]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - kernel/bpf/verifier.c
bpf: Make context access check generic
[mirror_ubuntu-hirsute-kernel.git] / kernel / bpf / verifier.c
CommitLineData
5b497af4 1// SPDX-License-Identifier: GPL-2.0-only
51580e79 2/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
969bf05e 3 * Copyright (c) 2016 Facebook
fd978bf7 4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
51580e79 5 */
838e9690 6#include <uapi/linux/btf.h>
51580e79
AS
7#include <linux/kernel.h>
8#include <linux/types.h>
9#include <linux/slab.h>
10#include <linux/bpf.h>
838e9690 11#include <linux/btf.h>
58e2af8b 12#include <linux/bpf_verifier.h>
51580e79
AS
13#include <linux/filter.h>
14#include <net/netlink.h>
15#include <linux/file.h>
16#include <linux/vmalloc.h>
ebb676da 17#include <linux/stringify.h>
cc8b0b92
AS
18#include <linux/bsearch.h>
19#include <linux/sort.h>
c195651e 20#include <linux/perf_event.h>
d9762e84 21#include <linux/ctype.h>
6ba43b76 22#include <linux/error-injection.h>
9e4e01df 23#include <linux/bpf_lsm.h>
1e6c62a8 24#include <linux/btf_ids.h>
51580e79 25
f4ac7e0b
JK
26#include "disasm.h"
27
00176a34 28static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
91cc1a99 29#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
00176a34
JK
30 [_id] = & _name ## _verifier_ops,
31#define BPF_MAP_TYPE(_id, _ops)
f2e10bff 32#define BPF_LINK_TYPE(_id, _name)
00176a34
JK
33#include <linux/bpf_types.h>
34#undef BPF_PROG_TYPE
35#undef BPF_MAP_TYPE
f2e10bff 36#undef BPF_LINK_TYPE
00176a34
JK
37};
38
51580e79
AS
39/* bpf_check() is a static code analyzer that walks eBPF program
40 * instruction by instruction and updates register/stack state.
41 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
42 *
43 * The first pass is depth-first-search to check that the program is a DAG.
44 * It rejects the following programs:
45 * - larger than BPF_MAXINSNS insns
46 * - if loop is present (detected via back-edge)
47 * - unreachable insns exist (shouldn't be a forest. program = one function)
48 * - out of bounds or malformed jumps
49 * The second pass is all possible path descent from the 1st insn.
50 * Since it's analyzing all pathes through the program, the length of the
eba38a96 51 * analysis is limited to 64k insn, which may be hit even if total number of
51580e79
AS
52 * insn is less then 4K, but there are too many branches that change stack/regs.
53 * Number of 'branches to be analyzed' is limited to 1k
54 *
55 * On entry to each instruction, each register has a type, and the instruction
56 * changes the types of the registers depending on instruction semantics.
57 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
58 * copied to R1.
59 *
60 * All registers are 64-bit.
61 * R0 - return register
62 * R1-R5 argument passing registers
63 * R6-R9 callee saved registers
64 * R10 - frame pointer read-only
65 *
66 * At the start of BPF program the register R1 contains a pointer to bpf_context
67 * and has type PTR_TO_CTX.
68 *
69 * Verifier tracks arithmetic operations on pointers in case:
70 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
71 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
72 * 1st insn copies R10 (which has FRAME_PTR) type into R1
73 * and 2nd arithmetic instruction is pattern matched to recognize
74 * that it wants to construct a pointer to some element within stack.
75 * So after 2nd insn, the register R1 has type PTR_TO_STACK
76 * (and -20 constant is saved for further stack bounds checking).
77 * Meaning that this reg is a pointer to stack plus known immediate constant.
78 *
f1174f77 79 * Most of the time the registers have SCALAR_VALUE type, which
51580e79 80 * means the register has some value, but it's not a valid pointer.
f1174f77 81 * (like pointer plus pointer becomes SCALAR_VALUE type)
51580e79
AS
82 *
83 * When verifier sees load or store instructions the type of base register
c64b7983
JS
84 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
85 * four pointer types recognized by check_mem_access() function.
51580e79
AS
86 *
87 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
88 * and the range of [ptr, ptr + map's value_size) is accessible.
89 *
90 * registers used to pass values to function calls are checked against
91 * function argument constraints.
92 *
93 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
94 * It means that the register type passed to this function must be
95 * PTR_TO_STACK and it will be used inside the function as
96 * 'pointer to map element key'
97 *
98 * For example the argument constraints for bpf_map_lookup_elem():
99 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
100 * .arg1_type = ARG_CONST_MAP_PTR,
101 * .arg2_type = ARG_PTR_TO_MAP_KEY,
102 *
103 * ret_type says that this function returns 'pointer to map elem value or null'
104 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
105 * 2nd argument should be a pointer to stack, which will be used inside
106 * the helper function as a pointer to map element key.
107 *
108 * On the kernel side the helper function looks like:
109 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
110 * {
111 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
112 * void *key = (void *) (unsigned long) r2;
113 * void *value;
114 *
115 * here kernel can access 'key' and 'map' pointers safely, knowing that
116 * [key, key + map->key_size) bytes are valid and were initialized on
117 * the stack of eBPF program.
118 * }
119 *
120 * Corresponding eBPF program may look like:
121 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
122 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
123 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
124 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
125 * here verifier looks at prototype of map_lookup_elem() and sees:
126 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
127 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
128 *
129 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
130 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
131 * and were initialized prior to this call.
132 * If it's ok, then verifier allows this BPF_CALL insn and looks at
133 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
134 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
135 * returns ether pointer to map value or NULL.
136 *
137 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
138 * insn, the register holding that pointer in the true branch changes state to
139 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
140 * branch. See check_cond_jmp_op().
141 *
142 * After the call R0 is set to return type of the function and registers R1-R5
143 * are set to NOT_INIT to indicate that they are no longer readable.
fd978bf7
JS
144 *
145 * The following reference types represent a potential reference to a kernel
146 * resource which, after first being allocated, must be checked and freed by
147 * the BPF program:
148 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
149 *
150 * When the verifier sees a helper call return a reference type, it allocates a
151 * pointer id for the reference and stores it in the current function state.
152 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
153 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
154 * passes through a NULL-check conditional. For the branch wherein the state is
155 * changed to CONST_IMM, the verifier releases the reference.
6acc9b43
JS
156 *
157 * For each helper function that allocates a reference, such as
158 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
159 * bpf_sk_release(). When a reference type passes into the release function,
160 * the verifier also releases the reference. If any unchecked or unreleased
161 * reference remains at the end of the program, the verifier rejects it.
51580e79
AS
162 */
163
17a52670 164/* verifier_state + insn_idx are pushed to stack when branch is encountered */
58e2af8b 165struct bpf_verifier_stack_elem {
17a52670
AS
166 /* verifer state is 'st'
167 * before processing instruction 'insn_idx'
168 * and after processing instruction 'prev_insn_idx'
169 */
58e2af8b 170 struct bpf_verifier_state st;
17a52670
AS
171 int insn_idx;
172 int prev_insn_idx;
58e2af8b 173 struct bpf_verifier_stack_elem *next;
6f8a57cc
AN
174 /* length of verifier log at the time this state was pushed on stack */
175 u32 log_pos;
cbd35700
AS
176};
177
b285fcb7 178#define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192
ceefbc96 179#define BPF_COMPLEXITY_LIMIT_STATES 64
07016151 180
d2e4c1e6
DB
181#define BPF_MAP_KEY_POISON (1ULL << 63)
182#define BPF_MAP_KEY_SEEN (1ULL << 62)
183
c93552c4
DB
184#define BPF_MAP_PTR_UNPRIV 1UL
185#define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \
186 POISON_POINTER_DELTA))
187#define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
188
189static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
190{
d2e4c1e6 191 return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON;
c93552c4
DB
192}
193
194static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
195{
d2e4c1e6 196 return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV;
c93552c4
DB
197}
198
199static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
200 const struct bpf_map *map, bool unpriv)
201{
202 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
203 unpriv |= bpf_map_ptr_unpriv(aux);
d2e4c1e6
DB
204 aux->map_ptr_state = (unsigned long)map |
205 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
206}
207
208static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
209{
210 return aux->map_key_state & BPF_MAP_KEY_POISON;
211}
212
213static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
214{
215 return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
216}
217
218static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
219{
220 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
221}
222
223static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
224{
225 bool poisoned = bpf_map_key_poisoned(aux);
226
227 aux->map_key_state = state | BPF_MAP_KEY_SEEN |
228 (poisoned ? BPF_MAP_KEY_POISON : 0ULL);
c93552c4 229}
fad73a1a 230
33ff9823
DB
231struct bpf_call_arg_meta {
232 struct bpf_map *map_ptr;
435faee1 233 bool raw_mode;
36bbef52 234 bool pkt_access;
435faee1
DB
235 int regno;
236 int access_size;
457f4436 237 int mem_size;
10060503 238 u64 msize_max_value;
1b986589 239 int ref_obj_id;
d83525ca 240 int func_id;
33ff9823
DB
241};
242
8580ac94
AS
243struct btf *btf_vmlinux;
244
cbd35700
AS
245static DEFINE_MUTEX(bpf_verifier_lock);
246
d9762e84
MKL
247static const struct bpf_line_info *
248find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
249{
250 const struct bpf_line_info *linfo;
251 const struct bpf_prog *prog;
252 u32 i, nr_linfo;
253
254 prog = env->prog;
255 nr_linfo = prog->aux->nr_linfo;
256
257 if (!nr_linfo || insn_off >= prog->len)
258 return NULL;
259
260 linfo = prog->aux->linfo;
261 for (i = 1; i < nr_linfo; i++)
262 if (insn_off < linfo[i].insn_off)
263 break;
264
265 return &linfo[i - 1];
266}
267
77d2e05a
MKL
268void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
269 va_list args)
cbd35700 270{
a2a7d570 271 unsigned int n;
cbd35700 272
a2a7d570 273 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
a2a7d570
JK
274
275 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
276 "verifier log line truncated - local buffer too short\n");
277
278 n = min(log->len_total - log->len_used - 1, n);
279 log->kbuf[n] = '\0';
280
8580ac94
AS
281 if (log->level == BPF_LOG_KERNEL) {
282 pr_err("BPF:%s\n", log->kbuf);
283 return;
284 }
a2a7d570
JK
285 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
286 log->len_used += n;
287 else
288 log->ubuf = NULL;
cbd35700 289}
abe08840 290
6f8a57cc
AN
291static void bpf_vlog_reset(struct bpf_verifier_log *log, u32 new_pos)
292{
293 char zero = 0;
294
295 if (!bpf_verifier_log_needed(log))
296 return;
297
298 log->len_used = new_pos;
299 if (put_user(zero, log->ubuf + new_pos))
300 log->ubuf = NULL;
301}
302
abe08840
JO
303/* log_level controls verbosity level of eBPF verifier.
304 * bpf_verifier_log_write() is used to dump the verification trace to the log,
305 * so the user can figure out what's wrong with the program
430e68d1 306 */
abe08840
JO
307__printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
308 const char *fmt, ...)
309{
310 va_list args;
311
77d2e05a
MKL
312 if (!bpf_verifier_log_needed(&env->log))
313 return;
314
abe08840 315 va_start(args, fmt);
77d2e05a 316 bpf_verifier_vlog(&env->log, fmt, args);
abe08840
JO
317 va_end(args);
318}
319EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
320
321__printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
322{
77d2e05a 323 struct bpf_verifier_env *env = private_data;
abe08840
JO
324 va_list args;
325
77d2e05a
MKL
326 if (!bpf_verifier_log_needed(&env->log))
327 return;
328
abe08840 329 va_start(args, fmt);
77d2e05a 330 bpf_verifier_vlog(&env->log, fmt, args);
abe08840
JO
331 va_end(args);
332}
cbd35700 333
9e15db66
AS
334__printf(2, 3) void bpf_log(struct bpf_verifier_log *log,
335 const char *fmt, ...)
336{
337 va_list args;
338
339 if (!bpf_verifier_log_needed(log))
340 return;
341
342 va_start(args, fmt);
343 bpf_verifier_vlog(log, fmt, args);
344 va_end(args);
345}
346
d9762e84
MKL
347static const char *ltrim(const char *s)
348{
349 while (isspace(*s))
350 s++;
351
352 return s;
353}
354
355__printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
356 u32 insn_off,
357 const char *prefix_fmt, ...)
358{
359 const struct bpf_line_info *linfo;
360
361 if (!bpf_verifier_log_needed(&env->log))
362 return;
363
364 linfo = find_linfo(env, insn_off);
365 if (!linfo || linfo == env->prev_linfo)
366 return;
367
368 if (prefix_fmt) {
369 va_list args;
370
371 va_start(args, prefix_fmt);
372 bpf_verifier_vlog(&env->log, prefix_fmt, args);
373 va_end(args);
374 }
375
376 verbose(env, "%s\n",
377 ltrim(btf_name_by_offset(env->prog->aux->btf,
378 linfo->line_off)));
379
380 env->prev_linfo = linfo;
381}
382
de8f3a83
DB
383static bool type_is_pkt_pointer(enum bpf_reg_type type)
384{
385 return type == PTR_TO_PACKET ||
386 type == PTR_TO_PACKET_META;
387}
388
46f8bc92
MKL
389static bool type_is_sk_pointer(enum bpf_reg_type type)
390{
391 return type == PTR_TO_SOCKET ||
655a51e5 392 type == PTR_TO_SOCK_COMMON ||
fada7fdc
JL
393 type == PTR_TO_TCP_SOCK ||
394 type == PTR_TO_XDP_SOCK;
46f8bc92
MKL
395}
396
cac616db
JF
397static bool reg_type_not_null(enum bpf_reg_type type)
398{
399 return type == PTR_TO_SOCKET ||
400 type == PTR_TO_TCP_SOCK ||
401 type == PTR_TO_MAP_VALUE ||
01c66c48 402 type == PTR_TO_SOCK_COMMON;
cac616db
JF
403}
404
840b9615
JS
405static bool reg_type_may_be_null(enum bpf_reg_type type)
406{
fd978bf7 407 return type == PTR_TO_MAP_VALUE_OR_NULL ||
46f8bc92 408 type == PTR_TO_SOCKET_OR_NULL ||
655a51e5 409 type == PTR_TO_SOCK_COMMON_OR_NULL ||
b121b341 410 type == PTR_TO_TCP_SOCK_OR_NULL ||
457f4436 411 type == PTR_TO_BTF_ID_OR_NULL ||
afbf21dc
YS
412 type == PTR_TO_MEM_OR_NULL ||
413 type == PTR_TO_RDONLY_BUF_OR_NULL ||
414 type == PTR_TO_RDWR_BUF_OR_NULL;
fd978bf7
JS
415}
416
d83525ca
AS
417static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
418{
419 return reg->type == PTR_TO_MAP_VALUE &&
420 map_value_has_spin_lock(reg->map_ptr);
421}
422
cba368c1
MKL
423static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type)
424{
425 return type == PTR_TO_SOCKET ||
426 type == PTR_TO_SOCKET_OR_NULL ||
427 type == PTR_TO_TCP_SOCK ||
457f4436
AN
428 type == PTR_TO_TCP_SOCK_OR_NULL ||
429 type == PTR_TO_MEM ||
430 type == PTR_TO_MEM_OR_NULL;
cba368c1
MKL
431}
432
1b986589 433static bool arg_type_may_be_refcounted(enum bpf_arg_type type)
fd978bf7 434{
1b986589 435 return type == ARG_PTR_TO_SOCK_COMMON;
fd978bf7
JS
436}
437
438/* Determine whether the function releases some resources allocated by another
439 * function call. The first reference type argument will be assumed to be
440 * released by release_reference().
441 */
442static bool is_release_function(enum bpf_func_id func_id)
443{
457f4436
AN
444 return func_id == BPF_FUNC_sk_release ||
445 func_id == BPF_FUNC_ringbuf_submit ||
446 func_id == BPF_FUNC_ringbuf_discard;
840b9615
JS
447}
448
64d85290 449static bool may_be_acquire_function(enum bpf_func_id func_id)
46f8bc92
MKL
450{
451 return func_id == BPF_FUNC_sk_lookup_tcp ||
edbf8c01 452 func_id == BPF_FUNC_sk_lookup_udp ||
64d85290 453 func_id == BPF_FUNC_skc_lookup_tcp ||
457f4436
AN
454 func_id == BPF_FUNC_map_lookup_elem ||
455 func_id == BPF_FUNC_ringbuf_reserve;
64d85290
JS
456}
457
458static bool is_acquire_function(enum bpf_func_id func_id,
459 const struct bpf_map *map)
460{
461 enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC;
462
463 if (func_id == BPF_FUNC_sk_lookup_tcp ||
464 func_id == BPF_FUNC_sk_lookup_udp ||
457f4436
AN
465 func_id == BPF_FUNC_skc_lookup_tcp ||
466 func_id == BPF_FUNC_ringbuf_reserve)
64d85290
JS
467 return true;
468
469 if (func_id == BPF_FUNC_map_lookup_elem &&
470 (map_type == BPF_MAP_TYPE_SOCKMAP ||
471 map_type == BPF_MAP_TYPE_SOCKHASH))
472 return true;
473
474 return false;
46f8bc92
MKL
475}
476
1b986589
MKL
477static bool is_ptr_cast_function(enum bpf_func_id func_id)
478{
479 return func_id == BPF_FUNC_tcp_sock ||
480 func_id == BPF_FUNC_sk_fullsock;
481}
482
17a52670
AS
483/* string representation of 'enum bpf_reg_type' */
484static const char * const reg_type_str[] = {
485 [NOT_INIT] = "?",
f1174f77 486 [SCALAR_VALUE] = "inv",
17a52670
AS
487 [PTR_TO_CTX] = "ctx",
488 [CONST_PTR_TO_MAP] = "map_ptr",
489 [PTR_TO_MAP_VALUE] = "map_value",
490 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
17a52670 491 [PTR_TO_STACK] = "fp",
969bf05e 492 [PTR_TO_PACKET] = "pkt",
de8f3a83 493 [PTR_TO_PACKET_META] = "pkt_meta",
969bf05e 494 [PTR_TO_PACKET_END] = "pkt_end",
d58e468b 495 [PTR_TO_FLOW_KEYS] = "flow_keys",
c64b7983
JS
496 [PTR_TO_SOCKET] = "sock",
497 [PTR_TO_SOCKET_OR_NULL] = "sock_or_null",
46f8bc92
MKL
498 [PTR_TO_SOCK_COMMON] = "sock_common",
499 [PTR_TO_SOCK_COMMON_OR_NULL] = "sock_common_or_null",
655a51e5
MKL
500 [PTR_TO_TCP_SOCK] = "tcp_sock",
501 [PTR_TO_TCP_SOCK_OR_NULL] = "tcp_sock_or_null",
9df1c28b 502 [PTR_TO_TP_BUFFER] = "tp_buffer",
fada7fdc 503 [PTR_TO_XDP_SOCK] = "xdp_sock",
9e15db66 504 [PTR_TO_BTF_ID] = "ptr_",
b121b341 505 [PTR_TO_BTF_ID_OR_NULL] = "ptr_or_null_",
457f4436
AN
506 [PTR_TO_MEM] = "mem",
507 [PTR_TO_MEM_OR_NULL] = "mem_or_null",
afbf21dc
YS
508 [PTR_TO_RDONLY_BUF] = "rdonly_buf",
509 [PTR_TO_RDONLY_BUF_OR_NULL] = "rdonly_buf_or_null",
510 [PTR_TO_RDWR_BUF] = "rdwr_buf",
511 [PTR_TO_RDWR_BUF_OR_NULL] = "rdwr_buf_or_null",
17a52670
AS
512};
513
8efea21d
EC
514static char slot_type_char[] = {
515 [STACK_INVALID] = '?',
516 [STACK_SPILL] = 'r',
517 [STACK_MISC] = 'm',
518 [STACK_ZERO] = '0',
519};
520
4e92024a
AS
521static void print_liveness(struct bpf_verifier_env *env,
522 enum bpf_reg_liveness live)
523{
9242b5f5 524 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
4e92024a
AS
525 verbose(env, "_");
526 if (live & REG_LIVE_READ)
527 verbose(env, "r");
528 if (live & REG_LIVE_WRITTEN)
529 verbose(env, "w");
9242b5f5
AS
530 if (live & REG_LIVE_DONE)
531 verbose(env, "D");
4e92024a
AS
532}
533
f4d7e40a
AS
534static struct bpf_func_state *func(struct bpf_verifier_env *env,
535 const struct bpf_reg_state *reg)
536{
537 struct bpf_verifier_state *cur = env->cur_state;
538
539 return cur->frame[reg->frameno];
540}
541
9e15db66
AS
542const char *kernel_type_name(u32 id)
543{
544 return btf_name_by_offset(btf_vmlinux,
545 btf_type_by_id(btf_vmlinux, id)->name_off);
546}
547
61bd5218 548static void print_verifier_state(struct bpf_verifier_env *env,
f4d7e40a 549 const struct bpf_func_state *state)
17a52670 550{
f4d7e40a 551 const struct bpf_reg_state *reg;
17a52670
AS
552 enum bpf_reg_type t;
553 int i;
554
f4d7e40a
AS
555 if (state->frameno)
556 verbose(env, " frame%d:", state->frameno);
17a52670 557 for (i = 0; i < MAX_BPF_REG; i++) {
1a0dc1ac
AS
558 reg = &state->regs[i];
559 t = reg->type;
17a52670
AS
560 if (t == NOT_INIT)
561 continue;
4e92024a
AS
562 verbose(env, " R%d", i);
563 print_liveness(env, reg->live);
564 verbose(env, "=%s", reg_type_str[t]);
b5dc0163
AS
565 if (t == SCALAR_VALUE && reg->precise)
566 verbose(env, "P");
f1174f77
EC
567 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
568 tnum_is_const(reg->var_off)) {
569 /* reg->off should be 0 for SCALAR_VALUE */
61bd5218 570 verbose(env, "%lld", reg->var_off.value + reg->off);
f1174f77 571 } else {
b121b341 572 if (t == PTR_TO_BTF_ID || t == PTR_TO_BTF_ID_OR_NULL)
9e15db66 573 verbose(env, "%s", kernel_type_name(reg->btf_id));
cba368c1
MKL
574 verbose(env, "(id=%d", reg->id);
575 if (reg_type_may_be_refcounted_or_null(t))
576 verbose(env, ",ref_obj_id=%d", reg->ref_obj_id);
f1174f77 577 if (t != SCALAR_VALUE)
61bd5218 578 verbose(env, ",off=%d", reg->off);
de8f3a83 579 if (type_is_pkt_pointer(t))
61bd5218 580 verbose(env, ",r=%d", reg->range);
f1174f77
EC
581 else if (t == CONST_PTR_TO_MAP ||
582 t == PTR_TO_MAP_VALUE ||
583 t == PTR_TO_MAP_VALUE_OR_NULL)
61bd5218 584 verbose(env, ",ks=%d,vs=%d",
f1174f77
EC
585 reg->map_ptr->key_size,
586 reg->map_ptr->value_size);
7d1238f2
EC
587 if (tnum_is_const(reg->var_off)) {
588 /* Typically an immediate SCALAR_VALUE, but
589 * could be a pointer whose offset is too big
590 * for reg->off
591 */
61bd5218 592 verbose(env, ",imm=%llx", reg->var_off.value);
7d1238f2
EC
593 } else {
594 if (reg->smin_value != reg->umin_value &&
595 reg->smin_value != S64_MIN)
61bd5218 596 verbose(env, ",smin_value=%lld",
7d1238f2
EC
597 (long long)reg->smin_value);
598 if (reg->smax_value != reg->umax_value &&
599 reg->smax_value != S64_MAX)
61bd5218 600 verbose(env, ",smax_value=%lld",
7d1238f2
EC
601 (long long)reg->smax_value);
602 if (reg->umin_value != 0)
61bd5218 603 verbose(env, ",umin_value=%llu",
7d1238f2
EC
604 (unsigned long long)reg->umin_value);
605 if (reg->umax_value != U64_MAX)
61bd5218 606 verbose(env, ",umax_value=%llu",
7d1238f2
EC
607 (unsigned long long)reg->umax_value);
608 if (!tnum_is_unknown(reg->var_off)) {
609 char tn_buf[48];
f1174f77 610
7d1238f2 611 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 612 verbose(env, ",var_off=%s", tn_buf);
7d1238f2 613 }
3f50f132
JF
614 if (reg->s32_min_value != reg->smin_value &&
615 reg->s32_min_value != S32_MIN)
616 verbose(env, ",s32_min_value=%d",
617 (int)(reg->s32_min_value));
618 if (reg->s32_max_value != reg->smax_value &&
619 reg->s32_max_value != S32_MAX)
620 verbose(env, ",s32_max_value=%d",
621 (int)(reg->s32_max_value));
622 if (reg->u32_min_value != reg->umin_value &&
623 reg->u32_min_value != U32_MIN)
624 verbose(env, ",u32_min_value=%d",
625 (int)(reg->u32_min_value));
626 if (reg->u32_max_value != reg->umax_value &&
627 reg->u32_max_value != U32_MAX)
628 verbose(env, ",u32_max_value=%d",
629 (int)(reg->u32_max_value));
f1174f77 630 }
61bd5218 631 verbose(env, ")");
f1174f77 632 }
17a52670 633 }
638f5b90 634 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
8efea21d
EC
635 char types_buf[BPF_REG_SIZE + 1];
636 bool valid = false;
637 int j;
638
639 for (j = 0; j < BPF_REG_SIZE; j++) {
640 if (state->stack[i].slot_type[j] != STACK_INVALID)
641 valid = true;
642 types_buf[j] = slot_type_char[
643 state->stack[i].slot_type[j]];
644 }
645 types_buf[BPF_REG_SIZE] = 0;
646 if (!valid)
647 continue;
648 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
649 print_liveness(env, state->stack[i].spilled_ptr.live);
b5dc0163
AS
650 if (state->stack[i].slot_type[0] == STACK_SPILL) {
651 reg = &state->stack[i].spilled_ptr;
652 t = reg->type;
653 verbose(env, "=%s", reg_type_str[t]);
654 if (t == SCALAR_VALUE && reg->precise)
655 verbose(env, "P");
656 if (t == SCALAR_VALUE && tnum_is_const(reg->var_off))
657 verbose(env, "%lld", reg->var_off.value + reg->off);
658 } else {
8efea21d 659 verbose(env, "=%s", types_buf);
b5dc0163 660 }
17a52670 661 }
fd978bf7
JS
662 if (state->acquired_refs && state->refs[0].id) {
663 verbose(env, " refs=%d", state->refs[0].id);
664 for (i = 1; i < state->acquired_refs; i++)
665 if (state->refs[i].id)
666 verbose(env, ",%d", state->refs[i].id);
667 }
61bd5218 668 verbose(env, "\n");
17a52670
AS
669}
670
84dbf350
JS
671#define COPY_STATE_FN(NAME, COUNT, FIELD, SIZE) \
672static int copy_##NAME##_state(struct bpf_func_state *dst, \
673 const struct bpf_func_state *src) \
674{ \
675 if (!src->FIELD) \
676 return 0; \
677 if (WARN_ON_ONCE(dst->COUNT < src->COUNT)) { \
678 /* internal bug, make state invalid to reject the program */ \
679 memset(dst, 0, sizeof(*dst)); \
680 return -EFAULT; \
681 } \
682 memcpy(dst->FIELD, src->FIELD, \
683 sizeof(*src->FIELD) * (src->COUNT / SIZE)); \
684 return 0; \
638f5b90 685}
fd978bf7
JS
686/* copy_reference_state() */
687COPY_STATE_FN(reference, acquired_refs, refs, 1)
84dbf350
JS
688/* copy_stack_state() */
689COPY_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
690#undef COPY_STATE_FN
691
692#define REALLOC_STATE_FN(NAME, COUNT, FIELD, SIZE) \
693static int realloc_##NAME##_state(struct bpf_func_state *state, int size, \
694 bool copy_old) \
695{ \
696 u32 old_size = state->COUNT; \
697 struct bpf_##NAME##_state *new_##FIELD; \
698 int slot = size / SIZE; \
699 \
700 if (size <= old_size || !size) { \
701 if (copy_old) \
702 return 0; \
703 state->COUNT = slot * SIZE; \
704 if (!size && old_size) { \
705 kfree(state->FIELD); \
706 state->FIELD = NULL; \
707 } \
708 return 0; \
709 } \
710 new_##FIELD = kmalloc_array(slot, sizeof(struct bpf_##NAME##_state), \
711 GFP_KERNEL); \
712 if (!new_##FIELD) \
713 return -ENOMEM; \
714 if (copy_old) { \
715 if (state->FIELD) \
716 memcpy(new_##FIELD, state->FIELD, \
717 sizeof(*new_##FIELD) * (old_size / SIZE)); \
718 memset(new_##FIELD + old_size / SIZE, 0, \
719 sizeof(*new_##FIELD) * (size - old_size) / SIZE); \
720 } \
721 state->COUNT = slot * SIZE; \
722 kfree(state->FIELD); \
723 state->FIELD = new_##FIELD; \
724 return 0; \
725}
fd978bf7
JS
726/* realloc_reference_state() */
727REALLOC_STATE_FN(reference, acquired_refs, refs, 1)
84dbf350
JS
728/* realloc_stack_state() */
729REALLOC_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
730#undef REALLOC_STATE_FN
638f5b90
AS
731
732/* do_check() starts with zero-sized stack in struct bpf_verifier_state to
733 * make it consume minimal amount of memory. check_stack_write() access from
f4d7e40a 734 * the program calls into realloc_func_state() to grow the stack size.
84dbf350
JS
735 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
736 * which realloc_stack_state() copies over. It points to previous
737 * bpf_verifier_state which is never reallocated.
638f5b90 738 */
fd978bf7
JS
739static int realloc_func_state(struct bpf_func_state *state, int stack_size,
740 int refs_size, bool copy_old)
638f5b90 741{
fd978bf7
JS
742 int err = realloc_reference_state(state, refs_size, copy_old);
743 if (err)
744 return err;
745 return realloc_stack_state(state, stack_size, copy_old);
746}
747
748/* Acquire a pointer id from the env and update the state->refs to include
749 * this new pointer reference.
750 * On success, returns a valid pointer id to associate with the register
751 * On failure, returns a negative errno.
638f5b90 752 */
fd978bf7 753static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
638f5b90 754{
fd978bf7
JS
755 struct bpf_func_state *state = cur_func(env);
756 int new_ofs = state->acquired_refs;
757 int id, err;
758
759 err = realloc_reference_state(state, state->acquired_refs + 1, true);
760 if (err)
761 return err;
762 id = ++env->id_gen;
763 state->refs[new_ofs].id = id;
764 state->refs[new_ofs].insn_idx = insn_idx;
638f5b90 765
fd978bf7
JS
766 return id;
767}
768
769/* release function corresponding to acquire_reference_state(). Idempotent. */
46f8bc92 770static int release_reference_state(struct bpf_func_state *state, int ptr_id)
fd978bf7
JS
771{
772 int i, last_idx;
773
fd978bf7
JS
774 last_idx = state->acquired_refs - 1;
775 for (i = 0; i < state->acquired_refs; i++) {
776 if (state->refs[i].id == ptr_id) {
777 if (last_idx && i != last_idx)
778 memcpy(&state->refs[i], &state->refs[last_idx],
779 sizeof(*state->refs));
780 memset(&state->refs[last_idx], 0, sizeof(*state->refs));
781 state->acquired_refs--;
638f5b90 782 return 0;
638f5b90 783 }
638f5b90 784 }
46f8bc92 785 return -EINVAL;
fd978bf7
JS
786}
787
788static int transfer_reference_state(struct bpf_func_state *dst,
789 struct bpf_func_state *src)
790{
791 int err = realloc_reference_state(dst, src->acquired_refs, false);
792 if (err)
793 return err;
794 err = copy_reference_state(dst, src);
795 if (err)
796 return err;
638f5b90
AS
797 return 0;
798}
799
f4d7e40a
AS
800static void free_func_state(struct bpf_func_state *state)
801{
5896351e
AS
802 if (!state)
803 return;
fd978bf7 804 kfree(state->refs);
f4d7e40a
AS
805 kfree(state->stack);
806 kfree(state);
807}
808
b5dc0163
AS
809static void clear_jmp_history(struct bpf_verifier_state *state)
810{
811 kfree(state->jmp_history);
812 state->jmp_history = NULL;
813 state->jmp_history_cnt = 0;
814}
815
1969db47
AS
816static void free_verifier_state(struct bpf_verifier_state *state,
817 bool free_self)
638f5b90 818{
f4d7e40a
AS
819 int i;
820
821 for (i = 0; i <= state->curframe; i++) {
822 free_func_state(state->frame[i]);
823 state->frame[i] = NULL;
824 }
b5dc0163 825 clear_jmp_history(state);
1969db47
AS
826 if (free_self)
827 kfree(state);
638f5b90
AS
828}
829
830/* copy verifier state from src to dst growing dst stack space
831 * when necessary to accommodate larger src stack
832 */
f4d7e40a
AS
833static int copy_func_state(struct bpf_func_state *dst,
834 const struct bpf_func_state *src)
638f5b90
AS
835{
836 int err;
837
fd978bf7
JS
838 err = realloc_func_state(dst, src->allocated_stack, src->acquired_refs,
839 false);
840 if (err)
841 return err;
842 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
843 err = copy_reference_state(dst, src);
638f5b90
AS
844 if (err)
845 return err;
638f5b90
AS
846 return copy_stack_state(dst, src);
847}
848
f4d7e40a
AS
849static int copy_verifier_state(struct bpf_verifier_state *dst_state,
850 const struct bpf_verifier_state *src)
851{
852 struct bpf_func_state *dst;
b5dc0163 853 u32 jmp_sz = sizeof(struct bpf_idx_pair) * src->jmp_history_cnt;
f4d7e40a
AS
854 int i, err;
855
b5dc0163
AS
856 if (dst_state->jmp_history_cnt < src->jmp_history_cnt) {
857 kfree(dst_state->jmp_history);
858 dst_state->jmp_history = kmalloc(jmp_sz, GFP_USER);
859 if (!dst_state->jmp_history)
860 return -ENOMEM;
861 }
862 memcpy(dst_state->jmp_history, src->jmp_history, jmp_sz);
863 dst_state->jmp_history_cnt = src->jmp_history_cnt;
864
f4d7e40a
AS
865 /* if dst has more stack frames then src frame, free them */
866 for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
867 free_func_state(dst_state->frame[i]);
868 dst_state->frame[i] = NULL;
869 }
979d63d5 870 dst_state->speculative = src->speculative;
f4d7e40a 871 dst_state->curframe = src->curframe;
d83525ca 872 dst_state->active_spin_lock = src->active_spin_lock;
2589726d
AS
873 dst_state->branches = src->branches;
874 dst_state->parent = src->parent;
b5dc0163
AS
875 dst_state->first_insn_idx = src->first_insn_idx;
876 dst_state->last_insn_idx = src->last_insn_idx;
f4d7e40a
AS
877 for (i = 0; i <= src->curframe; i++) {
878 dst = dst_state->frame[i];
879 if (!dst) {
880 dst = kzalloc(sizeof(*dst), GFP_KERNEL);
881 if (!dst)
882 return -ENOMEM;
883 dst_state->frame[i] = dst;
884 }
885 err = copy_func_state(dst, src->frame[i]);
886 if (err)
887 return err;
888 }
889 return 0;
890}
891
2589726d
AS
892static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
893{
894 while (st) {
895 u32 br = --st->branches;
896
897 /* WARN_ON(br > 1) technically makes sense here,
898 * but see comment in push_stack(), hence:
899 */
900 WARN_ONCE((int)br < 0,
901 "BUG update_branch_counts:branches_to_explore=%d\n",
902 br);
903 if (br)
904 break;
905 st = st->parent;
906 }
907}
908
638f5b90 909static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
6f8a57cc 910 int *insn_idx, bool pop_log)
638f5b90
AS
911{
912 struct bpf_verifier_state *cur = env->cur_state;
913 struct bpf_verifier_stack_elem *elem, *head = env->head;
914 int err;
17a52670
AS
915
916 if (env->head == NULL)
638f5b90 917 return -ENOENT;
17a52670 918
638f5b90
AS
919 if (cur) {
920 err = copy_verifier_state(cur, &head->st);
921 if (err)
922 return err;
923 }
6f8a57cc
AN
924 if (pop_log)
925 bpf_vlog_reset(&env->log, head->log_pos);
638f5b90
AS
926 if (insn_idx)
927 *insn_idx = head->insn_idx;
17a52670 928 if (prev_insn_idx)
638f5b90
AS
929 *prev_insn_idx = head->prev_insn_idx;
930 elem = head->next;
1969db47 931 free_verifier_state(&head->st, false);
638f5b90 932 kfree(head);
17a52670
AS
933 env->head = elem;
934 env->stack_size--;
638f5b90 935 return 0;
17a52670
AS
936}
937
58e2af8b 938static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
979d63d5
DB
939 int insn_idx, int prev_insn_idx,
940 bool speculative)
17a52670 941{
638f5b90 942 struct bpf_verifier_state *cur = env->cur_state;
58e2af8b 943 struct bpf_verifier_stack_elem *elem;
638f5b90 944 int err;
17a52670 945
638f5b90 946 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
17a52670
AS
947 if (!elem)
948 goto err;
949
17a52670
AS
950 elem->insn_idx = insn_idx;
951 elem->prev_insn_idx = prev_insn_idx;
952 elem->next = env->head;
6f8a57cc 953 elem->log_pos = env->log.len_used;
17a52670
AS
954 env->head = elem;
955 env->stack_size++;
1969db47
AS
956 err = copy_verifier_state(&elem->st, cur);
957 if (err)
958 goto err;
979d63d5 959 elem->st.speculative |= speculative;
b285fcb7
AS
960 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
961 verbose(env, "The sequence of %d jumps is too complex.\n",
962 env->stack_size);
17a52670
AS
963 goto err;
964 }
2589726d
AS
965 if (elem->st.parent) {
966 ++elem->st.parent->branches;
967 /* WARN_ON(branches > 2) technically makes sense here,
968 * but
969 * 1. speculative states will bump 'branches' for non-branch
970 * instructions
971 * 2. is_state_visited() heuristics may decide not to create
972 * a new state for a sequence of branches and all such current
973 * and cloned states will be pointing to a single parent state
974 * which might have large 'branches' count.
975 */
976 }
17a52670
AS
977 return &elem->st;
978err:
5896351e
AS
979 free_verifier_state(env->cur_state, true);
980 env->cur_state = NULL;
17a52670 981 /* pop all elements and return */
6f8a57cc 982 while (!pop_stack(env, NULL, NULL, false));
17a52670
AS
983 return NULL;
984}
985
986#define CALLER_SAVED_REGS 6
987static const int caller_saved[CALLER_SAVED_REGS] = {
988 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
989};
990
f54c7898
DB
991static void __mark_reg_not_init(const struct bpf_verifier_env *env,
992 struct bpf_reg_state *reg);
f1174f77 993
b03c9f9f
EC
994/* Mark the unknown part of a register (variable offset or scalar value) as
995 * known to have the value @imm.
996 */
997static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
998{
a9c676bc
AS
999 /* Clear id, off, and union(map_ptr, range) */
1000 memset(((u8 *)reg) + sizeof(reg->type), 0,
1001 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
b03c9f9f
EC
1002 reg->var_off = tnum_const(imm);
1003 reg->smin_value = (s64)imm;
1004 reg->smax_value = (s64)imm;
1005 reg->umin_value = imm;
1006 reg->umax_value = imm;
3f50f132
JF
1007
1008 reg->s32_min_value = (s32)imm;
1009 reg->s32_max_value = (s32)imm;
1010 reg->u32_min_value = (u32)imm;
1011 reg->u32_max_value = (u32)imm;
1012}
1013
1014static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm)
1015{
1016 reg->var_off = tnum_const_subreg(reg->var_off, imm);
1017 reg->s32_min_value = (s32)imm;
1018 reg->s32_max_value = (s32)imm;
1019 reg->u32_min_value = (u32)imm;
1020 reg->u32_max_value = (u32)imm;
b03c9f9f
EC
1021}
1022
f1174f77
EC
1023/* Mark the 'variable offset' part of a register as zero. This should be
1024 * used only on registers holding a pointer type.
1025 */
1026static void __mark_reg_known_zero(struct bpf_reg_state *reg)
a9789ef9 1027{
b03c9f9f 1028 __mark_reg_known(reg, 0);
f1174f77 1029}
a9789ef9 1030
cc2b14d5
AS
1031static void __mark_reg_const_zero(struct bpf_reg_state *reg)
1032{
1033 __mark_reg_known(reg, 0);
cc2b14d5
AS
1034 reg->type = SCALAR_VALUE;
1035}
1036
61bd5218
JK
1037static void mark_reg_known_zero(struct bpf_verifier_env *env,
1038 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
1039{
1040 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 1041 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
f1174f77
EC
1042 /* Something bad happened, let's kill all regs */
1043 for (regno = 0; regno < MAX_BPF_REG; regno++)
f54c7898 1044 __mark_reg_not_init(env, regs + regno);
f1174f77
EC
1045 return;
1046 }
1047 __mark_reg_known_zero(regs + regno);
1048}
1049
de8f3a83
DB
1050static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
1051{
1052 return type_is_pkt_pointer(reg->type);
1053}
1054
1055static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
1056{
1057 return reg_is_pkt_pointer(reg) ||
1058 reg->type == PTR_TO_PACKET_END;
1059}
1060
1061/* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
1062static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
1063 enum bpf_reg_type which)
1064{
1065 /* The register can already have a range from prior markings.
1066 * This is fine as long as it hasn't been advanced from its
1067 * origin.
1068 */
1069 return reg->type == which &&
1070 reg->id == 0 &&
1071 reg->off == 0 &&
1072 tnum_equals_const(reg->var_off, 0);
1073}
1074
3f50f132
JF
1075/* Reset the min/max bounds of a register */
1076static void __mark_reg_unbounded(struct bpf_reg_state *reg)
1077{
1078 reg->smin_value = S64_MIN;
1079 reg->smax_value = S64_MAX;
1080 reg->umin_value = 0;
1081 reg->umax_value = U64_MAX;
1082
1083 reg->s32_min_value = S32_MIN;
1084 reg->s32_max_value = S32_MAX;
1085 reg->u32_min_value = 0;
1086 reg->u32_max_value = U32_MAX;
1087}
1088
1089static void __mark_reg64_unbounded(struct bpf_reg_state *reg)
1090{
1091 reg->smin_value = S64_MIN;
1092 reg->smax_value = S64_MAX;
1093 reg->umin_value = 0;
1094 reg->umax_value = U64_MAX;
1095}
1096
1097static void __mark_reg32_unbounded(struct bpf_reg_state *reg)
1098{
1099 reg->s32_min_value = S32_MIN;
1100 reg->s32_max_value = S32_MAX;
1101 reg->u32_min_value = 0;
1102 reg->u32_max_value = U32_MAX;
1103}
1104
1105static void __update_reg32_bounds(struct bpf_reg_state *reg)
1106{
1107 struct tnum var32_off = tnum_subreg(reg->var_off);
1108
1109 /* min signed is max(sign bit) | min(other bits) */
1110 reg->s32_min_value = max_t(s32, reg->s32_min_value,
1111 var32_off.value | (var32_off.mask & S32_MIN));
1112 /* max signed is min(sign bit) | max(other bits) */
1113 reg->s32_max_value = min_t(s32, reg->s32_max_value,
1114 var32_off.value | (var32_off.mask & S32_MAX));
1115 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value);
1116 reg->u32_max_value = min(reg->u32_max_value,
1117 (u32)(var32_off.value | var32_off.mask));
1118}
1119
1120static void __update_reg64_bounds(struct bpf_reg_state *reg)
b03c9f9f
EC
1121{
1122 /* min signed is max(sign bit) | min(other bits) */
1123 reg->smin_value = max_t(s64, reg->smin_value,
1124 reg->var_off.value | (reg->var_off.mask & S64_MIN));
1125 /* max signed is min(sign bit) | max(other bits) */
1126 reg->smax_value = min_t(s64, reg->smax_value,
1127 reg->var_off.value | (reg->var_off.mask & S64_MAX));
1128 reg->umin_value = max(reg->umin_value, reg->var_off.value);
1129 reg->umax_value = min(reg->umax_value,
1130 reg->var_off.value | reg->var_off.mask);
1131}
1132
3f50f132
JF
1133static void __update_reg_bounds(struct bpf_reg_state *reg)
1134{
1135 __update_reg32_bounds(reg);
1136 __update_reg64_bounds(reg);
1137}
1138
b03c9f9f 1139/* Uses signed min/max values to inform unsigned, and vice-versa */
3f50f132
JF
1140static void __reg32_deduce_bounds(struct bpf_reg_state *reg)
1141{
1142 /* Learn sign from signed bounds.
1143 * If we cannot cross the sign boundary, then signed and unsigned bounds
1144 * are the same, so combine. This works even in the negative case, e.g.
1145 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1146 */
1147 if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) {
1148 reg->s32_min_value = reg->u32_min_value =
1149 max_t(u32, reg->s32_min_value, reg->u32_min_value);
1150 reg->s32_max_value = reg->u32_max_value =
1151 min_t(u32, reg->s32_max_value, reg->u32_max_value);
1152 return;
1153 }
1154 /* Learn sign from unsigned bounds. Signed bounds cross the sign
1155 * boundary, so we must be careful.
1156 */
1157 if ((s32)reg->u32_max_value >= 0) {
1158 /* Positive. We can't learn anything from the smin, but smax
1159 * is positive, hence safe.
1160 */
1161 reg->s32_min_value = reg->u32_min_value;
1162 reg->s32_max_value = reg->u32_max_value =
1163 min_t(u32, reg->s32_max_value, reg->u32_max_value);
1164 } else if ((s32)reg->u32_min_value < 0) {
1165 /* Negative. We can't learn anything from the smax, but smin
1166 * is negative, hence safe.
1167 */
1168 reg->s32_min_value = reg->u32_min_value =
1169 max_t(u32, reg->s32_min_value, reg->u32_min_value);
1170 reg->s32_max_value = reg->u32_max_value;
1171 }
1172}
1173
1174static void __reg64_deduce_bounds(struct bpf_reg_state *reg)
b03c9f9f
EC
1175{
1176 /* Learn sign from signed bounds.
1177 * If we cannot cross the sign boundary, then signed and unsigned bounds
1178 * are the same, so combine. This works even in the negative case, e.g.
1179 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1180 */
1181 if (reg->smin_value >= 0 || reg->smax_value < 0) {
1182 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1183 reg->umin_value);
1184 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1185 reg->umax_value);
1186 return;
1187 }
1188 /* Learn sign from unsigned bounds. Signed bounds cross the sign
1189 * boundary, so we must be careful.
1190 */
1191 if ((s64)reg->umax_value >= 0) {
1192 /* Positive. We can't learn anything from the smin, but smax
1193 * is positive, hence safe.
1194 */
1195 reg->smin_value = reg->umin_value;
1196 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1197 reg->umax_value);
1198 } else if ((s64)reg->umin_value < 0) {
1199 /* Negative. We can't learn anything from the smax, but smin
1200 * is negative, hence safe.
1201 */
1202 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1203 reg->umin_value);
1204 reg->smax_value = reg->umax_value;
1205 }
1206}
1207
3f50f132
JF
1208static void __reg_deduce_bounds(struct bpf_reg_state *reg)
1209{
1210 __reg32_deduce_bounds(reg);
1211 __reg64_deduce_bounds(reg);
1212}
1213
b03c9f9f
EC
1214/* Attempts to improve var_off based on unsigned min/max information */
1215static void __reg_bound_offset(struct bpf_reg_state *reg)
1216{
3f50f132
JF
1217 struct tnum var64_off = tnum_intersect(reg->var_off,
1218 tnum_range(reg->umin_value,
1219 reg->umax_value));
1220 struct tnum var32_off = tnum_intersect(tnum_subreg(reg->var_off),
1221 tnum_range(reg->u32_min_value,
1222 reg->u32_max_value));
1223
1224 reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off);
b03c9f9f
EC
1225}
1226
3f50f132 1227static void __reg_assign_32_into_64(struct bpf_reg_state *reg)
b03c9f9f 1228{
3f50f132
JF
1229 reg->umin_value = reg->u32_min_value;
1230 reg->umax_value = reg->u32_max_value;
1231 /* Attempt to pull 32-bit signed bounds into 64-bit bounds
1232 * but must be positive otherwise set to worse case bounds
1233 * and refine later from tnum.
1234 */
3a71dc36 1235 if (reg->s32_min_value >= 0 && reg->s32_max_value >= 0)
3f50f132
JF
1236 reg->smax_value = reg->s32_max_value;
1237 else
1238 reg->smax_value = U32_MAX;
3a71dc36
JF
1239 if (reg->s32_min_value >= 0)
1240 reg->smin_value = reg->s32_min_value;
1241 else
1242 reg->smin_value = 0;
3f50f132
JF
1243}
1244
1245static void __reg_combine_32_into_64(struct bpf_reg_state *reg)
1246{
1247 /* special case when 64-bit register has upper 32-bit register
1248 * zeroed. Typically happens after zext or <<32, >>32 sequence
1249 * allowing us to use 32-bit bounds directly,
1250 */
1251 if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) {
1252 __reg_assign_32_into_64(reg);
1253 } else {
1254 /* Otherwise the best we can do is push lower 32bit known and
1255 * unknown bits into register (var_off set from jmp logic)
1256 * then learn as much as possible from the 64-bit tnum
1257 * known and unknown bits. The previous smin/smax bounds are
1258 * invalid here because of jmp32 compare so mark them unknown
1259 * so they do not impact tnum bounds calculation.
1260 */
1261 __mark_reg64_unbounded(reg);
1262 __update_reg_bounds(reg);
1263 }
1264
1265 /* Intersecting with the old var_off might have improved our bounds
1266 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1267 * then new var_off is (0; 0x7f...fc) which improves our umax.
1268 */
1269 __reg_deduce_bounds(reg);
1270 __reg_bound_offset(reg);
1271 __update_reg_bounds(reg);
1272}
1273
1274static bool __reg64_bound_s32(s64 a)
1275{
1276 if (a > S32_MIN && a < S32_MAX)
1277 return true;
1278 return false;
1279}
1280
1281static bool __reg64_bound_u32(u64 a)
1282{
1283 if (a > U32_MIN && a < U32_MAX)
1284 return true;
1285 return false;
1286}
1287
1288static void __reg_combine_64_into_32(struct bpf_reg_state *reg)
1289{
1290 __mark_reg32_unbounded(reg);
1291
1292 if (__reg64_bound_s32(reg->smin_value))
1293 reg->s32_min_value = (s32)reg->smin_value;
1294 if (__reg64_bound_s32(reg->smax_value))
1295 reg->s32_max_value = (s32)reg->smax_value;
1296 if (__reg64_bound_u32(reg->umin_value))
1297 reg->u32_min_value = (u32)reg->umin_value;
1298 if (__reg64_bound_u32(reg->umax_value))
1299 reg->u32_max_value = (u32)reg->umax_value;
1300
1301 /* Intersecting with the old var_off might have improved our bounds
1302 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1303 * then new var_off is (0; 0x7f...fc) which improves our umax.
1304 */
1305 __reg_deduce_bounds(reg);
1306 __reg_bound_offset(reg);
1307 __update_reg_bounds(reg);
b03c9f9f
EC
1308}
1309
f1174f77 1310/* Mark a register as having a completely unknown (scalar) value. */
f54c7898
DB
1311static void __mark_reg_unknown(const struct bpf_verifier_env *env,
1312 struct bpf_reg_state *reg)
f1174f77 1313{
a9c676bc
AS
1314 /*
1315 * Clear type, id, off, and union(map_ptr, range) and
1316 * padding between 'type' and union
1317 */
1318 memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
f1174f77 1319 reg->type = SCALAR_VALUE;
f1174f77 1320 reg->var_off = tnum_unknown;
f4d7e40a 1321 reg->frameno = 0;
2c78ee89 1322 reg->precise = env->subprog_cnt > 1 || !env->bpf_capable;
b03c9f9f 1323 __mark_reg_unbounded(reg);
f1174f77
EC
1324}
1325
61bd5218
JK
1326static void mark_reg_unknown(struct bpf_verifier_env *env,
1327 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
1328{
1329 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 1330 verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
19ceb417
AS
1331 /* Something bad happened, let's kill all regs except FP */
1332 for (regno = 0; regno < BPF_REG_FP; regno++)
f54c7898 1333 __mark_reg_not_init(env, regs + regno);
f1174f77
EC
1334 return;
1335 }
f54c7898 1336 __mark_reg_unknown(env, regs + regno);
f1174f77
EC
1337}
1338
f54c7898
DB
1339static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1340 struct bpf_reg_state *reg)
f1174f77 1341{
f54c7898 1342 __mark_reg_unknown(env, reg);
f1174f77
EC
1343 reg->type = NOT_INIT;
1344}
1345
61bd5218
JK
1346static void mark_reg_not_init(struct bpf_verifier_env *env,
1347 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
1348{
1349 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 1350 verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
19ceb417
AS
1351 /* Something bad happened, let's kill all regs except FP */
1352 for (regno = 0; regno < BPF_REG_FP; regno++)
f54c7898 1353 __mark_reg_not_init(env, regs + regno);
f1174f77
EC
1354 return;
1355 }
f54c7898 1356 __mark_reg_not_init(env, regs + regno);
a9789ef9
DB
1357}
1358
41c48f3a
AI
1359static void mark_btf_ld_reg(struct bpf_verifier_env *env,
1360 struct bpf_reg_state *regs, u32 regno,
1361 enum bpf_reg_type reg_type, u32 btf_id)
1362{
1363 if (reg_type == SCALAR_VALUE) {
1364 mark_reg_unknown(env, regs, regno);
1365 return;
1366 }
1367 mark_reg_known_zero(env, regs, regno);
1368 regs[regno].type = PTR_TO_BTF_ID;
1369 regs[regno].btf_id = btf_id;
1370}
1371
5327ed3d 1372#define DEF_NOT_SUBREG (0)
61bd5218 1373static void init_reg_state(struct bpf_verifier_env *env,
f4d7e40a 1374 struct bpf_func_state *state)
17a52670 1375{
f4d7e40a 1376 struct bpf_reg_state *regs = state->regs;
17a52670
AS
1377 int i;
1378
dc503a8a 1379 for (i = 0; i < MAX_BPF_REG; i++) {
61bd5218 1380 mark_reg_not_init(env, regs, i);
dc503a8a 1381 regs[i].live = REG_LIVE_NONE;
679c782d 1382 regs[i].parent = NULL;
5327ed3d 1383 regs[i].subreg_def = DEF_NOT_SUBREG;
dc503a8a 1384 }
17a52670
AS
1385
1386 /* frame pointer */
f1174f77 1387 regs[BPF_REG_FP].type = PTR_TO_STACK;
61bd5218 1388 mark_reg_known_zero(env, regs, BPF_REG_FP);
f4d7e40a 1389 regs[BPF_REG_FP].frameno = state->frameno;
6760bf2d
DB
1390}
1391
f4d7e40a
AS
1392#define BPF_MAIN_FUNC (-1)
1393static void init_func_state(struct bpf_verifier_env *env,
1394 struct bpf_func_state *state,
1395 int callsite, int frameno, int subprogno)
1396{
1397 state->callsite = callsite;
1398 state->frameno = frameno;
1399 state->subprogno = subprogno;
1400 init_reg_state(env, state);
1401}
1402
17a52670
AS
1403enum reg_arg_type {
1404 SRC_OP, /* register is used as source operand */
1405 DST_OP, /* register is used as destination operand */
1406 DST_OP_NO_MARK /* same as above, check only, don't mark */
1407};
1408
cc8b0b92
AS
1409static int cmp_subprogs(const void *a, const void *b)
1410{
9c8105bd
JW
1411 return ((struct bpf_subprog_info *)a)->start -
1412 ((struct bpf_subprog_info *)b)->start;
cc8b0b92
AS
1413}
1414
1415static int find_subprog(struct bpf_verifier_env *env, int off)
1416{
9c8105bd 1417 struct bpf_subprog_info *p;
cc8b0b92 1418
9c8105bd
JW
1419 p = bsearch(&off, env->subprog_info, env->subprog_cnt,
1420 sizeof(env->subprog_info[0]), cmp_subprogs);
cc8b0b92
AS
1421 if (!p)
1422 return -ENOENT;
9c8105bd 1423 return p - env->subprog_info;
cc8b0b92
AS
1424
1425}
1426
1427static int add_subprog(struct bpf_verifier_env *env, int off)
1428{
1429 int insn_cnt = env->prog->len;
1430 int ret;
1431
1432 if (off >= insn_cnt || off < 0) {
1433 verbose(env, "call to invalid destination\n");
1434 return -EINVAL;
1435 }
1436 ret = find_subprog(env, off);
1437 if (ret >= 0)
1438 return 0;
4cb3d99c 1439 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
cc8b0b92
AS
1440 verbose(env, "too many subprograms\n");
1441 return -E2BIG;
1442 }
9c8105bd
JW
1443 env->subprog_info[env->subprog_cnt++].start = off;
1444 sort(env->subprog_info, env->subprog_cnt,
1445 sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
cc8b0b92
AS
1446 return 0;
1447}
1448
1449static int check_subprogs(struct bpf_verifier_env *env)
1450{
1451 int i, ret, subprog_start, subprog_end, off, cur_subprog = 0;
9c8105bd 1452 struct bpf_subprog_info *subprog = env->subprog_info;
cc8b0b92
AS
1453 struct bpf_insn *insn = env->prog->insnsi;
1454 int insn_cnt = env->prog->len;
1455
f910cefa
JW
1456 /* Add entry function. */
1457 ret = add_subprog(env, 0);
1458 if (ret < 0)
1459 return ret;
1460
cc8b0b92
AS
1461 /* determine subprog starts. The end is one before the next starts */
1462 for (i = 0; i < insn_cnt; i++) {
1463 if (insn[i].code != (BPF_JMP | BPF_CALL))
1464 continue;
1465 if (insn[i].src_reg != BPF_PSEUDO_CALL)
1466 continue;
2c78ee89
AS
1467 if (!env->bpf_capable) {
1468 verbose(env,
1469 "function calls to other bpf functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n");
cc8b0b92
AS
1470 return -EPERM;
1471 }
cc8b0b92
AS
1472 ret = add_subprog(env, i + insn[i].imm + 1);
1473 if (ret < 0)
1474 return ret;
1475 }
1476
4cb3d99c
JW
1477 /* Add a fake 'exit' subprog which could simplify subprog iteration
1478 * logic. 'subprog_cnt' should not be increased.
