]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - kernel/cgroup.c
cgroup: clean up cgroup_subsys names and initialization
[mirror_ubuntu-zesty-kernel.git] / kernel / cgroup.c
CommitLineData
ddbcc7e8 1/*
ddbcc7e8
PM
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
0dea1168
KS
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
ddbcc7e8
PM
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29#include <linux/cgroup.h>
2ce9738b 30#include <linux/cred.h>
c6d57f33 31#include <linux/ctype.h>
ddbcc7e8 32#include <linux/errno.h>
2ce9738b 33#include <linux/init_task.h>
ddbcc7e8
PM
34#include <linux/kernel.h>
35#include <linux/list.h>
36#include <linux/mm.h>
37#include <linux/mutex.h>
38#include <linux/mount.h>
39#include <linux/pagemap.h>
a424316c 40#include <linux/proc_fs.h>
ddbcc7e8
PM
41#include <linux/rcupdate.h>
42#include <linux/sched.h>
817929ec 43#include <linux/backing-dev.h>
ddbcc7e8
PM
44#include <linux/slab.h>
45#include <linux/magic.h>
46#include <linux/spinlock.h>
47#include <linux/string.h>
bbcb81d0 48#include <linux/sort.h>
81a6a5cd 49#include <linux/kmod.h>
846c7bb0
BS
50#include <linux/delayacct.h>
51#include <linux/cgroupstats.h>
0ac801fe 52#include <linux/hashtable.h>
3f8206d4 53#include <linux/namei.h>
096b7fe0 54#include <linux/pid_namespace.h>
2c6ab6d2 55#include <linux/idr.h>
d1d9fd33 56#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
081aa458 57#include <linux/flex_array.h> /* used in cgroup_attach_task */
c4c27fbd 58#include <linux/kthread.h>
846c7bb0 59
60063497 60#include <linux/atomic.h>
ddbcc7e8 61
b1a21367
TH
62/*
63 * pidlists linger the following amount before being destroyed. The goal
64 * is avoiding frequent destruction in the middle of consecutive read calls
65 * Expiring in the middle is a performance problem not a correctness one.
66 * 1 sec should be enough.
67 */
68#define CGROUP_PIDLIST_DESTROY_DELAY HZ
69
e25e2cbb
TH
70/*
71 * cgroup_mutex is the master lock. Any modification to cgroup or its
72 * hierarchy must be performed while holding it.
73 *
74 * cgroup_root_mutex nests inside cgroup_mutex and should be held to modify
75 * cgroupfs_root of any cgroup hierarchy - subsys list, flags,
76 * release_agent_path and so on. Modifying requires both cgroup_mutex and
77 * cgroup_root_mutex. Readers can acquire either of the two. This is to
78 * break the following locking order cycle.
79 *
80 * A. cgroup_mutex -> cred_guard_mutex -> s_type->i_mutex_key -> namespace_sem
81 * B. namespace_sem -> cgroup_mutex
82 *
83 * B happens only through cgroup_show_options() and using cgroup_root_mutex
84 * breaks it.
85 */
2219449a
TH
86#ifdef CONFIG_PROVE_RCU
87DEFINE_MUTEX(cgroup_mutex);
8af01f56 88EXPORT_SYMBOL_GPL(cgroup_mutex); /* only for lockdep */
2219449a 89#else
81a6a5cd 90static DEFINE_MUTEX(cgroup_mutex);
2219449a
TH
91#endif
92
e25e2cbb 93static DEFINE_MUTEX(cgroup_root_mutex);
81a6a5cd 94
87fb54f1
TH
95#define cgroup_assert_mutex_or_rcu_locked() \
96 rcu_lockdep_assert(rcu_read_lock_held() || \
97 lockdep_is_held(&cgroup_mutex), \
98 "cgroup_mutex or RCU read lock required");
99
780cd8b3
TH
100#ifdef CONFIG_LOCKDEP
101#define cgroup_assert_mutex_or_root_locked() \
102 WARN_ON_ONCE(debug_locks && (!lockdep_is_held(&cgroup_mutex) && \
103 !lockdep_is_held(&cgroup_root_mutex)))
104#else
105#define cgroup_assert_mutex_or_root_locked() do { } while (0)
106#endif
107
e5fca243
TH
108/*
109 * cgroup destruction makes heavy use of work items and there can be a lot
110 * of concurrent destructions. Use a separate workqueue so that cgroup
111 * destruction work items don't end up filling up max_active of system_wq
112 * which may lead to deadlock.
113 */
114static struct workqueue_struct *cgroup_destroy_wq;
115
b1a21367
TH
116/*
117 * pidlist destructions need to be flushed on cgroup destruction. Use a
118 * separate workqueue as flush domain.
119 */
120static struct workqueue_struct *cgroup_pidlist_destroy_wq;
121
3ed80a62 122/* generate an array of cgroup subsystem pointers */
073219e9 123#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
3ed80a62 124static struct cgroup_subsys *cgroup_subsys[] = {
ddbcc7e8
PM
125#include <linux/cgroup_subsys.h>
126};
073219e9
TH
127#undef SUBSYS
128
129/* array of cgroup subsystem names */
130#define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
131static const char *cgroup_subsys_name[] = {
132#include <linux/cgroup_subsys.h>
133};
134#undef SUBSYS
ddbcc7e8 135
ddbcc7e8 136/*
9871bf95
TH
137 * The dummy hierarchy, reserved for the subsystems that are otherwise
138 * unattached - it never has more than a single cgroup, and all tasks are
139 * part of that cgroup.
ddbcc7e8 140 */
9871bf95
TH
141static struct cgroupfs_root cgroup_dummy_root;
142
143/* dummy_top is a shorthand for the dummy hierarchy's top cgroup */
144static struct cgroup * const cgroup_dummy_top = &cgroup_dummy_root.top_cgroup;
ddbcc7e8
PM
145
146/* The list of hierarchy roots */
147
9871bf95
TH
148static LIST_HEAD(cgroup_roots);
149static int cgroup_root_count;
ddbcc7e8 150
54e7b4eb
TH
151/*
152 * Hierarchy ID allocation and mapping. It follows the same exclusion
153 * rules as other root ops - both cgroup_mutex and cgroup_root_mutex for
154 * writes, either for reads.
155 */
1a574231 156static DEFINE_IDR(cgroup_hierarchy_idr);
2c6ab6d2 157
65dff759
LZ
158static struct cgroup_name root_cgroup_name = { .name = "/" };
159
794611a1
LZ
160/*
161 * Assign a monotonically increasing serial number to cgroups. It
162 * guarantees cgroups with bigger numbers are newer than those with smaller
163 * numbers. Also, as cgroups are always appended to the parent's
164 * ->children list, it guarantees that sibling cgroups are always sorted in
00356bd5
TH
165 * the ascending serial number order on the list. Protected by
166 * cgroup_mutex.
794611a1 167 */
00356bd5 168static u64 cgroup_serial_nr_next = 1;
794611a1 169
ddbcc7e8 170/* This flag indicates whether tasks in the fork and exit paths should
a043e3b2
LZ
171 * check for fork/exit handlers to call. This avoids us having to do
172 * extra work in the fork/exit path if none of the subsystems need to
173 * be called.
ddbcc7e8 174 */
8947f9d5 175static int need_forkexit_callback __read_mostly;
ddbcc7e8 176
628f7cd4
TH
177static struct cftype cgroup_base_files[];
178
f20104de 179static void cgroup_destroy_css_killed(struct cgroup *cgrp);
42809dd4 180static int cgroup_destroy_locked(struct cgroup *cgrp);
2bb566cb
TH
181static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
182 bool is_add);
e605b365 183static int cgroup_file_release(struct inode *inode, struct file *file);
b1a21367 184static void cgroup_pidlist_destroy_all(struct cgroup *cgrp);
42809dd4 185
95109b62
TH
186/**
187 * cgroup_css - obtain a cgroup's css for the specified subsystem
188 * @cgrp: the cgroup of interest
ca8bdcaf 189 * @ss: the subsystem of interest (%NULL returns the dummy_css)
95109b62 190 *
ca8bdcaf
TH
191 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
192 * function must be called either under cgroup_mutex or rcu_read_lock() and
193 * the caller is responsible for pinning the returned css if it wants to
194 * keep accessing it outside the said locks. This function may return
195 * %NULL if @cgrp doesn't have @subsys_id enabled.
95109b62
TH
196 */
197static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
ca8bdcaf 198 struct cgroup_subsys *ss)
95109b62 199{
ca8bdcaf
TH
200 if (ss)
201 return rcu_dereference_check(cgrp->subsys[ss->subsys_id],
202 lockdep_is_held(&cgroup_mutex));
203 else
204 return &cgrp->dummy_css;
95109b62 205}
42809dd4 206
ddbcc7e8 207/* convenient tests for these bits */
54766d4a 208static inline bool cgroup_is_dead(const struct cgroup *cgrp)
ddbcc7e8 209{
54766d4a 210 return test_bit(CGRP_DEAD, &cgrp->flags);
ddbcc7e8
PM
211}
212
78574cf9
LZ
213/**
214 * cgroup_is_descendant - test ancestry
215 * @cgrp: the cgroup to be tested
216 * @ancestor: possible ancestor of @cgrp
217 *
218 * Test whether @cgrp is a descendant of @ancestor. It also returns %true
219 * if @cgrp == @ancestor. This function is safe to call as long as @cgrp
220 * and @ancestor are accessible.
221 */
222bool cgroup_is_descendant(struct cgroup *cgrp, struct cgroup *ancestor)
223{
224 while (cgrp) {
225 if (cgrp == ancestor)
226 return true;
227 cgrp = cgrp->parent;
228 }
229 return false;
230}
231EXPORT_SYMBOL_GPL(cgroup_is_descendant);
ddbcc7e8 232
e9685a03 233static int cgroup_is_releasable(const struct cgroup *cgrp)
81a6a5cd
PM
234{
235 const int bits =
bd89aabc
PM
236 (1 << CGRP_RELEASABLE) |
237 (1 << CGRP_NOTIFY_ON_RELEASE);
238 return (cgrp->flags & bits) == bits;
81a6a5cd
PM
239}
240
e9685a03 241static int notify_on_release(const struct cgroup *cgrp)
81a6a5cd 242{
bd89aabc 243 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
81a6a5cd
PM
244}
245
1c6727af
TH
246/**
247 * for_each_css - iterate all css's of a cgroup
248 * @css: the iteration cursor
249 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
250 * @cgrp: the target cgroup to iterate css's of
251 *
252 * Should be called under cgroup_mutex.
253 */
254#define for_each_css(css, ssid, cgrp) \
255 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
256 if (!((css) = rcu_dereference_check( \
257 (cgrp)->subsys[(ssid)], \
258 lockdep_is_held(&cgroup_mutex)))) { } \
259 else
260
30159ec7 261/**
3ed80a62 262 * for_each_subsys - iterate all enabled cgroup subsystems
30159ec7 263 * @ss: the iteration cursor
780cd8b3 264 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
30159ec7 265 */
780cd8b3 266#define for_each_subsys(ss, ssid) \
3ed80a62
TH
267 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT && \
268 (((ss) = cgroup_subsys[ssid]) || true); (ssid)++)
30159ec7 269
5549c497
TH
270/* iterate across the active hierarchies */
271#define for_each_active_root(root) \
272 list_for_each_entry((root), &cgroup_roots, root_list)
ddbcc7e8 273
f6ea9372
TH
274static inline struct cgroup *__d_cgrp(struct dentry *dentry)
275{
276 return dentry->d_fsdata;
277}
278
05ef1d7c 279static inline struct cfent *__d_cfe(struct dentry *dentry)
f6ea9372
TH
280{
281 return dentry->d_fsdata;
282}
283
05ef1d7c
TH
284static inline struct cftype *__d_cft(struct dentry *dentry)
285{
286 return __d_cfe(dentry)->type;
287}
288
7ae1bad9
TH
289/**
290 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
291 * @cgrp: the cgroup to be checked for liveness
292 *
47cfcd09
TH
293 * On success, returns true; the mutex should be later unlocked. On
294 * failure returns false with no lock held.
7ae1bad9 295 */
b9777cf8 296static bool cgroup_lock_live_group(struct cgroup *cgrp)
7ae1bad9
TH
297{
298 mutex_lock(&cgroup_mutex);
54766d4a 299 if (cgroup_is_dead(cgrp)) {
7ae1bad9
TH
300 mutex_unlock(&cgroup_mutex);
301 return false;
302 }
303 return true;
304}
7ae1bad9 305
81a6a5cd
PM
306/* the list of cgroups eligible for automatic release. Protected by
307 * release_list_lock */
308static LIST_HEAD(release_list);
cdcc136f 309static DEFINE_RAW_SPINLOCK(release_list_lock);
81a6a5cd
PM
310static void cgroup_release_agent(struct work_struct *work);
311static DECLARE_WORK(release_agent_work, cgroup_release_agent);
bd89aabc 312static void check_for_release(struct cgroup *cgrp);
81a6a5cd 313
69d0206c
TH
314/*
315 * A cgroup can be associated with multiple css_sets as different tasks may
316 * belong to different cgroups on different hierarchies. In the other
317 * direction, a css_set is naturally associated with multiple cgroups.
318 * This M:N relationship is represented by the following link structure
319 * which exists for each association and allows traversing the associations
320 * from both sides.
321 */
322struct cgrp_cset_link {
323 /* the cgroup and css_set this link associates */
324 struct cgroup *cgrp;
325 struct css_set *cset;
326
327 /* list of cgrp_cset_links anchored at cgrp->cset_links */
328 struct list_head cset_link;
329
330 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
331 struct list_head cgrp_link;
817929ec
PM
332};
333
334/* The default css_set - used by init and its children prior to any
335 * hierarchies being mounted. It contains a pointer to the root state
336 * for each subsystem. Also used to anchor the list of css_sets. Not
337 * reference-counted, to improve performance when child cgroups
338 * haven't been created.
339 */
340
341static struct css_set init_css_set;
69d0206c 342static struct cgrp_cset_link init_cgrp_cset_link;
817929ec 343
0942eeee
TH
344/*
345 * css_set_lock protects the list of css_set objects, and the chain of
346 * tasks off each css_set. Nests outside task->alloc_lock due to
72ec7029 347 * css_task_iter_start().
0942eeee 348 */
817929ec
PM
349static DEFINE_RWLOCK(css_set_lock);
350static int css_set_count;
351
7717f7ba
PM
352/*
353 * hash table for cgroup groups. This improves the performance to find
354 * an existing css_set. This hash doesn't (currently) take into
355 * account cgroups in empty hierarchies.
356 */
472b1053 357#define CSS_SET_HASH_BITS 7
0ac801fe 358static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
472b1053 359
0ac801fe 360static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
472b1053 361{
0ac801fe 362 unsigned long key = 0UL;
30159ec7
TH
363 struct cgroup_subsys *ss;
364 int i;
472b1053 365
30159ec7 366 for_each_subsys(ss, i)
0ac801fe
LZ
367 key += (unsigned long)css[i];
368 key = (key >> 16) ^ key;
472b1053 369
0ac801fe 370 return key;
472b1053
LZ
371}
372
0942eeee
TH
373/*
374 * We don't maintain the lists running through each css_set to its task
72ec7029
TH
375 * until after the first call to css_task_iter_start(). This reduces the
376 * fork()/exit() overhead for people who have cgroups compiled into their
377 * kernel but not actually in use.
0942eeee 378 */
8947f9d5 379static int use_task_css_set_links __read_mostly;
817929ec 380
5abb8855 381static void __put_css_set(struct css_set *cset, int taskexit)
b4f48b63 382{
69d0206c 383 struct cgrp_cset_link *link, *tmp_link;
5abb8855 384
146aa1bd
LJ
385 /*
386 * Ensure that the refcount doesn't hit zero while any readers
387 * can see it. Similar to atomic_dec_and_lock(), but for an
388 * rwlock
389 */
5abb8855 390 if (atomic_add_unless(&cset->refcount, -1, 1))
146aa1bd
LJ
391 return;
392 write_lock(&css_set_lock);
5abb8855 393 if (!atomic_dec_and_test(&cset->refcount)) {
146aa1bd
LJ
394 write_unlock(&css_set_lock);
395 return;
396 }
81a6a5cd 397
2c6ab6d2 398 /* This css_set is dead. unlink it and release cgroup refcounts */
5abb8855 399 hash_del(&cset->hlist);
2c6ab6d2
PM
400 css_set_count--;
401
69d0206c 402 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
2c6ab6d2 403 struct cgroup *cgrp = link->cgrp;
5abb8855 404
69d0206c
TH
405 list_del(&link->cset_link);
406 list_del(&link->cgrp_link);
71b5707e 407
ddd69148 408 /* @cgrp can't go away while we're holding css_set_lock */
6f3d828f 409 if (list_empty(&cgrp->cset_links) && notify_on_release(cgrp)) {
81a6a5cd 410 if (taskexit)
bd89aabc
PM
411 set_bit(CGRP_RELEASABLE, &cgrp->flags);
412 check_for_release(cgrp);
81a6a5cd 413 }
2c6ab6d2
PM
414
415 kfree(link);
81a6a5cd 416 }
2c6ab6d2
PM
417
418 write_unlock(&css_set_lock);
5abb8855 419 kfree_rcu(cset, rcu_head);
b4f48b63
PM
420}
421
817929ec
PM
422/*
423 * refcounted get/put for css_set objects
424 */
5abb8855 425static inline void get_css_set(struct css_set *cset)
817929ec 426{
5abb8855 427 atomic_inc(&cset->refcount);
817929ec
PM
428}
429
5abb8855 430static inline void put_css_set(struct css_set *cset)
817929ec 431{
5abb8855 432 __put_css_set(cset, 0);
817929ec
PM
433}
434
5abb8855 435static inline void put_css_set_taskexit(struct css_set *cset)
81a6a5cd 436{
5abb8855 437 __put_css_set(cset, 1);
81a6a5cd
PM
438}
439
b326f9d0 440/**
7717f7ba 441 * compare_css_sets - helper function for find_existing_css_set().
5abb8855
TH
442 * @cset: candidate css_set being tested
443 * @old_cset: existing css_set for a task
7717f7ba
PM
444 * @new_cgrp: cgroup that's being entered by the task
445 * @template: desired set of css pointers in css_set (pre-calculated)
446 *
6f4b7e63 447 * Returns true if "cset" matches "old_cset" except for the hierarchy
7717f7ba
PM
448 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
449 */
5abb8855
TH
450static bool compare_css_sets(struct css_set *cset,
451 struct css_set *old_cset,
7717f7ba
PM
452 struct cgroup *new_cgrp,
453 struct cgroup_subsys_state *template[])
454{
455 struct list_head *l1, *l2;
456
5abb8855 457 if (memcmp(template, cset->subsys, sizeof(cset->subsys))) {
7717f7ba
PM
458 /* Not all subsystems matched */
459 return false;
460 }
461
462 /*
463 * Compare cgroup pointers in order to distinguish between
464 * different cgroups in heirarchies with no subsystems. We
465 * could get by with just this check alone (and skip the
466 * memcmp above) but on most setups the memcmp check will
467 * avoid the need for this more expensive check on almost all
468 * candidates.
469 */
470
69d0206c
TH
471 l1 = &cset->cgrp_links;
472 l2 = &old_cset->cgrp_links;
7717f7ba 473 while (1) {
69d0206c 474 struct cgrp_cset_link *link1, *link2;
5abb8855 475 struct cgroup *cgrp1, *cgrp2;
7717f7ba
PM
476
477 l1 = l1->next;
478 l2 = l2->next;
479 /* See if we reached the end - both lists are equal length. */
69d0206c
TH
480 if (l1 == &cset->cgrp_links) {
481 BUG_ON(l2 != &old_cset->cgrp_links);
7717f7ba
PM
482 break;
483 } else {
69d0206c 484 BUG_ON(l2 == &old_cset->cgrp_links);
7717f7ba
PM
485 }
486 /* Locate the cgroups associated with these links. */
69d0206c
TH
487 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
488 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
489 cgrp1 = link1->cgrp;
490 cgrp2 = link2->cgrp;
7717f7ba 491 /* Hierarchies should be linked in the same order. */
5abb8855 492 BUG_ON(cgrp1->root != cgrp2->root);
7717f7ba
PM
493
494 /*
495 * If this hierarchy is the hierarchy of the cgroup
496 * that's changing, then we need to check that this
497 * css_set points to the new cgroup; if it's any other
498 * hierarchy, then this css_set should point to the
499 * same cgroup as the old css_set.
500 */
5abb8855
TH
501 if (cgrp1->root == new_cgrp->root) {
502 if (cgrp1 != new_cgrp)
7717f7ba
PM
503 return false;
504 } else {
5abb8855 505 if (cgrp1 != cgrp2)
7717f7ba
PM
506 return false;
507 }
508 }
509 return true;
510}
511
b326f9d0
TH
512/**
513 * find_existing_css_set - init css array and find the matching css_set
514 * @old_cset: the css_set that we're using before the cgroup transition
515 * @cgrp: the cgroup that we're moving into
516 * @template: out param for the new set of csses, should be clear on entry
817929ec 517 */
5abb8855
TH
518static struct css_set *find_existing_css_set(struct css_set *old_cset,
519 struct cgroup *cgrp,
520 struct cgroup_subsys_state *template[])
b4f48b63 521{
bd89aabc 522 struct cgroupfs_root *root = cgrp->root;
30159ec7 523 struct cgroup_subsys *ss;
5abb8855 524 struct css_set *cset;
0ac801fe 525 unsigned long key;
b326f9d0 526 int i;
817929ec 527
aae8aab4
BB
528 /*
529 * Build the set of subsystem state objects that we want to see in the
530 * new css_set. while subsystems can change globally, the entries here
531 * won't change, so no need for locking.
532 */
30159ec7 533 for_each_subsys(ss, i) {
a1a71b45 534 if (root->subsys_mask & (1UL << i)) {
817929ec
PM
535 /* Subsystem is in this hierarchy. So we want
536 * the subsystem state from the new
537 * cgroup */
ca8bdcaf 538 template[i] = cgroup_css(cgrp, ss);
817929ec
PM
539 } else {
540 /* Subsystem is not in this hierarchy, so we
541 * don't want to change the subsystem state */
5abb8855 542 template[i] = old_cset->subsys[i];
817929ec
PM
543 }
544 }
545
0ac801fe 546 key = css_set_hash(template);
5abb8855
TH
547 hash_for_each_possible(css_set_table, cset, hlist, key) {
548 if (!compare_css_sets(cset, old_cset, cgrp, template))
7717f7ba
PM
549 continue;
550
551 /* This css_set matches what we need */
5abb8855 552 return cset;
472b1053 553 }
817929ec
PM
554
555 /* No existing cgroup group matched */
556 return NULL;
557}
558
69d0206c 559static void free_cgrp_cset_links(struct list_head *links_to_free)
36553434 560{
69d0206c 561 struct cgrp_cset_link *link, *tmp_link;
36553434 562
69d0206c
TH
563 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
564 list_del(&link->cset_link);
36553434
LZ
565 kfree(link);
566 }
567}
568
69d0206c
TH
569/**
570 * allocate_cgrp_cset_links - allocate cgrp_cset_links
571 * @count: the number of links to allocate
572 * @tmp_links: list_head the allocated links are put on
573 *
574 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
575 * through ->cset_link. Returns 0 on success or -errno.
817929ec 576 */
69d0206c 577static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
817929ec 578{
69d0206c 579 struct cgrp_cset_link *link;
817929ec 580 int i;
69d0206c
TH
581
582 INIT_LIST_HEAD(tmp_links);
583
817929ec 584 for (i = 0; i < count; i++) {
f4f4be2b 585 link = kzalloc(sizeof(*link), GFP_KERNEL);
817929ec 586 if (!link) {
69d0206c 587 free_cgrp_cset_links(tmp_links);
817929ec
PM
588 return -ENOMEM;
589 }
69d0206c 590 list_add(&link->cset_link, tmp_links);
817929ec
PM
591 }
592 return 0;
593}
594
c12f65d4
LZ
595/**
596 * link_css_set - a helper function to link a css_set to a cgroup
69d0206c 597 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
5abb8855 598 * @cset: the css_set to be linked
c12f65d4
LZ
599 * @cgrp: the destination cgroup
600 */
69d0206c
TH
601static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
602 struct cgroup *cgrp)
c12f65d4 603{
69d0206c 604 struct cgrp_cset_link *link;
c12f65d4 605
69d0206c
TH
606 BUG_ON(list_empty(tmp_links));
607 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
608 link->cset = cset;
7717f7ba 609 link->cgrp = cgrp;
69d0206c 610 list_move(&link->cset_link, &cgrp->cset_links);
7717f7ba
PM
611 /*
612 * Always add links to the tail of the list so that the list
613 * is sorted by order of hierarchy creation
614 */
69d0206c 615 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
c12f65d4
LZ
616}
617
b326f9d0
TH
618/**
619 * find_css_set - return a new css_set with one cgroup updated
620 * @old_cset: the baseline css_set
621 * @cgrp: the cgroup to be updated
622 *
623 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
624 * substituted into the appropriate hierarchy.
817929ec 625 */
5abb8855
TH
626static struct css_set *find_css_set(struct css_set *old_cset,
627 struct cgroup *cgrp)
817929ec 628{
b326f9d0 629 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
5abb8855 630 struct css_set *cset;
69d0206c
TH
631 struct list_head tmp_links;
632 struct cgrp_cset_link *link;
0ac801fe 633 unsigned long key;
472b1053 634
b326f9d0
TH
635 lockdep_assert_held(&cgroup_mutex);
636
817929ec
PM
637 /* First see if we already have a cgroup group that matches
638 * the desired set */
7e9abd89 639 read_lock(&css_set_lock);
5abb8855
TH
640 cset = find_existing_css_set(old_cset, cgrp, template);
641 if (cset)
642 get_css_set(cset);
7e9abd89 643 read_unlock(&css_set_lock);
817929ec 644
5abb8855
TH
645 if (cset)
646 return cset;
817929ec 647
f4f4be2b 648 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
5abb8855 649 if (!cset)
817929ec
PM
650 return NULL;
651
69d0206c 652 /* Allocate all the cgrp_cset_link objects that we'll need */
9871bf95 653 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
5abb8855 654 kfree(cset);
817929ec
PM
655 return NULL;
656 }
657
5abb8855 658 atomic_set(&cset->refcount, 1);
69d0206c 659 INIT_LIST_HEAD(&cset->cgrp_links);
5abb8855
TH
660 INIT_LIST_HEAD(&cset->tasks);
661 INIT_HLIST_NODE(&cset->hlist);
817929ec
PM
662
663 /* Copy the set of subsystem state objects generated in
664 * find_existing_css_set() */
5abb8855 665 memcpy(cset->subsys, template, sizeof(cset->subsys));
817929ec
PM
666
667 write_lock(&css_set_lock);
668 /* Add reference counts and links from the new css_set. */
69d0206c 669 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
7717f7ba 670 struct cgroup *c = link->cgrp;
69d0206c 671
7717f7ba
PM
672 if (c->root == cgrp->root)
673 c = cgrp;
69d0206c 674 link_css_set(&tmp_links, cset, c);
7717f7ba 675 }
817929ec 676
69d0206c 677 BUG_ON(!list_empty(&tmp_links));
817929ec 678
817929ec 679 css_set_count++;
472b1053
LZ
680
681 /* Add this cgroup group to the hash table */
5abb8855
TH
682 key = css_set_hash(cset->subsys);
683 hash_add(css_set_table, &cset->hlist, key);
472b1053 684
817929ec
PM
685 write_unlock(&css_set_lock);
686
5abb8855 687 return cset;
b4f48b63
PM
688}
689
7717f7ba
PM
690/*
691 * Return the cgroup for "task" from the given hierarchy. Must be
692 * called with cgroup_mutex held.
