]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - kernel/cgroup/cpuset.c
Merge branch 'for-4.13-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj...
[mirror_ubuntu-artful-kernel.git] / kernel / cgroup / cpuset.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/cpuset.c
3 *
4 * Processor and Memory placement constraints for sets of tasks.
5 *
6 * Copyright (C) 2003 BULL SA.
029190c5 7 * Copyright (C) 2004-2007 Silicon Graphics, Inc.
8793d854 8 * Copyright (C) 2006 Google, Inc
1da177e4
LT
9 *
10 * Portions derived from Patrick Mochel's sysfs code.
11 * sysfs is Copyright (c) 2001-3 Patrick Mochel
1da177e4 12 *
825a46af 13 * 2003-10-10 Written by Simon Derr.
1da177e4 14 * 2003-10-22 Updates by Stephen Hemminger.
825a46af 15 * 2004 May-July Rework by Paul Jackson.
8793d854 16 * 2006 Rework by Paul Menage to use generic cgroups
cf417141
MK
17 * 2008 Rework of the scheduler domains and CPU hotplug handling
18 * by Max Krasnyansky
1da177e4
LT
19 *
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
23 */
24
1da177e4
LT
25#include <linux/cpu.h>
26#include <linux/cpumask.h>
27#include <linux/cpuset.h>
28#include <linux/err.h>
29#include <linux/errno.h>
30#include <linux/file.h>
31#include <linux/fs.h>
32#include <linux/init.h>
33#include <linux/interrupt.h>
34#include <linux/kernel.h>
35#include <linux/kmod.h>
36#include <linux/list.h>
68860ec1 37#include <linux/mempolicy.h>
1da177e4 38#include <linux/mm.h>
f481891f 39#include <linux/memory.h>
9984de1a 40#include <linux/export.h>
1da177e4
LT
41#include <linux/mount.h>
42#include <linux/namei.h>
43#include <linux/pagemap.h>
44#include <linux/proc_fs.h>
6b9c2603 45#include <linux/rcupdate.h>
1da177e4 46#include <linux/sched.h>
6e84f315 47#include <linux/sched/mm.h>
f719ff9b 48#include <linux/sched/task.h>
1da177e4 49#include <linux/seq_file.h>
22fb52dd 50#include <linux/security.h>
1da177e4 51#include <linux/slab.h>
1da177e4
LT
52#include <linux/spinlock.h>
53#include <linux/stat.h>
54#include <linux/string.h>
55#include <linux/time.h>
d2b43658 56#include <linux/time64.h>
1da177e4
LT
57#include <linux/backing-dev.h>
58#include <linux/sort.h>
59
7c0f6ba6 60#include <linux/uaccess.h>
60063497 61#include <linux/atomic.h>
3d3f26a7 62#include <linux/mutex.h>
956db3ca 63#include <linux/cgroup.h>
e44193d3 64#include <linux/wait.h>
1da177e4 65
89affbf5 66DEFINE_STATIC_KEY_FALSE(cpusets_pre_enable_key);
002f2906 67DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key);
202f72d5 68
3e0d98b9
PJ
69/* See "Frequency meter" comments, below. */
70
71struct fmeter {
72 int cnt; /* unprocessed events count */
73 int val; /* most recent output value */
d2b43658 74 time64_t time; /* clock (secs) when val computed */
3e0d98b9
PJ
75 spinlock_t lock; /* guards read or write of above */
76};
77
1da177e4 78struct cpuset {
8793d854
PM
79 struct cgroup_subsys_state css;
80
1da177e4 81 unsigned long flags; /* "unsigned long" so bitops work */
e2b9a3d7 82
7e88291b
LZ
83 /*
84 * On default hierarchy:
85 *
86 * The user-configured masks can only be changed by writing to
87 * cpuset.cpus and cpuset.mems, and won't be limited by the
88 * parent masks.
89 *
90 * The effective masks is the real masks that apply to the tasks
91 * in the cpuset. They may be changed if the configured masks are
92 * changed or hotplug happens.
93 *
94 * effective_mask == configured_mask & parent's effective_mask,
95 * and if it ends up empty, it will inherit the parent's mask.
96 *
97 *
98 * On legacy hierachy:
99 *
100 * The user-configured masks are always the same with effective masks.
101 */
102
e2b9a3d7
LZ
103 /* user-configured CPUs and Memory Nodes allow to tasks */
104 cpumask_var_t cpus_allowed;
105 nodemask_t mems_allowed;
106
107 /* effective CPUs and Memory Nodes allow to tasks */
108 cpumask_var_t effective_cpus;
109 nodemask_t effective_mems;
1da177e4 110
33ad801d
LZ
111 /*
112 * This is old Memory Nodes tasks took on.
113 *
114 * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
115 * - A new cpuset's old_mems_allowed is initialized when some
116 * task is moved into it.
117 * - old_mems_allowed is used in cpuset_migrate_mm() when we change
118 * cpuset.mems_allowed and have tasks' nodemask updated, and
119 * then old_mems_allowed is updated to mems_allowed.
120 */
121 nodemask_t old_mems_allowed;
122
3e0d98b9 123 struct fmeter fmeter; /* memory_pressure filter */
029190c5 124
452477fa
TH
125 /*
126 * Tasks are being attached to this cpuset. Used to prevent
127 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
128 */
129 int attach_in_progress;
130
029190c5
PJ
131 /* partition number for rebuild_sched_domains() */
132 int pn;
956db3ca 133
1d3504fc
HS
134 /* for custom sched domain */
135 int relax_domain_level;
1da177e4
LT
136};
137
a7c6d554 138static inline struct cpuset *css_cs(struct cgroup_subsys_state *css)
8793d854 139{
a7c6d554 140 return css ? container_of(css, struct cpuset, css) : NULL;
8793d854
PM
141}
142
143/* Retrieve the cpuset for a task */
144static inline struct cpuset *task_cs(struct task_struct *task)
145{
073219e9 146 return css_cs(task_css(task, cpuset_cgrp_id));
8793d854 147}
8793d854 148
c9710d80 149static inline struct cpuset *parent_cs(struct cpuset *cs)
c431069f 150{
5c9d535b 151 return css_cs(cs->css.parent);
c431069f
TH
152}
153
b246272e
DR
154#ifdef CONFIG_NUMA
155static inline bool task_has_mempolicy(struct task_struct *task)
156{
157 return task->mempolicy;
158}
159#else
160static inline bool task_has_mempolicy(struct task_struct *task)
161{
162 return false;
163}
164#endif
165
166
1da177e4
LT
167/* bits in struct cpuset flags field */
168typedef enum {
efeb77b2 169 CS_ONLINE,
1da177e4
LT
170 CS_CPU_EXCLUSIVE,
171 CS_MEM_EXCLUSIVE,
78608366 172 CS_MEM_HARDWALL,
45b07ef3 173 CS_MEMORY_MIGRATE,
029190c5 174 CS_SCHED_LOAD_BALANCE,
825a46af
PJ
175 CS_SPREAD_PAGE,
176 CS_SPREAD_SLAB,
1da177e4
LT
177} cpuset_flagbits_t;
178
179/* convenient tests for these bits */
41c25707 180static inline bool is_cpuset_online(struct cpuset *cs)
efeb77b2 181{
41c25707 182 return test_bit(CS_ONLINE, &cs->flags) && !css_is_dying(&cs->css);
efeb77b2
TH
183}
184
1da177e4
LT
185static inline int is_cpu_exclusive(const struct cpuset *cs)
186{
7b5b9ef0 187 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
1da177e4
LT
188}
189
190static inline int is_mem_exclusive(const struct cpuset *cs)
191{
7b5b9ef0 192 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
1da177e4
LT
193}
194
78608366
PM
195static inline int is_mem_hardwall(const struct cpuset *cs)
196{
197 return test_bit(CS_MEM_HARDWALL, &cs->flags);
198}
199
029190c5
PJ
200static inline int is_sched_load_balance(const struct cpuset *cs)
201{
202 return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
203}
204
45b07ef3
PJ
205static inline int is_memory_migrate(const struct cpuset *cs)
206{
7b5b9ef0 207 return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
45b07ef3
PJ
208}
209
825a46af
PJ
210static inline int is_spread_page(const struct cpuset *cs)
211{
212 return test_bit(CS_SPREAD_PAGE, &cs->flags);
213}
214
215static inline int is_spread_slab(const struct cpuset *cs)
216{
217 return test_bit(CS_SPREAD_SLAB, &cs->flags);
218}
219
1da177e4 220static struct cpuset top_cpuset = {
efeb77b2
TH
221 .flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
222 (1 << CS_MEM_EXCLUSIVE)),
1da177e4
LT
223};
224
ae8086ce
TH
225/**
226 * cpuset_for_each_child - traverse online children of a cpuset
227 * @child_cs: loop cursor pointing to the current child
492eb21b 228 * @pos_css: used for iteration
ae8086ce
TH
229 * @parent_cs: target cpuset to walk children of
230 *
231 * Walk @child_cs through the online children of @parent_cs. Must be used
232 * with RCU read locked.
233 */
492eb21b
TH
234#define cpuset_for_each_child(child_cs, pos_css, parent_cs) \
235 css_for_each_child((pos_css), &(parent_cs)->css) \
236 if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
ae8086ce 237
fc560a26
TH
238/**
239 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
240 * @des_cs: loop cursor pointing to the current descendant
492eb21b 241 * @pos_css: used for iteration
fc560a26
TH
242 * @root_cs: target cpuset to walk ancestor of
243 *
244 * Walk @des_cs through the online descendants of @root_cs. Must be used
492eb21b 245 * with RCU read locked. The caller may modify @pos_css by calling
bd8815a6
TH
246 * css_rightmost_descendant() to skip subtree. @root_cs is included in the
247 * iteration and the first node to be visited.
fc560a26 248 */
492eb21b
TH
249#define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs) \
250 css_for_each_descendant_pre((pos_css), &(root_cs)->css) \
251 if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
fc560a26 252
1da177e4 253/*
8447a0fe
VD
254 * There are two global locks guarding cpuset structures - cpuset_mutex and
255 * callback_lock. We also require taking task_lock() when dereferencing a
256 * task's cpuset pointer. See "The task_lock() exception", at the end of this
257 * comment.
5d21cc2d 258 *
8447a0fe 259 * A task must hold both locks to modify cpusets. If a task holds
5d21cc2d 260 * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
8447a0fe 261 * is the only task able to also acquire callback_lock and be able to
5d21cc2d
TH
262 * modify cpusets. It can perform various checks on the cpuset structure
263 * first, knowing nothing will change. It can also allocate memory while
264 * just holding cpuset_mutex. While it is performing these checks, various
8447a0fe
VD
265 * callback routines can briefly acquire callback_lock to query cpusets.
266 * Once it is ready to make the changes, it takes callback_lock, blocking
5d21cc2d 267 * everyone else.
053199ed
PJ
268 *
269 * Calls to the kernel memory allocator can not be made while holding
8447a0fe 270 * callback_lock, as that would risk double tripping on callback_lock
053199ed
PJ
271 * from one of the callbacks into the cpuset code from within
272 * __alloc_pages().
273 *
8447a0fe 274 * If a task is only holding callback_lock, then it has read-only
053199ed
PJ
275 * access to cpusets.
276 *
58568d2a
MX
277 * Now, the task_struct fields mems_allowed and mempolicy may be changed
278 * by other task, we use alloc_lock in the task_struct fields to protect
279 * them.
053199ed 280 *
8447a0fe 281 * The cpuset_common_file_read() handlers only hold callback_lock across
053199ed
PJ
282 * small pieces of code, such as when reading out possibly multi-word
283 * cpumasks and nodemasks.
284 *
2df167a3
PM
285 * Accessing a task's cpuset should be done in accordance with the
286 * guidelines for accessing subsystem state in kernel/cgroup.c
1da177e4
LT
287 */
288
5d21cc2d 289static DEFINE_MUTEX(cpuset_mutex);
8447a0fe 290static DEFINE_SPINLOCK(callback_lock);
4247bdc6 291
e93ad19d
TH
292static struct workqueue_struct *cpuset_migrate_mm_wq;
293
3a5a6d0c
TH
294/*
295 * CPU / memory hotplug is handled asynchronously.
296 */
297static void cpuset_hotplug_workfn(struct work_struct *work);
3a5a6d0c
TH
298static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);
299
e44193d3
LZ
300static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);
301
cf417141
MK
302/*
303 * This is ugly, but preserves the userspace API for existing cpuset
8793d854 304 * users. If someone tries to mount the "cpuset" filesystem, we
cf417141
MK
305 * silently switch it to mount "cgroup" instead
306 */
f7e83571
AV
307static struct dentry *cpuset_mount(struct file_system_type *fs_type,
308 int flags, const char *unused_dev_name, void *data)
1da177e4 309{
8793d854 310 struct file_system_type *cgroup_fs = get_fs_type("cgroup");
f7e83571 311 struct dentry *ret = ERR_PTR(-ENODEV);
8793d854
PM
312 if (cgroup_fs) {
313 char mountopts[] =
314 "cpuset,noprefix,"
315 "release_agent=/sbin/cpuset_release_agent";
f7e83571
AV
316 ret = cgroup_fs->mount(cgroup_fs, flags,
317 unused_dev_name, mountopts);
8793d854
PM
318 put_filesystem(cgroup_fs);
319 }
320 return ret;
1da177e4
LT
321}
322
323static struct file_system_type cpuset_fs_type = {
324 .name = "cpuset",
f7e83571 325 .mount = cpuset_mount,
1da177e4
LT
326};
327
1da177e4 328/*
300ed6cb 329 * Return in pmask the portion of a cpusets's cpus_allowed that
1da177e4 330 * are online. If none are online, walk up the cpuset hierarchy
28b89b9e 331 * until we find one that does have some online cpus.
1da177e4
LT
332 *
333 * One way or another, we guarantee to return some non-empty subset
5f054e31 334 * of cpu_online_mask.
1da177e4 335 *
8447a0fe 336 * Call with callback_lock or cpuset_mutex held.
1da177e4 337 */
c9710d80 338static void guarantee_online_cpus(struct cpuset *cs, struct cpumask *pmask)
1da177e4 339{
28b89b9e 340 while (!cpumask_intersects(cs->effective_cpus, cpu_online_mask)) {
c431069f 341 cs = parent_cs(cs);
28b89b9e
JP
342 if (unlikely(!cs)) {
343 /*
344 * The top cpuset doesn't have any online cpu as a
345 * consequence of a race between cpuset_hotplug_work
346 * and cpu hotplug notifier. But we know the top
347 * cpuset's effective_cpus is on its way to to be
348 * identical to cpu_online_mask.
