]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - kernel/bpf/verifier.c
tipc: eliminate unnecessary probing
[mirror_ubuntu-bionic-kernel.git] / kernel / bpf / verifier.c
CommitLineData
51580e79 1/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
969bf05e 2 * Copyright (c) 2016 Facebook
51580e79
AS
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 */
13#include <linux/kernel.h>
14#include <linux/types.h>
15#include <linux/slab.h>
16#include <linux/bpf.h>
58e2af8b 17#include <linux/bpf_verifier.h>
51580e79
AS
18#include <linux/filter.h>
19#include <net/netlink.h>
20#include <linux/file.h>
21#include <linux/vmalloc.h>
ebb676da 22#include <linux/stringify.h>
51580e79 23
f4ac7e0b
JK
24#include "disasm.h"
25
00176a34
JK
26static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
27#define BPF_PROG_TYPE(_id, _name) \
28 [_id] = & _name ## _verifier_ops,
29#define BPF_MAP_TYPE(_id, _ops)
30#include <linux/bpf_types.h>
31#undef BPF_PROG_TYPE
32#undef BPF_MAP_TYPE
33};
34
51580e79
AS
35/* bpf_check() is a static code analyzer that walks eBPF program
36 * instruction by instruction and updates register/stack state.
37 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
38 *
39 * The first pass is depth-first-search to check that the program is a DAG.
40 * It rejects the following programs:
41 * - larger than BPF_MAXINSNS insns
42 * - if loop is present (detected via back-edge)
43 * - unreachable insns exist (shouldn't be a forest. program = one function)
44 * - out of bounds or malformed jumps
45 * The second pass is all possible path descent from the 1st insn.
46 * Since it's analyzing all pathes through the program, the length of the
eba38a96 47 * analysis is limited to 64k insn, which may be hit even if total number of
51580e79
AS
48 * insn is less then 4K, but there are too many branches that change stack/regs.
49 * Number of 'branches to be analyzed' is limited to 1k
50 *
51 * On entry to each instruction, each register has a type, and the instruction
52 * changes the types of the registers depending on instruction semantics.
53 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
54 * copied to R1.
55 *
56 * All registers are 64-bit.
57 * R0 - return register
58 * R1-R5 argument passing registers
59 * R6-R9 callee saved registers
60 * R10 - frame pointer read-only
61 *
62 * At the start of BPF program the register R1 contains a pointer to bpf_context
63 * and has type PTR_TO_CTX.
64 *
65 * Verifier tracks arithmetic operations on pointers in case:
66 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
67 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
68 * 1st insn copies R10 (which has FRAME_PTR) type into R1
69 * and 2nd arithmetic instruction is pattern matched to recognize
70 * that it wants to construct a pointer to some element within stack.
71 * So after 2nd insn, the register R1 has type PTR_TO_STACK
72 * (and -20 constant is saved for further stack bounds checking).
73 * Meaning that this reg is a pointer to stack plus known immediate constant.
74 *
f1174f77 75 * Most of the time the registers have SCALAR_VALUE type, which
51580e79 76 * means the register has some value, but it's not a valid pointer.
f1174f77 77 * (like pointer plus pointer becomes SCALAR_VALUE type)
51580e79
AS
78 *
79 * When verifier sees load or store instructions the type of base register
f1174f77 80 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK. These are three pointer
51580e79
AS
81 * types recognized by check_mem_access() function.
82 *
83 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
84 * and the range of [ptr, ptr + map's value_size) is accessible.
85 *
86 * registers used to pass values to function calls are checked against
87 * function argument constraints.
88 *
89 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
90 * It means that the register type passed to this function must be
91 * PTR_TO_STACK and it will be used inside the function as
92 * 'pointer to map element key'
93 *
94 * For example the argument constraints for bpf_map_lookup_elem():
95 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
96 * .arg1_type = ARG_CONST_MAP_PTR,
97 * .arg2_type = ARG_PTR_TO_MAP_KEY,
98 *
99 * ret_type says that this function returns 'pointer to map elem value or null'
100 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
101 * 2nd argument should be a pointer to stack, which will be used inside
102 * the helper function as a pointer to map element key.
103 *
104 * On the kernel side the helper function looks like:
105 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
106 * {
107 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
108 * void *key = (void *) (unsigned long) r2;
109 * void *value;
110 *
111 * here kernel can access 'key' and 'map' pointers safely, knowing that
112 * [key, key + map->key_size) bytes are valid and were initialized on
113 * the stack of eBPF program.
114 * }
115 *
116 * Corresponding eBPF program may look like:
117 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
118 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
119 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
120 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
121 * here verifier looks at prototype of map_lookup_elem() and sees:
122 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
123 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
124 *
125 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
126 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
127 * and were initialized prior to this call.
128 * If it's ok, then verifier allows this BPF_CALL insn and looks at
129 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
130 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
131 * returns ether pointer to map value or NULL.
132 *
133 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
134 * insn, the register holding that pointer in the true branch changes state to
135 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
136 * branch. See check_cond_jmp_op().
137 *
138 * After the call R0 is set to return type of the function and registers R1-R5
139 * are set to NOT_INIT to indicate that they are no longer readable.
140 */
141
17a52670 142/* verifier_state + insn_idx are pushed to stack when branch is encountered */
58e2af8b 143struct bpf_verifier_stack_elem {
17a52670
AS
144 /* verifer state is 'st'
145 * before processing instruction 'insn_idx'
146 * and after processing instruction 'prev_insn_idx'
147 */
58e2af8b 148 struct bpf_verifier_state st;
17a52670
AS
149 int insn_idx;
150 int prev_insn_idx;
58e2af8b 151 struct bpf_verifier_stack_elem *next;
cbd35700
AS
152};
153
8e17c1b1 154#define BPF_COMPLEXITY_LIMIT_INSNS 131072
07016151
DB
155#define BPF_COMPLEXITY_LIMIT_STACK 1024
156
fad73a1a
MKL
157#define BPF_MAP_PTR_POISON ((void *)0xeB9F + POISON_POINTER_DELTA)
158
33ff9823
DB
159struct bpf_call_arg_meta {
160 struct bpf_map *map_ptr;
435faee1 161 bool raw_mode;
36bbef52 162 bool pkt_access;
435faee1
DB
163 int regno;
164 int access_size;
33ff9823
DB
165};
166
cbd35700
AS
167static DEFINE_MUTEX(bpf_verifier_lock);
168
169/* log_level controls verbosity level of eBPF verifier.
170 * verbose() is used to dump the verification trace to the log, so the user
171 * can figure out what's wrong with the program
172 */
61bd5218
JK
173static __printf(2, 3) void verbose(struct bpf_verifier_env *env,
174 const char *fmt, ...)
cbd35700 175{
61bd5218 176 struct bpf_verifer_log *log = &env->log;
a2a7d570 177 unsigned int n;
cbd35700
AS
178 va_list args;
179
a2a7d570 180 if (!log->level || !log->ubuf || bpf_verifier_log_full(log))
cbd35700
AS
181 return;
182
183 va_start(args, fmt);
a2a7d570 184 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
cbd35700 185 va_end(args);
a2a7d570
JK
186
187 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
188 "verifier log line truncated - local buffer too short\n");
189
190 n = min(log->len_total - log->len_used - 1, n);
191 log->kbuf[n] = '\0';
192
193 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
194 log->len_used += n;
195 else
196 log->ubuf = NULL;
cbd35700
AS
197}
198
de8f3a83
DB
199static bool type_is_pkt_pointer(enum bpf_reg_type type)
200{
201 return type == PTR_TO_PACKET ||
202 type == PTR_TO_PACKET_META;
203}
204
17a52670
AS
205/* string representation of 'enum bpf_reg_type' */
206static const char * const reg_type_str[] = {
207 [NOT_INIT] = "?",
f1174f77 208 [SCALAR_VALUE] = "inv",
17a52670
AS
209 [PTR_TO_CTX] = "ctx",
210 [CONST_PTR_TO_MAP] = "map_ptr",
211 [PTR_TO_MAP_VALUE] = "map_value",
212 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
17a52670 213 [PTR_TO_STACK] = "fp",
969bf05e 214 [PTR_TO_PACKET] = "pkt",
de8f3a83 215 [PTR_TO_PACKET_META] = "pkt_meta",
969bf05e 216 [PTR_TO_PACKET_END] = "pkt_end",
17a52670
AS
217};
218
61bd5218
JK
219static void print_verifier_state(struct bpf_verifier_env *env,
220 struct bpf_verifier_state *state)
17a52670 221{
58e2af8b 222 struct bpf_reg_state *reg;
17a52670
AS
223 enum bpf_reg_type t;
224 int i;
225
226 for (i = 0; i < MAX_BPF_REG; i++) {
1a0dc1ac
AS
227 reg = &state->regs[i];
228 t = reg->type;
17a52670
AS
229 if (t == NOT_INIT)
230 continue;
61bd5218 231 verbose(env, " R%d=%s", i, reg_type_str[t]);
f1174f77
EC
232 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
233 tnum_is_const(reg->var_off)) {
234 /* reg->off should be 0 for SCALAR_VALUE */
61bd5218 235 verbose(env, "%lld", reg->var_off.value + reg->off);
f1174f77 236 } else {
61bd5218 237 verbose(env, "(id=%d", reg->id);
f1174f77 238 if (t != SCALAR_VALUE)
61bd5218 239 verbose(env, ",off=%d", reg->off);
de8f3a83 240 if (type_is_pkt_pointer(t))
61bd5218 241 verbose(env, ",r=%d", reg->range);
f1174f77
EC
242 else if (t == CONST_PTR_TO_MAP ||
243 t == PTR_TO_MAP_VALUE ||
244 t == PTR_TO_MAP_VALUE_OR_NULL)
61bd5218 245 verbose(env, ",ks=%d,vs=%d",
f1174f77
EC
246 reg->map_ptr->key_size,
247 reg->map_ptr->value_size);
7d1238f2
EC
248 if (tnum_is_const(reg->var_off)) {
249 /* Typically an immediate SCALAR_VALUE, but
250 * could be a pointer whose offset is too big
251 * for reg->off
252 */
61bd5218 253 verbose(env, ",imm=%llx", reg->var_off.value);
7d1238f2
EC
254 } else {
255 if (reg->smin_value != reg->umin_value &&
256 reg->smin_value != S64_MIN)
61bd5218 257 verbose(env, ",smin_value=%lld",
7d1238f2
EC
258 (long long)reg->smin_value);
259 if (reg->smax_value != reg->umax_value &&
260 reg->smax_value != S64_MAX)
61bd5218 261 verbose(env, ",smax_value=%lld",
7d1238f2
EC
262 (long long)reg->smax_value);
263 if (reg->umin_value != 0)
61bd5218 264 verbose(env, ",umin_value=%llu",
7d1238f2
EC
265 (unsigned long long)reg->umin_value);
266 if (reg->umax_value != U64_MAX)
61bd5218 267 verbose(env, ",umax_value=%llu",
7d1238f2
EC
268 (unsigned long long)reg->umax_value);
269 if (!tnum_is_unknown(reg->var_off)) {
270 char tn_buf[48];
f1174f77 271
7d1238f2 272 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 273 verbose(env, ",var_off=%s", tn_buf);
7d1238f2 274 }
f1174f77 275 }
61bd5218 276 verbose(env, ")");
f1174f77 277 }
17a52670 278 }
638f5b90
AS
279 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
280 if (state->stack[i].slot_type[0] == STACK_SPILL)
281 verbose(env, " fp%d=%s",
282 -MAX_BPF_STACK + i * BPF_REG_SIZE,
283 reg_type_str[state->stack[i].spilled_ptr.type]);
17a52670 284 }
61bd5218 285 verbose(env, "\n");
17a52670
AS
286}
287
638f5b90
AS
288static int copy_stack_state(struct bpf_verifier_state *dst,
289 const struct bpf_verifier_state *src)
17a52670 290{
638f5b90
AS
291 if (!src->stack)
292 return 0;
293 if (WARN_ON_ONCE(dst->allocated_stack < src->allocated_stack)) {
294 /* internal bug, make state invalid to reject the program */
295 memset(dst, 0, sizeof(*dst));
296 return -EFAULT;
297 }
298 memcpy(dst->stack, src->stack,
299 sizeof(*src->stack) * (src->allocated_stack / BPF_REG_SIZE));
300 return 0;
301}
302
303/* do_check() starts with zero-sized stack in struct bpf_verifier_state to
304 * make it consume minimal amount of memory. check_stack_write() access from
305 * the program calls into realloc_verifier_state() to grow the stack size.
306 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
307 * which this function copies over. It points to previous bpf_verifier_state
308 * which is never reallocated
309 */
310static int realloc_verifier_state(struct bpf_verifier_state *state, int size,
311 bool copy_old)
312{
313 u32 old_size = state->allocated_stack;
314 struct bpf_stack_state *new_stack;
315 int slot = size / BPF_REG_SIZE;
316
317 if (size <= old_size || !size) {
318 if (copy_old)
319 return 0;
320 state->allocated_stack = slot * BPF_REG_SIZE;
321 if (!size && old_size) {
322 kfree(state->stack);
323 state->stack = NULL;
324 }
325 return 0;
326 }
327 new_stack = kmalloc_array(slot, sizeof(struct bpf_stack_state),
328 GFP_KERNEL);
329 if (!new_stack)
330 return -ENOMEM;
331 if (copy_old) {
332 if (state->stack)
333 memcpy(new_stack, state->stack,
334 sizeof(*new_stack) * (old_size / BPF_REG_SIZE));
335 memset(new_stack + old_size / BPF_REG_SIZE, 0,
336 sizeof(*new_stack) * (size - old_size) / BPF_REG_SIZE);
337 }
338 state->allocated_stack = slot * BPF_REG_SIZE;
339 kfree(state->stack);
340 state->stack = new_stack;
341 return 0;
342}
343
1969db47
AS
344static void free_verifier_state(struct bpf_verifier_state *state,
345 bool free_self)
638f5b90
AS
346{
347 kfree(state->stack);
1969db47
AS
348 if (free_self)
349 kfree(state);
638f5b90
AS
350}
351
352/* copy verifier state from src to dst growing dst stack space
353 * when necessary to accommodate larger src stack
354 */
355static int copy_verifier_state(struct bpf_verifier_state *dst,
356 const struct bpf_verifier_state *src)
357{
358 int err;
359
360 err = realloc_verifier_state(dst, src->allocated_stack, false);
361 if (err)
362 return err;
363 memcpy(dst, src, offsetof(struct bpf_verifier_state, allocated_stack));
364 return copy_stack_state(dst, src);
365}
366
367static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
368 int *insn_idx)
369{
370 struct bpf_verifier_state *cur = env->cur_state;
371 struct bpf_verifier_stack_elem *elem, *head = env->head;
372 int err;
17a52670
AS
373
374 if (env->head == NULL)
638f5b90 375 return -ENOENT;
17a52670 376
638f5b90
AS
377 if (cur) {
378 err = copy_verifier_state(cur, &head->st);
379 if (err)
380 return err;
381 }
382 if (insn_idx)
383 *insn_idx = head->insn_idx;
17a52670 384 if (prev_insn_idx)
638f5b90
AS
385 *prev_insn_idx = head->prev_insn_idx;
386 elem = head->next;
1969db47 387 free_verifier_state(&head->st, false);
638f5b90 388 kfree(head);
17a52670
AS
389 env->head = elem;
390 env->stack_size--;
638f5b90 391 return 0;
17a52670
AS
392}
393
58e2af8b
JK
394static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
395 int insn_idx, int prev_insn_idx)
17a52670 396{
638f5b90 397 struct bpf_verifier_state *cur = env->cur_state;
58e2af8b 398 struct bpf_verifier_stack_elem *elem;
638f5b90 399 int err;
17a52670 400
638f5b90 401 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
17a52670
AS
402 if (!elem)
403 goto err;
404
17a52670
AS
405 elem->insn_idx = insn_idx;
406 elem->prev_insn_idx = prev_insn_idx;
407 elem->next = env->head;
408 env->head = elem;
409 env->stack_size++;
1969db47
AS
410 err = copy_verifier_state(&elem->st, cur);
411 if (err)
412 goto err;
07016151 413 if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) {
61bd5218 414 verbose(env, "BPF program is too complex\n");
17a52670
AS
415 goto err;
416 }
417 return &elem->st;
418err:
419 /* pop all elements and return */
638f5b90 420 while (!pop_stack(env, NULL, NULL));
17a52670
AS
421 return NULL;
422}
423
424#define CALLER_SAVED_REGS 6
425static const int caller_saved[CALLER_SAVED_REGS] = {
426 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
427};
428
f1174f77
EC
429static void __mark_reg_not_init(struct bpf_reg_state *reg);
430
b03c9f9f
EC
431/* Mark the unknown part of a register (variable offset or scalar value) as
432 * known to have the value @imm.
433 */
434static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
435{
436 reg->id = 0;
437 reg->var_off = tnum_const(imm);
438 reg->smin_value = (s64)imm;
439 reg->smax_value = (s64)imm;
440 reg->umin_value = imm;
441 reg->umax_value = imm;
442}
443
f1174f77
EC
444/* Mark the 'variable offset' part of a register as zero. This should be
445 * used only on registers holding a pointer type.
446 */
447static void __mark_reg_known_zero(struct bpf_reg_state *reg)
a9789ef9 448{
b03c9f9f 449 __mark_reg_known(reg, 0);
f1174f77 450}
a9789ef9 451
61bd5218
JK
452static void mark_reg_known_zero(struct bpf_verifier_env *env,
453 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
454{
455 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 456 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
f1174f77
EC
457 /* Something bad happened, let's kill all regs */
458 for (regno = 0; regno < MAX_BPF_REG; regno++)
459 __mark_reg_not_init(regs + regno);
460 return;
461 }
462 __mark_reg_known_zero(regs + regno);
463}
464
de8f3a83
DB
465static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
466{
467 return type_is_pkt_pointer(reg->type);
468}
469
470static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
471{
472 return reg_is_pkt_pointer(reg) ||
473 reg->type == PTR_TO_PACKET_END;
474}
475
476/* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
477static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
478 enum bpf_reg_type which)
479{
480 /* The register can already have a range from prior markings.
481 * This is fine as long as it hasn't been advanced from its
482 * origin.
483 */
484 return reg->type == which &&
485 reg->id == 0 &&
486 reg->off == 0 &&
487 tnum_equals_const(reg->var_off, 0);
488}
489
b03c9f9f
EC
490/* Attempts to improve min/max values based on var_off information */
491static void __update_reg_bounds(struct bpf_reg_state *reg)
492{
493 /* min signed is max(sign bit) | min(other bits) */
494 reg->smin_value = max_t(s64, reg->smin_value,
495 reg->var_off.value | (reg->var_off.mask & S64_MIN));
496 /* max signed is min(sign bit) | max(other bits) */
497 reg->smax_value = min_t(s64, reg->smax_value,
498 reg->var_off.value | (reg->var_off.mask & S64_MAX));
499 reg->umin_value = max(reg->umin_value, reg->var_off.value);
500 reg->umax_value = min(reg->umax_value,
501 reg->var_off.value | reg->var_off.mask);
502}
503
504/* Uses signed min/max values to inform unsigned, and vice-versa */
505static void __reg_deduce_bounds(struct bpf_reg_state *reg)
506{
507 /* Learn sign from signed bounds.
508 * If we cannot cross the sign boundary, then signed and unsigned bounds
509 * are the same, so combine. This works even in the negative case, e.g.
510 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
511 */
512 if (reg->smin_value >= 0 || reg->smax_value < 0) {
513 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
514 reg->umin_value);
515 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
516 reg->umax_value);
517 return;
518 }
519 /* Learn sign from unsigned bounds. Signed bounds cross the sign
520 * boundary, so we must be careful.
521 */
522 if ((s64)reg->umax_value >= 0) {
523 /* Positive. We can't learn anything from the smin, but smax
524 * is positive, hence safe.
525 */
526 reg->smin_value = reg->umin_value;
527 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
528 reg->umax_value);
529 } else if ((s64)reg->umin_value < 0) {
530 /* Negative. We can't learn anything from the smax, but smin
531 * is negative, hence safe.