1479 */
1480 subprog[env->subprog_cnt].start = insn_cnt;
1481
06ee7115 1482 if (env->log.level & BPF_LOG_LEVEL2)
cc8b0b92 1483 for (i = 0; i < env->subprog_cnt; i++)
9c8105bd 1484 verbose(env, "func#%d @%d\n", i, subprog[i].start);
cc8b0b92
AS
1485
1486 /* now check that all jumps are within the same subprog */
4cb3d99c
JW
1487 subprog_start = subprog[cur_subprog].start;
1488 subprog_end = subprog[cur_subprog + 1].start;
cc8b0b92
AS
1489 for (i = 0; i < insn_cnt; i++) {
1490 u8 code = insn[i].code;
1491
7f6e4312
MF
1492 if (code == (BPF_JMP | BPF_CALL) &&
1493 insn[i].imm == BPF_FUNC_tail_call &&
1494 insn[i].src_reg != BPF_PSEUDO_CALL)
1495 subprog[cur_subprog].has_tail_call = true;
09b28d76
AS
1496 if (BPF_CLASS(code) == BPF_LD &&
1497 (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND))
1498 subprog[cur_subprog].has_ld_abs = true;
092ed096 1499 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
cc8b0b92
AS
1500 goto next;
1501 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
1502 goto next;
1503 off = i + insn[i].off + 1;
1504 if (off < subprog_start || off >= subprog_end) {
1505 verbose(env, "jump out of range from insn %d to %d\n", i, off);
1506 return -EINVAL;
1507 }
1508next:
1509 if (i == subprog_end - 1) {
1510 /* to avoid fall-through from one subprog into another
1511 * the last insn of the subprog should be either exit
1512 * or unconditional jump back
1513 */
1514 if (code != (BPF_JMP | BPF_EXIT) &&
1515 code != (BPF_JMP | BPF_JA)) {
1516 verbose(env, "last insn is not an exit or jmp\n");
1517 return -EINVAL;
1518 }
1519 subprog_start = subprog_end;
4cb3d99c
JW
1520 cur_subprog++;
1521 if (cur_subprog < env->subprog_cnt)
9c8105bd 1522 subprog_end = subprog[cur_subprog + 1].start;
cc8b0b92
AS
1523 }
1524 }
1525 return 0;
1526}
1527
679c782d
EC
1528/* Parentage chain of this register (or stack slot) should take care of all
1529 * issues like callee-saved registers, stack slot allocation time, etc.
1530 */
f4d7e40a 1531static int mark_reg_read(struct bpf_verifier_env *env,
679c782d 1532 const struct bpf_reg_state *state,
5327ed3d 1533 struct bpf_reg_state *parent, u8 flag)
f4d7e40a
AS
1534{
1535 bool writes = parent == state->parent; /* Observe write marks */
06ee7115 1536 int cnt = 0;
dc503a8a
EC
1537
1538 while (parent) {
1539 /* if read wasn't screened by an earlier write ... */
679c782d 1540 if (writes && state->live & REG_LIVE_WRITTEN)
dc503a8a 1541 break;
9242b5f5
AS
1542 if (parent->live & REG_LIVE_DONE) {
1543 verbose(env, "verifier BUG type %s var_off %lld off %d\n",
1544 reg_type_str[parent->type],
1545 parent->var_off.value, parent->off);
1546 return -EFAULT;
1547 }
5327ed3d
JW
1548 /* The first condition is more likely to be true than the
1549 * second, checked it first.
1550 */
1551 if ((parent->live & REG_LIVE_READ) == flag ||
1552 parent->live & REG_LIVE_READ64)
25af32da
AS
1553 /* The parentage chain never changes and
1554 * this parent was already marked as LIVE_READ.
1555 * There is no need to keep walking the chain again and
1556 * keep re-marking all parents as LIVE_READ.
1557 * This case happens when the same register is read
1558 * multiple times without writes into it in-between.
5327ed3d
JW
1559 * Also, if parent has the stronger REG_LIVE_READ64 set,
1560 * then no need to set the weak REG_LIVE_READ32.
25af32da
AS
1561 */
1562 break;
dc503a8a 1563 /* ... then we depend on parent's value */
5327ed3d
JW
1564 parent->live |= flag;
1565 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
1566 if (flag == REG_LIVE_READ64)
1567 parent->live &= ~REG_LIVE_READ32;
dc503a8a
EC
1568 state = parent;
1569 parent = state->parent;
f4d7e40a 1570 writes = true;
06ee7115 1571 cnt++;
dc503a8a 1572 }
06ee7115
AS
1573
1574 if (env->longest_mark_read_walk < cnt)
1575 env->longest_mark_read_walk = cnt;
f4d7e40a 1576 return 0;
dc503a8a
EC
1577}
1578
5327ed3d
JW
1579/* This function is supposed to be used by the following 32-bit optimization
1580 * code only. It returns TRUE if the source or destination register operates
1581 * on 64-bit, otherwise return FALSE.
1582 */
1583static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
1584 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
1585{
1586 u8 code, class, op;
1587
1588 code = insn->code;
1589 class = BPF_CLASS(code);
1590 op = BPF_OP(code);
1591 if (class == BPF_JMP) {
1592 /* BPF_EXIT for "main" will reach here. Return TRUE
1593 * conservatively.
1594 */
1595 if (op == BPF_EXIT)
1596 return true;
1597 if (op == BPF_CALL) {
1598 /* BPF to BPF call will reach here because of marking
1599 * caller saved clobber with DST_OP_NO_MARK for which we
1600 * don't care the register def because they are anyway
1601 * marked as NOT_INIT already.
1602 */
1603 if (insn->src_reg == BPF_PSEUDO_CALL)
1604 return false;
1605 /* Helper call will reach here because of arg type
1606 * check, conservatively return TRUE.
1607 */
1608 if (t == SRC_OP)
1609 return true;
1610
1611 return false;
1612 }
1613 }
1614
1615 if (class == BPF_ALU64 || class == BPF_JMP ||
1616 /* BPF_END always use BPF_ALU class. */
1617 (class == BPF_ALU && op == BPF_END && insn->imm == 64))
1618 return true;
1619
1620 if (class == BPF_ALU || class == BPF_JMP32)
1621 return false;
1622
1623 if (class == BPF_LDX) {
1624 if (t != SRC_OP)
1625 return BPF_SIZE(code) == BPF_DW;
1626 /* LDX source must be ptr. */
1627 return true;
1628 }
1629
1630 if (class == BPF_STX) {
1631 if (reg->type != SCALAR_VALUE)
1632 return true;
1633 return BPF_SIZE(code) == BPF_DW;
1634 }
1635
1636 if (class == BPF_LD) {
1637 u8 mode = BPF_MODE(code);
1638
1639 /* LD_IMM64 */
1640 if (mode == BPF_IMM)
1641 return true;
1642
1643 /* Both LD_IND and LD_ABS return 32-bit data. */
1644 if (t != SRC_OP)
1645 return false;
1646
1647 /* Implicit ctx ptr. */
1648 if (regno == BPF_REG_6)
1649 return true;
1650
1651 /* Explicit source could be any width. */
1652 return true;
1653 }
1654
1655 if (class == BPF_ST)
1656 /* The only source register for BPF_ST is a ptr. */
1657 return true;
1658
1659 /* Conservatively return true at default. */
1660 return true;
1661}
1662
b325fbca
JW
1663/* Return TRUE if INSN doesn't have explicit value define. */
1664static bool insn_no_def(struct bpf_insn *insn)
1665{
1666 u8 class = BPF_CLASS(insn->code);
1667
1668 return (class == BPF_JMP || class == BPF_JMP32 ||
1669 class == BPF_STX || class == BPF_ST);
1670}
1671
1672/* Return TRUE if INSN has defined any 32-bit value explicitly. */
1673static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
1674{
1675 if (insn_no_def(insn))
1676 return false;
1677
1678 return !is_reg64(env, insn, insn->dst_reg, NULL, DST_OP);
1679}
1680
5327ed3d
JW
1681static void mark_insn_zext(struct bpf_verifier_env *env,
1682 struct bpf_reg_state *reg)
1683{
1684 s32 def_idx = reg->subreg_def;
1685
1686 if (def_idx == DEF_NOT_SUBREG)
1687 return;
1688
1689 env->insn_aux_data[def_idx - 1].zext_dst = true;
1690 /* The dst will be zero extended, so won't be sub-register anymore. */
1691 reg->subreg_def = DEF_NOT_SUBREG;
1692}
1693
dc503a8a 1694static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
17a52670
AS
1695 enum reg_arg_type t)
1696{
f4d7e40a
AS
1697 struct bpf_verifier_state *vstate = env->cur_state;
1698 struct bpf_func_state *state = vstate->frame[vstate->curframe];
5327ed3d 1699 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
c342dc10 1700 struct bpf_reg_state *reg, *regs = state->regs;
5327ed3d 1701 bool rw64;
dc503a8a 1702
17a52670 1703 if (regno >= MAX_BPF_REG) {
61bd5218 1704 verbose(env, "R%d is invalid\n", regno);
17a52670
AS
1705 return -EINVAL;
1706 }
1707
c342dc10 1708 reg = &regs[regno];
5327ed3d 1709 rw64 = is_reg64(env, insn, regno, reg, t);
17a52670
AS
1710 if (t == SRC_OP) {
1711 /* check whether register used as source operand can be read */
c342dc10 1712 if (reg->type == NOT_INIT) {
61bd5218 1713 verbose(env, "R%d !read_ok\n", regno);
17a52670
AS
1714 return -EACCES;
1715 }
679c782d 1716 /* We don't need to worry about FP liveness because it's read-only */
c342dc10
JW
1717 if (regno == BPF_REG_FP)
1718 return 0;
1719
5327ed3d
JW
1720 if (rw64)
1721 mark_insn_zext(env, reg);
1722
1723 return mark_reg_read(env, reg, reg->parent,
1724 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
17a52670
AS
1725 } else {
1726 /* check whether register used as dest operand can be written to */
1727 if (regno == BPF_REG_FP) {
61bd5218 1728 verbose(env, "frame pointer is read only\n");
17a52670
AS
1729 return -EACCES;
1730 }
c342dc10 1731 reg->live |= REG_LIVE_WRITTEN;
5327ed3d 1732 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
17a52670 1733 if (t == DST_OP)
61bd5218 1734 mark_reg_unknown(env, regs, regno);
17a52670
AS
1735 }
1736 return 0;
1737}
1738
b5dc0163
AS
1739/* for any branch, call, exit record the history of jmps in the given state */
1740static int push_jmp_history(struct bpf_verifier_env *env,
1741 struct bpf_verifier_state *cur)
1742{
1743 u32 cnt = cur->jmp_history_cnt;
1744 struct bpf_idx_pair *p;
1745
1746 cnt++;
1747 p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER);
1748 if (!p)
1749 return -ENOMEM;
1750 p[cnt - 1].idx = env->insn_idx;
1751 p[cnt - 1].prev_idx = env->prev_insn_idx;
1752 cur->jmp_history = p;
1753 cur->jmp_history_cnt = cnt;
1754 return 0;
1755}
1756
1757/* Backtrack one insn at a time. If idx is not at the top of recorded
1758 * history then previous instruction came from straight line execution.
1759 */
1760static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
1761 u32 *history)
1762{
1763 u32 cnt = *history;
1764
1765 if (cnt && st->jmp_history[cnt - 1].idx == i) {
1766 i = st->jmp_history[cnt - 1].prev_idx;
1767 (*history)--;
1768 } else {
1769 i--;
1770 }
1771 return i;
1772}
1773
1774/* For given verifier state backtrack_insn() is called from the last insn to
1775 * the first insn. Its purpose is to compute a bitmask of registers and
1776 * stack slots that needs precision in the parent verifier state.
1777 */
1778static int backtrack_insn(struct bpf_verifier_env *env, int idx,
1779 u32 *reg_mask, u64 *stack_mask)
1780{
1781 const struct bpf_insn_cbs cbs = {
1782 .cb_print = verbose,
1783 .private_data = env,
1784 };
1785 struct bpf_insn *insn = env->prog->insnsi + idx;
1786 u8 class = BPF_CLASS(insn->code);
1787 u8 opcode = BPF_OP(insn->code);
1788 u8 mode = BPF_MODE(insn->code);
1789 u32 dreg = 1u << insn->dst_reg;
1790 u32 sreg = 1u << insn->src_reg;
1791 u32 spi;
1792
1793 if (insn->code == 0)
1794 return 0;
1795 if (env->log.level & BPF_LOG_LEVEL) {
1796 verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask);
1797 verbose(env, "%d: ", idx);
1798 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
1799 }
1800
1801 if (class == BPF_ALU || class == BPF_ALU64) {
1802 if (!(*reg_mask & dreg))
1803 return 0;
1804 if (opcode == BPF_MOV) {
1805 if (BPF_SRC(insn->code) == BPF_X) {
1806 /* dreg = sreg
1807 * dreg needs precision after this insn
1808 * sreg needs precision before this insn
1809 */
1810 *reg_mask &= ~dreg;
1811 *reg_mask |= sreg;
1812 } else {
1813 /* dreg = K
1814 * dreg needs precision after this insn.
1815 * Corresponding register is already marked
1816 * as precise=true in this verifier state.
1817 * No further markings in parent are necessary
1818 */
1819 *reg_mask &= ~dreg;
1820 }
1821 } else {
1822 if (BPF_SRC(insn->code) == BPF_X) {
1823 /* dreg += sreg
1824 * both dreg and sreg need precision
1825 * before this insn
1826 */
1827 *reg_mask |= sreg;
1828 } /* else dreg += K
1829 * dreg still needs precision before this insn
1830 */
1831 }
1832 } else if (class == BPF_LDX) {
1833 if (!(*reg_mask & dreg))
1834 return 0;
1835 *reg_mask &= ~dreg;
1836
1837 /* scalars can only be spilled into stack w/o losing precision.
1838 * Load from any other memory can be zero extended.
1839 * The desire to keep that precision is already indicated
1840 * by 'precise' mark in corresponding register of this state.
1841 * No further tracking necessary.
1842 */
1843 if (insn->src_reg != BPF_REG_FP)
1844 return 0;
1845 if (BPF_SIZE(insn->code) != BPF_DW)
1846 return 0;
1847
1848 /* dreg = *(u64 *)[fp - off] was a fill from the stack.
1849 * that [fp - off] slot contains scalar that needs to be
1850 * tracked with precision
1851 */
1852 spi = (-insn->off - 1) / BPF_REG_SIZE;
1853 if (spi >= 64) {
1854 verbose(env, "BUG spi %d\n", spi);
1855 WARN_ONCE(1, "verifier backtracking bug");
1856 return -EFAULT;
1857 }
1858 *stack_mask |= 1ull << spi;
b3b50f05 1859 } else if (class == BPF_STX || class == BPF_ST) {
b5dc0163 1860 if (*reg_mask & dreg)
b3b50f05 1861 /* stx & st shouldn't be using _scalar_ dst_reg
b5dc0163
AS
1862 * to access memory. It means backtracking
1863 * encountered a case of pointer subtraction.
1864 */
1865 return -ENOTSUPP;
1866 /* scalars can only be spilled into stack */
1867 if (insn->dst_reg != BPF_REG_FP)
1868 return 0;
1869 if (BPF_SIZE(insn->code) != BPF_DW)
1870 return 0;
1871 spi = (-insn->off - 1) / BPF_REG_SIZE;
1872 if (spi >= 64) {
1873 verbose(env, "BUG spi %d\n", spi);
1874 WARN_ONCE(1, "verifier backtracking bug");
1875 return -EFAULT;
1876 }
1877 if (!(*stack_mask & (1ull << spi)))
1878 return 0;
1879 *stack_mask &= ~(1ull << spi);
b3b50f05
AN
1880 if (class == BPF_STX)
1881 *reg_mask |= sreg;
b5dc0163
AS
1882 } else if (class == BPF_JMP || class == BPF_JMP32) {
1883 if (opcode == BPF_CALL) {
1884 if (insn->src_reg == BPF_PSEUDO_CALL)
1885 return -ENOTSUPP;
1886 /* regular helper call sets R0 */
1887 *reg_mask &= ~1;
1888 if (*reg_mask & 0x3f) {
1889 /* if backtracing was looking for registers R1-R5
1890 * they should have been found already.
1891 */
1892 verbose(env, "BUG regs %x\n", *reg_mask);
1893 WARN_ONCE(1, "verifier backtracking bug");
1894 return -EFAULT;
1895 }
1896 } else if (opcode == BPF_EXIT) {
1897 return -ENOTSUPP;
1898 }
1899 } else if (class == BPF_LD) {
1900 if (!(*reg_mask & dreg))
1901 return 0;
1902 *reg_mask &= ~dreg;
1903 /* It's ld_imm64 or ld_abs or ld_ind.
1904 * For ld_imm64 no further tracking of precision
1905 * into parent is necessary
1906 */
1907 if (mode == BPF_IND || mode == BPF_ABS)
1908 /* to be analyzed */
1909 return -ENOTSUPP;
b5dc0163
AS
1910 }
1911 return 0;
1912}
1913
1914/* the scalar precision tracking algorithm:
1915 * . at the start all registers have precise=false.
1916 * . scalar ranges are tracked as normal through alu and jmp insns.
1917 * . once precise value of the scalar register is used in:
1918 * . ptr + scalar alu
1919 * . if (scalar cond K|scalar)
1920 * . helper_call(.., scalar, ...) where ARG_CONST is expected
1921 * backtrack through the verifier states and mark all registers and
1922 * stack slots with spilled constants that these scalar regisers
1923 * should be precise.
1924 * . during state pruning two registers (or spilled stack slots)
1925 * are equivalent if both are not precise.
1926 *
1927 * Note the verifier cannot simply walk register parentage chain,
1928 * since many different registers and stack slots could have been
1929 * used to compute single precise scalar.
1930 *
1931 * The approach of starting with precise=true for all registers and then
1932 * backtrack to mark a register as not precise when the verifier detects
1933 * that program doesn't care about specific value (e.g., when helper
1934 * takes register as ARG_ANYTHING parameter) is not safe.
1935 *
1936 * It's ok to walk single parentage chain of the verifier states.
1937 * It's possible that this backtracking will go all the way till 1st insn.
1938 * All other branches will be explored for needing precision later.
1939 *
1940 * The backtracking needs to deal with cases like:
1941 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
1942 * r9 -= r8
1943 * r5 = r9
1944 * if r5 > 0x79f goto pc+7
1945 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
1946 * r5 += 1
1947 * ...
1948 * call bpf_perf_event_output#25
1949 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO
1950 *
1951 * and this case:
1952 * r6 = 1
1953 * call foo // uses callee's r6 inside to compute r0
1954 * r0 += r6
1955 * if r0 == 0 goto
1956 *
1957 * to track above reg_mask/stack_mask needs to be independent for each frame.
1958 *
1959 * Also if parent's curframe > frame where backtracking started,
1960 * the verifier need to mark registers in both frames, otherwise callees
1961 * may incorrectly prune callers. This is similar to
1962 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
1963 *
1964 * For now backtracking falls back into conservative marking.
1965 */
1966static void mark_all_scalars_precise(struct bpf_verifier_env *env,
1967 struct bpf_verifier_state *st)
1968{
1969 struct bpf_func_state *func;
1970 struct bpf_reg_state *reg;
1971 int i, j;
1972
1973 /* big hammer: mark all scalars precise in this path.
1974 * pop_stack may still get !precise scalars.
1975 */
1976 for (; st; st = st->parent)
1977 for (i = 0; i <= st->curframe; i++) {
1978 func = st->frame[i];
1979 for (j = 0; j < BPF_REG_FP; j++) {
1980 reg = &func->regs[j];
1981 if (reg->type != SCALAR_VALUE)
1982 continue;
1983 reg->precise = true;
1984 }
1985 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
1986 if (func->stack[j].slot_type[0] != STACK_SPILL)
1987 continue;
1988 reg = &func->stack[j].spilled_ptr;
1989 if (reg->type != SCALAR_VALUE)
1990 continue;
1991 reg->precise = true;
1992 }
1993 }
1994}
1995
a3ce685d
AS
1996static int __mark_chain_precision(struct bpf_verifier_env *env, int regno,
1997 int spi)
b5dc0163
AS
1998{
1999 struct bpf_verifier_state *st = env->cur_state;
2000 int first_idx = st->first_insn_idx;
2001 int last_idx = env->insn_idx;
2002 struct bpf_func_state *func;
2003 struct bpf_reg_state *reg;
a3ce685d
AS
2004 u32 reg_mask = regno >= 0 ? 1u << regno : 0;
2005 u64 stack_mask = spi >= 0 ? 1ull << spi : 0;
b5dc0163 2006 bool skip_first = true;
a3ce685d 2007 bool new_marks = false;
b5dc0163
AS
2008 int i, err;
2009
2c78ee89 2010 if (!env->bpf_capable)
b5dc0163
AS
2011 return 0;
2012
2013 func = st->frame[st->curframe];
a3ce685d
AS
2014 if (regno >= 0) {
2015 reg = &func->regs[regno];
2016 if (reg->type != SCALAR_VALUE) {
2017 WARN_ONCE(1, "backtracing misuse");
2018 return -EFAULT;
2019 }
2020 if (!reg->precise)
2021 new_marks = true;
2022 else
2023 reg_mask = 0;
2024 reg->precise = true;
b5dc0163 2025 }
b5dc0163 2026
a3ce685d
AS
2027 while (spi >= 0) {
2028 if (func->stack[spi].slot_type[0] != STACK_SPILL) {
2029 stack_mask = 0;
2030 break;
2031 }
2032 reg = &func->stack[spi].spilled_ptr;
2033 if (reg->type != SCALAR_VALUE) {
2034 stack_mask = 0;
2035 break;
2036 }
2037 if (!reg->precise)
2038 new_marks = true;
2039 else
2040 stack_mask = 0;
2041 reg->precise = true;
2042 break;
2043 }
2044
2045 if (!new_marks)
2046 return 0;
2047 if (!reg_mask && !stack_mask)
2048 return 0;
b5dc0163
AS
2049 for (;;) {
2050 DECLARE_BITMAP(mask, 64);
b5dc0163
AS
2051 u32 history = st->jmp_history_cnt;
2052
2053 if (env->log.level & BPF_LOG_LEVEL)
2054 verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx);
2055 for (i = last_idx;;) {
2056 if (skip_first) {
2057 err = 0;
2058 skip_first = false;
2059 } else {
2060 err = backtrack_insn(env, i, &reg_mask, &stack_mask);
2061 }
2062 if (err == -ENOTSUPP) {
2063 mark_all_scalars_precise(env, st);
2064 return 0;
2065 } else if (err) {
2066 return err;
2067 }
2068 if (!reg_mask && !stack_mask)
2069 /* Found assignment(s) into tracked register in this state.
2070 * Since this state is already marked, just return.
2071 * Nothing to be tracked further in the parent state.
2072 */
2073 return 0;
2074 if (i == first_idx)
2075 break;
2076 i = get_prev_insn_idx(st, i, &history);
2077 if (i >= env->prog->len) {
2078 /* This can happen if backtracking reached insn 0
2079 * and there are still reg_mask or stack_mask
2080 * to backtrack.
2081 * It means the backtracking missed the spot where
2082 * particular register was initialized with a constant.
2083 */
2084 verbose(env, "BUG backtracking idx %d\n", i);
2085 WARN_ONCE(1, "verifier backtracking bug");
2086 return -EFAULT;
2087 }
2088 }
2089 st = st->parent;
2090 if (!st)
2091 break;
2092
a3ce685d 2093 new_marks = false;
b5dc0163
AS
2094 func = st->frame[st->curframe];
2095 bitmap_from_u64(mask, reg_mask);
2096 for_each_set_bit(i, mask, 32) {
2097 reg = &func->regs[i];
a3ce685d
AS
2098 if (reg->type != SCALAR_VALUE) {
2099 reg_mask &= ~(1u << i);
b5dc0163 2100 continue;
a3ce685d 2101 }
b5dc0163
AS
2102 if (!reg->precise)
2103 new_marks = true;
2104 reg->precise = true;
2105 }
2106
2107 bitmap_from_u64(mask, stack_mask);
2108 for_each_set_bit(i, mask, 64) {
2109 if (i >= func->allocated_stack / BPF_REG_SIZE) {
2339cd6c
AS
2110 /* the sequence of instructions:
2111 * 2: (bf) r3 = r10
2112 * 3: (7b) *(u64 *)(r3 -8) = r0
2113 * 4: (79) r4 = *(u64 *)(r10 -8)
2114 * doesn't contain jmps. It's backtracked
2115 * as a single block.
2116 * During backtracking insn 3 is not recognized as
2117 * stack access, so at the end of backtracking
2118 * stack slot fp-8 is still marked in stack_mask.
2119 * However the parent state may not have accessed
2120 * fp-8 and it's "unallocated" stack space.
2121 * In such case fallback to conservative.
b5dc0163 2122 */
2339cd6c
AS
2123 mark_all_scalars_precise(env, st);
2124 return 0;
b5dc0163
AS
2125 }
2126
a3ce685d
AS
2127 if (func->stack[i].slot_type[0] != STACK_SPILL) {
2128 stack_mask &= ~(1ull << i);
b5dc0163 2129 continue;
a3ce685d 2130 }
b5dc0163 2131 reg = &func->stack[i].spilled_ptr;
a3ce685d
AS
2132 if (reg->type != SCALAR_VALUE) {
2133 stack_mask &= ~(1ull << i);
b5dc0163 2134 continue;
a3ce685d 2135 }
b5dc0163
AS
2136 if (!reg->precise)
2137 new_marks = true;
2138 reg->precise = true;
2139 }
2140 if (env->log.level & BPF_LOG_LEVEL) {
2141 print_verifier_state(env, func);
2142 verbose(env, "parent %s regs=%x stack=%llx marks\n",
2143 new_marks ? "didn't have" : "already had",
2144 reg_mask, stack_mask);
2145 }
2146
a3ce685d
AS
2147 if (!reg_mask && !stack_mask)
2148 break;
b5dc0163
AS
2149 if (!new_marks)
2150 break;
2151
2152 last_idx = st->last_insn_idx;
2153 first_idx = st->first_insn_idx;
2154 }
2155 return 0;
2156}
2157
a3ce685d
AS
2158static int mark_chain_precision(struct bpf_verifier_env *env, int regno)
2159{
2160 return __mark_chain_precision(env, regno, -1);
2161}
2162
2163static int mark_chain_precision_stack(struct bpf_verifier_env *env, int spi)
2164{
2165 return __mark_chain_precision(env, -1, spi);
2166}
b5dc0163 2167
1be7f75d
AS
2168static bool is_spillable_regtype(enum bpf_reg_type type)
2169{
2170 switch (type) {
2171 case PTR_TO_MAP_VALUE:
2172 case PTR_TO_MAP_VALUE_OR_NULL:
2173 case PTR_TO_STACK:
2174 case PTR_TO_CTX:
969bf05e 2175 case PTR_TO_PACKET:
de8f3a83 2176 case PTR_TO_PACKET_META:
969bf05e 2177 case PTR_TO_PACKET_END:
d58e468b 2178 case PTR_TO_FLOW_KEYS:
1be7f75d 2179 case CONST_PTR_TO_MAP:
c64b7983
JS
2180 case PTR_TO_SOCKET:
2181 case PTR_TO_SOCKET_OR_NULL:
46f8bc92
MKL
2182 case PTR_TO_SOCK_COMMON:
2183 case PTR_TO_SOCK_COMMON_OR_NULL:
655a51e5
MKL
2184 case PTR_TO_TCP_SOCK:
2185 case PTR_TO_TCP_SOCK_OR_NULL:
fada7fdc 2186 case PTR_TO_XDP_SOCK:
65726b5b 2187 case PTR_TO_BTF_ID:
b121b341 2188 case PTR_TO_BTF_ID_OR_NULL:
afbf21dc
YS
2189 case PTR_TO_RDONLY_BUF:
2190 case PTR_TO_RDONLY_BUF_OR_NULL:
2191 case PTR_TO_RDWR_BUF:
2192 case PTR_TO_RDWR_BUF_OR_NULL:
1be7f75d
AS
2193 return true;
2194 default:
2195 return false;
2196 }
2197}
2198
cc2b14d5
AS
2199/* Does this register contain a constant zero? */
2200static bool register_is_null(struct bpf_reg_state *reg)
2201{
2202 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
2203}
2204
f7cf25b2
AS
2205static bool register_is_const(struct bpf_reg_state *reg)
2206{
2207 return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off);
2208}
2209
6e7e63cb
JH
2210static bool __is_pointer_value(bool allow_ptr_leaks,
2211 const struct bpf_reg_state *reg)
2212{
2213 if (allow_ptr_leaks)
2214 return false;
2215
2216 return reg->type != SCALAR_VALUE;
2217}
2218
f7cf25b2
AS
2219static void save_register_state(struct bpf_func_state *state,
2220 int spi, struct bpf_reg_state *reg)
2221{
2222 int i;
2223
2224 state->stack[spi].spilled_ptr = *reg;
2225 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
2226
2227 for (i = 0; i < BPF_REG_SIZE; i++)
2228 state->stack[spi].slot_type[i] = STACK_SPILL;
2229}
2230
17a52670
AS
2231/* check_stack_read/write functions track spill/fill of registers,
2232 * stack boundary and alignment are checked in check_mem_access()
2233 */
61bd5218 2234static int check_stack_write(struct bpf_verifier_env *env,
f4d7e40a 2235 struct bpf_func_state *state, /* func where register points to */
af86ca4e 2236 int off, int size, int value_regno, int insn_idx)
17a52670 2237{
f4d7e40a 2238 struct bpf_func_state *cur; /* state of the current function */
638f5b90 2239 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
b5dc0163 2240 u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg;
f7cf25b2 2241 struct bpf_reg_state *reg = NULL;
638f5b90 2242
f4d7e40a 2243 err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE),
fd978bf7 2244 state->acquired_refs, true);
638f5b90
AS
2245 if (err)
2246 return err;
9c399760
AS
2247 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
2248 * so it's aligned access and [off, off + size) are within stack limits
2249 */
638f5b90
AS
2250 if (!env->allow_ptr_leaks &&
2251 state->stack[spi].slot_type[0] == STACK_SPILL &&
2252 size != BPF_REG_SIZE) {
2253 verbose(env, "attempt to corrupt spilled pointer on stack\n");
2254 return -EACCES;
2255 }
17a52670 2256
f4d7e40a 2257 cur = env->cur_state->frame[env->cur_state->curframe];
f7cf25b2
AS
2258 if (value_regno >= 0)
2259 reg = &cur->regs[value_regno];
17a52670 2260
f7cf25b2 2261 if (reg && size == BPF_REG_SIZE && register_is_const(reg) &&
2c78ee89 2262 !register_is_null(reg) && env->bpf_capable) {
b5dc0163
AS
2263 if (dst_reg != BPF_REG_FP) {
2264 /* The backtracking logic can only recognize explicit
2265 * stack slot address like [fp - 8]. Other spill of
2266 * scalar via different register has to be conervative.
2267 * Backtrack from here and mark all registers as precise
2268 * that contributed into 'reg' being a constant.
2269 */
2270 err = mark_chain_precision(env, value_regno);
2271 if (err)
2272 return err;
2273 }
f7cf25b2
AS
2274 save_register_state(state, spi, reg);
2275 } else if (reg && is_spillable_regtype(reg->type)) {
17a52670 2276 /* register containing pointer is being spilled into stack */
9c399760 2277 if (size != BPF_REG_SIZE) {
f7cf25b2 2278 verbose_linfo(env, insn_idx, "; ");
61bd5218 2279 verbose(env, "invalid size of register spill\n");
17a52670
AS
2280 return -EACCES;
2281 }
2282
f7cf25b2 2283 if (state != cur && reg->type == PTR_TO_STACK) {
f4d7e40a
AS
2284 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
2285 return -EINVAL;
2286 }
2287
2c78ee89 2288 if (!env->bypass_spec_v4) {
f7cf25b2 2289 bool sanitize = false;
17a52670 2290
f7cf25b2
AS
2291 if (state->stack[spi].slot_type[0] == STACK_SPILL &&
2292 register_is_const(&state->stack[spi].spilled_ptr))
2293 sanitize = true;
2294 for (i = 0; i < BPF_REG_SIZE; i++)
2295 if (state->stack[spi].slot_type[i] == STACK_MISC) {
2296 sanitize = true;
2297 break;
2298 }
2299 if (sanitize) {
af86ca4e
AS
2300 int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off;
2301 int soff = (-spi - 1) * BPF_REG_SIZE;
2302
2303 /* detected reuse of integer stack slot with a pointer
2304 * which means either llvm is reusing stack slot or
2305 * an attacker is trying to exploit CVE-2018-3639
2306 * (speculative store bypass)
2307 * Have to sanitize that slot with preemptive
2308 * store of zero.
2309 */
2310 if (*poff && *poff != soff) {
2311 /* disallow programs where single insn stores
2312 * into two different stack slots, since verifier
2313 * cannot sanitize them
2314 */
2315 verbose(env,
2316 "insn %d cannot access two stack slots fp%d and fp%d",
2317 insn_idx, *poff, soff);
2318 return -EINVAL;
2319 }
2320 *poff = soff;
2321 }
af86ca4e 2322 }
f7cf25b2 2323 save_register_state(state, spi, reg);
9c399760 2324 } else {
cc2b14d5
AS
2325 u8 type = STACK_MISC;
2326
679c782d
EC
2327 /* regular write of data into stack destroys any spilled ptr */
2328 state->stack[spi].spilled_ptr.type = NOT_INIT;
0bae2d4d
JW
2329 /* Mark slots as STACK_MISC if they belonged to spilled ptr. */
2330 if (state->stack[spi].slot_type[0] == STACK_SPILL)
2331 for (i = 0; i < BPF_REG_SIZE; i++)
2332 state->stack[spi].slot_type[i] = STACK_MISC;
9c399760 2333
cc2b14d5
AS
2334 /* only mark the slot as written if all 8 bytes were written
2335 * otherwise read propagation may incorrectly stop too soon
2336 * when stack slots are partially written.
2337 * This heuristic means that read propagation will be
2338 * conservative, since it will add reg_live_read marks
2339 * to stack slots all the way to first state when programs
2340 * writes+reads less than 8 bytes
2341 */
2342 if (size == BPF_REG_SIZE)
2343 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
2344
2345 /* when we zero initialize stack slots mark them as such */
b5dc0163
AS
2346 if (reg && register_is_null(reg)) {
2347 /* backtracking doesn't work for STACK_ZERO yet. */
2348 err = mark_chain_precision(env, value_regno);
2349 if (err)
2350 return err;
cc2b14d5 2351 type = STACK_ZERO;
b5dc0163 2352 }
cc2b14d5 2353
0bae2d4d 2354 /* Mark slots affected by this stack write. */
9c399760 2355 for (i = 0; i < size; i++)
638f5b90 2356 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
cc2b14d5 2357 type;
17a52670
AS
2358 }
2359 return 0;
2360}
2361
61bd5218 2362static int check_stack_read(struct bpf_verifier_env *env,
f4d7e40a
AS
2363 struct bpf_func_state *reg_state /* func where register points to */,
2364 int off, int size, int value_regno)
17a52670 2365{
f4d7e40a
AS
2366 struct bpf_verifier_state *vstate = env->cur_state;
2367 struct bpf_func_state *state = vstate->frame[vstate->curframe];
638f5b90 2368 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
f7cf25b2 2369 struct bpf_reg_state *reg;
638f5b90 2370 u8 *stype;
17a52670 2371
f4d7e40a 2372 if (reg_state->allocated_stack <= slot) {
638f5b90
AS
2373 verbose(env, "invalid read from stack off %d+0 size %d\n",
2374 off, size);
2375 return -EACCES;
2376 }
f4d7e40a 2377 stype = reg_state->stack[spi].slot_type;
f7cf25b2 2378 reg = &reg_state->stack[spi].spilled_ptr;
17a52670 2379
638f5b90 2380 if (stype[0] == STACK_SPILL) {
9c399760 2381 if (size != BPF_REG_SIZE) {
f7cf25b2
AS
2382 if (reg->type != SCALAR_VALUE) {
2383 verbose_linfo(env, env->insn_idx, "; ");
2384 verbose(env, "invalid size of register fill\n");
2385 return -EACCES;
2386 }
2387 if (value_regno >= 0) {
2388 mark_reg_unknown(env, state->regs, value_regno);
2389 state->regs[value_regno].live |= REG_LIVE_WRITTEN;
2390 }
2391 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2392 return 0;
17a52670 2393 }
9c399760 2394 for (i = 1; i < BPF_REG_SIZE; i++) {
638f5b90 2395 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
61bd5218 2396 verbose(env, "corrupted spill memory\n");
17a52670
AS
2397 return -EACCES;
2398 }
2399 }
2400
dc503a8a 2401 if (value_regno >= 0) {
17a52670 2402 /* restore register state from stack */
f7cf25b2 2403 state->regs[value_regno] = *reg;
2f18f62e
AS
2404 /* mark reg as written since spilled pointer state likely
2405 * has its liveness marks cleared by is_state_visited()
2406 * which resets stack/reg liveness for state transitions
2407 */
2408 state->regs[value_regno].live |= REG_LIVE_WRITTEN;
6e7e63cb
JH
2409 } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) {
2410 /* If value_regno==-1, the caller is asking us whether
2411 * it is acceptable to use this value as a SCALAR_VALUE
2412 * (e.g. for XADD).
2413 * We must not allow unprivileged callers to do that
2414 * with spilled pointers.
2415 */
2416 verbose(env, "leaking pointer from stack off %d\n",
2417 off);
2418 return -EACCES;
dc503a8a 2419 }
f7cf25b2 2420 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
17a52670 2421 } else {
cc2b14d5
AS
2422 int zeros = 0;
2423
17a52670 2424 for (i = 0; i < size; i++) {
cc2b14d5
AS
2425 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC)
2426 continue;
2427 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) {
2428 zeros++;
2429 continue;
17a52670 2430 }
cc2b14d5
AS
2431 verbose(env, "invalid read from stack off %d+%d size %d\n",
2432 off, i, size);
2433 return -EACCES;
2434 }
f7cf25b2 2435 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
cc2b14d5
AS
2436 if (value_regno >= 0) {
2437 if (zeros == size) {
2438 /* any size read into register is zero extended,
2439 * so the whole register == const_zero
2440 */
2441 __mark_reg_const_zero(&state->regs[value_regno]);
b5dc0163
AS
2442 /* backtracking doesn't support STACK_ZERO yet,
2443 * so mark it precise here, so that later
2444 * backtracking can stop here.
2445 * Backtracking may not need this if this register
2446 * doesn't participate in pointer adjustment.
2447 * Forward propagation of precise flag is not
2448 * necessary either. This mark is only to stop
2449 * backtracking. Any register that contributed
2450 * to const 0 was marked precise before spill.
2451 */
2452 state->regs[value_regno].precise = true;
cc2b14d5
AS
2453 } else {
2454 /* have read misc data from the stack */
2455 mark_reg_unknown(env, state->regs, value_regno);
2456 }
2457 state->regs[value_regno].live |= REG_LIVE_WRITTEN;
17a52670 2458 }
17a52670 2459 }
f7cf25b2 2460 return 0;
17a52670
AS
2461}
2462
e4298d25
DB
2463static int check_stack_access(struct bpf_verifier_env *env,
2464 const struct bpf_reg_state *reg,
2465 int off, int size)
2466{
2467 /* Stack accesses must be at a fixed offset, so that we
2468 * can determine what type of data were returned. See
2469 * check_stack_read().
2470 */
2471 if (!tnum_is_const(reg->var_off)) {
2472 char tn_buf[48];
2473
2474 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1fbd20f8 2475 verbose(env, "variable stack access var_off=%s off=%d size=%d\n",
e4298d25
DB
2476 tn_buf, off, size);
2477 return -EACCES;
2478 }
2479
2480 if (off >= 0 || off < -MAX_BPF_STACK) {
2481 verbose(env, "invalid stack off=%d size=%d\n", off, size);
2482 return -EACCES;
2483 }
2484
2485 return 0;
2486}
2487
591fe988
DB
2488static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
2489 int off, int size, enum bpf_access_type type)
2490{
2491 struct bpf_reg_state *regs = cur_regs(env);
2492 struct bpf_map *map = regs[regno].map_ptr;
2493 u32 cap = bpf_map_flags_to_cap(map);
2494
2495 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
2496 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
2497 map->value_size, off, size);
2498 return -EACCES;
2499 }
2500
2501 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
2502 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
2503 map->value_size, off, size);
2504 return -EACCES;
2505 }
2506
2507 return 0;
2508}
2509
457f4436
AN
2510/* check read/write into memory region (e.g., map value, ringbuf sample, etc) */
2511static int __check_mem_access(struct bpf_verifier_env *env, int regno,
2512 int off, int size, u32 mem_size,
2513 bool zero_size_allowed)
17a52670 2514{
457f4436
AN
2515 bool size_ok = size > 0 || (size == 0 && zero_size_allowed);
2516 struct bpf_reg_state *reg;
2517
2518 if (off >= 0 && size_ok && (u64)off + size <= mem_size)
2519 return 0;
17a52670 2520
457f4436
AN
2521 reg = &cur_regs(env)[regno];
2522 switch (reg->type) {
2523 case PTR_TO_MAP_VALUE:
61bd5218 2524 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
457f4436
AN
2525 mem_size, off, size);
2526 break;
2527 case PTR_TO_PACKET:
2528 case PTR_TO_PACKET_META:
2529 case PTR_TO_PACKET_END:
2530 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
2531 off, size, regno, reg->id, off, mem_size);
2532 break;
2533 case PTR_TO_MEM:
2534 default:
2535 verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n",
2536 mem_size, off, size);
17a52670 2537 }
457f4436
AN
2538
2539 return -EACCES;
17a52670
AS
2540}
2541
457f4436
AN
2542/* check read/write into a memory region with possible variable offset */
2543static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno,
2544 int off, int size, u32 mem_size,
2545 bool zero_size_allowed)
dbcfe5f7 2546{
f4d7e40a
AS
2547 struct bpf_verifier_state *vstate = env->cur_state;
2548 struct bpf_func_state *state = vstate->frame[vstate->curframe];
dbcfe5f7
GB
2549 struct bpf_reg_state *reg = &state->regs[regno];
2550 int err;
2551
457f4436 2552 /* We may have adjusted the register pointing to memory region, so we
f1174f77
EC
2553 * need to try adding each of min_value and max_value to off
2554 * to make sure our theoretical access will be safe.
dbcfe5f7 2555 */
06ee7115 2556 if (env->log.level & BPF_LOG_LEVEL)
61bd5218 2557 print_verifier_state(env, state);
b7137c4e 2558
dbcfe5f7
GB
2559 /* The minimum value is only important with signed
2560 * comparisons where we can't assume the floor of a
2561 * value is 0. If we are using signed variables for our
2562 * index'es we need to make sure that whatever we use
2563 * will have a set floor within our range.
2564 */
b7137c4e
DB
2565 if (reg->smin_value < 0 &&
2566 (reg->smin_value == S64_MIN ||
2567 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
2568 reg->smin_value + off < 0)) {
61bd5218 2569 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
dbcfe5f7
GB
2570 regno);
2571 return -EACCES;
2572 }
457f4436
AN
2573 err = __check_mem_access(env, regno, reg->smin_value + off, size,
2574 mem_size, zero_size_allowed);
dbcfe5f7 2575 if (err) {
457f4436 2576 verbose(env, "R%d min value is outside of the allowed memory range\n",
61bd5218 2577 regno);
dbcfe5f7
GB
2578 return err;
2579 }
2580
b03c9f9f
EC
2581 /* If we haven't set a max value then we need to bail since we can't be
2582 * sure we won't do bad things.
2583 * If reg->umax_value + off could overflow, treat that as unbounded too.
dbcfe5f7 2584 */
b03c9f9f 2585 if (reg->umax_value >= BPF_MAX_VAR_OFF) {
457f4436 2586 verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n",
dbcfe5f7
GB
2587 regno);
2588 return -EACCES;
2589 }
457f4436
AN
2590 err = __check_mem_access(env, regno, reg->umax_value + off, size,
2591 mem_size, zero_size_allowed);
2592 if (err) {
2593 verbose(env, "R%d max value is outside of the allowed memory range\n",
61bd5218 2594 regno);
457f4436
AN
2595 return err;
2596 }
2597
2598 return 0;
2599}
d83525ca 2600
457f4436
AN
2601/* check read/write into a map element with possible variable offset */
2602static int check_map_access(struct bpf_verifier_env *env, u32 regno,
2603 int off, int size, bool zero_size_allowed)
2604{
2605 struct bpf_verifier_state *vstate = env->cur_state;
2606 struct bpf_func_state *state = vstate->frame[vstate->curframe];
2607 struct bpf_reg_state *reg = &state->regs[regno];
2608 struct bpf_map *map = reg->map_ptr;
2609 int err;
2610
2611 err = check_mem_region_access(env, regno, off, size, map->value_size,
2612 zero_size_allowed);
2613 if (err)
2614 return err;
2615
2616 if (map_value_has_spin_lock(map)) {
2617 u32 lock = map->spin_lock_off;
d83525ca
AS
2618
2619 /* if any part of struct bpf_spin_lock can be touched by
2620 * load/store reject this program.
2621 * To check that [x1, x2) overlaps with [y1, y2)
2622 * it is sufficient to check x1 < y2 && y1 < x2.
2623 */
2624 if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) &&
2625 lock < reg->umax_value + off + size) {
2626 verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n");
2627 return -EACCES;
2628 }
2629 }
f1174f77 2630 return err;
dbcfe5f7
GB
2631}
2632
969bf05e
AS
2633#define MAX_PACKET_OFF 0xffff
2634
7e40781c
UP
2635static enum bpf_prog_type resolve_prog_type(struct bpf_prog *prog)
2636{
2637 return prog->aux->linked_prog ? prog->aux->linked_prog->type
2638 : prog->type;
2639}
2640
58e2af8b 2641static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
3a0af8fd
TG
2642 const struct bpf_call_arg_meta *meta,
2643 enum bpf_access_type t)
4acf6c0b 2644{
7e40781c
UP
2645 enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
2646
2647 switch (prog_type) {
5d66fa7d 2648 /* Program types only with direct read access go here! */
3a0af8fd
TG
2649 case BPF_PROG_TYPE_LWT_IN:
2650 case BPF_PROG_TYPE_LWT_OUT:
004d4b27 2651 case BPF_PROG_TYPE_LWT_SEG6LOCAL:
2dbb9b9e 2652 case BPF_PROG_TYPE_SK_REUSEPORT:
5d66fa7d 2653 case BPF_PROG_TYPE_FLOW_DISSECTOR:
d5563d36 2654 case BPF_PROG_TYPE_CGROUP_SKB:
3a0af8fd
TG
2655 if (t == BPF_WRITE)
2656 return false;
7e57fbb2 2657 /* fallthrough */
5d66fa7d
DB
2658
2659 /* Program types with direct read + write access go here! */
36bbef52
DB
2660 case BPF_PROG_TYPE_SCHED_CLS:
2661 case BPF_PROG_TYPE_SCHED_ACT:
4acf6c0b 2662 case BPF_PROG_TYPE_XDP:
3a0af8fd 2663 case BPF_PROG_TYPE_LWT_XMIT:
8a31db56 2664 case BPF_PROG_TYPE_SK_SKB:
4f738adb 2665 case BPF_PROG_TYPE_SK_MSG:
36bbef52
DB
2666 if (meta)
2667 return meta->pkt_access;
2668
2669 env->seen_direct_write = true;
4acf6c0b 2670 return true;
0d01da6a
SF
2671
2672 case BPF_PROG_TYPE_CGROUP_SOCKOPT:
2673 if (t == BPF_WRITE)
2674 env->seen_direct_write = true;
2675
2676 return true;
2677
4acf6c0b
BB
2678 default:
2679 return false;
2680 }
2681}
2682
f1174f77 2683static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
9fd29c08 2684 int size, bool zero_size_allowed)
f1174f77 2685{
638f5b90 2686 struct bpf_reg_state *regs = cur_regs(env);
f1174f77
EC
2687 struct bpf_reg_state *reg = &regs[regno];
2688 int err;
2689
2690 /* We may have added a variable offset to the packet pointer; but any
2691 * reg->range we have comes after that. We are only checking the fixed
2692 * offset.
2693 */
2694
2695 /* We don't allow negative numbers, because we aren't tracking enough
2696 * detail to prove they're safe.
2697 */
b03c9f9f 2698 if (reg->smin_value < 0) {
61bd5218 2699 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
f1174f77
EC
2700 regno);
2701 return -EACCES;
2702 }
457f4436
AN
2703 err = __check_mem_access(env, regno, off, size, reg->range,
2704 zero_size_allowed);
f1174f77 2705 if (err) {
61bd5218 2706 verbose(env, "R%d offset is outside of the packet\n", regno);
f1174f77
EC
2707 return err;
2708 }
e647815a 2709
457f4436 2710 /* __check_mem_access has made sure "off + size - 1" is within u16.
e647815a
JW
2711 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
2712 * otherwise find_good_pkt_pointers would have refused to set range info
457f4436 2713 * that __check_mem_access would have rejected this pkt access.
e647815a
JW
2714 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
2715 */
2716 env->prog->aux->max_pkt_offset =
2717 max_t(u32, env->prog->aux->max_pkt_offset,
2718 off + reg->umax_value + size - 1);
2719
f1174f77
EC
2720 return err;
2721}
2722
2723/* check access to 'struct bpf_context' fields. Supports fixed offsets only */
31fd8581 2724static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
9e15db66
AS
2725 enum bpf_access_type t, enum bpf_reg_type *reg_type,
2726 u32 *btf_id)
17a52670 2727{
f96da094
DB
2728 struct bpf_insn_access_aux info = {
2729 .reg_type = *reg_type,
9e15db66 2730 .log = &env->log,
f96da094 2731 };
31fd8581 2732
4f9218aa 2733 if (env->ops->is_valid_access &&
5e43f899 2734 env->ops->is_valid_access(off, size, t, env->prog, &info)) {
f96da094
DB
2735 /* A non zero info.ctx_field_size indicates that this field is a
2736 * candidate for later verifier transformation to load the whole
2737 * field and then apply a mask when accessed with a narrower
2738 * access than actual ctx access size. A zero info.ctx_field_size
2739 * will only allow for whole field access and rejects any other
2740 * type of narrower access.
31fd8581 2741 */
23994631 2742 *reg_type = info.reg_type;
31fd8581 2743
b121b341 2744 if (*reg_type == PTR_TO_BTF_ID || *reg_type == PTR_TO_BTF_ID_OR_NULL)
9e15db66
AS
2745 *btf_id = info.btf_id;
2746 else
2747 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
32bbe007
AS
2748 /* remember the offset of last byte accessed in ctx */
2749 if (env->prog->aux->max_ctx_offset < off + size)
2750 env->prog->aux->max_ctx_offset = off + size;
17a52670 2751 return 0;
32bbe007 2752 }
17a52670 2753
61bd5218 2754 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
17a52670
AS
2755 return -EACCES;
2756}
2757
d58e468b
PP
2758static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
2759 int size)
2760{
2761 if (size < 0 || off < 0 ||
2762 (u64)off + size > sizeof(struct bpf_flow_keys)) {
2763 verbose(env, "invalid access to flow keys off=%d size=%d\n",
2764 off, size);
2765 return -EACCES;
2766 }
2767 return 0;
2768}
2769
5f456649
MKL
2770static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
2771 u32 regno, int off, int size,
2772 enum bpf_access_type t)
c64b7983
JS
2773{
2774 struct bpf_reg_state *regs = cur_regs(env);
2775 struct bpf_reg_state *reg = &regs[regno];
5f456649 2776 struct bpf_insn_access_aux info = {};
46f8bc92 2777 bool valid;
c64b7983
JS
2778
2779 if (reg->smin_value < 0) {
2780 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
2781 regno);
2782 return -EACCES;
2783 }
2784
46f8bc92
MKL
2785 switch (reg->type) {
2786 case PTR_TO_SOCK_COMMON:
2787 valid = bpf_sock_common_is_valid_access(off, size, t, &info);
2788 break;
2789 case PTR_TO_SOCKET:
2790 valid = bpf_sock_is_valid_access(off, size, t, &info);
2791 break;
655a51e5
MKL
2792 case PTR_TO_TCP_SOCK:
2793 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
2794 break;
fada7fdc
JL
2795 case PTR_TO_XDP_SOCK:
2796 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
2797 break;
46f8bc92
MKL
2798 default:
2799 valid = false;
c64b7983
JS
2800 }
2801
5f456649 2802
46f8bc92
MKL
2803 if (valid) {
2804 env->insn_aux_data[insn_idx].ctx_field_size =
2805 info.ctx_field_size;
2806 return 0;
2807 }
2808
2809 verbose(env, "R%d invalid %s access off=%d size=%d\n",
2810 regno, reg_type_str[reg->type], off, size);
2811
2812 return -EACCES;
c64b7983
JS
2813}
2814
2a159c6f
DB
2815static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
2816{
2817 return cur_regs(env) + regno;
2818}
2819
4cabc5b1
DB
2820static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
2821{
2a159c6f 2822 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
4cabc5b1
DB
2823}
2824
f37a8cb8
DB
2825static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
2826{
2a159c6f 2827 const struct bpf_reg_state *reg = reg_state(env, regno);
f37a8cb8 2828
46f8bc92
MKL
2829 return reg->type == PTR_TO_CTX;
2830}
2831
2832static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
2833{
2834 const struct bpf_reg_state *reg = reg_state(env, regno);
2835
2836 return type_is_sk_pointer(reg->type);
f37a8cb8
DB
2837}
2838
ca369602
DB
2839static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
2840{
2a159c6f 2841 const struct bpf_reg_state *reg = reg_state(env, regno);
ca369602
DB
2842
2843 return type_is_pkt_pointer(reg->type);
2844}
2845
4b5defde
DB
2846static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
2847{
2848 const struct bpf_reg_state *reg = reg_state(env, regno);
2849
2850 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
2851 return reg->type == PTR_TO_FLOW_KEYS;
2852}
2853
61bd5218
JK
2854static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
2855 const struct bpf_reg_state *reg,
d1174416 2856 int off, int size, bool strict)
969bf05e 2857{
f1174f77 2858 struct tnum reg_off;
e07b98d9 2859 int ip_align;
d1174416
DM
2860
2861 /* Byte size accesses are always allowed. */
2862 if (!strict || size == 1)
2863 return 0;
2864
e4eda884
DM
2865 /* For platforms that do not have a Kconfig enabling
2866 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
2867 * NET_IP_ALIGN is universally set to '2'. And on platforms
2868 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
2869 * to this code only in strict mode where we want to emulate
2870 * the NET_IP_ALIGN==2 checking. Therefore use an
2871 * unconditional IP align value of '2'.
e07b98d9 2872 */
e4eda884 2873 ip_align = 2;
f1174f77
EC
2874
2875 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
2876 if (!tnum_is_aligned(reg_off, size)) {
2877 char tn_buf[48];
2878
2879 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218
JK
2880 verbose(env,
2881 "misaligned packet access off %d+%s+%d+%d size %d\n",
f1174f77 2882 ip_align, tn_buf, reg->off, off, size);
969bf05e
AS
2883 return -EACCES;
2884 }
79adffcd 2885
969bf05e
AS
2886 return 0;
2887}
2888
61bd5218
JK
2889static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
2890 const struct bpf_reg_state *reg,
f1174f77
EC
2891 const char *pointer_desc,
2892 int off, int size, bool strict)
79adffcd 2893{
f1174f77
EC
2894 struct tnum reg_off;
2895
2896 /* Byte size accesses are always allowed. */
2897 if (!strict || size == 1)
2898 return 0;
2899
2900 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
2901 if (!tnum_is_aligned(reg_off, size)) {
2902 char tn_buf[48];
2903
2904 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 2905 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
f1174f77 2906 pointer_desc, tn_buf, reg->off, off, size);
79adffcd
DB
2907 return -EACCES;
2908 }
2909
969bf05e
AS
2910 return 0;
2911}
2912
e07b98d9 2913static int check_ptr_alignment(struct bpf_verifier_env *env,
ca369602
DB
2914 const struct bpf_reg_state *reg, int off,
2915 int size, bool strict_alignment_once)
79adffcd 2916{
ca369602 2917 bool strict = env->strict_alignment || strict_alignment_once;
f1174f77 2918 const char *pointer_desc = "";
d1174416 2919
79adffcd
DB
2920 switch (reg->type) {
2921 case PTR_TO_PACKET:
de8f3a83
DB
2922 case PTR_TO_PACKET_META:
2923 /* Special case, because of NET_IP_ALIGN. Given metadata sits
2924 * right in front, treat it the very same way.
2925 */
61bd5218 2926 return check_pkt_ptr_alignment(env, reg, off, size, strict);
d58e468b
PP
2927 case PTR_TO_FLOW_KEYS:
2928 pointer_desc = "flow keys ";
2929 break;
f1174f77
EC
2930 case PTR_TO_MAP_VALUE:
2931 pointer_desc = "value ";
2932 break;
2933 case PTR_TO_CTX:
2934 pointer_desc = "context ";
2935 break;
2936 case PTR_TO_STACK:
2937 pointer_desc = "stack ";
a5ec6ae1
JH
2938 /* The stack spill tracking logic in check_stack_write()
2939 * and check_stack_read() relies on stack accesses being
2940 * aligned.
2941 */
2942 strict = true;
f1174f77 2943 break;
c64b7983
JS
2944 case PTR_TO_SOCKET:
2945 pointer_desc = "sock ";
2946 break;
46f8bc92
MKL
2947 case PTR_TO_SOCK_COMMON:
2948 pointer_desc = "sock_common ";
2949 break;
655a51e5
MKL
2950 case PTR_TO_TCP_SOCK:
2951 pointer_desc = "tcp_sock ";
2952 break;
fada7fdc
JL
2953 case PTR_TO_XDP_SOCK:
2954 pointer_desc = "xdp_sock ";
2955 break;
79adffcd 2956 default:
f1174f77 2957 break;
79adffcd 2958 }
61bd5218
JK
2959 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
2960 strict);
79adffcd
DB
2961}
2962
f4d7e40a
AS
2963static int update_stack_depth(struct bpf_verifier_env *env,
2964 const struct bpf_func_state *func,
2965 int off)
2966{
9c8105bd 2967 u16 stack = env->subprog_info[func->subprogno].stack_depth;
f4d7e40a
AS
2968
2969 if (stack >= -off)
2970 return 0;
2971
2972 /* update known max for given subprogram */
9c8105bd 2973 env->subprog_info[func->subprogno].stack_depth = -off;
70a87ffe
AS
2974 return 0;
2975}
f4d7e40a 2976
70a87ffe
AS
2977/* starting from main bpf function walk all instructions of the function
2978 * and recursively walk all callees that given function can call.
