env->insn_idx, insn);
17a52670
AS
8945 if (err)
8946 return err;
c08435ec 8947 env->insn_idx++;
17a52670
AS
8948 continue;
8949 }
8950
17a52670 8951 /* check src1 operand */
dc503a8a 8952 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
8953 if (err)
8954 return err;
8955 /* check src2 operand */
dc503a8a 8956 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
8957 if (err)
8958 return err;
8959
d691f9e8
AS
8960 dst_reg_type = regs[insn->dst_reg].type;
8961
17a52670 8962 /* check that memory (dst_reg + off) is writeable */
c08435ec
DB
8963 err = check_mem_access(env, env->insn_idx, insn->dst_reg,
8964 insn->off, BPF_SIZE(insn->code),
8965 BPF_WRITE, insn->src_reg, false);
17a52670
AS
8966 if (err)
8967 return err;
8968
c08435ec 8969 prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type;
3df126f3
JK
8970
8971 if (*prev_dst_type == NOT_INIT) {
8972 *prev_dst_type = dst_reg_type;
c64b7983 8973 } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) {
61bd5218 8974 verbose(env, "same insn cannot be used with different pointers\n");
d691f9e8
AS
8975 return -EINVAL;
8976 }
8977
17a52670
AS
8978 } else if (class == BPF_ST) {
8979 if (BPF_MODE(insn->code) != BPF_MEM ||
8980 insn->src_reg != BPF_REG_0) {
61bd5218 8981 verbose(env, "BPF_ST uses reserved fields\n");
17a52670
AS
8982 return -EINVAL;
8983 }
8984 /* check src operand */
dc503a8a 8985 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
8986 if (err)
8987 return err;
8988
f37a8cb8 8989 if (is_ctx_reg(env, insn->dst_reg)) {
9d2be44a 8990 verbose(env, "BPF_ST stores into R%d %s is not allowed\n",
2a159c6f
DB
8991 insn->dst_reg,
8992 reg_type_str[reg_state(env, insn->dst_reg)->type]);
f37a8cb8
DB
8993 return -EACCES;
8994 }
8995
17a52670 8996 /* check that memory (dst_reg + off) is writeable */
c08435ec
DB
8997 err = check_mem_access(env, env->insn_idx, insn->dst_reg,
8998 insn->off, BPF_SIZE(insn->code),
8999 BPF_WRITE, -1, false);
17a52670
AS
9000 if (err)
9001 return err;
9002
092ed096 9003 } else if (class == BPF_JMP || class == BPF_JMP32) {
17a52670
AS
9004 u8 opcode = BPF_OP(insn->code);
9005
2589726d 9006 env->jmps_processed++;
17a52670
AS
9007 if (opcode == BPF_CALL) {
9008 if (BPF_SRC(insn->code) != BPF_K ||
9009 insn->off != 0 ||
f4d7e40a
AS
9010 (insn->src_reg != BPF_REG_0 &&
9011 insn->src_reg != BPF_PSEUDO_CALL) ||
092ed096
JW
9012 insn->dst_reg != BPF_REG_0 ||
9013 class == BPF_JMP32) {
61bd5218 9014 verbose(env, "BPF_CALL uses reserved fields\n");
17a52670
AS
9015 return -EINVAL;
9016 }
9017
d83525ca
AS
9018 if (env->cur_state->active_spin_lock &&
9019 (insn->src_reg == BPF_PSEUDO_CALL ||
9020 insn->imm != BPF_FUNC_spin_unlock)) {
9021 verbose(env, "function calls are not allowed while holding a lock\n");
9022 return -EINVAL;
9023 }
f4d7e40a 9024 if (insn->src_reg == BPF_PSEUDO_CALL)
c08435ec 9025 err = check_func_call(env, insn, &env->insn_idx);
f4d7e40a 9026 else
c08435ec 9027 err = check_helper_call(env, insn->imm, env->insn_idx);
17a52670
AS
9028 if (err)
9029 return err;
9030
9031 } else if (opcode == BPF_JA) {
9032 if (BPF_SRC(insn->code) != BPF_K ||
9033 insn->imm != 0 ||
9034 insn->src_reg != BPF_REG_0 ||
092ed096
JW
9035 insn->dst_reg != BPF_REG_0 ||
9036 class == BPF_JMP32) {
61bd5218 9037 verbose(env, "BPF_JA uses reserved fields\n");
17a52670
AS
9038 return -EINVAL;
9039 }
9040
c08435ec 9041 env->insn_idx += insn->off + 1;
17a52670
AS
9042 continue;
9043
9044 } else if (opcode == BPF_EXIT) {
9045 if (BPF_SRC(insn->code) != BPF_K ||
9046 insn->imm != 0 ||
9047 insn->src_reg != BPF_REG_0 ||
092ed096
JW
9048 insn->dst_reg != BPF_REG_0 ||
9049 class == BPF_JMP32) {
61bd5218 9050 verbose(env, "BPF_EXIT uses reserved fields\n");
17a52670
AS
9051 return -EINVAL;
9052 }
9053
d83525ca
AS
9054 if (env->cur_state->active_spin_lock) {
9055 verbose(env, "bpf_spin_unlock is missing\n");
9056 return -EINVAL;
9057 }
9058
f4d7e40a
AS
9059 if (state->curframe) {
9060 /* exit from nested function */
c08435ec 9061 err = prepare_func_exit(env, &env->insn_idx);
f4d7e40a
AS
9062 if (err)
9063 return err;
9064 do_print_state = true;
9065 continue;
9066 }
9067
fd978bf7
JS
9068 err = check_reference_leak(env);
9069 if (err)
9070 return err;
9071
390ee7e2
AS
9072 err = check_return_code(env);
9073 if (err)
9074 return err;
f1bca824 9075process_bpf_exit:
2589726d 9076 update_branch_counts(env, env->cur_state);
b5dc0163 9077 err = pop_stack(env, &prev_insn_idx,
6f8a57cc 9078 &env->insn_idx, pop_log);
638f5b90
AS
9079 if (err < 0) {
9080 if (err != -ENOENT)
9081 return err;
17a52670
AS
9082 break;
9083 } else {
9084 do_print_state = true;
9085 continue;
9086 }
9087 } else {
c08435ec 9088 err = check_cond_jmp_op(env, insn, &env->insn_idx);
17a52670
AS
9089 if (err)
9090 return err;
9091 }
9092 } else if (class == BPF_LD) {
9093 u8 mode = BPF_MODE(insn->code);
9094
9095 if (mode == BPF_ABS || mode == BPF_IND) {
ddd872bc
AS
9096 err = check_ld_abs(env, insn);
9097 if (err)
9098 return err;
9099
17a52670
AS
9100 } else if (mode == BPF_IMM) {
9101 err = check_ld_imm(env, insn);
9102 if (err)
9103 return err;
9104
c08435ec 9105 env->insn_idx++;
51c39bb1 9106 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
17a52670 9107 } else {
61bd5218 9108 verbose(env, "invalid BPF_LD mode\n");
17a52670
AS
9109 return -EINVAL;
9110 }
9111 } else {
61bd5218 9112 verbose(env, "unknown insn class %d\n", class);
17a52670
AS
9113 return -EINVAL;
9114 }
9115
c08435ec 9116 env->insn_idx++;
17a52670
AS
9117 }
9118
9119 return 0;
9120}
9121
56f668df
MKL
9122static int check_map_prealloc(struct bpf_map *map)
9123{
9124 return (map->map_type != BPF_MAP_TYPE_HASH &&
bcc6b1b7
MKL
9125 map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
9126 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
56f668df
MKL
9127 !(map->map_flags & BPF_F_NO_PREALLOC);
9128}
9129
d83525ca
AS
9130static bool is_tracing_prog_type(enum bpf_prog_type type)
9131{
9132 switch (type) {
9133 case BPF_PROG_TYPE_KPROBE:
9134 case BPF_PROG_TYPE_TRACEPOINT:
9135 case BPF_PROG_TYPE_PERF_EVENT:
9136 case BPF_PROG_TYPE_RAW_TRACEPOINT:
9137 return true;
9138 default:
9139 return false;
9140 }
9141}
9142
94dacdbd
TG
9143static bool is_preallocated_map(struct bpf_map *map)
9144{
9145 if (!check_map_prealloc(map))
9146 return false;
9147 if (map->inner_map_meta && !check_map_prealloc(map->inner_map_meta))
9148 return false;
9149 return true;
9150}
9151
61bd5218
JK
9152static int check_map_prog_compatibility(struct bpf_verifier_env *env,
9153 struct bpf_map *map,
fdc15d38
AS
9154 struct bpf_prog *prog)
9155
9156{
94dacdbd
TG
9157 /*
9158 * Validate that trace type programs use preallocated hash maps.
9159 *
9160 * For programs attached to PERF events this is mandatory as the
9161 * perf NMI can hit any arbitrary code sequence.
9162 *
9163 * All other trace types using preallocated hash maps are unsafe as
9164 * well because tracepoint or kprobes can be inside locked regions
9165 * of the memory allocator or at a place where a recursion into the
9166 * memory allocator would see inconsistent state.
9167 *
2ed905c5
TG
9168 * On RT enabled kernels run-time allocation of all trace type
9169 * programs is strictly prohibited due to lock type constraints. On
9170 * !RT kernels it is allowed for backwards compatibility reasons for
9171 * now, but warnings are emitted so developers are made aware of
9172 * the unsafety and can fix their programs before this is enforced.
56f668df 9173 */
94dacdbd
TG
9174 if (is_tracing_prog_type(prog->type) && !is_preallocated_map(map)) {
9175 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
61bd5218 9176 verbose(env, "perf_event programs can only use preallocated hash map\n");
56f668df
MKL
9177 return -EINVAL;
9178 }
2ed905c5
TG
9179 if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
9180 verbose(env, "trace type programs can only use preallocated hash map\n");
9181 return -EINVAL;
9182 }
94dacdbd
TG
9183 WARN_ONCE(1, "trace type BPF program uses run-time allocation\n");
9184 verbose(env, "trace type programs with run-time allocated hash maps are unsafe. Switch to preallocated hash maps.\n");
fdc15d38 9185 }
a3884572 9186
d83525ca
AS
9187 if ((is_tracing_prog_type(prog->type) ||
9188 prog->type == BPF_PROG_TYPE_SOCKET_FILTER) &&
9189 map_value_has_spin_lock(map)) {
9190 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
9191 return -EINVAL;
9192 }
9193
a3884572 9194 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
09728266 9195 !bpf_offload_prog_map_match(prog, map)) {
a3884572
JK
9196 verbose(env, "offload device mismatch between prog and map\n");
9197 return -EINVAL;
9198 }
9199
85d33df3
MKL
9200 if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) {
9201 verbose(env, "bpf_struct_ops map cannot be used in prog\n");
9202 return -EINVAL;
9203 }
9204
fdc15d38
AS
9205 return 0;
9206}
9207
b741f163
RG
9208static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
9209{
9210 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
9211 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
9212}
9213
0246e64d
AS
9214/* look for pseudo eBPF instructions that access map FDs and
9215 * replace them with actual map pointers
9216 */
58e2af8b 9217static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
0246e64d
AS
9218{
9219 struct bpf_insn *insn = env->prog->insnsi;
9220 int insn_cnt = env->prog->len;
fdc15d38 9221 int i, j, err;
0246e64d 9222
f1f7714e 9223 err = bpf_prog_calc_tag(env->prog);
aafe6ae9
DB
9224 if (err)
9225 return err;
9226
0246e64d 9227 for (i = 0; i < insn_cnt; i++, insn++) {
9bac3d6d 9228 if (BPF_CLASS(insn->code) == BPF_LDX &&
d691f9e8 9229 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
61bd5218 9230 verbose(env, "BPF_LDX uses reserved fields\n");
9bac3d6d
AS
9231 return -EINVAL;
9232 }
9233
d691f9e8
AS
9234 if (BPF_CLASS(insn->code) == BPF_STX &&
9235 ((BPF_MODE(insn->code) != BPF_MEM &&
9236 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
61bd5218 9237 verbose(env, "BPF_STX uses reserved fields\n");
d691f9e8
AS
9238 return -EINVAL;
9239 }
9240
0246e64d 9241 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
d8eca5bb 9242 struct bpf_insn_aux_data *aux;
0246e64d
AS
9243 struct bpf_map *map;
9244 struct fd f;
d8eca5bb 9245 u64 addr;
0246e64d
AS
9246
9247 if (i == insn_cnt - 1 || insn[1].code != 0 ||
9248 insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
9249 insn[1].off != 0) {
61bd5218 9250 verbose(env, "invalid bpf_ld_imm64 insn\n");
0246e64d
AS
9251 return -EINVAL;
9252 }
9253
d8eca5bb 9254 if (insn[0].src_reg == 0)
0246e64d
AS
9255 /* valid generic load 64-bit imm */
9256 goto next_insn;
9257
d8eca5bb
DB
9258 /* In final convert_pseudo_ld_imm64() step, this is
9259 * converted into regular 64-bit imm load insn.
