]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - kernel/cgroup/cpuset.c
Merge tag 'efi-urgent' of git://git.kernel.org/pub/scm/linux/kernel/git/efi/efi into...
[mirror_ubuntu-artful-kernel.git] / kernel / cgroup / cpuset.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/cpuset.c
3 *
4 * Processor and Memory placement constraints for sets of tasks.
5 *
6 * Copyright (C) 2003 BULL SA.
029190c5 7 * Copyright (C) 2004-2007 Silicon Graphics, Inc.
8793d854 8 * Copyright (C) 2006 Google, Inc
1da177e4
LT
9 *
10 * Portions derived from Patrick Mochel's sysfs code.
11 * sysfs is Copyright (c) 2001-3 Patrick Mochel
1da177e4 12 *
825a46af 13 * 2003-10-10 Written by Simon Derr.
1da177e4 14 * 2003-10-22 Updates by Stephen Hemminger.
825a46af 15 * 2004 May-July Rework by Paul Jackson.
8793d854 16 * 2006 Rework by Paul Menage to use generic cgroups
cf417141
MK
17 * 2008 Rework of the scheduler domains and CPU hotplug handling
18 * by Max Krasnyansky
1da177e4
LT
19 *
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
23 */
24
1da177e4
LT
25#include <linux/cpu.h>
26#include <linux/cpumask.h>
27#include <linux/cpuset.h>
28#include <linux/err.h>
29#include <linux/errno.h>
30#include <linux/file.h>
31#include <linux/fs.h>
32#include <linux/init.h>
33#include <linux/interrupt.h>
34#include <linux/kernel.h>
35#include <linux/kmod.h>
36#include <linux/list.h>
68860ec1 37#include <linux/mempolicy.h>
1da177e4 38#include <linux/mm.h>
f481891f 39#include <linux/memory.h>
9984de1a 40#include <linux/export.h>
1da177e4
LT
41#include <linux/mount.h>
42#include <linux/namei.h>
43#include <linux/pagemap.h>
44#include <linux/proc_fs.h>
6b9c2603 45#include <linux/rcupdate.h>
1da177e4 46#include <linux/sched.h>
6e84f315 47#include <linux/sched/mm.h>
f719ff9b 48#include <linux/sched/task.h>
1da177e4 49#include <linux/seq_file.h>
22fb52dd 50#include <linux/security.h>
1da177e4 51#include <linux/slab.h>
1da177e4
LT
52#include <linux/spinlock.h>
53#include <linux/stat.h>
54#include <linux/string.h>
55#include <linux/time.h>
d2b43658 56#include <linux/time64.h>
1da177e4
LT
57#include <linux/backing-dev.h>
58#include <linux/sort.h>
59
7c0f6ba6 60#include <linux/uaccess.h>
60063497 61#include <linux/atomic.h>
3d3f26a7 62#include <linux/mutex.h>
956db3ca 63#include <linux/cgroup.h>
e44193d3 64#include <linux/wait.h>
1da177e4 65
002f2906 66DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key);
202f72d5 67
3e0d98b9
PJ
68/* See "Frequency meter" comments, below. */
69
70struct fmeter {
71 int cnt; /* unprocessed events count */
72 int val; /* most recent output value */
d2b43658 73 time64_t time; /* clock (secs) when val computed */
3e0d98b9
PJ
74 spinlock_t lock; /* guards read or write of above */
75};
76
1da177e4 77struct cpuset {
8793d854
PM
78 struct cgroup_subsys_state css;
79
1da177e4 80 unsigned long flags; /* "unsigned long" so bitops work */
e2b9a3d7 81
7e88291b
LZ
82 /*
83 * On default hierarchy:
84 *
85 * The user-configured masks can only be changed by writing to
86 * cpuset.cpus and cpuset.mems, and won't be limited by the
87 * parent masks.
88 *
89 * The effective masks is the real masks that apply to the tasks
90 * in the cpuset. They may be changed if the configured masks are
91 * changed or hotplug happens.
92 *
93 * effective_mask == configured_mask & parent's effective_mask,
94 * and if it ends up empty, it will inherit the parent's mask.
95 *
96 *
97 * On legacy hierachy:
98 *
99 * The user-configured masks are always the same with effective masks.
100 */
101
e2b9a3d7
LZ
102 /* user-configured CPUs and Memory Nodes allow to tasks */
103 cpumask_var_t cpus_allowed;
104 nodemask_t mems_allowed;
105
106 /* effective CPUs and Memory Nodes allow to tasks */
107 cpumask_var_t effective_cpus;
108 nodemask_t effective_mems;
1da177e4 109
33ad801d
LZ
110 /*
111 * This is old Memory Nodes tasks took on.
112 *
113 * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
114 * - A new cpuset's old_mems_allowed is initialized when some
115 * task is moved into it.
116 * - old_mems_allowed is used in cpuset_migrate_mm() when we change
117 * cpuset.mems_allowed and have tasks' nodemask updated, and
118 * then old_mems_allowed is updated to mems_allowed.
119 */
120 nodemask_t old_mems_allowed;
121
3e0d98b9 122 struct fmeter fmeter; /* memory_pressure filter */
029190c5 123
452477fa
TH
124 /*
125 * Tasks are being attached to this cpuset. Used to prevent
126 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
127 */
128 int attach_in_progress;
129
029190c5
PJ
130 /* partition number for rebuild_sched_domains() */
131 int pn;
956db3ca 132
1d3504fc
HS
133 /* for custom sched domain */
134 int relax_domain_level;
1da177e4
LT
135};
136
a7c6d554 137static inline struct cpuset *css_cs(struct cgroup_subsys_state *css)
8793d854 138{
a7c6d554 139 return css ? container_of(css, struct cpuset, css) : NULL;
8793d854
PM
140}
141
142/* Retrieve the cpuset for a task */
143static inline struct cpuset *task_cs(struct task_struct *task)
144{
073219e9 145 return css_cs(task_css(task, cpuset_cgrp_id));
8793d854 146}
8793d854 147
c9710d80 148static inline struct cpuset *parent_cs(struct cpuset *cs)
c431069f 149{
5c9d535b 150 return css_cs(cs->css.parent);
c431069f
TH
151}
152
b246272e
DR
153#ifdef CONFIG_NUMA
154static inline bool task_has_mempolicy(struct task_struct *task)
155{
156 return task->mempolicy;
157}
158#else
159static inline bool task_has_mempolicy(struct task_struct *task)
160{
161 return false;
162}
163#endif
164
165
1da177e4
LT
166/* bits in struct cpuset flags field */
167typedef enum {
efeb77b2 168 CS_ONLINE,
1da177e4
LT
169 CS_CPU_EXCLUSIVE,
170 CS_MEM_EXCLUSIVE,
78608366 171 CS_MEM_HARDWALL,
45b07ef3 172 CS_MEMORY_MIGRATE,
029190c5 173 CS_SCHED_LOAD_BALANCE,
825a46af
PJ
174 CS_SPREAD_PAGE,
175 CS_SPREAD_SLAB,
1da177e4
LT
176} cpuset_flagbits_t;
177
178/* convenient tests for these bits */
efeb77b2
TH
179static inline bool is_cpuset_online(const struct cpuset *cs)
180{
181 return test_bit(CS_ONLINE, &cs->flags);
182}
183
1da177e4
LT
184static inline int is_cpu_exclusive(const struct cpuset *cs)
185{
7b5b9ef0 186 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
1da177e4
LT
187}
188
189static inline int is_mem_exclusive(const struct cpuset *cs)
190{
7b5b9ef0 191 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
1da177e4
LT
192}
193
78608366
PM
194static inline int is_mem_hardwall(const struct cpuset *cs)
195{
196 return test_bit(CS_MEM_HARDWALL, &cs->flags);
197}
198
029190c5
PJ
199static inline int is_sched_load_balance(const struct cpuset *cs)
200{
201 return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
202}
203
45b07ef3
PJ
204static inline int is_memory_migrate(const struct cpuset *cs)
205{
7b5b9ef0 206 return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
45b07ef3
PJ
207}
208
825a46af
PJ
209static inline int is_spread_page(const struct cpuset *cs)
210{
211 return test_bit(CS_SPREAD_PAGE, &cs->flags);
212}
213
214static inline int is_spread_slab(const struct cpuset *cs)
215{
216 return test_bit(CS_SPREAD_SLAB, &cs->flags);
217}
218
1da177e4 219static struct cpuset top_cpuset = {
efeb77b2
TH
220 .flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
221 (1 << CS_MEM_EXCLUSIVE)),
1da177e4
LT
222};
223
ae8086ce
TH
224/**
225 * cpuset_for_each_child - traverse online children of a cpuset
226 * @child_cs: loop cursor pointing to the current child
492eb21b 227 * @pos_css: used for iteration
ae8086ce
TH
228 * @parent_cs: target cpuset to walk children of
229 *
230 * Walk @child_cs through the online children of @parent_cs. Must be used
231 * with RCU read locked.
232 */
492eb21b
TH
233#define cpuset_for_each_child(child_cs, pos_css, parent_cs) \
234 css_for_each_child((pos_css), &(parent_cs)->css) \
235 if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
ae8086ce 236
fc560a26
TH
237/**
238 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
239 * @des_cs: loop cursor pointing to the current descendant
492eb21b 240 * @pos_css: used for iteration
fc560a26
TH
241 * @root_cs: target cpuset to walk ancestor of
242 *
243 * Walk @des_cs through the online descendants of @root_cs. Must be used
492eb21b 244 * with RCU read locked. The caller may modify @pos_css by calling
bd8815a6
TH
245 * css_rightmost_descendant() to skip subtree. @root_cs is included in the
246 * iteration and the first node to be visited.
fc560a26 247 */
492eb21b
TH
248#define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs) \
249 css_for_each_descendant_pre((pos_css), &(root_cs)->css) \
250 if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
fc560a26 251
1da177e4 252/*
8447a0fe
VD
253 * There are two global locks guarding cpuset structures - cpuset_mutex and
254 * callback_lock. We also require taking task_lock() when dereferencing a
255 * task's cpuset pointer. See "The task_lock() exception", at the end of this
256 * comment.
5d21cc2d 257 *
8447a0fe 258 * A task must hold both locks to modify cpusets. If a task holds
5d21cc2d 259 * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
8447a0fe 260 * is the only task able to also acquire callback_lock and be able to
5d21cc2d
TH
261 * modify cpusets. It can perform various checks on the cpuset structure
262 * first, knowing nothing will change. It can also allocate memory while
263 * just holding cpuset_mutex. While it is performing these checks, various
8447a0fe
VD
264 * callback routines can briefly acquire callback_lock to query cpusets.
265 * Once it is ready to make the changes, it takes callback_lock, blocking
5d21cc2d 266 * everyone else.
053199ed
PJ
267 *
268 * Calls to the kernel memory allocator can not be made while holding
8447a0fe 269 * callback_lock, as that would risk double tripping on callback_lock
053199ed
PJ
270 * from one of the callbacks into the cpuset code from within
271 * __alloc_pages().
272 *
8447a0fe 273 * If a task is only holding callback_lock, then it has read-only
053199ed
PJ
274 * access to cpusets.
275 *
58568d2a
MX
276 * Now, the task_struct fields mems_allowed and mempolicy may be changed
277 * by other task, we use alloc_lock in the task_struct fields to protect
278 * them.
053199ed 279 *
8447a0fe 280 * The cpuset_common_file_read() handlers only hold callback_lock across
053199ed
PJ
281 * small pieces of code, such as when reading out possibly multi-word
282 * cpumasks and nodemasks.
283 *
2df167a3
PM
284 * Accessing a task's cpuset should be done in accordance with the
285 * guidelines for accessing subsystem state in kernel/cgroup.c
1da177e4
LT
286 */
287
5d21cc2d 288static DEFINE_MUTEX(cpuset_mutex);
8447a0fe 289static DEFINE_SPINLOCK(callback_lock);
4247bdc6 290
e93ad19d
TH
291static struct workqueue_struct *cpuset_migrate_mm_wq;
292
3a5a6d0c
TH
293/*
294 * CPU / memory hotplug is handled asynchronously.
295 */
296static void cpuset_hotplug_workfn(struct work_struct *work);
3a5a6d0c
TH
297static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);
298
e44193d3
LZ
299static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);
300
cf417141
MK
301/*
302 * This is ugly, but preserves the userspace API for existing cpuset
8793d854 303 * users. If someone tries to mount the "cpuset" filesystem, we
cf417141
MK
304 * silently switch it to mount "cgroup" instead
305 */
f7e83571
AV
306static struct dentry *cpuset_mount(struct file_system_type *fs_type,
307 int flags, const char *unused_dev_name, void *data)
1da177e4 308{
8793d854 309 struct file_system_type *cgroup_fs = get_fs_type("cgroup");
f7e83571 310 struct dentry *ret = ERR_PTR(-ENODEV);
8793d854
PM
311 if (cgroup_fs) {
312 char mountopts[] =
313 "cpuset,noprefix,"
314 "release_agent=/sbin/cpuset_release_agent";
f7e83571
AV
315 ret = cgroup_fs->mount(cgroup_fs, flags,
316 unused_dev_name, mountopts);
8793d854
PM
317 put_filesystem(cgroup_fs);
318 }
319 return ret;
1da177e4
LT
320}
321
322static struct file_system_type cpuset_fs_type = {
323 .name = "cpuset",
f7e83571 324 .mount = cpuset_mount,
1da177e4
LT
325};
326
1da177e4 327/*
300ed6cb 328 * Return in pmask the portion of a cpusets's cpus_allowed that
1da177e4 329 * are online. If none are online, walk up the cpuset hierarchy
28b89b9e 330 * until we find one that does have some online cpus.
1da177e4
LT
331 *
332 * One way or another, we guarantee to return some non-empty subset
5f054e31 333 * of cpu_online_mask.
1da177e4 334 *
8447a0fe 335 * Call with callback_lock or cpuset_mutex held.
1da177e4 336 */
c9710d80 337static void guarantee_online_cpus(struct cpuset *cs, struct cpumask *pmask)
1da177e4 338{
28b89b9e 339 while (!cpumask_intersects(cs->effective_cpus, cpu_online_mask)) {
c431069f 340 cs = parent_cs(cs);
28b89b9e
JP
341 if (unlikely(!cs)) {
342 /*
343 * The top cpuset doesn't have any online cpu as a
344 * consequence of a race between cpuset_hotplug_work
345 * and cpu hotplug notifier. But we know the top
346 * cpuset's effective_cpus is on its way to to be
347 * identical to cpu_online_mask.
