]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - kernel/cgroup.c
cgroup: keep zombies associated with their original cgroups
[mirror_ubuntu-zesty-kernel.git] / kernel / cgroup.c
CommitLineData
ddbcc7e8 1/*
ddbcc7e8
PM
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
0dea1168
KS
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
ddbcc7e8
PM
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
ed3d261b
JP
29#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
ddbcc7e8 31#include <linux/cgroup.h>
2ce9738b 32#include <linux/cred.h>
c6d57f33 33#include <linux/ctype.h>
ddbcc7e8 34#include <linux/errno.h>
2ce9738b 35#include <linux/init_task.h>
ddbcc7e8
PM
36#include <linux/kernel.h>
37#include <linux/list.h>
c9482a5b 38#include <linux/magic.h>
ddbcc7e8
PM
39#include <linux/mm.h>
40#include <linux/mutex.h>
41#include <linux/mount.h>
42#include <linux/pagemap.h>
a424316c 43#include <linux/proc_fs.h>
ddbcc7e8
PM
44#include <linux/rcupdate.h>
45#include <linux/sched.h>
ddbcc7e8 46#include <linux/slab.h>
ddbcc7e8 47#include <linux/spinlock.h>
1ed13287 48#include <linux/percpu-rwsem.h>
ddbcc7e8 49#include <linux/string.h>
bbcb81d0 50#include <linux/sort.h>
81a6a5cd 51#include <linux/kmod.h>
846c7bb0
BS
52#include <linux/delayacct.h>
53#include <linux/cgroupstats.h>
0ac801fe 54#include <linux/hashtable.h>
096b7fe0 55#include <linux/pid_namespace.h>
2c6ab6d2 56#include <linux/idr.h>
d1d9fd33 57#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
c4c27fbd 58#include <linux/kthread.h>
776f02fa 59#include <linux/delay.h>
846c7bb0 60
60063497 61#include <linux/atomic.h>
ddbcc7e8 62
b1a21367
TH
63/*
64 * pidlists linger the following amount before being destroyed. The goal
65 * is avoiding frequent destruction in the middle of consecutive read calls
66 * Expiring in the middle is a performance problem not a correctness one.
67 * 1 sec should be enough.
68 */
69#define CGROUP_PIDLIST_DESTROY_DELAY HZ
70
8d7e6fb0
TH
71#define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
72 MAX_CFTYPE_NAME + 2)
73
e25e2cbb
TH
74/*
75 * cgroup_mutex is the master lock. Any modification to cgroup or its
76 * hierarchy must be performed while holding it.
77 *
f0d9a5f1 78 * css_set_lock protects task->cgroups pointer, the list of css_set
0e1d768f 79 * objects, and the chain of tasks off each css_set.
e25e2cbb 80 *
0e1d768f
TH
81 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
82 * cgroup.h can use them for lockdep annotations.
e25e2cbb 83 */
2219449a
TH
84#ifdef CONFIG_PROVE_RCU
85DEFINE_MUTEX(cgroup_mutex);
f0d9a5f1 86DEFINE_SPINLOCK(css_set_lock);
0e1d768f 87EXPORT_SYMBOL_GPL(cgroup_mutex);
f0d9a5f1 88EXPORT_SYMBOL_GPL(css_set_lock);
2219449a 89#else
81a6a5cd 90static DEFINE_MUTEX(cgroup_mutex);
f0d9a5f1 91static DEFINE_SPINLOCK(css_set_lock);
2219449a
TH
92#endif
93
6fa4918d 94/*
15a4c835
TH
95 * Protects cgroup_idr and css_idr so that IDs can be released without
96 * grabbing cgroup_mutex.
6fa4918d
TH
97 */
98static DEFINE_SPINLOCK(cgroup_idr_lock);
99
69e943b7
TH
100/*
101 * Protects cgroup_subsys->release_agent_path. Modifying it also requires
102 * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock.
103 */
104static DEFINE_SPINLOCK(release_agent_path_lock);
81a6a5cd 105
1ed13287
TH
106struct percpu_rw_semaphore cgroup_threadgroup_rwsem;
107
8353da1f 108#define cgroup_assert_mutex_or_rcu_locked() \
f78f5b90
PM
109 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
110 !lockdep_is_held(&cgroup_mutex), \
8353da1f 111 "cgroup_mutex or RCU read lock required");
780cd8b3 112
e5fca243
TH
113/*
114 * cgroup destruction makes heavy use of work items and there can be a lot
115 * of concurrent destructions. Use a separate workqueue so that cgroup
116 * destruction work items don't end up filling up max_active of system_wq
117 * which may lead to deadlock.
118 */
119static struct workqueue_struct *cgroup_destroy_wq;
120
b1a21367
TH
121/*
122 * pidlist destructions need to be flushed on cgroup destruction. Use a
123 * separate workqueue as flush domain.
124 */
125static struct workqueue_struct *cgroup_pidlist_destroy_wq;
126
3ed80a62 127/* generate an array of cgroup subsystem pointers */
073219e9 128#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
3ed80a62 129static struct cgroup_subsys *cgroup_subsys[] = {
ddbcc7e8
PM
130#include <linux/cgroup_subsys.h>
131};
073219e9
TH
132#undef SUBSYS
133
134/* array of cgroup subsystem names */
135#define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
136static const char *cgroup_subsys_name[] = {
ddbcc7e8
PM
137#include <linux/cgroup_subsys.h>
138};
073219e9 139#undef SUBSYS
ddbcc7e8 140
49d1dc4b
TH
141/* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
142#define SUBSYS(_x) \
143 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \
144 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \
145 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \
146 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
147#include <linux/cgroup_subsys.h>
148#undef SUBSYS
149
150#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
151static struct static_key_true *cgroup_subsys_enabled_key[] = {
152#include <linux/cgroup_subsys.h>
153};
154#undef SUBSYS
155
156#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
157static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
158#include <linux/cgroup_subsys.h>
159};
160#undef SUBSYS
161
ddbcc7e8 162/*
3dd06ffa 163 * The default hierarchy, reserved for the subsystems that are otherwise
9871bf95
TH
164 * unattached - it never has more than a single cgroup, and all tasks are
165 * part of that cgroup.
ddbcc7e8 166 */
a2dd4247 167struct cgroup_root cgrp_dfl_root;
d0ec4230 168EXPORT_SYMBOL_GPL(cgrp_dfl_root);
9871bf95 169
a2dd4247
TH
170/*
171 * The default hierarchy always exists but is hidden until mounted for the
172 * first time. This is for backward compatibility.
173 */
174static bool cgrp_dfl_root_visible;
ddbcc7e8 175
a8ddc821
TH
176/*
177 * Set by the boot param of the same name and makes subsystems with NULL
178 * ->dfl_files to use ->legacy_files on the default hierarchy.
179 */
180static bool cgroup_legacy_files_on_dfl;
181
5533e011 182/* some controllers are not supported in the default hierarchy */
8ab456ac 183static unsigned long cgrp_dfl_root_inhibit_ss_mask;
5533e011 184
ddbcc7e8
PM
185/* The list of hierarchy roots */
186
9871bf95
TH
187static LIST_HEAD(cgroup_roots);
188static int cgroup_root_count;
ddbcc7e8 189
3417ae1f 190/* hierarchy ID allocation and mapping, protected by cgroup_mutex */
1a574231 191static DEFINE_IDR(cgroup_hierarchy_idr);
2c6ab6d2 192
794611a1 193/*
0cb51d71
TH
194 * Assign a monotonically increasing serial number to csses. It guarantees
195 * cgroups with bigger numbers are newer than those with smaller numbers.
196 * Also, as csses are always appended to the parent's ->children list, it
197 * guarantees that sibling csses are always sorted in the ascending serial
198 * number order on the list. Protected by cgroup_mutex.
794611a1 199 */
0cb51d71 200static u64 css_serial_nr_next = 1;
794611a1 201
cb4a3167
AS
202/*
203 * These bitmask flags indicate whether tasks in the fork and exit paths have
204 * fork/exit handlers to call. This avoids us having to do extra work in the
205 * fork/exit path to check which subsystems have fork/exit callbacks.
ddbcc7e8 206 */
cb4a3167
AS
207static unsigned long have_fork_callback __read_mostly;
208static unsigned long have_exit_callback __read_mostly;
ddbcc7e8 209
7e47682e
AS
210/* Ditto for the can_fork callback. */
211static unsigned long have_canfork_callback __read_mostly;
212
a14c6874
TH
213static struct cftype cgroup_dfl_base_files[];
214static struct cftype cgroup_legacy_base_files[];
628f7cd4 215
3dd06ffa 216static int rebind_subsystems(struct cgroup_root *dst_root,
8ab456ac 217 unsigned long ss_mask);
ed27b9f7 218static void css_task_iter_advance(struct css_task_iter *it);
42809dd4 219static int cgroup_destroy_locked(struct cgroup *cgrp);
f63070d3
TH
220static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss,
221 bool visible);
9d755d33 222static void css_release(struct percpu_ref *ref);
f8f22e53 223static void kill_css(struct cgroup_subsys_state *css);
4df8dc90
TH
224static int cgroup_addrm_files(struct cgroup_subsys_state *css,
225 struct cgroup *cgrp, struct cftype cfts[],
2bb566cb 226 bool is_add);
42809dd4 227
fc5ed1e9
TH
228/**
229 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
230 * @ssid: subsys ID of interest
231 *
232 * cgroup_subsys_enabled() can only be used with literal subsys names which
233 * is fine for individual subsystems but unsuitable for cgroup core. This
234 * is slower static_key_enabled() based test indexed by @ssid.
235 */
236static bool cgroup_ssid_enabled(int ssid)
237{
238 return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
239}
240
9e10a130
TH
241/**
242 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
243 * @cgrp: the cgroup of interest
244 *
245 * The default hierarchy is the v2 interface of cgroup and this function
246 * can be used to test whether a cgroup is on the default hierarchy for
247 * cases where a subsystem should behave differnetly depending on the
248 * interface version.
249 *
250 * The set of behaviors which change on the default hierarchy are still
251 * being determined and the mount option is prefixed with __DEVEL__.
252 *
253 * List of changed behaviors:
254 *
255 * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
256 * and "name" are disallowed.
257 *
258 * - When mounting an existing superblock, mount options should match.
259 *
260 * - Remount is disallowed.
261 *
262 * - rename(2) is disallowed.
263 *
264 * - "tasks" is removed. Everything should be at process granularity. Use
265 * "cgroup.procs" instead.
266 *
267 * - "cgroup.procs" is not sorted. pids will be unique unless they got
268 * recycled inbetween reads.
269 *
270 * - "release_agent" and "notify_on_release" are removed. Replacement
271 * notification mechanism will be implemented.
272 *
273 * - "cgroup.clone_children" is removed.
274 *
275 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup
276 * and its descendants contain no task; otherwise, 1. The file also
277 * generates kernfs notification which can be monitored through poll and
278 * [di]notify when the value of the file changes.
279 *
280 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
281 * take masks of ancestors with non-empty cpus/mems, instead of being
282 * moved to an ancestor.
283 *
284 * - cpuset: a task can be moved into an empty cpuset, and again it takes
285 * masks of ancestors.
286 *
287 * - memcg: use_hierarchy is on by default and the cgroup file for the flag
288 * is not created.
289 *
290 * - blkcg: blk-throttle becomes properly hierarchical.
291 *
292 * - debug: disallowed on the default hierarchy.
293 */
294static bool cgroup_on_dfl(const struct cgroup *cgrp)
295{
296 return cgrp->root == &cgrp_dfl_root;
297}
298
6fa4918d
TH
299/* IDR wrappers which synchronize using cgroup_idr_lock */
300static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
301 gfp_t gfp_mask)
302{
303 int ret;
304
305 idr_preload(gfp_mask);
54504e97 306 spin_lock_bh(&cgroup_idr_lock);
cf780b7d 307 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_WAIT);
54504e97 308 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
309 idr_preload_end();
310 return ret;
311}
312
313static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
314{
315 void *ret;
316
54504e97 317 spin_lock_bh(&cgroup_idr_lock);
6fa4918d 318 ret = idr_replace(idr, ptr, id);
54504e97 319 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
320 return ret;
321}
322
323static void cgroup_idr_remove(struct idr *idr, int id)
324{
54504e97 325 spin_lock_bh(&cgroup_idr_lock);
6fa4918d 326 idr_remove(idr, id);
54504e97 327 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
328}
329
d51f39b0
TH
330static struct cgroup *cgroup_parent(struct cgroup *cgrp)
331{
332 struct cgroup_subsys_state *parent_css = cgrp->self.parent;
333
334 if (parent_css)
335 return container_of(parent_css, struct cgroup, self);
336 return NULL;
337}
338
95109b62
TH
339/**
340 * cgroup_css - obtain a cgroup's css for the specified subsystem
341 * @cgrp: the cgroup of interest
9d800df1 342 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
95109b62 343 *
ca8bdcaf
TH
344 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
345 * function must be called either under cgroup_mutex or rcu_read_lock() and
346 * the caller is responsible for pinning the returned css if it wants to
347 * keep accessing it outside the said locks. This function may return
348 * %NULL if @cgrp doesn't have @subsys_id enabled.
95109b62
TH
349 */
350static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
ca8bdcaf 351 struct cgroup_subsys *ss)
95109b62 352{
ca8bdcaf 353 if (ss)
aec25020 354 return rcu_dereference_check(cgrp->subsys[ss->id],
ace2bee8 355 lockdep_is_held(&cgroup_mutex));
ca8bdcaf 356 else
9d800df1 357 return &cgrp->self;
95109b62 358}
42809dd4 359
aec3dfcb
TH
360/**
361 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
362 * @cgrp: the cgroup of interest
9d800df1 363 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
aec3dfcb 364 *
d0f702e6 365 * Similar to cgroup_css() but returns the effective css, which is defined
aec3dfcb
TH
366 * as the matching css of the nearest ancestor including self which has @ss
367 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
368 * function is guaranteed to return non-NULL css.
369 */
370static struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
371 struct cgroup_subsys *ss)
372{
373 lockdep_assert_held(&cgroup_mutex);
374
375 if (!ss)
9d800df1 376 return &cgrp->self;
aec3dfcb
TH
377
378 if (!(cgrp->root->subsys_mask & (1 << ss->id)))
379 return NULL;
380
eeecbd19
TH
381 /*
382 * This function is used while updating css associations and thus
383 * can't test the csses directly. Use ->child_subsys_mask.
384 */
d51f39b0
TH
385 while (cgroup_parent(cgrp) &&
386 !(cgroup_parent(cgrp)->child_subsys_mask & (1 << ss->id)))
387 cgrp = cgroup_parent(cgrp);
aec3dfcb
TH
388
389 return cgroup_css(cgrp, ss);
95109b62 390}
42809dd4 391
eeecbd19
TH
392/**
393 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
394 * @cgrp: the cgroup of interest
395 * @ss: the subsystem of interest
396 *
397 * Find and get the effective css of @cgrp for @ss. The effective css is
398 * defined as the matching css of the nearest ancestor including self which
399 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
400 * the root css is returned, so this function always returns a valid css.
401 * The returned css must be put using css_put().
402 */
403struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
404 struct cgroup_subsys *ss)
405{
406 struct cgroup_subsys_state *css;
407
408 rcu_read_lock();
409
410 do {
411 css = cgroup_css(cgrp, ss);
412
413 if (css && css_tryget_online(css))
414 goto out_unlock;
415 cgrp = cgroup_parent(cgrp);
416 } while (cgrp);
417
418 css = init_css_set.subsys[ss->id];
419 css_get(css);
420out_unlock:
421 rcu_read_unlock();
422 return css;
423}
424
ddbcc7e8 425/* convenient tests for these bits */
54766d4a 426static inline bool cgroup_is_dead(const struct cgroup *cgrp)
ddbcc7e8 427{
184faf32 428 return !(cgrp->self.flags & CSS_ONLINE);
ddbcc7e8
PM
429}
430
052c3f3a
TH
431static void cgroup_get(struct cgroup *cgrp)
432{
433 WARN_ON_ONCE(cgroup_is_dead(cgrp));
434 css_get(&cgrp->self);
435}
436
437static bool cgroup_tryget(struct cgroup *cgrp)
438{
439 return css_tryget(&cgrp->self);
440}
441
442static void cgroup_put(struct cgroup *cgrp)
443{
444 css_put(&cgrp->self);
445}
446
b4168640 447struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
59f5296b 448{
2bd59d48 449 struct cgroup *cgrp = of->kn->parent->priv;
b4168640 450 struct cftype *cft = of_cft(of);
2bd59d48
TH
451
452 /*
453 * This is open and unprotected implementation of cgroup_css().
454 * seq_css() is only called from a kernfs file operation which has
455 * an active reference on the file. Because all the subsystem
456 * files are drained before a css is disassociated with a cgroup,
457 * the matching css from the cgroup's subsys table is guaranteed to
458 * be and stay valid until the enclosing operation is complete.
459 */
460 if (cft->ss)
461 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
462 else
9d800df1 463 return &cgrp->self;
59f5296b 464}
b4168640 465EXPORT_SYMBOL_GPL(of_css);
59f5296b 466
78574cf9
LZ
467/**
468 * cgroup_is_descendant - test ancestry
469 * @cgrp: the cgroup to be tested
470 * @ancestor: possible ancestor of @cgrp
471 *
472 * Test whether @cgrp is a descendant of @ancestor. It also returns %true
473 * if @cgrp == @ancestor. This function is safe to call as long as @cgrp
474 * and @ancestor are accessible.
475 */
476bool cgroup_is_descendant(struct cgroup *cgrp, struct cgroup *ancestor)
477{
478 while (cgrp) {
479 if (cgrp == ancestor)
480 return true;
d51f39b0 481 cgrp = cgroup_parent(cgrp);
78574cf9
LZ
482 }
483 return false;
484}
ddbcc7e8 485
e9685a03 486static int notify_on_release(const struct cgroup *cgrp)
81a6a5cd 487{
bd89aabc 488 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
81a6a5cd
PM
489}
490
1c6727af
TH
491/**
492 * for_each_css - iterate all css's of a cgroup
493 * @css: the iteration cursor
494 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
495 * @cgrp: the target cgroup to iterate css's of
496 *
aec3dfcb 497 * Should be called under cgroup_[tree_]mutex.
1c6727af
TH
498 */
499#define for_each_css(css, ssid, cgrp) \
500 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
501 if (!((css) = rcu_dereference_check( \
502 (cgrp)->subsys[(ssid)], \
503 lockdep_is_held(&cgroup_mutex)))) { } \
504 else
505
aec3dfcb
TH
506/**
507 * for_each_e_css - iterate all effective css's of a cgroup
508 * @css: the iteration cursor
509 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
510 * @cgrp: the target cgroup to iterate css's of
511 *
512 * Should be called under cgroup_[tree_]mutex.
513 */
514#define for_each_e_css(css, ssid, cgrp) \
515 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
516 if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \
517 ; \
518 else
519
30159ec7 520/**
3ed80a62 521 * for_each_subsys - iterate all enabled cgroup subsystems
30159ec7 522 * @ss: the iteration cursor
780cd8b3 523 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
30159ec7 524 */
780cd8b3 525#define for_each_subsys(ss, ssid) \
3ed80a62
TH
526 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT && \
527 (((ss) = cgroup_subsys[ssid]) || true); (ssid)++)
30159ec7 528
cb4a3167
AS
529/**
530 * for_each_subsys_which - filter for_each_subsys with a bitmask
531 * @ss: the iteration cursor
532 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
533 * @ss_maskp: a pointer to the bitmask
534 *
535 * The block will only run for cases where the ssid-th bit (1 << ssid) of
536 * mask is set to 1.
537 */
538#define for_each_subsys_which(ss, ssid, ss_maskp) \
539 if (!CGROUP_SUBSYS_COUNT) /* to avoid spurious gcc warning */ \
4a705c5c 540 (ssid) = 0; \
cb4a3167
AS
541 else \
542 for_each_set_bit(ssid, ss_maskp, CGROUP_SUBSYS_COUNT) \
543 if (((ss) = cgroup_subsys[ssid]) && false) \
544 break; \
545 else
546
985ed670
TH
547/* iterate across the hierarchies */
548#define for_each_root(root) \
5549c497 549 list_for_each_entry((root), &cgroup_roots, root_list)
ddbcc7e8 550
f8f22e53
TH
551/* iterate over child cgrps, lock should be held throughout iteration */
552#define cgroup_for_each_live_child(child, cgrp) \
d5c419b6 553 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
8353da1f 554 if (({ lockdep_assert_held(&cgroup_mutex); \
f8f22e53
TH
555 cgroup_is_dead(child); })) \
556 ; \
557 else
7ae1bad9 558
81a6a5cd 559static void cgroup_release_agent(struct work_struct *work);
bd89aabc 560static void check_for_release(struct cgroup *cgrp);
81a6a5cd 561
69d0206c
TH
562/*
563 * A cgroup can be associated with multiple css_sets as different tasks may
564 * belong to different cgroups on different hierarchies. In the other
565 * direction, a css_set is naturally associated with multiple cgroups.
566 * This M:N relationship is represented by the following link structure
567 * which exists for each association and allows traversing the associations
568 * from both sides.
569 */
570struct cgrp_cset_link {
571 /* the cgroup and css_set this link associates */
572 struct cgroup *cgrp;
573 struct css_set *cset;
574
575 /* list of cgrp_cset_links anchored at cgrp->cset_links */
576 struct list_head cset_link;
577
578 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
579 struct list_head cgrp_link;
817929ec
PM
580};
581
172a2c06
TH
582/*
583 * The default css_set - used by init and its children prior to any
817929ec
PM
584 * hierarchies being mounted. It contains a pointer to the root state
585 * for each subsystem. Also used to anchor the list of css_sets. Not
586 * reference-counted, to improve performance when child cgroups
587 * haven't been created.
588 */
5024ae29 589struct css_set init_css_set = {
172a2c06
TH
590 .refcount = ATOMIC_INIT(1),
591 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links),
592 .tasks = LIST_HEAD_INIT(init_css_set.tasks),
593 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks),
594 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node),
595 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node),
ed27b9f7 596 .task_iters = LIST_HEAD_INIT(init_css_set.task_iters),
172a2c06 597};
817929ec 598
172a2c06 599static int css_set_count = 1; /* 1 for init_css_set */
817929ec 600
0de0942d
TH
601/**
602 * css_set_populated - does a css_set contain any tasks?
603 * @cset: target css_set
604 */
605static bool css_set_populated(struct css_set *cset)
606{
f0d9a5f1 607 lockdep_assert_held(&css_set_lock);
0de0942d
TH
608
609 return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
610}
611
842b597e
TH
612/**
613 * cgroup_update_populated - updated populated count of a cgroup
614 * @cgrp: the target cgroup
615 * @populated: inc or dec populated count
616 *
0de0942d
TH
617 * One of the css_sets associated with @cgrp is either getting its first
618 * task or losing the last. Update @cgrp->populated_cnt accordingly. The
619 * count is propagated towards root so that a given cgroup's populated_cnt
620 * is zero iff the cgroup and all its descendants don't contain any tasks.
842b597e
TH
621 *
622 * @cgrp's interface file "cgroup.populated" is zero if
623 * @cgrp->populated_cnt is zero and 1 otherwise. When @cgrp->populated_cnt
624 * changes from or to zero, userland is notified that the content of the
625 * interface file has changed. This can be used to detect when @cgrp and
626 * its descendants become populated or empty.
627 */
628static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
629{
f0d9a5f1 630 lockdep_assert_held(&css_set_lock);
842b597e
TH
631
632 do {
633 bool trigger;
634
635 if (populated)
636 trigger = !cgrp->populated_cnt++;
637 else
638 trigger = !--cgrp->populated_cnt;
639
640 if (!trigger)
641 break;
642
ad2ed2b3 643 check_for_release(cgrp);
6f60eade
TH
644 cgroup_file_notify(&cgrp->events_file);
645
d51f39b0 646 cgrp = cgroup_parent(cgrp);
842b597e
TH
647 } while (cgrp);
648}
649
0de0942d
TH
650/**
651 * css_set_update_populated - update populated state of a css_set
652 * @cset: target css_set
653 * @populated: whether @cset is populated or depopulated
654 *
655 * @cset is either getting the first task or losing the last. Update the
656 * ->populated_cnt of all associated cgroups accordingly.
657 */
658static void css_set_update_populated(struct css_set *cset, bool populated)
659{
660 struct cgrp_cset_link *link;
661
f0d9a5f1 662 lockdep_assert_held(&css_set_lock);
0de0942d
TH
663
664 list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
665 cgroup_update_populated(link->cgrp, populated);
666}
667
f6d7d049
TH
668/**
669 * css_set_move_task - move a task from one css_set to another
670 * @task: task being moved
671 * @from_cset: css_set @task currently belongs to (may be NULL)
672 * @to_cset: new css_set @task is being moved to (may be NULL)
673 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
674 *
675 * Move @task from @from_cset to @to_cset. If @task didn't belong to any
676 * css_set, @from_cset can be NULL. If @task is being disassociated
677 * instead of moved, @to_cset can be NULL.
678 *
ed27b9f7
TH
679 * This function automatically handles populated_cnt updates and
680 * css_task_iter adjustments but the caller is responsible for managing
681 * @from_cset and @to_cset's reference counts.
f6d7d049
TH
682 */
683static void css_set_move_task(struct task_struct *task,
684 struct css_set *from_cset, struct css_set *to_cset,
685 bool use_mg_tasks)
686{
f0d9a5f1 687 lockdep_assert_held(&css_set_lock);
f6d7d049
TH
688
689 if (from_cset) {
ed27b9f7
TH
690 struct css_task_iter *it, *pos;
691
f6d7d049 692 WARN_ON_ONCE(list_empty(&task->cg_list));
ed27b9f7
TH
693
694 /*
695 * @task is leaving, advance task iterators which are
696 * pointing to it so that they can resume at the next
697 * position. Advancing an iterator might remove it from
698 * the list, use safe walk. See css_task_iter_advance*()
699 * for details.
700 */
701 list_for_each_entry_safe(it, pos, &from_cset->task_iters,
702 iters_node)
703 if (it->task_pos == &task->cg_list)
704 css_task_iter_advance(it);
705
f6d7d049
TH
706 list_del_init(&task->cg_list);
707 if (!css_set_populated(from_cset))
708 css_set_update_populated(from_cset, false);
709 } else {
710 WARN_ON_ONCE(!list_empty(&task->cg_list));
711 }
712
713 if (to_cset) {
714 /*
715 * We are synchronized through cgroup_threadgroup_rwsem
716 * against PF_EXITING setting such that we can't race
717 * against cgroup_exit() changing the css_set to
718 * init_css_set and dropping the old one.
719 */
720 WARN_ON_ONCE(task->flags & PF_EXITING);
721
722 if (!css_set_populated(to_cset))
723 css_set_update_populated(to_cset, true);
724 rcu_assign_pointer(task->cgroups, to_cset);
725 list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
726 &to_cset->tasks);
727 }
728}
729
7717f7ba
PM
730/*
731 * hash table for cgroup groups. This improves the performance to find
732 * an existing css_set. This hash doesn't (currently) take into
733 * account cgroups in empty hierarchies.
734 */
472b1053 735#define CSS_SET_HASH_BITS 7
0ac801fe 736static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
472b1053 737
0ac801fe 738static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
472b1053 739{
0ac801fe 740 unsigned long key = 0UL;
30159ec7
TH
741 struct cgroup_subsys *ss;
742 int i;
472b1053 743
30159ec7 744 for_each_subsys(ss, i)
0ac801fe
LZ
745 key += (unsigned long)css[i];
746 key = (key >> 16) ^ key;
472b1053 747
0ac801fe 748 return key;
472b1053
LZ
749}
750
a25eb52e 751static void put_css_set_locked(struct css_set *cset)
b4f48b63 752{
69d0206c 753 struct cgrp_cset_link *link, *tmp_link;
2d8f243a
TH
754 struct cgroup_subsys *ss;
755 int ssid;
5abb8855 756
f0d9a5f1 757 lockdep_assert_held(&css_set_lock);
89c5509b
TH
758
759 if (!atomic_dec_and_test(&cset->refcount))
146aa1bd 760 return;
81a6a5cd 761
2c6ab6d2 762 /* This css_set is dead. unlink it and release cgroup refcounts */
2d8f243a
TH
763 for_each_subsys(ss, ssid)
764 list_del(&cset->e_cset_node[ssid]);
5abb8855 765 hash_del(&cset->hlist);
2c6ab6d2
PM
766 css_set_count--;
767
69d0206c 768 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
69d0206c
TH
769 list_del(&link->cset_link);
770 list_del(&link->cgrp_link);
2ceb231b
TH
771 if (cgroup_parent(link->cgrp))
772 cgroup_put(link->cgrp);
2c6ab6d2 773 kfree(link);
81a6a5cd 774 }
2c6ab6d2 775
5abb8855 776 kfree_rcu(cset, rcu_head);
b4f48b63
PM
777}
778
a25eb52e 779static void put_css_set(struct css_set *cset)
89c5509b
TH
780{
781 /*
782 * Ensure that the refcount doesn't hit zero while any readers
783 * can see it. Similar to atomic_dec_and_lock(), but for an
784 * rwlock
785 */
786 if (atomic_add_unless(&cset->refcount, -1, 1))
787 return;
788
f0d9a5f1 789 spin_lock_bh(&css_set_lock);
a25eb52e 790 put_css_set_locked(cset);
f0d9a5f1 791 spin_unlock_bh(&css_set_lock);
89c5509b
TH
792}
793
817929ec
PM
794/*
795 * refcounted get/put for css_set objects
796 */
5abb8855 797static inline void get_css_set(struct css_set *cset)
817929ec 798{
5abb8855 799 atomic_inc(&cset->refcount);
817929ec
PM
800}
801
b326f9d0 802/**
7717f7ba 803 * compare_css_sets - helper function for find_existing_css_set().
5abb8855
TH
804 * @cset: candidate css_set being tested
805 * @old_cset: existing css_set for a task
7717f7ba
PM
806 * @new_cgrp: cgroup that's being entered by the task
807 * @template: desired set of css pointers in css_set (pre-calculated)
808 *
6f4b7e63 809 * Returns true if "cset" matches "old_cset" except for the hierarchy
7717f7ba
PM
810 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
811 */
5abb8855
TH
812static bool compare_css_sets(struct css_set *cset,
813 struct css_set *old_cset,
7717f7ba
PM
814 struct cgroup *new_cgrp,
815 struct cgroup_subsys_state *template[])
816{
817 struct list_head *l1, *l2;
818
aec3dfcb
TH
819 /*
820 * On the default hierarchy, there can be csets which are
821 * associated with the same set of cgroups but different csses.
822 * Let's first ensure that csses match.
