]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blame - kernel/cgroup/cpuset.c
sched/headers: Prepare for new header dependencies before moving code to <linux/sched...
[mirror_ubuntu-eoan-kernel.git] / kernel / cgroup / cpuset.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/cpuset.c
3 *
4 * Processor and Memory placement constraints for sets of tasks.
5 *
6 * Copyright (C) 2003 BULL SA.
029190c5 7 * Copyright (C) 2004-2007 Silicon Graphics, Inc.
8793d854 8 * Copyright (C) 2006 Google, Inc
1da177e4
LT
9 *
10 * Portions derived from Patrick Mochel's sysfs code.
11 * sysfs is Copyright (c) 2001-3 Patrick Mochel
1da177e4 12 *
825a46af 13 * 2003-10-10 Written by Simon Derr.
1da177e4 14 * 2003-10-22 Updates by Stephen Hemminger.
825a46af 15 * 2004 May-July Rework by Paul Jackson.
8793d854 16 * 2006 Rework by Paul Menage to use generic cgroups
cf417141
MK
17 * 2008 Rework of the scheduler domains and CPU hotplug handling
18 * by Max Krasnyansky
1da177e4
LT
19 *
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
23 */
24
1da177e4
LT
25#include <linux/cpu.h>
26#include <linux/cpumask.h>
27#include <linux/cpuset.h>
28#include <linux/err.h>
29#include <linux/errno.h>
30#include <linux/file.h>
31#include <linux/fs.h>
32#include <linux/init.h>
33#include <linux/interrupt.h>
34#include <linux/kernel.h>
35#include <linux/kmod.h>
36#include <linux/list.h>
68860ec1 37#include <linux/mempolicy.h>
1da177e4 38#include <linux/mm.h>
f481891f 39#include <linux/memory.h>
9984de1a 40#include <linux/export.h>
1da177e4
LT
41#include <linux/mount.h>
42#include <linux/namei.h>
43#include <linux/pagemap.h>
44#include <linux/proc_fs.h>
6b9c2603 45#include <linux/rcupdate.h>
1da177e4 46#include <linux/sched.h>
6e84f315 47#include <linux/sched/mm.h>
1da177e4 48#include <linux/seq_file.h>
22fb52dd 49#include <linux/security.h>
1da177e4 50#include <linux/slab.h>
1da177e4
LT
51#include <linux/spinlock.h>
52#include <linux/stat.h>
53#include <linux/string.h>
54#include <linux/time.h>
d2b43658 55#include <linux/time64.h>
1da177e4
LT
56#include <linux/backing-dev.h>
57#include <linux/sort.h>
58
7c0f6ba6 59#include <linux/uaccess.h>
60063497 60#include <linux/atomic.h>
3d3f26a7 61#include <linux/mutex.h>
956db3ca 62#include <linux/cgroup.h>
e44193d3 63#include <linux/wait.h>
1da177e4 64
002f2906 65DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key);
202f72d5 66
3e0d98b9
PJ
67/* See "Frequency meter" comments, below. */
68
69struct fmeter {
70 int cnt; /* unprocessed events count */
71 int val; /* most recent output value */
d2b43658 72 time64_t time; /* clock (secs) when val computed */
3e0d98b9
PJ
73 spinlock_t lock; /* guards read or write of above */
74};
75
1da177e4 76struct cpuset {
8793d854
PM
77 struct cgroup_subsys_state css;
78
1da177e4 79 unsigned long flags; /* "unsigned long" so bitops work */
e2b9a3d7 80
7e88291b
LZ
81 /*
82 * On default hierarchy:
83 *
84 * The user-configured masks can only be changed by writing to
85 * cpuset.cpus and cpuset.mems, and won't be limited by the
86 * parent masks.
87 *
88 * The effective masks is the real masks that apply to the tasks
89 * in the cpuset. They may be changed if the configured masks are
90 * changed or hotplug happens.
91 *
92 * effective_mask == configured_mask & parent's effective_mask,
93 * and if it ends up empty, it will inherit the parent's mask.
94 *
95 *
96 * On legacy hierachy:
97 *
98 * The user-configured masks are always the same with effective masks.
99 */
100
e2b9a3d7
LZ
101 /* user-configured CPUs and Memory Nodes allow to tasks */
102 cpumask_var_t cpus_allowed;
103 nodemask_t mems_allowed;
104
105 /* effective CPUs and Memory Nodes allow to tasks */
106 cpumask_var_t effective_cpus;
107 nodemask_t effective_mems;
1da177e4 108
33ad801d
LZ
109 /*
110 * This is old Memory Nodes tasks took on.
111 *
112 * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
113 * - A new cpuset's old_mems_allowed is initialized when some
114 * task is moved into it.
115 * - old_mems_allowed is used in cpuset_migrate_mm() when we change
116 * cpuset.mems_allowed and have tasks' nodemask updated, and
117 * then old_mems_allowed is updated to mems_allowed.
118 */
119 nodemask_t old_mems_allowed;
120
3e0d98b9 121 struct fmeter fmeter; /* memory_pressure filter */
029190c5 122
452477fa
TH
123 /*
124 * Tasks are being attached to this cpuset. Used to prevent
125 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
126 */
127 int attach_in_progress;
128
029190c5
PJ
129 /* partition number for rebuild_sched_domains() */
130 int pn;
956db3ca 131
1d3504fc
HS
132 /* for custom sched domain */
133 int relax_domain_level;
1da177e4
LT
134};
135
a7c6d554 136static inline struct cpuset *css_cs(struct cgroup_subsys_state *css)
8793d854 137{
a7c6d554 138 return css ? container_of(css, struct cpuset, css) : NULL;
8793d854
PM
139}
140
141/* Retrieve the cpuset for a task */
142static inline struct cpuset *task_cs(struct task_struct *task)
143{
073219e9 144 return css_cs(task_css(task, cpuset_cgrp_id));
8793d854 145}
8793d854 146
c9710d80 147static inline struct cpuset *parent_cs(struct cpuset *cs)
c431069f 148{
5c9d535b 149 return css_cs(cs->css.parent);
c431069f
TH
150}
151
b246272e
DR
152#ifdef CONFIG_NUMA
153static inline bool task_has_mempolicy(struct task_struct *task)
154{
155 return task->mempolicy;
156}
157#else
158static inline bool task_has_mempolicy(struct task_struct *task)
159{
160 return false;
161}
162#endif
163
164
1da177e4
LT
165/* bits in struct cpuset flags field */
166typedef enum {
efeb77b2 167 CS_ONLINE,
1da177e4
LT
168 CS_CPU_EXCLUSIVE,
169 CS_MEM_EXCLUSIVE,
78608366 170 CS_MEM_HARDWALL,
45b07ef3 171 CS_MEMORY_MIGRATE,
029190c5 172 CS_SCHED_LOAD_BALANCE,
825a46af
PJ
173 CS_SPREAD_PAGE,
174 CS_SPREAD_SLAB,
1da177e4
LT
175} cpuset_flagbits_t;
176
177/* convenient tests for these bits */
efeb77b2
TH
178static inline bool is_cpuset_online(const struct cpuset *cs)
179{
180 return test_bit(CS_ONLINE, &cs->flags);
181}
182
1da177e4
LT
183static inline int is_cpu_exclusive(const struct cpuset *cs)
184{
7b5b9ef0 185 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
1da177e4
LT
186}
187
188static inline int is_mem_exclusive(const struct cpuset *cs)
189{
7b5b9ef0 190 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
1da177e4
LT
191}
192
78608366
PM
193static inline int is_mem_hardwall(const struct cpuset *cs)
194{
195 return test_bit(CS_MEM_HARDWALL, &cs->flags);
196}
197
029190c5
PJ
198static inline int is_sched_load_balance(const struct cpuset *cs)
199{
200 return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
201}
202
45b07ef3
PJ
203static inline int is_memory_migrate(const struct cpuset *cs)
204{
7b5b9ef0 205 return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
45b07ef3
PJ
206}
207
825a46af
PJ
208static inline int is_spread_page(const struct cpuset *cs)
209{
210 return test_bit(CS_SPREAD_PAGE, &cs->flags);
211}
212
213static inline int is_spread_slab(const struct cpuset *cs)
214{
215 return test_bit(CS_SPREAD_SLAB, &cs->flags);
216}
217
1da177e4 218static struct cpuset top_cpuset = {
efeb77b2
TH
219 .flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
220 (1 << CS_MEM_EXCLUSIVE)),
1da177e4
LT
221};
222
ae8086ce
TH
223/**
224 * cpuset_for_each_child - traverse online children of a cpuset
225 * @child_cs: loop cursor pointing to the current child
492eb21b 226 * @pos_css: used for iteration
ae8086ce
TH
227 * @parent_cs: target cpuset to walk children of
228 *
229 * Walk @child_cs through the online children of @parent_cs. Must be used
230 * with RCU read locked.
231 */
492eb21b
TH
232#define cpuset_for_each_child(child_cs, pos_css, parent_cs) \
233 css_for_each_child((pos_css), &(parent_cs)->css) \
234 if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
ae8086ce 235
fc560a26
TH
236/**
237 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
238 * @des_cs: loop cursor pointing to the current descendant
492eb21b 239 * @pos_css: used for iteration
fc560a26
TH
240 * @root_cs: target cpuset to walk ancestor of
241 *
242 * Walk @des_cs through the online descendants of @root_cs. Must be used
492eb21b 243 * with RCU read locked. The caller may modify @pos_css by calling
bd8815a6
TH
244 * css_rightmost_descendant() to skip subtree. @root_cs is included in the
245 * iteration and the first node to be visited.
fc560a26 246 */
492eb21b
TH
247#define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs) \
248 css_for_each_descendant_pre((pos_css), &(root_cs)->css) \
249 if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
fc560a26 250
1da177e4 251/*
8447a0fe
VD
252 * There are two global locks guarding cpuset structures - cpuset_mutex and
253 * callback_lock. We also require taking task_lock() when dereferencing a
254 * task's cpuset pointer. See "The task_lock() exception", at the end of this
255 * comment.
5d21cc2d 256 *
8447a0fe 257 * A task must hold both locks to modify cpusets. If a task holds
5d21cc2d 258 * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
8447a0fe 259 * is the only task able to also acquire callback_lock and be able to
5d21cc2d
TH
260 * modify cpusets. It can perform various checks on the cpuset structure
261 * first, knowing nothing will change. It can also allocate memory while
262 * just holding cpuset_mutex. While it is performing these checks, various
8447a0fe
VD
263 * callback routines can briefly acquire callback_lock to query cpusets.
264 * Once it is ready to make the changes, it takes callback_lock, blocking
5d21cc2d 265 * everyone else.
053199ed
PJ
266 *
267 * Calls to the kernel memory allocator can not be made while holding
8447a0fe 268 * callback_lock, as that would risk double tripping on callback_lock
053199ed
PJ
269 * from one of the callbacks into the cpuset code from within
270 * __alloc_pages().
271 *
8447a0fe 272 * If a task is only holding callback_lock, then it has read-only
053199ed
PJ
273 * access to cpusets.
274 *
58568d2a
MX
275 * Now, the task_struct fields mems_allowed and mempolicy may be changed
276 * by other task, we use alloc_lock in the task_struct fields to protect
277 * them.
053199ed 278 *
8447a0fe 279 * The cpuset_common_file_read() handlers only hold callback_lock across
053199ed
PJ
280 * small pieces of code, such as when reading out possibly multi-word
281 * cpumasks and nodemasks.
282 *
2df167a3
PM
283 * Accessing a task's cpuset should be done in accordance with the
284 * guidelines for accessing subsystem state in kernel/cgroup.c
1da177e4
LT
285 */
286
5d21cc2d 287static DEFINE_MUTEX(cpuset_mutex);
8447a0fe 288static DEFINE_SPINLOCK(callback_lock);
4247bdc6 289
e93ad19d
TH
290static struct workqueue_struct *cpuset_migrate_mm_wq;
291
3a5a6d0c
TH
292/*
293 * CPU / memory hotplug is handled asynchronously.
294 */
295static void cpuset_hotplug_workfn(struct work_struct *work);
3a5a6d0c
TH
296static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);
297
e44193d3
LZ
298static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);
299
cf417141
MK
300/*
301 * This is ugly, but preserves the userspace API for existing cpuset
8793d854 302 * users. If someone tries to mount the "cpuset" filesystem, we
cf417141
MK
303 * silently switch it to mount "cgroup" instead
304 */
f7e83571
AV
305static struct dentry *cpuset_mount(struct file_system_type *fs_type,
306 int flags, const char *unused_dev_name, void *data)
1da177e4 307{
8793d854 308 struct file_system_type *cgroup_fs = get_fs_type("cgroup");
f7e83571 309 struct dentry *ret = ERR_PTR(-ENODEV);
8793d854
PM
310 if (cgroup_fs) {
311 char mountopts[] =
312 "cpuset,noprefix,"
313 "release_agent=/sbin/cpuset_release_agent";
f7e83571
AV
314 ret = cgroup_fs->mount(cgroup_fs, flags,
315 unused_dev_name, mountopts);
8793d854
PM
316 put_filesystem(cgroup_fs);
317 }
318 return ret;
1da177e4
LT
319}
320
321static struct file_system_type cpuset_fs_type = {
322 .name = "cpuset",
f7e83571 323 .mount = cpuset_mount,
1da177e4
LT
324};
325
1da177e4 326/*
300ed6cb 327 * Return in pmask the portion of a cpusets's cpus_allowed that
1da177e4 328 * are online. If none are online, walk up the cpuset hierarchy
28b89b9e 329 * until we find one that does have some online cpus.
1da177e4
LT
330 *
331 * One way or another, we guarantee to return some non-empty subset
5f054e31 332 * of cpu_online_mask.
1da177e4 333 *
8447a0fe 334 * Call with callback_lock or cpuset_mutex held.
1da177e4 335 */
c9710d80 336static void guarantee_online_cpus(struct cpuset *cs, struct cpumask *pmask)
1da177e4 337{
28b89b9e 338 while (!cpumask_intersects(cs->effective_cpus, cpu_online_mask)) {
c431069f 339 cs = parent_cs(cs);
28b89b9e
JP
340 if (unlikely(!cs)) {
341 /*
342 * The top cpuset doesn't have any online cpu as a
343 * consequence of a race between cpuset_hotplug_work
344 * and cpu hotplug notifier. But we know the top
345 * cpuset's effective_cpus is on its way to to be
346 * identical to cpu_online_mask.
