]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blame - kernel/cgroup/cpuset.c
UBUNTU: [Config]: remove nvram from ppc64el modules ABI
[mirror_ubuntu-eoan-kernel.git] / kernel / cgroup / cpuset.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/cpuset.c
3 *
4 * Processor and Memory placement constraints for sets of tasks.
5 *
6 * Copyright (C) 2003 BULL SA.
029190c5 7 * Copyright (C) 2004-2007 Silicon Graphics, Inc.
8793d854 8 * Copyright (C) 2006 Google, Inc
1da177e4
LT
9 *
10 * Portions derived from Patrick Mochel's sysfs code.
11 * sysfs is Copyright (c) 2001-3 Patrick Mochel
1da177e4 12 *
825a46af 13 * 2003-10-10 Written by Simon Derr.
1da177e4 14 * 2003-10-22 Updates by Stephen Hemminger.
825a46af 15 * 2004 May-July Rework by Paul Jackson.
8793d854 16 * 2006 Rework by Paul Menage to use generic cgroups
cf417141
MK
17 * 2008 Rework of the scheduler domains and CPU hotplug handling
18 * by Max Krasnyansky
1da177e4
LT
19 *
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
23 */
24
1da177e4
LT
25#include <linux/cpu.h>
26#include <linux/cpumask.h>
27#include <linux/cpuset.h>
28#include <linux/err.h>
29#include <linux/errno.h>
30#include <linux/file.h>
31#include <linux/fs.h>
32#include <linux/init.h>
33#include <linux/interrupt.h>
34#include <linux/kernel.h>
35#include <linux/kmod.h>
36#include <linux/list.h>
68860ec1 37#include <linux/mempolicy.h>
1da177e4 38#include <linux/mm.h>
f481891f 39#include <linux/memory.h>
9984de1a 40#include <linux/export.h>
1da177e4 41#include <linux/mount.h>
a1875374 42#include <linux/fs_context.h>
1da177e4
LT
43#include <linux/namei.h>
44#include <linux/pagemap.h>
45#include <linux/proc_fs.h>
6b9c2603 46#include <linux/rcupdate.h>
1da177e4 47#include <linux/sched.h>
6e84f315 48#include <linux/sched/mm.h>
f719ff9b 49#include <linux/sched/task.h>
1da177e4 50#include <linux/seq_file.h>
22fb52dd 51#include <linux/security.h>
1da177e4 52#include <linux/slab.h>
1da177e4
LT
53#include <linux/spinlock.h>
54#include <linux/stat.h>
55#include <linux/string.h>
56#include <linux/time.h>
d2b43658 57#include <linux/time64.h>
1da177e4
LT
58#include <linux/backing-dev.h>
59#include <linux/sort.h>
da99ecf1 60#include <linux/oom.h>
edb93821 61#include <linux/sched/isolation.h>
7c0f6ba6 62#include <linux/uaccess.h>
60063497 63#include <linux/atomic.h>
3d3f26a7 64#include <linux/mutex.h>
956db3ca 65#include <linux/cgroup.h>
e44193d3 66#include <linux/wait.h>
1da177e4 67
89affbf5 68DEFINE_STATIC_KEY_FALSE(cpusets_pre_enable_key);
002f2906 69DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key);
202f72d5 70
3e0d98b9
PJ
71/* See "Frequency meter" comments, below. */
72
73struct fmeter {
74 int cnt; /* unprocessed events count */
75 int val; /* most recent output value */
d2b43658 76 time64_t time; /* clock (secs) when val computed */
3e0d98b9
PJ
77 spinlock_t lock; /* guards read or write of above */
78};
79
1da177e4 80struct cpuset {
8793d854
PM
81 struct cgroup_subsys_state css;
82
1da177e4 83 unsigned long flags; /* "unsigned long" so bitops work */
e2b9a3d7 84
7e88291b
LZ
85 /*
86 * On default hierarchy:
87 *
88 * The user-configured masks can only be changed by writing to
89 * cpuset.cpus and cpuset.mems, and won't be limited by the
90 * parent masks.
91 *
92 * The effective masks is the real masks that apply to the tasks
93 * in the cpuset. They may be changed if the configured masks are
94 * changed or hotplug happens.
95 *
96 * effective_mask == configured_mask & parent's effective_mask,
97 * and if it ends up empty, it will inherit the parent's mask.
98 *
99 *
100 * On legacy hierachy:
101 *
102 * The user-configured masks are always the same with effective masks.
103 */
104
e2b9a3d7
LZ
105 /* user-configured CPUs and Memory Nodes allow to tasks */
106 cpumask_var_t cpus_allowed;
107 nodemask_t mems_allowed;
108
109 /* effective CPUs and Memory Nodes allow to tasks */
110 cpumask_var_t effective_cpus;
111 nodemask_t effective_mems;
1da177e4 112
58b74842
WL
113 /*
114 * CPUs allocated to child sub-partitions (default hierarchy only)
115 * - CPUs granted by the parent = effective_cpus U subparts_cpus
116 * - effective_cpus and subparts_cpus are mutually exclusive.
4b842da2
WL
117 *
118 * effective_cpus contains only onlined CPUs, but subparts_cpus
119 * may have offlined ones.
58b74842
WL
120 */
121 cpumask_var_t subparts_cpus;
122
33ad801d
LZ
123 /*
124 * This is old Memory Nodes tasks took on.
125 *
126 * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
127 * - A new cpuset's old_mems_allowed is initialized when some
128 * task is moved into it.
129 * - old_mems_allowed is used in cpuset_migrate_mm() when we change
130 * cpuset.mems_allowed and have tasks' nodemask updated, and
131 * then old_mems_allowed is updated to mems_allowed.
132 */
133 nodemask_t old_mems_allowed;
134
3e0d98b9 135 struct fmeter fmeter; /* memory_pressure filter */
029190c5 136
452477fa
TH
137 /*
138 * Tasks are being attached to this cpuset. Used to prevent
139 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
140 */
141 int attach_in_progress;
142
029190c5
PJ
143 /* partition number for rebuild_sched_domains() */
144 int pn;
956db3ca 145
1d3504fc
HS
146 /* for custom sched domain */
147 int relax_domain_level;
58b74842
WL
148
149 /* number of CPUs in subparts_cpus */
150 int nr_subparts_cpus;
151
152 /* partition root state */
153 int partition_root_state;
4716909c
WL
154
155 /*
156 * Default hierarchy only:
157 * use_parent_ecpus - set if using parent's effective_cpus
158 * child_ecpus_count - # of children with use_parent_ecpus set
159 */
160 int use_parent_ecpus;
161 int child_ecpus_count;
58b74842
WL
162};
163
164/*
165 * Partition root states:
166 *
167 * 0 - not a partition root
3881b861 168 *
58b74842 169 * 1 - partition root
3881b861
WL
170 *
171 * -1 - invalid partition root
172 * None of the cpus in cpus_allowed can be put into the parent's
173 * subparts_cpus. In this case, the cpuset is not a real partition
174 * root anymore. However, the CPU_EXCLUSIVE bit will still be set
175 * and the cpuset can be restored back to a partition root if the
176 * parent cpuset can give more CPUs back to this child cpuset.
58b74842
WL
177 */
178#define PRS_DISABLED 0
179#define PRS_ENABLED 1
3881b861 180#define PRS_ERROR -1
58b74842
WL
181
182/*
183 * Temporary cpumasks for working with partitions that are passed among
184 * functions to avoid memory allocation in inner functions.
185 */
186struct tmpmasks {
187 cpumask_var_t addmask, delmask; /* For partition root */
188 cpumask_var_t new_cpus; /* For update_cpumasks_hier() */
1da177e4
LT
189};
190
a7c6d554 191static inline struct cpuset *css_cs(struct cgroup_subsys_state *css)
8793d854 192{
a7c6d554 193 return css ? container_of(css, struct cpuset, css) : NULL;
8793d854
PM
194}
195
196/* Retrieve the cpuset for a task */
197static inline struct cpuset *task_cs(struct task_struct *task)
198{
073219e9 199 return css_cs(task_css(task, cpuset_cgrp_id));
8793d854 200}
8793d854 201
c9710d80 202static inline struct cpuset *parent_cs(struct cpuset *cs)
c431069f 203{
5c9d535b 204 return css_cs(cs->css.parent);
c431069f
TH
205}
206
1da177e4
LT
207/* bits in struct cpuset flags field */
208typedef enum {
efeb77b2 209 CS_ONLINE,
1da177e4
LT
210 CS_CPU_EXCLUSIVE,
211 CS_MEM_EXCLUSIVE,
78608366 212 CS_MEM_HARDWALL,
45b07ef3 213 CS_MEMORY_MIGRATE,
029190c5 214 CS_SCHED_LOAD_BALANCE,
825a46af
PJ
215 CS_SPREAD_PAGE,
216 CS_SPREAD_SLAB,
1da177e4
LT
217} cpuset_flagbits_t;
218
219/* convenient tests for these bits */
41c25707 220static inline bool is_cpuset_online(struct cpuset *cs)
efeb77b2 221{
41c25707 222 return test_bit(CS_ONLINE, &cs->flags) && !css_is_dying(&cs->css);
efeb77b2
TH
223}
224
1da177e4
LT
225static inline int is_cpu_exclusive(const struct cpuset *cs)
226{
7b5b9ef0 227 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
1da177e4
LT
228}
229
230static inline int is_mem_exclusive(const struct cpuset *cs)
231{
7b5b9ef0 232 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
1da177e4
LT
233}
234
78608366
PM
235static inline int is_mem_hardwall(const struct cpuset *cs)
236{
237 return test_bit(CS_MEM_HARDWALL, &cs->flags);
238}
239
029190c5
PJ
240static inline int is_sched_load_balance(const struct cpuset *cs)
241{
242 return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
243}
244
45b07ef3
PJ
245static inline int is_memory_migrate(const struct cpuset *cs)
246{
7b5b9ef0 247 return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
45b07ef3
PJ
248}
249
825a46af
PJ
250static inline int is_spread_page(const struct cpuset *cs)
251{
252 return test_bit(CS_SPREAD_PAGE, &cs->flags);
253}
254
255static inline int is_spread_slab(const struct cpuset *cs)
256{
257 return test_bit(CS_SPREAD_SLAB, &cs->flags);
258}
259
58b74842
WL
260static inline int is_partition_root(const struct cpuset *cs)
261{
3881b861 262 return cs->partition_root_state > 0;
58b74842
WL
263}
264
1da177e4 265static struct cpuset top_cpuset = {
efeb77b2
TH
266 .flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
267 (1 << CS_MEM_EXCLUSIVE)),
58b74842 268 .partition_root_state = PRS_ENABLED,
1da177e4
LT
269};
270
ae8086ce
TH
271/**
272 * cpuset_for_each_child - traverse online children of a cpuset
273 * @child_cs: loop cursor pointing to the current child
492eb21b 274 * @pos_css: used for iteration
ae8086ce
TH
275 * @parent_cs: target cpuset to walk children of
276 *
277 * Walk @child_cs through the online children of @parent_cs. Must be used
278 * with RCU read locked.
279 */
492eb21b
TH
280#define cpuset_for_each_child(child_cs, pos_css, parent_cs) \
281 css_for_each_child((pos_css), &(parent_cs)->css) \
282 if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
ae8086ce 283
fc560a26
TH
284/**
285 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
286 * @des_cs: loop cursor pointing to the current descendant
492eb21b 287 * @pos_css: used for iteration
fc560a26
TH
288 * @root_cs: target cpuset to walk ancestor of
289 *
290 * Walk @des_cs through the online descendants of @root_cs. Must be used
492eb21b 291 * with RCU read locked. The caller may modify @pos_css by calling
bd8815a6
TH
292 * css_rightmost_descendant() to skip subtree. @root_cs is included in the
293 * iteration and the first node to be visited.
fc560a26 294 */
492eb21b
TH
295#define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs) \
296 css_for_each_descendant_pre((pos_css), &(root_cs)->css) \
297 if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
fc560a26 298
1da177e4 299/*
8447a0fe
VD
300 * There are two global locks guarding cpuset structures - cpuset_mutex and
301 * callback_lock. We also require taking task_lock() when dereferencing a
302 * task's cpuset pointer. See "The task_lock() exception", at the end of this
303 * comment.
5d21cc2d 304 *
8447a0fe 305 * A task must hold both locks to modify cpusets. If a task holds
5d21cc2d 306 * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
8447a0fe 307 * is the only task able to also acquire callback_lock and be able to
5d21cc2d
TH
308 * modify cpusets. It can perform various checks on the cpuset structure
309 * first, knowing nothing will change. It can also allocate memory while
310 * just holding cpuset_mutex. While it is performing these checks, various
8447a0fe
VD
311 * callback routines can briefly acquire callback_lock to query cpusets.
312 * Once it is ready to make the changes, it takes callback_lock, blocking
5d21cc2d 313 * everyone else.
053199ed
PJ
314 *
315 * Calls to the kernel memory allocator can not be made while holding
8447a0fe 316 * callback_lock, as that would risk double tripping on callback_lock
053199ed
PJ
317 * from one of the callbacks into the cpuset code from within
318 * __alloc_pages().
319 *
8447a0fe 320 * If a task is only holding callback_lock, then it has read-only
053199ed
PJ
321 * access to cpusets.
322 *
58568d2a
MX
323 * Now, the task_struct fields mems_allowed and mempolicy may be changed
324 * by other task, we use alloc_lock in the task_struct fields to protect
325 * them.
053199ed 326 *
8447a0fe 327 * The cpuset_common_file_read() handlers only hold callback_lock across
053199ed
PJ
328 * small pieces of code, such as when reading out possibly multi-word
329 * cpumasks and nodemasks.
330 *
2df167a3
PM
331 * Accessing a task's cpuset should be done in accordance with the
332 * guidelines for accessing subsystem state in kernel/cgroup.c
1da177e4
LT
333 */
334
5d21cc2d 335static DEFINE_MUTEX(cpuset_mutex);
8447a0fe 336static DEFINE_SPINLOCK(callback_lock);
4247bdc6 337
e93ad19d
TH
338static struct workqueue_struct *cpuset_migrate_mm_wq;
339
3a5a6d0c
TH
340/*
341 * CPU / memory hotplug is handled asynchronously.
342 */
343static void cpuset_hotplug_workfn(struct work_struct *work);
3a5a6d0c
TH
344static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);
345
e44193d3
LZ
346static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);
347
b8d1b8ee
WL
348/*
349 * Cgroup v2 behavior is used when on default hierarchy or the
350 * cgroup_v2_mode flag is set.
351 */
352static inline bool is_in_v2_mode(void)
353{
354 return cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
355 (cpuset_cgrp_subsys.root->flags & CGRP_ROOT_CPUSET_V2_MODE);
356}
357
1da177e4 358/*
300ed6cb 359 * Return in pmask the portion of a cpusets's cpus_allowed that
1da177e4 360 * are online. If none are online, walk up the cpuset hierarchy
28b89b9e 361 * until we find one that does have some online cpus.
1da177e4
LT
362 *
363 * One way or another, we guarantee to return some non-empty subset
5f054e31 364 * of cpu_online_mask.
1da177e4 365 *
8447a0fe 366 * Call with callback_lock or cpuset_mutex held.
1da177e4 367 */
c9710d80 368static void guarantee_online_cpus(struct cpuset *cs, struct cpumask *pmask)
1da177e4 369{
28b89b9e 370 while (!cpumask_intersects(cs->effective_cpus, cpu_online_mask)) {
c431069f 371 cs = parent_cs(cs);
28b89b9e
JP
372 if (unlikely(!cs)) {
373 /*
374 * The top cpuset doesn't have any online cpu as a
375 * consequence of a race between cpuset_hotplug_work
376 * and cpu hotplug notifier. But we know the top
377 * cpuset's effective_cpus is on its way to to be
378 * identical to cpu_online_mask.
379 */
380 cpumask_copy(pmask, cpu_online_mask);
381 return;
382 }
383 }
ae1c8023 384 cpumask_and(pmask, cs->effective_cpus, cpu_online_mask);
1da177e4
LT
385}
386
387/*
388 * Return in *pmask the portion of a cpusets's mems_allowed that
0e1e7c7a
CL
389 * are online, with memory. If none are online with memory, walk
390 * up the cpuset hierarchy until we find one that does have some
40df2deb 391 * online mems. The top cpuset always has some mems online.
1da177e4
LT
392 *
393 * One way or another, we guarantee to return some non-empty subset
38d7bee9 394 * of node_states[N_MEMORY].
1da177e4 395 *
8447a0fe 396 * Call with callback_lock or cpuset_mutex held.
1da177e4 397 */
c9710d80 398static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
1da177e4 399{
ae1c8023 400 while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY]))
c431069f 401 cs = parent_cs(cs);
ae1c8023 402 nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]);
1da177e4
LT
403}
404
f3b39d47
MX
405/*
406 * update task's spread flag if cpuset's page/slab spread flag is set
407 *
8447a0fe 408 * Call with callback_lock or cpuset_mutex held.
f3b39d47
MX
409 */
410static void cpuset_update_task_spread_flag(struct cpuset *cs,
411 struct task_struct *tsk)
412{
413 if (is_spread_page(cs))
2ad654bc 414 task_set_spread_page(tsk);
f3b39d47 415 else
2ad654bc
ZL
416 task_clear_spread_page(tsk);
417
f3b39d47 418 if (is_spread_slab(cs))
2ad654bc 419 task_set_spread_slab(tsk);
f3b39d47 420 else
2ad654bc 421 task_clear_spread_slab(tsk);
f3b39d47
MX
422}
423
1da177e4
LT
424/*
425 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
426 *
427 * One cpuset is a subset of another if all its allowed CPUs and
428 * Memory Nodes are a subset of the other, and its exclusive flags
5d21cc2d 429 * are only set if the other's are set. Call holding cpuset_mutex.
1da177e4
LT
430 */
431
432static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
433{
300ed6cb 434 return cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
1da177e4
LT
435 nodes_subset(p->mems_allowed, q->mems_allowed) &&
436 is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
437 is_mem_exclusive(p) <= is_mem_exclusive(q);
438}
439
bf92370c
WL
440/**
441 * alloc_cpumasks - allocate three cpumasks for cpuset
442 * @cs: the cpuset that have cpumasks to be allocated.
443 * @tmp: the tmpmasks structure pointer
444 * Return: 0 if successful, -ENOMEM otherwise.
445 *
446 * Only one of the two input arguments should be non-NULL.