693 */
694static struct cgroup *task_cgroup_from_root(struct task_struct *task,
695 struct cgroupfs_root *root)
696{
5abb8855 697 struct css_set *cset;
7717f7ba
PM
698 struct cgroup *res = NULL;
699
700 BUG_ON(!mutex_is_locked(&cgroup_mutex));
701 read_lock(&css_set_lock);
702 /*
703 * No need to lock the task - since we hold cgroup_mutex the
704 * task can't change groups, so the only thing that can happen
705 * is that it exits and its css is set back to init_css_set.
706 */
a8ad805c 707 cset = task_css_set(task);
5abb8855 708 if (cset == &init_css_set) {
7717f7ba
PM
709 res = &root->top_cgroup;
710 } else {
69d0206c
TH
711 struct cgrp_cset_link *link;
712
713 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 714 struct cgroup *c = link->cgrp;
69d0206c 715
7717f7ba
PM
716 if (c->root == root) {
717 res = c;
718 break;
719 }
720 }
721 }
722 read_unlock(&css_set_lock);
723 BUG_ON(!res);
724 return res;
725}
726
ddbcc7e8
PM
727/*
728 * There is one global cgroup mutex. We also require taking
729 * task_lock() when dereferencing a task's cgroup subsys pointers.
730 * See "The task_lock() exception", at the end of this comment.
731 *
732 * A task must hold cgroup_mutex to modify cgroups.
733 *
734 * Any task can increment and decrement the count field without lock.
735 * So in general, code holding cgroup_mutex can't rely on the count
736 * field not changing. However, if the count goes to zero, then only
956db3ca 737 * cgroup_attach_task() can increment it again. Because a count of zero
ddbcc7e8
PM
738 * means that no tasks are currently attached, therefore there is no
739 * way a task attached to that cgroup can fork (the other way to
740 * increment the count). So code holding cgroup_mutex can safely
741 * assume that if the count is zero, it will stay zero. Similarly, if
742 * a task holds cgroup_mutex on a cgroup with zero count, it
743 * knows that the cgroup won't be removed, as cgroup_rmdir()
744 * needs that mutex.
745 *
ddbcc7e8
PM
746 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
747 * (usually) take cgroup_mutex. These are the two most performance
748 * critical pieces of code here. The exception occurs on cgroup_exit(),
749 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
750 * is taken, and if the cgroup count is zero, a usermode call made
a043e3b2
LZ
751 * to the release agent with the name of the cgroup (path relative to
752 * the root of cgroup file system) as the argument.
ddbcc7e8
PM
753 *
754 * A cgroup can only be deleted if both its 'count' of using tasks
755 * is zero, and its list of 'children' cgroups is empty. Since all
756 * tasks in the system use _some_ cgroup, and since there is always at
757 * least one task in the system (init, pid == 1), therefore, top_cgroup
758 * always has either children cgroups and/or using tasks. So we don't
759 * need a special hack to ensure that top_cgroup cannot be deleted.
760 *
761 * The task_lock() exception
762 *
763 * The need for this exception arises from the action of
d0b2fdd2 764 * cgroup_attach_task(), which overwrites one task's cgroup pointer with
a043e3b2 765 * another. It does so using cgroup_mutex, however there are
ddbcc7e8
PM
766 * several performance critical places that need to reference
767 * task->cgroup without the expense of grabbing a system global
768 * mutex. Therefore except as noted below, when dereferencing or, as
d0b2fdd2 769 * in cgroup_attach_task(), modifying a task's cgroup pointer we use
ddbcc7e8
PM
770 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
771 * the task_struct routinely used for such matters.
772 *
773 * P.S. One more locking exception. RCU is used to guard the
956db3ca 774 * update of a tasks cgroup pointer by cgroup_attach_task()
ddbcc7e8
PM
775 */
776
ddbcc7e8
PM
777/*
778 * A couple of forward declarations required, due to cyclic reference loop:
779 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
780 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
781 * -> cgroup_mkdir.
782 */
783
18bb1db3 784static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode);
ddbcc7e8 785static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
628f7cd4 786static int cgroup_populate_dir(struct cgroup *cgrp, unsigned long subsys_mask);
6e1d5dcc 787static const struct inode_operations cgroup_dir_inode_operations;
828c0950 788static const struct file_operations proc_cgroupstats_operations;
a424316c
PM
789
790static struct backing_dev_info cgroup_backing_dev_info = {
d993831f 791 .name = "cgroup",
e4ad08fe 792 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK,
a424316c 793};
ddbcc7e8 794
a5e7ed32 795static struct inode *cgroup_new_inode(umode_t mode, struct super_block *sb)
ddbcc7e8
PM
796{
797 struct inode *inode = new_inode(sb);
ddbcc7e8
PM
798
799 if (inode) {
85fe4025 800 inode->i_ino = get_next_ino();
ddbcc7e8 801 inode->i_mode = mode;
76aac0e9
DH
802 inode->i_uid = current_fsuid();
803 inode->i_gid = current_fsgid();
ddbcc7e8
PM
804 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
805 inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
806 }
807 return inode;
808}
809
65dff759
LZ
810static struct cgroup_name *cgroup_alloc_name(struct dentry *dentry)
811{
812 struct cgroup_name *name;
813
814 name = kmalloc(sizeof(*name) + dentry->d_name.len + 1, GFP_KERNEL);
815 if (!name)
816 return NULL;
817 strcpy(name->name, dentry->d_name.name);
818 return name;
819}
820
be445626
LZ
821static void cgroup_free_fn(struct work_struct *work)
822{
ea15f8cc 823 struct cgroup *cgrp = container_of(work, struct cgroup, destroy_work);
be445626
LZ
824
825 mutex_lock(&cgroup_mutex);
be445626
LZ
826 cgrp->root->number_of_cgroups--;
827 mutex_unlock(&cgroup_mutex);
828
415cf07a
LZ
829 /*
830 * We get a ref to the parent's dentry, and put the ref when
831 * this cgroup is being freed, so it's guaranteed that the
832 * parent won't be destroyed before its children.
833 */
834 dput(cgrp->parent->dentry);
835
be445626
LZ
836 /*
837 * Drop the active superblock reference that we took when we
cc20e01c
LZ
838 * created the cgroup. This will free cgrp->root, if we are
839 * holding the last reference to @sb.
be445626
LZ
840 */
841 deactivate_super(cgrp->root->sb);
842
b1a21367 843 cgroup_pidlist_destroy_all(cgrp);
be445626
LZ
844
845 simple_xattrs_free(&cgrp->xattrs);
846
65dff759 847 kfree(rcu_dereference_raw(cgrp->name));
be445626
LZ
848 kfree(cgrp);
849}
850
851static void cgroup_free_rcu(struct rcu_head *head)
852{
853 struct cgroup *cgrp = container_of(head, struct cgroup, rcu_head);
854
ea15f8cc 855 INIT_WORK(&cgrp->destroy_work, cgroup_free_fn);
e5fca243 856 queue_work(cgroup_destroy_wq, &cgrp->destroy_work);
be445626
LZ
857}
858
ddbcc7e8
PM
859static void cgroup_diput(struct dentry *dentry, struct inode *inode)
860{
861 /* is dentry a directory ? if so, kfree() associated cgroup */
862 if (S_ISDIR(inode->i_mode)) {
bd89aabc 863 struct cgroup *cgrp = dentry->d_fsdata;
be445626 864
54766d4a 865 BUG_ON(!(cgroup_is_dead(cgrp)));
c1a71504
LZ
866
867 /*
868 * XXX: cgrp->id is only used to look up css's. As cgroup
869 * and css's lifetimes will be decoupled, it should be made
870 * per-subsystem and moved to css->id so that lookups are
871 * successful until the target css is released.
872 */
873 idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
874 cgrp->id = -1;
875
be445626 876 call_rcu(&cgrp->rcu_head, cgroup_free_rcu);
05ef1d7c
TH
877 } else {
878 struct cfent *cfe = __d_cfe(dentry);
879 struct cgroup *cgrp = dentry->d_parent->d_fsdata;
880
881 WARN_ONCE(!list_empty(&cfe->node) &&
882 cgrp != &cgrp->root->top_cgroup,
883 "cfe still linked for %s\n", cfe->type->name);
712317ad 884 simple_xattrs_free(&cfe->xattrs);
05ef1d7c 885 kfree(cfe);
ddbcc7e8
PM
886 }
887 iput(inode);
888}
889
890static void remove_dir(struct dentry *d)
891{
892 struct dentry *parent = dget(d->d_parent);
893
894 d_delete(d);
895 simple_rmdir(parent->d_inode, d);
896 dput(parent);
897}
898
2739d3cc 899static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
05ef1d7c
TH
900{
901 struct cfent *cfe;
902
903 lockdep_assert_held(&cgrp->dentry->d_inode->i_mutex);
904 lockdep_assert_held(&cgroup_mutex);
905
2739d3cc
LZ
906 /*
907 * If we're doing cleanup due to failure of cgroup_create(),
908 * the corresponding @cfe may not exist.
909 */
05ef1d7c
TH
910 list_for_each_entry(cfe, &cgrp->files, node) {
911 struct dentry *d = cfe->dentry;
912
913 if (cft && cfe->type != cft)
914 continue;
915
916 dget(d);
917 d_delete(d);
ce27e317 918 simple_unlink(cgrp->dentry->d_inode, d);
05ef1d7c
TH
919 list_del_init(&cfe->node);
920 dput(d);
921
2739d3cc 922 break;
ddbcc7e8 923 }
05ef1d7c
TH
924}
925
13af07df 926/**
628f7cd4 927 * cgroup_clear_dir - remove subsys files in a cgroup directory
8f89140a 928 * @cgrp: target cgroup
13af07df
AR
929 * @subsys_mask: mask of the subsystem ids whose files should be removed
930 */
628f7cd4 931static void cgroup_clear_dir(struct cgroup *cgrp, unsigned long subsys_mask)
05ef1d7c 932{
13af07df 933 struct cgroup_subsys *ss;
b420ba7d 934 int i;
05ef1d7c 935
b420ba7d 936 for_each_subsys(ss, i) {
13af07df 937 struct cftype_set *set;
b420ba7d
TH
938
939 if (!test_bit(i, &subsys_mask))
13af07df
AR
940 continue;
941 list_for_each_entry(set, &ss->cftsets, node)
2bb566cb 942 cgroup_addrm_files(cgrp, set->cfts, false);
13af07df 943 }
ddbcc7e8
PM
944}
945
946/*
947 * NOTE : the dentry must have been dget()'ed
948 */
949static void cgroup_d_remove_dir(struct dentry *dentry)
950{
2fd6b7f5 951 struct dentry *parent;
ddbcc7e8 952
2fd6b7f5
NP
953 parent = dentry->d_parent;
954 spin_lock(&parent->d_lock);
3ec762ad 955 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
ddbcc7e8 956 list_del_init(&dentry->d_u.d_child);
2fd6b7f5
NP
957 spin_unlock(&dentry->d_lock);
958 spin_unlock(&parent->d_lock);
ddbcc7e8
PM
959 remove_dir(dentry);
960}
961
962static int rebind_subsystems(struct cgroupfs_root *root,
a8a648c4 963 unsigned long added_mask, unsigned removed_mask)
ddbcc7e8 964{
bd89aabc 965 struct cgroup *cgrp = &root->top_cgroup;
30159ec7 966 struct cgroup_subsys *ss;
3126121f 967 int i, ret;
ddbcc7e8 968
aae8aab4 969 BUG_ON(!mutex_is_locked(&cgroup_mutex));
e25e2cbb 970 BUG_ON(!mutex_is_locked(&cgroup_root_mutex));
aae8aab4 971
ddbcc7e8 972 /* Check that any added subsystems are currently free */
3ed80a62
TH
973 for_each_subsys(ss, i)
974 if ((added_mask & (1 << i)) && ss->root != &cgroup_dummy_root)
975 return -EBUSY;
ddbcc7e8 976
3126121f
TH
977 ret = cgroup_populate_dir(cgrp, added_mask);
978 if (ret)
3ed80a62 979 return ret;
3126121f
TH
980
981 /*
982 * Nothing can fail from this point on. Remove files for the
983 * removed subsystems and rebind each subsystem.
984 */
985 cgroup_clear_dir(cgrp, removed_mask);
ddbcc7e8 986
30159ec7 987 for_each_subsys(ss, i) {
ddbcc7e8 988 unsigned long bit = 1UL << i;
30159ec7 989
a1a71b45 990 if (bit & added_mask) {
ddbcc7e8 991 /* We're binding this subsystem to this hierarchy */
ca8bdcaf
TH
992 BUG_ON(cgroup_css(cgrp, ss));
993 BUG_ON(!cgroup_css(cgroup_dummy_top, ss));
994 BUG_ON(cgroup_css(cgroup_dummy_top, ss)->cgroup != cgroup_dummy_top);
a8a648c4 995
73e80ed8 996 rcu_assign_pointer(cgrp->subsys[i],
ca8bdcaf
TH
997 cgroup_css(cgroup_dummy_top, ss));
998 cgroup_css(cgrp, ss)->cgroup = cgrp;
a8a648c4 999
b2aa30f7 1000 ss->root = root;
ddbcc7e8 1001 if (ss->bind)
ca8bdcaf 1002 ss->bind(cgroup_css(cgrp, ss));
a8a648c4 1003
cf5d5941 1004 /* refcount was already taken, and we're keeping it */
a8a648c4 1005 root->subsys_mask |= bit;
a1a71b45 1006 } else if (bit & removed_mask) {
ddbcc7e8 1007 /* We're removing this subsystem */
ca8bdcaf
TH
1008 BUG_ON(cgroup_css(cgrp, ss) != cgroup_css(cgroup_dummy_top, ss));
1009 BUG_ON(cgroup_css(cgrp, ss)->cgroup != cgrp);
a8a648c4 1010
ddbcc7e8 1011 if (ss->bind)
ca8bdcaf 1012 ss->bind(cgroup_css(cgroup_dummy_top, ss));
73e80ed8 1013
ca8bdcaf 1014 cgroup_css(cgroup_dummy_top, ss)->cgroup = cgroup_dummy_top;
73e80ed8
TH
1015 RCU_INIT_POINTER(cgrp->subsys[i], NULL);
1016
9871bf95 1017 cgroup_subsys[i]->root = &cgroup_dummy_root;
a8a648c4 1018 root->subsys_mask &= ~bit;
ddbcc7e8
PM
1019 }
1020 }
ddbcc7e8 1021
1672d040
TH
1022 /*
1023 * Mark @root has finished binding subsystems. @root->subsys_mask
1024 * now matches the bound subsystems.
1025 */
1026 root->flags |= CGRP_ROOT_SUBSYS_BOUND;
1027
ddbcc7e8
PM
1028 return 0;
1029}
1030
34c80b1d 1031static int cgroup_show_options(struct seq_file *seq, struct dentry *dentry)
ddbcc7e8 1032{
34c80b1d 1033 struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
ddbcc7e8 1034 struct cgroup_subsys *ss;
b85d2040 1035 int ssid;
ddbcc7e8 1036
e25e2cbb 1037 mutex_lock(&cgroup_root_mutex);
b85d2040
TH
1038 for_each_subsys(ss, ssid)
1039 if (root->subsys_mask & (1 << ssid))
1040 seq_printf(seq, ",%s", ss->name);
873fe09e
TH
1041 if (root->flags & CGRP_ROOT_SANE_BEHAVIOR)
1042 seq_puts(seq, ",sane_behavior");
93438629 1043 if (root->flags & CGRP_ROOT_NOPREFIX)
ddbcc7e8 1044 seq_puts(seq, ",noprefix");
93438629 1045 if (root->flags & CGRP_ROOT_XATTR)
03b1cde6 1046 seq_puts(seq, ",xattr");
81a6a5cd
PM
1047 if (strlen(root->release_agent_path))
1048 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
2260e7fc 1049 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->top_cgroup.flags))
97978e6d 1050 seq_puts(seq, ",clone_children");
c6d57f33
PM
1051 if (strlen(root->name))
1052 seq_printf(seq, ",name=%s", root->name);
e25e2cbb 1053 mutex_unlock(&cgroup_root_mutex);
ddbcc7e8
PM
1054 return 0;
1055}
1056
1057struct cgroup_sb_opts {
a1a71b45 1058 unsigned long subsys_mask;
ddbcc7e8 1059 unsigned long flags;
81a6a5cd 1060 char *release_agent;
2260e7fc 1061 bool cpuset_clone_children;
c6d57f33 1062 char *name;
2c6ab6d2
PM
1063 /* User explicitly requested empty subsystem */
1064 bool none;
c6d57f33
PM
1065
1066 struct cgroupfs_root *new_root;
2c6ab6d2 1067
ddbcc7e8
PM
1068};
1069
aae8aab4 1070/*
9871bf95
TH
1071 * Convert a hierarchy specifier into a bitmask of subsystems and
1072 * flags. Call with cgroup_mutex held to protect the cgroup_subsys[]
1073 * array. This function takes refcounts on subsystems to be used, unless it
1074 * returns error, in which case no refcounts are taken.
aae8aab4 1075 */
cf5d5941 1076static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
ddbcc7e8 1077{
32a8cf23
DL
1078 char *token, *o = data;
1079 bool all_ss = false, one_ss = false;
f9ab5b5b 1080 unsigned long mask = (unsigned long)-1;
30159ec7
TH
1081 struct cgroup_subsys *ss;
1082 int i;
f9ab5b5b 1083
aae8aab4
BB
1084 BUG_ON(!mutex_is_locked(&cgroup_mutex));
1085
f9ab5b5b 1086#ifdef CONFIG_CPUSETS
073219e9 1087 mask = ~(1UL << cpuset_cgrp_id);
f9ab5b5b 1088#endif
ddbcc7e8 1089
c6d57f33 1090 memset(opts, 0, sizeof(*opts));
ddbcc7e8
PM
1091
1092 while ((token = strsep(&o, ",")) != NULL) {
1093 if (!*token)
1094 return -EINVAL;
32a8cf23 1095 if (!strcmp(token, "none")) {
2c6ab6d2
PM
1096 /* Explicitly have no subsystems */
1097 opts->none = true;
32a8cf23
DL
1098 continue;
1099 }
1100 if (!strcmp(token, "all")) {
1101 /* Mutually exclusive option 'all' + subsystem name */
1102 if (one_ss)
1103 return -EINVAL;
1104 all_ss = true;
1105 continue;
1106 }
873fe09e
TH
1107 if (!strcmp(token, "__DEVEL__sane_behavior")) {
1108 opts->flags |= CGRP_ROOT_SANE_BEHAVIOR;
1109 continue;
1110 }
32a8cf23 1111 if (!strcmp(token, "noprefix")) {
93438629 1112 opts->flags |= CGRP_ROOT_NOPREFIX;
32a8cf23
DL
1113 continue;
1114 }
1115 if (!strcmp(token, "clone_children")) {
2260e7fc 1116 opts->cpuset_clone_children = true;
32a8cf23
DL
1117 continue;
1118 }
03b1cde6 1119 if (!strcmp(token, "xattr")) {
93438629 1120 opts->flags |= CGRP_ROOT_XATTR;
03b1cde6
AR
1121 continue;
1122 }
32a8cf23 1123 if (!strncmp(token, "release_agent=", 14)) {
81a6a5cd
PM
1124 /* Specifying two release agents is forbidden */
1125 if (opts->release_agent)
1126 return -EINVAL;
c6d57f33 1127 opts->release_agent =
e400c285 1128 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
81a6a5cd
PM
1129 if (!opts->release_agent)
1130 return -ENOMEM;
32a8cf23
DL
1131 continue;
1132 }
1133 if (!strncmp(token, "name=", 5)) {
c6d57f33
PM
1134 const char *name = token + 5;
1135 /* Can't specify an empty name */
1136 if (!strlen(name))
1137 return -EINVAL;
1138 /* Must match [\w.-]+ */
1139 for (i = 0; i < strlen(name); i++) {
1140 char c = name[i];
1141 if (isalnum(c))
1142 continue;
1143 if ((c == '.') || (c == '-') || (c == '_'))
1144 continue;
1145 return -EINVAL;
1146 }
1147 /* Specifying two names is forbidden */
1148 if (opts->name)
1149 return -EINVAL;
1150 opts->name = kstrndup(name,
e400c285 1151 MAX_CGROUP_ROOT_NAMELEN - 1,
c6d57f33
PM
1152 GFP_KERNEL);
1153 if (!opts->name)
1154 return -ENOMEM;
32a8cf23
DL
1155
1156 continue;
1157 }
1158
30159ec7 1159 for_each_subsys(ss, i) {
32a8cf23
DL
1160 if (strcmp(token, ss->name))
1161 continue;
1162 if (ss->disabled)
1163 continue;
1164
1165 /* Mutually exclusive option 'all' + subsystem name */
1166 if (all_ss)
1167 return -EINVAL;
a1a71b45 1168 set_bit(i, &opts->subsys_mask);
32a8cf23
DL
1169 one_ss = true;
1170
1171 break;
1172 }
1173 if (i == CGROUP_SUBSYS_COUNT)
1174 return -ENOENT;
1175 }
1176
1177 /*
1178 * If the 'all' option was specified select all the subsystems,
0d19ea86
LZ
1179 * otherwise if 'none', 'name=' and a subsystem name options
1180 * were not specified, let's default to 'all'
32a8cf23 1181 */
30159ec7
TH
1182 if (all_ss || (!one_ss && !opts->none && !opts->name))
1183 for_each_subsys(ss, i)
1184 if (!ss->disabled)
1185 set_bit(i, &opts->subsys_mask);
ddbcc7e8 1186
2c6ab6d2
PM
1187 /* Consistency checks */
1188
873fe09e
TH
1189 if (opts->flags & CGRP_ROOT_SANE_BEHAVIOR) {
1190 pr_warning("cgroup: sane_behavior: this is still under development and its behaviors will change, proceed at your own risk\n");
1191
1192 if (opts->flags & CGRP_ROOT_NOPREFIX) {
1193 pr_err("cgroup: sane_behavior: noprefix is not allowed\n");
1194 return -EINVAL;
1195 }
1196
1197 if (opts->cpuset_clone_children) {
1198 pr_err("cgroup: sane_behavior: clone_children is not allowed\n");
1199 return -EINVAL;
1200 }
1201 }
1202
f9ab5b5b
LZ
1203 /*
1204 * Option noprefix was introduced just for backward compatibility
1205 * with the old cpuset, so we allow noprefix only if mounting just
1206 * the cpuset subsystem.
1207 */
93438629 1208 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
f9ab5b5b
LZ
1209 return -EINVAL;
1210
2c6ab6d2
PM
1211
1212 /* Can't specify "none" and some subsystems */
a1a71b45 1213 if (opts->subsys_mask && opts->none)
2c6ab6d2
PM
1214 return -EINVAL;
1215
1216 /*
1217 * We either have to specify by name or by subsystems. (So all
1218 * empty hierarchies must have a name).
