]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - kernel/bpf/verifier.c
libbpf: Auto-detect btf_id of BTF-based raw_tracepoints
[mirror_ubuntu-hirsute-kernel.git] / kernel / bpf / verifier.c
CommitLineData
5b497af4 1// SPDX-License-Identifier: GPL-2.0-only
51580e79 2/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
969bf05e 3 * Copyright (c) 2016 Facebook
fd978bf7 4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
51580e79 5 */
838e9690 6#include <uapi/linux/btf.h>
51580e79
AS
7#include <linux/kernel.h>
8#include <linux/types.h>
9#include <linux/slab.h>
10#include <linux/bpf.h>
838e9690 11#include <linux/btf.h>
58e2af8b 12#include <linux/bpf_verifier.h>
51580e79
AS
13#include <linux/filter.h>
14#include <net/netlink.h>
15#include <linux/file.h>
16#include <linux/vmalloc.h>
ebb676da 17#include <linux/stringify.h>
cc8b0b92
AS
18#include <linux/bsearch.h>
19#include <linux/sort.h>
c195651e 20#include <linux/perf_event.h>
d9762e84 21#include <linux/ctype.h>
51580e79 22
f4ac7e0b
JK
23#include "disasm.h"
24
00176a34
JK
25static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
26#define BPF_PROG_TYPE(_id, _name) \
27 [_id] = & _name ## _verifier_ops,
28#define BPF_MAP_TYPE(_id, _ops)
29#include <linux/bpf_types.h>
30#undef BPF_PROG_TYPE
31#undef BPF_MAP_TYPE
32};
33
51580e79
AS
34/* bpf_check() is a static code analyzer that walks eBPF program
35 * instruction by instruction and updates register/stack state.
36 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
37 *
38 * The first pass is depth-first-search to check that the program is a DAG.
39 * It rejects the following programs:
40 * - larger than BPF_MAXINSNS insns
41 * - if loop is present (detected via back-edge)
42 * - unreachable insns exist (shouldn't be a forest. program = one function)
43 * - out of bounds or malformed jumps
44 * The second pass is all possible path descent from the 1st insn.
45 * Since it's analyzing all pathes through the program, the length of the
eba38a96 46 * analysis is limited to 64k insn, which may be hit even if total number of
51580e79
AS
47 * insn is less then 4K, but there are too many branches that change stack/regs.
48 * Number of 'branches to be analyzed' is limited to 1k
49 *
50 * On entry to each instruction, each register has a type, and the instruction
51 * changes the types of the registers depending on instruction semantics.
52 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
53 * copied to R1.
54 *
55 * All registers are 64-bit.
56 * R0 - return register
57 * R1-R5 argument passing registers
58 * R6-R9 callee saved registers
59 * R10 - frame pointer read-only
60 *
61 * At the start of BPF program the register R1 contains a pointer to bpf_context
62 * and has type PTR_TO_CTX.
63 *
64 * Verifier tracks arithmetic operations on pointers in case:
65 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
66 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
67 * 1st insn copies R10 (which has FRAME_PTR) type into R1
68 * and 2nd arithmetic instruction is pattern matched to recognize
69 * that it wants to construct a pointer to some element within stack.
70 * So after 2nd insn, the register R1 has type PTR_TO_STACK
71 * (and -20 constant is saved for further stack bounds checking).
72 * Meaning that this reg is a pointer to stack plus known immediate constant.
73 *
f1174f77 74 * Most of the time the registers have SCALAR_VALUE type, which
51580e79 75 * means the register has some value, but it's not a valid pointer.
f1174f77 76 * (like pointer plus pointer becomes SCALAR_VALUE type)
51580e79
AS
77 *
78 * When verifier sees load or store instructions the type of base register
c64b7983
JS
79 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
80 * four pointer types recognized by check_mem_access() function.
51580e79
AS
81 *
82 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
83 * and the range of [ptr, ptr + map's value_size) is accessible.
84 *
85 * registers used to pass values to function calls are checked against
86 * function argument constraints.
87 *
88 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
89 * It means that the register type passed to this function must be
90 * PTR_TO_STACK and it will be used inside the function as
91 * 'pointer to map element key'
92 *
93 * For example the argument constraints for bpf_map_lookup_elem():
94 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
95 * .arg1_type = ARG_CONST_MAP_PTR,
96 * .arg2_type = ARG_PTR_TO_MAP_KEY,
97 *
98 * ret_type says that this function returns 'pointer to map elem value or null'
99 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
100 * 2nd argument should be a pointer to stack, which will be used inside
101 * the helper function as a pointer to map element key.
102 *
103 * On the kernel side the helper function looks like:
104 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
105 * {
106 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
107 * void *key = (void *) (unsigned long) r2;
108 * void *value;
109 *
110 * here kernel can access 'key' and 'map' pointers safely, knowing that
111 * [key, key + map->key_size) bytes are valid and were initialized on
112 * the stack of eBPF program.
113 * }
114 *
115 * Corresponding eBPF program may look like:
116 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
117 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
118 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
119 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
120 * here verifier looks at prototype of map_lookup_elem() and sees:
121 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
122 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
123 *
124 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
125 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
126 * and were initialized prior to this call.
127 * If it's ok, then verifier allows this BPF_CALL insn and looks at
128 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
129 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
130 * returns ether pointer to map value or NULL.
131 *
132 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
133 * insn, the register holding that pointer in the true branch changes state to
134 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
135 * branch. See check_cond_jmp_op().
136 *
137 * After the call R0 is set to return type of the function and registers R1-R5
138 * are set to NOT_INIT to indicate that they are no longer readable.
fd978bf7
JS
139 *
140 * The following reference types represent a potential reference to a kernel
141 * resource which, after first being allocated, must be checked and freed by
142 * the BPF program:
143 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
144 *
145 * When the verifier sees a helper call return a reference type, it allocates a
146 * pointer id for the reference and stores it in the current function state.
147 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
148 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
149 * passes through a NULL-check conditional. For the branch wherein the state is
150 * changed to CONST_IMM, the verifier releases the reference.
6acc9b43
JS
151 *
152 * For each helper function that allocates a reference, such as
153 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
154 * bpf_sk_release(). When a reference type passes into the release function,
155 * the verifier also releases the reference. If any unchecked or unreleased
156 * reference remains at the end of the program, the verifier rejects it.
51580e79
AS
157 */
158
17a52670 159/* verifier_state + insn_idx are pushed to stack when branch is encountered */
58e2af8b 160struct bpf_verifier_stack_elem {
17a52670
AS
161 /* verifer state is 'st'
162 * before processing instruction 'insn_idx'
163 * and after processing instruction 'prev_insn_idx'
164 */
58e2af8b 165 struct bpf_verifier_state st;
17a52670
AS
166 int insn_idx;
167 int prev_insn_idx;
58e2af8b 168 struct bpf_verifier_stack_elem *next;
cbd35700
AS
169};
170
b285fcb7 171#define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192
ceefbc96 172#define BPF_COMPLEXITY_LIMIT_STATES 64
07016151 173
c93552c4
DB
174#define BPF_MAP_PTR_UNPRIV 1UL
175#define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \
176 POISON_POINTER_DELTA))
177#define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
178
179static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
180{
181 return BPF_MAP_PTR(aux->map_state) == BPF_MAP_PTR_POISON;
182}
183
184static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
185{
186 return aux->map_state & BPF_MAP_PTR_UNPRIV;
187}
188
189static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
190 const struct bpf_map *map, bool unpriv)
191{
192 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
193 unpriv |= bpf_map_ptr_unpriv(aux);
194 aux->map_state = (unsigned long)map |
195 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
196}
fad73a1a 197
33ff9823
DB
198struct bpf_call_arg_meta {
199 struct bpf_map *map_ptr;
435faee1 200 bool raw_mode;
36bbef52 201 bool pkt_access;
435faee1
DB
202 int regno;
203 int access_size;
849fa506
YS
204 s64 msize_smax_value;
205 u64 msize_umax_value;
1b986589 206 int ref_obj_id;
d83525ca 207 int func_id;
33ff9823
DB
208};
209
8580ac94
AS
210struct btf *btf_vmlinux;
211
cbd35700
AS
212static DEFINE_MUTEX(bpf_verifier_lock);
213
d9762e84
MKL
214static const struct bpf_line_info *
215find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
216{
217 const struct bpf_line_info *linfo;
218 const struct bpf_prog *prog;
219 u32 i, nr_linfo;
220
221 prog = env->prog;
222 nr_linfo = prog->aux->nr_linfo;
223
224 if (!nr_linfo || insn_off >= prog->len)
225 return NULL;
226
227 linfo = prog->aux->linfo;
228 for (i = 1; i < nr_linfo; i++)
229 if (insn_off < linfo[i].insn_off)
230 break;
231
232 return &linfo[i - 1];
233}
234
77d2e05a
MKL
235void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
236 va_list args)
cbd35700 237{
a2a7d570 238 unsigned int n;
cbd35700 239
a2a7d570 240 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
a2a7d570
JK
241
242 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
243 "verifier log line truncated - local buffer too short\n");
244
245 n = min(log->len_total - log->len_used - 1, n);
246 log->kbuf[n] = '\0';
247
8580ac94
AS
248 if (log->level == BPF_LOG_KERNEL) {
249 pr_err("BPF:%s\n", log->kbuf);
250 return;
251 }
a2a7d570
JK
252 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
253 log->len_used += n;
254 else
255 log->ubuf = NULL;
cbd35700 256}
abe08840
JO
257
258/* log_level controls verbosity level of eBPF verifier.
259 * bpf_verifier_log_write() is used to dump the verification trace to the log,
260 * so the user can figure out what's wrong with the program
430e68d1 261 */
abe08840
JO
262__printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
263 const char *fmt, ...)
264{
265 va_list args;
266
77d2e05a
MKL
267 if (!bpf_verifier_log_needed(&env->log))
268 return;
269
abe08840 270 va_start(args, fmt);
77d2e05a 271 bpf_verifier_vlog(&env->log, fmt, args);
abe08840
JO
272 va_end(args);
273}
274EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
275
276__printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
277{
77d2e05a 278 struct bpf_verifier_env *env = private_data;
abe08840
JO
279 va_list args;
280
77d2e05a
MKL
281 if (!bpf_verifier_log_needed(&env->log))
282 return;
283
abe08840 284 va_start(args, fmt);
77d2e05a 285 bpf_verifier_vlog(&env->log, fmt, args);
abe08840
JO
286 va_end(args);
287}
cbd35700 288
d9762e84
MKL
289static const char *ltrim(const char *s)
290{
291 while (isspace(*s))
292 s++;
293
294 return s;
295}
296
297__printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
298 u32 insn_off,
299 const char *prefix_fmt, ...)
300{
301 const struct bpf_line_info *linfo;
302
303 if (!bpf_verifier_log_needed(&env->log))
304 return;
305
306 linfo = find_linfo(env, insn_off);
307 if (!linfo || linfo == env->prev_linfo)
308 return;
309
310 if (prefix_fmt) {
311 va_list args;
312
313 va_start(args, prefix_fmt);
314 bpf_verifier_vlog(&env->log, prefix_fmt, args);
315 va_end(args);
316 }
317
318 verbose(env, "%s\n",
319 ltrim(btf_name_by_offset(env->prog->aux->btf,
320 linfo->line_off)));
321
322 env->prev_linfo = linfo;
323}
324
de8f3a83
DB
325static bool type_is_pkt_pointer(enum bpf_reg_type type)
326{
327 return type == PTR_TO_PACKET ||
328 type == PTR_TO_PACKET_META;
329}
330
46f8bc92
MKL
331static bool type_is_sk_pointer(enum bpf_reg_type type)
332{
333 return type == PTR_TO_SOCKET ||
655a51e5 334 type == PTR_TO_SOCK_COMMON ||
fada7fdc
JL
335 type == PTR_TO_TCP_SOCK ||
336 type == PTR_TO_XDP_SOCK;
46f8bc92
MKL
337}
338
840b9615
JS
339static bool reg_type_may_be_null(enum bpf_reg_type type)
340{
fd978bf7 341 return type == PTR_TO_MAP_VALUE_OR_NULL ||
46f8bc92 342 type == PTR_TO_SOCKET_OR_NULL ||
655a51e5
MKL
343 type == PTR_TO_SOCK_COMMON_OR_NULL ||
344 type == PTR_TO_TCP_SOCK_OR_NULL;
fd978bf7
JS
345}
346
d83525ca
AS
347static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
348{
349 return reg->type == PTR_TO_MAP_VALUE &&
350 map_value_has_spin_lock(reg->map_ptr);
351}
352
cba368c1
MKL
353static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type)
354{
355 return type == PTR_TO_SOCKET ||
356 type == PTR_TO_SOCKET_OR_NULL ||
357 type == PTR_TO_TCP_SOCK ||
358 type == PTR_TO_TCP_SOCK_OR_NULL;
359}
360
1b986589 361static bool arg_type_may_be_refcounted(enum bpf_arg_type type)
fd978bf7 362{
1b986589 363 return type == ARG_PTR_TO_SOCK_COMMON;
fd978bf7
JS
364}
365
366/* Determine whether the function releases some resources allocated by another
367 * function call. The first reference type argument will be assumed to be
368 * released by release_reference().
369 */
370static bool is_release_function(enum bpf_func_id func_id)
371{
6acc9b43 372 return func_id == BPF_FUNC_sk_release;
840b9615
JS
373}
374
46f8bc92
MKL
375static bool is_acquire_function(enum bpf_func_id func_id)
376{
377 return func_id == BPF_FUNC_sk_lookup_tcp ||
edbf8c01
LB
378 func_id == BPF_FUNC_sk_lookup_udp ||
379 func_id == BPF_FUNC_skc_lookup_tcp;
46f8bc92
MKL
380}
381
1b986589
MKL
382static bool is_ptr_cast_function(enum bpf_func_id func_id)
383{
384 return func_id == BPF_FUNC_tcp_sock ||
385 func_id == BPF_FUNC_sk_fullsock;
386}
387
17a52670
AS
388/* string representation of 'enum bpf_reg_type' */
389static const char * const reg_type_str[] = {
390 [NOT_INIT] = "?",
f1174f77 391 [SCALAR_VALUE] = "inv",
17a52670
AS
392 [PTR_TO_CTX] = "ctx",
393 [CONST_PTR_TO_MAP] = "map_ptr",
394 [PTR_TO_MAP_VALUE] = "map_value",
395 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
17a52670 396 [PTR_TO_STACK] = "fp",
969bf05e 397 [PTR_TO_PACKET] = "pkt",
de8f3a83 398 [PTR_TO_PACKET_META] = "pkt_meta",
969bf05e 399 [PTR_TO_PACKET_END] = "pkt_end",
d58e468b 400 [PTR_TO_FLOW_KEYS] = "flow_keys",
c64b7983
JS
401 [PTR_TO_SOCKET] = "sock",
402 [PTR_TO_SOCKET_OR_NULL] = "sock_or_null",
46f8bc92
MKL
403 [PTR_TO_SOCK_COMMON] = "sock_common",
404 [PTR_TO_SOCK_COMMON_OR_NULL] = "sock_common_or_null",
655a51e5
MKL
405 [PTR_TO_TCP_SOCK] = "tcp_sock",
406 [PTR_TO_TCP_SOCK_OR_NULL] = "tcp_sock_or_null",
9df1c28b 407 [PTR_TO_TP_BUFFER] = "tp_buffer",
fada7fdc 408 [PTR_TO_XDP_SOCK] = "xdp_sock",
17a52670
AS
409};
410
8efea21d
EC
411static char slot_type_char[] = {
412 [STACK_INVALID] = '?',
413 [STACK_SPILL] = 'r',
414 [STACK_MISC] = 'm',
415 [STACK_ZERO] = '0',
416};
417
4e92024a
AS
418static void print_liveness(struct bpf_verifier_env *env,
419 enum bpf_reg_liveness live)
420{
9242b5f5 421 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
4e92024a
AS
422 verbose(env, "_");
423 if (live & REG_LIVE_READ)
424 verbose(env, "r");
425 if (live & REG_LIVE_WRITTEN)
426 verbose(env, "w");
9242b5f5
AS
427 if (live & REG_LIVE_DONE)
428 verbose(env, "D");
4e92024a
AS
429}
430
f4d7e40a
AS
431static struct bpf_func_state *func(struct bpf_verifier_env *env,
432 const struct bpf_reg_state *reg)
433{
434 struct bpf_verifier_state *cur = env->cur_state;
435
436 return cur->frame[reg->frameno];
437}
438
61bd5218 439static void print_verifier_state(struct bpf_verifier_env *env,
f4d7e40a 440 const struct bpf_func_state *state)
17a52670 441{
f4d7e40a 442 const struct bpf_reg_state *reg;
17a52670
AS
443 enum bpf_reg_type t;
444 int i;
445
f4d7e40a
AS
446 if (state->frameno)
447 verbose(env, " frame%d:", state->frameno);
17a52670 448 for (i = 0; i < MAX_BPF_REG; i++) {
1a0dc1ac
AS
449 reg = &state->regs[i];
450 t = reg->type;
17a52670
AS
451 if (t == NOT_INIT)
452 continue;
4e92024a
AS
453 verbose(env, " R%d", i);
454 print_liveness(env, reg->live);
455 verbose(env, "=%s", reg_type_str[t]);
b5dc0163
AS
456 if (t == SCALAR_VALUE && reg->precise)
457 verbose(env, "P");
f1174f77
EC
458 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
459 tnum_is_const(reg->var_off)) {
460 /* reg->off should be 0 for SCALAR_VALUE */
61bd5218 461 verbose(env, "%lld", reg->var_off.value + reg->off);
f1174f77 462 } else {
cba368c1
MKL
463 verbose(env, "(id=%d", reg->id);
464 if (reg_type_may_be_refcounted_or_null(t))
465 verbose(env, ",ref_obj_id=%d", reg->ref_obj_id);
f1174f77 466 if (t != SCALAR_VALUE)
61bd5218 467 verbose(env, ",off=%d", reg->off);
de8f3a83 468 if (type_is_pkt_pointer(t))
61bd5218 469 verbose(env, ",r=%d", reg->range);
f1174f77
EC
470 else if (t == CONST_PTR_TO_MAP ||
471 t == PTR_TO_MAP_VALUE ||
472 t == PTR_TO_MAP_VALUE_OR_NULL)
61bd5218 473 verbose(env, ",ks=%d,vs=%d",
f1174f77
EC
474 reg->map_ptr->key_size,
475 reg->map_ptr->value_size);
7d1238f2
EC
476 if (tnum_is_const(reg->var_off)) {
477 /* Typically an immediate SCALAR_VALUE, but
478 * could be a pointer whose offset is too big
479 * for reg->off
480 */
61bd5218 481 verbose(env, ",imm=%llx", reg->var_off.value);
7d1238f2
EC
482 } else {
483 if (reg->smin_value != reg->umin_value &&
484 reg->smin_value != S64_MIN)
61bd5218 485 verbose(env, ",smin_value=%lld",
7d1238f2
EC
486 (long long)reg->smin_value);
487 if (reg->smax_value != reg->umax_value &&
488 reg->smax_value != S64_MAX)
61bd5218 489 verbose(env, ",smax_value=%lld",
7d1238f2
EC
490 (long long)reg->smax_value);
491 if (reg->umin_value != 0)
61bd5218 492 verbose(env, ",umin_value=%llu",
7d1238f2
EC
493 (unsigned long long)reg->umin_value);
494 if (reg->umax_value != U64_MAX)
61bd5218 495 verbose(env, ",umax_value=%llu",
7d1238f2
EC
496 (unsigned long long)reg->umax_value);
497 if (!tnum_is_unknown(reg->var_off)) {
498 char tn_buf[48];
f1174f77 499
7d1238f2 500 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 501 verbose(env, ",var_off=%s", tn_buf);
7d1238f2 502 }
f1174f77 503 }
61bd5218 504 verbose(env, ")");
f1174f77 505 }
17a52670 506 }
638f5b90 507 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
8efea21d
EC
508 char types_buf[BPF_REG_SIZE + 1];
509 bool valid = false;
510 int j;
511
512 for (j = 0; j < BPF_REG_SIZE; j++) {
513 if (state->stack[i].slot_type[j] != STACK_INVALID)
514 valid = true;
515 types_buf[j] = slot_type_char[
516 state->stack[i].slot_type[j]];
517 }
518 types_buf[BPF_REG_SIZE] = 0;
519 if (!valid)
520 continue;
521 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
522 print_liveness(env, state->stack[i].spilled_ptr.live);
b5dc0163
AS
523 if (state->stack[i].slot_type[0] == STACK_SPILL) {
524 reg = &state->stack[i].spilled_ptr;
525 t = reg->type;
526 verbose(env, "=%s", reg_type_str[t]);
527 if (t == SCALAR_VALUE && reg->precise)
528 verbose(env, "P");
529 if (t == SCALAR_VALUE && tnum_is_const(reg->var_off))
530 verbose(env, "%lld", reg->var_off.value + reg->off);
531 } else {
8efea21d 532 verbose(env, "=%s", types_buf);
b5dc0163 533 }
17a52670 534 }
fd978bf7
JS
535 if (state->acquired_refs && state->refs[0].id) {
536 verbose(env, " refs=%d", state->refs[0].id);
537 for (i = 1; i < state->acquired_refs; i++)
538 if (state->refs[i].id)
539 verbose(env, ",%d", state->refs[i].id);
540 }
61bd5218 541 verbose(env, "\n");
17a52670
AS
542}
543
84dbf350
JS
544#define COPY_STATE_FN(NAME, COUNT, FIELD, SIZE) \
545static int copy_##NAME##_state(struct bpf_func_state *dst, \
546 const struct bpf_func_state *src) \
547{ \
548 if (!src->FIELD) \
549 return 0; \
550 if (WARN_ON_ONCE(dst->COUNT < src->COUNT)) { \
551 /* internal bug, make state invalid to reject the program */ \
552 memset(dst, 0, sizeof(*dst)); \
553 return -EFAULT; \
554 } \
555 memcpy(dst->FIELD, src->FIELD, \
556 sizeof(*src->FIELD) * (src->COUNT / SIZE)); \
557 return 0; \
638f5b90 558}
fd978bf7
JS
559/* copy_reference_state() */
560COPY_STATE_FN(reference, acquired_refs, refs, 1)
84dbf350
JS
561/* copy_stack_state() */
562COPY_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
563#undef COPY_STATE_FN
564
565#define REALLOC_STATE_FN(NAME, COUNT, FIELD, SIZE) \
566static int realloc_##NAME##_state(struct bpf_func_state *state, int size, \
567 bool copy_old) \
568{ \
569 u32 old_size = state->COUNT; \
570 struct bpf_##NAME##_state *new_##FIELD; \
571 int slot = size / SIZE; \
572 \
573 if (size <= old_size || !size) { \
574 if (copy_old) \
575 return 0; \
576 state->COUNT = slot * SIZE; \
577 if (!size && old_size) { \
578 kfree(state->FIELD); \
579 state->FIELD = NULL; \
580 } \
581 return 0; \
582 } \
583 new_##FIELD = kmalloc_array(slot, sizeof(struct bpf_##NAME##_state), \
584 GFP_KERNEL); \
585 if (!new_##FIELD) \
586 return -ENOMEM; \
587 if (copy_old) { \
588 if (state->FIELD) \
589 memcpy(new_##FIELD, state->FIELD, \
590 sizeof(*new_##FIELD) * (old_size / SIZE)); \
591 memset(new_##FIELD + old_size / SIZE, 0, \
592 sizeof(*new_##FIELD) * (size - old_size) / SIZE); \
593 } \
594 state->COUNT = slot * SIZE; \
595 kfree(state->FIELD); \
596 state->FIELD = new_##FIELD; \
597 return 0; \
598}
fd978bf7
JS
599/* realloc_reference_state() */
600REALLOC_STATE_FN(reference, acquired_refs, refs, 1)
84dbf350
JS
601/* realloc_stack_state() */
602REALLOC_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
603#undef REALLOC_STATE_FN
638f5b90
AS
604
605/* do_check() starts with zero-sized stack in struct bpf_verifier_state to
606 * make it consume minimal amount of memory. check_stack_write() access from
f4d7e40a 607 * the program calls into realloc_func_state() to grow the stack size.
84dbf350
JS
608 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
609 * which realloc_stack_state() copies over. It points to previous
610 * bpf_verifier_state which is never reallocated.
638f5b90 611 */
fd978bf7
JS
612static int realloc_func_state(struct bpf_func_state *state, int stack_size,
613 int refs_size, bool copy_old)
638f5b90 614{
fd978bf7
JS
615 int err = realloc_reference_state(state, refs_size, copy_old);
616 if (err)
617 return err;
618 return realloc_stack_state(state, stack_size, copy_old);
619}
620
621/* Acquire a pointer id from the env and update the state->refs to include
622 * this new pointer reference.
623 * On success, returns a valid pointer id to associate with the register
624 * On failure, returns a negative errno.
638f5b90 625 */
fd978bf7 626static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
638f5b90 627{
fd978bf7
JS
628 struct bpf_func_state *state = cur_func(env);
629 int new_ofs = state->acquired_refs;
630 int id, err;
631
632 err = realloc_reference_state(state, state->acquired_refs + 1, true);
633 if (err)
634 return err;
635 id = ++env->id_gen;
636 state->refs[new_ofs].id = id;
637 state->refs[new_ofs].insn_idx = insn_idx;
638f5b90 638
fd978bf7
JS
639 return id;
640}
641
642/* release function corresponding to acquire_reference_state(). Idempotent. */
46f8bc92 643static int release_reference_state(struct bpf_func_state *state, int ptr_id)
fd978bf7
JS
644{
645 int i, last_idx;
646
fd978bf7
JS
647 last_idx = state->acquired_refs - 1;
648 for (i = 0; i < state->acquired_refs; i++) {
649 if (state->refs[i].id == ptr_id) {
650 if (last_idx && i != last_idx)
651 memcpy(&state->refs[i], &state->refs[last_idx],
652 sizeof(*state->refs));
653 memset(&state->refs[last_idx], 0, sizeof(*state->refs));
654 state->acquired_refs--;
638f5b90 655 return 0;
638f5b90 656 }
638f5b90 657 }
46f8bc92 658 return -EINVAL;
fd978bf7
JS
659}
660
661static int transfer_reference_state(struct bpf_func_state *dst,
662 struct bpf_func_state *src)
663{
664 int err = realloc_reference_state(dst, src->acquired_refs, false);
665 if (err)
666 return err;
667 err = copy_reference_state(dst, src);
668 if (err)
669 return err;
638f5b90
AS
670 return 0;
671}
672
f4d7e40a
AS
673static void free_func_state(struct bpf_func_state *state)
674{
5896351e
AS
675 if (!state)
676 return;
fd978bf7 677 kfree(state->refs);
f4d7e40a
AS
678 kfree(state->stack);
679 kfree(state);
680}
681
b5dc0163
AS
682static void clear_jmp_history(struct bpf_verifier_state *state)
683{
684 kfree(state->jmp_history);
685 state->jmp_history = NULL;
686 state->jmp_history_cnt = 0;
687}
688
1969db47
AS
689static void free_verifier_state(struct bpf_verifier_state *state,
690 bool free_self)
638f5b90 691{
f4d7e40a
AS
692 int i;
693
694 for (i = 0; i <= state->curframe; i++) {
695 free_func_state(state->frame[i]);
696 state->frame[i] = NULL;
697 }
b5dc0163 698 clear_jmp_history(state);
1969db47
AS
699 if (free_self)
700 kfree(state);
638f5b90
AS
701}
702
703/* copy verifier state from src to dst growing dst stack space
704 * when necessary to accommodate larger src stack
705 */
f4d7e40a
AS
706static int copy_func_state(struct bpf_func_state *dst,
707 const struct bpf_func_state *src)
638f5b90
AS
708{
709 int err;
710
fd978bf7
JS
711 err = realloc_func_state(dst, src->allocated_stack, src->acquired_refs,
712 false);
713 if (err)
714 return err;
715 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
716 err = copy_reference_state(dst, src);
638f5b90
AS
717 if (err)
718 return err;
638f5b90
AS
719 return copy_stack_state(dst, src);
720}
721
f4d7e40a
AS
722static int copy_verifier_state(struct bpf_verifier_state *dst_state,
723 const struct bpf_verifier_state *src)
724{
725 struct bpf_func_state *dst;
b5dc0163 726 u32 jmp_sz = sizeof(struct bpf_idx_pair) * src->jmp_history_cnt;
f4d7e40a
AS
727 int i, err;
728
b5dc0163
AS
729 if (dst_state->jmp_history_cnt < src->jmp_history_cnt) {
730 kfree(dst_state->jmp_history);
731 dst_state->jmp_history = kmalloc(jmp_sz, GFP_USER);
732 if (!dst_state->jmp_history)
733 return -ENOMEM;
734 }
735 memcpy(dst_state->jmp_history, src->jmp_history, jmp_sz);
736 dst_state->jmp_history_cnt = src->jmp_history_cnt;
737
f4d7e40a
AS
738 /* if dst has more stack frames then src frame, free them */
739 for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
740 free_func_state(dst_state->frame[i]);
741 dst_state->frame[i] = NULL;
742 }
979d63d5 743 dst_state->speculative = src->speculative;
f4d7e40a 744 dst_state->curframe = src->curframe;
d83525ca 745 dst_state->active_spin_lock = src->active_spin_lock;
2589726d
AS
746 dst_state->branches = src->branches;
747 dst_state->parent = src->parent;
b5dc0163
AS
748 dst_state->first_insn_idx = src->first_insn_idx;
749 dst_state->last_insn_idx = src->last_insn_idx;
f4d7e40a
AS
750 for (i = 0; i <= src->curframe; i++) {
751 dst = dst_state->frame[i];
752 if (!dst) {
753 dst = kzalloc(sizeof(*dst), GFP_KERNEL);
754 if (!dst)
755 return -ENOMEM;
756 dst_state->frame[i] = dst;
757 }
758 err = copy_func_state(dst, src->frame[i]);
759 if (err)
760 return err;
761 }
762 return 0;
763}
764
2589726d
AS
765static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
766{
767 while (st) {
768 u32 br = --st->branches;
769
770 /* WARN_ON(br > 1) technically makes sense here,
771 * but see comment in push_stack(), hence:
772 */
773 WARN_ONCE((int)br < 0,
774 "BUG update_branch_counts:branches_to_explore=%d\n",
775 br);
776 if (br)
777 break;
778 st = st->parent;
779 }
780}
781
638f5b90
AS
782static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
783 int *insn_idx)
784{
785 struct bpf_verifier_state *cur = env->cur_state;
786 struct bpf_verifier_stack_elem *elem, *head = env->head;
787 int err;
17a52670
AS
788
789 if (env->head == NULL)
638f5b90 790 return -ENOENT;
17a52670 791
638f5b90
AS
792 if (cur) {
793 err = copy_verifier_state(cur, &head->st);
794 if (err)
795 return err;
796 }
797 if (insn_idx)
798 *insn_idx = head->insn_idx;
17a52670 799 if (prev_insn_idx)
638f5b90
AS
800 *prev_insn_idx = head->prev_insn_idx;
801 elem = head->next;
1969db47 802 free_verifier_state(&head->st, false);
638f5b90 803 kfree(head);
17a52670
AS
804 env->head = elem;
805 env->stack_size--;
638f5b90 806 return 0;
17a52670
AS
807}
808
58e2af8b 809static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
979d63d5
DB
810 int insn_idx, int prev_insn_idx,
811 bool speculative)
17a52670 812{
638f5b90 813 struct bpf_verifier_state *cur = env->cur_state;
58e2af8b 814 struct bpf_verifier_stack_elem *elem;
638f5b90 815 int err;
17a52670 816
638f5b90 817 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
17a52670
AS
818 if (!elem)
819 goto err;
820
17a52670
AS
821 elem->insn_idx = insn_idx;
822 elem->prev_insn_idx = prev_insn_idx;
823 elem->next = env->head;
824 env->head = elem;
825 env->stack_size++;
1969db47
AS
826 err = copy_verifier_state(&elem->st, cur);
827 if (err)
828 goto err;
979d63d5 829 elem->st.speculative |= speculative;
b285fcb7
AS
830 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
831 verbose(env, "The sequence of %d jumps is too complex.\n",
832 env->stack_size);
17a52670
AS
833 goto err;
834 }
2589726d
AS
835 if (elem->st.parent) {
836 ++elem->st.parent->branches;
837 /* WARN_ON(branches > 2) technically makes sense here,
838 * but
839 * 1. speculative states will bump 'branches' for non-branch
840 * instructions
841 * 2. is_state_visited() heuristics may decide not to create
842 * a new state for a sequence of branches and all such current
843 * and cloned states will be pointing to a single parent state
844 * which might have large 'branches' count.
845 */
846 }
17a52670
AS
847 return &elem->st;
848err:
5896351e
AS
849 free_verifier_state(env->cur_state, true);
850 env->cur_state = NULL;
17a52670 851 /* pop all elements and return */
638f5b90 852 while (!pop_stack(env, NULL, NULL));
17a52670
AS
853 return NULL;
854}
855
856#define CALLER_SAVED_REGS 6
857static const int caller_saved[CALLER_SAVED_REGS] = {
858 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
859};
860
f1174f77
EC
861static void __mark_reg_not_init(struct bpf_reg_state *reg);
862
b03c9f9f
EC
863/* Mark the unknown part of a register (variable offset or scalar value) as
864 * known to have the value @imm.
865 */
866static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
867{
a9c676bc
AS
868 /* Clear id, off, and union(map_ptr, range) */
869 memset(((u8 *)reg) + sizeof(reg->type), 0,
870 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
b03c9f9f
EC
871 reg->var_off = tnum_const(imm);
872 reg->smin_value = (s64)imm;
873 reg->smax_value = (s64)imm;
874 reg->umin_value = imm;
875 reg->umax_value = imm;
876}
877
f1174f77
EC
878/* Mark the 'variable offset' part of a register as zero. This should be
879 * used only on registers holding a pointer type.
880 */
881static void __mark_reg_known_zero(struct bpf_reg_state *reg)
a9789ef9 882{
b03c9f9f 883 __mark_reg_known(reg, 0);
f1174f77 884}
a9789ef9 885
cc2b14d5
AS
886static void __mark_reg_const_zero(struct bpf_reg_state *reg)
887{
888 __mark_reg_known(reg, 0);
cc2b14d5
AS
889 reg->type = SCALAR_VALUE;
890}
891
61bd5218
JK
892static void mark_reg_known_zero(struct bpf_verifier_env *env,
893 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
894{
895 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 896 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
f1174f77
EC
897 /* Something bad happened, let's kill all regs */
898 for (regno = 0; regno < MAX_BPF_REG; regno++)
899 __mark_reg_not_init(regs + regno);
900 return;
901 }
902 __mark_reg_known_zero(regs + regno);
903}
904
de8f3a83
DB
905static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
906{
907 return type_is_pkt_pointer(reg->type);
908}
909
910static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
911{
912 return reg_is_pkt_pointer(reg) ||
913 reg->type == PTR_TO_PACKET_END;
914}
915
916/* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
917static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
918 enum bpf_reg_type which)
919{
920 /* The register can already have a range from prior markings.
921 * This is fine as long as it hasn't been advanced from its
922 * origin.
923 */
924 return reg->type == which &&
925 reg->id == 0 &&
926 reg->off == 0 &&
927 tnum_equals_const(reg->var_off, 0);
928}
929
b03c9f9f
EC
930/* Attempts to improve min/max values based on var_off information */
931static void __update_reg_bounds(struct bpf_reg_state *reg)
932{
933 /* min signed is max(sign bit) | min(other bits) */
934 reg->smin_value = max_t(s64, reg->smin_value,
935 reg->var_off.value | (reg->var_off.mask & S64_MIN));
936 /* max signed is min(sign bit) | max(other bits) */
937 reg->smax_value = min_t(s64, reg->smax_value,
938 reg->var_off.value | (reg->var_off.mask & S64_MAX));
939 reg->umin_value = max(reg->umin_value, reg->var_off.value);
940 reg->umax_value = min(reg->umax_value,
941 reg->var_off.value | reg->var_off.mask);
942}
943
944/* Uses signed min/max values to inform unsigned, and vice-versa */
945static void __reg_deduce_bounds(struct bpf_reg_state *reg)
946{
947 /* Learn sign from signed bounds.
948 * If we cannot cross the sign boundary, then signed and unsigned bounds
949 * are the same, so combine. This works even in the negative case, e.g.
950 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
951 */
952 if (reg->smin_value >= 0 || reg->smax_value < 0) {
953 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
954 reg->umin_value);
955 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
956 reg->umax_value);
957 return;
958 }
959 /* Learn sign from unsigned bounds. Signed bounds cross the sign
960 * boundary, so we must be careful.
961 */
962 if ((s64)reg->umax_value >= 0) {
963 /* Positive. We can't learn anything from the smin, but smax
964 * is positive, hence safe.
965 */
966 reg->smin_value = reg->umin_value;
967 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
968 reg->umax_value);
969 } else if ((s64)reg->umin_value < 0) {
970 /* Negative. We can't learn anything from the smax, but smin
971 * is negative, hence safe.
972 */
973 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
974 reg->umin_value);
975 reg->smax_value = reg->umax_value;
976 }
977}
978
979/* Attempts to improve var_off based on unsigned min/max information */
980static void __reg_bound_offset(struct bpf_reg_state *reg)
981{
982 reg->var_off = tnum_intersect(reg->var_off,
983 tnum_range(reg->umin_value,
984 reg->umax_value));
985}
986
987/* Reset the min/max bounds of a register */
988static void __mark_reg_unbounded(struct bpf_reg_state *reg)
989{
990 reg->smin_value = S64_MIN;
991 reg->smax_value = S64_MAX;
992 reg->umin_value = 0;
993 reg->umax_value = U64_MAX;
994}
995
f1174f77
EC
996/* Mark a register as having a completely unknown (scalar) value. */
997static void __mark_reg_unknown(struct bpf_reg_state *reg)
998{
a9c676bc
AS
999 /*
1000 * Clear type, id, off, and union(map_ptr, range) and
1001 * padding between 'type' and union
1002 */
1003 memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
f1174f77 1004 reg->type = SCALAR_VALUE;
f1174f77 1005 reg->var_off = tnum_unknown;
f4d7e40a 1006 reg->frameno = 0;
b03c9f9f 1007 __mark_reg_unbounded(reg);
f1174f77
EC
1008}
1009
61bd5218
JK
1010static void mark_reg_unknown(struct bpf_verifier_env *env,
1011 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
1012{
1013 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 1014 verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
19ceb417
AS
1015 /* Something bad happened, let's kill all regs except FP */
1016 for (regno = 0; regno < BPF_REG_FP; regno++)
f1174f77
EC
1017 __mark_reg_not_init(regs + regno);
1018 return;
1019 }
6754172c
AS
1020 regs += regno;
1021 __mark_reg_unknown(regs);
1022 /* constant backtracking is enabled for root without bpf2bpf calls */
1023 regs->precise = env->subprog_cnt > 1 || !env->allow_ptr_leaks ?
1024 true : false;
f1174f77
EC
1025}
1026
1027static void __mark_reg_not_init(struct bpf_reg_state *reg)
1028{
1029 __mark_reg_unknown(reg);
1030 reg->type = NOT_INIT;
1031}
1032
61bd5218
JK
1033static void mark_reg_not_init(struct bpf_verifier_env *env,
1034 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
1035{
1036 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 1037 verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
19ceb417
AS
1038 /* Something bad happened, let's kill all regs except FP */
1039 for (regno = 0; regno < BPF_REG_FP; regno++)
f1174f77
EC
1040 __mark_reg_not_init(regs + regno);
1041 return;
1042 }
1043 __mark_reg_not_init(regs + regno);
a9789ef9
DB
1044}
1045
5327ed3d 1046#define DEF_NOT_SUBREG (0)
61bd5218 1047static void init_reg_state(struct bpf_verifier_env *env,
f4d7e40a 1048 struct bpf_func_state *state)
17a52670 1049{
f4d7e40a 1050 struct bpf_reg_state *regs = state->regs;
17a52670
AS
1051 int i;
1052
dc503a8a 1053 for (i = 0; i < MAX_BPF_REG; i++) {
61bd5218 1054 mark_reg_not_init(env, regs, i);
dc503a8a 1055 regs[i].live = REG_LIVE_NONE;
679c782d 1056 regs[i].parent = NULL;
5327ed3d 1057 regs[i].subreg_def = DEF_NOT_SUBREG;
dc503a8a 1058 }
17a52670
AS
1059
1060 /* frame pointer */
f1174f77 1061 regs[BPF_REG_FP].type = PTR_TO_STACK;
61bd5218 1062 mark_reg_known_zero(env, regs, BPF_REG_FP);
f4d7e40a 1063 regs[BPF_REG_FP].frameno = state->frameno;
17a52670
AS
1064
1065 /* 1st arg to a function */
1066 regs[BPF_REG_1].type = PTR_TO_CTX;
61bd5218 1067 mark_reg_known_zero(env, regs, BPF_REG_1);
6760bf2d
DB
1068}
1069
f4d7e40a
AS
1070#define BPF_MAIN_FUNC (-1)
1071static void init_func_state(struct bpf_verifier_env *env,
1072 struct bpf_func_state *state,
1073 int callsite, int frameno, int subprogno)
1074{
1075 state->callsite = callsite;
1076 state->frameno = frameno;
1077 state->subprogno = subprogno;
1078 init_reg_state(env, state);
1079}
1080
17a52670
AS
1081enum reg_arg_type {
1082 SRC_OP, /* register is used as source operand */
1083 DST_OP, /* register is used as destination operand */
1084 DST_OP_NO_MARK /* same as above, check only, don't mark */
1085};
1086
cc8b0b92
AS
1087static int cmp_subprogs(const void *a, const void *b)
1088{
9c8105bd
JW
1089 return ((struct bpf_subprog_info *)a)->start -
1090 ((struct bpf_subprog_info *)b)->start;
cc8b0b92
AS
1091}
1092
1093static int find_subprog(struct bpf_verifier_env *env, int off)
1094{
9c8105bd 1095 struct bpf_subprog_info *p;
cc8b0b92 1096
9c8105bd
JW
1097 p = bsearch(&off, env->subprog_info, env->subprog_cnt,
1098 sizeof(env->subprog_info[0]), cmp_subprogs);
cc8b0b92
AS
1099 if (!p)
1100 return -ENOENT;
9c8105bd 1101 return p - env->subprog_info;
cc8b0b92
AS
1102
1103}
1104
1105static int add_subprog(struct bpf_verifier_env *env, int off)
1106{
1107 int insn_cnt = env->prog->len;
1108 int ret;
1109
1110 if (off >= insn_cnt || off < 0) {
1111 verbose(env, "call to invalid destination\n");
1112 return -EINVAL;
1113 }
1114 ret = find_subprog(env, off);
1115 if (ret >= 0)
1116 return 0;
4cb3d99c 1117 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
cc8b0b92
AS
1118 verbose(env, "too many subprograms\n");
1119 return -E2BIG;
1120 }
9c8105bd
JW
1121 env->subprog_info[env->subprog_cnt++].start = off;
1122 sort(env->subprog_info, env->subprog_cnt,
1123 sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
cc8b0b92
AS
1124 return 0;
1125}
1126
1127static int check_subprogs(struct bpf_verifier_env *env)
1128{
1129 int i, ret, subprog_start, subprog_end, off, cur_subprog = 0;
9c8105bd 1130 struct bpf_subprog_info *subprog = env->subprog_info;
cc8b0b92
AS
1131 struct bpf_insn *insn = env->prog->insnsi;
1132 int insn_cnt = env->prog->len;
1133
f910cefa
JW
1134 /* Add entry function. */
1135 ret = add_subprog(env, 0);
1136 if (ret < 0)
1137 return ret;
1138
cc8b0b92
AS
1139 /* determine subprog starts. The end is one before the next starts */
1140 for (i = 0; i < insn_cnt; i++) {
1141 if (insn[i].code != (BPF_JMP | BPF_CALL))
1142 continue;
1143 if (insn[i].src_reg != BPF_PSEUDO_CALL)
1144 continue;
1145 if (!env->allow_ptr_leaks) {
1146 verbose(env, "function calls to other bpf functions are allowed for root only\n");
1147 return -EPERM;
1148 }
cc8b0b92
AS
1149 ret = add_subprog(env, i + insn[i].imm + 1);
1150 if (ret < 0)
1151 return ret;
1152 }
1153
4cb3d99c
JW
1154 /* Add a fake 'exit' subprog which could simplify subprog iteration
1155 * logic. 'subprog_cnt' should not be increased.
1156 */
1157 subprog[env->subprog_cnt].start = insn_cnt;
1158
06ee7115 1159 if (env->log.level & BPF_LOG_LEVEL2)
cc8b0b92 1160 for (i = 0; i < env->subprog_cnt; i++)
9c8105bd 1161 verbose(env, "func#%d @%d\n", i, subprog[i].start);
cc8b0b92
AS
1162
1163 /* now check that all jumps are within the same subprog */
4cb3d99c
JW
1164 subprog_start = subprog[cur_subprog].start;
1165 subprog_end = subprog[cur_subprog + 1].start;
cc8b0b92
AS
1166 for (i = 0; i < insn_cnt; i++) {
1167 u8 code = insn[i].code;
1168
092ed096 1169 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
cc8b0b92
AS
1170 goto next;
1171 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
1172 goto next;
1173 off = i + insn[i].off + 1;
1174 if (off < subprog_start || off >= subprog_end) {
1175 verbose(env, "jump out of range from insn %d to %d\n", i, off);
1176 return -EINVAL;
1177 }
1178next:
1179 if (i == subprog_end - 1) {
1180 /* to avoid fall-through from one subprog into another
1181 * the last insn of the subprog should be either exit
1182 * or unconditional jump back
1183 */
1184 if (code != (BPF_JMP | BPF_EXIT) &&
1185 code != (BPF_JMP | BPF_JA)) {
1186 verbose(env, "last insn is not an exit or jmp\n");
1187 return -EINVAL;
1188 }
1189 subprog_start = subprog_end;
4cb3d99c
JW
1190 cur_subprog++;
1191 if (cur_subprog < env->subprog_cnt)
9c8105bd 1192 subprog_end = subprog[cur_subprog + 1].start;
cc8b0b92
AS
1193 }
1194 }
1195 return 0;
1196}
1197
679c782d
EC
1198/* Parentage chain of this register (or stack slot) should take care of all
1199 * issues like callee-saved registers, stack slot allocation time, etc.
1200 */
f4d7e40a 1201static int mark_reg_read(struct bpf_verifier_env *env,
679c782d 1202 const struct bpf_reg_state *state,
5327ed3d 1203 struct bpf_reg_state *parent, u8 flag)
f4d7e40a
AS
1204{
1205 bool writes = parent == state->parent; /* Observe write marks */
06ee7115 1206 int cnt = 0;
dc503a8a
EC
1207
1208 while (parent) {
1209 /* if read wasn't screened by an earlier write ... */
679c782d 1210 if (writes && state->live & REG_LIVE_WRITTEN)
dc503a8a 1211 break;
9242b5f5
AS
1212 if (parent->live & REG_LIVE_DONE) {
1213 verbose(env, "verifier BUG type %s var_off %lld off %d\n",
1214 reg_type_str[parent->type],
1215 parent->var_off.value, parent->off);
1216 return -EFAULT;
1217 }
5327ed3d
JW
1218 /* The first condition is more likely to be true than the
1219 * second, checked it first.
