]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - kernel/cgroup.c
cgroup: reorganize cgroup bootstrapping
[mirror_ubuntu-zesty-kernel.git] / kernel / cgroup.c
CommitLineData
ddbcc7e8 1/*
ddbcc7e8
PM
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
0dea1168
KS
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
ddbcc7e8
PM
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29#include <linux/cgroup.h>
2ce9738b 30#include <linux/cred.h>
c6d57f33 31#include <linux/ctype.h>
ddbcc7e8 32#include <linux/errno.h>
2ce9738b 33#include <linux/init_task.h>
ddbcc7e8
PM
34#include <linux/kernel.h>
35#include <linux/list.h>
36#include <linux/mm.h>
37#include <linux/mutex.h>
38#include <linux/mount.h>
39#include <linux/pagemap.h>
a424316c 40#include <linux/proc_fs.h>
ddbcc7e8
PM
41#include <linux/rcupdate.h>
42#include <linux/sched.h>
ddbcc7e8 43#include <linux/slab.h>
ddbcc7e8 44#include <linux/spinlock.h>
96d365e0 45#include <linux/rwsem.h>
ddbcc7e8 46#include <linux/string.h>
bbcb81d0 47#include <linux/sort.h>
81a6a5cd 48#include <linux/kmod.h>
846c7bb0
BS
49#include <linux/delayacct.h>
50#include <linux/cgroupstats.h>
0ac801fe 51#include <linux/hashtable.h>
096b7fe0 52#include <linux/pid_namespace.h>
2c6ab6d2 53#include <linux/idr.h>
d1d9fd33 54#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
c4c27fbd 55#include <linux/kthread.h>
776f02fa 56#include <linux/delay.h>
846c7bb0 57
60063497 58#include <linux/atomic.h>
ddbcc7e8 59
b1a21367
TH
60/*
61 * pidlists linger the following amount before being destroyed. The goal
62 * is avoiding frequent destruction in the middle of consecutive read calls
63 * Expiring in the middle is a performance problem not a correctness one.
64 * 1 sec should be enough.
65 */
66#define CGROUP_PIDLIST_DESTROY_DELAY HZ
67
8d7e6fb0
TH
68#define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
69 MAX_CFTYPE_NAME + 2)
70
ace2bee8
TH
71/*
72 * cgroup_tree_mutex nests above cgroup_mutex and protects cftypes, file
73 * creation/removal and hierarchy changing operations including cgroup
74 * creation, removal, css association and controller rebinding. This outer
75 * lock is needed mainly to resolve the circular dependency between kernfs
76 * active ref and cgroup_mutex. cgroup_tree_mutex nests above both.
77 */
78static DEFINE_MUTEX(cgroup_tree_mutex);
79
e25e2cbb
TH
80/*
81 * cgroup_mutex is the master lock. Any modification to cgroup or its
82 * hierarchy must be performed while holding it.
0e1d768f
TH
83 *
84 * css_set_rwsem protects task->cgroups pointer, the list of css_set
85 * objects, and the chain of tasks off each css_set.
86 *
87 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
88 * cgroup.h can use them for lockdep annotations.
e25e2cbb 89 */
2219449a
TH
90#ifdef CONFIG_PROVE_RCU
91DEFINE_MUTEX(cgroup_mutex);
0e1d768f
TH
92DECLARE_RWSEM(css_set_rwsem);
93EXPORT_SYMBOL_GPL(cgroup_mutex);
94EXPORT_SYMBOL_GPL(css_set_rwsem);
2219449a 95#else
81a6a5cd 96static DEFINE_MUTEX(cgroup_mutex);
0e1d768f 97static DECLARE_RWSEM(css_set_rwsem);
2219449a
TH
98#endif
99
69e943b7
TH
100/*
101 * Protects cgroup_subsys->release_agent_path. Modifying it also requires
102 * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock.
103 */
104static DEFINE_SPINLOCK(release_agent_path_lock);
105
ace2bee8 106#define cgroup_assert_mutexes_or_rcu_locked() \
87fb54f1 107 rcu_lockdep_assert(rcu_read_lock_held() || \
ace2bee8 108 lockdep_is_held(&cgroup_tree_mutex) || \
87fb54f1 109 lockdep_is_held(&cgroup_mutex), \
ace2bee8 110 "cgroup_[tree_]mutex or RCU read lock required");
87fb54f1 111
e5fca243
TH
112/*
113 * cgroup destruction makes heavy use of work items and there can be a lot
114 * of concurrent destructions. Use a separate workqueue so that cgroup
115 * destruction work items don't end up filling up max_active of system_wq
116 * which may lead to deadlock.
117 */
118static struct workqueue_struct *cgroup_destroy_wq;
119
b1a21367
TH
120/*
121 * pidlist destructions need to be flushed on cgroup destruction. Use a
122 * separate workqueue as flush domain.
123 */
124static struct workqueue_struct *cgroup_pidlist_destroy_wq;
125
3ed80a62 126/* generate an array of cgroup subsystem pointers */
073219e9 127#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
3ed80a62 128static struct cgroup_subsys *cgroup_subsys[] = {
ddbcc7e8
PM
129#include <linux/cgroup_subsys.h>
130};
073219e9
TH
131#undef SUBSYS
132
133/* array of cgroup subsystem names */
134#define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
135static const char *cgroup_subsys_name[] = {
136#include <linux/cgroup_subsys.h>
137};
138#undef SUBSYS
ddbcc7e8 139
ddbcc7e8 140/*
9871bf95
TH
141 * The dummy hierarchy, reserved for the subsystems that are otherwise
142 * unattached - it never has more than a single cgroup, and all tasks are
143 * part of that cgroup.
ddbcc7e8 144 */
9871bf95
TH
145static struct cgroupfs_root cgroup_dummy_root;
146
147/* dummy_top is a shorthand for the dummy hierarchy's top cgroup */
148static struct cgroup * const cgroup_dummy_top = &cgroup_dummy_root.top_cgroup;
ddbcc7e8
PM
149
150/* The list of hierarchy roots */
151
9871bf95
TH
152static LIST_HEAD(cgroup_roots);
153static int cgroup_root_count;
ddbcc7e8 154
3417ae1f 155/* hierarchy ID allocation and mapping, protected by cgroup_mutex */
1a574231 156static DEFINE_IDR(cgroup_hierarchy_idr);
2c6ab6d2 157
794611a1
LZ
158/*
159 * Assign a monotonically increasing serial number to cgroups. It
160 * guarantees cgroups with bigger numbers are newer than those with smaller
161 * numbers. Also, as cgroups are always appended to the parent's
162 * ->children list, it guarantees that sibling cgroups are always sorted in
00356bd5
TH
163 * the ascending serial number order on the list. Protected by
164 * cgroup_mutex.
794611a1 165 */
00356bd5 166static u64 cgroup_serial_nr_next = 1;
794611a1 167
ddbcc7e8 168/* This flag indicates whether tasks in the fork and exit paths should
a043e3b2
LZ
169 * check for fork/exit handlers to call. This avoids us having to do
170 * extra work in the fork/exit path if none of the subsystems need to
171 * be called.
ddbcc7e8 172 */
8947f9d5 173static int need_forkexit_callback __read_mostly;
ddbcc7e8 174
628f7cd4
TH
175static struct cftype cgroup_base_files[];
176
59f5296b 177static void cgroup_put(struct cgroup *cgrp);
f2e85d57
TH
178static int rebind_subsystems(struct cgroupfs_root *root,
179 unsigned long added_mask, unsigned removed_mask);
f20104de 180static void cgroup_destroy_css_killed(struct cgroup *cgrp);
42809dd4 181static int cgroup_destroy_locked(struct cgroup *cgrp);
2bb566cb
TH
182static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
183 bool is_add);
b1a21367 184static void cgroup_pidlist_destroy_all(struct cgroup *cgrp);
42809dd4 185
95109b62
TH
186/**
187 * cgroup_css - obtain a cgroup's css for the specified subsystem
188 * @cgrp: the cgroup of interest
ca8bdcaf 189 * @ss: the subsystem of interest (%NULL returns the dummy_css)
95109b62 190 *
ca8bdcaf
TH
191 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
192 * function must be called either under cgroup_mutex or rcu_read_lock() and
193 * the caller is responsible for pinning the returned css if it wants to
194 * keep accessing it outside the said locks. This function may return
195 * %NULL if @cgrp doesn't have @subsys_id enabled.
95109b62
TH
196 */
197static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
ca8bdcaf 198 struct cgroup_subsys *ss)
95109b62 199{
ca8bdcaf 200 if (ss)
aec25020 201 return rcu_dereference_check(cgrp->subsys[ss->id],
ace2bee8
TH
202 lockdep_is_held(&cgroup_tree_mutex) ||
203 lockdep_is_held(&cgroup_mutex));
ca8bdcaf
TH
204 else
205 return &cgrp->dummy_css;
95109b62 206}
42809dd4 207
ddbcc7e8 208/* convenient tests for these bits */
54766d4a 209static inline bool cgroup_is_dead(const struct cgroup *cgrp)
ddbcc7e8 210{
54766d4a 211 return test_bit(CGRP_DEAD, &cgrp->flags);
ddbcc7e8
PM
212}
213
59f5296b
TH
214struct cgroup_subsys_state *seq_css(struct seq_file *seq)
215{
2bd59d48
TH
216 struct kernfs_open_file *of = seq->private;
217 struct cgroup *cgrp = of->kn->parent->priv;
218 struct cftype *cft = seq_cft(seq);
219
220 /*
221 * This is open and unprotected implementation of cgroup_css().
222 * seq_css() is only called from a kernfs file operation which has
223 * an active reference on the file. Because all the subsystem
224 * files are drained before a css is disassociated with a cgroup,
225 * the matching css from the cgroup's subsys table is guaranteed to
226 * be and stay valid until the enclosing operation is complete.
227 */
228 if (cft->ss)
229 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
230 else
231 return &cgrp->dummy_css;
59f5296b
TH
232}
233EXPORT_SYMBOL_GPL(seq_css);
234
78574cf9
LZ
235/**
236 * cgroup_is_descendant - test ancestry
237 * @cgrp: the cgroup to be tested
238 * @ancestor: possible ancestor of @cgrp
239 *
240 * Test whether @cgrp is a descendant of @ancestor. It also returns %true
241 * if @cgrp == @ancestor. This function is safe to call as long as @cgrp
242 * and @ancestor are accessible.
243 */
244bool cgroup_is_descendant(struct cgroup *cgrp, struct cgroup *ancestor)
245{
246 while (cgrp) {
247 if (cgrp == ancestor)
248 return true;
249 cgrp = cgrp->parent;
250 }
251 return false;
252}
ddbcc7e8 253
e9685a03 254static int cgroup_is_releasable(const struct cgroup *cgrp)
81a6a5cd
PM
255{
256 const int bits =
bd89aabc
PM
257 (1 << CGRP_RELEASABLE) |
258 (1 << CGRP_NOTIFY_ON_RELEASE);
259 return (cgrp->flags & bits) == bits;
81a6a5cd
PM
260}
261
e9685a03 262static int notify_on_release(const struct cgroup *cgrp)
81a6a5cd 263{
bd89aabc 264 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
81a6a5cd
PM
265}
266
1c6727af
TH
267/**
268 * for_each_css - iterate all css's of a cgroup
269 * @css: the iteration cursor
270 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
271 * @cgrp: the target cgroup to iterate css's of
272 *
273 * Should be called under cgroup_mutex.
274 */
275#define for_each_css(css, ssid, cgrp) \
276 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
277 if (!((css) = rcu_dereference_check( \
278 (cgrp)->subsys[(ssid)], \
ace2bee8 279 lockdep_is_held(&cgroup_tree_mutex) || \
1c6727af
TH
280 lockdep_is_held(&cgroup_mutex)))) { } \
281 else
282
30159ec7 283/**
3ed80a62 284 * for_each_subsys - iterate all enabled cgroup subsystems
30159ec7 285 * @ss: the iteration cursor
780cd8b3 286 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
30159ec7 287 */
780cd8b3 288#define for_each_subsys(ss, ssid) \
3ed80a62
TH
289 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT && \
290 (((ss) = cgroup_subsys[ssid]) || true); (ssid)++)
30159ec7 291
5549c497
TH
292/* iterate across the active hierarchies */
293#define for_each_active_root(root) \
294 list_for_each_entry((root), &cgroup_roots, root_list)
ddbcc7e8 295
7ae1bad9
TH
296/**
297 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
298 * @cgrp: the cgroup to be checked for liveness
299 *
47cfcd09
TH
300 * On success, returns true; the mutex should be later unlocked. On
301 * failure returns false with no lock held.
7ae1bad9 302 */
b9777cf8 303static bool cgroup_lock_live_group(struct cgroup *cgrp)
7ae1bad9
TH
304{
305 mutex_lock(&cgroup_mutex);
54766d4a 306 if (cgroup_is_dead(cgrp)) {
7ae1bad9
TH
307 mutex_unlock(&cgroup_mutex);
308 return false;
309 }
310 return true;
311}
7ae1bad9 312
81a6a5cd
PM
313/* the list of cgroups eligible for automatic release. Protected by
314 * release_list_lock */
315static LIST_HEAD(release_list);
cdcc136f 316static DEFINE_RAW_SPINLOCK(release_list_lock);
81a6a5cd
PM
317static void cgroup_release_agent(struct work_struct *work);
318static DECLARE_WORK(release_agent_work, cgroup_release_agent);
bd89aabc 319static void check_for_release(struct cgroup *cgrp);
81a6a5cd 320
69d0206c
TH
321/*
322 * A cgroup can be associated with multiple css_sets as different tasks may
323 * belong to different cgroups on different hierarchies. In the other
324 * direction, a css_set is naturally associated with multiple cgroups.
325 * This M:N relationship is represented by the following link structure
326 * which exists for each association and allows traversing the associations
327 * from both sides.
328 */
329struct cgrp_cset_link {
330 /* the cgroup and css_set this link associates */
331 struct cgroup *cgrp;
332 struct css_set *cset;
333
334 /* list of cgrp_cset_links anchored at cgrp->cset_links */
335 struct list_head cset_link;
336
337 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
338 struct list_head cgrp_link;
817929ec
PM
339};
340
172a2c06
TH
341/*
342 * The default css_set - used by init and its children prior to any
817929ec
PM
343 * hierarchies being mounted. It contains a pointer to the root state
344 * for each subsystem. Also used to anchor the list of css_sets. Not
345 * reference-counted, to improve performance when child cgroups
346 * haven't been created.
347 */
172a2c06
TH
348static struct css_set init_css_set = {
349 .refcount = ATOMIC_INIT(1),
350 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links),
351 .tasks = LIST_HEAD_INIT(init_css_set.tasks),
352 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks),
353 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node),
354 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node),
355};
817929ec 356
69d0206c 357static struct cgrp_cset_link init_cgrp_cset_link;
172a2c06 358static int css_set_count = 1; /* 1 for init_css_set */
817929ec 359
7717f7ba
PM
360/*
361 * hash table for cgroup groups. This improves the performance to find
362 * an existing css_set. This hash doesn't (currently) take into
363 * account cgroups in empty hierarchies.
364 */
472b1053 365#define CSS_SET_HASH_BITS 7
0ac801fe 366static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
472b1053 367
0ac801fe 368static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
472b1053 369{
0ac801fe 370 unsigned long key = 0UL;
30159ec7
TH
371 struct cgroup_subsys *ss;
372 int i;
472b1053 373
30159ec7 374 for_each_subsys(ss, i)
0ac801fe
LZ
375 key += (unsigned long)css[i];
376 key = (key >> 16) ^ key;
472b1053 377
0ac801fe 378 return key;
472b1053
LZ
379}
380
89c5509b 381static void put_css_set_locked(struct css_set *cset, bool taskexit)
b4f48b63 382{
69d0206c 383 struct cgrp_cset_link *link, *tmp_link;
5abb8855 384
89c5509b
TH
385 lockdep_assert_held(&css_set_rwsem);
386
387 if (!atomic_dec_and_test(&cset->refcount))
146aa1bd 388 return;
81a6a5cd 389
2c6ab6d2 390 /* This css_set is dead. unlink it and release cgroup refcounts */
5abb8855 391 hash_del(&cset->hlist);
2c6ab6d2
PM
392 css_set_count--;
393
69d0206c 394 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
2c6ab6d2 395 struct cgroup *cgrp = link->cgrp;
5abb8855 396
69d0206c
TH
397 list_del(&link->cset_link);
398 list_del(&link->cgrp_link);
71b5707e 399
96d365e0 400 /* @cgrp can't go away while we're holding css_set_rwsem */
6f3d828f 401 if (list_empty(&cgrp->cset_links) && notify_on_release(cgrp)) {
81a6a5cd 402 if (taskexit)
bd89aabc
PM
403 set_bit(CGRP_RELEASABLE, &cgrp->flags);
404 check_for_release(cgrp);
81a6a5cd 405 }
2c6ab6d2
PM
406
407 kfree(link);
81a6a5cd 408 }
2c6ab6d2 409
5abb8855 410 kfree_rcu(cset, rcu_head);
b4f48b63
PM
411}
412
89c5509b
TH
413static void put_css_set(struct css_set *cset, bool taskexit)
414{
415 /*
416 * Ensure that the refcount doesn't hit zero while any readers
417 * can see it. Similar to atomic_dec_and_lock(), but for an
418 * rwlock
419 */
420 if (atomic_add_unless(&cset->refcount, -1, 1))
421 return;
422
423 down_write(&css_set_rwsem);
424 put_css_set_locked(cset, taskexit);
425 up_write(&css_set_rwsem);
426}
427
817929ec
PM
428/*
429 * refcounted get/put for css_set objects
430 */
5abb8855 431static inline void get_css_set(struct css_set *cset)
817929ec 432{
5abb8855 433 atomic_inc(&cset->refcount);
817929ec
PM
434}
435
b326f9d0 436/**
7717f7ba 437 * compare_css_sets - helper function for find_existing_css_set().
5abb8855
TH
438 * @cset: candidate css_set being tested
439 * @old_cset: existing css_set for a task
7717f7ba
PM
440 * @new_cgrp: cgroup that's being entered by the task
441 * @template: desired set of css pointers in css_set (pre-calculated)
442 *
6f4b7e63 443 * Returns true if "cset" matches "old_cset" except for the hierarchy
7717f7ba
PM
444 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
445 */
5abb8855
TH
446static bool compare_css_sets(struct css_set *cset,
447 struct css_set *old_cset,
7717f7ba
PM
448 struct cgroup *new_cgrp,
449 struct cgroup_subsys_state *template[])
450{
451 struct list_head *l1, *l2;
452
5abb8855 453 if (memcmp(template, cset->subsys, sizeof(cset->subsys))) {
7717f7ba
PM
454 /* Not all subsystems matched */
455 return false;
456 }
457
458 /*
459 * Compare cgroup pointers in order to distinguish between
460 * different cgroups in heirarchies with no subsystems. We
461 * could get by with just this check alone (and skip the
462 * memcmp above) but on most setups the memcmp check will
463 * avoid the need for this more expensive check on almost all
464 * candidates.
465 */
466
69d0206c
TH
467 l1 = &cset->cgrp_links;
468 l2 = &old_cset->cgrp_links;
7717f7ba 469 while (1) {
69d0206c 470 struct cgrp_cset_link *link1, *link2;
5abb8855 471 struct cgroup *cgrp1, *cgrp2;
7717f7ba
PM
472
473 l1 = l1->next;
474 l2 = l2->next;
475 /* See if we reached the end - both lists are equal length. */
69d0206c
TH
476 if (l1 == &cset->cgrp_links) {
477 BUG_ON(l2 != &old_cset->cgrp_links);
7717f7ba
PM
478 break;
479 } else {
69d0206c 480 BUG_ON(l2 == &old_cset->cgrp_links);
7717f7ba
PM
481 }
482 /* Locate the cgroups associated with these links. */
69d0206c
TH
483 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
484 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
485 cgrp1 = link1->cgrp;
486 cgrp2 = link2->cgrp;
7717f7ba 487 /* Hierarchies should be linked in the same order. */
5abb8855 488 BUG_ON(cgrp1->root != cgrp2->root);
7717f7ba
PM
489
490 /*
491 * If this hierarchy is the hierarchy of the cgroup
492 * that's changing, then we need to check that this
493 * css_set points to the new cgroup; if it's any other
494 * hierarchy, then this css_set should point to the
495 * same cgroup as the old css_set.
496 */
5abb8855
TH
497 if (cgrp1->root == new_cgrp->root) {
498 if (cgrp1 != new_cgrp)
7717f7ba
PM
499 return false;
500 } else {
5abb8855 501 if (cgrp1 != cgrp2)
7717f7ba
PM
502 return false;
503 }
504 }
505 return true;
506}
507
b326f9d0
TH
508/**
509 * find_existing_css_set - init css array and find the matching css_set
510 * @old_cset: the css_set that we're using before the cgroup transition
511 * @cgrp: the cgroup that we're moving into
512 * @template: out param for the new set of csses, should be clear on entry
817929ec 513 */
5abb8855
TH
514static struct css_set *find_existing_css_set(struct css_set *old_cset,
515 struct cgroup *cgrp,
516 struct cgroup_subsys_state *template[])
b4f48b63 517{
bd89aabc 518 struct cgroupfs_root *root = cgrp->root;
30159ec7 519 struct cgroup_subsys *ss;
5abb8855 520 struct css_set *cset;
0ac801fe 521 unsigned long key;
b326f9d0 522 int i;
817929ec 523
aae8aab4
BB
524 /*
525 * Build the set of subsystem state objects that we want to see in the
526 * new css_set. while subsystems can change globally, the entries here
527 * won't change, so no need for locking.
528 */
30159ec7 529 for_each_subsys(ss, i) {
a1a71b45 530 if (root->subsys_mask & (1UL << i)) {
817929ec
PM
531 /* Subsystem is in this hierarchy. So we want
532 * the subsystem state from the new
533 * cgroup */
ca8bdcaf 534 template[i] = cgroup_css(cgrp, ss);
817929ec
PM
535 } else {
536 /* Subsystem is not in this hierarchy, so we
537 * don't want to change the subsystem state */
5abb8855 538 template[i] = old_cset->subsys[i];
817929ec
PM
539 }
540 }
541
0ac801fe 542 key = css_set_hash(template);
5abb8855
TH
543 hash_for_each_possible(css_set_table, cset, hlist, key) {
544 if (!compare_css_sets(cset, old_cset, cgrp, template))
7717f7ba
PM
545 continue;
546
547 /* This css_set matches what we need */
5abb8855 548 return cset;
472b1053 549 }
817929ec
PM
550
551 /* No existing cgroup group matched */
552 return NULL;
553}
554
69d0206c 555static void free_cgrp_cset_links(struct list_head *links_to_free)
36553434 556{
69d0206c 557 struct cgrp_cset_link *link, *tmp_link;
36553434 558
69d0206c
TH
559 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
560 list_del(&link->cset_link);
36553434
LZ
561 kfree(link);
562 }
563}
564
69d0206c
TH
565/**
566 * allocate_cgrp_cset_links - allocate cgrp_cset_links
567 * @count: the number of links to allocate
568 * @tmp_links: list_head the allocated links are put on
569 *
570 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
571 * through ->cset_link. Returns 0 on success or -errno.
817929ec 572 */
69d0206c 573static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
817929ec 574{
69d0206c 575 struct cgrp_cset_link *link;
817929ec 576 int i;
69d0206c
TH
577
578 INIT_LIST_HEAD(tmp_links);
579
817929ec 580 for (i = 0; i < count; i++) {
f4f4be2b 581 link = kzalloc(sizeof(*link), GFP_KERNEL);
817929ec 582 if (!link) {
69d0206c 583 free_cgrp_cset_links(tmp_links);
817929ec
PM
584 return -ENOMEM;
585 }
69d0206c 586 list_add(&link->cset_link, tmp_links);
817929ec
PM
587 }
588 return 0;
589}
590
c12f65d4
LZ
591/**
592 * link_css_set - a helper function to link a css_set to a cgroup
69d0206c 593 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
5abb8855 594 * @cset: the css_set to be linked
c12f65d4
LZ
595 * @cgrp: the destination cgroup
596 */
69d0206c
TH
597static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
598 struct cgroup *cgrp)
c12f65d4 599{
69d0206c 600 struct cgrp_cset_link *link;
c12f65d4 601
69d0206c
TH
602 BUG_ON(list_empty(tmp_links));
603 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
604 link->cset = cset;
7717f7ba 605 link->cgrp = cgrp;
69d0206c 606 list_move(&link->cset_link, &cgrp->cset_links);
7717f7ba
PM
607 /*
608 * Always add links to the tail of the list so that the list
609 * is sorted by order of hierarchy creation
610 */
69d0206c 611 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
c12f65d4
LZ
612}
613
b326f9d0
TH
614/**
615 * find_css_set - return a new css_set with one cgroup updated
616 * @old_cset: the baseline css_set
617 * @cgrp: the cgroup to be updated
618 *
619 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
620 * substituted into the appropriate hierarchy.
