]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - kernel/cgroup/cgroup-v1.c
sched/headers: Move task->mm coredumping related defines and methods from <linux...
[mirror_ubuntu-bionic-kernel.git] / kernel / cgroup / cgroup-v1.c
CommitLineData
0a268dbd
TH
1#include "cgroup-internal.h"
2
1592c9b2 3#include <linux/ctype.h>
0a268dbd
TH
4#include <linux/kmod.h>
5#include <linux/sort.h>
1592c9b2 6#include <linux/delay.h>
0a268dbd
TH
7#include <linux/mm.h>
8#include <linux/slab.h>
9#include <linux/vmalloc.h>
10#include <linux/delayacct.h>
11#include <linux/pid_namespace.h>
12#include <linux/cgroupstats.h>
13
14#include <trace/events/cgroup.h>
15
16/*
17 * pidlists linger the following amount before being destroyed. The goal
18 * is avoiding frequent destruction in the middle of consecutive read calls
19 * Expiring in the middle is a performance problem not a correctness one.
20 * 1 sec should be enough.
21 */
22#define CGROUP_PIDLIST_DESTROY_DELAY HZ
23
24/* Controllers blocked by the commandline in v1 */
25static u16 cgroup_no_v1_mask;
26
27/*
28 * pidlist destructions need to be flushed on cgroup destruction. Use a
29 * separate workqueue as flush domain.
30 */
31static struct workqueue_struct *cgroup_pidlist_destroy_wq;
32
33/*
34 * Protects cgroup_subsys->release_agent_path. Modifying it also requires
35 * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock.
36 */
1592c9b2 37static DEFINE_SPINLOCK(release_agent_path_lock);
0a268dbd 38
d62beb7f 39bool cgroup1_ssid_disabled(int ssid)
0a268dbd
TH
40{
41 return cgroup_no_v1_mask & (1 << ssid);
42}
43
44/**
45 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
46 * @from: attach to all cgroups of a given task
47 * @tsk: the task to be attached
48 */
49int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
50{
51 struct cgroup_root *root;
52 int retval = 0;
53
54 mutex_lock(&cgroup_mutex);
55 percpu_down_write(&cgroup_threadgroup_rwsem);
56 for_each_root(root) {
57 struct cgroup *from_cgrp;
58
59 if (root == &cgrp_dfl_root)
60 continue;
61
62 spin_lock_irq(&css_set_lock);
63 from_cgrp = task_cgroup_from_root(from, root);
64 spin_unlock_irq(&css_set_lock);
65
66 retval = cgroup_attach_task(from_cgrp, tsk, false);
67 if (retval)
68 break;
69 }
70 percpu_up_write(&cgroup_threadgroup_rwsem);
71 mutex_unlock(&cgroup_mutex);
72
73 return retval;
74}
75EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
76
77/**
78 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
79 * @to: cgroup to which the tasks will be moved
80 * @from: cgroup in which the tasks currently reside
81 *
82 * Locking rules between cgroup_post_fork() and the migration path
83 * guarantee that, if a task is forking while being migrated, the new child
84 * is guaranteed to be either visible in the source cgroup after the
85 * parent's migration is complete or put into the target cgroup. No task
86 * can slip out of migration through forking.
87 */
88int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
89{
e595cd70 90 DEFINE_CGROUP_MGCTX(mgctx);
0a268dbd
TH
91 struct cgrp_cset_link *link;
92 struct css_task_iter it;
93 struct task_struct *task;
94 int ret;
95
96 if (cgroup_on_dfl(to))
97 return -EINVAL;
98
99 if (!cgroup_may_migrate_to(to))
100 return -EBUSY;
101
102 mutex_lock(&cgroup_mutex);
103
104 percpu_down_write(&cgroup_threadgroup_rwsem);
105
106 /* all tasks in @from are being moved, all csets are source */
107 spin_lock_irq(&css_set_lock);
108 list_for_each_entry(link, &from->cset_links, cset_link)
e595cd70 109 cgroup_migrate_add_src(link->cset, to, &mgctx);
0a268dbd
TH
110 spin_unlock_irq(&css_set_lock);
111
e595cd70 112 ret = cgroup_migrate_prepare_dst(&mgctx);
0a268dbd
TH
113 if (ret)
114 goto out_err;
115
116 /*
117 * Migrate tasks one-by-one until @from is empty. This fails iff
118 * ->can_attach() fails.
119 */
120 do {
121 css_task_iter_start(&from->self, &it);
122 task = css_task_iter_next(&it);
123 if (task)
124 get_task_struct(task);
125 css_task_iter_end(&it);
126
127 if (task) {
bfc2cf6f 128 ret = cgroup_migrate(task, false, &mgctx);
0a268dbd
TH
129 if (!ret)
130 trace_cgroup_transfer_tasks(to, task, false);
131 put_task_struct(task);
132 }
133 } while (task && !ret);
134out_err:
e595cd70 135 cgroup_migrate_finish(&mgctx);
0a268dbd
TH
136 percpu_up_write(&cgroup_threadgroup_rwsem);
137 mutex_unlock(&cgroup_mutex);
138 return ret;
139}
140
141/*
142 * Stuff for reading the 'tasks'/'procs' files.
143 *
144 * Reading this file can return large amounts of data if a cgroup has
145 * *lots* of attached tasks. So it may need several calls to read(),
146 * but we cannot guarantee that the information we produce is correct
147 * unless we produce it entirely atomically.