349 */
350 cpumask_copy(pmask, cpu_online_mask);
351 return;
352 }
353 }
ae1c8023 354 cpumask_and(pmask, cs->effective_cpus, cpu_online_mask);
1da177e4
LT
355}
356
357/*
358 * Return in *pmask the portion of a cpusets's mems_allowed that
0e1e7c7a
CL
359 * are online, with memory. If none are online with memory, walk
360 * up the cpuset hierarchy until we find one that does have some
40df2deb 361 * online mems. The top cpuset always has some mems online.
1da177e4
LT
362 *
363 * One way or another, we guarantee to return some non-empty subset
38d7bee9 364 * of node_states[N_MEMORY].
1da177e4 365 *
8447a0fe 366 * Call with callback_lock or cpuset_mutex held.
1da177e4 367 */
c9710d80 368static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
1da177e4 369{
ae1c8023 370 while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY]))
c431069f 371 cs = parent_cs(cs);
ae1c8023 372 nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]);
1da177e4
LT
373}
374
f3b39d47
MX
375/*
376 * update task's spread flag if cpuset's page/slab spread flag is set
377 *
8447a0fe 378 * Call with callback_lock or cpuset_mutex held.
f3b39d47
MX
379 */
380static void cpuset_update_task_spread_flag(struct cpuset *cs,
381 struct task_struct *tsk)
382{
383 if (is_spread_page(cs))
2ad654bc 384 task_set_spread_page(tsk);
f3b39d47 385 else
2ad654bc
ZL
386 task_clear_spread_page(tsk);
387
f3b39d47 388 if (is_spread_slab(cs))
2ad654bc 389 task_set_spread_slab(tsk);
f3b39d47 390 else
2ad654bc 391 task_clear_spread_slab(tsk);
f3b39d47
MX
392}
393
1da177e4
LT
394/*
395 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
396 *
397 * One cpuset is a subset of another if all its allowed CPUs and
398 * Memory Nodes are a subset of the other, and its exclusive flags
5d21cc2d 399 * are only set if the other's are set. Call holding cpuset_mutex.
1da177e4
LT
400 */
401
402static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
403{
300ed6cb 404 return cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
1da177e4
LT
405 nodes_subset(p->mems_allowed, q->mems_allowed) &&
406 is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
407 is_mem_exclusive(p) <= is_mem_exclusive(q);
408}
409
645fcc9d
LZ
410/**
411 * alloc_trial_cpuset - allocate a trial cpuset
412 * @cs: the cpuset that the trial cpuset duplicates
413 */
c9710d80 414static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
645fcc9d 415{
300ed6cb
LZ
416 struct cpuset *trial;
417
418 trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
419 if (!trial)
420 return NULL;
421
e2b9a3d7
LZ
422 if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL))
423 goto free_cs;
424 if (!alloc_cpumask_var(&trial->effective_cpus, GFP_KERNEL))
425 goto free_cpus;
300ed6cb 426
e2b9a3d7
LZ
427 cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
428 cpumask_copy(trial->effective_cpus, cs->effective_cpus);
300ed6cb 429 return trial;
e2b9a3d7
LZ
430
431free_cpus:
432 free_cpumask_var(trial->cpus_allowed);
433free_cs:
434 kfree(trial);
435 return NULL;
645fcc9d
LZ
436}
437
438/**
439 * free_trial_cpuset - free the trial cpuset
440 * @trial: the trial cpuset to be freed
441 */
442static void free_trial_cpuset(struct cpuset *trial)
443{
e2b9a3d7 444 free_cpumask_var(trial->effective_cpus);
300ed6cb 445 free_cpumask_var(trial->cpus_allowed);
645fcc9d
LZ
446 kfree(trial);
447}
448
1da177e4
LT
449/*
450 * validate_change() - Used to validate that any proposed cpuset change
451 * follows the structural rules for cpusets.
452 *
453 * If we replaced the flag and mask values of the current cpuset
454 * (cur) with those values in the trial cpuset (trial), would
455 * our various subset and exclusive rules still be valid? Presumes
5d21cc2d 456 * cpuset_mutex held.
1da177e4
LT
457 *
458 * 'cur' is the address of an actual, in-use cpuset. Operations
459 * such as list traversal that depend on the actual address of the
460 * cpuset in the list must use cur below, not trial.
461 *
462 * 'trial' is the address of bulk structure copy of cur, with
463 * perhaps one or more of the fields cpus_allowed, mems_allowed,
464 * or flags changed to new, trial values.
465 *
466 * Return 0 if valid, -errno if not.
467 */
468
c9710d80 469static int validate_change(struct cpuset *cur, struct cpuset *trial)
1da177e4 470{
492eb21b 471 struct cgroup_subsys_state *css;
1da177e4 472 struct cpuset *c, *par;
ae8086ce
TH
473 int ret;
474
475 rcu_read_lock();
1da177e4
LT
476
477 /* Each of our child cpusets must be a subset of us */
ae8086ce 478 ret = -EBUSY;
492eb21b 479 cpuset_for_each_child(c, css, cur)
ae8086ce
TH
480 if (!is_cpuset_subset(c, trial))
481 goto out;
1da177e4
LT
482
483 /* Remaining checks don't apply to root cpuset */
ae8086ce 484 ret = 0;
69604067 485 if (cur == &top_cpuset)
ae8086ce 486 goto out;
1da177e4 487
c431069f 488 par = parent_cs(cur);
69604067 489
7e88291b 490 /* On legacy hiearchy, we must be a subset of our parent cpuset. */
ae8086ce 491 ret = -EACCES;
9e10a130
TH
492 if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
493 !is_cpuset_subset(trial, par))
ae8086ce 494 goto out;
1da177e4 495
2df167a3
PM
496 /*
497 * If either I or some sibling (!= me) is exclusive, we can't
498 * overlap
499 */
ae8086ce 500 ret = -EINVAL;
492eb21b 501 cpuset_for_each_child(c, css, par) {
1da177e4
LT
502 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
503 c != cur &&
300ed6cb 504 cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
ae8086ce 505 goto out;
1da177e4
LT
506 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
507 c != cur &&
508 nodes_intersects(trial->mems_allowed, c->mems_allowed))
ae8086ce 509 goto out;
1da177e4
LT
510 }
511
452477fa
TH
512 /*
513 * Cpusets with tasks - existing or newly being attached - can't
1c09b195 514 * be changed to have empty cpus_allowed or mems_allowed.
452477fa 515 */
ae8086ce 516 ret = -ENOSPC;
27bd4dbb 517 if ((cgroup_is_populated(cur->css.cgroup) || cur->attach_in_progress)) {
1c09b195
LZ
518 if (!cpumask_empty(cur->cpus_allowed) &&
519 cpumask_empty(trial->cpus_allowed))
520 goto out;
521 if (!nodes_empty(cur->mems_allowed) &&
522 nodes_empty(trial->mems_allowed))
523 goto out;
524 }
020958b6 525
f82f8042
JL
526 /*
527 * We can't shrink if we won't have enough room for SCHED_DEADLINE
528 * tasks.
529 */
530 ret = -EBUSY;
531 if (is_cpu_exclusive(cur) &&
532 !cpuset_cpumask_can_shrink(cur->cpus_allowed,
533 trial->cpus_allowed))
534 goto out;
535
ae8086ce
TH
536 ret = 0;
537out:
538 rcu_read_unlock();
539 return ret;
1da177e4
LT
540}
541
db7f47cf 542#ifdef CONFIG_SMP
029190c5 543/*
cf417141 544 * Helper routine for generate_sched_domains().
8b5f1c52 545 * Do cpusets a, b have overlapping effective cpus_allowed masks?
029190c5 546 */
029190c5
PJ
547static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
548{
8b5f1c52 549 return cpumask_intersects(a->effective_cpus, b->effective_cpus);
029190c5
PJ
550}
551
1d3504fc
HS
552static void
553update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
554{
1d3504fc
HS
555 if (dattr->relax_domain_level < c->relax_domain_level)
556 dattr->relax_domain_level = c->relax_domain_level;
557 return;
558}
559
fc560a26
TH
560static void update_domain_attr_tree(struct sched_domain_attr *dattr,
561 struct cpuset *root_cs)
f5393693 562{
fc560a26 563 struct cpuset *cp;
492eb21b 564 struct cgroup_subsys_state *pos_css;
f5393693 565
fc560a26 566 rcu_read_lock();
492eb21b 567 cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
fc560a26
TH
568 /* skip the whole subtree if @cp doesn't have any CPU */
569 if (cpumask_empty(cp->cpus_allowed)) {
492eb21b 570 pos_css = css_rightmost_descendant(pos_css);
f5393693 571 continue;
fc560a26 572 }
f5393693
LJ
573
574 if (is_sched_load_balance(cp))
575 update_domain_attr(dattr, cp);
f5393693 576 }
fc560a26 577 rcu_read_unlock();
f5393693
LJ
578}
579
029190c5 580/*
cf417141
MK
581 * generate_sched_domains()
582 *
583 * This function builds a partial partition of the systems CPUs
584 * A 'partial partition' is a set of non-overlapping subsets whose
585 * union is a subset of that set.
0a0fca9d 586 * The output of this function needs to be passed to kernel/sched/core.c
cf417141
MK
587 * partition_sched_domains() routine, which will rebuild the scheduler's
588 * load balancing domains (sched domains) as specified by that partial
589 * partition.
029190c5 590 *
45ce80fb 591 * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
029190c5
PJ
592 * for a background explanation of this.
593 *
594 * Does not return errors, on the theory that the callers of this
595 * routine would rather not worry about failures to rebuild sched
596 * domains when operating in the severe memory shortage situations
597 * that could cause allocation failures below.
598 *
5d21cc2d 599 * Must be called with cpuset_mutex held.
029190c5
PJ
600 *
601 * The three key local variables below are:
aeed6824 602 * q - a linked-list queue of cpuset pointers, used to implement a
029190c5
PJ
603 * top-down scan of all cpusets. This scan loads a pointer
604 * to each cpuset marked is_sched_load_balance into the
605 * array 'csa'. For our purposes, rebuilding the schedulers
606 * sched domains, we can ignore !is_sched_load_balance cpusets.
607 * csa - (for CpuSet Array) Array of pointers to all the cpusets
608 * that need to be load balanced, for convenient iterative
609 * access by the subsequent code that finds the best partition,
610 * i.e the set of domains (subsets) of CPUs such that the
611 * cpus_allowed of every cpuset marked is_sched_load_balance
612 * is a subset of one of these domains, while there are as
613 * many such domains as possible, each as small as possible.
614 * doms - Conversion of 'csa' to an array of cpumasks, for passing to
0a0fca9d 615 * the kernel/sched/core.c routine partition_sched_domains() in a
029190c5
PJ
616 * convenient format, that can be easily compared to the prior
617 * value to determine what partition elements (sched domains)
618 * were changed (added or removed.)
619 *
620 * Finding the best partition (set of domains):
621 * The triple nested loops below over i, j, k scan over the
622 * load balanced cpusets (using the array of cpuset pointers in
623 * csa[]) looking for pairs of cpusets that have overlapping
624 * cpus_allowed, but which don't have the same 'pn' partition
625 * number and gives them in the same partition number. It keeps
626 * looping on the 'restart' label until it can no longer find
627 * any such pairs.
628 *
629 * The union of the cpus_allowed masks from the set of
630 * all cpusets having the same 'pn' value then form the one
631 * element of the partition (one sched domain) to be passed to
632 * partition_sched_domains().
633 */
acc3f5d7 634static int generate_sched_domains(cpumask_var_t **domains,
cf417141 635 struct sched_domain_attr **attributes)
029190c5 636{
029190c5
PJ
637 struct cpuset *cp; /* scans q */
638 struct cpuset **csa; /* array of all cpuset ptrs */
639 int csn; /* how many cpuset ptrs in csa so far */
640 int i, j, k; /* indices for partition finding loops */
acc3f5d7 641 cpumask_var_t *doms; /* resulting partition; i.e. sched domains */
47b8ea71 642 cpumask_var_t non_isolated_cpus; /* load balanced CPUs */
1d3504fc 643 struct sched_domain_attr *dattr; /* attributes for custom domains */
1583715d 644 int ndoms = 0; /* number of sched domains in result */
6af866af 645 int nslot; /* next empty doms[] struct cpumask slot */
492eb21b 646 struct cgroup_subsys_state *pos_css;
029190c5 647
029190c5 648 doms = NULL;
1d3504fc 649 dattr = NULL;
cf417141 650 csa = NULL;
029190c5 651
47b8ea71
RR
652 if (!alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL))
653 goto done;
654 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
655
029190c5
PJ
656 /* Special case for the 99% of systems with one, full, sched domain */
657 if (is_sched_load_balance(&top_cpuset)) {
acc3f5d7
RR
658 ndoms = 1;
659 doms = alloc_sched_domains(ndoms);
029190c5 660 if (!doms)
cf417141
MK
661 goto done;
662
1d3504fc
HS
663 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
664 if (dattr) {
665 *dattr = SD_ATTR_INIT;
93a65575 666 update_domain_attr_tree(dattr, &top_cpuset);
1d3504fc 667 }
47b8ea71
RR
668 cpumask_and(doms[0], top_cpuset.effective_cpus,
669 non_isolated_cpus);
cf417141 670
cf417141 671 goto done;
029190c5
PJ
672 }
673
664eedde 674 csa = kmalloc(nr_cpusets() * sizeof(cp), GFP_KERNEL);
029190c5
PJ
675 if (!csa)
676 goto done;
677 csn = 0;
678
fc560a26 679 rcu_read_lock();
492eb21b 680 cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
bd8815a6
TH
681 if (cp == &top_cpuset)
682 continue;
f5393693 683 /*
fc560a26
TH
684 * Continue traversing beyond @cp iff @cp has some CPUs and
685 * isn't load balancing. The former is obvious. The
686 * latter: All child cpusets contain a subset of the
687 * parent's cpus, so just skip them, and then we call
688 * update_domain_attr_tree() to calc relax_domain_level of
689 * the corresponding sched domain.
f5393693 690 */
fc560a26 691 if (!cpumask_empty(cp->cpus_allowed) &&
47b8ea71
RR
692 !(is_sched_load_balance(cp) &&
693 cpumask_intersects(cp->cpus_allowed, non_isolated_cpus)))
f5393693 694 continue;
489a5393 695
fc560a26
TH
696 if (is_sched_load_balance(cp))
697 csa[csn++] = cp;
698
699 /* skip @cp's subtree */
492eb21b 700 pos_css = css_rightmost_descendant(pos_css);
fc560a26
TH
701 }
702 rcu_read_unlock();
029190c5
PJ
703
704 for (i = 0; i < csn; i++)
705 csa[i]->pn = i;
706 ndoms = csn;
707
708restart:
709 /* Find the best partition (set of sched domains) */
710 for (i = 0; i < csn; i++) {
711 struct cpuset *a = csa[i];
712 int apn = a->pn;
713
714 for (j = 0; j < csn; j++) {
715 struct cpuset *b = csa[j];
716 int bpn = b->pn;
717
718 if (apn != bpn && cpusets_overlap(a, b)) {
719 for (k = 0; k < csn; k++) {
720 struct cpuset *c = csa[k];
721
722 if (c->pn == bpn)
723 c->pn = apn;
724 }
725 ndoms--; /* one less element */
726 goto restart;
727 }
728 }
729 }
730
cf417141
MK
731 /*
732 * Now we know how many domains to create.