817929ec 621 */
5abb8855
TH
622static struct css_set *find_css_set(struct css_set *old_cset,
623 struct cgroup *cgrp)
817929ec 624{
b326f9d0 625 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
5abb8855 626 struct css_set *cset;
69d0206c
TH
627 struct list_head tmp_links;
628 struct cgrp_cset_link *link;
0ac801fe 629 unsigned long key;
472b1053 630
b326f9d0
TH
631 lockdep_assert_held(&cgroup_mutex);
632
817929ec
PM
633 /* First see if we already have a cgroup group that matches
634 * the desired set */
96d365e0 635 down_read(&css_set_rwsem);
5abb8855
TH
636 cset = find_existing_css_set(old_cset, cgrp, template);
637 if (cset)
638 get_css_set(cset);
96d365e0 639 up_read(&css_set_rwsem);
817929ec 640
5abb8855
TH
641 if (cset)
642 return cset;
817929ec 643
f4f4be2b 644 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
5abb8855 645 if (!cset)
817929ec
PM
646 return NULL;
647
69d0206c 648 /* Allocate all the cgrp_cset_link objects that we'll need */
9871bf95 649 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
5abb8855 650 kfree(cset);
817929ec
PM
651 return NULL;
652 }
653
5abb8855 654 atomic_set(&cset->refcount, 1);
69d0206c 655 INIT_LIST_HEAD(&cset->cgrp_links);
5abb8855 656 INIT_LIST_HEAD(&cset->tasks);
c7561128 657 INIT_LIST_HEAD(&cset->mg_tasks);
1958d2d5 658 INIT_LIST_HEAD(&cset->mg_preload_node);
b3dc094e 659 INIT_LIST_HEAD(&cset->mg_node);
5abb8855 660 INIT_HLIST_NODE(&cset->hlist);
817929ec
PM
661
662 /* Copy the set of subsystem state objects generated in
663 * find_existing_css_set() */
5abb8855 664 memcpy(cset->subsys, template, sizeof(cset->subsys));
817929ec 665
96d365e0 666 down_write(&css_set_rwsem);
817929ec 667 /* Add reference counts and links from the new css_set. */
69d0206c 668 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
7717f7ba 669 struct cgroup *c = link->cgrp;
69d0206c 670
7717f7ba
PM
671 if (c->root == cgrp->root)
672 c = cgrp;
69d0206c 673 link_css_set(&tmp_links, cset, c);
7717f7ba 674 }
817929ec 675
69d0206c 676 BUG_ON(!list_empty(&tmp_links));
817929ec 677
817929ec 678 css_set_count++;
472b1053
LZ
679
680 /* Add this cgroup group to the hash table */
5abb8855
TH
681 key = css_set_hash(cset->subsys);
682 hash_add(css_set_table, &cset->hlist, key);
472b1053 683
96d365e0 684 up_write(&css_set_rwsem);
817929ec 685
5abb8855 686 return cset;
b4f48b63
PM
687}
688
2bd59d48
TH
689static struct cgroupfs_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
690{
691 struct cgroup *top_cgrp = kf_root->kn->priv;
692
693 return top_cgrp->root;
694}
695
f2e85d57
TH
696static int cgroup_init_root_id(struct cgroupfs_root *root, int start, int end)
697{
698 int id;
699
700 lockdep_assert_held(&cgroup_mutex);
701
702 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, start, end,
703 GFP_KERNEL);
704 if (id < 0)
705 return id;
706
707 root->hierarchy_id = id;
708 return 0;
709}
710
711static void cgroup_exit_root_id(struct cgroupfs_root *root)
712{
713 lockdep_assert_held(&cgroup_mutex);
714
715 if (root->hierarchy_id) {
716 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
717 root->hierarchy_id = 0;
718 }
719}
720
721static void cgroup_free_root(struct cgroupfs_root *root)
722{
723 if (root) {
724 /* hierarhcy ID shoulid already have been released */
725 WARN_ON_ONCE(root->hierarchy_id);
726
727 idr_destroy(&root->cgroup_idr);
728 kfree(root);
729 }
730}
731
776f02fa 732static void cgroup_destroy_root(struct cgroupfs_root *root)
59f5296b 733{
f2e85d57
TH
734 struct cgroup *cgrp = &root->top_cgroup;
735 struct cgrp_cset_link *link, *tmp_link;
f2e85d57 736
2bd59d48 737 mutex_lock(&cgroup_tree_mutex);
2bd59d48 738 mutex_lock(&cgroup_mutex);
f2e85d57 739
776f02fa 740 BUG_ON(atomic_read(&root->nr_cgrps));
f2e85d57
TH
741 BUG_ON(!list_empty(&cgrp->children));
742
f2e85d57 743 /* Rebind all subsystems back to the default hierarchy */
35585573 744 WARN_ON(rebind_subsystems(root, 0, root->subsys_mask));
f2e85d57
TH
745
746 /*
747 * Release all the links from cset_links to this hierarchy's
748 * root cgroup
749 */
96d365e0 750 down_write(&css_set_rwsem);
f2e85d57
TH
751
752 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
753 list_del(&link->cset_link);
754 list_del(&link->cgrp_link);
755 kfree(link);
756 }
96d365e0 757 up_write(&css_set_rwsem);
f2e85d57
TH
758
759 if (!list_empty(&root->root_list)) {
760 list_del(&root->root_list);
761 cgroup_root_count--;
762 }
763
764 cgroup_exit_root_id(root);
765
766 mutex_unlock(&cgroup_mutex);
767 mutex_unlock(&cgroup_tree_mutex);
f2e85d57 768
2bd59d48 769 kernfs_destroy_root(root->kf_root);
f2e85d57
TH
770 cgroup_free_root(root);
771}
772
ceb6a081
TH
773/* look up cgroup associated with given css_set on the specified hierarchy */
774static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
7717f7ba
PM
775 struct cgroupfs_root *root)
776{
7717f7ba
PM
777 struct cgroup *res = NULL;
778
96d365e0
TH
779 lockdep_assert_held(&cgroup_mutex);
780 lockdep_assert_held(&css_set_rwsem);
781
5abb8855 782 if (cset == &init_css_set) {
7717f7ba
PM
783 res = &root->top_cgroup;
784 } else {
69d0206c
TH
785 struct cgrp_cset_link *link;
786
787 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 788 struct cgroup *c = link->cgrp;
69d0206c 789
7717f7ba
PM
790 if (c->root == root) {
791 res = c;
792 break;
793 }
794 }
795 }
96d365e0 796
7717f7ba
PM
797 BUG_ON(!res);
798 return res;
799}
800
ceb6a081
TH
801/*
802 * Return the cgroup for "task" from the given hierarchy. Must be
803 * called with cgroup_mutex and css_set_rwsem held.
804 */
805static struct cgroup *task_cgroup_from_root(struct task_struct *task,
806 struct cgroupfs_root *root)
807{
808 /*
809 * No need to lock the task - since we hold cgroup_mutex the
810 * task can't change groups, so the only thing that can happen
811 * is that it exits and its css is set back to init_css_set.
812 */
813 return cset_cgroup_from_root(task_css_set(task), root);
814}
815
ddbcc7e8 816/*
ddbcc7e8
PM
817 * A task must hold cgroup_mutex to modify cgroups.
818 *
819 * Any task can increment and decrement the count field without lock.
820 * So in general, code holding cgroup_mutex can't rely on the count
821 * field not changing. However, if the count goes to zero, then only
956db3ca 822 * cgroup_attach_task() can increment it again. Because a count of zero
ddbcc7e8
PM
823 * means that no tasks are currently attached, therefore there is no
824 * way a task attached to that cgroup can fork (the other way to
825 * increment the count). So code holding cgroup_mutex can safely
826 * assume that if the count is zero, it will stay zero. Similarly, if
827 * a task holds cgroup_mutex on a cgroup with zero count, it
828 * knows that the cgroup won't be removed, as cgroup_rmdir()
829 * needs that mutex.
830 *
ddbcc7e8
PM
831 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
832 * (usually) take cgroup_mutex. These are the two most performance
833 * critical pieces of code here. The exception occurs on cgroup_exit(),
834 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
835 * is taken, and if the cgroup count is zero, a usermode call made
a043e3b2
LZ
836 * to the release agent with the name of the cgroup (path relative to
837 * the root of cgroup file system) as the argument.
ddbcc7e8
PM
838 *
839 * A cgroup can only be deleted if both its 'count' of using tasks
840 * is zero, and its list of 'children' cgroups is empty. Since all
841 * tasks in the system use _some_ cgroup, and since there is always at
842 * least one task in the system (init, pid == 1), therefore, top_cgroup
843 * always has either children cgroups and/or using tasks. So we don't
844 * need a special hack to ensure that top_cgroup cannot be deleted.
845 *
ddbcc7e8 846 * P.S. One more locking exception. RCU is used to guard the
956db3ca 847 * update of a tasks cgroup pointer by cgroup_attach_task()
ddbcc7e8
PM
848 */
849
628f7cd4 850static int cgroup_populate_dir(struct cgroup *cgrp, unsigned long subsys_mask);
2bd59d48 851static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
828c0950 852static const struct file_operations proc_cgroupstats_operations;
a424316c 853
8d7e6fb0
TH
854static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
855 char *buf)
856{
857 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
858 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
859 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
860 cft->ss->name, cft->name);
861 else
862 strncpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
863 return buf;
864}
865
f2e85d57
TH
866/**
867 * cgroup_file_mode - deduce file mode of a control file
868 * @cft: the control file in question
869 *
870 * returns cft->mode if ->mode is not 0
871 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
872 * returns S_IRUGO if it has only a read handler
873 * returns S_IWUSR if it has only a write hander
874 */
875static umode_t cgroup_file_mode(const struct cftype *cft)
876{
877 umode_t mode = 0;
878
879 if (cft->mode)
880 return cft->mode;
881
882 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
883 mode |= S_IRUGO;
884
885 if (cft->write_u64 || cft->write_s64 || cft->write_string ||
886 cft->trigger)
887 mode |= S_IWUSR;
888
889 return mode;
890}
891
be445626
LZ
892static void cgroup_free_fn(struct work_struct *work)
893{
ea15f8cc 894 struct cgroup *cgrp = container_of(work, struct cgroup, destroy_work);
be445626 895
3c9c825b 896 atomic_dec(&cgrp->root->nr_cgrps);
b1a21367 897 cgroup_pidlist_destroy_all(cgrp);
be445626 898
776f02fa
TH
899 if (cgrp->parent) {
900 /*
901 * We get a ref to the parent, and put the ref when this
902 * cgroup is being freed, so it's guaranteed that the
903 * parent won't be destroyed before its children.
904 */
905 cgroup_put(cgrp->parent);
906 kernfs_put(cgrp->kn);
907 kfree(cgrp);
908 } else {
909 /*
910 * This is top cgroup's refcnt reaching zero, which
911 * indicates that the root should be released.
912 */
913 cgroup_destroy_root(cgrp->root);
914 }
be445626
LZ
915}
916
917static void cgroup_free_rcu(struct rcu_head *head)
918{
919 struct cgroup *cgrp = container_of(head, struct cgroup, rcu_head);
920
ea15f8cc 921 INIT_WORK(&cgrp->destroy_work, cgroup_free_fn);
e5fca243 922 queue_work(cgroup_destroy_wq, &cgrp->destroy_work);
be445626
LZ
923}
924
59f5296b
TH
925static void cgroup_get(struct cgroup *cgrp)
926{
2bd59d48
TH
927 WARN_ON_ONCE(cgroup_is_dead(cgrp));
928 WARN_ON_ONCE(atomic_read(&cgrp->refcnt) <= 0);
929 atomic_inc(&cgrp->refcnt);
ddbcc7e8
PM
930}
931
59f5296b
TH
932static void cgroup_put(struct cgroup *cgrp)
933{
2bd59d48
TH
934 if (!atomic_dec_and_test(&cgrp->refcnt))
935 return;
776f02fa 936 if (WARN_ON_ONCE(cgrp->parent && !cgroup_is_dead(cgrp)))
2bd59d48 937 return;
59f5296b 938
2bd59d48
TH
939 /*
940 * XXX: cgrp->id is only used to look up css's. As cgroup and
941 * css's lifetimes will be decoupled, it should be made
942 * per-subsystem and moved to css->id so that lookups are
943 * successful until the target css is released.
944 */
945 mutex_lock(&cgroup_mutex);
946 idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
947 mutex_unlock(&cgroup_mutex);
948 cgrp->id = -1;
ddbcc7e8 949
2bd59d48 950 call_rcu(&cgrp->rcu_head, cgroup_free_rcu);
ddbcc7e8
PM
951}
952
2739d3cc 953static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
05ef1d7c 954{
2bd59d48 955 char name[CGROUP_FILE_NAME_MAX];
05ef1d7c 956
ace2bee8 957 lockdep_assert_held(&cgroup_tree_mutex);
2bd59d48 958 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
05ef1d7c
TH
959}
960
13af07df 961/**
628f7cd4 962 * cgroup_clear_dir - remove subsys files in a cgroup directory
8f89140a 963 * @cgrp: target cgroup
13af07df
AR
964 * @subsys_mask: mask of the subsystem ids whose files should be removed
965 */
628f7cd4 966static void cgroup_clear_dir(struct cgroup *cgrp, unsigned long subsys_mask)
05ef1d7c 967{
13af07df 968 struct cgroup_subsys *ss;
b420ba7d 969 int i;
05ef1d7c 970
b420ba7d 971 for_each_subsys(ss, i) {
0adb0704 972 struct cftype *cfts;
b420ba7d
TH
973
974 if (!test_bit(i, &subsys_mask))
13af07df 975 continue;
0adb0704
TH
976 list_for_each_entry(cfts, &ss->cfts, node)
977 cgroup_addrm_files(cgrp, cfts, false);
13af07df 978 }
ddbcc7e8
PM
979}
980
ddbcc7e8 981static int rebind_subsystems(struct cgroupfs_root *root,
a8a648c4 982 unsigned long added_mask, unsigned removed_mask)
ddbcc7e8 983{
bd89aabc 984 struct cgroup *cgrp = &root->top_cgroup;
30159ec7 985 struct cgroup_subsys *ss;
3126121f 986 int i, ret;
ddbcc7e8 987
ace2bee8
TH
988 lockdep_assert_held(&cgroup_tree_mutex);
989 lockdep_assert_held(&cgroup_mutex);
aae8aab4 990
ddbcc7e8 991 /* Check that any added subsystems are currently free */
3ed80a62
TH
992 for_each_subsys(ss, i)
993 if ((added_mask & (1 << i)) && ss->root != &cgroup_dummy_root)
994 return -EBUSY;
ddbcc7e8 995
3126121f
TH
996 ret = cgroup_populate_dir(cgrp, added_mask);
997 if (ret)
3ed80a62 998 return ret;
3126121f
TH
999
1000 /*
1001 * Nothing can fail from this point on. Remove files for the
1002 * removed subsystems and rebind each subsystem.
1003 */
4ac06017 1004 mutex_unlock(&cgroup_mutex);
3126121f 1005 cgroup_clear_dir(cgrp, removed_mask);
4ac06017 1006 mutex_lock(&cgroup_mutex);
ddbcc7e8 1007
30159ec7 1008 for_each_subsys(ss, i) {
ddbcc7e8 1009 unsigned long bit = 1UL << i;
30159ec7 1010
a1a71b45 1011 if (bit & added_mask) {
ddbcc7e8 1012 /* We're binding this subsystem to this hierarchy */
ca8bdcaf
TH
1013 BUG_ON(cgroup_css(cgrp, ss));
1014 BUG_ON(!cgroup_css(cgroup_dummy_top, ss));
1015 BUG_ON(cgroup_css(cgroup_dummy_top, ss)->cgroup != cgroup_dummy_top);
a8a648c4 1016
73e80ed8 1017 rcu_assign_pointer(cgrp->subsys[i],
ca8bdcaf
TH
1018 cgroup_css(cgroup_dummy_top, ss));
1019 cgroup_css(cgrp, ss)->cgroup = cgrp;
a8a648c4 1020
b2aa30f7 1021 ss->root = root;
ddbcc7e8 1022 if (ss->bind)
ca8bdcaf 1023 ss->bind(cgroup_css(cgrp, ss));
a8a648c4 1024
cf5d5941 1025 /* refcount was already taken, and we're keeping it */
a8a648c4 1026 root->subsys_mask |= bit;
a1a71b45 1027 } else if (bit & removed_mask) {
ddbcc7e8 1028 /* We're removing this subsystem */
ca8bdcaf
TH
1029 BUG_ON(cgroup_css(cgrp, ss) != cgroup_css(cgroup_dummy_top, ss));
1030 BUG_ON(cgroup_css(cgrp, ss)->cgroup != cgrp);
a8a648c4 1031
ddbcc7e8 1032 if (ss->bind)
ca8bdcaf 1033 ss->bind(cgroup_css(cgroup_dummy_top, ss));
73e80ed8 1034
ca8bdcaf 1035 cgroup_css(cgroup_dummy_top, ss)->cgroup = cgroup_dummy_top;
73e80ed8
TH
1036 RCU_INIT_POINTER(cgrp->subsys[i], NULL);
1037
9871bf95 1038 cgroup_subsys[i]->root = &cgroup_dummy_root;
a8a648c4 1039 root->subsys_mask &= ~bit;
ddbcc7e8
PM
1040 }
1041 }
ddbcc7e8 1042
2bd59d48 1043 kernfs_activate(cgrp->kn);
ddbcc7e8
PM
1044 return 0;
1045}
1046
2bd59d48
TH
1047static int cgroup_show_options(struct seq_file *seq,
1048 struct kernfs_root *kf_root)
ddbcc7e8 1049{
2bd59d48 1050 struct cgroupfs_root *root = cgroup_root_from_kf(kf_root);
ddbcc7e8 1051 struct cgroup_subsys *ss;
b85d2040 1052 int ssid;
ddbcc7e8 1053
b85d2040
TH
1054 for_each_subsys(ss, ssid)
1055 if (root->subsys_mask & (1 << ssid))
1056 seq_printf(seq, ",%s", ss->name);
873fe09e
TH
1057 if (root->flags & CGRP_ROOT_SANE_BEHAVIOR)
1058 seq_puts(seq, ",sane_behavior");
93438629 1059 if (root->flags & CGRP_ROOT_NOPREFIX)
ddbcc7e8 1060 seq_puts(seq, ",noprefix");
93438629 1061 if (root->flags & CGRP_ROOT_XATTR)
03b1cde6 1062 seq_puts(seq, ",xattr");
69e943b7
TH
1063
1064 spin_lock(&release_agent_path_lock);
81a6a5cd
PM
1065 if (strlen(root->release_agent_path))
1066 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
69e943b7
TH
1067 spin_unlock(&release_agent_path_lock);
1068
2260e7fc 1069 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->top_cgroup.flags))
97978e6d 1070 seq_puts(seq, ",clone_children");
c6d57f33
PM
1071 if (strlen(root->name))
1072 seq_printf(seq, ",name=%s", root->name);
ddbcc7e8
PM
1073 return 0;
1074}
1075
1076struct cgroup_sb_opts {
a1a71b45 1077 unsigned long subsys_mask;
ddbcc7e8 1078 unsigned long flags;
81a6a5cd 1079 char *release_agent;
2260e7fc 1080 bool cpuset_clone_children;
c6d57f33 1081 char *name;
2c6ab6d2
PM
1082 /* User explicitly requested empty subsystem */
1083 bool none;
ddbcc7e8
PM
1084};
1085
aae8aab4 1086/*
9871bf95
TH
1087 * Convert a hierarchy specifier into a bitmask of subsystems and
1088 * flags. Call with cgroup_mutex held to protect the cgroup_subsys[]
1089 * array. This function takes refcounts on subsystems to be used, unless it
1090 * returns error, in which case no refcounts are taken.
aae8aab4 1091 */
cf5d5941 1092static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
ddbcc7e8 1093{
32a8cf23
DL
1094 char *token, *o = data;
1095 bool all_ss = false, one_ss = false;
f9ab5b5b 1096 unsigned long mask = (unsigned long)-1;
30159ec7
TH
1097 struct cgroup_subsys *ss;
1098 int i;
f9ab5b5b 1099
aae8aab4
BB
1100 BUG_ON(!mutex_is_locked(&cgroup_mutex));
1101
f9ab5b5b 1102#ifdef CONFIG_CPUSETS
073219e9 1103 mask = ~(1UL << cpuset_cgrp_id);
f9ab5b5b 1104#endif
ddbcc7e8 1105
c6d57f33 1106 memset(opts, 0, sizeof(*opts));
ddbcc7e8
PM
1107
1108 while ((token = strsep(&o, ",")) != NULL) {
1109 if (!*token)
1110 return -EINVAL;
32a8cf23 1111 if (!strcmp(token, "none")) {
2c6ab6d2
PM
1112 /* Explicitly have no subsystems */
1113 opts->none = true;
32a8cf23
DL
1114 continue;
1115 }
1116 if (!strcmp(token, "all")) {
1117 /* Mutually exclusive option 'all' + subsystem name */
1118 if (one_ss)
1119 return -EINVAL;
1120 all_ss = true;
1121 continue;
1122 }
873fe09e
TH
1123 if (!strcmp(token, "__DEVEL__sane_behavior")) {
1124 opts->flags |= CGRP_ROOT_SANE_BEHAVIOR;
1125 continue;
1126 }
32a8cf23 1127 if (!strcmp(token, "noprefix")) {
93438629 1128 opts->flags |= CGRP_ROOT_NOPREFIX;
32a8cf23
DL
1129 continue;
1130 }
1131 if (!strcmp(token, "clone_children")) {
2260e7fc 1132 opts->cpuset_clone_children = true;
32a8cf23
DL
1133 continue;
1134 }
03b1cde6 1135 if (!strcmp(token, "xattr")) {
93438629 1136 opts->flags |= CGRP_ROOT_XATTR;
03b1cde6
AR
1137 continue;
1138 }
32a8cf23 1139 if (!strncmp(token, "release_agent=", 14)) {
81a6a5cd
PM
1140 /* Specifying two release agents is forbidden */
1141 if (opts->release_agent)
1142 return -EINVAL;
c6d57f33 1143 opts->release_agent =
e400c285 1144 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
81a6a5cd
PM
1145 if (!opts->release_agent)
1146 return -ENOMEM;
32a8cf23
DL
1147 continue;
1148 }
1149 if (!strncmp(token, "name=", 5)) {
c6d57f33
PM
1150 const char *name = token + 5;
1151 /* Can't specify an empty name */
1152 if (!strlen(name))
1153 return -EINVAL;
1154 /* Must match [\w.-]+ */
1155 for (i = 0; i < strlen(name); i++) {
1156 char c = name[i];
1157 if (isalnum(c))
1158 continue;
1159 if ((c == '.') || (c == '-') || (c == '_'))
1160 continue;
1161 return -EINVAL;
1162 }
1163 /* Specifying two names is forbidden */
1164 if (opts->name)
1165 return -EINVAL;
1166 opts->name = kstrndup(name,
e400c285 1167 MAX_CGROUP_ROOT_NAMELEN - 1,
c6d57f33
PM
1168 GFP_KERNEL);
1169 if (!opts->name)
1170 return -ENOMEM;
32a8cf23
DL
1171
1172 continue;
1173 }
1174
30159ec7 1175 for_each_subsys(ss, i) {
32a8cf23
DL
1176 if (strcmp(token, ss->name))
1177 continue;
1178 if (ss->disabled)
1179 continue;
1180
1181 /* Mutually exclusive option 'all' + subsystem name */
1182 if (all_ss)
1183 return -EINVAL;
a1a71b45 1184 set_bit(i, &opts->subsys_mask);
32a8cf23
DL
1185 one_ss = true;
1186
1187 break;
1188 }
1189 if (i == CGROUP_SUBSYS_COUNT)
1190 return -ENOENT;
1191 }
1192
1193 /*
1194 * If the 'all' option was specified select all the subsystems,
0d19ea86
LZ
1195 * otherwise if 'none', 'name=' and a subsystem name options
1196 * were not specified, let's default to 'all'
32a8cf23 1197 */
30159ec7
TH
1198 if (all_ss || (!one_ss && !opts->none && !opts->name))
1199 for_each_subsys(ss, i)
1200 if (!ss->disabled)
1201 set_bit(i, &opts->subsys_mask);
ddbcc7e8 1202
2c6ab6d2
PM
1203 /* Consistency checks */
1204
873fe09e
TH
1205 if (opts->flags & CGRP_ROOT_SANE_BEHAVIOR) {
1206 pr_warning("cgroup: sane_behavior: this is still under development and its behaviors will change, proceed at your own risk\n");
1207
d3ba07c3
TH
1208 if ((opts->flags & (CGRP_ROOT_NOPREFIX | CGRP_ROOT_XATTR)) ||
1209 opts->cpuset_clone_children || opts->release_agent ||
1210 opts->name) {
1211 pr_err("cgroup: sane_behavior: noprefix, xattr, clone_children, release_agent and name are not allowed\n");
873fe09e
TH
1212 return -EINVAL;
1213 }
873fe09e
TH
1214 }
1215
f9ab5b5b
LZ
1216 /*
1217 * Option noprefix was introduced just for backward compatibility
1218 * with the old cpuset, so we allow noprefix only if mounting just
1219 * the cpuset subsystem.
