]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blame - kernel/cgroup.c
cgroup: cosmetic updates to rebind_subsystems()
[mirror_ubuntu-focal-kernel.git] / kernel / cgroup.c
CommitLineData
ddbcc7e8 1/*
ddbcc7e8
PM
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
0dea1168
KS
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
ddbcc7e8
PM
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
ed3d261b
JP
29#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
ddbcc7e8 31#include <linux/cgroup.h>
2ce9738b 32#include <linux/cred.h>
c6d57f33 33#include <linux/ctype.h>
ddbcc7e8 34#include <linux/errno.h>
2ce9738b 35#include <linux/init_task.h>
ddbcc7e8
PM
36#include <linux/kernel.h>
37#include <linux/list.h>
c9482a5b 38#include <linux/magic.h>
ddbcc7e8
PM
39#include <linux/mm.h>
40#include <linux/mutex.h>
41#include <linux/mount.h>
42#include <linux/pagemap.h>
a424316c 43#include <linux/proc_fs.h>
ddbcc7e8
PM
44#include <linux/rcupdate.h>
45#include <linux/sched.h>
ddbcc7e8 46#include <linux/slab.h>
ddbcc7e8 47#include <linux/spinlock.h>
96d365e0 48#include <linux/rwsem.h>
1ed13287 49#include <linux/percpu-rwsem.h>
ddbcc7e8 50#include <linux/string.h>
bbcb81d0 51#include <linux/sort.h>
81a6a5cd 52#include <linux/kmod.h>
846c7bb0
BS
53#include <linux/delayacct.h>
54#include <linux/cgroupstats.h>
0ac801fe 55#include <linux/hashtable.h>
096b7fe0 56#include <linux/pid_namespace.h>
2c6ab6d2 57#include <linux/idr.h>
d1d9fd33 58#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
c4c27fbd 59#include <linux/kthread.h>
776f02fa 60#include <linux/delay.h>
846c7bb0 61
60063497 62#include <linux/atomic.h>
ddbcc7e8 63
b1a21367
TH
64/*
65 * pidlists linger the following amount before being destroyed. The goal
66 * is avoiding frequent destruction in the middle of consecutive read calls
67 * Expiring in the middle is a performance problem not a correctness one.
68 * 1 sec should be enough.
69 */
70#define CGROUP_PIDLIST_DESTROY_DELAY HZ
71
8d7e6fb0
TH
72#define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
73 MAX_CFTYPE_NAME + 2)
74
e25e2cbb
TH
75/*
76 * cgroup_mutex is the master lock. Any modification to cgroup or its
77 * hierarchy must be performed while holding it.
78 *
0e1d768f
TH
79 * css_set_rwsem protects task->cgroups pointer, the list of css_set
80 * objects, and the chain of tasks off each css_set.
e25e2cbb 81 *
0e1d768f
TH
82 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
83 * cgroup.h can use them for lockdep annotations.
e25e2cbb 84 */
2219449a
TH
85#ifdef CONFIG_PROVE_RCU
86DEFINE_MUTEX(cgroup_mutex);
0e1d768f
TH
87DECLARE_RWSEM(css_set_rwsem);
88EXPORT_SYMBOL_GPL(cgroup_mutex);
89EXPORT_SYMBOL_GPL(css_set_rwsem);
2219449a 90#else
81a6a5cd 91static DEFINE_MUTEX(cgroup_mutex);
0e1d768f 92static DECLARE_RWSEM(css_set_rwsem);
2219449a
TH
93#endif
94
6fa4918d 95/*
15a4c835
TH
96 * Protects cgroup_idr and css_idr so that IDs can be released without
97 * grabbing cgroup_mutex.
6fa4918d
TH
98 */
99static DEFINE_SPINLOCK(cgroup_idr_lock);
100
69e943b7
TH
101/*
102 * Protects cgroup_subsys->release_agent_path. Modifying it also requires
103 * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock.
104 */
105static DEFINE_SPINLOCK(release_agent_path_lock);
81a6a5cd 106
1ed13287
TH
107struct percpu_rw_semaphore cgroup_threadgroup_rwsem;
108
8353da1f 109#define cgroup_assert_mutex_or_rcu_locked() \
f78f5b90
PM
110 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
111 !lockdep_is_held(&cgroup_mutex), \
8353da1f 112 "cgroup_mutex or RCU read lock required");
780cd8b3 113
e5fca243
TH
114/*
115 * cgroup destruction makes heavy use of work items and there can be a lot
116 * of concurrent destructions. Use a separate workqueue so that cgroup
117 * destruction work items don't end up filling up max_active of system_wq
118 * which may lead to deadlock.
119 */
120static struct workqueue_struct *cgroup_destroy_wq;
121
b1a21367
TH
122/*
123 * pidlist destructions need to be flushed on cgroup destruction. Use a
124 * separate workqueue as flush domain.
125 */
126static struct workqueue_struct *cgroup_pidlist_destroy_wq;
127
3ed80a62 128/* generate an array of cgroup subsystem pointers */
073219e9 129#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
3ed80a62 130static struct cgroup_subsys *cgroup_subsys[] = {
ddbcc7e8
PM
131#include <linux/cgroup_subsys.h>
132};
073219e9
TH
133#undef SUBSYS
134
135/* array of cgroup subsystem names */
136#define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
137static const char *cgroup_subsys_name[] = {
ddbcc7e8
PM
138#include <linux/cgroup_subsys.h>
139};
073219e9 140#undef SUBSYS
ddbcc7e8 141
49d1dc4b
TH
142/* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
143#define SUBSYS(_x) \
144 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \
145 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \
146 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \
147 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
148#include <linux/cgroup_subsys.h>
149#undef SUBSYS
150
151#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
152static struct static_key_true *cgroup_subsys_enabled_key[] = {
153#include <linux/cgroup_subsys.h>
154};
155#undef SUBSYS
156
157#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
158static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
159#include <linux/cgroup_subsys.h>
160};
161#undef SUBSYS
162
ddbcc7e8 163/*
3dd06ffa 164 * The default hierarchy, reserved for the subsystems that are otherwise
9871bf95
TH
165 * unattached - it never has more than a single cgroup, and all tasks are
166 * part of that cgroup.
ddbcc7e8 167 */
a2dd4247 168struct cgroup_root cgrp_dfl_root;
d0ec4230 169EXPORT_SYMBOL_GPL(cgrp_dfl_root);
9871bf95 170
a2dd4247
TH
171/*
172 * The default hierarchy always exists but is hidden until mounted for the
173 * first time. This is for backward compatibility.
174 */
175static bool cgrp_dfl_root_visible;
ddbcc7e8 176
a8ddc821
TH
177/*
178 * Set by the boot param of the same name and makes subsystems with NULL
179 * ->dfl_files to use ->legacy_files on the default hierarchy.
180 */
181static bool cgroup_legacy_files_on_dfl;
182
5533e011 183/* some controllers are not supported in the default hierarchy */
8ab456ac 184static unsigned long cgrp_dfl_root_inhibit_ss_mask;
5533e011 185
ddbcc7e8
PM
186/* The list of hierarchy roots */
187
9871bf95
TH
188static LIST_HEAD(cgroup_roots);
189static int cgroup_root_count;
ddbcc7e8 190
3417ae1f 191/* hierarchy ID allocation and mapping, protected by cgroup_mutex */
1a574231 192static DEFINE_IDR(cgroup_hierarchy_idr);
2c6ab6d2 193
794611a1 194/*
0cb51d71
TH
195 * Assign a monotonically increasing serial number to csses. It guarantees
196 * cgroups with bigger numbers are newer than those with smaller numbers.
197 * Also, as csses are always appended to the parent's ->children list, it
198 * guarantees that sibling csses are always sorted in the ascending serial
199 * number order on the list. Protected by cgroup_mutex.
794611a1 200 */
0cb51d71 201static u64 css_serial_nr_next = 1;
794611a1 202
cb4a3167
AS
203/*
204 * These bitmask flags indicate whether tasks in the fork and exit paths have
205 * fork/exit handlers to call. This avoids us having to do extra work in the
206 * fork/exit path to check which subsystems have fork/exit callbacks.
ddbcc7e8 207 */
cb4a3167
AS
208static unsigned long have_fork_callback __read_mostly;
209static unsigned long have_exit_callback __read_mostly;
ddbcc7e8 210
7e47682e
AS
211/* Ditto for the can_fork callback. */
212static unsigned long have_canfork_callback __read_mostly;
213
a14c6874
TH
214static struct cftype cgroup_dfl_base_files[];
215static struct cftype cgroup_legacy_base_files[];
628f7cd4 216
3dd06ffa 217static int rebind_subsystems(struct cgroup_root *dst_root,
8ab456ac 218 unsigned long ss_mask);
42809dd4 219static int cgroup_destroy_locked(struct cgroup *cgrp);
f63070d3
TH
220static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss,
221 bool visible);
9d755d33 222static void css_release(struct percpu_ref *ref);
f8f22e53 223static void kill_css(struct cgroup_subsys_state *css);
2bb566cb
TH
224static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
225 bool is_add);
42809dd4 226
fc5ed1e9
TH
227/**
228 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
229 * @ssid: subsys ID of interest
230 *
231 * cgroup_subsys_enabled() can only be used with literal subsys names which
232 * is fine for individual subsystems but unsuitable for cgroup core. This
233 * is slower static_key_enabled() based test indexed by @ssid.
234 */
235static bool cgroup_ssid_enabled(int ssid)
236{
237 return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
238}
239
9e10a130
TH
240/**
241 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
242 * @cgrp: the cgroup of interest
243 *
244 * The default hierarchy is the v2 interface of cgroup and this function
245 * can be used to test whether a cgroup is on the default hierarchy for
246 * cases where a subsystem should behave differnetly depending on the
247 * interface version.
248 *
249 * The set of behaviors which change on the default hierarchy are still
250 * being determined and the mount option is prefixed with __DEVEL__.
251 *
252 * List of changed behaviors:
253 *
254 * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
255 * and "name" are disallowed.
256 *
257 * - When mounting an existing superblock, mount options should match.
258 *
259 * - Remount is disallowed.
260 *
261 * - rename(2) is disallowed.
262 *
263 * - "tasks" is removed. Everything should be at process granularity. Use
264 * "cgroup.procs" instead.
265 *
266 * - "cgroup.procs" is not sorted. pids will be unique unless they got
267 * recycled inbetween reads.
268 *
269 * - "release_agent" and "notify_on_release" are removed. Replacement
270 * notification mechanism will be implemented.
271 *
272 * - "cgroup.clone_children" is removed.
273 *
274 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup
275 * and its descendants contain no task; otherwise, 1. The file also
276 * generates kernfs notification which can be monitored through poll and
277 * [di]notify when the value of the file changes.
278 *
279 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
280 * take masks of ancestors with non-empty cpus/mems, instead of being
281 * moved to an ancestor.
282 *
283 * - cpuset: a task can be moved into an empty cpuset, and again it takes
284 * masks of ancestors.
285 *
286 * - memcg: use_hierarchy is on by default and the cgroup file for the flag
287 * is not created.
288 *
289 * - blkcg: blk-throttle becomes properly hierarchical.
290 *
291 * - debug: disallowed on the default hierarchy.
292 */
293static bool cgroup_on_dfl(const struct cgroup *cgrp)
294{
295 return cgrp->root == &cgrp_dfl_root;
296}
297
6fa4918d
TH
298/* IDR wrappers which synchronize using cgroup_idr_lock */
299static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
300 gfp_t gfp_mask)
301{
302 int ret;
303
304 idr_preload(gfp_mask);
54504e97 305 spin_lock_bh(&cgroup_idr_lock);
cf780b7d 306 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_WAIT);
54504e97 307 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
308 idr_preload_end();
309 return ret;
310}
311
312static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
313{
314 void *ret;
315
54504e97 316 spin_lock_bh(&cgroup_idr_lock);
6fa4918d 317 ret = idr_replace(idr, ptr, id);
54504e97 318 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
319 return ret;
320}
321
322static void cgroup_idr_remove(struct idr *idr, int id)
323{
54504e97 324 spin_lock_bh(&cgroup_idr_lock);
6fa4918d 325 idr_remove(idr, id);
54504e97 326 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
327}
328
d51f39b0
TH
329static struct cgroup *cgroup_parent(struct cgroup *cgrp)
330{
331 struct cgroup_subsys_state *parent_css = cgrp->self.parent;
332
333 if (parent_css)
334 return container_of(parent_css, struct cgroup, self);
335 return NULL;
336}
337
95109b62
TH
338/**
339 * cgroup_css - obtain a cgroup's css for the specified subsystem
340 * @cgrp: the cgroup of interest
9d800df1 341 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
95109b62 342 *
ca8bdcaf
TH
343 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
344 * function must be called either under cgroup_mutex or rcu_read_lock() and
345 * the caller is responsible for pinning the returned css if it wants to
346 * keep accessing it outside the said locks. This function may return
347 * %NULL if @cgrp doesn't have @subsys_id enabled.
95109b62
TH
348 */
349static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
ca8bdcaf 350 struct cgroup_subsys *ss)
95109b62 351{
ca8bdcaf 352 if (ss)
aec25020 353 return rcu_dereference_check(cgrp->subsys[ss->id],
ace2bee8 354 lockdep_is_held(&cgroup_mutex));
ca8bdcaf 355 else
9d800df1 356 return &cgrp->self;
95109b62 357}
42809dd4 358
aec3dfcb
TH
359/**
360 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
361 * @cgrp: the cgroup of interest
9d800df1 362 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
aec3dfcb 363 *
d0f702e6 364 * Similar to cgroup_css() but returns the effective css, which is defined
aec3dfcb
TH
365 * as the matching css of the nearest ancestor including self which has @ss
366 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
367 * function is guaranteed to return non-NULL css.
368 */
369static struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
370 struct cgroup_subsys *ss)
371{
372 lockdep_assert_held(&cgroup_mutex);
373
374 if (!ss)
9d800df1 375 return &cgrp->self;
aec3dfcb
TH
376
377 if (!(cgrp->root->subsys_mask & (1 << ss->id)))
378 return NULL;
379
eeecbd19
TH
380 /*
381 * This function is used while updating css associations and thus
382 * can't test the csses directly. Use ->child_subsys_mask.
383 */
d51f39b0
TH
384 while (cgroup_parent(cgrp) &&
385 !(cgroup_parent(cgrp)->child_subsys_mask & (1 << ss->id)))
386 cgrp = cgroup_parent(cgrp);
aec3dfcb
TH
387
388 return cgroup_css(cgrp, ss);
95109b62 389}
42809dd4 390
eeecbd19
TH
391/**
392 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
393 * @cgrp: the cgroup of interest
394 * @ss: the subsystem of interest
395 *
396 * Find and get the effective css of @cgrp for @ss. The effective css is
397 * defined as the matching css of the nearest ancestor including self which
398 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
399 * the root css is returned, so this function always returns a valid css.
400 * The returned css must be put using css_put().
401 */
402struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
403 struct cgroup_subsys *ss)
404{
405 struct cgroup_subsys_state *css;
406
407 rcu_read_lock();
408
409 do {
410 css = cgroup_css(cgrp, ss);
411
412 if (css && css_tryget_online(css))
413 goto out_unlock;
414 cgrp = cgroup_parent(cgrp);
415 } while (cgrp);
416
417 css = init_css_set.subsys[ss->id];
418 css_get(css);
419out_unlock:
420 rcu_read_unlock();
421 return css;
422}
423
ddbcc7e8 424/* convenient tests for these bits */
54766d4a 425static inline bool cgroup_is_dead(const struct cgroup *cgrp)
ddbcc7e8 426{
184faf32 427 return !(cgrp->self.flags & CSS_ONLINE);
ddbcc7e8
PM
428}
429
b4168640 430struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
59f5296b 431{
2bd59d48 432 struct cgroup *cgrp = of->kn->parent->priv;
b4168640 433 struct cftype *cft = of_cft(of);
2bd59d48
TH
434
435 /*
436 * This is open and unprotected implementation of cgroup_css().
437 * seq_css() is only called from a kernfs file operation which has
438 * an active reference on the file. Because all the subsystem
439 * files are drained before a css is disassociated with a cgroup,
440 * the matching css from the cgroup's subsys table is guaranteed to
441 * be and stay valid until the enclosing operation is complete.
442 */
443 if (cft->ss)
444 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
445 else
9d800df1 446 return &cgrp->self;
59f5296b 447}
b4168640 448EXPORT_SYMBOL_GPL(of_css);
59f5296b 449
78574cf9
LZ
450/**
451 * cgroup_is_descendant - test ancestry
452 * @cgrp: the cgroup to be tested
453 * @ancestor: possible ancestor of @cgrp
454 *
455 * Test whether @cgrp is a descendant of @ancestor. It also returns %true
456 * if @cgrp == @ancestor. This function is safe to call as long as @cgrp
457 * and @ancestor are accessible.
458 */
459bool cgroup_is_descendant(struct cgroup *cgrp, struct cgroup *ancestor)
460{
461 while (cgrp) {
462 if (cgrp == ancestor)
463 return true;
d51f39b0 464 cgrp = cgroup_parent(cgrp);
78574cf9
LZ
465 }
466 return false;
467}
ddbcc7e8 468
e9685a03 469static int notify_on_release(const struct cgroup *cgrp)
81a6a5cd 470{
bd89aabc 471 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
81a6a5cd
PM
472}
473
1c6727af
TH
474/**
475 * for_each_css - iterate all css's of a cgroup
476 * @css: the iteration cursor
477 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
478 * @cgrp: the target cgroup to iterate css's of
479 *
aec3dfcb 480 * Should be called under cgroup_[tree_]mutex.
1c6727af
TH
481 */
482#define for_each_css(css, ssid, cgrp) \
483 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
484 if (!((css) = rcu_dereference_check( \
485 (cgrp)->subsys[(ssid)], \
486 lockdep_is_held(&cgroup_mutex)))) { } \
487 else
488
aec3dfcb
TH
489/**
490 * for_each_e_css - iterate all effective css's of a cgroup
491 * @css: the iteration cursor
492 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
493 * @cgrp: the target cgroup to iterate css's of
494 *
495 * Should be called under cgroup_[tree_]mutex.
496 */
497#define for_each_e_css(css, ssid, cgrp) \
498 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
499 if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \
500 ; \
501 else
502
30159ec7 503/**
3ed80a62 504 * for_each_subsys - iterate all enabled cgroup subsystems
30159ec7 505 * @ss: the iteration cursor
780cd8b3 506 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
30159ec7 507 */
780cd8b3 508#define for_each_subsys(ss, ssid) \
3ed80a62
TH
509 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT && \
510 (((ss) = cgroup_subsys[ssid]) || true); (ssid)++)
30159ec7 511
cb4a3167
AS
512/**
513 * for_each_subsys_which - filter for_each_subsys with a bitmask
514 * @ss: the iteration cursor
515 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
516 * @ss_maskp: a pointer to the bitmask
517 *
518 * The block will only run for cases where the ssid-th bit (1 << ssid) of
519 * mask is set to 1.
520 */
521#define for_each_subsys_which(ss, ssid, ss_maskp) \
522 if (!CGROUP_SUBSYS_COUNT) /* to avoid spurious gcc warning */ \
4a705c5c 523 (ssid) = 0; \
cb4a3167
AS
524 else \
525 for_each_set_bit(ssid, ss_maskp, CGROUP_SUBSYS_COUNT) \
526 if (((ss) = cgroup_subsys[ssid]) && false) \
527 break; \
528 else
529
985ed670
TH
530/* iterate across the hierarchies */
531#define for_each_root(root) \
5549c497 532 list_for_each_entry((root), &cgroup_roots, root_list)
ddbcc7e8 533
f8f22e53
TH
534/* iterate over child cgrps, lock should be held throughout iteration */
535#define cgroup_for_each_live_child(child, cgrp) \
d5c419b6 536 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
8353da1f 537 if (({ lockdep_assert_held(&cgroup_mutex); \
f8f22e53
TH
538 cgroup_is_dead(child); })) \
539 ; \
540 else
7ae1bad9 541
81a6a5cd 542static void cgroup_release_agent(struct work_struct *work);
bd89aabc 543static void check_for_release(struct cgroup *cgrp);
81a6a5cd 544
69d0206c
TH
545/*
546 * A cgroup can be associated with multiple css_sets as different tasks may
547 * belong to different cgroups on different hierarchies. In the other
548 * direction, a css_set is naturally associated with multiple cgroups.
549 * This M:N relationship is represented by the following link structure
550 * which exists for each association and allows traversing the associations
551 * from both sides.
552 */
553struct cgrp_cset_link {
554 /* the cgroup and css_set this link associates */
555 struct cgroup *cgrp;
556 struct css_set *cset;
557
558 /* list of cgrp_cset_links anchored at cgrp->cset_links */
559 struct list_head cset_link;
560
561 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
562 struct list_head cgrp_link;
817929ec
PM
563};
564
172a2c06
TH
565/*
566 * The default css_set - used by init and its children prior to any
817929ec
PM
567 * hierarchies being mounted. It contains a pointer to the root state
568 * for each subsystem. Also used to anchor the list of css_sets. Not
569 * reference-counted, to improve performance when child cgroups
570 * haven't been created.
571 */
5024ae29 572struct css_set init_css_set = {
172a2c06
TH
573 .refcount = ATOMIC_INIT(1),
574 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links),
575 .tasks = LIST_HEAD_INIT(init_css_set.tasks),
576 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks),
577 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node),
578 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node),
579};
817929ec 580
172a2c06 581static int css_set_count = 1; /* 1 for init_css_set */
817929ec 582
842b597e
TH
583/**
584 * cgroup_update_populated - updated populated count of a cgroup
585 * @cgrp: the target cgroup
586 * @populated: inc or dec populated count
587 *
588 * @cgrp is either getting the first task (css_set) or losing the last.
589 * Update @cgrp->populated_cnt accordingly. The count is propagated
590 * towards root so that a given cgroup's populated_cnt is zero iff the
591 * cgroup and all its descendants are empty.
592 *
593 * @cgrp's interface file "cgroup.populated" is zero if
594 * @cgrp->populated_cnt is zero and 1 otherwise. When @cgrp->populated_cnt
595 * changes from or to zero, userland is notified that the content of the
596 * interface file has changed. This can be used to detect when @cgrp and
597 * its descendants become populated or empty.
598 */
599static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
600{
601 lockdep_assert_held(&css_set_rwsem);
602
603 do {
604 bool trigger;
605
606 if (populated)
607 trigger = !cgrp->populated_cnt++;
608 else
609 trigger = !--cgrp->populated_cnt;
610
611 if (!trigger)
612 break;
613
4a07c222
TH
614 if (cgrp->events_kn)
615 kernfs_notify(cgrp->events_kn);
d51f39b0 616 cgrp = cgroup_parent(cgrp);
842b597e
TH
617 } while (cgrp);
618}
619
7717f7ba
PM
620/*
621 * hash table for cgroup groups. This improves the performance to find
622 * an existing css_set. This hash doesn't (currently) take into
623 * account cgroups in empty hierarchies.
624 */
472b1053 625#define CSS_SET_HASH_BITS 7
0ac801fe 626static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
472b1053 627
0ac801fe 628static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
472b1053 629{
0ac801fe 630 unsigned long key = 0UL;
30159ec7
TH
631 struct cgroup_subsys *ss;
632 int i;
472b1053 633
30159ec7 634 for_each_subsys(ss, i)
0ac801fe
LZ
635 key += (unsigned long)css[i];
636 key = (key >> 16) ^ key;
472b1053 637
0ac801fe 638 return key;
472b1053
LZ
639}
640
a25eb52e 641static void put_css_set_locked(struct css_set *cset)
b4f48b63 642{
69d0206c 643 struct cgrp_cset_link *link, *tmp_link;
2d8f243a
TH
644 struct cgroup_subsys *ss;
645 int ssid;
5abb8855 646
89c5509b
TH
647 lockdep_assert_held(&css_set_rwsem);
648
649 if (!atomic_dec_and_test(&cset->refcount))
146aa1bd 650 return;
81a6a5cd 651
2c6ab6d2 652 /* This css_set is dead. unlink it and release cgroup refcounts */
2d8f243a
TH
653 for_each_subsys(ss, ssid)
654 list_del(&cset->e_cset_node[ssid]);
5abb8855 655 hash_del(&cset->hlist);
2c6ab6d2
PM
656 css_set_count--;
657
69d0206c 658 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
2c6ab6d2 659 struct cgroup *cgrp = link->cgrp;
5abb8855 660
69d0206c
TH
661 list_del(&link->cset_link);
662 list_del(&link->cgrp_link);
71b5707e 663
96d365e0 664 /* @cgrp can't go away while we're holding css_set_rwsem */
842b597e
TH
665 if (list_empty(&cgrp->cset_links)) {
666 cgroup_update_populated(cgrp, false);
a25eb52e 667 check_for_release(cgrp);
81a6a5cd 668 }
2c6ab6d2
PM
669
670 kfree(link);
81a6a5cd 671 }
2c6ab6d2 672
5abb8855 673 kfree_rcu(cset, rcu_head);
b4f48b63
PM
674}
675
a25eb52e 676static void put_css_set(struct css_set *cset)
89c5509b
TH
677{
678 /*
679 * Ensure that the refcount doesn't hit zero while any readers
680 * can see it. Similar to atomic_dec_and_lock(), but for an
681 * rwlock
682 */
683 if (atomic_add_unless(&cset->refcount, -1, 1))
684 return;
685
686 down_write(&css_set_rwsem);
a25eb52e 687 put_css_set_locked(cset);
89c5509b
TH
688 up_write(&css_set_rwsem);
689}
690
817929ec
PM
691/*
692 * refcounted get/put for css_set objects
693 */
5abb8855 694static inline void get_css_set(struct css_set *cset)
817929ec 695{
5abb8855 696 atomic_inc(&cset->refcount);
817929ec
PM
697}
698
b326f9d0 699/**
7717f7ba 700 * compare_css_sets - helper function for find_existing_css_set().
5abb8855
TH
701 * @cset: candidate css_set being tested
702 * @old_cset: existing css_set for a task
7717f7ba
PM
703 * @new_cgrp: cgroup that's being entered by the task
704 * @template: desired set of css pointers in css_set (pre-calculated)
705 *
6f4b7e63 706 * Returns true if "cset" matches "old_cset" except for the hierarchy
7717f7ba
PM
707 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
708 */
5abb8855
TH
709static bool compare_css_sets(struct css_set *cset,
710 struct css_set *old_cset,
7717f7ba
PM
711 struct cgroup *new_cgrp,
712 struct cgroup_subsys_state *template[])
713{
714 struct list_head *l1, *l2;
715
aec3dfcb
TH
716 /*
717 * On the default hierarchy, there can be csets which are
718 * associated with the same set of cgroups but different csses.
719 * Let's first ensure that csses match.
720 */
721 if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
7717f7ba 722 return false;
7717f7ba
PM
723
724 /*
725 * Compare cgroup pointers in order to distinguish between
aec3dfcb
TH
726 * different cgroups in hierarchies. As different cgroups may
727 * share the same effective css, this comparison is always
728 * necessary.
7717f7ba 729 */
69d0206c
TH
730 l1 = &cset->cgrp_links;
731 l2 = &old_cset->cgrp_links;
7717f7ba 732 while (1) {
69d0206c 733 struct cgrp_cset_link *link1, *link2;
5abb8855 734 struct cgroup *cgrp1, *cgrp2;
7717f7ba
PM
735
736 l1 = l1->next;
737 l2 = l2->next;
738 /* See if we reached the end - both lists are equal length. */
69d0206c
TH
739 if (l1 == &cset->cgrp_links) {
740 BUG_ON(l2 != &old_cset->cgrp_links);
7717f7ba
PM
741 break;
742 } else {
69d0206c 743 BUG_ON(l2 == &old_cset->cgrp_links);
7717f7ba
PM
744 }
745 /* Locate the cgroups associated with these links. */
69d0206c
TH
746 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
747 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
748 cgrp1 = link1->cgrp;
749 cgrp2 = link2->cgrp;
7717f7ba 750 /* Hierarchies should be linked in the same order. */
5abb8855 751 BUG_ON(cgrp1->root != cgrp2->root);
7717f7ba
PM
752
753 /*
754 * If this hierarchy is the hierarchy of the cgroup
755 * that's changing, then we need to check that this
756 * css_set points to the new cgroup; if it's any other
757 * hierarchy, then this css_set should point to the
758 * same cgroup as the old css_set.
759 */
5abb8855
TH
760 if (cgrp1->root == new_cgrp->root) {
761 if (cgrp1 != new_cgrp)
7717f7ba
PM
762 return false;
763 } else {
5abb8855 764 if (cgrp1 != cgrp2)
7717f7ba
PM
765 return false;
766 }
767 }
768 return true;
769}
770
b326f9d0
TH
771/**
772 * find_existing_css_set - init css array and find the matching css_set
773 * @old_cset: the css_set that we're using before the cgroup transition
774 * @cgrp: the cgroup that we're moving into
775 * @template: out param for the new set of csses, should be clear on entry
817929ec 776 */
5abb8855
TH
777static struct css_set *find_existing_css_set(struct css_set *old_cset,
778 struct cgroup *cgrp,
779 struct cgroup_subsys_state *template[])
b4f48b63 780{
3dd06ffa 781 struct cgroup_root *root = cgrp->root;
30159ec7 782 struct cgroup_subsys *ss;
5abb8855 783 struct css_set *cset;
0ac801fe 784 unsigned long key;
b326f9d0 785 int i;
817929ec 786
aae8aab4
BB
787 /*
788 * Build the set of subsystem state objects that we want to see in the
789 * new css_set. while subsystems can change globally, the entries here
790 * won't change, so no need for locking.
791 */
30159ec7 792 for_each_subsys(ss, i) {
f392e51c 793 if (root->subsys_mask & (1UL << i)) {
aec3dfcb
TH
794 /*
795 * @ss is in this hierarchy, so we want the
796 * effective css from @cgrp.