348 */
349 cpumask_copy(pmask, cpu_online_mask);
350 return;
351 }
352 }
ae1c8023 353 cpumask_and(pmask, cs->effective_cpus, cpu_online_mask);
1da177e4
LT
354}
355
356/*
357 * Return in *pmask the portion of a cpusets's mems_allowed that
0e1e7c7a
CL
358 * are online, with memory. If none are online with memory, walk
359 * up the cpuset hierarchy until we find one that does have some
40df2deb 360 * online mems. The top cpuset always has some mems online.
1da177e4
LT
361 *
362 * One way or another, we guarantee to return some non-empty subset
38d7bee9 363 * of node_states[N_MEMORY].
1da177e4 364 *
8447a0fe 365 * Call with callback_lock or cpuset_mutex held.
1da177e4 366 */
c9710d80 367static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
1da177e4 368{
ae1c8023 369 while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY]))
c431069f 370 cs = parent_cs(cs);
ae1c8023 371 nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]);
1da177e4
LT
372}
373
f3b39d47
MX
374/*
375 * update task's spread flag if cpuset's page/slab spread flag is set
376 *
8447a0fe 377 * Call with callback_lock or cpuset_mutex held.
f3b39d47
MX
378 */
379static void cpuset_update_task_spread_flag(struct cpuset *cs,
380 struct task_struct *tsk)
381{
382 if (is_spread_page(cs))
2ad654bc 383 task_set_spread_page(tsk);
f3b39d47 384 else
2ad654bc
ZL
385 task_clear_spread_page(tsk);
386
f3b39d47 387 if (is_spread_slab(cs))
2ad654bc 388 task_set_spread_slab(tsk);
f3b39d47 389 else
2ad654bc 390 task_clear_spread_slab(tsk);
f3b39d47
MX
391}
392
1da177e4
LT
393/*
394 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
395 *
396 * One cpuset is a subset of another if all its allowed CPUs and
397 * Memory Nodes are a subset of the other, and its exclusive flags
5d21cc2d 398 * are only set if the other's are set. Call holding cpuset_mutex.
1da177e4
LT
399 */
400
401static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
402{
300ed6cb 403 return cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
1da177e4
LT
404 nodes_subset(p->mems_allowed, q->mems_allowed) &&
405 is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
406 is_mem_exclusive(p) <= is_mem_exclusive(q);
407}
408
645fcc9d
LZ
409/**
410 * alloc_trial_cpuset - allocate a trial cpuset
411 * @cs: the cpuset that the trial cpuset duplicates
412 */
c9710d80 413static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
645fcc9d 414{
300ed6cb
LZ
415 struct cpuset *trial;
416
417 trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
418 if (!trial)
419 return NULL;
420
e2b9a3d7
LZ
421 if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL))
422 goto free_cs;
423 if (!alloc_cpumask_var(&trial->effective_cpus, GFP_KERNEL))
424 goto free_cpus;
300ed6cb 425
e2b9a3d7
LZ
426 cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
427 cpumask_copy(trial->effective_cpus, cs->effective_cpus);
300ed6cb 428 return trial;
e2b9a3d7
LZ
429
430free_cpus:
431 free_cpumask_var(trial->cpus_allowed);
432free_cs:
433 kfree(trial);
434 return NULL;
645fcc9d
LZ
435}
436
437/**
438 * free_trial_cpuset - free the trial cpuset
439 * @trial: the trial cpuset to be freed
440 */
441static void free_trial_cpuset(struct cpuset *trial)
442{
e2b9a3d7 443 free_cpumask_var(trial->effective_cpus);
300ed6cb 444 free_cpumask_var(trial->cpus_allowed);
645fcc9d
LZ
445 kfree(trial);
446}
447
1da177e4
LT
448/*
449 * validate_change() - Used to validate that any proposed cpuset change
450 * follows the structural rules for cpusets.
451 *
452 * If we replaced the flag and mask values of the current cpuset
453 * (cur) with those values in the trial cpuset (trial), would
454 * our various subset and exclusive rules still be valid? Presumes
5d21cc2d 455 * cpuset_mutex held.
1da177e4
LT
456 *
457 * 'cur' is the address of an actual, in-use cpuset. Operations
458 * such as list traversal that depend on the actual address of the
459 * cpuset in the list must use cur below, not trial.
460 *
461 * 'trial' is the address of bulk structure copy of cur, with
462 * perhaps one or more of the fields cpus_allowed, mems_allowed,
463 * or flags changed to new, trial values.
464 *
465 * Return 0 if valid, -errno if not.
466 */
467
c9710d80 468static int validate_change(struct cpuset *cur, struct cpuset *trial)
1da177e4 469{
492eb21b 470 struct cgroup_subsys_state *css;
1da177e4 471 struct cpuset *c, *par;
ae8086ce
TH
472 int ret;
473
474 rcu_read_lock();
1da177e4
LT
475
476 /* Each of our child cpusets must be a subset of us */
ae8086ce 477 ret = -EBUSY;
492eb21b 478 cpuset_for_each_child(c, css, cur)
ae8086ce
TH
479 if (!is_cpuset_subset(c, trial))
480 goto out;
1da177e4
LT
481
482 /* Remaining checks don't apply to root cpuset */
ae8086ce 483 ret = 0;
69604067 484 if (cur == &top_cpuset)
ae8086ce 485 goto out;
1da177e4 486
c431069f 487 par = parent_cs(cur);
69604067 488
7e88291b 489 /* On legacy hiearchy, we must be a subset of our parent cpuset. */
ae8086ce 490 ret = -EACCES;
9e10a130
TH
491 if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
492 !is_cpuset_subset(trial, par))
ae8086ce 493 goto out;
1da177e4 494
2df167a3
PM
495 /*
496 * If either I or some sibling (!= me) is exclusive, we can't
497 * overlap
498 */
ae8086ce 499 ret = -EINVAL;
492eb21b 500 cpuset_for_each_child(c, css, par) {
1da177e4
LT
501 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
502 c != cur &&
300ed6cb 503 cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
ae8086ce 504 goto out;
1da177e4
LT
505 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
506 c != cur &&
507 nodes_intersects(trial->mems_allowed, c->mems_allowed))
ae8086ce 508 goto out;
1da177e4
LT
509 }
510
452477fa
TH
511 /*
512 * Cpusets with tasks - existing or newly being attached - can't
1c09b195 513 * be changed to have empty cpus_allowed or mems_allowed.
452477fa 514 */
ae8086ce 515 ret = -ENOSPC;
27bd4dbb 516 if ((cgroup_is_populated(cur->css.cgroup) || cur->attach_in_progress)) {
1c09b195
LZ
517 if (!cpumask_empty(cur->cpus_allowed) &&
518 cpumask_empty(trial->cpus_allowed))
519 goto out;
520 if (!nodes_empty(cur->mems_allowed) &&
521 nodes_empty(trial->mems_allowed))
522 goto out;
523 }
020958b6 524
f82f8042
JL
525 /*
526 * We can't shrink if we won't have enough room for SCHED_DEADLINE
527 * tasks.
528 */
529 ret = -EBUSY;
530 if (is_cpu_exclusive(cur) &&
531 !cpuset_cpumask_can_shrink(cur->cpus_allowed,
532 trial->cpus_allowed))
533 goto out;
534
ae8086ce
TH
535 ret = 0;
536out:
537 rcu_read_unlock();
538 return ret;
1da177e4
LT
539}
540
db7f47cf 541#ifdef CONFIG_SMP
029190c5 542/*
cf417141 543 * Helper routine for generate_sched_domains().
8b5f1c52 544 * Do cpusets a, b have overlapping effective cpus_allowed masks?
029190c5 545 */
029190c5
PJ
546static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
547{
8b5f1c52 548 return cpumask_intersects(a->effective_cpus, b->effective_cpus);
029190c5
PJ
549}
550
1d3504fc
HS
551static void
552update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
553{
1d3504fc
HS
554 if (dattr->relax_domain_level < c->relax_domain_level)
555 dattr->relax_domain_level = c->relax_domain_level;
556 return;
557}
558
fc560a26
TH
559static void update_domain_attr_tree(struct sched_domain_attr *dattr,
560 struct cpuset *root_cs)
f5393693 561{
fc560a26 562 struct cpuset *cp;
492eb21b 563 struct cgroup_subsys_state *pos_css;
f5393693 564
fc560a26 565 rcu_read_lock();
492eb21b 566 cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
fc560a26
TH
567 /* skip the whole subtree if @cp doesn't have any CPU */
568 if (cpumask_empty(cp->cpus_allowed)) {
492eb21b 569 pos_css = css_rightmost_descendant(pos_css);
f5393693 570 continue;
fc560a26 571 }
f5393693
LJ
572
573 if (is_sched_load_balance(cp))
574 update_domain_attr(dattr, cp);
f5393693 575 }
fc560a26 576 rcu_read_unlock();
f5393693
LJ
577}
578
029190c5 579/*
cf417141
MK
580 * generate_sched_domains()
581 *
582 * This function builds a partial partition of the systems CPUs
583 * A 'partial partition' is a set of non-overlapping subsets whose
584 * union is a subset of that set.
0a0fca9d 585 * The output of this function needs to be passed to kernel/sched/core.c
cf417141
MK
586 * partition_sched_domains() routine, which will rebuild the scheduler's
587 * load balancing domains (sched domains) as specified by that partial
588 * partition.
029190c5 589 *
45ce80fb 590 * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
029190c5
PJ
591 * for a background explanation of this.
592 *
593 * Does not return errors, on the theory that the callers of this
594 * routine would rather not worry about failures to rebuild sched
595 * domains when operating in the severe memory shortage situations
596 * that could cause allocation failures below.
597 *
5d21cc2d 598 * Must be called with cpuset_mutex held.
029190c5
PJ
599 *
600 * The three key local variables below are:
aeed6824 601 * q - a linked-list queue of cpuset pointers, used to implement a
029190c5
PJ
602 * top-down scan of all cpusets. This scan loads a pointer
603 * to each cpuset marked is_sched_load_balance into the
604 * array 'csa'. For our purposes, rebuilding the schedulers
605 * sched domains, we can ignore !is_sched_load_balance cpusets.
606 * csa - (for CpuSet Array) Array of pointers to all the cpusets
607 * that need to be load balanced, for convenient iterative
608 * access by the subsequent code that finds the best partition,
609 * i.e the set of domains (subsets) of CPUs such that the
610 * cpus_allowed of every cpuset marked is_sched_load_balance
611 * is a subset of one of these domains, while there are as
612 * many such domains as possible, each as small as possible.
613 * doms - Conversion of 'csa' to an array of cpumasks, for passing to
0a0fca9d 614 * the kernel/sched/core.c routine partition_sched_domains() in a
029190c5
PJ
615 * convenient format, that can be easily compared to the prior
616 * value to determine what partition elements (sched domains)
617 * were changed (added or removed.)
618 *
619 * Finding the best partition (set of domains):
620 * The triple nested loops below over i, j, k scan over the
621 * load balanced cpusets (using the array of cpuset pointers in
622 * csa[]) looking for pairs of cpusets that have overlapping
623 * cpus_allowed, but which don't have the same 'pn' partition
624 * number and gives them in the same partition number. It keeps
625 * looping on the 'restart' label until it can no longer find
626 * any such pairs.
627 *
628 * The union of the cpus_allowed masks from the set of
629 * all cpusets having the same 'pn' value then form the one
630 * element of the partition (one sched domain) to be passed to
631 * partition_sched_domains().
632 */
acc3f5d7 633static int generate_sched_domains(cpumask_var_t **domains,
cf417141 634 struct sched_domain_attr **attributes)
029190c5 635{
029190c5
PJ
636 struct cpuset *cp; /* scans q */
637 struct cpuset **csa; /* array of all cpuset ptrs */
638 int csn; /* how many cpuset ptrs in csa so far */
639 int i, j, k; /* indices for partition finding loops */
acc3f5d7 640 cpumask_var_t *doms; /* resulting partition; i.e. sched domains */
47b8ea71 641 cpumask_var_t non_isolated_cpus; /* load balanced CPUs */
1d3504fc 642 struct sched_domain_attr *dattr; /* attributes for custom domains */
1583715d 643 int ndoms = 0; /* number of sched domains in result */
6af866af 644 int nslot; /* next empty doms[] struct cpumask slot */
492eb21b 645 struct cgroup_subsys_state *pos_css;
029190c5 646
029190c5 647 doms = NULL;
1d3504fc 648 dattr = NULL;
cf417141 649 csa = NULL;
029190c5 650
47b8ea71
RR
651 if (!alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL))
652 goto done;
653 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
654
029190c5
PJ
655 /* Special case for the 99% of systems with one, full, sched domain */
656 if (is_sched_load_balance(&top_cpuset)) {
acc3f5d7
RR
657 ndoms = 1;
658 doms = alloc_sched_domains(ndoms);
029190c5 659 if (!doms)
cf417141
MK
660 goto done;
661
1d3504fc
HS
662 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
663 if (dattr) {
664 *dattr = SD_ATTR_INIT;
93a65575 665 update_domain_attr_tree(dattr, &top_cpuset);
1d3504fc 666 }
47b8ea71
RR
667 cpumask_and(doms[0], top_cpuset.effective_cpus,
668 non_isolated_cpus);
cf417141 669
cf417141 670 goto done;
029190c5
PJ
671 }
672
664eedde 673 csa = kmalloc(nr_cpusets() * sizeof(cp), GFP_KERNEL);
029190c5
PJ
674 if (!csa)
675 goto done;
676 csn = 0;
677
fc560a26 678 rcu_read_lock();
492eb21b 679 cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
bd8815a6
TH
680 if (cp == &top_cpuset)
681 continue;
f5393693 682 /*
fc560a26
TH
683 * Continue traversing beyond @cp iff @cp has some CPUs and
684 * isn't load balancing. The former is obvious. The
685 * latter: All child cpusets contain a subset of the
686 * parent's cpus, so just skip them, and then we call
687 * update_domain_attr_tree() to calc relax_domain_level of
688 * the corresponding sched domain.
f5393693 689 */
fc560a26 690 if (!cpumask_empty(cp->cpus_allowed) &&
47b8ea71
RR
691 !(is_sched_load_balance(cp) &&
692 cpumask_intersects(cp->cpus_allowed, non_isolated_cpus)))
f5393693 693 continue;
489a5393 694
fc560a26
TH
695 if (is_sched_load_balance(cp))
696 csa[csn++] = cp;
697
698 /* skip @cp's subtree */
492eb21b 699 pos_css = css_rightmost_descendant(pos_css);
fc560a26
TH
700 }
701 rcu_read_unlock();
029190c5
PJ
702
703 for (i = 0; i < csn; i++)
704 csa[i]->pn = i;
705 ndoms = csn;
706
707restart:
708 /* Find the best partition (set of sched domains) */
709 for (i = 0; i < csn; i++) {
710 struct cpuset *a = csa[i];
711 int apn = a->pn;
712
713 for (j = 0; j < csn; j++) {
714 struct cpuset *b = csa[j];
715 int bpn = b->pn;
716
717 if (apn != bpn && cpusets_overlap(a, b)) {
718 for (k = 0; k < csn; k++) {
719 struct cpuset *c = csa[k];
720
721 if (c->pn == bpn)
722 c->pn = apn;
723 }
724 ndoms--; /* one less element */
725 goto restart;
726 }
727 }
728 }
729
cf417141
MK
730 /*
731 * Now we know how many domains to create.
