]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - kernel/cgroup/cgroup-v1.c
cgroup: add @flags to css_task_iter_start() and implement CSS_TASK_ITER_PROCS
[mirror_ubuntu-bionic-kernel.git] / kernel / cgroup / cgroup-v1.c
CommitLineData
0a268dbd
TH
1#include "cgroup-internal.h"
2
1592c9b2 3#include <linux/ctype.h>
0a268dbd
TH
4#include <linux/kmod.h>
5#include <linux/sort.h>
1592c9b2 6#include <linux/delay.h>
0a268dbd 7#include <linux/mm.h>
c3edc401 8#include <linux/sched/signal.h>
56cd6973 9#include <linux/sched/task.h>
50ff9d13 10#include <linux/magic.h>
0a268dbd
TH
11#include <linux/slab.h>
12#include <linux/vmalloc.h>
13#include <linux/delayacct.h>
14#include <linux/pid_namespace.h>
15#include <linux/cgroupstats.h>
16
17#include <trace/events/cgroup.h>
18
19/*
20 * pidlists linger the following amount before being destroyed. The goal
21 * is avoiding frequent destruction in the middle of consecutive read calls
22 * Expiring in the middle is a performance problem not a correctness one.
23 * 1 sec should be enough.
24 */
25#define CGROUP_PIDLIST_DESTROY_DELAY HZ
26
27/* Controllers blocked by the commandline in v1 */
28static u16 cgroup_no_v1_mask;
29
30/*
31 * pidlist destructions need to be flushed on cgroup destruction. Use a
32 * separate workqueue as flush domain.
33 */
34static struct workqueue_struct *cgroup_pidlist_destroy_wq;
35
36/*
37 * Protects cgroup_subsys->release_agent_path. Modifying it also requires
38 * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock.
39 */
1592c9b2 40static DEFINE_SPINLOCK(release_agent_path_lock);
0a268dbd 41
d62beb7f 42bool cgroup1_ssid_disabled(int ssid)
0a268dbd
TH
43{
44 return cgroup_no_v1_mask & (1 << ssid);
45}
46
47/**
48 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
49 * @from: attach to all cgroups of a given task
50 * @tsk: the task to be attached
51 */
52int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
53{
54 struct cgroup_root *root;
55 int retval = 0;
56
57 mutex_lock(&cgroup_mutex);
58 percpu_down_write(&cgroup_threadgroup_rwsem);
59 for_each_root(root) {
60 struct cgroup *from_cgrp;
61
62 if (root == &cgrp_dfl_root)
63 continue;
64
65 spin_lock_irq(&css_set_lock);
66 from_cgrp = task_cgroup_from_root(from, root);
67 spin_unlock_irq(&css_set_lock);
68
69 retval = cgroup_attach_task(from_cgrp, tsk, false);
70 if (retval)
71 break;
72 }
73 percpu_up_write(&cgroup_threadgroup_rwsem);
74 mutex_unlock(&cgroup_mutex);
75
76 return retval;
77}
78EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
79
80/**
81 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
82 * @to: cgroup to which the tasks will be moved
83 * @from: cgroup in which the tasks currently reside
84 *
85 * Locking rules between cgroup_post_fork() and the migration path
86 * guarantee that, if a task is forking while being migrated, the new child
87 * is guaranteed to be either visible in the source cgroup after the
88 * parent's migration is complete or put into the target cgroup. No task
89 * can slip out of migration through forking.
90 */
91int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
92{
e595cd70 93 DEFINE_CGROUP_MGCTX(mgctx);
0a268dbd
TH
94 struct cgrp_cset_link *link;
95 struct css_task_iter it;
96 struct task_struct *task;
97 int ret;
98
99 if (cgroup_on_dfl(to))
100 return -EINVAL;
101
102 if (!cgroup_may_migrate_to(to))
103 return -EBUSY;
104
105 mutex_lock(&cgroup_mutex);
106
107 percpu_down_write(&cgroup_threadgroup_rwsem);
108
109 /* all tasks in @from are being moved, all csets are source */
110 spin_lock_irq(&css_set_lock);
111 list_for_each_entry(link, &from->cset_links, cset_link)
e595cd70 112 cgroup_migrate_add_src(link->cset, to, &mgctx);
0a268dbd
TH
113 spin_unlock_irq(&css_set_lock);
114
e595cd70 115 ret = cgroup_migrate_prepare_dst(&mgctx);
0a268dbd
TH
116 if (ret)
117 goto out_err;
118
119 /*
120 * Migrate tasks one-by-one until @from is empty. This fails iff
121 * ->can_attach() fails.
122 */
123 do {
bc2fb7ed 124 css_task_iter_start(&from->self, 0, &it);
0a268dbd
TH
125 task = css_task_iter_next(&it);
126 if (task)
127 get_task_struct(task);
128 css_task_iter_end(&it);
129
130 if (task) {
bfc2cf6f 131 ret = cgroup_migrate(task, false, &mgctx);
0a268dbd
TH
132 if (!ret)
133 trace_cgroup_transfer_tasks(to, task, false);
134 put_task_struct(task);
135 }
136 } while (task && !ret);
137out_err:
e595cd70 138 cgroup_migrate_finish(&mgctx);
0a268dbd
TH
139 percpu_up_write(&cgroup_threadgroup_rwsem);
140 mutex_unlock(&cgroup_mutex);
141 return ret;
142}
143
144/*
145 * Stuff for reading the 'tasks'/'procs' files.