823 */
824 if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
7717f7ba 825 return false;
7717f7ba
PM
826
827 /*
828 * Compare cgroup pointers in order to distinguish between
aec3dfcb
TH
829 * different cgroups in hierarchies. As different cgroups may
830 * share the same effective css, this comparison is always
831 * necessary.
7717f7ba 832 */
69d0206c
TH
833 l1 = &cset->cgrp_links;
834 l2 = &old_cset->cgrp_links;
7717f7ba 835 while (1) {
69d0206c 836 struct cgrp_cset_link *link1, *link2;
5abb8855 837 struct cgroup *cgrp1, *cgrp2;
7717f7ba
PM
838
839 l1 = l1->next;
840 l2 = l2->next;
841 /* See if we reached the end - both lists are equal length. */
69d0206c
TH
842 if (l1 == &cset->cgrp_links) {
843 BUG_ON(l2 != &old_cset->cgrp_links);
7717f7ba
PM
844 break;
845 } else {
69d0206c 846 BUG_ON(l2 == &old_cset->cgrp_links);
7717f7ba
PM
847 }
848 /* Locate the cgroups associated with these links. */
69d0206c
TH
849 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
850 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
851 cgrp1 = link1->cgrp;
852 cgrp2 = link2->cgrp;
7717f7ba 853 /* Hierarchies should be linked in the same order. */
5abb8855 854 BUG_ON(cgrp1->root != cgrp2->root);
7717f7ba
PM
855
856 /*
857 * If this hierarchy is the hierarchy of the cgroup
858 * that's changing, then we need to check that this
859 * css_set points to the new cgroup; if it's any other
860 * hierarchy, then this css_set should point to the
861 * same cgroup as the old css_set.
862 */
5abb8855
TH
863 if (cgrp1->root == new_cgrp->root) {
864 if (cgrp1 != new_cgrp)
7717f7ba
PM
865 return false;
866 } else {
5abb8855 867 if (cgrp1 != cgrp2)
7717f7ba
PM
868 return false;
869 }
870 }
871 return true;
872}
873
b326f9d0
TH
874/**
875 * find_existing_css_set - init css array and find the matching css_set
876 * @old_cset: the css_set that we're using before the cgroup transition
877 * @cgrp: the cgroup that we're moving into
878 * @template: out param for the new set of csses, should be clear on entry
817929ec 879 */
5abb8855
TH
880static struct css_set *find_existing_css_set(struct css_set *old_cset,
881 struct cgroup *cgrp,
882 struct cgroup_subsys_state *template[])
b4f48b63 883{
3dd06ffa 884 struct cgroup_root *root = cgrp->root;
30159ec7 885 struct cgroup_subsys *ss;
5abb8855 886 struct css_set *cset;
0ac801fe 887 unsigned long key;
b326f9d0 888 int i;
817929ec 889
aae8aab4
BB
890 /*
891 * Build the set of subsystem state objects that we want to see in the
892 * new css_set. while subsystems can change globally, the entries here
893 * won't change, so no need for locking.
894 */
30159ec7 895 for_each_subsys(ss, i) {
f392e51c 896 if (root->subsys_mask & (1UL << i)) {
aec3dfcb
TH
897 /*
898 * @ss is in this hierarchy, so we want the
899 * effective css from @cgrp.
900 */
901 template[i] = cgroup_e_css(cgrp, ss);
817929ec 902 } else {
aec3dfcb
TH
903 /*
904 * @ss is not in this hierarchy, so we don't want
905 * to change the css.
906 */
5abb8855 907 template[i] = old_cset->subsys[i];
817929ec
PM
908 }
909 }
910
0ac801fe 911 key = css_set_hash(template);
5abb8855
TH
912 hash_for_each_possible(css_set_table, cset, hlist, key) {
913 if (!compare_css_sets(cset, old_cset, cgrp, template))
7717f7ba
PM
914 continue;
915
916 /* This css_set matches what we need */
5abb8855 917 return cset;
472b1053 918 }
817929ec
PM
919
920 /* No existing cgroup group matched */
921 return NULL;
922}
923
69d0206c 924static void free_cgrp_cset_links(struct list_head *links_to_free)
36553434 925{
69d0206c 926 struct cgrp_cset_link *link, *tmp_link;
36553434 927
69d0206c
TH
928 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
929 list_del(&link->cset_link);
36553434
LZ
930 kfree(link);
931 }
932}
933
69d0206c
TH
934/**
935 * allocate_cgrp_cset_links - allocate cgrp_cset_links
936 * @count: the number of links to allocate
937 * @tmp_links: list_head the allocated links are put on
938 *
939 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
940 * through ->cset_link. Returns 0 on success or -errno.
817929ec 941 */
69d0206c 942static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
817929ec 943{
69d0206c 944 struct cgrp_cset_link *link;
817929ec 945 int i;
69d0206c
TH
946
947 INIT_LIST_HEAD(tmp_links);
948
817929ec 949 for (i = 0; i < count; i++) {
f4f4be2b 950 link = kzalloc(sizeof(*link), GFP_KERNEL);
817929ec 951 if (!link) {
69d0206c 952 free_cgrp_cset_links(tmp_links);
817929ec
PM
953 return -ENOMEM;
954 }
69d0206c 955 list_add(&link->cset_link, tmp_links);
817929ec
PM
956 }
957 return 0;
958}
959
c12f65d4
LZ
960/**
961 * link_css_set - a helper function to link a css_set to a cgroup
69d0206c 962 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
5abb8855 963 * @cset: the css_set to be linked
c12f65d4
LZ
964 * @cgrp: the destination cgroup
965 */
69d0206c
TH
966static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
967 struct cgroup *cgrp)
c12f65d4 968{
69d0206c 969 struct cgrp_cset_link *link;
c12f65d4 970
69d0206c 971 BUG_ON(list_empty(tmp_links));
6803c006
TH
972
973 if (cgroup_on_dfl(cgrp))
974 cset->dfl_cgrp = cgrp;
975
69d0206c
TH
976 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
977 link->cset = cset;
7717f7ba 978 link->cgrp = cgrp;
842b597e 979
7717f7ba 980 /*
389b9c1b
TH
981 * Always add links to the tail of the lists so that the lists are
982 * in choronological order.
7717f7ba 983 */
389b9c1b 984 list_move_tail(&link->cset_link, &cgrp->cset_links);
69d0206c 985 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
2ceb231b
TH
986
987 if (cgroup_parent(cgrp))
988 cgroup_get(cgrp);
c12f65d4
LZ
989}
990
b326f9d0
TH
991/**
992 * find_css_set - return a new css_set with one cgroup updated
993 * @old_cset: the baseline css_set
994 * @cgrp: the cgroup to be updated
995 *
996 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
997 * substituted into the appropriate hierarchy.
817929ec 998 */
5abb8855
TH
999static struct css_set *find_css_set(struct css_set *old_cset,
1000 struct cgroup *cgrp)
817929ec 1001{
b326f9d0 1002 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
5abb8855 1003 struct css_set *cset;
69d0206c
TH
1004 struct list_head tmp_links;
1005 struct cgrp_cset_link *link;
2d8f243a 1006 struct cgroup_subsys *ss;
0ac801fe 1007 unsigned long key;
2d8f243a 1008 int ssid;
472b1053 1009
b326f9d0
TH
1010 lockdep_assert_held(&cgroup_mutex);
1011
817929ec
PM
1012 /* First see if we already have a cgroup group that matches
1013 * the desired set */
f0d9a5f1 1014 spin_lock_bh(&css_set_lock);
5abb8855
TH
1015 cset = find_existing_css_set(old_cset, cgrp, template);
1016 if (cset)
1017 get_css_set(cset);
f0d9a5f1 1018 spin_unlock_bh(&css_set_lock);
817929ec 1019
5abb8855
TH
1020 if (cset)
1021 return cset;
817929ec 1022
f4f4be2b 1023 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
5abb8855 1024 if (!cset)
817929ec
PM
1025 return NULL;
1026
69d0206c 1027 /* Allocate all the cgrp_cset_link objects that we'll need */
9871bf95 1028 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
5abb8855 1029 kfree(cset);
817929ec
PM
1030 return NULL;
1031 }
1032
5abb8855 1033 atomic_set(&cset->refcount, 1);
69d0206c 1034 INIT_LIST_HEAD(&cset->cgrp_links);
5abb8855 1035 INIT_LIST_HEAD(&cset->tasks);
c7561128 1036 INIT_LIST_HEAD(&cset->mg_tasks);
1958d2d5 1037 INIT_LIST_HEAD(&cset->mg_preload_node);
b3dc094e 1038 INIT_LIST_HEAD(&cset->mg_node);
ed27b9f7 1039 INIT_LIST_HEAD(&cset->task_iters);
5abb8855 1040 INIT_HLIST_NODE(&cset->hlist);
817929ec
PM
1041
1042 /* Copy the set of subsystem state objects generated in
1043 * find_existing_css_set() */
5abb8855 1044 memcpy(cset->subsys, template, sizeof(cset->subsys));
817929ec 1045
f0d9a5f1 1046 spin_lock_bh(&css_set_lock);
817929ec 1047 /* Add reference counts and links from the new css_set. */
69d0206c 1048 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
7717f7ba 1049 struct cgroup *c = link->cgrp;
69d0206c 1050
7717f7ba
PM
1051 if (c->root == cgrp->root)
1052 c = cgrp;
69d0206c 1053 link_css_set(&tmp_links, cset, c);
7717f7ba 1054 }
817929ec 1055
69d0206c 1056 BUG_ON(!list_empty(&tmp_links));
817929ec 1057
817929ec 1058 css_set_count++;
472b1053 1059
2d8f243a 1060 /* Add @cset to the hash table */
5abb8855
TH
1061 key = css_set_hash(cset->subsys);
1062 hash_add(css_set_table, &cset->hlist, key);
472b1053 1063
2d8f243a
TH
1064 for_each_subsys(ss, ssid)
1065 list_add_tail(&cset->e_cset_node[ssid],
1066 &cset->subsys[ssid]->cgroup->e_csets[ssid]);
1067
f0d9a5f1 1068 spin_unlock_bh(&css_set_lock);
817929ec 1069
5abb8855 1070 return cset;
b4f48b63
PM
1071}
1072
3dd06ffa 1073static struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
7717f7ba 1074{
3dd06ffa 1075 struct cgroup *root_cgrp = kf_root->kn->priv;
2bd59d48 1076
3dd06ffa 1077 return root_cgrp->root;
2bd59d48
TH
1078}
1079
3dd06ffa 1080static int cgroup_init_root_id(struct cgroup_root *root)
f2e85d57
TH
1081{
1082 int id;
1083
1084 lockdep_assert_held(&cgroup_mutex);
1085
985ed670 1086 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
f2e85d57
TH
1087 if (id < 0)
1088 return id;
1089
1090 root->hierarchy_id = id;
1091 return 0;
1092}
1093
3dd06ffa 1094static void cgroup_exit_root_id(struct cgroup_root *root)
f2e85d57
TH
1095{
1096 lockdep_assert_held(&cgroup_mutex);
1097
1098 if (root->hierarchy_id) {
1099 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1100 root->hierarchy_id = 0;
1101 }
1102}
1103
3dd06ffa 1104static void cgroup_free_root(struct cgroup_root *root)
f2e85d57
TH
1105{
1106 if (root) {
d0f702e6 1107 /* hierarchy ID should already have been released */
f2e85d57
TH
1108 WARN_ON_ONCE(root->hierarchy_id);
1109
1110 idr_destroy(&root->cgroup_idr);
1111 kfree(root);
1112 }
1113}
1114
3dd06ffa 1115static void cgroup_destroy_root(struct cgroup_root *root)
59f5296b 1116{
3dd06ffa 1117 struct cgroup *cgrp = &root->cgrp;
f2e85d57 1118 struct cgrp_cset_link *link, *tmp_link;
f2e85d57 1119
2bd59d48 1120 mutex_lock(&cgroup_mutex);
f2e85d57 1121
776f02fa 1122 BUG_ON(atomic_read(&root->nr_cgrps));
d5c419b6 1123 BUG_ON(!list_empty(&cgrp->self.children));
f2e85d57 1124
f2e85d57 1125 /* Rebind all subsystems back to the default hierarchy */
f392e51c 1126 rebind_subsystems(&cgrp_dfl_root, root->subsys_mask);
7717f7ba 1127
7717f7ba 1128 /*
f2e85d57
TH
1129 * Release all the links from cset_links to this hierarchy's
1130 * root cgroup
7717f7ba 1131 */
f0d9a5f1 1132 spin_lock_bh(&css_set_lock);
f2e85d57
TH
1133
1134 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1135 list_del(&link->cset_link);
1136 list_del(&link->cgrp_link);
1137 kfree(link);
1138 }
f0d9a5f1
TH
1139
1140 spin_unlock_bh(&css_set_lock);
f2e85d57
TH
1141
1142 if (!list_empty(&root->root_list)) {
1143 list_del(&root->root_list);
1144 cgroup_root_count--;
1145 }
1146
1147 cgroup_exit_root_id(root);
1148
1149 mutex_unlock(&cgroup_mutex);
f2e85d57 1150
2bd59d48 1151 kernfs_destroy_root(root->kf_root);
f2e85d57
TH
1152 cgroup_free_root(root);
1153}
1154
ceb6a081
TH
1155/* look up cgroup associated with given css_set on the specified hierarchy */
1156static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
3dd06ffa 1157 struct cgroup_root *root)
7717f7ba 1158{
7717f7ba
PM
1159 struct cgroup *res = NULL;
1160
96d365e0 1161 lockdep_assert_held(&cgroup_mutex);
f0d9a5f1 1162 lockdep_assert_held(&css_set_lock);
96d365e0 1163
5abb8855 1164 if (cset == &init_css_set) {
3dd06ffa 1165 res = &root->cgrp;
7717f7ba 1166 } else {
69d0206c
TH
1167 struct cgrp_cset_link *link;
1168
1169 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 1170 struct cgroup *c = link->cgrp;
69d0206c 1171
7717f7ba
PM
1172 if (c->root == root) {
1173 res = c;
1174 break;
1175 }
1176 }
1177 }
96d365e0 1178
7717f7ba
PM
1179 BUG_ON(!res);
1180 return res;
1181}
1182
ddbcc7e8 1183/*
ceb6a081 1184 * Return the cgroup for "task" from the given hierarchy. Must be
f0d9a5f1 1185 * called with cgroup_mutex and css_set_lock held.
ceb6a081
TH
1186 */
1187static struct cgroup *task_cgroup_from_root(struct task_struct *task,
3dd06ffa 1188 struct cgroup_root *root)
ceb6a081
TH
1189{
1190 /*
1191 * No need to lock the task - since we hold cgroup_mutex the
1192 * task can't change groups, so the only thing that can happen
1193 * is that it exits and its css is set back to init_css_set.
1194 */
1195 return cset_cgroup_from_root(task_css_set(task), root);
1196}
1197
ddbcc7e8 1198/*
ddbcc7e8
PM
1199 * A task must hold cgroup_mutex to modify cgroups.
1200 *
1201 * Any task can increment and decrement the count field without lock.
1202 * So in general, code holding cgroup_mutex can't rely on the count
1203 * field not changing. However, if the count goes to zero, then only
956db3ca 1204 * cgroup_attach_task() can increment it again. Because a count of zero
ddbcc7e8
PM
1205 * means that no tasks are currently attached, therefore there is no
1206 * way a task attached to that cgroup can fork (the other way to
1207 * increment the count). So code holding cgroup_mutex can safely
1208 * assume that if the count is zero, it will stay zero. Similarly, if
1209 * a task holds cgroup_mutex on a cgroup with zero count, it
1210 * knows that the cgroup won't be removed, as cgroup_rmdir()
1211 * needs that mutex.
1212 *
ddbcc7e8
PM
1213 * A cgroup can only be deleted if both its 'count' of using tasks
1214 * is zero, and its list of 'children' cgroups is empty. Since all
1215 * tasks in the system use _some_ cgroup, and since there is always at
3dd06ffa 1216 * least one task in the system (init, pid == 1), therefore, root cgroup
ddbcc7e8 1217 * always has either children cgroups and/or using tasks. So we don't
3dd06ffa 1218 * need a special hack to ensure that root cgroup cannot be deleted.
ddbcc7e8
PM
1219 *
1220 * P.S. One more locking exception. RCU is used to guard the
956db3ca 1221 * update of a tasks cgroup pointer by cgroup_attach_task()
ddbcc7e8
PM
1222 */
1223
2bd59d48 1224static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
828c0950 1225static const struct file_operations proc_cgroupstats_operations;
a424316c 1226
8d7e6fb0
TH
1227static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1228 char *buf)
ddbcc7e8 1229{
3e1d2eed
TH
1230 struct cgroup_subsys *ss = cft->ss;
1231
8d7e6fb0
TH
1232 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1233 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
1234 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
3e1d2eed
TH
1235 cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1236 cft->name);
8d7e6fb0
TH
1237 else
1238 strncpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1239 return buf;
ddbcc7e8
PM
1240}
1241
f2e85d57
TH
1242/**
1243 * cgroup_file_mode - deduce file mode of a control file
1244 * @cft: the control file in question
1245 *
7dbdb199 1246 * S_IRUGO for read, S_IWUSR for write.
f2e85d57
TH
1247 */
1248static umode_t cgroup_file_mode(const struct cftype *cft)
65dff759 1249{
f2e85d57 1250 umode_t mode = 0;
65dff759 1251
f2e85d57
TH
1252 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1253 mode |= S_IRUGO;
1254
7dbdb199
TH
1255 if (cft->write_u64 || cft->write_s64 || cft->write) {
1256 if (cft->flags & CFTYPE_WORLD_WRITABLE)
1257 mode |= S_IWUGO;
1258 else
1259 mode |= S_IWUSR;
1260 }
f2e85d57
TH
1261
1262 return mode;
65dff759
LZ
1263}
1264
af0ba678 1265/**
0f060deb 1266 * cgroup_calc_child_subsys_mask - calculate child_subsys_mask
af0ba678 1267 * @cgrp: the target cgroup
0f060deb 1268 * @subtree_control: the new subtree_control mask to consider
af0ba678
TH
1269 *
1270 * On the default hierarchy, a subsystem may request other subsystems to be
1271 * enabled together through its ->depends_on mask. In such cases, more
1272 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1273 *
0f060deb
TH
1274 * This function calculates which subsystems need to be enabled if
1275 * @subtree_control is to be applied to @cgrp. The returned mask is always
1276 * a superset of @subtree_control and follows the usual hierarchy rules.
af0ba678 1277 */
8ab456ac
AS
1278static unsigned long cgroup_calc_child_subsys_mask(struct cgroup *cgrp,
1279 unsigned long subtree_control)
667c2491 1280{
af0ba678 1281 struct cgroup *parent = cgroup_parent(cgrp);
8ab456ac 1282 unsigned long cur_ss_mask = subtree_control;
af0ba678
TH
1283 struct cgroup_subsys *ss;
1284 int ssid;
1285
1286 lockdep_assert_held(&cgroup_mutex);
1287
0f060deb
TH
1288 if (!cgroup_on_dfl(cgrp))
1289 return cur_ss_mask;
af0ba678
TH
1290
1291 while (true) {
8ab456ac 1292 unsigned long new_ss_mask = cur_ss_mask;
af0ba678 1293
a966a4ed
AS
1294 for_each_subsys_which(ss, ssid, &cur_ss_mask)
1295 new_ss_mask |= ss->depends_on;
af0ba678
TH
1296
1297 /*
1298 * Mask out subsystems which aren't available. This can
1299 * happen only if some depended-upon subsystems were bound
1300 * to non-default hierarchies.
1301 */
1302 if (parent)
1303 new_ss_mask &= parent->child_subsys_mask;
1304 else
1305 new_ss_mask &= cgrp->root->subsys_mask;
1306
1307 if (new_ss_mask == cur_ss_mask)
1308 break;
1309 cur_ss_mask = new_ss_mask;
1310 }
1311
0f060deb
TH
1312 return cur_ss_mask;
1313}
1314
1315/**
1316 * cgroup_refresh_child_subsys_mask - update child_subsys_mask
1317 * @cgrp: the target cgroup
1318 *
1319 * Update @cgrp->child_subsys_mask according to the current
1320 * @cgrp->subtree_control using cgroup_calc_child_subsys_mask().
1321 */
1322static void cgroup_refresh_child_subsys_mask(struct cgroup *cgrp)
1323{
1324 cgrp->child_subsys_mask =
1325 cgroup_calc_child_subsys_mask(cgrp, cgrp->subtree_control);
667c2491
TH
1326}
1327
a9746d8d
TH
1328/**
1329 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1330 * @kn: the kernfs_node being serviced
1331 *
1332 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1333 * the method finishes if locking succeeded. Note that once this function
1334 * returns the cgroup returned by cgroup_kn_lock_live() may become
1335 * inaccessible any time. If the caller intends to continue to access the
1336 * cgroup, it should pin it before invoking this function.
1337 */
1338static void cgroup_kn_unlock(struct kernfs_node *kn)
ddbcc7e8 1339{
a9746d8d
TH
1340 struct cgroup *cgrp;
1341
1342 if (kernfs_type(kn) == KERNFS_DIR)
1343 cgrp = kn->priv;
1344 else
1345 cgrp = kn->parent->priv;
1346
1347 mutex_unlock(&cgroup_mutex);
a9746d8d
TH
1348
1349 kernfs_unbreak_active_protection(kn);
1350 cgroup_put(cgrp);
ddbcc7e8
PM
1351}
1352
a9746d8d
TH
1353/**
1354 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1355 * @kn: the kernfs_node being serviced
1356 *
1357 * This helper is to be used by a cgroup kernfs method currently servicing
1358 * @kn. It breaks the active protection, performs cgroup locking and
1359 * verifies that the associated cgroup is alive. Returns the cgroup if
1360 * alive; otherwise, %NULL. A successful return should be undone by a
1361 * matching cgroup_kn_unlock() invocation.
1362 *
1363 * Any cgroup kernfs method implementation which requires locking the
1364 * associated cgroup should use this helper. It avoids nesting cgroup
1365 * locking under kernfs active protection and allows all kernfs operations
1366 * including self-removal.
1367 */
1368static struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn)
05ef1d7c 1369{
a9746d8d
TH
1370 struct cgroup *cgrp;
1371
1372 if (kernfs_type(kn) == KERNFS_DIR)
1373 cgrp = kn->priv;
1374 else
1375 cgrp = kn->parent->priv;
05ef1d7c 1376
2739d3cc 1377 /*
01f6474c 1378 * We're gonna grab cgroup_mutex which nests outside kernfs
a9746d8d
TH
1379 * active_ref. cgroup liveliness check alone provides enough
1380 * protection against removal. Ensure @cgrp stays accessible and
1381 * break the active_ref protection.
2739d3cc 1382 */
aa32362f
LZ
1383 if (!cgroup_tryget(cgrp))
1384 return NULL;
a9746d8d
TH
1385 kernfs_break_active_protection(kn);
1386
2bd59d48 1387 mutex_lock(&cgroup_mutex);
05ef1d7c 1388
a9746d8d
TH
1389 if (!cgroup_is_dead(cgrp))
1390 return cgrp;
1391
1392 cgroup_kn_unlock(kn);
1393 return NULL;
ddbcc7e8 1394}
05ef1d7c 1395
2739d3cc 1396static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
05ef1d7c 1397{
2bd59d48 1398 char name[CGROUP_FILE_NAME_MAX];
05ef1d7c 1399
01f6474c 1400 lockdep_assert_held(&cgroup_mutex);
2bd59d48 1401 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
05ef1d7c
TH
1402}
1403
13af07df 1404/**
4df8dc90
TH
1405 * css_clear_dir - remove subsys files in a cgroup directory
1406 * @css: taget css
1407 * @cgrp_override: specify if target cgroup is different from css->cgroup
13af07df 1408 */
4df8dc90
TH
1409static void css_clear_dir(struct cgroup_subsys_state *css,
1410 struct cgroup *cgrp_override)
05ef1d7c 1411{
4df8dc90
TH
1412 struct cgroup *cgrp = cgrp_override ?: css->cgroup;
1413 struct cftype *cfts;
05ef1d7c 1414
4df8dc90
TH
1415 list_for_each_entry(cfts, &css->ss->cfts, node)
1416 cgroup_addrm_files(css, cgrp, cfts, false);
ddbcc7e8
PM
1417}
1418
ccdca218 1419/**
4df8dc90
TH
1420 * css_populate_dir - create subsys files in a cgroup directory
1421 * @css: target css
1422 * @cgrp_overried: specify if target cgroup is different from css->cgroup
ccdca218
TH
1423 *
1424 * On failure, no file is added.
1425 */
4df8dc90
TH
1426static int css_populate_dir(struct cgroup_subsys_state *css,
1427 struct cgroup *cgrp_override)
ccdca218 1428{
4df8dc90
TH
1429 struct cgroup *cgrp = cgrp_override ?: css->cgroup;
1430 struct cftype *cfts, *failed_cfts;
1431 int ret;
ccdca218 1432
4df8dc90
TH
1433 if (!css->ss) {
1434 if (cgroup_on_dfl(cgrp))
1435 cfts = cgroup_dfl_base_files;
1436 else
1437 cfts = cgroup_legacy_base_files;
ccdca218 1438
4df8dc90
TH
1439 return cgroup_addrm_files(&cgrp->self, cgrp, cfts, true);
1440 }
ccdca218 1441
4df8dc90
TH
1442 list_for_each_entry(cfts, &css->ss->cfts, node) {
1443 ret = cgroup_addrm_files(css, cgrp, cfts, true);
1444 if (ret < 0) {
1445 failed_cfts = cfts;
1446 goto err;
ccdca218
TH
1447 }
1448 }
1449 return 0;
1450err:
4df8dc90
TH
1451 list_for_each_entry(cfts, &css->ss->cfts, node) {
1452 if (cfts == failed_cfts)
1453 break;
1454 cgroup_addrm_files(css, cgrp, cfts, false);
1455 }
ccdca218
TH
1456 return ret;
1457}
1458
8ab456ac
AS
1459static int rebind_subsystems(struct cgroup_root *dst_root,
1460 unsigned long ss_mask)
ddbcc7e8 1461{
1ada4838 1462 struct cgroup *dcgrp = &dst_root->cgrp;
30159ec7 1463 struct cgroup_subsys *ss;
8ab456ac 1464 unsigned long tmp_ss_mask;
2d8f243a 1465 int ssid, i, ret;
ddbcc7e8 1466
ace2bee8 1467 lockdep_assert_held(&cgroup_mutex);
ddbcc7e8 1468
a966a4ed 1469 for_each_subsys_which(ss, ssid, &ss_mask) {
7fd8c565
TH
1470 /* if @ss has non-root csses attached to it, can't move */
1471 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)))
3ed80a62 1472 return -EBUSY;
1d5be6b2 1473
5df36032 1474 /* can't move between two non-dummy roots either */
7fd8c565 1475 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
5df36032 1476 return -EBUSY;
ddbcc7e8
PM
1477 }
1478
5533e011
TH
1479 /* skip creating root files on dfl_root for inhibited subsystems */
1480 tmp_ss_mask = ss_mask;
1481 if (dst_root == &cgrp_dfl_root)
1482 tmp_ss_mask &= ~cgrp_dfl_root_inhibit_ss_mask;
1483
4df8dc90
TH
1484 for_each_subsys_which(ss, ssid, &tmp_ss_mask) {
1485 struct cgroup *scgrp = &ss->root->cgrp;
1486 int tssid;
1487
1488 ret = css_populate_dir(cgroup_css(scgrp, ss), dcgrp);
1489 if (!ret)
1490 continue;
ddbcc7e8 1491
a2dd4247
TH
1492 /*
1493 * Rebinding back to the default root is not allowed to
1494 * fail. Using both default and non-default roots should
1495 * be rare. Moving subsystems back and forth even more so.
1496 * Just warn about it and continue.
1497 */
4df8dc90
TH
1498 if (dst_root == &cgrp_dfl_root) {
1499 if (cgrp_dfl_root_visible) {
1500 pr_warn("failed to create files (%d) while rebinding 0x%lx to default root\n",
1501 ret, ss_mask);
1502 pr_warn("you may retry by moving them to a different hierarchy and unbinding\n");
1503 }
1504 continue;
a2dd4247 1505 }
4df8dc90
TH
1506
1507 for_each_subsys_which(ss, tssid, &tmp_ss_mask) {
1508 if (tssid == ssid)
1509 break;
1510 css_clear_dir(cgroup_css(scgrp, ss), dcgrp);
1511 }
1512 return ret;
5df36032 1513 }
3126121f
TH
1514
1515 /*
1516 * Nothing can fail from this point on. Remove files for the
1517 * removed subsystems and rebind each subsystem.