532 */
533 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
534 reg->umin_value);
535 reg->smax_value = reg->umax_value;
536 }
537}
538
539/* Attempts to improve var_off based on unsigned min/max information */
540static void __reg_bound_offset(struct bpf_reg_state *reg)
541{
542 reg->var_off = tnum_intersect(reg->var_off,
543 tnum_range(reg->umin_value,
544 reg->umax_value));
545}
546
547/* Reset the min/max bounds of a register */
548static void __mark_reg_unbounded(struct bpf_reg_state *reg)
549{
550 reg->smin_value = S64_MIN;
551 reg->smax_value = S64_MAX;
552 reg->umin_value = 0;
553 reg->umax_value = U64_MAX;
554}
555
f1174f77
EC
556/* Mark a register as having a completely unknown (scalar) value. */
557static void __mark_reg_unknown(struct bpf_reg_state *reg)
558{
559 reg->type = SCALAR_VALUE;
560 reg->id = 0;
561 reg->off = 0;
562 reg->var_off = tnum_unknown;
b03c9f9f 563 __mark_reg_unbounded(reg);
f1174f77
EC
564}
565
61bd5218
JK
566static void mark_reg_unknown(struct bpf_verifier_env *env,
567 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
568{
569 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 570 verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
f1174f77
EC
571 /* Something bad happened, let's kill all regs */
572 for (regno = 0; regno < MAX_BPF_REG; regno++)
573 __mark_reg_not_init(regs + regno);
574 return;
575 }
576 __mark_reg_unknown(regs + regno);
577}
578
579static void __mark_reg_not_init(struct bpf_reg_state *reg)
580{
581 __mark_reg_unknown(reg);
582 reg->type = NOT_INIT;
583}
584
61bd5218
JK
585static void mark_reg_not_init(struct bpf_verifier_env *env,
586 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
587{
588 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 589 verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
f1174f77
EC
590 /* Something bad happened, let's kill all regs */
591 for (regno = 0; regno < MAX_BPF_REG; regno++)
592 __mark_reg_not_init(regs + regno);
593 return;
594 }
595 __mark_reg_not_init(regs + regno);
a9789ef9
DB
596}
597
61bd5218
JK
598static void init_reg_state(struct bpf_verifier_env *env,
599 struct bpf_reg_state *regs)
17a52670
AS
600{
601 int i;
602
dc503a8a 603 for (i = 0; i < MAX_BPF_REG; i++) {
61bd5218 604 mark_reg_not_init(env, regs, i);
dc503a8a
EC
605 regs[i].live = REG_LIVE_NONE;
606 }
17a52670
AS
607
608 /* frame pointer */
f1174f77 609 regs[BPF_REG_FP].type = PTR_TO_STACK;
61bd5218 610 mark_reg_known_zero(env, regs, BPF_REG_FP);
17a52670
AS
611
612 /* 1st arg to a function */
613 regs[BPF_REG_1].type = PTR_TO_CTX;
61bd5218 614 mark_reg_known_zero(env, regs, BPF_REG_1);
6760bf2d
DB
615}
616
17a52670
AS
617enum reg_arg_type {
618 SRC_OP, /* register is used as source operand */
619 DST_OP, /* register is used as destination operand */
620 DST_OP_NO_MARK /* same as above, check only, don't mark */
621};
622
dc503a8a
EC
623static void mark_reg_read(const struct bpf_verifier_state *state, u32 regno)
624{
625 struct bpf_verifier_state *parent = state->parent;
626
8fe2d6cc
AS
627 if (regno == BPF_REG_FP)
628 /* We don't need to worry about FP liveness because it's read-only */
629 return;
630
dc503a8a
EC
631 while (parent) {
632 /* if read wasn't screened by an earlier write ... */
633 if (state->regs[regno].live & REG_LIVE_WRITTEN)
634 break;
635 /* ... then we depend on parent's value */
636 parent->regs[regno].live |= REG_LIVE_READ;
637 state = parent;
638 parent = state->parent;
639 }
640}
641
642static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
17a52670
AS
643 enum reg_arg_type t)
644{
638f5b90 645 struct bpf_reg_state *regs = env->cur_state->regs;
dc503a8a 646
17a52670 647 if (regno >= MAX_BPF_REG) {
61bd5218 648 verbose(env, "R%d is invalid\n", regno);
17a52670
AS
649 return -EINVAL;
650 }
651
652 if (t == SRC_OP) {
653 /* check whether register used as source operand can be read */
654 if (regs[regno].type == NOT_INIT) {
61bd5218 655 verbose(env, "R%d !read_ok\n", regno);
17a52670
AS
656 return -EACCES;
657 }
638f5b90 658 mark_reg_read(env->cur_state, regno);
17a52670
AS
659 } else {
660 /* check whether register used as dest operand can be written to */
661 if (regno == BPF_REG_FP) {
61bd5218 662 verbose(env, "frame pointer is read only\n");
17a52670
AS
663 return -EACCES;
664 }
dc503a8a 665 regs[regno].live |= REG_LIVE_WRITTEN;
17a52670 666 if (t == DST_OP)
61bd5218 667 mark_reg_unknown(env, regs, regno);
17a52670
AS
668 }
669 return 0;
670}
671
1be7f75d
AS
672static bool is_spillable_regtype(enum bpf_reg_type type)
673{
674 switch (type) {
675 case PTR_TO_MAP_VALUE:
676 case PTR_TO_MAP_VALUE_OR_NULL:
677 case PTR_TO_STACK:
678 case PTR_TO_CTX:
969bf05e 679 case PTR_TO_PACKET:
de8f3a83 680 case PTR_TO_PACKET_META:
969bf05e 681 case PTR_TO_PACKET_END:
1be7f75d
AS
682 case CONST_PTR_TO_MAP:
683 return true;
684 default:
685 return false;
686 }
687}
688
17a52670
AS
689/* check_stack_read/write functions track spill/fill of registers,
690 * stack boundary and alignment are checked in check_mem_access()
691 */
61bd5218
JK
692static int check_stack_write(struct bpf_verifier_env *env,
693 struct bpf_verifier_state *state, int off,
58e2af8b 694 int size, int value_regno)
17a52670 695{
638f5b90
AS
696 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
697
698 err = realloc_verifier_state(state, round_up(slot + 1, BPF_REG_SIZE),
699 true);
700 if (err)
701 return err;
9c399760
AS
702 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
703 * so it's aligned access and [off, off + size) are within stack limits
704 */
638f5b90
AS
705 if (!env->allow_ptr_leaks &&
706 state->stack[spi].slot_type[0] == STACK_SPILL &&
707 size != BPF_REG_SIZE) {
708 verbose(env, "attempt to corrupt spilled pointer on stack\n");
709 return -EACCES;
710 }
17a52670
AS
711
712 if (value_regno >= 0 &&
1be7f75d 713 is_spillable_regtype(state->regs[value_regno].type)) {
17a52670
AS
714
715 /* register containing pointer is being spilled into stack */
9c399760 716 if (size != BPF_REG_SIZE) {
61bd5218 717 verbose(env, "invalid size of register spill\n");
17a52670
AS
718 return -EACCES;
719 }
720
17a52670 721 /* save register state */
638f5b90
AS
722 state->stack[spi].spilled_ptr = state->regs[value_regno];
723 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
17a52670 724
9c399760 725 for (i = 0; i < BPF_REG_SIZE; i++)
638f5b90 726 state->stack[spi].slot_type[i] = STACK_SPILL;
9c399760 727 } else {
17a52670 728 /* regular write of data into stack */
638f5b90 729 state->stack[spi].spilled_ptr = (struct bpf_reg_state) {};
9c399760
AS
730
731 for (i = 0; i < size; i++)
638f5b90
AS
732 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
733 STACK_MISC;
17a52670
AS
734 }
735 return 0;
736}
737
dc503a8a
EC
738static void mark_stack_slot_read(const struct bpf_verifier_state *state, int slot)
739{
740 struct bpf_verifier_state *parent = state->parent;
741
742 while (parent) {
743 /* if read wasn't screened by an earlier write ... */
638f5b90 744 if (state->stack[slot].spilled_ptr.live & REG_LIVE_WRITTEN)
dc503a8a
EC
745 break;
746 /* ... then we depend on parent's value */
638f5b90 747 parent->stack[slot].spilled_ptr.live |= REG_LIVE_READ;
dc503a8a
EC
748 state = parent;
749 parent = state->parent;
750 }
751}
752
61bd5218
JK
753static int check_stack_read(struct bpf_verifier_env *env,
754 struct bpf_verifier_state *state, int off, int size,
17a52670
AS
755 int value_regno)
756{
638f5b90
AS
757 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
758 u8 *stype;
17a52670 759
638f5b90
AS
760 if (state->allocated_stack <= slot) {
761 verbose(env, "invalid read from stack off %d+0 size %d\n",
762 off, size);
763 return -EACCES;
764 }
765 stype = state->stack[spi].slot_type;
17a52670 766
638f5b90 767 if (stype[0] == STACK_SPILL) {
9c399760 768 if (size != BPF_REG_SIZE) {
61bd5218 769 verbose(env, "invalid size of register spill\n");
17a52670
AS
770 return -EACCES;
771 }
9c399760 772 for (i = 1; i < BPF_REG_SIZE; i++) {
638f5b90 773 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
61bd5218 774 verbose(env, "corrupted spill memory\n");
17a52670
AS
775 return -EACCES;
776 }
777 }
778
dc503a8a 779 if (value_regno >= 0) {
17a52670 780 /* restore register state from stack */
638f5b90 781 state->regs[value_regno] = state->stack[spi].spilled_ptr;
dc503a8a
EC
782 mark_stack_slot_read(state, spi);
783 }
17a52670
AS
784 return 0;
785 } else {
786 for (i = 0; i < size; i++) {
638f5b90 787 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_MISC) {
61bd5218 788 verbose(env, "invalid read from stack off %d+%d size %d\n",
17a52670
AS
789 off, i, size);
790 return -EACCES;
791 }
792 }
793 if (value_regno >= 0)
794 /* have read misc data from the stack */
61bd5218 795 mark_reg_unknown(env, state->regs, value_regno);
17a52670
AS
796 return 0;
797 }
798}
799
800/* check read/write into map element returned by bpf_map_lookup_elem() */
f1174f77 801static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
17a52670
AS
802 int size)
803{
638f5b90
AS
804 struct bpf_reg_state *regs = cur_regs(env);
805 struct bpf_map *map = regs[regno].map_ptr;
17a52670 806
5722569b 807 if (off < 0 || size <= 0 || off + size > map->value_size) {
61bd5218 808 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
17a52670
AS
809 map->value_size, off, size);
810 return -EACCES;
811 }
812 return 0;
813}
814
f1174f77
EC
815/* check read/write into a map element with possible variable offset */
816static int check_map_access(struct bpf_verifier_env *env, u32 regno,
638f5b90 817 int off, int size)
dbcfe5f7 818{
638f5b90 819 struct bpf_verifier_state *state = env->cur_state;
dbcfe5f7
GB
820 struct bpf_reg_state *reg = &state->regs[regno];
821 int err;
822
f1174f77
EC
823 /* We may have adjusted the register to this map value, so we
824 * need to try adding each of min_value and max_value to off
825 * to make sure our theoretical access will be safe.
dbcfe5f7 826 */
61bd5218
JK
827 if (env->log.level)
828 print_verifier_state(env, state);
dbcfe5f7
GB
829 /* The minimum value is only important with signed
830 * comparisons where we can't assume the floor of a
831 * value is 0. If we are using signed variables for our
832 * index'es we need to make sure that whatever we use
833 * will have a set floor within our range.
834 */
b03c9f9f 835 if (reg->smin_value < 0) {
61bd5218 836 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
dbcfe5f7
GB
837 regno);
838 return -EACCES;
839 }
b03c9f9f 840 err = __check_map_access(env, regno, reg->smin_value + off, size);
dbcfe5f7 841 if (err) {
61bd5218
JK
842 verbose(env, "R%d min value is outside of the array range\n",
843 regno);
dbcfe5f7
GB
844 return err;
845 }
846
b03c9f9f
EC
847 /* If we haven't set a max value then we need to bail since we can't be
848 * sure we won't do bad things.
849 * If reg->umax_value + off could overflow, treat that as unbounded too.
dbcfe5f7 850 */
b03c9f9f 851 if (reg->umax_value >= BPF_MAX_VAR_OFF) {
61bd5218 852 verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n",
dbcfe5f7
GB
853 regno);
854 return -EACCES;
855 }
b03c9f9f 856 err = __check_map_access(env, regno, reg->umax_value + off, size);
f1174f77 857 if (err)
61bd5218
JK
858 verbose(env, "R%d max value is outside of the array range\n",
859 regno);
f1174f77 860 return err;
dbcfe5f7
GB
861}
862
969bf05e
AS
863#define MAX_PACKET_OFF 0xffff
864
58e2af8b 865static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
3a0af8fd
TG
866 const struct bpf_call_arg_meta *meta,
867 enum bpf_access_type t)
4acf6c0b 868{
36bbef52 869 switch (env->prog->type) {
3a0af8fd
TG
870 case BPF_PROG_TYPE_LWT_IN:
871 case BPF_PROG_TYPE_LWT_OUT:
872 /* dst_input() and dst_output() can't write for now */
873 if (t == BPF_WRITE)
874 return false;
7e57fbb2 875 /* fallthrough */
36bbef52
DB
876 case BPF_PROG_TYPE_SCHED_CLS:
877 case BPF_PROG_TYPE_SCHED_ACT:
4acf6c0b 878 case BPF_PROG_TYPE_XDP:
3a0af8fd 879 case BPF_PROG_TYPE_LWT_XMIT:
8a31db56 880 case BPF_PROG_TYPE_SK_SKB:
36bbef52
DB
881 if (meta)
882 return meta->pkt_access;
883
884 env->seen_direct_write = true;
4acf6c0b
BB
885 return true;
886 default:
887 return false;
888 }
889}
890
f1174f77
EC
891static int __check_packet_access(struct bpf_verifier_env *env, u32 regno,
892 int off, int size)
969bf05e 893{
638f5b90 894 struct bpf_reg_state *regs = cur_regs(env);
58e2af8b 895 struct bpf_reg_state *reg = &regs[regno];
969bf05e 896
f1174f77 897 if (off < 0 || size <= 0 || (u64)off + size > reg->range) {
61bd5218 898 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
d91b28ed 899 off, size, regno, reg->id, reg->off, reg->range);
969bf05e
AS
900 return -EACCES;
901 }
902 return 0;
903}
904
f1174f77
EC
905static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
906 int size)
907{
638f5b90 908 struct bpf_reg_state *regs = cur_regs(env);
f1174f77
EC
909 struct bpf_reg_state *reg = &regs[regno];
910 int err;
911
912 /* We may have added a variable offset to the packet pointer; but any
913 * reg->range we have comes after that. We are only checking the fixed
914 * offset.
915 */
916
917 /* We don't allow negative numbers, because we aren't tracking enough
918 * detail to prove they're safe.
919 */
b03c9f9f 920 if (reg->smin_value < 0) {
61bd5218 921 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
f1174f77
EC
922 regno);
923 return -EACCES;
924 }
925 err = __check_packet_access(env, regno, off, size);
926 if (err) {
61bd5218 927 verbose(env, "R%d offset is outside of the packet\n", regno);
f1174f77
EC
928 return err;
929 }
930 return err;
931}
932
933/* check access to 'struct bpf_context' fields. Supports fixed offsets only */
31fd8581 934static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
19de99f7 935 enum bpf_access_type t, enum bpf_reg_type *reg_type)
17a52670 936{
f96da094
DB
937 struct bpf_insn_access_aux info = {
938 .reg_type = *reg_type,
939 };
31fd8581 940
4f9218aa
JK
941 if (env->ops->is_valid_access &&
942 env->ops->is_valid_access(off, size, t, &info)) {
f96da094
DB
943 /* A non zero info.ctx_field_size indicates that this field is a
944 * candidate for later verifier transformation to load the whole
945 * field and then apply a mask when accessed with a narrower
946 * access than actual ctx access size. A zero info.ctx_field_size
947 * will only allow for whole field access and rejects any other
948 * type of narrower access.
31fd8581 949 */
23994631 950 *reg_type = info.reg_type;
31fd8581 951
4f9218aa
JK
952 if (env->analyzer_ops)
953 return 0;
954
955 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
32bbe007
AS
956 /* remember the offset of last byte accessed in ctx */
957 if (env->prog->aux->max_ctx_offset < off + size)
958 env->prog->aux->max_ctx_offset = off + size;
17a52670 959 return 0;
32bbe007 960 }
17a52670 961
61bd5218 962 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
17a52670
AS
963 return -EACCES;
964}
965
4cabc5b1
DB
966static bool __is_pointer_value(bool allow_ptr_leaks,
967 const struct bpf_reg_state *reg)
1be7f75d 968{
4cabc5b1 969 if (allow_ptr_leaks)
1be7f75d
AS
970 return false;
971
f1174f77 972 return reg->type != SCALAR_VALUE;
1be7f75d
AS
973}
974
4cabc5b1
DB
975static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
976{
638f5b90 977 return __is_pointer_value(env->allow_ptr_leaks, cur_regs(env) + regno);
4cabc5b1
DB
978}
979
61bd5218
JK
980static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
981 const struct bpf_reg_state *reg,
d1174416 982 int off, int size, bool strict)
969bf05e 983{
f1174f77 984 struct tnum reg_off;
e07b98d9 985 int ip_align;
d1174416
DM
986
987 /* Byte size accesses are always allowed. */
988 if (!strict || size == 1)
989 return 0;
990
e4eda884
DM
991 /* For platforms that do not have a Kconfig enabling
992 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
993 * NET_IP_ALIGN is universally set to '2'. And on platforms
994 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
995 * to this code only in strict mode where we want to emulate
996 * the NET_IP_ALIGN==2 checking. Therefore use an
997 * unconditional IP align value of '2'.
e07b98d9 998 */
e4eda884 999 ip_align = 2;
f1174f77
EC
1000
1001 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
1002 if (!tnum_is_aligned(reg_off, size)) {
1003 char tn_buf[48];
1004
1005 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218
JK
1006 verbose(env,
1007 "misaligned packet access off %d+%s+%d+%d size %d\n",
f1174f77 1008 ip_align, tn_buf, reg->off, off, size);
969bf05e
AS
1009 return -EACCES;
1010 }
79adffcd 1011
969bf05e
AS
1012 return 0;
1013}
1014
61bd5218
JK
1015static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
1016 const struct bpf_reg_state *reg,
f1174f77
EC
1017 const char *pointer_desc,
1018 int off, int size, bool strict)
79adffcd 1019{
f1174f77
EC
1020 struct tnum reg_off;
1021
1022 /* Byte size accesses are always allowed. */
1023 if (!strict || size == 1)
1024 return 0;
1025
1026 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
1027 if (!tnum_is_aligned(reg_off, size)) {
1028 char tn_buf[48];
1029
1030 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 1031 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
f1174f77 1032 pointer_desc, tn_buf, reg->off, off, size);
79adffcd
DB
1033 return -EACCES;
1034 }
1035
969bf05e
AS
1036 return 0;
1037}
1038
e07b98d9
DM
1039static int check_ptr_alignment(struct bpf_verifier_env *env,
1040 const struct bpf_reg_state *reg,
79adffcd
DB
1041 int off, int size)
1042{
e07b98d9 1043 bool strict = env->strict_alignment;
f1174f77 1044 const char *pointer_desc = "";
d1174416 1045
79adffcd
DB
1046 switch (reg->type) {
1047 case PTR_TO_PACKET:
de8f3a83
DB
1048 case PTR_TO_PACKET_META:
1049 /* Special case, because of NET_IP_ALIGN. Given metadata sits
1050 * right in front, treat it the very same way.
1051 */
61bd5218 1052 return check_pkt_ptr_alignment(env, reg, off, size, strict);
f1174f77
EC
1053 case PTR_TO_MAP_VALUE:
1054 pointer_desc = "value ";
1055 break;
1056 case PTR_TO_CTX:
1057 pointer_desc = "context ";
1058 break;
1059 case PTR_TO_STACK:
1060 pointer_desc = "stack ";
1061 break;
79adffcd 1062 default:
f1174f77 1063 break;
79adffcd 1064 }
61bd5218
JK
1065 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
1066 strict);
79adffcd
DB
1067}
1068
17a52670
AS
1069/* check whether memory at (regno + off) is accessible for t = (read | write)
1070 * if t==write, value_regno is a register which value is stored into memory
1071 * if t==read, value_regno is a register which will receive the value from memory
1072 * if t==write && value_regno==-1, some unknown value is stored into memory
1073 * if t==read && value_regno==-1, don't care what we read from memory
1074 */
31fd8581 1075static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, int off,
17a52670
AS
1076 int bpf_size, enum bpf_access_type t,
1077 int value_regno)
1078{
638f5b90
AS
1079 struct bpf_verifier_state *state = env->cur_state;
1080 struct bpf_reg_state *regs = cur_regs(env);
1081 struct bpf_reg_state *reg = regs + regno;
17a52670
AS
1082 int size, err = 0;
1083
1084 size = bpf_size_to_bytes(bpf_size);
1085 if (size < 0)
1086 return size;
1087
f1174f77 1088 /* alignment checks will add in reg->off themselves */
e07b98d9 1089 err = check_ptr_alignment(env, reg, off, size);
969bf05e
AS
1090 if (err)
1091 return err;
17a52670 1092
f1174f77
EC
1093 /* for access checks, reg->off is just part of off */
1094 off += reg->off;
1095
1096 if (reg->type == PTR_TO_MAP_VALUE) {
1be7f75d
AS
1097 if (t == BPF_WRITE && value_regno >= 0 &&
1098 is_pointer_value(env, value_regno)) {
61bd5218 1099 verbose(env, "R%d leaks addr into map\n", value_regno);
1be7f75d
AS
1100 return -EACCES;
1101 }
48461135 1102
f1174f77 1103 err = check_map_access(env, regno, off, size);
17a52670 1104 if (!err && t == BPF_READ && value_regno >= 0)
638f5b90 1105 mark_reg_unknown(env, regs, value_regno);
17a52670 1106
1a0dc1ac 1107 } else if (reg->type == PTR_TO_CTX) {
f1174f77 1108 enum bpf_reg_type reg_type = SCALAR_VALUE;
19de99f7 1109
1be7f75d
AS
1110 if (t == BPF_WRITE && value_regno >= 0 &&
1111 is_pointer_value(env, value_regno)) {
61bd5218 1112 verbose(env, "R%d leaks addr into ctx\n", value_regno);
1be7f75d
AS
1113 return -EACCES;
1114 }
f1174f77
EC
1115 /* ctx accesses must be at a fixed offset, so that we can
1116 * determine what type of data were returned.
1117 */
28e33f9d 1118 if (reg->off) {
f8ddadc4
DM
1119 verbose(env,
1120 "dereference of modified ctx ptr R%d off=%d+%d, ctx+const is allowed, ctx+const+const is not\n",
28e33f9d
JK
1121 regno, reg->off, off - reg->off);
1122 return -EACCES;
1123 }
1124 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
f1174f77
EC
1125 char tn_buf[48];
1126
1127 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218
JK
1128 verbose(env,
1129 "variable ctx access var_off=%s off=%d size=%d",
f1174f77
EC
1130 tn_buf, off, size);
1131 return -EACCES;
1132 }
31fd8581 1133 err = check_ctx_access(env, insn_idx, off, size, t, &reg_type);
969bf05e 1134 if (!err && t == BPF_READ && value_regno >= 0) {
f1174f77 1135 /* ctx access returns either a scalar, or a
de8f3a83
DB
1136 * PTR_TO_PACKET[_META,_END]. In the latter
1137 * case, we know the offset is zero.
f1174f77
EC
1138 */
1139 if (reg_type == SCALAR_VALUE)
638f5b90 1140 mark_reg_unknown(env, regs, value_regno);
f1174f77 1141 else
638f5b90 1142 mark_reg_known_zero(env, regs,
61bd5218 1143 value_regno);
638f5b90
AS
1144 regs[value_regno].id = 0;
1145 regs[value_regno].off = 0;
1146 regs[value_regno].range = 0;
1147 regs[value_regno].type = reg_type;
969bf05e 1148 }
17a52670 1149
f1174f77
EC
1150 } else if (reg->type == PTR_TO_STACK) {
1151 /* stack accesses must be at a fixed offset, so that we can
1152 * determine what type of data were returned.
1153 * See check_stack_read().
1154 */
1155 if (!tnum_is_const(reg->var_off)) {
1156 char tn_buf[48];
1157
1158 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 1159 verbose(env, "variable stack access var_off=%s off=%d size=%d",
f1174f77
EC
1160 tn_buf, off, size);
1161 return -EACCES;
1162 }
1163 off += reg->var_off.value;
17a52670 1164 if (off >= 0 || off < -MAX_BPF_STACK) {
61bd5218
JK
1165 verbose(env, "invalid stack off=%d size=%d\n", off,
1166 size);
17a52670
AS
1167 return -EACCES;
1168 }
8726679a
AS
1169
1170 if (env->prog->aux->stack_depth < -off)
1171 env->prog->aux->stack_depth = -off;
1172
638f5b90 1173 if (t == BPF_WRITE)
61bd5218
JK
1174 err = check_stack_write(env, state, off, size,
1175 value_regno);
638f5b90 1176 else
61bd5218
JK
1177 err = check_stack_read(env, state, off, size,
1178 value_regno);
de8f3a83 1179 } else if (reg_is_pkt_pointer(reg)) {
3a0af8fd 1180 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
61bd5218 1181 verbose(env, "cannot write into packet\n");
969bf05e
AS
1182 return -EACCES;
1183 }
4acf6c0b
BB
1184 if (t == BPF_WRITE && value_regno >= 0 &&
1185 is_pointer_value(env, value_regno)) {
61bd5218
JK
1186 verbose(env, "R%d leaks addr into packet\n",
1187 value_regno);
4acf6c0b
BB
1188 return -EACCES;
1189 }
969bf05e
AS
1190 err = check_packet_access(env, regno, off, size);
1191 if (!err && t == BPF_READ && value_regno >= 0)
638f5b90 1192 mark_reg_unknown(env, regs, value_regno);
17a52670 1193 } else {
61bd5218
JK
1194 verbose(env, "R%d invalid mem access '%s'\n", regno,
1195 reg_type_str[reg->type]);
17a52670
AS
1196 return -EACCES;
1197 }
969bf05e 1198
f1174f77 1199 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
638f5b90 1200 regs[value_regno].type == SCALAR_VALUE) {
f1174f77 1201 /* b/h/w load zero-extends, mark upper bits as known 0 */
638f5b90
AS
1202 regs[value_regno].var_off =
1203 tnum_cast(regs[value_regno].var_off, size);
1204 __update_reg_bounds(&regs[value_regno]);
969bf05e 1205 }
17a52670
AS
1206 return err;
1207}
1208
31fd8581 1209static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
17a52670 1210{
17a52670
AS
1211 int err;
1212
1213 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
1214 insn->imm != 0) {
61bd5218 1215 verbose(env, "BPF_XADD uses reserved fields\n");
17a52670
AS
1216 return -EINVAL;
1217 }
1218
1219 /* check src1 operand */
dc503a8a 1220 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
1221 if (err)
1222 return err;
1223
1224 /* check src2 operand */
dc503a8a 1225 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
1226 if (err)
1227 return err;
1228
6bdf6abc 1229 if (is_pointer_value(env, insn->src_reg)) {
61bd5218 1230 verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
6bdf6abc
DB
1231 return -EACCES;
1232 }
1233
17a52670 1234 /* check whether atomic_add can read the memory */
31fd8581 1235 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
17a52670
AS
1236 BPF_SIZE(insn->code), BPF_READ, -1);
1237 if (err)
1238 return err;
1239
1240 /* check whether atomic_add can write into the same memory */
31fd8581 1241 return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
17a52670
AS
1242 BPF_SIZE(insn->code), BPF_WRITE, -1);
1243}
1244
f1174f77
EC
1245/* Does this register contain a constant zero? */
1246static bool register_is_null(struct bpf_reg_state reg)
1247{
1248 return reg.type == SCALAR_VALUE && tnum_equals_const(reg.var_off, 0);
1249}
1250
17a52670
AS
1251/* when register 'regno' is passed into function that will read 'access_size'
1252 * bytes from that pointer, make sure that it's within stack boundary
f1174f77
EC
1253 * and all elements of stack are initialized.