733 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
734 */
acc3f5d7 735 doms = alloc_sched_domains(ndoms);
700018e0 736 if (!doms)
cf417141 737 goto done;
cf417141
MK
738
739 /*
740 * The rest of the code, including the scheduler, can deal with
741 * dattr==NULL case. No need to abort if alloc fails.
742 */
1d3504fc 743 dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
029190c5
PJ
744
745 for (nslot = 0, i = 0; i < csn; i++) {
746 struct cpuset *a = csa[i];
6af866af 747 struct cpumask *dp;
029190c5
PJ
748 int apn = a->pn;
749
cf417141
MK
750 if (apn < 0) {
751 /* Skip completed partitions */
752 continue;
753 }
754
acc3f5d7 755 dp = doms[nslot];
cf417141
MK
756
757 if (nslot == ndoms) {
758 static int warnings = 10;
759 if (warnings) {
12d3089c
FF
760 pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n",
761 nslot, ndoms, csn, i, apn);
cf417141 762 warnings--;
029190c5 763 }
cf417141
MK
764 continue;
765 }
029190c5 766
6af866af 767 cpumask_clear(dp);
cf417141
MK
768 if (dattr)
769 *(dattr + nslot) = SD_ATTR_INIT;
770 for (j = i; j < csn; j++) {
771 struct cpuset *b = csa[j];
772
773 if (apn == b->pn) {
8b5f1c52 774 cpumask_or(dp, dp, b->effective_cpus);
47b8ea71 775 cpumask_and(dp, dp, non_isolated_cpus);
cf417141
MK
776 if (dattr)
777 update_domain_attr_tree(dattr + nslot, b);
778
779 /* Done with this partition */
780 b->pn = -1;
029190c5 781 }
029190c5 782 }
cf417141 783 nslot++;
029190c5
PJ
784 }
785 BUG_ON(nslot != ndoms);
786
cf417141 787done:
47b8ea71 788 free_cpumask_var(non_isolated_cpus);
cf417141
MK
789 kfree(csa);
790
700018e0
LZ
791 /*
792 * Fallback to the default domain if kmalloc() failed.
793 * See comments in partition_sched_domains().
794 */
795 if (doms == NULL)
796 ndoms = 1;
797
cf417141
MK
798 *domains = doms;
799 *attributes = dattr;
800 return ndoms;
801}
802
803/*
804 * Rebuild scheduler domains.
805 *
699140ba
TH
806 * If the flag 'sched_load_balance' of any cpuset with non-empty
807 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
808 * which has that flag enabled, or if any cpuset with a non-empty
809 * 'cpus' is removed, then call this routine to rebuild the
810 * scheduler's dynamic sched domains.
cf417141 811 *
5d21cc2d 812 * Call with cpuset_mutex held. Takes get_online_cpus().
cf417141 813 */
699140ba 814static void rebuild_sched_domains_locked(void)
cf417141
MK
815{
816 struct sched_domain_attr *attr;
acc3f5d7 817 cpumask_var_t *doms;
cf417141
MK
818 int ndoms;
819
5d21cc2d 820 lockdep_assert_held(&cpuset_mutex);
86ef5c9a 821 get_online_cpus();
cf417141 822
5b16c2a4
LZ
823 /*
824 * We have raced with CPU hotplug. Don't do anything to avoid
825 * passing doms with offlined cpu to partition_sched_domains().
826 * Anyways, hotplug work item will rebuild sched domains.
827 */
8b5f1c52 828 if (!cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask))
5b16c2a4
LZ
829 goto out;
830
cf417141 831 /* Generate domain masks and attrs */
cf417141 832 ndoms = generate_sched_domains(&doms, &attr);
cf417141
MK
833
834 /* Have scheduler rebuild the domains */
835 partition_sched_domains(ndoms, doms, attr);
5b16c2a4 836out:
86ef5c9a 837 put_online_cpus();
cf417141 838}
db7f47cf 839#else /* !CONFIG_SMP */
699140ba 840static void rebuild_sched_domains_locked(void)
db7f47cf
PM
841{
842}
db7f47cf 843#endif /* CONFIG_SMP */
029190c5 844
cf417141
MK
845void rebuild_sched_domains(void)
846{
5d21cc2d 847 mutex_lock(&cpuset_mutex);
699140ba 848 rebuild_sched_domains_locked();
5d21cc2d 849 mutex_unlock(&cpuset_mutex);
029190c5
PJ
850}
851
0b2f630a
MX
852/**
853 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
854 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
0b2f630a 855 *
d66393e5
TH
856 * Iterate through each task of @cs updating its cpus_allowed to the
857 * effective cpuset's. As this function is called with cpuset_mutex held,
858 * cpuset membership stays stable.
0b2f630a 859 */
d66393e5 860static void update_tasks_cpumask(struct cpuset *cs)
0b2f630a 861{
d66393e5
TH
862 struct css_task_iter it;
863 struct task_struct *task;
864
865 css_task_iter_start(&cs->css, &it);
866 while ((task = css_task_iter_next(&it)))
ae1c8023 867 set_cpus_allowed_ptr(task, cs->effective_cpus);
d66393e5 868 css_task_iter_end(&it);
0b2f630a
MX
869}
870
5c5cc623 871/*
734d4513
LZ
872 * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree
873 * @cs: the cpuset to consider
874 * @new_cpus: temp variable for calculating new effective_cpus
875 *
876 * When congifured cpumask is changed, the effective cpumasks of this cpuset
877 * and all its descendants need to be updated.
5c5cc623 878 *
734d4513 879 * On legacy hierachy, effective_cpus will be the same with cpu_allowed.
5c5cc623
LZ
880 *
881 * Called with cpuset_mutex held
882 */
734d4513 883static void update_cpumasks_hier(struct cpuset *cs, struct cpumask *new_cpus)
5c5cc623
LZ
884{
885 struct cpuset *cp;
492eb21b 886 struct cgroup_subsys_state *pos_css;
8b5f1c52 887 bool need_rebuild_sched_domains = false;
5c5cc623
LZ
888
889 rcu_read_lock();
734d4513
LZ
890 cpuset_for_each_descendant_pre(cp, pos_css, cs) {
891 struct cpuset *parent = parent_cs(cp);
892
893 cpumask_and(new_cpus, cp->cpus_allowed, parent->effective_cpus);
894
554b0d1c
LZ
895 /*
896 * If it becomes empty, inherit the effective mask of the
897 * parent, which is guaranteed to have some CPUs.
898 */
9e10a130
TH
899 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
900 cpumask_empty(new_cpus))
554b0d1c
LZ
901 cpumask_copy(new_cpus, parent->effective_cpus);
902
734d4513
LZ
903 /* Skip the whole subtree if the cpumask remains the same. */
904 if (cpumask_equal(new_cpus, cp->effective_cpus)) {
905 pos_css = css_rightmost_descendant(pos_css);
906 continue;
5c5cc623 907 }
734d4513 908
ec903c0c 909 if (!css_tryget_online(&cp->css))
5c5cc623
LZ
910 continue;
911 rcu_read_unlock();
912
8447a0fe 913 spin_lock_irq(&callback_lock);
734d4513 914 cpumask_copy(cp->effective_cpus, new_cpus);
8447a0fe 915 spin_unlock_irq(&callback_lock);
734d4513 916
9e10a130 917 WARN_ON(!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
734d4513
LZ
918 !cpumask_equal(cp->cpus_allowed, cp->effective_cpus));
919
d66393e5 920 update_tasks_cpumask(cp);
5c5cc623 921
8b5f1c52
LZ
922 /*
923 * If the effective cpumask of any non-empty cpuset is changed,
924 * we need to rebuild sched domains.
925 */
926 if (!cpumask_empty(cp->cpus_allowed) &&
927 is_sched_load_balance(cp))
928 need_rebuild_sched_domains = true;
929
5c5cc623
LZ
930 rcu_read_lock();
931 css_put(&cp->css);
932 }
933 rcu_read_unlock();
8b5f1c52
LZ
934
935 if (need_rebuild_sched_domains)
936 rebuild_sched_domains_locked();
5c5cc623
LZ
937}
938
58f4790b
CW
939/**
940 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
941 * @cs: the cpuset to consider
fc34ac1d 942 * @trialcs: trial cpuset
58f4790b
CW
943 * @buf: buffer of cpu numbers written to this cpuset
944 */
645fcc9d
LZ
945static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
946 const char *buf)
1da177e4 947{
58f4790b 948 int retval;
1da177e4 949
5f054e31 950 /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
4c4d50f7
PJ
951 if (cs == &top_cpuset)
952 return -EACCES;
953
6f7f02e7 954 /*
c8d9c90c 955 * An empty cpus_allowed is ok only if the cpuset has no tasks.
020958b6
PJ
956 * Since cpulist_parse() fails on an empty mask, we special case
957 * that parsing. The validate_change() call ensures that cpusets
958 * with tasks have cpus.
6f7f02e7 959 */
020958b6 960 if (!*buf) {
300ed6cb 961 cpumask_clear(trialcs->cpus_allowed);
6f7f02e7 962 } else {
300ed6cb 963 retval = cpulist_parse(buf, trialcs->cpus_allowed);
6f7f02e7
DR
964 if (retval < 0)
965 return retval;
37340746 966
5d8ba82c
LZ
967 if (!cpumask_subset(trialcs->cpus_allowed,
968 top_cpuset.cpus_allowed))
37340746 969 return -EINVAL;
6f7f02e7 970 }
029190c5 971
8707d8b8 972 /* Nothing to do if the cpus didn't change */
300ed6cb 973 if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
8707d8b8 974 return 0;
58f4790b 975
a73456f3
LZ
976 retval = validate_change(cs, trialcs);
977 if (retval < 0)
978 return retval;
979
8447a0fe 980 spin_lock_irq(&callback_lock);
300ed6cb 981 cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
8447a0fe 982 spin_unlock_irq(&callback_lock);
029190c5 983
734d4513
LZ
984 /* use trialcs->cpus_allowed as a temp variable */
985 update_cpumasks_hier(cs, trialcs->cpus_allowed);
85d7b949 986 return 0;
1da177e4
LT
987}
988
e4e364e8 989/*
e93ad19d
TH
990 * Migrate memory region from one set of nodes to another. This is
991 * performed asynchronously as it can be called from process migration path
992 * holding locks involved in process management. All mm migrations are
993 * performed in the queued order and can be waited for by flushing
994 * cpuset_migrate_mm_wq.
e4e364e8
PJ
995 */
996
e93ad19d
TH
997struct cpuset_migrate_mm_work {
998 struct work_struct work;
999 struct mm_struct *mm;
1000 nodemask_t from;
1001 nodemask_t to;
1002};
1003
1004static void cpuset_migrate_mm_workfn(struct work_struct *work)
1005{
1006 struct cpuset_migrate_mm_work *mwork =
1007 container_of(work, struct cpuset_migrate_mm_work, work);
1008
1009 /* on a wq worker, no need to worry about %current's mems_allowed */
1010 do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL);
1011 mmput(mwork->mm);
1012 kfree(mwork);
1013}
1014
e4e364e8
PJ
1015static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
1016 const nodemask_t *to)
1017{
e93ad19d 1018 struct cpuset_migrate_mm_work *mwork;
e4e364e8 1019
e93ad19d
TH
1020 mwork = kzalloc(sizeof(*mwork), GFP_KERNEL);
1021 if (mwork) {
1022 mwork->mm = mm;
1023 mwork->from = *from;
1024 mwork->to = *to;
1025 INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn);
1026 queue_work(cpuset_migrate_mm_wq, &mwork->work);
1027 } else {
1028 mmput(mm);
1029 }
1030}
e4e364e8 1031
5cf1cacb 1032static void cpuset_post_attach(void)
e93ad19d
TH
1033{
1034 flush_workqueue(cpuset_migrate_mm_wq);
e4e364e8
PJ
1035}
1036
3b6766fe 1037/*
58568d2a
MX
1038 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
1039 * @tsk: the task to change
1040 * @newmems: new nodes that the task will be set
1041 *
5f155f27
VB
1042 * We use the mems_allowed_seq seqlock to safely update both tsk->mems_allowed
1043 * and rebind an eventual tasks' mempolicy. If the task is allocating in
1044 * parallel, it might temporarily see an empty intersection, which results in
1045 * a seqlock check and retry before OOM or allocation failure.
58568d2a
MX
1046 */
1047static void cpuset_change_task_nodemask(struct task_struct *tsk,
1048 nodemask_t *newmems)
1049{
c0ff7453 1050 task_lock(tsk);
c0ff7453 1051
5f155f27
VB
1052 local_irq_disable();
1053 write_seqcount_begin(&tsk->mems_allowed_seq);
c0ff7453 1054
cc9a6c87 1055 nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
213980c0 1056 mpol_rebind_task(tsk, newmems);
58568d2a 1057 tsk->mems_allowed = *newmems;
cc9a6c87 1058
5f155f27
VB
1059 write_seqcount_end(&tsk->mems_allowed_seq);
1060 local_irq_enable();
cc9a6c87 1061
c0ff7453 1062 task_unlock(tsk);
58568d2a
MX
1063}
1064
8793d854
PM
1065static void *cpuset_being_rebound;
1066
0b2f630a
MX
1067/**
1068 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1069 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
0b2f630a 1070 *
d66393e5
TH
1071 * Iterate through each task of @cs updating its mems_allowed to the
1072 * effective cpuset's. As this function is called with cpuset_mutex held,
1073 * cpuset membership stays stable.