732 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
733 */
acc3f5d7 734 doms = alloc_sched_domains(ndoms);
700018e0 735 if (!doms)
cf417141 736 goto done;
cf417141
MK
737
738 /*
739 * The rest of the code, including the scheduler, can deal with
740 * dattr==NULL case. No need to abort if alloc fails.
741 */
1d3504fc 742 dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
029190c5
PJ
743
744 for (nslot = 0, i = 0; i < csn; i++) {
745 struct cpuset *a = csa[i];
6af866af 746 struct cpumask *dp;
029190c5
PJ
747 int apn = a->pn;
748
cf417141
MK
749 if (apn < 0) {
750 /* Skip completed partitions */
751 continue;
752 }
753
acc3f5d7 754 dp = doms[nslot];
cf417141
MK
755
756 if (nslot == ndoms) {
757 static int warnings = 10;
758 if (warnings) {
12d3089c
FF
759 pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n",
760 nslot, ndoms, csn, i, apn);
cf417141 761 warnings--;
029190c5 762 }
cf417141
MK
763 continue;
764 }
029190c5 765
6af866af 766 cpumask_clear(dp);
cf417141
MK
767 if (dattr)
768 *(dattr + nslot) = SD_ATTR_INIT;
769 for (j = i; j < csn; j++) {
770 struct cpuset *b = csa[j];
771
772 if (apn == b->pn) {
8b5f1c52 773 cpumask_or(dp, dp, b->effective_cpus);
47b8ea71 774 cpumask_and(dp, dp, non_isolated_cpus);
cf417141
MK
775 if (dattr)
776 update_domain_attr_tree(dattr + nslot, b);
777
778 /* Done with this partition */
779 b->pn = -1;
029190c5 780 }
029190c5 781 }
cf417141 782 nslot++;
029190c5
PJ
783 }
784 BUG_ON(nslot != ndoms);
785
cf417141 786done:
47b8ea71 787 free_cpumask_var(non_isolated_cpus);
cf417141
MK
788 kfree(csa);
789
700018e0
LZ
790 /*
791 * Fallback to the default domain if kmalloc() failed.
792 * See comments in partition_sched_domains().
793 */
794 if (doms == NULL)
795 ndoms = 1;
796
cf417141
MK
797 *domains = doms;
798 *attributes = dattr;
799 return ndoms;
800}
801
802/*
803 * Rebuild scheduler domains.
804 *
699140ba
TH
805 * If the flag 'sched_load_balance' of any cpuset with non-empty
806 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
807 * which has that flag enabled, or if any cpuset with a non-empty
808 * 'cpus' is removed, then call this routine to rebuild the
809 * scheduler's dynamic sched domains.
cf417141 810 *
5d21cc2d 811 * Call with cpuset_mutex held. Takes get_online_cpus().
cf417141 812 */
699140ba 813static void rebuild_sched_domains_locked(void)
cf417141
MK
814{
815 struct sched_domain_attr *attr;
acc3f5d7 816 cpumask_var_t *doms;
cf417141
MK
817 int ndoms;
818
5d21cc2d 819 lockdep_assert_held(&cpuset_mutex);
86ef5c9a 820 get_online_cpus();
cf417141 821
5b16c2a4
LZ
822 /*
823 * We have raced with CPU hotplug. Don't do anything to avoid
824 * passing doms with offlined cpu to partition_sched_domains().
825 * Anyways, hotplug work item will rebuild sched domains.
826 */
8b5f1c52 827 if (!cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask))
5b16c2a4
LZ
828 goto out;
829
cf417141 830 /* Generate domain masks and attrs */
cf417141 831 ndoms = generate_sched_domains(&doms, &attr);
cf417141
MK
832
833 /* Have scheduler rebuild the domains */
834 partition_sched_domains(ndoms, doms, attr);
5b16c2a4 835out:
86ef5c9a 836 put_online_cpus();
cf417141 837}
db7f47cf 838#else /* !CONFIG_SMP */
699140ba 839static void rebuild_sched_domains_locked(void)
db7f47cf
PM
840{
841}
db7f47cf 842#endif /* CONFIG_SMP */
029190c5 843
cf417141
MK
844void rebuild_sched_domains(void)
845{
5d21cc2d 846 mutex_lock(&cpuset_mutex);
699140ba 847 rebuild_sched_domains_locked();
5d21cc2d 848 mutex_unlock(&cpuset_mutex);
029190c5
PJ
849}
850
0b2f630a
MX
851/**
852 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
853 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
0b2f630a 854 *
d66393e5
TH
855 * Iterate through each task of @cs updating its cpus_allowed to the
856 * effective cpuset's. As this function is called with cpuset_mutex held,
857 * cpuset membership stays stable.
0b2f630a 858 */
d66393e5 859static void update_tasks_cpumask(struct cpuset *cs)
0b2f630a 860{
d66393e5
TH
861 struct css_task_iter it;
862 struct task_struct *task;
863
864 css_task_iter_start(&cs->css, &it);
865 while ((task = css_task_iter_next(&it)))
ae1c8023 866 set_cpus_allowed_ptr(task, cs->effective_cpus);
d66393e5 867 css_task_iter_end(&it);
0b2f630a
MX
868}
869
5c5cc623 870/*
734d4513
LZ
871 * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree
872 * @cs: the cpuset to consider
873 * @new_cpus: temp variable for calculating new effective_cpus
874 *
875 * When congifured cpumask is changed, the effective cpumasks of this cpuset
876 * and all its descendants need to be updated.
5c5cc623 877 *
734d4513 878 * On legacy hierachy, effective_cpus will be the same with cpu_allowed.
5c5cc623
LZ
879 *
880 * Called with cpuset_mutex held
881 */
734d4513 882static void update_cpumasks_hier(struct cpuset *cs, struct cpumask *new_cpus)
5c5cc623
LZ
883{
884 struct cpuset *cp;
492eb21b 885 struct cgroup_subsys_state *pos_css;
8b5f1c52 886 bool need_rebuild_sched_domains = false;
5c5cc623
LZ
887
888 rcu_read_lock();
734d4513
LZ
889 cpuset_for_each_descendant_pre(cp, pos_css, cs) {
890 struct cpuset *parent = parent_cs(cp);
891
892 cpumask_and(new_cpus, cp->cpus_allowed, parent->effective_cpus);
893
554b0d1c
LZ
894 /*
895 * If it becomes empty, inherit the effective mask of the
896 * parent, which is guaranteed to have some CPUs.
897 */
9e10a130
TH
898 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
899 cpumask_empty(new_cpus))
554b0d1c
LZ
900 cpumask_copy(new_cpus, parent->effective_cpus);
901
734d4513
LZ
902 /* Skip the whole subtree if the cpumask remains the same. */
903 if (cpumask_equal(new_cpus, cp->effective_cpus)) {
904 pos_css = css_rightmost_descendant(pos_css);
905 continue;
5c5cc623 906 }
734d4513 907
ec903c0c 908 if (!css_tryget_online(&cp->css))
5c5cc623
LZ
909 continue;
910 rcu_read_unlock();
911
8447a0fe 912 spin_lock_irq(&callback_lock);
734d4513 913 cpumask_copy(cp->effective_cpus, new_cpus);
8447a0fe 914 spin_unlock_irq(&callback_lock);
734d4513 915
9e10a130 916 WARN_ON(!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
734d4513
LZ
917 !cpumask_equal(cp->cpus_allowed, cp->effective_cpus));
918
d66393e5 919 update_tasks_cpumask(cp);
5c5cc623 920
8b5f1c52
LZ
921 /*
922 * If the effective cpumask of any non-empty cpuset is changed,
923 * we need to rebuild sched domains.
924 */
925 if (!cpumask_empty(cp->cpus_allowed) &&
926 is_sched_load_balance(cp))
927 need_rebuild_sched_domains = true;
928
5c5cc623
LZ
929 rcu_read_lock();
930 css_put(&cp->css);
931 }
932 rcu_read_unlock();
8b5f1c52
LZ
933
934 if (need_rebuild_sched_domains)
935 rebuild_sched_domains_locked();
5c5cc623
LZ
936}
937
58f4790b
CW
938/**
939 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
940 * @cs: the cpuset to consider
fc34ac1d 941 * @trialcs: trial cpuset
58f4790b
CW
942 * @buf: buffer of cpu numbers written to this cpuset
943 */
645fcc9d
LZ
944static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
945 const char *buf)
1da177e4 946{
58f4790b 947 int retval;
1da177e4 948
5f054e31 949 /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
4c4d50f7
PJ
950 if (cs == &top_cpuset)
951 return -EACCES;
952
6f7f02e7 953 /*
c8d9c90c 954 * An empty cpus_allowed is ok only if the cpuset has no tasks.
020958b6
PJ
955 * Since cpulist_parse() fails on an empty mask, we special case
956 * that parsing. The validate_change() call ensures that cpusets
957 * with tasks have cpus.
6f7f02e7 958 */
020958b6 959 if (!*buf) {
300ed6cb 960 cpumask_clear(trialcs->cpus_allowed);
6f7f02e7 961 } else {
300ed6cb 962 retval = cpulist_parse(buf, trialcs->cpus_allowed);
6f7f02e7
DR
963 if (retval < 0)
964 return retval;
37340746 965
5d8ba82c
LZ
966 if (!cpumask_subset(trialcs->cpus_allowed,
967 top_cpuset.cpus_allowed))
37340746 968 return -EINVAL;
6f7f02e7 969 }
029190c5 970
8707d8b8 971 /* Nothing to do if the cpus didn't change */
300ed6cb 972 if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
8707d8b8 973 return 0;
58f4790b 974
a73456f3
LZ
975 retval = validate_change(cs, trialcs);
976 if (retval < 0)
977 return retval;
978
8447a0fe 979 spin_lock_irq(&callback_lock);
300ed6cb 980 cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
8447a0fe 981 spin_unlock_irq(&callback_lock);
029190c5 982
734d4513
LZ
983 /* use trialcs->cpus_allowed as a temp variable */
984 update_cpumasks_hier(cs, trialcs->cpus_allowed);
85d7b949 985 return 0;
1da177e4
LT
986}
987
e4e364e8 988/*
e93ad19d
TH
989 * Migrate memory region from one set of nodes to another. This is
990 * performed asynchronously as it can be called from process migration path
991 * holding locks involved in process management. All mm migrations are
992 * performed in the queued order and can be waited for by flushing
993 * cpuset_migrate_mm_wq.
e4e364e8
PJ
994 */
995
e93ad19d
TH
996struct cpuset_migrate_mm_work {
997 struct work_struct work;
998 struct mm_struct *mm;
999 nodemask_t from;
1000 nodemask_t to;
1001};
1002
1003static void cpuset_migrate_mm_workfn(struct work_struct *work)
1004{
1005 struct cpuset_migrate_mm_work *mwork =
1006 container_of(work, struct cpuset_migrate_mm_work, work);
1007
1008 /* on a wq worker, no need to worry about %current's mems_allowed */
1009 do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL);
1010 mmput(mwork->mm);
1011 kfree(mwork);
1012}
1013
e4e364e8
PJ
1014static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
1015 const nodemask_t *to)
1016{
e93ad19d 1017 struct cpuset_migrate_mm_work *mwork;
e4e364e8 1018
e93ad19d
TH
1019 mwork = kzalloc(sizeof(*mwork), GFP_KERNEL);
1020 if (mwork) {
1021 mwork->mm = mm;
1022 mwork->from = *from;
1023 mwork->to = *to;
1024 INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn);
1025 queue_work(cpuset_migrate_mm_wq, &mwork->work);
1026 } else {
1027 mmput(mm);
1028 }
1029}
e4e364e8 1030
5cf1cacb 1031static void cpuset_post_attach(void)
e93ad19d
TH
1032{
1033 flush_workqueue(cpuset_migrate_mm_wq);
e4e364e8
PJ
1034}
1035
3b6766fe 1036/*
58568d2a
MX
1037 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
1038 * @tsk: the task to change
1039 * @newmems: new nodes that the task will be set
1040 *
1041 * In order to avoid seeing no nodes if the old and new nodes are disjoint,
1042 * we structure updates as setting all new allowed nodes, then clearing newly
1043 * disallowed ones.
58568d2a
MX
1044 */
1045static void cpuset_change_task_nodemask(struct task_struct *tsk,
1046 nodemask_t *newmems)
1047{
b246272e 1048 bool need_loop;
89e8a244 1049
c0ff7453 1050 task_lock(tsk);
b246272e
DR
1051 /*
1052 * Determine if a loop is necessary if another thread is doing
d26914d1 1053 * read_mems_allowed_begin(). If at least one node remains unchanged and
b246272e
DR
1054 * tsk does not have a mempolicy, then an empty nodemask will not be
1055 * possible when mems_allowed is larger than a word.
1056 */
1057 need_loop = task_has_mempolicy(tsk) ||
1058 !nodes_intersects(*newmems, tsk->mems_allowed);
c0ff7453 1059
0fc0287c
PZ
1060 if (need_loop) {
1061 local_irq_disable();
cc9a6c87 1062 write_seqcount_begin(&tsk->mems_allowed_seq);
0fc0287c 1063 }
c0ff7453 1064
cc9a6c87
MG
1065 nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
1066 mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP1);
c0ff7453
MX
1067
1068 mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP2);
58568d2a 1069 tsk->mems_allowed = *newmems;
cc9a6c87 1070
0fc0287c 1071 if (need_loop) {
cc9a6c87 1072 write_seqcount_end(&tsk->mems_allowed_seq);
0fc0287c
PZ
1073 local_irq_enable();
1074 }
cc9a6c87 1075
c0ff7453 1076 task_unlock(tsk);
58568d2a
MX
1077}
1078
8793d854
PM
1079static void *cpuset_being_rebound;
1080
0b2f630a
MX
1081/**
1082 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1083 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
0b2f630a 1084 *
d66393e5
TH
1085 * Iterate through each task of @cs updating its mems_allowed to the
1086 * effective cpuset's. As this function is called with cpuset_mutex held,
1087 * cpuset membership stays stable.