2979 * Ignore jump and exit insns.
2980 * Since recursion is prevented by check_cfg() this algorithm
2981 * only needs a local stack of MAX_CALL_FRAMES to remember callsites
2982 */
2983static int check_max_stack_depth(struct bpf_verifier_env *env)
2984{
9c8105bd
JW
2985 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
2986 struct bpf_subprog_info *subprog = env->subprog_info;
70a87ffe 2987 struct bpf_insn *insn = env->prog->insnsi;
ebf7d1f5 2988 bool tail_call_reachable = false;
70a87ffe
AS
2989 int ret_insn[MAX_CALL_FRAMES];
2990 int ret_prog[MAX_CALL_FRAMES];
ebf7d1f5 2991 int j;
f4d7e40a 2992
70a87ffe 2993process_func:
7f6e4312
MF
2994 /* protect against potential stack overflow that might happen when
2995 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack
2996 * depth for such case down to 256 so that the worst case scenario
2997 * would result in 8k stack size (32 which is tailcall limit * 256 =
2998 * 8k).
2999 *
3000 * To get the idea what might happen, see an example:
3001 * func1 -> sub rsp, 128
3002 * subfunc1 -> sub rsp, 256
3003 * tailcall1 -> add rsp, 256
3004 * func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320)
3005 * subfunc2 -> sub rsp, 64
3006 * subfunc22 -> sub rsp, 128
3007 * tailcall2 -> add rsp, 128
3008 * func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416)
3009 *
3010 * tailcall will unwind the current stack frame but it will not get rid
3011 * of caller's stack as shown on the example above.
3012 */
3013 if (idx && subprog[idx].has_tail_call && depth >= 256) {
3014 verbose(env,
3015 "tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n",
3016 depth);
3017 return -EACCES;
3018 }
70a87ffe
AS
3019 /* round up to 32-bytes, since this is granularity
3020 * of interpreter stack size
3021 */
9c8105bd 3022 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
70a87ffe 3023 if (depth > MAX_BPF_STACK) {
f4d7e40a 3024 verbose(env, "combined stack size of %d calls is %d. Too large\n",
70a87ffe 3025 frame + 1, depth);
f4d7e40a
AS
3026 return -EACCES;
3027 }
70a87ffe 3028continue_func:
4cb3d99c 3029 subprog_end = subprog[idx + 1].start;
70a87ffe
AS
3030 for (; i < subprog_end; i++) {
3031 if (insn[i].code != (BPF_JMP | BPF_CALL))
3032 continue;
3033 if (insn[i].src_reg != BPF_PSEUDO_CALL)
3034 continue;
3035 /* remember insn and function to return to */
3036 ret_insn[frame] = i + 1;
9c8105bd 3037 ret_prog[frame] = idx;
70a87ffe
AS
3038
3039 /* find the callee */
3040 i = i + insn[i].imm + 1;
9c8105bd
JW
3041 idx = find_subprog(env, i);
3042 if (idx < 0) {
70a87ffe
AS
3043 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
3044 i);
3045 return -EFAULT;
3046 }
ebf7d1f5
MF
3047
3048 if (subprog[idx].has_tail_call)
3049 tail_call_reachable = true;
3050
70a87ffe
AS
3051 frame++;
3052 if (frame >= MAX_CALL_FRAMES) {
927cb781
PC
3053 verbose(env, "the call stack of %d frames is too deep !\n",
3054 frame);
3055 return -E2BIG;
70a87ffe
AS
3056 }
3057 goto process_func;
3058 }
ebf7d1f5
MF
3059 /* if tail call got detected across bpf2bpf calls then mark each of the
3060 * currently present subprog frames as tail call reachable subprogs;
3061 * this info will be utilized by JIT so that we will be preserving the
3062 * tail call counter throughout bpf2bpf calls combined with tailcalls
3063 */
3064 if (tail_call_reachable)
3065 for (j = 0; j < frame; j++)
3066 subprog[ret_prog[j]].tail_call_reachable = true;
3067
70a87ffe
AS
3068 /* end of for() loop means the last insn of the 'subprog'
3069 * was reached. Doesn't matter whether it was JA or EXIT
3070 */
3071 if (frame == 0)
3072 return 0;
9c8105bd 3073 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
70a87ffe
AS
3074 frame--;
3075 i = ret_insn[frame];
9c8105bd 3076 idx = ret_prog[frame];
70a87ffe 3077 goto continue_func;
f4d7e40a
AS
3078}
3079
19d28fbd 3080#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1ea47e01
AS
3081static int get_callee_stack_depth(struct bpf_verifier_env *env,
3082 const struct bpf_insn *insn, int idx)
3083{
3084 int start = idx + insn->imm + 1, subprog;
3085
3086 subprog = find_subprog(env, start);
3087 if (subprog < 0) {
3088 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
3089 start);
3090 return -EFAULT;
3091 }
9c8105bd 3092 return env->subprog_info[subprog].stack_depth;
1ea47e01 3093}
19d28fbd 3094#endif
1ea47e01 3095
51c39bb1
AS
3096int check_ctx_reg(struct bpf_verifier_env *env,
3097 const struct bpf_reg_state *reg, int regno)
58990d1f
DB
3098{
3099 /* Access to ctx or passing it to a helper is only allowed in
3100 * its original, unmodified form.
3101 */
3102
3103 if (reg->off) {
3104 verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n",
3105 regno, reg->off);
3106 return -EACCES;
3107 }
3108
3109 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3110 char tn_buf[48];
3111
3112 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3113 verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf);
3114 return -EACCES;
3115 }
3116
3117 return 0;
3118}
3119
afbf21dc
YS
3120static int __check_buffer_access(struct bpf_verifier_env *env,
3121 const char *buf_info,
3122 const struct bpf_reg_state *reg,
3123 int regno, int off, int size)
9df1c28b
MM
3124{
3125 if (off < 0) {
3126 verbose(env,
4fc00b79 3127 "R%d invalid %s buffer access: off=%d, size=%d\n",
afbf21dc 3128 regno, buf_info, off, size);
9df1c28b
MM
3129 return -EACCES;
3130 }
3131 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3132 char tn_buf[48];
3133
3134 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3135 verbose(env,
4fc00b79 3136 "R%d invalid variable buffer offset: off=%d, var_off=%s\n",
9df1c28b
MM
3137 regno, off, tn_buf);
3138 return -EACCES;
3139 }
afbf21dc
YS
3140
3141 return 0;
3142}
3143
3144static int check_tp_buffer_access(struct bpf_verifier_env *env,
3145 const struct bpf_reg_state *reg,
3146 int regno, int off, int size)
3147{
3148 int err;
3149
3150 err = __check_buffer_access(env, "tracepoint", reg, regno, off, size);
3151 if (err)
3152 return err;
3153
9df1c28b
MM
3154 if (off + size > env->prog->aux->max_tp_access)
3155 env->prog->aux->max_tp_access = off + size;
3156
3157 return 0;
3158}
3159
afbf21dc
YS
3160static int check_buffer_access(struct bpf_verifier_env *env,
3161 const struct bpf_reg_state *reg,
3162 int regno, int off, int size,
3163 bool zero_size_allowed,
3164 const char *buf_info,
3165 u32 *max_access)
3166{
3167 int err;
3168
3169 err = __check_buffer_access(env, buf_info, reg, regno, off, size);
3170 if (err)
3171 return err;
3172
3173 if (off + size > *max_access)
3174 *max_access = off + size;
3175
3176 return 0;
3177}
3178
3f50f132
JF
3179/* BPF architecture zero extends alu32 ops into 64-bit registesr */
3180static void zext_32_to_64(struct bpf_reg_state *reg)
3181{
3182 reg->var_off = tnum_subreg(reg->var_off);
3183 __reg_assign_32_into_64(reg);
3184}
9df1c28b 3185
0c17d1d2
JH
3186/* truncate register to smaller size (in bytes)
3187 * must be called with size < BPF_REG_SIZE
3188 */
3189static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
3190{
3191 u64 mask;
3192
3193 /* clear high bits in bit representation */
3194 reg->var_off = tnum_cast(reg->var_off, size);
3195
3196 /* fix arithmetic bounds */
3197 mask = ((u64)1 << (size * 8)) - 1;
3198 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
3199 reg->umin_value &= mask;
3200 reg->umax_value &= mask;
3201 } else {
3202 reg->umin_value = 0;
3203 reg->umax_value = mask;
3204 }
3205 reg->smin_value = reg->umin_value;
3206 reg->smax_value = reg->umax_value;
3f50f132
JF
3207
3208 /* If size is smaller than 32bit register the 32bit register
3209 * values are also truncated so we push 64-bit bounds into
3210 * 32-bit bounds. Above were truncated < 32-bits already.
3211 */
3212 if (size >= 4)
3213 return;
3214 __reg_combine_64_into_32(reg);
0c17d1d2
JH
3215}
3216
a23740ec
AN
3217static bool bpf_map_is_rdonly(const struct bpf_map *map)
3218{
3219 return (map->map_flags & BPF_F_RDONLY_PROG) && map->frozen;
3220}
3221
3222static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val)
3223{
3224 void *ptr;
3225 u64 addr;
3226 int err;
3227
3228 err = map->ops->map_direct_value_addr(map, &addr, off);
3229 if (err)
3230 return err;
2dedd7d2 3231 ptr = (void *)(long)addr + off;
a23740ec
AN
3232
3233 switch (size) {
3234 case sizeof(u8):
3235 *val = (u64)*(u8 *)ptr;
3236 break;
3237 case sizeof(u16):
3238 *val = (u64)*(u16 *)ptr;
3239 break;
3240 case sizeof(u32):
3241 *val = (u64)*(u32 *)ptr;
3242 break;
3243 case sizeof(u64):
3244 *val = *(u64 *)ptr;
3245 break;
3246 default:
3247 return -EINVAL;
3248 }
3249 return 0;
3250}
3251
9e15db66
AS
3252static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
3253 struct bpf_reg_state *regs,
3254 int regno, int off, int size,
3255 enum bpf_access_type atype,
3256 int value_regno)
3257{
3258 struct bpf_reg_state *reg = regs + regno;
3259 const struct btf_type *t = btf_type_by_id(btf_vmlinux, reg->btf_id);
3260 const char *tname = btf_name_by_offset(btf_vmlinux, t->name_off);
3261 u32 btf_id;
3262 int ret;
3263
9e15db66
AS
3264 if (off < 0) {
3265 verbose(env,
3266 "R%d is ptr_%s invalid negative access: off=%d\n",
3267 regno, tname, off);
3268 return -EACCES;
3269 }
3270 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3271 char tn_buf[48];
3272
3273 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3274 verbose(env,
3275 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
3276 regno, tname, off, tn_buf);
3277 return -EACCES;
3278 }
3279
27ae7997
MKL
3280 if (env->ops->btf_struct_access) {
3281 ret = env->ops->btf_struct_access(&env->log, t, off, size,
3282 atype, &btf_id);
3283 } else {
3284 if (atype != BPF_READ) {
3285 verbose(env, "only read is supported\n");
3286 return -EACCES;
3287 }
3288
3289 ret = btf_struct_access(&env->log, t, off, size, atype,
3290 &btf_id);
3291 }
3292
9e15db66
AS
3293 if (ret < 0)
3294 return ret;
3295
41c48f3a
AI
3296 if (atype == BPF_READ && value_regno >= 0)
3297 mark_btf_ld_reg(env, regs, value_regno, ret, btf_id);
3298
3299 return 0;
3300}
3301
3302static int check_ptr_to_map_access(struct bpf_verifier_env *env,
3303 struct bpf_reg_state *regs,
3304 int regno, int off, int size,
3305 enum bpf_access_type atype,
3306 int value_regno)
3307{
3308 struct bpf_reg_state *reg = regs + regno;
3309 struct bpf_map *map = reg->map_ptr;
3310 const struct btf_type *t;
3311 const char *tname;
3312 u32 btf_id;
3313 int ret;
3314
3315 if (!btf_vmlinux) {
3316 verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n");
3317 return -ENOTSUPP;
3318 }
3319
3320 if (!map->ops->map_btf_id || !*map->ops->map_btf_id) {
3321 verbose(env, "map_ptr access not supported for map type %d\n",
3322 map->map_type);
3323 return -ENOTSUPP;
3324 }
3325
3326 t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id);
3327 tname = btf_name_by_offset(btf_vmlinux, t->name_off);
3328
3329 if (!env->allow_ptr_to_map_access) {
3330 verbose(env,
3331 "%s access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
3332 tname);
3333 return -EPERM;
9e15db66 3334 }
27ae7997 3335
41c48f3a
AI
3336 if (off < 0) {
3337 verbose(env, "R%d is %s invalid negative access: off=%d\n",
3338 regno, tname, off);
3339 return -EACCES;
3340 }
3341
3342 if (atype != BPF_READ) {
3343 verbose(env, "only read from %s is supported\n", tname);
3344 return -EACCES;
3345 }
3346
3347 ret = btf_struct_access(&env->log, t, off, size, atype, &btf_id);
3348 if (ret < 0)
3349 return ret;
3350
3351 if (value_regno >= 0)
3352 mark_btf_ld_reg(env, regs, value_regno, ret, btf_id);
3353
9e15db66
AS
3354 return 0;
3355}
3356
41c48f3a 3357
17a52670
AS
3358/* check whether memory at (regno + off) is accessible for t = (read | write)
3359 * if t==write, value_regno is a register which value is stored into memory
3360 * if t==read, value_regno is a register which will receive the value from memory
3361 * if t==write && value_regno==-1, some unknown value is stored into memory
3362 * if t==read && value_regno==-1, don't care what we read from memory
3363 */
ca369602
DB
3364static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
3365 int off, int bpf_size, enum bpf_access_type t,
3366 int value_regno, bool strict_alignment_once)
17a52670 3367{
638f5b90
AS
3368 struct bpf_reg_state *regs = cur_regs(env);
3369 struct bpf_reg_state *reg = regs + regno;
f4d7e40a 3370 struct bpf_func_state *state;
17a52670
AS
3371 int size, err = 0;
3372
3373 size = bpf_size_to_bytes(bpf_size);
3374 if (size < 0)
3375 return size;
3376
f1174f77 3377 /* alignment checks will add in reg->off themselves */
ca369602 3378 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
969bf05e
AS
3379 if (err)
3380 return err;
17a52670 3381
f1174f77
EC
3382 /* for access checks, reg->off is just part of off */
3383 off += reg->off;
3384
3385 if (reg->type == PTR_TO_MAP_VALUE) {
1be7f75d
AS
3386 if (t == BPF_WRITE && value_regno >= 0 &&
3387 is_pointer_value(env, value_regno)) {
61bd5218 3388 verbose(env, "R%d leaks addr into map\n", value_regno);
1be7f75d
AS
3389 return -EACCES;
3390 }
591fe988
DB
3391 err = check_map_access_type(env, regno, off, size, t);
3392 if (err)
3393 return err;
9fd29c08 3394 err = check_map_access(env, regno, off, size, false);
a23740ec
AN
3395 if (!err && t == BPF_READ && value_regno >= 0) {
3396 struct bpf_map *map = reg->map_ptr;
3397
3398 /* if map is read-only, track its contents as scalars */
3399 if (tnum_is_const(reg->var_off) &&
3400 bpf_map_is_rdonly(map) &&
3401 map->ops->map_direct_value_addr) {
3402 int map_off = off + reg->var_off.value;
3403 u64 val = 0;
3404
3405 err = bpf_map_direct_read(map, map_off, size,
3406 &val);
3407 if (err)
3408 return err;
3409
3410 regs[value_regno].type = SCALAR_VALUE;
3411 __mark_reg_known(&regs[value_regno], val);
3412 } else {
3413 mark_reg_unknown(env, regs, value_regno);
3414 }
3415 }
457f4436
AN
3416 } else if (reg->type == PTR_TO_MEM) {
3417 if (t == BPF_WRITE && value_regno >= 0 &&
3418 is_pointer_value(env, value_regno)) {
3419 verbose(env, "R%d leaks addr into mem\n", value_regno);
3420 return -EACCES;
3421 }
3422 err = check_mem_region_access(env, regno, off, size,
3423 reg->mem_size, false);
3424 if (!err && t == BPF_READ && value_regno >= 0)
3425 mark_reg_unknown(env, regs, value_regno);
1a0dc1ac 3426 } else if (reg->type == PTR_TO_CTX) {
f1174f77 3427 enum bpf_reg_type reg_type = SCALAR_VALUE;
9e15db66 3428 u32 btf_id = 0;
19de99f7 3429
1be7f75d
AS
3430 if (t == BPF_WRITE && value_regno >= 0 &&
3431 is_pointer_value(env, value_regno)) {
61bd5218 3432 verbose(env, "R%d leaks addr into ctx\n", value_regno);
1be7f75d
AS
3433 return -EACCES;
3434 }
f1174f77 3435
58990d1f
DB
3436 err = check_ctx_reg(env, reg, regno);
3437 if (err < 0)
3438 return err;
3439
9e15db66
AS
3440 err = check_ctx_access(env, insn_idx, off, size, t, &reg_type, &btf_id);
3441 if (err)
3442 verbose_linfo(env, insn_idx, "; ");
969bf05e 3443 if (!err && t == BPF_READ && value_regno >= 0) {
f1174f77 3444 /* ctx access returns either a scalar, or a
de8f3a83
DB
3445 * PTR_TO_PACKET[_META,_END]. In the latter
3446 * case, we know the offset is zero.
f1174f77 3447 */
46f8bc92 3448 if (reg_type == SCALAR_VALUE) {
638f5b90 3449 mark_reg_unknown(env, regs, value_regno);
46f8bc92 3450 } else {
638f5b90 3451 mark_reg_known_zero(env, regs,
61bd5218 3452 value_regno);
46f8bc92
MKL
3453 if (reg_type_may_be_null(reg_type))
3454 regs[value_regno].id = ++env->id_gen;
5327ed3d
JW
3455 /* A load of ctx field could have different
3456 * actual load size with the one encoded in the
3457 * insn. When the dst is PTR, it is for sure not
3458 * a sub-register.
3459 */
3460 regs[value_regno].subreg_def = DEF_NOT_SUBREG;
b121b341
YS
3461 if (reg_type == PTR_TO_BTF_ID ||
3462 reg_type == PTR_TO_BTF_ID_OR_NULL)
9e15db66 3463 regs[value_regno].btf_id = btf_id;
46f8bc92 3464 }
638f5b90 3465 regs[value_regno].type = reg_type;
969bf05e 3466 }
17a52670 3467
f1174f77 3468 } else if (reg->type == PTR_TO_STACK) {
f1174f77 3469 off += reg->var_off.value;
e4298d25
DB
3470 err = check_stack_access(env, reg, off, size);
3471 if (err)
3472 return err;
8726679a 3473
f4d7e40a
AS
3474 state = func(env, reg);
3475 err = update_stack_depth(env, state, off);
3476 if (err)
3477 return err;
8726679a 3478
638f5b90 3479 if (t == BPF_WRITE)
61bd5218 3480 err = check_stack_write(env, state, off, size,
af86ca4e 3481 value_regno, insn_idx);
638f5b90 3482 else
61bd5218
JK
3483 err = check_stack_read(env, state, off, size,
3484 value_regno);
de8f3a83 3485 } else if (reg_is_pkt_pointer(reg)) {
3a0af8fd 3486 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
61bd5218 3487 verbose(env, "cannot write into packet\n");
969bf05e
AS
3488 return -EACCES;
3489 }
4acf6c0b
BB
3490 if (t == BPF_WRITE && value_regno >= 0 &&
3491 is_pointer_value(env, value_regno)) {
61bd5218
JK
3492 verbose(env, "R%d leaks addr into packet\n",
3493 value_regno);
4acf6c0b
BB
3494 return -EACCES;
3495 }
9fd29c08 3496 err = check_packet_access(env, regno, off, size, false);
969bf05e 3497 if (!err && t == BPF_READ && value_regno >= 0)
638f5b90 3498 mark_reg_unknown(env, regs, value_regno);
d58e468b
PP
3499 } else if (reg->type == PTR_TO_FLOW_KEYS) {
3500 if (t == BPF_WRITE && value_regno >= 0 &&
3501 is_pointer_value(env, value_regno)) {
3502 verbose(env, "R%d leaks addr into flow keys\n",
3503 value_regno);
3504 return -EACCES;
3505 }
3506
3507 err = check_flow_keys_access(env, off, size);
3508 if (!err && t == BPF_READ && value_regno >= 0)
3509 mark_reg_unknown(env, regs, value_regno);
46f8bc92 3510 } else if (type_is_sk_pointer(reg->type)) {
c64b7983 3511 if (t == BPF_WRITE) {
46f8bc92
MKL
3512 verbose(env, "R%d cannot write into %s\n",
3513 regno, reg_type_str[reg->type]);
c64b7983
JS
3514 return -EACCES;
3515 }
5f456649 3516 err = check_sock_access(env, insn_idx, regno, off, size, t);
c64b7983
JS
3517 if (!err && value_regno >= 0)
3518 mark_reg_unknown(env, regs, value_regno);
9df1c28b
MM
3519 } else if (reg->type == PTR_TO_TP_BUFFER) {
3520 err = check_tp_buffer_access(env, reg, regno, off, size);
3521 if (!err && t == BPF_READ && value_regno >= 0)
3522 mark_reg_unknown(env, regs, value_regno);
9e15db66
AS
3523 } else if (reg->type == PTR_TO_BTF_ID) {
3524 err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
3525 value_regno);
41c48f3a
AI
3526 } else if (reg->type == CONST_PTR_TO_MAP) {
3527 err = check_ptr_to_map_access(env, regs, regno, off, size, t,
3528 value_regno);
afbf21dc
YS
3529 } else if (reg->type == PTR_TO_RDONLY_BUF) {
3530 if (t == BPF_WRITE) {
3531 verbose(env, "R%d cannot write into %s\n",
3532 regno, reg_type_str[reg->type]);
3533 return -EACCES;
3534 }
f6dfbe31
CIK
3535 err = check_buffer_access(env, reg, regno, off, size, false,
3536 "rdonly",
afbf21dc
YS
3537 &env->prog->aux->max_rdonly_access);
3538 if (!err && value_regno >= 0)
3539 mark_reg_unknown(env, regs, value_regno);
3540 } else if (reg->type == PTR_TO_RDWR_BUF) {
f6dfbe31
CIK
3541 err = check_buffer_access(env, reg, regno, off, size, false,
3542 "rdwr",
afbf21dc
YS
3543 &env->prog->aux->max_rdwr_access);
3544 if (!err && t == BPF_READ && value_regno >= 0)
3545 mark_reg_unknown(env, regs, value_regno);
17a52670 3546 } else {
61bd5218
JK
3547 verbose(env, "R%d invalid mem access '%s'\n", regno,
3548 reg_type_str[reg->type]);
17a52670
AS
3549 return -EACCES;
3550 }
969bf05e 3551
f1174f77 3552 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
638f5b90 3553 regs[value_regno].type == SCALAR_VALUE) {
f1174f77 3554 /* b/h/w load zero-extends, mark upper bits as known 0 */
0c17d1d2 3555 coerce_reg_to_size(&regs[value_regno], size);
969bf05e 3556 }
17a52670
AS
3557 return err;
3558}
3559
31fd8581 3560static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
17a52670 3561{
17a52670
AS
3562 int err;
3563
3564 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
3565 insn->imm != 0) {
61bd5218 3566 verbose(env, "BPF_XADD uses reserved fields\n");
17a52670
AS
3567 return -EINVAL;
3568 }
3569
3570 /* check src1 operand */
dc503a8a 3571 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
3572 if (err)
3573 return err;
3574
3575 /* check src2 operand */
dc503a8a 3576 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
3577 if (err)
3578 return err;
3579
6bdf6abc 3580 if (is_pointer_value(env, insn->src_reg)) {
61bd5218 3581 verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
6bdf6abc
DB
3582 return -EACCES;
3583 }
3584
ca369602 3585 if (is_ctx_reg(env, insn->dst_reg) ||
4b5defde 3586 is_pkt_reg(env, insn->dst_reg) ||
46f8bc92
MKL
3587 is_flow_key_reg(env, insn->dst_reg) ||
3588 is_sk_reg(env, insn->dst_reg)) {
ca369602 3589 verbose(env, "BPF_XADD stores into R%d %s is not allowed\n",
2a159c6f
DB
3590 insn->dst_reg,
3591 reg_type_str[reg_state(env, insn->dst_reg)->type]);
f37a8cb8
DB
3592 return -EACCES;
3593 }
3594
17a52670 3595 /* check whether atomic_add can read the memory */
31fd8581 3596 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
ca369602 3597 BPF_SIZE(insn->code), BPF_READ, -1, true);
17a52670
AS
3598 if (err)
3599 return err;
3600
3601 /* check whether atomic_add can write into the same memory */
31fd8581 3602 return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
ca369602 3603 BPF_SIZE(insn->code), BPF_WRITE, -1, true);
17a52670
AS
3604}
3605
2011fccf
AI
3606static int __check_stack_boundary(struct bpf_verifier_env *env, u32 regno,
3607 int off, int access_size,
3608 bool zero_size_allowed)
3609{
3610 struct bpf_reg_state *reg = reg_state(env, regno);
3611
3612 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
3613 access_size < 0 || (access_size == 0 && !zero_size_allowed)) {
3614 if (tnum_is_const(reg->var_off)) {
3615 verbose(env, "invalid stack type R%d off=%d access_size=%d\n",
3616 regno, off, access_size);
3617 } else {
3618 char tn_buf[48];
3619
3620 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3621 verbose(env, "invalid stack type R%d var_off=%s access_size=%d\n",
3622 regno, tn_buf, access_size);
3623 }
3624 return -EACCES;
3625 }
3626 return 0;
3627}
3628
17a52670
AS
3629/* when register 'regno' is passed into function that will read 'access_size'
3630 * bytes from that pointer, make sure that it's within stack boundary
f1174f77
EC
3631 * and all elements of stack are initialized.
3632 * Unlike most pointer bounds-checking functions, this one doesn't take an
3633 * 'off' argument, so it has to add in reg->off itself.
17a52670 3634 */
58e2af8b 3635static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
435faee1
DB
3636 int access_size, bool zero_size_allowed,
3637 struct bpf_call_arg_meta *meta)
17a52670 3638{
2a159c6f 3639 struct bpf_reg_state *reg = reg_state(env, regno);
f4d7e40a 3640 struct bpf_func_state *state = func(env, reg);
f7cf25b2 3641 int err, min_off, max_off, i, j, slot, spi;
17a52670 3642
2011fccf
AI
3643 if (tnum_is_const(reg->var_off)) {
3644 min_off = max_off = reg->var_off.value + reg->off;
3645 err = __check_stack_boundary(env, regno, min_off, access_size,
3646 zero_size_allowed);
3647 if (err)
3648 return err;
3649 } else {
088ec26d
AI
3650 /* Variable offset is prohibited for unprivileged mode for
3651 * simplicity since it requires corresponding support in
3652 * Spectre masking for stack ALU.
3653 * See also retrieve_ptr_limit().
3654 */
2c78ee89 3655 if (!env->bypass_spec_v1) {
088ec26d 3656 char tn_buf[48];
f1174f77 3657
088ec26d
AI
3658 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3659 verbose(env, "R%d indirect variable offset stack access prohibited for !root, var_off=%s\n",
3660 regno, tn_buf);
3661 return -EACCES;
3662 }
f2bcd05e
AI
3663 /* Only initialized buffer on stack is allowed to be accessed
3664 * with variable offset. With uninitialized buffer it's hard to
3665 * guarantee that whole memory is marked as initialized on
3666 * helper return since specific bounds are unknown what may
3667 * cause uninitialized stack leaking.
3668 */
3669 if (meta && meta->raw_mode)
3670 meta = NULL;
3671
107c26a7
AI
3672 if (reg->smax_value >= BPF_MAX_VAR_OFF ||
3673 reg->smax_value <= -BPF_MAX_VAR_OFF) {
3674 verbose(env, "R%d unbounded indirect variable offset stack access\n",
3675 regno);
3676 return -EACCES;
3677 }
2011fccf 3678 min_off = reg->smin_value + reg->off;
107c26a7 3679 max_off = reg->smax_value + reg->off;
2011fccf
AI
3680 err = __check_stack_boundary(env, regno, min_off, access_size,
3681 zero_size_allowed);
107c26a7
AI
3682 if (err) {
3683 verbose(env, "R%d min value is outside of stack bound\n",
3684 regno);
2011fccf 3685 return err;
107c26a7 3686 }
2011fccf
AI
3687 err = __check_stack_boundary(env, regno, max_off, access_size,
3688 zero_size_allowed);
107c26a7
AI
3689 if (err) {
3690 verbose(env, "R%d max value is outside of stack bound\n",
3691 regno);
2011fccf 3692 return err;
107c26a7 3693 }
17a52670
AS
3694 }
3695
435faee1
DB
3696 if (meta && meta->raw_mode) {
3697 meta->access_size = access_size;
3698 meta->regno = regno;
3699 return 0;
3700 }
3701
2011fccf 3702 for (i = min_off; i < max_off + access_size; i++) {
cc2b14d5
AS
3703 u8 *stype;
3704
2011fccf 3705 slot = -i - 1;
638f5b90 3706 spi = slot / BPF_REG_SIZE;
cc2b14d5
AS
3707 if (state->allocated_stack <= slot)
3708 goto err;
3709 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
3710 if (*stype == STACK_MISC)
3711 goto mark;
3712 if (*stype == STACK_ZERO) {
3713 /* helper can write anything into the stack */
3714 *stype = STACK_MISC;
3715 goto mark;
17a52670 3716 }
1d68f22b
YS
3717
3718 if (state->stack[spi].slot_type[0] == STACK_SPILL &&
3719 state->stack[spi].spilled_ptr.type == PTR_TO_BTF_ID)
3720 goto mark;
3721
f7cf25b2
AS
3722 if (state->stack[spi].slot_type[0] == STACK_SPILL &&
3723 state->stack[spi].spilled_ptr.type == SCALAR_VALUE) {
f54c7898 3724 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
f7cf25b2
AS
3725 for (j = 0; j < BPF_REG_SIZE; j++)
3726 state->stack[spi].slot_type[j] = STACK_MISC;
3727 goto mark;
3728 }
3729
cc2b14d5 3730err:
2011fccf
AI
3731 if (tnum_is_const(reg->var_off)) {
3732 verbose(env, "invalid indirect read from stack off %d+%d size %d\n",
3733 min_off, i - min_off, access_size);
3734 } else {
3735 char tn_buf[48];
3736
3737 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3738 verbose(env, "invalid indirect read from stack var_off %s+%d size %d\n",
3739 tn_buf, i - min_off, access_size);
3740 }
cc2b14d5
AS
3741 return -EACCES;
3742mark:
3743 /* reading any byte out of 8-byte 'spill_slot' will cause
3744 * the whole slot to be marked as 'read'
3745 */
679c782d 3746 mark_reg_read(env, &state->stack[spi].spilled_ptr,
5327ed3d
JW
3747 state->stack[spi].spilled_ptr.parent,
3748 REG_LIVE_READ64);
17a52670 3749 }
2011fccf 3750 return update_stack_depth(env, state, min_off);
17a52670
AS
3751}
3752
06c1c049
GB
3753static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
3754 int access_size, bool zero_size_allowed,
3755 struct bpf_call_arg_meta *meta)
3756{
638f5b90 3757 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
06c1c049 3758
f1174f77 3759 switch (reg->type) {
06c1c049 3760 case PTR_TO_PACKET:
de8f3a83 3761 case PTR_TO_PACKET_META:
9fd29c08
YS
3762 return check_packet_access(env, regno, reg->off, access_size,
3763 zero_size_allowed);
06c1c049 3764 case PTR_TO_MAP_VALUE:
591fe988
DB
3765 if (check_map_access_type(env, regno, reg->off, access_size,
3766 meta && meta->raw_mode ? BPF_WRITE :
3767 BPF_READ))
3768 return -EACCES;
9fd29c08
YS
3769 return check_map_access(env, regno, reg->off, access_size,
3770 zero_size_allowed);
457f4436
AN
3771 case PTR_TO_MEM:
3772 return check_mem_region_access(env, regno, reg->off,
3773 access_size, reg->mem_size,
3774 zero_size_allowed);
afbf21dc
YS
3775 case PTR_TO_RDONLY_BUF:
3776 if (meta && meta->raw_mode)
3777 return -EACCES;
3778 return check_buffer_access(env, reg, regno, reg->off,
3779 access_size, zero_size_allowed,
3780 "rdonly",
3781 &env->prog->aux->max_rdonly_access);
3782 case PTR_TO_RDWR_BUF:
3783 return check_buffer_access(env, reg, regno, reg->off,
3784 access_size, zero_size_allowed,
3785 "rdwr",
3786 &env->prog->aux->max_rdwr_access);
0d004c02 3787 case PTR_TO_STACK:
06c1c049
GB
3788 return check_stack_boundary(env, regno, access_size,
3789 zero_size_allowed, meta);
0d004c02
LB
3790 default: /* scalar_value or invalid ptr */
3791 /* Allow zero-byte read from NULL, regardless of pointer type */
3792 if (zero_size_allowed && access_size == 0 &&
3793 register_is_null(reg))
3794 return 0;
3795
3796 verbose(env, "R%d type=%s expected=%s\n", regno,
3797 reg_type_str[reg->type],
3798 reg_type_str[PTR_TO_STACK]);
3799 return -EACCES;
06c1c049
GB
3800 }
3801}
3802
d83525ca
AS
3803/* Implementation details:
3804 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL
3805 * Two bpf_map_lookups (even with the same key) will have different reg->id.
3806 * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after
3807 * value_or_null->value transition, since the verifier only cares about
3808 * the range of access to valid map value pointer and doesn't care about actual
3809 * address of the map element.
3810 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
3811 * reg->id > 0 after value_or_null->value transition. By doing so
3812 * two bpf_map_lookups will be considered two different pointers that
3813 * point to different bpf_spin_locks.
3814 * The verifier allows taking only one bpf_spin_lock at a time to avoid
3815 * dead-locks.
3816 * Since only one bpf_spin_lock is allowed the checks are simpler than
3817 * reg_is_refcounted() logic. The verifier needs to remember only
3818 * one spin_lock instead of array of acquired_refs.
3819 * cur_state->active_spin_lock remembers which map value element got locked
3820 * and clears it after bpf_spin_unlock.
3821 */
3822static int process_spin_lock(struct bpf_verifier_env *env, int regno,
3823 bool is_lock)
3824{
3825 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
3826 struct bpf_verifier_state *cur = env->cur_state;
3827 bool is_const = tnum_is_const(reg->var_off);
3828 struct bpf_map *map = reg->map_ptr;
3829 u64 val = reg->var_off.value;
3830
3831 if (reg->type != PTR_TO_MAP_VALUE) {
3832 verbose(env, "R%d is not a pointer to map_value\n", regno);
3833 return -EINVAL;
3834 }
3835 if (!is_const) {
3836 verbose(env,
3837 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
3838 regno);
3839 return -EINVAL;
3840 }
3841 if (!map->btf) {
3842 verbose(env,
3843 "map '%s' has to have BTF in order to use bpf_spin_lock\n",
3844 map->name);
3845 return -EINVAL;
3846 }
3847 if (!map_value_has_spin_lock(map)) {
3848 if (map->spin_lock_off == -E2BIG)
3849 verbose(env,
3850 "map '%s' has more than one 'struct bpf_spin_lock'\n",
3851 map->name);
3852 else if (map->spin_lock_off == -ENOENT)
3853 verbose(env,
3854 "map '%s' doesn't have 'struct bpf_spin_lock'\n",
3855 map->name);
3856 else
3857 verbose(env,
3858 "map '%s' is not a struct type or bpf_spin_lock is mangled\n",
3859 map->name);
3860 return -EINVAL;
3861 }
3862 if (map->spin_lock_off != val + reg->off) {
3863 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n",
3864 val + reg->off);
3865 return -EINVAL;
3866 }
3867 if (is_lock) {
3868 if (cur->active_spin_lock) {
3869 verbose(env,
3870 "Locking two bpf_spin_locks are not allowed\n");
3871 return -EINVAL;
3872 }
3873 cur->active_spin_lock = reg->id;
3874 } else {
3875 if (!cur->active_spin_lock) {
3876 verbose(env, "bpf_spin_unlock without taking a lock\n");
3877 return -EINVAL;
3878 }
3879 if (cur->active_spin_lock != reg->id) {
3880 verbose(env, "bpf_spin_unlock of different lock\n");
3881 return -EINVAL;
3882 }
3883 cur->active_spin_lock = 0;
3884 }
3885 return 0;
3886}
3887
90133415
DB
3888static bool arg_type_is_mem_ptr(enum bpf_arg_type type)
3889{
3890 return type == ARG_PTR_TO_MEM ||
3891 type == ARG_PTR_TO_MEM_OR_NULL ||
3892 type == ARG_PTR_TO_UNINIT_MEM;
3893}
3894
3895static bool arg_type_is_mem_size(enum bpf_arg_type type)
3896{
3897 return type == ARG_CONST_SIZE ||
3898 type == ARG_CONST_SIZE_OR_ZERO;
3899}
3900
457f4436
AN
3901static bool arg_type_is_alloc_mem_ptr(enum bpf_arg_type type)
3902{
3903 return type == ARG_PTR_TO_ALLOC_MEM ||
3904 type == ARG_PTR_TO_ALLOC_MEM_OR_NULL;
3905}
3906
3907static bool arg_type_is_alloc_size(enum bpf_arg_type type)
3908{
3909 return type == ARG_CONST_ALLOC_SIZE_OR_ZERO;
3910}
3911
57c3bb72
AI
3912static bool arg_type_is_int_ptr(enum bpf_arg_type type)
3913{
3914 return type == ARG_PTR_TO_INT ||
3915 type == ARG_PTR_TO_LONG;
3916}
3917
3918static int int_ptr_type_to_size(enum bpf_arg_type type)
3919{
3920 if (type == ARG_PTR_TO_INT)
3921 return sizeof(u32);
3922 else if (type == ARG_PTR_TO_LONG)
3923 return sizeof(u64);
3924
3925 return -EINVAL;
3926}
3927
912f442c
LB
3928static int resolve_map_arg_type(struct bpf_verifier_env *env,
3929 const struct bpf_call_arg_meta *meta,
3930 enum bpf_arg_type *arg_type)
3931{
3932 if (!meta->map_ptr) {
3933 /* kernel subsystem misconfigured verifier */
3934 verbose(env, "invalid map_ptr to access map->type\n");
3935 return -EACCES;
3936 }
3937
3938 switch (meta->map_ptr->map_type) {
3939 case BPF_MAP_TYPE_SOCKMAP:
3940 case BPF_MAP_TYPE_SOCKHASH:
3941 if (*arg_type == ARG_PTR_TO_MAP_VALUE) {
3942 *arg_type = ARG_PTR_TO_SOCKET;
3943 } else {
3944 verbose(env, "invalid arg_type for sockmap/sockhash\n");
3945 return -EINVAL;
3946 }
3947 break;
3948
3949 default:
3950 break;
3951 }
3952 return 0;
3953}
3954
af7ec138
YS
3955static int check_func_arg(struct bpf_verifier_env *env, u32 arg,
3956 struct bpf_call_arg_meta *meta,
3957 const struct bpf_func_proto *fn)
17a52670 3958{
af7ec138 3959 u32 regno = BPF_REG_1 + arg;
638f5b90 3960 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
6841de8b 3961 enum bpf_reg_type expected_type, type = reg->type;
af7ec138 3962 enum bpf_arg_type arg_type = fn->arg_type[arg];
17a52670
AS
3963 int err = 0;
3964
80f1d68c 3965 if (arg_type == ARG_DONTCARE)
17a52670
AS
3966 return 0;
3967
dc503a8a
EC
3968 err = check_reg_arg(env, regno, SRC_OP);
3969 if (err)
3970 return err;
17a52670 3971
1be7f75d
AS
3972 if (arg_type == ARG_ANYTHING) {
3973 if (is_pointer_value(env, regno)) {
61bd5218
JK
3974 verbose(env, "R%d leaks addr into helper function\n",
3975 regno);
1be7f75d
AS
3976 return -EACCES;
3977 }
80f1d68c 3978 return 0;
1be7f75d 3979 }
80f1d68c 3980
de8f3a83 3981 if (type_is_pkt_pointer(type) &&
3a0af8fd 3982 !may_access_direct_pkt_data(env, meta, BPF_READ)) {
61bd5218 3983 verbose(env, "helper access to the packet is not allowed\n");
6841de8b
AS
3984 return -EACCES;
3985 }
3986
912f442c
LB
3987 if (arg_type == ARG_PTR_TO_MAP_VALUE ||
3988 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE ||
3989 arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) {
3990 err = resolve_map_arg_type(env, meta, &arg_type);
3991 if (err)
3992 return err;
3993 }
3994
8e2fe1d9 3995 if (arg_type == ARG_PTR_TO_MAP_KEY ||
2ea864c5 3996 arg_type == ARG_PTR_TO_MAP_VALUE ||
6ac99e8f
MKL
3997 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE ||
3998 arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) {
17a52670 3999 expected_type = PTR_TO_STACK;
6ac99e8f
MKL
4000 if (register_is_null(reg) &&
4001 arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL)
4002 /* final test in check_stack_boundary() */;
4003 else if (!type_is_pkt_pointer(type) &&
4004 type != PTR_TO_MAP_VALUE &&
4005 type != expected_type)
6841de8b 4006 goto err_type;
39f19ebb 4007 } else if (arg_type == ARG_CONST_SIZE ||
457f4436
AN
4008 arg_type == ARG_CONST_SIZE_OR_ZERO ||
4009 arg_type == ARG_CONST_ALLOC_SIZE_OR_ZERO) {
f1174f77
EC
4010 expected_type = SCALAR_VALUE;
4011 if (type != expected_type)
6841de8b 4012 goto err_type;
17a52670
AS
4013 } else if (arg_type == ARG_CONST_MAP_PTR) {
4014 expected_type = CONST_PTR_TO_MAP;
6841de8b
AS
4015 if (type != expected_type)
4016 goto err_type;
f318903c
DB
4017 } else if (arg_type == ARG_PTR_TO_CTX ||
4018 arg_type == ARG_PTR_TO_CTX_OR_NULL) {
608cd71a 4019 expected_type = PTR_TO_CTX;
f318903c
DB
4020 if (!(register_is_null(reg) &&
4021 arg_type == ARG_PTR_TO_CTX_OR_NULL)) {
4022 if (type != expected_type)
4023 goto err_type;
f318903c 4024 }
46f8bc92
MKL
4025 } else if (arg_type == ARG_PTR_TO_SOCK_COMMON) {
4026 expected_type = PTR_TO_SOCK_COMMON;
4027 /* Any sk pointer can be ARG_PTR_TO_SOCK_COMMON */
4028 if (!type_is_sk_pointer(type))
4029 goto err_type;
e9ddbb77
JS
4030 } else if (arg_type == ARG_PTR_TO_SOCKET ||
4031 arg_type == ARG_PTR_TO_SOCKET_OR_NULL) {
6ac99e8f 4032 expected_type = PTR_TO_SOCKET;
e9ddbb77
JS
4033 if (!(register_is_null(reg) &&
4034 arg_type == ARG_PTR_TO_SOCKET_OR_NULL)) {
4035 if (type != expected_type)
4036 goto err_type;
4037 }
a7658e1a
AS
4038 } else if (arg_type == ARG_PTR_TO_BTF_ID) {
4039 expected_type = PTR_TO_BTF_ID;
4040 if (type != expected_type)
4041 goto err_type;
d83525ca
AS
4042 } else if (arg_type == ARG_PTR_TO_SPIN_LOCK) {
4043 if (meta->func_id == BPF_FUNC_spin_lock) {
4044 if (process_spin_lock(env, regno, true))
4045 return -EACCES;
4046 } else if (meta->func_id == BPF_FUNC_spin_unlock) {
4047 if (process_spin_lock(env, regno, false))
4048 return -EACCES;
4049 } else {
4050 verbose(env, "verifier internal error\n");
4051 return -EFAULT;
4052 }
90133415 4053 } else if (arg_type_is_mem_ptr(arg_type)) {
8e2fe1d9
DB
4054 expected_type = PTR_TO_STACK;
4055 /* One exception here. In case function allows for NULL to be
f1174f77 4056 * passed in as argument, it's a SCALAR_VALUE type. Final test
8e2fe1d9
DB
4057 * happens during stack boundary checking.
4058 */
914cb781 4059 if (register_is_null(reg) &&
457f4436
AN
4060 (arg_type == ARG_PTR_TO_MEM_OR_NULL ||
4061 arg_type == ARG_PTR_TO_ALLOC_MEM_OR_NULL))
6841de8b 4062 /* final test in check_stack_boundary() */;
de8f3a83
DB
4063 else if (!type_is_pkt_pointer(type) &&
4064 type != PTR_TO_MAP_VALUE &&
457f4436 4065 type != PTR_TO_MEM &&
afbf21dc
YS
4066 type != PTR_TO_RDONLY_BUF &&
4067 type != PTR_TO_RDWR_BUF &&
f1174f77 4068 type != expected_type)
6841de8b 4069 goto err_type;
39f19ebb 4070 meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
457f4436
AN
4071 } else if (arg_type_is_alloc_mem_ptr(arg_type)) {
4072 expected_type = PTR_TO_MEM;
4073 if (register_is_null(reg) &&
4074 arg_type == ARG_PTR_TO_ALLOC_MEM_OR_NULL)
4075 /* final test in check_stack_boundary() */;
4076 else if (type != expected_type)
4077 goto err_type;
57c3bb72
AI
4078 } else if (arg_type_is_int_ptr(arg_type)) {
4079 expected_type = PTR_TO_STACK;
4080 if (!type_is_pkt_pointer(type) &&
4081 type != PTR_TO_MAP_VALUE &&
4082 type != expected_type)
4083 goto err_type;
17a52670 4084 } else {
61bd5218 4085 verbose(env, "unsupported arg_type %d\n", arg_type);
17a52670
AS
4086 return -EFAULT;
4087 }
4088
d7b9454a
LB
4089 if (type == PTR_TO_BTF_ID) {
4090 const u32 *btf_id = fn->arg_btf_id[arg];
4091
4092 if (!btf_id) {
4093 verbose(env, "verifier internal error: missing BTF ID\n");
4094 return -EFAULT;
4095 }
4096
4097 if (!btf_struct_ids_match(&env->log, reg->off, reg->btf_id, *btf_id)) {
4098 verbose(env, "R%d is of type %s but %s is expected\n",
4099 regno, kernel_type_name(reg->btf_id), kernel_type_name(*btf_id));
4100 return -EACCES;
4101 }
4102 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
4103 verbose(env, "R%d is a pointer to in-kernel struct with non-zero offset\n",
4104 regno);
4105 return -EACCES;
4106 }
feec7040
LB
4107 } else if (type == PTR_TO_CTX) {
4108 err = check_ctx_reg(env, reg, regno);
4109 if (err < 0)
4110 return err;
d7b9454a
LB
4111 }
4112
02f7c958
LB
4113 if (reg->ref_obj_id) {
4114 if (meta->ref_obj_id) {
4115 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
4116 regno, reg->ref_obj_id,
4117 meta->ref_obj_id);
4118 return -EFAULT;
4119 }
4120 meta->ref_obj_id = reg->ref_obj_id;
4121 }
4122
17a52670
AS
4123 if (arg_type == ARG_CONST_MAP_PTR) {
4124 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
33ff9823 4125 meta->map_ptr = reg->map_ptr;
17a52670
AS
4126 } else if (arg_type == ARG_PTR_TO_MAP_KEY) {
4127 /* bpf_map_xxx(..., map_ptr, ..., key) call:
4128 * check that [key, key + map->key_size) are within
4129 * stack limits and initialized
4130 */
33ff9823 4131 if (!meta->map_ptr) {
17a52670
AS
4132 /* in function declaration map_ptr must come before
4133 * map_key, so that it's verified and known before
4134 * we have to check map_key here. Otherwise it means
4135 * that kernel subsystem misconfigured verifier
4136 */
61bd5218 4137 verbose(env, "invalid map_ptr to access map->key\n");
17a52670
AS
4138 return -EACCES;
4139 }
d71962f3
PC
4140 err = check_helper_mem_access(env, regno,
4141 meta->map_ptr->key_size, false,
4142 NULL);
2ea864c5 4143 } else if (arg_type == ARG_PTR_TO_MAP_VALUE ||
6ac99e8f
MKL
4144 (arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL &&
4145 !register_is_null(reg)) ||
2ea864c5 4146 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) {
17a52670
AS
4147 /* bpf_map_xxx(..., map_ptr, ..., value) call:
4148 * check [value, value + map->value_size) validity
4149 */
33ff9823 4150 if (!meta->map_ptr) {
17a52670 4151 /* kernel subsystem misconfigured verifier */
61bd5218 4152 verbose(env, "invalid map_ptr to access map->value\n");
17a52670
AS
4153 return -EACCES;
4154 }
2ea864c5 4155 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE);
d71962f3
PC
4156 err = check_helper_mem_access(env, regno,
4157 meta->map_ptr->value_size, false,
2ea864c5 4158 meta);
90133415 4159 } else if (arg_type_is_mem_size(arg_type)) {
39f19ebb 4160 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
17a52670 4161
10060503
JF
4162 /* This is used to refine r0 return value bounds for helpers
4163 * that enforce this value as an upper bound on return values.
4164 * See do_refine_retval_range() for helpers that can refine
4165 * the return value. C type of helper is u32 so we pull register
4166 * bound from umax_value however, if negative verifier errors
4167 * out. Only upper bounds can be learned because retval is an
4168 * int type and negative retvals are allowed.
849fa506 4169 */
10060503 4170 meta->msize_max_value = reg->umax_value;
849fa506 4171
f1174f77
EC
4172 /* The register is SCALAR_VALUE; the access check
4173 * happens using its boundaries.
06c1c049 4174 */
f1174f77 4175 if (!tnum_is_const(reg->var_off))
06c1c049
GB
4176 /* For unprivileged variable accesses, disable raw
4177 * mode so that the program is required to
4178 * initialize all the memory that the helper could
4179 * just partially fill up.
4180 */
4181 meta = NULL;
4182
b03c9f9f 4183 if (reg->smin_value < 0) {
61bd5218 4184 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
f1174f77
EC
4185 regno);
4186 return -EACCES;
4187 }
06c1c049 4188
b03c9f9f 4189 if (reg->umin_value == 0) {
f1174f77
EC
4190 err = check_helper_mem_access(env, regno - 1, 0,
4191 zero_size_allowed,
4192 meta);
06c1c049
GB
4193 if (err)
4194 return err;
06c1c049 4195 }
f1174f77 4196
b03c9f9f 4197 if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
61bd5218 4198 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
f1174f77
EC
4199 regno);
4200 return -EACCES;
4201 }
4202 err = check_helper_mem_access(env, regno - 1,
b03c9f9f 4203 reg->umax_value,
f1174f77 4204 zero_size_allowed, meta);
b5dc0163
AS
4205 if (!err)
4206 err = mark_chain_precision(env, regno);
457f4436
AN
4207 } else if (arg_type_is_alloc_size(arg_type)) {
4208 if (!tnum_is_const(reg->var_off)) {
4209 verbose(env, "R%d unbounded size, use 'var &= const' or 'if (var < const)'\n",
4210 regno);
4211 return -EACCES;
4212 }
4213 meta->mem_size = reg->var_off.value;
57c3bb72
AI
4214 } else if (arg_type_is_int_ptr(arg_type)) {
4215 int size = int_ptr_type_to_size(arg_type);
4216
4217 err = check_helper_mem_access(env, regno, size, false, meta);
4218 if (err)
4219 return err;
4220 err = check_ptr_alignment(env, reg, 0, size, true);
17a52670
AS
4221 }
4222
4223 return err;
6841de8b 4224err_type:
61bd5218 4225 verbose(env, "R%d type=%s expected=%s\n", regno,
6841de8b
AS
4226 reg_type_str[type], reg_type_str[expected_type]);
4227 return -EACCES;
17a52670
AS
4228}
4229
0126240f
LB
4230static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id)
4231{
4232 enum bpf_attach_type eatype = env->prog->expected_attach_type;
7e40781c 4233 enum bpf_prog_type type = resolve_prog_type(env->prog);
0126240f
LB
4234
4235 if (func_id != BPF_FUNC_map_update_elem)
4236 return false;
4237
4238 /* It's not possible to get access to a locked struct sock in these
4239 * contexts, so updating is safe.
4240 */
4241 switch (type) {
4242 case BPF_PROG_TYPE_TRACING:
4243 if (eatype == BPF_TRACE_ITER)
4244 return true;
4245 break;
4246 case BPF_PROG_TYPE_SOCKET_FILTER:
4247 case BPF_PROG_TYPE_SCHED_CLS:
4248 case BPF_PROG_TYPE_SCHED_ACT:
4249 case BPF_PROG_TYPE_XDP:
4250 case BPF_PROG_TYPE_SK_REUSEPORT:
4251 case BPF_PROG_TYPE_FLOW_DISSECTOR:
4252 case BPF_PROG_TYPE_SK_LOOKUP:
4253 return true;
4254 default:
4255 break;
4256 }
4257
4258 verbose(env, "cannot update sockmap in this context\n");
4259 return false;
4260}
4261
e411901c
MF
4262static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env)
4263{
4264 return env->prog->jit_requested && IS_ENABLED(CONFIG_X86_64);
4265}
4266
61bd5218
JK
4267static int check_map_func_compatibility(struct bpf_verifier_env *env,
4268 struct bpf_map *map, int func_id)
35578d79 4269{
35578d79
KX
4270 if (!map)
4271 return 0;
4272
6aff67c8
AS
4273 /* We need a two way check, first is from map perspective ... */
4274 switch (map->map_type) {
4275 case BPF_MAP_TYPE_PROG_ARRAY:
4276 if (func_id != BPF_FUNC_tail_call)
4277 goto error;
4278 break;
4279 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
4280 if (func_id != BPF_FUNC_perf_event_read &&
908432ca 4281 func_id != BPF_FUNC_perf_event_output &&
a7658e1a 4282 func_id != BPF_FUNC_skb_output &&
d831ee84
EC
4283 func_id != BPF_FUNC_perf_event_read_value &&
4284 func_id != BPF_FUNC_xdp_output)
6aff67c8
AS
4285 goto error;
4286 break;
457f4436
AN
4287 case BPF_MAP_TYPE_RINGBUF:
4288 if (func_id != BPF_FUNC_ringbuf_output &&
4289 func_id != BPF_FUNC_ringbuf_reserve &&
4290 func_id != BPF_FUNC_ringbuf_submit &&
4291 func_id != BPF_FUNC_ringbuf_discard &&
4292 func_id != BPF_FUNC_ringbuf_query)
4293 goto error;
4294 break;
6aff67c8
AS
4295 case BPF_MAP_TYPE_STACK_TRACE:
4296 if (func_id != BPF_FUNC_get_stackid)
4297 goto error;
4298 break;
4ed8ec52 4299 case BPF_MAP_TYPE_CGROUP_ARRAY:
60747ef4 4300 if (func_id != BPF_FUNC_skb_under_cgroup &&
60d20f91 4301 func_id != BPF_FUNC_current_task_under_cgroup)
4a482f34
MKL
4302 goto error;
4303 break;
cd339431 4304 case BPF_MAP_TYPE_CGROUP_STORAGE:
b741f163 4305 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
cd339431
RG
4306 if (func_id != BPF_FUNC_get_local_storage)
4307 goto error;
4308 break;
546ac1ff 4309 case BPF_MAP_TYPE_DEVMAP:
6f9d451a 4310 case BPF_MAP_TYPE_DEVMAP_HASH:
0cdbb4b0
THJ
4311 if (func_id != BPF_FUNC_redirect_map &&
4312 func_id != BPF_FUNC_map_lookup_elem)
546ac1ff
JF
4313 goto error;
4314 break;
fbfc504a
BT
4315 /* Restrict bpf side of cpumap and xskmap, open when use-cases
4316 * appear.