0b2f630a 1074 */
d66393e5 1075static void update_tasks_nodemask(struct cpuset *cs)
1da177e4 1076{
33ad801d 1077 static nodemask_t newmems; /* protected by cpuset_mutex */
d66393e5
TH
1078 struct css_task_iter it;
1079 struct task_struct *task;
59dac16f 1080
846a16bf 1081 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
4225399a 1082
ae1c8023 1083 guarantee_online_mems(cs, &newmems);
33ad801d 1084
4225399a 1085 /*
3b6766fe
LZ
1086 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
1087 * take while holding tasklist_lock. Forks can happen - the
1088 * mpol_dup() cpuset_being_rebound check will catch such forks,
1089 * and rebind their vma mempolicies too. Because we still hold
5d21cc2d 1090 * the global cpuset_mutex, we know that no other rebind effort
3b6766fe 1091 * will be contending for the global variable cpuset_being_rebound.
4225399a 1092 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
04c19fa6 1093 * is idempotent. Also migrate pages in each mm to new nodes.
4225399a 1094 */
d66393e5
TH
1095 css_task_iter_start(&cs->css, &it);
1096 while ((task = css_task_iter_next(&it))) {
1097 struct mm_struct *mm;
1098 bool migrate;
1099
1100 cpuset_change_task_nodemask(task, &newmems);
1101
1102 mm = get_task_mm(task);
1103 if (!mm)
1104 continue;
1105
1106 migrate = is_memory_migrate(cs);
1107
1108 mpol_rebind_mm(mm, &cs->mems_allowed);
1109 if (migrate)
1110 cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems);
e93ad19d
TH
1111 else
1112 mmput(mm);
d66393e5
TH
1113 }
1114 css_task_iter_end(&it);
4225399a 1115
33ad801d
LZ
1116 /*
1117 * All the tasks' nodemasks have been updated, update
1118 * cs->old_mems_allowed.
1119 */
1120 cs->old_mems_allowed = newmems;
1121
2df167a3 1122 /* We're done rebinding vmas to this cpuset's new mems_allowed. */
8793d854 1123 cpuset_being_rebound = NULL;
1da177e4
LT
1124}
1125
5c5cc623 1126/*
734d4513
LZ
1127 * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree
1128 * @cs: the cpuset to consider
1129 * @new_mems: a temp variable for calculating new effective_mems
5c5cc623 1130 *
734d4513
LZ
1131 * When configured nodemask is changed, the effective nodemasks of this cpuset
1132 * and all its descendants need to be updated.
5c5cc623 1133 *
734d4513 1134 * On legacy hiearchy, effective_mems will be the same with mems_allowed.
5c5cc623
LZ
1135 *
1136 * Called with cpuset_mutex held
1137 */
734d4513 1138static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems)
5c5cc623
LZ
1139{
1140 struct cpuset *cp;
492eb21b 1141 struct cgroup_subsys_state *pos_css;
5c5cc623
LZ
1142
1143 rcu_read_lock();
734d4513
LZ
1144 cpuset_for_each_descendant_pre(cp, pos_css, cs) {
1145 struct cpuset *parent = parent_cs(cp);
1146
1147 nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems);
1148
554b0d1c
LZ
1149 /*
1150 * If it becomes empty, inherit the effective mask of the
1151 * parent, which is guaranteed to have some MEMs.
1152 */
9e10a130
TH
1153 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
1154 nodes_empty(*new_mems))
554b0d1c
LZ
1155 *new_mems = parent->effective_mems;
1156
734d4513
LZ
1157 /* Skip the whole subtree if the nodemask remains the same. */
1158 if (nodes_equal(*new_mems, cp->effective_mems)) {
1159 pos_css = css_rightmost_descendant(pos_css);
1160 continue;
5c5cc623 1161 }
734d4513 1162
ec903c0c 1163 if (!css_tryget_online(&cp->css))
5c5cc623
LZ
1164 continue;
1165 rcu_read_unlock();
1166
8447a0fe 1167 spin_lock_irq(&callback_lock);
734d4513 1168 cp->effective_mems = *new_mems;
8447a0fe 1169 spin_unlock_irq(&callback_lock);
734d4513 1170
9e10a130 1171 WARN_ON(!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
a1381268 1172 !nodes_equal(cp->mems_allowed, cp->effective_mems));
734d4513 1173
d66393e5 1174 update_tasks_nodemask(cp);
5c5cc623
LZ
1175
1176 rcu_read_lock();
1177 css_put(&cp->css);
1178 }
1179 rcu_read_unlock();
1180}
1181
0b2f630a
MX
1182/*
1183 * Handle user request to change the 'mems' memory placement
1184 * of a cpuset. Needs to validate the request, update the
58568d2a
MX
1185 * cpusets mems_allowed, and for each task in the cpuset,
1186 * update mems_allowed and rebind task's mempolicy and any vma
1187 * mempolicies and if the cpuset is marked 'memory_migrate',
1188 * migrate the tasks pages to the new memory.
0b2f630a 1189 *
8447a0fe 1190 * Call with cpuset_mutex held. May take callback_lock during call.
0b2f630a
MX
1191 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1192 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
1193 * their mempolicies to the cpusets new mems_allowed.
1194 */
645fcc9d
LZ
1195static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
1196 const char *buf)
0b2f630a 1197{
0b2f630a
MX
1198 int retval;
1199
1200 /*
38d7bee9 1201 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
0b2f630a
MX
1202 * it's read-only
1203 */
53feb297
MX
1204 if (cs == &top_cpuset) {
1205 retval = -EACCES;
1206 goto done;
1207 }
0b2f630a 1208
0b2f630a
MX
1209 /*
1210 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1211 * Since nodelist_parse() fails on an empty mask, we special case
1212 * that parsing. The validate_change() call ensures that cpusets
1213 * with tasks have memory.
1214 */
1215 if (!*buf) {
645fcc9d 1216 nodes_clear(trialcs->mems_allowed);
0b2f630a 1217 } else {
645fcc9d 1218 retval = nodelist_parse(buf, trialcs->mems_allowed);
0b2f630a
MX
1219 if (retval < 0)
1220 goto done;
1221
645fcc9d 1222 if (!nodes_subset(trialcs->mems_allowed,
5d8ba82c
LZ
1223 top_cpuset.mems_allowed)) {
1224 retval = -EINVAL;
53feb297
MX
1225 goto done;
1226 }
0b2f630a 1227 }
33ad801d
LZ
1228
1229 if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
0b2f630a
MX
1230 retval = 0; /* Too easy - nothing to do */
1231 goto done;
1232 }
645fcc9d 1233 retval = validate_change(cs, trialcs);
0b2f630a
MX
1234 if (retval < 0)
1235 goto done;
1236
8447a0fe 1237 spin_lock_irq(&callback_lock);
645fcc9d 1238 cs->mems_allowed = trialcs->mems_allowed;
8447a0fe 1239 spin_unlock_irq(&callback_lock);
0b2f630a 1240
734d4513 1241 /* use trialcs->mems_allowed as a temp variable */
24ee3cf8 1242 update_nodemasks_hier(cs, &trialcs->mems_allowed);
0b2f630a
MX
1243done:
1244 return retval;
1245}
1246
8793d854
PM
1247int current_cpuset_is_being_rebound(void)
1248{
391acf97
GZ
1249 int ret;
1250
1251 rcu_read_lock();
1252 ret = task_cs(current) == cpuset_being_rebound;
1253 rcu_read_unlock();
1254
1255 return ret;
8793d854
PM
1256}
1257
5be7a479 1258static int update_relax_domain_level(struct cpuset *cs, s64 val)
1d3504fc 1259{
db7f47cf 1260#ifdef CONFIG_SMP
60495e77 1261 if (val < -1 || val >= sched_domain_level_max)
30e0e178 1262 return -EINVAL;
db7f47cf 1263#endif
1d3504fc
HS
1264
1265 if (val != cs->relax_domain_level) {
1266 cs->relax_domain_level = val;
300ed6cb
LZ
1267 if (!cpumask_empty(cs->cpus_allowed) &&
1268 is_sched_load_balance(cs))
699140ba 1269 rebuild_sched_domains_locked();
1d3504fc
HS
1270 }
1271
1272 return 0;
1273}
1274
72ec7029 1275/**
950592f7
MX
1276 * update_tasks_flags - update the spread flags of tasks in the cpuset.
1277 * @cs: the cpuset in which each task's spread flags needs to be changed
950592f7 1278 *
d66393e5
TH
1279 * Iterate through each task of @cs updating its spread flags. As this
1280 * function is called with cpuset_mutex held, cpuset membership stays
1281 * stable.
950592f7 1282 */
d66393e5 1283static void update_tasks_flags(struct cpuset *cs)
950592f7 1284{
d66393e5
TH
1285 struct css_task_iter it;
1286 struct task_struct *task;
1287
1288 css_task_iter_start(&cs->css, &it);
1289 while ((task = css_task_iter_next(&it)))
1290 cpuset_update_task_spread_flag(cs, task);
1291 css_task_iter_end(&it);
950592f7
MX
1292}
1293
1da177e4
LT
1294/*
1295 * update_flag - read a 0 or a 1 in a file and update associated flag
78608366
PM
1296 * bit: the bit to update (see cpuset_flagbits_t)
1297 * cs: the cpuset to update
1298 * turning_on: whether the flag is being set or cleared
053199ed 1299 *
5d21cc2d 1300 * Call with cpuset_mutex held.
1da177e4
LT
1301 */
1302
700fe1ab
PM
1303static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1304 int turning_on)
1da177e4 1305{
645fcc9d 1306 struct cpuset *trialcs;
40b6a762 1307 int balance_flag_changed;
950592f7 1308 int spread_flag_changed;
950592f7 1309 int err;
1da177e4 1310
645fcc9d
LZ
1311 trialcs = alloc_trial_cpuset(cs);
1312 if (!trialcs)
1313 return -ENOMEM;
1314
1da177e4 1315 if (turning_on)
645fcc9d 1316 set_bit(bit, &trialcs->flags);
1da177e4 1317 else
645fcc9d 1318 clear_bit(bit, &trialcs->flags);
1da177e4 1319
645fcc9d 1320 err = validate_change(cs, trialcs);
85d7b949 1321 if (err < 0)
645fcc9d 1322 goto out;
029190c5 1323
029190c5 1324 balance_flag_changed = (is_sched_load_balance(cs) !=
645fcc9d 1325 is_sched_load_balance(trialcs));
029190c5 1326
950592f7
MX
1327 spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
1328 || (is_spread_page(cs) != is_spread_page(trialcs)));
1329
8447a0fe 1330 spin_lock_irq(&callback_lock);
645fcc9d 1331 cs->flags = trialcs->flags;
8447a0fe 1332 spin_unlock_irq(&callback_lock);
85d7b949 1333
300ed6cb 1334 if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
699140ba 1335 rebuild_sched_domains_locked();
029190c5 1336
950592f7 1337 if (spread_flag_changed)
d66393e5 1338 update_tasks_flags(cs);
645fcc9d
LZ
1339out:
1340 free_trial_cpuset(trialcs);
1341 return err;
1da177e4
LT
1342}
1343
3e0d98b9 1344/*
80f7228b 1345 * Frequency meter - How fast is some event occurring?
3e0d98b9
PJ
1346 *
1347 * These routines manage a digitally filtered, constant time based,
1348 * event frequency meter. There are four routines:
1349 * fmeter_init() - initialize a frequency meter.
1350 * fmeter_markevent() - called each time the event happens.
1351 * fmeter_getrate() - returns the recent rate of such events.
1352 * fmeter_update() - internal routine used to update fmeter.
1353 *
1354 * A common data structure is passed to each of these routines,
1355 * which is used to keep track of the state required to manage the
1356 * frequency meter and its digital filter.
1357 *
1358 * The filter works on the number of events marked per unit time.
1359 * The filter is single-pole low-pass recursive (IIR). The time unit
1360 * is 1 second. Arithmetic is done using 32-bit integers scaled to
1361 * simulate 3 decimal digits of precision (multiplied by 1000).
1362 *
1363 * With an FM_COEF of 933, and a time base of 1 second, the filter
1364 * has a half-life of 10 seconds, meaning that if the events quit
1365 * happening, then the rate returned from the fmeter_getrate()
1366 * will be cut in half each 10 seconds, until it converges to zero.
1367 *
1368 * It is not worth doing a real infinitely recursive filter. If more
1369 * than FM_MAXTICKS ticks have elapsed since the last filter event,
1370 * just compute FM_MAXTICKS ticks worth, by which point the level
1371 * will be stable.
1372 *
1373 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
1374 * arithmetic overflow in the fmeter_update() routine.
1375 *
1376 * Given the simple 32 bit integer arithmetic used, this meter works
1377 * best for reporting rates between one per millisecond (msec) and
1378 * one per 32 (approx) seconds. At constant rates faster than one
1379 * per msec it maxes out at values just under 1,000,000. At constant
1380 * rates between one per msec, and one per second it will stabilize
1381 * to a value N*1000, where N is the rate of events per second.
1382 * At constant rates between one per second and one per 32 seconds,
1383 * it will be choppy, moving up on the seconds that have an event,
1384 * and then decaying until the next event. At rates slower than
1385 * about one in 32 seconds, it decays all the way back to zero between
1386 * each event.