0b2f630a 1088 */
d66393e5 1089static void update_tasks_nodemask(struct cpuset *cs)
1da177e4 1090{
33ad801d 1091 static nodemask_t newmems; /* protected by cpuset_mutex */
d66393e5
TH
1092 struct css_task_iter it;
1093 struct task_struct *task;
59dac16f 1094
846a16bf 1095 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
4225399a 1096
ae1c8023 1097 guarantee_online_mems(cs, &newmems);
33ad801d 1098
4225399a 1099 /*
3b6766fe
LZ
1100 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
1101 * take while holding tasklist_lock. Forks can happen - the
1102 * mpol_dup() cpuset_being_rebound check will catch such forks,
1103 * and rebind their vma mempolicies too. Because we still hold
5d21cc2d 1104 * the global cpuset_mutex, we know that no other rebind effort
3b6766fe 1105 * will be contending for the global variable cpuset_being_rebound.
4225399a 1106 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
04c19fa6 1107 * is idempotent. Also migrate pages in each mm to new nodes.
4225399a 1108 */
d66393e5
TH
1109 css_task_iter_start(&cs->css, &it);
1110 while ((task = css_task_iter_next(&it))) {
1111 struct mm_struct *mm;
1112 bool migrate;
1113
1114 cpuset_change_task_nodemask(task, &newmems);
1115
1116 mm = get_task_mm(task);
1117 if (!mm)
1118 continue;
1119
1120 migrate = is_memory_migrate(cs);
1121
1122 mpol_rebind_mm(mm, &cs->mems_allowed);
1123 if (migrate)
1124 cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems);
e93ad19d
TH
1125 else
1126 mmput(mm);
d66393e5
TH
1127 }
1128 css_task_iter_end(&it);
4225399a 1129
33ad801d
LZ
1130 /*
1131 * All the tasks' nodemasks have been updated, update
1132 * cs->old_mems_allowed.
1133 */
1134 cs->old_mems_allowed = newmems;
1135
2df167a3 1136 /* We're done rebinding vmas to this cpuset's new mems_allowed. */
8793d854 1137 cpuset_being_rebound = NULL;
1da177e4
LT
1138}
1139
5c5cc623 1140/*
734d4513
LZ
1141 * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree
1142 * @cs: the cpuset to consider
1143 * @new_mems: a temp variable for calculating new effective_mems
5c5cc623 1144 *
734d4513
LZ
1145 * When configured nodemask is changed, the effective nodemasks of this cpuset
1146 * and all its descendants need to be updated.
5c5cc623 1147 *
734d4513 1148 * On legacy hiearchy, effective_mems will be the same with mems_allowed.
5c5cc623
LZ
1149 *
1150 * Called with cpuset_mutex held
1151 */
734d4513 1152static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems)
5c5cc623
LZ
1153{
1154 struct cpuset *cp;
492eb21b 1155 struct cgroup_subsys_state *pos_css;
5c5cc623
LZ
1156
1157 rcu_read_lock();
734d4513
LZ
1158 cpuset_for_each_descendant_pre(cp, pos_css, cs) {
1159 struct cpuset *parent = parent_cs(cp);
1160
1161 nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems);
1162
554b0d1c
LZ
1163 /*
1164 * If it becomes empty, inherit the effective mask of the
1165 * parent, which is guaranteed to have some MEMs.
1166 */
9e10a130
TH
1167 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
1168 nodes_empty(*new_mems))
554b0d1c
LZ
1169 *new_mems = parent->effective_mems;
1170
734d4513
LZ
1171 /* Skip the whole subtree if the nodemask remains the same. */
1172 if (nodes_equal(*new_mems, cp->effective_mems)) {
1173 pos_css = css_rightmost_descendant(pos_css);
1174 continue;
5c5cc623 1175 }
734d4513 1176
ec903c0c 1177 if (!css_tryget_online(&cp->css))
5c5cc623
LZ
1178 continue;
1179 rcu_read_unlock();
1180
8447a0fe 1181 spin_lock_irq(&callback_lock);
734d4513 1182 cp->effective_mems = *new_mems;
8447a0fe 1183 spin_unlock_irq(&callback_lock);
734d4513 1184
9e10a130 1185 WARN_ON(!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
a1381268 1186 !nodes_equal(cp->mems_allowed, cp->effective_mems));
734d4513 1187
d66393e5 1188 update_tasks_nodemask(cp);
5c5cc623
LZ
1189
1190 rcu_read_lock();
1191 css_put(&cp->css);
1192 }
1193 rcu_read_unlock();
1194}
1195
0b2f630a
MX
1196/*
1197 * Handle user request to change the 'mems' memory placement
1198 * of a cpuset. Needs to validate the request, update the
58568d2a
MX
1199 * cpusets mems_allowed, and for each task in the cpuset,
1200 * update mems_allowed and rebind task's mempolicy and any vma
1201 * mempolicies and if the cpuset is marked 'memory_migrate',
1202 * migrate the tasks pages to the new memory.
0b2f630a 1203 *
8447a0fe 1204 * Call with cpuset_mutex held. May take callback_lock during call.
0b2f630a
MX
1205 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1206 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
1207 * their mempolicies to the cpusets new mems_allowed.
1208 */
645fcc9d
LZ
1209static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
1210 const char *buf)
0b2f630a 1211{
0b2f630a
MX
1212 int retval;
1213
1214 /*
38d7bee9 1215 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
0b2f630a
MX
1216 * it's read-only
1217 */
53feb297
MX
1218 if (cs == &top_cpuset) {
1219 retval = -EACCES;
1220 goto done;
1221 }
0b2f630a 1222
0b2f630a
MX
1223 /*
1224 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1225 * Since nodelist_parse() fails on an empty mask, we special case
1226 * that parsing. The validate_change() call ensures that cpusets
1227 * with tasks have memory.
1228 */
1229 if (!*buf) {
645fcc9d 1230 nodes_clear(trialcs->mems_allowed);
0b2f630a 1231 } else {
645fcc9d 1232 retval = nodelist_parse(buf, trialcs->mems_allowed);
0b2f630a
MX
1233 if (retval < 0)
1234 goto done;
1235
645fcc9d 1236 if (!nodes_subset(trialcs->mems_allowed,
5d8ba82c
LZ
1237 top_cpuset.mems_allowed)) {
1238 retval = -EINVAL;
53feb297
MX
1239 goto done;
1240 }
0b2f630a 1241 }
33ad801d
LZ
1242
1243 if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
0b2f630a
MX
1244 retval = 0; /* Too easy - nothing to do */
1245 goto done;
1246 }
645fcc9d 1247 retval = validate_change(cs, trialcs);
0b2f630a
MX
1248 if (retval < 0)
1249 goto done;
1250
8447a0fe 1251 spin_lock_irq(&callback_lock);
645fcc9d 1252 cs->mems_allowed = trialcs->mems_allowed;
8447a0fe 1253 spin_unlock_irq(&callback_lock);
0b2f630a 1254
734d4513 1255 /* use trialcs->mems_allowed as a temp variable */
24ee3cf8 1256 update_nodemasks_hier(cs, &trialcs->mems_allowed);
0b2f630a
MX
1257done:
1258 return retval;
1259}
1260
8793d854
PM
1261int current_cpuset_is_being_rebound(void)
1262{
391acf97
GZ
1263 int ret;
1264
1265 rcu_read_lock();
1266 ret = task_cs(current) == cpuset_being_rebound;
1267 rcu_read_unlock();
1268
1269 return ret;
8793d854
PM
1270}
1271
5be7a479 1272static int update_relax_domain_level(struct cpuset *cs, s64 val)
1d3504fc 1273{
db7f47cf 1274#ifdef CONFIG_SMP
60495e77 1275 if (val < -1 || val >= sched_domain_level_max)
30e0e178 1276 return -EINVAL;
db7f47cf 1277#endif
1d3504fc
HS
1278
1279 if (val != cs->relax_domain_level) {
1280 cs->relax_domain_level = val;
300ed6cb
LZ
1281 if (!cpumask_empty(cs->cpus_allowed) &&
1282 is_sched_load_balance(cs))
699140ba 1283 rebuild_sched_domains_locked();
1d3504fc
HS
1284 }
1285
1286 return 0;
1287}
1288
72ec7029 1289/**
950592f7
MX
1290 * update_tasks_flags - update the spread flags of tasks in the cpuset.
1291 * @cs: the cpuset in which each task's spread flags needs to be changed
950592f7 1292 *
d66393e5
TH
1293 * Iterate through each task of @cs updating its spread flags. As this
1294 * function is called with cpuset_mutex held, cpuset membership stays
1295 * stable.
950592f7 1296 */
d66393e5 1297static void update_tasks_flags(struct cpuset *cs)
950592f7 1298{
d66393e5
TH
1299 struct css_task_iter it;
1300 struct task_struct *task;
1301
1302 css_task_iter_start(&cs->css, &it);
1303 while ((task = css_task_iter_next(&it)))
1304 cpuset_update_task_spread_flag(cs, task);
1305 css_task_iter_end(&it);
950592f7
MX
1306}
1307
1da177e4
LT
1308/*
1309 * update_flag - read a 0 or a 1 in a file and update associated flag
78608366
PM
1310 * bit: the bit to update (see cpuset_flagbits_t)
1311 * cs: the cpuset to update
1312 * turning_on: whether the flag is being set or cleared
053199ed 1313 *
5d21cc2d 1314 * Call with cpuset_mutex held.
1da177e4
LT
1315 */
1316
700fe1ab
PM
1317static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1318 int turning_on)
1da177e4 1319{
645fcc9d 1320 struct cpuset *trialcs;
40b6a762 1321 int balance_flag_changed;
950592f7 1322 int spread_flag_changed;
950592f7 1323 int err;
1da177e4 1324
645fcc9d
LZ
1325 trialcs = alloc_trial_cpuset(cs);
1326 if (!trialcs)
1327 return -ENOMEM;
1328
1da177e4 1329 if (turning_on)
645fcc9d 1330 set_bit(bit, &trialcs->flags);
1da177e4 1331 else
645fcc9d 1332 clear_bit(bit, &trialcs->flags);
1da177e4 1333
645fcc9d 1334 err = validate_change(cs, trialcs);
85d7b949 1335 if (err < 0)
645fcc9d 1336 goto out;
029190c5 1337
029190c5 1338 balance_flag_changed = (is_sched_load_balance(cs) !=
645fcc9d 1339 is_sched_load_balance(trialcs));
029190c5 1340
950592f7
MX
1341 spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
1342 || (is_spread_page(cs) != is_spread_page(trialcs)));
1343
8447a0fe 1344 spin_lock_irq(&callback_lock);
645fcc9d 1345 cs->flags = trialcs->flags;
8447a0fe 1346 spin_unlock_irq(&callback_lock);
85d7b949 1347
300ed6cb 1348 if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
699140ba 1349 rebuild_sched_domains_locked();
029190c5 1350
950592f7 1351 if (spread_flag_changed)
d66393e5 1352 update_tasks_flags(cs);
645fcc9d
LZ
1353out:
1354 free_trial_cpuset(trialcs);
1355 return err;
1da177e4
LT
1356}
1357
3e0d98b9 1358/*
80f7228b 1359 * Frequency meter - How fast is some event occurring?
3e0d98b9
PJ
1360 *
1361 * These routines manage a digitally filtered, constant time based,
1362 * event frequency meter. There are four routines:
1363 * fmeter_init() - initialize a frequency meter.
1364 * fmeter_markevent() - called each time the event happens.
1365 * fmeter_getrate() - returns the recent rate of such events.
1366 * fmeter_update() - internal routine used to update fmeter.
1367 *
1368 * A common data structure is passed to each of these routines,
1369 * which is used to keep track of the state required to manage the
1370 * frequency meter and its digital filter.
1371 *
1372 * The filter works on the number of events marked per unit time.
1373 * The filter is single-pole low-pass recursive (IIR). The time unit
1374 * is 1 second. Arithmetic is done using 32-bit integers scaled to
1375 * simulate 3 decimal digits of precision (multiplied by 1000).
1376 *
1377 * With an FM_COEF of 933, and a time base of 1 second, the filter
1378 * has a half-life of 10 seconds, meaning that if the events quit
1379 * happening, then the rate returned from the fmeter_getrate()
1380 * will be cut in half each 10 seconds, until it converges to zero.
1381 *
1382 * It is not worth doing a real infinitely recursive filter. If more
1383 * than FM_MAXTICKS ticks have elapsed since the last filter event,
1384 * just compute FM_MAXTICKS ticks worth, by which point the level
1385 * will be stable.
1386 *
1387 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
1388 * arithmetic overflow in the fmeter_update() routine.
1389 *
1390 * Given the simple 32 bit integer arithmetic used, this meter works
1391 * best for reporting rates between one per millisecond (msec) and
1392 * one per 32 (approx) seconds. At constant rates faster than one
1393 * per msec it maxes out at values just under 1,000,000. At constant
1394 * rates between one per msec, and one per second it will stabilize
1395 * to a value N*1000, where N is the rate of events per second.
1396 * At constant rates between one per second and one per 32 seconds,
1397 * it will be choppy, moving up on the seconds that have an event,
1398 * and then decaying until the next event. At rates slower than
1399 * about one in 32 seconds, it decays all the way back to zero between
1400 * each event.
