]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - kernel/cgroup.c
cgroup: skip refcnting on normal root csses and cgrp_dfl_root self css
[mirror_ubuntu-zesty-kernel.git] / kernel / cgroup.c
CommitLineData
ddbcc7e8 1/*
ddbcc7e8
PM
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
0dea1168
KS
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
ddbcc7e8
PM
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
ed3d261b
JP
29#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
ddbcc7e8 31#include <linux/cgroup.h>
2ce9738b 32#include <linux/cred.h>
c6d57f33 33#include <linux/ctype.h>
ddbcc7e8 34#include <linux/errno.h>
2ce9738b 35#include <linux/init_task.h>
ddbcc7e8
PM
36#include <linux/kernel.h>
37#include <linux/list.h>
38#include <linux/mm.h>
39#include <linux/mutex.h>
40#include <linux/mount.h>
41#include <linux/pagemap.h>
a424316c 42#include <linux/proc_fs.h>
ddbcc7e8
PM
43#include <linux/rcupdate.h>
44#include <linux/sched.h>
ddbcc7e8 45#include <linux/slab.h>
ddbcc7e8 46#include <linux/spinlock.h>
96d365e0 47#include <linux/rwsem.h>
ddbcc7e8 48#include <linux/string.h>
bbcb81d0 49#include <linux/sort.h>
81a6a5cd 50#include <linux/kmod.h>
846c7bb0
BS
51#include <linux/delayacct.h>
52#include <linux/cgroupstats.h>
0ac801fe 53#include <linux/hashtable.h>
096b7fe0 54#include <linux/pid_namespace.h>
2c6ab6d2 55#include <linux/idr.h>
d1d9fd33 56#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
c4c27fbd 57#include <linux/kthread.h>
776f02fa 58#include <linux/delay.h>
846c7bb0 59
60063497 60#include <linux/atomic.h>
ddbcc7e8 61
b1a21367
TH
62/*
63 * pidlists linger the following amount before being destroyed. The goal
64 * is avoiding frequent destruction in the middle of consecutive read calls
65 * Expiring in the middle is a performance problem not a correctness one.
66 * 1 sec should be enough.
67 */
68#define CGROUP_PIDLIST_DESTROY_DELAY HZ
69
8d7e6fb0
TH
70#define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
71 MAX_CFTYPE_NAME + 2)
72
e25e2cbb
TH
73/*
74 * cgroup_mutex is the master lock. Any modification to cgroup or its
75 * hierarchy must be performed while holding it.
76 *
0e1d768f
TH
77 * css_set_rwsem protects task->cgroups pointer, the list of css_set
78 * objects, and the chain of tasks off each css_set.
e25e2cbb 79 *
0e1d768f
TH
80 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
81 * cgroup.h can use them for lockdep annotations.
e25e2cbb 82 */
2219449a
TH
83#ifdef CONFIG_PROVE_RCU
84DEFINE_MUTEX(cgroup_mutex);
0e1d768f
TH
85DECLARE_RWSEM(css_set_rwsem);
86EXPORT_SYMBOL_GPL(cgroup_mutex);
87EXPORT_SYMBOL_GPL(css_set_rwsem);
2219449a 88#else
81a6a5cd 89static DEFINE_MUTEX(cgroup_mutex);
0e1d768f 90static DECLARE_RWSEM(css_set_rwsem);
2219449a
TH
91#endif
92
6fa4918d 93/*
15a4c835
TH
94 * Protects cgroup_idr and css_idr so that IDs can be released without
95 * grabbing cgroup_mutex.
6fa4918d
TH
96 */
97static DEFINE_SPINLOCK(cgroup_idr_lock);
98
69e943b7
TH
99/*
100 * Protects cgroup_subsys->release_agent_path. Modifying it also requires
101 * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock.
102 */
103static DEFINE_SPINLOCK(release_agent_path_lock);
81a6a5cd 104
8353da1f 105#define cgroup_assert_mutex_or_rcu_locked() \
87fb54f1
TH
106 rcu_lockdep_assert(rcu_read_lock_held() || \
107 lockdep_is_held(&cgroup_mutex), \
8353da1f 108 "cgroup_mutex or RCU read lock required");
780cd8b3 109
e5fca243
TH
110/*
111 * cgroup destruction makes heavy use of work items and there can be a lot
112 * of concurrent destructions. Use a separate workqueue so that cgroup
113 * destruction work items don't end up filling up max_active of system_wq
114 * which may lead to deadlock.
115 */
116static struct workqueue_struct *cgroup_destroy_wq;
117
b1a21367
TH
118/*
119 * pidlist destructions need to be flushed on cgroup destruction. Use a
120 * separate workqueue as flush domain.
121 */
122static struct workqueue_struct *cgroup_pidlist_destroy_wq;
123
3ed80a62 124/* generate an array of cgroup subsystem pointers */
073219e9 125#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
3ed80a62 126static struct cgroup_subsys *cgroup_subsys[] = {
ddbcc7e8
PM
127#include <linux/cgroup_subsys.h>
128};
073219e9
TH
129#undef SUBSYS
130
131/* array of cgroup subsystem names */
132#define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
133static const char *cgroup_subsys_name[] = {
ddbcc7e8
PM
134#include <linux/cgroup_subsys.h>
135};
073219e9 136#undef SUBSYS
ddbcc7e8 137
ddbcc7e8 138/*
3dd06ffa 139 * The default hierarchy, reserved for the subsystems that are otherwise
9871bf95
TH
140 * unattached - it never has more than a single cgroup, and all tasks are
141 * part of that cgroup.
ddbcc7e8 142 */
a2dd4247 143struct cgroup_root cgrp_dfl_root;
9871bf95 144
a2dd4247
TH
145/*
146 * The default hierarchy always exists but is hidden until mounted for the
147 * first time. This is for backward compatibility.
148 */
149static bool cgrp_dfl_root_visible;
ddbcc7e8
PM
150
151/* The list of hierarchy roots */
152
9871bf95
TH
153static LIST_HEAD(cgroup_roots);
154static int cgroup_root_count;
ddbcc7e8 155
3417ae1f 156/* hierarchy ID allocation and mapping, protected by cgroup_mutex */
1a574231 157static DEFINE_IDR(cgroup_hierarchy_idr);
2c6ab6d2 158
794611a1
LZ
159/*
160 * Assign a monotonically increasing serial number to cgroups. It
161 * guarantees cgroups with bigger numbers are newer than those with smaller
162 * numbers. Also, as cgroups are always appended to the parent's
163 * ->children list, it guarantees that sibling cgroups are always sorted in
00356bd5
TH
164 * the ascending serial number order on the list. Protected by
165 * cgroup_mutex.
794611a1 166 */
00356bd5 167static u64 cgroup_serial_nr_next = 1;
794611a1 168
ddbcc7e8 169/* This flag indicates whether tasks in the fork and exit paths should
a043e3b2
LZ
170 * check for fork/exit handlers to call. This avoids us having to do
171 * extra work in the fork/exit path if none of the subsystems need to
172 * be called.
ddbcc7e8 173 */
8947f9d5 174static int need_forkexit_callback __read_mostly;
ddbcc7e8 175
628f7cd4
TH
176static struct cftype cgroup_base_files[];
177
59f5296b 178static void cgroup_put(struct cgroup *cgrp);
9d755d33 179static bool cgroup_has_live_children(struct cgroup *cgrp);
3dd06ffa 180static int rebind_subsystems(struct cgroup_root *dst_root,
69dfa00c 181 unsigned int ss_mask);
42809dd4 182static int cgroup_destroy_locked(struct cgroup *cgrp);
f8f22e53 183static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss);
9d755d33 184static void css_release(struct percpu_ref *ref);
f8f22e53 185static void kill_css(struct cgroup_subsys_state *css);
2bb566cb
TH
186static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
187 bool is_add);
b1a21367 188static void cgroup_pidlist_destroy_all(struct cgroup *cgrp);
42809dd4 189
6fa4918d
TH
190/* IDR wrappers which synchronize using cgroup_idr_lock */
191static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
192 gfp_t gfp_mask)
193{
194 int ret;
195
196 idr_preload(gfp_mask);
54504e97 197 spin_lock_bh(&cgroup_idr_lock);
6fa4918d 198 ret = idr_alloc(idr, ptr, start, end, gfp_mask);
54504e97 199 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
200 idr_preload_end();
201 return ret;
202}
203
204static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
205{
206 void *ret;
207
54504e97 208 spin_lock_bh(&cgroup_idr_lock);
6fa4918d 209 ret = idr_replace(idr, ptr, id);
54504e97 210 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
211 return ret;
212}
213
214static void cgroup_idr_remove(struct idr *idr, int id)
215{
54504e97 216 spin_lock_bh(&cgroup_idr_lock);
6fa4918d 217 idr_remove(idr, id);
54504e97 218 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
219}
220
95109b62
TH
221/**
222 * cgroup_css - obtain a cgroup's css for the specified subsystem
223 * @cgrp: the cgroup of interest
9d800df1 224 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
95109b62 225 *
ca8bdcaf
TH
226 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
227 * function must be called either under cgroup_mutex or rcu_read_lock() and
228 * the caller is responsible for pinning the returned css if it wants to
229 * keep accessing it outside the said locks. This function may return
230 * %NULL if @cgrp doesn't have @subsys_id enabled.
95109b62
TH
231 */
232static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
ca8bdcaf 233 struct cgroup_subsys *ss)
95109b62 234{
ca8bdcaf 235 if (ss)
aec25020 236 return rcu_dereference_check(cgrp->subsys[ss->id],
ace2bee8 237 lockdep_is_held(&cgroup_mutex));
ca8bdcaf 238 else
9d800df1 239 return &cgrp->self;
95109b62 240}
42809dd4 241
aec3dfcb
TH
242/**
243 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
244 * @cgrp: the cgroup of interest
9d800df1 245 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
aec3dfcb
TH
246 *
247 * Similar to cgroup_css() but returns the effctive css, which is defined
248 * as the matching css of the nearest ancestor including self which has @ss
249 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
250 * function is guaranteed to return non-NULL css.
251 */
252static struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
253 struct cgroup_subsys *ss)
254{
255 lockdep_assert_held(&cgroup_mutex);
256
257 if (!ss)
9d800df1 258 return &cgrp->self;
aec3dfcb
TH
259
260 if (!(cgrp->root->subsys_mask & (1 << ss->id)))
261 return NULL;
262
263 while (cgrp->parent &&
264 !(cgrp->parent->child_subsys_mask & (1 << ss->id)))
265 cgrp = cgrp->parent;
266
267 return cgroup_css(cgrp, ss);
268}
269
ddbcc7e8 270/* convenient tests for these bits */
54766d4a 271static inline bool cgroup_is_dead(const struct cgroup *cgrp)
ddbcc7e8 272{
54766d4a 273 return test_bit(CGRP_DEAD, &cgrp->flags);
ddbcc7e8
PM
274}
275
b4168640 276struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
59f5296b 277{
2bd59d48 278 struct cgroup *cgrp = of->kn->parent->priv;
b4168640 279 struct cftype *cft = of_cft(of);
2bd59d48
TH
280
281 /*
282 * This is open and unprotected implementation of cgroup_css().
283 * seq_css() is only called from a kernfs file operation which has
284 * an active reference on the file. Because all the subsystem
285 * files are drained before a css is disassociated with a cgroup,
286 * the matching css from the cgroup's subsys table is guaranteed to
287 * be and stay valid until the enclosing operation is complete.
288 */
289 if (cft->ss)
290 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
291 else
9d800df1 292 return &cgrp->self;
59f5296b 293}
b4168640 294EXPORT_SYMBOL_GPL(of_css);
59f5296b 295
78574cf9
LZ
296/**
297 * cgroup_is_descendant - test ancestry
298 * @cgrp: the cgroup to be tested
299 * @ancestor: possible ancestor of @cgrp
300 *
301 * Test whether @cgrp is a descendant of @ancestor. It also returns %true
302 * if @cgrp == @ancestor. This function is safe to call as long as @cgrp
303 * and @ancestor are accessible.
304 */
305bool cgroup_is_descendant(struct cgroup *cgrp, struct cgroup *ancestor)
306{
307 while (cgrp) {
308 if (cgrp == ancestor)
309 return true;
310 cgrp = cgrp->parent;
311 }
312 return false;
313}
ddbcc7e8 314
e9685a03 315static int cgroup_is_releasable(const struct cgroup *cgrp)
81a6a5cd
PM
316{
317 const int bits =
bd89aabc
PM
318 (1 << CGRP_RELEASABLE) |
319 (1 << CGRP_NOTIFY_ON_RELEASE);
320 return (cgrp->flags & bits) == bits;
81a6a5cd
PM
321}
322
e9685a03 323static int notify_on_release(const struct cgroup *cgrp)
81a6a5cd 324{
bd89aabc 325 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
81a6a5cd
PM
326}
327
1c6727af
TH
328/**
329 * for_each_css - iterate all css's of a cgroup
330 * @css: the iteration cursor
331 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
332 * @cgrp: the target cgroup to iterate css's of
333 *
aec3dfcb 334 * Should be called under cgroup_[tree_]mutex.
1c6727af
TH
335 */
336#define for_each_css(css, ssid, cgrp) \
337 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
338 if (!((css) = rcu_dereference_check( \
339 (cgrp)->subsys[(ssid)], \
340 lockdep_is_held(&cgroup_mutex)))) { } \
341 else
342
aec3dfcb
TH
343/**
344 * for_each_e_css - iterate all effective css's of a cgroup
345 * @css: the iteration cursor
346 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
347 * @cgrp: the target cgroup to iterate css's of
348 *
349 * Should be called under cgroup_[tree_]mutex.
350 */
351#define for_each_e_css(css, ssid, cgrp) \
352 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
353 if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \
354 ; \
355 else
356
30159ec7 357/**
3ed80a62 358 * for_each_subsys - iterate all enabled cgroup subsystems
30159ec7 359 * @ss: the iteration cursor
780cd8b3 360 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
30159ec7 361 */
780cd8b3 362#define for_each_subsys(ss, ssid) \
3ed80a62
TH
363 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT && \
364 (((ss) = cgroup_subsys[ssid]) || true); (ssid)++)
30159ec7 365
985ed670
TH
366/* iterate across the hierarchies */
367#define for_each_root(root) \
5549c497 368 list_for_each_entry((root), &cgroup_roots, root_list)
ddbcc7e8 369
f8f22e53
TH
370/* iterate over child cgrps, lock should be held throughout iteration */
371#define cgroup_for_each_live_child(child, cgrp) \
372 list_for_each_entry((child), &(cgrp)->children, sibling) \
8353da1f 373 if (({ lockdep_assert_held(&cgroup_mutex); \
f8f22e53
TH
374 cgroup_is_dead(child); })) \
375 ; \
376 else
377
81a6a5cd
PM
378/* the list of cgroups eligible for automatic release. Protected by
379 * release_list_lock */
380static LIST_HEAD(release_list);
cdcc136f 381static DEFINE_RAW_SPINLOCK(release_list_lock);
81a6a5cd
PM
382static void cgroup_release_agent(struct work_struct *work);
383static DECLARE_WORK(release_agent_work, cgroup_release_agent);
bd89aabc 384static void check_for_release(struct cgroup *cgrp);
81a6a5cd 385
69d0206c
TH
386/*
387 * A cgroup can be associated with multiple css_sets as different tasks may
388 * belong to different cgroups on different hierarchies. In the other
389 * direction, a css_set is naturally associated with multiple cgroups.
390 * This M:N relationship is represented by the following link structure
391 * which exists for each association and allows traversing the associations
392 * from both sides.
393 */
394struct cgrp_cset_link {
395 /* the cgroup and css_set this link associates */
396 struct cgroup *cgrp;
397 struct css_set *cset;
398
399 /* list of cgrp_cset_links anchored at cgrp->cset_links */
400 struct list_head cset_link;
401
402 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
403 struct list_head cgrp_link;
817929ec
PM
404};
405
172a2c06
TH
406/*
407 * The default css_set - used by init and its children prior to any
817929ec
PM
408 * hierarchies being mounted. It contains a pointer to the root state
409 * for each subsystem. Also used to anchor the list of css_sets. Not
410 * reference-counted, to improve performance when child cgroups
411 * haven't been created.
412 */
5024ae29 413struct css_set init_css_set = {
172a2c06
TH
414 .refcount = ATOMIC_INIT(1),
415 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links),
416 .tasks = LIST_HEAD_INIT(init_css_set.tasks),
417 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks),
418 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node),
419 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node),
420};
817929ec 421
172a2c06 422static int css_set_count = 1; /* 1 for init_css_set */
817929ec 423
842b597e
TH
424/**
425 * cgroup_update_populated - updated populated count of a cgroup
426 * @cgrp: the target cgroup
427 * @populated: inc or dec populated count
428 *
429 * @cgrp is either getting the first task (css_set) or losing the last.
430 * Update @cgrp->populated_cnt accordingly. The count is propagated
431 * towards root so that a given cgroup's populated_cnt is zero iff the
432 * cgroup and all its descendants are empty.
433 *
434 * @cgrp's interface file "cgroup.populated" is zero if
435 * @cgrp->populated_cnt is zero and 1 otherwise. When @cgrp->populated_cnt
436 * changes from or to zero, userland is notified that the content of the
437 * interface file has changed. This can be used to detect when @cgrp and
438 * its descendants become populated or empty.
439 */
440static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
441{
442 lockdep_assert_held(&css_set_rwsem);
443
444 do {
445 bool trigger;
446
447 if (populated)
448 trigger = !cgrp->populated_cnt++;
449 else
450 trigger = !--cgrp->populated_cnt;
451
452 if (!trigger)
453 break;
454
455 if (cgrp->populated_kn)
456 kernfs_notify(cgrp->populated_kn);
457 cgrp = cgrp->parent;
458 } while (cgrp);
459}
460
7717f7ba
PM
461/*
462 * hash table for cgroup groups. This improves the performance to find
463 * an existing css_set. This hash doesn't (currently) take into
464 * account cgroups in empty hierarchies.
465 */
472b1053 466#define CSS_SET_HASH_BITS 7
0ac801fe 467static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
472b1053 468
0ac801fe 469static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
472b1053 470{
0ac801fe 471 unsigned long key = 0UL;
30159ec7
TH
472 struct cgroup_subsys *ss;
473 int i;
472b1053 474
30159ec7 475 for_each_subsys(ss, i)
0ac801fe
LZ
476 key += (unsigned long)css[i];
477 key = (key >> 16) ^ key;
472b1053 478
0ac801fe 479 return key;
472b1053
LZ
480}
481
89c5509b 482static void put_css_set_locked(struct css_set *cset, bool taskexit)
b4f48b63 483{
69d0206c 484 struct cgrp_cset_link *link, *tmp_link;
2d8f243a
TH
485 struct cgroup_subsys *ss;
486 int ssid;
5abb8855 487
89c5509b
TH
488 lockdep_assert_held(&css_set_rwsem);
489
490 if (!atomic_dec_and_test(&cset->refcount))
146aa1bd 491 return;
81a6a5cd 492
2c6ab6d2 493 /* This css_set is dead. unlink it and release cgroup refcounts */
2d8f243a
TH
494 for_each_subsys(ss, ssid)
495 list_del(&cset->e_cset_node[ssid]);
5abb8855 496 hash_del(&cset->hlist);
2c6ab6d2
PM
497 css_set_count--;
498
69d0206c 499 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
2c6ab6d2 500 struct cgroup *cgrp = link->cgrp;
5abb8855 501
69d0206c
TH
502 list_del(&link->cset_link);
503 list_del(&link->cgrp_link);
71b5707e 504
96d365e0 505 /* @cgrp can't go away while we're holding css_set_rwsem */
842b597e
TH
506 if (list_empty(&cgrp->cset_links)) {
507 cgroup_update_populated(cgrp, false);
508 if (notify_on_release(cgrp)) {
509 if (taskexit)
510 set_bit(CGRP_RELEASABLE, &cgrp->flags);
511 check_for_release(cgrp);
512 }
81a6a5cd 513 }
2c6ab6d2
PM
514
515 kfree(link);
81a6a5cd 516 }
2c6ab6d2 517
5abb8855 518 kfree_rcu(cset, rcu_head);
b4f48b63
PM
519}
520
89c5509b
TH
521static void put_css_set(struct css_set *cset, bool taskexit)
522{
523 /*
524 * Ensure that the refcount doesn't hit zero while any readers
525 * can see it. Similar to atomic_dec_and_lock(), but for an
526 * rwlock
527 */
528 if (atomic_add_unless(&cset->refcount, -1, 1))
529 return;
530
531 down_write(&css_set_rwsem);
532 put_css_set_locked(cset, taskexit);
533 up_write(&css_set_rwsem);
534}
535
817929ec
PM
536/*
537 * refcounted get/put for css_set objects
538 */
5abb8855 539static inline void get_css_set(struct css_set *cset)
817929ec 540{
5abb8855 541 atomic_inc(&cset->refcount);
817929ec
PM
542}
543
b326f9d0 544/**
7717f7ba 545 * compare_css_sets - helper function for find_existing_css_set().
5abb8855
TH
546 * @cset: candidate css_set being tested
547 * @old_cset: existing css_set for a task
7717f7ba
PM
548 * @new_cgrp: cgroup that's being entered by the task
549 * @template: desired set of css pointers in css_set (pre-calculated)
550 *
6f4b7e63 551 * Returns true if "cset" matches "old_cset" except for the hierarchy
7717f7ba
PM
552 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
553 */
5abb8855
TH
554static bool compare_css_sets(struct css_set *cset,
555 struct css_set *old_cset,
7717f7ba
PM
556 struct cgroup *new_cgrp,
557 struct cgroup_subsys_state *template[])
558{
559 struct list_head *l1, *l2;
560
aec3dfcb
TH
561 /*
562 * On the default hierarchy, there can be csets which are
563 * associated with the same set of cgroups but different csses.
564 * Let's first ensure that csses match.
565 */
566 if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
7717f7ba 567 return false;
7717f7ba
PM
568
569 /*
570 * Compare cgroup pointers in order to distinguish between
aec3dfcb
TH
571 * different cgroups in hierarchies. As different cgroups may
572 * share the same effective css, this comparison is always
573 * necessary.