1518 */
a966a4ed 1519 for_each_subsys_which(ss, ssid, &ss_mask) {
1ada4838
TH
1520 struct cgroup_root *src_root = ss->root;
1521 struct cgroup *scgrp = &src_root->cgrp;
1522 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
2d8f243a 1523 struct css_set *cset;
a8a648c4 1524
1ada4838 1525 WARN_ON(!css || cgroup_css(dcgrp, ss));
a8a648c4 1526
4df8dc90
TH
1527 css_clear_dir(css, NULL);
1528
1ada4838
TH
1529 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1530 rcu_assign_pointer(dcgrp->subsys[ssid], css);
5df36032 1531 ss->root = dst_root;
1ada4838 1532 css->cgroup = dcgrp;
73e80ed8 1533
f0d9a5f1 1534 spin_lock_bh(&css_set_lock);
2d8f243a
TH
1535 hash_for_each(css_set_table, i, cset, hlist)
1536 list_move_tail(&cset->e_cset_node[ss->id],
1ada4838 1537 &dcgrp->e_csets[ss->id]);
f0d9a5f1 1538 spin_unlock_bh(&css_set_lock);
2d8f243a 1539
f392e51c 1540 src_root->subsys_mask &= ~(1 << ssid);
1ada4838
TH
1541 scgrp->subtree_control &= ~(1 << ssid);
1542 cgroup_refresh_child_subsys_mask(scgrp);
f392e51c 1543
bd53d617 1544 /* default hierarchy doesn't enable controllers by default */
f392e51c 1545 dst_root->subsys_mask |= 1 << ssid;
49d1dc4b
TH
1546 if (dst_root == &cgrp_dfl_root) {
1547 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1548 } else {
1ada4838
TH
1549 dcgrp->subtree_control |= 1 << ssid;
1550 cgroup_refresh_child_subsys_mask(dcgrp);
49d1dc4b 1551 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
667c2491 1552 }
a8a648c4 1553
5df36032
TH
1554 if (ss->bind)
1555 ss->bind(css);
ddbcc7e8 1556 }
ddbcc7e8 1557
1ada4838 1558 kernfs_activate(dcgrp->kn);
ddbcc7e8
PM
1559 return 0;
1560}
1561
2bd59d48
TH
1562static int cgroup_show_options(struct seq_file *seq,
1563 struct kernfs_root *kf_root)
ddbcc7e8 1564{
3dd06ffa 1565 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
ddbcc7e8 1566 struct cgroup_subsys *ss;
b85d2040 1567 int ssid;
ddbcc7e8 1568
d98817d4
TH
1569 if (root != &cgrp_dfl_root)
1570 for_each_subsys(ss, ssid)
1571 if (root->subsys_mask & (1 << ssid))
61e57c0c 1572 seq_show_option(seq, ss->legacy_name, NULL);
93438629 1573 if (root->flags & CGRP_ROOT_NOPREFIX)
ddbcc7e8 1574 seq_puts(seq, ",noprefix");
93438629 1575 if (root->flags & CGRP_ROOT_XATTR)
03b1cde6 1576 seq_puts(seq, ",xattr");
69e943b7
TH
1577
1578 spin_lock(&release_agent_path_lock);
81a6a5cd 1579 if (strlen(root->release_agent_path))
a068acf2
KC
1580 seq_show_option(seq, "release_agent",
1581 root->release_agent_path);
69e943b7
TH
1582 spin_unlock(&release_agent_path_lock);
1583
3dd06ffa 1584 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
97978e6d 1585 seq_puts(seq, ",clone_children");
c6d57f33 1586 if (strlen(root->name))
a068acf2 1587 seq_show_option(seq, "name", root->name);
ddbcc7e8
PM
1588 return 0;
1589}
1590
1591struct cgroup_sb_opts {
8ab456ac 1592 unsigned long subsys_mask;
69dfa00c 1593 unsigned int flags;
81a6a5cd 1594 char *release_agent;
2260e7fc 1595 bool cpuset_clone_children;
c6d57f33 1596 char *name;
2c6ab6d2
PM
1597 /* User explicitly requested empty subsystem */
1598 bool none;
ddbcc7e8
PM
1599};
1600
cf5d5941 1601static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
ddbcc7e8 1602{
32a8cf23
DL
1603 char *token, *o = data;
1604 bool all_ss = false, one_ss = false;
8ab456ac 1605 unsigned long mask = -1UL;
30159ec7 1606 struct cgroup_subsys *ss;
7b9a6ba5 1607 int nr_opts = 0;
30159ec7 1608 int i;
f9ab5b5b
LZ
1609
1610#ifdef CONFIG_CPUSETS
69dfa00c 1611 mask = ~(1U << cpuset_cgrp_id);
f9ab5b5b 1612#endif
ddbcc7e8 1613
c6d57f33 1614 memset(opts, 0, sizeof(*opts));
ddbcc7e8
PM
1615
1616 while ((token = strsep(&o, ",")) != NULL) {
7b9a6ba5
TH
1617 nr_opts++;
1618
ddbcc7e8
PM
1619 if (!*token)
1620 return -EINVAL;
32a8cf23 1621 if (!strcmp(token, "none")) {
2c6ab6d2
PM
1622 /* Explicitly have no subsystems */
1623 opts->none = true;
32a8cf23
DL
1624 continue;
1625 }
1626 if (!strcmp(token, "all")) {
1627 /* Mutually exclusive option 'all' + subsystem name */
1628 if (one_ss)
1629 return -EINVAL;
1630 all_ss = true;
1631 continue;
1632 }
873fe09e
TH
1633 if (!strcmp(token, "__DEVEL__sane_behavior")) {
1634 opts->flags |= CGRP_ROOT_SANE_BEHAVIOR;
1635 continue;
1636 }
32a8cf23 1637 if (!strcmp(token, "noprefix")) {
93438629 1638 opts->flags |= CGRP_ROOT_NOPREFIX;
32a8cf23
DL
1639 continue;
1640 }
1641 if (!strcmp(token, "clone_children")) {
2260e7fc 1642 opts->cpuset_clone_children = true;
32a8cf23
DL
1643 continue;
1644 }
03b1cde6 1645 if (!strcmp(token, "xattr")) {
93438629 1646 opts->flags |= CGRP_ROOT_XATTR;
03b1cde6
AR
1647 continue;
1648 }
32a8cf23 1649 if (!strncmp(token, "release_agent=", 14)) {
81a6a5cd
PM
1650 /* Specifying two release agents is forbidden */
1651 if (opts->release_agent)
1652 return -EINVAL;
c6d57f33 1653 opts->release_agent =
e400c285 1654 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
81a6a5cd
PM
1655 if (!opts->release_agent)
1656 return -ENOMEM;
32a8cf23
DL
1657 continue;
1658 }
1659 if (!strncmp(token, "name=", 5)) {
c6d57f33
PM
1660 const char *name = token + 5;
1661 /* Can't specify an empty name */
1662 if (!strlen(name))
1663 return -EINVAL;
1664 /* Must match [\w.-]+ */
1665 for (i = 0; i < strlen(name); i++) {
1666 char c = name[i];
1667 if (isalnum(c))
1668 continue;
1669 if ((c == '.') || (c == '-') || (c == '_'))
1670 continue;
1671 return -EINVAL;
1672 }
1673 /* Specifying two names is forbidden */
1674 if (opts->name)
1675 return -EINVAL;
1676 opts->name = kstrndup(name,
e400c285 1677 MAX_CGROUP_ROOT_NAMELEN - 1,
c6d57f33
PM
1678 GFP_KERNEL);
1679 if (!opts->name)
1680 return -ENOMEM;
32a8cf23
DL
1681
1682 continue;
1683 }
1684
30159ec7 1685 for_each_subsys(ss, i) {
3e1d2eed 1686 if (strcmp(token, ss->legacy_name))
32a8cf23 1687 continue;
fc5ed1e9 1688 if (!cgroup_ssid_enabled(i))
32a8cf23
DL
1689 continue;
1690
1691 /* Mutually exclusive option 'all' + subsystem name */
1692 if (all_ss)
1693 return -EINVAL;
69dfa00c 1694 opts->subsys_mask |= (1 << i);
32a8cf23
DL
1695 one_ss = true;
1696
1697 break;
1698 }
1699 if (i == CGROUP_SUBSYS_COUNT)
1700 return -ENOENT;
1701 }
1702
873fe09e 1703 if (opts->flags & CGRP_ROOT_SANE_BEHAVIOR) {
ed3d261b 1704 pr_warn("sane_behavior: this is still under development and its behaviors will change, proceed at your own risk\n");
7b9a6ba5
TH
1705 if (nr_opts != 1) {
1706 pr_err("sane_behavior: no other mount options allowed\n");
873fe09e
TH
1707 return -EINVAL;
1708 }
7b9a6ba5 1709 return 0;
873fe09e
TH
1710 }
1711
7b9a6ba5
TH
1712 /*
1713 * If the 'all' option was specified select all the subsystems,
1714 * otherwise if 'none', 'name=' and a subsystem name options were
1715 * not specified, let's default to 'all'
1716 */
1717 if (all_ss || (!one_ss && !opts->none && !opts->name))
1718 for_each_subsys(ss, i)
fc5ed1e9 1719 if (cgroup_ssid_enabled(i))
7b9a6ba5
TH
1720 opts->subsys_mask |= (1 << i);
1721
1722 /*
1723 * We either have to specify by name or by subsystems. (So all
1724 * empty hierarchies must have a name).
1725 */
1726 if (!opts->subsys_mask && !opts->name)
1727 return -EINVAL;
1728
f9ab5b5b
LZ
1729 /*
1730 * Option noprefix was introduced just for backward compatibility
1731 * with the old cpuset, so we allow noprefix only if mounting just
1732 * the cpuset subsystem.
1733 */
93438629 1734 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
f9ab5b5b
LZ
1735 return -EINVAL;
1736
2c6ab6d2 1737 /* Can't specify "none" and some subsystems */
a1a71b45 1738 if (opts->subsys_mask && opts->none)
2c6ab6d2
PM
1739 return -EINVAL;
1740
ddbcc7e8
PM
1741 return 0;
1742}
1743
2bd59d48 1744static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
ddbcc7e8
PM
1745{
1746 int ret = 0;
3dd06ffa 1747 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
ddbcc7e8 1748 struct cgroup_sb_opts opts;
8ab456ac 1749 unsigned long added_mask, removed_mask;
ddbcc7e8 1750
aa6ec29b
TH
1751 if (root == &cgrp_dfl_root) {
1752 pr_err("remount is not allowed\n");
873fe09e
TH
1753 return -EINVAL;
1754 }
1755
ddbcc7e8
PM
1756 mutex_lock(&cgroup_mutex);
1757
1758 /* See what subsystems are wanted */
1759 ret = parse_cgroupfs_options(data, &opts);
1760 if (ret)
1761 goto out_unlock;
1762
f392e51c 1763 if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
ed3d261b 1764 pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
a2a1f9ea 1765 task_tgid_nr(current), current->comm);
8b5a5a9d 1766
f392e51c
TH
1767 added_mask = opts.subsys_mask & ~root->subsys_mask;
1768 removed_mask = root->subsys_mask & ~opts.subsys_mask;
13af07df 1769
cf5d5941 1770 /* Don't allow flags or name to change at remount */
7450e90b 1771 if ((opts.flags ^ root->flags) ||
cf5d5941 1772 (opts.name && strcmp(opts.name, root->name))) {
69dfa00c 1773 pr_err("option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"\n",
7450e90b 1774 opts.flags, opts.name ?: "", root->flags, root->name);
c6d57f33
PM
1775 ret = -EINVAL;
1776 goto out_unlock;
1777 }
1778
f172e67c 1779 /* remounting is not allowed for populated hierarchies */
d5c419b6 1780 if (!list_empty(&root->cgrp.self.children)) {
f172e67c 1781 ret = -EBUSY;
0670e08b 1782 goto out_unlock;
cf5d5941 1783 }
ddbcc7e8 1784
5df36032 1785 ret = rebind_subsystems(root, added_mask);
3126121f 1786 if (ret)
0670e08b 1787 goto out_unlock;
ddbcc7e8 1788
3dd06ffa 1789 rebind_subsystems(&cgrp_dfl_root, removed_mask);
5df36032 1790
69e943b7
TH
1791 if (opts.release_agent) {
1792 spin_lock(&release_agent_path_lock);
81a6a5cd 1793 strcpy(root->release_agent_path, opts.release_agent);
69e943b7
TH
1794 spin_unlock(&release_agent_path_lock);
1795 }
ddbcc7e8 1796 out_unlock:
66bdc9cf 1797 kfree(opts.release_agent);
c6d57f33 1798 kfree(opts.name);
ddbcc7e8 1799 mutex_unlock(&cgroup_mutex);
ddbcc7e8
PM
1800 return ret;
1801}
1802
afeb0f9f
TH
1803/*
1804 * To reduce the fork() overhead for systems that are not actually using
1805 * their cgroups capability, we don't maintain the lists running through
1806 * each css_set to its tasks until we see the list actually used - in other
1807 * words after the first mount.
1808 */
1809static bool use_task_css_set_links __read_mostly;
1810
1811static void cgroup_enable_task_cg_lists(void)
1812{
1813 struct task_struct *p, *g;
1814
f0d9a5f1 1815 spin_lock_bh(&css_set_lock);
afeb0f9f
TH
1816
1817 if (use_task_css_set_links)
1818 goto out_unlock;
1819
1820 use_task_css_set_links = true;
1821
1822 /*
1823 * We need tasklist_lock because RCU is not safe against
1824 * while_each_thread(). Besides, a forking task that has passed
1825 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1826 * is not guaranteed to have its child immediately visible in the
1827 * tasklist if we walk through it with RCU.
1828 */
1829 read_lock(&tasklist_lock);
1830 do_each_thread(g, p) {
afeb0f9f
TH
1831 WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1832 task_css_set(p) != &init_css_set);
1833
1834 /*
1835 * We should check if the process is exiting, otherwise
1836 * it will race with cgroup_exit() in that the list
1837 * entry won't be deleted though the process has exited.
f153ad11
TH
1838 * Do it while holding siglock so that we don't end up
1839 * racing against cgroup_exit().
afeb0f9f 1840 */
f153ad11 1841 spin_lock_irq(&p->sighand->siglock);
eaf797ab
TH
1842 if (!(p->flags & PF_EXITING)) {
1843 struct css_set *cset = task_css_set(p);
1844
0de0942d
TH
1845 if (!css_set_populated(cset))
1846 css_set_update_populated(cset, true);
389b9c1b 1847 list_add_tail(&p->cg_list, &cset->tasks);
eaf797ab
TH
1848 get_css_set(cset);
1849 }
f153ad11 1850 spin_unlock_irq(&p->sighand->siglock);
afeb0f9f
TH
1851 } while_each_thread(g, p);
1852 read_unlock(&tasklist_lock);
1853out_unlock:
f0d9a5f1 1854 spin_unlock_bh(&css_set_lock);
afeb0f9f 1855}
ddbcc7e8 1856
cc31edce
PM
1857static void init_cgroup_housekeeping(struct cgroup *cgrp)
1858{
2d8f243a
TH
1859 struct cgroup_subsys *ss;
1860 int ssid;
1861
d5c419b6
TH
1862 INIT_LIST_HEAD(&cgrp->self.sibling);
1863 INIT_LIST_HEAD(&cgrp->self.children);
6f60eade 1864 INIT_LIST_HEAD(&cgrp->self.files);
69d0206c 1865 INIT_LIST_HEAD(&cgrp->cset_links);
72a8cb30
BB
1866 INIT_LIST_HEAD(&cgrp->pidlists);
1867 mutex_init(&cgrp->pidlist_mutex);
9d800df1 1868 cgrp->self.cgroup = cgrp;
184faf32 1869 cgrp->self.flags |= CSS_ONLINE;
2d8f243a
TH
1870
1871 for_each_subsys(ss, ssid)
1872 INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
f8f22e53
TH
1873
1874 init_waitqueue_head(&cgrp->offline_waitq);
971ff493 1875 INIT_WORK(&cgrp->release_agent_work, cgroup_release_agent);
cc31edce 1876}
c6d57f33 1877
3dd06ffa 1878static void init_cgroup_root(struct cgroup_root *root,
172a2c06 1879 struct cgroup_sb_opts *opts)
ddbcc7e8 1880{
3dd06ffa 1881 struct cgroup *cgrp = &root->cgrp;
b0ca5a84 1882
ddbcc7e8 1883 INIT_LIST_HEAD(&root->root_list);
3c9c825b 1884 atomic_set(&root->nr_cgrps, 1);
bd89aabc 1885 cgrp->root = root;
cc31edce 1886 init_cgroup_housekeeping(cgrp);
4e96ee8e 1887 idr_init(&root->cgroup_idr);
c6d57f33 1888
c6d57f33
PM
1889 root->flags = opts->flags;
1890 if (opts->release_agent)
1891 strcpy(root->release_agent_path, opts->release_agent);
1892 if (opts->name)
1893 strcpy(root->name, opts->name);
2260e7fc 1894 if (opts->cpuset_clone_children)
3dd06ffa 1895 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
c6d57f33
PM
1896}
1897
8ab456ac 1898static int cgroup_setup_root(struct cgroup_root *root, unsigned long ss_mask)
2c6ab6d2 1899{
d427dfeb 1900 LIST_HEAD(tmp_links);
3dd06ffa 1901 struct cgroup *root_cgrp = &root->cgrp;
d427dfeb 1902 struct css_set *cset;
d427dfeb 1903 int i, ret;
2c6ab6d2 1904
d427dfeb 1905 lockdep_assert_held(&cgroup_mutex);
c6d57f33 1906
cf780b7d 1907 ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_KERNEL);
d427dfeb 1908 if (ret < 0)
2bd59d48 1909 goto out;
d427dfeb 1910 root_cgrp->id = ret;
c6d57f33 1911
2aad2a86
TH
1912 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release, 0,
1913 GFP_KERNEL);
9d755d33
TH
1914 if (ret)
1915 goto out;
1916
d427dfeb 1917 /*
f0d9a5f1 1918 * We're accessing css_set_count without locking css_set_lock here,
d427dfeb
TH
1919 * but that's OK - it can only be increased by someone holding
1920 * cgroup_lock, and that's us. The worst that can happen is that we
1921 * have some link structures left over
1922 */
1923 ret = allocate_cgrp_cset_links(css_set_count, &tmp_links);
1924 if (ret)
9d755d33 1925 goto cancel_ref;
ddbcc7e8 1926
985ed670 1927 ret = cgroup_init_root_id(root);
ddbcc7e8 1928 if (ret)
9d755d33 1929 goto cancel_ref;
ddbcc7e8 1930
2bd59d48
TH
1931 root->kf_root = kernfs_create_root(&cgroup_kf_syscall_ops,
1932 KERNFS_ROOT_CREATE_DEACTIVATED,
1933 root_cgrp);
1934 if (IS_ERR(root->kf_root)) {
1935 ret = PTR_ERR(root->kf_root);
1936 goto exit_root_id;
1937 }
1938 root_cgrp->kn = root->kf_root->kn;
ddbcc7e8 1939
4df8dc90 1940 ret = css_populate_dir(&root_cgrp->self, NULL);
d427dfeb 1941 if (ret)
2bd59d48 1942 goto destroy_root;
ddbcc7e8 1943
5df36032 1944 ret = rebind_subsystems(root, ss_mask);
d427dfeb 1945 if (ret)
2bd59d48 1946 goto destroy_root;
ddbcc7e8 1947
d427dfeb
TH
1948 /*
1949 * There must be no failure case after here, since rebinding takes
1950 * care of subsystems' refcounts, which are explicitly dropped in
1951 * the failure exit path.
1952 */
1953 list_add(&root->root_list, &cgroup_roots);
1954 cgroup_root_count++;
0df6a63f 1955
d427dfeb 1956 /*
3dd06ffa 1957 * Link the root cgroup in this hierarchy into all the css_set
d427dfeb
TH
1958 * objects.
1959 */
f0d9a5f1 1960 spin_lock_bh(&css_set_lock);
0de0942d 1961 hash_for_each(css_set_table, i, cset, hlist) {
d427dfeb 1962 link_css_set(&tmp_links, cset, root_cgrp);
0de0942d
TH
1963 if (css_set_populated(cset))
1964 cgroup_update_populated(root_cgrp, true);
1965 }
f0d9a5f1 1966 spin_unlock_bh(&css_set_lock);
ddbcc7e8 1967
d5c419b6 1968 BUG_ON(!list_empty(&root_cgrp->self.children));
3c9c825b 1969 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
ddbcc7e8 1970
2bd59d48 1971 kernfs_activate(root_cgrp->kn);
d427dfeb 1972 ret = 0;
2bd59d48 1973 goto out;
d427dfeb 1974
2bd59d48
TH
1975destroy_root:
1976 kernfs_destroy_root(root->kf_root);
1977 root->kf_root = NULL;
1978exit_root_id:
d427dfeb 1979 cgroup_exit_root_id(root);
9d755d33 1980cancel_ref:
9a1049da 1981 percpu_ref_exit(&root_cgrp->self.refcnt);
2bd59d48 1982out:
d427dfeb
TH
1983 free_cgrp_cset_links(&tmp_links);
1984 return ret;
ddbcc7e8
PM
1985}
1986
f7e83571 1987static struct dentry *cgroup_mount(struct file_system_type *fs_type,
ddbcc7e8 1988 int flags, const char *unused_dev_name,
f7e83571 1989 void *data)
ddbcc7e8 1990{
3a32bd72 1991 struct super_block *pinned_sb = NULL;
970317aa 1992 struct cgroup_subsys *ss;
3dd06ffa 1993 struct cgroup_root *root;
ddbcc7e8 1994 struct cgroup_sb_opts opts;
2bd59d48 1995 struct dentry *dentry;
8e30e2b8 1996 int ret;
970317aa 1997 int i;
c6b3d5bc 1998 bool new_sb;
ddbcc7e8 1999
56fde9e0
TH
2000 /*
2001 * The first time anyone tries to mount a cgroup, enable the list
2002 * linking each css_set to its tasks and fix up all existing tasks.
2003 */
2004 if (!use_task_css_set_links)
2005 cgroup_enable_task_cg_lists();
e37a06f1 2006
aae8aab4 2007 mutex_lock(&cgroup_mutex);
8e30e2b8
TH
2008
2009 /* First find the desired set of subsystems */
ddbcc7e8 2010 ret = parse_cgroupfs_options(data, &opts);
c6d57f33 2011 if (ret)
8e30e2b8 2012 goto out_unlock;
a015edd2 2013
2bd59d48 2014 /* look for a matching existing root */
7b9a6ba5 2015 if (opts.flags & CGRP_ROOT_SANE_BEHAVIOR) {
a2dd4247
TH
2016 cgrp_dfl_root_visible = true;
2017 root = &cgrp_dfl_root;
2018 cgroup_get(&root->cgrp);
2019 ret = 0;
2020 goto out_unlock;
ddbcc7e8
PM
2021 }
2022
970317aa
LZ
2023 /*
2024 * Destruction of cgroup root is asynchronous, so subsystems may
2025 * still be dying after the previous unmount. Let's drain the
2026 * dying subsystems. We just need to ensure that the ones
2027 * unmounted previously finish dying and don't care about new ones
2028 * starting. Testing ref liveliness is good enough.
2029 */
2030 for_each_subsys(ss, i) {
2031 if (!(opts.subsys_mask & (1 << i)) ||
2032 ss->root == &cgrp_dfl_root)
2033 continue;
2034
2035 if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt)) {
2036 mutex_unlock(&cgroup_mutex);
2037 msleep(10);
2038 ret = restart_syscall();
2039 goto out_free;
2040 }
2041 cgroup_put(&ss->root->cgrp);
2042 }
2043
985ed670 2044 for_each_root(root) {
2bd59d48 2045 bool name_match = false;
3126121f 2046
3dd06ffa 2047 if (root == &cgrp_dfl_root)
985ed670 2048 continue;
3126121f 2049
cf5d5941 2050 /*
2bd59d48
TH
2051 * If we asked for a name then it must match. Also, if
2052 * name matches but sybsys_mask doesn't, we should fail.
2053 * Remember whether name matched.
cf5d5941 2054 */
2bd59d48
TH
2055 if (opts.name) {
2056 if (strcmp(opts.name, root->name))
2057 continue;
2058 name_match = true;
2059 }
ddbcc7e8 2060
c6d57f33 2061 /*
2bd59d48
TH
2062 * If we asked for subsystems (or explicitly for no
2063 * subsystems) then they must match.
c6d57f33 2064 */
2bd59d48 2065 if ((opts.subsys_mask || opts.none) &&
f392e51c 2066 (opts.subsys_mask != root->subsys_mask)) {
2bd59d48
TH
2067 if (!name_match)
2068 continue;
2069 ret = -EBUSY;
2070 goto out_unlock;
2071 }
873fe09e 2072
7b9a6ba5
TH
2073 if (root->flags ^ opts.flags)
2074 pr_warn("new mount options do not match the existing superblock, will be ignored\n");
ddbcc7e8 2075
776f02fa 2076 /*
3a32bd72
LZ
2077 * We want to reuse @root whose lifetime is governed by its
2078 * ->cgrp. Let's check whether @root is alive and keep it
2079 * that way. As cgroup_kill_sb() can happen anytime, we
2080 * want to block it by pinning the sb so that @root doesn't
2081 * get killed before mount is complete.
2082 *
2083 * With the sb pinned, tryget_live can reliably indicate
2084 * whether @root can be reused. If it's being killed,
2085 * drain it. We can use wait_queue for the wait but this
2086 * path is super cold. Let's just sleep a bit and retry.
776f02fa 2087 */
3a32bd72
LZ
2088 pinned_sb = kernfs_pin_sb(root->kf_root, NULL);
2089 if (IS_ERR(pinned_sb) ||
2090 !percpu_ref_tryget_live(&root->cgrp.self.refcnt)) {
776f02fa 2091 mutex_unlock(&cgroup_mutex);
3a32bd72
LZ
2092 if (!IS_ERR_OR_NULL(pinned_sb))
2093 deactivate_super(pinned_sb);
776f02fa 2094 msleep(10);
a015edd2
TH
2095 ret = restart_syscall();
2096 goto out_free;
776f02fa 2097 }
ddbcc7e8 2098
776f02fa 2099 ret = 0;
2bd59d48 2100 goto out_unlock;
ddbcc7e8 2101 }
ddbcc7e8 2102
817929ec 2103 /*
172a2c06
TH
2104 * No such thing, create a new one. name= matching without subsys
2105 * specification is allowed for already existing hierarchies but we
2106 * can't create new one without subsys specification.
817929ec 2107 */
172a2c06
TH
2108 if (!opts.subsys_mask && !opts.none) {
2109 ret = -EINVAL;
2110 goto out_unlock;
817929ec 2111 }
817929ec 2112
172a2c06
TH
2113 root = kzalloc(sizeof(*root), GFP_KERNEL);
2114 if (!root) {
2115 ret = -ENOMEM;
2bd59d48 2116 goto out_unlock;
839ec545 2117 }
e5f6a860 2118
172a2c06
TH
2119 init_cgroup_root(root, &opts);
2120
35585573 2121 ret = cgroup_setup_root(root, opts.subsys_mask);
2bd59d48
TH
2122 if (ret)
2123 cgroup_free_root(root);
fa3ca07e 2124
8e30e2b8 2125out_unlock:
ddbcc7e8 2126 mutex_unlock(&cgroup_mutex);
a015edd2 2127out_free:
c6d57f33
PM
2128 kfree(opts.release_agent);
2129 kfree(opts.name);
03b1cde6 2130
2bd59d48 2131 if (ret)
8e30e2b8 2132 return ERR_PTR(ret);
2bd59d48 2133
c9482a5b
JZ
2134 dentry = kernfs_mount(fs_type, flags, root->kf_root,
2135 CGROUP_SUPER_MAGIC, &new_sb);
c6b3d5bc 2136 if (IS_ERR(dentry) || !new_sb)
3dd06ffa 2137 cgroup_put(&root->cgrp);
3a32bd72
LZ
2138
2139 /*
2140 * If @pinned_sb, we're reusing an existing root and holding an
2141 * extra ref on its sb. Mount is complete. Put the extra ref.
2142 */
2143 if (pinned_sb) {
2144 WARN_ON(new_sb);
2145 deactivate_super(pinned_sb);
2146 }
2147
2bd59d48
TH
2148 return dentry;
2149}
2150
2151static void cgroup_kill_sb(struct super_block *sb)
2152{
2153 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
3dd06ffa 2154 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2bd59d48 2155
9d755d33
TH
2156 /*
2157 * If @root doesn't have any mounts or children, start killing it.
2158 * This prevents new mounts by disabling percpu_ref_tryget_live().
2159 * cgroup_mount() may wait for @root's release.
1f779fb2
LZ
2160 *
2161 * And don't kill the default root.
9d755d33 2162 */
3c606d35 2163 if (!list_empty(&root->cgrp.self.children) ||
1f779fb2 2164 root == &cgrp_dfl_root)
9d755d33
TH
2165 cgroup_put(&root->cgrp);
2166 else
2167 percpu_ref_kill(&root->cgrp.self.refcnt);
2168
2bd59d48 2169 kernfs_kill_sb(sb);
ddbcc7e8
PM
2170}
2171
2172static struct file_system_type cgroup_fs_type = {
2173 .name = "cgroup",
f7e83571 2174 .mount = cgroup_mount,
ddbcc7e8
PM
2175 .kill_sb = cgroup_kill_sb,
2176};
2177
857a2beb 2178/**
913ffdb5 2179 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
857a2beb 2180 * @task: target task
857a2beb
TH
2181 * @buf: the buffer to write the path into
2182 * @buflen: the length of the buffer
2183 *
913ffdb5
TH
2184 * Determine @task's cgroup on the first (the one with the lowest non-zero
2185 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
2186 * function grabs cgroup_mutex and shouldn't be used inside locks used by
2187 * cgroup controller callbacks.
2188 *
e61734c5 2189 * Return value is the same as kernfs_path().
857a2beb 2190 */
e61734c5 2191char *task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
857a2beb 2192{
3dd06ffa 2193 struct cgroup_root *root;
913ffdb5 2194 struct cgroup *cgrp;
e61734c5
TH
2195 int hierarchy_id = 1;
2196 char *path = NULL;
857a2beb
TH
2197
2198 mutex_lock(&cgroup_mutex);
f0d9a5f1 2199 spin_lock_bh(&css_set_lock);
857a2beb 2200
913ffdb5
TH
2201 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
2202
857a2beb
TH
2203 if (root) {
2204 cgrp = task_cgroup_from_root(task, root);
e61734c5 2205 path = cgroup_path(cgrp, buf, buflen);
913ffdb5
TH
2206 } else {
2207 /* if no hierarchy exists, everyone is in "/" */
e61734c5
TH
2208 if (strlcpy(buf, "/", buflen) < buflen)
2209 path = buf;
857a2beb
TH
2210 }
2211
f0d9a5f1 2212 spin_unlock_bh(&css_set_lock);
857a2beb 2213 mutex_unlock(&cgroup_mutex);
e61734c5 2214 return path;
857a2beb 2215}
913ffdb5 2216EXPORT_SYMBOL_GPL(task_cgroup_path);
857a2beb 2217
b3dc094e 2218/* used to track tasks and other necessary states during migration */
2f7ee569 2219struct cgroup_taskset {
b3dc094e
TH
2220 /* the src and dst cset list running through cset->mg_node */
2221 struct list_head src_csets;
2222 struct list_head dst_csets;
2223
2224 /*
2225 * Fields for cgroup_taskset_*() iteration.
2226 *
2227 * Before migration is committed, the target migration tasks are on
2228 * ->mg_tasks of the csets on ->src_csets. After, on ->mg_tasks of
2229 * the csets on ->dst_csets. ->csets point to either ->src_csets
2230 * or ->dst_csets depending on whether migration is committed.
2231 *
2232 * ->cur_csets and ->cur_task point to the current task position
2233 * during iteration.
2234 */
2235 struct list_head *csets;
2236 struct css_set *cur_cset;
2237 struct task_struct *cur_task;
2f7ee569
TH
2238};
2239
adaae5dc
TH
2240#define CGROUP_TASKSET_INIT(tset) (struct cgroup_taskset){ \
2241 .src_csets = LIST_HEAD_INIT(tset.src_csets), \
2242 .dst_csets = LIST_HEAD_INIT(tset.dst_csets), \
2243 .csets = &tset.src_csets, \
2244}
2245
2246/**
2247 * cgroup_taskset_add - try to add a migration target task to a taskset
2248 * @task: target task
2249 * @tset: target taskset
2250 *
2251 * Add @task, which is a migration target, to @tset. This function becomes
2252 * noop if @task doesn't need to be migrated. @task's css_set should have
2253 * been added as a migration source and @task->cg_list will be moved from
2254 * the css_set's tasks list to mg_tasks one.