1220 */
1221 if ((parent->live & REG_LIVE_READ) == flag ||
1222 parent->live & REG_LIVE_READ64)
25af32da
AS
1223 /* The parentage chain never changes and
1224 * this parent was already marked as LIVE_READ.
1225 * There is no need to keep walking the chain again and
1226 * keep re-marking all parents as LIVE_READ.
1227 * This case happens when the same register is read
1228 * multiple times without writes into it in-between.
5327ed3d
JW
1229 * Also, if parent has the stronger REG_LIVE_READ64 set,
1230 * then no need to set the weak REG_LIVE_READ32.
25af32da
AS
1231 */
1232 break;
dc503a8a 1233 /* ... then we depend on parent's value */
5327ed3d
JW
1234 parent->live |= flag;
1235 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
1236 if (flag == REG_LIVE_READ64)
1237 parent->live &= ~REG_LIVE_READ32;
dc503a8a
EC
1238 state = parent;
1239 parent = state->parent;
f4d7e40a 1240 writes = true;
06ee7115 1241 cnt++;
dc503a8a 1242 }
06ee7115
AS
1243
1244 if (env->longest_mark_read_walk < cnt)
1245 env->longest_mark_read_walk = cnt;
f4d7e40a 1246 return 0;
dc503a8a
EC
1247}
1248
5327ed3d
JW
1249/* This function is supposed to be used by the following 32-bit optimization
1250 * code only. It returns TRUE if the source or destination register operates
1251 * on 64-bit, otherwise return FALSE.
1252 */
1253static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
1254 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
1255{
1256 u8 code, class, op;
1257
1258 code = insn->code;
1259 class = BPF_CLASS(code);
1260 op = BPF_OP(code);
1261 if (class == BPF_JMP) {
1262 /* BPF_EXIT for "main" will reach here. Return TRUE
1263 * conservatively.
1264 */
1265 if (op == BPF_EXIT)
1266 return true;
1267 if (op == BPF_CALL) {
1268 /* BPF to BPF call will reach here because of marking
1269 * caller saved clobber with DST_OP_NO_MARK for which we
1270 * don't care the register def because they are anyway
1271 * marked as NOT_INIT already.
1272 */
1273 if (insn->src_reg == BPF_PSEUDO_CALL)
1274 return false;
1275 /* Helper call will reach here because of arg type
1276 * check, conservatively return TRUE.
1277 */
1278 if (t == SRC_OP)
1279 return true;
1280
1281 return false;
1282 }
1283 }
1284
1285 if (class == BPF_ALU64 || class == BPF_JMP ||
1286 /* BPF_END always use BPF_ALU class. */
1287 (class == BPF_ALU && op == BPF_END && insn->imm == 64))
1288 return true;
1289
1290 if (class == BPF_ALU || class == BPF_JMP32)
1291 return false;
1292
1293 if (class == BPF_LDX) {
1294 if (t != SRC_OP)
1295 return BPF_SIZE(code) == BPF_DW;
1296 /* LDX source must be ptr. */
1297 return true;
1298 }
1299
1300 if (class == BPF_STX) {
1301 if (reg->type != SCALAR_VALUE)
1302 return true;
1303 return BPF_SIZE(code) == BPF_DW;
1304 }
1305
1306 if (class == BPF_LD) {
1307 u8 mode = BPF_MODE(code);
1308
1309 /* LD_IMM64 */
1310 if (mode == BPF_IMM)
1311 return true;
1312
1313 /* Both LD_IND and LD_ABS return 32-bit data. */
1314 if (t != SRC_OP)
1315 return false;
1316
1317 /* Implicit ctx ptr. */
1318 if (regno == BPF_REG_6)
1319 return true;
1320
1321 /* Explicit source could be any width. */
1322 return true;
1323 }
1324
1325 if (class == BPF_ST)
1326 /* The only source register for BPF_ST is a ptr. */
1327 return true;
1328
1329 /* Conservatively return true at default. */
1330 return true;
1331}
1332
b325fbca
JW
1333/* Return TRUE if INSN doesn't have explicit value define. */
1334static bool insn_no_def(struct bpf_insn *insn)
1335{
1336 u8 class = BPF_CLASS(insn->code);
1337
1338 return (class == BPF_JMP || class == BPF_JMP32 ||
1339 class == BPF_STX || class == BPF_ST);
1340}
1341
1342/* Return TRUE if INSN has defined any 32-bit value explicitly. */
1343static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
1344{
1345 if (insn_no_def(insn))
1346 return false;
1347
1348 return !is_reg64(env, insn, insn->dst_reg, NULL, DST_OP);
1349}
1350
5327ed3d
JW
1351static void mark_insn_zext(struct bpf_verifier_env *env,
1352 struct bpf_reg_state *reg)
1353{
1354 s32 def_idx = reg->subreg_def;
1355
1356 if (def_idx == DEF_NOT_SUBREG)
1357 return;
1358
1359 env->insn_aux_data[def_idx - 1].zext_dst = true;
1360 /* The dst will be zero extended, so won't be sub-register anymore. */
1361 reg->subreg_def = DEF_NOT_SUBREG;
1362}
1363
dc503a8a 1364static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
17a52670
AS
1365 enum reg_arg_type t)
1366{
f4d7e40a
AS
1367 struct bpf_verifier_state *vstate = env->cur_state;
1368 struct bpf_func_state *state = vstate->frame[vstate->curframe];
5327ed3d 1369 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
c342dc10 1370 struct bpf_reg_state *reg, *regs = state->regs;
5327ed3d 1371 bool rw64;
dc503a8a 1372
17a52670 1373 if (regno >= MAX_BPF_REG) {
61bd5218 1374 verbose(env, "R%d is invalid\n", regno);
17a52670
AS
1375 return -EINVAL;
1376 }
1377
c342dc10 1378 reg = &regs[regno];
5327ed3d 1379 rw64 = is_reg64(env, insn, regno, reg, t);
17a52670
AS
1380 if (t == SRC_OP) {
1381 /* check whether register used as source operand can be read */
c342dc10 1382 if (reg->type == NOT_INIT) {
61bd5218 1383 verbose(env, "R%d !read_ok\n", regno);
17a52670
AS
1384 return -EACCES;
1385 }
679c782d 1386 /* We don't need to worry about FP liveness because it's read-only */
c342dc10
JW
1387 if (regno == BPF_REG_FP)
1388 return 0;
1389
5327ed3d
JW
1390 if (rw64)
1391 mark_insn_zext(env, reg);
1392
1393 return mark_reg_read(env, reg, reg->parent,
1394 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
17a52670
AS
1395 } else {
1396 /* check whether register used as dest operand can be written to */
1397 if (regno == BPF_REG_FP) {
61bd5218 1398 verbose(env, "frame pointer is read only\n");
17a52670
AS
1399 return -EACCES;
1400 }
c342dc10 1401 reg->live |= REG_LIVE_WRITTEN;
5327ed3d 1402 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
17a52670 1403 if (t == DST_OP)
61bd5218 1404 mark_reg_unknown(env, regs, regno);
17a52670
AS
1405 }
1406 return 0;
1407}
1408
b5dc0163
AS
1409/* for any branch, call, exit record the history of jmps in the given state */
1410static int push_jmp_history(struct bpf_verifier_env *env,
1411 struct bpf_verifier_state *cur)
1412{
1413 u32 cnt = cur->jmp_history_cnt;
1414 struct bpf_idx_pair *p;
1415
1416 cnt++;
1417 p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER);
1418 if (!p)
1419 return -ENOMEM;
1420 p[cnt - 1].idx = env->insn_idx;
1421 p[cnt - 1].prev_idx = env->prev_insn_idx;
1422 cur->jmp_history = p;
1423 cur->jmp_history_cnt = cnt;
1424 return 0;
1425}
1426
1427/* Backtrack one insn at a time. If idx is not at the top of recorded
1428 * history then previous instruction came from straight line execution.
1429 */
1430static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
1431 u32 *history)
1432{
1433 u32 cnt = *history;
1434
1435 if (cnt && st->jmp_history[cnt - 1].idx == i) {
1436 i = st->jmp_history[cnt - 1].prev_idx;
1437 (*history)--;
1438 } else {
1439 i--;
1440 }
1441 return i;
1442}
1443
1444/* For given verifier state backtrack_insn() is called from the last insn to
1445 * the first insn. Its purpose is to compute a bitmask of registers and
1446 * stack slots that needs precision in the parent verifier state.
1447 */
1448static int backtrack_insn(struct bpf_verifier_env *env, int idx,
1449 u32 *reg_mask, u64 *stack_mask)
1450{
1451 const struct bpf_insn_cbs cbs = {
1452 .cb_print = verbose,
1453 .private_data = env,
1454 };
1455 struct bpf_insn *insn = env->prog->insnsi + idx;
1456 u8 class = BPF_CLASS(insn->code);
1457 u8 opcode = BPF_OP(insn->code);
1458 u8 mode = BPF_MODE(insn->code);
1459 u32 dreg = 1u << insn->dst_reg;
1460 u32 sreg = 1u << insn->src_reg;
1461 u32 spi;
1462
1463 if (insn->code == 0)
1464 return 0;
1465 if (env->log.level & BPF_LOG_LEVEL) {
1466 verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask);
1467 verbose(env, "%d: ", idx);
1468 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
1469 }
1470
1471 if (class == BPF_ALU || class == BPF_ALU64) {
1472 if (!(*reg_mask & dreg))
1473 return 0;
1474 if (opcode == BPF_MOV) {
1475 if (BPF_SRC(insn->code) == BPF_X) {
1476 /* dreg = sreg
1477 * dreg needs precision after this insn
1478 * sreg needs precision before this insn
1479 */
1480 *reg_mask &= ~dreg;
1481 *reg_mask |= sreg;
1482 } else {
1483 /* dreg = K
1484 * dreg needs precision after this insn.
1485 * Corresponding register is already marked
1486 * as precise=true in this verifier state.
1487 * No further markings in parent are necessary
1488 */
1489 *reg_mask &= ~dreg;
1490 }
1491 } else {
1492 if (BPF_SRC(insn->code) == BPF_X) {
1493 /* dreg += sreg
1494 * both dreg and sreg need precision
1495 * before this insn
1496 */
1497 *reg_mask |= sreg;
1498 } /* else dreg += K
1499 * dreg still needs precision before this insn
1500 */
1501 }
1502 } else if (class == BPF_LDX) {
1503 if (!(*reg_mask & dreg))
1504 return 0;
1505 *reg_mask &= ~dreg;
1506
1507 /* scalars can only be spilled into stack w/o losing precision.
1508 * Load from any other memory can be zero extended.
1509 * The desire to keep that precision is already indicated
1510 * by 'precise' mark in corresponding register of this state.
1511 * No further tracking necessary.
1512 */
1513 if (insn->src_reg != BPF_REG_FP)
1514 return 0;
1515 if (BPF_SIZE(insn->code) != BPF_DW)
1516 return 0;
1517
1518 /* dreg = *(u64 *)[fp - off] was a fill from the stack.
1519 * that [fp - off] slot contains scalar that needs to be
1520 * tracked with precision
1521 */
1522 spi = (-insn->off - 1) / BPF_REG_SIZE;
1523 if (spi >= 64) {
1524 verbose(env, "BUG spi %d\n", spi);
1525 WARN_ONCE(1, "verifier backtracking bug");
1526 return -EFAULT;
1527 }
1528 *stack_mask |= 1ull << spi;
b3b50f05 1529 } else if (class == BPF_STX || class == BPF_ST) {
b5dc0163 1530 if (*reg_mask & dreg)
b3b50f05 1531 /* stx & st shouldn't be using _scalar_ dst_reg
b5dc0163
AS
1532 * to access memory. It means backtracking
1533 * encountered a case of pointer subtraction.
1534 */
1535 return -ENOTSUPP;
1536 /* scalars can only be spilled into stack */
1537 if (insn->dst_reg != BPF_REG_FP)
1538 return 0;
1539 if (BPF_SIZE(insn->code) != BPF_DW)
1540 return 0;
1541 spi = (-insn->off - 1) / BPF_REG_SIZE;
1542 if (spi >= 64) {
1543 verbose(env, "BUG spi %d\n", spi);
1544 WARN_ONCE(1, "verifier backtracking bug");
1545 return -EFAULT;
1546 }
1547 if (!(*stack_mask & (1ull << spi)))
1548 return 0;
1549 *stack_mask &= ~(1ull << spi);
b3b50f05
AN
1550 if (class == BPF_STX)
1551 *reg_mask |= sreg;
b5dc0163
AS
1552 } else if (class == BPF_JMP || class == BPF_JMP32) {
1553 if (opcode == BPF_CALL) {
1554 if (insn->src_reg == BPF_PSEUDO_CALL)
1555 return -ENOTSUPP;
1556 /* regular helper call sets R0 */
1557 *reg_mask &= ~1;
1558 if (*reg_mask & 0x3f) {
1559 /* if backtracing was looking for registers R1-R5
1560 * they should have been found already.
1561 */
1562 verbose(env, "BUG regs %x\n", *reg_mask);
1563 WARN_ONCE(1, "verifier backtracking bug");
1564 return -EFAULT;
1565 }
1566 } else if (opcode == BPF_EXIT) {
1567 return -ENOTSUPP;
1568 }
1569 } else if (class == BPF_LD) {
1570 if (!(*reg_mask & dreg))
1571 return 0;
1572 *reg_mask &= ~dreg;
1573 /* It's ld_imm64 or ld_abs or ld_ind.
1574 * For ld_imm64 no further tracking of precision
1575 * into parent is necessary
1576 */
1577 if (mode == BPF_IND || mode == BPF_ABS)
1578 /* to be analyzed */
1579 return -ENOTSUPP;
b5dc0163
AS
1580 }
1581 return 0;
1582}
1583
1584/* the scalar precision tracking algorithm:
1585 * . at the start all registers have precise=false.
1586 * . scalar ranges are tracked as normal through alu and jmp insns.
1587 * . once precise value of the scalar register is used in:
1588 * . ptr + scalar alu
1589 * . if (scalar cond K|scalar)
1590 * . helper_call(.., scalar, ...) where ARG_CONST is expected
1591 * backtrack through the verifier states and mark all registers and
1592 * stack slots with spilled constants that these scalar regisers
1593 * should be precise.
1594 * . during state pruning two registers (or spilled stack slots)
1595 * are equivalent if both are not precise.
1596 *
1597 * Note the verifier cannot simply walk register parentage chain,
1598 * since many different registers and stack slots could have been
1599 * used to compute single precise scalar.
1600 *
1601 * The approach of starting with precise=true for all registers and then
1602 * backtrack to mark a register as not precise when the verifier detects
1603 * that program doesn't care about specific value (e.g., when helper
1604 * takes register as ARG_ANYTHING parameter) is not safe.
1605 *
1606 * It's ok to walk single parentage chain of the verifier states.
1607 * It's possible that this backtracking will go all the way till 1st insn.
1608 * All other branches will be explored for needing precision later.
1609 *
1610 * The backtracking needs to deal with cases like:
1611 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
1612 * r9 -= r8
1613 * r5 = r9
1614 * if r5 > 0x79f goto pc+7
1615 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
1616 * r5 += 1
1617 * ...
1618 * call bpf_perf_event_output#25
1619 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO
1620 *
1621 * and this case:
1622 * r6 = 1
1623 * call foo // uses callee's r6 inside to compute r0
1624 * r0 += r6
1625 * if r0 == 0 goto
1626 *
1627 * to track above reg_mask/stack_mask needs to be independent for each frame.
1628 *
1629 * Also if parent's curframe > frame where backtracking started,
1630 * the verifier need to mark registers in both frames, otherwise callees
1631 * may incorrectly prune callers. This is similar to
1632 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
1633 *
1634 * For now backtracking falls back into conservative marking.
1635 */
1636static void mark_all_scalars_precise(struct bpf_verifier_env *env,
1637 struct bpf_verifier_state *st)
1638{
1639 struct bpf_func_state *func;
1640 struct bpf_reg_state *reg;
1641 int i, j;
1642
1643 /* big hammer: mark all scalars precise in this path.
1644 * pop_stack may still get !precise scalars.
1645 */
1646 for (; st; st = st->parent)
1647 for (i = 0; i <= st->curframe; i++) {
1648 func = st->frame[i];
1649 for (j = 0; j < BPF_REG_FP; j++) {
1650 reg = &func->regs[j];
1651 if (reg->type != SCALAR_VALUE)
1652 continue;
1653 reg->precise = true;
1654 }
1655 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
1656 if (func->stack[j].slot_type[0] != STACK_SPILL)
1657 continue;
1658 reg = &func->stack[j].spilled_ptr;
1659 if (reg->type != SCALAR_VALUE)
1660 continue;
1661 reg->precise = true;
1662 }
1663 }
1664}
1665
a3ce685d
AS
1666static int __mark_chain_precision(struct bpf_verifier_env *env, int regno,
1667 int spi)
b5dc0163
AS
1668{
1669 struct bpf_verifier_state *st = env->cur_state;
1670 int first_idx = st->first_insn_idx;
1671 int last_idx = env->insn_idx;
1672 struct bpf_func_state *func;
1673 struct bpf_reg_state *reg;
a3ce685d
AS
1674 u32 reg_mask = regno >= 0 ? 1u << regno : 0;
1675 u64 stack_mask = spi >= 0 ? 1ull << spi : 0;
b5dc0163 1676 bool skip_first = true;
a3ce685d 1677 bool new_marks = false;
b5dc0163
AS
1678 int i, err;
1679
1680 if (!env->allow_ptr_leaks)
1681 /* backtracking is root only for now */
1682 return 0;
1683
1684 func = st->frame[st->curframe];
a3ce685d
AS
1685 if (regno >= 0) {
1686 reg = &func->regs[regno];
1687 if (reg->type != SCALAR_VALUE) {
1688 WARN_ONCE(1, "backtracing misuse");
1689 return -EFAULT;
1690 }
1691 if (!reg->precise)
1692 new_marks = true;
1693 else
1694 reg_mask = 0;
1695 reg->precise = true;
b5dc0163 1696 }
b5dc0163 1697
a3ce685d
AS
1698 while (spi >= 0) {
1699 if (func->stack[spi].slot_type[0] != STACK_SPILL) {
1700 stack_mask = 0;
1701 break;
1702 }
1703 reg = &func->stack[spi].spilled_ptr;
1704 if (reg->type != SCALAR_VALUE) {
1705 stack_mask = 0;
1706 break;
1707 }
1708 if (!reg->precise)
1709 new_marks = true;
1710 else
1711 stack_mask = 0;
1712 reg->precise = true;
1713 break;
1714 }
1715
1716 if (!new_marks)
1717 return 0;
1718 if (!reg_mask && !stack_mask)
1719 return 0;
b5dc0163
AS
1720 for (;;) {
1721 DECLARE_BITMAP(mask, 64);
b5dc0163
AS
1722 u32 history = st->jmp_history_cnt;
1723
1724 if (env->log.level & BPF_LOG_LEVEL)
1725 verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx);
1726 for (i = last_idx;;) {
1727 if (skip_first) {
1728 err = 0;
1729 skip_first = false;
1730 } else {
1731 err = backtrack_insn(env, i, &reg_mask, &stack_mask);
1732 }
1733 if (err == -ENOTSUPP) {
1734 mark_all_scalars_precise(env, st);
1735 return 0;
1736 } else if (err) {
1737 return err;
1738 }
1739 if (!reg_mask && !stack_mask)
1740 /* Found assignment(s) into tracked register in this state.
1741 * Since this state is already marked, just return.
1742 * Nothing to be tracked further in the parent state.
1743 */
1744 return 0;
1745 if (i == first_idx)
1746 break;
1747 i = get_prev_insn_idx(st, i, &history);
1748 if (i >= env->prog->len) {
1749 /* This can happen if backtracking reached insn 0
1750 * and there are still reg_mask or stack_mask
1751 * to backtrack.
1752 * It means the backtracking missed the spot where
1753 * particular register was initialized with a constant.
1754 */
1755 verbose(env, "BUG backtracking idx %d\n", i);
1756 WARN_ONCE(1, "verifier backtracking bug");
1757 return -EFAULT;
1758 }
1759 }
1760 st = st->parent;
1761 if (!st)
1762 break;
1763
a3ce685d 1764 new_marks = false;
b5dc0163
AS
1765 func = st->frame[st->curframe];
1766 bitmap_from_u64(mask, reg_mask);
1767 for_each_set_bit(i, mask, 32) {
1768 reg = &func->regs[i];
a3ce685d
AS
1769 if (reg->type != SCALAR_VALUE) {
1770 reg_mask &= ~(1u << i);
b5dc0163 1771 continue;
a3ce685d 1772 }
b5dc0163
AS
1773 if (!reg->precise)
1774 new_marks = true;
1775 reg->precise = true;
1776 }
1777
1778 bitmap_from_u64(mask, stack_mask);
1779 for_each_set_bit(i, mask, 64) {
1780 if (i >= func->allocated_stack / BPF_REG_SIZE) {
2339cd6c
AS
1781 /* the sequence of instructions:
1782 * 2: (bf) r3 = r10
1783 * 3: (7b) *(u64 *)(r3 -8) = r0
1784 * 4: (79) r4 = *(u64 *)(r10 -8)
1785 * doesn't contain jmps. It's backtracked
1786 * as a single block.
1787 * During backtracking insn 3 is not recognized as
1788 * stack access, so at the end of backtracking
1789 * stack slot fp-8 is still marked in stack_mask.
1790 * However the parent state may not have accessed
1791 * fp-8 and it's "unallocated" stack space.
1792 * In such case fallback to conservative.
b5dc0163 1793 */
2339cd6c
AS
1794 mark_all_scalars_precise(env, st);
1795 return 0;
b5dc0163
AS
1796 }
1797
a3ce685d
AS
1798 if (func->stack[i].slot_type[0] != STACK_SPILL) {
1799 stack_mask &= ~(1ull << i);
b5dc0163 1800 continue;
a3ce685d 1801 }
b5dc0163 1802 reg = &func->stack[i].spilled_ptr;
a3ce685d
AS
1803 if (reg->type != SCALAR_VALUE) {
1804 stack_mask &= ~(1ull << i);
b5dc0163 1805 continue;
a3ce685d 1806 }
b5dc0163
AS
1807 if (!reg->precise)
1808 new_marks = true;
1809 reg->precise = true;
1810 }
1811 if (env->log.level & BPF_LOG_LEVEL) {
1812 print_verifier_state(env, func);
1813 verbose(env, "parent %s regs=%x stack=%llx marks\n",
1814 new_marks ? "didn't have" : "already had",
1815 reg_mask, stack_mask);
1816 }
1817
a3ce685d
AS
1818 if (!reg_mask && !stack_mask)
1819 break;
b5dc0163
AS
1820 if (!new_marks)
1821 break;
1822
1823 last_idx = st->last_insn_idx;
1824 first_idx = st->first_insn_idx;
1825 }
1826 return 0;
1827}
1828
a3ce685d
AS
1829static int mark_chain_precision(struct bpf_verifier_env *env, int regno)
1830{
1831 return __mark_chain_precision(env, regno, -1);
1832}
1833
1834static int mark_chain_precision_stack(struct bpf_verifier_env *env, int spi)
1835{
1836 return __mark_chain_precision(env, -1, spi);
1837}
b5dc0163 1838
1be7f75d
AS
1839static bool is_spillable_regtype(enum bpf_reg_type type)
1840{
1841 switch (type) {
1842 case PTR_TO_MAP_VALUE:
1843 case PTR_TO_MAP_VALUE_OR_NULL:
1844 case PTR_TO_STACK:
1845 case PTR_TO_CTX:
969bf05e 1846 case PTR_TO_PACKET:
de8f3a83 1847 case PTR_TO_PACKET_META:
969bf05e 1848 case PTR_TO_PACKET_END:
d58e468b 1849 case PTR_TO_FLOW_KEYS:
1be7f75d 1850 case CONST_PTR_TO_MAP:
c64b7983
JS
1851 case PTR_TO_SOCKET:
1852 case PTR_TO_SOCKET_OR_NULL:
46f8bc92
MKL
1853 case PTR_TO_SOCK_COMMON:
1854 case PTR_TO_SOCK_COMMON_OR_NULL:
655a51e5
MKL
1855 case PTR_TO_TCP_SOCK:
1856 case PTR_TO_TCP_SOCK_OR_NULL:
fada7fdc 1857 case PTR_TO_XDP_SOCK:
1be7f75d
AS
1858 return true;
1859 default:
1860 return false;
1861 }
1862}
1863
cc2b14d5
AS
1864/* Does this register contain a constant zero? */
1865static bool register_is_null(struct bpf_reg_state *reg)
1866{
1867 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
1868}
1869
f7cf25b2
AS
1870static bool register_is_const(struct bpf_reg_state *reg)
1871{
1872 return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off);
1873}
1874
1875static void save_register_state(struct bpf_func_state *state,
1876 int spi, struct bpf_reg_state *reg)
1877{
1878 int i;
1879
1880 state->stack[spi].spilled_ptr = *reg;
1881 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1882
1883 for (i = 0; i < BPF_REG_SIZE; i++)
1884 state->stack[spi].slot_type[i] = STACK_SPILL;
1885}
1886
17a52670
AS
1887/* check_stack_read/write functions track spill/fill of registers,
1888 * stack boundary and alignment are checked in check_mem_access()
1889 */
61bd5218 1890static int check_stack_write(struct bpf_verifier_env *env,
f4d7e40a 1891 struct bpf_func_state *state, /* func where register points to */
af86ca4e 1892 int off, int size, int value_regno, int insn_idx)
17a52670 1893{
f4d7e40a 1894 struct bpf_func_state *cur; /* state of the current function */
638f5b90 1895 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
b5dc0163 1896 u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg;
f7cf25b2 1897 struct bpf_reg_state *reg = NULL;
638f5b90 1898
f4d7e40a 1899 err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE),
fd978bf7 1900 state->acquired_refs, true);
638f5b90
AS
1901 if (err)
1902 return err;
9c399760
AS
1903 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
1904 * so it's aligned access and [off, off + size) are within stack limits
1905 */
638f5b90
AS
1906 if (!env->allow_ptr_leaks &&
1907 state->stack[spi].slot_type[0] == STACK_SPILL &&
1908 size != BPF_REG_SIZE) {
1909 verbose(env, "attempt to corrupt spilled pointer on stack\n");
1910 return -EACCES;
1911 }
17a52670 1912
f4d7e40a 1913 cur = env->cur_state->frame[env->cur_state->curframe];
f7cf25b2
AS
1914 if (value_regno >= 0)
1915 reg = &cur->regs[value_regno];
17a52670 1916
f7cf25b2
AS
1917 if (reg && size == BPF_REG_SIZE && register_is_const(reg) &&
1918 !register_is_null(reg) && env->allow_ptr_leaks) {
b5dc0163
AS
1919 if (dst_reg != BPF_REG_FP) {
1920 /* The backtracking logic can only recognize explicit
1921 * stack slot address like [fp - 8]. Other spill of
1922 * scalar via different register has to be conervative.
1923 * Backtrack from here and mark all registers as precise
1924 * that contributed into 'reg' being a constant.
1925 */
1926 err = mark_chain_precision(env, value_regno);
1927 if (err)
1928 return err;
1929 }
f7cf25b2
AS
1930 save_register_state(state, spi, reg);
1931 } else if (reg && is_spillable_regtype(reg->type)) {
17a52670 1932 /* register containing pointer is being spilled into stack */
9c399760 1933 if (size != BPF_REG_SIZE) {
f7cf25b2 1934 verbose_linfo(env, insn_idx, "; ");
61bd5218 1935 verbose(env, "invalid size of register spill\n");
17a52670
AS
1936 return -EACCES;
1937 }
1938
f7cf25b2 1939 if (state != cur && reg->type == PTR_TO_STACK) {
f4d7e40a
AS
1940 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
1941 return -EINVAL;
1942 }
1943
f7cf25b2
AS
1944 if (!env->allow_ptr_leaks) {
1945 bool sanitize = false;
17a52670 1946
f7cf25b2
AS
1947 if (state->stack[spi].slot_type[0] == STACK_SPILL &&
1948 register_is_const(&state->stack[spi].spilled_ptr))
1949 sanitize = true;
1950 for (i = 0; i < BPF_REG_SIZE; i++)
1951 if (state->stack[spi].slot_type[i] == STACK_MISC) {
1952 sanitize = true;
1953 break;
1954 }
1955 if (sanitize) {
af86ca4e
AS
1956 int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off;
1957 int soff = (-spi - 1) * BPF_REG_SIZE;
1958
1959 /* detected reuse of integer stack slot with a pointer
1960 * which means either llvm is reusing stack slot or
1961 * an attacker is trying to exploit CVE-2018-3639
1962 * (speculative store bypass)
1963 * Have to sanitize that slot with preemptive
1964 * store of zero.
1965 */
1966 if (*poff && *poff != soff) {
1967 /* disallow programs where single insn stores
1968 * into two different stack slots, since verifier
1969 * cannot sanitize them
1970 */
1971 verbose(env,
1972 "insn %d cannot access two stack slots fp%d and fp%d",
1973 insn_idx, *poff, soff);
1974 return -EINVAL;
1975 }
1976 *poff = soff;
1977 }
af86ca4e 1978 }
f7cf25b2 1979 save_register_state(state, spi, reg);
9c399760 1980 } else {
cc2b14d5
AS
1981 u8 type = STACK_MISC;
1982
679c782d
EC
1983 /* regular write of data into stack destroys any spilled ptr */
1984 state->stack[spi].spilled_ptr.type = NOT_INIT;
0bae2d4d
JW
1985 /* Mark slots as STACK_MISC if they belonged to spilled ptr. */
1986 if (state->stack[spi].slot_type[0] == STACK_SPILL)
1987 for (i = 0; i < BPF_REG_SIZE; i++)
1988 state->stack[spi].slot_type[i] = STACK_MISC;
9c399760 1989
cc2b14d5
AS
1990 /* only mark the slot as written if all 8 bytes were written
1991 * otherwise read propagation may incorrectly stop too soon
1992 * when stack slots are partially written.
1993 * This heuristic means that read propagation will be
1994 * conservative, since it will add reg_live_read marks
1995 * to stack slots all the way to first state when programs
1996 * writes+reads less than 8 bytes
1997 */
1998 if (size == BPF_REG_SIZE)
1999 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
2000
2001 /* when we zero initialize stack slots mark them as such */
b5dc0163
AS
2002 if (reg && register_is_null(reg)) {
2003 /* backtracking doesn't work for STACK_ZERO yet. */
2004 err = mark_chain_precision(env, value_regno);
2005 if (err)
2006 return err;
cc2b14d5 2007 type = STACK_ZERO;
b5dc0163 2008 }
cc2b14d5 2009
0bae2d4d 2010 /* Mark slots affected by this stack write. */
9c399760 2011 for (i = 0; i < size; i++)
638f5b90 2012 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
cc2b14d5 2013 type;
17a52670
AS
2014 }
2015 return 0;
2016}
2017
61bd5218 2018static int check_stack_read(struct bpf_verifier_env *env,
f4d7e40a
AS
2019 struct bpf_func_state *reg_state /* func where register points to */,
2020 int off, int size, int value_regno)
17a52670 2021{
f4d7e40a
AS
2022 struct bpf_verifier_state *vstate = env->cur_state;
2023 struct bpf_func_state *state = vstate->frame[vstate->curframe];
638f5b90 2024 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
f7cf25b2 2025 struct bpf_reg_state *reg;
638f5b90 2026 u8 *stype;
17a52670 2027
f4d7e40a 2028 if (reg_state->allocated_stack <= slot) {
638f5b90
AS
2029 verbose(env, "invalid read from stack off %d+0 size %d\n",
2030 off, size);
2031 return -EACCES;
2032 }
f4d7e40a 2033 stype = reg_state->stack[spi].slot_type;
f7cf25b2 2034 reg = &reg_state->stack[spi].spilled_ptr;
17a52670 2035
638f5b90 2036 if (stype[0] == STACK_SPILL) {
9c399760 2037 if (size != BPF_REG_SIZE) {
f7cf25b2
AS
2038 if (reg->type != SCALAR_VALUE) {
2039 verbose_linfo(env, env->insn_idx, "; ");
2040 verbose(env, "invalid size of register fill\n");
2041 return -EACCES;
2042 }
2043 if (value_regno >= 0) {
2044 mark_reg_unknown(env, state->regs, value_regno);
2045 state->regs[value_regno].live |= REG_LIVE_WRITTEN;
2046 }
2047 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2048 return 0;
17a52670 2049 }
9c399760 2050 for (i = 1; i < BPF_REG_SIZE; i++) {
638f5b90 2051 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
61bd5218 2052 verbose(env, "corrupted spill memory\n");
17a52670
AS
2053 return -EACCES;
2054 }
2055 }
2056
dc503a8a 2057 if (value_regno >= 0) {
17a52670 2058 /* restore register state from stack */
f7cf25b2 2059 state->regs[value_regno] = *reg;
2f18f62e
AS
2060 /* mark reg as written since spilled pointer state likely
2061 * has its liveness marks cleared by is_state_visited()
2062 * which resets stack/reg liveness for state transitions
2063 */
2064 state->regs[value_regno].live |= REG_LIVE_WRITTEN;
dc503a8a 2065 }
f7cf25b2 2066 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
17a52670 2067 } else {
cc2b14d5
AS
2068 int zeros = 0;
2069
17a52670 2070 for (i = 0; i < size; i++) {
cc2b14d5
AS
2071 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC)
2072 continue;
2073 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) {
2074 zeros++;
2075 continue;
17a52670 2076 }
cc2b14d5
AS
2077 verbose(env, "invalid read from stack off %d+%d size %d\n",
2078 off, i, size);
2079 return -EACCES;
2080 }
f7cf25b2 2081 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
cc2b14d5
AS
2082 if (value_regno >= 0) {
2083 if (zeros == size) {
2084 /* any size read into register is zero extended,
2085 * so the whole register == const_zero
2086 */
2087 __mark_reg_const_zero(&state->regs[value_regno]);
b5dc0163
AS
2088 /* backtracking doesn't support STACK_ZERO yet,
2089 * so mark it precise here, so that later
2090 * backtracking can stop here.
2091 * Backtracking may not need this if this register
2092 * doesn't participate in pointer adjustment.
2093 * Forward propagation of precise flag is not
2094 * necessary either. This mark is only to stop
2095 * backtracking. Any register that contributed
2096 * to const 0 was marked precise before spill.
2097 */
2098 state->regs[value_regno].precise = true;
cc2b14d5
AS
2099 } else {
2100 /* have read misc data from the stack */
2101 mark_reg_unknown(env, state->regs, value_regno);
2102 }
2103 state->regs[value_regno].live |= REG_LIVE_WRITTEN;
17a52670 2104 }
17a52670 2105 }
f7cf25b2 2106 return 0;
17a52670
AS
2107}
2108
e4298d25
DB
2109static int check_stack_access(struct bpf_verifier_env *env,
2110 const struct bpf_reg_state *reg,
2111 int off, int size)
2112{
2113 /* Stack accesses must be at a fixed offset, so that we
2114 * can determine what type of data were returned. See
2115 * check_stack_read().
2116 */
2117 if (!tnum_is_const(reg->var_off)) {
2118 char tn_buf[48];
2119
2120 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1fbd20f8 2121 verbose(env, "variable stack access var_off=%s off=%d size=%d\n",
e4298d25
DB
2122 tn_buf, off, size);
2123 return -EACCES;
2124 }
2125
2126 if (off >= 0 || off < -MAX_BPF_STACK) {
2127 verbose(env, "invalid stack off=%d size=%d\n", off, size);
2128 return -EACCES;
2129 }
2130
2131 return 0;
2132}
2133
591fe988
DB
2134static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
2135 int off, int size, enum bpf_access_type type)
2136{
2137 struct bpf_reg_state *regs = cur_regs(env);
2138 struct bpf_map *map = regs[regno].map_ptr;
2139 u32 cap = bpf_map_flags_to_cap(map);
2140
2141 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
2142 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
2143 map->value_size, off, size);
2144 return -EACCES;
2145 }
2146
2147 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
2148 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
2149 map->value_size, off, size);
2150 return -EACCES;
2151 }
2152
2153 return 0;
2154}
2155
17a52670 2156/* check read/write into map element returned by bpf_map_lookup_elem() */
f1174f77 2157static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
9fd29c08 2158 int size, bool zero_size_allowed)
17a52670 2159{
638f5b90
AS
2160 struct bpf_reg_state *regs = cur_regs(env);
2161 struct bpf_map *map = regs[regno].map_ptr;
17a52670 2162
9fd29c08
YS
2163 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
2164 off + size > map->value_size) {
61bd5218 2165 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
17a52670
AS
2166 map->value_size, off, size);
2167 return -EACCES;
2168 }
2169 return 0;
2170}
2171
f1174f77
EC
2172/* check read/write into a map element with possible variable offset */
2173static int check_map_access(struct bpf_verifier_env *env, u32 regno,
9fd29c08 2174 int off, int size, bool zero_size_allowed)
dbcfe5f7 2175{
f4d7e40a
AS
2176 struct bpf_verifier_state *vstate = env->cur_state;
2177 struct bpf_func_state *state = vstate->frame[vstate->curframe];
dbcfe5f7
GB
2178 struct bpf_reg_state *reg = &state->regs[regno];
2179 int err;
2180
f1174f77
EC
2181 /* We may have adjusted the register to this map value, so we
2182 * need to try adding each of min_value and max_value to off
2183 * to make sure our theoretical access will be safe.
dbcfe5f7 2184 */
06ee7115 2185 if (env->log.level & BPF_LOG_LEVEL)
61bd5218 2186 print_verifier_state(env, state);
b7137c4e 2187
dbcfe5f7
GB
2188 /* The minimum value is only important with signed
2189 * comparisons where we can't assume the floor of a
2190 * value is 0. If we are using signed variables for our
2191 * index'es we need to make sure that whatever we use
2192 * will have a set floor within our range.
2193 */
b7137c4e
DB
2194 if (reg->smin_value < 0 &&
2195 (reg->smin_value == S64_MIN ||
2196 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
2197 reg->smin_value + off < 0)) {
61bd5218 2198 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
dbcfe5f7
GB
2199 regno);
2200 return -EACCES;
2201 }
9fd29c08
YS
2202 err = __check_map_access(env, regno, reg->smin_value + off, size,
2203 zero_size_allowed);
dbcfe5f7 2204 if (err) {
61bd5218
JK
2205 verbose(env, "R%d min value is outside of the array range\n",
2206 regno);
dbcfe5f7
GB
2207 return err;
2208 }
2209
b03c9f9f
EC
2210 /* If we haven't set a max value then we need to bail since we can't be
2211 * sure we won't do bad things.
2212 * If reg->umax_value + off could overflow, treat that as unbounded too.
dbcfe5f7 2213 */
b03c9f9f 2214 if (reg->umax_value >= BPF_MAX_VAR_OFF) {
61bd5218 2215 verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n",
dbcfe5f7
GB
2216 regno);
2217 return -EACCES;
2218 }
9fd29c08
YS
2219 err = __check_map_access(env, regno, reg->umax_value + off, size,
2220 zero_size_allowed);
f1174f77 2221 if (err)
61bd5218
JK
2222 verbose(env, "R%d max value is outside of the array range\n",
2223 regno);
d83525ca
AS
2224
2225 if (map_value_has_spin_lock(reg->map_ptr)) {
2226 u32 lock = reg->map_ptr->spin_lock_off;
2227
2228 /* if any part of struct bpf_spin_lock can be touched by
2229 * load/store reject this program.
2230 * To check that [x1, x2) overlaps with [y1, y2)
2231 * it is sufficient to check x1 < y2 && y1 < x2.
2232 */
2233 if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) &&
2234 lock < reg->umax_value + off + size) {
2235 verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n");
2236 return -EACCES;
2237 }
2238 }
f1174f77 2239 return err;
dbcfe5f7
GB
2240}
2241
969bf05e
AS
2242#define MAX_PACKET_OFF 0xffff
2243
58e2af8b 2244static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
3a0af8fd
TG
2245 const struct bpf_call_arg_meta *meta,
2246 enum bpf_access_type t)
4acf6c0b 2247{
36bbef52 2248 switch (env->prog->type) {
5d66fa7d 2249 /* Program types only with direct read access go here! */
3a0af8fd
TG
2250 case BPF_PROG_TYPE_LWT_IN:
2251 case BPF_PROG_TYPE_LWT_OUT:
004d4b27 2252 case BPF_PROG_TYPE_LWT_SEG6LOCAL:
2dbb9b9e 2253 case BPF_PROG_TYPE_SK_REUSEPORT:
5d66fa7d 2254 case BPF_PROG_TYPE_FLOW_DISSECTOR:
d5563d36 2255 case BPF_PROG_TYPE_CGROUP_SKB:
3a0af8fd
TG
2256 if (t == BPF_WRITE)
2257 return false;
7e57fbb2 2258 /* fallthrough */
5d66fa7d
DB
2259
2260 /* Program types with direct read + write access go here! */
36bbef52
DB
2261 case BPF_PROG_TYPE_SCHED_CLS:
2262 case BPF_PROG_TYPE_SCHED_ACT:
4acf6c0b 2263 case BPF_PROG_TYPE_XDP:
3a0af8fd 2264 case BPF_PROG_TYPE_LWT_XMIT:
8a31db56 2265 case BPF_PROG_TYPE_SK_SKB:
4f738adb 2266 case BPF_PROG_TYPE_SK_MSG:
36bbef52
DB
2267 if (meta)
2268 return meta->pkt_access;
2269
2270 env->seen_direct_write = true;
4acf6c0b 2271 return true;
0d01da6a
SF
2272
2273 case BPF_PROG_TYPE_CGROUP_SOCKOPT:
2274 if (t == BPF_WRITE)
2275 env->seen_direct_write = true;
2276
2277 return true;
2278
4acf6c0b
BB
2279 default:
2280 return false;
2281 }
2282}
2283
f1174f77 2284static int __check_packet_access(struct bpf_verifier_env *env, u32 regno,
9fd29c08 2285 int off, int size, bool zero_size_allowed)
969bf05e 2286{
638f5b90 2287 struct bpf_reg_state *regs = cur_regs(env);
58e2af8b 2288 struct bpf_reg_state *reg = &regs[regno];
969bf05e 2289
9fd29c08
YS
2290 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
2291 (u64)off + size > reg->range) {
61bd5218 2292 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
d91b28ed 2293 off, size, regno, reg->id, reg->off, reg->range);
969bf05e
AS
2294 return -EACCES;
2295 }
2296 return 0;
2297}
2298
f1174f77 2299static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
9fd29c08 2300 int size, bool zero_size_allowed)
f1174f77 2301{
638f5b90 2302 struct bpf_reg_state *regs = cur_regs(env);
f1174f77
EC
2303 struct bpf_reg_state *reg = &regs[regno];
2304 int err;
2305
2306 /* We may have added a variable offset to the packet pointer; but any
2307 * reg->range we have comes after that. We are only checking the fixed
2308 * offset.
2309 */
2310
2311 /* We don't allow negative numbers, because we aren't tracking enough
2312 * detail to prove they're safe.
2313 */
b03c9f9f 2314 if (reg->smin_value < 0) {
61bd5218 2315 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
f1174f77
EC
2316 regno);
2317 return -EACCES;
2318 }
9fd29c08 2319 err = __check_packet_access(env, regno, off, size, zero_size_allowed);
f1174f77 2320 if (err) {
61bd5218 2321 verbose(env, "R%d offset is outside of the packet\n", regno);
f1174f77
EC
2322 return err;
2323 }
e647815a
JW
2324
2325 /* __check_packet_access has made sure "off + size - 1" is within u16.
2326 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
2327 * otherwise find_good_pkt_pointers would have refused to set range info
2328 * that __check_packet_access would have rejected this pkt access.
2329 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
2330 */
2331 env->prog->aux->max_pkt_offset =
2332 max_t(u32, env->prog->aux->max_pkt_offset,
2333 off + reg->umax_value + size - 1);
2334
f1174f77
EC
2335 return err;
2336}
2337
2338/* check access to 'struct bpf_context' fields. Supports fixed offsets only */
31fd8581 2339static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
19de99f7 2340 enum bpf_access_type t, enum bpf_reg_type *reg_type)
17a52670 2341{
f96da094
DB
2342 struct bpf_insn_access_aux info = {
2343 .reg_type = *reg_type,
2344 };
31fd8581 2345
4f9218aa 2346 if (env->ops->is_valid_access &&
5e43f899 2347 env->ops->is_valid_access(off, size, t, env->prog, &info)) {
f96da094
DB
2348 /* A non zero info.ctx_field_size indicates that this field is a
2349 * candidate for later verifier transformation to load the whole
2350 * field and then apply a mask when accessed with a narrower
2351 * access than actual ctx access size. A zero info.ctx_field_size
2352 * will only allow for whole field access and rejects any other
2353 * type of narrower access.