1401 */
1402
1403#define FM_COEF 933 /* coefficient for half-life of 10 secs */
d2b43658 1404#define FM_MAXTICKS ((u32)99) /* useless computing more ticks than this */
3e0d98b9
PJ
1405#define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
1406#define FM_SCALE 1000 /* faux fixed point scale */
1407
1408/* Initialize a frequency meter */
1409static void fmeter_init(struct fmeter *fmp)
1410{
1411 fmp->cnt = 0;
1412 fmp->val = 0;
1413 fmp->time = 0;
1414 spin_lock_init(&fmp->lock);
1415}
1416
1417/* Internal meter update - process cnt events and update value */
1418static void fmeter_update(struct fmeter *fmp)
1419{
d2b43658
AB
1420 time64_t now;
1421 u32 ticks;
1422
1423 now = ktime_get_seconds();
1424 ticks = now - fmp->time;
3e0d98b9
PJ
1425
1426 if (ticks == 0)
1427 return;
1428
1429 ticks = min(FM_MAXTICKS, ticks);
1430 while (ticks-- > 0)
1431 fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
1432 fmp->time = now;
1433
1434 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
1435 fmp->cnt = 0;
1436}
1437
1438/* Process any previous ticks, then bump cnt by one (times scale). */
1439static void fmeter_markevent(struct fmeter *fmp)
1440{
1441 spin_lock(&fmp->lock);
1442 fmeter_update(fmp);
1443 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
1444 spin_unlock(&fmp->lock);
1445}
1446
1447/* Process any previous ticks, then return current value. */
1448static int fmeter_getrate(struct fmeter *fmp)
1449{
1450 int val;
1451
1452 spin_lock(&fmp->lock);
1453 fmeter_update(fmp);
1454 val = fmp->val;
1455 spin_unlock(&fmp->lock);
1456 return val;
1457}
1458
57fce0a6
TH
1459static struct cpuset *cpuset_attach_old_cs;
1460
5d21cc2d 1461/* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
1f7dd3e5 1462static int cpuset_can_attach(struct cgroup_taskset *tset)
f780bdb7 1463{
1f7dd3e5
TH
1464 struct cgroup_subsys_state *css;
1465 struct cpuset *cs;
bb9d97b6
TH
1466 struct task_struct *task;
1467 int ret;
1da177e4 1468
57fce0a6 1469 /* used later by cpuset_attach() */
1f7dd3e5
TH
1470 cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css));
1471 cs = css_cs(css);
57fce0a6 1472
5d21cc2d
TH
1473 mutex_lock(&cpuset_mutex);
1474
aa6ec29b 1475 /* allow moving tasks into an empty cpuset if on default hierarchy */
5d21cc2d 1476 ret = -ENOSPC;
9e10a130 1477 if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
88fa523b 1478 (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)))
5d21cc2d 1479 goto out_unlock;
9985b0ba 1480
1f7dd3e5 1481 cgroup_taskset_for_each(task, css, tset) {
7f51412a
JL
1482 ret = task_can_attach(task, cs->cpus_allowed);
1483 if (ret)
5d21cc2d
TH
1484 goto out_unlock;
1485 ret = security_task_setscheduler(task);
1486 if (ret)
1487 goto out_unlock;
bb9d97b6 1488 }
f780bdb7 1489
452477fa
TH
1490 /*
1491 * Mark attach is in progress. This makes validate_change() fail
1492 * changes which zero cpus/mems_allowed.
1493 */
1494 cs->attach_in_progress++;
5d21cc2d
TH
1495 ret = 0;
1496out_unlock:
1497 mutex_unlock(&cpuset_mutex);
1498 return ret;
8793d854 1499}
f780bdb7 1500
1f7dd3e5 1501static void cpuset_cancel_attach(struct cgroup_taskset *tset)
452477fa 1502{
1f7dd3e5
TH
1503 struct cgroup_subsys_state *css;
1504 struct cpuset *cs;
1505
1506 cgroup_taskset_first(tset, &css);
1507 cs = css_cs(css);
1508
5d21cc2d 1509 mutex_lock(&cpuset_mutex);
eb95419b 1510 css_cs(css)->attach_in_progress--;
5d21cc2d 1511 mutex_unlock(&cpuset_mutex);
8793d854 1512}
1da177e4 1513
4e4c9a14 1514/*
5d21cc2d 1515 * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach()
4e4c9a14
TH
1516 * but we can't allocate it dynamically there. Define it global and
1517 * allocate from cpuset_init().
1518 */
1519static cpumask_var_t cpus_attach;
1520
1f7dd3e5 1521static void cpuset_attach(struct cgroup_taskset *tset)
8793d854 1522{
67bd2c59 1523 /* static buf protected by cpuset_mutex */
4e4c9a14 1524 static nodemask_t cpuset_attach_nodemask_to;
bb9d97b6 1525 struct task_struct *task;
4530eddb 1526 struct task_struct *leader;
1f7dd3e5
TH
1527 struct cgroup_subsys_state *css;
1528 struct cpuset *cs;
57fce0a6 1529 struct cpuset *oldcs = cpuset_attach_old_cs;
22fb52dd 1530
1f7dd3e5
TH
1531 cgroup_taskset_first(tset, &css);
1532 cs = css_cs(css);
1533
5d21cc2d
TH
1534 mutex_lock(&cpuset_mutex);
1535
4e4c9a14
TH
1536 /* prepare for attach */
1537 if (cs == &top_cpuset)
1538 cpumask_copy(cpus_attach, cpu_possible_mask);
1539 else
ae1c8023 1540 guarantee_online_cpus(cs, cpus_attach);
4e4c9a14 1541
ae1c8023 1542 guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
4e4c9a14 1543
1f7dd3e5 1544 cgroup_taskset_for_each(task, css, tset) {
bb9d97b6
TH
1545 /*
1546 * can_attach beforehand should guarantee that this doesn't
1547 * fail. TODO: have a better way to handle failure here
1548 */
1549 WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
1550
1551 cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
1552 cpuset_update_task_spread_flag(cs, task);
1553 }
22fb52dd 1554
f780bdb7 1555 /*
4530eddb
TH
1556 * Change mm for all threadgroup leaders. This is expensive and may
1557 * sleep and should be moved outside migration path proper.
f780bdb7 1558 */
ae1c8023 1559 cpuset_attach_nodemask_to = cs->effective_mems;
1f7dd3e5 1560 cgroup_taskset_for_each_leader(leader, css, tset) {
3df9ca0a
TH
1561 struct mm_struct *mm = get_task_mm(leader);
1562
1563 if (mm) {
1564 mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
1565
1566 /*
1567 * old_mems_allowed is the same with mems_allowed
1568 * here, except if this task is being moved
1569 * automatically due to hotplug. In that case
1570 * @mems_allowed has been updated and is empty, so
1571 * @old_mems_allowed is the right nodesets that we
1572 * migrate mm from.
1573 */
e93ad19d 1574 if (is_memory_migrate(cs))
3df9ca0a
TH
1575 cpuset_migrate_mm(mm, &oldcs->old_mems_allowed,
1576 &cpuset_attach_nodemask_to);
e93ad19d
TH
1577 else
1578 mmput(mm);
f047cecf 1579 }
4225399a 1580 }
452477fa 1581
33ad801d 1582 cs->old_mems_allowed = cpuset_attach_nodemask_to;
02bb5863 1583
452477fa 1584 cs->attach_in_progress--;
e44193d3
LZ
1585 if (!cs->attach_in_progress)
1586 wake_up(&cpuset_attach_wq);
5d21cc2d
TH
1587
1588 mutex_unlock(&cpuset_mutex);
1da177e4
LT
1589}
1590
1591/* The various types of files and directories in a cpuset file system */
1592
1593typedef enum {
45b07ef3 1594 FILE_MEMORY_MIGRATE,
1da177e4
LT
1595 FILE_CPULIST,
1596 FILE_MEMLIST,
afd1a8b3
LZ
1597 FILE_EFFECTIVE_CPULIST,
1598 FILE_EFFECTIVE_MEMLIST,
1da177e4
LT
1599 FILE_CPU_EXCLUSIVE,
1600 FILE_MEM_EXCLUSIVE,
78608366 1601 FILE_MEM_HARDWALL,
029190c5 1602 FILE_SCHED_LOAD_BALANCE,
1d3504fc 1603 FILE_SCHED_RELAX_DOMAIN_LEVEL,
3e0d98b9
PJ
1604 FILE_MEMORY_PRESSURE_ENABLED,
1605 FILE_MEMORY_PRESSURE,
825a46af
PJ
1606 FILE_SPREAD_PAGE,
1607 FILE_SPREAD_SLAB,
1da177e4
LT
1608} cpuset_filetype_t;
1609
182446d0
TH
1610static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft,
1611 u64 val)
700fe1ab 1612{
182446d0 1613 struct cpuset *cs = css_cs(css);
700fe1ab 1614 cpuset_filetype_t type = cft->private;
a903f086 1615 int retval = 0;
700fe1ab 1616
5d21cc2d 1617 mutex_lock(&cpuset_mutex);
a903f086
LZ
1618 if (!is_cpuset_online(cs)) {
1619 retval = -ENODEV;
5d21cc2d 1620 goto out_unlock;
a903f086 1621 }
700fe1ab
PM
1622
1623 switch (type) {
1da177e4 1624 case FILE_CPU_EXCLUSIVE:
700fe1ab 1625 retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
1da177e4
LT
1626 break;
1627 case FILE_MEM_EXCLUSIVE:
700fe1ab 1628 retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
1da177e4 1629 break;
78608366
PM
1630 case FILE_MEM_HARDWALL:
1631 retval = update_flag(CS_MEM_HARDWALL, cs, val);
1632 break;
029190c5 1633 case FILE_SCHED_LOAD_BALANCE:
700fe1ab 1634 retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1d3504fc 1635 break;
45b07ef3 1636 case FILE_MEMORY_MIGRATE:
700fe1ab 1637 retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
45b07ef3 1638 break;
3e0d98b9 1639 case FILE_MEMORY_PRESSURE_ENABLED:
700fe1ab 1640 cpuset_memory_pressure_enabled = !!val;
3e0d98b9 1641 break;
825a46af 1642 case FILE_SPREAD_PAGE:
700fe1ab 1643 retval = update_flag(CS_SPREAD_PAGE, cs, val);
825a46af
PJ
1644 break;
1645 case FILE_SPREAD_SLAB:
700fe1ab 1646 retval = update_flag(CS_SPREAD_SLAB, cs, val);
825a46af 1647 break;
1da177e4
LT
1648 default:
1649 retval = -EINVAL;
700fe1ab 1650 break;
1da177e4 1651 }
5d21cc2d
TH
1652out_unlock:
1653 mutex_unlock(&cpuset_mutex);
1da177e4
LT
1654 return retval;
1655}
1656
182446d0
TH
1657static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft,
1658 s64 val)
5be7a479 1659{
182446d0 1660 struct cpuset *cs = css_cs(css);
5be7a479 1661 cpuset_filetype_t type = cft->private;
5d21cc2d 1662 int retval = -ENODEV;
5be7a479 1663
5d21cc2d
TH
1664 mutex_lock(&cpuset_mutex);
1665 if (!is_cpuset_online(cs))
1666 goto out_unlock;
e3712395 1667
5be7a479
PM
1668 switch (type) {
1669 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1670 retval = update_relax_domain_level(cs, val);
1671 break;
1672 default:
1673 retval = -EINVAL;
1674 break;
1675 }
5d21cc2d
TH
1676out_unlock:
1677 mutex_unlock(&cpuset_mutex);
5be7a479
PM
1678 return retval;
1679}
1680
e3712395
PM
1681/*
1682 * Common handling for a write to a "cpus" or "mems" file.
1683 */
451af504
TH
1684static ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
1685 char *buf, size_t nbytes, loff_t off)
e3712395 1686{
451af504 1687 struct cpuset *cs = css_cs(of_css(of));
645fcc9d 1688 struct cpuset *trialcs;
5d21cc2d 1689 int retval = -ENODEV;
e3712395 1690
451af504
TH
1691 buf = strstrip(buf);
1692
3a5a6d0c
TH
1693 /*
1694 * CPU or memory hotunplug may leave @cs w/o any execution
1695 * resources, in which case the hotplug code asynchronously updates
1696 * configuration and transfers all tasks to the nearest ancestor
1697 * which can execute.
1698 *
1699 * As writes to "cpus" or "mems" may restore @cs's execution
1700 * resources, wait for the previously scheduled operations before
1701 * proceeding, so that we don't end up keep removing tasks added
1702 * after execution capability is restored.
76bb5ab8
TH
1703 *
1704 * cpuset_hotplug_work calls back into cgroup core via
1705 * cgroup_transfer_tasks() and waiting for it from a cgroupfs
1706 * operation like this one can lead to a deadlock through kernfs
1707 * active_ref protection. Let's break the protection. Losing the
1708 * protection is okay as we check whether @cs is online after
1709 * grabbing cpuset_mutex anyway. This only happens on the legacy
1710 * hierarchies.
3a5a6d0c 1711 */
76bb5ab8
TH
1712 css_get(&cs->css);
1713 kernfs_break_active_protection(of->kn);
3a5a6d0c
TH
1714 flush_work(&cpuset_hotplug_work);
1715
5d21cc2d
TH
1716 mutex_lock(&cpuset_mutex);
1717 if (!is_cpuset_online(cs))
1718 goto out_unlock;
e3712395 1719
645fcc9d 1720 trialcs = alloc_trial_cpuset(cs);
b75f38d6
LZ
1721 if (!trialcs) {
1722 retval = -ENOMEM;
5d21cc2d 1723 goto out_unlock;
b75f38d6 1724 }
645fcc9d 1725
451af504 1726 switch (of_cft(of)->private) {
e3712395 1727 case FILE_CPULIST:
645fcc9d 1728 retval = update_cpumask(cs, trialcs, buf);
e3712395
PM
1729 break;
1730 case FILE_MEMLIST:
645fcc9d 1731 retval = update_nodemask(cs, trialcs, buf);
e3712395
PM
1732 break;
1733 default:
1734 retval = -EINVAL;
1735 break;
1736 }
645fcc9d
LZ
1737
1738 free_trial_cpuset(trialcs);
5d21cc2d
TH
1739out_unlock:
1740 mutex_unlock(&cpuset_mutex);
76bb5ab8
TH
1741 kernfs_unbreak_active_protection(of->kn);
1742 css_put(&cs->css);
e93ad19d 1743 flush_workqueue(cpuset_migrate_mm_wq);
451af504 1744 return retval ?: nbytes;
e3712395
PM
1745}
1746
1da177e4
LT
1747/*
1748 * These ascii lists should be read in a single call, by using a user
1749 * buffer large enough to hold the entire map. If read in smaller
1750 * chunks, there is no guarantee of atomicity. Since the display format
1751 * used, list of ranges of sequential numbers, is variable length,
1752 * and since these maps can change value dynamically, one could read
1753 * gibberish by doing partial reads while a list was changing.