2255 */
2256static void cgroup_taskset_add(struct task_struct *task,
2257 struct cgroup_taskset *tset)
2258{
2259 struct css_set *cset;
2260
f0d9a5f1 2261 lockdep_assert_held(&css_set_lock);
adaae5dc
TH
2262
2263 /* @task either already exited or can't exit until the end */
2264 if (task->flags & PF_EXITING)
2265 return;
2266
2267 /* leave @task alone if post_fork() hasn't linked it yet */
2268 if (list_empty(&task->cg_list))
2269 return;
2270
2271 cset = task_css_set(task);
2272 if (!cset->mg_src_cgrp)
2273 return;
2274
2275 list_move_tail(&task->cg_list, &cset->mg_tasks);
2276 if (list_empty(&cset->mg_node))
2277 list_add_tail(&cset->mg_node, &tset->src_csets);
2278 if (list_empty(&cset->mg_dst_cset->mg_node))
2279 list_move_tail(&cset->mg_dst_cset->mg_node,
2280 &tset->dst_csets);
2281}
2282
2f7ee569
TH
2283/**
2284 * cgroup_taskset_first - reset taskset and return the first task
2285 * @tset: taskset of interest
2286 *
2287 * @tset iteration is initialized and the first task is returned.
2288 */
2289struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
2290{
b3dc094e
TH
2291 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2292 tset->cur_task = NULL;
2293
2294 return cgroup_taskset_next(tset);
2f7ee569 2295}
2f7ee569
TH
2296
2297/**
2298 * cgroup_taskset_next - iterate to the next task in taskset
2299 * @tset: taskset of interest
2300 *
2301 * Return the next task in @tset. Iteration must have been initialized
2302 * with cgroup_taskset_first().
2303 */
2304struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
2305{
b3dc094e
TH
2306 struct css_set *cset = tset->cur_cset;
2307 struct task_struct *task = tset->cur_task;
2f7ee569 2308
b3dc094e
TH
2309 while (&cset->mg_node != tset->csets) {
2310 if (!task)
2311 task = list_first_entry(&cset->mg_tasks,
2312 struct task_struct, cg_list);
2313 else
2314 task = list_next_entry(task, cg_list);
2f7ee569 2315
b3dc094e
TH
2316 if (&task->cg_list != &cset->mg_tasks) {
2317 tset->cur_cset = cset;
2318 tset->cur_task = task;
2319 return task;
2320 }
2f7ee569 2321
b3dc094e
TH
2322 cset = list_next_entry(cset, mg_node);
2323 task = NULL;
2324 }
2f7ee569 2325
b3dc094e 2326 return NULL;
2f7ee569 2327}
2f7ee569 2328
adaae5dc
TH
2329/**
2330 * cgroup_taskset_migrate - migrate a taskset to a cgroup
2331 * @tset: taget taskset
2332 * @dst_cgrp: destination cgroup
2333 *
2334 * Migrate tasks in @tset to @dst_cgrp. This function fails iff one of the
2335 * ->can_attach callbacks fails and guarantees that either all or none of
2336 * the tasks in @tset are migrated. @tset is consumed regardless of
2337 * success.
2338 */
2339static int cgroup_taskset_migrate(struct cgroup_taskset *tset,
2340 struct cgroup *dst_cgrp)
2341{
2342 struct cgroup_subsys_state *css, *failed_css = NULL;
2343 struct task_struct *task, *tmp_task;
2344 struct css_set *cset, *tmp_cset;
2345 int i, ret;
2346
2347 /* methods shouldn't be called if no task is actually migrating */
2348 if (list_empty(&tset->src_csets))
2349 return 0;
2350
2351 /* check that we can legitimately attach to the cgroup */
2352 for_each_e_css(css, i, dst_cgrp) {
2353 if (css->ss->can_attach) {
2354 ret = css->ss->can_attach(css, tset);
2355 if (ret) {
2356 failed_css = css;
2357 goto out_cancel_attach;
2358 }
2359 }
2360 }
2361
2362 /*
2363 * Now that we're guaranteed success, proceed to move all tasks to
2364 * the new cgroup. There are no failure cases after here, so this
2365 * is the commit point.
2366 */
f0d9a5f1 2367 spin_lock_bh(&css_set_lock);
adaae5dc 2368 list_for_each_entry(cset, &tset->src_csets, mg_node) {
f6d7d049
TH
2369 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2370 struct css_set *from_cset = task_css_set(task);
2371 struct css_set *to_cset = cset->mg_dst_cset;
2372
2373 get_css_set(to_cset);
2374 css_set_move_task(task, from_cset, to_cset, true);
2375 put_css_set_locked(from_cset);
2376 }
adaae5dc 2377 }
f0d9a5f1 2378 spin_unlock_bh(&css_set_lock);
adaae5dc
TH
2379
2380 /*
2381 * Migration is committed, all target tasks are now on dst_csets.
2382 * Nothing is sensitive to fork() after this point. Notify
2383 * controllers that migration is complete.
2384 */
2385 tset->csets = &tset->dst_csets;
2386
2387 for_each_e_css(css, i, dst_cgrp)
2388 if (css->ss->attach)
2389 css->ss->attach(css, tset);
2390
2391 ret = 0;
2392 goto out_release_tset;
2393
2394out_cancel_attach:
2395 for_each_e_css(css, i, dst_cgrp) {
2396 if (css == failed_css)
2397 break;
2398 if (css->ss->cancel_attach)
2399 css->ss->cancel_attach(css, tset);
2400 }
2401out_release_tset:
f0d9a5f1 2402 spin_lock_bh(&css_set_lock);
adaae5dc
TH
2403 list_splice_init(&tset->dst_csets, &tset->src_csets);
2404 list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2405 list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2406 list_del_init(&cset->mg_node);
2407 }
f0d9a5f1 2408 spin_unlock_bh(&css_set_lock);
adaae5dc
TH
2409 return ret;
2410}
2411
a043e3b2 2412/**
1958d2d5
TH
2413 * cgroup_migrate_finish - cleanup after attach
2414 * @preloaded_csets: list of preloaded css_sets
74a1166d 2415 *
1958d2d5
TH
2416 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
2417 * those functions for details.
74a1166d 2418 */
1958d2d5 2419static void cgroup_migrate_finish(struct list_head *preloaded_csets)
74a1166d 2420{
1958d2d5 2421 struct css_set *cset, *tmp_cset;
74a1166d 2422
1958d2d5
TH
2423 lockdep_assert_held(&cgroup_mutex);
2424
f0d9a5f1 2425 spin_lock_bh(&css_set_lock);
1958d2d5
TH
2426 list_for_each_entry_safe(cset, tmp_cset, preloaded_csets, mg_preload_node) {
2427 cset->mg_src_cgrp = NULL;
2428 cset->mg_dst_cset = NULL;
2429 list_del_init(&cset->mg_preload_node);
a25eb52e 2430 put_css_set_locked(cset);
1958d2d5 2431 }
f0d9a5f1 2432 spin_unlock_bh(&css_set_lock);
1958d2d5
TH
2433}
2434
2435/**
2436 * cgroup_migrate_add_src - add a migration source css_set
2437 * @src_cset: the source css_set to add
2438 * @dst_cgrp: the destination cgroup
2439 * @preloaded_csets: list of preloaded css_sets
2440 *
2441 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
2442 * @src_cset and add it to @preloaded_csets, which should later be cleaned
2443 * up by cgroup_migrate_finish().
2444 *
1ed13287
TH
2445 * This function may be called without holding cgroup_threadgroup_rwsem
2446 * even if the target is a process. Threads may be created and destroyed
2447 * but as long as cgroup_mutex is not dropped, no new css_set can be put
2448 * into play and the preloaded css_sets are guaranteed to cover all
2449 * migrations.
1958d2d5
TH
2450 */
2451static void cgroup_migrate_add_src(struct css_set *src_cset,
2452 struct cgroup *dst_cgrp,
2453 struct list_head *preloaded_csets)
2454{
2455 struct cgroup *src_cgrp;
2456
2457 lockdep_assert_held(&cgroup_mutex);
f0d9a5f1 2458 lockdep_assert_held(&css_set_lock);
1958d2d5
TH
2459
2460 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2461
1958d2d5
TH
2462 if (!list_empty(&src_cset->mg_preload_node))
2463 return;
2464
2465 WARN_ON(src_cset->mg_src_cgrp);
2466 WARN_ON(!list_empty(&src_cset->mg_tasks));
2467 WARN_ON(!list_empty(&src_cset->mg_node));
2468
2469 src_cset->mg_src_cgrp = src_cgrp;
2470 get_css_set(src_cset);
2471 list_add(&src_cset->mg_preload_node, preloaded_csets);
2472}
2473
2474/**
2475 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
f817de98 2476 * @dst_cgrp: the destination cgroup (may be %NULL)
1958d2d5
TH
2477 * @preloaded_csets: list of preloaded source css_sets
2478 *
2479 * Tasks are about to be moved to @dst_cgrp and all the source css_sets
2480 * have been preloaded to @preloaded_csets. This function looks up and
f817de98
TH
2481 * pins all destination css_sets, links each to its source, and append them
2482 * to @preloaded_csets. If @dst_cgrp is %NULL, the destination of each
2483 * source css_set is assumed to be its cgroup on the default hierarchy.
1958d2d5
TH
2484 *
2485 * This function must be called after cgroup_migrate_add_src() has been
2486 * called on each migration source css_set. After migration is performed
2487 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2488 * @preloaded_csets.
2489 */
2490static int cgroup_migrate_prepare_dst(struct cgroup *dst_cgrp,
2491 struct list_head *preloaded_csets)
2492{
2493 LIST_HEAD(csets);
f817de98 2494 struct css_set *src_cset, *tmp_cset;
1958d2d5
TH
2495
2496 lockdep_assert_held(&cgroup_mutex);
2497
f8f22e53
TH
2498 /*
2499 * Except for the root, child_subsys_mask must be zero for a cgroup
2500 * with tasks so that child cgroups don't compete against tasks.
2501 */
d51f39b0 2502 if (dst_cgrp && cgroup_on_dfl(dst_cgrp) && cgroup_parent(dst_cgrp) &&
f8f22e53
TH
2503 dst_cgrp->child_subsys_mask)
2504 return -EBUSY;
2505
1958d2d5 2506 /* look up the dst cset for each src cset and link it to src */
f817de98 2507 list_for_each_entry_safe(src_cset, tmp_cset, preloaded_csets, mg_preload_node) {
1958d2d5
TH
2508 struct css_set *dst_cset;
2509
f817de98
TH
2510 dst_cset = find_css_set(src_cset,
2511 dst_cgrp ?: src_cset->dfl_cgrp);
1958d2d5
TH
2512 if (!dst_cset)
2513 goto err;
2514
2515 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
f817de98
TH
2516
2517 /*
2518 * If src cset equals dst, it's noop. Drop the src.
2519 * cgroup_migrate() will skip the cset too. Note that we
2520 * can't handle src == dst as some nodes are used by both.
2521 */
2522 if (src_cset == dst_cset) {
2523 src_cset->mg_src_cgrp = NULL;
2524 list_del_init(&src_cset->mg_preload_node);
a25eb52e
ZL
2525 put_css_set(src_cset);
2526 put_css_set(dst_cset);
f817de98
TH
2527 continue;
2528 }
2529
1958d2d5
TH
2530 src_cset->mg_dst_cset = dst_cset;
2531
2532 if (list_empty(&dst_cset->mg_preload_node))
2533 list_add(&dst_cset->mg_preload_node, &csets);
2534 else
a25eb52e 2535 put_css_set(dst_cset);
1958d2d5
TH
2536 }
2537
f817de98 2538 list_splice_tail(&csets, preloaded_csets);
1958d2d5
TH
2539 return 0;
2540err:
2541 cgroup_migrate_finish(&csets);
2542 return -ENOMEM;
2543}
2544
2545/**
2546 * cgroup_migrate - migrate a process or task to a cgroup
1958d2d5
TH
2547 * @leader: the leader of the process or the task to migrate
2548 * @threadgroup: whether @leader points to the whole process or a single task
9af2ec45 2549 * @cgrp: the destination cgroup
1958d2d5
TH
2550 *
2551 * Migrate a process or task denoted by @leader to @cgrp. If migrating a
1ed13287 2552 * process, the caller must be holding cgroup_threadgroup_rwsem. The
1958d2d5
TH
2553 * caller is also responsible for invoking cgroup_migrate_add_src() and
2554 * cgroup_migrate_prepare_dst() on the targets before invoking this
2555 * function and following up with cgroup_migrate_finish().
2556 *
2557 * As long as a controller's ->can_attach() doesn't fail, this function is
2558 * guaranteed to succeed. This means that, excluding ->can_attach()
2559 * failure, when migrating multiple targets, the success or failure can be
2560 * decided for all targets by invoking group_migrate_prepare_dst() before
2561 * actually starting migrating.
2562 */
9af2ec45
TH
2563static int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2564 struct cgroup *cgrp)
74a1166d 2565{
adaae5dc
TH
2566 struct cgroup_taskset tset = CGROUP_TASKSET_INIT(tset);
2567 struct task_struct *task;
74a1166d 2568
fb5d2b4c
MSB
2569 /*
2570 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2571 * already PF_EXITING could be freed from underneath us unless we
2572 * take an rcu_read_lock.
2573 */
f0d9a5f1 2574 spin_lock_bh(&css_set_lock);
fb5d2b4c 2575 rcu_read_lock();
9db8de37 2576 task = leader;
74a1166d 2577 do {
adaae5dc 2578 cgroup_taskset_add(task, &tset);
081aa458
LZ
2579 if (!threadgroup)
2580 break;
9db8de37 2581 } while_each_thread(leader, task);
fb5d2b4c 2582 rcu_read_unlock();
f0d9a5f1 2583 spin_unlock_bh(&css_set_lock);
74a1166d 2584
adaae5dc 2585 return cgroup_taskset_migrate(&tset, cgrp);
74a1166d
BB
2586}
2587
1958d2d5
TH
2588/**
2589 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2590 * @dst_cgrp: the cgroup to attach to
2591 * @leader: the task or the leader of the threadgroup to be attached
2592 * @threadgroup: attach the whole threadgroup?
2593 *
1ed13287 2594 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
1958d2d5
TH
2595 */
2596static int cgroup_attach_task(struct cgroup *dst_cgrp,
2597 struct task_struct *leader, bool threadgroup)
2598{
2599 LIST_HEAD(preloaded_csets);
2600 struct task_struct *task;
2601 int ret;
2602
2603 /* look up all src csets */
f0d9a5f1 2604 spin_lock_bh(&css_set_lock);
1958d2d5
TH
2605 rcu_read_lock();
2606 task = leader;
2607 do {
2608 cgroup_migrate_add_src(task_css_set(task), dst_cgrp,
2609 &preloaded_csets);
2610 if (!threadgroup)
2611 break;
2612 } while_each_thread(leader, task);
2613 rcu_read_unlock();
f0d9a5f1 2614 spin_unlock_bh(&css_set_lock);
1958d2d5
TH
2615
2616 /* prepare dst csets and commit */
2617 ret = cgroup_migrate_prepare_dst(dst_cgrp, &preloaded_csets);
2618 if (!ret)
9af2ec45 2619 ret = cgroup_migrate(leader, threadgroup, dst_cgrp);
1958d2d5
TH
2620
2621 cgroup_migrate_finish(&preloaded_csets);
2622 return ret;
74a1166d
BB
2623}
2624
187fe840
TH
2625static int cgroup_procs_write_permission(struct task_struct *task,
2626 struct cgroup *dst_cgrp,
2627 struct kernfs_open_file *of)
dedf22e9
TH
2628{
2629 const struct cred *cred = current_cred();
2630 const struct cred *tcred = get_task_cred(task);
2631 int ret = 0;
2632
2633 /*
2634 * even if we're attaching all tasks in the thread group, we only
2635 * need to check permissions on one of them.
2636 */
2637 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2638 !uid_eq(cred->euid, tcred->uid) &&
2639 !uid_eq(cred->euid, tcred->suid))
2640 ret = -EACCES;
2641
187fe840
TH
2642 if (!ret && cgroup_on_dfl(dst_cgrp)) {
2643 struct super_block *sb = of->file->f_path.dentry->d_sb;
2644 struct cgroup *cgrp;
2645 struct inode *inode;
2646
f0d9a5f1 2647 spin_lock_bh(&css_set_lock);
187fe840 2648 cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
f0d9a5f1 2649 spin_unlock_bh(&css_set_lock);
187fe840
TH
2650
2651 while (!cgroup_is_descendant(dst_cgrp, cgrp))
2652 cgrp = cgroup_parent(cgrp);
2653
2654 ret = -ENOMEM;
6f60eade 2655 inode = kernfs_get_inode(sb, cgrp->procs_file.kn);
187fe840
TH
2656 if (inode) {
2657 ret = inode_permission(inode, MAY_WRITE);
2658 iput(inode);
2659 }
2660 }
2661
dedf22e9
TH
2662 put_cred(tcred);
2663 return ret;
2664}
2665
74a1166d
BB
2666/*
2667 * Find the task_struct of the task to attach by vpid and pass it along to the
cd3d0952 2668 * function to attach either it or all tasks in its threadgroup. Will lock
0e1d768f 2669 * cgroup_mutex and threadgroup.
bbcb81d0 2670 */
acbef755
TH
2671static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
2672 size_t nbytes, loff_t off, bool threadgroup)
bbcb81d0 2673{
bbcb81d0 2674 struct task_struct *tsk;
e76ecaee 2675 struct cgroup *cgrp;
acbef755 2676 pid_t pid;
bbcb81d0
PM
2677 int ret;
2678
acbef755
TH
2679 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2680 return -EINVAL;
2681
e76ecaee
TH
2682 cgrp = cgroup_kn_lock_live(of->kn);
2683 if (!cgrp)
74a1166d
BB
2684 return -ENODEV;
2685
3014dde7 2686 percpu_down_write(&cgroup_threadgroup_rwsem);
b78949eb 2687 rcu_read_lock();
bbcb81d0 2688 if (pid) {
73507f33 2689 tsk = find_task_by_vpid(pid);
74a1166d 2690 if (!tsk) {
dd4b0a46 2691 ret = -ESRCH;
3014dde7 2692 goto out_unlock_rcu;
bbcb81d0 2693 }
dedf22e9 2694 } else {
b78949eb 2695 tsk = current;
dedf22e9 2696 }
cd3d0952
TH
2697
2698 if (threadgroup)
b78949eb 2699 tsk = tsk->group_leader;
c4c27fbd
MG
2700
2701 /*
14a40ffc 2702 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
c4c27fbd
MG
2703 * trapped in a cpuset, or RT worker may be born in a cgroup
2704 * with no rt_runtime allocated. Just say no.
2705 */
14a40ffc 2706 if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
c4c27fbd 2707 ret = -EINVAL;
3014dde7 2708 goto out_unlock_rcu;
c4c27fbd
MG
2709 }
2710
b78949eb
MSB
2711 get_task_struct(tsk);
2712 rcu_read_unlock();
2713
187fe840 2714 ret = cgroup_procs_write_permission(tsk, cgrp, of);
dedf22e9
TH
2715 if (!ret)
2716 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
081aa458 2717
f9f9e7b7 2718 put_task_struct(tsk);
3014dde7
TH
2719 goto out_unlock_threadgroup;
2720
2721out_unlock_rcu:
2722 rcu_read_unlock();
2723out_unlock_threadgroup:
2724 percpu_up_write(&cgroup_threadgroup_rwsem);
e76ecaee 2725 cgroup_kn_unlock(of->kn);
acbef755 2726 return ret ?: nbytes;
bbcb81d0
PM
2727}
2728
7ae1bad9
TH
2729/**
2730 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2731 * @from: attach to all cgroups of a given task
2732 * @tsk: the task to be attached
2733 */
2734int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2735{
3dd06ffa 2736 struct cgroup_root *root;
7ae1bad9
TH
2737 int retval = 0;
2738
47cfcd09 2739 mutex_lock(&cgroup_mutex);
985ed670 2740 for_each_root(root) {
96d365e0
TH
2741 struct cgroup *from_cgrp;
2742
3dd06ffa 2743 if (root == &cgrp_dfl_root)
985ed670
TH
2744 continue;
2745
f0d9a5f1 2746 spin_lock_bh(&css_set_lock);
96d365e0 2747 from_cgrp = task_cgroup_from_root(from, root);
f0d9a5f1 2748 spin_unlock_bh(&css_set_lock);
7ae1bad9 2749
6f4b7e63 2750 retval = cgroup_attach_task(from_cgrp, tsk, false);
7ae1bad9
TH
2751 if (retval)
2752 break;
2753 }
47cfcd09 2754 mutex_unlock(&cgroup_mutex);
7ae1bad9
TH
2755
2756 return retval;
2757}
2758EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2759
acbef755
TH
2760static ssize_t cgroup_tasks_write(struct kernfs_open_file *of,
2761 char *buf, size_t nbytes, loff_t off)
74a1166d 2762{
acbef755 2763 return __cgroup_procs_write(of, buf, nbytes, off, false);
74a1166d
BB
2764}
2765
acbef755
TH
2766static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
2767 char *buf, size_t nbytes, loff_t off)
af351026 2768{
acbef755 2769 return __cgroup_procs_write(of, buf, nbytes, off, true);
af351026
PM
2770}
2771
451af504
TH
2772static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of,
2773 char *buf, size_t nbytes, loff_t off)
e788e066 2774{
e76ecaee 2775 struct cgroup *cgrp;
5f469907 2776
e76ecaee 2777 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
5f469907 2778
e76ecaee
TH
2779 cgrp = cgroup_kn_lock_live(of->kn);
2780 if (!cgrp)
e788e066 2781 return -ENODEV;
69e943b7 2782 spin_lock(&release_agent_path_lock);
e76ecaee
TH
2783 strlcpy(cgrp->root->release_agent_path, strstrip(buf),
2784 sizeof(cgrp->root->release_agent_path));
69e943b7 2785 spin_unlock(&release_agent_path_lock);
e76ecaee 2786 cgroup_kn_unlock(of->kn);
451af504 2787 return nbytes;
e788e066
PM
2788}
2789
2da8ca82 2790static int cgroup_release_agent_show(struct seq_file *seq, void *v)
e788e066 2791{
2da8ca82 2792 struct cgroup *cgrp = seq_css(seq)->cgroup;
182446d0 2793
46cfeb04 2794 spin_lock(&release_agent_path_lock);
e788e066 2795 seq_puts(seq, cgrp->root->release_agent_path);
46cfeb04 2796 spin_unlock(&release_agent_path_lock);
e788e066 2797 seq_putc(seq, '\n');
e788e066
PM
2798 return 0;
2799}
2800
2da8ca82 2801static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
873fe09e 2802{
c1d5d42e 2803 seq_puts(seq, "0\n");
e788e066
PM
2804 return 0;
2805}
2806
8ab456ac 2807static void cgroup_print_ss_mask(struct seq_file *seq, unsigned long ss_mask)
355e0c48 2808{
f8f22e53
TH
2809 struct cgroup_subsys *ss;
2810 bool printed = false;
2811 int ssid;
a742c59d 2812
a966a4ed
AS
2813 for_each_subsys_which(ss, ssid, &ss_mask) {
2814 if (printed)
2815 seq_putc(seq, ' ');
2816 seq_printf(seq, "%s", ss->name);
2817 printed = true;
e73d2c61 2818 }
f8f22e53
TH
2819 if (printed)
2820 seq_putc(seq, '\n');
355e0c48
PM
2821}
2822
f8f22e53
TH
2823/* show controllers which are currently attached to the default hierarchy */
2824static int cgroup_root_controllers_show(struct seq_file *seq, void *v)
db3b1497 2825{
f8f22e53
TH
2826 struct cgroup *cgrp = seq_css(seq)->cgroup;
2827
5533e011
TH
2828 cgroup_print_ss_mask(seq, cgrp->root->subsys_mask &
2829 ~cgrp_dfl_root_inhibit_ss_mask);
f8f22e53 2830 return 0;
db3b1497
PM
2831}
2832
f8f22e53
TH
2833/* show controllers which are enabled from the parent */
2834static int cgroup_controllers_show(struct seq_file *seq, void *v)
ddbcc7e8 2835{
f8f22e53
TH
2836 struct cgroup *cgrp = seq_css(seq)->cgroup;
2837
667c2491 2838 cgroup_print_ss_mask(seq, cgroup_parent(cgrp)->subtree_control);
f8f22e53 2839 return 0;
ddbcc7e8
PM
2840}
2841
f8f22e53
TH
2842/* show controllers which are enabled for a given cgroup's children */
2843static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
ddbcc7e8 2844{
f8f22e53
TH
2845 struct cgroup *cgrp = seq_css(seq)->cgroup;
2846
667c2491 2847 cgroup_print_ss_mask(seq, cgrp->subtree_control);
f8f22e53
TH
2848 return 0;
2849}
2850
2851/**
2852 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2853 * @cgrp: root of the subtree to update csses for
2854 *
2855 * @cgrp's child_subsys_mask has changed and its subtree's (self excluded)
2856 * css associations need to be updated accordingly. This function looks up
2857 * all css_sets which are attached to the subtree, creates the matching
2858 * updated css_sets and migrates the tasks to the new ones.
2859 */
2860static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2861{
2862 LIST_HEAD(preloaded_csets);
10265075 2863 struct cgroup_taskset tset = CGROUP_TASKSET_INIT(tset);
f8f22e53
TH
2864 struct cgroup_subsys_state *css;
2865 struct css_set *src_cset;
2866 int ret;
2867
f8f22e53
TH
2868 lockdep_assert_held(&cgroup_mutex);
2869
3014dde7
TH
2870 percpu_down_write(&cgroup_threadgroup_rwsem);
2871
f8f22e53 2872 /* look up all csses currently attached to @cgrp's subtree */
f0d9a5f1 2873 spin_lock_bh(&css_set_lock);
f8f22e53
TH
2874 css_for_each_descendant_pre(css, cgroup_css(cgrp, NULL)) {
2875 struct cgrp_cset_link *link;
2876
2877 /* self is not affected by child_subsys_mask change */
2878 if (css->cgroup == cgrp)
2879 continue;
2880
2881 list_for_each_entry(link, &css->cgroup->cset_links, cset_link)
2882 cgroup_migrate_add_src(link->cset, cgrp,
2883 &preloaded_csets);
2884 }
f0d9a5f1 2885 spin_unlock_bh(&css_set_lock);
f8f22e53
TH
2886
2887 /* NULL dst indicates self on default hierarchy */
2888 ret = cgroup_migrate_prepare_dst(NULL, &preloaded_csets);
2889 if (ret)
2890 goto out_finish;
2891
f0d9a5f1 2892 spin_lock_bh(&css_set_lock);
f8f22e53 2893 list_for_each_entry(src_cset, &preloaded_csets, mg_preload_node) {
10265075 2894 struct task_struct *task, *ntask;
f8f22e53
TH
2895
2896 /* src_csets precede dst_csets, break on the first dst_cset */
2897 if (!src_cset->mg_src_cgrp)
2898 break;
2899
10265075
TH
2900 /* all tasks in src_csets need to be migrated */
2901 list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
2902 cgroup_taskset_add(task, &tset);
f8f22e53 2903 }
f0d9a5f1 2904 spin_unlock_bh(&css_set_lock);
f8f22e53 2905
10265075 2906 ret = cgroup_taskset_migrate(&tset, cgrp);
f8f22e53
TH
2907out_finish:
2908 cgroup_migrate_finish(&preloaded_csets);
3014dde7 2909 percpu_up_write(&cgroup_threadgroup_rwsem);
f8f22e53
TH
2910 return ret;
2911}
2912
2913/* change the enabled child controllers for a cgroup in the default hierarchy */
451af504
TH
2914static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
2915 char *buf, size_t nbytes,
2916 loff_t off)
f8f22e53 2917{
8ab456ac
AS
2918 unsigned long enable = 0, disable = 0;
2919 unsigned long css_enable, css_disable, old_sc, new_sc, old_ss, new_ss;
a9746d8d 2920 struct cgroup *cgrp, *child;
f8f22e53 2921 struct cgroup_subsys *ss;
451af504 2922 char *tok;
f8f22e53
TH
2923 int ssid, ret;
2924
2925 /*
d37167ab
TH
2926 * Parse input - space separated list of subsystem names prefixed
2927 * with either + or -.
f8f22e53 2928 */
451af504
TH
2929 buf = strstrip(buf);
2930 while ((tok = strsep(&buf, " "))) {
a966a4ed
AS
2931 unsigned long tmp_ss_mask = ~cgrp_dfl_root_inhibit_ss_mask;
2932
d37167ab
TH
2933 if (tok[0] == '\0')
2934 continue;
a966a4ed 2935 for_each_subsys_which(ss, ssid, &tmp_ss_mask) {
fc5ed1e9
TH
2936 if (!cgroup_ssid_enabled(ssid) ||
2937 strcmp(tok + 1, ss->name))
f8f22e53
TH
2938 continue;
2939
2940 if (*tok == '+') {
7d331fa9
TH
2941 enable |= 1 << ssid;
2942 disable &= ~(1 << ssid);
f8f22e53 2943 } else if (*tok == '-') {
7d331fa9
TH
2944 disable |= 1 << ssid;
2945 enable &= ~(1 << ssid);
f8f22e53
TH
2946 } else {
2947 return -EINVAL;
2948 }
2949 break;
2950 }
2951 if (ssid == CGROUP_SUBSYS_COUNT)
2952 return -EINVAL;
2953 }
2954
a9746d8d
TH
2955 cgrp = cgroup_kn_lock_live(of->kn);
2956 if (!cgrp)
2957 return -ENODEV;
f8f22e53
TH
2958
2959 for_each_subsys(ss, ssid) {
2960 if (enable & (1 << ssid)) {
667c2491 2961 if (cgrp->subtree_control & (1 << ssid)) {
f8f22e53
TH
2962 enable &= ~(1 << ssid);
2963 continue;
2964 }
2965
c29adf24
TH
2966 /* unavailable or not enabled on the parent? */
2967 if (!(cgrp_dfl_root.subsys_mask & (1 << ssid)) ||
2968 (cgroup_parent(cgrp) &&
667c2491 2969 !(cgroup_parent(cgrp)->subtree_control & (1 << ssid)))) {
c29adf24
TH
2970 ret = -ENOENT;
2971 goto out_unlock;
2972 }
f8f22e53 2973 } else if (disable & (1 << ssid)) {
667c2491 2974 if (!(cgrp->subtree_control & (1 << ssid))) {
f8f22e53
TH
2975 disable &= ~(1 << ssid);
2976 continue;
2977 }
2978
2979 /* a child has it enabled? */
2980 cgroup_for_each_live_child(child, cgrp) {
667c2491 2981 if (child->subtree_control & (1 << ssid)) {
f8f22e53 2982 ret = -EBUSY;
ddab2b6e 2983 goto out_unlock;
f8f22e53
TH
2984 }
2985 }
2986 }
2987 }
2988
2989 if (!enable && !disable) {
2990 ret = 0;
ddab2b6e 2991 goto out_unlock;
f8f22e53
TH
2992 }
2993
2994 /*
667c2491 2995 * Except for the root, subtree_control must be zero for a cgroup
f8f22e53
TH
2996 * with tasks so that child cgroups don't compete against tasks.