7717f7ba 574 */
69d0206c
TH
575 l1 = &cset->cgrp_links;
576 l2 = &old_cset->cgrp_links;
7717f7ba 577 while (1) {
69d0206c 578 struct cgrp_cset_link *link1, *link2;
5abb8855 579 struct cgroup *cgrp1, *cgrp2;
7717f7ba
PM
580
581 l1 = l1->next;
582 l2 = l2->next;
583 /* See if we reached the end - both lists are equal length. */
69d0206c
TH
584 if (l1 == &cset->cgrp_links) {
585 BUG_ON(l2 != &old_cset->cgrp_links);
7717f7ba
PM
586 break;
587 } else {
69d0206c 588 BUG_ON(l2 == &old_cset->cgrp_links);
7717f7ba
PM
589 }
590 /* Locate the cgroups associated with these links. */
69d0206c
TH
591 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
592 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
593 cgrp1 = link1->cgrp;
594 cgrp2 = link2->cgrp;
7717f7ba 595 /* Hierarchies should be linked in the same order. */
5abb8855 596 BUG_ON(cgrp1->root != cgrp2->root);
7717f7ba
PM
597
598 /*
599 * If this hierarchy is the hierarchy of the cgroup
600 * that's changing, then we need to check that this
601 * css_set points to the new cgroup; if it's any other
602 * hierarchy, then this css_set should point to the
603 * same cgroup as the old css_set.
604 */
5abb8855
TH
605 if (cgrp1->root == new_cgrp->root) {
606 if (cgrp1 != new_cgrp)
7717f7ba
PM
607 return false;
608 } else {
5abb8855 609 if (cgrp1 != cgrp2)
7717f7ba
PM
610 return false;
611 }
612 }
613 return true;
614}
615
b326f9d0
TH
616/**
617 * find_existing_css_set - init css array and find the matching css_set
618 * @old_cset: the css_set that we're using before the cgroup transition
619 * @cgrp: the cgroup that we're moving into
620 * @template: out param for the new set of csses, should be clear on entry
817929ec 621 */
5abb8855
TH
622static struct css_set *find_existing_css_set(struct css_set *old_cset,
623 struct cgroup *cgrp,
624 struct cgroup_subsys_state *template[])
b4f48b63 625{
3dd06ffa 626 struct cgroup_root *root = cgrp->root;
30159ec7 627 struct cgroup_subsys *ss;
5abb8855 628 struct css_set *cset;
0ac801fe 629 unsigned long key;
b326f9d0 630 int i;
817929ec 631
aae8aab4
BB
632 /*
633 * Build the set of subsystem state objects that we want to see in the
634 * new css_set. while subsystems can change globally, the entries here
635 * won't change, so no need for locking.
636 */
30159ec7 637 for_each_subsys(ss, i) {
f392e51c 638 if (root->subsys_mask & (1UL << i)) {
aec3dfcb
TH
639 /*
640 * @ss is in this hierarchy, so we want the
641 * effective css from @cgrp.
642 */
643 template[i] = cgroup_e_css(cgrp, ss);
817929ec 644 } else {
aec3dfcb
TH
645 /*
646 * @ss is not in this hierarchy, so we don't want
647 * to change the css.
648 */
5abb8855 649 template[i] = old_cset->subsys[i];
817929ec
PM
650 }
651 }
652
0ac801fe 653 key = css_set_hash(template);
5abb8855
TH
654 hash_for_each_possible(css_set_table, cset, hlist, key) {
655 if (!compare_css_sets(cset, old_cset, cgrp, template))
7717f7ba
PM
656 continue;
657
658 /* This css_set matches what we need */
5abb8855 659 return cset;
472b1053 660 }
817929ec
PM
661
662 /* No existing cgroup group matched */
663 return NULL;
664}
665
69d0206c 666static void free_cgrp_cset_links(struct list_head *links_to_free)
36553434 667{
69d0206c 668 struct cgrp_cset_link *link, *tmp_link;
36553434 669
69d0206c
TH
670 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
671 list_del(&link->cset_link);
36553434
LZ
672 kfree(link);
673 }
674}
675
69d0206c
TH
676/**
677 * allocate_cgrp_cset_links - allocate cgrp_cset_links
678 * @count: the number of links to allocate
679 * @tmp_links: list_head the allocated links are put on
680 *
681 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
682 * through ->cset_link. Returns 0 on success or -errno.
817929ec 683 */
69d0206c 684static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
817929ec 685{
69d0206c 686 struct cgrp_cset_link *link;
817929ec 687 int i;
69d0206c
TH
688
689 INIT_LIST_HEAD(tmp_links);
690
817929ec 691 for (i = 0; i < count; i++) {
f4f4be2b 692 link = kzalloc(sizeof(*link), GFP_KERNEL);
817929ec 693 if (!link) {
69d0206c 694 free_cgrp_cset_links(tmp_links);
817929ec
PM
695 return -ENOMEM;
696 }
69d0206c 697 list_add(&link->cset_link, tmp_links);
817929ec
PM
698 }
699 return 0;
700}
701
c12f65d4
LZ
702/**
703 * link_css_set - a helper function to link a css_set to a cgroup
69d0206c 704 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
5abb8855 705 * @cset: the css_set to be linked
c12f65d4
LZ
706 * @cgrp: the destination cgroup
707 */
69d0206c
TH
708static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
709 struct cgroup *cgrp)
c12f65d4 710{
69d0206c 711 struct cgrp_cset_link *link;
c12f65d4 712
69d0206c 713 BUG_ON(list_empty(tmp_links));
6803c006
TH
714
715 if (cgroup_on_dfl(cgrp))
716 cset->dfl_cgrp = cgrp;
717
69d0206c
TH
718 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
719 link->cset = cset;
7717f7ba 720 link->cgrp = cgrp;
842b597e
TH
721
722 if (list_empty(&cgrp->cset_links))
723 cgroup_update_populated(cgrp, true);
69d0206c 724 list_move(&link->cset_link, &cgrp->cset_links);
842b597e 725
7717f7ba
PM
726 /*
727 * Always add links to the tail of the list so that the list
728 * is sorted by order of hierarchy creation
729 */
69d0206c 730 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
c12f65d4
LZ
731}
732
b326f9d0
TH
733/**
734 * find_css_set - return a new css_set with one cgroup updated
735 * @old_cset: the baseline css_set
736 * @cgrp: the cgroup to be updated
737 *
738 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
739 * substituted into the appropriate hierarchy.
817929ec 740 */
5abb8855
TH
741static struct css_set *find_css_set(struct css_set *old_cset,
742 struct cgroup *cgrp)
817929ec 743{
b326f9d0 744 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
5abb8855 745 struct css_set *cset;
69d0206c
TH
746 struct list_head tmp_links;
747 struct cgrp_cset_link *link;
2d8f243a 748 struct cgroup_subsys *ss;
0ac801fe 749 unsigned long key;
2d8f243a 750 int ssid;
472b1053 751
b326f9d0
TH
752 lockdep_assert_held(&cgroup_mutex);
753
817929ec
PM
754 /* First see if we already have a cgroup group that matches
755 * the desired set */
96d365e0 756 down_read(&css_set_rwsem);
5abb8855
TH
757 cset = find_existing_css_set(old_cset, cgrp, template);
758 if (cset)
759 get_css_set(cset);
96d365e0 760 up_read(&css_set_rwsem);
817929ec 761
5abb8855
TH
762 if (cset)
763 return cset;
817929ec 764
f4f4be2b 765 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
5abb8855 766 if (!cset)
817929ec
PM
767 return NULL;
768
69d0206c 769 /* Allocate all the cgrp_cset_link objects that we'll need */
9871bf95 770 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
5abb8855 771 kfree(cset);
817929ec
PM
772 return NULL;
773 }
774
5abb8855 775 atomic_set(&cset->refcount, 1);
69d0206c 776 INIT_LIST_HEAD(&cset->cgrp_links);
5abb8855 777 INIT_LIST_HEAD(&cset->tasks);
c7561128 778 INIT_LIST_HEAD(&cset->mg_tasks);
1958d2d5 779 INIT_LIST_HEAD(&cset->mg_preload_node);
b3dc094e 780 INIT_LIST_HEAD(&cset->mg_node);
5abb8855 781 INIT_HLIST_NODE(&cset->hlist);
817929ec
PM
782
783 /* Copy the set of subsystem state objects generated in
784 * find_existing_css_set() */
5abb8855 785 memcpy(cset->subsys, template, sizeof(cset->subsys));
817929ec 786
96d365e0 787 down_write(&css_set_rwsem);
817929ec 788 /* Add reference counts and links from the new css_set. */
69d0206c 789 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
7717f7ba 790 struct cgroup *c = link->cgrp;
69d0206c 791
7717f7ba
PM
792 if (c->root == cgrp->root)
793 c = cgrp;
69d0206c 794 link_css_set(&tmp_links, cset, c);
7717f7ba 795 }
817929ec 796
69d0206c 797 BUG_ON(!list_empty(&tmp_links));
817929ec 798
817929ec 799 css_set_count++;
472b1053 800
2d8f243a 801 /* Add @cset to the hash table */
5abb8855
TH
802 key = css_set_hash(cset->subsys);
803 hash_add(css_set_table, &cset->hlist, key);
472b1053 804
2d8f243a
TH
805 for_each_subsys(ss, ssid)
806 list_add_tail(&cset->e_cset_node[ssid],
807 &cset->subsys[ssid]->cgroup->e_csets[ssid]);
808
96d365e0 809 up_write(&css_set_rwsem);
817929ec 810
5abb8855 811 return cset;
b4f48b63
PM
812}
813
3dd06ffa 814static struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
7717f7ba 815{
3dd06ffa 816 struct cgroup *root_cgrp = kf_root->kn->priv;
2bd59d48 817
3dd06ffa 818 return root_cgrp->root;
2bd59d48
TH
819}
820
3dd06ffa 821static int cgroup_init_root_id(struct cgroup_root *root)
f2e85d57
TH
822{
823 int id;
824
825 lockdep_assert_held(&cgroup_mutex);
826
985ed670 827 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
f2e85d57
TH
828 if (id < 0)
829 return id;
830
831 root->hierarchy_id = id;
832 return 0;
833}
834
3dd06ffa 835static void cgroup_exit_root_id(struct cgroup_root *root)
f2e85d57
TH
836{
837 lockdep_assert_held(&cgroup_mutex);
838
839 if (root->hierarchy_id) {
840 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
841 root->hierarchy_id = 0;
842 }
843}
844
3dd06ffa 845static void cgroup_free_root(struct cgroup_root *root)
f2e85d57
TH
846{
847 if (root) {
848 /* hierarhcy ID shoulid already have been released */
849 WARN_ON_ONCE(root->hierarchy_id);
850
851 idr_destroy(&root->cgroup_idr);
852 kfree(root);
853 }
854}
855
3dd06ffa 856static void cgroup_destroy_root(struct cgroup_root *root)
59f5296b 857{
3dd06ffa 858 struct cgroup *cgrp = &root->cgrp;
f2e85d57 859 struct cgrp_cset_link *link, *tmp_link;
f2e85d57 860
2bd59d48 861 mutex_lock(&cgroup_mutex);
f2e85d57 862
776f02fa 863 BUG_ON(atomic_read(&root->nr_cgrps));
f2e85d57
TH
864 BUG_ON(!list_empty(&cgrp->children));
865
f2e85d57 866 /* Rebind all subsystems back to the default hierarchy */
f392e51c 867 rebind_subsystems(&cgrp_dfl_root, root->subsys_mask);
7717f7ba 868
7717f7ba 869 /*
f2e85d57
TH
870 * Release all the links from cset_links to this hierarchy's
871 * root cgroup
7717f7ba 872 */
96d365e0 873 down_write(&css_set_rwsem);
f2e85d57
TH
874
875 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
876 list_del(&link->cset_link);
877 list_del(&link->cgrp_link);
878 kfree(link);
879 }
96d365e0 880 up_write(&css_set_rwsem);
f2e85d57
TH
881
882 if (!list_empty(&root->root_list)) {
883 list_del(&root->root_list);
884 cgroup_root_count--;
885 }
886
887 cgroup_exit_root_id(root);
888
889 mutex_unlock(&cgroup_mutex);
f2e85d57 890
2bd59d48 891 kernfs_destroy_root(root->kf_root);
f2e85d57
TH
892 cgroup_free_root(root);
893}
894
ceb6a081
TH
895/* look up cgroup associated with given css_set on the specified hierarchy */
896static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
3dd06ffa 897 struct cgroup_root *root)
7717f7ba 898{
7717f7ba
PM
899 struct cgroup *res = NULL;
900
96d365e0
TH
901 lockdep_assert_held(&cgroup_mutex);
902 lockdep_assert_held(&css_set_rwsem);
903
5abb8855 904 if (cset == &init_css_set) {
3dd06ffa 905 res = &root->cgrp;
7717f7ba 906 } else {
69d0206c
TH
907 struct cgrp_cset_link *link;
908
909 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 910 struct cgroup *c = link->cgrp;
69d0206c 911
7717f7ba
PM
912 if (c->root == root) {
913 res = c;
914 break;
915 }
916 }
917 }
96d365e0 918
7717f7ba
PM
919 BUG_ON(!res);
920 return res;
921}
922
ddbcc7e8 923/*
ceb6a081
TH
924 * Return the cgroup for "task" from the given hierarchy. Must be
925 * called with cgroup_mutex and css_set_rwsem held.
926 */
927static struct cgroup *task_cgroup_from_root(struct task_struct *task,
3dd06ffa 928 struct cgroup_root *root)
ceb6a081
TH
929{
930 /*
931 * No need to lock the task - since we hold cgroup_mutex the
932 * task can't change groups, so the only thing that can happen
933 * is that it exits and its css is set back to init_css_set.
934 */
935 return cset_cgroup_from_root(task_css_set(task), root);
936}
937
ddbcc7e8 938/*
ddbcc7e8
PM
939 * A task must hold cgroup_mutex to modify cgroups.
940 *
941 * Any task can increment and decrement the count field without lock.
942 * So in general, code holding cgroup_mutex can't rely on the count
943 * field not changing. However, if the count goes to zero, then only
956db3ca 944 * cgroup_attach_task() can increment it again. Because a count of zero
ddbcc7e8
PM
945 * means that no tasks are currently attached, therefore there is no
946 * way a task attached to that cgroup can fork (the other way to
947 * increment the count). So code holding cgroup_mutex can safely
948 * assume that if the count is zero, it will stay zero. Similarly, if
949 * a task holds cgroup_mutex on a cgroup with zero count, it
950 * knows that the cgroup won't be removed, as cgroup_rmdir()
951 * needs that mutex.
952 *
ddbcc7e8
PM
953 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
954 * (usually) take cgroup_mutex. These are the two most performance
955 * critical pieces of code here. The exception occurs on cgroup_exit(),
956 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
957 * is taken, and if the cgroup count is zero, a usermode call made
a043e3b2
LZ
958 * to the release agent with the name of the cgroup (path relative to
959 * the root of cgroup file system) as the argument.
ddbcc7e8
PM
960 *
961 * A cgroup can only be deleted if both its 'count' of using tasks
962 * is zero, and its list of 'children' cgroups is empty. Since all
963 * tasks in the system use _some_ cgroup, and since there is always at
3dd06ffa 964 * least one task in the system (init, pid == 1), therefore, root cgroup
ddbcc7e8 965 * always has either children cgroups and/or using tasks. So we don't
3dd06ffa 966 * need a special hack to ensure that root cgroup cannot be deleted.
ddbcc7e8
PM
967 *
968 * P.S. One more locking exception. RCU is used to guard the
956db3ca 969 * update of a tasks cgroup pointer by cgroup_attach_task()
ddbcc7e8
PM
970 */
971
69dfa00c 972static int cgroup_populate_dir(struct cgroup *cgrp, unsigned int subsys_mask);
2bd59d48 973static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
828c0950 974static const struct file_operations proc_cgroupstats_operations;
a424316c 975
8d7e6fb0
TH
976static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
977 char *buf)
ddbcc7e8 978{
8d7e6fb0
TH
979 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
980 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
981 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
982 cft->ss->name, cft->name);
983 else
984 strncpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
985 return buf;
ddbcc7e8
PM
986}
987
f2e85d57
TH
988/**
989 * cgroup_file_mode - deduce file mode of a control file
990 * @cft: the control file in question
991 *
992 * returns cft->mode if ->mode is not 0
993 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
994 * returns S_IRUGO if it has only a read handler
995 * returns S_IWUSR if it has only a write hander
996 */
997static umode_t cgroup_file_mode(const struct cftype *cft)
65dff759 998{
f2e85d57 999 umode_t mode = 0;
65dff759 1000
f2e85d57
TH
1001 if (cft->mode)
1002 return cft->mode;
1003
1004 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1005 mode |= S_IRUGO;
1006
6770c64e 1007 if (cft->write_u64 || cft->write_s64 || cft->write)
f2e85d57
TH
1008 mode |= S_IWUSR;
1009
1010 return mode;
65dff759
LZ
1011}
1012
59f5296b 1013static void cgroup_get(struct cgroup *cgrp)
ddbcc7e8 1014{
2bd59d48 1015 WARN_ON_ONCE(cgroup_is_dead(cgrp));
9d755d33 1016 css_get(&cgrp->self);
ddbcc7e8
PM
1017}
1018
59f5296b 1019static void cgroup_put(struct cgroup *cgrp)
05ef1d7c 1020{
9d755d33 1021 css_put(&cgrp->self);
ddbcc7e8 1022}
05ef1d7c 1023
a9746d8d
TH
1024/**
1025 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1026 * @kn: the kernfs_node being serviced
1027 *
1028 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1029 * the method finishes if locking succeeded. Note that once this function
1030 * returns the cgroup returned by cgroup_kn_lock_live() may become
1031 * inaccessible any time. If the caller intends to continue to access the
1032 * cgroup, it should pin it before invoking this function.
1033 */
1034static void cgroup_kn_unlock(struct kernfs_node *kn)
1035{
1036 struct cgroup *cgrp;
1037
1038 if (kernfs_type(kn) == KERNFS_DIR)
1039 cgrp = kn->priv;
1040 else
1041 cgrp = kn->parent->priv;
1042
1043 mutex_unlock(&cgroup_mutex);
a9746d8d
TH
1044
1045 kernfs_unbreak_active_protection(kn);
1046 cgroup_put(cgrp);
1047}
1048
1049/**
1050 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1051 * @kn: the kernfs_node being serviced
1052 *
1053 * This helper is to be used by a cgroup kernfs method currently servicing
1054 * @kn. It breaks the active protection, performs cgroup locking and
1055 * verifies that the associated cgroup is alive. Returns the cgroup if
1056 * alive; otherwise, %NULL. A successful return should be undone by a
1057 * matching cgroup_kn_unlock() invocation.
1058 *
1059 * Any cgroup kernfs method implementation which requires locking the
1060 * associated cgroup should use this helper. It avoids nesting cgroup
1061 * locking under kernfs active protection and allows all kernfs operations
1062 * including self-removal.
1063 */
1064static struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn)
1065{
1066 struct cgroup *cgrp;
1067
1068 if (kernfs_type(kn) == KERNFS_DIR)
1069 cgrp = kn->priv;
1070 else
1071 cgrp = kn->parent->priv;
1072
1073 /*
01f6474c 1074 * We're gonna grab cgroup_mutex which nests outside kernfs
a9746d8d
TH
1075 * active_ref. cgroup liveliness check alone provides enough
1076 * protection against removal. Ensure @cgrp stays accessible and
1077 * break the active_ref protection.
1078 */
1079 cgroup_get(cgrp);
1080 kernfs_break_active_protection(kn);
1081
a9746d8d
TH
1082 mutex_lock(&cgroup_mutex);
1083
1084 if (!cgroup_is_dead(cgrp))
1085 return cgrp;
1086
1087 cgroup_kn_unlock(kn);
1088 return NULL;
1089}
1090
2739d3cc 1091static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
05ef1d7c 1092{
2bd59d48 1093 char name[CGROUP_FILE_NAME_MAX];
05ef1d7c 1094
01f6474c 1095 lockdep_assert_held(&cgroup_mutex);
2bd59d48 1096 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
05ef1d7c
TH
1097}
1098
13af07df 1099/**
628f7cd4 1100 * cgroup_clear_dir - remove subsys files in a cgroup directory
8f89140a 1101 * @cgrp: target cgroup
13af07df
AR
1102 * @subsys_mask: mask of the subsystem ids whose files should be removed
1103 */
69dfa00c 1104static void cgroup_clear_dir(struct cgroup *cgrp, unsigned int subsys_mask)
05ef1d7c 1105{
13af07df 1106 struct cgroup_subsys *ss;
b420ba7d 1107 int i;
05ef1d7c 1108
b420ba7d 1109 for_each_subsys(ss, i) {
0adb0704 1110 struct cftype *cfts;
b420ba7d 1111
69dfa00c 1112 if (!(subsys_mask & (1 << i)))
13af07df 1113 continue;
0adb0704
TH
1114 list_for_each_entry(cfts, &ss->cfts, node)
1115 cgroup_addrm_files(cgrp, cfts, false);
13af07df 1116 }
ddbcc7e8
PM
1117}
1118
69dfa00c 1119static int rebind_subsystems(struct cgroup_root *dst_root, unsigned int ss_mask)
ddbcc7e8 1120{
30159ec7 1121 struct cgroup_subsys *ss;
2d8f243a 1122 int ssid, i, ret;
ddbcc7e8 1123
ace2bee8 1124 lockdep_assert_held(&cgroup_mutex);
ddbcc7e8 1125
5df36032
TH
1126 for_each_subsys(ss, ssid) {
1127 if (!(ss_mask & (1 << ssid)))
1128 continue;
aae8aab4 1129
7fd8c565
TH
1130 /* if @ss has non-root csses attached to it, can't move */
1131 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)))
3ed80a62 1132 return -EBUSY;
1d5be6b2 1133
5df36032 1134 /* can't move between two non-dummy roots either */
7fd8c565 1135 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
5df36032 1136 return -EBUSY;
ddbcc7e8
PM
1137 }
1138
a2dd4247
TH
1139 ret = cgroup_populate_dir(&dst_root->cgrp, ss_mask);
1140 if (ret) {
1141 if (dst_root != &cgrp_dfl_root)
5df36032 1142 return ret;
ddbcc7e8 1143
a2dd4247
TH
1144 /*
1145 * Rebinding back to the default root is not allowed to
1146 * fail. Using both default and non-default roots should
1147 * be rare. Moving subsystems back and forth even more so.