797 */
798 template[i] = cgroup_e_css(cgrp, ss);
817929ec 799 } else {
aec3dfcb
TH
800 /*
801 * @ss is not in this hierarchy, so we don't want
802 * to change the css.
803 */
5abb8855 804 template[i] = old_cset->subsys[i];
817929ec
PM
805 }
806 }
807
0ac801fe 808 key = css_set_hash(template);
5abb8855
TH
809 hash_for_each_possible(css_set_table, cset, hlist, key) {
810 if (!compare_css_sets(cset, old_cset, cgrp, template))
7717f7ba
PM
811 continue;
812
813 /* This css_set matches what we need */
5abb8855 814 return cset;
472b1053 815 }
817929ec
PM
816
817 /* No existing cgroup group matched */
818 return NULL;
819}
820
69d0206c 821static void free_cgrp_cset_links(struct list_head *links_to_free)
36553434 822{
69d0206c 823 struct cgrp_cset_link *link, *tmp_link;
36553434 824
69d0206c
TH
825 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
826 list_del(&link->cset_link);
36553434
LZ
827 kfree(link);
828 }
829}
830
69d0206c
TH
831/**
832 * allocate_cgrp_cset_links - allocate cgrp_cset_links
833 * @count: the number of links to allocate
834 * @tmp_links: list_head the allocated links are put on
835 *
836 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
837 * through ->cset_link. Returns 0 on success or -errno.
817929ec 838 */
69d0206c 839static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
817929ec 840{
69d0206c 841 struct cgrp_cset_link *link;
817929ec 842 int i;
69d0206c
TH
843
844 INIT_LIST_HEAD(tmp_links);
845
817929ec 846 for (i = 0; i < count; i++) {
f4f4be2b 847 link = kzalloc(sizeof(*link), GFP_KERNEL);
817929ec 848 if (!link) {
69d0206c 849 free_cgrp_cset_links(tmp_links);
817929ec
PM
850 return -ENOMEM;
851 }
69d0206c 852 list_add(&link->cset_link, tmp_links);
817929ec
PM
853 }
854 return 0;
855}
856
c12f65d4
LZ
857/**
858 * link_css_set - a helper function to link a css_set to a cgroup
69d0206c 859 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
5abb8855 860 * @cset: the css_set to be linked
c12f65d4
LZ
861 * @cgrp: the destination cgroup
862 */
69d0206c
TH
863static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
864 struct cgroup *cgrp)
c12f65d4 865{
69d0206c 866 struct cgrp_cset_link *link;
c12f65d4 867
69d0206c 868 BUG_ON(list_empty(tmp_links));
6803c006
TH
869
870 if (cgroup_on_dfl(cgrp))
871 cset->dfl_cgrp = cgrp;
872
69d0206c
TH
873 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
874 link->cset = cset;
7717f7ba 875 link->cgrp = cgrp;
842b597e
TH
876
877 if (list_empty(&cgrp->cset_links))
878 cgroup_update_populated(cgrp, true);
69d0206c 879 list_move(&link->cset_link, &cgrp->cset_links);
842b597e 880
7717f7ba
PM
881 /*
882 * Always add links to the tail of the list so that the list
883 * is sorted by order of hierarchy creation
884 */
69d0206c 885 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
c12f65d4
LZ
886}
887
b326f9d0
TH
888/**
889 * find_css_set - return a new css_set with one cgroup updated
890 * @old_cset: the baseline css_set
891 * @cgrp: the cgroup to be updated
892 *
893 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
894 * substituted into the appropriate hierarchy.
817929ec 895 */
5abb8855
TH
896static struct css_set *find_css_set(struct css_set *old_cset,
897 struct cgroup *cgrp)
817929ec 898{
b326f9d0 899 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
5abb8855 900 struct css_set *cset;
69d0206c
TH
901 struct list_head tmp_links;
902 struct cgrp_cset_link *link;
2d8f243a 903 struct cgroup_subsys *ss;
0ac801fe 904 unsigned long key;
2d8f243a 905 int ssid;
472b1053 906
b326f9d0
TH
907 lockdep_assert_held(&cgroup_mutex);
908
817929ec
PM
909 /* First see if we already have a cgroup group that matches
910 * the desired set */
96d365e0 911 down_read(&css_set_rwsem);
5abb8855
TH
912 cset = find_existing_css_set(old_cset, cgrp, template);
913 if (cset)
914 get_css_set(cset);
96d365e0 915 up_read(&css_set_rwsem);
817929ec 916
5abb8855
TH
917 if (cset)
918 return cset;
817929ec 919
f4f4be2b 920 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
5abb8855 921 if (!cset)
817929ec
PM
922 return NULL;
923
69d0206c 924 /* Allocate all the cgrp_cset_link objects that we'll need */
9871bf95 925 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
5abb8855 926 kfree(cset);
817929ec
PM
927 return NULL;
928 }
929
5abb8855 930 atomic_set(&cset->refcount, 1);
69d0206c 931 INIT_LIST_HEAD(&cset->cgrp_links);
5abb8855 932 INIT_LIST_HEAD(&cset->tasks);
c7561128 933 INIT_LIST_HEAD(&cset->mg_tasks);
1958d2d5 934 INIT_LIST_HEAD(&cset->mg_preload_node);
b3dc094e 935 INIT_LIST_HEAD(&cset->mg_node);
5abb8855 936 INIT_HLIST_NODE(&cset->hlist);
817929ec
PM
937
938 /* Copy the set of subsystem state objects generated in
939 * find_existing_css_set() */
5abb8855 940 memcpy(cset->subsys, template, sizeof(cset->subsys));
817929ec 941
96d365e0 942 down_write(&css_set_rwsem);
817929ec 943 /* Add reference counts and links from the new css_set. */
69d0206c 944 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
7717f7ba 945 struct cgroup *c = link->cgrp;
69d0206c 946
7717f7ba
PM
947 if (c->root == cgrp->root)
948 c = cgrp;
69d0206c 949 link_css_set(&tmp_links, cset, c);
7717f7ba 950 }
817929ec 951
69d0206c 952 BUG_ON(!list_empty(&tmp_links));
817929ec 953
817929ec 954 css_set_count++;
472b1053 955
2d8f243a 956 /* Add @cset to the hash table */
5abb8855
TH
957 key = css_set_hash(cset->subsys);
958 hash_add(css_set_table, &cset->hlist, key);
472b1053 959
2d8f243a
TH
960 for_each_subsys(ss, ssid)
961 list_add_tail(&cset->e_cset_node[ssid],
962 &cset->subsys[ssid]->cgroup->e_csets[ssid]);
963
96d365e0 964 up_write(&css_set_rwsem);
817929ec 965
5abb8855 966 return cset;
b4f48b63
PM
967}
968
3dd06ffa 969static struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
7717f7ba 970{
3dd06ffa 971 struct cgroup *root_cgrp = kf_root->kn->priv;
2bd59d48 972
3dd06ffa 973 return root_cgrp->root;
2bd59d48
TH
974}
975
3dd06ffa 976static int cgroup_init_root_id(struct cgroup_root *root)
f2e85d57
TH
977{
978 int id;
979
980 lockdep_assert_held(&cgroup_mutex);
981
985ed670 982 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
f2e85d57
TH
983 if (id < 0)
984 return id;
985
986 root->hierarchy_id = id;
987 return 0;
988}
989
3dd06ffa 990static void cgroup_exit_root_id(struct cgroup_root *root)
f2e85d57
TH
991{
992 lockdep_assert_held(&cgroup_mutex);
993
994 if (root->hierarchy_id) {
995 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
996 root->hierarchy_id = 0;
997 }
998}
999
3dd06ffa 1000static void cgroup_free_root(struct cgroup_root *root)
f2e85d57
TH
1001{
1002 if (root) {
d0f702e6 1003 /* hierarchy ID should already have been released */
f2e85d57
TH
1004 WARN_ON_ONCE(root->hierarchy_id);
1005
1006 idr_destroy(&root->cgroup_idr);
1007 kfree(root);
1008 }
1009}
1010
3dd06ffa 1011static void cgroup_destroy_root(struct cgroup_root *root)
59f5296b 1012{
3dd06ffa 1013 struct cgroup *cgrp = &root->cgrp;
f2e85d57 1014 struct cgrp_cset_link *link, *tmp_link;
f2e85d57 1015
2bd59d48 1016 mutex_lock(&cgroup_mutex);
f2e85d57 1017
776f02fa 1018 BUG_ON(atomic_read(&root->nr_cgrps));
d5c419b6 1019 BUG_ON(!list_empty(&cgrp->self.children));
f2e85d57 1020
f2e85d57 1021 /* Rebind all subsystems back to the default hierarchy */
f392e51c 1022 rebind_subsystems(&cgrp_dfl_root, root->subsys_mask);
7717f7ba 1023
7717f7ba 1024 /*
f2e85d57
TH
1025 * Release all the links from cset_links to this hierarchy's
1026 * root cgroup
7717f7ba 1027 */
96d365e0 1028 down_write(&css_set_rwsem);
f2e85d57
TH
1029
1030 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1031 list_del(&link->cset_link);
1032 list_del(&link->cgrp_link);
1033 kfree(link);
1034 }
96d365e0 1035 up_write(&css_set_rwsem);
f2e85d57
TH
1036
1037 if (!list_empty(&root->root_list)) {
1038 list_del(&root->root_list);
1039 cgroup_root_count--;
1040 }
1041
1042 cgroup_exit_root_id(root);
1043
1044 mutex_unlock(&cgroup_mutex);
f2e85d57 1045
2bd59d48 1046 kernfs_destroy_root(root->kf_root);
f2e85d57
TH
1047 cgroup_free_root(root);
1048}
1049
ceb6a081
TH
1050/* look up cgroup associated with given css_set on the specified hierarchy */
1051static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
3dd06ffa 1052 struct cgroup_root *root)
7717f7ba 1053{
7717f7ba
PM
1054 struct cgroup *res = NULL;
1055
96d365e0
TH
1056 lockdep_assert_held(&cgroup_mutex);
1057 lockdep_assert_held(&css_set_rwsem);
1058
5abb8855 1059 if (cset == &init_css_set) {
3dd06ffa 1060 res = &root->cgrp;
7717f7ba 1061 } else {
69d0206c
TH
1062 struct cgrp_cset_link *link;
1063
1064 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 1065 struct cgroup *c = link->cgrp;
69d0206c 1066
7717f7ba
PM
1067 if (c->root == root) {
1068 res = c;
1069 break;
1070 }
1071 }
1072 }
96d365e0 1073
7717f7ba
PM
1074 BUG_ON(!res);
1075 return res;
1076}
1077
ddbcc7e8 1078/*
ceb6a081
TH
1079 * Return the cgroup for "task" from the given hierarchy. Must be
1080 * called with cgroup_mutex and css_set_rwsem held.
1081 */
1082static struct cgroup *task_cgroup_from_root(struct task_struct *task,
3dd06ffa 1083 struct cgroup_root *root)
ceb6a081
TH
1084{
1085 /*
1086 * No need to lock the task - since we hold cgroup_mutex the
1087 * task can't change groups, so the only thing that can happen
1088 * is that it exits and its css is set back to init_css_set.
1089 */
1090 return cset_cgroup_from_root(task_css_set(task), root);
1091}
1092
ddbcc7e8 1093/*
ddbcc7e8
PM
1094 * A task must hold cgroup_mutex to modify cgroups.
1095 *
1096 * Any task can increment and decrement the count field without lock.
1097 * So in general, code holding cgroup_mutex can't rely on the count
1098 * field not changing. However, if the count goes to zero, then only
956db3ca 1099 * cgroup_attach_task() can increment it again. Because a count of zero
ddbcc7e8
PM
1100 * means that no tasks are currently attached, therefore there is no
1101 * way a task attached to that cgroup can fork (the other way to
1102 * increment the count). So code holding cgroup_mutex can safely
1103 * assume that if the count is zero, it will stay zero. Similarly, if
1104 * a task holds cgroup_mutex on a cgroup with zero count, it
1105 * knows that the cgroup won't be removed, as cgroup_rmdir()
1106 * needs that mutex.
1107 *
ddbcc7e8
PM
1108 * A cgroup can only be deleted if both its 'count' of using tasks
1109 * is zero, and its list of 'children' cgroups is empty. Since all
1110 * tasks in the system use _some_ cgroup, and since there is always at
3dd06ffa 1111 * least one task in the system (init, pid == 1), therefore, root cgroup
ddbcc7e8 1112 * always has either children cgroups and/or using tasks. So we don't
3dd06ffa 1113 * need a special hack to ensure that root cgroup cannot be deleted.
ddbcc7e8
PM
1114 *
1115 * P.S. One more locking exception. RCU is used to guard the
956db3ca 1116 * update of a tasks cgroup pointer by cgroup_attach_task()
ddbcc7e8
PM
1117 */
1118
2bd59d48 1119static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
828c0950 1120static const struct file_operations proc_cgroupstats_operations;
a424316c 1121
8d7e6fb0
TH
1122static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1123 char *buf)
ddbcc7e8 1124{
3e1d2eed
TH
1125 struct cgroup_subsys *ss = cft->ss;
1126
8d7e6fb0
TH
1127 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1128 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
1129 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
3e1d2eed
TH
1130 cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1131 cft->name);
8d7e6fb0
TH
1132 else
1133 strncpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1134 return buf;
ddbcc7e8
PM
1135}
1136
f2e85d57
TH
1137/**
1138 * cgroup_file_mode - deduce file mode of a control file
1139 * @cft: the control file in question
1140 *
7dbdb199 1141 * S_IRUGO for read, S_IWUSR for write.
f2e85d57
TH
1142 */
1143static umode_t cgroup_file_mode(const struct cftype *cft)
65dff759 1144{
f2e85d57 1145 umode_t mode = 0;
65dff759 1146
f2e85d57
TH
1147 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1148 mode |= S_IRUGO;
1149
7dbdb199
TH
1150 if (cft->write_u64 || cft->write_s64 || cft->write) {
1151 if (cft->flags & CFTYPE_WORLD_WRITABLE)
1152 mode |= S_IWUGO;
1153 else
1154 mode |= S_IWUSR;
1155 }
f2e85d57
TH
1156
1157 return mode;
65dff759
LZ
1158}
1159
59f5296b 1160static void cgroup_get(struct cgroup *cgrp)
be445626 1161{
2bd59d48 1162 WARN_ON_ONCE(cgroup_is_dead(cgrp));
9d755d33 1163 css_get(&cgrp->self);
be445626
LZ
1164}
1165
aa32362f
LZ
1166static bool cgroup_tryget(struct cgroup *cgrp)
1167{
1168 return css_tryget(&cgrp->self);
1169}
1170
59f5296b 1171static void cgroup_put(struct cgroup *cgrp)
be445626 1172{
9d755d33 1173 css_put(&cgrp->self);
be445626
LZ
1174}
1175
af0ba678 1176/**
0f060deb 1177 * cgroup_calc_child_subsys_mask - calculate child_subsys_mask
af0ba678 1178 * @cgrp: the target cgroup
0f060deb 1179 * @subtree_control: the new subtree_control mask to consider
af0ba678
TH
1180 *
1181 * On the default hierarchy, a subsystem may request other subsystems to be
1182 * enabled together through its ->depends_on mask. In such cases, more
1183 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1184 *
0f060deb
TH
1185 * This function calculates which subsystems need to be enabled if
1186 * @subtree_control is to be applied to @cgrp. The returned mask is always
1187 * a superset of @subtree_control and follows the usual hierarchy rules.
af0ba678 1188 */
8ab456ac
AS
1189static unsigned long cgroup_calc_child_subsys_mask(struct cgroup *cgrp,
1190 unsigned long subtree_control)
667c2491 1191{
af0ba678 1192 struct cgroup *parent = cgroup_parent(cgrp);
8ab456ac 1193 unsigned long cur_ss_mask = subtree_control;
af0ba678
TH
1194 struct cgroup_subsys *ss;
1195 int ssid;
1196
1197 lockdep_assert_held(&cgroup_mutex);
1198
0f060deb
TH
1199 if (!cgroup_on_dfl(cgrp))
1200 return cur_ss_mask;
af0ba678
TH
1201
1202 while (true) {
8ab456ac 1203 unsigned long new_ss_mask = cur_ss_mask;
af0ba678 1204
a966a4ed
AS
1205 for_each_subsys_which(ss, ssid, &cur_ss_mask)
1206 new_ss_mask |= ss->depends_on;
af0ba678
TH
1207
1208 /*
1209 * Mask out subsystems which aren't available. This can
1210 * happen only if some depended-upon subsystems were bound
1211 * to non-default hierarchies.
1212 */
1213 if (parent)
1214 new_ss_mask &= parent->child_subsys_mask;
1215 else
1216 new_ss_mask &= cgrp->root->subsys_mask;
1217
1218 if (new_ss_mask == cur_ss_mask)
1219 break;
1220 cur_ss_mask = new_ss_mask;
1221 }
1222
0f060deb
TH
1223 return cur_ss_mask;
1224}
1225
1226/**
1227 * cgroup_refresh_child_subsys_mask - update child_subsys_mask
1228 * @cgrp: the target cgroup
1229 *
1230 * Update @cgrp->child_subsys_mask according to the current
1231 * @cgrp->subtree_control using cgroup_calc_child_subsys_mask().
1232 */
1233static void cgroup_refresh_child_subsys_mask(struct cgroup *cgrp)
1234{
1235 cgrp->child_subsys_mask =
1236 cgroup_calc_child_subsys_mask(cgrp, cgrp->subtree_control);
667c2491
TH
1237}
1238
a9746d8d
TH
1239/**
1240 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1241 * @kn: the kernfs_node being serviced
1242 *
1243 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1244 * the method finishes if locking succeeded. Note that once this function
1245 * returns the cgroup returned by cgroup_kn_lock_live() may become
1246 * inaccessible any time. If the caller intends to continue to access the
1247 * cgroup, it should pin it before invoking this function.
1248 */
1249static void cgroup_kn_unlock(struct kernfs_node *kn)
ddbcc7e8 1250{
a9746d8d
TH
1251 struct cgroup *cgrp;
1252
1253 if (kernfs_type(kn) == KERNFS_DIR)
1254 cgrp = kn->priv;
1255 else
1256 cgrp = kn->parent->priv;
1257
1258 mutex_unlock(&cgroup_mutex);
a9746d8d
TH
1259
1260 kernfs_unbreak_active_protection(kn);
1261 cgroup_put(cgrp);
ddbcc7e8
PM
1262}
1263
a9746d8d
TH
1264/**
1265 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1266 * @kn: the kernfs_node being serviced
1267 *
1268 * This helper is to be used by a cgroup kernfs method currently servicing
1269 * @kn. It breaks the active protection, performs cgroup locking and
1270 * verifies that the associated cgroup is alive. Returns the cgroup if
1271 * alive; otherwise, %NULL. A successful return should be undone by a
1272 * matching cgroup_kn_unlock() invocation.
1273 *
1274 * Any cgroup kernfs method implementation which requires locking the
1275 * associated cgroup should use this helper. It avoids nesting cgroup
1276 * locking under kernfs active protection and allows all kernfs operations
1277 * including self-removal.
1278 */
1279static struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn)
05ef1d7c 1280{
a9746d8d
TH
1281 struct cgroup *cgrp;
1282
1283 if (kernfs_type(kn) == KERNFS_DIR)
1284 cgrp = kn->priv;
1285 else
1286 cgrp = kn->parent->priv;
05ef1d7c 1287
2739d3cc 1288 /*
01f6474c 1289 * We're gonna grab cgroup_mutex which nests outside kernfs
a9746d8d
TH
1290 * active_ref. cgroup liveliness check alone provides enough
1291 * protection against removal. Ensure @cgrp stays accessible and
1292 * break the active_ref protection.
2739d3cc 1293 */
aa32362f
LZ
1294 if (!cgroup_tryget(cgrp))
1295 return NULL;
a9746d8d
TH
1296 kernfs_break_active_protection(kn);
1297
2bd59d48 1298 mutex_lock(&cgroup_mutex);
05ef1d7c 1299
a9746d8d
TH
1300 if (!cgroup_is_dead(cgrp))
1301 return cgrp;
1302
1303 cgroup_kn_unlock(kn);
1304 return NULL;
ddbcc7e8 1305}
05ef1d7c 1306
2739d3cc 1307static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
05ef1d7c 1308{
2bd59d48 1309 char name[CGROUP_FILE_NAME_MAX];
05ef1d7c 1310
01f6474c 1311 lockdep_assert_held(&cgroup_mutex);
2bd59d48 1312 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
05ef1d7c
TH
1313}
1314
13af07df 1315/**
628f7cd4 1316 * cgroup_clear_dir - remove subsys files in a cgroup directory
8f89140a 1317 * @cgrp: target cgroup
13af07df
AR
1318 * @subsys_mask: mask of the subsystem ids whose files should be removed
1319 */
8ab456ac 1320static void cgroup_clear_dir(struct cgroup *cgrp, unsigned long subsys_mask)
05ef1d7c 1321{
13af07df 1322 struct cgroup_subsys *ss;
b420ba7d 1323 int i;
05ef1d7c 1324
b420ba7d 1325 for_each_subsys(ss, i) {
0adb0704 1326 struct cftype *cfts;
b420ba7d 1327
69dfa00c 1328 if (!(subsys_mask & (1 << i)))
13af07df 1329 continue;
0adb0704
TH
1330 list_for_each_entry(cfts, &ss->cfts, node)
1331 cgroup_addrm_files(cgrp, cfts, false);
13af07df 1332 }
ddbcc7e8
PM
1333}
1334
ccdca218
TH
1335/**
1336 * cgroup_populate_dir - create subsys files in a cgroup directory
1337 * @cgrp: target cgroup
1338 * @subsys_mask: mask of the subsystem ids whose files should be added
1339 *
1340 * On failure, no file is added.
1341 */
1342static int cgroup_populate_dir(struct cgroup *cgrp, unsigned long subsys_mask)
1343{
1344 struct cgroup_subsys *ss;
1345 int i, ret = 0;
1346
1347 /* process cftsets of each subsystem */
1348 for_each_subsys(ss, i) {
1349 struct cftype *cfts;
1350
1351 if (!(subsys_mask & (1 << i)))
1352 continue;
1353
1354 list_for_each_entry(cfts, &ss->cfts, node) {
1355 ret = cgroup_addrm_files(cgrp, cfts, true);
1356 if (ret < 0)
1357 goto err;
1358 }
1359 }
1360 return 0;
1361err:
1362 cgroup_clear_dir(cgrp, subsys_mask);
1363 return ret;
1364}
1365
8ab456ac
AS
1366static int rebind_subsystems(struct cgroup_root *dst_root,
1367 unsigned long ss_mask)
ddbcc7e8 1368{
1ada4838 1369 struct cgroup *dcgrp = &dst_root->cgrp;
30159ec7 1370 struct cgroup_subsys *ss;
8ab456ac 1371 unsigned long tmp_ss_mask;
2d8f243a 1372 int ssid, i, ret;
ddbcc7e8 1373
ace2bee8 1374 lockdep_assert_held(&cgroup_mutex);
ddbcc7e8 1375
a966a4ed 1376 for_each_subsys_which(ss, ssid, &ss_mask) {
7fd8c565
TH
1377 /* if @ss has non-root csses attached to it, can't move */
1378 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)))
3ed80a62 1379 return -EBUSY;
1d5be6b2 1380
5df36032 1381 /* can't move between two non-dummy roots either */
7fd8c565 1382 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
5df36032 1383 return -EBUSY;
ddbcc7e8
PM
1384 }
1385
5533e011
TH
1386 /* skip creating root files on dfl_root for inhibited subsystems */
1387 tmp_ss_mask = ss_mask;
1388 if (dst_root == &cgrp_dfl_root)
1389 tmp_ss_mask &= ~cgrp_dfl_root_inhibit_ss_mask;
1390
1ada4838 1391 ret = cgroup_populate_dir(dcgrp, tmp_ss_mask);
a2dd4247
TH
1392 if (ret) {
1393 if (dst_root != &cgrp_dfl_root)
5df36032 1394 return ret;
ddbcc7e8 1395
a2dd4247
TH
1396 /*
1397 * Rebinding back to the default root is not allowed to
1398 * fail. Using both default and non-default roots should
1399 * be rare. Moving subsystems back and forth even more so.
1400 * Just warn about it and continue.
1401 */
1402 if (cgrp_dfl_root_visible) {
8ab456ac 1403 pr_warn("failed to create files (%d) while rebinding 0x%lx to default root\n",
a2a1f9ea 1404 ret, ss_mask);
ed3d261b 1405 pr_warn("you may retry by moving them to a different hierarchy and unbinding\n");
a2dd4247 1406 }
5df36032 1407 }
3126121f
TH
1408
1409 /*
1410 * Nothing can fail from this point on. Remove files for the
1411 * removed subsystems and rebind each subsystem.
1412 */
a966a4ed
AS
1413 for_each_subsys_which(ss, ssid, &ss_mask)
1414 cgroup_clear_dir(&ss->root->cgrp, 1 << ssid);
a8a648c4 1415
a966a4ed 1416 for_each_subsys_which(ss, ssid, &ss_mask) {
1ada4838
TH
1417 struct cgroup_root *src_root = ss->root;
1418 struct cgroup *scgrp = &src_root->cgrp;
1419 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
2d8f243a 1420 struct css_set *cset;
a8a648c4 1421
1ada4838 1422 WARN_ON(!css || cgroup_css(dcgrp, ss));
a8a648c4 1423
1ada4838
TH
1424 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1425 rcu_assign_pointer(dcgrp->subsys[ssid], css);
5df36032 1426 ss->root = dst_root;
1ada4838 1427 css->cgroup = dcgrp;
73e80ed8 1428
2d8f243a
TH
1429 down_write(&css_set_rwsem);
1430 hash_for_each(css_set_table, i, cset, hlist)
1431 list_move_tail(&cset->e_cset_node[ss->id],
1ada4838 1432 &dcgrp->e_csets[ss->id]);
2d8f243a
TH
1433 up_write(&css_set_rwsem);
1434
f392e51c 1435 src_root->subsys_mask &= ~(1 << ssid);
1ada4838
TH
1436 scgrp->subtree_control &= ~(1 << ssid);
1437 cgroup_refresh_child_subsys_mask(scgrp);
f392e51c 1438
bd53d617 1439 /* default hierarchy doesn't enable controllers by default */
f392e51c 1440 dst_root->subsys_mask |= 1 << ssid;
49d1dc4b
TH
1441 if (dst_root == &cgrp_dfl_root) {
1442 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1443 } else {
1ada4838
TH
1444 dcgrp->subtree_control |= 1 << ssid;
1445 cgroup_refresh_child_subsys_mask(dcgrp);
49d1dc4b 1446 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
667c2491 1447 }
a8a648c4 1448
5df36032
TH
1449 if (ss->bind)
1450 ss->bind(css);
ddbcc7e8 1451 }
ddbcc7e8 1452
1ada4838 1453 kernfs_activate(dcgrp->kn);
ddbcc7e8
PM
1454 return 0;
1455}
1456
2bd59d48
TH
1457static int cgroup_show_options(struct seq_file *seq,
1458 struct kernfs_root *kf_root)
ddbcc7e8 1459{
3dd06ffa 1460 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
ddbcc7e8 1461 struct cgroup_subsys *ss;
b85d2040 1462 int ssid;
ddbcc7e8 1463
d98817d4
TH
1464 if (root != &cgrp_dfl_root)
1465 for_each_subsys(ss, ssid)
1466 if (root->subsys_mask & (1 << ssid))
61e57c0c 1467 seq_show_option(seq, ss->legacy_name, NULL);
93438629 1468 if (root->flags & CGRP_ROOT_NOPREFIX)
ddbcc7e8 1469 seq_puts(seq, ",noprefix");
93438629 1470 if (root->flags & CGRP_ROOT_XATTR)
03b1cde6 1471 seq_puts(seq, ",xattr");
69e943b7
TH
1472
1473 spin_lock(&release_agent_path_lock);
81a6a5cd 1474 if (strlen(root->release_agent_path))
a068acf2
KC
1475 seq_show_option(seq, "release_agent",
1476 root->release_agent_path);
69e943b7
TH
1477 spin_unlock(&release_agent_path_lock);
1478
3dd06ffa 1479 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
97978e6d 1480 seq_puts(seq, ",clone_children");
c6d57f33 1481 if (strlen(root->name))
a068acf2 1482 seq_show_option(seq, "name", root->name);
ddbcc7e8
PM
1483 return 0;
1484}
1485
1486struct cgroup_sb_opts {
8ab456ac 1487 unsigned long subsys_mask;
69dfa00c 1488 unsigned int flags;
81a6a5cd 1489 char *release_agent;
2260e7fc 1490 bool cpuset_clone_children;
c6d57f33 1491 char *name;
2c6ab6d2
PM
1492 /* User explicitly requested empty subsystem */
1493 bool none;
ddbcc7e8
PM
1494};
1495
cf5d5941 1496static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
ddbcc7e8 1497{
32a8cf23
DL
1498 char *token, *o = data;
1499 bool all_ss = false, one_ss = false;
8ab456ac 1500 unsigned long mask = -1UL;
30159ec7 1501 struct cgroup_subsys *ss;
7b9a6ba5 1502 int nr_opts = 0;
30159ec7 1503 int i;
f9ab5b5b
LZ
1504
1505#ifdef CONFIG_CPUSETS
69dfa00c 1506 mask = ~(1U << cpuset_cgrp_id);
f9ab5b5b 1507#endif
ddbcc7e8 1508
c6d57f33 1509 memset(opts, 0, sizeof(*opts));
ddbcc7e8
PM
1510
1511 while ((token = strsep(&o, ",")) != NULL) {
7b9a6ba5
TH
1512 nr_opts++;
1513
ddbcc7e8
PM
1514 if (!*token)
1515 return -EINVAL;
32a8cf23 1516 if (!strcmp(token, "none")) {
2c6ab6d2
PM
1517 /* Explicitly have no subsystems */
1518 opts->none = true;
32a8cf23
DL
1519 continue;
1520 }
1521 if (!strcmp(token, "all")) {
1522 /* Mutually exclusive option 'all' + subsystem name */
1523 if (one_ss)
1524 return -EINVAL;
1525 all_ss = true;
1526 continue;
1527 }
873fe09e
TH
1528 if (!strcmp(token, "__DEVEL__sane_behavior")) {
1529 opts->flags |= CGRP_ROOT_SANE_BEHAVIOR;
1530 continue;
1531 }
32a8cf23 1532 if (!strcmp(token, "noprefix")) {
93438629 1533 opts->flags |= CGRP_ROOT_NOPREFIX;
32a8cf23
DL
1534 continue;
1535 }
1536 if (!strcmp(token, "clone_children")) {
2260e7fc 1537 opts->cpuset_clone_children = true;
32a8cf23
DL
1538 continue;
1539 }
03b1cde6 1540 if (!strcmp(token, "xattr")) {
93438629 1541 opts->flags |= CGRP_ROOT_XATTR;
03b1cde6
AR
1542 continue;
1543 }
32a8cf23 1544 if (!strncmp(token, "release_agent=", 14)) {
81a6a5cd
PM
1545 /* Specifying two release agents is forbidden */
1546 if (opts->release_agent)
1547 return -EINVAL;
c6d57f33 1548 opts->release_agent =
e400c285 1549 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
81a6a5cd
PM
1550 if (!opts->release_agent)
1551 return -ENOMEM;
32a8cf23
DL
1552 continue;
1553 }
1554 if (!strncmp(token, "name=", 5)) {
c6d57f33
PM
1555 const char *name = token + 5;
1556 /* Can't specify an empty name */
1557 if (!strlen(name))
1558 return -EINVAL;
1559 /* Must match [\w.-]+ */
1560 for (i = 0; i < strlen(name); i++) {
1561 char c = name[i];
1562 if (isalnum(c))
1563 continue;
1564 if ((c == '.') || (c == '-') || (c == '_'))
1565 continue;
1566 return -EINVAL;
1567 }
1568 /* Specifying two names is forbidden */
1569 if (opts->name)
1570 return -EINVAL;
1571 opts->name = kstrndup(name,
e400c285 1572 MAX_CGROUP_ROOT_NAMELEN - 1,
c6d57f33
PM
1573 GFP_KERNEL);
1574 if (!opts->name)
1575 return -ENOMEM;
32a8cf23
DL
1576
1577 continue;
1578 }
1579
30159ec7 1580 for_each_subsys(ss, i) {
3e1d2eed 1581 if (strcmp(token, ss->legacy_name))
32a8cf23 1582 continue;
fc5ed1e9 1583 if (!cgroup_ssid_enabled(i))
32a8cf23
DL
1584 continue;
1585
1586 /* Mutually exclusive option 'all' + subsystem name */
1587 if (all_ss)
1588 return -EINVAL;
69dfa00c 1589 opts->subsys_mask |= (1 << i);
32a8cf23
DL
1590 one_ss = true;
1591
1592 break;
1593 }
1594 if (i == CGROUP_SUBSYS_COUNT)
1595 return -ENOENT;
1596 }
1597
873fe09e 1598 if (opts->flags & CGRP_ROOT_SANE_BEHAVIOR) {
ed3d261b 1599 pr_warn("sane_behavior: this is still under development and its behaviors will change, proceed at your own risk\n");
7b9a6ba5
TH
1600 if (nr_opts != 1) {
1601 pr_err("sane_behavior: no other mount options allowed\n");
873fe09e
TH
1602 return -EINVAL;
1603 }
7b9a6ba5 1604 return 0;
873fe09e
TH
1605 }
1606
7b9a6ba5
TH
1607 /*
1608 * If the 'all' option was specified select all the subsystems,
1609 * otherwise if 'none', 'name=' and a subsystem name options were
1610 * not specified, let's default to 'all'
1611 */
1612 if (all_ss || (!one_ss && !opts->none && !opts->name))
1613 for_each_subsys(ss, i)
fc5ed1e9 1614 if (cgroup_ssid_enabled(i))
7b9a6ba5
TH
1615 opts->subsys_mask |= (1 << i);
1616
1617 /*
1618 * We either have to specify by name or by subsystems. (So all
1619 * empty hierarchies must have a name).