148 *
149 */
150
151/* which pidlist file are we talking about? */
152enum cgroup_filetype {
153 CGROUP_FILE_PROCS,
154 CGROUP_FILE_TASKS,
155};
156
157/*
158 * A pidlist is a list of pids that virtually represents the contents of one
159 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
160 * a pair (one each for procs, tasks) for each pid namespace that's relevant
161 * to the cgroup.
162 */
163struct cgroup_pidlist {
164 /*
165 * used to find which pidlist is wanted. doesn't change as long as
166 * this particular list stays in the list.
167 */
168 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
169 /* array of xids */
170 pid_t *list;
171 /* how many elements the above list has */
172 int length;
173 /* each of these stored in a list by its cgroup */
174 struct list_head links;
175 /* pointer to the cgroup we belong to, for list removal purposes */
176 struct cgroup *owner;
177 /* for delayed destruction */
178 struct delayed_work destroy_dwork;
179};
180
181/*
182 * The following two functions "fix" the issue where there are more pids
183 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
184 * TODO: replace with a kernel-wide solution to this problem
185 */
186#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
187static void *pidlist_allocate(int count)
188{
189 if (PIDLIST_TOO_LARGE(count))
190 return vmalloc(count * sizeof(pid_t));
191 else
192 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
193}
194
195static void pidlist_free(void *p)
196{
197 kvfree(p);
198}
199
200/*
201 * Used to destroy all pidlists lingering waiting for destroy timer. None
202 * should be left afterwards.
203 */
d62beb7f 204void cgroup1_pidlist_destroy_all(struct cgroup *cgrp)
0a268dbd
TH
205{
206 struct cgroup_pidlist *l, *tmp_l;
207
208 mutex_lock(&cgrp->pidlist_mutex);
209 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
210 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
211 mutex_unlock(&cgrp->pidlist_mutex);
212
213 flush_workqueue(cgroup_pidlist_destroy_wq);
214 BUG_ON(!list_empty(&cgrp->pidlists));
215}
216
217static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
218{
219 struct delayed_work *dwork = to_delayed_work(work);
220 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
221 destroy_dwork);
222 struct cgroup_pidlist *tofree = NULL;
223
224 mutex_lock(&l->owner->pidlist_mutex);
225
226 /*
227 * Destroy iff we didn't get queued again. The state won't change
228 * as destroy_dwork can only be queued while locked.
229 */
230 if (!delayed_work_pending(dwork)) {
231 list_del(&l->links);
232 pidlist_free(l->list);
233 put_pid_ns(l->key.ns);
234 tofree = l;
235 }
236
237 mutex_unlock(&l->owner->pidlist_mutex);
238 kfree(tofree);
239}
240
241/*
242 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
243 * Returns the number of unique elements.
244 */
245static int pidlist_uniq(pid_t *list, int length)
246{
247 int src, dest = 1;
248
249 /*
250 * we presume the 0th element is unique, so i starts at 1. trivial
251 * edge cases first; no work needs to be done for either
252 */
253 if (length == 0 || length == 1)
254 return length;
255 /* src and dest walk down the list; dest counts unique elements */
256 for (src = 1; src < length; src++) {
257 /* find next unique element */
258 while (list[src] == list[src-1]) {
259 src++;
260 if (src == length)
261 goto after;
262 }
263 /* dest always points to where the next unique element goes */
264 list[dest] = list[src];
265 dest++;
266 }
267after:
268 return dest;
269}
270
271/*
272 * The two pid files - task and cgroup.procs - guaranteed that the result
273 * is sorted, which forced this whole pidlist fiasco. As pid order is
274 * different per namespace, each namespace needs differently sorted list,
275 * making it impossible to use, for example, single rbtree of member tasks
276 * sorted by task pointer. As pidlists can be fairly large, allocating one
277 * per open file is dangerous, so cgroup had to implement shared pool of
278 * pidlists keyed by cgroup and namespace.
279 */
280static int cmppid(const void *a, const void *b)
281{
282 return *(pid_t *)a - *(pid_t *)b;
283}
284
285static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
286 enum cgroup_filetype type)
287{
288 struct cgroup_pidlist *l;
289 /* don't need task_nsproxy() if we're looking at ourself */
290 struct pid_namespace *ns = task_active_pid_ns(current);
291
292 lockdep_assert_held(&cgrp->pidlist_mutex);
293
294 list_for_each_entry(l, &cgrp->pidlists, links)
295 if (l->key.type == type && l->key.ns == ns)
296 return l;
297 return NULL;
298}
299
300/*
301 * find the appropriate pidlist for our purpose (given procs vs tasks)
302 * returns with the lock on that pidlist already held, and takes care
303 * of the use count, or returns NULL with no locks held if we're out of
304 * memory.
305 */
306static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
307 enum cgroup_filetype type)
308{
309 struct cgroup_pidlist *l;
310
311 lockdep_assert_held(&cgrp->pidlist_mutex);
312
313 l = cgroup_pidlist_find(cgrp, type);
314 if (l)
315 return l;
316
317 /* entry not found; create a new one */
318 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
319 if (!l)
320 return l;
321
322 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
323 l->key.type = type;
324 /* don't need task_nsproxy() if we're looking at ourself */
325 l->key.ns = get_pid_ns(task_active_pid_ns(current));
326 l->owner = cgrp;
327 list_add(&l->links, &cgrp->pidlists);
328 return l;
329}
330
331/**
332 * cgroup_task_count - count the number of tasks in a cgroup.
333 * @cgrp: the cgroup in question
334 *
335 * Return the number of tasks in the cgroup. The returned number can be
336 * higher than the actual number of tasks due to css_set references from
337 * namespace roots and temporary usages.