2997 */
d51f39b0 2998 if (enable && cgroup_parent(cgrp) && !list_empty(&cgrp->cset_links)) {
f8f22e53
TH
2999 ret = -EBUSY;
3000 goto out_unlock;
3001 }
3002
3003 /*
f63070d3
TH
3004 * Update subsys masks and calculate what needs to be done. More
3005 * subsystems than specified may need to be enabled or disabled
3006 * depending on subsystem dependencies.
3007 */
755bf5ee
TH
3008 old_sc = cgrp->subtree_control;
3009 old_ss = cgrp->child_subsys_mask;
3010 new_sc = (old_sc | enable) & ~disable;
3011 new_ss = cgroup_calc_child_subsys_mask(cgrp, new_sc);
f63070d3 3012
755bf5ee
TH
3013 css_enable = ~old_ss & new_ss;
3014 css_disable = old_ss & ~new_ss;
f63070d3
TH
3015 enable |= css_enable;
3016 disable |= css_disable;
c29adf24 3017
db6e3053
TH
3018 /*
3019 * Because css offlining is asynchronous, userland might try to
3020 * re-enable the same controller while the previous instance is
3021 * still around. In such cases, wait till it's gone using
3022 * offline_waitq.
3023 */
a966a4ed 3024 for_each_subsys_which(ss, ssid, &css_enable) {
db6e3053
TH
3025 cgroup_for_each_live_child(child, cgrp) {
3026 DEFINE_WAIT(wait);
3027
3028 if (!cgroup_css(child, ss))
3029 continue;
3030
3031 cgroup_get(child);
3032 prepare_to_wait(&child->offline_waitq, &wait,
3033 TASK_UNINTERRUPTIBLE);
3034 cgroup_kn_unlock(of->kn);
3035 schedule();
3036 finish_wait(&child->offline_waitq, &wait);
3037 cgroup_put(child);
3038
3039 return restart_syscall();
3040 }
3041 }
3042
755bf5ee
TH
3043 cgrp->subtree_control = new_sc;
3044 cgrp->child_subsys_mask = new_ss;
3045
f63070d3
TH
3046 /*
3047 * Create new csses or make the existing ones visible. A css is
3048 * created invisible if it's being implicitly enabled through
3049 * dependency. An invisible css is made visible when the userland
3050 * explicitly enables it.
f8f22e53
TH
3051 */
3052 for_each_subsys(ss, ssid) {
3053 if (!(enable & (1 << ssid)))
3054 continue;
3055
3056 cgroup_for_each_live_child(child, cgrp) {
f63070d3
TH
3057 if (css_enable & (1 << ssid))
3058 ret = create_css(child, ss,
3059 cgrp->subtree_control & (1 << ssid));
3060 else
4df8dc90
TH
3061 ret = css_populate_dir(cgroup_css(child, ss),
3062 NULL);
f8f22e53
TH
3063 if (ret)
3064 goto err_undo_css;
3065 }
3066 }
3067
c29adf24
TH
3068 /*
3069 * At this point, cgroup_e_css() results reflect the new csses
3070 * making the following cgroup_update_dfl_csses() properly update
3071 * css associations of all tasks in the subtree.
3072 */
f8f22e53
TH
3073 ret = cgroup_update_dfl_csses(cgrp);
3074 if (ret)
3075 goto err_undo_css;
3076
f63070d3
TH
3077 /*
3078 * All tasks are migrated out of disabled csses. Kill or hide
3079 * them. A css is hidden when the userland requests it to be
b4536f0c
TH
3080 * disabled while other subsystems are still depending on it. The
3081 * css must not actively control resources and be in the vanilla
3082 * state if it's made visible again later. Controllers which may
3083 * be depended upon should provide ->css_reset() for this purpose.
f63070d3 3084 */
f8f22e53
TH
3085 for_each_subsys(ss, ssid) {
3086 if (!(disable & (1 << ssid)))
3087 continue;
3088
f63070d3 3089 cgroup_for_each_live_child(child, cgrp) {
b4536f0c
TH
3090 struct cgroup_subsys_state *css = cgroup_css(child, ss);
3091
3092 if (css_disable & (1 << ssid)) {
3093 kill_css(css);
3094 } else {
4df8dc90 3095 css_clear_dir(css, NULL);
b4536f0c
TH
3096 if (ss->css_reset)
3097 ss->css_reset(css);
3098 }
f63070d3 3099 }
f8f22e53
TH
3100 }
3101
56c807ba
TH
3102 /*
3103 * The effective csses of all the descendants (excluding @cgrp) may
3104 * have changed. Subsystems can optionally subscribe to this event
3105 * by implementing ->css_e_css_changed() which is invoked if any of
3106 * the effective csses seen from the css's cgroup may have changed.
3107 */
3108 for_each_subsys(ss, ssid) {
3109 struct cgroup_subsys_state *this_css = cgroup_css(cgrp, ss);
3110 struct cgroup_subsys_state *css;
3111
3112 if (!ss->css_e_css_changed || !this_css)
3113 continue;
3114
3115 css_for_each_descendant_pre(css, this_css)
3116 if (css != this_css)
3117 ss->css_e_css_changed(css);
3118 }
3119
f8f22e53
TH
3120 kernfs_activate(cgrp->kn);
3121 ret = 0;
3122out_unlock:
a9746d8d 3123 cgroup_kn_unlock(of->kn);
451af504 3124 return ret ?: nbytes;
f8f22e53
TH
3125
3126err_undo_css:
755bf5ee
TH
3127 cgrp->subtree_control = old_sc;
3128 cgrp->child_subsys_mask = old_ss;
f8f22e53
TH
3129
3130 for_each_subsys(ss, ssid) {
3131 if (!(enable & (1 << ssid)))
3132 continue;
3133
3134 cgroup_for_each_live_child(child, cgrp) {
3135 struct cgroup_subsys_state *css = cgroup_css(child, ss);
f63070d3
TH
3136
3137 if (!css)
3138 continue;
3139
3140 if (css_enable & (1 << ssid))
f8f22e53 3141 kill_css(css);
f63070d3 3142 else
4df8dc90 3143 css_clear_dir(css, NULL);
f8f22e53
TH
3144 }
3145 }
3146 goto out_unlock;
3147}
3148
4a07c222 3149static int cgroup_events_show(struct seq_file *seq, void *v)
842b597e 3150{
4a07c222 3151 seq_printf(seq, "populated %d\n",
27bd4dbb 3152 cgroup_is_populated(seq_css(seq)->cgroup));
842b597e
TH
3153 return 0;
3154}
3155
2bd59d48
TH
3156static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
3157 size_t nbytes, loff_t off)
355e0c48 3158{
2bd59d48
TH
3159 struct cgroup *cgrp = of->kn->parent->priv;
3160 struct cftype *cft = of->kn->priv;
3161 struct cgroup_subsys_state *css;
a742c59d 3162 int ret;
355e0c48 3163
b4168640
TH
3164 if (cft->write)
3165 return cft->write(of, buf, nbytes, off);
3166
2bd59d48
TH
3167 /*
3168 * kernfs guarantees that a file isn't deleted with operations in
3169 * flight, which means that the matching css is and stays alive and
3170 * doesn't need to be pinned. The RCU locking is not necessary
3171 * either. It's just for the convenience of using cgroup_css().
3172 */
3173 rcu_read_lock();
3174 css = cgroup_css(cgrp, cft->ss);
3175 rcu_read_unlock();
a742c59d 3176
451af504 3177 if (cft->write_u64) {
a742c59d
TH
3178 unsigned long long v;
3179 ret = kstrtoull(buf, 0, &v);
3180 if (!ret)
3181 ret = cft->write_u64(css, cft, v);
3182 } else if (cft->write_s64) {
3183 long long v;
3184 ret = kstrtoll(buf, 0, &v);
3185 if (!ret)
3186 ret = cft->write_s64(css, cft, v);
e73d2c61 3187 } else {
a742c59d 3188 ret = -EINVAL;
e73d2c61 3189 }
2bd59d48 3190
a742c59d 3191 return ret ?: nbytes;
355e0c48
PM
3192}
3193
6612f05b 3194static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
db3b1497 3195{
2bd59d48 3196 return seq_cft(seq)->seq_start(seq, ppos);
db3b1497
PM
3197}
3198
6612f05b 3199static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
ddbcc7e8 3200{
2bd59d48 3201 return seq_cft(seq)->seq_next(seq, v, ppos);
ddbcc7e8
PM
3202}
3203
6612f05b 3204static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
ddbcc7e8 3205{
2bd59d48 3206 seq_cft(seq)->seq_stop(seq, v);
ddbcc7e8
PM
3207}
3208
91796569 3209static int cgroup_seqfile_show(struct seq_file *m, void *arg)
e73d2c61 3210{
7da11279
TH
3211 struct cftype *cft = seq_cft(m);
3212 struct cgroup_subsys_state *css = seq_css(m);
e73d2c61 3213
2da8ca82
TH
3214 if (cft->seq_show)
3215 return cft->seq_show(m, arg);
e73d2c61 3216
f4c753b7 3217 if (cft->read_u64)
896f5199
TH
3218 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
3219 else if (cft->read_s64)
3220 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
3221 else
3222 return -EINVAL;
3223 return 0;
91796569
PM
3224}
3225
2bd59d48
TH
3226static struct kernfs_ops cgroup_kf_single_ops = {
3227 .atomic_write_len = PAGE_SIZE,
3228 .write = cgroup_file_write,
3229 .seq_show = cgroup_seqfile_show,
91796569
PM
3230};
3231
2bd59d48
TH
3232static struct kernfs_ops cgroup_kf_ops = {
3233 .atomic_write_len = PAGE_SIZE,
3234 .write = cgroup_file_write,
3235 .seq_start = cgroup_seqfile_start,
3236 .seq_next = cgroup_seqfile_next,
3237 .seq_stop = cgroup_seqfile_stop,
3238 .seq_show = cgroup_seqfile_show,
3239};
ddbcc7e8
PM
3240
3241/*
3242 * cgroup_rename - Only allow simple rename of directories in place.
3243 */
2bd59d48
TH
3244static int cgroup_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
3245 const char *new_name_str)
ddbcc7e8 3246{
2bd59d48 3247 struct cgroup *cgrp = kn->priv;
65dff759 3248 int ret;
65dff759 3249
2bd59d48 3250 if (kernfs_type(kn) != KERNFS_DIR)
ddbcc7e8 3251 return -ENOTDIR;
2bd59d48 3252 if (kn->parent != new_parent)
ddbcc7e8 3253 return -EIO;
65dff759 3254
6db8e85c
TH
3255 /*
3256 * This isn't a proper migration and its usefulness is very
aa6ec29b 3257 * limited. Disallow on the default hierarchy.
6db8e85c 3258 */
aa6ec29b 3259 if (cgroup_on_dfl(cgrp))
6db8e85c 3260 return -EPERM;
099fca32 3261
e1b2dc17 3262 /*
8353da1f 3263 * We're gonna grab cgroup_mutex which nests outside kernfs
e1b2dc17 3264 * active_ref. kernfs_rename() doesn't require active_ref
8353da1f 3265 * protection. Break them before grabbing cgroup_mutex.
e1b2dc17
TH
3266 */
3267 kernfs_break_active_protection(new_parent);
3268 kernfs_break_active_protection(kn);
099fca32 3269
2bd59d48 3270 mutex_lock(&cgroup_mutex);
099fca32 3271
2bd59d48 3272 ret = kernfs_rename(kn, new_parent, new_name_str);
099fca32 3273
2bd59d48 3274 mutex_unlock(&cgroup_mutex);
e1b2dc17
TH
3275
3276 kernfs_unbreak_active_protection(kn);
3277 kernfs_unbreak_active_protection(new_parent);
2bd59d48 3278 return ret;
099fca32
LZ
3279}
3280
49957f8e
TH
3281/* set uid and gid of cgroup dirs and files to that of the creator */
3282static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3283{
3284 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3285 .ia_uid = current_fsuid(),
3286 .ia_gid = current_fsgid(), };
3287
3288 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3289 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
3290 return 0;
3291
3292 return kernfs_setattr(kn, &iattr);
3293}
3294
4df8dc90
TH
3295static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
3296 struct cftype *cft)
ddbcc7e8 3297{
8d7e6fb0 3298 char name[CGROUP_FILE_NAME_MAX];
2bd59d48
TH
3299 struct kernfs_node *kn;
3300 struct lock_class_key *key = NULL;
49957f8e 3301 int ret;
05ef1d7c 3302
2bd59d48
TH
3303#ifdef CONFIG_DEBUG_LOCK_ALLOC
3304 key = &cft->lockdep_key;
3305#endif
3306 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
3307 cgroup_file_mode(cft), 0, cft->kf_ops, cft,
dfeb0750 3308 NULL, key);
49957f8e
TH
3309 if (IS_ERR(kn))
3310 return PTR_ERR(kn);
3311
3312 ret = cgroup_kn_set_ugid(kn);
f8f22e53 3313 if (ret) {
49957f8e 3314 kernfs_remove(kn);
f8f22e53
TH
3315 return ret;
3316 }
3317
6f60eade
TH
3318 if (cft->file_offset) {
3319 struct cgroup_file *cfile = (void *)css + cft->file_offset;
3320
3321 kernfs_get(kn);
3322 cfile->kn = kn;
3323 list_add(&cfile->node, &css->files);
3324 }
3325
f8f22e53 3326 return 0;
ddbcc7e8
PM
3327}
3328
b1f28d31
TH
3329/**
3330 * cgroup_addrm_files - add or remove files to a cgroup directory
4df8dc90
TH
3331 * @css: the target css
3332 * @cgrp: the target cgroup (usually css->cgroup)
b1f28d31
TH
3333 * @cfts: array of cftypes to be added
3334 * @is_add: whether to add or remove
3335 *
3336 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
6732ed85 3337 * For removals, this function never fails.
b1f28d31 3338 */
4df8dc90
TH
3339static int cgroup_addrm_files(struct cgroup_subsys_state *css,
3340 struct cgroup *cgrp, struct cftype cfts[],
2bb566cb 3341 bool is_add)
ddbcc7e8 3342{
6732ed85 3343 struct cftype *cft, *cft_end = NULL;
b1f28d31
TH
3344 int ret;
3345
01f6474c 3346 lockdep_assert_held(&cgroup_mutex);
db0416b6 3347
6732ed85
TH
3348restart:
3349 for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
f33fddc2 3350 /* does cft->flags tell us to skip this file on @cgrp? */
05ebb6e6 3351 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
8cbbf2c9 3352 continue;
05ebb6e6 3353 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
873fe09e 3354 continue;
d51f39b0 3355 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
f33fddc2 3356 continue;
d51f39b0 3357 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
f33fddc2
G
3358 continue;
3359
2739d3cc 3360 if (is_add) {
4df8dc90 3361 ret = cgroup_add_file(css, cgrp, cft);
b1f28d31 3362 if (ret) {
ed3d261b
JP
3363 pr_warn("%s: failed to add %s, err=%d\n",
3364 __func__, cft->name, ret);
6732ed85
TH
3365 cft_end = cft;
3366 is_add = false;
3367 goto restart;
b1f28d31 3368 }
2739d3cc
LZ
3369 } else {
3370 cgroup_rm_file(cgrp, cft);
db0416b6 3371 }
ddbcc7e8 3372 }
b1f28d31 3373 return 0;
ddbcc7e8
PM
3374}
3375
21a2d343 3376static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
8e3f6541
TH
3377{
3378 LIST_HEAD(pending);
2bb566cb 3379 struct cgroup_subsys *ss = cfts[0].ss;
3dd06ffa 3380 struct cgroup *root = &ss->root->cgrp;
492eb21b 3381 struct cgroup_subsys_state *css;
9ccece80 3382 int ret = 0;
8e3f6541 3383
01f6474c 3384 lockdep_assert_held(&cgroup_mutex);
e8c82d20 3385
e8c82d20 3386 /* add/rm files for all cgroups created before */
ca8bdcaf 3387 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
492eb21b
TH
3388 struct cgroup *cgrp = css->cgroup;
3389
e8c82d20
LZ
3390 if (cgroup_is_dead(cgrp))
3391 continue;
3392
4df8dc90 3393 ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
9ccece80
TH
3394 if (ret)
3395 break;
8e3f6541 3396 }
21a2d343
TH
3397
3398 if (is_add && !ret)
3399 kernfs_activate(root->kn);
9ccece80 3400 return ret;
8e3f6541
TH
3401}
3402
2da440a2 3403static void cgroup_exit_cftypes(struct cftype *cfts)
8e3f6541 3404{
2bb566cb 3405 struct cftype *cft;
8e3f6541 3406
2bd59d48
TH
3407 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3408 /* free copy for custom atomic_write_len, see init_cftypes() */
3409 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
3410 kfree(cft->kf_ops);
3411 cft->kf_ops = NULL;
2da440a2 3412 cft->ss = NULL;
a8ddc821
TH
3413
3414 /* revert flags set by cgroup core while adding @cfts */
05ebb6e6 3415 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
2bd59d48 3416 }
2da440a2
TH
3417}
3418
2bd59d48 3419static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
2da440a2
TH
3420{
3421 struct cftype *cft;
3422
2bd59d48
TH
3423 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3424 struct kernfs_ops *kf_ops;
3425
0adb0704
TH
3426 WARN_ON(cft->ss || cft->kf_ops);
3427
2bd59d48
TH
3428 if (cft->seq_start)
3429 kf_ops = &cgroup_kf_ops;
3430 else
3431 kf_ops = &cgroup_kf_single_ops;
3432
3433 /*
3434 * Ugh... if @cft wants a custom max_write_len, we need to
3435 * make a copy of kf_ops to set its atomic_write_len.
3436 */
3437 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
3438 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
3439 if (!kf_ops) {
3440 cgroup_exit_cftypes(cfts);
3441 return -ENOMEM;
3442 }
3443 kf_ops->atomic_write_len = cft->max_write_len;
3444 }
8e3f6541 3445
2bd59d48 3446 cft->kf_ops = kf_ops;
2bb566cb 3447 cft->ss = ss;
2bd59d48 3448 }
2bb566cb 3449
2bd59d48 3450 return 0;
2da440a2
TH
3451}
3452
21a2d343
TH
3453static int cgroup_rm_cftypes_locked(struct cftype *cfts)
3454{
01f6474c 3455 lockdep_assert_held(&cgroup_mutex);
21a2d343
TH
3456
3457 if (!cfts || !cfts[0].ss)
3458 return -ENOENT;
3459
3460 list_del(&cfts->node);
3461 cgroup_apply_cftypes(cfts, false);
3462 cgroup_exit_cftypes(cfts);
3463 return 0;
8e3f6541 3464}
8e3f6541 3465
79578621
TH
3466/**
3467 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
79578621
TH
3468 * @cfts: zero-length name terminated array of cftypes
3469 *
2bb566cb
TH
3470 * Unregister @cfts. Files described by @cfts are removed from all
3471 * existing cgroups and all future cgroups won't have them either. This
3472 * function can be called anytime whether @cfts' subsys is attached or not.
79578621
TH
3473 *
3474 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
2bb566cb 3475 * registered.
79578621 3476 */
2bb566cb 3477int cgroup_rm_cftypes(struct cftype *cfts)
79578621 3478{
21a2d343 3479 int ret;
79578621 3480
01f6474c 3481 mutex_lock(&cgroup_mutex);
21a2d343 3482 ret = cgroup_rm_cftypes_locked(cfts);
01f6474c 3483 mutex_unlock(&cgroup_mutex);
21a2d343 3484 return ret;
80b13586
TH
3485}
3486
8e3f6541
TH
3487/**
3488 * cgroup_add_cftypes - add an array of cftypes to a subsystem
3489 * @ss: target cgroup subsystem
3490 * @cfts: zero-length name terminated array of cftypes
3491 *
3492 * Register @cfts to @ss. Files described by @cfts are created for all
3493 * existing cgroups to which @ss is attached and all future cgroups will
3494 * have them too. This function can be called anytime whether @ss is
3495 * attached or not.
3496 *
3497 * Returns 0 on successful registration, -errno on failure. Note that this
3498 * function currently returns 0 as long as @cfts registration is successful
3499 * even if some file creation attempts on existing cgroups fail.
3500 */
2cf669a5 3501static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
8e3f6541 3502{
9ccece80 3503 int ret;
8e3f6541 3504
fc5ed1e9 3505 if (!cgroup_ssid_enabled(ss->id))
c731ae1d
LZ
3506 return 0;
3507
dc5736ed
LZ
3508 if (!cfts || cfts[0].name[0] == '\0')
3509 return 0;
2bb566cb 3510
2bd59d48
TH
3511 ret = cgroup_init_cftypes(ss, cfts);
3512 if (ret)
3513 return ret;
79578621 3514
01f6474c 3515 mutex_lock(&cgroup_mutex);
21a2d343 3516
0adb0704 3517 list_add_tail(&cfts->node, &ss->cfts);
21a2d343 3518 ret = cgroup_apply_cftypes(cfts, true);
9ccece80 3519 if (ret)
21a2d343 3520 cgroup_rm_cftypes_locked(cfts);
79578621 3521
01f6474c 3522 mutex_unlock(&cgroup_mutex);
9ccece80 3523 return ret;
79578621
TH
3524}
3525
a8ddc821
TH
3526/**
3527 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
3528 * @ss: target cgroup subsystem
3529 * @cfts: zero-length name terminated array of cftypes
3530 *
3531 * Similar to cgroup_add_cftypes() but the added files are only used for
3532 * the default hierarchy.
3533 */
3534int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3535{
3536 struct cftype *cft;
3537
3538 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
05ebb6e6 3539 cft->flags |= __CFTYPE_ONLY_ON_DFL;
a8ddc821
TH
3540 return cgroup_add_cftypes(ss, cfts);
3541}
3542
3543/**
3544 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
3545 * @ss: target cgroup subsystem
3546 * @cfts: zero-length name terminated array of cftypes
3547 *
3548 * Similar to cgroup_add_cftypes() but the added files are only used for
3549 * the legacy hierarchies.
3550 */
2cf669a5
TH
3551int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3552{
a8ddc821
TH
3553 struct cftype *cft;
3554
fa8137be
VG
3555 /*
3556 * If legacy_flies_on_dfl, we want to show the legacy files on the
3557 * dfl hierarchy but iff the target subsystem hasn't been updated
3558 * for the dfl hierarchy yet.
3559 */
3560 if (!cgroup_legacy_files_on_dfl ||
3561 ss->dfl_cftypes != ss->legacy_cftypes) {
3562 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3563 cft->flags |= __CFTYPE_NOT_ON_DFL;
3564 }
3565
2cf669a5
TH
3566 return cgroup_add_cftypes(ss, cfts);
3567}
3568
a043e3b2
LZ
3569/**
3570 * cgroup_task_count - count the number of tasks in a cgroup.
3571 * @cgrp: the cgroup in question
3572 *
3573 * Return the number of tasks in the cgroup.
3574 */
07bc356e 3575static int cgroup_task_count(const struct cgroup *cgrp)
bbcb81d0
PM
3576{
3577 int count = 0;
69d0206c 3578 struct cgrp_cset_link *link;
817929ec 3579
f0d9a5f1 3580 spin_lock_bh(&css_set_lock);
69d0206c
TH
3581 list_for_each_entry(link, &cgrp->cset_links, cset_link)
3582 count += atomic_read(&link->cset->refcount);
f0d9a5f1 3583 spin_unlock_bh(&css_set_lock);
bbcb81d0
PM
3584 return count;
3585}
3586
53fa5261 3587/**
492eb21b 3588 * css_next_child - find the next child of a given css
c2931b70
TH
3589 * @pos: the current position (%NULL to initiate traversal)
3590 * @parent: css whose children to walk
53fa5261 3591 *
c2931b70 3592 * This function returns the next child of @parent and should be called
87fb54f1 3593 * under either cgroup_mutex or RCU read lock. The only requirement is
c2931b70
TH
3594 * that @parent and @pos are accessible. The next sibling is guaranteed to
3595 * be returned regardless of their states.
3596 *
3597 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3598 * css which finished ->css_online() is guaranteed to be visible in the
3599 * future iterations and will stay visible until the last reference is put.
3600 * A css which hasn't finished ->css_online() or already finished
3601 * ->css_offline() may show up during traversal. It's each subsystem's
3602 * responsibility to synchronize against on/offlining.
53fa5261 3603 */
c2931b70
TH
3604struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
3605 struct cgroup_subsys_state *parent)
53fa5261 3606{
c2931b70 3607 struct cgroup_subsys_state *next;
53fa5261 3608
8353da1f 3609 cgroup_assert_mutex_or_rcu_locked();
53fa5261
TH
3610
3611 /*
de3f0341
TH
3612 * @pos could already have been unlinked from the sibling list.
3613 * Once a cgroup is removed, its ->sibling.next is no longer
3614 * updated when its next sibling changes. CSS_RELEASED is set when
3615 * @pos is taken off list, at which time its next pointer is valid,
3616 * and, as releases are serialized, the one pointed to by the next
3617 * pointer is guaranteed to not have started release yet. This
3618 * implies that if we observe !CSS_RELEASED on @pos in this RCU
3619 * critical section, the one pointed to by its next pointer is
3620 * guaranteed to not have finished its RCU grace period even if we
3621 * have dropped rcu_read_lock() inbetween iterations.
3b287a50 3622 *
de3f0341
TH
3623 * If @pos has CSS_RELEASED set, its next pointer can't be
3624 * dereferenced; however, as each css is given a monotonically
3625 * increasing unique serial number and always appended to the
3626 * sibling list, the next one can be found by walking the parent's
3627 * children until the first css with higher serial number than
3628 * @pos's. While this path can be slower, it happens iff iteration
3629 * races against release and the race window is very small.
53fa5261 3630 */
3b287a50 3631 if (!pos) {
c2931b70
TH
3632 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
3633 } else if (likely(!(pos->flags & CSS_RELEASED))) {
3634 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
3b287a50 3635 } else {
c2931b70 3636 list_for_each_entry_rcu(next, &parent->children, sibling)
3b287a50
TH
3637 if (next->serial_nr > pos->serial_nr)
3638 break;
53fa5261
TH
3639 }
3640
3b281afb
TH
3641 /*
3642 * @next, if not pointing to the head, can be dereferenced and is
c2931b70 3643 * the next sibling.
3b281afb 3644 */
c2931b70
TH
3645 if (&next->sibling != &parent->children)
3646 return next;
3b281afb 3647 return NULL;
53fa5261 3648}
53fa5261 3649
574bd9f7 3650/**
492eb21b 3651 * css_next_descendant_pre - find the next descendant for pre-order walk
574bd9f7 3652 * @pos: the current position (%NULL to initiate traversal)
492eb21b 3653 * @root: css whose descendants to walk
574bd9f7 3654 *
492eb21b 3655 * To be used by css_for_each_descendant_pre(). Find the next descendant
bd8815a6
TH
3656 * to visit for pre-order traversal of @root's descendants. @root is
3657 * included in the iteration and the first node to be visited.
75501a6d 3658 *
87fb54f1
TH
3659 * While this function requires cgroup_mutex or RCU read locking, it
3660 * doesn't require the whole traversal to be contained in a single critical
3661 * section. This function will return the correct next descendant as long
3662 * as both @pos and @root are accessible and @pos is a descendant of @root.
c2931b70
TH
3663 *
3664 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3665 * css which finished ->css_online() is guaranteed to be visible in the
3666 * future iterations and will stay visible until the last reference is put.
3667 * A css which hasn't finished ->css_online() or already finished
3668 * ->css_offline() may show up during traversal. It's each subsystem's
3669 * responsibility to synchronize against on/offlining.
574bd9f7 3670 */
492eb21b
TH
3671struct cgroup_subsys_state *
3672css_next_descendant_pre(struct cgroup_subsys_state *pos,
3673 struct cgroup_subsys_state *root)
574bd9f7 3674{
492eb21b 3675 struct cgroup_subsys_state *next;
574bd9f7 3676
8353da1f 3677 cgroup_assert_mutex_or_rcu_locked();
574bd9f7 3678
bd8815a6 3679 /* if first iteration, visit @root */
7805d000 3680 if (!pos)
bd8815a6 3681 return root;
574bd9f7
TH
3682
3683 /* visit the first child if exists */
492eb21b 3684 next = css_next_child(NULL, pos);
574bd9f7
TH
3685 if (next)
3686 return next;
3687
3688 /* no child, visit my or the closest ancestor's next sibling */
492eb21b 3689 while (pos != root) {
5c9d535b 3690 next = css_next_child(pos, pos->parent);
75501a6d 3691 if (next)
574bd9f7 3692 return next;
5c9d535b 3693 pos = pos->parent;
7805d000 3694 }
574bd9f7
TH
3695
3696 return NULL;
3697}
574bd9f7 3698
12a9d2fe 3699/**
492eb21b
TH
3700 * css_rightmost_descendant - return the rightmost descendant of a css
3701 * @pos: css of interest
12a9d2fe 3702 *
492eb21b
TH
3703 * Return the rightmost descendant of @pos. If there's no descendant, @pos
3704 * is returned. This can be used during pre-order traversal to skip
12a9d2fe 3705 * subtree of @pos.
75501a6d 3706 *
87fb54f1
TH
3707 * While this function requires cgroup_mutex or RCU read locking, it
3708 * doesn't require the whole traversal to be contained in a single critical
3709 * section. This function will return the correct rightmost descendant as
3710 * long as @pos is accessible.