1148 * Just warn about it and continue.
1149 */
1150 if (cgrp_dfl_root_visible) {
69dfa00c 1151 pr_warn("failed to create files (%d) while rebinding 0x%x to default root\n",
a2a1f9ea 1152 ret, ss_mask);
ed3d261b 1153 pr_warn("you may retry by moving them to a different hierarchy and unbinding\n");
a2dd4247 1154 }
5df36032 1155 }
3126121f
TH
1156
1157 /*
1158 * Nothing can fail from this point on. Remove files for the
1159 * removed subsystems and rebind each subsystem.
1160 */
5df36032 1161 for_each_subsys(ss, ssid)
a2dd4247 1162 if (ss_mask & (1 << ssid))
3dd06ffa 1163 cgroup_clear_dir(&ss->root->cgrp, 1 << ssid);
a8a648c4 1164
5df36032 1165 for_each_subsys(ss, ssid) {
3dd06ffa 1166 struct cgroup_root *src_root;
5df36032 1167 struct cgroup_subsys_state *css;
2d8f243a 1168 struct css_set *cset;
a8a648c4 1169
5df36032
TH
1170 if (!(ss_mask & (1 << ssid)))
1171 continue;
a8a648c4 1172
5df36032 1173 src_root = ss->root;
3dd06ffa 1174 css = cgroup_css(&src_root->cgrp, ss);
a8a648c4 1175
3dd06ffa 1176 WARN_ON(!css || cgroup_css(&dst_root->cgrp, ss));
73e80ed8 1177
3dd06ffa
TH
1178 RCU_INIT_POINTER(src_root->cgrp.subsys[ssid], NULL);
1179 rcu_assign_pointer(dst_root->cgrp.subsys[ssid], css);
5df36032 1180 ss->root = dst_root;
3dd06ffa 1181 css->cgroup = &dst_root->cgrp;
73e80ed8 1182
2d8f243a
TH
1183 down_write(&css_set_rwsem);
1184 hash_for_each(css_set_table, i, cset, hlist)
1185 list_move_tail(&cset->e_cset_node[ss->id],
1186 &dst_root->cgrp.e_csets[ss->id]);
1187 up_write(&css_set_rwsem);
1188
f392e51c
TH
1189 src_root->subsys_mask &= ~(1 << ssid);
1190 src_root->cgrp.child_subsys_mask &= ~(1 << ssid);
1191
bd53d617 1192 /* default hierarchy doesn't enable controllers by default */
f392e51c 1193 dst_root->subsys_mask |= 1 << ssid;
bd53d617
TH
1194 if (dst_root != &cgrp_dfl_root)
1195 dst_root->cgrp.child_subsys_mask |= 1 << ssid;
a8a648c4 1196
5df36032
TH
1197 if (ss->bind)
1198 ss->bind(css);
ddbcc7e8 1199 }
ddbcc7e8 1200
a2dd4247 1201 kernfs_activate(dst_root->cgrp.kn);
ddbcc7e8
PM
1202 return 0;
1203}
1204
2bd59d48
TH
1205static int cgroup_show_options(struct seq_file *seq,
1206 struct kernfs_root *kf_root)
ddbcc7e8 1207{
3dd06ffa 1208 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
ddbcc7e8 1209 struct cgroup_subsys *ss;
b85d2040 1210 int ssid;
ddbcc7e8 1211
b85d2040 1212 for_each_subsys(ss, ssid)
f392e51c 1213 if (root->subsys_mask & (1 << ssid))
b85d2040 1214 seq_printf(seq, ",%s", ss->name);
873fe09e
TH
1215 if (root->flags & CGRP_ROOT_SANE_BEHAVIOR)
1216 seq_puts(seq, ",sane_behavior");
93438629 1217 if (root->flags & CGRP_ROOT_NOPREFIX)
ddbcc7e8 1218 seq_puts(seq, ",noprefix");
93438629 1219 if (root->flags & CGRP_ROOT_XATTR)
03b1cde6 1220 seq_puts(seq, ",xattr");
69e943b7
TH
1221
1222 spin_lock(&release_agent_path_lock);
81a6a5cd
PM
1223 if (strlen(root->release_agent_path))
1224 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
69e943b7
TH
1225 spin_unlock(&release_agent_path_lock);
1226
3dd06ffa 1227 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
97978e6d 1228 seq_puts(seq, ",clone_children");
c6d57f33
PM
1229 if (strlen(root->name))
1230 seq_printf(seq, ",name=%s", root->name);
ddbcc7e8
PM
1231 return 0;
1232}
1233
1234struct cgroup_sb_opts {
69dfa00c
TH
1235 unsigned int subsys_mask;
1236 unsigned int flags;
81a6a5cd 1237 char *release_agent;
2260e7fc 1238 bool cpuset_clone_children;
c6d57f33 1239 char *name;
2c6ab6d2
PM
1240 /* User explicitly requested empty subsystem */
1241 bool none;
ddbcc7e8
PM
1242};
1243
cf5d5941 1244static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
ddbcc7e8 1245{
32a8cf23
DL
1246 char *token, *o = data;
1247 bool all_ss = false, one_ss = false;
69dfa00c 1248 unsigned int mask = -1U;
30159ec7
TH
1249 struct cgroup_subsys *ss;
1250 int i;
f9ab5b5b
LZ
1251
1252#ifdef CONFIG_CPUSETS
69dfa00c 1253 mask = ~(1U << cpuset_cgrp_id);
f9ab5b5b 1254#endif
ddbcc7e8 1255
c6d57f33 1256 memset(opts, 0, sizeof(*opts));
ddbcc7e8
PM
1257
1258 while ((token = strsep(&o, ",")) != NULL) {
1259 if (!*token)
1260 return -EINVAL;
32a8cf23 1261 if (!strcmp(token, "none")) {
2c6ab6d2
PM
1262 /* Explicitly have no subsystems */
1263 opts->none = true;
32a8cf23
DL
1264 continue;
1265 }
1266 if (!strcmp(token, "all")) {
1267 /* Mutually exclusive option 'all' + subsystem name */
1268 if (one_ss)
1269 return -EINVAL;
1270 all_ss = true;
1271 continue;
1272 }
873fe09e
TH
1273 if (!strcmp(token, "__DEVEL__sane_behavior")) {
1274 opts->flags |= CGRP_ROOT_SANE_BEHAVIOR;
1275 continue;
1276 }
32a8cf23 1277 if (!strcmp(token, "noprefix")) {
93438629 1278 opts->flags |= CGRP_ROOT_NOPREFIX;
32a8cf23
DL
1279 continue;
1280 }
1281 if (!strcmp(token, "clone_children")) {
2260e7fc 1282 opts->cpuset_clone_children = true;
32a8cf23
DL
1283 continue;
1284 }
03b1cde6 1285 if (!strcmp(token, "xattr")) {
93438629 1286 opts->flags |= CGRP_ROOT_XATTR;
03b1cde6
AR
1287 continue;
1288 }
32a8cf23 1289 if (!strncmp(token, "release_agent=", 14)) {
81a6a5cd
PM
1290 /* Specifying two release agents is forbidden */
1291 if (opts->release_agent)
1292 return -EINVAL;
c6d57f33 1293 opts->release_agent =
e400c285 1294 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
81a6a5cd
PM
1295 if (!opts->release_agent)
1296 return -ENOMEM;
32a8cf23
DL
1297 continue;
1298 }
1299 if (!strncmp(token, "name=", 5)) {
c6d57f33
PM
1300 const char *name = token + 5;
1301 /* Can't specify an empty name */
1302 if (!strlen(name))
1303 return -EINVAL;
1304 /* Must match [\w.-]+ */
1305 for (i = 0; i < strlen(name); i++) {
1306 char c = name[i];
1307 if (isalnum(c))
1308 continue;
1309 if ((c == '.') || (c == '-') || (c == '_'))
1310 continue;
1311 return -EINVAL;
1312 }
1313 /* Specifying two names is forbidden */
1314 if (opts->name)
1315 return -EINVAL;
1316 opts->name = kstrndup(name,
e400c285 1317 MAX_CGROUP_ROOT_NAMELEN - 1,
c6d57f33
PM
1318 GFP_KERNEL);
1319 if (!opts->name)
1320 return -ENOMEM;
32a8cf23
DL
1321
1322 continue;
1323 }
1324
30159ec7 1325 for_each_subsys(ss, i) {
32a8cf23
DL
1326 if (strcmp(token, ss->name))
1327 continue;
1328 if (ss->disabled)
1329 continue;
1330
1331 /* Mutually exclusive option 'all' + subsystem name */
1332 if (all_ss)
1333 return -EINVAL;
69dfa00c 1334 opts->subsys_mask |= (1 << i);
32a8cf23
DL
1335 one_ss = true;
1336
1337 break;
1338 }
1339 if (i == CGROUP_SUBSYS_COUNT)
1340 return -ENOENT;
1341 }
1342
2c6ab6d2
PM
1343 /* Consistency checks */
1344
873fe09e 1345 if (opts->flags & CGRP_ROOT_SANE_BEHAVIOR) {
ed3d261b 1346 pr_warn("sane_behavior: this is still under development and its behaviors will change, proceed at your own risk\n");
873fe09e 1347
d3ba07c3
TH
1348 if ((opts->flags & (CGRP_ROOT_NOPREFIX | CGRP_ROOT_XATTR)) ||
1349 opts->cpuset_clone_children || opts->release_agent ||
1350 opts->name) {
ed3d261b 1351 pr_err("sane_behavior: noprefix, xattr, clone_children, release_agent and name are not allowed\n");
873fe09e
TH
1352 return -EINVAL;
1353 }
a2dd4247
TH
1354 } else {
1355 /*
1356 * If the 'all' option was specified select all the
1357 * subsystems, otherwise if 'none', 'name=' and a subsystem
1358 * name options were not specified, let's default to 'all'
1359 */
1360 if (all_ss || (!one_ss && !opts->none && !opts->name))
1361 for_each_subsys(ss, i)
1362 if (!ss->disabled)
69dfa00c 1363 opts->subsys_mask |= (1 << i);
873fe09e 1364
a2dd4247
TH
1365 /*
1366 * We either have to specify by name or by subsystems. (So
1367 * all empty hierarchies must have a name).
1368 */
1369 if (!opts->subsys_mask && !opts->name)
873fe09e 1370 return -EINVAL;
873fe09e
TH
1371 }
1372
f9ab5b5b
LZ
1373 /*
1374 * Option noprefix was introduced just for backward compatibility
1375 * with the old cpuset, so we allow noprefix only if mounting just
1376 * the cpuset subsystem.
1377 */
93438629 1378 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
f9ab5b5b
LZ
1379 return -EINVAL;
1380
2c6ab6d2
PM
1381
1382 /* Can't specify "none" and some subsystems */
a1a71b45 1383 if (opts->subsys_mask && opts->none)
2c6ab6d2
PM
1384 return -EINVAL;
1385
ddbcc7e8
PM
1386 return 0;
1387}
1388
2bd59d48 1389static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
ddbcc7e8
PM
1390{
1391 int ret = 0;
3dd06ffa 1392 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
ddbcc7e8 1393 struct cgroup_sb_opts opts;
69dfa00c 1394 unsigned int added_mask, removed_mask;
ddbcc7e8 1395
873fe09e 1396 if (root->flags & CGRP_ROOT_SANE_BEHAVIOR) {
ed3d261b 1397 pr_err("sane_behavior: remount is not allowed\n");
873fe09e
TH
1398 return -EINVAL;
1399 }
1400
ddbcc7e8
PM
1401 mutex_lock(&cgroup_mutex);
1402
1403 /* See what subsystems are wanted */
1404 ret = parse_cgroupfs_options(data, &opts);
1405 if (ret)
1406 goto out_unlock;
1407
f392e51c 1408 if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
ed3d261b 1409 pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
a2a1f9ea 1410 task_tgid_nr(current), current->comm);
8b5a5a9d 1411
f392e51c
TH
1412 added_mask = opts.subsys_mask & ~root->subsys_mask;
1413 removed_mask = root->subsys_mask & ~opts.subsys_mask;
13af07df 1414
cf5d5941 1415 /* Don't allow flags or name to change at remount */
0ce6cba3 1416 if (((opts.flags ^ root->flags) & CGRP_ROOT_OPTION_MASK) ||
cf5d5941 1417 (opts.name && strcmp(opts.name, root->name))) {
69dfa00c 1418 pr_err("option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"\n",
0ce6cba3
TH
1419 opts.flags & CGRP_ROOT_OPTION_MASK, opts.name ?: "",
1420 root->flags & CGRP_ROOT_OPTION_MASK, root->name);
c6d57f33
PM
1421 ret = -EINVAL;
1422 goto out_unlock;
1423 }
1424
f172e67c 1425 /* remounting is not allowed for populated hierarchies */
3dd06ffa 1426 if (!list_empty(&root->cgrp.children)) {
f172e67c 1427 ret = -EBUSY;
0670e08b 1428 goto out_unlock;
cf5d5941 1429 }
ddbcc7e8 1430
5df36032 1431 ret = rebind_subsystems(root, added_mask);
3126121f 1432 if (ret)
0670e08b 1433 goto out_unlock;
ddbcc7e8 1434
3dd06ffa 1435 rebind_subsystems(&cgrp_dfl_root, removed_mask);
5df36032 1436
69e943b7
TH
1437 if (opts.release_agent) {
1438 spin_lock(&release_agent_path_lock);
81a6a5cd 1439 strcpy(root->release_agent_path, opts.release_agent);
69e943b7
TH
1440 spin_unlock(&release_agent_path_lock);
1441 }
ddbcc7e8 1442 out_unlock:
66bdc9cf 1443 kfree(opts.release_agent);
c6d57f33 1444 kfree(opts.name);
ddbcc7e8 1445 mutex_unlock(&cgroup_mutex);
ddbcc7e8
PM
1446 return ret;
1447}
1448
afeb0f9f
TH
1449/*
1450 * To reduce the fork() overhead for systems that are not actually using
1451 * their cgroups capability, we don't maintain the lists running through
1452 * each css_set to its tasks until we see the list actually used - in other
1453 * words after the first mount.
1454 */
1455static bool use_task_css_set_links __read_mostly;
1456
1457static void cgroup_enable_task_cg_lists(void)
1458{
1459 struct task_struct *p, *g;
1460
96d365e0 1461 down_write(&css_set_rwsem);
afeb0f9f
TH
1462
1463 if (use_task_css_set_links)
1464 goto out_unlock;
1465
1466 use_task_css_set_links = true;
1467
1468 /*
1469 * We need tasklist_lock because RCU is not safe against
1470 * while_each_thread(). Besides, a forking task that has passed
1471 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1472 * is not guaranteed to have its child immediately visible in the
1473 * tasklist if we walk through it with RCU.
1474 */
1475 read_lock(&tasklist_lock);
1476 do_each_thread(g, p) {
afeb0f9f
TH
1477 WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1478 task_css_set(p) != &init_css_set);
1479
1480 /*
1481 * We should check if the process is exiting, otherwise
1482 * it will race with cgroup_exit() in that the list
1483 * entry won't be deleted though the process has exited.
f153ad11
TH
1484 * Do it while holding siglock so that we don't end up
1485 * racing against cgroup_exit().
afeb0f9f 1486 */
f153ad11 1487 spin_lock_irq(&p->sighand->siglock);
eaf797ab
TH
1488 if (!(p->flags & PF_EXITING)) {
1489 struct css_set *cset = task_css_set(p);
1490
1491 list_add(&p->cg_list, &cset->tasks);
1492 get_css_set(cset);
1493 }
f153ad11 1494 spin_unlock_irq(&p->sighand->siglock);
afeb0f9f
TH
1495 } while_each_thread(g, p);
1496 read_unlock(&tasklist_lock);
1497out_unlock:
96d365e0 1498 up_write(&css_set_rwsem);
afeb0f9f 1499}
ddbcc7e8 1500
cc31edce
PM
1501static void init_cgroup_housekeeping(struct cgroup *cgrp)
1502{
2d8f243a
TH
1503 struct cgroup_subsys *ss;
1504 int ssid;
1505
cc31edce
PM
1506 INIT_LIST_HEAD(&cgrp->sibling);
1507 INIT_LIST_HEAD(&cgrp->children);
69d0206c 1508 INIT_LIST_HEAD(&cgrp->cset_links);
cc31edce 1509 INIT_LIST_HEAD(&cgrp->release_list);
72a8cb30
BB
1510 INIT_LIST_HEAD(&cgrp->pidlists);
1511 mutex_init(&cgrp->pidlist_mutex);
9d800df1 1512 cgrp->self.cgroup = cgrp;
2d8f243a
TH
1513
1514 for_each_subsys(ss, ssid)
1515 INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
f8f22e53
TH
1516
1517 init_waitqueue_head(&cgrp->offline_waitq);
cc31edce 1518}
c6d57f33 1519
3dd06ffa 1520static void init_cgroup_root(struct cgroup_root *root,
172a2c06 1521 struct cgroup_sb_opts *opts)
ddbcc7e8 1522{
3dd06ffa 1523 struct cgroup *cgrp = &root->cgrp;
b0ca5a84 1524
ddbcc7e8 1525 INIT_LIST_HEAD(&root->root_list);
3c9c825b 1526 atomic_set(&root->nr_cgrps, 1);
bd89aabc 1527 cgrp->root = root;
cc31edce 1528 init_cgroup_housekeeping(cgrp);
4e96ee8e 1529 idr_init(&root->cgroup_idr);
c6d57f33 1530
c6d57f33
PM
1531 root->flags = opts->flags;
1532 if (opts->release_agent)
1533 strcpy(root->release_agent_path, opts->release_agent);
1534 if (opts->name)
1535 strcpy(root->name, opts->name);
2260e7fc 1536 if (opts->cpuset_clone_children)
3dd06ffa 1537 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
c6d57f33
PM
1538}
1539
69dfa00c 1540static int cgroup_setup_root(struct cgroup_root *root, unsigned int ss_mask)
2c6ab6d2 1541{
d427dfeb 1542 LIST_HEAD(tmp_links);
3dd06ffa 1543 struct cgroup *root_cgrp = &root->cgrp;
d427dfeb 1544 struct css_set *cset;
d427dfeb 1545 int i, ret;
2c6ab6d2 1546
d427dfeb 1547 lockdep_assert_held(&cgroup_mutex);
c6d57f33 1548
6fa4918d 1549 ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_NOWAIT);
d427dfeb 1550 if (ret < 0)
2bd59d48 1551 goto out;
d427dfeb 1552 root_cgrp->id = ret;
c6d57f33 1553
9d755d33
TH
1554 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release);
1555 if (ret)
1556 goto out;
1557
d427dfeb 1558 /*
96d365e0 1559 * We're accessing css_set_count without locking css_set_rwsem here,
d427dfeb
TH
1560 * but that's OK - it can only be increased by someone holding
1561 * cgroup_lock, and that's us. The worst that can happen is that we
1562 * have some link structures left over
1563 */
1564 ret = allocate_cgrp_cset_links(css_set_count, &tmp_links);
1565 if (ret)
9d755d33 1566 goto cancel_ref;
ddbcc7e8 1567
985ed670 1568 ret = cgroup_init_root_id(root);
ddbcc7e8 1569 if (ret)
9d755d33 1570 goto cancel_ref;
ddbcc7e8 1571
2bd59d48
TH
1572 root->kf_root = kernfs_create_root(&cgroup_kf_syscall_ops,
1573 KERNFS_ROOT_CREATE_DEACTIVATED,
1574 root_cgrp);
1575 if (IS_ERR(root->kf_root)) {
1576 ret = PTR_ERR(root->kf_root);
1577 goto exit_root_id;
1578 }
1579 root_cgrp->kn = root->kf_root->kn;
ddbcc7e8 1580
d427dfeb
TH
1581 ret = cgroup_addrm_files(root_cgrp, cgroup_base_files, true);
1582 if (ret)
2bd59d48 1583 goto destroy_root;
ddbcc7e8 1584
5df36032 1585 ret = rebind_subsystems(root, ss_mask);
d427dfeb 1586 if (ret)
2bd59d48 1587 goto destroy_root;
ddbcc7e8 1588
d427dfeb
TH
1589 /*
1590 * There must be no failure case after here, since rebinding takes
1591 * care of subsystems' refcounts, which are explicitly dropped in
1592 * the failure exit path.
1593 */
1594 list_add(&root->root_list, &cgroup_roots);
1595 cgroup_root_count++;
0df6a63f 1596
d427dfeb 1597 /*
3dd06ffa 1598 * Link the root cgroup in this hierarchy into all the css_set
d427dfeb
TH
1599 * objects.
1600 */
96d365e0 1601 down_write(&css_set_rwsem);
d427dfeb
TH
1602 hash_for_each(css_set_table, i, cset, hlist)
1603 link_css_set(&tmp_links, cset, root_cgrp);
96d365e0 1604 up_write(&css_set_rwsem);
ddbcc7e8 1605
d427dfeb 1606 BUG_ON(!list_empty(&root_cgrp->children));
3c9c825b 1607 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
ddbcc7e8 1608
2bd59d48 1609 kernfs_activate(root_cgrp->kn);
d427dfeb 1610 ret = 0;
2bd59d48 1611 goto out;
d427dfeb 1612
2bd59d48
TH
1613destroy_root:
1614 kernfs_destroy_root(root->kf_root);
1615 root->kf_root = NULL;
1616exit_root_id:
d427dfeb 1617 cgroup_exit_root_id(root);
9d755d33
TH
1618cancel_ref:
1619 percpu_ref_cancel_init(&root_cgrp->self.refcnt);
2bd59d48 1620out:
d427dfeb
TH
1621 free_cgrp_cset_links(&tmp_links);
1622 return ret;
ddbcc7e8
PM
1623}
1624
f7e83571 1625static struct dentry *cgroup_mount(struct file_system_type *fs_type,
ddbcc7e8 1626 int flags, const char *unused_dev_name,
f7e83571 1627 void *data)
ddbcc7e8 1628{
3dd06ffa 1629 struct cgroup_root *root;
ddbcc7e8 1630 struct cgroup_sb_opts opts;
2bd59d48 1631 struct dentry *dentry;
8e30e2b8 1632 int ret;
c6b3d5bc 1633 bool new_sb;
ddbcc7e8 1634
56fde9e0
TH
1635 /*
1636 * The first time anyone tries to mount a cgroup, enable the list
1637 * linking each css_set to its tasks and fix up all existing tasks.