447 */
448static inline int alloc_cpumasks(struct cpuset *cs, struct tmpmasks *tmp)
449{
450 cpumask_var_t *pmask1, *pmask2, *pmask3;
451
452 if (cs) {
453 pmask1 = &cs->cpus_allowed;
454 pmask2 = &cs->effective_cpus;
455 pmask3 = &cs->subparts_cpus;
456 } else {
457 pmask1 = &tmp->new_cpus;
458 pmask2 = &tmp->addmask;
459 pmask3 = &tmp->delmask;
460 }
461
462 if (!zalloc_cpumask_var(pmask1, GFP_KERNEL))
463 return -ENOMEM;
464
465 if (!zalloc_cpumask_var(pmask2, GFP_KERNEL))
466 goto free_one;
467
468 if (!zalloc_cpumask_var(pmask3, GFP_KERNEL))
469 goto free_two;
470
471 return 0;
472
473free_two:
474 free_cpumask_var(*pmask2);
475free_one:
476 free_cpumask_var(*pmask1);
477 return -ENOMEM;
478}
479
480/**
481 * free_cpumasks - free cpumasks in a tmpmasks structure
482 * @cs: the cpuset that have cpumasks to be free.
483 * @tmp: the tmpmasks structure pointer
484 */
485static inline void free_cpumasks(struct cpuset *cs, struct tmpmasks *tmp)
486{
487 if (cs) {
488 free_cpumask_var(cs->cpus_allowed);
489 free_cpumask_var(cs->effective_cpus);
490 free_cpumask_var(cs->subparts_cpus);
491 }
492 if (tmp) {
493 free_cpumask_var(tmp->new_cpus);
494 free_cpumask_var(tmp->addmask);
495 free_cpumask_var(tmp->delmask);
496 }
497}
498
645fcc9d
LZ
499/**
500 * alloc_trial_cpuset - allocate a trial cpuset
501 * @cs: the cpuset that the trial cpuset duplicates
502 */
c9710d80 503static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
645fcc9d 504{
300ed6cb
LZ
505 struct cpuset *trial;
506
507 trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
508 if (!trial)
509 return NULL;
510
bf92370c
WL
511 if (alloc_cpumasks(trial, NULL)) {
512 kfree(trial);
513 return NULL;
514 }
300ed6cb 515
e2b9a3d7
LZ
516 cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
517 cpumask_copy(trial->effective_cpus, cs->effective_cpus);
300ed6cb 518 return trial;
645fcc9d
LZ
519}
520
521/**
bf92370c
WL
522 * free_cpuset - free the cpuset
523 * @cs: the cpuset to be freed
645fcc9d 524 */
bf92370c 525static inline void free_cpuset(struct cpuset *cs)
645fcc9d 526{
bf92370c
WL
527 free_cpumasks(cs, NULL);
528 kfree(cs);
645fcc9d
LZ
529}
530
1da177e4
LT
531/*
532 * validate_change() - Used to validate that any proposed cpuset change
533 * follows the structural rules for cpusets.
534 *
535 * If we replaced the flag and mask values of the current cpuset
536 * (cur) with those values in the trial cpuset (trial), would
537 * our various subset and exclusive rules still be valid? Presumes
5d21cc2d 538 * cpuset_mutex held.
1da177e4
LT
539 *
540 * 'cur' is the address of an actual, in-use cpuset. Operations
541 * such as list traversal that depend on the actual address of the
542 * cpuset in the list must use cur below, not trial.
543 *
544 * 'trial' is the address of bulk structure copy of cur, with
545 * perhaps one or more of the fields cpus_allowed, mems_allowed,
546 * or flags changed to new, trial values.
547 *
548 * Return 0 if valid, -errno if not.
549 */
550
c9710d80 551static int validate_change(struct cpuset *cur, struct cpuset *trial)
1da177e4 552{
492eb21b 553 struct cgroup_subsys_state *css;
1da177e4 554 struct cpuset *c, *par;
ae8086ce
TH
555 int ret;
556
557 rcu_read_lock();
1da177e4
LT
558
559 /* Each of our child cpusets must be a subset of us */
ae8086ce 560 ret = -EBUSY;
492eb21b 561 cpuset_for_each_child(c, css, cur)
ae8086ce
TH
562 if (!is_cpuset_subset(c, trial))
563 goto out;
1da177e4
LT
564
565 /* Remaining checks don't apply to root cpuset */
ae8086ce 566 ret = 0;
69604067 567 if (cur == &top_cpuset)
ae8086ce 568 goto out;
1da177e4 569
c431069f 570 par = parent_cs(cur);
69604067 571
7e88291b 572 /* On legacy hiearchy, we must be a subset of our parent cpuset. */
ae8086ce 573 ret = -EACCES;
b8d1b8ee 574 if (!is_in_v2_mode() && !is_cpuset_subset(trial, par))
ae8086ce 575 goto out;
1da177e4 576
2df167a3
PM
577 /*
578 * If either I or some sibling (!= me) is exclusive, we can't
579 * overlap
580 */
ae8086ce 581 ret = -EINVAL;
492eb21b 582 cpuset_for_each_child(c, css, par) {
1da177e4
LT
583 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
584 c != cur &&
300ed6cb 585 cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
ae8086ce 586 goto out;
1da177e4
LT
587 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
588 c != cur &&
589 nodes_intersects(trial->mems_allowed, c->mems_allowed))
ae8086ce 590 goto out;
1da177e4
LT
591 }
592
452477fa
TH
593 /*
594 * Cpusets with tasks - existing or newly being attached - can't
1c09b195 595 * be changed to have empty cpus_allowed or mems_allowed.
452477fa 596 */
ae8086ce 597 ret = -ENOSPC;
27bd4dbb 598 if ((cgroup_is_populated(cur->css.cgroup) || cur->attach_in_progress)) {
1c09b195
LZ
599 if (!cpumask_empty(cur->cpus_allowed) &&
600 cpumask_empty(trial->cpus_allowed))
601 goto out;
602 if (!nodes_empty(cur->mems_allowed) &&
603 nodes_empty(trial->mems_allowed))
604 goto out;
605 }
020958b6 606
f82f8042
JL
607 /*
608 * We can't shrink if we won't have enough room for SCHED_DEADLINE
609 * tasks.
610 */
611 ret = -EBUSY;
612 if (is_cpu_exclusive(cur) &&
613 !cpuset_cpumask_can_shrink(cur->cpus_allowed,
614 trial->cpus_allowed))
615 goto out;
616
ae8086ce
TH
617 ret = 0;
618out:
619 rcu_read_unlock();
620 return ret;
1da177e4
LT
621}
622
db7f47cf 623#ifdef CONFIG_SMP
029190c5 624/*
cf417141 625 * Helper routine for generate_sched_domains().
8b5f1c52 626 * Do cpusets a, b have overlapping effective cpus_allowed masks?
029190c5 627 */
029190c5
PJ
628static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
629{
8b5f1c52 630 return cpumask_intersects(a->effective_cpus, b->effective_cpus);
029190c5
PJ
631}
632
1d3504fc
HS
633static void
634update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
635{
1d3504fc
HS
636 if (dattr->relax_domain_level < c->relax_domain_level)
637 dattr->relax_domain_level = c->relax_domain_level;
638 return;
639}
640
fc560a26
TH
641static void update_domain_attr_tree(struct sched_domain_attr *dattr,
642 struct cpuset *root_cs)
f5393693 643{
fc560a26 644 struct cpuset *cp;
492eb21b 645 struct cgroup_subsys_state *pos_css;
f5393693 646
fc560a26 647 rcu_read_lock();
492eb21b 648 cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
fc560a26
TH
649 /* skip the whole subtree if @cp doesn't have any CPU */
650 if (cpumask_empty(cp->cpus_allowed)) {
492eb21b 651 pos_css = css_rightmost_descendant(pos_css);
f5393693 652 continue;
fc560a26 653 }
f5393693
LJ
654
655 if (is_sched_load_balance(cp))
656 update_domain_attr(dattr, cp);
f5393693 657 }
fc560a26 658 rcu_read_unlock();
f5393693
LJ
659}
660
be040bea
PB
661/* Must be called with cpuset_mutex held. */
662static inline int nr_cpusets(void)
663{
664 /* jump label reference count + the top-level cpuset */
665 return static_key_count(&cpusets_enabled_key.key) + 1;
666}
667
029190c5 668/*
cf417141
MK
669 * generate_sched_domains()
670 *
671 * This function builds a partial partition of the systems CPUs
672 * A 'partial partition' is a set of non-overlapping subsets whose
673 * union is a subset of that set.
0a0fca9d 674 * The output of this function needs to be passed to kernel/sched/core.c
cf417141
MK
675 * partition_sched_domains() routine, which will rebuild the scheduler's
676 * load balancing domains (sched domains) as specified by that partial
677 * partition.
029190c5 678 *
da82c92f 679 * See "What is sched_load_balance" in Documentation/admin-guide/cgroup-v1/cpusets.rst
029190c5
PJ
680 * for a background explanation of this.
681 *
682 * Does not return errors, on the theory that the callers of this
683 * routine would rather not worry about failures to rebuild sched
684 * domains when operating in the severe memory shortage situations
685 * that could cause allocation failures below.
686 *
5d21cc2d 687 * Must be called with cpuset_mutex held.
029190c5
PJ
688 *
689 * The three key local variables below are:
b6fbbf31
JL
690 * cp - cpuset pointer, used (together with pos_css) to perform a
691 * top-down scan of all cpusets. For our purposes, rebuilding
692 * the schedulers sched domains, we can ignore !is_sched_load_
693 * balance cpusets.
029190c5
PJ
694 * csa - (for CpuSet Array) Array of pointers to all the cpusets
695 * that need to be load balanced, for convenient iterative
696 * access by the subsequent code that finds the best partition,
697 * i.e the set of domains (subsets) of CPUs such that the
698 * cpus_allowed of every cpuset marked is_sched_load_balance
699 * is a subset of one of these domains, while there are as
700 * many such domains as possible, each as small as possible.
701 * doms - Conversion of 'csa' to an array of cpumasks, for passing to
0a0fca9d 702 * the kernel/sched/core.c routine partition_sched_domains() in a
029190c5
PJ
703 * convenient format, that can be easily compared to the prior
704 * value to determine what partition elements (sched domains)
705 * were changed (added or removed.)
706 *
707 * Finding the best partition (set of domains):
708 * The triple nested loops below over i, j, k scan over the
709 * load balanced cpusets (using the array of cpuset pointers in
710 * csa[]) looking for pairs of cpusets that have overlapping
711 * cpus_allowed, but which don't have the same 'pn' partition
712 * number and gives them in the same partition number. It keeps
713 * looping on the 'restart' label until it can no longer find
714 * any such pairs.
715 *
716 * The union of the cpus_allowed masks from the set of
717 * all cpusets having the same 'pn' value then form the one
718 * element of the partition (one sched domain) to be passed to
719 * partition_sched_domains().
720 */
acc3f5d7 721static int generate_sched_domains(cpumask_var_t **domains,
cf417141 722 struct sched_domain_attr **attributes)
029190c5 723{
b6fbbf31 724 struct cpuset *cp; /* top-down scan of cpusets */
029190c5
PJ
725 struct cpuset **csa; /* array of all cpuset ptrs */
726 int csn; /* how many cpuset ptrs in csa so far */
727 int i, j, k; /* indices for partition finding loops */
acc3f5d7 728 cpumask_var_t *doms; /* resulting partition; i.e. sched domains */
1d3504fc 729 struct sched_domain_attr *dattr; /* attributes for custom domains */
1583715d 730 int ndoms = 0; /* number of sched domains in result */
6af866af 731 int nslot; /* next empty doms[] struct cpumask slot */
492eb21b 732 struct cgroup_subsys_state *pos_css;
0ccea8fe 733 bool root_load_balance = is_sched_load_balance(&top_cpuset);
029190c5 734
029190c5 735 doms = NULL;
1d3504fc 736 dattr = NULL;
cf417141 737 csa = NULL;
029190c5
PJ
738
739 /* Special case for the 99% of systems with one, full, sched domain */
0ccea8fe 740 if (root_load_balance && !top_cpuset.nr_subparts_cpus) {
acc3f5d7
RR
741 ndoms = 1;
742 doms = alloc_sched_domains(ndoms);
029190c5 743 if (!doms)
cf417141
MK
744 goto done;
745
1d3504fc
HS
746 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
747 if (dattr) {
748 *dattr = SD_ATTR_INIT;
93a65575 749 update_domain_attr_tree(dattr, &top_cpuset);
1d3504fc 750 }
47b8ea71 751 cpumask_and(doms[0], top_cpuset.effective_cpus,
edb93821 752 housekeeping_cpumask(HK_FLAG_DOMAIN));
cf417141 753
cf417141 754 goto done;
029190c5
PJ
755 }
756
6da2ec56 757 csa = kmalloc_array(nr_cpusets(), sizeof(cp), GFP_KERNEL);
029190c5
PJ
758 if (!csa)
759 goto done;
760 csn = 0;
761
fc560a26 762 rcu_read_lock();
0ccea8fe
WL
763 if (root_load_balance)
764 csa[csn++] = &top_cpuset;
492eb21b 765 cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
bd8815a6
TH
766 if (cp == &top_cpuset)
767 continue;
f5393693 768 /*
fc560a26
TH
769 * Continue traversing beyond @cp iff @cp has some CPUs and
770 * isn't load balancing. The former is obvious. The
771 * latter: All child cpusets contain a subset of the
772 * parent's cpus, so just skip them, and then we call
773 * update_domain_attr_tree() to calc relax_domain_level of
774 * the corresponding sched domain.
0ccea8fe
WL
775 *
776 * If root is load-balancing, we can skip @cp if it
777 * is a subset of the root's effective_cpus.
f5393693 778 */
fc560a26 779 if (!cpumask_empty(cp->cpus_allowed) &&
47b8ea71 780 !(is_sched_load_balance(cp) &&
edb93821
FW
781 cpumask_intersects(cp->cpus_allowed,
782 housekeeping_cpumask(HK_FLAG_DOMAIN))))
f5393693 783 continue;
489a5393 784
0ccea8fe
WL
785 if (root_load_balance &&
786 cpumask_subset(cp->cpus_allowed, top_cpuset.effective_cpus))
787 continue;
788
fc560a26
TH
789 if (is_sched_load_balance(cp))
790 csa[csn++] = cp;
791
0ccea8fe
WL
792 /* skip @cp's subtree if not a partition root */
793 if (!is_partition_root(cp))
794 pos_css = css_rightmost_descendant(pos_css);
fc560a26
TH
795 }
796 rcu_read_unlock();
029190c5
PJ
797
798 for (i = 0; i < csn; i++)
799 csa[i]->pn = i;
800 ndoms = csn;
801
802restart:
803 /* Find the best partition (set of sched domains) */
804 for (i = 0; i < csn; i++) {
805 struct cpuset *a = csa[i];
806 int apn = a->pn;
807
808 for (j = 0; j < csn; j++) {
809 struct cpuset *b = csa[j];
810 int bpn = b->pn;
811
812 if (apn != bpn && cpusets_overlap(a, b)) {
813 for (k = 0; k < csn; k++) {
814 struct cpuset *c = csa[k];
815
816 if (c->pn == bpn)
817 c->pn = apn;
818 }
819 ndoms--; /* one less element */
820 goto restart;
821 }
822 }
823 }
824
cf417141
MK
825 /*
826 * Now we know how many domains to create.
827 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
828 */
acc3f5d7 829 doms = alloc_sched_domains(ndoms);
700018e0 830 if (!doms)
cf417141 831 goto done;
cf417141
MK
832
833 /*
834 * The rest of the code, including the scheduler, can deal with
835 * dattr==NULL case. No need to abort if alloc fails.
836 */
6da2ec56
KC
837 dattr = kmalloc_array(ndoms, sizeof(struct sched_domain_attr),
838 GFP_KERNEL);
029190c5
PJ
839
840 for (nslot = 0, i = 0; i < csn; i++) {
841 struct cpuset *a = csa[i];
6af866af 842 struct cpumask *dp;
029190c5
PJ
843 int apn = a->pn;
844
cf417141
MK
845 if (apn < 0) {
846 /* Skip completed partitions */
847 continue;
848 }
849
acc3f5d7 850 dp = doms[nslot];
cf417141
MK
851
852 if (nslot == ndoms) {
853 static int warnings = 10;
854 if (warnings) {
12d3089c
FF
855 pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n",
856 nslot, ndoms, csn, i, apn);
cf417141 857 warnings--;
029190c5 858 }
cf417141
MK
859 continue;
860 }
029190c5 861
6af866af 862 cpumask_clear(dp);
cf417141
MK
863 if (dattr)
864 *(dattr + nslot) = SD_ATTR_INIT;
865 for (j = i; j < csn; j++) {
866 struct cpuset *b = csa[j];
867
868 if (apn == b->pn) {
8b5f1c52 869 cpumask_or(dp, dp, b->effective_cpus);
edb93821 870 cpumask_and(dp, dp, housekeeping_cpumask(HK_FLAG_DOMAIN));
cf417141
MK
871 if (dattr)
872 update_domain_attr_tree(dattr + nslot, b);
873
874 /* Done with this partition */
875 b->pn = -1;
029190c5 876 }
029190c5 877 }
cf417141 878 nslot++;
029190c5
PJ
879 }
880 BUG_ON(nslot != ndoms);
881
cf417141
MK
882done:
883 kfree(csa);
884
700018e0
LZ
885 /*
886 * Fallback to the default domain if kmalloc() failed.
887 * See comments in partition_sched_domains().
888 */
889 if (doms == NULL)
890 ndoms = 1;
891
cf417141
MK
892 *domains = doms;
893 *attributes = dattr;
894 return ndoms;
895}
896
897/*
898 * Rebuild scheduler domains.
899 *
699140ba
TH
900 * If the flag 'sched_load_balance' of any cpuset with non-empty
901 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
902 * which has that flag enabled, or if any cpuset with a non-empty
903 * 'cpus' is removed, then call this routine to rebuild the
904 * scheduler's dynamic sched domains.
cf417141 905 *
5d21cc2d 906 * Call with cpuset_mutex held. Takes get_online_cpus().
cf417141 907 */
699140ba 908static void rebuild_sched_domains_locked(void)
cf417141
MK
909{
910 struct sched_domain_attr *attr;
acc3f5d7 911 cpumask_var_t *doms;
cf417141
MK
912 int ndoms;
913
5d21cc2d 914 lockdep_assert_held(&cpuset_mutex);
86ef5c9a 915 get_online_cpus();
cf417141 916
5b16c2a4
LZ
917 /*
918 * We have raced with CPU hotplug. Don't do anything to avoid
919 * passing doms with offlined cpu to partition_sched_domains().