31fd8581 2354 */
23994631 2355 *reg_type = info.reg_type;
31fd8581 2356
4f9218aa 2357 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
32bbe007
AS
2358 /* remember the offset of last byte accessed in ctx */
2359 if (env->prog->aux->max_ctx_offset < off + size)
2360 env->prog->aux->max_ctx_offset = off + size;
17a52670 2361 return 0;
32bbe007 2362 }
17a52670 2363
61bd5218 2364 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
17a52670
AS
2365 return -EACCES;
2366}
2367
d58e468b
PP
2368static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
2369 int size)
2370{
2371 if (size < 0 || off < 0 ||
2372 (u64)off + size > sizeof(struct bpf_flow_keys)) {
2373 verbose(env, "invalid access to flow keys off=%d size=%d\n",
2374 off, size);
2375 return -EACCES;
2376 }
2377 return 0;
2378}
2379
5f456649
MKL
2380static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
2381 u32 regno, int off, int size,
2382 enum bpf_access_type t)
c64b7983
JS
2383{
2384 struct bpf_reg_state *regs = cur_regs(env);
2385 struct bpf_reg_state *reg = &regs[regno];
5f456649 2386 struct bpf_insn_access_aux info = {};
46f8bc92 2387 bool valid;
c64b7983
JS
2388
2389 if (reg->smin_value < 0) {
2390 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
2391 regno);
2392 return -EACCES;
2393 }
2394
46f8bc92
MKL
2395 switch (reg->type) {
2396 case PTR_TO_SOCK_COMMON:
2397 valid = bpf_sock_common_is_valid_access(off, size, t, &info);
2398 break;
2399 case PTR_TO_SOCKET:
2400 valid = bpf_sock_is_valid_access(off, size, t, &info);
2401 break;
655a51e5
MKL
2402 case PTR_TO_TCP_SOCK:
2403 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
2404 break;
fada7fdc
JL
2405 case PTR_TO_XDP_SOCK:
2406 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
2407 break;
46f8bc92
MKL
2408 default:
2409 valid = false;
c64b7983
JS
2410 }
2411
5f456649 2412
46f8bc92
MKL
2413 if (valid) {
2414 env->insn_aux_data[insn_idx].ctx_field_size =
2415 info.ctx_field_size;
2416 return 0;
2417 }
2418
2419 verbose(env, "R%d invalid %s access off=%d size=%d\n",
2420 regno, reg_type_str[reg->type], off, size);
2421
2422 return -EACCES;
c64b7983
JS
2423}
2424
4cabc5b1
DB
2425static bool __is_pointer_value(bool allow_ptr_leaks,
2426 const struct bpf_reg_state *reg)
1be7f75d 2427{
4cabc5b1 2428 if (allow_ptr_leaks)
1be7f75d
AS
2429 return false;
2430
f1174f77 2431 return reg->type != SCALAR_VALUE;
1be7f75d
AS
2432}
2433
2a159c6f
DB
2434static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
2435{
2436 return cur_regs(env) + regno;
2437}
2438
4cabc5b1
DB
2439static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
2440{
2a159c6f 2441 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
4cabc5b1
DB
2442}
2443
f37a8cb8
DB
2444static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
2445{
2a159c6f 2446 const struct bpf_reg_state *reg = reg_state(env, regno);
f37a8cb8 2447
46f8bc92
MKL
2448 return reg->type == PTR_TO_CTX;
2449}
2450
2451static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
2452{
2453 const struct bpf_reg_state *reg = reg_state(env, regno);
2454
2455 return type_is_sk_pointer(reg->type);
f37a8cb8
DB
2456}
2457
ca369602
DB
2458static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
2459{
2a159c6f 2460 const struct bpf_reg_state *reg = reg_state(env, regno);
ca369602
DB
2461
2462 return type_is_pkt_pointer(reg->type);
2463}
2464
4b5defde
DB
2465static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
2466{
2467 const struct bpf_reg_state *reg = reg_state(env, regno);
2468
2469 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
2470 return reg->type == PTR_TO_FLOW_KEYS;
2471}
2472
61bd5218
JK
2473static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
2474 const struct bpf_reg_state *reg,
d1174416 2475 int off, int size, bool strict)
969bf05e 2476{
f1174f77 2477 struct tnum reg_off;
e07b98d9 2478 int ip_align;
d1174416
DM
2479
2480 /* Byte size accesses are always allowed. */
2481 if (!strict || size == 1)
2482 return 0;
2483
e4eda884
DM
2484 /* For platforms that do not have a Kconfig enabling
2485 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
2486 * NET_IP_ALIGN is universally set to '2'. And on platforms
2487 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
2488 * to this code only in strict mode where we want to emulate
2489 * the NET_IP_ALIGN==2 checking. Therefore use an
2490 * unconditional IP align value of '2'.
e07b98d9 2491 */
e4eda884 2492 ip_align = 2;
f1174f77
EC
2493
2494 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
2495 if (!tnum_is_aligned(reg_off, size)) {
2496 char tn_buf[48];
2497
2498 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218
JK
2499 verbose(env,
2500 "misaligned packet access off %d+%s+%d+%d size %d\n",
f1174f77 2501 ip_align, tn_buf, reg->off, off, size);
969bf05e
AS
2502 return -EACCES;
2503 }
79adffcd 2504
969bf05e
AS
2505 return 0;
2506}
2507
61bd5218
JK
2508static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
2509 const struct bpf_reg_state *reg,
f1174f77
EC
2510 const char *pointer_desc,
2511 int off, int size, bool strict)
79adffcd 2512{
f1174f77
EC
2513 struct tnum reg_off;
2514
2515 /* Byte size accesses are always allowed. */
2516 if (!strict || size == 1)
2517 return 0;
2518
2519 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
2520 if (!tnum_is_aligned(reg_off, size)) {
2521 char tn_buf[48];
2522
2523 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 2524 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
f1174f77 2525 pointer_desc, tn_buf, reg->off, off, size);
79adffcd
DB
2526 return -EACCES;
2527 }
2528
969bf05e
AS
2529 return 0;
2530}
2531
e07b98d9 2532static int check_ptr_alignment(struct bpf_verifier_env *env,
ca369602
DB
2533 const struct bpf_reg_state *reg, int off,
2534 int size, bool strict_alignment_once)
79adffcd 2535{
ca369602 2536 bool strict = env->strict_alignment || strict_alignment_once;
f1174f77 2537 const char *pointer_desc = "";
d1174416 2538
79adffcd
DB
2539 switch (reg->type) {
2540 case PTR_TO_PACKET:
de8f3a83
DB
2541 case PTR_TO_PACKET_META:
2542 /* Special case, because of NET_IP_ALIGN. Given metadata sits
2543 * right in front, treat it the very same way.
2544 */
61bd5218 2545 return check_pkt_ptr_alignment(env, reg, off, size, strict);
d58e468b
PP
2546 case PTR_TO_FLOW_KEYS:
2547 pointer_desc = "flow keys ";
2548 break;
f1174f77
EC
2549 case PTR_TO_MAP_VALUE:
2550 pointer_desc = "value ";
2551 break;
2552 case PTR_TO_CTX:
2553 pointer_desc = "context ";
2554 break;
2555 case PTR_TO_STACK:
2556 pointer_desc = "stack ";
a5ec6ae1
JH
2557 /* The stack spill tracking logic in check_stack_write()
2558 * and check_stack_read() relies on stack accesses being
2559 * aligned.
2560 */
2561 strict = true;
f1174f77 2562 break;
c64b7983
JS
2563 case PTR_TO_SOCKET:
2564 pointer_desc = "sock ";
2565 break;
46f8bc92
MKL
2566 case PTR_TO_SOCK_COMMON:
2567 pointer_desc = "sock_common ";
2568 break;
655a51e5
MKL
2569 case PTR_TO_TCP_SOCK:
2570 pointer_desc = "tcp_sock ";
2571 break;
fada7fdc
JL
2572 case PTR_TO_XDP_SOCK:
2573 pointer_desc = "xdp_sock ";
2574 break;
79adffcd 2575 default:
f1174f77 2576 break;
79adffcd 2577 }
61bd5218
JK
2578 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
2579 strict);
79adffcd
DB
2580}
2581
f4d7e40a
AS
2582static int update_stack_depth(struct bpf_verifier_env *env,
2583 const struct bpf_func_state *func,
2584 int off)
2585{
9c8105bd 2586 u16 stack = env->subprog_info[func->subprogno].stack_depth;
f4d7e40a
AS
2587
2588 if (stack >= -off)
2589 return 0;
2590
2591 /* update known max for given subprogram */
9c8105bd 2592 env->subprog_info[func->subprogno].stack_depth = -off;
70a87ffe
AS
2593 return 0;
2594}
f4d7e40a 2595
70a87ffe
AS
2596/* starting from main bpf function walk all instructions of the function
2597 * and recursively walk all callees that given function can call.
2598 * Ignore jump and exit insns.
2599 * Since recursion is prevented by check_cfg() this algorithm
2600 * only needs a local stack of MAX_CALL_FRAMES to remember callsites
2601 */
2602static int check_max_stack_depth(struct bpf_verifier_env *env)
2603{
9c8105bd
JW
2604 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
2605 struct bpf_subprog_info *subprog = env->subprog_info;
70a87ffe 2606 struct bpf_insn *insn = env->prog->insnsi;
70a87ffe
AS
2607 int ret_insn[MAX_CALL_FRAMES];
2608 int ret_prog[MAX_CALL_FRAMES];
f4d7e40a 2609
70a87ffe
AS
2610process_func:
2611 /* round up to 32-bytes, since this is granularity
2612 * of interpreter stack size
2613 */
9c8105bd 2614 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
70a87ffe 2615 if (depth > MAX_BPF_STACK) {
f4d7e40a 2616 verbose(env, "combined stack size of %d calls is %d. Too large\n",
70a87ffe 2617 frame + 1, depth);
f4d7e40a
AS
2618 return -EACCES;
2619 }
70a87ffe 2620continue_func:
4cb3d99c 2621 subprog_end = subprog[idx + 1].start;
70a87ffe
AS
2622 for (; i < subprog_end; i++) {
2623 if (insn[i].code != (BPF_JMP | BPF_CALL))
2624 continue;
2625 if (insn[i].src_reg != BPF_PSEUDO_CALL)
2626 continue;
2627 /* remember insn and function to return to */
2628 ret_insn[frame] = i + 1;
9c8105bd 2629 ret_prog[frame] = idx;
70a87ffe
AS
2630
2631 /* find the callee */
2632 i = i + insn[i].imm + 1;
9c8105bd
JW
2633 idx = find_subprog(env, i);
2634 if (idx < 0) {
70a87ffe
AS
2635 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
2636 i);
2637 return -EFAULT;
2638 }
70a87ffe
AS
2639 frame++;
2640 if (frame >= MAX_CALL_FRAMES) {
927cb781
PC
2641 verbose(env, "the call stack of %d frames is too deep !\n",
2642 frame);
2643 return -E2BIG;
70a87ffe
AS
2644 }
2645 goto process_func;
2646 }
2647 /* end of for() loop means the last insn of the 'subprog'
2648 * was reached. Doesn't matter whether it was JA or EXIT
2649 */
2650 if (frame == 0)
2651 return 0;
9c8105bd 2652 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
70a87ffe
AS
2653 frame--;
2654 i = ret_insn[frame];
9c8105bd 2655 idx = ret_prog[frame];
70a87ffe 2656 goto continue_func;
f4d7e40a
AS
2657}
2658
19d28fbd 2659#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1ea47e01
AS
2660static int get_callee_stack_depth(struct bpf_verifier_env *env,
2661 const struct bpf_insn *insn, int idx)
2662{
2663 int start = idx + insn->imm + 1, subprog;
2664
2665 subprog = find_subprog(env, start);
2666 if (subprog < 0) {
2667 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
2668 start);
2669 return -EFAULT;
2670 }
9c8105bd 2671 return env->subprog_info[subprog].stack_depth;
1ea47e01 2672}
19d28fbd 2673#endif
1ea47e01 2674
58990d1f
DB
2675static int check_ctx_reg(struct bpf_verifier_env *env,
2676 const struct bpf_reg_state *reg, int regno)
2677{
2678 /* Access to ctx or passing it to a helper is only allowed in
2679 * its original, unmodified form.
2680 */
2681
2682 if (reg->off) {
2683 verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n",
2684 regno, reg->off);
2685 return -EACCES;
2686 }
2687
2688 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
2689 char tn_buf[48];
2690
2691 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2692 verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf);
2693 return -EACCES;
2694 }
2695
2696 return 0;
2697}
2698
9df1c28b
MM
2699static int check_tp_buffer_access(struct bpf_verifier_env *env,
2700 const struct bpf_reg_state *reg,
2701 int regno, int off, int size)
2702{
2703 if (off < 0) {
2704 verbose(env,
2705 "R%d invalid tracepoint buffer access: off=%d, size=%d",
2706 regno, off, size);
2707 return -EACCES;
2708 }
2709 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
2710 char tn_buf[48];
2711
2712 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2713 verbose(env,
2714 "R%d invalid variable buffer offset: off=%d, var_off=%s",
2715 regno, off, tn_buf);
2716 return -EACCES;
2717 }
2718 if (off + size > env->prog->aux->max_tp_access)
2719 env->prog->aux->max_tp_access = off + size;
2720
2721 return 0;
2722}
2723
2724
0c17d1d2
JH
2725/* truncate register to smaller size (in bytes)
2726 * must be called with size < BPF_REG_SIZE
2727 */
2728static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
2729{
2730 u64 mask;
2731
2732 /* clear high bits in bit representation */
2733 reg->var_off = tnum_cast(reg->var_off, size);
2734
2735 /* fix arithmetic bounds */
2736 mask = ((u64)1 << (size * 8)) - 1;
2737 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
2738 reg->umin_value &= mask;
2739 reg->umax_value &= mask;
2740 } else {
2741 reg->umin_value = 0;
2742 reg->umax_value = mask;
2743 }
2744 reg->smin_value = reg->umin_value;
2745 reg->smax_value = reg->umax_value;
2746}
2747
a23740ec
AN
2748static bool bpf_map_is_rdonly(const struct bpf_map *map)
2749{
2750 return (map->map_flags & BPF_F_RDONLY_PROG) && map->frozen;
2751}
2752
2753static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val)
2754{
2755 void *ptr;
2756 u64 addr;
2757 int err;
2758
2759 err = map->ops->map_direct_value_addr(map, &addr, off);
2760 if (err)
2761 return err;
2dedd7d2 2762 ptr = (void *)(long)addr + off;
a23740ec
AN
2763
2764 switch (size) {
2765 case sizeof(u8):
2766 *val = (u64)*(u8 *)ptr;
2767 break;
2768 case sizeof(u16):
2769 *val = (u64)*(u16 *)ptr;
2770 break;
2771 case sizeof(u32):
2772 *val = (u64)*(u32 *)ptr;
2773 break;
2774 case sizeof(u64):
2775 *val = *(u64 *)ptr;
2776 break;
2777 default:
2778 return -EINVAL;
2779 }
2780 return 0;
2781}
2782
17a52670
AS
2783/* check whether memory at (regno + off) is accessible for t = (read | write)
2784 * if t==write, value_regno is a register which value is stored into memory
2785 * if t==read, value_regno is a register which will receive the value from memory
2786 * if t==write && value_regno==-1, some unknown value is stored into memory
2787 * if t==read && value_regno==-1, don't care what we read from memory
2788 */
ca369602
DB
2789static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
2790 int off, int bpf_size, enum bpf_access_type t,
2791 int value_regno, bool strict_alignment_once)
17a52670 2792{
638f5b90
AS
2793 struct bpf_reg_state *regs = cur_regs(env);
2794 struct bpf_reg_state *reg = regs + regno;
f4d7e40a 2795 struct bpf_func_state *state;
17a52670
AS
2796 int size, err = 0;
2797
2798 size = bpf_size_to_bytes(bpf_size);
2799 if (size < 0)
2800 return size;
2801
f1174f77 2802 /* alignment checks will add in reg->off themselves */
ca369602 2803 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
969bf05e
AS
2804 if (err)
2805 return err;
17a52670 2806
f1174f77
EC
2807 /* for access checks, reg->off is just part of off */
2808 off += reg->off;
2809
2810 if (reg->type == PTR_TO_MAP_VALUE) {
1be7f75d
AS
2811 if (t == BPF_WRITE && value_regno >= 0 &&
2812 is_pointer_value(env, value_regno)) {
61bd5218 2813 verbose(env, "R%d leaks addr into map\n", value_regno);
1be7f75d
AS
2814 return -EACCES;
2815 }
591fe988
DB
2816 err = check_map_access_type(env, regno, off, size, t);
2817 if (err)
2818 return err;
9fd29c08 2819 err = check_map_access(env, regno, off, size, false);
a23740ec
AN
2820 if (!err && t == BPF_READ && value_regno >= 0) {
2821 struct bpf_map *map = reg->map_ptr;
2822
2823 /* if map is read-only, track its contents as scalars */
2824 if (tnum_is_const(reg->var_off) &&
2825 bpf_map_is_rdonly(map) &&
2826 map->ops->map_direct_value_addr) {
2827 int map_off = off + reg->var_off.value;
2828 u64 val = 0;
2829
2830 err = bpf_map_direct_read(map, map_off, size,
2831 &val);
2832 if (err)
2833 return err;
2834
2835 regs[value_regno].type = SCALAR_VALUE;
2836 __mark_reg_known(&regs[value_regno], val);
2837 } else {
2838 mark_reg_unknown(env, regs, value_regno);
2839 }
2840 }
1a0dc1ac 2841 } else if (reg->type == PTR_TO_CTX) {
f1174f77 2842 enum bpf_reg_type reg_type = SCALAR_VALUE;
19de99f7 2843
1be7f75d
AS
2844 if (t == BPF_WRITE && value_regno >= 0 &&
2845 is_pointer_value(env, value_regno)) {
61bd5218 2846 verbose(env, "R%d leaks addr into ctx\n", value_regno);
1be7f75d
AS
2847 return -EACCES;
2848 }
f1174f77 2849
58990d1f
DB
2850 err = check_ctx_reg(env, reg, regno);
2851 if (err < 0)
2852 return err;
2853
31fd8581 2854 err = check_ctx_access(env, insn_idx, off, size, t, &reg_type);
969bf05e 2855 if (!err && t == BPF_READ && value_regno >= 0) {
f1174f77 2856 /* ctx access returns either a scalar, or a
de8f3a83
DB
2857 * PTR_TO_PACKET[_META,_END]. In the latter
2858 * case, we know the offset is zero.
f1174f77 2859 */
46f8bc92 2860 if (reg_type == SCALAR_VALUE) {
638f5b90 2861 mark_reg_unknown(env, regs, value_regno);
46f8bc92 2862 } else {
638f5b90 2863 mark_reg_known_zero(env, regs,
61bd5218 2864 value_regno);
46f8bc92
MKL
2865 if (reg_type_may_be_null(reg_type))
2866 regs[value_regno].id = ++env->id_gen;
5327ed3d
JW
2867 /* A load of ctx field could have different
2868 * actual load size with the one encoded in the
2869 * insn. When the dst is PTR, it is for sure not
2870 * a sub-register.
2871 */
2872 regs[value_regno].subreg_def = DEF_NOT_SUBREG;
46f8bc92 2873 }
638f5b90 2874 regs[value_regno].type = reg_type;
969bf05e 2875 }
17a52670 2876
f1174f77 2877 } else if (reg->type == PTR_TO_STACK) {
f1174f77 2878 off += reg->var_off.value;
e4298d25
DB
2879 err = check_stack_access(env, reg, off, size);
2880 if (err)
2881 return err;
8726679a 2882
f4d7e40a
AS
2883 state = func(env, reg);
2884 err = update_stack_depth(env, state, off);
2885 if (err)
2886 return err;
8726679a 2887
638f5b90 2888 if (t == BPF_WRITE)
61bd5218 2889 err = check_stack_write(env, state, off, size,
af86ca4e 2890 value_regno, insn_idx);
638f5b90 2891 else
61bd5218
JK
2892 err = check_stack_read(env, state, off, size,
2893 value_regno);
de8f3a83 2894 } else if (reg_is_pkt_pointer(reg)) {
3a0af8fd 2895 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
61bd5218 2896 verbose(env, "cannot write into packet\n");
969bf05e
AS
2897 return -EACCES;
2898 }
4acf6c0b
BB
2899 if (t == BPF_WRITE && value_regno >= 0 &&
2900 is_pointer_value(env, value_regno)) {
61bd5218
JK
2901 verbose(env, "R%d leaks addr into packet\n",
2902 value_regno);
4acf6c0b
BB
2903 return -EACCES;
2904 }
9fd29c08 2905 err = check_packet_access(env, regno, off, size, false);
969bf05e 2906 if (!err && t == BPF_READ && value_regno >= 0)
638f5b90 2907 mark_reg_unknown(env, regs, value_regno);
d58e468b
PP
2908 } else if (reg->type == PTR_TO_FLOW_KEYS) {
2909 if (t == BPF_WRITE && value_regno >= 0 &&
2910 is_pointer_value(env, value_regno)) {
2911 verbose(env, "R%d leaks addr into flow keys\n",
2912 value_regno);
2913 return -EACCES;
2914 }
2915
2916 err = check_flow_keys_access(env, off, size);
2917 if (!err && t == BPF_READ && value_regno >= 0)
2918 mark_reg_unknown(env, regs, value_regno);
46f8bc92 2919 } else if (type_is_sk_pointer(reg->type)) {
c64b7983 2920 if (t == BPF_WRITE) {
46f8bc92
MKL
2921 verbose(env, "R%d cannot write into %s\n",
2922 regno, reg_type_str[reg->type]);
c64b7983
JS
2923 return -EACCES;
2924 }
5f456649 2925 err = check_sock_access(env, insn_idx, regno, off, size, t);
c64b7983
JS
2926 if (!err && value_regno >= 0)
2927 mark_reg_unknown(env, regs, value_regno);
9df1c28b
MM
2928 } else if (reg->type == PTR_TO_TP_BUFFER) {
2929 err = check_tp_buffer_access(env, reg, regno, off, size);
2930 if (!err && t == BPF_READ && value_regno >= 0)
2931 mark_reg_unknown(env, regs, value_regno);
17a52670 2932 } else {
61bd5218
JK
2933 verbose(env, "R%d invalid mem access '%s'\n", regno,
2934 reg_type_str[reg->type]);
17a52670
AS
2935 return -EACCES;
2936 }
969bf05e 2937
f1174f77 2938 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
638f5b90 2939 regs[value_regno].type == SCALAR_VALUE) {
f1174f77 2940 /* b/h/w load zero-extends, mark upper bits as known 0 */
0c17d1d2 2941 coerce_reg_to_size(&regs[value_regno], size);
969bf05e 2942 }
17a52670
AS
2943 return err;
2944}
2945
31fd8581 2946static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
17a52670 2947{
17a52670
AS
2948 int err;
2949
2950 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
2951 insn->imm != 0) {
61bd5218 2952 verbose(env, "BPF_XADD uses reserved fields\n");
17a52670
AS
2953 return -EINVAL;
2954 }
2955
2956 /* check src1 operand */
dc503a8a 2957 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
2958 if (err)
2959 return err;
2960
2961 /* check src2 operand */
dc503a8a 2962 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
2963 if (err)
2964 return err;
2965
6bdf6abc 2966 if (is_pointer_value(env, insn->src_reg)) {
61bd5218 2967 verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
6bdf6abc
DB
2968 return -EACCES;
2969 }
2970
ca369602 2971 if (is_ctx_reg(env, insn->dst_reg) ||
4b5defde 2972 is_pkt_reg(env, insn->dst_reg) ||
46f8bc92
MKL
2973 is_flow_key_reg(env, insn->dst_reg) ||
2974 is_sk_reg(env, insn->dst_reg)) {
ca369602 2975 verbose(env, "BPF_XADD stores into R%d %s is not allowed\n",
2a159c6f
DB
2976 insn->dst_reg,
2977 reg_type_str[reg_state(env, insn->dst_reg)->type]);
f37a8cb8
DB
2978 return -EACCES;
2979 }
2980
17a52670 2981 /* check whether atomic_add can read the memory */
31fd8581 2982 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
ca369602 2983 BPF_SIZE(insn->code), BPF_READ, -1, true);
17a52670
AS
2984 if (err)
2985 return err;
2986
2987 /* check whether atomic_add can write into the same memory */
31fd8581 2988 return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
ca369602 2989 BPF_SIZE(insn->code), BPF_WRITE, -1, true);
17a52670
AS
2990}
2991
2011fccf
AI
2992static int __check_stack_boundary(struct bpf_verifier_env *env, u32 regno,
2993 int off, int access_size,
2994 bool zero_size_allowed)
2995{
2996 struct bpf_reg_state *reg = reg_state(env, regno);
2997
2998 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
2999 access_size < 0 || (access_size == 0 && !zero_size_allowed)) {
3000 if (tnum_is_const(reg->var_off)) {
3001 verbose(env, "invalid stack type R%d off=%d access_size=%d\n",
3002 regno, off, access_size);
3003 } else {
3004 char tn_buf[48];
3005
3006 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3007 verbose(env, "invalid stack type R%d var_off=%s access_size=%d\n",
3008 regno, tn_buf, access_size);
3009 }
3010 return -EACCES;
3011 }
3012 return 0;
3013}
3014
17a52670
AS
3015/* when register 'regno' is passed into function that will read 'access_size'
3016 * bytes from that pointer, make sure that it's within stack boundary
f1174f77
EC
3017 * and all elements of stack are initialized.
3018 * Unlike most pointer bounds-checking functions, this one doesn't take an
3019 * 'off' argument, so it has to add in reg->off itself.
17a52670 3020 */
58e2af8b 3021static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
435faee1
DB
3022 int access_size, bool zero_size_allowed,
3023 struct bpf_call_arg_meta *meta)
17a52670 3024{
2a159c6f 3025 struct bpf_reg_state *reg = reg_state(env, regno);
f4d7e40a 3026 struct bpf_func_state *state = func(env, reg);
f7cf25b2 3027 int err, min_off, max_off, i, j, slot, spi;
17a52670 3028
914cb781 3029 if (reg->type != PTR_TO_STACK) {
f1174f77 3030 /* Allow zero-byte read from NULL, regardless of pointer type */
8e2fe1d9 3031 if (zero_size_allowed && access_size == 0 &&
914cb781 3032 register_is_null(reg))
8e2fe1d9
DB
3033 return 0;
3034
61bd5218 3035 verbose(env, "R%d type=%s expected=%s\n", regno,
914cb781 3036 reg_type_str[reg->type],
8e2fe1d9 3037 reg_type_str[PTR_TO_STACK]);
17a52670 3038 return -EACCES;
8e2fe1d9 3039 }
17a52670 3040
2011fccf
AI
3041 if (tnum_is_const(reg->var_off)) {
3042 min_off = max_off = reg->var_off.value + reg->off;
3043 err = __check_stack_boundary(env, regno, min_off, access_size,
3044 zero_size_allowed);
3045 if (err)
3046 return err;
3047 } else {
088ec26d
AI
3048 /* Variable offset is prohibited for unprivileged mode for
3049 * simplicity since it requires corresponding support in
3050 * Spectre masking for stack ALU.
3051 * See also retrieve_ptr_limit().
3052 */
3053 if (!env->allow_ptr_leaks) {
3054 char tn_buf[48];
f1174f77 3055
088ec26d
AI
3056 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3057 verbose(env, "R%d indirect variable offset stack access prohibited for !root, var_off=%s\n",
3058 regno, tn_buf);
3059 return -EACCES;
3060 }
f2bcd05e
AI
3061 /* Only initialized buffer on stack is allowed to be accessed
3062 * with variable offset. With uninitialized buffer it's hard to
3063 * guarantee that whole memory is marked as initialized on
3064 * helper return since specific bounds are unknown what may
3065 * cause uninitialized stack leaking.
3066 */
3067 if (meta && meta->raw_mode)
3068 meta = NULL;
3069
107c26a7
AI
3070 if (reg->smax_value >= BPF_MAX_VAR_OFF ||
3071 reg->smax_value <= -BPF_MAX_VAR_OFF) {
3072 verbose(env, "R%d unbounded indirect variable offset stack access\n",
3073 regno);
3074 return -EACCES;
3075 }
2011fccf 3076 min_off = reg->smin_value + reg->off;
107c26a7 3077 max_off = reg->smax_value + reg->off;
2011fccf
AI
3078 err = __check_stack_boundary(env, regno, min_off, access_size,
3079 zero_size_allowed);
107c26a7
AI
3080 if (err) {
3081 verbose(env, "R%d min value is outside of stack bound\n",
3082 regno);
2011fccf 3083 return err;
107c26a7 3084 }
2011fccf
AI
3085 err = __check_stack_boundary(env, regno, max_off, access_size,
3086 zero_size_allowed);
107c26a7
AI
3087 if (err) {
3088 verbose(env, "R%d max value is outside of stack bound\n",
3089 regno);
2011fccf 3090 return err;
107c26a7 3091 }
17a52670
AS
3092 }
3093
435faee1
DB
3094 if (meta && meta->raw_mode) {
3095 meta->access_size = access_size;
3096 meta->regno = regno;
3097 return 0;
3098 }
3099
2011fccf 3100 for (i = min_off; i < max_off + access_size; i++) {
cc2b14d5
AS
3101 u8 *stype;
3102
2011fccf 3103 slot = -i - 1;
638f5b90 3104 spi = slot / BPF_REG_SIZE;
cc2b14d5
AS
3105 if (state->allocated_stack <= slot)
3106 goto err;
3107 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
3108 if (*stype == STACK_MISC)
3109 goto mark;
3110 if (*stype == STACK_ZERO) {
3111 /* helper can write anything into the stack */
3112 *stype = STACK_MISC;
3113 goto mark;
17a52670 3114 }
f7cf25b2
AS
3115 if (state->stack[spi].slot_type[0] == STACK_SPILL &&
3116 state->stack[spi].spilled_ptr.type == SCALAR_VALUE) {
3117 __mark_reg_unknown(&state->stack[spi].spilled_ptr);
3118 for (j = 0; j < BPF_REG_SIZE; j++)
3119 state->stack[spi].slot_type[j] = STACK_MISC;
3120 goto mark;
3121 }
3122
cc2b14d5 3123err:
2011fccf
AI
3124 if (tnum_is_const(reg->var_off)) {
3125 verbose(env, "invalid indirect read from stack off %d+%d size %d\n",
3126 min_off, i - min_off, access_size);
3127 } else {
3128 char tn_buf[48];
3129
3130 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3131 verbose(env, "invalid indirect read from stack var_off %s+%d size %d\n",
3132 tn_buf, i - min_off, access_size);
3133 }
cc2b14d5
AS
3134 return -EACCES;
3135mark:
3136 /* reading any byte out of 8-byte 'spill_slot' will cause
3137 * the whole slot to be marked as 'read'
3138 */
679c782d 3139 mark_reg_read(env, &state->stack[spi].spilled_ptr,
5327ed3d
JW
3140 state->stack[spi].spilled_ptr.parent,
3141 REG_LIVE_READ64);
17a52670 3142 }
2011fccf 3143 return update_stack_depth(env, state, min_off);
17a52670
AS
3144}
3145
06c1c049
GB
3146static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
3147 int access_size, bool zero_size_allowed,
3148 struct bpf_call_arg_meta *meta)
3149{
638f5b90 3150 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
06c1c049 3151
f1174f77 3152 switch (reg->type) {
06c1c049 3153 case PTR_TO_PACKET:
de8f3a83 3154 case PTR_TO_PACKET_META:
9fd29c08
YS
3155 return check_packet_access(env, regno, reg->off, access_size,
3156 zero_size_allowed);
06c1c049 3157 case PTR_TO_MAP_VALUE:
591fe988
DB
3158 if (check_map_access_type(env, regno, reg->off, access_size,
3159 meta && meta->raw_mode ? BPF_WRITE :
3160 BPF_READ))
3161 return -EACCES;
9fd29c08
YS
3162 return check_map_access(env, regno, reg->off, access_size,
3163 zero_size_allowed);
f1174f77 3164 default: /* scalar_value|ptr_to_stack or invalid ptr */
06c1c049
GB
3165 return check_stack_boundary(env, regno, access_size,
3166 zero_size_allowed, meta);
3167 }
3168}
3169
d83525ca
AS
3170/* Implementation details:
3171 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL
3172 * Two bpf_map_lookups (even with the same key) will have different reg->id.
3173 * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after
3174 * value_or_null->value transition, since the verifier only cares about
3175 * the range of access to valid map value pointer and doesn't care about actual
3176 * address of the map element.
3177 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
3178 * reg->id > 0 after value_or_null->value transition. By doing so
3179 * two bpf_map_lookups will be considered two different pointers that
3180 * point to different bpf_spin_locks.
3181 * The verifier allows taking only one bpf_spin_lock at a time to avoid
3182 * dead-locks.
3183 * Since only one bpf_spin_lock is allowed the checks are simpler than
3184 * reg_is_refcounted() logic. The verifier needs to remember only
3185 * one spin_lock instead of array of acquired_refs.
3186 * cur_state->active_spin_lock remembers which map value element got locked
3187 * and clears it after bpf_spin_unlock.
3188 */
3189static int process_spin_lock(struct bpf_verifier_env *env, int regno,
3190 bool is_lock)
3191{
3192 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
3193 struct bpf_verifier_state *cur = env->cur_state;
3194 bool is_const = tnum_is_const(reg->var_off);
3195 struct bpf_map *map = reg->map_ptr;
3196 u64 val = reg->var_off.value;
3197
3198 if (reg->type != PTR_TO_MAP_VALUE) {
3199 verbose(env, "R%d is not a pointer to map_value\n", regno);
3200 return -EINVAL;
3201 }
3202 if (!is_const) {
3203 verbose(env,
3204 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
3205 regno);
3206 return -EINVAL;
3207 }
3208 if (!map->btf) {
3209 verbose(env,
3210 "map '%s' has to have BTF in order to use bpf_spin_lock\n",
3211 map->name);
3212 return -EINVAL;
3213 }
3214 if (!map_value_has_spin_lock(map)) {
3215 if (map->spin_lock_off == -E2BIG)
3216 verbose(env,
3217 "map '%s' has more than one 'struct bpf_spin_lock'\n",
3218 map->name);
3219 else if (map->spin_lock_off == -ENOENT)
3220 verbose(env,
3221 "map '%s' doesn't have 'struct bpf_spin_lock'\n",
3222 map->name);
3223 else
3224 verbose(env,
3225 "map '%s' is not a struct type or bpf_spin_lock is mangled\n",
3226 map->name);
3227 return -EINVAL;
3228 }
3229 if (map->spin_lock_off != val + reg->off) {
3230 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n",
3231 val + reg->off);
3232 return -EINVAL;
3233 }
3234 if (is_lock) {
3235 if (cur->active_spin_lock) {
3236 verbose(env,
3237 "Locking two bpf_spin_locks are not allowed\n");
3238 return -EINVAL;
3239 }
3240 cur->active_spin_lock = reg->id;
3241 } else {
3242 if (!cur->active_spin_lock) {
3243 verbose(env, "bpf_spin_unlock without taking a lock\n");
3244 return -EINVAL;
3245 }
3246 if (cur->active_spin_lock != reg->id) {
3247 verbose(env, "bpf_spin_unlock of different lock\n");
3248 return -EINVAL;
3249 }
3250 cur->active_spin_lock = 0;
3251 }
3252 return 0;
3253}
3254
90133415
DB
3255static bool arg_type_is_mem_ptr(enum bpf_arg_type type)
3256{
3257 return type == ARG_PTR_TO_MEM ||
3258 type == ARG_PTR_TO_MEM_OR_NULL ||
3259 type == ARG_PTR_TO_UNINIT_MEM;
3260}
3261
3262static bool arg_type_is_mem_size(enum bpf_arg_type type)
3263{
3264 return type == ARG_CONST_SIZE ||
3265 type == ARG_CONST_SIZE_OR_ZERO;
3266}
3267
57c3bb72
AI
3268static bool arg_type_is_int_ptr(enum bpf_arg_type type)
3269{
3270 return type == ARG_PTR_TO_INT ||
3271 type == ARG_PTR_TO_LONG;
3272}
3273
3274static int int_ptr_type_to_size(enum bpf_arg_type type)
3275{
3276 if (type == ARG_PTR_TO_INT)
3277 return sizeof(u32);
3278 else if (type == ARG_PTR_TO_LONG)
3279 return sizeof(u64);
3280
3281 return -EINVAL;
3282}
3283
58e2af8b 3284static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
33ff9823
DB
3285 enum bpf_arg_type arg_type,
3286 struct bpf_call_arg_meta *meta)
17a52670 3287{
638f5b90 3288 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
6841de8b 3289 enum bpf_reg_type expected_type, type = reg->type;
17a52670
AS
3290 int err = 0;
3291
80f1d68c 3292 if (arg_type == ARG_DONTCARE)
17a52670
AS
3293 return 0;
3294
dc503a8a
EC
3295 err = check_reg_arg(env, regno, SRC_OP);
3296 if (err)
3297 return err;
17a52670 3298
1be7f75d
AS
3299 if (arg_type == ARG_ANYTHING) {
3300 if (is_pointer_value(env, regno)) {
61bd5218
JK
3301 verbose(env, "R%d leaks addr into helper function\n",
3302 regno);
1be7f75d
AS
3303 return -EACCES;
3304 }
80f1d68c 3305 return 0;
1be7f75d 3306 }
80f1d68c 3307
de8f3a83 3308 if (type_is_pkt_pointer(type) &&
3a0af8fd 3309 !may_access_direct_pkt_data(env, meta, BPF_READ)) {
61bd5218 3310 verbose(env, "helper access to the packet is not allowed\n");
6841de8b
AS
3311 return -EACCES;
3312 }
3313
8e2fe1d9 3314 if (arg_type == ARG_PTR_TO_MAP_KEY ||
2ea864c5 3315 arg_type == ARG_PTR_TO_MAP_VALUE ||
6ac99e8f
MKL
3316 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE ||
3317 arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) {
17a52670 3318 expected_type = PTR_TO_STACK;
6ac99e8f
MKL
3319 if (register_is_null(reg) &&
3320 arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL)
3321 /* final test in check_stack_boundary() */;
3322 else if (!type_is_pkt_pointer(type) &&
3323 type != PTR_TO_MAP_VALUE &&
3324 type != expected_type)
6841de8b 3325 goto err_type;
39f19ebb
AS
3326 } else if (arg_type == ARG_CONST_SIZE ||
3327 arg_type == ARG_CONST_SIZE_OR_ZERO) {
f1174f77
EC
3328 expected_type = SCALAR_VALUE;
3329 if (type != expected_type)
6841de8b 3330 goto err_type;
17a52670
AS
3331 } else if (arg_type == ARG_CONST_MAP_PTR) {
3332 expected_type = CONST_PTR_TO_MAP;
6841de8b
AS
3333 if (type != expected_type)
3334 goto err_type;
608cd71a
AS
3335 } else if (arg_type == ARG_PTR_TO_CTX) {
3336 expected_type = PTR_TO_CTX;
6841de8b
AS
3337 if (type != expected_type)
3338 goto err_type;
58990d1f
DB
3339 err = check_ctx_reg(env, reg, regno);
3340 if (err < 0)
3341 return err;
46f8bc92
MKL
3342 } else if (arg_type == ARG_PTR_TO_SOCK_COMMON) {
3343 expected_type = PTR_TO_SOCK_COMMON;
3344 /* Any sk pointer can be ARG_PTR_TO_SOCK_COMMON */
3345 if (!type_is_sk_pointer(type))
3346 goto err_type;
1b986589
MKL
3347 if (reg->ref_obj_id) {
3348 if (meta->ref_obj_id) {
3349 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
3350 regno, reg->ref_obj_id,
3351 meta->ref_obj_id);
3352 return -EFAULT;
3353 }
3354 meta->ref_obj_id = reg->ref_obj_id;
fd978bf7 3355 }
6ac99e8f
MKL
3356 } else if (arg_type == ARG_PTR_TO_SOCKET) {
3357 expected_type = PTR_TO_SOCKET;
3358 if (type != expected_type)
3359 goto err_type;
d83525ca
AS
3360 } else if (arg_type == ARG_PTR_TO_SPIN_LOCK) {
3361 if (meta->func_id == BPF_FUNC_spin_lock) {
3362 if (process_spin_lock(env, regno, true))
3363 return -EACCES;
3364 } else if (meta->func_id == BPF_FUNC_spin_unlock) {
3365 if (process_spin_lock(env, regno, false))
3366 return -EACCES;
3367 } else {
3368 verbose(env, "verifier internal error\n");
3369 return -EFAULT;
3370 }
90133415 3371 } else if (arg_type_is_mem_ptr(arg_type)) {
8e2fe1d9
DB
3372 expected_type = PTR_TO_STACK;
3373 /* One exception here. In case function allows for NULL to be
f1174f77 3374 * passed in as argument, it's a SCALAR_VALUE type. Final test
8e2fe1d9
DB
3375 * happens during stack boundary checking.
3376 */
914cb781 3377 if (register_is_null(reg) &&
db1ac496 3378 arg_type == ARG_PTR_TO_MEM_OR_NULL)
6841de8b 3379 /* final test in check_stack_boundary() */;
de8f3a83
DB
3380 else if (!type_is_pkt_pointer(type) &&
3381 type != PTR_TO_MAP_VALUE &&
f1174f77 3382 type != expected_type)
6841de8b 3383 goto err_type;
39f19ebb 3384 meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
57c3bb72
AI
3385 } else if (arg_type_is_int_ptr(arg_type)) {
3386 expected_type = PTR_TO_STACK;
3387 if (!type_is_pkt_pointer(type) &&
3388 type != PTR_TO_MAP_VALUE &&
3389 type != expected_type)
3390 goto err_type;
17a52670 3391 } else {
61bd5218 3392 verbose(env, "unsupported arg_type %d\n", arg_type);
17a52670
AS
3393 return -EFAULT;
3394 }
3395
17a52670
AS
3396 if (arg_type == ARG_CONST_MAP_PTR) {
3397 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
33ff9823 3398 meta->map_ptr = reg->map_ptr;
17a52670
AS
3399 } else if (arg_type == ARG_PTR_TO_MAP_KEY) {
3400 /* bpf_map_xxx(..., map_ptr, ..., key) call:
3401 * check that [key, key + map->key_size) are within
3402 * stack limits and initialized
3403 */
33ff9823 3404 if (!meta->map_ptr) {
17a52670
AS
3405 /* in function declaration map_ptr must come before
3406 * map_key, so that it's verified and known before
3407 * we have to check map_key here. Otherwise it means
3408 * that kernel subsystem misconfigured verifier
3409 */
61bd5218 3410 verbose(env, "invalid map_ptr to access map->key\n");
17a52670
AS
3411 return -EACCES;
3412 }
d71962f3
PC
3413 err = check_helper_mem_access(env, regno,
3414 meta->map_ptr->key_size, false,
3415 NULL);
2ea864c5 3416 } else if (arg_type == ARG_PTR_TO_MAP_VALUE ||
6ac99e8f
MKL
3417 (arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL &&
3418 !register_is_null(reg)) ||
2ea864c5 3419 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) {
17a52670
AS
3420 /* bpf_map_xxx(..., map_ptr, ..., value) call:
3421 * check [value, value + map->value_size) validity
3422 */
33ff9823 3423 if (!meta->map_ptr) {
17a52670 3424 /* kernel subsystem misconfigured verifier */
61bd5218 3425 verbose(env, "invalid map_ptr to access map->value\n");
17a52670
AS
3426 return -EACCES;
3427 }
2ea864c5 3428 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE);
d71962f3
PC
3429 err = check_helper_mem_access(env, regno,
3430 meta->map_ptr->value_size, false,
2ea864c5 3431 meta);
90133415 3432 } else if (arg_type_is_mem_size(arg_type)) {
39f19ebb 3433 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
17a52670 3434
849fa506
YS
3435 /* remember the mem_size which may be used later
3436 * to refine return values.
3437 */
3438 meta->msize_smax_value = reg->smax_value;
3439 meta->msize_umax_value = reg->umax_value;
3440
f1174f77
EC
3441 /* The register is SCALAR_VALUE; the access check
3442 * happens using its boundaries.
06c1c049 3443 */
f1174f77 3444 if (!tnum_is_const(reg->var_off))
06c1c049
GB
3445 /* For unprivileged variable accesses, disable raw
3446 * mode so that the program is required to
3447 * initialize all the memory that the helper could
3448 * just partially fill up.
3449 */
3450 meta = NULL;
3451
b03c9f9f 3452 if (reg->smin_value < 0) {
61bd5218 3453 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
f1174f77
EC
3454 regno);
3455 return -EACCES;
3456 }
06c1c049 3457
b03c9f9f 3458 if (reg->umin_value == 0) {
f1174f77
EC
3459 err = check_helper_mem_access(env, regno - 1, 0,
3460 zero_size_allowed,
3461 meta);
06c1c049
GB
3462 if (err)
3463 return err;
06c1c049 3464 }
f1174f77 3465
b03c9f9f 3466 if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
61bd5218 3467 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
f1174f77
EC
3468 regno);
3469 return -EACCES;
3470 }
3471 err = check_helper_mem_access(env, regno - 1,
b03c9f9f 3472 reg->umax_value,
f1174f77 3473 zero_size_allowed, meta);
b5dc0163
AS
3474 if (!err)
3475 err = mark_chain_precision(env, regno);
57c3bb72
AI
3476 } else if (arg_type_is_int_ptr(arg_type)) {
3477 int size = int_ptr_type_to_size(arg_type);
3478
3479 err = check_helper_mem_access(env, regno, size, false, meta);
3480 if (err)
3481 return err;
3482 err = check_ptr_alignment(env, reg, 0, size, true);
17a52670
AS
3483 }
3484
3485 return err;
6841de8b 3486err_type:
61bd5218 3487 verbose(env, "R%d type=%s expected=%s\n", regno,
6841de8b
AS
3488 reg_type_str[type], reg_type_str[expected_type]);
3489 return -EACCES;
17a52670
AS
3490}
3491
61bd5218
JK
3492static int check_map_func_compatibility(struct bpf_verifier_env *env,
3493 struct bpf_map *map, int func_id)
35578d79 3494{
35578d79
KX
3495 if (!map)
3496 return 0;
3497
6aff67c8
AS
3498 /* We need a two way check, first is from map perspective ... */
3499 switch (map->map_type) {
3500 case BPF_MAP_TYPE_PROG_ARRAY:
3501 if (func_id != BPF_FUNC_tail_call)
3502 goto error;
3503 break;
3504 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
3505 if (func_id != BPF_FUNC_perf_event_read &&
908432ca
YS
3506 func_id != BPF_FUNC_perf_event_output &&
3507 func_id != BPF_FUNC_perf_event_read_value)
6aff67c8
AS
3508 goto error;
3509 break;
3510 case BPF_MAP_TYPE_STACK_TRACE:
3511 if (func_id != BPF_FUNC_get_stackid)
3512 goto error;
3513 break;
4ed8ec52 3514 case BPF_MAP_TYPE_CGROUP_ARRAY:
60747ef4 3515 if (func_id != BPF_FUNC_skb_under_cgroup &&
60d20f91 3516 func_id != BPF_FUNC_current_task_under_cgroup)
4a482f34
MKL
3517 goto error;
3518 break;
cd339431 3519 case BPF_MAP_TYPE_CGROUP_STORAGE:
b741f163 3520 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
cd339431
RG
3521 if (func_id != BPF_FUNC_get_local_storage)
3522 goto error;
3523 break;
546ac1ff 3524 case BPF_MAP_TYPE_DEVMAP:
6f9d451a 3525 case BPF_MAP_TYPE_DEVMAP_HASH:
0cdbb4b0
THJ
3526 if (func_id != BPF_FUNC_redirect_map &&
3527 func_id != BPF_FUNC_map_lookup_elem)
546ac1ff
JF
3528 goto error;
3529 break;
fbfc504a
BT
3530 /* Restrict bpf side of cpumap and xskmap, open when use-cases
3531 * appear.