1620 */
1621 if (!opts->subsys_mask && !opts->name)
1622 return -EINVAL;
1623
f9ab5b5b
LZ
1624 /*
1625 * Option noprefix was introduced just for backward compatibility
1626 * with the old cpuset, so we allow noprefix only if mounting just
1627 * the cpuset subsystem.
1628 */
93438629 1629 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
f9ab5b5b
LZ
1630 return -EINVAL;
1631
2c6ab6d2 1632 /* Can't specify "none" and some subsystems */
a1a71b45 1633 if (opts->subsys_mask && opts->none)
2c6ab6d2
PM
1634 return -EINVAL;
1635
ddbcc7e8
PM
1636 return 0;
1637}
1638
2bd59d48 1639static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
ddbcc7e8
PM
1640{
1641 int ret = 0;
3dd06ffa 1642 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
ddbcc7e8 1643 struct cgroup_sb_opts opts;
8ab456ac 1644 unsigned long added_mask, removed_mask;
ddbcc7e8 1645
aa6ec29b
TH
1646 if (root == &cgrp_dfl_root) {
1647 pr_err("remount is not allowed\n");
873fe09e
TH
1648 return -EINVAL;
1649 }
1650
ddbcc7e8
PM
1651 mutex_lock(&cgroup_mutex);
1652
1653 /* See what subsystems are wanted */
1654 ret = parse_cgroupfs_options(data, &opts);
1655 if (ret)
1656 goto out_unlock;
1657
f392e51c 1658 if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
ed3d261b 1659 pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
a2a1f9ea 1660 task_tgid_nr(current), current->comm);
8b5a5a9d 1661
f392e51c
TH
1662 added_mask = opts.subsys_mask & ~root->subsys_mask;
1663 removed_mask = root->subsys_mask & ~opts.subsys_mask;
13af07df 1664
cf5d5941 1665 /* Don't allow flags or name to change at remount */
7450e90b 1666 if ((opts.flags ^ root->flags) ||
cf5d5941 1667 (opts.name && strcmp(opts.name, root->name))) {
69dfa00c 1668 pr_err("option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"\n",
7450e90b 1669 opts.flags, opts.name ?: "", root->flags, root->name);
c6d57f33
PM
1670 ret = -EINVAL;
1671 goto out_unlock;
1672 }
1673
f172e67c 1674 /* remounting is not allowed for populated hierarchies */
d5c419b6 1675 if (!list_empty(&root->cgrp.self.children)) {
f172e67c 1676 ret = -EBUSY;
0670e08b 1677 goto out_unlock;
cf5d5941 1678 }
ddbcc7e8 1679
5df36032 1680 ret = rebind_subsystems(root, added_mask);
3126121f 1681 if (ret)
0670e08b 1682 goto out_unlock;
ddbcc7e8 1683
3dd06ffa 1684 rebind_subsystems(&cgrp_dfl_root, removed_mask);
5df36032 1685
69e943b7
TH
1686 if (opts.release_agent) {
1687 spin_lock(&release_agent_path_lock);
81a6a5cd 1688 strcpy(root->release_agent_path, opts.release_agent);
69e943b7
TH
1689 spin_unlock(&release_agent_path_lock);
1690 }
ddbcc7e8 1691 out_unlock:
66bdc9cf 1692 kfree(opts.release_agent);
c6d57f33 1693 kfree(opts.name);
ddbcc7e8 1694 mutex_unlock(&cgroup_mutex);
ddbcc7e8
PM
1695 return ret;
1696}
1697
afeb0f9f
TH
1698/*
1699 * To reduce the fork() overhead for systems that are not actually using
1700 * their cgroups capability, we don't maintain the lists running through
1701 * each css_set to its tasks until we see the list actually used - in other
1702 * words after the first mount.
1703 */
1704static bool use_task_css_set_links __read_mostly;
1705
1706static void cgroup_enable_task_cg_lists(void)
1707{
1708 struct task_struct *p, *g;
1709
96d365e0 1710 down_write(&css_set_rwsem);
afeb0f9f
TH
1711
1712 if (use_task_css_set_links)
1713 goto out_unlock;
1714
1715 use_task_css_set_links = true;
1716
1717 /*
1718 * We need tasklist_lock because RCU is not safe against
1719 * while_each_thread(). Besides, a forking task that has passed
1720 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1721 * is not guaranteed to have its child immediately visible in the
1722 * tasklist if we walk through it with RCU.
1723 */
1724 read_lock(&tasklist_lock);
1725 do_each_thread(g, p) {
afeb0f9f
TH
1726 WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1727 task_css_set(p) != &init_css_set);
1728
1729 /*
1730 * We should check if the process is exiting, otherwise
1731 * it will race with cgroup_exit() in that the list
1732 * entry won't be deleted though the process has exited.
f153ad11
TH
1733 * Do it while holding siglock so that we don't end up
1734 * racing against cgroup_exit().
afeb0f9f 1735 */
f153ad11 1736 spin_lock_irq(&p->sighand->siglock);
eaf797ab
TH
1737 if (!(p->flags & PF_EXITING)) {
1738 struct css_set *cset = task_css_set(p);
1739
1740 list_add(&p->cg_list, &cset->tasks);
1741 get_css_set(cset);
1742 }
f153ad11 1743 spin_unlock_irq(&p->sighand->siglock);
afeb0f9f
TH
1744 } while_each_thread(g, p);
1745 read_unlock(&tasklist_lock);
1746out_unlock:
96d365e0 1747 up_write(&css_set_rwsem);
afeb0f9f 1748}
ddbcc7e8 1749
cc31edce
PM
1750static void init_cgroup_housekeeping(struct cgroup *cgrp)
1751{
2d8f243a
TH
1752 struct cgroup_subsys *ss;
1753 int ssid;
1754
d5c419b6
TH
1755 INIT_LIST_HEAD(&cgrp->self.sibling);
1756 INIT_LIST_HEAD(&cgrp->self.children);
69d0206c 1757 INIT_LIST_HEAD(&cgrp->cset_links);
72a8cb30
BB
1758 INIT_LIST_HEAD(&cgrp->pidlists);
1759 mutex_init(&cgrp->pidlist_mutex);
9d800df1 1760 cgrp->self.cgroup = cgrp;
184faf32 1761 cgrp->self.flags |= CSS_ONLINE;
2d8f243a
TH
1762
1763 for_each_subsys(ss, ssid)
1764 INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
f8f22e53
TH
1765
1766 init_waitqueue_head(&cgrp->offline_waitq);
971ff493 1767 INIT_WORK(&cgrp->release_agent_work, cgroup_release_agent);
cc31edce 1768}
c6d57f33 1769
3dd06ffa 1770static void init_cgroup_root(struct cgroup_root *root,
172a2c06 1771 struct cgroup_sb_opts *opts)
ddbcc7e8 1772{
3dd06ffa 1773 struct cgroup *cgrp = &root->cgrp;
b0ca5a84 1774
ddbcc7e8 1775 INIT_LIST_HEAD(&root->root_list);
3c9c825b 1776 atomic_set(&root->nr_cgrps, 1);
bd89aabc 1777 cgrp->root = root;
cc31edce 1778 init_cgroup_housekeeping(cgrp);
4e96ee8e 1779 idr_init(&root->cgroup_idr);
c6d57f33 1780
c6d57f33
PM
1781 root->flags = opts->flags;
1782 if (opts->release_agent)
1783 strcpy(root->release_agent_path, opts->release_agent);
1784 if (opts->name)
1785 strcpy(root->name, opts->name);
2260e7fc 1786 if (opts->cpuset_clone_children)
3dd06ffa 1787 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
c6d57f33
PM
1788}
1789
8ab456ac 1790static int cgroup_setup_root(struct cgroup_root *root, unsigned long ss_mask)
2c6ab6d2 1791{
d427dfeb 1792 LIST_HEAD(tmp_links);
3dd06ffa 1793 struct cgroup *root_cgrp = &root->cgrp;
a14c6874 1794 struct cftype *base_files;
d427dfeb 1795 struct css_set *cset;
d427dfeb 1796 int i, ret;
2c6ab6d2 1797
d427dfeb 1798 lockdep_assert_held(&cgroup_mutex);
c6d57f33 1799
cf780b7d 1800 ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_KERNEL);
d427dfeb 1801 if (ret < 0)
2bd59d48 1802 goto out;
d427dfeb 1803 root_cgrp->id = ret;
c6d57f33 1804
2aad2a86
TH
1805 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release, 0,
1806 GFP_KERNEL);
9d755d33
TH
1807 if (ret)
1808 goto out;
1809
d427dfeb 1810 /*
96d365e0 1811 * We're accessing css_set_count without locking css_set_rwsem here,
d427dfeb
TH
1812 * but that's OK - it can only be increased by someone holding
1813 * cgroup_lock, and that's us. The worst that can happen is that we
1814 * have some link structures left over
1815 */
1816 ret = allocate_cgrp_cset_links(css_set_count, &tmp_links);
1817 if (ret)
9d755d33 1818 goto cancel_ref;
ddbcc7e8 1819
985ed670 1820 ret = cgroup_init_root_id(root);
ddbcc7e8 1821 if (ret)
9d755d33 1822 goto cancel_ref;
ddbcc7e8 1823
2bd59d48
TH
1824 root->kf_root = kernfs_create_root(&cgroup_kf_syscall_ops,
1825 KERNFS_ROOT_CREATE_DEACTIVATED,
1826 root_cgrp);
1827 if (IS_ERR(root->kf_root)) {
1828 ret = PTR_ERR(root->kf_root);
1829 goto exit_root_id;
1830 }
1831 root_cgrp->kn = root->kf_root->kn;
ddbcc7e8 1832
a14c6874
TH
1833 if (root == &cgrp_dfl_root)
1834 base_files = cgroup_dfl_base_files;
1835 else
1836 base_files = cgroup_legacy_base_files;
1837
1838 ret = cgroup_addrm_files(root_cgrp, base_files, true);
d427dfeb 1839 if (ret)
2bd59d48 1840 goto destroy_root;
ddbcc7e8 1841
5df36032 1842 ret = rebind_subsystems(root, ss_mask);
d427dfeb 1843 if (ret)
2bd59d48 1844 goto destroy_root;
ddbcc7e8 1845
d427dfeb
TH
1846 /*
1847 * There must be no failure case after here, since rebinding takes
1848 * care of subsystems' refcounts, which are explicitly dropped in
1849 * the failure exit path.
1850 */
1851 list_add(&root->root_list, &cgroup_roots);
1852 cgroup_root_count++;
0df6a63f 1853
d427dfeb 1854 /*
3dd06ffa 1855 * Link the root cgroup in this hierarchy into all the css_set
d427dfeb
TH
1856 * objects.
1857 */
96d365e0 1858 down_write(&css_set_rwsem);
d427dfeb
TH
1859 hash_for_each(css_set_table, i, cset, hlist)
1860 link_css_set(&tmp_links, cset, root_cgrp);
96d365e0 1861 up_write(&css_set_rwsem);
ddbcc7e8 1862
d5c419b6 1863 BUG_ON(!list_empty(&root_cgrp->self.children));
3c9c825b 1864 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
ddbcc7e8 1865
2bd59d48 1866 kernfs_activate(root_cgrp->kn);
d427dfeb 1867 ret = 0;
2bd59d48 1868 goto out;
d427dfeb 1869
2bd59d48
TH
1870destroy_root:
1871 kernfs_destroy_root(root->kf_root);
1872 root->kf_root = NULL;
1873exit_root_id:
d427dfeb 1874 cgroup_exit_root_id(root);
9d755d33 1875cancel_ref:
9a1049da 1876 percpu_ref_exit(&root_cgrp->self.refcnt);
2bd59d48 1877out:
d427dfeb
TH
1878 free_cgrp_cset_links(&tmp_links);
1879 return ret;
ddbcc7e8
PM
1880}
1881
f7e83571 1882static struct dentry *cgroup_mount(struct file_system_type *fs_type,
ddbcc7e8 1883 int flags, const char *unused_dev_name,
f7e83571 1884 void *data)
ddbcc7e8 1885{
3a32bd72 1886 struct super_block *pinned_sb = NULL;
970317aa 1887 struct cgroup_subsys *ss;
3dd06ffa 1888 struct cgroup_root *root;
ddbcc7e8 1889 struct cgroup_sb_opts opts;
2bd59d48 1890 struct dentry *dentry;
8e30e2b8 1891 int ret;
970317aa 1892 int i;
c6b3d5bc 1893 bool new_sb;
ddbcc7e8 1894
56fde9e0
TH
1895 /*
1896 * The first time anyone tries to mount a cgroup, enable the list
1897 * linking each css_set to its tasks and fix up all existing tasks.
1898 */
1899 if (!use_task_css_set_links)
1900 cgroup_enable_task_cg_lists();
e37a06f1 1901
aae8aab4 1902 mutex_lock(&cgroup_mutex);
8e30e2b8
TH
1903
1904 /* First find the desired set of subsystems */
ddbcc7e8 1905 ret = parse_cgroupfs_options(data, &opts);
c6d57f33 1906 if (ret)
8e30e2b8 1907 goto out_unlock;
a015edd2 1908
2bd59d48 1909 /* look for a matching existing root */
7b9a6ba5 1910 if (opts.flags & CGRP_ROOT_SANE_BEHAVIOR) {
a2dd4247
TH
1911 cgrp_dfl_root_visible = true;
1912 root = &cgrp_dfl_root;
1913 cgroup_get(&root->cgrp);
1914 ret = 0;
1915 goto out_unlock;
ddbcc7e8
PM
1916 }
1917
970317aa
LZ
1918 /*
1919 * Destruction of cgroup root is asynchronous, so subsystems may
1920 * still be dying after the previous unmount. Let's drain the
1921 * dying subsystems. We just need to ensure that the ones
1922 * unmounted previously finish dying and don't care about new ones
1923 * starting. Testing ref liveliness is good enough.
1924 */
1925 for_each_subsys(ss, i) {
1926 if (!(opts.subsys_mask & (1 << i)) ||
1927 ss->root == &cgrp_dfl_root)
1928 continue;
1929
1930 if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt)) {
1931 mutex_unlock(&cgroup_mutex);
1932 msleep(10);
1933 ret = restart_syscall();
1934 goto out_free;
1935 }
1936 cgroup_put(&ss->root->cgrp);
1937 }
1938
985ed670 1939 for_each_root(root) {
2bd59d48 1940 bool name_match = false;
3126121f 1941
3dd06ffa 1942 if (root == &cgrp_dfl_root)
985ed670 1943 continue;
3126121f 1944
cf5d5941 1945 /*
2bd59d48
TH
1946 * If we asked for a name then it must match. Also, if
1947 * name matches but sybsys_mask doesn't, we should fail.
1948 * Remember whether name matched.
cf5d5941 1949 */
2bd59d48
TH
1950 if (opts.name) {
1951 if (strcmp(opts.name, root->name))
1952 continue;
1953 name_match = true;
1954 }
ddbcc7e8 1955
c6d57f33 1956 /*
2bd59d48
TH
1957 * If we asked for subsystems (or explicitly for no
1958 * subsystems) then they must match.
c6d57f33 1959 */
2bd59d48 1960 if ((opts.subsys_mask || opts.none) &&
f392e51c 1961 (opts.subsys_mask != root->subsys_mask)) {
2bd59d48
TH
1962 if (!name_match)
1963 continue;
1964 ret = -EBUSY;
1965 goto out_unlock;
1966 }
873fe09e 1967
7b9a6ba5
TH
1968 if (root->flags ^ opts.flags)
1969 pr_warn("new mount options do not match the existing superblock, will be ignored\n");
ddbcc7e8 1970
776f02fa 1971 /*
3a32bd72
LZ
1972 * We want to reuse @root whose lifetime is governed by its
1973 * ->cgrp. Let's check whether @root is alive and keep it
1974 * that way. As cgroup_kill_sb() can happen anytime, we
1975 * want to block it by pinning the sb so that @root doesn't
1976 * get killed before mount is complete.
1977 *
1978 * With the sb pinned, tryget_live can reliably indicate
1979 * whether @root can be reused. If it's being killed,
1980 * drain it. We can use wait_queue for the wait but this
1981 * path is super cold. Let's just sleep a bit and retry.
776f02fa 1982 */
3a32bd72
LZ
1983 pinned_sb = kernfs_pin_sb(root->kf_root, NULL);
1984 if (IS_ERR(pinned_sb) ||
1985 !percpu_ref_tryget_live(&root->cgrp.self.refcnt)) {
776f02fa 1986 mutex_unlock(&cgroup_mutex);
3a32bd72
LZ
1987 if (!IS_ERR_OR_NULL(pinned_sb))
1988 deactivate_super(pinned_sb);
776f02fa 1989 msleep(10);
a015edd2
TH
1990 ret = restart_syscall();
1991 goto out_free;
776f02fa 1992 }
ddbcc7e8 1993
776f02fa 1994 ret = 0;
2bd59d48 1995 goto out_unlock;
ddbcc7e8 1996 }
ddbcc7e8 1997
817929ec 1998 /*
172a2c06
TH
1999 * No such thing, create a new one. name= matching without subsys
2000 * specification is allowed for already existing hierarchies but we
2001 * can't create new one without subsys specification.
817929ec 2002 */
172a2c06
TH
2003 if (!opts.subsys_mask && !opts.none) {
2004 ret = -EINVAL;
2005 goto out_unlock;
817929ec 2006 }
817929ec 2007
172a2c06
TH
2008 root = kzalloc(sizeof(*root), GFP_KERNEL);
2009 if (!root) {
2010 ret = -ENOMEM;
2bd59d48 2011 goto out_unlock;
839ec545 2012 }
e5f6a860 2013
172a2c06
TH
2014 init_cgroup_root(root, &opts);
2015
35585573 2016 ret = cgroup_setup_root(root, opts.subsys_mask);
2bd59d48
TH
2017 if (ret)
2018 cgroup_free_root(root);
fa3ca07e 2019
8e30e2b8 2020out_unlock:
ddbcc7e8 2021 mutex_unlock(&cgroup_mutex);
a015edd2 2022out_free:
c6d57f33
PM
2023 kfree(opts.release_agent);
2024 kfree(opts.name);
03b1cde6 2025
2bd59d48 2026 if (ret)
8e30e2b8 2027 return ERR_PTR(ret);
2bd59d48 2028
c9482a5b
JZ
2029 dentry = kernfs_mount(fs_type, flags, root->kf_root,
2030 CGROUP_SUPER_MAGIC, &new_sb);
c6b3d5bc 2031 if (IS_ERR(dentry) || !new_sb)
3dd06ffa 2032 cgroup_put(&root->cgrp);
3a32bd72
LZ
2033
2034 /*
2035 * If @pinned_sb, we're reusing an existing root and holding an
2036 * extra ref on its sb. Mount is complete. Put the extra ref.
2037 */
2038 if (pinned_sb) {
2039 WARN_ON(new_sb);
2040 deactivate_super(pinned_sb);
2041 }
2042
2bd59d48
TH
2043 return dentry;
2044}
2045
2046static void cgroup_kill_sb(struct super_block *sb)
2047{
2048 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
3dd06ffa 2049 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2bd59d48 2050
9d755d33
TH
2051 /*
2052 * If @root doesn't have any mounts or children, start killing it.
2053 * This prevents new mounts by disabling percpu_ref_tryget_live().
2054 * cgroup_mount() may wait for @root's release.
1f779fb2
LZ
2055 *
2056 * And don't kill the default root.
9d755d33 2057 */
3c606d35 2058 if (!list_empty(&root->cgrp.self.children) ||
1f779fb2 2059 root == &cgrp_dfl_root)
9d755d33
TH
2060 cgroup_put(&root->cgrp);
2061 else
2062 percpu_ref_kill(&root->cgrp.self.refcnt);
2063
2bd59d48 2064 kernfs_kill_sb(sb);
ddbcc7e8
PM
2065}
2066
2067static struct file_system_type cgroup_fs_type = {
2068 .name = "cgroup",
f7e83571 2069 .mount = cgroup_mount,
ddbcc7e8
PM
2070 .kill_sb = cgroup_kill_sb,
2071};
2072
857a2beb 2073/**
913ffdb5 2074 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
857a2beb 2075 * @task: target task
857a2beb
TH
2076 * @buf: the buffer to write the path into
2077 * @buflen: the length of the buffer
2078 *
913ffdb5
TH
2079 * Determine @task's cgroup on the first (the one with the lowest non-zero
2080 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
2081 * function grabs cgroup_mutex and shouldn't be used inside locks used by
2082 * cgroup controller callbacks.
2083 *
e61734c5 2084 * Return value is the same as kernfs_path().
857a2beb 2085 */
e61734c5 2086char *task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
857a2beb 2087{
3dd06ffa 2088 struct cgroup_root *root;
913ffdb5 2089 struct cgroup *cgrp;
e61734c5
TH
2090 int hierarchy_id = 1;
2091 char *path = NULL;
857a2beb
TH
2092
2093 mutex_lock(&cgroup_mutex);
96d365e0 2094 down_read(&css_set_rwsem);
857a2beb 2095
913ffdb5
TH
2096 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
2097
857a2beb
TH
2098 if (root) {
2099 cgrp = task_cgroup_from_root(task, root);
e61734c5 2100 path = cgroup_path(cgrp, buf, buflen);
913ffdb5
TH
2101 } else {
2102 /* if no hierarchy exists, everyone is in "/" */
e61734c5
TH
2103 if (strlcpy(buf, "/", buflen) < buflen)
2104 path = buf;
857a2beb
TH
2105 }
2106
96d365e0 2107 up_read(&css_set_rwsem);
857a2beb 2108 mutex_unlock(&cgroup_mutex);
e61734c5 2109 return path;
857a2beb 2110}
913ffdb5 2111EXPORT_SYMBOL_GPL(task_cgroup_path);
857a2beb 2112
b3dc094e 2113/* used to track tasks and other necessary states during migration */
2f7ee569 2114struct cgroup_taskset {
b3dc094e
TH
2115 /* the src and dst cset list running through cset->mg_node */
2116 struct list_head src_csets;
2117 struct list_head dst_csets;
2118
2119 /*
2120 * Fields for cgroup_taskset_*() iteration.
2121 *
2122 * Before migration is committed, the target migration tasks are on
2123 * ->mg_tasks of the csets on ->src_csets. After, on ->mg_tasks of
2124 * the csets on ->dst_csets. ->csets point to either ->src_csets
2125 * or ->dst_csets depending on whether migration is committed.
2126 *
2127 * ->cur_csets and ->cur_task point to the current task position
2128 * during iteration.
2129 */
2130 struct list_head *csets;
2131 struct css_set *cur_cset;
2132 struct task_struct *cur_task;
2f7ee569
TH
2133};
2134
2135/**
2136 * cgroup_taskset_first - reset taskset and return the first task
2137 * @tset: taskset of interest
2138 *
2139 * @tset iteration is initialized and the first task is returned.
2140 */
2141struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
2142{
b3dc094e
TH
2143 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2144 tset->cur_task = NULL;
2145
2146 return cgroup_taskset_next(tset);
2f7ee569 2147}
2f7ee569
TH
2148
2149/**
2150 * cgroup_taskset_next - iterate to the next task in taskset
2151 * @tset: taskset of interest
2152 *
2153 * Return the next task in @tset. Iteration must have been initialized
2154 * with cgroup_taskset_first().
2155 */
2156struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
2157{
b3dc094e
TH
2158 struct css_set *cset = tset->cur_cset;
2159 struct task_struct *task = tset->cur_task;
2f7ee569 2160
b3dc094e
TH
2161 while (&cset->mg_node != tset->csets) {
2162 if (!task)
2163 task = list_first_entry(&cset->mg_tasks,
2164 struct task_struct, cg_list);
2165 else
2166 task = list_next_entry(task, cg_list);
2f7ee569 2167
b3dc094e
TH
2168 if (&task->cg_list != &cset->mg_tasks) {
2169 tset->cur_cset = cset;
2170 tset->cur_task = task;
2171 return task;
2172 }
2f7ee569 2173
b3dc094e
TH
2174 cset = list_next_entry(cset, mg_node);
2175 task = NULL;
2176 }
2f7ee569 2177
b3dc094e 2178 return NULL;
2f7ee569 2179}
2f7ee569 2180
cb0f1fe9 2181/**
74a1166d 2182 * cgroup_task_migrate - move a task from one cgroup to another.
60106946 2183 * @old_cgrp: the cgroup @tsk is being migrated from
cb0f1fe9
TH
2184 * @tsk: the task being migrated
2185 * @new_cset: the new css_set @tsk is being attached to
74a1166d 2186 *
cb0f1fe9 2187 * Must be called with cgroup_mutex, threadgroup and css_set_rwsem locked.
74a1166d 2188 */
5abb8855
TH
2189static void cgroup_task_migrate(struct cgroup *old_cgrp,
2190 struct task_struct *tsk,
2191 struct css_set *new_cset)
74a1166d 2192{
5abb8855 2193 struct css_set *old_cset;
74a1166d 2194
cb0f1fe9
TH
2195 lockdep_assert_held(&cgroup_mutex);
2196 lockdep_assert_held(&css_set_rwsem);
2197
74a1166d 2198 /*
1ed13287
TH
2199 * We are synchronized through cgroup_threadgroup_rwsem against
2200 * PF_EXITING setting such that we can't race against cgroup_exit()
2201 * changing the css_set to init_css_set and dropping the old one.
74a1166d 2202 */
c84cdf75 2203 WARN_ON_ONCE(tsk->flags & PF_EXITING);
a8ad805c 2204 old_cset = task_css_set(tsk);
74a1166d 2205
b3dc094e 2206 get_css_set(new_cset);
5abb8855 2207 rcu_assign_pointer(tsk->cgroups, new_cset);
74a1166d 2208
1b9aba49
TH
2209 /*
2210 * Use move_tail so that cgroup_taskset_first() still returns the
2211 * leader after migration. This works because cgroup_migrate()
2212 * ensures that the dst_cset of the leader is the first on the
2213 * tset's dst_csets list.