4317 */
6710e112
JDB
4318 case BPF_MAP_TYPE_CPUMAP:
4319 if (func_id != BPF_FUNC_redirect_map)
4320 goto error;
4321 break;
fada7fdc
JL
4322 case BPF_MAP_TYPE_XSKMAP:
4323 if (func_id != BPF_FUNC_redirect_map &&
4324 func_id != BPF_FUNC_map_lookup_elem)
4325 goto error;
4326 break;
56f668df 4327 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
bcc6b1b7 4328 case BPF_MAP_TYPE_HASH_OF_MAPS:
56f668df
MKL
4329 if (func_id != BPF_FUNC_map_lookup_elem)
4330 goto error;
16a43625 4331 break;
174a79ff
JF
4332 case BPF_MAP_TYPE_SOCKMAP:
4333 if (func_id != BPF_FUNC_sk_redirect_map &&
4334 func_id != BPF_FUNC_sock_map_update &&
4f738adb 4335 func_id != BPF_FUNC_map_delete_elem &&
9fed9000 4336 func_id != BPF_FUNC_msg_redirect_map &&
64d85290 4337 func_id != BPF_FUNC_sk_select_reuseport &&
0126240f
LB
4338 func_id != BPF_FUNC_map_lookup_elem &&
4339 !may_update_sockmap(env, func_id))
174a79ff
JF
4340 goto error;
4341 break;
81110384
JF
4342 case BPF_MAP_TYPE_SOCKHASH:
4343 if (func_id != BPF_FUNC_sk_redirect_hash &&
4344 func_id != BPF_FUNC_sock_hash_update &&
4345 func_id != BPF_FUNC_map_delete_elem &&
9fed9000 4346 func_id != BPF_FUNC_msg_redirect_hash &&
64d85290 4347 func_id != BPF_FUNC_sk_select_reuseport &&
0126240f
LB
4348 func_id != BPF_FUNC_map_lookup_elem &&
4349 !may_update_sockmap(env, func_id))
81110384
JF
4350 goto error;
4351 break;
2dbb9b9e
MKL
4352 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
4353 if (func_id != BPF_FUNC_sk_select_reuseport)
4354 goto error;
4355 break;
f1a2e44a
MV
4356 case BPF_MAP_TYPE_QUEUE:
4357 case BPF_MAP_TYPE_STACK:
4358 if (func_id != BPF_FUNC_map_peek_elem &&
4359 func_id != BPF_FUNC_map_pop_elem &&
4360 func_id != BPF_FUNC_map_push_elem)
4361 goto error;
4362 break;
6ac99e8f
MKL
4363 case BPF_MAP_TYPE_SK_STORAGE:
4364 if (func_id != BPF_FUNC_sk_storage_get &&
4365 func_id != BPF_FUNC_sk_storage_delete)
4366 goto error;
4367 break;
8ea63684
KS
4368 case BPF_MAP_TYPE_INODE_STORAGE:
4369 if (func_id != BPF_FUNC_inode_storage_get &&
4370 func_id != BPF_FUNC_inode_storage_delete)
4371 goto error;
4372 break;
6aff67c8
AS
4373 default:
4374 break;
4375 }
4376
4377 /* ... and second from the function itself. */
4378 switch (func_id) {
4379 case BPF_FUNC_tail_call:
4380 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
4381 goto error;
e411901c
MF
4382 if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) {
4383 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
f4d7e40a
AS
4384 return -EINVAL;
4385 }
6aff67c8
AS
4386 break;
4387 case BPF_FUNC_perf_event_read:
4388 case BPF_FUNC_perf_event_output:
908432ca 4389 case BPF_FUNC_perf_event_read_value:
a7658e1a 4390 case BPF_FUNC_skb_output:
d831ee84 4391 case BPF_FUNC_xdp_output:
6aff67c8
AS
4392 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
4393 goto error;
4394 break;
4395 case BPF_FUNC_get_stackid:
4396 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
4397 goto error;
4398 break;
60d20f91 4399 case BPF_FUNC_current_task_under_cgroup:
747ea55e 4400 case BPF_FUNC_skb_under_cgroup:
4a482f34
MKL
4401 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
4402 goto error;
4403 break;
97f91a7c 4404 case BPF_FUNC_redirect_map:
9c270af3 4405 if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
6f9d451a 4406 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
fbfc504a
BT
4407 map->map_type != BPF_MAP_TYPE_CPUMAP &&
4408 map->map_type != BPF_MAP_TYPE_XSKMAP)
97f91a7c
JF
4409 goto error;
4410 break;
174a79ff 4411 case BPF_FUNC_sk_redirect_map:
4f738adb 4412 case BPF_FUNC_msg_redirect_map:
81110384 4413 case BPF_FUNC_sock_map_update:
174a79ff
JF
4414 if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
4415 goto error;
4416 break;
81110384
JF
4417 case BPF_FUNC_sk_redirect_hash:
4418 case BPF_FUNC_msg_redirect_hash:
4419 case BPF_FUNC_sock_hash_update:
4420 if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
174a79ff
JF
4421 goto error;
4422 break;
cd339431 4423 case BPF_FUNC_get_local_storage:
b741f163
RG
4424 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
4425 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
cd339431
RG
4426 goto error;
4427 break;
2dbb9b9e 4428 case BPF_FUNC_sk_select_reuseport:
9fed9000
JS
4429 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY &&
4430 map->map_type != BPF_MAP_TYPE_SOCKMAP &&
4431 map->map_type != BPF_MAP_TYPE_SOCKHASH)
2dbb9b9e
MKL
4432 goto error;
4433 break;
f1a2e44a
MV
4434 case BPF_FUNC_map_peek_elem:
4435 case BPF_FUNC_map_pop_elem:
4436 case BPF_FUNC_map_push_elem:
4437 if (map->map_type != BPF_MAP_TYPE_QUEUE &&
4438 map->map_type != BPF_MAP_TYPE_STACK)
4439 goto error;
4440 break;
6ac99e8f
MKL
4441 case BPF_FUNC_sk_storage_get:
4442 case BPF_FUNC_sk_storage_delete:
4443 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
4444 goto error;
4445 break;
8ea63684
KS
4446 case BPF_FUNC_inode_storage_get:
4447 case BPF_FUNC_inode_storage_delete:
4448 if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE)
4449 goto error;
4450 break;
6aff67c8
AS
4451 default:
4452 break;
35578d79
KX
4453 }
4454
4455 return 0;
6aff67c8 4456error:
61bd5218 4457 verbose(env, "cannot pass map_type %d into func %s#%d\n",
ebb676da 4458 map->map_type, func_id_name(func_id), func_id);
6aff67c8 4459 return -EINVAL;
35578d79
KX
4460}
4461
90133415 4462static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
435faee1
DB
4463{
4464 int count = 0;
4465
39f19ebb 4466 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 4467 count++;
39f19ebb 4468 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 4469 count++;
39f19ebb 4470 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 4471 count++;
39f19ebb 4472 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 4473 count++;
39f19ebb 4474 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
435faee1
DB
4475 count++;
4476
90133415
DB
4477 /* We only support one arg being in raw mode at the moment,
4478 * which is sufficient for the helper functions we have
4479 * right now.
4480 */
4481 return count <= 1;
4482}
4483
4484static bool check_args_pair_invalid(enum bpf_arg_type arg_curr,
4485 enum bpf_arg_type arg_next)
4486{
4487 return (arg_type_is_mem_ptr(arg_curr) &&
4488 !arg_type_is_mem_size(arg_next)) ||
4489 (!arg_type_is_mem_ptr(arg_curr) &&
4490 arg_type_is_mem_size(arg_next));
4491}
4492
4493static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
4494{
4495 /* bpf_xxx(..., buf, len) call will access 'len'
4496 * bytes from memory 'buf'. Both arg types need
4497 * to be paired, so make sure there's no buggy
4498 * helper function specification.
4499 */
4500 if (arg_type_is_mem_size(fn->arg1_type) ||
4501 arg_type_is_mem_ptr(fn->arg5_type) ||
4502 check_args_pair_invalid(fn->arg1_type, fn->arg2_type) ||
4503 check_args_pair_invalid(fn->arg2_type, fn->arg3_type) ||
4504 check_args_pair_invalid(fn->arg3_type, fn->arg4_type) ||
4505 check_args_pair_invalid(fn->arg4_type, fn->arg5_type))
4506 return false;
4507
4508 return true;
4509}
4510
1b986589 4511static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id)
fd978bf7
JS
4512{
4513 int count = 0;
4514
1b986589 4515 if (arg_type_may_be_refcounted(fn->arg1_type))
fd978bf7 4516 count++;
1b986589 4517 if (arg_type_may_be_refcounted(fn->arg2_type))
fd978bf7 4518 count++;
1b986589 4519 if (arg_type_may_be_refcounted(fn->arg3_type))
fd978bf7 4520 count++;
1b986589 4521 if (arg_type_may_be_refcounted(fn->arg4_type))
fd978bf7 4522 count++;
1b986589 4523 if (arg_type_may_be_refcounted(fn->arg5_type))
fd978bf7
JS
4524 count++;
4525
1b986589
MKL
4526 /* A reference acquiring function cannot acquire
4527 * another refcounted ptr.
4528 */
64d85290 4529 if (may_be_acquire_function(func_id) && count)
1b986589
MKL
4530 return false;
4531
fd978bf7
JS
4532 /* We only support one arg being unreferenced at the moment,
4533 * which is sufficient for the helper functions we have right now.
4534 */
4535 return count <= 1;
4536}
4537
9436ef6e
LB
4538static bool check_btf_id_ok(const struct bpf_func_proto *fn)
4539{
4540 int i;
4541
4542 for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++)
4543 if (fn->arg_type[i] == ARG_PTR_TO_BTF_ID && !fn->arg_btf_id[i])
4544 return false;
4545
4546 return true;
4547}
4548
1b986589 4549static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
90133415
DB
4550{
4551 return check_raw_mode_ok(fn) &&
fd978bf7 4552 check_arg_pair_ok(fn) &&
9436ef6e 4553 check_btf_id_ok(fn) &&
1b986589 4554 check_refcount_ok(fn, func_id) ? 0 : -EINVAL;
435faee1
DB
4555}
4556
de8f3a83
DB
4557/* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
4558 * are now invalid, so turn them into unknown SCALAR_VALUE.
f1174f77 4559 */
f4d7e40a
AS
4560static void __clear_all_pkt_pointers(struct bpf_verifier_env *env,
4561 struct bpf_func_state *state)
969bf05e 4562{
58e2af8b 4563 struct bpf_reg_state *regs = state->regs, *reg;
969bf05e
AS
4564 int i;
4565
4566 for (i = 0; i < MAX_BPF_REG; i++)
de8f3a83 4567 if (reg_is_pkt_pointer_any(&regs[i]))
61bd5218 4568 mark_reg_unknown(env, regs, i);
969bf05e 4569
f3709f69
JS
4570 bpf_for_each_spilled_reg(i, state, reg) {
4571 if (!reg)
969bf05e 4572 continue;
de8f3a83 4573 if (reg_is_pkt_pointer_any(reg))
f54c7898 4574 __mark_reg_unknown(env, reg);
969bf05e
AS
4575 }
4576}
4577
f4d7e40a
AS
4578static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
4579{
4580 struct bpf_verifier_state *vstate = env->cur_state;
4581 int i;
4582
4583 for (i = 0; i <= vstate->curframe; i++)
4584 __clear_all_pkt_pointers(env, vstate->frame[i]);
4585}
4586
fd978bf7 4587static void release_reg_references(struct bpf_verifier_env *env,
1b986589
MKL
4588 struct bpf_func_state *state,
4589 int ref_obj_id)
fd978bf7
JS
4590{
4591 struct bpf_reg_state *regs = state->regs, *reg;
4592 int i;
4593
4594 for (i = 0; i < MAX_BPF_REG; i++)
1b986589 4595 if (regs[i].ref_obj_id == ref_obj_id)
fd978bf7
JS
4596 mark_reg_unknown(env, regs, i);
4597
4598 bpf_for_each_spilled_reg(i, state, reg) {
4599 if (!reg)
4600 continue;
1b986589 4601 if (reg->ref_obj_id == ref_obj_id)
f54c7898 4602 __mark_reg_unknown(env, reg);
fd978bf7
JS
4603 }
4604}
4605
4606/* The pointer with the specified id has released its reference to kernel
4607 * resources. Identify all copies of the same pointer and clear the reference.
4608 */
4609static int release_reference(struct bpf_verifier_env *env,
1b986589 4610 int ref_obj_id)
fd978bf7
JS
4611{
4612 struct bpf_verifier_state *vstate = env->cur_state;
1b986589 4613 int err;
fd978bf7
JS
4614 int i;
4615
1b986589
MKL
4616 err = release_reference_state(cur_func(env), ref_obj_id);
4617 if (err)
4618 return err;
4619
fd978bf7 4620 for (i = 0; i <= vstate->curframe; i++)
1b986589 4621 release_reg_references(env, vstate->frame[i], ref_obj_id);
fd978bf7 4622
1b986589 4623 return 0;
fd978bf7
JS
4624}
4625
51c39bb1
AS
4626static void clear_caller_saved_regs(struct bpf_verifier_env *env,
4627 struct bpf_reg_state *regs)
4628{
4629 int i;
4630
4631 /* after the call registers r0 - r5 were scratched */
4632 for (i = 0; i < CALLER_SAVED_REGS; i++) {
4633 mark_reg_not_init(env, regs, caller_saved[i]);
4634 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
4635 }
4636}
4637
f4d7e40a
AS
4638static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
4639 int *insn_idx)
4640{
4641 struct bpf_verifier_state *state = env->cur_state;
51c39bb1 4642 struct bpf_func_info_aux *func_info_aux;
f4d7e40a 4643 struct bpf_func_state *caller, *callee;
fd978bf7 4644 int i, err, subprog, target_insn;
51c39bb1 4645 bool is_global = false;
f4d7e40a 4646
aada9ce6 4647 if (state->curframe + 1 >= MAX_CALL_FRAMES) {
f4d7e40a 4648 verbose(env, "the call stack of %d frames is too deep\n",
aada9ce6 4649 state->curframe + 2);
f4d7e40a
AS
4650 return -E2BIG;
4651 }
4652
4653 target_insn = *insn_idx + insn->imm;
4654 subprog = find_subprog(env, target_insn + 1);
4655 if (subprog < 0) {
4656 verbose(env, "verifier bug. No program starts at insn %d\n",
4657 target_insn + 1);
4658 return -EFAULT;
4659 }
4660
4661 caller = state->frame[state->curframe];
4662 if (state->frame[state->curframe + 1]) {
4663 verbose(env, "verifier bug. Frame %d already allocated\n",
4664 state->curframe + 1);
4665 return -EFAULT;
4666 }
4667
51c39bb1
AS
4668 func_info_aux = env->prog->aux->func_info_aux;
4669 if (func_info_aux)
4670 is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
4671 err = btf_check_func_arg_match(env, subprog, caller->regs);
4672 if (err == -EFAULT)
4673 return err;
4674 if (is_global) {
4675 if (err) {
4676 verbose(env, "Caller passes invalid args into func#%d\n",
4677 subprog);
4678 return err;
4679 } else {
4680 if (env->log.level & BPF_LOG_LEVEL)
4681 verbose(env,
4682 "Func#%d is global and valid. Skipping.\n",
4683 subprog);
4684 clear_caller_saved_regs(env, caller->regs);
4685
4686 /* All global functions return SCALAR_VALUE */
4687 mark_reg_unknown(env, caller->regs, BPF_REG_0);
4688
4689 /* continue with next insn after call */
4690 return 0;
4691 }
4692 }
4693
f4d7e40a
AS
4694 callee = kzalloc(sizeof(*callee), GFP_KERNEL);
4695 if (!callee)
4696 return -ENOMEM;
4697 state->frame[state->curframe + 1] = callee;
4698
4699 /* callee cannot access r0, r6 - r9 for reading and has to write
4700 * into its own stack before reading from it.
4701 * callee can read/write into caller's stack
4702 */
4703 init_func_state(env, callee,
4704 /* remember the callsite, it will be used by bpf_exit */
4705 *insn_idx /* callsite */,
4706 state->curframe + 1 /* frameno within this callchain */,
f910cefa 4707 subprog /* subprog number within this prog */);
f4d7e40a 4708
fd978bf7
JS
4709 /* Transfer references to the callee */
4710 err = transfer_reference_state(callee, caller);
4711 if (err)
4712 return err;
4713
679c782d
EC
4714 /* copy r1 - r5 args that callee can access. The copy includes parent
4715 * pointers, which connects us up to the liveness chain
4716 */
f4d7e40a
AS
4717 for (i = BPF_REG_1; i <= BPF_REG_5; i++)
4718 callee->regs[i] = caller->regs[i];
4719
51c39bb1 4720 clear_caller_saved_regs(env, caller->regs);
f4d7e40a
AS
4721
4722 /* only increment it after check_reg_arg() finished */
4723 state->curframe++;
4724
4725 /* and go analyze first insn of the callee */
4726 *insn_idx = target_insn;
4727
06ee7115 4728 if (env->log.level & BPF_LOG_LEVEL) {
f4d7e40a
AS
4729 verbose(env, "caller:\n");
4730 print_verifier_state(env, caller);
4731 verbose(env, "callee:\n");
4732 print_verifier_state(env, callee);
4733 }
4734 return 0;
4735}
4736
4737static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
4738{
4739 struct bpf_verifier_state *state = env->cur_state;
4740 struct bpf_func_state *caller, *callee;
4741 struct bpf_reg_state *r0;
fd978bf7 4742 int err;
f4d7e40a
AS
4743
4744 callee = state->frame[state->curframe];
4745 r0 = &callee->regs[BPF_REG_0];
4746 if (r0->type == PTR_TO_STACK) {
4747 /* technically it's ok to return caller's stack pointer
4748 * (or caller's caller's pointer) back to the caller,
4749 * since these pointers are valid. Only current stack
4750 * pointer will be invalid as soon as function exits,
4751 * but let's be conservative
4752 */
4753 verbose(env, "cannot return stack pointer to the caller\n");
4754 return -EINVAL;
4755 }
4756
4757 state->curframe--;
4758 caller = state->frame[state->curframe];
4759 /* return to the caller whatever r0 had in the callee */
4760 caller->regs[BPF_REG_0] = *r0;
4761
fd978bf7
JS
4762 /* Transfer references to the caller */
4763 err = transfer_reference_state(caller, callee);
4764 if (err)
4765 return err;
4766
f4d7e40a 4767 *insn_idx = callee->callsite + 1;
06ee7115 4768 if (env->log.level & BPF_LOG_LEVEL) {
f4d7e40a
AS
4769 verbose(env, "returning from callee:\n");
4770 print_verifier_state(env, callee);
4771 verbose(env, "to caller at %d:\n", *insn_idx);
4772 print_verifier_state(env, caller);
4773 }
4774 /* clear everything in the callee */
4775 free_func_state(callee);
4776 state->frame[state->curframe + 1] = NULL;
4777 return 0;
4778}
4779
849fa506
YS
4780static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
4781 int func_id,
4782 struct bpf_call_arg_meta *meta)
4783{
4784 struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
4785
4786 if (ret_type != RET_INTEGER ||
4787 (func_id != BPF_FUNC_get_stack &&
47cc0ed5
DB
4788 func_id != BPF_FUNC_probe_read_str &&
4789 func_id != BPF_FUNC_probe_read_kernel_str &&
4790 func_id != BPF_FUNC_probe_read_user_str))
849fa506
YS
4791 return;
4792
10060503 4793 ret_reg->smax_value = meta->msize_max_value;
fa123ac0 4794 ret_reg->s32_max_value = meta->msize_max_value;
849fa506
YS
4795 __reg_deduce_bounds(ret_reg);
4796 __reg_bound_offset(ret_reg);
10060503 4797 __update_reg_bounds(ret_reg);
849fa506
YS
4798}
4799
c93552c4
DB
4800static int
4801record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
4802 int func_id, int insn_idx)
4803{
4804 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
591fe988 4805 struct bpf_map *map = meta->map_ptr;
c93552c4
DB
4806
4807 if (func_id != BPF_FUNC_tail_call &&
09772d92
DB
4808 func_id != BPF_FUNC_map_lookup_elem &&
4809 func_id != BPF_FUNC_map_update_elem &&
f1a2e44a
MV
4810 func_id != BPF_FUNC_map_delete_elem &&
4811 func_id != BPF_FUNC_map_push_elem &&
4812 func_id != BPF_FUNC_map_pop_elem &&
4813 func_id != BPF_FUNC_map_peek_elem)
c93552c4 4814 return 0;
09772d92 4815
591fe988 4816 if (map == NULL) {
c93552c4
DB
4817 verbose(env, "kernel subsystem misconfigured verifier\n");
4818 return -EINVAL;
4819 }
4820
591fe988
DB
4821 /* In case of read-only, some additional restrictions
4822 * need to be applied in order to prevent altering the
4823 * state of the map from program side.
4824 */
4825 if ((map->map_flags & BPF_F_RDONLY_PROG) &&
4826 (func_id == BPF_FUNC_map_delete_elem ||
4827 func_id == BPF_FUNC_map_update_elem ||
4828 func_id == BPF_FUNC_map_push_elem ||
4829 func_id == BPF_FUNC_map_pop_elem)) {
4830 verbose(env, "write into map forbidden\n");
4831 return -EACCES;
4832 }
4833
d2e4c1e6 4834 if (!BPF_MAP_PTR(aux->map_ptr_state))
c93552c4 4835 bpf_map_ptr_store(aux, meta->map_ptr,
2c78ee89 4836 !meta->map_ptr->bypass_spec_v1);
d2e4c1e6 4837 else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr)
c93552c4 4838 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
2c78ee89 4839 !meta->map_ptr->bypass_spec_v1);
c93552c4
DB
4840 return 0;
4841}
4842
d2e4c1e6
DB
4843static int
4844record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
4845 int func_id, int insn_idx)
4846{
4847 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
4848 struct bpf_reg_state *regs = cur_regs(env), *reg;
4849 struct bpf_map *map = meta->map_ptr;
4850 struct tnum range;
4851 u64 val;
cc52d914 4852 int err;
d2e4c1e6
DB
4853
4854 if (func_id != BPF_FUNC_tail_call)
4855 return 0;
4856 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
4857 verbose(env, "kernel subsystem misconfigured verifier\n");
4858 return -EINVAL;
4859 }
4860
4861 range = tnum_range(0, map->max_entries - 1);
4862 reg = &regs[BPF_REG_3];
4863
4864 if (!register_is_const(reg) || !tnum_in(range, reg->var_off)) {
4865 bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
4866 return 0;
4867 }
4868
cc52d914
DB
4869 err = mark_chain_precision(env, BPF_REG_3);
4870 if (err)
4871 return err;
4872
d2e4c1e6
DB
4873 val = reg->var_off.value;
4874 if (bpf_map_key_unseen(aux))
4875 bpf_map_key_store(aux, val);
4876 else if (!bpf_map_key_poisoned(aux) &&
4877 bpf_map_key_immediate(aux) != val)
4878 bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
4879 return 0;
4880}
4881
fd978bf7
JS
4882static int check_reference_leak(struct bpf_verifier_env *env)
4883{
4884 struct bpf_func_state *state = cur_func(env);
4885 int i;
4886
4887 for (i = 0; i < state->acquired_refs; i++) {
4888 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
4889 state->refs[i].id, state->refs[i].insn_idx);
4890 }
4891 return state->acquired_refs ? -EINVAL : 0;
4892}
4893
f4d7e40a 4894static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
17a52670 4895{
17a52670 4896 const struct bpf_func_proto *fn = NULL;
638f5b90 4897 struct bpf_reg_state *regs;
33ff9823 4898 struct bpf_call_arg_meta meta;
969bf05e 4899 bool changes_data;
17a52670
AS
4900 int i, err;
4901
4902 /* find function prototype */
4903 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
61bd5218
JK
4904 verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
4905 func_id);
17a52670
AS
4906 return -EINVAL;
4907 }
4908
00176a34 4909 if (env->ops->get_func_proto)
5e43f899 4910 fn = env->ops->get_func_proto(func_id, env->prog);
17a52670 4911 if (!fn) {
61bd5218
JK
4912 verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
4913 func_id);
17a52670
AS
4914 return -EINVAL;
4915 }
4916
4917 /* eBPF programs must be GPL compatible to use GPL-ed functions */
24701ece 4918 if (!env->prog->gpl_compatible && fn->gpl_only) {
3fe2867c 4919 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
17a52670
AS
4920 return -EINVAL;
4921 }
4922
eae2e83e
JO
4923 if (fn->allowed && !fn->allowed(env->prog)) {
4924 verbose(env, "helper call is not allowed in probe\n");
4925 return -EINVAL;
4926 }
4927
04514d13 4928 /* With LD_ABS/IND some JITs save/restore skb from r1. */
17bedab2 4929 changes_data = bpf_helper_changes_pkt_data(fn->func);
04514d13
DB
4930 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
4931 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
4932 func_id_name(func_id), func_id);
4933 return -EINVAL;
4934 }
969bf05e 4935
33ff9823 4936 memset(&meta, 0, sizeof(meta));
36bbef52 4937 meta.pkt_access = fn->pkt_access;
33ff9823 4938
1b986589 4939 err = check_func_proto(fn, func_id);
435faee1 4940 if (err) {
61bd5218 4941 verbose(env, "kernel subsystem misconfigured func %s#%d\n",
ebb676da 4942 func_id_name(func_id), func_id);
435faee1
DB
4943 return err;
4944 }
4945
d83525ca 4946 meta.func_id = func_id;
17a52670 4947 /* check args */
a7658e1a 4948 for (i = 0; i < 5; i++) {
af7ec138 4949 err = check_func_arg(env, i, &meta, fn);
a7658e1a
AS
4950 if (err)
4951 return err;
4952 }
17a52670 4953
c93552c4
DB
4954 err = record_func_map(env, &meta, func_id, insn_idx);
4955 if (err)
4956 return err;
4957
d2e4c1e6
DB
4958 err = record_func_key(env, &meta, func_id, insn_idx);
4959 if (err)
4960 return err;
4961
435faee1
DB
4962 /* Mark slots with STACK_MISC in case of raw mode, stack offset
4963 * is inferred from register state.
4964 */
4965 for (i = 0; i < meta.access_size; i++) {
ca369602
DB
4966 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
4967 BPF_WRITE, -1, false);
435faee1
DB
4968 if (err)
4969 return err;
4970 }
4971
fd978bf7
JS
4972 if (func_id == BPF_FUNC_tail_call) {
4973 err = check_reference_leak(env);
4974 if (err) {
4975 verbose(env, "tail_call would lead to reference leak\n");
4976 return err;
4977 }
4978 } else if (is_release_function(func_id)) {
1b986589 4979 err = release_reference(env, meta.ref_obj_id);
46f8bc92
MKL
4980 if (err) {
4981 verbose(env, "func %s#%d reference has not been acquired before\n",
4982 func_id_name(func_id), func_id);
fd978bf7 4983 return err;
46f8bc92 4984 }
fd978bf7
JS
4985 }
4986
638f5b90 4987 regs = cur_regs(env);
cd339431
RG
4988
4989 /* check that flags argument in get_local_storage(map, flags) is 0,
4990 * this is required because get_local_storage() can't return an error.
4991 */
4992 if (func_id == BPF_FUNC_get_local_storage &&
4993 !register_is_null(&regs[BPF_REG_2])) {
4994 verbose(env, "get_local_storage() doesn't support non-zero flags\n");
4995 return -EINVAL;
4996 }
4997
17a52670 4998 /* reset caller saved regs */
dc503a8a 4999 for (i = 0; i < CALLER_SAVED_REGS; i++) {
61bd5218 5000 mark_reg_not_init(env, regs, caller_saved[i]);
dc503a8a
EC
5001 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
5002 }
17a52670 5003
5327ed3d
JW
5004 /* helper call returns 64-bit value. */
5005 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
5006
dc503a8a 5007 /* update return register (already marked as written above) */
17a52670 5008 if (fn->ret_type == RET_INTEGER) {
f1174f77 5009 /* sets type to SCALAR_VALUE */
61bd5218 5010 mark_reg_unknown(env, regs, BPF_REG_0);
17a52670
AS
5011 } else if (fn->ret_type == RET_VOID) {
5012 regs[BPF_REG_0].type = NOT_INIT;
3e6a4b3e
RG
5013 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL ||
5014 fn->ret_type == RET_PTR_TO_MAP_VALUE) {
f1174f77 5015 /* There is no offset yet applied, variable or fixed */
61bd5218 5016 mark_reg_known_zero(env, regs, BPF_REG_0);
17a52670
AS
5017 /* remember map_ptr, so that check_map_access()
5018 * can check 'value_size' boundary of memory access
5019 * to map element returned from bpf_map_lookup_elem()
5020 */
33ff9823 5021 if (meta.map_ptr == NULL) {
61bd5218
JK
5022 verbose(env,
5023 "kernel subsystem misconfigured verifier\n");
17a52670
AS
5024 return -EINVAL;
5025 }
33ff9823 5026 regs[BPF_REG_0].map_ptr = meta.map_ptr;
4d31f301
DB
5027 if (fn->ret_type == RET_PTR_TO_MAP_VALUE) {
5028 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE;
e16d2f1a
AS
5029 if (map_value_has_spin_lock(meta.map_ptr))
5030 regs[BPF_REG_0].id = ++env->id_gen;
4d31f301
DB
5031 } else {
5032 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
5033 regs[BPF_REG_0].id = ++env->id_gen;
5034 }
c64b7983
JS
5035 } else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) {
5036 mark_reg_known_zero(env, regs, BPF_REG_0);
5037 regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL;
0f3adc28 5038 regs[BPF_REG_0].id = ++env->id_gen;
85a51f8c
LB
5039 } else if (fn->ret_type == RET_PTR_TO_SOCK_COMMON_OR_NULL) {
5040 mark_reg_known_zero(env, regs, BPF_REG_0);
5041 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON_OR_NULL;
5042 regs[BPF_REG_0].id = ++env->id_gen;
655a51e5
MKL
5043 } else if (fn->ret_type == RET_PTR_TO_TCP_SOCK_OR_NULL) {
5044 mark_reg_known_zero(env, regs, BPF_REG_0);
5045 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK_OR_NULL;
5046 regs[BPF_REG_0].id = ++env->id_gen;
457f4436
AN
5047 } else if (fn->ret_type == RET_PTR_TO_ALLOC_MEM_OR_NULL) {
5048 mark_reg_known_zero(env, regs, BPF_REG_0);
5049 regs[BPF_REG_0].type = PTR_TO_MEM_OR_NULL;
5050 regs[BPF_REG_0].id = ++env->id_gen;
5051 regs[BPF_REG_0].mem_size = meta.mem_size;
af7ec138
YS
5052 } else if (fn->ret_type == RET_PTR_TO_BTF_ID_OR_NULL) {
5053 int ret_btf_id;
5054
5055 mark_reg_known_zero(env, regs, BPF_REG_0);
5056 regs[BPF_REG_0].type = PTR_TO_BTF_ID_OR_NULL;
5057 ret_btf_id = *fn->ret_btf_id;
5058 if (ret_btf_id == 0) {
5059 verbose(env, "invalid return type %d of func %s#%d\n",
5060 fn->ret_type, func_id_name(func_id), func_id);
5061 return -EINVAL;
5062 }
5063 regs[BPF_REG_0].btf_id = ret_btf_id;
17a52670 5064 } else {
61bd5218 5065 verbose(env, "unknown return type %d of func %s#%d\n",
ebb676da 5066 fn->ret_type, func_id_name(func_id), func_id);
17a52670
AS
5067 return -EINVAL;
5068 }
04fd61ab 5069
0f3adc28 5070 if (is_ptr_cast_function(func_id)) {
1b986589
MKL
5071 /* For release_reference() */
5072 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
64d85290 5073 } else if (is_acquire_function(func_id, meta.map_ptr)) {
0f3adc28
LB
5074 int id = acquire_reference_state(env, insn_idx);
5075
5076 if (id < 0)
5077 return id;
5078 /* For mark_ptr_or_null_reg() */
5079 regs[BPF_REG_0].id = id;
5080 /* For release_reference() */
5081 regs[BPF_REG_0].ref_obj_id = id;
5082 }
1b986589 5083
849fa506
YS
5084 do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
5085
61bd5218 5086 err = check_map_func_compatibility(env, meta.map_ptr, func_id);
35578d79
KX
5087 if (err)
5088 return err;
04fd61ab 5089
fa28dcb8
SL
5090 if ((func_id == BPF_FUNC_get_stack ||
5091 func_id == BPF_FUNC_get_task_stack) &&
5092 !env->prog->has_callchain_buf) {
c195651e
YS
5093 const char *err_str;
5094
5095#ifdef CONFIG_PERF_EVENTS
5096 err = get_callchain_buffers(sysctl_perf_event_max_stack);
5097 err_str = "cannot get callchain buffer for func %s#%d\n";
5098#else
5099 err = -ENOTSUPP;
5100 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
5101#endif
5102 if (err) {
5103 verbose(env, err_str, func_id_name(func_id), func_id);
5104 return err;
5105 }
5106
5107 env->prog->has_callchain_buf = true;
5108 }
5109
5d99cb2c
SL
5110 if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack)
5111 env->prog->call_get_stack = true;
5112
969bf05e
AS
5113 if (changes_data)
5114 clear_all_pkt_pointers(env);
5115 return 0;
5116}
5117
b03c9f9f
EC
5118static bool signed_add_overflows(s64 a, s64 b)
5119{
5120 /* Do the add in u64, where overflow is well-defined */
5121 s64 res = (s64)((u64)a + (u64)b);
5122
5123 if (b < 0)
5124 return res > a;
5125 return res < a;
5126}
5127
3f50f132
JF
5128static bool signed_add32_overflows(s64 a, s64 b)
5129{
5130 /* Do the add in u32, where overflow is well-defined */
5131 s32 res = (s32)((u32)a + (u32)b);
5132
5133 if (b < 0)
5134 return res > a;
5135 return res < a;
5136}
5137
5138static bool signed_sub_overflows(s32 a, s32 b)
b03c9f9f
EC
5139{
5140 /* Do the sub in u64, where overflow is well-defined */
5141 s64 res = (s64)((u64)a - (u64)b);
5142
5143 if (b < 0)
5144 return res < a;
5145 return res > a;
969bf05e
AS
5146}
5147
3f50f132
JF
5148static bool signed_sub32_overflows(s32 a, s32 b)
5149{
5150 /* Do the sub in u64, where overflow is well-defined */
5151 s32 res = (s32)((u32)a - (u32)b);
5152
5153 if (b < 0)
5154 return res < a;
5155 return res > a;
5156}
5157
bb7f0f98
AS
5158static bool check_reg_sane_offset(struct bpf_verifier_env *env,
5159 const struct bpf_reg_state *reg,
5160 enum bpf_reg_type type)
5161{
5162 bool known = tnum_is_const(reg->var_off);
5163 s64 val = reg->var_off.value;
5164 s64 smin = reg->smin_value;
5165
5166 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
5167 verbose(env, "math between %s pointer and %lld is not allowed\n",
5168 reg_type_str[type], val);
5169 return false;
5170 }
5171
5172 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
5173 verbose(env, "%s pointer offset %d is not allowed\n",
5174 reg_type_str[type], reg->off);
5175 return false;
5176 }
5177
5178 if (smin == S64_MIN) {
5179 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
5180 reg_type_str[type]);
5181 return false;
5182 }
5183
5184 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
5185 verbose(env, "value %lld makes %s pointer be out of bounds\n",
5186 smin, reg_type_str[type]);
5187 return false;
5188 }
5189
5190 return true;
5191}
5192
979d63d5
DB
5193static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
5194{
5195 return &env->insn_aux_data[env->insn_idx];
5196}
5197
5198static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
5199 u32 *ptr_limit, u8 opcode, bool off_is_neg)
5200{
5201 bool mask_to_left = (opcode == BPF_ADD && off_is_neg) ||
5202 (opcode == BPF_SUB && !off_is_neg);
5203 u32 off;
5204
5205 switch (ptr_reg->type) {
5206 case PTR_TO_STACK:
088ec26d
AI
5207 /* Indirect variable offset stack access is prohibited in
5208 * unprivileged mode so it's not handled here.
5209 */
979d63d5
DB
5210 off = ptr_reg->off + ptr_reg->var_off.value;
5211 if (mask_to_left)
5212 *ptr_limit = MAX_BPF_STACK + off;
5213 else
5214 *ptr_limit = -off;
5215 return 0;
5216 case PTR_TO_MAP_VALUE:
5217 if (mask_to_left) {
5218 *ptr_limit = ptr_reg->umax_value + ptr_reg->off;
5219 } else {
5220 off = ptr_reg->smin_value + ptr_reg->off;
5221 *ptr_limit = ptr_reg->map_ptr->value_size - off;
5222 }
5223 return 0;
5224 default:
5225 return -EINVAL;
5226 }
5227}
5228
d3bd7413
DB
5229static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
5230 const struct bpf_insn *insn)
5231{
2c78ee89 5232 return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K;
d3bd7413
DB
5233}
5234
5235static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
5236 u32 alu_state, u32 alu_limit)
5237{
5238 /* If we arrived here from different branches with different
5239 * state or limits to sanitize, then this won't work.
5240 */
5241 if (aux->alu_state &&
5242 (aux->alu_state != alu_state ||
5243 aux->alu_limit != alu_limit))
5244 return -EACCES;
5245
5246 /* Corresponding fixup done in fixup_bpf_calls(). */
5247 aux->alu_state = alu_state;
5248 aux->alu_limit = alu_limit;
5249 return 0;
5250}
5251
5252static int sanitize_val_alu(struct bpf_verifier_env *env,
5253 struct bpf_insn *insn)
5254{
5255 struct bpf_insn_aux_data *aux = cur_aux(env);
5256
5257 if (can_skip_alu_sanitation(env, insn))
5258 return 0;
5259
5260 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
5261}
5262
979d63d5
DB
5263static int sanitize_ptr_alu(struct bpf_verifier_env *env,
5264 struct bpf_insn *insn,
5265 const struct bpf_reg_state *ptr_reg,
5266 struct bpf_reg_state *dst_reg,
5267 bool off_is_neg)
5268{
5269 struct bpf_verifier_state *vstate = env->cur_state;
5270 struct bpf_insn_aux_data *aux = cur_aux(env);
5271 bool ptr_is_dst_reg = ptr_reg == dst_reg;
5272 u8 opcode = BPF_OP(insn->code);
5273 u32 alu_state, alu_limit;
5274 struct bpf_reg_state tmp;
5275 bool ret;
5276
d3bd7413 5277 if (can_skip_alu_sanitation(env, insn))
979d63d5
DB
5278 return 0;
5279
5280 /* We already marked aux for masking from non-speculative
5281 * paths, thus we got here in the first place. We only care
5282 * to explore bad access from here.
5283 */
5284 if (vstate->speculative)
5285 goto do_sim;
5286
5287 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
5288 alu_state |= ptr_is_dst_reg ?
5289 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
5290
5291 if (retrieve_ptr_limit(ptr_reg, &alu_limit, opcode, off_is_neg))
5292 return 0;
d3bd7413 5293 if (update_alu_sanitation_state(aux, alu_state, alu_limit))
979d63d5 5294 return -EACCES;
979d63d5
DB
5295do_sim:
5296 /* Simulate and find potential out-of-bounds access under
5297 * speculative execution from truncation as a result of
5298 * masking when off was not within expected range. If off
5299 * sits in dst, then we temporarily need to move ptr there
5300 * to simulate dst (== 0) +/-= ptr. Needed, for example,
5301 * for cases where we use K-based arithmetic in one direction
5302 * and truncated reg-based in the other in order to explore
5303 * bad access.
5304 */
5305 if (!ptr_is_dst_reg) {
5306 tmp = *dst_reg;
5307 *dst_reg = *ptr_reg;
5308 }
5309 ret = push_stack(env, env->insn_idx + 1, env->insn_idx, true);
0803278b 5310 if (!ptr_is_dst_reg && ret)
979d63d5
DB
5311 *dst_reg = tmp;
5312 return !ret ? -EFAULT : 0;
5313}
5314
f1174f77 5315/* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
f1174f77
EC
5316 * Caller should also handle BPF_MOV case separately.
5317 * If we return -EACCES, caller may want to try again treating pointer as a
5318 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks.
5319 */
5320static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
5321 struct bpf_insn *insn,
5322 const struct bpf_reg_state *ptr_reg,
5323 const struct bpf_reg_state *off_reg)
969bf05e 5324{
f4d7e40a
AS
5325 struct bpf_verifier_state *vstate = env->cur_state;
5326 struct bpf_func_state *state = vstate->frame[vstate->curframe];
5327 struct bpf_reg_state *regs = state->regs, *dst_reg;
f1174f77 5328 bool known = tnum_is_const(off_reg->var_off);
b03c9f9f
EC
5329 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
5330 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
5331 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
5332 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
9d7eceed 5333 u32 dst = insn->dst_reg, src = insn->src_reg;
969bf05e 5334 u8 opcode = BPF_OP(insn->code);
979d63d5 5335 int ret;
969bf05e 5336
f1174f77 5337 dst_reg = &regs[dst];
969bf05e 5338
6f16101e
DB
5339 if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
5340 smin_val > smax_val || umin_val > umax_val) {
5341 /* Taint dst register if offset had invalid bounds derived from
5342 * e.g. dead branches.
5343 */
f54c7898 5344 __mark_reg_unknown(env, dst_reg);
6f16101e 5345 return 0;
f1174f77
EC
5346 }
5347
5348 if (BPF_CLASS(insn->code) != BPF_ALU64) {
5349 /* 32-bit ALU ops on pointers produce (meaningless) scalars */
6c693541
YS
5350 if (opcode == BPF_SUB && env->allow_ptr_leaks) {
5351 __mark_reg_unknown(env, dst_reg);
5352 return 0;
5353 }
5354
82abbf8d
AS
5355 verbose(env,
5356 "R%d 32-bit pointer arithmetic prohibited\n",
5357 dst);
f1174f77 5358 return -EACCES;
969bf05e
AS
5359 }
5360
aad2eeaf
JS
5361 switch (ptr_reg->type) {
5362 case PTR_TO_MAP_VALUE_OR_NULL:
5363 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
5364 dst, reg_type_str[ptr_reg->type]);
f1174f77 5365 return -EACCES;
aad2eeaf 5366 case CONST_PTR_TO_MAP:
7c696732
YS
5367 /* smin_val represents the known value */
5368 if (known && smin_val == 0 && opcode == BPF_ADD)
5369 break;
5370 /* fall-through */
aad2eeaf 5371 case PTR_TO_PACKET_END:
c64b7983
JS
5372 case PTR_TO_SOCKET:
5373 case PTR_TO_SOCKET_OR_NULL:
46f8bc92
MKL
5374 case PTR_TO_SOCK_COMMON:
5375 case PTR_TO_SOCK_COMMON_OR_NULL:
655a51e5
MKL
5376 case PTR_TO_TCP_SOCK:
5377 case PTR_TO_TCP_SOCK_OR_NULL:
fada7fdc 5378 case PTR_TO_XDP_SOCK:
aad2eeaf
JS
5379 verbose(env, "R%d pointer arithmetic on %s prohibited\n",
5380 dst, reg_type_str[ptr_reg->type]);
f1174f77 5381 return -EACCES;
9d7eceed
DB
5382 case PTR_TO_MAP_VALUE:
5383 if (!env->allow_ptr_leaks && !known && (smin_val < 0) != (smax_val < 0)) {
5384 verbose(env, "R%d has unknown scalar with mixed signed bounds, pointer arithmetic with it prohibited for !root\n",
5385 off_reg == dst_reg ? dst : src);
5386 return -EACCES;
5387 }
5388 /* fall-through */
aad2eeaf
JS
5389 default:
5390 break;
f1174f77
EC
5391 }
5392
5393 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
5394 * The id may be overwritten later if we create a new variable offset.
969bf05e 5395 */
f1174f77
EC
5396 dst_reg->type = ptr_reg->type;
5397 dst_reg->id = ptr_reg->id;
969bf05e 5398
bb7f0f98
AS
5399 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
5400 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
5401 return -EINVAL;
5402
3f50f132
JF
5403 /* pointer types do not carry 32-bit bounds at the moment. */
5404 __mark_reg32_unbounded(dst_reg);
5405
f1174f77
EC
5406 switch (opcode) {
5407 case BPF_ADD:
979d63d5
DB
5408 ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0);
5409 if (ret < 0) {
5410 verbose(env, "R%d tried to add from different maps or paths\n", dst);
5411 return ret;
5412 }
f1174f77
EC
5413 /* We can take a fixed offset as long as it doesn't overflow
5414 * the s32 'off' field
969bf05e 5415 */
b03c9f9f
EC
5416 if (known && (ptr_reg->off + smin_val ==
5417 (s64)(s32)(ptr_reg->off + smin_val))) {
f1174f77 5418 /* pointer += K. Accumulate it into fixed offset */
b03c9f9f
EC
5419 dst_reg->smin_value = smin_ptr;
5420 dst_reg->smax_value = smax_ptr;
5421 dst_reg->umin_value = umin_ptr;
5422 dst_reg->umax_value = umax_ptr;
f1174f77 5423 dst_reg->var_off = ptr_reg->var_off;
b03c9f9f 5424 dst_reg->off = ptr_reg->off + smin_val;
0962590e 5425 dst_reg->raw = ptr_reg->raw;
f1174f77
EC
5426 break;
5427 }
f1174f77
EC
5428 /* A new variable offset is created. Note that off_reg->off
5429 * == 0, since it's a scalar.
5430 * dst_reg gets the pointer type and since some positive
5431 * integer value was added to the pointer, give it a new 'id'
5432 * if it's a PTR_TO_PACKET.
5433 * this creates a new 'base' pointer, off_reg (variable) gets
5434 * added into the variable offset, and we copy the fixed offset
5435 * from ptr_reg.
969bf05e 5436 */
b03c9f9f
EC
5437 if (signed_add_overflows(smin_ptr, smin_val) ||
5438 signed_add_overflows(smax_ptr, smax_val)) {
5439 dst_reg->smin_value = S64_MIN;
5440 dst_reg->smax_value = S64_MAX;
5441 } else {
5442 dst_reg->smin_value = smin_ptr + smin_val;
5443 dst_reg->smax_value = smax_ptr + smax_val;
5444 }
5445 if (umin_ptr + umin_val < umin_ptr ||
5446 umax_ptr + umax_val < umax_ptr) {
5447 dst_reg->umin_value = 0;
5448 dst_reg->umax_value = U64_MAX;
5449 } else {
5450 dst_reg->umin_value = umin_ptr + umin_val;
5451 dst_reg->umax_value = umax_ptr + umax_val;
5452 }
f1174f77
EC
5453 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
5454 dst_reg->off = ptr_reg->off;
0962590e 5455 dst_reg->raw = ptr_reg->raw;
de8f3a83 5456 if (reg_is_pkt_pointer(ptr_reg)) {
f1174f77
EC
5457 dst_reg->id = ++env->id_gen;
5458 /* something was added to pkt_ptr, set range to zero */
0962590e 5459 dst_reg->raw = 0;
f1174f77
EC
5460 }
5461 break;
5462 case BPF_SUB:
979d63d5
DB
5463 ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0);
5464 if (ret < 0) {
5465 verbose(env, "R%d tried to sub from different maps or paths\n", dst);
5466 return ret;
5467 }
f1174f77
EC
5468 if (dst_reg == off_reg) {
5469 /* scalar -= pointer. Creates an unknown scalar */
82abbf8d
AS
5470 verbose(env, "R%d tried to subtract pointer from scalar\n",
5471 dst);
f1174f77
EC
5472 return -EACCES;
5473 }
5474 /* We don't allow subtraction from FP, because (according to
5475 * test_verifier.c test "invalid fp arithmetic", JITs might not
5476 * be able to deal with it.
969bf05e 5477 */
f1174f77 5478 if (ptr_reg->type == PTR_TO_STACK) {
82abbf8d
AS
5479 verbose(env, "R%d subtraction from stack pointer prohibited\n",
5480 dst);
f1174f77
EC
5481 return -EACCES;
5482 }
b03c9f9f
EC
5483 if (known && (ptr_reg->off - smin_val ==
5484 (s64)(s32)(ptr_reg->off - smin_val))) {
f1174f77 5485 /* pointer -= K. Subtract it from fixed offset */
b03c9f9f
EC
5486 dst_reg->smin_value = smin_ptr;
5487 dst_reg->smax_value = smax_ptr;
5488 dst_reg->umin_value = umin_ptr;
5489 dst_reg->umax_value = umax_ptr;
f1174f77
EC
5490 dst_reg->var_off = ptr_reg->var_off;
5491 dst_reg->id = ptr_reg->id;
b03c9f9f 5492 dst_reg->off = ptr_reg->off - smin_val;
0962590e 5493 dst_reg->raw = ptr_reg->raw;
f1174f77
EC
5494 break;
5495 }
f1174f77
EC
5496 /* A new variable offset is created. If the subtrahend is known
5497 * nonnegative, then any reg->range we had before is still good.
969bf05e 5498 */
b03c9f9f
EC
5499 if (signed_sub_overflows(smin_ptr, smax_val) ||
5500 signed_sub_overflows(smax_ptr, smin_val)) {
5501 /* Overflow possible, we know nothing */
5502 dst_reg->smin_value = S64_MIN;
5503 dst_reg->smax_value = S64_MAX;
5504 } else {
5505 dst_reg->smin_value = smin_ptr - smax_val;
5506 dst_reg->smax_value = smax_ptr - smin_val;
5507 }
5508 if (umin_ptr < umax_val) {
5509 /* Overflow possible, we know nothing */
5510 dst_reg->umin_value = 0;
5511 dst_reg->umax_value = U64_MAX;
5512 } else {
5513 /* Cannot overflow (as long as bounds are consistent) */
5514 dst_reg->umin_value = umin_ptr - umax_val;
5515 dst_reg->umax_value = umax_ptr - umin_val;
5516 }
f1174f77
EC
5517 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
5518 dst_reg->off = ptr_reg->off;
0962590e 5519 dst_reg->raw = ptr_reg->raw;
de8f3a83 5520 if (reg_is_pkt_pointer(ptr_reg)) {
f1174f77
EC
5521 dst_reg->id = ++env->id_gen;
5522 /* something was added to pkt_ptr, set range to zero */
b03c9f9f 5523 if (smin_val < 0)
0962590e 5524 dst_reg->raw = 0;
43188702 5525 }
f1174f77
EC
5526 break;
5527 case BPF_AND:
5528 case BPF_OR:
5529 case BPF_XOR:
82abbf8d
AS
5530 /* bitwise ops on pointers are troublesome, prohibit. */
5531 verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
5532 dst, bpf_alu_string[opcode >> 4]);
f1174f77
EC
5533 return -EACCES;
5534 default:
5535 /* other operators (e.g. MUL,LSH) produce non-pointer results */
82abbf8d
AS
5536 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
5537 dst, bpf_alu_string[opcode >> 4]);
f1174f77 5538 return -EACCES;
43188702
JF
5539 }
5540
bb7f0f98
AS
5541 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
5542 return -EINVAL;
5543
b03c9f9f
EC
5544 __update_reg_bounds(dst_reg);
5545 __reg_deduce_bounds(dst_reg);
5546 __reg_bound_offset(dst_reg);
0d6303db
DB
5547
5548 /* For unprivileged we require that resulting offset must be in bounds
5549 * in order to be able to sanitize access later on.
5550 */
2c78ee89 5551 if (!env->bypass_spec_v1) {
e4298d25
DB
5552 if (dst_reg->type == PTR_TO_MAP_VALUE &&
5553 check_map_access(env, dst, dst_reg->off, 1, false)) {
5554 verbose(env, "R%d pointer arithmetic of map value goes out of range, "
5555 "prohibited for !root\n", dst);
5556 return -EACCES;
5557 } else if (dst_reg->type == PTR_TO_STACK &&
5558 check_stack_access(env, dst_reg, dst_reg->off +
5559 dst_reg->var_off.value, 1)) {
5560 verbose(env, "R%d stack pointer arithmetic goes out of range, "
5561 "prohibited for !root\n", dst);
5562 return -EACCES;
5563 }
0d6303db
DB
5564 }
5565
43188702
JF
5566 return 0;
5567}
5568
3f50f132
JF
5569static void scalar32_min_max_add(struct bpf_reg_state *dst_reg,
5570 struct bpf_reg_state *src_reg)
5571{
5572 s32 smin_val = src_reg->s32_min_value;
5573 s32 smax_val = src_reg->s32_max_value;
5574 u32 umin_val = src_reg->u32_min_value;
5575 u32 umax_val = src_reg->u32_max_value;
5576
5577 if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) ||
5578 signed_add32_overflows(dst_reg->s32_max_value, smax_val)) {
5579 dst_reg->s32_min_value = S32_MIN;
5580 dst_reg->s32_max_value = S32_MAX;
5581 } else {
5582 dst_reg->s32_min_value += smin_val;
5583 dst_reg->s32_max_value += smax_val;
5584 }
5585 if (dst_reg->u32_min_value + umin_val < umin_val ||
5586 dst_reg->u32_max_value + umax_val < umax_val) {
5587 dst_reg->u32_min_value = 0;
5588 dst_reg->u32_max_value = U32_MAX;
5589 } else {
5590 dst_reg->u32_min_value += umin_val;
5591 dst_reg->u32_max_value += umax_val;
5592 }
5593}
5594
07cd2631
JF
5595static void scalar_min_max_add(struct bpf_reg_state *dst_reg,
5596 struct bpf_reg_state *src_reg)
5597{
5598 s64 smin_val = src_reg->smin_value;
5599 s64 smax_val = src_reg->smax_value;
5600 u64 umin_val = src_reg->umin_value;
5601 u64 umax_val = src_reg->umax_value;
5602
5603 if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
5604 signed_add_overflows(dst_reg->smax_value, smax_val)) {
5605 dst_reg->smin_value = S64_MIN;
5606 dst_reg->smax_value = S64_MAX;
5607 } else {
5608 dst_reg->smin_value += smin_val;
5609 dst_reg->smax_value += smax_val;
5610 }
5611 if (dst_reg->umin_value + umin_val < umin_val ||
5612 dst_reg->umax_value + umax_val < umax_val) {
5613 dst_reg->umin_value = 0;
5614 dst_reg->umax_value = U64_MAX;
5615 } else {
5616 dst_reg->umin_value += umin_val;
5617 dst_reg->umax_value += umax_val;
5618 }
3f50f132
JF
5619}
5620
5621static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg,
5622 struct bpf_reg_state *src_reg)
5623{
5624 s32 smin_val = src_reg->s32_min_value;
5625 s32 smax_val = src_reg->s32_max_value;
5626 u32 umin_val = src_reg->u32_min_value;
5627 u32 umax_val = src_reg->u32_max_value;
5628
5629 if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) ||
5630 signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) {
5631 /* Overflow possible, we know nothing */
5632 dst_reg->s32_min_value = S32_MIN;
5633 dst_reg->s32_max_value = S32_MAX;
5634 } else {
5635 dst_reg->s32_min_value -= smax_val;
5636 dst_reg->s32_max_value -= smin_val;
5637 }
5638 if (dst_reg->u32_min_value < umax_val) {
5639 /* Overflow possible, we know nothing */
5640 dst_reg->u32_min_value = 0;
5641 dst_reg->u32_max_value = U32_MAX;
5642 } else {
5643 /* Cannot overflow (as long as bounds are consistent) */
5644 dst_reg->u32_min_value -= umax_val;
5645 dst_reg->u32_max_value -= umin_val;
5646 }
07cd2631
JF
5647}
5648
5649static void scalar_min_max_sub(struct bpf_reg_state *dst_reg,
5650 struct bpf_reg_state *src_reg)
5651{
5652 s64 smin_val = src_reg->smin_value;
5653 s64 smax_val = src_reg->smax_value;
5654 u64 umin_val = src_reg->umin_value;
5655 u64 umax_val = src_reg->umax_value;
5656
5657 if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
5658 signed_sub_overflows(dst_reg->smax_value, smin_val)) {
5659 /* Overflow possible, we know nothing */
5660 dst_reg->smin_value = S64_MIN;
5661 dst_reg->smax_value = S64_MAX;
5662 } else {
5663 dst_reg->smin_value -= smax_val;
5664 dst_reg->smax_value -= smin_val;
5665 }
5666 if (dst_reg->umin_value < umax_val) {
5667 /* Overflow possible, we know nothing */
5668 dst_reg->umin_value = 0;
5669 dst_reg->umax_value = U64_MAX;
5670 } else {
5671 /* Cannot overflow (as long as bounds are consistent) */
5672 dst_reg->umin_value -= umax_val;
5673 dst_reg->umax_value -= umin_val;
5674 }
3f50f132
JF
5675}
5676
5677static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg,
5678 struct bpf_reg_state *src_reg)
5679{
5680 s32 smin_val = src_reg->s32_min_value;
5681 u32 umin_val = src_reg->u32_min_value;
5682 u32 umax_val = src_reg->u32_max_value;
5683
5684 if (smin_val < 0 || dst_reg->s32_min_value < 0) {
5685 /* Ain't nobody got time to multiply that sign */
5686 __mark_reg32_unbounded(dst_reg);
5687 return;
5688 }
5689 /* Both values are positive, so we can work with unsigned and
5690 * copy the result to signed (unless it exceeds S32_MAX).
5691 */
5692 if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) {
5693 /* Potential overflow, we know nothing */
5694 __mark_reg32_unbounded(dst_reg);
5695 return;
5696 }
5697 dst_reg->u32_min_value *= umin_val;
5698 dst_reg->u32_max_value *= umax_val;
5699 if (dst_reg->u32_max_value > S32_MAX) {
5700 /* Overflow possible, we know nothing */
5701 dst_reg->s32_min_value = S32_MIN;
5702 dst_reg->s32_max_value = S32_MAX;
5703 } else {
5704 dst_reg->s32_min_value = dst_reg->u32_min_value;
5705 dst_reg->s32_max_value = dst_reg->u32_max_value;
5706 }
07cd2631
JF
5707}
5708
5709static void scalar_min_max_mul(struct bpf_reg_state *dst_reg,
5710 struct bpf_reg_state *src_reg)
5711{
5712 s64 smin_val = src_reg->smin_value;
5713 u64 umin_val = src_reg->umin_value;
5714 u64 umax_val = src_reg->umax_value;
5715
07cd2631
JF
5716 if (smin_val < 0 || dst_reg->smin_value < 0) {
5717 /* Ain't nobody got time to multiply that sign */
3f50f132 5718 __mark_reg64_unbounded(dst_reg);
07cd2631
JF
5719 return;
5720 }
5721 /* Both values are positive, so we can work with unsigned and
5722 * copy the result to signed (unless it exceeds S64_MAX).
5723 */
5724 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
5725 /* Potential overflow, we know nothing */
3f50f132 5726 __mark_reg64_unbounded(dst_reg);
07cd2631
JF
5727 return;
5728 }
5729 dst_reg->umin_value *= umin_val;
5730 dst_reg->umax_value *= umax_val;
5731 if (dst_reg->umax_value > S64_MAX) {
5732 /* Overflow possible, we know nothing */
5733 dst_reg->smin_value = S64_MIN;
5734 dst_reg->smax_value = S64_MAX;
5735 } else {
5736 dst_reg->smin_value = dst_reg->umin_value;
5737 dst_reg->smax_value = dst_reg->umax_value;
5738 }
5739}
5740
3f50f132
JF
5741static void scalar32_min_max_and(struct bpf_reg_state *dst_reg,
5742 struct bpf_reg_state *src_reg)
5743{
5744 bool src_known = tnum_subreg_is_const(src_reg->var_off);
5745 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
5746 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
5747 s32 smin_val = src_reg->s32_min_value;
5748 u32 umax_val = src_reg->u32_max_value;
5749
5750 /* Assuming scalar64_min_max_and will be called so its safe
5751 * to skip updating register for known 32-bit case.
5752 */
5753 if (src_known && dst_known)
5754 return;
5755
5756 /* We get our minimum from the var_off, since that's inherently
5757 * bitwise. Our maximum is the minimum of the operands' maxima.
5758 */
5759 dst_reg->u32_min_value = var32_off.value;
5760 dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
5761 if (dst_reg->s32_min_value < 0 || smin_val < 0) {
5762 /* Lose signed bounds when ANDing negative numbers,
5763 * ain't nobody got time for that.
5764 */
5765 dst_reg->s32_min_value = S32_MIN;
5766 dst_reg->s32_max_value = S32_MAX;
5767 } else {
5768 /* ANDing two positives gives a positive, so safe to
5769 * cast result into s64.