3532 */
6710e112
JDB
3533 case BPF_MAP_TYPE_CPUMAP:
3534 if (func_id != BPF_FUNC_redirect_map)
3535 goto error;
3536 break;
fada7fdc
JL
3537 case BPF_MAP_TYPE_XSKMAP:
3538 if (func_id != BPF_FUNC_redirect_map &&
3539 func_id != BPF_FUNC_map_lookup_elem)
3540 goto error;
3541 break;
56f668df 3542 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
bcc6b1b7 3543 case BPF_MAP_TYPE_HASH_OF_MAPS:
56f668df
MKL
3544 if (func_id != BPF_FUNC_map_lookup_elem)
3545 goto error;
16a43625 3546 break;
174a79ff
JF
3547 case BPF_MAP_TYPE_SOCKMAP:
3548 if (func_id != BPF_FUNC_sk_redirect_map &&
3549 func_id != BPF_FUNC_sock_map_update &&
4f738adb
JF
3550 func_id != BPF_FUNC_map_delete_elem &&
3551 func_id != BPF_FUNC_msg_redirect_map)
174a79ff
JF
3552 goto error;
3553 break;
81110384
JF
3554 case BPF_MAP_TYPE_SOCKHASH:
3555 if (func_id != BPF_FUNC_sk_redirect_hash &&
3556 func_id != BPF_FUNC_sock_hash_update &&
3557 func_id != BPF_FUNC_map_delete_elem &&
3558 func_id != BPF_FUNC_msg_redirect_hash)
3559 goto error;
3560 break;
2dbb9b9e
MKL
3561 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
3562 if (func_id != BPF_FUNC_sk_select_reuseport)
3563 goto error;
3564 break;
f1a2e44a
MV
3565 case BPF_MAP_TYPE_QUEUE:
3566 case BPF_MAP_TYPE_STACK:
3567 if (func_id != BPF_FUNC_map_peek_elem &&
3568 func_id != BPF_FUNC_map_pop_elem &&
3569 func_id != BPF_FUNC_map_push_elem)
3570 goto error;
3571 break;
6ac99e8f
MKL
3572 case BPF_MAP_TYPE_SK_STORAGE:
3573 if (func_id != BPF_FUNC_sk_storage_get &&
3574 func_id != BPF_FUNC_sk_storage_delete)
3575 goto error;
3576 break;
6aff67c8
AS
3577 default:
3578 break;
3579 }
3580
3581 /* ... and second from the function itself. */
3582 switch (func_id) {
3583 case BPF_FUNC_tail_call:
3584 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
3585 goto error;
f910cefa 3586 if (env->subprog_cnt > 1) {
f4d7e40a
AS
3587 verbose(env, "tail_calls are not allowed in programs with bpf-to-bpf calls\n");
3588 return -EINVAL;
3589 }
6aff67c8
AS
3590 break;
3591 case BPF_FUNC_perf_event_read:
3592 case BPF_FUNC_perf_event_output:
908432ca 3593 case BPF_FUNC_perf_event_read_value:
6aff67c8
AS
3594 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
3595 goto error;
3596 break;
3597 case BPF_FUNC_get_stackid:
3598 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
3599 goto error;
3600 break;
60d20f91 3601 case BPF_FUNC_current_task_under_cgroup:
747ea55e 3602 case BPF_FUNC_skb_under_cgroup:
4a482f34
MKL
3603 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
3604 goto error;
3605 break;
97f91a7c 3606 case BPF_FUNC_redirect_map:
9c270af3 3607 if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
6f9d451a 3608 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
fbfc504a
BT
3609 map->map_type != BPF_MAP_TYPE_CPUMAP &&
3610 map->map_type != BPF_MAP_TYPE_XSKMAP)
97f91a7c
JF
3611 goto error;
3612 break;
174a79ff 3613 case BPF_FUNC_sk_redirect_map:
4f738adb 3614 case BPF_FUNC_msg_redirect_map:
81110384 3615 case BPF_FUNC_sock_map_update:
174a79ff
JF
3616 if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
3617 goto error;
3618 break;
81110384
JF
3619 case BPF_FUNC_sk_redirect_hash:
3620 case BPF_FUNC_msg_redirect_hash:
3621 case BPF_FUNC_sock_hash_update:
3622 if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
174a79ff
JF
3623 goto error;
3624 break;
cd339431 3625 case BPF_FUNC_get_local_storage:
b741f163
RG
3626 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
3627 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
cd339431
RG
3628 goto error;
3629 break;
2dbb9b9e
MKL
3630 case BPF_FUNC_sk_select_reuseport:
3631 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY)
3632 goto error;
3633 break;
f1a2e44a
MV
3634 case BPF_FUNC_map_peek_elem:
3635 case BPF_FUNC_map_pop_elem:
3636 case BPF_FUNC_map_push_elem:
3637 if (map->map_type != BPF_MAP_TYPE_QUEUE &&
3638 map->map_type != BPF_MAP_TYPE_STACK)
3639 goto error;
3640 break;
6ac99e8f
MKL
3641 case BPF_FUNC_sk_storage_get:
3642 case BPF_FUNC_sk_storage_delete:
3643 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
3644 goto error;
3645 break;
6aff67c8
AS
3646 default:
3647 break;
35578d79
KX
3648 }
3649
3650 return 0;
6aff67c8 3651error:
61bd5218 3652 verbose(env, "cannot pass map_type %d into func %s#%d\n",
ebb676da 3653 map->map_type, func_id_name(func_id), func_id);
6aff67c8 3654 return -EINVAL;
35578d79
KX
3655}
3656
90133415 3657static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
435faee1
DB
3658{
3659 int count = 0;
3660
39f19ebb 3661 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 3662 count++;
39f19ebb 3663 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 3664 count++;
39f19ebb 3665 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 3666 count++;
39f19ebb 3667 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 3668 count++;
39f19ebb 3669 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
435faee1
DB
3670 count++;
3671
90133415
DB
3672 /* We only support one arg being in raw mode at the moment,
3673 * which is sufficient for the helper functions we have
3674 * right now.
3675 */
3676 return count <= 1;
3677}
3678
3679static bool check_args_pair_invalid(enum bpf_arg_type arg_curr,
3680 enum bpf_arg_type arg_next)
3681{
3682 return (arg_type_is_mem_ptr(arg_curr) &&
3683 !arg_type_is_mem_size(arg_next)) ||
3684 (!arg_type_is_mem_ptr(arg_curr) &&
3685 arg_type_is_mem_size(arg_next));
3686}
3687
3688static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
3689{
3690 /* bpf_xxx(..., buf, len) call will access 'len'
3691 * bytes from memory 'buf'. Both arg types need
3692 * to be paired, so make sure there's no buggy
3693 * helper function specification.
3694 */
3695 if (arg_type_is_mem_size(fn->arg1_type) ||
3696 arg_type_is_mem_ptr(fn->arg5_type) ||
3697 check_args_pair_invalid(fn->arg1_type, fn->arg2_type) ||
3698 check_args_pair_invalid(fn->arg2_type, fn->arg3_type) ||
3699 check_args_pair_invalid(fn->arg3_type, fn->arg4_type) ||
3700 check_args_pair_invalid(fn->arg4_type, fn->arg5_type))
3701 return false;
3702
3703 return true;
3704}
3705
1b986589 3706static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id)
fd978bf7
JS
3707{
3708 int count = 0;
3709
1b986589 3710 if (arg_type_may_be_refcounted(fn->arg1_type))
fd978bf7 3711 count++;
1b986589 3712 if (arg_type_may_be_refcounted(fn->arg2_type))
fd978bf7 3713 count++;
1b986589 3714 if (arg_type_may_be_refcounted(fn->arg3_type))
fd978bf7 3715 count++;
1b986589 3716 if (arg_type_may_be_refcounted(fn->arg4_type))
fd978bf7 3717 count++;
1b986589 3718 if (arg_type_may_be_refcounted(fn->arg5_type))
fd978bf7
JS
3719 count++;
3720
1b986589
MKL
3721 /* A reference acquiring function cannot acquire
3722 * another refcounted ptr.
3723 */
3724 if (is_acquire_function(func_id) && count)
3725 return false;
3726
fd978bf7
JS
3727 /* We only support one arg being unreferenced at the moment,
3728 * which is sufficient for the helper functions we have right now.
3729 */
3730 return count <= 1;
3731}
3732
1b986589 3733static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
90133415
DB
3734{
3735 return check_raw_mode_ok(fn) &&
fd978bf7 3736 check_arg_pair_ok(fn) &&
1b986589 3737 check_refcount_ok(fn, func_id) ? 0 : -EINVAL;
435faee1
DB
3738}
3739
de8f3a83
DB
3740/* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
3741 * are now invalid, so turn them into unknown SCALAR_VALUE.
f1174f77 3742 */
f4d7e40a
AS
3743static void __clear_all_pkt_pointers(struct bpf_verifier_env *env,
3744 struct bpf_func_state *state)
969bf05e 3745{
58e2af8b 3746 struct bpf_reg_state *regs = state->regs, *reg;
969bf05e
AS
3747 int i;
3748
3749 for (i = 0; i < MAX_BPF_REG; i++)
de8f3a83 3750 if (reg_is_pkt_pointer_any(&regs[i]))
61bd5218 3751 mark_reg_unknown(env, regs, i);
969bf05e 3752
f3709f69
JS
3753 bpf_for_each_spilled_reg(i, state, reg) {
3754 if (!reg)
969bf05e 3755 continue;
de8f3a83
DB
3756 if (reg_is_pkt_pointer_any(reg))
3757 __mark_reg_unknown(reg);
969bf05e
AS
3758 }
3759}
3760
f4d7e40a
AS
3761static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
3762{
3763 struct bpf_verifier_state *vstate = env->cur_state;
3764 int i;
3765
3766 for (i = 0; i <= vstate->curframe; i++)
3767 __clear_all_pkt_pointers(env, vstate->frame[i]);
3768}
3769
fd978bf7 3770static void release_reg_references(struct bpf_verifier_env *env,
1b986589
MKL
3771 struct bpf_func_state *state,
3772 int ref_obj_id)
fd978bf7
JS
3773{
3774 struct bpf_reg_state *regs = state->regs, *reg;
3775 int i;
3776
3777 for (i = 0; i < MAX_BPF_REG; i++)
1b986589 3778 if (regs[i].ref_obj_id == ref_obj_id)
fd978bf7
JS
3779 mark_reg_unknown(env, regs, i);
3780
3781 bpf_for_each_spilled_reg(i, state, reg) {
3782 if (!reg)
3783 continue;
1b986589 3784 if (reg->ref_obj_id == ref_obj_id)
fd978bf7
JS
3785 __mark_reg_unknown(reg);
3786 }
3787}
3788
3789/* The pointer with the specified id has released its reference to kernel
3790 * resources. Identify all copies of the same pointer and clear the reference.
3791 */
3792static int release_reference(struct bpf_verifier_env *env,
1b986589 3793 int ref_obj_id)
fd978bf7
JS
3794{
3795 struct bpf_verifier_state *vstate = env->cur_state;
1b986589 3796 int err;
fd978bf7
JS
3797 int i;
3798
1b986589
MKL
3799 err = release_reference_state(cur_func(env), ref_obj_id);
3800 if (err)
3801 return err;
3802
fd978bf7 3803 for (i = 0; i <= vstate->curframe; i++)
1b986589 3804 release_reg_references(env, vstate->frame[i], ref_obj_id);
fd978bf7 3805
1b986589 3806 return 0;
fd978bf7
JS
3807}
3808
f4d7e40a
AS
3809static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
3810 int *insn_idx)
3811{
3812 struct bpf_verifier_state *state = env->cur_state;
3813 struct bpf_func_state *caller, *callee;
fd978bf7 3814 int i, err, subprog, target_insn;
f4d7e40a 3815
aada9ce6 3816 if (state->curframe + 1 >= MAX_CALL_FRAMES) {
f4d7e40a 3817 verbose(env, "the call stack of %d frames is too deep\n",
aada9ce6 3818 state->curframe + 2);
f4d7e40a
AS
3819 return -E2BIG;
3820 }
3821
3822 target_insn = *insn_idx + insn->imm;
3823 subprog = find_subprog(env, target_insn + 1);
3824 if (subprog < 0) {
3825 verbose(env, "verifier bug. No program starts at insn %d\n",
3826 target_insn + 1);
3827 return -EFAULT;
3828 }
3829
3830 caller = state->frame[state->curframe];
3831 if (state->frame[state->curframe + 1]) {
3832 verbose(env, "verifier bug. Frame %d already allocated\n",
3833 state->curframe + 1);
3834 return -EFAULT;
3835 }
3836
3837 callee = kzalloc(sizeof(*callee), GFP_KERNEL);
3838 if (!callee)
3839 return -ENOMEM;
3840 state->frame[state->curframe + 1] = callee;
3841
3842 /* callee cannot access r0, r6 - r9 for reading and has to write
3843 * into its own stack before reading from it.
3844 * callee can read/write into caller's stack
3845 */
3846 init_func_state(env, callee,
3847 /* remember the callsite, it will be used by bpf_exit */
3848 *insn_idx /* callsite */,
3849 state->curframe + 1 /* frameno within this callchain */,
f910cefa 3850 subprog /* subprog number within this prog */);
f4d7e40a 3851
fd978bf7
JS
3852 /* Transfer references to the callee */
3853 err = transfer_reference_state(callee, caller);
3854 if (err)
3855 return err;
3856
679c782d
EC
3857 /* copy r1 - r5 args that callee can access. The copy includes parent
3858 * pointers, which connects us up to the liveness chain
3859 */
f4d7e40a
AS
3860 for (i = BPF_REG_1; i <= BPF_REG_5; i++)
3861 callee->regs[i] = caller->regs[i];
3862
679c782d 3863 /* after the call registers r0 - r5 were scratched */
f4d7e40a
AS
3864 for (i = 0; i < CALLER_SAVED_REGS; i++) {
3865 mark_reg_not_init(env, caller->regs, caller_saved[i]);
3866 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
3867 }
3868
3869 /* only increment it after check_reg_arg() finished */
3870 state->curframe++;
3871
3872 /* and go analyze first insn of the callee */
3873 *insn_idx = target_insn;
3874
06ee7115 3875 if (env->log.level & BPF_LOG_LEVEL) {
f4d7e40a
AS
3876 verbose(env, "caller:\n");
3877 print_verifier_state(env, caller);
3878 verbose(env, "callee:\n");
3879 print_verifier_state(env, callee);
3880 }
3881 return 0;
3882}
3883
3884static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
3885{
3886 struct bpf_verifier_state *state = env->cur_state;
3887 struct bpf_func_state *caller, *callee;
3888 struct bpf_reg_state *r0;
fd978bf7 3889 int err;
f4d7e40a
AS
3890
3891 callee = state->frame[state->curframe];
3892 r0 = &callee->regs[BPF_REG_0];
3893 if (r0->type == PTR_TO_STACK) {
3894 /* technically it's ok to return caller's stack pointer
3895 * (or caller's caller's pointer) back to the caller,
3896 * since these pointers are valid. Only current stack
3897 * pointer will be invalid as soon as function exits,
3898 * but let's be conservative
3899 */
3900 verbose(env, "cannot return stack pointer to the caller\n");
3901 return -EINVAL;
3902 }
3903
3904 state->curframe--;
3905 caller = state->frame[state->curframe];
3906 /* return to the caller whatever r0 had in the callee */
3907 caller->regs[BPF_REG_0] = *r0;
3908
fd978bf7
JS
3909 /* Transfer references to the caller */
3910 err = transfer_reference_state(caller, callee);
3911 if (err)
3912 return err;
3913
f4d7e40a 3914 *insn_idx = callee->callsite + 1;
06ee7115 3915 if (env->log.level & BPF_LOG_LEVEL) {
f4d7e40a
AS
3916 verbose(env, "returning from callee:\n");
3917 print_verifier_state(env, callee);
3918 verbose(env, "to caller at %d:\n", *insn_idx);
3919 print_verifier_state(env, caller);
3920 }
3921 /* clear everything in the callee */
3922 free_func_state(callee);
3923 state->frame[state->curframe + 1] = NULL;
3924 return 0;
3925}
3926
849fa506
YS
3927static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
3928 int func_id,
3929 struct bpf_call_arg_meta *meta)
3930{
3931 struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
3932
3933 if (ret_type != RET_INTEGER ||
3934 (func_id != BPF_FUNC_get_stack &&
3935 func_id != BPF_FUNC_probe_read_str))
3936 return;
3937
3938 ret_reg->smax_value = meta->msize_smax_value;
3939 ret_reg->umax_value = meta->msize_umax_value;
3940 __reg_deduce_bounds(ret_reg);
3941 __reg_bound_offset(ret_reg);
3942}
3943
c93552c4
DB
3944static int
3945record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
3946 int func_id, int insn_idx)
3947{
3948 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
591fe988 3949 struct bpf_map *map = meta->map_ptr;
c93552c4
DB
3950
3951 if (func_id != BPF_FUNC_tail_call &&
09772d92
DB
3952 func_id != BPF_FUNC_map_lookup_elem &&
3953 func_id != BPF_FUNC_map_update_elem &&
f1a2e44a
MV
3954 func_id != BPF_FUNC_map_delete_elem &&
3955 func_id != BPF_FUNC_map_push_elem &&
3956 func_id != BPF_FUNC_map_pop_elem &&
3957 func_id != BPF_FUNC_map_peek_elem)
c93552c4 3958 return 0;
09772d92 3959
591fe988 3960 if (map == NULL) {
c93552c4
DB
3961 verbose(env, "kernel subsystem misconfigured verifier\n");
3962 return -EINVAL;
3963 }
3964
591fe988
DB
3965 /* In case of read-only, some additional restrictions
3966 * need to be applied in order to prevent altering the
3967 * state of the map from program side.
3968 */
3969 if ((map->map_flags & BPF_F_RDONLY_PROG) &&
3970 (func_id == BPF_FUNC_map_delete_elem ||
3971 func_id == BPF_FUNC_map_update_elem ||
3972 func_id == BPF_FUNC_map_push_elem ||
3973 func_id == BPF_FUNC_map_pop_elem)) {
3974 verbose(env, "write into map forbidden\n");
3975 return -EACCES;
3976 }
3977
c93552c4
DB
3978 if (!BPF_MAP_PTR(aux->map_state))
3979 bpf_map_ptr_store(aux, meta->map_ptr,
3980 meta->map_ptr->unpriv_array);
3981 else if (BPF_MAP_PTR(aux->map_state) != meta->map_ptr)
3982 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
3983 meta->map_ptr->unpriv_array);
3984 return 0;
3985}
3986
fd978bf7
JS
3987static int check_reference_leak(struct bpf_verifier_env *env)
3988{
3989 struct bpf_func_state *state = cur_func(env);
3990 int i;
3991
3992 for (i = 0; i < state->acquired_refs; i++) {
3993 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
3994 state->refs[i].id, state->refs[i].insn_idx);
3995 }
3996 return state->acquired_refs ? -EINVAL : 0;
3997}
3998
f4d7e40a 3999static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
17a52670 4000{
17a52670 4001 const struct bpf_func_proto *fn = NULL;
638f5b90 4002 struct bpf_reg_state *regs;
33ff9823 4003 struct bpf_call_arg_meta meta;
969bf05e 4004 bool changes_data;
17a52670
AS
4005 int i, err;
4006
4007 /* find function prototype */
4008 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
61bd5218
JK
4009 verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
4010 func_id);
17a52670
AS
4011 return -EINVAL;
4012 }
4013
00176a34 4014 if (env->ops->get_func_proto)
5e43f899 4015 fn = env->ops->get_func_proto(func_id, env->prog);
17a52670 4016 if (!fn) {
61bd5218
JK
4017 verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
4018 func_id);
17a52670
AS
4019 return -EINVAL;
4020 }
4021
4022 /* eBPF programs must be GPL compatible to use GPL-ed functions */
24701ece 4023 if (!env->prog->gpl_compatible && fn->gpl_only) {
3fe2867c 4024 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
17a52670
AS
4025 return -EINVAL;
4026 }
4027
04514d13 4028 /* With LD_ABS/IND some JITs save/restore skb from r1. */
17bedab2 4029 changes_data = bpf_helper_changes_pkt_data(fn->func);
04514d13
DB
4030 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
4031 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
4032 func_id_name(func_id), func_id);
4033 return -EINVAL;
4034 }
969bf05e 4035
33ff9823 4036 memset(&meta, 0, sizeof(meta));
36bbef52 4037 meta.pkt_access = fn->pkt_access;
33ff9823 4038
1b986589 4039 err = check_func_proto(fn, func_id);
435faee1 4040 if (err) {
61bd5218 4041 verbose(env, "kernel subsystem misconfigured func %s#%d\n",
ebb676da 4042 func_id_name(func_id), func_id);
435faee1
DB
4043 return err;
4044 }
4045
d83525ca 4046 meta.func_id = func_id;
17a52670 4047 /* check args */
33ff9823 4048 err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
17a52670
AS
4049 if (err)
4050 return err;
33ff9823 4051 err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
17a52670
AS
4052 if (err)
4053 return err;
33ff9823 4054 err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
17a52670
AS
4055 if (err)
4056 return err;
33ff9823 4057 err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
17a52670
AS
4058 if (err)
4059 return err;
33ff9823 4060 err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
17a52670
AS
4061 if (err)
4062 return err;
4063
c93552c4
DB
4064 err = record_func_map(env, &meta, func_id, insn_idx);
4065 if (err)
4066 return err;
4067
435faee1
DB
4068 /* Mark slots with STACK_MISC in case of raw mode, stack offset
4069 * is inferred from register state.
4070 */
4071 for (i = 0; i < meta.access_size; i++) {
ca369602
DB
4072 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
4073 BPF_WRITE, -1, false);
435faee1
DB
4074 if (err)
4075 return err;
4076 }
4077
fd978bf7
JS
4078 if (func_id == BPF_FUNC_tail_call) {
4079 err = check_reference_leak(env);
4080 if (err) {
4081 verbose(env, "tail_call would lead to reference leak\n");
4082 return err;
4083 }
4084 } else if (is_release_function(func_id)) {
1b986589 4085 err = release_reference(env, meta.ref_obj_id);
46f8bc92
MKL
4086 if (err) {
4087 verbose(env, "func %s#%d reference has not been acquired before\n",
4088 func_id_name(func_id), func_id);
fd978bf7 4089 return err;
46f8bc92 4090 }
fd978bf7
JS
4091 }
4092
638f5b90 4093 regs = cur_regs(env);
cd339431
RG
4094
4095 /* check that flags argument in get_local_storage(map, flags) is 0,
4096 * this is required because get_local_storage() can't return an error.
4097 */
4098 if (func_id == BPF_FUNC_get_local_storage &&
4099 !register_is_null(&regs[BPF_REG_2])) {
4100 verbose(env, "get_local_storage() doesn't support non-zero flags\n");
4101 return -EINVAL;
4102 }
4103
17a52670 4104 /* reset caller saved regs */
dc503a8a 4105 for (i = 0; i < CALLER_SAVED_REGS; i++) {
61bd5218 4106 mark_reg_not_init(env, regs, caller_saved[i]);
dc503a8a
EC
4107 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
4108 }
17a52670 4109
5327ed3d
JW
4110 /* helper call returns 64-bit value. */
4111 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
4112
dc503a8a 4113 /* update return register (already marked as written above) */
17a52670 4114 if (fn->ret_type == RET_INTEGER) {
f1174f77 4115 /* sets type to SCALAR_VALUE */
61bd5218 4116 mark_reg_unknown(env, regs, BPF_REG_0);
17a52670
AS
4117 } else if (fn->ret_type == RET_VOID) {
4118 regs[BPF_REG_0].type = NOT_INIT;
3e6a4b3e
RG
4119 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL ||
4120 fn->ret_type == RET_PTR_TO_MAP_VALUE) {
f1174f77 4121 /* There is no offset yet applied, variable or fixed */
61bd5218 4122 mark_reg_known_zero(env, regs, BPF_REG_0);
17a52670
AS
4123 /* remember map_ptr, so that check_map_access()
4124 * can check 'value_size' boundary of memory access
4125 * to map element returned from bpf_map_lookup_elem()
4126 */
33ff9823 4127 if (meta.map_ptr == NULL) {
61bd5218
JK
4128 verbose(env,
4129 "kernel subsystem misconfigured verifier\n");
17a52670
AS
4130 return -EINVAL;
4131 }
33ff9823 4132 regs[BPF_REG_0].map_ptr = meta.map_ptr;
4d31f301
DB
4133 if (fn->ret_type == RET_PTR_TO_MAP_VALUE) {
4134 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE;
e16d2f1a
AS
4135 if (map_value_has_spin_lock(meta.map_ptr))
4136 regs[BPF_REG_0].id = ++env->id_gen;
4d31f301
DB
4137 } else {
4138 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
4139 regs[BPF_REG_0].id = ++env->id_gen;
4140 }
c64b7983
JS
4141 } else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) {
4142 mark_reg_known_zero(env, regs, BPF_REG_0);
4143 regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL;
0f3adc28 4144 regs[BPF_REG_0].id = ++env->id_gen;
85a51f8c
LB
4145 } else if (fn->ret_type == RET_PTR_TO_SOCK_COMMON_OR_NULL) {
4146 mark_reg_known_zero(env, regs, BPF_REG_0);
4147 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON_OR_NULL;
4148 regs[BPF_REG_0].id = ++env->id_gen;
655a51e5
MKL
4149 } else if (fn->ret_type == RET_PTR_TO_TCP_SOCK_OR_NULL) {
4150 mark_reg_known_zero(env, regs, BPF_REG_0);
4151 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK_OR_NULL;
4152 regs[BPF_REG_0].id = ++env->id_gen;
17a52670 4153 } else {
61bd5218 4154 verbose(env, "unknown return type %d of func %s#%d\n",
ebb676da 4155 fn->ret_type, func_id_name(func_id), func_id);
17a52670
AS
4156 return -EINVAL;
4157 }
04fd61ab 4158
0f3adc28 4159 if (is_ptr_cast_function(func_id)) {
1b986589
MKL
4160 /* For release_reference() */
4161 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
0f3adc28
LB
4162 } else if (is_acquire_function(func_id)) {
4163 int id = acquire_reference_state(env, insn_idx);
4164
4165 if (id < 0)
4166 return id;
4167 /* For mark_ptr_or_null_reg() */
4168 regs[BPF_REG_0].id = id;
4169 /* For release_reference() */
4170 regs[BPF_REG_0].ref_obj_id = id;
4171 }
1b986589 4172
849fa506
YS
4173 do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
4174
61bd5218 4175 err = check_map_func_compatibility(env, meta.map_ptr, func_id);
35578d79
KX
4176 if (err)
4177 return err;
04fd61ab 4178
c195651e
YS
4179 if (func_id == BPF_FUNC_get_stack && !env->prog->has_callchain_buf) {
4180 const char *err_str;
4181
4182#ifdef CONFIG_PERF_EVENTS
4183 err = get_callchain_buffers(sysctl_perf_event_max_stack);
4184 err_str = "cannot get callchain buffer for func %s#%d\n";
4185#else
4186 err = -ENOTSUPP;
4187 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
4188#endif
4189 if (err) {
4190 verbose(env, err_str, func_id_name(func_id), func_id);
4191 return err;
4192 }
4193
4194 env->prog->has_callchain_buf = true;
4195 }
4196
969bf05e
AS
4197 if (changes_data)
4198 clear_all_pkt_pointers(env);
4199 return 0;
4200}
4201
b03c9f9f
EC
4202static bool signed_add_overflows(s64 a, s64 b)
4203{
4204 /* Do the add in u64, where overflow is well-defined */
4205 s64 res = (s64)((u64)a + (u64)b);
4206
4207 if (b < 0)
4208 return res > a;
4209 return res < a;
4210}
4211
4212static bool signed_sub_overflows(s64 a, s64 b)
4213{
4214 /* Do the sub in u64, where overflow is well-defined */
4215 s64 res = (s64)((u64)a - (u64)b);
4216
4217 if (b < 0)
4218 return res < a;
4219 return res > a;
969bf05e
AS
4220}
4221
bb7f0f98
AS
4222static bool check_reg_sane_offset(struct bpf_verifier_env *env,
4223 const struct bpf_reg_state *reg,
4224 enum bpf_reg_type type)
4225{
4226 bool known = tnum_is_const(reg->var_off);
4227 s64 val = reg->var_off.value;
4228 s64 smin = reg->smin_value;
4229
4230 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
4231 verbose(env, "math between %s pointer and %lld is not allowed\n",
4232 reg_type_str[type], val);
4233 return false;
4234 }
4235
4236 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
4237 verbose(env, "%s pointer offset %d is not allowed\n",
4238 reg_type_str[type], reg->off);
4239 return false;
4240 }
4241
4242 if (smin == S64_MIN) {
4243 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
4244 reg_type_str[type]);
4245 return false;
4246 }
4247
4248 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
4249 verbose(env, "value %lld makes %s pointer be out of bounds\n",
4250 smin, reg_type_str[type]);
4251 return false;
4252 }
4253
4254 return true;
4255}
4256
979d63d5
DB
4257static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
4258{
4259 return &env->insn_aux_data[env->insn_idx];
4260}
4261
4262static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
4263 u32 *ptr_limit, u8 opcode, bool off_is_neg)
4264{
4265 bool mask_to_left = (opcode == BPF_ADD && off_is_neg) ||
4266 (opcode == BPF_SUB && !off_is_neg);
4267 u32 off;
4268
4269 switch (ptr_reg->type) {
4270 case PTR_TO_STACK:
088ec26d
AI
4271 /* Indirect variable offset stack access is prohibited in
4272 * unprivileged mode so it's not handled here.
4273 */
979d63d5
DB
4274 off = ptr_reg->off + ptr_reg->var_off.value;
4275 if (mask_to_left)
4276 *ptr_limit = MAX_BPF_STACK + off;
4277 else
4278 *ptr_limit = -off;
4279 return 0;
4280 case PTR_TO_MAP_VALUE:
4281 if (mask_to_left) {
4282 *ptr_limit = ptr_reg->umax_value + ptr_reg->off;
4283 } else {
4284 off = ptr_reg->smin_value + ptr_reg->off;
4285 *ptr_limit = ptr_reg->map_ptr->value_size - off;
4286 }
4287 return 0;
4288 default:
4289 return -EINVAL;
4290 }
4291}
4292
d3bd7413
DB
4293static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
4294 const struct bpf_insn *insn)
4295{
4296 return env->allow_ptr_leaks || BPF_SRC(insn->code) == BPF_K;
4297}
4298
4299static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
4300 u32 alu_state, u32 alu_limit)
4301{
4302 /* If we arrived here from different branches with different
4303 * state or limits to sanitize, then this won't work.
4304 */
4305 if (aux->alu_state &&
4306 (aux->alu_state != alu_state ||
4307 aux->alu_limit != alu_limit))
4308 return -EACCES;
4309
4310 /* Corresponding fixup done in fixup_bpf_calls(). */
4311 aux->alu_state = alu_state;
4312 aux->alu_limit = alu_limit;
4313 return 0;
4314}
4315
4316static int sanitize_val_alu(struct bpf_verifier_env *env,
4317 struct bpf_insn *insn)
4318{
4319 struct bpf_insn_aux_data *aux = cur_aux(env);
4320
4321 if (can_skip_alu_sanitation(env, insn))
4322 return 0;
4323
4324 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
4325}
4326
979d63d5
DB
4327static int sanitize_ptr_alu(struct bpf_verifier_env *env,
4328 struct bpf_insn *insn,
4329 const struct bpf_reg_state *ptr_reg,
4330 struct bpf_reg_state *dst_reg,
4331 bool off_is_neg)
4332{
4333 struct bpf_verifier_state *vstate = env->cur_state;
4334 struct bpf_insn_aux_data *aux = cur_aux(env);
4335 bool ptr_is_dst_reg = ptr_reg == dst_reg;
4336 u8 opcode = BPF_OP(insn->code);
4337 u32 alu_state, alu_limit;
4338 struct bpf_reg_state tmp;
4339 bool ret;
4340
d3bd7413 4341 if (can_skip_alu_sanitation(env, insn))
979d63d5
DB
4342 return 0;
4343
4344 /* We already marked aux for masking from non-speculative
4345 * paths, thus we got here in the first place. We only care
4346 * to explore bad access from here.
4347 */
4348 if (vstate->speculative)
4349 goto do_sim;
4350
4351 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
4352 alu_state |= ptr_is_dst_reg ?
4353 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
4354
4355 if (retrieve_ptr_limit(ptr_reg, &alu_limit, opcode, off_is_neg))
4356 return 0;
d3bd7413 4357 if (update_alu_sanitation_state(aux, alu_state, alu_limit))
979d63d5 4358 return -EACCES;
979d63d5
DB
4359do_sim:
4360 /* Simulate and find potential out-of-bounds access under
4361 * speculative execution from truncation as a result of
4362 * masking when off was not within expected range. If off
4363 * sits in dst, then we temporarily need to move ptr there
4364 * to simulate dst (== 0) +/-= ptr. Needed, for example,
4365 * for cases where we use K-based arithmetic in one direction
4366 * and truncated reg-based in the other in order to explore
4367 * bad access.
4368 */
4369 if (!ptr_is_dst_reg) {
4370 tmp = *dst_reg;
4371 *dst_reg = *ptr_reg;
4372 }
4373 ret = push_stack(env, env->insn_idx + 1, env->insn_idx, true);
0803278b 4374 if (!ptr_is_dst_reg && ret)
979d63d5
DB
4375 *dst_reg = tmp;
4376 return !ret ? -EFAULT : 0;
4377}
4378
f1174f77 4379/* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
f1174f77
EC
4380 * Caller should also handle BPF_MOV case separately.
4381 * If we return -EACCES, caller may want to try again treating pointer as a
4382 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks.
4383 */
4384static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
4385 struct bpf_insn *insn,
4386 const struct bpf_reg_state *ptr_reg,
4387 const struct bpf_reg_state *off_reg)
969bf05e 4388{
f4d7e40a
AS
4389 struct bpf_verifier_state *vstate = env->cur_state;
4390 struct bpf_func_state *state = vstate->frame[vstate->curframe];
4391 struct bpf_reg_state *regs = state->regs, *dst_reg;
f1174f77 4392 bool known = tnum_is_const(off_reg->var_off);
b03c9f9f
EC
4393 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
4394 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
4395 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
4396 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
9d7eceed 4397 u32 dst = insn->dst_reg, src = insn->src_reg;
969bf05e 4398 u8 opcode = BPF_OP(insn->code);
979d63d5 4399 int ret;
969bf05e 4400
f1174f77 4401 dst_reg = &regs[dst];
969bf05e 4402
6f16101e
DB
4403 if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
4404 smin_val > smax_val || umin_val > umax_val) {
4405 /* Taint dst register if offset had invalid bounds derived from
4406 * e.g. dead branches.
4407 */
4408 __mark_reg_unknown(dst_reg);
4409 return 0;
f1174f77
EC
4410 }
4411
4412 if (BPF_CLASS(insn->code) != BPF_ALU64) {
4413 /* 32-bit ALU ops on pointers produce (meaningless) scalars */
82abbf8d
AS
4414 verbose(env,
4415 "R%d 32-bit pointer arithmetic prohibited\n",
4416 dst);
f1174f77 4417 return -EACCES;
969bf05e
AS
4418 }
4419
aad2eeaf
JS
4420 switch (ptr_reg->type) {
4421 case PTR_TO_MAP_VALUE_OR_NULL:
4422 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
4423 dst, reg_type_str[ptr_reg->type]);
f1174f77 4424 return -EACCES;
aad2eeaf
JS
4425 case CONST_PTR_TO_MAP:
4426 case PTR_TO_PACKET_END:
c64b7983
JS
4427 case PTR_TO_SOCKET:
4428 case PTR_TO_SOCKET_OR_NULL:
46f8bc92
MKL
4429 case PTR_TO_SOCK_COMMON:
4430 case PTR_TO_SOCK_COMMON_OR_NULL:
655a51e5
MKL
4431 case PTR_TO_TCP_SOCK:
4432 case PTR_TO_TCP_SOCK_OR_NULL:
fada7fdc 4433 case PTR_TO_XDP_SOCK:
aad2eeaf
JS
4434 verbose(env, "R%d pointer arithmetic on %s prohibited\n",
4435 dst, reg_type_str[ptr_reg->type]);
f1174f77 4436 return -EACCES;
9d7eceed
DB
4437 case PTR_TO_MAP_VALUE:
4438 if (!env->allow_ptr_leaks && !known && (smin_val < 0) != (smax_val < 0)) {
4439 verbose(env, "R%d has unknown scalar with mixed signed bounds, pointer arithmetic with it prohibited for !root\n",
4440 off_reg == dst_reg ? dst : src);
4441 return -EACCES;
4442 }
4443 /* fall-through */
aad2eeaf
JS
4444 default:
4445 break;
f1174f77
EC
4446 }
4447
4448 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
4449 * The id may be overwritten later if we create a new variable offset.
969bf05e 4450 */
f1174f77
EC
4451 dst_reg->type = ptr_reg->type;
4452 dst_reg->id = ptr_reg->id;
969bf05e 4453
bb7f0f98
AS
4454 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
4455 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
4456 return -EINVAL;
4457
f1174f77
EC
4458 switch (opcode) {
4459 case BPF_ADD:
979d63d5
DB
4460 ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0);
4461 if (ret < 0) {
4462 verbose(env, "R%d tried to add from different maps or paths\n", dst);
4463 return ret;
4464 }
f1174f77
EC
4465 /* We can take a fixed offset as long as it doesn't overflow
4466 * the s32 'off' field
969bf05e 4467 */
b03c9f9f
EC
4468 if (known && (ptr_reg->off + smin_val ==
4469 (s64)(s32)(ptr_reg->off + smin_val))) {
f1174f77 4470 /* pointer += K. Accumulate it into fixed offset */
b03c9f9f
EC
4471 dst_reg->smin_value = smin_ptr;
4472 dst_reg->smax_value = smax_ptr;
4473 dst_reg->umin_value = umin_ptr;
4474 dst_reg->umax_value = umax_ptr;
f1174f77 4475 dst_reg->var_off = ptr_reg->var_off;
b03c9f9f 4476 dst_reg->off = ptr_reg->off + smin_val;
0962590e 4477 dst_reg->raw = ptr_reg->raw;
f1174f77
EC
4478 break;
4479 }
f1174f77
EC
4480 /* A new variable offset is created. Note that off_reg->off
4481 * == 0, since it's a scalar.
4482 * dst_reg gets the pointer type and since some positive
4483 * integer value was added to the pointer, give it a new 'id'
4484 * if it's a PTR_TO_PACKET.
4485 * this creates a new 'base' pointer, off_reg (variable) gets
4486 * added into the variable offset, and we copy the fixed offset
4487 * from ptr_reg.
969bf05e 4488 */
b03c9f9f
EC
4489 if (signed_add_overflows(smin_ptr, smin_val) ||
4490 signed_add_overflows(smax_ptr, smax_val)) {
4491 dst_reg->smin_value = S64_MIN;
4492 dst_reg->smax_value = S64_MAX;
4493 } else {
4494 dst_reg->smin_value = smin_ptr + smin_val;
4495 dst_reg->smax_value = smax_ptr + smax_val;
4496 }
4497 if (umin_ptr + umin_val < umin_ptr ||
4498 umax_ptr + umax_val < umax_ptr) {
4499 dst_reg->umin_value = 0;
4500 dst_reg->umax_value = U64_MAX;
4501 } else {
4502 dst_reg->umin_value = umin_ptr + umin_val;
4503 dst_reg->umax_value = umax_ptr + umax_val;
4504 }
f1174f77
EC
4505 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
4506 dst_reg->off = ptr_reg->off;
0962590e 4507 dst_reg->raw = ptr_reg->raw;
de8f3a83 4508 if (reg_is_pkt_pointer(ptr_reg)) {
f1174f77
EC
4509 dst_reg->id = ++env->id_gen;
4510 /* something was added to pkt_ptr, set range to zero */
0962590e 4511 dst_reg->raw = 0;
f1174f77
EC
4512 }
4513 break;
4514 case BPF_SUB:
979d63d5
DB
4515 ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0);
4516 if (ret < 0) {
4517 verbose(env, "R%d tried to sub from different maps or paths\n", dst);
4518 return ret;
4519 }
f1174f77
EC
4520 if (dst_reg == off_reg) {
4521 /* scalar -= pointer. Creates an unknown scalar */
82abbf8d
AS
4522 verbose(env, "R%d tried to subtract pointer from scalar\n",
4523 dst);
f1174f77
EC
4524 return -EACCES;
4525 }
4526 /* We don't allow subtraction from FP, because (according to
4527 * test_verifier.c test "invalid fp arithmetic", JITs might not
4528 * be able to deal with it.
969bf05e 4529 */
f1174f77 4530 if (ptr_reg->type == PTR_TO_STACK) {
82abbf8d
AS
4531 verbose(env, "R%d subtraction from stack pointer prohibited\n",
4532 dst);
f1174f77
EC
4533 return -EACCES;
4534 }
b03c9f9f
EC
4535 if (known && (ptr_reg->off - smin_val ==
4536 (s64)(s32)(ptr_reg->off - smin_val))) {
f1174f77 4537 /* pointer -= K. Subtract it from fixed offset */
b03c9f9f
EC
4538 dst_reg->smin_value = smin_ptr;
4539 dst_reg->smax_value = smax_ptr;
4540 dst_reg->umin_value = umin_ptr;
4541 dst_reg->umax_value = umax_ptr;
f1174f77
EC
4542 dst_reg->var_off = ptr_reg->var_off;
4543 dst_reg->id = ptr_reg->id;
b03c9f9f 4544 dst_reg->off = ptr_reg->off - smin_val;
0962590e 4545 dst_reg->raw = ptr_reg->raw;
f1174f77
EC
4546 break;
4547 }
f1174f77
EC
4548 /* A new variable offset is created. If the subtrahend is known
4549 * nonnegative, then any reg->range we had before is still good.
969bf05e 4550 */
b03c9f9f
EC
4551 if (signed_sub_overflows(smin_ptr, smax_val) ||
4552 signed_sub_overflows(smax_ptr, smin_val)) {
4553 /* Overflow possible, we know nothing */
4554 dst_reg->smin_value = S64_MIN;
4555 dst_reg->smax_value = S64_MAX;
4556 } else {
4557 dst_reg->smin_value = smin_ptr - smax_val;
4558 dst_reg->smax_value = smax_ptr - smin_val;
4559 }
4560 if (umin_ptr < umax_val) {
4561 /* Overflow possible, we know nothing */
4562 dst_reg->umin_value = 0;
4563 dst_reg->umax_value = U64_MAX;
4564 } else {
4565 /* Cannot overflow (as long as bounds are consistent) */
4566 dst_reg->umin_value = umin_ptr - umax_val;
4567 dst_reg->umax_value = umax_ptr - umin_val;
4568 }
f1174f77
EC
4569 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
4570 dst_reg->off = ptr_reg->off;
0962590e 4571 dst_reg->raw = ptr_reg->raw;
de8f3a83 4572 if (reg_is_pkt_pointer(ptr_reg)) {
f1174f77
EC
4573 dst_reg->id = ++env->id_gen;
4574 /* something was added to pkt_ptr, set range to zero */
b03c9f9f 4575 if (smin_val < 0)
0962590e 4576 dst_reg->raw = 0;
43188702 4577 }
f1174f77
EC
4578 break;
4579 case BPF_AND:
4580 case BPF_OR:
4581 case BPF_XOR:
82abbf8d
AS
4582 /* bitwise ops on pointers are troublesome, prohibit. */
4583 verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
4584 dst, bpf_alu_string[opcode >> 4]);
f1174f77
EC
4585 return -EACCES;
4586 default:
4587 /* other operators (e.g. MUL,LSH) produce non-pointer results */
82abbf8d
AS
4588 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
4589 dst, bpf_alu_string[opcode >> 4]);
f1174f77 4590 return -EACCES;
43188702
JF
4591 }
4592
bb7f0f98
AS
4593 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
4594 return -EINVAL;
4595
b03c9f9f
EC
4596 __update_reg_bounds(dst_reg);
4597 __reg_deduce_bounds(dst_reg);
4598 __reg_bound_offset(dst_reg);
0d6303db
DB
4599
4600 /* For unprivileged we require that resulting offset must be in bounds
4601 * in order to be able to sanitize access later on.
4602 */
e4298d25
DB
4603 if (!env->allow_ptr_leaks) {
4604 if (dst_reg->type == PTR_TO_MAP_VALUE &&
4605 check_map_access(env, dst, dst_reg->off, 1, false)) {
4606 verbose(env, "R%d pointer arithmetic of map value goes out of range, "
4607 "prohibited for !root\n", dst);
4608 return -EACCES;
4609 } else if (dst_reg->type == PTR_TO_STACK &&
4610 check_stack_access(env, dst_reg, dst_reg->off +
4611 dst_reg->var_off.value, 1)) {
4612 verbose(env, "R%d stack pointer arithmetic goes out of range, "
4613 "prohibited for !root\n", dst);
4614 return -EACCES;
4615 }
0d6303db
DB
4616 }
4617
43188702
JF
4618 return 0;
4619}
4620
468f6eaf
JH
4621/* WARNING: This function does calculations on 64-bit values, but the actual
4622 * execution may occur on 32-bit values. Therefore, things like bitshifts
4623 * need extra checks in the 32-bit case.
4624 */
f1174f77
EC
4625static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
4626 struct bpf_insn *insn,
4627 struct bpf_reg_state *dst_reg,
4628 struct bpf_reg_state src_reg)
969bf05e 4629{
638f5b90 4630 struct bpf_reg_state *regs = cur_regs(env);
48461135 4631 u8 opcode = BPF_OP(insn->code);
f1174f77 4632 bool src_known, dst_known;
b03c9f9f
EC
4633 s64 smin_val, smax_val;
4634 u64 umin_val, umax_val;
468f6eaf 4635 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
d3bd7413
DB
4636 u32 dst = insn->dst_reg;
4637 int ret;
48461135 4638
b799207e
JH
4639 if (insn_bitness == 32) {
4640 /* Relevant for 32-bit RSH: Information can propagate towards
4641 * LSB, so it isn't sufficient to only truncate the output to
4642 * 32 bits.
4643 */
4644 coerce_reg_to_size(dst_reg, 4);
4645 coerce_reg_to_size(&src_reg, 4);
4646 }
4647
b03c9f9f
EC
4648 smin_val = src_reg.smin_value;
4649 smax_val = src_reg.smax_value;
4650 umin_val = src_reg.umin_value;
4651 umax_val = src_reg.umax_value;
f1174f77
EC
4652 src_known = tnum_is_const(src_reg.var_off);
4653 dst_known = tnum_is_const(dst_reg->var_off);
f23cc643 4654
6f16101e
DB
4655 if ((src_known && (smin_val != smax_val || umin_val != umax_val)) ||
4656 smin_val > smax_val || umin_val > umax_val) {
4657 /* Taint dst register if offset had invalid bounds derived from
4658 * e.g. dead branches.
4659 */
4660 __mark_reg_unknown(dst_reg);
4661 return 0;
4662 }
4663
bb7f0f98
AS
4664 if (!src_known &&
4665 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
4666 __mark_reg_unknown(dst_reg);
4667 return 0;
4668 }
4669
48461135
JB
4670 switch (opcode) {
4671 case BPF_ADD:
d3bd7413
DB
4672 ret = sanitize_val_alu(env, insn);
4673 if (ret < 0) {
4674 verbose(env, "R%d tried to add from different pointers or scalars\n", dst);
4675 return ret;
4676 }
b03c9f9f
EC
4677 if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
4678 signed_add_overflows(dst_reg->smax_value, smax_val)) {
4679 dst_reg->smin_value = S64_MIN;
4680 dst_reg->smax_value = S64_MAX;
4681 } else {
4682 dst_reg->smin_value += smin_val;
4683 dst_reg->smax_value += smax_val;
4684 }
4685 if (dst_reg->umin_value + umin_val < umin_val ||
4686 dst_reg->umax_value + umax_val < umax_val) {
4687 dst_reg->umin_value = 0;
4688 dst_reg->umax_value = U64_MAX;
4689 } else {
4690 dst_reg->umin_value += umin_val;
4691 dst_reg->umax_value += umax_val;
4692 }
f1174f77 4693 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
48461135
JB
4694 break;
4695 case BPF_SUB:
d3bd7413
DB
4696 ret = sanitize_val_alu(env, insn);
4697 if (ret < 0) {
4698 verbose(env, "R%d tried to sub from different pointers or scalars\n", dst);
4699 return ret;
4700 }
b03c9f9f
EC
4701 if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
4702 signed_sub_overflows(dst_reg->smax_value, smin_val)) {
4703 /* Overflow possible, we know nothing */
4704 dst_reg->smin_value = S64_MIN;
4705 dst_reg->smax_value = S64_MAX;
4706 } else {
4707 dst_reg->smin_value -= smax_val;
4708 dst_reg->smax_value -= smin_val;
4709 }
4710 if (dst_reg->umin_value < umax_val) {
4711 /* Overflow possible, we know nothing */
4712 dst_reg->umin_value = 0;
4713 dst_reg->umax_value = U64_MAX;
4714 } else {
4715 /* Cannot overflow (as long as bounds are consistent) */
4716 dst_reg->umin_value -= umax_val;
4717 dst_reg->umax_value -= umin_val;
4718 }
f1174f77 4719 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
48461135
JB
4720 break;
4721 case BPF_MUL:
b03c9f9f
EC
4722 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
4723 if (smin_val < 0 || dst_reg->smin_value < 0) {
f1174f77 4724 /* Ain't nobody got time to multiply that sign */
b03c9f9f
EC
4725 __mark_reg_unbounded(dst_reg);
4726 __update_reg_bounds(dst_reg);
f1174f77
EC
4727 break;
4728 }
b03c9f9f
EC
4729 /* Both values are positive, so we can work with unsigned and
4730 * copy the result to signed (unless it exceeds S64_MAX).
f1174f77 4731 */
b03c9f9f
EC
4732 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
4733 /* Potential overflow, we know nothing */
4734 __mark_reg_unbounded(dst_reg);
4735 /* (except what we can learn from the var_off) */
4736 __update_reg_bounds(dst_reg);
4737 break;
4738 }
4739 dst_reg->umin_value *= umin_val;
4740 dst_reg->umax_value *= umax_val;
4741 if (dst_reg->umax_value > S64_MAX) {
4742 /* Overflow possible, we know nothing */
4743 dst_reg->smin_value = S64_MIN;
4744 dst_reg->smax_value = S64_MAX;
4745 } else {
4746 dst_reg->smin_value = dst_reg->umin_value;
4747 dst_reg->smax_value = dst_reg->umax_value;
4748 }
48461135
JB
4749 break;
4750 case BPF_AND:
f1174f77 4751 if (src_known && dst_known) {
b03c9f9f
EC
4752 __mark_reg_known(dst_reg, dst_reg->var_off.value &
4753 src_reg.var_off.value);
f1174f77
EC
4754 break;
4755 }
b03c9f9f
EC
4756 /* We get our minimum from the var_off, since that's inherently
4757 * bitwise. Our maximum is the minimum of the operands' maxima.
f23cc643 4758 */
f1174f77 4759 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
b03c9f9f
EC
4760 dst_reg->umin_value = dst_reg->var_off.value;
4761 dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
4762 if (dst_reg->smin_value < 0 || smin_val < 0) {
4763 /* Lose signed bounds when ANDing negative numbers,
4764 * ain't nobody got time for that.