1219 */
a1a71b45 1220 if (!opts->subsys_mask && !opts->name)
ddbcc7e8
PM
1221 return -EINVAL;
1222
1223 return 0;
1224}
1225
1226static int cgroup_remount(struct super_block *sb, int *flags, char *data)
1227{
1228 int ret = 0;
1229 struct cgroupfs_root *root = sb->s_fs_info;
bd89aabc 1230 struct cgroup *cgrp = &root->top_cgroup;
ddbcc7e8 1231 struct cgroup_sb_opts opts;
a1a71b45 1232 unsigned long added_mask, removed_mask;
ddbcc7e8 1233
873fe09e
TH
1234 if (root->flags & CGRP_ROOT_SANE_BEHAVIOR) {
1235 pr_err("cgroup: sane_behavior: remount is not allowed\n");
1236 return -EINVAL;
1237 }
1238
bd89aabc 1239 mutex_lock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8 1240 mutex_lock(&cgroup_mutex);
e25e2cbb 1241 mutex_lock(&cgroup_root_mutex);
ddbcc7e8
PM
1242
1243 /* See what subsystems are wanted */
1244 ret = parse_cgroupfs_options(data, &opts);
1245 if (ret)
1246 goto out_unlock;
1247
a8a648c4 1248 if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
8b5a5a9d
TH
1249 pr_warning("cgroup: option changes via remount are deprecated (pid=%d comm=%s)\n",
1250 task_tgid_nr(current), current->comm);
1251
a1a71b45
AR
1252 added_mask = opts.subsys_mask & ~root->subsys_mask;
1253 removed_mask = root->subsys_mask & ~opts.subsys_mask;
13af07df 1254
cf5d5941 1255 /* Don't allow flags or name to change at remount */
0ce6cba3 1256 if (((opts.flags ^ root->flags) & CGRP_ROOT_OPTION_MASK) ||
cf5d5941 1257 (opts.name && strcmp(opts.name, root->name))) {
0ce6cba3
TH
1258 pr_err("cgroup: option or name mismatch, new: 0x%lx \"%s\", old: 0x%lx \"%s\"\n",
1259 opts.flags & CGRP_ROOT_OPTION_MASK, opts.name ?: "",
1260 root->flags & CGRP_ROOT_OPTION_MASK, root->name);
c6d57f33
PM
1261 ret = -EINVAL;
1262 goto out_unlock;
1263 }
1264
f172e67c
TH
1265 /* remounting is not allowed for populated hierarchies */
1266 if (root->number_of_cgroups > 1) {
1267 ret = -EBUSY;
0670e08b 1268 goto out_unlock;
cf5d5941 1269 }
ddbcc7e8 1270
a8a648c4 1271 ret = rebind_subsystems(root, added_mask, removed_mask);
3126121f 1272 if (ret)
0670e08b 1273 goto out_unlock;
ddbcc7e8 1274
81a6a5cd
PM
1275 if (opts.release_agent)
1276 strcpy(root->release_agent_path, opts.release_agent);
ddbcc7e8 1277 out_unlock:
66bdc9cf 1278 kfree(opts.release_agent);
c6d57f33 1279 kfree(opts.name);
e25e2cbb 1280 mutex_unlock(&cgroup_root_mutex);
ddbcc7e8 1281 mutex_unlock(&cgroup_mutex);
bd89aabc 1282 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8
PM
1283 return ret;
1284}
1285
b87221de 1286static const struct super_operations cgroup_ops = {
ddbcc7e8
PM
1287 .statfs = simple_statfs,
1288 .drop_inode = generic_delete_inode,
1289 .show_options = cgroup_show_options,
1290 .remount_fs = cgroup_remount,
1291};
1292
cc31edce
PM
1293static void init_cgroup_housekeeping(struct cgroup *cgrp)
1294{
1295 INIT_LIST_HEAD(&cgrp->sibling);
1296 INIT_LIST_HEAD(&cgrp->children);
05ef1d7c 1297 INIT_LIST_HEAD(&cgrp->files);
69d0206c 1298 INIT_LIST_HEAD(&cgrp->cset_links);
cc31edce 1299 INIT_LIST_HEAD(&cgrp->release_list);
72a8cb30
BB
1300 INIT_LIST_HEAD(&cgrp->pidlists);
1301 mutex_init(&cgrp->pidlist_mutex);
67f4c36f 1302 cgrp->dummy_css.cgroup = cgrp;
03b1cde6 1303 simple_xattrs_init(&cgrp->xattrs);
cc31edce 1304}
c6d57f33 1305
ddbcc7e8
PM
1306static void init_cgroup_root(struct cgroupfs_root *root)
1307{
bd89aabc 1308 struct cgroup *cgrp = &root->top_cgroup;
b0ca5a84 1309
ddbcc7e8
PM
1310 INIT_LIST_HEAD(&root->root_list);
1311 root->number_of_cgroups = 1;
bd89aabc 1312 cgrp->root = root;
a4ea1cc9 1313 RCU_INIT_POINTER(cgrp->name, &root_cgroup_name);
cc31edce 1314 init_cgroup_housekeeping(cgrp);
4e96ee8e 1315 idr_init(&root->cgroup_idr);
ddbcc7e8
PM
1316}
1317
fc76df70 1318static int cgroup_init_root_id(struct cgroupfs_root *root, int start, int end)
2c6ab6d2 1319{
1a574231 1320 int id;
2c6ab6d2 1321
54e7b4eb
TH
1322 lockdep_assert_held(&cgroup_mutex);
1323 lockdep_assert_held(&cgroup_root_mutex);
1324
fc76df70
TH
1325 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, start, end,
1326 GFP_KERNEL);
1a574231
TH
1327 if (id < 0)
1328 return id;
1329
1330 root->hierarchy_id = id;
fa3ca07e
TH
1331 return 0;
1332}
1333
1334static void cgroup_exit_root_id(struct cgroupfs_root *root)
1335{
54e7b4eb
TH
1336 lockdep_assert_held(&cgroup_mutex);
1337 lockdep_assert_held(&cgroup_root_mutex);
1338
fa3ca07e 1339 if (root->hierarchy_id) {
1a574231 1340 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
fa3ca07e
TH
1341 root->hierarchy_id = 0;
1342 }
2c6ab6d2
PM
1343}
1344
ddbcc7e8
PM
1345static int cgroup_test_super(struct super_block *sb, void *data)
1346{
c6d57f33 1347 struct cgroup_sb_opts *opts = data;
ddbcc7e8
PM
1348 struct cgroupfs_root *root = sb->s_fs_info;
1349
c6d57f33
PM
1350 /* If we asked for a name then it must match */
1351 if (opts->name && strcmp(opts->name, root->name))
1352 return 0;
ddbcc7e8 1353
2c6ab6d2
PM
1354 /*
1355 * If we asked for subsystems (or explicitly for no
1356 * subsystems) then they must match
1357 */
a1a71b45
AR
1358 if ((opts->subsys_mask || opts->none)
1359 && (opts->subsys_mask != root->subsys_mask))
ddbcc7e8
PM
1360 return 0;
1361
1362 return 1;
1363}
1364
c6d57f33
PM
1365static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts)
1366{
1367 struct cgroupfs_root *root;
1368
a1a71b45 1369 if (!opts->subsys_mask && !opts->none)
c6d57f33
PM
1370 return NULL;
1371
1372 root = kzalloc(sizeof(*root), GFP_KERNEL);
1373 if (!root)
1374 return ERR_PTR(-ENOMEM);
1375
1376 init_cgroup_root(root);
2c6ab6d2 1377
1672d040
TH
1378 /*
1379 * We need to set @root->subsys_mask now so that @root can be
1380 * matched by cgroup_test_super() before it finishes
1381 * initialization; otherwise, competing mounts with the same
1382 * options may try to bind the same subsystems instead of waiting
1383 * for the first one leading to unexpected mount errors.
1384 * SUBSYS_BOUND will be set once actual binding is complete.
1385 */
a1a71b45 1386 root->subsys_mask = opts->subsys_mask;
c6d57f33
PM
1387 root->flags = opts->flags;
1388 if (opts->release_agent)
1389 strcpy(root->release_agent_path, opts->release_agent);
1390 if (opts->name)
1391 strcpy(root->name, opts->name);
2260e7fc
TH
1392 if (opts->cpuset_clone_children)
1393 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->top_cgroup.flags);
c6d57f33
PM
1394 return root;
1395}
1396
fa3ca07e 1397static void cgroup_free_root(struct cgroupfs_root *root)
2c6ab6d2 1398{
fa3ca07e
TH
1399 if (root) {
1400 /* hierarhcy ID shoulid already have been released */
1401 WARN_ON_ONCE(root->hierarchy_id);
2c6ab6d2 1402
4e96ee8e 1403 idr_destroy(&root->cgroup_idr);
fa3ca07e
TH
1404 kfree(root);
1405 }
2c6ab6d2
PM
1406}
1407
ddbcc7e8
PM
1408static int cgroup_set_super(struct super_block *sb, void *data)
1409{
1410 int ret;
c6d57f33
PM
1411 struct cgroup_sb_opts *opts = data;
1412
1413 /* If we don't have a new root, we can't set up a new sb */
1414 if (!opts->new_root)
1415 return -EINVAL;
1416
a1a71b45 1417 BUG_ON(!opts->subsys_mask && !opts->none);
ddbcc7e8
PM
1418
1419 ret = set_anon_super(sb, NULL);
1420 if (ret)
1421 return ret;
1422
c6d57f33
PM
1423 sb->s_fs_info = opts->new_root;
1424 opts->new_root->sb = sb;
ddbcc7e8
PM
1425
1426 sb->s_blocksize = PAGE_CACHE_SIZE;
1427 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
1428 sb->s_magic = CGROUP_SUPER_MAGIC;
1429 sb->s_op = &cgroup_ops;
1430
1431 return 0;
1432}
1433
1434static int cgroup_get_rootdir(struct super_block *sb)
1435{
0df6a63f
AV
1436 static const struct dentry_operations cgroup_dops = {
1437 .d_iput = cgroup_diput,
b26d4cd3 1438 .d_delete = always_delete_dentry,
0df6a63f
AV
1439 };
1440
ddbcc7e8
PM
1441 struct inode *inode =
1442 cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
ddbcc7e8
PM
1443
1444 if (!inode)
1445 return -ENOMEM;
1446
ddbcc7e8
PM
1447 inode->i_fop = &simple_dir_operations;
1448 inode->i_op = &cgroup_dir_inode_operations;
1449 /* directories start off with i_nlink == 2 (for "." entry) */
1450 inc_nlink(inode);
48fde701
AV
1451 sb->s_root = d_make_root(inode);
1452 if (!sb->s_root)
ddbcc7e8 1453 return -ENOMEM;
0df6a63f
AV
1454 /* for everything else we want ->d_op set */
1455 sb->s_d_op = &cgroup_dops;
ddbcc7e8
PM
1456 return 0;
1457}
1458
f7e83571 1459static struct dentry *cgroup_mount(struct file_system_type *fs_type,
ddbcc7e8 1460 int flags, const char *unused_dev_name,
f7e83571 1461 void *data)
ddbcc7e8
PM
1462{
1463 struct cgroup_sb_opts opts;
c6d57f33 1464 struct cgroupfs_root *root;
ddbcc7e8
PM
1465 int ret = 0;
1466 struct super_block *sb;
c6d57f33 1467 struct cgroupfs_root *new_root;
3126121f 1468 struct list_head tmp_links;
e25e2cbb 1469 struct inode *inode;
3126121f 1470 const struct cred *cred;
ddbcc7e8
PM
1471
1472 /* First find the desired set of subsystems */
aae8aab4 1473 mutex_lock(&cgroup_mutex);
ddbcc7e8 1474 ret = parse_cgroupfs_options(data, &opts);
aae8aab4 1475 mutex_unlock(&cgroup_mutex);
c6d57f33
PM
1476 if (ret)
1477 goto out_err;
ddbcc7e8 1478
c6d57f33
PM
1479 /*
1480 * Allocate a new cgroup root. We may not need it if we're
1481 * reusing an existing hierarchy.
1482 */
1483 new_root = cgroup_root_from_opts(&opts);
1484 if (IS_ERR(new_root)) {
1485 ret = PTR_ERR(new_root);
1d5be6b2 1486 goto out_err;
81a6a5cd 1487 }
c6d57f33 1488 opts.new_root = new_root;
ddbcc7e8 1489
c6d57f33 1490 /* Locate an existing or new sb for this hierarchy */
9249e17f 1491 sb = sget(fs_type, cgroup_test_super, cgroup_set_super, 0, &opts);
ddbcc7e8 1492 if (IS_ERR(sb)) {
c6d57f33 1493 ret = PTR_ERR(sb);
fa3ca07e 1494 cgroup_free_root(opts.new_root);
1d5be6b2 1495 goto out_err;
ddbcc7e8
PM
1496 }
1497
c6d57f33
PM
1498 root = sb->s_fs_info;
1499 BUG_ON(!root);
1500 if (root == opts.new_root) {
1501 /* We used the new root structure, so this is a new hierarchy */
c12f65d4 1502 struct cgroup *root_cgrp = &root->top_cgroup;
c6d57f33 1503 struct cgroupfs_root *existing_root;
28fd5dfc 1504 int i;
5abb8855 1505 struct css_set *cset;
ddbcc7e8
PM
1506
1507 BUG_ON(sb->s_root != NULL);
1508
1509 ret = cgroup_get_rootdir(sb);
1510 if (ret)
1511 goto drop_new_super;
817929ec 1512 inode = sb->s_root->d_inode;
ddbcc7e8 1513
817929ec 1514 mutex_lock(&inode->i_mutex);
ddbcc7e8 1515 mutex_lock(&cgroup_mutex);
e25e2cbb 1516 mutex_lock(&cgroup_root_mutex);
ddbcc7e8 1517
4e96ee8e
LZ
1518 root_cgrp->id = idr_alloc(&root->cgroup_idr, root_cgrp,
1519 0, 1, GFP_KERNEL);
1520 if (root_cgrp->id < 0)
1521 goto unlock_drop;
1522
e25e2cbb
TH
1523 /* Check for name clashes with existing mounts */
1524 ret = -EBUSY;
1525 if (strlen(root->name))
1526 for_each_active_root(existing_root)
1527 if (!strcmp(existing_root->name, root->name))
1528 goto unlock_drop;
c6d57f33 1529
817929ec
PM
1530 /*
1531 * We're accessing css_set_count without locking
1532 * css_set_lock here, but that's OK - it can only be
1533 * increased by someone holding cgroup_lock, and
1534 * that's us. The worst that can happen is that we
1535 * have some link structures left over
1536 */
69d0206c 1537 ret = allocate_cgrp_cset_links(css_set_count, &tmp_links);
e25e2cbb
TH
1538 if (ret)
1539 goto unlock_drop;
817929ec 1540
fc76df70
TH
1541 /* ID 0 is reserved for dummy root, 1 for unified hierarchy */
1542 ret = cgroup_init_root_id(root, 2, 0);
fa3ca07e
TH
1543 if (ret)
1544 goto unlock_drop;
1545
3126121f
TH
1546 sb->s_root->d_fsdata = root_cgrp;
1547 root_cgrp->dentry = sb->s_root;
1548
1549 /*
1550 * We're inside get_sb() and will call lookup_one_len() to
1551 * create the root files, which doesn't work if SELinux is
1552 * in use. The following cred dancing somehow works around
1553 * it. See 2ce9738ba ("cgroupfs: use init_cred when
1554 * populating new cgroupfs mount") for more details.
1555 */
1556 cred = override_creds(&init_cred);
1557
2bb566cb 1558 ret = cgroup_addrm_files(root_cgrp, cgroup_base_files, true);
3126121f
TH
1559 if (ret)
1560 goto rm_base_files;
1561
a8a648c4 1562 ret = rebind_subsystems(root, root->subsys_mask, 0);
3126121f
TH
1563 if (ret)
1564 goto rm_base_files;
1565
1566 revert_creds(cred);
1567
cf5d5941
BB
1568 /*
1569 * There must be no failure case after here, since rebinding
1570 * takes care of subsystems' refcounts, which are explicitly
1571 * dropped in the failure exit path.
1572 */
ddbcc7e8 1573
9871bf95
TH
1574 list_add(&root->root_list, &cgroup_roots);
1575 cgroup_root_count++;
ddbcc7e8 1576
817929ec
PM
1577 /* Link the top cgroup in this hierarchy into all
1578 * the css_set objects */
1579 write_lock(&css_set_lock);
5abb8855 1580 hash_for_each(css_set_table, i, cset, hlist)
69d0206c 1581 link_css_set(&tmp_links, cset, root_cgrp);
817929ec
PM
1582 write_unlock(&css_set_lock);
1583
69d0206c 1584 free_cgrp_cset_links(&tmp_links);
817929ec 1585
c12f65d4 1586 BUG_ON(!list_empty(&root_cgrp->children));
ddbcc7e8
PM
1587 BUG_ON(root->number_of_cgroups != 1);
1588
e25e2cbb 1589 mutex_unlock(&cgroup_root_mutex);
ddbcc7e8 1590 mutex_unlock(&cgroup_mutex);
34f77a90 1591 mutex_unlock(&inode->i_mutex);
c6d57f33
PM
1592 } else {
1593 /*
1594 * We re-used an existing hierarchy - the new root (if
1595 * any) is not needed
1596 */
fa3ca07e 1597 cgroup_free_root(opts.new_root);
873fe09e 1598
c7ba8287 1599 if ((root->flags ^ opts.flags) & CGRP_ROOT_OPTION_MASK) {
2a0ff3fb
JL
1600 if ((root->flags | opts.flags) & CGRP_ROOT_SANE_BEHAVIOR) {
1601 pr_err("cgroup: sane_behavior: new mount options should match the existing superblock\n");
1602 ret = -EINVAL;
1603 goto drop_new_super;
1604 } else {
1605 pr_warning("cgroup: new mount options do not match the existing superblock, will be ignored\n");
1606 }
873fe09e 1607 }
ddbcc7e8
PM
1608 }
1609
c6d57f33
PM
1610 kfree(opts.release_agent);
1611 kfree(opts.name);
f7e83571 1612 return dget(sb->s_root);
ddbcc7e8 1613
3126121f
TH
1614 rm_base_files:
1615 free_cgrp_cset_links(&tmp_links);
2bb566cb 1616 cgroup_addrm_files(&root->top_cgroup, cgroup_base_files, false);
3126121f 1617 revert_creds(cred);
e25e2cbb 1618 unlock_drop:
fa3ca07e 1619 cgroup_exit_root_id(root);
e25e2cbb
TH
1620 mutex_unlock(&cgroup_root_mutex);
1621 mutex_unlock(&cgroup_mutex);
1622 mutex_unlock(&inode->i_mutex);
ddbcc7e8 1623 drop_new_super:
6f5bbff9 1624 deactivate_locked_super(sb);
c6d57f33
PM
1625 out_err:
1626 kfree(opts.release_agent);
1627 kfree(opts.name);
f7e83571 1628 return ERR_PTR(ret);
ddbcc7e8
PM
1629}
1630
dd4b0a46
SP
1631static void cgroup_kill_sb(struct super_block *sb)
1632{
ddbcc7e8 1633 struct cgroupfs_root *root = sb->s_fs_info;
bd89aabc 1634 struct cgroup *cgrp = &root->top_cgroup;
69d0206c 1635 struct cgrp_cset_link *link, *tmp_link;
ddbcc7e8
PM
1636 int ret;
1637
1638 BUG_ON(!root);
1639
1640 BUG_ON(root->number_of_cgroups != 1);
bd89aabc 1641 BUG_ON(!list_empty(&cgrp->children));
ddbcc7e8 1642
3126121f 1643 mutex_lock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8 1644 mutex_lock(&cgroup_mutex);
e25e2cbb 1645 mutex_lock(&cgroup_root_mutex);
ddbcc7e8
PM
1646
1647 /* Rebind all subsystems back to the default hierarchy */
1672d040
TH
1648 if (root->flags & CGRP_ROOT_SUBSYS_BOUND) {
1649 ret = rebind_subsystems(root, 0, root->subsys_mask);
1650 /* Shouldn't be able to fail ... */
1651 BUG_ON(ret);
1652 }
ddbcc7e8 1653
817929ec 1654 /*
69d0206c 1655 * Release all the links from cset_links to this hierarchy's
817929ec
PM
1656 * root cgroup
1657 */
1658 write_lock(&css_set_lock);
71cbb949 1659
69d0206c
TH
1660 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1661 list_del(&link->cset_link);
1662 list_del(&link->cgrp_link);
817929ec
PM
1663 kfree(link);
1664 }
1665 write_unlock(&css_set_lock);
1666
839ec545
PM
1667 if (!list_empty(&root->root_list)) {
1668 list_del(&root->root_list);
9871bf95 1669 cgroup_root_count--;
839ec545 1670 }
e5f6a860 1671
fa3ca07e
TH
1672 cgroup_exit_root_id(root);
1673
e25e2cbb 1674 mutex_unlock(&cgroup_root_mutex);
ddbcc7e8 1675 mutex_unlock(&cgroup_mutex);
3126121f 1676 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8 1677
03b1cde6
AR
1678 simple_xattrs_free(&cgrp->xattrs);
1679
ddbcc7e8 1680 kill_litter_super(sb);
fa3ca07e 1681 cgroup_free_root(root);
ddbcc7e8
PM
1682}
1683
1684static struct file_system_type cgroup_fs_type = {
1685 .name = "cgroup",
f7e83571 1686 .mount = cgroup_mount,
ddbcc7e8
PM
1687 .kill_sb = cgroup_kill_sb,
1688};
1689
676db4af
GKH
1690static struct kobject *cgroup_kobj;
1691
a043e3b2
LZ
1692/**
1693 * cgroup_path - generate the path of a cgroup
1694 * @cgrp: the cgroup in question
1695 * @buf: the buffer to write the path into
1696 * @buflen: the length of the buffer
1697 *
65dff759
LZ
1698 * Writes path of cgroup into buf. Returns 0 on success, -errno on error.
1699 *
1700 * We can't generate cgroup path using dentry->d_name, as accessing
1701 * dentry->name must be protected by irq-unsafe dentry->d_lock or parent
1702 * inode's i_mutex, while on the other hand cgroup_path() can be called
1703 * with some irq-safe spinlocks held.
ddbcc7e8 1704 */
bd89aabc 1705int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
ddbcc7e8 1706{
65dff759 1707 int ret = -ENAMETOOLONG;
ddbcc7e8 1708 char *start;
febfcef6 1709
da1f296f
TH
1710 if (!cgrp->parent) {
1711 if (strlcpy(buf, "/", buflen) >= buflen)
1712 return -ENAMETOOLONG;
ddbcc7e8
PM
1713 return 0;
1714 }
1715
316eb661 1716 start = buf + buflen - 1;
316eb661 1717 *start = '\0';
9a9686b6 1718
65dff759 1719 rcu_read_lock();
da1f296f 1720 do {
65dff759
LZ
1721 const char *name = cgroup_name(cgrp);
1722 int len;
1723
1724 len = strlen(name);
ddbcc7e8 1725 if ((start -= len) < buf)
65dff759
LZ
1726 goto out;
1727 memcpy(start, name, len);
9a9686b6 1728
ddbcc7e8 1729 if (--start < buf)
65dff759 1730 goto out;
ddbcc7e8 1731 *start = '/';
65dff759
LZ
1732
1733 cgrp = cgrp->parent;
da1f296f 1734 } while (cgrp->parent);
65dff759 1735 ret = 0;
ddbcc7e8 1736 memmove(buf, start, buf + buflen - start);
65dff759
LZ
1737out:
1738 rcu_read_unlock();
1739 return ret;
ddbcc7e8 1740}
67523c48 1741EXPORT_SYMBOL_GPL(cgroup_path);
ddbcc7e8 1742
857a2beb 1743/**
913ffdb5 1744 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
857a2beb 1745 * @task: target task
857a2beb
TH
1746 * @buf: the buffer to write the path into
1747 * @buflen: the length of the buffer
1748 *
913ffdb5
TH
1749 * Determine @task's cgroup on the first (the one with the lowest non-zero
1750 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
1751 * function grabs cgroup_mutex and shouldn't be used inside locks used by
1752 * cgroup controller callbacks.
1753 *
1754 * Returns 0 on success, fails with -%ENAMETOOLONG if @buflen is too short.
857a2beb 1755 */
913ffdb5 1756int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
857a2beb
TH
1757{
1758 struct cgroupfs_root *root;
913ffdb5
TH
1759 struct cgroup *cgrp;
1760 int hierarchy_id = 1, ret = 0;
1761
1762 if (buflen < 2)
1763 return -ENAMETOOLONG;
857a2beb
TH
1764
1765 mutex_lock(&cgroup_mutex);
1766
913ffdb5
TH
1767 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
1768
857a2beb
TH
1769 if (root) {
1770 cgrp = task_cgroup_from_root(task, root);
1771 ret = cgroup_path(cgrp, buf, buflen);
913ffdb5
TH
1772 } else {
1773 /* if no hierarchy exists, everyone is in "/" */
1774 memcpy(buf, "/", 2);
857a2beb
TH
1775 }
1776
1777 mutex_unlock(&cgroup_mutex);
857a2beb
TH
1778 return ret;
1779}
913ffdb5 1780EXPORT_SYMBOL_GPL(task_cgroup_path);
857a2beb 1781
2f7ee569
TH
1782/*
1783 * Control Group taskset
1784 */
134d3373
TH
1785struct task_and_cgroup {
1786 struct task_struct *task;
1787 struct cgroup *cgrp;
6f4b7e63 1788 struct css_set *cset;
134d3373
TH
1789};
1790
2f7ee569
TH
1791struct cgroup_taskset {
1792 struct task_and_cgroup single;
1793 struct flex_array *tc_array;
1794 int tc_array_len;
1795 int idx;
1796 struct cgroup *cur_cgrp;
1797};
1798
1799/**
1800 * cgroup_taskset_first - reset taskset and return the first task
1801 * @tset: taskset of interest
1802 *
1803 * @tset iteration is initialized and the first task is returned.
1804 */
1805struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
1806{
1807 if (tset->tc_array) {
1808 tset->idx = 0;
1809 return cgroup_taskset_next(tset);
1810 } else {
1811 tset->cur_cgrp = tset->single.cgrp;
1812 return tset->single.task;
1813 }
1814}
1815EXPORT_SYMBOL_GPL(cgroup_taskset_first);
1816
1817/**
1818 * cgroup_taskset_next - iterate to the next task in taskset
1819 * @tset: taskset of interest
1820 *
1821 * Return the next task in @tset. Iteration must have been initialized
1822 * with cgroup_taskset_first().
1823 */
1824struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
1825{
1826 struct task_and_cgroup *tc;
1827
1828 if (!tset->tc_array || tset->idx >= tset->tc_array_len)
1829 return NULL;
1830
1831 tc = flex_array_get(tset->tc_array, tset->idx++);
1832 tset->cur_cgrp = tc->cgrp;
1833 return tc->task;
1834}
1835EXPORT_SYMBOL_GPL(cgroup_taskset_next);
1836
1837/**
d99c8727 1838 * cgroup_taskset_cur_css - return the matching css for the current task
2f7ee569 1839 * @tset: taskset of interest
d99c8727 1840 * @subsys_id: the ID of the target subsystem
2f7ee569 1841 *
d99c8727
TH
1842 * Return the css for the current (last returned) task of @tset for
1843 * subsystem specified by @subsys_id. This function must be preceded by
1844 * either cgroup_taskset_first() or cgroup_taskset_next().
2f7ee569 1845 */
d99c8727
TH
1846struct cgroup_subsys_state *cgroup_taskset_cur_css(struct cgroup_taskset *tset,
1847 int subsys_id)
2f7ee569 1848{
ca8bdcaf 1849 return cgroup_css(tset->cur_cgrp, cgroup_subsys[subsys_id]);
2f7ee569 1850}
d99c8727 1851EXPORT_SYMBOL_GPL(cgroup_taskset_cur_css);
2f7ee569
TH
1852
1853/**
1854 * cgroup_taskset_size - return the number of tasks in taskset
1855 * @tset: taskset of interest
1856 */
1857int cgroup_taskset_size(struct cgroup_taskset *tset)
1858{
1859 return tset->tc_array ? tset->tc_array_len : 1;
1860}
1861EXPORT_SYMBOL_GPL(cgroup_taskset_size);
1862
1863
74a1166d
BB
1864/*
1865 * cgroup_task_migrate - move a task from one cgroup to another.
1866 *
d0b2fdd2 1867 * Must be called with cgroup_mutex and threadgroup locked.
74a1166d 1868 */
5abb8855
TH
1869static void cgroup_task_migrate(struct cgroup *old_cgrp,
1870 struct task_struct *tsk,
1871 struct css_set *new_cset)
74a1166d 1872{
5abb8855 1873 struct css_set *old_cset;
74a1166d
BB
1874
1875 /*
026085ef
MSB
1876 * We are synchronized through threadgroup_lock() against PF_EXITING
1877 * setting such that we can't race against cgroup_exit() changing the
1878 * css_set to init_css_set and dropping the old one.
74a1166d 1879 */
c84cdf75 1880 WARN_ON_ONCE(tsk->flags & PF_EXITING);
a8ad805c 1881 old_cset = task_css_set(tsk);
74a1166d 1882
74a1166d 1883 task_lock(tsk);
5abb8855 1884 rcu_assign_pointer(tsk->cgroups, new_cset);
74a1166d
BB
1885 task_unlock(tsk);
1886
1887 /* Update the css_set linked lists if we're using them */
1888 write_lock(&css_set_lock);
1889 if (!list_empty(&tsk->cg_list))
5abb8855 1890 list_move(&tsk->cg_list, &new_cset->tasks);
74a1166d
BB
1891 write_unlock(&css_set_lock);
1892
1893 /*
5abb8855
TH
1894 * We just gained a reference on old_cset by taking it from the
1895 * task. As trading it for new_cset is protected by cgroup_mutex,
1896 * we're safe to drop it here; it will be freed under RCU.
74a1166d 1897 */
5abb8855
TH
1898 set_bit(CGRP_RELEASABLE, &old_cgrp->flags);
1899 put_css_set(old_cset);
74a1166d
BB
1900}
1901
a043e3b2 1902/**
081aa458 1903 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
74a1166d 1904 * @cgrp: the cgroup to attach to
081aa458
LZ
1905 * @tsk: the task or the leader of the threadgroup to be attached
1906 * @threadgroup: attach the whole threadgroup?
74a1166d 1907 *
257058ae 1908 * Call holding cgroup_mutex and the group_rwsem of the leader. Will take
081aa458 1909 * task_lock of @tsk or each thread in the threadgroup individually in turn.