1220 */
93438629 1221 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
f9ab5b5b
LZ
1222 return -EINVAL;
1223
2c6ab6d2
PM
1224
1225 /* Can't specify "none" and some subsystems */
a1a71b45 1226 if (opts->subsys_mask && opts->none)
2c6ab6d2
PM
1227 return -EINVAL;
1228
1229 /*
1230 * We either have to specify by name or by subsystems. (So all
1231 * empty hierarchies must have a name).
1232 */
a1a71b45 1233 if (!opts->subsys_mask && !opts->name)
ddbcc7e8
PM
1234 return -EINVAL;
1235
1236 return 0;
1237}
1238
2bd59d48 1239static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
ddbcc7e8
PM
1240{
1241 int ret = 0;
2bd59d48 1242 struct cgroupfs_root *root = cgroup_root_from_kf(kf_root);
ddbcc7e8 1243 struct cgroup_sb_opts opts;
a1a71b45 1244 unsigned long added_mask, removed_mask;
ddbcc7e8 1245
873fe09e
TH
1246 if (root->flags & CGRP_ROOT_SANE_BEHAVIOR) {
1247 pr_err("cgroup: sane_behavior: remount is not allowed\n");
1248 return -EINVAL;
1249 }
1250
ace2bee8 1251 mutex_lock(&cgroup_tree_mutex);
ddbcc7e8
PM
1252 mutex_lock(&cgroup_mutex);
1253
1254 /* See what subsystems are wanted */
1255 ret = parse_cgroupfs_options(data, &opts);
1256 if (ret)
1257 goto out_unlock;
1258
a8a648c4 1259 if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
8b5a5a9d
TH
1260 pr_warning("cgroup: option changes via remount are deprecated (pid=%d comm=%s)\n",
1261 task_tgid_nr(current), current->comm);
1262
a1a71b45
AR
1263 added_mask = opts.subsys_mask & ~root->subsys_mask;
1264 removed_mask = root->subsys_mask & ~opts.subsys_mask;
13af07df 1265
cf5d5941 1266 /* Don't allow flags or name to change at remount */
0ce6cba3 1267 if (((opts.flags ^ root->flags) & CGRP_ROOT_OPTION_MASK) ||
cf5d5941 1268 (opts.name && strcmp(opts.name, root->name))) {
0ce6cba3
TH
1269 pr_err("cgroup: option or name mismatch, new: 0x%lx \"%s\", old: 0x%lx \"%s\"\n",
1270 opts.flags & CGRP_ROOT_OPTION_MASK, opts.name ?: "",
1271 root->flags & CGRP_ROOT_OPTION_MASK, root->name);
c6d57f33
PM
1272 ret = -EINVAL;
1273 goto out_unlock;
1274 }
1275
f172e67c 1276 /* remounting is not allowed for populated hierarchies */
3c9c825b 1277 if (!list_empty(&root->top_cgroup.children)) {
f172e67c 1278 ret = -EBUSY;
0670e08b 1279 goto out_unlock;
cf5d5941 1280 }
ddbcc7e8 1281
a8a648c4 1282 ret = rebind_subsystems(root, added_mask, removed_mask);
3126121f 1283 if (ret)
0670e08b 1284 goto out_unlock;
ddbcc7e8 1285
69e943b7
TH
1286 if (opts.release_agent) {
1287 spin_lock(&release_agent_path_lock);
81a6a5cd 1288 strcpy(root->release_agent_path, opts.release_agent);
69e943b7
TH
1289 spin_unlock(&release_agent_path_lock);
1290 }
ddbcc7e8 1291 out_unlock:
66bdc9cf 1292 kfree(opts.release_agent);
c6d57f33 1293 kfree(opts.name);
ddbcc7e8 1294 mutex_unlock(&cgroup_mutex);
ace2bee8 1295 mutex_unlock(&cgroup_tree_mutex);
ddbcc7e8
PM
1296 return ret;
1297}
1298
afeb0f9f
TH
1299/*
1300 * To reduce the fork() overhead for systems that are not actually using
1301 * their cgroups capability, we don't maintain the lists running through
1302 * each css_set to its tasks until we see the list actually used - in other
1303 * words after the first mount.
1304 */
1305static bool use_task_css_set_links __read_mostly;
1306
1307static void cgroup_enable_task_cg_lists(void)
1308{
1309 struct task_struct *p, *g;
1310
96d365e0 1311 down_write(&css_set_rwsem);
afeb0f9f
TH
1312
1313 if (use_task_css_set_links)
1314 goto out_unlock;
1315
1316 use_task_css_set_links = true;
1317
1318 /*
1319 * We need tasklist_lock because RCU is not safe against
1320 * while_each_thread(). Besides, a forking task that has passed
1321 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1322 * is not guaranteed to have its child immediately visible in the
1323 * tasklist if we walk through it with RCU.
1324 */
1325 read_lock(&tasklist_lock);
1326 do_each_thread(g, p) {
afeb0f9f
TH
1327 WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1328 task_css_set(p) != &init_css_set);
1329
1330 /*
1331 * We should check if the process is exiting, otherwise
1332 * it will race with cgroup_exit() in that the list
1333 * entry won't be deleted though the process has exited.
f153ad11
TH
1334 * Do it while holding siglock so that we don't end up
1335 * racing against cgroup_exit().
afeb0f9f 1336 */
f153ad11 1337 spin_lock_irq(&p->sighand->siglock);
eaf797ab
TH
1338 if (!(p->flags & PF_EXITING)) {
1339 struct css_set *cset = task_css_set(p);
1340
1341 list_add(&p->cg_list, &cset->tasks);
1342 get_css_set(cset);
1343 }
f153ad11 1344 spin_unlock_irq(&p->sighand->siglock);
afeb0f9f
TH
1345 } while_each_thread(g, p);
1346 read_unlock(&tasklist_lock);
1347out_unlock:
96d365e0 1348 up_write(&css_set_rwsem);
afeb0f9f
TH
1349}
1350
cc31edce
PM
1351static void init_cgroup_housekeeping(struct cgroup *cgrp)
1352{
2bd59d48 1353 atomic_set(&cgrp->refcnt, 1);
cc31edce
PM
1354 INIT_LIST_HEAD(&cgrp->sibling);
1355 INIT_LIST_HEAD(&cgrp->children);
69d0206c 1356 INIT_LIST_HEAD(&cgrp->cset_links);
cc31edce 1357 INIT_LIST_HEAD(&cgrp->release_list);
72a8cb30
BB
1358 INIT_LIST_HEAD(&cgrp->pidlists);
1359 mutex_init(&cgrp->pidlist_mutex);
67f4c36f 1360 cgrp->dummy_css.cgroup = cgrp;
cc31edce 1361}
c6d57f33 1362
172a2c06
TH
1363static void init_cgroup_root(struct cgroupfs_root *root,
1364 struct cgroup_sb_opts *opts)
ddbcc7e8 1365{
bd89aabc 1366 struct cgroup *cgrp = &root->top_cgroup;
b0ca5a84 1367
ddbcc7e8 1368 INIT_LIST_HEAD(&root->root_list);
3c9c825b 1369 atomic_set(&root->nr_cgrps, 1);
bd89aabc 1370 cgrp->root = root;
cc31edce 1371 init_cgroup_housekeeping(cgrp);
4e96ee8e 1372 idr_init(&root->cgroup_idr);
2c6ab6d2 1373
c6d57f33
PM
1374 root->flags = opts->flags;
1375 if (opts->release_agent)
1376 strcpy(root->release_agent_path, opts->release_agent);
1377 if (opts->name)
1378 strcpy(root->name, opts->name);
2260e7fc
TH
1379 if (opts->cpuset_clone_children)
1380 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->top_cgroup.flags);
c6d57f33
PM
1381}
1382
35585573 1383static int cgroup_setup_root(struct cgroupfs_root *root, unsigned long ss_mask)
d427dfeb
TH
1384{
1385 LIST_HEAD(tmp_links);
d427dfeb 1386 struct cgroup *root_cgrp = &root->top_cgroup;
d427dfeb 1387 struct css_set *cset;
d427dfeb
TH
1388 int i, ret;
1389
1390 lockdep_assert_held(&cgroup_tree_mutex);
1391 lockdep_assert_held(&cgroup_mutex);
d427dfeb
TH
1392
1393 ret = idr_alloc(&root->cgroup_idr, root_cgrp, 0, 1, GFP_KERNEL);
1394 if (ret < 0)
2bd59d48 1395 goto out;
d427dfeb
TH
1396 root_cgrp->id = ret;
1397
d427dfeb 1398 /*
96d365e0 1399 * We're accessing css_set_count without locking css_set_rwsem here,
d427dfeb
TH
1400 * but that's OK - it can only be increased by someone holding
1401 * cgroup_lock, and that's us. The worst that can happen is that we
1402 * have some link structures left over
1403 */
1404 ret = allocate_cgrp_cset_links(css_set_count, &tmp_links);
1405 if (ret)
2bd59d48 1406 goto out;
d427dfeb
TH
1407
1408 /* ID 0 is reserved for dummy root, 1 for unified hierarchy */
1409 ret = cgroup_init_root_id(root, 2, 0);
1410 if (ret)
2bd59d48 1411 goto out;
d427dfeb 1412
2bd59d48
TH
1413 root->kf_root = kernfs_create_root(&cgroup_kf_syscall_ops,
1414 KERNFS_ROOT_CREATE_DEACTIVATED,
1415 root_cgrp);
1416 if (IS_ERR(root->kf_root)) {
1417 ret = PTR_ERR(root->kf_root);
1418 goto exit_root_id;
1419 }
1420 root_cgrp->kn = root->kf_root->kn;
d427dfeb
TH
1421
1422 ret = cgroup_addrm_files(root_cgrp, cgroup_base_files, true);
1423 if (ret)
2bd59d48 1424 goto destroy_root;
d427dfeb 1425
35585573 1426 ret = rebind_subsystems(root, ss_mask, 0);
d427dfeb 1427 if (ret)
2bd59d48 1428 goto destroy_root;
d427dfeb
TH
1429
1430 /*
1431 * There must be no failure case after here, since rebinding takes
1432 * care of subsystems' refcounts, which are explicitly dropped in
1433 * the failure exit path.
1434 */
1435 list_add(&root->root_list, &cgroup_roots);
1436 cgroup_root_count++;
1437
1438 /*
1439 * Link the top cgroup in this hierarchy into all the css_set
1440 * objects.
1441 */
96d365e0 1442 down_write(&css_set_rwsem);
d427dfeb
TH
1443 hash_for_each(css_set_table, i, cset, hlist)
1444 link_css_set(&tmp_links, cset, root_cgrp);
96d365e0 1445 up_write(&css_set_rwsem);
d427dfeb
TH
1446
1447 BUG_ON(!list_empty(&root_cgrp->children));
3c9c825b 1448 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
d427dfeb 1449
2bd59d48 1450 kernfs_activate(root_cgrp->kn);
d427dfeb 1451 ret = 0;
2bd59d48 1452 goto out;
d427dfeb 1453
2bd59d48
TH
1454destroy_root:
1455 kernfs_destroy_root(root->kf_root);
1456 root->kf_root = NULL;
1457exit_root_id:
d427dfeb 1458 cgroup_exit_root_id(root);
2bd59d48 1459out:
d427dfeb
TH
1460 free_cgrp_cset_links(&tmp_links);
1461 return ret;
1462}
1463
f7e83571 1464static struct dentry *cgroup_mount(struct file_system_type *fs_type,
ddbcc7e8 1465 int flags, const char *unused_dev_name,
f7e83571 1466 void *data)
ddbcc7e8 1467{
2bd59d48 1468 struct cgroupfs_root *root;
ddbcc7e8 1469 struct cgroup_sb_opts opts;
2bd59d48 1470 struct dentry *dentry;
8e30e2b8 1471 int ret;
56fde9e0
TH
1472
1473 /*
1474 * The first time anyone tries to mount a cgroup, enable the list
1475 * linking each css_set to its tasks and fix up all existing tasks.
1476 */
1477 if (!use_task_css_set_links)
1478 cgroup_enable_task_cg_lists();
776f02fa 1479retry:
8e30e2b8 1480 mutex_lock(&cgroup_tree_mutex);
aae8aab4 1481 mutex_lock(&cgroup_mutex);
8e30e2b8
TH
1482
1483 /* First find the desired set of subsystems */
ddbcc7e8 1484 ret = parse_cgroupfs_options(data, &opts);
c6d57f33 1485 if (ret)
8e30e2b8 1486 goto out_unlock;
ddbcc7e8 1487
2bd59d48
TH
1488 /* look for a matching existing root */
1489 for_each_active_root(root) {
1490 bool name_match = false;
ddbcc7e8 1491
2bd59d48
TH
1492 /*
1493 * If we asked for a name then it must match. Also, if
1494 * name matches but sybsys_mask doesn't, we should fail.
1495 * Remember whether name matched.
1496 */
1497 if (opts.name) {
1498 if (strcmp(opts.name, root->name))
1499 continue;
1500 name_match = true;
1501 }
ddbcc7e8 1502
c6d57f33 1503 /*
2bd59d48
TH
1504 * If we asked for subsystems (or explicitly for no
1505 * subsystems) then they must match.
c6d57f33 1506 */
2bd59d48
TH
1507 if ((opts.subsys_mask || opts.none) &&
1508 (opts.subsys_mask != root->subsys_mask)) {
1509 if (!name_match)
1510 continue;
1511 ret = -EBUSY;
1512 goto out_unlock;
1513 }
873fe09e 1514
c7ba8287 1515 if ((root->flags ^ opts.flags) & CGRP_ROOT_OPTION_MASK) {
2a0ff3fb
JL
1516 if ((root->flags | opts.flags) & CGRP_ROOT_SANE_BEHAVIOR) {
1517 pr_err("cgroup: sane_behavior: new mount options should match the existing superblock\n");
1518 ret = -EINVAL;
8e30e2b8 1519 goto out_unlock;
2a0ff3fb
JL
1520 } else {
1521 pr_warning("cgroup: new mount options do not match the existing superblock, will be ignored\n");
1522 }
873fe09e 1523 }
2bd59d48 1524
776f02fa
TH
1525 /*
1526 * A root's lifetime is governed by its top cgroup. Zero
1527 * ref indicate that the root is being destroyed. Wait for
1528 * destruction to complete so that the subsystems are free.
1529 * We can use wait_queue for the wait but this path is
1530 * super cold. Let's just sleep for a bit and retry.
1531 */
1532 if (!atomic_inc_not_zero(&root->top_cgroup.refcnt)) {
1533 mutex_unlock(&cgroup_mutex);
1534 mutex_unlock(&cgroup_tree_mutex);
6534fd6c
LZ
1535 kfree(opts.release_agent);
1536 kfree(opts.name);
776f02fa
TH
1537 msleep(10);
1538 goto retry;
1539 }
1540
1541 ret = 0;
2bd59d48 1542 goto out_unlock;
ddbcc7e8
PM
1543 }
1544
172a2c06
TH
1545 /*
1546 * No such thing, create a new one. name= matching without subsys
1547 * specification is allowed for already existing hierarchies but we
1548 * can't create new one without subsys specification.
1549 */
1550 if (!opts.subsys_mask && !opts.none) {
1551 ret = -EINVAL;
1552 goto out_unlock;
1553 }
1554
1555 root = kzalloc(sizeof(*root), GFP_KERNEL);
1556 if (!root) {
1557 ret = -ENOMEM;
2bd59d48
TH
1558 goto out_unlock;
1559 }
1560
172a2c06
TH
1561 init_cgroup_root(root, &opts);
1562
35585573 1563 ret = cgroup_setup_root(root, opts.subsys_mask);
2bd59d48
TH
1564 if (ret)
1565 cgroup_free_root(root);
1566
8e30e2b8 1567out_unlock:
e25e2cbb 1568 mutex_unlock(&cgroup_mutex);
ace2bee8 1569 mutex_unlock(&cgroup_tree_mutex);
8e30e2b8 1570
c6d57f33
PM
1571 kfree(opts.release_agent);
1572 kfree(opts.name);
8e30e2b8 1573
2bd59d48 1574 if (ret)
8e30e2b8 1575 return ERR_PTR(ret);
2bd59d48
TH
1576
1577 dentry = kernfs_mount(fs_type, flags, root->kf_root);
1578 if (IS_ERR(dentry))
776f02fa 1579 cgroup_put(&root->top_cgroup);
2bd59d48
TH
1580 return dentry;
1581}
1582
1583static void cgroup_kill_sb(struct super_block *sb)
1584{
1585 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
1586 struct cgroupfs_root *root = cgroup_root_from_kf(kf_root);
1587
776f02fa 1588 cgroup_put(&root->top_cgroup);
2bd59d48 1589 kernfs_kill_sb(sb);
ddbcc7e8
PM
1590}
1591
ddbcc7e8
PM
1592static struct file_system_type cgroup_fs_type = {
1593 .name = "cgroup",
f7e83571 1594 .mount = cgroup_mount,
ddbcc7e8
PM
1595 .kill_sb = cgroup_kill_sb,
1596};
1597
676db4af
GKH
1598static struct kobject *cgroup_kobj;
1599
857a2beb 1600/**
913ffdb5 1601 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
857a2beb 1602 * @task: target task
857a2beb
TH
1603 * @buf: the buffer to write the path into
1604 * @buflen: the length of the buffer
1605 *
913ffdb5
TH
1606 * Determine @task's cgroup on the first (the one with the lowest non-zero
1607 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
1608 * function grabs cgroup_mutex and shouldn't be used inside locks used by
1609 * cgroup controller callbacks.
1610 *
e61734c5 1611 * Return value is the same as kernfs_path().
857a2beb 1612 */
e61734c5 1613char *task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
857a2beb
TH
1614{
1615 struct cgroupfs_root *root;
913ffdb5 1616 struct cgroup *cgrp;
e61734c5
TH
1617 int hierarchy_id = 1;
1618 char *path = NULL;
857a2beb
TH
1619
1620 mutex_lock(&cgroup_mutex);
96d365e0 1621 down_read(&css_set_rwsem);
857a2beb 1622
913ffdb5
TH
1623 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
1624
857a2beb
TH
1625 if (root) {
1626 cgrp = task_cgroup_from_root(task, root);
e61734c5 1627 path = cgroup_path(cgrp, buf, buflen);
913ffdb5
TH
1628 } else {
1629 /* if no hierarchy exists, everyone is in "/" */
e61734c5
TH
1630 if (strlcpy(buf, "/", buflen) < buflen)
1631 path = buf;
857a2beb
TH
1632 }
1633
96d365e0 1634 up_read(&css_set_rwsem);
857a2beb 1635 mutex_unlock(&cgroup_mutex);
e61734c5 1636 return path;
857a2beb 1637}
913ffdb5 1638EXPORT_SYMBOL_GPL(task_cgroup_path);
857a2beb 1639
b3dc094e 1640/* used to track tasks and other necessary states during migration */
2f7ee569 1641struct cgroup_taskset {
b3dc094e
TH
1642 /* the src and dst cset list running through cset->mg_node */
1643 struct list_head src_csets;
1644 struct list_head dst_csets;
1645
1646 /*
1647 * Fields for cgroup_taskset_*() iteration.
1648 *
1649 * Before migration is committed, the target migration tasks are on
1650 * ->mg_tasks of the csets on ->src_csets. After, on ->mg_tasks of
1651 * the csets on ->dst_csets. ->csets point to either ->src_csets
1652 * or ->dst_csets depending on whether migration is committed.
1653 *
1654 * ->cur_csets and ->cur_task point to the current task position
1655 * during iteration.
1656 */
1657 struct list_head *csets;
1658 struct css_set *cur_cset;
1659 struct task_struct *cur_task;
2f7ee569
TH
1660};
1661
1662/**
1663 * cgroup_taskset_first - reset taskset and return the first task
1664 * @tset: taskset of interest
1665 *
1666 * @tset iteration is initialized and the first task is returned.
1667 */
1668struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
1669{
b3dc094e
TH
1670 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
1671 tset->cur_task = NULL;
1672
1673 return cgroup_taskset_next(tset);
2f7ee569 1674}
2f7ee569
TH
1675
1676/**
1677 * cgroup_taskset_next - iterate to the next task in taskset
1678 * @tset: taskset of interest
1679 *
1680 * Return the next task in @tset. Iteration must have been initialized
1681 * with cgroup_taskset_first().
1682 */
1683struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
1684{
b3dc094e
TH
1685 struct css_set *cset = tset->cur_cset;
1686 struct task_struct *task = tset->cur_task;
2f7ee569 1687
b3dc094e
TH
1688 while (&cset->mg_node != tset->csets) {
1689 if (!task)
1690 task = list_first_entry(&cset->mg_tasks,
1691 struct task_struct, cg_list);
1692 else
1693 task = list_next_entry(task, cg_list);
2f7ee569 1694
b3dc094e
TH
1695 if (&task->cg_list != &cset->mg_tasks) {
1696 tset->cur_cset = cset;
1697 tset->cur_task = task;
1698 return task;
1699 }
1700
1701 cset = list_next_entry(cset, mg_node);
1702 task = NULL;
1703 }
1704
1705 return NULL;
2f7ee569 1706}
2f7ee569 1707
cb0f1fe9 1708/**
74a1166d 1709 * cgroup_task_migrate - move a task from one cgroup to another.
cb0f1fe9
TH
1710 * @old_cgrp; the cgroup @tsk is being migrated from
1711 * @tsk: the task being migrated
1712 * @new_cset: the new css_set @tsk is being attached to
74a1166d 1713 *
cb0f1fe9 1714 * Must be called with cgroup_mutex, threadgroup and css_set_rwsem locked.
74a1166d 1715 */
5abb8855
TH
1716static void cgroup_task_migrate(struct cgroup *old_cgrp,
1717 struct task_struct *tsk,
1718 struct css_set *new_cset)
74a1166d 1719{
5abb8855 1720 struct css_set *old_cset;
74a1166d 1721
cb0f1fe9
TH
1722 lockdep_assert_held(&cgroup_mutex);
1723 lockdep_assert_held(&css_set_rwsem);
1724
74a1166d 1725 /*
026085ef
MSB
1726 * We are synchronized through threadgroup_lock() against PF_EXITING
1727 * setting such that we can't race against cgroup_exit() changing the
1728 * css_set to init_css_set and dropping the old one.
74a1166d 1729 */
c84cdf75 1730 WARN_ON_ONCE(tsk->flags & PF_EXITING);
a8ad805c 1731 old_cset = task_css_set(tsk);
74a1166d 1732
b3dc094e 1733 get_css_set(new_cset);
5abb8855 1734 rcu_assign_pointer(tsk->cgroups, new_cset);
b3dc094e 1735 list_move(&tsk->cg_list, &new_cset->mg_tasks);
74a1166d
BB
1736
1737 /*
5abb8855
TH
1738 * We just gained a reference on old_cset by taking it from the
1739 * task. As trading it for new_cset is protected by cgroup_mutex,
1740 * we're safe to drop it here; it will be freed under RCU.
74a1166d 1741 */
5abb8855 1742 set_bit(CGRP_RELEASABLE, &old_cgrp->flags);
cb0f1fe9 1743 put_css_set_locked(old_cset, false);
74a1166d
BB
1744}
1745
a043e3b2 1746/**
1958d2d5
TH
1747 * cgroup_migrate_finish - cleanup after attach
1748 * @preloaded_csets: list of preloaded css_sets
74a1166d 1749 *
1958d2d5
TH
1750 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
1751 * those functions for details.