1387 */
1388
1389#define FM_COEF 933 /* coefficient for half-life of 10 secs */
d2b43658 1390#define FM_MAXTICKS ((u32)99) /* useless computing more ticks than this */
3e0d98b9
PJ
1391#define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
1392#define FM_SCALE 1000 /* faux fixed point scale */
1393
1394/* Initialize a frequency meter */
1395static void fmeter_init(struct fmeter *fmp)
1396{
1397 fmp->cnt = 0;
1398 fmp->val = 0;
1399 fmp->time = 0;
1400 spin_lock_init(&fmp->lock);
1401}
1402
1403/* Internal meter update - process cnt events and update value */
1404static void fmeter_update(struct fmeter *fmp)
1405{
d2b43658
AB
1406 time64_t now;
1407 u32 ticks;
1408
1409 now = ktime_get_seconds();
1410 ticks = now - fmp->time;
3e0d98b9
PJ
1411
1412 if (ticks == 0)
1413 return;
1414
1415 ticks = min(FM_MAXTICKS, ticks);
1416 while (ticks-- > 0)
1417 fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
1418 fmp->time = now;
1419
1420 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
1421 fmp->cnt = 0;
1422}
1423
1424/* Process any previous ticks, then bump cnt by one (times scale). */
1425static void fmeter_markevent(struct fmeter *fmp)
1426{
1427 spin_lock(&fmp->lock);
1428 fmeter_update(fmp);
1429 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
1430 spin_unlock(&fmp->lock);
1431}
1432
1433/* Process any previous ticks, then return current value. */
1434static int fmeter_getrate(struct fmeter *fmp)
1435{
1436 int val;
1437
1438 spin_lock(&fmp->lock);
1439 fmeter_update(fmp);
1440 val = fmp->val;
1441 spin_unlock(&fmp->lock);
1442 return val;
1443}
1444
57fce0a6
TH
1445static struct cpuset *cpuset_attach_old_cs;
1446
5d21cc2d 1447/* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
1f7dd3e5 1448static int cpuset_can_attach(struct cgroup_taskset *tset)
f780bdb7 1449{
1f7dd3e5
TH
1450 struct cgroup_subsys_state *css;
1451 struct cpuset *cs;
bb9d97b6
TH
1452 struct task_struct *task;
1453 int ret;
1da177e4 1454
57fce0a6 1455 /* used later by cpuset_attach() */
1f7dd3e5
TH
1456 cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css));
1457 cs = css_cs(css);
57fce0a6 1458
5d21cc2d
TH
1459 mutex_lock(&cpuset_mutex);
1460
aa6ec29b 1461 /* allow moving tasks into an empty cpuset if on default hierarchy */
5d21cc2d 1462 ret = -ENOSPC;
9e10a130 1463 if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
88fa523b 1464 (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)))
5d21cc2d 1465 goto out_unlock;
9985b0ba 1466
1f7dd3e5 1467 cgroup_taskset_for_each(task, css, tset) {
7f51412a
JL
1468 ret = task_can_attach(task, cs->cpus_allowed);
1469 if (ret)
5d21cc2d
TH
1470 goto out_unlock;
1471 ret = security_task_setscheduler(task);
1472 if (ret)
1473 goto out_unlock;
bb9d97b6 1474 }
f780bdb7 1475
452477fa
TH
1476 /*
1477 * Mark attach is in progress. This makes validate_change() fail
1478 * changes which zero cpus/mems_allowed.
1479 */
1480 cs->attach_in_progress++;
5d21cc2d
TH
1481 ret = 0;
1482out_unlock:
1483 mutex_unlock(&cpuset_mutex);
1484 return ret;
8793d854 1485}
f780bdb7 1486
1f7dd3e5 1487static void cpuset_cancel_attach(struct cgroup_taskset *tset)
452477fa 1488{
1f7dd3e5
TH
1489 struct cgroup_subsys_state *css;
1490 struct cpuset *cs;
1491
1492 cgroup_taskset_first(tset, &css);
1493 cs = css_cs(css);
1494
5d21cc2d 1495 mutex_lock(&cpuset_mutex);
eb95419b 1496 css_cs(css)->attach_in_progress--;
5d21cc2d 1497 mutex_unlock(&cpuset_mutex);
8793d854 1498}
1da177e4 1499
4e4c9a14 1500/*
5d21cc2d 1501 * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach()
4e4c9a14
TH
1502 * but we can't allocate it dynamically there. Define it global and
1503 * allocate from cpuset_init().
1504 */
1505static cpumask_var_t cpus_attach;
1506
1f7dd3e5 1507static void cpuset_attach(struct cgroup_taskset *tset)
8793d854 1508{
67bd2c59 1509 /* static buf protected by cpuset_mutex */
4e4c9a14 1510 static nodemask_t cpuset_attach_nodemask_to;
bb9d97b6 1511 struct task_struct *task;
4530eddb 1512 struct task_struct *leader;
1f7dd3e5
TH
1513 struct cgroup_subsys_state *css;
1514 struct cpuset *cs;
57fce0a6 1515 struct cpuset *oldcs = cpuset_attach_old_cs;
22fb52dd 1516
1f7dd3e5
TH
1517 cgroup_taskset_first(tset, &css);
1518 cs = css_cs(css);
1519
5d21cc2d
TH
1520 mutex_lock(&cpuset_mutex);
1521
4e4c9a14
TH
1522 /* prepare for attach */
1523 if (cs == &top_cpuset)
1524 cpumask_copy(cpus_attach, cpu_possible_mask);
1525 else
ae1c8023 1526 guarantee_online_cpus(cs, cpus_attach);
4e4c9a14 1527
ae1c8023 1528 guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
4e4c9a14 1529
1f7dd3e5 1530 cgroup_taskset_for_each(task, css, tset) {
bb9d97b6
TH
1531 /*
1532 * can_attach beforehand should guarantee that this doesn't
1533 * fail. TODO: have a better way to handle failure here
1534 */
1535 WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
1536
1537 cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
1538 cpuset_update_task_spread_flag(cs, task);
1539 }
22fb52dd 1540
f780bdb7 1541 /*
4530eddb
TH
1542 * Change mm for all threadgroup leaders. This is expensive and may
1543 * sleep and should be moved outside migration path proper.
f780bdb7 1544 */
ae1c8023 1545 cpuset_attach_nodemask_to = cs->effective_mems;
1f7dd3e5 1546 cgroup_taskset_for_each_leader(leader, css, tset) {
3df9ca0a
TH
1547 struct mm_struct *mm = get_task_mm(leader);
1548
1549 if (mm) {
1550 mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
1551
1552 /*
1553 * old_mems_allowed is the same with mems_allowed
1554 * here, except if this task is being moved
1555 * automatically due to hotplug. In that case
1556 * @mems_allowed has been updated and is empty, so
1557 * @old_mems_allowed is the right nodesets that we
1558 * migrate mm from.
1559 */
e93ad19d 1560 if (is_memory_migrate(cs))
3df9ca0a
TH
1561 cpuset_migrate_mm(mm, &oldcs->old_mems_allowed,
1562 &cpuset_attach_nodemask_to);
e93ad19d
TH
1563 else
1564 mmput(mm);
f047cecf 1565 }
4225399a 1566 }
452477fa 1567
33ad801d 1568 cs->old_mems_allowed = cpuset_attach_nodemask_to;
02bb5863 1569
452477fa 1570 cs->attach_in_progress--;
e44193d3
LZ
1571 if (!cs->attach_in_progress)
1572 wake_up(&cpuset_attach_wq);
5d21cc2d
TH
1573
1574 mutex_unlock(&cpuset_mutex);
1da177e4
LT
1575}
1576
1577/* The various types of files and directories in a cpuset file system */
1578
1579typedef enum {
45b07ef3 1580 FILE_MEMORY_MIGRATE,
1da177e4
LT
1581 FILE_CPULIST,
1582 FILE_MEMLIST,
afd1a8b3
LZ
1583 FILE_EFFECTIVE_CPULIST,
1584 FILE_EFFECTIVE_MEMLIST,
1da177e4
LT
1585 FILE_CPU_EXCLUSIVE,
1586 FILE_MEM_EXCLUSIVE,
78608366 1587 FILE_MEM_HARDWALL,
029190c5 1588 FILE_SCHED_LOAD_BALANCE,
1d3504fc 1589 FILE_SCHED_RELAX_DOMAIN_LEVEL,
3e0d98b9
PJ
1590 FILE_MEMORY_PRESSURE_ENABLED,
1591 FILE_MEMORY_PRESSURE,
825a46af
PJ
1592 FILE_SPREAD_PAGE,
1593 FILE_SPREAD_SLAB,
1da177e4
LT
1594} cpuset_filetype_t;
1595
182446d0
TH
1596static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft,
1597 u64 val)
700fe1ab 1598{
182446d0 1599 struct cpuset *cs = css_cs(css);
700fe1ab 1600 cpuset_filetype_t type = cft->private;
a903f086 1601 int retval = 0;
700fe1ab 1602
5d21cc2d 1603 mutex_lock(&cpuset_mutex);
a903f086
LZ
1604 if (!is_cpuset_online(cs)) {
1605 retval = -ENODEV;
5d21cc2d 1606 goto out_unlock;
a903f086 1607 }
700fe1ab
PM
1608
1609 switch (type) {
1da177e4 1610 case FILE_CPU_EXCLUSIVE:
700fe1ab 1611 retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
1da177e4
LT
1612 break;
1613 case FILE_MEM_EXCLUSIVE:
700fe1ab 1614 retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
1da177e4 1615 break;
78608366
PM
1616 case FILE_MEM_HARDWALL:
1617 retval = update_flag(CS_MEM_HARDWALL, cs, val);
1618 break;
029190c5 1619 case FILE_SCHED_LOAD_BALANCE:
700fe1ab 1620 retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1d3504fc 1621 break;
45b07ef3 1622 case FILE_MEMORY_MIGRATE:
700fe1ab 1623 retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
45b07ef3 1624 break;
3e0d98b9 1625 case FILE_MEMORY_PRESSURE_ENABLED:
700fe1ab 1626 cpuset_memory_pressure_enabled = !!val;
3e0d98b9 1627 break;
825a46af 1628 case FILE_SPREAD_PAGE:
700fe1ab 1629 retval = update_flag(CS_SPREAD_PAGE, cs, val);
825a46af
PJ
1630 break;
1631 case FILE_SPREAD_SLAB:
700fe1ab 1632 retval = update_flag(CS_SPREAD_SLAB, cs, val);
825a46af 1633 break;
1da177e4
LT
1634 default:
1635 retval = -EINVAL;
700fe1ab 1636 break;
1da177e4 1637 }
5d21cc2d
TH
1638out_unlock:
1639 mutex_unlock(&cpuset_mutex);
1da177e4
LT
1640 return retval;
1641}
1642
182446d0
TH
1643static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft,
1644 s64 val)
5be7a479 1645{
182446d0 1646 struct cpuset *cs = css_cs(css);
5be7a479 1647 cpuset_filetype_t type = cft->private;
5d21cc2d 1648 int retval = -ENODEV;
5be7a479 1649
5d21cc2d
TH
1650 mutex_lock(&cpuset_mutex);
1651 if (!is_cpuset_online(cs))
1652 goto out_unlock;
e3712395 1653
5be7a479
PM
1654 switch (type) {
1655 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1656 retval = update_relax_domain_level(cs, val);
1657 break;
1658 default:
1659 retval = -EINVAL;
1660 break;
1661 }
5d21cc2d
TH
1662out_unlock:
1663 mutex_unlock(&cpuset_mutex);
5be7a479
PM
1664 return retval;
1665}
1666
e3712395
PM
1667/*
1668 * Common handling for a write to a "cpus" or "mems" file.
1669 */
451af504
TH
1670static ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
1671 char *buf, size_t nbytes, loff_t off)
e3712395 1672{
451af504 1673 struct cpuset *cs = css_cs(of_css(of));
645fcc9d 1674 struct cpuset *trialcs;
5d21cc2d 1675 int retval = -ENODEV;
e3712395 1676
451af504
TH
1677 buf = strstrip(buf);
1678
3a5a6d0c
TH
1679 /*
1680 * CPU or memory hotunplug may leave @cs w/o any execution
1681 * resources, in which case the hotplug code asynchronously updates
1682 * configuration and transfers all tasks to the nearest ancestor
1683 * which can execute.
1684 *
1685 * As writes to "cpus" or "mems" may restore @cs's execution
1686 * resources, wait for the previously scheduled operations before
1687 * proceeding, so that we don't end up keep removing tasks added
1688 * after execution capability is restored.
76bb5ab8
TH
1689 *
1690 * cpuset_hotplug_work calls back into cgroup core via
1691 * cgroup_transfer_tasks() and waiting for it from a cgroupfs
1692 * operation like this one can lead to a deadlock through kernfs
1693 * active_ref protection. Let's break the protection. Losing the
1694 * protection is okay as we check whether @cs is online after
1695 * grabbing cpuset_mutex anyway. This only happens on the legacy
1696 * hierarchies.
3a5a6d0c 1697 */
76bb5ab8
TH
1698 css_get(&cs->css);
1699 kernfs_break_active_protection(of->kn);
3a5a6d0c
TH
1700 flush_work(&cpuset_hotplug_work);
1701
5d21cc2d
TH
1702 mutex_lock(&cpuset_mutex);
1703 if (!is_cpuset_online(cs))
1704 goto out_unlock;
e3712395 1705
645fcc9d 1706 trialcs = alloc_trial_cpuset(cs);
b75f38d6
LZ
1707 if (!trialcs) {
1708 retval = -ENOMEM;
5d21cc2d 1709 goto out_unlock;
b75f38d6 1710 }
645fcc9d 1711
451af504 1712 switch (of_cft(of)->private) {
e3712395 1713 case FILE_CPULIST:
645fcc9d 1714 retval = update_cpumask(cs, trialcs, buf);
e3712395
PM
1715 break;
1716 case FILE_MEMLIST:
645fcc9d 1717 retval = update_nodemask(cs, trialcs, buf);
e3712395
PM
1718 break;
1719 default:
1720 retval = -EINVAL;
1721 break;
1722 }
645fcc9d
LZ
1723
1724 free_trial_cpuset(trialcs);
5d21cc2d
TH
1725out_unlock:
1726 mutex_unlock(&cpuset_mutex);
76bb5ab8
TH
1727 kernfs_unbreak_active_protection(of->kn);
1728 css_put(&cs->css);
e93ad19d 1729 flush_workqueue(cpuset_migrate_mm_wq);
451af504 1730 return retval ?: nbytes;
e3712395
PM
1731}
1732
1da177e4
LT
1733/*
1734 * These ascii lists should be read in a single call, by using a user
1735 * buffer large enough to hold the entire map. If read in smaller
1736 * chunks, there is no guarantee of atomicity. Since the display format
1737 * used, list of ranges of sequential numbers, is variable length,
1738 * and since these maps can change value dynamically, one could read
1739 * gibberish by doing partial reads while a list was changing.