74a1166d 1910 */
47cfcd09
TH
1911static int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk,
1912 bool threadgroup)
74a1166d
BB
1913{
1914 int retval, i, group_size;
74a1166d 1915 struct cgroupfs_root *root = cgrp->root;
1c6727af 1916 struct cgroup_subsys_state *css, *failed_css = NULL;
74a1166d 1917 /* threadgroup list cursor and array */
081aa458 1918 struct task_struct *leader = tsk;
134d3373 1919 struct task_and_cgroup *tc;
d846687d 1920 struct flex_array *group;
2f7ee569 1921 struct cgroup_taskset tset = { };
74a1166d
BB
1922
1923 /*
1924 * step 0: in order to do expensive, possibly blocking operations for
1925 * every thread, we cannot iterate the thread group list, since it needs
1926 * rcu or tasklist locked. instead, build an array of all threads in the
257058ae
TH
1927 * group - group_rwsem prevents new threads from appearing, and if
1928 * threads exit, this will just be an over-estimate.
74a1166d 1929 */
081aa458
LZ
1930 if (threadgroup)
1931 group_size = get_nr_threads(tsk);
1932 else
1933 group_size = 1;
d846687d 1934 /* flex_array supports very large thread-groups better than kmalloc. */
134d3373 1935 group = flex_array_alloc(sizeof(*tc), group_size, GFP_KERNEL);
74a1166d
BB
1936 if (!group)
1937 return -ENOMEM;
d846687d 1938 /* pre-allocate to guarantee space while iterating in rcu read-side. */
3ac1707a 1939 retval = flex_array_prealloc(group, 0, group_size, GFP_KERNEL);
d846687d
BB
1940 if (retval)
1941 goto out_free_group_list;
74a1166d 1942
74a1166d 1943 i = 0;
fb5d2b4c
MSB
1944 /*
1945 * Prevent freeing of tasks while we take a snapshot. Tasks that are
1946 * already PF_EXITING could be freed from underneath us unless we
1947 * take an rcu_read_lock.
1948 */
1949 rcu_read_lock();
74a1166d 1950 do {
134d3373
TH
1951 struct task_and_cgroup ent;
1952
cd3d0952
TH
1953 /* @tsk either already exited or can't exit until the end */
1954 if (tsk->flags & PF_EXITING)
ea84753c 1955 goto next;
cd3d0952 1956
74a1166d
BB
1957 /* as per above, nr_threads may decrease, but not increase. */
1958 BUG_ON(i >= group_size);
134d3373
TH
1959 ent.task = tsk;
1960 ent.cgrp = task_cgroup_from_root(tsk, root);
892a2b90
MSB
1961 /* nothing to do if this task is already in the cgroup */
1962 if (ent.cgrp == cgrp)
ea84753c 1963 goto next;
61d1d219
MSB
1964 /*
1965 * saying GFP_ATOMIC has no effect here because we did prealloc
1966 * earlier, but it's good form to communicate our expectations.
1967 */
134d3373 1968 retval = flex_array_put(group, i, &ent, GFP_ATOMIC);
d846687d 1969 BUG_ON(retval != 0);
74a1166d 1970 i++;
ea84753c 1971 next:
081aa458
LZ
1972 if (!threadgroup)
1973 break;
74a1166d 1974 } while_each_thread(leader, tsk);
fb5d2b4c 1975 rcu_read_unlock();
74a1166d
BB
1976 /* remember the number of threads in the array for later. */
1977 group_size = i;
2f7ee569
TH
1978 tset.tc_array = group;
1979 tset.tc_array_len = group_size;
74a1166d 1980
134d3373
TH
1981 /* methods shouldn't be called if no task is actually migrating */
1982 retval = 0;
892a2b90 1983 if (!group_size)
b07ef774 1984 goto out_free_group_list;
134d3373 1985
74a1166d
BB
1986 /*
1987 * step 1: check that we can legitimately attach to the cgroup.
1988 */
1c6727af
TH
1989 for_each_css(css, i, cgrp) {
1990 if (css->ss->can_attach) {
1991 retval = css->ss->can_attach(css, &tset);
74a1166d 1992 if (retval) {
1c6727af 1993 failed_css = css;
74a1166d
BB
1994 goto out_cancel_attach;
1995 }
1996 }
74a1166d
BB
1997 }
1998
1999 /*
2000 * step 2: make sure css_sets exist for all threads to be migrated.
2001 * we use find_css_set, which allocates a new one if necessary.
2002 */
74a1166d 2003 for (i = 0; i < group_size; i++) {
a8ad805c
TH
2004 struct css_set *old_cset;
2005
134d3373 2006 tc = flex_array_get(group, i);
a8ad805c 2007 old_cset = task_css_set(tc->task);
6f4b7e63
LZ
2008 tc->cset = find_css_set(old_cset, cgrp);
2009 if (!tc->cset) {
61d1d219
MSB
2010 retval = -ENOMEM;
2011 goto out_put_css_set_refs;
74a1166d
BB
2012 }
2013 }
2014
2015 /*
494c167c
TH
2016 * step 3: now that we're guaranteed success wrt the css_sets,
2017 * proceed to move all tasks to the new cgroup. There are no
2018 * failure cases after here, so this is the commit point.
74a1166d 2019 */
74a1166d 2020 for (i = 0; i < group_size; i++) {
134d3373 2021 tc = flex_array_get(group, i);
6f4b7e63 2022 cgroup_task_migrate(tc->cgrp, tc->task, tc->cset);
74a1166d
BB
2023 }
2024 /* nothing is sensitive to fork() after this point. */
2025
2026 /*
494c167c 2027 * step 4: do subsystem attach callbacks.
74a1166d 2028 */
1c6727af
TH
2029 for_each_css(css, i, cgrp)
2030 if (css->ss->attach)
2031 css->ss->attach(css, &tset);
74a1166d
BB
2032
2033 /*
2034 * step 5: success! and cleanup
2035 */
74a1166d 2036 retval = 0;
61d1d219
MSB
2037out_put_css_set_refs:
2038 if (retval) {
2039 for (i = 0; i < group_size; i++) {
2040 tc = flex_array_get(group, i);
6f4b7e63 2041 if (!tc->cset)
61d1d219 2042 break;
6f4b7e63 2043 put_css_set(tc->cset);
61d1d219 2044 }
74a1166d
BB
2045 }
2046out_cancel_attach:
74a1166d 2047 if (retval) {
1c6727af
TH
2048 for_each_css(css, i, cgrp) {
2049 if (css == failed_css)
74a1166d 2050 break;
1c6727af
TH
2051 if (css->ss->cancel_attach)
2052 css->ss->cancel_attach(css, &tset);
74a1166d
BB
2053 }
2054 }
74a1166d 2055out_free_group_list:
d846687d 2056 flex_array_free(group);
74a1166d
BB
2057 return retval;
2058}
2059
2060/*
2061 * Find the task_struct of the task to attach by vpid and pass it along to the
cd3d0952
TH
2062 * function to attach either it or all tasks in its threadgroup. Will lock
2063 * cgroup_mutex and threadgroup; may take task_lock of task.
bbcb81d0 2064 */
74a1166d 2065static int attach_task_by_pid(struct cgroup *cgrp, u64 pid, bool threadgroup)
bbcb81d0 2066{
bbcb81d0 2067 struct task_struct *tsk;
c69e8d9c 2068 const struct cred *cred = current_cred(), *tcred;
bbcb81d0
PM
2069 int ret;
2070
74a1166d
BB
2071 if (!cgroup_lock_live_group(cgrp))
2072 return -ENODEV;
2073
b78949eb
MSB
2074retry_find_task:
2075 rcu_read_lock();
bbcb81d0 2076 if (pid) {
73507f33 2077 tsk = find_task_by_vpid(pid);
74a1166d
BB
2078 if (!tsk) {
2079 rcu_read_unlock();
dd4b0a46 2080 ret = -ESRCH;
b78949eb 2081 goto out_unlock_cgroup;
bbcb81d0 2082 }
74a1166d
BB
2083 /*
2084 * even if we're attaching all tasks in the thread group, we
2085 * only need to check permissions on one of them.
2086 */
c69e8d9c 2087 tcred = __task_cred(tsk);
14a590c3
EB
2088 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2089 !uid_eq(cred->euid, tcred->uid) &&
2090 !uid_eq(cred->euid, tcred->suid)) {
c69e8d9c 2091 rcu_read_unlock();
b78949eb
MSB
2092 ret = -EACCES;
2093 goto out_unlock_cgroup;
bbcb81d0 2094 }
b78949eb
MSB
2095 } else
2096 tsk = current;
cd3d0952
TH
2097
2098 if (threadgroup)
b78949eb 2099 tsk = tsk->group_leader;
c4c27fbd
MG
2100
2101 /*
14a40ffc 2102 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
c4c27fbd
MG
2103 * trapped in a cpuset, or RT worker may be born in a cgroup
2104 * with no rt_runtime allocated. Just say no.
2105 */
14a40ffc 2106 if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
c4c27fbd
MG
2107 ret = -EINVAL;
2108 rcu_read_unlock();
2109 goto out_unlock_cgroup;
2110 }
2111
b78949eb
MSB
2112 get_task_struct(tsk);
2113 rcu_read_unlock();
2114
2115 threadgroup_lock(tsk);
2116 if (threadgroup) {
2117 if (!thread_group_leader(tsk)) {
2118 /*
2119 * a race with de_thread from another thread's exec()
2120 * may strip us of our leadership, if this happens,
2121 * there is no choice but to throw this task away and
2122 * try again; this is
2123 * "double-double-toil-and-trouble-check locking".
2124 */
2125 threadgroup_unlock(tsk);
2126 put_task_struct(tsk);
2127 goto retry_find_task;
2128 }
081aa458
LZ
2129 }
2130
2131 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
2132
cd3d0952
TH
2133 threadgroup_unlock(tsk);
2134
bbcb81d0 2135 put_task_struct(tsk);
b78949eb 2136out_unlock_cgroup:
47cfcd09 2137 mutex_unlock(&cgroup_mutex);
bbcb81d0
PM
2138 return ret;
2139}
2140
7ae1bad9
TH
2141/**
2142 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2143 * @from: attach to all cgroups of a given task
2144 * @tsk: the task to be attached
2145 */
2146int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2147{
2148 struct cgroupfs_root *root;
2149 int retval = 0;
2150
47cfcd09 2151 mutex_lock(&cgroup_mutex);
7ae1bad9 2152 for_each_active_root(root) {
6f4b7e63 2153 struct cgroup *from_cgrp = task_cgroup_from_root(from, root);
7ae1bad9 2154
6f4b7e63 2155 retval = cgroup_attach_task(from_cgrp, tsk, false);
7ae1bad9
TH
2156 if (retval)
2157 break;
2158 }
47cfcd09 2159 mutex_unlock(&cgroup_mutex);
7ae1bad9
TH
2160
2161 return retval;
2162}
2163EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2164
182446d0
TH
2165static int cgroup_tasks_write(struct cgroup_subsys_state *css,
2166 struct cftype *cft, u64 pid)
74a1166d 2167{
182446d0 2168 return attach_task_by_pid(css->cgroup, pid, false);
74a1166d
BB
2169}
2170
182446d0
TH
2171static int cgroup_procs_write(struct cgroup_subsys_state *css,
2172 struct cftype *cft, u64 tgid)
af351026 2173{
182446d0 2174 return attach_task_by_pid(css->cgroup, tgid, true);
af351026
PM
2175}
2176
182446d0
TH
2177static int cgroup_release_agent_write(struct cgroup_subsys_state *css,
2178 struct cftype *cft, const char *buffer)
e788e066 2179{
182446d0 2180 BUILD_BUG_ON(sizeof(css->cgroup->root->release_agent_path) < PATH_MAX);
f4a2589f
EK
2181 if (strlen(buffer) >= PATH_MAX)
2182 return -EINVAL;
182446d0 2183 if (!cgroup_lock_live_group(css->cgroup))
e788e066 2184 return -ENODEV;
e25e2cbb 2185 mutex_lock(&cgroup_root_mutex);
182446d0 2186 strcpy(css->cgroup->root->release_agent_path, buffer);
e25e2cbb 2187 mutex_unlock(&cgroup_root_mutex);
47cfcd09 2188 mutex_unlock(&cgroup_mutex);
e788e066
PM
2189 return 0;
2190}
2191
2da8ca82 2192static int cgroup_release_agent_show(struct seq_file *seq, void *v)
e788e066 2193{
2da8ca82 2194 struct cgroup *cgrp = seq_css(seq)->cgroup;
182446d0 2195
e788e066
PM
2196 if (!cgroup_lock_live_group(cgrp))
2197 return -ENODEV;
2198 seq_puts(seq, cgrp->root->release_agent_path);
2199 seq_putc(seq, '\n');
47cfcd09 2200 mutex_unlock(&cgroup_mutex);
e788e066
PM
2201 return 0;
2202}
2203
2da8ca82 2204static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
873fe09e 2205{
2da8ca82
TH
2206 struct cgroup *cgrp = seq_css(seq)->cgroup;
2207
2208 seq_printf(seq, "%d\n", cgroup_sane_behavior(cgrp));
e788e066
PM
2209 return 0;
2210}
2211
84eea842
PM
2212/* A buffer size big enough for numbers or short strings */
2213#define CGROUP_LOCAL_BUFFER_SIZE 64
2214
a742c59d
TH
2215static ssize_t cgroup_file_write(struct file *file, const char __user *userbuf,
2216 size_t nbytes, loff_t *ppos)
355e0c48 2217{
a742c59d
TH
2218 struct cfent *cfe = __d_cfe(file->f_dentry);
2219 struct cftype *cft = __d_cft(file->f_dentry);
2220 struct cgroup_subsys_state *css = cfe->css;
2221 size_t max_bytes = cft->max_write_len ?: CGROUP_LOCAL_BUFFER_SIZE - 1;
2222 char *buf;
2223 int ret;
355e0c48 2224
db3b1497 2225 if (nbytes >= max_bytes)
355e0c48 2226 return -E2BIG;
355e0c48 2227
a742c59d
TH
2228 buf = kmalloc(nbytes + 1, GFP_KERNEL);
2229 if (!buf)
2230 return -ENOMEM;
db3b1497 2231
a742c59d
TH
2232 if (copy_from_user(buf, userbuf, nbytes)) {
2233 ret = -EFAULT;
2234 goto out_free;
2235 }
ddbcc7e8 2236
a742c59d
TH
2237 buf[nbytes] = '\0';
2238
2239 if (cft->write_string) {
2240 ret = cft->write_string(css, cft, strstrip(buf));
2241 } else if (cft->write_u64) {
2242 unsigned long long v;
2243 ret = kstrtoull(buf, 0, &v);
2244 if (!ret)
2245 ret = cft->write_u64(css, cft, v);
2246 } else if (cft->write_s64) {
2247 long long v;
2248 ret = kstrtoll(buf, 0, &v);
2249 if (!ret)
2250 ret = cft->write_s64(css, cft, v);
2251 } else if (cft->trigger) {
2252 ret = cft->trigger(css, (unsigned int)cft->private);
e73d2c61 2253 } else {
a742c59d 2254 ret = -EINVAL;
e73d2c61 2255 }
a742c59d
TH
2256out_free:
2257 kfree(buf);
2258 return ret ?: nbytes;
355e0c48
PM
2259}
2260
91796569
PM
2261/*
2262 * seqfile ops/methods for returning structured data. Currently just
2263 * supports string->u64 maps, but can be extended in future.
2264 */
2265
6612f05b 2266static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
db3b1497 2267{
6612f05b 2268 struct cftype *cft = seq_cft(seq);
db3b1497 2269
6612f05b
TH
2270 if (cft->seq_start) {
2271 return cft->seq_start(seq, ppos);
2272 } else {
2273 /*
2274 * The same behavior and code as single_open(). Returns
2275 * !NULL if pos is at the beginning; otherwise, NULL.
2276 */
2277 return NULL + !*ppos;
5a3eb9f6 2278 }
db3b1497
PM
2279}
2280
6612f05b 2281static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
ddbcc7e8 2282{
6612f05b 2283 struct cftype *cft = seq_cft(seq);
ddbcc7e8 2284
6612f05b
TH
2285 if (cft->seq_next) {
2286 return cft->seq_next(seq, v, ppos);
2287 } else {
2288 /*
2289 * The same behavior and code as single_open(), always
2290 * terminate after the initial read.
2291 */
2292 ++*ppos;
2293 return NULL;
d447ea2f 2294 }
ddbcc7e8
PM
2295}
2296
6612f05b 2297static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
ddbcc7e8 2298{
6612f05b 2299 struct cftype *cft = seq_cft(seq);
ddbcc7e8 2300
6612f05b
TH
2301 if (cft->seq_stop)
2302 cft->seq_stop(seq, v);
ddbcc7e8
PM
2303}
2304
91796569 2305static int cgroup_seqfile_show(struct seq_file *m, void *arg)
e73d2c61 2306{
7da11279
TH
2307 struct cftype *cft = seq_cft(m);
2308 struct cgroup_subsys_state *css = seq_css(m);
e73d2c61 2309
2da8ca82
TH
2310 if (cft->seq_show)
2311 return cft->seq_show(m, arg);
e73d2c61 2312
f4c753b7 2313 if (cft->read_u64)
896f5199
TH
2314 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
2315 else if (cft->read_s64)
2316 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
2317 else
2318 return -EINVAL;
2319 return 0;
91796569
PM
2320}
2321
6612f05b
TH
2322static struct seq_operations cgroup_seq_operations = {
2323 .start = cgroup_seqfile_start,
2324 .next = cgroup_seqfile_next,
2325 .stop = cgroup_seqfile_stop,
2326 .show = cgroup_seqfile_show,
91796569
PM
2327};
2328
ddbcc7e8
PM
2329static int cgroup_file_open(struct inode *inode, struct file *file)
2330{
f7d58818
TH
2331 struct cfent *cfe = __d_cfe(file->f_dentry);
2332 struct cftype *cft = __d_cft(file->f_dentry);
105347ba
TH
2333 struct cgroup *cgrp = __d_cgrp(cfe->dentry->d_parent);
2334 struct cgroup_subsys_state *css;
6612f05b 2335 struct cgroup_open_file *of;
ddbcc7e8 2336 int err;
ddbcc7e8
PM
2337
2338 err = generic_file_open(inode, file);
2339 if (err)
2340 return err;
75139b82 2341
f7d58818
TH
2342 /*
2343 * If the file belongs to a subsystem, pin the css. Will be
2344 * unpinned either on open failure or release. This ensures that
2345 * @css stays alive for all file operations.
2346 */
105347ba 2347 rcu_read_lock();
ca8bdcaf
TH
2348 css = cgroup_css(cgrp, cft->ss);
2349 if (cft->ss && !css_tryget(css))
2350 css = NULL;
105347ba 2351 rcu_read_unlock();
f4f4be2b 2352
0bfb4aa6 2353 if (!css)
f7d58818 2354 return -ENODEV;
75139b82 2355
0bfb4aa6
TH
2356 /*
2357 * @cfe->css is used by read/write/close to determine the
2358 * associated css. @file->private_data would be a better place but
2359 * that's already used by seqfile. Multiple accessors may use it
2360 * simultaneously which is okay as the association never changes.
2361 */
2362 WARN_ON_ONCE(cfe->css && cfe->css != css);
2363 cfe->css = css;
f4f4be2b 2364
6612f05b
TH
2365 of = __seq_open_private(file, &cgroup_seq_operations,
2366 sizeof(struct cgroup_open_file));
2367 if (of) {
2368 of->cfe = cfe;
2369 return 0;
e0798ce2 2370 }
ddbcc7e8 2371
6612f05b 2372 if (css->ss)
f7d58818 2373 css_put(css);
6612f05b 2374 return -ENOMEM;
ddbcc7e8
PM
2375}
2376
2377static int cgroup_file_release(struct inode *inode, struct file *file)
2378{
f7d58818 2379 struct cfent *cfe = __d_cfe(file->f_dentry);
105347ba 2380 struct cgroup_subsys_state *css = cfe->css;
f7d58818 2381
67f4c36f 2382 if (css->ss)
f7d58818 2383 css_put(css);
6612f05b 2384 return seq_release_private(inode, file);
ddbcc7e8
PM
2385}
2386
2387/*
2388 * cgroup_rename - Only allow simple rename of directories in place.
2389 */
2390static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
2391 struct inode *new_dir, struct dentry *new_dentry)
2392{
65dff759
LZ
2393 int ret;
2394 struct cgroup_name *name, *old_name;
2395 struct cgroup *cgrp;
2396
2397 /*
2398 * It's convinient to use parent dir's i_mutex to protected
2399 * cgrp->name.
2400 */
2401 lockdep_assert_held(&old_dir->i_mutex);
2402
ddbcc7e8
PM
2403 if (!S_ISDIR(old_dentry->d_inode->i_mode))
2404 return -ENOTDIR;
2405 if (new_dentry->d_inode)
2406 return -EEXIST;
2407 if (old_dir != new_dir)
2408 return -EIO;
65dff759
LZ
2409
2410 cgrp = __d_cgrp(old_dentry);
2411
6db8e85c
TH
2412 /*
2413 * This isn't a proper migration and its usefulness is very
2414 * limited. Disallow if sane_behavior.
2415 */
2416 if (cgroup_sane_behavior(cgrp))
2417 return -EPERM;
2418
65dff759
LZ
2419 name = cgroup_alloc_name(new_dentry);
2420 if (!name)
2421 return -ENOMEM;
2422
2423 ret = simple_rename(old_dir, old_dentry, new_dir, new_dentry);
2424 if (ret) {
2425 kfree(name);
2426 return ret;
2427 }
2428
a4ea1cc9 2429 old_name = rcu_dereference_protected(cgrp->name, true);
65dff759
LZ
2430 rcu_assign_pointer(cgrp->name, name);
2431
2432 kfree_rcu(old_name, rcu_head);
2433 return 0;
ddbcc7e8
PM
2434}
2435
03b1cde6
AR
2436static struct simple_xattrs *__d_xattrs(struct dentry *dentry)
2437{
2438 if (S_ISDIR(dentry->d_inode->i_mode))
2439 return &__d_cgrp(dentry)->xattrs;
2440 else
712317ad 2441 return &__d_cfe(dentry)->xattrs;
03b1cde6
AR
2442}
2443
2444static inline int xattr_enabled(struct dentry *dentry)
2445{
2446 struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
93438629 2447 return root->flags & CGRP_ROOT_XATTR;
03b1cde6
AR
2448}
2449
2450static bool is_valid_xattr(const char *name)
2451{
2452 if (!strncmp(name, XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN) ||
2453 !strncmp(name, XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN))
2454 return true;
2455 return false;
2456}
2457
2458static int cgroup_setxattr(struct dentry *dentry, const char *name,
2459 const void *val, size_t size, int flags)
2460{
2461 if (!xattr_enabled(dentry))
2462 return -EOPNOTSUPP;
2463 if (!is_valid_xattr(name))
2464 return -EINVAL;
2465 return simple_xattr_set(__d_xattrs(dentry), name, val, size, flags);
2466}
2467
2468static int cgroup_removexattr(struct dentry *dentry, const char *name)
2469{
2470 if (!xattr_enabled(dentry))
2471 return -EOPNOTSUPP;
2472 if (!is_valid_xattr(name))
2473 return -EINVAL;
2474 return simple_xattr_remove(__d_xattrs(dentry), name);
2475}
2476
2477static ssize_t cgroup_getxattr(struct dentry *dentry, const char *name,
2478 void *buf, size_t size)
2479{
2480 if (!xattr_enabled(dentry))
2481 return -EOPNOTSUPP;
2482 if (!is_valid_xattr(name))
2483 return -EINVAL;
2484 return simple_xattr_get(__d_xattrs(dentry), name, buf, size);
2485}
2486
2487static ssize_t cgroup_listxattr(struct dentry *dentry, char *buf, size_t size)
2488{
2489 if (!xattr_enabled(dentry))
2490 return -EOPNOTSUPP;
2491 return simple_xattr_list(__d_xattrs(dentry), buf, size);
2492}
2493
828c0950 2494static const struct file_operations cgroup_file_operations = {
896f5199 2495 .read = seq_read,
ddbcc7e8
PM
2496 .write = cgroup_file_write,
2497 .llseek = generic_file_llseek,
2498 .open = cgroup_file_open,
2499 .release = cgroup_file_release,
2500};
2501
03b1cde6
AR
2502static const struct inode_operations cgroup_file_inode_operations = {
2503 .setxattr = cgroup_setxattr,
2504 .getxattr = cgroup_getxattr,
2505 .listxattr = cgroup_listxattr,
2506 .removexattr = cgroup_removexattr,
2507};
2508
6e1d5dcc 2509static const struct inode_operations cgroup_dir_inode_operations = {
786e1448 2510 .lookup = simple_lookup,
ddbcc7e8
PM
2511 .mkdir = cgroup_mkdir,
2512 .rmdir = cgroup_rmdir,
2513 .rename = cgroup_rename,
03b1cde6
AR
2514 .setxattr = cgroup_setxattr,
2515 .getxattr = cgroup_getxattr,
2516 .listxattr = cgroup_listxattr,
2517 .removexattr = cgroup_removexattr,
ddbcc7e8
PM
2518};
2519
a5e7ed32 2520static int cgroup_create_file(struct dentry *dentry, umode_t mode,
5adcee1d
NP
2521 struct super_block *sb)
2522{
ddbcc7e8
PM
2523 struct inode *inode;
2524
2525 if (!dentry)
2526 return -ENOENT;
2527 if (dentry->d_inode)
2528 return -EEXIST;
2529
2530 inode = cgroup_new_inode(mode, sb);
2531 if (!inode)
2532 return -ENOMEM;
2533
2534 if (S_ISDIR(mode)) {
2535 inode->i_op = &cgroup_dir_inode_operations;
2536 inode->i_fop = &simple_dir_operations;
2537
2538 /* start off with i_nlink == 2 (for "." entry) */
2539 inc_nlink(inode);
28fd6f30 2540 inc_nlink(dentry->d_parent->d_inode);
ddbcc7e8 2541
b8a2df6a
TH
2542 /*
2543 * Control reaches here with cgroup_mutex held.
2544 * @inode->i_mutex should nest outside cgroup_mutex but we
2545 * want to populate it immediately without releasing
2546 * cgroup_mutex. As @inode isn't visible to anyone else
2547 * yet, trylock will always succeed without affecting
2548 * lockdep checks.