74a1166d 1752 */
1958d2d5
TH
1753static void cgroup_migrate_finish(struct list_head *preloaded_csets)
1754{
1755 struct css_set *cset, *tmp_cset;
1756
1757 lockdep_assert_held(&cgroup_mutex);
1758
1759 down_write(&css_set_rwsem);
1760 list_for_each_entry_safe(cset, tmp_cset, preloaded_csets, mg_preload_node) {
1761 cset->mg_src_cgrp = NULL;
1762 cset->mg_dst_cset = NULL;
1763 list_del_init(&cset->mg_preload_node);
1764 put_css_set_locked(cset, false);
1765 }
1766 up_write(&css_set_rwsem);
1767}
1768
1769/**
1770 * cgroup_migrate_add_src - add a migration source css_set
1771 * @src_cset: the source css_set to add
1772 * @dst_cgrp: the destination cgroup
1773 * @preloaded_csets: list of preloaded css_sets
1774 *
1775 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
1776 * @src_cset and add it to @preloaded_csets, which should later be cleaned
1777 * up by cgroup_migrate_finish().
1778 *
1779 * This function may be called without holding threadgroup_lock even if the
1780 * target is a process. Threads may be created and destroyed but as long
1781 * as cgroup_mutex is not dropped, no new css_set can be put into play and
1782 * the preloaded css_sets are guaranteed to cover all migrations.
1783 */
1784static void cgroup_migrate_add_src(struct css_set *src_cset,
1785 struct cgroup *dst_cgrp,
1786 struct list_head *preloaded_csets)
1787{
1788 struct cgroup *src_cgrp;
1789
1790 lockdep_assert_held(&cgroup_mutex);
1791 lockdep_assert_held(&css_set_rwsem);
1792
1793 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
1794
1795 /* nothing to do if this cset already belongs to the cgroup */
1796 if (src_cgrp == dst_cgrp)
1797 return;
1798
1799 if (!list_empty(&src_cset->mg_preload_node))
1800 return;
1801
1802 WARN_ON(src_cset->mg_src_cgrp);
1803 WARN_ON(!list_empty(&src_cset->mg_tasks));
1804 WARN_ON(!list_empty(&src_cset->mg_node));
1805
1806 src_cset->mg_src_cgrp = src_cgrp;
1807 get_css_set(src_cset);
1808 list_add(&src_cset->mg_preload_node, preloaded_csets);
1809}
1810
1811/**
1812 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
1813 * @dst_cgrp: the destination cgroup
1814 * @preloaded_csets: list of preloaded source css_sets
1815 *
1816 * Tasks are about to be moved to @dst_cgrp and all the source css_sets
1817 * have been preloaded to @preloaded_csets. This function looks up and
1818 * pins all destination css_sets, links each to its source, and put them on
1819 * @preloaded_csets.
1820 *
1821 * This function must be called after cgroup_migrate_add_src() has been
1822 * called on each migration source css_set. After migration is performed
1823 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
1824 * @preloaded_csets.
1825 */
1826static int cgroup_migrate_prepare_dst(struct cgroup *dst_cgrp,
1827 struct list_head *preloaded_csets)
1828{
1829 LIST_HEAD(csets);
1830 struct css_set *src_cset;
1831
1832 lockdep_assert_held(&cgroup_mutex);
1833
1834 /* look up the dst cset for each src cset and link it to src */
1835 list_for_each_entry(src_cset, preloaded_csets, mg_preload_node) {
1836 struct css_set *dst_cset;
1837
1838 dst_cset = find_css_set(src_cset, dst_cgrp);
1839 if (!dst_cset)
1840 goto err;
1841
1842 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
1843 src_cset->mg_dst_cset = dst_cset;
1844
1845 if (list_empty(&dst_cset->mg_preload_node))
1846 list_add(&dst_cset->mg_preload_node, &csets);
1847 else
1848 put_css_set(dst_cset, false);
1849 }
1850
1851 list_splice(&csets, preloaded_csets);
1852 return 0;
1853err:
1854 cgroup_migrate_finish(&csets);
1855 return -ENOMEM;
1856}
1857
1858/**
1859 * cgroup_migrate - migrate a process or task to a cgroup
1860 * @cgrp: the destination cgroup
1861 * @leader: the leader of the process or the task to migrate
1862 * @threadgroup: whether @leader points to the whole process or a single task
1863 *
1864 * Migrate a process or task denoted by @leader to @cgrp. If migrating a
1865 * process, the caller must be holding threadgroup_lock of @leader. The
1866 * caller is also responsible for invoking cgroup_migrate_add_src() and
1867 * cgroup_migrate_prepare_dst() on the targets before invoking this
1868 * function and following up with cgroup_migrate_finish().
1869 *
1870 * As long as a controller's ->can_attach() doesn't fail, this function is
1871 * guaranteed to succeed. This means that, excluding ->can_attach()
1872 * failure, when migrating multiple targets, the success or failure can be
1873 * decided for all targets by invoking group_migrate_prepare_dst() before
1874 * actually starting migrating.
1875 */
1876static int cgroup_migrate(struct cgroup *cgrp, struct task_struct *leader,
1877 bool threadgroup)
74a1166d 1878{
b3dc094e
TH
1879 struct cgroup_taskset tset = {
1880 .src_csets = LIST_HEAD_INIT(tset.src_csets),
1881 .dst_csets = LIST_HEAD_INIT(tset.dst_csets),
1882 .csets = &tset.src_csets,
1883 };
1c6727af 1884 struct cgroup_subsys_state *css, *failed_css = NULL;
b3dc094e
TH
1885 struct css_set *cset, *tmp_cset;
1886 struct task_struct *task, *tmp_task;
1887 int i, ret;
74a1166d 1888
fb5d2b4c
MSB
1889 /*
1890 * Prevent freeing of tasks while we take a snapshot. Tasks that are
1891 * already PF_EXITING could be freed from underneath us unless we
1892 * take an rcu_read_lock.
1893 */
b3dc094e 1894 down_write(&css_set_rwsem);
fb5d2b4c 1895 rcu_read_lock();
9db8de37 1896 task = leader;
74a1166d 1897 do {
9db8de37
TH
1898 /* @task either already exited or can't exit until the end */
1899 if (task->flags & PF_EXITING)
ea84753c 1900 goto next;
cd3d0952 1901
eaf797ab
TH
1902 /* leave @task alone if post_fork() hasn't linked it yet */
1903 if (list_empty(&task->cg_list))
1904 goto next;
1905
b3dc094e 1906 cset = task_css_set(task);
1958d2d5 1907 if (!cset->mg_src_cgrp)
ea84753c 1908 goto next;
b3dc094e 1909
b3dc094e 1910 list_move(&task->cg_list, &cset->mg_tasks);
1958d2d5
TH
1911 list_move(&cset->mg_node, &tset.src_csets);
1912 list_move(&cset->mg_dst_cset->mg_node, &tset.dst_csets);
ea84753c 1913 next:
081aa458
LZ
1914 if (!threadgroup)
1915 break;
9db8de37 1916 } while_each_thread(leader, task);
fb5d2b4c 1917 rcu_read_unlock();
b3dc094e 1918 up_write(&css_set_rwsem);
74a1166d 1919
134d3373 1920 /* methods shouldn't be called if no task is actually migrating */
b3dc094e
TH
1921 if (list_empty(&tset.src_csets))
1922 return 0;
134d3373 1923
1958d2d5 1924 /* check that we can legitimately attach to the cgroup */
1c6727af
TH
1925 for_each_css(css, i, cgrp) {
1926 if (css->ss->can_attach) {
9db8de37
TH
1927 ret = css->ss->can_attach(css, &tset);
1928 if (ret) {
1c6727af 1929 failed_css = css;
74a1166d
BB
1930 goto out_cancel_attach;
1931 }
1932 }
74a1166d
BB
1933 }
1934
1935 /*
1958d2d5
TH
1936 * Now that we're guaranteed success, proceed to move all tasks to
1937 * the new cgroup. There are no failure cases after here, so this
1938 * is the commit point.
74a1166d 1939 */
cb0f1fe9 1940 down_write(&css_set_rwsem);
b3dc094e
TH
1941 list_for_each_entry(cset, &tset.src_csets, mg_node) {
1942 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list)
1943 cgroup_task_migrate(cset->mg_src_cgrp, task,
1944 cset->mg_dst_cset);
74a1166d 1945 }
cb0f1fe9 1946 up_write(&css_set_rwsem);
b3dc094e 1947
74a1166d 1948 /*
1958d2d5
TH
1949 * Migration is committed, all target tasks are now on dst_csets.
1950 * Nothing is sensitive to fork() after this point. Notify
1951 * controllers that migration is complete.
74a1166d 1952 */
1958d2d5
TH
1953 tset.csets = &tset.dst_csets;
1954
1c6727af
TH
1955 for_each_css(css, i, cgrp)
1956 if (css->ss->attach)
1957 css->ss->attach(css, &tset);
74a1166d 1958
9db8de37 1959 ret = 0;
b3dc094e
TH
1960 goto out_release_tset;
1961
74a1166d 1962out_cancel_attach:
b3dc094e
TH
1963 for_each_css(css, i, cgrp) {
1964 if (css == failed_css)
1965 break;
1966 if (css->ss->cancel_attach)
1967 css->ss->cancel_attach(css, &tset);
74a1166d 1968 }
b3dc094e
TH
1969out_release_tset:
1970 down_write(&css_set_rwsem);
1971 list_splice_init(&tset.dst_csets, &tset.src_csets);
1972 list_for_each_entry_safe(cset, tmp_cset, &tset.src_csets, mg_node) {
1973 list_splice_init(&cset->mg_tasks, &cset->tasks);
b3dc094e 1974 list_del_init(&cset->mg_node);
b3dc094e
TH
1975 }
1976 up_write(&css_set_rwsem);
9db8de37 1977 return ret;
74a1166d
BB
1978}
1979
1958d2d5
TH
1980/**
1981 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
1982 * @dst_cgrp: the cgroup to attach to
1983 * @leader: the task or the leader of the threadgroup to be attached
1984 * @threadgroup: attach the whole threadgroup?
1985 *
0e1d768f 1986 * Call holding cgroup_mutex and threadgroup_lock of @leader.
1958d2d5
TH
1987 */
1988static int cgroup_attach_task(struct cgroup *dst_cgrp,
1989 struct task_struct *leader, bool threadgroup)
1990{
1991 LIST_HEAD(preloaded_csets);
1992 struct task_struct *task;
1993 int ret;
1994
1995 /* look up all src csets */
1996 down_read(&css_set_rwsem);
1997 rcu_read_lock();
1998 task = leader;
1999 do {
2000 cgroup_migrate_add_src(task_css_set(task), dst_cgrp,
2001 &preloaded_csets);
2002 if (!threadgroup)
2003 break;
2004 } while_each_thread(leader, task);
2005 rcu_read_unlock();
2006 up_read(&css_set_rwsem);
2007
2008 /* prepare dst csets and commit */
2009 ret = cgroup_migrate_prepare_dst(dst_cgrp, &preloaded_csets);
2010 if (!ret)
2011 ret = cgroup_migrate(dst_cgrp, leader, threadgroup);
2012
2013 cgroup_migrate_finish(&preloaded_csets);
2014 return ret;
2015}
2016
74a1166d
BB
2017/*
2018 * Find the task_struct of the task to attach by vpid and pass it along to the
cd3d0952 2019 * function to attach either it or all tasks in its threadgroup. Will lock
0e1d768f 2020 * cgroup_mutex and threadgroup.
bbcb81d0 2021 */
74a1166d 2022static int attach_task_by_pid(struct cgroup *cgrp, u64 pid, bool threadgroup)
bbcb81d0 2023{
bbcb81d0 2024 struct task_struct *tsk;
c69e8d9c 2025 const struct cred *cred = current_cred(), *tcred;
bbcb81d0
PM
2026 int ret;
2027
74a1166d
BB
2028 if (!cgroup_lock_live_group(cgrp))
2029 return -ENODEV;
2030
b78949eb
MSB
2031retry_find_task:
2032 rcu_read_lock();
bbcb81d0 2033 if (pid) {
73507f33 2034 tsk = find_task_by_vpid(pid);
74a1166d
BB
2035 if (!tsk) {
2036 rcu_read_unlock();
dd4b0a46 2037 ret = -ESRCH;
b78949eb 2038 goto out_unlock_cgroup;
bbcb81d0 2039 }
74a1166d
BB
2040 /*
2041 * even if we're attaching all tasks in the thread group, we
2042 * only need to check permissions on one of them.
2043 */
c69e8d9c 2044 tcred = __task_cred(tsk);
14a590c3
EB
2045 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2046 !uid_eq(cred->euid, tcred->uid) &&
2047 !uid_eq(cred->euid, tcred->suid)) {
c69e8d9c 2048 rcu_read_unlock();
b78949eb
MSB
2049 ret = -EACCES;
2050 goto out_unlock_cgroup;
bbcb81d0 2051 }
b78949eb
MSB
2052 } else
2053 tsk = current;
cd3d0952
TH
2054
2055 if (threadgroup)
b78949eb 2056 tsk = tsk->group_leader;
c4c27fbd
MG
2057
2058 /*
14a40ffc 2059 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
c4c27fbd
MG
2060 * trapped in a cpuset, or RT worker may be born in a cgroup
2061 * with no rt_runtime allocated. Just say no.
2062 */
14a40ffc 2063 if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
c4c27fbd
MG
2064 ret = -EINVAL;
2065 rcu_read_unlock();
2066 goto out_unlock_cgroup;
2067 }
2068
b78949eb
MSB
2069 get_task_struct(tsk);
2070 rcu_read_unlock();
2071
2072 threadgroup_lock(tsk);
2073 if (threadgroup) {
2074 if (!thread_group_leader(tsk)) {
2075 /*
2076 * a race with de_thread from another thread's exec()
2077 * may strip us of our leadership, if this happens,
2078 * there is no choice but to throw this task away and
2079 * try again; this is
2080 * "double-double-toil-and-trouble-check locking".
2081 */
2082 threadgroup_unlock(tsk);
2083 put_task_struct(tsk);
2084 goto retry_find_task;
2085 }
081aa458
LZ
2086 }
2087
2088 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
2089
cd3d0952
TH
2090 threadgroup_unlock(tsk);
2091
bbcb81d0 2092 put_task_struct(tsk);
b78949eb 2093out_unlock_cgroup:
47cfcd09 2094 mutex_unlock(&cgroup_mutex);
bbcb81d0
PM
2095 return ret;
2096}
2097
7ae1bad9
TH
2098/**
2099 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2100 * @from: attach to all cgroups of a given task
2101 * @tsk: the task to be attached
2102 */
2103int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2104{
2105 struct cgroupfs_root *root;
2106 int retval = 0;
2107
47cfcd09 2108 mutex_lock(&cgroup_mutex);
7ae1bad9 2109 for_each_active_root(root) {
96d365e0
TH
2110 struct cgroup *from_cgrp;
2111
2112 down_read(&css_set_rwsem);
2113 from_cgrp = task_cgroup_from_root(from, root);
2114 up_read(&css_set_rwsem);
7ae1bad9 2115
6f4b7e63 2116 retval = cgroup_attach_task(from_cgrp, tsk, false);
7ae1bad9
TH
2117 if (retval)
2118 break;
2119 }
47cfcd09 2120 mutex_unlock(&cgroup_mutex);
7ae1bad9
TH
2121
2122 return retval;
2123}
2124EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2125
182446d0
TH
2126static int cgroup_tasks_write(struct cgroup_subsys_state *css,
2127 struct cftype *cft, u64 pid)
74a1166d 2128{
182446d0 2129 return attach_task_by_pid(css->cgroup, pid, false);
74a1166d
BB
2130}
2131
182446d0
TH
2132static int cgroup_procs_write(struct cgroup_subsys_state *css,
2133 struct cftype *cft, u64 tgid)
af351026 2134{
182446d0 2135 return attach_task_by_pid(css->cgroup, tgid, true);
af351026
PM
2136}
2137
182446d0
TH
2138static int cgroup_release_agent_write(struct cgroup_subsys_state *css,
2139 struct cftype *cft, const char *buffer)
e788e066 2140{
5f469907
TH
2141 struct cgroupfs_root *root = css->cgroup->root;
2142
2143 BUILD_BUG_ON(sizeof(root->release_agent_path) < PATH_MAX);
182446d0 2144 if (!cgroup_lock_live_group(css->cgroup))
e788e066 2145 return -ENODEV;
69e943b7 2146 spin_lock(&release_agent_path_lock);
5f469907
TH
2147 strlcpy(root->release_agent_path, buffer,
2148 sizeof(root->release_agent_path));
69e943b7 2149 spin_unlock(&release_agent_path_lock);
47cfcd09 2150 mutex_unlock(&cgroup_mutex);
e788e066
PM
2151 return 0;
2152}
2153
2da8ca82 2154static int cgroup_release_agent_show(struct seq_file *seq, void *v)
e788e066 2155{
2da8ca82 2156 struct cgroup *cgrp = seq_css(seq)->cgroup;
182446d0 2157
e788e066
PM
2158 if (!cgroup_lock_live_group(cgrp))
2159 return -ENODEV;
2160 seq_puts(seq, cgrp->root->release_agent_path);
2161 seq_putc(seq, '\n');
47cfcd09 2162 mutex_unlock(&cgroup_mutex);
e788e066
PM
2163 return 0;
2164}
2165
2da8ca82 2166static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
873fe09e 2167{
2da8ca82
TH
2168 struct cgroup *cgrp = seq_css(seq)->cgroup;
2169
2170 seq_printf(seq, "%d\n", cgroup_sane_behavior(cgrp));
e788e066
PM
2171 return 0;
2172}
2173
2bd59d48
TH
2174static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
2175 size_t nbytes, loff_t off)
355e0c48 2176{
2bd59d48
TH
2177 struct cgroup *cgrp = of->kn->parent->priv;
2178 struct cftype *cft = of->kn->priv;
2179 struct cgroup_subsys_state *css;
a742c59d 2180 int ret;
355e0c48 2181
2bd59d48
TH
2182 /*
2183 * kernfs guarantees that a file isn't deleted with operations in
2184 * flight, which means that the matching css is and stays alive and
2185 * doesn't need to be pinned. The RCU locking is not necessary
2186 * either. It's just for the convenience of using cgroup_css().
2187 */
2188 rcu_read_lock();
2189 css = cgroup_css(cgrp, cft->ss);
2190 rcu_read_unlock();
a742c59d
TH
2191
2192 if (cft->write_string) {
2193 ret = cft->write_string(css, cft, strstrip(buf));
2194 } else if (cft->write_u64) {
2195 unsigned long long v;
2196 ret = kstrtoull(buf, 0, &v);
2197 if (!ret)
2198 ret = cft->write_u64(css, cft, v);
2199 } else if (cft->write_s64) {
2200 long long v;
2201 ret = kstrtoll(buf, 0, &v);
2202 if (!ret)
2203 ret = cft->write_s64(css, cft, v);
2204 } else if (cft->trigger) {
2205 ret = cft->trigger(css, (unsigned int)cft->private);
e73d2c61 2206 } else {
a742c59d 2207 ret = -EINVAL;
e73d2c61 2208 }
2bd59d48 2209
a742c59d 2210 return ret ?: nbytes;
355e0c48
PM
2211}
2212
6612f05b 2213static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
db3b1497 2214{
2bd59d48 2215 return seq_cft(seq)->seq_start(seq, ppos);
db3b1497
PM
2216}
2217
6612f05b 2218static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
ddbcc7e8 2219{
2bd59d48 2220 return seq_cft(seq)->seq_next(seq, v, ppos);
ddbcc7e8
PM
2221}
2222
6612f05b 2223static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
ddbcc7e8 2224{
2bd59d48 2225 seq_cft(seq)->seq_stop(seq, v);
ddbcc7e8
PM
2226}
2227
91796569 2228static int cgroup_seqfile_show(struct seq_file *m, void *arg)
e73d2c61 2229{
7da11279
TH
2230 struct cftype *cft = seq_cft(m);
2231 struct cgroup_subsys_state *css = seq_css(m);
e73d2c61 2232
2da8ca82
TH
2233 if (cft->seq_show)
2234 return cft->seq_show(m, arg);
e73d2c61 2235
f4c753b7 2236 if (cft->read_u64)
896f5199
TH
2237 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
2238 else if (cft->read_s64)
2239 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
2240 else
2241 return -EINVAL;
2242 return 0;
91796569
PM
2243}
2244
2bd59d48
TH
2245static struct kernfs_ops cgroup_kf_single_ops = {
2246 .atomic_write_len = PAGE_SIZE,
2247 .write = cgroup_file_write,
2248 .seq_show = cgroup_seqfile_show,
91796569
PM
2249};
2250
2bd59d48
TH
2251static struct kernfs_ops cgroup_kf_ops = {
2252 .atomic_write_len = PAGE_SIZE,
2253 .write = cgroup_file_write,
2254 .seq_start = cgroup_seqfile_start,
2255 .seq_next = cgroup_seqfile_next,
2256 .seq_stop = cgroup_seqfile_stop,
2257 .seq_show = cgroup_seqfile_show,
2258};
ddbcc7e8
PM
2259
2260/*
2261 * cgroup_rename - Only allow simple rename of directories in place.
2262 */
2bd59d48
TH
2263static int cgroup_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
2264 const char *new_name_str)
ddbcc7e8 2265{
2bd59d48 2266 struct cgroup *cgrp = kn->priv;
2bd59d48 2267 int ret;
65dff759 2268
2bd59d48 2269 if (kernfs_type(kn) != KERNFS_DIR)
ddbcc7e8 2270 return -ENOTDIR;
2bd59d48 2271 if (kn->parent != new_parent)
ddbcc7e8 2272 return -EIO;
65dff759 2273
6db8e85c
TH
2274 /*
2275 * This isn't a proper migration and its usefulness is very
2276 * limited. Disallow if sane_behavior.
2277 */
2278 if (cgroup_sane_behavior(cgrp))
2279 return -EPERM;
2280
2bd59d48
TH
2281 mutex_lock(&cgroup_tree_mutex);
2282 mutex_lock(&cgroup_mutex);
2283
2284 ret = kernfs_rename(kn, new_parent, new_name_str);
65dff759 2285
2bd59d48
TH
2286 mutex_unlock(&cgroup_mutex);
2287 mutex_unlock(&cgroup_tree_mutex);
2bd59d48 2288 return ret;
ddbcc7e8
PM
2289}
2290
2bb566cb 2291static int cgroup_add_file(struct cgroup *cgrp, struct cftype *cft)
ddbcc7e8 2292{
8d7e6fb0 2293 char name[CGROUP_FILE_NAME_MAX];
2bd59d48
TH
2294 struct kernfs_node *kn;
2295 struct lock_class_key *key = NULL;
05ef1d7c 2296
2bd59d48
TH
2297#ifdef CONFIG_DEBUG_LOCK_ALLOC
2298 key = &cft->lockdep_key;
2299#endif
2300 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
2301 cgroup_file_mode(cft), 0, cft->kf_ops, cft,
2302 NULL, false, key);
430af8ad 2303 return PTR_ERR_OR_ZERO(kn);
ddbcc7e8
PM
2304}
2305
b1f28d31
TH
2306/**
2307 * cgroup_addrm_files - add or remove files to a cgroup directory
2308 * @cgrp: the target cgroup
b1f28d31
TH
2309 * @cfts: array of cftypes to be added
2310 * @is_add: whether to add or remove
2311 *
2312 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
2bb566cb
TH
2313 * For removals, this function never fails. If addition fails, this
2314 * function doesn't remove files already added. The caller is responsible
2315 * for cleaning up.
b1f28d31 2316 */
2bb566cb
TH
2317static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
2318 bool is_add)
ddbcc7e8 2319{
03b1cde6 2320 struct cftype *cft;
b1f28d31
TH
2321 int ret;
2322
ace2bee8 2323 lockdep_assert_held(&cgroup_tree_mutex);
db0416b6
TH
2324
2325 for (cft = cfts; cft->name[0] != '\0'; cft++) {
f33fddc2 2326 /* does cft->flags tell us to skip this file on @cgrp? */
873fe09e
TH
2327 if ((cft->flags & CFTYPE_INSANE) && cgroup_sane_behavior(cgrp))
2328 continue;
f33fddc2
G
2329 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgrp->parent)
2330 continue;
2331 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgrp->parent)
2332 continue;
2333
2739d3cc 2334 if (is_add) {
2bb566cb 2335 ret = cgroup_add_file(cgrp, cft);
b1f28d31 2336 if (ret) {
2739d3cc 2337 pr_warn("cgroup_addrm_files: failed to add %s, err=%d\n",
b1f28d31
TH
2338 cft->name, ret);
2339 return ret;
2340 }
2739d3cc
LZ
2341 } else {
2342 cgroup_rm_file(cgrp, cft);
db0416b6 2343 }
ddbcc7e8 2344 }
b1f28d31 2345 return 0;
ddbcc7e8
PM
2346}
2347
21a2d343 2348static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
8e3f6541
TH
2349{
2350 LIST_HEAD(pending);
2bb566cb 2351 struct cgroup_subsys *ss = cfts[0].ss;
492eb21b 2352 struct cgroup *root = &ss->root->top_cgroup;
492eb21b 2353 struct cgroup_subsys_state *css;
9ccece80 2354 int ret = 0;
8e3f6541 2355
21a2d343 2356 lockdep_assert_held(&cgroup_tree_mutex);
4ac06017 2357
21a2d343
TH
2358 /* don't bother if @ss isn't attached */
2359 if (ss->root == &cgroup_dummy_root)
9ccece80 2360 return 0;
e8c82d20 2361
e8c82d20 2362 /* add/rm files for all cgroups created before */
ca8bdcaf 2363 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
492eb21b
TH
2364 struct cgroup *cgrp = css->cgroup;
2365
e8c82d20
LZ
2366 if (cgroup_is_dead(cgrp))
2367 continue;
2368
21a2d343 2369 ret = cgroup_addrm_files(cgrp, cfts, is_add);
9ccece80
TH
2370 if (ret)
2371 break;
8e3f6541 2372 }
21a2d343
TH
2373
2374 if (is_add && !ret)
2375 kernfs_activate(root->kn);
9ccece80 2376 return ret;
8e3f6541
TH
2377}
2378
2da440a2
TH
2379static void cgroup_exit_cftypes(struct cftype *cfts)
2380{
2381 struct cftype *cft;
2382
2bd59d48
TH
2383 for (cft = cfts; cft->name[0] != '\0'; cft++) {
2384 /* free copy for custom atomic_write_len, see init_cftypes() */
2385 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
2386 kfree(cft->kf_ops);
2387 cft->kf_ops = NULL;
2da440a2 2388 cft->ss = NULL;
2bd59d48 2389 }
2da440a2
TH
2390}
2391
2bd59d48 2392static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
2da440a2
TH
2393{
2394 struct cftype *cft;
2395
2bd59d48
TH
2396 for (cft = cfts; cft->name[0] != '\0'; cft++) {
2397 struct kernfs_ops *kf_ops;
2398
0adb0704
TH
2399 WARN_ON(cft->ss || cft->kf_ops);
2400
2bd59d48
TH
2401 if (cft->seq_start)
2402 kf_ops = &cgroup_kf_ops;
2403 else
2404 kf_ops = &cgroup_kf_single_ops;
2405
2406 /*
2407 * Ugh... if @cft wants a custom max_write_len, we need to
2408 * make a copy of kf_ops to set its atomic_write_len.