1254 * Unlike most pointer bounds-checking functions, this one doesn't take an
1255 * 'off' argument, so it has to add in reg->off itself.
17a52670 1256 */
58e2af8b 1257static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
435faee1
DB
1258 int access_size, bool zero_size_allowed,
1259 struct bpf_call_arg_meta *meta)
17a52670 1260{
638f5b90 1261 struct bpf_verifier_state *state = env->cur_state;
58e2af8b 1262 struct bpf_reg_state *regs = state->regs;
638f5b90 1263 int off, i, slot, spi;
17a52670 1264
8e2fe1d9 1265 if (regs[regno].type != PTR_TO_STACK) {
f1174f77 1266 /* Allow zero-byte read from NULL, regardless of pointer type */
8e2fe1d9 1267 if (zero_size_allowed && access_size == 0 &&
f1174f77 1268 register_is_null(regs[regno]))
8e2fe1d9
DB
1269 return 0;
1270
61bd5218 1271 verbose(env, "R%d type=%s expected=%s\n", regno,
8e2fe1d9
DB
1272 reg_type_str[regs[regno].type],
1273 reg_type_str[PTR_TO_STACK]);
17a52670 1274 return -EACCES;
8e2fe1d9 1275 }
17a52670 1276
f1174f77
EC
1277 /* Only allow fixed-offset stack reads */
1278 if (!tnum_is_const(regs[regno].var_off)) {
1279 char tn_buf[48];
1280
1281 tnum_strn(tn_buf, sizeof(tn_buf), regs[regno].var_off);
61bd5218 1282 verbose(env, "invalid variable stack read R%d var_off=%s\n",
f1174f77
EC
1283 regno, tn_buf);
1284 }
1285 off = regs[regno].off + regs[regno].var_off.value;
17a52670
AS
1286 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
1287 access_size <= 0) {
61bd5218 1288 verbose(env, "invalid stack type R%d off=%d access_size=%d\n",
17a52670
AS
1289 regno, off, access_size);
1290 return -EACCES;
1291 }
1292
8726679a
AS
1293 if (env->prog->aux->stack_depth < -off)
1294 env->prog->aux->stack_depth = -off;
1295
435faee1
DB
1296 if (meta && meta->raw_mode) {
1297 meta->access_size = access_size;
1298 meta->regno = regno;
1299 return 0;
1300 }
1301
17a52670 1302 for (i = 0; i < access_size; i++) {
638f5b90
AS
1303 slot = -(off + i) - 1;
1304 spi = slot / BPF_REG_SIZE;
1305 if (state->allocated_stack <= slot ||
1306 state->stack[spi].slot_type[slot % BPF_REG_SIZE] !=
1307 STACK_MISC) {
61bd5218 1308 verbose(env, "invalid indirect read from stack off %d+%d size %d\n",
17a52670
AS
1309 off, i, access_size);
1310 return -EACCES;
1311 }
1312 }
1313 return 0;
1314}
1315
06c1c049
GB
1316static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
1317 int access_size, bool zero_size_allowed,
1318 struct bpf_call_arg_meta *meta)
1319{
638f5b90 1320 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
06c1c049 1321
f1174f77 1322 switch (reg->type) {
06c1c049 1323 case PTR_TO_PACKET:
de8f3a83 1324 case PTR_TO_PACKET_META:
f1174f77 1325 return check_packet_access(env, regno, reg->off, access_size);
06c1c049 1326 case PTR_TO_MAP_VALUE:
f1174f77
EC
1327 return check_map_access(env, regno, reg->off, access_size);
1328 default: /* scalar_value|ptr_to_stack or invalid ptr */
06c1c049
GB
1329 return check_stack_boundary(env, regno, access_size,
1330 zero_size_allowed, meta);
1331 }
1332}
1333
58e2af8b 1334static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
33ff9823
DB
1335 enum bpf_arg_type arg_type,
1336 struct bpf_call_arg_meta *meta)
17a52670 1337{
638f5b90 1338 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
6841de8b 1339 enum bpf_reg_type expected_type, type = reg->type;
17a52670
AS
1340 int err = 0;
1341
80f1d68c 1342 if (arg_type == ARG_DONTCARE)
17a52670
AS
1343 return 0;
1344
dc503a8a
EC
1345 err = check_reg_arg(env, regno, SRC_OP);
1346 if (err)
1347 return err;
17a52670 1348
1be7f75d
AS
1349 if (arg_type == ARG_ANYTHING) {
1350 if (is_pointer_value(env, regno)) {
61bd5218
JK
1351 verbose(env, "R%d leaks addr into helper function\n",
1352 regno);
1be7f75d
AS
1353 return -EACCES;
1354 }
80f1d68c 1355 return 0;
1be7f75d 1356 }
80f1d68c 1357
de8f3a83 1358 if (type_is_pkt_pointer(type) &&
3a0af8fd 1359 !may_access_direct_pkt_data(env, meta, BPF_READ)) {
61bd5218 1360 verbose(env, "helper access to the packet is not allowed\n");
6841de8b
AS
1361 return -EACCES;
1362 }
1363
8e2fe1d9 1364 if (arg_type == ARG_PTR_TO_MAP_KEY ||
17a52670
AS
1365 arg_type == ARG_PTR_TO_MAP_VALUE) {
1366 expected_type = PTR_TO_STACK;
de8f3a83
DB
1367 if (!type_is_pkt_pointer(type) &&
1368 type != expected_type)
6841de8b 1369 goto err_type;
39f19ebb
AS
1370 } else if (arg_type == ARG_CONST_SIZE ||
1371 arg_type == ARG_CONST_SIZE_OR_ZERO) {
f1174f77
EC
1372 expected_type = SCALAR_VALUE;
1373 if (type != expected_type)
6841de8b 1374 goto err_type;
17a52670
AS
1375 } else if (arg_type == ARG_CONST_MAP_PTR) {
1376 expected_type = CONST_PTR_TO_MAP;
6841de8b
AS
1377 if (type != expected_type)
1378 goto err_type;
608cd71a
AS
1379 } else if (arg_type == ARG_PTR_TO_CTX) {
1380 expected_type = PTR_TO_CTX;
6841de8b
AS
1381 if (type != expected_type)
1382 goto err_type;
39f19ebb
AS
1383 } else if (arg_type == ARG_PTR_TO_MEM ||
1384 arg_type == ARG_PTR_TO_UNINIT_MEM) {
8e2fe1d9
DB
1385 expected_type = PTR_TO_STACK;
1386 /* One exception here. In case function allows for NULL to be
f1174f77 1387 * passed in as argument, it's a SCALAR_VALUE type. Final test
8e2fe1d9
DB
1388 * happens during stack boundary checking.
1389 */
f1174f77 1390 if (register_is_null(*reg))
6841de8b 1391 /* final test in check_stack_boundary() */;
de8f3a83
DB
1392 else if (!type_is_pkt_pointer(type) &&
1393 type != PTR_TO_MAP_VALUE &&
f1174f77 1394 type != expected_type)
6841de8b 1395 goto err_type;
39f19ebb 1396 meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
17a52670 1397 } else {
61bd5218 1398 verbose(env, "unsupported arg_type %d\n", arg_type);
17a52670
AS
1399 return -EFAULT;
1400 }
1401
17a52670
AS
1402 if (arg_type == ARG_CONST_MAP_PTR) {
1403 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
33ff9823 1404 meta->map_ptr = reg->map_ptr;
17a52670
AS
1405 } else if (arg_type == ARG_PTR_TO_MAP_KEY) {
1406 /* bpf_map_xxx(..., map_ptr, ..., key) call:
1407 * check that [key, key + map->key_size) are within
1408 * stack limits and initialized
1409 */
33ff9823 1410 if (!meta->map_ptr) {
17a52670
AS
1411 /* in function declaration map_ptr must come before
1412 * map_key, so that it's verified and known before
1413 * we have to check map_key here. Otherwise it means
1414 * that kernel subsystem misconfigured verifier
1415 */
61bd5218 1416 verbose(env, "invalid map_ptr to access map->key\n");
17a52670
AS
1417 return -EACCES;
1418 }
de8f3a83 1419 if (type_is_pkt_pointer(type))
f1174f77 1420 err = check_packet_access(env, regno, reg->off,
6841de8b
AS
1421 meta->map_ptr->key_size);
1422 else
1423 err = check_stack_boundary(env, regno,
1424 meta->map_ptr->key_size,
1425 false, NULL);
17a52670
AS
1426 } else if (arg_type == ARG_PTR_TO_MAP_VALUE) {
1427 /* bpf_map_xxx(..., map_ptr, ..., value) call:
1428 * check [value, value + map->value_size) validity
1429 */
33ff9823 1430 if (!meta->map_ptr) {
17a52670 1431 /* kernel subsystem misconfigured verifier */
61bd5218 1432 verbose(env, "invalid map_ptr to access map->value\n");
17a52670
AS
1433 return -EACCES;
1434 }
de8f3a83 1435 if (type_is_pkt_pointer(type))
f1174f77 1436 err = check_packet_access(env, regno, reg->off,
6841de8b
AS
1437 meta->map_ptr->value_size);
1438 else
1439 err = check_stack_boundary(env, regno,
1440 meta->map_ptr->value_size,
1441 false, NULL);
39f19ebb
AS
1442 } else if (arg_type == ARG_CONST_SIZE ||
1443 arg_type == ARG_CONST_SIZE_OR_ZERO) {
1444 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
17a52670 1445
17a52670
AS
1446 /* bpf_xxx(..., buf, len) call will access 'len' bytes
1447 * from stack pointer 'buf'. Check it
1448 * note: regno == len, regno - 1 == buf
1449 */
1450 if (regno == 0) {
1451 /* kernel subsystem misconfigured verifier */
61bd5218
JK
1452 verbose(env,
1453 "ARG_CONST_SIZE cannot be first argument\n");
17a52670
AS
1454 return -EACCES;
1455 }
06c1c049 1456
f1174f77
EC
1457 /* The register is SCALAR_VALUE; the access check
1458 * happens using its boundaries.
06c1c049 1459 */
f1174f77
EC
1460
1461 if (!tnum_is_const(reg->var_off))
06c1c049
GB
1462 /* For unprivileged variable accesses, disable raw
1463 * mode so that the program is required to
1464 * initialize all the memory that the helper could
1465 * just partially fill up.
1466 */
1467 meta = NULL;
1468
b03c9f9f 1469 if (reg->smin_value < 0) {
61bd5218 1470 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
f1174f77
EC
1471 regno);
1472 return -EACCES;
1473 }
06c1c049 1474
b03c9f9f 1475 if (reg->umin_value == 0) {
f1174f77
EC
1476 err = check_helper_mem_access(env, regno - 1, 0,
1477 zero_size_allowed,
1478 meta);
06c1c049
GB
1479 if (err)
1480 return err;
06c1c049 1481 }
f1174f77 1482
b03c9f9f 1483 if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
61bd5218 1484 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
f1174f77
EC
1485 regno);
1486 return -EACCES;
1487 }
1488 err = check_helper_mem_access(env, regno - 1,
b03c9f9f 1489 reg->umax_value,
f1174f77 1490 zero_size_allowed, meta);
17a52670
AS
1491 }
1492
1493 return err;
6841de8b 1494err_type:
61bd5218 1495 verbose(env, "R%d type=%s expected=%s\n", regno,
6841de8b
AS
1496 reg_type_str[type], reg_type_str[expected_type]);
1497 return -EACCES;
17a52670
AS
1498}
1499
61bd5218
JK
1500static int check_map_func_compatibility(struct bpf_verifier_env *env,
1501 struct bpf_map *map, int func_id)
35578d79 1502{
35578d79
KX
1503 if (!map)
1504 return 0;
1505
6aff67c8
AS
1506 /* We need a two way check, first is from map perspective ... */
1507 switch (map->map_type) {
1508 case BPF_MAP_TYPE_PROG_ARRAY:
1509 if (func_id != BPF_FUNC_tail_call)
1510 goto error;
1511 break;
1512 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
1513 if (func_id != BPF_FUNC_perf_event_read &&
908432ca
YS
1514 func_id != BPF_FUNC_perf_event_output &&
1515 func_id != BPF_FUNC_perf_event_read_value)
6aff67c8
AS
1516 goto error;
1517 break;
1518 case BPF_MAP_TYPE_STACK_TRACE:
1519 if (func_id != BPF_FUNC_get_stackid)
1520 goto error;
1521 break;
4ed8ec52 1522 case BPF_MAP_TYPE_CGROUP_ARRAY:
60747ef4 1523 if (func_id != BPF_FUNC_skb_under_cgroup &&
60d20f91 1524 func_id != BPF_FUNC_current_task_under_cgroup)
4a482f34
MKL
1525 goto error;
1526 break;
546ac1ff
JF
1527 /* devmap returns a pointer to a live net_device ifindex that we cannot
1528 * allow to be modified from bpf side. So do not allow lookup elements
1529 * for now.
1530 */
1531 case BPF_MAP_TYPE_DEVMAP:
2ddf71e2 1532 if (func_id != BPF_FUNC_redirect_map)
546ac1ff
JF
1533 goto error;
1534 break;
6710e112
JDB
1535 /* Restrict bpf side of cpumap, open when use-cases appear */
1536 case BPF_MAP_TYPE_CPUMAP:
1537 if (func_id != BPF_FUNC_redirect_map)
1538 goto error;
1539 break;
56f668df 1540 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
bcc6b1b7 1541 case BPF_MAP_TYPE_HASH_OF_MAPS:
56f668df
MKL
1542 if (func_id != BPF_FUNC_map_lookup_elem)
1543 goto error;
16a43625 1544 break;
174a79ff
JF
1545 case BPF_MAP_TYPE_SOCKMAP:
1546 if (func_id != BPF_FUNC_sk_redirect_map &&
1547 func_id != BPF_FUNC_sock_map_update &&
1548 func_id != BPF_FUNC_map_delete_elem)
1549 goto error;
1550 break;
6aff67c8
AS
1551 default:
1552 break;
1553 }
1554
1555 /* ... and second from the function itself. */
1556 switch (func_id) {
1557 case BPF_FUNC_tail_call:
1558 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
1559 goto error;
1560 break;
1561 case BPF_FUNC_perf_event_read:
1562 case BPF_FUNC_perf_event_output:
908432ca 1563 case BPF_FUNC_perf_event_read_value:
6aff67c8
AS
1564 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
1565 goto error;
1566 break;
1567 case BPF_FUNC_get_stackid:
1568 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
1569 goto error;
1570 break;
60d20f91 1571 case BPF_FUNC_current_task_under_cgroup:
747ea55e 1572 case BPF_FUNC_skb_under_cgroup:
4a482f34
MKL
1573 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
1574 goto error;
1575 break;
97f91a7c 1576 case BPF_FUNC_redirect_map:
9c270af3
JDB
1577 if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
1578 map->map_type != BPF_MAP_TYPE_CPUMAP)
97f91a7c
JF
1579 goto error;
1580 break;
174a79ff
JF
1581 case BPF_FUNC_sk_redirect_map:
1582 if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
1583 goto error;
1584 break;
1585 case BPF_FUNC_sock_map_update:
1586 if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
1587 goto error;
1588 break;
6aff67c8
AS
1589 default:
1590 break;
35578d79
KX
1591 }
1592
1593 return 0;
6aff67c8 1594error:
61bd5218 1595 verbose(env, "cannot pass map_type %d into func %s#%d\n",
ebb676da 1596 map->map_type, func_id_name(func_id), func_id);
6aff67c8 1597 return -EINVAL;
35578d79
KX
1598}
1599
435faee1
DB
1600static int check_raw_mode(const struct bpf_func_proto *fn)
1601{
1602 int count = 0;
1603
39f19ebb 1604 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 1605 count++;
39f19ebb 1606 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 1607 count++;
39f19ebb 1608 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 1609 count++;
39f19ebb 1610 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 1611 count++;
39f19ebb 1612 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
435faee1
DB
1613 count++;
1614
1615 return count > 1 ? -EINVAL : 0;
1616}
1617
de8f3a83
DB
1618/* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
1619 * are now invalid, so turn them into unknown SCALAR_VALUE.
f1174f77 1620 */
58e2af8b 1621static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
969bf05e 1622{
638f5b90 1623 struct bpf_verifier_state *state = env->cur_state;
58e2af8b 1624 struct bpf_reg_state *regs = state->regs, *reg;
969bf05e
AS
1625 int i;
1626
1627 for (i = 0; i < MAX_BPF_REG; i++)
de8f3a83 1628 if (reg_is_pkt_pointer_any(&regs[i]))
61bd5218 1629 mark_reg_unknown(env, regs, i);
969bf05e 1630
638f5b90
AS
1631 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
1632 if (state->stack[i].slot_type[0] != STACK_SPILL)
969bf05e 1633 continue;
638f5b90 1634 reg = &state->stack[i].spilled_ptr;
de8f3a83
DB
1635 if (reg_is_pkt_pointer_any(reg))
1636 __mark_reg_unknown(reg);
969bf05e
AS
1637 }
1638}
1639
81ed18ab 1640static int check_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
17a52670 1641{
17a52670 1642 const struct bpf_func_proto *fn = NULL;
638f5b90 1643 struct bpf_reg_state *regs;
33ff9823 1644 struct bpf_call_arg_meta meta;
969bf05e 1645 bool changes_data;
17a52670
AS
1646 int i, err;
1647
1648 /* find function prototype */
1649 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
61bd5218
JK
1650 verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
1651 func_id);
17a52670
AS
1652 return -EINVAL;
1653 }
1654
00176a34
JK
1655 if (env->ops->get_func_proto)
1656 fn = env->ops->get_func_proto(func_id);
17a52670
AS
1657
1658 if (!fn) {
61bd5218
JK
1659 verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
1660 func_id);
17a52670
AS
1661 return -EINVAL;
1662 }
1663
1664 /* eBPF programs must be GPL compatible to use GPL-ed functions */
24701ece 1665 if (!env->prog->gpl_compatible && fn->gpl_only) {
61bd5218 1666 verbose(env, "cannot call GPL only function from proprietary program\n");
17a52670
AS
1667 return -EINVAL;
1668 }
1669
17bedab2 1670 changes_data = bpf_helper_changes_pkt_data(fn->func);
969bf05e 1671
33ff9823 1672 memset(&meta, 0, sizeof(meta));
36bbef52 1673 meta.pkt_access = fn->pkt_access;
33ff9823 1674
435faee1
DB
1675 /* We only support one arg being in raw mode at the moment, which
1676 * is sufficient for the helper functions we have right now.
1677 */
1678 err = check_raw_mode(fn);
1679 if (err) {
61bd5218 1680 verbose(env, "kernel subsystem misconfigured func %s#%d\n",
ebb676da 1681 func_id_name(func_id), func_id);
435faee1
DB
1682 return err;
1683 }
1684
17a52670 1685 /* check args */
33ff9823 1686 err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
17a52670
AS
1687 if (err)
1688 return err;
33ff9823 1689 err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
17a52670
AS
1690 if (err)
1691 return err;
33ff9823 1692 err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
17a52670
AS
1693 if (err)
1694 return err;
33ff9823 1695 err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
17a52670
AS
1696 if (err)
1697 return err;
33ff9823 1698 err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
17a52670
AS
1699 if (err)
1700 return err;
1701
435faee1
DB
1702 /* Mark slots with STACK_MISC in case of raw mode, stack offset
1703 * is inferred from register state.
1704 */
1705 for (i = 0; i < meta.access_size; i++) {
31fd8581 1706 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, BPF_WRITE, -1);
435faee1
DB
1707 if (err)
1708 return err;
1709 }
1710
638f5b90 1711 regs = cur_regs(env);
17a52670 1712 /* reset caller saved regs */
dc503a8a 1713 for (i = 0; i < CALLER_SAVED_REGS; i++) {
61bd5218 1714 mark_reg_not_init(env, regs, caller_saved[i]);
dc503a8a
EC
1715 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
1716 }
17a52670 1717
dc503a8a 1718 /* update return register (already marked as written above) */
17a52670 1719 if (fn->ret_type == RET_INTEGER) {
f1174f77 1720 /* sets type to SCALAR_VALUE */
61bd5218 1721 mark_reg_unknown(env, regs, BPF_REG_0);
17a52670
AS
1722 } else if (fn->ret_type == RET_VOID) {
1723 regs[BPF_REG_0].type = NOT_INIT;
1724 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) {
fad73a1a
MKL
1725 struct bpf_insn_aux_data *insn_aux;
1726
17a52670 1727 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
f1174f77 1728 /* There is no offset yet applied, variable or fixed */
61bd5218 1729 mark_reg_known_zero(env, regs, BPF_REG_0);
f1174f77 1730 regs[BPF_REG_0].off = 0;
17a52670
AS
1731 /* remember map_ptr, so that check_map_access()
1732 * can check 'value_size' boundary of memory access
1733 * to map element returned from bpf_map_lookup_elem()
1734 */
33ff9823 1735 if (meta.map_ptr == NULL) {
61bd5218
JK
1736 verbose(env,
1737 "kernel subsystem misconfigured verifier\n");
17a52670
AS
1738 return -EINVAL;
1739 }
33ff9823 1740 regs[BPF_REG_0].map_ptr = meta.map_ptr;
57a09bf0 1741 regs[BPF_REG_0].id = ++env->id_gen;
fad73a1a
MKL
1742 insn_aux = &env->insn_aux_data[insn_idx];
1743 if (!insn_aux->map_ptr)
1744 insn_aux->map_ptr = meta.map_ptr;
1745 else if (insn_aux->map_ptr != meta.map_ptr)
1746 insn_aux->map_ptr = BPF_MAP_PTR_POISON;
17a52670 1747 } else {
61bd5218 1748 verbose(env, "unknown return type %d of func %s#%d\n",
ebb676da 1749 fn->ret_type, func_id_name(func_id), func_id);
17a52670
AS
1750 return -EINVAL;
1751 }
04fd61ab 1752
61bd5218 1753 err = check_map_func_compatibility(env, meta.map_ptr, func_id);
35578d79
KX
1754 if (err)
1755 return err;
04fd61ab 1756
969bf05e
AS
1757 if (changes_data)
1758 clear_all_pkt_pointers(env);
1759 return 0;
1760}
1761
f1174f77
EC
1762static void coerce_reg_to_32(struct bpf_reg_state *reg)
1763{
f1174f77
EC
1764 /* clear high 32 bits */
1765 reg->var_off = tnum_cast(reg->var_off, 4);
b03c9f9f
EC
1766 /* Update bounds */
1767 __update_reg_bounds(reg);
1768}
1769
1770static bool signed_add_overflows(s64 a, s64 b)
1771{
1772 /* Do the add in u64, where overflow is well-defined */
1773 s64 res = (s64)((u64)a + (u64)b);
1774
1775 if (b < 0)
1776 return res > a;
1777 return res < a;
1778}
1779
1780static bool signed_sub_overflows(s64 a, s64 b)
1781{
1782 /* Do the sub in u64, where overflow is well-defined */
1783 s64 res = (s64)((u64)a - (u64)b);
1784
1785 if (b < 0)
1786 return res < a;
1787 return res > a;
969bf05e
AS
1788}
1789
f1174f77 1790/* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
f1174f77
EC
1791 * Caller should also handle BPF_MOV case separately.