2549 */
2550 WARN_ON_ONCE(!mutex_trylock(&inode->i_mutex));
ddbcc7e8
PM
2551 } else if (S_ISREG(mode)) {
2552 inode->i_size = 0;
2553 inode->i_fop = &cgroup_file_operations;
03b1cde6 2554 inode->i_op = &cgroup_file_inode_operations;
ddbcc7e8 2555 }
ddbcc7e8
PM
2556 d_instantiate(dentry, inode);
2557 dget(dentry); /* Extra count - pin the dentry in core */
2558 return 0;
2559}
2560
099fca32
LZ
2561/**
2562 * cgroup_file_mode - deduce file mode of a control file
2563 * @cft: the control file in question
2564 *
2565 * returns cft->mode if ->mode is not 0
2566 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
2567 * returns S_IRUGO if it has only a read handler
2568 * returns S_IWUSR if it has only a write hander
2569 */
a5e7ed32 2570static umode_t cgroup_file_mode(const struct cftype *cft)
099fca32 2571{
a5e7ed32 2572 umode_t mode = 0;
099fca32
LZ
2573
2574 if (cft->mode)
2575 return cft->mode;
2576
2da8ca82 2577 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
099fca32
LZ
2578 mode |= S_IRUGO;
2579
6e0755b0
TH
2580 if (cft->write_u64 || cft->write_s64 || cft->write_string ||
2581 cft->trigger)
099fca32
LZ
2582 mode |= S_IWUSR;
2583
2584 return mode;
2585}
2586
2bb566cb 2587static int cgroup_add_file(struct cgroup *cgrp, struct cftype *cft)
ddbcc7e8 2588{
bd89aabc 2589 struct dentry *dir = cgrp->dentry;
05ef1d7c 2590 struct cgroup *parent = __d_cgrp(dir);
ddbcc7e8 2591 struct dentry *dentry;
05ef1d7c 2592 struct cfent *cfe;
ddbcc7e8 2593 int error;
a5e7ed32 2594 umode_t mode;
ddbcc7e8 2595 char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
8e3f6541 2596
9fa4db33
TH
2597 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
2598 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) {
2bb566cb 2599 strcpy(name, cft->ss->name);
ddbcc7e8
PM
2600 strcat(name, ".");
2601 }
2602 strcat(name, cft->name);
05ef1d7c 2603
ddbcc7e8 2604 BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
05ef1d7c
TH
2605
2606 cfe = kzalloc(sizeof(*cfe), GFP_KERNEL);
2607 if (!cfe)
2608 return -ENOMEM;
2609
ddbcc7e8 2610 dentry = lookup_one_len(name, dir, strlen(name));
05ef1d7c 2611 if (IS_ERR(dentry)) {
ddbcc7e8 2612 error = PTR_ERR(dentry);
05ef1d7c
TH
2613 goto out;
2614 }
2615
d6cbf35d
LZ
2616 cfe->type = (void *)cft;
2617 cfe->dentry = dentry;
2618 dentry->d_fsdata = cfe;
2619 simple_xattrs_init(&cfe->xattrs);
2620
05ef1d7c
TH
2621 mode = cgroup_file_mode(cft);
2622 error = cgroup_create_file(dentry, mode | S_IFREG, cgrp->root->sb);
2623 if (!error) {
05ef1d7c
TH
2624 list_add_tail(&cfe->node, &parent->files);
2625 cfe = NULL;
2626 }
2627 dput(dentry);
2628out:
2629 kfree(cfe);
ddbcc7e8
PM
2630 return error;
2631}
2632
b1f28d31
TH
2633/**
2634 * cgroup_addrm_files - add or remove files to a cgroup directory
2635 * @cgrp: the target cgroup
b1f28d31
TH
2636 * @cfts: array of cftypes to be added
2637 * @is_add: whether to add or remove
2638 *
2639 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
2bb566cb
TH
2640 * For removals, this function never fails. If addition fails, this
2641 * function doesn't remove files already added. The caller is responsible
2642 * for cleaning up.
b1f28d31 2643 */
2bb566cb
TH
2644static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
2645 bool is_add)
ddbcc7e8 2646{
03b1cde6 2647 struct cftype *cft;
b1f28d31
TH
2648 int ret;
2649
2650 lockdep_assert_held(&cgrp->dentry->d_inode->i_mutex);
2651 lockdep_assert_held(&cgroup_mutex);
db0416b6
TH
2652
2653 for (cft = cfts; cft->name[0] != '\0'; cft++) {
f33fddc2 2654 /* does cft->flags tell us to skip this file on @cgrp? */
873fe09e
TH
2655 if ((cft->flags & CFTYPE_INSANE) && cgroup_sane_behavior(cgrp))
2656 continue;
f33fddc2
G
2657 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgrp->parent)
2658 continue;
2659 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgrp->parent)
2660 continue;
2661
2739d3cc 2662 if (is_add) {
2bb566cb 2663 ret = cgroup_add_file(cgrp, cft);
b1f28d31 2664 if (ret) {
2739d3cc 2665 pr_warn("cgroup_addrm_files: failed to add %s, err=%d\n",
b1f28d31
TH
2666 cft->name, ret);
2667 return ret;
2668 }
2739d3cc
LZ
2669 } else {
2670 cgroup_rm_file(cgrp, cft);
db0416b6 2671 }
ddbcc7e8 2672 }
b1f28d31 2673 return 0;
ddbcc7e8
PM
2674}
2675
8e3f6541 2676static void cgroup_cfts_prepare(void)
e8c82d20 2677 __acquires(&cgroup_mutex)
8e3f6541
TH
2678{
2679 /*
2680 * Thanks to the entanglement with vfs inode locking, we can't walk
2681 * the existing cgroups under cgroup_mutex and create files.
492eb21b
TH
2682 * Instead, we use css_for_each_descendant_pre() and drop RCU read
2683 * lock before calling cgroup_addrm_files().
8e3f6541 2684 */
8e3f6541
TH
2685 mutex_lock(&cgroup_mutex);
2686}
2687
2bb566cb 2688static int cgroup_cfts_commit(struct cftype *cfts, bool is_add)
e8c82d20 2689 __releases(&cgroup_mutex)
8e3f6541
TH
2690{
2691 LIST_HEAD(pending);
2bb566cb 2692 struct cgroup_subsys *ss = cfts[0].ss;
492eb21b 2693 struct cgroup *root = &ss->root->top_cgroup;
084457f2 2694 struct super_block *sb = ss->root->sb;
e8c82d20
LZ
2695 struct dentry *prev = NULL;
2696 struct inode *inode;
492eb21b 2697 struct cgroup_subsys_state *css;
00356bd5 2698 u64 update_before;
9ccece80 2699 int ret = 0;
8e3f6541
TH
2700
2701 /* %NULL @cfts indicates abort and don't bother if @ss isn't attached */
9871bf95 2702 if (!cfts || ss->root == &cgroup_dummy_root ||
e8c82d20
LZ
2703 !atomic_inc_not_zero(&sb->s_active)) {
2704 mutex_unlock(&cgroup_mutex);
9ccece80 2705 return 0;
8e3f6541
TH
2706 }
2707
8e3f6541 2708 /*
e8c82d20
LZ
2709 * All cgroups which are created after we drop cgroup_mutex will
2710 * have the updated set of files, so we only need to update the
00356bd5 2711 * cgroups created before the current @cgroup_serial_nr_next.
8e3f6541 2712 */
00356bd5 2713 update_before = cgroup_serial_nr_next;
e8c82d20
LZ
2714
2715 mutex_unlock(&cgroup_mutex);
2716
e8c82d20
LZ
2717 /* add/rm files for all cgroups created before */
2718 rcu_read_lock();
ca8bdcaf 2719 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
492eb21b
TH
2720 struct cgroup *cgrp = css->cgroup;
2721
e8c82d20
LZ
2722 if (cgroup_is_dead(cgrp))
2723 continue;
2724
2725 inode = cgrp->dentry->d_inode;
2726 dget(cgrp->dentry);
2727 rcu_read_unlock();
2728
2729 dput(prev);
2730 prev = cgrp->dentry;
8e3f6541
TH
2731
2732 mutex_lock(&inode->i_mutex);
2733 mutex_lock(&cgroup_mutex);
00356bd5 2734 if (cgrp->serial_nr < update_before && !cgroup_is_dead(cgrp))
2bb566cb 2735 ret = cgroup_addrm_files(cgrp, cfts, is_add);
8e3f6541
TH
2736 mutex_unlock(&cgroup_mutex);
2737 mutex_unlock(&inode->i_mutex);
2738
e8c82d20 2739 rcu_read_lock();
9ccece80
TH
2740 if (ret)
2741 break;
8e3f6541 2742 }
e8c82d20
LZ
2743 rcu_read_unlock();
2744 dput(prev);
2745 deactivate_super(sb);
9ccece80 2746 return ret;
8e3f6541
TH
2747}
2748
2749/**
2750 * cgroup_add_cftypes - add an array of cftypes to a subsystem
2751 * @ss: target cgroup subsystem
2752 * @cfts: zero-length name terminated array of cftypes
2753 *
2754 * Register @cfts to @ss. Files described by @cfts are created for all
2755 * existing cgroups to which @ss is attached and all future cgroups will
2756 * have them too. This function can be called anytime whether @ss is
2757 * attached or not.
2758 *
2759 * Returns 0 on successful registration, -errno on failure. Note that this
2760 * function currently returns 0 as long as @cfts registration is successful
2761 * even if some file creation attempts on existing cgroups fail.
2762 */
03b1cde6 2763int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
8e3f6541
TH
2764{
2765 struct cftype_set *set;
2bb566cb 2766 struct cftype *cft;
9ccece80 2767 int ret;
8e3f6541
TH
2768
2769 set = kzalloc(sizeof(*set), GFP_KERNEL);
2770 if (!set)
2771 return -ENOMEM;
2772
2bb566cb
TH
2773 for (cft = cfts; cft->name[0] != '\0'; cft++)
2774 cft->ss = ss;
2775
8e3f6541
TH
2776 cgroup_cfts_prepare();
2777 set->cfts = cfts;
2778 list_add_tail(&set->node, &ss->cftsets);
2bb566cb 2779 ret = cgroup_cfts_commit(cfts, true);
9ccece80 2780 if (ret)
2bb566cb 2781 cgroup_rm_cftypes(cfts);
9ccece80 2782 return ret;
8e3f6541
TH
2783}
2784EXPORT_SYMBOL_GPL(cgroup_add_cftypes);
2785
79578621
TH
2786/**
2787 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
79578621
TH
2788 * @cfts: zero-length name terminated array of cftypes
2789 *
2bb566cb
TH
2790 * Unregister @cfts. Files described by @cfts are removed from all
2791 * existing cgroups and all future cgroups won't have them either. This
2792 * function can be called anytime whether @cfts' subsys is attached or not.
79578621
TH
2793 *
2794 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
2bb566cb 2795 * registered.
79578621 2796 */
2bb566cb 2797int cgroup_rm_cftypes(struct cftype *cfts)
79578621
TH
2798{
2799 struct cftype_set *set;
2800
2bb566cb
TH
2801 if (!cfts || !cfts[0].ss)
2802 return -ENOENT;
2803
79578621
TH
2804 cgroup_cfts_prepare();
2805
2bb566cb 2806 list_for_each_entry(set, &cfts[0].ss->cftsets, node) {
79578621 2807 if (set->cfts == cfts) {
f57947d2
LZ
2808 list_del(&set->node);
2809 kfree(set);
2bb566cb 2810 cgroup_cfts_commit(cfts, false);
79578621
TH
2811 return 0;
2812 }
2813 }
2814
2bb566cb 2815 cgroup_cfts_commit(NULL, false);
79578621
TH
2816 return -ENOENT;
2817}
2818
a043e3b2
LZ
2819/**
2820 * cgroup_task_count - count the number of tasks in a cgroup.
2821 * @cgrp: the cgroup in question
2822 *
2823 * Return the number of tasks in the cgroup.
2824 */
bd89aabc 2825int cgroup_task_count(const struct cgroup *cgrp)
bbcb81d0
PM
2826{
2827 int count = 0;
69d0206c 2828 struct cgrp_cset_link *link;
817929ec
PM
2829
2830 read_lock(&css_set_lock);
69d0206c
TH
2831 list_for_each_entry(link, &cgrp->cset_links, cset_link)
2832 count += atomic_read(&link->cset->refcount);
817929ec 2833 read_unlock(&css_set_lock);
bbcb81d0
PM
2834 return count;
2835}
2836
817929ec 2837/*
0942eeee
TH
2838 * To reduce the fork() overhead for systems that are not actually using
2839 * their cgroups capability, we don't maintain the lists running through
2840 * each css_set to its tasks until we see the list actually used - in other
72ec7029 2841 * words after the first call to css_task_iter_start().
31a7df01 2842 */
3df91fe3 2843static void cgroup_enable_task_cg_lists(void)
31a7df01
CW
2844{
2845 struct task_struct *p, *g;
2846 write_lock(&css_set_lock);
2847 use_task_css_set_links = 1;
3ce3230a
FW
2848 /*
2849 * We need tasklist_lock because RCU is not safe against
2850 * while_each_thread(). Besides, a forking task that has passed
2851 * cgroup_post_fork() without seeing use_task_css_set_links = 1
2852 * is not guaranteed to have its child immediately visible in the
2853 * tasklist if we walk through it with RCU.
2854 */
2855 read_lock(&tasklist_lock);
31a7df01
CW
2856 do_each_thread(g, p) {
2857 task_lock(p);
0e04388f
LZ
2858 /*
2859 * We should check if the process is exiting, otherwise
2860 * it will race with cgroup_exit() in that the list
2861 * entry won't be deleted though the process has exited.
2862 */
2863 if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
a8ad805c 2864 list_add(&p->cg_list, &task_css_set(p)->tasks);
31a7df01
CW
2865 task_unlock(p);
2866 } while_each_thread(g, p);
3ce3230a 2867 read_unlock(&tasklist_lock);
31a7df01
CW
2868 write_unlock(&css_set_lock);
2869}
2870
53fa5261 2871/**
492eb21b
TH
2872 * css_next_child - find the next child of a given css
2873 * @pos_css: the current position (%NULL to initiate traversal)
2874 * @parent_css: css whose children to walk
53fa5261 2875 *
492eb21b 2876 * This function returns the next child of @parent_css and should be called
87fb54f1
TH
2877 * under either cgroup_mutex or RCU read lock. The only requirement is
2878 * that @parent_css and @pos_css are accessible. The next sibling is
2879 * guaranteed to be returned regardless of their states.
53fa5261 2880 */
492eb21b
TH
2881struct cgroup_subsys_state *
2882css_next_child(struct cgroup_subsys_state *pos_css,
2883 struct cgroup_subsys_state *parent_css)
53fa5261 2884{
492eb21b
TH
2885 struct cgroup *pos = pos_css ? pos_css->cgroup : NULL;
2886 struct cgroup *cgrp = parent_css->cgroup;
53fa5261
TH
2887 struct cgroup *next;
2888
87fb54f1 2889 cgroup_assert_mutex_or_rcu_locked();
53fa5261
TH
2890
2891 /*
2892 * @pos could already have been removed. Once a cgroup is removed,
2893 * its ->sibling.next is no longer updated when its next sibling
ea15f8cc
TH
2894 * changes. As CGRP_DEAD assertion is serialized and happens
2895 * before the cgroup is taken off the ->sibling list, if we see it
2896 * unasserted, it's guaranteed that the next sibling hasn't
2897 * finished its grace period even if it's already removed, and thus
2898 * safe to dereference from this RCU critical section. If
2899 * ->sibling.next is inaccessible, cgroup_is_dead() is guaranteed
2900 * to be visible as %true here.
3b287a50
TH
2901 *
2902 * If @pos is dead, its next pointer can't be dereferenced;
2903 * however, as each cgroup is given a monotonically increasing
2904 * unique serial number and always appended to the sibling list,
2905 * the next one can be found by walking the parent's children until
2906 * we see a cgroup with higher serial number than @pos's. While
2907 * this path can be slower, it's taken only when either the current
2908 * cgroup is removed or iteration and removal race.
53fa5261 2909 */
3b287a50
TH
2910 if (!pos) {
2911 next = list_entry_rcu(cgrp->children.next, struct cgroup, sibling);
2912 } else if (likely(!cgroup_is_dead(pos))) {
53fa5261 2913 next = list_entry_rcu(pos->sibling.next, struct cgroup, sibling);
3b287a50
TH
2914 } else {
2915 list_for_each_entry_rcu(next, &cgrp->children, sibling)
2916 if (next->serial_nr > pos->serial_nr)
2917 break;
53fa5261
TH
2918 }
2919
492eb21b
TH
2920 if (&next->sibling == &cgrp->children)
2921 return NULL;
2922
ca8bdcaf 2923 return cgroup_css(next, parent_css->ss);
53fa5261 2924}
492eb21b 2925EXPORT_SYMBOL_GPL(css_next_child);
53fa5261 2926
574bd9f7 2927/**
492eb21b 2928 * css_next_descendant_pre - find the next descendant for pre-order walk
574bd9f7 2929 * @pos: the current position (%NULL to initiate traversal)
492eb21b 2930 * @root: css whose descendants to walk
574bd9f7 2931 *
492eb21b 2932 * To be used by css_for_each_descendant_pre(). Find the next descendant
bd8815a6
TH
2933 * to visit for pre-order traversal of @root's descendants. @root is
2934 * included in the iteration and the first node to be visited.
75501a6d 2935 *
87fb54f1
TH
2936 * While this function requires cgroup_mutex or RCU read locking, it
2937 * doesn't require the whole traversal to be contained in a single critical
2938 * section. This function will return the correct next descendant as long
2939 * as both @pos and @root are accessible and @pos is a descendant of @root.
574bd9f7 2940 */
492eb21b
TH
2941struct cgroup_subsys_state *
2942css_next_descendant_pre(struct cgroup_subsys_state *pos,
2943 struct cgroup_subsys_state *root)
574bd9f7 2944{
492eb21b 2945 struct cgroup_subsys_state *next;
574bd9f7 2946
87fb54f1 2947 cgroup_assert_mutex_or_rcu_locked();
574bd9f7 2948
bd8815a6 2949 /* if first iteration, visit @root */
7805d000 2950 if (!pos)
bd8815a6 2951 return root;
574bd9f7
TH
2952
2953 /* visit the first child if exists */
492eb21b 2954 next = css_next_child(NULL, pos);
574bd9f7
TH
2955 if (next)
2956 return next;
2957
2958 /* no child, visit my or the closest ancestor's next sibling */
492eb21b
TH
2959 while (pos != root) {
2960 next = css_next_child(pos, css_parent(pos));
75501a6d 2961 if (next)
574bd9f7 2962 return next;
492eb21b 2963 pos = css_parent(pos);
7805d000 2964 }
574bd9f7
TH
2965
2966 return NULL;
2967}
492eb21b 2968EXPORT_SYMBOL_GPL(css_next_descendant_pre);
574bd9f7 2969
12a9d2fe 2970/**
492eb21b
TH
2971 * css_rightmost_descendant - return the rightmost descendant of a css
2972 * @pos: css of interest
12a9d2fe 2973 *
492eb21b
TH
2974 * Return the rightmost descendant of @pos. If there's no descendant, @pos
2975 * is returned. This can be used during pre-order traversal to skip
12a9d2fe 2976 * subtree of @pos.
75501a6d 2977 *
87fb54f1
TH
2978 * While this function requires cgroup_mutex or RCU read locking, it
2979 * doesn't require the whole traversal to be contained in a single critical
2980 * section. This function will return the correct rightmost descendant as
2981 * long as @pos is accessible.
12a9d2fe 2982 */
492eb21b
TH
2983struct cgroup_subsys_state *
2984css_rightmost_descendant(struct cgroup_subsys_state *pos)
12a9d2fe 2985{
492eb21b 2986 struct cgroup_subsys_state *last, *tmp;
12a9d2fe 2987
87fb54f1 2988 cgroup_assert_mutex_or_rcu_locked();
12a9d2fe
TH
2989
2990 do {
2991 last = pos;
2992 /* ->prev isn't RCU safe, walk ->next till the end */
2993 pos = NULL;
492eb21b 2994 css_for_each_child(tmp, last)
12a9d2fe
TH
2995 pos = tmp;
2996 } while (pos);
2997
2998 return last;
2999}
492eb21b 3000EXPORT_SYMBOL_GPL(css_rightmost_descendant);
12a9d2fe 3001
492eb21b
TH
3002static struct cgroup_subsys_state *
3003css_leftmost_descendant(struct cgroup_subsys_state *pos)
574bd9f7 3004{
492eb21b 3005 struct cgroup_subsys_state *last;
574bd9f7
TH
3006
3007 do {
3008 last = pos;
492eb21b 3009 pos = css_next_child(NULL, pos);
574bd9f7
TH
3010 } while (pos);
3011
3012 return last;
3013}
3014
3015/**
492eb21b 3016 * css_next_descendant_post - find the next descendant for post-order walk
574bd9f7 3017 * @pos: the current position (%NULL to initiate traversal)
492eb21b 3018 * @root: css whose descendants to walk
574bd9f7 3019 *
492eb21b 3020 * To be used by css_for_each_descendant_post(). Find the next descendant
bd8815a6
TH
3021 * to visit for post-order traversal of @root's descendants. @root is
3022 * included in the iteration and the last node to be visited.
75501a6d 3023 *
87fb54f1
TH
3024 * While this function requires cgroup_mutex or RCU read locking, it
3025 * doesn't require the whole traversal to be contained in a single critical
3026 * section. This function will return the correct next descendant as long
3027 * as both @pos and @cgroup are accessible and @pos is a descendant of
3028 * @cgroup.
574bd9f7 3029 */
492eb21b
TH
3030struct cgroup_subsys_state *
3031css_next_descendant_post(struct cgroup_subsys_state *pos,
3032 struct cgroup_subsys_state *root)
574bd9f7 3033{
492eb21b 3034 struct cgroup_subsys_state *next;
574bd9f7 3035
87fb54f1 3036 cgroup_assert_mutex_or_rcu_locked();
574bd9f7 3037
58b79a91
TH
3038 /* if first iteration, visit leftmost descendant which may be @root */
3039 if (!pos)
3040 return css_leftmost_descendant(root);
574bd9f7 3041
bd8815a6
TH
3042 /* if we visited @root, we're done */
3043 if (pos == root)
3044 return NULL;
3045
574bd9f7 3046 /* if there's an unvisited sibling, visit its leftmost descendant */
492eb21b 3047 next = css_next_child(pos, css_parent(pos));
75501a6d 3048 if (next)
492eb21b 3049 return css_leftmost_descendant(next);
574bd9f7
TH
3050
3051 /* no sibling left, visit parent */
bd8815a6 3052 return css_parent(pos);
574bd9f7 3053}
492eb21b 3054EXPORT_SYMBOL_GPL(css_next_descendant_post);
574bd9f7 3055
0942eeee 3056/**
72ec7029 3057 * css_advance_task_iter - advance a task itererator to the next css_set
0942eeee
TH
3058 * @it: the iterator to advance
3059 *
3060 * Advance @it to the next css_set to walk.
d515876e 3061 */
72ec7029 3062static void css_advance_task_iter(struct css_task_iter *it)
d515876e
TH
3063{
3064 struct list_head *l = it->cset_link;
3065 struct cgrp_cset_link *link;
3066 struct css_set *cset;
3067
3068 /* Advance to the next non-empty css_set */
3069 do {
3070 l = l->next;
72ec7029 3071 if (l == &it->origin_css->cgroup->cset_links) {
d515876e
TH
3072 it->cset_link = NULL;
3073 return;
3074 }
3075 link = list_entry(l, struct cgrp_cset_link, cset_link);
3076 cset = link->cset;
3077 } while (list_empty(&cset->tasks));
3078 it->cset_link = l;
3079 it->task = cset->tasks.next;
3080}
3081
0942eeee 3082/**
72ec7029
TH
3083 * css_task_iter_start - initiate task iteration
3084 * @css: the css to walk tasks of
0942eeee
TH
3085 * @it: the task iterator to use
3086 *
72ec7029
TH
3087 * Initiate iteration through the tasks of @css. The caller can call
3088 * css_task_iter_next() to walk through the tasks until the function
3089 * returns NULL. On completion of iteration, css_task_iter_end() must be
3090 * called.
0942eeee
TH
3091 *
3092 * Note that this function acquires a lock which is released when the
3093 * iteration finishes. The caller can't sleep while iteration is in
3094 * progress.
3095 */
72ec7029
TH
3096void css_task_iter_start(struct cgroup_subsys_state *css,
3097 struct css_task_iter *it)
c6ca5750 3098 __acquires(css_set_lock)
817929ec
PM
3099{
3100 /*
72ec7029
TH
3101 * The first time anyone tries to iterate across a css, we need to
3102 * enable the list linking each css_set to its tasks, and fix up
3103 * all existing tasks.
817929ec 3104 */
31a7df01
CW
3105 if (!use_task_css_set_links)
3106 cgroup_enable_task_cg_lists();
3107
817929ec 3108 read_lock(&css_set_lock);
c59cd3d8 3109
72ec7029
TH
3110 it->origin_css = css;
3111 it->cset_link = &css->cgroup->cset_links;
c59cd3d8 3112
72ec7029 3113 css_advance_task_iter(it);
817929ec
PM
3114}
3115
0942eeee 3116/**
72ec7029 3117 * css_task_iter_next - return the next task for the iterator
0942eeee
TH
3118 * @it: the task iterator being iterated
3119 *
3120 * The "next" function for task iteration. @it should have been
72ec7029
TH
3121 * initialized via css_task_iter_start(). Returns NULL when the iteration
3122 * reaches the end.
0942eeee 3123 */
72ec7029 3124struct task_struct *css_task_iter_next(struct css_task_iter *it)
817929ec
PM
3125{
3126 struct task_struct *res;
3127 struct list_head *l = it->task;
69d0206c 3128 struct cgrp_cset_link *link;
817929ec
PM
3129
3130 /* If the iterator cg is NULL, we have no tasks */
69d0206c 3131 if (!it->cset_link)
817929ec
PM
3132 return NULL;
3133 res = list_entry(l, struct task_struct, cg_list);
3134 /* Advance iterator to find next entry */
3135 l = l->next;
69d0206c
TH
3136 link = list_entry(it->cset_link, struct cgrp_cset_link, cset_link);
3137 if (l == &link->cset->tasks) {
0942eeee
TH
3138 /*
3139 * We reached the end of this task list - move on to the
3140 * next cgrp_cset_link.
3141 */
72ec7029 3142 css_advance_task_iter(it);
817929ec
PM
3143 } else {
3144 it->task = l;
3145 }
3146 return res;
3147}
3148
0942eeee 3149/**
72ec7029 3150 * css_task_iter_end - finish task iteration
0942eeee
TH
3151 * @it: the task iterator to finish
3152 *
72ec7029 3153 * Finish task iteration started by css_task_iter_start().
0942eeee 3154 */
72ec7029 3155void css_task_iter_end(struct css_task_iter *it)
c6ca5750 3156 __releases(css_set_lock)
817929ec
PM
3157{
3158 read_unlock(&css_set_lock);
3159}
3160
31a7df01
CW
3161static inline int started_after_time(struct task_struct *t1,
3162 struct timespec *time,
3163 struct task_struct *t2)
3164{
3165 int start_diff = timespec_compare(&t1->start_time, time);
3166 if (start_diff > 0) {
3167 return 1;
3168 } else if (start_diff < 0) {
3169 return 0;
3170 } else {
3171 /*
3172 * Arbitrarily, if two processes started at the same
3173 * time, we'll say that the lower pointer value
3174 * started first. Note that t2 may have exited by now
3175 * so this may not be a valid pointer any longer, but
3176 * that's fine - it still serves to distinguish
3177 * between two tasks started (effectively) simultaneously.
3178 */
3179 return t1 > t2;
3180 }
3181}
3182
3183/*
3184 * This function is a callback from heap_insert() and is used to order
3185 * the heap.
3186 * In this case we order the heap in descending task start time.