347 */
348 cpumask_copy(pmask, cpu_online_mask);
349 return;
350 }
351 }
ae1c8023 352 cpumask_and(pmask, cs->effective_cpus, cpu_online_mask);
1da177e4
LT
353}
354
355/*
356 * Return in *pmask the portion of a cpusets's mems_allowed that
0e1e7c7a
CL
357 * are online, with memory. If none are online with memory, walk
358 * up the cpuset hierarchy until we find one that does have some
40df2deb 359 * online mems. The top cpuset always has some mems online.
1da177e4
LT
360 *
361 * One way or another, we guarantee to return some non-empty subset
38d7bee9 362 * of node_states[N_MEMORY].
1da177e4 363 *
8447a0fe 364 * Call with callback_lock or cpuset_mutex held.
1da177e4 365 */
c9710d80 366static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
1da177e4 367{
ae1c8023 368 while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY]))
c431069f 369 cs = parent_cs(cs);
ae1c8023 370 nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]);
1da177e4
LT
371}
372
f3b39d47
MX
373/*
374 * update task's spread flag if cpuset's page/slab spread flag is set
375 *
8447a0fe 376 * Call with callback_lock or cpuset_mutex held.
f3b39d47
MX
377 */
378static void cpuset_update_task_spread_flag(struct cpuset *cs,
379 struct task_struct *tsk)
380{
381 if (is_spread_page(cs))
2ad654bc 382 task_set_spread_page(tsk);
f3b39d47 383 else
2ad654bc
ZL
384 task_clear_spread_page(tsk);
385
f3b39d47 386 if (is_spread_slab(cs))
2ad654bc 387 task_set_spread_slab(tsk);
f3b39d47 388 else
2ad654bc 389 task_clear_spread_slab(tsk);
f3b39d47
MX
390}
391
1da177e4
LT
392/*
393 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
394 *
395 * One cpuset is a subset of another if all its allowed CPUs and
396 * Memory Nodes are a subset of the other, and its exclusive flags
5d21cc2d 397 * are only set if the other's are set. Call holding cpuset_mutex.
1da177e4
LT
398 */
399
400static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
401{
300ed6cb 402 return cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
1da177e4
LT
403 nodes_subset(p->mems_allowed, q->mems_allowed) &&
404 is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
405 is_mem_exclusive(p) <= is_mem_exclusive(q);
406}
407
645fcc9d
LZ
408/**
409 * alloc_trial_cpuset - allocate a trial cpuset
410 * @cs: the cpuset that the trial cpuset duplicates
411 */
c9710d80 412static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
645fcc9d 413{
300ed6cb
LZ
414 struct cpuset *trial;
415
416 trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
417 if (!trial)
418 return NULL;
419
e2b9a3d7
LZ
420 if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL))
421 goto free_cs;
422 if (!alloc_cpumask_var(&trial->effective_cpus, GFP_KERNEL))
423 goto free_cpus;
300ed6cb 424
e2b9a3d7
LZ
425 cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
426 cpumask_copy(trial->effective_cpus, cs->effective_cpus);
300ed6cb 427 return trial;
e2b9a3d7
LZ
428
429free_cpus:
430 free_cpumask_var(trial->cpus_allowed);
431free_cs:
432 kfree(trial);
433 return NULL;
645fcc9d
LZ
434}
435
436/**
437 * free_trial_cpuset - free the trial cpuset
438 * @trial: the trial cpuset to be freed
439 */
440static void free_trial_cpuset(struct cpuset *trial)
441{
e2b9a3d7 442 free_cpumask_var(trial->effective_cpus);
300ed6cb 443 free_cpumask_var(trial->cpus_allowed);
645fcc9d
LZ
444 kfree(trial);
445}
446
1da177e4
LT
447/*
448 * validate_change() - Used to validate that any proposed cpuset change
449 * follows the structural rules for cpusets.
450 *
451 * If we replaced the flag and mask values of the current cpuset
452 * (cur) with those values in the trial cpuset (trial), would
453 * our various subset and exclusive rules still be valid? Presumes
5d21cc2d 454 * cpuset_mutex held.
1da177e4
LT
455 *
456 * 'cur' is the address of an actual, in-use cpuset. Operations
457 * such as list traversal that depend on the actual address of the
458 * cpuset in the list must use cur below, not trial.
459 *
460 * 'trial' is the address of bulk structure copy of cur, with
461 * perhaps one or more of the fields cpus_allowed, mems_allowed,
462 * or flags changed to new, trial values.
463 *
464 * Return 0 if valid, -errno if not.
465 */
466
c9710d80 467static int validate_change(struct cpuset *cur, struct cpuset *trial)
1da177e4 468{
492eb21b 469 struct cgroup_subsys_state *css;
1da177e4 470 struct cpuset *c, *par;
ae8086ce
TH
471 int ret;
472
473 rcu_read_lock();
1da177e4
LT
474
475 /* Each of our child cpusets must be a subset of us */
ae8086ce 476 ret = -EBUSY;
492eb21b 477 cpuset_for_each_child(c, css, cur)
ae8086ce
TH
478 if (!is_cpuset_subset(c, trial))
479 goto out;
1da177e4
LT
480
481 /* Remaining checks don't apply to root cpuset */
ae8086ce 482 ret = 0;
69604067 483 if (cur == &top_cpuset)
ae8086ce 484 goto out;
1da177e4 485
c431069f 486 par = parent_cs(cur);
69604067 487
7e88291b 488 /* On legacy hiearchy, we must be a subset of our parent cpuset. */
ae8086ce 489 ret = -EACCES;
9e10a130
TH
490 if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
491 !is_cpuset_subset(trial, par))
ae8086ce 492 goto out;
1da177e4 493
2df167a3
PM
494 /*
495 * If either I or some sibling (!= me) is exclusive, we can't
496 * overlap
497 */
ae8086ce 498 ret = -EINVAL;
492eb21b 499 cpuset_for_each_child(c, css, par) {
1da177e4
LT
500 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
501 c != cur &&
300ed6cb 502 cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
ae8086ce 503 goto out;
1da177e4
LT
504 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
505 c != cur &&
506 nodes_intersects(trial->mems_allowed, c->mems_allowed))
ae8086ce 507 goto out;
1da177e4
LT
508 }
509
452477fa
TH
510 /*
511 * Cpusets with tasks - existing or newly being attached - can't
1c09b195 512 * be changed to have empty cpus_allowed or mems_allowed.
452477fa 513 */
ae8086ce 514 ret = -ENOSPC;
27bd4dbb 515 if ((cgroup_is_populated(cur->css.cgroup) || cur->attach_in_progress)) {
1c09b195
LZ
516 if (!cpumask_empty(cur->cpus_allowed) &&
517 cpumask_empty(trial->cpus_allowed))
518 goto out;
519 if (!nodes_empty(cur->mems_allowed) &&
520 nodes_empty(trial->mems_allowed))
521 goto out;
522 }
020958b6 523
f82f8042
JL
524 /*
525 * We can't shrink if we won't have enough room for SCHED_DEADLINE
526 * tasks.
527 */
528 ret = -EBUSY;
529 if (is_cpu_exclusive(cur) &&
530 !cpuset_cpumask_can_shrink(cur->cpus_allowed,
531 trial->cpus_allowed))
532 goto out;
533
ae8086ce
TH
534 ret = 0;
535out:
536 rcu_read_unlock();
537 return ret;
1da177e4
LT
538}
539
db7f47cf 540#ifdef CONFIG_SMP
029190c5 541/*
cf417141 542 * Helper routine for generate_sched_domains().
8b5f1c52 543 * Do cpusets a, b have overlapping effective cpus_allowed masks?
029190c5 544 */
029190c5
PJ
545static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
546{
8b5f1c52 547 return cpumask_intersects(a->effective_cpus, b->effective_cpus);
029190c5
PJ
548}
549
1d3504fc
HS
550static void
551update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
552{
1d3504fc
HS
553 if (dattr->relax_domain_level < c->relax_domain_level)
554 dattr->relax_domain_level = c->relax_domain_level;
555 return;
556}
557
fc560a26
TH
558static void update_domain_attr_tree(struct sched_domain_attr *dattr,
559 struct cpuset *root_cs)
f5393693 560{
fc560a26 561 struct cpuset *cp;
492eb21b 562 struct cgroup_subsys_state *pos_css;
f5393693 563
fc560a26 564 rcu_read_lock();
492eb21b 565 cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
fc560a26
TH
566 /* skip the whole subtree if @cp doesn't have any CPU */
567 if (cpumask_empty(cp->cpus_allowed)) {
492eb21b 568 pos_css = css_rightmost_descendant(pos_css);
f5393693 569 continue;
fc560a26 570 }
f5393693
LJ
571
572 if (is_sched_load_balance(cp))
573 update_domain_attr(dattr, cp);
f5393693 574 }
fc560a26 575 rcu_read_unlock();
f5393693
LJ
576}
577
029190c5 578/*
cf417141
MK
579 * generate_sched_domains()
580 *
581 * This function builds a partial partition of the systems CPUs
582 * A 'partial partition' is a set of non-overlapping subsets whose
583 * union is a subset of that set.
0a0fca9d 584 * The output of this function needs to be passed to kernel/sched/core.c
cf417141
MK
585 * partition_sched_domains() routine, which will rebuild the scheduler's
586 * load balancing domains (sched domains) as specified by that partial
587 * partition.
029190c5 588 *
45ce80fb 589 * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
029190c5
PJ
590 * for a background explanation of this.
591 *
592 * Does not return errors, on the theory that the callers of this
593 * routine would rather not worry about failures to rebuild sched
594 * domains when operating in the severe memory shortage situations
595 * that could cause allocation failures below.
596 *
5d21cc2d 597 * Must be called with cpuset_mutex held.
029190c5
PJ
598 *
599 * The three key local variables below are:
aeed6824 600 * q - a linked-list queue of cpuset pointers, used to implement a
029190c5
PJ
601 * top-down scan of all cpusets. This scan loads a pointer
602 * to each cpuset marked is_sched_load_balance into the
603 * array 'csa'. For our purposes, rebuilding the schedulers
604 * sched domains, we can ignore !is_sched_load_balance cpusets.
605 * csa - (for CpuSet Array) Array of pointers to all the cpusets
606 * that need to be load balanced, for convenient iterative
607 * access by the subsequent code that finds the best partition,
608 * i.e the set of domains (subsets) of CPUs such that the
609 * cpus_allowed of every cpuset marked is_sched_load_balance
610 * is a subset of one of these domains, while there are as
611 * many such domains as possible, each as small as possible.
612 * doms - Conversion of 'csa' to an array of cpumasks, for passing to
0a0fca9d 613 * the kernel/sched/core.c routine partition_sched_domains() in a
029190c5
PJ
614 * convenient format, that can be easily compared to the prior
615 * value to determine what partition elements (sched domains)
616 * were changed (added or removed.)
617 *
618 * Finding the best partition (set of domains):
619 * The triple nested loops below over i, j, k scan over the
620 * load balanced cpusets (using the array of cpuset pointers in
621 * csa[]) looking for pairs of cpusets that have overlapping
622 * cpus_allowed, but which don't have the same 'pn' partition
623 * number and gives them in the same partition number. It keeps
624 * looping on the 'restart' label until it can no longer find
625 * any such pairs.
626 *
627 * The union of the cpus_allowed masks from the set of
628 * all cpusets having the same 'pn' value then form the one
629 * element of the partition (one sched domain) to be passed to
630 * partition_sched_domains().
631 */
acc3f5d7 632static int generate_sched_domains(cpumask_var_t **domains,
cf417141 633 struct sched_domain_attr **attributes)
029190c5 634{
029190c5
PJ
635 struct cpuset *cp; /* scans q */
636 struct cpuset **csa; /* array of all cpuset ptrs */
637 int csn; /* how many cpuset ptrs in csa so far */
638 int i, j, k; /* indices for partition finding loops */
acc3f5d7 639 cpumask_var_t *doms; /* resulting partition; i.e. sched domains */
47b8ea71 640 cpumask_var_t non_isolated_cpus; /* load balanced CPUs */
1d3504fc 641 struct sched_domain_attr *dattr; /* attributes for custom domains */
1583715d 642 int ndoms = 0; /* number of sched domains in result */
6af866af 643 int nslot; /* next empty doms[] struct cpumask slot */
492eb21b 644 struct cgroup_subsys_state *pos_css;
029190c5 645
029190c5 646 doms = NULL;
1d3504fc 647 dattr = NULL;
cf417141 648 csa = NULL;
029190c5 649
47b8ea71
RR
650 if (!alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL))
651 goto done;
652 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
653
029190c5
PJ
654 /* Special case for the 99% of systems with one, full, sched domain */
655 if (is_sched_load_balance(&top_cpuset)) {
acc3f5d7
RR
656 ndoms = 1;
657 doms = alloc_sched_domains(ndoms);
029190c5 658 if (!doms)
cf417141
MK
659 goto done;
660
1d3504fc
HS
661 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
662 if (dattr) {
663 *dattr = SD_ATTR_INIT;
93a65575 664 update_domain_attr_tree(dattr, &top_cpuset);
1d3504fc 665 }
47b8ea71
RR
666 cpumask_and(doms[0], top_cpuset.effective_cpus,
667 non_isolated_cpus);
cf417141 668
cf417141 669 goto done;
029190c5
PJ
670 }
671
664eedde 672 csa = kmalloc(nr_cpusets() * sizeof(cp), GFP_KERNEL);
029190c5
PJ
673 if (!csa)
674 goto done;
675 csn = 0;
676
fc560a26 677 rcu_read_lock();
492eb21b 678 cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
bd8815a6
TH
679 if (cp == &top_cpuset)
680 continue;
f5393693 681 /*
fc560a26
TH
682 * Continue traversing beyond @cp iff @cp has some CPUs and
683 * isn't load balancing. The former is obvious. The
684 * latter: All child cpusets contain a subset of the
685 * parent's cpus, so just skip them, and then we call
686 * update_domain_attr_tree() to calc relax_domain_level of
687 * the corresponding sched domain.
f5393693 688 */
fc560a26 689 if (!cpumask_empty(cp->cpus_allowed) &&
47b8ea71
RR
690 !(is_sched_load_balance(cp) &&
691 cpumask_intersects(cp->cpus_allowed, non_isolated_cpus)))
f5393693 692 continue;
489a5393 693
fc560a26
TH
694 if (is_sched_load_balance(cp))
695 csa[csn++] = cp;
696
697 /* skip @cp's subtree */
492eb21b 698 pos_css = css_rightmost_descendant(pos_css);
fc560a26
TH
699 }
700 rcu_read_unlock();
029190c5
PJ
701
702 for (i = 0; i < csn; i++)
703 csa[i]->pn = i;
704 ndoms = csn;
705
706restart:
707 /* Find the best partition (set of sched domains) */
708 for (i = 0; i < csn; i++) {
709 struct cpuset *a = csa[i];
710 int apn = a->pn;
711
712 for (j = 0; j < csn; j++) {
713 struct cpuset *b = csa[j];
714 int bpn = b->pn;
715
716 if (apn != bpn && cpusets_overlap(a, b)) {
717 for (k = 0; k < csn; k++) {
718 struct cpuset *c = csa[k];
719
720 if (c->pn == bpn)
721 c->pn = apn;
722 }
723 ndoms--; /* one less element */
724 goto restart;
725 }
726 }
727 }
728
cf417141
MK
729 /*
730 * Now we know how many domains to create.