9260 */
9261 if ((insn[0].src_reg != BPF_PSEUDO_MAP_FD &&
9262 insn[0].src_reg != BPF_PSEUDO_MAP_VALUE) ||
9263 (insn[0].src_reg == BPF_PSEUDO_MAP_FD &&
9264 insn[1].imm != 0)) {
9265 verbose(env,
9266 "unrecognized bpf_ld_imm64 insn\n");
0246e64d
AS
9267 return -EINVAL;
9268 }
9269
20182390 9270 f = fdget(insn[0].imm);
c2101297 9271 map = __bpf_map_get(f);
0246e64d 9272 if (IS_ERR(map)) {
61bd5218 9273 verbose(env, "fd %d is not pointing to valid bpf_map\n",
20182390 9274 insn[0].imm);
0246e64d
AS
9275 return PTR_ERR(map);
9276 }
9277
61bd5218 9278 err = check_map_prog_compatibility(env, map, env->prog);
fdc15d38
AS
9279 if (err) {
9280 fdput(f);
9281 return err;
9282 }
9283
d8eca5bb
DB
9284 aux = &env->insn_aux_data[i];
9285 if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
9286 addr = (unsigned long)map;
9287 } else {
9288 u32 off = insn[1].imm;
9289
9290 if (off >= BPF_MAX_VAR_OFF) {
9291 verbose(env, "direct value offset of %u is not allowed\n", off);
9292 fdput(f);
9293 return -EINVAL;
9294 }
9295
9296 if (!map->ops->map_direct_value_addr) {
9297 verbose(env, "no direct value access support for this map type\n");
9298 fdput(f);
9299 return -EINVAL;
9300 }
9301
9302 err = map->ops->map_direct_value_addr(map, &addr, off);
9303 if (err) {
9304 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
9305 map->value_size, off);
9306 fdput(f);
9307 return err;
9308 }
9309
9310 aux->map_off = off;
9311 addr += off;
9312 }
9313
9314 insn[0].imm = (u32)addr;
9315 insn[1].imm = addr >> 32;
0246e64d
AS
9316
9317 /* check whether we recorded this map already */
d8eca5bb 9318 for (j = 0; j < env->used_map_cnt; j++) {
0246e64d 9319 if (env->used_maps[j] == map) {
d8eca5bb 9320 aux->map_index = j;
0246e64d
AS
9321 fdput(f);
9322 goto next_insn;
9323 }
d8eca5bb 9324 }
0246e64d
AS
9325
9326 if (env->used_map_cnt >= MAX_USED_MAPS) {
9327 fdput(f);
9328 return -E2BIG;
9329 }
9330
0246e64d
AS
9331 /* hold the map. If the program is rejected by verifier,
9332 * the map will be released by release_maps() or it
9333 * will be used by the valid program until it's unloaded
ab7f5bf0 9334 * and all maps are released in free_used_maps()
0246e64d 9335 */
1e0bd5a0 9336 bpf_map_inc(map);
d8eca5bb
DB
9337
9338 aux->map_index = env->used_map_cnt;
92117d84
AS
9339 env->used_maps[env->used_map_cnt++] = map;
9340
b741f163 9341 if (bpf_map_is_cgroup_storage(map) &&
e4730423 9342 bpf_cgroup_storage_assign(env->prog->aux, map)) {
b741f163 9343 verbose(env, "only one cgroup storage of each type is allowed\n");
de9cbbaa
RG
9344 fdput(f);
9345 return -EBUSY;
9346 }
9347
0246e64d
AS
9348 fdput(f);
9349next_insn:
9350 insn++;
9351 i++;
5e581dad
DB
9352 continue;
9353 }
9354
9355 /* Basic sanity check before we invest more work here. */
9356 if (!bpf_opcode_in_insntable(insn->code)) {
9357 verbose(env, "unknown opcode %02x\n", insn->code);
9358 return -EINVAL;
0246e64d
AS
9359 }
9360 }
9361
9362 /* now all pseudo BPF_LD_IMM64 instructions load valid
9363 * 'struct bpf_map *' into a register instead of user map_fd.
9364 * These pointers will be used later by verifier to validate map access.
9365 */
9366 return 0;
9367}
9368
9369/* drop refcnt of maps used by the rejected program */
58e2af8b 9370static void release_maps(struct bpf_verifier_env *env)
0246e64d 9371{
a2ea0746
DB
9372 __bpf_free_used_maps(env->prog->aux, env->used_maps,
9373 env->used_map_cnt);
0246e64d
AS
9374}
9375
9376/* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
58e2af8b 9377static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
0246e64d
AS
9378{
9379 struct bpf_insn *insn = env->prog->insnsi;
9380 int insn_cnt = env->prog->len;
9381 int i;
9382
9383 for (i = 0; i < insn_cnt; i++, insn++)
9384 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
9385 insn->src_reg = 0;
9386}
9387
8041902d
AS
9388/* single env->prog->insni[off] instruction was replaced with the range
9389 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying
9390 * [0, off) and [off, end) to new locations, so the patched range stays zero
9391 */
b325fbca
JW
9392static int adjust_insn_aux_data(struct bpf_verifier_env *env,
9393 struct bpf_prog *new_prog, u32 off, u32 cnt)
8041902d
AS
9394{
9395 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
b325fbca
JW
9396 struct bpf_insn *insn = new_prog->insnsi;
9397 u32 prog_len;
c131187d 9398 int i;
8041902d 9399
b325fbca
JW
9400 /* aux info at OFF always needs adjustment, no matter fast path
9401 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
9402 * original insn at old prog.
9403 */
9404 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
9405
8041902d
AS
9406 if (cnt == 1)
9407 return 0;
b325fbca 9408 prog_len = new_prog->len;
fad953ce
KC
9409 new_data = vzalloc(array_size(prog_len,
9410 sizeof(struct bpf_insn_aux_data)));
8041902d
AS
9411 if (!new_data)
9412 return -ENOMEM;
9413 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
9414 memcpy(new_data + off + cnt - 1, old_data + off,
9415 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
b325fbca 9416 for (i = off; i < off + cnt - 1; i++) {
51c39bb1 9417 new_data[i].seen = env->pass_cnt;
b325fbca
JW
9418 new_data[i].zext_dst = insn_has_def32(env, insn + i);
9419 }
8041902d
AS
9420 env->insn_aux_data = new_data;
9421 vfree(old_data);
9422 return 0;
9423}
9424
cc8b0b92
AS
9425static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
9426{
9427 int i;
9428
9429 if (len == 1)
9430 return;
4cb3d99c
JW
9431 /* NOTE: fake 'exit' subprog should be updated as well. */
9432 for (i = 0; i <= env->subprog_cnt; i++) {
afd59424 9433 if (env->subprog_info[i].start <= off)
cc8b0b92 9434 continue;
9c8105bd 9435 env->subprog_info[i].start += len - 1;
cc8b0b92
AS
9436 }
9437}
9438
8041902d
AS
9439static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
9440 const struct bpf_insn *patch, u32 len)
9441{
9442 struct bpf_prog *new_prog;
9443
9444 new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
4f73379e
AS
9445 if (IS_ERR(new_prog)) {
9446 if (PTR_ERR(new_prog) == -ERANGE)
9447 verbose(env,
9448 "insn %d cannot be patched due to 16-bit range\n",
9449 env->insn_aux_data[off].orig_idx);
8041902d 9450 return NULL;
4f73379e 9451 }
b325fbca 9452 if (adjust_insn_aux_data(env, new_prog, off, len))
8041902d 9453 return NULL;
cc8b0b92 9454 adjust_subprog_starts(env, off, len);
8041902d
AS
9455 return new_prog;
9456}
9457
52875a04
JK
9458static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
9459 u32 off, u32 cnt)
9460{
9461 int i, j;
9462
9463 /* find first prog starting at or after off (first to remove) */
9464 for (i = 0; i < env->subprog_cnt; i++)
9465 if (env->subprog_info[i].start >= off)
9466 break;
9467 /* find first prog starting at or after off + cnt (first to stay) */
9468 for (j = i; j < env->subprog_cnt; j++)
9469 if (env->subprog_info[j].start >= off + cnt)
9470 break;
9471 /* if j doesn't start exactly at off + cnt, we are just removing
9472 * the front of previous prog
9473 */
9474 if (env->subprog_info[j].start != off + cnt)
9475 j--;
9476
9477 if (j > i) {
9478 struct bpf_prog_aux *aux = env->prog->aux;
9479 int move;
9480
9481 /* move fake 'exit' subprog as well */
9482 move = env->subprog_cnt + 1 - j;
9483
9484 memmove(env->subprog_info + i,
9485 env->subprog_info + j,
9486 sizeof(*env->subprog_info) * move);
9487 env->subprog_cnt -= j - i;
9488
9489 /* remove func_info */
9490 if (aux->func_info) {
9491 move = aux->func_info_cnt - j;
9492
9493 memmove(aux->func_info + i,
9494 aux->func_info + j,
9495 sizeof(*aux->func_info) * move);
9496 aux->func_info_cnt -= j - i;
9497 /* func_info->insn_off is set after all code rewrites,
9498 * in adjust_btf_func() - no need to adjust
9499 */
9500 }
9501 } else {
9502 /* convert i from "first prog to remove" to "first to adjust" */
9503 if (env->subprog_info[i].start == off)
9504 i++;
9505 }
9506
9507 /* update fake 'exit' subprog as well */
9508 for (; i <= env->subprog_cnt; i++)
9509 env->subprog_info[i].start -= cnt;
9510
9511 return 0;
9512}
9513
9514static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
9515 u32 cnt)
9516{
9517 struct bpf_prog *prog = env->prog;
9518 u32 i, l_off, l_cnt, nr_linfo;
9519 struct bpf_line_info *linfo;
9520
9521 nr_linfo = prog->aux->nr_linfo;
9522 if (!nr_linfo)
9523 return 0;
9524
9525 linfo = prog->aux->linfo;
9526
9527 /* find first line info to remove, count lines to be removed */
9528 for (i = 0; i < nr_linfo; i++)
9529 if (linfo[i].insn_off >= off)
9530 break;
9531
9532 l_off = i;
9533 l_cnt = 0;
9534 for (; i < nr_linfo; i++)
9535 if (linfo[i].insn_off < off + cnt)
9536 l_cnt++;
9537 else
9538 break;
9539
9540 /* First live insn doesn't match first live linfo, it needs to "inherit"
9541 * last removed linfo. prog is already modified, so prog->len == off
9542 * means no live instructions after (tail of the program was removed).