4765 */
4766 dst_reg->smin_value = S64_MIN;
4767 dst_reg->smax_value = S64_MAX;
4768 } else {
4769 /* ANDing two positives gives a positive, so safe to
4770 * cast result into s64.
4771 */
4772 dst_reg->smin_value = dst_reg->umin_value;
4773 dst_reg->smax_value = dst_reg->umax_value;
4774 }
4775 /* We may learn something more from the var_off */
4776 __update_reg_bounds(dst_reg);
f1174f77
EC
4777 break;
4778 case BPF_OR:
4779 if (src_known && dst_known) {
b03c9f9f
EC
4780 __mark_reg_known(dst_reg, dst_reg->var_off.value |
4781 src_reg.var_off.value);
f1174f77
EC
4782 break;
4783 }
b03c9f9f
EC
4784 /* We get our maximum from the var_off, and our minimum is the
4785 * maximum of the operands' minima
f1174f77
EC
4786 */
4787 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
b03c9f9f
EC
4788 dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
4789 dst_reg->umax_value = dst_reg->var_off.value |
4790 dst_reg->var_off.mask;
4791 if (dst_reg->smin_value < 0 || smin_val < 0) {
4792 /* Lose signed bounds when ORing negative numbers,
4793 * ain't nobody got time for that.
4794 */
4795 dst_reg->smin_value = S64_MIN;
4796 dst_reg->smax_value = S64_MAX;
f1174f77 4797 } else {
b03c9f9f
EC
4798 /* ORing two positives gives a positive, so safe to
4799 * cast result into s64.
4800 */
4801 dst_reg->smin_value = dst_reg->umin_value;
4802 dst_reg->smax_value = dst_reg->umax_value;
f1174f77 4803 }
b03c9f9f
EC
4804 /* We may learn something more from the var_off */
4805 __update_reg_bounds(dst_reg);
48461135
JB
4806 break;
4807 case BPF_LSH:
468f6eaf
JH
4808 if (umax_val >= insn_bitness) {
4809 /* Shifts greater than 31 or 63 are undefined.
4810 * This includes shifts by a negative number.
b03c9f9f 4811 */
61bd5218 4812 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77
EC
4813 break;
4814 }
b03c9f9f
EC
4815 /* We lose all sign bit information (except what we can pick
4816 * up from var_off)
48461135 4817 */
b03c9f9f
EC
4818 dst_reg->smin_value = S64_MIN;
4819 dst_reg->smax_value = S64_MAX;
4820 /* If we might shift our top bit out, then we know nothing */
4821 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
4822 dst_reg->umin_value = 0;
4823 dst_reg->umax_value = U64_MAX;
d1174416 4824 } else {
b03c9f9f
EC
4825 dst_reg->umin_value <<= umin_val;
4826 dst_reg->umax_value <<= umax_val;
d1174416 4827 }
afbe1a5b 4828 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
b03c9f9f
EC
4829 /* We may learn something more from the var_off */
4830 __update_reg_bounds(dst_reg);
48461135
JB
4831 break;
4832 case BPF_RSH:
468f6eaf
JH
4833 if (umax_val >= insn_bitness) {
4834 /* Shifts greater than 31 or 63 are undefined.
4835 * This includes shifts by a negative number.
b03c9f9f 4836 */
61bd5218 4837 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77
EC
4838 break;
4839 }
4374f256
EC
4840 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
4841 * be negative, then either:
4842 * 1) src_reg might be zero, so the sign bit of the result is
4843 * unknown, so we lose our signed bounds
4844 * 2) it's known negative, thus the unsigned bounds capture the
4845 * signed bounds
4846 * 3) the signed bounds cross zero, so they tell us nothing
4847 * about the result
4848 * If the value in dst_reg is known nonnegative, then again the
4849 * unsigned bounts capture the signed bounds.
4850 * Thus, in all cases it suffices to blow away our signed bounds
4851 * and rely on inferring new ones from the unsigned bounds and
4852 * var_off of the result.
4853 */
4854 dst_reg->smin_value = S64_MIN;
4855 dst_reg->smax_value = S64_MAX;
afbe1a5b 4856 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
b03c9f9f
EC
4857 dst_reg->umin_value >>= umax_val;
4858 dst_reg->umax_value >>= umin_val;
4859 /* We may learn something more from the var_off */
4860 __update_reg_bounds(dst_reg);
48461135 4861 break;
9cbe1f5a
YS
4862 case BPF_ARSH:
4863 if (umax_val >= insn_bitness) {
4864 /* Shifts greater than 31 or 63 are undefined.
4865 * This includes shifts by a negative number.
4866 */
4867 mark_reg_unknown(env, regs, insn->dst_reg);
4868 break;
4869 }
4870
4871 /* Upon reaching here, src_known is true and
4872 * umax_val is equal to umin_val.
4873 */
4874 dst_reg->smin_value >>= umin_val;
4875 dst_reg->smax_value >>= umin_val;
4876 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val);
4877
4878 /* blow away the dst_reg umin_value/umax_value and rely on
4879 * dst_reg var_off to refine the result.
4880 */
4881 dst_reg->umin_value = 0;
4882 dst_reg->umax_value = U64_MAX;
4883 __update_reg_bounds(dst_reg);
4884 break;
48461135 4885 default:
61bd5218 4886 mark_reg_unknown(env, regs, insn->dst_reg);
48461135
JB
4887 break;
4888 }
4889
468f6eaf
JH
4890 if (BPF_CLASS(insn->code) != BPF_ALU64) {
4891 /* 32-bit ALU ops are (32,32)->32 */
4892 coerce_reg_to_size(dst_reg, 4);
468f6eaf
JH
4893 }
4894
b03c9f9f
EC
4895 __reg_deduce_bounds(dst_reg);
4896 __reg_bound_offset(dst_reg);
f1174f77
EC
4897 return 0;
4898}
4899
4900/* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
4901 * and var_off.
4902 */
4903static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
4904 struct bpf_insn *insn)
4905{
f4d7e40a
AS
4906 struct bpf_verifier_state *vstate = env->cur_state;
4907 struct bpf_func_state *state = vstate->frame[vstate->curframe];
4908 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
f1174f77
EC
4909 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
4910 u8 opcode = BPF_OP(insn->code);
b5dc0163 4911 int err;
f1174f77
EC
4912
4913 dst_reg = &regs[insn->dst_reg];
f1174f77
EC
4914 src_reg = NULL;
4915 if (dst_reg->type != SCALAR_VALUE)
4916 ptr_reg = dst_reg;
4917 if (BPF_SRC(insn->code) == BPF_X) {
4918 src_reg = &regs[insn->src_reg];
f1174f77
EC
4919 if (src_reg->type != SCALAR_VALUE) {
4920 if (dst_reg->type != SCALAR_VALUE) {
4921 /* Combining two pointers by any ALU op yields
82abbf8d
AS
4922 * an arbitrary scalar. Disallow all math except
4923 * pointer subtraction
f1174f77 4924 */
dd066823 4925 if (opcode == BPF_SUB && env->allow_ptr_leaks) {
82abbf8d
AS
4926 mark_reg_unknown(env, regs, insn->dst_reg);
4927 return 0;
f1174f77 4928 }
82abbf8d
AS
4929 verbose(env, "R%d pointer %s pointer prohibited\n",
4930 insn->dst_reg,
4931 bpf_alu_string[opcode >> 4]);
4932 return -EACCES;
f1174f77
EC
4933 } else {
4934 /* scalar += pointer
4935 * This is legal, but we have to reverse our
4936 * src/dest handling in computing the range
4937 */
b5dc0163
AS
4938 err = mark_chain_precision(env, insn->dst_reg);
4939 if (err)
4940 return err;
82abbf8d
AS
4941 return adjust_ptr_min_max_vals(env, insn,
4942 src_reg, dst_reg);
f1174f77
EC
4943 }
4944 } else if (ptr_reg) {
4945 /* pointer += scalar */
b5dc0163
AS
4946 err = mark_chain_precision(env, insn->src_reg);
4947 if (err)
4948 return err;
82abbf8d
AS
4949 return adjust_ptr_min_max_vals(env, insn,
4950 dst_reg, src_reg);
f1174f77
EC
4951 }
4952 } else {
4953 /* Pretend the src is a reg with a known value, since we only
4954 * need to be able to read from this state.
4955 */
4956 off_reg.type = SCALAR_VALUE;
b03c9f9f 4957 __mark_reg_known(&off_reg, insn->imm);
f1174f77 4958 src_reg = &off_reg;
82abbf8d
AS
4959 if (ptr_reg) /* pointer += K */
4960 return adjust_ptr_min_max_vals(env, insn,
4961 ptr_reg, src_reg);
f1174f77
EC
4962 }
4963
4964 /* Got here implies adding two SCALAR_VALUEs */
4965 if (WARN_ON_ONCE(ptr_reg)) {
f4d7e40a 4966 print_verifier_state(env, state);
61bd5218 4967 verbose(env, "verifier internal error: unexpected ptr_reg\n");
f1174f77
EC
4968 return -EINVAL;
4969 }
4970 if (WARN_ON(!src_reg)) {
f4d7e40a 4971 print_verifier_state(env, state);
61bd5218 4972 verbose(env, "verifier internal error: no src_reg\n");
f1174f77
EC
4973 return -EINVAL;
4974 }
4975 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
48461135
JB
4976}
4977
17a52670 4978/* check validity of 32-bit and 64-bit arithmetic operations */
58e2af8b 4979static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 4980{
638f5b90 4981 struct bpf_reg_state *regs = cur_regs(env);
17a52670
AS
4982 u8 opcode = BPF_OP(insn->code);
4983 int err;
4984
4985 if (opcode == BPF_END || opcode == BPF_NEG) {
4986 if (opcode == BPF_NEG) {
4987 if (BPF_SRC(insn->code) != 0 ||
4988 insn->src_reg != BPF_REG_0 ||
4989 insn->off != 0 || insn->imm != 0) {
61bd5218 4990 verbose(env, "BPF_NEG uses reserved fields\n");
17a52670
AS
4991 return -EINVAL;
4992 }
4993 } else {
4994 if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
e67b8a68
EC
4995 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
4996 BPF_CLASS(insn->code) == BPF_ALU64) {
61bd5218 4997 verbose(env, "BPF_END uses reserved fields\n");
17a52670
AS
4998 return -EINVAL;
4999 }
5000 }
5001
5002 /* check src operand */
dc503a8a 5003 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
5004 if (err)
5005 return err;
5006
1be7f75d 5007 if (is_pointer_value(env, insn->dst_reg)) {
61bd5218 5008 verbose(env, "R%d pointer arithmetic prohibited\n",
1be7f75d
AS
5009 insn->dst_reg);
5010 return -EACCES;
5011 }
5012
17a52670 5013 /* check dest operand */
dc503a8a 5014 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
5015 if (err)
5016 return err;
5017
5018 } else if (opcode == BPF_MOV) {
5019
5020 if (BPF_SRC(insn->code) == BPF_X) {
5021 if (insn->imm != 0 || insn->off != 0) {
61bd5218 5022 verbose(env, "BPF_MOV uses reserved fields\n");
17a52670
AS
5023 return -EINVAL;
5024 }
5025
5026 /* check src operand */
dc503a8a 5027 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
5028 if (err)
5029 return err;
5030 } else {
5031 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
61bd5218 5032 verbose(env, "BPF_MOV uses reserved fields\n");
17a52670
AS
5033 return -EINVAL;
5034 }
5035 }
5036
fbeb1603
AF
5037 /* check dest operand, mark as required later */
5038 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
17a52670
AS
5039 if (err)
5040 return err;
5041
5042 if (BPF_SRC(insn->code) == BPF_X) {
e434b8cd
JW
5043 struct bpf_reg_state *src_reg = regs + insn->src_reg;
5044 struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
5045
17a52670
AS
5046 if (BPF_CLASS(insn->code) == BPF_ALU64) {
5047 /* case: R1 = R2
5048 * copy register state to dest reg
5049 */
e434b8cd
JW
5050 *dst_reg = *src_reg;
5051 dst_reg->live |= REG_LIVE_WRITTEN;
5327ed3d 5052 dst_reg->subreg_def = DEF_NOT_SUBREG;
17a52670 5053 } else {
f1174f77 5054 /* R1 = (u32) R2 */
1be7f75d 5055 if (is_pointer_value(env, insn->src_reg)) {
61bd5218
JK
5056 verbose(env,
5057 "R%d partial copy of pointer\n",
1be7f75d
AS
5058 insn->src_reg);
5059 return -EACCES;
e434b8cd
JW
5060 } else if (src_reg->type == SCALAR_VALUE) {
5061 *dst_reg = *src_reg;
5062 dst_reg->live |= REG_LIVE_WRITTEN;
5327ed3d 5063 dst_reg->subreg_def = env->insn_idx + 1;
e434b8cd
JW
5064 } else {
5065 mark_reg_unknown(env, regs,
5066 insn->dst_reg);
1be7f75d 5067 }
e434b8cd 5068 coerce_reg_to_size(dst_reg, 4);
17a52670
AS
5069 }
5070 } else {
5071 /* case: R = imm
5072 * remember the value we stored into this reg
5073 */
fbeb1603
AF
5074 /* clear any state __mark_reg_known doesn't set */
5075 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77 5076 regs[insn->dst_reg].type = SCALAR_VALUE;
95a762e2
JH
5077 if (BPF_CLASS(insn->code) == BPF_ALU64) {
5078 __mark_reg_known(regs + insn->dst_reg,
5079 insn->imm);
5080 } else {
5081 __mark_reg_known(regs + insn->dst_reg,
5082 (u32)insn->imm);
5083 }
17a52670
AS
5084 }
5085
5086 } else if (opcode > BPF_END) {
61bd5218 5087 verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
17a52670
AS
5088 return -EINVAL;
5089
5090 } else { /* all other ALU ops: and, sub, xor, add, ... */
5091
17a52670
AS
5092 if (BPF_SRC(insn->code) == BPF_X) {
5093 if (insn->imm != 0 || insn->off != 0) {
61bd5218 5094 verbose(env, "BPF_ALU uses reserved fields\n");
17a52670
AS
5095 return -EINVAL;
5096 }
5097 /* check src1 operand */
dc503a8a 5098 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
5099 if (err)
5100 return err;
5101 } else {
5102 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
61bd5218 5103 verbose(env, "BPF_ALU uses reserved fields\n");
17a52670
AS
5104 return -EINVAL;
5105 }
5106 }
5107
5108 /* check src2 operand */
dc503a8a 5109 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
5110 if (err)
5111 return err;
5112
5113 if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
5114 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
61bd5218 5115 verbose(env, "div by zero\n");
17a52670
AS
5116 return -EINVAL;
5117 }
5118
229394e8
RV
5119 if ((opcode == BPF_LSH || opcode == BPF_RSH ||
5120 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
5121 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
5122
5123 if (insn->imm < 0 || insn->imm >= size) {
61bd5218 5124 verbose(env, "invalid shift %d\n", insn->imm);
229394e8
RV
5125 return -EINVAL;
5126 }
5127 }
5128
1a0dc1ac 5129 /* check dest operand */
dc503a8a 5130 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
1a0dc1ac
AS
5131 if (err)
5132 return err;
5133
f1174f77 5134 return adjust_reg_min_max_vals(env, insn);
17a52670
AS
5135 }
5136
5137 return 0;
5138}
5139
c6a9efa1
PC
5140static void __find_good_pkt_pointers(struct bpf_func_state *state,
5141 struct bpf_reg_state *dst_reg,
5142 enum bpf_reg_type type, u16 new_range)
5143{
5144 struct bpf_reg_state *reg;
5145 int i;
5146
5147 for (i = 0; i < MAX_BPF_REG; i++) {
5148 reg = &state->regs[i];
5149 if (reg->type == type && reg->id == dst_reg->id)
5150 /* keep the maximum range already checked */
5151 reg->range = max(reg->range, new_range);
5152 }
5153
5154 bpf_for_each_spilled_reg(i, state, reg) {
5155 if (!reg)
5156 continue;
5157 if (reg->type == type && reg->id == dst_reg->id)
5158 reg->range = max(reg->range, new_range);
5159 }
5160}
5161
f4d7e40a 5162static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
de8f3a83 5163 struct bpf_reg_state *dst_reg,
f8ddadc4 5164 enum bpf_reg_type type,
fb2a311a 5165 bool range_right_open)
969bf05e 5166{
fb2a311a 5167 u16 new_range;
c6a9efa1 5168 int i;
2d2be8ca 5169
fb2a311a
DB
5170 if (dst_reg->off < 0 ||
5171 (dst_reg->off == 0 && range_right_open))
f1174f77
EC
5172 /* This doesn't give us any range */
5173 return;
5174
b03c9f9f
EC
5175 if (dst_reg->umax_value > MAX_PACKET_OFF ||
5176 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
f1174f77
EC
5177 /* Risk of overflow. For instance, ptr + (1<<63) may be less
5178 * than pkt_end, but that's because it's also less than pkt.
5179 */
5180 return;
5181
fb2a311a
DB
5182 new_range = dst_reg->off;
5183 if (range_right_open)
5184 new_range--;
5185
5186 /* Examples for register markings:
2d2be8ca 5187 *
fb2a311a 5188 * pkt_data in dst register:
2d2be8ca
DB
5189 *
5190 * r2 = r3;
5191 * r2 += 8;
5192 * if (r2 > pkt_end) goto <handle exception>
5193 * <access okay>
5194 *
b4e432f1
DB
5195 * r2 = r3;
5196 * r2 += 8;
5197 * if (r2 < pkt_end) goto <access okay>
5198 * <handle exception>
5199 *
2d2be8ca
DB
5200 * Where:
5201 * r2 == dst_reg, pkt_end == src_reg
5202 * r2=pkt(id=n,off=8,r=0)
5203 * r3=pkt(id=n,off=0,r=0)
5204 *
fb2a311a 5205 * pkt_data in src register:
2d2be8ca
DB
5206 *
5207 * r2 = r3;
5208 * r2 += 8;
5209 * if (pkt_end >= r2) goto <access okay>
5210 * <handle exception>
5211 *
b4e432f1
DB
5212 * r2 = r3;
5213 * r2 += 8;
5214 * if (pkt_end <= r2) goto <handle exception>
5215 * <access okay>
5216 *
2d2be8ca
DB
5217 * Where:
5218 * pkt_end == dst_reg, r2 == src_reg
5219 * r2=pkt(id=n,off=8,r=0)
5220 * r3=pkt(id=n,off=0,r=0)
5221 *
5222 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
fb2a311a
DB
5223 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
5224 * and [r3, r3 + 8-1) respectively is safe to access depending on
5225 * the check.
969bf05e 5226 */
2d2be8ca 5227
f1174f77
EC
5228 /* If our ids match, then we must have the same max_value. And we
5229 * don't care about the other reg's fixed offset, since if it's too big
5230 * the range won't allow anything.
5231 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
5232 */
c6a9efa1
PC
5233 for (i = 0; i <= vstate->curframe; i++)
5234 __find_good_pkt_pointers(vstate->frame[i], dst_reg, type,
5235 new_range);
969bf05e
AS
5236}
5237
4f7b3e82
AS
5238/* compute branch direction of the expression "if (reg opcode val) goto target;"
5239 * and return:
5240 * 1 - branch will be taken and "goto target" will be executed
5241 * 0 - branch will not be taken and fall-through to next insn
5242 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value range [0,10]
5243 */
092ed096
JW
5244static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
5245 bool is_jmp32)
4f7b3e82 5246{
092ed096 5247 struct bpf_reg_state reg_lo;
a72dafaf
JW
5248 s64 sval;
5249
4f7b3e82
AS
5250 if (__is_pointer_value(false, reg))
5251 return -1;
5252
092ed096
JW
5253 if (is_jmp32) {
5254 reg_lo = *reg;
5255 reg = &reg_lo;
5256 /* For JMP32, only low 32 bits are compared, coerce_reg_to_size
5257 * could truncate high bits and update umin/umax according to
5258 * information of low bits.
5259 */
5260 coerce_reg_to_size(reg, 4);
5261 /* smin/smax need special handling. For example, after coerce,
5262 * if smin_value is 0x00000000ffffffffLL, the value is -1 when
5263 * used as operand to JMP32. It is a negative number from s32's
5264 * point of view, while it is a positive number when seen as
5265 * s64. The smin/smax are kept as s64, therefore, when used with
5266 * JMP32, they need to be transformed into s32, then sign
5267 * extended back to s64.
5268 *
5269 * Also, smin/smax were copied from umin/umax. If umin/umax has
5270 * different sign bit, then min/max relationship doesn't
5271 * maintain after casting into s32, for this case, set smin/smax
5272 * to safest range.
5273 */
5274 if ((reg->umax_value ^ reg->umin_value) &
5275 (1ULL << 31)) {
5276 reg->smin_value = S32_MIN;
5277 reg->smax_value = S32_MAX;
5278 }
5279 reg->smin_value = (s64)(s32)reg->smin_value;
5280 reg->smax_value = (s64)(s32)reg->smax_value;
5281
5282 val = (u32)val;
5283 sval = (s64)(s32)val;
5284 } else {
5285 sval = (s64)val;
5286 }
a72dafaf 5287
4f7b3e82
AS
5288 switch (opcode) {
5289 case BPF_JEQ:
5290 if (tnum_is_const(reg->var_off))
5291 return !!tnum_equals_const(reg->var_off, val);
5292 break;
5293 case BPF_JNE:
5294 if (tnum_is_const(reg->var_off))
5295 return !tnum_equals_const(reg->var_off, val);
5296 break;
960ea056
JK
5297 case BPF_JSET:
5298 if ((~reg->var_off.mask & reg->var_off.value) & val)
5299 return 1;
5300 if (!((reg->var_off.mask | reg->var_off.value) & val))
5301 return 0;
5302 break;
4f7b3e82
AS
5303 case BPF_JGT:
5304 if (reg->umin_value > val)
5305 return 1;
5306 else if (reg->umax_value <= val)
5307 return 0;
5308 break;
5309 case BPF_JSGT:
a72dafaf 5310 if (reg->smin_value > sval)
4f7b3e82 5311 return 1;
a72dafaf 5312 else if (reg->smax_value < sval)
4f7b3e82
AS
5313 return 0;
5314 break;
5315 case BPF_JLT:
5316 if (reg->umax_value < val)
5317 return 1;
5318 else if (reg->umin_value >= val)
5319 return 0;
5320 break;
5321 case BPF_JSLT:
a72dafaf 5322 if (reg->smax_value < sval)
4f7b3e82 5323 return 1;
a72dafaf 5324 else if (reg->smin_value >= sval)
4f7b3e82
AS
5325 return 0;
5326 break;
5327 case BPF_JGE:
5328 if (reg->umin_value >= val)
5329 return 1;
5330 else if (reg->umax_value < val)
5331 return 0;
5332 break;
5333 case BPF_JSGE:
a72dafaf 5334 if (reg->smin_value >= sval)
4f7b3e82 5335 return 1;
a72dafaf 5336 else if (reg->smax_value < sval)
4f7b3e82
AS
5337 return 0;
5338 break;
5339 case BPF_JLE:
5340 if (reg->umax_value <= val)
5341 return 1;
5342 else if (reg->umin_value > val)
5343 return 0;
5344 break;
5345 case BPF_JSLE:
a72dafaf 5346 if (reg->smax_value <= sval)
4f7b3e82 5347 return 1;
a72dafaf 5348 else if (reg->smin_value > sval)
4f7b3e82
AS
5349 return 0;
5350 break;
5351 }
5352
5353 return -1;
5354}
5355
092ed096
JW
5356/* Generate min value of the high 32-bit from TNUM info. */
5357static u64 gen_hi_min(struct tnum var)
5358{
5359 return var.value & ~0xffffffffULL;
5360}
5361
5362/* Generate max value of the high 32-bit from TNUM info. */
5363static u64 gen_hi_max(struct tnum var)
5364{
5365 return (var.value | var.mask) & ~0xffffffffULL;
5366}
5367
5368/* Return true if VAL is compared with a s64 sign extended from s32, and they
5369 * are with the same signedness.
5370 */
5371static bool cmp_val_with_extended_s64(s64 sval, struct bpf_reg_state *reg)
5372{
5373 return ((s32)sval >= 0 &&
5374 reg->smin_value >= 0 && reg->smax_value <= S32_MAX) ||
5375 ((s32)sval < 0 &&
5376 reg->smax_value <= 0 && reg->smin_value >= S32_MIN);
5377}
5378
48461135
JB
5379/* Adjusts the register min/max values in the case that the dst_reg is the
5380 * variable register that we are working on, and src_reg is a constant or we're
5381 * simply doing a BPF_K check.
f1174f77 5382 * In JEQ/JNE cases we also adjust the var_off values.
48461135
JB
5383 */
5384static void reg_set_min_max(struct bpf_reg_state *true_reg,
5385 struct bpf_reg_state *false_reg, u64 val,
092ed096 5386 u8 opcode, bool is_jmp32)
48461135 5387{
a72dafaf
JW
5388 s64 sval;
5389
f1174f77
EC
5390 /* If the dst_reg is a pointer, we can't learn anything about its
5391 * variable offset from the compare (unless src_reg were a pointer into
5392 * the same object, but we don't bother with that.
5393 * Since false_reg and true_reg have the same type by construction, we
5394 * only need to check one of them for pointerness.
5395 */
5396 if (__is_pointer_value(false, false_reg))
5397 return;
4cabc5b1 5398
092ed096
JW
5399 val = is_jmp32 ? (u32)val : val;
5400 sval = is_jmp32 ? (s64)(s32)val : (s64)val;
a72dafaf 5401
48461135
JB
5402 switch (opcode) {
5403 case BPF_JEQ:
48461135 5404 case BPF_JNE:
a72dafaf
JW
5405 {
5406 struct bpf_reg_state *reg =
5407 opcode == BPF_JEQ ? true_reg : false_reg;
5408
5409 /* For BPF_JEQ, if this is false we know nothing Jon Snow, but
5410 * if it is true we know the value for sure. Likewise for
5411 * BPF_JNE.
48461135 5412 */
092ed096
JW
5413 if (is_jmp32) {
5414 u64 old_v = reg->var_off.value;
5415 u64 hi_mask = ~0xffffffffULL;
5416
5417 reg->var_off.value = (old_v & hi_mask) | val;
5418 reg->var_off.mask &= hi_mask;
5419 } else {
5420 __mark_reg_known(reg, val);
5421 }
48461135 5422 break;
a72dafaf 5423 }
960ea056
JK
5424 case BPF_JSET:
5425 false_reg->var_off = tnum_and(false_reg->var_off,
5426 tnum_const(~val));
5427 if (is_power_of_2(val))
5428 true_reg->var_off = tnum_or(true_reg->var_off,
5429 tnum_const(val));
5430 break;
48461135 5431 case BPF_JGE:
a72dafaf
JW
5432 case BPF_JGT:
5433 {
5434 u64 false_umax = opcode == BPF_JGT ? val : val - 1;
5435 u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
5436
092ed096
JW
5437 if (is_jmp32) {
5438 false_umax += gen_hi_max(false_reg->var_off);
5439 true_umin += gen_hi_min(true_reg->var_off);
5440 }
a72dafaf
JW
5441 false_reg->umax_value = min(false_reg->umax_value, false_umax);
5442 true_reg->umin_value = max(true_reg->umin_value, true_umin);
b03c9f9f 5443 break;
a72dafaf 5444 }
48461135 5445 case BPF_JSGE:
a72dafaf
JW
5446 case BPF_JSGT:
5447 {
5448 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1;
5449 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
5450
092ed096
JW
5451 /* If the full s64 was not sign-extended from s32 then don't
5452 * deduct further info.
5453 */
5454 if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg))
5455 break;
a72dafaf
JW
5456 false_reg->smax_value = min(false_reg->smax_value, false_smax);
5457 true_reg->smin_value = max(true_reg->smin_value, true_smin);
48461135 5458 break;
a72dafaf 5459 }
b4e432f1 5460 case BPF_JLE:
a72dafaf
JW
5461 case BPF_JLT:
5462 {
5463 u64 false_umin = opcode == BPF_JLT ? val : val + 1;
5464 u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
5465
092ed096
JW
5466 if (is_jmp32) {
5467 false_umin += gen_hi_min(false_reg->var_off);
5468 true_umax += gen_hi_max(true_reg->var_off);
5469 }
a72dafaf
JW
5470 false_reg->umin_value = max(false_reg->umin_value, false_umin);
5471 true_reg->umax_value = min(true_reg->umax_value, true_umax);
b4e432f1 5472 break;
a72dafaf 5473 }
b4e432f1 5474 case BPF_JSLE:
a72dafaf
JW
5475 case BPF_JSLT:
5476 {
5477 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1;
5478 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
5479
092ed096
JW
5480 if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg))
5481 break;
a72dafaf
JW
5482 false_reg->smin_value = max(false_reg->smin_value, false_smin);
5483 true_reg->smax_value = min(true_reg->smax_value, true_smax);
b4e432f1 5484 break;
a72dafaf 5485 }
48461135
JB
5486 default:
5487 break;
5488 }
5489
b03c9f9f
EC
5490 __reg_deduce_bounds(false_reg);
5491 __reg_deduce_bounds(true_reg);
5492 /* We might have learned some bits from the bounds. */
5493 __reg_bound_offset(false_reg);
5494 __reg_bound_offset(true_reg);
5495 /* Intersecting with the old var_off might have improved our bounds
5496 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
5497 * then new var_off is (0; 0x7f...fc) which improves our umax.
5498 */
5499 __update_reg_bounds(false_reg);
5500 __update_reg_bounds(true_reg);
48461135
JB
5501}
5502
f1174f77
EC
5503/* Same as above, but for the case that dst_reg holds a constant and src_reg is
5504 * the variable reg.
48461135
JB
5505 */
5506static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
5507 struct bpf_reg_state *false_reg, u64 val,
092ed096 5508 u8 opcode, bool is_jmp32)
48461135 5509{
a72dafaf
JW
5510 s64 sval;
5511
f1174f77
EC
5512 if (__is_pointer_value(false, false_reg))
5513 return;
4cabc5b1 5514
092ed096
JW
5515 val = is_jmp32 ? (u32)val : val;
5516 sval = is_jmp32 ? (s64)(s32)val : (s64)val;
a72dafaf 5517
48461135
JB
5518 switch (opcode) {
5519 case BPF_JEQ:
48461135 5520 case BPF_JNE:
a72dafaf
JW
5521 {
5522 struct bpf_reg_state *reg =
5523 opcode == BPF_JEQ ? true_reg : false_reg;
5524
092ed096
JW
5525 if (is_jmp32) {
5526 u64 old_v = reg->var_off.value;
5527 u64 hi_mask = ~0xffffffffULL;
5528
5529 reg->var_off.value = (old_v & hi_mask) | val;
5530 reg->var_off.mask &= hi_mask;
5531 } else {
5532 __mark_reg_known(reg, val);
5533 }
48461135 5534 break;
a72dafaf 5535 }
960ea056
JK
5536 case BPF_JSET:
5537 false_reg->var_off = tnum_and(false_reg->var_off,
5538 tnum_const(~val));
5539 if (is_power_of_2(val))
5540 true_reg->var_off = tnum_or(true_reg->var_off,
5541 tnum_const(val));
5542 break;
48461135 5543 case BPF_JGE:
a72dafaf
JW
5544 case BPF_JGT:
5545 {
5546 u64 false_umin = opcode == BPF_JGT ? val : val + 1;
5547 u64 true_umax = opcode == BPF_JGT ? val - 1 : val;
5548
092ed096
JW
5549 if (is_jmp32) {
5550 false_umin += gen_hi_min(false_reg->var_off);
5551 true_umax += gen_hi_max(true_reg->var_off);
5552 }
a72dafaf
JW
5553 false_reg->umin_value = max(false_reg->umin_value, false_umin);
5554 true_reg->umax_value = min(true_reg->umax_value, true_umax);
b03c9f9f 5555 break;
a72dafaf 5556 }
48461135 5557 case BPF_JSGE:
a72dafaf
JW
5558 case BPF_JSGT:
5559 {
5560 s64 false_smin = opcode == BPF_JSGT ? sval : sval + 1;
5561 s64 true_smax = opcode == BPF_JSGT ? sval - 1 : sval;
5562
092ed096
JW
5563 if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg))
5564 break;
a72dafaf
JW
5565 false_reg->smin_value = max(false_reg->smin_value, false_smin);
5566 true_reg->smax_value = min(true_reg->smax_value, true_smax);
48461135 5567 break;
a72dafaf 5568 }
b4e432f1 5569 case BPF_JLE:
a72dafaf
JW
5570 case BPF_JLT:
5571 {
5572 u64 false_umax = opcode == BPF_JLT ? val : val - 1;
5573 u64 true_umin = opcode == BPF_JLT ? val + 1 : val;
5574
092ed096
JW
5575 if (is_jmp32) {
5576 false_umax += gen_hi_max(false_reg->var_off);
5577 true_umin += gen_hi_min(true_reg->var_off);
5578 }
a72dafaf
JW
5579 false_reg->umax_value = min(false_reg->umax_value, false_umax);
5580 true_reg->umin_value = max(true_reg->umin_value, true_umin);
b4e432f1 5581 break;
a72dafaf 5582 }
b4e432f1 5583 case BPF_JSLE:
a72dafaf
JW
5584 case BPF_JSLT:
5585 {
5586 s64 false_smax = opcode == BPF_JSLT ? sval : sval - 1;
5587 s64 true_smin = opcode == BPF_JSLT ? sval + 1 : sval;
5588
092ed096
JW
5589 if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg))
5590 break;
a72dafaf
JW
5591 false_reg->smax_value = min(false_reg->smax_value, false_smax);
5592 true_reg->smin_value = max(true_reg->smin_value, true_smin);
b4e432f1 5593 break;
a72dafaf 5594 }
48461135
JB
5595 default:
5596 break;
5597 }
5598
b03c9f9f
EC
5599 __reg_deduce_bounds(false_reg);
5600 __reg_deduce_bounds(true_reg);
5601 /* We might have learned some bits from the bounds. */
5602 __reg_bound_offset(false_reg);
5603 __reg_bound_offset(true_reg);
5604 /* Intersecting with the old var_off might have improved our bounds
5605 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
5606 * then new var_off is (0; 0x7f...fc) which improves our umax.
5607 */
5608 __update_reg_bounds(false_reg);
5609 __update_reg_bounds(true_reg);
f1174f77
EC
5610}
5611
5612/* Regs are known to be equal, so intersect their min/max/var_off */
5613static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
5614 struct bpf_reg_state *dst_reg)
5615{
b03c9f9f
EC
5616 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
5617 dst_reg->umin_value);
5618 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
5619 dst_reg->umax_value);
5620 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
5621 dst_reg->smin_value);
5622 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
5623 dst_reg->smax_value);
f1174f77
EC
5624 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
5625 dst_reg->var_off);
b03c9f9f
EC
5626 /* We might have learned new bounds from the var_off. */
5627 __update_reg_bounds(src_reg);
5628 __update_reg_bounds(dst_reg);
5629 /* We might have learned something about the sign bit. */
5630 __reg_deduce_bounds(src_reg);
5631 __reg_deduce_bounds(dst_reg);
5632 /* We might have learned some bits from the bounds. */
5633 __reg_bound_offset(src_reg);
5634 __reg_bound_offset(dst_reg);
5635 /* Intersecting with the old var_off might have improved our bounds
5636 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
5637 * then new var_off is (0; 0x7f...fc) which improves our umax.
5638 */
5639 __update_reg_bounds(src_reg);
5640 __update_reg_bounds(dst_reg);
f1174f77
EC
5641}
5642
5643static void reg_combine_min_max(struct bpf_reg_state *true_src,
5644 struct bpf_reg_state *true_dst,
5645 struct bpf_reg_state *false_src,
5646 struct bpf_reg_state *false_dst,
5647 u8 opcode)
5648{
5649 switch (opcode) {
5650 case BPF_JEQ:
5651 __reg_combine_min_max(true_src, true_dst);
5652 break;
5653 case BPF_JNE:
5654 __reg_combine_min_max(false_src, false_dst);
b03c9f9f 5655 break;
4cabc5b1 5656 }
48461135
JB
5657}
5658
fd978bf7
JS
5659static void mark_ptr_or_null_reg(struct bpf_func_state *state,
5660 struct bpf_reg_state *reg, u32 id,
840b9615 5661 bool is_null)
57a09bf0 5662{
840b9615 5663 if (reg_type_may_be_null(reg->type) && reg->id == id) {
f1174f77
EC
5664 /* Old offset (both fixed and variable parts) should
5665 * have been known-zero, because we don't allow pointer
5666 * arithmetic on pointers that might be NULL.
5667 */
b03c9f9f
EC
5668 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
5669 !tnum_equals_const(reg->var_off, 0) ||
f1174f77 5670 reg->off)) {
b03c9f9f
EC
5671 __mark_reg_known_zero(reg);
5672 reg->off = 0;
f1174f77
EC
5673 }
5674 if (is_null) {
5675 reg->type = SCALAR_VALUE;
840b9615
JS
5676 } else if (reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
5677 if (reg->map_ptr->inner_map_meta) {
5678 reg->type = CONST_PTR_TO_MAP;
5679 reg->map_ptr = reg->map_ptr->inner_map_meta;
fada7fdc
JL
5680 } else if (reg->map_ptr->map_type ==
5681 BPF_MAP_TYPE_XSKMAP) {
5682 reg->type = PTR_TO_XDP_SOCK;
840b9615
JS
5683 } else {
5684 reg->type = PTR_TO_MAP_VALUE;
5685 }
c64b7983
JS
5686 } else if (reg->type == PTR_TO_SOCKET_OR_NULL) {
5687 reg->type = PTR_TO_SOCKET;
46f8bc92
MKL
5688 } else if (reg->type == PTR_TO_SOCK_COMMON_OR_NULL) {
5689 reg->type = PTR_TO_SOCK_COMMON;
655a51e5
MKL
5690 } else if (reg->type == PTR_TO_TCP_SOCK_OR_NULL) {
5691 reg->type = PTR_TO_TCP_SOCK;
56f668df 5692 }
1b986589
MKL
5693 if (is_null) {
5694 /* We don't need id and ref_obj_id from this point
5695 * onwards anymore, thus we should better reset it,
5696 * so that state pruning has chances to take effect.
5697 */
5698 reg->id = 0;
5699 reg->ref_obj_id = 0;
5700 } else if (!reg_may_point_to_spin_lock(reg)) {
5701 /* For not-NULL ptr, reg->ref_obj_id will be reset
5702 * in release_reg_references().
5703 *
5704 * reg->id is still used by spin_lock ptr. Other
5705 * than spin_lock ptr type, reg->id can be reset.
fd978bf7
JS
5706 */
5707 reg->id = 0;
56f668df 5708 }
57a09bf0
TG
5709 }
5710}
5711
c6a9efa1
PC
5712static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id,
5713 bool is_null)
5714{
5715 struct bpf_reg_state *reg;
5716 int i;
5717
5718 for (i = 0; i < MAX_BPF_REG; i++)
5719 mark_ptr_or_null_reg(state, &state->regs[i], id, is_null);
5720
5721 bpf_for_each_spilled_reg(i, state, reg) {
5722 if (!reg)
5723 continue;
5724 mark_ptr_or_null_reg(state, reg, id, is_null);
5725 }
5726}
5727
57a09bf0
TG
5728/* The logic is similar to find_good_pkt_pointers(), both could eventually
5729 * be folded together at some point.
5730 */
840b9615
JS
5731static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
5732 bool is_null)
57a09bf0 5733{
f4d7e40a 5734 struct bpf_func_state *state = vstate->frame[vstate->curframe];
c6a9efa1 5735 struct bpf_reg_state *regs = state->regs;
1b986589 5736 u32 ref_obj_id = regs[regno].ref_obj_id;
a08dd0da 5737 u32 id = regs[regno].id;
c6a9efa1 5738 int i;
57a09bf0 5739
1b986589
MKL
5740 if (ref_obj_id && ref_obj_id == id && is_null)
5741 /* regs[regno] is in the " == NULL" branch.
5742 * No one could have freed the reference state before
5743 * doing the NULL check.
5744 */
5745 WARN_ON_ONCE(release_reference_state(state, id));
fd978bf7 5746
c6a9efa1
PC
5747 for (i = 0; i <= vstate->curframe; i++)
5748 __mark_ptr_or_null_regs(vstate->frame[i], id, is_null);
57a09bf0
TG
5749}
5750
5beca081
DB
5751static bool try_match_pkt_pointers(const struct bpf_insn *insn,
5752 struct bpf_reg_state *dst_reg,
5753 struct bpf_reg_state *src_reg,
5754 struct bpf_verifier_state *this_branch,
5755 struct bpf_verifier_state *other_branch)
5756{
5757 if (BPF_SRC(insn->code) != BPF_X)
5758 return false;
5759
092ed096
JW
5760 /* Pointers are always 64-bit. */
5761 if (BPF_CLASS(insn->code) == BPF_JMP32)
5762 return false;
5763
5beca081
DB
5764 switch (BPF_OP(insn->code)) {
5765 case BPF_JGT:
5766 if ((dst_reg->type == PTR_TO_PACKET &&
5767 src_reg->type == PTR_TO_PACKET_END) ||
5768 (dst_reg->type == PTR_TO_PACKET_META &&
5769 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
5770 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */
5771 find_good_pkt_pointers(this_branch, dst_reg,
5772 dst_reg->type, false);
5773 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
5774 src_reg->type == PTR_TO_PACKET) ||
5775 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
5776 src_reg->type == PTR_TO_PACKET_META)) {
5777 /* pkt_end > pkt_data', pkt_data > pkt_meta' */
5778 find_good_pkt_pointers(other_branch, src_reg,
5779 src_reg->type, true);
5780 } else {
5781 return false;
5782 }
5783 break;
5784 case BPF_JLT:
5785 if ((dst_reg->type == PTR_TO_PACKET &&
5786 src_reg->type == PTR_TO_PACKET_END) ||
5787 (dst_reg->type == PTR_TO_PACKET_META &&
5788 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
5789 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */
5790 find_good_pkt_pointers(other_branch, dst_reg,
5791 dst_reg->type, true);
5792 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
5793 src_reg->type == PTR_TO_PACKET) ||
5794 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
5795 src_reg->type == PTR_TO_PACKET_META)) {
5796 /* pkt_end < pkt_data', pkt_data > pkt_meta' */
5797 find_good_pkt_pointers(this_branch, src_reg,
5798 src_reg->type, false);
5799 } else {
5800 return false;
5801 }
5802 break;
5803 case BPF_JGE:
5804 if ((dst_reg->type == PTR_TO_PACKET &&
5805 src_reg->type == PTR_TO_PACKET_END) ||
5806 (dst_reg->type == PTR_TO_PACKET_META &&
5807 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
5808 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
5809 find_good_pkt_pointers(this_branch, dst_reg,
5810 dst_reg->type, true);
5811 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
5812 src_reg->type == PTR_TO_PACKET) ||
5813 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
5814 src_reg->type == PTR_TO_PACKET_META)) {
5815 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
5816 find_good_pkt_pointers(other_branch, src_reg,
5817 src_reg->type, false);
5818 } else {
5819 return false;
5820 }
5821 break;
5822 case BPF_JLE:
5823 if ((dst_reg->type == PTR_TO_PACKET &&
5824 src_reg->type == PTR_TO_PACKET_END) ||
5825 (dst_reg->type == PTR_TO_PACKET_META &&
5826 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
5827 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
5828 find_good_pkt_pointers(other_branch, dst_reg,
5829 dst_reg->type, false);
5830 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
5831 src_reg->type == PTR_TO_PACKET) ||
5832 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
5833 src_reg->type == PTR_TO_PACKET_META)) {
5834 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
5835 find_good_pkt_pointers(this_branch, src_reg,
5836 src_reg->type, true);
5837 } else {
5838 return false;
5839 }
5840 break;
5841 default:
5842 return false;
5843 }
5844
5845 return true;
5846}
5847
58e2af8b 5848static int check_cond_jmp_op(struct bpf_verifier_env *env,
17a52670
AS
5849 struct bpf_insn *insn, int *insn_idx)
5850{
f4d7e40a
AS
5851 struct bpf_verifier_state *this_branch = env->cur_state;
5852 struct bpf_verifier_state *other_branch;
5853 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
fb8d251e 5854 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
17a52670 5855 u8 opcode = BPF_OP(insn->code);
092ed096 5856 bool is_jmp32;
fb8d251e 5857 int pred = -1;
17a52670
AS
5858 int err;
5859
092ed096
JW
5860 /* Only conditional jumps are expected to reach here. */
5861 if (opcode == BPF_JA || opcode > BPF_JSLE) {
5862 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
17a52670
AS
5863 return -EINVAL;
5864 }
5865
5866 if (BPF_SRC(insn->code) == BPF_X) {
5867 if (insn->imm != 0) {
092ed096 5868 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
17a52670
AS
5869 return -EINVAL;
5870 }
5871
5872 /* check src1 operand */
dc503a8a 5873 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
5874 if (err)
5875 return err;
1be7f75d
AS
5876
5877 if (is_pointer_value(env, insn->src_reg)) {
61bd5218 5878 verbose(env, "R%d pointer comparison prohibited\n",
1be7f75d
AS
5879 insn->src_reg);
5880 return -EACCES;
5881 }
fb8d251e 5882 src_reg = &regs[insn->src_reg];
17a52670
AS
5883 } else {
5884 if (insn->src_reg != BPF_REG_0) {
092ed096 5885 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
17a52670
AS
5886 return -EINVAL;
5887 }
5888 }
5889
5890 /* check src2 operand */
dc503a8a 5891 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
5892 if (err)
5893 return err;
5894
1a0dc1ac 5895 dst_reg = &regs[insn->dst_reg];
092ed096 5896 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1a0dc1ac 5897
fb8d251e
AS
5898 if (BPF_SRC(insn->code) == BPF_K)
5899 pred = is_branch_taken(dst_reg, insn->imm,
5900 opcode, is_jmp32);
5901 else if (src_reg->type == SCALAR_VALUE &&
5902 tnum_is_const(src_reg->var_off))
5903 pred = is_branch_taken(dst_reg, src_reg->var_off.value,
5904 opcode, is_jmp32);
b5dc0163
AS
5905 if (pred >= 0) {
5906 err = mark_chain_precision(env, insn->dst_reg);
5907 if (BPF_SRC(insn->code) == BPF_X && !err)
5908 err = mark_chain_precision(env, insn->src_reg);
5909 if (err)
5910 return err;
5911 }
fb8d251e
AS
5912 if (pred == 1) {
5913 /* only follow the goto, ignore fall-through */
5914 *insn_idx += insn->off;
5915 return 0;
5916 } else if (pred == 0) {
5917 /* only follow fall-through branch, since
5918 * that's where the program will go
5919 */
5920 return 0;
17a52670
AS
5921 }
5922
979d63d5
DB
5923 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
5924 false);
17a52670
AS
5925 if (!other_branch)
5926 return -EFAULT;
f4d7e40a 5927 other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
17a52670 5928
48461135
JB
5929 /* detect if we are comparing against a constant value so we can adjust
5930 * our min/max values for our dst register.
f1174f77
EC
5931 * this is only legit if both are scalars (or pointers to the same
5932 * object, I suppose, but we don't support that right now), because
5933 * otherwise the different base pointers mean the offsets aren't
5934 * comparable.