731 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
732 */
acc3f5d7 733 doms = alloc_sched_domains(ndoms);
700018e0 734 if (!doms)
cf417141 735 goto done;
cf417141
MK
736
737 /*
738 * The rest of the code, including the scheduler, can deal with
739 * dattr==NULL case. No need to abort if alloc fails.
740 */
1d3504fc 741 dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
029190c5
PJ
742
743 for (nslot = 0, i = 0; i < csn; i++) {
744 struct cpuset *a = csa[i];
6af866af 745 struct cpumask *dp;
029190c5
PJ
746 int apn = a->pn;
747
cf417141
MK
748 if (apn < 0) {
749 /* Skip completed partitions */
750 continue;
751 }
752
acc3f5d7 753 dp = doms[nslot];
cf417141
MK
754
755 if (nslot == ndoms) {
756 static int warnings = 10;
757 if (warnings) {
12d3089c
FF
758 pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n",
759 nslot, ndoms, csn, i, apn);
cf417141 760 warnings--;
029190c5 761 }
cf417141
MK
762 continue;
763 }
029190c5 764
6af866af 765 cpumask_clear(dp);
cf417141
MK
766 if (dattr)
767 *(dattr + nslot) = SD_ATTR_INIT;
768 for (j = i; j < csn; j++) {
769 struct cpuset *b = csa[j];
770
771 if (apn == b->pn) {
8b5f1c52 772 cpumask_or(dp, dp, b->effective_cpus);
47b8ea71 773 cpumask_and(dp, dp, non_isolated_cpus);
cf417141
MK
774 if (dattr)
775 update_domain_attr_tree(dattr + nslot, b);
776
777 /* Done with this partition */
778 b->pn = -1;
029190c5 779 }
029190c5 780 }
cf417141 781 nslot++;
029190c5
PJ
782 }
783 BUG_ON(nslot != ndoms);
784
cf417141 785done:
47b8ea71 786 free_cpumask_var(non_isolated_cpus);
cf417141
MK
787 kfree(csa);
788
700018e0
LZ
789 /*
790 * Fallback to the default domain if kmalloc() failed.
791 * See comments in partition_sched_domains().
792 */
793 if (doms == NULL)
794 ndoms = 1;
795
cf417141
MK
796 *domains = doms;
797 *attributes = dattr;
798 return ndoms;
799}
800
801/*
802 * Rebuild scheduler domains.
803 *
699140ba
TH
804 * If the flag 'sched_load_balance' of any cpuset with non-empty
805 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
806 * which has that flag enabled, or if any cpuset with a non-empty
807 * 'cpus' is removed, then call this routine to rebuild the
808 * scheduler's dynamic sched domains.
cf417141 809 *
5d21cc2d 810 * Call with cpuset_mutex held. Takes get_online_cpus().
cf417141 811 */
699140ba 812static void rebuild_sched_domains_locked(void)
cf417141
MK
813{
814 struct sched_domain_attr *attr;
acc3f5d7 815 cpumask_var_t *doms;
cf417141
MK
816 int ndoms;
817
5d21cc2d 818 lockdep_assert_held(&cpuset_mutex);
86ef5c9a 819 get_online_cpus();
cf417141 820
5b16c2a4
LZ
821 /*
822 * We have raced with CPU hotplug. Don't do anything to avoid
823 * passing doms with offlined cpu to partition_sched_domains().
824 * Anyways, hotplug work item will rebuild sched domains.
825 */
8b5f1c52 826 if (!cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask))
5b16c2a4
LZ
827 goto out;
828
cf417141 829 /* Generate domain masks and attrs */
cf417141 830 ndoms = generate_sched_domains(&doms, &attr);
cf417141
MK
831
832 /* Have scheduler rebuild the domains */
833 partition_sched_domains(ndoms, doms, attr);
5b16c2a4 834out:
86ef5c9a 835 put_online_cpus();
cf417141 836}
db7f47cf 837#else /* !CONFIG_SMP */
699140ba 838static void rebuild_sched_domains_locked(void)
db7f47cf
PM
839{
840}
db7f47cf 841#endif /* CONFIG_SMP */
029190c5 842
cf417141
MK
843void rebuild_sched_domains(void)
844{
5d21cc2d 845 mutex_lock(&cpuset_mutex);
699140ba 846 rebuild_sched_domains_locked();
5d21cc2d 847 mutex_unlock(&cpuset_mutex);
029190c5
PJ
848}
849
0b2f630a
MX
850/**
851 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
852 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
0b2f630a 853 *
d66393e5
TH
854 * Iterate through each task of @cs updating its cpus_allowed to the
855 * effective cpuset's. As this function is called with cpuset_mutex held,
856 * cpuset membership stays stable.
0b2f630a 857 */
d66393e5 858static void update_tasks_cpumask(struct cpuset *cs)
0b2f630a 859{
d66393e5
TH
860 struct css_task_iter it;
861 struct task_struct *task;
862
863 css_task_iter_start(&cs->css, &it);
864 while ((task = css_task_iter_next(&it)))
ae1c8023 865 set_cpus_allowed_ptr(task, cs->effective_cpus);
d66393e5 866 css_task_iter_end(&it);
0b2f630a
MX
867}
868
5c5cc623 869/*
734d4513
LZ
870 * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree
871 * @cs: the cpuset to consider
872 * @new_cpus: temp variable for calculating new effective_cpus
873 *
874 * When congifured cpumask is changed, the effective cpumasks of this cpuset
875 * and all its descendants need to be updated.
5c5cc623 876 *
734d4513 877 * On legacy hierachy, effective_cpus will be the same with cpu_allowed.
5c5cc623
LZ
878 *
879 * Called with cpuset_mutex held
880 */
734d4513 881static void update_cpumasks_hier(struct cpuset *cs, struct cpumask *new_cpus)
5c5cc623
LZ
882{
883 struct cpuset *cp;
492eb21b 884 struct cgroup_subsys_state *pos_css;
8b5f1c52 885 bool need_rebuild_sched_domains = false;
5c5cc623
LZ
886
887 rcu_read_lock();
734d4513
LZ
888 cpuset_for_each_descendant_pre(cp, pos_css, cs) {
889 struct cpuset *parent = parent_cs(cp);
890
891 cpumask_and(new_cpus, cp->cpus_allowed, parent->effective_cpus);
892
554b0d1c
LZ
893 /*
894 * If it becomes empty, inherit the effective mask of the
895 * parent, which is guaranteed to have some CPUs.
896 */
9e10a130
TH
897 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
898 cpumask_empty(new_cpus))
554b0d1c
LZ
899 cpumask_copy(new_cpus, parent->effective_cpus);
900
734d4513
LZ
901 /* Skip the whole subtree if the cpumask remains the same. */
902 if (cpumask_equal(new_cpus, cp->effective_cpus)) {
903 pos_css = css_rightmost_descendant(pos_css);
904 continue;
5c5cc623 905 }
734d4513 906
ec903c0c 907 if (!css_tryget_online(&cp->css))
5c5cc623
LZ
908 continue;
909 rcu_read_unlock();
910
8447a0fe 911 spin_lock_irq(&callback_lock);
734d4513 912 cpumask_copy(cp->effective_cpus, new_cpus);
8447a0fe 913 spin_unlock_irq(&callback_lock);
734d4513 914
9e10a130 915 WARN_ON(!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
734d4513
LZ
916 !cpumask_equal(cp->cpus_allowed, cp->effective_cpus));
917
d66393e5 918 update_tasks_cpumask(cp);
5c5cc623 919
8b5f1c52
LZ
920 /*
921 * If the effective cpumask of any non-empty cpuset is changed,
922 * we need to rebuild sched domains.
923 */
924 if (!cpumask_empty(cp->cpus_allowed) &&
925 is_sched_load_balance(cp))
926 need_rebuild_sched_domains = true;
927
5c5cc623
LZ
928 rcu_read_lock();
929 css_put(&cp->css);
930 }
931 rcu_read_unlock();
8b5f1c52
LZ
932
933 if (need_rebuild_sched_domains)
934 rebuild_sched_domains_locked();
5c5cc623
LZ
935}
936
58f4790b
CW
937/**
938 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
939 * @cs: the cpuset to consider
fc34ac1d 940 * @trialcs: trial cpuset
58f4790b
CW
941 * @buf: buffer of cpu numbers written to this cpuset
942 */
645fcc9d
LZ
943static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
944 const char *buf)
1da177e4 945{
58f4790b 946 int retval;
1da177e4 947
5f054e31 948 /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
4c4d50f7
PJ
949 if (cs == &top_cpuset)
950 return -EACCES;
951
6f7f02e7 952 /*
c8d9c90c 953 * An empty cpus_allowed is ok only if the cpuset has no tasks.
020958b6
PJ
954 * Since cpulist_parse() fails on an empty mask, we special case
955 * that parsing. The validate_change() call ensures that cpusets
956 * with tasks have cpus.
6f7f02e7 957 */
020958b6 958 if (!*buf) {
300ed6cb 959 cpumask_clear(trialcs->cpus_allowed);
6f7f02e7 960 } else {
300ed6cb 961 retval = cpulist_parse(buf, trialcs->cpus_allowed);
6f7f02e7
DR
962 if (retval < 0)
963 return retval;
37340746 964
5d8ba82c
LZ
965 if (!cpumask_subset(trialcs->cpus_allowed,
966 top_cpuset.cpus_allowed))
37340746 967 return -EINVAL;
6f7f02e7 968 }
029190c5 969
8707d8b8 970 /* Nothing to do if the cpus didn't change */
300ed6cb 971 if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
8707d8b8 972 return 0;
58f4790b 973
a73456f3
LZ
974 retval = validate_change(cs, trialcs);
975 if (retval < 0)
976 return retval;
977
8447a0fe 978 spin_lock_irq(&callback_lock);
300ed6cb 979 cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
8447a0fe 980 spin_unlock_irq(&callback_lock);
029190c5 981
734d4513
LZ
982 /* use trialcs->cpus_allowed as a temp variable */
983 update_cpumasks_hier(cs, trialcs->cpus_allowed);
85d7b949 984 return 0;
1da177e4
LT
985}
986
e4e364e8 987/*
e93ad19d
TH
988 * Migrate memory region from one set of nodes to another. This is
989 * performed asynchronously as it can be called from process migration path
990 * holding locks involved in process management. All mm migrations are
991 * performed in the queued order and can be waited for by flushing
992 * cpuset_migrate_mm_wq.
e4e364e8
PJ
993 */
994
e93ad19d
TH
995struct cpuset_migrate_mm_work {
996 struct work_struct work;
997 struct mm_struct *mm;
998 nodemask_t from;
999 nodemask_t to;
1000};
1001
1002static void cpuset_migrate_mm_workfn(struct work_struct *work)
1003{
1004 struct cpuset_migrate_mm_work *mwork =
1005 container_of(work, struct cpuset_migrate_mm_work, work);
1006
1007 /* on a wq worker, no need to worry about %current's mems_allowed */
1008 do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL);
1009 mmput(mwork->mm);
1010 kfree(mwork);
1011}
1012
e4e364e8
PJ
1013static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
1014 const nodemask_t *to)
1015{
e93ad19d 1016 struct cpuset_migrate_mm_work *mwork;
e4e364e8 1017
e93ad19d
TH
1018 mwork = kzalloc(sizeof(*mwork), GFP_KERNEL);
1019 if (mwork) {
1020 mwork->mm = mm;
1021 mwork->from = *from;
1022 mwork->to = *to;
1023 INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn);
1024 queue_work(cpuset_migrate_mm_wq, &mwork->work);
1025 } else {
1026 mmput(mm);
1027 }
1028}
e4e364e8 1029
5cf1cacb 1030static void cpuset_post_attach(void)
e93ad19d
TH
1031{
1032 flush_workqueue(cpuset_migrate_mm_wq);
e4e364e8
PJ
1033}
1034
3b6766fe 1035/*
58568d2a
MX
1036 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
1037 * @tsk: the task to change
1038 * @newmems: new nodes that the task will be set
1039 *
1040 * In order to avoid seeing no nodes if the old and new nodes are disjoint,
1041 * we structure updates as setting all new allowed nodes, then clearing newly
1042 * disallowed ones.
58568d2a
MX
1043 */
1044static void cpuset_change_task_nodemask(struct task_struct *tsk,
1045 nodemask_t *newmems)
1046{
b246272e 1047 bool need_loop;
89e8a244 1048
c0ff7453 1049 task_lock(tsk);
b246272e
DR
1050 /*
1051 * Determine if a loop is necessary if another thread is doing
d26914d1 1052 * read_mems_allowed_begin(). If at least one node remains unchanged and
b246272e
DR
1053 * tsk does not have a mempolicy, then an empty nodemask will not be
1054 * possible when mems_allowed is larger than a word.
1055 */
1056 need_loop = task_has_mempolicy(tsk) ||
1057 !nodes_intersects(*newmems, tsk->mems_allowed);
c0ff7453 1058
0fc0287c
PZ
1059 if (need_loop) {
1060 local_irq_disable();
cc9a6c87 1061 write_seqcount_begin(&tsk->mems_allowed_seq);
0fc0287c 1062 }
c0ff7453 1063
cc9a6c87
MG
1064 nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
1065 mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP1);
c0ff7453
MX
1066
1067 mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP2);
58568d2a 1068 tsk->mems_allowed = *newmems;
cc9a6c87 1069
0fc0287c 1070 if (need_loop) {
cc9a6c87 1071 write_seqcount_end(&tsk->mems_allowed_seq);
0fc0287c
PZ
1072 local_irq_enable();
1073 }
cc9a6c87 1074
c0ff7453 1075 task_unlock(tsk);
58568d2a
MX
1076}
1077
8793d854
PM
1078static void *cpuset_being_rebound;
1079
0b2f630a
MX
1080/**
1081 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1082 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
0b2f630a 1083 *
d66393e5
TH
1084 * Iterate through each task of @cs updating its mems_allowed to the
1085 * effective cpuset's. As this function is called with cpuset_mutex held,
1086 * cpuset membership stays stable.