5770 */
5771 dst_reg->s32_min_value = dst_reg->u32_min_value;
5772 dst_reg->s32_max_value = dst_reg->u32_max_value;
5773 }
5774
5775}
5776
07cd2631
JF
5777static void scalar_min_max_and(struct bpf_reg_state *dst_reg,
5778 struct bpf_reg_state *src_reg)
5779{
3f50f132
JF
5780 bool src_known = tnum_is_const(src_reg->var_off);
5781 bool dst_known = tnum_is_const(dst_reg->var_off);
07cd2631
JF
5782 s64 smin_val = src_reg->smin_value;
5783 u64 umax_val = src_reg->umax_value;
5784
3f50f132
JF
5785 if (src_known && dst_known) {
5786 __mark_reg_known(dst_reg, dst_reg->var_off.value &
5787 src_reg->var_off.value);
5788 return;
5789 }
5790
07cd2631
JF
5791 /* We get our minimum from the var_off, since that's inherently
5792 * bitwise. Our maximum is the minimum of the operands' maxima.
5793 */
07cd2631
JF
5794 dst_reg->umin_value = dst_reg->var_off.value;
5795 dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
5796 if (dst_reg->smin_value < 0 || smin_val < 0) {
5797 /* Lose signed bounds when ANDing negative numbers,
5798 * ain't nobody got time for that.
5799 */
5800 dst_reg->smin_value = S64_MIN;
5801 dst_reg->smax_value = S64_MAX;
5802 } else {
5803 /* ANDing two positives gives a positive, so safe to
5804 * cast result into s64.
5805 */
5806 dst_reg->smin_value = dst_reg->umin_value;
5807 dst_reg->smax_value = dst_reg->umax_value;
5808 }
5809 /* We may learn something more from the var_off */
5810 __update_reg_bounds(dst_reg);
5811}
5812
3f50f132
JF
5813static void scalar32_min_max_or(struct bpf_reg_state *dst_reg,
5814 struct bpf_reg_state *src_reg)
5815{
5816 bool src_known = tnum_subreg_is_const(src_reg->var_off);
5817 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
5818 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
5819 s32 smin_val = src_reg->smin_value;
5820 u32 umin_val = src_reg->umin_value;
5821
5822 /* Assuming scalar64_min_max_or will be called so it is safe
5823 * to skip updating register for known case.
5824 */
5825 if (src_known && dst_known)
5826 return;
5827
5828 /* We get our maximum from the var_off, and our minimum is the
5829 * maximum of the operands' minima
5830 */
5831 dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val);
5832 dst_reg->u32_max_value = var32_off.value | var32_off.mask;
5833 if (dst_reg->s32_min_value < 0 || smin_val < 0) {
5834 /* Lose signed bounds when ORing negative numbers,
5835 * ain't nobody got time for that.
5836 */
5837 dst_reg->s32_min_value = S32_MIN;
5838 dst_reg->s32_max_value = S32_MAX;
5839 } else {
5840 /* ORing two positives gives a positive, so safe to
5841 * cast result into s64.
5842 */
5843 dst_reg->s32_min_value = dst_reg->umin_value;
5844 dst_reg->s32_max_value = dst_reg->umax_value;
5845 }
5846}
5847
07cd2631
JF
5848static void scalar_min_max_or(struct bpf_reg_state *dst_reg,
5849 struct bpf_reg_state *src_reg)
5850{
3f50f132
JF
5851 bool src_known = tnum_is_const(src_reg->var_off);
5852 bool dst_known = tnum_is_const(dst_reg->var_off);
07cd2631
JF
5853 s64 smin_val = src_reg->smin_value;
5854 u64 umin_val = src_reg->umin_value;
5855
3f50f132
JF
5856 if (src_known && dst_known) {
5857 __mark_reg_known(dst_reg, dst_reg->var_off.value |
5858 src_reg->var_off.value);
5859 return;
5860 }
5861
07cd2631
JF
5862 /* We get our maximum from the var_off, and our minimum is the
5863 * maximum of the operands' minima
5864 */
07cd2631
JF
5865 dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
5866 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
5867 if (dst_reg->smin_value < 0 || smin_val < 0) {
5868 /* Lose signed bounds when ORing negative numbers,
5869 * ain't nobody got time for that.
5870 */
5871 dst_reg->smin_value = S64_MIN;
5872 dst_reg->smax_value = S64_MAX;
5873 } else {
5874 /* ORing two positives gives a positive, so safe to
5875 * cast result into s64.
5876 */
5877 dst_reg->smin_value = dst_reg->umin_value;
5878 dst_reg->smax_value = dst_reg->umax_value;
5879 }
5880 /* We may learn something more from the var_off */
5881 __update_reg_bounds(dst_reg);
5882}
5883
2921c90d
YS
5884static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg,
5885 struct bpf_reg_state *src_reg)
5886{
5887 bool src_known = tnum_subreg_is_const(src_reg->var_off);
5888 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
5889 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
5890 s32 smin_val = src_reg->s32_min_value;
5891
5892 /* Assuming scalar64_min_max_xor will be called so it is safe
5893 * to skip updating register for known case.
5894 */
5895 if (src_known && dst_known)
5896 return;
5897
5898 /* We get both minimum and maximum from the var32_off. */
5899 dst_reg->u32_min_value = var32_off.value;
5900 dst_reg->u32_max_value = var32_off.value | var32_off.mask;
5901
5902 if (dst_reg->s32_min_value >= 0 && smin_val >= 0) {
5903 /* XORing two positive sign numbers gives a positive,
5904 * so safe to cast u32 result into s32.
5905 */
5906 dst_reg->s32_min_value = dst_reg->u32_min_value;
5907 dst_reg->s32_max_value = dst_reg->u32_max_value;
5908 } else {
5909 dst_reg->s32_min_value = S32_MIN;
5910 dst_reg->s32_max_value = S32_MAX;
5911 }
5912}
5913
5914static void scalar_min_max_xor(struct bpf_reg_state *dst_reg,
5915 struct bpf_reg_state *src_reg)
5916{
5917 bool src_known = tnum_is_const(src_reg->var_off);
5918 bool dst_known = tnum_is_const(dst_reg->var_off);
5919 s64 smin_val = src_reg->smin_value;
5920
5921 if (src_known && dst_known) {
5922 /* dst_reg->var_off.value has been updated earlier */
5923 __mark_reg_known(dst_reg, dst_reg->var_off.value);
5924 return;
5925 }
5926
5927 /* We get both minimum and maximum from the var_off. */
5928 dst_reg->umin_value = dst_reg->var_off.value;
5929 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
5930
5931 if (dst_reg->smin_value >= 0 && smin_val >= 0) {
5932 /* XORing two positive sign numbers gives a positive,
5933 * so safe to cast u64 result into s64.
5934 */
5935 dst_reg->smin_value = dst_reg->umin_value;
5936 dst_reg->smax_value = dst_reg->umax_value;
5937 } else {
5938 dst_reg->smin_value = S64_MIN;
5939 dst_reg->smax_value = S64_MAX;
5940 }
5941
5942 __update_reg_bounds(dst_reg);
5943}
5944
3f50f132
JF
5945static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
5946 u64 umin_val, u64 umax_val)
07cd2631 5947{
07cd2631
JF
5948 /* We lose all sign bit information (except what we can pick
5949 * up from var_off)
5950 */
3f50f132
JF
5951 dst_reg->s32_min_value = S32_MIN;
5952 dst_reg->s32_max_value = S32_MAX;
5953 /* If we might shift our top bit out, then we know nothing */
5954 if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) {
5955 dst_reg->u32_min_value = 0;
5956 dst_reg->u32_max_value = U32_MAX;
5957 } else {
5958 dst_reg->u32_min_value <<= umin_val;
5959 dst_reg->u32_max_value <<= umax_val;
5960 }
5961}
5962
5963static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
5964 struct bpf_reg_state *src_reg)
5965{
5966 u32 umax_val = src_reg->u32_max_value;
5967 u32 umin_val = src_reg->u32_min_value;
5968 /* u32 alu operation will zext upper bits */
5969 struct tnum subreg = tnum_subreg(dst_reg->var_off);
5970
5971 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
5972 dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val));
5973 /* Not required but being careful mark reg64 bounds as unknown so
5974 * that we are forced to pick them up from tnum and zext later and
5975 * if some path skips this step we are still safe.
5976 */
5977 __mark_reg64_unbounded(dst_reg);
5978 __update_reg32_bounds(dst_reg);
5979}
5980
5981static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg,
5982 u64 umin_val, u64 umax_val)
5983{
5984 /* Special case <<32 because it is a common compiler pattern to sign
5985 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are
5986 * positive we know this shift will also be positive so we can track
5987 * bounds correctly. Otherwise we lose all sign bit information except
5988 * what we can pick up from var_off. Perhaps we can generalize this
5989 * later to shifts of any length.
5990 */
5991 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0)
5992 dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32;
5993 else
5994 dst_reg->smax_value = S64_MAX;
5995
5996 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0)
5997 dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32;
5998 else
5999 dst_reg->smin_value = S64_MIN;
6000
07cd2631
JF
6001 /* If we might shift our top bit out, then we know nothing */
6002 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
6003 dst_reg->umin_value = 0;
6004 dst_reg->umax_value = U64_MAX;
6005 } else {
6006 dst_reg->umin_value <<= umin_val;
6007 dst_reg->umax_value <<= umax_val;
6008 }
3f50f132
JF
6009}
6010
6011static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg,
6012 struct bpf_reg_state *src_reg)
6013{
6014 u64 umax_val = src_reg->umax_value;
6015 u64 umin_val = src_reg->umin_value;
6016
6017 /* scalar64 calc uses 32bit unshifted bounds so must be called first */
6018 __scalar64_min_max_lsh(dst_reg, umin_val, umax_val);
6019 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
6020
07cd2631
JF
6021 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
6022 /* We may learn something more from the var_off */
6023 __update_reg_bounds(dst_reg);
6024}
6025
3f50f132
JF
6026static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg,
6027 struct bpf_reg_state *src_reg)
6028{
6029 struct tnum subreg = tnum_subreg(dst_reg->var_off);
6030 u32 umax_val = src_reg->u32_max_value;
6031 u32 umin_val = src_reg->u32_min_value;
6032
6033 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
6034 * be negative, then either:
6035 * 1) src_reg might be zero, so the sign bit of the result is
6036 * unknown, so we lose our signed bounds
6037 * 2) it's known negative, thus the unsigned bounds capture the
6038 * signed bounds
6039 * 3) the signed bounds cross zero, so they tell us nothing
6040 * about the result
6041 * If the value in dst_reg is known nonnegative, then again the
6042 * unsigned bounts capture the signed bounds.
6043 * Thus, in all cases it suffices to blow away our signed bounds
6044 * and rely on inferring new ones from the unsigned bounds and
6045 * var_off of the result.
6046 */
6047 dst_reg->s32_min_value = S32_MIN;
6048 dst_reg->s32_max_value = S32_MAX;
6049
6050 dst_reg->var_off = tnum_rshift(subreg, umin_val);
6051 dst_reg->u32_min_value >>= umax_val;
6052 dst_reg->u32_max_value >>= umin_val;
6053
6054 __mark_reg64_unbounded(dst_reg);
6055 __update_reg32_bounds(dst_reg);
6056}
6057
07cd2631
JF
6058static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg,
6059 struct bpf_reg_state *src_reg)
6060{
6061 u64 umax_val = src_reg->umax_value;
6062 u64 umin_val = src_reg->umin_value;
6063
6064 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
6065 * be negative, then either:
6066 * 1) src_reg might be zero, so the sign bit of the result is
6067 * unknown, so we lose our signed bounds
6068 * 2) it's known negative, thus the unsigned bounds capture the
6069 * signed bounds
6070 * 3) the signed bounds cross zero, so they tell us nothing
6071 * about the result
6072 * If the value in dst_reg is known nonnegative, then again the
6073 * unsigned bounts capture the signed bounds.
6074 * Thus, in all cases it suffices to blow away our signed bounds
6075 * and rely on inferring new ones from the unsigned bounds and
6076 * var_off of the result.
6077 */
6078 dst_reg->smin_value = S64_MIN;
6079 dst_reg->smax_value = S64_MAX;
6080 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
6081 dst_reg->umin_value >>= umax_val;
6082 dst_reg->umax_value >>= umin_val;
3f50f132
JF
6083
6084 /* Its not easy to operate on alu32 bounds here because it depends
6085 * on bits being shifted in. Take easy way out and mark unbounded
6086 * so we can recalculate later from tnum.
6087 */
6088 __mark_reg32_unbounded(dst_reg);
07cd2631
JF
6089 __update_reg_bounds(dst_reg);
6090}
6091
3f50f132
JF
6092static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg,
6093 struct bpf_reg_state *src_reg)
07cd2631 6094{
3f50f132 6095 u64 umin_val = src_reg->u32_min_value;
07cd2631
JF
6096
6097 /* Upon reaching here, src_known is true and
6098 * umax_val is equal to umin_val.
6099 */
3f50f132
JF
6100 dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val);
6101 dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val);
07cd2631 6102
3f50f132
JF
6103 dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32);
6104
6105 /* blow away the dst_reg umin_value/umax_value and rely on
6106 * dst_reg var_off to refine the result.
6107 */
6108 dst_reg->u32_min_value = 0;
6109 dst_reg->u32_max_value = U32_MAX;
6110
6111 __mark_reg64_unbounded(dst_reg);
6112 __update_reg32_bounds(dst_reg);
6113}
6114
6115static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg,
6116 struct bpf_reg_state *src_reg)
6117{
6118 u64 umin_val = src_reg->umin_value;
6119
6120 /* Upon reaching here, src_known is true and umax_val is equal
6121 * to umin_val.
6122 */
6123 dst_reg->smin_value >>= umin_val;
6124 dst_reg->smax_value >>= umin_val;
6125
6126 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64);
07cd2631
JF
6127
6128 /* blow away the dst_reg umin_value/umax_value and rely on
6129 * dst_reg var_off to refine the result.
6130 */
6131 dst_reg->umin_value = 0;
6132 dst_reg->umax_value = U64_MAX;
3f50f132
JF
6133
6134 /* Its not easy to operate on alu32 bounds here because it depends
6135 * on bits being shifted in from upper 32-bits. Take easy way out
6136 * and mark unbounded so we can recalculate later from tnum.
6137 */
6138 __mark_reg32_unbounded(dst_reg);
07cd2631
JF
6139 __update_reg_bounds(dst_reg);
6140}
6141
468f6eaf
JH
6142/* WARNING: This function does calculations on 64-bit values, but the actual
6143 * execution may occur on 32-bit values. Therefore, things like bitshifts
6144 * need extra checks in the 32-bit case.
6145 */
f1174f77
EC
6146static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
6147 struct bpf_insn *insn,
6148 struct bpf_reg_state *dst_reg,
6149 struct bpf_reg_state src_reg)
969bf05e 6150{
638f5b90 6151 struct bpf_reg_state *regs = cur_regs(env);
48461135 6152 u8 opcode = BPF_OP(insn->code);
b0b3fb67 6153 bool src_known;
b03c9f9f
EC
6154 s64 smin_val, smax_val;
6155 u64 umin_val, umax_val;
3f50f132
JF
6156 s32 s32_min_val, s32_max_val;
6157 u32 u32_min_val, u32_max_val;
468f6eaf 6158 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
d3bd7413
DB
6159 u32 dst = insn->dst_reg;
6160 int ret;
3f50f132 6161 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
b799207e 6162
b03c9f9f
EC
6163 smin_val = src_reg.smin_value;
6164 smax_val = src_reg.smax_value;
6165 umin_val = src_reg.umin_value;
6166 umax_val = src_reg.umax_value;
f23cc643 6167
3f50f132
JF
6168 s32_min_val = src_reg.s32_min_value;
6169 s32_max_val = src_reg.s32_max_value;
6170 u32_min_val = src_reg.u32_min_value;
6171 u32_max_val = src_reg.u32_max_value;
6172
6173 if (alu32) {
6174 src_known = tnum_subreg_is_const(src_reg.var_off);
3f50f132
JF
6175 if ((src_known &&
6176 (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) ||
6177 s32_min_val > s32_max_val || u32_min_val > u32_max_val) {
6178 /* Taint dst register if offset had invalid bounds
6179 * derived from e.g. dead branches.
6180 */
6181 __mark_reg_unknown(env, dst_reg);
6182 return 0;
6183 }
6184 } else {
6185 src_known = tnum_is_const(src_reg.var_off);
3f50f132
JF
6186 if ((src_known &&
6187 (smin_val != smax_val || umin_val != umax_val)) ||
6188 smin_val > smax_val || umin_val > umax_val) {
6189 /* Taint dst register if offset had invalid bounds
6190 * derived from e.g. dead branches.
6191 */
6192 __mark_reg_unknown(env, dst_reg);
6193 return 0;
6194 }
6f16101e
DB
6195 }
6196
bb7f0f98
AS
6197 if (!src_known &&
6198 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
f54c7898 6199 __mark_reg_unknown(env, dst_reg);
bb7f0f98
AS
6200 return 0;
6201 }
6202
3f50f132
JF
6203 /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops.
6204 * There are two classes of instructions: The first class we track both
6205 * alu32 and alu64 sign/unsigned bounds independently this provides the
6206 * greatest amount of precision when alu operations are mixed with jmp32
6207 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD,
6208 * and BPF_OR. This is possible because these ops have fairly easy to
6209 * understand and calculate behavior in both 32-bit and 64-bit alu ops.
6210 * See alu32 verifier tests for examples. The second class of
6211 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy
6212 * with regards to tracking sign/unsigned bounds because the bits may
6213 * cross subreg boundaries in the alu64 case. When this happens we mark
6214 * the reg unbounded in the subreg bound space and use the resulting
6215 * tnum to calculate an approximation of the sign/unsigned bounds.
6216 */
48461135
JB
6217 switch (opcode) {
6218 case BPF_ADD:
d3bd7413
DB
6219 ret = sanitize_val_alu(env, insn);
6220 if (ret < 0) {
6221 verbose(env, "R%d tried to add from different pointers or scalars\n", dst);
6222 return ret;
6223 }
3f50f132 6224 scalar32_min_max_add(dst_reg, &src_reg);
07cd2631 6225 scalar_min_max_add(dst_reg, &src_reg);
3f50f132 6226 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
48461135
JB
6227 break;
6228 case BPF_SUB:
d3bd7413
DB
6229 ret = sanitize_val_alu(env, insn);
6230 if (ret < 0) {
6231 verbose(env, "R%d tried to sub from different pointers or scalars\n", dst);
6232 return ret;
6233 }
3f50f132 6234 scalar32_min_max_sub(dst_reg, &src_reg);
07cd2631 6235 scalar_min_max_sub(dst_reg, &src_reg);
3f50f132 6236 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
48461135
JB
6237 break;
6238 case BPF_MUL:
3f50f132
JF
6239 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
6240 scalar32_min_max_mul(dst_reg, &src_reg);
07cd2631 6241 scalar_min_max_mul(dst_reg, &src_reg);
48461135
JB
6242 break;
6243 case BPF_AND:
3f50f132
JF
6244 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
6245 scalar32_min_max_and(dst_reg, &src_reg);
07cd2631 6246 scalar_min_max_and(dst_reg, &src_reg);
f1174f77
EC
6247 break;
6248 case BPF_OR:
3f50f132
JF
6249 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
6250 scalar32_min_max_or(dst_reg, &src_reg);
07cd2631 6251 scalar_min_max_or(dst_reg, &src_reg);
48461135 6252 break;
2921c90d
YS
6253 case BPF_XOR:
6254 dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off);
6255 scalar32_min_max_xor(dst_reg, &src_reg);
6256 scalar_min_max_xor(dst_reg, &src_reg);
6257 break;
48461135 6258 case BPF_LSH:
468f6eaf
JH
6259 if (umax_val >= insn_bitness) {
6260 /* Shifts greater than 31 or 63 are undefined.
6261 * This includes shifts by a negative number.
b03c9f9f 6262 */
61bd5218 6263 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77
EC
6264 break;
6265 }
3f50f132
JF
6266 if (alu32)
6267 scalar32_min_max_lsh(dst_reg, &src_reg);
6268 else
6269 scalar_min_max_lsh(dst_reg, &src_reg);
48461135
JB
6270 break;
6271 case BPF_RSH:
468f6eaf
JH
6272 if (umax_val >= insn_bitness) {
6273 /* Shifts greater than 31 or 63 are undefined.
6274 * This includes shifts by a negative number.
b03c9f9f 6275 */
61bd5218 6276 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77
EC
6277 break;
6278 }
3f50f132
JF
6279 if (alu32)
6280 scalar32_min_max_rsh(dst_reg, &src_reg);
6281 else
6282 scalar_min_max_rsh(dst_reg, &src_reg);
48461135 6283 break;
9cbe1f5a
YS
6284 case BPF_ARSH:
6285 if (umax_val >= insn_bitness) {
6286 /* Shifts greater than 31 or 63 are undefined.
6287 * This includes shifts by a negative number.
6288 */
6289 mark_reg_unknown(env, regs, insn->dst_reg);
6290 break;
6291 }
3f50f132
JF
6292 if (alu32)
6293 scalar32_min_max_arsh(dst_reg, &src_reg);
6294 else
6295 scalar_min_max_arsh(dst_reg, &src_reg);
9cbe1f5a 6296 break;
48461135 6297 default:
61bd5218 6298 mark_reg_unknown(env, regs, insn->dst_reg);
48461135
JB
6299 break;
6300 }
6301
3f50f132
JF
6302 /* ALU32 ops are zero extended into 64bit register */
6303 if (alu32)
6304 zext_32_to_64(dst_reg);
468f6eaf 6305
294f2fc6 6306 __update_reg_bounds(dst_reg);
b03c9f9f
EC
6307 __reg_deduce_bounds(dst_reg);
6308 __reg_bound_offset(dst_reg);
f1174f77
EC
6309 return 0;
6310}
6311
6312/* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
6313 * and var_off.
6314 */
6315static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
6316 struct bpf_insn *insn)
6317{
f4d7e40a
AS
6318 struct bpf_verifier_state *vstate = env->cur_state;
6319 struct bpf_func_state *state = vstate->frame[vstate->curframe];
6320 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
f1174f77
EC
6321 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
6322 u8 opcode = BPF_OP(insn->code);
b5dc0163 6323 int err;
f1174f77
EC
6324
6325 dst_reg = &regs[insn->dst_reg];
f1174f77
EC
6326 src_reg = NULL;
6327 if (dst_reg->type != SCALAR_VALUE)
6328 ptr_reg = dst_reg;
6329 if (BPF_SRC(insn->code) == BPF_X) {
6330 src_reg = &regs[insn->src_reg];
f1174f77
EC
6331 if (src_reg->type != SCALAR_VALUE) {
6332 if (dst_reg->type != SCALAR_VALUE) {
6333 /* Combining two pointers by any ALU op yields
82abbf8d
AS
6334 * an arbitrary scalar. Disallow all math except
6335 * pointer subtraction
f1174f77 6336 */
dd066823 6337 if (opcode == BPF_SUB && env->allow_ptr_leaks) {
82abbf8d
AS
6338 mark_reg_unknown(env, regs, insn->dst_reg);
6339 return 0;
f1174f77 6340 }
82abbf8d
AS
6341 verbose(env, "R%d pointer %s pointer prohibited\n",
6342 insn->dst_reg,
6343 bpf_alu_string[opcode >> 4]);
6344 return -EACCES;
f1174f77
EC
6345 } else {
6346 /* scalar += pointer
6347 * This is legal, but we have to reverse our
6348 * src/dest handling in computing the range
6349 */
b5dc0163
AS
6350 err = mark_chain_precision(env, insn->dst_reg);
6351 if (err)
6352 return err;
82abbf8d
AS
6353 return adjust_ptr_min_max_vals(env, insn,
6354 src_reg, dst_reg);
f1174f77
EC
6355 }
6356 } else if (ptr_reg) {
6357 /* pointer += scalar */
b5dc0163
AS
6358 err = mark_chain_precision(env, insn->src_reg);
6359 if (err)
6360 return err;
82abbf8d
AS
6361 return adjust_ptr_min_max_vals(env, insn,
6362 dst_reg, src_reg);
f1174f77
EC
6363 }
6364 } else {
6365 /* Pretend the src is a reg with a known value, since we only
6366 * need to be able to read from this state.
6367 */
6368 off_reg.type = SCALAR_VALUE;
b03c9f9f 6369 __mark_reg_known(&off_reg, insn->imm);
f1174f77 6370 src_reg = &off_reg;
82abbf8d
AS
6371 if (ptr_reg) /* pointer += K */
6372 return adjust_ptr_min_max_vals(env, insn,
6373 ptr_reg, src_reg);
f1174f77
EC
6374 }
6375
6376 /* Got here implies adding two SCALAR_VALUEs */
6377 if (WARN_ON_ONCE(ptr_reg)) {
f4d7e40a 6378 print_verifier_state(env, state);
61bd5218 6379 verbose(env, "verifier internal error: unexpected ptr_reg\n");
f1174f77
EC
6380 return -EINVAL;
6381 }
6382 if (WARN_ON(!src_reg)) {
f4d7e40a 6383 print_verifier_state(env, state);
61bd5218 6384 verbose(env, "verifier internal error: no src_reg\n");
f1174f77
EC
6385 return -EINVAL;
6386 }
6387 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
48461135
JB
6388}
6389
17a52670 6390/* check validity of 32-bit and 64-bit arithmetic operations */
58e2af8b 6391static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 6392{
638f5b90 6393 struct bpf_reg_state *regs = cur_regs(env);
17a52670
AS
6394 u8 opcode = BPF_OP(insn->code);
6395 int err;
6396
6397 if (opcode == BPF_END || opcode == BPF_NEG) {
6398 if (opcode == BPF_NEG) {
6399 if (BPF_SRC(insn->code) != 0 ||
6400 insn->src_reg != BPF_REG_0 ||
6401 insn->off != 0 || insn->imm != 0) {
61bd5218 6402 verbose(env, "BPF_NEG uses reserved fields\n");
17a52670
AS
6403 return -EINVAL;
6404 }
6405 } else {
6406 if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
e67b8a68
EC
6407 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
6408 BPF_CLASS(insn->code) == BPF_ALU64) {
61bd5218 6409 verbose(env, "BPF_END uses reserved fields\n");
17a52670
AS
6410 return -EINVAL;
6411 }
6412 }
6413
6414 /* check src operand */
dc503a8a 6415 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
6416 if (err)
6417 return err;
6418
1be7f75d 6419 if (is_pointer_value(env, insn->dst_reg)) {
61bd5218 6420 verbose(env, "R%d pointer arithmetic prohibited\n",
1be7f75d
AS
6421 insn->dst_reg);
6422 return -EACCES;
6423 }
6424
17a52670 6425 /* check dest operand */
dc503a8a 6426 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
6427 if (err)
6428 return err;
6429
6430 } else if (opcode == BPF_MOV) {
6431
6432 if (BPF_SRC(insn->code) == BPF_X) {
6433 if (insn->imm != 0 || insn->off != 0) {
61bd5218 6434 verbose(env, "BPF_MOV uses reserved fields\n");
17a52670
AS
6435 return -EINVAL;
6436 }
6437
6438 /* check src operand */
dc503a8a 6439 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
6440 if (err)
6441 return err;
6442 } else {
6443 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
61bd5218 6444 verbose(env, "BPF_MOV uses reserved fields\n");
17a52670
AS
6445 return -EINVAL;
6446 }
6447 }
6448
fbeb1603
AF
6449 /* check dest operand, mark as required later */
6450 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
17a52670
AS
6451 if (err)
6452 return err;
6453
6454 if (BPF_SRC(insn->code) == BPF_X) {
e434b8cd
JW
6455 struct bpf_reg_state *src_reg = regs + insn->src_reg;
6456 struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
6457
17a52670
AS
6458 if (BPF_CLASS(insn->code) == BPF_ALU64) {
6459 /* case: R1 = R2
6460 * copy register state to dest reg
6461 */
e434b8cd
JW
6462 *dst_reg = *src_reg;
6463 dst_reg->live |= REG_LIVE_WRITTEN;
5327ed3d 6464 dst_reg->subreg_def = DEF_NOT_SUBREG;
17a52670 6465 } else {
f1174f77 6466 /* R1 = (u32) R2 */
1be7f75d 6467 if (is_pointer_value(env, insn->src_reg)) {
61bd5218
JK
6468 verbose(env,
6469 "R%d partial copy of pointer\n",
1be7f75d
AS
6470 insn->src_reg);
6471 return -EACCES;
e434b8cd
JW
6472 } else if (src_reg->type == SCALAR_VALUE) {
6473 *dst_reg = *src_reg;
6474 dst_reg->live |= REG_LIVE_WRITTEN;
5327ed3d 6475 dst_reg->subreg_def = env->insn_idx + 1;
e434b8cd
JW
6476 } else {
6477 mark_reg_unknown(env, regs,
6478 insn->dst_reg);
1be7f75d 6479 }
3f50f132 6480 zext_32_to_64(dst_reg);
17a52670
AS
6481 }
6482 } else {
6483 /* case: R = imm
6484 * remember the value we stored into this reg
6485 */
fbeb1603
AF
6486 /* clear any state __mark_reg_known doesn't set */
6487 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77 6488 regs[insn->dst_reg].type = SCALAR_VALUE;
95a762e2
JH
6489 if (BPF_CLASS(insn->code) == BPF_ALU64) {
6490 __mark_reg_known(regs + insn->dst_reg,
6491 insn->imm);
6492 } else {
6493 __mark_reg_known(regs + insn->dst_reg,
6494 (u32)insn->imm);
6495 }
17a52670
AS
6496 }
6497
6498 } else if (opcode > BPF_END) {
61bd5218 6499 verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
17a52670
AS
6500 return -EINVAL;
6501
6502 } else { /* all other ALU ops: and, sub, xor, add, ... */
6503
17a52670
AS
6504 if (BPF_SRC(insn->code) == BPF_X) {
6505 if (insn->imm != 0 || insn->off != 0) {
61bd5218 6506 verbose(env, "BPF_ALU uses reserved fields\n");
17a52670
AS
6507 return -EINVAL;
6508 }
6509 /* check src1 operand */
dc503a8a 6510 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
6511 if (err)
6512 return err;
6513 } else {
6514 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
61bd5218 6515 verbose(env, "BPF_ALU uses reserved fields\n");
17a52670
AS
6516 return -EINVAL;
6517 }
6518 }
6519
6520 /* check src2 operand */
dc503a8a 6521 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
6522 if (err)
6523 return err;
6524
6525 if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
6526 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
61bd5218 6527 verbose(env, "div by zero\n");
17a52670
AS
6528 return -EINVAL;
6529 }
6530
229394e8
RV
6531 if ((opcode == BPF_LSH || opcode == BPF_RSH ||
6532 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
6533 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
6534
6535 if (insn->imm < 0 || insn->imm >= size) {
61bd5218 6536 verbose(env, "invalid shift %d\n", insn->imm);
229394e8
RV
6537 return -EINVAL;
6538 }
6539 }
6540
1a0dc1ac 6541 /* check dest operand */
dc503a8a 6542 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
1a0dc1ac
AS
6543 if (err)
6544 return err;
6545
f1174f77 6546 return adjust_reg_min_max_vals(env, insn);
17a52670
AS
6547 }
6548
6549 return 0;
6550}
6551
c6a9efa1
PC
6552static void __find_good_pkt_pointers(struct bpf_func_state *state,
6553 struct bpf_reg_state *dst_reg,
6554 enum bpf_reg_type type, u16 new_range)
6555{
6556 struct bpf_reg_state *reg;
6557 int i;
6558
6559 for (i = 0; i < MAX_BPF_REG; i++) {
6560 reg = &state->regs[i];
6561 if (reg->type == type && reg->id == dst_reg->id)
6562 /* keep the maximum range already checked */
6563 reg->range = max(reg->range, new_range);
6564 }
6565
6566 bpf_for_each_spilled_reg(i, state, reg) {
6567 if (!reg)
6568 continue;
6569 if (reg->type == type && reg->id == dst_reg->id)
6570 reg->range = max(reg->range, new_range);
6571 }
6572}
6573
f4d7e40a 6574static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
de8f3a83 6575 struct bpf_reg_state *dst_reg,
f8ddadc4 6576 enum bpf_reg_type type,
fb2a311a 6577 bool range_right_open)
969bf05e 6578{
fb2a311a 6579 u16 new_range;
c6a9efa1 6580 int i;
2d2be8ca 6581
fb2a311a
DB
6582 if (dst_reg->off < 0 ||
6583 (dst_reg->off == 0 && range_right_open))
f1174f77
EC
6584 /* This doesn't give us any range */
6585 return;
6586
b03c9f9f
EC
6587 if (dst_reg->umax_value > MAX_PACKET_OFF ||
6588 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
f1174f77
EC
6589 /* Risk of overflow. For instance, ptr + (1<<63) may be less
6590 * than pkt_end, but that's because it's also less than pkt.
6591 */
6592 return;
6593
fb2a311a
DB
6594 new_range = dst_reg->off;
6595 if (range_right_open)
6596 new_range--;
6597
6598 /* Examples for register markings:
2d2be8ca 6599 *
fb2a311a 6600 * pkt_data in dst register:
2d2be8ca
DB
6601 *
6602 * r2 = r3;
6603 * r2 += 8;
6604 * if (r2 > pkt_end) goto <handle exception>
6605 * <access okay>
6606 *
b4e432f1
DB
6607 * r2 = r3;
6608 * r2 += 8;
6609 * if (r2 < pkt_end) goto <access okay>
6610 * <handle exception>
6611 *
2d2be8ca
DB
6612 * Where:
6613 * r2 == dst_reg, pkt_end == src_reg
6614 * r2=pkt(id=n,off=8,r=0)
6615 * r3=pkt(id=n,off=0,r=0)
6616 *
fb2a311a 6617 * pkt_data in src register:
2d2be8ca
DB
6618 *
6619 * r2 = r3;
6620 * r2 += 8;
6621 * if (pkt_end >= r2) goto <access okay>
6622 * <handle exception>
6623 *
b4e432f1
DB
6624 * r2 = r3;
6625 * r2 += 8;
6626 * if (pkt_end <= r2) goto <handle exception>
6627 * <access okay>
6628 *
2d2be8ca
DB
6629 * Where:
6630 * pkt_end == dst_reg, r2 == src_reg
6631 * r2=pkt(id=n,off=8,r=0)
6632 * r3=pkt(id=n,off=0,r=0)
6633 *
6634 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
fb2a311a
DB
6635 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
6636 * and [r3, r3 + 8-1) respectively is safe to access depending on
6637 * the check.
969bf05e 6638 */
2d2be8ca 6639
f1174f77
EC
6640 /* If our ids match, then we must have the same max_value. And we
6641 * don't care about the other reg's fixed offset, since if it's too big
6642 * the range won't allow anything.
6643 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
6644 */
c6a9efa1
PC
6645 for (i = 0; i <= vstate->curframe; i++)
6646 __find_good_pkt_pointers(vstate->frame[i], dst_reg, type,
6647 new_range);
969bf05e
AS
6648}
6649
3f50f132 6650static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode)
4f7b3e82 6651{
3f50f132
JF
6652 struct tnum subreg = tnum_subreg(reg->var_off);
6653 s32 sval = (s32)val;
a72dafaf 6654
3f50f132
JF
6655 switch (opcode) {
6656 case BPF_JEQ:
6657 if (tnum_is_const(subreg))
6658 return !!tnum_equals_const(subreg, val);
6659 break;
6660 case BPF_JNE:
6661 if (tnum_is_const(subreg))
6662 return !tnum_equals_const(subreg, val);
6663 break;
6664 case BPF_JSET:
6665 if ((~subreg.mask & subreg.value) & val)
6666 return 1;
6667 if (!((subreg.mask | subreg.value) & val))
6668 return 0;
6669 break;
6670 case BPF_JGT:
6671 if (reg->u32_min_value > val)
6672 return 1;
6673 else if (reg->u32_max_value <= val)
6674 return 0;
6675 break;
6676 case BPF_JSGT:
6677 if (reg->s32_min_value > sval)
6678 return 1;
6679 else if (reg->s32_max_value < sval)
6680 return 0;
6681 break;
6682 case BPF_JLT:
6683 if (reg->u32_max_value < val)
6684 return 1;
6685 else if (reg->u32_min_value >= val)
6686 return 0;
6687 break;
6688 case BPF_JSLT:
6689 if (reg->s32_max_value < sval)
6690 return 1;
6691 else if (reg->s32_min_value >= sval)
6692 return 0;
6693 break;
6694 case BPF_JGE:
6695 if (reg->u32_min_value >= val)
6696 return 1;
6697 else if (reg->u32_max_value < val)
6698 return 0;
6699 break;
6700 case BPF_JSGE:
6701 if (reg->s32_min_value >= sval)
6702 return 1;
6703 else if (reg->s32_max_value < sval)
6704 return 0;
6705 break;
6706 case BPF_JLE:
6707 if (reg->u32_max_value <= val)
6708 return 1;
6709 else if (reg->u32_min_value > val)
6710 return 0;
6711 break;
6712 case BPF_JSLE:
6713 if (reg->s32_max_value <= sval)
6714 return 1;
6715 else if (reg->s32_min_value > sval)
6716 return 0;
6717 break;
6718 }
4f7b3e82 6719
3f50f132
JF
6720 return -1;
6721}
092ed096 6722
3f50f132
JF
6723
6724static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode)
6725{
6726 s64 sval = (s64)val;
a72dafaf 6727
4f7b3e82
AS
6728 switch (opcode) {
6729 case BPF_JEQ:
6730 if (tnum_is_const(reg->var_off))
6731 return !!tnum_equals_const(reg->var_off, val);
6732 break;
6733 case BPF_JNE:
6734 if (tnum_is_const(reg->var_off))
6735 return !tnum_equals_const(reg->var_off, val);
6736 break;
960ea056
JK
6737 case BPF_JSET:
6738 if ((~reg->var_off.mask & reg->var_off.value) & val)
6739 return 1;
6740 if (!((reg->var_off.mask | reg->var_off.value) & val))
6741 return 0;
6742 break;
4f7b3e82
AS
6743 case BPF_JGT:
6744 if (reg->umin_value > val)
6745 return 1;
6746 else if (reg->umax_value <= val)
6747 return 0;
6748 break;
6749 case BPF_JSGT:
a72dafaf 6750 if (reg->smin_value > sval)
4f7b3e82 6751 return 1;
a72dafaf 6752 else if (reg->smax_value < sval)
4f7b3e82
AS
6753 return 0;
6754 break;
6755 case BPF_JLT:
6756 if (reg->umax_value < val)
6757 return 1;
6758 else if (reg->umin_value >= val)
6759 return 0;
6760 break;
6761 case BPF_JSLT:
a72dafaf 6762 if (reg->smax_value < sval)
4f7b3e82 6763 return 1;
a72dafaf 6764 else if (reg->smin_value >= sval)
4f7b3e82
AS
6765 return 0;
6766 break;
6767 case BPF_JGE:
6768 if (reg->umin_value >= val)
6769 return 1;
6770 else if (reg->umax_value < val)
6771 return 0;
6772 break;
6773 case BPF_JSGE:
a72dafaf 6774 if (reg->smin_value >= sval)
4f7b3e82 6775 return 1;
a72dafaf 6776 else if (reg->smax_value < sval)
4f7b3e82
AS
6777 return 0;
6778 break;
6779 case BPF_JLE:
6780 if (reg->umax_value <= val)
6781 return 1;
6782 else if (reg->umin_value > val)
6783 return 0;
6784 break;
6785 case BPF_JSLE:
a72dafaf 6786 if (reg->smax_value <= sval)
4f7b3e82 6787 return 1;
a72dafaf 6788 else if (reg->smin_value > sval)
4f7b3e82
AS
6789 return 0;
6790 break;
6791 }
6792
6793 return -1;
6794}
6795
3f50f132
JF
6796/* compute branch direction of the expression "if (reg opcode val) goto target;"
6797 * and return:
6798 * 1 - branch will be taken and "goto target" will be executed
6799 * 0 - branch will not be taken and fall-through to next insn
6800 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value
6801 * range [0,10]
604dca5e 6802 */
3f50f132
JF
6803static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
6804 bool is_jmp32)
604dca5e 6805{
cac616db
JF
6806 if (__is_pointer_value(false, reg)) {
6807 if (!reg_type_not_null(reg->type))
6808 return -1;
6809
6810 /* If pointer is valid tests against zero will fail so we can
6811 * use this to direct branch taken.
6812 */
6813 if (val != 0)
6814 return -1;
6815
6816 switch (opcode) {
6817 case BPF_JEQ:
6818 return 0;
6819 case BPF_JNE:
6820 return 1;
6821 default:
6822 return -1;
6823 }
6824 }
604dca5e 6825
3f50f132
JF
6826 if (is_jmp32)
6827 return is_branch32_taken(reg, val, opcode);
6828 return is_branch64_taken(reg, val, opcode);
604dca5e
JH
6829}
6830
48461135
JB
6831/* Adjusts the register min/max values in the case that the dst_reg is the
6832 * variable register that we are working on, and src_reg is a constant or we're
6833 * simply doing a BPF_K check.
f1174f77 6834 * In JEQ/JNE cases we also adjust the var_off values.
48461135
JB
6835 */
6836static void reg_set_min_max(struct bpf_reg_state *true_reg,
3f50f132
JF
6837 struct bpf_reg_state *false_reg,
6838 u64 val, u32 val32,
092ed096 6839 u8 opcode, bool is_jmp32)
48461135 6840{
3f50f132
JF
6841 struct tnum false_32off = tnum_subreg(false_reg->var_off);
6842 struct tnum false_64off = false_reg->var_off;
6843 struct tnum true_32off = tnum_subreg(true_reg->var_off);
6844 struct tnum true_64off = true_reg->var_off;
6845 s64 sval = (s64)val;
6846 s32 sval32 = (s32)val32;
a72dafaf 6847
f1174f77
EC
6848 /* If the dst_reg is a pointer, we can't learn anything about its
6849 * variable offset from the compare (unless src_reg were a pointer into
6850 * the same object, but we don't bother with that.
6851 * Since false_reg and true_reg have the same type by construction, we
6852 * only need to check one of them for pointerness.
6853 */
6854 if (__is_pointer_value(false, false_reg))
6855 return;
4cabc5b1 6856
48461135
JB
6857 switch (opcode) {
6858 case BPF_JEQ:
48461135 6859 case BPF_JNE:
a72dafaf
JW
6860 {
6861 struct bpf_reg_state *reg =
6862 opcode == BPF_JEQ ? true_reg : false_reg;
6863
6864 /* For BPF_JEQ, if this is false we know nothing Jon Snow, but
6865 * if it is true we know the value for sure. Likewise for
6866 * BPF_JNE.
48461135 6867 */
3f50f132
JF
6868 if (is_jmp32)
6869 __mark_reg32_known(reg, val32);
6870 else
092ed096 6871 __mark_reg_known(reg, val);
48461135 6872 break;
a72dafaf 6873 }
960ea056 6874 case BPF_JSET:
3f50f132
JF
6875 if (is_jmp32) {
6876 false_32off = tnum_and(false_32off, tnum_const(~val32));
6877 if (is_power_of_2(val32))
6878 true_32off = tnum_or(true_32off,
6879 tnum_const(val32));
6880 } else {
6881 false_64off = tnum_and(false_64off, tnum_const(~val));
6882 if (is_power_of_2(val))
6883 true_64off = tnum_or(true_64off,
6884 tnum_const(val));
6885 }
960ea056 6886 break;
48461135 6887 case BPF_JGE:
a72dafaf
JW
6888 case BPF_JGT:
6889 {
3f50f132
JF
6890 if (is_jmp32) {
6891 u32 false_umax = opcode == BPF_JGT ? val32 : val32 - 1;
6892 u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32;
6893
6894 false_reg->u32_max_value = min(false_reg->u32_max_value,
6895 false_umax);
6896 true_reg->u32_min_value = max(true_reg->u32_min_value,
6897 true_umin);
6898 } else {
6899 u64 false_umax = opcode == BPF_JGT ? val : val - 1;
6900 u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
6901
6902 false_reg->umax_value = min(false_reg->umax_value, false_umax);
6903 true_reg->umin_value = max(true_reg->umin_value, true_umin);
6904 }
b03c9f9f 6905 break;
a72dafaf 6906 }
48461135 6907 case BPF_JSGE:
a72dafaf
JW
6908 case BPF_JSGT:
6909 {
3f50f132
JF
6910 if (is_jmp32) {
6911 s32 false_smax = opcode == BPF_JSGT ? sval32 : sval32 - 1;
6912 s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32;
a72dafaf 6913
3f50f132
JF
6914 false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax);
6915 true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin);
6916 } else {
6917 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1;
6918 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
6919
6920 false_reg->smax_value = min(false_reg->smax_value, false_smax);
6921 true_reg->smin_value = max(true_reg->smin_value, true_smin);
6922 }
48461135 6923 break;
a72dafaf 6924 }
b4e432f1 6925 case BPF_JLE:
a72dafaf
JW
6926 case BPF_JLT:
6927 {
3f50f132
JF
6928 if (is_jmp32) {
6929 u32 false_umin = opcode == BPF_JLT ? val32 : val32 + 1;
6930 u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32;
6931
6932 false_reg->u32_min_value = max(false_reg->u32_min_value,
6933 false_umin);
6934 true_reg->u32_max_value = min(true_reg->u32_max_value,
6935 true_umax);
6936 } else {
6937 u64 false_umin = opcode == BPF_JLT ? val : val + 1;
6938 u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
6939
6940 false_reg->umin_value = max(false_reg->umin_value, false_umin);
6941 true_reg->umax_value = min(true_reg->umax_value, true_umax);
6942 }
b4e432f1 6943 break;
a72dafaf 6944 }
b4e432f1 6945 case BPF_JSLE:
a72dafaf
JW
6946 case BPF_JSLT:
6947 {
3f50f132
JF
6948 if (is_jmp32) {
6949 s32 false_smin = opcode == BPF_JSLT ? sval32 : sval32 + 1;
6950 s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32;
a72dafaf 6951
3f50f132
JF
6952 false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin);
6953 true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax);
6954 } else {
6955 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1;
6956 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
6957
6958 false_reg->smin_value = max(false_reg->smin_value, false_smin);
6959 true_reg->smax_value = min(true_reg->smax_value, true_smax);
6960 }
b4e432f1 6961 break;
a72dafaf 6962 }
48461135 6963 default:
0fc31b10 6964 return;
48461135
JB
6965 }
6966
3f50f132
JF
6967 if (is_jmp32) {
6968 false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off),
6969 tnum_subreg(false_32off));
6970 true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off),
6971 tnum_subreg(true_32off));
6972 __reg_combine_32_into_64(false_reg);
6973 __reg_combine_32_into_64(true_reg);
6974 } else {
6975 false_reg->var_off = false_64off;
6976 true_reg->var_off = true_64off;
6977 __reg_combine_64_into_32(false_reg);
6978 __reg_combine_64_into_32(true_reg);
6979 }
48461135
JB
6980}
6981
f1174f77
EC
6982/* Same as above, but for the case that dst_reg holds a constant and src_reg is
6983 * the variable reg.
48461135
JB
6984 */
6985static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
3f50f132
JF
6986 struct bpf_reg_state *false_reg,
6987 u64 val, u32 val32,
092ed096 6988 u8 opcode, bool is_jmp32)
48461135 6989{
0fc31b10
JH
6990 /* How can we transform "a <op> b" into "b <op> a"? */
6991 static const u8 opcode_flip[16] = {
6992 /* these stay the same */
6993 [BPF_JEQ >> 4] = BPF_JEQ,
6994 [BPF_JNE >> 4] = BPF_JNE,
6995 [BPF_JSET >> 4] = BPF_JSET,
6996 /* these swap "lesser" and "greater" (L and G in the opcodes) */
6997 [BPF_JGE >> 4] = BPF_JLE,
6998 [BPF_JGT >> 4] = BPF_JLT,
6999 [BPF_JLE >> 4] = BPF_JGE,
7000 [BPF_JLT >> 4] = BPF_JGT,
7001 [BPF_JSGE >> 4] = BPF_JSLE,
7002 [BPF_JSGT >> 4] = BPF_JSLT,
7003 [BPF_JSLE >> 4] = BPF_JSGE,
7004 [BPF_JSLT >> 4] = BPF_JSGT
7005 };
7006 opcode = opcode_flip[opcode >> 4];
7007 /* This uses zero as "not present in table"; luckily the zero opcode,
7008 * BPF_JA, can't get here.
b03c9f9f 7009 */
0fc31b10 7010 if (opcode)
3f50f132 7011 reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32);
f1174f77
EC
7012}
7013
7014/* Regs are known to be equal, so intersect their min/max/var_off */
7015static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
7016 struct bpf_reg_state *dst_reg)
7017{
b03c9f9f
EC
7018 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
7019 dst_reg->umin_value);
7020 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
7021 dst_reg->umax_value);
7022 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
7023 dst_reg->smin_value);
7024 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
7025 dst_reg->smax_value);
f1174f77
EC
7026 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
7027 dst_reg->var_off);
b03c9f9f
EC
7028 /* We might have learned new bounds from the var_off. */
7029 __update_reg_bounds(src_reg);
7030 __update_reg_bounds(dst_reg);
7031 /* We might have learned something about the sign bit. */
7032 __reg_deduce_bounds(src_reg);
7033 __reg_deduce_bounds(dst_reg);
7034 /* We might have learned some bits from the bounds. */
7035 __reg_bound_offset(src_reg);
7036 __reg_bound_offset(dst_reg);
7037 /* Intersecting with the old var_off might have improved our bounds
7038 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
7039 * then new var_off is (0; 0x7f...fc) which improves our umax.
7040 */
7041 __update_reg_bounds(src_reg);
7042 __update_reg_bounds(dst_reg);
f1174f77
EC
7043}
7044
7045static void reg_combine_min_max(struct bpf_reg_state *true_src,
7046 struct bpf_reg_state *true_dst,
7047 struct bpf_reg_state *false_src,
7048 struct bpf_reg_state *false_dst,
7049 u8 opcode)
7050{
7051 switch (opcode) {
7052 case BPF_JEQ:
7053 __reg_combine_min_max(true_src, true_dst);
7054 break;
7055 case BPF_JNE:
7056 __reg_combine_min_max(false_src, false_dst);
b03c9f9f 7057 break;
4cabc5b1 7058 }
48461135
JB
7059}
7060
fd978bf7
JS
7061static void mark_ptr_or_null_reg(struct bpf_func_state *state,
7062 struct bpf_reg_state *reg, u32 id,
840b9615 7063 bool is_null)
57a09bf0 7064{
840b9615 7065 if (reg_type_may_be_null(reg->type) && reg->id == id) {
f1174f77
EC
7066 /* Old offset (both fixed and variable parts) should
7067 * have been known-zero, because we don't allow pointer
7068 * arithmetic on pointers that might be NULL.
7069 */
b03c9f9f
EC
7070 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
7071 !tnum_equals_const(reg->var_off, 0) ||
f1174f77 7072 reg->off)) {
b03c9f9f
EC
7073 __mark_reg_known_zero(reg);
7074 reg->off = 0;
f1174f77
EC
7075 }
7076 if (is_null) {
7077 reg->type = SCALAR_VALUE;
840b9615 7078 } else if (reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
64d85290
JS
7079 const struct bpf_map *map = reg->map_ptr;
7080
7081 if (map->inner_map_meta) {
840b9615 7082 reg->type = CONST_PTR_TO_MAP;
64d85290
JS
7083 reg->map_ptr = map->inner_map_meta;
7084 } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
fada7fdc 7085 reg->type = PTR_TO_XDP_SOCK;
64d85290
JS
7086 } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP ||
7087 map->map_type == BPF_MAP_TYPE_SOCKHASH) {
7088 reg->type = PTR_TO_SOCKET;
840b9615
JS
7089 } else {
7090 reg->type = PTR_TO_MAP_VALUE;
7091 }
c64b7983
JS
7092 } else if (reg->type == PTR_TO_SOCKET_OR_NULL) {
7093 reg->type = PTR_TO_SOCKET;
46f8bc92
MKL
7094 } else if (reg->type == PTR_TO_SOCK_COMMON_OR_NULL) {
7095 reg->type = PTR_TO_SOCK_COMMON;
655a51e5
MKL
7096 } else if (reg->type == PTR_TO_TCP_SOCK_OR_NULL) {
7097 reg->type = PTR_TO_TCP_SOCK;
b121b341
YS
7098 } else if (reg->type == PTR_TO_BTF_ID_OR_NULL) {
7099 reg->type = PTR_TO_BTF_ID;
457f4436
AN
7100 } else if (reg->type == PTR_TO_MEM_OR_NULL) {
7101 reg->type = PTR_TO_MEM;
afbf21dc
YS
7102 } else if (reg->type == PTR_TO_RDONLY_BUF_OR_NULL) {
7103 reg->type = PTR_TO_RDONLY_BUF;
7104 } else if (reg->type == PTR_TO_RDWR_BUF_OR_NULL) {
7105 reg->type = PTR_TO_RDWR_BUF;
56f668df 7106 }
1b986589
MKL
7107 if (is_null) {
7108 /* We don't need id and ref_obj_id from this point
7109 * onwards anymore, thus we should better reset it,
7110 * so that state pruning has chances to take effect.
7111 */
7112 reg->id = 0;
7113 reg->ref_obj_id = 0;
7114 } else if (!reg_may_point_to_spin_lock(reg)) {
7115 /* For not-NULL ptr, reg->ref_obj_id will be reset
7116 * in release_reg_references().
7117 *
7118 * reg->id is still used by spin_lock ptr. Other
7119 * than spin_lock ptr type, reg->id can be reset.
fd978bf7
JS
7120 */
7121 reg->id = 0;
56f668df 7122 }
57a09bf0
TG
7123 }
7124}
7125
c6a9efa1
PC
7126static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id,
7127 bool is_null)
7128{
7129 struct bpf_reg_state *reg;
7130 int i;
7131
7132 for (i = 0; i < MAX_BPF_REG; i++)
7133 mark_ptr_or_null_reg(state, &state->regs[i], id, is_null);
7134
7135 bpf_for_each_spilled_reg(i, state, reg) {
7136 if (!reg)
7137 continue;
7138 mark_ptr_or_null_reg(state, reg, id, is_null);
7139 }
7140}
7141
57a09bf0
TG
7142/* The logic is similar to find_good_pkt_pointers(), both could eventually
7143 * be folded together at some point.
7144 */
840b9615
JS
7145static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
7146 bool is_null)
57a09bf0 7147{
f4d7e40a 7148 struct bpf_func_state *state = vstate->frame[vstate->curframe];
c6a9efa1 7149 struct bpf_reg_state *regs = state->regs;
1b986589 7150 u32 ref_obj_id = regs[regno].ref_obj_id;
a08dd0da 7151 u32 id = regs[regno].id;
c6a9efa1 7152 int i;
57a09bf0 7153
1b986589
MKL
7154 if (ref_obj_id && ref_obj_id == id && is_null)
7155 /* regs[regno] is in the " == NULL" branch.
7156 * No one could have freed the reference state before
7157 * doing the NULL check.
7158 */
7159 WARN_ON_ONCE(release_reference_state(state, id));
fd978bf7 7160
c6a9efa1
PC
7161 for (i = 0; i <= vstate->curframe; i++)
7162 __mark_ptr_or_null_regs(vstate->frame[i], id, is_null);
57a09bf0
TG
7163}
7164
5beca081
DB
7165static bool try_match_pkt_pointers(const struct bpf_insn *insn,
7166 struct bpf_reg_state *dst_reg,
7167 struct bpf_reg_state *src_reg,
7168 struct bpf_verifier_state *this_branch,
7169 struct bpf_verifier_state *other_branch)
7170{
7171 if (BPF_SRC(insn->code) != BPF_X)
7172 return false;
7173
092ed096
JW
7174 /* Pointers are always 64-bit. */
7175 if (BPF_CLASS(insn->code) == BPF_JMP32)
7176 return false;
7177
5beca081
DB
7178 switch (BPF_OP(insn->code)) {
7179 case BPF_JGT:
7180 if ((dst_reg->type == PTR_TO_PACKET &&
7181 src_reg->type == PTR_TO_PACKET_END) ||
7182 (dst_reg->type == PTR_TO_PACKET_META &&
7183 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
7184 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */
7185 find_good_pkt_pointers(this_branch, dst_reg,
7186 dst_reg->type, false);
7187 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
7188 src_reg->type == PTR_TO_PACKET) ||
7189 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
7190 src_reg->type == PTR_TO_PACKET_META)) {
7191 /* pkt_end > pkt_data', pkt_data > pkt_meta' */
7192 find_good_pkt_pointers(other_branch, src_reg,
7193 src_reg->type, true);
7194 } else {
7195 return false;
7196 }
7197 break;
7198 case BPF_JLT:
7199 if ((dst_reg->type == PTR_TO_PACKET &&
7200 src_reg->type == PTR_TO_PACKET_END) ||
7201 (dst_reg->type == PTR_TO_PACKET_META &&
7202 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
7203 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */
7204 find_good_pkt_pointers(other_branch, dst_reg,
7205 dst_reg->type, true);
7206 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
7207 src_reg->type == PTR_TO_PACKET) ||
7208 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
7209 src_reg->type == PTR_TO_PACKET_META)) {
7210 /* pkt_end < pkt_data', pkt_data > pkt_meta' */
7211 find_good_pkt_pointers(this_branch, src_reg,
7212 src_reg->type, false);
7213 } else {
7214 return false;
7215 }
7216 break;
7217 case BPF_JGE:
7218 if ((dst_reg->type == PTR_TO_PACKET &&
7219 src_reg->type == PTR_TO_PACKET_END) ||
7220 (dst_reg->type == PTR_TO_PACKET_META &&
7221 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
7222 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
7223 find_good_pkt_pointers(this_branch, dst_reg,
7224 dst_reg->type, true);
7225 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
7226 src_reg->type == PTR_TO_PACKET) ||
7227 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
7228 src_reg->type == PTR_TO_PACKET_META)) {
7229 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
7230 find_good_pkt_pointers(other_branch, src_reg,
7231 src_reg->type, false);
7232 } else {
7233 return false;
7234 }
7235 break;
7236 case BPF_JLE:
7237 if ((dst_reg->type == PTR_TO_PACKET &&
7238 src_reg->type == PTR_TO_PACKET_END) ||
7239 (dst_reg->type == PTR_TO_PACKET_META &&
7240 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
7241 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
7242 find_good_pkt_pointers(other_branch, dst_reg,
7243 dst_reg->type, false);
7244 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
7245 src_reg->type == PTR_TO_PACKET) ||
7246 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
7247 src_reg->type == PTR_TO_PACKET_META)) {
7248 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
7249 find_good_pkt_pointers(this_branch, src_reg,
7250 src_reg->type, true);
7251 } else {
7252 return false;
7253 }
7254 break;
7255 default:
7256 return false;
7257 }
7258
7259 return true;
7260}
7261
58e2af8b 7262static int check_cond_jmp_op(struct bpf_verifier_env *env,
17a52670
AS
7263 struct bpf_insn *insn, int *insn_idx)
7264{
f4d7e40a
AS
7265 struct bpf_verifier_state *this_branch = env->cur_state;
7266 struct bpf_verifier_state *other_branch;
7267 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
fb8d251e 7268 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
17a52670 7269 u8 opcode = BPF_OP(insn->code);
092ed096 7270 bool is_jmp32;
fb8d251e 7271 int pred = -1;
17a52670
AS
7272 int err;
7273
092ed096
JW
7274 /* Only conditional jumps are expected to reach here. */
7275 if (opcode == BPF_JA || opcode > BPF_JSLE) {
7276 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
17a52670
AS
7277 return -EINVAL;
7278 }
7279
7280 if (BPF_SRC(insn->code) == BPF_X) {
7281 if (insn->imm != 0) {
092ed096 7282 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
17a52670
AS
7283 return -EINVAL;
7284 }
7285
7286 /* check src1 operand */
dc503a8a 7287 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
7288 if (err)
7289 return err;
1be7f75d
AS
7290
7291 if (is_pointer_value(env, insn->src_reg)) {
61bd5218 7292 verbose(env, "R%d pointer comparison prohibited\n",
1be7f75d
AS
7293 insn->src_reg);
7294 return -EACCES;
7295 }
fb8d251e 7296 src_reg = &regs[insn->src_reg];
17a52670
AS
7297 } else {
7298 if (insn->src_reg != BPF_REG_0) {
092ed096 7299 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
17a52670
AS
7300 return -EINVAL;
7301 }
7302 }
7303
7304 /* check src2 operand */
dc503a8a 7305 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
7306 if (err)
7307 return err;
7308
1a0dc1ac 7309 dst_reg = &regs[insn->dst_reg];
092ed096 7310 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1a0dc1ac 7311
3f50f132
JF
7312 if (BPF_SRC(insn->code) == BPF_K) {
7313 pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32);
7314 } else if (src_reg->type == SCALAR_VALUE &&
7315 is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) {
7316 pred = is_branch_taken(dst_reg,
7317 tnum_subreg(src_reg->var_off).value,
7318 opcode,
7319 is_jmp32);
7320 } else if (src_reg->type == SCALAR_VALUE &&
7321 !is_jmp32 && tnum_is_const(src_reg->var_off)) {
7322 pred = is_branch_taken(dst_reg,
7323 src_reg->var_off.value,
7324 opcode,
7325 is_jmp32);
7326 }
7327
b5dc0163 7328 if (pred >= 0) {
cac616db
JF
7329 /* If we get here with a dst_reg pointer type it is because
7330 * above is_branch_taken() special cased the 0 comparison.