2214 */
2215 list_move_tail(&tsk->cg_list, &new_cset->mg_tasks);
74a1166d
BB
2216
2217 /*
5abb8855
TH
2218 * We just gained a reference on old_cset by taking it from the
2219 * task. As trading it for new_cset is protected by cgroup_mutex,
2220 * we're safe to drop it here; it will be freed under RCU.
74a1166d 2221 */
a25eb52e 2222 put_css_set_locked(old_cset);
74a1166d
BB
2223}
2224
a043e3b2 2225/**
1958d2d5
TH
2226 * cgroup_migrate_finish - cleanup after attach
2227 * @preloaded_csets: list of preloaded css_sets
74a1166d 2228 *
1958d2d5
TH
2229 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
2230 * those functions for details.
74a1166d 2231 */
1958d2d5 2232static void cgroup_migrate_finish(struct list_head *preloaded_csets)
74a1166d 2233{
1958d2d5 2234 struct css_set *cset, *tmp_cset;
74a1166d 2235
1958d2d5
TH
2236 lockdep_assert_held(&cgroup_mutex);
2237
2238 down_write(&css_set_rwsem);
2239 list_for_each_entry_safe(cset, tmp_cset, preloaded_csets, mg_preload_node) {
2240 cset->mg_src_cgrp = NULL;
2241 cset->mg_dst_cset = NULL;
2242 list_del_init(&cset->mg_preload_node);
a25eb52e 2243 put_css_set_locked(cset);
1958d2d5
TH
2244 }
2245 up_write(&css_set_rwsem);
2246}
2247
2248/**
2249 * cgroup_migrate_add_src - add a migration source css_set
2250 * @src_cset: the source css_set to add
2251 * @dst_cgrp: the destination cgroup
2252 * @preloaded_csets: list of preloaded css_sets
2253 *
2254 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
2255 * @src_cset and add it to @preloaded_csets, which should later be cleaned
2256 * up by cgroup_migrate_finish().
2257 *
1ed13287
TH
2258 * This function may be called without holding cgroup_threadgroup_rwsem
2259 * even if the target is a process. Threads may be created and destroyed
2260 * but as long as cgroup_mutex is not dropped, no new css_set can be put
2261 * into play and the preloaded css_sets are guaranteed to cover all
2262 * migrations.
1958d2d5
TH
2263 */
2264static void cgroup_migrate_add_src(struct css_set *src_cset,
2265 struct cgroup *dst_cgrp,
2266 struct list_head *preloaded_csets)
2267{
2268 struct cgroup *src_cgrp;
2269
2270 lockdep_assert_held(&cgroup_mutex);
2271 lockdep_assert_held(&css_set_rwsem);
2272
2273 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2274
1958d2d5
TH
2275 if (!list_empty(&src_cset->mg_preload_node))
2276 return;
2277
2278 WARN_ON(src_cset->mg_src_cgrp);
2279 WARN_ON(!list_empty(&src_cset->mg_tasks));
2280 WARN_ON(!list_empty(&src_cset->mg_node));
2281
2282 src_cset->mg_src_cgrp = src_cgrp;
2283 get_css_set(src_cset);
2284 list_add(&src_cset->mg_preload_node, preloaded_csets);
2285}
2286
2287/**
2288 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
f817de98 2289 * @dst_cgrp: the destination cgroup (may be %NULL)
1958d2d5
TH
2290 * @preloaded_csets: list of preloaded source css_sets
2291 *
2292 * Tasks are about to be moved to @dst_cgrp and all the source css_sets
2293 * have been preloaded to @preloaded_csets. This function looks up and
f817de98
TH
2294 * pins all destination css_sets, links each to its source, and append them
2295 * to @preloaded_csets. If @dst_cgrp is %NULL, the destination of each
2296 * source css_set is assumed to be its cgroup on the default hierarchy.
1958d2d5
TH
2297 *
2298 * This function must be called after cgroup_migrate_add_src() has been
2299 * called on each migration source css_set. After migration is performed
2300 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2301 * @preloaded_csets.
2302 */
2303static int cgroup_migrate_prepare_dst(struct cgroup *dst_cgrp,
2304 struct list_head *preloaded_csets)
2305{
2306 LIST_HEAD(csets);
f817de98 2307 struct css_set *src_cset, *tmp_cset;
1958d2d5
TH
2308
2309 lockdep_assert_held(&cgroup_mutex);
2310
f8f22e53
TH
2311 /*
2312 * Except for the root, child_subsys_mask must be zero for a cgroup
2313 * with tasks so that child cgroups don't compete against tasks.
2314 */
d51f39b0 2315 if (dst_cgrp && cgroup_on_dfl(dst_cgrp) && cgroup_parent(dst_cgrp) &&
f8f22e53
TH
2316 dst_cgrp->child_subsys_mask)
2317 return -EBUSY;
2318
1958d2d5 2319 /* look up the dst cset for each src cset and link it to src */
f817de98 2320 list_for_each_entry_safe(src_cset, tmp_cset, preloaded_csets, mg_preload_node) {
1958d2d5
TH
2321 struct css_set *dst_cset;
2322
f817de98
TH
2323 dst_cset = find_css_set(src_cset,
2324 dst_cgrp ?: src_cset->dfl_cgrp);
1958d2d5
TH
2325 if (!dst_cset)
2326 goto err;
2327
2328 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
f817de98
TH
2329
2330 /*
2331 * If src cset equals dst, it's noop. Drop the src.
2332 * cgroup_migrate() will skip the cset too. Note that we
2333 * can't handle src == dst as some nodes are used by both.
2334 */
2335 if (src_cset == dst_cset) {
2336 src_cset->mg_src_cgrp = NULL;
2337 list_del_init(&src_cset->mg_preload_node);
a25eb52e
ZL
2338 put_css_set(src_cset);
2339 put_css_set(dst_cset);
f817de98
TH
2340 continue;
2341 }
2342
1958d2d5
TH
2343 src_cset->mg_dst_cset = dst_cset;
2344
2345 if (list_empty(&dst_cset->mg_preload_node))
2346 list_add(&dst_cset->mg_preload_node, &csets);
2347 else
a25eb52e 2348 put_css_set(dst_cset);
1958d2d5
TH
2349 }
2350
f817de98 2351 list_splice_tail(&csets, preloaded_csets);
1958d2d5
TH
2352 return 0;
2353err:
2354 cgroup_migrate_finish(&csets);
2355 return -ENOMEM;
2356}
2357
2358/**
2359 * cgroup_migrate - migrate a process or task to a cgroup
2360 * @cgrp: the destination cgroup
2361 * @leader: the leader of the process or the task to migrate
2362 * @threadgroup: whether @leader points to the whole process or a single task
2363 *
2364 * Migrate a process or task denoted by @leader to @cgrp. If migrating a
1ed13287 2365 * process, the caller must be holding cgroup_threadgroup_rwsem. The
1958d2d5
TH
2366 * caller is also responsible for invoking cgroup_migrate_add_src() and
2367 * cgroup_migrate_prepare_dst() on the targets before invoking this
2368 * function and following up with cgroup_migrate_finish().
2369 *
2370 * As long as a controller's ->can_attach() doesn't fail, this function is
2371 * guaranteed to succeed. This means that, excluding ->can_attach()
2372 * failure, when migrating multiple targets, the success or failure can be
2373 * decided for all targets by invoking group_migrate_prepare_dst() before
2374 * actually starting migrating.
2375 */
2376static int cgroup_migrate(struct cgroup *cgrp, struct task_struct *leader,
2377 bool threadgroup)
74a1166d 2378{
b3dc094e
TH
2379 struct cgroup_taskset tset = {
2380 .src_csets = LIST_HEAD_INIT(tset.src_csets),
2381 .dst_csets = LIST_HEAD_INIT(tset.dst_csets),
2382 .csets = &tset.src_csets,
2383 };
1c6727af 2384 struct cgroup_subsys_state *css, *failed_css = NULL;
b3dc094e
TH
2385 struct css_set *cset, *tmp_cset;
2386 struct task_struct *task, *tmp_task;
2387 int i, ret;
74a1166d 2388
fb5d2b4c
MSB
2389 /*
2390 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2391 * already PF_EXITING could be freed from underneath us unless we
2392 * take an rcu_read_lock.
2393 */
b3dc094e 2394 down_write(&css_set_rwsem);
fb5d2b4c 2395 rcu_read_lock();
9db8de37 2396 task = leader;
74a1166d 2397 do {
9db8de37
TH
2398 /* @task either already exited or can't exit until the end */
2399 if (task->flags & PF_EXITING)
ea84753c 2400 goto next;
134d3373 2401
eaf797ab
TH
2402 /* leave @task alone if post_fork() hasn't linked it yet */
2403 if (list_empty(&task->cg_list))
ea84753c 2404 goto next;
cd3d0952 2405
b3dc094e 2406 cset = task_css_set(task);
1958d2d5 2407 if (!cset->mg_src_cgrp)
ea84753c 2408 goto next;
b3dc094e 2409
61d1d219 2410 /*
1b9aba49
TH
2411 * cgroup_taskset_first() must always return the leader.
2412 * Take care to avoid disturbing the ordering.
61d1d219 2413 */
1b9aba49
TH
2414 list_move_tail(&task->cg_list, &cset->mg_tasks);
2415 if (list_empty(&cset->mg_node))
2416 list_add_tail(&cset->mg_node, &tset.src_csets);
2417 if (list_empty(&cset->mg_dst_cset->mg_node))
2418 list_move_tail(&cset->mg_dst_cset->mg_node,
2419 &tset.dst_csets);
ea84753c 2420 next:
081aa458
LZ
2421 if (!threadgroup)
2422 break;
9db8de37 2423 } while_each_thread(leader, task);
fb5d2b4c 2424 rcu_read_unlock();
b3dc094e 2425 up_write(&css_set_rwsem);
74a1166d 2426
134d3373 2427 /* methods shouldn't be called if no task is actually migrating */
b3dc094e
TH
2428 if (list_empty(&tset.src_csets))
2429 return 0;
134d3373 2430
1958d2d5 2431 /* check that we can legitimately attach to the cgroup */
aec3dfcb 2432 for_each_e_css(css, i, cgrp) {
1c6727af 2433 if (css->ss->can_attach) {
9db8de37
TH
2434 ret = css->ss->can_attach(css, &tset);
2435 if (ret) {
1c6727af 2436 failed_css = css;
74a1166d
BB
2437 goto out_cancel_attach;
2438 }
2439 }
74a1166d
BB
2440 }
2441
2442 /*
1958d2d5
TH
2443 * Now that we're guaranteed success, proceed to move all tasks to
2444 * the new cgroup. There are no failure cases after here, so this
2445 * is the commit point.
74a1166d 2446 */
cb0f1fe9 2447 down_write(&css_set_rwsem);
b3dc094e
TH
2448 list_for_each_entry(cset, &tset.src_csets, mg_node) {
2449 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list)
2450 cgroup_task_migrate(cset->mg_src_cgrp, task,
2451 cset->mg_dst_cset);
74a1166d 2452 }
cb0f1fe9 2453 up_write(&css_set_rwsem);
74a1166d
BB
2454
2455 /*
1958d2d5
TH
2456 * Migration is committed, all target tasks are now on dst_csets.
2457 * Nothing is sensitive to fork() after this point. Notify
2458 * controllers that migration is complete.
74a1166d 2459 */
1958d2d5 2460 tset.csets = &tset.dst_csets;
74a1166d 2461
aec3dfcb 2462 for_each_e_css(css, i, cgrp)
1c6727af
TH
2463 if (css->ss->attach)
2464 css->ss->attach(css, &tset);
74a1166d 2465
9db8de37 2466 ret = 0;
b3dc094e
TH
2467 goto out_release_tset;
2468
74a1166d 2469out_cancel_attach:
aec3dfcb 2470 for_each_e_css(css, i, cgrp) {
b3dc094e
TH
2471 if (css == failed_css)
2472 break;
2473 if (css->ss->cancel_attach)
2474 css->ss->cancel_attach(css, &tset);
74a1166d 2475 }
b3dc094e
TH
2476out_release_tset:
2477 down_write(&css_set_rwsem);
2478 list_splice_init(&tset.dst_csets, &tset.src_csets);
2479 list_for_each_entry_safe(cset, tmp_cset, &tset.src_csets, mg_node) {
1b9aba49 2480 list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
b3dc094e 2481 list_del_init(&cset->mg_node);
b3dc094e
TH
2482 }
2483 up_write(&css_set_rwsem);
9db8de37 2484 return ret;
74a1166d
BB
2485}
2486
1958d2d5
TH
2487/**
2488 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2489 * @dst_cgrp: the cgroup to attach to
2490 * @leader: the task or the leader of the threadgroup to be attached
2491 * @threadgroup: attach the whole threadgroup?
2492 *
1ed13287 2493 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
1958d2d5
TH
2494 */
2495static int cgroup_attach_task(struct cgroup *dst_cgrp,
2496 struct task_struct *leader, bool threadgroup)
2497{
2498 LIST_HEAD(preloaded_csets);
2499 struct task_struct *task;
2500 int ret;
2501
2502 /* look up all src csets */
2503 down_read(&css_set_rwsem);
2504 rcu_read_lock();
2505 task = leader;
2506 do {
2507 cgroup_migrate_add_src(task_css_set(task), dst_cgrp,
2508 &preloaded_csets);
2509 if (!threadgroup)
2510 break;
2511 } while_each_thread(leader, task);
2512 rcu_read_unlock();
2513 up_read(&css_set_rwsem);
2514
2515 /* prepare dst csets and commit */
2516 ret = cgroup_migrate_prepare_dst(dst_cgrp, &preloaded_csets);
2517 if (!ret)
2518 ret = cgroup_migrate(dst_cgrp, leader, threadgroup);
2519
2520 cgroup_migrate_finish(&preloaded_csets);
2521 return ret;
74a1166d
BB
2522}
2523
187fe840
TH
2524static int cgroup_procs_write_permission(struct task_struct *task,
2525 struct cgroup *dst_cgrp,
2526 struct kernfs_open_file *of)
dedf22e9
TH
2527{
2528 const struct cred *cred = current_cred();
2529 const struct cred *tcred = get_task_cred(task);
2530 int ret = 0;
2531
2532 /*
2533 * even if we're attaching all tasks in the thread group, we only
2534 * need to check permissions on one of them.
2535 */
2536 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2537 !uid_eq(cred->euid, tcred->uid) &&
2538 !uid_eq(cred->euid, tcred->suid))
2539 ret = -EACCES;
2540
187fe840
TH
2541 if (!ret && cgroup_on_dfl(dst_cgrp)) {
2542 struct super_block *sb = of->file->f_path.dentry->d_sb;
2543 struct cgroup *cgrp;
2544 struct inode *inode;
2545
2546 down_read(&css_set_rwsem);
2547 cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
2548 up_read(&css_set_rwsem);
2549
2550 while (!cgroup_is_descendant(dst_cgrp, cgrp))
2551 cgrp = cgroup_parent(cgrp);
2552
2553 ret = -ENOMEM;
2554 inode = kernfs_get_inode(sb, cgrp->procs_kn);
2555 if (inode) {
2556 ret = inode_permission(inode, MAY_WRITE);
2557 iput(inode);
2558 }
2559 }
2560
dedf22e9
TH
2561 put_cred(tcred);
2562 return ret;
2563}
2564
74a1166d
BB
2565/*
2566 * Find the task_struct of the task to attach by vpid and pass it along to the
cd3d0952 2567 * function to attach either it or all tasks in its threadgroup. Will lock
0e1d768f 2568 * cgroup_mutex and threadgroup.
bbcb81d0 2569 */
acbef755
TH
2570static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
2571 size_t nbytes, loff_t off, bool threadgroup)
bbcb81d0 2572{
bbcb81d0 2573 struct task_struct *tsk;
e76ecaee 2574 struct cgroup *cgrp;
acbef755 2575 pid_t pid;
bbcb81d0
PM
2576 int ret;
2577
acbef755
TH
2578 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2579 return -EINVAL;
2580
e76ecaee
TH
2581 cgrp = cgroup_kn_lock_live(of->kn);
2582 if (!cgrp)
74a1166d
BB
2583 return -ENODEV;
2584
3014dde7 2585 percpu_down_write(&cgroup_threadgroup_rwsem);
b78949eb 2586 rcu_read_lock();
bbcb81d0 2587 if (pid) {
73507f33 2588 tsk = find_task_by_vpid(pid);
74a1166d 2589 if (!tsk) {
dd4b0a46 2590 ret = -ESRCH;
3014dde7 2591 goto out_unlock_rcu;
bbcb81d0 2592 }
dedf22e9 2593 } else {
b78949eb 2594 tsk = current;
dedf22e9 2595 }
cd3d0952
TH
2596
2597 if (threadgroup)
b78949eb 2598 tsk = tsk->group_leader;
c4c27fbd
MG
2599
2600 /*
14a40ffc 2601 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
c4c27fbd
MG
2602 * trapped in a cpuset, or RT worker may be born in a cgroup
2603 * with no rt_runtime allocated. Just say no.
2604 */
14a40ffc 2605 if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
c4c27fbd 2606 ret = -EINVAL;
3014dde7 2607 goto out_unlock_rcu;
c4c27fbd
MG
2608 }
2609
b78949eb
MSB
2610 get_task_struct(tsk);
2611 rcu_read_unlock();
2612
187fe840 2613 ret = cgroup_procs_write_permission(tsk, cgrp, of);
dedf22e9
TH
2614 if (!ret)
2615 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
081aa458 2616
f9f9e7b7 2617 put_task_struct(tsk);
3014dde7
TH
2618 goto out_unlock_threadgroup;
2619
2620out_unlock_rcu:
2621 rcu_read_unlock();
2622out_unlock_threadgroup:
2623 percpu_up_write(&cgroup_threadgroup_rwsem);
e76ecaee 2624 cgroup_kn_unlock(of->kn);
acbef755 2625 return ret ?: nbytes;
bbcb81d0
PM
2626}
2627
7ae1bad9
TH
2628/**
2629 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2630 * @from: attach to all cgroups of a given task
2631 * @tsk: the task to be attached
2632 */
2633int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2634{
3dd06ffa 2635 struct cgroup_root *root;
7ae1bad9
TH
2636 int retval = 0;
2637
47cfcd09 2638 mutex_lock(&cgroup_mutex);
985ed670 2639 for_each_root(root) {
96d365e0
TH
2640 struct cgroup *from_cgrp;
2641
3dd06ffa 2642 if (root == &cgrp_dfl_root)
985ed670
TH
2643 continue;
2644
96d365e0
TH
2645 down_read(&css_set_rwsem);
2646 from_cgrp = task_cgroup_from_root(from, root);
2647 up_read(&css_set_rwsem);
7ae1bad9 2648
6f4b7e63 2649 retval = cgroup_attach_task(from_cgrp, tsk, false);
7ae1bad9
TH
2650 if (retval)
2651 break;
2652 }
47cfcd09 2653 mutex_unlock(&cgroup_mutex);
7ae1bad9
TH
2654
2655 return retval;
2656}
2657EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2658
acbef755
TH
2659static ssize_t cgroup_tasks_write(struct kernfs_open_file *of,
2660 char *buf, size_t nbytes, loff_t off)
74a1166d 2661{
acbef755 2662 return __cgroup_procs_write(of, buf, nbytes, off, false);
74a1166d
BB
2663}
2664
acbef755
TH
2665static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
2666 char *buf, size_t nbytes, loff_t off)
af351026 2667{
acbef755 2668 return __cgroup_procs_write(of, buf, nbytes, off, true);
af351026
PM
2669}
2670
451af504
TH
2671static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of,
2672 char *buf, size_t nbytes, loff_t off)
e788e066 2673{
e76ecaee 2674 struct cgroup *cgrp;
5f469907 2675
e76ecaee 2676 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
5f469907 2677
e76ecaee
TH
2678 cgrp = cgroup_kn_lock_live(of->kn);
2679 if (!cgrp)
e788e066 2680 return -ENODEV;
69e943b7 2681 spin_lock(&release_agent_path_lock);
e76ecaee
TH
2682 strlcpy(cgrp->root->release_agent_path, strstrip(buf),
2683 sizeof(cgrp->root->release_agent_path));
69e943b7 2684 spin_unlock(&release_agent_path_lock);
e76ecaee 2685 cgroup_kn_unlock(of->kn);
451af504 2686 return nbytes;
e788e066
PM
2687}
2688
2da8ca82 2689static int cgroup_release_agent_show(struct seq_file *seq, void *v)
e788e066 2690{
2da8ca82 2691 struct cgroup *cgrp = seq_css(seq)->cgroup;
182446d0 2692
46cfeb04 2693 spin_lock(&release_agent_path_lock);
e788e066 2694 seq_puts(seq, cgrp->root->release_agent_path);
46cfeb04 2695 spin_unlock(&release_agent_path_lock);
e788e066 2696 seq_putc(seq, '\n');
e788e066
PM
2697 return 0;
2698}
2699
2da8ca82 2700static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
873fe09e 2701{
c1d5d42e 2702 seq_puts(seq, "0\n");
e788e066
PM
2703 return 0;
2704}
2705
8ab456ac 2706static void cgroup_print_ss_mask(struct seq_file *seq, unsigned long ss_mask)
355e0c48 2707{
f8f22e53
TH
2708 struct cgroup_subsys *ss;
2709 bool printed = false;
2710 int ssid;
a742c59d 2711
a966a4ed
AS
2712 for_each_subsys_which(ss, ssid, &ss_mask) {
2713 if (printed)
2714 seq_putc(seq, ' ');
2715 seq_printf(seq, "%s", ss->name);
2716 printed = true;
e73d2c61 2717 }
f8f22e53
TH
2718 if (printed)
2719 seq_putc(seq, '\n');
355e0c48
PM
2720}
2721
f8f22e53
TH
2722/* show controllers which are currently attached to the default hierarchy */
2723static int cgroup_root_controllers_show(struct seq_file *seq, void *v)
db3b1497 2724{
f8f22e53
TH
2725 struct cgroup *cgrp = seq_css(seq)->cgroup;
2726
5533e011
TH
2727 cgroup_print_ss_mask(seq, cgrp->root->subsys_mask &
2728 ~cgrp_dfl_root_inhibit_ss_mask);
f8f22e53 2729 return 0;
db3b1497
PM
2730}
2731
f8f22e53
TH
2732/* show controllers which are enabled from the parent */
2733static int cgroup_controllers_show(struct seq_file *seq, void *v)
ddbcc7e8 2734{
f8f22e53
TH
2735 struct cgroup *cgrp = seq_css(seq)->cgroup;
2736
667c2491 2737 cgroup_print_ss_mask(seq, cgroup_parent(cgrp)->subtree_control);
f8f22e53 2738 return 0;
ddbcc7e8
PM
2739}
2740
f8f22e53
TH
2741/* show controllers which are enabled for a given cgroup's children */
2742static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
ddbcc7e8 2743{
f8f22e53
TH
2744 struct cgroup *cgrp = seq_css(seq)->cgroup;
2745
667c2491 2746 cgroup_print_ss_mask(seq, cgrp->subtree_control);
f8f22e53
TH
2747 return 0;
2748}
2749
2750/**
2751 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2752 * @cgrp: root of the subtree to update csses for
2753 *
2754 * @cgrp's child_subsys_mask has changed and its subtree's (self excluded)
2755 * css associations need to be updated accordingly. This function looks up
2756 * all css_sets which are attached to the subtree, creates the matching
2757 * updated css_sets and migrates the tasks to the new ones.
2758 */
2759static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2760{
2761 LIST_HEAD(preloaded_csets);
2762 struct cgroup_subsys_state *css;
2763 struct css_set *src_cset;
2764 int ret;
2765
f8f22e53
TH
2766 lockdep_assert_held(&cgroup_mutex);
2767
3014dde7
TH
2768 percpu_down_write(&cgroup_threadgroup_rwsem);
2769
f8f22e53
TH
2770 /* look up all csses currently attached to @cgrp's subtree */
2771 down_read(&css_set_rwsem);
2772 css_for_each_descendant_pre(css, cgroup_css(cgrp, NULL)) {
2773 struct cgrp_cset_link *link;
2774
2775 /* self is not affected by child_subsys_mask change */
2776 if (css->cgroup == cgrp)
2777 continue;
2778
2779 list_for_each_entry(link, &css->cgroup->cset_links, cset_link)
2780 cgroup_migrate_add_src(link->cset, cgrp,
2781 &preloaded_csets);
2782 }
2783 up_read(&css_set_rwsem);
2784
2785 /* NULL dst indicates self on default hierarchy */
2786 ret = cgroup_migrate_prepare_dst(NULL, &preloaded_csets);
2787 if (ret)
2788 goto out_finish;
2789
2790 list_for_each_entry(src_cset, &preloaded_csets, mg_preload_node) {
2791 struct task_struct *last_task = NULL, *task;
2792
2793 /* src_csets precede dst_csets, break on the first dst_cset */
2794 if (!src_cset->mg_src_cgrp)
2795 break;
2796
2797 /*
2798 * All tasks in src_cset need to be migrated to the
2799 * matching dst_cset. Empty it process by process. We
2800 * walk tasks but migrate processes. The leader might even
2801 * belong to a different cset but such src_cset would also
2802 * be among the target src_csets because the default
2803 * hierarchy enforces per-process membership.
2804 */
2805 while (true) {
2806 down_read(&css_set_rwsem);
2807 task = list_first_entry_or_null(&src_cset->tasks,
2808 struct task_struct, cg_list);
2809 if (task) {
2810 task = task->group_leader;
2811 WARN_ON_ONCE(!task_css_set(task)->mg_src_cgrp);
2812 get_task_struct(task);
2813 }
2814 up_read(&css_set_rwsem);
2815
2816 if (!task)
2817 break;
2818
2819 /* guard against possible infinite loop */
2820 if (WARN(last_task == task,
2821 "cgroup: update_dfl_csses failed to make progress, aborting in inconsistent state\n"))
2822 goto out_finish;
2823 last_task = task;
2824
f8f22e53
TH
2825 ret = cgroup_migrate(src_cset->dfl_cgrp, task, true);
2826
f8f22e53
TH
2827 put_task_struct(task);
2828
2829 if (WARN(ret, "cgroup: failed to update controllers for the default hierarchy (%d), further operations may crash or hang\n", ret))
2830 goto out_finish;
2831 }
2832 }
2833
2834out_finish:
2835 cgroup_migrate_finish(&preloaded_csets);
3014dde7 2836 percpu_up_write(&cgroup_threadgroup_rwsem);
f8f22e53
TH
2837 return ret;
2838}
2839
2840/* change the enabled child controllers for a cgroup in the default hierarchy */
451af504
TH
2841static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
2842 char *buf, size_t nbytes,
2843 loff_t off)
f8f22e53 2844{
8ab456ac
AS
2845 unsigned long enable = 0, disable = 0;
2846 unsigned long css_enable, css_disable, old_sc, new_sc, old_ss, new_ss;
a9746d8d 2847 struct cgroup *cgrp, *child;
f8f22e53 2848 struct cgroup_subsys *ss;
451af504 2849 char *tok;
f8f22e53
TH
2850 int ssid, ret;
2851
2852 /*
d37167ab
TH
2853 * Parse input - space separated list of subsystem names prefixed
2854 * with either + or -.
f8f22e53 2855 */
451af504
TH
2856 buf = strstrip(buf);
2857 while ((tok = strsep(&buf, " "))) {
a966a4ed
AS
2858 unsigned long tmp_ss_mask = ~cgrp_dfl_root_inhibit_ss_mask;
2859
d37167ab
TH
2860 if (tok[0] == '\0')
2861 continue;
a966a4ed 2862 for_each_subsys_which(ss, ssid, &tmp_ss_mask) {
fc5ed1e9
TH
2863 if (!cgroup_ssid_enabled(ssid) ||
2864 strcmp(tok + 1, ss->name))
f8f22e53
TH
2865 continue;
2866
2867 if (*tok == '+') {
7d331fa9
TH
2868 enable |= 1 << ssid;
2869 disable &= ~(1 << ssid);
f8f22e53 2870 } else if (*tok == '-') {
7d331fa9
TH
2871 disable |= 1 << ssid;
2872 enable &= ~(1 << ssid);
f8f22e53
TH
2873 } else {
2874 return -EINVAL;
2875 }
2876 break;
2877 }
2878 if (ssid == CGROUP_SUBSYS_COUNT)
2879 return -EINVAL;
2880 }
2881
a9746d8d
TH
2882 cgrp = cgroup_kn_lock_live(of->kn);
2883 if (!cgrp)
2884 return -ENODEV;
f8f22e53
TH
2885
2886 for_each_subsys(ss, ssid) {
2887 if (enable & (1 << ssid)) {
667c2491 2888 if (cgrp->subtree_control & (1 << ssid)) {
f8f22e53
TH
2889 enable &= ~(1 << ssid);
2890 continue;
2891 }
2892
c29adf24
TH
2893 /* unavailable or not enabled on the parent? */
2894 if (!(cgrp_dfl_root.subsys_mask & (1 << ssid)) ||
2895 (cgroup_parent(cgrp) &&
667c2491 2896 !(cgroup_parent(cgrp)->subtree_control & (1 << ssid)))) {
c29adf24
TH
2897 ret = -ENOENT;
2898 goto out_unlock;
2899 }
f8f22e53 2900 } else if (disable & (1 << ssid)) {
667c2491 2901 if (!(cgrp->subtree_control & (1 << ssid))) {
f8f22e53
TH
2902 disable &= ~(1 << ssid);
2903 continue;
2904 }
2905
2906 /* a child has it enabled? */
2907 cgroup_for_each_live_child(child, cgrp) {
667c2491 2908 if (child->subtree_control & (1 << ssid)) {
f8f22e53 2909 ret = -EBUSY;
ddab2b6e 2910 goto out_unlock;
f8f22e53
TH
2911 }
2912 }
2913 }
2914 }
2915
2916 if (!enable && !disable) {
2917 ret = 0;
ddab2b6e 2918 goto out_unlock;
f8f22e53
TH
2919 }
2920
2921 /*
667c2491 2922 * Except for the root, subtree_control must be zero for a cgroup
f8f22e53
TH
2923 * with tasks so that child cgroups don't compete against tasks.