1638 */
1639 if (!use_task_css_set_links)
1640 cgroup_enable_task_cg_lists();
e37a06f1 1641
aae8aab4 1642 mutex_lock(&cgroup_mutex);
8e30e2b8
TH
1643
1644 /* First find the desired set of subsystems */
ddbcc7e8 1645 ret = parse_cgroupfs_options(data, &opts);
c6d57f33 1646 if (ret)
8e30e2b8 1647 goto out_unlock;
a015edd2 1648
2bd59d48 1649 /* look for a matching existing root */
a2dd4247
TH
1650 if (!opts.subsys_mask && !opts.none && !opts.name) {
1651 cgrp_dfl_root_visible = true;
1652 root = &cgrp_dfl_root;
1653 cgroup_get(&root->cgrp);
1654 ret = 0;
1655 goto out_unlock;
ddbcc7e8
PM
1656 }
1657
985ed670 1658 for_each_root(root) {
2bd59d48 1659 bool name_match = false;
3126121f 1660
3dd06ffa 1661 if (root == &cgrp_dfl_root)
985ed670 1662 continue;
3126121f 1663
cf5d5941 1664 /*
2bd59d48
TH
1665 * If we asked for a name then it must match. Also, if
1666 * name matches but sybsys_mask doesn't, we should fail.
1667 * Remember whether name matched.
cf5d5941 1668 */
2bd59d48
TH
1669 if (opts.name) {
1670 if (strcmp(opts.name, root->name))
1671 continue;
1672 name_match = true;
1673 }
ddbcc7e8 1674
c6d57f33 1675 /*
2bd59d48
TH
1676 * If we asked for subsystems (or explicitly for no
1677 * subsystems) then they must match.
c6d57f33 1678 */
2bd59d48 1679 if ((opts.subsys_mask || opts.none) &&
f392e51c 1680 (opts.subsys_mask != root->subsys_mask)) {
2bd59d48
TH
1681 if (!name_match)
1682 continue;
1683 ret = -EBUSY;
1684 goto out_unlock;
1685 }
873fe09e 1686
c7ba8287 1687 if ((root->flags ^ opts.flags) & CGRP_ROOT_OPTION_MASK) {
2a0ff3fb 1688 if ((root->flags | opts.flags) & CGRP_ROOT_SANE_BEHAVIOR) {
ed3d261b 1689 pr_err("sane_behavior: new mount options should match the existing superblock\n");
2a0ff3fb 1690 ret = -EINVAL;
8e30e2b8 1691 goto out_unlock;
2a0ff3fb 1692 } else {
ed3d261b 1693 pr_warn("new mount options do not match the existing superblock, will be ignored\n");
2a0ff3fb 1694 }
873fe09e 1695 }
ddbcc7e8 1696
776f02fa 1697 /*
9d755d33
TH
1698 * A root's lifetime is governed by its root cgroup.
1699 * tryget_live failure indicate that the root is being
1700 * destroyed. Wait for destruction to complete so that the
1701 * subsystems are free. We can use wait_queue for the wait
1702 * but this path is super cold. Let's just sleep for a bit
1703 * and retry.
776f02fa 1704 */
9d755d33 1705 if (!percpu_ref_tryget_live(&root->cgrp.self.refcnt)) {
776f02fa 1706 mutex_unlock(&cgroup_mutex);
776f02fa 1707 msleep(10);
a015edd2
TH
1708 ret = restart_syscall();
1709 goto out_free;
776f02fa 1710 }
ddbcc7e8 1711
776f02fa 1712 ret = 0;
2bd59d48 1713 goto out_unlock;
ddbcc7e8 1714 }
ddbcc7e8 1715
817929ec 1716 /*
172a2c06
TH
1717 * No such thing, create a new one. name= matching without subsys
1718 * specification is allowed for already existing hierarchies but we
1719 * can't create new one without subsys specification.
817929ec 1720 */
172a2c06
TH
1721 if (!opts.subsys_mask && !opts.none) {
1722 ret = -EINVAL;
1723 goto out_unlock;
817929ec 1724 }
817929ec 1725
172a2c06
TH
1726 root = kzalloc(sizeof(*root), GFP_KERNEL);
1727 if (!root) {
1728 ret = -ENOMEM;
2bd59d48 1729 goto out_unlock;
839ec545 1730 }
e5f6a860 1731
172a2c06
TH
1732 init_cgroup_root(root, &opts);
1733
35585573 1734 ret = cgroup_setup_root(root, opts.subsys_mask);
2bd59d48
TH
1735 if (ret)
1736 cgroup_free_root(root);
fa3ca07e 1737
8e30e2b8 1738out_unlock:
ddbcc7e8 1739 mutex_unlock(&cgroup_mutex);
a015edd2 1740out_free:
c6d57f33
PM
1741 kfree(opts.release_agent);
1742 kfree(opts.name);
03b1cde6 1743
2bd59d48 1744 if (ret)
8e30e2b8 1745 return ERR_PTR(ret);
2bd59d48 1746
c6b3d5bc
LZ
1747 dentry = kernfs_mount(fs_type, flags, root->kf_root, &new_sb);
1748 if (IS_ERR(dentry) || !new_sb)
3dd06ffa 1749 cgroup_put(&root->cgrp);
2bd59d48
TH
1750 return dentry;
1751}
1752
1753static void cgroup_kill_sb(struct super_block *sb)
1754{
1755 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
3dd06ffa 1756 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2bd59d48 1757
9d755d33
TH
1758 /*
1759 * If @root doesn't have any mounts or children, start killing it.
1760 * This prevents new mounts by disabling percpu_ref_tryget_live().
1761 * cgroup_mount() may wait for @root's release.
1762 */
1763 if (cgroup_has_live_children(&root->cgrp))
1764 cgroup_put(&root->cgrp);
1765 else
1766 percpu_ref_kill(&root->cgrp.self.refcnt);
1767
2bd59d48 1768 kernfs_kill_sb(sb);
ddbcc7e8
PM
1769}
1770
1771static struct file_system_type cgroup_fs_type = {
1772 .name = "cgroup",
f7e83571 1773 .mount = cgroup_mount,
ddbcc7e8
PM
1774 .kill_sb = cgroup_kill_sb,
1775};
1776
676db4af
GKH
1777static struct kobject *cgroup_kobj;
1778
857a2beb 1779/**
913ffdb5 1780 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
857a2beb 1781 * @task: target task
857a2beb
TH
1782 * @buf: the buffer to write the path into
1783 * @buflen: the length of the buffer
1784 *
913ffdb5
TH
1785 * Determine @task's cgroup on the first (the one with the lowest non-zero
1786 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
1787 * function grabs cgroup_mutex and shouldn't be used inside locks used by
1788 * cgroup controller callbacks.
1789 *
e61734c5 1790 * Return value is the same as kernfs_path().
857a2beb 1791 */
e61734c5 1792char *task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
857a2beb 1793{
3dd06ffa 1794 struct cgroup_root *root;
913ffdb5 1795 struct cgroup *cgrp;
e61734c5
TH
1796 int hierarchy_id = 1;
1797 char *path = NULL;
857a2beb
TH
1798
1799 mutex_lock(&cgroup_mutex);
96d365e0 1800 down_read(&css_set_rwsem);
857a2beb 1801
913ffdb5
TH
1802 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
1803
857a2beb
TH
1804 if (root) {
1805 cgrp = task_cgroup_from_root(task, root);
e61734c5 1806 path = cgroup_path(cgrp, buf, buflen);
913ffdb5
TH
1807 } else {
1808 /* if no hierarchy exists, everyone is in "/" */
e61734c5
TH
1809 if (strlcpy(buf, "/", buflen) < buflen)
1810 path = buf;
857a2beb
TH
1811 }
1812
96d365e0 1813 up_read(&css_set_rwsem);
857a2beb 1814 mutex_unlock(&cgroup_mutex);
e61734c5 1815 return path;
857a2beb 1816}
913ffdb5 1817EXPORT_SYMBOL_GPL(task_cgroup_path);
857a2beb 1818
b3dc094e 1819/* used to track tasks and other necessary states during migration */
2f7ee569 1820struct cgroup_taskset {
b3dc094e
TH
1821 /* the src and dst cset list running through cset->mg_node */
1822 struct list_head src_csets;
1823 struct list_head dst_csets;
1824
1825 /*
1826 * Fields for cgroup_taskset_*() iteration.
1827 *
1828 * Before migration is committed, the target migration tasks are on
1829 * ->mg_tasks of the csets on ->src_csets. After, on ->mg_tasks of
1830 * the csets on ->dst_csets. ->csets point to either ->src_csets
1831 * or ->dst_csets depending on whether migration is committed.
1832 *
1833 * ->cur_csets and ->cur_task point to the current task position
1834 * during iteration.
1835 */
1836 struct list_head *csets;
1837 struct css_set *cur_cset;
1838 struct task_struct *cur_task;
2f7ee569
TH
1839};
1840
1841/**
1842 * cgroup_taskset_first - reset taskset and return the first task
1843 * @tset: taskset of interest
1844 *
1845 * @tset iteration is initialized and the first task is returned.
1846 */
1847struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
1848{
b3dc094e
TH
1849 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
1850 tset->cur_task = NULL;
1851
1852 return cgroup_taskset_next(tset);
2f7ee569 1853}
2f7ee569
TH
1854
1855/**
1856 * cgroup_taskset_next - iterate to the next task in taskset
1857 * @tset: taskset of interest
1858 *
1859 * Return the next task in @tset. Iteration must have been initialized
1860 * with cgroup_taskset_first().
1861 */
1862struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
1863{
b3dc094e
TH
1864 struct css_set *cset = tset->cur_cset;
1865 struct task_struct *task = tset->cur_task;
2f7ee569 1866
b3dc094e
TH
1867 while (&cset->mg_node != tset->csets) {
1868 if (!task)
1869 task = list_first_entry(&cset->mg_tasks,
1870 struct task_struct, cg_list);
1871 else
1872 task = list_next_entry(task, cg_list);
2f7ee569 1873
b3dc094e
TH
1874 if (&task->cg_list != &cset->mg_tasks) {
1875 tset->cur_cset = cset;
1876 tset->cur_task = task;
1877 return task;
1878 }
2f7ee569 1879
b3dc094e
TH
1880 cset = list_next_entry(cset, mg_node);
1881 task = NULL;
1882 }
2f7ee569 1883
b3dc094e 1884 return NULL;
2f7ee569 1885}
2f7ee569 1886
cb0f1fe9 1887/**
74a1166d 1888 * cgroup_task_migrate - move a task from one cgroup to another.
60106946 1889 * @old_cgrp: the cgroup @tsk is being migrated from
cb0f1fe9
TH
1890 * @tsk: the task being migrated
1891 * @new_cset: the new css_set @tsk is being attached to
74a1166d 1892 *
cb0f1fe9 1893 * Must be called with cgroup_mutex, threadgroup and css_set_rwsem locked.
74a1166d 1894 */
5abb8855
TH
1895static void cgroup_task_migrate(struct cgroup *old_cgrp,
1896 struct task_struct *tsk,
1897 struct css_set *new_cset)
74a1166d 1898{
5abb8855 1899 struct css_set *old_cset;
74a1166d 1900
cb0f1fe9
TH
1901 lockdep_assert_held(&cgroup_mutex);
1902 lockdep_assert_held(&css_set_rwsem);
1903
74a1166d 1904 /*
026085ef
MSB
1905 * We are synchronized through threadgroup_lock() against PF_EXITING
1906 * setting such that we can't race against cgroup_exit() changing the
1907 * css_set to init_css_set and dropping the old one.
74a1166d 1908 */
c84cdf75 1909 WARN_ON_ONCE(tsk->flags & PF_EXITING);
a8ad805c 1910 old_cset = task_css_set(tsk);
74a1166d 1911
b3dc094e 1912 get_css_set(new_cset);
5abb8855 1913 rcu_assign_pointer(tsk->cgroups, new_cset);
74a1166d 1914
1b9aba49
TH
1915 /*
1916 * Use move_tail so that cgroup_taskset_first() still returns the
1917 * leader after migration. This works because cgroup_migrate()
1918 * ensures that the dst_cset of the leader is the first on the
1919 * tset's dst_csets list.
1920 */
1921 list_move_tail(&tsk->cg_list, &new_cset->mg_tasks);
74a1166d
BB
1922
1923 /*
5abb8855
TH
1924 * We just gained a reference on old_cset by taking it from the
1925 * task. As trading it for new_cset is protected by cgroup_mutex,
1926 * we're safe to drop it here; it will be freed under RCU.
74a1166d 1927 */
5abb8855 1928 set_bit(CGRP_RELEASABLE, &old_cgrp->flags);
cb0f1fe9 1929 put_css_set_locked(old_cset, false);
74a1166d
BB
1930}
1931
a043e3b2 1932/**
1958d2d5
TH
1933 * cgroup_migrate_finish - cleanup after attach
1934 * @preloaded_csets: list of preloaded css_sets
74a1166d 1935 *
1958d2d5
TH
1936 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
1937 * those functions for details.
74a1166d 1938 */
1958d2d5 1939static void cgroup_migrate_finish(struct list_head *preloaded_csets)
74a1166d 1940{
1958d2d5 1941 struct css_set *cset, *tmp_cset;
74a1166d 1942
1958d2d5
TH
1943 lockdep_assert_held(&cgroup_mutex);
1944
1945 down_write(&css_set_rwsem);
1946 list_for_each_entry_safe(cset, tmp_cset, preloaded_csets, mg_preload_node) {
1947 cset->mg_src_cgrp = NULL;
1948 cset->mg_dst_cset = NULL;
1949 list_del_init(&cset->mg_preload_node);
1950 put_css_set_locked(cset, false);
1951 }
1952 up_write(&css_set_rwsem);
1953}
1954
1955/**
1956 * cgroup_migrate_add_src - add a migration source css_set
1957 * @src_cset: the source css_set to add
1958 * @dst_cgrp: the destination cgroup
1959 * @preloaded_csets: list of preloaded css_sets
1960 *
1961 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
1962 * @src_cset and add it to @preloaded_csets, which should later be cleaned
1963 * up by cgroup_migrate_finish().
1964 *
1965 * This function may be called without holding threadgroup_lock even if the
1966 * target is a process. Threads may be created and destroyed but as long
1967 * as cgroup_mutex is not dropped, no new css_set can be put into play and
1968 * the preloaded css_sets are guaranteed to cover all migrations.
1969 */
1970static void cgroup_migrate_add_src(struct css_set *src_cset,
1971 struct cgroup *dst_cgrp,
1972 struct list_head *preloaded_csets)
1973{
1974 struct cgroup *src_cgrp;
1975
1976 lockdep_assert_held(&cgroup_mutex);
1977 lockdep_assert_held(&css_set_rwsem);
1978
1979 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
1980
1958d2d5
TH
1981 if (!list_empty(&src_cset->mg_preload_node))
1982 return;
1983
1984 WARN_ON(src_cset->mg_src_cgrp);
1985 WARN_ON(!list_empty(&src_cset->mg_tasks));
1986 WARN_ON(!list_empty(&src_cset->mg_node));
1987
1988 src_cset->mg_src_cgrp = src_cgrp;
1989 get_css_set(src_cset);
1990 list_add(&src_cset->mg_preload_node, preloaded_csets);
1991}
1992
1993/**
1994 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
f817de98 1995 * @dst_cgrp: the destination cgroup (may be %NULL)
1958d2d5
TH
1996 * @preloaded_csets: list of preloaded source css_sets
1997 *
1998 * Tasks are about to be moved to @dst_cgrp and all the source css_sets
1999 * have been preloaded to @preloaded_csets. This function looks up and
f817de98
TH
2000 * pins all destination css_sets, links each to its source, and append them
2001 * to @preloaded_csets. If @dst_cgrp is %NULL, the destination of each
2002 * source css_set is assumed to be its cgroup on the default hierarchy.
1958d2d5
TH
2003 *
2004 * This function must be called after cgroup_migrate_add_src() has been
2005 * called on each migration source css_set. After migration is performed
2006 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2007 * @preloaded_csets.
2008 */
2009static int cgroup_migrate_prepare_dst(struct cgroup *dst_cgrp,
2010 struct list_head *preloaded_csets)
2011{
2012 LIST_HEAD(csets);
f817de98 2013 struct css_set *src_cset, *tmp_cset;
1958d2d5
TH
2014
2015 lockdep_assert_held(&cgroup_mutex);
2016
f8f22e53
TH
2017 /*
2018 * Except for the root, child_subsys_mask must be zero for a cgroup
2019 * with tasks so that child cgroups don't compete against tasks.
2020 */
2021 if (dst_cgrp && cgroup_on_dfl(dst_cgrp) && dst_cgrp->parent &&
2022 dst_cgrp->child_subsys_mask)
2023 return -EBUSY;
2024
1958d2d5 2025 /* look up the dst cset for each src cset and link it to src */
f817de98 2026 list_for_each_entry_safe(src_cset, tmp_cset, preloaded_csets, mg_preload_node) {
1958d2d5
TH
2027 struct css_set *dst_cset;
2028
f817de98
TH
2029 dst_cset = find_css_set(src_cset,
2030 dst_cgrp ?: src_cset->dfl_cgrp);
1958d2d5
TH
2031 if (!dst_cset)
2032 goto err;
2033
2034 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
f817de98
TH
2035
2036 /*
2037 * If src cset equals dst, it's noop. Drop the src.
2038 * cgroup_migrate() will skip the cset too. Note that we
2039 * can't handle src == dst as some nodes are used by both.
2040 */
2041 if (src_cset == dst_cset) {
2042 src_cset->mg_src_cgrp = NULL;
2043 list_del_init(&src_cset->mg_preload_node);
2044 put_css_set(src_cset, false);
2045 put_css_set(dst_cset, false);
2046 continue;
2047 }
2048
1958d2d5
TH
2049 src_cset->mg_dst_cset = dst_cset;
2050
2051 if (list_empty(&dst_cset->mg_preload_node))
2052 list_add(&dst_cset->mg_preload_node, &csets);
2053 else
2054 put_css_set(dst_cset, false);
2055 }
2056
f817de98 2057 list_splice_tail(&csets, preloaded_csets);
1958d2d5
TH
2058 return 0;
2059err:
2060 cgroup_migrate_finish(&csets);
2061 return -ENOMEM;
2062}
2063
2064/**
2065 * cgroup_migrate - migrate a process or task to a cgroup
2066 * @cgrp: the destination cgroup
2067 * @leader: the leader of the process or the task to migrate
2068 * @threadgroup: whether @leader points to the whole process or a single task
2069 *
2070 * Migrate a process or task denoted by @leader to @cgrp. If migrating a
2071 * process, the caller must be holding threadgroup_lock of @leader. The
2072 * caller is also responsible for invoking cgroup_migrate_add_src() and
2073 * cgroup_migrate_prepare_dst() on the targets before invoking this
2074 * function and following up with cgroup_migrate_finish().
2075 *
2076 * As long as a controller's ->can_attach() doesn't fail, this function is
2077 * guaranteed to succeed. This means that, excluding ->can_attach()
2078 * failure, when migrating multiple targets, the success or failure can be
2079 * decided for all targets by invoking group_migrate_prepare_dst() before
2080 * actually starting migrating.
2081 */
2082static int cgroup_migrate(struct cgroup *cgrp, struct task_struct *leader,
2083 bool threadgroup)
74a1166d 2084{
b3dc094e
TH
2085 struct cgroup_taskset tset = {
2086 .src_csets = LIST_HEAD_INIT(tset.src_csets),
2087 .dst_csets = LIST_HEAD_INIT(tset.dst_csets),
2088 .csets = &tset.src_csets,
2089 };
1c6727af 2090 struct cgroup_subsys_state *css, *failed_css = NULL;
b3dc094e
TH
2091 struct css_set *cset, *tmp_cset;
2092 struct task_struct *task, *tmp_task;
2093 int i, ret;
74a1166d 2094
fb5d2b4c
MSB
2095 /*
2096 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2097 * already PF_EXITING could be freed from underneath us unless we
2098 * take an rcu_read_lock.
2099 */
b3dc094e 2100 down_write(&css_set_rwsem);
fb5d2b4c 2101 rcu_read_lock();
9db8de37 2102 task = leader;
74a1166d 2103 do {
9db8de37
TH
2104 /* @task either already exited or can't exit until the end */
2105 if (task->flags & PF_EXITING)
ea84753c 2106 goto next;
134d3373 2107
eaf797ab
TH
2108 /* leave @task alone if post_fork() hasn't linked it yet */
2109 if (list_empty(&task->cg_list))
ea84753c 2110 goto next;
cd3d0952 2111
b3dc094e 2112 cset = task_css_set(task);
1958d2d5 2113 if (!cset->mg_src_cgrp)
ea84753c 2114 goto next;
b3dc094e 2115
61d1d219 2116 /*
1b9aba49
TH
2117 * cgroup_taskset_first() must always return the leader.
2118 * Take care to avoid disturbing the ordering.