0b2f630a 1087 */
d66393e5 1088static void update_tasks_nodemask(struct cpuset *cs)
1da177e4 1089{
33ad801d 1090 static nodemask_t newmems; /* protected by cpuset_mutex */
d66393e5
TH
1091 struct css_task_iter it;
1092 struct task_struct *task;
59dac16f 1093
846a16bf 1094 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
4225399a 1095
ae1c8023 1096 guarantee_online_mems(cs, &newmems);
33ad801d 1097
4225399a 1098 /*
3b6766fe
LZ
1099 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
1100 * take while holding tasklist_lock. Forks can happen - the
1101 * mpol_dup() cpuset_being_rebound check will catch such forks,
1102 * and rebind their vma mempolicies too. Because we still hold
5d21cc2d 1103 * the global cpuset_mutex, we know that no other rebind effort
3b6766fe 1104 * will be contending for the global variable cpuset_being_rebound.
4225399a 1105 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
04c19fa6 1106 * is idempotent. Also migrate pages in each mm to new nodes.
4225399a 1107 */
d66393e5
TH
1108 css_task_iter_start(&cs->css, &it);
1109 while ((task = css_task_iter_next(&it))) {
1110 struct mm_struct *mm;
1111 bool migrate;
1112
1113 cpuset_change_task_nodemask(task, &newmems);
1114
1115 mm = get_task_mm(task);
1116 if (!mm)
1117 continue;
1118
1119 migrate = is_memory_migrate(cs);
1120
1121 mpol_rebind_mm(mm, &cs->mems_allowed);
1122 if (migrate)
1123 cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems);
e93ad19d
TH
1124 else
1125 mmput(mm);
d66393e5
TH
1126 }
1127 css_task_iter_end(&it);
4225399a 1128
33ad801d
LZ
1129 /*
1130 * All the tasks' nodemasks have been updated, update
1131 * cs->old_mems_allowed.
1132 */
1133 cs->old_mems_allowed = newmems;
1134
2df167a3 1135 /* We're done rebinding vmas to this cpuset's new mems_allowed. */
8793d854 1136 cpuset_being_rebound = NULL;
1da177e4
LT
1137}
1138
5c5cc623 1139/*
734d4513
LZ
1140 * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree
1141 * @cs: the cpuset to consider
1142 * @new_mems: a temp variable for calculating new effective_mems
5c5cc623 1143 *
734d4513
LZ
1144 * When configured nodemask is changed, the effective nodemasks of this cpuset
1145 * and all its descendants need to be updated.
5c5cc623 1146 *
734d4513 1147 * On legacy hiearchy, effective_mems will be the same with mems_allowed.
5c5cc623
LZ
1148 *
1149 * Called with cpuset_mutex held
1150 */
734d4513 1151static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems)
5c5cc623
LZ
1152{
1153 struct cpuset *cp;
492eb21b 1154 struct cgroup_subsys_state *pos_css;
5c5cc623
LZ
1155
1156 rcu_read_lock();
734d4513
LZ
1157 cpuset_for_each_descendant_pre(cp, pos_css, cs) {
1158 struct cpuset *parent = parent_cs(cp);
1159
1160 nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems);
1161
554b0d1c
LZ
1162 /*
1163 * If it becomes empty, inherit the effective mask of the
1164 * parent, which is guaranteed to have some MEMs.
1165 */
9e10a130
TH
1166 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
1167 nodes_empty(*new_mems))
554b0d1c
LZ
1168 *new_mems = parent->effective_mems;
1169
734d4513
LZ
1170 /* Skip the whole subtree if the nodemask remains the same. */
1171 if (nodes_equal(*new_mems, cp->effective_mems)) {
1172 pos_css = css_rightmost_descendant(pos_css);
1173 continue;
5c5cc623 1174 }
734d4513 1175
ec903c0c 1176 if (!css_tryget_online(&cp->css))
5c5cc623
LZ
1177 continue;
1178 rcu_read_unlock();
1179
8447a0fe 1180 spin_lock_irq(&callback_lock);
734d4513 1181 cp->effective_mems = *new_mems;
8447a0fe 1182 spin_unlock_irq(&callback_lock);
734d4513 1183
9e10a130 1184 WARN_ON(!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
a1381268 1185 !nodes_equal(cp->mems_allowed, cp->effective_mems));
734d4513 1186
d66393e5 1187 update_tasks_nodemask(cp);
5c5cc623
LZ
1188
1189 rcu_read_lock();
1190 css_put(&cp->css);
1191 }
1192 rcu_read_unlock();
1193}
1194
0b2f630a
MX
1195/*
1196 * Handle user request to change the 'mems' memory placement
1197 * of a cpuset. Needs to validate the request, update the
58568d2a
MX
1198 * cpusets mems_allowed, and for each task in the cpuset,
1199 * update mems_allowed and rebind task's mempolicy and any vma
1200 * mempolicies and if the cpuset is marked 'memory_migrate',
1201 * migrate the tasks pages to the new memory.
0b2f630a 1202 *
8447a0fe 1203 * Call with cpuset_mutex held. May take callback_lock during call.
0b2f630a
MX
1204 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1205 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
1206 * their mempolicies to the cpusets new mems_allowed.
1207 */
645fcc9d
LZ
1208static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
1209 const char *buf)
0b2f630a 1210{
0b2f630a
MX
1211 int retval;
1212
1213 /*
38d7bee9 1214 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
0b2f630a
MX
1215 * it's read-only
1216 */
53feb297
MX
1217 if (cs == &top_cpuset) {
1218 retval = -EACCES;
1219 goto done;
1220 }
0b2f630a 1221
0b2f630a
MX
1222 /*
1223 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1224 * Since nodelist_parse() fails on an empty mask, we special case
1225 * that parsing. The validate_change() call ensures that cpusets
1226 * with tasks have memory.
1227 */
1228 if (!*buf) {
645fcc9d 1229 nodes_clear(trialcs->mems_allowed);
0b2f630a 1230 } else {
645fcc9d 1231 retval = nodelist_parse(buf, trialcs->mems_allowed);
0b2f630a
MX
1232 if (retval < 0)
1233 goto done;
1234
645fcc9d 1235 if (!nodes_subset(trialcs->mems_allowed,
5d8ba82c
LZ
1236 top_cpuset.mems_allowed)) {
1237 retval = -EINVAL;
53feb297
MX
1238 goto done;
1239 }
0b2f630a 1240 }
33ad801d
LZ
1241
1242 if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
0b2f630a
MX
1243 retval = 0; /* Too easy - nothing to do */
1244 goto done;
1245 }
645fcc9d 1246 retval = validate_change(cs, trialcs);
0b2f630a
MX
1247 if (retval < 0)
1248 goto done;
1249
8447a0fe 1250 spin_lock_irq(&callback_lock);
645fcc9d 1251 cs->mems_allowed = trialcs->mems_allowed;
8447a0fe 1252 spin_unlock_irq(&callback_lock);
0b2f630a 1253
734d4513 1254 /* use trialcs->mems_allowed as a temp variable */
24ee3cf8 1255 update_nodemasks_hier(cs, &trialcs->mems_allowed);
0b2f630a
MX
1256done:
1257 return retval;
1258}
1259
8793d854
PM
1260int current_cpuset_is_being_rebound(void)
1261{
391acf97
GZ
1262 int ret;
1263
1264 rcu_read_lock();
1265 ret = task_cs(current) == cpuset_being_rebound;
1266 rcu_read_unlock();
1267
1268 return ret;
8793d854
PM
1269}
1270
5be7a479 1271static int update_relax_domain_level(struct cpuset *cs, s64 val)
1d3504fc 1272{
db7f47cf 1273#ifdef CONFIG_SMP
60495e77 1274 if (val < -1 || val >= sched_domain_level_max)
30e0e178 1275 return -EINVAL;
db7f47cf 1276#endif
1d3504fc
HS
1277
1278 if (val != cs->relax_domain_level) {
1279 cs->relax_domain_level = val;
300ed6cb
LZ
1280 if (!cpumask_empty(cs->cpus_allowed) &&
1281 is_sched_load_balance(cs))
699140ba 1282 rebuild_sched_domains_locked();
1d3504fc
HS
1283 }
1284
1285 return 0;
1286}
1287
72ec7029 1288/**
950592f7
MX
1289 * update_tasks_flags - update the spread flags of tasks in the cpuset.
1290 * @cs: the cpuset in which each task's spread flags needs to be changed
950592f7 1291 *
d66393e5
TH
1292 * Iterate through each task of @cs updating its spread flags. As this
1293 * function is called with cpuset_mutex held, cpuset membership stays
1294 * stable.
950592f7 1295 */
d66393e5 1296static void update_tasks_flags(struct cpuset *cs)
950592f7 1297{
d66393e5
TH
1298 struct css_task_iter it;
1299 struct task_struct *task;
1300
1301 css_task_iter_start(&cs->css, &it);
1302 while ((task = css_task_iter_next(&it)))
1303 cpuset_update_task_spread_flag(cs, task);
1304 css_task_iter_end(&it);
950592f7
MX
1305}
1306
1da177e4
LT
1307/*
1308 * update_flag - read a 0 or a 1 in a file and update associated flag
78608366
PM
1309 * bit: the bit to update (see cpuset_flagbits_t)
1310 * cs: the cpuset to update
1311 * turning_on: whether the flag is being set or cleared
053199ed 1312 *
5d21cc2d 1313 * Call with cpuset_mutex held.
1da177e4
LT
1314 */
1315
700fe1ab
PM
1316static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1317 int turning_on)
1da177e4 1318{
645fcc9d 1319 struct cpuset *trialcs;
40b6a762 1320 int balance_flag_changed;
950592f7 1321 int spread_flag_changed;
950592f7 1322 int err;
1da177e4 1323
645fcc9d
LZ
1324 trialcs = alloc_trial_cpuset(cs);
1325 if (!trialcs)
1326 return -ENOMEM;
1327
1da177e4 1328 if (turning_on)
645fcc9d 1329 set_bit(bit, &trialcs->flags);
1da177e4 1330 else
645fcc9d 1331 clear_bit(bit, &trialcs->flags);
1da177e4 1332
645fcc9d 1333 err = validate_change(cs, trialcs);
85d7b949 1334 if (err < 0)
645fcc9d 1335 goto out;
029190c5 1336
029190c5 1337 balance_flag_changed = (is_sched_load_balance(cs) !=
645fcc9d 1338 is_sched_load_balance(trialcs));
029190c5 1339
950592f7
MX
1340 spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
1341 || (is_spread_page(cs) != is_spread_page(trialcs)));
1342
8447a0fe 1343 spin_lock_irq(&callback_lock);
645fcc9d 1344 cs->flags = trialcs->flags;
8447a0fe 1345 spin_unlock_irq(&callback_lock);
85d7b949 1346
300ed6cb 1347 if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
699140ba 1348 rebuild_sched_domains_locked();
029190c5 1349
950592f7 1350 if (spread_flag_changed)
d66393e5 1351 update_tasks_flags(cs);
645fcc9d
LZ
1352out:
1353 free_trial_cpuset(trialcs);
1354 return err;
1da177e4
LT
1355}
1356
3e0d98b9 1357/*
80f7228b 1358 * Frequency meter - How fast is some event occurring?
3e0d98b9
PJ
1359 *
1360 * These routines manage a digitally filtered, constant time based,
1361 * event frequency meter. There are four routines:
1362 * fmeter_init() - initialize a frequency meter.
1363 * fmeter_markevent() - called each time the event happens.
1364 * fmeter_getrate() - returns the recent rate of such events.
1365 * fmeter_update() - internal routine used to update fmeter.
1366 *
1367 * A common data structure is passed to each of these routines,
1368 * which is used to keep track of the state required to manage the
1369 * frequency meter and its digital filter.
1370 *
1371 * The filter works on the number of events marked per unit time.
1372 * The filter is single-pole low-pass recursive (IIR). The time unit
1373 * is 1 second. Arithmetic is done using 32-bit integers scaled to
1374 * simulate 3 decimal digits of precision (multiplied by 1000).
1375 *
1376 * With an FM_COEF of 933, and a time base of 1 second, the filter
1377 * has a half-life of 10 seconds, meaning that if the events quit
1378 * happening, then the rate returned from the fmeter_getrate()
1379 * will be cut in half each 10 seconds, until it converges to zero.
1380 *
1381 * It is not worth doing a real infinitely recursive filter. If more
1382 * than FM_MAXTICKS ticks have elapsed since the last filter event,
1383 * just compute FM_MAXTICKS ticks worth, by which point the level
1384 * will be stable.
1385 *
1386 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
1387 * arithmetic overflow in the fmeter_update() routine.
1388 *
1389 * Given the simple 32 bit integer arithmetic used, this meter works
1390 * best for reporting rates between one per millisecond (msec) and
1391 * one per 32 (approx) seconds. At constant rates faster than one
1392 * per msec it maxes out at values just under 1,000,000. At constant
1393 * rates between one per msec, and one per second it will stabilize
1394 * to a value N*1000, where N is the rate of events per second.
1395 * At constant rates between one per second and one per 32 seconds,
1396 * it will be choppy, moving up on the seconds that have an event,
1397 * and then decaying until the next event. At rates slower than
1398 * about one in 32 seconds, it decays all the way back to zero between
1399 * each event.