2409 */
2410 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
2411 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
2412 if (!kf_ops) {
2413 cgroup_exit_cftypes(cfts);
2414 return -ENOMEM;
2415 }
2416 kf_ops->atomic_write_len = cft->max_write_len;
2417 }
2418
2419 cft->kf_ops = kf_ops;
2da440a2 2420 cft->ss = ss;
2bd59d48
TH
2421 }
2422
2423 return 0;
2da440a2
TH
2424}
2425
21a2d343
TH
2426static int cgroup_rm_cftypes_locked(struct cftype *cfts)
2427{
2428 lockdep_assert_held(&cgroup_tree_mutex);
2429
2430 if (!cfts || !cfts[0].ss)
2431 return -ENOENT;
2432
2433 list_del(&cfts->node);
2434 cgroup_apply_cftypes(cfts, false);
2435 cgroup_exit_cftypes(cfts);
2436 return 0;
2437}
2438
80b13586
TH
2439/**
2440 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
2441 * @cfts: zero-length name terminated array of cftypes
2442 *
2443 * Unregister @cfts. Files described by @cfts are removed from all
2444 * existing cgroups and all future cgroups won't have them either. This
2445 * function can be called anytime whether @cfts' subsys is attached or not.
2446 *
2447 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
2448 * registered.
2449 */
2450int cgroup_rm_cftypes(struct cftype *cfts)
2451{
21a2d343 2452 int ret;
80b13586 2453
21a2d343
TH
2454 mutex_lock(&cgroup_tree_mutex);
2455 ret = cgroup_rm_cftypes_locked(cfts);
2456 mutex_unlock(&cgroup_tree_mutex);
2457 return ret;
80b13586
TH
2458}
2459
8e3f6541
TH
2460/**
2461 * cgroup_add_cftypes - add an array of cftypes to a subsystem
2462 * @ss: target cgroup subsystem
2463 * @cfts: zero-length name terminated array of cftypes
2464 *
2465 * Register @cfts to @ss. Files described by @cfts are created for all
2466 * existing cgroups to which @ss is attached and all future cgroups will
2467 * have them too. This function can be called anytime whether @ss is
2468 * attached or not.
2469 *
2470 * Returns 0 on successful registration, -errno on failure. Note that this
2471 * function currently returns 0 as long as @cfts registration is successful
2472 * even if some file creation attempts on existing cgroups fail.
2473 */
03b1cde6 2474int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
8e3f6541 2475{
9ccece80 2476 int ret;
8e3f6541 2477
dc5736ed
LZ
2478 if (!cfts || cfts[0].name[0] == '\0')
2479 return 0;
2480
2bd59d48
TH
2481 ret = cgroup_init_cftypes(ss, cfts);
2482 if (ret)
2483 return ret;
2bb566cb 2484
21a2d343
TH
2485 mutex_lock(&cgroup_tree_mutex);
2486
0adb0704 2487 list_add_tail(&cfts->node, &ss->cfts);
21a2d343 2488 ret = cgroup_apply_cftypes(cfts, true);
9ccece80 2489 if (ret)
21a2d343
TH
2490 cgroup_rm_cftypes_locked(cfts);
2491
2492 mutex_unlock(&cgroup_tree_mutex);
9ccece80 2493 return ret;
8e3f6541 2494}
8e3f6541 2495
a043e3b2
LZ
2496/**
2497 * cgroup_task_count - count the number of tasks in a cgroup.
2498 * @cgrp: the cgroup in question
2499 *
2500 * Return the number of tasks in the cgroup.
2501 */
07bc356e 2502static int cgroup_task_count(const struct cgroup *cgrp)
bbcb81d0
PM
2503{
2504 int count = 0;
69d0206c 2505 struct cgrp_cset_link *link;
817929ec 2506
96d365e0 2507 down_read(&css_set_rwsem);
69d0206c
TH
2508 list_for_each_entry(link, &cgrp->cset_links, cset_link)
2509 count += atomic_read(&link->cset->refcount);
96d365e0 2510 up_read(&css_set_rwsem);
bbcb81d0
PM
2511 return count;
2512}
2513
53fa5261 2514/**
492eb21b
TH
2515 * css_next_child - find the next child of a given css
2516 * @pos_css: the current position (%NULL to initiate traversal)
2517 * @parent_css: css whose children to walk
53fa5261 2518 *
492eb21b 2519 * This function returns the next child of @parent_css and should be called
87fb54f1
TH
2520 * under either cgroup_mutex or RCU read lock. The only requirement is
2521 * that @parent_css and @pos_css are accessible. The next sibling is
2522 * guaranteed to be returned regardless of their states.
53fa5261 2523 */
492eb21b
TH
2524struct cgroup_subsys_state *
2525css_next_child(struct cgroup_subsys_state *pos_css,
2526 struct cgroup_subsys_state *parent_css)
53fa5261 2527{
492eb21b
TH
2528 struct cgroup *pos = pos_css ? pos_css->cgroup : NULL;
2529 struct cgroup *cgrp = parent_css->cgroup;
53fa5261
TH
2530 struct cgroup *next;
2531
ace2bee8 2532 cgroup_assert_mutexes_or_rcu_locked();
53fa5261
TH
2533
2534 /*
2535 * @pos could already have been removed. Once a cgroup is removed,
2536 * its ->sibling.next is no longer updated when its next sibling
ea15f8cc
TH
2537 * changes. As CGRP_DEAD assertion is serialized and happens
2538 * before the cgroup is taken off the ->sibling list, if we see it
2539 * unasserted, it's guaranteed that the next sibling hasn't
2540 * finished its grace period even if it's already removed, and thus
2541 * safe to dereference from this RCU critical section. If
2542 * ->sibling.next is inaccessible, cgroup_is_dead() is guaranteed
2543 * to be visible as %true here.
3b287a50
TH
2544 *
2545 * If @pos is dead, its next pointer can't be dereferenced;
2546 * however, as each cgroup is given a monotonically increasing
2547 * unique serial number and always appended to the sibling list,
2548 * the next one can be found by walking the parent's children until
2549 * we see a cgroup with higher serial number than @pos's. While
2550 * this path can be slower, it's taken only when either the current
2551 * cgroup is removed or iteration and removal race.
53fa5261 2552 */
3b287a50
TH
2553 if (!pos) {
2554 next = list_entry_rcu(cgrp->children.next, struct cgroup, sibling);
2555 } else if (likely(!cgroup_is_dead(pos))) {
53fa5261 2556 next = list_entry_rcu(pos->sibling.next, struct cgroup, sibling);
3b287a50
TH
2557 } else {
2558 list_for_each_entry_rcu(next, &cgrp->children, sibling)
2559 if (next->serial_nr > pos->serial_nr)
2560 break;
53fa5261
TH
2561 }
2562
492eb21b
TH
2563 if (&next->sibling == &cgrp->children)
2564 return NULL;
2565
ca8bdcaf 2566 return cgroup_css(next, parent_css->ss);
53fa5261 2567}
53fa5261 2568
574bd9f7 2569/**
492eb21b 2570 * css_next_descendant_pre - find the next descendant for pre-order walk
574bd9f7 2571 * @pos: the current position (%NULL to initiate traversal)
492eb21b 2572 * @root: css whose descendants to walk
574bd9f7 2573 *
492eb21b 2574 * To be used by css_for_each_descendant_pre(). Find the next descendant
bd8815a6
TH
2575 * to visit for pre-order traversal of @root's descendants. @root is
2576 * included in the iteration and the first node to be visited.
75501a6d 2577 *
87fb54f1
TH
2578 * While this function requires cgroup_mutex or RCU read locking, it
2579 * doesn't require the whole traversal to be contained in a single critical
2580 * section. This function will return the correct next descendant as long
2581 * as both @pos and @root are accessible and @pos is a descendant of @root.
574bd9f7 2582 */
492eb21b
TH
2583struct cgroup_subsys_state *
2584css_next_descendant_pre(struct cgroup_subsys_state *pos,
2585 struct cgroup_subsys_state *root)
574bd9f7 2586{
492eb21b 2587 struct cgroup_subsys_state *next;
574bd9f7 2588
ace2bee8 2589 cgroup_assert_mutexes_or_rcu_locked();
574bd9f7 2590
bd8815a6 2591 /* if first iteration, visit @root */
7805d000 2592 if (!pos)
bd8815a6 2593 return root;
574bd9f7
TH
2594
2595 /* visit the first child if exists */
492eb21b 2596 next = css_next_child(NULL, pos);
574bd9f7
TH
2597 if (next)
2598 return next;
2599
2600 /* no child, visit my or the closest ancestor's next sibling */
492eb21b
TH
2601 while (pos != root) {
2602 next = css_next_child(pos, css_parent(pos));
75501a6d 2603 if (next)
574bd9f7 2604 return next;
492eb21b 2605 pos = css_parent(pos);
7805d000 2606 }
574bd9f7
TH
2607
2608 return NULL;
2609}
574bd9f7 2610
12a9d2fe 2611/**
492eb21b
TH
2612 * css_rightmost_descendant - return the rightmost descendant of a css
2613 * @pos: css of interest
12a9d2fe 2614 *
492eb21b
TH
2615 * Return the rightmost descendant of @pos. If there's no descendant, @pos
2616 * is returned. This can be used during pre-order traversal to skip
12a9d2fe 2617 * subtree of @pos.
75501a6d 2618 *
87fb54f1
TH
2619 * While this function requires cgroup_mutex or RCU read locking, it
2620 * doesn't require the whole traversal to be contained in a single critical
2621 * section. This function will return the correct rightmost descendant as
2622 * long as @pos is accessible.
12a9d2fe 2623 */
492eb21b
TH
2624struct cgroup_subsys_state *
2625css_rightmost_descendant(struct cgroup_subsys_state *pos)
12a9d2fe 2626{
492eb21b 2627 struct cgroup_subsys_state *last, *tmp;
12a9d2fe 2628
ace2bee8 2629 cgroup_assert_mutexes_or_rcu_locked();
12a9d2fe
TH
2630
2631 do {
2632 last = pos;
2633 /* ->prev isn't RCU safe, walk ->next till the end */
2634 pos = NULL;
492eb21b 2635 css_for_each_child(tmp, last)
12a9d2fe
TH
2636 pos = tmp;
2637 } while (pos);
2638
2639 return last;
2640}
12a9d2fe 2641
492eb21b
TH
2642static struct cgroup_subsys_state *
2643css_leftmost_descendant(struct cgroup_subsys_state *pos)
574bd9f7 2644{
492eb21b 2645 struct cgroup_subsys_state *last;
574bd9f7
TH
2646
2647 do {
2648 last = pos;
492eb21b 2649 pos = css_next_child(NULL, pos);
574bd9f7
TH
2650 } while (pos);
2651
2652 return last;
2653}
2654
2655/**
492eb21b 2656 * css_next_descendant_post - find the next descendant for post-order walk
574bd9f7 2657 * @pos: the current position (%NULL to initiate traversal)
492eb21b 2658 * @root: css whose descendants to walk
574bd9f7 2659 *
492eb21b 2660 * To be used by css_for_each_descendant_post(). Find the next descendant
bd8815a6
TH
2661 * to visit for post-order traversal of @root's descendants. @root is
2662 * included in the iteration and the last node to be visited.
75501a6d 2663 *
87fb54f1
TH
2664 * While this function requires cgroup_mutex or RCU read locking, it
2665 * doesn't require the whole traversal to be contained in a single critical
2666 * section. This function will return the correct next descendant as long
2667 * as both @pos and @cgroup are accessible and @pos is a descendant of
2668 * @cgroup.
574bd9f7 2669 */
492eb21b
TH
2670struct cgroup_subsys_state *
2671css_next_descendant_post(struct cgroup_subsys_state *pos,
2672 struct cgroup_subsys_state *root)
574bd9f7 2673{
492eb21b 2674 struct cgroup_subsys_state *next;
574bd9f7 2675
ace2bee8 2676 cgroup_assert_mutexes_or_rcu_locked();
574bd9f7 2677
58b79a91
TH
2678 /* if first iteration, visit leftmost descendant which may be @root */
2679 if (!pos)
2680 return css_leftmost_descendant(root);
574bd9f7 2681
bd8815a6
TH
2682 /* if we visited @root, we're done */
2683 if (pos == root)
2684 return NULL;
2685
574bd9f7 2686 /* if there's an unvisited sibling, visit its leftmost descendant */
492eb21b 2687 next = css_next_child(pos, css_parent(pos));
75501a6d 2688 if (next)
492eb21b 2689 return css_leftmost_descendant(next);
574bd9f7
TH
2690
2691 /* no sibling left, visit parent */
bd8815a6 2692 return css_parent(pos);
574bd9f7 2693}
574bd9f7 2694
0942eeee 2695/**
72ec7029 2696 * css_advance_task_iter - advance a task itererator to the next css_set
0942eeee
TH
2697 * @it: the iterator to advance
2698 *
2699 * Advance @it to the next css_set to walk.
d515876e 2700 */
72ec7029 2701static void css_advance_task_iter(struct css_task_iter *it)
d515876e
TH
2702{
2703 struct list_head *l = it->cset_link;
2704 struct cgrp_cset_link *link;
2705 struct css_set *cset;
2706
2707 /* Advance to the next non-empty css_set */
2708 do {
2709 l = l->next;
72ec7029 2710 if (l == &it->origin_css->cgroup->cset_links) {
d515876e
TH
2711 it->cset_link = NULL;
2712 return;
2713 }
2714 link = list_entry(l, struct cgrp_cset_link, cset_link);
2715 cset = link->cset;
c7561128
TH
2716 } while (list_empty(&cset->tasks) && list_empty(&cset->mg_tasks));
2717
d515876e 2718 it->cset_link = l;
c7561128
TH
2719
2720 if (!list_empty(&cset->tasks))
2721 it->task = cset->tasks.next;
2722 else
2723 it->task = cset->mg_tasks.next;
d515876e
TH
2724}
2725
0942eeee 2726/**
72ec7029
TH
2727 * css_task_iter_start - initiate task iteration
2728 * @css: the css to walk tasks of
0942eeee
TH
2729 * @it: the task iterator to use
2730 *
72ec7029
TH
2731 * Initiate iteration through the tasks of @css. The caller can call
2732 * css_task_iter_next() to walk through the tasks until the function
2733 * returns NULL. On completion of iteration, css_task_iter_end() must be
2734 * called.
0942eeee
TH
2735 *
2736 * Note that this function acquires a lock which is released when the
2737 * iteration finishes. The caller can't sleep while iteration is in
2738 * progress.
2739 */
72ec7029
TH
2740void css_task_iter_start(struct cgroup_subsys_state *css,
2741 struct css_task_iter *it)
96d365e0 2742 __acquires(css_set_rwsem)
817929ec 2743{
56fde9e0
TH
2744 /* no one should try to iterate before mounting cgroups */
2745 WARN_ON_ONCE(!use_task_css_set_links);
31a7df01 2746
96d365e0 2747 down_read(&css_set_rwsem);
c59cd3d8 2748
72ec7029
TH
2749 it->origin_css = css;
2750 it->cset_link = &css->cgroup->cset_links;
c59cd3d8 2751
72ec7029 2752 css_advance_task_iter(it);
817929ec
PM
2753}
2754
0942eeee 2755/**
72ec7029 2756 * css_task_iter_next - return the next task for the iterator
0942eeee
TH
2757 * @it: the task iterator being iterated
2758 *
2759 * The "next" function for task iteration. @it should have been
72ec7029
TH
2760 * initialized via css_task_iter_start(). Returns NULL when the iteration
2761 * reaches the end.
0942eeee 2762 */
72ec7029 2763struct task_struct *css_task_iter_next(struct css_task_iter *it)
817929ec
PM
2764{
2765 struct task_struct *res;
2766 struct list_head *l = it->task;
c7561128
TH
2767 struct cgrp_cset_link *link = list_entry(it->cset_link,
2768 struct cgrp_cset_link, cset_link);
817929ec
PM
2769
2770 /* If the iterator cg is NULL, we have no tasks */
69d0206c 2771 if (!it->cset_link)
817929ec
PM
2772 return NULL;
2773 res = list_entry(l, struct task_struct, cg_list);
c7561128
TH
2774
2775 /*
2776 * Advance iterator to find next entry. cset->tasks is consumed
2777 * first and then ->mg_tasks. After ->mg_tasks, we move onto the
2778 * next cset.
2779 */
817929ec 2780 l = l->next;
c7561128
TH
2781
2782 if (l == &link->cset->tasks)
2783 l = link->cset->mg_tasks.next;
2784
2785 if (l == &link->cset->mg_tasks)
72ec7029 2786 css_advance_task_iter(it);
c7561128 2787 else
817929ec 2788 it->task = l;
c7561128 2789
817929ec
PM
2790 return res;
2791}
2792
0942eeee 2793/**
72ec7029 2794 * css_task_iter_end - finish task iteration
0942eeee
TH
2795 * @it: the task iterator to finish
2796 *
72ec7029 2797 * Finish task iteration started by css_task_iter_start().
0942eeee 2798 */
72ec7029 2799void css_task_iter_end(struct css_task_iter *it)
96d365e0 2800 __releases(css_set_rwsem)
817929ec 2801{
96d365e0 2802 up_read(&css_set_rwsem);
817929ec
PM
2803}
2804
8cc99345
TH
2805/**
2806 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
2807 * @to: cgroup to which the tasks will be moved
2808 * @from: cgroup in which the tasks currently reside
eaf797ab
TH
2809 *
2810 * Locking rules between cgroup_post_fork() and the migration path
2811 * guarantee that, if a task is forking while being migrated, the new child
2812 * is guaranteed to be either visible in the source cgroup after the
2813 * parent's migration is complete or put into the target cgroup. No task
2814 * can slip out of migration through forking.
8cc99345
TH
2815 */
2816int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
2817{
952aaa12
TH
2818 LIST_HEAD(preloaded_csets);
2819 struct cgrp_cset_link *link;
e406d1cf
TH
2820 struct css_task_iter it;
2821 struct task_struct *task;
952aaa12
TH
2822 int ret;
2823
2824 mutex_lock(&cgroup_mutex);
2825
2826 /* all tasks in @from are being moved, all csets are source */
2827 down_read(&css_set_rwsem);
2828 list_for_each_entry(link, &from->cset_links, cset_link)
2829 cgroup_migrate_add_src(link->cset, to, &preloaded_csets);
2830 up_read(&css_set_rwsem);
e406d1cf 2831
952aaa12
TH
2832 ret = cgroup_migrate_prepare_dst(to, &preloaded_csets);
2833 if (ret)
2834 goto out_err;
2835
2836 /*
2837 * Migrate tasks one-by-one until @form is empty. This fails iff
2838 * ->can_attach() fails.
2839 */
e406d1cf
TH
2840 do {
2841 css_task_iter_start(&from->dummy_css, &it);
2842 task = css_task_iter_next(&it);
2843 if (task)
2844 get_task_struct(task);
2845 css_task_iter_end(&it);
2846
2847 if (task) {
952aaa12 2848 ret = cgroup_migrate(to, task, false);
e406d1cf
TH
2849 put_task_struct(task);
2850 }
2851 } while (task && !ret);
952aaa12
TH
2852out_err:
2853 cgroup_migrate_finish(&preloaded_csets);
2854 mutex_unlock(&cgroup_mutex);
e406d1cf 2855 return ret;
8cc99345
TH
2856}
2857
bbcb81d0 2858/*
102a775e 2859 * Stuff for reading the 'tasks'/'procs' files.
bbcb81d0
PM
2860 *
2861 * Reading this file can return large amounts of data if a cgroup has
2862 * *lots* of attached tasks. So it may need several calls to read(),
2863 * but we cannot guarantee that the information we produce is correct
2864 * unless we produce it entirely atomically.
2865 *
bbcb81d0 2866 */
bbcb81d0 2867
24528255
LZ
2868/* which pidlist file are we talking about? */
2869enum cgroup_filetype {
2870 CGROUP_FILE_PROCS,
2871 CGROUP_FILE_TASKS,
2872};
2873
2874/*
2875 * A pidlist is a list of pids that virtually represents the contents of one
2876 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
2877 * a pair (one each for procs, tasks) for each pid namespace that's relevant
2878 * to the cgroup.
2879 */
2880struct cgroup_pidlist {
2881 /*
2882 * used to find which pidlist is wanted. doesn't change as long as
2883 * this particular list stays in the list.
2884 */
2885 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
2886 /* array of xids */
2887 pid_t *list;
2888 /* how many elements the above list has */
2889 int length;
24528255
LZ
2890 /* each of these stored in a list by its cgroup */
2891 struct list_head links;
2892 /* pointer to the cgroup we belong to, for list removal purposes */
2893 struct cgroup *owner;
b1a21367
TH
2894 /* for delayed destruction */
2895 struct delayed_work destroy_dwork;
24528255
LZ
2896};
2897
d1d9fd33
BB
2898/*
2899 * The following two functions "fix" the issue where there are more pids
2900 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
2901 * TODO: replace with a kernel-wide solution to this problem
2902 */
2903#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
2904static void *pidlist_allocate(int count)
2905{
2906 if (PIDLIST_TOO_LARGE(count))
2907 return vmalloc(count * sizeof(pid_t));
2908 else
2909 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
2910}
b1a21367 2911
d1d9fd33
BB
2912static void pidlist_free(void *p)
2913{
2914 if (is_vmalloc_addr(p))
2915 vfree(p);
2916 else
2917 kfree(p);
2918}
d1d9fd33 2919
b1a21367
TH
2920/*
2921 * Used to destroy all pidlists lingering waiting for destroy timer. None
2922 * should be left afterwards.