1da177e4 1754 */
2da8ca82 1755static int cpuset_common_seq_show(struct seq_file *sf, void *v)
1da177e4 1756{
2da8ca82
TH
1757 struct cpuset *cs = css_cs(seq_css(sf));
1758 cpuset_filetype_t type = seq_cft(sf)->private;
51ffe411 1759 int ret = 0;
1da177e4 1760
8447a0fe 1761 spin_lock_irq(&callback_lock);
1da177e4
LT
1762
1763 switch (type) {
1764 case FILE_CPULIST:
e8e6d97c 1765 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_allowed));
1da177e4
LT
1766 break;
1767 case FILE_MEMLIST:
e8e6d97c 1768 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed));
1da177e4 1769 break;
afd1a8b3 1770 case FILE_EFFECTIVE_CPULIST:
e8e6d97c 1771 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus));
afd1a8b3
LZ
1772 break;
1773 case FILE_EFFECTIVE_MEMLIST:
e8e6d97c 1774 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems));
afd1a8b3 1775 break;
1da177e4 1776 default:
51ffe411 1777 ret = -EINVAL;
1da177e4 1778 }
1da177e4 1779
8447a0fe 1780 spin_unlock_irq(&callback_lock);
51ffe411 1781 return ret;
1da177e4
LT
1782}
1783
182446d0 1784static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft)
700fe1ab 1785{
182446d0 1786 struct cpuset *cs = css_cs(css);
700fe1ab
PM
1787 cpuset_filetype_t type = cft->private;
1788 switch (type) {
1789 case FILE_CPU_EXCLUSIVE:
1790 return is_cpu_exclusive(cs);
1791 case FILE_MEM_EXCLUSIVE:
1792 return is_mem_exclusive(cs);
78608366
PM
1793 case FILE_MEM_HARDWALL:
1794 return is_mem_hardwall(cs);
700fe1ab
PM
1795 case FILE_SCHED_LOAD_BALANCE:
1796 return is_sched_load_balance(cs);
1797 case FILE_MEMORY_MIGRATE:
1798 return is_memory_migrate(cs);
1799 case FILE_MEMORY_PRESSURE_ENABLED:
1800 return cpuset_memory_pressure_enabled;
1801 case FILE_MEMORY_PRESSURE:
1802 return fmeter_getrate(&cs->fmeter);
1803 case FILE_SPREAD_PAGE:
1804 return is_spread_page(cs);
1805 case FILE_SPREAD_SLAB:
1806 return is_spread_slab(cs);
1807 default:
1808 BUG();
1809 }
cf417141
MK
1810
1811 /* Unreachable but makes gcc happy */
1812 return 0;
700fe1ab 1813}
1da177e4 1814
182446d0 1815static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft)
5be7a479 1816{
182446d0 1817 struct cpuset *cs = css_cs(css);
5be7a479
PM
1818 cpuset_filetype_t type = cft->private;
1819 switch (type) {
1820 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1821 return cs->relax_domain_level;
1822 default:
1823 BUG();
1824 }
cf417141
MK
1825
1826 /* Unrechable but makes gcc happy */
1827 return 0;
5be7a479
PM
1828}
1829
1da177e4
LT
1830
1831/*
1832 * for the common functions, 'private' gives the type of file
1833 */
1834
addf2c73
PM
1835static struct cftype files[] = {
1836 {
1837 .name = "cpus",
2da8ca82 1838 .seq_show = cpuset_common_seq_show,
451af504 1839 .write = cpuset_write_resmask,
e3712395 1840 .max_write_len = (100U + 6 * NR_CPUS),
addf2c73
PM
1841 .private = FILE_CPULIST,
1842 },
1843
1844 {
1845 .name = "mems",
2da8ca82 1846 .seq_show = cpuset_common_seq_show,
451af504 1847 .write = cpuset_write_resmask,
e3712395 1848 .max_write_len = (100U + 6 * MAX_NUMNODES),
addf2c73
PM
1849 .private = FILE_MEMLIST,
1850 },
1851
afd1a8b3
LZ
1852 {
1853 .name = "effective_cpus",
1854 .seq_show = cpuset_common_seq_show,
1855 .private = FILE_EFFECTIVE_CPULIST,
1856 },
1857
1858 {
1859 .name = "effective_mems",
1860 .seq_show = cpuset_common_seq_show,
1861 .private = FILE_EFFECTIVE_MEMLIST,
1862 },
1863
addf2c73
PM
1864 {
1865 .name = "cpu_exclusive",
1866 .read_u64 = cpuset_read_u64,
1867 .write_u64 = cpuset_write_u64,
1868 .private = FILE_CPU_EXCLUSIVE,
1869 },
1870
1871 {
1872 .name = "mem_exclusive",
1873 .read_u64 = cpuset_read_u64,
1874 .write_u64 = cpuset_write_u64,
1875 .private = FILE_MEM_EXCLUSIVE,
1876 },
1877
78608366
PM
1878 {
1879 .name = "mem_hardwall",
1880 .read_u64 = cpuset_read_u64,
1881 .write_u64 = cpuset_write_u64,
1882 .private = FILE_MEM_HARDWALL,
1883 },
1884
addf2c73
PM
1885 {
1886 .name = "sched_load_balance",
1887 .read_u64 = cpuset_read_u64,
1888 .write_u64 = cpuset_write_u64,
1889 .private = FILE_SCHED_LOAD_BALANCE,
1890 },
1891
1892 {
1893 .name = "sched_relax_domain_level",
5be7a479
PM
1894 .read_s64 = cpuset_read_s64,
1895 .write_s64 = cpuset_write_s64,
addf2c73
PM
1896 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
1897 },
1898
1899 {
1900 .name = "memory_migrate",
1901 .read_u64 = cpuset_read_u64,
1902 .write_u64 = cpuset_write_u64,
1903 .private = FILE_MEMORY_MIGRATE,
1904 },
1905
1906 {
1907 .name = "memory_pressure",
1908 .read_u64 = cpuset_read_u64,
addf2c73
PM
1909 },
1910
1911 {
1912 .name = "memory_spread_page",
1913 .read_u64 = cpuset_read_u64,
1914 .write_u64 = cpuset_write_u64,
1915 .private = FILE_SPREAD_PAGE,
1916 },
1917
1918 {
1919 .name = "memory_spread_slab",
1920 .read_u64 = cpuset_read_u64,
1921 .write_u64 = cpuset_write_u64,
1922 .private = FILE_SPREAD_SLAB,
1923 },
3e0d98b9 1924
4baf6e33
TH
1925 {
1926 .name = "memory_pressure_enabled",
1927 .flags = CFTYPE_ONLY_ON_ROOT,
1928 .read_u64 = cpuset_read_u64,
1929 .write_u64 = cpuset_write_u64,
1930 .private = FILE_MEMORY_PRESSURE_ENABLED,
1931 },
1da177e4 1932
4baf6e33
TH
1933 { } /* terminate */
1934};
1da177e4
LT
1935
1936/*
92fb9748 1937 * cpuset_css_alloc - allocate a cpuset css
c9e5fe66 1938 * cgrp: control group that the new cpuset will be part of
1da177e4
LT
1939 */
1940
eb95419b
TH
1941static struct cgroup_subsys_state *
1942cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
1da177e4 1943{
c8f699bb 1944 struct cpuset *cs;
1da177e4 1945
eb95419b 1946 if (!parent_css)
8793d854 1947 return &top_cpuset.css;
033fa1c5 1948
c8f699bb 1949 cs = kzalloc(sizeof(*cs), GFP_KERNEL);
1da177e4 1950 if (!cs)
8793d854 1951 return ERR_PTR(-ENOMEM);
e2b9a3d7
LZ
1952 if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL))
1953 goto free_cs;
1954 if (!alloc_cpumask_var(&cs->effective_cpus, GFP_KERNEL))
1955 goto free_cpus;
1da177e4 1956
029190c5 1957 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
300ed6cb 1958 cpumask_clear(cs->cpus_allowed);
f9a86fcb 1959 nodes_clear(cs->mems_allowed);
e2b9a3d7
LZ
1960 cpumask_clear(cs->effective_cpus);
1961 nodes_clear(cs->effective_mems);
3e0d98b9 1962 fmeter_init(&cs->fmeter);
1d3504fc 1963 cs->relax_domain_level = -1;
1da177e4 1964
c8f699bb 1965 return &cs->css;
e2b9a3d7
LZ
1966
1967free_cpus:
1968 free_cpumask_var(cs->cpus_allowed);
1969free_cs:
1970 kfree(cs);
1971 return ERR_PTR(-ENOMEM);
c8f699bb
TH
1972}
1973
eb95419b 1974static int cpuset_css_online(struct cgroup_subsys_state *css)
c8f699bb 1975{
eb95419b 1976 struct cpuset *cs = css_cs(css);
c431069f 1977 struct cpuset *parent = parent_cs(cs);
ae8086ce 1978 struct cpuset *tmp_cs;
492eb21b 1979 struct cgroup_subsys_state *pos_css;
c8f699bb
TH
1980
1981 if (!parent)
1982 return 0;
1983
5d21cc2d
TH
1984 mutex_lock(&cpuset_mutex);
1985
efeb77b2 1986 set_bit(CS_ONLINE, &cs->flags);
c8f699bb
TH
1987 if (is_spread_page(parent))
1988 set_bit(CS_SPREAD_PAGE, &cs->flags);
1989 if (is_spread_slab(parent))
1990 set_bit(CS_SPREAD_SLAB, &cs->flags);
1da177e4 1991
664eedde 1992 cpuset_inc();
033fa1c5 1993
8447a0fe 1994 spin_lock_irq(&callback_lock);
9e10a130 1995 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) {
e2b9a3d7
LZ
1996 cpumask_copy(cs->effective_cpus, parent->effective_cpus);
1997 cs->effective_mems = parent->effective_mems;
1998 }
8447a0fe 1999 spin_unlock_irq(&callback_lock);
e2b9a3d7 2000
eb95419b 2001 if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
5d21cc2d 2002 goto out_unlock;
033fa1c5
TH
2003
2004 /*
2005 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
2006 * set. This flag handling is implemented in cgroup core for
2007 * histrical reasons - the flag may be specified during mount.
2008 *
2009 * Currently, if any sibling cpusets have exclusive cpus or mem, we
2010 * refuse to clone the configuration - thereby refusing the task to
2011 * be entered, and as a result refusing the sys_unshare() or
2012 * clone() which initiated it. If this becomes a problem for some
2013 * users who wish to allow that scenario, then this could be
2014 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
2015 * (and likewise for mems) to the new cgroup.
2016 */
ae8086ce 2017 rcu_read_lock();
492eb21b 2018 cpuset_for_each_child(tmp_cs, pos_css, parent) {
ae8086ce
TH
2019 if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
2020 rcu_read_unlock();
5d21cc2d 2021 goto out_unlock;
ae8086ce 2022 }
033fa1c5 2023 }
ae8086ce 2024 rcu_read_unlock();
033fa1c5 2025
8447a0fe 2026 spin_lock_irq(&callback_lock);
033fa1c5 2027 cs->mems_allowed = parent->mems_allowed;
790317e1 2028 cs->effective_mems = parent->mems_allowed;
033fa1c5 2029 cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
790317e1 2030 cpumask_copy(cs->effective_cpus, parent->cpus_allowed);
cea74465 2031 spin_unlock_irq(&callback_lock);
5d21cc2d
TH
2032out_unlock:
2033 mutex_unlock(&cpuset_mutex);
c8f699bb
TH
2034 return 0;
2035}
2036
0b9e6965
ZH
2037/*
2038 * If the cpuset being removed has its flag 'sched_load_balance'
2039 * enabled, then simulate turning sched_load_balance off, which
2040 * will call rebuild_sched_domains_locked().
2041 */
2042
eb95419b 2043static void cpuset_css_offline(struct cgroup_subsys_state *css)
c8f699bb 2044{
eb95419b 2045 struct cpuset *cs = css_cs(css);
c8f699bb 2046
5d21cc2d 2047 mutex_lock(&cpuset_mutex);
c8f699bb
TH
2048
2049 if (is_sched_load_balance(cs))
2050 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
2051
664eedde 2052 cpuset_dec();
efeb77b2 2053 clear_bit(CS_ONLINE, &cs->flags);
c8f699bb 2054
5d21cc2d 2055 mutex_unlock(&cpuset_mutex);
1da177e4
LT
2056}
2057
eb95419b 2058static void cpuset_css_free(struct cgroup_subsys_state *css)
1da177e4 2059{
eb95419b 2060 struct cpuset *cs = css_cs(css);
1da177e4 2061
e2b9a3d7 2062 free_cpumask_var(cs->effective_cpus);
300ed6cb 2063 free_cpumask_var(cs->cpus_allowed);
8793d854 2064 kfree(cs);
1da177e4
LT
2065}
2066
39bd0d15
LZ
2067static void cpuset_bind(struct cgroup_subsys_state *root_css)
2068{
2069 mutex_lock(&cpuset_mutex);
8447a0fe 2070 spin_lock_irq(&callback_lock);
39bd0d15 2071
9e10a130 2072 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) {
39bd0d15
LZ
2073 cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask);
2074 top_cpuset.mems_allowed = node_possible_map;
2075 } else {
2076 cpumask_copy(top_cpuset.cpus_allowed,
2077 top_cpuset.effective_cpus);
2078 top_cpuset.mems_allowed = top_cpuset.effective_mems;
2079 }
2080
8447a0fe 2081 spin_unlock_irq(&callback_lock);
39bd0d15
LZ
2082 mutex_unlock(&cpuset_mutex);
2083}
2084
06f4e948
ZL
2085/*
2086 * Make sure the new task conform to the current state of its parent,
2087 * which could have been changed by cpuset just after it inherits the
2088 * state from the parent and before it sits on the cgroup's task list.