1792 * If we return -EACCES, caller may want to try again treating pointer as a
1793 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks.
1794 */
1795static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
1796 struct bpf_insn *insn,
1797 const struct bpf_reg_state *ptr_reg,
1798 const struct bpf_reg_state *off_reg)
969bf05e 1799{
638f5b90 1800 struct bpf_reg_state *regs = cur_regs(env), *dst_reg;
f1174f77 1801 bool known = tnum_is_const(off_reg->var_off);
b03c9f9f
EC
1802 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
1803 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
1804 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
1805 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
969bf05e 1806 u8 opcode = BPF_OP(insn->code);
f1174f77 1807 u32 dst = insn->dst_reg;
969bf05e 1808
f1174f77 1809 dst_reg = &regs[dst];
969bf05e 1810
b03c9f9f 1811 if (WARN_ON_ONCE(known && (smin_val != smax_val))) {
638f5b90 1812 print_verifier_state(env, env->cur_state);
61bd5218
JK
1813 verbose(env,
1814 "verifier internal error: known but bad sbounds\n");
b03c9f9f
EC
1815 return -EINVAL;
1816 }
1817 if (WARN_ON_ONCE(known && (umin_val != umax_val))) {
638f5b90 1818 print_verifier_state(env, env->cur_state);
61bd5218
JK
1819 verbose(env,
1820 "verifier internal error: known but bad ubounds\n");
f1174f77
EC
1821 return -EINVAL;
1822 }
1823
1824 if (BPF_CLASS(insn->code) != BPF_ALU64) {
1825 /* 32-bit ALU ops on pointers produce (meaningless) scalars */
1826 if (!env->allow_ptr_leaks)
61bd5218
JK
1827 verbose(env,
1828 "R%d 32-bit pointer arithmetic prohibited\n",
f1174f77
EC
1829 dst);
1830 return -EACCES;
969bf05e
AS
1831 }
1832
f1174f77
EC
1833 if (ptr_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
1834 if (!env->allow_ptr_leaks)
61bd5218 1835 verbose(env, "R%d pointer arithmetic on PTR_TO_MAP_VALUE_OR_NULL prohibited, null-check it first\n",
f1174f77
EC
1836 dst);
1837 return -EACCES;
1838 }
1839 if (ptr_reg->type == CONST_PTR_TO_MAP) {
1840 if (!env->allow_ptr_leaks)
61bd5218 1841 verbose(env, "R%d pointer arithmetic on CONST_PTR_TO_MAP prohibited\n",
f1174f77
EC
1842 dst);
1843 return -EACCES;
1844 }
1845 if (ptr_reg->type == PTR_TO_PACKET_END) {
1846 if (!env->allow_ptr_leaks)
61bd5218 1847 verbose(env, "R%d pointer arithmetic on PTR_TO_PACKET_END prohibited\n",
f1174f77
EC
1848 dst);
1849 return -EACCES;
1850 }
1851
1852 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
1853 * The id may be overwritten later if we create a new variable offset.
969bf05e 1854 */
f1174f77
EC
1855 dst_reg->type = ptr_reg->type;
1856 dst_reg->id = ptr_reg->id;
969bf05e 1857
f1174f77
EC
1858 switch (opcode) {
1859 case BPF_ADD:
1860 /* We can take a fixed offset as long as it doesn't overflow
1861 * the s32 'off' field
969bf05e 1862 */
b03c9f9f
EC
1863 if (known && (ptr_reg->off + smin_val ==
1864 (s64)(s32)(ptr_reg->off + smin_val))) {
f1174f77 1865 /* pointer += K. Accumulate it into fixed offset */
b03c9f9f
EC
1866 dst_reg->smin_value = smin_ptr;
1867 dst_reg->smax_value = smax_ptr;
1868 dst_reg->umin_value = umin_ptr;
1869 dst_reg->umax_value = umax_ptr;
f1174f77 1870 dst_reg->var_off = ptr_reg->var_off;
b03c9f9f 1871 dst_reg->off = ptr_reg->off + smin_val;
f1174f77
EC
1872 dst_reg->range = ptr_reg->range;
1873 break;
1874 }
f1174f77
EC
1875 /* A new variable offset is created. Note that off_reg->off
1876 * == 0, since it's a scalar.
1877 * dst_reg gets the pointer type and since some positive
1878 * integer value was added to the pointer, give it a new 'id'
1879 * if it's a PTR_TO_PACKET.
1880 * this creates a new 'base' pointer, off_reg (variable) gets
1881 * added into the variable offset, and we copy the fixed offset
1882 * from ptr_reg.
969bf05e 1883 */
b03c9f9f
EC
1884 if (signed_add_overflows(smin_ptr, smin_val) ||
1885 signed_add_overflows(smax_ptr, smax_val)) {
1886 dst_reg->smin_value = S64_MIN;
1887 dst_reg->smax_value = S64_MAX;
1888 } else {
1889 dst_reg->smin_value = smin_ptr + smin_val;
1890 dst_reg->smax_value = smax_ptr + smax_val;
1891 }
1892 if (umin_ptr + umin_val < umin_ptr ||
1893 umax_ptr + umax_val < umax_ptr) {
1894 dst_reg->umin_value = 0;
1895 dst_reg->umax_value = U64_MAX;
1896 } else {
1897 dst_reg->umin_value = umin_ptr + umin_val;
1898 dst_reg->umax_value = umax_ptr + umax_val;
1899 }
f1174f77
EC
1900 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
1901 dst_reg->off = ptr_reg->off;
de8f3a83 1902 if (reg_is_pkt_pointer(ptr_reg)) {
f1174f77
EC
1903 dst_reg->id = ++env->id_gen;
1904 /* something was added to pkt_ptr, set range to zero */
1905 dst_reg->range = 0;
1906 }
1907 break;
1908 case BPF_SUB:
1909 if (dst_reg == off_reg) {
1910 /* scalar -= pointer. Creates an unknown scalar */
1911 if (!env->allow_ptr_leaks)
61bd5218 1912 verbose(env, "R%d tried to subtract pointer from scalar\n",
f1174f77
EC
1913 dst);
1914 return -EACCES;
1915 }
1916 /* We don't allow subtraction from FP, because (according to
1917 * test_verifier.c test "invalid fp arithmetic", JITs might not
1918 * be able to deal with it.
969bf05e 1919 */
f1174f77
EC
1920 if (ptr_reg->type == PTR_TO_STACK) {
1921 if (!env->allow_ptr_leaks)
61bd5218 1922 verbose(env, "R%d subtraction from stack pointer prohibited\n",
f1174f77
EC
1923 dst);
1924 return -EACCES;
1925 }
b03c9f9f
EC
1926 if (known && (ptr_reg->off - smin_val ==
1927 (s64)(s32)(ptr_reg->off - smin_val))) {
f1174f77 1928 /* pointer -= K. Subtract it from fixed offset */
b03c9f9f
EC
1929 dst_reg->smin_value = smin_ptr;
1930 dst_reg->smax_value = smax_ptr;
1931 dst_reg->umin_value = umin_ptr;
1932 dst_reg->umax_value = umax_ptr;
f1174f77
EC
1933 dst_reg->var_off = ptr_reg->var_off;
1934 dst_reg->id = ptr_reg->id;
b03c9f9f 1935 dst_reg->off = ptr_reg->off - smin_val;
f1174f77
EC
1936 dst_reg->range = ptr_reg->range;
1937 break;
1938 }
f1174f77
EC
1939 /* A new variable offset is created. If the subtrahend is known
1940 * nonnegative, then any reg->range we had before is still good.
969bf05e 1941 */
b03c9f9f
EC
1942 if (signed_sub_overflows(smin_ptr, smax_val) ||
1943 signed_sub_overflows(smax_ptr, smin_val)) {
1944 /* Overflow possible, we know nothing */
1945 dst_reg->smin_value = S64_MIN;
1946 dst_reg->smax_value = S64_MAX;
1947 } else {
1948 dst_reg->smin_value = smin_ptr - smax_val;
1949 dst_reg->smax_value = smax_ptr - smin_val;
1950 }
1951 if (umin_ptr < umax_val) {
1952 /* Overflow possible, we know nothing */
1953 dst_reg->umin_value = 0;
1954 dst_reg->umax_value = U64_MAX;
1955 } else {
1956 /* Cannot overflow (as long as bounds are consistent) */
1957 dst_reg->umin_value = umin_ptr - umax_val;
1958 dst_reg->umax_value = umax_ptr - umin_val;
1959 }
f1174f77
EC
1960 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
1961 dst_reg->off = ptr_reg->off;
de8f3a83 1962 if (reg_is_pkt_pointer(ptr_reg)) {
f1174f77
EC
1963 dst_reg->id = ++env->id_gen;
1964 /* something was added to pkt_ptr, set range to zero */
b03c9f9f 1965 if (smin_val < 0)
f1174f77 1966 dst_reg->range = 0;
43188702 1967 }
f1174f77
EC
1968 break;
1969 case BPF_AND:
1970 case BPF_OR:
1971 case BPF_XOR:
1972 /* bitwise ops on pointers are troublesome, prohibit for now.
1973 * (However, in principle we could allow some cases, e.g.
1974 * ptr &= ~3 which would reduce min_value by 3.)
1975 */
1976 if (!env->allow_ptr_leaks)
61bd5218 1977 verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
f1174f77
EC
1978 dst, bpf_alu_string[opcode >> 4]);
1979 return -EACCES;
1980 default:
1981 /* other operators (e.g. MUL,LSH) produce non-pointer results */
1982 if (!env->allow_ptr_leaks)
61bd5218 1983 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
f1174f77
EC
1984 dst, bpf_alu_string[opcode >> 4]);
1985 return -EACCES;
43188702
JF
1986 }
1987
b03c9f9f
EC
1988 __update_reg_bounds(dst_reg);
1989 __reg_deduce_bounds(dst_reg);
1990 __reg_bound_offset(dst_reg);
43188702
JF
1991 return 0;
1992}
1993
f1174f77
EC
1994static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
1995 struct bpf_insn *insn,
1996 struct bpf_reg_state *dst_reg,
1997 struct bpf_reg_state src_reg)
969bf05e 1998{
638f5b90 1999 struct bpf_reg_state *regs = cur_regs(env);
48461135 2000 u8 opcode = BPF_OP(insn->code);
f1174f77 2001 bool src_known, dst_known;
b03c9f9f
EC
2002 s64 smin_val, smax_val;
2003 u64 umin_val, umax_val;
48461135 2004
f1174f77
EC
2005 if (BPF_CLASS(insn->code) != BPF_ALU64) {
2006 /* 32-bit ALU ops are (32,32)->64 */
2007 coerce_reg_to_32(dst_reg);
2008 coerce_reg_to_32(&src_reg);
9305706c 2009 }
b03c9f9f
EC
2010 smin_val = src_reg.smin_value;
2011 smax_val = src_reg.smax_value;
2012 umin_val = src_reg.umin_value;
2013 umax_val = src_reg.umax_value;
f1174f77
EC
2014 src_known = tnum_is_const(src_reg.var_off);
2015 dst_known = tnum_is_const(dst_reg->var_off);
f23cc643 2016
48461135
JB
2017 switch (opcode) {
2018 case BPF_ADD:
b03c9f9f
EC
2019 if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
2020 signed_add_overflows(dst_reg->smax_value, smax_val)) {
2021 dst_reg->smin_value = S64_MIN;
2022 dst_reg->smax_value = S64_MAX;
2023 } else {
2024 dst_reg->smin_value += smin_val;
2025 dst_reg->smax_value += smax_val;
2026 }
2027 if (dst_reg->umin_value + umin_val < umin_val ||
2028 dst_reg->umax_value + umax_val < umax_val) {
2029 dst_reg->umin_value = 0;
2030 dst_reg->umax_value = U64_MAX;
2031 } else {
2032 dst_reg->umin_value += umin_val;
2033 dst_reg->umax_value += umax_val;
2034 }
f1174f77 2035 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
48461135
JB
2036 break;
2037 case BPF_SUB:
b03c9f9f
EC
2038 if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
2039 signed_sub_overflows(dst_reg->smax_value, smin_val)) {
2040 /* Overflow possible, we know nothing */
2041 dst_reg->smin_value = S64_MIN;
2042 dst_reg->smax_value = S64_MAX;
2043 } else {
2044 dst_reg->smin_value -= smax_val;
2045 dst_reg->smax_value -= smin_val;
2046 }
2047 if (dst_reg->umin_value < umax_val) {
2048 /* Overflow possible, we know nothing */
2049 dst_reg->umin_value = 0;
2050 dst_reg->umax_value = U64_MAX;
2051 } else {
2052 /* Cannot overflow (as long as bounds are consistent) */
2053 dst_reg->umin_value -= umax_val;
2054 dst_reg->umax_value -= umin_val;
2055 }
f1174f77 2056 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
48461135
JB
2057 break;
2058 case BPF_MUL:
b03c9f9f
EC
2059 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
2060 if (smin_val < 0 || dst_reg->smin_value < 0) {
f1174f77 2061 /* Ain't nobody got time to multiply that sign */
b03c9f9f
EC
2062 __mark_reg_unbounded(dst_reg);
2063 __update_reg_bounds(dst_reg);
f1174f77
EC
2064 break;
2065 }
b03c9f9f
EC
2066 /* Both values are positive, so we can work with unsigned and
2067 * copy the result to signed (unless it exceeds S64_MAX).
f1174f77 2068 */
b03c9f9f
EC
2069 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
2070 /* Potential overflow, we know nothing */
2071 __mark_reg_unbounded(dst_reg);
2072 /* (except what we can learn from the var_off) */
2073 __update_reg_bounds(dst_reg);
2074 break;
2075 }
2076 dst_reg->umin_value *= umin_val;
2077 dst_reg->umax_value *= umax_val;
2078 if (dst_reg->umax_value > S64_MAX) {
2079 /* Overflow possible, we know nothing */
2080 dst_reg->smin_value = S64_MIN;
2081 dst_reg->smax_value = S64_MAX;
2082 } else {
2083 dst_reg->smin_value = dst_reg->umin_value;
2084 dst_reg->smax_value = dst_reg->umax_value;
2085 }
48461135
JB
2086 break;
2087 case BPF_AND:
f1174f77 2088 if (src_known && dst_known) {
b03c9f9f
EC
2089 __mark_reg_known(dst_reg, dst_reg->var_off.value &
2090 src_reg.var_off.value);
f1174f77
EC
2091 break;
2092 }
b03c9f9f
EC
2093 /* We get our minimum from the var_off, since that's inherently
2094 * bitwise. Our maximum is the minimum of the operands' maxima.
f23cc643 2095 */
f1174f77 2096 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
b03c9f9f
EC
2097 dst_reg->umin_value = dst_reg->var_off.value;
2098 dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
2099 if (dst_reg->smin_value < 0 || smin_val < 0) {
2100 /* Lose signed bounds when ANDing negative numbers,
2101 * ain't nobody got time for that.
2102 */
2103 dst_reg->smin_value = S64_MIN;
2104 dst_reg->smax_value = S64_MAX;
2105 } else {
2106 /* ANDing two positives gives a positive, so safe to
2107 * cast result into s64.
2108 */
2109 dst_reg->smin_value = dst_reg->umin_value;
2110 dst_reg->smax_value = dst_reg->umax_value;
2111 }
2112 /* We may learn something more from the var_off */
2113 __update_reg_bounds(dst_reg);
f1174f77
EC
2114 break;
2115 case BPF_OR:
2116 if (src_known && dst_known) {
b03c9f9f
EC
2117 __mark_reg_known(dst_reg, dst_reg->var_off.value |
2118 src_reg.var_off.value);
f1174f77
EC
2119 break;
2120 }
b03c9f9f
EC
2121 /* We get our maximum from the var_off, and our minimum is the
2122 * maximum of the operands' minima
f1174f77
EC
2123 */
2124 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
b03c9f9f
EC
2125 dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
2126 dst_reg->umax_value = dst_reg->var_off.value |
2127 dst_reg->var_off.mask;
2128 if (dst_reg->smin_value < 0 || smin_val < 0) {
2129 /* Lose signed bounds when ORing negative numbers,
2130 * ain't nobody got time for that.
2131 */
2132 dst_reg->smin_value = S64_MIN;
2133 dst_reg->smax_value = S64_MAX;
f1174f77 2134 } else {
b03c9f9f
EC
2135 /* ORing two positives gives a positive, so safe to
2136 * cast result into s64.
2137 */
2138 dst_reg->smin_value = dst_reg->umin_value;
2139 dst_reg->smax_value = dst_reg->umax_value;
f1174f77 2140 }
b03c9f9f
EC
2141 /* We may learn something more from the var_off */
2142 __update_reg_bounds(dst_reg);
48461135
JB
2143 break;
2144 case BPF_LSH:
b03c9f9f
EC
2145 if (umax_val > 63) {
2146 /* Shifts greater than 63 are undefined. This includes
2147 * shifts by a negative number.
2148 */
61bd5218 2149 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77
EC
2150 break;
2151 }
b03c9f9f
EC
2152 /* We lose all sign bit information (except what we can pick
2153 * up from var_off)
48461135 2154 */
b03c9f9f
EC
2155 dst_reg->smin_value = S64_MIN;
2156 dst_reg->smax_value = S64_MAX;
2157 /* If we might shift our top bit out, then we know nothing */
2158 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
2159 dst_reg->umin_value = 0;
2160 dst_reg->umax_value = U64_MAX;
d1174416 2161 } else {
b03c9f9f
EC
2162 dst_reg->umin_value <<= umin_val;
2163 dst_reg->umax_value <<= umax_val;
d1174416 2164 }
b03c9f9f
EC
2165 if (src_known)
2166 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
2167 else
2168 dst_reg->var_off = tnum_lshift(tnum_unknown, umin_val);
2169 /* We may learn something more from the var_off */
2170 __update_reg_bounds(dst_reg);
48461135
JB
2171 break;
2172 case BPF_RSH:
b03c9f9f
EC
2173 if (umax_val > 63) {
2174 /* Shifts greater than 63 are undefined. This includes
2175 * shifts by a negative number.
2176 */
61bd5218 2177 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77
EC
2178 break;
2179 }
2180 /* BPF_RSH is an unsigned shift, so make the appropriate casts */
b03c9f9f
EC
2181 if (dst_reg->smin_value < 0) {
2182 if (umin_val) {
f1174f77 2183 /* Sign bit will be cleared */
b03c9f9f
EC
2184 dst_reg->smin_value = 0;
2185 } else {
2186 /* Lost sign bit information */
2187 dst_reg->smin_value = S64_MIN;
2188 dst_reg->smax_value = S64_MAX;
2189 }
d1174416 2190 } else {
b03c9f9f
EC
2191 dst_reg->smin_value =
2192 (u64)(dst_reg->smin_value) >> umax_val;
d1174416 2193 }
f1174f77 2194 if (src_known)
b03c9f9f
EC
2195 dst_reg->var_off = tnum_rshift(dst_reg->var_off,
2196 umin_val);
f1174f77 2197 else
b03c9f9f
EC
2198 dst_reg->var_off = tnum_rshift(tnum_unknown, umin_val);
2199 dst_reg->umin_value >>= umax_val;
2200 dst_reg->umax_value >>= umin_val;
2201 /* We may learn something more from the var_off */
2202 __update_reg_bounds(dst_reg);
48461135
JB
2203 break;
2204 default:
61bd5218 2205 mark_reg_unknown(env, regs, insn->dst_reg);
48461135
JB
2206 break;
2207 }
2208
b03c9f9f
EC
2209 __reg_deduce_bounds(dst_reg);
2210 __reg_bound_offset(dst_reg);
f1174f77
EC
2211 return 0;
2212}
2213
2214/* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
2215 * and var_off.
2216 */
2217static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
2218 struct bpf_insn *insn)
2219{
638f5b90 2220 struct bpf_reg_state *regs = cur_regs(env), *dst_reg, *src_reg;
f1174f77
EC
2221 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
2222 u8 opcode = BPF_OP(insn->code);
2223 int rc;
2224
2225 dst_reg = &regs[insn->dst_reg];
f1174f77
EC
2226 src_reg = NULL;
2227 if (dst_reg->type != SCALAR_VALUE)
2228 ptr_reg = dst_reg;
2229 if (BPF_SRC(insn->code) == BPF_X) {
2230 src_reg = &regs[insn->src_reg];
f1174f77
EC
2231 if (src_reg->type != SCALAR_VALUE) {
2232 if (dst_reg->type != SCALAR_VALUE) {
2233 /* Combining two pointers by any ALU op yields
2234 * an arbitrary scalar.
2235 */
2236 if (!env->allow_ptr_leaks) {
61bd5218 2237 verbose(env, "R%d pointer %s pointer prohibited\n",
f1174f77
EC
2238 insn->dst_reg,
2239 bpf_alu_string[opcode >> 4]);
2240 return -EACCES;
2241 }
61bd5218 2242 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77
EC
2243 return 0;
2244 } else {
2245 /* scalar += pointer
2246 * This is legal, but we have to reverse our
2247 * src/dest handling in computing the range
2248 */
2249 rc = adjust_ptr_min_max_vals(env, insn,
2250 src_reg, dst_reg);
2251 if (rc == -EACCES && env->allow_ptr_leaks) {
2252 /* scalar += unknown scalar */
2253 __mark_reg_unknown(&off_reg);
2254 return adjust_scalar_min_max_vals(
2255 env, insn,
2256 dst_reg, off_reg);
2257 }
2258 return rc;
2259 }
2260 } else if (ptr_reg) {
2261 /* pointer += scalar */
2262 rc = adjust_ptr_min_max_vals(env, insn,
2263 dst_reg, src_reg);
2264 if (rc == -EACCES && env->allow_ptr_leaks) {
2265 /* unknown scalar += scalar */
2266 __mark_reg_unknown(dst_reg);
2267 return adjust_scalar_min_max_vals(
2268 env, insn, dst_reg, *src_reg);
2269 }
2270 return rc;
2271 }
2272 } else {
2273 /* Pretend the src is a reg with a known value, since we only
2274 * need to be able to read from this state.