2923 */
2924static void cgroup_pidlist_destroy_all(struct cgroup *cgrp)
2925{
2926 struct cgroup_pidlist *l, *tmp_l;
2927
2928 mutex_lock(&cgrp->pidlist_mutex);
2929 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
2930 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
2931 mutex_unlock(&cgrp->pidlist_mutex);
2932
2933 flush_workqueue(cgroup_pidlist_destroy_wq);
2934 BUG_ON(!list_empty(&cgrp->pidlists));
2935}
2936
2937static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
2938{
2939 struct delayed_work *dwork = to_delayed_work(work);
2940 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
2941 destroy_dwork);
2942 struct cgroup_pidlist *tofree = NULL;
2943
2944 mutex_lock(&l->owner->pidlist_mutex);
b1a21367
TH
2945
2946 /*
04502365
TH
2947 * Destroy iff we didn't get queued again. The state won't change
2948 * as destroy_dwork can only be queued while locked.
b1a21367 2949 */
04502365 2950 if (!delayed_work_pending(dwork)) {
b1a21367
TH
2951 list_del(&l->links);
2952 pidlist_free(l->list);
2953 put_pid_ns(l->key.ns);
2954 tofree = l;
2955 }
2956
b1a21367
TH
2957 mutex_unlock(&l->owner->pidlist_mutex);
2958 kfree(tofree);
2959}
2960
bbcb81d0 2961/*
102a775e 2962 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
6ee211ad 2963 * Returns the number of unique elements.
bbcb81d0 2964 */
6ee211ad 2965static int pidlist_uniq(pid_t *list, int length)
bbcb81d0 2966{
102a775e 2967 int src, dest = 1;
102a775e
BB
2968
2969 /*
2970 * we presume the 0th element is unique, so i starts at 1. trivial
2971 * edge cases first; no work needs to be done for either
2972 */
2973 if (length == 0 || length == 1)
2974 return length;
2975 /* src and dest walk down the list; dest counts unique elements */
2976 for (src = 1; src < length; src++) {
2977 /* find next unique element */
2978 while (list[src] == list[src-1]) {
2979 src++;
2980 if (src == length)
2981 goto after;
2982 }
2983 /* dest always points to where the next unique element goes */
2984 list[dest] = list[src];
2985 dest++;
2986 }
2987after:
102a775e
BB
2988 return dest;
2989}
2990
afb2bc14
TH
2991/*
2992 * The two pid files - task and cgroup.procs - guaranteed that the result
2993 * is sorted, which forced this whole pidlist fiasco. As pid order is
2994 * different per namespace, each namespace needs differently sorted list,
2995 * making it impossible to use, for example, single rbtree of member tasks
2996 * sorted by task pointer. As pidlists can be fairly large, allocating one
2997 * per open file is dangerous, so cgroup had to implement shared pool of
2998 * pidlists keyed by cgroup and namespace.
2999 *
3000 * All this extra complexity was caused by the original implementation
3001 * committing to an entirely unnecessary property. In the long term, we
3002 * want to do away with it. Explicitly scramble sort order if
3003 * sane_behavior so that no such expectation exists in the new interface.
3004 *
3005 * Scrambling is done by swapping every two consecutive bits, which is
3006 * non-identity one-to-one mapping which disturbs sort order sufficiently.
3007 */
3008static pid_t pid_fry(pid_t pid)
3009{
3010 unsigned a = pid & 0x55555555;
3011 unsigned b = pid & 0xAAAAAAAA;
3012
3013 return (a << 1) | (b >> 1);
3014}
3015
3016static pid_t cgroup_pid_fry(struct cgroup *cgrp, pid_t pid)
3017{
3018 if (cgroup_sane_behavior(cgrp))
3019 return pid_fry(pid);
3020 else
3021 return pid;
3022}
3023
102a775e
BB
3024static int cmppid(const void *a, const void *b)
3025{
3026 return *(pid_t *)a - *(pid_t *)b;
3027}
3028
afb2bc14
TH
3029static int fried_cmppid(const void *a, const void *b)
3030{
3031 return pid_fry(*(pid_t *)a) - pid_fry(*(pid_t *)b);
3032}
3033
e6b81710
TH
3034static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
3035 enum cgroup_filetype type)
3036{
3037 struct cgroup_pidlist *l;
3038 /* don't need task_nsproxy() if we're looking at ourself */
3039 struct pid_namespace *ns = task_active_pid_ns(current);
3040
3041 lockdep_assert_held(&cgrp->pidlist_mutex);
3042
3043 list_for_each_entry(l, &cgrp->pidlists, links)
3044 if (l->key.type == type && l->key.ns == ns)
3045 return l;
3046 return NULL;
3047}
3048
72a8cb30
BB
3049/*
3050 * find the appropriate pidlist for our purpose (given procs vs tasks)
3051 * returns with the lock on that pidlist already held, and takes care
3052 * of the use count, or returns NULL with no locks held if we're out of
3053 * memory.
3054 */
e6b81710
TH
3055static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
3056 enum cgroup_filetype type)
72a8cb30
BB
3057{
3058 struct cgroup_pidlist *l;
b70cc5fd 3059
e6b81710
TH
3060 lockdep_assert_held(&cgrp->pidlist_mutex);
3061
3062 l = cgroup_pidlist_find(cgrp, type);
3063 if (l)
3064 return l;
3065
72a8cb30 3066 /* entry not found; create a new one */
f4f4be2b 3067 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
e6b81710 3068 if (!l)
72a8cb30 3069 return l;
e6b81710 3070
b1a21367 3071 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
72a8cb30 3072 l->key.type = type;
e6b81710
TH
3073 /* don't need task_nsproxy() if we're looking at ourself */
3074 l->key.ns = get_pid_ns(task_active_pid_ns(current));
72a8cb30
BB
3075 l->owner = cgrp;
3076 list_add(&l->links, &cgrp->pidlists);
72a8cb30
BB
3077 return l;
3078}
3079
102a775e
BB
3080/*
3081 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
3082 */
72a8cb30
BB
3083static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
3084 struct cgroup_pidlist **lp)
102a775e
BB
3085{
3086 pid_t *array;
3087 int length;
3088 int pid, n = 0; /* used for populating the array */
72ec7029 3089 struct css_task_iter it;
817929ec 3090 struct task_struct *tsk;
102a775e
BB
3091 struct cgroup_pidlist *l;
3092
4bac00d1
TH
3093 lockdep_assert_held(&cgrp->pidlist_mutex);
3094
102a775e
BB
3095 /*
3096 * If cgroup gets more users after we read count, we won't have
3097 * enough space - tough. This race is indistinguishable to the
3098 * caller from the case that the additional cgroup users didn't
3099 * show up until sometime later on.
3100 */
3101 length = cgroup_task_count(cgrp);
d1d9fd33 3102 array = pidlist_allocate(length);
102a775e
BB
3103 if (!array)
3104 return -ENOMEM;
3105 /* now, populate the array */
72ec7029
TH
3106 css_task_iter_start(&cgrp->dummy_css, &it);
3107 while ((tsk = css_task_iter_next(&it))) {
102a775e 3108 if (unlikely(n == length))
817929ec 3109 break;
102a775e 3110 /* get tgid or pid for procs or tasks file respectively */
72a8cb30
BB
3111 if (type == CGROUP_FILE_PROCS)
3112 pid = task_tgid_vnr(tsk);
3113 else
3114 pid = task_pid_vnr(tsk);
102a775e
BB
3115 if (pid > 0) /* make sure to only use valid results */
3116 array[n++] = pid;
817929ec 3117 }
72ec7029 3118 css_task_iter_end(&it);
102a775e
BB
3119 length = n;
3120 /* now sort & (if procs) strip out duplicates */
afb2bc14
TH
3121 if (cgroup_sane_behavior(cgrp))
3122 sort(array, length, sizeof(pid_t), fried_cmppid, NULL);
3123 else
3124 sort(array, length, sizeof(pid_t), cmppid, NULL);
72a8cb30 3125 if (type == CGROUP_FILE_PROCS)
6ee211ad 3126 length = pidlist_uniq(array, length);
e6b81710 3127
e6b81710 3128 l = cgroup_pidlist_find_create(cgrp, type);
72a8cb30 3129 if (!l) {
e6b81710 3130 mutex_unlock(&cgrp->pidlist_mutex);
d1d9fd33 3131 pidlist_free(array);
72a8cb30 3132 return -ENOMEM;
102a775e 3133 }
e6b81710
TH
3134
3135 /* store array, freeing old if necessary */
d1d9fd33 3136 pidlist_free(l->list);
102a775e
BB
3137 l->list = array;
3138 l->length = length;
72a8cb30 3139 *lp = l;
102a775e 3140 return 0;
bbcb81d0
PM
3141}
3142
846c7bb0 3143/**
a043e3b2 3144 * cgroupstats_build - build and fill cgroupstats
846c7bb0
BS
3145 * @stats: cgroupstats to fill information into
3146 * @dentry: A dentry entry belonging to the cgroup for which stats have
3147 * been requested.
a043e3b2
LZ
3148 *
3149 * Build and fill cgroupstats so that taskstats can export it to user
3150 * space.
846c7bb0
BS
3151 */
3152int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
3153{
2bd59d48 3154 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
bd89aabc 3155 struct cgroup *cgrp;
72ec7029 3156 struct css_task_iter it;
846c7bb0 3157 struct task_struct *tsk;
33d283be 3158
2bd59d48
TH
3159 /* it should be kernfs_node belonging to cgroupfs and is a directory */
3160 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
3161 kernfs_type(kn) != KERNFS_DIR)
3162 return -EINVAL;
3163
bad34660
LZ
3164 mutex_lock(&cgroup_mutex);
3165
846c7bb0 3166 /*
2bd59d48
TH
3167 * We aren't being called from kernfs and there's no guarantee on
3168 * @kn->priv's validity. For this and css_tryget_from_dir(),
3169 * @kn->priv is RCU safe. Let's do the RCU dancing.
846c7bb0 3170 */
2bd59d48
TH
3171 rcu_read_lock();
3172 cgrp = rcu_dereference(kn->priv);
bad34660 3173 if (!cgrp || cgroup_is_dead(cgrp)) {
2bd59d48 3174 rcu_read_unlock();
bad34660 3175 mutex_unlock(&cgroup_mutex);
2bd59d48
TH
3176 return -ENOENT;
3177 }
bad34660 3178 rcu_read_unlock();
846c7bb0 3179
72ec7029
TH
3180 css_task_iter_start(&cgrp->dummy_css, &it);
3181 while ((tsk = css_task_iter_next(&it))) {
846c7bb0
BS
3182 switch (tsk->state) {
3183 case TASK_RUNNING:
3184 stats->nr_running++;
3185 break;
3186 case TASK_INTERRUPTIBLE:
3187 stats->nr_sleeping++;
3188 break;
3189 case TASK_UNINTERRUPTIBLE:
3190 stats->nr_uninterruptible++;
3191 break;
3192 case TASK_STOPPED:
3193 stats->nr_stopped++;
3194 break;
3195 default:
3196 if (delayacct_is_task_waiting_on_io(tsk))
3197 stats->nr_io_wait++;
3198 break;
3199 }
3200 }
72ec7029 3201 css_task_iter_end(&it);
846c7bb0 3202
bad34660 3203 mutex_unlock(&cgroup_mutex);
2bd59d48 3204 return 0;
846c7bb0
BS
3205}
3206
8f3ff208 3207
bbcb81d0 3208/*
102a775e 3209 * seq_file methods for the tasks/procs files. The seq_file position is the
cc31edce 3210 * next pid to display; the seq_file iterator is a pointer to the pid
102a775e 3211 * in the cgroup->l->list array.
bbcb81d0 3212 */
cc31edce 3213
102a775e 3214static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
bbcb81d0 3215{
cc31edce
PM
3216 /*
3217 * Initially we receive a position value that corresponds to
3218 * one more than the last pid shown (or 0 on the first call or
3219 * after a seek to the start). Use a binary-search to find the
3220 * next pid to display, if any
3221 */
2bd59d48 3222 struct kernfs_open_file *of = s->private;
7da11279 3223 struct cgroup *cgrp = seq_css(s)->cgroup;
4bac00d1 3224 struct cgroup_pidlist *l;
7da11279 3225 enum cgroup_filetype type = seq_cft(s)->private;
cc31edce 3226 int index = 0, pid = *pos;
4bac00d1
TH
3227 int *iter, ret;
3228
3229 mutex_lock(&cgrp->pidlist_mutex);
3230
3231 /*
5d22444f 3232 * !NULL @of->priv indicates that this isn't the first start()
4bac00d1 3233 * after open. If the matching pidlist is around, we can use that.
5d22444f 3234 * Look for it. Note that @of->priv can't be used directly. It
4bac00d1
TH
3235 * could already have been destroyed.
3236 */
5d22444f
TH
3237 if (of->priv)
3238 of->priv = cgroup_pidlist_find(cgrp, type);
4bac00d1
TH
3239
3240 /*
3241 * Either this is the first start() after open or the matching
3242 * pidlist has been destroyed inbetween. Create a new one.
3243 */
5d22444f
TH
3244 if (!of->priv) {
3245 ret = pidlist_array_load(cgrp, type,
3246 (struct cgroup_pidlist **)&of->priv);
4bac00d1
TH
3247 if (ret)
3248 return ERR_PTR(ret);
3249 }
5d22444f 3250 l = of->priv;
cc31edce 3251
cc31edce 3252 if (pid) {
102a775e 3253 int end = l->length;
20777766 3254
cc31edce
PM
3255 while (index < end) {
3256 int mid = (index + end) / 2;
afb2bc14 3257 if (cgroup_pid_fry(cgrp, l->list[mid]) == pid) {
cc31edce
PM
3258 index = mid;
3259 break;
afb2bc14 3260 } else if (cgroup_pid_fry(cgrp, l->list[mid]) <= pid)
cc31edce
PM
3261 index = mid + 1;
3262 else
3263 end = mid;
3264 }
3265 }
3266 /* If we're off the end of the array, we're done */
102a775e 3267 if (index >= l->length)
cc31edce
PM
3268 return NULL;
3269 /* Update the abstract position to be the actual pid that we found */
102a775e 3270 iter = l->list + index;
afb2bc14 3271 *pos = cgroup_pid_fry(cgrp, *iter);
cc31edce
PM
3272 return iter;
3273}
3274
102a775e 3275static void cgroup_pidlist_stop(struct seq_file *s, void *v)
cc31edce 3276{
2bd59d48 3277 struct kernfs_open_file *of = s->private;
5d22444f 3278 struct cgroup_pidlist *l = of->priv;
62236858 3279
5d22444f
TH
3280 if (l)
3281 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
04502365 3282 CGROUP_PIDLIST_DESTROY_DELAY);
7da11279 3283 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
cc31edce
PM
3284}
3285
102a775e 3286static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
cc31edce 3287{
2bd59d48 3288 struct kernfs_open_file *of = s->private;
5d22444f 3289 struct cgroup_pidlist *l = of->priv;
102a775e
BB
3290 pid_t *p = v;
3291 pid_t *end = l->list + l->length;
cc31edce
PM
3292 /*
3293 * Advance to the next pid in the array. If this goes off the
3294 * end, we're done
3295 */
3296 p++;
3297 if (p >= end) {
3298 return NULL;
3299 } else {
7da11279 3300 *pos = cgroup_pid_fry(seq_css(s)->cgroup, *p);
cc31edce
PM
3301 return p;
3302 }
3303}
3304
102a775e 3305static int cgroup_pidlist_show(struct seq_file *s, void *v)
cc31edce
PM
3306{
3307 return seq_printf(s, "%d\n", *(int *)v);
3308}
bbcb81d0 3309
102a775e
BB
3310/*
3311 * seq_operations functions for iterating on pidlists through seq_file -
3312 * independent of whether it's tasks or procs
3313 */
3314static const struct seq_operations cgroup_pidlist_seq_operations = {
3315 .start = cgroup_pidlist_start,
3316 .stop = cgroup_pidlist_stop,
3317 .next = cgroup_pidlist_next,
3318 .show = cgroup_pidlist_show,
cc31edce
PM
3319};
3320
182446d0
TH
3321static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
3322 struct cftype *cft)
81a6a5cd 3323{
182446d0 3324 return notify_on_release(css->cgroup);
81a6a5cd
PM
3325}
3326
182446d0
TH
3327static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
3328 struct cftype *cft, u64 val)
6379c106 3329{
182446d0 3330 clear_bit(CGRP_RELEASABLE, &css->cgroup->flags);
6379c106 3331 if (val)
182446d0 3332 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106 3333 else
182446d0 3334 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106
PM
3335 return 0;
3336}
3337
182446d0
TH
3338static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
3339 struct cftype *cft)
97978e6d 3340{
182446d0 3341 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
3342}
3343
182446d0
TH
3344static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
3345 struct cftype *cft, u64 val)
97978e6d
DL
3346{
3347 if (val)
182446d0 3348 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d 3349 else
182446d0 3350 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
3351 return 0;
3352}
3353
d5c56ced 3354static struct cftype cgroup_base_files[] = {
81a6a5cd 3355 {
d5c56ced 3356 .name = "cgroup.procs",
6612f05b
TH
3357 .seq_start = cgroup_pidlist_start,
3358 .seq_next = cgroup_pidlist_next,
3359 .seq_stop = cgroup_pidlist_stop,
3360 .seq_show = cgroup_pidlist_show,
5d22444f 3361 .private = CGROUP_FILE_PROCS,
74a1166d 3362 .write_u64 = cgroup_procs_write,
74a1166d 3363 .mode = S_IRUGO | S_IWUSR,
102a775e 3364 },
97978e6d
DL
3365 {
3366 .name = "cgroup.clone_children",
873fe09e 3367 .flags = CFTYPE_INSANE,
97978e6d
DL
3368 .read_u64 = cgroup_clone_children_read,
3369 .write_u64 = cgroup_clone_children_write,
3370 },
873fe09e
TH
3371 {
3372 .name = "cgroup.sane_behavior",
3373 .flags = CFTYPE_ONLY_ON_ROOT,
2da8ca82 3374 .seq_show = cgroup_sane_behavior_show,
873fe09e 3375 },
d5c56ced
TH
3376
3377 /*
3378 * Historical crazy stuff. These don't have "cgroup." prefix and
3379 * don't exist if sane_behavior. If you're depending on these, be
3380 * prepared to be burned.
3381 */
3382 {
3383 .name = "tasks",
3384 .flags = CFTYPE_INSANE, /* use "procs" instead */
6612f05b
TH
3385 .seq_start = cgroup_pidlist_start,
3386 .seq_next = cgroup_pidlist_next,
3387 .seq_stop = cgroup_pidlist_stop,
3388 .seq_show = cgroup_pidlist_show,
5d22444f 3389 .private = CGROUP_FILE_TASKS,
d5c56ced 3390 .write_u64 = cgroup_tasks_write,
d5c56ced
TH
3391 .mode = S_IRUGO | S_IWUSR,
3392 },
3393 {
3394 .name = "notify_on_release",
3395 .flags = CFTYPE_INSANE,
3396 .read_u64 = cgroup_read_notify_on_release,
3397 .write_u64 = cgroup_write_notify_on_release,
3398 },
6e6ff25b
TH
3399 {
3400 .name = "release_agent",
cc5943a7 3401 .flags = CFTYPE_INSANE | CFTYPE_ONLY_ON_ROOT,
2da8ca82 3402 .seq_show = cgroup_release_agent_show,
6e6ff25b 3403 .write_string = cgroup_release_agent_write,
5f469907 3404 .max_write_len = PATH_MAX - 1,
6e6ff25b 3405 },
db0416b6 3406 { } /* terminate */
bbcb81d0
PM
3407};
3408
13af07df 3409/**
628f7cd4 3410 * cgroup_populate_dir - create subsys files in a cgroup directory
13af07df 3411 * @cgrp: target cgroup
13af07df 3412 * @subsys_mask: mask of the subsystem ids whose files should be added
bee55099
TH
3413 *
3414 * On failure, no file is added.
13af07df 3415 */
628f7cd4 3416static int cgroup_populate_dir(struct cgroup *cgrp, unsigned long subsys_mask)
ddbcc7e8 3417{
ddbcc7e8 3418 struct cgroup_subsys *ss;
b420ba7d 3419 int i, ret = 0;
bbcb81d0 3420
8e3f6541 3421 /* process cftsets of each subsystem */
b420ba7d 3422 for_each_subsys(ss, i) {
0adb0704 3423 struct cftype *cfts;
b420ba7d
TH
3424
3425 if (!test_bit(i, &subsys_mask))
13af07df 3426 continue;
8e3f6541 3427
0adb0704
TH
3428 list_for_each_entry(cfts, &ss->cfts, node) {
3429 ret = cgroup_addrm_files(cgrp, cfts, true);
bee55099
TH
3430 if (ret < 0)
3431 goto err;
3432 }
ddbcc7e8 3433 }
ddbcc7e8 3434 return 0;
bee55099
TH
3435err:
3436 cgroup_clear_dir(cgrp, subsys_mask);
3437 return ret;
ddbcc7e8
PM
3438}
3439
0c21ead1
TH
3440/*
3441 * css destruction is four-stage process.
3442 *
3443 * 1. Destruction starts. Killing of the percpu_ref is initiated.
3444 * Implemented in kill_css().
3445 *
3446 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
3447 * and thus css_tryget() is guaranteed to fail, the css can be offlined
3448 * by invoking offline_css(). After offlining, the base ref is put.
3449 * Implemented in css_killed_work_fn().
3450 *
3451 * 3. When the percpu_ref reaches zero, the only possible remaining
3452 * accessors are inside RCU read sections. css_release() schedules the
3453 * RCU callback.
3454 *
3455 * 4. After the grace period, the css can be freed. Implemented in
3456 * css_free_work_fn().
3457 *
3458 * It is actually hairier because both step 2 and 4 require process context
3459 * and thus involve punting to css->destroy_work adding two additional
3460 * steps to the already complex sequence.
3461 */
35ef10da 3462static void css_free_work_fn(struct work_struct *work)
48ddbe19
TH
3463{
3464 struct cgroup_subsys_state *css =
35ef10da 3465 container_of(work, struct cgroup_subsys_state, destroy_work);
0c21ead1 3466 struct cgroup *cgrp = css->cgroup;
48ddbe19 3467
0ae78e0b
TH
3468 if (css->parent)
3469 css_put(css->parent);
3470
0c21ead1 3471 css->ss->css_free(css);
2bd59d48 3472 cgroup_put(cgrp);
48ddbe19
TH
3473}
3474
0c21ead1 3475static void css_free_rcu_fn(struct rcu_head *rcu_head)
d3daf28d
TH
3476{
3477 struct cgroup_subsys_state *css =
0c21ead1 3478 container_of(rcu_head, struct cgroup_subsys_state, rcu_head);
d3daf28d 3479
35ef10da 3480 INIT_WORK(&css->destroy_work, css_free_work_fn);
e5fca243 3481 queue_work(cgroup_destroy_wq, &css->destroy_work);
48ddbe19
TH
3482}
3483
d3daf28d
TH
3484static void css_release(struct percpu_ref *ref)
3485{
3486 struct cgroup_subsys_state *css =
3487 container_of(ref, struct cgroup_subsys_state, refcnt);
3488
aec25020 3489 rcu_assign_pointer(css->cgroup->subsys[css->ss->id], NULL);
0c21ead1 3490 call_rcu(&css->rcu_head, css_free_rcu_fn);
d3daf28d
TH
3491}
3492
623f926b
TH
3493static void init_css(struct cgroup_subsys_state *css, struct cgroup_subsys *ss,
3494 struct cgroup *cgrp)
ddbcc7e8 3495{
bd89aabc 3496 css->cgroup = cgrp;
72c97e54 3497 css->ss = ss;
ddbcc7e8 3498 css->flags = 0;
0ae78e0b
TH
3499
3500 if (cgrp->parent)
ca8bdcaf 3501 css->parent = cgroup_css(cgrp->parent, ss);
0ae78e0b 3502 else
38b53aba 3503 css->flags |= CSS_ROOT;
48ddbe19 3504
ca8bdcaf 3505 BUG_ON(cgroup_css(cgrp, ss));
ddbcc7e8
PM
3506}
3507
2a4ac633 3508/* invoke ->css_online() on a new CSS and mark it online if successful */
623f926b 3509static int online_css(struct cgroup_subsys_state *css)
a31f2d3f 3510{
623f926b 3511 struct cgroup_subsys *ss = css->ss;
b1929db4
TH
3512 int ret = 0;
3513
ace2bee8 3514 lockdep_assert_held(&cgroup_tree_mutex);
a31f2d3f
TH
3515 lockdep_assert_held(&cgroup_mutex);
3516
92fb9748 3517 if (ss->css_online)
eb95419b 3518 ret = ss->css_online(css);
ae7f164a 3519 if (!ret) {
eb95419b 3520 css->flags |= CSS_ONLINE;
f20104de 3521 css->cgroup->nr_css++;
aec25020 3522 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
ae7f164a 3523 }
b1929db4 3524 return ret;
a31f2d3f
TH
3525}
3526
2a4ac633 3527/* if the CSS is online, invoke ->css_offline() on it and mark it offline */
623f926b 3528static void offline_css(struct cgroup_subsys_state *css)
a31f2d3f 3529{
623f926b 3530 struct cgroup_subsys *ss = css->ss;
a31f2d3f 3531
ace2bee8 3532 lockdep_assert_held(&cgroup_tree_mutex);
a31f2d3f
TH
3533 lockdep_assert_held(&cgroup_mutex);
3534
3535 if (!(css->flags & CSS_ONLINE))
3536 return;
3537
d7eeac19 3538 if (ss->css_offline)
eb95419b 3539 ss->css_offline(css);
a31f2d3f 3540
eb95419b 3541 css->flags &= ~CSS_ONLINE;
09a503ea 3542 css->cgroup->nr_css--;
aec25020 3543 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], css);
a31f2d3f
TH
3544}
3545
c81c925a
TH
3546/**
3547 * create_css - create a cgroup_subsys_state
3548 * @cgrp: the cgroup new css will be associated with
3549 * @ss: the subsys of new css
3550 *
3551 * Create a new css associated with @cgrp - @ss pair. On success, the new
3552 * css is online and installed in @cgrp with all interface files created.