1400 */
1401
1402#define FM_COEF 933 /* coefficient for half-life of 10 secs */
d2b43658 1403#define FM_MAXTICKS ((u32)99) /* useless computing more ticks than this */
3e0d98b9
PJ
1404#define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
1405#define FM_SCALE 1000 /* faux fixed point scale */
1406
1407/* Initialize a frequency meter */
1408static void fmeter_init(struct fmeter *fmp)
1409{
1410 fmp->cnt = 0;
1411 fmp->val = 0;
1412 fmp->time = 0;
1413 spin_lock_init(&fmp->lock);
1414}
1415
1416/* Internal meter update - process cnt events and update value */
1417static void fmeter_update(struct fmeter *fmp)
1418{
d2b43658
AB
1419 time64_t now;
1420 u32 ticks;
1421
1422 now = ktime_get_seconds();
1423 ticks = now - fmp->time;
3e0d98b9
PJ
1424
1425 if (ticks == 0)
1426 return;
1427
1428 ticks = min(FM_MAXTICKS, ticks);
1429 while (ticks-- > 0)
1430 fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
1431 fmp->time = now;
1432
1433 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
1434 fmp->cnt = 0;
1435}
1436
1437/* Process any previous ticks, then bump cnt by one (times scale). */
1438static void fmeter_markevent(struct fmeter *fmp)
1439{
1440 spin_lock(&fmp->lock);
1441 fmeter_update(fmp);
1442 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
1443 spin_unlock(&fmp->lock);
1444}
1445
1446/* Process any previous ticks, then return current value. */
1447static int fmeter_getrate(struct fmeter *fmp)
1448{
1449 int val;
1450
1451 spin_lock(&fmp->lock);
1452 fmeter_update(fmp);
1453 val = fmp->val;
1454 spin_unlock(&fmp->lock);
1455 return val;
1456}
1457
57fce0a6
TH
1458static struct cpuset *cpuset_attach_old_cs;
1459
5d21cc2d 1460/* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
1f7dd3e5 1461static int cpuset_can_attach(struct cgroup_taskset *tset)
f780bdb7 1462{
1f7dd3e5
TH
1463 struct cgroup_subsys_state *css;
1464 struct cpuset *cs;
bb9d97b6
TH
1465 struct task_struct *task;
1466 int ret;
1da177e4 1467
57fce0a6 1468 /* used later by cpuset_attach() */
1f7dd3e5
TH
1469 cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css));
1470 cs = css_cs(css);
57fce0a6 1471
5d21cc2d
TH
1472 mutex_lock(&cpuset_mutex);
1473
aa6ec29b 1474 /* allow moving tasks into an empty cpuset if on default hierarchy */
5d21cc2d 1475 ret = -ENOSPC;
9e10a130 1476 if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
88fa523b 1477 (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)))
5d21cc2d 1478 goto out_unlock;
9985b0ba 1479
1f7dd3e5 1480 cgroup_taskset_for_each(task, css, tset) {
7f51412a
JL
1481 ret = task_can_attach(task, cs->cpus_allowed);
1482 if (ret)
5d21cc2d
TH
1483 goto out_unlock;
1484 ret = security_task_setscheduler(task);
1485 if (ret)
1486 goto out_unlock;
bb9d97b6 1487 }
f780bdb7 1488
452477fa
TH
1489 /*
1490 * Mark attach is in progress. This makes validate_change() fail
1491 * changes which zero cpus/mems_allowed.
1492 */
1493 cs->attach_in_progress++;
5d21cc2d
TH
1494 ret = 0;
1495out_unlock:
1496 mutex_unlock(&cpuset_mutex);
1497 return ret;
8793d854 1498}
f780bdb7 1499
1f7dd3e5 1500static void cpuset_cancel_attach(struct cgroup_taskset *tset)
452477fa 1501{
1f7dd3e5
TH
1502 struct cgroup_subsys_state *css;
1503 struct cpuset *cs;
1504
1505 cgroup_taskset_first(tset, &css);
1506 cs = css_cs(css);
1507
5d21cc2d 1508 mutex_lock(&cpuset_mutex);
eb95419b 1509 css_cs(css)->attach_in_progress--;
5d21cc2d 1510 mutex_unlock(&cpuset_mutex);
8793d854 1511}
1da177e4 1512
4e4c9a14 1513/*
5d21cc2d 1514 * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach()
4e4c9a14
TH
1515 * but we can't allocate it dynamically there. Define it global and
1516 * allocate from cpuset_init().
1517 */
1518static cpumask_var_t cpus_attach;
1519
1f7dd3e5 1520static void cpuset_attach(struct cgroup_taskset *tset)
8793d854 1521{
67bd2c59 1522 /* static buf protected by cpuset_mutex */
4e4c9a14 1523 static nodemask_t cpuset_attach_nodemask_to;
bb9d97b6 1524 struct task_struct *task;
4530eddb 1525 struct task_struct *leader;
1f7dd3e5
TH
1526 struct cgroup_subsys_state *css;
1527 struct cpuset *cs;
57fce0a6 1528 struct cpuset *oldcs = cpuset_attach_old_cs;
22fb52dd 1529
1f7dd3e5
TH
1530 cgroup_taskset_first(tset, &css);
1531 cs = css_cs(css);
1532
5d21cc2d
TH
1533 mutex_lock(&cpuset_mutex);
1534
4e4c9a14
TH
1535 /* prepare for attach */
1536 if (cs == &top_cpuset)
1537 cpumask_copy(cpus_attach, cpu_possible_mask);
1538 else
ae1c8023 1539 guarantee_online_cpus(cs, cpus_attach);
4e4c9a14 1540
ae1c8023 1541 guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
4e4c9a14 1542
1f7dd3e5 1543 cgroup_taskset_for_each(task, css, tset) {
bb9d97b6
TH
1544 /*
1545 * can_attach beforehand should guarantee that this doesn't
1546 * fail. TODO: have a better way to handle failure here
1547 */
1548 WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
1549
1550 cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
1551 cpuset_update_task_spread_flag(cs, task);
1552 }
22fb52dd 1553
f780bdb7 1554 /*
4530eddb
TH
1555 * Change mm for all threadgroup leaders. This is expensive and may
1556 * sleep and should be moved outside migration path proper.
f780bdb7 1557 */
ae1c8023 1558 cpuset_attach_nodemask_to = cs->effective_mems;
1f7dd3e5 1559 cgroup_taskset_for_each_leader(leader, css, tset) {
3df9ca0a
TH
1560 struct mm_struct *mm = get_task_mm(leader);
1561
1562 if (mm) {
1563 mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
1564
1565 /*
1566 * old_mems_allowed is the same with mems_allowed
1567 * here, except if this task is being moved
1568 * automatically due to hotplug. In that case
1569 * @mems_allowed has been updated and is empty, so
1570 * @old_mems_allowed is the right nodesets that we
1571 * migrate mm from.
1572 */
e93ad19d 1573 if (is_memory_migrate(cs))
3df9ca0a
TH
1574 cpuset_migrate_mm(mm, &oldcs->old_mems_allowed,
1575 &cpuset_attach_nodemask_to);
e93ad19d
TH
1576 else
1577 mmput(mm);
f047cecf 1578 }
4225399a 1579 }
452477fa 1580
33ad801d 1581 cs->old_mems_allowed = cpuset_attach_nodemask_to;
02bb5863 1582
452477fa 1583 cs->attach_in_progress--;
e44193d3
LZ
1584 if (!cs->attach_in_progress)
1585 wake_up(&cpuset_attach_wq);
5d21cc2d
TH
1586
1587 mutex_unlock(&cpuset_mutex);
1da177e4
LT
1588}
1589
1590/* The various types of files and directories in a cpuset file system */
1591
1592typedef enum {
45b07ef3 1593 FILE_MEMORY_MIGRATE,
1da177e4
LT
1594 FILE_CPULIST,
1595 FILE_MEMLIST,
afd1a8b3
LZ
1596 FILE_EFFECTIVE_CPULIST,
1597 FILE_EFFECTIVE_MEMLIST,
1da177e4
LT
1598 FILE_CPU_EXCLUSIVE,
1599 FILE_MEM_EXCLUSIVE,
78608366 1600 FILE_MEM_HARDWALL,
029190c5 1601 FILE_SCHED_LOAD_BALANCE,
1d3504fc 1602 FILE_SCHED_RELAX_DOMAIN_LEVEL,
3e0d98b9
PJ
1603 FILE_MEMORY_PRESSURE_ENABLED,
1604 FILE_MEMORY_PRESSURE,
825a46af
PJ
1605 FILE_SPREAD_PAGE,
1606 FILE_SPREAD_SLAB,
1da177e4
LT
1607} cpuset_filetype_t;
1608
182446d0
TH
1609static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft,
1610 u64 val)
700fe1ab 1611{
182446d0 1612 struct cpuset *cs = css_cs(css);
700fe1ab 1613 cpuset_filetype_t type = cft->private;
a903f086 1614 int retval = 0;
700fe1ab 1615
5d21cc2d 1616 mutex_lock(&cpuset_mutex);
a903f086
LZ
1617 if (!is_cpuset_online(cs)) {
1618 retval = -ENODEV;
5d21cc2d 1619 goto out_unlock;
a903f086 1620 }
700fe1ab
PM
1621
1622 switch (type) {
1da177e4 1623 case FILE_CPU_EXCLUSIVE:
700fe1ab 1624 retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
1da177e4
LT
1625 break;
1626 case FILE_MEM_EXCLUSIVE:
700fe1ab 1627 retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
1da177e4 1628 break;
78608366
PM
1629 case FILE_MEM_HARDWALL:
1630 retval = update_flag(CS_MEM_HARDWALL, cs, val);
1631 break;
029190c5 1632 case FILE_SCHED_LOAD_BALANCE:
700fe1ab 1633 retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1d3504fc 1634 break;
45b07ef3 1635 case FILE_MEMORY_MIGRATE:
700fe1ab 1636 retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
45b07ef3 1637 break;
3e0d98b9 1638 case FILE_MEMORY_PRESSURE_ENABLED:
700fe1ab 1639 cpuset_memory_pressure_enabled = !!val;
3e0d98b9 1640 break;
825a46af 1641 case FILE_SPREAD_PAGE:
700fe1ab 1642 retval = update_flag(CS_SPREAD_PAGE, cs, val);
825a46af
PJ
1643 break;
1644 case FILE_SPREAD_SLAB:
700fe1ab 1645 retval = update_flag(CS_SPREAD_SLAB, cs, val);
825a46af 1646 break;
1da177e4
LT
1647 default:
1648 retval = -EINVAL;
700fe1ab 1649 break;
1da177e4 1650 }
5d21cc2d
TH
1651out_unlock:
1652 mutex_unlock(&cpuset_mutex);
1da177e4
LT
1653 return retval;
1654}
1655
182446d0
TH
1656static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft,
1657 s64 val)
5be7a479 1658{
182446d0 1659 struct cpuset *cs = css_cs(css);
5be7a479 1660 cpuset_filetype_t type = cft->private;
5d21cc2d 1661 int retval = -ENODEV;
5be7a479 1662
5d21cc2d
TH
1663 mutex_lock(&cpuset_mutex);
1664 if (!is_cpuset_online(cs))
1665 goto out_unlock;
e3712395 1666
5be7a479
PM
1667 switch (type) {
1668 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1669 retval = update_relax_domain_level(cs, val);
1670 break;
1671 default:
1672 retval = -EINVAL;
1673 break;
1674 }
5d21cc2d
TH
1675out_unlock:
1676 mutex_unlock(&cpuset_mutex);
5be7a479
PM
1677 return retval;
1678}
1679
e3712395
PM
1680/*
1681 * Common handling for a write to a "cpus" or "mems" file.
1682 */
451af504
TH
1683static ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
1684 char *buf, size_t nbytes, loff_t off)
e3712395 1685{
451af504 1686 struct cpuset *cs = css_cs(of_css(of));
645fcc9d 1687 struct cpuset *trialcs;
5d21cc2d 1688 int retval = -ENODEV;
e3712395 1689
451af504
TH
1690 buf = strstrip(buf);
1691
3a5a6d0c
TH
1692 /*
1693 * CPU or memory hotunplug may leave @cs w/o any execution
1694 * resources, in which case the hotplug code asynchronously updates
1695 * configuration and transfers all tasks to the nearest ancestor
1696 * which can execute.
1697 *
1698 * As writes to "cpus" or "mems" may restore @cs's execution
1699 * resources, wait for the previously scheduled operations before
1700 * proceeding, so that we don't end up keep removing tasks added
1701 * after execution capability is restored.
76bb5ab8
TH
1702 *
1703 * cpuset_hotplug_work calls back into cgroup core via
1704 * cgroup_transfer_tasks() and waiting for it from a cgroupfs
1705 * operation like this one can lead to a deadlock through kernfs
1706 * active_ref protection. Let's break the protection. Losing the
1707 * protection is okay as we check whether @cs is online after
1708 * grabbing cpuset_mutex anyway. This only happens on the legacy
1709 * hierarchies.
3a5a6d0c 1710 */
76bb5ab8
TH
1711 css_get(&cs->css);
1712 kernfs_break_active_protection(of->kn);
3a5a6d0c
TH
1713 flush_work(&cpuset_hotplug_work);
1714
5d21cc2d
TH
1715 mutex_lock(&cpuset_mutex);
1716 if (!is_cpuset_online(cs))
1717 goto out_unlock;
e3712395 1718
645fcc9d 1719 trialcs = alloc_trial_cpuset(cs);
b75f38d6
LZ
1720 if (!trialcs) {
1721 retval = -ENOMEM;
5d21cc2d 1722 goto out_unlock;
b75f38d6 1723 }
645fcc9d 1724
451af504 1725 switch (of_cft(of)->private) {
e3712395 1726 case FILE_CPULIST:
645fcc9d 1727 retval = update_cpumask(cs, trialcs, buf);
e3712395
PM
1728 break;
1729 case FILE_MEMLIST:
645fcc9d 1730 retval = update_nodemask(cs, trialcs, buf);
e3712395
PM
1731 break;
1732 default:
1733 retval = -EINVAL;
1734 break;
1735 }
645fcc9d
LZ
1736
1737 free_trial_cpuset(trialcs);
5d21cc2d
TH
1738out_unlock:
1739 mutex_unlock(&cpuset_mutex);
76bb5ab8
TH
1740 kernfs_unbreak_active_protection(of->kn);
1741 css_put(&cs->css);
e93ad19d 1742 flush_workqueue(cpuset_migrate_mm_wq);
451af504 1743 return retval ?: nbytes;
e3712395
PM
1744}
1745
1da177e4
LT
1746/*
1747 * These ascii lists should be read in a single call, by using a user
1748 * buffer large enough to hold the entire map. If read in smaller
1749 * chunks, there is no guarantee of atomicity. Since the display format
1750 * used, list of ranges of sequential numbers, is variable length,
1751 * and since these maps can change value dynamically, one could read
1752 * gibberish by doing partial reads while a list was changing.