61d1d219 2119 */
1b9aba49
TH
2120 list_move_tail(&task->cg_list, &cset->mg_tasks);
2121 if (list_empty(&cset->mg_node))
2122 list_add_tail(&cset->mg_node, &tset.src_csets);
2123 if (list_empty(&cset->mg_dst_cset->mg_node))
2124 list_move_tail(&cset->mg_dst_cset->mg_node,
2125 &tset.dst_csets);
ea84753c 2126 next:
081aa458
LZ
2127 if (!threadgroup)
2128 break;
9db8de37 2129 } while_each_thread(leader, task);
fb5d2b4c 2130 rcu_read_unlock();
b3dc094e 2131 up_write(&css_set_rwsem);
74a1166d 2132
134d3373 2133 /* methods shouldn't be called if no task is actually migrating */
b3dc094e
TH
2134 if (list_empty(&tset.src_csets))
2135 return 0;
134d3373 2136
1958d2d5 2137 /* check that we can legitimately attach to the cgroup */
aec3dfcb 2138 for_each_e_css(css, i, cgrp) {
1c6727af 2139 if (css->ss->can_attach) {
9db8de37
TH
2140 ret = css->ss->can_attach(css, &tset);
2141 if (ret) {
1c6727af 2142 failed_css = css;
74a1166d
BB
2143 goto out_cancel_attach;
2144 }
2145 }
74a1166d
BB
2146 }
2147
2148 /*
1958d2d5
TH
2149 * Now that we're guaranteed success, proceed to move all tasks to
2150 * the new cgroup. There are no failure cases after here, so this
2151 * is the commit point.
74a1166d 2152 */
cb0f1fe9 2153 down_write(&css_set_rwsem);
b3dc094e
TH
2154 list_for_each_entry(cset, &tset.src_csets, mg_node) {
2155 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list)
2156 cgroup_task_migrate(cset->mg_src_cgrp, task,
2157 cset->mg_dst_cset);
74a1166d 2158 }
cb0f1fe9 2159 up_write(&css_set_rwsem);
74a1166d
BB
2160
2161 /*
1958d2d5
TH
2162 * Migration is committed, all target tasks are now on dst_csets.
2163 * Nothing is sensitive to fork() after this point. Notify
2164 * controllers that migration is complete.
74a1166d 2165 */
1958d2d5 2166 tset.csets = &tset.dst_csets;
74a1166d 2167
aec3dfcb 2168 for_each_e_css(css, i, cgrp)
1c6727af
TH
2169 if (css->ss->attach)
2170 css->ss->attach(css, &tset);
74a1166d 2171
9db8de37 2172 ret = 0;
b3dc094e
TH
2173 goto out_release_tset;
2174
74a1166d 2175out_cancel_attach:
aec3dfcb 2176 for_each_e_css(css, i, cgrp) {
b3dc094e
TH
2177 if (css == failed_css)
2178 break;
2179 if (css->ss->cancel_attach)
2180 css->ss->cancel_attach(css, &tset);
74a1166d 2181 }
b3dc094e
TH
2182out_release_tset:
2183 down_write(&css_set_rwsem);
2184 list_splice_init(&tset.dst_csets, &tset.src_csets);
2185 list_for_each_entry_safe(cset, tmp_cset, &tset.src_csets, mg_node) {
1b9aba49 2186 list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
b3dc094e 2187 list_del_init(&cset->mg_node);
b3dc094e
TH
2188 }
2189 up_write(&css_set_rwsem);
9db8de37 2190 return ret;
74a1166d
BB
2191}
2192
1958d2d5
TH
2193/**
2194 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2195 * @dst_cgrp: the cgroup to attach to
2196 * @leader: the task or the leader of the threadgroup to be attached
2197 * @threadgroup: attach the whole threadgroup?
2198 *
0e1d768f 2199 * Call holding cgroup_mutex and threadgroup_lock of @leader.
1958d2d5
TH
2200 */
2201static int cgroup_attach_task(struct cgroup *dst_cgrp,
2202 struct task_struct *leader, bool threadgroup)
2203{
2204 LIST_HEAD(preloaded_csets);
2205 struct task_struct *task;
2206 int ret;
2207
2208 /* look up all src csets */
2209 down_read(&css_set_rwsem);
2210 rcu_read_lock();
2211 task = leader;
2212 do {
2213 cgroup_migrate_add_src(task_css_set(task), dst_cgrp,
2214 &preloaded_csets);
2215 if (!threadgroup)
2216 break;
2217 } while_each_thread(leader, task);
2218 rcu_read_unlock();
2219 up_read(&css_set_rwsem);
2220
2221 /* prepare dst csets and commit */
2222 ret = cgroup_migrate_prepare_dst(dst_cgrp, &preloaded_csets);
2223 if (!ret)
2224 ret = cgroup_migrate(dst_cgrp, leader, threadgroup);
2225
2226 cgroup_migrate_finish(&preloaded_csets);
2227 return ret;
74a1166d
BB
2228}
2229
2230/*
2231 * Find the task_struct of the task to attach by vpid and pass it along to the
cd3d0952 2232 * function to attach either it or all tasks in its threadgroup. Will lock
0e1d768f 2233 * cgroup_mutex and threadgroup.
bbcb81d0 2234 */
acbef755
TH
2235static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
2236 size_t nbytes, loff_t off, bool threadgroup)
bbcb81d0 2237{
bbcb81d0 2238 struct task_struct *tsk;
c69e8d9c 2239 const struct cred *cred = current_cred(), *tcred;
e76ecaee 2240 struct cgroup *cgrp;
acbef755 2241 pid_t pid;
bbcb81d0
PM
2242 int ret;
2243
acbef755
TH
2244 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2245 return -EINVAL;
2246
e76ecaee
TH
2247 cgrp = cgroup_kn_lock_live(of->kn);
2248 if (!cgrp)
74a1166d
BB
2249 return -ENODEV;
2250
b78949eb
MSB
2251retry_find_task:
2252 rcu_read_lock();
bbcb81d0 2253 if (pid) {
73507f33 2254 tsk = find_task_by_vpid(pid);
74a1166d
BB
2255 if (!tsk) {
2256 rcu_read_unlock();
dd4b0a46 2257 ret = -ESRCH;
b78949eb 2258 goto out_unlock_cgroup;
bbcb81d0 2259 }
74a1166d
BB
2260 /*
2261 * even if we're attaching all tasks in the thread group, we
2262 * only need to check permissions on one of them.
2263 */
c69e8d9c 2264 tcred = __task_cred(tsk);
14a590c3
EB
2265 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2266 !uid_eq(cred->euid, tcred->uid) &&
2267 !uid_eq(cred->euid, tcred->suid)) {
c69e8d9c 2268 rcu_read_unlock();
b78949eb
MSB
2269 ret = -EACCES;
2270 goto out_unlock_cgroup;
bbcb81d0 2271 }
b78949eb
MSB
2272 } else
2273 tsk = current;
cd3d0952
TH
2274
2275 if (threadgroup)
b78949eb 2276 tsk = tsk->group_leader;
c4c27fbd
MG
2277
2278 /*
14a40ffc 2279 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
c4c27fbd
MG
2280 * trapped in a cpuset, or RT worker may be born in a cgroup
2281 * with no rt_runtime allocated. Just say no.
2282 */
14a40ffc 2283 if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
c4c27fbd
MG
2284 ret = -EINVAL;
2285 rcu_read_unlock();
2286 goto out_unlock_cgroup;
2287 }
2288
b78949eb
MSB
2289 get_task_struct(tsk);
2290 rcu_read_unlock();
2291
2292 threadgroup_lock(tsk);
2293 if (threadgroup) {
2294 if (!thread_group_leader(tsk)) {
2295 /*
2296 * a race with de_thread from another thread's exec()
2297 * may strip us of our leadership, if this happens,
2298 * there is no choice but to throw this task away and
2299 * try again; this is
2300 * "double-double-toil-and-trouble-check locking".
2301 */
2302 threadgroup_unlock(tsk);
2303 put_task_struct(tsk);
2304 goto retry_find_task;
2305 }
081aa458
LZ
2306 }
2307
2308 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
2309
cd3d0952
TH
2310 threadgroup_unlock(tsk);
2311
bbcb81d0 2312 put_task_struct(tsk);
b78949eb 2313out_unlock_cgroup:
e76ecaee 2314 cgroup_kn_unlock(of->kn);
acbef755 2315 return ret ?: nbytes;
bbcb81d0
PM
2316}
2317
7ae1bad9
TH
2318/**
2319 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2320 * @from: attach to all cgroups of a given task
2321 * @tsk: the task to be attached
2322 */
2323int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2324{
3dd06ffa 2325 struct cgroup_root *root;
7ae1bad9
TH
2326 int retval = 0;
2327
47cfcd09 2328 mutex_lock(&cgroup_mutex);
985ed670 2329 for_each_root(root) {
96d365e0
TH
2330 struct cgroup *from_cgrp;
2331
3dd06ffa 2332 if (root == &cgrp_dfl_root)
985ed670
TH
2333 continue;
2334
96d365e0
TH
2335 down_read(&css_set_rwsem);
2336 from_cgrp = task_cgroup_from_root(from, root);
2337 up_read(&css_set_rwsem);
7ae1bad9 2338
6f4b7e63 2339 retval = cgroup_attach_task(from_cgrp, tsk, false);
7ae1bad9
TH
2340 if (retval)
2341 break;
2342 }
47cfcd09 2343 mutex_unlock(&cgroup_mutex);
7ae1bad9
TH
2344
2345 return retval;
2346}
2347EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2348
acbef755
TH
2349static ssize_t cgroup_tasks_write(struct kernfs_open_file *of,
2350 char *buf, size_t nbytes, loff_t off)
74a1166d 2351{
acbef755 2352 return __cgroup_procs_write(of, buf, nbytes, off, false);
74a1166d
BB
2353}
2354
acbef755
TH
2355static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
2356 char *buf, size_t nbytes, loff_t off)
af351026 2357{
acbef755 2358 return __cgroup_procs_write(of, buf, nbytes, off, true);
af351026
PM
2359}
2360
451af504
TH
2361static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of,
2362 char *buf, size_t nbytes, loff_t off)
e788e066 2363{
e76ecaee 2364 struct cgroup *cgrp;
5f469907 2365
e76ecaee
TH
2366 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
2367
2368 cgrp = cgroup_kn_lock_live(of->kn);
2369 if (!cgrp)
e788e066 2370 return -ENODEV;
69e943b7 2371 spin_lock(&release_agent_path_lock);
e76ecaee
TH
2372 strlcpy(cgrp->root->release_agent_path, strstrip(buf),
2373 sizeof(cgrp->root->release_agent_path));
69e943b7 2374 spin_unlock(&release_agent_path_lock);
e76ecaee 2375 cgroup_kn_unlock(of->kn);
451af504 2376 return nbytes;
e788e066
PM
2377}
2378
2da8ca82 2379static int cgroup_release_agent_show(struct seq_file *seq, void *v)
e788e066 2380{
2da8ca82 2381 struct cgroup *cgrp = seq_css(seq)->cgroup;
182446d0 2382
46cfeb04 2383 spin_lock(&release_agent_path_lock);
e788e066 2384 seq_puts(seq, cgrp->root->release_agent_path);
46cfeb04 2385 spin_unlock(&release_agent_path_lock);
e788e066 2386 seq_putc(seq, '\n');
e788e066
PM
2387 return 0;
2388}
2389
2da8ca82 2390static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
873fe09e 2391{
2da8ca82
TH
2392 struct cgroup *cgrp = seq_css(seq)->cgroup;
2393
2394 seq_printf(seq, "%d\n", cgroup_sane_behavior(cgrp));
e788e066
PM
2395 return 0;
2396}
2397
f8f22e53
TH
2398static void cgroup_print_ss_mask(struct seq_file *seq, unsigned int ss_mask)
2399{
2400 struct cgroup_subsys *ss;
2401 bool printed = false;
2402 int ssid;
2403
2404 for_each_subsys(ss, ssid) {
2405 if (ss_mask & (1 << ssid)) {
2406 if (printed)
2407 seq_putc(seq, ' ');
2408 seq_printf(seq, "%s", ss->name);
2409 printed = true;
2410 }
2411 }
2412 if (printed)
2413 seq_putc(seq, '\n');
2414}
2415
2416/* show controllers which are currently attached to the default hierarchy */
2417static int cgroup_root_controllers_show(struct seq_file *seq, void *v)
2418{
2419 struct cgroup *cgrp = seq_css(seq)->cgroup;
2420
2421 cgroup_print_ss_mask(seq, cgrp->root->subsys_mask);
2422 return 0;
2423}
2424
2425/* show controllers which are enabled from the parent */
2426static int cgroup_controllers_show(struct seq_file *seq, void *v)
2427{
2428 struct cgroup *cgrp = seq_css(seq)->cgroup;
2429
2430 cgroup_print_ss_mask(seq, cgrp->parent->child_subsys_mask);
2431 return 0;
2432}
2433
2434/* show controllers which are enabled for a given cgroup's children */
2435static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
2436{
2437 struct cgroup *cgrp = seq_css(seq)->cgroup;
2438
2439 cgroup_print_ss_mask(seq, cgrp->child_subsys_mask);
2440 return 0;
2441}
2442
2443/**
2444 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2445 * @cgrp: root of the subtree to update csses for
2446 *
2447 * @cgrp's child_subsys_mask has changed and its subtree's (self excluded)
2448 * css associations need to be updated accordingly. This function looks up
2449 * all css_sets which are attached to the subtree, creates the matching
2450 * updated css_sets and migrates the tasks to the new ones.
2451 */
2452static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2453{
2454 LIST_HEAD(preloaded_csets);
2455 struct cgroup_subsys_state *css;
2456 struct css_set *src_cset;
2457 int ret;
2458
f8f22e53
TH
2459 lockdep_assert_held(&cgroup_mutex);
2460
2461 /* look up all csses currently attached to @cgrp's subtree */
2462 down_read(&css_set_rwsem);
2463 css_for_each_descendant_pre(css, cgroup_css(cgrp, NULL)) {
2464 struct cgrp_cset_link *link;
2465
2466 /* self is not affected by child_subsys_mask change */
2467 if (css->cgroup == cgrp)
2468 continue;
2469
2470 list_for_each_entry(link, &css->cgroup->cset_links, cset_link)
2471 cgroup_migrate_add_src(link->cset, cgrp,
2472 &preloaded_csets);
2473 }
2474 up_read(&css_set_rwsem);
2475
2476 /* NULL dst indicates self on default hierarchy */
2477 ret = cgroup_migrate_prepare_dst(NULL, &preloaded_csets);
2478 if (ret)
2479 goto out_finish;
2480
2481 list_for_each_entry(src_cset, &preloaded_csets, mg_preload_node) {
2482 struct task_struct *last_task = NULL, *task;
2483
2484 /* src_csets precede dst_csets, break on the first dst_cset */
2485 if (!src_cset->mg_src_cgrp)
2486 break;
2487
2488 /*
2489 * All tasks in src_cset need to be migrated to the
2490 * matching dst_cset. Empty it process by process. We
2491 * walk tasks but migrate processes. The leader might even
2492 * belong to a different cset but such src_cset would also
2493 * be among the target src_csets because the default
2494 * hierarchy enforces per-process membership.
2495 */
2496 while (true) {
2497 down_read(&css_set_rwsem);
2498 task = list_first_entry_or_null(&src_cset->tasks,
2499 struct task_struct, cg_list);
2500 if (task) {
2501 task = task->group_leader;
2502 WARN_ON_ONCE(!task_css_set(task)->mg_src_cgrp);
2503 get_task_struct(task);
2504 }
2505 up_read(&css_set_rwsem);
2506
2507 if (!task)
2508 break;
2509
2510 /* guard against possible infinite loop */
2511 if (WARN(last_task == task,
2512 "cgroup: update_dfl_csses failed to make progress, aborting in inconsistent state\n"))
2513 goto out_finish;
2514 last_task = task;
2515
2516 threadgroup_lock(task);
2517 /* raced against de_thread() from another thread? */
2518 if (!thread_group_leader(task)) {
2519 threadgroup_unlock(task);
2520 put_task_struct(task);
2521 continue;
2522 }
2523
2524 ret = cgroup_migrate(src_cset->dfl_cgrp, task, true);
2525
2526 threadgroup_unlock(task);
2527 put_task_struct(task);
2528
2529 if (WARN(ret, "cgroup: failed to update controllers for the default hierarchy (%d), further operations may crash or hang\n", ret))
2530 goto out_finish;
2531 }
2532 }
2533
2534out_finish:
2535 cgroup_migrate_finish(&preloaded_csets);
2536 return ret;
2537}
2538
2539/* change the enabled child controllers for a cgroup in the default hierarchy */
451af504
TH
2540static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
2541 char *buf, size_t nbytes,
2542 loff_t off)
f8f22e53 2543{
7d331fa9 2544 unsigned int enable = 0, disable = 0;
a9746d8d 2545 struct cgroup *cgrp, *child;
f8f22e53 2546 struct cgroup_subsys *ss;
451af504 2547 char *tok;
f8f22e53
TH
2548 int ssid, ret;
2549
2550 /*
d37167ab
TH
2551 * Parse input - space separated list of subsystem names prefixed
2552 * with either + or -.
f8f22e53 2553 */
451af504
TH
2554 buf = strstrip(buf);
2555 while ((tok = strsep(&buf, " "))) {
d37167ab
TH
2556 if (tok[0] == '\0')
2557 continue;
f8f22e53
TH
2558 for_each_subsys(ss, ssid) {
2559 if (ss->disabled || strcmp(tok + 1, ss->name))
2560 continue;
2561
2562 if (*tok == '+') {
7d331fa9
TH
2563 enable |= 1 << ssid;
2564 disable &= ~(1 << ssid);
f8f22e53 2565 } else if (*tok == '-') {
7d331fa9
TH
2566 disable |= 1 << ssid;
2567 enable &= ~(1 << ssid);
f8f22e53
TH
2568 } else {
2569 return -EINVAL;
2570 }
2571 break;
2572 }
2573 if (ssid == CGROUP_SUBSYS_COUNT)
2574 return -EINVAL;
2575 }
2576
a9746d8d
TH
2577 cgrp = cgroup_kn_lock_live(of->kn);
2578 if (!cgrp)
2579 return -ENODEV;
f8f22e53
TH
2580
2581 for_each_subsys(ss, ssid) {
2582 if (enable & (1 << ssid)) {
2583 if (cgrp->child_subsys_mask & (1 << ssid)) {
2584 enable &= ~(1 << ssid);
2585 continue;
2586 }
2587
2588 /*
2589 * Because css offlining is asynchronous, userland
2590 * might try to re-enable the same controller while
2591 * the previous instance is still around. In such
2592 * cases, wait till it's gone using offline_waitq.
2593 */
2594 cgroup_for_each_live_child(child, cgrp) {
0cee8b77 2595 DEFINE_WAIT(wait);
f8f22e53
TH
2596
2597 if (!cgroup_css(child, ss))
2598 continue;
2599
0cee8b77 2600 cgroup_get(child);
f8f22e53
TH
2601 prepare_to_wait(&child->offline_waitq, &wait,
2602 TASK_UNINTERRUPTIBLE);
a9746d8d 2603 cgroup_kn_unlock(of->kn);
f8f22e53
TH
2604 schedule();
2605 finish_wait(&child->offline_waitq, &wait);
0cee8b77 2606 cgroup_put(child);
7d331fa9 2607
a9746d8d 2608 return restart_syscall();
f8f22e53
TH
2609 }
2610
2611 /* unavailable or not enabled on the parent? */
2612 if (!(cgrp_dfl_root.subsys_mask & (1 << ssid)) ||
2613 (cgrp->parent &&
2614 !(cgrp->parent->child_subsys_mask & (1 << ssid)))) {
2615 ret = -ENOENT;
ddab2b6e 2616 goto out_unlock;
f8f22e53
TH
2617 }
2618 } else if (disable & (1 << ssid)) {
2619 if (!(cgrp->child_subsys_mask & (1 << ssid))) {
2620 disable &= ~(1 << ssid);
2621 continue;
2622 }
2623
2624 /* a child has it enabled? */
2625 cgroup_for_each_live_child(child, cgrp) {
2626 if (child->child_subsys_mask & (1 << ssid)) {
2627 ret = -EBUSY;
ddab2b6e 2628 goto out_unlock;
f8f22e53
TH
2629 }
2630 }
2631 }
2632 }
2633
2634 if (!enable && !disable) {
2635 ret = 0;
ddab2b6e 2636 goto out_unlock;
f8f22e53
TH
2637 }
2638
2639 /*
2640 * Except for the root, child_subsys_mask must be zero for a cgroup
2641 * with tasks so that child cgroups don't compete against tasks.
2642 */
2643 if (enable && cgrp->parent && !list_empty(&cgrp->cset_links)) {
2644 ret = -EBUSY;
2645 goto out_unlock;
2646 }
2647
2648 /*
2649 * Create csses for enables and update child_subsys_mask. This
2650 * changes cgroup_e_css() results which in turn makes the
2651 * subsequent cgroup_update_dfl_csses() associate all tasks in the
2652 * subtree to the updated csses.
2653 */
2654 for_each_subsys(ss, ssid) {
2655 if (!(enable & (1 << ssid)))
2656 continue;
2657
2658 cgroup_for_each_live_child(child, cgrp) {
2659 ret = create_css(child, ss);
2660 if (ret)
2661 goto err_undo_css;
2662 }
2663 }
2664
2665 cgrp->child_subsys_mask |= enable;
2666 cgrp->child_subsys_mask &= ~disable;
2667
2668 ret = cgroup_update_dfl_csses(cgrp);
2669 if (ret)
2670 goto err_undo_css;
2671
2672 /* all tasks are now migrated away from the old csses, kill them */
2673 for_each_subsys(ss, ssid) {
2674 if (!(disable & (1 << ssid)))
2675 continue;
2676
2677 cgroup_for_each_live_child(child, cgrp)
2678 kill_css(cgroup_css(child, ss));
2679 }
2680
2681 kernfs_activate(cgrp->kn);
2682 ret = 0;
2683out_unlock:
a9746d8d 2684 cgroup_kn_unlock(of->kn);
451af504 2685 return ret ?: nbytes;
f8f22e53
TH
2686
2687err_undo_css:
2688 cgrp->child_subsys_mask &= ~enable;
2689 cgrp->child_subsys_mask |= disable;
2690
2691 for_each_subsys(ss, ssid) {
2692 if (!(enable & (1 << ssid)))
2693 continue;
2694
2695 cgroup_for_each_live_child(child, cgrp) {
2696 struct cgroup_subsys_state *css = cgroup_css(child, ss);
2697 if (css)
2698 kill_css(css);
2699 }
2700 }
2701 goto out_unlock;
2702}
2703
842b597e
TH
2704static int cgroup_populated_show(struct seq_file *seq, void *v)
2705{
2706 seq_printf(seq, "%d\n", (bool)seq_css(seq)->cgroup->populated_cnt);
2707 return 0;
2708}
2709
2bd59d48
TH
2710static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
2711 size_t nbytes, loff_t off)
355e0c48 2712{
2bd59d48
TH
2713 struct cgroup *cgrp = of->kn->parent->priv;
2714 struct cftype *cft = of->kn->priv;
2715 struct cgroup_subsys_state *css;
a742c59d 2716 int ret;
355e0c48 2717
b4168640
TH
2718 if (cft->write)
2719 return cft->write(of, buf, nbytes, off);
2720
2bd59d48
TH
2721 /*
2722 * kernfs guarantees that a file isn't deleted with operations in
2723 * flight, which means that the matching css is and stays alive and
2724 * doesn't need to be pinned. The RCU locking is not necessary
2725 * either. It's just for the convenience of using cgroup_css().