920 * Anyways, hotplug work item will rebuild sched domains.
921 */
0ccea8fe
WL
922 if (!top_cpuset.nr_subparts_cpus &&
923 !cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask))
924 goto out;
925
926 if (top_cpuset.nr_subparts_cpus &&
927 !cpumask_subset(top_cpuset.effective_cpus, cpu_active_mask))
5b16c2a4
LZ
928 goto out;
929
cf417141 930 /* Generate domain masks and attrs */
cf417141 931 ndoms = generate_sched_domains(&doms, &attr);
cf417141
MK
932
933 /* Have scheduler rebuild the domains */
934 partition_sched_domains(ndoms, doms, attr);
5b16c2a4 935out:
86ef5c9a 936 put_online_cpus();
cf417141 937}
db7f47cf 938#else /* !CONFIG_SMP */
699140ba 939static void rebuild_sched_domains_locked(void)
db7f47cf
PM
940{
941}
db7f47cf 942#endif /* CONFIG_SMP */
029190c5 943
cf417141
MK
944void rebuild_sched_domains(void)
945{
5d21cc2d 946 mutex_lock(&cpuset_mutex);
699140ba 947 rebuild_sched_domains_locked();
5d21cc2d 948 mutex_unlock(&cpuset_mutex);
029190c5
PJ
949}
950
0b2f630a
MX
951/**
952 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
953 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
0b2f630a 954 *
d66393e5
TH
955 * Iterate through each task of @cs updating its cpus_allowed to the
956 * effective cpuset's. As this function is called with cpuset_mutex held,
957 * cpuset membership stays stable.
0b2f630a 958 */
d66393e5 959static void update_tasks_cpumask(struct cpuset *cs)
0b2f630a 960{
d66393e5
TH
961 struct css_task_iter it;
962 struct task_struct *task;
963
bc2fb7ed 964 css_task_iter_start(&cs->css, 0, &it);
d66393e5 965 while ((task = css_task_iter_next(&it)))
ae1c8023 966 set_cpus_allowed_ptr(task, cs->effective_cpus);
d66393e5 967 css_task_iter_end(&it);
0b2f630a
MX
968}
969
ee8dde0c
WL
970/**
971 * compute_effective_cpumask - Compute the effective cpumask of the cpuset
972 * @new_cpus: the temp variable for the new effective_cpus mask
973 * @cs: the cpuset the need to recompute the new effective_cpus mask
974 * @parent: the parent cpuset
975 *
976 * If the parent has subpartition CPUs, include them in the list of
4b842da2
WL
977 * allowable CPUs in computing the new effective_cpus mask. Since offlined
978 * CPUs are not removed from subparts_cpus, we have to use cpu_active_mask
979 * to mask those out.
ee8dde0c
WL
980 */
981static void compute_effective_cpumask(struct cpumask *new_cpus,
982 struct cpuset *cs, struct cpuset *parent)
983{
984 if (parent->nr_subparts_cpus) {
985 cpumask_or(new_cpus, parent->effective_cpus,
986 parent->subparts_cpus);
987 cpumask_and(new_cpus, new_cpus, cs->cpus_allowed);
4b842da2 988 cpumask_and(new_cpus, new_cpus, cpu_active_mask);
ee8dde0c
WL
989 } else {
990 cpumask_and(new_cpus, cs->cpus_allowed, parent->effective_cpus);
991 }
992}
993
994/*
995 * Commands for update_parent_subparts_cpumask
996 */
997enum subparts_cmd {
998 partcmd_enable, /* Enable partition root */
999 partcmd_disable, /* Disable partition root */
1000 partcmd_update, /* Update parent's subparts_cpus */
1001};
1002
1003/**
1004 * update_parent_subparts_cpumask - update subparts_cpus mask of parent cpuset
1005 * @cpuset: The cpuset that requests change in partition root state
1006 * @cmd: Partition root state change command
1007 * @newmask: Optional new cpumask for partcmd_update
1008 * @tmp: Temporary addmask and delmask
1009 * Return: 0, 1 or an error code
1010 *
1011 * For partcmd_enable, the cpuset is being transformed from a non-partition
1012 * root to a partition root. The cpus_allowed mask of the given cpuset will
1013 * be put into parent's subparts_cpus and taken away from parent's
1014 * effective_cpus. The function will return 0 if all the CPUs listed in
1015 * cpus_allowed can be granted or an error code will be returned.
1016 *
1017 * For partcmd_disable, the cpuset is being transofrmed from a partition
1018 * root back to a non-partition root. any CPUs in cpus_allowed that are in
1019 * parent's subparts_cpus will be taken away from that cpumask and put back
1020 * into parent's effective_cpus. 0 should always be returned.
1021 *
1022 * For partcmd_update, if the optional newmask is specified, the cpu
1023 * list is to be changed from cpus_allowed to newmask. Otherwise,
3881b861
WL
1024 * cpus_allowed is assumed to remain the same. The cpuset should either
1025 * be a partition root or an invalid partition root. The partition root
1026 * state may change if newmask is NULL and none of the requested CPUs can
1027 * be granted by the parent. The function will return 1 if changes to
1028 * parent's subparts_cpus and effective_cpus happen or 0 otherwise.
1029 * Error code should only be returned when newmask is non-NULL.
ee8dde0c
WL
1030 *
1031 * The partcmd_enable and partcmd_disable commands are used by
1032 * update_prstate(). The partcmd_update command is used by
1033 * update_cpumasks_hier() with newmask NULL and update_cpumask() with
1034 * newmask set.
1035 *
1036 * The checking is more strict when enabling partition root than the
1037 * other two commands.
1038 *
1039 * Because of the implicit cpu exclusive nature of a partition root,
1040 * cpumask changes that violates the cpu exclusivity rule will not be
1041 * permitted when checked by validate_change(). The validate_change()
1042 * function will also prevent any changes to the cpu list if it is not
1043 * a superset of children's cpu lists.
1044 */
1045static int update_parent_subparts_cpumask(struct cpuset *cpuset, int cmd,
1046 struct cpumask *newmask,
1047 struct tmpmasks *tmp)
1048{
1049 struct cpuset *parent = parent_cs(cpuset);
1050 int adding; /* Moving cpus from effective_cpus to subparts_cpus */
1051 int deleting; /* Moving cpus from subparts_cpus to effective_cpus */
3881b861 1052 bool part_error = false; /* Partition error? */
ee8dde0c
WL
1053
1054 lockdep_assert_held(&cpuset_mutex);
1055
1056 /*
1057 * The parent must be a partition root.
1058 * The new cpumask, if present, or the current cpus_allowed must
1059 * not be empty.
1060 */
1061 if (!is_partition_root(parent) ||
1062 (newmask && cpumask_empty(newmask)) ||
1063 (!newmask && cpumask_empty(cpuset->cpus_allowed)))
1064 return -EINVAL;
1065
1066 /*
1067 * Enabling/disabling partition root is not allowed if there are
1068 * online children.
1069 */
1070 if ((cmd != partcmd_update) && css_has_online_children(&cpuset->css))
1071 return -EBUSY;
1072
1073 /*
1074 * Enabling partition root is not allowed if not all the CPUs
1075 * can be granted from parent's effective_cpus or at least one
1076 * CPU will be left after that.
1077 */
1078 if ((cmd == partcmd_enable) &&
1079 (!cpumask_subset(cpuset->cpus_allowed, parent->effective_cpus) ||
1080 cpumask_equal(cpuset->cpus_allowed, parent->effective_cpus)))
1081 return -EINVAL;
1082
1083 /*
1084 * A cpumask update cannot make parent's effective_cpus become empty.
1085 */
1086 adding = deleting = false;
1087 if (cmd == partcmd_enable) {
1088 cpumask_copy(tmp->addmask, cpuset->cpus_allowed);
1089 adding = true;
1090 } else if (cmd == partcmd_disable) {
1091 deleting = cpumask_and(tmp->delmask, cpuset->cpus_allowed,
1092 parent->subparts_cpus);
1093 } else if (newmask) {
1094 /*
1095 * partcmd_update with newmask:
1096 *
1097 * delmask = cpus_allowed & ~newmask & parent->subparts_cpus
1098 * addmask = newmask & parent->effective_cpus
1099 * & ~parent->subparts_cpus
1100 */
1101 cpumask_andnot(tmp->delmask, cpuset->cpus_allowed, newmask);
1102 deleting = cpumask_and(tmp->delmask, tmp->delmask,
1103 parent->subparts_cpus);
1104
1105 cpumask_and(tmp->addmask, newmask, parent->effective_cpus);
1106 adding = cpumask_andnot(tmp->addmask, tmp->addmask,
1107 parent->subparts_cpus);
1108 /*
1109 * Return error if the new effective_cpus could become empty.
1110 */
4b842da2
WL
1111 if (adding &&
1112 cpumask_equal(parent->effective_cpus, tmp->addmask)) {
1113 if (!deleting)
1114 return -EINVAL;
1115 /*
1116 * As some of the CPUs in subparts_cpus might have
1117 * been offlined, we need to compute the real delmask
1118 * to confirm that.
1119 */
1120 if (!cpumask_and(tmp->addmask, tmp->delmask,
1121 cpu_active_mask))
1122 return -EINVAL;
1123 cpumask_copy(tmp->addmask, parent->effective_cpus);
1124 }
ee8dde0c
WL
1125 } else {
1126 /*
1127 * partcmd_update w/o newmask:
1128 *
1129 * addmask = cpus_allowed & parent->effectiveb_cpus
1130 *
1131 * Note that parent's subparts_cpus may have been
3881b861
WL
1132 * pre-shrunk in case there is a change in the cpu list.
1133 * So no deletion is needed.
ee8dde0c
WL
1134 */
1135 adding = cpumask_and(tmp->addmask, cpuset->cpus_allowed,
1136 parent->effective_cpus);
3881b861
WL
1137 part_error = cpumask_equal(tmp->addmask,
1138 parent->effective_cpus);
1139 }
1140
1141 if (cmd == partcmd_update) {
1142 int prev_prs = cpuset->partition_root_state;
1143
1144 /*
1145 * Check for possible transition between PRS_ENABLED
1146 * and PRS_ERROR.
1147 */
1148 switch (cpuset->partition_root_state) {
1149 case PRS_ENABLED:
1150 if (part_error)
1151 cpuset->partition_root_state = PRS_ERROR;
1152 break;
1153 case PRS_ERROR:
1154 if (!part_error)
1155 cpuset->partition_root_state = PRS_ENABLED;
1156 break;
1157 }
1158 /*
1159 * Set part_error if previously in invalid state.
1160 */
1161 part_error = (prev_prs == PRS_ERROR);
1162 }
1163
1164 if (!part_error && (cpuset->partition_root_state == PRS_ERROR))
1165 return 0; /* Nothing need to be done */
1166
1167 if (cpuset->partition_root_state == PRS_ERROR) {
1168 /*
1169 * Remove all its cpus from parent's subparts_cpus.
1170 */
1171 adding = false;
1172 deleting = cpumask_and(tmp->delmask, cpuset->cpus_allowed,
1173 parent->subparts_cpus);
ee8dde0c
WL
1174 }
1175
1176 if (!adding && !deleting)
1177 return 0;
1178
1179 /*
1180 * Change the parent's subparts_cpus.
1181 * Newly added CPUs will be removed from effective_cpus and
1182 * newly deleted ones will be added back to effective_cpus.
1183 */
1184 spin_lock_irq(&callback_lock);
1185 if (adding) {
1186 cpumask_or(parent->subparts_cpus,
1187 parent->subparts_cpus, tmp->addmask);
1188 cpumask_andnot(parent->effective_cpus,
1189 parent->effective_cpus, tmp->addmask);
1190 }
1191 if (deleting) {
1192 cpumask_andnot(parent->subparts_cpus,
1193 parent->subparts_cpus, tmp->delmask);
4b842da2
WL
1194 /*
1195 * Some of the CPUs in subparts_cpus might have been offlined.
1196 */
1197 cpumask_and(tmp->delmask, tmp->delmask, cpu_active_mask);
ee8dde0c
WL
1198 cpumask_or(parent->effective_cpus,
1199 parent->effective_cpus, tmp->delmask);
1200 }
1201
1202 parent->nr_subparts_cpus = cpumask_weight(parent->subparts_cpus);
1203 spin_unlock_irq(&callback_lock);
1204
1205 return cmd == partcmd_update;
1206}
1207
5c5cc623 1208/*
734d4513 1209 * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree
ee8dde0c
WL
1210 * @cs: the cpuset to consider
1211 * @tmp: temp variables for calculating effective_cpus & partition setup
734d4513
LZ
1212 *
1213 * When congifured cpumask is changed, the effective cpumasks of this cpuset
1214 * and all its descendants need to be updated.
5c5cc623 1215 *
734d4513 1216 * On legacy hierachy, effective_cpus will be the same with cpu_allowed.
5c5cc623
LZ
1217 *
1218 * Called with cpuset_mutex held
1219 */
ee8dde0c 1220static void update_cpumasks_hier(struct cpuset *cs, struct tmpmasks *tmp)
5c5cc623
LZ
1221{
1222 struct cpuset *cp;
492eb21b 1223 struct cgroup_subsys_state *pos_css;
8b5f1c52 1224 bool need_rebuild_sched_domains = false;
5c5cc623
LZ
1225
1226 rcu_read_lock();
734d4513
LZ
1227 cpuset_for_each_descendant_pre(cp, pos_css, cs) {
1228 struct cpuset *parent = parent_cs(cp);
1229
ee8dde0c 1230 compute_effective_cpumask(tmp->new_cpus, cp, parent);
734d4513 1231
554b0d1c
LZ
1232 /*
1233 * If it becomes empty, inherit the effective mask of the
1234 * parent, which is guaranteed to have some CPUs.
1235 */
4716909c 1236 if (is_in_v2_mode() && cpumask_empty(tmp->new_cpus)) {
ee8dde0c 1237 cpumask_copy(tmp->new_cpus, parent->effective_cpus);
4716909c
WL
1238 if (!cp->use_parent_ecpus) {
1239 cp->use_parent_ecpus = true;
1240 parent->child_ecpus_count++;
1241 }
1242 } else if (cp->use_parent_ecpus) {
1243 cp->use_parent_ecpus = false;
1244 WARN_ON_ONCE(!parent->child_ecpus_count);
1245 parent->child_ecpus_count--;
1246 }
554b0d1c 1247
ee8dde0c
WL
1248 /*
1249 * Skip the whole subtree if the cpumask remains the same
1250 * and has no partition root state.
1251 */
3881b861 1252 if (!cp->partition_root_state &&
ee8dde0c 1253 cpumask_equal(tmp->new_cpus, cp->effective_cpus)) {
734d4513
LZ
1254 pos_css = css_rightmost_descendant(pos_css);
1255 continue;
5c5cc623 1256 }
734d4513 1257
ee8dde0c
WL
1258 /*
1259 * update_parent_subparts_cpumask() should have been called
1260 * for cs already in update_cpumask(). We should also call
1261 * update_tasks_cpumask() again for tasks in the parent
1262 * cpuset if the parent's subparts_cpus changes.
1263 */
3881b861
WL
1264 if ((cp != cs) && cp->partition_root_state) {
1265 switch (parent->partition_root_state) {
1266 case PRS_DISABLED:
1267 /*
1268 * If parent is not a partition root or an
1269 * invalid partition root, clear the state
1270 * state and the CS_CPU_EXCLUSIVE flag.
1271 */
1272 WARN_ON_ONCE(cp->partition_root_state
1273 != PRS_ERROR);
1274 cp->partition_root_state = 0;
1275
1276 /*
1277 * clear_bit() is an atomic operation and
1278 * readers aren't interested in the state
1279 * of CS_CPU_EXCLUSIVE anyway. So we can
1280 * just update the flag without holding
1281 * the callback_lock.
1282 */
1283 clear_bit(CS_CPU_EXCLUSIVE, &cp->flags);
1284 break;
1285
1286 case PRS_ENABLED:
1287 if (update_parent_subparts_cpumask(cp, partcmd_update, NULL, tmp))
1288 update_tasks_cpumask(parent);
1289 break;
1290
1291 case PRS_ERROR:
1292 /*
1293 * When parent is invalid, it has to be too.
1294 */
1295 cp->partition_root_state = PRS_ERROR;
1296 if (cp->nr_subparts_cpus) {
1297 cp->nr_subparts_cpus = 0;
1298 cpumask_clear(cp->subparts_cpus);
1299 }
1300 break;
1301 }
ee8dde0c
WL
1302 }
1303
ec903c0c 1304 if (!css_tryget_online(&cp->css))
5c5cc623
LZ
1305 continue;
1306 rcu_read_unlock();
1307
8447a0fe 1308 spin_lock_irq(&callback_lock);
ee8dde0c
WL
1309
1310 cpumask_copy(cp->effective_cpus, tmp->new_cpus);
3881b861
WL
1311 if (cp->nr_subparts_cpus &&
1312 (cp->partition_root_state != PRS_ENABLED)) {
1313 cp->nr_subparts_cpus = 0;
1314 cpumask_clear(cp->subparts_cpus);
1315 } else if (cp->nr_subparts_cpus) {
ee8dde0c
WL
1316 /*
1317 * Make sure that effective_cpus & subparts_cpus
1318 * are mutually exclusive.
3881b861
WL
1319 *
1320 * In the unlikely event that effective_cpus
1321 * becomes empty. we clear cp->nr_subparts_cpus and
1322 * let its child partition roots to compete for
1323 * CPUs again.
ee8dde0c
WL
1324 */
1325 cpumask_andnot(cp->effective_cpus, cp->effective_cpus,
1326 cp->subparts_cpus);
3881b861
WL
1327 if (cpumask_empty(cp->effective_cpus)) {
1328 cpumask_copy(cp->effective_cpus, tmp->new_cpus);
1329 cpumask_clear(cp->subparts_cpus);
1330 cp->nr_subparts_cpus = 0;
1331 } else if (!cpumask_subset(cp->subparts_cpus,
1332 tmp->new_cpus)) {
1333 cpumask_andnot(cp->subparts_cpus,
1334 cp->subparts_cpus, tmp->new_cpus);
1335 cp->nr_subparts_cpus
1336 = cpumask_weight(cp->subparts_cpus);
1337 }
ee8dde0c 1338 }
8447a0fe 1339 spin_unlock_irq(&callback_lock);
734d4513 1340
b8d1b8ee 1341 WARN_ON(!is_in_v2_mode() &&
734d4513
LZ
1342 !cpumask_equal(cp->cpus_allowed, cp->effective_cpus));
1343
d66393e5 1344 update_tasks_cpumask(cp);
5c5cc623 1345
8b5f1c52 1346 /*
0ccea8fe
WL
1347 * On legacy hierarchy, if the effective cpumask of any non-
1348 * empty cpuset is changed, we need to rebuild sched domains.