12a9d2fe 3711 */
492eb21b
TH
3712struct cgroup_subsys_state *
3713css_rightmost_descendant(struct cgroup_subsys_state *pos)
12a9d2fe 3714{
492eb21b 3715 struct cgroup_subsys_state *last, *tmp;
12a9d2fe 3716
8353da1f 3717 cgroup_assert_mutex_or_rcu_locked();
12a9d2fe
TH
3718
3719 do {
3720 last = pos;
3721 /* ->prev isn't RCU safe, walk ->next till the end */
3722 pos = NULL;
492eb21b 3723 css_for_each_child(tmp, last)
12a9d2fe
TH
3724 pos = tmp;
3725 } while (pos);
3726
3727 return last;
3728}
12a9d2fe 3729
492eb21b
TH
3730static struct cgroup_subsys_state *
3731css_leftmost_descendant(struct cgroup_subsys_state *pos)
574bd9f7 3732{
492eb21b 3733 struct cgroup_subsys_state *last;
574bd9f7
TH
3734
3735 do {
3736 last = pos;
492eb21b 3737 pos = css_next_child(NULL, pos);
574bd9f7
TH
3738 } while (pos);
3739
3740 return last;
3741}
3742
3743/**
492eb21b 3744 * css_next_descendant_post - find the next descendant for post-order walk
574bd9f7 3745 * @pos: the current position (%NULL to initiate traversal)
492eb21b 3746 * @root: css whose descendants to walk
574bd9f7 3747 *
492eb21b 3748 * To be used by css_for_each_descendant_post(). Find the next descendant
bd8815a6
TH
3749 * to visit for post-order traversal of @root's descendants. @root is
3750 * included in the iteration and the last node to be visited.
75501a6d 3751 *
87fb54f1
TH
3752 * While this function requires cgroup_mutex or RCU read locking, it
3753 * doesn't require the whole traversal to be contained in a single critical
3754 * section. This function will return the correct next descendant as long
3755 * as both @pos and @cgroup are accessible and @pos is a descendant of
3756 * @cgroup.
c2931b70
TH
3757 *
3758 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3759 * css which finished ->css_online() is guaranteed to be visible in the
3760 * future iterations and will stay visible until the last reference is put.
3761 * A css which hasn't finished ->css_online() or already finished
3762 * ->css_offline() may show up during traversal. It's each subsystem's
3763 * responsibility to synchronize against on/offlining.
574bd9f7 3764 */
492eb21b
TH
3765struct cgroup_subsys_state *
3766css_next_descendant_post(struct cgroup_subsys_state *pos,
3767 struct cgroup_subsys_state *root)
574bd9f7 3768{
492eb21b 3769 struct cgroup_subsys_state *next;
574bd9f7 3770
8353da1f 3771 cgroup_assert_mutex_or_rcu_locked();
574bd9f7 3772
58b79a91
TH
3773 /* if first iteration, visit leftmost descendant which may be @root */
3774 if (!pos)
3775 return css_leftmost_descendant(root);
574bd9f7 3776
bd8815a6
TH
3777 /* if we visited @root, we're done */
3778 if (pos == root)
3779 return NULL;
3780
574bd9f7 3781 /* if there's an unvisited sibling, visit its leftmost descendant */
5c9d535b 3782 next = css_next_child(pos, pos->parent);
75501a6d 3783 if (next)
492eb21b 3784 return css_leftmost_descendant(next);
574bd9f7
TH
3785
3786 /* no sibling left, visit parent */
5c9d535b 3787 return pos->parent;
574bd9f7 3788}
574bd9f7 3789
f3d46500
TH
3790/**
3791 * css_has_online_children - does a css have online children
3792 * @css: the target css
3793 *
3794 * Returns %true if @css has any online children; otherwise, %false. This
3795 * function can be called from any context but the caller is responsible
3796 * for synchronizing against on/offlining as necessary.
3797 */
3798bool css_has_online_children(struct cgroup_subsys_state *css)
cbc125ef 3799{
f3d46500
TH
3800 struct cgroup_subsys_state *child;
3801 bool ret = false;
cbc125ef
TH
3802
3803 rcu_read_lock();
f3d46500 3804 css_for_each_child(child, css) {
99bae5f9 3805 if (child->flags & CSS_ONLINE) {
f3d46500
TH
3806 ret = true;
3807 break;
cbc125ef
TH
3808 }
3809 }
3810 rcu_read_unlock();
f3d46500 3811 return ret;
574bd9f7 3812}
574bd9f7 3813
0942eeee 3814/**
ecb9d535 3815 * css_task_iter_advance_css_set - advance a task itererator to the next css_set
0942eeee
TH
3816 * @it: the iterator to advance
3817 *
3818 * Advance @it to the next css_set to walk.
d515876e 3819 */
ecb9d535 3820static void css_task_iter_advance_css_set(struct css_task_iter *it)
d515876e 3821{
0f0a2b4f 3822 struct list_head *l = it->cset_pos;
d515876e
TH
3823 struct cgrp_cset_link *link;
3824 struct css_set *cset;
3825
f0d9a5f1 3826 lockdep_assert_held(&css_set_lock);
ed27b9f7 3827
d515876e
TH
3828 /* Advance to the next non-empty css_set */
3829 do {
3830 l = l->next;
0f0a2b4f
TH
3831 if (l == it->cset_head) {
3832 it->cset_pos = NULL;
ecb9d535 3833 it->task_pos = NULL;
d515876e
TH
3834 return;
3835 }
3ebb2b6e
TH
3836
3837 if (it->ss) {
3838 cset = container_of(l, struct css_set,
3839 e_cset_node[it->ss->id]);
3840 } else {
3841 link = list_entry(l, struct cgrp_cset_link, cset_link);
3842 cset = link->cset;
3843 }
0de0942d 3844 } while (!css_set_populated(cset));
c7561128 3845
0f0a2b4f 3846 it->cset_pos = l;
c7561128
TH
3847
3848 if (!list_empty(&cset->tasks))
0f0a2b4f 3849 it->task_pos = cset->tasks.next;
c7561128 3850 else
0f0a2b4f
TH
3851 it->task_pos = cset->mg_tasks.next;
3852
3853 it->tasks_head = &cset->tasks;
3854 it->mg_tasks_head = &cset->mg_tasks;
ed27b9f7
TH
3855
3856 /*
3857 * We don't keep css_sets locked across iteration steps and thus
3858 * need to take steps to ensure that iteration can be resumed after
3859 * the lock is re-acquired. Iteration is performed at two levels -
3860 * css_sets and tasks in them.
3861 *
3862 * Once created, a css_set never leaves its cgroup lists, so a
3863 * pinned css_set is guaranteed to stay put and we can resume
3864 * iteration afterwards.
3865 *
3866 * Tasks may leave @cset across iteration steps. This is resolved
3867 * by registering each iterator with the css_set currently being
3868 * walked and making css_set_move_task() advance iterators whose
3869 * next task is leaving.
3870 */
3871 if (it->cur_cset) {
3872 list_del(&it->iters_node);
3873 put_css_set_locked(it->cur_cset);
3874 }
3875 get_css_set(cset);
3876 it->cur_cset = cset;
3877 list_add(&it->iters_node, &cset->task_iters);
d515876e
TH
3878}
3879
ecb9d535
TH
3880static void css_task_iter_advance(struct css_task_iter *it)
3881{
3882 struct list_head *l = it->task_pos;
3883
f0d9a5f1 3884 lockdep_assert_held(&css_set_lock);
ecb9d535
TH
3885 WARN_ON_ONCE(!l);
3886
3887 /*
3888 * Advance iterator to find next entry. cset->tasks is consumed
3889 * first and then ->mg_tasks. After ->mg_tasks, we move onto the
3890 * next cset.
3891 */
3892 l = l->next;
3893
3894 if (l == it->tasks_head)
3895 l = it->mg_tasks_head->next;
3896
3897 if (l == it->mg_tasks_head)
3898 css_task_iter_advance_css_set(it);
3899 else
3900 it->task_pos = l;
3901}
3902
0942eeee 3903/**
72ec7029
TH
3904 * css_task_iter_start - initiate task iteration
3905 * @css: the css to walk tasks of
0942eeee
TH
3906 * @it: the task iterator to use
3907 *
72ec7029
TH
3908 * Initiate iteration through the tasks of @css. The caller can call
3909 * css_task_iter_next() to walk through the tasks until the function
3910 * returns NULL. On completion of iteration, css_task_iter_end() must be
3911 * called.
0942eeee 3912 */
72ec7029
TH
3913void css_task_iter_start(struct cgroup_subsys_state *css,
3914 struct css_task_iter *it)
817929ec 3915{
56fde9e0
TH
3916 /* no one should try to iterate before mounting cgroups */
3917 WARN_ON_ONCE(!use_task_css_set_links);
31a7df01 3918
ed27b9f7
TH
3919 memset(it, 0, sizeof(*it));
3920
f0d9a5f1 3921 spin_lock_bh(&css_set_lock);
c59cd3d8 3922
3ebb2b6e
TH
3923 it->ss = css->ss;
3924
3925 if (it->ss)
3926 it->cset_pos = &css->cgroup->e_csets[css->ss->id];
3927 else
3928 it->cset_pos = &css->cgroup->cset_links;
3929
0f0a2b4f 3930 it->cset_head = it->cset_pos;
c59cd3d8 3931
ecb9d535 3932 css_task_iter_advance_css_set(it);
ed27b9f7 3933
f0d9a5f1 3934 spin_unlock_bh(&css_set_lock);
817929ec
PM
3935}
3936
0942eeee 3937/**
72ec7029 3938 * css_task_iter_next - return the next task for the iterator
0942eeee
TH
3939 * @it: the task iterator being iterated
3940 *
3941 * The "next" function for task iteration. @it should have been
72ec7029
TH
3942 * initialized via css_task_iter_start(). Returns NULL when the iteration
3943 * reaches the end.
0942eeee 3944 */
72ec7029 3945struct task_struct *css_task_iter_next(struct css_task_iter *it)
817929ec 3946{
0f0a2b4f 3947 if (!it->cset_pos)
817929ec 3948 return NULL;
c7561128 3949
ed27b9f7
TH
3950 if (it->cur_task)
3951 put_task_struct(it->cur_task);
3952
f0d9a5f1 3953 spin_lock_bh(&css_set_lock);
ed27b9f7
TH
3954
3955 it->cur_task = list_entry(it->task_pos, struct task_struct, cg_list);
3956 get_task_struct(it->cur_task);
3957
ecb9d535 3958 css_task_iter_advance(it);
ed27b9f7 3959
f0d9a5f1 3960 spin_unlock_bh(&css_set_lock);
ed27b9f7
TH
3961
3962 return it->cur_task;
817929ec
PM
3963}
3964
0942eeee 3965/**
72ec7029 3966 * css_task_iter_end - finish task iteration
0942eeee
TH
3967 * @it: the task iterator to finish
3968 *
72ec7029 3969 * Finish task iteration started by css_task_iter_start().
0942eeee 3970 */
72ec7029 3971void css_task_iter_end(struct css_task_iter *it)
31a7df01 3972{
ed27b9f7 3973 if (it->cur_cset) {
f0d9a5f1 3974 spin_lock_bh(&css_set_lock);
ed27b9f7
TH
3975 list_del(&it->iters_node);
3976 put_css_set_locked(it->cur_cset);
f0d9a5f1 3977 spin_unlock_bh(&css_set_lock);
ed27b9f7
TH
3978 }
3979
3980 if (it->cur_task)
3981 put_task_struct(it->cur_task);
31a7df01
CW
3982}
3983
3984/**
8cc99345
TH
3985 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
3986 * @to: cgroup to which the tasks will be moved
3987 * @from: cgroup in which the tasks currently reside
31a7df01 3988 *
eaf797ab
TH
3989 * Locking rules between cgroup_post_fork() and the migration path
3990 * guarantee that, if a task is forking while being migrated, the new child
3991 * is guaranteed to be either visible in the source cgroup after the
3992 * parent's migration is complete or put into the target cgroup. No task
3993 * can slip out of migration through forking.
31a7df01 3994 */
8cc99345 3995int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
31a7df01 3996{
952aaa12
TH
3997 LIST_HEAD(preloaded_csets);
3998 struct cgrp_cset_link *link;
72ec7029 3999 struct css_task_iter it;
e406d1cf 4000 struct task_struct *task;
952aaa12 4001 int ret;
31a7df01 4002
952aaa12 4003 mutex_lock(&cgroup_mutex);
31a7df01 4004
952aaa12 4005 /* all tasks in @from are being moved, all csets are source */
f0d9a5f1 4006 spin_lock_bh(&css_set_lock);
952aaa12
TH
4007 list_for_each_entry(link, &from->cset_links, cset_link)
4008 cgroup_migrate_add_src(link->cset, to, &preloaded_csets);
f0d9a5f1 4009 spin_unlock_bh(&css_set_lock);
31a7df01 4010
952aaa12
TH
4011 ret = cgroup_migrate_prepare_dst(to, &preloaded_csets);
4012 if (ret)
4013 goto out_err;
8cc99345 4014
952aaa12
TH
4015 /*
4016 * Migrate tasks one-by-one until @form is empty. This fails iff
4017 * ->can_attach() fails.
4018 */
e406d1cf 4019 do {
9d800df1 4020 css_task_iter_start(&from->self, &it);
e406d1cf
TH
4021 task = css_task_iter_next(&it);
4022 if (task)
4023 get_task_struct(task);
4024 css_task_iter_end(&it);
4025
4026 if (task) {
9af2ec45 4027 ret = cgroup_migrate(task, false, to);
e406d1cf
TH
4028 put_task_struct(task);
4029 }
4030 } while (task && !ret);
952aaa12
TH
4031out_err:
4032 cgroup_migrate_finish(&preloaded_csets);
47cfcd09 4033 mutex_unlock(&cgroup_mutex);
e406d1cf 4034 return ret;
8cc99345
TH
4035}
4036
bbcb81d0 4037/*
102a775e 4038 * Stuff for reading the 'tasks'/'procs' files.
bbcb81d0
PM
4039 *
4040 * Reading this file can return large amounts of data if a cgroup has
4041 * *lots* of attached tasks. So it may need several calls to read(),
4042 * but we cannot guarantee that the information we produce is correct
4043 * unless we produce it entirely atomically.
4044 *
bbcb81d0 4045 */
bbcb81d0 4046
24528255
LZ
4047/* which pidlist file are we talking about? */
4048enum cgroup_filetype {
4049 CGROUP_FILE_PROCS,
4050 CGROUP_FILE_TASKS,
4051};
4052
4053/*
4054 * A pidlist is a list of pids that virtually represents the contents of one
4055 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
4056 * a pair (one each for procs, tasks) for each pid namespace that's relevant
4057 * to the cgroup.
4058 */
4059struct cgroup_pidlist {
4060 /*
4061 * used to find which pidlist is wanted. doesn't change as long as
4062 * this particular list stays in the list.
4063 */
4064 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
4065 /* array of xids */
4066 pid_t *list;
4067 /* how many elements the above list has */
4068 int length;
24528255
LZ
4069 /* each of these stored in a list by its cgroup */
4070 struct list_head links;
4071 /* pointer to the cgroup we belong to, for list removal purposes */
4072 struct cgroup *owner;
b1a21367
TH
4073 /* for delayed destruction */
4074 struct delayed_work destroy_dwork;
24528255
LZ
4075};
4076
d1d9fd33
BB
4077/*
4078 * The following two functions "fix" the issue where there are more pids
4079 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
4080 * TODO: replace with a kernel-wide solution to this problem
4081 */
4082#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
4083static void *pidlist_allocate(int count)
4084{
4085 if (PIDLIST_TOO_LARGE(count))
4086 return vmalloc(count * sizeof(pid_t));
4087 else
4088 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
4089}
b1a21367 4090
d1d9fd33
BB
4091static void pidlist_free(void *p)
4092{
58794514 4093 kvfree(p);
d1d9fd33 4094}
d1d9fd33 4095
b1a21367
TH
4096/*
4097 * Used to destroy all pidlists lingering waiting for destroy timer. None
4098 * should be left afterwards.
4099 */
4100static void cgroup_pidlist_destroy_all(struct cgroup *cgrp)
4101{
4102 struct cgroup_pidlist *l, *tmp_l;
4103
4104 mutex_lock(&cgrp->pidlist_mutex);
4105 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
4106 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
4107 mutex_unlock(&cgrp->pidlist_mutex);
4108
4109 flush_workqueue(cgroup_pidlist_destroy_wq);
4110 BUG_ON(!list_empty(&cgrp->pidlists));
4111}
4112
4113static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
4114{
4115 struct delayed_work *dwork = to_delayed_work(work);
4116 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
4117 destroy_dwork);
4118 struct cgroup_pidlist *tofree = NULL;
4119
4120 mutex_lock(&l->owner->pidlist_mutex);
b1a21367
TH
4121
4122 /*
04502365
TH
4123 * Destroy iff we didn't get queued again. The state won't change
4124 * as destroy_dwork can only be queued while locked.
b1a21367 4125 */
04502365 4126 if (!delayed_work_pending(dwork)) {
b1a21367
TH
4127 list_del(&l->links);
4128 pidlist_free(l->list);
4129 put_pid_ns(l->key.ns);
4130 tofree = l;
4131 }
4132
b1a21367
TH
4133 mutex_unlock(&l->owner->pidlist_mutex);
4134 kfree(tofree);
4135}
4136
bbcb81d0 4137/*
102a775e 4138 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
6ee211ad 4139 * Returns the number of unique elements.
bbcb81d0 4140 */
6ee211ad 4141static int pidlist_uniq(pid_t *list, int length)
bbcb81d0 4142{
102a775e 4143 int src, dest = 1;
102a775e
BB
4144
4145 /*
4146 * we presume the 0th element is unique, so i starts at 1. trivial
4147 * edge cases first; no work needs to be done for either
4148 */
4149 if (length == 0 || length == 1)
4150 return length;
4151 /* src and dest walk down the list; dest counts unique elements */
4152 for (src = 1; src < length; src++) {
4153 /* find next unique element */
4154 while (list[src] == list[src-1]) {
4155 src++;
4156 if (src == length)
4157 goto after;
4158 }
4159 /* dest always points to where the next unique element goes */
4160 list[dest] = list[src];
4161 dest++;
4162 }
4163after:
102a775e
BB
4164 return dest;
4165}
4166
afb2bc14
TH
4167/*
4168 * The two pid files - task and cgroup.procs - guaranteed that the result
4169 * is sorted, which forced this whole pidlist fiasco. As pid order is
4170 * different per namespace, each namespace needs differently sorted list,
4171 * making it impossible to use, for example, single rbtree of member tasks
4172 * sorted by task pointer. As pidlists can be fairly large, allocating one
4173 * per open file is dangerous, so cgroup had to implement shared pool of
4174 * pidlists keyed by cgroup and namespace.
4175 *
4176 * All this extra complexity was caused by the original implementation
4177 * committing to an entirely unnecessary property. In the long term, we
aa6ec29b
TH
4178 * want to do away with it. Explicitly scramble sort order if on the
4179 * default hierarchy so that no such expectation exists in the new
4180 * interface.
afb2bc14
TH
4181 *
4182 * Scrambling is done by swapping every two consecutive bits, which is
4183 * non-identity one-to-one mapping which disturbs sort order sufficiently.
4184 */
4185static pid_t pid_fry(pid_t pid)
4186{
4187 unsigned a = pid & 0x55555555;
4188 unsigned b = pid & 0xAAAAAAAA;
4189
4190 return (a << 1) | (b >> 1);
4191}
4192
4193static pid_t cgroup_pid_fry(struct cgroup *cgrp, pid_t pid)
4194{
aa6ec29b 4195 if (cgroup_on_dfl(cgrp))
afb2bc14
TH
4196 return pid_fry(pid);
4197 else
4198 return pid;
4199}
4200
102a775e
BB
4201static int cmppid(const void *a, const void *b)
4202{
4203 return *(pid_t *)a - *(pid_t *)b;
4204}
4205
afb2bc14
TH
4206static int fried_cmppid(const void *a, const void *b)
4207{
4208 return pid_fry(*(pid_t *)a) - pid_fry(*(pid_t *)b);
4209}
4210
e6b81710
TH
4211static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
4212 enum cgroup_filetype type)
4213{
4214 struct cgroup_pidlist *l;
4215 /* don't need task_nsproxy() if we're looking at ourself */
4216 struct pid_namespace *ns = task_active_pid_ns(current);
4217
4218 lockdep_assert_held(&cgrp->pidlist_mutex);
4219
4220 list_for_each_entry(l, &cgrp->pidlists, links)
4221 if (l->key.type == type && l->key.ns == ns)
4222 return l;
4223 return NULL;
4224}
4225
72a8cb30
BB
4226/*
4227 * find the appropriate pidlist for our purpose (given procs vs tasks)
4228 * returns with the lock on that pidlist already held, and takes care
4229 * of the use count, or returns NULL with no locks held if we're out of
4230 * memory.
4231 */
e6b81710
TH
4232static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
4233 enum cgroup_filetype type)
72a8cb30
BB
4234{
4235 struct cgroup_pidlist *l;
b70cc5fd 4236
e6b81710
TH
4237 lockdep_assert_held(&cgrp->pidlist_mutex);
4238
4239 l = cgroup_pidlist_find(cgrp, type);
4240 if (l)
4241 return l;
4242
72a8cb30 4243 /* entry not found; create a new one */
f4f4be2b 4244 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
e6b81710 4245 if (!l)
72a8cb30 4246 return l;
e6b81710 4247
b1a21367 4248 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
72a8cb30 4249 l->key.type = type;
e6b81710
TH
4250 /* don't need task_nsproxy() if we're looking at ourself */
4251 l->key.ns = get_pid_ns(task_active_pid_ns(current));
72a8cb30
BB
4252 l->owner = cgrp;
4253 list_add(&l->links, &cgrp->pidlists);
72a8cb30
BB
4254 return l;
4255}
4256
102a775e
BB
4257/*
4258 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
4259 */
72a8cb30
BB
4260static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
4261 struct cgroup_pidlist **lp)
102a775e
BB
4262{
4263 pid_t *array;
4264 int length;
4265 int pid, n = 0; /* used for populating the array */
72ec7029 4266 struct css_task_iter it;
817929ec 4267 struct task_struct *tsk;
102a775e
BB
4268 struct cgroup_pidlist *l;
4269
4bac00d1
TH
4270 lockdep_assert_held(&cgrp->pidlist_mutex);
4271
102a775e
BB
4272 /*
4273 * If cgroup gets more users after we read count, we won't have
4274 * enough space - tough. This race is indistinguishable to the
4275 * caller from the case that the additional cgroup users didn't
4276 * show up until sometime later on.
4277 */
4278 length = cgroup_task_count(cgrp);
d1d9fd33 4279 array = pidlist_allocate(length);
102a775e
BB
4280 if (!array)
4281 return -ENOMEM;
4282 /* now, populate the array */
9d800df1 4283 css_task_iter_start(&cgrp->self, &it);
72ec7029 4284 while ((tsk = css_task_iter_next(&it))) {
102a775e 4285 if (unlikely(n == length))
817929ec 4286 break;
102a775e 4287 /* get tgid or pid for procs or tasks file respectively */
72a8cb30
BB
4288 if (type == CGROUP_FILE_PROCS)
4289 pid = task_tgid_vnr(tsk);
4290 else
4291 pid = task_pid_vnr(tsk);
102a775e
BB
4292 if (pid > 0) /* make sure to only use valid results */
4293 array[n++] = pid;
817929ec 4294 }
72ec7029 4295 css_task_iter_end(&it);
102a775e
BB
4296 length = n;
4297 /* now sort & (if procs) strip out duplicates */
aa6ec29b 4298 if (cgroup_on_dfl(cgrp))
afb2bc14
TH
4299 sort(array, length, sizeof(pid_t), fried_cmppid, NULL);
4300 else
4301 sort(array, length, sizeof(pid_t), cmppid, NULL);
72a8cb30 4302 if (type == CGROUP_FILE_PROCS)
6ee211ad 4303 length = pidlist_uniq(array, length);
e6b81710 4304
e6b81710 4305 l = cgroup_pidlist_find_create(cgrp, type);
72a8cb30 4306 if (!l) {
d1d9fd33 4307 pidlist_free(array);
72a8cb30 4308 return -ENOMEM;
102a775e 4309 }
e6b81710
TH
4310
4311 /* store array, freeing old if necessary */
d1d9fd33 4312 pidlist_free(l->list);
102a775e
BB
4313 l->list = array;
4314 l->length = length;
72a8cb30 4315 *lp = l;
102a775e 4316 return 0;
bbcb81d0
PM
4317}
4318
846c7bb0 4319/**
a043e3b2 4320 * cgroupstats_build - build and fill cgroupstats
846c7bb0
BS
4321 * @stats: cgroupstats to fill information into
4322 * @dentry: A dentry entry belonging to the cgroup for which stats have
4323 * been requested.
a043e3b2
LZ
4324 *
4325 * Build and fill cgroupstats so that taskstats can export it to user
4326 * space.
846c7bb0
BS
4327 */
4328int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
4329{
2bd59d48 4330 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
bd89aabc 4331 struct cgroup *cgrp;
72ec7029 4332 struct css_task_iter it;
846c7bb0 4333 struct task_struct *tsk;
33d283be 4334
2bd59d48
TH
4335 /* it should be kernfs_node belonging to cgroupfs and is a directory */
4336 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
4337 kernfs_type(kn) != KERNFS_DIR)
4338 return -EINVAL;
4339
bad34660
LZ
4340 mutex_lock(&cgroup_mutex);
4341
846c7bb0 4342 /*
2bd59d48 4343 * We aren't being called from kernfs and there's no guarantee on
ec903c0c 4344 * @kn->priv's validity. For this and css_tryget_online_from_dir(),
2bd59d48 4345 * @kn->priv is RCU safe. Let's do the RCU dancing.
846c7bb0 4346 */
2bd59d48
TH
4347 rcu_read_lock();
4348 cgrp = rcu_dereference(kn->priv);
bad34660 4349 if (!cgrp || cgroup_is_dead(cgrp)) {
2bd59d48 4350 rcu_read_unlock();
bad34660 4351 mutex_unlock(&cgroup_mutex);
2bd59d48
TH
4352 return -ENOENT;
4353 }
bad34660 4354 rcu_read_unlock();
846c7bb0 4355
9d800df1 4356 css_task_iter_start(&cgrp->self, &it);
72ec7029 4357 while ((tsk = css_task_iter_next(&it))) {
846c7bb0
BS
4358 switch (tsk->state) {
4359 case TASK_RUNNING:
4360 stats->nr_running++;
4361 break;
4362 case TASK_INTERRUPTIBLE:
4363 stats->nr_sleeping++;
4364 break;
4365 case TASK_UNINTERRUPTIBLE:
4366 stats->nr_uninterruptible++;
4367 break;
4368 case TASK_STOPPED:
4369 stats->nr_stopped++;
4370 break;
4371 default:
4372 if (delayacct_is_task_waiting_on_io(tsk))
4373 stats->nr_io_wait++;
4374 break;
4375 }
4376 }
72ec7029 4377 css_task_iter_end(&it);
846c7bb0 4378
bad34660 4379 mutex_unlock(&cgroup_mutex);
2bd59d48 4380 return 0;
846c7bb0
BS
4381}
4382
8f3ff208 4383
bbcb81d0 4384/*
102a775e 4385 * seq_file methods for the tasks/procs files. The seq_file position is the
cc31edce 4386 * next pid to display; the seq_file iterator is a pointer to the pid
102a775e 4387 * in the cgroup->l->list array.
bbcb81d0 4388 */
cc31edce 4389
102a775e 4390static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
bbcb81d0 4391{
cc31edce
PM
4392 /*
4393 * Initially we receive a position value that corresponds to
4394 * one more than the last pid shown (or 0 on the first call or
4395 * after a seek to the start). Use a binary-search to find the
4396 * next pid to display, if any
4397 */
2bd59d48 4398 struct kernfs_open_file *of = s->private;
7da11279 4399 struct cgroup *cgrp = seq_css(s)->cgroup;
4bac00d1 4400 struct cgroup_pidlist *l;
7da11279 4401 enum cgroup_filetype type = seq_cft(s)->private;
cc31edce 4402 int index = 0, pid = *pos;
4bac00d1
TH
4403 int *iter, ret;
4404
4405 mutex_lock(&cgrp->pidlist_mutex);
4406
4407 /*
5d22444f 4408 * !NULL @of->priv indicates that this isn't the first start()
4bac00d1 4409 * after open. If the matching pidlist is around, we can use that.
5d22444f 4410 * Look for it. Note that @of->priv can't be used directly. It
4bac00d1
TH
4411 * could already have been destroyed.
4412 */
5d22444f
TH
4413 if (of->priv)
4414 of->priv = cgroup_pidlist_find(cgrp, type);
4bac00d1
TH
4415
4416 /*
4417 * Either this is the first start() after open or the matching
4418 * pidlist has been destroyed inbetween. Create a new one.