2275 */
2276 off_reg.type = SCALAR_VALUE;
b03c9f9f 2277 __mark_reg_known(&off_reg, insn->imm);
f1174f77 2278 src_reg = &off_reg;
f1174f77
EC
2279 if (ptr_reg) { /* pointer += K */
2280 rc = adjust_ptr_min_max_vals(env, insn,
2281 ptr_reg, src_reg);
2282 if (rc == -EACCES && env->allow_ptr_leaks) {
2283 /* unknown scalar += K */
2284 __mark_reg_unknown(dst_reg);
2285 return adjust_scalar_min_max_vals(
2286 env, insn, dst_reg, off_reg);
2287 }
2288 return rc;
2289 }
2290 }
2291
2292 /* Got here implies adding two SCALAR_VALUEs */
2293 if (WARN_ON_ONCE(ptr_reg)) {
638f5b90 2294 print_verifier_state(env, env->cur_state);
61bd5218 2295 verbose(env, "verifier internal error: unexpected ptr_reg\n");
f1174f77
EC
2296 return -EINVAL;
2297 }
2298 if (WARN_ON(!src_reg)) {
638f5b90 2299 print_verifier_state(env, env->cur_state);
61bd5218 2300 verbose(env, "verifier internal error: no src_reg\n");
f1174f77
EC
2301 return -EINVAL;
2302 }
2303 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
48461135
JB
2304}
2305
17a52670 2306/* check validity of 32-bit and 64-bit arithmetic operations */
58e2af8b 2307static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 2308{
638f5b90 2309 struct bpf_reg_state *regs = cur_regs(env);
17a52670
AS
2310 u8 opcode = BPF_OP(insn->code);
2311 int err;
2312
2313 if (opcode == BPF_END || opcode == BPF_NEG) {
2314 if (opcode == BPF_NEG) {
2315 if (BPF_SRC(insn->code) != 0 ||
2316 insn->src_reg != BPF_REG_0 ||
2317 insn->off != 0 || insn->imm != 0) {
61bd5218 2318 verbose(env, "BPF_NEG uses reserved fields\n");
17a52670
AS
2319 return -EINVAL;
2320 }
2321 } else {
2322 if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
e67b8a68
EC
2323 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
2324 BPF_CLASS(insn->code) == BPF_ALU64) {
61bd5218 2325 verbose(env, "BPF_END uses reserved fields\n");
17a52670
AS
2326 return -EINVAL;
2327 }
2328 }
2329
2330 /* check src operand */
dc503a8a 2331 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
2332 if (err)
2333 return err;
2334
1be7f75d 2335 if (is_pointer_value(env, insn->dst_reg)) {
61bd5218 2336 verbose(env, "R%d pointer arithmetic prohibited\n",
1be7f75d
AS
2337 insn->dst_reg);
2338 return -EACCES;
2339 }
2340
17a52670 2341 /* check dest operand */
dc503a8a 2342 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
2343 if (err)
2344 return err;
2345
2346 } else if (opcode == BPF_MOV) {
2347
2348 if (BPF_SRC(insn->code) == BPF_X) {
2349 if (insn->imm != 0 || insn->off != 0) {
61bd5218 2350 verbose(env, "BPF_MOV uses reserved fields\n");
17a52670
AS
2351 return -EINVAL;
2352 }
2353
2354 /* check src operand */
dc503a8a 2355 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
2356 if (err)
2357 return err;
2358 } else {
2359 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
61bd5218 2360 verbose(env, "BPF_MOV uses reserved fields\n");
17a52670
AS
2361 return -EINVAL;
2362 }
2363 }
2364
2365 /* check dest operand */
dc503a8a 2366 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
2367 if (err)
2368 return err;
2369
2370 if (BPF_SRC(insn->code) == BPF_X) {
2371 if (BPF_CLASS(insn->code) == BPF_ALU64) {
2372 /* case: R1 = R2
2373 * copy register state to dest reg
2374 */
2375 regs[insn->dst_reg] = regs[insn->src_reg];
8fe2d6cc 2376 regs[insn->dst_reg].live |= REG_LIVE_WRITTEN;
17a52670 2377 } else {
f1174f77 2378 /* R1 = (u32) R2 */
1be7f75d 2379 if (is_pointer_value(env, insn->src_reg)) {
61bd5218
JK
2380 verbose(env,
2381 "R%d partial copy of pointer\n",
1be7f75d
AS
2382 insn->src_reg);
2383 return -EACCES;
2384 }
61bd5218 2385 mark_reg_unknown(env, regs, insn->dst_reg);
b03c9f9f 2386 /* high 32 bits are known zero. */
f1174f77
EC
2387 regs[insn->dst_reg].var_off = tnum_cast(
2388 regs[insn->dst_reg].var_off, 4);
b03c9f9f 2389 __update_reg_bounds(&regs[insn->dst_reg]);
17a52670
AS
2390 }
2391 } else {
2392 /* case: R = imm
2393 * remember the value we stored into this reg
2394 */
f1174f77 2395 regs[insn->dst_reg].type = SCALAR_VALUE;
b03c9f9f 2396 __mark_reg_known(regs + insn->dst_reg, insn->imm);
17a52670
AS
2397 }
2398
2399 } else if (opcode > BPF_END) {
61bd5218 2400 verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
17a52670
AS
2401 return -EINVAL;
2402
2403 } else { /* all other ALU ops: and, sub, xor, add, ... */
2404
17a52670
AS
2405 if (BPF_SRC(insn->code) == BPF_X) {
2406 if (insn->imm != 0 || insn->off != 0) {
61bd5218 2407 verbose(env, "BPF_ALU uses reserved fields\n");
17a52670
AS
2408 return -EINVAL;
2409 }
2410 /* check src1 operand */
dc503a8a 2411 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
2412 if (err)
2413 return err;
2414 } else {
2415 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
61bd5218 2416 verbose(env, "BPF_ALU uses reserved fields\n");
17a52670
AS
2417 return -EINVAL;
2418 }
2419 }
2420
2421 /* check src2 operand */
dc503a8a 2422 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
2423 if (err)
2424 return err;
2425
2426 if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
2427 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
61bd5218 2428 verbose(env, "div by zero\n");
17a52670
AS
2429 return -EINVAL;
2430 }
2431
229394e8
RV
2432 if ((opcode == BPF_LSH || opcode == BPF_RSH ||
2433 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
2434 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
2435
2436 if (insn->imm < 0 || insn->imm >= size) {
61bd5218 2437 verbose(env, "invalid shift %d\n", insn->imm);
229394e8
RV
2438 return -EINVAL;
2439 }
2440 }
2441
1a0dc1ac 2442 /* check dest operand */
dc503a8a 2443 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
1a0dc1ac
AS
2444 if (err)
2445 return err;
2446
f1174f77 2447 return adjust_reg_min_max_vals(env, insn);
17a52670
AS
2448 }
2449
2450 return 0;
2451}
2452
58e2af8b 2453static void find_good_pkt_pointers(struct bpf_verifier_state *state,
de8f3a83 2454 struct bpf_reg_state *dst_reg,
f8ddadc4 2455 enum bpf_reg_type type,
fb2a311a 2456 bool range_right_open)
969bf05e 2457{
58e2af8b 2458 struct bpf_reg_state *regs = state->regs, *reg;
fb2a311a 2459 u16 new_range;
969bf05e 2460 int i;
2d2be8ca 2461
fb2a311a
DB
2462 if (dst_reg->off < 0 ||
2463 (dst_reg->off == 0 && range_right_open))
f1174f77
EC
2464 /* This doesn't give us any range */
2465 return;
2466
b03c9f9f
EC
2467 if (dst_reg->umax_value > MAX_PACKET_OFF ||
2468 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
f1174f77
EC
2469 /* Risk of overflow. For instance, ptr + (1<<63) may be less
2470 * than pkt_end, but that's because it's also less than pkt.
2471 */
2472 return;
2473
fb2a311a
DB
2474 new_range = dst_reg->off;
2475 if (range_right_open)
2476 new_range--;
2477
2478 /* Examples for register markings:
2d2be8ca 2479 *
fb2a311a 2480 * pkt_data in dst register:
2d2be8ca
DB
2481 *
2482 * r2 = r3;
2483 * r2 += 8;
2484 * if (r2 > pkt_end) goto <handle exception>
2485 * <access okay>
2486 *
b4e432f1
DB
2487 * r2 = r3;
2488 * r2 += 8;
2489 * if (r2 < pkt_end) goto <access okay>
2490 * <handle exception>
2491 *
2d2be8ca
DB
2492 * Where:
2493 * r2 == dst_reg, pkt_end == src_reg
2494 * r2=pkt(id=n,off=8,r=0)
2495 * r3=pkt(id=n,off=0,r=0)
2496 *
fb2a311a 2497 * pkt_data in src register:
2d2be8ca
DB
2498 *
2499 * r2 = r3;
2500 * r2 += 8;
2501 * if (pkt_end >= r2) goto <access okay>
2502 * <handle exception>
2503 *
b4e432f1
DB
2504 * r2 = r3;
2505 * r2 += 8;
2506 * if (pkt_end <= r2) goto <handle exception>
2507 * <access okay>
2508 *
2d2be8ca
DB
2509 * Where:
2510 * pkt_end == dst_reg, r2 == src_reg
2511 * r2=pkt(id=n,off=8,r=0)
2512 * r3=pkt(id=n,off=0,r=0)
2513 *
2514 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
fb2a311a
DB
2515 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
2516 * and [r3, r3 + 8-1) respectively is safe to access depending on
2517 * the check.
969bf05e 2518 */
2d2be8ca 2519
f1174f77
EC
2520 /* If our ids match, then we must have the same max_value. And we
2521 * don't care about the other reg's fixed offset, since if it's too big
2522 * the range won't allow anything.
2523 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
2524 */
969bf05e 2525 for (i = 0; i < MAX_BPF_REG; i++)
de8f3a83 2526 if (regs[i].type == type && regs[i].id == dst_reg->id)
b1977682 2527 /* keep the maximum range already checked */
fb2a311a 2528 regs[i].range = max(regs[i].range, new_range);
969bf05e 2529
638f5b90
AS
2530 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
2531 if (state->stack[i].slot_type[0] != STACK_SPILL)
969bf05e 2532 continue;
638f5b90 2533 reg = &state->stack[i].spilled_ptr;
de8f3a83 2534 if (reg->type == type && reg->id == dst_reg->id)
b06723da 2535 reg->range = max(reg->range, new_range);
969bf05e
AS
2536 }
2537}
2538
48461135
JB
2539/* Adjusts the register min/max values in the case that the dst_reg is the
2540 * variable register that we are working on, and src_reg is a constant or we're
2541 * simply doing a BPF_K check.
f1174f77 2542 * In JEQ/JNE cases we also adjust the var_off values.
48461135
JB
2543 */
2544static void reg_set_min_max(struct bpf_reg_state *true_reg,
2545 struct bpf_reg_state *false_reg, u64 val,
2546 u8 opcode)
2547{
f1174f77
EC
2548 /* If the dst_reg is a pointer, we can't learn anything about its
2549 * variable offset from the compare (unless src_reg were a pointer into
2550 * the same object, but we don't bother with that.
2551 * Since false_reg and true_reg have the same type by construction, we
2552 * only need to check one of them for pointerness.
2553 */
2554 if (__is_pointer_value(false, false_reg))
2555 return;
4cabc5b1 2556
48461135
JB
2557 switch (opcode) {
2558 case BPF_JEQ:
2559 /* If this is false then we know nothing Jon Snow, but if it is
2560 * true then we know for sure.
2561 */
b03c9f9f 2562 __mark_reg_known(true_reg, val);
48461135
JB
2563 break;
2564 case BPF_JNE:
2565 /* If this is true we know nothing Jon Snow, but if it is false
2566 * we know the value for sure;
2567 */
b03c9f9f 2568 __mark_reg_known(false_reg, val);
48461135
JB
2569 break;
2570 case BPF_JGT:
b03c9f9f
EC
2571 false_reg->umax_value = min(false_reg->umax_value, val);
2572 true_reg->umin_value = max(true_reg->umin_value, val + 1);
2573 break;
48461135 2574 case BPF_JSGT:
b03c9f9f
EC
2575 false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
2576 true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
48461135 2577 break;
b4e432f1
DB
2578 case BPF_JLT:
2579 false_reg->umin_value = max(false_reg->umin_value, val);
2580 true_reg->umax_value = min(true_reg->umax_value, val - 1);
2581 break;
2582 case BPF_JSLT:
2583 false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
2584 true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
2585 break;
48461135 2586 case BPF_JGE:
b03c9f9f
EC
2587 false_reg->umax_value = min(false_reg->umax_value, val - 1);
2588 true_reg->umin_value = max(true_reg->umin_value, val);
2589 break;
48461135 2590 case BPF_JSGE:
b03c9f9f
EC
2591 false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
2592 true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
48461135 2593 break;
b4e432f1
DB
2594 case BPF_JLE:
2595 false_reg->umin_value = max(false_reg->umin_value, val + 1);
2596 true_reg->umax_value = min(true_reg->umax_value, val);
2597 break;
2598 case BPF_JSLE:
2599 false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
2600 true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
2601 break;
48461135
JB
2602 default:
2603 break;
2604 }
2605
b03c9f9f
EC
2606 __reg_deduce_bounds(false_reg);
2607 __reg_deduce_bounds(true_reg);
2608 /* We might have learned some bits from the bounds. */
2609 __reg_bound_offset(false_reg);
2610 __reg_bound_offset(true_reg);
2611 /* Intersecting with the old var_off might have improved our bounds
2612 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2613 * then new var_off is (0; 0x7f...fc) which improves our umax.
2614 */
2615 __update_reg_bounds(false_reg);
2616 __update_reg_bounds(true_reg);
48461135
JB
2617}
2618
f1174f77
EC
2619/* Same as above, but for the case that dst_reg holds a constant and src_reg is
2620 * the variable reg.
48461135
JB
2621 */
2622static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
2623 struct bpf_reg_state *false_reg, u64 val,
2624 u8 opcode)
2625{
f1174f77
EC
2626 if (__is_pointer_value(false, false_reg))
2627 return;
4cabc5b1 2628
48461135
JB
2629 switch (opcode) {
2630 case BPF_JEQ:
2631 /* If this is false then we know nothing Jon Snow, but if it is
2632 * true then we know for sure.
2633 */
b03c9f9f 2634 __mark_reg_known(true_reg, val);
48461135
JB
2635 break;
2636 case BPF_JNE:
2637 /* If this is true we know nothing Jon Snow, but if it is false
2638 * we know the value for sure;
2639 */
b03c9f9f 2640 __mark_reg_known(false_reg, val);
48461135
JB
2641 break;
2642 case BPF_JGT:
b03c9f9f
EC
2643 true_reg->umax_value = min(true_reg->umax_value, val - 1);
2644 false_reg->umin_value = max(false_reg->umin_value, val);
2645 break;
48461135 2646 case BPF_JSGT:
b03c9f9f
EC
2647 true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
2648 false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
48461135 2649 break;
b4e432f1
DB
2650 case BPF_JLT:
2651 true_reg->umin_value = max(true_reg->umin_value, val + 1);
2652 false_reg->umax_value = min(false_reg->umax_value, val);
2653 break;
2654 case BPF_JSLT:
2655 true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
2656 false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
2657 break;
48461135 2658 case BPF_JGE:
b03c9f9f
EC
2659 true_reg->umax_value = min(true_reg->umax_value, val);
2660 false_reg->umin_value = max(false_reg->umin_value, val + 1);
2661 break;
48461135 2662 case BPF_JSGE:
b03c9f9f
EC
2663 true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
2664 false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
48461135 2665 break;
b4e432f1
DB
2666 case BPF_JLE:
2667 true_reg->umin_value = max(true_reg->umin_value, val);
2668 false_reg->umax_value = min(false_reg->umax_value, val - 1);
2669 break;
2670 case BPF_JSLE:
2671 true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
2672 false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
2673 break;
48461135
JB
2674 default:
2675 break;
2676 }
2677
b03c9f9f
EC
2678 __reg_deduce_bounds(false_reg);
2679 __reg_deduce_bounds(true_reg);
2680 /* We might have learned some bits from the bounds. */
2681 __reg_bound_offset(false_reg);
2682 __reg_bound_offset(true_reg);
2683 /* Intersecting with the old var_off might have improved our bounds
2684 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2685 * then new var_off is (0; 0x7f...fc) which improves our umax.
2686 */
2687 __update_reg_bounds(false_reg);
2688 __update_reg_bounds(true_reg);
f1174f77
EC
2689}
2690
2691/* Regs are known to be equal, so intersect their min/max/var_off */
2692static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
2693 struct bpf_reg_state *dst_reg)
2694{
b03c9f9f
EC
2695 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
2696 dst_reg->umin_value);
2697 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
2698 dst_reg->umax_value);
2699 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
2700 dst_reg->smin_value);
2701 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
2702 dst_reg->smax_value);
f1174f77
EC
2703 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
2704 dst_reg->var_off);
b03c9f9f
EC
2705 /* We might have learned new bounds from the var_off. */
2706 __update_reg_bounds(src_reg);
2707 __update_reg_bounds(dst_reg);
2708 /* We might have learned something about the sign bit. */
2709 __reg_deduce_bounds(src_reg);
2710 __reg_deduce_bounds(dst_reg);
2711 /* We might have learned some bits from the bounds. */
2712 __reg_bound_offset(src_reg);
2713 __reg_bound_offset(dst_reg);
2714 /* Intersecting with the old var_off might have improved our bounds
2715 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2716 * then new var_off is (0; 0x7f...fc) which improves our umax.
2717 */
2718 __update_reg_bounds(src_reg);
2719 __update_reg_bounds(dst_reg);
f1174f77
EC
2720}
2721
2722static void reg_combine_min_max(struct bpf_reg_state *true_src,
2723 struct bpf_reg_state *true_dst,
2724 struct bpf_reg_state *false_src,
2725 struct bpf_reg_state *false_dst,
2726 u8 opcode)
2727{
2728 switch (opcode) {
2729 case BPF_JEQ:
2730 __reg_combine_min_max(true_src, true_dst);
2731 break;
2732 case BPF_JNE:
2733 __reg_combine_min_max(false_src, false_dst);
b03c9f9f 2734 break;
4cabc5b1 2735 }
48461135
JB
2736}
2737
57a09bf0 2738static void mark_map_reg(struct bpf_reg_state *regs, u32 regno, u32 id,
f1174f77 2739 bool is_null)
57a09bf0
TG
2740{
2741 struct bpf_reg_state *reg = &regs[regno];
2742
2743 if (reg->type == PTR_TO_MAP_VALUE_OR_NULL && reg->id == id) {
f1174f77
EC
2744 /* Old offset (both fixed and variable parts) should
2745 * have been known-zero, because we don't allow pointer
2746 * arithmetic on pointers that might be NULL.
2747 */
b03c9f9f
EC
2748 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
2749 !tnum_equals_const(reg->var_off, 0) ||
f1174f77 2750 reg->off)) {
b03c9f9f
EC
2751 __mark_reg_known_zero(reg);
2752 reg->off = 0;
f1174f77
EC
2753 }
2754 if (is_null) {
2755 reg->type = SCALAR_VALUE;
56f668df
MKL
2756 } else if (reg->map_ptr->inner_map_meta) {
2757 reg->type = CONST_PTR_TO_MAP;
2758 reg->map_ptr = reg->map_ptr->inner_map_meta;
2759 } else {
f1174f77 2760 reg->type = PTR_TO_MAP_VALUE;
56f668df 2761 }
a08dd0da
DB
2762 /* We don't need id from this point onwards anymore, thus we
2763 * should better reset it, so that state pruning has chances
2764 * to take effect.
2765 */
2766 reg->id = 0;
57a09bf0
TG
2767 }
2768}
2769
2770/* The logic is similar to find_good_pkt_pointers(), both could eventually
2771 * be folded together at some point.
2772 */
2773static void mark_map_regs(struct bpf_verifier_state *state, u32 regno,
f1174f77 2774 bool is_null)
57a09bf0
TG
2775{
2776 struct bpf_reg_state *regs = state->regs;
a08dd0da 2777 u32 id = regs[regno].id;
57a09bf0
TG
2778 int i;
2779
2780 for (i = 0; i < MAX_BPF_REG; i++)
f1174f77 2781 mark_map_reg(regs, i, id, is_null);
57a09bf0 2782
638f5b90
AS
2783 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
2784 if (state->stack[i].slot_type[0] != STACK_SPILL)
57a09bf0 2785 continue;
638f5b90 2786 mark_map_reg(&state->stack[i].spilled_ptr, 0, id, is_null);
57a09bf0
TG
2787 }
2788}
2789
5beca081
DB
2790static bool try_match_pkt_pointers(const struct bpf_insn *insn,
2791 struct bpf_reg_state *dst_reg,
2792 struct bpf_reg_state *src_reg,
2793 struct bpf_verifier_state *this_branch,
2794 struct bpf_verifier_state *other_branch)
2795{
2796 if (BPF_SRC(insn->code) != BPF_X)
2797 return false;
2798
2799 switch (BPF_OP(insn->code)) {
2800 case BPF_JGT:
2801 if ((dst_reg->type == PTR_TO_PACKET &&
2802 src_reg->type == PTR_TO_PACKET_END) ||
2803 (dst_reg->type == PTR_TO_PACKET_META &&
2804 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
2805 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */
2806 find_good_pkt_pointers(this_branch, dst_reg,
2807 dst_reg->type, false);
2808 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
2809 src_reg->type == PTR_TO_PACKET) ||
2810 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
2811 src_reg->type == PTR_TO_PACKET_META)) {
2812 /* pkt_end > pkt_data', pkt_data > pkt_meta' */
2813 find_good_pkt_pointers(other_branch, src_reg,
2814 src_reg->type, true);
2815 } else {
2816 return false;
2817 }
2818 break;
2819 case BPF_JLT:
2820 if ((dst_reg->type == PTR_TO_PACKET &&
2821 src_reg->type == PTR_TO_PACKET_END) ||
2822 (dst_reg->type == PTR_TO_PACKET_META &&
2823 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
2824 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */
2825 find_good_pkt_pointers(other_branch, dst_reg,
2826 dst_reg->type, true);
2827 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
2828 src_reg->type == PTR_TO_PACKET) ||
2829 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
2830 src_reg->type == PTR_TO_PACKET_META)) {
2831 /* pkt_end < pkt_data', pkt_data > pkt_meta' */
2832 find_good_pkt_pointers(this_branch, src_reg,
2833 src_reg->type, false);
2834 } else {
2835 return false;
2836 }
2837 break;
2838 case BPF_JGE:
2839 if ((dst_reg->type == PTR_TO_PACKET &&
2840 src_reg->type == PTR_TO_PACKET_END) ||
2841 (dst_reg->type == PTR_TO_PACKET_META &&
2842 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
2843 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
2844 find_good_pkt_pointers(this_branch, dst_reg,
2845 dst_reg->type, true);
2846 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
2847 src_reg->type == PTR_TO_PACKET) ||
2848 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
2849 src_reg->type == PTR_TO_PACKET_META)) {
2850 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
2851 find_good_pkt_pointers(other_branch, src_reg,
2852 src_reg->type, false);
2853 } else {
2854 return false;
2855 }
2856 break;
2857 case BPF_JLE:
2858 if ((dst_reg->type == PTR_TO_PACKET &&
2859 src_reg->type == PTR_TO_PACKET_END) ||
2860 (dst_reg->type == PTR_TO_PACKET_META &&
2861 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
2862 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
2863 find_good_pkt_pointers(other_branch, dst_reg,
2864 dst_reg->type, false);
2865 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
2866 src_reg->type == PTR_TO_PACKET) ||
2867 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
2868 src_reg->type == PTR_TO_PACKET_META)) {
2869 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
2870 find_good_pkt_pointers(this_branch, src_reg,
2871 src_reg->type, true);
2872 } else {
2873 return false;
2874 }
2875 break;
2876 default:
2877 return false;
2878 }
2879
2880 return true;
2881}
2882
58e2af8b 2883static int check_cond_jmp_op(struct bpf_verifier_env *env,
17a52670
AS
2884 struct bpf_insn *insn, int *insn_idx)
2885{
638f5b90 2886 struct bpf_verifier_state *other_branch, *this_branch = env->cur_state;
58e2af8b 2887 struct bpf_reg_state *regs = this_branch->regs, *dst_reg;
17a52670
AS
2888 u8 opcode = BPF_OP(insn->code);
2889 int err;
2890
b4e432f1 2891 if (opcode > BPF_JSLE) {
61bd5218 2892 verbose(env, "invalid BPF_JMP opcode %x\n", opcode);
17a52670
AS
2893 return -EINVAL;
2894 }
2895
2896 if (BPF_SRC(insn->code) == BPF_X) {
2897 if (insn->imm != 0) {
61bd5218 2898 verbose(env, "BPF_JMP uses reserved fields\n");
17a52670
AS
2899 return -EINVAL;
2900 }
2901
2902 /* check src1 operand */
dc503a8a 2903 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
2904 if (err)
2905 return err;
1be7f75d
AS
2906
2907 if (is_pointer_value(env, insn->src_reg)) {
61bd5218 2908 verbose(env, "R%d pointer comparison prohibited\n",
1be7f75d
AS
2909 insn->src_reg);
2910 return -EACCES;
2911 }
17a52670
AS
2912 } else {
2913 if (insn->src_reg != BPF_REG_0) {
61bd5218 2914 verbose(env, "BPF_JMP uses reserved fields\n");
17a52670
AS
2915 return -EINVAL;
2916 }
2917 }
2918
2919 /* check src2 operand */
dc503a8a 2920 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
2921 if (err)
2922 return err;
2923
1a0dc1ac
AS
2924 dst_reg = &regs[insn->dst_reg];
2925
17a52670
AS
2926 /* detect if R == 0 where R was initialized to zero earlier */
2927 if (BPF_SRC(insn->code) == BPF_K &&
2928 (opcode == BPF_JEQ || opcode == BPF_JNE) &&
f1174f77
EC
2929 dst_reg->type == SCALAR_VALUE &&
2930 tnum_equals_const(dst_reg->var_off, insn->imm)) {
17a52670
AS
2931 if (opcode == BPF_JEQ) {
2932 /* if (imm == imm) goto pc+off;
2933 * only follow the goto, ignore fall-through
2934 */
2935 *insn_idx += insn->off;
2936 return 0;
2937 } else {
2938 /* if (imm != imm) goto pc+off;
2939 * only follow fall-through branch, since
2940 * that's where the program will go
2941 */
2942 return 0;
2943 }
2944 }
2945
2946 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx);
2947 if (!other_branch)
2948 return -EFAULT;
2949
48461135
JB
2950 /* detect if we are comparing against a constant value so we can adjust
2951 * our min/max values for our dst register.
f1174f77
EC
2952 * this is only legit if both are scalars (or pointers to the same
2953 * object, I suppose, but we don't support that right now), because
2954 * otherwise the different base pointers mean the offsets aren't
2955 * comparable.