48461135
JB
5935 */
5936 if (BPF_SRC(insn->code) == BPF_X) {
092ed096
JW
5937 struct bpf_reg_state *src_reg = &regs[insn->src_reg];
5938 struct bpf_reg_state lo_reg0 = *dst_reg;
5939 struct bpf_reg_state lo_reg1 = *src_reg;
5940 struct bpf_reg_state *src_lo, *dst_lo;
5941
5942 dst_lo = &lo_reg0;
5943 src_lo = &lo_reg1;
5944 coerce_reg_to_size(dst_lo, 4);
5945 coerce_reg_to_size(src_lo, 4);
5946
f1174f77 5947 if (dst_reg->type == SCALAR_VALUE &&
092ed096
JW
5948 src_reg->type == SCALAR_VALUE) {
5949 if (tnum_is_const(src_reg->var_off) ||
5950 (is_jmp32 && tnum_is_const(src_lo->var_off)))
f4d7e40a 5951 reg_set_min_max(&other_branch_regs[insn->dst_reg],
092ed096
JW
5952 dst_reg,
5953 is_jmp32
5954 ? src_lo->var_off.value
5955 : src_reg->var_off.value,
5956 opcode, is_jmp32);
5957 else if (tnum_is_const(dst_reg->var_off) ||
5958 (is_jmp32 && tnum_is_const(dst_lo->var_off)))
f4d7e40a 5959 reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
092ed096
JW
5960 src_reg,
5961 is_jmp32
5962 ? dst_lo->var_off.value
5963 : dst_reg->var_off.value,
5964 opcode, is_jmp32);
5965 else if (!is_jmp32 &&
5966 (opcode == BPF_JEQ || opcode == BPF_JNE))
f1174f77 5967 /* Comparing for equality, we can combine knowledge */
f4d7e40a
AS
5968 reg_combine_min_max(&other_branch_regs[insn->src_reg],
5969 &other_branch_regs[insn->dst_reg],
092ed096 5970 src_reg, dst_reg, opcode);
f1174f77
EC
5971 }
5972 } else if (dst_reg->type == SCALAR_VALUE) {
f4d7e40a 5973 reg_set_min_max(&other_branch_regs[insn->dst_reg],
092ed096 5974 dst_reg, insn->imm, opcode, is_jmp32);
48461135
JB
5975 }
5976
092ed096
JW
5977 /* detect if R == 0 where R is returned from bpf_map_lookup_elem().
5978 * NOTE: these optimizations below are related with pointer comparison
5979 * which will never be JMP32.
5980 */
5981 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
1a0dc1ac 5982 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
840b9615
JS
5983 reg_type_may_be_null(dst_reg->type)) {
5984 /* Mark all identical registers in each branch as either
57a09bf0
TG
5985 * safe or unknown depending R == 0 or R != 0 conditional.
5986 */
840b9615
JS
5987 mark_ptr_or_null_regs(this_branch, insn->dst_reg,
5988 opcode == BPF_JNE);
5989 mark_ptr_or_null_regs(other_branch, insn->dst_reg,
5990 opcode == BPF_JEQ);
5beca081
DB
5991 } else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
5992 this_branch, other_branch) &&
5993 is_pointer_value(env, insn->dst_reg)) {
61bd5218
JK
5994 verbose(env, "R%d pointer comparison prohibited\n",
5995 insn->dst_reg);
1be7f75d 5996 return -EACCES;
17a52670 5997 }
06ee7115 5998 if (env->log.level & BPF_LOG_LEVEL)
f4d7e40a 5999 print_verifier_state(env, this_branch->frame[this_branch->curframe]);
17a52670
AS
6000 return 0;
6001}
6002
17a52670 6003/* verify BPF_LD_IMM64 instruction */
58e2af8b 6004static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 6005{
d8eca5bb 6006 struct bpf_insn_aux_data *aux = cur_aux(env);
638f5b90 6007 struct bpf_reg_state *regs = cur_regs(env);
d8eca5bb 6008 struct bpf_map *map;
17a52670
AS
6009 int err;
6010
6011 if (BPF_SIZE(insn->code) != BPF_DW) {
61bd5218 6012 verbose(env, "invalid BPF_LD_IMM insn\n");
17a52670
AS
6013 return -EINVAL;
6014 }
6015 if (insn->off != 0) {
61bd5218 6016 verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
17a52670
AS
6017 return -EINVAL;
6018 }
6019
dc503a8a 6020 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
6021 if (err)
6022 return err;
6023
6b173873 6024 if (insn->src_reg == 0) {
6b173873
JK
6025 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
6026
f1174f77 6027 regs[insn->dst_reg].type = SCALAR_VALUE;
b03c9f9f 6028 __mark_reg_known(&regs[insn->dst_reg], imm);
17a52670 6029 return 0;
6b173873 6030 }
17a52670 6031
d8eca5bb
DB
6032 map = env->used_maps[aux->map_index];
6033 mark_reg_known_zero(env, regs, insn->dst_reg);
6034 regs[insn->dst_reg].map_ptr = map;
6035
6036 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE) {
6037 regs[insn->dst_reg].type = PTR_TO_MAP_VALUE;
6038 regs[insn->dst_reg].off = aux->map_off;
6039 if (map_value_has_spin_lock(map))
6040 regs[insn->dst_reg].id = ++env->id_gen;
6041 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
6042 regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
6043 } else {
6044 verbose(env, "bpf verifier is misconfigured\n");
6045 return -EINVAL;
6046 }
17a52670 6047
17a52670
AS
6048 return 0;
6049}
6050
96be4325
DB
6051static bool may_access_skb(enum bpf_prog_type type)
6052{
6053 switch (type) {
6054 case BPF_PROG_TYPE_SOCKET_FILTER:
6055 case BPF_PROG_TYPE_SCHED_CLS:
94caee8c 6056 case BPF_PROG_TYPE_SCHED_ACT:
96be4325
DB
6057 return true;
6058 default:
6059 return false;
6060 }
6061}
6062
ddd872bc
AS
6063/* verify safety of LD_ABS|LD_IND instructions:
6064 * - they can only appear in the programs where ctx == skb
6065 * - since they are wrappers of function calls, they scratch R1-R5 registers,
6066 * preserve R6-R9, and store return value into R0
6067 *
6068 * Implicit input:
6069 * ctx == skb == R6 == CTX
6070 *
6071 * Explicit input:
6072 * SRC == any register
6073 * IMM == 32-bit immediate
6074 *
6075 * Output:
6076 * R0 - 8/16/32-bit skb data converted to cpu endianness
6077 */
58e2af8b 6078static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
ddd872bc 6079{
638f5b90 6080 struct bpf_reg_state *regs = cur_regs(env);
ddd872bc 6081 u8 mode = BPF_MODE(insn->code);
ddd872bc
AS
6082 int i, err;
6083
24701ece 6084 if (!may_access_skb(env->prog->type)) {
61bd5218 6085 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
ddd872bc
AS
6086 return -EINVAL;
6087 }
6088
e0cea7ce
DB
6089 if (!env->ops->gen_ld_abs) {
6090 verbose(env, "bpf verifier is misconfigured\n");
6091 return -EINVAL;
6092 }
6093
f910cefa 6094 if (env->subprog_cnt > 1) {
f4d7e40a
AS
6095 /* when program has LD_ABS insn JITs and interpreter assume
6096 * that r1 == ctx == skb which is not the case for callees
6097 * that can have arbitrary arguments. It's problematic
6098 * for main prog as well since JITs would need to analyze
6099 * all functions in order to make proper register save/restore
6100 * decisions in the main prog. Hence disallow LD_ABS with calls
6101 */
6102 verbose(env, "BPF_LD_[ABS|IND] instructions cannot be mixed with bpf-to-bpf calls\n");
6103 return -EINVAL;
6104 }
6105
ddd872bc 6106 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
d82bccc6 6107 BPF_SIZE(insn->code) == BPF_DW ||
ddd872bc 6108 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
61bd5218 6109 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
ddd872bc
AS
6110 return -EINVAL;
6111 }
6112
6113 /* check whether implicit source operand (register R6) is readable */
dc503a8a 6114 err = check_reg_arg(env, BPF_REG_6, SRC_OP);
ddd872bc
AS
6115 if (err)
6116 return err;
6117
fd978bf7
JS
6118 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
6119 * gen_ld_abs() may terminate the program at runtime, leading to
6120 * reference leak.
6121 */
6122 err = check_reference_leak(env);
6123 if (err) {
6124 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
6125 return err;
6126 }
6127
d83525ca
AS
6128 if (env->cur_state->active_spin_lock) {
6129 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
6130 return -EINVAL;
6131 }
6132
ddd872bc 6133 if (regs[BPF_REG_6].type != PTR_TO_CTX) {
61bd5218
JK
6134 verbose(env,
6135 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
ddd872bc
AS
6136 return -EINVAL;
6137 }
6138
6139 if (mode == BPF_IND) {
6140 /* check explicit source operand */
dc503a8a 6141 err = check_reg_arg(env, insn->src_reg, SRC_OP);
ddd872bc
AS
6142 if (err)
6143 return err;
6144 }
6145
6146 /* reset caller saved regs to unreadable */
dc503a8a 6147 for (i = 0; i < CALLER_SAVED_REGS; i++) {
61bd5218 6148 mark_reg_not_init(env, regs, caller_saved[i]);
dc503a8a
EC
6149 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
6150 }
ddd872bc
AS
6151
6152 /* mark destination R0 register as readable, since it contains
dc503a8a
EC
6153 * the value fetched from the packet.
6154 * Already marked as written above.
ddd872bc 6155 */
61bd5218 6156 mark_reg_unknown(env, regs, BPF_REG_0);
5327ed3d
JW
6157 /* ld_abs load up to 32-bit skb data. */
6158 regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
ddd872bc
AS
6159 return 0;
6160}
6161
390ee7e2
AS
6162static int check_return_code(struct bpf_verifier_env *env)
6163{
5cf1e914 6164 struct tnum enforce_attach_type_range = tnum_unknown;
390ee7e2
AS
6165 struct bpf_reg_state *reg;
6166 struct tnum range = tnum_range(0, 1);
6167
6168 switch (env->prog->type) {
983695fa
DB
6169 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
6170 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
6171 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG)
6172 range = tnum_range(1, 1);
ed4ed404 6173 break;
390ee7e2 6174 case BPF_PROG_TYPE_CGROUP_SKB:
5cf1e914 6175 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
6176 range = tnum_range(0, 3);
6177 enforce_attach_type_range = tnum_range(2, 3);
6178 }
ed4ed404 6179 break;
390ee7e2
AS
6180 case BPF_PROG_TYPE_CGROUP_SOCK:
6181 case BPF_PROG_TYPE_SOCK_OPS:
ebc614f6 6182 case BPF_PROG_TYPE_CGROUP_DEVICE:
7b146ceb 6183 case BPF_PROG_TYPE_CGROUP_SYSCTL:
0d01da6a 6184 case BPF_PROG_TYPE_CGROUP_SOCKOPT:
390ee7e2
AS
6185 break;
6186 default:
6187 return 0;
6188 }
6189
638f5b90 6190 reg = cur_regs(env) + BPF_REG_0;
390ee7e2 6191 if (reg->type != SCALAR_VALUE) {
61bd5218 6192 verbose(env, "At program exit the register R0 is not a known value (%s)\n",
390ee7e2
AS
6193 reg_type_str[reg->type]);
6194 return -EINVAL;
6195 }
6196
6197 if (!tnum_in(range, reg->var_off)) {
5cf1e914 6198 char tn_buf[48];
6199
61bd5218 6200 verbose(env, "At program exit the register R0 ");
390ee7e2 6201 if (!tnum_is_unknown(reg->var_off)) {
390ee7e2 6202 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 6203 verbose(env, "has value %s", tn_buf);
390ee7e2 6204 } else {
61bd5218 6205 verbose(env, "has unknown scalar value");
390ee7e2 6206 }
5cf1e914 6207 tnum_strn(tn_buf, sizeof(tn_buf), range);
983695fa 6208 verbose(env, " should have been in %s\n", tn_buf);
390ee7e2
AS
6209 return -EINVAL;
6210 }
5cf1e914 6211
6212 if (!tnum_is_unknown(enforce_attach_type_range) &&
6213 tnum_in(enforce_attach_type_range, reg->var_off))
6214 env->prog->enforce_expected_attach_type = 1;
390ee7e2
AS
6215 return 0;
6216}
6217
475fb78f
AS
6218/* non-recursive DFS pseudo code
6219 * 1 procedure DFS-iterative(G,v):
6220 * 2 label v as discovered
6221 * 3 let S be a stack
6222 * 4 S.push(v)
6223 * 5 while S is not empty
6224 * 6 t <- S.pop()
6225 * 7 if t is what we're looking for:
6226 * 8 return t
6227 * 9 for all edges e in G.adjacentEdges(t) do
6228 * 10 if edge e is already labelled
6229 * 11 continue with the next edge
6230 * 12 w <- G.adjacentVertex(t,e)
6231 * 13 if vertex w is not discovered and not explored
6232 * 14 label e as tree-edge
6233 * 15 label w as discovered
6234 * 16 S.push(w)
6235 * 17 continue at 5
6236 * 18 else if vertex w is discovered
6237 * 19 label e as back-edge
6238 * 20 else
6239 * 21 // vertex w is explored
6240 * 22 label e as forward- or cross-edge
6241 * 23 label t as explored
6242 * 24 S.pop()
6243 *
6244 * convention:
6245 * 0x10 - discovered
6246 * 0x11 - discovered and fall-through edge labelled
6247 * 0x12 - discovered and fall-through and branch edges labelled
6248 * 0x20 - explored
6249 */
6250
6251enum {
6252 DISCOVERED = 0x10,
6253 EXPLORED = 0x20,
6254 FALLTHROUGH = 1,
6255 BRANCH = 2,
6256};
6257
dc2a4ebc
AS
6258static u32 state_htab_size(struct bpf_verifier_env *env)
6259{
6260 return env->prog->len;
6261}
6262
5d839021
AS
6263static struct bpf_verifier_state_list **explored_state(
6264 struct bpf_verifier_env *env,
6265 int idx)
6266{
dc2a4ebc
AS
6267 struct bpf_verifier_state *cur = env->cur_state;
6268 struct bpf_func_state *state = cur->frame[cur->curframe];
6269
6270 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
5d839021
AS
6271}
6272
6273static void init_explored_state(struct bpf_verifier_env *env, int idx)
6274{
a8f500af 6275 env->insn_aux_data[idx].prune_point = true;
5d839021 6276}
f1bca824 6277
475fb78f
AS
6278/* t, w, e - match pseudo-code above:
6279 * t - index of current instruction
6280 * w - next instruction
6281 * e - edge
6282 */
2589726d
AS
6283static int push_insn(int t, int w, int e, struct bpf_verifier_env *env,
6284 bool loop_ok)
475fb78f 6285{
7df737e9
AS
6286 int *insn_stack = env->cfg.insn_stack;
6287 int *insn_state = env->cfg.insn_state;
6288
475fb78f
AS
6289 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
6290 return 0;
6291
6292 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
6293 return 0;
6294
6295 if (w < 0 || w >= env->prog->len) {
d9762e84 6296 verbose_linfo(env, t, "%d: ", t);
61bd5218 6297 verbose(env, "jump out of range from insn %d to %d\n", t, w);
475fb78f
AS
6298 return -EINVAL;
6299 }
6300
f1bca824
AS
6301 if (e == BRANCH)
6302 /* mark branch target for state pruning */
5d839021 6303 init_explored_state(env, w);
f1bca824 6304
475fb78f
AS
6305 if (insn_state[w] == 0) {
6306 /* tree-edge */
6307 insn_state[t] = DISCOVERED | e;
6308 insn_state[w] = DISCOVERED;
7df737e9 6309 if (env->cfg.cur_stack >= env->prog->len)
475fb78f 6310 return -E2BIG;
7df737e9 6311 insn_stack[env->cfg.cur_stack++] = w;
475fb78f
AS
6312 return 1;
6313 } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
2589726d
AS
6314 if (loop_ok && env->allow_ptr_leaks)
6315 return 0;
d9762e84
MKL
6316 verbose_linfo(env, t, "%d: ", t);
6317 verbose_linfo(env, w, "%d: ", w);
61bd5218 6318 verbose(env, "back-edge from insn %d to %d\n", t, w);
475fb78f
AS
6319 return -EINVAL;
6320 } else if (insn_state[w] == EXPLORED) {
6321 /* forward- or cross-edge */
6322 insn_state[t] = DISCOVERED | e;
6323 } else {
61bd5218 6324 verbose(env, "insn state internal bug\n");
475fb78f
AS
6325 return -EFAULT;
6326 }
6327 return 0;
6328}
6329
6330/* non-recursive depth-first-search to detect loops in BPF program
6331 * loop == back-edge in directed graph
6332 */
58e2af8b 6333static int check_cfg(struct bpf_verifier_env *env)
475fb78f
AS
6334{
6335 struct bpf_insn *insns = env->prog->insnsi;
6336 int insn_cnt = env->prog->len;
7df737e9 6337 int *insn_stack, *insn_state;
475fb78f
AS
6338 int ret = 0;
6339 int i, t;
6340
7df737e9 6341 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
475fb78f
AS
6342 if (!insn_state)
6343 return -ENOMEM;
6344
7df737e9 6345 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
475fb78f 6346 if (!insn_stack) {
71dde681 6347 kvfree(insn_state);
475fb78f
AS
6348 return -ENOMEM;
6349 }
6350
6351 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
6352 insn_stack[0] = 0; /* 0 is the first instruction */
7df737e9 6353 env->cfg.cur_stack = 1;
475fb78f
AS
6354
6355peek_stack:
7df737e9 6356 if (env->cfg.cur_stack == 0)
475fb78f 6357 goto check_state;
7df737e9 6358 t = insn_stack[env->cfg.cur_stack - 1];
475fb78f 6359
092ed096
JW
6360 if (BPF_CLASS(insns[t].code) == BPF_JMP ||
6361 BPF_CLASS(insns[t].code) == BPF_JMP32) {
475fb78f
AS
6362 u8 opcode = BPF_OP(insns[t].code);
6363
6364 if (opcode == BPF_EXIT) {
6365 goto mark_explored;
6366 } else if (opcode == BPF_CALL) {
2589726d 6367 ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
475fb78f
AS
6368 if (ret == 1)
6369 goto peek_stack;
6370 else if (ret < 0)
6371 goto err_free;
07016151 6372 if (t + 1 < insn_cnt)
5d839021 6373 init_explored_state(env, t + 1);
cc8b0b92 6374 if (insns[t].src_reg == BPF_PSEUDO_CALL) {
5d839021 6375 init_explored_state(env, t);
2589726d
AS
6376 ret = push_insn(t, t + insns[t].imm + 1, BRANCH,
6377 env, false);
cc8b0b92
AS
6378 if (ret == 1)
6379 goto peek_stack;
6380 else if (ret < 0)
6381 goto err_free;
6382 }
475fb78f
AS
6383 } else if (opcode == BPF_JA) {
6384 if (BPF_SRC(insns[t].code) != BPF_K) {
6385 ret = -EINVAL;
6386 goto err_free;
6387 }
6388 /* unconditional jump with single edge */
6389 ret = push_insn(t, t + insns[t].off + 1,
2589726d 6390 FALLTHROUGH, env, true);
475fb78f
AS
6391 if (ret == 1)
6392 goto peek_stack;
6393 else if (ret < 0)
6394 goto err_free;
b5dc0163
AS
6395 /* unconditional jmp is not a good pruning point,
6396 * but it's marked, since backtracking needs
6397 * to record jmp history in is_state_visited().
6398 */
6399 init_explored_state(env, t + insns[t].off + 1);
f1bca824
AS
6400 /* tell verifier to check for equivalent states
6401 * after every call and jump
6402 */
c3de6317 6403 if (t + 1 < insn_cnt)
5d839021 6404 init_explored_state(env, t + 1);
475fb78f
AS
6405 } else {
6406 /* conditional jump with two edges */
5d839021 6407 init_explored_state(env, t);
2589726d 6408 ret = push_insn(t, t + 1, FALLTHROUGH, env, true);
475fb78f
AS
6409 if (ret == 1)
6410 goto peek_stack;
6411 else if (ret < 0)
6412 goto err_free;
6413
2589726d 6414 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env, true);
475fb78f
AS
6415 if (ret == 1)
6416 goto peek_stack;
6417 else if (ret < 0)
6418 goto err_free;
6419 }
6420 } else {
6421 /* all other non-branch instructions with single
6422 * fall-through edge
6423 */
2589726d 6424 ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
475fb78f
AS
6425 if (ret == 1)
6426 goto peek_stack;
6427 else if (ret < 0)
6428 goto err_free;
6429 }
6430
6431mark_explored:
6432 insn_state[t] = EXPLORED;
7df737e9 6433 if (env->cfg.cur_stack-- <= 0) {
61bd5218 6434 verbose(env, "pop stack internal bug\n");
475fb78f
AS
6435 ret = -EFAULT;
6436 goto err_free;
6437 }
6438 goto peek_stack;
6439
6440check_state:
6441 for (i = 0; i < insn_cnt; i++) {
6442 if (insn_state[i] != EXPLORED) {
61bd5218 6443 verbose(env, "unreachable insn %d\n", i);
475fb78f
AS
6444 ret = -EINVAL;
6445 goto err_free;
6446 }
6447 }
6448 ret = 0; /* cfg looks good */
6449
6450err_free:
71dde681
AS
6451 kvfree(insn_state);
6452 kvfree(insn_stack);
7df737e9 6453 env->cfg.insn_state = env->cfg.insn_stack = NULL;
475fb78f
AS
6454 return ret;
6455}
6456
838e9690
YS
6457/* The minimum supported BTF func info size */
6458#define MIN_BPF_FUNCINFO_SIZE 8
6459#define MAX_FUNCINFO_REC_SIZE 252
6460
c454a46b
MKL
6461static int check_btf_func(struct bpf_verifier_env *env,
6462 const union bpf_attr *attr,
6463 union bpf_attr __user *uattr)
838e9690 6464{
d0b2818e 6465 u32 i, nfuncs, urec_size, min_size;
838e9690 6466 u32 krec_size = sizeof(struct bpf_func_info);
c454a46b 6467 struct bpf_func_info *krecord;
838e9690 6468 const struct btf_type *type;
c454a46b
MKL
6469 struct bpf_prog *prog;
6470 const struct btf *btf;
838e9690 6471 void __user *urecord;
d0b2818e 6472 u32 prev_offset = 0;
838e9690
YS
6473 int ret = 0;
6474
6475 nfuncs = attr->func_info_cnt;
6476 if (!nfuncs)
6477 return 0;
6478
6479 if (nfuncs != env->subprog_cnt) {
6480 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
6481 return -EINVAL;
6482 }
6483
6484 urec_size = attr->func_info_rec_size;
6485 if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
6486 urec_size > MAX_FUNCINFO_REC_SIZE ||
6487 urec_size % sizeof(u32)) {
6488 verbose(env, "invalid func info rec size %u\n", urec_size);
6489 return -EINVAL;
6490 }
6491
c454a46b
MKL
6492 prog = env->prog;
6493 btf = prog->aux->btf;
838e9690
YS
6494
6495 urecord = u64_to_user_ptr(attr->func_info);
6496 min_size = min_t(u32, krec_size, urec_size);
6497
ba64e7d8 6498 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
c454a46b
MKL
6499 if (!krecord)
6500 return -ENOMEM;
ba64e7d8 6501
838e9690
YS
6502 for (i = 0; i < nfuncs; i++) {
6503 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
6504 if (ret) {
6505 if (ret == -E2BIG) {
6506 verbose(env, "nonzero tailing record in func info");
6507 /* set the size kernel expects so loader can zero
6508 * out the rest of the record.
6509 */
6510 if (put_user(min_size, &uattr->func_info_rec_size))
6511 ret = -EFAULT;
6512 }
c454a46b 6513 goto err_free;
838e9690
YS
6514 }
6515
ba64e7d8 6516 if (copy_from_user(&krecord[i], urecord, min_size)) {
838e9690 6517 ret = -EFAULT;
c454a46b 6518 goto err_free;
838e9690
YS
6519 }
6520
d30d42e0 6521 /* check insn_off */
838e9690 6522 if (i == 0) {
d30d42e0 6523 if (krecord[i].insn_off) {
838e9690 6524 verbose(env,
d30d42e0
MKL
6525 "nonzero insn_off %u for the first func info record",
6526 krecord[i].insn_off);
838e9690 6527 ret = -EINVAL;
c454a46b 6528 goto err_free;
838e9690 6529 }
d30d42e0 6530 } else if (krecord[i].insn_off <= prev_offset) {
838e9690
YS
6531 verbose(env,
6532 "same or smaller insn offset (%u) than previous func info record (%u)",
d30d42e0 6533 krecord[i].insn_off, prev_offset);
838e9690 6534 ret = -EINVAL;
c454a46b 6535 goto err_free;
838e9690
YS
6536 }
6537
d30d42e0 6538 if (env->subprog_info[i].start != krecord[i].insn_off) {
838e9690
YS
6539 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
6540 ret = -EINVAL;
c454a46b 6541 goto err_free;
838e9690
YS
6542 }
6543
6544 /* check type_id */
ba64e7d8 6545 type = btf_type_by_id(btf, krecord[i].type_id);
838e9690
YS
6546 if (!type || BTF_INFO_KIND(type->info) != BTF_KIND_FUNC) {
6547 verbose(env, "invalid type id %d in func info",
ba64e7d8 6548 krecord[i].type_id);
838e9690 6549 ret = -EINVAL;
c454a46b 6550 goto err_free;
838e9690
YS
6551 }
6552
d30d42e0 6553 prev_offset = krecord[i].insn_off;
838e9690
YS
6554 urecord += urec_size;
6555 }
6556
ba64e7d8
YS
6557 prog->aux->func_info = krecord;
6558 prog->aux->func_info_cnt = nfuncs;
838e9690
YS
6559 return 0;
6560
c454a46b 6561err_free:
ba64e7d8 6562 kvfree(krecord);
838e9690
YS
6563 return ret;
6564}
6565
ba64e7d8
YS
6566static void adjust_btf_func(struct bpf_verifier_env *env)
6567{
6568 int i;
6569
6570 if (!env->prog->aux->func_info)
6571 return;
6572
6573 for (i = 0; i < env->subprog_cnt; i++)
d30d42e0 6574 env->prog->aux->func_info[i].insn_off = env->subprog_info[i].start;
ba64e7d8
YS
6575}
6576
c454a46b
MKL
6577#define MIN_BPF_LINEINFO_SIZE (offsetof(struct bpf_line_info, line_col) + \
6578 sizeof(((struct bpf_line_info *)(0))->line_col))
6579#define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE
6580
6581static int check_btf_line(struct bpf_verifier_env *env,
6582 const union bpf_attr *attr,
6583 union bpf_attr __user *uattr)
6584{
6585 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
6586 struct bpf_subprog_info *sub;
6587 struct bpf_line_info *linfo;
6588 struct bpf_prog *prog;
6589 const struct btf *btf;
6590 void __user *ulinfo;
6591 int err;
6592
6593 nr_linfo = attr->line_info_cnt;
6594 if (!nr_linfo)
6595 return 0;
6596
6597 rec_size = attr->line_info_rec_size;
6598 if (rec_size < MIN_BPF_LINEINFO_SIZE ||
6599 rec_size > MAX_LINEINFO_REC_SIZE ||
6600 rec_size & (sizeof(u32) - 1))
6601 return -EINVAL;
6602
6603 /* Need to zero it in case the userspace may
6604 * pass in a smaller bpf_line_info object.
6605 */
6606 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
6607 GFP_KERNEL | __GFP_NOWARN);
6608 if (!linfo)
6609 return -ENOMEM;
6610
6611 prog = env->prog;
6612 btf = prog->aux->btf;
6613
6614 s = 0;
6615 sub = env->subprog_info;
6616 ulinfo = u64_to_user_ptr(attr->line_info);
6617 expected_size = sizeof(struct bpf_line_info);
6618 ncopy = min_t(u32, expected_size, rec_size);
6619 for (i = 0; i < nr_linfo; i++) {
6620 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
6621 if (err) {
6622 if (err == -E2BIG) {
6623 verbose(env, "nonzero tailing record in line_info");
6624 if (put_user(expected_size,
6625 &uattr->line_info_rec_size))
6626 err = -EFAULT;
6627 }
6628 goto err_free;
6629 }
6630
6631 if (copy_from_user(&linfo[i], ulinfo, ncopy)) {
6632 err = -EFAULT;
6633 goto err_free;
6634 }
6635
6636 /*
6637 * Check insn_off to ensure
6638 * 1) strictly increasing AND
6639 * 2) bounded by prog->len
6640 *
6641 * The linfo[0].insn_off == 0 check logically falls into
6642 * the later "missing bpf_line_info for func..." case
6643 * because the first linfo[0].insn_off must be the
6644 * first sub also and the first sub must have
6645 * subprog_info[0].start == 0.
6646 */
6647 if ((i && linfo[i].insn_off <= prev_offset) ||
6648 linfo[i].insn_off >= prog->len) {
6649 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
6650 i, linfo[i].insn_off, prev_offset,
6651 prog->len);
6652 err = -EINVAL;
6653 goto err_free;
6654 }
6655
fdbaa0be
MKL
6656 if (!prog->insnsi[linfo[i].insn_off].code) {
6657 verbose(env,
6658 "Invalid insn code at line_info[%u].insn_off\n",
6659 i);
6660 err = -EINVAL;
6661 goto err_free;
6662 }
6663
23127b33
MKL
6664 if (!btf_name_by_offset(btf, linfo[i].line_off) ||
6665 !btf_name_by_offset(btf, linfo[i].file_name_off)) {
c454a46b
MKL
6666 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
6667 err = -EINVAL;
6668 goto err_free;
6669 }
6670
6671 if (s != env->subprog_cnt) {
6672 if (linfo[i].insn_off == sub[s].start) {
6673 sub[s].linfo_idx = i;
6674 s++;
6675 } else if (sub[s].start < linfo[i].insn_off) {
6676 verbose(env, "missing bpf_line_info for func#%u\n", s);
6677 err = -EINVAL;
6678 goto err_free;
6679 }
6680 }
6681
6682 prev_offset = linfo[i].insn_off;
6683 ulinfo += rec_size;
6684 }
6685
6686 if (s != env->subprog_cnt) {
6687 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
6688 env->subprog_cnt - s, s);
6689 err = -EINVAL;
6690 goto err_free;
6691 }
6692
6693 prog->aux->linfo = linfo;
6694 prog->aux->nr_linfo = nr_linfo;
6695
6696 return 0;
6697
6698err_free:
6699 kvfree(linfo);
6700 return err;
6701}
6702
6703static int check_btf_info(struct bpf_verifier_env *env,
6704 const union bpf_attr *attr,
6705 union bpf_attr __user *uattr)
6706{
6707 struct btf *btf;
6708 int err;
6709
6710 if (!attr->func_info_cnt && !attr->line_info_cnt)
6711 return 0;
6712
6713 btf = btf_get_by_fd(attr->prog_btf_fd);
6714 if (IS_ERR(btf))
6715 return PTR_ERR(btf);
6716 env->prog->aux->btf = btf;
6717
6718 err = check_btf_func(env, attr, uattr);
6719 if (err)
6720 return err;
6721
6722 err = check_btf_line(env, attr, uattr);
6723 if (err)
6724 return err;
6725
6726 return 0;
ba64e7d8
YS
6727}
6728
f1174f77
EC
6729/* check %cur's range satisfies %old's */
6730static bool range_within(struct bpf_reg_state *old,
6731 struct bpf_reg_state *cur)
6732{
b03c9f9f
EC
6733 return old->umin_value <= cur->umin_value &&
6734 old->umax_value >= cur->umax_value &&
6735 old->smin_value <= cur->smin_value &&
6736 old->smax_value >= cur->smax_value;
f1174f77
EC
6737}
6738
6739/* Maximum number of register states that can exist at once */
6740#define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
6741struct idpair {
6742 u32 old;
6743 u32 cur;
6744};
6745
6746/* If in the old state two registers had the same id, then they need to have
6747 * the same id in the new state as well. But that id could be different from
6748 * the old state, so we need to track the mapping from old to new ids.
6749 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
6750 * regs with old id 5 must also have new id 9 for the new state to be safe. But
6751 * regs with a different old id could still have new id 9, we don't care about
6752 * that.
6753 * So we look through our idmap to see if this old id has been seen before. If
6754 * so, we require the new id to match; otherwise, we add the id pair to the map.
969bf05e 6755 */
f1174f77 6756static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
969bf05e 6757{
f1174f77 6758 unsigned int i;
969bf05e 6759
f1174f77
EC
6760 for (i = 0; i < ID_MAP_SIZE; i++) {
6761 if (!idmap[i].old) {
6762 /* Reached an empty slot; haven't seen this id before */
6763 idmap[i].old = old_id;
6764 idmap[i].cur = cur_id;
6765 return true;
6766 }
6767 if (idmap[i].old == old_id)
6768 return idmap[i].cur == cur_id;
6769 }
6770 /* We ran out of idmap slots, which should be impossible */
6771 WARN_ON_ONCE(1);
6772 return false;
6773}
6774
9242b5f5
AS
6775static void clean_func_state(struct bpf_verifier_env *env,
6776 struct bpf_func_state *st)
6777{
6778 enum bpf_reg_liveness live;
6779 int i, j;
6780
6781 for (i = 0; i < BPF_REG_FP; i++) {
6782 live = st->regs[i].live;
6783 /* liveness must not touch this register anymore */
6784 st->regs[i].live |= REG_LIVE_DONE;
6785 if (!(live & REG_LIVE_READ))
6786 /* since the register is unused, clear its state
6787 * to make further comparison simpler
6788 */
6789 __mark_reg_not_init(&st->regs[i]);
6790 }
6791
6792 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
6793 live = st->stack[i].spilled_ptr.live;
6794 /* liveness must not touch this stack slot anymore */
6795 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
6796 if (!(live & REG_LIVE_READ)) {
6797 __mark_reg_not_init(&st->stack[i].spilled_ptr);
6798 for (j = 0; j < BPF_REG_SIZE; j++)
6799 st->stack[i].slot_type[j] = STACK_INVALID;
6800 }
6801 }
6802}
6803
6804static void clean_verifier_state(struct bpf_verifier_env *env,
6805 struct bpf_verifier_state *st)
6806{
6807 int i;
6808
6809 if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
6810 /* all regs in this state in all frames were already marked */
6811 return;
6812
6813 for (i = 0; i <= st->curframe; i++)
6814 clean_func_state(env, st->frame[i]);
6815}
6816
6817/* the parentage chains form a tree.
6818 * the verifier states are added to state lists at given insn and
6819 * pushed into state stack for future exploration.
6820 * when the verifier reaches bpf_exit insn some of the verifer states
6821 * stored in the state lists have their final liveness state already,
6822 * but a lot of states will get revised from liveness point of view when
6823 * the verifier explores other branches.
6824 * Example:
6825 * 1: r0 = 1
6826 * 2: if r1 == 100 goto pc+1
6827 * 3: r0 = 2
6828 * 4: exit
6829 * when the verifier reaches exit insn the register r0 in the state list of
6830 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
6831 * of insn 2 and goes exploring further. At the insn 4 it will walk the
6832 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
6833 *
6834 * Since the verifier pushes the branch states as it sees them while exploring
6835 * the program the condition of walking the branch instruction for the second
6836 * time means that all states below this branch were already explored and
6837 * their final liveness markes are already propagated.
6838 * Hence when the verifier completes the search of state list in is_state_visited()
6839 * we can call this clean_live_states() function to mark all liveness states
6840 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
6841 * will not be used.
6842 * This function also clears the registers and stack for states that !READ
6843 * to simplify state merging.
6844 *
6845 * Important note here that walking the same branch instruction in the callee
6846 * doesn't meant that the states are DONE. The verifier has to compare
6847 * the callsites
6848 */
6849static void clean_live_states(struct bpf_verifier_env *env, int insn,
6850 struct bpf_verifier_state *cur)
6851{
6852 struct bpf_verifier_state_list *sl;
6853 int i;
6854
5d839021 6855 sl = *explored_state(env, insn);
a8f500af 6856 while (sl) {
2589726d
AS
6857 if (sl->state.branches)
6858 goto next;
dc2a4ebc
AS
6859 if (sl->state.insn_idx != insn ||
6860 sl->state.curframe != cur->curframe)
9242b5f5
AS
6861 goto next;
6862 for (i = 0; i <= cur->curframe; i++)
6863 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite)
6864 goto next;
6865 clean_verifier_state(env, &sl->state);
6866next:
6867 sl = sl->next;
6868 }
6869}
6870
f1174f77 6871/* Returns true if (rold safe implies rcur safe) */
1b688a19
EC
6872static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
6873 struct idpair *idmap)
f1174f77 6874{
f4d7e40a
AS
6875 bool equal;
6876
dc503a8a
EC
6877 if (!(rold->live & REG_LIVE_READ))
6878 /* explored state didn't use this */
6879 return true;
6880
679c782d 6881 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0;
f4d7e40a
AS
6882
6883 if (rold->type == PTR_TO_STACK)
6884 /* two stack pointers are equal only if they're pointing to
6885 * the same stack frame, since fp-8 in foo != fp-8 in bar
6886 */
6887 return equal && rold->frameno == rcur->frameno;
6888
6889 if (equal)
969bf05e
AS
6890 return true;
6891
f1174f77
EC
6892 if (rold->type == NOT_INIT)
6893 /* explored state can't have used this */
969bf05e 6894 return true;
f1174f77
EC
6895 if (rcur->type == NOT_INIT)
6896 return false;
6897 switch (rold->type) {
6898 case SCALAR_VALUE:
6899 if (rcur->type == SCALAR_VALUE) {
b5dc0163
AS
6900 if (!rold->precise && !rcur->precise)
6901 return true;
f1174f77
EC
6902 /* new val must satisfy old val knowledge */
6903 return range_within(rold, rcur) &&
6904 tnum_in(rold->var_off, rcur->var_off);
6905 } else {
179d1c56
JH
6906 /* We're trying to use a pointer in place of a scalar.
6907 * Even if the scalar was unbounded, this could lead to
6908 * pointer leaks because scalars are allowed to leak
6909 * while pointers are not. We could make this safe in
6910 * special cases if root is calling us, but it's
6911 * probably not worth the hassle.
f1174f77 6912 */
179d1c56 6913 return false;
f1174f77
EC
6914 }
6915 case PTR_TO_MAP_VALUE:
1b688a19
EC
6916 /* If the new min/max/var_off satisfy the old ones and
6917 * everything else matches, we are OK.
d83525ca
AS
6918 * 'id' is not compared, since it's only used for maps with
6919 * bpf_spin_lock inside map element and in such cases if
6920 * the rest of the prog is valid for one map element then
6921 * it's valid for all map elements regardless of the key
6922 * used in bpf_map_lookup()
1b688a19
EC
6923 */
6924 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
6925 range_within(rold, rcur) &&
6926 tnum_in(rold->var_off, rcur->var_off);
f1174f77
EC
6927 case PTR_TO_MAP_VALUE_OR_NULL:
6928 /* a PTR_TO_MAP_VALUE could be safe to use as a
6929 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
6930 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
6931 * checked, doing so could have affected others with the same
6932 * id, and we can't check for that because we lost the id when
6933 * we converted to a PTR_TO_MAP_VALUE.
6934 */
6935 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
6936 return false;
6937 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
6938 return false;
6939 /* Check our ids match any regs they're supposed to */
6940 return check_ids(rold->id, rcur->id, idmap);
de8f3a83 6941 case PTR_TO_PACKET_META:
f1174f77 6942 case PTR_TO_PACKET:
de8f3a83 6943 if (rcur->type != rold->type)
f1174f77
EC
6944 return false;
6945 /* We must have at least as much range as the old ptr
6946 * did, so that any accesses which were safe before are
6947 * still safe. This is true even if old range < old off,
6948 * since someone could have accessed through (ptr - k), or
6949 * even done ptr -= k in a register, to get a safe access.
6950 */
6951 if (rold->range > rcur->range)
6952 return false;
6953 /* If the offsets don't match, we can't trust our alignment;
6954 * nor can we be sure that we won't fall out of range.
6955 */
6956 if (rold->off != rcur->off)
6957 return false;
6958 /* id relations must be preserved */
6959 if (rold->id && !check_ids(rold->id, rcur->id, idmap))
6960 return false;
6961 /* new val must satisfy old val knowledge */
6962 return range_within(rold, rcur) &&
6963 tnum_in(rold->var_off, rcur->var_off);
6964 case PTR_TO_CTX:
6965 case CONST_PTR_TO_MAP:
f1174f77 6966 case PTR_TO_PACKET_END:
d58e468b 6967 case PTR_TO_FLOW_KEYS:
c64b7983
JS
6968 case PTR_TO_SOCKET:
6969 case PTR_TO_SOCKET_OR_NULL:
46f8bc92
MKL
6970 case PTR_TO_SOCK_COMMON:
6971 case PTR_TO_SOCK_COMMON_OR_NULL:
655a51e5
MKL
6972 case PTR_TO_TCP_SOCK:
6973 case PTR_TO_TCP_SOCK_OR_NULL:
fada7fdc 6974 case PTR_TO_XDP_SOCK:
f1174f77
EC
6975 /* Only valid matches are exact, which memcmp() above
6976 * would have accepted
6977 */
6978 default:
6979 /* Don't know what's going on, just say it's not safe */
6980 return false;
6981 }
969bf05e 6982
f1174f77
EC
6983 /* Shouldn't get here; if we do, say it's not safe */
6984 WARN_ON_ONCE(1);
969bf05e
AS
6985 return false;
6986}
6987
f4d7e40a
AS
6988static bool stacksafe(struct bpf_func_state *old,
6989 struct bpf_func_state *cur,
638f5b90
AS
6990 struct idpair *idmap)
6991{
6992 int i, spi;
6993
638f5b90
AS
6994 /* walk slots of the explored stack and ignore any additional
6995 * slots in the current stack, since explored(safe) state
6996 * didn't use them
6997 */
6998 for (i = 0; i < old->allocated_stack; i++) {
6999 spi = i / BPF_REG_SIZE;
7000
b233920c
AS
7001 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
7002 i += BPF_REG_SIZE - 1;
cc2b14d5 7003 /* explored state didn't use this */
fd05e57b 7004 continue;
b233920c 7005 }
cc2b14d5 7006
638f5b90
AS
7007 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
7008 continue;
19e2dbb7
AS
7009
7010 /* explored stack has more populated slots than current stack
7011 * and these slots were used
7012 */
7013 if (i >= cur->allocated_stack)
7014 return false;
7015
cc2b14d5
AS
7016 /* if old state was safe with misc data in the stack
7017 * it will be safe with zero-initialized stack.
7018 * The opposite is not true
7019 */
7020 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
7021 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
7022 continue;
638f5b90
AS
7023 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
7024 cur->stack[spi].slot_type[i % BPF_REG_SIZE])
7025 /* Ex: old explored (safe) state has STACK_SPILL in
7026 * this stack slot, but current has has STACK_MISC ->
7027 * this verifier states are not equivalent,
7028 * return false to continue verification of this path
7029 */
7030 return false;
7031 if (i % BPF_REG_SIZE)
7032 continue;
7033 if (old->stack[spi].slot_type[0] != STACK_SPILL)
7034 continue;
7035 if (!regsafe(&old->stack[spi].spilled_ptr,
7036 &cur->stack[spi].spilled_ptr,
7037 idmap))
7038 /* when explored and current stack slot are both storing
7039 * spilled registers, check that stored pointers types
7040 * are the same as well.
7041 * Ex: explored safe path could have stored
7042 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
7043 * but current path has stored:
7044 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
7045 * such verifier states are not equivalent.
7046 * return false to continue verification of this path
7047 */
7048 return false;
7049 }
7050 return true;
7051}
7052
fd978bf7
JS
7053static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur)
7054{
7055 if (old->acquired_refs != cur->acquired_refs)
7056 return false;
7057 return !memcmp(old->refs, cur->refs,
7058 sizeof(*old->refs) * old->acquired_refs);
7059}
7060
f1bca824
AS
7061/* compare two verifier states
7062 *
7063 * all states stored in state_list are known to be valid, since
7064 * verifier reached 'bpf_exit' instruction through them
7065 *
7066 * this function is called when verifier exploring different branches of
7067 * execution popped from the state stack. If it sees an old state that has
7068 * more strict register state and more strict stack state then this execution
7069 * branch doesn't need to be explored further, since verifier already
7070 * concluded that more strict state leads to valid finish.
7071 *
7072 * Therefore two states are equivalent if register state is more conservative
7073 * and explored stack state is more conservative than the current one.