1da177e4 1753 */
2da8ca82 1754static int cpuset_common_seq_show(struct seq_file *sf, void *v)
1da177e4 1755{
2da8ca82
TH
1756 struct cpuset *cs = css_cs(seq_css(sf));
1757 cpuset_filetype_t type = seq_cft(sf)->private;
51ffe411 1758 int ret = 0;
1da177e4 1759
8447a0fe 1760 spin_lock_irq(&callback_lock);
1da177e4
LT
1761
1762 switch (type) {
1763 case FILE_CPULIST:
e8e6d97c 1764 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_allowed));
1da177e4
LT
1765 break;
1766 case FILE_MEMLIST:
e8e6d97c 1767 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed));
1da177e4 1768 break;
afd1a8b3 1769 case FILE_EFFECTIVE_CPULIST:
e8e6d97c 1770 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus));
afd1a8b3
LZ
1771 break;
1772 case FILE_EFFECTIVE_MEMLIST:
e8e6d97c 1773 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems));
afd1a8b3 1774 break;
1da177e4 1775 default:
51ffe411 1776 ret = -EINVAL;
1da177e4 1777 }
1da177e4 1778
8447a0fe 1779 spin_unlock_irq(&callback_lock);
51ffe411 1780 return ret;
1da177e4
LT
1781}
1782
182446d0 1783static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft)
700fe1ab 1784{
182446d0 1785 struct cpuset *cs = css_cs(css);
700fe1ab
PM
1786 cpuset_filetype_t type = cft->private;
1787 switch (type) {
1788 case FILE_CPU_EXCLUSIVE:
1789 return is_cpu_exclusive(cs);
1790 case FILE_MEM_EXCLUSIVE:
1791 return is_mem_exclusive(cs);
78608366
PM
1792 case FILE_MEM_HARDWALL:
1793 return is_mem_hardwall(cs);
700fe1ab
PM
1794 case FILE_SCHED_LOAD_BALANCE:
1795 return is_sched_load_balance(cs);
1796 case FILE_MEMORY_MIGRATE:
1797 return is_memory_migrate(cs);
1798 case FILE_MEMORY_PRESSURE_ENABLED:
1799 return cpuset_memory_pressure_enabled;
1800 case FILE_MEMORY_PRESSURE:
1801 return fmeter_getrate(&cs->fmeter);
1802 case FILE_SPREAD_PAGE:
1803 return is_spread_page(cs);
1804 case FILE_SPREAD_SLAB:
1805 return is_spread_slab(cs);
1806 default:
1807 BUG();
1808 }
cf417141
MK
1809
1810 /* Unreachable but makes gcc happy */
1811 return 0;
700fe1ab 1812}
1da177e4 1813
182446d0 1814static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft)
5be7a479 1815{
182446d0 1816 struct cpuset *cs = css_cs(css);
5be7a479
PM
1817 cpuset_filetype_t type = cft->private;
1818 switch (type) {
1819 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1820 return cs->relax_domain_level;
1821 default:
1822 BUG();
1823 }
cf417141
MK
1824
1825 /* Unrechable but makes gcc happy */
1826 return 0;
5be7a479
PM
1827}
1828
1da177e4
LT
1829
1830/*
1831 * for the common functions, 'private' gives the type of file
1832 */
1833
addf2c73
PM
1834static struct cftype files[] = {
1835 {
1836 .name = "cpus",
2da8ca82 1837 .seq_show = cpuset_common_seq_show,
451af504 1838 .write = cpuset_write_resmask,
e3712395 1839 .max_write_len = (100U + 6 * NR_CPUS),
addf2c73
PM
1840 .private = FILE_CPULIST,
1841 },
1842
1843 {
1844 .name = "mems",
2da8ca82 1845 .seq_show = cpuset_common_seq_show,
451af504 1846 .write = cpuset_write_resmask,
e3712395 1847 .max_write_len = (100U + 6 * MAX_NUMNODES),
addf2c73
PM
1848 .private = FILE_MEMLIST,
1849 },
1850
afd1a8b3
LZ
1851 {
1852 .name = "effective_cpus",
1853 .seq_show = cpuset_common_seq_show,
1854 .private = FILE_EFFECTIVE_CPULIST,
1855 },
1856
1857 {
1858 .name = "effective_mems",
1859 .seq_show = cpuset_common_seq_show,
1860 .private = FILE_EFFECTIVE_MEMLIST,
1861 },
1862
addf2c73
PM
1863 {
1864 .name = "cpu_exclusive",
1865 .read_u64 = cpuset_read_u64,
1866 .write_u64 = cpuset_write_u64,
1867 .private = FILE_CPU_EXCLUSIVE,
1868 },
1869
1870 {
1871 .name = "mem_exclusive",
1872 .read_u64 = cpuset_read_u64,
1873 .write_u64 = cpuset_write_u64,
1874 .private = FILE_MEM_EXCLUSIVE,
1875 },
1876
78608366
PM
1877 {
1878 .name = "mem_hardwall",
1879 .read_u64 = cpuset_read_u64,
1880 .write_u64 = cpuset_write_u64,
1881 .private = FILE_MEM_HARDWALL,
1882 },
1883
addf2c73
PM
1884 {
1885 .name = "sched_load_balance",
1886 .read_u64 = cpuset_read_u64,
1887 .write_u64 = cpuset_write_u64,
1888 .private = FILE_SCHED_LOAD_BALANCE,
1889 },
1890
1891 {
1892 .name = "sched_relax_domain_level",
5be7a479
PM
1893 .read_s64 = cpuset_read_s64,
1894 .write_s64 = cpuset_write_s64,
addf2c73
PM
1895 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
1896 },
1897
1898 {
1899 .name = "memory_migrate",
1900 .read_u64 = cpuset_read_u64,
1901 .write_u64 = cpuset_write_u64,
1902 .private = FILE_MEMORY_MIGRATE,
1903 },
1904
1905 {
1906 .name = "memory_pressure",
1907 .read_u64 = cpuset_read_u64,
addf2c73
PM
1908 },
1909
1910 {
1911 .name = "memory_spread_page",
1912 .read_u64 = cpuset_read_u64,
1913 .write_u64 = cpuset_write_u64,
1914 .private = FILE_SPREAD_PAGE,
1915 },
1916
1917 {
1918 .name = "memory_spread_slab",
1919 .read_u64 = cpuset_read_u64,
1920 .write_u64 = cpuset_write_u64,
1921 .private = FILE_SPREAD_SLAB,
1922 },
3e0d98b9 1923
4baf6e33
TH
1924 {
1925 .name = "memory_pressure_enabled",
1926 .flags = CFTYPE_ONLY_ON_ROOT,
1927 .read_u64 = cpuset_read_u64,
1928 .write_u64 = cpuset_write_u64,
1929 .private = FILE_MEMORY_PRESSURE_ENABLED,
1930 },
1da177e4 1931
4baf6e33
TH
1932 { } /* terminate */
1933};
1da177e4
LT
1934
1935/*
92fb9748 1936 * cpuset_css_alloc - allocate a cpuset css
c9e5fe66 1937 * cgrp: control group that the new cpuset will be part of
1da177e4
LT
1938 */
1939
eb95419b
TH
1940static struct cgroup_subsys_state *
1941cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
1da177e4 1942{
c8f699bb 1943 struct cpuset *cs;
1da177e4 1944
eb95419b 1945 if (!parent_css)
8793d854 1946 return &top_cpuset.css;
033fa1c5 1947
c8f699bb 1948 cs = kzalloc(sizeof(*cs), GFP_KERNEL);
1da177e4 1949 if (!cs)
8793d854 1950 return ERR_PTR(-ENOMEM);
e2b9a3d7
LZ
1951 if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL))
1952 goto free_cs;
1953 if (!alloc_cpumask_var(&cs->effective_cpus, GFP_KERNEL))
1954 goto free_cpus;
1da177e4 1955
029190c5 1956 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
300ed6cb 1957 cpumask_clear(cs->cpus_allowed);
f9a86fcb 1958 nodes_clear(cs->mems_allowed);
e2b9a3d7
LZ
1959 cpumask_clear(cs->effective_cpus);
1960 nodes_clear(cs->effective_mems);
3e0d98b9 1961 fmeter_init(&cs->fmeter);
1d3504fc 1962 cs->relax_domain_level = -1;
1da177e4 1963
c8f699bb 1964 return &cs->css;
e2b9a3d7
LZ
1965
1966free_cpus:
1967 free_cpumask_var(cs->cpus_allowed);
1968free_cs:
1969 kfree(cs);
1970 return ERR_PTR(-ENOMEM);
c8f699bb
TH
1971}
1972
eb95419b 1973static int cpuset_css_online(struct cgroup_subsys_state *css)
c8f699bb 1974{
eb95419b 1975 struct cpuset *cs = css_cs(css);
c431069f 1976 struct cpuset *parent = parent_cs(cs);
ae8086ce 1977 struct cpuset *tmp_cs;
492eb21b 1978 struct cgroup_subsys_state *pos_css;
c8f699bb
TH
1979
1980 if (!parent)
1981 return 0;
1982
5d21cc2d
TH
1983 mutex_lock(&cpuset_mutex);
1984
efeb77b2 1985 set_bit(CS_ONLINE, &cs->flags);
c8f699bb
TH
1986 if (is_spread_page(parent))
1987 set_bit(CS_SPREAD_PAGE, &cs->flags);
1988 if (is_spread_slab(parent))
1989 set_bit(CS_SPREAD_SLAB, &cs->flags);
1da177e4 1990
664eedde 1991 cpuset_inc();
033fa1c5 1992
8447a0fe 1993 spin_lock_irq(&callback_lock);
9e10a130 1994 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) {
e2b9a3d7
LZ
1995 cpumask_copy(cs->effective_cpus, parent->effective_cpus);
1996 cs->effective_mems = parent->effective_mems;
1997 }
8447a0fe 1998 spin_unlock_irq(&callback_lock);
e2b9a3d7 1999
eb95419b 2000 if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
5d21cc2d 2001 goto out_unlock;
033fa1c5
TH
2002
2003 /*
2004 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
2005 * set. This flag handling is implemented in cgroup core for
2006 * histrical reasons - the flag may be specified during mount.
2007 *
2008 * Currently, if any sibling cpusets have exclusive cpus or mem, we
2009 * refuse to clone the configuration - thereby refusing the task to
2010 * be entered, and as a result refusing the sys_unshare() or
2011 * clone() which initiated it. If this becomes a problem for some
2012 * users who wish to allow that scenario, then this could be
2013 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
2014 * (and likewise for mems) to the new cgroup.
2015 */
ae8086ce 2016 rcu_read_lock();
492eb21b 2017 cpuset_for_each_child(tmp_cs, pos_css, parent) {
ae8086ce
TH
2018 if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
2019 rcu_read_unlock();
5d21cc2d 2020 goto out_unlock;
ae8086ce 2021 }
033fa1c5 2022 }
ae8086ce 2023 rcu_read_unlock();
033fa1c5 2024
8447a0fe 2025 spin_lock_irq(&callback_lock);
033fa1c5 2026 cs->mems_allowed = parent->mems_allowed;
790317e1 2027 cs->effective_mems = parent->mems_allowed;
033fa1c5 2028 cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
790317e1 2029 cpumask_copy(cs->effective_cpus, parent->cpus_allowed);
cea74465 2030 spin_unlock_irq(&callback_lock);
5d21cc2d
TH
2031out_unlock:
2032 mutex_unlock(&cpuset_mutex);
c8f699bb
TH
2033 return 0;
2034}
2035
0b9e6965
ZH
2036/*
2037 * If the cpuset being removed has its flag 'sched_load_balance'
2038 * enabled, then simulate turning sched_load_balance off, which
2039 * will call rebuild_sched_domains_locked().
2040 */
2041
eb95419b 2042static void cpuset_css_offline(struct cgroup_subsys_state *css)
c8f699bb 2043{
eb95419b 2044 struct cpuset *cs = css_cs(css);
c8f699bb 2045
5d21cc2d 2046 mutex_lock(&cpuset_mutex);
c8f699bb
TH
2047
2048 if (is_sched_load_balance(cs))
2049 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
2050
664eedde 2051 cpuset_dec();
efeb77b2 2052 clear_bit(CS_ONLINE, &cs->flags);
c8f699bb 2053
5d21cc2d 2054 mutex_unlock(&cpuset_mutex);
1da177e4
LT
2055}
2056
eb95419b 2057static void cpuset_css_free(struct cgroup_subsys_state *css)
1da177e4 2058{
eb95419b 2059 struct cpuset *cs = css_cs(css);
1da177e4 2060
e2b9a3d7 2061 free_cpumask_var(cs->effective_cpus);
300ed6cb 2062 free_cpumask_var(cs->cpus_allowed);
8793d854 2063 kfree(cs);
1da177e4
LT
2064}
2065
39bd0d15
LZ
2066static void cpuset_bind(struct cgroup_subsys_state *root_css)
2067{
2068 mutex_lock(&cpuset_mutex);
8447a0fe 2069 spin_lock_irq(&callback_lock);
39bd0d15 2070
9e10a130 2071 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) {
39bd0d15
LZ
2072 cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask);
2073 top_cpuset.mems_allowed = node_possible_map;
2074 } else {
2075 cpumask_copy(top_cpuset.cpus_allowed,
2076 top_cpuset.effective_cpus);
2077 top_cpuset.mems_allowed = top_cpuset.effective_mems;
2078 }
2079
8447a0fe 2080 spin_unlock_irq(&callback_lock);
39bd0d15
LZ
2081 mutex_unlock(&cpuset_mutex);
2082}
2083
06f4e948
ZL
2084/*
2085 * Make sure the new task conform to the current state of its parent,
2086 * which could have been changed by cpuset just after it inherits the
2087 * state from the parent and before it sits on the cgroup's task list.