2089 */
8a15b817 2090static void cpuset_fork(struct task_struct *task)
06f4e948
ZL
2091{
2092 if (task_css_is_root(task, cpuset_cgrp_id))
2093 return;
2094
2095 set_cpus_allowed_ptr(task, &current->cpus_allowed);
2096 task->mems_allowed = current->mems_allowed;
2097}
2098
073219e9 2099struct cgroup_subsys cpuset_cgrp_subsys = {
39bd0d15
LZ
2100 .css_alloc = cpuset_css_alloc,
2101 .css_online = cpuset_css_online,
2102 .css_offline = cpuset_css_offline,
2103 .css_free = cpuset_css_free,
2104 .can_attach = cpuset_can_attach,
2105 .cancel_attach = cpuset_cancel_attach,
2106 .attach = cpuset_attach,
5cf1cacb 2107 .post_attach = cpuset_post_attach,
39bd0d15 2108 .bind = cpuset_bind,
06f4e948 2109 .fork = cpuset_fork,
5577964e 2110 .legacy_cftypes = files,
b38e42e9 2111 .early_init = true,
8793d854
PM
2112};
2113
1da177e4
LT
2114/**
2115 * cpuset_init - initialize cpusets at system boot
2116 *
2117 * Description: Initialize top_cpuset and the cpuset internal file system,
2118 **/
2119
2120int __init cpuset_init(void)
2121{
8793d854 2122 int err = 0;
1da177e4 2123
58568d2a
MX
2124 if (!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL))
2125 BUG();
e2b9a3d7
LZ
2126 if (!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL))
2127 BUG();
58568d2a 2128
300ed6cb 2129 cpumask_setall(top_cpuset.cpus_allowed);
f9a86fcb 2130 nodes_setall(top_cpuset.mems_allowed);
e2b9a3d7
LZ
2131 cpumask_setall(top_cpuset.effective_cpus);
2132 nodes_setall(top_cpuset.effective_mems);
1da177e4 2133
3e0d98b9 2134 fmeter_init(&top_cpuset.fmeter);
029190c5 2135 set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
1d3504fc 2136 top_cpuset.relax_domain_level = -1;
1da177e4 2137
1da177e4
LT
2138 err = register_filesystem(&cpuset_fs_type);
2139 if (err < 0)
8793d854
PM
2140 return err;
2141
2341d1b6
LZ
2142 if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL))
2143 BUG();
2144
8793d854 2145 return 0;
1da177e4
LT
2146}
2147
b1aac8bb 2148/*
cf417141 2149 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
b1aac8bb
PJ
2150 * or memory nodes, we need to walk over the cpuset hierarchy,
2151 * removing that CPU or node from all cpusets. If this removes the
956db3ca
CW
2152 * last CPU or node from a cpuset, then move the tasks in the empty
2153 * cpuset to its next-highest non-empty parent.
b1aac8bb 2154 */
956db3ca
CW
2155static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
2156{
2157 struct cpuset *parent;
2158
956db3ca
CW
2159 /*
2160 * Find its next-highest non-empty parent, (top cpuset
2161 * has online cpus, so can't be empty).
2162 */
c431069f 2163 parent = parent_cs(cs);
300ed6cb 2164 while (cpumask_empty(parent->cpus_allowed) ||
b4501295 2165 nodes_empty(parent->mems_allowed))
c431069f 2166 parent = parent_cs(parent);
956db3ca 2167
8cc99345 2168 if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
12d3089c 2169 pr_err("cpuset: failed to transfer tasks out of empty cpuset ");
e61734c5
TH
2170 pr_cont_cgroup_name(cs->css.cgroup);
2171 pr_cont("\n");
8cc99345 2172 }
956db3ca
CW
2173}
2174
be4c9dd7
LZ
2175static void
2176hotplug_update_tasks_legacy(struct cpuset *cs,
2177 struct cpumask *new_cpus, nodemask_t *new_mems,
2178 bool cpus_updated, bool mems_updated)
390a36aa
LZ
2179{
2180 bool is_empty;
2181
8447a0fe 2182 spin_lock_irq(&callback_lock);
be4c9dd7
LZ
2183 cpumask_copy(cs->cpus_allowed, new_cpus);
2184 cpumask_copy(cs->effective_cpus, new_cpus);
2185 cs->mems_allowed = *new_mems;
2186 cs->effective_mems = *new_mems;
8447a0fe 2187 spin_unlock_irq(&callback_lock);
390a36aa
LZ
2188
2189 /*
2190 * Don't call update_tasks_cpumask() if the cpuset becomes empty,
2191 * as the tasks will be migratecd to an ancestor.
2192 */
be4c9dd7 2193 if (cpus_updated && !cpumask_empty(cs->cpus_allowed))
390a36aa 2194 update_tasks_cpumask(cs);
be4c9dd7 2195 if (mems_updated && !nodes_empty(cs->mems_allowed))
390a36aa
LZ
2196 update_tasks_nodemask(cs);
2197
2198 is_empty = cpumask_empty(cs->cpus_allowed) ||
2199 nodes_empty(cs->mems_allowed);
2200
2201 mutex_unlock(&cpuset_mutex);
2202
2203 /*
2204 * Move tasks to the nearest ancestor with execution resources,
2205 * This is full cgroup operation which will also call back into
2206 * cpuset. Should be done outside any lock.
2207 */
2208 if (is_empty)
2209 remove_tasks_in_empty_cpuset(cs);
2210
2211 mutex_lock(&cpuset_mutex);
2212}
2213
be4c9dd7
LZ
2214static void
2215hotplug_update_tasks(struct cpuset *cs,
2216 struct cpumask *new_cpus, nodemask_t *new_mems,
2217 bool cpus_updated, bool mems_updated)
390a36aa 2218{
be4c9dd7
LZ
2219 if (cpumask_empty(new_cpus))
2220 cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus);
2221 if (nodes_empty(*new_mems))
2222 *new_mems = parent_cs(cs)->effective_mems;
2223
8447a0fe 2224 spin_lock_irq(&callback_lock);
be4c9dd7
LZ
2225 cpumask_copy(cs->effective_cpus, new_cpus);
2226 cs->effective_mems = *new_mems;
8447a0fe 2227 spin_unlock_irq(&callback_lock);
390a36aa 2228
be4c9dd7 2229 if (cpus_updated)
390a36aa 2230 update_tasks_cpumask(cs);
be4c9dd7 2231 if (mems_updated)
390a36aa
LZ
2232 update_tasks_nodemask(cs);
2233}
2234
deb7aa30 2235/**
388afd85 2236 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
deb7aa30 2237 * @cs: cpuset in interest
956db3ca 2238 *
deb7aa30
TH
2239 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
2240 * offline, update @cs accordingly. If @cs ends up with no CPU or memory,
2241 * all its tasks are moved to the nearest ancestor with both resources.
80d1fa64 2242 */
388afd85 2243static void cpuset_hotplug_update_tasks(struct cpuset *cs)
80d1fa64 2244{
be4c9dd7
LZ
2245 static cpumask_t new_cpus;
2246 static nodemask_t new_mems;
2247 bool cpus_updated;
2248 bool mems_updated;
e44193d3
LZ
2249retry:
2250 wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
80d1fa64 2251
5d21cc2d 2252 mutex_lock(&cpuset_mutex);
7ddf96b0 2253
e44193d3
LZ
2254 /*
2255 * We have raced with task attaching. We wait until attaching
2256 * is finished, so we won't attach a task to an empty cpuset.
2257 */
2258 if (cs->attach_in_progress) {
2259 mutex_unlock(&cpuset_mutex);
2260 goto retry;
2261 }
2262
be4c9dd7
LZ
2263 cpumask_and(&new_cpus, cs->cpus_allowed, parent_cs(cs)->effective_cpus);
2264 nodes_and(new_mems, cs->mems_allowed, parent_cs(cs)->effective_mems);
80d1fa64 2265
be4c9dd7
LZ
2266 cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus);
2267 mems_updated = !nodes_equal(new_mems, cs->effective_mems);
deb7aa30 2268
9e10a130 2269 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys))
be4c9dd7
LZ
2270 hotplug_update_tasks(cs, &new_cpus, &new_mems,
2271 cpus_updated, mems_updated);
390a36aa 2272 else
be4c9dd7
LZ
2273 hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems,
2274 cpus_updated, mems_updated);
8d033948 2275
5d21cc2d 2276 mutex_unlock(&cpuset_mutex);
b1aac8bb
PJ
2277}
2278
deb7aa30 2279/**
3a5a6d0c 2280 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
956db3ca 2281 *
deb7aa30
TH
2282 * This function is called after either CPU or memory configuration has
2283 * changed and updates cpuset accordingly. The top_cpuset is always
2284 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
2285 * order to make cpusets transparent (of no affect) on systems that are
2286 * actively using CPU hotplug but making no active use of cpusets.
956db3ca 2287 *
deb7aa30 2288 * Non-root cpusets are only affected by offlining. If any CPUs or memory
388afd85
LZ
2289 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
2290 * all descendants.
956db3ca 2291 *
deb7aa30
TH
2292 * Note that CPU offlining during suspend is ignored. We don't modify
2293 * cpusets across suspend/resume cycles at all.
956db3ca 2294 */
3a5a6d0c 2295static void cpuset_hotplug_workfn(struct work_struct *work)
b1aac8bb 2296{
5c5cc623
LZ
2297 static cpumask_t new_cpus;
2298 static nodemask_t new_mems;
deb7aa30 2299 bool cpus_updated, mems_updated;
9e10a130 2300 bool on_dfl = cgroup_subsys_on_dfl(cpuset_cgrp_subsys);
b1aac8bb 2301
5d21cc2d 2302 mutex_lock(&cpuset_mutex);
956db3ca 2303
deb7aa30
TH
2304 /* fetch the available cpus/mems and find out which changed how */
2305 cpumask_copy(&new_cpus, cpu_active_mask);
2306 new_mems = node_states[N_MEMORY];
7ddf96b0 2307
7e88291b
LZ
2308 cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus);
2309 mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems);
7ddf96b0 2310
deb7aa30
TH
2311 /* synchronize cpus_allowed to cpu_active_mask */
2312 if (cpus_updated) {
8447a0fe 2313 spin_lock_irq(&callback_lock);
7e88291b
LZ
2314 if (!on_dfl)
2315 cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
1344ab9c 2316 cpumask_copy(top_cpuset.effective_cpus, &new_cpus);
8447a0fe 2317 spin_unlock_irq(&callback_lock);
deb7aa30
TH
2318 /* we don't mess with cpumasks of tasks in top_cpuset */
2319 }
b4501295 2320
deb7aa30
TH
2321 /* synchronize mems_allowed to N_MEMORY */
2322 if (mems_updated) {
8447a0fe 2323 spin_lock_irq(&callback_lock);
7e88291b
LZ
2324 if (!on_dfl)
2325 top_cpuset.mems_allowed = new_mems;
1344ab9c 2326 top_cpuset.effective_mems = new_mems;
8447a0fe 2327 spin_unlock_irq(&callback_lock);
d66393e5 2328 update_tasks_nodemask(&top_cpuset);
deb7aa30 2329 }
b4501295 2330
388afd85
LZ
2331 mutex_unlock(&cpuset_mutex);
2332
5c5cc623
LZ
2333 /* if cpus or mems changed, we need to propagate to descendants */
2334 if (cpus_updated || mems_updated) {
deb7aa30 2335 struct cpuset *cs;
492eb21b 2336 struct cgroup_subsys_state *pos_css;
f9b4fb8d 2337
fc560a26 2338 rcu_read_lock();
492eb21b 2339 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
ec903c0c 2340 if (cs == &top_cpuset || !css_tryget_online(&cs->css))
388afd85
LZ
2341 continue;
2342 rcu_read_unlock();
7ddf96b0 2343
388afd85 2344 cpuset_hotplug_update_tasks(cs);
b4501295 2345
388afd85
LZ
2346 rcu_read_lock();
2347 css_put(&cs->css);
2348 }
2349 rcu_read_unlock();
2350 }
8d033948 2351
deb7aa30 2352 /* rebuild sched domains if cpus_allowed has changed */
e0e80a02
LZ
2353 if (cpus_updated)
2354 rebuild_sched_domains();
b1aac8bb
PJ
2355}
2356
7ddf96b0 2357void cpuset_update_active_cpus(bool cpu_online)
4c4d50f7 2358{
3a5a6d0c
TH
2359 /*
2360 * We're inside cpu hotplug critical region which usually nests
2361 * inside cgroup synchronization. Bounce actual hotplug processing
2362 * to a work item to avoid reverse locking order.
2363 *
2364 * We still need to do partition_sched_domains() synchronously;
2365 * otherwise, the scheduler will get confused and put tasks to the
2366 * dead CPU. Fall back to the default single domain.
2367 * cpuset_hotplug_workfn() will rebuild it as necessary.
2368 */
2369 partition_sched_domains(1, NULL, NULL);
2370 schedule_work(&cpuset_hotplug_work);
4c4d50f7 2371}
4c4d50f7 2372
38837fc7 2373/*
38d7bee9
LJ
2374 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
2375 * Call this routine anytime after node_states[N_MEMORY] changes.
a1cd2b13 2376 * See cpuset_update_active_cpus() for CPU hotplug handling.
38837fc7 2377 */
f481891f
MX
2378static int cpuset_track_online_nodes(struct notifier_block *self,
2379 unsigned long action, void *arg)
38837fc7 2380{
3a5a6d0c 2381 schedule_work(&cpuset_hotplug_work);
f481891f 2382 return NOTIFY_OK;
38837fc7 2383}
d8f10cb3
AM
2384
2385static struct notifier_block cpuset_track_online_nodes_nb = {
2386 .notifier_call = cpuset_track_online_nodes,
2387 .priority = 10, /* ??! */
2388};
38837fc7 2389
1da177e4
LT
2390/**
2391 * cpuset_init_smp - initialize cpus_allowed
2392 *
2393 * Description: Finish top cpuset after cpu, node maps are initialized
d8f10cb3 2394 */
1da177e4
LT
2395void __init cpuset_init_smp(void)
2396{
6ad4c188 2397 cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
38d7bee9 2398 top_cpuset.mems_allowed = node_states[N_MEMORY];
33ad801d 2399 top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
4c4d50f7 2400
e2b9a3d7
LZ
2401 cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask);
2402 top_cpuset.effective_mems = node_states[N_MEMORY];
2403
d8f10cb3 2404 register_hotmemory_notifier(&cpuset_track_online_nodes_nb);
e93ad19d
TH
2405
2406 cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0);
2407 BUG_ON(!cpuset_migrate_mm_wq);
1da177e4
LT
2408}
2409
2410/**
1da177e4
LT
2411 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
2412 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
6af866af 2413 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
1da177e4 2414 *
300ed6cb 2415 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
1da177e4 2416 * attached to the specified @tsk. Guaranteed to return some non-empty
5f054e31 2417 * subset of cpu_online_mask, even if this means going outside the
1da177e4
LT
2418 * tasks cpuset.