1da177e4 1740 */
2da8ca82 1741static int cpuset_common_seq_show(struct seq_file *sf, void *v)
1da177e4 1742{
2da8ca82
TH
1743 struct cpuset *cs = css_cs(seq_css(sf));
1744 cpuset_filetype_t type = seq_cft(sf)->private;
51ffe411 1745 int ret = 0;
1da177e4 1746
8447a0fe 1747 spin_lock_irq(&callback_lock);
1da177e4
LT
1748
1749 switch (type) {
1750 case FILE_CPULIST:
e8e6d97c 1751 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_allowed));
1da177e4
LT
1752 break;
1753 case FILE_MEMLIST:
e8e6d97c 1754 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed));
1da177e4 1755 break;
afd1a8b3 1756 case FILE_EFFECTIVE_CPULIST:
e8e6d97c 1757 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus));
afd1a8b3
LZ
1758 break;
1759 case FILE_EFFECTIVE_MEMLIST:
e8e6d97c 1760 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems));
afd1a8b3 1761 break;
1da177e4 1762 default:
51ffe411 1763 ret = -EINVAL;
1da177e4 1764 }
1da177e4 1765
8447a0fe 1766 spin_unlock_irq(&callback_lock);
51ffe411 1767 return ret;
1da177e4
LT
1768}
1769
182446d0 1770static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft)
700fe1ab 1771{
182446d0 1772 struct cpuset *cs = css_cs(css);
700fe1ab
PM
1773 cpuset_filetype_t type = cft->private;
1774 switch (type) {
1775 case FILE_CPU_EXCLUSIVE:
1776 return is_cpu_exclusive(cs);
1777 case FILE_MEM_EXCLUSIVE:
1778 return is_mem_exclusive(cs);
78608366
PM
1779 case FILE_MEM_HARDWALL:
1780 return is_mem_hardwall(cs);
700fe1ab
PM
1781 case FILE_SCHED_LOAD_BALANCE:
1782 return is_sched_load_balance(cs);
1783 case FILE_MEMORY_MIGRATE:
1784 return is_memory_migrate(cs);
1785 case FILE_MEMORY_PRESSURE_ENABLED:
1786 return cpuset_memory_pressure_enabled;
1787 case FILE_MEMORY_PRESSURE:
1788 return fmeter_getrate(&cs->fmeter);
1789 case FILE_SPREAD_PAGE:
1790 return is_spread_page(cs);
1791 case FILE_SPREAD_SLAB:
1792 return is_spread_slab(cs);
1793 default:
1794 BUG();
1795 }
cf417141
MK
1796
1797 /* Unreachable but makes gcc happy */
1798 return 0;
700fe1ab 1799}
1da177e4 1800
182446d0 1801static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft)
5be7a479 1802{
182446d0 1803 struct cpuset *cs = css_cs(css);
5be7a479
PM
1804 cpuset_filetype_t type = cft->private;
1805 switch (type) {
1806 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1807 return cs->relax_domain_level;
1808 default:
1809 BUG();
1810 }
cf417141
MK
1811
1812 /* Unrechable but makes gcc happy */
1813 return 0;
5be7a479
PM
1814}
1815
1da177e4
LT
1816
1817/*
1818 * for the common functions, 'private' gives the type of file
1819 */
1820
addf2c73
PM
1821static struct cftype files[] = {
1822 {
1823 .name = "cpus",
2da8ca82 1824 .seq_show = cpuset_common_seq_show,
451af504 1825 .write = cpuset_write_resmask,
e3712395 1826 .max_write_len = (100U + 6 * NR_CPUS),
addf2c73
PM
1827 .private = FILE_CPULIST,
1828 },
1829
1830 {
1831 .name = "mems",
2da8ca82 1832 .seq_show = cpuset_common_seq_show,
451af504 1833 .write = cpuset_write_resmask,
e3712395 1834 .max_write_len = (100U + 6 * MAX_NUMNODES),
addf2c73
PM
1835 .private = FILE_MEMLIST,
1836 },
1837
afd1a8b3
LZ
1838 {
1839 .name = "effective_cpus",
1840 .seq_show = cpuset_common_seq_show,
1841 .private = FILE_EFFECTIVE_CPULIST,
1842 },
1843
1844 {
1845 .name = "effective_mems",
1846 .seq_show = cpuset_common_seq_show,
1847 .private = FILE_EFFECTIVE_MEMLIST,
1848 },
1849
addf2c73
PM
1850 {
1851 .name = "cpu_exclusive",
1852 .read_u64 = cpuset_read_u64,
1853 .write_u64 = cpuset_write_u64,
1854 .private = FILE_CPU_EXCLUSIVE,
1855 },
1856
1857 {
1858 .name = "mem_exclusive",
1859 .read_u64 = cpuset_read_u64,
1860 .write_u64 = cpuset_write_u64,
1861 .private = FILE_MEM_EXCLUSIVE,
1862 },
1863
78608366
PM
1864 {
1865 .name = "mem_hardwall",
1866 .read_u64 = cpuset_read_u64,
1867 .write_u64 = cpuset_write_u64,
1868 .private = FILE_MEM_HARDWALL,
1869 },
1870
addf2c73
PM
1871 {
1872 .name = "sched_load_balance",
1873 .read_u64 = cpuset_read_u64,
1874 .write_u64 = cpuset_write_u64,
1875 .private = FILE_SCHED_LOAD_BALANCE,
1876 },
1877
1878 {
1879 .name = "sched_relax_domain_level",
5be7a479
PM
1880 .read_s64 = cpuset_read_s64,
1881 .write_s64 = cpuset_write_s64,
addf2c73
PM
1882 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
1883 },
1884
1885 {
1886 .name = "memory_migrate",
1887 .read_u64 = cpuset_read_u64,
1888 .write_u64 = cpuset_write_u64,
1889 .private = FILE_MEMORY_MIGRATE,
1890 },
1891
1892 {
1893 .name = "memory_pressure",
1894 .read_u64 = cpuset_read_u64,
1c08c22c 1895 .private = FILE_MEMORY_PRESSURE,
addf2c73
PM
1896 },
1897
1898 {
1899 .name = "memory_spread_page",
1900 .read_u64 = cpuset_read_u64,
1901 .write_u64 = cpuset_write_u64,
1902 .private = FILE_SPREAD_PAGE,
1903 },
1904
1905 {
1906 .name = "memory_spread_slab",
1907 .read_u64 = cpuset_read_u64,
1908 .write_u64 = cpuset_write_u64,
1909 .private = FILE_SPREAD_SLAB,
1910 },
3e0d98b9 1911
4baf6e33
TH
1912 {
1913 .name = "memory_pressure_enabled",
1914 .flags = CFTYPE_ONLY_ON_ROOT,
1915 .read_u64 = cpuset_read_u64,
1916 .write_u64 = cpuset_write_u64,
1917 .private = FILE_MEMORY_PRESSURE_ENABLED,
1918 },
1da177e4 1919
4baf6e33
TH
1920 { } /* terminate */
1921};
1da177e4
LT
1922
1923/*
92fb9748 1924 * cpuset_css_alloc - allocate a cpuset css
c9e5fe66 1925 * cgrp: control group that the new cpuset will be part of
1da177e4
LT
1926 */
1927
eb95419b
TH
1928static struct cgroup_subsys_state *
1929cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
1da177e4 1930{
c8f699bb 1931 struct cpuset *cs;
1da177e4 1932
eb95419b 1933 if (!parent_css)
8793d854 1934 return &top_cpuset.css;
033fa1c5 1935
c8f699bb 1936 cs = kzalloc(sizeof(*cs), GFP_KERNEL);
1da177e4 1937 if (!cs)
8793d854 1938 return ERR_PTR(-ENOMEM);
e2b9a3d7
LZ
1939 if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL))
1940 goto free_cs;
1941 if (!alloc_cpumask_var(&cs->effective_cpus, GFP_KERNEL))
1942 goto free_cpus;
1da177e4 1943
029190c5 1944 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
300ed6cb 1945 cpumask_clear(cs->cpus_allowed);
f9a86fcb 1946 nodes_clear(cs->mems_allowed);
e2b9a3d7
LZ
1947 cpumask_clear(cs->effective_cpus);
1948 nodes_clear(cs->effective_mems);
3e0d98b9 1949 fmeter_init(&cs->fmeter);
1d3504fc 1950 cs->relax_domain_level = -1;
1da177e4 1951
c8f699bb 1952 return &cs->css;
e2b9a3d7
LZ
1953
1954free_cpus:
1955 free_cpumask_var(cs->cpus_allowed);
1956free_cs:
1957 kfree(cs);
1958 return ERR_PTR(-ENOMEM);
c8f699bb
TH
1959}
1960
eb95419b 1961static int cpuset_css_online(struct cgroup_subsys_state *css)
c8f699bb 1962{
eb95419b 1963 struct cpuset *cs = css_cs(css);
c431069f 1964 struct cpuset *parent = parent_cs(cs);
ae8086ce 1965 struct cpuset *tmp_cs;
492eb21b 1966 struct cgroup_subsys_state *pos_css;
c8f699bb
TH
1967
1968 if (!parent)
1969 return 0;
1970
5d21cc2d
TH
1971 mutex_lock(&cpuset_mutex);
1972
efeb77b2 1973 set_bit(CS_ONLINE, &cs->flags);
c8f699bb
TH
1974 if (is_spread_page(parent))
1975 set_bit(CS_SPREAD_PAGE, &cs->flags);
1976 if (is_spread_slab(parent))
1977 set_bit(CS_SPREAD_SLAB, &cs->flags);
1da177e4 1978
664eedde 1979 cpuset_inc();
033fa1c5 1980
8447a0fe 1981 spin_lock_irq(&callback_lock);
9e10a130 1982 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) {
e2b9a3d7
LZ
1983 cpumask_copy(cs->effective_cpus, parent->effective_cpus);
1984 cs->effective_mems = parent->effective_mems;
1985 }
8447a0fe 1986 spin_unlock_irq(&callback_lock);
e2b9a3d7 1987
eb95419b 1988 if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
5d21cc2d 1989 goto out_unlock;
033fa1c5
TH
1990
1991 /*
1992 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
1993 * set. This flag handling is implemented in cgroup core for
1994 * histrical reasons - the flag may be specified during mount.
1995 *
1996 * Currently, if any sibling cpusets have exclusive cpus or mem, we
1997 * refuse to clone the configuration - thereby refusing the task to
1998 * be entered, and as a result refusing the sys_unshare() or
1999 * clone() which initiated it. If this becomes a problem for some
2000 * users who wish to allow that scenario, then this could be
2001 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
2002 * (and likewise for mems) to the new cgroup.
2003 */
ae8086ce 2004 rcu_read_lock();
492eb21b 2005 cpuset_for_each_child(tmp_cs, pos_css, parent) {
ae8086ce
TH
2006 if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
2007 rcu_read_unlock();
5d21cc2d 2008 goto out_unlock;
ae8086ce 2009 }
033fa1c5 2010 }
ae8086ce 2011 rcu_read_unlock();
033fa1c5 2012
8447a0fe 2013 spin_lock_irq(&callback_lock);
033fa1c5 2014 cs->mems_allowed = parent->mems_allowed;
790317e1 2015 cs->effective_mems = parent->mems_allowed;
033fa1c5 2016 cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
790317e1 2017 cpumask_copy(cs->effective_cpus, parent->cpus_allowed);
cea74465 2018 spin_unlock_irq(&callback_lock);
5d21cc2d
TH
2019out_unlock:
2020 mutex_unlock(&cpuset_mutex);
c8f699bb
TH
2021 return 0;
2022}
2023
0b9e6965
ZH
2024/*
2025 * If the cpuset being removed has its flag 'sched_load_balance'
2026 * enabled, then simulate turning sched_load_balance off, which
2027 * will call rebuild_sched_domains_locked().
2028 */
2029
eb95419b 2030static void cpuset_css_offline(struct cgroup_subsys_state *css)
c8f699bb 2031{
eb95419b 2032 struct cpuset *cs = css_cs(css);
c8f699bb 2033
5d21cc2d 2034 mutex_lock(&cpuset_mutex);
c8f699bb
TH
2035
2036 if (is_sched_load_balance(cs))
2037 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
2038
664eedde 2039 cpuset_dec();
efeb77b2 2040 clear_bit(CS_ONLINE, &cs->flags);
c8f699bb 2041
5d21cc2d 2042 mutex_unlock(&cpuset_mutex);
1da177e4
LT
2043}
2044
eb95419b 2045static void cpuset_css_free(struct cgroup_subsys_state *css)
1da177e4 2046{
eb95419b 2047 struct cpuset *cs = css_cs(css);
1da177e4 2048
e2b9a3d7 2049 free_cpumask_var(cs->effective_cpus);
300ed6cb 2050 free_cpumask_var(cs->cpus_allowed);
8793d854 2051 kfree(cs);
1da177e4
LT
2052}
2053
39bd0d15
LZ
2054static void cpuset_bind(struct cgroup_subsys_state *root_css)
2055{
2056 mutex_lock(&cpuset_mutex);
8447a0fe 2057 spin_lock_irq(&callback_lock);
39bd0d15 2058
9e10a130 2059 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) {
39bd0d15
LZ
2060 cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask);
2061 top_cpuset.mems_allowed = node_possible_map;
2062 } else {
2063 cpumask_copy(top_cpuset.cpus_allowed,
2064 top_cpuset.effective_cpus);
2065 top_cpuset.mems_allowed = top_cpuset.effective_mems;
2066 }
2067
8447a0fe 2068 spin_unlock_irq(&callback_lock);
39bd0d15
LZ
2069 mutex_unlock(&cpuset_mutex);
2070}
2071
06f4e948
ZL
2072/*
2073 * Make sure the new task conform to the current state of its parent,
2074 * which could have been changed by cpuset just after it inherits the
2075 * state from the parent and before it sits on the cgroup's task list.