146 *
147 * Reading this file can return large amounts of data if a cgroup has
148 * *lots* of attached tasks. So it may need several calls to read(),
149 * but we cannot guarantee that the information we produce is correct
150 * unless we produce it entirely atomically.
151 *
152 */
153
154/* which pidlist file are we talking about? */
155enum cgroup_filetype {
156 CGROUP_FILE_PROCS,
157 CGROUP_FILE_TASKS,
158};
159
160/*
161 * A pidlist is a list of pids that virtually represents the contents of one
162 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
163 * a pair (one each for procs, tasks) for each pid namespace that's relevant
164 * to the cgroup.
165 */
166struct cgroup_pidlist {
167 /*
168 * used to find which pidlist is wanted. doesn't change as long as
169 * this particular list stays in the list.
170 */
171 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
172 /* array of xids */
173 pid_t *list;
174 /* how many elements the above list has */
175 int length;
176 /* each of these stored in a list by its cgroup */
177 struct list_head links;
178 /* pointer to the cgroup we belong to, for list removal purposes */
179 struct cgroup *owner;
180 /* for delayed destruction */
181 struct delayed_work destroy_dwork;
182};
183
184/*
185 * The following two functions "fix" the issue where there are more pids
186 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
187 * TODO: replace with a kernel-wide solution to this problem
188 */
189#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
190static void *pidlist_allocate(int count)
191{
192 if (PIDLIST_TOO_LARGE(count))
193 return vmalloc(count * sizeof(pid_t));
194 else
195 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
196}
197
198static void pidlist_free(void *p)
199{
200 kvfree(p);
201}
202
203/*
204 * Used to destroy all pidlists lingering waiting for destroy timer. None
205 * should be left afterwards.
206 */
d62beb7f 207void cgroup1_pidlist_destroy_all(struct cgroup *cgrp)
0a268dbd
TH
208{
209 struct cgroup_pidlist *l, *tmp_l;
210
211 mutex_lock(&cgrp->pidlist_mutex);
212 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
213 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
214 mutex_unlock(&cgrp->pidlist_mutex);
215
216 flush_workqueue(cgroup_pidlist_destroy_wq);
217 BUG_ON(!list_empty(&cgrp->pidlists));
218}
219
220static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
221{
222 struct delayed_work *dwork = to_delayed_work(work);
223 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
224 destroy_dwork);
225 struct cgroup_pidlist *tofree = NULL;
226
227 mutex_lock(&l->owner->pidlist_mutex);
228
229 /*
230 * Destroy iff we didn't get queued again. The state won't change
231 * as destroy_dwork can only be queued while locked.
232 */
233 if (!delayed_work_pending(dwork)) {
234 list_del(&l->links);
235 pidlist_free(l->list);
236 put_pid_ns(l->key.ns);
237 tofree = l;
238 }
239
240 mutex_unlock(&l->owner->pidlist_mutex);
241 kfree(tofree);
242}
243
244/*
245 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
246 * Returns the number of unique elements.
247 */
248static int pidlist_uniq(pid_t *list, int length)
249{
250 int src, dest = 1;
251
252 /*
253 * we presume the 0th element is unique, so i starts at 1. trivial
254 * edge cases first; no work needs to be done for either
255 */
256 if (length == 0 || length == 1)
257 return length;
258 /* src and dest walk down the list; dest counts unique elements */
259 for (src = 1; src < length; src++) {
260 /* find next unique element */
261 while (list[src] == list[src-1]) {
262 src++;
263 if (src == length)
264 goto after;
265 }
266 /* dest always points to where the next unique element goes */
267 list[dest] = list[src];
268 dest++;
269 }
270after:
271 return dest;
272}
273
274/*
275 * The two pid files - task and cgroup.procs - guaranteed that the result
276 * is sorted, which forced this whole pidlist fiasco. As pid order is
277 * different per namespace, each namespace needs differently sorted list,
278 * making it impossible to use, for example, single rbtree of member tasks
279 * sorted by task pointer. As pidlists can be fairly large, allocating one
280 * per open file is dangerous, so cgroup had to implement shared pool of
281 * pidlists keyed by cgroup and namespace.
282 */
283static int cmppid(const void *a, const void *b)
284{
285 return *(pid_t *)a - *(pid_t *)b;
286}
287
288static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
289 enum cgroup_filetype type)
290{
291 struct cgroup_pidlist *l;
292 /* don't need task_nsproxy() if we're looking at ourself */
293 struct pid_namespace *ns = task_active_pid_ns(current);
294
295 lockdep_assert_held(&cgrp->pidlist_mutex);
296
297 list_for_each_entry(l, &cgrp->pidlists, links)
298 if (l->key.type == type && l->key.ns == ns)
299 return l;
300 return NULL;
301}
302
303/*
304 * find the appropriate pidlist for our purpose (given procs vs tasks)
305 * returns with the lock on that pidlist already held, and takes care
306 * of the use count, or returns NULL with no locks held if we're out of
307 * memory.
308 */
309static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
310 enum cgroup_filetype type)
311{
312 struct cgroup_pidlist *l;
313
314 lockdep_assert_held(&cgrp->pidlist_mutex);
315
316 l = cgroup_pidlist_find(cgrp, type);
317 if (l)
318 return l;
319
320 /* entry not found; create a new one */
321 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
322 if (!l)
323 return l;
324
325 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
326 l->key.type = type;
327 /* don't need task_nsproxy() if we're looking at ourself */
328 l->key.ns = get_pid_ns(task_active_pid_ns(current));
329 l->owner = cgrp;
330 list_add(&l->links, &cgrp->pidlists);
331 return l;
332}
333
334/**
335 * cgroup_task_count - count the number of tasks in a cgroup.