9543 */
9544 if (prog->len != off && l_cnt &&
9545 (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
9546 l_cnt--;
9547 linfo[--i].insn_off = off + cnt;
9548 }
9549
9550 /* remove the line info which refer to the removed instructions */
9551 if (l_cnt) {
9552 memmove(linfo + l_off, linfo + i,
9553 sizeof(*linfo) * (nr_linfo - i));
9554
9555 prog->aux->nr_linfo -= l_cnt;
9556 nr_linfo = prog->aux->nr_linfo;
9557 }
9558
9559 /* pull all linfo[i].insn_off >= off + cnt in by cnt */
9560 for (i = l_off; i < nr_linfo; i++)
9561 linfo[i].insn_off -= cnt;
9562
9563 /* fix up all subprogs (incl. 'exit') which start >= off */
9564 for (i = 0; i <= env->subprog_cnt; i++)
9565 if (env->subprog_info[i].linfo_idx > l_off) {
9566 /* program may have started in the removed region but
9567 * may not be fully removed
9568 */
9569 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
9570 env->subprog_info[i].linfo_idx -= l_cnt;
9571 else
9572 env->subprog_info[i].linfo_idx = l_off;
9573 }
9574
9575 return 0;
9576}
9577
9578static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
9579{
9580 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
9581 unsigned int orig_prog_len = env->prog->len;
9582 int err;
9583
08ca90af
JK
9584 if (bpf_prog_is_dev_bound(env->prog->aux))
9585 bpf_prog_offload_remove_insns(env, off, cnt);
9586
52875a04
JK
9587 err = bpf_remove_insns(env->prog, off, cnt);
9588 if (err)
9589 return err;
9590
9591 err = adjust_subprog_starts_after_remove(env, off, cnt);
9592 if (err)
9593 return err;
9594
9595 err = bpf_adj_linfo_after_remove(env, off, cnt);
9596 if (err)
9597 return err;
9598
9599 memmove(aux_data + off, aux_data + off + cnt,
9600 sizeof(*aux_data) * (orig_prog_len - off - cnt));
9601
9602 return 0;
9603}
9604
2a5418a1
DB
9605/* The verifier does more data flow analysis than llvm and will not
9606 * explore branches that are dead at run time. Malicious programs can
9607 * have dead code too. Therefore replace all dead at-run-time code
9608 * with 'ja -1'.
9609 *
9610 * Just nops are not optimal, e.g. if they would sit at the end of the
9611 * program and through another bug we would manage to jump there, then
9612 * we'd execute beyond program memory otherwise. Returning exception
9613 * code also wouldn't work since we can have subprogs where the dead
9614 * code could be located.
c131187d
AS
9615 */
9616static void sanitize_dead_code(struct bpf_verifier_env *env)
9617{
9618 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
2a5418a1 9619 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
c131187d
AS
9620 struct bpf_insn *insn = env->prog->insnsi;
9621 const int insn_cnt = env->prog->len;
9622 int i;
9623
9624 for (i = 0; i < insn_cnt; i++) {
9625 if (aux_data[i].seen)
9626 continue;
2a5418a1 9627 memcpy(insn + i, &trap, sizeof(trap));
c131187d
AS
9628 }
9629}
9630
e2ae4ca2
JK
9631static bool insn_is_cond_jump(u8 code)
9632{
9633 u8 op;
9634
092ed096
JW
9635 if (BPF_CLASS(code) == BPF_JMP32)
9636 return true;
9637
e2ae4ca2
JK
9638 if (BPF_CLASS(code) != BPF_JMP)
9639 return false;
9640
9641 op = BPF_OP(code);
9642 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
9643}
9644
9645static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
9646{
9647 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
9648 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
9649 struct bpf_insn *insn = env->prog->insnsi;
9650 const int insn_cnt = env->prog->len;
9651 int i;
9652
9653 for (i = 0; i < insn_cnt; i++, insn++) {
9654 if (!insn_is_cond_jump(insn->code))
9655 continue;
9656
9657 if (!aux_data[i + 1].seen)
9658 ja.off = insn->off;
9659 else if (!aux_data[i + 1 + insn->off].seen)
9660 ja.off = 0;
9661 else
9662 continue;
9663
08ca90af
JK
9664 if (bpf_prog_is_dev_bound(env->prog->aux))
9665 bpf_prog_offload_replace_insn(env, i, &ja);
9666
e2ae4ca2
JK
9667 memcpy(insn, &ja, sizeof(ja));
9668 }
9669}
9670
52875a04
JK
9671static int opt_remove_dead_code(struct bpf_verifier_env *env)
9672{
9673 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
9674 int insn_cnt = env->prog->len;
9675 int i, err;
9676
9677 for (i = 0; i < insn_cnt; i++) {
9678 int j;
9679
9680 j = 0;
9681 while (i + j < insn_cnt && !aux_data[i + j].seen)
9682 j++;
9683 if (!j)
9684 continue;
9685
9686 err = verifier_remove_insns(env, i, j);
9687 if (err)
9688 return err;
9689 insn_cnt = env->prog->len;
9690 }
9691
9692 return 0;
9693}
9694
a1b14abc
JK
9695static int opt_remove_nops(struct bpf_verifier_env *env)
9696{
9697 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
9698 struct bpf_insn *insn = env->prog->insnsi;
9699 int insn_cnt = env->prog->len;
9700 int i, err;
9701
9702 for (i = 0; i < insn_cnt; i++) {
9703 if (memcmp(&insn[i], &ja, sizeof(ja)))
9704 continue;
9705
9706 err = verifier_remove_insns(env, i, 1);
9707 if (err)
9708 return err;
9709 insn_cnt--;
9710 i--;
9711 }
9712
9713 return 0;
9714}
9715
d6c2308c
JW
9716static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
9717 const union bpf_attr *attr)
a4b1d3c1 9718{
d6c2308c 9719 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
a4b1d3c1 9720 struct bpf_insn_aux_data *aux = env->insn_aux_data;
d6c2308c 9721 int i, patch_len, delta = 0, len = env->prog->len;
a4b1d3c1 9722 struct bpf_insn *insns = env->prog->insnsi;
a4b1d3c1 9723 struct bpf_prog *new_prog;
d6c2308c 9724 bool rnd_hi32;
a4b1d3c1 9725
d6c2308c 9726 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
a4b1d3c1 9727 zext_patch[1] = BPF_ZEXT_REG(0);
d6c2308c
JW
9728 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
9729 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
9730 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
a4b1d3c1
JW
9731 for (i = 0; i < len; i++) {
9732 int adj_idx = i + delta;
9733 struct bpf_insn insn;
9734
d6c2308c
JW
9735 insn = insns[adj_idx];
9736 if (!aux[adj_idx].zext_dst) {
9737 u8 code, class;
9738 u32 imm_rnd;
9739
9740 if (!rnd_hi32)
9741 continue;
9742
9743 code = insn.code;
9744 class = BPF_CLASS(code);
9745 if (insn_no_def(&insn))
9746 continue;
9747
9748 /* NOTE: arg "reg" (the fourth one) is only used for
9749 * BPF_STX which has been ruled out in above
9750 * check, it is safe to pass NULL here.
9751 */
9752 if (is_reg64(env, &insn, insn.dst_reg, NULL, DST_OP)) {
9753 if (class == BPF_LD &&
9754 BPF_MODE(code) == BPF_IMM)
9755 i++;
9756 continue;
9757 }
9758
9759 /* ctx load could be transformed into wider load. */
9760 if (class == BPF_LDX &&
9761 aux[adj_idx].ptr_type == PTR_TO_CTX)
9762 continue;
9763
9764 imm_rnd = get_random_int();
9765 rnd_hi32_patch[0] = insn;
9766 rnd_hi32_patch[1].imm = imm_rnd;
9767 rnd_hi32_patch[3].dst_reg = insn.dst_reg;
9768 patch = rnd_hi32_patch;
9769 patch_len = 4;
9770 goto apply_patch_buffer;
9771 }
9772
9773 if (!bpf_jit_needs_zext())
a4b1d3c1
JW
9774 continue;
9775
a4b1d3c1
JW
9776 zext_patch[0] = insn;
9777 zext_patch[1].dst_reg = insn.dst_reg;
9778 zext_patch[1].src_reg = insn.dst_reg;
d6c2308c
JW
9779 patch = zext_patch;
9780 patch_len = 2;
9781apply_patch_buffer:
9782 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
a4b1d3c1
JW
9783 if (!new_prog)
9784 return -ENOMEM;
9785 env->prog = new_prog;
9786 insns = new_prog->insnsi;
9787 aux = env->insn_aux_data;
d6c2308c 9788 delta += patch_len - 1;
a4b1d3c1
JW
9789 }
9790
9791 return 0;
9792}
9793
c64b7983
JS
9794/* convert load instructions that access fields of a context type into a
9795 * sequence of instructions that access fields of the underlying structure:
9796 * struct __sk_buff -> struct sk_buff
9797 * struct bpf_sock_ops -> struct sock
9bac3d6d 9798 */
58e2af8b 9799static int convert_ctx_accesses(struct bpf_verifier_env *env)
9bac3d6d 9800{
00176a34 9801 const struct bpf_verifier_ops *ops = env->ops;
f96da094 9802 int i, cnt, size, ctx_field_size, delta = 0;
3df126f3 9803 const int insn_cnt = env->prog->len;
36bbef52 9804 struct bpf_insn insn_buf[16], *insn;
46f53a65 9805 u32 target_size, size_default, off;
9bac3d6d 9806 struct bpf_prog *new_prog;
d691f9e8 9807 enum bpf_access_type type;
f96da094 9808 bool is_narrower_load;
9bac3d6d 9809
b09928b9
DB
9810 if (ops->gen_prologue || env->seen_direct_write) {
9811 if (!ops->gen_prologue) {
9812 verbose(env, "bpf verifier is misconfigured\n");
9813 return -EINVAL;
9814 }
36bbef52
DB
9815 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
9816 env->prog);
9817 if (cnt >= ARRAY_SIZE(insn_buf)) {
61bd5218 9818 verbose(env, "bpf verifier is misconfigured\n");
36bbef52
DB
9819 return -EINVAL;
9820 } else if (cnt) {
8041902d 9821 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
36bbef52
DB
9822 if (!new_prog)
9823 return -ENOMEM;
8041902d 9824
36bbef52 9825 env->prog = new_prog;
3df126f3 9826 delta += cnt - 1;
36bbef52
DB
9827 }
9828 }
9829
c64b7983 9830 if (bpf_prog_is_dev_bound(env->prog->aux))
9bac3d6d
AS
9831 return 0;
9832
3df126f3 9833 insn = env->prog->insnsi + delta;
36bbef52 9834
9bac3d6d 9835 for (i = 0; i < insn_cnt; i++, insn++) {
c64b7983
JS
9836 bpf_convert_ctx_access_t convert_ctx_access;
9837
62c7989b
DB
9838 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
9839 insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
9840 insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
ea2e7ce5 9841 insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
d691f9e8 9842 type = BPF_READ;
62c7989b
DB
9843 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
9844 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
9845 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
ea2e7ce5 9846 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
d691f9e8
AS
9847 type = BPF_WRITE;
9848 else
9bac3d6d
AS
9849 continue;
9850
af86ca4e
AS
9851 if (type == BPF_WRITE &&
9852 env->insn_aux_data[i + delta].sanitize_stack_off) {
9853 struct bpf_insn patch[] = {
9854 /* Sanitize suspicious stack slot with zero.