3187 */
3188static inline int started_after(void *p1, void *p2)
3189{
3190 struct task_struct *t1 = p1;
3191 struct task_struct *t2 = p2;
3192 return started_after_time(t1, &t2->start_time, t2);
3193}
3194
3195/**
72ec7029
TH
3196 * css_scan_tasks - iterate though all the tasks in a css
3197 * @css: the css to iterate tasks of
e535837b
TH
3198 * @test: optional test callback
3199 * @process: process callback
3200 * @data: data passed to @test and @process
3201 * @heap: optional pre-allocated heap used for task iteration
31a7df01 3202 *
72ec7029
TH
3203 * Iterate through all the tasks in @css, calling @test for each, and if it
3204 * returns %true, call @process for it also.
31a7df01 3205 *
e535837b 3206 * @test may be NULL, meaning always true (select all tasks), which
72ec7029 3207 * effectively duplicates css_task_iter_{start,next,end}() but does not
e535837b
TH
3208 * lock css_set_lock for the call to @process.
3209 *
3210 * It is guaranteed that @process will act on every task that is a member
72ec7029
TH
3211 * of @css for the duration of this call. This function may or may not
3212 * call @process for tasks that exit or move to a different css during the
3213 * call, or are forked or move into the css during the call.
31a7df01 3214 *
e535837b
TH
3215 * Note that @test may be called with locks held, and may in some
3216 * situations be called multiple times for the same task, so it should be
3217 * cheap.
31a7df01 3218 *
e535837b
TH
3219 * If @heap is non-NULL, a heap has been pre-allocated and will be used for
3220 * heap operations (and its "gt" member will be overwritten), else a
3221 * temporary heap will be used (allocation of which may cause this function
3222 * to fail).
31a7df01 3223 */
72ec7029
TH
3224int css_scan_tasks(struct cgroup_subsys_state *css,
3225 bool (*test)(struct task_struct *, void *),
3226 void (*process)(struct task_struct *, void *),
3227 void *data, struct ptr_heap *heap)
31a7df01
CW
3228{
3229 int retval, i;
72ec7029 3230 struct css_task_iter it;
31a7df01
CW
3231 struct task_struct *p, *dropped;
3232 /* Never dereference latest_task, since it's not refcounted */
3233 struct task_struct *latest_task = NULL;
3234 struct ptr_heap tmp_heap;
31a7df01
CW
3235 struct timespec latest_time = { 0, 0 };
3236
e535837b 3237 if (heap) {
31a7df01 3238 /* The caller supplied our heap and pre-allocated its memory */
31a7df01
CW
3239 heap->gt = &started_after;
3240 } else {
3241 /* We need to allocate our own heap memory */
3242 heap = &tmp_heap;
3243 retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
3244 if (retval)
3245 /* cannot allocate the heap */
3246 return retval;
3247 }
3248
3249 again:
3250 /*
72ec7029 3251 * Scan tasks in the css, using the @test callback to determine
e535837b
TH
3252 * which are of interest, and invoking @process callback on the
3253 * ones which need an update. Since we don't want to hold any
3254 * locks during the task updates, gather tasks to be processed in a
3255 * heap structure. The heap is sorted by descending task start
3256 * time. If the statically-sized heap fills up, we overflow tasks
3257 * that started later, and in future iterations only consider tasks
3258 * that started after the latest task in the previous pass. This
31a7df01
CW
3259 * guarantees forward progress and that we don't miss any tasks.
3260 */
3261 heap->size = 0;
72ec7029
TH
3262 css_task_iter_start(css, &it);
3263 while ((p = css_task_iter_next(&it))) {
31a7df01
CW
3264 /*
3265 * Only affect tasks that qualify per the caller's callback,
3266 * if he provided one
3267 */
e535837b 3268 if (test && !test(p, data))
31a7df01
CW
3269 continue;
3270 /*
3271 * Only process tasks that started after the last task
3272 * we processed
3273 */
3274 if (!started_after_time(p, &latest_time, latest_task))
3275 continue;
3276 dropped = heap_insert(heap, p);
3277 if (dropped == NULL) {
3278 /*
3279 * The new task was inserted; the heap wasn't
3280 * previously full
3281 */
3282 get_task_struct(p);
3283 } else if (dropped != p) {
3284 /*
3285 * The new task was inserted, and pushed out a
3286 * different task
3287 */
3288 get_task_struct(p);
3289 put_task_struct(dropped);
3290 }
3291 /*
3292 * Else the new task was newer than anything already in
3293 * the heap and wasn't inserted
3294 */
3295 }
72ec7029 3296 css_task_iter_end(&it);
31a7df01
CW
3297
3298 if (heap->size) {
3299 for (i = 0; i < heap->size; i++) {
4fe91d51 3300 struct task_struct *q = heap->ptrs[i];
31a7df01 3301 if (i == 0) {
4fe91d51
PJ
3302 latest_time = q->start_time;
3303 latest_task = q;
31a7df01
CW
3304 }
3305 /* Process the task per the caller's callback */
e535837b 3306 process(q, data);
4fe91d51 3307 put_task_struct(q);
31a7df01
CW
3308 }
3309 /*
3310 * If we had to process any tasks at all, scan again
3311 * in case some of them were in the middle of forking
3312 * children that didn't get processed.
3313 * Not the most efficient way to do it, but it avoids
3314 * having to take callback_mutex in the fork path
3315 */
3316 goto again;
3317 }
3318 if (heap == &tmp_heap)
3319 heap_free(&tmp_heap);
3320 return 0;
3321}
3322
e535837b 3323static void cgroup_transfer_one_task(struct task_struct *task, void *data)
8cc99345 3324{
e535837b 3325 struct cgroup *new_cgroup = data;
8cc99345 3326
47cfcd09 3327 mutex_lock(&cgroup_mutex);
8cc99345 3328 cgroup_attach_task(new_cgroup, task, false);
47cfcd09 3329 mutex_unlock(&cgroup_mutex);
8cc99345
TH
3330}
3331
3332/**
3333 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
3334 * @to: cgroup to which the tasks will be moved
3335 * @from: cgroup in which the tasks currently reside
3336 */
3337int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
3338{
72ec7029
TH
3339 return css_scan_tasks(&from->dummy_css, NULL, cgroup_transfer_one_task,
3340 to, NULL);
8cc99345
TH
3341}
3342
bbcb81d0 3343/*
102a775e 3344 * Stuff for reading the 'tasks'/'procs' files.
bbcb81d0
PM
3345 *
3346 * Reading this file can return large amounts of data if a cgroup has
3347 * *lots* of attached tasks. So it may need several calls to read(),
3348 * but we cannot guarantee that the information we produce is correct
3349 * unless we produce it entirely atomically.
3350 *
bbcb81d0 3351 */
bbcb81d0 3352
24528255
LZ
3353/* which pidlist file are we talking about? */
3354enum cgroup_filetype {
3355 CGROUP_FILE_PROCS,
3356 CGROUP_FILE_TASKS,
3357};
3358
3359/*
3360 * A pidlist is a list of pids that virtually represents the contents of one
3361 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
3362 * a pair (one each for procs, tasks) for each pid namespace that's relevant
3363 * to the cgroup.
3364 */
3365struct cgroup_pidlist {
3366 /*
3367 * used to find which pidlist is wanted. doesn't change as long as
3368 * this particular list stays in the list.
3369 */
3370 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
3371 /* array of xids */
3372 pid_t *list;
3373 /* how many elements the above list has */
3374 int length;
24528255
LZ
3375 /* each of these stored in a list by its cgroup */
3376 struct list_head links;
3377 /* pointer to the cgroup we belong to, for list removal purposes */
3378 struct cgroup *owner;
b1a21367
TH
3379 /* for delayed destruction */
3380 struct delayed_work destroy_dwork;
24528255
LZ
3381};
3382
d1d9fd33
BB
3383/*
3384 * The following two functions "fix" the issue where there are more pids
3385 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
3386 * TODO: replace with a kernel-wide solution to this problem
3387 */
3388#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
3389static void *pidlist_allocate(int count)
3390{
3391 if (PIDLIST_TOO_LARGE(count))
3392 return vmalloc(count * sizeof(pid_t));
3393 else
3394 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
3395}
b1a21367 3396
d1d9fd33
BB
3397static void pidlist_free(void *p)
3398{
3399 if (is_vmalloc_addr(p))
3400 vfree(p);
3401 else
3402 kfree(p);
3403}
d1d9fd33 3404
b1a21367
TH
3405/*
3406 * Used to destroy all pidlists lingering waiting for destroy timer. None
3407 * should be left afterwards.
3408 */
3409static void cgroup_pidlist_destroy_all(struct cgroup *cgrp)
3410{
3411 struct cgroup_pidlist *l, *tmp_l;
3412
3413 mutex_lock(&cgrp->pidlist_mutex);
3414 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
3415 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
3416 mutex_unlock(&cgrp->pidlist_mutex);
3417
3418 flush_workqueue(cgroup_pidlist_destroy_wq);
3419 BUG_ON(!list_empty(&cgrp->pidlists));
3420}
3421
3422static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
3423{
3424 struct delayed_work *dwork = to_delayed_work(work);
3425 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
3426 destroy_dwork);
3427 struct cgroup_pidlist *tofree = NULL;
3428
3429 mutex_lock(&l->owner->pidlist_mutex);
b1a21367
TH
3430
3431 /*
04502365
TH
3432 * Destroy iff we didn't get queued again. The state won't change
3433 * as destroy_dwork can only be queued while locked.
b1a21367 3434 */
04502365 3435 if (!delayed_work_pending(dwork)) {
b1a21367
TH
3436 list_del(&l->links);
3437 pidlist_free(l->list);
3438 put_pid_ns(l->key.ns);
3439 tofree = l;
3440 }
3441
b1a21367
TH
3442 mutex_unlock(&l->owner->pidlist_mutex);
3443 kfree(tofree);
3444}
3445
bbcb81d0 3446/*
102a775e 3447 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
6ee211ad 3448 * Returns the number of unique elements.
bbcb81d0 3449 */
6ee211ad 3450static int pidlist_uniq(pid_t *list, int length)
bbcb81d0 3451{
102a775e 3452 int src, dest = 1;
102a775e
BB
3453
3454 /*
3455 * we presume the 0th element is unique, so i starts at 1. trivial
3456 * edge cases first; no work needs to be done for either
3457 */
3458 if (length == 0 || length == 1)
3459 return length;
3460 /* src and dest walk down the list; dest counts unique elements */
3461 for (src = 1; src < length; src++) {
3462 /* find next unique element */
3463 while (list[src] == list[src-1]) {
3464 src++;
3465 if (src == length)
3466 goto after;
3467 }
3468 /* dest always points to where the next unique element goes */
3469 list[dest] = list[src];
3470 dest++;
3471 }
3472after:
102a775e
BB
3473 return dest;
3474}
3475
afb2bc14
TH
3476/*
3477 * The two pid files - task and cgroup.procs - guaranteed that the result
3478 * is sorted, which forced this whole pidlist fiasco. As pid order is
3479 * different per namespace, each namespace needs differently sorted list,
3480 * making it impossible to use, for example, single rbtree of member tasks
3481 * sorted by task pointer. As pidlists can be fairly large, allocating one
3482 * per open file is dangerous, so cgroup had to implement shared pool of
3483 * pidlists keyed by cgroup and namespace.
3484 *
3485 * All this extra complexity was caused by the original implementation
3486 * committing to an entirely unnecessary property. In the long term, we
3487 * want to do away with it. Explicitly scramble sort order if
3488 * sane_behavior so that no such expectation exists in the new interface.
3489 *
3490 * Scrambling is done by swapping every two consecutive bits, which is
3491 * non-identity one-to-one mapping which disturbs sort order sufficiently.
3492 */
3493static pid_t pid_fry(pid_t pid)
3494{
3495 unsigned a = pid & 0x55555555;
3496 unsigned b = pid & 0xAAAAAAAA;
3497
3498 return (a << 1) | (b >> 1);
3499}
3500
3501static pid_t cgroup_pid_fry(struct cgroup *cgrp, pid_t pid)
3502{
3503 if (cgroup_sane_behavior(cgrp))
3504 return pid_fry(pid);
3505 else
3506 return pid;
3507}
3508
102a775e
BB
3509static int cmppid(const void *a, const void *b)
3510{
3511 return *(pid_t *)a - *(pid_t *)b;
3512}
3513
afb2bc14
TH
3514static int fried_cmppid(const void *a, const void *b)
3515{
3516 return pid_fry(*(pid_t *)a) - pid_fry(*(pid_t *)b);
3517}
3518
e6b81710
TH
3519static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
3520 enum cgroup_filetype type)
3521{
3522 struct cgroup_pidlist *l;
3523 /* don't need task_nsproxy() if we're looking at ourself */
3524 struct pid_namespace *ns = task_active_pid_ns(current);
3525
3526 lockdep_assert_held(&cgrp->pidlist_mutex);
3527
3528 list_for_each_entry(l, &cgrp->pidlists, links)
3529 if (l->key.type == type && l->key.ns == ns)
3530 return l;
3531 return NULL;
3532}
3533
72a8cb30
BB
3534/*
3535 * find the appropriate pidlist for our purpose (given procs vs tasks)
3536 * returns with the lock on that pidlist already held, and takes care
3537 * of the use count, or returns NULL with no locks held if we're out of
3538 * memory.
3539 */
e6b81710
TH
3540static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
3541 enum cgroup_filetype type)
72a8cb30
BB
3542{
3543 struct cgroup_pidlist *l;
b70cc5fd 3544
e6b81710
TH
3545 lockdep_assert_held(&cgrp->pidlist_mutex);
3546
3547 l = cgroup_pidlist_find(cgrp, type);
3548 if (l)
3549 return l;
3550
72a8cb30 3551 /* entry not found; create a new one */
f4f4be2b 3552 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
e6b81710 3553 if (!l)
72a8cb30 3554 return l;
e6b81710 3555
b1a21367 3556 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
72a8cb30 3557 l->key.type = type;
e6b81710
TH
3558 /* don't need task_nsproxy() if we're looking at ourself */
3559 l->key.ns = get_pid_ns(task_active_pid_ns(current));
72a8cb30
BB
3560 l->owner = cgrp;
3561 list_add(&l->links, &cgrp->pidlists);
72a8cb30
BB
3562 return l;
3563}
3564
102a775e
BB
3565/*
3566 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
3567 */
72a8cb30
BB
3568static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
3569 struct cgroup_pidlist **lp)
102a775e
BB
3570{
3571 pid_t *array;
3572 int length;
3573 int pid, n = 0; /* used for populating the array */
72ec7029 3574 struct css_task_iter it;
817929ec 3575 struct task_struct *tsk;
102a775e
BB
3576 struct cgroup_pidlist *l;
3577
4bac00d1
TH
3578 lockdep_assert_held(&cgrp->pidlist_mutex);
3579
102a775e
BB
3580 /*
3581 * If cgroup gets more users after we read count, we won't have
3582 * enough space - tough. This race is indistinguishable to the
3583 * caller from the case that the additional cgroup users didn't
3584 * show up until sometime later on.
3585 */
3586 length = cgroup_task_count(cgrp);
d1d9fd33 3587 array = pidlist_allocate(length);
102a775e
BB
3588 if (!array)
3589 return -ENOMEM;
3590 /* now, populate the array */
72ec7029
TH
3591 css_task_iter_start(&cgrp->dummy_css, &it);
3592 while ((tsk = css_task_iter_next(&it))) {
102a775e 3593 if (unlikely(n == length))
817929ec 3594 break;
102a775e 3595 /* get tgid or pid for procs or tasks file respectively */
72a8cb30
BB
3596 if (type == CGROUP_FILE_PROCS)
3597 pid = task_tgid_vnr(tsk);
3598 else
3599 pid = task_pid_vnr(tsk);
102a775e
BB
3600 if (pid > 0) /* make sure to only use valid results */
3601 array[n++] = pid;
817929ec 3602 }
72ec7029 3603 css_task_iter_end(&it);
102a775e
BB
3604 length = n;
3605 /* now sort & (if procs) strip out duplicates */
afb2bc14
TH
3606 if (cgroup_sane_behavior(cgrp))
3607 sort(array, length, sizeof(pid_t), fried_cmppid, NULL);
3608 else
3609 sort(array, length, sizeof(pid_t), cmppid, NULL);
72a8cb30 3610 if (type == CGROUP_FILE_PROCS)
6ee211ad 3611 length = pidlist_uniq(array, length);
e6b81710 3612
e6b81710 3613 l = cgroup_pidlist_find_create(cgrp, type);
72a8cb30 3614 if (!l) {
e6b81710 3615 mutex_unlock(&cgrp->pidlist_mutex);
d1d9fd33 3616 pidlist_free(array);
72a8cb30 3617 return -ENOMEM;
102a775e 3618 }
e6b81710
TH
3619
3620 /* store array, freeing old if necessary */
d1d9fd33 3621 pidlist_free(l->list);
102a775e
BB
3622 l->list = array;
3623 l->length = length;
72a8cb30 3624 *lp = l;
102a775e 3625 return 0;
bbcb81d0
PM
3626}
3627
846c7bb0 3628/**
a043e3b2 3629 * cgroupstats_build - build and fill cgroupstats
846c7bb0
BS
3630 * @stats: cgroupstats to fill information into
3631 * @dentry: A dentry entry belonging to the cgroup for which stats have
3632 * been requested.
a043e3b2
LZ
3633 *
3634 * Build and fill cgroupstats so that taskstats can export it to user
3635 * space.
846c7bb0
BS
3636 */
3637int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
3638{
3639 int ret = -EINVAL;
bd89aabc 3640 struct cgroup *cgrp;
72ec7029 3641 struct css_task_iter it;
846c7bb0 3642 struct task_struct *tsk;
33d283be 3643
846c7bb0 3644 /*
33d283be
LZ
3645 * Validate dentry by checking the superblock operations,
3646 * and make sure it's a directory.
846c7bb0 3647 */
33d283be
LZ
3648 if (dentry->d_sb->s_op != &cgroup_ops ||
3649 !S_ISDIR(dentry->d_inode->i_mode))
846c7bb0
BS
3650 goto err;
3651
3652 ret = 0;
bd89aabc 3653 cgrp = dentry->d_fsdata;
846c7bb0 3654
72ec7029
TH
3655 css_task_iter_start(&cgrp->dummy_css, &it);
3656 while ((tsk = css_task_iter_next(&it))) {
846c7bb0
BS
3657 switch (tsk->state) {
3658 case TASK_RUNNING:
3659 stats->nr_running++;
3660 break;
3661 case TASK_INTERRUPTIBLE:
3662 stats->nr_sleeping++;
3663 break;
3664 case TASK_UNINTERRUPTIBLE:
3665 stats->nr_uninterruptible++;
3666 break;
3667 case TASK_STOPPED:
3668 stats->nr_stopped++;
3669 break;
3670 default:
3671 if (delayacct_is_task_waiting_on_io(tsk))
3672 stats->nr_io_wait++;
3673 break;
3674 }
3675 }
72ec7029 3676 css_task_iter_end(&it);
846c7bb0 3677
846c7bb0
BS
3678err:
3679 return ret;
3680}
3681
8f3ff208 3682
bbcb81d0 3683/*
102a775e 3684 * seq_file methods for the tasks/procs files. The seq_file position is the
cc31edce 3685 * next pid to display; the seq_file iterator is a pointer to the pid
102a775e 3686 * in the cgroup->l->list array.
bbcb81d0 3687 */
cc31edce 3688
102a775e 3689static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
bbcb81d0 3690{
cc31edce
PM
3691 /*
3692 * Initially we receive a position value that corresponds to
3693 * one more than the last pid shown (or 0 on the first call or
3694 * after a seek to the start). Use a binary-search to find the
3695 * next pid to display, if any
3696 */
5d22444f 3697 struct cgroup_open_file *of = s->private;
7da11279 3698 struct cgroup *cgrp = seq_css(s)->cgroup;
4bac00d1 3699 struct cgroup_pidlist *l;
7da11279 3700 enum cgroup_filetype type = seq_cft(s)->private;
cc31edce 3701 int index = 0, pid = *pos;
4bac00d1
TH
3702 int *iter, ret;
3703
3704 mutex_lock(&cgrp->pidlist_mutex);
3705
3706 /*
5d22444f 3707 * !NULL @of->priv indicates that this isn't the first start()
4bac00d1 3708 * after open. If the matching pidlist is around, we can use that.
5d22444f 3709 * Look for it. Note that @of->priv can't be used directly. It
4bac00d1
TH
3710 * could already have been destroyed.
3711 */
5d22444f
TH
3712 if (of->priv)
3713 of->priv = cgroup_pidlist_find(cgrp, type);
4bac00d1
TH
3714
3715 /*
3716 * Either this is the first start() after open or the matching
3717 * pidlist has been destroyed inbetween. Create a new one.
3718 */
5d22444f
TH
3719 if (!of->priv) {
3720 ret = pidlist_array_load(cgrp, type,
3721 (struct cgroup_pidlist **)&of->priv);
4bac00d1
TH
3722 if (ret)
3723 return ERR_PTR(ret);
3724 }
5d22444f 3725 l = of->priv;
cc31edce 3726
cc31edce 3727 if (pid) {
102a775e 3728 int end = l->length;
20777766 3729
cc31edce
PM
3730 while (index < end) {
3731 int mid = (index + end) / 2;
afb2bc14 3732 if (cgroup_pid_fry(cgrp, l->list[mid]) == pid) {
cc31edce
PM
3733 index = mid;
3734 break;
afb2bc14 3735 } else if (cgroup_pid_fry(cgrp, l->list[mid]) <= pid)
cc31edce
PM
3736 index = mid + 1;
3737 else
3738 end = mid;
3739 }
3740 }
3741 /* If we're off the end of the array, we're done */
102a775e 3742 if (index >= l->length)
cc31edce
PM
3743 return NULL;
3744 /* Update the abstract position to be the actual pid that we found */
102a775e 3745 iter = l->list + index;
afb2bc14 3746 *pos = cgroup_pid_fry(cgrp, *iter);
cc31edce
PM
3747 return iter;
3748}
3749
102a775e 3750static void cgroup_pidlist_stop(struct seq_file *s, void *v)
cc31edce 3751{
5d22444f
TH
3752 struct cgroup_open_file *of = s->private;
3753 struct cgroup_pidlist *l = of->priv;
62236858 3754
5d22444f
TH
3755 if (l)
3756 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
04502365 3757 CGROUP_PIDLIST_DESTROY_DELAY);
7da11279 3758 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
cc31edce
PM
3759}
3760
102a775e 3761static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
cc31edce 3762{
5d22444f
TH
3763 struct cgroup_open_file *of = s->private;
3764 struct cgroup_pidlist *l = of->priv;
102a775e
BB
3765 pid_t *p = v;
3766 pid_t *end = l->list + l->length;
cc31edce
PM
3767 /*
3768 * Advance to the next pid in the array. If this goes off the
3769 * end, we're done
3770 */
3771 p++;
3772 if (p >= end) {
3773 return NULL;
3774 } else {
7da11279 3775 *pos = cgroup_pid_fry(seq_css(s)->cgroup, *p);
cc31edce
PM
3776 return p;
3777 }
3778}
3779
102a775e 3780static int cgroup_pidlist_show(struct seq_file *s, void *v)
cc31edce
PM
3781{
3782 return seq_printf(s, "%d\n", *(int *)v);
3783}
bbcb81d0 3784
102a775e
BB
3785/*
3786 * seq_operations functions for iterating on pidlists through seq_file -
3787 * independent of whether it's tasks or procs
3788 */
3789static const struct seq_operations cgroup_pidlist_seq_operations = {
3790 .start = cgroup_pidlist_start,
3791 .stop = cgroup_pidlist_stop,
3792 .next = cgroup_pidlist_next,
3793 .show = cgroup_pidlist_show,
cc31edce
PM
3794};
3795
182446d0
TH
3796static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
3797 struct cftype *cft)
81a6a5cd 3798{
182446d0 3799 return notify_on_release(css->cgroup);
81a6a5cd
PM
3800}
3801
182446d0
TH
3802static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
3803 struct cftype *cft, u64 val)
6379c106 3804{
182446d0 3805 clear_bit(CGRP_RELEASABLE, &css->cgroup->flags);
6379c106 3806 if (val)
182446d0 3807 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106 3808 else
182446d0 3809 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106
PM
3810 return 0;
3811}
3812
1c8158ee
LZ
3813/*
3814 * When dput() is called asynchronously, if umount has been done and
3815 * then deactivate_super() in cgroup_free_fn() kills the superblock,
3816 * there's a small window that vfs will see the root dentry with non-zero
3817 * refcnt and trigger BUG().
3818 *
3819 * That's why we hold a reference before dput() and drop it right after.
3820 */
3821static void cgroup_dput(struct cgroup *cgrp)
3822{
3823 struct super_block *sb = cgrp->root->sb;
3824
3825 atomic_inc(&sb->s_active);
3826 dput(cgrp->dentry);
3827 deactivate_super(sb);
3828}
3829
182446d0
TH
3830static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
3831 struct cftype *cft)
97978e6d 3832{
182446d0 3833 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
3834}
3835
182446d0
TH
3836static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
3837 struct cftype *cft, u64 val)
97978e6d
DL
3838{
3839 if (val)
182446d0 3840 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d 3841 else
182446d0 3842 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
3843 return 0;
3844}
3845
d5c56ced 3846static struct cftype cgroup_base_files[] = {
81a6a5cd 3847 {
d5c56ced 3848 .name = "cgroup.procs",
6612f05b
TH
3849 .seq_start = cgroup_pidlist_start,
3850 .seq_next = cgroup_pidlist_next,
3851 .seq_stop = cgroup_pidlist_stop,
3852 .seq_show = cgroup_pidlist_show,
5d22444f 3853 .private = CGROUP_FILE_PROCS,
74a1166d 3854 .write_u64 = cgroup_procs_write,
74a1166d 3855 .mode = S_IRUGO | S_IWUSR,
102a775e 3856 },
97978e6d
DL
3857 {
3858 .name = "cgroup.clone_children",
873fe09e 3859 .flags = CFTYPE_INSANE,
97978e6d
DL
3860 .read_u64 = cgroup_clone_children_read,
3861 .write_u64 = cgroup_clone_children_write,
3862 },
873fe09e
TH
3863 {
3864 .name = "cgroup.sane_behavior",
3865 .flags = CFTYPE_ONLY_ON_ROOT,
2da8ca82 3866 .seq_show = cgroup_sane_behavior_show,
873fe09e 3867 },
d5c56ced
TH
3868
3869 /*
3870 * Historical crazy stuff. These don't have "cgroup." prefix and
3871 * don't exist if sane_behavior. If you're depending on these, be
3872 * prepared to be burned.
3873 */
3874 {
3875 .name = "tasks",
3876 .flags = CFTYPE_INSANE, /* use "procs" instead */
6612f05b
TH
3877 .seq_start = cgroup_pidlist_start,
3878 .seq_next = cgroup_pidlist_next,
3879 .seq_stop = cgroup_pidlist_stop,
3880 .seq_show = cgroup_pidlist_show,
5d22444f 3881 .private = CGROUP_FILE_TASKS,
d5c56ced 3882 .write_u64 = cgroup_tasks_write,
d5c56ced
TH
3883 .mode = S_IRUGO | S_IWUSR,
3884 },
3885 {
3886 .name = "notify_on_release",
3887 .flags = CFTYPE_INSANE,
3888 .read_u64 = cgroup_read_notify_on_release,
3889 .write_u64 = cgroup_write_notify_on_release,
3890 },
6e6ff25b
TH
3891 {
3892 .name = "release_agent",
cc5943a7 3893 .flags = CFTYPE_INSANE | CFTYPE_ONLY_ON_ROOT,
2da8ca82 3894 .seq_show = cgroup_release_agent_show,
6e6ff25b
TH
3895 .write_string = cgroup_release_agent_write,
3896 .max_write_len = PATH_MAX,
3897 },
db0416b6 3898 { } /* terminate */
bbcb81d0
PM
3899};
3900
13af07df 3901/**
628f7cd4 3902 * cgroup_populate_dir - create subsys files in a cgroup directory
13af07df 3903 * @cgrp: target cgroup
13af07df 3904 * @subsys_mask: mask of the subsystem ids whose files should be added
bee55099
TH
3905 *
3906 * On failure, no file is added.