336 * @cgrp: the cgroup in question
0a268dbd 337 */
a28f8f5e 338int cgroup_task_count(const struct cgroup *cgrp)
0a268dbd
TH
339{
340 int count = 0;
341 struct cgrp_cset_link *link;
342
343 spin_lock_irq(&css_set_lock);
344 list_for_each_entry(link, &cgrp->cset_links, cset_link)
73a7242a 345 count += link->cset->nr_tasks;
0a268dbd
TH
346 spin_unlock_irq(&css_set_lock);
347 return count;
348}
349
350/*
351 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
352 */
353static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
354 struct cgroup_pidlist **lp)
355{
356 pid_t *array;
357 int length;
358 int pid, n = 0; /* used for populating the array */
359 struct css_task_iter it;
360 struct task_struct *tsk;
361 struct cgroup_pidlist *l;
362
363 lockdep_assert_held(&cgrp->pidlist_mutex);
364
365 /*
366 * If cgroup gets more users after we read count, we won't have
367 * enough space - tough. This race is indistinguishable to the
368 * caller from the case that the additional cgroup users didn't
369 * show up until sometime later on.
370 */
371 length = cgroup_task_count(cgrp);
372 array = pidlist_allocate(length);
373 if (!array)
374 return -ENOMEM;
375 /* now, populate the array */
bc2fb7ed 376 css_task_iter_start(&cgrp->self, 0, &it);
0a268dbd
TH
377 while ((tsk = css_task_iter_next(&it))) {
378 if (unlikely(n == length))
379 break;
380 /* get tgid or pid for procs or tasks file respectively */
381 if (type == CGROUP_FILE_PROCS)
382 pid = task_tgid_vnr(tsk);
383 else
384 pid = task_pid_vnr(tsk);
385 if (pid > 0) /* make sure to only use valid results */
386 array[n++] = pid;
387 }
388 css_task_iter_end(&it);
389 length = n;
390 /* now sort & (if procs) strip out duplicates */
391 sort(array, length, sizeof(pid_t), cmppid, NULL);
392 if (type == CGROUP_FILE_PROCS)
393 length = pidlist_uniq(array, length);
394
395 l = cgroup_pidlist_find_create(cgrp, type);
396 if (!l) {
397 pidlist_free(array);
398 return -ENOMEM;
399 }
400
401 /* store array, freeing old if necessary */
402 pidlist_free(l->list);
403 l->list = array;
404 l->length = length;
405 *lp = l;
406 return 0;
407}
408
409/*
410 * seq_file methods for the tasks/procs files. The seq_file position is the
411 * next pid to display; the seq_file iterator is a pointer to the pid
412 * in the cgroup->l->list array.
413 */
414
415static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
416{
417 /*
418 * Initially we receive a position value that corresponds to
419 * one more than the last pid shown (or 0 on the first call or
420 * after a seek to the start). Use a binary-search to find the
421 * next pid to display, if any
422 */
423 struct kernfs_open_file *of = s->private;
424 struct cgroup *cgrp = seq_css(s)->cgroup;
425 struct cgroup_pidlist *l;
426 enum cgroup_filetype type = seq_cft(s)->private;
427 int index = 0, pid = *pos;
428 int *iter, ret;
429
430 mutex_lock(&cgrp->pidlist_mutex);
431
432 /*
433 * !NULL @of->priv indicates that this isn't the first start()
434 * after open. If the matching pidlist is around, we can use that.
435 * Look for it. Note that @of->priv can't be used directly. It
436 * could already have been destroyed.
437 */
438 if (of->priv)
439 of->priv = cgroup_pidlist_find(cgrp, type);
440
441 /*
442 * Either this is the first start() after open or the matching
443 * pidlist has been destroyed inbetween. Create a new one.
444 */
445 if (!of->priv) {
446 ret = pidlist_array_load(cgrp, type,
447 (struct cgroup_pidlist **)&of->priv);
448 if (ret)
449 return ERR_PTR(ret);
450 }
451 l = of->priv;
452
453 if (pid) {
454 int end = l->length;
455
456 while (index < end) {
457 int mid = (index + end) / 2;
458 if (l->list[mid] == pid) {
459 index = mid;
460 break;
461 } else if (l->list[mid] <= pid)
462 index = mid + 1;
463 else
464 end = mid;
465 }
466 }
467 /* If we're off the end of the array, we're done */
468 if (index >= l->length)
469 return NULL;
470 /* Update the abstract position to be the actual pid that we found */
471 iter = l->list + index;
472 *pos = *iter;
473 return iter;
474}
475
476static void cgroup_pidlist_stop(struct seq_file *s, void *v)
477{
478 struct kernfs_open_file *of = s->private;
479 struct cgroup_pidlist *l = of->priv;
480
481 if (l)
482 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
483 CGROUP_PIDLIST_DESTROY_DELAY);
484 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
485}
486
487static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
488{
489 struct kernfs_open_file *of = s->private;
490 struct cgroup_pidlist *l = of->priv;
491 pid_t *p = v;
492 pid_t *end = l->list + l->length;
493 /*
494 * Advance to the next pid in the array. If this goes off the
495 * end, we're done
496 */
497 p++;
498 if (p >= end) {
499 return NULL;
500 } else {
501 *pos = *p;
502 return p;
503 }
504}
505
506static int cgroup_pidlist_show(struct seq_file *s, void *v)
507{
508 seq_printf(s, "%d\n", *(int *)v);
509
510 return 0;
511}
512
715c809d
TH
513static ssize_t __cgroup1_procs_write(struct kernfs_open_file *of,
514 char *buf, size_t nbytes, loff_t off,
515 bool threadgroup)
0a268dbd 516{
715c809d
TH
517 struct cgroup *cgrp;
518 struct task_struct *task;
519 const struct cred *cred, *tcred;
520 ssize_t ret;
521
522 cgrp = cgroup_kn_lock_live(of->kn, false);
523 if (!cgrp)
524 return -ENODEV;
525
526 task = cgroup_procs_write_start(buf, threadgroup);
527 ret = PTR_ERR_OR_ZERO(task);
528 if (ret)
529 goto out_unlock;
530
531 /*
532 * Even if we're attaching all tasks in the thread group, we only
533 * need to check permissions on one of them.