3553 * Returns 0 on success, -errno on failure.
3554 */
3555static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss)
3556{
3557 struct cgroup *parent = cgrp->parent;
3558 struct cgroup_subsys_state *css;
3559 int err;
3560
c81c925a
TH
3561 lockdep_assert_held(&cgroup_mutex);
3562
3563 css = ss->css_alloc(cgroup_css(parent, ss));
3564 if (IS_ERR(css))
3565 return PTR_ERR(css);
3566
3567 err = percpu_ref_init(&css->refcnt, css_release);
3568 if (err)
3569 goto err_free;
3570
3571 init_css(css, ss, cgrp);
3572
aec25020 3573 err = cgroup_populate_dir(cgrp, 1 << ss->id);
c81c925a
TH
3574 if (err)
3575 goto err_free;
3576
3577 err = online_css(css);
3578 if (err)
3579 goto err_free;
3580
59f5296b 3581 cgroup_get(cgrp);
c81c925a
TH
3582 css_get(css->parent);
3583
3584 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
3585 parent->parent) {
3586 pr_warning("cgroup: %s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
3587 current->comm, current->pid, ss->name);
3588 if (!strcmp(ss->name, "memory"))
3589 pr_warning("cgroup: \"memory\" requires setting use_hierarchy to 1 on the root.\n");
3590 ss->warned_broken_hierarchy = true;
3591 }
3592
3593 return 0;
3594
3595err_free:
3596 percpu_ref_cancel_init(&css->refcnt);
3597 ss->css_free(css);
3598 return err;
3599}
3600
2bd59d48 3601/**
a043e3b2
LZ
3602 * cgroup_create - create a cgroup
3603 * @parent: cgroup that will be parent of the new cgroup
e61734c5 3604 * @name: name of the new cgroup
2bd59d48 3605 * @mode: mode to set on new cgroup
ddbcc7e8 3606 */
e61734c5 3607static long cgroup_create(struct cgroup *parent, const char *name,
2bd59d48 3608 umode_t mode)
ddbcc7e8 3609{
bd89aabc 3610 struct cgroup *cgrp;
ddbcc7e8 3611 struct cgroupfs_root *root = parent->root;
b58c8998 3612 int ssid, err;
ddbcc7e8 3613 struct cgroup_subsys *ss;
2bd59d48 3614 struct kernfs_node *kn;
ddbcc7e8 3615
0a950f65 3616 /* allocate the cgroup and its ID, 0 is reserved for the root */
bd89aabc
PM
3617 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
3618 if (!cgrp)
ddbcc7e8
PM
3619 return -ENOMEM;
3620
ace2bee8
TH
3621 mutex_lock(&cgroup_tree_mutex);
3622
976c06bc
TH
3623 /*
3624 * Only live parents can have children. Note that the liveliness
3625 * check isn't strictly necessary because cgroup_mkdir() and
3626 * cgroup_rmdir() are fully synchronized by i_mutex; however, do it
3627 * anyway so that locking is contained inside cgroup proper and we
3628 * don't get nasty surprises if we ever grow another caller.
3629 */
3630 if (!cgroup_lock_live_group(parent)) {
3631 err = -ENODEV;
ace2bee8 3632 goto err_unlock_tree;
0ab02ca8
LZ
3633 }
3634
3635 /*
3636 * Temporarily set the pointer to NULL, so idr_find() won't return
3637 * a half-baked cgroup.
3638 */
3639 cgrp->id = idr_alloc(&root->cgroup_idr, NULL, 1, 0, GFP_KERNEL);
3640 if (cgrp->id < 0) {
3641 err = -ENOMEM;
3642 goto err_unlock;
976c06bc
TH
3643 }
3644
cc31edce 3645 init_cgroup_housekeeping(cgrp);
ddbcc7e8 3646
bd89aabc 3647 cgrp->parent = parent;
0ae78e0b 3648 cgrp->dummy_css.parent = &parent->dummy_css;
bd89aabc 3649 cgrp->root = parent->root;
ddbcc7e8 3650
b6abdb0e
LZ
3651 if (notify_on_release(parent))
3652 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3653
2260e7fc
TH
3654 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
3655 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
97978e6d 3656
2bd59d48 3657 /* create the directory */
e61734c5 3658 kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
2bd59d48
TH
3659 if (IS_ERR(kn)) {
3660 err = PTR_ERR(kn);
0ab02ca8 3661 goto err_free_id;
2bd59d48
TH
3662 }
3663 cgrp->kn = kn;
ddbcc7e8 3664
6f30558f
TH
3665 /*
3666 * This extra ref will be put in cgroup_free_fn() and guarantees
3667 * that @cgrp->kn is always accessible.
3668 */
3669 kernfs_get(kn);
3670
00356bd5 3671 cgrp->serial_nr = cgroup_serial_nr_next++;
53fa5261 3672
4e139afc 3673 /* allocation complete, commit to creation */
4e139afc 3674 list_add_tail_rcu(&cgrp->sibling, &cgrp->parent->children);
3c9c825b 3675 atomic_inc(&root->nr_cgrps);
59f5296b 3676 cgroup_get(parent);
415cf07a 3677
0d80255e
TH
3678 /*
3679 * @cgrp is now fully operational. If something fails after this
3680 * point, it'll be released via the normal destruction path.
3681 */
4e96ee8e
LZ
3682 idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
3683
2bb566cb 3684 err = cgroup_addrm_files(cgrp, cgroup_base_files, true);
628f7cd4
TH
3685 if (err)
3686 goto err_destroy;
3687
9d403e99 3688 /* let's create and online css's */
b85d2040
TH
3689 for_each_subsys(ss, ssid) {
3690 if (root->subsys_mask & (1 << ssid)) {
3691 err = create_css(cgrp, ss);
3692 if (err)
3693 goto err_destroy;
3694 }
a8638030 3695 }
ddbcc7e8 3696
2bd59d48
TH
3697 kernfs_activate(kn);
3698
ddbcc7e8 3699 mutex_unlock(&cgroup_mutex);
ace2bee8 3700 mutex_unlock(&cgroup_tree_mutex);
ddbcc7e8
PM
3701
3702 return 0;
3703
0a950f65 3704err_free_id:
4e96ee8e 3705 idr_remove(&root->cgroup_idr, cgrp->id);
0ab02ca8
LZ
3706err_unlock:
3707 mutex_unlock(&cgroup_mutex);
ace2bee8
TH
3708err_unlock_tree:
3709 mutex_unlock(&cgroup_tree_mutex);
bd89aabc 3710 kfree(cgrp);
ddbcc7e8 3711 return err;
4b8b47eb
TH
3712
3713err_destroy:
3714 cgroup_destroy_locked(cgrp);
3715 mutex_unlock(&cgroup_mutex);
ace2bee8 3716 mutex_unlock(&cgroup_tree_mutex);
4b8b47eb 3717 return err;
ddbcc7e8
PM
3718}
3719
2bd59d48
TH
3720static int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
3721 umode_t mode)
ddbcc7e8 3722{
2bd59d48 3723 struct cgroup *parent = parent_kn->priv;
ddbcc7e8 3724
2bd59d48 3725 return cgroup_create(parent, name, mode);
ddbcc7e8
PM
3726}
3727
223dbc38
TH
3728/*
3729 * This is called when the refcnt of a css is confirmed to be killed.
3730 * css_tryget() is now guaranteed to fail.
3731 */
3732static void css_killed_work_fn(struct work_struct *work)
d3daf28d 3733{
223dbc38
TH
3734 struct cgroup_subsys_state *css =
3735 container_of(work, struct cgroup_subsys_state, destroy_work);
3736 struct cgroup *cgrp = css->cgroup;
d3daf28d 3737
ace2bee8 3738 mutex_lock(&cgroup_tree_mutex);
f20104de
TH
3739 mutex_lock(&cgroup_mutex);
3740
09a503ea
TH
3741 /*
3742 * css_tryget() is guaranteed to fail now. Tell subsystems to
3743 * initate destruction.
3744 */
3745 offline_css(css);
3746
f20104de
TH
3747 /*
3748 * If @cgrp is marked dead, it's waiting for refs of all css's to
3749 * be disabled before proceeding to the second phase of cgroup
3750 * destruction. If we are the last one, kick it off.
3751 */
09a503ea 3752 if (!cgrp->nr_css && cgroup_is_dead(cgrp))
f20104de
TH
3753 cgroup_destroy_css_killed(cgrp);
3754
3755 mutex_unlock(&cgroup_mutex);
ace2bee8 3756 mutex_unlock(&cgroup_tree_mutex);
09a503ea
TH
3757
3758 /*
3759 * Put the css refs from kill_css(). Each css holds an extra
3760 * reference to the cgroup's dentry and cgroup removal proceeds
3761 * regardless of css refs. On the last put of each css, whenever
3762 * that may be, the extra dentry ref is put so that dentry
3763 * destruction happens only after all css's are released.
3764 */
3765 css_put(css);
d3daf28d
TH
3766}
3767
223dbc38
TH
3768/* css kill confirmation processing requires process context, bounce */
3769static void css_killed_ref_fn(struct percpu_ref *ref)
d3daf28d
TH
3770{
3771 struct cgroup_subsys_state *css =
3772 container_of(ref, struct cgroup_subsys_state, refcnt);
3773
223dbc38 3774 INIT_WORK(&css->destroy_work, css_killed_work_fn);
e5fca243 3775 queue_work(cgroup_destroy_wq, &css->destroy_work);
d3daf28d
TH
3776}
3777
edae0c33
TH
3778/**
3779 * kill_css - destroy a css
3780 * @css: css to destroy
3781 *
3c14f8b4
TH
3782 * This function initiates destruction of @css by removing cgroup interface
3783 * files and putting its base reference. ->css_offline() will be invoked
3784 * asynchronously once css_tryget() is guaranteed to fail and when the
3785 * reference count reaches zero, @css will be released.
edae0c33
TH
3786 */
3787static void kill_css(struct cgroup_subsys_state *css)
3788{
2bd59d48
TH
3789 /*
3790 * This must happen before css is disassociated with its cgroup.
3791 * See seq_css() for details.
3792 */
aec25020 3793 cgroup_clear_dir(css->cgroup, 1 << css->ss->id);
3c14f8b4 3794
edae0c33
TH
3795 /*
3796 * Killing would put the base ref, but we need to keep it alive
3797 * until after ->css_offline().
3798 */
3799 css_get(css);
3800
3801 /*
3802 * cgroup core guarantees that, by the time ->css_offline() is
3803 * invoked, no new css reference will be given out via
3804 * css_tryget(). We can't simply call percpu_ref_kill() and
3805 * proceed to offlining css's because percpu_ref_kill() doesn't
3806 * guarantee that the ref is seen as killed on all CPUs on return.
3807 *
3808 * Use percpu_ref_kill_and_confirm() to get notifications as each
3809 * css is confirmed to be seen as killed on all CPUs.
3810 */
3811 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
d3daf28d
TH
3812}
3813
3814/**
3815 * cgroup_destroy_locked - the first stage of cgroup destruction
3816 * @cgrp: cgroup to be destroyed
3817 *
3818 * css's make use of percpu refcnts whose killing latency shouldn't be
3819 * exposed to userland and are RCU protected. Also, cgroup core needs to
3820 * guarantee that css_tryget() won't succeed by the time ->css_offline() is
3821 * invoked. To satisfy all the requirements, destruction is implemented in
3822 * the following two steps.
3823 *
3824 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
3825 * userland visible parts and start killing the percpu refcnts of
3826 * css's. Set up so that the next stage will be kicked off once all
3827 * the percpu refcnts are confirmed to be killed.
3828 *
3829 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
3830 * rest of destruction. Once all cgroup references are gone, the
3831 * cgroup is RCU-freed.
3832 *
3833 * This function implements s1. After this step, @cgrp is gone as far as
3834 * the userland is concerned and a new cgroup with the same name may be
3835 * created. As cgroup doesn't care about the names internally, this
3836 * doesn't cause any problem.
3837 */
42809dd4
TH
3838static int cgroup_destroy_locked(struct cgroup *cgrp)
3839 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
ddbcc7e8 3840{
bb78a92f 3841 struct cgroup *child;
2bd59d48 3842 struct cgroup_subsys_state *css;
ddd69148 3843 bool empty;
1c6727af 3844 int ssid;
ddbcc7e8 3845
ace2bee8 3846 lockdep_assert_held(&cgroup_tree_mutex);
42809dd4
TH
3847 lockdep_assert_held(&cgroup_mutex);
3848
ddd69148 3849 /*
96d365e0 3850 * css_set_rwsem synchronizes access to ->cset_links and prevents
89c5509b 3851 * @cgrp from being removed while put_css_set() is in progress.
ddd69148 3852 */
96d365e0 3853 down_read(&css_set_rwsem);
bb78a92f 3854 empty = list_empty(&cgrp->cset_links);
96d365e0 3855 up_read(&css_set_rwsem);
ddd69148 3856 if (!empty)
ddbcc7e8 3857 return -EBUSY;
a043e3b2 3858
bb78a92f
HD
3859 /*
3860 * Make sure there's no live children. We can't test ->children
3861 * emptiness as dead children linger on it while being destroyed;
3862 * otherwise, "rmdir parent/child parent" may fail with -EBUSY.
3863 */
3864 empty = true;
3865 rcu_read_lock();
3866 list_for_each_entry_rcu(child, &cgrp->children, sibling) {
3867 empty = cgroup_is_dead(child);
3868 if (!empty)
3869 break;
3870 }
3871 rcu_read_unlock();
3872 if (!empty)
3873 return -EBUSY;
3874
5d77381f
TH
3875 /*
3876 * Mark @cgrp dead. This prevents further task migration and child
3877 * creation by disabling cgroup_lock_live_group(). Note that
3878 * CGRP_DEAD assertion is depended upon by css_next_child() to
3879 * resume iteration after dropping RCU read lock. See
3880 * css_next_child() for details.
3881 */
3882 set_bit(CGRP_DEAD, &cgrp->flags);
3883
88703267 3884 /*
edae0c33
TH
3885 * Initiate massacre of all css's. cgroup_destroy_css_killed()
3886 * will be invoked to perform the rest of destruction once the
4ac06017
TH
3887 * percpu refs of all css's are confirmed to be killed. This
3888 * involves removing the subsystem's files, drop cgroup_mutex.
88703267 3889 */
4ac06017 3890 mutex_unlock(&cgroup_mutex);
1c6727af
TH
3891 for_each_css(css, ssid, cgrp)
3892 kill_css(css);
4ac06017 3893 mutex_lock(&cgroup_mutex);
455050d2 3894
455050d2
TH
3895 /* CGRP_DEAD is set, remove from ->release_list for the last time */
3896 raw_spin_lock(&release_list_lock);
3897 if (!list_empty(&cgrp->release_list))
3898 list_del_init(&cgrp->release_list);
3899 raw_spin_unlock(&release_list_lock);
3900
3901 /*
f20104de
TH
3902 * If @cgrp has css's attached, the second stage of cgroup
3903 * destruction is kicked off from css_killed_work_fn() after the
3904 * refs of all attached css's are killed. If @cgrp doesn't have
3905 * any css, we kick it off here.
3906 */
3907 if (!cgrp->nr_css)
3908 cgroup_destroy_css_killed(cgrp);
3909
2bd59d48
TH
3910 /* remove @cgrp directory along with the base files */
3911 mutex_unlock(&cgroup_mutex);
3912
455050d2 3913 /*
2bd59d48
TH
3914 * There are two control paths which try to determine cgroup from
3915 * dentry without going through kernfs - cgroupstats_build() and
3916 * css_tryget_from_dir(). Those are supported by RCU protecting
3917 * clearing of cgrp->kn->priv backpointer, which should happen
3918 * after all files under it have been removed.
455050d2 3919 */
6f30558f 3920 kernfs_remove(cgrp->kn); /* @cgrp has an extra ref on its kn */
2bd59d48 3921 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv, NULL);
2bd59d48 3922
4ac06017 3923 mutex_lock(&cgroup_mutex);
455050d2 3924
ea15f8cc
TH
3925 return 0;
3926};
3927
d3daf28d 3928/**
f20104de 3929 * cgroup_destroy_css_killed - the second step of cgroup destruction
d3daf28d
TH
3930 * @work: cgroup->destroy_free_work
3931 *
3932 * This function is invoked from a work item for a cgroup which is being
09a503ea
TH
3933 * destroyed after all css's are offlined and performs the rest of
3934 * destruction. This is the second step of destruction described in the
3935 * comment above cgroup_destroy_locked().
d3daf28d 3936 */
f20104de 3937static void cgroup_destroy_css_killed(struct cgroup *cgrp)
ea15f8cc 3938{
ea15f8cc 3939 struct cgroup *parent = cgrp->parent;
ea15f8cc 3940
ace2bee8 3941 lockdep_assert_held(&cgroup_tree_mutex);
f20104de 3942 lockdep_assert_held(&cgroup_mutex);
ea15f8cc 3943
999cd8a4 3944 /* delete this cgroup from parent->children */
eb6fd504 3945 list_del_rcu(&cgrp->sibling);
ed957793 3946
59f5296b 3947 cgroup_put(cgrp);
ddbcc7e8 3948
bd89aabc 3949 set_bit(CGRP_RELEASABLE, &parent->flags);
81a6a5cd 3950 check_for_release(parent);
ddbcc7e8
PM
3951}
3952
2bd59d48 3953static int cgroup_rmdir(struct kernfs_node *kn)
42809dd4 3954{
2bd59d48
TH
3955 struct cgroup *cgrp = kn->priv;
3956 int ret = 0;
3957
3958 /*
3959 * This is self-destruction but @kn can't be removed while this
3960 * callback is in progress. Let's break active protection. Once
3961 * the protection is broken, @cgrp can be destroyed at any point.
3962 * Pin it so that it stays accessible.
3963 */
3964 cgroup_get(cgrp);
3965 kernfs_break_active_protection(kn);
42809dd4 3966
ace2bee8 3967 mutex_lock(&cgroup_tree_mutex);
42809dd4 3968 mutex_lock(&cgroup_mutex);
2bd59d48
TH
3969
3970 /*
3971 * @cgrp might already have been destroyed while we're trying to
3972 * grab the mutexes.
3973 */
3974 if (!cgroup_is_dead(cgrp))
3975 ret = cgroup_destroy_locked(cgrp);
3976
42809dd4 3977 mutex_unlock(&cgroup_mutex);
ace2bee8 3978 mutex_unlock(&cgroup_tree_mutex);
42809dd4 3979
2bd59d48
TH
3980 kernfs_unbreak_active_protection(kn);
3981 cgroup_put(cgrp);
42809dd4
TH
3982 return ret;
3983}
3984
2bd59d48
TH
3985static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
3986 .remount_fs = cgroup_remount,
3987 .show_options = cgroup_show_options,
3988 .mkdir = cgroup_mkdir,
3989 .rmdir = cgroup_rmdir,
3990 .rename = cgroup_rename,
3991};
3992
06a11920 3993static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
ddbcc7e8 3994{
ddbcc7e8 3995 struct cgroup_subsys_state *css;
cfe36bde
DC
3996
3997 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
ddbcc7e8 3998
ace2bee8 3999 mutex_lock(&cgroup_tree_mutex);
648bb56d
TH
4000 mutex_lock(&cgroup_mutex);
4001
0adb0704 4002 INIT_LIST_HEAD(&ss->cfts);
8e3f6541 4003
ddbcc7e8 4004 /* Create the top cgroup state for this subsystem */
9871bf95 4005 ss->root = &cgroup_dummy_root;
ca8bdcaf 4006 css = ss->css_alloc(cgroup_css(cgroup_dummy_top, ss));
ddbcc7e8
PM
4007 /* We don't handle early failures gracefully */
4008 BUG_ON(IS_ERR(css));
623f926b 4009 init_css(css, ss, cgroup_dummy_top);
ddbcc7e8 4010
e8d55fde 4011 /* Update the init_css_set to contain a subsys
817929ec 4012 * pointer to this state - since the subsystem is
e8d55fde
LZ
4013 * newly registered, all tasks and hence the
4014 * init_css_set is in the subsystem's top cgroup. */
aec25020 4015 init_css_set.subsys[ss->id] = css;
ddbcc7e8
PM
4016
4017 need_forkexit_callback |= ss->fork || ss->exit;
4018
e8d55fde
LZ
4019 /* At system boot, before all subsystems have been
4020 * registered, no tasks have been forked, so we don't
4021 * need to invoke fork callbacks here. */
4022 BUG_ON(!list_empty(&init_task.tasks));
4023
ae7f164a 4024 BUG_ON(online_css(css));
a8638030 4025
648bb56d 4026 mutex_unlock(&cgroup_mutex);
ace2bee8 4027 mutex_unlock(&cgroup_tree_mutex);
e6a1105b
BB
4028}
4029
ddbcc7e8 4030/**
a043e3b2
LZ
4031 * cgroup_init_early - cgroup initialization at system boot
4032 *
4033 * Initialize cgroups at system boot, and initialize any
4034 * subsystems that request early init.
ddbcc7e8
PM
4035 */
4036int __init cgroup_init_early(void)
4037{
172a2c06 4038 static struct cgroup_sb_opts __initdata opts = { };
30159ec7 4039 struct cgroup_subsys *ss;
ddbcc7e8 4040 int i;
30159ec7 4041
172a2c06 4042 init_cgroup_root(&cgroup_dummy_root, &opts);
a4ea1cc9 4043 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
817929ec 4044
3ed80a62 4045 for_each_subsys(ss, i) {
aec25020 4046 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
073219e9
TH
4047 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p name:id=%d:%s\n",
4048 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
aec25020 4049 ss->id, ss->name);
073219e9
TH
4050 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
4051 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
4052
aec25020 4053 ss->id = i;
073219e9 4054 ss->name = cgroup_subsys_name[i];
ddbcc7e8
PM
4055
4056 if (ss->early_init)
4057 cgroup_init_subsys(ss);
4058 }
4059 return 0;
4060}
4061
4062/**
a043e3b2
LZ
4063 * cgroup_init - cgroup initialization
4064 *
4065 * Register cgroup filesystem and /proc file, and initialize
4066 * any subsystems that didn't request early init.
ddbcc7e8
PM
4067 */
4068int __init cgroup_init(void)
4069{
30159ec7 4070 struct cgroup_subsys *ss;
0ac801fe 4071 unsigned long key;
172a2c06 4072 int ssid, err;
a424316c 4073
2bd59d48 4074 BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files));
2da440a2 4075
fa3ca07e 4076 /* allocate id for the dummy hierarchy */
54e7b4eb 4077 mutex_lock(&cgroup_mutex);
54e7b4eb 4078
82fe9b0d
TH
4079 /* Add init_css_set to the hash table */
4080 key = css_set_hash(init_css_set.subsys);
4081 hash_add(css_set_table, &init_css_set.hlist, key);
4082
fc76df70 4083 BUG_ON(cgroup_init_root_id(&cgroup_dummy_root, 0, 1));
676db4af 4084
4e96ee8e
LZ
4085 err = idr_alloc(&cgroup_dummy_root.cgroup_idr, cgroup_dummy_top,
4086 0, 1, GFP_KERNEL);
4087 BUG_ON(err < 0);
4088
172a2c06
TH
4089 cgroup_root_count = 1;
4090 init_cgrp_cset_link.cset = &init_css_set;
4091 init_cgrp_cset_link.cgrp = cgroup_dummy_top;
4092 list_add(&init_cgrp_cset_link.cset_link, &cgroup_dummy_top->cset_links);
4093 list_add(&init_cgrp_cset_link.cgrp_link, &init_css_set.cgrp_links);
4094
54e7b4eb
TH
4095 mutex_unlock(&cgroup_mutex);
4096
172a2c06
TH
4097 for_each_subsys(ss, ssid) {
4098 if (!ss->early_init)
4099 cgroup_init_subsys(ss);
4100
4101 /*
4102 * cftype registration needs kmalloc and can't be done
4103 * during early_init. Register base cftypes separately.