1349 * On default hierarchy, the cpuset needs to be a partition
1350 * root as well.
8b5f1c52
LZ
1351 */
1352 if (!cpumask_empty(cp->cpus_allowed) &&
0ccea8fe
WL
1353 is_sched_load_balance(cp) &&
1354 (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
1355 is_partition_root(cp)))
8b5f1c52
LZ
1356 need_rebuild_sched_domains = true;
1357
5c5cc623
LZ
1358 rcu_read_lock();
1359 css_put(&cp->css);
1360 }
1361 rcu_read_unlock();
8b5f1c52
LZ
1362
1363 if (need_rebuild_sched_domains)
1364 rebuild_sched_domains_locked();
5c5cc623
LZ
1365}
1366
4716909c
WL
1367/**
1368 * update_sibling_cpumasks - Update siblings cpumasks
1369 * @parent: Parent cpuset
1370 * @cs: Current cpuset
1371 * @tmp: Temp variables
1372 */
1373static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs,
1374 struct tmpmasks *tmp)
1375{
1376 struct cpuset *sibling;
1377 struct cgroup_subsys_state *pos_css;
1378
1379 /*
1380 * Check all its siblings and call update_cpumasks_hier()
1381 * if their use_parent_ecpus flag is set in order for them
1382 * to use the right effective_cpus value.
1383 */
1384 rcu_read_lock();
1385 cpuset_for_each_child(sibling, pos_css, parent) {
1386 if (sibling == cs)
1387 continue;
1388 if (!sibling->use_parent_ecpus)
1389 continue;
1390
1391 update_cpumasks_hier(sibling, tmp);
1392 }
1393 rcu_read_unlock();
1394}
1395
58f4790b
CW
1396/**
1397 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
1398 * @cs: the cpuset to consider
fc34ac1d 1399 * @trialcs: trial cpuset
58f4790b
CW
1400 * @buf: buffer of cpu numbers written to this cpuset
1401 */
645fcc9d
LZ
1402static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
1403 const char *buf)
1da177e4 1404{
58f4790b 1405 int retval;
ee8dde0c 1406 struct tmpmasks tmp;
1da177e4 1407
5f054e31 1408 /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
4c4d50f7
PJ
1409 if (cs == &top_cpuset)
1410 return -EACCES;
1411
6f7f02e7 1412 /*
c8d9c90c 1413 * An empty cpus_allowed is ok only if the cpuset has no tasks.
020958b6
PJ
1414 * Since cpulist_parse() fails on an empty mask, we special case
1415 * that parsing. The validate_change() call ensures that cpusets
1416 * with tasks have cpus.
6f7f02e7 1417 */
020958b6 1418 if (!*buf) {
300ed6cb 1419 cpumask_clear(trialcs->cpus_allowed);
6f7f02e7 1420 } else {
300ed6cb 1421 retval = cpulist_parse(buf, trialcs->cpus_allowed);
6f7f02e7
DR
1422 if (retval < 0)
1423 return retval;
37340746 1424
5d8ba82c
LZ
1425 if (!cpumask_subset(trialcs->cpus_allowed,
1426 top_cpuset.cpus_allowed))
37340746 1427 return -EINVAL;
6f7f02e7 1428 }
029190c5 1429
8707d8b8 1430 /* Nothing to do if the cpus didn't change */
300ed6cb 1431 if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
8707d8b8 1432 return 0;
58f4790b 1433
a73456f3
LZ
1434 retval = validate_change(cs, trialcs);
1435 if (retval < 0)
1436 return retval;
1437
ee8dde0c
WL
1438#ifdef CONFIG_CPUMASK_OFFSTACK
1439 /*
1440 * Use the cpumasks in trialcs for tmpmasks when they are pointers
1441 * to allocated cpumasks.
1442 */
1443 tmp.addmask = trialcs->subparts_cpus;
1444 tmp.delmask = trialcs->effective_cpus;
1445 tmp.new_cpus = trialcs->cpus_allowed;
1446#endif
1447
1448 if (cs->partition_root_state) {
1449 /* Cpumask of a partition root cannot be empty */
1450 if (cpumask_empty(trialcs->cpus_allowed))
1451 return -EINVAL;
1452 if (update_parent_subparts_cpumask(cs, partcmd_update,
1453 trialcs->cpus_allowed, &tmp) < 0)
1454 return -EINVAL;
1455 }
1456
8447a0fe 1457 spin_lock_irq(&callback_lock);
300ed6cb 1458 cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
ee8dde0c
WL
1459
1460 /*
1461 * Make sure that subparts_cpus is a subset of cpus_allowed.
1462 */
1463 if (cs->nr_subparts_cpus) {
1464 cpumask_andnot(cs->subparts_cpus, cs->subparts_cpus,
1465 cs->cpus_allowed);
1466 cs->nr_subparts_cpus = cpumask_weight(cs->subparts_cpus);
1467 }
8447a0fe 1468 spin_unlock_irq(&callback_lock);
029190c5 1469
ee8dde0c 1470 update_cpumasks_hier(cs, &tmp);
4716909c
WL
1471
1472 if (cs->partition_root_state) {
1473 struct cpuset *parent = parent_cs(cs);
1474
1475 /*
1476 * For partition root, update the cpumasks of sibling
1477 * cpusets if they use parent's effective_cpus.
1478 */
1479 if (parent->child_ecpus_count)
1480 update_sibling_cpumasks(parent, cs, &tmp);
1481 }
85d7b949 1482 return 0;
1da177e4
LT
1483}
1484
e4e364e8 1485/*
e93ad19d
TH
1486 * Migrate memory region from one set of nodes to another. This is
1487 * performed asynchronously as it can be called from process migration path
1488 * holding locks involved in process management. All mm migrations are
1489 * performed in the queued order and can be waited for by flushing
1490 * cpuset_migrate_mm_wq.
e4e364e8
PJ
1491 */
1492
e93ad19d
TH
1493struct cpuset_migrate_mm_work {
1494 struct work_struct work;
1495 struct mm_struct *mm;
1496 nodemask_t from;
1497 nodemask_t to;
1498};
1499
1500static void cpuset_migrate_mm_workfn(struct work_struct *work)
1501{
1502 struct cpuset_migrate_mm_work *mwork =
1503 container_of(work, struct cpuset_migrate_mm_work, work);
1504
1505 /* on a wq worker, no need to worry about %current's mems_allowed */
1506 do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL);
1507 mmput(mwork->mm);
1508 kfree(mwork);
1509}
1510
e4e364e8
PJ
1511static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
1512 const nodemask_t *to)
1513{
e93ad19d 1514 struct cpuset_migrate_mm_work *mwork;
e4e364e8 1515
e93ad19d
TH
1516 mwork = kzalloc(sizeof(*mwork), GFP_KERNEL);
1517 if (mwork) {
1518 mwork->mm = mm;
1519 mwork->from = *from;
1520 mwork->to = *to;
1521 INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn);
1522 queue_work(cpuset_migrate_mm_wq, &mwork->work);
1523 } else {
1524 mmput(mm);
1525 }
1526}
e4e364e8 1527
5cf1cacb 1528static void cpuset_post_attach(void)
e93ad19d
TH
1529{
1530 flush_workqueue(cpuset_migrate_mm_wq);
e4e364e8
PJ
1531}
1532
3b6766fe 1533/*
58568d2a
MX
1534 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
1535 * @tsk: the task to change
1536 * @newmems: new nodes that the task will be set
1537 *
5f155f27
VB
1538 * We use the mems_allowed_seq seqlock to safely update both tsk->mems_allowed
1539 * and rebind an eventual tasks' mempolicy. If the task is allocating in
1540 * parallel, it might temporarily see an empty intersection, which results in
1541 * a seqlock check and retry before OOM or allocation failure.
58568d2a
MX
1542 */
1543static void cpuset_change_task_nodemask(struct task_struct *tsk,
1544 nodemask_t *newmems)
1545{
c0ff7453 1546 task_lock(tsk);
c0ff7453 1547
5f155f27
VB
1548 local_irq_disable();
1549 write_seqcount_begin(&tsk->mems_allowed_seq);
c0ff7453 1550
cc9a6c87 1551 nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
213980c0 1552 mpol_rebind_task(tsk, newmems);
58568d2a 1553 tsk->mems_allowed = *newmems;
cc9a6c87 1554
5f155f27
VB
1555 write_seqcount_end(&tsk->mems_allowed_seq);
1556 local_irq_enable();
cc9a6c87 1557
c0ff7453 1558 task_unlock(tsk);
58568d2a
MX
1559}
1560
8793d854
PM
1561static void *cpuset_being_rebound;
1562
0b2f630a
MX
1563/**
1564 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1565 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
0b2f630a 1566 *
d66393e5
TH
1567 * Iterate through each task of @cs updating its mems_allowed to the
1568 * effective cpuset's. As this function is called with cpuset_mutex held,
1569 * cpuset membership stays stable.
0b2f630a 1570 */
d66393e5 1571static void update_tasks_nodemask(struct cpuset *cs)
1da177e4 1572{
33ad801d 1573 static nodemask_t newmems; /* protected by cpuset_mutex */
d66393e5
TH
1574 struct css_task_iter it;
1575 struct task_struct *task;
59dac16f 1576
846a16bf 1577 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
4225399a 1578
ae1c8023 1579 guarantee_online_mems(cs, &newmems);
33ad801d 1580
4225399a 1581 /*
3b6766fe
LZ
1582 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
1583 * take while holding tasklist_lock. Forks can happen - the
1584 * mpol_dup() cpuset_being_rebound check will catch such forks,
1585 * and rebind their vma mempolicies too. Because we still hold
5d21cc2d 1586 * the global cpuset_mutex, we know that no other rebind effort
3b6766fe 1587 * will be contending for the global variable cpuset_being_rebound.
4225399a 1588 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
04c19fa6 1589 * is idempotent. Also migrate pages in each mm to new nodes.
4225399a 1590 */
bc2fb7ed 1591 css_task_iter_start(&cs->css, 0, &it);
d66393e5
TH
1592 while ((task = css_task_iter_next(&it))) {
1593 struct mm_struct *mm;
1594 bool migrate;
1595
1596 cpuset_change_task_nodemask(task, &newmems);
1597
1598 mm = get_task_mm(task);
1599 if (!mm)
1600 continue;
1601
1602 migrate = is_memory_migrate(cs);
1603
1604 mpol_rebind_mm(mm, &cs->mems_allowed);
1605 if (migrate)
1606 cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems);
e93ad19d
TH
1607 else
1608 mmput(mm);
d66393e5
TH
1609 }
1610 css_task_iter_end(&it);
4225399a 1611
33ad801d
LZ
1612 /*
1613 * All the tasks' nodemasks have been updated, update
1614 * cs->old_mems_allowed.
1615 */
1616 cs->old_mems_allowed = newmems;
1617
2df167a3 1618 /* We're done rebinding vmas to this cpuset's new mems_allowed. */
8793d854 1619 cpuset_being_rebound = NULL;
1da177e4
LT
1620}
1621
5c5cc623 1622/*
734d4513
LZ
1623 * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree
1624 * @cs: the cpuset to consider
1625 * @new_mems: a temp variable for calculating new effective_mems
5c5cc623 1626 *
734d4513
LZ
1627 * When configured nodemask is changed, the effective nodemasks of this cpuset
1628 * and all its descendants need to be updated.
5c5cc623 1629 *
734d4513 1630 * On legacy hiearchy, effective_mems will be the same with mems_allowed.
5c5cc623
LZ
1631 *
1632 * Called with cpuset_mutex held
1633 */
734d4513 1634static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems)
5c5cc623
LZ
1635{
1636 struct cpuset *cp;
492eb21b 1637 struct cgroup_subsys_state *pos_css;
5c5cc623
LZ
1638
1639 rcu_read_lock();
734d4513
LZ
1640 cpuset_for_each_descendant_pre(cp, pos_css, cs) {
1641 struct cpuset *parent = parent_cs(cp);
1642
1643 nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems);
1644
554b0d1c
LZ
1645 /*
1646 * If it becomes empty, inherit the effective mask of the
1647 * parent, which is guaranteed to have some MEMs.
1648 */
b8d1b8ee 1649 if (is_in_v2_mode() && nodes_empty(*new_mems))
554b0d1c
LZ
1650 *new_mems = parent->effective_mems;
1651
734d4513
LZ
1652 /* Skip the whole subtree if the nodemask remains the same. */
1653 if (nodes_equal(*new_mems, cp->effective_mems)) {
1654 pos_css = css_rightmost_descendant(pos_css);
1655 continue;
5c5cc623 1656 }
734d4513 1657
ec903c0c 1658 if (!css_tryget_online(&cp->css))
5c5cc623
LZ
1659 continue;
1660 rcu_read_unlock();
1661
8447a0fe 1662 spin_lock_irq(&callback_lock);
734d4513 1663 cp->effective_mems = *new_mems;
8447a0fe 1664 spin_unlock_irq(&callback_lock);
734d4513 1665
b8d1b8ee 1666 WARN_ON(!is_in_v2_mode() &&
a1381268 1667 !nodes_equal(cp->mems_allowed, cp->effective_mems));
734d4513 1668
d66393e5 1669 update_tasks_nodemask(cp);
5c5cc623
LZ
1670
1671 rcu_read_lock();
1672 css_put(&cp->css);
1673 }
1674 rcu_read_unlock();
1675}
1676
0b2f630a
MX
1677/*
1678 * Handle user request to change the 'mems' memory placement
1679 * of a cpuset. Needs to validate the request, update the
58568d2a
MX
1680 * cpusets mems_allowed, and for each task in the cpuset,
1681 * update mems_allowed and rebind task's mempolicy and any vma
1682 * mempolicies and if the cpuset is marked 'memory_migrate',
1683 * migrate the tasks pages to the new memory.
0b2f630a 1684 *
8447a0fe 1685 * Call with cpuset_mutex held. May take callback_lock during call.
0b2f630a
MX
1686 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1687 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
1688 * their mempolicies to the cpusets new mems_allowed.
1689 */
645fcc9d
LZ
1690static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
1691 const char *buf)
0b2f630a 1692{
0b2f630a
MX
1693 int retval;
1694
1695 /*
38d7bee9 1696 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
0b2f630a
MX
1697 * it's read-only
1698 */
53feb297
MX
1699 if (cs == &top_cpuset) {
1700 retval = -EACCES;
1701 goto done;
1702 }
0b2f630a 1703
0b2f630a
MX
1704 /*
1705 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1706 * Since nodelist_parse() fails on an empty mask, we special case
1707 * that parsing. The validate_change() call ensures that cpusets
1708 * with tasks have memory.
1709 */
1710 if (!*buf) {
645fcc9d 1711 nodes_clear(trialcs->mems_allowed);
0b2f630a 1712 } else {
645fcc9d 1713 retval = nodelist_parse(buf, trialcs->mems_allowed);
0b2f630a
MX
1714 if (retval < 0)
1715 goto done;
1716
645fcc9d 1717 if (!nodes_subset(trialcs->mems_allowed,
5d8ba82c
LZ
1718 top_cpuset.mems_allowed)) {
1719 retval = -EINVAL;
53feb297
MX
1720 goto done;
1721 }
0b2f630a 1722 }
33ad801d
LZ
1723
1724 if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
0b2f630a
MX
1725 retval = 0; /* Too easy - nothing to do */
1726 goto done;
1727 }
645fcc9d 1728 retval = validate_change(cs, trialcs);
0b2f630a
MX
1729 if (retval < 0)
1730 goto done;
1731
8447a0fe 1732 spin_lock_irq(&callback_lock);
645fcc9d 1733 cs->mems_allowed = trialcs->mems_allowed;
8447a0fe 1734 spin_unlock_irq(&callback_lock);
0b2f630a 1735
734d4513 1736 /* use trialcs->mems_allowed as a temp variable */
24ee3cf8 1737 update_nodemasks_hier(cs, &trialcs->mems_allowed);
0b2f630a
MX
1738done:
1739 return retval;
1740}
1741
77ef80c6 1742bool current_cpuset_is_being_rebound(void)
8793d854 1743{
77ef80c6 1744 bool ret;
391acf97
GZ
1745
1746 rcu_read_lock();
1747 ret = task_cs(current) == cpuset_being_rebound;
1748 rcu_read_unlock();
1749
1750 return ret;
8793d854
PM
1751}
1752
5be7a479 1753static int update_relax_domain_level(struct cpuset *cs, s64 val)
1d3504fc 1754{
db7f47cf 1755#ifdef CONFIG_SMP
60495e77 1756 if (val < -1 || val >= sched_domain_level_max)
30e0e178 1757 return -EINVAL;
db7f47cf 1758#endif
1d3504fc
HS
1759
1760 if (val != cs->relax_domain_level) {
1761 cs->relax_domain_level = val;
300ed6cb
LZ
1762 if (!cpumask_empty(cs->cpus_allowed) &&
1763 is_sched_load_balance(cs))
699140ba 1764 rebuild_sched_domains_locked();
1d3504fc
HS
1765 }
1766
1767 return 0;
1768}
1769
72ec7029 1770/**
950592f7
MX
1771 * update_tasks_flags - update the spread flags of tasks in the cpuset.
1772 * @cs: the cpuset in which each task's spread flags needs to be changed
950592f7 1773 *
d66393e5
TH
1774 * Iterate through each task of @cs updating its spread flags. As this
1775 * function is called with cpuset_mutex held, cpuset membership stays
1776 * stable.
950592f7 1777 */
d66393e5 1778static void update_tasks_flags(struct cpuset *cs)
950592f7 1779{
d66393e5
TH
1780 struct css_task_iter it;
1781 struct task_struct *task;
1782
bc2fb7ed 1783 css_task_iter_start(&cs->css, 0, &it);
d66393e5
TH
1784 while ((task = css_task_iter_next(&it)))
1785 cpuset_update_task_spread_flag(cs, task);
1786 css_task_iter_end(&it);
950592f7
MX
1787}
1788
1da177e4
LT
1789/*
1790 * update_flag - read a 0 or a 1 in a file and update associated flag
78608366
PM
1791 * bit: the bit to update (see cpuset_flagbits_t)
1792 * cs: the cpuset to update
1793 * turning_on: whether the flag is being set or cleared
053199ed 1794 *
5d21cc2d 1795 * Call with cpuset_mutex held.