534 */
535 cred = current_cred();
536 tcred = get_task_cred(task);
537 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
538 !uid_eq(cred->euid, tcred->uid) &&
539 !uid_eq(cred->euid, tcred->suid))
540 ret = -EACCES;
541 put_cred(tcred);
542 if (ret)
543 goto out_finish;
544
545 ret = cgroup_attach_task(cgrp, task, threadgroup);
546
547out_finish:
548 cgroup_procs_write_finish(task);
549out_unlock:
550 cgroup_kn_unlock(of->kn);
551
552 return ret ?: nbytes;
553}
554
555static ssize_t cgroup1_procs_write(struct kernfs_open_file *of,
556 char *buf, size_t nbytes, loff_t off)
557{
558 return __cgroup1_procs_write(of, buf, nbytes, off, true);
559}
560
561static ssize_t cgroup1_tasks_write(struct kernfs_open_file *of,
562 char *buf, size_t nbytes, loff_t off)
563{
564 return __cgroup1_procs_write(of, buf, nbytes, off, false);
0a268dbd
TH
565}
566
567static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of,
568 char *buf, size_t nbytes, loff_t off)
569{
570 struct cgroup *cgrp;
571
572 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
573
574 cgrp = cgroup_kn_lock_live(of->kn, false);
575 if (!cgrp)
576 return -ENODEV;
577 spin_lock(&release_agent_path_lock);
578 strlcpy(cgrp->root->release_agent_path, strstrip(buf),
579 sizeof(cgrp->root->release_agent_path));
580 spin_unlock(&release_agent_path_lock);
581 cgroup_kn_unlock(of->kn);
582 return nbytes;
583}
584
585static int cgroup_release_agent_show(struct seq_file *seq, void *v)
586{
587 struct cgroup *cgrp = seq_css(seq)->cgroup;
588
589 spin_lock(&release_agent_path_lock);
590 seq_puts(seq, cgrp->root->release_agent_path);
591 spin_unlock(&release_agent_path_lock);
592 seq_putc(seq, '\n');
593 return 0;
594}
595
596static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
597{
598 seq_puts(seq, "0\n");
599 return 0;
600}
601
602static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
603 struct cftype *cft)
604{
605 return notify_on_release(css->cgroup);
606}
607
608static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
609 struct cftype *cft, u64 val)
610{
611 if (val)
612 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
613 else
614 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
615 return 0;
616}
617
618static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
619 struct cftype *cft)
620{
621 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
622}
623
624static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
625 struct cftype *cft, u64 val)
626{
627 if (val)
628 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
629 else
630 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
631 return 0;
632}
633
634/* cgroup core interface files for the legacy hierarchies */
d62beb7f 635struct cftype cgroup1_base_files[] = {
0a268dbd
TH
636 {
637 .name = "cgroup.procs",
638 .seq_start = cgroup_pidlist_start,
639 .seq_next = cgroup_pidlist_next,
640 .seq_stop = cgroup_pidlist_stop,
641 .seq_show = cgroup_pidlist_show,
642 .private = CGROUP_FILE_PROCS,
715c809d 643 .write = cgroup1_procs_write,
0a268dbd
TH
644 },
645 {
646 .name = "cgroup.clone_children",
647 .read_u64 = cgroup_clone_children_read,
648 .write_u64 = cgroup_clone_children_write,
649 },
650 {
651 .name = "cgroup.sane_behavior",
652 .flags = CFTYPE_ONLY_ON_ROOT,
653 .seq_show = cgroup_sane_behavior_show,
654 },
655 {
656 .name = "tasks",
657 .seq_start = cgroup_pidlist_start,
658 .seq_next = cgroup_pidlist_next,
659 .seq_stop = cgroup_pidlist_stop,
660 .seq_show = cgroup_pidlist_show,
661 .private = CGROUP_FILE_TASKS,
715c809d 662 .write = cgroup1_tasks_write,
0a268dbd
TH
663 },
664 {
665 .name = "notify_on_release",
666 .read_u64 = cgroup_read_notify_on_release,
667 .write_u64 = cgroup_write_notify_on_release,
668 },
669 {
670 .name = "release_agent",
671 .flags = CFTYPE_ONLY_ON_ROOT,
672 .seq_show = cgroup_release_agent_show,
673 .write = cgroup_release_agent_write,
674 .max_write_len = PATH_MAX - 1,
675 },
676 { } /* terminate */
677};
678
679/* Display information about each subsystem and each hierarchy */
680static int proc_cgroupstats_show(struct seq_file *m, void *v)
681{
682 struct cgroup_subsys *ss;
683 int i;
684
685 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
686 /*
687 * ideally we don't want subsystems moving around while we do this.