2924 */
d51f39b0 2925 if (enable && cgroup_parent(cgrp) && !list_empty(&cgrp->cset_links)) {
f8f22e53
TH
2926 ret = -EBUSY;
2927 goto out_unlock;
2928 }
2929
2930 /*
f63070d3
TH
2931 * Update subsys masks and calculate what needs to be done. More
2932 * subsystems than specified may need to be enabled or disabled
2933 * depending on subsystem dependencies.
2934 */
755bf5ee
TH
2935 old_sc = cgrp->subtree_control;
2936 old_ss = cgrp->child_subsys_mask;
2937 new_sc = (old_sc | enable) & ~disable;
2938 new_ss = cgroup_calc_child_subsys_mask(cgrp, new_sc);
f63070d3 2939
755bf5ee
TH
2940 css_enable = ~old_ss & new_ss;
2941 css_disable = old_ss & ~new_ss;
f63070d3
TH
2942 enable |= css_enable;
2943 disable |= css_disable;
c29adf24 2944
db6e3053
TH
2945 /*
2946 * Because css offlining is asynchronous, userland might try to
2947 * re-enable the same controller while the previous instance is
2948 * still around. In such cases, wait till it's gone using
2949 * offline_waitq.
2950 */
a966a4ed 2951 for_each_subsys_which(ss, ssid, &css_enable) {
db6e3053
TH
2952 cgroup_for_each_live_child(child, cgrp) {
2953 DEFINE_WAIT(wait);
2954
2955 if (!cgroup_css(child, ss))
2956 continue;
2957
2958 cgroup_get(child);
2959 prepare_to_wait(&child->offline_waitq, &wait,
2960 TASK_UNINTERRUPTIBLE);
2961 cgroup_kn_unlock(of->kn);
2962 schedule();
2963 finish_wait(&child->offline_waitq, &wait);
2964 cgroup_put(child);
2965
2966 return restart_syscall();
2967 }
2968 }
2969
755bf5ee
TH
2970 cgrp->subtree_control = new_sc;
2971 cgrp->child_subsys_mask = new_ss;
2972
f63070d3
TH
2973 /*
2974 * Create new csses or make the existing ones visible. A css is
2975 * created invisible if it's being implicitly enabled through
2976 * dependency. An invisible css is made visible when the userland
2977 * explicitly enables it.
f8f22e53
TH
2978 */
2979 for_each_subsys(ss, ssid) {
2980 if (!(enable & (1 << ssid)))
2981 continue;
2982
2983 cgroup_for_each_live_child(child, cgrp) {
f63070d3
TH
2984 if (css_enable & (1 << ssid))
2985 ret = create_css(child, ss,
2986 cgrp->subtree_control & (1 << ssid));
2987 else
2988 ret = cgroup_populate_dir(child, 1 << ssid);
f8f22e53
TH
2989 if (ret)
2990 goto err_undo_css;
2991 }
2992 }
2993
c29adf24
TH
2994 /*
2995 * At this point, cgroup_e_css() results reflect the new csses
2996 * making the following cgroup_update_dfl_csses() properly update
2997 * css associations of all tasks in the subtree.
2998 */
f8f22e53
TH
2999 ret = cgroup_update_dfl_csses(cgrp);
3000 if (ret)
3001 goto err_undo_css;
3002
f63070d3
TH
3003 /*
3004 * All tasks are migrated out of disabled csses. Kill or hide
3005 * them. A css is hidden when the userland requests it to be
b4536f0c
TH
3006 * disabled while other subsystems are still depending on it. The
3007 * css must not actively control resources and be in the vanilla
3008 * state if it's made visible again later. Controllers which may
3009 * be depended upon should provide ->css_reset() for this purpose.
f63070d3 3010 */
f8f22e53
TH
3011 for_each_subsys(ss, ssid) {
3012 if (!(disable & (1 << ssid)))
3013 continue;
3014
f63070d3 3015 cgroup_for_each_live_child(child, cgrp) {
b4536f0c
TH
3016 struct cgroup_subsys_state *css = cgroup_css(child, ss);
3017
3018 if (css_disable & (1 << ssid)) {
3019 kill_css(css);
3020 } else {
f63070d3 3021 cgroup_clear_dir(child, 1 << ssid);
b4536f0c
TH
3022 if (ss->css_reset)
3023 ss->css_reset(css);
3024 }
f63070d3 3025 }
f8f22e53
TH
3026 }
3027
56c807ba
TH
3028 /*
3029 * The effective csses of all the descendants (excluding @cgrp) may
3030 * have changed. Subsystems can optionally subscribe to this event
3031 * by implementing ->css_e_css_changed() which is invoked if any of
3032 * the effective csses seen from the css's cgroup may have changed.
3033 */
3034 for_each_subsys(ss, ssid) {
3035 struct cgroup_subsys_state *this_css = cgroup_css(cgrp, ss);
3036 struct cgroup_subsys_state *css;
3037
3038 if (!ss->css_e_css_changed || !this_css)
3039 continue;
3040
3041 css_for_each_descendant_pre(css, this_css)
3042 if (css != this_css)
3043 ss->css_e_css_changed(css);
3044 }
3045
f8f22e53
TH
3046 kernfs_activate(cgrp->kn);
3047 ret = 0;
3048out_unlock:
a9746d8d 3049 cgroup_kn_unlock(of->kn);
451af504 3050 return ret ?: nbytes;
f8f22e53
TH
3051
3052err_undo_css:
755bf5ee
TH
3053 cgrp->subtree_control = old_sc;
3054 cgrp->child_subsys_mask = old_ss;
f8f22e53
TH
3055
3056 for_each_subsys(ss, ssid) {
3057 if (!(enable & (1 << ssid)))
3058 continue;
3059
3060 cgroup_for_each_live_child(child, cgrp) {
3061 struct cgroup_subsys_state *css = cgroup_css(child, ss);
f63070d3
TH
3062
3063 if (!css)
3064 continue;
3065
3066 if (css_enable & (1 << ssid))
f8f22e53 3067 kill_css(css);
f63070d3
TH
3068 else
3069 cgroup_clear_dir(child, 1 << ssid);
f8f22e53
TH
3070 }
3071 }
3072 goto out_unlock;
3073}
3074
4a07c222 3075static int cgroup_events_show(struct seq_file *seq, void *v)
842b597e 3076{
4a07c222
TH
3077 seq_printf(seq, "populated %d\n",
3078 (bool)seq_css(seq)->cgroup->populated_cnt);
842b597e
TH
3079 return 0;
3080}
3081
2bd59d48
TH
3082static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
3083 size_t nbytes, loff_t off)
355e0c48 3084{
2bd59d48
TH
3085 struct cgroup *cgrp = of->kn->parent->priv;
3086 struct cftype *cft = of->kn->priv;
3087 struct cgroup_subsys_state *css;
a742c59d 3088 int ret;
355e0c48 3089
b4168640
TH
3090 if (cft->write)
3091 return cft->write(of, buf, nbytes, off);
3092
2bd59d48
TH
3093 /*
3094 * kernfs guarantees that a file isn't deleted with operations in
3095 * flight, which means that the matching css is and stays alive and
3096 * doesn't need to be pinned. The RCU locking is not necessary
3097 * either. It's just for the convenience of using cgroup_css().
3098 */
3099 rcu_read_lock();
3100 css = cgroup_css(cgrp, cft->ss);
3101 rcu_read_unlock();
a742c59d 3102
451af504 3103 if (cft->write_u64) {
a742c59d
TH
3104 unsigned long long v;
3105 ret = kstrtoull(buf, 0, &v);
3106 if (!ret)
3107 ret = cft->write_u64(css, cft, v);
3108 } else if (cft->write_s64) {
3109 long long v;
3110 ret = kstrtoll(buf, 0, &v);
3111 if (!ret)
3112 ret = cft->write_s64(css, cft, v);
e73d2c61 3113 } else {
a742c59d 3114 ret = -EINVAL;
e73d2c61 3115 }
2bd59d48 3116
a742c59d 3117 return ret ?: nbytes;
355e0c48
PM
3118}
3119
6612f05b 3120static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
db3b1497 3121{
2bd59d48 3122 return seq_cft(seq)->seq_start(seq, ppos);
db3b1497
PM
3123}
3124
6612f05b 3125static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
ddbcc7e8 3126{
2bd59d48 3127 return seq_cft(seq)->seq_next(seq, v, ppos);
ddbcc7e8
PM
3128}
3129
6612f05b 3130static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
ddbcc7e8 3131{
2bd59d48 3132 seq_cft(seq)->seq_stop(seq, v);
ddbcc7e8
PM
3133}
3134
91796569 3135static int cgroup_seqfile_show(struct seq_file *m, void *arg)
e73d2c61 3136{
7da11279
TH
3137 struct cftype *cft = seq_cft(m);
3138 struct cgroup_subsys_state *css = seq_css(m);
e73d2c61 3139
2da8ca82
TH
3140 if (cft->seq_show)
3141 return cft->seq_show(m, arg);
e73d2c61 3142
f4c753b7 3143 if (cft->read_u64)
896f5199
TH
3144 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
3145 else if (cft->read_s64)
3146 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
3147 else
3148 return -EINVAL;
3149 return 0;
91796569
PM
3150}
3151
2bd59d48
TH
3152static struct kernfs_ops cgroup_kf_single_ops = {
3153 .atomic_write_len = PAGE_SIZE,
3154 .write = cgroup_file_write,
3155 .seq_show = cgroup_seqfile_show,
91796569
PM
3156};
3157
2bd59d48
TH
3158static struct kernfs_ops cgroup_kf_ops = {
3159 .atomic_write_len = PAGE_SIZE,
3160 .write = cgroup_file_write,
3161 .seq_start = cgroup_seqfile_start,
3162 .seq_next = cgroup_seqfile_next,
3163 .seq_stop = cgroup_seqfile_stop,
3164 .seq_show = cgroup_seqfile_show,
3165};
ddbcc7e8
PM
3166
3167/*
3168 * cgroup_rename - Only allow simple rename of directories in place.
3169 */
2bd59d48
TH
3170static int cgroup_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
3171 const char *new_name_str)
ddbcc7e8 3172{
2bd59d48 3173 struct cgroup *cgrp = kn->priv;
65dff759 3174 int ret;
65dff759 3175
2bd59d48 3176 if (kernfs_type(kn) != KERNFS_DIR)
ddbcc7e8 3177 return -ENOTDIR;
2bd59d48 3178 if (kn->parent != new_parent)
ddbcc7e8 3179 return -EIO;
65dff759 3180
6db8e85c
TH
3181 /*
3182 * This isn't a proper migration and its usefulness is very
aa6ec29b 3183 * limited. Disallow on the default hierarchy.
6db8e85c 3184 */
aa6ec29b 3185 if (cgroup_on_dfl(cgrp))
6db8e85c 3186 return -EPERM;
099fca32 3187
e1b2dc17 3188 /*
8353da1f 3189 * We're gonna grab cgroup_mutex which nests outside kernfs
e1b2dc17 3190 * active_ref. kernfs_rename() doesn't require active_ref
8353da1f 3191 * protection. Break them before grabbing cgroup_mutex.
e1b2dc17
TH
3192 */
3193 kernfs_break_active_protection(new_parent);
3194 kernfs_break_active_protection(kn);
099fca32 3195
2bd59d48 3196 mutex_lock(&cgroup_mutex);
099fca32 3197
2bd59d48 3198 ret = kernfs_rename(kn, new_parent, new_name_str);
099fca32 3199
2bd59d48 3200 mutex_unlock(&cgroup_mutex);
e1b2dc17
TH
3201
3202 kernfs_unbreak_active_protection(kn);
3203 kernfs_unbreak_active_protection(new_parent);
2bd59d48 3204 return ret;
099fca32
LZ
3205}
3206
49957f8e
TH
3207/* set uid and gid of cgroup dirs and files to that of the creator */
3208static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3209{
3210 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3211 .ia_uid = current_fsuid(),
3212 .ia_gid = current_fsgid(), };
3213
3214 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3215 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
3216 return 0;
3217
3218 return kernfs_setattr(kn, &iattr);
3219}
3220
2bb566cb 3221static int cgroup_add_file(struct cgroup *cgrp, struct cftype *cft)
ddbcc7e8 3222{
8d7e6fb0 3223 char name[CGROUP_FILE_NAME_MAX];
2bd59d48
TH
3224 struct kernfs_node *kn;
3225 struct lock_class_key *key = NULL;
49957f8e 3226 int ret;
05ef1d7c 3227
2bd59d48
TH
3228#ifdef CONFIG_DEBUG_LOCK_ALLOC
3229 key = &cft->lockdep_key;
3230#endif
3231 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
3232 cgroup_file_mode(cft), 0, cft->kf_ops, cft,
dfeb0750 3233 NULL, key);
49957f8e
TH
3234 if (IS_ERR(kn))
3235 return PTR_ERR(kn);
3236
3237 ret = cgroup_kn_set_ugid(kn);
f8f22e53 3238 if (ret) {
49957f8e 3239 kernfs_remove(kn);
f8f22e53
TH
3240 return ret;
3241 }
3242
187fe840
TH
3243 if (cft->write == cgroup_procs_write)
3244 cgrp->procs_kn = kn;
4a07c222
TH
3245 else if (cft->seq_show == cgroup_events_show)
3246 cgrp->events_kn = kn;
f8f22e53 3247 return 0;
ddbcc7e8
PM
3248}
3249
b1f28d31
TH
3250/**
3251 * cgroup_addrm_files - add or remove files to a cgroup directory
3252 * @cgrp: the target cgroup
b1f28d31
TH
3253 * @cfts: array of cftypes to be added
3254 * @is_add: whether to add or remove
3255 *
3256 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
6732ed85 3257 * For removals, this function never fails.
b1f28d31 3258 */
2bb566cb
TH
3259static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
3260 bool is_add)
ddbcc7e8 3261{
6732ed85 3262 struct cftype *cft, *cft_end = NULL;
b1f28d31
TH
3263 int ret;
3264
01f6474c 3265 lockdep_assert_held(&cgroup_mutex);
db0416b6 3266
6732ed85
TH
3267restart:
3268 for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
f33fddc2 3269 /* does cft->flags tell us to skip this file on @cgrp? */
05ebb6e6 3270 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
8cbbf2c9 3271 continue;
05ebb6e6 3272 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
873fe09e 3273 continue;
d51f39b0 3274 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
f33fddc2 3275 continue;
d51f39b0 3276 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
f33fddc2
G
3277 continue;
3278
2739d3cc 3279 if (is_add) {
2bb566cb 3280 ret = cgroup_add_file(cgrp, cft);
b1f28d31 3281 if (ret) {
ed3d261b
JP
3282 pr_warn("%s: failed to add %s, err=%d\n",
3283 __func__, cft->name, ret);
6732ed85
TH
3284 cft_end = cft;
3285 is_add = false;
3286 goto restart;
b1f28d31 3287 }
2739d3cc
LZ
3288 } else {
3289 cgroup_rm_file(cgrp, cft);
db0416b6 3290 }
ddbcc7e8 3291 }
b1f28d31 3292 return 0;
ddbcc7e8
PM
3293}
3294
21a2d343 3295static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
8e3f6541
TH
3296{
3297 LIST_HEAD(pending);
2bb566cb 3298 struct cgroup_subsys *ss = cfts[0].ss;
3dd06ffa 3299 struct cgroup *root = &ss->root->cgrp;
492eb21b 3300 struct cgroup_subsys_state *css;
9ccece80 3301 int ret = 0;
8e3f6541 3302
01f6474c 3303 lockdep_assert_held(&cgroup_mutex);
e8c82d20 3304
e8c82d20 3305 /* add/rm files for all cgroups created before */
ca8bdcaf 3306 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
492eb21b
TH
3307 struct cgroup *cgrp = css->cgroup;
3308
e8c82d20
LZ
3309 if (cgroup_is_dead(cgrp))
3310 continue;
3311
21a2d343 3312 ret = cgroup_addrm_files(cgrp, cfts, is_add);
9ccece80
TH
3313 if (ret)
3314 break;
8e3f6541 3315 }
21a2d343
TH
3316
3317 if (is_add && !ret)
3318 kernfs_activate(root->kn);
9ccece80 3319 return ret;
8e3f6541
TH
3320}
3321
2da440a2 3322static void cgroup_exit_cftypes(struct cftype *cfts)
8e3f6541 3323{
2bb566cb 3324 struct cftype *cft;
8e3f6541 3325
2bd59d48
TH
3326 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3327 /* free copy for custom atomic_write_len, see init_cftypes() */
3328 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
3329 kfree(cft->kf_ops);
3330 cft->kf_ops = NULL;
2da440a2 3331 cft->ss = NULL;
a8ddc821
TH
3332
3333 /* revert flags set by cgroup core while adding @cfts */
05ebb6e6 3334 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
2bd59d48 3335 }
2da440a2
TH
3336}
3337
2bd59d48 3338static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
2da440a2
TH
3339{
3340 struct cftype *cft;
3341
2bd59d48
TH
3342 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3343 struct kernfs_ops *kf_ops;
3344
0adb0704
TH
3345 WARN_ON(cft->ss || cft->kf_ops);
3346
2bd59d48
TH
3347 if (cft->seq_start)
3348 kf_ops = &cgroup_kf_ops;
3349 else
3350 kf_ops = &cgroup_kf_single_ops;
3351
3352 /*
3353 * Ugh... if @cft wants a custom max_write_len, we need to
3354 * make a copy of kf_ops to set its atomic_write_len.
3355 */
3356 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
3357 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
3358 if (!kf_ops) {
3359 cgroup_exit_cftypes(cfts);
3360 return -ENOMEM;
3361 }
3362 kf_ops->atomic_write_len = cft->max_write_len;
3363 }
8e3f6541 3364
2bd59d48 3365 cft->kf_ops = kf_ops;
2bb566cb 3366 cft->ss = ss;
2bd59d48 3367 }
2bb566cb 3368
2bd59d48 3369 return 0;
2da440a2
TH
3370}
3371
21a2d343
TH
3372static int cgroup_rm_cftypes_locked(struct cftype *cfts)
3373{
01f6474c 3374 lockdep_assert_held(&cgroup_mutex);
21a2d343
TH
3375
3376 if (!cfts || !cfts[0].ss)
3377 return -ENOENT;
3378
3379 list_del(&cfts->node);
3380 cgroup_apply_cftypes(cfts, false);
3381 cgroup_exit_cftypes(cfts);
3382 return 0;
8e3f6541 3383}
8e3f6541 3384
79578621
TH
3385/**
3386 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
79578621
TH
3387 * @cfts: zero-length name terminated array of cftypes
3388 *
2bb566cb
TH
3389 * Unregister @cfts. Files described by @cfts are removed from all
3390 * existing cgroups and all future cgroups won't have them either. This
3391 * function can be called anytime whether @cfts' subsys is attached or not.
79578621
TH
3392 *
3393 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
2bb566cb 3394 * registered.
79578621 3395 */
2bb566cb 3396int cgroup_rm_cftypes(struct cftype *cfts)
79578621 3397{
21a2d343 3398 int ret;
79578621 3399
01f6474c 3400 mutex_lock(&cgroup_mutex);
21a2d343 3401 ret = cgroup_rm_cftypes_locked(cfts);
01f6474c 3402 mutex_unlock(&cgroup_mutex);
21a2d343 3403 return ret;
80b13586
TH
3404}
3405
8e3f6541
TH
3406/**
3407 * cgroup_add_cftypes - add an array of cftypes to a subsystem
3408 * @ss: target cgroup subsystem
3409 * @cfts: zero-length name terminated array of cftypes
3410 *
3411 * Register @cfts to @ss. Files described by @cfts are created for all
3412 * existing cgroups to which @ss is attached and all future cgroups will
3413 * have them too. This function can be called anytime whether @ss is
3414 * attached or not.
3415 *
3416 * Returns 0 on successful registration, -errno on failure. Note that this
3417 * function currently returns 0 as long as @cfts registration is successful
3418 * even if some file creation attempts on existing cgroups fail.
3419 */
2cf669a5 3420static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
8e3f6541 3421{
9ccece80 3422 int ret;
8e3f6541 3423
fc5ed1e9 3424 if (!cgroup_ssid_enabled(ss->id))
c731ae1d
LZ
3425 return 0;
3426
dc5736ed
LZ
3427 if (!cfts || cfts[0].name[0] == '\0')
3428 return 0;
2bb566cb 3429
2bd59d48
TH
3430 ret = cgroup_init_cftypes(ss, cfts);
3431 if (ret)
3432 return ret;
79578621 3433
01f6474c 3434 mutex_lock(&cgroup_mutex);
21a2d343 3435
0adb0704 3436 list_add_tail(&cfts->node, &ss->cfts);
21a2d343 3437 ret = cgroup_apply_cftypes(cfts, true);
9ccece80 3438 if (ret)
21a2d343 3439 cgroup_rm_cftypes_locked(cfts);
79578621 3440
01f6474c 3441 mutex_unlock(&cgroup_mutex);
9ccece80 3442 return ret;
79578621
TH
3443}
3444
a8ddc821
TH
3445/**
3446 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
3447 * @ss: target cgroup subsystem
3448 * @cfts: zero-length name terminated array of cftypes
3449 *
3450 * Similar to cgroup_add_cftypes() but the added files are only used for
3451 * the default hierarchy.
3452 */
3453int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3454{
3455 struct cftype *cft;
3456
3457 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
05ebb6e6 3458 cft->flags |= __CFTYPE_ONLY_ON_DFL;
a8ddc821
TH
3459 return cgroup_add_cftypes(ss, cfts);
3460}
3461
3462/**
3463 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
3464 * @ss: target cgroup subsystem
3465 * @cfts: zero-length name terminated array of cftypes
3466 *
3467 * Similar to cgroup_add_cftypes() but the added files are only used for
3468 * the legacy hierarchies.
3469 */
2cf669a5
TH
3470int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3471{
a8ddc821
TH
3472 struct cftype *cft;
3473
fa8137be
VG
3474 /*
3475 * If legacy_flies_on_dfl, we want to show the legacy files on the
3476 * dfl hierarchy but iff the target subsystem hasn't been updated
3477 * for the dfl hierarchy yet.
3478 */
3479 if (!cgroup_legacy_files_on_dfl ||
3480 ss->dfl_cftypes != ss->legacy_cftypes) {
3481 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3482 cft->flags |= __CFTYPE_NOT_ON_DFL;
3483 }
3484
2cf669a5
TH
3485 return cgroup_add_cftypes(ss, cfts);
3486}
3487
a043e3b2
LZ
3488/**
3489 * cgroup_task_count - count the number of tasks in a cgroup.
3490 * @cgrp: the cgroup in question
3491 *
3492 * Return the number of tasks in the cgroup.
3493 */
07bc356e 3494static int cgroup_task_count(const struct cgroup *cgrp)
bbcb81d0
PM
3495{
3496 int count = 0;
69d0206c 3497 struct cgrp_cset_link *link;
817929ec 3498
96d365e0 3499 down_read(&css_set_rwsem);
69d0206c
TH
3500 list_for_each_entry(link, &cgrp->cset_links, cset_link)
3501 count += atomic_read(&link->cset->refcount);
96d365e0 3502 up_read(&css_set_rwsem);
bbcb81d0
PM
3503 return count;
3504}
3505
53fa5261 3506/**
492eb21b 3507 * css_next_child - find the next child of a given css
c2931b70
TH
3508 * @pos: the current position (%NULL to initiate traversal)
3509 * @parent: css whose children to walk
53fa5261 3510 *
c2931b70 3511 * This function returns the next child of @parent and should be called
87fb54f1 3512 * under either cgroup_mutex or RCU read lock. The only requirement is
c2931b70
TH
3513 * that @parent and @pos are accessible. The next sibling is guaranteed to
3514 * be returned regardless of their states.
3515 *
3516 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3517 * css which finished ->css_online() is guaranteed to be visible in the
3518 * future iterations and will stay visible until the last reference is put.
3519 * A css which hasn't finished ->css_online() or already finished
3520 * ->css_offline() may show up during traversal. It's each subsystem's
3521 * responsibility to synchronize against on/offlining.
53fa5261 3522 */
c2931b70
TH
3523struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
3524 struct cgroup_subsys_state *parent)
53fa5261 3525{
c2931b70 3526 struct cgroup_subsys_state *next;
53fa5261 3527
8353da1f 3528 cgroup_assert_mutex_or_rcu_locked();
53fa5261
TH
3529
3530 /*
de3f0341
TH
3531 * @pos could already have been unlinked from the sibling list.
3532 * Once a cgroup is removed, its ->sibling.next is no longer
3533 * updated when its next sibling changes. CSS_RELEASED is set when
3534 * @pos is taken off list, at which time its next pointer is valid,
3535 * and, as releases are serialized, the one pointed to by the next
3536 * pointer is guaranteed to not have started release yet. This
3537 * implies that if we observe !CSS_RELEASED on @pos in this RCU
3538 * critical section, the one pointed to by its next pointer is
3539 * guaranteed to not have finished its RCU grace period even if we
3540 * have dropped rcu_read_lock() inbetween iterations.
3b287a50 3541 *
de3f0341
TH
3542 * If @pos has CSS_RELEASED set, its next pointer can't be
3543 * dereferenced; however, as each css is given a monotonically
3544 * increasing unique serial number and always appended to the
3545 * sibling list, the next one can be found by walking the parent's
3546 * children until the first css with higher serial number than
3547 * @pos's. While this path can be slower, it happens iff iteration
3548 * races against release and the race window is very small.
53fa5261 3549 */
3b287a50 3550 if (!pos) {
c2931b70
TH
3551 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
3552 } else if (likely(!(pos->flags & CSS_RELEASED))) {
3553 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
3b287a50 3554 } else {
c2931b70 3555 list_for_each_entry_rcu(next, &parent->children, sibling)
3b287a50
TH
3556 if (next->serial_nr > pos->serial_nr)
3557 break;
53fa5261
TH
3558 }
3559
3b281afb
TH
3560 /*
3561 * @next, if not pointing to the head, can be dereferenced and is
c2931b70 3562 * the next sibling.
3b281afb 3563 */
c2931b70
TH
3564 if (&next->sibling != &parent->children)
3565 return next;
3b281afb 3566 return NULL;
53fa5261 3567}
53fa5261 3568
574bd9f7 3569/**
492eb21b 3570 * css_next_descendant_pre - find the next descendant for pre-order walk
574bd9f7 3571 * @pos: the current position (%NULL to initiate traversal)
492eb21b 3572 * @root: css whose descendants to walk
574bd9f7 3573 *
492eb21b 3574 * To be used by css_for_each_descendant_pre(). Find the next descendant
bd8815a6
TH
3575 * to visit for pre-order traversal of @root's descendants. @root is
3576 * included in the iteration and the first node to be visited.
75501a6d 3577 *
87fb54f1
TH
3578 * While this function requires cgroup_mutex or RCU read locking, it
3579 * doesn't require the whole traversal to be contained in a single critical
3580 * section. This function will return the correct next descendant as long
3581 * as both @pos and @root are accessible and @pos is a descendant of @root.
c2931b70
TH
3582 *
3583 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3584 * css which finished ->css_online() is guaranteed to be visible in the
3585 * future iterations and will stay visible until the last reference is put.
3586 * A css which hasn't finished ->css_online() or already finished
3587 * ->css_offline() may show up during traversal. It's each subsystem's
3588 * responsibility to synchronize against on/offlining.
574bd9f7 3589 */
492eb21b
TH
3590struct cgroup_subsys_state *
3591css_next_descendant_pre(struct cgroup_subsys_state *pos,
3592 struct cgroup_subsys_state *root)
574bd9f7 3593{
492eb21b 3594 struct cgroup_subsys_state *next;
574bd9f7 3595
8353da1f 3596 cgroup_assert_mutex_or_rcu_locked();
574bd9f7 3597
bd8815a6 3598 /* if first iteration, visit @root */
7805d000 3599 if (!pos)
bd8815a6 3600 return root;
574bd9f7
TH
3601
3602 /* visit the first child if exists */
492eb21b 3603 next = css_next_child(NULL, pos);
574bd9f7
TH
3604 if (next)
3605 return next;
3606
3607 /* no child, visit my or the closest ancestor's next sibling */
492eb21b 3608 while (pos != root) {
5c9d535b 3609 next = css_next_child(pos, pos->parent);
75501a6d 3610 if (next)
574bd9f7 3611 return next;
5c9d535b 3612 pos = pos->parent;
7805d000 3613 }
574bd9f7
TH
3614
3615 return NULL;
3616}
574bd9f7 3617
12a9d2fe 3618/**
492eb21b
TH
3619 * css_rightmost_descendant - return the rightmost descendant of a css
3620 * @pos: css of interest
12a9d2fe 3621 *
492eb21b
TH
3622 * Return the rightmost descendant of @pos. If there's no descendant, @pos
3623 * is returned. This can be used during pre-order traversal to skip
12a9d2fe 3624 * subtree of @pos.
75501a6d 3625 *
87fb54f1
TH
3626 * While this function requires cgroup_mutex or RCU read locking, it
3627 * doesn't require the whole traversal to be contained in a single critical
3628 * section. This function will return the correct rightmost descendant as
3629 * long as @pos is accessible.