338 */
339static int cgroup_task_count(const struct cgroup *cgrp)
340{
341 int count = 0;
342 struct cgrp_cset_link *link;
343
344 spin_lock_irq(&css_set_lock);
345 list_for_each_entry(link, &cgrp->cset_links, cset_link)
346 count += atomic_read(&link->cset->refcount);
347 spin_unlock_irq(&css_set_lock);
348 return count;
349}
350
351/*
352 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
353 */
354static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
355 struct cgroup_pidlist **lp)
356{
357 pid_t *array;
358 int length;
359 int pid, n = 0; /* used for populating the array */
360 struct css_task_iter it;
361 struct task_struct *tsk;
362 struct cgroup_pidlist *l;
363
364 lockdep_assert_held(&cgrp->pidlist_mutex);
365
366 /*
367 * If cgroup gets more users after we read count, we won't have
368 * enough space - tough. This race is indistinguishable to the
369 * caller from the case that the additional cgroup users didn't
370 * show up until sometime later on.
371 */
372 length = cgroup_task_count(cgrp);
373 array = pidlist_allocate(length);
374 if (!array)
375 return -ENOMEM;
376 /* now, populate the array */
377 css_task_iter_start(&cgrp->self, &it);
378 while ((tsk = css_task_iter_next(&it))) {
379 if (unlikely(n == length))
380 break;
381 /* get tgid or pid for procs or tasks file respectively */
382 if (type == CGROUP_FILE_PROCS)
383 pid = task_tgid_vnr(tsk);
384 else
385 pid = task_pid_vnr(tsk);
386 if (pid > 0) /* make sure to only use valid results */
387 array[n++] = pid;
388 }
389 css_task_iter_end(&it);
390 length = n;
391 /* now sort & (if procs) strip out duplicates */
392 sort(array, length, sizeof(pid_t), cmppid, NULL);
393 if (type == CGROUP_FILE_PROCS)
394 length = pidlist_uniq(array, length);
395
396 l = cgroup_pidlist_find_create(cgrp, type);
397 if (!l) {
398 pidlist_free(array);
399 return -ENOMEM;
400 }
401
402 /* store array, freeing old if necessary */
403 pidlist_free(l->list);
404 l->list = array;
405 l->length = length;
406 *lp = l;
407 return 0;
408}
409
410/*
411 * seq_file methods for the tasks/procs files. The seq_file position is the
412 * next pid to display; the seq_file iterator is a pointer to the pid
413 * in the cgroup->l->list array.
414 */
415
416static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
417{
418 /*
419 * Initially we receive a position value that corresponds to
420 * one more than the last pid shown (or 0 on the first call or
421 * after a seek to the start). Use a binary-search to find the
422 * next pid to display, if any
423 */
424 struct kernfs_open_file *of = s->private;
425 struct cgroup *cgrp = seq_css(s)->cgroup;
426 struct cgroup_pidlist *l;
427 enum cgroup_filetype type = seq_cft(s)->private;
428 int index = 0, pid = *pos;
429 int *iter, ret;
430
431 mutex_lock(&cgrp->pidlist_mutex);
432
433 /*
434 * !NULL @of->priv indicates that this isn't the first start()
435 * after open. If the matching pidlist is around, we can use that.
436 * Look for it. Note that @of->priv can't be used directly. It
437 * could already have been destroyed.
438 */
439 if (of->priv)
440 of->priv = cgroup_pidlist_find(cgrp, type);
441
442 /*
443 * Either this is the first start() after open or the matching
444 * pidlist has been destroyed inbetween. Create a new one.
445 */
446 if (!of->priv) {
447 ret = pidlist_array_load(cgrp, type,
448 (struct cgroup_pidlist **)&of->priv);
449 if (ret)
450 return ERR_PTR(ret);
451 }
452 l = of->priv;
453
454 if (pid) {
455 int end = l->length;
456
457 while (index < end) {
458 int mid = (index + end) / 2;
459 if (l->list[mid] == pid) {
460 index = mid;
461 break;
462 } else if (l->list[mid] <= pid)
463 index = mid + 1;
464 else
465 end = mid;
466 }
467 }
468 /* If we're off the end of the array, we're done */
469 if (index >= l->length)
470 return NULL;
471 /* Update the abstract position to be the actual pid that we found */
472 iter = l->list + index;
473 *pos = *iter;
474 return iter;
475}
476
477static void cgroup_pidlist_stop(struct seq_file *s, void *v)
478{
479 struct kernfs_open_file *of = s->private;
480 struct cgroup_pidlist *l = of->priv;
481
482 if (l)
483 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
484 CGROUP_PIDLIST_DESTROY_DELAY);
485 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
486}
487
488static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
489{
490 struct kernfs_open_file *of = s->private;
491 struct cgroup_pidlist *l = of->priv;
492 pid_t *p = v;
493 pid_t *end = l->list + l->length;
494 /*
495 * Advance to the next pid in the array. If this goes off the
496 * end, we're done
497 */
498 p++;
499 if (p >= end) {
500 return NULL;
501 } else {
502 *pos = *p;
503 return p;
504 }
505}
506
507static int cgroup_pidlist_show(struct seq_file *s, void *v)
508{
509 seq_printf(s, "%d\n", *(int *)v);
510
511 return 0;
512}
513
514static ssize_t cgroup_tasks_write(struct kernfs_open_file *of,
515 char *buf, size_t nbytes, loff_t off)
516{
517 return __cgroup_procs_write(of, buf, nbytes, off, false);
518}
519