48461135
JB
2956 */
2957 if (BPF_SRC(insn->code) == BPF_X) {
f1174f77
EC
2958 if (dst_reg->type == SCALAR_VALUE &&
2959 regs[insn->src_reg].type == SCALAR_VALUE) {
2960 if (tnum_is_const(regs[insn->src_reg].var_off))
2961 reg_set_min_max(&other_branch->regs[insn->dst_reg],
2962 dst_reg, regs[insn->src_reg].var_off.value,
2963 opcode);
2964 else if (tnum_is_const(dst_reg->var_off))
2965 reg_set_min_max_inv(&other_branch->regs[insn->src_reg],
2966 &regs[insn->src_reg],
2967 dst_reg->var_off.value, opcode);
2968 else if (opcode == BPF_JEQ || opcode == BPF_JNE)
2969 /* Comparing for equality, we can combine knowledge */
2970 reg_combine_min_max(&other_branch->regs[insn->src_reg],
2971 &other_branch->regs[insn->dst_reg],
2972 &regs[insn->src_reg],
2973 &regs[insn->dst_reg], opcode);
2974 }
2975 } else if (dst_reg->type == SCALAR_VALUE) {
48461135
JB
2976 reg_set_min_max(&other_branch->regs[insn->dst_reg],
2977 dst_reg, insn->imm, opcode);
2978 }
2979
58e2af8b 2980 /* detect if R == 0 where R is returned from bpf_map_lookup_elem() */
17a52670 2981 if (BPF_SRC(insn->code) == BPF_K &&
1a0dc1ac
AS
2982 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
2983 dst_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
57a09bf0
TG
2984 /* Mark all identical map registers in each branch as either
2985 * safe or unknown depending R == 0 or R != 0 conditional.
2986 */
f1174f77
EC
2987 mark_map_regs(this_branch, insn->dst_reg, opcode == BPF_JNE);
2988 mark_map_regs(other_branch, insn->dst_reg, opcode == BPF_JEQ);
5beca081
DB
2989 } else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
2990 this_branch, other_branch) &&
2991 is_pointer_value(env, insn->dst_reg)) {
61bd5218
JK
2992 verbose(env, "R%d pointer comparison prohibited\n",
2993 insn->dst_reg);
1be7f75d 2994 return -EACCES;
17a52670 2995 }
61bd5218
JK
2996 if (env->log.level)
2997 print_verifier_state(env, this_branch);
17a52670
AS
2998 return 0;
2999}
3000
0246e64d
AS
3001/* return the map pointer stored inside BPF_LD_IMM64 instruction */
3002static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn)
3003{
3004 u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32;
3005
3006 return (struct bpf_map *) (unsigned long) imm64;
3007}
3008
17a52670 3009/* verify BPF_LD_IMM64 instruction */
58e2af8b 3010static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 3011{
638f5b90 3012 struct bpf_reg_state *regs = cur_regs(env);
17a52670
AS
3013 int err;
3014
3015 if (BPF_SIZE(insn->code) != BPF_DW) {
61bd5218 3016 verbose(env, "invalid BPF_LD_IMM insn\n");
17a52670
AS
3017 return -EINVAL;
3018 }
3019 if (insn->off != 0) {
61bd5218 3020 verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
17a52670
AS
3021 return -EINVAL;
3022 }
3023
dc503a8a 3024 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
3025 if (err)
3026 return err;
3027
6b173873 3028 if (insn->src_reg == 0) {
6b173873
JK
3029 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
3030
f1174f77 3031 regs[insn->dst_reg].type = SCALAR_VALUE;
b03c9f9f 3032 __mark_reg_known(&regs[insn->dst_reg], imm);
17a52670 3033 return 0;
6b173873 3034 }
17a52670
AS
3035
3036 /* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
3037 BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD);
3038
3039 regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
3040 regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn);
3041 return 0;
3042}
3043
96be4325
DB
3044static bool may_access_skb(enum bpf_prog_type type)
3045{
3046 switch (type) {
3047 case BPF_PROG_TYPE_SOCKET_FILTER:
3048 case BPF_PROG_TYPE_SCHED_CLS:
94caee8c 3049 case BPF_PROG_TYPE_SCHED_ACT:
96be4325
DB
3050 return true;
3051 default:
3052 return false;
3053 }
3054}
3055
ddd872bc
AS
3056/* verify safety of LD_ABS|LD_IND instructions:
3057 * - they can only appear in the programs where ctx == skb
3058 * - since they are wrappers of function calls, they scratch R1-R5 registers,
3059 * preserve R6-R9, and store return value into R0
3060 *
3061 * Implicit input:
3062 * ctx == skb == R6 == CTX
3063 *
3064 * Explicit input:
3065 * SRC == any register
3066 * IMM == 32-bit immediate
3067 *
3068 * Output:
3069 * R0 - 8/16/32-bit skb data converted to cpu endianness
3070 */
58e2af8b 3071static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
ddd872bc 3072{
638f5b90 3073 struct bpf_reg_state *regs = cur_regs(env);
ddd872bc 3074 u8 mode = BPF_MODE(insn->code);
ddd872bc
AS
3075 int i, err;
3076
24701ece 3077 if (!may_access_skb(env->prog->type)) {
61bd5218 3078 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
ddd872bc
AS
3079 return -EINVAL;
3080 }
3081
3082 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
d82bccc6 3083 BPF_SIZE(insn->code) == BPF_DW ||
ddd872bc 3084 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
61bd5218 3085 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
ddd872bc
AS
3086 return -EINVAL;
3087 }
3088
3089 /* check whether implicit source operand (register R6) is readable */
dc503a8a 3090 err = check_reg_arg(env, BPF_REG_6, SRC_OP);
ddd872bc
AS
3091 if (err)
3092 return err;
3093
3094 if (regs[BPF_REG_6].type != PTR_TO_CTX) {
61bd5218
JK
3095 verbose(env,
3096 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
ddd872bc
AS
3097 return -EINVAL;
3098 }
3099
3100 if (mode == BPF_IND) {
3101 /* check explicit source operand */
dc503a8a 3102 err = check_reg_arg(env, insn->src_reg, SRC_OP);
ddd872bc
AS
3103 if (err)
3104 return err;
3105 }
3106
3107 /* reset caller saved regs to unreadable */
dc503a8a 3108 for (i = 0; i < CALLER_SAVED_REGS; i++) {
61bd5218 3109 mark_reg_not_init(env, regs, caller_saved[i]);
dc503a8a
EC
3110 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
3111 }
ddd872bc
AS
3112
3113 /* mark destination R0 register as readable, since it contains
dc503a8a
EC
3114 * the value fetched from the packet.
3115 * Already marked as written above.
ddd872bc 3116 */
61bd5218 3117 mark_reg_unknown(env, regs, BPF_REG_0);
ddd872bc
AS
3118 return 0;
3119}
3120
390ee7e2
AS
3121static int check_return_code(struct bpf_verifier_env *env)
3122{
3123 struct bpf_reg_state *reg;
3124 struct tnum range = tnum_range(0, 1);
3125
3126 switch (env->prog->type) {
3127 case BPF_PROG_TYPE_CGROUP_SKB:
3128 case BPF_PROG_TYPE_CGROUP_SOCK:
3129 case BPF_PROG_TYPE_SOCK_OPS:
3130 break;
3131 default:
3132 return 0;
3133 }
3134
638f5b90 3135 reg = cur_regs(env) + BPF_REG_0;
390ee7e2 3136 if (reg->type != SCALAR_VALUE) {
61bd5218 3137 verbose(env, "At program exit the register R0 is not a known value (%s)\n",
390ee7e2
AS
3138 reg_type_str[reg->type]);
3139 return -EINVAL;
3140 }
3141
3142 if (!tnum_in(range, reg->var_off)) {
61bd5218 3143 verbose(env, "At program exit the register R0 ");
390ee7e2
AS
3144 if (!tnum_is_unknown(reg->var_off)) {
3145 char tn_buf[48];
3146
3147 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 3148 verbose(env, "has value %s", tn_buf);
390ee7e2 3149 } else {
61bd5218 3150 verbose(env, "has unknown scalar value");
390ee7e2 3151 }
61bd5218 3152 verbose(env, " should have been 0 or 1\n");
390ee7e2
AS
3153 return -EINVAL;
3154 }
3155 return 0;
3156}
3157
475fb78f
AS
3158/* non-recursive DFS pseudo code
3159 * 1 procedure DFS-iterative(G,v):
3160 * 2 label v as discovered
3161 * 3 let S be a stack
3162 * 4 S.push(v)
3163 * 5 while S is not empty
3164 * 6 t <- S.pop()
3165 * 7 if t is what we're looking for:
3166 * 8 return t
3167 * 9 for all edges e in G.adjacentEdges(t) do
3168 * 10 if edge e is already labelled
3169 * 11 continue with the next edge
3170 * 12 w <- G.adjacentVertex(t,e)
3171 * 13 if vertex w is not discovered and not explored
3172 * 14 label e as tree-edge
3173 * 15 label w as discovered
3174 * 16 S.push(w)
3175 * 17 continue at 5
3176 * 18 else if vertex w is discovered
3177 * 19 label e as back-edge
3178 * 20 else
3179 * 21 // vertex w is explored
3180 * 22 label e as forward- or cross-edge
3181 * 23 label t as explored
3182 * 24 S.pop()
3183 *
3184 * convention:
3185 * 0x10 - discovered
3186 * 0x11 - discovered and fall-through edge labelled
3187 * 0x12 - discovered and fall-through and branch edges labelled
3188 * 0x20 - explored
3189 */
3190
3191enum {
3192 DISCOVERED = 0x10,
3193 EXPLORED = 0x20,
3194 FALLTHROUGH = 1,
3195 BRANCH = 2,
3196};
3197
58e2af8b 3198#define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L)
f1bca824 3199
475fb78f
AS
3200static int *insn_stack; /* stack of insns to process */
3201static int cur_stack; /* current stack index */
3202static int *insn_state;
3203
3204/* t, w, e - match pseudo-code above:
3205 * t - index of current instruction
3206 * w - next instruction
3207 * e - edge
3208 */
58e2af8b 3209static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
475fb78f
AS
3210{
3211 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
3212 return 0;
3213
3214 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
3215 return 0;
3216
3217 if (w < 0 || w >= env->prog->len) {
61bd5218 3218 verbose(env, "jump out of range from insn %d to %d\n", t, w);
475fb78f
AS
3219 return -EINVAL;
3220 }
3221
f1bca824
AS
3222 if (e == BRANCH)
3223 /* mark branch target for state pruning */
3224 env->explored_states[w] = STATE_LIST_MARK;
3225
475fb78f
AS
3226 if (insn_state[w] == 0) {
3227 /* tree-edge */
3228 insn_state[t] = DISCOVERED | e;
3229 insn_state[w] = DISCOVERED;
3230 if (cur_stack >= env->prog->len)
3231 return -E2BIG;
3232 insn_stack[cur_stack++] = w;
3233 return 1;
3234 } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
61bd5218 3235 verbose(env, "back-edge from insn %d to %d\n", t, w);
475fb78f
AS
3236 return -EINVAL;
3237 } else if (insn_state[w] == EXPLORED) {
3238 /* forward- or cross-edge */
3239 insn_state[t] = DISCOVERED | e;
3240 } else {
61bd5218 3241 verbose(env, "insn state internal bug\n");
475fb78f
AS
3242 return -EFAULT;
3243 }
3244 return 0;
3245}
3246
3247/* non-recursive depth-first-search to detect loops in BPF program
3248 * loop == back-edge in directed graph
3249 */
58e2af8b 3250static int check_cfg(struct bpf_verifier_env *env)
475fb78f
AS
3251{
3252 struct bpf_insn *insns = env->prog->insnsi;
3253 int insn_cnt = env->prog->len;
3254 int ret = 0;
3255 int i, t;
3256
3257 insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
3258 if (!insn_state)
3259 return -ENOMEM;
3260
3261 insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
3262 if (!insn_stack) {
3263 kfree(insn_state);
3264 return -ENOMEM;
3265 }
3266
3267 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
3268 insn_stack[0] = 0; /* 0 is the first instruction */
3269 cur_stack = 1;
3270
3271peek_stack:
3272 if (cur_stack == 0)
3273 goto check_state;
3274 t = insn_stack[cur_stack - 1];
3275
3276 if (BPF_CLASS(insns[t].code) == BPF_JMP) {
3277 u8 opcode = BPF_OP(insns[t].code);
3278
3279 if (opcode == BPF_EXIT) {
3280 goto mark_explored;
3281 } else if (opcode == BPF_CALL) {
3282 ret = push_insn(t, t + 1, FALLTHROUGH, env);
3283 if (ret == 1)
3284 goto peek_stack;
3285 else if (ret < 0)
3286 goto err_free;
07016151
DB
3287 if (t + 1 < insn_cnt)
3288 env->explored_states[t + 1] = STATE_LIST_MARK;
475fb78f
AS
3289 } else if (opcode == BPF_JA) {
3290 if (BPF_SRC(insns[t].code) != BPF_K) {
3291 ret = -EINVAL;
3292 goto err_free;
3293 }
3294 /* unconditional jump with single edge */
3295 ret = push_insn(t, t + insns[t].off + 1,
3296 FALLTHROUGH, env);
3297 if (ret == 1)
3298 goto peek_stack;
3299 else if (ret < 0)
3300 goto err_free;
f1bca824
AS
3301 /* tell verifier to check for equivalent states
3302 * after every call and jump
3303 */
c3de6317
AS
3304 if (t + 1 < insn_cnt)
3305 env->explored_states[t + 1] = STATE_LIST_MARK;
475fb78f
AS
3306 } else {
3307 /* conditional jump with two edges */
3c2ce60b 3308 env->explored_states[t] = STATE_LIST_MARK;
475fb78f
AS
3309 ret = push_insn(t, t + 1, FALLTHROUGH, env);
3310 if (ret == 1)
3311 goto peek_stack;
3312 else if (ret < 0)
3313 goto err_free;
3314
3315 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
3316 if (ret == 1)
3317 goto peek_stack;
3318 else if (ret < 0)
3319 goto err_free;
3320 }
3321 } else {
3322 /* all other non-branch instructions with single
3323 * fall-through edge
3324 */
3325 ret = push_insn(t, t + 1, FALLTHROUGH, env);
3326 if (ret == 1)
3327 goto peek_stack;
3328 else if (ret < 0)
3329 goto err_free;
3330 }
3331
3332mark_explored:
3333 insn_state[t] = EXPLORED;
3334 if (cur_stack-- <= 0) {
61bd5218 3335 verbose(env, "pop stack internal bug\n");
475fb78f
AS
3336 ret = -EFAULT;
3337 goto err_free;
3338 }
3339 goto peek_stack;
3340
3341check_state:
3342 for (i = 0; i < insn_cnt; i++) {
3343 if (insn_state[i] != EXPLORED) {
61bd5218 3344 verbose(env, "unreachable insn %d\n", i);
475fb78f
AS
3345 ret = -EINVAL;
3346 goto err_free;
3347 }
3348 }
3349 ret = 0; /* cfg looks good */
3350
3351err_free:
3352 kfree(insn_state);
3353 kfree(insn_stack);
3354 return ret;
3355}
3356
f1174f77
EC
3357/* check %cur's range satisfies %old's */
3358static bool range_within(struct bpf_reg_state *old,
3359 struct bpf_reg_state *cur)
3360{
b03c9f9f
EC
3361 return old->umin_value <= cur->umin_value &&
3362 old->umax_value >= cur->umax_value &&
3363 old->smin_value <= cur->smin_value &&
3364 old->smax_value >= cur->smax_value;
f1174f77
EC
3365}
3366
3367/* Maximum number of register states that can exist at once */
3368#define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
3369struct idpair {
3370 u32 old;
3371 u32 cur;
3372};
3373
3374/* If in the old state two registers had the same id, then they need to have
3375 * the same id in the new state as well. But that id could be different from
3376 * the old state, so we need to track the mapping from old to new ids.
3377 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
3378 * regs with old id 5 must also have new id 9 for the new state to be safe. But
3379 * regs with a different old id could still have new id 9, we don't care about
3380 * that.
3381 * So we look through our idmap to see if this old id has been seen before. If
3382 * so, we require the new id to match; otherwise, we add the id pair to the map.
969bf05e 3383 */
f1174f77 3384static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
969bf05e 3385{
f1174f77 3386 unsigned int i;
969bf05e 3387
f1174f77
EC
3388 for (i = 0; i < ID_MAP_SIZE; i++) {
3389 if (!idmap[i].old) {
3390 /* Reached an empty slot; haven't seen this id before */
3391 idmap[i].old = old_id;
3392 idmap[i].cur = cur_id;
3393 return true;
3394 }
3395 if (idmap[i].old == old_id)
3396 return idmap[i].cur == cur_id;
3397 }
3398 /* We ran out of idmap slots, which should be impossible */
3399 WARN_ON_ONCE(1);
3400 return false;
3401}
3402
3403/* Returns true if (rold safe implies rcur safe) */
1b688a19
EC
3404static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
3405 struct idpair *idmap)
f1174f77 3406{
dc503a8a
EC
3407 if (!(rold->live & REG_LIVE_READ))
3408 /* explored state didn't use this */
3409 return true;
3410
3411 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, live)) == 0)
969bf05e
AS
3412 return true;
3413
f1174f77
EC
3414 if (rold->type == NOT_INIT)
3415 /* explored state can't have used this */
969bf05e 3416 return true;
f1174f77
EC
3417 if (rcur->type == NOT_INIT)
3418 return false;
3419 switch (rold->type) {
3420 case SCALAR_VALUE:
3421 if (rcur->type == SCALAR_VALUE) {
3422 /* new val must satisfy old val knowledge */
3423 return range_within(rold, rcur) &&
3424 tnum_in(rold->var_off, rcur->var_off);
3425 } else {
3426 /* if we knew anything about the old value, we're not
3427 * equal, because we can't know anything about the
3428 * scalar value of the pointer in the new value.
3429 */
b03c9f9f
EC
3430 return rold->umin_value == 0 &&
3431 rold->umax_value == U64_MAX &&
3432 rold->smin_value == S64_MIN &&
3433 rold->smax_value == S64_MAX &&
f1174f77
EC
3434 tnum_is_unknown(rold->var_off);
3435 }
3436 case PTR_TO_MAP_VALUE:
1b688a19
EC
3437 /* If the new min/max/var_off satisfy the old ones and
3438 * everything else matches, we are OK.
3439 * We don't care about the 'id' value, because nothing
3440 * uses it for PTR_TO_MAP_VALUE (only for ..._OR_NULL)
3441 */
3442 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
3443 range_within(rold, rcur) &&
3444 tnum_in(rold->var_off, rcur->var_off);
f1174f77
EC
3445 case PTR_TO_MAP_VALUE_OR_NULL:
3446 /* a PTR_TO_MAP_VALUE could be safe to use as a
3447 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
3448 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
3449 * checked, doing so could have affected others with the same
3450 * id, and we can't check for that because we lost the id when
3451 * we converted to a PTR_TO_MAP_VALUE.
3452 */
3453 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
3454 return false;
3455 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
3456 return false;
3457 /* Check our ids match any regs they're supposed to */
3458 return check_ids(rold->id, rcur->id, idmap);
de8f3a83 3459 case PTR_TO_PACKET_META:
f1174f77 3460 case PTR_TO_PACKET:
de8f3a83 3461 if (rcur->type != rold->type)
f1174f77
EC
3462 return false;
3463 /* We must have at least as much range as the old ptr
3464 * did, so that any accesses which were safe before are
3465 * still safe. This is true even if old range < old off,
3466 * since someone could have accessed through (ptr - k), or
3467 * even done ptr -= k in a register, to get a safe access.
3468 */
3469 if (rold->range > rcur->range)
3470 return false;
3471 /* If the offsets don't match, we can't trust our alignment;
3472 * nor can we be sure that we won't fall out of range.