7074 * Example:
7075 * explored current
7076 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
7077 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
7078 *
7079 * In other words if current stack state (one being explored) has more
7080 * valid slots than old one that already passed validation, it means
7081 * the verifier can stop exploring and conclude that current state is valid too
7082 *
7083 * Similarly with registers. If explored state has register type as invalid
7084 * whereas register type in current state is meaningful, it means that
7085 * the current state will reach 'bpf_exit' instruction safely
7086 */
f4d7e40a
AS
7087static bool func_states_equal(struct bpf_func_state *old,
7088 struct bpf_func_state *cur)
f1bca824 7089{
f1174f77
EC
7090 struct idpair *idmap;
7091 bool ret = false;
f1bca824
AS
7092 int i;
7093
f1174f77
EC
7094 idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
7095 /* If we failed to allocate the idmap, just say it's not safe */
7096 if (!idmap)
1a0dc1ac 7097 return false;
f1174f77
EC
7098
7099 for (i = 0; i < MAX_BPF_REG; i++) {
1b688a19 7100 if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
f1174f77 7101 goto out_free;
f1bca824
AS
7102 }
7103
638f5b90
AS
7104 if (!stacksafe(old, cur, idmap))
7105 goto out_free;
fd978bf7
JS
7106
7107 if (!refsafe(old, cur))
7108 goto out_free;
f1174f77
EC
7109 ret = true;
7110out_free:
7111 kfree(idmap);
7112 return ret;
f1bca824
AS
7113}
7114
f4d7e40a
AS
7115static bool states_equal(struct bpf_verifier_env *env,
7116 struct bpf_verifier_state *old,
7117 struct bpf_verifier_state *cur)
7118{
7119 int i;
7120
7121 if (old->curframe != cur->curframe)
7122 return false;
7123
979d63d5
DB
7124 /* Verification state from speculative execution simulation
7125 * must never prune a non-speculative execution one.
7126 */
7127 if (old->speculative && !cur->speculative)
7128 return false;
7129
d83525ca
AS
7130 if (old->active_spin_lock != cur->active_spin_lock)
7131 return false;
7132
f4d7e40a
AS
7133 /* for states to be equal callsites have to be the same
7134 * and all frame states need to be equivalent
7135 */
7136 for (i = 0; i <= old->curframe; i++) {
7137 if (old->frame[i]->callsite != cur->frame[i]->callsite)
7138 return false;
7139 if (!func_states_equal(old->frame[i], cur->frame[i]))
7140 return false;
7141 }
7142 return true;
7143}
7144
5327ed3d
JW
7145/* Return 0 if no propagation happened. Return negative error code if error
7146 * happened. Otherwise, return the propagated bit.
7147 */
55e7f3b5
JW
7148static int propagate_liveness_reg(struct bpf_verifier_env *env,
7149 struct bpf_reg_state *reg,
7150 struct bpf_reg_state *parent_reg)
7151{
5327ed3d
JW
7152 u8 parent_flag = parent_reg->live & REG_LIVE_READ;
7153 u8 flag = reg->live & REG_LIVE_READ;
55e7f3b5
JW
7154 int err;
7155
5327ed3d
JW
7156 /* When comes here, read flags of PARENT_REG or REG could be any of
7157 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
7158 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
7159 */
7160 if (parent_flag == REG_LIVE_READ64 ||
7161 /* Or if there is no read flag from REG. */
7162 !flag ||
7163 /* Or if the read flag from REG is the same as PARENT_REG. */
7164 parent_flag == flag)
55e7f3b5
JW
7165 return 0;
7166
5327ed3d 7167 err = mark_reg_read(env, reg, parent_reg, flag);
55e7f3b5
JW
7168 if (err)
7169 return err;
7170
5327ed3d 7171 return flag;
55e7f3b5
JW
7172}
7173
8e9cd9ce 7174/* A write screens off any subsequent reads; but write marks come from the
f4d7e40a
AS
7175 * straight-line code between a state and its parent. When we arrive at an
7176 * equivalent state (jump target or such) we didn't arrive by the straight-line
7177 * code, so read marks in the state must propagate to the parent regardless
7178 * of the state's write marks. That's what 'parent == state->parent' comparison
679c782d 7179 * in mark_reg_read() is for.
8e9cd9ce 7180 */
f4d7e40a
AS
7181static int propagate_liveness(struct bpf_verifier_env *env,
7182 const struct bpf_verifier_state *vstate,
7183 struct bpf_verifier_state *vparent)
dc503a8a 7184{
3f8cafa4 7185 struct bpf_reg_state *state_reg, *parent_reg;
f4d7e40a 7186 struct bpf_func_state *state, *parent;
3f8cafa4 7187 int i, frame, err = 0;
dc503a8a 7188
f4d7e40a
AS
7189 if (vparent->curframe != vstate->curframe) {
7190 WARN(1, "propagate_live: parent frame %d current frame %d\n",
7191 vparent->curframe, vstate->curframe);
7192 return -EFAULT;
7193 }
dc503a8a
EC
7194 /* Propagate read liveness of registers... */
7195 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
83d16312 7196 for (frame = 0; frame <= vstate->curframe; frame++) {
3f8cafa4
JW
7197 parent = vparent->frame[frame];
7198 state = vstate->frame[frame];
7199 parent_reg = parent->regs;
7200 state_reg = state->regs;
83d16312
JK
7201 /* We don't need to worry about FP liveness, it's read-only */
7202 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
55e7f3b5
JW
7203 err = propagate_liveness_reg(env, &state_reg[i],
7204 &parent_reg[i]);
5327ed3d 7205 if (err < 0)
3f8cafa4 7206 return err;
5327ed3d
JW
7207 if (err == REG_LIVE_READ64)
7208 mark_insn_zext(env, &parent_reg[i]);
dc503a8a 7209 }
f4d7e40a 7210
1b04aee7 7211 /* Propagate stack slots. */
f4d7e40a
AS
7212 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
7213 i < parent->allocated_stack / BPF_REG_SIZE; i++) {
3f8cafa4
JW
7214 parent_reg = &parent->stack[i].spilled_ptr;
7215 state_reg = &state->stack[i].spilled_ptr;
55e7f3b5
JW
7216 err = propagate_liveness_reg(env, state_reg,
7217 parent_reg);
5327ed3d 7218 if (err < 0)
3f8cafa4 7219 return err;
dc503a8a
EC
7220 }
7221 }
5327ed3d 7222 return 0;
dc503a8a
EC
7223}
7224
a3ce685d
AS
7225/* find precise scalars in the previous equivalent state and
7226 * propagate them into the current state
7227 */
7228static int propagate_precision(struct bpf_verifier_env *env,
7229 const struct bpf_verifier_state *old)
7230{
7231 struct bpf_reg_state *state_reg;
7232 struct bpf_func_state *state;
7233 int i, err = 0;
7234
7235 state = old->frame[old->curframe];
7236 state_reg = state->regs;
7237 for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
7238 if (state_reg->type != SCALAR_VALUE ||
7239 !state_reg->precise)
7240 continue;
7241 if (env->log.level & BPF_LOG_LEVEL2)
7242 verbose(env, "propagating r%d\n", i);
7243 err = mark_chain_precision(env, i);
7244 if (err < 0)
7245 return err;
7246 }
7247
7248 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
7249 if (state->stack[i].slot_type[0] != STACK_SPILL)
7250 continue;
7251 state_reg = &state->stack[i].spilled_ptr;
7252 if (state_reg->type != SCALAR_VALUE ||
7253 !state_reg->precise)
7254 continue;
7255 if (env->log.level & BPF_LOG_LEVEL2)
7256 verbose(env, "propagating fp%d\n",
7257 (-i - 1) * BPF_REG_SIZE);
7258 err = mark_chain_precision_stack(env, i);
7259 if (err < 0)
7260 return err;
7261 }
7262 return 0;
7263}
7264
2589726d
AS
7265static bool states_maybe_looping(struct bpf_verifier_state *old,
7266 struct bpf_verifier_state *cur)
7267{
7268 struct bpf_func_state *fold, *fcur;
7269 int i, fr = cur->curframe;
7270
7271 if (old->curframe != fr)
7272 return false;
7273
7274 fold = old->frame[fr];
7275 fcur = cur->frame[fr];
7276 for (i = 0; i < MAX_BPF_REG; i++)
7277 if (memcmp(&fold->regs[i], &fcur->regs[i],
7278 offsetof(struct bpf_reg_state, parent)))
7279 return false;
7280 return true;
7281}
7282
7283
58e2af8b 7284static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
f1bca824 7285{
58e2af8b 7286 struct bpf_verifier_state_list *new_sl;
9f4686c4 7287 struct bpf_verifier_state_list *sl, **pprev;
679c782d 7288 struct bpf_verifier_state *cur = env->cur_state, *new;
ceefbc96 7289 int i, j, err, states_cnt = 0;
10d274e8 7290 bool add_new_state = env->test_state_freq ? true : false;
f1bca824 7291
b5dc0163 7292 cur->last_insn_idx = env->prev_insn_idx;
a8f500af 7293 if (!env->insn_aux_data[insn_idx].prune_point)
f1bca824
AS
7294 /* this 'insn_idx' instruction wasn't marked, so we will not
7295 * be doing state search here
7296 */
7297 return 0;
7298
2589726d
AS
7299 /* bpf progs typically have pruning point every 4 instructions
7300 * http://vger.kernel.org/bpfconf2019.html#session-1
7301 * Do not add new state for future pruning if the verifier hasn't seen
7302 * at least 2 jumps and at least 8 instructions.
7303 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
7304 * In tests that amounts to up to 50% reduction into total verifier
7305 * memory consumption and 20% verifier time speedup.
7306 */
7307 if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
7308 env->insn_processed - env->prev_insn_processed >= 8)
7309 add_new_state = true;
7310
a8f500af
AS
7311 pprev = explored_state(env, insn_idx);
7312 sl = *pprev;
7313
9242b5f5
AS
7314 clean_live_states(env, insn_idx, cur);
7315
a8f500af 7316 while (sl) {
dc2a4ebc
AS
7317 states_cnt++;
7318 if (sl->state.insn_idx != insn_idx)
7319 goto next;
2589726d
AS
7320 if (sl->state.branches) {
7321 if (states_maybe_looping(&sl->state, cur) &&
7322 states_equal(env, &sl->state, cur)) {
7323 verbose_linfo(env, insn_idx, "; ");
7324 verbose(env, "infinite loop detected at insn %d\n", insn_idx);
7325 return -EINVAL;
7326 }
7327 /* if the verifier is processing a loop, avoid adding new state
7328 * too often, since different loop iterations have distinct
7329 * states and may not help future pruning.
7330 * This threshold shouldn't be too low to make sure that
7331 * a loop with large bound will be rejected quickly.
7332 * The most abusive loop will be:
7333 * r1 += 1
7334 * if r1 < 1000000 goto pc-2
7335 * 1M insn_procssed limit / 100 == 10k peak states.
7336 * This threshold shouldn't be too high either, since states
7337 * at the end of the loop are likely to be useful in pruning.
7338 */
7339 if (env->jmps_processed - env->prev_jmps_processed < 20 &&
7340 env->insn_processed - env->prev_insn_processed < 100)
7341 add_new_state = false;
7342 goto miss;
7343 }
638f5b90 7344 if (states_equal(env, &sl->state, cur)) {
9f4686c4 7345 sl->hit_cnt++;
f1bca824 7346 /* reached equivalent register/stack state,
dc503a8a
EC
7347 * prune the search.
7348 * Registers read by the continuation are read by us.
8e9cd9ce
EC
7349 * If we have any write marks in env->cur_state, they
7350 * will prevent corresponding reads in the continuation
7351 * from reaching our parent (an explored_state). Our
7352 * own state will get the read marks recorded, but
7353 * they'll be immediately forgotten as we're pruning
7354 * this state and will pop a new one.
f1bca824 7355 */
f4d7e40a 7356 err = propagate_liveness(env, &sl->state, cur);
a3ce685d
AS
7357
7358 /* if previous state reached the exit with precision and
7359 * current state is equivalent to it (except precsion marks)
7360 * the precision needs to be propagated back in
7361 * the current state.
7362 */
7363 err = err ? : push_jmp_history(env, cur);
7364 err = err ? : propagate_precision(env, &sl->state);
f4d7e40a
AS
7365 if (err)
7366 return err;
f1bca824 7367 return 1;
dc503a8a 7368 }
2589726d
AS
7369miss:
7370 /* when new state is not going to be added do not increase miss count.
7371 * Otherwise several loop iterations will remove the state
7372 * recorded earlier. The goal of these heuristics is to have
7373 * states from some iterations of the loop (some in the beginning
7374 * and some at the end) to help pruning.
7375 */
7376 if (add_new_state)
7377 sl->miss_cnt++;
9f4686c4
AS
7378 /* heuristic to determine whether this state is beneficial
7379 * to keep checking from state equivalence point of view.
7380 * Higher numbers increase max_states_per_insn and verification time,
7381 * but do not meaningfully decrease insn_processed.
7382 */
7383 if (sl->miss_cnt > sl->hit_cnt * 3 + 3) {
7384 /* the state is unlikely to be useful. Remove it to
7385 * speed up verification
7386 */
7387 *pprev = sl->next;
7388 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) {
2589726d
AS
7389 u32 br = sl->state.branches;
7390
7391 WARN_ONCE(br,
7392 "BUG live_done but branches_to_explore %d\n",
7393 br);
9f4686c4
AS
7394 free_verifier_state(&sl->state, false);
7395 kfree(sl);
7396 env->peak_states--;
7397 } else {
7398 /* cannot free this state, since parentage chain may
7399 * walk it later. Add it for free_list instead to
7400 * be freed at the end of verification
7401 */
7402 sl->next = env->free_list;
7403 env->free_list = sl;
7404 }
7405 sl = *pprev;
7406 continue;
7407 }
dc2a4ebc 7408next:
9f4686c4
AS
7409 pprev = &sl->next;
7410 sl = *pprev;
f1bca824
AS
7411 }
7412
06ee7115
AS
7413 if (env->max_states_per_insn < states_cnt)
7414 env->max_states_per_insn = states_cnt;
7415
ceefbc96 7416 if (!env->allow_ptr_leaks && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
b5dc0163 7417 return push_jmp_history(env, cur);
ceefbc96 7418
2589726d 7419 if (!add_new_state)
b5dc0163 7420 return push_jmp_history(env, cur);
ceefbc96 7421
2589726d
AS
7422 /* There were no equivalent states, remember the current one.
7423 * Technically the current state is not proven to be safe yet,
f4d7e40a 7424 * but it will either reach outer most bpf_exit (which means it's safe)
2589726d 7425 * or it will be rejected. When there are no loops the verifier won't be
f4d7e40a 7426 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
2589726d
AS
7427 * again on the way to bpf_exit.
7428 * When looping the sl->state.branches will be > 0 and this state
7429 * will not be considered for equivalence until branches == 0.
f1bca824 7430 */
638f5b90 7431 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
f1bca824
AS
7432 if (!new_sl)
7433 return -ENOMEM;
06ee7115
AS
7434 env->total_states++;
7435 env->peak_states++;
2589726d
AS
7436 env->prev_jmps_processed = env->jmps_processed;
7437 env->prev_insn_processed = env->insn_processed;
f1bca824
AS
7438
7439 /* add new state to the head of linked list */
679c782d
EC
7440 new = &new_sl->state;
7441 err = copy_verifier_state(new, cur);
1969db47 7442 if (err) {
679c782d 7443 free_verifier_state(new, false);
1969db47
AS
7444 kfree(new_sl);
7445 return err;
7446 }
dc2a4ebc 7447 new->insn_idx = insn_idx;
2589726d
AS
7448 WARN_ONCE(new->branches != 1,
7449 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
b5dc0163 7450
2589726d 7451 cur->parent = new;
b5dc0163
AS
7452 cur->first_insn_idx = insn_idx;
7453 clear_jmp_history(cur);
5d839021
AS
7454 new_sl->next = *explored_state(env, insn_idx);
7455 *explored_state(env, insn_idx) = new_sl;
7640ead9
JK
7456 /* connect new state to parentage chain. Current frame needs all
7457 * registers connected. Only r6 - r9 of the callers are alive (pushed
7458 * to the stack implicitly by JITs) so in callers' frames connect just
7459 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
7460 * the state of the call instruction (with WRITTEN set), and r0 comes
7461 * from callee with its full parentage chain, anyway.
7462 */
8e9cd9ce
EC
7463 /* clear write marks in current state: the writes we did are not writes
7464 * our child did, so they don't screen off its reads from us.
7465 * (There are no read marks in current state, because reads always mark
7466 * their parent and current state never has children yet. Only
7467 * explored_states can get read marks.)
7468 */
eea1c227
AS
7469 for (j = 0; j <= cur->curframe; j++) {
7470 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
7471 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
7472 for (i = 0; i < BPF_REG_FP; i++)
7473 cur->frame[j]->regs[i].live = REG_LIVE_NONE;
7474 }
f4d7e40a
AS
7475
7476 /* all stack frames are accessible from callee, clear them all */
7477 for (j = 0; j <= cur->curframe; j++) {
7478 struct bpf_func_state *frame = cur->frame[j];
679c782d 7479 struct bpf_func_state *newframe = new->frame[j];
f4d7e40a 7480
679c782d 7481 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
cc2b14d5 7482 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
679c782d
EC
7483 frame->stack[i].spilled_ptr.parent =
7484 &newframe->stack[i].spilled_ptr;
7485 }
f4d7e40a 7486 }
f1bca824
AS
7487 return 0;
7488}
7489
c64b7983
JS
7490/* Return true if it's OK to have the same insn return a different type. */
7491static bool reg_type_mismatch_ok(enum bpf_reg_type type)
7492{
7493 switch (type) {
7494 case PTR_TO_CTX:
7495 case PTR_TO_SOCKET:
7496 case PTR_TO_SOCKET_OR_NULL:
46f8bc92
MKL
7497 case PTR_TO_SOCK_COMMON:
7498 case PTR_TO_SOCK_COMMON_OR_NULL:
655a51e5
MKL
7499 case PTR_TO_TCP_SOCK:
7500 case PTR_TO_TCP_SOCK_OR_NULL:
fada7fdc 7501 case PTR_TO_XDP_SOCK:
c64b7983
JS
7502 return false;
7503 default:
7504 return true;
7505 }
7506}
7507
7508/* If an instruction was previously used with particular pointer types, then we
7509 * need to be careful to avoid cases such as the below, where it may be ok
7510 * for one branch accessing the pointer, but not ok for the other branch:
7511 *
7512 * R1 = sock_ptr
7513 * goto X;
7514 * ...
7515 * R1 = some_other_valid_ptr;
7516 * goto X;
7517 * ...
7518 * R2 = *(u32 *)(R1 + 0);
7519 */
7520static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
7521{
7522 return src != prev && (!reg_type_mismatch_ok(src) ||
7523 !reg_type_mismatch_ok(prev));
7524}
7525
58e2af8b 7526static int do_check(struct bpf_verifier_env *env)
17a52670 7527{
638f5b90 7528 struct bpf_verifier_state *state;
17a52670 7529 struct bpf_insn *insns = env->prog->insnsi;
638f5b90 7530 struct bpf_reg_state *regs;
06ee7115 7531 int insn_cnt = env->prog->len;
17a52670 7532 bool do_print_state = false;
b5dc0163 7533 int prev_insn_idx = -1;
17a52670 7534
d9762e84
MKL
7535 env->prev_linfo = NULL;
7536
638f5b90
AS
7537 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
7538 if (!state)
7539 return -ENOMEM;
f4d7e40a 7540 state->curframe = 0;
979d63d5 7541 state->speculative = false;
2589726d 7542 state->branches = 1;
f4d7e40a
AS
7543 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
7544 if (!state->frame[0]) {
7545 kfree(state);
7546 return -ENOMEM;
7547 }
7548 env->cur_state = state;
7549 init_func_state(env, state->frame[0],
7550 BPF_MAIN_FUNC /* callsite */,
7551 0 /* frameno */,
7552 0 /* subprogno, zero == main subprog */);
c08435ec 7553
17a52670
AS
7554 for (;;) {
7555 struct bpf_insn *insn;
7556 u8 class;
7557 int err;
7558
b5dc0163 7559 env->prev_insn_idx = prev_insn_idx;
c08435ec 7560 if (env->insn_idx >= insn_cnt) {
61bd5218 7561 verbose(env, "invalid insn idx %d insn_cnt %d\n",
c08435ec 7562 env->insn_idx, insn_cnt);
17a52670
AS
7563 return -EFAULT;
7564 }
7565
c08435ec 7566 insn = &insns[env->insn_idx];
17a52670
AS
7567 class = BPF_CLASS(insn->code);
7568
06ee7115 7569 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
61bd5218
JK
7570 verbose(env,
7571 "BPF program is too large. Processed %d insn\n",
06ee7115 7572 env->insn_processed);
17a52670
AS
7573 return -E2BIG;
7574 }
7575
c08435ec 7576 err = is_state_visited(env, env->insn_idx);
f1bca824
AS
7577 if (err < 0)
7578 return err;
7579 if (err == 1) {
7580 /* found equivalent state, can prune the search */
06ee7115 7581 if (env->log.level & BPF_LOG_LEVEL) {
f1bca824 7582 if (do_print_state)
979d63d5
DB
7583 verbose(env, "\nfrom %d to %d%s: safe\n",
7584 env->prev_insn_idx, env->insn_idx,
7585 env->cur_state->speculative ?
7586 " (speculative execution)" : "");
f1bca824 7587 else
c08435ec 7588 verbose(env, "%d: safe\n", env->insn_idx);
f1bca824
AS
7589 }
7590 goto process_bpf_exit;
7591 }
7592
c3494801
AS
7593 if (signal_pending(current))
7594 return -EAGAIN;
7595
3c2ce60b
DB
7596 if (need_resched())
7597 cond_resched();
7598
06ee7115
AS
7599 if (env->log.level & BPF_LOG_LEVEL2 ||
7600 (env->log.level & BPF_LOG_LEVEL && do_print_state)) {
7601 if (env->log.level & BPF_LOG_LEVEL2)
c08435ec 7602 verbose(env, "%d:", env->insn_idx);
c5fc9692 7603 else
979d63d5
DB
7604 verbose(env, "\nfrom %d to %d%s:",
7605 env->prev_insn_idx, env->insn_idx,
7606 env->cur_state->speculative ?
7607 " (speculative execution)" : "");
f4d7e40a 7608 print_verifier_state(env, state->frame[state->curframe]);
17a52670
AS
7609 do_print_state = false;
7610 }
7611
06ee7115 7612 if (env->log.level & BPF_LOG_LEVEL) {
7105e828
DB
7613 const struct bpf_insn_cbs cbs = {
7614 .cb_print = verbose,
abe08840 7615 .private_data = env,
7105e828
DB
7616 };
7617
c08435ec
DB
7618 verbose_linfo(env, env->insn_idx, "; ");
7619 verbose(env, "%d: ", env->insn_idx);
abe08840 7620 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
17a52670
AS
7621 }
7622
cae1927c 7623 if (bpf_prog_is_dev_bound(env->prog->aux)) {
c08435ec
DB
7624 err = bpf_prog_offload_verify_insn(env, env->insn_idx,
7625 env->prev_insn_idx);
cae1927c
JK
7626 if (err)
7627 return err;
7628 }
13a27dfc 7629
638f5b90 7630 regs = cur_regs(env);
c08435ec 7631 env->insn_aux_data[env->insn_idx].seen = true;
b5dc0163 7632 prev_insn_idx = env->insn_idx;
fd978bf7 7633
17a52670 7634 if (class == BPF_ALU || class == BPF_ALU64) {
1be7f75d 7635 err = check_alu_op(env, insn);
17a52670
AS
7636 if (err)
7637 return err;
7638
7639 } else if (class == BPF_LDX) {
3df126f3 7640 enum bpf_reg_type *prev_src_type, src_reg_type;
9bac3d6d
AS
7641
7642 /* check for reserved fields is already done */
7643
17a52670 7644 /* check src operand */
dc503a8a 7645 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
7646 if (err)
7647 return err;
7648
dc503a8a 7649 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
17a52670
AS
7650 if (err)
7651 return err;
7652
725f9dcd
AS
7653 src_reg_type = regs[insn->src_reg].type;
7654
17a52670
AS
7655 /* check that memory (src_reg + off) is readable,
7656 * the state of dst_reg will be updated by this func
7657 */
c08435ec
DB
7658 err = check_mem_access(env, env->insn_idx, insn->src_reg,
7659 insn->off, BPF_SIZE(insn->code),
7660 BPF_READ, insn->dst_reg, false);
17a52670
AS
7661 if (err)
7662 return err;
7663
c08435ec 7664 prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type;
3df126f3
JK
7665
7666 if (*prev_src_type == NOT_INIT) {
9bac3d6d
AS
7667 /* saw a valid insn
7668 * dst_reg = *(u32 *)(src_reg + off)
3df126f3 7669 * save type to validate intersecting paths
9bac3d6d 7670 */
3df126f3 7671 *prev_src_type = src_reg_type;
9bac3d6d 7672
c64b7983 7673 } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) {
9bac3d6d
AS
7674 /* ABuser program is trying to use the same insn
7675 * dst_reg = *(u32*) (src_reg + off)
7676 * with different pointer types:
7677 * src_reg == ctx in one branch and
7678 * src_reg == stack|map in some other branch.
7679 * Reject it.
7680 */
61bd5218 7681 verbose(env, "same insn cannot be used with different pointers\n");
9bac3d6d
AS
7682 return -EINVAL;
7683 }
7684
17a52670 7685 } else if (class == BPF_STX) {
3df126f3 7686 enum bpf_reg_type *prev_dst_type, dst_reg_type;
d691f9e8 7687
17a52670 7688 if (BPF_MODE(insn->code) == BPF_XADD) {
c08435ec 7689 err = check_xadd(env, env->insn_idx, insn);
17a52670
AS
7690 if (err)
7691 return err;
c08435ec 7692 env->insn_idx++;
17a52670
AS
7693 continue;
7694 }
7695
17a52670 7696 /* check src1 operand */
dc503a8a 7697 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
7698 if (err)
7699 return err;
7700 /* check src2 operand */
dc503a8a 7701 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
7702 if (err)
7703 return err;
7704
d691f9e8
AS
7705 dst_reg_type = regs[insn->dst_reg].type;
7706
17a52670 7707 /* check that memory (dst_reg + off) is writeable */
c08435ec
DB
7708 err = check_mem_access(env, env->insn_idx, insn->dst_reg,
7709 insn->off, BPF_SIZE(insn->code),
7710 BPF_WRITE, insn->src_reg, false);
17a52670
AS
7711 if (err)
7712 return err;
7713
c08435ec 7714 prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type;
3df126f3
JK
7715
7716 if (*prev_dst_type == NOT_INIT) {
7717 *prev_dst_type = dst_reg_type;
c64b7983 7718 } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) {
61bd5218 7719 verbose(env, "same insn cannot be used with different pointers\n");
d691f9e8
AS
7720 return -EINVAL;
7721 }
7722
17a52670
AS
7723 } else if (class == BPF_ST) {
7724 if (BPF_MODE(insn->code) != BPF_MEM ||
7725 insn->src_reg != BPF_REG_0) {
61bd5218 7726 verbose(env, "BPF_ST uses reserved fields\n");
17a52670
AS
7727 return -EINVAL;
7728 }
7729 /* check src operand */
dc503a8a 7730 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
7731 if (err)
7732 return err;
7733
f37a8cb8 7734 if (is_ctx_reg(env, insn->dst_reg)) {
9d2be44a 7735 verbose(env, "BPF_ST stores into R%d %s is not allowed\n",
2a159c6f
DB
7736 insn->dst_reg,
7737 reg_type_str[reg_state(env, insn->dst_reg)->type]);
f37a8cb8
DB
7738 return -EACCES;
7739 }
7740
17a52670 7741 /* check that memory (dst_reg + off) is writeable */
c08435ec
DB
7742 err = check_mem_access(env, env->insn_idx, insn->dst_reg,
7743 insn->off, BPF_SIZE(insn->code),
7744 BPF_WRITE, -1, false);
17a52670
AS
7745 if (err)
7746 return err;
7747
092ed096 7748 } else if (class == BPF_JMP || class == BPF_JMP32) {
17a52670
AS
7749 u8 opcode = BPF_OP(insn->code);
7750
2589726d 7751 env->jmps_processed++;
17a52670
AS
7752 if (opcode == BPF_CALL) {
7753 if (BPF_SRC(insn->code) != BPF_K ||
7754 insn->off != 0 ||
f4d7e40a
AS
7755 (insn->src_reg != BPF_REG_0 &&
7756 insn->src_reg != BPF_PSEUDO_CALL) ||
092ed096
JW
7757 insn->dst_reg != BPF_REG_0 ||
7758 class == BPF_JMP32) {
61bd5218 7759 verbose(env, "BPF_CALL uses reserved fields\n");
17a52670
AS
7760 return -EINVAL;
7761 }
7762
d83525ca
AS
7763 if (env->cur_state->active_spin_lock &&
7764 (insn->src_reg == BPF_PSEUDO_CALL ||
7765 insn->imm != BPF_FUNC_spin_unlock)) {
7766 verbose(env, "function calls are not allowed while holding a lock\n");
7767 return -EINVAL;
7768 }
f4d7e40a 7769 if (insn->src_reg == BPF_PSEUDO_CALL)
c08435ec 7770 err = check_func_call(env, insn, &env->insn_idx);
f4d7e40a 7771 else
c08435ec 7772 err = check_helper_call(env, insn->imm, env->insn_idx);
17a52670
AS
7773 if (err)
7774 return err;
7775
7776 } else if (opcode == BPF_JA) {
7777 if (BPF_SRC(insn->code) != BPF_K ||
7778 insn->imm != 0 ||
7779 insn->src_reg != BPF_REG_0 ||
092ed096
JW
7780 insn->dst_reg != BPF_REG_0 ||
7781 class == BPF_JMP32) {
61bd5218 7782 verbose(env, "BPF_JA uses reserved fields\n");
17a52670
AS
7783 return -EINVAL;
7784 }
7785
c08435ec 7786 env->insn_idx += insn->off + 1;
17a52670
AS
7787 continue;
7788
7789 } else if (opcode == BPF_EXIT) {
7790 if (BPF_SRC(insn->code) != BPF_K ||
7791 insn->imm != 0 ||
7792 insn->src_reg != BPF_REG_0 ||
092ed096
JW
7793 insn->dst_reg != BPF_REG_0 ||
7794 class == BPF_JMP32) {
61bd5218 7795 verbose(env, "BPF_EXIT uses reserved fields\n");
17a52670
AS
7796 return -EINVAL;
7797 }
7798
d83525ca
AS
7799 if (env->cur_state->active_spin_lock) {
7800 verbose(env, "bpf_spin_unlock is missing\n");
7801 return -EINVAL;
7802 }
7803
f4d7e40a
AS
7804 if (state->curframe) {
7805 /* exit from nested function */
c08435ec 7806 err = prepare_func_exit(env, &env->insn_idx);
f4d7e40a
AS
7807 if (err)
7808 return err;
7809 do_print_state = true;
7810 continue;
7811 }
7812
fd978bf7
JS
7813 err = check_reference_leak(env);
7814 if (err)
7815 return err;
7816
17a52670
AS
7817 /* eBPF calling convetion is such that R0 is used
7818 * to return the value from eBPF program.
7819 * Make sure that it's readable at this time
7820 * of bpf_exit, which means that program wrote
7821 * something into it earlier
7822 */
dc503a8a 7823 err = check_reg_arg(env, BPF_REG_0, SRC_OP);
17a52670
AS
7824 if (err)
7825 return err;
7826
1be7f75d 7827 if (is_pointer_value(env, BPF_REG_0)) {
61bd5218 7828 verbose(env, "R0 leaks addr as return value\n");
1be7f75d
AS
7829 return -EACCES;
7830 }
7831
390ee7e2
AS
7832 err = check_return_code(env);
7833 if (err)
7834 return err;
f1bca824 7835process_bpf_exit:
2589726d 7836 update_branch_counts(env, env->cur_state);
b5dc0163 7837 err = pop_stack(env, &prev_insn_idx,
c08435ec 7838 &env->insn_idx);
638f5b90
AS
7839 if (err < 0) {
7840 if (err != -ENOENT)
7841 return err;
17a52670
AS
7842 break;
7843 } else {
7844 do_print_state = true;
7845 continue;
7846 }
7847 } else {
c08435ec 7848 err = check_cond_jmp_op(env, insn, &env->insn_idx);
17a52670
AS
7849 if (err)
7850 return err;
7851 }
7852 } else if (class == BPF_LD) {
7853 u8 mode = BPF_MODE(insn->code);
7854
7855 if (mode == BPF_ABS || mode == BPF_IND) {
ddd872bc
AS
7856 err = check_ld_abs(env, insn);
7857 if (err)
7858 return err;
7859
17a52670
AS
7860 } else if (mode == BPF_IMM) {
7861 err = check_ld_imm(env, insn);
7862 if (err)
7863 return err;
7864
c08435ec
DB
7865 env->insn_idx++;
7866 env->insn_aux_data[env->insn_idx].seen = true;
17a52670 7867 } else {
61bd5218 7868 verbose(env, "invalid BPF_LD mode\n");
17a52670
AS
7869 return -EINVAL;
7870 }
7871 } else {
61bd5218 7872 verbose(env, "unknown insn class %d\n", class);
17a52670
AS
7873 return -EINVAL;
7874 }
7875
c08435ec 7876 env->insn_idx++;
17a52670
AS
7877 }
7878
9c8105bd 7879 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
17a52670
AS
7880 return 0;
7881}
7882
56f668df
MKL
7883static int check_map_prealloc(struct bpf_map *map)
7884{
7885 return (map->map_type != BPF_MAP_TYPE_HASH &&
bcc6b1b7
MKL
7886 map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
7887 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
56f668df
MKL
7888 !(map->map_flags & BPF_F_NO_PREALLOC);
7889}
7890
d83525ca
AS
7891static bool is_tracing_prog_type(enum bpf_prog_type type)
7892{
7893 switch (type) {
7894 case BPF_PROG_TYPE_KPROBE:
7895 case BPF_PROG_TYPE_TRACEPOINT:
7896 case BPF_PROG_TYPE_PERF_EVENT:
7897 case BPF_PROG_TYPE_RAW_TRACEPOINT:
7898 return true;
7899 default:
7900 return false;
7901 }
7902}
7903
61bd5218
JK
7904static int check_map_prog_compatibility(struct bpf_verifier_env *env,
7905 struct bpf_map *map,
fdc15d38
AS
7906 struct bpf_prog *prog)
7907
7908{
56f668df
MKL
7909 /* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
7910 * preallocated hash maps, since doing memory allocation
7911 * in overflow_handler can crash depending on where nmi got
7912 * triggered.
7913 */
7914 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
7915 if (!check_map_prealloc(map)) {
61bd5218 7916 verbose(env, "perf_event programs can only use preallocated hash map\n");
56f668df
MKL
7917 return -EINVAL;
7918 }
7919 if (map->inner_map_meta &&
7920 !check_map_prealloc(map->inner_map_meta)) {
61bd5218 7921 verbose(env, "perf_event programs can only use preallocated inner hash map\n");
56f668df
MKL
7922 return -EINVAL;
7923 }
fdc15d38 7924 }
a3884572 7925
d83525ca
AS
7926 if ((is_tracing_prog_type(prog->type) ||
7927 prog->type == BPF_PROG_TYPE_SOCKET_FILTER) &&
7928 map_value_has_spin_lock(map)) {
7929 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
7930 return -EINVAL;
7931 }
7932
a3884572 7933 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
09728266 7934 !bpf_offload_prog_map_match(prog, map)) {
a3884572
JK
7935 verbose(env, "offload device mismatch between prog and map\n");
7936 return -EINVAL;
7937 }
7938
fdc15d38
AS
7939 return 0;
7940}
7941
b741f163
RG
7942static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
7943{
7944 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
7945 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
7946}
7947
0246e64d
AS
7948/* look for pseudo eBPF instructions that access map FDs and
7949 * replace them with actual map pointers
7950 */
58e2af8b 7951static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
0246e64d
AS
7952{
7953 struct bpf_insn *insn = env->prog->insnsi;
7954 int insn_cnt = env->prog->len;
fdc15d38 7955 int i, j, err;
0246e64d 7956
f1f7714e 7957 err = bpf_prog_calc_tag(env->prog);
aafe6ae9
DB
7958 if (err)
7959 return err;
7960
0246e64d 7961 for (i = 0; i < insn_cnt; i++, insn++) {
9bac3d6d 7962 if (BPF_CLASS(insn->code) == BPF_LDX &&
d691f9e8 7963 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
61bd5218 7964 verbose(env, "BPF_LDX uses reserved fields\n");
9bac3d6d
AS
7965 return -EINVAL;
7966 }
7967
d691f9e8
AS
7968 if (BPF_CLASS(insn->code) == BPF_STX &&
7969 ((BPF_MODE(insn->code) != BPF_MEM &&
7970 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
61bd5218 7971 verbose(env, "BPF_STX uses reserved fields\n");
d691f9e8
AS
7972 return -EINVAL;
7973 }
7974
0246e64d 7975 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
d8eca5bb 7976 struct bpf_insn_aux_data *aux;
0246e64d
AS
7977 struct bpf_map *map;
7978 struct fd f;
d8eca5bb 7979 u64 addr;
0246e64d
AS
7980
7981 if (i == insn_cnt - 1 || insn[1].code != 0 ||
7982 insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
7983 insn[1].off != 0) {
61bd5218 7984 verbose(env, "invalid bpf_ld_imm64 insn\n");
0246e64d
AS
7985 return -EINVAL;
7986 }
7987
d8eca5bb 7988 if (insn[0].src_reg == 0)
0246e64d
AS
7989 /* valid generic load 64-bit imm */
7990 goto next_insn;
7991
d8eca5bb
DB
7992 /* In final convert_pseudo_ld_imm64() step, this is
7993 * converted into regular 64-bit imm load insn.
7994 */
7995 if ((insn[0].src_reg != BPF_PSEUDO_MAP_FD &&
7996 insn[0].src_reg != BPF_PSEUDO_MAP_VALUE) ||
7997 (insn[0].src_reg == BPF_PSEUDO_MAP_FD &&
7998 insn[1].imm != 0)) {
7999 verbose(env,
8000 "unrecognized bpf_ld_imm64 insn\n");
0246e64d
AS
8001 return -EINVAL;
8002 }
8003
20182390 8004 f = fdget(insn[0].imm);
c2101297 8005 map = __bpf_map_get(f);
0246e64d 8006 if (IS_ERR(map)) {
61bd5218 8007 verbose(env, "fd %d is not pointing to valid bpf_map\n",
20182390 8008 insn[0].imm);
0246e64d
AS
8009 return PTR_ERR(map);
8010 }
8011
61bd5218 8012 err = check_map_prog_compatibility(env, map, env->prog);
fdc15d38
AS
8013 if (err) {
8014 fdput(f);
8015 return err;
8016 }
8017
d8eca5bb
DB
8018 aux = &env->insn_aux_data[i];
8019 if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
8020 addr = (unsigned long)map;
8021 } else {
8022 u32 off = insn[1].imm;
8023
8024 if (off >= BPF_MAX_VAR_OFF) {
8025 verbose(env, "direct value offset of %u is not allowed\n", off);
8026 fdput(f);
8027 return -EINVAL;
8028 }
8029
8030 if (!map->ops->map_direct_value_addr) {
8031 verbose(env, "no direct value access support for this map type\n");
8032 fdput(f);
8033 return -EINVAL;
8034 }
8035
8036 err = map->ops->map_direct_value_addr(map, &addr, off);
8037 if (err) {
8038 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
8039 map->value_size, off);
8040 fdput(f);
8041 return err;
8042 }
8043
8044 aux->map_off = off;
8045 addr += off;
8046 }
8047
8048 insn[0].imm = (u32)addr;
8049 insn[1].imm = addr >> 32;
0246e64d
AS
8050
8051 /* check whether we recorded this map already */
d8eca5bb 8052 for (j = 0; j < env->used_map_cnt; j++) {
0246e64d 8053 if (env->used_maps[j] == map) {
d8eca5bb 8054 aux->map_index = j;
0246e64d
AS
8055 fdput(f);
8056 goto next_insn;
8057 }
d8eca5bb 8058 }
0246e64d
AS
8059
8060 if (env->used_map_cnt >= MAX_USED_MAPS) {
8061 fdput(f);
8062 return -E2BIG;
8063 }
8064
0246e64d
AS
8065 /* hold the map. If the program is rejected by verifier,
8066 * the map will be released by release_maps() or it
8067 * will be used by the valid program until it's unloaded
ab7f5bf0 8068 * and all maps are released in free_used_maps()
0246e64d 8069 */
92117d84
AS
8070 map = bpf_map_inc(map, false);
8071 if (IS_ERR(map)) {
8072 fdput(f);
8073 return PTR_ERR(map);
8074 }
d8eca5bb
DB
8075
8076 aux->map_index = env->used_map_cnt;
92117d84
AS
8077 env->used_maps[env->used_map_cnt++] = map;
8078
b741f163 8079 if (bpf_map_is_cgroup_storage(map) &&
de9cbbaa 8080 bpf_cgroup_storage_assign(env->prog, map)) {
b741f163 8081 verbose(env, "only one cgroup storage of each type is allowed\n");
de9cbbaa
RG
8082 fdput(f);
8083 return -EBUSY;
8084 }
8085
0246e64d
AS
8086 fdput(f);
8087next_insn:
8088 insn++;
8089 i++;
5e581dad
DB
8090 continue;
8091 }
8092
8093 /* Basic sanity check before we invest more work here. */
8094 if (!bpf_opcode_in_insntable(insn->code)) {
8095 verbose(env, "unknown opcode %02x\n", insn->code);
8096 return -EINVAL;
0246e64d
AS
8097 }
8098 }
8099
8100 /* now all pseudo BPF_LD_IMM64 instructions load valid
8101 * 'struct bpf_map *' into a register instead of user map_fd.
8102 * These pointers will be used later by verifier to validate map access.
8103 */
8104 return 0;
8105}
8106
8107/* drop refcnt of maps used by the rejected program */
58e2af8b 8108static void release_maps(struct bpf_verifier_env *env)
0246e64d 8109{
8bad74f9 8110 enum bpf_cgroup_storage_type stype;
0246e64d
AS
8111 int i;
8112
8bad74f9
RG
8113 for_each_cgroup_storage_type(stype) {
8114 if (!env->prog->aux->cgroup_storage[stype])
8115 continue;
de9cbbaa 8116 bpf_cgroup_storage_release(env->prog,
8bad74f9
RG
8117 env->prog->aux->cgroup_storage[stype]);
8118 }
de9cbbaa 8119
0246e64d
AS
8120 for (i = 0; i < env->used_map_cnt; i++)
8121 bpf_map_put(env->used_maps[i]);
8122}
8123
8124/* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
58e2af8b 8125static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
0246e64d
AS
8126{
8127 struct bpf_insn *insn = env->prog->insnsi;
8128 int insn_cnt = env->prog->len;
8129 int i;
8130
8131 for (i = 0; i < insn_cnt; i++, insn++)
8132 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
8133 insn->src_reg = 0;
8134}
8135
8041902d
AS
8136/* single env->prog->insni[off] instruction was replaced with the range
8137 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying
8138 * [0, off) and [off, end) to new locations, so the patched range stays zero
8139 */
b325fbca
JW
8140static int adjust_insn_aux_data(struct bpf_verifier_env *env,
8141 struct bpf_prog *new_prog, u32 off, u32 cnt)
8041902d
AS
8142{
8143 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
b325fbca
JW
8144 struct bpf_insn *insn = new_prog->insnsi;
8145 u32 prog_len;
c131187d 8146 int i;
8041902d 8147
b325fbca
JW
8148 /* aux info at OFF always needs adjustment, no matter fast path
8149 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
8150 * original insn at old prog.
8151 */
8152 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
8153
8041902d
AS
8154 if (cnt == 1)
8155 return 0;
b325fbca 8156 prog_len = new_prog->len;
fad953ce
KC
8157 new_data = vzalloc(array_size(prog_len,
8158 sizeof(struct bpf_insn_aux_data)));
8041902d
AS
8159 if (!new_data)
8160 return -ENOMEM;
8161 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
8162 memcpy(new_data + off + cnt - 1, old_data + off,
8163 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
b325fbca 8164 for (i = off; i < off + cnt - 1; i++) {
c131187d 8165 new_data[i].seen = true;
b325fbca
JW
8166 new_data[i].zext_dst = insn_has_def32(env, insn + i);
8167 }
8041902d
AS
8168 env->insn_aux_data = new_data;
8169 vfree(old_data);
8170 return 0;
8171}
8172
cc8b0b92
AS
8173static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
8174{
8175 int i;
8176
8177 if (len == 1)
8178 return;
4cb3d99c
JW
8179 /* NOTE: fake 'exit' subprog should be updated as well. */
8180 for (i = 0; i <= env->subprog_cnt; i++) {
afd59424 8181 if (env->subprog_info[i].start <= off)
cc8b0b92 8182 continue;
9c8105bd 8183 env->subprog_info[i].start += len - 1;
cc8b0b92
AS
8184 }
8185}
8186
8041902d
AS
8187static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
8188 const struct bpf_insn *patch, u32 len)
8189{
8190 struct bpf_prog *new_prog;
8191
8192 new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
4f73379e
AS
8193 if (IS_ERR(new_prog)) {
8194 if (PTR_ERR(new_prog) == -ERANGE)
8195 verbose(env,
8196 "insn %d cannot be patched due to 16-bit range\n",
8197 env->insn_aux_data[off].orig_idx);
8041902d 8198 return NULL;
4f73379e 8199 }
b325fbca 8200 if (adjust_insn_aux_data(env, new_prog, off, len))
8041902d 8201 return NULL;
cc8b0b92 8202 adjust_subprog_starts(env, off, len);
8041902d
AS
8203 return new_prog;
8204}
8205
52875a04
JK
8206static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
8207 u32 off, u32 cnt)
8208{
8209 int i, j;
8210
8211 /* find first prog starting at or after off (first to remove) */
8212 for (i = 0; i < env->subprog_cnt; i++)
8213 if (env->subprog_info[i].start >= off)
8214 break;
8215 /* find first prog starting at or after off + cnt (first to stay) */
8216 for (j = i; j < env->subprog_cnt; j++)
8217 if (env->subprog_info[j].start >= off + cnt)
8218 break;
8219 /* if j doesn't start exactly at off + cnt, we are just removing
8220 * the front of previous prog
8221 */
8222 if (env->subprog_info[j].start != off + cnt)
8223 j--;
8224
8225 if (j > i) {
8226 struct bpf_prog_aux *aux = env->prog->aux;
8227 int move;
8228
8229 /* move fake 'exit' subprog as well */
8230 move = env->subprog_cnt + 1 - j;
8231
8232 memmove(env->subprog_info + i,
8233 env->subprog_info + j,
8234 sizeof(*env->subprog_info) * move);
8235 env->subprog_cnt -= j - i;
8236
8237 /* remove func_info */
8238 if (aux->func_info) {
8239 move = aux->func_info_cnt - j;
8240
8241 memmove(aux->func_info + i,
8242 aux->func_info + j,
8243 sizeof(*aux->func_info) * move);
8244 aux->func_info_cnt -= j - i;
8245 /* func_info->insn_off is set after all code rewrites,
8246 * in adjust_btf_func() - no need to adjust
8247 */
8248 }
8249 } else {
8250 /* convert i from "first prog to remove" to "first to adjust" */
8251 if (env->subprog_info[i].start == off)
8252 i++;
8253 }
8254
8255 /* update fake 'exit' subprog as well */
8256 for (; i <= env->subprog_cnt; i++)
8257 env->subprog_info[i].start -= cnt;
8258
8259 return 0;
8260}
8261
8262static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
8263 u32 cnt)
8264{
8265 struct bpf_prog *prog = env->prog;
8266 u32 i, l_off, l_cnt, nr_linfo;
8267 struct bpf_line_info *linfo;
8268
8269 nr_linfo = prog->aux->nr_linfo;
8270 if (!nr_linfo)
8271 return 0;
8272
8273 linfo = prog->aux->linfo;
8274
8275 /* find first line info to remove, count lines to be removed */
8276 for (i = 0; i < nr_linfo; i++)
8277 if (linfo[i].insn_off >= off)
8278 break;
8279
8280 l_off = i;
8281 l_cnt = 0;
8282 for (; i < nr_linfo; i++)
8283 if (linfo[i].insn_off < off + cnt)
8284 l_cnt++;
8285 else
8286 break;
8287
8288 /* First live insn doesn't match first live linfo, it needs to "inherit"
8289 * last removed linfo. prog is already modified, so prog->len == off
8290 * means no live instructions after (tail of the program was removed).