12a9d2fe 3630 */
492eb21b
TH
3631struct cgroup_subsys_state *
3632css_rightmost_descendant(struct cgroup_subsys_state *pos)
12a9d2fe 3633{
492eb21b 3634 struct cgroup_subsys_state *last, *tmp;
12a9d2fe 3635
8353da1f 3636 cgroup_assert_mutex_or_rcu_locked();
12a9d2fe
TH
3637
3638 do {
3639 last = pos;
3640 /* ->prev isn't RCU safe, walk ->next till the end */
3641 pos = NULL;
492eb21b 3642 css_for_each_child(tmp, last)
12a9d2fe
TH
3643 pos = tmp;
3644 } while (pos);
3645
3646 return last;
3647}
12a9d2fe 3648
492eb21b
TH
3649static struct cgroup_subsys_state *
3650css_leftmost_descendant(struct cgroup_subsys_state *pos)
574bd9f7 3651{
492eb21b 3652 struct cgroup_subsys_state *last;
574bd9f7
TH
3653
3654 do {
3655 last = pos;
492eb21b 3656 pos = css_next_child(NULL, pos);
574bd9f7
TH
3657 } while (pos);
3658
3659 return last;
3660}
3661
3662/**
492eb21b 3663 * css_next_descendant_post - find the next descendant for post-order walk
574bd9f7 3664 * @pos: the current position (%NULL to initiate traversal)
492eb21b 3665 * @root: css whose descendants to walk
574bd9f7 3666 *
492eb21b 3667 * To be used by css_for_each_descendant_post(). Find the next descendant
bd8815a6
TH
3668 * to visit for post-order traversal of @root's descendants. @root is
3669 * included in the iteration and the last node to be visited.
75501a6d 3670 *
87fb54f1
TH
3671 * While this function requires cgroup_mutex or RCU read locking, it
3672 * doesn't require the whole traversal to be contained in a single critical
3673 * section. This function will return the correct next descendant as long
3674 * as both @pos and @cgroup are accessible and @pos is a descendant of
3675 * @cgroup.
c2931b70
TH
3676 *
3677 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3678 * css which finished ->css_online() is guaranteed to be visible in the
3679 * future iterations and will stay visible until the last reference is put.
3680 * A css which hasn't finished ->css_online() or already finished
3681 * ->css_offline() may show up during traversal. It's each subsystem's
3682 * responsibility to synchronize against on/offlining.
574bd9f7 3683 */
492eb21b
TH
3684struct cgroup_subsys_state *
3685css_next_descendant_post(struct cgroup_subsys_state *pos,
3686 struct cgroup_subsys_state *root)
574bd9f7 3687{
492eb21b 3688 struct cgroup_subsys_state *next;
574bd9f7 3689
8353da1f 3690 cgroup_assert_mutex_or_rcu_locked();
574bd9f7 3691
58b79a91
TH
3692 /* if first iteration, visit leftmost descendant which may be @root */
3693 if (!pos)
3694 return css_leftmost_descendant(root);
574bd9f7 3695
bd8815a6
TH
3696 /* if we visited @root, we're done */
3697 if (pos == root)
3698 return NULL;
3699
574bd9f7 3700 /* if there's an unvisited sibling, visit its leftmost descendant */
5c9d535b 3701 next = css_next_child(pos, pos->parent);
75501a6d 3702 if (next)
492eb21b 3703 return css_leftmost_descendant(next);
574bd9f7
TH
3704
3705 /* no sibling left, visit parent */
5c9d535b 3706 return pos->parent;
574bd9f7 3707}
574bd9f7 3708
f3d46500
TH
3709/**
3710 * css_has_online_children - does a css have online children
3711 * @css: the target css
3712 *
3713 * Returns %true if @css has any online children; otherwise, %false. This
3714 * function can be called from any context but the caller is responsible
3715 * for synchronizing against on/offlining as necessary.
3716 */
3717bool css_has_online_children(struct cgroup_subsys_state *css)
cbc125ef 3718{
f3d46500
TH
3719 struct cgroup_subsys_state *child;
3720 bool ret = false;
cbc125ef
TH
3721
3722 rcu_read_lock();
f3d46500 3723 css_for_each_child(child, css) {
99bae5f9 3724 if (child->flags & CSS_ONLINE) {
f3d46500
TH
3725 ret = true;
3726 break;
cbc125ef
TH
3727 }
3728 }
3729 rcu_read_unlock();
f3d46500 3730 return ret;
574bd9f7 3731}
574bd9f7 3732
0942eeee 3733/**
72ec7029 3734 * css_advance_task_iter - advance a task itererator to the next css_set
0942eeee
TH
3735 * @it: the iterator to advance
3736 *
3737 * Advance @it to the next css_set to walk.
d515876e 3738 */
72ec7029 3739static void css_advance_task_iter(struct css_task_iter *it)
d515876e 3740{
0f0a2b4f 3741 struct list_head *l = it->cset_pos;
d515876e
TH
3742 struct cgrp_cset_link *link;
3743 struct css_set *cset;
3744
3745 /* Advance to the next non-empty css_set */
3746 do {
3747 l = l->next;
0f0a2b4f
TH
3748 if (l == it->cset_head) {
3749 it->cset_pos = NULL;
d515876e
TH
3750 return;
3751 }
3ebb2b6e
TH
3752
3753 if (it->ss) {
3754 cset = container_of(l, struct css_set,
3755 e_cset_node[it->ss->id]);
3756 } else {
3757 link = list_entry(l, struct cgrp_cset_link, cset_link);
3758 cset = link->cset;
3759 }
c7561128
TH
3760 } while (list_empty(&cset->tasks) && list_empty(&cset->mg_tasks));
3761
0f0a2b4f 3762 it->cset_pos = l;
c7561128
TH
3763
3764 if (!list_empty(&cset->tasks))
0f0a2b4f 3765 it->task_pos = cset->tasks.next;
c7561128 3766 else
0f0a2b4f
TH
3767 it->task_pos = cset->mg_tasks.next;
3768
3769 it->tasks_head = &cset->tasks;
3770 it->mg_tasks_head = &cset->mg_tasks;
d515876e
TH
3771}
3772
0942eeee 3773/**
72ec7029
TH
3774 * css_task_iter_start - initiate task iteration
3775 * @css: the css to walk tasks of
0942eeee
TH
3776 * @it: the task iterator to use
3777 *
72ec7029
TH
3778 * Initiate iteration through the tasks of @css. The caller can call
3779 * css_task_iter_next() to walk through the tasks until the function
3780 * returns NULL. On completion of iteration, css_task_iter_end() must be
3781 * called.
0942eeee
TH
3782 *
3783 * Note that this function acquires a lock which is released when the
3784 * iteration finishes. The caller can't sleep while iteration is in
3785 * progress.
3786 */
72ec7029
TH
3787void css_task_iter_start(struct cgroup_subsys_state *css,
3788 struct css_task_iter *it)
96d365e0 3789 __acquires(css_set_rwsem)
817929ec 3790{
56fde9e0
TH
3791 /* no one should try to iterate before mounting cgroups */
3792 WARN_ON_ONCE(!use_task_css_set_links);
31a7df01 3793
96d365e0 3794 down_read(&css_set_rwsem);
c59cd3d8 3795
3ebb2b6e
TH
3796 it->ss = css->ss;
3797
3798 if (it->ss)
3799 it->cset_pos = &css->cgroup->e_csets[css->ss->id];
3800 else
3801 it->cset_pos = &css->cgroup->cset_links;
3802
0f0a2b4f 3803 it->cset_head = it->cset_pos;
c59cd3d8 3804
72ec7029 3805 css_advance_task_iter(it);
817929ec
PM
3806}
3807
0942eeee 3808/**
72ec7029 3809 * css_task_iter_next - return the next task for the iterator
0942eeee
TH
3810 * @it: the task iterator being iterated
3811 *
3812 * The "next" function for task iteration. @it should have been
72ec7029
TH
3813 * initialized via css_task_iter_start(). Returns NULL when the iteration
3814 * reaches the end.
0942eeee 3815 */
72ec7029 3816struct task_struct *css_task_iter_next(struct css_task_iter *it)
817929ec
PM
3817{
3818 struct task_struct *res;
0f0a2b4f 3819 struct list_head *l = it->task_pos;
817929ec
PM
3820
3821 /* If the iterator cg is NULL, we have no tasks */
0f0a2b4f 3822 if (!it->cset_pos)
817929ec
PM
3823 return NULL;
3824 res = list_entry(l, struct task_struct, cg_list);
c7561128
TH
3825
3826 /*
3827 * Advance iterator to find next entry. cset->tasks is consumed
3828 * first and then ->mg_tasks. After ->mg_tasks, we move onto the
3829 * next cset.
3830 */
817929ec 3831 l = l->next;
c7561128 3832
0f0a2b4f
TH
3833 if (l == it->tasks_head)
3834 l = it->mg_tasks_head->next;
c7561128 3835
0f0a2b4f 3836 if (l == it->mg_tasks_head)
72ec7029 3837 css_advance_task_iter(it);
c7561128 3838 else
0f0a2b4f 3839 it->task_pos = l;
c7561128 3840
817929ec
PM
3841 return res;
3842}
3843
0942eeee 3844/**
72ec7029 3845 * css_task_iter_end - finish task iteration
0942eeee
TH
3846 * @it: the task iterator to finish
3847 *
72ec7029 3848 * Finish task iteration started by css_task_iter_start().
0942eeee 3849 */
72ec7029 3850void css_task_iter_end(struct css_task_iter *it)
96d365e0 3851 __releases(css_set_rwsem)
31a7df01 3852{
96d365e0 3853 up_read(&css_set_rwsem);
31a7df01
CW
3854}
3855
3856/**
8cc99345
TH
3857 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
3858 * @to: cgroup to which the tasks will be moved
3859 * @from: cgroup in which the tasks currently reside
31a7df01 3860 *
eaf797ab
TH
3861 * Locking rules between cgroup_post_fork() and the migration path
3862 * guarantee that, if a task is forking while being migrated, the new child
3863 * is guaranteed to be either visible in the source cgroup after the
3864 * parent's migration is complete or put into the target cgroup. No task
3865 * can slip out of migration through forking.
31a7df01 3866 */
8cc99345 3867int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
31a7df01 3868{
952aaa12
TH
3869 LIST_HEAD(preloaded_csets);
3870 struct cgrp_cset_link *link;
72ec7029 3871 struct css_task_iter it;
e406d1cf 3872 struct task_struct *task;
952aaa12 3873 int ret;
31a7df01 3874
952aaa12 3875 mutex_lock(&cgroup_mutex);
31a7df01 3876
952aaa12
TH
3877 /* all tasks in @from are being moved, all csets are source */
3878 down_read(&css_set_rwsem);
3879 list_for_each_entry(link, &from->cset_links, cset_link)
3880 cgroup_migrate_add_src(link->cset, to, &preloaded_csets);
3881 up_read(&css_set_rwsem);
31a7df01 3882
952aaa12
TH
3883 ret = cgroup_migrate_prepare_dst(to, &preloaded_csets);
3884 if (ret)
3885 goto out_err;
8cc99345 3886
952aaa12
TH
3887 /*
3888 * Migrate tasks one-by-one until @form is empty. This fails iff
3889 * ->can_attach() fails.
3890 */
e406d1cf 3891 do {
9d800df1 3892 css_task_iter_start(&from->self, &it);
e406d1cf
TH
3893 task = css_task_iter_next(&it);
3894 if (task)
3895 get_task_struct(task);
3896 css_task_iter_end(&it);
3897
3898 if (task) {
952aaa12 3899 ret = cgroup_migrate(to, task, false);
e406d1cf
TH
3900 put_task_struct(task);
3901 }
3902 } while (task && !ret);
952aaa12
TH
3903out_err:
3904 cgroup_migrate_finish(&preloaded_csets);
47cfcd09 3905 mutex_unlock(&cgroup_mutex);
e406d1cf 3906 return ret;
8cc99345
TH
3907}
3908
bbcb81d0 3909/*
102a775e 3910 * Stuff for reading the 'tasks'/'procs' files.
bbcb81d0
PM
3911 *
3912 * Reading this file can return large amounts of data if a cgroup has
3913 * *lots* of attached tasks. So it may need several calls to read(),
3914 * but we cannot guarantee that the information we produce is correct
3915 * unless we produce it entirely atomically.
3916 *
bbcb81d0 3917 */
bbcb81d0 3918
24528255
LZ
3919/* which pidlist file are we talking about? */
3920enum cgroup_filetype {
3921 CGROUP_FILE_PROCS,
3922 CGROUP_FILE_TASKS,
3923};
3924
3925/*
3926 * A pidlist is a list of pids that virtually represents the contents of one
3927 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
3928 * a pair (one each for procs, tasks) for each pid namespace that's relevant
3929 * to the cgroup.
3930 */
3931struct cgroup_pidlist {
3932 /*
3933 * used to find which pidlist is wanted. doesn't change as long as
3934 * this particular list stays in the list.
3935 */
3936 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
3937 /* array of xids */
3938 pid_t *list;
3939 /* how many elements the above list has */
3940 int length;
24528255
LZ
3941 /* each of these stored in a list by its cgroup */
3942 struct list_head links;
3943 /* pointer to the cgroup we belong to, for list removal purposes */
3944 struct cgroup *owner;
b1a21367
TH
3945 /* for delayed destruction */
3946 struct delayed_work destroy_dwork;
24528255
LZ
3947};
3948
d1d9fd33
BB
3949/*
3950 * The following two functions "fix" the issue where there are more pids
3951 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
3952 * TODO: replace with a kernel-wide solution to this problem
3953 */
3954#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
3955static void *pidlist_allocate(int count)
3956{
3957 if (PIDLIST_TOO_LARGE(count))
3958 return vmalloc(count * sizeof(pid_t));
3959 else
3960 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
3961}
b1a21367 3962
d1d9fd33
BB
3963static void pidlist_free(void *p)
3964{
58794514 3965 kvfree(p);
d1d9fd33 3966}
d1d9fd33 3967
b1a21367
TH
3968/*
3969 * Used to destroy all pidlists lingering waiting for destroy timer. None
3970 * should be left afterwards.
3971 */
3972static void cgroup_pidlist_destroy_all(struct cgroup *cgrp)
3973{
3974 struct cgroup_pidlist *l, *tmp_l;
3975
3976 mutex_lock(&cgrp->pidlist_mutex);
3977 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
3978 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
3979 mutex_unlock(&cgrp->pidlist_mutex);
3980
3981 flush_workqueue(cgroup_pidlist_destroy_wq);
3982 BUG_ON(!list_empty(&cgrp->pidlists));
3983}
3984
3985static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
3986{
3987 struct delayed_work *dwork = to_delayed_work(work);
3988 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
3989 destroy_dwork);
3990 struct cgroup_pidlist *tofree = NULL;
3991
3992 mutex_lock(&l->owner->pidlist_mutex);
b1a21367
TH
3993
3994 /*
04502365
TH
3995 * Destroy iff we didn't get queued again. The state won't change
3996 * as destroy_dwork can only be queued while locked.
b1a21367 3997 */
04502365 3998 if (!delayed_work_pending(dwork)) {
b1a21367
TH
3999 list_del(&l->links);
4000 pidlist_free(l->list);
4001 put_pid_ns(l->key.ns);
4002 tofree = l;
4003 }
4004
b1a21367
TH
4005 mutex_unlock(&l->owner->pidlist_mutex);
4006 kfree(tofree);
4007}
4008
bbcb81d0 4009/*
102a775e 4010 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
6ee211ad 4011 * Returns the number of unique elements.
bbcb81d0 4012 */
6ee211ad 4013static int pidlist_uniq(pid_t *list, int length)
bbcb81d0 4014{
102a775e 4015 int src, dest = 1;
102a775e
BB
4016
4017 /*
4018 * we presume the 0th element is unique, so i starts at 1. trivial
4019 * edge cases first; no work needs to be done for either
4020 */
4021 if (length == 0 || length == 1)
4022 return length;
4023 /* src and dest walk down the list; dest counts unique elements */
4024 for (src = 1; src < length; src++) {
4025 /* find next unique element */
4026 while (list[src] == list[src-1]) {
4027 src++;
4028 if (src == length)
4029 goto after;
4030 }
4031 /* dest always points to where the next unique element goes */
4032 list[dest] = list[src];
4033 dest++;
4034 }
4035after:
102a775e
BB
4036 return dest;
4037}
4038
afb2bc14
TH
4039/*
4040 * The two pid files - task and cgroup.procs - guaranteed that the result
4041 * is sorted, which forced this whole pidlist fiasco. As pid order is
4042 * different per namespace, each namespace needs differently sorted list,
4043 * making it impossible to use, for example, single rbtree of member tasks
4044 * sorted by task pointer. As pidlists can be fairly large, allocating one
4045 * per open file is dangerous, so cgroup had to implement shared pool of
4046 * pidlists keyed by cgroup and namespace.
4047 *
4048 * All this extra complexity was caused by the original implementation
4049 * committing to an entirely unnecessary property. In the long term, we
aa6ec29b
TH
4050 * want to do away with it. Explicitly scramble sort order if on the
4051 * default hierarchy so that no such expectation exists in the new
4052 * interface.
afb2bc14
TH
4053 *
4054 * Scrambling is done by swapping every two consecutive bits, which is
4055 * non-identity one-to-one mapping which disturbs sort order sufficiently.
4056 */
4057static pid_t pid_fry(pid_t pid)
4058{
4059 unsigned a = pid & 0x55555555;
4060 unsigned b = pid & 0xAAAAAAAA;
4061
4062 return (a << 1) | (b >> 1);
4063}
4064
4065static pid_t cgroup_pid_fry(struct cgroup *cgrp, pid_t pid)
4066{
aa6ec29b 4067 if (cgroup_on_dfl(cgrp))
afb2bc14
TH
4068 return pid_fry(pid);
4069 else
4070 return pid;
4071}
4072
102a775e
BB
4073static int cmppid(const void *a, const void *b)
4074{
4075 return *(pid_t *)a - *(pid_t *)b;
4076}
4077
afb2bc14
TH
4078static int fried_cmppid(const void *a, const void *b)
4079{
4080 return pid_fry(*(pid_t *)a) - pid_fry(*(pid_t *)b);
4081}
4082
e6b81710
TH
4083static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
4084 enum cgroup_filetype type)
4085{
4086 struct cgroup_pidlist *l;
4087 /* don't need task_nsproxy() if we're looking at ourself */
4088 struct pid_namespace *ns = task_active_pid_ns(current);
4089
4090 lockdep_assert_held(&cgrp->pidlist_mutex);
4091
4092 list_for_each_entry(l, &cgrp->pidlists, links)
4093 if (l->key.type == type && l->key.ns == ns)
4094 return l;
4095 return NULL;
4096}
4097
72a8cb30
BB
4098/*
4099 * find the appropriate pidlist for our purpose (given procs vs tasks)
4100 * returns with the lock on that pidlist already held, and takes care
4101 * of the use count, or returns NULL with no locks held if we're out of
4102 * memory.
4103 */
e6b81710
TH
4104static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
4105 enum cgroup_filetype type)
72a8cb30
BB
4106{
4107 struct cgroup_pidlist *l;
b70cc5fd 4108
e6b81710
TH
4109 lockdep_assert_held(&cgrp->pidlist_mutex);
4110
4111 l = cgroup_pidlist_find(cgrp, type);
4112 if (l)
4113 return l;
4114
72a8cb30 4115 /* entry not found; create a new one */
f4f4be2b 4116 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
e6b81710 4117 if (!l)
72a8cb30 4118 return l;
e6b81710 4119
b1a21367 4120 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
72a8cb30 4121 l->key.type = type;
e6b81710
TH
4122 /* don't need task_nsproxy() if we're looking at ourself */
4123 l->key.ns = get_pid_ns(task_active_pid_ns(current));
72a8cb30
BB
4124 l->owner = cgrp;
4125 list_add(&l->links, &cgrp->pidlists);
72a8cb30
BB
4126 return l;
4127}
4128
102a775e
BB
4129/*
4130 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
4131 */
72a8cb30
BB
4132static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
4133 struct cgroup_pidlist **lp)
102a775e
BB
4134{
4135 pid_t *array;
4136 int length;
4137 int pid, n = 0; /* used for populating the array */
72ec7029 4138 struct css_task_iter it;
817929ec 4139 struct task_struct *tsk;
102a775e
BB
4140 struct cgroup_pidlist *l;
4141
4bac00d1
TH
4142 lockdep_assert_held(&cgrp->pidlist_mutex);
4143
102a775e
BB
4144 /*
4145 * If cgroup gets more users after we read count, we won't have
4146 * enough space - tough. This race is indistinguishable to the
4147 * caller from the case that the additional cgroup users didn't
4148 * show up until sometime later on.
4149 */
4150 length = cgroup_task_count(cgrp);
d1d9fd33 4151 array = pidlist_allocate(length);
102a775e
BB
4152 if (!array)
4153 return -ENOMEM;
4154 /* now, populate the array */
9d800df1 4155 css_task_iter_start(&cgrp->self, &it);
72ec7029 4156 while ((tsk = css_task_iter_next(&it))) {
102a775e 4157 if (unlikely(n == length))
817929ec 4158 break;
102a775e 4159 /* get tgid or pid for procs or tasks file respectively */
72a8cb30
BB
4160 if (type == CGROUP_FILE_PROCS)
4161 pid = task_tgid_vnr(tsk);
4162 else
4163 pid = task_pid_vnr(tsk);
102a775e
BB
4164 if (pid > 0) /* make sure to only use valid results */
4165 array[n++] = pid;
817929ec 4166 }
72ec7029 4167 css_task_iter_end(&it);
102a775e
BB
4168 length = n;
4169 /* now sort & (if procs) strip out duplicates */
aa6ec29b 4170 if (cgroup_on_dfl(cgrp))
afb2bc14
TH
4171 sort(array, length, sizeof(pid_t), fried_cmppid, NULL);
4172 else
4173 sort(array, length, sizeof(pid_t), cmppid, NULL);
72a8cb30 4174 if (type == CGROUP_FILE_PROCS)
6ee211ad 4175 length = pidlist_uniq(array, length);
e6b81710 4176
e6b81710 4177 l = cgroup_pidlist_find_create(cgrp, type);
72a8cb30 4178 if (!l) {
d1d9fd33 4179 pidlist_free(array);
72a8cb30 4180 return -ENOMEM;
102a775e 4181 }
e6b81710
TH
4182
4183 /* store array, freeing old if necessary */
d1d9fd33 4184 pidlist_free(l->list);
102a775e
BB
4185 l->list = array;
4186 l->length = length;
72a8cb30 4187 *lp = l;
102a775e 4188 return 0;
bbcb81d0
PM
4189}
4190
846c7bb0 4191/**
a043e3b2 4192 * cgroupstats_build - build and fill cgroupstats
846c7bb0
BS
4193 * @stats: cgroupstats to fill information into
4194 * @dentry: A dentry entry belonging to the cgroup for which stats have
4195 * been requested.
a043e3b2
LZ
4196 *
4197 * Build and fill cgroupstats so that taskstats can export it to user
4198 * space.
846c7bb0
BS
4199 */
4200int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
4201{
2bd59d48 4202 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
bd89aabc 4203 struct cgroup *cgrp;
72ec7029 4204 struct css_task_iter it;
846c7bb0 4205 struct task_struct *tsk;
33d283be 4206
2bd59d48
TH
4207 /* it should be kernfs_node belonging to cgroupfs and is a directory */
4208 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
4209 kernfs_type(kn) != KERNFS_DIR)
4210 return -EINVAL;
4211
bad34660
LZ
4212 mutex_lock(&cgroup_mutex);
4213
846c7bb0 4214 /*
2bd59d48 4215 * We aren't being called from kernfs and there's no guarantee on
ec903c0c 4216 * @kn->priv's validity. For this and css_tryget_online_from_dir(),
2bd59d48 4217 * @kn->priv is RCU safe. Let's do the RCU dancing.
846c7bb0 4218 */
2bd59d48
TH
4219 rcu_read_lock();
4220 cgrp = rcu_dereference(kn->priv);
bad34660 4221 if (!cgrp || cgroup_is_dead(cgrp)) {
2bd59d48 4222 rcu_read_unlock();
bad34660 4223 mutex_unlock(&cgroup_mutex);
2bd59d48
TH
4224 return -ENOENT;
4225 }
bad34660 4226 rcu_read_unlock();
846c7bb0 4227
9d800df1 4228 css_task_iter_start(&cgrp->self, &it);
72ec7029 4229 while ((tsk = css_task_iter_next(&it))) {
846c7bb0
BS
4230 switch (tsk->state) {
4231 case TASK_RUNNING:
4232 stats->nr_running++;
4233 break;
4234 case TASK_INTERRUPTIBLE:
4235 stats->nr_sleeping++;
4236 break;
4237 case TASK_UNINTERRUPTIBLE:
4238 stats->nr_uninterruptible++;
4239 break;
4240 case TASK_STOPPED:
4241 stats->nr_stopped++;
4242 break;
4243 default:
4244 if (delayacct_is_task_waiting_on_io(tsk))
4245 stats->nr_io_wait++;
4246 break;
4247 }
4248 }
72ec7029 4249 css_task_iter_end(&it);
846c7bb0 4250
bad34660 4251 mutex_unlock(&cgroup_mutex);
2bd59d48 4252 return 0;
846c7bb0
BS
4253}
4254
8f3ff208 4255
bbcb81d0 4256/*
102a775e 4257 * seq_file methods for the tasks/procs files. The seq_file position is the
cc31edce 4258 * next pid to display; the seq_file iterator is a pointer to the pid
102a775e 4259 * in the cgroup->l->list array.
bbcb81d0 4260 */
cc31edce 4261
102a775e 4262static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
bbcb81d0 4263{
cc31edce
PM
4264 /*
4265 * Initially we receive a position value that corresponds to
4266 * one more than the last pid shown (or 0 on the first call or
4267 * after a seek to the start). Use a binary-search to find the
4268 * next pid to display, if any
4269 */
2bd59d48 4270 struct kernfs_open_file *of = s->private;
7da11279 4271 struct cgroup *cgrp = seq_css(s)->cgroup;
4bac00d1 4272 struct cgroup_pidlist *l;
7da11279 4273 enum cgroup_filetype type = seq_cft(s)->private;
cc31edce 4274 int index = 0, pid = *pos;
4bac00d1
TH
4275 int *iter, ret;
4276
4277 mutex_lock(&cgrp->pidlist_mutex);
4278
4279 /*
5d22444f 4280 * !NULL @of->priv indicates that this isn't the first start()
4bac00d1 4281 * after open. If the matching pidlist is around, we can use that.
5d22444f 4282 * Look for it. Note that @of->priv can't be used directly. It
4bac00d1
TH
4283 * could already have been destroyed.
4284 */
5d22444f
TH
4285 if (of->priv)
4286 of->priv = cgroup_pidlist_find(cgrp, type);
4bac00d1
TH
4287
4288 /*
4289 * Either this is the first start() after open or the matching
4290 * pidlist has been destroyed inbetween. Create a new one.