9855 * There are no memory dependencies for this store,
9856 * since it's only using frame pointer and immediate
9857 * constant of zero
9858 */
9859 BPF_ST_MEM(BPF_DW, BPF_REG_FP,
9860 env->insn_aux_data[i + delta].sanitize_stack_off,
9861 0),
9862 /* the original STX instruction will immediately
9863 * overwrite the same stack slot with appropriate value
9864 */
9865 *insn,
9866 };
9867
9868 cnt = ARRAY_SIZE(patch);
9869 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
9870 if (!new_prog)
9871 return -ENOMEM;
9872
9873 delta += cnt - 1;
9874 env->prog = new_prog;
9875 insn = new_prog->insnsi + i + delta;
9876 continue;
9877 }
9878
c64b7983
JS
9879 switch (env->insn_aux_data[i + delta].ptr_type) {
9880 case PTR_TO_CTX:
9881 if (!ops->convert_ctx_access)
9882 continue;
9883 convert_ctx_access = ops->convert_ctx_access;
9884 break;
9885 case PTR_TO_SOCKET:
46f8bc92 9886 case PTR_TO_SOCK_COMMON:
c64b7983
JS
9887 convert_ctx_access = bpf_sock_convert_ctx_access;
9888 break;
655a51e5
MKL
9889 case PTR_TO_TCP_SOCK:
9890 convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
9891 break;
fada7fdc
JL
9892 case PTR_TO_XDP_SOCK:
9893 convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
9894 break;
2a02759e 9895 case PTR_TO_BTF_ID:
27ae7997
MKL
9896 if (type == BPF_READ) {
9897 insn->code = BPF_LDX | BPF_PROBE_MEM |
9898 BPF_SIZE((insn)->code);
9899 env->prog->aux->num_exentries++;
9900 } else if (env->prog->type != BPF_PROG_TYPE_STRUCT_OPS) {
2a02759e
AS
9901 verbose(env, "Writes through BTF pointers are not allowed\n");
9902 return -EINVAL;
9903 }
2a02759e 9904 continue;
c64b7983 9905 default:
9bac3d6d 9906 continue;
c64b7983 9907 }
9bac3d6d 9908
31fd8581 9909 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
f96da094 9910 size = BPF_LDST_BYTES(insn);
31fd8581
YS
9911
9912 /* If the read access is a narrower load of the field,
9913 * convert to a 4/8-byte load, to minimum program type specific
9914 * convert_ctx_access changes. If conversion is successful,
9915 * we will apply proper mask to the result.
9916 */
f96da094 9917 is_narrower_load = size < ctx_field_size;
46f53a65
AI
9918 size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
9919 off = insn->off;
31fd8581 9920 if (is_narrower_load) {
f96da094
DB
9921 u8 size_code;
9922
9923 if (type == BPF_WRITE) {
61bd5218 9924 verbose(env, "bpf verifier narrow ctx access misconfigured\n");
f96da094
DB
9925 return -EINVAL;
9926 }
31fd8581 9927
f96da094 9928 size_code = BPF_H;
31fd8581
YS
9929 if (ctx_field_size == 4)
9930 size_code = BPF_W;
9931 else if (ctx_field_size == 8)
9932 size_code = BPF_DW;
f96da094 9933
bc23105c 9934 insn->off = off & ~(size_default - 1);
31fd8581
YS
9935 insn->code = BPF_LDX | BPF_MEM | size_code;
9936 }
f96da094
DB
9937
9938 target_size = 0;
c64b7983
JS
9939 cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
9940 &target_size);
f96da094
DB
9941 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
9942 (ctx_field_size && !target_size)) {
61bd5218 9943 verbose(env, "bpf verifier is misconfigured\n");
9bac3d6d
AS
9944 return -EINVAL;
9945 }
f96da094
DB
9946
9947 if (is_narrower_load && size < target_size) {
d895a0f1
IL
9948 u8 shift = bpf_ctx_narrow_access_offset(
9949 off, size, size_default) * 8;
46f53a65
AI
9950 if (ctx_field_size <= 4) {
9951 if (shift)
9952 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
9953 insn->dst_reg,
9954 shift);
31fd8581 9955 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
f96da094 9956 (1 << size * 8) - 1);
46f53a65
AI
9957 } else {
9958 if (shift)
9959 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
9960 insn->dst_reg,
9961 shift);
31fd8581 9962 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
e2f7fc0a 9963 (1ULL << size * 8) - 1);
46f53a65 9964 }
31fd8581 9965 }
9bac3d6d 9966
8041902d 9967 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
9bac3d6d
AS
9968 if (!new_prog)
9969 return -ENOMEM;
9970
3df126f3 9971 delta += cnt - 1;
9bac3d6d
AS
9972
9973 /* keep walking new program and skip insns we just inserted */
9974 env->prog = new_prog;
3df126f3 9975 insn = new_prog->insnsi + i + delta;
9bac3d6d
AS
9976 }
9977
9978 return 0;
9979}
9980
1c2a088a
AS
9981static int jit_subprogs(struct bpf_verifier_env *env)
9982{
9983 struct bpf_prog *prog = env->prog, **func, *tmp;
9984 int i, j, subprog_start, subprog_end = 0, len, subprog;
7105e828 9985 struct bpf_insn *insn;
1c2a088a 9986 void *old_bpf_func;
c4c0bdc0 9987 int err, num_exentries;
1c2a088a 9988
f910cefa 9989 if (env->subprog_cnt <= 1)
1c2a088a
AS
9990 return 0;
9991
7105e828 9992 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
1c2a088a
AS
9993 if (insn->code != (BPF_JMP | BPF_CALL) ||
9994 insn->src_reg != BPF_PSEUDO_CALL)
9995 continue;
c7a89784
DB
9996 /* Upon error here we cannot fall back to interpreter but
9997 * need a hard reject of the program. Thus -EFAULT is
9998 * propagated in any case.
9999 */
1c2a088a
AS
10000 subprog = find_subprog(env, i + insn->imm + 1);
10001 if (subprog < 0) {
10002 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
10003 i + insn->imm + 1);
10004 return -EFAULT;
10005 }
10006 /* temporarily remember subprog id inside insn instead of
10007 * aux_data, since next loop will split up all insns into funcs
10008 */
f910cefa 10009 insn->off = subprog;
1c2a088a
AS
10010 /* remember original imm in case JIT fails and fallback
10011 * to interpreter will be needed
10012 */
10013 env->insn_aux_data[i].call_imm = insn->imm;
10014 /* point imm to __bpf_call_base+1 from JITs point of view */
10015 insn->imm = 1;
10016 }
10017
c454a46b
MKL
10018 err = bpf_prog_alloc_jited_linfo(prog);
10019 if (err)
10020 goto out_undo_insn;
10021
10022 err = -ENOMEM;
6396bb22 10023 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
1c2a088a 10024 if (!func)
c7a89784 10025 goto out_undo_insn;
1c2a088a 10026
f910cefa 10027 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a 10028 subprog_start = subprog_end;
4cb3d99c 10029 subprog_end = env->subprog_info[i + 1].start;
1c2a088a
AS
10030
10031 len = subprog_end - subprog_start;
492ecee8
AS
10032 /* BPF_PROG_RUN doesn't call subprogs directly,
10033 * hence main prog stats include the runtime of subprogs.
10034 * subprogs don't have IDs and not reachable via prog_get_next_id
10035 * func[i]->aux->stats will never be accessed and stays NULL
10036 */
10037 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
1c2a088a
AS
10038 if (!func[i])
10039 goto out_free;
10040 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
10041 len * sizeof(struct bpf_insn));
4f74d809 10042 func[i]->type = prog->type;
1c2a088a 10043 func[i]->len = len;
4f74d809
DB
10044 if (bpf_prog_calc_tag(func[i]))
10045 goto out_free;
1c2a088a 10046 func[i]->is_func = 1;
ba64e7d8
YS
10047 func[i]->aux->func_idx = i;
10048 /* the btf and func_info will be freed only at prog->aux */
10049 func[i]->aux->btf = prog->aux->btf;
10050 func[i]->aux->func_info = prog->aux->func_info;
10051
1c2a088a
AS
10052 /* Use bpf_prog_F_tag to indicate functions in stack traces.
10053 * Long term would need debug info to populate names
10054 */
10055 func[i]->aux->name[0] = 'F';
9c8105bd 10056 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
1c2a088a 10057 func[i]->jit_requested = 1;
c454a46b
MKL
10058 func[i]->aux->linfo = prog->aux->linfo;
10059 func[i]->aux->nr_linfo = prog->aux->nr_linfo;
10060 func[i]->aux->jited_linfo = prog->aux->jited_linfo;
10061 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
c4c0bdc0
YS
10062 num_exentries = 0;
10063 insn = func[i]->insnsi;
10064 for (j = 0; j < func[i]->len; j++, insn++) {
10065 if (BPF_CLASS(insn->code) == BPF_LDX &&
10066 BPF_MODE(insn->code) == BPF_PROBE_MEM)
10067 num_exentries++;
10068 }
10069 func[i]->aux->num_exentries = num_exentries;
1c2a088a
AS
10070 func[i] = bpf_int_jit_compile(func[i]);
10071 if (!func[i]->jited) {
10072 err = -ENOTSUPP;
10073 goto out_free;
10074 }
10075 cond_resched();
10076 }
10077 /* at this point all bpf functions were successfully JITed
10078 * now populate all bpf_calls with correct addresses and
10079 * run last pass of JIT
10080 */
f910cefa 10081 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a
AS
10082 insn = func[i]->insnsi;
10083 for (j = 0; j < func[i]->len; j++, insn++) {
10084 if (insn->code != (BPF_JMP | BPF_CALL) ||
10085 insn->src_reg != BPF_PSEUDO_CALL)
10086 continue;
10087 subprog = insn->off;
0d306c31
PB
10088 insn->imm = BPF_CAST_CALL(func[subprog]->bpf_func) -
10089 __bpf_call_base;
1c2a088a 10090 }
2162fed4
SD
10091
10092 /* we use the aux data to keep a list of the start addresses
10093 * of the JITed images for each function in the program
10094 *
10095 * for some architectures, such as powerpc64, the imm field
10096 * might not be large enough to hold the offset of the start
10097 * address of the callee's JITed image from __bpf_call_base
10098 *
10099 * in such cases, we can lookup the start address of a callee
10100 * by using its subprog id, available from the off field of
10101 * the call instruction, as an index for this list
10102 */
10103 func[i]->aux->func = func;
10104 func[i]->aux->func_cnt = env->subprog_cnt;
1c2a088a 10105 }
f910cefa 10106 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a
AS
10107 old_bpf_func = func[i]->bpf_func;
10108 tmp = bpf_int_jit_compile(func[i]);
10109 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
10110 verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
c7a89784 10111 err = -ENOTSUPP;
1c2a088a
AS
10112 goto out_free;
10113 }
10114 cond_resched();
10115 }
10116
10117 /* finally lock prog and jit images for all functions and
10118 * populate kallsysm
10119 */
f910cefa 10120 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a
AS
10121 bpf_prog_lock_ro(func[i]);
10122 bpf_prog_kallsyms_add(func[i]);
10123 }
7105e828
DB
10124
10125 /* Last step: make now unused interpreter insns from main
10126 * prog consistent for later dump requests, so they can
10127 * later look the same as if they were interpreted only.