688 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
689 * subsys/hierarchy state.
690 */
691 mutex_lock(&cgroup_mutex);
692
693 for_each_subsys(ss, i)
694 seq_printf(m, "%s\t%d\t%d\t%d\n",
695 ss->legacy_name, ss->root->hierarchy_id,
696 atomic_read(&ss->root->nr_cgrps),
697 cgroup_ssid_enabled(i));
698
699 mutex_unlock(&cgroup_mutex);
700 return 0;
701}
702
703static int cgroupstats_open(struct inode *inode, struct file *file)
704{
705 return single_open(file, proc_cgroupstats_show, NULL);
706}
707
708const struct file_operations proc_cgroupstats_operations = {
709 .open = cgroupstats_open,
710 .read = seq_read,
711 .llseek = seq_lseek,
712 .release = single_release,
713};
714
715/**
716 * cgroupstats_build - build and fill cgroupstats
717 * @stats: cgroupstats to fill information into
718 * @dentry: A dentry entry belonging to the cgroup for which stats have
719 * been requested.
720 *
721 * Build and fill cgroupstats so that taskstats can export it to user
722 * space.
723 */
724int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
725{
726 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
727 struct cgroup *cgrp;
728 struct css_task_iter it;
729 struct task_struct *tsk;
730
731 /* it should be kernfs_node belonging to cgroupfs and is a directory */
732 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
733 kernfs_type(kn) != KERNFS_DIR)
734 return -EINVAL;
735
736 mutex_lock(&cgroup_mutex);
737
738 /*
739 * We aren't being called from kernfs and there's no guarantee on
740 * @kn->priv's validity. For this and css_tryget_online_from_dir(),
741 * @kn->priv is RCU safe. Let's do the RCU dancing.
742 */
743 rcu_read_lock();
e0aed7c7 744 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
0a268dbd
TH
745 if (!cgrp || cgroup_is_dead(cgrp)) {
746 rcu_read_unlock();
747 mutex_unlock(&cgroup_mutex);
748 return -ENOENT;
749 }
750 rcu_read_unlock();
751
bc2fb7ed 752 css_task_iter_start(&cgrp->self, 0, &it);
0a268dbd
TH
753 while ((tsk = css_task_iter_next(&it))) {
754 switch (tsk->state) {
755 case TASK_RUNNING:
756 stats->nr_running++;
757 break;
758 case TASK_INTERRUPTIBLE:
759 stats->nr_sleeping++;
760 break;
761 case TASK_UNINTERRUPTIBLE:
762 stats->nr_uninterruptible++;
763 break;
764 case TASK_STOPPED:
765 stats->nr_stopped++;
766 break;
767 default:
768 if (delayacct_is_task_waiting_on_io(tsk))
769 stats->nr_io_wait++;
770 break;
771 }
772 }
773 css_task_iter_end(&it);
774
775 mutex_unlock(&cgroup_mutex);
776 return 0;
777}
778
d62beb7f 779void cgroup1_check_for_release(struct cgroup *cgrp)
0a268dbd
TH
780{
781 if (notify_on_release(cgrp) && !cgroup_is_populated(cgrp) &&
782 !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp))
783 schedule_work(&cgrp->release_agent_work);
784}
785
786/*
787 * Notify userspace when a cgroup is released, by running the
788 * configured release agent with the name of the cgroup (path
789 * relative to the root of cgroup file system) as the argument.
790 *
791 * Most likely, this user command will try to rmdir this cgroup.
792 *
793 * This races with the possibility that some other task will be
794 * attached to this cgroup before it is removed, or that some other
795 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
796 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
797 * unused, and this cgroup will be reprieved from its death sentence,
798 * to continue to serve a useful existence. Next time it's released,
799 * we will get notified again, if it still has 'notify_on_release' set.
800 *
801 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
802 * means only wait until the task is successfully execve()'d. The
803 * separate release agent task is forked by call_usermodehelper(),
804 * then control in this thread returns here, without waiting for the
805 * release agent task. We don't bother to wait because the caller of
806 * this routine has no use for the exit status of the release agent
807 * task, so no sense holding our caller up for that.
808 */
d62beb7f 809void cgroup1_release_agent(struct work_struct *work)
0a268dbd
TH
810{
811 struct cgroup *cgrp =
812 container_of(work, struct cgroup, release_agent_work);
813 char *pathbuf = NULL, *agentbuf = NULL;
814 char *argv[3], *envp[3];
815 int ret;
816
817 mutex_lock(&cgroup_mutex);
818
819 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
820 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
821 if (!pathbuf || !agentbuf)
822 goto out;
823
824 spin_lock_irq(&css_set_lock);
825 ret = cgroup_path_ns_locked(cgrp, pathbuf, PATH_MAX, &init_cgroup_ns);
826 spin_unlock_irq(&css_set_lock);
827 if (ret < 0 || ret >= PATH_MAX)
828 goto out;
829
830 argv[0] = agentbuf;
831 argv[1] = pathbuf;
832 argv[2] = NULL;
833
834 /* minimal command environment */
835 envp[0] = "HOME=/";
836 envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
837 envp[2] = NULL;
838
839 mutex_unlock(&cgroup_mutex);
840 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
841 goto out_free;
842out:
843 mutex_unlock(&cgroup_mutex);
844out_free:
845 kfree(agentbuf);
846 kfree(pathbuf);
847}
848
849/*
850 * cgroup_rename - Only allow simple rename of directories in place.