4291 */
5d22444f
TH
4292 if (!of->priv) {
4293 ret = pidlist_array_load(cgrp, type,
4294 (struct cgroup_pidlist **)&of->priv);
4bac00d1
TH
4295 if (ret)
4296 return ERR_PTR(ret);
4297 }
5d22444f 4298 l = of->priv;
cc31edce 4299
cc31edce 4300 if (pid) {
102a775e 4301 int end = l->length;
20777766 4302
cc31edce
PM
4303 while (index < end) {
4304 int mid = (index + end) / 2;
afb2bc14 4305 if (cgroup_pid_fry(cgrp, l->list[mid]) == pid) {
cc31edce
PM
4306 index = mid;
4307 break;
afb2bc14 4308 } else if (cgroup_pid_fry(cgrp, l->list[mid]) <= pid)
cc31edce
PM
4309 index = mid + 1;
4310 else
4311 end = mid;
4312 }
4313 }
4314 /* If we're off the end of the array, we're done */
102a775e 4315 if (index >= l->length)
cc31edce
PM
4316 return NULL;
4317 /* Update the abstract position to be the actual pid that we found */
102a775e 4318 iter = l->list + index;
afb2bc14 4319 *pos = cgroup_pid_fry(cgrp, *iter);
cc31edce
PM
4320 return iter;
4321}
4322
102a775e 4323static void cgroup_pidlist_stop(struct seq_file *s, void *v)
cc31edce 4324{
2bd59d48 4325 struct kernfs_open_file *of = s->private;
5d22444f 4326 struct cgroup_pidlist *l = of->priv;
62236858 4327
5d22444f
TH
4328 if (l)
4329 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
04502365 4330 CGROUP_PIDLIST_DESTROY_DELAY);
7da11279 4331 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
cc31edce
PM
4332}
4333
102a775e 4334static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
cc31edce 4335{
2bd59d48 4336 struct kernfs_open_file *of = s->private;
5d22444f 4337 struct cgroup_pidlist *l = of->priv;
102a775e
BB
4338 pid_t *p = v;
4339 pid_t *end = l->list + l->length;
cc31edce
PM
4340 /*
4341 * Advance to the next pid in the array. If this goes off the
4342 * end, we're done
4343 */
4344 p++;
4345 if (p >= end) {
4346 return NULL;
4347 } else {
7da11279 4348 *pos = cgroup_pid_fry(seq_css(s)->cgroup, *p);
cc31edce
PM
4349 return p;
4350 }
4351}
4352
102a775e 4353static int cgroup_pidlist_show(struct seq_file *s, void *v)
cc31edce 4354{
94ff212d
JP
4355 seq_printf(s, "%d\n", *(int *)v);
4356
4357 return 0;
cc31edce 4358}
bbcb81d0 4359
182446d0
TH
4360static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
4361 struct cftype *cft)
81a6a5cd 4362{
182446d0 4363 return notify_on_release(css->cgroup);
81a6a5cd
PM
4364}
4365
182446d0
TH
4366static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
4367 struct cftype *cft, u64 val)
6379c106 4368{
6379c106 4369 if (val)
182446d0 4370 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106 4371 else
182446d0 4372 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106
PM
4373 return 0;
4374}
4375
182446d0
TH
4376static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
4377 struct cftype *cft)
97978e6d 4378{
182446d0 4379 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
4380}
4381
182446d0
TH
4382static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
4383 struct cftype *cft, u64 val)
97978e6d
DL
4384{
4385 if (val)
182446d0 4386 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d 4387 else
182446d0 4388 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
4389 return 0;
4390}
4391
a14c6874
TH
4392/* cgroup core interface files for the default hierarchy */
4393static struct cftype cgroup_dfl_base_files[] = {
81a6a5cd 4394 {
d5c56ced 4395 .name = "cgroup.procs",
6612f05b
TH
4396 .seq_start = cgroup_pidlist_start,
4397 .seq_next = cgroup_pidlist_next,
4398 .seq_stop = cgroup_pidlist_stop,
4399 .seq_show = cgroup_pidlist_show,
5d22444f 4400 .private = CGROUP_FILE_PROCS,
acbef755 4401 .write = cgroup_procs_write,
102a775e 4402 },
f8f22e53
TH
4403 {
4404 .name = "cgroup.controllers",
a14c6874 4405 .flags = CFTYPE_ONLY_ON_ROOT,
f8f22e53
TH
4406 .seq_show = cgroup_root_controllers_show,
4407 },
4408 {
4409 .name = "cgroup.controllers",
a14c6874 4410 .flags = CFTYPE_NOT_ON_ROOT,
f8f22e53
TH
4411 .seq_show = cgroup_controllers_show,
4412 },
4413 {
4414 .name = "cgroup.subtree_control",
f8f22e53 4415 .seq_show = cgroup_subtree_control_show,
451af504 4416 .write = cgroup_subtree_control_write,
f8f22e53 4417 },
842b597e 4418 {
4a07c222 4419 .name = "cgroup.events",
a14c6874 4420 .flags = CFTYPE_NOT_ON_ROOT,
4a07c222 4421 .seq_show = cgroup_events_show,
842b597e 4422 },
a14c6874
TH
4423 { } /* terminate */
4424};
d5c56ced 4425
a14c6874
TH
4426/* cgroup core interface files for the legacy hierarchies */
4427static struct cftype cgroup_legacy_base_files[] = {
4428 {
4429 .name = "cgroup.procs",
4430 .seq_start = cgroup_pidlist_start,
4431 .seq_next = cgroup_pidlist_next,
4432 .seq_stop = cgroup_pidlist_stop,
4433 .seq_show = cgroup_pidlist_show,
4434 .private = CGROUP_FILE_PROCS,
4435 .write = cgroup_procs_write,
a14c6874
TH
4436 },
4437 {
4438 .name = "cgroup.clone_children",
4439 .read_u64 = cgroup_clone_children_read,
4440 .write_u64 = cgroup_clone_children_write,
4441 },
4442 {
4443 .name = "cgroup.sane_behavior",
4444 .flags = CFTYPE_ONLY_ON_ROOT,
4445 .seq_show = cgroup_sane_behavior_show,
4446 },
d5c56ced
TH
4447 {
4448 .name = "tasks",
6612f05b
TH
4449 .seq_start = cgroup_pidlist_start,
4450 .seq_next = cgroup_pidlist_next,
4451 .seq_stop = cgroup_pidlist_stop,
4452 .seq_show = cgroup_pidlist_show,
5d22444f 4453 .private = CGROUP_FILE_TASKS,
acbef755 4454 .write = cgroup_tasks_write,
d5c56ced
TH
4455 },
4456 {
4457 .name = "notify_on_release",
d5c56ced
TH
4458 .read_u64 = cgroup_read_notify_on_release,
4459 .write_u64 = cgroup_write_notify_on_release,
4460 },
6e6ff25b
TH
4461 {
4462 .name = "release_agent",
a14c6874 4463 .flags = CFTYPE_ONLY_ON_ROOT,
2da8ca82 4464 .seq_show = cgroup_release_agent_show,
451af504 4465 .write = cgroup_release_agent_write,
5f469907 4466 .max_write_len = PATH_MAX - 1,
6e6ff25b 4467 },
db0416b6 4468 { } /* terminate */
bbcb81d0
PM
4469};
4470
0c21ead1
TH
4471/*
4472 * css destruction is four-stage process.
4473 *
4474 * 1. Destruction starts. Killing of the percpu_ref is initiated.
4475 * Implemented in kill_css().
4476 *
4477 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
ec903c0c
TH
4478 * and thus css_tryget_online() is guaranteed to fail, the css can be
4479 * offlined by invoking offline_css(). After offlining, the base ref is
4480 * put. Implemented in css_killed_work_fn().
0c21ead1
TH
4481 *
4482 * 3. When the percpu_ref reaches zero, the only possible remaining
4483 * accessors are inside RCU read sections. css_release() schedules the
4484 * RCU callback.
4485 *
4486 * 4. After the grace period, the css can be freed. Implemented in
4487 * css_free_work_fn().
4488 *
4489 * It is actually hairier because both step 2 and 4 require process context
4490 * and thus involve punting to css->destroy_work adding two additional
4491 * steps to the already complex sequence.
4492 */
35ef10da 4493static void css_free_work_fn(struct work_struct *work)
48ddbe19
TH
4494{
4495 struct cgroup_subsys_state *css =
35ef10da 4496 container_of(work, struct cgroup_subsys_state, destroy_work);
01e58659 4497 struct cgroup_subsys *ss = css->ss;
0c21ead1 4498 struct cgroup *cgrp = css->cgroup;
48ddbe19 4499
9a1049da
TH
4500 percpu_ref_exit(&css->refcnt);
4501
01e58659 4502 if (ss) {
9d755d33 4503 /* css free path */
01e58659
VD
4504 int id = css->id;
4505
9d755d33
TH
4506 if (css->parent)
4507 css_put(css->parent);
0ae78e0b 4508
01e58659
VD
4509 ss->css_free(css);
4510 cgroup_idr_remove(&ss->css_idr, id);
9d755d33
TH
4511 cgroup_put(cgrp);
4512 } else {
4513 /* cgroup free path */
4514 atomic_dec(&cgrp->root->nr_cgrps);
4515 cgroup_pidlist_destroy_all(cgrp);
971ff493 4516 cancel_work_sync(&cgrp->release_agent_work);
9d755d33 4517
d51f39b0 4518 if (cgroup_parent(cgrp)) {
9d755d33
TH
4519 /*
4520 * We get a ref to the parent, and put the ref when
4521 * this cgroup is being freed, so it's guaranteed
4522 * that the parent won't be destroyed before its
4523 * children.
4524 */
d51f39b0 4525 cgroup_put(cgroup_parent(cgrp));
9d755d33
TH
4526 kernfs_put(cgrp->kn);
4527 kfree(cgrp);
4528 } else {
4529 /*
4530 * This is root cgroup's refcnt reaching zero,
4531 * which indicates that the root should be
4532 * released.
4533 */
4534 cgroup_destroy_root(cgrp->root);
4535 }
4536 }
48ddbe19
TH
4537}
4538
0c21ead1 4539static void css_free_rcu_fn(struct rcu_head *rcu_head)
d3daf28d
TH
4540{
4541 struct cgroup_subsys_state *css =
0c21ead1 4542 container_of(rcu_head, struct cgroup_subsys_state, rcu_head);
d3daf28d 4543
35ef10da 4544 INIT_WORK(&css->destroy_work, css_free_work_fn);
e5fca243 4545 queue_work(cgroup_destroy_wq, &css->destroy_work);
48ddbe19
TH
4546}
4547
25e15d83 4548static void css_release_work_fn(struct work_struct *work)
d3daf28d
TH
4549{
4550 struct cgroup_subsys_state *css =
25e15d83 4551 container_of(work, struct cgroup_subsys_state, destroy_work);
15a4c835 4552 struct cgroup_subsys *ss = css->ss;
9d755d33 4553 struct cgroup *cgrp = css->cgroup;
15a4c835 4554
1fed1b2e
TH
4555 mutex_lock(&cgroup_mutex);
4556
de3f0341 4557 css->flags |= CSS_RELEASED;
1fed1b2e
TH
4558 list_del_rcu(&css->sibling);
4559
9d755d33
TH
4560 if (ss) {
4561 /* css release path */
01e58659 4562 cgroup_idr_replace(&ss->css_idr, NULL, css->id);
7d172cc8
TH
4563 if (ss->css_released)
4564 ss->css_released(css);
9d755d33
TH
4565 } else {
4566 /* cgroup release path */
9d755d33
TH
4567 cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
4568 cgrp->id = -1;
a4189487
LZ
4569
4570 /*
4571 * There are two control paths which try to determine
4572 * cgroup from dentry without going through kernfs -
4573 * cgroupstats_build() and css_tryget_online_from_dir().
4574 * Those are supported by RCU protecting clearing of
4575 * cgrp->kn->priv backpointer.
4576 */
4577 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv, NULL);
9d755d33 4578 }
d3daf28d 4579
1fed1b2e
TH
4580 mutex_unlock(&cgroup_mutex);
4581
0c21ead1 4582 call_rcu(&css->rcu_head, css_free_rcu_fn);
d3daf28d
TH
4583}
4584
d3daf28d
TH
4585static void css_release(struct percpu_ref *ref)
4586{
4587 struct cgroup_subsys_state *css =
4588 container_of(ref, struct cgroup_subsys_state, refcnt);
4589
25e15d83
TH
4590 INIT_WORK(&css->destroy_work, css_release_work_fn);
4591 queue_work(cgroup_destroy_wq, &css->destroy_work);
d3daf28d
TH
4592}
4593
ddfcadab
TH
4594static void init_and_link_css(struct cgroup_subsys_state *css,
4595 struct cgroup_subsys *ss, struct cgroup *cgrp)
ddbcc7e8 4596{
0cb51d71
TH
4597 lockdep_assert_held(&cgroup_mutex);
4598
ddfcadab
TH
4599 cgroup_get(cgrp);
4600
d5c419b6 4601 memset(css, 0, sizeof(*css));
bd89aabc 4602 css->cgroup = cgrp;
72c97e54 4603 css->ss = ss;
d5c419b6
TH
4604 INIT_LIST_HEAD(&css->sibling);
4605 INIT_LIST_HEAD(&css->children);
0cb51d71 4606 css->serial_nr = css_serial_nr_next++;
0ae78e0b 4607
d51f39b0
TH
4608 if (cgroup_parent(cgrp)) {
4609 css->parent = cgroup_css(cgroup_parent(cgrp), ss);
ddfcadab 4610 css_get(css->parent);
ddfcadab 4611 }
48ddbe19 4612
ca8bdcaf 4613 BUG_ON(cgroup_css(cgrp, ss));
ddbcc7e8
PM
4614}
4615
2a4ac633 4616/* invoke ->css_online() on a new CSS and mark it online if successful */
623f926b 4617static int online_css(struct cgroup_subsys_state *css)
a31f2d3f 4618{
623f926b 4619 struct cgroup_subsys *ss = css->ss;
b1929db4
TH
4620 int ret = 0;
4621
a31f2d3f
TH
4622 lockdep_assert_held(&cgroup_mutex);
4623
92fb9748 4624 if (ss->css_online)
eb95419b 4625 ret = ss->css_online(css);
ae7f164a 4626 if (!ret) {
eb95419b 4627 css->flags |= CSS_ONLINE;
aec25020 4628 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
ae7f164a 4629 }
b1929db4 4630 return ret;
a31f2d3f
TH
4631}
4632
2a4ac633 4633/* if the CSS is online, invoke ->css_offline() on it and mark it offline */
623f926b 4634static void offline_css(struct cgroup_subsys_state *css)
a31f2d3f 4635{
623f926b 4636 struct cgroup_subsys *ss = css->ss;
a31f2d3f
TH
4637
4638 lockdep_assert_held(&cgroup_mutex);
4639
4640 if (!(css->flags & CSS_ONLINE))
4641 return;
4642
d7eeac19 4643 if (ss->css_offline)
eb95419b 4644 ss->css_offline(css);
a31f2d3f 4645
eb95419b 4646 css->flags &= ~CSS_ONLINE;
e3297803 4647 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
f8f22e53
TH
4648
4649 wake_up_all(&css->cgroup->offline_waitq);
a31f2d3f
TH
4650}
4651
c81c925a
TH
4652/**
4653 * create_css - create a cgroup_subsys_state
4654 * @cgrp: the cgroup new css will be associated with
4655 * @ss: the subsys of new css
f63070d3 4656 * @visible: whether to create control knobs for the new css or not
c81c925a
TH
4657 *
4658 * Create a new css associated with @cgrp - @ss pair. On success, the new
f63070d3
TH
4659 * css is online and installed in @cgrp with all interface files created if
4660 * @visible. Returns 0 on success, -errno on failure.
c81c925a 4661 */
f63070d3
TH
4662static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss,
4663 bool visible)
c81c925a 4664{
d51f39b0 4665 struct cgroup *parent = cgroup_parent(cgrp);
1fed1b2e 4666 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
c81c925a
TH
4667 struct cgroup_subsys_state *css;
4668 int err;
4669
c81c925a
TH
4670 lockdep_assert_held(&cgroup_mutex);
4671
1fed1b2e 4672 css = ss->css_alloc(parent_css);
c81c925a
TH
4673 if (IS_ERR(css))
4674 return PTR_ERR(css);
4675
ddfcadab 4676 init_and_link_css(css, ss, cgrp);
a2bed820 4677
2aad2a86 4678 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
c81c925a 4679 if (err)
3eb59ec6 4680 goto err_free_css;
c81c925a 4681
cf780b7d 4682 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
15a4c835
TH
4683 if (err < 0)
4684 goto err_free_percpu_ref;
4685 css->id = err;
c81c925a 4686
f63070d3
TH
4687 if (visible) {
4688 err = cgroup_populate_dir(cgrp, 1 << ss->id);
4689 if (err)
4690 goto err_free_id;
4691 }
15a4c835
TH
4692
4693 /* @css is ready to be brought online now, make it visible */
1fed1b2e 4694 list_add_tail_rcu(&css->sibling, &parent_css->children);
15a4c835 4695 cgroup_idr_replace(&ss->css_idr, css, css->id);
c81c925a
TH
4696
4697 err = online_css(css);
4698 if (err)
1fed1b2e 4699 goto err_list_del;
94419627 4700
c81c925a 4701 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
d51f39b0 4702 cgroup_parent(parent)) {
ed3d261b 4703 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
a2a1f9ea 4704 current->comm, current->pid, ss->name);
c81c925a 4705 if (!strcmp(ss->name, "memory"))
ed3d261b 4706 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
c81c925a
TH
4707 ss->warned_broken_hierarchy = true;
4708 }
4709
4710 return 0;
4711
1fed1b2e
TH
4712err_list_del:
4713 list_del_rcu(&css->sibling);
32d01dc7 4714 cgroup_clear_dir(css->cgroup, 1 << css->ss->id);
15a4c835
TH
4715err_free_id:
4716 cgroup_idr_remove(&ss->css_idr, css->id);
3eb59ec6 4717err_free_percpu_ref:
9a1049da 4718 percpu_ref_exit(&css->refcnt);
3eb59ec6 4719err_free_css:
a2bed820 4720 call_rcu(&css->rcu_head, css_free_rcu_fn);
c81c925a
TH
4721 return err;
4722}
4723
b3bfd983
TH
4724static int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
4725 umode_t mode)
ddbcc7e8 4726{
a9746d8d
TH
4727 struct cgroup *parent, *cgrp;
4728 struct cgroup_root *root;
ddbcc7e8 4729 struct cgroup_subsys *ss;
2bd59d48 4730 struct kernfs_node *kn;
a14c6874 4731 struct cftype *base_files;
b3bfd983 4732 int ssid, ret;
ddbcc7e8 4733
71b1fb5c
AC
4734 /* Do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable.
4735 */
4736 if (strchr(name, '\n'))
4737 return -EINVAL;
4738
a9746d8d
TH
4739 parent = cgroup_kn_lock_live(parent_kn);
4740 if (!parent)
4741 return -ENODEV;
4742 root = parent->root;
ddbcc7e8 4743
0a950f65 4744 /* allocate the cgroup and its ID, 0 is reserved for the root */
bd89aabc 4745 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
ba0f4d76
TH
4746 if (!cgrp) {
4747 ret = -ENOMEM;
4748 goto out_unlock;
0ab02ca8
LZ
4749 }
4750
2aad2a86 4751 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
9d755d33
TH
4752 if (ret)
4753 goto out_free_cgrp;
4754
0ab02ca8
LZ
4755 /*
4756 * Temporarily set the pointer to NULL, so idr_find() won't return
4757 * a half-baked cgroup.
4758 */
cf780b7d 4759 cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_KERNEL);
0ab02ca8 4760 if (cgrp->id < 0) {
ba0f4d76 4761 ret = -ENOMEM;
9d755d33 4762 goto out_cancel_ref;
976c06bc
TH
4763 }
4764
cc31edce 4765 init_cgroup_housekeeping(cgrp);
ddbcc7e8 4766
9d800df1 4767 cgrp->self.parent = &parent->self;
ba0f4d76 4768 cgrp->root = root;
ddbcc7e8 4769
b6abdb0e
LZ
4770 if (notify_on_release(parent))
4771 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
4772
2260e7fc
TH
4773 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
4774 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
97978e6d 4775
2bd59d48 4776 /* create the directory */
e61734c5 4777 kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
2bd59d48 4778 if (IS_ERR(kn)) {
ba0f4d76
TH
4779 ret = PTR_ERR(kn);
4780 goto out_free_id;
2bd59d48
TH
4781 }
4782 cgrp->kn = kn;
ddbcc7e8 4783
4e139afc 4784 /*
6f30558f
TH
4785 * This extra ref will be put in cgroup_free_fn() and guarantees
4786 * that @cgrp->kn is always accessible.
4e139afc 4787 */
6f30558f 4788 kernfs_get(kn);
ddbcc7e8 4789
0cb51d71 4790 cgrp->self.serial_nr = css_serial_nr_next++;
53fa5261 4791
4e139afc 4792 /* allocation complete, commit to creation */
d5c419b6 4793 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
3c9c825b 4794 atomic_inc(&root->nr_cgrps);
59f5296b 4795 cgroup_get(parent);
415cf07a 4796
0d80255e
TH
4797 /*
4798 * @cgrp is now fully operational. If something fails after this
4799 * point, it'll be released via the normal destruction path.
4800 */
6fa4918d 4801 cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
4e96ee8e 4802
ba0f4d76
TH
4803 ret = cgroup_kn_set_ugid(kn);
4804 if (ret)
4805 goto out_destroy;
49957f8e 4806
a14c6874
TH
4807 if (cgroup_on_dfl(cgrp))
4808 base_files = cgroup_dfl_base_files;
4809 else
4810 base_files = cgroup_legacy_base_files;
4811
4812 ret = cgroup_addrm_files(cgrp, base_files, true);
ba0f4d76
TH
4813 if (ret)
4814 goto out_destroy;
628f7cd4 4815
9d403e99 4816 /* let's create and online css's */
b85d2040 4817 for_each_subsys(ss, ssid) {
f392e51c 4818 if (parent->child_subsys_mask & (1 << ssid)) {
f63070d3
TH
4819 ret = create_css(cgrp, ss,
4820 parent->subtree_control & (1 << ssid));
ba0f4d76
TH
4821 if (ret)
4822 goto out_destroy;
b85d2040 4823 }
a8638030 4824 }
ddbcc7e8 4825
bd53d617
TH
4826 /*
4827 * On the default hierarchy, a child doesn't automatically inherit
667c2491 4828 * subtree_control from the parent. Each is configured manually.
bd53d617 4829 */
667c2491
TH
4830 if (!cgroup_on_dfl(cgrp)) {
4831 cgrp->subtree_control = parent->subtree_control;
4832 cgroup_refresh_child_subsys_mask(cgrp);
4833 }
2bd59d48 4834
2bd59d48 4835 kernfs_activate(kn);
ddbcc7e8 4836
ba0f4d76
TH
4837 ret = 0;
4838 goto out_unlock;
ddbcc7e8 4839
ba0f4d76 4840out_free_id:
6fa4918d 4841 cgroup_idr_remove(&root->cgroup_idr, cgrp->id);
9d755d33 4842out_cancel_ref:
9a1049da 4843 percpu_ref_exit(&cgrp->self.refcnt);
ba0f4d76 4844out_free_cgrp:
bd89aabc 4845 kfree(cgrp);
ba0f4d76 4846out_unlock:
a9746d8d 4847 cgroup_kn_unlock(parent_kn);
ba0f4d76 4848 return ret;
4b8b47eb 4849
ba0f4d76 4850out_destroy:
4b8b47eb 4851 cgroup_destroy_locked(cgrp);
ba0f4d76 4852 goto out_unlock;
ddbcc7e8
PM
4853}
4854
223dbc38
TH
4855/*
4856 * This is called when the refcnt of a css is confirmed to be killed.
249f3468
TH
4857 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to
4858 * initate destruction and put the css ref from kill_css().
223dbc38
TH
4859 */
4860static void css_killed_work_fn(struct work_struct *work)
d3daf28d 4861{
223dbc38
TH
4862 struct cgroup_subsys_state *css =
4863 container_of(work, struct cgroup_subsys_state, destroy_work);
d3daf28d 4864
f20104de 4865 mutex_lock(&cgroup_mutex);
09a503ea 4866 offline_css(css);
f20104de 4867 mutex_unlock(&cgroup_mutex);
09a503ea 4868
09a503ea 4869 css_put(css);
d3daf28d
TH
4870}
4871
223dbc38
TH
4872/* css kill confirmation processing requires process context, bounce */
4873static void css_killed_ref_fn(struct percpu_ref *ref)
d3daf28d
TH
4874{
4875 struct cgroup_subsys_state *css =
4876 container_of(ref, struct cgroup_subsys_state, refcnt);
4877
223dbc38 4878 INIT_WORK(&css->destroy_work, css_killed_work_fn);
e5fca243 4879 queue_work(cgroup_destroy_wq, &css->destroy_work);
d3daf28d
TH
4880}
4881
f392e51c
TH
4882/**
4883 * kill_css - destroy a css
4884 * @css: css to destroy
4885 *
4886 * This function initiates destruction of @css by removing cgroup interface
4887 * files and putting its base reference. ->css_offline() will be invoked
ec903c0c
TH
4888 * asynchronously once css_tryget_online() is guaranteed to fail and when
4889 * the reference count reaches zero, @css will be released.
f392e51c
TH
4890 */
4891static void kill_css(struct cgroup_subsys_state *css)
edae0c33 4892{
01f6474c 4893 lockdep_assert_held(&cgroup_mutex);
94419627 4894
2bd59d48
TH
4895 /*
4896 * This must happen before css is disassociated with its cgroup.
4897 * See seq_css() for details.
4898 */
aec25020 4899 cgroup_clear_dir(css->cgroup, 1 << css->ss->id);
3c14f8b4 4900
edae0c33
TH
4901 /*
4902 * Killing would put the base ref, but we need to keep it alive
4903 * until after ->css_offline().
4904 */
4905 css_get(css);
4906
4907 /*
4908 * cgroup core guarantees that, by the time ->css_offline() is
4909 * invoked, no new css reference will be given out via
ec903c0c 4910 * css_tryget_online(). We can't simply call percpu_ref_kill() and
edae0c33
TH
4911 * proceed to offlining css's because percpu_ref_kill() doesn't
4912 * guarantee that the ref is seen as killed on all CPUs on return.
4913 *
4914 * Use percpu_ref_kill_and_confirm() to get notifications as each
4915 * css is confirmed to be seen as killed on all CPUs.
4916 */
4917 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
d3daf28d
TH
4918}
4919
4920/**
4921 * cgroup_destroy_locked - the first stage of cgroup destruction
4922 * @cgrp: cgroup to be destroyed
4923 *
4924 * css's make use of percpu refcnts whose killing latency shouldn't be
4925 * exposed to userland and are RCU protected. Also, cgroup core needs to
ec903c0c
TH
4926 * guarantee that css_tryget_online() won't succeed by the time
4927 * ->css_offline() is invoked. To satisfy all the requirements,
4928 * destruction is implemented in the following two steps.
d3daf28d
TH
4929 *
4930 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
4931 * userland visible parts and start killing the percpu refcnts of
4932 * css's. Set up so that the next stage will be kicked off once all
4933 * the percpu refcnts are confirmed to be killed.
4934 *
4935 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
4936 * rest of destruction. Once all cgroup references are gone, the
4937 * cgroup is RCU-freed.
4938 *
4939 * This function implements s1. After this step, @cgrp is gone as far as
4940 * the userland is concerned and a new cgroup with the same name may be
4941 * created. As cgroup doesn't care about the names internally, this
4942 * doesn't cause any problem.
4943 */
42809dd4
TH
4944static int cgroup_destroy_locked(struct cgroup *cgrp)
4945 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
ddbcc7e8 4946{
2bd59d48 4947 struct cgroup_subsys_state *css;
ddd69148 4948 bool empty;
1c6727af 4949 int ssid;
ddbcc7e8 4950
42809dd4
TH
4951 lockdep_assert_held(&cgroup_mutex);
4952
ddd69148 4953 /*
96d365e0 4954 * css_set_rwsem synchronizes access to ->cset_links and prevents
89c5509b 4955 * @cgrp from being removed while put_css_set() is in progress.
ddd69148 4956 */
96d365e0 4957 down_read(&css_set_rwsem);
bb78a92f 4958 empty = list_empty(&cgrp->cset_links);
96d365e0 4959 up_read(&css_set_rwsem);
ddd69148 4960 if (!empty)
ddbcc7e8 4961 return -EBUSY;
a043e3b2 4962
bb78a92f 4963 /*
d5c419b6
TH
4964 * Make sure there's no live children. We can't test emptiness of
4965 * ->self.children as dead children linger on it while being
4966 * drained; otherwise, "rmdir parent/child parent" may fail.
bb78a92f 4967 */
f3d46500 4968 if (css_has_online_children(&cgrp->self))
bb78a92f
HD
4969 return -EBUSY;
4970
455050d2
TH
4971 /*
4972 * Mark @cgrp dead. This prevents further task migration and child
de3f0341 4973 * creation by disabling cgroup_lock_live_group().
455050d2 4974 */
184faf32 4975 cgrp->self.flags &= ~CSS_ONLINE;
ddbcc7e8 4976
249f3468 4977 /* initiate massacre of all css's */
1c6727af
TH
4978 for_each_css(css, ssid, cgrp)
4979 kill_css(css);
455050d2 4980
455050d2 4981 /*
01f6474c
TH
4982 * Remove @cgrp directory along with the base files. @cgrp has an
4983 * extra ref on its kn.
f20104de 4984 */
01f6474c 4985 kernfs_remove(cgrp->kn);
f20104de 4986
d51f39b0 4987 check_for_release(cgroup_parent(cgrp));
2bd59d48 4988
249f3468 4989 /* put the base reference */
9d755d33 4990 percpu_ref_kill(&cgrp->self.refcnt);
455050d2 4991
ea15f8cc
TH
4992 return 0;
4993};
4994
2bd59d48 4995static int cgroup_rmdir(struct kernfs_node *kn)
42809dd4 4996{
a9746d8d 4997 struct cgroup *cgrp;
2bd59d48 4998 int ret = 0;
42809dd4 4999
a9746d8d
TH
5000 cgrp = cgroup_kn_lock_live(kn);
5001 if (!cgrp)
5002 return 0;
42809dd4 5003
a9746d8d 5004 ret = cgroup_destroy_locked(cgrp);
2bb566cb 5005
a9746d8d 5006 cgroup_kn_unlock(kn);
42809dd4 5007 return ret;
8e3f6541
TH
5008}
5009
2bd59d48
TH
5010static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
5011 .remount_fs = cgroup_remount,
5012 .show_options = cgroup_show_options,
5013 .mkdir = cgroup_mkdir,
5014 .rmdir = cgroup_rmdir,
5015 .rename = cgroup_rename,
5016};
5017
15a4c835 5018static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
ddbcc7e8 5019{
ddbcc7e8 5020 struct cgroup_subsys_state *css;
cfe36bde
DC
5021
5022 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
ddbcc7e8 5023
648bb56d
TH
5024 mutex_lock(&cgroup_mutex);
5025
15a4c835 5026 idr_init(&ss->css_idr);
0adb0704 5027 INIT_LIST_HEAD(&ss->cfts);
8e3f6541 5028
3dd06ffa
TH
5029 /* Create the root cgroup state for this subsystem */
5030 ss->root = &cgrp_dfl_root;
5031 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
ddbcc7e8
PM
5032 /* We don't handle early failures gracefully */
5033 BUG_ON(IS_ERR(css));
ddfcadab 5034 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
3b514d24
TH
5035
5036 /*
5037 * Root csses are never destroyed and we can't initialize
5038 * percpu_ref during early init. Disable refcnting.