520static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of,
521 char *buf, size_t nbytes, loff_t off)
522{
523 struct cgroup *cgrp;
524
525 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
526
527 cgrp = cgroup_kn_lock_live(of->kn, false);
528 if (!cgrp)
529 return -ENODEV;
530 spin_lock(&release_agent_path_lock);
531 strlcpy(cgrp->root->release_agent_path, strstrip(buf),
532 sizeof(cgrp->root->release_agent_path));
533 spin_unlock(&release_agent_path_lock);
534 cgroup_kn_unlock(of->kn);
535 return nbytes;
536}
537
538static int cgroup_release_agent_show(struct seq_file *seq, void *v)
539{
540 struct cgroup *cgrp = seq_css(seq)->cgroup;
541
542 spin_lock(&release_agent_path_lock);
543 seq_puts(seq, cgrp->root->release_agent_path);
544 spin_unlock(&release_agent_path_lock);
545 seq_putc(seq, '\n');
546 return 0;
547}
548
549static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
550{
551 seq_puts(seq, "0\n");
552 return 0;
553}
554
555static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
556 struct cftype *cft)
557{
558 return notify_on_release(css->cgroup);
559}
560
561static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
562 struct cftype *cft, u64 val)
563{
564 if (val)
565 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
566 else
567 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
568 return 0;
569}
570
571static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
572 struct cftype *cft)
573{
574 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
575}
576
577static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
578 struct cftype *cft, u64 val)
579{
580 if (val)
581 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
582 else
583 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
584 return 0;
585}
586
587/* cgroup core interface files for the legacy hierarchies */
d62beb7f 588struct cftype cgroup1_base_files[] = {
0a268dbd
TH
589 {
590 .name = "cgroup.procs",
591 .seq_start = cgroup_pidlist_start,
592 .seq_next = cgroup_pidlist_next,
593 .seq_stop = cgroup_pidlist_stop,
594 .seq_show = cgroup_pidlist_show,
595 .private = CGROUP_FILE_PROCS,
596 .write = cgroup_procs_write,
597 },
598 {
599 .name = "cgroup.clone_children",
600 .read_u64 = cgroup_clone_children_read,
601 .write_u64 = cgroup_clone_children_write,
602 },
603 {
604 .name = "cgroup.sane_behavior",
605 .flags = CFTYPE_ONLY_ON_ROOT,
606 .seq_show = cgroup_sane_behavior_show,
607 },
608 {
609 .name = "tasks",
610 .seq_start = cgroup_pidlist_start,
611 .seq_next = cgroup_pidlist_next,
612 .seq_stop = cgroup_pidlist_stop,
613 .seq_show = cgroup_pidlist_show,
614 .private = CGROUP_FILE_TASKS,
615 .write = cgroup_tasks_write,
616 },
617 {
618 .name = "notify_on_release",
619 .read_u64 = cgroup_read_notify_on_release,
620 .write_u64 = cgroup_write_notify_on_release,
621 },
622 {
623 .name = "release_agent",
624 .flags = CFTYPE_ONLY_ON_ROOT,
625 .seq_show = cgroup_release_agent_show,
626 .write = cgroup_release_agent_write,
627 .max_write_len = PATH_MAX - 1,
628 },
629 { } /* terminate */
630};
631
632/* Display information about each subsystem and each hierarchy */
633static int proc_cgroupstats_show(struct seq_file *m, void *v)
634{
635 struct cgroup_subsys *ss;
636 int i;
637
638 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
639 /*
640 * ideally we don't want subsystems moving around while we do this.
641 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
642 * subsys/hierarchy state.
643 */
644 mutex_lock(&cgroup_mutex);
645
646 for_each_subsys(ss, i)
647 seq_printf(m, "%s\t%d\t%d\t%d\n",
648 ss->legacy_name, ss->root->hierarchy_id,
649 atomic_read(&ss->root->nr_cgrps),
650 cgroup_ssid_enabled(i));
651
652 mutex_unlock(&cgroup_mutex);
653 return 0;
654}
655
656static int cgroupstats_open(struct inode *inode, struct file *file)
657{
658 return single_open(file, proc_cgroupstats_show, NULL);
659}
660
661const struct file_operations proc_cgroupstats_operations = {
662 .open = cgroupstats_open,
663 .read = seq_read,
664 .llseek = seq_lseek,
665 .release = single_release,
666};
667
668/**
669 * cgroupstats_build - build and fill cgroupstats
670 * @stats: cgroupstats to fill information into
671 * @dentry: A dentry entry belonging to the cgroup for which stats have
672 * been requested.
673 *
674 * Build and fill cgroupstats so that taskstats can export it to user
675 * space.
676 */
677int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
678{
679 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
680 struct cgroup *cgrp;
681 struct css_task_iter it;
682 struct task_struct *tsk;
683
684 /* it should be kernfs_node belonging to cgroupfs and is a directory */
685 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
686 kernfs_type(kn) != KERNFS_DIR)
687 return -EINVAL;
688
689 mutex_lock(&cgroup_mutex);
690
691 /*
692 * We aren't being called from kernfs and there's no guarantee on
693 * @kn->priv's validity. For this and css_tryget_online_from_dir(),
694 * @kn->priv is RCU safe. Let's do the RCU dancing.