2088 */
8a15b817 2089static void cpuset_fork(struct task_struct *task)
06f4e948
ZL
2090{
2091 if (task_css_is_root(task, cpuset_cgrp_id))
2092 return;
2093
2094 set_cpus_allowed_ptr(task, &current->cpus_allowed);
2095 task->mems_allowed = current->mems_allowed;
2096}
2097
073219e9 2098struct cgroup_subsys cpuset_cgrp_subsys = {
39bd0d15
LZ
2099 .css_alloc = cpuset_css_alloc,
2100 .css_online = cpuset_css_online,
2101 .css_offline = cpuset_css_offline,
2102 .css_free = cpuset_css_free,
2103 .can_attach = cpuset_can_attach,
2104 .cancel_attach = cpuset_cancel_attach,
2105 .attach = cpuset_attach,
5cf1cacb 2106 .post_attach = cpuset_post_attach,
39bd0d15 2107 .bind = cpuset_bind,
06f4e948 2108 .fork = cpuset_fork,
5577964e 2109 .legacy_cftypes = files,
b38e42e9 2110 .early_init = true,
8793d854
PM
2111};
2112
1da177e4
LT
2113/**
2114 * cpuset_init - initialize cpusets at system boot
2115 *
2116 * Description: Initialize top_cpuset and the cpuset internal file system,
2117 **/
2118
2119int __init cpuset_init(void)
2120{
8793d854 2121 int err = 0;
1da177e4 2122
58568d2a
MX
2123 if (!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL))
2124 BUG();
e2b9a3d7
LZ
2125 if (!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL))
2126 BUG();
58568d2a 2127
300ed6cb 2128 cpumask_setall(top_cpuset.cpus_allowed);
f9a86fcb 2129 nodes_setall(top_cpuset.mems_allowed);
e2b9a3d7
LZ
2130 cpumask_setall(top_cpuset.effective_cpus);
2131 nodes_setall(top_cpuset.effective_mems);
1da177e4 2132
3e0d98b9 2133 fmeter_init(&top_cpuset.fmeter);
029190c5 2134 set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
1d3504fc 2135 top_cpuset.relax_domain_level = -1;
1da177e4 2136
1da177e4
LT
2137 err = register_filesystem(&cpuset_fs_type);
2138 if (err < 0)
8793d854
PM
2139 return err;
2140
2341d1b6
LZ
2141 if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL))
2142 BUG();
2143
8793d854 2144 return 0;
1da177e4
LT
2145}
2146
b1aac8bb 2147/*
cf417141 2148 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
b1aac8bb
PJ
2149 * or memory nodes, we need to walk over the cpuset hierarchy,
2150 * removing that CPU or node from all cpusets. If this removes the
956db3ca
CW
2151 * last CPU or node from a cpuset, then move the tasks in the empty
2152 * cpuset to its next-highest non-empty parent.
b1aac8bb 2153 */
956db3ca
CW
2154static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
2155{
2156 struct cpuset *parent;
2157
956db3ca
CW
2158 /*
2159 * Find its next-highest non-empty parent, (top cpuset
2160 * has online cpus, so can't be empty).
2161 */
c431069f 2162 parent = parent_cs(cs);
300ed6cb 2163 while (cpumask_empty(parent->cpus_allowed) ||
b4501295 2164 nodes_empty(parent->mems_allowed))
c431069f 2165 parent = parent_cs(parent);
956db3ca 2166
8cc99345 2167 if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
12d3089c 2168 pr_err("cpuset: failed to transfer tasks out of empty cpuset ");
e61734c5
TH
2169 pr_cont_cgroup_name(cs->css.cgroup);
2170 pr_cont("\n");
8cc99345 2171 }
956db3ca
CW
2172}
2173
be4c9dd7
LZ
2174static void
2175hotplug_update_tasks_legacy(struct cpuset *cs,
2176 struct cpumask *new_cpus, nodemask_t *new_mems,
2177 bool cpus_updated, bool mems_updated)
390a36aa
LZ
2178{
2179 bool is_empty;
2180
8447a0fe 2181 spin_lock_irq(&callback_lock);
be4c9dd7
LZ
2182 cpumask_copy(cs->cpus_allowed, new_cpus);
2183 cpumask_copy(cs->effective_cpus, new_cpus);
2184 cs->mems_allowed = *new_mems;
2185 cs->effective_mems = *new_mems;
8447a0fe 2186 spin_unlock_irq(&callback_lock);
390a36aa
LZ
2187
2188 /*
2189 * Don't call update_tasks_cpumask() if the cpuset becomes empty,
2190 * as the tasks will be migratecd to an ancestor.
2191 */
be4c9dd7 2192 if (cpus_updated && !cpumask_empty(cs->cpus_allowed))
390a36aa 2193 update_tasks_cpumask(cs);
be4c9dd7 2194 if (mems_updated && !nodes_empty(cs->mems_allowed))
390a36aa
LZ
2195 update_tasks_nodemask(cs);
2196
2197 is_empty = cpumask_empty(cs->cpus_allowed) ||
2198 nodes_empty(cs->mems_allowed);
2199
2200 mutex_unlock(&cpuset_mutex);
2201
2202 /*
2203 * Move tasks to the nearest ancestor with execution resources,
2204 * This is full cgroup operation which will also call back into
2205 * cpuset. Should be done outside any lock.
2206 */
2207 if (is_empty)
2208 remove_tasks_in_empty_cpuset(cs);
2209
2210 mutex_lock(&cpuset_mutex);
2211}
2212
be4c9dd7
LZ
2213static void
2214hotplug_update_tasks(struct cpuset *cs,
2215 struct cpumask *new_cpus, nodemask_t *new_mems,
2216 bool cpus_updated, bool mems_updated)
390a36aa 2217{
be4c9dd7
LZ
2218 if (cpumask_empty(new_cpus))
2219 cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus);
2220 if (nodes_empty(*new_mems))
2221 *new_mems = parent_cs(cs)->effective_mems;
2222
8447a0fe 2223 spin_lock_irq(&callback_lock);
be4c9dd7
LZ
2224 cpumask_copy(cs->effective_cpus, new_cpus);
2225 cs->effective_mems = *new_mems;
8447a0fe 2226 spin_unlock_irq(&callback_lock);
390a36aa 2227
be4c9dd7 2228 if (cpus_updated)
390a36aa 2229 update_tasks_cpumask(cs);
be4c9dd7 2230 if (mems_updated)
390a36aa
LZ
2231 update_tasks_nodemask(cs);
2232}
2233
deb7aa30 2234/**
388afd85 2235 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
deb7aa30 2236 * @cs: cpuset in interest
956db3ca 2237 *
deb7aa30
TH
2238 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
2239 * offline, update @cs accordingly. If @cs ends up with no CPU or memory,
2240 * all its tasks are moved to the nearest ancestor with both resources.
80d1fa64 2241 */
388afd85 2242static void cpuset_hotplug_update_tasks(struct cpuset *cs)
80d1fa64 2243{
be4c9dd7
LZ
2244 static cpumask_t new_cpus;
2245 static nodemask_t new_mems;
2246 bool cpus_updated;
2247 bool mems_updated;
e44193d3
LZ
2248retry:
2249 wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
80d1fa64 2250
5d21cc2d 2251 mutex_lock(&cpuset_mutex);
7ddf96b0 2252
e44193d3
LZ
2253 /*
2254 * We have raced with task attaching. We wait until attaching
2255 * is finished, so we won't attach a task to an empty cpuset.
2256 */
2257 if (cs->attach_in_progress) {
2258 mutex_unlock(&cpuset_mutex);
2259 goto retry;
2260 }
2261
be4c9dd7
LZ
2262 cpumask_and(&new_cpus, cs->cpus_allowed, parent_cs(cs)->effective_cpus);
2263 nodes_and(new_mems, cs->mems_allowed, parent_cs(cs)->effective_mems);
80d1fa64 2264
be4c9dd7
LZ
2265 cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus);
2266 mems_updated = !nodes_equal(new_mems, cs->effective_mems);
deb7aa30 2267
9e10a130 2268 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys))
be4c9dd7
LZ
2269 hotplug_update_tasks(cs, &new_cpus, &new_mems,
2270 cpus_updated, mems_updated);
390a36aa 2271 else
be4c9dd7
LZ
2272 hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems,
2273 cpus_updated, mems_updated);
8d033948 2274
5d21cc2d 2275 mutex_unlock(&cpuset_mutex);
b1aac8bb
PJ
2276}
2277
deb7aa30 2278/**
3a5a6d0c 2279 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
956db3ca 2280 *
deb7aa30
TH
2281 * This function is called after either CPU or memory configuration has
2282 * changed and updates cpuset accordingly. The top_cpuset is always
2283 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
2284 * order to make cpusets transparent (of no affect) on systems that are
2285 * actively using CPU hotplug but making no active use of cpusets.
956db3ca 2286 *
deb7aa30 2287 * Non-root cpusets are only affected by offlining. If any CPUs or memory
388afd85
LZ
2288 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
2289 * all descendants.
956db3ca 2290 *
deb7aa30
TH
2291 * Note that CPU offlining during suspend is ignored. We don't modify
2292 * cpusets across suspend/resume cycles at all.
956db3ca 2293 */
3a5a6d0c 2294static void cpuset_hotplug_workfn(struct work_struct *work)
b1aac8bb 2295{
5c5cc623
LZ
2296 static cpumask_t new_cpus;
2297 static nodemask_t new_mems;
deb7aa30 2298 bool cpus_updated, mems_updated;
9e10a130 2299 bool on_dfl = cgroup_subsys_on_dfl(cpuset_cgrp_subsys);
b1aac8bb 2300
5d21cc2d 2301 mutex_lock(&cpuset_mutex);
956db3ca 2302
deb7aa30
TH
2303 /* fetch the available cpus/mems and find out which changed how */
2304 cpumask_copy(&new_cpus, cpu_active_mask);
2305 new_mems = node_states[N_MEMORY];
7ddf96b0 2306
7e88291b
LZ
2307 cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus);
2308 mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems);
7ddf96b0 2309
deb7aa30
TH
2310 /* synchronize cpus_allowed to cpu_active_mask */
2311 if (cpus_updated) {
8447a0fe 2312 spin_lock_irq(&callback_lock);
7e88291b
LZ
2313 if (!on_dfl)
2314 cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
1344ab9c 2315 cpumask_copy(top_cpuset.effective_cpus, &new_cpus);
8447a0fe 2316 spin_unlock_irq(&callback_lock);
deb7aa30
TH
2317 /* we don't mess with cpumasks of tasks in top_cpuset */
2318 }
b4501295 2319
deb7aa30
TH
2320 /* synchronize mems_allowed to N_MEMORY */
2321 if (mems_updated) {
8447a0fe 2322 spin_lock_irq(&callback_lock);
7e88291b
LZ
2323 if (!on_dfl)
2324 top_cpuset.mems_allowed = new_mems;
1344ab9c 2325 top_cpuset.effective_mems = new_mems;
8447a0fe 2326 spin_unlock_irq(&callback_lock);
d66393e5 2327 update_tasks_nodemask(&top_cpuset);
deb7aa30 2328 }
b4501295 2329
388afd85
LZ
2330 mutex_unlock(&cpuset_mutex);
2331
5c5cc623
LZ
2332 /* if cpus or mems changed, we need to propagate to descendants */
2333 if (cpus_updated || mems_updated) {
deb7aa30 2334 struct cpuset *cs;
492eb21b 2335 struct cgroup_subsys_state *pos_css;
f9b4fb8d 2336
fc560a26 2337 rcu_read_lock();
492eb21b 2338 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
ec903c0c 2339 if (cs == &top_cpuset || !css_tryget_online(&cs->css))
388afd85
LZ
2340 continue;
2341 rcu_read_unlock();
7ddf96b0 2342
388afd85 2343 cpuset_hotplug_update_tasks(cs);
b4501295 2344
388afd85
LZ
2345 rcu_read_lock();
2346 css_put(&cs->css);
2347 }
2348 rcu_read_unlock();
2349 }
8d033948 2350
deb7aa30 2351 /* rebuild sched domains if cpus_allowed has changed */
e0e80a02
LZ
2352 if (cpus_updated)
2353 rebuild_sched_domains();
b1aac8bb
PJ
2354}
2355
7ddf96b0 2356void cpuset_update_active_cpus(bool cpu_online)
4c4d50f7 2357{
3a5a6d0c
TH
2358 /*
2359 * We're inside cpu hotplug critical region which usually nests
2360 * inside cgroup synchronization. Bounce actual hotplug processing
2361 * to a work item to avoid reverse locking order.
2362 *
2363 * We still need to do partition_sched_domains() synchronously;
2364 * otherwise, the scheduler will get confused and put tasks to the
2365 * dead CPU. Fall back to the default single domain.
2366 * cpuset_hotplug_workfn() will rebuild it as necessary.
2367 */
2368 partition_sched_domains(1, NULL, NULL);
2369 schedule_work(&cpuset_hotplug_work);
4c4d50f7 2370}
4c4d50f7 2371
38837fc7 2372/*
38d7bee9
LJ
2373 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
2374 * Call this routine anytime after node_states[N_MEMORY] changes.
a1cd2b13 2375 * See cpuset_update_active_cpus() for CPU hotplug handling.
38837fc7 2376 */
f481891f
MX
2377static int cpuset_track_online_nodes(struct notifier_block *self,
2378 unsigned long action, void *arg)
38837fc7 2379{
3a5a6d0c 2380 schedule_work(&cpuset_hotplug_work);
f481891f 2381 return NOTIFY_OK;
38837fc7 2382}
d8f10cb3
AM
2383
2384static struct notifier_block cpuset_track_online_nodes_nb = {
2385 .notifier_call = cpuset_track_online_nodes,
2386 .priority = 10, /* ??! */
2387};
38837fc7 2388
1da177e4
LT
2389/**
2390 * cpuset_init_smp - initialize cpus_allowed
2391 *
2392 * Description: Finish top cpuset after cpu, node maps are initialized
d8f10cb3 2393 */
1da177e4
LT
2394void __init cpuset_init_smp(void)
2395{
6ad4c188 2396 cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
38d7bee9 2397 top_cpuset.mems_allowed = node_states[N_MEMORY];
33ad801d 2398 top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
4c4d50f7 2399
e2b9a3d7
LZ
2400 cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask);
2401 top_cpuset.effective_mems = node_states[N_MEMORY];
2402
d8f10cb3 2403 register_hotmemory_notifier(&cpuset_track_online_nodes_nb);
e93ad19d
TH
2404
2405 cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0);
2406 BUG_ON(!cpuset_migrate_mm_wq);
1da177e4
LT
2407}
2408
2409/**
1da177e4
LT
2410 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
2411 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
6af866af 2412 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
1da177e4 2413 *
300ed6cb 2414 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
1da177e4 2415 * attached to the specified @tsk. Guaranteed to return some non-empty
5f054e31 2416 * subset of cpu_online_mask, even if this means going outside the
1da177e4
LT
2417 * tasks cpuset.