2726 */
2727 rcu_read_lock();
2728 css = cgroup_css(cgrp, cft->ss);
2729 rcu_read_unlock();
a742c59d 2730
451af504 2731 if (cft->write_u64) {
a742c59d
TH
2732 unsigned long long v;
2733 ret = kstrtoull(buf, 0, &v);
2734 if (!ret)
2735 ret = cft->write_u64(css, cft, v);
2736 } else if (cft->write_s64) {
2737 long long v;
2738 ret = kstrtoll(buf, 0, &v);
2739 if (!ret)
2740 ret = cft->write_s64(css, cft, v);
e73d2c61 2741 } else {
a742c59d 2742 ret = -EINVAL;
e73d2c61 2743 }
2bd59d48 2744
a742c59d 2745 return ret ?: nbytes;
355e0c48
PM
2746}
2747
6612f05b 2748static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
db3b1497 2749{
2bd59d48 2750 return seq_cft(seq)->seq_start(seq, ppos);
db3b1497
PM
2751}
2752
6612f05b 2753static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
ddbcc7e8 2754{
2bd59d48 2755 return seq_cft(seq)->seq_next(seq, v, ppos);
ddbcc7e8
PM
2756}
2757
6612f05b 2758static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
ddbcc7e8 2759{
2bd59d48 2760 seq_cft(seq)->seq_stop(seq, v);
ddbcc7e8
PM
2761}
2762
91796569 2763static int cgroup_seqfile_show(struct seq_file *m, void *arg)
e73d2c61 2764{
7da11279
TH
2765 struct cftype *cft = seq_cft(m);
2766 struct cgroup_subsys_state *css = seq_css(m);
e73d2c61 2767
2da8ca82
TH
2768 if (cft->seq_show)
2769 return cft->seq_show(m, arg);
e73d2c61 2770
f4c753b7 2771 if (cft->read_u64)
896f5199
TH
2772 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
2773 else if (cft->read_s64)
2774 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
2775 else
2776 return -EINVAL;
2777 return 0;
91796569
PM
2778}
2779
2bd59d48
TH
2780static struct kernfs_ops cgroup_kf_single_ops = {
2781 .atomic_write_len = PAGE_SIZE,
2782 .write = cgroup_file_write,
2783 .seq_show = cgroup_seqfile_show,
91796569
PM
2784};
2785
2bd59d48
TH
2786static struct kernfs_ops cgroup_kf_ops = {
2787 .atomic_write_len = PAGE_SIZE,
2788 .write = cgroup_file_write,
2789 .seq_start = cgroup_seqfile_start,
2790 .seq_next = cgroup_seqfile_next,
2791 .seq_stop = cgroup_seqfile_stop,
2792 .seq_show = cgroup_seqfile_show,
2793};
ddbcc7e8
PM
2794
2795/*
2796 * cgroup_rename - Only allow simple rename of directories in place.
2797 */
2bd59d48
TH
2798static int cgroup_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
2799 const char *new_name_str)
ddbcc7e8 2800{
2bd59d48 2801 struct cgroup *cgrp = kn->priv;
65dff759 2802 int ret;
65dff759 2803
2bd59d48 2804 if (kernfs_type(kn) != KERNFS_DIR)
ddbcc7e8 2805 return -ENOTDIR;
2bd59d48 2806 if (kn->parent != new_parent)
ddbcc7e8 2807 return -EIO;
65dff759 2808
6db8e85c
TH
2809 /*
2810 * This isn't a proper migration and its usefulness is very
2811 * limited. Disallow if sane_behavior.
2812 */
2813 if (cgroup_sane_behavior(cgrp))
2814 return -EPERM;
099fca32 2815
e1b2dc17 2816 /*
8353da1f 2817 * We're gonna grab cgroup_mutex which nests outside kernfs
e1b2dc17 2818 * active_ref. kernfs_rename() doesn't require active_ref
8353da1f 2819 * protection. Break them before grabbing cgroup_mutex.
e1b2dc17
TH
2820 */
2821 kernfs_break_active_protection(new_parent);
2822 kernfs_break_active_protection(kn);
099fca32 2823
2bd59d48 2824 mutex_lock(&cgroup_mutex);
099fca32 2825
2bd59d48 2826 ret = kernfs_rename(kn, new_parent, new_name_str);
099fca32 2827
2bd59d48 2828 mutex_unlock(&cgroup_mutex);
e1b2dc17
TH
2829
2830 kernfs_unbreak_active_protection(kn);
2831 kernfs_unbreak_active_protection(new_parent);
2bd59d48 2832 return ret;
099fca32
LZ
2833}
2834
49957f8e
TH
2835/* set uid and gid of cgroup dirs and files to that of the creator */
2836static int cgroup_kn_set_ugid(struct kernfs_node *kn)
2837{
2838 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
2839 .ia_uid = current_fsuid(),
2840 .ia_gid = current_fsgid(), };
2841
2842 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
2843 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
2844 return 0;
2845
2846 return kernfs_setattr(kn, &iattr);
2847}
2848
2bb566cb 2849static int cgroup_add_file(struct cgroup *cgrp, struct cftype *cft)
ddbcc7e8 2850{
8d7e6fb0 2851 char name[CGROUP_FILE_NAME_MAX];
2bd59d48
TH
2852 struct kernfs_node *kn;
2853 struct lock_class_key *key = NULL;
49957f8e 2854 int ret;
05ef1d7c 2855
2bd59d48
TH
2856#ifdef CONFIG_DEBUG_LOCK_ALLOC
2857 key = &cft->lockdep_key;
2858#endif
2859 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
2860 cgroup_file_mode(cft), 0, cft->kf_ops, cft,
2861 NULL, false, key);
49957f8e
TH
2862 if (IS_ERR(kn))
2863 return PTR_ERR(kn);
2864
2865 ret = cgroup_kn_set_ugid(kn);
f8f22e53 2866 if (ret) {
49957f8e 2867 kernfs_remove(kn);
f8f22e53
TH
2868 return ret;
2869 }
2870
b7fc5ad2 2871 if (cft->seq_show == cgroup_populated_show)
842b597e 2872 cgrp->populated_kn = kn;
f8f22e53 2873 return 0;
ddbcc7e8
PM
2874}
2875
b1f28d31
TH
2876/**
2877 * cgroup_addrm_files - add or remove files to a cgroup directory
2878 * @cgrp: the target cgroup
b1f28d31
TH
2879 * @cfts: array of cftypes to be added
2880 * @is_add: whether to add or remove
2881 *
2882 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
2bb566cb
TH
2883 * For removals, this function never fails. If addition fails, this
2884 * function doesn't remove files already added. The caller is responsible
2885 * for cleaning up.
b1f28d31 2886 */
2bb566cb
TH
2887static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
2888 bool is_add)
ddbcc7e8 2889{
03b1cde6 2890 struct cftype *cft;
b1f28d31
TH
2891 int ret;
2892
01f6474c 2893 lockdep_assert_held(&cgroup_mutex);
db0416b6
TH
2894
2895 for (cft = cfts; cft->name[0] != '\0'; cft++) {
f33fddc2 2896 /* does cft->flags tell us to skip this file on @cgrp? */
8cbbf2c9
TH
2897 if ((cft->flags & CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
2898 continue;
873fe09e
TH
2899 if ((cft->flags & CFTYPE_INSANE) && cgroup_sane_behavior(cgrp))
2900 continue;
f33fddc2
G
2901 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgrp->parent)
2902 continue;
2903 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgrp->parent)
2904 continue;
2905
2739d3cc 2906 if (is_add) {
2bb566cb 2907 ret = cgroup_add_file(cgrp, cft);
b1f28d31 2908 if (ret) {
ed3d261b
JP
2909 pr_warn("%s: failed to add %s, err=%d\n",
2910 __func__, cft->name, ret);
b1f28d31
TH
2911 return ret;
2912 }
2739d3cc
LZ
2913 } else {
2914 cgroup_rm_file(cgrp, cft);
db0416b6 2915 }
ddbcc7e8 2916 }
b1f28d31 2917 return 0;
ddbcc7e8
PM
2918}
2919
21a2d343 2920static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
8e3f6541
TH
2921{
2922 LIST_HEAD(pending);
2bb566cb 2923 struct cgroup_subsys *ss = cfts[0].ss;
3dd06ffa 2924 struct cgroup *root = &ss->root->cgrp;
492eb21b 2925 struct cgroup_subsys_state *css;
9ccece80 2926 int ret = 0;
8e3f6541 2927
01f6474c 2928 lockdep_assert_held(&cgroup_mutex);
8e3f6541 2929
e8c82d20 2930 /* add/rm files for all cgroups created before */
ca8bdcaf 2931 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
492eb21b
TH
2932 struct cgroup *cgrp = css->cgroup;
2933
e8c82d20
LZ
2934 if (cgroup_is_dead(cgrp))
2935 continue;
2936
21a2d343 2937 ret = cgroup_addrm_files(cgrp, cfts, is_add);
9ccece80
TH
2938 if (ret)
2939 break;
8e3f6541 2940 }
21a2d343
TH
2941
2942 if (is_add && !ret)
2943 kernfs_activate(root->kn);
9ccece80 2944 return ret;
8e3f6541
TH
2945}
2946
2da440a2 2947static void cgroup_exit_cftypes(struct cftype *cfts)
8e3f6541 2948{
2bb566cb 2949 struct cftype *cft;
8e3f6541 2950
2bd59d48
TH
2951 for (cft = cfts; cft->name[0] != '\0'; cft++) {
2952 /* free copy for custom atomic_write_len, see init_cftypes() */
2953 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
2954 kfree(cft->kf_ops);
2955 cft->kf_ops = NULL;
2da440a2 2956 cft->ss = NULL;
2bd59d48 2957 }
2da440a2
TH
2958}
2959
2bd59d48 2960static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
2da440a2
TH
2961{
2962 struct cftype *cft;
2963
2bd59d48
TH
2964 for (cft = cfts; cft->name[0] != '\0'; cft++) {
2965 struct kernfs_ops *kf_ops;
2966
0adb0704
TH
2967 WARN_ON(cft->ss || cft->kf_ops);
2968
2bd59d48
TH
2969 if (cft->seq_start)
2970 kf_ops = &cgroup_kf_ops;
2971 else
2972 kf_ops = &cgroup_kf_single_ops;
2973
2974 /*
2975 * Ugh... if @cft wants a custom max_write_len, we need to
2976 * make a copy of kf_ops to set its atomic_write_len.
2977 */
2978 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
2979 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
2980 if (!kf_ops) {
2981 cgroup_exit_cftypes(cfts);
2982 return -ENOMEM;
2983 }
2984 kf_ops->atomic_write_len = cft->max_write_len;
2985 }
8e3f6541 2986
2bd59d48 2987 cft->kf_ops = kf_ops;
2bb566cb 2988 cft->ss = ss;
2bd59d48 2989 }
2bb566cb 2990
2bd59d48 2991 return 0;
2da440a2
TH
2992}
2993
21a2d343
TH
2994static int cgroup_rm_cftypes_locked(struct cftype *cfts)
2995{
01f6474c 2996 lockdep_assert_held(&cgroup_mutex);
21a2d343
TH
2997
2998 if (!cfts || !cfts[0].ss)
2999 return -ENOENT;
3000
3001 list_del(&cfts->node);
3002 cgroup_apply_cftypes(cfts, false);
3003 cgroup_exit_cftypes(cfts);
3004 return 0;
8e3f6541 3005}
8e3f6541 3006
79578621
TH
3007/**
3008 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
79578621
TH
3009 * @cfts: zero-length name terminated array of cftypes
3010 *
2bb566cb
TH
3011 * Unregister @cfts. Files described by @cfts are removed from all
3012 * existing cgroups and all future cgroups won't have them either. This
3013 * function can be called anytime whether @cfts' subsys is attached or not.
79578621
TH
3014 *
3015 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
2bb566cb 3016 * registered.
79578621 3017 */
2bb566cb 3018int cgroup_rm_cftypes(struct cftype *cfts)
79578621 3019{
21a2d343 3020 int ret;
79578621 3021
01f6474c 3022 mutex_lock(&cgroup_mutex);
21a2d343 3023 ret = cgroup_rm_cftypes_locked(cfts);
01f6474c 3024 mutex_unlock(&cgroup_mutex);
21a2d343 3025 return ret;
80b13586
TH
3026}
3027
8e3f6541
TH
3028/**
3029 * cgroup_add_cftypes - add an array of cftypes to a subsystem
3030 * @ss: target cgroup subsystem
3031 * @cfts: zero-length name terminated array of cftypes
3032 *
3033 * Register @cfts to @ss. Files described by @cfts are created for all
3034 * existing cgroups to which @ss is attached and all future cgroups will
3035 * have them too. This function can be called anytime whether @ss is
3036 * attached or not.
3037 *
3038 * Returns 0 on successful registration, -errno on failure. Note that this
3039 * function currently returns 0 as long as @cfts registration is successful
3040 * even if some file creation attempts on existing cgroups fail.
3041 */
03b1cde6 3042int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
8e3f6541 3043{
9ccece80 3044 int ret;
8e3f6541 3045
dc5736ed
LZ
3046 if (!cfts || cfts[0].name[0] == '\0')
3047 return 0;
2bb566cb 3048
2bd59d48
TH
3049 ret = cgroup_init_cftypes(ss, cfts);
3050 if (ret)
3051 return ret;
79578621 3052
01f6474c 3053 mutex_lock(&cgroup_mutex);
21a2d343 3054
0adb0704 3055 list_add_tail(&cfts->node, &ss->cfts);
21a2d343 3056 ret = cgroup_apply_cftypes(cfts, true);
9ccece80 3057 if (ret)
21a2d343 3058 cgroup_rm_cftypes_locked(cfts);
79578621 3059
01f6474c 3060 mutex_unlock(&cgroup_mutex);
9ccece80 3061 return ret;
79578621
TH
3062}
3063
a043e3b2
LZ
3064/**
3065 * cgroup_task_count - count the number of tasks in a cgroup.
3066 * @cgrp: the cgroup in question
3067 *
3068 * Return the number of tasks in the cgroup.
3069 */
07bc356e 3070static int cgroup_task_count(const struct cgroup *cgrp)
bbcb81d0
PM
3071{
3072 int count = 0;
69d0206c 3073 struct cgrp_cset_link *link;
817929ec 3074
96d365e0 3075 down_read(&css_set_rwsem);
69d0206c
TH
3076 list_for_each_entry(link, &cgrp->cset_links, cset_link)
3077 count += atomic_read(&link->cset->refcount);
96d365e0 3078 up_read(&css_set_rwsem);
bbcb81d0
PM
3079 return count;
3080}
3081
53fa5261 3082/**
492eb21b
TH
3083 * css_next_child - find the next child of a given css
3084 * @pos_css: the current position (%NULL to initiate traversal)
3085 * @parent_css: css whose children to walk
53fa5261 3086 *
492eb21b 3087 * This function returns the next child of @parent_css and should be called
87fb54f1
TH
3088 * under either cgroup_mutex or RCU read lock. The only requirement is
3089 * that @parent_css and @pos_css are accessible. The next sibling is
3090 * guaranteed to be returned regardless of their states.
53fa5261 3091 */
492eb21b
TH
3092struct cgroup_subsys_state *
3093css_next_child(struct cgroup_subsys_state *pos_css,
3094 struct cgroup_subsys_state *parent_css)
53fa5261 3095{
492eb21b
TH
3096 struct cgroup *pos = pos_css ? pos_css->cgroup : NULL;
3097 struct cgroup *cgrp = parent_css->cgroup;
53fa5261
TH
3098 struct cgroup *next;
3099
8353da1f 3100 cgroup_assert_mutex_or_rcu_locked();
53fa5261
TH
3101
3102 /*
3103 * @pos could already have been removed. Once a cgroup is removed,
3104 * its ->sibling.next is no longer updated when its next sibling
ea15f8cc
TH
3105 * changes. As CGRP_DEAD assertion is serialized and happens
3106 * before the cgroup is taken off the ->sibling list, if we see it
3107 * unasserted, it's guaranteed that the next sibling hasn't
3108 * finished its grace period even if it's already removed, and thus
3109 * safe to dereference from this RCU critical section. If
3110 * ->sibling.next is inaccessible, cgroup_is_dead() is guaranteed
3111 * to be visible as %true here.
3b287a50
TH
3112 *
3113 * If @pos is dead, its next pointer can't be dereferenced;
3114 * however, as each cgroup is given a monotonically increasing
3115 * unique serial number and always appended to the sibling list,
3116 * the next one can be found by walking the parent's children until
3117 * we see a cgroup with higher serial number than @pos's. While
3118 * this path can be slower, it's taken only when either the current
3119 * cgroup is removed or iteration and removal race.
53fa5261 3120 */
3b287a50
TH
3121 if (!pos) {
3122 next = list_entry_rcu(cgrp->children.next, struct cgroup, sibling);
3123 } else if (likely(!cgroup_is_dead(pos))) {
53fa5261 3124 next = list_entry_rcu(pos->sibling.next, struct cgroup, sibling);
3b287a50
TH
3125 } else {
3126 list_for_each_entry_rcu(next, &cgrp->children, sibling)
3127 if (next->serial_nr > pos->serial_nr)
3128 break;
53fa5261
TH
3129 }
3130
3b281afb
TH
3131 /*
3132 * @next, if not pointing to the head, can be dereferenced and is
3133 * the next sibling; however, it might have @ss disabled. If so,
3134 * fast-forward to the next enabled one.
3135 */
3136 while (&next->sibling != &cgrp->children) {
3137 struct cgroup_subsys_state *next_css = cgroup_css(next, parent_css->ss);
492eb21b 3138
3b281afb
TH
3139 if (next_css)
3140 return next_css;
3141 next = list_entry_rcu(next->sibling.next, struct cgroup, sibling);
3142 }
3143 return NULL;
53fa5261 3144}
53fa5261 3145
574bd9f7 3146/**
492eb21b 3147 * css_next_descendant_pre - find the next descendant for pre-order walk
574bd9f7 3148 * @pos: the current position (%NULL to initiate traversal)
492eb21b 3149 * @root: css whose descendants to walk
574bd9f7 3150 *
492eb21b 3151 * To be used by css_for_each_descendant_pre(). Find the next descendant
bd8815a6
TH
3152 * to visit for pre-order traversal of @root's descendants. @root is
3153 * included in the iteration and the first node to be visited.
75501a6d 3154 *
87fb54f1
TH
3155 * While this function requires cgroup_mutex or RCU read locking, it
3156 * doesn't require the whole traversal to be contained in a single critical
3157 * section. This function will return the correct next descendant as long
3158 * as both @pos and @root are accessible and @pos is a descendant of @root.
574bd9f7 3159 */
492eb21b
TH
3160struct cgroup_subsys_state *
3161css_next_descendant_pre(struct cgroup_subsys_state *pos,
3162 struct cgroup_subsys_state *root)
574bd9f7 3163{
492eb21b 3164 struct cgroup_subsys_state *next;
574bd9f7 3165
8353da1f 3166 cgroup_assert_mutex_or_rcu_locked();
574bd9f7 3167
bd8815a6 3168 /* if first iteration, visit @root */
7805d000 3169 if (!pos)
bd8815a6 3170 return root;
574bd9f7
TH
3171
3172 /* visit the first child if exists */
492eb21b 3173 next = css_next_child(NULL, pos);
574bd9f7
TH
3174 if (next)
3175 return next;
3176
3177 /* no child, visit my or the closest ancestor's next sibling */
492eb21b
TH
3178 while (pos != root) {
3179 next = css_next_child(pos, css_parent(pos));
75501a6d 3180 if (next)
574bd9f7 3181 return next;
492eb21b 3182 pos = css_parent(pos);
7805d000 3183 }
574bd9f7
TH
3184
3185 return NULL;
3186}
574bd9f7 3187
12a9d2fe 3188/**
492eb21b
TH
3189 * css_rightmost_descendant - return the rightmost descendant of a css
3190 * @pos: css of interest
12a9d2fe 3191 *
492eb21b
TH
3192 * Return the rightmost descendant of @pos. If there's no descendant, @pos
3193 * is returned. This can be used during pre-order traversal to skip
12a9d2fe 3194 * subtree of @pos.
75501a6d 3195 *
87fb54f1
TH
3196 * While this function requires cgroup_mutex or RCU read locking, it
3197 * doesn't require the whole traversal to be contained in a single critical
3198 * section. This function will return the correct rightmost descendant as
3199 * long as @pos is accessible.