7331 */
7332 if (!__is_pointer_value(false, dst_reg))
7333 err = mark_chain_precision(env, insn->dst_reg);
b5dc0163
AS
7334 if (BPF_SRC(insn->code) == BPF_X && !err)
7335 err = mark_chain_precision(env, insn->src_reg);
7336 if (err)
7337 return err;
7338 }
fb8d251e
AS
7339 if (pred == 1) {
7340 /* only follow the goto, ignore fall-through */
7341 *insn_idx += insn->off;
7342 return 0;
7343 } else if (pred == 0) {
7344 /* only follow fall-through branch, since
7345 * that's where the program will go
7346 */
7347 return 0;
17a52670
AS
7348 }
7349
979d63d5
DB
7350 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
7351 false);
17a52670
AS
7352 if (!other_branch)
7353 return -EFAULT;
f4d7e40a 7354 other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
17a52670 7355
48461135
JB
7356 /* detect if we are comparing against a constant value so we can adjust
7357 * our min/max values for our dst register.
f1174f77
EC
7358 * this is only legit if both are scalars (or pointers to the same
7359 * object, I suppose, but we don't support that right now), because
7360 * otherwise the different base pointers mean the offsets aren't
7361 * comparable.
48461135
JB
7362 */
7363 if (BPF_SRC(insn->code) == BPF_X) {
092ed096 7364 struct bpf_reg_state *src_reg = &regs[insn->src_reg];
092ed096 7365
f1174f77 7366 if (dst_reg->type == SCALAR_VALUE &&
092ed096
JW
7367 src_reg->type == SCALAR_VALUE) {
7368 if (tnum_is_const(src_reg->var_off) ||
3f50f132
JF
7369 (is_jmp32 &&
7370 tnum_is_const(tnum_subreg(src_reg->var_off))))
f4d7e40a 7371 reg_set_min_max(&other_branch_regs[insn->dst_reg],
092ed096 7372 dst_reg,
3f50f132
JF
7373 src_reg->var_off.value,
7374 tnum_subreg(src_reg->var_off).value,
092ed096
JW
7375 opcode, is_jmp32);
7376 else if (tnum_is_const(dst_reg->var_off) ||
3f50f132
JF
7377 (is_jmp32 &&
7378 tnum_is_const(tnum_subreg(dst_reg->var_off))))
f4d7e40a 7379 reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
092ed096 7380 src_reg,
3f50f132
JF
7381 dst_reg->var_off.value,
7382 tnum_subreg(dst_reg->var_off).value,
092ed096
JW
7383 opcode, is_jmp32);
7384 else if (!is_jmp32 &&
7385 (opcode == BPF_JEQ || opcode == BPF_JNE))
f1174f77 7386 /* Comparing for equality, we can combine knowledge */
f4d7e40a
AS
7387 reg_combine_min_max(&other_branch_regs[insn->src_reg],
7388 &other_branch_regs[insn->dst_reg],
092ed096 7389 src_reg, dst_reg, opcode);
f1174f77
EC
7390 }
7391 } else if (dst_reg->type == SCALAR_VALUE) {
f4d7e40a 7392 reg_set_min_max(&other_branch_regs[insn->dst_reg],
3f50f132
JF
7393 dst_reg, insn->imm, (u32)insn->imm,
7394 opcode, is_jmp32);
48461135
JB
7395 }
7396
092ed096
JW
7397 /* detect if R == 0 where R is returned from bpf_map_lookup_elem().
7398 * NOTE: these optimizations below are related with pointer comparison
7399 * which will never be JMP32.
7400 */
7401 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
1a0dc1ac 7402 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
840b9615
JS
7403 reg_type_may_be_null(dst_reg->type)) {
7404 /* Mark all identical registers in each branch as either
57a09bf0
TG
7405 * safe or unknown depending R == 0 or R != 0 conditional.
7406 */
840b9615
JS
7407 mark_ptr_or_null_regs(this_branch, insn->dst_reg,
7408 opcode == BPF_JNE);
7409 mark_ptr_or_null_regs(other_branch, insn->dst_reg,
7410 opcode == BPF_JEQ);
5beca081
DB
7411 } else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
7412 this_branch, other_branch) &&
7413 is_pointer_value(env, insn->dst_reg)) {
61bd5218
JK
7414 verbose(env, "R%d pointer comparison prohibited\n",
7415 insn->dst_reg);
1be7f75d 7416 return -EACCES;
17a52670 7417 }
06ee7115 7418 if (env->log.level & BPF_LOG_LEVEL)
f4d7e40a 7419 print_verifier_state(env, this_branch->frame[this_branch->curframe]);
17a52670
AS
7420 return 0;
7421}
7422
17a52670 7423/* verify BPF_LD_IMM64 instruction */
58e2af8b 7424static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 7425{
d8eca5bb 7426 struct bpf_insn_aux_data *aux = cur_aux(env);
638f5b90 7427 struct bpf_reg_state *regs = cur_regs(env);
d8eca5bb 7428 struct bpf_map *map;
17a52670
AS
7429 int err;
7430
7431 if (BPF_SIZE(insn->code) != BPF_DW) {
61bd5218 7432 verbose(env, "invalid BPF_LD_IMM insn\n");
17a52670
AS
7433 return -EINVAL;
7434 }
7435 if (insn->off != 0) {
61bd5218 7436 verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
17a52670
AS
7437 return -EINVAL;
7438 }
7439
dc503a8a 7440 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
7441 if (err)
7442 return err;
7443
6b173873 7444 if (insn->src_reg == 0) {
6b173873
JK
7445 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
7446
f1174f77 7447 regs[insn->dst_reg].type = SCALAR_VALUE;
b03c9f9f 7448 __mark_reg_known(&regs[insn->dst_reg], imm);
17a52670 7449 return 0;
6b173873 7450 }
17a52670 7451
d8eca5bb
DB
7452 map = env->used_maps[aux->map_index];
7453 mark_reg_known_zero(env, regs, insn->dst_reg);
7454 regs[insn->dst_reg].map_ptr = map;
7455
7456 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE) {
7457 regs[insn->dst_reg].type = PTR_TO_MAP_VALUE;
7458 regs[insn->dst_reg].off = aux->map_off;
7459 if (map_value_has_spin_lock(map))
7460 regs[insn->dst_reg].id = ++env->id_gen;
7461 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
7462 regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
7463 } else {
7464 verbose(env, "bpf verifier is misconfigured\n");
7465 return -EINVAL;
7466 }
17a52670 7467
17a52670
AS
7468 return 0;
7469}
7470
96be4325
DB
7471static bool may_access_skb(enum bpf_prog_type type)
7472{
7473 switch (type) {
7474 case BPF_PROG_TYPE_SOCKET_FILTER:
7475 case BPF_PROG_TYPE_SCHED_CLS:
94caee8c 7476 case BPF_PROG_TYPE_SCHED_ACT:
96be4325
DB
7477 return true;
7478 default:
7479 return false;
7480 }
7481}
7482
ddd872bc
AS
7483/* verify safety of LD_ABS|LD_IND instructions:
7484 * - they can only appear in the programs where ctx == skb
7485 * - since they are wrappers of function calls, they scratch R1-R5 registers,
7486 * preserve R6-R9, and store return value into R0
7487 *
7488 * Implicit input:
7489 * ctx == skb == R6 == CTX
7490 *
7491 * Explicit input:
7492 * SRC == any register
7493 * IMM == 32-bit immediate
7494 *
7495 * Output:
7496 * R0 - 8/16/32-bit skb data converted to cpu endianness
7497 */
58e2af8b 7498static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
ddd872bc 7499{
638f5b90 7500 struct bpf_reg_state *regs = cur_regs(env);
6d4f151a 7501 static const int ctx_reg = BPF_REG_6;
ddd872bc 7502 u8 mode = BPF_MODE(insn->code);
ddd872bc
AS
7503 int i, err;
7504
7e40781c 7505 if (!may_access_skb(resolve_prog_type(env->prog))) {
61bd5218 7506 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
ddd872bc
AS
7507 return -EINVAL;
7508 }
7509
e0cea7ce
DB
7510 if (!env->ops->gen_ld_abs) {
7511 verbose(env, "bpf verifier is misconfigured\n");
7512 return -EINVAL;
7513 }
7514
ddd872bc 7515 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
d82bccc6 7516 BPF_SIZE(insn->code) == BPF_DW ||
ddd872bc 7517 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
61bd5218 7518 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
ddd872bc
AS
7519 return -EINVAL;
7520 }
7521
7522 /* check whether implicit source operand (register R6) is readable */
6d4f151a 7523 err = check_reg_arg(env, ctx_reg, SRC_OP);
ddd872bc
AS
7524 if (err)
7525 return err;
7526
fd978bf7
JS
7527 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
7528 * gen_ld_abs() may terminate the program at runtime, leading to
7529 * reference leak.
7530 */
7531 err = check_reference_leak(env);
7532 if (err) {
7533 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
7534 return err;
7535 }
7536
d83525ca
AS
7537 if (env->cur_state->active_spin_lock) {
7538 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
7539 return -EINVAL;
7540 }
7541
6d4f151a 7542 if (regs[ctx_reg].type != PTR_TO_CTX) {
61bd5218
JK
7543 verbose(env,
7544 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
ddd872bc
AS
7545 return -EINVAL;
7546 }
7547
7548 if (mode == BPF_IND) {
7549 /* check explicit source operand */
dc503a8a 7550 err = check_reg_arg(env, insn->src_reg, SRC_OP);
ddd872bc
AS
7551 if (err)
7552 return err;
7553 }
7554
6d4f151a
DB
7555 err = check_ctx_reg(env, &regs[ctx_reg], ctx_reg);
7556 if (err < 0)
7557 return err;
7558
ddd872bc 7559 /* reset caller saved regs to unreadable */
dc503a8a 7560 for (i = 0; i < CALLER_SAVED_REGS; i++) {
61bd5218 7561 mark_reg_not_init(env, regs, caller_saved[i]);
dc503a8a
EC
7562 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
7563 }
ddd872bc
AS
7564
7565 /* mark destination R0 register as readable, since it contains
dc503a8a
EC
7566 * the value fetched from the packet.
7567 * Already marked as written above.
ddd872bc 7568 */
61bd5218 7569 mark_reg_unknown(env, regs, BPF_REG_0);
5327ed3d
JW
7570 /* ld_abs load up to 32-bit skb data. */
7571 regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
ddd872bc
AS
7572 return 0;
7573}
7574
390ee7e2
AS
7575static int check_return_code(struct bpf_verifier_env *env)
7576{
5cf1e914 7577 struct tnum enforce_attach_type_range = tnum_unknown;
27ae7997 7578 const struct bpf_prog *prog = env->prog;
390ee7e2
AS
7579 struct bpf_reg_state *reg;
7580 struct tnum range = tnum_range(0, 1);
7e40781c 7581 enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
27ae7997
MKL
7582 int err;
7583
9e4e01df 7584 /* LSM and struct_ops func-ptr's return type could be "void" */
7e40781c
UP
7585 if ((prog_type == BPF_PROG_TYPE_STRUCT_OPS ||
7586 prog_type == BPF_PROG_TYPE_LSM) &&
27ae7997
MKL
7587 !prog->aux->attach_func_proto->type)
7588 return 0;
7589
7590 /* eBPF calling convetion is such that R0 is used
7591 * to return the value from eBPF program.
7592 * Make sure that it's readable at this time
7593 * of bpf_exit, which means that program wrote
7594 * something into it earlier
7595 */
7596 err = check_reg_arg(env, BPF_REG_0, SRC_OP);
7597 if (err)
7598 return err;
7599
7600 if (is_pointer_value(env, BPF_REG_0)) {
7601 verbose(env, "R0 leaks addr as return value\n");
7602 return -EACCES;
7603 }
390ee7e2 7604
7e40781c 7605 switch (prog_type) {
983695fa
DB
7606 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
7607 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
1b66d253
DB
7608 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG ||
7609 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME ||
7610 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME ||
7611 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME ||
7612 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME)
983695fa 7613 range = tnum_range(1, 1);
ed4ed404 7614 break;
390ee7e2 7615 case BPF_PROG_TYPE_CGROUP_SKB:
5cf1e914 7616 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
7617 range = tnum_range(0, 3);
7618 enforce_attach_type_range = tnum_range(2, 3);
7619 }
ed4ed404 7620 break;
390ee7e2
AS
7621 case BPF_PROG_TYPE_CGROUP_SOCK:
7622 case BPF_PROG_TYPE_SOCK_OPS:
ebc614f6 7623 case BPF_PROG_TYPE_CGROUP_DEVICE:
7b146ceb 7624 case BPF_PROG_TYPE_CGROUP_SYSCTL:
0d01da6a 7625 case BPF_PROG_TYPE_CGROUP_SOCKOPT:
390ee7e2 7626 break;
15ab09bd
AS
7627 case BPF_PROG_TYPE_RAW_TRACEPOINT:
7628 if (!env->prog->aux->attach_btf_id)
7629 return 0;
7630 range = tnum_const(0);
7631 break;
15d83c4d 7632 case BPF_PROG_TYPE_TRACING:
e92888c7
YS
7633 switch (env->prog->expected_attach_type) {
7634 case BPF_TRACE_FENTRY:
7635 case BPF_TRACE_FEXIT:
7636 range = tnum_const(0);
7637 break;
7638 case BPF_TRACE_RAW_TP:
7639 case BPF_MODIFY_RETURN:
15d83c4d 7640 return 0;
2ec0616e
DB
7641 case BPF_TRACE_ITER:
7642 break;
e92888c7
YS
7643 default:
7644 return -ENOTSUPP;
7645 }
15d83c4d 7646 break;
e9ddbb77
JS
7647 case BPF_PROG_TYPE_SK_LOOKUP:
7648 range = tnum_range(SK_DROP, SK_PASS);
7649 break;
e92888c7
YS
7650 case BPF_PROG_TYPE_EXT:
7651 /* freplace program can return anything as its return value
7652 * depends on the to-be-replaced kernel func or bpf program.
7653 */
390ee7e2
AS
7654 default:
7655 return 0;
7656 }
7657
638f5b90 7658 reg = cur_regs(env) + BPF_REG_0;
390ee7e2 7659 if (reg->type != SCALAR_VALUE) {
61bd5218 7660 verbose(env, "At program exit the register R0 is not a known value (%s)\n",
390ee7e2
AS
7661 reg_type_str[reg->type]);
7662 return -EINVAL;
7663 }
7664
7665 if (!tnum_in(range, reg->var_off)) {
5cf1e914 7666 char tn_buf[48];
7667
61bd5218 7668 verbose(env, "At program exit the register R0 ");
390ee7e2 7669 if (!tnum_is_unknown(reg->var_off)) {
390ee7e2 7670 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 7671 verbose(env, "has value %s", tn_buf);
390ee7e2 7672 } else {
61bd5218 7673 verbose(env, "has unknown scalar value");
390ee7e2 7674 }
5cf1e914 7675 tnum_strn(tn_buf, sizeof(tn_buf), range);
983695fa 7676 verbose(env, " should have been in %s\n", tn_buf);
390ee7e2
AS
7677 return -EINVAL;
7678 }
5cf1e914 7679
7680 if (!tnum_is_unknown(enforce_attach_type_range) &&
7681 tnum_in(enforce_attach_type_range, reg->var_off))
7682 env->prog->enforce_expected_attach_type = 1;
390ee7e2
AS
7683 return 0;
7684}
7685
475fb78f
AS
7686/* non-recursive DFS pseudo code
7687 * 1 procedure DFS-iterative(G,v):
7688 * 2 label v as discovered
7689 * 3 let S be a stack
7690 * 4 S.push(v)
7691 * 5 while S is not empty
7692 * 6 t <- S.pop()
7693 * 7 if t is what we're looking for:
7694 * 8 return t
7695 * 9 for all edges e in G.adjacentEdges(t) do
7696 * 10 if edge e is already labelled
7697 * 11 continue with the next edge
7698 * 12 w <- G.adjacentVertex(t,e)
7699 * 13 if vertex w is not discovered and not explored
7700 * 14 label e as tree-edge
7701 * 15 label w as discovered
7702 * 16 S.push(w)
7703 * 17 continue at 5
7704 * 18 else if vertex w is discovered
7705 * 19 label e as back-edge
7706 * 20 else
7707 * 21 // vertex w is explored
7708 * 22 label e as forward- or cross-edge
7709 * 23 label t as explored
7710 * 24 S.pop()
7711 *
7712 * convention:
7713 * 0x10 - discovered
7714 * 0x11 - discovered and fall-through edge labelled
7715 * 0x12 - discovered and fall-through and branch edges labelled
7716 * 0x20 - explored
7717 */
7718
7719enum {
7720 DISCOVERED = 0x10,
7721 EXPLORED = 0x20,
7722 FALLTHROUGH = 1,
7723 BRANCH = 2,
7724};
7725
dc2a4ebc
AS
7726static u32 state_htab_size(struct bpf_verifier_env *env)
7727{
7728 return env->prog->len;
7729}
7730
5d839021
AS
7731static struct bpf_verifier_state_list **explored_state(
7732 struct bpf_verifier_env *env,
7733 int idx)
7734{
dc2a4ebc
AS
7735 struct bpf_verifier_state *cur = env->cur_state;
7736 struct bpf_func_state *state = cur->frame[cur->curframe];
7737
7738 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
5d839021
AS
7739}
7740
7741static void init_explored_state(struct bpf_verifier_env *env, int idx)
7742{
a8f500af 7743 env->insn_aux_data[idx].prune_point = true;
5d839021 7744}
f1bca824 7745
475fb78f
AS
7746/* t, w, e - match pseudo-code above:
7747 * t - index of current instruction
7748 * w - next instruction
7749 * e - edge
7750 */
2589726d
AS
7751static int push_insn(int t, int w, int e, struct bpf_verifier_env *env,
7752 bool loop_ok)
475fb78f 7753{
7df737e9
AS
7754 int *insn_stack = env->cfg.insn_stack;
7755 int *insn_state = env->cfg.insn_state;
7756
475fb78f
AS
7757 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
7758 return 0;
7759
7760 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
7761 return 0;
7762
7763 if (w < 0 || w >= env->prog->len) {
d9762e84 7764 verbose_linfo(env, t, "%d: ", t);
61bd5218 7765 verbose(env, "jump out of range from insn %d to %d\n", t, w);
475fb78f
AS
7766 return -EINVAL;
7767 }
7768
f1bca824
AS
7769 if (e == BRANCH)
7770 /* mark branch target for state pruning */
5d839021 7771 init_explored_state(env, w);
f1bca824 7772
475fb78f
AS
7773 if (insn_state[w] == 0) {
7774 /* tree-edge */
7775 insn_state[t] = DISCOVERED | e;
7776 insn_state[w] = DISCOVERED;
7df737e9 7777 if (env->cfg.cur_stack >= env->prog->len)
475fb78f 7778 return -E2BIG;
7df737e9 7779 insn_stack[env->cfg.cur_stack++] = w;
475fb78f
AS
7780 return 1;
7781 } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
2c78ee89 7782 if (loop_ok && env->bpf_capable)
2589726d 7783 return 0;
d9762e84
MKL
7784 verbose_linfo(env, t, "%d: ", t);
7785 verbose_linfo(env, w, "%d: ", w);
61bd5218 7786 verbose(env, "back-edge from insn %d to %d\n", t, w);
475fb78f
AS
7787 return -EINVAL;
7788 } else if (insn_state[w] == EXPLORED) {
7789 /* forward- or cross-edge */
7790 insn_state[t] = DISCOVERED | e;
7791 } else {
61bd5218 7792 verbose(env, "insn state internal bug\n");
475fb78f
AS
7793 return -EFAULT;
7794 }
7795 return 0;
7796}
7797
7798/* non-recursive depth-first-search to detect loops in BPF program
7799 * loop == back-edge in directed graph
7800 */
58e2af8b 7801static int check_cfg(struct bpf_verifier_env *env)
475fb78f
AS
7802{
7803 struct bpf_insn *insns = env->prog->insnsi;
7804 int insn_cnt = env->prog->len;
7df737e9 7805 int *insn_stack, *insn_state;
475fb78f
AS
7806 int ret = 0;
7807 int i, t;
7808
7df737e9 7809 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
475fb78f
AS
7810 if (!insn_state)
7811 return -ENOMEM;
7812
7df737e9 7813 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
475fb78f 7814 if (!insn_stack) {
71dde681 7815 kvfree(insn_state);
475fb78f
AS
7816 return -ENOMEM;
7817 }
7818
7819 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
7820 insn_stack[0] = 0; /* 0 is the first instruction */
7df737e9 7821 env->cfg.cur_stack = 1;
475fb78f
AS
7822
7823peek_stack:
7df737e9 7824 if (env->cfg.cur_stack == 0)
475fb78f 7825 goto check_state;
7df737e9 7826 t = insn_stack[env->cfg.cur_stack - 1];
475fb78f 7827
092ed096
JW
7828 if (BPF_CLASS(insns[t].code) == BPF_JMP ||
7829 BPF_CLASS(insns[t].code) == BPF_JMP32) {
475fb78f
AS
7830 u8 opcode = BPF_OP(insns[t].code);
7831
7832 if (opcode == BPF_EXIT) {
7833 goto mark_explored;
7834 } else if (opcode == BPF_CALL) {
2589726d 7835 ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
475fb78f
AS
7836 if (ret == 1)
7837 goto peek_stack;
7838 else if (ret < 0)
7839 goto err_free;
07016151 7840 if (t + 1 < insn_cnt)
5d839021 7841 init_explored_state(env, t + 1);
cc8b0b92 7842 if (insns[t].src_reg == BPF_PSEUDO_CALL) {
5d839021 7843 init_explored_state(env, t);
2589726d
AS
7844 ret = push_insn(t, t + insns[t].imm + 1, BRANCH,
7845 env, false);
cc8b0b92
AS
7846 if (ret == 1)
7847 goto peek_stack;
7848 else if (ret < 0)
7849 goto err_free;
7850 }
475fb78f
AS
7851 } else if (opcode == BPF_JA) {
7852 if (BPF_SRC(insns[t].code) != BPF_K) {
7853 ret = -EINVAL;
7854 goto err_free;
7855 }
7856 /* unconditional jump with single edge */
7857 ret = push_insn(t, t + insns[t].off + 1,
2589726d 7858 FALLTHROUGH, env, true);
475fb78f
AS
7859 if (ret == 1)
7860 goto peek_stack;
7861 else if (ret < 0)
7862 goto err_free;
b5dc0163
AS
7863 /* unconditional jmp is not a good pruning point,
7864 * but it's marked, since backtracking needs
7865 * to record jmp history in is_state_visited().
7866 */
7867 init_explored_state(env, t + insns[t].off + 1);
f1bca824
AS
7868 /* tell verifier to check for equivalent states
7869 * after every call and jump
7870 */
c3de6317 7871 if (t + 1 < insn_cnt)
5d839021 7872 init_explored_state(env, t + 1);
475fb78f
AS
7873 } else {
7874 /* conditional jump with two edges */
5d839021 7875 init_explored_state(env, t);
2589726d 7876 ret = push_insn(t, t + 1, FALLTHROUGH, env, true);
475fb78f
AS
7877 if (ret == 1)
7878 goto peek_stack;
7879 else if (ret < 0)
7880 goto err_free;
7881
2589726d 7882 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env, true);
475fb78f
AS
7883 if (ret == 1)
7884 goto peek_stack;
7885 else if (ret < 0)
7886 goto err_free;
7887 }
7888 } else {
7889 /* all other non-branch instructions with single
7890 * fall-through edge
7891 */
2589726d 7892 ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
475fb78f
AS
7893 if (ret == 1)
7894 goto peek_stack;
7895 else if (ret < 0)
7896 goto err_free;
7897 }
7898
7899mark_explored:
7900 insn_state[t] = EXPLORED;
7df737e9 7901 if (env->cfg.cur_stack-- <= 0) {
61bd5218 7902 verbose(env, "pop stack internal bug\n");
475fb78f
AS
7903 ret = -EFAULT;
7904 goto err_free;
7905 }
7906 goto peek_stack;
7907
7908check_state:
7909 for (i = 0; i < insn_cnt; i++) {
7910 if (insn_state[i] != EXPLORED) {
61bd5218 7911 verbose(env, "unreachable insn %d\n", i);
475fb78f
AS
7912 ret = -EINVAL;
7913 goto err_free;
7914 }
7915 }
7916 ret = 0; /* cfg looks good */
7917
7918err_free:
71dde681
AS
7919 kvfree(insn_state);
7920 kvfree(insn_stack);
7df737e9 7921 env->cfg.insn_state = env->cfg.insn_stack = NULL;
475fb78f
AS
7922 return ret;
7923}
7924
09b28d76
AS
7925static int check_abnormal_return(struct bpf_verifier_env *env)
7926{
7927 int i;
7928
7929 for (i = 1; i < env->subprog_cnt; i++) {
7930 if (env->subprog_info[i].has_ld_abs) {
7931 verbose(env, "LD_ABS is not allowed in subprogs without BTF\n");
7932 return -EINVAL;
7933 }
7934 if (env->subprog_info[i].has_tail_call) {
7935 verbose(env, "tail_call is not allowed in subprogs without BTF\n");
7936 return -EINVAL;
7937 }
7938 }
7939 return 0;
7940}
7941
838e9690
YS
7942/* The minimum supported BTF func info size */
7943#define MIN_BPF_FUNCINFO_SIZE 8
7944#define MAX_FUNCINFO_REC_SIZE 252
7945
c454a46b
MKL
7946static int check_btf_func(struct bpf_verifier_env *env,
7947 const union bpf_attr *attr,
7948 union bpf_attr __user *uattr)
838e9690 7949{
09b28d76 7950 const struct btf_type *type, *func_proto, *ret_type;
d0b2818e 7951 u32 i, nfuncs, urec_size, min_size;
838e9690 7952 u32 krec_size = sizeof(struct bpf_func_info);
c454a46b 7953 struct bpf_func_info *krecord;
8c1b6e69 7954 struct bpf_func_info_aux *info_aux = NULL;
c454a46b
MKL
7955 struct bpf_prog *prog;
7956 const struct btf *btf;
838e9690 7957 void __user *urecord;
d0b2818e 7958 u32 prev_offset = 0;
09b28d76 7959 bool scalar_return;
e7ed83d6 7960 int ret = -ENOMEM;
838e9690
YS
7961
7962 nfuncs = attr->func_info_cnt;
09b28d76
AS
7963 if (!nfuncs) {
7964 if (check_abnormal_return(env))
7965 return -EINVAL;
838e9690 7966 return 0;
09b28d76 7967 }
838e9690
YS
7968
7969 if (nfuncs != env->subprog_cnt) {
7970 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
7971 return -EINVAL;
7972 }
7973
7974 urec_size = attr->func_info_rec_size;
7975 if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
7976 urec_size > MAX_FUNCINFO_REC_SIZE ||
7977 urec_size % sizeof(u32)) {
7978 verbose(env, "invalid func info rec size %u\n", urec_size);
7979 return -EINVAL;
7980 }
7981
c454a46b
MKL
7982 prog = env->prog;
7983 btf = prog->aux->btf;
838e9690
YS
7984
7985 urecord = u64_to_user_ptr(attr->func_info);
7986 min_size = min_t(u32, krec_size, urec_size);
7987
ba64e7d8 7988 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
c454a46b
MKL
7989 if (!krecord)
7990 return -ENOMEM;
8c1b6e69
AS
7991 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN);
7992 if (!info_aux)
7993 goto err_free;
ba64e7d8 7994
838e9690
YS
7995 for (i = 0; i < nfuncs; i++) {
7996 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
7997 if (ret) {
7998 if (ret == -E2BIG) {
7999 verbose(env, "nonzero tailing record in func info");
8000 /* set the size kernel expects so loader can zero
8001 * out the rest of the record.
8002 */
8003 if (put_user(min_size, &uattr->func_info_rec_size))
8004 ret = -EFAULT;
8005 }
c454a46b 8006 goto err_free;
838e9690
YS
8007 }
8008
ba64e7d8 8009 if (copy_from_user(&krecord[i], urecord, min_size)) {
838e9690 8010 ret = -EFAULT;
c454a46b 8011 goto err_free;
838e9690
YS
8012 }
8013
d30d42e0 8014 /* check insn_off */
09b28d76 8015 ret = -EINVAL;
838e9690 8016 if (i == 0) {
d30d42e0 8017 if (krecord[i].insn_off) {
838e9690 8018 verbose(env,
d30d42e0
MKL
8019 "nonzero insn_off %u for the first func info record",
8020 krecord[i].insn_off);
c454a46b 8021 goto err_free;
838e9690 8022 }
d30d42e0 8023 } else if (krecord[i].insn_off <= prev_offset) {
838e9690
YS
8024 verbose(env,
8025 "same or smaller insn offset (%u) than previous func info record (%u)",
d30d42e0 8026 krecord[i].insn_off, prev_offset);
c454a46b 8027 goto err_free;
838e9690
YS
8028 }
8029
d30d42e0 8030 if (env->subprog_info[i].start != krecord[i].insn_off) {
838e9690 8031 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
c454a46b 8032 goto err_free;
838e9690
YS
8033 }
8034
8035 /* check type_id */
ba64e7d8 8036 type = btf_type_by_id(btf, krecord[i].type_id);
51c39bb1 8037 if (!type || !btf_type_is_func(type)) {
838e9690 8038 verbose(env, "invalid type id %d in func info",
ba64e7d8 8039 krecord[i].type_id);
c454a46b 8040 goto err_free;
838e9690 8041 }
51c39bb1 8042 info_aux[i].linkage = BTF_INFO_VLEN(type->info);
09b28d76
AS
8043
8044 func_proto = btf_type_by_id(btf, type->type);
8045 if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto)))
8046 /* btf_func_check() already verified it during BTF load */
8047 goto err_free;
8048 ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL);
8049 scalar_return =
8050 btf_type_is_small_int(ret_type) || btf_type_is_enum(ret_type);
8051 if (i && !scalar_return && env->subprog_info[i].has_ld_abs) {
8052 verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n");
8053 goto err_free;
8054 }
8055 if (i && !scalar_return && env->subprog_info[i].has_tail_call) {
8056 verbose(env, "tail_call is only allowed in functions that return 'int'.\n");
8057 goto err_free;
8058 }
8059
d30d42e0 8060 prev_offset = krecord[i].insn_off;
838e9690
YS
8061 urecord += urec_size;
8062 }
8063
ba64e7d8
YS
8064 prog->aux->func_info = krecord;
8065 prog->aux->func_info_cnt = nfuncs;
8c1b6e69 8066 prog->aux->func_info_aux = info_aux;
838e9690
YS
8067 return 0;
8068
c454a46b 8069err_free:
ba64e7d8 8070 kvfree(krecord);
8c1b6e69 8071 kfree(info_aux);
838e9690
YS
8072 return ret;
8073}
8074
ba64e7d8
YS
8075static void adjust_btf_func(struct bpf_verifier_env *env)
8076{
8c1b6e69 8077 struct bpf_prog_aux *aux = env->prog->aux;
ba64e7d8
YS
8078 int i;
8079
8c1b6e69 8080 if (!aux->func_info)
ba64e7d8
YS
8081 return;
8082
8083 for (i = 0; i < env->subprog_cnt; i++)
8c1b6e69 8084 aux->func_info[i].insn_off = env->subprog_info[i].start;
ba64e7d8
YS
8085}
8086
c454a46b
MKL
8087#define MIN_BPF_LINEINFO_SIZE (offsetof(struct bpf_line_info, line_col) + \
8088 sizeof(((struct bpf_line_info *)(0))->line_col))
8089#define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE
8090
8091static int check_btf_line(struct bpf_verifier_env *env,
8092 const union bpf_attr *attr,
8093 union bpf_attr __user *uattr)
8094{
8095 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
8096 struct bpf_subprog_info *sub;
8097 struct bpf_line_info *linfo;
8098 struct bpf_prog *prog;
8099 const struct btf *btf;
8100 void __user *ulinfo;
8101 int err;
8102
8103 nr_linfo = attr->line_info_cnt;
8104 if (!nr_linfo)
8105 return 0;
8106
8107 rec_size = attr->line_info_rec_size;
8108 if (rec_size < MIN_BPF_LINEINFO_SIZE ||
8109 rec_size > MAX_LINEINFO_REC_SIZE ||
8110 rec_size & (sizeof(u32) - 1))
8111 return -EINVAL;
8112
8113 /* Need to zero it in case the userspace may
8114 * pass in a smaller bpf_line_info object.
8115 */
8116 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
8117 GFP_KERNEL | __GFP_NOWARN);
8118 if (!linfo)
8119 return -ENOMEM;
8120
8121 prog = env->prog;
8122 btf = prog->aux->btf;
8123
8124 s = 0;
8125 sub = env->subprog_info;
8126 ulinfo = u64_to_user_ptr(attr->line_info);
8127 expected_size = sizeof(struct bpf_line_info);
8128 ncopy = min_t(u32, expected_size, rec_size);
8129 for (i = 0; i < nr_linfo; i++) {
8130 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
8131 if (err) {
8132 if (err == -E2BIG) {
8133 verbose(env, "nonzero tailing record in line_info");
8134 if (put_user(expected_size,
8135 &uattr->line_info_rec_size))
8136 err = -EFAULT;
8137 }
8138 goto err_free;
8139 }
8140
8141 if (copy_from_user(&linfo[i], ulinfo, ncopy)) {
8142 err = -EFAULT;
8143 goto err_free;
8144 }
8145
8146 /*
8147 * Check insn_off to ensure
8148 * 1) strictly increasing AND
8149 * 2) bounded by prog->len
8150 *
8151 * The linfo[0].insn_off == 0 check logically falls into
8152 * the later "missing bpf_line_info for func..." case
8153 * because the first linfo[0].insn_off must be the
8154 * first sub also and the first sub must have
8155 * subprog_info[0].start == 0.
8156 */
8157 if ((i && linfo[i].insn_off <= prev_offset) ||
8158 linfo[i].insn_off >= prog->len) {
8159 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
8160 i, linfo[i].insn_off, prev_offset,
8161 prog->len);
8162 err = -EINVAL;
8163 goto err_free;
8164 }
8165
fdbaa0be
MKL
8166 if (!prog->insnsi[linfo[i].insn_off].code) {
8167 verbose(env,
8168 "Invalid insn code at line_info[%u].insn_off\n",
8169 i);
8170 err = -EINVAL;
8171 goto err_free;
8172 }
8173
23127b33
MKL
8174 if (!btf_name_by_offset(btf, linfo[i].line_off) ||
8175 !btf_name_by_offset(btf, linfo[i].file_name_off)) {
c454a46b
MKL
8176 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
8177 err = -EINVAL;
8178 goto err_free;
8179 }
8180
8181 if (s != env->subprog_cnt) {
8182 if (linfo[i].insn_off == sub[s].start) {
8183 sub[s].linfo_idx = i;
8184 s++;
8185 } else if (sub[s].start < linfo[i].insn_off) {
8186 verbose(env, "missing bpf_line_info for func#%u\n", s);
8187 err = -EINVAL;
8188 goto err_free;
8189 }
8190 }
8191
8192 prev_offset = linfo[i].insn_off;
8193 ulinfo += rec_size;
8194 }
8195
8196 if (s != env->subprog_cnt) {
8197 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
8198 env->subprog_cnt - s, s);
8199 err = -EINVAL;
8200 goto err_free;
8201 }
8202
8203 prog->aux->linfo = linfo;
8204 prog->aux->nr_linfo = nr_linfo;
8205
8206 return 0;
8207
8208err_free:
8209 kvfree(linfo);
8210 return err;
8211}
8212
8213static int check_btf_info(struct bpf_verifier_env *env,
8214 const union bpf_attr *attr,
8215 union bpf_attr __user *uattr)
8216{
8217 struct btf *btf;
8218 int err;
8219
09b28d76
AS
8220 if (!attr->func_info_cnt && !attr->line_info_cnt) {
8221 if (check_abnormal_return(env))
8222 return -EINVAL;
c454a46b 8223 return 0;
09b28d76 8224 }
c454a46b
MKL
8225
8226 btf = btf_get_by_fd(attr->prog_btf_fd);
8227 if (IS_ERR(btf))
8228 return PTR_ERR(btf);
8229 env->prog->aux->btf = btf;
8230
8231 err = check_btf_func(env, attr, uattr);
8232 if (err)
8233 return err;
8234
8235 err = check_btf_line(env, attr, uattr);
8236 if (err)
8237 return err;
8238
8239 return 0;
ba64e7d8
YS
8240}
8241
f1174f77
EC
8242/* check %cur's range satisfies %old's */
8243static bool range_within(struct bpf_reg_state *old,
8244 struct bpf_reg_state *cur)
8245{
b03c9f9f
EC
8246 return old->umin_value <= cur->umin_value &&
8247 old->umax_value >= cur->umax_value &&
8248 old->smin_value <= cur->smin_value &&
8249 old->smax_value >= cur->smax_value;
f1174f77
EC
8250}
8251
8252/* Maximum number of register states that can exist at once */
8253#define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
8254struct idpair {
8255 u32 old;
8256 u32 cur;
8257};
8258
8259/* If in the old state two registers had the same id, then they need to have
8260 * the same id in the new state as well. But that id could be different from
8261 * the old state, so we need to track the mapping from old to new ids.
8262 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
8263 * regs with old id 5 must also have new id 9 for the new state to be safe. But
8264 * regs with a different old id could still have new id 9, we don't care about
8265 * that.
8266 * So we look through our idmap to see if this old id has been seen before. If
8267 * so, we require the new id to match; otherwise, we add the id pair to the map.
969bf05e 8268 */
f1174f77 8269static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
969bf05e 8270{
f1174f77 8271 unsigned int i;
969bf05e 8272
f1174f77
EC
8273 for (i = 0; i < ID_MAP_SIZE; i++) {
8274 if (!idmap[i].old) {
8275 /* Reached an empty slot; haven't seen this id before */
8276 idmap[i].old = old_id;
8277 idmap[i].cur = cur_id;
8278 return true;
8279 }
8280 if (idmap[i].old == old_id)
8281 return idmap[i].cur == cur_id;
8282 }
8283 /* We ran out of idmap slots, which should be impossible */
8284 WARN_ON_ONCE(1);
8285 return false;
8286}
8287
9242b5f5
AS
8288static void clean_func_state(struct bpf_verifier_env *env,
8289 struct bpf_func_state *st)
8290{
8291 enum bpf_reg_liveness live;
8292 int i, j;
8293
8294 for (i = 0; i < BPF_REG_FP; i++) {
8295 live = st->regs[i].live;
8296 /* liveness must not touch this register anymore */
8297 st->regs[i].live |= REG_LIVE_DONE;
8298 if (!(live & REG_LIVE_READ))
8299 /* since the register is unused, clear its state
8300 * to make further comparison simpler
8301 */
f54c7898 8302 __mark_reg_not_init(env, &st->regs[i]);
9242b5f5
AS
8303 }
8304
8305 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
8306 live = st->stack[i].spilled_ptr.live;
8307 /* liveness must not touch this stack slot anymore */
8308 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
8309 if (!(live & REG_LIVE_READ)) {
f54c7898 8310 __mark_reg_not_init(env, &st->stack[i].spilled_ptr);
9242b5f5
AS
8311 for (j = 0; j < BPF_REG_SIZE; j++)
8312 st->stack[i].slot_type[j] = STACK_INVALID;
8313 }
8314 }
8315}
8316
8317static void clean_verifier_state(struct bpf_verifier_env *env,
8318 struct bpf_verifier_state *st)
8319{
8320 int i;
8321
8322 if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
8323 /* all regs in this state in all frames were already marked */
8324 return;
8325
8326 for (i = 0; i <= st->curframe; i++)
8327 clean_func_state(env, st->frame[i]);
8328}
8329
8330/* the parentage chains form a tree.
8331 * the verifier states are added to state lists at given insn and
8332 * pushed into state stack for future exploration.
8333 * when the verifier reaches bpf_exit insn some of the verifer states
8334 * stored in the state lists have their final liveness state already,
8335 * but a lot of states will get revised from liveness point of view when
8336 * the verifier explores other branches.
8337 * Example:
8338 * 1: r0 = 1
8339 * 2: if r1 == 100 goto pc+1
8340 * 3: r0 = 2
8341 * 4: exit
8342 * when the verifier reaches exit insn the register r0 in the state list of
8343 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
8344 * of insn 2 and goes exploring further. At the insn 4 it will walk the
8345 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
8346 *
8347 * Since the verifier pushes the branch states as it sees them while exploring
8348 * the program the condition of walking the branch instruction for the second
8349 * time means that all states below this branch were already explored and
8350 * their final liveness markes are already propagated.
8351 * Hence when the verifier completes the search of state list in is_state_visited()
8352 * we can call this clean_live_states() function to mark all liveness states
8353 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
8354 * will not be used.
8355 * This function also clears the registers and stack for states that !READ
8356 * to simplify state merging.
8357 *
8358 * Important note here that walking the same branch instruction in the callee
8359 * doesn't meant that the states are DONE. The verifier has to compare
8360 * the callsites
8361 */
8362static void clean_live_states(struct bpf_verifier_env *env, int insn,
8363 struct bpf_verifier_state *cur)
8364{
8365 struct bpf_verifier_state_list *sl;
8366 int i;
8367
5d839021 8368 sl = *explored_state(env, insn);
a8f500af 8369 while (sl) {
2589726d
AS
8370 if (sl->state.branches)
8371 goto next;
dc2a4ebc
AS
8372 if (sl->state.insn_idx != insn ||
8373 sl->state.curframe != cur->curframe)
9242b5f5
AS
8374 goto next;
8375 for (i = 0; i <= cur->curframe; i++)
8376 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite)
8377 goto next;
8378 clean_verifier_state(env, &sl->state);
8379next:
8380 sl = sl->next;
8381 }
8382}
8383
f1174f77 8384/* Returns true if (rold safe implies rcur safe) */
1b688a19
EC
8385static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
8386 struct idpair *idmap)
f1174f77 8387{
f4d7e40a
AS
8388 bool equal;
8389
dc503a8a
EC
8390 if (!(rold->live & REG_LIVE_READ))
8391 /* explored state didn't use this */
8392 return true;
8393
679c782d 8394 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0;
f4d7e40a
AS
8395
8396 if (rold->type == PTR_TO_STACK)
8397 /* two stack pointers are equal only if they're pointing to
8398 * the same stack frame, since fp-8 in foo != fp-8 in bar
8399 */
8400 return equal && rold->frameno == rcur->frameno;
8401
8402 if (equal)
969bf05e
AS
8403 return true;
8404
f1174f77
EC
8405 if (rold->type == NOT_INIT)
8406 /* explored state can't have used this */
969bf05e 8407 return true;
f1174f77
EC
8408 if (rcur->type == NOT_INIT)
8409 return false;
8410 switch (rold->type) {
8411 case SCALAR_VALUE:
8412 if (rcur->type == SCALAR_VALUE) {
b5dc0163
AS
8413 if (!rold->precise && !rcur->precise)
8414 return true;
f1174f77
EC
8415 /* new val must satisfy old val knowledge */
8416 return range_within(rold, rcur) &&
8417 tnum_in(rold->var_off, rcur->var_off);
8418 } else {
179d1c56
JH
8419 /* We're trying to use a pointer in place of a scalar.
8420 * Even if the scalar was unbounded, this could lead to
8421 * pointer leaks because scalars are allowed to leak
8422 * while pointers are not. We could make this safe in
8423 * special cases if root is calling us, but it's
8424 * probably not worth the hassle.
f1174f77 8425 */
179d1c56 8426 return false;
f1174f77
EC
8427 }
8428 case PTR_TO_MAP_VALUE:
1b688a19
EC
8429 /* If the new min/max/var_off satisfy the old ones and
8430 * everything else matches, we are OK.
d83525ca
AS
8431 * 'id' is not compared, since it's only used for maps with
8432 * bpf_spin_lock inside map element and in such cases if
8433 * the rest of the prog is valid for one map element then
8434 * it's valid for all map elements regardless of the key
8435 * used in bpf_map_lookup()
1b688a19
EC
8436 */
8437 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
8438 range_within(rold, rcur) &&
8439 tnum_in(rold->var_off, rcur->var_off);
f1174f77
EC
8440 case PTR_TO_MAP_VALUE_OR_NULL:
8441 /* a PTR_TO_MAP_VALUE could be safe to use as a
8442 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
8443 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
8444 * checked, doing so could have affected others with the same
8445 * id, and we can't check for that because we lost the id when
8446 * we converted to a PTR_TO_MAP_VALUE.
8447 */
8448 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
8449 return false;
8450 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
8451 return false;
8452 /* Check our ids match any regs they're supposed to */
8453 return check_ids(rold->id, rcur->id, idmap);
de8f3a83 8454 case PTR_TO_PACKET_META:
f1174f77 8455 case PTR_TO_PACKET:
de8f3a83 8456 if (rcur->type != rold->type)
f1174f77
EC
8457 return false;
8458 /* We must have at least as much range as the old ptr
8459 * did, so that any accesses which were safe before are
8460 * still safe. This is true even if old range < old off,
8461 * since someone could have accessed through (ptr - k), or
8462 * even done ptr -= k in a register, to get a safe access.
8463 */
8464 if (rold->range > rcur->range)
8465 return false;
8466 /* If the offsets don't match, we can't trust our alignment;
8467 * nor can we be sure that we won't fall out of range.
8468 */
8469 if (rold->off != rcur->off)
8470 return false;
8471 /* id relations must be preserved */
8472 if (rold->id && !check_ids(rold->id, rcur->id, idmap))
8473 return false;
8474 /* new val must satisfy old val knowledge */
8475 return range_within(rold, rcur) &&
8476 tnum_in(rold->var_off, rcur->var_off);
8477 case PTR_TO_CTX:
8478 case CONST_PTR_TO_MAP:
f1174f77 8479 case PTR_TO_PACKET_END:
d58e468b 8480 case PTR_TO_FLOW_KEYS:
c64b7983
JS
8481 case PTR_TO_SOCKET:
8482 case PTR_TO_SOCKET_OR_NULL:
46f8bc92
MKL
8483 case PTR_TO_SOCK_COMMON:
8484 case PTR_TO_SOCK_COMMON_OR_NULL:
655a51e5
MKL
8485 case PTR_TO_TCP_SOCK:
8486 case PTR_TO_TCP_SOCK_OR_NULL:
fada7fdc 8487 case PTR_TO_XDP_SOCK:
f1174f77
EC
8488 /* Only valid matches are exact, which memcmp() above
8489 * would have accepted
8490 */
8491 default:
8492 /* Don't know what's going on, just say it's not safe */
8493 return false;
8494 }
969bf05e 8495
f1174f77
EC
8496 /* Shouldn't get here; if we do, say it's not safe */
8497 WARN_ON_ONCE(1);
969bf05e
AS
8498 return false;
8499}
8500
f4d7e40a
AS
8501static bool stacksafe(struct bpf_func_state *old,
8502 struct bpf_func_state *cur,
638f5b90
AS
8503 struct idpair *idmap)
8504{
8505 int i, spi;
8506
638f5b90
AS
8507 /* walk slots of the explored stack and ignore any additional
8508 * slots in the current stack, since explored(safe) state
8509 * didn't use them
8510 */
8511 for (i = 0; i < old->allocated_stack; i++) {
8512 spi = i / BPF_REG_SIZE;
8513
b233920c
AS
8514 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
8515 i += BPF_REG_SIZE - 1;
cc2b14d5 8516 /* explored state didn't use this */
fd05e57b 8517 continue;
b233920c 8518 }
cc2b14d5 8519
638f5b90
AS
8520 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
8521 continue;
19e2dbb7
AS
8522
8523 /* explored stack has more populated slots than current stack
8524 * and these slots were used
8525 */
8526 if (i >= cur->allocated_stack)
8527 return false;
8528
cc2b14d5
AS
8529 /* if old state was safe with misc data in the stack
8530 * it will be safe with zero-initialized stack.
8531 * The opposite is not true
8532 */
8533 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
8534 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
8535 continue;
638f5b90
AS
8536 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
8537 cur->stack[spi].slot_type[i % BPF_REG_SIZE])
8538 /* Ex: old explored (safe) state has STACK_SPILL in
b8c1a309 8539 * this stack slot, but current has STACK_MISC ->
638f5b90
AS
8540 * this verifier states are not equivalent,
8541 * return false to continue verification of this path
8542 */
8543 return false;
8544 if (i % BPF_REG_SIZE)
8545 continue;
8546 if (old->stack[spi].slot_type[0] != STACK_SPILL)
8547 continue;
8548 if (!regsafe(&old->stack[spi].spilled_ptr,
8549 &cur->stack[spi].spilled_ptr,
8550 idmap))
8551 /* when explored and current stack slot are both storing
8552 * spilled registers, check that stored pointers types
8553 * are the same as well.
8554 * Ex: explored safe path could have stored
8555 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
8556 * but current path has stored:
8557 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
8558 * such verifier states are not equivalent.
8559 * return false to continue verification of this path
8560 */
8561 return false;
8562 }
8563 return true;
8564}
8565
fd978bf7
JS
8566static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur)
8567{
8568 if (old->acquired_refs != cur->acquired_refs)
8569 return false;
8570 return !memcmp(old->refs, cur->refs,
8571 sizeof(*old->refs) * old->acquired_refs);
8572}
8573
f1bca824
AS
8574/* compare two verifier states
8575 *
8576 * all states stored in state_list are known to be valid, since
8577 * verifier reached 'bpf_exit' instruction through them
8578 *
8579 * this function is called when verifier exploring different branches of
8580 * execution popped from the state stack. If it sees an old state that has
8581 * more strict register state and more strict stack state then this execution
8582 * branch doesn't need to be explored further, since verifier already
8583 * concluded that more strict state leads to valid finish.
8584 *
8585 * Therefore two states are equivalent if register state is more conservative
8586 * and explored stack state is more conservative than the current one.
8587 * Example:
8588 * explored current
8589 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
8590 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
8591 *
8592 * In other words if current stack state (one being explored) has more
8593 * valid slots than old one that already passed validation, it means
8594 * the verifier can stop exploring and conclude that current state is valid too
8595 *
8596 * Similarly with registers. If explored state has register type as invalid
8597 * whereas register type in current state is meaningful, it means that
8598 * the current state will reach 'bpf_exit' instruction safely
8599 */
f4d7e40a
AS
8600static bool func_states_equal(struct bpf_func_state *old,
8601 struct bpf_func_state *cur)
f1bca824 8602{
f1174f77
EC
8603 struct idpair *idmap;
8604 bool ret = false;
f1bca824
AS
8605 int i;
8606
f1174f77
EC
8607 idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
8608 /* If we failed to allocate the idmap, just say it's not safe */
8609 if (!idmap)
1a0dc1ac 8610 return false;
f1174f77
EC
8611
8612 for (i = 0; i < MAX_BPF_REG; i++) {
1b688a19 8613 if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
f1174f77 8614 goto out_free;
f1bca824
AS
8615 }
8616
638f5b90
AS
8617 if (!stacksafe(old, cur, idmap))
8618 goto out_free;
fd978bf7
JS
8619
8620 if (!refsafe(old, cur))
8621 goto out_free;
f1174f77
EC
8622 ret = true;
8623out_free:
8624 kfree(idmap);
8625 return ret;
f1bca824
AS
8626}
8627
f4d7e40a
AS
8628static bool states_equal(struct bpf_verifier_env *env,
8629 struct bpf_verifier_state *old,
8630 struct bpf_verifier_state *cur)
8631{
8632 int i;
8633
8634 if (old->curframe != cur->curframe)
8635 return false;
8636
979d63d5
DB
8637 /* Verification state from speculative execution simulation
8638 * must never prune a non-speculative execution one.
8639 */
8640 if (old->speculative && !cur->speculative)
8641 return false;
8642
d83525ca
AS
8643 if (old->active_spin_lock != cur->active_spin_lock)
8644 return false;
8645
f4d7e40a
AS
8646 /* for states to be equal callsites have to be the same
8647 * and all frame states need to be equivalent
8648 */
8649 for (i = 0; i <= old->curframe; i++) {
8650 if (old->frame[i]->callsite != cur->frame[i]->callsite)
8651 return false;
8652 if (!func_states_equal(old->frame[i], cur->frame[i]))
8653 return false;
8654 }
8655 return true;
8656}
8657
5327ed3d
JW
8658/* Return 0 if no propagation happened. Return negative error code if error
8659 * happened. Otherwise, return the propagated bit.
8660 */
55e7f3b5
JW
8661static int propagate_liveness_reg(struct bpf_verifier_env *env,
8662 struct bpf_reg_state *reg,
8663 struct bpf_reg_state *parent_reg)
8664{
5327ed3d
JW
8665 u8 parent_flag = parent_reg->live & REG_LIVE_READ;
8666 u8 flag = reg->live & REG_LIVE_READ;
55e7f3b5
JW
8667 int err;
8668
5327ed3d
JW
8669 /* When comes here, read flags of PARENT_REG or REG could be any of
8670 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
8671 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
8672 */
8673 if (parent_flag == REG_LIVE_READ64 ||
8674 /* Or if there is no read flag from REG. */
8675 !flag ||
8676 /* Or if the read flag from REG is the same as PARENT_REG. */
8677 parent_flag == flag)
55e7f3b5
JW
8678 return 0;
8679
5327ed3d 8680 err = mark_reg_read(env, reg, parent_reg, flag);
55e7f3b5
JW
8681 if (err)
8682 return err;
8683
5327ed3d 8684 return flag;
55e7f3b5
JW
8685}
8686
8e9cd9ce 8687/* A write screens off any subsequent reads; but write marks come from the
f4d7e40a
AS
8688 * straight-line code between a state and its parent. When we arrive at an
8689 * equivalent state (jump target or such) we didn't arrive by the straight-line
8690 * code, so read marks in the state must propagate to the parent regardless
8691 * of the state's write marks. That's what 'parent == state->parent' comparison
679c782d 8692 * in mark_reg_read() is for.