3473 */
3474 if (rold->off != rcur->off)
3475 return false;
3476 /* id relations must be preserved */
3477 if (rold->id && !check_ids(rold->id, rcur->id, idmap))
3478 return false;
3479 /* new val must satisfy old val knowledge */
3480 return range_within(rold, rcur) &&
3481 tnum_in(rold->var_off, rcur->var_off);
3482 case PTR_TO_CTX:
3483 case CONST_PTR_TO_MAP:
3484 case PTR_TO_STACK:
3485 case PTR_TO_PACKET_END:
3486 /* Only valid matches are exact, which memcmp() above
3487 * would have accepted
3488 */
3489 default:
3490 /* Don't know what's going on, just say it's not safe */
3491 return false;
3492 }
969bf05e 3493
f1174f77
EC
3494 /* Shouldn't get here; if we do, say it's not safe */
3495 WARN_ON_ONCE(1);
969bf05e
AS
3496 return false;
3497}
3498
638f5b90
AS
3499static bool stacksafe(struct bpf_verifier_state *old,
3500 struct bpf_verifier_state *cur,
3501 struct idpair *idmap)
3502{
3503 int i, spi;
3504
3505 /* if explored stack has more populated slots than current stack
3506 * such stacks are not equivalent
3507 */
3508 if (old->allocated_stack > cur->allocated_stack)
3509 return false;
3510
3511 /* walk slots of the explored stack and ignore any additional
3512 * slots in the current stack, since explored(safe) state
3513 * didn't use them
3514 */
3515 for (i = 0; i < old->allocated_stack; i++) {
3516 spi = i / BPF_REG_SIZE;
3517
3518 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
3519 continue;
3520 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
3521 cur->stack[spi].slot_type[i % BPF_REG_SIZE])
3522 /* Ex: old explored (safe) state has STACK_SPILL in
3523 * this stack slot, but current has has STACK_MISC ->
3524 * this verifier states are not equivalent,
3525 * return false to continue verification of this path
3526 */
3527 return false;
3528 if (i % BPF_REG_SIZE)
3529 continue;
3530 if (old->stack[spi].slot_type[0] != STACK_SPILL)
3531 continue;
3532 if (!regsafe(&old->stack[spi].spilled_ptr,
3533 &cur->stack[spi].spilled_ptr,
3534 idmap))
3535 /* when explored and current stack slot are both storing
3536 * spilled registers, check that stored pointers types
3537 * are the same as well.
3538 * Ex: explored safe path could have stored
3539 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
3540 * but current path has stored:
3541 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
3542 * such verifier states are not equivalent.
3543 * return false to continue verification of this path
3544 */
3545 return false;
3546 }
3547 return true;
3548}
3549
f1bca824
AS
3550/* compare two verifier states
3551 *
3552 * all states stored in state_list are known to be valid, since
3553 * verifier reached 'bpf_exit' instruction through them
3554 *
3555 * this function is called when verifier exploring different branches of
3556 * execution popped from the state stack. If it sees an old state that has
3557 * more strict register state and more strict stack state then this execution
3558 * branch doesn't need to be explored further, since verifier already
3559 * concluded that more strict state leads to valid finish.
3560 *
3561 * Therefore two states are equivalent if register state is more conservative
3562 * and explored stack state is more conservative than the current one.
3563 * Example:
3564 * explored current
3565 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
3566 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
3567 *
3568 * In other words if current stack state (one being explored) has more
3569 * valid slots than old one that already passed validation, it means
3570 * the verifier can stop exploring and conclude that current state is valid too
3571 *
3572 * Similarly with registers. If explored state has register type as invalid
3573 * whereas register type in current state is meaningful, it means that
3574 * the current state will reach 'bpf_exit' instruction safely
3575 */
48461135
JB
3576static bool states_equal(struct bpf_verifier_env *env,
3577 struct bpf_verifier_state *old,
58e2af8b 3578 struct bpf_verifier_state *cur)
f1bca824 3579{
f1174f77
EC
3580 struct idpair *idmap;
3581 bool ret = false;
f1bca824
AS
3582 int i;
3583
f1174f77
EC
3584 idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
3585 /* If we failed to allocate the idmap, just say it's not safe */
3586 if (!idmap)
1a0dc1ac 3587 return false;
f1174f77
EC
3588
3589 for (i = 0; i < MAX_BPF_REG; i++) {
1b688a19 3590 if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
f1174f77 3591 goto out_free;
f1bca824
AS
3592 }
3593
638f5b90
AS
3594 if (!stacksafe(old, cur, idmap))
3595 goto out_free;
f1174f77
EC
3596 ret = true;
3597out_free:
3598 kfree(idmap);
3599 return ret;
f1bca824
AS
3600}
3601
8e9cd9ce
EC
3602/* A write screens off any subsequent reads; but write marks come from the
3603 * straight-line code between a state and its parent. When we arrive at a
3604 * jump target (in the first iteration of the propagate_liveness() loop),
3605 * we didn't arrive by the straight-line code, so read marks in state must
3606 * propagate to parent regardless of state's write marks.
3607 */
dc503a8a
EC
3608static bool do_propagate_liveness(const struct bpf_verifier_state *state,
3609 struct bpf_verifier_state *parent)
3610{
63f45f84 3611 bool writes = parent == state->parent; /* Observe write marks */
dc503a8a
EC
3612 bool touched = false; /* any changes made? */
3613 int i;
3614
3615 if (!parent)
3616 return touched;
3617 /* Propagate read liveness of registers... */
3618 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
3619 /* We don't need to worry about FP liveness because it's read-only */
3620 for (i = 0; i < BPF_REG_FP; i++) {
3621 if (parent->regs[i].live & REG_LIVE_READ)
3622 continue;
63f45f84
EC
3623 if (writes && (state->regs[i].live & REG_LIVE_WRITTEN))
3624 continue;
3625 if (state->regs[i].live & REG_LIVE_READ) {
dc503a8a
EC
3626 parent->regs[i].live |= REG_LIVE_READ;
3627 touched = true;
3628 }
3629 }
3630 /* ... and stack slots */
638f5b90
AS
3631 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
3632 i < parent->allocated_stack / BPF_REG_SIZE; i++) {
3633 if (parent->stack[i].slot_type[0] != STACK_SPILL)
dc503a8a 3634 continue;
638f5b90 3635 if (state->stack[i].slot_type[0] != STACK_SPILL)
dc503a8a 3636 continue;
638f5b90 3637 if (parent->stack[i].spilled_ptr.live & REG_LIVE_READ)
dc503a8a 3638 continue;
638f5b90
AS
3639 if (writes &&
3640 (state->stack[i].spilled_ptr.live & REG_LIVE_WRITTEN))
63f45f84 3641 continue;
638f5b90
AS
3642 if (state->stack[i].spilled_ptr.live & REG_LIVE_READ) {
3643 parent->stack[i].spilled_ptr.live |= REG_LIVE_READ;
dc503a8a
EC
3644 touched = true;
3645 }
3646 }
3647 return touched;
3648}
3649
8e9cd9ce
EC
3650/* "parent" is "a state from which we reach the current state", but initially
3651 * it is not the state->parent (i.e. "the state whose straight-line code leads
3652 * to the current state"), instead it is the state that happened to arrive at
3653 * a (prunable) equivalent of the current state. See comment above
3654 * do_propagate_liveness() for consequences of this.
3655 * This function is just a more efficient way of calling mark_reg_read() or
3656 * mark_stack_slot_read() on each reg in "parent" that is read in "state",
3657 * though it requires that parent != state->parent in the call arguments.
3658 */
dc503a8a
EC
3659static void propagate_liveness(const struct bpf_verifier_state *state,
3660 struct bpf_verifier_state *parent)
3661{
3662 while (do_propagate_liveness(state, parent)) {
3663 /* Something changed, so we need to feed those changes onward */
3664 state = parent;
3665 parent = state->parent;
3666 }
3667}
3668
58e2af8b 3669static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
f1bca824 3670{
58e2af8b
JK
3671 struct bpf_verifier_state_list *new_sl;
3672 struct bpf_verifier_state_list *sl;
638f5b90 3673 struct bpf_verifier_state *cur = env->cur_state;
1969db47 3674 int i, err;
f1bca824
AS
3675
3676 sl = env->explored_states[insn_idx];
3677 if (!sl)
3678 /* this 'insn_idx' instruction wasn't marked, so we will not
3679 * be doing state search here
3680 */
3681 return 0;
3682
3683 while (sl != STATE_LIST_MARK) {
638f5b90 3684 if (states_equal(env, &sl->state, cur)) {
f1bca824 3685 /* reached equivalent register/stack state,
dc503a8a
EC
3686 * prune the search.
3687 * Registers read by the continuation are read by us.
8e9cd9ce
EC
3688 * If we have any write marks in env->cur_state, they
3689 * will prevent corresponding reads in the continuation
3690 * from reaching our parent (an explored_state). Our
3691 * own state will get the read marks recorded, but
3692 * they'll be immediately forgotten as we're pruning
3693 * this state and will pop a new one.
f1bca824 3694 */
638f5b90 3695 propagate_liveness(&sl->state, cur);
f1bca824 3696 return 1;
dc503a8a 3697 }
f1bca824
AS
3698 sl = sl->next;
3699 }
3700
3701 /* there were no equivalent states, remember current one.
3702 * technically the current state is not proven to be safe yet,
3703 * but it will either reach bpf_exit (which means it's safe) or
3704 * it will be rejected. Since there are no loops, we won't be
3705 * seeing this 'insn_idx' instruction again on the way to bpf_exit
3706 */
638f5b90 3707 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
f1bca824
AS
3708 if (!new_sl)
3709 return -ENOMEM;
3710
3711 /* add new state to the head of linked list */
1969db47
AS
3712 err = copy_verifier_state(&new_sl->state, cur);
3713 if (err) {
3714 free_verifier_state(&new_sl->state, false);
3715 kfree(new_sl);
3716 return err;
3717 }
f1bca824
AS
3718 new_sl->next = env->explored_states[insn_idx];
3719 env->explored_states[insn_idx] = new_sl;
dc503a8a 3720 /* connect new state to parentage chain */
638f5b90 3721 cur->parent = &new_sl->state;
8e9cd9ce
EC
3722 /* clear write marks in current state: the writes we did are not writes
3723 * our child did, so they don't screen off its reads from us.
3724 * (There are no read marks in current state, because reads always mark
3725 * their parent and current state never has children yet. Only
3726 * explored_states can get read marks.)
3727 */
dc503a8a 3728 for (i = 0; i < BPF_REG_FP; i++)
638f5b90
AS
3729 cur->regs[i].live = REG_LIVE_NONE;
3730 for (i = 0; i < cur->allocated_stack / BPF_REG_SIZE; i++)
3731 if (cur->stack[i].slot_type[0] == STACK_SPILL)
3732 cur->stack[i].spilled_ptr.live = REG_LIVE_NONE;
f1bca824
AS
3733 return 0;
3734}
3735
13a27dfc
JK
3736static int ext_analyzer_insn_hook(struct bpf_verifier_env *env,
3737 int insn_idx, int prev_insn_idx)
3738{
3739 if (!env->analyzer_ops || !env->analyzer_ops->insn_hook)
3740 return 0;
3741
3742 return env->analyzer_ops->insn_hook(env, insn_idx, prev_insn_idx);
3743}
3744
58e2af8b 3745static int do_check(struct bpf_verifier_env *env)
17a52670 3746{
638f5b90 3747 struct bpf_verifier_state *state;
17a52670 3748 struct bpf_insn *insns = env->prog->insnsi;
638f5b90 3749 struct bpf_reg_state *regs;
17a52670
AS
3750 int insn_cnt = env->prog->len;
3751 int insn_idx, prev_insn_idx = 0;
3752 int insn_processed = 0;
3753 bool do_print_state = false;
3754
638f5b90
AS
3755 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
3756 if (!state)
3757 return -ENOMEM;
3758 env->cur_state = state;
3759 init_reg_state(env, state->regs);
dc503a8a 3760 state->parent = NULL;
17a52670
AS
3761 insn_idx = 0;
3762 for (;;) {
3763 struct bpf_insn *insn;
3764 u8 class;
3765 int err;
3766
3767 if (insn_idx >= insn_cnt) {
61bd5218 3768 verbose(env, "invalid insn idx %d insn_cnt %d\n",
17a52670
AS
3769 insn_idx, insn_cnt);
3770 return -EFAULT;
3771 }
3772
3773 insn = &insns[insn_idx];
3774 class = BPF_CLASS(insn->code);
3775
07016151 3776 if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
61bd5218
JK
3777 verbose(env,
3778 "BPF program is too large. Processed %d insn\n",
17a52670
AS
3779 insn_processed);
3780 return -E2BIG;
3781 }
3782
f1bca824
AS
3783 err = is_state_visited(env, insn_idx);
3784 if (err < 0)
3785 return err;
3786 if (err == 1) {
3787 /* found equivalent state, can prune the search */
61bd5218 3788 if (env->log.level) {
f1bca824 3789 if (do_print_state)
61bd5218 3790 verbose(env, "\nfrom %d to %d: safe\n",
f1bca824
AS
3791 prev_insn_idx, insn_idx);
3792 else
61bd5218 3793 verbose(env, "%d: safe\n", insn_idx);
f1bca824
AS
3794 }
3795 goto process_bpf_exit;
3796 }
3797
3c2ce60b
DB
3798 if (need_resched())
3799 cond_resched();
3800
61bd5218
JK
3801 if (env->log.level > 1 || (env->log.level && do_print_state)) {
3802 if (env->log.level > 1)
3803 verbose(env, "%d:", insn_idx);
c5fc9692 3804 else
61bd5218 3805 verbose(env, "\nfrom %d to %d:",
c5fc9692 3806 prev_insn_idx, insn_idx);
638f5b90 3807 print_verifier_state(env, state);
17a52670
AS
3808 do_print_state = false;
3809 }
3810
61bd5218
JK
3811 if (env->log.level) {
3812 verbose(env, "%d: ", insn_idx);
f4ac7e0b
JK
3813 print_bpf_insn(verbose, env, insn,
3814 env->allow_ptr_leaks);
17a52670
AS
3815 }
3816
13a27dfc
JK
3817 err = ext_analyzer_insn_hook(env, insn_idx, prev_insn_idx);
3818 if (err)
3819 return err;
3820
638f5b90 3821 regs = cur_regs(env);
17a52670 3822 if (class == BPF_ALU || class == BPF_ALU64) {
1be7f75d 3823 err = check_alu_op(env, insn);
17a52670
AS
3824 if (err)
3825 return err;
3826
3827 } else if (class == BPF_LDX) {
3df126f3 3828 enum bpf_reg_type *prev_src_type, src_reg_type;
9bac3d6d
AS
3829
3830 /* check for reserved fields is already done */
3831
17a52670 3832 /* check src operand */
dc503a8a 3833 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
3834 if (err)
3835 return err;
3836
dc503a8a 3837 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
17a52670
AS
3838 if (err)
3839 return err;
3840
725f9dcd
AS
3841 src_reg_type = regs[insn->src_reg].type;
3842
17a52670
AS
3843 /* check that memory (src_reg + off) is readable,
3844 * the state of dst_reg will be updated by this func
3845 */
31fd8581 3846 err = check_mem_access(env, insn_idx, insn->src_reg, insn->off,
17a52670
AS
3847 BPF_SIZE(insn->code), BPF_READ,
3848 insn->dst_reg);
3849 if (err)
3850 return err;
3851
3df126f3
JK
3852 prev_src_type = &env->insn_aux_data[insn_idx].ptr_type;
3853
3854 if (*prev_src_type == NOT_INIT) {
9bac3d6d
AS
3855 /* saw a valid insn
3856 * dst_reg = *(u32 *)(src_reg + off)
3df126f3 3857 * save type to validate intersecting paths
9bac3d6d 3858 */
3df126f3 3859 *prev_src_type = src_reg_type;
9bac3d6d 3860
3df126f3 3861 } else if (src_reg_type != *prev_src_type &&
9bac3d6d 3862 (src_reg_type == PTR_TO_CTX ||
3df126f3 3863 *prev_src_type == PTR_TO_CTX)) {
9bac3d6d
AS
3864 /* ABuser program is trying to use the same insn
3865 * dst_reg = *(u32*) (src_reg + off)
3866 * with different pointer types:
3867 * src_reg == ctx in one branch and
3868 * src_reg == stack|map in some other branch.
3869 * Reject it.
3870 */
61bd5218 3871 verbose(env, "same insn cannot be used with different pointers\n");
9bac3d6d
AS
3872 return -EINVAL;
3873 }
3874
17a52670 3875 } else if (class == BPF_STX) {
3df126f3 3876 enum bpf_reg_type *prev_dst_type, dst_reg_type;
d691f9e8 3877
17a52670 3878 if (BPF_MODE(insn->code) == BPF_XADD) {
31fd8581 3879 err = check_xadd(env, insn_idx, insn);
17a52670
AS
3880 if (err)
3881 return err;
3882 insn_idx++;
3883 continue;
3884 }
3885
17a52670 3886 /* check src1 operand */
dc503a8a 3887 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
3888 if (err)
3889 return err;
3890 /* check src2 operand */
dc503a8a 3891 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
3892 if (err)
3893 return err;
3894
d691f9e8
AS
3895 dst_reg_type = regs[insn->dst_reg].type;
3896
17a52670 3897 /* check that memory (dst_reg + off) is writeable */
31fd8581 3898 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
17a52670
AS
3899 BPF_SIZE(insn->code), BPF_WRITE,
3900 insn->src_reg);
3901 if (err)
3902 return err;
3903
3df126f3
JK
3904 prev_dst_type = &env->insn_aux_data[insn_idx].ptr_type;
3905
3906 if (*prev_dst_type == NOT_INIT) {
3907 *prev_dst_type = dst_reg_type;
3908 } else if (dst_reg_type != *prev_dst_type &&
d691f9e8 3909 (dst_reg_type == PTR_TO_CTX ||
3df126f3 3910 *prev_dst_type == PTR_TO_CTX)) {
61bd5218 3911 verbose(env, "same insn cannot be used with different pointers\n");
d691f9e8
AS
3912 return -EINVAL;
3913 }
3914
17a52670
AS
3915 } else if (class == BPF_ST) {
3916 if (BPF_MODE(insn->code) != BPF_MEM ||
3917 insn->src_reg != BPF_REG_0) {
61bd5218 3918 verbose(env, "BPF_ST uses reserved fields\n");
17a52670
AS
3919 return -EINVAL;
3920 }
3921 /* check src operand */
dc503a8a 3922 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
3923 if (err)
3924 return err;
3925
3926 /* check that memory (dst_reg + off) is writeable */
31fd8581 3927 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
17a52670
AS
3928 BPF_SIZE(insn->code), BPF_WRITE,
3929 -1);
3930 if (err)
3931 return err;
3932
3933 } else if (class == BPF_JMP) {
3934 u8 opcode = BPF_OP(insn->code);
3935
3936 if (opcode == BPF_CALL) {
3937 if (BPF_SRC(insn->code) != BPF_K ||
3938 insn->off != 0 ||
3939 insn->src_reg != BPF_REG_0 ||
3940 insn->dst_reg != BPF_REG_0) {
61bd5218 3941 verbose(env, "BPF_CALL uses reserved fields\n");
17a52670
AS
3942 return -EINVAL;
3943 }
3944
81ed18ab 3945 err = check_call(env, insn->imm, insn_idx);
17a52670
AS
3946 if (err)
3947 return err;
3948
3949 } else if (opcode == BPF_JA) {
3950 if (BPF_SRC(insn->code) != BPF_K ||
3951 insn->imm != 0 ||
3952 insn->src_reg != BPF_REG_0 ||
3953 insn->dst_reg != BPF_REG_0) {
61bd5218 3954 verbose(env, "BPF_JA uses reserved fields\n");
17a52670
AS
3955 return -EINVAL;
3956 }
3957
3958 insn_idx += insn->off + 1;
3959 continue;
3960
3961 } else if (opcode == BPF_EXIT) {
3962 if (BPF_SRC(insn->code) != BPF_K ||
3963 insn->imm != 0 ||
3964 insn->src_reg != BPF_REG_0 ||
3965 insn->dst_reg != BPF_REG_0) {
61bd5218 3966 verbose(env, "BPF_EXIT uses reserved fields\n");
17a52670
AS
3967 return -EINVAL;
3968 }
3969
3970 /* eBPF calling convetion is such that R0 is used
3971 * to return the value from eBPF program.
3972 * Make sure that it's readable at this time
3973 * of bpf_exit, which means that program wrote
3974 * something into it earlier
3975 */
dc503a8a 3976 err = check_reg_arg(env, BPF_REG_0, SRC_OP);
17a52670
AS
3977 if (err)
3978 return err;
3979
1be7f75d 3980 if (is_pointer_value(env, BPF_REG_0)) {
61bd5218 3981 verbose(env, "R0 leaks addr as return value\n");
1be7f75d
AS
3982 return -EACCES;
3983 }
3984
390ee7e2
AS
3985 err = check_return_code(env);
3986 if (err)
3987 return err;
f1bca824 3988process_bpf_exit:
638f5b90
AS
3989 err = pop_stack(env, &prev_insn_idx, &insn_idx);
3990 if (err < 0) {
3991 if (err != -ENOENT)
3992 return err;
17a52670
AS
3993 break;
3994 } else {
3995 do_print_state = true;
3996 continue;
3997 }
3998 } else {
3999 err = check_cond_jmp_op(env, insn, &insn_idx);
4000 if (err)
4001 return err;
4002 }
4003 } else if (class == BPF_LD) {
4004 u8 mode = BPF_MODE(insn->code);
4005
4006 if (mode == BPF_ABS || mode == BPF_IND) {
ddd872bc
AS
4007 err = check_ld_abs(env, insn);
4008 if (err)
4009 return err;
4010
17a52670
AS
4011 } else if (mode == BPF_IMM) {
4012 err = check_ld_imm(env, insn);
4013 if (err)
4014 return err;
4015
4016 insn_idx++;
4017 } else {
61bd5218 4018 verbose(env, "invalid BPF_LD mode\n");
17a52670
AS
4019 return -EINVAL;
4020 }
4021 } else {
61bd5218 4022 verbose(env, "unknown insn class %d\n", class);
17a52670
AS
4023 return -EINVAL;
4024 }
4025
4026 insn_idx++;
4027 }
4028
61bd5218
JK
4029 verbose(env, "processed %d insns, stack depth %d\n", insn_processed,
4030 env->prog->aux->stack_depth);
17a52670
AS
4031 return 0;
4032}
4033
56f668df
MKL
4034static int check_map_prealloc(struct bpf_map *map)
4035{
4036 return (map->map_type != BPF_MAP_TYPE_HASH &&
bcc6b1b7
MKL
4037 map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
4038 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
56f668df
MKL
4039 !(map->map_flags & BPF_F_NO_PREALLOC);
4040}
4041
61bd5218
JK
4042static int check_map_prog_compatibility(struct bpf_verifier_env *env,
4043 struct bpf_map *map,
fdc15d38
AS
4044 struct bpf_prog *prog)
4045
4046{
56f668df
MKL
4047 /* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
4048 * preallocated hash maps, since doing memory allocation
4049 * in overflow_handler can crash depending on where nmi got
4050 * triggered.