2418 **/
2419
6af866af 2420void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
1da177e4 2421{
8447a0fe
VD
2422 unsigned long flags;
2423
2424 spin_lock_irqsave(&callback_lock, flags);
b8dadcb5 2425 rcu_read_lock();
ae1c8023 2426 guarantee_online_cpus(task_cs(tsk), pmask);
b8dadcb5 2427 rcu_read_unlock();
8447a0fe 2428 spin_unlock_irqrestore(&callback_lock, flags);
1da177e4
LT
2429}
2430
2baab4e9 2431void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
9084bb82 2432{
9084bb82 2433 rcu_read_lock();
ae1c8023 2434 do_set_cpus_allowed(tsk, task_cs(tsk)->effective_cpus);
9084bb82
ON
2435 rcu_read_unlock();
2436
2437 /*
2438 * We own tsk->cpus_allowed, nobody can change it under us.
2439 *
2440 * But we used cs && cs->cpus_allowed lockless and thus can
2441 * race with cgroup_attach_task() or update_cpumask() and get
2442 * the wrong tsk->cpus_allowed. However, both cases imply the
2443 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
2444 * which takes task_rq_lock().
2445 *
2446 * If we are called after it dropped the lock we must see all
2447 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
2448 * set any mask even if it is not right from task_cs() pov,
2449 * the pending set_cpus_allowed_ptr() will fix things.
2baab4e9
PZ
2450 *
2451 * select_fallback_rq() will fix things ups and set cpu_possible_mask
2452 * if required.
9084bb82 2453 */
9084bb82
ON
2454}
2455
8f4ab07f 2456void __init cpuset_init_current_mems_allowed(void)
1da177e4 2457{
f9a86fcb 2458 nodes_setall(current->mems_allowed);
1da177e4
LT
2459}
2460
909d75a3
PJ
2461/**
2462 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
2463 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
2464 *
2465 * Description: Returns the nodemask_t mems_allowed of the cpuset
2466 * attached to the specified @tsk. Guaranteed to return some non-empty
38d7bee9 2467 * subset of node_states[N_MEMORY], even if this means going outside the
909d75a3
PJ
2468 * tasks cpuset.
2469 **/
2470
2471nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
2472{
2473 nodemask_t mask;
8447a0fe 2474 unsigned long flags;
909d75a3 2475
8447a0fe 2476 spin_lock_irqsave(&callback_lock, flags);
b8dadcb5 2477 rcu_read_lock();
ae1c8023 2478 guarantee_online_mems(task_cs(tsk), &mask);
b8dadcb5 2479 rcu_read_unlock();
8447a0fe 2480 spin_unlock_irqrestore(&callback_lock, flags);
909d75a3
PJ
2481
2482 return mask;
2483}
2484
d9fd8a6d 2485/**
19770b32
MG
2486 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
2487 * @nodemask: the nodemask to be checked
d9fd8a6d 2488 *
19770b32 2489 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
1da177e4 2490 */
19770b32 2491int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
1da177e4 2492{
19770b32 2493 return nodes_intersects(*nodemask, current->mems_allowed);
1da177e4
LT
2494}
2495
9bf2229f 2496/*
78608366
PM
2497 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
2498 * mem_hardwall ancestor to the specified cpuset. Call holding
8447a0fe 2499 * callback_lock. If no ancestor is mem_exclusive or mem_hardwall
78608366 2500 * (an unusual configuration), then returns the root cpuset.
9bf2229f 2501 */
c9710d80 2502static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
9bf2229f 2503{
c431069f
TH
2504 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
2505 cs = parent_cs(cs);
9bf2229f
PJ
2506 return cs;
2507}
2508
d9fd8a6d 2509/**
344736f2 2510 * cpuset_node_allowed - Can we allocate on a memory node?
a1bc5a4e 2511 * @node: is this an allowed node?
02a0e53d 2512 * @gfp_mask: memory allocation flags
d9fd8a6d 2513 *
6e276d2a
DR
2514 * If we're in interrupt, yes, we can always allocate. If @node is set in
2515 * current's mems_allowed, yes. If it's not a __GFP_HARDWALL request and this
2516 * node is set in the nearest hardwalled cpuset ancestor to current's cpuset,
2517 * yes. If current has access to memory reserves due to TIF_MEMDIE, yes.
9bf2229f
PJ
2518 * Otherwise, no.
2519 *
2520 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
c596d9f3
DR
2521 * and do not allow allocations outside the current tasks cpuset
2522 * unless the task has been OOM killed as is marked TIF_MEMDIE.
9bf2229f 2523 * GFP_KERNEL allocations are not so marked, so can escape to the
78608366 2524 * nearest enclosing hardwalled ancestor cpuset.
9bf2229f 2525 *
8447a0fe 2526 * Scanning up parent cpusets requires callback_lock. The
02a0e53d
PJ
2527 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
2528 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
2529 * current tasks mems_allowed came up empty on the first pass over
2530 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
8447a0fe 2531 * cpuset are short of memory, might require taking the callback_lock.
9bf2229f 2532 *
36be57ff 2533 * The first call here from mm/page_alloc:get_page_from_freelist()
02a0e53d
PJ
2534 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
2535 * so no allocation on a node outside the cpuset is allowed (unless
2536 * in interrupt, of course).
36be57ff
PJ
2537 *
2538 * The second pass through get_page_from_freelist() doesn't even call
2539 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
2540 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
2541 * in alloc_flags. That logic and the checks below have the combined
2542 * affect that:
9bf2229f
PJ
2543 * in_interrupt - any node ok (current task context irrelevant)
2544 * GFP_ATOMIC - any node ok
c596d9f3 2545 * TIF_MEMDIE - any node ok
78608366 2546 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
9bf2229f 2547 * GFP_USER - only nodes in current tasks mems allowed ok.
02a0e53d 2548 */
002f2906 2549bool __cpuset_node_allowed(int node, gfp_t gfp_mask)
1da177e4 2550{
c9710d80 2551 struct cpuset *cs; /* current cpuset ancestors */
29afd49b 2552 int allowed; /* is allocation in zone z allowed? */
8447a0fe 2553 unsigned long flags;
9bf2229f 2554
6e276d2a 2555 if (in_interrupt())
002f2906 2556 return true;
9bf2229f 2557 if (node_isset(node, current->mems_allowed))
002f2906 2558 return true;
c596d9f3
DR
2559 /*
2560 * Allow tasks that have access to memory reserves because they have
2561 * been OOM killed to get memory anywhere.
2562 */
2563 if (unlikely(test_thread_flag(TIF_MEMDIE)))
002f2906 2564 return true;
9bf2229f 2565 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
002f2906 2566 return false;
9bf2229f 2567
5563e770 2568 if (current->flags & PF_EXITING) /* Let dying task have memory */
002f2906 2569 return true;
5563e770 2570
9bf2229f 2571 /* Not hardwall and node outside mems_allowed: scan up cpusets */
8447a0fe 2572 spin_lock_irqsave(&callback_lock, flags);
053199ed 2573
b8dadcb5 2574 rcu_read_lock();
78608366 2575 cs = nearest_hardwall_ancestor(task_cs(current));
99afb0fd 2576 allowed = node_isset(node, cs->mems_allowed);
b8dadcb5 2577 rcu_read_unlock();
053199ed 2578
8447a0fe 2579 spin_unlock_irqrestore(&callback_lock, flags);
9bf2229f 2580 return allowed;
1da177e4
LT
2581}
2582
825a46af 2583/**
6adef3eb
JS
2584 * cpuset_mem_spread_node() - On which node to begin search for a file page
2585 * cpuset_slab_spread_node() - On which node to begin search for a slab page
825a46af
PJ
2586 *
2587 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
2588 * tasks in a cpuset with is_spread_page or is_spread_slab set),
2589 * and if the memory allocation used cpuset_mem_spread_node()
2590 * to determine on which node to start looking, as it will for
2591 * certain page cache or slab cache pages such as used for file
2592 * system buffers and inode caches, then instead of starting on the
2593 * local node to look for a free page, rather spread the starting
2594 * node around the tasks mems_allowed nodes.
2595 *
2596 * We don't have to worry about the returned node being offline
2597 * because "it can't happen", and even if it did, it would be ok.
2598 *
2599 * The routines calling guarantee_online_mems() are careful to
2600 * only set nodes in task->mems_allowed that are online. So it
2601 * should not be possible for the following code to return an
2602 * offline node. But if it did, that would be ok, as this routine
2603 * is not returning the node where the allocation must be, only
2604 * the node where the search should start. The zonelist passed to
2605 * __alloc_pages() will include all nodes. If the slab allocator
2606 * is passed an offline node, it will fall back to the local node.
2607 * See kmem_cache_alloc_node().
2608 */
2609
6adef3eb 2610static int cpuset_spread_node(int *rotor)
825a46af 2611{
0edaf86c 2612 return *rotor = next_node_in(*rotor, current->mems_allowed);
825a46af 2613}
6adef3eb
JS
2614
2615int cpuset_mem_spread_node(void)
2616{
778d3b0f
MH
2617 if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
2618 current->cpuset_mem_spread_rotor =
2619 node_random(&current->mems_allowed);
2620
6adef3eb
JS
2621 return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
2622}
2623
2624int cpuset_slab_spread_node(void)
2625{
778d3b0f
MH
2626 if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
2627 current->cpuset_slab_spread_rotor =
2628 node_random(&current->mems_allowed);
2629
6adef3eb
JS
2630 return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
2631}
2632
825a46af
PJ
2633EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
2634
ef08e3b4 2635/**
bbe373f2
DR
2636 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
2637 * @tsk1: pointer to task_struct of some task.
2638 * @tsk2: pointer to task_struct of some other task.
2639 *
2640 * Description: Return true if @tsk1's mems_allowed intersects the
2641 * mems_allowed of @tsk2. Used by the OOM killer to determine if
2642 * one of the task's memory usage might impact the memory available
2643 * to the other.
ef08e3b4
PJ
2644 **/
2645
bbe373f2
DR
2646int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
2647 const struct task_struct *tsk2)
ef08e3b4 2648{
bbe373f2 2649 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
ef08e3b4
PJ
2650}
2651
75aa1994 2652/**
da39da3a 2653 * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed
75aa1994 2654 *
da39da3a 2655 * Description: Prints current's name, cpuset name, and cached copy of its
b8dadcb5 2656 * mems_allowed to the kernel log.
75aa1994 2657 */
da39da3a 2658void cpuset_print_current_mems_allowed(void)
75aa1994 2659{
b8dadcb5 2660 struct cgroup *cgrp;
75aa1994 2661
b8dadcb5 2662 rcu_read_lock();
63f43f55 2663
da39da3a
DR
2664 cgrp = task_cs(current)->css.cgroup;
2665 pr_info("%s cpuset=", current->comm);
e61734c5 2666 pr_cont_cgroup_name(cgrp);
da39da3a
DR
2667 pr_cont(" mems_allowed=%*pbl\n",
2668 nodemask_pr_args(&current->mems_allowed));
f440d98f 2669
cfb5966b 2670 rcu_read_unlock();
75aa1994
DR
2671}
2672
3e0d98b9
PJ
2673/*
2674 * Collection of memory_pressure is suppressed unless
2675 * this flag is enabled by writing "1" to the special
2676 * cpuset file 'memory_pressure_enabled' in the root cpuset.
2677 */
2678
c5b2aff8 2679int cpuset_memory_pressure_enabled __read_mostly;
3e0d98b9
PJ
2680
2681/**
2682 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
2683 *
2684 * Keep a running average of the rate of synchronous (direct)
2685 * page reclaim efforts initiated by tasks in each cpuset.
2686 *
2687 * This represents the rate at which some task in the cpuset
2688 * ran low on memory on all nodes it was allowed to use, and
2689 * had to enter the kernels page reclaim code in an effort to
2690 * create more free memory by tossing clean pages or swapping
2691 * or writing dirty pages.
2692 *
2693 * Display to user space in the per-cpuset read-only file
2694 * "memory_pressure". Value displayed is an integer
2695 * representing the recent rate of entry into the synchronous
2696 * (direct) page reclaim by any task attached to the cpuset.
2697 **/
2698
2699void __cpuset_memory_pressure_bump(void)
2700{
b8dadcb5 2701 rcu_read_lock();
8793d854 2702 fmeter_markevent(&task_cs(current)->fmeter);
b8dadcb5 2703 rcu_read_unlock();
3e0d98b9
PJ
2704}
2705
8793d854 2706#ifdef CONFIG_PROC_PID_CPUSET
1da177e4
LT
2707/*
2708 * proc_cpuset_show()
2709 * - Print tasks cpuset path into seq_file.
2710 * - Used for /proc/<pid>/cpuset.
053199ed
PJ
2711 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
2712 * doesn't really matter if tsk->cpuset changes after we read it,
5d21cc2d 2713 * and we take cpuset_mutex, keeping cpuset_attach() from changing it
2df167a3 2714 * anyway.
1da177e4 2715 */
52de4779
ZL
2716int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns,
2717 struct pid *pid, struct task_struct *tsk)
1da177e4 2718{
4c737b41 2719 char *buf;
8793d854 2720 struct cgroup_subsys_state *css;
99f89551 2721 int retval;
1da177e4 2722
99f89551 2723 retval = -ENOMEM;
e61734c5 2724 buf = kmalloc(PATH_MAX, GFP_KERNEL);
1da177e4 2725 if (!buf)
99f89551
EB
2726 goto out;
2727
a79a908f 2728 css = task_get_css(tsk, cpuset_cgrp_id);
4c737b41
TH
2729 retval = cgroup_path_ns(css->cgroup, buf, PATH_MAX,
2730 current->nsproxy->cgroup_ns);
a79a908f 2731 css_put(css);
4c737b41 2732 if (retval >= PATH_MAX)
679a5e3f
TH
2733 retval = -ENAMETOOLONG;
2734 if (retval < 0)
52de4779 2735 goto out_free;
4c737b41 2736 seq_puts(m, buf);
1da177e4 2737 seq_putc(m, '\n');
e61734c5 2738 retval = 0;
99f89551 2739out_free:
1da177e4 2740 kfree(buf);
99f89551 2741out:
1da177e4
LT
2742 return retval;
2743}
8793d854 2744#endif /* CONFIG_PROC_PID_CPUSET */
1da177e4 2745
d01d4827 2746/* Display task mems_allowed in /proc/<pid>/status file. */
df5f8314
EB
2747void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
2748{
e8e6d97c
TH
2749 seq_printf(m, "Mems_allowed:\t%*pb\n",
2750 nodemask_pr_args(&task->mems_allowed));
2751 seq_printf(m, "Mems_allowed_list:\t%*pbl\n",
2752 nodemask_pr_args(&task->mems_allowed));
1da177e4 2753}