1da177e4
LT
1796 */
1797
700fe1ab
PM
1798static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1799 int turning_on)
1da177e4 1800{
645fcc9d 1801 struct cpuset *trialcs;
40b6a762 1802 int balance_flag_changed;
950592f7 1803 int spread_flag_changed;
950592f7 1804 int err;
1da177e4 1805
645fcc9d
LZ
1806 trialcs = alloc_trial_cpuset(cs);
1807 if (!trialcs)
1808 return -ENOMEM;
1809
1da177e4 1810 if (turning_on)
645fcc9d 1811 set_bit(bit, &trialcs->flags);
1da177e4 1812 else
645fcc9d 1813 clear_bit(bit, &trialcs->flags);
1da177e4 1814
645fcc9d 1815 err = validate_change(cs, trialcs);
85d7b949 1816 if (err < 0)
645fcc9d 1817 goto out;
029190c5 1818
029190c5 1819 balance_flag_changed = (is_sched_load_balance(cs) !=
645fcc9d 1820 is_sched_load_balance(trialcs));
029190c5 1821
950592f7
MX
1822 spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
1823 || (is_spread_page(cs) != is_spread_page(trialcs)));
1824
8447a0fe 1825 spin_lock_irq(&callback_lock);
645fcc9d 1826 cs->flags = trialcs->flags;
8447a0fe 1827 spin_unlock_irq(&callback_lock);
85d7b949 1828
300ed6cb 1829 if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
699140ba 1830 rebuild_sched_domains_locked();
029190c5 1831
950592f7 1832 if (spread_flag_changed)
d66393e5 1833 update_tasks_flags(cs);
645fcc9d 1834out:
bf92370c 1835 free_cpuset(trialcs);
645fcc9d 1836 return err;
1da177e4
LT
1837}
1838
ee8dde0c
WL
1839/*
1840 * update_prstate - update partititon_root_state
1841 * cs: the cpuset to update
1842 * val: 0 - disabled, 1 - enabled
1843 *
1844 * Call with cpuset_mutex held.
1845 */
1846static int update_prstate(struct cpuset *cs, int val)
1847{
1848 int err;
1849 struct cpuset *parent = parent_cs(cs);
1850 struct tmpmasks tmp;
1851
1852 if ((val != 0) && (val != 1))
1853 return -EINVAL;
1854 if (val == cs->partition_root_state)
1855 return 0;
1856
1857 /*
3881b861 1858 * Cannot force a partial or invalid partition root to a full
ee8dde0c
WL
1859 * partition root.
1860 */
1861 if (val && cs->partition_root_state)
1862 return -EINVAL;
1863
1864 if (alloc_cpumasks(NULL, &tmp))
1865 return -ENOMEM;
1866
1867 err = -EINVAL;
1868 if (!cs->partition_root_state) {
1869 /*
1870 * Turning on partition root requires setting the
1871 * CS_CPU_EXCLUSIVE bit implicitly as well and cpus_allowed
1872 * cannot be NULL.
1873 */
1874 if (cpumask_empty(cs->cpus_allowed))
1875 goto out;
1876
1877 err = update_flag(CS_CPU_EXCLUSIVE, cs, 1);
1878 if (err)
1879 goto out;
1880
1881 err = update_parent_subparts_cpumask(cs, partcmd_enable,
1882 NULL, &tmp);
1883 if (err) {
1884 update_flag(CS_CPU_EXCLUSIVE, cs, 0);
1885 goto out;
1886 }
1887 cs->partition_root_state = PRS_ENABLED;
1888 } else {
3881b861
WL
1889 /*
1890 * Turning off partition root will clear the
1891 * CS_CPU_EXCLUSIVE bit.
1892 */
1893 if (cs->partition_root_state == PRS_ERROR) {
1894 cs->partition_root_state = 0;
1895 update_flag(CS_CPU_EXCLUSIVE, cs, 0);
1896 err = 0;
1897 goto out;
1898 }
1899
ee8dde0c
WL
1900 err = update_parent_subparts_cpumask(cs, partcmd_disable,
1901 NULL, &tmp);
1902 if (err)
1903 goto out;
1904
1905 cs->partition_root_state = 0;
1906
1907 /* Turning off CS_CPU_EXCLUSIVE will not return error */
1908 update_flag(CS_CPU_EXCLUSIVE, cs, 0);
1909 }
1910
1911 /*
1912 * Update cpumask of parent's tasks except when it is the top
1913 * cpuset as some system daemons cannot be mapped to other CPUs.
1914 */
1915 if (parent != &top_cpuset)
1916 update_tasks_cpumask(parent);
1917
4716909c
WL
1918 if (parent->child_ecpus_count)
1919 update_sibling_cpumasks(parent, cs, &tmp);
1920
ee8dde0c
WL
1921 rebuild_sched_domains_locked();
1922out:
1923 free_cpumasks(NULL, &tmp);
645fcc9d 1924 return err;
1da177e4
LT
1925}
1926
3e0d98b9 1927/*
80f7228b 1928 * Frequency meter - How fast is some event occurring?
3e0d98b9
PJ
1929 *
1930 * These routines manage a digitally filtered, constant time based,
1931 * event frequency meter. There are four routines:
1932 * fmeter_init() - initialize a frequency meter.
1933 * fmeter_markevent() - called each time the event happens.
1934 * fmeter_getrate() - returns the recent rate of such events.
1935 * fmeter_update() - internal routine used to update fmeter.
1936 *
1937 * A common data structure is passed to each of these routines,
1938 * which is used to keep track of the state required to manage the
1939 * frequency meter and its digital filter.
1940 *
1941 * The filter works on the number of events marked per unit time.
1942 * The filter is single-pole low-pass recursive (IIR). The time unit
1943 * is 1 second. Arithmetic is done using 32-bit integers scaled to
1944 * simulate 3 decimal digits of precision (multiplied by 1000).
1945 *
1946 * With an FM_COEF of 933, and a time base of 1 second, the filter
1947 * has a half-life of 10 seconds, meaning that if the events quit
1948 * happening, then the rate returned from the fmeter_getrate()
1949 * will be cut in half each 10 seconds, until it converges to zero.
1950 *
1951 * It is not worth doing a real infinitely recursive filter. If more
1952 * than FM_MAXTICKS ticks have elapsed since the last filter event,
1953 * just compute FM_MAXTICKS ticks worth, by which point the level
1954 * will be stable.
1955 *
1956 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
1957 * arithmetic overflow in the fmeter_update() routine.
1958 *
1959 * Given the simple 32 bit integer arithmetic used, this meter works
1960 * best for reporting rates between one per millisecond (msec) and
1961 * one per 32 (approx) seconds. At constant rates faster than one
1962 * per msec it maxes out at values just under 1,000,000. At constant
1963 * rates between one per msec, and one per second it will stabilize
1964 * to a value N*1000, where N is the rate of events per second.
1965 * At constant rates between one per second and one per 32 seconds,
1966 * it will be choppy, moving up on the seconds that have an event,
1967 * and then decaying until the next event. At rates slower than
1968 * about one in 32 seconds, it decays all the way back to zero between
1969 * each event.
1970 */
1971
1972#define FM_COEF 933 /* coefficient for half-life of 10 secs */
d2b43658 1973#define FM_MAXTICKS ((u32)99) /* useless computing more ticks than this */
3e0d98b9
PJ
1974#define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
1975#define FM_SCALE 1000 /* faux fixed point scale */
1976
1977/* Initialize a frequency meter */
1978static void fmeter_init(struct fmeter *fmp)
1979{
1980 fmp->cnt = 0;
1981 fmp->val = 0;
1982 fmp->time = 0;
1983 spin_lock_init(&fmp->lock);
1984}
1985
1986/* Internal meter update - process cnt events and update value */
1987static void fmeter_update(struct fmeter *fmp)
1988{
d2b43658
AB
1989 time64_t now;
1990 u32 ticks;
1991
1992 now = ktime_get_seconds();
1993 ticks = now - fmp->time;
3e0d98b9
PJ
1994
1995 if (ticks == 0)
1996 return;
1997
1998 ticks = min(FM_MAXTICKS, ticks);
1999 while (ticks-- > 0)
2000 fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
2001 fmp->time = now;
2002
2003 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
2004 fmp->cnt = 0;
2005}
2006
2007/* Process any previous ticks, then bump cnt by one (times scale). */
2008static void fmeter_markevent(struct fmeter *fmp)
2009{
2010 spin_lock(&fmp->lock);
2011 fmeter_update(fmp);
2012 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
2013 spin_unlock(&fmp->lock);
2014}
2015
2016/* Process any previous ticks, then return current value. */
2017static int fmeter_getrate(struct fmeter *fmp)
2018{
2019 int val;
2020
2021 spin_lock(&fmp->lock);
2022 fmeter_update(fmp);
2023 val = fmp->val;
2024 spin_unlock(&fmp->lock);
2025 return val;
2026}
2027
57fce0a6
TH
2028static struct cpuset *cpuset_attach_old_cs;
2029
5d21cc2d 2030/* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
1f7dd3e5 2031static int cpuset_can_attach(struct cgroup_taskset *tset)
f780bdb7 2032{
1f7dd3e5
TH
2033 struct cgroup_subsys_state *css;
2034 struct cpuset *cs;
bb9d97b6
TH
2035 struct task_struct *task;
2036 int ret;
1da177e4 2037
57fce0a6 2038 /* used later by cpuset_attach() */
1f7dd3e5
TH
2039 cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css));
2040 cs = css_cs(css);
57fce0a6 2041
5d21cc2d
TH
2042 mutex_lock(&cpuset_mutex);
2043
aa6ec29b 2044 /* allow moving tasks into an empty cpuset if on default hierarchy */
5d21cc2d 2045 ret = -ENOSPC;
b8d1b8ee 2046 if (!is_in_v2_mode() &&
88fa523b 2047 (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)))
5d21cc2d 2048 goto out_unlock;
9985b0ba 2049
1f7dd3e5 2050 cgroup_taskset_for_each(task, css, tset) {
7f51412a
JL
2051 ret = task_can_attach(task, cs->cpus_allowed);
2052 if (ret)
5d21cc2d
TH
2053 goto out_unlock;
2054 ret = security_task_setscheduler(task);
2055 if (ret)
2056 goto out_unlock;
bb9d97b6 2057 }
f780bdb7 2058
452477fa
TH
2059 /*
2060 * Mark attach is in progress. This makes validate_change() fail
2061 * changes which zero cpus/mems_allowed.
2062 */
2063 cs->attach_in_progress++;
5d21cc2d
TH
2064 ret = 0;
2065out_unlock:
2066 mutex_unlock(&cpuset_mutex);
2067 return ret;
8793d854 2068}
f780bdb7 2069
1f7dd3e5 2070static void cpuset_cancel_attach(struct cgroup_taskset *tset)
452477fa 2071{
1f7dd3e5 2072 struct cgroup_subsys_state *css;
1f7dd3e5
TH
2073
2074 cgroup_taskset_first(tset, &css);
1f7dd3e5 2075
5d21cc2d 2076 mutex_lock(&cpuset_mutex);
eb95419b 2077 css_cs(css)->attach_in_progress--;
5d21cc2d 2078 mutex_unlock(&cpuset_mutex);
8793d854 2079}
1da177e4 2080
4e4c9a14 2081/*
5d21cc2d 2082 * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach()
4e4c9a14
TH
2083 * but we can't allocate it dynamically there. Define it global and
2084 * allocate from cpuset_init().
2085 */
2086static cpumask_var_t cpus_attach;
2087
1f7dd3e5 2088static void cpuset_attach(struct cgroup_taskset *tset)
8793d854 2089{
67bd2c59 2090 /* static buf protected by cpuset_mutex */
4e4c9a14 2091 static nodemask_t cpuset_attach_nodemask_to;
bb9d97b6 2092 struct task_struct *task;
4530eddb 2093 struct task_struct *leader;
1f7dd3e5
TH
2094 struct cgroup_subsys_state *css;
2095 struct cpuset *cs;
57fce0a6 2096 struct cpuset *oldcs = cpuset_attach_old_cs;
22fb52dd 2097
1f7dd3e5
TH
2098 cgroup_taskset_first(tset, &css);
2099 cs = css_cs(css);
2100
5d21cc2d
TH
2101 mutex_lock(&cpuset_mutex);
2102
4e4c9a14
TH
2103 /* prepare for attach */
2104 if (cs == &top_cpuset)
2105 cpumask_copy(cpus_attach, cpu_possible_mask);
2106 else
ae1c8023 2107 guarantee_online_cpus(cs, cpus_attach);
4e4c9a14 2108
ae1c8023 2109 guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
4e4c9a14 2110
1f7dd3e5 2111 cgroup_taskset_for_each(task, css, tset) {
bb9d97b6
TH
2112 /*
2113 * can_attach beforehand should guarantee that this doesn't
2114 * fail. TODO: have a better way to handle failure here
2115 */
2116 WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
2117
2118 cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
2119 cpuset_update_task_spread_flag(cs, task);
2120 }
22fb52dd 2121
f780bdb7 2122 /*
4530eddb
TH
2123 * Change mm for all threadgroup leaders. This is expensive and may
2124 * sleep and should be moved outside migration path proper.
f780bdb7 2125 */
ae1c8023 2126 cpuset_attach_nodemask_to = cs->effective_mems;
1f7dd3e5 2127 cgroup_taskset_for_each_leader(leader, css, tset) {
3df9ca0a
TH
2128 struct mm_struct *mm = get_task_mm(leader);
2129
2130 if (mm) {
2131 mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
2132
2133 /*
2134 * old_mems_allowed is the same with mems_allowed
2135 * here, except if this task is being moved
2136 * automatically due to hotplug. In that case
2137 * @mems_allowed has been updated and is empty, so
2138 * @old_mems_allowed is the right nodesets that we
2139 * migrate mm from.
2140 */
e93ad19d 2141 if (is_memory_migrate(cs))
3df9ca0a
TH
2142 cpuset_migrate_mm(mm, &oldcs->old_mems_allowed,
2143 &cpuset_attach_nodemask_to);
e93ad19d
TH
2144 else
2145 mmput(mm);
f047cecf 2146 }
4225399a 2147 }
452477fa 2148
33ad801d 2149 cs->old_mems_allowed = cpuset_attach_nodemask_to;
02bb5863 2150
452477fa 2151 cs->attach_in_progress--;
e44193d3
LZ
2152 if (!cs->attach_in_progress)
2153 wake_up(&cpuset_attach_wq);
5d21cc2d
TH
2154
2155 mutex_unlock(&cpuset_mutex);
1da177e4
LT
2156}
2157
2158/* The various types of files and directories in a cpuset file system */
2159
2160typedef enum {
45b07ef3 2161 FILE_MEMORY_MIGRATE,
1da177e4
LT
2162 FILE_CPULIST,
2163 FILE_MEMLIST,
afd1a8b3
LZ
2164 FILE_EFFECTIVE_CPULIST,
2165 FILE_EFFECTIVE_MEMLIST,
5cf8114d 2166 FILE_SUBPARTS_CPULIST,
1da177e4
LT
2167 FILE_CPU_EXCLUSIVE,
2168 FILE_MEM_EXCLUSIVE,
78608366 2169 FILE_MEM_HARDWALL,
029190c5 2170 FILE_SCHED_LOAD_BALANCE,
ee8dde0c 2171 FILE_PARTITION_ROOT,
1d3504fc 2172 FILE_SCHED_RELAX_DOMAIN_LEVEL,
3e0d98b9
PJ
2173 FILE_MEMORY_PRESSURE_ENABLED,
2174 FILE_MEMORY_PRESSURE,
825a46af
PJ
2175 FILE_SPREAD_PAGE,
2176 FILE_SPREAD_SLAB,
1da177e4
LT
2177} cpuset_filetype_t;
2178
182446d0
TH
2179static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft,
2180 u64 val)
700fe1ab 2181{
182446d0 2182 struct cpuset *cs = css_cs(css);
700fe1ab 2183 cpuset_filetype_t type = cft->private;
a903f086 2184 int retval = 0;
700fe1ab 2185
5d21cc2d 2186 mutex_lock(&cpuset_mutex);
a903f086
LZ
2187 if (!is_cpuset_online(cs)) {
2188 retval = -ENODEV;
5d21cc2d 2189 goto out_unlock;
a903f086 2190 }
700fe1ab
PM
2191
2192 switch (type) {
1da177e4 2193 case FILE_CPU_EXCLUSIVE:
700fe1ab 2194 retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
1da177e4
LT
2195 break;
2196 case FILE_MEM_EXCLUSIVE:
700fe1ab 2197 retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
1da177e4 2198 break;
78608366
PM
2199 case FILE_MEM_HARDWALL:
2200 retval = update_flag(CS_MEM_HARDWALL, cs, val);
2201 break;
029190c5 2202 case FILE_SCHED_LOAD_BALANCE:
700fe1ab 2203 retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1d3504fc 2204 break;
45b07ef3 2205 case FILE_MEMORY_MIGRATE:
700fe1ab 2206 retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
45b07ef3 2207 break;
3e0d98b9 2208 case FILE_MEMORY_PRESSURE_ENABLED:
700fe1ab 2209 cpuset_memory_pressure_enabled = !!val;
3e0d98b9 2210 break;
825a46af 2211 case FILE_SPREAD_PAGE:
700fe1ab 2212 retval = update_flag(CS_SPREAD_PAGE, cs, val);
825a46af
PJ
2213 break;
2214 case FILE_SPREAD_SLAB:
700fe1ab 2215 retval = update_flag(CS_SPREAD_SLAB, cs, val);
825a46af 2216 break;
1da177e4
LT
2217 default:
2218 retval = -EINVAL;
700fe1ab 2219 break;
1da177e4 2220 }
5d21cc2d
TH
2221out_unlock:
2222 mutex_unlock(&cpuset_mutex);
1da177e4
LT
2223 return retval;
2224}
2225
182446d0
TH
2226static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft,
2227 s64 val)
5be7a479 2228{
182446d0 2229 struct cpuset *cs = css_cs(css);
5be7a479 2230 cpuset_filetype_t type = cft->private;
5d21cc2d 2231 int retval = -ENODEV;
5be7a479 2232
5d21cc2d
TH
2233 mutex_lock(&cpuset_mutex);
2234 if (!is_cpuset_online(cs))
2235 goto out_unlock;
e3712395 2236
5be7a479
PM
2237 switch (type) {
2238 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
2239 retval = update_relax_domain_level(cs, val);
2240 break;
2241 default:
2242 retval = -EINVAL;
2243 break;
2244 }
5d21cc2d
TH
2245out_unlock:
2246 mutex_unlock(&cpuset_mutex);
5be7a479
PM
2247 return retval;
2248}
2249
e3712395
PM
2250/*
2251 * Common handling for a write to a "cpus" or "mems" file.