2419 **/
2420
6af866af 2421void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
1da177e4 2422{
8447a0fe
VD
2423 unsigned long flags;
2424
2425 spin_lock_irqsave(&callback_lock, flags);
b8dadcb5 2426 rcu_read_lock();
ae1c8023 2427 guarantee_online_cpus(task_cs(tsk), pmask);
b8dadcb5 2428 rcu_read_unlock();
8447a0fe 2429 spin_unlock_irqrestore(&callback_lock, flags);
1da177e4
LT
2430}
2431
2baab4e9 2432void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
9084bb82 2433{
9084bb82 2434 rcu_read_lock();
ae1c8023 2435 do_set_cpus_allowed(tsk, task_cs(tsk)->effective_cpus);
9084bb82
ON
2436 rcu_read_unlock();
2437
2438 /*
2439 * We own tsk->cpus_allowed, nobody can change it under us.
2440 *
2441 * But we used cs && cs->cpus_allowed lockless and thus can
2442 * race with cgroup_attach_task() or update_cpumask() and get
2443 * the wrong tsk->cpus_allowed. However, both cases imply the
2444 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
2445 * which takes task_rq_lock().
2446 *
2447 * If we are called after it dropped the lock we must see all
2448 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
2449 * set any mask even if it is not right from task_cs() pov,
2450 * the pending set_cpus_allowed_ptr() will fix things.
2baab4e9
PZ
2451 *
2452 * select_fallback_rq() will fix things ups and set cpu_possible_mask
2453 * if required.
9084bb82 2454 */
9084bb82
ON
2455}
2456
8f4ab07f 2457void __init cpuset_init_current_mems_allowed(void)
1da177e4 2458{
f9a86fcb 2459 nodes_setall(current->mems_allowed);
1da177e4
LT
2460}
2461
909d75a3
PJ
2462/**
2463 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
2464 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
2465 *
2466 * Description: Returns the nodemask_t mems_allowed of the cpuset
2467 * attached to the specified @tsk. Guaranteed to return some non-empty
38d7bee9 2468 * subset of node_states[N_MEMORY], even if this means going outside the
909d75a3
PJ
2469 * tasks cpuset.
2470 **/
2471
2472nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
2473{
2474 nodemask_t mask;
8447a0fe 2475 unsigned long flags;
909d75a3 2476
8447a0fe 2477 spin_lock_irqsave(&callback_lock, flags);
b8dadcb5 2478 rcu_read_lock();
ae1c8023 2479 guarantee_online_mems(task_cs(tsk), &mask);
b8dadcb5 2480 rcu_read_unlock();
8447a0fe 2481 spin_unlock_irqrestore(&callback_lock, flags);
909d75a3
PJ
2482
2483 return mask;
2484}
2485
d9fd8a6d 2486/**
19770b32
MG
2487 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
2488 * @nodemask: the nodemask to be checked
d9fd8a6d 2489 *
19770b32 2490 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
1da177e4 2491 */
19770b32 2492int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
1da177e4 2493{
19770b32 2494 return nodes_intersects(*nodemask, current->mems_allowed);
1da177e4
LT
2495}
2496
9bf2229f 2497/*
78608366
PM
2498 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
2499 * mem_hardwall ancestor to the specified cpuset. Call holding
8447a0fe 2500 * callback_lock. If no ancestor is mem_exclusive or mem_hardwall
78608366 2501 * (an unusual configuration), then returns the root cpuset.
9bf2229f 2502 */
c9710d80 2503static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
9bf2229f 2504{
c431069f
TH
2505 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
2506 cs = parent_cs(cs);
9bf2229f
PJ
2507 return cs;
2508}
2509
d9fd8a6d 2510/**
344736f2 2511 * cpuset_node_allowed - Can we allocate on a memory node?
a1bc5a4e 2512 * @node: is this an allowed node?
02a0e53d 2513 * @gfp_mask: memory allocation flags
d9fd8a6d 2514 *
6e276d2a
DR
2515 * If we're in interrupt, yes, we can always allocate. If @node is set in
2516 * current's mems_allowed, yes. If it's not a __GFP_HARDWALL request and this
2517 * node is set in the nearest hardwalled cpuset ancestor to current's cpuset,
2518 * yes. If current has access to memory reserves due to TIF_MEMDIE, yes.
9bf2229f
PJ
2519 * Otherwise, no.
2520 *
2521 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
c596d9f3
DR
2522 * and do not allow allocations outside the current tasks cpuset
2523 * unless the task has been OOM killed as is marked TIF_MEMDIE.
9bf2229f 2524 * GFP_KERNEL allocations are not so marked, so can escape to the
78608366 2525 * nearest enclosing hardwalled ancestor cpuset.
9bf2229f 2526 *
8447a0fe 2527 * Scanning up parent cpusets requires callback_lock. The
02a0e53d
PJ
2528 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
2529 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
2530 * current tasks mems_allowed came up empty on the first pass over
2531 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
8447a0fe 2532 * cpuset are short of memory, might require taking the callback_lock.
9bf2229f 2533 *
36be57ff 2534 * The first call here from mm/page_alloc:get_page_from_freelist()
02a0e53d
PJ
2535 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
2536 * so no allocation on a node outside the cpuset is allowed (unless
2537 * in interrupt, of course).
36be57ff
PJ
2538 *
2539 * The second pass through get_page_from_freelist() doesn't even call
2540 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
2541 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
2542 * in alloc_flags. That logic and the checks below have the combined
2543 * affect that:
9bf2229f
PJ
2544 * in_interrupt - any node ok (current task context irrelevant)
2545 * GFP_ATOMIC - any node ok
c596d9f3 2546 * TIF_MEMDIE - any node ok
78608366 2547 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
9bf2229f 2548 * GFP_USER - only nodes in current tasks mems allowed ok.
02a0e53d 2549 */
002f2906 2550bool __cpuset_node_allowed(int node, gfp_t gfp_mask)
1da177e4 2551{
c9710d80 2552 struct cpuset *cs; /* current cpuset ancestors */
29afd49b 2553 int allowed; /* is allocation in zone z allowed? */
8447a0fe 2554 unsigned long flags;
9bf2229f 2555
6e276d2a 2556 if (in_interrupt())
002f2906 2557 return true;
9bf2229f 2558 if (node_isset(node, current->mems_allowed))
002f2906 2559 return true;
c596d9f3
DR
2560 /*
2561 * Allow tasks that have access to memory reserves because they have
2562 * been OOM killed to get memory anywhere.
2563 */
2564 if (unlikely(test_thread_flag(TIF_MEMDIE)))
002f2906 2565 return true;
9bf2229f 2566 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
002f2906 2567 return false;
9bf2229f 2568
5563e770 2569 if (current->flags & PF_EXITING) /* Let dying task have memory */
002f2906 2570 return true;
5563e770 2571
9bf2229f 2572 /* Not hardwall and node outside mems_allowed: scan up cpusets */
8447a0fe 2573 spin_lock_irqsave(&callback_lock, flags);
053199ed 2574
b8dadcb5 2575 rcu_read_lock();
78608366 2576 cs = nearest_hardwall_ancestor(task_cs(current));
99afb0fd 2577 allowed = node_isset(node, cs->mems_allowed);
b8dadcb5 2578 rcu_read_unlock();
053199ed 2579
8447a0fe 2580 spin_unlock_irqrestore(&callback_lock, flags);
9bf2229f 2581 return allowed;
1da177e4
LT
2582}
2583
825a46af 2584/**
6adef3eb
JS
2585 * cpuset_mem_spread_node() - On which node to begin search for a file page
2586 * cpuset_slab_spread_node() - On which node to begin search for a slab page
825a46af
PJ
2587 *
2588 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
2589 * tasks in a cpuset with is_spread_page or is_spread_slab set),
2590 * and if the memory allocation used cpuset_mem_spread_node()
2591 * to determine on which node to start looking, as it will for
2592 * certain page cache or slab cache pages such as used for file
2593 * system buffers and inode caches, then instead of starting on the
2594 * local node to look for a free page, rather spread the starting
2595 * node around the tasks mems_allowed nodes.
2596 *
2597 * We don't have to worry about the returned node being offline
2598 * because "it can't happen", and even if it did, it would be ok.
2599 *
2600 * The routines calling guarantee_online_mems() are careful to
2601 * only set nodes in task->mems_allowed that are online. So it
2602 * should not be possible for the following code to return an
2603 * offline node. But if it did, that would be ok, as this routine
2604 * is not returning the node where the allocation must be, only
2605 * the node where the search should start. The zonelist passed to
2606 * __alloc_pages() will include all nodes. If the slab allocator
2607 * is passed an offline node, it will fall back to the local node.
2608 * See kmem_cache_alloc_node().
2609 */
2610
6adef3eb 2611static int cpuset_spread_node(int *rotor)
825a46af 2612{
0edaf86c 2613 return *rotor = next_node_in(*rotor, current->mems_allowed);
825a46af 2614}
6adef3eb
JS
2615
2616int cpuset_mem_spread_node(void)
2617{
778d3b0f
MH
2618 if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
2619 current->cpuset_mem_spread_rotor =
2620 node_random(&current->mems_allowed);
2621
6adef3eb
JS
2622 return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
2623}
2624
2625int cpuset_slab_spread_node(void)
2626{
778d3b0f
MH
2627 if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
2628 current->cpuset_slab_spread_rotor =
2629 node_random(&current->mems_allowed);
2630
6adef3eb
JS
2631 return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
2632}
2633
825a46af
PJ
2634EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
2635
ef08e3b4 2636/**
bbe373f2
DR
2637 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
2638 * @tsk1: pointer to task_struct of some task.
2639 * @tsk2: pointer to task_struct of some other task.
2640 *
2641 * Description: Return true if @tsk1's mems_allowed intersects the
2642 * mems_allowed of @tsk2. Used by the OOM killer to determine if
2643 * one of the task's memory usage might impact the memory available
2644 * to the other.
ef08e3b4
PJ
2645 **/
2646
bbe373f2
DR
2647int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
2648 const struct task_struct *tsk2)
ef08e3b4 2649{
bbe373f2 2650 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
ef08e3b4
PJ
2651}
2652
75aa1994 2653/**
da39da3a 2654 * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed
75aa1994 2655 *
da39da3a 2656 * Description: Prints current's name, cpuset name, and cached copy of its
b8dadcb5 2657 * mems_allowed to the kernel log.
75aa1994 2658 */
da39da3a 2659void cpuset_print_current_mems_allowed(void)
75aa1994 2660{
b8dadcb5 2661 struct cgroup *cgrp;
75aa1994 2662
b8dadcb5 2663 rcu_read_lock();
63f43f55 2664
da39da3a
DR
2665 cgrp = task_cs(current)->css.cgroup;
2666 pr_info("%s cpuset=", current->comm);
e61734c5 2667 pr_cont_cgroup_name(cgrp);
da39da3a
DR
2668 pr_cont(" mems_allowed=%*pbl\n",
2669 nodemask_pr_args(&current->mems_allowed));
f440d98f 2670
cfb5966b 2671 rcu_read_unlock();
75aa1994
DR
2672}
2673
3e0d98b9
PJ
2674/*
2675 * Collection of memory_pressure is suppressed unless
2676 * this flag is enabled by writing "1" to the special
2677 * cpuset file 'memory_pressure_enabled' in the root cpuset.
2678 */
2679
c5b2aff8 2680int cpuset_memory_pressure_enabled __read_mostly;
3e0d98b9
PJ
2681
2682/**
2683 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
2684 *
2685 * Keep a running average of the rate of synchronous (direct)
2686 * page reclaim efforts initiated by tasks in each cpuset.
2687 *
2688 * This represents the rate at which some task in the cpuset
2689 * ran low on memory on all nodes it was allowed to use, and
2690 * had to enter the kernels page reclaim code in an effort to
2691 * create more free memory by tossing clean pages or swapping
2692 * or writing dirty pages.
2693 *
2694 * Display to user space in the per-cpuset read-only file
2695 * "memory_pressure". Value displayed is an integer
2696 * representing the recent rate of entry into the synchronous
2697 * (direct) page reclaim by any task attached to the cpuset.
2698 **/
2699
2700void __cpuset_memory_pressure_bump(void)
2701{
b8dadcb5 2702 rcu_read_lock();
8793d854 2703 fmeter_markevent(&task_cs(current)->fmeter);
b8dadcb5 2704 rcu_read_unlock();
3e0d98b9
PJ
2705}
2706
8793d854 2707#ifdef CONFIG_PROC_PID_CPUSET
1da177e4
LT
2708/*
2709 * proc_cpuset_show()
2710 * - Print tasks cpuset path into seq_file.
2711 * - Used for /proc/<pid>/cpuset.
053199ed
PJ
2712 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
2713 * doesn't really matter if tsk->cpuset changes after we read it,
5d21cc2d 2714 * and we take cpuset_mutex, keeping cpuset_attach() from changing it
2df167a3 2715 * anyway.
1da177e4 2716 */
52de4779
ZL
2717int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns,
2718 struct pid *pid, struct task_struct *tsk)
1da177e4 2719{
4c737b41 2720 char *buf;
8793d854 2721 struct cgroup_subsys_state *css;
99f89551 2722 int retval;
1da177e4 2723
99f89551 2724 retval = -ENOMEM;
e61734c5 2725 buf = kmalloc(PATH_MAX, GFP_KERNEL);
1da177e4 2726 if (!buf)
99f89551
EB
2727 goto out;
2728
a79a908f 2729 css = task_get_css(tsk, cpuset_cgrp_id);
4c737b41
TH
2730 retval = cgroup_path_ns(css->cgroup, buf, PATH_MAX,
2731 current->nsproxy->cgroup_ns);
a79a908f 2732 css_put(css);
4c737b41 2733 if (retval >= PATH_MAX)
679a5e3f
TH
2734 retval = -ENAMETOOLONG;
2735 if (retval < 0)
52de4779 2736 goto out_free;
4c737b41 2737 seq_puts(m, buf);
1da177e4 2738 seq_putc(m, '\n');
e61734c5 2739 retval = 0;
99f89551 2740out_free:
1da177e4 2741 kfree(buf);
99f89551 2742out:
1da177e4
LT
2743 return retval;
2744}
8793d854 2745#endif /* CONFIG_PROC_PID_CPUSET */
1da177e4 2746
d01d4827 2747/* Display task mems_allowed in /proc/<pid>/status file. */
df5f8314
EB
2748void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
2749{
e8e6d97c
TH
2750 seq_printf(m, "Mems_allowed:\t%*pb\n",
2751 nodemask_pr_args(&task->mems_allowed));
2752 seq_printf(m, "Mems_allowed_list:\t%*pbl\n",
2753 nodemask_pr_args(&task->mems_allowed));
1da177e4 2754}