8e9cd9ce 8693 */
f4d7e40a
AS
8694static int propagate_liveness(struct bpf_verifier_env *env,
8695 const struct bpf_verifier_state *vstate,
8696 struct bpf_verifier_state *vparent)
dc503a8a 8697{
3f8cafa4 8698 struct bpf_reg_state *state_reg, *parent_reg;
f4d7e40a 8699 struct bpf_func_state *state, *parent;
3f8cafa4 8700 int i, frame, err = 0;
dc503a8a 8701
f4d7e40a
AS
8702 if (vparent->curframe != vstate->curframe) {
8703 WARN(1, "propagate_live: parent frame %d current frame %d\n",
8704 vparent->curframe, vstate->curframe);
8705 return -EFAULT;
8706 }
dc503a8a
EC
8707 /* Propagate read liveness of registers... */
8708 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
83d16312 8709 for (frame = 0; frame <= vstate->curframe; frame++) {
3f8cafa4
JW
8710 parent = vparent->frame[frame];
8711 state = vstate->frame[frame];
8712 parent_reg = parent->regs;
8713 state_reg = state->regs;
83d16312
JK
8714 /* We don't need to worry about FP liveness, it's read-only */
8715 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
55e7f3b5
JW
8716 err = propagate_liveness_reg(env, &state_reg[i],
8717 &parent_reg[i]);
5327ed3d 8718 if (err < 0)
3f8cafa4 8719 return err;
5327ed3d
JW
8720 if (err == REG_LIVE_READ64)
8721 mark_insn_zext(env, &parent_reg[i]);
dc503a8a 8722 }
f4d7e40a 8723
1b04aee7 8724 /* Propagate stack slots. */
f4d7e40a
AS
8725 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
8726 i < parent->allocated_stack / BPF_REG_SIZE; i++) {
3f8cafa4
JW
8727 parent_reg = &parent->stack[i].spilled_ptr;
8728 state_reg = &state->stack[i].spilled_ptr;
55e7f3b5
JW
8729 err = propagate_liveness_reg(env, state_reg,
8730 parent_reg);
5327ed3d 8731 if (err < 0)
3f8cafa4 8732 return err;
dc503a8a
EC
8733 }
8734 }
5327ed3d 8735 return 0;
dc503a8a
EC
8736}
8737
a3ce685d
AS
8738/* find precise scalars in the previous equivalent state and
8739 * propagate them into the current state
8740 */
8741static int propagate_precision(struct bpf_verifier_env *env,
8742 const struct bpf_verifier_state *old)
8743{
8744 struct bpf_reg_state *state_reg;
8745 struct bpf_func_state *state;
8746 int i, err = 0;
8747
8748 state = old->frame[old->curframe];
8749 state_reg = state->regs;
8750 for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
8751 if (state_reg->type != SCALAR_VALUE ||
8752 !state_reg->precise)
8753 continue;
8754 if (env->log.level & BPF_LOG_LEVEL2)
8755 verbose(env, "propagating r%d\n", i);
8756 err = mark_chain_precision(env, i);
8757 if (err < 0)
8758 return err;
8759 }
8760
8761 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
8762 if (state->stack[i].slot_type[0] != STACK_SPILL)
8763 continue;
8764 state_reg = &state->stack[i].spilled_ptr;
8765 if (state_reg->type != SCALAR_VALUE ||
8766 !state_reg->precise)
8767 continue;
8768 if (env->log.level & BPF_LOG_LEVEL2)
8769 verbose(env, "propagating fp%d\n",
8770 (-i - 1) * BPF_REG_SIZE);
8771 err = mark_chain_precision_stack(env, i);
8772 if (err < 0)
8773 return err;
8774 }
8775 return 0;
8776}
8777
2589726d
AS
8778static bool states_maybe_looping(struct bpf_verifier_state *old,
8779 struct bpf_verifier_state *cur)
8780{
8781 struct bpf_func_state *fold, *fcur;
8782 int i, fr = cur->curframe;
8783
8784 if (old->curframe != fr)
8785 return false;
8786
8787 fold = old->frame[fr];
8788 fcur = cur->frame[fr];
8789 for (i = 0; i < MAX_BPF_REG; i++)
8790 if (memcmp(&fold->regs[i], &fcur->regs[i],
8791 offsetof(struct bpf_reg_state, parent)))
8792 return false;
8793 return true;
8794}
8795
8796
58e2af8b 8797static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
f1bca824 8798{
58e2af8b 8799 struct bpf_verifier_state_list *new_sl;
9f4686c4 8800 struct bpf_verifier_state_list *sl, **pprev;
679c782d 8801 struct bpf_verifier_state *cur = env->cur_state, *new;
ceefbc96 8802 int i, j, err, states_cnt = 0;
10d274e8 8803 bool add_new_state = env->test_state_freq ? true : false;
f1bca824 8804
b5dc0163 8805 cur->last_insn_idx = env->prev_insn_idx;
a8f500af 8806 if (!env->insn_aux_data[insn_idx].prune_point)
f1bca824
AS
8807 /* this 'insn_idx' instruction wasn't marked, so we will not
8808 * be doing state search here
8809 */
8810 return 0;
8811
2589726d
AS
8812 /* bpf progs typically have pruning point every 4 instructions
8813 * http://vger.kernel.org/bpfconf2019.html#session-1
8814 * Do not add new state for future pruning if the verifier hasn't seen
8815 * at least 2 jumps and at least 8 instructions.
8816 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
8817 * In tests that amounts to up to 50% reduction into total verifier
8818 * memory consumption and 20% verifier time speedup.
8819 */
8820 if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
8821 env->insn_processed - env->prev_insn_processed >= 8)
8822 add_new_state = true;
8823
a8f500af
AS
8824 pprev = explored_state(env, insn_idx);
8825 sl = *pprev;
8826
9242b5f5
AS
8827 clean_live_states(env, insn_idx, cur);
8828
a8f500af 8829 while (sl) {
dc2a4ebc
AS
8830 states_cnt++;
8831 if (sl->state.insn_idx != insn_idx)
8832 goto next;
2589726d
AS
8833 if (sl->state.branches) {
8834 if (states_maybe_looping(&sl->state, cur) &&
8835 states_equal(env, &sl->state, cur)) {
8836 verbose_linfo(env, insn_idx, "; ");
8837 verbose(env, "infinite loop detected at insn %d\n", insn_idx);
8838 return -EINVAL;
8839 }
8840 /* if the verifier is processing a loop, avoid adding new state
8841 * too often, since different loop iterations have distinct
8842 * states and may not help future pruning.
8843 * This threshold shouldn't be too low to make sure that
8844 * a loop with large bound will be rejected quickly.
8845 * The most abusive loop will be:
8846 * r1 += 1
8847 * if r1 < 1000000 goto pc-2
8848 * 1M insn_procssed limit / 100 == 10k peak states.
8849 * This threshold shouldn't be too high either, since states
8850 * at the end of the loop are likely to be useful in pruning.
8851 */
8852 if (env->jmps_processed - env->prev_jmps_processed < 20 &&
8853 env->insn_processed - env->prev_insn_processed < 100)
8854 add_new_state = false;
8855 goto miss;
8856 }
638f5b90 8857 if (states_equal(env, &sl->state, cur)) {
9f4686c4 8858 sl->hit_cnt++;
f1bca824 8859 /* reached equivalent register/stack state,
dc503a8a
EC
8860 * prune the search.
8861 * Registers read by the continuation are read by us.
8e9cd9ce
EC
8862 * If we have any write marks in env->cur_state, they
8863 * will prevent corresponding reads in the continuation
8864 * from reaching our parent (an explored_state). Our
8865 * own state will get the read marks recorded, but
8866 * they'll be immediately forgotten as we're pruning
8867 * this state and will pop a new one.
f1bca824 8868 */
f4d7e40a 8869 err = propagate_liveness(env, &sl->state, cur);
a3ce685d
AS
8870
8871 /* if previous state reached the exit with precision and
8872 * current state is equivalent to it (except precsion marks)
8873 * the precision needs to be propagated back in
8874 * the current state.
8875 */
8876 err = err ? : push_jmp_history(env, cur);
8877 err = err ? : propagate_precision(env, &sl->state);
f4d7e40a
AS
8878 if (err)
8879 return err;
f1bca824 8880 return 1;
dc503a8a 8881 }
2589726d
AS
8882miss:
8883 /* when new state is not going to be added do not increase miss count.
8884 * Otherwise several loop iterations will remove the state
8885 * recorded earlier. The goal of these heuristics is to have
8886 * states from some iterations of the loop (some in the beginning
8887 * and some at the end) to help pruning.
8888 */
8889 if (add_new_state)
8890 sl->miss_cnt++;
9f4686c4
AS
8891 /* heuristic to determine whether this state is beneficial
8892 * to keep checking from state equivalence point of view.
8893 * Higher numbers increase max_states_per_insn and verification time,
8894 * but do not meaningfully decrease insn_processed.
8895 */
8896 if (sl->miss_cnt > sl->hit_cnt * 3 + 3) {
8897 /* the state is unlikely to be useful. Remove it to
8898 * speed up verification
8899 */
8900 *pprev = sl->next;
8901 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) {
2589726d
AS
8902 u32 br = sl->state.branches;
8903
8904 WARN_ONCE(br,
8905 "BUG live_done but branches_to_explore %d\n",
8906 br);
9f4686c4
AS
8907 free_verifier_state(&sl->state, false);
8908 kfree(sl);
8909 env->peak_states--;
8910 } else {
8911 /* cannot free this state, since parentage chain may
8912 * walk it later. Add it for free_list instead to
8913 * be freed at the end of verification
8914 */
8915 sl->next = env->free_list;
8916 env->free_list = sl;
8917 }
8918 sl = *pprev;
8919 continue;
8920 }
dc2a4ebc 8921next:
9f4686c4
AS
8922 pprev = &sl->next;
8923 sl = *pprev;
f1bca824
AS
8924 }
8925
06ee7115
AS
8926 if (env->max_states_per_insn < states_cnt)
8927 env->max_states_per_insn = states_cnt;
8928
2c78ee89 8929 if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
b5dc0163 8930 return push_jmp_history(env, cur);
ceefbc96 8931
2589726d 8932 if (!add_new_state)
b5dc0163 8933 return push_jmp_history(env, cur);
ceefbc96 8934
2589726d
AS
8935 /* There were no equivalent states, remember the current one.
8936 * Technically the current state is not proven to be safe yet,
f4d7e40a 8937 * but it will either reach outer most bpf_exit (which means it's safe)
2589726d 8938 * or it will be rejected. When there are no loops the verifier won't be
f4d7e40a 8939 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
2589726d
AS
8940 * again on the way to bpf_exit.
8941 * When looping the sl->state.branches will be > 0 and this state
8942 * will not be considered for equivalence until branches == 0.
f1bca824 8943 */
638f5b90 8944 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
f1bca824
AS
8945 if (!new_sl)
8946 return -ENOMEM;
06ee7115
AS
8947 env->total_states++;
8948 env->peak_states++;
2589726d
AS
8949 env->prev_jmps_processed = env->jmps_processed;
8950 env->prev_insn_processed = env->insn_processed;
f1bca824
AS
8951
8952 /* add new state to the head of linked list */
679c782d
EC
8953 new = &new_sl->state;
8954 err = copy_verifier_state(new, cur);
1969db47 8955 if (err) {
679c782d 8956 free_verifier_state(new, false);
1969db47
AS
8957 kfree(new_sl);
8958 return err;
8959 }
dc2a4ebc 8960 new->insn_idx = insn_idx;
2589726d
AS
8961 WARN_ONCE(new->branches != 1,
8962 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
b5dc0163 8963
2589726d 8964 cur->parent = new;
b5dc0163
AS
8965 cur->first_insn_idx = insn_idx;
8966 clear_jmp_history(cur);
5d839021
AS
8967 new_sl->next = *explored_state(env, insn_idx);
8968 *explored_state(env, insn_idx) = new_sl;
7640ead9
JK
8969 /* connect new state to parentage chain. Current frame needs all
8970 * registers connected. Only r6 - r9 of the callers are alive (pushed
8971 * to the stack implicitly by JITs) so in callers' frames connect just
8972 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
8973 * the state of the call instruction (with WRITTEN set), and r0 comes
8974 * from callee with its full parentage chain, anyway.
8975 */
8e9cd9ce
EC
8976 /* clear write marks in current state: the writes we did are not writes
8977 * our child did, so they don't screen off its reads from us.
8978 * (There are no read marks in current state, because reads always mark
8979 * their parent and current state never has children yet. Only
8980 * explored_states can get read marks.)
8981 */
eea1c227
AS
8982 for (j = 0; j <= cur->curframe; j++) {
8983 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
8984 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
8985 for (i = 0; i < BPF_REG_FP; i++)
8986 cur->frame[j]->regs[i].live = REG_LIVE_NONE;
8987 }
f4d7e40a
AS
8988
8989 /* all stack frames are accessible from callee, clear them all */
8990 for (j = 0; j <= cur->curframe; j++) {
8991 struct bpf_func_state *frame = cur->frame[j];
679c782d 8992 struct bpf_func_state *newframe = new->frame[j];
f4d7e40a 8993
679c782d 8994 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
cc2b14d5 8995 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
679c782d
EC
8996 frame->stack[i].spilled_ptr.parent =
8997 &newframe->stack[i].spilled_ptr;
8998 }
f4d7e40a 8999 }
f1bca824
AS
9000 return 0;
9001}
9002
c64b7983
JS
9003/* Return true if it's OK to have the same insn return a different type. */
9004static bool reg_type_mismatch_ok(enum bpf_reg_type type)
9005{
9006 switch (type) {
9007 case PTR_TO_CTX:
9008 case PTR_TO_SOCKET:
9009 case PTR_TO_SOCKET_OR_NULL:
46f8bc92
MKL
9010 case PTR_TO_SOCK_COMMON:
9011 case PTR_TO_SOCK_COMMON_OR_NULL:
655a51e5
MKL
9012 case PTR_TO_TCP_SOCK:
9013 case PTR_TO_TCP_SOCK_OR_NULL:
fada7fdc 9014 case PTR_TO_XDP_SOCK:
2a02759e 9015 case PTR_TO_BTF_ID:
b121b341 9016 case PTR_TO_BTF_ID_OR_NULL:
c64b7983
JS
9017 return false;
9018 default:
9019 return true;
9020 }
9021}
9022
9023/* If an instruction was previously used with particular pointer types, then we
9024 * need to be careful to avoid cases such as the below, where it may be ok
9025 * for one branch accessing the pointer, but not ok for the other branch:
9026 *
9027 * R1 = sock_ptr
9028 * goto X;
9029 * ...
9030 * R1 = some_other_valid_ptr;
9031 * goto X;
9032 * ...
9033 * R2 = *(u32 *)(R1 + 0);
9034 */
9035static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
9036{
9037 return src != prev && (!reg_type_mismatch_ok(src) ||
9038 !reg_type_mismatch_ok(prev));
9039}
9040
58e2af8b 9041static int do_check(struct bpf_verifier_env *env)
17a52670 9042{
6f8a57cc 9043 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
51c39bb1 9044 struct bpf_verifier_state *state = env->cur_state;
17a52670 9045 struct bpf_insn *insns = env->prog->insnsi;
638f5b90 9046 struct bpf_reg_state *regs;
06ee7115 9047 int insn_cnt = env->prog->len;
17a52670 9048 bool do_print_state = false;
b5dc0163 9049 int prev_insn_idx = -1;
17a52670 9050
17a52670
AS
9051 for (;;) {
9052 struct bpf_insn *insn;
9053 u8 class;
9054 int err;
9055
b5dc0163 9056 env->prev_insn_idx = prev_insn_idx;
c08435ec 9057 if (env->insn_idx >= insn_cnt) {
61bd5218 9058 verbose(env, "invalid insn idx %d insn_cnt %d\n",
c08435ec 9059 env->insn_idx, insn_cnt);
17a52670
AS
9060 return -EFAULT;
9061 }
9062
c08435ec 9063 insn = &insns[env->insn_idx];
17a52670
AS
9064 class = BPF_CLASS(insn->code);
9065
06ee7115 9066 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
61bd5218
JK
9067 verbose(env,
9068 "BPF program is too large. Processed %d insn\n",
06ee7115 9069 env->insn_processed);
17a52670
AS
9070 return -E2BIG;
9071 }
9072
c08435ec 9073 err = is_state_visited(env, env->insn_idx);
f1bca824
AS
9074 if (err < 0)
9075 return err;
9076 if (err == 1) {
9077 /* found equivalent state, can prune the search */
06ee7115 9078 if (env->log.level & BPF_LOG_LEVEL) {
f1bca824 9079 if (do_print_state)
979d63d5
DB
9080 verbose(env, "\nfrom %d to %d%s: safe\n",
9081 env->prev_insn_idx, env->insn_idx,
9082 env->cur_state->speculative ?
9083 " (speculative execution)" : "");
f1bca824 9084 else
c08435ec 9085 verbose(env, "%d: safe\n", env->insn_idx);
f1bca824
AS
9086 }
9087 goto process_bpf_exit;
9088 }
9089
c3494801
AS
9090 if (signal_pending(current))
9091 return -EAGAIN;
9092
3c2ce60b
DB
9093 if (need_resched())
9094 cond_resched();
9095
06ee7115
AS
9096 if (env->log.level & BPF_LOG_LEVEL2 ||
9097 (env->log.level & BPF_LOG_LEVEL && do_print_state)) {
9098 if (env->log.level & BPF_LOG_LEVEL2)
c08435ec 9099 verbose(env, "%d:", env->insn_idx);
c5fc9692 9100 else
979d63d5
DB
9101 verbose(env, "\nfrom %d to %d%s:",
9102 env->prev_insn_idx, env->insn_idx,
9103 env->cur_state->speculative ?
9104 " (speculative execution)" : "");
f4d7e40a 9105 print_verifier_state(env, state->frame[state->curframe]);
17a52670
AS
9106 do_print_state = false;
9107 }
9108
06ee7115 9109 if (env->log.level & BPF_LOG_LEVEL) {
7105e828
DB
9110 const struct bpf_insn_cbs cbs = {
9111 .cb_print = verbose,
abe08840 9112 .private_data = env,
7105e828
DB
9113 };
9114
c08435ec
DB
9115 verbose_linfo(env, env->insn_idx, "; ");
9116 verbose(env, "%d: ", env->insn_idx);
abe08840 9117 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
17a52670
AS
9118 }
9119
cae1927c 9120 if (bpf_prog_is_dev_bound(env->prog->aux)) {
c08435ec
DB
9121 err = bpf_prog_offload_verify_insn(env, env->insn_idx,
9122 env->prev_insn_idx);
cae1927c
JK
9123 if (err)
9124 return err;
9125 }
13a27dfc 9126
638f5b90 9127 regs = cur_regs(env);
51c39bb1 9128 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
b5dc0163 9129 prev_insn_idx = env->insn_idx;
fd978bf7 9130
17a52670 9131 if (class == BPF_ALU || class == BPF_ALU64) {
1be7f75d 9132 err = check_alu_op(env, insn);
17a52670
AS
9133 if (err)
9134 return err;
9135
9136 } else if (class == BPF_LDX) {
3df126f3 9137 enum bpf_reg_type *prev_src_type, src_reg_type;
9bac3d6d
AS
9138
9139 /* check for reserved fields is already done */
9140
17a52670 9141 /* check src operand */
dc503a8a 9142 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
9143 if (err)
9144 return err;
9145
dc503a8a 9146 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
17a52670
AS
9147 if (err)
9148 return err;
9149
725f9dcd
AS
9150 src_reg_type = regs[insn->src_reg].type;
9151
17a52670
AS
9152 /* check that memory (src_reg + off) is readable,
9153 * the state of dst_reg will be updated by this func
9154 */
c08435ec
DB
9155 err = check_mem_access(env, env->insn_idx, insn->src_reg,
9156 insn->off, BPF_SIZE(insn->code),
9157 BPF_READ, insn->dst_reg, false);
17a52670
AS
9158 if (err)
9159 return err;
9160
c08435ec 9161 prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type;
3df126f3
JK
9162
9163 if (*prev_src_type == NOT_INIT) {
9bac3d6d
AS
9164 /* saw a valid insn
9165 * dst_reg = *(u32 *)(src_reg + off)
3df126f3 9166 * save type to validate intersecting paths
9bac3d6d 9167 */
3df126f3 9168 *prev_src_type = src_reg_type;
9bac3d6d 9169
c64b7983 9170 } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) {
9bac3d6d
AS
9171 /* ABuser program is trying to use the same insn
9172 * dst_reg = *(u32*) (src_reg + off)
9173 * with different pointer types:
9174 * src_reg == ctx in one branch and
9175 * src_reg == stack|map in some other branch.
9176 * Reject it.
9177 */
61bd5218 9178 verbose(env, "same insn cannot be used with different pointers\n");
9bac3d6d
AS
9179 return -EINVAL;
9180 }
9181
17a52670 9182 } else if (class == BPF_STX) {
3df126f3 9183 enum bpf_reg_type *prev_dst_type, dst_reg_type;
d691f9e8 9184
17a52670 9185 if (BPF_MODE(insn->code) == BPF_XADD) {
c08435ec 9186 err = check_xadd(env, env->insn_idx, insn);
17a52670
AS
9187 if (err)
9188 return err;
c08435ec 9189 env->insn_idx++;
17a52670
AS
9190 continue;
9191 }
9192
17a52670 9193 /* check src1 operand */
dc503a8a 9194 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
9195 if (err)
9196 return err;
9197 /* check src2 operand */
dc503a8a 9198 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
9199 if (err)
9200 return err;
9201
d691f9e8
AS
9202 dst_reg_type = regs[insn->dst_reg].type;
9203
17a52670 9204 /* check that memory (dst_reg + off) is writeable */
c08435ec
DB
9205 err = check_mem_access(env, env->insn_idx, insn->dst_reg,
9206 insn->off, BPF_SIZE(insn->code),
9207 BPF_WRITE, insn->src_reg, false);
17a52670
AS
9208 if (err)
9209 return err;
9210
c08435ec 9211 prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type;
3df126f3
JK
9212
9213 if (*prev_dst_type == NOT_INIT) {
9214 *prev_dst_type = dst_reg_type;
c64b7983 9215 } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) {
61bd5218 9216 verbose(env, "same insn cannot be used with different pointers\n");
d691f9e8
AS
9217 return -EINVAL;
9218 }
9219
17a52670
AS
9220 } else if (class == BPF_ST) {
9221 if (BPF_MODE(insn->code) != BPF_MEM ||
9222 insn->src_reg != BPF_REG_0) {
61bd5218 9223 verbose(env, "BPF_ST uses reserved fields\n");
17a52670
AS
9224 return -EINVAL;
9225 }
9226 /* check src operand */
dc503a8a 9227 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
9228 if (err)
9229 return err;
9230
f37a8cb8 9231 if (is_ctx_reg(env, insn->dst_reg)) {
9d2be44a 9232 verbose(env, "BPF_ST stores into R%d %s is not allowed\n",
2a159c6f
DB
9233 insn->dst_reg,
9234 reg_type_str[reg_state(env, insn->dst_reg)->type]);
f37a8cb8
DB
9235 return -EACCES;
9236 }
9237
17a52670 9238 /* check that memory (dst_reg + off) is writeable */
c08435ec
DB
9239 err = check_mem_access(env, env->insn_idx, insn->dst_reg,
9240 insn->off, BPF_SIZE(insn->code),
9241 BPF_WRITE, -1, false);
17a52670
AS
9242 if (err)
9243 return err;
9244
092ed096 9245 } else if (class == BPF_JMP || class == BPF_JMP32) {
17a52670
AS
9246 u8 opcode = BPF_OP(insn->code);
9247
2589726d 9248 env->jmps_processed++;
17a52670
AS
9249 if (opcode == BPF_CALL) {
9250 if (BPF_SRC(insn->code) != BPF_K ||
9251 insn->off != 0 ||
f4d7e40a
AS
9252 (insn->src_reg != BPF_REG_0 &&
9253 insn->src_reg != BPF_PSEUDO_CALL) ||
092ed096
JW
9254 insn->dst_reg != BPF_REG_0 ||
9255 class == BPF_JMP32) {
61bd5218 9256 verbose(env, "BPF_CALL uses reserved fields\n");
17a52670
AS
9257 return -EINVAL;
9258 }
9259
d83525ca
AS
9260 if (env->cur_state->active_spin_lock &&
9261 (insn->src_reg == BPF_PSEUDO_CALL ||
9262 insn->imm != BPF_FUNC_spin_unlock)) {
9263 verbose(env, "function calls are not allowed while holding a lock\n");
9264 return -EINVAL;
9265 }
f4d7e40a 9266 if (insn->src_reg == BPF_PSEUDO_CALL)
c08435ec 9267 err = check_func_call(env, insn, &env->insn_idx);
f4d7e40a 9268 else
c08435ec 9269 err = check_helper_call(env, insn->imm, env->insn_idx);
17a52670
AS
9270 if (err)
9271 return err;
9272
9273 } else if (opcode == BPF_JA) {
9274 if (BPF_SRC(insn->code) != BPF_K ||
9275 insn->imm != 0 ||
9276 insn->src_reg != BPF_REG_0 ||
092ed096
JW
9277 insn->dst_reg != BPF_REG_0 ||
9278 class == BPF_JMP32) {
61bd5218 9279 verbose(env, "BPF_JA uses reserved fields\n");
17a52670
AS
9280 return -EINVAL;
9281 }
9282
c08435ec 9283 env->insn_idx += insn->off + 1;
17a52670
AS
9284 continue;
9285
9286 } else if (opcode == BPF_EXIT) {
9287 if (BPF_SRC(insn->code) != BPF_K ||
9288 insn->imm != 0 ||
9289 insn->src_reg != BPF_REG_0 ||
092ed096
JW
9290 insn->dst_reg != BPF_REG_0 ||
9291 class == BPF_JMP32) {
61bd5218 9292 verbose(env, "BPF_EXIT uses reserved fields\n");
17a52670
AS
9293 return -EINVAL;
9294 }
9295
d83525ca
AS
9296 if (env->cur_state->active_spin_lock) {
9297 verbose(env, "bpf_spin_unlock is missing\n");
9298 return -EINVAL;
9299 }
9300
f4d7e40a
AS
9301 if (state->curframe) {
9302 /* exit from nested function */
c08435ec 9303 err = prepare_func_exit(env, &env->insn_idx);
f4d7e40a
AS
9304 if (err)
9305 return err;
9306 do_print_state = true;
9307 continue;
9308 }
9309
fd978bf7
JS
9310 err = check_reference_leak(env);
9311 if (err)
9312 return err;
9313
390ee7e2
AS
9314 err = check_return_code(env);
9315 if (err)
9316 return err;
f1bca824 9317process_bpf_exit:
2589726d 9318 update_branch_counts(env, env->cur_state);
b5dc0163 9319 err = pop_stack(env, &prev_insn_idx,
6f8a57cc 9320 &env->insn_idx, pop_log);
638f5b90
AS
9321 if (err < 0) {
9322 if (err != -ENOENT)
9323 return err;
17a52670
AS
9324 break;
9325 } else {
9326 do_print_state = true;
9327 continue;
9328 }
9329 } else {
c08435ec 9330 err = check_cond_jmp_op(env, insn, &env->insn_idx);
17a52670
AS
9331 if (err)
9332 return err;
9333 }
9334 } else if (class == BPF_LD) {
9335 u8 mode = BPF_MODE(insn->code);
9336
9337 if (mode == BPF_ABS || mode == BPF_IND) {
ddd872bc
AS
9338 err = check_ld_abs(env, insn);
9339 if (err)
9340 return err;
9341
17a52670
AS
9342 } else if (mode == BPF_IMM) {
9343 err = check_ld_imm(env, insn);
9344 if (err)
9345 return err;
9346
c08435ec 9347 env->insn_idx++;
51c39bb1 9348 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
17a52670 9349 } else {
61bd5218 9350 verbose(env, "invalid BPF_LD mode\n");
17a52670
AS
9351 return -EINVAL;
9352 }
9353 } else {
61bd5218 9354 verbose(env, "unknown insn class %d\n", class);
17a52670
AS
9355 return -EINVAL;
9356 }
9357
c08435ec 9358 env->insn_idx++;
17a52670
AS
9359 }
9360
9361 return 0;
9362}
9363
56f668df
MKL
9364static int check_map_prealloc(struct bpf_map *map)
9365{
9366 return (map->map_type != BPF_MAP_TYPE_HASH &&
bcc6b1b7
MKL
9367 map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
9368 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
56f668df
MKL
9369 !(map->map_flags & BPF_F_NO_PREALLOC);
9370}
9371
d83525ca
AS
9372static bool is_tracing_prog_type(enum bpf_prog_type type)
9373{
9374 switch (type) {
9375 case BPF_PROG_TYPE_KPROBE:
9376 case BPF_PROG_TYPE_TRACEPOINT:
9377 case BPF_PROG_TYPE_PERF_EVENT:
9378 case BPF_PROG_TYPE_RAW_TRACEPOINT:
9379 return true;
9380 default:
9381 return false;
9382 }
9383}
9384
94dacdbd
TG
9385static bool is_preallocated_map(struct bpf_map *map)
9386{
9387 if (!check_map_prealloc(map))
9388 return false;
9389 if (map->inner_map_meta && !check_map_prealloc(map->inner_map_meta))
9390 return false;
9391 return true;
9392}
9393
61bd5218
JK
9394static int check_map_prog_compatibility(struct bpf_verifier_env *env,
9395 struct bpf_map *map,
fdc15d38
AS
9396 struct bpf_prog *prog)
9397
9398{
7e40781c 9399 enum bpf_prog_type prog_type = resolve_prog_type(prog);
94dacdbd
TG
9400 /*
9401 * Validate that trace type programs use preallocated hash maps.
9402 *
9403 * For programs attached to PERF events this is mandatory as the
9404 * perf NMI can hit any arbitrary code sequence.
9405 *
9406 * All other trace types using preallocated hash maps are unsafe as
9407 * well because tracepoint or kprobes can be inside locked regions
9408 * of the memory allocator or at a place where a recursion into the
9409 * memory allocator would see inconsistent state.
9410 *
2ed905c5
TG
9411 * On RT enabled kernels run-time allocation of all trace type
9412 * programs is strictly prohibited due to lock type constraints. On
9413 * !RT kernels it is allowed for backwards compatibility reasons for
9414 * now, but warnings are emitted so developers are made aware of
9415 * the unsafety and can fix their programs before this is enforced.
56f668df 9416 */
7e40781c
UP
9417 if (is_tracing_prog_type(prog_type) && !is_preallocated_map(map)) {
9418 if (prog_type == BPF_PROG_TYPE_PERF_EVENT) {
61bd5218 9419 verbose(env, "perf_event programs can only use preallocated hash map\n");
56f668df
MKL
9420 return -EINVAL;
9421 }
2ed905c5
TG
9422 if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
9423 verbose(env, "trace type programs can only use preallocated hash map\n");
9424 return -EINVAL;
9425 }
94dacdbd
TG
9426 WARN_ONCE(1, "trace type BPF program uses run-time allocation\n");
9427 verbose(env, "trace type programs with run-time allocated hash maps are unsafe. Switch to preallocated hash maps.\n");
fdc15d38 9428 }
a3884572 9429
7e40781c
UP
9430 if ((is_tracing_prog_type(prog_type) ||
9431 prog_type == BPF_PROG_TYPE_SOCKET_FILTER) &&
d83525ca
AS
9432 map_value_has_spin_lock(map)) {
9433 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
9434 return -EINVAL;
9435 }
9436
a3884572 9437 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
09728266 9438 !bpf_offload_prog_map_match(prog, map)) {
a3884572
JK
9439 verbose(env, "offload device mismatch between prog and map\n");
9440 return -EINVAL;
9441 }
9442
85d33df3
MKL
9443 if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) {
9444 verbose(env, "bpf_struct_ops map cannot be used in prog\n");
9445 return -EINVAL;
9446 }
9447
1e6c62a8
AS
9448 if (prog->aux->sleepable)
9449 switch (map->map_type) {
9450 case BPF_MAP_TYPE_HASH:
9451 case BPF_MAP_TYPE_LRU_HASH:
9452 case BPF_MAP_TYPE_ARRAY:
9453 if (!is_preallocated_map(map)) {
9454 verbose(env,
9455 "Sleepable programs can only use preallocated hash maps\n");
9456 return -EINVAL;
9457 }
9458 break;
9459 default:
9460 verbose(env,
9461 "Sleepable programs can only use array and hash maps\n");
9462 return -EINVAL;
9463 }
9464
fdc15d38
AS
9465 return 0;
9466}
9467
b741f163
RG
9468static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
9469{
9470 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
9471 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
9472}
9473
0246e64d
AS
9474/* look for pseudo eBPF instructions that access map FDs and
9475 * replace them with actual map pointers
9476 */
58e2af8b 9477static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
0246e64d
AS
9478{
9479 struct bpf_insn *insn = env->prog->insnsi;
9480 int insn_cnt = env->prog->len;
fdc15d38 9481 int i, j, err;
0246e64d 9482
f1f7714e 9483 err = bpf_prog_calc_tag(env->prog);
aafe6ae9
DB
9484 if (err)
9485 return err;
9486
0246e64d 9487 for (i = 0; i < insn_cnt; i++, insn++) {
9bac3d6d 9488 if (BPF_CLASS(insn->code) == BPF_LDX &&
d691f9e8 9489 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
61bd5218 9490 verbose(env, "BPF_LDX uses reserved fields\n");
9bac3d6d
AS
9491 return -EINVAL;
9492 }
9493
d691f9e8
AS
9494 if (BPF_CLASS(insn->code) == BPF_STX &&
9495 ((BPF_MODE(insn->code) != BPF_MEM &&
9496 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
61bd5218 9497 verbose(env, "BPF_STX uses reserved fields\n");
d691f9e8
AS
9498 return -EINVAL;
9499 }
9500
0246e64d 9501 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
d8eca5bb 9502 struct bpf_insn_aux_data *aux;
0246e64d
AS
9503 struct bpf_map *map;
9504 struct fd f;
d8eca5bb 9505 u64 addr;
0246e64d
AS
9506
9507 if (i == insn_cnt - 1 || insn[1].code != 0 ||
9508 insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
9509 insn[1].off != 0) {
61bd5218 9510 verbose(env, "invalid bpf_ld_imm64 insn\n");
0246e64d
AS
9511 return -EINVAL;
9512 }
9513
d8eca5bb 9514 if (insn[0].src_reg == 0)
0246e64d
AS
9515 /* valid generic load 64-bit imm */
9516 goto next_insn;
9517
d8eca5bb
DB
9518 /* In final convert_pseudo_ld_imm64() step, this is
9519 * converted into regular 64-bit imm load insn.
9520 */
9521 if ((insn[0].src_reg != BPF_PSEUDO_MAP_FD &&
9522 insn[0].src_reg != BPF_PSEUDO_MAP_VALUE) ||
9523 (insn[0].src_reg == BPF_PSEUDO_MAP_FD &&
9524 insn[1].imm != 0)) {
9525 verbose(env,
9526 "unrecognized bpf_ld_imm64 insn\n");
0246e64d
AS
9527 return -EINVAL;
9528 }
9529
20182390 9530 f = fdget(insn[0].imm);
c2101297 9531 map = __bpf_map_get(f);
0246e64d 9532 if (IS_ERR(map)) {
61bd5218 9533 verbose(env, "fd %d is not pointing to valid bpf_map\n",
20182390 9534 insn[0].imm);
0246e64d
AS
9535 return PTR_ERR(map);
9536 }
9537
61bd5218 9538 err = check_map_prog_compatibility(env, map, env->prog);
fdc15d38
AS
9539 if (err) {
9540 fdput(f);
9541 return err;
9542 }
9543
d8eca5bb
DB
9544 aux = &env->insn_aux_data[i];
9545 if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
9546 addr = (unsigned long)map;
9547 } else {
9548 u32 off = insn[1].imm;
9549
9550 if (off >= BPF_MAX_VAR_OFF) {
9551 verbose(env, "direct value offset of %u is not allowed\n", off);
9552 fdput(f);
9553 return -EINVAL;
9554 }
9555
9556 if (!map->ops->map_direct_value_addr) {
9557 verbose(env, "no direct value access support for this map type\n");
9558 fdput(f);
9559 return -EINVAL;
9560 }
9561
9562 err = map->ops->map_direct_value_addr(map, &addr, off);
9563 if (err) {
9564 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
9565 map->value_size, off);
9566 fdput(f);
9567 return err;
9568 }
9569
9570 aux->map_off = off;
9571 addr += off;
9572 }
9573
9574 insn[0].imm = (u32)addr;
9575 insn[1].imm = addr >> 32;
0246e64d
AS
9576
9577 /* check whether we recorded this map already */
d8eca5bb 9578 for (j = 0; j < env->used_map_cnt; j++) {
0246e64d 9579 if (env->used_maps[j] == map) {
d8eca5bb 9580 aux->map_index = j;
0246e64d
AS
9581 fdput(f);
9582 goto next_insn;
9583 }
d8eca5bb 9584 }
0246e64d
AS
9585
9586 if (env->used_map_cnt >= MAX_USED_MAPS) {
9587 fdput(f);
9588 return -E2BIG;
9589 }
9590
0246e64d
AS
9591 /* hold the map. If the program is rejected by verifier,
9592 * the map will be released by release_maps() or it
9593 * will be used by the valid program until it's unloaded
ab7f5bf0 9594 * and all maps are released in free_used_maps()
0246e64d 9595 */
1e0bd5a0 9596 bpf_map_inc(map);
d8eca5bb
DB
9597
9598 aux->map_index = env->used_map_cnt;
92117d84
AS
9599 env->used_maps[env->used_map_cnt++] = map;
9600
b741f163 9601 if (bpf_map_is_cgroup_storage(map) &&
e4730423 9602 bpf_cgroup_storage_assign(env->prog->aux, map)) {
b741f163 9603 verbose(env, "only one cgroup storage of each type is allowed\n");
de9cbbaa
RG
9604 fdput(f);
9605 return -EBUSY;
9606 }
9607
0246e64d
AS
9608 fdput(f);
9609next_insn:
9610 insn++;
9611 i++;
5e581dad
DB
9612 continue;
9613 }
9614
9615 /* Basic sanity check before we invest more work here. */
9616 if (!bpf_opcode_in_insntable(insn->code)) {
9617 verbose(env, "unknown opcode %02x\n", insn->code);
9618 return -EINVAL;
0246e64d
AS
9619 }
9620 }
9621
9622 /* now all pseudo BPF_LD_IMM64 instructions load valid
9623 * 'struct bpf_map *' into a register instead of user map_fd.
9624 * These pointers will be used later by verifier to validate map access.
9625 */
9626 return 0;
9627}
9628
9629/* drop refcnt of maps used by the rejected program */
58e2af8b 9630static void release_maps(struct bpf_verifier_env *env)
0246e64d 9631{
a2ea0746
DB
9632 __bpf_free_used_maps(env->prog->aux, env->used_maps,
9633 env->used_map_cnt);
0246e64d
AS
9634}
9635
9636/* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
58e2af8b 9637static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
0246e64d
AS
9638{
9639 struct bpf_insn *insn = env->prog->insnsi;
9640 int insn_cnt = env->prog->len;
9641 int i;
9642
9643 for (i = 0; i < insn_cnt; i++, insn++)
9644 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
9645 insn->src_reg = 0;
9646}
9647
8041902d
AS
9648/* single env->prog->insni[off] instruction was replaced with the range
9649 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying
9650 * [0, off) and [off, end) to new locations, so the patched range stays zero
9651 */
b325fbca
JW
9652static int adjust_insn_aux_data(struct bpf_verifier_env *env,
9653 struct bpf_prog *new_prog, u32 off, u32 cnt)
8041902d
AS
9654{
9655 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
b325fbca
JW
9656 struct bpf_insn *insn = new_prog->insnsi;
9657 u32 prog_len;
c131187d 9658 int i;
8041902d 9659
b325fbca
JW
9660 /* aux info at OFF always needs adjustment, no matter fast path
9661 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
9662 * original insn at old prog.
9663 */
9664 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
9665
8041902d
AS
9666 if (cnt == 1)
9667 return 0;
b325fbca 9668 prog_len = new_prog->len;
fad953ce
KC
9669 new_data = vzalloc(array_size(prog_len,
9670 sizeof(struct bpf_insn_aux_data)));
8041902d
AS
9671 if (!new_data)
9672 return -ENOMEM;
9673 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
9674 memcpy(new_data + off + cnt - 1, old_data + off,
9675 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
b325fbca 9676 for (i = off; i < off + cnt - 1; i++) {
51c39bb1 9677 new_data[i].seen = env->pass_cnt;
b325fbca
JW
9678 new_data[i].zext_dst = insn_has_def32(env, insn + i);
9679 }
8041902d
AS
9680 env->insn_aux_data = new_data;
9681 vfree(old_data);
9682 return 0;
9683}
9684
cc8b0b92
AS
9685static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
9686{
9687 int i;
9688
9689 if (len == 1)
9690 return;
4cb3d99c
JW
9691 /* NOTE: fake 'exit' subprog should be updated as well. */
9692 for (i = 0; i <= env->subprog_cnt; i++) {
afd59424 9693 if (env->subprog_info[i].start <= off)
cc8b0b92 9694 continue;
9c8105bd 9695 env->subprog_info[i].start += len - 1;
cc8b0b92
AS
9696 }
9697}
9698
a748c697
MF
9699static void adjust_poke_descs(struct bpf_prog *prog, u32 len)
9700{
9701 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
9702 int i, sz = prog->aux->size_poke_tab;
9703 struct bpf_jit_poke_descriptor *desc;
9704
9705 for (i = 0; i < sz; i++) {
9706 desc = &tab[i];
9707 desc->insn_idx += len - 1;
9708 }
9709}
9710
8041902d
AS
9711static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
9712 const struct bpf_insn *patch, u32 len)
9713{
9714 struct bpf_prog *new_prog;
9715
9716 new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
4f73379e
AS
9717 if (IS_ERR(new_prog)) {
9718 if (PTR_ERR(new_prog) == -ERANGE)
9719 verbose(env,
9720 "insn %d cannot be patched due to 16-bit range\n",
9721 env->insn_aux_data[off].orig_idx);
8041902d 9722 return NULL;
4f73379e 9723 }
b325fbca 9724 if (adjust_insn_aux_data(env, new_prog, off, len))
8041902d 9725 return NULL;
cc8b0b92 9726 adjust_subprog_starts(env, off, len);
a748c697 9727 adjust_poke_descs(new_prog, len);
8041902d
AS
9728 return new_prog;
9729}
9730
52875a04
JK
9731static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
9732 u32 off, u32 cnt)
9733{
9734 int i, j;
9735
9736 /* find first prog starting at or after off (first to remove) */
9737 for (i = 0; i < env->subprog_cnt; i++)
9738 if (env->subprog_info[i].start >= off)
9739 break;
9740 /* find first prog starting at or after off + cnt (first to stay) */
9741 for (j = i; j < env->subprog_cnt; j++)
9742 if (env->subprog_info[j].start >= off + cnt)
9743 break;
9744 /* if j doesn't start exactly at off + cnt, we are just removing
9745 * the front of previous prog
9746 */
9747 if (env->subprog_info[j].start != off + cnt)
9748 j--;
9749
9750 if (j > i) {
9751 struct bpf_prog_aux *aux = env->prog->aux;
9752 int move;
9753
9754 /* move fake 'exit' subprog as well */
9755 move = env->subprog_cnt + 1 - j;
9756
9757 memmove(env->subprog_info + i,
9758 env->subprog_info + j,
9759 sizeof(*env->subprog_info) * move);
9760 env->subprog_cnt -= j - i;
9761
9762 /* remove func_info */
9763 if (aux->func_info) {
9764 move = aux->func_info_cnt - j;
9765
9766 memmove(aux->func_info + i,
9767 aux->func_info + j,
9768 sizeof(*aux->func_info) * move);
9769 aux->func_info_cnt -= j - i;
9770 /* func_info->insn_off is set after all code rewrites,
9771 * in adjust_btf_func() - no need to adjust
9772 */
9773 }
9774 } else {
9775 /* convert i from "first prog to remove" to "first to adjust" */
9776 if (env->subprog_info[i].start == off)
9777 i++;
9778 }
9779
9780 /* update fake 'exit' subprog as well */
9781 for (; i <= env->subprog_cnt; i++)
9782 env->subprog_info[i].start -= cnt;
9783
9784 return 0;
9785}
9786
9787static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
9788 u32 cnt)
9789{
9790 struct bpf_prog *prog = env->prog;
9791 u32 i, l_off, l_cnt, nr_linfo;
9792 struct bpf_line_info *linfo;
9793
9794 nr_linfo = prog->aux->nr_linfo;
9795 if (!nr_linfo)
9796 return 0;
9797
9798 linfo = prog->aux->linfo;
9799
9800 /* find first line info to remove, count lines to be removed */
9801 for (i = 0; i < nr_linfo; i++)
9802 if (linfo[i].insn_off >= off)
9803 break;
9804
9805 l_off = i;
9806 l_cnt = 0;
9807 for (; i < nr_linfo; i++)
9808 if (linfo[i].insn_off < off + cnt)
9809 l_cnt++;
9810 else
9811 break;
9812
9813 /* First live insn doesn't match first live linfo, it needs to "inherit"
9814 * last removed linfo. prog is already modified, so prog->len == off
9815 * means no live instructions after (tail of the program was removed).
9816 */
9817 if (prog->len != off && l_cnt &&
9818 (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
9819 l_cnt--;
9820 linfo[--i].insn_off = off + cnt;
9821 }
9822
9823 /* remove the line info which refer to the removed instructions */
9824 if (l_cnt) {
9825 memmove(linfo + l_off, linfo + i,
9826 sizeof(*linfo) * (nr_linfo - i));
9827
9828 prog->aux->nr_linfo -= l_cnt;
9829 nr_linfo = prog->aux->nr_linfo;
9830 }
9831
9832 /* pull all linfo[i].insn_off >= off + cnt in by cnt */
9833 for (i = l_off; i < nr_linfo; i++)
9834 linfo[i].insn_off -= cnt;
9835
9836 /* fix up all subprogs (incl. 'exit') which start >= off */
9837 for (i = 0; i <= env->subprog_cnt; i++)
9838 if (env->subprog_info[i].linfo_idx > l_off) {
9839 /* program may have started in the removed region but
9840 * may not be fully removed
9841 */
9842 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
9843 env->subprog_info[i].linfo_idx -= l_cnt;
9844 else
9845 env->subprog_info[i].linfo_idx = l_off;
9846 }
9847
9848 return 0;
9849}
9850
9851static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
9852{
9853 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
9854 unsigned int orig_prog_len = env->prog->len;
9855 int err;
9856
08ca90af
JK
9857 if (bpf_prog_is_dev_bound(env->prog->aux))
9858 bpf_prog_offload_remove_insns(env, off, cnt);
9859
52875a04
JK
9860 err = bpf_remove_insns(env->prog, off, cnt);
9861 if (err)
9862 return err;
9863
9864 err = adjust_subprog_starts_after_remove(env, off, cnt);
9865 if (err)
9866 return err;
9867
9868 err = bpf_adj_linfo_after_remove(env, off, cnt);
9869 if (err)
9870 return err;
9871
9872 memmove(aux_data + off, aux_data + off + cnt,
9873 sizeof(*aux_data) * (orig_prog_len - off - cnt));
9874
9875 return 0;
9876}
9877
2a5418a1
DB
9878/* The verifier does more data flow analysis than llvm and will not
9879 * explore branches that are dead at run time. Malicious programs can
9880 * have dead code too. Therefore replace all dead at-run-time code
9881 * with 'ja -1'.
9882 *
9883 * Just nops are not optimal, e.g. if they would sit at the end of the
9884 * program and through another bug we would manage to jump there, then
9885 * we'd execute beyond program memory otherwise. Returning exception
9886 * code also wouldn't work since we can have subprogs where the dead
9887 * code could be located.
c131187d
AS
9888 */
9889static void sanitize_dead_code(struct bpf_verifier_env *env)
9890{
9891 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
2a5418a1 9892 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
c131187d
AS
9893 struct bpf_insn *insn = env->prog->insnsi;
9894 const int insn_cnt = env->prog->len;
9895 int i;
9896
9897 for (i = 0; i < insn_cnt; i++) {
9898 if (aux_data[i].seen)
9899 continue;
2a5418a1 9900 memcpy(insn + i, &trap, sizeof(trap));
c131187d
AS
9901 }
9902}
9903
e2ae4ca2
JK
9904static bool insn_is_cond_jump(u8 code)
9905{
9906 u8 op;
9907
092ed096
JW
9908 if (BPF_CLASS(code) == BPF_JMP32)
9909 return true;
9910
e2ae4ca2
JK
9911 if (BPF_CLASS(code) != BPF_JMP)
9912 return false;
9913
9914 op = BPF_OP(code);
9915 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
9916}
9917
9918static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
9919{
9920 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
9921 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
9922 struct bpf_insn *insn = env->prog->insnsi;
9923 const int insn_cnt = env->prog->len;
9924 int i;
9925
9926 for (i = 0; i < insn_cnt; i++, insn++) {
9927 if (!insn_is_cond_jump(insn->code))
9928 continue;
9929
9930 if (!aux_data[i + 1].seen)
9931 ja.off = insn->off;
9932 else if (!aux_data[i + 1 + insn->off].seen)
9933 ja.off = 0;
9934 else
9935 continue;
9936
08ca90af
JK
9937 if (bpf_prog_is_dev_bound(env->prog->aux))
9938 bpf_prog_offload_replace_insn(env, i, &ja);
9939
e2ae4ca2
JK
9940 memcpy(insn, &ja, sizeof(ja));
9941 }
9942}
9943
52875a04
JK
9944static int opt_remove_dead_code(struct bpf_verifier_env *env)
9945{
9946 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
9947 int insn_cnt = env->prog->len;
9948 int i, err;
9949
9950 for (i = 0; i < insn_cnt; i++) {
9951 int j;
9952
9953 j = 0;
9954 while (i + j < insn_cnt && !aux_data[i + j].seen)
9955 j++;
9956 if (!j)
9957 continue;
9958
9959 err = verifier_remove_insns(env, i, j);
9960 if (err)
9961 return err;
9962 insn_cnt = env->prog->len;
9963 }
9964
9965 return 0;
9966}
9967
a1b14abc
JK
9968static int opt_remove_nops(struct bpf_verifier_env *env)
9969{
9970 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
9971 struct bpf_insn *insn = env->prog->insnsi;
9972 int insn_cnt = env->prog->len;
9973 int i, err;
9974
9975 for (i = 0; i < insn_cnt; i++) {
9976 if (memcmp(&insn[i], &ja, sizeof(ja)))
9977 continue;
9978
9979 err = verifier_remove_insns(env, i, 1);
9980 if (err)
9981 return err;
9982 insn_cnt--;
9983 i--;
9984 }
9985
9986 return 0;
9987}
9988
d6c2308c
JW
9989static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
9990 const union bpf_attr *attr)
a4b1d3c1 9991{
d6c2308c 9992 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
a4b1d3c1 9993 struct bpf_insn_aux_data *aux = env->insn_aux_data;
d6c2308c 9994 int i, patch_len, delta = 0, len = env->prog->len;
a4b1d3c1 9995 struct bpf_insn *insns = env->prog->insnsi;
a4b1d3c1 9996 struct bpf_prog *new_prog;
d6c2308c 9997 bool rnd_hi32;
a4b1d3c1 9998
d6c2308c 9999 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
a4b1d3c1 10000 zext_patch[1] = BPF_ZEXT_REG(0);
d6c2308c
JW
10001 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
10002 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
10003 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
a4b1d3c1
JW
10004 for (i = 0; i < len; i++) {
10005 int adj_idx = i + delta;
10006 struct bpf_insn insn;
10007
d6c2308c
JW
10008 insn = insns[adj_idx];
10009 if (!aux[adj_idx].zext_dst) {
10010 u8 code, class;
10011 u32 imm_rnd;
10012
10013 if (!rnd_hi32)
10014 continue;
10015
10016 code = insn.code;
10017 class = BPF_CLASS(code);
10018 if (insn_no_def(&insn))
10019 continue;
10020
10021 /* NOTE: arg "reg" (the fourth one) is only used for
10022 * BPF_STX which has been ruled out in above
10023 * check, it is safe to pass NULL here.
10024 */
10025 if (is_reg64(env, &insn, insn.dst_reg, NULL, DST_OP)) {
10026 if (class == BPF_LD &&
10027 BPF_MODE(code) == BPF_IMM)
10028 i++;
10029 continue;
10030 }
10031
10032 /* ctx load could be transformed into wider load. */
10033 if (class == BPF_LDX &&
10034 aux[adj_idx].ptr_type == PTR_TO_CTX)
10035 continue;
10036
10037 imm_rnd = get_random_int();
10038 rnd_hi32_patch[0] = insn;
10039 rnd_hi32_patch[1].imm = imm_rnd;
10040 rnd_hi32_patch[3].dst_reg = insn.dst_reg;
10041 patch = rnd_hi32_patch;
10042 patch_len = 4;
10043 goto apply_patch_buffer;
10044 }
10045
10046 if (!bpf_jit_needs_zext())
a4b1d3c1
JW
10047 continue;
10048
a4b1d3c1
JW
10049 zext_patch[0] = insn;
10050 zext_patch[1].dst_reg = insn.dst_reg;
10051 zext_patch[1].src_reg = insn.dst_reg;
d6c2308c
JW
10052 patch = zext_patch;
10053 patch_len = 2;
10054apply_patch_buffer:
10055 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
a4b1d3c1
JW
10056 if (!new_prog)
10057 return -ENOMEM;
10058 env->prog = new_prog;
10059 insns = new_prog->insnsi;
10060 aux = env->insn_aux_data;
d6c2308c 10061 delta += patch_len - 1;
a4b1d3c1
JW
10062 }
10063
10064 return 0;
10065}
10066
c64b7983
JS
10067/* convert load instructions that access fields of a context type into a
10068 * sequence of instructions that access fields of the underlying structure:
10069 * struct __sk_buff -> struct sk_buff
10070 * struct bpf_sock_ops -> struct sock
9bac3d6d 10071 */
58e2af8b 10072static int convert_ctx_accesses(struct bpf_verifier_env *env)
9bac3d6d 10073{
00176a34 10074 const struct bpf_verifier_ops *ops = env->ops;
f96da094 10075 int i, cnt, size, ctx_field_size, delta = 0;
3df126f3 10076 const int insn_cnt = env->prog->len;
36bbef52 10077 struct bpf_insn insn_buf[16], *insn;
46f53a65 10078 u32 target_size, size_default, off;
9bac3d6d 10079 struct bpf_prog *new_prog;
d691f9e8 10080 enum bpf_access_type type;
f96da094 10081 bool is_narrower_load;
9bac3d6d 10082
b09928b9
DB
10083 if (ops->gen_prologue || env->seen_direct_write) {
10084 if (!ops->gen_prologue) {
10085 verbose(env, "bpf verifier is misconfigured\n");
10086 return -EINVAL;
10087 }
36bbef52
DB
10088 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
10089 env->prog);
10090 if (cnt >= ARRAY_SIZE(insn_buf)) {
61bd5218 10091 verbose(env, "bpf verifier is misconfigured\n");
36bbef52
DB
10092 return -EINVAL;
10093 } else if (cnt) {
8041902d 10094 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
36bbef52
DB
10095 if (!new_prog)
10096 return -ENOMEM;
8041902d 10097
36bbef52 10098 env->prog = new_prog;
3df126f3 10099 delta += cnt - 1;
36bbef52
DB
10100 }
10101 }
10102
c64b7983 10103 if (bpf_prog_is_dev_bound(env->prog->aux))
9bac3d6d
AS
10104 return 0;
10105
3df126f3 10106 insn = env->prog->insnsi + delta;
36bbef52 10107
9bac3d6d 10108 for (i = 0; i < insn_cnt; i++, insn++) {
c64b7983
JS
10109 bpf_convert_ctx_access_t convert_ctx_access;
10110
62c7989b
DB
10111 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
10112 insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
10113 insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
ea2e7ce5 10114 insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
d691f9e8 10115 type = BPF_READ;
62c7989b
DB
10116 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
10117 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
10118 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
ea2e7ce5 10119 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
d691f9e8
AS
10120 type = BPF_WRITE;
10121 else
9bac3d6d
AS
10122 continue;
10123
af86ca4e
AS
10124 if (type == BPF_WRITE &&
10125 env->insn_aux_data[i + delta].sanitize_stack_off) {
10126 struct bpf_insn patch[] = {
10127 /* Sanitize suspicious stack slot with zero.
10128 * There are no memory dependencies for this store,
10129 * since it's only using frame pointer and immediate
10130 * constant of zero
10131 */
10132 BPF_ST_MEM(BPF_DW, BPF_REG_FP,
10133 env->insn_aux_data[i + delta].sanitize_stack_off,
10134 0),
10135 /* the original STX instruction will immediately
10136 * overwrite the same stack slot with appropriate value
10137 */
10138 *insn,
10139 };
10140
10141 cnt = ARRAY_SIZE(patch);
10142 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
10143 if (!new_prog)
10144 return -ENOMEM;
10145
10146 delta += cnt - 1;
10147 env->prog = new_prog;
10148 insn = new_prog->insnsi + i + delta;
10149 continue;
10150 }
10151
c64b7983
JS
10152 switch (env->insn_aux_data[i + delta].ptr_type) {
10153 case PTR_TO_CTX:
10154 if (!ops->convert_ctx_access)
10155 continue;
10156 convert_ctx_access = ops->convert_ctx_access;
10157 break;
10158 case PTR_TO_SOCKET:
46f8bc92 10159 case PTR_TO_SOCK_COMMON:
c64b7983
JS
10160 convert_ctx_access = bpf_sock_convert_ctx_access;
10161 break;
655a51e5
MKL
10162 case PTR_TO_TCP_SOCK:
10163 convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
10164 break;
fada7fdc
JL
10165 case PTR_TO_XDP_SOCK:
10166 convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
10167 break;
2a02759e 10168 case PTR_TO_BTF_ID:
27ae7997
MKL
10169 if (type == BPF_READ) {
10170 insn->code = BPF_LDX | BPF_PROBE_MEM |
10171 BPF_SIZE((insn)->code);
10172 env->prog->aux->num_exentries++;
7e40781c 10173 } else if (resolve_prog_type(env->prog) != BPF_PROG_TYPE_STRUCT_OPS) {
2a02759e
AS
10174 verbose(env, "Writes through BTF pointers are not allowed\n");
10175 return -EINVAL;
10176 }
2a02759e 10177 continue;
c64b7983 10178 default:
9bac3d6d 10179 continue;
c64b7983 10180 }
9bac3d6d 10181
31fd8581 10182 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
f96da094 10183 size = BPF_LDST_BYTES(insn);
31fd8581
YS
10184
10185 /* If the read access is a narrower load of the field,
10186 * convert to a 4/8-byte load, to minimum program type specific
10187 * convert_ctx_access changes. If conversion is successful,
10188 * we will apply proper mask to the result.