2252 */
451af504
TH
2253static ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
2254 char *buf, size_t nbytes, loff_t off)
e3712395 2255{
451af504 2256 struct cpuset *cs = css_cs(of_css(of));
645fcc9d 2257 struct cpuset *trialcs;
5d21cc2d 2258 int retval = -ENODEV;
e3712395 2259
451af504
TH
2260 buf = strstrip(buf);
2261
3a5a6d0c
TH
2262 /*
2263 * CPU or memory hotunplug may leave @cs w/o any execution
2264 * resources, in which case the hotplug code asynchronously updates
2265 * configuration and transfers all tasks to the nearest ancestor
2266 * which can execute.
2267 *
2268 * As writes to "cpus" or "mems" may restore @cs's execution
2269 * resources, wait for the previously scheduled operations before
2270 * proceeding, so that we don't end up keep removing tasks added
2271 * after execution capability is restored.
76bb5ab8
TH
2272 *
2273 * cpuset_hotplug_work calls back into cgroup core via
2274 * cgroup_transfer_tasks() and waiting for it from a cgroupfs
2275 * operation like this one can lead to a deadlock through kernfs
2276 * active_ref protection. Let's break the protection. Losing the
2277 * protection is okay as we check whether @cs is online after
2278 * grabbing cpuset_mutex anyway. This only happens on the legacy
2279 * hierarchies.
3a5a6d0c 2280 */
76bb5ab8
TH
2281 css_get(&cs->css);
2282 kernfs_break_active_protection(of->kn);
3a5a6d0c
TH
2283 flush_work(&cpuset_hotplug_work);
2284
5d21cc2d
TH
2285 mutex_lock(&cpuset_mutex);
2286 if (!is_cpuset_online(cs))
2287 goto out_unlock;
e3712395 2288
645fcc9d 2289 trialcs = alloc_trial_cpuset(cs);
b75f38d6
LZ
2290 if (!trialcs) {
2291 retval = -ENOMEM;
5d21cc2d 2292 goto out_unlock;
b75f38d6 2293 }
645fcc9d 2294
451af504 2295 switch (of_cft(of)->private) {
e3712395 2296 case FILE_CPULIST:
645fcc9d 2297 retval = update_cpumask(cs, trialcs, buf);
e3712395
PM
2298 break;
2299 case FILE_MEMLIST:
645fcc9d 2300 retval = update_nodemask(cs, trialcs, buf);
e3712395
PM
2301 break;
2302 default:
2303 retval = -EINVAL;
2304 break;
2305 }
645fcc9d 2306
bf92370c 2307 free_cpuset(trialcs);
5d21cc2d
TH
2308out_unlock:
2309 mutex_unlock(&cpuset_mutex);
76bb5ab8
TH
2310 kernfs_unbreak_active_protection(of->kn);
2311 css_put(&cs->css);
e93ad19d 2312 flush_workqueue(cpuset_migrate_mm_wq);
451af504 2313 return retval ?: nbytes;
e3712395
PM
2314}
2315
1da177e4
LT
2316/*
2317 * These ascii lists should be read in a single call, by using a user
2318 * buffer large enough to hold the entire map. If read in smaller
2319 * chunks, there is no guarantee of atomicity. Since the display format
2320 * used, list of ranges of sequential numbers, is variable length,
2321 * and since these maps can change value dynamically, one could read
2322 * gibberish by doing partial reads while a list was changing.
1da177e4 2323 */
2da8ca82 2324static int cpuset_common_seq_show(struct seq_file *sf, void *v)
1da177e4 2325{
2da8ca82
TH
2326 struct cpuset *cs = css_cs(seq_css(sf));
2327 cpuset_filetype_t type = seq_cft(sf)->private;
51ffe411 2328 int ret = 0;
1da177e4 2329
8447a0fe 2330 spin_lock_irq(&callback_lock);
1da177e4
LT
2331
2332 switch (type) {
2333 case FILE_CPULIST:
e8e6d97c 2334 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_allowed));
1da177e4
LT
2335 break;
2336 case FILE_MEMLIST:
e8e6d97c 2337 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed));
1da177e4 2338 break;
afd1a8b3 2339 case FILE_EFFECTIVE_CPULIST:
e8e6d97c 2340 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus));
afd1a8b3
LZ
2341 break;
2342 case FILE_EFFECTIVE_MEMLIST:
e8e6d97c 2343 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems));
afd1a8b3 2344 break;
5cf8114d
WL
2345 case FILE_SUBPARTS_CPULIST:
2346 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->subparts_cpus));
2347 break;
1da177e4 2348 default:
51ffe411 2349 ret = -EINVAL;
1da177e4 2350 }
1da177e4 2351
8447a0fe 2352 spin_unlock_irq(&callback_lock);
51ffe411 2353 return ret;
1da177e4
LT
2354}
2355
182446d0 2356static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft)
700fe1ab 2357{
182446d0 2358 struct cpuset *cs = css_cs(css);
700fe1ab
PM
2359 cpuset_filetype_t type = cft->private;
2360 switch (type) {
2361 case FILE_CPU_EXCLUSIVE:
2362 return is_cpu_exclusive(cs);
2363 case FILE_MEM_EXCLUSIVE:
2364 return is_mem_exclusive(cs);
78608366
PM
2365 case FILE_MEM_HARDWALL:
2366 return is_mem_hardwall(cs);
700fe1ab
PM
2367 case FILE_SCHED_LOAD_BALANCE:
2368 return is_sched_load_balance(cs);
2369 case FILE_MEMORY_MIGRATE:
2370 return is_memory_migrate(cs);
2371 case FILE_MEMORY_PRESSURE_ENABLED:
2372 return cpuset_memory_pressure_enabled;
2373 case FILE_MEMORY_PRESSURE:
2374 return fmeter_getrate(&cs->fmeter);
2375 case FILE_SPREAD_PAGE:
2376 return is_spread_page(cs);
2377 case FILE_SPREAD_SLAB:
2378 return is_spread_slab(cs);
2379 default:
2380 BUG();
2381 }
cf417141
MK
2382
2383 /* Unreachable but makes gcc happy */
2384 return 0;
700fe1ab 2385}
1da177e4 2386
182446d0 2387static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft)
5be7a479 2388{
182446d0 2389 struct cpuset *cs = css_cs(css);
5be7a479
PM
2390 cpuset_filetype_t type = cft->private;
2391 switch (type) {
2392 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
2393 return cs->relax_domain_level;
2394 default:
2395 BUG();
2396 }
cf417141
MK
2397
2398 /* Unrechable but makes gcc happy */
2399 return 0;
5be7a479
PM
2400}
2401
bb5b553c
WL
2402static int sched_partition_show(struct seq_file *seq, void *v)
2403{
2404 struct cpuset *cs = css_cs(seq_css(seq));
2405
2406 switch (cs->partition_root_state) {
2407 case PRS_ENABLED:
2408 seq_puts(seq, "root\n");
2409 break;
2410 case PRS_DISABLED:
2411 seq_puts(seq, "member\n");
2412 break;
2413 case PRS_ERROR:
2414 seq_puts(seq, "root invalid\n");
2415 break;
2416 }
2417 return 0;
2418}
2419
2420static ssize_t sched_partition_write(struct kernfs_open_file *of, char *buf,
2421 size_t nbytes, loff_t off)
2422{
2423 struct cpuset *cs = css_cs(of_css(of));
2424 int val;
2425 int retval = -ENODEV;
2426
2427 buf = strstrip(buf);
2428
2429 /*
b1e3aeb1 2430 * Convert "root" to ENABLED, and convert "member" to DISABLED.
bb5b553c 2431 */
b1e3aeb1 2432 if (!strcmp(buf, "root"))
bb5b553c 2433 val = PRS_ENABLED;
b1e3aeb1 2434 else if (!strcmp(buf, "member"))
bb5b553c
WL
2435 val = PRS_DISABLED;
2436 else
2437 return -EINVAL;
2438
2439 css_get(&cs->css);
2440 mutex_lock(&cpuset_mutex);
2441 if (!is_cpuset_online(cs))
2442 goto out_unlock;
2443
2444 retval = update_prstate(cs, val);
2445out_unlock:
2446 mutex_unlock(&cpuset_mutex);
2447 css_put(&cs->css);
2448 return retval ?: nbytes;
2449}
1da177e4
LT
2450
2451/*
2452 * for the common functions, 'private' gives the type of file
2453 */
2454
4ec22e9c 2455static struct cftype legacy_files[] = {
addf2c73
PM
2456 {
2457 .name = "cpus",
2da8ca82 2458 .seq_show = cpuset_common_seq_show,
451af504 2459 .write = cpuset_write_resmask,
e3712395 2460 .max_write_len = (100U + 6 * NR_CPUS),
addf2c73
PM
2461 .private = FILE_CPULIST,
2462 },
2463
2464 {
2465 .name = "mems",
2da8ca82 2466 .seq_show = cpuset_common_seq_show,
451af504 2467 .write = cpuset_write_resmask,
e3712395 2468 .max_write_len = (100U + 6 * MAX_NUMNODES),
addf2c73
PM
2469 .private = FILE_MEMLIST,
2470 },
2471
afd1a8b3
LZ
2472 {
2473 .name = "effective_cpus",
2474 .seq_show = cpuset_common_seq_show,
2475 .private = FILE_EFFECTIVE_CPULIST,
2476 },
2477
2478 {
2479 .name = "effective_mems",
2480 .seq_show = cpuset_common_seq_show,
2481 .private = FILE_EFFECTIVE_MEMLIST,
2482 },
2483
addf2c73
PM
2484 {
2485 .name = "cpu_exclusive",
2486 .read_u64 = cpuset_read_u64,
2487 .write_u64 = cpuset_write_u64,
2488 .private = FILE_CPU_EXCLUSIVE,
2489 },
2490
2491 {
2492 .name = "mem_exclusive",
2493 .read_u64 = cpuset_read_u64,
2494 .write_u64 = cpuset_write_u64,
2495 .private = FILE_MEM_EXCLUSIVE,
2496 },
2497
78608366
PM
2498 {
2499 .name = "mem_hardwall",
2500 .read_u64 = cpuset_read_u64,
2501 .write_u64 = cpuset_write_u64,
2502 .private = FILE_MEM_HARDWALL,
2503 },
2504
addf2c73
PM
2505 {
2506 .name = "sched_load_balance",
2507 .read_u64 = cpuset_read_u64,
2508 .write_u64 = cpuset_write_u64,
2509 .private = FILE_SCHED_LOAD_BALANCE,
2510 },
2511
2512 {
2513 .name = "sched_relax_domain_level",
5be7a479
PM
2514 .read_s64 = cpuset_read_s64,
2515 .write_s64 = cpuset_write_s64,
addf2c73
PM
2516 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
2517 },
2518
2519 {
2520 .name = "memory_migrate",
2521 .read_u64 = cpuset_read_u64,
2522 .write_u64 = cpuset_write_u64,
2523 .private = FILE_MEMORY_MIGRATE,
2524 },
2525
2526 {
2527 .name = "memory_pressure",
2528 .read_u64 = cpuset_read_u64,
1c08c22c 2529 .private = FILE_MEMORY_PRESSURE,
addf2c73
PM
2530 },
2531
2532 {
2533 .name = "memory_spread_page",
2534 .read_u64 = cpuset_read_u64,
2535 .write_u64 = cpuset_write_u64,
2536 .private = FILE_SPREAD_PAGE,
2537 },
2538
2539 {
2540 .name = "memory_spread_slab",
2541 .read_u64 = cpuset_read_u64,
2542 .write_u64 = cpuset_write_u64,
2543 .private = FILE_SPREAD_SLAB,
2544 },
3e0d98b9 2545
4baf6e33
TH
2546 {
2547 .name = "memory_pressure_enabled",
2548 .flags = CFTYPE_ONLY_ON_ROOT,
2549 .read_u64 = cpuset_read_u64,
2550 .write_u64 = cpuset_write_u64,
2551 .private = FILE_MEMORY_PRESSURE_ENABLED,
2552 },
1da177e4 2553
4baf6e33
TH
2554 { } /* terminate */
2555};
1da177e4 2556
4ec22e9c
WL
2557/*
2558 * This is currently a minimal set for the default hierarchy. It can be
2559 * expanded later on by migrating more features and control files from v1.
2560 */
2561static struct cftype dfl_files[] = {
2562 {
2563 .name = "cpus",
2564 .seq_show = cpuset_common_seq_show,
2565 .write = cpuset_write_resmask,
2566 .max_write_len = (100U + 6 * NR_CPUS),
2567 .private = FILE_CPULIST,
2568 .flags = CFTYPE_NOT_ON_ROOT,
2569 },
2570
2571 {
2572 .name = "mems",
2573 .seq_show = cpuset_common_seq_show,
2574 .write = cpuset_write_resmask,
2575 .max_write_len = (100U + 6 * MAX_NUMNODES),
2576 .private = FILE_MEMLIST,
2577 .flags = CFTYPE_NOT_ON_ROOT,
2578 },
2579
2580 {
2581 .name = "cpus.effective",
2582 .seq_show = cpuset_common_seq_show,
2583 .private = FILE_EFFECTIVE_CPULIST,
4ec22e9c
WL
2584 },
2585
2586 {
2587 .name = "mems.effective",
2588 .seq_show = cpuset_common_seq_show,
2589 .private = FILE_EFFECTIVE_MEMLIST,
4ec22e9c
WL
2590 },
2591
ee8dde0c 2592 {
b1e3aeb1 2593 .name = "cpus.partition",
bb5b553c
WL
2594 .seq_show = sched_partition_show,
2595 .write = sched_partition_write,
ee8dde0c
WL
2596 .private = FILE_PARTITION_ROOT,
2597 .flags = CFTYPE_NOT_ON_ROOT,
2598 },
2599
5cf8114d
WL
2600 {
2601 .name = "cpus.subpartitions",
2602 .seq_show = cpuset_common_seq_show,
2603 .private = FILE_SUBPARTS_CPULIST,
2604 .flags = CFTYPE_DEBUG,
2605 },
2606
4ec22e9c
WL
2607 { } /* terminate */
2608};
2609
2610
1da177e4 2611/*
92fb9748 2612 * cpuset_css_alloc - allocate a cpuset css
c9e5fe66 2613 * cgrp: control group that the new cpuset will be part of
1da177e4
LT
2614 */
2615
eb95419b
TH
2616static struct cgroup_subsys_state *
2617cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
1da177e4 2618{
c8f699bb 2619 struct cpuset *cs;
1da177e4 2620
eb95419b 2621 if (!parent_css)
8793d854 2622 return &top_cpuset.css;
033fa1c5 2623
c8f699bb 2624 cs = kzalloc(sizeof(*cs), GFP_KERNEL);
1da177e4 2625 if (!cs)
8793d854 2626 return ERR_PTR(-ENOMEM);
bf92370c
WL
2627
2628 if (alloc_cpumasks(cs, NULL)) {
2629 kfree(cs);
2630 return ERR_PTR(-ENOMEM);
2631 }
1da177e4 2632
029190c5 2633 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
f9a86fcb 2634 nodes_clear(cs->mems_allowed);
e2b9a3d7 2635 nodes_clear(cs->effective_mems);
3e0d98b9 2636 fmeter_init(&cs->fmeter);
1d3504fc 2637 cs->relax_domain_level = -1;
1da177e4 2638
c8f699bb
TH
2639 return &cs->css;
2640}
2641
eb95419b 2642static int cpuset_css_online(struct cgroup_subsys_state *css)
c8f699bb 2643{
eb95419b 2644 struct cpuset *cs = css_cs(css);
c431069f 2645 struct cpuset *parent = parent_cs(cs);
ae8086ce 2646 struct cpuset *tmp_cs;
492eb21b 2647 struct cgroup_subsys_state *pos_css;
c8f699bb
TH
2648
2649 if (!parent)
2650 return 0;
2651
5d21cc2d
TH
2652 mutex_lock(&cpuset_mutex);
2653
efeb77b2 2654 set_bit(CS_ONLINE, &cs->flags);
c8f699bb
TH
2655 if (is_spread_page(parent))
2656 set_bit(CS_SPREAD_PAGE, &cs->flags);
2657 if (is_spread_slab(parent))
2658 set_bit(CS_SPREAD_SLAB, &cs->flags);
1da177e4 2659
664eedde 2660 cpuset_inc();
033fa1c5 2661
8447a0fe 2662 spin_lock_irq(&callback_lock);
b8d1b8ee 2663 if (is_in_v2_mode()) {
e2b9a3d7
LZ
2664 cpumask_copy(cs->effective_cpus, parent->effective_cpus);
2665 cs->effective_mems = parent->effective_mems;
4716909c
WL
2666 cs->use_parent_ecpus = true;
2667 parent->child_ecpus_count++;
e2b9a3d7 2668 }
8447a0fe 2669 spin_unlock_irq(&callback_lock);
e2b9a3d7 2670
eb95419b 2671 if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
5d21cc2d 2672 goto out_unlock;
033fa1c5
TH
2673
2674 /*
2675 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
2676 * set. This flag handling is implemented in cgroup core for
2677 * histrical reasons - the flag may be specified during mount.
2678 *
2679 * Currently, if any sibling cpusets have exclusive cpus or mem, we
2680 * refuse to clone the configuration - thereby refusing the task to
2681 * be entered, and as a result refusing the sys_unshare() or
2682 * clone() which initiated it. If this becomes a problem for some
2683 * users who wish to allow that scenario, then this could be
2684 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
2685 * (and likewise for mems) to the new cgroup.
2686 */
ae8086ce 2687 rcu_read_lock();
492eb21b 2688 cpuset_for_each_child(tmp_cs, pos_css, parent) {
ae8086ce
TH
2689 if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
2690 rcu_read_unlock();
5d21cc2d 2691 goto out_unlock;
ae8086ce 2692 }
033fa1c5 2693 }
ae8086ce 2694 rcu_read_unlock();
033fa1c5 2695
8447a0fe 2696 spin_lock_irq(&callback_lock);
033fa1c5 2697 cs->mems_allowed = parent->mems_allowed;
790317e1 2698 cs->effective_mems = parent->mems_allowed;
033fa1c5 2699 cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
790317e1 2700 cpumask_copy(cs->effective_cpus, parent->cpus_allowed);
cea74465 2701 spin_unlock_irq(&callback_lock);
5d21cc2d
TH
2702out_unlock:
2703 mutex_unlock(&cpuset_mutex);
c8f699bb
TH
2704 return 0;
2705}
2706
0b9e6965
ZH
2707/*
2708 * If the cpuset being removed has its flag 'sched_load_balance'
2709 * enabled, then simulate turning sched_load_balance off, which
ee8dde0c
WL
2710 * will call rebuild_sched_domains_locked(). That is not needed
2711 * in the default hierarchy where only changes in partition
2712 * will cause repartitioning.