10128 */
10129 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
7105e828
DB
10130 if (insn->code != (BPF_JMP | BPF_CALL) ||
10131 insn->src_reg != BPF_PSEUDO_CALL)
10132 continue;
10133 insn->off = env->insn_aux_data[i].call_imm;
10134 subprog = find_subprog(env, i + insn->off + 1);
dbecd738 10135 insn->imm = subprog;
7105e828
DB
10136 }
10137
1c2a088a
AS
10138 prog->jited = 1;
10139 prog->bpf_func = func[0]->bpf_func;
10140 prog->aux->func = func;
f910cefa 10141 prog->aux->func_cnt = env->subprog_cnt;
c454a46b 10142 bpf_prog_free_unused_jited_linfo(prog);
1c2a088a
AS
10143 return 0;
10144out_free:
f910cefa 10145 for (i = 0; i < env->subprog_cnt; i++)
1c2a088a
AS
10146 if (func[i])
10147 bpf_jit_free(func[i]);
10148 kfree(func);
c7a89784 10149out_undo_insn:
1c2a088a
AS
10150 /* cleanup main prog to be interpreted */
10151 prog->jit_requested = 0;
10152 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
10153 if (insn->code != (BPF_JMP | BPF_CALL) ||
10154 insn->src_reg != BPF_PSEUDO_CALL)
10155 continue;
10156 insn->off = 0;
10157 insn->imm = env->insn_aux_data[i].call_imm;
10158 }
c454a46b 10159 bpf_prog_free_jited_linfo(prog);
1c2a088a
AS
10160 return err;
10161}
10162
1ea47e01
AS
10163static int fixup_call_args(struct bpf_verifier_env *env)
10164{
19d28fbd 10165#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1ea47e01
AS
10166 struct bpf_prog *prog = env->prog;
10167 struct bpf_insn *insn = prog->insnsi;
10168 int i, depth;
19d28fbd 10169#endif
e4052d06 10170 int err = 0;
1ea47e01 10171
e4052d06
QM
10172 if (env->prog->jit_requested &&
10173 !bpf_prog_is_dev_bound(env->prog->aux)) {
19d28fbd
DM
10174 err = jit_subprogs(env);
10175 if (err == 0)
1c2a088a 10176 return 0;
c7a89784
DB
10177 if (err == -EFAULT)
10178 return err;
19d28fbd
DM
10179 }
10180#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1ea47e01
AS
10181 for (i = 0; i < prog->len; i++, insn++) {
10182 if (insn->code != (BPF_JMP | BPF_CALL) ||
10183 insn->src_reg != BPF_PSEUDO_CALL)
10184 continue;
10185 depth = get_callee_stack_depth(env, insn, i);
10186 if (depth < 0)
10187 return depth;
10188 bpf_patch_call_args(insn, depth);
10189 }
19d28fbd
DM
10190 err = 0;
10191#endif
10192 return err;
1ea47e01
AS
10193}
10194
79741b3b 10195/* fixup insn->imm field of bpf_call instructions
81ed18ab 10196 * and inline eligible helpers as explicit sequence of BPF instructions
e245c5c6
AS
10197 *
10198 * this function is called after eBPF program passed verification
10199 */
79741b3b 10200static int fixup_bpf_calls(struct bpf_verifier_env *env)
e245c5c6 10201{
79741b3b 10202 struct bpf_prog *prog = env->prog;
d2e4c1e6 10203 bool expect_blinding = bpf_jit_blinding_enabled(prog);
79741b3b 10204 struct bpf_insn *insn = prog->insnsi;
e245c5c6 10205 const struct bpf_func_proto *fn;
79741b3b 10206 const int insn_cnt = prog->len;
09772d92 10207 const struct bpf_map_ops *ops;
c93552c4 10208 struct bpf_insn_aux_data *aux;
81ed18ab
AS
10209 struct bpf_insn insn_buf[16];
10210 struct bpf_prog *new_prog;
10211 struct bpf_map *map_ptr;
d2e4c1e6 10212 int i, ret, cnt, delta = 0;
e245c5c6 10213
79741b3b 10214 for (i = 0; i < insn_cnt; i++, insn++) {
f6b1b3bf
DB
10215 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
10216 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
10217 insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
68fda450 10218 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
f6b1b3bf
DB
10219 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
10220 struct bpf_insn mask_and_div[] = {
10221 BPF_MOV32_REG(insn->src_reg, insn->src_reg),
10222 /* Rx div 0 -> 0 */
10223 BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2),
10224 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
10225 BPF_JMP_IMM(BPF_JA, 0, 0, 1),
10226 *insn,
10227 };
10228 struct bpf_insn mask_and_mod[] = {
10229 BPF_MOV32_REG(insn->src_reg, insn->src_reg),
10230 /* Rx mod 0 -> Rx */
10231 BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1),
10232 *insn,
10233 };
10234 struct bpf_insn *patchlet;
10235
10236 if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
10237 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
10238 patchlet = mask_and_div + (is64 ? 1 : 0);
10239 cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0);
10240 } else {
10241 patchlet = mask_and_mod + (is64 ? 1 : 0);
10242 cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0);
10243 }
10244
10245 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
68fda450
AS
10246 if (!new_prog)
10247 return -ENOMEM;
10248
10249 delta += cnt - 1;
10250 env->prog = prog = new_prog;
10251 insn = new_prog->insnsi + i + delta;
10252 continue;
10253 }
10254
e0cea7ce
DB
10255 if (BPF_CLASS(insn->code) == BPF_LD &&
10256 (BPF_MODE(insn->code) == BPF_ABS ||
10257 BPF_MODE(insn->code) == BPF_IND)) {
10258 cnt = env->ops->gen_ld_abs(insn, insn_buf);
10259 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
10260 verbose(env, "bpf verifier is misconfigured\n");
10261 return -EINVAL;
10262 }
10263
10264 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
10265 if (!new_prog)
10266 return -ENOMEM;
10267
10268 delta += cnt - 1;
10269 env->prog = prog = new_prog;
10270 insn = new_prog->insnsi + i + delta;
10271 continue;
10272 }
10273
979d63d5
DB
10274 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
10275 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
10276 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
10277 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
10278 struct bpf_insn insn_buf[16];
10279 struct bpf_insn *patch = &insn_buf[0];
10280 bool issrc, isneg;
10281 u32 off_reg;
10282
10283 aux = &env->insn_aux_data[i + delta];
3612af78
DB
10284 if (!aux->alu_state ||
10285 aux->alu_state == BPF_ALU_NON_POINTER)
979d63d5
DB
10286 continue;
10287
10288 isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
10289 issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
10290 BPF_ALU_SANITIZE_SRC;
10291
10292 off_reg = issrc ? insn->src_reg : insn->dst_reg;
10293 if (isneg)
10294 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
10295 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit - 1);
10296 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
10297 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
10298 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
10299 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
10300 if (issrc) {
10301 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX,
10302 off_reg);
10303 insn->src_reg = BPF_REG_AX;
10304 } else {
10305 *patch++ = BPF_ALU64_REG(BPF_AND, off_reg,
10306 BPF_REG_AX);
10307 }
10308 if (isneg)
10309 insn->code = insn->code == code_add ?
10310 code_sub : code_add;
10311 *patch++ = *insn;
10312 if (issrc && isneg)
10313 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
10314 cnt = patch - insn_buf;
10315
10316 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
10317 if (!new_prog)
10318 return -ENOMEM;
10319
10320 delta += cnt - 1;
10321 env->prog = prog = new_prog;
10322 insn = new_prog->insnsi + i + delta;
10323 continue;
10324 }
10325
79741b3b
AS
10326 if (insn->code != (BPF_JMP | BPF_CALL))
10327 continue;
cc8b0b92
AS
10328 if (insn->src_reg == BPF_PSEUDO_CALL)
10329 continue;
e245c5c6 10330
79741b3b
AS
10331 if (insn->imm == BPF_FUNC_get_route_realm)
10332 prog->dst_needed = 1;
10333 if (insn->imm == BPF_FUNC_get_prandom_u32)
10334 bpf_user_rnd_init_once();
9802d865
JB
10335 if (insn->imm == BPF_FUNC_override_return)
10336 prog->kprobe_override = 1;
79741b3b 10337 if (insn->imm == BPF_FUNC_tail_call) {
7b9f6da1
DM
10338 /* If we tail call into other programs, we
10339 * cannot make any assumptions since they can
10340 * be replaced dynamically during runtime in
10341 * the program array.
10342 */
10343 prog->cb_access = 1;
80a58d02 10344 env->prog->aux->stack_depth = MAX_BPF_STACK;
e647815a 10345 env->prog->aux->max_pkt_offset = MAX_PACKET_OFF;
7b9f6da1 10346
79741b3b
AS
10347 /* mark bpf_tail_call as different opcode to avoid
10348 * conditional branch in the interpeter for every normal
10349 * call and to prevent accidental JITing by JIT compiler
10350 * that doesn't support bpf_tail_call yet
e245c5c6 10351 */
79741b3b 10352 insn->imm = 0;
71189fa9 10353 insn->code = BPF_JMP | BPF_TAIL_CALL;
b2157399 10354
c93552c4 10355 aux = &env->insn_aux_data[i + delta];
2c78ee89 10356 if (env->bpf_capable && !expect_blinding &&
cc52d914 10357 prog->jit_requested &&
d2e4c1e6
DB
10358 !bpf_map_key_poisoned(aux) &&
10359 !bpf_map_ptr_poisoned(aux) &&
10360 !bpf_map_ptr_unpriv(aux)) {
10361 struct bpf_jit_poke_descriptor desc = {
10362 .reason = BPF_POKE_REASON_TAIL_CALL,
10363 .tail_call.map = BPF_MAP_PTR(aux->map_ptr_state),
10364 .tail_call.key = bpf_map_key_immediate(aux),
10365 };
10366
10367 ret = bpf_jit_add_poke_descriptor(prog, &desc);
10368 if (ret < 0) {
10369 verbose(env, "adding tail call poke descriptor failed\n");
10370 return ret;
10371 }
10372
10373 insn->imm = ret + 1;
10374 continue;
10375 }
10376
c93552c4
DB
10377 if (!bpf_map_ptr_unpriv(aux))
10378 continue;
10379
b2157399
AS
10380 /* instead of changing every JIT dealing with tail_call
10381 * emit two extra insns:
10382 * if (index >= max_entries) goto out;
10383 * index &= array->index_mask;
10384 * to avoid out-of-bounds cpu speculation
10385 */
c93552c4 10386 if (bpf_map_ptr_poisoned(aux)) {
40950343 10387 verbose(env, "tail_call abusing map_ptr\n");
b2157399
AS
10388 return -EINVAL;
10389 }
c93552c4 10390
d2e4c1e6 10391 map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
b2157399
AS
10392 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
10393 map_ptr->max_entries, 2);
10394 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
10395 container_of(map_ptr,
10396 struct bpf_array,
10397 map)->index_mask);
10398 insn_buf[2] = *insn;
10399 cnt = 3;
10400 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
10401 if (!new_prog)
10402 return -ENOMEM;
10403
10404 delta += cnt - 1;
10405 env->prog = prog = new_prog;
10406 insn = new_prog->insnsi + i + delta;
79741b3b
AS
10407 continue;
10408 }
e245c5c6 10409
89c63074 10410 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
09772d92
DB
10411 * and other inlining handlers are currently limited to 64 bit
10412 * only.