5039 */
5040 css->flags |= CSS_NO_REF;
5041
15a4c835 5042 if (early) {
9395a450 5043 /* allocation can't be done safely during early init */
15a4c835
TH
5044 css->id = 1;
5045 } else {
5046 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
5047 BUG_ON(css->id < 0);
5048 }
ddbcc7e8 5049
e8d55fde 5050 /* Update the init_css_set to contain a subsys
817929ec 5051 * pointer to this state - since the subsystem is
e8d55fde 5052 * newly registered, all tasks and hence the
3dd06ffa 5053 * init_css_set is in the subsystem's root cgroup. */
aec25020 5054 init_css_set.subsys[ss->id] = css;
ddbcc7e8 5055
cb4a3167
AS
5056 have_fork_callback |= (bool)ss->fork << ss->id;
5057 have_exit_callback |= (bool)ss->exit << ss->id;
7e47682e 5058 have_canfork_callback |= (bool)ss->can_fork << ss->id;
ddbcc7e8 5059
e8d55fde
LZ
5060 /* At system boot, before all subsystems have been
5061 * registered, no tasks have been forked, so we don't
5062 * need to invoke fork callbacks here. */
5063 BUG_ON(!list_empty(&init_task.tasks));
5064
ae7f164a 5065 BUG_ON(online_css(css));
a8638030 5066
cf5d5941
BB
5067 mutex_unlock(&cgroup_mutex);
5068}
cf5d5941 5069
ddbcc7e8 5070/**
a043e3b2
LZ
5071 * cgroup_init_early - cgroup initialization at system boot
5072 *
5073 * Initialize cgroups at system boot, and initialize any
5074 * subsystems that request early init.
ddbcc7e8
PM
5075 */
5076int __init cgroup_init_early(void)
5077{
7b9a6ba5 5078 static struct cgroup_sb_opts __initdata opts;
30159ec7 5079 struct cgroup_subsys *ss;
ddbcc7e8 5080 int i;
30159ec7 5081
3dd06ffa 5082 init_cgroup_root(&cgrp_dfl_root, &opts);
3b514d24
TH
5083 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
5084
a4ea1cc9 5085 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
817929ec 5086
3ed80a62 5087 for_each_subsys(ss, i) {
aec25020 5088 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
073219e9
TH
5089 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p name:id=%d:%s\n",
5090 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
aec25020 5091 ss->id, ss->name);
073219e9
TH
5092 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
5093 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
5094
aec25020 5095 ss->id = i;
073219e9 5096 ss->name = cgroup_subsys_name[i];
3e1d2eed
TH
5097 if (!ss->legacy_name)
5098 ss->legacy_name = cgroup_subsys_name[i];
ddbcc7e8
PM
5099
5100 if (ss->early_init)
15a4c835 5101 cgroup_init_subsys(ss, true);
ddbcc7e8
PM
5102 }
5103 return 0;
5104}
5105
5106/**
a043e3b2
LZ
5107 * cgroup_init - cgroup initialization
5108 *
5109 * Register cgroup filesystem and /proc file, and initialize
5110 * any subsystems that didn't request early init.
ddbcc7e8
PM
5111 */
5112int __init cgroup_init(void)
5113{
30159ec7 5114 struct cgroup_subsys *ss;
0ac801fe 5115 unsigned long key;
172a2c06 5116 int ssid, err;
ddbcc7e8 5117
1ed13287 5118 BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem));
a14c6874
TH
5119 BUG_ON(cgroup_init_cftypes(NULL, cgroup_dfl_base_files));
5120 BUG_ON(cgroup_init_cftypes(NULL, cgroup_legacy_base_files));
ddbcc7e8 5121
54e7b4eb 5122 mutex_lock(&cgroup_mutex);
54e7b4eb 5123
82fe9b0d
TH
5124 /* Add init_css_set to the hash table */
5125 key = css_set_hash(init_css_set.subsys);
5126 hash_add(css_set_table, &init_css_set.hlist, key);
5127
3dd06ffa 5128 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
4e96ee8e 5129
54e7b4eb
TH
5130 mutex_unlock(&cgroup_mutex);
5131
172a2c06 5132 for_each_subsys(ss, ssid) {
15a4c835
TH
5133 if (ss->early_init) {
5134 struct cgroup_subsys_state *css =
5135 init_css_set.subsys[ss->id];
5136
5137 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
5138 GFP_KERNEL);
5139 BUG_ON(css->id < 0);
5140 } else {
5141 cgroup_init_subsys(ss, false);
5142 }
172a2c06 5143
2d8f243a
TH
5144 list_add_tail(&init_css_set.e_cset_node[ssid],
5145 &cgrp_dfl_root.cgrp.e_csets[ssid]);
172a2c06
TH
5146
5147 /*
c731ae1d
LZ
5148 * Setting dfl_root subsys_mask needs to consider the
5149 * disabled flag and cftype registration needs kmalloc,
5150 * both of which aren't available during early_init.
172a2c06 5151 */
fc5ed1e9 5152 if (!cgroup_ssid_enabled(ssid))
a8ddc821
TH
5153 continue;
5154
5155 cgrp_dfl_root.subsys_mask |= 1 << ss->id;
5156
5157 if (cgroup_legacy_files_on_dfl && !ss->dfl_cftypes)
5158 ss->dfl_cftypes = ss->legacy_cftypes;
5159
5de4fa13
TH
5160 if (!ss->dfl_cftypes)
5161 cgrp_dfl_root_inhibit_ss_mask |= 1 << ss->id;
5162
a8ddc821
TH
5163 if (ss->dfl_cftypes == ss->legacy_cftypes) {
5164 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
5165 } else {
5166 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5167 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
c731ae1d 5168 }
295458e6
VD
5169
5170 if (ss->bind)
5171 ss->bind(init_css_set.subsys[ssid]);
676db4af
GKH
5172 }
5173
f9bb4882
EB
5174 err = sysfs_create_mount_point(fs_kobj, "cgroup");
5175 if (err)
5176 return err;
676db4af 5177
ddbcc7e8 5178 err = register_filesystem(&cgroup_fs_type);
676db4af 5179 if (err < 0) {
f9bb4882 5180 sysfs_remove_mount_point(fs_kobj, "cgroup");
2bd59d48 5181 return err;
676db4af 5182 }
ddbcc7e8 5183
46ae220b 5184 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
2bd59d48 5185 return 0;
ddbcc7e8 5186}
b4f48b63 5187
e5fca243
TH
5188static int __init cgroup_wq_init(void)
5189{
5190 /*
5191 * There isn't much point in executing destruction path in
5192 * parallel. Good chunk is serialized with cgroup_mutex anyway.
1a11533f 5193 * Use 1 for @max_active.
e5fca243
TH
5194 *
5195 * We would prefer to do this in cgroup_init() above, but that
5196 * is called before init_workqueues(): so leave this until after.
5197 */
1a11533f 5198 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
e5fca243 5199 BUG_ON(!cgroup_destroy_wq);
b1a21367
TH
5200
5201 /*
5202 * Used to destroy pidlists and separate to serve as flush domain.
5203 * Cap @max_active to 1 too.
5204 */
5205 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
5206 0, 1);
5207 BUG_ON(!cgroup_pidlist_destroy_wq);
5208
e5fca243
TH
5209 return 0;
5210}
5211core_initcall(cgroup_wq_init);
5212
a424316c
PM
5213/*
5214 * proc_cgroup_show()
5215 * - Print task's cgroup paths into seq_file, one line for each hierarchy
5216 * - Used for /proc/<pid>/cgroup.
a424316c 5217 */
006f4ac4
ZL
5218int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
5219 struct pid *pid, struct task_struct *tsk)
a424316c 5220{
e61734c5 5221 char *buf, *path;
a424316c 5222 int retval;
3dd06ffa 5223 struct cgroup_root *root;
a424316c
PM
5224
5225 retval = -ENOMEM;
e61734c5 5226 buf = kmalloc(PATH_MAX, GFP_KERNEL);
a424316c
PM
5227 if (!buf)
5228 goto out;
5229
a424316c 5230 mutex_lock(&cgroup_mutex);
96d365e0 5231 down_read(&css_set_rwsem);
a424316c 5232
985ed670 5233 for_each_root(root) {
a424316c 5234 struct cgroup_subsys *ss;
bd89aabc 5235 struct cgroup *cgrp;
b85d2040 5236 int ssid, count = 0;
a424316c 5237
a2dd4247 5238 if (root == &cgrp_dfl_root && !cgrp_dfl_root_visible)
985ed670
TH
5239 continue;
5240
2c6ab6d2 5241 seq_printf(m, "%d:", root->hierarchy_id);
d98817d4
TH
5242 if (root != &cgrp_dfl_root)
5243 for_each_subsys(ss, ssid)
5244 if (root->subsys_mask & (1 << ssid))
5245 seq_printf(m, "%s%s", count++ ? "," : "",
3e1d2eed 5246 ss->legacy_name);
c6d57f33
PM
5247 if (strlen(root->name))
5248 seq_printf(m, "%sname=%s", count ? "," : "",
5249 root->name);
a424316c 5250 seq_putc(m, ':');
7717f7ba 5251 cgrp = task_cgroup_from_root(tsk, root);
e61734c5
TH
5252 path = cgroup_path(cgrp, buf, PATH_MAX);
5253 if (!path) {
5254 retval = -ENAMETOOLONG;
a424316c 5255 goto out_unlock;
e61734c5
TH
5256 }
5257 seq_puts(m, path);
a424316c
PM
5258 seq_putc(m, '\n');
5259 }
5260
006f4ac4 5261 retval = 0;
a424316c 5262out_unlock:
96d365e0 5263 up_read(&css_set_rwsem);
a424316c 5264 mutex_unlock(&cgroup_mutex);
a424316c
PM
5265 kfree(buf);
5266out:
5267 return retval;
5268}
5269
a424316c
PM
5270/* Display information about each subsystem and each hierarchy */
5271static int proc_cgroupstats_show(struct seq_file *m, void *v)
5272{
30159ec7 5273 struct cgroup_subsys *ss;
a424316c 5274 int i;
a424316c 5275
8bab8dde 5276 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
aae8aab4
BB
5277 /*
5278 * ideally we don't want subsystems moving around while we do this.
5279 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
5280 * subsys/hierarchy state.
5281 */
a424316c 5282 mutex_lock(&cgroup_mutex);
30159ec7
TH
5283
5284 for_each_subsys(ss, i)
2c6ab6d2 5285 seq_printf(m, "%s\t%d\t%d\t%d\n",
3e1d2eed 5286 ss->legacy_name, ss->root->hierarchy_id,
fc5ed1e9
TH
5287 atomic_read(&ss->root->nr_cgrps),
5288 cgroup_ssid_enabled(i));
30159ec7 5289
a424316c
PM
5290 mutex_unlock(&cgroup_mutex);
5291 return 0;
5292}
5293
5294static int cgroupstats_open(struct inode *inode, struct file *file)
5295{
9dce07f1 5296 return single_open(file, proc_cgroupstats_show, NULL);
a424316c
PM
5297}
5298
828c0950 5299static const struct file_operations proc_cgroupstats_operations = {
a424316c
PM
5300 .open = cgroupstats_open,
5301 .read = seq_read,
5302 .llseek = seq_lseek,
5303 .release = single_release,
5304};
5305
7e47682e
AS
5306static void **subsys_canfork_priv_p(void *ss_priv[CGROUP_CANFORK_COUNT], int i)
5307{
5308 if (CGROUP_CANFORK_START <= i && i < CGROUP_CANFORK_END)
5309 return &ss_priv[i - CGROUP_CANFORK_START];
5310 return NULL;
5311}
5312
5313static void *subsys_canfork_priv(void *ss_priv[CGROUP_CANFORK_COUNT], int i)
5314{
5315 void **private = subsys_canfork_priv_p(ss_priv, i);
5316 return private ? *private : NULL;
5317}
5318
b4f48b63 5319/**
eaf797ab 5320 * cgroup_fork - initialize cgroup related fields during copy_process()
a043e3b2 5321 * @child: pointer to task_struct of forking parent process.
b4f48b63 5322 *
eaf797ab
TH
5323 * A task is associated with the init_css_set until cgroup_post_fork()
5324 * attaches it to the parent's css_set. Empty cg_list indicates that
5325 * @child isn't holding reference to its css_set.
b4f48b63
PM
5326 */
5327void cgroup_fork(struct task_struct *child)
5328{
eaf797ab 5329 RCU_INIT_POINTER(child->cgroups, &init_css_set);
817929ec 5330 INIT_LIST_HEAD(&child->cg_list);
b4f48b63
PM
5331}
5332
7e47682e
AS
5333/**
5334 * cgroup_can_fork - called on a new task before the process is exposed
5335 * @child: the task in question.
5336 *
5337 * This calls the subsystem can_fork() callbacks. If the can_fork() callback
5338 * returns an error, the fork aborts with that error code. This allows for
5339 * a cgroup subsystem to conditionally allow or deny new forks.
5340 */
5341int cgroup_can_fork(struct task_struct *child,
5342 void *ss_priv[CGROUP_CANFORK_COUNT])
5343{
5344 struct cgroup_subsys *ss;
5345 int i, j, ret;
5346
5347 for_each_subsys_which(ss, i, &have_canfork_callback) {
5348 ret = ss->can_fork(child, subsys_canfork_priv_p(ss_priv, i));
5349 if (ret)
5350 goto out_revert;
5351 }
5352
5353 return 0;
5354
5355out_revert:
5356 for_each_subsys(ss, j) {
5357 if (j >= i)
5358 break;
5359 if (ss->cancel_fork)
5360 ss->cancel_fork(child, subsys_canfork_priv(ss_priv, j));
5361 }
5362
5363 return ret;
5364}
5365
5366/**
5367 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
5368 * @child: the task in question
5369 *
5370 * This calls the cancel_fork() callbacks if a fork failed *after*
5371 * cgroup_can_fork() succeded.
5372 */
5373void cgroup_cancel_fork(struct task_struct *child,
5374 void *ss_priv[CGROUP_CANFORK_COUNT])
5375{
5376 struct cgroup_subsys *ss;
5377 int i;
5378
5379 for_each_subsys(ss, i)
5380 if (ss->cancel_fork)
5381 ss->cancel_fork(child, subsys_canfork_priv(ss_priv, i));
5382}
5383
817929ec 5384/**
a043e3b2
LZ
5385 * cgroup_post_fork - called on a new task after adding it to the task list
5386 * @child: the task in question
5387 *
5edee61e
TH
5388 * Adds the task to the list running through its css_set if necessary and
5389 * call the subsystem fork() callbacks. Has to be after the task is
5390 * visible on the task list in case we race with the first call to
0942eeee 5391 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5edee61e 5392 * list.
a043e3b2 5393 */
7e47682e
AS
5394void cgroup_post_fork(struct task_struct *child,
5395 void *old_ss_priv[CGROUP_CANFORK_COUNT])
817929ec 5396{
30159ec7 5397 struct cgroup_subsys *ss;
5edee61e
TH
5398 int i;
5399
3ce3230a 5400 /*
251f8c03 5401 * This may race against cgroup_enable_task_cg_lists(). As that
eaf797ab
TH
5402 * function sets use_task_css_set_links before grabbing
5403 * tasklist_lock and we just went through tasklist_lock to add
5404 * @child, it's guaranteed that either we see the set
5405 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
5406 * @child during its iteration.
5407 *
5408 * If we won the race, @child is associated with %current's
5409 * css_set. Grabbing css_set_rwsem guarantees both that the
5410 * association is stable, and, on completion of the parent's
5411 * migration, @child is visible in the source of migration or
5412 * already in the destination cgroup. This guarantee is necessary
5413 * when implementing operations which need to migrate all tasks of
5414 * a cgroup to another.
5415 *
251f8c03 5416 * Note that if we lose to cgroup_enable_task_cg_lists(), @child
eaf797ab
TH
5417 * will remain in init_css_set. This is safe because all tasks are
5418 * in the init_css_set before cg_links is enabled and there's no
5419 * operation which transfers all tasks out of init_css_set.
3ce3230a 5420 */
817929ec 5421 if (use_task_css_set_links) {
eaf797ab
TH
5422 struct css_set *cset;
5423
96d365e0 5424 down_write(&css_set_rwsem);
0e1d768f 5425 cset = task_css_set(current);
eaf797ab
TH
5426 if (list_empty(&child->cg_list)) {
5427 rcu_assign_pointer(child->cgroups, cset);
5428 list_add(&child->cg_list, &cset->tasks);
5429 get_css_set(cset);
5430 }
96d365e0 5431 up_write(&css_set_rwsem);
817929ec 5432 }
5edee61e
TH
5433
5434 /*
5435 * Call ss->fork(). This must happen after @child is linked on
5436 * css_set; otherwise, @child might change state between ->fork()
5437 * and addition to css_set.
5438 */
cb4a3167 5439 for_each_subsys_which(ss, i, &have_fork_callback)
7e47682e 5440 ss->fork(child, subsys_canfork_priv(old_ss_priv, i));
817929ec 5441}
5edee61e 5442
b4f48b63
PM
5443/**
5444 * cgroup_exit - detach cgroup from exiting task
5445 * @tsk: pointer to task_struct of exiting process
5446 *
5447 * Description: Detach cgroup from @tsk and release it.
5448 *
5449 * Note that cgroups marked notify_on_release force every task in
5450 * them to take the global cgroup_mutex mutex when exiting.
5451 * This could impact scaling on very large systems. Be reluctant to
5452 * use notify_on_release cgroups where very high task exit scaling
5453 * is required on large systems.
5454 *
0e1d768f
TH
5455 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We
5456 * call cgroup_exit() while the task is still competent to handle
5457 * notify_on_release(), then leave the task attached to the root cgroup in
5458 * each hierarchy for the remainder of its exit. No need to bother with
5459 * init_css_set refcnting. init_css_set never goes away and we can't race
e8604cb4 5460 * with migration path - PF_EXITING is visible to migration path.
b4f48b63 5461 */
1ec41830 5462void cgroup_exit(struct task_struct *tsk)
b4f48b63 5463{
30159ec7 5464 struct cgroup_subsys *ss;
5abb8855 5465 struct css_set *cset;
eaf797ab 5466 bool put_cset = false;
d41d5a01 5467 int i;
817929ec
PM
5468
5469 /*
0e1d768f
TH
5470 * Unlink from @tsk from its css_set. As migration path can't race
5471 * with us, we can check cg_list without grabbing css_set_rwsem.
817929ec
PM
5472 */
5473 if (!list_empty(&tsk->cg_list)) {
96d365e0 5474 down_write(&css_set_rwsem);
0e1d768f 5475 list_del_init(&tsk->cg_list);
96d365e0 5476 up_write(&css_set_rwsem);
0e1d768f 5477 put_cset = true;
817929ec
PM
5478 }
5479
b4f48b63 5480 /* Reassign the task to the init_css_set. */
a8ad805c
TH
5481 cset = task_css_set(tsk);
5482 RCU_INIT_POINTER(tsk->cgroups, &init_css_set);
d41d5a01 5483
cb4a3167
AS
5484 /* see cgroup_post_fork() for details */
5485 for_each_subsys_which(ss, i, &have_exit_callback) {
5486 struct cgroup_subsys_state *old_css = cset->subsys[i];
5487 struct cgroup_subsys_state *css = task_css(tsk, i);
30159ec7 5488
cb4a3167 5489 ss->exit(css, old_css, tsk);
d41d5a01 5490 }
d41d5a01 5491
eaf797ab 5492 if (put_cset)
a25eb52e 5493 put_css_set(cset);
b4f48b63 5494}
697f4161 5495
bd89aabc 5496static void check_for_release(struct cgroup *cgrp)
81a6a5cd 5497{
a25eb52e 5498 if (notify_on_release(cgrp) && !cgroup_has_tasks(cgrp) &&
971ff493
ZL
5499 !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp))
5500 schedule_work(&cgrp->release_agent_work);
81a6a5cd
PM
5501}
5502
81a6a5cd
PM
5503/*
5504 * Notify userspace when a cgroup is released, by running the
5505 * configured release agent with the name of the cgroup (path
5506 * relative to the root of cgroup file system) as the argument.
5507 *
5508 * Most likely, this user command will try to rmdir this cgroup.
5509 *
5510 * This races with the possibility that some other task will be
5511 * attached to this cgroup before it is removed, or that some other
5512 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
5513 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
5514 * unused, and this cgroup will be reprieved from its death sentence,
5515 * to continue to serve a useful existence. Next time it's released,
5516 * we will get notified again, if it still has 'notify_on_release' set.
5517 *
5518 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
5519 * means only wait until the task is successfully execve()'d. The
5520 * separate release agent task is forked by call_usermodehelper(),
5521 * then control in this thread returns here, without waiting for the
5522 * release agent task. We don't bother to wait because the caller of
5523 * this routine has no use for the exit status of the release agent
5524 * task, so no sense holding our caller up for that.
81a6a5cd 5525 */
81a6a5cd
PM
5526static void cgroup_release_agent(struct work_struct *work)
5527{
971ff493
ZL
5528 struct cgroup *cgrp =
5529 container_of(work, struct cgroup, release_agent_work);
5530 char *pathbuf = NULL, *agentbuf = NULL, *path;
5531 char *argv[3], *envp[3];
5532
81a6a5cd 5533 mutex_lock(&cgroup_mutex);
971ff493
ZL
5534
5535 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
5536 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
5537 if (!pathbuf || !agentbuf)
5538 goto out;
5539
5540 path = cgroup_path(cgrp, pathbuf, PATH_MAX);
5541 if (!path)
5542 goto out;
5543
5544 argv[0] = agentbuf;
5545 argv[1] = path;
5546 argv[2] = NULL;
5547
5548 /* minimal command environment */
5549 envp[0] = "HOME=/";
5550 envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
5551 envp[2] = NULL;
5552
81a6a5cd 5553 mutex_unlock(&cgroup_mutex);
971ff493 5554 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
3e2cd91a 5555 goto out_free;
971ff493 5556out:
81a6a5cd 5557 mutex_unlock(&cgroup_mutex);
3e2cd91a 5558out_free:
971ff493
ZL
5559 kfree(agentbuf);
5560 kfree(pathbuf);
81a6a5cd 5561}
8bab8dde
PM
5562
5563static int __init cgroup_disable(char *str)
5564{
30159ec7 5565 struct cgroup_subsys *ss;
8bab8dde 5566 char *token;
30159ec7 5567 int i;
8bab8dde
PM
5568
5569 while ((token = strsep(&str, ",")) != NULL) {
5570 if (!*token)
5571 continue;
be45c900 5572
3ed80a62 5573 for_each_subsys(ss, i) {
3e1d2eed
TH
5574 if (strcmp(token, ss->name) &&
5575 strcmp(token, ss->legacy_name))
5576 continue;
5577
49d1dc4b 5578 static_branch_disable(cgroup_subsys_enabled_key[i]);
3e1d2eed
TH
5579 printk(KERN_INFO "Disabling %s control group subsystem\n",
5580 ss->name);
5581 break;
8bab8dde
PM
5582 }
5583 }
5584 return 1;
5585}
5586__setup("cgroup_disable=", cgroup_disable);
38460b48 5587
a8ddc821
TH
5588static int __init cgroup_set_legacy_files_on_dfl(char *str)
5589{
5590 printk("cgroup: using legacy files on the default hierarchy\n");
5591 cgroup_legacy_files_on_dfl = true;
5592 return 0;
5593}
5594__setup("cgroup__DEVEL__legacy_files_on_dfl", cgroup_set_legacy_files_on_dfl);
5595
b77d7b60 5596/**
ec903c0c 5597 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
35cf0836
TH
5598 * @dentry: directory dentry of interest
5599 * @ss: subsystem of interest
b77d7b60 5600 *
5a17f543
TH
5601 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
5602 * to get the corresponding css and return it. If such css doesn't exist
5603 * or can't be pinned, an ERR_PTR value is returned.
e5d1367f 5604 */
ec903c0c
TH
5605struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
5606 struct cgroup_subsys *ss)
e5d1367f 5607{
2bd59d48
TH
5608 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
5609 struct cgroup_subsys_state *css = NULL;
e5d1367f 5610 struct cgroup *cgrp;
e5d1367f 5611
35cf0836 5612 /* is @dentry a cgroup dir? */
2bd59d48
TH
5613 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
5614 kernfs_type(kn) != KERNFS_DIR)
e5d1367f
SE
5615 return ERR_PTR(-EBADF);
5616
5a17f543
TH
5617 rcu_read_lock();
5618
2bd59d48
TH
5619 /*
5620 * This path doesn't originate from kernfs and @kn could already
5621 * have been or be removed at any point. @kn->priv is RCU
a4189487 5622 * protected for this access. See css_release_work_fn() for details.
2bd59d48
TH
5623 */
5624 cgrp = rcu_dereference(kn->priv);
5625 if (cgrp)
5626 css = cgroup_css(cgrp, ss);
5a17f543 5627
ec903c0c 5628 if (!css || !css_tryget_online(css))
5a17f543
TH
5629 css = ERR_PTR(-ENOENT);
5630
5631 rcu_read_unlock();
5632 return css;
e5d1367f 5633}
e5d1367f 5634
1cb650b9
LZ
5635/**
5636 * css_from_id - lookup css by id
5637 * @id: the cgroup id
5638 * @ss: cgroup subsys to be looked into
5639 *
5640 * Returns the css if there's valid one with @id, otherwise returns NULL.
5641 * Should be called under rcu_read_lock().
5642 */
5643struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
5644{
6fa4918d 5645 WARN_ON_ONCE(!rcu_read_lock_held());
adbe427b 5646 return id > 0 ? idr_find(&ss->css_idr, id) : NULL;
e5d1367f
SE
5647}
5648
fe693435 5649#ifdef CONFIG_CGROUP_DEBUG
eb95419b
TH
5650static struct cgroup_subsys_state *
5651debug_css_alloc(struct cgroup_subsys_state *parent_css)
fe693435
PM
5652{
5653 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5654
5655 if (!css)
5656 return ERR_PTR(-ENOMEM);
5657
5658 return css;
5659}
5660
eb95419b 5661static void debug_css_free(struct cgroup_subsys_state *css)
fe693435 5662{
eb95419b 5663 kfree(css);
fe693435
PM
5664}
5665
182446d0
TH
5666static u64 debug_taskcount_read(struct cgroup_subsys_state *css,
5667 struct cftype *cft)
fe693435 5668{
182446d0 5669 return cgroup_task_count(css->cgroup);
fe693435
PM
5670}
5671
182446d0
TH
5672static u64 current_css_set_read(struct cgroup_subsys_state *css,
5673 struct cftype *cft)
fe693435
PM
5674{
5675 return (u64)(unsigned long)current->cgroups;
5676}
5677
182446d0 5678static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css,
03c78cbe 5679 struct cftype *cft)
fe693435
PM
5680{
5681 u64 count;
5682
5683 rcu_read_lock();
a8ad805c 5684 count = atomic_read(&task_css_set(current)->refcount);
fe693435
PM
5685 rcu_read_unlock();
5686 return count;
5687}
5688
2da8ca82 5689static int current_css_set_cg_links_read(struct seq_file *seq, void *v)
7717f7ba 5690{
69d0206c 5691 struct cgrp_cset_link *link;
5abb8855 5692 struct css_set *cset;
e61734c5
TH
5693 char *name_buf;
5694
5695 name_buf = kmalloc(NAME_MAX + 1, GFP_KERNEL);
5696 if (!name_buf)
5697 return -ENOMEM;
7717f7ba 5698
96d365e0 5699 down_read(&css_set_rwsem);
7717f7ba 5700 rcu_read_lock();
5abb8855 5701 cset = rcu_dereference(current->cgroups);
69d0206c 5702 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 5703 struct cgroup *c = link->cgrp;
7717f7ba 5704
a2dd4247 5705 cgroup_name(c, name_buf, NAME_MAX + 1);
2c6ab6d2 5706 seq_printf(seq, "Root %d group %s\n",
a2dd4247 5707 c->root->hierarchy_id, name_buf);
7717f7ba
PM
5708 }
5709 rcu_read_unlock();
96d365e0 5710 up_read(&css_set_rwsem);
e61734c5 5711 kfree(name_buf);
7717f7ba
PM
5712 return 0;
5713}
5714
5715#define MAX_TASKS_SHOWN_PER_CSS 25
2da8ca82 5716static int cgroup_css_links_read(struct seq_file *seq, void *v)
7717f7ba 5717{
2da8ca82 5718 struct cgroup_subsys_state *css = seq_css(seq);
69d0206c 5719 struct cgrp_cset_link *link;
7717f7ba 5720
96d365e0 5721 down_read(&css_set_rwsem);
182446d0 5722 list_for_each_entry(link, &css->cgroup->cset_links, cset_link) {
69d0206c 5723 struct css_set *cset = link->cset;
7717f7ba
PM
5724 struct task_struct *task;
5725 int count = 0;
c7561128 5726
5abb8855 5727 seq_printf(seq, "css_set %p\n", cset);
c7561128 5728
5abb8855 5729 list_for_each_entry(task, &cset->tasks, cg_list) {
c7561128
TH
5730 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
5731 goto overflow;
5732 seq_printf(seq, " task %d\n", task_pid_vnr(task));
5733 }
5734
5735 list_for_each_entry(task, &cset->mg_tasks, cg_list) {
5736 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
5737 goto overflow;
5738 seq_printf(seq, " task %d\n", task_pid_vnr(task));
7717f7ba 5739 }
c7561128
TH
5740 continue;
5741 overflow:
5742 seq_puts(seq, " ...\n");
7717f7ba 5743 }
96d365e0 5744 up_read(&css_set_rwsem);
7717f7ba
PM
5745 return 0;
5746}
5747
182446d0 5748static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft)
fe693435 5749{
a25eb52e
ZL
5750 return (!cgroup_has_tasks(css->cgroup) &&
5751 !css_has_online_children(&css->cgroup->self));
fe693435
PM
5752}
5753
5754static struct cftype debug_files[] = {
fe693435
PM
5755 {
5756 .name = "taskcount",
5757 .read_u64 = debug_taskcount_read,
5758 },
5759
5760 {
5761 .name = "current_css_set",
5762 .read_u64 = current_css_set_read,
5763 },
5764
5765 {
5766 .name = "current_css_set_refcount",
5767 .read_u64 = current_css_set_refcount_read,
5768 },
5769
7717f7ba
PM
5770 {
5771 .name = "current_css_set_cg_links",
2da8ca82 5772 .seq_show = current_css_set_cg_links_read,
7717f7ba
PM
5773 },
5774
5775 {
5776 .name = "cgroup_css_links",
2da8ca82 5777 .seq_show = cgroup_css_links_read,
7717f7ba
PM
5778 },
5779
fe693435
PM
5780 {
5781 .name = "releasable",
5782 .read_u64 = releasable_read,
5783 },
fe693435 5784
4baf6e33
TH
5785 { } /* terminate */
5786};
fe693435 5787
073219e9 5788struct cgroup_subsys debug_cgrp_subsys = {
92fb9748
TH
5789 .css_alloc = debug_css_alloc,
5790 .css_free = debug_css_free,
5577964e 5791 .legacy_cftypes = debug_files,
fe693435
PM
5792};
5793#endif /* CONFIG_CGROUP_DEBUG */