2713 *
2714 * If the cpuset has the 'sched.partition' flag enabled, simulate
2715 * turning 'sched.partition" off.
0b9e6965
ZH
2716 */
2717
eb95419b 2718static void cpuset_css_offline(struct cgroup_subsys_state *css)
c8f699bb 2719{
eb95419b 2720 struct cpuset *cs = css_cs(css);
c8f699bb 2721
5d21cc2d 2722 mutex_lock(&cpuset_mutex);
c8f699bb 2723
ee8dde0c
WL
2724 if (is_partition_root(cs))
2725 update_prstate(cs, 0);
2726
2727 if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
2728 is_sched_load_balance(cs))
c8f699bb
TH
2729 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
2730
4716909c
WL
2731 if (cs->use_parent_ecpus) {
2732 struct cpuset *parent = parent_cs(cs);
2733
2734 cs->use_parent_ecpus = false;
2735 parent->child_ecpus_count--;
2736 }
2737
664eedde 2738 cpuset_dec();
efeb77b2 2739 clear_bit(CS_ONLINE, &cs->flags);
c8f699bb 2740
5d21cc2d 2741 mutex_unlock(&cpuset_mutex);
1da177e4
LT
2742}
2743
eb95419b 2744static void cpuset_css_free(struct cgroup_subsys_state *css)
1da177e4 2745{
eb95419b 2746 struct cpuset *cs = css_cs(css);
1da177e4 2747
bf92370c 2748 free_cpuset(cs);
1da177e4
LT
2749}
2750
39bd0d15
LZ
2751static void cpuset_bind(struct cgroup_subsys_state *root_css)
2752{
2753 mutex_lock(&cpuset_mutex);
8447a0fe 2754 spin_lock_irq(&callback_lock);
39bd0d15 2755
b8d1b8ee 2756 if (is_in_v2_mode()) {
39bd0d15
LZ
2757 cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask);
2758 top_cpuset.mems_allowed = node_possible_map;
2759 } else {
2760 cpumask_copy(top_cpuset.cpus_allowed,
2761 top_cpuset.effective_cpus);
2762 top_cpuset.mems_allowed = top_cpuset.effective_mems;
2763 }
2764
8447a0fe 2765 spin_unlock_irq(&callback_lock);
39bd0d15
LZ
2766 mutex_unlock(&cpuset_mutex);
2767}
2768
06f4e948
ZL
2769/*
2770 * Make sure the new task conform to the current state of its parent,
2771 * which could have been changed by cpuset just after it inherits the
2772 * state from the parent and before it sits on the cgroup's task list.
2773 */
8a15b817 2774static void cpuset_fork(struct task_struct *task)
06f4e948
ZL
2775{
2776 if (task_css_is_root(task, cpuset_cgrp_id))
2777 return;
2778
3bd37062 2779 set_cpus_allowed_ptr(task, current->cpus_ptr);
06f4e948
ZL
2780 task->mems_allowed = current->mems_allowed;
2781}
2782
073219e9 2783struct cgroup_subsys cpuset_cgrp_subsys = {
39bd0d15
LZ
2784 .css_alloc = cpuset_css_alloc,
2785 .css_online = cpuset_css_online,
2786 .css_offline = cpuset_css_offline,
2787 .css_free = cpuset_css_free,
2788 .can_attach = cpuset_can_attach,
2789 .cancel_attach = cpuset_cancel_attach,
2790 .attach = cpuset_attach,
5cf1cacb 2791 .post_attach = cpuset_post_attach,
39bd0d15 2792 .bind = cpuset_bind,
06f4e948 2793 .fork = cpuset_fork,
4ec22e9c
WL
2794 .legacy_cftypes = legacy_files,
2795 .dfl_cftypes = dfl_files,
b38e42e9 2796 .early_init = true,
4ec22e9c 2797 .threaded = true,
8793d854
PM
2798};
2799
1da177e4
LT
2800/**
2801 * cpuset_init - initialize cpusets at system boot
2802 *
d5f68d33 2803 * Description: Initialize top_cpuset
1da177e4
LT
2804 **/
2805
2806int __init cpuset_init(void)
2807{
75fa8e5d
NMG
2808 BUG_ON(!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL));
2809 BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL));
bf92370c 2810 BUG_ON(!zalloc_cpumask_var(&top_cpuset.subparts_cpus, GFP_KERNEL));
58568d2a 2811
300ed6cb 2812 cpumask_setall(top_cpuset.cpus_allowed);
f9a86fcb 2813 nodes_setall(top_cpuset.mems_allowed);
e2b9a3d7
LZ
2814 cpumask_setall(top_cpuset.effective_cpus);
2815 nodes_setall(top_cpuset.effective_mems);
1da177e4 2816
3e0d98b9 2817 fmeter_init(&top_cpuset.fmeter);
029190c5 2818 set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
1d3504fc 2819 top_cpuset.relax_domain_level = -1;
1da177e4 2820
75fa8e5d 2821 BUG_ON(!alloc_cpumask_var(&cpus_attach, GFP_KERNEL));
2341d1b6 2822
8793d854 2823 return 0;
1da177e4
LT
2824}
2825
b1aac8bb 2826/*
cf417141 2827 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
b1aac8bb
PJ
2828 * or memory nodes, we need to walk over the cpuset hierarchy,
2829 * removing that CPU or node from all cpusets. If this removes the
956db3ca
CW
2830 * last CPU or node from a cpuset, then move the tasks in the empty
2831 * cpuset to its next-highest non-empty parent.
b1aac8bb 2832 */
956db3ca
CW
2833static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
2834{
2835 struct cpuset *parent;
2836
956db3ca
CW
2837 /*
2838 * Find its next-highest non-empty parent, (top cpuset
2839 * has online cpus, so can't be empty).
2840 */
c431069f 2841 parent = parent_cs(cs);
300ed6cb 2842 while (cpumask_empty(parent->cpus_allowed) ||
b4501295 2843 nodes_empty(parent->mems_allowed))
c431069f 2844 parent = parent_cs(parent);
956db3ca 2845
8cc99345 2846 if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
12d3089c 2847 pr_err("cpuset: failed to transfer tasks out of empty cpuset ");
e61734c5
TH
2848 pr_cont_cgroup_name(cs->css.cgroup);
2849 pr_cont("\n");
8cc99345 2850 }
956db3ca
CW
2851}
2852
be4c9dd7
LZ
2853static void
2854hotplug_update_tasks_legacy(struct cpuset *cs,
2855 struct cpumask *new_cpus, nodemask_t *new_mems,
2856 bool cpus_updated, bool mems_updated)
390a36aa
LZ
2857{
2858 bool is_empty;
2859
8447a0fe 2860 spin_lock_irq(&callback_lock);
be4c9dd7
LZ
2861 cpumask_copy(cs->cpus_allowed, new_cpus);
2862 cpumask_copy(cs->effective_cpus, new_cpus);
2863 cs->mems_allowed = *new_mems;
2864 cs->effective_mems = *new_mems;
8447a0fe 2865 spin_unlock_irq(&callback_lock);
390a36aa
LZ
2866
2867 /*
2868 * Don't call update_tasks_cpumask() if the cpuset becomes empty,
2869 * as the tasks will be migratecd to an ancestor.
2870 */
be4c9dd7 2871 if (cpus_updated && !cpumask_empty(cs->cpus_allowed))
390a36aa 2872 update_tasks_cpumask(cs);
be4c9dd7 2873 if (mems_updated && !nodes_empty(cs->mems_allowed))
390a36aa
LZ
2874 update_tasks_nodemask(cs);
2875
2876 is_empty = cpumask_empty(cs->cpus_allowed) ||
2877 nodes_empty(cs->mems_allowed);
2878
2879 mutex_unlock(&cpuset_mutex);
2880
2881 /*
2882 * Move tasks to the nearest ancestor with execution resources,
2883 * This is full cgroup operation which will also call back into
2884 * cpuset. Should be done outside any lock.
2885 */
2886 if (is_empty)
2887 remove_tasks_in_empty_cpuset(cs);
2888
2889 mutex_lock(&cpuset_mutex);
2890}
2891
be4c9dd7
LZ
2892static void
2893hotplug_update_tasks(struct cpuset *cs,
2894 struct cpumask *new_cpus, nodemask_t *new_mems,
2895 bool cpus_updated, bool mems_updated)
390a36aa 2896{
be4c9dd7
LZ
2897 if (cpumask_empty(new_cpus))
2898 cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus);
2899 if (nodes_empty(*new_mems))
2900 *new_mems = parent_cs(cs)->effective_mems;
2901
8447a0fe 2902 spin_lock_irq(&callback_lock);
be4c9dd7
LZ
2903 cpumask_copy(cs->effective_cpus, new_cpus);
2904 cs->effective_mems = *new_mems;
8447a0fe 2905 spin_unlock_irq(&callback_lock);
390a36aa 2906
be4c9dd7 2907 if (cpus_updated)
390a36aa 2908 update_tasks_cpumask(cs);
be4c9dd7 2909 if (mems_updated)
390a36aa
LZ
2910 update_tasks_nodemask(cs);
2911}
2912
4b842da2
WL
2913static bool force_rebuild;
2914
2915void cpuset_force_rebuild(void)
2916{
2917 force_rebuild = true;
2918}
2919
deb7aa30 2920/**
388afd85 2921 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
deb7aa30 2922 * @cs: cpuset in interest
4b842da2 2923 * @tmp: the tmpmasks structure pointer
956db3ca 2924 *
deb7aa30
TH
2925 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
2926 * offline, update @cs accordingly. If @cs ends up with no CPU or memory,
2927 * all its tasks are moved to the nearest ancestor with both resources.
80d1fa64 2928 */
4b842da2 2929static void cpuset_hotplug_update_tasks(struct cpuset *cs, struct tmpmasks *tmp)
80d1fa64 2930{
be4c9dd7
LZ
2931 static cpumask_t new_cpus;
2932 static nodemask_t new_mems;
2933 bool cpus_updated;
2934 bool mems_updated;
4b842da2 2935 struct cpuset *parent;
e44193d3
LZ
2936retry:
2937 wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
80d1fa64 2938
5d21cc2d 2939 mutex_lock(&cpuset_mutex);
7ddf96b0 2940
e44193d3
LZ
2941 /*
2942 * We have raced with task attaching. We wait until attaching
2943 * is finished, so we won't attach a task to an empty cpuset.
2944 */
2945 if (cs->attach_in_progress) {
2946 mutex_unlock(&cpuset_mutex);
2947 goto retry;
2948 }
2949
4b842da2
WL
2950 parent = parent_cs(cs);
2951 compute_effective_cpumask(&new_cpus, cs, parent);
2952 nodes_and(new_mems, cs->mems_allowed, parent->effective_mems);
2953
2954 if (cs->nr_subparts_cpus)
2955 /*
2956 * Make sure that CPUs allocated to child partitions
2957 * do not show up in effective_cpus.
2958 */
2959 cpumask_andnot(&new_cpus, &new_cpus, cs->subparts_cpus);
2960
2961 if (!tmp || !cs->partition_root_state)
2962 goto update_tasks;
80d1fa64 2963
4b842da2
WL
2964 /*
2965 * In the unlikely event that a partition root has empty
2966 * effective_cpus or its parent becomes erroneous, we have to
2967 * transition it to the erroneous state.
2968 */
2969 if (is_partition_root(cs) && (cpumask_empty(&new_cpus) ||
2970 (parent->partition_root_state == PRS_ERROR))) {
2971 if (cs->nr_subparts_cpus) {
2972 cs->nr_subparts_cpus = 0;
2973 cpumask_clear(cs->subparts_cpus);
2974 compute_effective_cpumask(&new_cpus, cs, parent);
2975 }
80d1fa64 2976
4b842da2
WL
2977 /*
2978 * If the effective_cpus is empty because the child
2979 * partitions take away all the CPUs, we can keep
2980 * the current partition and let the child partitions
2981 * fight for available CPUs.
2982 */
2983 if ((parent->partition_root_state == PRS_ERROR) ||
2984 cpumask_empty(&new_cpus)) {
2985 update_parent_subparts_cpumask(cs, partcmd_disable,
2986 NULL, tmp);
2987 cs->partition_root_state = PRS_ERROR;
2988 }
2989 cpuset_force_rebuild();
2990 }
2991
2992 /*
2993 * On the other hand, an erroneous partition root may be transitioned
2994 * back to a regular one or a partition root with no CPU allocated
2995 * from the parent may change to erroneous.
2996 */
2997 if (is_partition_root(parent) &&
2998 ((cs->partition_root_state == PRS_ERROR) ||
2999 !cpumask_intersects(&new_cpus, parent->subparts_cpus)) &&
3000 update_parent_subparts_cpumask(cs, partcmd_update, NULL, tmp))
3001 cpuset_force_rebuild();
3002
3003update_tasks:
be4c9dd7
LZ
3004 cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus);
3005 mems_updated = !nodes_equal(new_mems, cs->effective_mems);
deb7aa30 3006
b8d1b8ee 3007 if (is_in_v2_mode())
be4c9dd7
LZ
3008 hotplug_update_tasks(cs, &new_cpus, &new_mems,
3009 cpus_updated, mems_updated);
390a36aa 3010 else
be4c9dd7
LZ
3011 hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems,
3012 cpus_updated, mems_updated);
8d033948 3013
5d21cc2d 3014 mutex_unlock(&cpuset_mutex);
b1aac8bb
PJ
3015}
3016
deb7aa30 3017/**
3a5a6d0c 3018 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
956db3ca 3019 *
deb7aa30
TH
3020 * This function is called after either CPU or memory configuration has
3021 * changed and updates cpuset accordingly. The top_cpuset is always
3022 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
3023 * order to make cpusets transparent (of no affect) on systems that are
3024 * actively using CPU hotplug but making no active use of cpusets.
956db3ca 3025 *
deb7aa30 3026 * Non-root cpusets are only affected by offlining. If any CPUs or memory
388afd85
LZ
3027 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
3028 * all descendants.
956db3ca 3029 *
deb7aa30
TH
3030 * Note that CPU offlining during suspend is ignored. We don't modify
3031 * cpusets across suspend/resume cycles at all.
956db3ca 3032 */
3a5a6d0c 3033static void cpuset_hotplug_workfn(struct work_struct *work)
b1aac8bb 3034{
5c5cc623
LZ
3035 static cpumask_t new_cpus;
3036 static nodemask_t new_mems;
deb7aa30 3037 bool cpus_updated, mems_updated;
b8d1b8ee 3038 bool on_dfl = is_in_v2_mode();
4b842da2
WL
3039 struct tmpmasks tmp, *ptmp = NULL;
3040
3041 if (on_dfl && !alloc_cpumasks(NULL, &tmp))
3042 ptmp = &tmp;
b1aac8bb 3043
5d21cc2d 3044 mutex_lock(&cpuset_mutex);
956db3ca 3045
deb7aa30
TH
3046 /* fetch the available cpus/mems and find out which changed how */
3047 cpumask_copy(&new_cpus, cpu_active_mask);
3048 new_mems = node_states[N_MEMORY];
7ddf96b0 3049
4b842da2
WL
3050 /*
3051 * If subparts_cpus is populated, it is likely that the check below
3052 * will produce a false positive on cpus_updated when the cpu list
3053 * isn't changed. It is extra work, but it is better to be safe.
3054 */
7e88291b
LZ
3055 cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus);
3056 mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems);
7ddf96b0 3057
deb7aa30
TH
3058 /* synchronize cpus_allowed to cpu_active_mask */
3059 if (cpus_updated) {
8447a0fe 3060 spin_lock_irq(&callback_lock);
7e88291b
LZ
3061 if (!on_dfl)
3062 cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
4b842da2
WL
3063 /*
3064 * Make sure that CPUs allocated to child partitions
3065 * do not show up in effective_cpus. If no CPU is left,
3066 * we clear the subparts_cpus & let the child partitions
3067 * fight for the CPUs again.
3068 */
3069 if (top_cpuset.nr_subparts_cpus) {
3070 if (cpumask_subset(&new_cpus,
3071 top_cpuset.subparts_cpus)) {
3072 top_cpuset.nr_subparts_cpus = 0;
3073 cpumask_clear(top_cpuset.subparts_cpus);
3074 } else {
3075 cpumask_andnot(&new_cpus, &new_cpus,
3076 top_cpuset.subparts_cpus);
3077 }
3078 }
1344ab9c 3079 cpumask_copy(top_cpuset.effective_cpus, &new_cpus);
8447a0fe 3080 spin_unlock_irq(&callback_lock);
deb7aa30
TH
3081 /* we don't mess with cpumasks of tasks in top_cpuset */
3082 }
b4501295 3083
deb7aa30
TH
3084 /* synchronize mems_allowed to N_MEMORY */
3085 if (mems_updated) {
8447a0fe 3086 spin_lock_irq(&callback_lock);
7e88291b
LZ
3087 if (!on_dfl)
3088 top_cpuset.mems_allowed = new_mems;
1344ab9c 3089 top_cpuset.effective_mems = new_mems;
8447a0fe 3090 spin_unlock_irq(&callback_lock);
d66393e5 3091 update_tasks_nodemask(&top_cpuset);
deb7aa30 3092 }
b4501295 3093
388afd85
LZ
3094 mutex_unlock(&cpuset_mutex);
3095
5c5cc623
LZ
3096 /* if cpus or mems changed, we need to propagate to descendants */
3097 if (cpus_updated || mems_updated) {
deb7aa30 3098 struct cpuset *cs;
492eb21b 3099 struct cgroup_subsys_state *pos_css;
f9b4fb8d 3100
fc560a26 3101 rcu_read_lock();
492eb21b 3102 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
ec903c0c 3103 if (cs == &top_cpuset || !css_tryget_online(&cs->css))
388afd85
LZ
3104 continue;
3105 rcu_read_unlock();
7ddf96b0 3106
4b842da2 3107 cpuset_hotplug_update_tasks(cs, ptmp);
b4501295 3108
388afd85
LZ
3109 rcu_read_lock();
3110 css_put(&cs->css);
3111 }
3112 rcu_read_unlock();
3113 }
8d033948 3114
deb7aa30 3115 /* rebuild sched domains if cpus_allowed has changed */
50e76632
PZ
3116 if (cpus_updated || force_rebuild) {
3117 force_rebuild = false;
e0e80a02 3118 rebuild_sched_domains();
50e76632 3119 }
4b842da2
WL
3120
3121 free_cpumasks(NULL, ptmp);
b1aac8bb
PJ
3122}
3123
30e03acd 3124void cpuset_update_active_cpus(void)
4c4d50f7 3125{
3a5a6d0c
TH
3126 /*
3127 * We're inside cpu hotplug critical region which usually nests
3128 * inside cgroup synchronization. Bounce actual hotplug processing
3129 * to a work item to avoid reverse locking order.