89c63074 10413 */
60b58afc 10414 if (prog->jit_requested && BITS_PER_LONG == 64 &&
09772d92
DB
10415 (insn->imm == BPF_FUNC_map_lookup_elem ||
10416 insn->imm == BPF_FUNC_map_update_elem ||
84430d42
DB
10417 insn->imm == BPF_FUNC_map_delete_elem ||
10418 insn->imm == BPF_FUNC_map_push_elem ||
10419 insn->imm == BPF_FUNC_map_pop_elem ||
10420 insn->imm == BPF_FUNC_map_peek_elem)) {
c93552c4
DB
10421 aux = &env->insn_aux_data[i + delta];
10422 if (bpf_map_ptr_poisoned(aux))
10423 goto patch_call_imm;
10424
d2e4c1e6 10425 map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
09772d92
DB
10426 ops = map_ptr->ops;
10427 if (insn->imm == BPF_FUNC_map_lookup_elem &&
10428 ops->map_gen_lookup) {
10429 cnt = ops->map_gen_lookup(map_ptr, insn_buf);
10430 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
10431 verbose(env, "bpf verifier is misconfigured\n");
10432 return -EINVAL;
10433 }
81ed18ab 10434
09772d92
DB
10435 new_prog = bpf_patch_insn_data(env, i + delta,
10436 insn_buf, cnt);
10437 if (!new_prog)
10438 return -ENOMEM;
81ed18ab 10439
09772d92
DB
10440 delta += cnt - 1;
10441 env->prog = prog = new_prog;
10442 insn = new_prog->insnsi + i + delta;
10443 continue;
10444 }
81ed18ab 10445
09772d92
DB
10446 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
10447 (void *(*)(struct bpf_map *map, void *key))NULL));
10448 BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
10449 (int (*)(struct bpf_map *map, void *key))NULL));
10450 BUILD_BUG_ON(!__same_type(ops->map_update_elem,
10451 (int (*)(struct bpf_map *map, void *key, void *value,
10452 u64 flags))NULL));
84430d42
DB
10453 BUILD_BUG_ON(!__same_type(ops->map_push_elem,
10454 (int (*)(struct bpf_map *map, void *value,
10455 u64 flags))NULL));
10456 BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
10457 (int (*)(struct bpf_map *map, void *value))NULL));
10458 BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
10459 (int (*)(struct bpf_map *map, void *value))NULL));
10460
09772d92
DB
10461 switch (insn->imm) {
10462 case BPF_FUNC_map_lookup_elem:
10463 insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) -
10464 __bpf_call_base;
10465 continue;
10466 case BPF_FUNC_map_update_elem:
10467 insn->imm = BPF_CAST_CALL(ops->map_update_elem) -
10468 __bpf_call_base;
10469 continue;
10470 case BPF_FUNC_map_delete_elem:
10471 insn->imm = BPF_CAST_CALL(ops->map_delete_elem) -
10472 __bpf_call_base;
10473 continue;
84430d42
DB
10474 case BPF_FUNC_map_push_elem:
10475 insn->imm = BPF_CAST_CALL(ops->map_push_elem) -
10476 __bpf_call_base;
10477 continue;
10478 case BPF_FUNC_map_pop_elem:
10479 insn->imm = BPF_CAST_CALL(ops->map_pop_elem) -
10480 __bpf_call_base;
10481 continue;
10482 case BPF_FUNC_map_peek_elem:
10483 insn->imm = BPF_CAST_CALL(ops->map_peek_elem) -
10484 __bpf_call_base;
10485 continue;
09772d92 10486 }
81ed18ab 10487
09772d92 10488 goto patch_call_imm;
81ed18ab
AS
10489 }
10490
5576b991
MKL
10491 if (prog->jit_requested && BITS_PER_LONG == 64 &&
10492 insn->imm == BPF_FUNC_jiffies64) {
10493 struct bpf_insn ld_jiffies_addr[2] = {
10494 BPF_LD_IMM64(BPF_REG_0,
10495 (unsigned long)&jiffies),
10496 };
10497
10498 insn_buf[0] = ld_jiffies_addr[0];
10499 insn_buf[1] = ld_jiffies_addr[1];
10500 insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0,
10501 BPF_REG_0, 0);
10502 cnt = 3;
10503
10504 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
10505 cnt);
10506 if (!new_prog)
10507 return -ENOMEM;
10508
10509 delta += cnt - 1;
10510 env->prog = prog = new_prog;
10511 insn = new_prog->insnsi + i + delta;
10512 continue;
10513 }
10514
81ed18ab 10515patch_call_imm:
5e43f899 10516 fn = env->ops->get_func_proto(insn->imm, env->prog);
79741b3b
AS
10517 /* all functions that have prototype and verifier allowed
10518 * programs to call them, must be real in-kernel functions
10519 */
10520 if (!fn->func) {
61bd5218
JK
10521 verbose(env,
10522 "kernel subsystem misconfigured func %s#%d\n",
79741b3b
AS
10523 func_id_name(insn->imm), insn->imm);
10524 return -EFAULT;
e245c5c6 10525 }
79741b3b 10526 insn->imm = fn->func - __bpf_call_base;
e245c5c6 10527 }
e245c5c6 10528
d2e4c1e6
DB
10529 /* Since poke tab is now finalized, publish aux to tracker. */
10530 for (i = 0; i < prog->aux->size_poke_tab; i++) {
10531 map_ptr = prog->aux->poke_tab[i].tail_call.map;
10532 if (!map_ptr->ops->map_poke_track ||
10533 !map_ptr->ops->map_poke_untrack ||
10534 !map_ptr->ops->map_poke_run) {
10535 verbose(env, "bpf verifier is misconfigured\n");
10536 return -EINVAL;
10537 }
10538
10539 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
10540 if (ret < 0) {
10541 verbose(env, "tracking tail call prog failed\n");
10542 return ret;
10543 }
10544 }
10545
79741b3b
AS
10546 return 0;
10547}
e245c5c6 10548
58e2af8b 10549static void free_states(struct bpf_verifier_env *env)
f1bca824 10550{
58e2af8b 10551 struct bpf_verifier_state_list *sl, *sln;
f1bca824
AS
10552 int i;
10553
9f4686c4
AS
10554 sl = env->free_list;
10555 while (sl) {
10556 sln = sl->next;
10557 free_verifier_state(&sl->state, false);
10558 kfree(sl);
10559 sl = sln;
10560 }
51c39bb1 10561 env->free_list = NULL;
9f4686c4 10562
f1bca824
AS
10563 if (!env->explored_states)
10564 return;
10565
dc2a4ebc 10566 for (i = 0; i < state_htab_size(env); i++) {
f1bca824
AS
10567 sl = env->explored_states[i];
10568
a8f500af
AS
10569 while (sl) {
10570 sln = sl->next;
10571 free_verifier_state(&sl->state, false);
10572 kfree(sl);
10573 sl = sln;
10574 }
51c39bb1 10575 env->explored_states[i] = NULL;
f1bca824 10576 }
51c39bb1 10577}
f1bca824 10578
51c39bb1
AS
10579/* The verifier is using insn_aux_data[] to store temporary data during
10580 * verification and to store information for passes that run after the
10581 * verification like dead code sanitization. do_check_common() for subprogram N
10582 * may analyze many other subprograms. sanitize_insn_aux_data() clears all
10583 * temporary data after do_check_common() finds that subprogram N cannot be
10584 * verified independently. pass_cnt counts the number of times
10585 * do_check_common() was run and insn->aux->seen tells the pass number
10586 * insn_aux_data was touched. These variables are compared to clear temporary
10587 * data from failed pass. For testing and experiments do_check_common() can be
10588 * run multiple times even when prior attempt to verify is unsuccessful.
10589 */
10590static void sanitize_insn_aux_data(struct bpf_verifier_env *env)
10591{
10592 struct bpf_insn *insn = env->prog->insnsi;
10593 struct bpf_insn_aux_data *aux;
10594 int i, class;
10595
10596 for (i = 0; i < env->prog->len; i++) {
10597 class = BPF_CLASS(insn[i].code);
10598 if (class != BPF_LDX && class != BPF_STX)
10599 continue;
10600 aux = &env->insn_aux_data[i];
10601 if (aux->seen != env->pass_cnt)
10602 continue;
10603 memset(aux, 0, offsetof(typeof(*aux), orig_idx));
10604 }
f1bca824
AS
10605}
10606
51c39bb1
AS
10607static int do_check_common(struct bpf_verifier_env *env, int subprog)
10608{
6f8a57cc 10609 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
51c39bb1
AS
10610 struct bpf_verifier_state *state;
10611 struct bpf_reg_state *regs;
10612 int ret, i;
10613
10614 env->prev_linfo = NULL;
10615 env->pass_cnt++;
10616
10617 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
10618 if (!state)
10619 return -ENOMEM;
10620 state->curframe = 0;
10621 state->speculative = false;
10622 state->branches = 1;
10623 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
10624 if (!state->frame[0]) {
10625 kfree(state);
10626 return -ENOMEM;
10627 }
10628 env->cur_state = state;
10629 init_func_state(env, state->frame[0],
10630 BPF_MAIN_FUNC /* callsite */,
10631 0 /* frameno */,
10632 subprog);
10633
10634 regs = state->frame[state->curframe]->regs;
be8704ff 10635 if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) {
51c39bb1
AS
10636 ret = btf_prepare_func_args(env, subprog, regs);
10637 if (ret)
10638 goto out;
10639 for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
10640 if (regs[i].type == PTR_TO_CTX)
10641 mark_reg_known_zero(env, regs, i);
10642 else if (regs[i].type == SCALAR_VALUE)
10643 mark_reg_unknown(env, regs, i);
10644 }
10645 } else {
10646 /* 1st arg to a function */
10647 regs[BPF_REG_1].type = PTR_TO_CTX;
10648 mark_reg_known_zero(env, regs, BPF_REG_1);
10649 ret = btf_check_func_arg_match(env, subprog, regs);
10650 if (ret == -EFAULT)
10651 /* unlikely verifier bug. abort.
10652 * ret == 0 and ret < 0 are sadly acceptable for
10653 * main() function due to backward compatibility.
10654 * Like socket filter program may be written as:
10655 * int bpf_prog(struct pt_regs *ctx)
10656 * and never dereference that ctx in the program.
10657 * 'struct pt_regs' is a type mismatch for socket
10658 * filter that should be using 'struct __sk_buff'.
10659 */
10660 goto out;
10661 }
10662
10663 ret = do_check(env);
10664out:
f59bbfc2
AS
10665 /* check for NULL is necessary, since cur_state can be freed inside
10666 * do_check() under memory pressure.
10667 */
10668 if (env->cur_state) {
10669 free_verifier_state(env->cur_state, true);
10670 env->cur_state = NULL;
10671 }
6f8a57cc
AN
10672 while (!pop_stack(env, NULL, NULL, false));
10673 if (!ret && pop_log)
10674 bpf_vlog_reset(&env->log, 0);
51c39bb1
AS
10675 free_states(env);
10676 if (ret)
10677 /* clean aux data in case subprog was rejected */
10678 sanitize_insn_aux_data(env);
10679 return ret;
10680}
10681
10682/* Verify all global functions in a BPF program one by one based on their BTF.
10683 * All global functions must pass verification. Otherwise the whole program is rejected.
10684 * Consider:
10685 * int bar(int);
10686 * int foo(int f)
10687 * {
10688 * return bar(f);
10689 * }
10690 * int bar(int b)
10691 * {
10692 * ...
10693 * }
10694 * foo() will be verified first for R1=any_scalar_value. During verification it
10695 * will be assumed that bar() already verified successfully and call to bar()
10696 * from foo() will be checked for type match only. Later bar() will be verified
10697 * independently to check that it's safe for R1=any_scalar_value.