4104 */
4105 if (ss->base_cftypes)
4106 WARN_ON(cgroup_add_cftypes(ss, ss->base_cftypes));
4107 }
4108
676db4af 4109 cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
2bd59d48
TH
4110 if (!cgroup_kobj)
4111 return -ENOMEM;
676db4af 4112
ddbcc7e8 4113 err = register_filesystem(&cgroup_fs_type);
676db4af
GKH
4114 if (err < 0) {
4115 kobject_put(cgroup_kobj);
2bd59d48 4116 return err;
676db4af 4117 }
ddbcc7e8 4118
46ae220b 4119 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
2bd59d48 4120 return 0;
ddbcc7e8 4121}
b4f48b63 4122
e5fca243
TH
4123static int __init cgroup_wq_init(void)
4124{
4125 /*
4126 * There isn't much point in executing destruction path in
4127 * parallel. Good chunk is serialized with cgroup_mutex anyway.
1a11533f 4128 * Use 1 for @max_active.
e5fca243
TH
4129 *
4130 * We would prefer to do this in cgroup_init() above, but that
4131 * is called before init_workqueues(): so leave this until after.
4132 */
1a11533f 4133 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
e5fca243 4134 BUG_ON(!cgroup_destroy_wq);
b1a21367
TH
4135
4136 /*
4137 * Used to destroy pidlists and separate to serve as flush domain.
4138 * Cap @max_active to 1 too.
4139 */
4140 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
4141 0, 1);
4142 BUG_ON(!cgroup_pidlist_destroy_wq);
4143
e5fca243
TH
4144 return 0;
4145}
4146core_initcall(cgroup_wq_init);
4147
a424316c
PM
4148/*
4149 * proc_cgroup_show()
4150 * - Print task's cgroup paths into seq_file, one line for each hierarchy
4151 * - Used for /proc/<pid>/cgroup.
a424316c
PM
4152 */
4153
4154/* TODO: Use a proper seq_file iterator */
8d8b97ba 4155int proc_cgroup_show(struct seq_file *m, void *v)
a424316c
PM
4156{
4157 struct pid *pid;
4158 struct task_struct *tsk;
e61734c5 4159 char *buf, *path;
a424316c
PM
4160 int retval;
4161 struct cgroupfs_root *root;
4162
4163 retval = -ENOMEM;
e61734c5 4164 buf = kmalloc(PATH_MAX, GFP_KERNEL);
a424316c
PM
4165 if (!buf)
4166 goto out;
4167
4168 retval = -ESRCH;
4169 pid = m->private;
4170 tsk = get_pid_task(pid, PIDTYPE_PID);
4171 if (!tsk)
4172 goto out_free;
4173
4174 retval = 0;
4175
4176 mutex_lock(&cgroup_mutex);
96d365e0 4177 down_read(&css_set_rwsem);
a424316c 4178
e5f6a860 4179 for_each_active_root(root) {
a424316c 4180 struct cgroup_subsys *ss;
bd89aabc 4181 struct cgroup *cgrp;
b85d2040 4182 int ssid, count = 0;
a424316c 4183
2c6ab6d2 4184 seq_printf(m, "%d:", root->hierarchy_id);
b85d2040
TH
4185 for_each_subsys(ss, ssid)
4186 if (root->subsys_mask & (1 << ssid))
4187 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
c6d57f33
PM
4188 if (strlen(root->name))
4189 seq_printf(m, "%sname=%s", count ? "," : "",
4190 root->name);
a424316c 4191 seq_putc(m, ':');
7717f7ba 4192 cgrp = task_cgroup_from_root(tsk, root);
e61734c5
TH
4193 path = cgroup_path(cgrp, buf, PATH_MAX);
4194 if (!path) {
4195 retval = -ENAMETOOLONG;
a424316c 4196 goto out_unlock;
e61734c5
TH
4197 }
4198 seq_puts(m, path);
a424316c
PM
4199 seq_putc(m, '\n');
4200 }
4201
4202out_unlock:
96d365e0 4203 up_read(&css_set_rwsem);
a424316c
PM
4204 mutex_unlock(&cgroup_mutex);
4205 put_task_struct(tsk);
4206out_free:
4207 kfree(buf);
4208out:
4209 return retval;
4210}
4211
a424316c
PM
4212/* Display information about each subsystem and each hierarchy */
4213static int proc_cgroupstats_show(struct seq_file *m, void *v)
4214{
30159ec7 4215 struct cgroup_subsys *ss;
a424316c 4216 int i;
a424316c 4217
8bab8dde 4218 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
aae8aab4
BB
4219 /*
4220 * ideally we don't want subsystems moving around while we do this.
4221 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
4222 * subsys/hierarchy state.
4223 */
a424316c 4224 mutex_lock(&cgroup_mutex);
30159ec7
TH
4225
4226 for_each_subsys(ss, i)
2c6ab6d2
PM
4227 seq_printf(m, "%s\t%d\t%d\t%d\n",
4228 ss->name, ss->root->hierarchy_id,
3c9c825b 4229 atomic_read(&ss->root->nr_cgrps), !ss->disabled);
30159ec7 4230
a424316c
PM
4231 mutex_unlock(&cgroup_mutex);
4232 return 0;
4233}
4234
4235static int cgroupstats_open(struct inode *inode, struct file *file)
4236{
9dce07f1 4237 return single_open(file, proc_cgroupstats_show, NULL);
a424316c
PM
4238}
4239
828c0950 4240static const struct file_operations proc_cgroupstats_operations = {
a424316c
PM
4241 .open = cgroupstats_open,
4242 .read = seq_read,
4243 .llseek = seq_lseek,
4244 .release = single_release,
4245};
4246
b4f48b63 4247/**
eaf797ab 4248 * cgroup_fork - initialize cgroup related fields during copy_process()
a043e3b2 4249 * @child: pointer to task_struct of forking parent process.
b4f48b63 4250 *
eaf797ab
TH
4251 * A task is associated with the init_css_set until cgroup_post_fork()
4252 * attaches it to the parent's css_set. Empty cg_list indicates that
4253 * @child isn't holding reference to its css_set.
b4f48b63
PM
4254 */
4255void cgroup_fork(struct task_struct *child)
4256{
eaf797ab 4257 RCU_INIT_POINTER(child->cgroups, &init_css_set);
817929ec 4258 INIT_LIST_HEAD(&child->cg_list);
b4f48b63
PM
4259}
4260
817929ec 4261/**
a043e3b2
LZ
4262 * cgroup_post_fork - called on a new task after adding it to the task list
4263 * @child: the task in question
4264 *
5edee61e
TH
4265 * Adds the task to the list running through its css_set if necessary and
4266 * call the subsystem fork() callbacks. Has to be after the task is
4267 * visible on the task list in case we race with the first call to
0942eeee 4268 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5edee61e 4269 * list.
a043e3b2 4270 */
817929ec
PM
4271void cgroup_post_fork(struct task_struct *child)
4272{
30159ec7 4273 struct cgroup_subsys *ss;
5edee61e
TH
4274 int i;
4275
3ce3230a 4276 /*
eaf797ab
TH
4277 * This may race against cgroup_enable_task_cg_links(). As that
4278 * function sets use_task_css_set_links before grabbing
4279 * tasklist_lock and we just went through tasklist_lock to add
4280 * @child, it's guaranteed that either we see the set
4281 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
4282 * @child during its iteration.
4283 *
4284 * If we won the race, @child is associated with %current's
4285 * css_set. Grabbing css_set_rwsem guarantees both that the
4286 * association is stable, and, on completion of the parent's
4287 * migration, @child is visible in the source of migration or
4288 * already in the destination cgroup. This guarantee is necessary
4289 * when implementing operations which need to migrate all tasks of
4290 * a cgroup to another.
4291 *
4292 * Note that if we lose to cgroup_enable_task_cg_links(), @child
4293 * will remain in init_css_set. This is safe because all tasks are
4294 * in the init_css_set before cg_links is enabled and there's no
4295 * operation which transfers all tasks out of init_css_set.
3ce3230a 4296 */
817929ec 4297 if (use_task_css_set_links) {
eaf797ab
TH
4298 struct css_set *cset;
4299
96d365e0 4300 down_write(&css_set_rwsem);
0e1d768f 4301 cset = task_css_set(current);
eaf797ab
TH
4302 if (list_empty(&child->cg_list)) {
4303 rcu_assign_pointer(child->cgroups, cset);
4304 list_add(&child->cg_list, &cset->tasks);
4305 get_css_set(cset);
4306 }
96d365e0 4307 up_write(&css_set_rwsem);
817929ec 4308 }
5edee61e
TH
4309
4310 /*
4311 * Call ss->fork(). This must happen after @child is linked on
4312 * css_set; otherwise, @child might change state between ->fork()
4313 * and addition to css_set.
4314 */
4315 if (need_forkexit_callback) {
3ed80a62 4316 for_each_subsys(ss, i)
5edee61e
TH
4317 if (ss->fork)
4318 ss->fork(child);
5edee61e 4319 }
817929ec 4320}
5edee61e 4321
b4f48b63
PM
4322/**
4323 * cgroup_exit - detach cgroup from exiting task
4324 * @tsk: pointer to task_struct of exiting process
a043e3b2 4325 * @run_callback: run exit callbacks?
b4f48b63
PM
4326 *
4327 * Description: Detach cgroup from @tsk and release it.
4328 *
4329 * Note that cgroups marked notify_on_release force every task in
4330 * them to take the global cgroup_mutex mutex when exiting.
4331 * This could impact scaling on very large systems. Be reluctant to
4332 * use notify_on_release cgroups where very high task exit scaling
4333 * is required on large systems.
4334 *
0e1d768f
TH
4335 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We
4336 * call cgroup_exit() while the task is still competent to handle
4337 * notify_on_release(), then leave the task attached to the root cgroup in
4338 * each hierarchy for the remainder of its exit. No need to bother with
4339 * init_css_set refcnting. init_css_set never goes away and we can't race
4340 * with migration path - either PF_EXITING is visible to migration path or
4341 * @tsk never got on the tasklist.
b4f48b63
PM
4342 */
4343void cgroup_exit(struct task_struct *tsk, int run_callbacks)
4344{
30159ec7 4345 struct cgroup_subsys *ss;
5abb8855 4346 struct css_set *cset;
eaf797ab 4347 bool put_cset = false;
d41d5a01 4348 int i;
817929ec
PM
4349
4350 /*
0e1d768f
TH
4351 * Unlink from @tsk from its css_set. As migration path can't race
4352 * with us, we can check cg_list without grabbing css_set_rwsem.
817929ec
PM
4353 */
4354 if (!list_empty(&tsk->cg_list)) {
96d365e0 4355 down_write(&css_set_rwsem);
0e1d768f 4356 list_del_init(&tsk->cg_list);
96d365e0 4357 up_write(&css_set_rwsem);
0e1d768f 4358 put_cset = true;
817929ec
PM
4359 }
4360
b4f48b63 4361 /* Reassign the task to the init_css_set. */
a8ad805c
TH
4362 cset = task_css_set(tsk);
4363 RCU_INIT_POINTER(tsk->cgroups, &init_css_set);
d41d5a01
PZ
4364
4365 if (run_callbacks && need_forkexit_callback) {
3ed80a62
TH
4366 /* see cgroup_post_fork() for details */
4367 for_each_subsys(ss, i) {
d41d5a01 4368 if (ss->exit) {
eb95419b
TH
4369 struct cgroup_subsys_state *old_css = cset->subsys[i];
4370 struct cgroup_subsys_state *css = task_css(tsk, i);
30159ec7 4371
eb95419b 4372 ss->exit(css, old_css, tsk);
d41d5a01
PZ
4373 }
4374 }
4375 }
d41d5a01 4376
eaf797ab
TH
4377 if (put_cset)
4378 put_css_set(cset, true);
b4f48b63 4379}
697f4161 4380
bd89aabc 4381static void check_for_release(struct cgroup *cgrp)
81a6a5cd 4382{
f50daa70 4383 if (cgroup_is_releasable(cgrp) &&
6f3d828f 4384 list_empty(&cgrp->cset_links) && list_empty(&cgrp->children)) {
f50daa70
LZ
4385 /*
4386 * Control Group is currently removeable. If it's not
81a6a5cd 4387 * already queued for a userspace notification, queue
f50daa70
LZ
4388 * it now
4389 */
81a6a5cd 4390 int need_schedule_work = 0;
f50daa70 4391
cdcc136f 4392 raw_spin_lock(&release_list_lock);
54766d4a 4393 if (!cgroup_is_dead(cgrp) &&
bd89aabc
PM
4394 list_empty(&cgrp->release_list)) {
4395 list_add(&cgrp->release_list, &release_list);
81a6a5cd
PM
4396 need_schedule_work = 1;
4397 }
cdcc136f 4398 raw_spin_unlock(&release_list_lock);
81a6a5cd
PM
4399 if (need_schedule_work)
4400 schedule_work(&release_agent_work);
4401 }
4402}
4403
81a6a5cd
PM
4404/*
4405 * Notify userspace when a cgroup is released, by running the
4406 * configured release agent with the name of the cgroup (path
4407 * relative to the root of cgroup file system) as the argument.
4408 *
4409 * Most likely, this user command will try to rmdir this cgroup.
4410 *
4411 * This races with the possibility that some other task will be
4412 * attached to this cgroup before it is removed, or that some other
4413 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
4414 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
4415 * unused, and this cgroup will be reprieved from its death sentence,
4416 * to continue to serve a useful existence. Next time it's released,
4417 * we will get notified again, if it still has 'notify_on_release' set.
4418 *
4419 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
4420 * means only wait until the task is successfully execve()'d. The
4421 * separate release agent task is forked by call_usermodehelper(),
4422 * then control in this thread returns here, without waiting for the
4423 * release agent task. We don't bother to wait because the caller of
4424 * this routine has no use for the exit status of the release agent
4425 * task, so no sense holding our caller up for that.
81a6a5cd 4426 */
81a6a5cd
PM
4427static void cgroup_release_agent(struct work_struct *work)
4428{
4429 BUG_ON(work != &release_agent_work);
4430 mutex_lock(&cgroup_mutex);
cdcc136f 4431 raw_spin_lock(&release_list_lock);
81a6a5cd
PM
4432 while (!list_empty(&release_list)) {
4433 char *argv[3], *envp[3];
4434 int i;
e61734c5 4435 char *pathbuf = NULL, *agentbuf = NULL, *path;
bd89aabc 4436 struct cgroup *cgrp = list_entry(release_list.next,
81a6a5cd
PM
4437 struct cgroup,
4438 release_list);
bd89aabc 4439 list_del_init(&cgrp->release_list);
cdcc136f 4440 raw_spin_unlock(&release_list_lock);
e61734c5 4441 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
e788e066
PM
4442 if (!pathbuf)
4443 goto continue_free;
e61734c5
TH
4444 path = cgroup_path(cgrp, pathbuf, PATH_MAX);
4445 if (!path)
e788e066
PM
4446 goto continue_free;
4447 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
4448 if (!agentbuf)
4449 goto continue_free;
81a6a5cd
PM
4450
4451 i = 0;
e788e066 4452 argv[i++] = agentbuf;
e61734c5 4453 argv[i++] = path;
81a6a5cd
PM
4454 argv[i] = NULL;
4455
4456 i = 0;
4457 /* minimal command environment */
4458 envp[i++] = "HOME=/";
4459 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
4460 envp[i] = NULL;
4461
4462 /* Drop the lock while we invoke the usermode helper,
4463 * since the exec could involve hitting disk and hence
4464 * be a slow process */
4465 mutex_unlock(&cgroup_mutex);
4466 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
81a6a5cd 4467 mutex_lock(&cgroup_mutex);
e788e066
PM
4468 continue_free:
4469 kfree(pathbuf);
4470 kfree(agentbuf);
cdcc136f 4471 raw_spin_lock(&release_list_lock);
81a6a5cd 4472 }
cdcc136f 4473 raw_spin_unlock(&release_list_lock);
81a6a5cd
PM
4474 mutex_unlock(&cgroup_mutex);
4475}
8bab8dde
PM
4476
4477static int __init cgroup_disable(char *str)
4478{
30159ec7 4479 struct cgroup_subsys *ss;
8bab8dde 4480 char *token;
30159ec7 4481 int i;
8bab8dde
PM
4482
4483 while ((token = strsep(&str, ",")) != NULL) {
4484 if (!*token)
4485 continue;
be45c900 4486
3ed80a62 4487 for_each_subsys(ss, i) {
8bab8dde
PM
4488 if (!strcmp(token, ss->name)) {
4489 ss->disabled = 1;
4490 printk(KERN_INFO "Disabling %s control group"
4491 " subsystem\n", ss->name);
4492 break;
4493 }
4494 }
4495 }
4496 return 1;
4497}
4498__setup("cgroup_disable=", cgroup_disable);
38460b48 4499
b77d7b60 4500/**
5a17f543 4501 * css_tryget_from_dir - get corresponding css from the dentry of a cgroup dir
35cf0836
TH
4502 * @dentry: directory dentry of interest
4503 * @ss: subsystem of interest
b77d7b60 4504 *
5a17f543
TH
4505 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
4506 * to get the corresponding css and return it. If such css doesn't exist
4507 * or can't be pinned, an ERR_PTR value is returned.
e5d1367f 4508 */
5a17f543
TH
4509struct cgroup_subsys_state *css_tryget_from_dir(struct dentry *dentry,
4510 struct cgroup_subsys *ss)
e5d1367f 4511{
2bd59d48
TH
4512 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
4513 struct cgroup_subsys_state *css = NULL;
e5d1367f 4514 struct cgroup *cgrp;
b77d7b60 4515
35cf0836 4516 /* is @dentry a cgroup dir? */
2bd59d48
TH
4517 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
4518 kernfs_type(kn) != KERNFS_DIR)
e5d1367f
SE
4519 return ERR_PTR(-EBADF);
4520
5a17f543
TH
4521 rcu_read_lock();
4522
2bd59d48
TH
4523 /*
4524 * This path doesn't originate from kernfs and @kn could already
4525 * have been or be removed at any point. @kn->priv is RCU
4526 * protected for this access. See destroy_locked() for details.
4527 */
4528 cgrp = rcu_dereference(kn->priv);
4529 if (cgrp)
4530 css = cgroup_css(cgrp, ss);
5a17f543
TH
4531
4532 if (!css || !css_tryget(css))
4533 css = ERR_PTR(-ENOENT);
4534
4535 rcu_read_unlock();
4536 return css;
e5d1367f 4537}
e5d1367f 4538
1cb650b9
LZ
4539/**
4540 * css_from_id - lookup css by id
4541 * @id: the cgroup id
4542 * @ss: cgroup subsys to be looked into
4543 *
4544 * Returns the css if there's valid one with @id, otherwise returns NULL.
4545 * Should be called under rcu_read_lock().
4546 */
4547struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
4548{
4549 struct cgroup *cgrp;
4550
ace2bee8 4551 cgroup_assert_mutexes_or_rcu_locked();
1cb650b9
LZ
4552
4553 cgrp = idr_find(&ss->root->cgroup_idr, id);
4554 if (cgrp)
d1625964 4555 return cgroup_css(cgrp, ss);
1cb650b9 4556 return NULL;
e5d1367f
SE
4557}
4558
fe693435 4559#ifdef CONFIG_CGROUP_DEBUG
eb95419b
TH
4560static struct cgroup_subsys_state *
4561debug_css_alloc(struct cgroup_subsys_state *parent_css)
fe693435
PM
4562{
4563 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
4564
4565 if (!css)
4566 return ERR_PTR(-ENOMEM);
4567
4568 return css;
4569}
4570
eb95419b 4571static void debug_css_free(struct cgroup_subsys_state *css)
fe693435 4572{
eb95419b 4573 kfree(css);
fe693435
PM
4574}
4575
182446d0
TH
4576static u64 debug_taskcount_read(struct cgroup_subsys_state *css,
4577 struct cftype *cft)
fe693435 4578{
182446d0 4579 return cgroup_task_count(css->cgroup);
fe693435
PM
4580}
4581
182446d0
TH
4582static u64 current_css_set_read(struct cgroup_subsys_state *css,
4583 struct cftype *cft)
fe693435
PM
4584{
4585 return (u64)(unsigned long)current->cgroups;
4586}
4587
182446d0 4588static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css,
03c78cbe 4589 struct cftype *cft)
fe693435
PM
4590{
4591 u64 count;
4592
4593 rcu_read_lock();
a8ad805c 4594 count = atomic_read(&task_css_set(current)->refcount);
fe693435
PM
4595 rcu_read_unlock();
4596 return count;
4597}
4598
2da8ca82 4599static int current_css_set_cg_links_read(struct seq_file *seq, void *v)
7717f7ba 4600{
69d0206c 4601 struct cgrp_cset_link *link;
5abb8855 4602 struct css_set *cset;
e61734c5
TH
4603 char *name_buf;
4604
4605 name_buf = kmalloc(NAME_MAX + 1, GFP_KERNEL);
4606 if (!name_buf)
4607 return -ENOMEM;
7717f7ba 4608
96d365e0 4609 down_read(&css_set_rwsem);
7717f7ba 4610 rcu_read_lock();
5abb8855 4611 cset = rcu_dereference(current->cgroups);
69d0206c 4612 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 4613 struct cgroup *c = link->cgrp;
59f5296b
TH
4614 const char *name = "?";
4615
e61734c5
TH
4616 if (c != cgroup_dummy_top) {
4617 cgroup_name(c, name_buf, NAME_MAX + 1);
4618 name = name_buf;
4619 }
7717f7ba 4620
2c6ab6d2
PM
4621 seq_printf(seq, "Root %d group %s\n",
4622 c->root->hierarchy_id, name);
7717f7ba
PM
4623 }
4624 rcu_read_unlock();
96d365e0 4625 up_read(&css_set_rwsem);
e61734c5 4626 kfree(name_buf);
7717f7ba
PM
4627 return 0;
4628}
4629
4630#define MAX_TASKS_SHOWN_PER_CSS 25
2da8ca82 4631static int cgroup_css_links_read(struct seq_file *seq, void *v)
7717f7ba 4632{
2da8ca82 4633 struct cgroup_subsys_state *css = seq_css(seq);
69d0206c 4634 struct cgrp_cset_link *link;
7717f7ba 4635
96d365e0 4636 down_read(&css_set_rwsem);
182446d0 4637 list_for_each_entry(link, &css->cgroup->cset_links, cset_link) {
69d0206c 4638 struct css_set *cset = link->cset;
7717f7ba
PM
4639 struct task_struct *task;
4640 int count = 0;
c7561128 4641
5abb8855 4642 seq_printf(seq, "css_set %p\n", cset);
c7561128 4643
5abb8855 4644 list_for_each_entry(task, &cset->tasks, cg_list) {
c7561128
TH
4645 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
4646 goto overflow;
4647 seq_printf(seq, " task %d\n", task_pid_vnr(task));
4648 }
4649
4650 list_for_each_entry(task, &cset->mg_tasks, cg_list) {
4651 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
4652 goto overflow;
4653 seq_printf(seq, " task %d\n", task_pid_vnr(task));
7717f7ba 4654 }
c7561128
TH
4655 continue;
4656 overflow:
4657 seq_puts(seq, " ...\n");
7717f7ba 4658 }
96d365e0 4659 up_read(&css_set_rwsem);
7717f7ba
PM
4660 return 0;
4661}
4662
182446d0 4663static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft)
fe693435 4664{
182446d0 4665 return test_bit(CGRP_RELEASABLE, &css->cgroup->flags);
fe693435
PM
4666}
4667
4668static struct cftype debug_files[] = {
fe693435
PM
4669 {
4670 .name = "taskcount",
4671 .read_u64 = debug_taskcount_read,
4672 },
4673
4674 {
4675 .name = "current_css_set",
4676 .read_u64 = current_css_set_read,
4677 },
4678
4679 {
4680 .name = "current_css_set_refcount",
4681 .read_u64 = current_css_set_refcount_read,
4682 },
4683
7717f7ba
PM
4684 {
4685 .name = "current_css_set_cg_links",
2da8ca82 4686 .seq_show = current_css_set_cg_links_read,
7717f7ba
PM
4687 },
4688
4689 {
4690 .name = "cgroup_css_links",
2da8ca82 4691 .seq_show = cgroup_css_links_read,
7717f7ba
PM
4692 },
4693
fe693435
PM
4694 {
4695 .name = "releasable",
4696 .read_u64 = releasable_read,
4697 },
fe693435 4698
4baf6e33
TH
4699 { } /* terminate */
4700};
fe693435 4701
073219e9 4702struct cgroup_subsys debug_cgrp_subsys = {
92fb9748
TH
4703 .css_alloc = debug_css_alloc,
4704 .css_free = debug_css_free,
4baf6e33 4705 .base_cftypes = debug_files,
fe693435
PM
4706};
4707#endif /* CONFIG_CGROUP_DEBUG */