695 */
696 rcu_read_lock();
e0aed7c7 697 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
0a268dbd
TH
698 if (!cgrp || cgroup_is_dead(cgrp)) {
699 rcu_read_unlock();
700 mutex_unlock(&cgroup_mutex);
701 return -ENOENT;
702 }
703 rcu_read_unlock();
704
705 css_task_iter_start(&cgrp->self, &it);
706 while ((tsk = css_task_iter_next(&it))) {
707 switch (tsk->state) {
708 case TASK_RUNNING:
709 stats->nr_running++;
710 break;
711 case TASK_INTERRUPTIBLE:
712 stats->nr_sleeping++;
713 break;
714 case TASK_UNINTERRUPTIBLE:
715 stats->nr_uninterruptible++;
716 break;
717 case TASK_STOPPED:
718 stats->nr_stopped++;
719 break;
720 default:
721 if (delayacct_is_task_waiting_on_io(tsk))
722 stats->nr_io_wait++;
723 break;
724 }
725 }
726 css_task_iter_end(&it);
727
728 mutex_unlock(&cgroup_mutex);
729 return 0;
730}
731
d62beb7f 732void cgroup1_check_for_release(struct cgroup *cgrp)
0a268dbd
TH
733{
734 if (notify_on_release(cgrp) && !cgroup_is_populated(cgrp) &&
735 !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp))
736 schedule_work(&cgrp->release_agent_work);
737}
738
739/*
740 * Notify userspace when a cgroup is released, by running the
741 * configured release agent with the name of the cgroup (path
742 * relative to the root of cgroup file system) as the argument.
743 *
744 * Most likely, this user command will try to rmdir this cgroup.
745 *
746 * This races with the possibility that some other task will be
747 * attached to this cgroup before it is removed, or that some other
748 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
749 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
750 * unused, and this cgroup will be reprieved from its death sentence,
751 * to continue to serve a useful existence. Next time it's released,
752 * we will get notified again, if it still has 'notify_on_release' set.
753 *
754 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
755 * means only wait until the task is successfully execve()'d. The
756 * separate release agent task is forked by call_usermodehelper(),
757 * then control in this thread returns here, without waiting for the
758 * release agent task. We don't bother to wait because the caller of
759 * this routine has no use for the exit status of the release agent
760 * task, so no sense holding our caller up for that.
761 */
d62beb7f 762void cgroup1_release_agent(struct work_struct *work)
0a268dbd
TH
763{
764 struct cgroup *cgrp =
765 container_of(work, struct cgroup, release_agent_work);
766 char *pathbuf = NULL, *agentbuf = NULL;
767 char *argv[3], *envp[3];
768 int ret;
769
770 mutex_lock(&cgroup_mutex);
771
772 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
773 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
774 if (!pathbuf || !agentbuf)
775 goto out;
776
777 spin_lock_irq(&css_set_lock);
778 ret = cgroup_path_ns_locked(cgrp, pathbuf, PATH_MAX, &init_cgroup_ns);
779 spin_unlock_irq(&css_set_lock);
780 if (ret < 0 || ret >= PATH_MAX)
781 goto out;
782
783 argv[0] = agentbuf;
784 argv[1] = pathbuf;
785 argv[2] = NULL;
786
787 /* minimal command environment */
788 envp[0] = "HOME=/";
789 envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
790 envp[2] = NULL;
791
792 mutex_unlock(&cgroup_mutex);
793 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
794 goto out_free;
795out:
796 mutex_unlock(&cgroup_mutex);
797out_free:
798 kfree(agentbuf);
799 kfree(pathbuf);
800}
801
802/*
803 * cgroup_rename - Only allow simple rename of directories in place.
804 */
1592c9b2
TH
805static int cgroup1_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
806 const char *new_name_str)
0a268dbd
TH
807{
808 struct cgroup *cgrp = kn->priv;
809 int ret;
810
811 if (kernfs_type(kn) != KERNFS_DIR)
812 return -ENOTDIR;
813 if (kn->parent != new_parent)
814 return -EIO;
815
0a268dbd
TH
816 /*
817 * We're gonna grab cgroup_mutex which nests outside kernfs
818 * active_ref. kernfs_rename() doesn't require active_ref
819 * protection. Break them before grabbing cgroup_mutex.
820 */
821 kernfs_break_active_protection(new_parent);
822 kernfs_break_active_protection(kn);
823
824 mutex_lock(&cgroup_mutex);
825
826 ret = kernfs_rename(kn, new_parent, new_name_str);
827 if (!ret)
828 trace_cgroup_rename(cgrp);
829
830 mutex_unlock(&cgroup_mutex);
831
832 kernfs_unbreak_active_protection(kn);
833 kernfs_unbreak_active_protection(new_parent);
834 return ret;
835}
836
1592c9b2
TH
837static int cgroup1_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
838{
839 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
840 struct cgroup_subsys *ss;
841 int ssid;
842
843 for_each_subsys(ss, ssid)
844 if (root->subsys_mask & (1 << ssid))
845 seq_show_option(seq, ss->legacy_name, NULL);
846 if (root->flags & CGRP_ROOT_NOPREFIX)
847 seq_puts(seq, ",noprefix");
848 if (root->flags & CGRP_ROOT_XATTR)
849 seq_puts(seq, ",xattr");
850
851 spin_lock(&release_agent_path_lock);
852 if (strlen(root->release_agent_path))
853 seq_show_option(seq, "release_agent",
854 root->release_agent_path);
855 spin_unlock(&release_agent_path_lock);
856
857 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
858 seq_puts(seq, ",clone_children");
859 if (strlen(root->name))
860 seq_show_option(seq, "name", root->name);
861 return 0;
862}
863
864static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
865{
866 char *token, *o = data;
867 bool all_ss = false, one_ss = false;
868 u16 mask = U16_MAX;
869 struct cgroup_subsys *ss;
870 int nr_opts = 0;
871 int i;
872
873#ifdef CONFIG_CPUSETS
874 mask = ~((u16)1 << cpuset_cgrp_id);
875#endif
876
877 memset(opts, 0, sizeof(*opts));
878
879 while ((token = strsep(&o, ",")) != NULL) {
880 nr_opts++;
881
882 if (!*token)
883 return -EINVAL;
884 if (!strcmp(token, "none")) {