10698 */
10699static int do_check_subprogs(struct bpf_verifier_env *env)
10700{
10701 struct bpf_prog_aux *aux = env->prog->aux;
10702 int i, ret;
10703
10704 if (!aux->func_info)
10705 return 0;
10706
10707 for (i = 1; i < env->subprog_cnt; i++) {
10708 if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL)
10709 continue;
10710 env->insn_idx = env->subprog_info[i].start;
10711 WARN_ON_ONCE(env->insn_idx == 0);
10712 ret = do_check_common(env, i);
10713 if (ret) {
10714 return ret;
10715 } else if (env->log.level & BPF_LOG_LEVEL) {
10716 verbose(env,
10717 "Func#%d is safe for any args that match its prototype\n",
10718 i);
10719 }
10720 }
10721 return 0;
10722}
10723
10724static int do_check_main(struct bpf_verifier_env *env)
10725{
10726 int ret;
10727
10728 env->insn_idx = 0;
10729 ret = do_check_common(env, 0);
10730 if (!ret)
10731 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
10732 return ret;
10733}
10734
10735
06ee7115
AS
10736static void print_verification_stats(struct bpf_verifier_env *env)
10737{
10738 int i;
10739
10740 if (env->log.level & BPF_LOG_STATS) {
10741 verbose(env, "verification time %lld usec\n",
10742 div_u64(env->verification_time, 1000));
10743 verbose(env, "stack depth ");
10744 for (i = 0; i < env->subprog_cnt; i++) {
10745 u32 depth = env->subprog_info[i].stack_depth;
10746
10747 verbose(env, "%d", depth);
10748 if (i + 1 < env->subprog_cnt)
10749 verbose(env, "+");
10750 }
10751 verbose(env, "\n");
10752 }
10753 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
10754 "total_states %d peak_states %d mark_read %d\n",
10755 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
10756 env->max_states_per_insn, env->total_states,
10757 env->peak_states, env->longest_mark_read_walk);
f1bca824
AS
10758}
10759
27ae7997
MKL
10760static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
10761{
10762 const struct btf_type *t, *func_proto;
10763 const struct bpf_struct_ops *st_ops;
10764 const struct btf_member *member;
10765 struct bpf_prog *prog = env->prog;
10766 u32 btf_id, member_idx;
10767 const char *mname;
10768
10769 btf_id = prog->aux->attach_btf_id;
10770 st_ops = bpf_struct_ops_find(btf_id);
10771 if (!st_ops) {
10772 verbose(env, "attach_btf_id %u is not a supported struct\n",
10773 btf_id);
10774 return -ENOTSUPP;
10775 }
10776
10777 t = st_ops->type;
10778 member_idx = prog->expected_attach_type;
10779 if (member_idx >= btf_type_vlen(t)) {
10780 verbose(env, "attach to invalid member idx %u of struct %s\n",
10781 member_idx, st_ops->name);
10782 return -EINVAL;
10783 }
10784
10785 member = &btf_type_member(t)[member_idx];
10786 mname = btf_name_by_offset(btf_vmlinux, member->name_off);
10787 func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type,
10788 NULL);
10789 if (!func_proto) {
10790 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n",
10791 mname, member_idx, st_ops->name);
10792 return -EINVAL;
10793 }
10794
10795 if (st_ops->check_member) {
10796 int err = st_ops->check_member(t, member);
10797
10798 if (err) {
10799 verbose(env, "attach to unsupported member %s of struct %s\n",
10800 mname, st_ops->name);
10801 return err;
10802 }
10803 }
10804
10805 prog->aux->attach_func_proto = func_proto;
10806 prog->aux->attach_func_name = mname;
10807 env->ops = st_ops->verifier_ops;
10808
10809 return 0;
10810}
6ba43b76
KS
10811#define SECURITY_PREFIX "security_"
10812
18644cec 10813static int check_attach_modify_return(struct bpf_prog *prog, unsigned long addr)
6ba43b76 10814{
69191754
KS
10815 if (within_error_injection_list(addr) ||
10816 !strncmp(SECURITY_PREFIX, prog->aux->attach_func_name,
10817 sizeof(SECURITY_PREFIX) - 1))
6ba43b76 10818 return 0;
6ba43b76 10819
6ba43b76
KS
10820 return -EINVAL;
10821}
27ae7997 10822
38207291
MKL
10823static int check_attach_btf_id(struct bpf_verifier_env *env)
10824{
10825 struct bpf_prog *prog = env->prog;
be8704ff 10826 bool prog_extension = prog->type == BPF_PROG_TYPE_EXT;
5b92a28a 10827 struct bpf_prog *tgt_prog = prog->aux->linked_prog;
38207291 10828 u32 btf_id = prog->aux->attach_btf_id;
f1b9509c 10829 const char prefix[] = "btf_trace_";
15d83c4d 10830 struct btf_func_model fmodel;
5b92a28a 10831 int ret = 0, subprog = -1, i;
fec56f58 10832 struct bpf_trampoline *tr;
38207291 10833 const struct btf_type *t;
5b92a28a 10834 bool conservative = true;
38207291 10835 const char *tname;
5b92a28a 10836 struct btf *btf;
fec56f58 10837 long addr;
5b92a28a 10838 u64 key;
38207291 10839
27ae7997
MKL
10840 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS)
10841 return check_struct_ops_btf_id(env);
10842
9e4e01df
KS
10843 if (prog->type != BPF_PROG_TYPE_TRACING &&
10844 prog->type != BPF_PROG_TYPE_LSM &&
10845 !prog_extension)
f1b9509c 10846 return 0;
38207291 10847
f1b9509c
AS
10848 if (!btf_id) {
10849 verbose(env, "Tracing programs must provide btf_id\n");
10850 return -EINVAL;
10851 }
5b92a28a
AS
10852 btf = bpf_prog_get_target_btf(prog);
10853 if (!btf) {
10854 verbose(env,
10855 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
10856 return -EINVAL;
10857 }
10858 t = btf_type_by_id(btf, btf_id);
f1b9509c
AS
10859 if (!t) {
10860 verbose(env, "attach_btf_id %u is invalid\n", btf_id);
10861 return -EINVAL;
10862 }
5b92a28a 10863 tname = btf_name_by_offset(btf, t->name_off);
f1b9509c
AS
10864 if (!tname) {
10865 verbose(env, "attach_btf_id %u doesn't have a name\n", btf_id);
10866 return -EINVAL;
10867 }
5b92a28a
AS
10868 if (tgt_prog) {
10869 struct bpf_prog_aux *aux = tgt_prog->aux;
10870
10871 for (i = 0; i < aux->func_info_cnt; i++)
10872 if (aux->func_info[i].type_id == btf_id) {
10873 subprog = i;
10874 break;
10875 }
10876 if (subprog == -1) {
10877 verbose(env, "Subprog %s doesn't exist\n", tname);
10878 return -EINVAL;
10879 }
10880 conservative = aux->func_info_aux[subprog].unreliable;
be8704ff
AS
10881 if (prog_extension) {
10882 if (conservative) {
10883 verbose(env,
10884 "Cannot replace static functions\n");
10885 return -EINVAL;
10886 }
10887 if (!prog->jit_requested) {
10888 verbose(env,
10889 "Extension programs should be JITed\n");
10890 return -EINVAL;
10891 }
10892 env->ops = bpf_verifier_ops[tgt_prog->type];
03f87c0b 10893 prog->expected_attach_type = tgt_prog->expected_attach_type;
be8704ff
AS
10894 }
10895 if (!tgt_prog->jited) {
10896 verbose(env, "Can attach to only JITed progs\n");
10897 return -EINVAL;
10898 }
10899 if (tgt_prog->type == prog->type) {
10900 /* Cannot fentry/fexit another fentry/fexit program.
10901 * Cannot attach program extension to another extension.
10902 * It's ok to attach fentry/fexit to extension program.
10903 */
10904 verbose(env, "Cannot recursively attach\n");
10905 return -EINVAL;
10906 }
10907 if (tgt_prog->type == BPF_PROG_TYPE_TRACING &&
10908 prog_extension &&
10909 (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY ||
10910 tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) {
10911 /* Program extensions can extend all program types
10912 * except fentry/fexit. The reason is the following.
10913 * The fentry/fexit programs are used for performance
10914 * analysis, stats and can be attached to any program
10915 * type except themselves. When extension program is
10916 * replacing XDP function it is necessary to allow
10917 * performance analysis of all functions. Both original
10918 * XDP program and its program extension. Hence
10919 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is
10920 * allowed. If extending of fentry/fexit was allowed it
10921 * would be possible to create long call chain
10922 * fentry->extension->fentry->extension beyond
10923 * reasonable stack size. Hence extending fentry is not
10924 * allowed.
10925 */
10926 verbose(env, "Cannot extend fentry/fexit\n");
10927 return -EINVAL;
10928 }
5b92a28a
AS
10929 key = ((u64)aux->id) << 32 | btf_id;
10930 } else {
be8704ff
AS
10931 if (prog_extension) {
10932 verbose(env, "Cannot replace kernel functions\n");
10933 return -EINVAL;
10934 }
5b92a28a
AS
10935 key = btf_id;
10936 }
f1b9509c
AS
10937
10938 switch (prog->expected_attach_type) {
10939 case BPF_TRACE_RAW_TP:
5b92a28a
AS
10940 if (tgt_prog) {
10941 verbose(env,
10942 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
10943 return -EINVAL;
10944 }
38207291
MKL
10945 if (!btf_type_is_typedef(t)) {
10946 verbose(env, "attach_btf_id %u is not a typedef\n",
10947 btf_id);
10948 return -EINVAL;
10949 }
f1b9509c 10950 if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
38207291
MKL
10951 verbose(env, "attach_btf_id %u points to wrong type name %s\n",
10952 btf_id, tname);
10953 return -EINVAL;
10954 }
10955 tname += sizeof(prefix) - 1;
5b92a28a 10956 t = btf_type_by_id(btf, t->type);
38207291
MKL
10957 if (!btf_type_is_ptr(t))
10958 /* should never happen in valid vmlinux build */
10959 return -EINVAL;
5b92a28a 10960 t = btf_type_by_id(btf, t->type);
38207291
MKL
10961 if (!btf_type_is_func_proto(t))
10962 /* should never happen in valid vmlinux build */
10963 return -EINVAL;
10964
10965 /* remember two read only pointers that are valid for
10966 * the life time of the kernel
10967 */
10968 prog->aux->attach_func_name = tname;
10969 prog->aux->attach_func_proto = t;
10970 prog->aux->attach_btf_trace = true;
f1b9509c 10971 return 0;
15d83c4d
YS
10972 case BPF_TRACE_ITER:
10973 if (!btf_type_is_func(t)) {
10974 verbose(env, "attach_btf_id %u is not a function\n",
10975 btf_id);
10976 return -EINVAL;
10977 }
10978 t = btf_type_by_id(btf, t->type);
10979 if (!btf_type_is_func_proto(t))
10980 return -EINVAL;
10981 prog->aux->attach_func_name = tname;
10982 prog->aux->attach_func_proto = t;
10983 if (!bpf_iter_prog_supported(prog))
10984 return -EINVAL;
10985 ret = btf_distill_func_proto(&env->log, btf, t,
10986 tname, &fmodel);
10987 return ret;
be8704ff
AS
10988 default:
10989 if (!prog_extension)
10990 return -EINVAL;
10991 /* fallthrough */
ae240823 10992 case BPF_MODIFY_RETURN:
9e4e01df 10993 case BPF_LSM_MAC:
fec56f58
AS
10994 case BPF_TRACE_FENTRY:
10995 case BPF_TRACE_FEXIT:
9e4e01df
KS
10996 prog->aux->attach_func_name = tname;
10997 if (prog->type == BPF_PROG_TYPE_LSM) {
10998 ret = bpf_lsm_verify_prog(&env->log, prog);
10999 if (ret < 0)
11000 return ret;
11001 }
11002
fec56f58
AS
11003 if (!btf_type_is_func(t)) {
11004 verbose(env, "attach_btf_id %u is not a function\n",
11005 btf_id);
11006 return -EINVAL;
11007 }
be8704ff
AS
11008 if (prog_extension &&
11009 btf_check_type_match(env, prog, btf, t))
11010 return -EINVAL;
5b92a28a 11011 t = btf_type_by_id(btf, t->type);
fec56f58
AS
11012 if (!btf_type_is_func_proto(t))
11013 return -EINVAL;
5b92a28a 11014 tr = bpf_trampoline_lookup(key);
fec56f58
AS
11015 if (!tr)
11016 return -ENOMEM;
5b92a28a 11017 /* t is either vmlinux type or another program's type */
fec56f58
AS
11018 prog->aux->attach_func_proto = t;
11019 mutex_lock(&tr->mutex);
11020 if (tr->func.addr) {
11021 prog->aux->trampoline = tr;
11022 goto out;
11023 }
5b92a28a
AS
11024 if (tgt_prog && conservative) {
11025 prog->aux->attach_func_proto = NULL;
11026 t = NULL;
11027 }
11028 ret = btf_distill_func_proto(&env->log, btf, t,
fec56f58
AS
11029 tname, &tr->func.model);
11030 if (ret < 0)
11031 goto out;
5b92a28a 11032 if (tgt_prog) {
e9eeec58
YS
11033 if (subprog == 0)
11034 addr = (long) tgt_prog->bpf_func;
11035 else
11036 addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
5b92a28a
AS
11037 } else {
11038 addr = kallsyms_lookup_name(tname);
11039 if (!addr) {
11040 verbose(env,
11041 "The address of function %s cannot be found\n",
11042 tname);
11043 ret = -ENOENT;
11044 goto out;
11045 }
fec56f58 11046 }
18644cec
AS
11047
11048 if (prog->expected_attach_type == BPF_MODIFY_RETURN) {
11049 ret = check_attach_modify_return(prog, addr);
11050 if (ret)
11051 verbose(env, "%s() is not modifiable\n",
11052 prog->aux->attach_func_name);
11053 }
11054
11055 if (ret)
11056 goto out;
fec56f58
AS
11057 tr->func.addr = (void *)addr;
11058 prog->aux->trampoline = tr;
11059out:
11060 mutex_unlock(&tr->mutex);
11061 if (ret)
11062 bpf_trampoline_put(tr);
11063 return ret;
38207291 11064 }
38207291
MKL
11065}
11066
838e9690
YS
11067int bpf_check(struct bpf_prog **prog, union bpf_attr *attr,
11068 union bpf_attr __user *uattr)
51580e79 11069{
06ee7115 11070 u64 start_time = ktime_get_ns();
58e2af8b 11071 struct bpf_verifier_env *env;
b9193c1b 11072 struct bpf_verifier_log *log;
9e4c24e7 11073 int i, len, ret = -EINVAL;
e2ae4ca2 11074 bool is_priv;
51580e79 11075
eba0c929
AB
11076 /* no program is valid */
11077 if (ARRAY_SIZE(bpf_verifier_ops) == 0)
11078 return -EINVAL;
11079
58e2af8b 11080 /* 'struct bpf_verifier_env' can be global, but since it's not small,
cbd35700
AS
11081 * allocate/free it every time bpf_check() is called
11082 */
58e2af8b 11083 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
cbd35700
AS
11084 if (!env)
11085 return -ENOMEM;
61bd5218 11086 log = &env->log;
cbd35700 11087
9e4c24e7 11088 len = (*prog)->len;
fad953ce 11089 env->insn_aux_data =
9e4c24e7 11090 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
3df126f3
JK
11091 ret = -ENOMEM;
11092 if (!env->insn_aux_data)
11093 goto err_free_env;
9e4c24e7
JK
11094 for (i = 0; i < len; i++)
11095 env->insn_aux_data[i].orig_idx = i;
9bac3d6d 11096 env->prog = *prog;
00176a34 11097 env->ops = bpf_verifier_ops[env->prog->type];
2c78ee89 11098 is_priv = bpf_capable();
0246e64d 11099
8580ac94
AS
11100 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
11101 mutex_lock(&bpf_verifier_lock);
11102 if (!btf_vmlinux)
11103 btf_vmlinux = btf_parse_vmlinux();
11104 mutex_unlock(&bpf_verifier_lock);
11105 }
11106
cbd35700 11107 /* grab the mutex to protect few globals used by verifier */
45a73c17
AS
11108 if (!is_priv)
11109 mutex_lock(&bpf_verifier_lock);
cbd35700
AS
11110
11111 if (attr->log_level || attr->log_buf || attr->log_size) {
11112 /* user requested verbose verifier output
11113 * and supplied buffer to store the verification trace
11114 */
e7bf8249
JK
11115 log->level = attr->log_level;
11116 log->ubuf = (char __user *) (unsigned long) attr->log_buf;
11117 log->len_total = attr->log_size;
cbd35700
AS
11118
11119 ret = -EINVAL;
e7bf8249 11120 /* log attributes have to be sane */
7a9f5c65 11121 if (log->len_total < 128 || log->len_total > UINT_MAX >> 2 ||
06ee7115 11122 !log->level || !log->ubuf || log->level & ~BPF_LOG_MASK)
3df126f3 11123 goto err_unlock;
cbd35700 11124 }
1ad2f583 11125
8580ac94
AS
11126 if (IS_ERR(btf_vmlinux)) {
11127 /* Either gcc or pahole or kernel are broken. */
11128 verbose(env, "in-kernel BTF is malformed\n");
11129 ret = PTR_ERR(btf_vmlinux);
38207291 11130 goto skip_full_check;
8580ac94
AS
11131 }
11132
1ad2f583
DB
11133 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
11134 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
e07b98d9 11135 env->strict_alignment = true;
e9ee9efc
DM
11136 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
11137 env->strict_alignment = false;
cbd35700 11138
2c78ee89 11139 env->allow_ptr_leaks = bpf_allow_ptr_leaks();
41c48f3a 11140 env->allow_ptr_to_map_access = bpf_allow_ptr_to_map_access();
2c78ee89
AS
11141 env->bypass_spec_v1 = bpf_bypass_spec_v1();
11142 env->bypass_spec_v4 = bpf_bypass_spec_v4();
11143 env->bpf_capable = bpf_capable();
e2ae4ca2 11144
10d274e8
AS
11145 if (is_priv)
11146 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
11147
f4e3ec0d
JK
11148 ret = replace_map_fd_with_map_ptr(env);
11149 if (ret < 0)
11150 goto skip_full_check;
11151
cae1927c 11152 if (bpf_prog_is_dev_bound(env->prog->aux)) {
a40a2632 11153 ret = bpf_prog_offload_verifier_prep(env->prog);
ab3f0063 11154 if (ret)
f4e3ec0d 11155 goto skip_full_check;
ab3f0063
JK
11156 }
11157
dc2a4ebc 11158 env->explored_states = kvcalloc(state_htab_size(env),
58e2af8b 11159 sizeof(struct bpf_verifier_state_list *),
f1bca824
AS
11160 GFP_USER);
11161 ret = -ENOMEM;
11162 if (!env->explored_states)
11163 goto skip_full_check;
11164
d9762e84 11165 ret = check_subprogs(env);
475fb78f
AS
11166 if (ret < 0)
11167 goto skip_full_check;
11168
c454a46b 11169 ret = check_btf_info(env, attr, uattr);
838e9690
YS
11170 if (ret < 0)
11171 goto skip_full_check;
11172
be8704ff
AS
11173 ret = check_attach_btf_id(env);
11174 if (ret)
11175 goto skip_full_check;
11176
d9762e84
MKL
11177 ret = check_cfg(env);
11178 if (ret < 0)
11179 goto skip_full_check;
11180
51c39bb1
AS
11181 ret = do_check_subprogs(env);
11182 ret = ret ?: do_check_main(env);
cbd35700 11183
c941ce9c
QM
11184 if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux))
11185 ret = bpf_prog_offload_finalize(env);
11186
0246e64d 11187skip_full_check:
51c39bb1 11188 kvfree(env->explored_states);
0246e64d 11189
c131187d 11190 if (ret == 0)
9b38c405 11191 ret = check_max_stack_depth(env);
c131187d 11192
9b38c405 11193 /* instruction rewrites happen after this point */
e2ae4ca2
JK
11194 if (is_priv) {
11195 if (ret == 0)
11196 opt_hard_wire_dead_code_branches(env);
52875a04
JK
11197 if (ret == 0)
11198 ret = opt_remove_dead_code(env);
a1b14abc
JK
11199 if (ret == 0)
11200 ret = opt_remove_nops(env);
52875a04
JK
11201 } else {
11202 if (ret == 0)
11203 sanitize_dead_code(env);
e2ae4ca2
JK
11204 }
11205
9bac3d6d
AS
11206 if (ret == 0)
11207 /* program is valid, convert *(u32*)(ctx + off) accesses */
11208 ret = convert_ctx_accesses(env);
11209
e245c5c6 11210 if (ret == 0)
79741b3b 11211 ret = fixup_bpf_calls(env);
e245c5c6 11212
a4b1d3c1
JW
11213 /* do 32-bit optimization after insn patching has done so those patched
11214 * insns could be handled correctly.
11215 */
d6c2308c
JW
11216 if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) {
11217 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
11218 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
11219 : false;
a4b1d3c1
JW
11220 }
11221
1ea47e01
AS
11222 if (ret == 0)
11223 ret = fixup_call_args(env);
11224
06ee7115
AS
11225 env->verification_time = ktime_get_ns() - start_time;
11226 print_verification_stats(env);
11227
a2a7d570 11228 if (log->level && bpf_verifier_log_full(log))
cbd35700 11229 ret = -ENOSPC;
a2a7d570 11230 if (log->level && !log->ubuf) {
cbd35700 11231 ret = -EFAULT;
a2a7d570 11232 goto err_release_maps;
cbd35700
AS
11233 }
11234
0246e64d
AS
11235 if (ret == 0 && env->used_map_cnt) {
11236 /* if program passed verifier, update used_maps in bpf_prog_info */
9bac3d6d
AS
11237 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
11238 sizeof(env->used_maps[0]),
11239 GFP_KERNEL);
0246e64d 11240
9bac3d6d 11241 if (!env->prog->aux->used_maps) {
0246e64d 11242 ret = -ENOMEM;
a2a7d570 11243 goto err_release_maps;
0246e64d
AS
11244 }
11245
9bac3d6d 11246 memcpy(env->prog->aux->used_maps, env->used_maps,
0246e64d 11247 sizeof(env->used_maps[0]) * env->used_map_cnt);
9bac3d6d 11248 env->prog->aux->used_map_cnt = env->used_map_cnt;
0246e64d
AS
11249
11250 /* program is valid. Convert pseudo bpf_ld_imm64 into generic
11251 * bpf_ld_imm64 instructions
11252 */
11253 convert_pseudo_ld_imm64(env);
11254 }
cbd35700 11255
ba64e7d8
YS
11256 if (ret == 0)
11257 adjust_btf_func(env);
11258
a2a7d570 11259err_release_maps:
9bac3d6d 11260 if (!env->prog->aux->used_maps)
0246e64d 11261 /* if we didn't copy map pointers into bpf_prog_info, release
ab7f5bf0 11262 * them now. Otherwise free_used_maps() will release them.
0246e64d
AS
11263 */
11264 release_maps(env);
03f87c0b
THJ
11265
11266 /* extension progs temporarily inherit the attach_type of their targets
11267 for verification purposes, so set it back to zero before returning
11268 */
11269 if (env->prog->type == BPF_PROG_TYPE_EXT)
11270 env->prog->expected_attach_type = 0;
11271
9bac3d6d 11272 *prog = env->prog;
3df126f3 11273err_unlock:
45a73c17
AS
11274 if (!is_priv)
11275 mutex_unlock(&bpf_verifier_lock);
3df126f3
JK
11276 vfree(env->insn_aux_data);
11277err_free_env:
11278 kfree(env);
51580e79
AS
11279 return ret;
11280}