2076 */
8a15b817 2077static void cpuset_fork(struct task_struct *task)
06f4e948
ZL
2078{
2079 if (task_css_is_root(task, cpuset_cgrp_id))
2080 return;
2081
2082 set_cpus_allowed_ptr(task, &current->cpus_allowed);
2083 task->mems_allowed = current->mems_allowed;
2084}
2085
073219e9 2086struct cgroup_subsys cpuset_cgrp_subsys = {
39bd0d15
LZ
2087 .css_alloc = cpuset_css_alloc,
2088 .css_online = cpuset_css_online,
2089 .css_offline = cpuset_css_offline,
2090 .css_free = cpuset_css_free,
2091 .can_attach = cpuset_can_attach,
2092 .cancel_attach = cpuset_cancel_attach,
2093 .attach = cpuset_attach,
5cf1cacb 2094 .post_attach = cpuset_post_attach,
39bd0d15 2095 .bind = cpuset_bind,
06f4e948 2096 .fork = cpuset_fork,
5577964e 2097 .legacy_cftypes = files,
b38e42e9 2098 .early_init = true,
8793d854
PM
2099};
2100
1da177e4
LT
2101/**
2102 * cpuset_init - initialize cpusets at system boot
2103 *
2104 * Description: Initialize top_cpuset and the cpuset internal file system,
2105 **/
2106
2107int __init cpuset_init(void)
2108{
8793d854 2109 int err = 0;
1da177e4 2110
75fa8e5d
NMG
2111 BUG_ON(!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL));
2112 BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL));
58568d2a 2113
300ed6cb 2114 cpumask_setall(top_cpuset.cpus_allowed);
f9a86fcb 2115 nodes_setall(top_cpuset.mems_allowed);
e2b9a3d7
LZ
2116 cpumask_setall(top_cpuset.effective_cpus);
2117 nodes_setall(top_cpuset.effective_mems);
1da177e4 2118
3e0d98b9 2119 fmeter_init(&top_cpuset.fmeter);
029190c5 2120 set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
1d3504fc 2121 top_cpuset.relax_domain_level = -1;
1da177e4 2122
1da177e4
LT
2123 err = register_filesystem(&cpuset_fs_type);
2124 if (err < 0)
8793d854
PM
2125 return err;
2126
75fa8e5d 2127 BUG_ON(!alloc_cpumask_var(&cpus_attach, GFP_KERNEL));
2341d1b6 2128
8793d854 2129 return 0;
1da177e4
LT
2130}
2131
b1aac8bb 2132/*
cf417141 2133 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
b1aac8bb
PJ
2134 * or memory nodes, we need to walk over the cpuset hierarchy,
2135 * removing that CPU or node from all cpusets. If this removes the
956db3ca
CW
2136 * last CPU or node from a cpuset, then move the tasks in the empty
2137 * cpuset to its next-highest non-empty parent.
b1aac8bb 2138 */
956db3ca
CW
2139static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
2140{
2141 struct cpuset *parent;
2142
956db3ca
CW
2143 /*
2144 * Find its next-highest non-empty parent, (top cpuset
2145 * has online cpus, so can't be empty).
2146 */
c431069f 2147 parent = parent_cs(cs);
300ed6cb 2148 while (cpumask_empty(parent->cpus_allowed) ||
b4501295 2149 nodes_empty(parent->mems_allowed))
c431069f 2150 parent = parent_cs(parent);
956db3ca 2151
8cc99345 2152 if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
12d3089c 2153 pr_err("cpuset: failed to transfer tasks out of empty cpuset ");
e61734c5
TH
2154 pr_cont_cgroup_name(cs->css.cgroup);
2155 pr_cont("\n");
8cc99345 2156 }
956db3ca
CW
2157}
2158
be4c9dd7
LZ
2159static void
2160hotplug_update_tasks_legacy(struct cpuset *cs,
2161 struct cpumask *new_cpus, nodemask_t *new_mems,
2162 bool cpus_updated, bool mems_updated)
390a36aa
LZ
2163{
2164 bool is_empty;
2165
8447a0fe 2166 spin_lock_irq(&callback_lock);
be4c9dd7
LZ
2167 cpumask_copy(cs->cpus_allowed, new_cpus);
2168 cpumask_copy(cs->effective_cpus, new_cpus);
2169 cs->mems_allowed = *new_mems;
2170 cs->effective_mems = *new_mems;
8447a0fe 2171 spin_unlock_irq(&callback_lock);
390a36aa
LZ
2172
2173 /*
2174 * Don't call update_tasks_cpumask() if the cpuset becomes empty,
2175 * as the tasks will be migratecd to an ancestor.
2176 */
be4c9dd7 2177 if (cpus_updated && !cpumask_empty(cs->cpus_allowed))
390a36aa 2178 update_tasks_cpumask(cs);
be4c9dd7 2179 if (mems_updated && !nodes_empty(cs->mems_allowed))
390a36aa
LZ
2180 update_tasks_nodemask(cs);
2181
2182 is_empty = cpumask_empty(cs->cpus_allowed) ||
2183 nodes_empty(cs->mems_allowed);
2184
2185 mutex_unlock(&cpuset_mutex);
2186
2187 /*
2188 * Move tasks to the nearest ancestor with execution resources,
2189 * This is full cgroup operation which will also call back into
2190 * cpuset. Should be done outside any lock.
2191 */
2192 if (is_empty)
2193 remove_tasks_in_empty_cpuset(cs);
2194
2195 mutex_lock(&cpuset_mutex);
2196}
2197
be4c9dd7
LZ
2198static void
2199hotplug_update_tasks(struct cpuset *cs,
2200 struct cpumask *new_cpus, nodemask_t *new_mems,
2201 bool cpus_updated, bool mems_updated)
390a36aa 2202{
be4c9dd7
LZ
2203 if (cpumask_empty(new_cpus))
2204 cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus);
2205 if (nodes_empty(*new_mems))
2206 *new_mems = parent_cs(cs)->effective_mems;
2207
8447a0fe 2208 spin_lock_irq(&callback_lock);
be4c9dd7
LZ
2209 cpumask_copy(cs->effective_cpus, new_cpus);
2210 cs->effective_mems = *new_mems;
8447a0fe 2211 spin_unlock_irq(&callback_lock);
390a36aa 2212
be4c9dd7 2213 if (cpus_updated)
390a36aa 2214 update_tasks_cpumask(cs);
be4c9dd7 2215 if (mems_updated)
390a36aa
LZ
2216 update_tasks_nodemask(cs);
2217}
2218
deb7aa30 2219/**
388afd85 2220 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
deb7aa30 2221 * @cs: cpuset in interest
956db3ca 2222 *
deb7aa30
TH
2223 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
2224 * offline, update @cs accordingly. If @cs ends up with no CPU or memory,
2225 * all its tasks are moved to the nearest ancestor with both resources.
80d1fa64 2226 */
388afd85 2227static void cpuset_hotplug_update_tasks(struct cpuset *cs)
80d1fa64 2228{
be4c9dd7
LZ
2229 static cpumask_t new_cpus;
2230 static nodemask_t new_mems;
2231 bool cpus_updated;
2232 bool mems_updated;
e44193d3
LZ
2233retry:
2234 wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
80d1fa64 2235
5d21cc2d 2236 mutex_lock(&cpuset_mutex);
7ddf96b0 2237
e44193d3
LZ
2238 /*
2239 * We have raced with task attaching. We wait until attaching
2240 * is finished, so we won't attach a task to an empty cpuset.
2241 */
2242 if (cs->attach_in_progress) {
2243 mutex_unlock(&cpuset_mutex);
2244 goto retry;
2245 }
2246
be4c9dd7
LZ
2247 cpumask_and(&new_cpus, cs->cpus_allowed, parent_cs(cs)->effective_cpus);
2248 nodes_and(new_mems, cs->mems_allowed, parent_cs(cs)->effective_mems);
80d1fa64 2249
be4c9dd7
LZ
2250 cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus);
2251 mems_updated = !nodes_equal(new_mems, cs->effective_mems);
deb7aa30 2252
9e10a130 2253 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys))
be4c9dd7
LZ
2254 hotplug_update_tasks(cs, &new_cpus, &new_mems,
2255 cpus_updated, mems_updated);
390a36aa 2256 else
be4c9dd7
LZ
2257 hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems,
2258 cpus_updated, mems_updated);
8d033948 2259
5d21cc2d 2260 mutex_unlock(&cpuset_mutex);
b1aac8bb
PJ
2261}
2262
deb7aa30 2263/**
3a5a6d0c 2264 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
956db3ca 2265 *
deb7aa30
TH
2266 * This function is called after either CPU or memory configuration has
2267 * changed and updates cpuset accordingly. The top_cpuset is always
2268 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
2269 * order to make cpusets transparent (of no affect) on systems that are
2270 * actively using CPU hotplug but making no active use of cpusets.
956db3ca 2271 *
deb7aa30 2272 * Non-root cpusets are only affected by offlining. If any CPUs or memory
388afd85
LZ
2273 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
2274 * all descendants.
956db3ca 2275 *
deb7aa30
TH
2276 * Note that CPU offlining during suspend is ignored. We don't modify
2277 * cpusets across suspend/resume cycles at all.
956db3ca 2278 */
3a5a6d0c 2279static void cpuset_hotplug_workfn(struct work_struct *work)
b1aac8bb 2280{
5c5cc623
LZ
2281 static cpumask_t new_cpus;
2282 static nodemask_t new_mems;
deb7aa30 2283 bool cpus_updated, mems_updated;
9e10a130 2284 bool on_dfl = cgroup_subsys_on_dfl(cpuset_cgrp_subsys);
b1aac8bb 2285
5d21cc2d 2286 mutex_lock(&cpuset_mutex);
956db3ca 2287
deb7aa30
TH
2288 /* fetch the available cpus/mems and find out which changed how */
2289 cpumask_copy(&new_cpus, cpu_active_mask);
2290 new_mems = node_states[N_MEMORY];
7ddf96b0 2291
7e88291b
LZ
2292 cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus);
2293 mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems);
7ddf96b0 2294
deb7aa30
TH
2295 /* synchronize cpus_allowed to cpu_active_mask */
2296 if (cpus_updated) {
8447a0fe 2297 spin_lock_irq(&callback_lock);
7e88291b
LZ
2298 if (!on_dfl)
2299 cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
1344ab9c 2300 cpumask_copy(top_cpuset.effective_cpus, &new_cpus);
8447a0fe 2301 spin_unlock_irq(&callback_lock);
deb7aa30
TH
2302 /* we don't mess with cpumasks of tasks in top_cpuset */
2303 }
b4501295 2304
deb7aa30
TH
2305 /* synchronize mems_allowed to N_MEMORY */
2306 if (mems_updated) {
8447a0fe 2307 spin_lock_irq(&callback_lock);
7e88291b
LZ
2308 if (!on_dfl)
2309 top_cpuset.mems_allowed = new_mems;
1344ab9c 2310 top_cpuset.effective_mems = new_mems;
8447a0fe 2311 spin_unlock_irq(&callback_lock);
d66393e5 2312 update_tasks_nodemask(&top_cpuset);
deb7aa30 2313 }
b4501295 2314
388afd85
LZ
2315 mutex_unlock(&cpuset_mutex);
2316
5c5cc623
LZ
2317 /* if cpus or mems changed, we need to propagate to descendants */
2318 if (cpus_updated || mems_updated) {
deb7aa30 2319 struct cpuset *cs;
492eb21b 2320 struct cgroup_subsys_state *pos_css;
f9b4fb8d 2321
fc560a26 2322 rcu_read_lock();
492eb21b 2323 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
ec903c0c 2324 if (cs == &top_cpuset || !css_tryget_online(&cs->css))
388afd85
LZ
2325 continue;
2326 rcu_read_unlock();
7ddf96b0 2327
388afd85 2328 cpuset_hotplug_update_tasks(cs);
b4501295 2329
388afd85
LZ
2330 rcu_read_lock();
2331 css_put(&cs->css);
2332 }
2333 rcu_read_unlock();
2334 }
8d033948 2335
deb7aa30 2336 /* rebuild sched domains if cpus_allowed has changed */
e0e80a02
LZ
2337 if (cpus_updated)
2338 rebuild_sched_domains();
b1aac8bb
PJ
2339}
2340
30e03acd 2341void cpuset_update_active_cpus(void)
4c4d50f7 2342{
3a5a6d0c
TH
2343 /*
2344 * We're inside cpu hotplug critical region which usually nests
2345 * inside cgroup synchronization. Bounce actual hotplug processing
2346 * to a work item to avoid reverse locking order.
2347 *
2348 * We still need to do partition_sched_domains() synchronously;
2349 * otherwise, the scheduler will get confused and put tasks to the
2350 * dead CPU. Fall back to the default single domain.
2351 * cpuset_hotplug_workfn() will rebuild it as necessary.
2352 */
2353 partition_sched_domains(1, NULL, NULL);
2354 schedule_work(&cpuset_hotplug_work);
4c4d50f7 2355}
4c4d50f7 2356
38837fc7 2357/*
38d7bee9
LJ
2358 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
2359 * Call this routine anytime after node_states[N_MEMORY] changes.
a1cd2b13 2360 * See cpuset_update_active_cpus() for CPU hotplug handling.
38837fc7 2361 */
f481891f
MX
2362static int cpuset_track_online_nodes(struct notifier_block *self,
2363 unsigned long action, void *arg)
38837fc7 2364{
3a5a6d0c 2365 schedule_work(&cpuset_hotplug_work);
f481891f 2366 return NOTIFY_OK;
38837fc7 2367}
d8f10cb3
AM
2368
2369static struct notifier_block cpuset_track_online_nodes_nb = {
2370 .notifier_call = cpuset_track_online_nodes,
2371 .priority = 10, /* ??! */
2372};
38837fc7 2373
1da177e4
LT
2374/**
2375 * cpuset_init_smp - initialize cpus_allowed
2376 *
2377 * Description: Finish top cpuset after cpu, node maps are initialized
d8f10cb3 2378 */
1da177e4
LT
2379void __init cpuset_init_smp(void)
2380{
6ad4c188 2381 cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
38d7bee9 2382 top_cpuset.mems_allowed = node_states[N_MEMORY];
33ad801d 2383 top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
4c4d50f7 2384
e2b9a3d7
LZ
2385 cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask);
2386 top_cpuset.effective_mems = node_states[N_MEMORY];
2387
d8f10cb3 2388 register_hotmemory_notifier(&cpuset_track_online_nodes_nb);
e93ad19d
TH
2389
2390 cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0);
2391 BUG_ON(!cpuset_migrate_mm_wq);
1da177e4
LT
2392}
2393
2394/**
1da177e4
LT
2395 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
2396 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
6af866af 2397 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
1da177e4 2398 *
300ed6cb 2399 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
1da177e4 2400 * attached to the specified @tsk. Guaranteed to return some non-empty
5f054e31 2401 * subset of cpu_online_mask, even if this means going outside the
1da177e4
LT
2402 * tasks cpuset.