885 /* Explicitly have no subsystems */
886 opts->none = true;
887 continue;
888 }
889 if (!strcmp(token, "all")) {
890 /* Mutually exclusive option 'all' + subsystem name */
891 if (one_ss)
892 return -EINVAL;
893 all_ss = true;
894 continue;
895 }
896 if (!strcmp(token, "noprefix")) {
897 opts->flags |= CGRP_ROOT_NOPREFIX;
898 continue;
899 }
900 if (!strcmp(token, "clone_children")) {
901 opts->cpuset_clone_children = true;
902 continue;
903 }
904 if (!strcmp(token, "xattr")) {
905 opts->flags |= CGRP_ROOT_XATTR;
906 continue;
907 }
908 if (!strncmp(token, "release_agent=", 14)) {
909 /* Specifying two release agents is forbidden */
910 if (opts->release_agent)
911 return -EINVAL;
912 opts->release_agent =
913 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
914 if (!opts->release_agent)
915 return -ENOMEM;
916 continue;
917 }
918 if (!strncmp(token, "name=", 5)) {
919 const char *name = token + 5;
920 /* Can't specify an empty name */
921 if (!strlen(name))
922 return -EINVAL;
923 /* Must match [\w.-]+ */
924 for (i = 0; i < strlen(name); i++) {
925 char c = name[i];
926 if (isalnum(c))
927 continue;
928 if ((c == '.') || (c == '-') || (c == '_'))
929 continue;
930 return -EINVAL;
931 }
932 /* Specifying two names is forbidden */
933 if (opts->name)
934 return -EINVAL;
935 opts->name = kstrndup(name,
936 MAX_CGROUP_ROOT_NAMELEN - 1,
937 GFP_KERNEL);
938 if (!opts->name)
939 return -ENOMEM;
940
941 continue;
942 }
943
944 for_each_subsys(ss, i) {
945 if (strcmp(token, ss->legacy_name))
946 continue;
947 if (!cgroup_ssid_enabled(i))
948 continue;
d62beb7f 949 if (cgroup1_ssid_disabled(i))
1592c9b2
TH
950 continue;
951
952 /* Mutually exclusive option 'all' + subsystem name */
953 if (all_ss)
954 return -EINVAL;
955 opts->subsys_mask |= (1 << i);
956 one_ss = true;
957
958 break;
959 }
960 if (i == CGROUP_SUBSYS_COUNT)
961 return -ENOENT;
962 }
963
964 /*
965 * If the 'all' option was specified select all the subsystems,
966 * otherwise if 'none', 'name=' and a subsystem name options were
967 * not specified, let's default to 'all'
968 */
969 if (all_ss || (!one_ss && !opts->none && !opts->name))
970 for_each_subsys(ss, i)
d62beb7f 971 if (cgroup_ssid_enabled(i) && !cgroup1_ssid_disabled(i))
1592c9b2
TH
972 opts->subsys_mask |= (1 << i);
973
974 /*
975 * We either have to specify by name or by subsystems. (So all
976 * empty hierarchies must have a name).
977 */
978 if (!opts->subsys_mask && !opts->name)
979 return -EINVAL;
980
981 /*
982 * Option noprefix was introduced just for backward compatibility
983 * with the old cpuset, so we allow noprefix only if mounting just
984 * the cpuset subsystem.
985 */
986 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
987 return -EINVAL;
988
989 /* Can't specify "none" and some subsystems */
990 if (opts->subsys_mask && opts->none)
991 return -EINVAL;
992
993 return 0;
994}
995
996static int cgroup1_remount(struct kernfs_root *kf_root, int *flags, char *data)
997{
998 int ret = 0;
999 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1000 struct cgroup_sb_opts opts;
1001 u16 added_mask, removed_mask;
1002
1003 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1004
1005 /* See what subsystems are wanted */
1006 ret = parse_cgroupfs_options(data, &opts);
1007 if (ret)
1008 goto out_unlock;
1009
1010 if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
1011 pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
1012 task_tgid_nr(current), current->comm);
1013
1014 added_mask = opts.subsys_mask & ~root->subsys_mask;
1015 removed_mask = root->subsys_mask & ~opts.subsys_mask;
1016
1017 /* Don't allow flags or name to change at remount */
1018 if ((opts.flags ^ root->flags) ||
1019 (opts.name && strcmp(opts.name, root->name))) {
1020 pr_err("option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"\n",
1021 opts.flags, opts.name ?: "", root->flags, root->name);
1022 ret = -EINVAL;
1023 goto out_unlock;
1024 }
1025
1026 /* remounting is not allowed for populated hierarchies */
1027 if (!list_empty(&root->cgrp.self.children)) {
1028 ret = -EBUSY;
1029 goto out_unlock;
1030 }
1031
1032 ret = rebind_subsystems(root, added_mask);
1033 if (ret)
1034 goto out_unlock;
1035
1036 WARN_ON(rebind_subsystems(&cgrp_dfl_root, removed_mask));
1037
1038 if (opts.release_agent) {
1039 spin_lock(&release_agent_path_lock);
1040 strcpy(root->release_agent_path, opts.release_agent);
1041 spin_unlock(&release_agent_path_lock);
1042 }
1043
1044 trace_cgroup_remount(root);
1045
1046 out_unlock:
1047 kfree(opts.release_agent);
1048 kfree(opts.name);
1049 mutex_unlock(&cgroup_mutex);
1050 return ret;
1051}
1052
1053struct kernfs_syscall_ops cgroup1_kf_syscall_ops = {
1054 .rename = cgroup1_rename,
1055 .show_options = cgroup1_show_options,
1056 .remount_fs = cgroup1_remount,
1057 .mkdir = cgroup_mkdir,
1058 .rmdir = cgroup_rmdir,
1059 .show_path = cgroup_show_path,
1060};
1061
1062struct dentry *cgroup1_mount(struct file_system_type *fs_type, int flags,
1063 void *data, unsigned long magic,
1064 struct cgroup_namespace *ns)
1065{
1066 struct super_block *pinned_sb = NULL;
1067 struct cgroup_sb_opts opts;
1068 struct cgroup_root *root;
1069 struct cgroup_subsys *ss;
1070 struct dentry *dentry;
1071 int i, ret;
1072
1073 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1074
1075 /* First find the desired set of subsystems */
1076 ret = parse_cgroupfs_options(data, &opts);
1077 if (ret)
1078 goto out_unlock;
1079
1080 /*
1081 * Destruction of cgroup root is asynchronous, so subsystems may
1082 * still be dying after the previous unmount. Let's drain the
1083 * dying subsystems. We just need to ensure that the ones
1084 * unmounted previously finish dying and don't care about new ones
1085 * starting. Testing ref liveliness is good enough.