8291 */
8292 if (prog->len != off && l_cnt &&
8293 (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
8294 l_cnt--;
8295 linfo[--i].insn_off = off + cnt;
8296 }
8297
8298 /* remove the line info which refer to the removed instructions */
8299 if (l_cnt) {
8300 memmove(linfo + l_off, linfo + i,
8301 sizeof(*linfo) * (nr_linfo - i));
8302
8303 prog->aux->nr_linfo -= l_cnt;
8304 nr_linfo = prog->aux->nr_linfo;
8305 }
8306
8307 /* pull all linfo[i].insn_off >= off + cnt in by cnt */
8308 for (i = l_off; i < nr_linfo; i++)
8309 linfo[i].insn_off -= cnt;
8310
8311 /* fix up all subprogs (incl. 'exit') which start >= off */
8312 for (i = 0; i <= env->subprog_cnt; i++)
8313 if (env->subprog_info[i].linfo_idx > l_off) {
8314 /* program may have started in the removed region but
8315 * may not be fully removed
8316 */
8317 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
8318 env->subprog_info[i].linfo_idx -= l_cnt;
8319 else
8320 env->subprog_info[i].linfo_idx = l_off;
8321 }
8322
8323 return 0;
8324}
8325
8326static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
8327{
8328 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
8329 unsigned int orig_prog_len = env->prog->len;
8330 int err;
8331
08ca90af
JK
8332 if (bpf_prog_is_dev_bound(env->prog->aux))
8333 bpf_prog_offload_remove_insns(env, off, cnt);
8334
52875a04
JK
8335 err = bpf_remove_insns(env->prog, off, cnt);
8336 if (err)
8337 return err;
8338
8339 err = adjust_subprog_starts_after_remove(env, off, cnt);
8340 if (err)
8341 return err;
8342
8343 err = bpf_adj_linfo_after_remove(env, off, cnt);
8344 if (err)
8345 return err;
8346
8347 memmove(aux_data + off, aux_data + off + cnt,
8348 sizeof(*aux_data) * (orig_prog_len - off - cnt));
8349
8350 return 0;
8351}
8352
2a5418a1
DB
8353/* The verifier does more data flow analysis than llvm and will not
8354 * explore branches that are dead at run time. Malicious programs can
8355 * have dead code too. Therefore replace all dead at-run-time code
8356 * with 'ja -1'.
8357 *
8358 * Just nops are not optimal, e.g. if they would sit at the end of the
8359 * program and through another bug we would manage to jump there, then
8360 * we'd execute beyond program memory otherwise. Returning exception
8361 * code also wouldn't work since we can have subprogs where the dead
8362 * code could be located.
c131187d
AS
8363 */
8364static void sanitize_dead_code(struct bpf_verifier_env *env)
8365{
8366 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
2a5418a1 8367 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
c131187d
AS
8368 struct bpf_insn *insn = env->prog->insnsi;
8369 const int insn_cnt = env->prog->len;
8370 int i;
8371
8372 for (i = 0; i < insn_cnt; i++) {
8373 if (aux_data[i].seen)
8374 continue;
2a5418a1 8375 memcpy(insn + i, &trap, sizeof(trap));
c131187d
AS
8376 }
8377}
8378
e2ae4ca2
JK
8379static bool insn_is_cond_jump(u8 code)
8380{
8381 u8 op;
8382
092ed096
JW
8383 if (BPF_CLASS(code) == BPF_JMP32)
8384 return true;
8385
e2ae4ca2
JK
8386 if (BPF_CLASS(code) != BPF_JMP)
8387 return false;
8388
8389 op = BPF_OP(code);
8390 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
8391}
8392
8393static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
8394{
8395 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
8396 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
8397 struct bpf_insn *insn = env->prog->insnsi;
8398 const int insn_cnt = env->prog->len;
8399 int i;
8400
8401 for (i = 0; i < insn_cnt; i++, insn++) {
8402 if (!insn_is_cond_jump(insn->code))
8403 continue;
8404
8405 if (!aux_data[i + 1].seen)
8406 ja.off = insn->off;
8407 else if (!aux_data[i + 1 + insn->off].seen)
8408 ja.off = 0;
8409 else
8410 continue;
8411
08ca90af
JK
8412 if (bpf_prog_is_dev_bound(env->prog->aux))
8413 bpf_prog_offload_replace_insn(env, i, &ja);
8414
e2ae4ca2
JK
8415 memcpy(insn, &ja, sizeof(ja));
8416 }
8417}
8418
52875a04
JK
8419static int opt_remove_dead_code(struct bpf_verifier_env *env)
8420{
8421 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
8422 int insn_cnt = env->prog->len;
8423 int i, err;
8424
8425 for (i = 0; i < insn_cnt; i++) {
8426 int j;
8427
8428 j = 0;
8429 while (i + j < insn_cnt && !aux_data[i + j].seen)
8430 j++;
8431 if (!j)
8432 continue;
8433
8434 err = verifier_remove_insns(env, i, j);
8435 if (err)
8436 return err;
8437 insn_cnt = env->prog->len;
8438 }
8439
8440 return 0;
8441}
8442
a1b14abc
JK
8443static int opt_remove_nops(struct bpf_verifier_env *env)
8444{
8445 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
8446 struct bpf_insn *insn = env->prog->insnsi;
8447 int insn_cnt = env->prog->len;
8448 int i, err;
8449
8450 for (i = 0; i < insn_cnt; i++) {
8451 if (memcmp(&insn[i], &ja, sizeof(ja)))
8452 continue;
8453
8454 err = verifier_remove_insns(env, i, 1);
8455 if (err)
8456 return err;
8457 insn_cnt--;
8458 i--;
8459 }
8460
8461 return 0;
8462}
8463
d6c2308c
JW
8464static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
8465 const union bpf_attr *attr)
a4b1d3c1 8466{
d6c2308c 8467 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
a4b1d3c1 8468 struct bpf_insn_aux_data *aux = env->insn_aux_data;
d6c2308c 8469 int i, patch_len, delta = 0, len = env->prog->len;
a4b1d3c1 8470 struct bpf_insn *insns = env->prog->insnsi;
a4b1d3c1 8471 struct bpf_prog *new_prog;
d6c2308c 8472 bool rnd_hi32;
a4b1d3c1 8473
d6c2308c 8474 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
a4b1d3c1 8475 zext_patch[1] = BPF_ZEXT_REG(0);
d6c2308c
JW
8476 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
8477 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
8478 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
a4b1d3c1
JW
8479 for (i = 0; i < len; i++) {
8480 int adj_idx = i + delta;
8481 struct bpf_insn insn;
8482
d6c2308c
JW
8483 insn = insns[adj_idx];
8484 if (!aux[adj_idx].zext_dst) {
8485 u8 code, class;
8486 u32 imm_rnd;
8487
8488 if (!rnd_hi32)
8489 continue;
8490
8491 code = insn.code;
8492 class = BPF_CLASS(code);
8493 if (insn_no_def(&insn))
8494 continue;
8495
8496 /* NOTE: arg "reg" (the fourth one) is only used for
8497 * BPF_STX which has been ruled out in above
8498 * check, it is safe to pass NULL here.
8499 */
8500 if (is_reg64(env, &insn, insn.dst_reg, NULL, DST_OP)) {
8501 if (class == BPF_LD &&
8502 BPF_MODE(code) == BPF_IMM)
8503 i++;
8504 continue;
8505 }
8506
8507 /* ctx load could be transformed into wider load. */
8508 if (class == BPF_LDX &&
8509 aux[adj_idx].ptr_type == PTR_TO_CTX)
8510 continue;
8511
8512 imm_rnd = get_random_int();
8513 rnd_hi32_patch[0] = insn;
8514 rnd_hi32_patch[1].imm = imm_rnd;
8515 rnd_hi32_patch[3].dst_reg = insn.dst_reg;
8516 patch = rnd_hi32_patch;
8517 patch_len = 4;
8518 goto apply_patch_buffer;
8519 }
8520
8521 if (!bpf_jit_needs_zext())
a4b1d3c1
JW
8522 continue;
8523
a4b1d3c1
JW
8524 zext_patch[0] = insn;
8525 zext_patch[1].dst_reg = insn.dst_reg;
8526 zext_patch[1].src_reg = insn.dst_reg;
d6c2308c
JW
8527 patch = zext_patch;
8528 patch_len = 2;
8529apply_patch_buffer:
8530 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
a4b1d3c1
JW
8531 if (!new_prog)
8532 return -ENOMEM;
8533 env->prog = new_prog;
8534 insns = new_prog->insnsi;
8535 aux = env->insn_aux_data;
d6c2308c 8536 delta += patch_len - 1;
a4b1d3c1
JW
8537 }
8538
8539 return 0;
8540}
8541
c64b7983
JS
8542/* convert load instructions that access fields of a context type into a
8543 * sequence of instructions that access fields of the underlying structure:
8544 * struct __sk_buff -> struct sk_buff
8545 * struct bpf_sock_ops -> struct sock
9bac3d6d 8546 */
58e2af8b 8547static int convert_ctx_accesses(struct bpf_verifier_env *env)
9bac3d6d 8548{
00176a34 8549 const struct bpf_verifier_ops *ops = env->ops;
f96da094 8550 int i, cnt, size, ctx_field_size, delta = 0;
3df126f3 8551 const int insn_cnt = env->prog->len;
36bbef52 8552 struct bpf_insn insn_buf[16], *insn;
46f53a65 8553 u32 target_size, size_default, off;
9bac3d6d 8554 struct bpf_prog *new_prog;
d691f9e8 8555 enum bpf_access_type type;
f96da094 8556 bool is_narrower_load;
9bac3d6d 8557
b09928b9
DB
8558 if (ops->gen_prologue || env->seen_direct_write) {
8559 if (!ops->gen_prologue) {
8560 verbose(env, "bpf verifier is misconfigured\n");
8561 return -EINVAL;
8562 }
36bbef52
DB
8563 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
8564 env->prog);
8565 if (cnt >= ARRAY_SIZE(insn_buf)) {
61bd5218 8566 verbose(env, "bpf verifier is misconfigured\n");
36bbef52
DB
8567 return -EINVAL;
8568 } else if (cnt) {
8041902d 8569 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
36bbef52
DB
8570 if (!new_prog)
8571 return -ENOMEM;
8041902d 8572
36bbef52 8573 env->prog = new_prog;
3df126f3 8574 delta += cnt - 1;
36bbef52
DB
8575 }
8576 }
8577
c64b7983 8578 if (bpf_prog_is_dev_bound(env->prog->aux))
9bac3d6d
AS
8579 return 0;
8580
3df126f3 8581 insn = env->prog->insnsi + delta;
36bbef52 8582
9bac3d6d 8583 for (i = 0; i < insn_cnt; i++, insn++) {
c64b7983
JS
8584 bpf_convert_ctx_access_t convert_ctx_access;
8585
62c7989b
DB
8586 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
8587 insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
8588 insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
ea2e7ce5 8589 insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
d691f9e8 8590 type = BPF_READ;
62c7989b
DB
8591 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
8592 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
8593 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
ea2e7ce5 8594 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
d691f9e8
AS
8595 type = BPF_WRITE;
8596 else
9bac3d6d
AS
8597 continue;
8598
af86ca4e
AS
8599 if (type == BPF_WRITE &&
8600 env->insn_aux_data[i + delta].sanitize_stack_off) {
8601 struct bpf_insn patch[] = {
8602 /* Sanitize suspicious stack slot with zero.
8603 * There are no memory dependencies for this store,
8604 * since it's only using frame pointer and immediate
8605 * constant of zero
8606 */
8607 BPF_ST_MEM(BPF_DW, BPF_REG_FP,
8608 env->insn_aux_data[i + delta].sanitize_stack_off,
8609 0),
8610 /* the original STX instruction will immediately
8611 * overwrite the same stack slot with appropriate value
8612 */
8613 *insn,
8614 };
8615
8616 cnt = ARRAY_SIZE(patch);
8617 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
8618 if (!new_prog)
8619 return -ENOMEM;
8620
8621 delta += cnt - 1;
8622 env->prog = new_prog;
8623 insn = new_prog->insnsi + i + delta;
8624 continue;
8625 }
8626
c64b7983
JS
8627 switch (env->insn_aux_data[i + delta].ptr_type) {
8628 case PTR_TO_CTX:
8629 if (!ops->convert_ctx_access)
8630 continue;
8631 convert_ctx_access = ops->convert_ctx_access;
8632 break;
8633 case PTR_TO_SOCKET:
46f8bc92 8634 case PTR_TO_SOCK_COMMON:
c64b7983
JS
8635 convert_ctx_access = bpf_sock_convert_ctx_access;
8636 break;
655a51e5
MKL
8637 case PTR_TO_TCP_SOCK:
8638 convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
8639 break;
fada7fdc
JL
8640 case PTR_TO_XDP_SOCK:
8641 convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
8642 break;
c64b7983 8643 default:
9bac3d6d 8644 continue;
c64b7983 8645 }
9bac3d6d 8646
31fd8581 8647 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
f96da094 8648 size = BPF_LDST_BYTES(insn);
31fd8581
YS
8649
8650 /* If the read access is a narrower load of the field,
8651 * convert to a 4/8-byte load, to minimum program type specific
8652 * convert_ctx_access changes. If conversion is successful,
8653 * we will apply proper mask to the result.
8654 */
f96da094 8655 is_narrower_load = size < ctx_field_size;
46f53a65
AI
8656 size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
8657 off = insn->off;
31fd8581 8658 if (is_narrower_load) {
f96da094
DB
8659 u8 size_code;
8660
8661 if (type == BPF_WRITE) {
61bd5218 8662 verbose(env, "bpf verifier narrow ctx access misconfigured\n");
f96da094
DB
8663 return -EINVAL;
8664 }
31fd8581 8665
f96da094 8666 size_code = BPF_H;
31fd8581
YS
8667 if (ctx_field_size == 4)
8668 size_code = BPF_W;
8669 else if (ctx_field_size == 8)
8670 size_code = BPF_DW;
f96da094 8671
bc23105c 8672 insn->off = off & ~(size_default - 1);
31fd8581
YS
8673 insn->code = BPF_LDX | BPF_MEM | size_code;
8674 }
f96da094
DB
8675
8676 target_size = 0;
c64b7983
JS
8677 cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
8678 &target_size);
f96da094
DB
8679 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
8680 (ctx_field_size && !target_size)) {
61bd5218 8681 verbose(env, "bpf verifier is misconfigured\n");
9bac3d6d
AS
8682 return -EINVAL;
8683 }
f96da094
DB
8684
8685 if (is_narrower_load && size < target_size) {
d895a0f1
IL
8686 u8 shift = bpf_ctx_narrow_access_offset(
8687 off, size, size_default) * 8;
46f53a65
AI
8688 if (ctx_field_size <= 4) {
8689 if (shift)
8690 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
8691 insn->dst_reg,
8692 shift);
31fd8581 8693 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
f96da094 8694 (1 << size * 8) - 1);
46f53a65
AI
8695 } else {
8696 if (shift)
8697 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
8698 insn->dst_reg,
8699 shift);
31fd8581 8700 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
e2f7fc0a 8701 (1ULL << size * 8) - 1);
46f53a65 8702 }
31fd8581 8703 }
9bac3d6d 8704
8041902d 8705 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
9bac3d6d
AS
8706 if (!new_prog)
8707 return -ENOMEM;
8708
3df126f3 8709 delta += cnt - 1;
9bac3d6d
AS
8710
8711 /* keep walking new program and skip insns we just inserted */
8712 env->prog = new_prog;
3df126f3 8713 insn = new_prog->insnsi + i + delta;
9bac3d6d
AS
8714 }
8715
8716 return 0;
8717}
8718
1c2a088a
AS
8719static int jit_subprogs(struct bpf_verifier_env *env)
8720{
8721 struct bpf_prog *prog = env->prog, **func, *tmp;
8722 int i, j, subprog_start, subprog_end = 0, len, subprog;
7105e828 8723 struct bpf_insn *insn;
1c2a088a 8724 void *old_bpf_func;
c454a46b 8725 int err;
1c2a088a 8726
f910cefa 8727 if (env->subprog_cnt <= 1)
1c2a088a
AS
8728 return 0;
8729
7105e828 8730 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
1c2a088a
AS
8731 if (insn->code != (BPF_JMP | BPF_CALL) ||
8732 insn->src_reg != BPF_PSEUDO_CALL)
8733 continue;
c7a89784
DB
8734 /* Upon error here we cannot fall back to interpreter but
8735 * need a hard reject of the program. Thus -EFAULT is
8736 * propagated in any case.
8737 */
1c2a088a
AS
8738 subprog = find_subprog(env, i + insn->imm + 1);
8739 if (subprog < 0) {
8740 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
8741 i + insn->imm + 1);
8742 return -EFAULT;
8743 }
8744 /* temporarily remember subprog id inside insn instead of
8745 * aux_data, since next loop will split up all insns into funcs
8746 */
f910cefa 8747 insn->off = subprog;
1c2a088a
AS
8748 /* remember original imm in case JIT fails and fallback
8749 * to interpreter will be needed
8750 */
8751 env->insn_aux_data[i].call_imm = insn->imm;
8752 /* point imm to __bpf_call_base+1 from JITs point of view */
8753 insn->imm = 1;
8754 }
8755
c454a46b
MKL
8756 err = bpf_prog_alloc_jited_linfo(prog);
8757 if (err)
8758 goto out_undo_insn;
8759
8760 err = -ENOMEM;
6396bb22 8761 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
1c2a088a 8762 if (!func)
c7a89784 8763 goto out_undo_insn;
1c2a088a 8764
f910cefa 8765 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a 8766 subprog_start = subprog_end;
4cb3d99c 8767 subprog_end = env->subprog_info[i + 1].start;
1c2a088a
AS
8768
8769 len = subprog_end - subprog_start;
492ecee8
AS
8770 /* BPF_PROG_RUN doesn't call subprogs directly,
8771 * hence main prog stats include the runtime of subprogs.
8772 * subprogs don't have IDs and not reachable via prog_get_next_id
8773 * func[i]->aux->stats will never be accessed and stays NULL
8774 */
8775 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
1c2a088a
AS
8776 if (!func[i])
8777 goto out_free;
8778 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
8779 len * sizeof(struct bpf_insn));
4f74d809 8780 func[i]->type = prog->type;
1c2a088a 8781 func[i]->len = len;
4f74d809
DB
8782 if (bpf_prog_calc_tag(func[i]))
8783 goto out_free;
1c2a088a 8784 func[i]->is_func = 1;
ba64e7d8
YS
8785 func[i]->aux->func_idx = i;
8786 /* the btf and func_info will be freed only at prog->aux */
8787 func[i]->aux->btf = prog->aux->btf;
8788 func[i]->aux->func_info = prog->aux->func_info;
8789
1c2a088a
AS
8790 /* Use bpf_prog_F_tag to indicate functions in stack traces.
8791 * Long term would need debug info to populate names
8792 */
8793 func[i]->aux->name[0] = 'F';
9c8105bd 8794 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
1c2a088a 8795 func[i]->jit_requested = 1;
c454a46b
MKL
8796 func[i]->aux->linfo = prog->aux->linfo;
8797 func[i]->aux->nr_linfo = prog->aux->nr_linfo;
8798 func[i]->aux->jited_linfo = prog->aux->jited_linfo;
8799 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
1c2a088a
AS
8800 func[i] = bpf_int_jit_compile(func[i]);
8801 if (!func[i]->jited) {
8802 err = -ENOTSUPP;
8803 goto out_free;
8804 }
8805 cond_resched();
8806 }
8807 /* at this point all bpf functions were successfully JITed
8808 * now populate all bpf_calls with correct addresses and
8809 * run last pass of JIT
8810 */
f910cefa 8811 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a
AS
8812 insn = func[i]->insnsi;
8813 for (j = 0; j < func[i]->len; j++, insn++) {
8814 if (insn->code != (BPF_JMP | BPF_CALL) ||
8815 insn->src_reg != BPF_PSEUDO_CALL)
8816 continue;
8817 subprog = insn->off;
0d306c31
PB
8818 insn->imm = BPF_CAST_CALL(func[subprog]->bpf_func) -
8819 __bpf_call_base;
1c2a088a 8820 }
2162fed4
SD
8821
8822 /* we use the aux data to keep a list of the start addresses
8823 * of the JITed images for each function in the program
8824 *
8825 * for some architectures, such as powerpc64, the imm field
8826 * might not be large enough to hold the offset of the start
8827 * address of the callee's JITed image from __bpf_call_base
8828 *
8829 * in such cases, we can lookup the start address of a callee
8830 * by using its subprog id, available from the off field of
8831 * the call instruction, as an index for this list
8832 */
8833 func[i]->aux->func = func;
8834 func[i]->aux->func_cnt = env->subprog_cnt;
1c2a088a 8835 }
f910cefa 8836 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a
AS
8837 old_bpf_func = func[i]->bpf_func;
8838 tmp = bpf_int_jit_compile(func[i]);
8839 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
8840 verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
c7a89784 8841 err = -ENOTSUPP;
1c2a088a
AS
8842 goto out_free;
8843 }
8844 cond_resched();
8845 }
8846
8847 /* finally lock prog and jit images for all functions and
8848 * populate kallsysm
8849 */
f910cefa 8850 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a
AS
8851 bpf_prog_lock_ro(func[i]);
8852 bpf_prog_kallsyms_add(func[i]);
8853 }
7105e828
DB
8854
8855 /* Last step: make now unused interpreter insns from main
8856 * prog consistent for later dump requests, so they can
8857 * later look the same as if they were interpreted only.
8858 */
8859 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
7105e828
DB
8860 if (insn->code != (BPF_JMP | BPF_CALL) ||
8861 insn->src_reg != BPF_PSEUDO_CALL)
8862 continue;
8863 insn->off = env->insn_aux_data[i].call_imm;
8864 subprog = find_subprog(env, i + insn->off + 1);
dbecd738 8865 insn->imm = subprog;
7105e828
DB
8866 }
8867
1c2a088a
AS
8868 prog->jited = 1;
8869 prog->bpf_func = func[0]->bpf_func;
8870 prog->aux->func = func;
f910cefa 8871 prog->aux->func_cnt = env->subprog_cnt;
c454a46b 8872 bpf_prog_free_unused_jited_linfo(prog);
1c2a088a
AS
8873 return 0;
8874out_free:
f910cefa 8875 for (i = 0; i < env->subprog_cnt; i++)
1c2a088a
AS
8876 if (func[i])
8877 bpf_jit_free(func[i]);
8878 kfree(func);
c7a89784 8879out_undo_insn:
1c2a088a
AS
8880 /* cleanup main prog to be interpreted */
8881 prog->jit_requested = 0;
8882 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
8883 if (insn->code != (BPF_JMP | BPF_CALL) ||
8884 insn->src_reg != BPF_PSEUDO_CALL)
8885 continue;
8886 insn->off = 0;
8887 insn->imm = env->insn_aux_data[i].call_imm;
8888 }
c454a46b 8889 bpf_prog_free_jited_linfo(prog);
1c2a088a
AS
8890 return err;
8891}
8892
1ea47e01
AS
8893static int fixup_call_args(struct bpf_verifier_env *env)
8894{
19d28fbd 8895#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1ea47e01
AS
8896 struct bpf_prog *prog = env->prog;
8897 struct bpf_insn *insn = prog->insnsi;
8898 int i, depth;
19d28fbd 8899#endif
e4052d06 8900 int err = 0;
1ea47e01 8901
e4052d06
QM
8902 if (env->prog->jit_requested &&
8903 !bpf_prog_is_dev_bound(env->prog->aux)) {
19d28fbd
DM
8904 err = jit_subprogs(env);
8905 if (err == 0)
1c2a088a 8906 return 0;
c7a89784
DB
8907 if (err == -EFAULT)
8908 return err;
19d28fbd
DM
8909 }
8910#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1ea47e01
AS
8911 for (i = 0; i < prog->len; i++, insn++) {
8912 if (insn->code != (BPF_JMP | BPF_CALL) ||
8913 insn->src_reg != BPF_PSEUDO_CALL)
8914 continue;
8915 depth = get_callee_stack_depth(env, insn, i);
8916 if (depth < 0)
8917 return depth;
8918 bpf_patch_call_args(insn, depth);
8919 }
19d28fbd
DM
8920 err = 0;
8921#endif
8922 return err;
1ea47e01
AS
8923}
8924
79741b3b 8925/* fixup insn->imm field of bpf_call instructions
81ed18ab 8926 * and inline eligible helpers as explicit sequence of BPF instructions
e245c5c6
AS
8927 *
8928 * this function is called after eBPF program passed verification
8929 */
79741b3b 8930static int fixup_bpf_calls(struct bpf_verifier_env *env)
e245c5c6 8931{
79741b3b
AS
8932 struct bpf_prog *prog = env->prog;
8933 struct bpf_insn *insn = prog->insnsi;
e245c5c6 8934 const struct bpf_func_proto *fn;
79741b3b 8935 const int insn_cnt = prog->len;
09772d92 8936 const struct bpf_map_ops *ops;
c93552c4 8937 struct bpf_insn_aux_data *aux;
81ed18ab
AS
8938 struct bpf_insn insn_buf[16];
8939 struct bpf_prog *new_prog;
8940 struct bpf_map *map_ptr;
8941 int i, cnt, delta = 0;
e245c5c6 8942
79741b3b 8943 for (i = 0; i < insn_cnt; i++, insn++) {
f6b1b3bf
DB
8944 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
8945 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
8946 insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
68fda450 8947 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
f6b1b3bf
DB
8948 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
8949 struct bpf_insn mask_and_div[] = {
8950 BPF_MOV32_REG(insn->src_reg, insn->src_reg),
8951 /* Rx div 0 -> 0 */
8952 BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2),
8953 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
8954 BPF_JMP_IMM(BPF_JA, 0, 0, 1),
8955 *insn,
8956 };
8957 struct bpf_insn mask_and_mod[] = {
8958 BPF_MOV32_REG(insn->src_reg, insn->src_reg),
8959 /* Rx mod 0 -> Rx */
8960 BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1),
8961 *insn,
8962 };
8963 struct bpf_insn *patchlet;
8964
8965 if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
8966 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
8967 patchlet = mask_and_div + (is64 ? 1 : 0);
8968 cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0);
8969 } else {
8970 patchlet = mask_and_mod + (is64 ? 1 : 0);
8971 cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0);
8972 }
8973
8974 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
68fda450
AS
8975 if (!new_prog)
8976 return -ENOMEM;
8977
8978 delta += cnt - 1;
8979 env->prog = prog = new_prog;
8980 insn = new_prog->insnsi + i + delta;
8981 continue;
8982 }
8983
e0cea7ce
DB
8984 if (BPF_CLASS(insn->code) == BPF_LD &&
8985 (BPF_MODE(insn->code) == BPF_ABS ||
8986 BPF_MODE(insn->code) == BPF_IND)) {
8987 cnt = env->ops->gen_ld_abs(insn, insn_buf);
8988 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
8989 verbose(env, "bpf verifier is misconfigured\n");
8990 return -EINVAL;
8991 }
8992
8993 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
8994 if (!new_prog)
8995 return -ENOMEM;
8996
8997 delta += cnt - 1;
8998 env->prog = prog = new_prog;
8999 insn = new_prog->insnsi + i + delta;
9000 continue;
9001 }
9002
979d63d5
DB
9003 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
9004 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
9005 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
9006 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
9007 struct bpf_insn insn_buf[16];
9008 struct bpf_insn *patch = &insn_buf[0];
9009 bool issrc, isneg;
9010 u32 off_reg;
9011
9012 aux = &env->insn_aux_data[i + delta];
3612af78
DB
9013 if (!aux->alu_state ||
9014 aux->alu_state == BPF_ALU_NON_POINTER)
979d63d5
DB
9015 continue;
9016
9017 isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
9018 issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
9019 BPF_ALU_SANITIZE_SRC;
9020
9021 off_reg = issrc ? insn->src_reg : insn->dst_reg;
9022 if (isneg)
9023 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
9024 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit - 1);
9025 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
9026 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
9027 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
9028 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
9029 if (issrc) {
9030 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX,
9031 off_reg);
9032 insn->src_reg = BPF_REG_AX;
9033 } else {
9034 *patch++ = BPF_ALU64_REG(BPF_AND, off_reg,
9035 BPF_REG_AX);
9036 }
9037 if (isneg)
9038 insn->code = insn->code == code_add ?
9039 code_sub : code_add;
9040 *patch++ = *insn;
9041 if (issrc && isneg)
9042 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
9043 cnt = patch - insn_buf;
9044
9045 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
9046 if (!new_prog)
9047 return -ENOMEM;
9048
9049 delta += cnt - 1;
9050 env->prog = prog = new_prog;
9051 insn = new_prog->insnsi + i + delta;
9052 continue;
9053 }
9054
79741b3b
AS
9055 if (insn->code != (BPF_JMP | BPF_CALL))
9056 continue;
cc8b0b92
AS
9057 if (insn->src_reg == BPF_PSEUDO_CALL)
9058 continue;
e245c5c6 9059
79741b3b
AS
9060 if (insn->imm == BPF_FUNC_get_route_realm)
9061 prog->dst_needed = 1;
9062 if (insn->imm == BPF_FUNC_get_prandom_u32)
9063 bpf_user_rnd_init_once();
9802d865
JB
9064 if (insn->imm == BPF_FUNC_override_return)
9065 prog->kprobe_override = 1;
79741b3b 9066 if (insn->imm == BPF_FUNC_tail_call) {
7b9f6da1
DM
9067 /* If we tail call into other programs, we
9068 * cannot make any assumptions since they can
9069 * be replaced dynamically during runtime in
9070 * the program array.
9071 */
9072 prog->cb_access = 1;
80a58d02 9073 env->prog->aux->stack_depth = MAX_BPF_STACK;
e647815a 9074 env->prog->aux->max_pkt_offset = MAX_PACKET_OFF;
7b9f6da1 9075
79741b3b
AS
9076 /* mark bpf_tail_call as different opcode to avoid
9077 * conditional branch in the interpeter for every normal
9078 * call and to prevent accidental JITing by JIT compiler
9079 * that doesn't support bpf_tail_call yet
e245c5c6 9080 */
79741b3b 9081 insn->imm = 0;
71189fa9 9082 insn->code = BPF_JMP | BPF_TAIL_CALL;
b2157399 9083
c93552c4
DB
9084 aux = &env->insn_aux_data[i + delta];
9085 if (!bpf_map_ptr_unpriv(aux))
9086 continue;
9087
b2157399
AS
9088 /* instead of changing every JIT dealing with tail_call
9089 * emit two extra insns:
9090 * if (index >= max_entries) goto out;
9091 * index &= array->index_mask;
9092 * to avoid out-of-bounds cpu speculation
9093 */
c93552c4 9094 if (bpf_map_ptr_poisoned(aux)) {
40950343 9095 verbose(env, "tail_call abusing map_ptr\n");
b2157399
AS
9096 return -EINVAL;
9097 }
c93552c4
DB
9098
9099 map_ptr = BPF_MAP_PTR(aux->map_state);
b2157399
AS
9100 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
9101 map_ptr->max_entries, 2);
9102 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
9103 container_of(map_ptr,
9104 struct bpf_array,
9105 map)->index_mask);
9106 insn_buf[2] = *insn;
9107 cnt = 3;
9108 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
9109 if (!new_prog)
9110 return -ENOMEM;
9111
9112 delta += cnt - 1;
9113 env->prog = prog = new_prog;
9114 insn = new_prog->insnsi + i + delta;
79741b3b
AS
9115 continue;
9116 }
e245c5c6 9117
89c63074 9118 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
09772d92
DB
9119 * and other inlining handlers are currently limited to 64 bit
9120 * only.
89c63074 9121 */
60b58afc 9122 if (prog->jit_requested && BITS_PER_LONG == 64 &&
09772d92
DB
9123 (insn->imm == BPF_FUNC_map_lookup_elem ||
9124 insn->imm == BPF_FUNC_map_update_elem ||
84430d42
DB
9125 insn->imm == BPF_FUNC_map_delete_elem ||
9126 insn->imm == BPF_FUNC_map_push_elem ||
9127 insn->imm == BPF_FUNC_map_pop_elem ||
9128 insn->imm == BPF_FUNC_map_peek_elem)) {
c93552c4
DB
9129 aux = &env->insn_aux_data[i + delta];
9130 if (bpf_map_ptr_poisoned(aux))
9131 goto patch_call_imm;
9132
9133 map_ptr = BPF_MAP_PTR(aux->map_state);
09772d92
DB
9134 ops = map_ptr->ops;
9135 if (insn->imm == BPF_FUNC_map_lookup_elem &&
9136 ops->map_gen_lookup) {
9137 cnt = ops->map_gen_lookup(map_ptr, insn_buf);
9138 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
9139 verbose(env, "bpf verifier is misconfigured\n");
9140 return -EINVAL;
9141 }
81ed18ab 9142
09772d92
DB
9143 new_prog = bpf_patch_insn_data(env, i + delta,
9144 insn_buf, cnt);
9145 if (!new_prog)
9146 return -ENOMEM;
81ed18ab 9147
09772d92
DB
9148 delta += cnt - 1;
9149 env->prog = prog = new_prog;
9150 insn = new_prog->insnsi + i + delta;
9151 continue;
9152 }
81ed18ab 9153
09772d92
DB
9154 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
9155 (void *(*)(struct bpf_map *map, void *key))NULL));
9156 BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
9157 (int (*)(struct bpf_map *map, void *key))NULL));
9158 BUILD_BUG_ON(!__same_type(ops->map_update_elem,
9159 (int (*)(struct bpf_map *map, void *key, void *value,
9160 u64 flags))NULL));
84430d42
DB
9161 BUILD_BUG_ON(!__same_type(ops->map_push_elem,
9162 (int (*)(struct bpf_map *map, void *value,
9163 u64 flags))NULL));
9164 BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
9165 (int (*)(struct bpf_map *map, void *value))NULL));
9166 BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
9167 (int (*)(struct bpf_map *map, void *value))NULL));
9168
09772d92
DB
9169 switch (insn->imm) {
9170 case BPF_FUNC_map_lookup_elem:
9171 insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) -
9172 __bpf_call_base;
9173 continue;
9174 case BPF_FUNC_map_update_elem:
9175 insn->imm = BPF_CAST_CALL(ops->map_update_elem) -
9176 __bpf_call_base;
9177 continue;
9178 case BPF_FUNC_map_delete_elem:
9179 insn->imm = BPF_CAST_CALL(ops->map_delete_elem) -
9180 __bpf_call_base;
9181 continue;
84430d42
DB
9182 case BPF_FUNC_map_push_elem:
9183 insn->imm = BPF_CAST_CALL(ops->map_push_elem) -
9184 __bpf_call_base;
9185 continue;
9186 case BPF_FUNC_map_pop_elem:
9187 insn->imm = BPF_CAST_CALL(ops->map_pop_elem) -
9188 __bpf_call_base;
9189 continue;
9190 case BPF_FUNC_map_peek_elem:
9191 insn->imm = BPF_CAST_CALL(ops->map_peek_elem) -
9192 __bpf_call_base;
9193 continue;
09772d92 9194 }
81ed18ab 9195
09772d92 9196 goto patch_call_imm;
81ed18ab
AS
9197 }
9198
9199patch_call_imm:
5e43f899 9200 fn = env->ops->get_func_proto(insn->imm, env->prog);
79741b3b
AS
9201 /* all functions that have prototype and verifier allowed
9202 * programs to call them, must be real in-kernel functions
9203 */
9204 if (!fn->func) {
61bd5218
JK
9205 verbose(env,
9206 "kernel subsystem misconfigured func %s#%d\n",
79741b3b
AS
9207 func_id_name(insn->imm), insn->imm);
9208 return -EFAULT;
e245c5c6 9209 }
79741b3b 9210 insn->imm = fn->func - __bpf_call_base;
e245c5c6 9211 }
e245c5c6 9212
79741b3b
AS
9213 return 0;
9214}
e245c5c6 9215
58e2af8b 9216static void free_states(struct bpf_verifier_env *env)
f1bca824 9217{
58e2af8b 9218 struct bpf_verifier_state_list *sl, *sln;
f1bca824
AS
9219 int i;
9220
9f4686c4
AS
9221 sl = env->free_list;
9222 while (sl) {
9223 sln = sl->next;
9224 free_verifier_state(&sl->state, false);
9225 kfree(sl);
9226 sl = sln;
9227 }
9228
f1bca824
AS
9229 if (!env->explored_states)
9230 return;
9231
dc2a4ebc 9232 for (i = 0; i < state_htab_size(env); i++) {
f1bca824
AS
9233 sl = env->explored_states[i];
9234
a8f500af
AS
9235 while (sl) {
9236 sln = sl->next;
9237 free_verifier_state(&sl->state, false);
9238 kfree(sl);
9239 sl = sln;
9240 }
f1bca824
AS
9241 }
9242
71dde681 9243 kvfree(env->explored_states);
f1bca824
AS
9244}
9245
06ee7115
AS
9246static void print_verification_stats(struct bpf_verifier_env *env)
9247{
9248 int i;
9249
9250 if (env->log.level & BPF_LOG_STATS) {
9251 verbose(env, "verification time %lld usec\n",
9252 div_u64(env->verification_time, 1000));
9253 verbose(env, "stack depth ");
9254 for (i = 0; i < env->subprog_cnt; i++) {
9255 u32 depth = env->subprog_info[i].stack_depth;
9256
9257 verbose(env, "%d", depth);
9258 if (i + 1 < env->subprog_cnt)
9259 verbose(env, "+");
9260 }
9261 verbose(env, "\n");
9262 }
9263 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
9264 "total_states %d peak_states %d mark_read %d\n",
9265 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
9266 env->max_states_per_insn, env->total_states,
9267 env->peak_states, env->longest_mark_read_walk);
f1bca824
AS
9268}
9269
838e9690
YS
9270int bpf_check(struct bpf_prog **prog, union bpf_attr *attr,
9271 union bpf_attr __user *uattr)
51580e79 9272{
06ee7115 9273 u64 start_time = ktime_get_ns();
58e2af8b 9274 struct bpf_verifier_env *env;
b9193c1b 9275 struct bpf_verifier_log *log;
9e4c24e7 9276 int i, len, ret = -EINVAL;
e2ae4ca2 9277 bool is_priv;
51580e79 9278
eba0c929
AB
9279 /* no program is valid */
9280 if (ARRAY_SIZE(bpf_verifier_ops) == 0)
9281 return -EINVAL;
9282
58e2af8b 9283 /* 'struct bpf_verifier_env' can be global, but since it's not small,
cbd35700
AS
9284 * allocate/free it every time bpf_check() is called
9285 */
58e2af8b 9286 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
cbd35700
AS
9287 if (!env)
9288 return -ENOMEM;
61bd5218 9289 log = &env->log;
cbd35700 9290
9e4c24e7 9291 len = (*prog)->len;
fad953ce 9292 env->insn_aux_data =
9e4c24e7 9293 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
3df126f3
JK
9294 ret = -ENOMEM;
9295 if (!env->insn_aux_data)
9296 goto err_free_env;
9e4c24e7
JK
9297 for (i = 0; i < len; i++)
9298 env->insn_aux_data[i].orig_idx = i;
9bac3d6d 9299 env->prog = *prog;
00176a34 9300 env->ops = bpf_verifier_ops[env->prog->type];
45a73c17 9301 is_priv = capable(CAP_SYS_ADMIN);
0246e64d 9302
8580ac94
AS
9303 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
9304 mutex_lock(&bpf_verifier_lock);
9305 if (!btf_vmlinux)
9306 btf_vmlinux = btf_parse_vmlinux();
9307 mutex_unlock(&bpf_verifier_lock);
9308 }
9309
cbd35700 9310 /* grab the mutex to protect few globals used by verifier */
45a73c17
AS
9311 if (!is_priv)
9312 mutex_lock(&bpf_verifier_lock);
cbd35700
AS
9313
9314 if (attr->log_level || attr->log_buf || attr->log_size) {
9315 /* user requested verbose verifier output
9316 * and supplied buffer to store the verification trace
9317 */
e7bf8249
JK
9318 log->level = attr->log_level;
9319 log->ubuf = (char __user *) (unsigned long) attr->log_buf;
9320 log->len_total = attr->log_size;
cbd35700
AS
9321
9322 ret = -EINVAL;
e7bf8249 9323 /* log attributes have to be sane */
7a9f5c65 9324 if (log->len_total < 128 || log->len_total > UINT_MAX >> 2 ||
06ee7115 9325 !log->level || !log->ubuf || log->level & ~BPF_LOG_MASK)
3df126f3 9326 goto err_unlock;
cbd35700 9327 }
1ad2f583 9328
8580ac94
AS
9329 if (IS_ERR(btf_vmlinux)) {
9330 /* Either gcc or pahole or kernel are broken. */
9331 verbose(env, "in-kernel BTF is malformed\n");
9332 ret = PTR_ERR(btf_vmlinux);
9333 goto err_unlock;
9334 }
9335
1ad2f583
DB
9336 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
9337 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
e07b98d9 9338 env->strict_alignment = true;
e9ee9efc
DM
9339 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
9340 env->strict_alignment = false;
cbd35700 9341
e2ae4ca2
JK
9342 env->allow_ptr_leaks = is_priv;
9343
10d274e8
AS
9344 if (is_priv)
9345 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
9346
f4e3ec0d
JK
9347 ret = replace_map_fd_with_map_ptr(env);
9348 if (ret < 0)
9349 goto skip_full_check;
9350
cae1927c 9351 if (bpf_prog_is_dev_bound(env->prog->aux)) {
a40a2632 9352 ret = bpf_prog_offload_verifier_prep(env->prog);
ab3f0063 9353 if (ret)
f4e3ec0d 9354 goto skip_full_check;
ab3f0063
JK
9355 }
9356
dc2a4ebc 9357 env->explored_states = kvcalloc(state_htab_size(env),
58e2af8b 9358 sizeof(struct bpf_verifier_state_list *),
f1bca824
AS
9359 GFP_USER);
9360 ret = -ENOMEM;
9361 if (!env->explored_states)
9362 goto skip_full_check;
9363
d9762e84 9364 ret = check_subprogs(env);
475fb78f
AS
9365 if (ret < 0)
9366 goto skip_full_check;
9367
c454a46b 9368 ret = check_btf_info(env, attr, uattr);
838e9690
YS
9369 if (ret < 0)
9370 goto skip_full_check;
9371
d9762e84
MKL
9372 ret = check_cfg(env);
9373 if (ret < 0)
9374 goto skip_full_check;
9375
17a52670 9376 ret = do_check(env);
8c01c4f8
CG
9377 if (env->cur_state) {
9378 free_verifier_state(env->cur_state, true);
9379 env->cur_state = NULL;
9380 }
cbd35700 9381
c941ce9c
QM
9382 if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux))
9383 ret = bpf_prog_offload_finalize(env);
9384
0246e64d 9385skip_full_check:
638f5b90 9386 while (!pop_stack(env, NULL, NULL));
f1bca824 9387 free_states(env);
0246e64d 9388
c131187d 9389 if (ret == 0)
9b38c405 9390 ret = check_max_stack_depth(env);
c131187d 9391
9b38c405 9392 /* instruction rewrites happen after this point */
e2ae4ca2
JK
9393 if (is_priv) {
9394 if (ret == 0)
9395 opt_hard_wire_dead_code_branches(env);
52875a04
JK
9396 if (ret == 0)
9397 ret = opt_remove_dead_code(env);
a1b14abc
JK
9398 if (ret == 0)
9399 ret = opt_remove_nops(env);
52875a04
JK
9400 } else {
9401 if (ret == 0)
9402 sanitize_dead_code(env);
e2ae4ca2
JK
9403 }
9404
9bac3d6d
AS
9405 if (ret == 0)
9406 /* program is valid, convert *(u32*)(ctx + off) accesses */
9407 ret = convert_ctx_accesses(env);
9408
e245c5c6 9409 if (ret == 0)
79741b3b 9410 ret = fixup_bpf_calls(env);
e245c5c6 9411
a4b1d3c1
JW
9412 /* do 32-bit optimization after insn patching has done so those patched
9413 * insns could be handled correctly.
9414 */
d6c2308c
JW
9415 if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) {
9416 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
9417 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
9418 : false;
a4b1d3c1
JW
9419 }
9420
1ea47e01
AS
9421 if (ret == 0)
9422 ret = fixup_call_args(env);
9423
06ee7115
AS
9424 env->verification_time = ktime_get_ns() - start_time;
9425 print_verification_stats(env);
9426
a2a7d570 9427 if (log->level && bpf_verifier_log_full(log))
cbd35700 9428 ret = -ENOSPC;
a2a7d570 9429 if (log->level && !log->ubuf) {
cbd35700 9430 ret = -EFAULT;
a2a7d570 9431 goto err_release_maps;
cbd35700
AS
9432 }
9433
0246e64d
AS
9434 if (ret == 0 && env->used_map_cnt) {
9435 /* if program passed verifier, update used_maps in bpf_prog_info */
9bac3d6d
AS
9436 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
9437 sizeof(env->used_maps[0]),
9438 GFP_KERNEL);
0246e64d 9439
9bac3d6d 9440 if (!env->prog->aux->used_maps) {
0246e64d 9441 ret = -ENOMEM;
a2a7d570 9442 goto err_release_maps;
0246e64d
AS
9443 }
9444
9bac3d6d 9445 memcpy(env->prog->aux->used_maps, env->used_maps,
0246e64d 9446 sizeof(env->used_maps[0]) * env->used_map_cnt);
9bac3d6d 9447 env->prog->aux->used_map_cnt = env->used_map_cnt;
0246e64d
AS
9448
9449 /* program is valid. Convert pseudo bpf_ld_imm64 into generic
9450 * bpf_ld_imm64 instructions
9451 */
9452 convert_pseudo_ld_imm64(env);
9453 }
cbd35700 9454
ba64e7d8
YS
9455 if (ret == 0)
9456 adjust_btf_func(env);
9457
a2a7d570 9458err_release_maps:
9bac3d6d 9459 if (!env->prog->aux->used_maps)
0246e64d 9460 /* if we didn't copy map pointers into bpf_prog_info, release
ab7f5bf0 9461 * them now. Otherwise free_used_maps() will release them.
0246e64d
AS
9462 */
9463 release_maps(env);
9bac3d6d 9464 *prog = env->prog;
3df126f3 9465err_unlock:
45a73c17
AS
9466 if (!is_priv)
9467 mutex_unlock(&bpf_verifier_lock);
3df126f3
JK
9468 vfree(env->insn_aux_data);
9469err_free_env:
9470 kfree(env);
51580e79
AS
9471 return ret;
9472}