851 */
1592c9b2
TH
852static int cgroup1_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
853 const char *new_name_str)
0a268dbd
TH
854{
855 struct cgroup *cgrp = kn->priv;
856 int ret;
857
858 if (kernfs_type(kn) != KERNFS_DIR)
859 return -ENOTDIR;
860 if (kn->parent != new_parent)
861 return -EIO;
862
0a268dbd
TH
863 /*
864 * We're gonna grab cgroup_mutex which nests outside kernfs
865 * active_ref. kernfs_rename() doesn't require active_ref
866 * protection. Break them before grabbing cgroup_mutex.
867 */
868 kernfs_break_active_protection(new_parent);
869 kernfs_break_active_protection(kn);
870
871 mutex_lock(&cgroup_mutex);
872
873 ret = kernfs_rename(kn, new_parent, new_name_str);
874 if (!ret)
875 trace_cgroup_rename(cgrp);
876
877 mutex_unlock(&cgroup_mutex);
878
879 kernfs_unbreak_active_protection(kn);
880 kernfs_unbreak_active_protection(new_parent);
881 return ret;
882}
883
1592c9b2
TH
884static int cgroup1_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
885{
886 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
887 struct cgroup_subsys *ss;
888 int ssid;
889
890 for_each_subsys(ss, ssid)
891 if (root->subsys_mask & (1 << ssid))
892 seq_show_option(seq, ss->legacy_name, NULL);
893 if (root->flags & CGRP_ROOT_NOPREFIX)
894 seq_puts(seq, ",noprefix");
895 if (root->flags & CGRP_ROOT_XATTR)
896 seq_puts(seq, ",xattr");
897
898 spin_lock(&release_agent_path_lock);
899 if (strlen(root->release_agent_path))
900 seq_show_option(seq, "release_agent",
901 root->release_agent_path);
902 spin_unlock(&release_agent_path_lock);
903
904 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
905 seq_puts(seq, ",clone_children");
906 if (strlen(root->name))
907 seq_show_option(seq, "name", root->name);
908 return 0;
909}
910
911static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
912{
913 char *token, *o = data;
914 bool all_ss = false, one_ss = false;
915 u16 mask = U16_MAX;
916 struct cgroup_subsys *ss;
917 int nr_opts = 0;
918 int i;
919
920#ifdef CONFIG_CPUSETS
921 mask = ~((u16)1 << cpuset_cgrp_id);
922#endif
923
924 memset(opts, 0, sizeof(*opts));
925
926 while ((token = strsep(&o, ",")) != NULL) {
927 nr_opts++;
928
929 if (!*token)
930 return -EINVAL;
931 if (!strcmp(token, "none")) {
932 /* Explicitly have no subsystems */
933 opts->none = true;
934 continue;
935 }
936 if (!strcmp(token, "all")) {
937 /* Mutually exclusive option 'all' + subsystem name */
938 if (one_ss)
939 return -EINVAL;
940 all_ss = true;
941 continue;
942 }
943 if (!strcmp(token, "noprefix")) {
944 opts->flags |= CGRP_ROOT_NOPREFIX;
945 continue;
946 }
947 if (!strcmp(token, "clone_children")) {
948 opts->cpuset_clone_children = true;
949 continue;
950 }
951 if (!strcmp(token, "xattr")) {
952 opts->flags |= CGRP_ROOT_XATTR;
953 continue;
954 }
955 if (!strncmp(token, "release_agent=", 14)) {
956 /* Specifying two release agents is forbidden */
957 if (opts->release_agent)
958 return -EINVAL;
959 opts->release_agent =
960 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
961 if (!opts->release_agent)
962 return -ENOMEM;
963 continue;
964 }
965 if (!strncmp(token, "name=", 5)) {
966 const char *name = token + 5;
967 /* Can't specify an empty name */
968 if (!strlen(name))
969 return -EINVAL;
970 /* Must match [\w.-]+ */
971 for (i = 0; i < strlen(name); i++) {
972 char c = name[i];
973 if (isalnum(c))
974 continue;
975 if ((c == '.') || (c == '-') || (c == '_'))
976 continue;
977 return -EINVAL;
978 }
979 /* Specifying two names is forbidden */
980 if (opts->name)
981 return -EINVAL;
982 opts->name = kstrndup(name,
983 MAX_CGROUP_ROOT_NAMELEN - 1,
984 GFP_KERNEL);
985 if (!opts->name)
986 return -ENOMEM;
987
988 continue;
989 }
990
991 for_each_subsys(ss, i) {
992 if (strcmp(token, ss->legacy_name))
993 continue;
994 if (!cgroup_ssid_enabled(i))
995 continue;
d62beb7f 996 if (cgroup1_ssid_disabled(i))
1592c9b2
TH
997 continue;
998
999 /* Mutually exclusive option 'all' + subsystem name */
1000 if (all_ss)
1001 return -EINVAL;
1002 opts->subsys_mask |= (1 << i);
1003 one_ss = true;
1004
1005 break;
1006 }
1007 if (i == CGROUP_SUBSYS_COUNT)
1008 return -ENOENT;
1009 }
1010
1011 /*
1012 * If the 'all' option was specified select all the subsystems,
1013 * otherwise if 'none', 'name=' and a subsystem name options were
1014 * not specified, let's default to 'all'
1015 */
1016 if (all_ss || (!one_ss && !opts->none && !opts->name))
1017 for_each_subsys(ss, i)
d62beb7f 1018 if (cgroup_ssid_enabled(i) && !cgroup1_ssid_disabled(i))
1592c9b2
TH
1019 opts->subsys_mask |= (1 << i);
1020
1021 /*
1022 * We either have to specify by name or by subsystems. (So all
1023 * empty hierarchies must have a name).