1086 */
1087 for_each_subsys(ss, i) {
1088 if (!(opts.subsys_mask & (1 << i)) ||
1089 ss->root == &cgrp_dfl_root)
1090 continue;
1091
1092 if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt)) {
1093 mutex_unlock(&cgroup_mutex);
1094 msleep(10);
1095 ret = restart_syscall();
1096 goto out_free;
1097 }
1098 cgroup_put(&ss->root->cgrp);
1099 }
1100
1101 for_each_root(root) {
1102 bool name_match = false;
1103
1104 if (root == &cgrp_dfl_root)
1105 continue;
1106
1107 /*
1108 * If we asked for a name then it must match. Also, if
1109 * name matches but sybsys_mask doesn't, we should fail.
1110 * Remember whether name matched.
1111 */
1112 if (opts.name) {
1113 if (strcmp(opts.name, root->name))
1114 continue;
1115 name_match = true;
1116 }
1117
1118 /*
1119 * If we asked for subsystems (or explicitly for no
1120 * subsystems) then they must match.
1121 */
1122 if ((opts.subsys_mask || opts.none) &&
1123 (opts.subsys_mask != root->subsys_mask)) {
1124 if (!name_match)
1125 continue;
1126 ret = -EBUSY;
1127 goto out_unlock;
1128 }
1129
1130 if (root->flags ^ opts.flags)
1131 pr_warn("new mount options do not match the existing superblock, will be ignored\n");
1132
1133 /*
1134 * We want to reuse @root whose lifetime is governed by its
1135 * ->cgrp. Let's check whether @root is alive and keep it
1136 * that way. As cgroup_kill_sb() can happen anytime, we
1137 * want to block it by pinning the sb so that @root doesn't
1138 * get killed before mount is complete.
1139 *
1140 * With the sb pinned, tryget_live can reliably indicate
1141 * whether @root can be reused. If it's being killed,
1142 * drain it. We can use wait_queue for the wait but this
1143 * path is super cold. Let's just sleep a bit and retry.
1144 */
1145 pinned_sb = kernfs_pin_sb(root->kf_root, NULL);
1146 if (IS_ERR(pinned_sb) ||
1147 !percpu_ref_tryget_live(&root->cgrp.self.refcnt)) {
1148 mutex_unlock(&cgroup_mutex);
1149 if (!IS_ERR_OR_NULL(pinned_sb))
1150 deactivate_super(pinned_sb);
1151 msleep(10);
1152 ret = restart_syscall();
1153 goto out_free;
1154 }
1155
1156 ret = 0;
1157 goto out_unlock;
1158 }
1159
1160 /*
1161 * No such thing, create a new one. name= matching without subsys
1162 * specification is allowed for already existing hierarchies but we
1163 * can't create new one without subsys specification.
1164 */
1165 if (!opts.subsys_mask && !opts.none) {
1166 ret = -EINVAL;
1167 goto out_unlock;
1168 }
1169
1170 /* Hierarchies may only be created in the initial cgroup namespace. */
1171 if (ns != &init_cgroup_ns) {
1172 ret = -EPERM;
1173 goto out_unlock;
1174 }
1175
1176 root = kzalloc(sizeof(*root), GFP_KERNEL);
1177 if (!root) {
1178 ret = -ENOMEM;
1179 goto out_unlock;
1180 }
1181
1182 init_cgroup_root(root, &opts);
1183
1184 ret = cgroup_setup_root(root, opts.subsys_mask);
1185 if (ret)
1186 cgroup_free_root(root);
1187
1188out_unlock:
1189 mutex_unlock(&cgroup_mutex);
1190out_free:
1191 kfree(opts.release_agent);
1192 kfree(opts.name);
1193
1194 if (ret)
1195 return ERR_PTR(ret);
1196
1197 dentry = cgroup_do_mount(&cgroup_fs_type, flags, root,
1198 CGROUP_SUPER_MAGIC, ns);
1199
1200 /*
1201 * If @pinned_sb, we're reusing an existing root and holding an
1202 * extra ref on its sb. Mount is complete. Put the extra ref.
1203 */
1204 if (pinned_sb)
1205 deactivate_super(pinned_sb);
1206
1207 return dentry;
1208}
1209
0a268dbd
TH
1210static int __init cgroup1_wq_init(void)
1211{
1212 /*
1213 * Used to destroy pidlists and separate to serve as flush domain.