2403 **/
2404
6af866af 2405void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
1da177e4 2406{
8447a0fe
VD
2407 unsigned long flags;
2408
2409 spin_lock_irqsave(&callback_lock, flags);
b8dadcb5 2410 rcu_read_lock();
ae1c8023 2411 guarantee_online_cpus(task_cs(tsk), pmask);
b8dadcb5 2412 rcu_read_unlock();
8447a0fe 2413 spin_unlock_irqrestore(&callback_lock, flags);
1da177e4
LT
2414}
2415
2baab4e9 2416void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
9084bb82 2417{
9084bb82 2418 rcu_read_lock();
ae1c8023 2419 do_set_cpus_allowed(tsk, task_cs(tsk)->effective_cpus);
9084bb82
ON
2420 rcu_read_unlock();
2421
2422 /*
2423 * We own tsk->cpus_allowed, nobody can change it under us.
2424 *
2425 * But we used cs && cs->cpus_allowed lockless and thus can
2426 * race with cgroup_attach_task() or update_cpumask() and get
2427 * the wrong tsk->cpus_allowed. However, both cases imply the
2428 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
2429 * which takes task_rq_lock().
2430 *
2431 * If we are called after it dropped the lock we must see all
2432 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
2433 * set any mask even if it is not right from task_cs() pov,
2434 * the pending set_cpus_allowed_ptr() will fix things.
2baab4e9
PZ
2435 *
2436 * select_fallback_rq() will fix things ups and set cpu_possible_mask
2437 * if required.
9084bb82 2438 */
9084bb82
ON
2439}
2440
8f4ab07f 2441void __init cpuset_init_current_mems_allowed(void)
1da177e4 2442{
f9a86fcb 2443 nodes_setall(current->mems_allowed);
1da177e4
LT
2444}
2445
909d75a3
PJ
2446/**
2447 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
2448 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
2449 *
2450 * Description: Returns the nodemask_t mems_allowed of the cpuset
2451 * attached to the specified @tsk. Guaranteed to return some non-empty
38d7bee9 2452 * subset of node_states[N_MEMORY], even if this means going outside the
909d75a3
PJ
2453 * tasks cpuset.
2454 **/
2455
2456nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
2457{
2458 nodemask_t mask;
8447a0fe 2459 unsigned long flags;
909d75a3 2460
8447a0fe 2461 spin_lock_irqsave(&callback_lock, flags);
b8dadcb5 2462 rcu_read_lock();
ae1c8023 2463 guarantee_online_mems(task_cs(tsk), &mask);
b8dadcb5 2464 rcu_read_unlock();
8447a0fe 2465 spin_unlock_irqrestore(&callback_lock, flags);
909d75a3
PJ
2466
2467 return mask;
2468}
2469
d9fd8a6d 2470/**
19770b32
MG
2471 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
2472 * @nodemask: the nodemask to be checked
d9fd8a6d 2473 *
19770b32 2474 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
1da177e4 2475 */
19770b32 2476int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
1da177e4 2477{
19770b32 2478 return nodes_intersects(*nodemask, current->mems_allowed);
1da177e4
LT
2479}
2480
9bf2229f 2481/*
78608366
PM
2482 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
2483 * mem_hardwall ancestor to the specified cpuset. Call holding
8447a0fe 2484 * callback_lock. If no ancestor is mem_exclusive or mem_hardwall
78608366 2485 * (an unusual configuration), then returns the root cpuset.
9bf2229f 2486 */
c9710d80 2487static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
9bf2229f 2488{
c431069f
TH
2489 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
2490 cs = parent_cs(cs);
9bf2229f
PJ
2491 return cs;
2492}
2493
d9fd8a6d 2494/**
344736f2 2495 * cpuset_node_allowed - Can we allocate on a memory node?
a1bc5a4e 2496 * @node: is this an allowed node?
02a0e53d 2497 * @gfp_mask: memory allocation flags
d9fd8a6d 2498 *
6e276d2a
DR
2499 * If we're in interrupt, yes, we can always allocate. If @node is set in
2500 * current's mems_allowed, yes. If it's not a __GFP_HARDWALL request and this
2501 * node is set in the nearest hardwalled cpuset ancestor to current's cpuset,
2502 * yes. If current has access to memory reserves due to TIF_MEMDIE, yes.
9bf2229f
PJ
2503 * Otherwise, no.
2504 *
2505 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
c596d9f3
DR
2506 * and do not allow allocations outside the current tasks cpuset
2507 * unless the task has been OOM killed as is marked TIF_MEMDIE.
9bf2229f 2508 * GFP_KERNEL allocations are not so marked, so can escape to the
78608366 2509 * nearest enclosing hardwalled ancestor cpuset.
9bf2229f 2510 *
8447a0fe 2511 * Scanning up parent cpusets requires callback_lock. The
02a0e53d
PJ
2512 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
2513 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
2514 * current tasks mems_allowed came up empty on the first pass over
2515 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
8447a0fe 2516 * cpuset are short of memory, might require taking the callback_lock.
9bf2229f 2517 *
36be57ff 2518 * The first call here from mm/page_alloc:get_page_from_freelist()
02a0e53d
PJ
2519 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
2520 * so no allocation on a node outside the cpuset is allowed (unless
2521 * in interrupt, of course).
36be57ff
PJ
2522 *
2523 * The second pass through get_page_from_freelist() doesn't even call
2524 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
2525 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
2526 * in alloc_flags. That logic and the checks below have the combined
2527 * affect that:
9bf2229f
PJ
2528 * in_interrupt - any node ok (current task context irrelevant)
2529 * GFP_ATOMIC - any node ok
c596d9f3 2530 * TIF_MEMDIE - any node ok
78608366 2531 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
9bf2229f 2532 * GFP_USER - only nodes in current tasks mems allowed ok.
02a0e53d 2533 */
002f2906 2534bool __cpuset_node_allowed(int node, gfp_t gfp_mask)
1da177e4 2535{
c9710d80 2536 struct cpuset *cs; /* current cpuset ancestors */
29afd49b 2537 int allowed; /* is allocation in zone z allowed? */
8447a0fe 2538 unsigned long flags;
9bf2229f 2539
6e276d2a 2540 if (in_interrupt())
002f2906 2541 return true;
9bf2229f 2542 if (node_isset(node, current->mems_allowed))
002f2906 2543 return true;
c596d9f3
DR
2544 /*
2545 * Allow tasks that have access to memory reserves because they have
2546 * been OOM killed to get memory anywhere.
2547 */
2548 if (unlikely(test_thread_flag(TIF_MEMDIE)))
002f2906 2549 return true;
9bf2229f 2550 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
002f2906 2551 return false;
9bf2229f 2552
5563e770 2553 if (current->flags & PF_EXITING) /* Let dying task have memory */
002f2906 2554 return true;
5563e770 2555
9bf2229f 2556 /* Not hardwall and node outside mems_allowed: scan up cpusets */
8447a0fe 2557 spin_lock_irqsave(&callback_lock, flags);
053199ed 2558
b8dadcb5 2559 rcu_read_lock();
78608366 2560 cs = nearest_hardwall_ancestor(task_cs(current));
99afb0fd 2561 allowed = node_isset(node, cs->mems_allowed);
b8dadcb5 2562 rcu_read_unlock();
053199ed 2563
8447a0fe 2564 spin_unlock_irqrestore(&callback_lock, flags);
9bf2229f 2565 return allowed;
1da177e4
LT
2566}
2567
825a46af 2568/**
6adef3eb
JS
2569 * cpuset_mem_spread_node() - On which node to begin search for a file page
2570 * cpuset_slab_spread_node() - On which node to begin search for a slab page
825a46af
PJ
2571 *
2572 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
2573 * tasks in a cpuset with is_spread_page or is_spread_slab set),
2574 * and if the memory allocation used cpuset_mem_spread_node()
2575 * to determine on which node to start looking, as it will for
2576 * certain page cache or slab cache pages such as used for file
2577 * system buffers and inode caches, then instead of starting on the
2578 * local node to look for a free page, rather spread the starting
2579 * node around the tasks mems_allowed nodes.
2580 *
2581 * We don't have to worry about the returned node being offline
2582 * because "it can't happen", and even if it did, it would be ok.
2583 *
2584 * The routines calling guarantee_online_mems() are careful to
2585 * only set nodes in task->mems_allowed that are online. So it
2586 * should not be possible for the following code to return an
2587 * offline node. But if it did, that would be ok, as this routine
2588 * is not returning the node where the allocation must be, only
2589 * the node where the search should start. The zonelist passed to
2590 * __alloc_pages() will include all nodes. If the slab allocator
2591 * is passed an offline node, it will fall back to the local node.
2592 * See kmem_cache_alloc_node().
2593 */
2594
6adef3eb 2595static int cpuset_spread_node(int *rotor)
825a46af 2596{
0edaf86c 2597 return *rotor = next_node_in(*rotor, current->mems_allowed);
825a46af 2598}
6adef3eb
JS
2599
2600int cpuset_mem_spread_node(void)
2601{
778d3b0f
MH
2602 if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
2603 current->cpuset_mem_spread_rotor =
2604 node_random(&current->mems_allowed);
2605
6adef3eb
JS
2606 return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
2607}
2608
2609int cpuset_slab_spread_node(void)
2610{
778d3b0f
MH
2611 if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
2612 current->cpuset_slab_spread_rotor =
2613 node_random(&current->mems_allowed);
2614
6adef3eb
JS
2615 return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
2616}
2617
825a46af
PJ
2618EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
2619
ef08e3b4 2620/**
bbe373f2
DR
2621 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
2622 * @tsk1: pointer to task_struct of some task.
2623 * @tsk2: pointer to task_struct of some other task.
2624 *
2625 * Description: Return true if @tsk1's mems_allowed intersects the
2626 * mems_allowed of @tsk2. Used by the OOM killer to determine if
2627 * one of the task's memory usage might impact the memory available
2628 * to the other.
ef08e3b4
PJ
2629 **/
2630
bbe373f2
DR
2631int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
2632 const struct task_struct *tsk2)
ef08e3b4 2633{
bbe373f2 2634 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
ef08e3b4
PJ
2635}
2636
75aa1994 2637/**
da39da3a 2638 * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed
75aa1994 2639 *
da39da3a 2640 * Description: Prints current's name, cpuset name, and cached copy of its
b8dadcb5 2641 * mems_allowed to the kernel log.
75aa1994 2642 */
da39da3a 2643void cpuset_print_current_mems_allowed(void)
75aa1994 2644{
b8dadcb5 2645 struct cgroup *cgrp;
75aa1994 2646
b8dadcb5 2647 rcu_read_lock();
63f43f55 2648
da39da3a
DR
2649 cgrp = task_cs(current)->css.cgroup;
2650 pr_info("%s cpuset=", current->comm);
e61734c5 2651 pr_cont_cgroup_name(cgrp);
da39da3a
DR
2652 pr_cont(" mems_allowed=%*pbl\n",
2653 nodemask_pr_args(&current->mems_allowed));
f440d98f 2654
cfb5966b 2655 rcu_read_unlock();
75aa1994
DR
2656}
2657
3e0d98b9
PJ
2658/*
2659 * Collection of memory_pressure is suppressed unless
2660 * this flag is enabled by writing "1" to the special
2661 * cpuset file 'memory_pressure_enabled' in the root cpuset.
2662 */
2663
c5b2aff8 2664int cpuset_memory_pressure_enabled __read_mostly;
3e0d98b9
PJ
2665
2666/**
2667 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
2668 *
2669 * Keep a running average of the rate of synchronous (direct)
2670 * page reclaim efforts initiated by tasks in each cpuset.
2671 *
2672 * This represents the rate at which some task in the cpuset
2673 * ran low on memory on all nodes it was allowed to use, and
2674 * had to enter the kernels page reclaim code in an effort to
2675 * create more free memory by tossing clean pages or swapping
2676 * or writing dirty pages.
2677 *
2678 * Display to user space in the per-cpuset read-only file
2679 * "memory_pressure". Value displayed is an integer
2680 * representing the recent rate of entry into the synchronous
2681 * (direct) page reclaim by any task attached to the cpuset.
2682 **/
2683
2684void __cpuset_memory_pressure_bump(void)
2685{
b8dadcb5 2686 rcu_read_lock();
8793d854 2687 fmeter_markevent(&task_cs(current)->fmeter);
b8dadcb5 2688 rcu_read_unlock();
3e0d98b9
PJ
2689}
2690
8793d854 2691#ifdef CONFIG_PROC_PID_CPUSET
1da177e4
LT
2692/*
2693 * proc_cpuset_show()
2694 * - Print tasks cpuset path into seq_file.
2695 * - Used for /proc/<pid>/cpuset.
053199ed
PJ
2696 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
2697 * doesn't really matter if tsk->cpuset changes after we read it,
5d21cc2d 2698 * and we take cpuset_mutex, keeping cpuset_attach() from changing it
2df167a3 2699 * anyway.
1da177e4 2700 */
52de4779
ZL
2701int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns,
2702 struct pid *pid, struct task_struct *tsk)
1da177e4 2703{
4c737b41 2704 char *buf;
8793d854 2705 struct cgroup_subsys_state *css;
99f89551 2706 int retval;
1da177e4 2707
99f89551 2708 retval = -ENOMEM;
e61734c5 2709 buf = kmalloc(PATH_MAX, GFP_KERNEL);
1da177e4 2710 if (!buf)
99f89551
EB
2711 goto out;
2712
a79a908f 2713 css = task_get_css(tsk, cpuset_cgrp_id);
4c737b41
TH
2714 retval = cgroup_path_ns(css->cgroup, buf, PATH_MAX,
2715 current->nsproxy->cgroup_ns);
a79a908f 2716 css_put(css);
4c737b41 2717 if (retval >= PATH_MAX)
679a5e3f
TH
2718 retval = -ENAMETOOLONG;
2719 if (retval < 0)
52de4779 2720 goto out_free;
4c737b41 2721 seq_puts(m, buf);
1da177e4 2722 seq_putc(m, '\n');
e61734c5 2723 retval = 0;
99f89551 2724out_free:
1da177e4 2725 kfree(buf);
99f89551 2726out:
1da177e4
LT
2727 return retval;
2728}
8793d854 2729#endif /* CONFIG_PROC_PID_CPUSET */
1da177e4 2730
d01d4827 2731/* Display task mems_allowed in /proc/<pid>/status file. */
df5f8314
EB
2732void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
2733{
e8e6d97c
TH
2734 seq_printf(m, "Mems_allowed:\t%*pb\n",
2735 nodemask_pr_args(&task->mems_allowed));
2736 seq_printf(m, "Mems_allowed_list:\t%*pbl\n",
2737 nodemask_pr_args(&task->mems_allowed));
1da177e4 2738}