4419 */
5d22444f
TH
4420 if (!of->priv) {
4421 ret = pidlist_array_load(cgrp, type,
4422 (struct cgroup_pidlist **)&of->priv);
4bac00d1
TH
4423 if (ret)
4424 return ERR_PTR(ret);
4425 }
5d22444f 4426 l = of->priv;
cc31edce 4427
cc31edce 4428 if (pid) {
102a775e 4429 int end = l->length;
20777766 4430
cc31edce
PM
4431 while (index < end) {
4432 int mid = (index + end) / 2;
afb2bc14 4433 if (cgroup_pid_fry(cgrp, l->list[mid]) == pid) {
cc31edce
PM
4434 index = mid;
4435 break;
afb2bc14 4436 } else if (cgroup_pid_fry(cgrp, l->list[mid]) <= pid)
cc31edce
PM
4437 index = mid + 1;
4438 else
4439 end = mid;
4440 }
4441 }
4442 /* If we're off the end of the array, we're done */
102a775e 4443 if (index >= l->length)
cc31edce
PM
4444 return NULL;
4445 /* Update the abstract position to be the actual pid that we found */
102a775e 4446 iter = l->list + index;
afb2bc14 4447 *pos = cgroup_pid_fry(cgrp, *iter);
cc31edce
PM
4448 return iter;
4449}
4450
102a775e 4451static void cgroup_pidlist_stop(struct seq_file *s, void *v)
cc31edce 4452{
2bd59d48 4453 struct kernfs_open_file *of = s->private;
5d22444f 4454 struct cgroup_pidlist *l = of->priv;
62236858 4455
5d22444f
TH
4456 if (l)
4457 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
04502365 4458 CGROUP_PIDLIST_DESTROY_DELAY);
7da11279 4459 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
cc31edce
PM
4460}
4461
102a775e 4462static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
cc31edce 4463{
2bd59d48 4464 struct kernfs_open_file *of = s->private;
5d22444f 4465 struct cgroup_pidlist *l = of->priv;
102a775e
BB
4466 pid_t *p = v;
4467 pid_t *end = l->list + l->length;
cc31edce
PM
4468 /*
4469 * Advance to the next pid in the array. If this goes off the
4470 * end, we're done
4471 */
4472 p++;
4473 if (p >= end) {
4474 return NULL;
4475 } else {
7da11279 4476 *pos = cgroup_pid_fry(seq_css(s)->cgroup, *p);
cc31edce
PM
4477 return p;
4478 }
4479}
4480
102a775e 4481static int cgroup_pidlist_show(struct seq_file *s, void *v)
cc31edce 4482{
94ff212d
JP
4483 seq_printf(s, "%d\n", *(int *)v);
4484
4485 return 0;
cc31edce 4486}
bbcb81d0 4487
182446d0
TH
4488static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
4489 struct cftype *cft)
81a6a5cd 4490{
182446d0 4491 return notify_on_release(css->cgroup);
81a6a5cd
PM
4492}
4493
182446d0
TH
4494static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
4495 struct cftype *cft, u64 val)
6379c106 4496{
6379c106 4497 if (val)
182446d0 4498 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106 4499 else
182446d0 4500 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106
PM
4501 return 0;
4502}
4503
182446d0
TH
4504static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
4505 struct cftype *cft)
97978e6d 4506{
182446d0 4507 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
4508}
4509
182446d0
TH
4510static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
4511 struct cftype *cft, u64 val)
97978e6d
DL
4512{
4513 if (val)
182446d0 4514 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d 4515 else
182446d0 4516 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
4517 return 0;
4518}
4519
a14c6874
TH
4520/* cgroup core interface files for the default hierarchy */
4521static struct cftype cgroup_dfl_base_files[] = {
81a6a5cd 4522 {
d5c56ced 4523 .name = "cgroup.procs",
6f60eade 4524 .file_offset = offsetof(struct cgroup, procs_file),
6612f05b
TH
4525 .seq_start = cgroup_pidlist_start,
4526 .seq_next = cgroup_pidlist_next,
4527 .seq_stop = cgroup_pidlist_stop,
4528 .seq_show = cgroup_pidlist_show,
5d22444f 4529 .private = CGROUP_FILE_PROCS,
acbef755 4530 .write = cgroup_procs_write,
102a775e 4531 },
f8f22e53
TH
4532 {
4533 .name = "cgroup.controllers",
a14c6874 4534 .flags = CFTYPE_ONLY_ON_ROOT,
f8f22e53
TH
4535 .seq_show = cgroup_root_controllers_show,
4536 },
4537 {
4538 .name = "cgroup.controllers",
a14c6874 4539 .flags = CFTYPE_NOT_ON_ROOT,
f8f22e53
TH
4540 .seq_show = cgroup_controllers_show,
4541 },
4542 {
4543 .name = "cgroup.subtree_control",
f8f22e53 4544 .seq_show = cgroup_subtree_control_show,
451af504 4545 .write = cgroup_subtree_control_write,
f8f22e53 4546 },
842b597e 4547 {
4a07c222 4548 .name = "cgroup.events",
a14c6874 4549 .flags = CFTYPE_NOT_ON_ROOT,
6f60eade 4550 .file_offset = offsetof(struct cgroup, events_file),
4a07c222 4551 .seq_show = cgroup_events_show,
842b597e 4552 },
a14c6874
TH
4553 { } /* terminate */
4554};
d5c56ced 4555
a14c6874
TH
4556/* cgroup core interface files for the legacy hierarchies */
4557static struct cftype cgroup_legacy_base_files[] = {
4558 {
4559 .name = "cgroup.procs",
4560 .seq_start = cgroup_pidlist_start,
4561 .seq_next = cgroup_pidlist_next,
4562 .seq_stop = cgroup_pidlist_stop,
4563 .seq_show = cgroup_pidlist_show,
4564 .private = CGROUP_FILE_PROCS,
4565 .write = cgroup_procs_write,
a14c6874
TH
4566 },
4567 {
4568 .name = "cgroup.clone_children",
4569 .read_u64 = cgroup_clone_children_read,
4570 .write_u64 = cgroup_clone_children_write,
4571 },
4572 {
4573 .name = "cgroup.sane_behavior",
4574 .flags = CFTYPE_ONLY_ON_ROOT,
4575 .seq_show = cgroup_sane_behavior_show,
4576 },
d5c56ced
TH
4577 {
4578 .name = "tasks",
6612f05b
TH
4579 .seq_start = cgroup_pidlist_start,
4580 .seq_next = cgroup_pidlist_next,
4581 .seq_stop = cgroup_pidlist_stop,
4582 .seq_show = cgroup_pidlist_show,
5d22444f 4583 .private = CGROUP_FILE_TASKS,
acbef755 4584 .write = cgroup_tasks_write,
d5c56ced
TH
4585 },
4586 {
4587 .name = "notify_on_release",
d5c56ced
TH
4588 .read_u64 = cgroup_read_notify_on_release,
4589 .write_u64 = cgroup_write_notify_on_release,
4590 },
6e6ff25b
TH
4591 {
4592 .name = "release_agent",
a14c6874 4593 .flags = CFTYPE_ONLY_ON_ROOT,
2da8ca82 4594 .seq_show = cgroup_release_agent_show,
451af504 4595 .write = cgroup_release_agent_write,
5f469907 4596 .max_write_len = PATH_MAX - 1,
6e6ff25b 4597 },
db0416b6 4598 { } /* terminate */
bbcb81d0
PM
4599};
4600
0c21ead1
TH
4601/*
4602 * css destruction is four-stage process.
4603 *
4604 * 1. Destruction starts. Killing of the percpu_ref is initiated.
4605 * Implemented in kill_css().
4606 *
4607 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
ec903c0c
TH
4608 * and thus css_tryget_online() is guaranteed to fail, the css can be
4609 * offlined by invoking offline_css(). After offlining, the base ref is
4610 * put. Implemented in css_killed_work_fn().
0c21ead1
TH
4611 *
4612 * 3. When the percpu_ref reaches zero, the only possible remaining
4613 * accessors are inside RCU read sections. css_release() schedules the
4614 * RCU callback.
4615 *
4616 * 4. After the grace period, the css can be freed. Implemented in
4617 * css_free_work_fn().
4618 *
4619 * It is actually hairier because both step 2 and 4 require process context
4620 * and thus involve punting to css->destroy_work adding two additional
4621 * steps to the already complex sequence.
4622 */
35ef10da 4623static void css_free_work_fn(struct work_struct *work)
48ddbe19
TH
4624{
4625 struct cgroup_subsys_state *css =
35ef10da 4626 container_of(work, struct cgroup_subsys_state, destroy_work);
01e58659 4627 struct cgroup_subsys *ss = css->ss;
0c21ead1 4628 struct cgroup *cgrp = css->cgroup;
6f60eade 4629 struct cgroup_file *cfile;
48ddbe19 4630
9a1049da
TH
4631 percpu_ref_exit(&css->refcnt);
4632
6f60eade
TH
4633 list_for_each_entry(cfile, &css->files, node)
4634 kernfs_put(cfile->kn);
4635
01e58659 4636 if (ss) {
9d755d33 4637 /* css free path */
01e58659
VD
4638 int id = css->id;
4639
9d755d33
TH
4640 if (css->parent)
4641 css_put(css->parent);
0ae78e0b 4642
01e58659
VD
4643 ss->css_free(css);
4644 cgroup_idr_remove(&ss->css_idr, id);
9d755d33
TH
4645 cgroup_put(cgrp);
4646 } else {
4647 /* cgroup free path */
4648 atomic_dec(&cgrp->root->nr_cgrps);
4649 cgroup_pidlist_destroy_all(cgrp);
971ff493 4650 cancel_work_sync(&cgrp->release_agent_work);
9d755d33 4651
d51f39b0 4652 if (cgroup_parent(cgrp)) {
9d755d33
TH
4653 /*
4654 * We get a ref to the parent, and put the ref when
4655 * this cgroup is being freed, so it's guaranteed
4656 * that the parent won't be destroyed before its
4657 * children.
4658 */
d51f39b0 4659 cgroup_put(cgroup_parent(cgrp));
9d755d33
TH
4660 kernfs_put(cgrp->kn);
4661 kfree(cgrp);
4662 } else {
4663 /*
4664 * This is root cgroup's refcnt reaching zero,
4665 * which indicates that the root should be
4666 * released.
4667 */
4668 cgroup_destroy_root(cgrp->root);
4669 }
4670 }
48ddbe19
TH
4671}
4672
0c21ead1 4673static void css_free_rcu_fn(struct rcu_head *rcu_head)
d3daf28d
TH
4674{
4675 struct cgroup_subsys_state *css =
0c21ead1 4676 container_of(rcu_head, struct cgroup_subsys_state, rcu_head);
d3daf28d 4677
35ef10da 4678 INIT_WORK(&css->destroy_work, css_free_work_fn);
e5fca243 4679 queue_work(cgroup_destroy_wq, &css->destroy_work);
48ddbe19
TH
4680}
4681
25e15d83 4682static void css_release_work_fn(struct work_struct *work)
d3daf28d
TH
4683{
4684 struct cgroup_subsys_state *css =
25e15d83 4685 container_of(work, struct cgroup_subsys_state, destroy_work);
15a4c835 4686 struct cgroup_subsys *ss = css->ss;
9d755d33 4687 struct cgroup *cgrp = css->cgroup;
15a4c835 4688
1fed1b2e
TH
4689 mutex_lock(&cgroup_mutex);
4690
de3f0341 4691 css->flags |= CSS_RELEASED;
1fed1b2e
TH
4692 list_del_rcu(&css->sibling);
4693
9d755d33
TH
4694 if (ss) {
4695 /* css release path */
01e58659 4696 cgroup_idr_replace(&ss->css_idr, NULL, css->id);
7d172cc8
TH
4697 if (ss->css_released)
4698 ss->css_released(css);
9d755d33
TH
4699 } else {
4700 /* cgroup release path */
9d755d33
TH
4701 cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
4702 cgrp->id = -1;
a4189487
LZ
4703
4704 /*
4705 * There are two control paths which try to determine
4706 * cgroup from dentry without going through kernfs -
4707 * cgroupstats_build() and css_tryget_online_from_dir().
4708 * Those are supported by RCU protecting clearing of
4709 * cgrp->kn->priv backpointer.
4710 */
4711 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv, NULL);
9d755d33 4712 }
d3daf28d 4713
1fed1b2e
TH
4714 mutex_unlock(&cgroup_mutex);
4715
0c21ead1 4716 call_rcu(&css->rcu_head, css_free_rcu_fn);
d3daf28d
TH
4717}
4718
d3daf28d
TH
4719static void css_release(struct percpu_ref *ref)
4720{
4721 struct cgroup_subsys_state *css =
4722 container_of(ref, struct cgroup_subsys_state, refcnt);
4723
25e15d83
TH
4724 INIT_WORK(&css->destroy_work, css_release_work_fn);
4725 queue_work(cgroup_destroy_wq, &css->destroy_work);
d3daf28d
TH
4726}
4727
ddfcadab
TH
4728static void init_and_link_css(struct cgroup_subsys_state *css,
4729 struct cgroup_subsys *ss, struct cgroup *cgrp)
ddbcc7e8 4730{
0cb51d71
TH
4731 lockdep_assert_held(&cgroup_mutex);
4732
ddfcadab
TH
4733 cgroup_get(cgrp);
4734
d5c419b6 4735 memset(css, 0, sizeof(*css));
bd89aabc 4736 css->cgroup = cgrp;
72c97e54 4737 css->ss = ss;
d5c419b6
TH
4738 INIT_LIST_HEAD(&css->sibling);
4739 INIT_LIST_HEAD(&css->children);
6f60eade 4740 INIT_LIST_HEAD(&css->files);
0cb51d71 4741 css->serial_nr = css_serial_nr_next++;
0ae78e0b 4742
d51f39b0
TH
4743 if (cgroup_parent(cgrp)) {
4744 css->parent = cgroup_css(cgroup_parent(cgrp), ss);
ddfcadab 4745 css_get(css->parent);
ddfcadab 4746 }
48ddbe19 4747
ca8bdcaf 4748 BUG_ON(cgroup_css(cgrp, ss));
ddbcc7e8
PM
4749}
4750
2a4ac633 4751/* invoke ->css_online() on a new CSS and mark it online if successful */
623f926b 4752static int online_css(struct cgroup_subsys_state *css)
a31f2d3f 4753{
623f926b 4754 struct cgroup_subsys *ss = css->ss;
b1929db4
TH
4755 int ret = 0;
4756
a31f2d3f
TH
4757 lockdep_assert_held(&cgroup_mutex);
4758
92fb9748 4759 if (ss->css_online)
eb95419b 4760 ret = ss->css_online(css);
ae7f164a 4761 if (!ret) {
eb95419b 4762 css->flags |= CSS_ONLINE;
aec25020 4763 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
ae7f164a 4764 }
b1929db4 4765 return ret;
a31f2d3f
TH
4766}
4767
2a4ac633 4768/* if the CSS is online, invoke ->css_offline() on it and mark it offline */
623f926b 4769static void offline_css(struct cgroup_subsys_state *css)
a31f2d3f 4770{
623f926b 4771 struct cgroup_subsys *ss = css->ss;
a31f2d3f
TH
4772
4773 lockdep_assert_held(&cgroup_mutex);
4774
4775 if (!(css->flags & CSS_ONLINE))
4776 return;
4777
d7eeac19 4778 if (ss->css_offline)
eb95419b 4779 ss->css_offline(css);
a31f2d3f 4780
eb95419b 4781 css->flags &= ~CSS_ONLINE;
e3297803 4782 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
f8f22e53
TH
4783
4784 wake_up_all(&css->cgroup->offline_waitq);
a31f2d3f
TH
4785}
4786
c81c925a
TH
4787/**
4788 * create_css - create a cgroup_subsys_state
4789 * @cgrp: the cgroup new css will be associated with
4790 * @ss: the subsys of new css
f63070d3 4791 * @visible: whether to create control knobs for the new css or not
c81c925a
TH
4792 *
4793 * Create a new css associated with @cgrp - @ss pair. On success, the new
f63070d3
TH
4794 * css is online and installed in @cgrp with all interface files created if
4795 * @visible. Returns 0 on success, -errno on failure.
c81c925a 4796 */
f63070d3
TH
4797static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss,
4798 bool visible)
c81c925a 4799{
d51f39b0 4800 struct cgroup *parent = cgroup_parent(cgrp);
1fed1b2e 4801 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
c81c925a
TH
4802 struct cgroup_subsys_state *css;
4803 int err;
4804
c81c925a
TH
4805 lockdep_assert_held(&cgroup_mutex);
4806
1fed1b2e 4807 css = ss->css_alloc(parent_css);
c81c925a
TH
4808 if (IS_ERR(css))
4809 return PTR_ERR(css);
4810
ddfcadab 4811 init_and_link_css(css, ss, cgrp);
a2bed820 4812
2aad2a86 4813 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
c81c925a 4814 if (err)
3eb59ec6 4815 goto err_free_css;
c81c925a 4816
cf780b7d 4817 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
15a4c835
TH
4818 if (err < 0)
4819 goto err_free_percpu_ref;
4820 css->id = err;
c81c925a 4821
f63070d3 4822 if (visible) {
4df8dc90 4823 err = css_populate_dir(css, NULL);
f63070d3
TH
4824 if (err)
4825 goto err_free_id;
4826 }
15a4c835
TH
4827
4828 /* @css is ready to be brought online now, make it visible */
1fed1b2e 4829 list_add_tail_rcu(&css->sibling, &parent_css->children);
15a4c835 4830 cgroup_idr_replace(&ss->css_idr, css, css->id);
c81c925a
TH
4831
4832 err = online_css(css);
4833 if (err)
1fed1b2e 4834 goto err_list_del;
94419627 4835
c81c925a 4836 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
d51f39b0 4837 cgroup_parent(parent)) {
ed3d261b 4838 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
a2a1f9ea 4839 current->comm, current->pid, ss->name);
c81c925a 4840 if (!strcmp(ss->name, "memory"))
ed3d261b 4841 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
c81c925a
TH
4842 ss->warned_broken_hierarchy = true;
4843 }
4844
4845 return 0;
4846
1fed1b2e
TH
4847err_list_del:
4848 list_del_rcu(&css->sibling);
4df8dc90 4849 css_clear_dir(css, NULL);
15a4c835
TH
4850err_free_id:
4851 cgroup_idr_remove(&ss->css_idr, css->id);
3eb59ec6 4852err_free_percpu_ref:
9a1049da 4853 percpu_ref_exit(&css->refcnt);
3eb59ec6 4854err_free_css:
a2bed820 4855 call_rcu(&css->rcu_head, css_free_rcu_fn);
c81c925a
TH
4856 return err;
4857}
4858
b3bfd983
TH
4859static int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
4860 umode_t mode)
ddbcc7e8 4861{
a9746d8d
TH
4862 struct cgroup *parent, *cgrp;
4863 struct cgroup_root *root;
ddbcc7e8 4864 struct cgroup_subsys *ss;
2bd59d48 4865 struct kernfs_node *kn;
b3bfd983 4866 int ssid, ret;
ddbcc7e8 4867
71b1fb5c
AC
4868 /* Do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable.
4869 */
4870 if (strchr(name, '\n'))
4871 return -EINVAL;
4872
a9746d8d
TH
4873 parent = cgroup_kn_lock_live(parent_kn);
4874 if (!parent)
4875 return -ENODEV;
4876 root = parent->root;
ddbcc7e8 4877
0a950f65 4878 /* allocate the cgroup and its ID, 0 is reserved for the root */
bd89aabc 4879 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
ba0f4d76
TH
4880 if (!cgrp) {
4881 ret = -ENOMEM;
4882 goto out_unlock;
0ab02ca8
LZ
4883 }
4884
2aad2a86 4885 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
9d755d33
TH
4886 if (ret)
4887 goto out_free_cgrp;
4888
0ab02ca8
LZ
4889 /*
4890 * Temporarily set the pointer to NULL, so idr_find() won't return
4891 * a half-baked cgroup.
4892 */
cf780b7d 4893 cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_KERNEL);
0ab02ca8 4894 if (cgrp->id < 0) {
ba0f4d76 4895 ret = -ENOMEM;
9d755d33 4896 goto out_cancel_ref;
976c06bc
TH
4897 }
4898
cc31edce 4899 init_cgroup_housekeeping(cgrp);
ddbcc7e8 4900
9d800df1 4901 cgrp->self.parent = &parent->self;
ba0f4d76 4902 cgrp->root = root;
ddbcc7e8 4903
b6abdb0e
LZ
4904 if (notify_on_release(parent))
4905 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
4906
2260e7fc
TH
4907 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
4908 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
97978e6d 4909
2bd59d48 4910 /* create the directory */
e61734c5 4911 kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
2bd59d48 4912 if (IS_ERR(kn)) {
ba0f4d76
TH
4913 ret = PTR_ERR(kn);
4914 goto out_free_id;
2bd59d48
TH
4915 }
4916 cgrp->kn = kn;
ddbcc7e8 4917
4e139afc 4918 /*
6f30558f
TH
4919 * This extra ref will be put in cgroup_free_fn() and guarantees
4920 * that @cgrp->kn is always accessible.
4e139afc 4921 */
6f30558f 4922 kernfs_get(kn);
ddbcc7e8 4923
0cb51d71 4924 cgrp->self.serial_nr = css_serial_nr_next++;
53fa5261 4925
4e139afc 4926 /* allocation complete, commit to creation */
d5c419b6 4927 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
3c9c825b 4928 atomic_inc(&root->nr_cgrps);
59f5296b 4929 cgroup_get(parent);
415cf07a 4930
0d80255e
TH
4931 /*
4932 * @cgrp is now fully operational. If something fails after this
4933 * point, it'll be released via the normal destruction path.
4934 */
6fa4918d 4935 cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
4e96ee8e 4936
ba0f4d76
TH
4937 ret = cgroup_kn_set_ugid(kn);
4938 if (ret)
4939 goto out_destroy;
49957f8e 4940
4df8dc90 4941 ret = css_populate_dir(&cgrp->self, NULL);
ba0f4d76
TH
4942 if (ret)
4943 goto out_destroy;
628f7cd4 4944
9d403e99 4945 /* let's create and online css's */
b85d2040 4946 for_each_subsys(ss, ssid) {
f392e51c 4947 if (parent->child_subsys_mask & (1 << ssid)) {
f63070d3
TH
4948 ret = create_css(cgrp, ss,
4949 parent->subtree_control & (1 << ssid));
ba0f4d76
TH
4950 if (ret)
4951 goto out_destroy;
b85d2040 4952 }
a8638030 4953 }
ddbcc7e8 4954
bd53d617
TH
4955 /*
4956 * On the default hierarchy, a child doesn't automatically inherit
667c2491 4957 * subtree_control from the parent. Each is configured manually.
bd53d617 4958 */
667c2491
TH
4959 if (!cgroup_on_dfl(cgrp)) {
4960 cgrp->subtree_control = parent->subtree_control;
4961 cgroup_refresh_child_subsys_mask(cgrp);
4962 }
2bd59d48 4963
2bd59d48 4964 kernfs_activate(kn);
ddbcc7e8 4965
ba0f4d76
TH
4966 ret = 0;
4967 goto out_unlock;
ddbcc7e8 4968
ba0f4d76 4969out_free_id:
6fa4918d 4970 cgroup_idr_remove(&root->cgroup_idr, cgrp->id);
9d755d33 4971out_cancel_ref:
9a1049da 4972 percpu_ref_exit(&cgrp->self.refcnt);
ba0f4d76 4973out_free_cgrp:
bd89aabc 4974 kfree(cgrp);
ba0f4d76 4975out_unlock:
a9746d8d 4976 cgroup_kn_unlock(parent_kn);
ba0f4d76 4977 return ret;
4b8b47eb 4978
ba0f4d76 4979out_destroy:
4b8b47eb 4980 cgroup_destroy_locked(cgrp);
ba0f4d76 4981 goto out_unlock;
ddbcc7e8
PM
4982}
4983
223dbc38
TH
4984/*
4985 * This is called when the refcnt of a css is confirmed to be killed.
249f3468
TH
4986 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to
4987 * initate destruction and put the css ref from kill_css().
223dbc38
TH
4988 */
4989static void css_killed_work_fn(struct work_struct *work)
d3daf28d 4990{
223dbc38
TH
4991 struct cgroup_subsys_state *css =
4992 container_of(work, struct cgroup_subsys_state, destroy_work);
d3daf28d 4993
f20104de 4994 mutex_lock(&cgroup_mutex);
09a503ea 4995 offline_css(css);
f20104de 4996 mutex_unlock(&cgroup_mutex);
09a503ea 4997
09a503ea 4998 css_put(css);
d3daf28d
TH
4999}
5000
223dbc38
TH
5001/* css kill confirmation processing requires process context, bounce */
5002static void css_killed_ref_fn(struct percpu_ref *ref)
d3daf28d
TH
5003{
5004 struct cgroup_subsys_state *css =
5005 container_of(ref, struct cgroup_subsys_state, refcnt);
5006
223dbc38 5007 INIT_WORK(&css->destroy_work, css_killed_work_fn);
e5fca243 5008 queue_work(cgroup_destroy_wq, &css->destroy_work);
d3daf28d
TH
5009}
5010
f392e51c
TH
5011/**
5012 * kill_css - destroy a css
5013 * @css: css to destroy
5014 *
5015 * This function initiates destruction of @css by removing cgroup interface
5016 * files and putting its base reference. ->css_offline() will be invoked
ec903c0c
TH
5017 * asynchronously once css_tryget_online() is guaranteed to fail and when
5018 * the reference count reaches zero, @css will be released.
f392e51c
TH
5019 */
5020static void kill_css(struct cgroup_subsys_state *css)
edae0c33 5021{
01f6474c 5022 lockdep_assert_held(&cgroup_mutex);
94419627 5023
2bd59d48
TH
5024 /*
5025 * This must happen before css is disassociated with its cgroup.
5026 * See seq_css() for details.
5027 */
4df8dc90 5028 css_clear_dir(css, NULL);
3c14f8b4 5029
edae0c33
TH
5030 /*
5031 * Killing would put the base ref, but we need to keep it alive
5032 * until after ->css_offline().
5033 */
5034 css_get(css);
5035
5036 /*
5037 * cgroup core guarantees that, by the time ->css_offline() is
5038 * invoked, no new css reference will be given out via
ec903c0c 5039 * css_tryget_online(). We can't simply call percpu_ref_kill() and
edae0c33
TH
5040 * proceed to offlining css's because percpu_ref_kill() doesn't
5041 * guarantee that the ref is seen as killed on all CPUs on return.
5042 *
5043 * Use percpu_ref_kill_and_confirm() to get notifications as each
5044 * css is confirmed to be seen as killed on all CPUs.
5045 */
5046 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
d3daf28d
TH
5047}
5048
5049/**
5050 * cgroup_destroy_locked - the first stage of cgroup destruction
5051 * @cgrp: cgroup to be destroyed
5052 *
5053 * css's make use of percpu refcnts whose killing latency shouldn't be
5054 * exposed to userland and are RCU protected. Also, cgroup core needs to
ec903c0c
TH
5055 * guarantee that css_tryget_online() won't succeed by the time
5056 * ->css_offline() is invoked. To satisfy all the requirements,
5057 * destruction is implemented in the following two steps.
d3daf28d
TH
5058 *
5059 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
5060 * userland visible parts and start killing the percpu refcnts of
5061 * css's. Set up so that the next stage will be kicked off once all
5062 * the percpu refcnts are confirmed to be killed.
5063 *
5064 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5065 * rest of destruction. Once all cgroup references are gone, the
5066 * cgroup is RCU-freed.
5067 *
5068 * This function implements s1. After this step, @cgrp is gone as far as
5069 * the userland is concerned and a new cgroup with the same name may be
5070 * created. As cgroup doesn't care about the names internally, this
5071 * doesn't cause any problem.
5072 */
42809dd4
TH
5073static int cgroup_destroy_locked(struct cgroup *cgrp)
5074 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
ddbcc7e8 5075{
2bd59d48 5076 struct cgroup_subsys_state *css;
1c6727af 5077 int ssid;
ddbcc7e8 5078
42809dd4
TH
5079 lockdep_assert_held(&cgroup_mutex);
5080
91486f61
TH
5081 /*
5082 * Only migration can raise populated from zero and we're already
5083 * holding cgroup_mutex.
5084 */
5085 if (cgroup_is_populated(cgrp))
ddbcc7e8 5086 return -EBUSY;
a043e3b2 5087
bb78a92f 5088 /*
d5c419b6
TH
5089 * Make sure there's no live children. We can't test emptiness of
5090 * ->self.children as dead children linger on it while being
5091 * drained; otherwise, "rmdir parent/child parent" may fail.
bb78a92f 5092 */
f3d46500 5093 if (css_has_online_children(&cgrp->self))
bb78a92f
HD
5094 return -EBUSY;
5095
455050d2
TH
5096 /*
5097 * Mark @cgrp dead. This prevents further task migration and child
de3f0341 5098 * creation by disabling cgroup_lock_live_group().
455050d2 5099 */
184faf32 5100 cgrp->self.flags &= ~CSS_ONLINE;
ddbcc7e8 5101
249f3468 5102 /* initiate massacre of all css's */
1c6727af
TH
5103 for_each_css(css, ssid, cgrp)
5104 kill_css(css);
455050d2 5105
455050d2 5106 /*
01f6474c
TH
5107 * Remove @cgrp directory along with the base files. @cgrp has an
5108 * extra ref on its kn.
f20104de 5109 */
01f6474c 5110 kernfs_remove(cgrp->kn);
f20104de 5111
d51f39b0 5112 check_for_release(cgroup_parent(cgrp));
2bd59d48 5113
249f3468 5114 /* put the base reference */
9d755d33 5115 percpu_ref_kill(&cgrp->self.refcnt);
455050d2 5116
ea15f8cc
TH
5117 return 0;
5118};
5119
2bd59d48 5120static int cgroup_rmdir(struct kernfs_node *kn)
42809dd4 5121{
a9746d8d 5122 struct cgroup *cgrp;
2bd59d48 5123 int ret = 0;
42809dd4 5124
a9746d8d
TH
5125 cgrp = cgroup_kn_lock_live(kn);
5126 if (!cgrp)
5127 return 0;
42809dd4 5128
a9746d8d 5129 ret = cgroup_destroy_locked(cgrp);
2bb566cb 5130
a9746d8d 5131 cgroup_kn_unlock(kn);
42809dd4 5132 return ret;
8e3f6541
TH
5133}
5134
2bd59d48
TH
5135static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
5136 .remount_fs = cgroup_remount,
5137 .show_options = cgroup_show_options,
5138 .mkdir = cgroup_mkdir,
5139 .rmdir = cgroup_rmdir,
5140 .rename = cgroup_rename,
5141};
5142
15a4c835 5143static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
ddbcc7e8 5144{
ddbcc7e8 5145 struct cgroup_subsys_state *css;
cfe36bde
DC
5146
5147 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
ddbcc7e8 5148
648bb56d
TH
5149 mutex_lock(&cgroup_mutex);
5150
15a4c835 5151 idr_init(&ss->css_idr);
0adb0704 5152 INIT_LIST_HEAD(&ss->cfts);
8e3f6541 5153
3dd06ffa
TH
5154 /* Create the root cgroup state for this subsystem */
5155 ss->root = &cgrp_dfl_root;
5156 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
ddbcc7e8
PM
5157 /* We don't handle early failures gracefully */
5158 BUG_ON(IS_ERR(css));
ddfcadab 5159 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
3b514d24
TH
5160
5161 /*
5162 * Root csses are never destroyed and we can't initialize
5163 * percpu_ref during early init. Disable refcnting.