4051 */
4052 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
4053 if (!check_map_prealloc(map)) {
61bd5218 4054 verbose(env, "perf_event programs can only use preallocated hash map\n");
56f668df
MKL
4055 return -EINVAL;
4056 }
4057 if (map->inner_map_meta &&
4058 !check_map_prealloc(map->inner_map_meta)) {
61bd5218 4059 verbose(env, "perf_event programs can only use preallocated inner hash map\n");
56f668df
MKL
4060 return -EINVAL;
4061 }
fdc15d38
AS
4062 }
4063 return 0;
4064}
4065
0246e64d
AS
4066/* look for pseudo eBPF instructions that access map FDs and
4067 * replace them with actual map pointers
4068 */
58e2af8b 4069static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
0246e64d
AS
4070{
4071 struct bpf_insn *insn = env->prog->insnsi;
4072 int insn_cnt = env->prog->len;
fdc15d38 4073 int i, j, err;
0246e64d 4074
f1f7714e 4075 err = bpf_prog_calc_tag(env->prog);
aafe6ae9
DB
4076 if (err)
4077 return err;
4078
0246e64d 4079 for (i = 0; i < insn_cnt; i++, insn++) {
9bac3d6d 4080 if (BPF_CLASS(insn->code) == BPF_LDX &&
d691f9e8 4081 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
61bd5218 4082 verbose(env, "BPF_LDX uses reserved fields\n");
9bac3d6d
AS
4083 return -EINVAL;
4084 }
4085
d691f9e8
AS
4086 if (BPF_CLASS(insn->code) == BPF_STX &&
4087 ((BPF_MODE(insn->code) != BPF_MEM &&
4088 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
61bd5218 4089 verbose(env, "BPF_STX uses reserved fields\n");
d691f9e8
AS
4090 return -EINVAL;
4091 }
4092
0246e64d
AS
4093 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
4094 struct bpf_map *map;
4095 struct fd f;
4096
4097 if (i == insn_cnt - 1 || insn[1].code != 0 ||
4098 insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
4099 insn[1].off != 0) {
61bd5218 4100 verbose(env, "invalid bpf_ld_imm64 insn\n");
0246e64d
AS
4101 return -EINVAL;
4102 }
4103
4104 if (insn->src_reg == 0)
4105 /* valid generic load 64-bit imm */
4106 goto next_insn;
4107
4108 if (insn->src_reg != BPF_PSEUDO_MAP_FD) {
61bd5218
JK
4109 verbose(env,
4110 "unrecognized bpf_ld_imm64 insn\n");
0246e64d
AS
4111 return -EINVAL;
4112 }
4113
4114 f = fdget(insn->imm);
c2101297 4115 map = __bpf_map_get(f);
0246e64d 4116 if (IS_ERR(map)) {
61bd5218 4117 verbose(env, "fd %d is not pointing to valid bpf_map\n",
0246e64d 4118 insn->imm);
0246e64d
AS
4119 return PTR_ERR(map);
4120 }
4121
61bd5218 4122 err = check_map_prog_compatibility(env, map, env->prog);
fdc15d38
AS
4123 if (err) {
4124 fdput(f);
4125 return err;
4126 }
4127
0246e64d
AS
4128 /* store map pointer inside BPF_LD_IMM64 instruction */
4129 insn[0].imm = (u32) (unsigned long) map;
4130 insn[1].imm = ((u64) (unsigned long) map) >> 32;
4131
4132 /* check whether we recorded this map already */
4133 for (j = 0; j < env->used_map_cnt; j++)
4134 if (env->used_maps[j] == map) {
4135 fdput(f);
4136 goto next_insn;
4137 }
4138
4139 if (env->used_map_cnt >= MAX_USED_MAPS) {
4140 fdput(f);
4141 return -E2BIG;
4142 }
4143
0246e64d
AS
4144 /* hold the map. If the program is rejected by verifier,
4145 * the map will be released by release_maps() or it
4146 * will be used by the valid program until it's unloaded
4147 * and all maps are released in free_bpf_prog_info()
4148 */
92117d84
AS
4149 map = bpf_map_inc(map, false);
4150 if (IS_ERR(map)) {
4151 fdput(f);
4152 return PTR_ERR(map);
4153 }
4154 env->used_maps[env->used_map_cnt++] = map;
4155
0246e64d
AS
4156 fdput(f);
4157next_insn:
4158 insn++;
4159 i++;
4160 }
4161 }
4162
4163 /* now all pseudo BPF_LD_IMM64 instructions load valid
4164 * 'struct bpf_map *' into a register instead of user map_fd.
4165 * These pointers will be used later by verifier to validate map access.
4166 */
4167 return 0;
4168}
4169
4170/* drop refcnt of maps used by the rejected program */
58e2af8b 4171static void release_maps(struct bpf_verifier_env *env)
0246e64d
AS
4172{
4173 int i;
4174
4175 for (i = 0; i < env->used_map_cnt; i++)
4176 bpf_map_put(env->used_maps[i]);
4177}
4178
4179/* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
58e2af8b 4180static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
0246e64d
AS
4181{
4182 struct bpf_insn *insn = env->prog->insnsi;
4183 int insn_cnt = env->prog->len;
4184 int i;
4185
4186 for (i = 0; i < insn_cnt; i++, insn++)
4187 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
4188 insn->src_reg = 0;
4189}
4190
8041902d
AS
4191/* single env->prog->insni[off] instruction was replaced with the range
4192 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying
4193 * [0, off) and [off, end) to new locations, so the patched range stays zero
4194 */
4195static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len,
4196 u32 off, u32 cnt)
4197{
4198 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
4199
4200 if (cnt == 1)
4201 return 0;
4202 new_data = vzalloc(sizeof(struct bpf_insn_aux_data) * prog_len);
4203 if (!new_data)
4204 return -ENOMEM;
4205 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
4206 memcpy(new_data + off + cnt - 1, old_data + off,
4207 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
4208 env->insn_aux_data = new_data;
4209 vfree(old_data);
4210 return 0;
4211}
4212
4213static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
4214 const struct bpf_insn *patch, u32 len)
4215{
4216 struct bpf_prog *new_prog;
4217
4218 new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
4219 if (!new_prog)
4220 return NULL;
4221 if (adjust_insn_aux_data(env, new_prog->len, off, len))
4222 return NULL;
4223 return new_prog;
4224}
4225
9bac3d6d
AS
4226/* convert load instructions that access fields of 'struct __sk_buff'
4227 * into sequence of instructions that access fields of 'struct sk_buff'
4228 */
58e2af8b 4229static int convert_ctx_accesses(struct bpf_verifier_env *env)
9bac3d6d 4230{
00176a34 4231 const struct bpf_verifier_ops *ops = env->ops;
f96da094 4232 int i, cnt, size, ctx_field_size, delta = 0;
3df126f3 4233 const int insn_cnt = env->prog->len;
36bbef52 4234 struct bpf_insn insn_buf[16], *insn;
9bac3d6d 4235 struct bpf_prog *new_prog;
d691f9e8 4236 enum bpf_access_type type;
f96da094
DB
4237 bool is_narrower_load;
4238 u32 target_size;
9bac3d6d 4239
36bbef52
DB
4240 if (ops->gen_prologue) {
4241 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
4242 env->prog);
4243 if (cnt >= ARRAY_SIZE(insn_buf)) {
61bd5218 4244 verbose(env, "bpf verifier is misconfigured\n");
36bbef52
DB
4245 return -EINVAL;
4246 } else if (cnt) {
8041902d 4247 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
36bbef52
DB
4248 if (!new_prog)
4249 return -ENOMEM;
8041902d 4250
36bbef52 4251 env->prog = new_prog;
3df126f3 4252 delta += cnt - 1;
36bbef52
DB
4253 }
4254 }
4255
4256 if (!ops->convert_ctx_access)
9bac3d6d
AS
4257 return 0;
4258
3df126f3 4259 insn = env->prog->insnsi + delta;
36bbef52 4260
9bac3d6d 4261 for (i = 0; i < insn_cnt; i++, insn++) {
62c7989b
DB
4262 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
4263 insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
4264 insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
ea2e7ce5 4265 insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
d691f9e8 4266 type = BPF_READ;
62c7989b
DB
4267 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
4268 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
4269 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
ea2e7ce5 4270 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
d691f9e8
AS
4271 type = BPF_WRITE;
4272 else
9bac3d6d
AS
4273 continue;
4274
8041902d 4275 if (env->insn_aux_data[i + delta].ptr_type != PTR_TO_CTX)
9bac3d6d 4276 continue;
9bac3d6d 4277
31fd8581 4278 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
f96da094 4279 size = BPF_LDST_BYTES(insn);
31fd8581
YS
4280
4281 /* If the read access is a narrower load of the field,
4282 * convert to a 4/8-byte load, to minimum program type specific
4283 * convert_ctx_access changes. If conversion is successful,
4284 * we will apply proper mask to the result.
4285 */
f96da094 4286 is_narrower_load = size < ctx_field_size;
31fd8581 4287 if (is_narrower_load) {
f96da094
DB
4288 u32 off = insn->off;
4289 u8 size_code;
4290
4291 if (type == BPF_WRITE) {
61bd5218 4292 verbose(env, "bpf verifier narrow ctx access misconfigured\n");
f96da094
DB
4293 return -EINVAL;
4294 }
31fd8581 4295
f96da094 4296 size_code = BPF_H;
31fd8581
YS
4297 if (ctx_field_size == 4)
4298 size_code = BPF_W;
4299 else if (ctx_field_size == 8)
4300 size_code = BPF_DW;
f96da094 4301
31fd8581
YS
4302 insn->off = off & ~(ctx_field_size - 1);
4303 insn->code = BPF_LDX | BPF_MEM | size_code;
4304 }
f96da094
DB
4305
4306 target_size = 0;
4307 cnt = ops->convert_ctx_access(type, insn, insn_buf, env->prog,
4308 &target_size);
4309 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
4310 (ctx_field_size && !target_size)) {
61bd5218 4311 verbose(env, "bpf verifier is misconfigured\n");
9bac3d6d
AS
4312 return -EINVAL;
4313 }
f96da094
DB
4314
4315 if (is_narrower_load && size < target_size) {
31fd8581
YS
4316 if (ctx_field_size <= 4)
4317 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
f96da094 4318 (1 << size * 8) - 1);
31fd8581
YS
4319 else
4320 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
f96da094 4321 (1 << size * 8) - 1);
31fd8581 4322 }
9bac3d6d 4323
8041902d 4324 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
9bac3d6d
AS
4325 if (!new_prog)
4326 return -ENOMEM;
4327
3df126f3 4328 delta += cnt - 1;
9bac3d6d
AS
4329
4330 /* keep walking new program and skip insns we just inserted */
4331 env->prog = new_prog;
3df126f3 4332 insn = new_prog->insnsi + i + delta;
9bac3d6d
AS
4333 }
4334
4335 return 0;
4336}
4337
79741b3b 4338/* fixup insn->imm field of bpf_call instructions
81ed18ab 4339 * and inline eligible helpers as explicit sequence of BPF instructions
e245c5c6
AS
4340 *
4341 * this function is called after eBPF program passed verification
4342 */
79741b3b 4343static int fixup_bpf_calls(struct bpf_verifier_env *env)
e245c5c6 4344{
79741b3b
AS
4345 struct bpf_prog *prog = env->prog;
4346 struct bpf_insn *insn = prog->insnsi;
e245c5c6 4347 const struct bpf_func_proto *fn;
79741b3b 4348 const int insn_cnt = prog->len;
81ed18ab
AS
4349 struct bpf_insn insn_buf[16];
4350 struct bpf_prog *new_prog;
4351 struct bpf_map *map_ptr;
4352 int i, cnt, delta = 0;
e245c5c6 4353
79741b3b
AS
4354 for (i = 0; i < insn_cnt; i++, insn++) {
4355 if (insn->code != (BPF_JMP | BPF_CALL))
4356 continue;
e245c5c6 4357
79741b3b
AS
4358 if (insn->imm == BPF_FUNC_get_route_realm)
4359 prog->dst_needed = 1;
4360 if (insn->imm == BPF_FUNC_get_prandom_u32)
4361 bpf_user_rnd_init_once();
79741b3b 4362 if (insn->imm == BPF_FUNC_tail_call) {
7b9f6da1
DM
4363 /* If we tail call into other programs, we
4364 * cannot make any assumptions since they can
4365 * be replaced dynamically during runtime in
4366 * the program array.
4367 */
4368 prog->cb_access = 1;
80a58d02 4369 env->prog->aux->stack_depth = MAX_BPF_STACK;
7b9f6da1 4370
79741b3b
AS
4371 /* mark bpf_tail_call as different opcode to avoid
4372 * conditional branch in the interpeter for every normal
4373 * call and to prevent accidental JITing by JIT compiler
4374 * that doesn't support bpf_tail_call yet
e245c5c6 4375 */
79741b3b 4376 insn->imm = 0;
71189fa9 4377 insn->code = BPF_JMP | BPF_TAIL_CALL;
79741b3b
AS
4378 continue;
4379 }
e245c5c6 4380
89c63074
DB
4381 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
4382 * handlers are currently limited to 64 bit only.
4383 */
4384 if (ebpf_jit_enabled() && BITS_PER_LONG == 64 &&
4385 insn->imm == BPF_FUNC_map_lookup_elem) {
81ed18ab 4386 map_ptr = env->insn_aux_data[i + delta].map_ptr;
fad73a1a
MKL
4387 if (map_ptr == BPF_MAP_PTR_POISON ||
4388 !map_ptr->ops->map_gen_lookup)
81ed18ab
AS
4389 goto patch_call_imm;
4390
4391 cnt = map_ptr->ops->map_gen_lookup(map_ptr, insn_buf);
4392 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
61bd5218 4393 verbose(env, "bpf verifier is misconfigured\n");
81ed18ab
AS
4394 return -EINVAL;
4395 }
4396
4397 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
4398 cnt);
4399 if (!new_prog)
4400 return -ENOMEM;
4401
4402 delta += cnt - 1;
4403
4404 /* keep walking new program and skip insns we just inserted */
4405 env->prog = prog = new_prog;
4406 insn = new_prog->insnsi + i + delta;
4407 continue;
4408 }
4409
109980b8 4410 if (insn->imm == BPF_FUNC_redirect_map) {
7c300131
DB
4411 /* Note, we cannot use prog directly as imm as subsequent
4412 * rewrites would still change the prog pointer. The only
4413 * stable address we can use is aux, which also works with
4414 * prog clones during blinding.
4415 */
4416 u64 addr = (unsigned long)prog->aux;
109980b8
DB
4417 struct bpf_insn r4_ld[] = {
4418 BPF_LD_IMM64(BPF_REG_4, addr),
4419 *insn,
4420 };
4421 cnt = ARRAY_SIZE(r4_ld);
4422
4423 new_prog = bpf_patch_insn_data(env, i + delta, r4_ld, cnt);
4424 if (!new_prog)
4425 return -ENOMEM;
4426
4427 delta += cnt - 1;
4428 env->prog = prog = new_prog;
4429 insn = new_prog->insnsi + i + delta;
4430 }
81ed18ab 4431patch_call_imm:
00176a34 4432 fn = env->ops->get_func_proto(insn->imm);
79741b3b
AS
4433 /* all functions that have prototype and verifier allowed
4434 * programs to call them, must be real in-kernel functions
4435 */
4436 if (!fn->func) {
61bd5218
JK
4437 verbose(env,
4438 "kernel subsystem misconfigured func %s#%d\n",
79741b3b
AS
4439 func_id_name(insn->imm), insn->imm);
4440 return -EFAULT;
e245c5c6 4441 }
79741b3b 4442 insn->imm = fn->func - __bpf_call_base;
e245c5c6 4443 }
e245c5c6 4444
79741b3b
AS
4445 return 0;
4446}
e245c5c6 4447
58e2af8b 4448static void free_states(struct bpf_verifier_env *env)
f1bca824 4449{
58e2af8b 4450 struct bpf_verifier_state_list *sl, *sln;
f1bca824
AS
4451 int i;
4452
4453 if (!env->explored_states)
4454 return;
4455
4456 for (i = 0; i < env->prog->len; i++) {
4457 sl = env->explored_states[i];
4458
4459 if (sl)
4460 while (sl != STATE_LIST_MARK) {
4461 sln = sl->next;
1969db47 4462 free_verifier_state(&sl->state, false);
f1bca824
AS
4463 kfree(sl);
4464 sl = sln;
4465 }
4466 }
4467
4468 kfree(env->explored_states);
4469}
4470
9bac3d6d 4471int bpf_check(struct bpf_prog **prog, union bpf_attr *attr)
51580e79 4472{
58e2af8b 4473 struct bpf_verifier_env *env;
61bd5218 4474 struct bpf_verifer_log *log;
51580e79
AS
4475 int ret = -EINVAL;
4476
eba0c929
AB
4477 /* no program is valid */
4478 if (ARRAY_SIZE(bpf_verifier_ops) == 0)
4479 return -EINVAL;
4480
58e2af8b 4481 /* 'struct bpf_verifier_env' can be global, but since it's not small,
cbd35700
AS
4482 * allocate/free it every time bpf_check() is called
4483 */
58e2af8b 4484 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
cbd35700
AS
4485 if (!env)
4486 return -ENOMEM;
61bd5218 4487 log = &env->log;
cbd35700 4488
3df126f3
JK
4489 env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
4490 (*prog)->len);
4491 ret = -ENOMEM;
4492 if (!env->insn_aux_data)
4493 goto err_free_env;
9bac3d6d 4494 env->prog = *prog;
00176a34 4495 env->ops = bpf_verifier_ops[env->prog->type];
0246e64d 4496
cbd35700
AS
4497 /* grab the mutex to protect few globals used by verifier */
4498 mutex_lock(&bpf_verifier_lock);
4499
4500 if (attr->log_level || attr->log_buf || attr->log_size) {
4501 /* user requested verbose verifier output
4502 * and supplied buffer to store the verification trace
4503 */
e7bf8249
JK
4504 log->level = attr->log_level;
4505 log->ubuf = (char __user *) (unsigned long) attr->log_buf;
4506 log->len_total = attr->log_size;
cbd35700
AS
4507
4508 ret = -EINVAL;
e7bf8249
JK
4509 /* log attributes have to be sane */
4510 if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 ||
4511 !log->level || !log->ubuf)
3df126f3 4512 goto err_unlock;
cbd35700 4513 }
1ad2f583
DB
4514
4515 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
4516 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
e07b98d9 4517 env->strict_alignment = true;
cbd35700 4518
0246e64d
AS
4519 ret = replace_map_fd_with_map_ptr(env);
4520 if (ret < 0)
4521 goto skip_full_check;
4522
9bac3d6d 4523 env->explored_states = kcalloc(env->prog->len,
58e2af8b 4524 sizeof(struct bpf_verifier_state_list *),
f1bca824
AS
4525 GFP_USER);
4526 ret = -ENOMEM;
4527 if (!env->explored_states)
4528 goto skip_full_check;
4529
475fb78f
AS
4530 ret = check_cfg(env);
4531 if (ret < 0)
4532 goto skip_full_check;
4533
1be7f75d
AS
4534 env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
4535
17a52670 4536 ret = do_check(env);
1969db47 4537 free_verifier_state(env->cur_state, true);
638f5b90 4538 env->cur_state = NULL;
cbd35700 4539
0246e64d 4540skip_full_check:
638f5b90 4541 while (!pop_stack(env, NULL, NULL));
f1bca824 4542 free_states(env);
0246e64d 4543
9bac3d6d
AS
4544 if (ret == 0)
4545 /* program is valid, convert *(u32*)(ctx + off) accesses */
4546 ret = convert_ctx_accesses(env);
4547
e245c5c6 4548 if (ret == 0)
79741b3b 4549 ret = fixup_bpf_calls(env);
e245c5c6 4550
a2a7d570 4551 if (log->level && bpf_verifier_log_full(log))
cbd35700 4552 ret = -ENOSPC;
a2a7d570 4553 if (log->level && !log->ubuf) {
cbd35700 4554 ret = -EFAULT;
a2a7d570 4555 goto err_release_maps;
cbd35700
AS
4556 }
4557
0246e64d
AS
4558 if (ret == 0 && env->used_map_cnt) {
4559 /* if program passed verifier, update used_maps in bpf_prog_info */
9bac3d6d
AS
4560 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
4561 sizeof(env->used_maps[0]),
4562 GFP_KERNEL);
0246e64d 4563
9bac3d6d 4564 if (!env->prog->aux->used_maps) {
0246e64d 4565 ret = -ENOMEM;
a2a7d570 4566 goto err_release_maps;
0246e64d
AS
4567 }
4568
9bac3d6d 4569 memcpy(env->prog->aux->used_maps, env->used_maps,
0246e64d 4570 sizeof(env->used_maps[0]) * env->used_map_cnt);
9bac3d6d 4571 env->prog->aux->used_map_cnt = env->used_map_cnt;
0246e64d
AS
4572
4573 /* program is valid. Convert pseudo bpf_ld_imm64 into generic
4574 * bpf_ld_imm64 instructions
4575 */
4576 convert_pseudo_ld_imm64(env);
4577 }
cbd35700 4578
a2a7d570 4579err_release_maps:
9bac3d6d 4580 if (!env->prog->aux->used_maps)
0246e64d
AS
4581 /* if we didn't copy map pointers into bpf_prog_info, release
4582 * them now. Otherwise free_bpf_prog_info() will release them.
4583 */
4584 release_maps(env);
9bac3d6d 4585 *prog = env->prog;
3df126f3 4586err_unlock:
cbd35700 4587 mutex_unlock(&bpf_verifier_lock);
3df126f3
JK
4588 vfree(env->insn_aux_data);
4589err_free_env:
4590 kfree(env);
51580e79
AS
4591 return ret;
4592}
13a27dfc 4593
4f9218aa 4594static const struct bpf_verifier_ops * const bpf_analyzer_ops[] = {
7cce782e 4595#ifdef CONFIG_NET
4f9218aa
JK
4596 [BPF_PROG_TYPE_XDP] = &xdp_analyzer_ops,
4597 [BPF_PROG_TYPE_SCHED_CLS] = &tc_cls_act_analyzer_ops,
7cce782e 4598#endif
4f9218aa
JK
4599};
4600
13a27dfc
JK
4601int bpf_analyzer(struct bpf_prog *prog, const struct bpf_ext_analyzer_ops *ops,
4602 void *priv)
4603{
4604 struct bpf_verifier_env *env;
4605 int ret;
4606
4f9218aa
JK
4607 if (prog->type >= ARRAY_SIZE(bpf_analyzer_ops) ||
4608 !bpf_analyzer_ops[prog->type])
4609 return -EOPNOTSUPP;
4610
13a27dfc
JK
4611 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
4612 if (!env)
4613 return -ENOMEM;
4614
4615 env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
4616 prog->len);
4617 ret = -ENOMEM;
4618 if (!env->insn_aux_data)
4619 goto err_free_env;
4620 env->prog = prog;
4f9218aa 4621 env->ops = bpf_analyzer_ops[env->prog->type];
13a27dfc
JK
4622 env->analyzer_ops = ops;
4623 env->analyzer_priv = priv;
4624
4625 /* grab the mutex to protect few globals used by verifier */
4626 mutex_lock(&bpf_verifier_lock);
4627
e07b98d9 4628 env->strict_alignment = false;
1ad2f583
DB
4629 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
4630 env->strict_alignment = true;
13a27dfc
JK
4631
4632 env->explored_states = kcalloc(env->prog->len,
4633 sizeof(struct bpf_verifier_state_list *),
4634 GFP_KERNEL);
4635 ret = -ENOMEM;
4636 if (!env->explored_states)
4637 goto skip_full_check;
4638
4639 ret = check_cfg(env);
4640 if (ret < 0)
4641 goto skip_full_check;
4642
4643 env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
4644
4645 ret = do_check(env);
1969db47 4646 free_verifier_state(env->cur_state, true);
638f5b90 4647 env->cur_state = NULL;
13a27dfc
JK
4648
4649skip_full_check:
638f5b90 4650 while (!pop_stack(env, NULL, NULL));
13a27dfc
JK
4651 free_states(env);
4652
4653 mutex_unlock(&bpf_verifier_lock);
4654 vfree(env->insn_aux_data);
4655err_free_env:
4656 kfree(env);
4657 return ret;
4658}
4659EXPORT_SYMBOL_GPL(bpf_analyzer);