1214 * Cap @max_active to 1 too.
1215 */
1216 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
1217 0, 1);
1218 BUG_ON(!cgroup_pidlist_destroy_wq);
1219 return 0;
1220}
1221core_initcall(cgroup1_wq_init);
1222
1223static int __init cgroup_no_v1(char *str)
1224{
1225 struct cgroup_subsys *ss;
1226 char *token;
1227 int i;
1228
1229 while ((token = strsep(&str, ",")) != NULL) {
1230 if (!*token)
1231 continue;
1232
1233 if (!strcmp(token, "all")) {
1234 cgroup_no_v1_mask = U16_MAX;
1235 break;
1236 }
1237
1238 for_each_subsys(ss, i) {
1239 if (strcmp(token, ss->name) &&
1240 strcmp(token, ss->legacy_name))
1241 continue;
1242
1243 cgroup_no_v1_mask |= 1 << i;
1244 }
1245 }
1246 return 1;
1247}
1248__setup("cgroup_no_v1=", cgroup_no_v1);
1249
1250
1251#ifdef CONFIG_CGROUP_DEBUG
1252static struct cgroup_subsys_state *
1253debug_css_alloc(struct cgroup_subsys_state *parent_css)
1254{
1255 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
1256
1257 if (!css)
1258 return ERR_PTR(-ENOMEM);
1259
1260 return css;
1261}
1262
1263static void debug_css_free(struct cgroup_subsys_state *css)
1264{
1265 kfree(css);
1266}
1267
1268static u64 debug_taskcount_read(struct cgroup_subsys_state *css,
1269 struct cftype *cft)
1270{
1271 return cgroup_task_count(css->cgroup);
1272}
1273
1274static u64 current_css_set_read(struct cgroup_subsys_state *css,
1275 struct cftype *cft)
1276{
1277 return (u64)(unsigned long)current->cgroups;
1278}
1279
1280static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css,
1281 struct cftype *cft)
1282{
1283 u64 count;
1284
1285 rcu_read_lock();
1286 count = atomic_read(&task_css_set(current)->refcount);
1287 rcu_read_unlock();
1288 return count;
1289}
1290
1291static int current_css_set_cg_links_read(struct seq_file *seq, void *v)
1292{
1293 struct cgrp_cset_link *link;
1294 struct css_set *cset;
1295 char *name_buf;
1296
1297 name_buf = kmalloc(NAME_MAX + 1, GFP_KERNEL);
1298 if (!name_buf)
1299 return -ENOMEM;
1300
1301 spin_lock_irq(&css_set_lock);
1302 rcu_read_lock();
1303 cset = rcu_dereference(current->cgroups);
1304 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1305 struct cgroup *c = link->cgrp;
1306
1307 cgroup_name(c, name_buf, NAME_MAX + 1);
1308 seq_printf(seq, "Root %d group %s\n",
1309 c->root->hierarchy_id, name_buf);
1310 }
1311 rcu_read_unlock();
1312 spin_unlock_irq(&css_set_lock);
1313 kfree(name_buf);
1314 return 0;
1315}
1316
1317#define MAX_TASKS_SHOWN_PER_CSS 25
1318static int cgroup_css_links_read(struct seq_file *seq, void *v)
1319{
1320 struct cgroup_subsys_state *css = seq_css(seq);
1321 struct cgrp_cset_link *link;
1322
1323 spin_lock_irq(&css_set_lock);
1324 list_for_each_entry(link, &css->cgroup->cset_links, cset_link) {
1325 struct css_set *cset = link->cset;
1326 struct task_struct *task;
1327 int count = 0;
1328
1329 seq_printf(seq, "css_set %p\n", cset);
1330
1331 list_for_each_entry(task, &cset->tasks, cg_list) {
1332 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
1333 goto overflow;
1334 seq_printf(seq, " task %d\n", task_pid_vnr(task));
1335 }
1336
1337 list_for_each_entry(task, &cset->mg_tasks, cg_list) {
1338 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
1339 goto overflow;
1340 seq_printf(seq, " task %d\n", task_pid_vnr(task));
1341 }
1342 continue;
1343 overflow:
1344 seq_puts(seq, " ...\n");
1345 }
1346 spin_unlock_irq(&css_set_lock);
1347 return 0;
1348}
1349
1350static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft)
1351{
1352 return (!cgroup_is_populated(css->cgroup) &&
1353 !css_has_online_children(&css->cgroup->self));
1354}
1355
1356static struct cftype debug_files[] = {
1357 {
1358 .name = "taskcount",
1359 .read_u64 = debug_taskcount_read,
1360 },
1361
1362 {
1363 .name = "current_css_set",
1364 .read_u64 = current_css_set_read,
1365 },
1366
1367 {
1368 .name = "current_css_set_refcount",
1369 .read_u64 = current_css_set_refcount_read,
1370 },
1371
1372 {
1373 .name = "current_css_set_cg_links",
1374 .seq_show = current_css_set_cg_links_read,
1375 },
1376
1377 {
1378 .name = "cgroup_css_links",
1379 .seq_show = cgroup_css_links_read,
1380 },
1381
1382 {
1383 .name = "releasable",
1384 .read_u64 = releasable_read,
1385 },
1386
1387 { } /* terminate */
1388};
1389
1390struct cgroup_subsys debug_cgrp_subsys = {
1391 .css_alloc = debug_css_alloc,
1392 .css_free = debug_css_free,
1393 .legacy_cftypes = debug_files,
1394};
1395#endif /* CONFIG_CGROUP_DEBUG */