10189 */
f96da094 10190 is_narrower_load = size < ctx_field_size;
46f53a65
AI
10191 size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
10192 off = insn->off;
31fd8581 10193 if (is_narrower_load) {
f96da094
DB
10194 u8 size_code;
10195
10196 if (type == BPF_WRITE) {
61bd5218 10197 verbose(env, "bpf verifier narrow ctx access misconfigured\n");
f96da094
DB
10198 return -EINVAL;
10199 }
31fd8581 10200
f96da094 10201 size_code = BPF_H;
31fd8581
YS
10202 if (ctx_field_size == 4)
10203 size_code = BPF_W;
10204 else if (ctx_field_size == 8)
10205 size_code = BPF_DW;
f96da094 10206
bc23105c 10207 insn->off = off & ~(size_default - 1);
31fd8581
YS
10208 insn->code = BPF_LDX | BPF_MEM | size_code;
10209 }
f96da094
DB
10210
10211 target_size = 0;
c64b7983
JS
10212 cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
10213 &target_size);
f96da094
DB
10214 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
10215 (ctx_field_size && !target_size)) {
61bd5218 10216 verbose(env, "bpf verifier is misconfigured\n");
9bac3d6d
AS
10217 return -EINVAL;
10218 }
f96da094
DB
10219
10220 if (is_narrower_load && size < target_size) {
d895a0f1
IL
10221 u8 shift = bpf_ctx_narrow_access_offset(
10222 off, size, size_default) * 8;
46f53a65
AI
10223 if (ctx_field_size <= 4) {
10224 if (shift)
10225 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
10226 insn->dst_reg,
10227 shift);
31fd8581 10228 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
f96da094 10229 (1 << size * 8) - 1);
46f53a65
AI
10230 } else {
10231 if (shift)
10232 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
10233 insn->dst_reg,
10234 shift);
31fd8581 10235 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
e2f7fc0a 10236 (1ULL << size * 8) - 1);
46f53a65 10237 }
31fd8581 10238 }
9bac3d6d 10239
8041902d 10240 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
9bac3d6d
AS
10241 if (!new_prog)
10242 return -ENOMEM;
10243
3df126f3 10244 delta += cnt - 1;
9bac3d6d
AS
10245
10246 /* keep walking new program and skip insns we just inserted */
10247 env->prog = new_prog;
3df126f3 10248 insn = new_prog->insnsi + i + delta;
9bac3d6d
AS
10249 }
10250
10251 return 0;
10252}
10253
1c2a088a
AS
10254static int jit_subprogs(struct bpf_verifier_env *env)
10255{
10256 struct bpf_prog *prog = env->prog, **func, *tmp;
10257 int i, j, subprog_start, subprog_end = 0, len, subprog;
a748c697 10258 struct bpf_map *map_ptr;
7105e828 10259 struct bpf_insn *insn;
1c2a088a 10260 void *old_bpf_func;
c4c0bdc0 10261 int err, num_exentries;
1c2a088a 10262
f910cefa 10263 if (env->subprog_cnt <= 1)
1c2a088a
AS
10264 return 0;
10265
7105e828 10266 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
1c2a088a
AS
10267 if (insn->code != (BPF_JMP | BPF_CALL) ||
10268 insn->src_reg != BPF_PSEUDO_CALL)
10269 continue;
c7a89784
DB
10270 /* Upon error here we cannot fall back to interpreter but
10271 * need a hard reject of the program. Thus -EFAULT is
10272 * propagated in any case.
10273 */
1c2a088a
AS
10274 subprog = find_subprog(env, i + insn->imm + 1);
10275 if (subprog < 0) {
10276 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
10277 i + insn->imm + 1);
10278 return -EFAULT;
10279 }
10280 /* temporarily remember subprog id inside insn instead of
10281 * aux_data, since next loop will split up all insns into funcs
10282 */
f910cefa 10283 insn->off = subprog;
1c2a088a
AS
10284 /* remember original imm in case JIT fails and fallback
10285 * to interpreter will be needed
10286 */
10287 env->insn_aux_data[i].call_imm = insn->imm;
10288 /* point imm to __bpf_call_base+1 from JITs point of view */
10289 insn->imm = 1;
10290 }
10291
c454a46b
MKL
10292 err = bpf_prog_alloc_jited_linfo(prog);
10293 if (err)
10294 goto out_undo_insn;
10295
10296 err = -ENOMEM;
6396bb22 10297 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
1c2a088a 10298 if (!func)
c7a89784 10299 goto out_undo_insn;
1c2a088a 10300
f910cefa 10301 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a 10302 subprog_start = subprog_end;
4cb3d99c 10303 subprog_end = env->subprog_info[i + 1].start;
1c2a088a
AS
10304
10305 len = subprog_end - subprog_start;
492ecee8
AS
10306 /* BPF_PROG_RUN doesn't call subprogs directly,
10307 * hence main prog stats include the runtime of subprogs.
10308 * subprogs don't have IDs and not reachable via prog_get_next_id
10309 * func[i]->aux->stats will never be accessed and stays NULL
10310 */
10311 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
1c2a088a
AS
10312 if (!func[i])
10313 goto out_free;
10314 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
10315 len * sizeof(struct bpf_insn));
4f74d809 10316 func[i]->type = prog->type;
1c2a088a 10317 func[i]->len = len;
4f74d809
DB
10318 if (bpf_prog_calc_tag(func[i]))
10319 goto out_free;
1c2a088a 10320 func[i]->is_func = 1;
ba64e7d8
YS
10321 func[i]->aux->func_idx = i;
10322 /* the btf and func_info will be freed only at prog->aux */
10323 func[i]->aux->btf = prog->aux->btf;
10324 func[i]->aux->func_info = prog->aux->func_info;
10325
a748c697
MF
10326 for (j = 0; j < prog->aux->size_poke_tab; j++) {
10327 u32 insn_idx = prog->aux->poke_tab[j].insn_idx;
10328 int ret;
10329
10330 if (!(insn_idx >= subprog_start &&
10331 insn_idx <= subprog_end))
10332 continue;
10333
10334 ret = bpf_jit_add_poke_descriptor(func[i],
10335 &prog->aux->poke_tab[j]);
10336 if (ret < 0) {
10337 verbose(env, "adding tail call poke descriptor failed\n");
10338 goto out_free;
10339 }
10340
10341 func[i]->insnsi[insn_idx - subprog_start].imm = ret + 1;
10342
10343 map_ptr = func[i]->aux->poke_tab[ret].tail_call.map;
10344 ret = map_ptr->ops->map_poke_track(map_ptr, func[i]->aux);
10345 if (ret < 0) {
10346 verbose(env, "tracking tail call prog failed\n");
10347 goto out_free;
10348 }
10349 }
10350
1c2a088a
AS
10351 /* Use bpf_prog_F_tag to indicate functions in stack traces.
10352 * Long term would need debug info to populate names
10353 */
10354 func[i]->aux->name[0] = 'F';
9c8105bd 10355 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
1c2a088a 10356 func[i]->jit_requested = 1;
c454a46b
MKL
10357 func[i]->aux->linfo = prog->aux->linfo;
10358 func[i]->aux->nr_linfo = prog->aux->nr_linfo;
10359 func[i]->aux->jited_linfo = prog->aux->jited_linfo;
10360 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
c4c0bdc0
YS
10361 num_exentries = 0;
10362 insn = func[i]->insnsi;
10363 for (j = 0; j < func[i]->len; j++, insn++) {
10364 if (BPF_CLASS(insn->code) == BPF_LDX &&
10365 BPF_MODE(insn->code) == BPF_PROBE_MEM)
10366 num_exentries++;
10367 }
10368 func[i]->aux->num_exentries = num_exentries;
ebf7d1f5 10369 func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable;
1c2a088a
AS
10370 func[i] = bpf_int_jit_compile(func[i]);
10371 if (!func[i]->jited) {
10372 err = -ENOTSUPP;
10373 goto out_free;
10374 }
10375 cond_resched();
10376 }
a748c697
MF
10377
10378 /* Untrack main program's aux structs so that during map_poke_run()
10379 * we will not stumble upon the unfilled poke descriptors; each
10380 * of the main program's poke descs got distributed across subprogs
10381 * and got tracked onto map, so we are sure that none of them will
10382 * be missed after the operation below
10383 */
10384 for (i = 0; i < prog->aux->size_poke_tab; i++) {
10385 map_ptr = prog->aux->poke_tab[i].tail_call.map;
10386
10387 map_ptr->ops->map_poke_untrack(map_ptr, prog->aux);
10388 }
10389
1c2a088a
AS
10390 /* at this point all bpf functions were successfully JITed
10391 * now populate all bpf_calls with correct addresses and
10392 * run last pass of JIT
10393 */
f910cefa 10394 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a
AS
10395 insn = func[i]->insnsi;
10396 for (j = 0; j < func[i]->len; j++, insn++) {
10397 if (insn->code != (BPF_JMP | BPF_CALL) ||
10398 insn->src_reg != BPF_PSEUDO_CALL)
10399 continue;
10400 subprog = insn->off;
0d306c31
PB
10401 insn->imm = BPF_CAST_CALL(func[subprog]->bpf_func) -
10402 __bpf_call_base;
1c2a088a 10403 }
2162fed4
SD
10404
10405 /* we use the aux data to keep a list of the start addresses
10406 * of the JITed images for each function in the program
10407 *
10408 * for some architectures, such as powerpc64, the imm field
10409 * might not be large enough to hold the offset of the start
10410 * address of the callee's JITed image from __bpf_call_base
10411 *
10412 * in such cases, we can lookup the start address of a callee
10413 * by using its subprog id, available from the off field of
10414 * the call instruction, as an index for this list
10415 */
10416 func[i]->aux->func = func;
10417 func[i]->aux->func_cnt = env->subprog_cnt;
1c2a088a 10418 }
f910cefa 10419 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a
AS
10420 old_bpf_func = func[i]->bpf_func;
10421 tmp = bpf_int_jit_compile(func[i]);
10422 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
10423 verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
c7a89784 10424 err = -ENOTSUPP;
1c2a088a
AS
10425 goto out_free;
10426 }
10427 cond_resched();
10428 }
10429
10430 /* finally lock prog and jit images for all functions and
10431 * populate kallsysm
10432 */
f910cefa 10433 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a
AS
10434 bpf_prog_lock_ro(func[i]);
10435 bpf_prog_kallsyms_add(func[i]);
10436 }
7105e828
DB
10437
10438 /* Last step: make now unused interpreter insns from main
10439 * prog consistent for later dump requests, so they can
10440 * later look the same as if they were interpreted only.
10441 */
10442 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
7105e828
DB
10443 if (insn->code != (BPF_JMP | BPF_CALL) ||
10444 insn->src_reg != BPF_PSEUDO_CALL)
10445 continue;
10446 insn->off = env->insn_aux_data[i].call_imm;
10447 subprog = find_subprog(env, i + insn->off + 1);
dbecd738 10448 insn->imm = subprog;
7105e828
DB
10449 }
10450
1c2a088a
AS
10451 prog->jited = 1;
10452 prog->bpf_func = func[0]->bpf_func;
10453 prog->aux->func = func;
f910cefa 10454 prog->aux->func_cnt = env->subprog_cnt;
c454a46b 10455 bpf_prog_free_unused_jited_linfo(prog);
1c2a088a
AS
10456 return 0;
10457out_free:
a748c697
MF
10458 for (i = 0; i < env->subprog_cnt; i++) {
10459 if (!func[i])
10460 continue;
10461
10462 for (j = 0; j < func[i]->aux->size_poke_tab; j++) {
10463 map_ptr = func[i]->aux->poke_tab[j].tail_call.map;
10464 map_ptr->ops->map_poke_untrack(map_ptr, func[i]->aux);
10465 }
10466 bpf_jit_free(func[i]);
10467 }
1c2a088a 10468 kfree(func);
c7a89784 10469out_undo_insn:
1c2a088a
AS
10470 /* cleanup main prog to be interpreted */
10471 prog->jit_requested = 0;
10472 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
10473 if (insn->code != (BPF_JMP | BPF_CALL) ||
10474 insn->src_reg != BPF_PSEUDO_CALL)
10475 continue;
10476 insn->off = 0;
10477 insn->imm = env->insn_aux_data[i].call_imm;
10478 }
c454a46b 10479 bpf_prog_free_jited_linfo(prog);
1c2a088a
AS
10480 return err;
10481}
10482
1ea47e01
AS
10483static int fixup_call_args(struct bpf_verifier_env *env)
10484{
19d28fbd 10485#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1ea47e01
AS
10486 struct bpf_prog *prog = env->prog;
10487 struct bpf_insn *insn = prog->insnsi;
10488 int i, depth;
19d28fbd 10489#endif
e4052d06 10490 int err = 0;
1ea47e01 10491
e4052d06
QM
10492 if (env->prog->jit_requested &&
10493 !bpf_prog_is_dev_bound(env->prog->aux)) {
19d28fbd
DM
10494 err = jit_subprogs(env);
10495 if (err == 0)
1c2a088a 10496 return 0;
c7a89784
DB
10497 if (err == -EFAULT)
10498 return err;
19d28fbd
DM
10499 }
10500#ifndef CONFIG_BPF_JIT_ALWAYS_ON
e411901c
MF
10501 if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) {
10502 /* When JIT fails the progs with bpf2bpf calls and tail_calls
10503 * have to be rejected, since interpreter doesn't support them yet.
10504 */
10505 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
10506 return -EINVAL;
10507 }
1ea47e01
AS
10508 for (i = 0; i < prog->len; i++, insn++) {
10509 if (insn->code != (BPF_JMP | BPF_CALL) ||
10510 insn->src_reg != BPF_PSEUDO_CALL)
10511 continue;
10512 depth = get_callee_stack_depth(env, insn, i);
10513 if (depth < 0)
10514 return depth;
10515 bpf_patch_call_args(insn, depth);
10516 }
19d28fbd
DM
10517 err = 0;
10518#endif
10519 return err;
1ea47e01
AS
10520}
10521
79741b3b 10522/* fixup insn->imm field of bpf_call instructions
81ed18ab 10523 * and inline eligible helpers as explicit sequence of BPF instructions
e245c5c6
AS
10524 *
10525 * this function is called after eBPF program passed verification
10526 */
79741b3b 10527static int fixup_bpf_calls(struct bpf_verifier_env *env)
e245c5c6 10528{
79741b3b 10529 struct bpf_prog *prog = env->prog;
d2e4c1e6 10530 bool expect_blinding = bpf_jit_blinding_enabled(prog);
79741b3b 10531 struct bpf_insn *insn = prog->insnsi;
e245c5c6 10532 const struct bpf_func_proto *fn;
79741b3b 10533 const int insn_cnt = prog->len;
09772d92 10534 const struct bpf_map_ops *ops;
c93552c4 10535 struct bpf_insn_aux_data *aux;
81ed18ab
AS
10536 struct bpf_insn insn_buf[16];
10537 struct bpf_prog *new_prog;
10538 struct bpf_map *map_ptr;
d2e4c1e6 10539 int i, ret, cnt, delta = 0;
e245c5c6 10540
79741b3b 10541 for (i = 0; i < insn_cnt; i++, insn++) {
f6b1b3bf
DB
10542 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
10543 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
10544 insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
68fda450 10545 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
f6b1b3bf
DB
10546 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
10547 struct bpf_insn mask_and_div[] = {
10548 BPF_MOV32_REG(insn->src_reg, insn->src_reg),
10549 /* Rx div 0 -> 0 */
10550 BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2),
10551 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
10552 BPF_JMP_IMM(BPF_JA, 0, 0, 1),
10553 *insn,
10554 };
10555 struct bpf_insn mask_and_mod[] = {
10556 BPF_MOV32_REG(insn->src_reg, insn->src_reg),
10557 /* Rx mod 0 -> Rx */
10558 BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1),
10559 *insn,
10560 };
10561 struct bpf_insn *patchlet;
10562
10563 if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
10564 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
10565 patchlet = mask_and_div + (is64 ? 1 : 0);
10566 cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0);
10567 } else {
10568 patchlet = mask_and_mod + (is64 ? 1 : 0);
10569 cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0);
10570 }
10571
10572 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
68fda450
AS
10573 if (!new_prog)
10574 return -ENOMEM;
10575
10576 delta += cnt - 1;
10577 env->prog = prog = new_prog;
10578 insn = new_prog->insnsi + i + delta;
10579 continue;
10580 }
10581
e0cea7ce
DB
10582 if (BPF_CLASS(insn->code) == BPF_LD &&
10583 (BPF_MODE(insn->code) == BPF_ABS ||
10584 BPF_MODE(insn->code) == BPF_IND)) {
10585 cnt = env->ops->gen_ld_abs(insn, insn_buf);
10586 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
10587 verbose(env, "bpf verifier is misconfigured\n");
10588 return -EINVAL;
10589 }
10590
10591 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
10592 if (!new_prog)
10593 return -ENOMEM;
10594
10595 delta += cnt - 1;
10596 env->prog = prog = new_prog;
10597 insn = new_prog->insnsi + i + delta;
10598 continue;
10599 }
10600
979d63d5
DB
10601 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
10602 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
10603 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
10604 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
10605 struct bpf_insn insn_buf[16];
10606 struct bpf_insn *patch = &insn_buf[0];
10607 bool issrc, isneg;
10608 u32 off_reg;
10609
10610 aux = &env->insn_aux_data[i + delta];
3612af78
DB
10611 if (!aux->alu_state ||
10612 aux->alu_state == BPF_ALU_NON_POINTER)
979d63d5
DB
10613 continue;
10614
10615 isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
10616 issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
10617 BPF_ALU_SANITIZE_SRC;
10618
10619 off_reg = issrc ? insn->src_reg : insn->dst_reg;
10620 if (isneg)
10621 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
10622 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit - 1);
10623 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
10624 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
10625 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
10626 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
10627 if (issrc) {
10628 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX,
10629 off_reg);
10630 insn->src_reg = BPF_REG_AX;
10631 } else {
10632 *patch++ = BPF_ALU64_REG(BPF_AND, off_reg,
10633 BPF_REG_AX);
10634 }
10635 if (isneg)
10636 insn->code = insn->code == code_add ?
10637 code_sub : code_add;
10638 *patch++ = *insn;
10639 if (issrc && isneg)
10640 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
10641 cnt = patch - insn_buf;
10642
10643 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
10644 if (!new_prog)
10645 return -ENOMEM;
10646
10647 delta += cnt - 1;
10648 env->prog = prog = new_prog;
10649 insn = new_prog->insnsi + i + delta;
10650 continue;
10651 }
10652
79741b3b
AS
10653 if (insn->code != (BPF_JMP | BPF_CALL))
10654 continue;
cc8b0b92
AS
10655 if (insn->src_reg == BPF_PSEUDO_CALL)
10656 continue;
e245c5c6 10657
79741b3b
AS
10658 if (insn->imm == BPF_FUNC_get_route_realm)
10659 prog->dst_needed = 1;
10660 if (insn->imm == BPF_FUNC_get_prandom_u32)
10661 bpf_user_rnd_init_once();
9802d865
JB
10662 if (insn->imm == BPF_FUNC_override_return)
10663 prog->kprobe_override = 1;
79741b3b 10664 if (insn->imm == BPF_FUNC_tail_call) {
7b9f6da1
DM
10665 /* If we tail call into other programs, we
10666 * cannot make any assumptions since they can
10667 * be replaced dynamically during runtime in
10668 * the program array.
10669 */
10670 prog->cb_access = 1;
e411901c
MF
10671 if (!allow_tail_call_in_subprogs(env))
10672 prog->aux->stack_depth = MAX_BPF_STACK;
10673 prog->aux->max_pkt_offset = MAX_PACKET_OFF;
7b9f6da1 10674
79741b3b
AS
10675 /* mark bpf_tail_call as different opcode to avoid
10676 * conditional branch in the interpeter for every normal
10677 * call and to prevent accidental JITing by JIT compiler
10678 * that doesn't support bpf_tail_call yet
e245c5c6 10679 */
79741b3b 10680 insn->imm = 0;
71189fa9 10681 insn->code = BPF_JMP | BPF_TAIL_CALL;
b2157399 10682
c93552c4 10683 aux = &env->insn_aux_data[i + delta];
2c78ee89 10684 if (env->bpf_capable && !expect_blinding &&
cc52d914 10685 prog->jit_requested &&
d2e4c1e6
DB
10686 !bpf_map_key_poisoned(aux) &&
10687 !bpf_map_ptr_poisoned(aux) &&
10688 !bpf_map_ptr_unpriv(aux)) {
10689 struct bpf_jit_poke_descriptor desc = {
10690 .reason = BPF_POKE_REASON_TAIL_CALL,
10691 .tail_call.map = BPF_MAP_PTR(aux->map_ptr_state),
10692 .tail_call.key = bpf_map_key_immediate(aux),
a748c697 10693 .insn_idx = i + delta,
d2e4c1e6
DB
10694 };
10695
10696 ret = bpf_jit_add_poke_descriptor(prog, &desc);
10697 if (ret < 0) {
10698 verbose(env, "adding tail call poke descriptor failed\n");
10699 return ret;
10700 }
10701
10702 insn->imm = ret + 1;
10703 continue;
10704 }
10705
c93552c4
DB
10706 if (!bpf_map_ptr_unpriv(aux))
10707 continue;
10708
b2157399
AS
10709 /* instead of changing every JIT dealing with tail_call
10710 * emit two extra insns:
10711 * if (index >= max_entries) goto out;
10712 * index &= array->index_mask;
10713 * to avoid out-of-bounds cpu speculation
10714 */
c93552c4 10715 if (bpf_map_ptr_poisoned(aux)) {
40950343 10716 verbose(env, "tail_call abusing map_ptr\n");
b2157399
AS
10717 return -EINVAL;
10718 }
c93552c4 10719
d2e4c1e6 10720 map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
b2157399
AS
10721 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
10722 map_ptr->max_entries, 2);
10723 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
10724 container_of(map_ptr,
10725 struct bpf_array,
10726 map)->index_mask);
10727 insn_buf[2] = *insn;
10728 cnt = 3;
10729 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
10730 if (!new_prog)
10731 return -ENOMEM;
10732
10733 delta += cnt - 1;
10734 env->prog = prog = new_prog;
10735 insn = new_prog->insnsi + i + delta;
79741b3b
AS
10736 continue;
10737 }
e245c5c6 10738
89c63074 10739 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
09772d92
DB
10740 * and other inlining handlers are currently limited to 64 bit
10741 * only.
89c63074 10742 */
60b58afc 10743 if (prog->jit_requested && BITS_PER_LONG == 64 &&
09772d92
DB
10744 (insn->imm == BPF_FUNC_map_lookup_elem ||
10745 insn->imm == BPF_FUNC_map_update_elem ||
84430d42
DB
10746 insn->imm == BPF_FUNC_map_delete_elem ||
10747 insn->imm == BPF_FUNC_map_push_elem ||
10748 insn->imm == BPF_FUNC_map_pop_elem ||
10749 insn->imm == BPF_FUNC_map_peek_elem)) {
c93552c4
DB
10750 aux = &env->insn_aux_data[i + delta];
10751 if (bpf_map_ptr_poisoned(aux))
10752 goto patch_call_imm;
10753
d2e4c1e6 10754 map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
09772d92
DB
10755 ops = map_ptr->ops;
10756 if (insn->imm == BPF_FUNC_map_lookup_elem &&
10757 ops->map_gen_lookup) {
10758 cnt = ops->map_gen_lookup(map_ptr, insn_buf);
10759 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
10760 verbose(env, "bpf verifier is misconfigured\n");
10761 return -EINVAL;
10762 }
81ed18ab 10763
09772d92
DB
10764 new_prog = bpf_patch_insn_data(env, i + delta,
10765 insn_buf, cnt);
10766 if (!new_prog)
10767 return -ENOMEM;
81ed18ab 10768
09772d92
DB
10769 delta += cnt - 1;
10770 env->prog = prog = new_prog;
10771 insn = new_prog->insnsi + i + delta;
10772 continue;
10773 }
81ed18ab 10774
09772d92
DB
10775 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
10776 (void *(*)(struct bpf_map *map, void *key))NULL));
10777 BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
10778 (int (*)(struct bpf_map *map, void *key))NULL));
10779 BUILD_BUG_ON(!__same_type(ops->map_update_elem,
10780 (int (*)(struct bpf_map *map, void *key, void *value,
10781 u64 flags))NULL));
84430d42
DB
10782 BUILD_BUG_ON(!__same_type(ops->map_push_elem,
10783 (int (*)(struct bpf_map *map, void *value,
10784 u64 flags))NULL));
10785 BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
10786 (int (*)(struct bpf_map *map, void *value))NULL));
10787 BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
10788 (int (*)(struct bpf_map *map, void *value))NULL));
10789
09772d92
DB
10790 switch (insn->imm) {
10791 case BPF_FUNC_map_lookup_elem:
10792 insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) -
10793 __bpf_call_base;
10794 continue;
10795 case BPF_FUNC_map_update_elem:
10796 insn->imm = BPF_CAST_CALL(ops->map_update_elem) -
10797 __bpf_call_base;
10798 continue;
10799 case BPF_FUNC_map_delete_elem:
10800 insn->imm = BPF_CAST_CALL(ops->map_delete_elem) -
10801 __bpf_call_base;
10802 continue;
84430d42
DB
10803 case BPF_FUNC_map_push_elem:
10804 insn->imm = BPF_CAST_CALL(ops->map_push_elem) -
10805 __bpf_call_base;
10806 continue;
10807 case BPF_FUNC_map_pop_elem:
10808 insn->imm = BPF_CAST_CALL(ops->map_pop_elem) -
10809 __bpf_call_base;
10810 continue;
10811 case BPF_FUNC_map_peek_elem:
10812 insn->imm = BPF_CAST_CALL(ops->map_peek_elem) -
10813 __bpf_call_base;
10814 continue;
09772d92 10815 }
81ed18ab 10816
09772d92 10817 goto patch_call_imm;
81ed18ab
AS
10818 }
10819
5576b991
MKL
10820 if (prog->jit_requested && BITS_PER_LONG == 64 &&
10821 insn->imm == BPF_FUNC_jiffies64) {
10822 struct bpf_insn ld_jiffies_addr[2] = {
10823 BPF_LD_IMM64(BPF_REG_0,
10824 (unsigned long)&jiffies),
10825 };
10826
10827 insn_buf[0] = ld_jiffies_addr[0];
10828 insn_buf[1] = ld_jiffies_addr[1];
10829 insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0,
10830 BPF_REG_0, 0);
10831 cnt = 3;
10832
10833 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
10834 cnt);
10835 if (!new_prog)
10836 return -ENOMEM;
10837
10838 delta += cnt - 1;
10839 env->prog = prog = new_prog;
10840 insn = new_prog->insnsi + i + delta;
10841 continue;
10842 }
10843
81ed18ab 10844patch_call_imm:
5e43f899 10845 fn = env->ops->get_func_proto(insn->imm, env->prog);
79741b3b
AS
10846 /* all functions that have prototype and verifier allowed
10847 * programs to call them, must be real in-kernel functions
10848 */
10849 if (!fn->func) {
61bd5218
JK
10850 verbose(env,
10851 "kernel subsystem misconfigured func %s#%d\n",
79741b3b
AS
10852 func_id_name(insn->imm), insn->imm);
10853 return -EFAULT;
e245c5c6 10854 }
79741b3b 10855 insn->imm = fn->func - __bpf_call_base;
e245c5c6 10856 }
e245c5c6 10857
d2e4c1e6
DB
10858 /* Since poke tab is now finalized, publish aux to tracker. */
10859 for (i = 0; i < prog->aux->size_poke_tab; i++) {
10860 map_ptr = prog->aux->poke_tab[i].tail_call.map;
10861 if (!map_ptr->ops->map_poke_track ||
10862 !map_ptr->ops->map_poke_untrack ||
10863 !map_ptr->ops->map_poke_run) {
10864 verbose(env, "bpf verifier is misconfigured\n");
10865 return -EINVAL;
10866 }
10867
10868 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
10869 if (ret < 0) {
10870 verbose(env, "tracking tail call prog failed\n");
10871 return ret;
10872 }
10873 }
10874
79741b3b
AS
10875 return 0;
10876}
e245c5c6 10877
58e2af8b 10878static void free_states(struct bpf_verifier_env *env)
f1bca824 10879{
58e2af8b 10880 struct bpf_verifier_state_list *sl, *sln;
f1bca824
AS
10881 int i;
10882
9f4686c4
AS
10883 sl = env->free_list;
10884 while (sl) {
10885 sln = sl->next;
10886 free_verifier_state(&sl->state, false);
10887 kfree(sl);
10888 sl = sln;
10889 }
51c39bb1 10890 env->free_list = NULL;
9f4686c4 10891
f1bca824
AS
10892 if (!env->explored_states)
10893 return;
10894
dc2a4ebc 10895 for (i = 0; i < state_htab_size(env); i++) {
f1bca824
AS
10896 sl = env->explored_states[i];
10897
a8f500af
AS
10898 while (sl) {
10899 sln = sl->next;
10900 free_verifier_state(&sl->state, false);
10901 kfree(sl);
10902 sl = sln;
10903 }
51c39bb1 10904 env->explored_states[i] = NULL;
f1bca824 10905 }
51c39bb1 10906}
f1bca824 10907
51c39bb1
AS
10908/* The verifier is using insn_aux_data[] to store temporary data during
10909 * verification and to store information for passes that run after the
10910 * verification like dead code sanitization. do_check_common() for subprogram N
10911 * may analyze many other subprograms. sanitize_insn_aux_data() clears all
10912 * temporary data after do_check_common() finds that subprogram N cannot be
10913 * verified independently. pass_cnt counts the number of times
10914 * do_check_common() was run and insn->aux->seen tells the pass number
10915 * insn_aux_data was touched. These variables are compared to clear temporary
10916 * data from failed pass. For testing and experiments do_check_common() can be
10917 * run multiple times even when prior attempt to verify is unsuccessful.
10918 */
10919static void sanitize_insn_aux_data(struct bpf_verifier_env *env)
10920{
10921 struct bpf_insn *insn = env->prog->insnsi;
10922 struct bpf_insn_aux_data *aux;
10923 int i, class;
10924
10925 for (i = 0; i < env->prog->len; i++) {
10926 class = BPF_CLASS(insn[i].code);
10927 if (class != BPF_LDX && class != BPF_STX)
10928 continue;
10929 aux = &env->insn_aux_data[i];
10930 if (aux->seen != env->pass_cnt)
10931 continue;
10932 memset(aux, 0, offsetof(typeof(*aux), orig_idx));
10933 }
f1bca824
AS
10934}
10935
51c39bb1
AS
10936static int do_check_common(struct bpf_verifier_env *env, int subprog)
10937{
6f8a57cc 10938 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
51c39bb1
AS
10939 struct bpf_verifier_state *state;
10940 struct bpf_reg_state *regs;
10941 int ret, i;
10942
10943 env->prev_linfo = NULL;
10944 env->pass_cnt++;
10945
10946 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
10947 if (!state)
10948 return -ENOMEM;
10949 state->curframe = 0;
10950 state->speculative = false;
10951 state->branches = 1;
10952 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
10953 if (!state->frame[0]) {
10954 kfree(state);
10955 return -ENOMEM;
10956 }
10957 env->cur_state = state;
10958 init_func_state(env, state->frame[0],
10959 BPF_MAIN_FUNC /* callsite */,
10960 0 /* frameno */,
10961 subprog);
10962
10963 regs = state->frame[state->curframe]->regs;
be8704ff 10964 if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) {
51c39bb1
AS
10965 ret = btf_prepare_func_args(env, subprog, regs);
10966 if (ret)
10967 goto out;
10968 for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
10969 if (regs[i].type == PTR_TO_CTX)
10970 mark_reg_known_zero(env, regs, i);
10971 else if (regs[i].type == SCALAR_VALUE)
10972 mark_reg_unknown(env, regs, i);
10973 }
10974 } else {
10975 /* 1st arg to a function */
10976 regs[BPF_REG_1].type = PTR_TO_CTX;
10977 mark_reg_known_zero(env, regs, BPF_REG_1);
10978 ret = btf_check_func_arg_match(env, subprog, regs);
10979 if (ret == -EFAULT)
10980 /* unlikely verifier bug. abort.
10981 * ret == 0 and ret < 0 are sadly acceptable for
10982 * main() function due to backward compatibility.
10983 * Like socket filter program may be written as:
10984 * int bpf_prog(struct pt_regs *ctx)
10985 * and never dereference that ctx in the program.
10986 * 'struct pt_regs' is a type mismatch for socket
10987 * filter that should be using 'struct __sk_buff'.
10988 */
10989 goto out;
10990 }
10991
10992 ret = do_check(env);
10993out:
f59bbfc2
AS
10994 /* check for NULL is necessary, since cur_state can be freed inside
10995 * do_check() under memory pressure.
10996 */
10997 if (env->cur_state) {
10998 free_verifier_state(env->cur_state, true);
10999 env->cur_state = NULL;
11000 }
6f8a57cc
AN
11001 while (!pop_stack(env, NULL, NULL, false));
11002 if (!ret && pop_log)
11003 bpf_vlog_reset(&env->log, 0);
51c39bb1
AS
11004 free_states(env);
11005 if (ret)
11006 /* clean aux data in case subprog was rejected */
11007 sanitize_insn_aux_data(env);
11008 return ret;
11009}
11010
11011/* Verify all global functions in a BPF program one by one based on their BTF.
11012 * All global functions must pass verification. Otherwise the whole program is rejected.
11013 * Consider:
11014 * int bar(int);
11015 * int foo(int f)
11016 * {
11017 * return bar(f);
11018 * }
11019 * int bar(int b)
11020 * {
11021 * ...
11022 * }
11023 * foo() will be verified first for R1=any_scalar_value. During verification it
11024 * will be assumed that bar() already verified successfully and call to bar()
11025 * from foo() will be checked for type match only. Later bar() will be verified
11026 * independently to check that it's safe for R1=any_scalar_value.
11027 */
11028static int do_check_subprogs(struct bpf_verifier_env *env)
11029{
11030 struct bpf_prog_aux *aux = env->prog->aux;
11031 int i, ret;
11032
11033 if (!aux->func_info)
11034 return 0;
11035
11036 for (i = 1; i < env->subprog_cnt; i++) {
11037 if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL)
11038 continue;
11039 env->insn_idx = env->subprog_info[i].start;
11040 WARN_ON_ONCE(env->insn_idx == 0);
11041 ret = do_check_common(env, i);
11042 if (ret) {
11043 return ret;
11044 } else if (env->log.level & BPF_LOG_LEVEL) {
11045 verbose(env,
11046 "Func#%d is safe for any args that match its prototype\n",
11047 i);
11048 }
11049 }
11050 return 0;
11051}
11052
11053static int do_check_main(struct bpf_verifier_env *env)
11054{
11055 int ret;
11056
11057 env->insn_idx = 0;
11058 ret = do_check_common(env, 0);
11059 if (!ret)
11060 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
11061 return ret;
11062}
11063
11064
06ee7115
AS
11065static void print_verification_stats(struct bpf_verifier_env *env)
11066{
11067 int i;
11068
11069 if (env->log.level & BPF_LOG_STATS) {
11070 verbose(env, "verification time %lld usec\n",
11071 div_u64(env->verification_time, 1000));
11072 verbose(env, "stack depth ");
11073 for (i = 0; i < env->subprog_cnt; i++) {
11074 u32 depth = env->subprog_info[i].stack_depth;
11075
11076 verbose(env, "%d", depth);
11077 if (i + 1 < env->subprog_cnt)
11078 verbose(env, "+");
11079 }
11080 verbose(env, "\n");
11081 }
11082 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
11083 "total_states %d peak_states %d mark_read %d\n",
11084 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
11085 env->max_states_per_insn, env->total_states,
11086 env->peak_states, env->longest_mark_read_walk);
f1bca824
AS
11087}
11088
27ae7997
MKL
11089static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
11090{
11091 const struct btf_type *t, *func_proto;
11092 const struct bpf_struct_ops *st_ops;
11093 const struct btf_member *member;
11094 struct bpf_prog *prog = env->prog;
11095 u32 btf_id, member_idx;
11096 const char *mname;
11097
11098 btf_id = prog->aux->attach_btf_id;
11099 st_ops = bpf_struct_ops_find(btf_id);
11100 if (!st_ops) {
11101 verbose(env, "attach_btf_id %u is not a supported struct\n",
11102 btf_id);
11103 return -ENOTSUPP;
11104 }
11105
11106 t = st_ops->type;
11107 member_idx = prog->expected_attach_type;
11108 if (member_idx >= btf_type_vlen(t)) {
11109 verbose(env, "attach to invalid member idx %u of struct %s\n",
11110 member_idx, st_ops->name);
11111 return -EINVAL;
11112 }
11113
11114 member = &btf_type_member(t)[member_idx];
11115 mname = btf_name_by_offset(btf_vmlinux, member->name_off);
11116 func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type,
11117 NULL);
11118 if (!func_proto) {
11119 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n",
11120 mname, member_idx, st_ops->name);
11121 return -EINVAL;
11122 }
11123
11124 if (st_ops->check_member) {
11125 int err = st_ops->check_member(t, member);
11126
11127 if (err) {
11128 verbose(env, "attach to unsupported member %s of struct %s\n",
11129 mname, st_ops->name);
11130 return err;
11131 }
11132 }
11133
11134 prog->aux->attach_func_proto = func_proto;
11135 prog->aux->attach_func_name = mname;
11136 env->ops = st_ops->verifier_ops;
11137
11138 return 0;
11139}
6ba43b76
KS
11140#define SECURITY_PREFIX "security_"
11141
18644cec 11142static int check_attach_modify_return(struct bpf_prog *prog, unsigned long addr)
6ba43b76 11143{
69191754
KS
11144 if (within_error_injection_list(addr) ||
11145 !strncmp(SECURITY_PREFIX, prog->aux->attach_func_name,
11146 sizeof(SECURITY_PREFIX) - 1))
6ba43b76 11147 return 0;
6ba43b76 11148
6ba43b76
KS
11149 return -EINVAL;
11150}
27ae7997 11151
1e6c62a8
AS
11152/* non exhaustive list of sleepable bpf_lsm_*() functions */
11153BTF_SET_START(btf_sleepable_lsm_hooks)
11154#ifdef CONFIG_BPF_LSM
1e6c62a8 11155BTF_ID(func, bpf_lsm_bprm_committed_creds)
29523c5e
AS
11156#else
11157BTF_ID_UNUSED
1e6c62a8
AS
11158#endif
11159BTF_SET_END(btf_sleepable_lsm_hooks)
11160
11161static int check_sleepable_lsm_hook(u32 btf_id)
11162{
11163 return btf_id_set_contains(&btf_sleepable_lsm_hooks, btf_id);
11164}
11165
11166/* list of non-sleepable functions that are otherwise on
11167 * ALLOW_ERROR_INJECTION list
11168 */
11169BTF_SET_START(btf_non_sleepable_error_inject)
11170/* Three functions below can be called from sleepable and non-sleepable context.
11171 * Assume non-sleepable from bpf safety point of view.
11172 */
11173BTF_ID(func, __add_to_page_cache_locked)
11174BTF_ID(func, should_fail_alloc_page)
11175BTF_ID(func, should_failslab)
11176BTF_SET_END(btf_non_sleepable_error_inject)
11177
11178static int check_non_sleepable_error_inject(u32 btf_id)
11179{
11180 return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id);
11181}
11182
38207291
MKL
11183static int check_attach_btf_id(struct bpf_verifier_env *env)
11184{
11185 struct bpf_prog *prog = env->prog;
be8704ff 11186 bool prog_extension = prog->type == BPF_PROG_TYPE_EXT;
5b92a28a 11187 struct bpf_prog *tgt_prog = prog->aux->linked_prog;
38207291 11188 u32 btf_id = prog->aux->attach_btf_id;
f1b9509c 11189 const char prefix[] = "btf_trace_";
15d83c4d 11190 struct btf_func_model fmodel;
5b92a28a 11191 int ret = 0, subprog = -1, i;
fec56f58 11192 struct bpf_trampoline *tr;
38207291 11193 const struct btf_type *t;
5b92a28a 11194 bool conservative = true;
38207291 11195 const char *tname;
5b92a28a 11196 struct btf *btf;
fec56f58 11197 long addr;
5b92a28a 11198 u64 key;
38207291 11199
1e6c62a8
AS
11200 if (prog->aux->sleepable && prog->type != BPF_PROG_TYPE_TRACING &&
11201 prog->type != BPF_PROG_TYPE_LSM) {
11202 verbose(env, "Only fentry/fexit/fmod_ret and lsm programs can be sleepable\n");
11203 return -EINVAL;
11204 }
11205
27ae7997
MKL
11206 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS)
11207 return check_struct_ops_btf_id(env);
11208
9e4e01df
KS
11209 if (prog->type != BPF_PROG_TYPE_TRACING &&
11210 prog->type != BPF_PROG_TYPE_LSM &&
11211 !prog_extension)
f1b9509c 11212 return 0;
38207291 11213
f1b9509c
AS
11214 if (!btf_id) {
11215 verbose(env, "Tracing programs must provide btf_id\n");
11216 return -EINVAL;
11217 }
5b92a28a
AS
11218 btf = bpf_prog_get_target_btf(prog);
11219 if (!btf) {
11220 verbose(env,
11221 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
11222 return -EINVAL;
11223 }
11224 t = btf_type_by_id(btf, btf_id);
f1b9509c
AS
11225 if (!t) {
11226 verbose(env, "attach_btf_id %u is invalid\n", btf_id);
11227 return -EINVAL;
11228 }
5b92a28a 11229 tname = btf_name_by_offset(btf, t->name_off);
f1b9509c
AS
11230 if (!tname) {
11231 verbose(env, "attach_btf_id %u doesn't have a name\n", btf_id);
11232 return -EINVAL;
11233 }
5b92a28a
AS
11234 if (tgt_prog) {
11235 struct bpf_prog_aux *aux = tgt_prog->aux;
11236
11237 for (i = 0; i < aux->func_info_cnt; i++)
11238 if (aux->func_info[i].type_id == btf_id) {
11239 subprog = i;
11240 break;
11241 }
11242 if (subprog == -1) {
11243 verbose(env, "Subprog %s doesn't exist\n", tname);
11244 return -EINVAL;
11245 }
11246 conservative = aux->func_info_aux[subprog].unreliable;
be8704ff
AS
11247 if (prog_extension) {
11248 if (conservative) {
11249 verbose(env,
11250 "Cannot replace static functions\n");
11251 return -EINVAL;
11252 }
11253 if (!prog->jit_requested) {
11254 verbose(env,
11255 "Extension programs should be JITed\n");
11256 return -EINVAL;
11257 }
11258 env->ops = bpf_verifier_ops[tgt_prog->type];
03f87c0b 11259 prog->expected_attach_type = tgt_prog->expected_attach_type;
be8704ff
AS
11260 }
11261 if (!tgt_prog->jited) {
11262 verbose(env, "Can attach to only JITed progs\n");
11263 return -EINVAL;
11264 }
11265 if (tgt_prog->type == prog->type) {
11266 /* Cannot fentry/fexit another fentry/fexit program.
11267 * Cannot attach program extension to another extension.
11268 * It's ok to attach fentry/fexit to extension program.
11269 */
11270 verbose(env, "Cannot recursively attach\n");
11271 return -EINVAL;
11272 }
11273 if (tgt_prog->type == BPF_PROG_TYPE_TRACING &&
11274 prog_extension &&
11275 (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY ||
11276 tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) {
11277 /* Program extensions can extend all program types
11278 * except fentry/fexit. The reason is the following.
11279 * The fentry/fexit programs are used for performance
11280 * analysis, stats and can be attached to any program
11281 * type except themselves. When extension program is
11282 * replacing XDP function it is necessary to allow
11283 * performance analysis of all functions. Both original
11284 * XDP program and its program extension. Hence
11285 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is
11286 * allowed. If extending of fentry/fexit was allowed it
11287 * would be possible to create long call chain
11288 * fentry->extension->fentry->extension beyond
11289 * reasonable stack size. Hence extending fentry is not
11290 * allowed.
11291 */
11292 verbose(env, "Cannot extend fentry/fexit\n");
11293 return -EINVAL;
11294 }
5b92a28a
AS
11295 key = ((u64)aux->id) << 32 | btf_id;
11296 } else {
be8704ff
AS
11297 if (prog_extension) {
11298 verbose(env, "Cannot replace kernel functions\n");
11299 return -EINVAL;
11300 }
5b92a28a
AS
11301 key = btf_id;
11302 }
f1b9509c
AS
11303
11304 switch (prog->expected_attach_type) {
11305 case BPF_TRACE_RAW_TP:
5b92a28a
AS
11306 if (tgt_prog) {
11307 verbose(env,
11308 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
11309 return -EINVAL;
11310 }
38207291
MKL
11311 if (!btf_type_is_typedef(t)) {
11312 verbose(env, "attach_btf_id %u is not a typedef\n",
11313 btf_id);
11314 return -EINVAL;
11315 }
f1b9509c 11316 if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
38207291
MKL
11317 verbose(env, "attach_btf_id %u points to wrong type name %s\n",
11318 btf_id, tname);
11319 return -EINVAL;
11320 }
11321 tname += sizeof(prefix) - 1;
5b92a28a 11322 t = btf_type_by_id(btf, t->type);
38207291
MKL
11323 if (!btf_type_is_ptr(t))
11324 /* should never happen in valid vmlinux build */
11325 return -EINVAL;
5b92a28a 11326 t = btf_type_by_id(btf, t->type);
38207291
MKL
11327 if (!btf_type_is_func_proto(t))
11328 /* should never happen in valid vmlinux build */
11329 return -EINVAL;
11330
11331 /* remember two read only pointers that are valid for
11332 * the life time of the kernel
11333 */
11334 prog->aux->attach_func_name = tname;
11335 prog->aux->attach_func_proto = t;
11336 prog->aux->attach_btf_trace = true;
f1b9509c 11337 return 0;
15d83c4d
YS
11338 case BPF_TRACE_ITER:
11339 if (!btf_type_is_func(t)) {
11340 verbose(env, "attach_btf_id %u is not a function\n",
11341 btf_id);
11342 return -EINVAL;
11343 }
11344 t = btf_type_by_id(btf, t->type);
11345 if (!btf_type_is_func_proto(t))
11346 return -EINVAL;
11347 prog->aux->attach_func_name = tname;
11348 prog->aux->attach_func_proto = t;
11349 if (!bpf_iter_prog_supported(prog))
11350 return -EINVAL;
11351 ret = btf_distill_func_proto(&env->log, btf, t,
11352 tname, &fmodel);
11353 return ret;
be8704ff
AS
11354 default:
11355 if (!prog_extension)
11356 return -EINVAL;
11357 /* fallthrough */
ae240823 11358 case BPF_MODIFY_RETURN:
9e4e01df 11359 case BPF_LSM_MAC:
fec56f58
AS
11360 case BPF_TRACE_FENTRY:
11361 case BPF_TRACE_FEXIT:
9e4e01df
KS
11362 prog->aux->attach_func_name = tname;
11363 if (prog->type == BPF_PROG_TYPE_LSM) {
11364 ret = bpf_lsm_verify_prog(&env->log, prog);
11365 if (ret < 0)
11366 return ret;
11367 }
11368
fec56f58
AS
11369 if (!btf_type_is_func(t)) {
11370 verbose(env, "attach_btf_id %u is not a function\n",
11371 btf_id);
11372 return -EINVAL;
11373 }
be8704ff
AS
11374 if (prog_extension &&
11375 btf_check_type_match(env, prog, btf, t))
11376 return -EINVAL;
5b92a28a 11377 t = btf_type_by_id(btf, t->type);
fec56f58
AS
11378 if (!btf_type_is_func_proto(t))
11379 return -EINVAL;
5b92a28a 11380 tr = bpf_trampoline_lookup(key);
fec56f58
AS
11381 if (!tr)
11382 return -ENOMEM;
5b92a28a 11383 /* t is either vmlinux type or another program's type */
fec56f58
AS
11384 prog->aux->attach_func_proto = t;
11385 mutex_lock(&tr->mutex);
11386 if (tr->func.addr) {
11387 prog->aux->trampoline = tr;
11388 goto out;
11389 }
5b92a28a
AS
11390 if (tgt_prog && conservative) {
11391 prog->aux->attach_func_proto = NULL;
11392 t = NULL;
11393 }
11394 ret = btf_distill_func_proto(&env->log, btf, t,
fec56f58
AS
11395 tname, &tr->func.model);
11396 if (ret < 0)
11397 goto out;
5b92a28a 11398 if (tgt_prog) {
e9eeec58
YS
11399 if (subprog == 0)
11400 addr = (long) tgt_prog->bpf_func;
11401 else
11402 addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
5b92a28a
AS
11403 } else {
11404 addr = kallsyms_lookup_name(tname);
11405 if (!addr) {
11406 verbose(env,
11407 "The address of function %s cannot be found\n",
11408 tname);
11409 ret = -ENOENT;
11410 goto out;
11411 }
fec56f58 11412 }
18644cec 11413
1e6c62a8
AS
11414 if (prog->aux->sleepable) {
11415 ret = -EINVAL;
11416 switch (prog->type) {
11417 case BPF_PROG_TYPE_TRACING:
11418 /* fentry/fexit/fmod_ret progs can be sleepable only if they are
11419 * attached to ALLOW_ERROR_INJECTION and are not in denylist.
11420 */
11421 if (!check_non_sleepable_error_inject(btf_id) &&
11422 within_error_injection_list(addr))
11423 ret = 0;
11424 break;
11425 case BPF_PROG_TYPE_LSM:
11426 /* LSM progs check that they are attached to bpf_lsm_*() funcs.
11427 * Only some of them are sleepable.
11428 */
11429 if (check_sleepable_lsm_hook(btf_id))
11430 ret = 0;
11431 break;
11432 default:
11433 break;
11434 }
11435 if (ret)
11436 verbose(env, "%s is not sleepable\n",
11437 prog->aux->attach_func_name);
11438 } else if (prog->expected_attach_type == BPF_MODIFY_RETURN) {
18644cec
AS
11439 ret = check_attach_modify_return(prog, addr);
11440 if (ret)
11441 verbose(env, "%s() is not modifiable\n",
11442 prog->aux->attach_func_name);
11443 }
18644cec
AS
11444 if (ret)
11445 goto out;
fec56f58
AS
11446 tr->func.addr = (void *)addr;
11447 prog->aux->trampoline = tr;
11448out:
11449 mutex_unlock(&tr->mutex);
11450 if (ret)
11451 bpf_trampoline_put(tr);
11452 return ret;
38207291 11453 }
38207291
MKL
11454}
11455
838e9690
YS
11456int bpf_check(struct bpf_prog **prog, union bpf_attr *attr,
11457 union bpf_attr __user *uattr)
51580e79 11458{
06ee7115 11459 u64 start_time = ktime_get_ns();
58e2af8b 11460 struct bpf_verifier_env *env;
b9193c1b 11461 struct bpf_verifier_log *log;
9e4c24e7 11462 int i, len, ret = -EINVAL;
e2ae4ca2 11463 bool is_priv;
51580e79 11464
eba0c929
AB
11465 /* no program is valid */
11466 if (ARRAY_SIZE(bpf_verifier_ops) == 0)
11467 return -EINVAL;
11468
58e2af8b 11469 /* 'struct bpf_verifier_env' can be global, but since it's not small,
cbd35700
AS
11470 * allocate/free it every time bpf_check() is called
11471 */
58e2af8b 11472 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
cbd35700
AS
11473 if (!env)
11474 return -ENOMEM;
61bd5218 11475 log = &env->log;
cbd35700 11476
9e4c24e7 11477 len = (*prog)->len;
fad953ce 11478 env->insn_aux_data =
9e4c24e7 11479 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
3df126f3
JK
11480 ret = -ENOMEM;
11481 if (!env->insn_aux_data)
11482 goto err_free_env;
9e4c24e7
JK
11483 for (i = 0; i < len; i++)
11484 env->insn_aux_data[i].orig_idx = i;
9bac3d6d 11485 env->prog = *prog;
00176a34 11486 env->ops = bpf_verifier_ops[env->prog->type];
2c78ee89 11487 is_priv = bpf_capable();
0246e64d 11488
8580ac94
AS
11489 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
11490 mutex_lock(&bpf_verifier_lock);
11491 if (!btf_vmlinux)
11492 btf_vmlinux = btf_parse_vmlinux();
11493 mutex_unlock(&bpf_verifier_lock);
11494 }
11495
cbd35700 11496 /* grab the mutex to protect few globals used by verifier */
45a73c17
AS
11497 if (!is_priv)
11498 mutex_lock(&bpf_verifier_lock);
cbd35700
AS
11499
11500 if (attr->log_level || attr->log_buf || attr->log_size) {
11501 /* user requested verbose verifier output
11502 * and supplied buffer to store the verification trace
11503 */
e7bf8249
JK
11504 log->level = attr->log_level;
11505 log->ubuf = (char __user *) (unsigned long) attr->log_buf;
11506 log->len_total = attr->log_size;
cbd35700
AS
11507
11508 ret = -EINVAL;
e7bf8249 11509 /* log attributes have to be sane */
7a9f5c65 11510 if (log->len_total < 128 || log->len_total > UINT_MAX >> 2 ||
06ee7115 11511 !log->level || !log->ubuf || log->level & ~BPF_LOG_MASK)
3df126f3 11512 goto err_unlock;
cbd35700 11513 }
1ad2f583 11514
8580ac94
AS
11515 if (IS_ERR(btf_vmlinux)) {
11516 /* Either gcc or pahole or kernel are broken. */
11517 verbose(env, "in-kernel BTF is malformed\n");
11518 ret = PTR_ERR(btf_vmlinux);
38207291 11519 goto skip_full_check;
8580ac94
AS
11520 }
11521
1ad2f583
DB
11522 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
11523 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
e07b98d9 11524 env->strict_alignment = true;
e9ee9efc
DM
11525 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
11526 env->strict_alignment = false;
cbd35700 11527
2c78ee89 11528 env->allow_ptr_leaks = bpf_allow_ptr_leaks();
41c48f3a 11529 env->allow_ptr_to_map_access = bpf_allow_ptr_to_map_access();
2c78ee89
AS
11530 env->bypass_spec_v1 = bpf_bypass_spec_v1();
11531 env->bypass_spec_v4 = bpf_bypass_spec_v4();
11532 env->bpf_capable = bpf_capable();
e2ae4ca2 11533
10d274e8
AS
11534 if (is_priv)
11535 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
11536
f4e3ec0d
JK
11537 ret = replace_map_fd_with_map_ptr(env);
11538 if (ret < 0)
11539 goto skip_full_check;
11540
cae1927c 11541 if (bpf_prog_is_dev_bound(env->prog->aux)) {
a40a2632 11542 ret = bpf_prog_offload_verifier_prep(env->prog);
ab3f0063 11543 if (ret)
f4e3ec0d 11544 goto skip_full_check;
ab3f0063
JK
11545 }
11546
dc2a4ebc 11547 env->explored_states = kvcalloc(state_htab_size(env),
58e2af8b 11548 sizeof(struct bpf_verifier_state_list *),
f1bca824
AS
11549 GFP_USER);
11550 ret = -ENOMEM;
11551 if (!env->explored_states)
11552 goto skip_full_check;
11553
d9762e84 11554 ret = check_subprogs(env);
475fb78f
AS
11555 if (ret < 0)
11556 goto skip_full_check;
11557
c454a46b 11558 ret = check_btf_info(env, attr, uattr);
838e9690
YS
11559 if (ret < 0)
11560 goto skip_full_check;
11561
be8704ff
AS
11562 ret = check_attach_btf_id(env);
11563 if (ret)
11564 goto skip_full_check;
11565
d9762e84
MKL
11566 ret = check_cfg(env);
11567 if (ret < 0)
11568 goto skip_full_check;
11569
51c39bb1
AS
11570 ret = do_check_subprogs(env);
11571 ret = ret ?: do_check_main(env);
cbd35700 11572
c941ce9c
QM
11573 if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux))
11574 ret = bpf_prog_offload_finalize(env);
11575
0246e64d 11576skip_full_check:
51c39bb1 11577 kvfree(env->explored_states);
0246e64d 11578
c131187d 11579 if (ret == 0)
9b38c405 11580 ret = check_max_stack_depth(env);
c131187d 11581
9b38c405 11582 /* instruction rewrites happen after this point */
e2ae4ca2
JK
11583 if (is_priv) {
11584 if (ret == 0)
11585 opt_hard_wire_dead_code_branches(env);
52875a04
JK
11586 if (ret == 0)
11587 ret = opt_remove_dead_code(env);
a1b14abc
JK
11588 if (ret == 0)
11589 ret = opt_remove_nops(env);
52875a04
JK
11590 } else {
11591 if (ret == 0)
11592 sanitize_dead_code(env);
e2ae4ca2
JK
11593 }
11594
9bac3d6d
AS
11595 if (ret == 0)
11596 /* program is valid, convert *(u32*)(ctx + off) accesses */
11597 ret = convert_ctx_accesses(env);
11598
e245c5c6 11599 if (ret == 0)
79741b3b 11600 ret = fixup_bpf_calls(env);
e245c5c6 11601
a4b1d3c1
JW
11602 /* do 32-bit optimization after insn patching has done so those patched
11603 * insns could be handled correctly.
11604 */
d6c2308c
JW
11605 if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) {
11606 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
11607 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
11608 : false;
a4b1d3c1
JW
11609 }
11610
1ea47e01
AS
11611 if (ret == 0)
11612 ret = fixup_call_args(env);
11613
06ee7115
AS
11614 env->verification_time = ktime_get_ns() - start_time;
11615 print_verification_stats(env);
11616
a2a7d570 11617 if (log->level && bpf_verifier_log_full(log))
cbd35700 11618 ret = -ENOSPC;
a2a7d570 11619 if (log->level && !log->ubuf) {
cbd35700 11620 ret = -EFAULT;
a2a7d570 11621 goto err_release_maps;
cbd35700
AS
11622 }
11623
0246e64d
AS
11624 if (ret == 0 && env->used_map_cnt) {
11625 /* if program passed verifier, update used_maps in bpf_prog_info */
9bac3d6d
AS
11626 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
11627 sizeof(env->used_maps[0]),
11628 GFP_KERNEL);
0246e64d 11629
9bac3d6d 11630 if (!env->prog->aux->used_maps) {
0246e64d 11631 ret = -ENOMEM;
a2a7d570 11632 goto err_release_maps;
0246e64d
AS
11633 }
11634
9bac3d6d 11635 memcpy(env->prog->aux->used_maps, env->used_maps,
0246e64d 11636 sizeof(env->used_maps[0]) * env->used_map_cnt);
9bac3d6d 11637 env->prog->aux->used_map_cnt = env->used_map_cnt;
0246e64d
AS
11638
11639 /* program is valid. Convert pseudo bpf_ld_imm64 into generic
11640 * bpf_ld_imm64 instructions
11641 */
11642 convert_pseudo_ld_imm64(env);
11643 }
cbd35700 11644
ba64e7d8
YS
11645 if (ret == 0)
11646 adjust_btf_func(env);
11647
a2a7d570 11648err_release_maps:
9bac3d6d 11649 if (!env->prog->aux->used_maps)
0246e64d 11650 /* if we didn't copy map pointers into bpf_prog_info, release
ab7f5bf0 11651 * them now. Otherwise free_used_maps() will release them.
0246e64d
AS
11652 */
11653 release_maps(env);
03f87c0b
THJ
11654
11655 /* extension progs temporarily inherit the attach_type of their targets
11656 for verification purposes, so set it back to zero before returning
11657 */
11658 if (env->prog->type == BPF_PROG_TYPE_EXT)
11659 env->prog->expected_attach_type = 0;
11660
9bac3d6d 11661 *prog = env->prog;
3df126f3 11662err_unlock:
45a73c17
AS
11663 if (!is_priv)
11664 mutex_unlock(&bpf_verifier_lock);
3df126f3
JK
11665 vfree(env->insn_aux_data);
11666err_free_env:
11667 kfree(env);
51580e79
AS
11668 return ret;
11669}