3a5a6d0c 3130 */
3a5a6d0c 3131 schedule_work(&cpuset_hotplug_work);
4c4d50f7 3132}
4c4d50f7 3133
50e76632
PZ
3134void cpuset_wait_for_hotplug(void)
3135{
3136 flush_work(&cpuset_hotplug_work);
3137}
3138
38837fc7 3139/*
38d7bee9
LJ
3140 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
3141 * Call this routine anytime after node_states[N_MEMORY] changes.
a1cd2b13 3142 * See cpuset_update_active_cpus() for CPU hotplug handling.
38837fc7 3143 */
f481891f
MX
3144static int cpuset_track_online_nodes(struct notifier_block *self,
3145 unsigned long action, void *arg)
38837fc7 3146{
3a5a6d0c 3147 schedule_work(&cpuset_hotplug_work);
f481891f 3148 return NOTIFY_OK;
38837fc7 3149}
d8f10cb3
AM
3150
3151static struct notifier_block cpuset_track_online_nodes_nb = {
3152 .notifier_call = cpuset_track_online_nodes,
3153 .priority = 10, /* ??! */
3154};
38837fc7 3155
1da177e4
LT
3156/**
3157 * cpuset_init_smp - initialize cpus_allowed
3158 *
3159 * Description: Finish top cpuset after cpu, node maps are initialized
d8f10cb3 3160 */
1da177e4
LT
3161void __init cpuset_init_smp(void)
3162{
6ad4c188 3163 cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
38d7bee9 3164 top_cpuset.mems_allowed = node_states[N_MEMORY];
33ad801d 3165 top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
4c4d50f7 3166
e2b9a3d7
LZ
3167 cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask);
3168 top_cpuset.effective_mems = node_states[N_MEMORY];
3169
d8f10cb3 3170 register_hotmemory_notifier(&cpuset_track_online_nodes_nb);
e93ad19d
TH
3171
3172 cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0);
3173 BUG_ON(!cpuset_migrate_mm_wq);
1da177e4
LT
3174}
3175
3176/**
1da177e4
LT
3177 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
3178 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
6af866af 3179 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
1da177e4 3180 *
300ed6cb 3181 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
1da177e4 3182 * attached to the specified @tsk. Guaranteed to return some non-empty
5f054e31 3183 * subset of cpu_online_mask, even if this means going outside the
1da177e4
LT
3184 * tasks cpuset.
3185 **/
3186
6af866af 3187void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
1da177e4 3188{
8447a0fe
VD
3189 unsigned long flags;
3190
3191 spin_lock_irqsave(&callback_lock, flags);
b8dadcb5 3192 rcu_read_lock();
ae1c8023 3193 guarantee_online_cpus(task_cs(tsk), pmask);
b8dadcb5 3194 rcu_read_unlock();
8447a0fe 3195 spin_unlock_irqrestore(&callback_lock, flags);
1da177e4
LT
3196}
3197
d477f8c2
JS
3198/**
3199 * cpuset_cpus_allowed_fallback - final fallback before complete catastrophe.
3200 * @tsk: pointer to task_struct with which the scheduler is struggling
3201 *
3202 * Description: In the case that the scheduler cannot find an allowed cpu in
3203 * tsk->cpus_allowed, we fall back to task_cs(tsk)->cpus_allowed. In legacy
3204 * mode however, this value is the same as task_cs(tsk)->effective_cpus,
3205 * which will not contain a sane cpumask during cases such as cpu hotplugging.
3206 * This is the absolute last resort for the scheduler and it is only used if
3207 * _every_ other avenue has been traveled.
3208 **/
3209
2baab4e9 3210void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
9084bb82 3211{
9084bb82 3212 rcu_read_lock();
d477f8c2
JS
3213 do_set_cpus_allowed(tsk, is_in_v2_mode() ?
3214 task_cs(tsk)->cpus_allowed : cpu_possible_mask);
9084bb82
ON
3215 rcu_read_unlock();
3216
3217 /*
3218 * We own tsk->cpus_allowed, nobody can change it under us.
3219 *
3220 * But we used cs && cs->cpus_allowed lockless and thus can
3221 * race with cgroup_attach_task() or update_cpumask() and get
3222 * the wrong tsk->cpus_allowed. However, both cases imply the
3223 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
3224 * which takes task_rq_lock().
3225 *
3226 * If we are called after it dropped the lock we must see all
3227 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
3228 * set any mask even if it is not right from task_cs() pov,
3229 * the pending set_cpus_allowed_ptr() will fix things.
2baab4e9
PZ
3230 *
3231 * select_fallback_rq() will fix things ups and set cpu_possible_mask
3232 * if required.
9084bb82 3233 */
9084bb82
ON
3234}
3235
8f4ab07f 3236void __init cpuset_init_current_mems_allowed(void)
1da177e4 3237{
f9a86fcb 3238 nodes_setall(current->mems_allowed);
1da177e4
LT
3239}
3240
909d75a3
PJ
3241/**
3242 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
3243 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
3244 *
3245 * Description: Returns the nodemask_t mems_allowed of the cpuset
3246 * attached to the specified @tsk. Guaranteed to return some non-empty
38d7bee9 3247 * subset of node_states[N_MEMORY], even if this means going outside the
909d75a3
PJ
3248 * tasks cpuset.
3249 **/
3250
3251nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
3252{
3253 nodemask_t mask;
8447a0fe 3254 unsigned long flags;
909d75a3 3255
8447a0fe 3256 spin_lock_irqsave(&callback_lock, flags);
b8dadcb5 3257 rcu_read_lock();
ae1c8023 3258 guarantee_online_mems(task_cs(tsk), &mask);
b8dadcb5 3259 rcu_read_unlock();
8447a0fe 3260 spin_unlock_irqrestore(&callback_lock, flags);
909d75a3
PJ
3261
3262 return mask;
3263}
3264
d9fd8a6d 3265/**
19770b32
MG
3266 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
3267 * @nodemask: the nodemask to be checked
d9fd8a6d 3268 *
19770b32 3269 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
1da177e4 3270 */
19770b32 3271int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
1da177e4 3272{
19770b32 3273 return nodes_intersects(*nodemask, current->mems_allowed);
1da177e4
LT
3274}
3275
9bf2229f 3276/*
78608366
PM
3277 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
3278 * mem_hardwall ancestor to the specified cpuset. Call holding
8447a0fe 3279 * callback_lock. If no ancestor is mem_exclusive or mem_hardwall
78608366 3280 * (an unusual configuration), then returns the root cpuset.
9bf2229f 3281 */
c9710d80 3282static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
9bf2229f 3283{
c431069f
TH
3284 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
3285 cs = parent_cs(cs);
9bf2229f
PJ
3286 return cs;
3287}
3288
d9fd8a6d 3289/**
344736f2 3290 * cpuset_node_allowed - Can we allocate on a memory node?
a1bc5a4e 3291 * @node: is this an allowed node?
02a0e53d 3292 * @gfp_mask: memory allocation flags
d9fd8a6d 3293 *
6e276d2a
DR
3294 * If we're in interrupt, yes, we can always allocate. If @node is set in
3295 * current's mems_allowed, yes. If it's not a __GFP_HARDWALL request and this
3296 * node is set in the nearest hardwalled cpuset ancestor to current's cpuset,
da99ecf1 3297 * yes. If current has access to memory reserves as an oom victim, yes.
9bf2229f
PJ
3298 * Otherwise, no.
3299 *
3300 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
c596d9f3 3301 * and do not allow allocations outside the current tasks cpuset
da99ecf1 3302 * unless the task has been OOM killed.
9bf2229f 3303 * GFP_KERNEL allocations are not so marked, so can escape to the
78608366 3304 * nearest enclosing hardwalled ancestor cpuset.
9bf2229f 3305 *
8447a0fe 3306 * Scanning up parent cpusets requires callback_lock. The
02a0e53d
PJ
3307 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
3308 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
3309 * current tasks mems_allowed came up empty on the first pass over
3310 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
8447a0fe 3311 * cpuset are short of memory, might require taking the callback_lock.
9bf2229f 3312 *
36be57ff 3313 * The first call here from mm/page_alloc:get_page_from_freelist()
02a0e53d
PJ
3314 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
3315 * so no allocation on a node outside the cpuset is allowed (unless
3316 * in interrupt, of course).
36be57ff
PJ
3317 *
3318 * The second pass through get_page_from_freelist() doesn't even call
3319 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
3320 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
3321 * in alloc_flags. That logic and the checks below have the combined
3322 * affect that:
9bf2229f
PJ
3323 * in_interrupt - any node ok (current task context irrelevant)
3324 * GFP_ATOMIC - any node ok
da99ecf1 3325 * tsk_is_oom_victim - any node ok
78608366 3326 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
9bf2229f 3327 * GFP_USER - only nodes in current tasks mems allowed ok.
02a0e53d 3328 */
002f2906 3329bool __cpuset_node_allowed(int node, gfp_t gfp_mask)
1da177e4 3330{
c9710d80 3331 struct cpuset *cs; /* current cpuset ancestors */
29afd49b 3332 int allowed; /* is allocation in zone z allowed? */
8447a0fe 3333 unsigned long flags;
9bf2229f 3334
6e276d2a 3335 if (in_interrupt())
002f2906 3336 return true;
9bf2229f 3337 if (node_isset(node, current->mems_allowed))
002f2906 3338 return true;
c596d9f3
DR
3339 /*
3340 * Allow tasks that have access to memory reserves because they have
3341 * been OOM killed to get memory anywhere.
3342 */
da99ecf1 3343 if (unlikely(tsk_is_oom_victim(current)))
002f2906 3344 return true;
9bf2229f 3345 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
002f2906 3346 return false;
9bf2229f 3347
5563e770 3348 if (current->flags & PF_EXITING) /* Let dying task have memory */
002f2906 3349 return true;
5563e770 3350
9bf2229f 3351 /* Not hardwall and node outside mems_allowed: scan up cpusets */
8447a0fe 3352 spin_lock_irqsave(&callback_lock, flags);
053199ed 3353
b8dadcb5 3354 rcu_read_lock();
78608366 3355 cs = nearest_hardwall_ancestor(task_cs(current));
99afb0fd 3356 allowed = node_isset(node, cs->mems_allowed);
b8dadcb5 3357 rcu_read_unlock();
053199ed 3358
8447a0fe 3359 spin_unlock_irqrestore(&callback_lock, flags);
9bf2229f 3360 return allowed;
1da177e4
LT
3361}
3362
825a46af 3363/**
6adef3eb
JS
3364 * cpuset_mem_spread_node() - On which node to begin search for a file page
3365 * cpuset_slab_spread_node() - On which node to begin search for a slab page
825a46af
PJ
3366 *
3367 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
3368 * tasks in a cpuset with is_spread_page or is_spread_slab set),
3369 * and if the memory allocation used cpuset_mem_spread_node()
3370 * to determine on which node to start looking, as it will for
3371 * certain page cache or slab cache pages such as used for file
3372 * system buffers and inode caches, then instead of starting on the
3373 * local node to look for a free page, rather spread the starting
3374 * node around the tasks mems_allowed nodes.
3375 *
3376 * We don't have to worry about the returned node being offline
3377 * because "it can't happen", and even if it did, it would be ok.
3378 *
3379 * The routines calling guarantee_online_mems() are careful to
3380 * only set nodes in task->mems_allowed that are online. So it
3381 * should not be possible for the following code to return an
3382 * offline node. But if it did, that would be ok, as this routine
3383 * is not returning the node where the allocation must be, only
3384 * the node where the search should start. The zonelist passed to
3385 * __alloc_pages() will include all nodes. If the slab allocator
3386 * is passed an offline node, it will fall back to the local node.
3387 * See kmem_cache_alloc_node().
3388 */
3389
6adef3eb 3390static int cpuset_spread_node(int *rotor)
825a46af 3391{
0edaf86c 3392 return *rotor = next_node_in(*rotor, current->mems_allowed);
825a46af 3393}
6adef3eb
JS
3394
3395int cpuset_mem_spread_node(void)
3396{
778d3b0f
MH
3397 if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
3398 current->cpuset_mem_spread_rotor =
3399 node_random(&current->mems_allowed);
3400
6adef3eb
JS
3401 return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
3402}
3403
3404int cpuset_slab_spread_node(void)
3405{
778d3b0f
MH
3406 if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
3407 current->cpuset_slab_spread_rotor =
3408 node_random(&current->mems_allowed);
3409
6adef3eb
JS
3410 return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
3411}
3412
825a46af
PJ
3413EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
3414
ef08e3b4 3415/**
bbe373f2
DR
3416 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
3417 * @tsk1: pointer to task_struct of some task.
3418 * @tsk2: pointer to task_struct of some other task.
3419 *
3420 * Description: Return true if @tsk1's mems_allowed intersects the
3421 * mems_allowed of @tsk2. Used by the OOM killer to determine if
3422 * one of the task's memory usage might impact the memory available
3423 * to the other.
ef08e3b4
PJ
3424 **/
3425
bbe373f2
DR
3426int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
3427 const struct task_struct *tsk2)
ef08e3b4 3428{
bbe373f2 3429 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
ef08e3b4
PJ
3430}
3431
75aa1994 3432/**
da39da3a 3433 * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed
75aa1994 3434 *
da39da3a 3435 * Description: Prints current's name, cpuset name, and cached copy of its
b8dadcb5 3436 * mems_allowed to the kernel log.
75aa1994 3437 */
da39da3a 3438void cpuset_print_current_mems_allowed(void)
75aa1994 3439{
b8dadcb5 3440 struct cgroup *cgrp;
75aa1994 3441
b8dadcb5 3442 rcu_read_lock();
63f43f55 3443
da39da3a 3444 cgrp = task_cs(current)->css.cgroup;
ef8444ea 3445 pr_cont(",cpuset=");
e61734c5 3446 pr_cont_cgroup_name(cgrp);
ef8444ea 3447 pr_cont(",mems_allowed=%*pbl",
da39da3a 3448 nodemask_pr_args(&current->mems_allowed));
f440d98f 3449
cfb5966b 3450 rcu_read_unlock();
75aa1994
DR
3451}
3452
3e0d98b9
PJ
3453/*
3454 * Collection of memory_pressure is suppressed unless
3455 * this flag is enabled by writing "1" to the special
3456 * cpuset file 'memory_pressure_enabled' in the root cpuset.
3457 */
3458
c5b2aff8 3459int cpuset_memory_pressure_enabled __read_mostly;
3e0d98b9
PJ
3460
3461/**
3462 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
3463 *
3464 * Keep a running average of the rate of synchronous (direct)
3465 * page reclaim efforts initiated by tasks in each cpuset.
3466 *
3467 * This represents the rate at which some task in the cpuset
3468 * ran low on memory on all nodes it was allowed to use, and
3469 * had to enter the kernels page reclaim code in an effort to
3470 * create more free memory by tossing clean pages or swapping
3471 * or writing dirty pages.
3472 *
3473 * Display to user space in the per-cpuset read-only file
3474 * "memory_pressure". Value displayed is an integer
3475 * representing the recent rate of entry into the synchronous
3476 * (direct) page reclaim by any task attached to the cpuset.
3477 **/
3478
3479void __cpuset_memory_pressure_bump(void)
3480{
b8dadcb5 3481 rcu_read_lock();
8793d854 3482 fmeter_markevent(&task_cs(current)->fmeter);
b8dadcb5 3483 rcu_read_unlock();
3e0d98b9
PJ
3484}
3485
8793d854 3486#ifdef CONFIG_PROC_PID_CPUSET
1da177e4
LT
3487/*
3488 * proc_cpuset_show()
3489 * - Print tasks cpuset path into seq_file.
3490 * - Used for /proc/<pid>/cpuset.
053199ed
PJ
3491 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
3492 * doesn't really matter if tsk->cpuset changes after we read it,
5d21cc2d 3493 * and we take cpuset_mutex, keeping cpuset_attach() from changing it
2df167a3 3494 * anyway.
1da177e4 3495 */
52de4779
ZL
3496int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns,
3497 struct pid *pid, struct task_struct *tsk)
1da177e4 3498{
4c737b41 3499 char *buf;
8793d854 3500 struct cgroup_subsys_state *css;
99f89551 3501 int retval;
1da177e4 3502
99f89551 3503 retval = -ENOMEM;
e61734c5 3504 buf = kmalloc(PATH_MAX, GFP_KERNEL);
1da177e4 3505 if (!buf)
99f89551
EB
3506 goto out;
3507
a79a908f 3508 css = task_get_css(tsk, cpuset_cgrp_id);
4c737b41
TH
3509 retval = cgroup_path_ns(css->cgroup, buf, PATH_MAX,
3510 current->nsproxy->cgroup_ns);
a79a908f 3511 css_put(css);
4c737b41 3512 if (retval >= PATH_MAX)
679a5e3f
TH
3513 retval = -ENAMETOOLONG;
3514 if (retval < 0)
52de4779 3515 goto out_free;
4c737b41 3516 seq_puts(m, buf);
1da177e4 3517 seq_putc(m, '\n');
e61734c5 3518 retval = 0;
99f89551 3519out_free:
1da177e4 3520 kfree(buf);
99f89551 3521out:
1da177e4
LT
3522 return retval;
3523}
8793d854 3524#endif /* CONFIG_PROC_PID_CPUSET */
1da177e4 3525
d01d4827 3526/* Display task mems_allowed in /proc/<pid>/status file. */
df5f8314
EB
3527void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
3528{
e8e6d97c
TH
3529 seq_printf(m, "Mems_allowed:\t%*pb\n",
3530 nodemask_pr_args(&task->mems_allowed));
3531 seq_printf(m, "Mems_allowed_list:\t%*pbl\n",
3532 nodemask_pr_args(&task->mems_allowed));
1da177e4 3533}