1024 */
1025 if (!opts->subsys_mask && !opts->name)
1026 return -EINVAL;
1027
1028 /*
1029 * Option noprefix was introduced just for backward compatibility
1030 * with the old cpuset, so we allow noprefix only if mounting just
1031 * the cpuset subsystem.
1032 */
1033 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
1034 return -EINVAL;
1035
1036 /* Can't specify "none" and some subsystems */
1037 if (opts->subsys_mask && opts->none)
1038 return -EINVAL;
1039
1040 return 0;
1041}
1042
1043static int cgroup1_remount(struct kernfs_root *kf_root, int *flags, char *data)
1044{
1045 int ret = 0;
1046 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1047 struct cgroup_sb_opts opts;
1048 u16 added_mask, removed_mask;
1049
1050 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1051
1052 /* See what subsystems are wanted */
1053 ret = parse_cgroupfs_options(data, &opts);
1054 if (ret)
1055 goto out_unlock;
1056
1057 if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
1058 pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
1059 task_tgid_nr(current), current->comm);
1060
1061 added_mask = opts.subsys_mask & ~root->subsys_mask;
1062 removed_mask = root->subsys_mask & ~opts.subsys_mask;
1063
1064 /* Don't allow flags or name to change at remount */
1065 if ((opts.flags ^ root->flags) ||
1066 (opts.name && strcmp(opts.name, root->name))) {
1067 pr_err("option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"\n",
1068 opts.flags, opts.name ?: "", root->flags, root->name);
1069 ret = -EINVAL;
1070 goto out_unlock;
1071 }
1072
1073 /* remounting is not allowed for populated hierarchies */
1074 if (!list_empty(&root->cgrp.self.children)) {
1075 ret = -EBUSY;
1076 goto out_unlock;
1077 }
1078
1079 ret = rebind_subsystems(root, added_mask);
1080 if (ret)
1081 goto out_unlock;
1082
1083 WARN_ON(rebind_subsystems(&cgrp_dfl_root, removed_mask));
1084
1085 if (opts.release_agent) {
1086 spin_lock(&release_agent_path_lock);
1087 strcpy(root->release_agent_path, opts.release_agent);
1088 spin_unlock(&release_agent_path_lock);
1089 }
1090
1091 trace_cgroup_remount(root);
1092
1093 out_unlock:
1094 kfree(opts.release_agent);
1095 kfree(opts.name);
1096 mutex_unlock(&cgroup_mutex);
1097 return ret;
1098}
1099
1100struct kernfs_syscall_ops cgroup1_kf_syscall_ops = {
1101 .rename = cgroup1_rename,
1102 .show_options = cgroup1_show_options,
1103 .remount_fs = cgroup1_remount,
1104 .mkdir = cgroup_mkdir,
1105 .rmdir = cgroup_rmdir,
1106 .show_path = cgroup_show_path,
1107};
1108
1109struct dentry *cgroup1_mount(struct file_system_type *fs_type, int flags,
1110 void *data, unsigned long magic,
1111 struct cgroup_namespace *ns)
1112{
1113 struct super_block *pinned_sb = NULL;
1114 struct cgroup_sb_opts opts;
1115 struct cgroup_root *root;
1116 struct cgroup_subsys *ss;
1117 struct dentry *dentry;
1118 int i, ret;
9732adc5 1119 bool new_root = false;
1592c9b2
TH
1120
1121 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1122
1123 /* First find the desired set of subsystems */
1124 ret = parse_cgroupfs_options(data, &opts);
1125 if (ret)
1126 goto out_unlock;
1127
1128 /*
1129 * Destruction of cgroup root is asynchronous, so subsystems may
1130 * still be dying after the previous unmount. Let's drain the
1131 * dying subsystems. We just need to ensure that the ones
1132 * unmounted previously finish dying and don't care about new ones
1133 * starting. Testing ref liveliness is good enough.
1134 */
1135 for_each_subsys(ss, i) {
1136 if (!(opts.subsys_mask & (1 << i)) ||
1137 ss->root == &cgrp_dfl_root)
1138 continue;
1139
1140 if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt)) {
1141 mutex_unlock(&cgroup_mutex);
1142 msleep(10);
1143 ret = restart_syscall();
1144 goto out_free;
1145 }
1146 cgroup_put(&ss->root->cgrp);
1147 }
1148
1149 for_each_root(root) {
1150 bool name_match = false;
1151
1152 if (root == &cgrp_dfl_root)
1153 continue;
1154
1155 /*
1156 * If we asked for a name then it must match. Also, if
1157 * name matches but sybsys_mask doesn't, we should fail.