13af07df 3907 */
628f7cd4 3908static int cgroup_populate_dir(struct cgroup *cgrp, unsigned long subsys_mask)
ddbcc7e8 3909{
ddbcc7e8 3910 struct cgroup_subsys *ss;
b420ba7d 3911 int i, ret = 0;
bbcb81d0 3912
8e3f6541 3913 /* process cftsets of each subsystem */
b420ba7d 3914 for_each_subsys(ss, i) {
8e3f6541 3915 struct cftype_set *set;
b420ba7d
TH
3916
3917 if (!test_bit(i, &subsys_mask))
13af07df 3918 continue;
8e3f6541 3919
bee55099 3920 list_for_each_entry(set, &ss->cftsets, node) {
2bb566cb 3921 ret = cgroup_addrm_files(cgrp, set->cfts, true);
bee55099
TH
3922 if (ret < 0)
3923 goto err;
3924 }
ddbcc7e8 3925 }
ddbcc7e8 3926 return 0;
bee55099
TH
3927err:
3928 cgroup_clear_dir(cgrp, subsys_mask);
3929 return ret;
ddbcc7e8
PM
3930}
3931
0c21ead1
TH
3932/*
3933 * css destruction is four-stage process.
3934 *
3935 * 1. Destruction starts. Killing of the percpu_ref is initiated.
3936 * Implemented in kill_css().
3937 *
3938 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
3939 * and thus css_tryget() is guaranteed to fail, the css can be offlined
3940 * by invoking offline_css(). After offlining, the base ref is put.
3941 * Implemented in css_killed_work_fn().
3942 *
3943 * 3. When the percpu_ref reaches zero, the only possible remaining
3944 * accessors are inside RCU read sections. css_release() schedules the
3945 * RCU callback.
3946 *
3947 * 4. After the grace period, the css can be freed. Implemented in
3948 * css_free_work_fn().
3949 *
3950 * It is actually hairier because both step 2 and 4 require process context
3951 * and thus involve punting to css->destroy_work adding two additional
3952 * steps to the already complex sequence.
3953 */
35ef10da 3954static void css_free_work_fn(struct work_struct *work)
48ddbe19
TH
3955{
3956 struct cgroup_subsys_state *css =
35ef10da 3957 container_of(work, struct cgroup_subsys_state, destroy_work);
0c21ead1 3958 struct cgroup *cgrp = css->cgroup;
48ddbe19 3959
0ae78e0b
TH
3960 if (css->parent)
3961 css_put(css->parent);
3962
0c21ead1
TH
3963 css->ss->css_free(css);
3964 cgroup_dput(cgrp);
48ddbe19
TH
3965}
3966
0c21ead1 3967static void css_free_rcu_fn(struct rcu_head *rcu_head)
d3daf28d
TH
3968{
3969 struct cgroup_subsys_state *css =
0c21ead1 3970 container_of(rcu_head, struct cgroup_subsys_state, rcu_head);
d3daf28d 3971
35ef10da
TH
3972 /*
3973 * css holds an extra ref to @cgrp->dentry which is put on the last
0c21ead1 3974 * css_put(). dput() requires process context which we don't have.
35ef10da
TH
3975 */
3976 INIT_WORK(&css->destroy_work, css_free_work_fn);
e5fca243 3977 queue_work(cgroup_destroy_wq, &css->destroy_work);
48ddbe19
TH
3978}
3979
d3daf28d
TH
3980static void css_release(struct percpu_ref *ref)
3981{
3982 struct cgroup_subsys_state *css =
3983 container_of(ref, struct cgroup_subsys_state, refcnt);
3984
c1a71504 3985 rcu_assign_pointer(css->cgroup->subsys[css->ss->subsys_id], NULL);
0c21ead1 3986 call_rcu(&css->rcu_head, css_free_rcu_fn);
d3daf28d
TH
3987}
3988
623f926b
TH
3989static void init_css(struct cgroup_subsys_state *css, struct cgroup_subsys *ss,
3990 struct cgroup *cgrp)
ddbcc7e8 3991{
bd89aabc 3992 css->cgroup = cgrp;
72c97e54 3993 css->ss = ss;
ddbcc7e8 3994 css->flags = 0;
0ae78e0b
TH
3995
3996 if (cgrp->parent)
ca8bdcaf 3997 css->parent = cgroup_css(cgrp->parent, ss);
0ae78e0b 3998 else
38b53aba 3999 css->flags |= CSS_ROOT;
48ddbe19 4000
ca8bdcaf 4001 BUG_ON(cgroup_css(cgrp, ss));
ddbcc7e8
PM
4002}
4003
2a4ac633 4004/* invoke ->css_online() on a new CSS and mark it online if successful */
623f926b 4005static int online_css(struct cgroup_subsys_state *css)
a31f2d3f 4006{
623f926b 4007 struct cgroup_subsys *ss = css->ss;
b1929db4
TH
4008 int ret = 0;
4009
a31f2d3f
TH
4010 lockdep_assert_held(&cgroup_mutex);
4011
92fb9748 4012 if (ss->css_online)
eb95419b 4013 ret = ss->css_online(css);
ae7f164a 4014 if (!ret) {
eb95419b 4015 css->flags |= CSS_ONLINE;
f20104de 4016 css->cgroup->nr_css++;
ae7f164a
TH
4017 rcu_assign_pointer(css->cgroup->subsys[ss->subsys_id], css);
4018 }
b1929db4 4019 return ret;
a31f2d3f
TH
4020}
4021
2a4ac633 4022/* if the CSS is online, invoke ->css_offline() on it and mark it offline */
623f926b 4023static void offline_css(struct cgroup_subsys_state *css)
a31f2d3f 4024{
623f926b 4025 struct cgroup_subsys *ss = css->ss;
a31f2d3f
TH
4026
4027 lockdep_assert_held(&cgroup_mutex);
4028
4029 if (!(css->flags & CSS_ONLINE))
4030 return;
4031
d7eeac19 4032 if (ss->css_offline)
eb95419b 4033 ss->css_offline(css);
a31f2d3f 4034
eb95419b 4035 css->flags &= ~CSS_ONLINE;
09a503ea 4036 css->cgroup->nr_css--;
0c21ead1 4037 RCU_INIT_POINTER(css->cgroup->subsys[ss->subsys_id], css);
a31f2d3f
TH
4038}
4039
c81c925a
TH
4040/**
4041 * create_css - create a cgroup_subsys_state
4042 * @cgrp: the cgroup new css will be associated with
4043 * @ss: the subsys of new css
4044 *
4045 * Create a new css associated with @cgrp - @ss pair. On success, the new
4046 * css is online and installed in @cgrp with all interface files created.
4047 * Returns 0 on success, -errno on failure.
4048 */
4049static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss)
4050{
4051 struct cgroup *parent = cgrp->parent;
4052 struct cgroup_subsys_state *css;
4053 int err;
4054
4055 lockdep_assert_held(&cgrp->dentry->d_inode->i_mutex);
4056 lockdep_assert_held(&cgroup_mutex);
4057
4058 css = ss->css_alloc(cgroup_css(parent, ss));
4059 if (IS_ERR(css))
4060 return PTR_ERR(css);
4061
4062 err = percpu_ref_init(&css->refcnt, css_release);
4063 if (err)
4064 goto err_free;
4065
4066 init_css(css, ss, cgrp);
4067
4068 err = cgroup_populate_dir(cgrp, 1 << ss->subsys_id);
4069 if (err)
4070 goto err_free;
4071
4072 err = online_css(css);
4073 if (err)
4074 goto err_free;
4075
4076 dget(cgrp->dentry);
4077 css_get(css->parent);
4078
4079 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
4080 parent->parent) {
4081 pr_warning("cgroup: %s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
4082 current->comm, current->pid, ss->name);
4083 if (!strcmp(ss->name, "memory"))
4084 pr_warning("cgroup: \"memory\" requires setting use_hierarchy to 1 on the root.\n");
4085 ss->warned_broken_hierarchy = true;
4086 }
4087
4088 return 0;
4089
4090err_free:
4091 percpu_ref_cancel_init(&css->refcnt);
4092 ss->css_free(css);
4093 return err;
4094}
4095
ddbcc7e8 4096/*
a043e3b2
LZ
4097 * cgroup_create - create a cgroup
4098 * @parent: cgroup that will be parent of the new cgroup
4099 * @dentry: dentry of the new cgroup
4100 * @mode: mode to set on new inode
ddbcc7e8 4101 *
a043e3b2 4102 * Must be called with the mutex on the parent inode held
ddbcc7e8 4103 */
ddbcc7e8 4104static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
a5e7ed32 4105 umode_t mode)
ddbcc7e8 4106{
bd89aabc 4107 struct cgroup *cgrp;
65dff759 4108 struct cgroup_name *name;
ddbcc7e8 4109 struct cgroupfs_root *root = parent->root;
b85d2040 4110 int ssid, err = 0;
ddbcc7e8
PM
4111 struct cgroup_subsys *ss;
4112 struct super_block *sb = root->sb;
4113
0a950f65 4114 /* allocate the cgroup and its ID, 0 is reserved for the root */
bd89aabc
PM
4115 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
4116 if (!cgrp)
ddbcc7e8
PM
4117 return -ENOMEM;
4118
65dff759
LZ
4119 name = cgroup_alloc_name(dentry);
4120 if (!name)
4121 goto err_free_cgrp;
4122 rcu_assign_pointer(cgrp->name, name);
4123
4e96ee8e
LZ
4124 /*
4125 * Temporarily set the pointer to NULL, so idr_find() won't return
4126 * a half-baked cgroup.
4127 */
4128 cgrp->id = idr_alloc(&root->cgroup_idr, NULL, 1, 0, GFP_KERNEL);
0a950f65 4129 if (cgrp->id < 0)
65dff759 4130 goto err_free_name;
0a950f65 4131
976c06bc
TH
4132 /*
4133 * Only live parents can have children. Note that the liveliness
4134 * check isn't strictly necessary because cgroup_mkdir() and
4135 * cgroup_rmdir() are fully synchronized by i_mutex; however, do it
4136 * anyway so that locking is contained inside cgroup proper and we
4137 * don't get nasty surprises if we ever grow another caller.
4138 */
4139 if (!cgroup_lock_live_group(parent)) {
4140 err = -ENODEV;
0a950f65 4141 goto err_free_id;
976c06bc
TH
4142 }
4143
ddbcc7e8
PM
4144 /* Grab a reference on the superblock so the hierarchy doesn't
4145 * get deleted on unmount if there are child cgroups. This
4146 * can be done outside cgroup_mutex, since the sb can't
4147 * disappear while someone has an open control file on the
4148 * fs */
4149 atomic_inc(&sb->s_active);
4150
cc31edce 4151 init_cgroup_housekeeping(cgrp);
ddbcc7e8 4152
fe1c06ca
LZ
4153 dentry->d_fsdata = cgrp;
4154 cgrp->dentry = dentry;
4155
bd89aabc 4156 cgrp->parent = parent;
0ae78e0b 4157 cgrp->dummy_css.parent = &parent->dummy_css;
bd89aabc 4158 cgrp->root = parent->root;
ddbcc7e8 4159
b6abdb0e
LZ
4160 if (notify_on_release(parent))
4161 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
4162
2260e7fc
TH
4163 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
4164 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
97978e6d 4165
4e139afc
TH
4166 /*
4167 * Create directory. cgroup_create_file() returns with the new
4168 * directory locked on success so that it can be populated without
4169 * dropping cgroup_mutex.
4170 */
28fd6f30 4171 err = cgroup_create_file(dentry, S_IFDIR | mode, sb);
ddbcc7e8 4172 if (err < 0)
0d80255e 4173 goto err_unlock;
4e139afc 4174 lockdep_assert_held(&dentry->d_inode->i_mutex);
ddbcc7e8 4175
00356bd5 4176 cgrp->serial_nr = cgroup_serial_nr_next++;
53fa5261 4177
4e139afc 4178 /* allocation complete, commit to creation */
4e139afc
TH
4179 list_add_tail_rcu(&cgrp->sibling, &cgrp->parent->children);
4180 root->number_of_cgroups++;
28fd6f30 4181
415cf07a
LZ
4182 /* hold a ref to the parent's dentry */
4183 dget(parent->dentry);
4184
0d80255e
TH
4185 /*
4186 * @cgrp is now fully operational. If something fails after this
4187 * point, it'll be released via the normal destruction path.
4188 */
4e96ee8e
LZ
4189 idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
4190
2bb566cb 4191 err = cgroup_addrm_files(cgrp, cgroup_base_files, true);
628f7cd4
TH
4192 if (err)
4193 goto err_destroy;
4194
9d403e99 4195 /* let's create and online css's */
b85d2040
TH
4196 for_each_subsys(ss, ssid) {
4197 if (root->subsys_mask & (1 << ssid)) {
4198 err = create_css(cgrp, ss);
4199 if (err)
4200 goto err_destroy;
4201 }
a8638030 4202 }
ddbcc7e8
PM
4203
4204 mutex_unlock(&cgroup_mutex);
bd89aabc 4205 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8
PM
4206
4207 return 0;
4208
0d80255e 4209err_unlock:
ddbcc7e8 4210 mutex_unlock(&cgroup_mutex);
ddbcc7e8
PM
4211 /* Release the reference count that we took on the superblock */
4212 deactivate_super(sb);
0a950f65 4213err_free_id:
4e96ee8e 4214 idr_remove(&root->cgroup_idr, cgrp->id);
65dff759
LZ
4215err_free_name:
4216 kfree(rcu_dereference_raw(cgrp->name));
4b8b47eb 4217err_free_cgrp:
bd89aabc 4218 kfree(cgrp);
ddbcc7e8 4219 return err;
4b8b47eb
TH
4220
4221err_destroy:
4222 cgroup_destroy_locked(cgrp);
4223 mutex_unlock(&cgroup_mutex);
4224 mutex_unlock(&dentry->d_inode->i_mutex);
4225 return err;
ddbcc7e8
PM
4226}
4227
18bb1db3 4228static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
ddbcc7e8
PM
4229{
4230 struct cgroup *c_parent = dentry->d_parent->d_fsdata;
4231
4232 /* the vfs holds inode->i_mutex already */
4233 return cgroup_create(c_parent, dentry, mode | S_IFDIR);
4234}
4235
223dbc38
TH
4236/*
4237 * This is called when the refcnt of a css is confirmed to be killed.
4238 * css_tryget() is now guaranteed to fail.
4239 */
4240static void css_killed_work_fn(struct work_struct *work)
d3daf28d 4241{
223dbc38
TH
4242 struct cgroup_subsys_state *css =
4243 container_of(work, struct cgroup_subsys_state, destroy_work);
4244 struct cgroup *cgrp = css->cgroup;
d3daf28d 4245
f20104de
TH
4246 mutex_lock(&cgroup_mutex);
4247
09a503ea
TH
4248 /*
4249 * css_tryget() is guaranteed to fail now. Tell subsystems to
4250 * initate destruction.
4251 */
4252 offline_css(css);
4253
f20104de
TH
4254 /*
4255 * If @cgrp is marked dead, it's waiting for refs of all css's to
4256 * be disabled before proceeding to the second phase of cgroup
4257 * destruction. If we are the last one, kick it off.
4258 */
09a503ea 4259 if (!cgrp->nr_css && cgroup_is_dead(cgrp))
f20104de
TH
4260 cgroup_destroy_css_killed(cgrp);
4261
4262 mutex_unlock(&cgroup_mutex);
09a503ea
TH
4263
4264 /*
4265 * Put the css refs from kill_css(). Each css holds an extra
4266 * reference to the cgroup's dentry and cgroup removal proceeds
4267 * regardless of css refs. On the last put of each css, whenever
4268 * that may be, the extra dentry ref is put so that dentry
4269 * destruction happens only after all css's are released.
4270 */
4271 css_put(css);
d3daf28d
TH
4272}
4273
223dbc38
TH
4274/* css kill confirmation processing requires process context, bounce */
4275static void css_killed_ref_fn(struct percpu_ref *ref)
d3daf28d
TH
4276{
4277 struct cgroup_subsys_state *css =
4278 container_of(ref, struct cgroup_subsys_state, refcnt);
4279
223dbc38 4280 INIT_WORK(&css->destroy_work, css_killed_work_fn);
e5fca243 4281 queue_work(cgroup_destroy_wq, &css->destroy_work);
d3daf28d
TH
4282}
4283
edae0c33
TH
4284/**
4285 * kill_css - destroy a css
4286 * @css: css to destroy
4287 *
3c14f8b4
TH
4288 * This function initiates destruction of @css by removing cgroup interface
4289 * files and putting its base reference. ->css_offline() will be invoked
4290 * asynchronously once css_tryget() is guaranteed to fail and when the
4291 * reference count reaches zero, @css will be released.
edae0c33
TH
4292 */
4293static void kill_css(struct cgroup_subsys_state *css)
4294{
3c14f8b4
TH
4295 cgroup_clear_dir(css->cgroup, 1 << css->ss->subsys_id);
4296
edae0c33
TH
4297 /*
4298 * Killing would put the base ref, but we need to keep it alive
4299 * until after ->css_offline().
4300 */
4301 css_get(css);
4302
4303 /*
4304 * cgroup core guarantees that, by the time ->css_offline() is
4305 * invoked, no new css reference will be given out via
4306 * css_tryget(). We can't simply call percpu_ref_kill() and
4307 * proceed to offlining css's because percpu_ref_kill() doesn't
4308 * guarantee that the ref is seen as killed on all CPUs on return.
4309 *
4310 * Use percpu_ref_kill_and_confirm() to get notifications as each
4311 * css is confirmed to be seen as killed on all CPUs.
4312 */
4313 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
d3daf28d
TH
4314}
4315
4316/**
4317 * cgroup_destroy_locked - the first stage of cgroup destruction
4318 * @cgrp: cgroup to be destroyed
4319 *
4320 * css's make use of percpu refcnts whose killing latency shouldn't be
4321 * exposed to userland and are RCU protected. Also, cgroup core needs to
4322 * guarantee that css_tryget() won't succeed by the time ->css_offline() is
4323 * invoked. To satisfy all the requirements, destruction is implemented in
4324 * the following two steps.
4325 *
4326 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
4327 * userland visible parts and start killing the percpu refcnts of
4328 * css's. Set up so that the next stage will be kicked off once all
4329 * the percpu refcnts are confirmed to be killed.
4330 *
4331 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
4332 * rest of destruction. Once all cgroup references are gone, the
4333 * cgroup is RCU-freed.
4334 *
4335 * This function implements s1. After this step, @cgrp is gone as far as
4336 * the userland is concerned and a new cgroup with the same name may be
4337 * created. As cgroup doesn't care about the names internally, this
4338 * doesn't cause any problem.
4339 */
42809dd4
TH
4340static int cgroup_destroy_locked(struct cgroup *cgrp)
4341 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
ddbcc7e8 4342{
42809dd4 4343 struct dentry *d = cgrp->dentry;
1c6727af 4344 struct cgroup_subsys_state *css;
bb78a92f 4345 struct cgroup *child;
ddd69148 4346 bool empty;
1c6727af 4347 int ssid;
ddbcc7e8 4348
42809dd4
TH
4349 lockdep_assert_held(&d->d_inode->i_mutex);
4350 lockdep_assert_held(&cgroup_mutex);
4351
ddd69148 4352 /*
6f3d828f
TH
4353 * css_set_lock synchronizes access to ->cset_links and prevents
4354 * @cgrp from being removed while __put_css_set() is in progress.
ddd69148
TH
4355 */
4356 read_lock(&css_set_lock);
bb78a92f 4357 empty = list_empty(&cgrp->cset_links);
ddd69148
TH
4358 read_unlock(&css_set_lock);
4359 if (!empty)
ddbcc7e8 4360 return -EBUSY;
a043e3b2 4361
bb78a92f
HD
4362 /*
4363 * Make sure there's no live children. We can't test ->children
4364 * emptiness as dead children linger on it while being destroyed;
4365 * otherwise, "rmdir parent/child parent" may fail with -EBUSY.
4366 */
4367 empty = true;
4368 rcu_read_lock();
4369 list_for_each_entry_rcu(child, &cgrp->children, sibling) {
4370 empty = cgroup_is_dead(child);
4371 if (!empty)
4372 break;
4373 }
4374 rcu_read_unlock();
4375 if (!empty)
4376 return -EBUSY;
4377
88703267 4378 /*
edae0c33
TH
4379 * Initiate massacre of all css's. cgroup_destroy_css_killed()
4380 * will be invoked to perform the rest of destruction once the
4381 * percpu refs of all css's are confirmed to be killed.
88703267 4382 */
1c6727af
TH
4383 for_each_css(css, ssid, cgrp)
4384 kill_css(css);
455050d2
TH
4385
4386 /*
4387 * Mark @cgrp dead. This prevents further task migration and child
4388 * creation by disabling cgroup_lock_live_group(). Note that
492eb21b 4389 * CGRP_DEAD assertion is depended upon by css_next_child() to
455050d2 4390 * resume iteration after dropping RCU read lock. See
492eb21b 4391 * css_next_child() for details.
455050d2 4392 */
54766d4a 4393 set_bit(CGRP_DEAD, &cgrp->flags);
ddbcc7e8 4394
455050d2
TH
4395 /* CGRP_DEAD is set, remove from ->release_list for the last time */
4396 raw_spin_lock(&release_list_lock);
4397 if (!list_empty(&cgrp->release_list))
4398 list_del_init(&cgrp->release_list);
4399 raw_spin_unlock(&release_list_lock);
4400
4401 /*
f20104de
TH
4402 * If @cgrp has css's attached, the second stage of cgroup
4403 * destruction is kicked off from css_killed_work_fn() after the
4404 * refs of all attached css's are killed. If @cgrp doesn't have
4405 * any css, we kick it off here.
4406 */
4407 if (!cgrp->nr_css)
4408 cgroup_destroy_css_killed(cgrp);
4409
455050d2 4410 /*
3c14f8b4
TH
4411 * Clear the base files and remove @cgrp directory. The removal
4412 * puts the base ref but we aren't quite done with @cgrp yet, so
4413 * hold onto it.
455050d2 4414 */
2bb566cb 4415 cgroup_addrm_files(cgrp, cgroup_base_files, false);
455050d2
TH
4416 dget(d);
4417 cgroup_d_remove_dir(d);
4418
ea15f8cc
TH
4419 return 0;
4420};
4421
d3daf28d 4422/**
f20104de 4423 * cgroup_destroy_css_killed - the second step of cgroup destruction
d3daf28d
TH
4424 * @work: cgroup->destroy_free_work
4425 *
4426 * This function is invoked from a work item for a cgroup which is being
09a503ea
TH
4427 * destroyed after all css's are offlined and performs the rest of
4428 * destruction. This is the second step of destruction described in the
4429 * comment above cgroup_destroy_locked().
d3daf28d 4430 */
f20104de 4431static void cgroup_destroy_css_killed(struct cgroup *cgrp)
ea15f8cc 4432{
ea15f8cc
TH
4433 struct cgroup *parent = cgrp->parent;
4434 struct dentry *d = cgrp->dentry;
ea15f8cc 4435
f20104de 4436 lockdep_assert_held(&cgroup_mutex);
ea15f8cc 4437
999cd8a4 4438 /* delete this cgroup from parent->children */
eb6fd504 4439 list_del_rcu(&cgrp->sibling);
ed957793 4440
ddbcc7e8 4441 dput(d);
ddbcc7e8 4442
bd89aabc 4443 set_bit(CGRP_RELEASABLE, &parent->flags);
81a6a5cd 4444 check_for_release(parent);
ddbcc7e8
PM
4445}
4446
42809dd4
TH
4447static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
4448{
4449 int ret;
4450
4451 mutex_lock(&cgroup_mutex);
4452 ret = cgroup_destroy_locked(dentry->d_fsdata);
4453 mutex_unlock(&cgroup_mutex);
4454
4455 return ret;
4456}
4457
3ed80a62 4458static void __init cgroup_init_cftsets(struct cgroup_subsys *ss)
8e3f6541
TH
4459{
4460 INIT_LIST_HEAD(&ss->cftsets);
4461
4462 /*
4463 * base_cftset is embedded in subsys itself, no need to worry about
4464 * deregistration.