12a9d2fe 3200 */
492eb21b
TH
3201struct cgroup_subsys_state *
3202css_rightmost_descendant(struct cgroup_subsys_state *pos)
12a9d2fe 3203{
492eb21b 3204 struct cgroup_subsys_state *last, *tmp;
12a9d2fe 3205
8353da1f 3206 cgroup_assert_mutex_or_rcu_locked();
12a9d2fe
TH
3207
3208 do {
3209 last = pos;
3210 /* ->prev isn't RCU safe, walk ->next till the end */
3211 pos = NULL;
492eb21b 3212 css_for_each_child(tmp, last)
12a9d2fe
TH
3213 pos = tmp;
3214 } while (pos);
3215
3216 return last;
3217}
12a9d2fe 3218
492eb21b
TH
3219static struct cgroup_subsys_state *
3220css_leftmost_descendant(struct cgroup_subsys_state *pos)
574bd9f7 3221{
492eb21b 3222 struct cgroup_subsys_state *last;
574bd9f7
TH
3223
3224 do {
3225 last = pos;
492eb21b 3226 pos = css_next_child(NULL, pos);
574bd9f7
TH
3227 } while (pos);
3228
3229 return last;
3230}
3231
3232/**
492eb21b 3233 * css_next_descendant_post - find the next descendant for post-order walk
574bd9f7 3234 * @pos: the current position (%NULL to initiate traversal)
492eb21b 3235 * @root: css whose descendants to walk
574bd9f7 3236 *
492eb21b 3237 * To be used by css_for_each_descendant_post(). Find the next descendant
bd8815a6
TH
3238 * to visit for post-order traversal of @root's descendants. @root is
3239 * included in the iteration and the last node to be visited.
75501a6d 3240 *
87fb54f1
TH
3241 * While this function requires cgroup_mutex or RCU read locking, it
3242 * doesn't require the whole traversal to be contained in a single critical
3243 * section. This function will return the correct next descendant as long
3244 * as both @pos and @cgroup are accessible and @pos is a descendant of
3245 * @cgroup.
574bd9f7 3246 */
492eb21b
TH
3247struct cgroup_subsys_state *
3248css_next_descendant_post(struct cgroup_subsys_state *pos,
3249 struct cgroup_subsys_state *root)
574bd9f7 3250{
492eb21b 3251 struct cgroup_subsys_state *next;
574bd9f7 3252
8353da1f 3253 cgroup_assert_mutex_or_rcu_locked();
574bd9f7 3254
58b79a91
TH
3255 /* if first iteration, visit leftmost descendant which may be @root */
3256 if (!pos)
3257 return css_leftmost_descendant(root);
574bd9f7 3258
bd8815a6
TH
3259 /* if we visited @root, we're done */
3260 if (pos == root)
3261 return NULL;
3262
574bd9f7 3263 /* if there's an unvisited sibling, visit its leftmost descendant */
492eb21b 3264 next = css_next_child(pos, css_parent(pos));
75501a6d 3265 if (next)
492eb21b 3266 return css_leftmost_descendant(next);
574bd9f7
TH
3267
3268 /* no sibling left, visit parent */
bd8815a6 3269 return css_parent(pos);
574bd9f7 3270}
574bd9f7 3271
cbc125ef
TH
3272static bool cgroup_has_live_children(struct cgroup *cgrp)
3273{
3274 struct cgroup *child;
3275
3276 rcu_read_lock();
3277 list_for_each_entry_rcu(child, &cgrp->children, sibling) {
3278 if (!cgroup_is_dead(child)) {
3279 rcu_read_unlock();
3280 return true;
3281 }
3282 }
3283 rcu_read_unlock();
3284 return false;
3285}
3286
0942eeee 3287/**
72ec7029 3288 * css_advance_task_iter - advance a task itererator to the next css_set
0942eeee
TH
3289 * @it: the iterator to advance
3290 *
3291 * Advance @it to the next css_set to walk.
d515876e 3292 */
72ec7029 3293static void css_advance_task_iter(struct css_task_iter *it)
d515876e 3294{
0f0a2b4f 3295 struct list_head *l = it->cset_pos;
d515876e
TH
3296 struct cgrp_cset_link *link;
3297 struct css_set *cset;
3298
3299 /* Advance to the next non-empty css_set */
3300 do {
3301 l = l->next;
0f0a2b4f
TH
3302 if (l == it->cset_head) {
3303 it->cset_pos = NULL;
d515876e
TH
3304 return;
3305 }
3ebb2b6e
TH
3306
3307 if (it->ss) {
3308 cset = container_of(l, struct css_set,
3309 e_cset_node[it->ss->id]);
3310 } else {
3311 link = list_entry(l, struct cgrp_cset_link, cset_link);
3312 cset = link->cset;
3313 }
c7561128
TH
3314 } while (list_empty(&cset->tasks) && list_empty(&cset->mg_tasks));
3315
0f0a2b4f 3316 it->cset_pos = l;
c7561128
TH
3317
3318 if (!list_empty(&cset->tasks))
0f0a2b4f 3319 it->task_pos = cset->tasks.next;
c7561128 3320 else
0f0a2b4f
TH
3321 it->task_pos = cset->mg_tasks.next;
3322
3323 it->tasks_head = &cset->tasks;
3324 it->mg_tasks_head = &cset->mg_tasks;
d515876e
TH
3325}
3326
0942eeee 3327/**
72ec7029
TH
3328 * css_task_iter_start - initiate task iteration
3329 * @css: the css to walk tasks of
0942eeee
TH
3330 * @it: the task iterator to use
3331 *
72ec7029
TH
3332 * Initiate iteration through the tasks of @css. The caller can call
3333 * css_task_iter_next() to walk through the tasks until the function
3334 * returns NULL. On completion of iteration, css_task_iter_end() must be
3335 * called.
0942eeee
TH
3336 *
3337 * Note that this function acquires a lock which is released when the
3338 * iteration finishes. The caller can't sleep while iteration is in
3339 * progress.
3340 */
72ec7029
TH
3341void css_task_iter_start(struct cgroup_subsys_state *css,
3342 struct css_task_iter *it)
96d365e0 3343 __acquires(css_set_rwsem)
817929ec 3344{
56fde9e0
TH
3345 /* no one should try to iterate before mounting cgroups */
3346 WARN_ON_ONCE(!use_task_css_set_links);
31a7df01 3347
96d365e0 3348 down_read(&css_set_rwsem);
c59cd3d8 3349
3ebb2b6e
TH
3350 it->ss = css->ss;
3351
3352 if (it->ss)
3353 it->cset_pos = &css->cgroup->e_csets[css->ss->id];
3354 else
3355 it->cset_pos = &css->cgroup->cset_links;
3356
0f0a2b4f 3357 it->cset_head = it->cset_pos;
c59cd3d8 3358
72ec7029 3359 css_advance_task_iter(it);
817929ec
PM
3360}
3361
0942eeee 3362/**
72ec7029 3363 * css_task_iter_next - return the next task for the iterator
0942eeee
TH
3364 * @it: the task iterator being iterated
3365 *
3366 * The "next" function for task iteration. @it should have been
72ec7029
TH
3367 * initialized via css_task_iter_start(). Returns NULL when the iteration
3368 * reaches the end.
0942eeee 3369 */
72ec7029 3370struct task_struct *css_task_iter_next(struct css_task_iter *it)
817929ec
PM
3371{
3372 struct task_struct *res;
0f0a2b4f 3373 struct list_head *l = it->task_pos;
817929ec
PM
3374
3375 /* If the iterator cg is NULL, we have no tasks */
0f0a2b4f 3376 if (!it->cset_pos)
817929ec
PM
3377 return NULL;
3378 res = list_entry(l, struct task_struct, cg_list);
c7561128
TH
3379
3380 /*
3381 * Advance iterator to find next entry. cset->tasks is consumed
3382 * first and then ->mg_tasks. After ->mg_tasks, we move onto the
3383 * next cset.
3384 */
817929ec 3385 l = l->next;
c7561128 3386
0f0a2b4f
TH
3387 if (l == it->tasks_head)
3388 l = it->mg_tasks_head->next;
c7561128 3389
0f0a2b4f 3390 if (l == it->mg_tasks_head)
72ec7029 3391 css_advance_task_iter(it);
c7561128 3392 else
0f0a2b4f 3393 it->task_pos = l;
c7561128 3394
817929ec
PM
3395 return res;
3396}
3397
0942eeee 3398/**
72ec7029 3399 * css_task_iter_end - finish task iteration
0942eeee
TH
3400 * @it: the task iterator to finish
3401 *
72ec7029 3402 * Finish task iteration started by css_task_iter_start().
0942eeee 3403 */
72ec7029 3404void css_task_iter_end(struct css_task_iter *it)
96d365e0 3405 __releases(css_set_rwsem)
31a7df01 3406{
96d365e0 3407 up_read(&css_set_rwsem);
31a7df01
CW
3408}
3409
3410/**
8cc99345
TH
3411 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
3412 * @to: cgroup to which the tasks will be moved
3413 * @from: cgroup in which the tasks currently reside
31a7df01 3414 *
eaf797ab
TH
3415 * Locking rules between cgroup_post_fork() and the migration path
3416 * guarantee that, if a task is forking while being migrated, the new child
3417 * is guaranteed to be either visible in the source cgroup after the
3418 * parent's migration is complete or put into the target cgroup. No task
3419 * can slip out of migration through forking.
31a7df01 3420 */
8cc99345 3421int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
31a7df01 3422{
952aaa12
TH
3423 LIST_HEAD(preloaded_csets);
3424 struct cgrp_cset_link *link;
72ec7029 3425 struct css_task_iter it;
e406d1cf 3426 struct task_struct *task;
952aaa12 3427 int ret;
31a7df01 3428
952aaa12 3429 mutex_lock(&cgroup_mutex);
31a7df01 3430
952aaa12
TH
3431 /* all tasks in @from are being moved, all csets are source */
3432 down_read(&css_set_rwsem);
3433 list_for_each_entry(link, &from->cset_links, cset_link)
3434 cgroup_migrate_add_src(link->cset, to, &preloaded_csets);
3435 up_read(&css_set_rwsem);
31a7df01 3436
952aaa12
TH
3437 ret = cgroup_migrate_prepare_dst(to, &preloaded_csets);
3438 if (ret)
3439 goto out_err;
8cc99345 3440
952aaa12
TH
3441 /*
3442 * Migrate tasks one-by-one until @form is empty. This fails iff
3443 * ->can_attach() fails.
3444 */
e406d1cf 3445 do {
9d800df1 3446 css_task_iter_start(&from->self, &it);
e406d1cf
TH
3447 task = css_task_iter_next(&it);
3448 if (task)
3449 get_task_struct(task);
3450 css_task_iter_end(&it);
3451
3452 if (task) {
952aaa12 3453 ret = cgroup_migrate(to, task, false);
e406d1cf
TH
3454 put_task_struct(task);
3455 }
3456 } while (task && !ret);
952aaa12
TH
3457out_err:
3458 cgroup_migrate_finish(&preloaded_csets);
47cfcd09 3459 mutex_unlock(&cgroup_mutex);
e406d1cf 3460 return ret;
8cc99345
TH
3461}
3462
bbcb81d0 3463/*
102a775e 3464 * Stuff for reading the 'tasks'/'procs' files.
bbcb81d0
PM
3465 *
3466 * Reading this file can return large amounts of data if a cgroup has
3467 * *lots* of attached tasks. So it may need several calls to read(),
3468 * but we cannot guarantee that the information we produce is correct
3469 * unless we produce it entirely atomically.
3470 *
bbcb81d0 3471 */
bbcb81d0 3472
24528255
LZ
3473/* which pidlist file are we talking about? */
3474enum cgroup_filetype {
3475 CGROUP_FILE_PROCS,
3476 CGROUP_FILE_TASKS,
3477};
3478
3479/*
3480 * A pidlist is a list of pids that virtually represents the contents of one
3481 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
3482 * a pair (one each for procs, tasks) for each pid namespace that's relevant
3483 * to the cgroup.
3484 */
3485struct cgroup_pidlist {
3486 /*
3487 * used to find which pidlist is wanted. doesn't change as long as
3488 * this particular list stays in the list.
3489 */
3490 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
3491 /* array of xids */
3492 pid_t *list;
3493 /* how many elements the above list has */
3494 int length;
24528255
LZ
3495 /* each of these stored in a list by its cgroup */
3496 struct list_head links;
3497 /* pointer to the cgroup we belong to, for list removal purposes */
3498 struct cgroup *owner;
b1a21367
TH
3499 /* for delayed destruction */
3500 struct delayed_work destroy_dwork;
24528255
LZ
3501};
3502
d1d9fd33
BB
3503/*
3504 * The following two functions "fix" the issue where there are more pids
3505 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
3506 * TODO: replace with a kernel-wide solution to this problem
3507 */
3508#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
3509static void *pidlist_allocate(int count)
3510{
3511 if (PIDLIST_TOO_LARGE(count))
3512 return vmalloc(count * sizeof(pid_t));
3513 else
3514 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
3515}
b1a21367 3516
d1d9fd33
BB
3517static void pidlist_free(void *p)
3518{
3519 if (is_vmalloc_addr(p))
3520 vfree(p);
3521 else
3522 kfree(p);
3523}
d1d9fd33 3524
b1a21367
TH
3525/*
3526 * Used to destroy all pidlists lingering waiting for destroy timer. None
3527 * should be left afterwards.
3528 */
3529static void cgroup_pidlist_destroy_all(struct cgroup *cgrp)
3530{
3531 struct cgroup_pidlist *l, *tmp_l;
3532
3533 mutex_lock(&cgrp->pidlist_mutex);
3534 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
3535 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
3536 mutex_unlock(&cgrp->pidlist_mutex);
3537
3538 flush_workqueue(cgroup_pidlist_destroy_wq);
3539 BUG_ON(!list_empty(&cgrp->pidlists));
3540}
3541
3542static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
3543{
3544 struct delayed_work *dwork = to_delayed_work(work);
3545 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
3546 destroy_dwork);
3547 struct cgroup_pidlist *tofree = NULL;
3548
3549 mutex_lock(&l->owner->pidlist_mutex);
b1a21367
TH
3550
3551 /*
04502365
TH
3552 * Destroy iff we didn't get queued again. The state won't change
3553 * as destroy_dwork can only be queued while locked.
b1a21367 3554 */
04502365 3555 if (!delayed_work_pending(dwork)) {
b1a21367
TH
3556 list_del(&l->links);
3557 pidlist_free(l->list);
3558 put_pid_ns(l->key.ns);
3559 tofree = l;
3560 }
3561
b1a21367
TH
3562 mutex_unlock(&l->owner->pidlist_mutex);
3563 kfree(tofree);
3564}
3565
bbcb81d0 3566/*
102a775e 3567 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
6ee211ad 3568 * Returns the number of unique elements.
bbcb81d0 3569 */
6ee211ad 3570static int pidlist_uniq(pid_t *list, int length)
bbcb81d0 3571{
102a775e 3572 int src, dest = 1;
102a775e
BB
3573
3574 /*
3575 * we presume the 0th element is unique, so i starts at 1. trivial
3576 * edge cases first; no work needs to be done for either
3577 */
3578 if (length == 0 || length == 1)
3579 return length;
3580 /* src and dest walk down the list; dest counts unique elements */
3581 for (src = 1; src < length; src++) {
3582 /* find next unique element */
3583 while (list[src] == list[src-1]) {
3584 src++;
3585 if (src == length)
3586 goto after;
3587 }
3588 /* dest always points to where the next unique element goes */
3589 list[dest] = list[src];
3590 dest++;
3591 }
3592after:
102a775e
BB
3593 return dest;
3594}
3595
afb2bc14
TH
3596/*
3597 * The two pid files - task and cgroup.procs - guaranteed that the result
3598 * is sorted, which forced this whole pidlist fiasco. As pid order is
3599 * different per namespace, each namespace needs differently sorted list,
3600 * making it impossible to use, for example, single rbtree of member tasks
3601 * sorted by task pointer. As pidlists can be fairly large, allocating one
3602 * per open file is dangerous, so cgroup had to implement shared pool of
3603 * pidlists keyed by cgroup and namespace.
3604 *
3605 * All this extra complexity was caused by the original implementation
3606 * committing to an entirely unnecessary property. In the long term, we
3607 * want to do away with it. Explicitly scramble sort order if
3608 * sane_behavior so that no such expectation exists in the new interface.
3609 *
3610 * Scrambling is done by swapping every two consecutive bits, which is
3611 * non-identity one-to-one mapping which disturbs sort order sufficiently.
3612 */
3613static pid_t pid_fry(pid_t pid)
3614{
3615 unsigned a = pid & 0x55555555;
3616 unsigned b = pid & 0xAAAAAAAA;
3617
3618 return (a << 1) | (b >> 1);
3619}
3620
3621static pid_t cgroup_pid_fry(struct cgroup *cgrp, pid_t pid)
3622{
3623 if (cgroup_sane_behavior(cgrp))
3624 return pid_fry(pid);
3625 else
3626 return pid;
3627}
3628
102a775e
BB
3629static int cmppid(const void *a, const void *b)
3630{
3631 return *(pid_t *)a - *(pid_t *)b;
3632}
3633
afb2bc14
TH
3634static int fried_cmppid(const void *a, const void *b)
3635{
3636 return pid_fry(*(pid_t *)a) - pid_fry(*(pid_t *)b);
3637}
3638
e6b81710
TH
3639static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
3640 enum cgroup_filetype type)
3641{
3642 struct cgroup_pidlist *l;
3643 /* don't need task_nsproxy() if we're looking at ourself */
3644 struct pid_namespace *ns = task_active_pid_ns(current);
3645
3646 lockdep_assert_held(&cgrp->pidlist_mutex);
3647
3648 list_for_each_entry(l, &cgrp->pidlists, links)
3649 if (l->key.type == type && l->key.ns == ns)
3650 return l;
3651 return NULL;
3652}
3653
72a8cb30
BB
3654/*
3655 * find the appropriate pidlist for our purpose (given procs vs tasks)
3656 * returns with the lock on that pidlist already held, and takes care
3657 * of the use count, or returns NULL with no locks held if we're out of
3658 * memory.
3659 */
e6b81710
TH
3660static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
3661 enum cgroup_filetype type)
72a8cb30
BB
3662{
3663 struct cgroup_pidlist *l;
b70cc5fd 3664
e6b81710
TH
3665 lockdep_assert_held(&cgrp->pidlist_mutex);
3666
3667 l = cgroup_pidlist_find(cgrp, type);
3668 if (l)
3669 return l;
3670
72a8cb30 3671 /* entry not found; create a new one */
f4f4be2b 3672 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
e6b81710 3673 if (!l)
72a8cb30 3674 return l;
e6b81710 3675
b1a21367 3676 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
72a8cb30 3677 l->key.type = type;
e6b81710
TH
3678 /* don't need task_nsproxy() if we're looking at ourself */
3679 l->key.ns = get_pid_ns(task_active_pid_ns(current));
72a8cb30
BB
3680 l->owner = cgrp;
3681 list_add(&l->links, &cgrp->pidlists);
72a8cb30
BB
3682 return l;
3683}
3684
102a775e
BB
3685/*
3686 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
3687 */
72a8cb30
BB
3688static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
3689 struct cgroup_pidlist **lp)
102a775e
BB
3690{
3691 pid_t *array;
3692 int length;
3693 int pid, n = 0; /* used for populating the array */
72ec7029 3694 struct css_task_iter it;
817929ec 3695 struct task_struct *tsk;
102a775e
BB
3696 struct cgroup_pidlist *l;
3697
4bac00d1
TH
3698 lockdep_assert_held(&cgrp->pidlist_mutex);
3699
102a775e
BB
3700 /*
3701 * If cgroup gets more users after we read count, we won't have
3702 * enough space - tough. This race is indistinguishable to the
3703 * caller from the case that the additional cgroup users didn't
3704 * show up until sometime later on.
3705 */
3706 length = cgroup_task_count(cgrp);
d1d9fd33 3707 array = pidlist_allocate(length);
102a775e
BB
3708 if (!array)
3709 return -ENOMEM;
3710 /* now, populate the array */
9d800df1 3711 css_task_iter_start(&cgrp->self, &it);
72ec7029 3712 while ((tsk = css_task_iter_next(&it))) {
102a775e 3713 if (unlikely(n == length))
817929ec 3714 break;
102a775e 3715 /* get tgid or pid for procs or tasks file respectively */
72a8cb30
BB
3716 if (type == CGROUP_FILE_PROCS)
3717 pid = task_tgid_vnr(tsk);
3718 else
3719 pid = task_pid_vnr(tsk);
102a775e
BB
3720 if (pid > 0) /* make sure to only use valid results */
3721 array[n++] = pid;
817929ec 3722 }
72ec7029 3723 css_task_iter_end(&it);
102a775e
BB
3724 length = n;
3725 /* now sort & (if procs) strip out duplicates */
afb2bc14
TH
3726 if (cgroup_sane_behavior(cgrp))
3727 sort(array, length, sizeof(pid_t), fried_cmppid, NULL);
3728 else
3729 sort(array, length, sizeof(pid_t), cmppid, NULL);
72a8cb30 3730 if (type == CGROUP_FILE_PROCS)
6ee211ad 3731 length = pidlist_uniq(array, length);
e6b81710 3732
e6b81710 3733 l = cgroup_pidlist_find_create(cgrp, type);
72a8cb30 3734 if (!l) {
e6b81710 3735 mutex_unlock(&cgrp->pidlist_mutex);
d1d9fd33 3736 pidlist_free(array);
72a8cb30 3737 return -ENOMEM;
102a775e 3738 }
e6b81710
TH
3739
3740 /* store array, freeing old if necessary */
d1d9fd33 3741 pidlist_free(l->list);
102a775e
BB
3742 l->list = array;
3743 l->length = length;
72a8cb30 3744 *lp = l;
102a775e 3745 return 0;
bbcb81d0
PM
3746}
3747
846c7bb0 3748/**
a043e3b2 3749 * cgroupstats_build - build and fill cgroupstats
846c7bb0
BS
3750 * @stats: cgroupstats to fill information into
3751 * @dentry: A dentry entry belonging to the cgroup for which stats have
3752 * been requested.
a043e3b2
LZ
3753 *
3754 * Build and fill cgroupstats so that taskstats can export it to user
3755 * space.
846c7bb0
BS
3756 */
3757int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
3758{
2bd59d48 3759 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
bd89aabc 3760 struct cgroup *cgrp;
72ec7029 3761 struct css_task_iter it;
846c7bb0 3762 struct task_struct *tsk;
33d283be 3763
2bd59d48
TH
3764 /* it should be kernfs_node belonging to cgroupfs and is a directory */
3765 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
3766 kernfs_type(kn) != KERNFS_DIR)
3767 return -EINVAL;
3768
bad34660
LZ
3769 mutex_lock(&cgroup_mutex);
3770
846c7bb0 3771 /*
2bd59d48 3772 * We aren't being called from kernfs and there's no guarantee on
ec903c0c 3773 * @kn->priv's validity. For this and css_tryget_online_from_dir(),
2bd59d48 3774 * @kn->priv is RCU safe. Let's do the RCU dancing.