1158 * Remember whether name matched.
1159 */
1160 if (opts.name) {
1161 if (strcmp(opts.name, root->name))
1162 continue;
1163 name_match = true;
1164 }
1165
1166 /*
1167 * If we asked for subsystems (or explicitly for no
1168 * subsystems) then they must match.
1169 */
1170 if ((opts.subsys_mask || opts.none) &&
1171 (opts.subsys_mask != root->subsys_mask)) {
1172 if (!name_match)
1173 continue;
1174 ret = -EBUSY;
1175 goto out_unlock;
1176 }
1177
1178 if (root->flags ^ opts.flags)
1179 pr_warn("new mount options do not match the existing superblock, will be ignored\n");
1180
1181 /*
1182 * We want to reuse @root whose lifetime is governed by its
1183 * ->cgrp. Let's check whether @root is alive and keep it
1184 * that way. As cgroup_kill_sb() can happen anytime, we
1185 * want to block it by pinning the sb so that @root doesn't
1186 * get killed before mount is complete.
1187 *
1188 * With the sb pinned, tryget_live can reliably indicate
1189 * whether @root can be reused. If it's being killed,
1190 * drain it. We can use wait_queue for the wait but this
1191 * path is super cold. Let's just sleep a bit and retry.
1192 */
1193 pinned_sb = kernfs_pin_sb(root->kf_root, NULL);
330c4186 1194 if (IS_ERR(pinned_sb) ||
1592c9b2
TH
1195 !percpu_ref_tryget_live(&root->cgrp.self.refcnt)) {
1196 mutex_unlock(&cgroup_mutex);
1197 if (!IS_ERR_OR_NULL(pinned_sb))
1198 deactivate_super(pinned_sb);
1199 msleep(10);
1200 ret = restart_syscall();
1201 goto out_free;
1202 }
1203
1204 ret = 0;
1205 goto out_unlock;
1206 }
1207
1208 /*
1209 * No such thing, create a new one. name= matching without subsys
1210 * specification is allowed for already existing hierarchies but we
1211 * can't create new one without subsys specification.
1212 */
1213 if (!opts.subsys_mask && !opts.none) {
1214 ret = -EINVAL;
1215 goto out_unlock;
1216 }
1217
1218 /* Hierarchies may only be created in the initial cgroup namespace. */
1219 if (ns != &init_cgroup_ns) {
1220 ret = -EPERM;
1221 goto out_unlock;
1222 }
1223
1224 root = kzalloc(sizeof(*root), GFP_KERNEL);
1225 if (!root) {
1226 ret = -ENOMEM;
1227 goto out_unlock;
1228 }
9732adc5 1229 new_root = true;
1592c9b2
TH
1230
1231 init_cgroup_root(root, &opts);
1232
9732adc5 1233 ret = cgroup_setup_root(root, opts.subsys_mask, PERCPU_REF_INIT_DEAD);
1592c9b2
TH
1234 if (ret)
1235 cgroup_free_root(root);
1236
1237out_unlock:
1238 mutex_unlock(&cgroup_mutex);
1239out_free:
1240 kfree(opts.release_agent);
1241 kfree(opts.name);
1242
1243 if (ret)
1244 return ERR_PTR(ret);
1245
1246 dentry = cgroup_do_mount(&cgroup_fs_type, flags, root,
1247 CGROUP_SUPER_MAGIC, ns);
1248
9732adc5
ZL
1249 /*
1250 * There's a race window after we release cgroup_mutex and before
1251 * allocating a superblock. Make sure a concurrent process won't
1252 * be able to re-use the root during this window by delaying the
1253 * initialization of root refcnt.
1254 */
1255 if (new_root) {
1256 mutex_lock(&cgroup_mutex);
1257 percpu_ref_reinit(&root->cgrp.self.refcnt);
1258 mutex_unlock(&cgroup_mutex);
1259 }
1260
1592c9b2
TH
1261 /*
1262 * If @pinned_sb, we're reusing an existing root and holding an
1263 * extra ref on its sb. Mount is complete. Put the extra ref.
1264 */
1265 if (pinned_sb)
1266 deactivate_super(pinned_sb);
1267
1268 return dentry;
1269}
1270
0a268dbd
TH
1271static int __init cgroup1_wq_init(void)
1272{
1273 /*
1274 * Used to destroy pidlists and separate to serve as flush domain.
1275 * Cap @max_active to 1 too.
1276 */
1277 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
1278 0, 1);
1279 BUG_ON(!cgroup_pidlist_destroy_wq);
1280 return 0;
1281}
1282core_initcall(cgroup1_wq_init);
1283
1284static int __init cgroup_no_v1(char *str)
1285{
1286 struct cgroup_subsys *ss;
1287 char *token;
1288 int i;
1289
1290 while ((token = strsep(&str, ",")) != NULL) {
1291 if (!*token)
1292 continue;
1293
1294 if (!strcmp(token, "all")) {
1295 cgroup_no_v1_mask = U16_MAX;
1296 break;
1297 }
1298
1299 for_each_subsys(ss, i) {
1300 if (strcmp(token, ss->name) &&
1301 strcmp(token, ss->legacy_name))
1302 continue;
1303
1304 cgroup_no_v1_mask |= 1 << i;
1305 }
1306 }
1307 return 1;
1308}
1309__setup("cgroup_no_v1=", cgroup_no_v1);