4465 */
4466 if (ss->base_cftypes) {
2bb566cb
TH
4467 struct cftype *cft;
4468
4469 for (cft = ss->base_cftypes; cft->name[0] != '\0'; cft++)
4470 cft->ss = ss;
4471
8e3f6541
TH
4472 ss->base_cftset.cfts = ss->base_cftypes;
4473 list_add_tail(&ss->base_cftset.node, &ss->cftsets);
4474 }
4475}
4476
06a11920 4477static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
ddbcc7e8 4478{
ddbcc7e8 4479 struct cgroup_subsys_state *css;
cfe36bde
DC
4480
4481 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
ddbcc7e8 4482
648bb56d
TH
4483 mutex_lock(&cgroup_mutex);
4484
8e3f6541
TH
4485 /* init base cftset */
4486 cgroup_init_cftsets(ss);
4487
ddbcc7e8 4488 /* Create the top cgroup state for this subsystem */
9871bf95 4489 ss->root = &cgroup_dummy_root;
ca8bdcaf 4490 css = ss->css_alloc(cgroup_css(cgroup_dummy_top, ss));
ddbcc7e8
PM
4491 /* We don't handle early failures gracefully */
4492 BUG_ON(IS_ERR(css));
623f926b 4493 init_css(css, ss, cgroup_dummy_top);
ddbcc7e8 4494
e8d55fde 4495 /* Update the init_css_set to contain a subsys
817929ec 4496 * pointer to this state - since the subsystem is
e8d55fde
LZ
4497 * newly registered, all tasks and hence the
4498 * init_css_set is in the subsystem's top cgroup. */
b48c6a80 4499 init_css_set.subsys[ss->subsys_id] = css;
ddbcc7e8
PM
4500
4501 need_forkexit_callback |= ss->fork || ss->exit;
4502
e8d55fde
LZ
4503 /* At system boot, before all subsystems have been
4504 * registered, no tasks have been forked, so we don't
4505 * need to invoke fork callbacks here. */
4506 BUG_ON(!list_empty(&init_task.tasks));
4507
ae7f164a 4508 BUG_ON(online_css(css));
a8638030 4509
648bb56d 4510 mutex_unlock(&cgroup_mutex);
e6a1105b
BB
4511}
4512
ddbcc7e8 4513/**
a043e3b2
LZ
4514 * cgroup_init_early - cgroup initialization at system boot
4515 *
4516 * Initialize cgroups at system boot, and initialize any
4517 * subsystems that request early init.
ddbcc7e8
PM
4518 */
4519int __init cgroup_init_early(void)
4520{
30159ec7 4521 struct cgroup_subsys *ss;
ddbcc7e8 4522 int i;
30159ec7 4523
146aa1bd 4524 atomic_set(&init_css_set.refcount, 1);
69d0206c 4525 INIT_LIST_HEAD(&init_css_set.cgrp_links);
817929ec 4526 INIT_LIST_HEAD(&init_css_set.tasks);
472b1053 4527 INIT_HLIST_NODE(&init_css_set.hlist);
817929ec 4528 css_set_count = 1;
9871bf95
TH
4529 init_cgroup_root(&cgroup_dummy_root);
4530 cgroup_root_count = 1;
a4ea1cc9 4531 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
817929ec 4532
69d0206c 4533 init_cgrp_cset_link.cset = &init_css_set;
9871bf95
TH
4534 init_cgrp_cset_link.cgrp = cgroup_dummy_top;
4535 list_add(&init_cgrp_cset_link.cset_link, &cgroup_dummy_top->cset_links);
69d0206c 4536 list_add(&init_cgrp_cset_link.cgrp_link, &init_css_set.cgrp_links);
ddbcc7e8 4537
3ed80a62 4538 for_each_subsys(ss, i) {
073219e9
TH
4539 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->subsys_id,
4540 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p name:id=%d:%s\n",
4541 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
4542 ss->subsys_id, ss->name);
4543 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
4544 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
4545
4546 ss->subsys_id = i;
4547 ss->name = cgroup_subsys_name[i];
ddbcc7e8
PM
4548
4549 if (ss->early_init)
4550 cgroup_init_subsys(ss);
4551 }
4552 return 0;
4553}
4554
4555/**
a043e3b2
LZ
4556 * cgroup_init - cgroup initialization
4557 *
4558 * Register cgroup filesystem and /proc file, and initialize
4559 * any subsystems that didn't request early init.
ddbcc7e8
PM
4560 */
4561int __init cgroup_init(void)
4562{
30159ec7 4563 struct cgroup_subsys *ss;
0ac801fe 4564 unsigned long key;
30159ec7 4565 int i, err;
a424316c
PM
4566
4567 err = bdi_init(&cgroup_backing_dev_info);
4568 if (err)
4569 return err;
ddbcc7e8 4570
3ed80a62 4571 for_each_subsys(ss, i) {
ddbcc7e8
PM
4572 if (!ss->early_init)
4573 cgroup_init_subsys(ss);
4574 }
4575
fa3ca07e 4576 /* allocate id for the dummy hierarchy */
54e7b4eb
TH
4577 mutex_lock(&cgroup_mutex);
4578 mutex_lock(&cgroup_root_mutex);
4579
82fe9b0d
TH
4580 /* Add init_css_set to the hash table */
4581 key = css_set_hash(init_css_set.subsys);
4582 hash_add(css_set_table, &init_css_set.hlist, key);
4583
fc76df70 4584 BUG_ON(cgroup_init_root_id(&cgroup_dummy_root, 0, 1));
676db4af 4585
4e96ee8e
LZ
4586 err = idr_alloc(&cgroup_dummy_root.cgroup_idr, cgroup_dummy_top,
4587 0, 1, GFP_KERNEL);
4588 BUG_ON(err < 0);
4589
54e7b4eb
TH
4590 mutex_unlock(&cgroup_root_mutex);
4591 mutex_unlock(&cgroup_mutex);
4592
676db4af
GKH
4593 cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
4594 if (!cgroup_kobj) {
4595 err = -ENOMEM;
4596 goto out;
4597 }
4598
ddbcc7e8 4599 err = register_filesystem(&cgroup_fs_type);
676db4af
GKH
4600 if (err < 0) {
4601 kobject_put(cgroup_kobj);
ddbcc7e8 4602 goto out;
676db4af 4603 }
ddbcc7e8 4604
46ae220b 4605 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
a424316c 4606
ddbcc7e8 4607out:
a424316c
PM
4608 if (err)
4609 bdi_destroy(&cgroup_backing_dev_info);
4610
ddbcc7e8
PM
4611 return err;
4612}
b4f48b63 4613
e5fca243
TH
4614static int __init cgroup_wq_init(void)
4615{
4616 /*
4617 * There isn't much point in executing destruction path in
4618 * parallel. Good chunk is serialized with cgroup_mutex anyway.
4619 * Use 1 for @max_active.
4620 *
4621 * We would prefer to do this in cgroup_init() above, but that
4622 * is called before init_workqueues(): so leave this until after.
4623 */
4624 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
4625 BUG_ON(!cgroup_destroy_wq);
b1a21367
TH
4626
4627 /*
4628 * Used to destroy pidlists and separate to serve as flush domain.
4629 * Cap @max_active to 1 too.
4630 */
4631 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
4632 0, 1);
4633 BUG_ON(!cgroup_pidlist_destroy_wq);
4634
e5fca243
TH
4635 return 0;
4636}
4637core_initcall(cgroup_wq_init);
4638
a424316c
PM
4639/*
4640 * proc_cgroup_show()
4641 * - Print task's cgroup paths into seq_file, one line for each hierarchy
4642 * - Used for /proc/<pid>/cgroup.
4643 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
4644 * doesn't really matter if tsk->cgroup changes after we read it,
956db3ca 4645 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
a424316c
PM
4646 * anyway. No need to check that tsk->cgroup != NULL, thanks to
4647 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
4648 * cgroup to top_cgroup.
4649 */
4650
4651/* TODO: Use a proper seq_file iterator */
8d8b97ba 4652int proc_cgroup_show(struct seq_file *m, void *v)
a424316c
PM
4653{
4654 struct pid *pid;
4655 struct task_struct *tsk;
4656 char *buf;
4657 int retval;
4658 struct cgroupfs_root *root;
4659
4660 retval = -ENOMEM;
4661 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4662 if (!buf)
4663 goto out;
4664
4665 retval = -ESRCH;
4666 pid = m->private;
4667 tsk = get_pid_task(pid, PIDTYPE_PID);
4668 if (!tsk)
4669 goto out_free;
4670
4671 retval = 0;
4672
4673 mutex_lock(&cgroup_mutex);
4674
e5f6a860 4675 for_each_active_root(root) {
a424316c 4676 struct cgroup_subsys *ss;
bd89aabc 4677 struct cgroup *cgrp;
b85d2040 4678 int ssid, count = 0;
a424316c 4679
2c6ab6d2 4680 seq_printf(m, "%d:", root->hierarchy_id);
b85d2040
TH
4681 for_each_subsys(ss, ssid)
4682 if (root->subsys_mask & (1 << ssid))
4683 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
c6d57f33
PM
4684 if (strlen(root->name))
4685 seq_printf(m, "%sname=%s", count ? "," : "",
4686 root->name);
a424316c 4687 seq_putc(m, ':');
7717f7ba 4688 cgrp = task_cgroup_from_root(tsk, root);
bd89aabc 4689 retval = cgroup_path(cgrp, buf, PAGE_SIZE);
a424316c
PM
4690 if (retval < 0)
4691 goto out_unlock;
4692 seq_puts(m, buf);
4693 seq_putc(m, '\n');
4694 }
4695
4696out_unlock:
4697 mutex_unlock(&cgroup_mutex);
4698 put_task_struct(tsk);
4699out_free:
4700 kfree(buf);
4701out:
4702 return retval;
4703}
4704
a424316c
PM
4705/* Display information about each subsystem and each hierarchy */
4706static int proc_cgroupstats_show(struct seq_file *m, void *v)
4707{
30159ec7 4708 struct cgroup_subsys *ss;
a424316c 4709 int i;
a424316c 4710
8bab8dde 4711 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
aae8aab4
BB
4712 /*
4713 * ideally we don't want subsystems moving around while we do this.
4714 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
4715 * subsys/hierarchy state.
4716 */
a424316c 4717 mutex_lock(&cgroup_mutex);
30159ec7
TH
4718
4719 for_each_subsys(ss, i)
2c6ab6d2
PM
4720 seq_printf(m, "%s\t%d\t%d\t%d\n",
4721 ss->name, ss->root->hierarchy_id,
8bab8dde 4722 ss->root->number_of_cgroups, !ss->disabled);
30159ec7 4723
a424316c
PM
4724 mutex_unlock(&cgroup_mutex);
4725 return 0;
4726}
4727
4728static int cgroupstats_open(struct inode *inode, struct file *file)
4729{
9dce07f1 4730 return single_open(file, proc_cgroupstats_show, NULL);
a424316c
PM
4731}
4732
828c0950 4733static const struct file_operations proc_cgroupstats_operations = {
a424316c
PM
4734 .open = cgroupstats_open,
4735 .read = seq_read,
4736 .llseek = seq_lseek,
4737 .release = single_release,
4738};
4739
b4f48b63
PM
4740/**
4741 * cgroup_fork - attach newly forked task to its parents cgroup.
a043e3b2 4742 * @child: pointer to task_struct of forking parent process.
b4f48b63
PM
4743 *
4744 * Description: A task inherits its parent's cgroup at fork().
4745 *
4746 * A pointer to the shared css_set was automatically copied in
4747 * fork.c by dup_task_struct(). However, we ignore that copy, since
9bb71308
TH
4748 * it was not made under the protection of RCU or cgroup_mutex, so
4749 * might no longer be a valid cgroup pointer. cgroup_attach_task() might
4750 * have already changed current->cgroups, allowing the previously
4751 * referenced cgroup group to be removed and freed.
b4f48b63
PM
4752 *
4753 * At the point that cgroup_fork() is called, 'current' is the parent
4754 * task, and the passed argument 'child' points to the child task.
4755 */
4756void cgroup_fork(struct task_struct *child)
4757{
9bb71308 4758 task_lock(current);
a8ad805c 4759 get_css_set(task_css_set(current));
817929ec 4760 child->cgroups = current->cgroups;
9bb71308 4761 task_unlock(current);
817929ec 4762 INIT_LIST_HEAD(&child->cg_list);
b4f48b63
PM
4763}
4764
817929ec 4765/**
a043e3b2
LZ
4766 * cgroup_post_fork - called on a new task after adding it to the task list
4767 * @child: the task in question
4768 *
5edee61e
TH
4769 * Adds the task to the list running through its css_set if necessary and
4770 * call the subsystem fork() callbacks. Has to be after the task is
4771 * visible on the task list in case we race with the first call to
0942eeee 4772 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5edee61e 4773 * list.
a043e3b2 4774 */
817929ec
PM
4775void cgroup_post_fork(struct task_struct *child)
4776{
30159ec7 4777 struct cgroup_subsys *ss;
5edee61e
TH
4778 int i;
4779
3ce3230a
FW
4780 /*
4781 * use_task_css_set_links is set to 1 before we walk the tasklist
4782 * under the tasklist_lock and we read it here after we added the child
4783 * to the tasklist under the tasklist_lock as well. If the child wasn't
4784 * yet in the tasklist when we walked through it from
4785 * cgroup_enable_task_cg_lists(), then use_task_css_set_links value
4786 * should be visible now due to the paired locking and barriers implied
4787 * by LOCK/UNLOCK: it is written before the tasklist_lock unlock
4788 * in cgroup_enable_task_cg_lists() and read here after the tasklist_lock
4789 * lock on fork.
4790 */
817929ec
PM
4791 if (use_task_css_set_links) {
4792 write_lock(&css_set_lock);
d8783832
TH
4793 task_lock(child);
4794 if (list_empty(&child->cg_list))
a8ad805c 4795 list_add(&child->cg_list, &task_css_set(child)->tasks);
d8783832 4796 task_unlock(child);
817929ec
PM
4797 write_unlock(&css_set_lock);
4798 }
5edee61e
TH
4799
4800 /*
4801 * Call ss->fork(). This must happen after @child is linked on
4802 * css_set; otherwise, @child might change state between ->fork()
4803 * and addition to css_set.
4804 */
4805 if (need_forkexit_callback) {
3ed80a62 4806 for_each_subsys(ss, i)
5edee61e
TH
4807 if (ss->fork)
4808 ss->fork(child);
5edee61e 4809 }
817929ec 4810}
5edee61e 4811
b4f48b63
PM
4812/**
4813 * cgroup_exit - detach cgroup from exiting task
4814 * @tsk: pointer to task_struct of exiting process
a043e3b2 4815 * @run_callback: run exit callbacks?
b4f48b63
PM
4816 *
4817 * Description: Detach cgroup from @tsk and release it.
4818 *
4819 * Note that cgroups marked notify_on_release force every task in
4820 * them to take the global cgroup_mutex mutex when exiting.
4821 * This could impact scaling on very large systems. Be reluctant to
4822 * use notify_on_release cgroups where very high task exit scaling
4823 * is required on large systems.
4824 *
4825 * the_top_cgroup_hack:
4826 *
4827 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
4828 *
4829 * We call cgroup_exit() while the task is still competent to
4830 * handle notify_on_release(), then leave the task attached to the
4831 * root cgroup in each hierarchy for the remainder of its exit.
4832 *
4833 * To do this properly, we would increment the reference count on
4834 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
4835 * code we would add a second cgroup function call, to drop that
4836 * reference. This would just create an unnecessary hot spot on
4837 * the top_cgroup reference count, to no avail.
4838 *
4839 * Normally, holding a reference to a cgroup without bumping its
4840 * count is unsafe. The cgroup could go away, or someone could
4841 * attach us to a different cgroup, decrementing the count on
4842 * the first cgroup that we never incremented. But in this case,
4843 * top_cgroup isn't going away, and either task has PF_EXITING set,
956db3ca
CW
4844 * which wards off any cgroup_attach_task() attempts, or task is a failed
4845 * fork, never visible to cgroup_attach_task.
b4f48b63
PM
4846 */
4847void cgroup_exit(struct task_struct *tsk, int run_callbacks)
4848{
30159ec7 4849 struct cgroup_subsys *ss;
5abb8855 4850 struct css_set *cset;
d41d5a01 4851 int i;
817929ec
PM
4852
4853 /*
4854 * Unlink from the css_set task list if necessary.
4855 * Optimistically check cg_list before taking
4856 * css_set_lock
4857 */
4858 if (!list_empty(&tsk->cg_list)) {
4859 write_lock(&css_set_lock);
4860 if (!list_empty(&tsk->cg_list))
8d258797 4861 list_del_init(&tsk->cg_list);
817929ec
PM
4862 write_unlock(&css_set_lock);
4863 }
4864
b4f48b63
PM
4865 /* Reassign the task to the init_css_set. */
4866 task_lock(tsk);
a8ad805c
TH
4867 cset = task_css_set(tsk);
4868 RCU_INIT_POINTER(tsk->cgroups, &init_css_set);
d41d5a01
PZ
4869
4870 if (run_callbacks && need_forkexit_callback) {
3ed80a62
TH
4871 /* see cgroup_post_fork() for details */
4872 for_each_subsys(ss, i) {
d41d5a01 4873 if (ss->exit) {
eb95419b
TH
4874 struct cgroup_subsys_state *old_css = cset->subsys[i];
4875 struct cgroup_subsys_state *css = task_css(tsk, i);
30159ec7 4876
eb95419b 4877 ss->exit(css, old_css, tsk);
d41d5a01
PZ
4878 }
4879 }
4880 }
b4f48b63 4881 task_unlock(tsk);
d41d5a01 4882
5abb8855 4883 put_css_set_taskexit(cset);
b4f48b63 4884}
697f4161 4885
bd89aabc 4886static void check_for_release(struct cgroup *cgrp)
81a6a5cd 4887{
f50daa70 4888 if (cgroup_is_releasable(cgrp) &&
6f3d828f 4889 list_empty(&cgrp->cset_links) && list_empty(&cgrp->children)) {
f50daa70
LZ
4890 /*
4891 * Control Group is currently removeable. If it's not
81a6a5cd 4892 * already queued for a userspace notification, queue
f50daa70
LZ
4893 * it now
4894 */
81a6a5cd 4895 int need_schedule_work = 0;
f50daa70 4896
cdcc136f 4897 raw_spin_lock(&release_list_lock);
54766d4a 4898 if (!cgroup_is_dead(cgrp) &&
bd89aabc
PM
4899 list_empty(&cgrp->release_list)) {
4900 list_add(&cgrp->release_list, &release_list);
81a6a5cd
PM
4901 need_schedule_work = 1;
4902 }
cdcc136f 4903 raw_spin_unlock(&release_list_lock);
81a6a5cd
PM
4904 if (need_schedule_work)
4905 schedule_work(&release_agent_work);
4906 }
4907}
4908
81a6a5cd
PM
4909/*
4910 * Notify userspace when a cgroup is released, by running the
4911 * configured release agent with the name of the cgroup (path
4912 * relative to the root of cgroup file system) as the argument.
4913 *
4914 * Most likely, this user command will try to rmdir this cgroup.
4915 *
4916 * This races with the possibility that some other task will be
4917 * attached to this cgroup before it is removed, or that some other
4918 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
4919 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
4920 * unused, and this cgroup will be reprieved from its death sentence,
4921 * to continue to serve a useful existence. Next time it's released,
4922 * we will get notified again, if it still has 'notify_on_release' set.
4923 *
4924 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
4925 * means only wait until the task is successfully execve()'d. The
4926 * separate release agent task is forked by call_usermodehelper(),
4927 * then control in this thread returns here, without waiting for the
4928 * release agent task. We don't bother to wait because the caller of
4929 * this routine has no use for the exit status of the release agent
4930 * task, so no sense holding our caller up for that.
81a6a5cd 4931 */
81a6a5cd
PM
4932static void cgroup_release_agent(struct work_struct *work)
4933{
4934 BUG_ON(work != &release_agent_work);
4935 mutex_lock(&cgroup_mutex);
cdcc136f 4936 raw_spin_lock(&release_list_lock);
81a6a5cd
PM
4937 while (!list_empty(&release_list)) {
4938 char *argv[3], *envp[3];
4939 int i;
e788e066 4940 char *pathbuf = NULL, *agentbuf = NULL;
bd89aabc 4941 struct cgroup *cgrp = list_entry(release_list.next,
81a6a5cd
PM
4942 struct cgroup,
4943 release_list);
bd89aabc 4944 list_del_init(&cgrp->release_list);
cdcc136f 4945 raw_spin_unlock(&release_list_lock);
81a6a5cd 4946 pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
e788e066
PM
4947 if (!pathbuf)
4948 goto continue_free;
4949 if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
4950 goto continue_free;
4951 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
4952 if (!agentbuf)
4953 goto continue_free;
81a6a5cd
PM
4954
4955 i = 0;
e788e066
PM
4956 argv[i++] = agentbuf;
4957 argv[i++] = pathbuf;
81a6a5cd
PM
4958 argv[i] = NULL;
4959
4960 i = 0;
4961 /* minimal command environment */
4962 envp[i++] = "HOME=/";
4963 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
4964 envp[i] = NULL;
4965
4966 /* Drop the lock while we invoke the usermode helper,
4967 * since the exec could involve hitting disk and hence
4968 * be a slow process */
4969 mutex_unlock(&cgroup_mutex);
4970 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
81a6a5cd 4971 mutex_lock(&cgroup_mutex);
e788e066
PM
4972 continue_free:
4973 kfree(pathbuf);
4974 kfree(agentbuf);
cdcc136f 4975 raw_spin_lock(&release_list_lock);
81a6a5cd 4976 }
cdcc136f 4977 raw_spin_unlock(&release_list_lock);
81a6a5cd
PM
4978 mutex_unlock(&cgroup_mutex);
4979}
8bab8dde
PM
4980
4981static int __init cgroup_disable(char *str)
4982{
30159ec7 4983 struct cgroup_subsys *ss;
8bab8dde 4984 char *token;
30159ec7 4985 int i;
8bab8dde
PM
4986
4987 while ((token = strsep(&str, ",")) != NULL) {
4988 if (!*token)
4989 continue;
be45c900 4990
3ed80a62 4991 for_each_subsys(ss, i) {
8bab8dde
PM
4992 if (!strcmp(token, ss->name)) {
4993 ss->disabled = 1;
4994 printk(KERN_INFO "Disabling %s control group"
4995 " subsystem\n", ss->name);
4996 break;
4997 }
4998 }
4999 }
5000 return 1;
5001}
5002__setup("cgroup_disable=", cgroup_disable);
38460b48 5003
b77d7b60 5004/**
35cf0836
TH
5005 * css_from_dir - get corresponding css from the dentry of a cgroup dir
5006 * @dentry: directory dentry of interest
5007 * @ss: subsystem of interest
b77d7b60 5008 *
87fb54f1
TH
5009 * Must be called under cgroup_mutex or RCU read lock. The caller is
5010 * responsible for pinning the returned css if it needs to be accessed
5011 * outside the critical section.
e5d1367f 5012 */
35cf0836
TH
5013struct cgroup_subsys_state *css_from_dir(struct dentry *dentry,
5014 struct cgroup_subsys *ss)
e5d1367f
SE
5015{
5016 struct cgroup *cgrp;
e5d1367f 5017
87fb54f1 5018 cgroup_assert_mutex_or_rcu_locked();
b77d7b60 5019
35cf0836
TH
5020 /* is @dentry a cgroup dir? */
5021 if (!dentry->d_inode ||
5022 dentry->d_inode->i_op != &cgroup_dir_inode_operations)
e5d1367f
SE
5023 return ERR_PTR(-EBADF);
5024
35cf0836 5025 cgrp = __d_cgrp(dentry);
ca8bdcaf 5026 return cgroup_css(cgrp, ss) ?: ERR_PTR(-ENOENT);
e5d1367f 5027}
e5d1367f 5028
1cb650b9
LZ
5029/**
5030 * css_from_id - lookup css by id
5031 * @id: the cgroup id
5032 * @ss: cgroup subsys to be looked into
5033 *
5034 * Returns the css if there's valid one with @id, otherwise returns NULL.
5035 * Should be called under rcu_read_lock().
5036 */
5037struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
5038{
5039 struct cgroup *cgrp;
5040
87fb54f1 5041 cgroup_assert_mutex_or_rcu_locked();
1cb650b9
LZ
5042
5043 cgrp = idr_find(&ss->root->cgroup_idr, id);
5044 if (cgrp)
d1625964 5045 return cgroup_css(cgrp, ss);
1cb650b9 5046 return NULL;
e5d1367f
SE
5047}
5048
fe693435 5049#ifdef CONFIG_CGROUP_DEBUG
eb95419b
TH
5050static struct cgroup_subsys_state *
5051debug_css_alloc(struct cgroup_subsys_state *parent_css)
fe693435
PM
5052{
5053 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5054
5055 if (!css)
5056 return ERR_PTR(-ENOMEM);
5057
5058 return css;
5059}
5060
eb95419b 5061static void debug_css_free(struct cgroup_subsys_state *css)
fe693435 5062{
eb95419b 5063 kfree(css);
fe693435
PM
5064}
5065
182446d0
TH
5066static u64 debug_taskcount_read(struct cgroup_subsys_state *css,
5067 struct cftype *cft)
fe693435 5068{
182446d0 5069 return cgroup_task_count(css->cgroup);
fe693435
PM
5070}
5071
182446d0
TH
5072static u64 current_css_set_read(struct cgroup_subsys_state *css,
5073 struct cftype *cft)
fe693435
PM
5074{
5075 return (u64)(unsigned long)current->cgroups;
5076}
5077
182446d0 5078static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css,
03c78cbe 5079 struct cftype *cft)
fe693435
PM
5080{
5081 u64 count;
5082
5083 rcu_read_lock();
a8ad805c 5084 count = atomic_read(&task_css_set(current)->refcount);
fe693435
PM
5085 rcu_read_unlock();
5086 return count;
5087}
5088
2da8ca82 5089static int current_css_set_cg_links_read(struct seq_file *seq, void *v)
7717f7ba 5090{
69d0206c 5091 struct cgrp_cset_link *link;
5abb8855 5092 struct css_set *cset;
7717f7ba
PM
5093
5094 read_lock(&css_set_lock);
5095 rcu_read_lock();
5abb8855 5096 cset = rcu_dereference(current->cgroups);
69d0206c 5097 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba
PM
5098 struct cgroup *c = link->cgrp;
5099 const char *name;
5100
5101 if (c->dentry)
5102 name = c->dentry->d_name.name;
5103 else
5104 name = "?";
2c6ab6d2
PM
5105 seq_printf(seq, "Root %d group %s\n",
5106 c->root->hierarchy_id, name);
7717f7ba
PM
5107 }
5108 rcu_read_unlock();
5109 read_unlock(&css_set_lock);
5110 return 0;
5111}
5112
5113#define MAX_TASKS_SHOWN_PER_CSS 25
2da8ca82 5114static int cgroup_css_links_read(struct seq_file *seq, void *v)
7717f7ba 5115{
2da8ca82 5116 struct cgroup_subsys_state *css = seq_css(seq);
69d0206c 5117 struct cgrp_cset_link *link;
7717f7ba
PM
5118
5119 read_lock(&css_set_lock);
182446d0 5120 list_for_each_entry(link, &css->cgroup->cset_links, cset_link) {
69d0206c 5121 struct css_set *cset = link->cset;
7717f7ba
PM
5122 struct task_struct *task;
5123 int count = 0;
5abb8855
TH
5124 seq_printf(seq, "css_set %p\n", cset);
5125 list_for_each_entry(task, &cset->tasks, cg_list) {
7717f7ba
PM
5126 if (count++ > MAX_TASKS_SHOWN_PER_CSS) {
5127 seq_puts(seq, " ...\n");
5128 break;
5129 } else {
5130 seq_printf(seq, " task %d\n",
5131 task_pid_vnr(task));
5132 }
5133 }
5134 }
5135 read_unlock(&css_set_lock);
5136 return 0;
5137}
5138
182446d0 5139static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft)
fe693435 5140{
182446d0 5141 return test_bit(CGRP_RELEASABLE, &css->cgroup->flags);
fe693435
PM
5142}
5143
5144static struct cftype debug_files[] = {
fe693435
PM
5145 {
5146 .name = "taskcount",
5147 .read_u64 = debug_taskcount_read,
5148 },
5149
5150 {
5151 .name = "current_css_set",
5152 .read_u64 = current_css_set_read,
5153 },
5154
5155 {
5156 .name = "current_css_set_refcount",
5157 .read_u64 = current_css_set_refcount_read,
5158 },
5159
7717f7ba
PM
5160 {
5161 .name = "current_css_set_cg_links",
2da8ca82 5162 .seq_show = current_css_set_cg_links_read,
7717f7ba
PM
5163 },
5164
5165 {
5166 .name = "cgroup_css_links",
2da8ca82 5167 .seq_show = cgroup_css_links_read,
7717f7ba
PM
5168 },
5169
fe693435
PM
5170 {
5171 .name = "releasable",
5172 .read_u64 = releasable_read,
5173 },
fe693435 5174
4baf6e33
TH
5175 { } /* terminate */
5176};
fe693435 5177
073219e9 5178struct cgroup_subsys debug_cgrp_subsys = {
92fb9748
TH
5179 .css_alloc = debug_css_alloc,
5180 .css_free = debug_css_free,
4baf6e33 5181 .base_cftypes = debug_files,
fe693435
PM
5182};
5183#endif /* CONFIG_CGROUP_DEBUG */