5164 */
5165 css->flags |= CSS_NO_REF;
5166
15a4c835 5167 if (early) {
9395a450 5168 /* allocation can't be done safely during early init */
15a4c835
TH
5169 css->id = 1;
5170 } else {
5171 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
5172 BUG_ON(css->id < 0);
5173 }
ddbcc7e8 5174
e8d55fde 5175 /* Update the init_css_set to contain a subsys
817929ec 5176 * pointer to this state - since the subsystem is
e8d55fde 5177 * newly registered, all tasks and hence the
3dd06ffa 5178 * init_css_set is in the subsystem's root cgroup. */
aec25020 5179 init_css_set.subsys[ss->id] = css;
ddbcc7e8 5180
cb4a3167
AS
5181 have_fork_callback |= (bool)ss->fork << ss->id;
5182 have_exit_callback |= (bool)ss->exit << ss->id;
7e47682e 5183 have_canfork_callback |= (bool)ss->can_fork << ss->id;
ddbcc7e8 5184
e8d55fde
LZ
5185 /* At system boot, before all subsystems have been
5186 * registered, no tasks have been forked, so we don't
5187 * need to invoke fork callbacks here. */
5188 BUG_ON(!list_empty(&init_task.tasks));
5189
ae7f164a 5190 BUG_ON(online_css(css));
a8638030 5191
cf5d5941
BB
5192 mutex_unlock(&cgroup_mutex);
5193}
cf5d5941 5194
ddbcc7e8 5195/**
a043e3b2
LZ
5196 * cgroup_init_early - cgroup initialization at system boot
5197 *
5198 * Initialize cgroups at system boot, and initialize any
5199 * subsystems that request early init.
ddbcc7e8
PM
5200 */
5201int __init cgroup_init_early(void)
5202{
7b9a6ba5 5203 static struct cgroup_sb_opts __initdata opts;
30159ec7 5204 struct cgroup_subsys *ss;
ddbcc7e8 5205 int i;
30159ec7 5206
3dd06ffa 5207 init_cgroup_root(&cgrp_dfl_root, &opts);
3b514d24
TH
5208 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
5209
a4ea1cc9 5210 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
817929ec 5211
3ed80a62 5212 for_each_subsys(ss, i) {
aec25020 5213 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
073219e9
TH
5214 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p name:id=%d:%s\n",
5215 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
aec25020 5216 ss->id, ss->name);
073219e9
TH
5217 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
5218 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
5219
aec25020 5220 ss->id = i;
073219e9 5221 ss->name = cgroup_subsys_name[i];
3e1d2eed
TH
5222 if (!ss->legacy_name)
5223 ss->legacy_name = cgroup_subsys_name[i];
ddbcc7e8
PM
5224
5225 if (ss->early_init)
15a4c835 5226 cgroup_init_subsys(ss, true);
ddbcc7e8
PM
5227 }
5228 return 0;
5229}
5230
a3e72739
TH
5231static unsigned long cgroup_disable_mask __initdata;
5232
ddbcc7e8 5233/**
a043e3b2
LZ
5234 * cgroup_init - cgroup initialization
5235 *
5236 * Register cgroup filesystem and /proc file, and initialize
5237 * any subsystems that didn't request early init.
ddbcc7e8
PM
5238 */
5239int __init cgroup_init(void)
5240{
30159ec7 5241 struct cgroup_subsys *ss;
0ac801fe 5242 unsigned long key;
172a2c06 5243 int ssid, err;
ddbcc7e8 5244
1ed13287 5245 BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem));
a14c6874
TH
5246 BUG_ON(cgroup_init_cftypes(NULL, cgroup_dfl_base_files));
5247 BUG_ON(cgroup_init_cftypes(NULL, cgroup_legacy_base_files));
ddbcc7e8 5248
54e7b4eb 5249 mutex_lock(&cgroup_mutex);
54e7b4eb 5250
82fe9b0d
TH
5251 /* Add init_css_set to the hash table */
5252 key = css_set_hash(init_css_set.subsys);
5253 hash_add(css_set_table, &init_css_set.hlist, key);
5254
3dd06ffa 5255 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
4e96ee8e 5256
54e7b4eb
TH
5257 mutex_unlock(&cgroup_mutex);
5258
172a2c06 5259 for_each_subsys(ss, ssid) {
15a4c835
TH
5260 if (ss->early_init) {
5261 struct cgroup_subsys_state *css =
5262 init_css_set.subsys[ss->id];
5263
5264 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
5265 GFP_KERNEL);
5266 BUG_ON(css->id < 0);
5267 } else {
5268 cgroup_init_subsys(ss, false);
5269 }
172a2c06 5270
2d8f243a
TH
5271 list_add_tail(&init_css_set.e_cset_node[ssid],
5272 &cgrp_dfl_root.cgrp.e_csets[ssid]);
172a2c06
TH
5273
5274 /*
c731ae1d
LZ
5275 * Setting dfl_root subsys_mask needs to consider the
5276 * disabled flag and cftype registration needs kmalloc,
5277 * both of which aren't available during early_init.
172a2c06 5278 */
a3e72739
TH
5279 if (cgroup_disable_mask & (1 << ssid)) {
5280 static_branch_disable(cgroup_subsys_enabled_key[ssid]);
5281 printk(KERN_INFO "Disabling %s control group subsystem\n",
5282 ss->name);
a8ddc821 5283 continue;
a3e72739 5284 }
a8ddc821
TH
5285
5286 cgrp_dfl_root.subsys_mask |= 1 << ss->id;
5287
5288 if (cgroup_legacy_files_on_dfl && !ss->dfl_cftypes)
5289 ss->dfl_cftypes = ss->legacy_cftypes;
5290
5de4fa13
TH
5291 if (!ss->dfl_cftypes)
5292 cgrp_dfl_root_inhibit_ss_mask |= 1 << ss->id;
5293
a8ddc821
TH
5294 if (ss->dfl_cftypes == ss->legacy_cftypes) {
5295 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
5296 } else {
5297 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5298 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
c731ae1d 5299 }
295458e6
VD
5300
5301 if (ss->bind)
5302 ss->bind(init_css_set.subsys[ssid]);
676db4af
GKH
5303 }
5304
f9bb4882
EB
5305 err = sysfs_create_mount_point(fs_kobj, "cgroup");
5306 if (err)
5307 return err;
676db4af 5308
ddbcc7e8 5309 err = register_filesystem(&cgroup_fs_type);
676db4af 5310 if (err < 0) {
f9bb4882 5311 sysfs_remove_mount_point(fs_kobj, "cgroup");
2bd59d48 5312 return err;
676db4af 5313 }
ddbcc7e8 5314
46ae220b 5315 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
2bd59d48 5316 return 0;
ddbcc7e8 5317}
b4f48b63 5318
e5fca243
TH
5319static int __init cgroup_wq_init(void)
5320{
5321 /*
5322 * There isn't much point in executing destruction path in
5323 * parallel. Good chunk is serialized with cgroup_mutex anyway.
1a11533f 5324 * Use 1 for @max_active.
e5fca243
TH
5325 *
5326 * We would prefer to do this in cgroup_init() above, but that
5327 * is called before init_workqueues(): so leave this until after.
5328 */
1a11533f 5329 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
e5fca243 5330 BUG_ON(!cgroup_destroy_wq);
b1a21367
TH
5331
5332 /*
5333 * Used to destroy pidlists and separate to serve as flush domain.
5334 * Cap @max_active to 1 too.
5335 */
5336 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
5337 0, 1);
5338 BUG_ON(!cgroup_pidlist_destroy_wq);
5339
e5fca243
TH
5340 return 0;
5341}
5342core_initcall(cgroup_wq_init);
5343
a424316c
PM
5344/*
5345 * proc_cgroup_show()
5346 * - Print task's cgroup paths into seq_file, one line for each hierarchy
5347 * - Used for /proc/<pid>/cgroup.
a424316c 5348 */
006f4ac4
ZL
5349int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
5350 struct pid *pid, struct task_struct *tsk)
a424316c 5351{
e61734c5 5352 char *buf, *path;
a424316c 5353 int retval;
3dd06ffa 5354 struct cgroup_root *root;
a424316c
PM
5355
5356 retval = -ENOMEM;
e61734c5 5357 buf = kmalloc(PATH_MAX, GFP_KERNEL);
a424316c
PM
5358 if (!buf)
5359 goto out;
5360
a424316c 5361 mutex_lock(&cgroup_mutex);
f0d9a5f1 5362 spin_lock_bh(&css_set_lock);
a424316c 5363
985ed670 5364 for_each_root(root) {
a424316c 5365 struct cgroup_subsys *ss;
bd89aabc 5366 struct cgroup *cgrp;
b85d2040 5367 int ssid, count = 0;
a424316c 5368
a2dd4247 5369 if (root == &cgrp_dfl_root && !cgrp_dfl_root_visible)
985ed670
TH
5370 continue;
5371
2c6ab6d2 5372 seq_printf(m, "%d:", root->hierarchy_id);
d98817d4
TH
5373 if (root != &cgrp_dfl_root)
5374 for_each_subsys(ss, ssid)
5375 if (root->subsys_mask & (1 << ssid))
5376 seq_printf(m, "%s%s", count++ ? "," : "",
3e1d2eed 5377 ss->legacy_name);
c6d57f33
PM
5378 if (strlen(root->name))
5379 seq_printf(m, "%sname=%s", count ? "," : "",
5380 root->name);
a424316c 5381 seq_putc(m, ':');
2e91fa7f 5382
7717f7ba 5383 cgrp = task_cgroup_from_root(tsk, root);
2e91fa7f
TH
5384
5385 /*
5386 * On traditional hierarchies, all zombie tasks show up as
5387 * belonging to the root cgroup. On the default hierarchy,
5388 * while a zombie doesn't show up in "cgroup.procs" and
5389 * thus can't be migrated, its /proc/PID/cgroup keeps
5390 * reporting the cgroup it belonged to before exiting. If
5391 * the cgroup is removed before the zombie is reaped,
5392 * " (deleted)" is appended to the cgroup path.
5393 */
5394 if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
5395 path = cgroup_path(cgrp, buf, PATH_MAX);
5396 if (!path) {
5397 retval = -ENAMETOOLONG;
5398 goto out_unlock;
5399 }
5400 } else {
5401 path = "/";
e61734c5 5402 }
2e91fa7f 5403
e61734c5 5404 seq_puts(m, path);
2e91fa7f
TH
5405
5406 if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
5407 seq_puts(m, " (deleted)\n");
5408 else
5409 seq_putc(m, '\n');
a424316c
PM
5410 }
5411
006f4ac4 5412 retval = 0;
a424316c 5413out_unlock:
f0d9a5f1 5414 spin_unlock_bh(&css_set_lock);
a424316c 5415 mutex_unlock(&cgroup_mutex);
a424316c
PM
5416 kfree(buf);
5417out:
5418 return retval;
5419}
5420
a424316c
PM
5421/* Display information about each subsystem and each hierarchy */
5422static int proc_cgroupstats_show(struct seq_file *m, void *v)
5423{
30159ec7 5424 struct cgroup_subsys *ss;
a424316c 5425 int i;
a424316c 5426
8bab8dde 5427 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
aae8aab4
BB
5428 /*
5429 * ideally we don't want subsystems moving around while we do this.
5430 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
5431 * subsys/hierarchy state.
5432 */
a424316c 5433 mutex_lock(&cgroup_mutex);
30159ec7
TH
5434
5435 for_each_subsys(ss, i)
2c6ab6d2 5436 seq_printf(m, "%s\t%d\t%d\t%d\n",
3e1d2eed 5437 ss->legacy_name, ss->root->hierarchy_id,
fc5ed1e9
TH
5438 atomic_read(&ss->root->nr_cgrps),
5439 cgroup_ssid_enabled(i));
30159ec7 5440
a424316c
PM
5441 mutex_unlock(&cgroup_mutex);
5442 return 0;
5443}
5444
5445static int cgroupstats_open(struct inode *inode, struct file *file)
5446{
9dce07f1 5447 return single_open(file, proc_cgroupstats_show, NULL);
a424316c
PM
5448}
5449
828c0950 5450static const struct file_operations proc_cgroupstats_operations = {
a424316c
PM
5451 .open = cgroupstats_open,
5452 .read = seq_read,
5453 .llseek = seq_lseek,
5454 .release = single_release,
5455};
5456
7e47682e
AS
5457static void **subsys_canfork_priv_p(void *ss_priv[CGROUP_CANFORK_COUNT], int i)
5458{
5459 if (CGROUP_CANFORK_START <= i && i < CGROUP_CANFORK_END)
5460 return &ss_priv[i - CGROUP_CANFORK_START];
5461 return NULL;
5462}
5463
5464static void *subsys_canfork_priv(void *ss_priv[CGROUP_CANFORK_COUNT], int i)
5465{
5466 void **private = subsys_canfork_priv_p(ss_priv, i);
5467 return private ? *private : NULL;
5468}
5469
b4f48b63 5470/**
eaf797ab 5471 * cgroup_fork - initialize cgroup related fields during copy_process()
a043e3b2 5472 * @child: pointer to task_struct of forking parent process.
b4f48b63 5473 *
eaf797ab
TH
5474 * A task is associated with the init_css_set until cgroup_post_fork()
5475 * attaches it to the parent's css_set. Empty cg_list indicates that
5476 * @child isn't holding reference to its css_set.
b4f48b63
PM
5477 */
5478void cgroup_fork(struct task_struct *child)
5479{
eaf797ab 5480 RCU_INIT_POINTER(child->cgroups, &init_css_set);
817929ec 5481 INIT_LIST_HEAD(&child->cg_list);
b4f48b63
PM
5482}
5483
7e47682e
AS
5484/**
5485 * cgroup_can_fork - called on a new task before the process is exposed
5486 * @child: the task in question.
5487 *
5488 * This calls the subsystem can_fork() callbacks. If the can_fork() callback
5489 * returns an error, the fork aborts with that error code. This allows for
5490 * a cgroup subsystem to conditionally allow or deny new forks.
5491 */
5492int cgroup_can_fork(struct task_struct *child,
5493 void *ss_priv[CGROUP_CANFORK_COUNT])
5494{
5495 struct cgroup_subsys *ss;
5496 int i, j, ret;
5497
5498 for_each_subsys_which(ss, i, &have_canfork_callback) {
5499 ret = ss->can_fork(child, subsys_canfork_priv_p(ss_priv, i));
5500 if (ret)
5501 goto out_revert;
5502 }
5503
5504 return 0;
5505
5506out_revert:
5507 for_each_subsys(ss, j) {
5508 if (j >= i)
5509 break;
5510 if (ss->cancel_fork)
5511 ss->cancel_fork(child, subsys_canfork_priv(ss_priv, j));
5512 }
5513
5514 return ret;
5515}
5516
5517/**
5518 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
5519 * @child: the task in question
5520 *
5521 * This calls the cancel_fork() callbacks if a fork failed *after*
5522 * cgroup_can_fork() succeded.
5523 */
5524void cgroup_cancel_fork(struct task_struct *child,
5525 void *ss_priv[CGROUP_CANFORK_COUNT])
5526{
5527 struct cgroup_subsys *ss;
5528 int i;
5529
5530 for_each_subsys(ss, i)
5531 if (ss->cancel_fork)
5532 ss->cancel_fork(child, subsys_canfork_priv(ss_priv, i));
5533}
5534
817929ec 5535/**
a043e3b2
LZ
5536 * cgroup_post_fork - called on a new task after adding it to the task list
5537 * @child: the task in question
5538 *
5edee61e
TH
5539 * Adds the task to the list running through its css_set if necessary and
5540 * call the subsystem fork() callbacks. Has to be after the task is
5541 * visible on the task list in case we race with the first call to
0942eeee 5542 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5edee61e 5543 * list.
a043e3b2 5544 */
7e47682e
AS
5545void cgroup_post_fork(struct task_struct *child,
5546 void *old_ss_priv[CGROUP_CANFORK_COUNT])
817929ec 5547{
30159ec7 5548 struct cgroup_subsys *ss;
5edee61e
TH
5549 int i;
5550
3ce3230a 5551 /*
251f8c03 5552 * This may race against cgroup_enable_task_cg_lists(). As that
eaf797ab
TH
5553 * function sets use_task_css_set_links before grabbing
5554 * tasklist_lock and we just went through tasklist_lock to add
5555 * @child, it's guaranteed that either we see the set
5556 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
5557 * @child during its iteration.
5558 *
5559 * If we won the race, @child is associated with %current's
f0d9a5f1 5560 * css_set. Grabbing css_set_lock guarantees both that the
eaf797ab
TH
5561 * association is stable, and, on completion of the parent's
5562 * migration, @child is visible in the source of migration or
5563 * already in the destination cgroup. This guarantee is necessary
5564 * when implementing operations which need to migrate all tasks of
5565 * a cgroup to another.
5566 *
251f8c03 5567 * Note that if we lose to cgroup_enable_task_cg_lists(), @child
eaf797ab
TH
5568 * will remain in init_css_set. This is safe because all tasks are
5569 * in the init_css_set before cg_links is enabled and there's no
5570 * operation which transfers all tasks out of init_css_set.
3ce3230a 5571 */
817929ec 5572 if (use_task_css_set_links) {
eaf797ab
TH
5573 struct css_set *cset;
5574
f0d9a5f1 5575 spin_lock_bh(&css_set_lock);
0e1d768f 5576 cset = task_css_set(current);
eaf797ab 5577 if (list_empty(&child->cg_list)) {
eaf797ab 5578 get_css_set(cset);
f6d7d049 5579 css_set_move_task(child, NULL, cset, false);
eaf797ab 5580 }
f0d9a5f1 5581 spin_unlock_bh(&css_set_lock);
817929ec 5582 }
5edee61e
TH
5583
5584 /*
5585 * Call ss->fork(). This must happen after @child is linked on
5586 * css_set; otherwise, @child might change state between ->fork()
5587 * and addition to css_set.
5588 */
cb4a3167 5589 for_each_subsys_which(ss, i, &have_fork_callback)
7e47682e 5590 ss->fork(child, subsys_canfork_priv(old_ss_priv, i));
817929ec 5591}
5edee61e 5592
b4f48b63
PM
5593/**
5594 * cgroup_exit - detach cgroup from exiting task
5595 * @tsk: pointer to task_struct of exiting process
5596 *
5597 * Description: Detach cgroup from @tsk and release it.
5598 *
5599 * Note that cgroups marked notify_on_release force every task in
5600 * them to take the global cgroup_mutex mutex when exiting.
5601 * This could impact scaling on very large systems. Be reluctant to
5602 * use notify_on_release cgroups where very high task exit scaling
5603 * is required on large systems.
5604 *
0e1d768f
TH
5605 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We
5606 * call cgroup_exit() while the task is still competent to handle
5607 * notify_on_release(), then leave the task attached to the root cgroup in
5608 * each hierarchy for the remainder of its exit. No need to bother with
5609 * init_css_set refcnting. init_css_set never goes away and we can't race
e8604cb4 5610 * with migration path - PF_EXITING is visible to migration path.
b4f48b63 5611 */
1ec41830 5612void cgroup_exit(struct task_struct *tsk)
b4f48b63 5613{
30159ec7 5614 struct cgroup_subsys *ss;
5abb8855 5615 struct css_set *cset;
d41d5a01 5616 int i;
817929ec
PM
5617
5618 /*
0e1d768f 5619 * Unlink from @tsk from its css_set. As migration path can't race
0de0942d 5620 * with us, we can check css_set and cg_list without synchronization.
817929ec 5621 */
0de0942d
TH
5622 cset = task_css_set(tsk);
5623
817929ec 5624 if (!list_empty(&tsk->cg_list)) {
f0d9a5f1 5625 spin_lock_bh(&css_set_lock);
f6d7d049 5626 css_set_move_task(tsk, cset, NULL, false);
f0d9a5f1 5627 spin_unlock_bh(&css_set_lock);
2e91fa7f
TH
5628 } else {
5629 get_css_set(cset);
817929ec
PM
5630 }
5631
cb4a3167 5632 /* see cgroup_post_fork() for details */
2e91fa7f
TH
5633 for_each_subsys_which(ss, i, &have_exit_callback)
5634 ss->exit(tsk);
5635}
30159ec7 5636
2e91fa7f
TH
5637void cgroup_free(struct task_struct *task)
5638{
5639 struct css_set *cset = task_css_set(task);
d41d5a01 5640
2e91fa7f 5641 put_css_set(cset);
b4f48b63 5642}
697f4161 5643
bd89aabc 5644static void check_for_release(struct cgroup *cgrp)
81a6a5cd 5645{
27bd4dbb 5646 if (notify_on_release(cgrp) && !cgroup_is_populated(cgrp) &&
971ff493
ZL
5647 !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp))
5648 schedule_work(&cgrp->release_agent_work);
81a6a5cd
PM
5649}
5650
81a6a5cd
PM
5651/*
5652 * Notify userspace when a cgroup is released, by running the
5653 * configured release agent with the name of the cgroup (path
5654 * relative to the root of cgroup file system) as the argument.
5655 *
5656 * Most likely, this user command will try to rmdir this cgroup.
5657 *
5658 * This races with the possibility that some other task will be
5659 * attached to this cgroup before it is removed, or that some other
5660 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
5661 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
5662 * unused, and this cgroup will be reprieved from its death sentence,
5663 * to continue to serve a useful existence. Next time it's released,
5664 * we will get notified again, if it still has 'notify_on_release' set.
5665 *
5666 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
5667 * means only wait until the task is successfully execve()'d. The
5668 * separate release agent task is forked by call_usermodehelper(),
5669 * then control in this thread returns here, without waiting for the
5670 * release agent task. We don't bother to wait because the caller of
5671 * this routine has no use for the exit status of the release agent
5672 * task, so no sense holding our caller up for that.
81a6a5cd 5673 */
81a6a5cd
PM
5674static void cgroup_release_agent(struct work_struct *work)
5675{
971ff493
ZL
5676 struct cgroup *cgrp =
5677 container_of(work, struct cgroup, release_agent_work);
5678 char *pathbuf = NULL, *agentbuf = NULL, *path;
5679 char *argv[3], *envp[3];
5680
81a6a5cd 5681 mutex_lock(&cgroup_mutex);
971ff493
ZL
5682
5683 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
5684 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
5685 if (!pathbuf || !agentbuf)
5686 goto out;
5687
5688 path = cgroup_path(cgrp, pathbuf, PATH_MAX);
5689 if (!path)
5690 goto out;
5691
5692 argv[0] = agentbuf;
5693 argv[1] = path;
5694 argv[2] = NULL;
5695
5696 /* minimal command environment */
5697 envp[0] = "HOME=/";
5698 envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
5699 envp[2] = NULL;
5700
81a6a5cd 5701 mutex_unlock(&cgroup_mutex);
971ff493 5702 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
3e2cd91a 5703 goto out_free;
971ff493 5704out:
81a6a5cd 5705 mutex_unlock(&cgroup_mutex);
3e2cd91a 5706out_free:
971ff493
ZL
5707 kfree(agentbuf);
5708 kfree(pathbuf);
81a6a5cd 5709}
8bab8dde
PM
5710
5711static int __init cgroup_disable(char *str)
5712{
30159ec7 5713 struct cgroup_subsys *ss;
8bab8dde 5714 char *token;
30159ec7 5715 int i;
8bab8dde
PM
5716
5717 while ((token = strsep(&str, ",")) != NULL) {
5718 if (!*token)
5719 continue;
be45c900 5720
3ed80a62 5721 for_each_subsys(ss, i) {
3e1d2eed
TH
5722 if (strcmp(token, ss->name) &&
5723 strcmp(token, ss->legacy_name))
5724 continue;
a3e72739 5725 cgroup_disable_mask |= 1 << i;
8bab8dde
PM
5726 }
5727 }
5728 return 1;
5729}
5730__setup("cgroup_disable=", cgroup_disable);
38460b48 5731
a8ddc821
TH
5732static int __init cgroup_set_legacy_files_on_dfl(char *str)
5733{
5734 printk("cgroup: using legacy files on the default hierarchy\n");
5735 cgroup_legacy_files_on_dfl = true;
5736 return 0;
5737}
5738__setup("cgroup__DEVEL__legacy_files_on_dfl", cgroup_set_legacy_files_on_dfl);
5739
b77d7b60 5740/**
ec903c0c 5741 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
35cf0836
TH
5742 * @dentry: directory dentry of interest
5743 * @ss: subsystem of interest
b77d7b60 5744 *
5a17f543
TH
5745 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
5746 * to get the corresponding css and return it. If such css doesn't exist
5747 * or can't be pinned, an ERR_PTR value is returned.
e5d1367f 5748 */
ec903c0c
TH
5749struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
5750 struct cgroup_subsys *ss)
e5d1367f 5751{
2bd59d48
TH
5752 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
5753 struct cgroup_subsys_state *css = NULL;
e5d1367f 5754 struct cgroup *cgrp;
e5d1367f 5755
35cf0836 5756 /* is @dentry a cgroup dir? */
2bd59d48
TH
5757 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
5758 kernfs_type(kn) != KERNFS_DIR)
e5d1367f
SE
5759 return ERR_PTR(-EBADF);
5760
5a17f543
TH
5761 rcu_read_lock();
5762
2bd59d48
TH
5763 /*
5764 * This path doesn't originate from kernfs and @kn could already
5765 * have been or be removed at any point. @kn->priv is RCU
a4189487 5766 * protected for this access. See css_release_work_fn() for details.
2bd59d48
TH
5767 */
5768 cgrp = rcu_dereference(kn->priv);
5769 if (cgrp)
5770 css = cgroup_css(cgrp, ss);
5a17f543 5771
ec903c0c 5772 if (!css || !css_tryget_online(css))
5a17f543
TH
5773 css = ERR_PTR(-ENOENT);
5774
5775 rcu_read_unlock();
5776 return css;
e5d1367f 5777}
e5d1367f 5778
1cb650b9
LZ
5779/**
5780 * css_from_id - lookup css by id
5781 * @id: the cgroup id
5782 * @ss: cgroup subsys to be looked into
5783 *
5784 * Returns the css if there's valid one with @id, otherwise returns NULL.
5785 * Should be called under rcu_read_lock().
5786 */
5787struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
5788{
6fa4918d 5789 WARN_ON_ONCE(!rcu_read_lock_held());
adbe427b 5790 return id > 0 ? idr_find(&ss->css_idr, id) : NULL;
e5d1367f
SE
5791}
5792
fe693435 5793#ifdef CONFIG_CGROUP_DEBUG
eb95419b
TH
5794static struct cgroup_subsys_state *
5795debug_css_alloc(struct cgroup_subsys_state *parent_css)
fe693435
PM
5796{
5797 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5798
5799 if (!css)
5800 return ERR_PTR(-ENOMEM);
5801
5802 return css;
5803}
5804
eb95419b 5805static void debug_css_free(struct cgroup_subsys_state *css)
fe693435 5806{
eb95419b 5807 kfree(css);
fe693435
PM
5808}
5809
182446d0
TH
5810static u64 debug_taskcount_read(struct cgroup_subsys_state *css,
5811 struct cftype *cft)
fe693435 5812{
182446d0 5813 return cgroup_task_count(css->cgroup);
fe693435
PM
5814}
5815
182446d0
TH
5816static u64 current_css_set_read(struct cgroup_subsys_state *css,
5817 struct cftype *cft)
fe693435
PM
5818{
5819 return (u64)(unsigned long)current->cgroups;
5820}
5821
182446d0 5822static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css,
03c78cbe 5823 struct cftype *cft)
fe693435
PM
5824{
5825 u64 count;
5826
5827 rcu_read_lock();
a8ad805c 5828 count = atomic_read(&task_css_set(current)->refcount);
fe693435
PM
5829 rcu_read_unlock();
5830 return count;
5831}
5832
2da8ca82 5833static int current_css_set_cg_links_read(struct seq_file *seq, void *v)
7717f7ba 5834{
69d0206c 5835 struct cgrp_cset_link *link;
5abb8855 5836 struct css_set *cset;
e61734c5
TH
5837 char *name_buf;
5838
5839 name_buf = kmalloc(NAME_MAX + 1, GFP_KERNEL);
5840 if (!name_buf)
5841 return -ENOMEM;
7717f7ba 5842
f0d9a5f1 5843 spin_lock_bh(&css_set_lock);
7717f7ba 5844 rcu_read_lock();
5abb8855 5845 cset = rcu_dereference(current->cgroups);
69d0206c 5846 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 5847 struct cgroup *c = link->cgrp;
7717f7ba 5848
a2dd4247 5849 cgroup_name(c, name_buf, NAME_MAX + 1);
2c6ab6d2 5850 seq_printf(seq, "Root %d group %s\n",
a2dd4247 5851 c->root->hierarchy_id, name_buf);
7717f7ba
PM
5852 }
5853 rcu_read_unlock();
f0d9a5f1 5854 spin_unlock_bh(&css_set_lock);
e61734c5 5855 kfree(name_buf);
7717f7ba
PM
5856 return 0;
5857}
5858
5859#define MAX_TASKS_SHOWN_PER_CSS 25
2da8ca82 5860static int cgroup_css_links_read(struct seq_file *seq, void *v)
7717f7ba 5861{
2da8ca82 5862 struct cgroup_subsys_state *css = seq_css(seq);
69d0206c 5863 struct cgrp_cset_link *link;
7717f7ba 5864
f0d9a5f1 5865 spin_lock_bh(&css_set_lock);
182446d0 5866 list_for_each_entry(link, &css->cgroup->cset_links, cset_link) {
69d0206c 5867 struct css_set *cset = link->cset;
7717f7ba
PM
5868 struct task_struct *task;
5869 int count = 0;
c7561128 5870
5abb8855 5871 seq_printf(seq, "css_set %p\n", cset);
c7561128 5872
5abb8855 5873 list_for_each_entry(task, &cset->tasks, cg_list) {
c7561128
TH
5874 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
5875 goto overflow;
5876 seq_printf(seq, " task %d\n", task_pid_vnr(task));
5877 }
5878
5879 list_for_each_entry(task, &cset->mg_tasks, cg_list) {
5880 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
5881 goto overflow;
5882 seq_printf(seq, " task %d\n", task_pid_vnr(task));
7717f7ba 5883 }
c7561128
TH
5884 continue;
5885 overflow:
5886 seq_puts(seq, " ...\n");
7717f7ba 5887 }
f0d9a5f1 5888 spin_unlock_bh(&css_set_lock);
7717f7ba
PM
5889 return 0;
5890}
5891
182446d0 5892static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft)
fe693435 5893{
27bd4dbb 5894 return (!cgroup_is_populated(css->cgroup) &&
a25eb52e 5895 !css_has_online_children(&css->cgroup->self));
fe693435
PM
5896}
5897
5898static struct cftype debug_files[] = {
fe693435
PM
5899 {
5900 .name = "taskcount",
5901 .read_u64 = debug_taskcount_read,
5902 },
5903
5904 {
5905 .name = "current_css_set",
5906 .read_u64 = current_css_set_read,
5907 },
5908
5909 {
5910 .name = "current_css_set_refcount",
5911 .read_u64 = current_css_set_refcount_read,
5912 },
5913
7717f7ba
PM
5914 {
5915 .name = "current_css_set_cg_links",
2da8ca82 5916 .seq_show = current_css_set_cg_links_read,
7717f7ba
PM
5917 },
5918
5919 {
5920 .name = "cgroup_css_links",
2da8ca82 5921 .seq_show = cgroup_css_links_read,
7717f7ba
PM
5922 },
5923
fe693435
PM
5924 {
5925 .name = "releasable",
5926 .read_u64 = releasable_read,
5927 },
fe693435 5928
4baf6e33
TH
5929 { } /* terminate */
5930};
fe693435 5931
073219e9 5932struct cgroup_subsys debug_cgrp_subsys = {
92fb9748
TH
5933 .css_alloc = debug_css_alloc,
5934 .css_free = debug_css_free,
5577964e 5935 .legacy_cftypes = debug_files,
fe693435
PM
5936};
5937#endif /* CONFIG_CGROUP_DEBUG */