846c7bb0 3775 */
2bd59d48
TH
3776 rcu_read_lock();
3777 cgrp = rcu_dereference(kn->priv);
bad34660 3778 if (!cgrp || cgroup_is_dead(cgrp)) {
2bd59d48 3779 rcu_read_unlock();
bad34660 3780 mutex_unlock(&cgroup_mutex);
2bd59d48
TH
3781 return -ENOENT;
3782 }
bad34660 3783 rcu_read_unlock();
846c7bb0 3784
9d800df1 3785 css_task_iter_start(&cgrp->self, &it);
72ec7029 3786 while ((tsk = css_task_iter_next(&it))) {
846c7bb0
BS
3787 switch (tsk->state) {
3788 case TASK_RUNNING:
3789 stats->nr_running++;
3790 break;
3791 case TASK_INTERRUPTIBLE:
3792 stats->nr_sleeping++;
3793 break;
3794 case TASK_UNINTERRUPTIBLE:
3795 stats->nr_uninterruptible++;
3796 break;
3797 case TASK_STOPPED:
3798 stats->nr_stopped++;
3799 break;
3800 default:
3801 if (delayacct_is_task_waiting_on_io(tsk))
3802 stats->nr_io_wait++;
3803 break;
3804 }
3805 }
72ec7029 3806 css_task_iter_end(&it);
846c7bb0 3807
bad34660 3808 mutex_unlock(&cgroup_mutex);
2bd59d48 3809 return 0;
846c7bb0
BS
3810}
3811
8f3ff208 3812
bbcb81d0 3813/*
102a775e 3814 * seq_file methods for the tasks/procs files. The seq_file position is the
cc31edce 3815 * next pid to display; the seq_file iterator is a pointer to the pid
102a775e 3816 * in the cgroup->l->list array.
bbcb81d0 3817 */
cc31edce 3818
102a775e 3819static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
bbcb81d0 3820{
cc31edce
PM
3821 /*
3822 * Initially we receive a position value that corresponds to
3823 * one more than the last pid shown (or 0 on the first call or
3824 * after a seek to the start). Use a binary-search to find the
3825 * next pid to display, if any
3826 */
2bd59d48 3827 struct kernfs_open_file *of = s->private;
7da11279 3828 struct cgroup *cgrp = seq_css(s)->cgroup;
4bac00d1 3829 struct cgroup_pidlist *l;
7da11279 3830 enum cgroup_filetype type = seq_cft(s)->private;
cc31edce 3831 int index = 0, pid = *pos;
4bac00d1
TH
3832 int *iter, ret;
3833
3834 mutex_lock(&cgrp->pidlist_mutex);
3835
3836 /*
5d22444f 3837 * !NULL @of->priv indicates that this isn't the first start()
4bac00d1 3838 * after open. If the matching pidlist is around, we can use that.
5d22444f 3839 * Look for it. Note that @of->priv can't be used directly. It
4bac00d1
TH
3840 * could already have been destroyed.
3841 */
5d22444f
TH
3842 if (of->priv)
3843 of->priv = cgroup_pidlist_find(cgrp, type);
4bac00d1
TH
3844
3845 /*
3846 * Either this is the first start() after open or the matching
3847 * pidlist has been destroyed inbetween. Create a new one.
3848 */
5d22444f
TH
3849 if (!of->priv) {
3850 ret = pidlist_array_load(cgrp, type,
3851 (struct cgroup_pidlist **)&of->priv);
4bac00d1
TH
3852 if (ret)
3853 return ERR_PTR(ret);
3854 }
5d22444f 3855 l = of->priv;
cc31edce 3856
cc31edce 3857 if (pid) {
102a775e 3858 int end = l->length;
20777766 3859
cc31edce
PM
3860 while (index < end) {
3861 int mid = (index + end) / 2;
afb2bc14 3862 if (cgroup_pid_fry(cgrp, l->list[mid]) == pid) {
cc31edce
PM
3863 index = mid;
3864 break;
afb2bc14 3865 } else if (cgroup_pid_fry(cgrp, l->list[mid]) <= pid)
cc31edce
PM
3866 index = mid + 1;
3867 else
3868 end = mid;
3869 }
3870 }
3871 /* If we're off the end of the array, we're done */
102a775e 3872 if (index >= l->length)
cc31edce
PM
3873 return NULL;
3874 /* Update the abstract position to be the actual pid that we found */
102a775e 3875 iter = l->list + index;
afb2bc14 3876 *pos = cgroup_pid_fry(cgrp, *iter);
cc31edce
PM
3877 return iter;
3878}
3879
102a775e 3880static void cgroup_pidlist_stop(struct seq_file *s, void *v)
cc31edce 3881{
2bd59d48 3882 struct kernfs_open_file *of = s->private;
5d22444f 3883 struct cgroup_pidlist *l = of->priv;
62236858 3884
5d22444f
TH
3885 if (l)
3886 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
04502365 3887 CGROUP_PIDLIST_DESTROY_DELAY);
7da11279 3888 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
cc31edce
PM
3889}
3890
102a775e 3891static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
cc31edce 3892{
2bd59d48 3893 struct kernfs_open_file *of = s->private;
5d22444f 3894 struct cgroup_pidlist *l = of->priv;
102a775e
BB
3895 pid_t *p = v;
3896 pid_t *end = l->list + l->length;
cc31edce
PM
3897 /*
3898 * Advance to the next pid in the array. If this goes off the
3899 * end, we're done
3900 */
3901 p++;
3902 if (p >= end) {
3903 return NULL;
3904 } else {
7da11279 3905 *pos = cgroup_pid_fry(seq_css(s)->cgroup, *p);
cc31edce
PM
3906 return p;
3907 }
3908}
3909
102a775e 3910static int cgroup_pidlist_show(struct seq_file *s, void *v)
cc31edce
PM
3911{
3912 return seq_printf(s, "%d\n", *(int *)v);
3913}
bbcb81d0 3914
182446d0
TH
3915static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
3916 struct cftype *cft)
81a6a5cd 3917{
182446d0 3918 return notify_on_release(css->cgroup);
81a6a5cd
PM
3919}
3920
182446d0
TH
3921static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
3922 struct cftype *cft, u64 val)
6379c106 3923{
182446d0 3924 clear_bit(CGRP_RELEASABLE, &css->cgroup->flags);
6379c106 3925 if (val)
182446d0 3926 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106 3927 else
182446d0 3928 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106
PM
3929 return 0;
3930}
3931
182446d0
TH
3932static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
3933 struct cftype *cft)
97978e6d 3934{
182446d0 3935 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
3936}
3937
182446d0
TH
3938static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
3939 struct cftype *cft, u64 val)
97978e6d
DL
3940{
3941 if (val)
182446d0 3942 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d 3943 else
182446d0 3944 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
3945 return 0;
3946}
3947
d5c56ced 3948static struct cftype cgroup_base_files[] = {
81a6a5cd 3949 {
d5c56ced 3950 .name = "cgroup.procs",
6612f05b
TH
3951 .seq_start = cgroup_pidlist_start,
3952 .seq_next = cgroup_pidlist_next,
3953 .seq_stop = cgroup_pidlist_stop,
3954 .seq_show = cgroup_pidlist_show,
5d22444f 3955 .private = CGROUP_FILE_PROCS,
acbef755 3956 .write = cgroup_procs_write,
74a1166d 3957 .mode = S_IRUGO | S_IWUSR,
102a775e 3958 },
97978e6d
DL
3959 {
3960 .name = "cgroup.clone_children",
873fe09e 3961 .flags = CFTYPE_INSANE,
97978e6d
DL
3962 .read_u64 = cgroup_clone_children_read,
3963 .write_u64 = cgroup_clone_children_write,
3964 },
873fe09e
TH
3965 {
3966 .name = "cgroup.sane_behavior",
3967 .flags = CFTYPE_ONLY_ON_ROOT,
2da8ca82 3968 .seq_show = cgroup_sane_behavior_show,
873fe09e 3969 },
f8f22e53
TH
3970 {
3971 .name = "cgroup.controllers",
3972 .flags = CFTYPE_ONLY_ON_DFL | CFTYPE_ONLY_ON_ROOT,
3973 .seq_show = cgroup_root_controllers_show,
3974 },
3975 {
3976 .name = "cgroup.controllers",
3977 .flags = CFTYPE_ONLY_ON_DFL | CFTYPE_NOT_ON_ROOT,
3978 .seq_show = cgroup_controllers_show,
3979 },
3980 {
3981 .name = "cgroup.subtree_control",
3982 .flags = CFTYPE_ONLY_ON_DFL,
3983 .seq_show = cgroup_subtree_control_show,
451af504 3984 .write = cgroup_subtree_control_write,
f8f22e53 3985 },
842b597e
TH
3986 {
3987 .name = "cgroup.populated",
3988 .flags = CFTYPE_ONLY_ON_DFL | CFTYPE_NOT_ON_ROOT,
3989 .seq_show = cgroup_populated_show,
3990 },
d5c56ced
TH
3991
3992 /*
3993 * Historical crazy stuff. These don't have "cgroup." prefix and
3994 * don't exist if sane_behavior. If you're depending on these, be
3995 * prepared to be burned.
3996 */
3997 {
3998 .name = "tasks",
3999 .flags = CFTYPE_INSANE, /* use "procs" instead */
6612f05b
TH
4000 .seq_start = cgroup_pidlist_start,
4001 .seq_next = cgroup_pidlist_next,
4002 .seq_stop = cgroup_pidlist_stop,
4003 .seq_show = cgroup_pidlist_show,
5d22444f 4004 .private = CGROUP_FILE_TASKS,
acbef755 4005 .write = cgroup_tasks_write,
d5c56ced
TH
4006 .mode = S_IRUGO | S_IWUSR,
4007 },
4008 {
4009 .name = "notify_on_release",
4010 .flags = CFTYPE_INSANE,
4011 .read_u64 = cgroup_read_notify_on_release,
4012 .write_u64 = cgroup_write_notify_on_release,
4013 },
6e6ff25b
TH
4014 {
4015 .name = "release_agent",
cc5943a7 4016 .flags = CFTYPE_INSANE | CFTYPE_ONLY_ON_ROOT,
2da8ca82 4017 .seq_show = cgroup_release_agent_show,
451af504 4018 .write = cgroup_release_agent_write,
5f469907 4019 .max_write_len = PATH_MAX - 1,
6e6ff25b 4020 },
db0416b6 4021 { } /* terminate */
bbcb81d0
PM
4022};
4023
13af07df 4024/**
628f7cd4 4025 * cgroup_populate_dir - create subsys files in a cgroup directory
13af07df 4026 * @cgrp: target cgroup
13af07df 4027 * @subsys_mask: mask of the subsystem ids whose files should be added
bee55099
TH
4028 *
4029 * On failure, no file is added.
13af07df 4030 */
69dfa00c 4031static int cgroup_populate_dir(struct cgroup *cgrp, unsigned int subsys_mask)
ddbcc7e8 4032{
ddbcc7e8 4033 struct cgroup_subsys *ss;
b420ba7d 4034 int i, ret = 0;
bbcb81d0 4035
8e3f6541 4036 /* process cftsets of each subsystem */
b420ba7d 4037 for_each_subsys(ss, i) {
0adb0704 4038 struct cftype *cfts;
b420ba7d 4039
69dfa00c 4040 if (!(subsys_mask & (1 << i)))
13af07df 4041 continue;
8e3f6541 4042
0adb0704
TH
4043 list_for_each_entry(cfts, &ss->cfts, node) {
4044 ret = cgroup_addrm_files(cgrp, cfts, true);
bee55099
TH
4045 if (ret < 0)
4046 goto err;
4047 }
ddbcc7e8 4048 }
ddbcc7e8 4049 return 0;
bee55099
TH
4050err:
4051 cgroup_clear_dir(cgrp, subsys_mask);
4052 return ret;
ddbcc7e8
PM
4053}
4054
0c21ead1
TH
4055/*
4056 * css destruction is four-stage process.
4057 *
4058 * 1. Destruction starts. Killing of the percpu_ref is initiated.
4059 * Implemented in kill_css().
4060 *
4061 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
ec903c0c
TH
4062 * and thus css_tryget_online() is guaranteed to fail, the css can be
4063 * offlined by invoking offline_css(). After offlining, the base ref is
4064 * put. Implemented in css_killed_work_fn().
0c21ead1
TH
4065 *
4066 * 3. When the percpu_ref reaches zero, the only possible remaining
4067 * accessors are inside RCU read sections. css_release() schedules the
4068 * RCU callback.
4069 *
4070 * 4. After the grace period, the css can be freed. Implemented in
4071 * css_free_work_fn().
4072 *
4073 * It is actually hairier because both step 2 and 4 require process context
4074 * and thus involve punting to css->destroy_work adding two additional
4075 * steps to the already complex sequence.
4076 */
35ef10da 4077static void css_free_work_fn(struct work_struct *work)
48ddbe19
TH
4078{
4079 struct cgroup_subsys_state *css =
35ef10da 4080 container_of(work, struct cgroup_subsys_state, destroy_work);
0c21ead1 4081 struct cgroup *cgrp = css->cgroup;
48ddbe19 4082
9d755d33
TH
4083 if (css->ss) {
4084 /* css free path */
4085 if (css->parent)
4086 css_put(css->parent);
0ae78e0b 4087
9d755d33
TH
4088 css->ss->css_free(css);
4089 cgroup_put(cgrp);
4090 } else {
4091 /* cgroup free path */
4092 atomic_dec(&cgrp->root->nr_cgrps);
4093 cgroup_pidlist_destroy_all(cgrp);
4094
4095 if (cgrp->parent) {
4096 /*
4097 * We get a ref to the parent, and put the ref when
4098 * this cgroup is being freed, so it's guaranteed
4099 * that the parent won't be destroyed before its
4100 * children.
4101 */
4102 cgroup_put(cgrp->parent);
4103 kernfs_put(cgrp->kn);
4104 kfree(cgrp);
4105 } else {
4106 /*
4107 * This is root cgroup's refcnt reaching zero,
4108 * which indicates that the root should be
4109 * released.
4110 */
4111 cgroup_destroy_root(cgrp->root);
4112 }
4113 }
48ddbe19
TH
4114}
4115
0c21ead1 4116static void css_free_rcu_fn(struct rcu_head *rcu_head)
d3daf28d
TH
4117{
4118 struct cgroup_subsys_state *css =
0c21ead1 4119 container_of(rcu_head, struct cgroup_subsys_state, rcu_head);
d3daf28d 4120
35ef10da 4121 INIT_WORK(&css->destroy_work, css_free_work_fn);
e5fca243 4122 queue_work(cgroup_destroy_wq, &css->destroy_work);
48ddbe19
TH
4123}
4124
25e15d83 4125static void css_release_work_fn(struct work_struct *work)
d3daf28d
TH
4126{
4127 struct cgroup_subsys_state *css =
25e15d83 4128 container_of(work, struct cgroup_subsys_state, destroy_work);
15a4c835 4129 struct cgroup_subsys *ss = css->ss;
9d755d33 4130 struct cgroup *cgrp = css->cgroup;
15a4c835 4131
9d755d33
TH
4132 if (ss) {
4133 /* css release path */
4134 cgroup_idr_remove(&ss->css_idr, css->id);
4135 } else {
4136 /* cgroup release path */
4137 mutex_lock(&cgroup_mutex);
4138 list_del_rcu(&cgrp->sibling);
4139 mutex_unlock(&cgroup_mutex);
4140
4141 cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
4142 cgrp->id = -1;
4143 }
d3daf28d 4144
0c21ead1 4145 call_rcu(&css->rcu_head, css_free_rcu_fn);
d3daf28d
TH
4146}
4147
25e15d83
TH
4148static void css_release(struct percpu_ref *ref)
4149{
4150 struct cgroup_subsys_state *css =
4151 container_of(ref, struct cgroup_subsys_state, refcnt);
4152
4153 INIT_WORK(&css->destroy_work, css_release_work_fn);
4154 queue_work(cgroup_destroy_wq, &css->destroy_work);
4155}
4156
ddfcadab
TH
4157static void init_and_link_css(struct cgroup_subsys_state *css,
4158 struct cgroup_subsys *ss, struct cgroup *cgrp)
ddbcc7e8 4159{
ddfcadab
TH
4160 cgroup_get(cgrp);
4161
bd89aabc 4162 css->cgroup = cgrp;
72c97e54 4163 css->ss = ss;
ddbcc7e8 4164 css->flags = 0;
0ae78e0b 4165
ddfcadab 4166 if (cgrp->parent) {
ca8bdcaf 4167 css->parent = cgroup_css(cgrp->parent, ss);
ddfcadab 4168 css_get(css->parent);
ddfcadab 4169 }
48ddbe19 4170
ca8bdcaf 4171 BUG_ON(cgroup_css(cgrp, ss));
ddbcc7e8
PM
4172}
4173
2a4ac633 4174/* invoke ->css_online() on a new CSS and mark it online if successful */
623f926b 4175static int online_css(struct cgroup_subsys_state *css)
a31f2d3f 4176{
623f926b 4177 struct cgroup_subsys *ss = css->ss;
b1929db4
TH
4178 int ret = 0;
4179
a31f2d3f
TH
4180 lockdep_assert_held(&cgroup_mutex);
4181
92fb9748 4182 if (ss->css_online)
eb95419b 4183 ret = ss->css_online(css);
ae7f164a 4184 if (!ret) {
eb95419b 4185 css->flags |= CSS_ONLINE;
aec25020 4186 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
ae7f164a 4187 }
b1929db4 4188 return ret;
a31f2d3f
TH
4189}
4190
2a4ac633 4191/* if the CSS is online, invoke ->css_offline() on it and mark it offline */
623f926b 4192static void offline_css(struct cgroup_subsys_state *css)
a31f2d3f 4193{
623f926b 4194 struct cgroup_subsys *ss = css->ss;
a31f2d3f
TH
4195
4196 lockdep_assert_held(&cgroup_mutex);
4197
4198 if (!(css->flags & CSS_ONLINE))
4199 return;
4200
d7eeac19 4201 if (ss->css_offline)
eb95419b 4202 ss->css_offline(css);
a31f2d3f 4203
eb95419b 4204 css->flags &= ~CSS_ONLINE;
e3297803 4205 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
f8f22e53
TH
4206
4207 wake_up_all(&css->cgroup->offline_waitq);
a31f2d3f
TH
4208}
4209
c81c925a
TH
4210/**
4211 * create_css - create a cgroup_subsys_state
4212 * @cgrp: the cgroup new css will be associated with
4213 * @ss: the subsys of new css
4214 *
4215 * Create a new css associated with @cgrp - @ss pair. On success, the new
4216 * css is online and installed in @cgrp with all interface files created.
4217 * Returns 0 on success, -errno on failure.
4218 */
4219static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss)
4220{
4221 struct cgroup *parent = cgrp->parent;
4222 struct cgroup_subsys_state *css;
4223 int err;
4224
c81c925a
TH
4225 lockdep_assert_held(&cgroup_mutex);
4226
4227 css = ss->css_alloc(cgroup_css(parent, ss));
4228 if (IS_ERR(css))
4229 return PTR_ERR(css);
4230
ddfcadab 4231 init_and_link_css(css, ss, cgrp);
a2bed820 4232
c81c925a
TH
4233 err = percpu_ref_init(&css->refcnt, css_release);
4234 if (err)
3eb59ec6 4235 goto err_free_css;
c81c925a 4236
15a4c835
TH
4237 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_NOWAIT);
4238 if (err < 0)
4239 goto err_free_percpu_ref;
4240 css->id = err;
4241
aec25020 4242 err = cgroup_populate_dir(cgrp, 1 << ss->id);
c81c925a 4243 if (err)
15a4c835
TH
4244 goto err_free_id;
4245
4246 /* @css is ready to be brought online now, make it visible */
4247 cgroup_idr_replace(&ss->css_idr, css, css->id);
c81c925a
TH
4248
4249 err = online_css(css);
4250 if (err)
3eb59ec6 4251 goto err_clear_dir;
c81c925a 4252
c81c925a
TH
4253 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
4254 parent->parent) {
ed3d261b 4255 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
a2a1f9ea 4256 current->comm, current->pid, ss->name);
c81c925a 4257 if (!strcmp(ss->name, "memory"))
ed3d261b 4258 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
c81c925a
TH
4259 ss->warned_broken_hierarchy = true;
4260 }
4261
4262 return 0;
4263
3eb59ec6 4264err_clear_dir:
32d01dc7 4265 cgroup_clear_dir(css->cgroup, 1 << css->ss->id);
15a4c835
TH
4266err_free_id:
4267 cgroup_idr_remove(&ss->css_idr, css->id);
3eb59ec6 4268err_free_percpu_ref:
c81c925a 4269 percpu_ref_cancel_init(&css->refcnt);
3eb59ec6 4270err_free_css:
a2bed820 4271 call_rcu(&css->rcu_head, css_free_rcu_fn);
c81c925a
TH
4272 return err;
4273}
4274
b3bfd983
TH
4275static int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
4276 umode_t mode)
ddbcc7e8 4277{
a9746d8d
TH
4278 struct cgroup *parent, *cgrp;
4279 struct cgroup_root *root;
ddbcc7e8 4280 struct cgroup_subsys *ss;
2bd59d48 4281 struct kernfs_node *kn;
b3bfd983 4282 int ssid, ret;
65dff759 4283
a9746d8d
TH
4284 parent = cgroup_kn_lock_live(parent_kn);
4285 if (!parent)
4286 return -ENODEV;
4287 root = parent->root;
ba0f4d76
TH
4288
4289 /* allocate the cgroup and its ID, 0 is reserved for the root */
4290 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
4291 if (!cgrp) {
4292 ret = -ENOMEM;
4293 goto out_unlock;
0ab02ca8
LZ
4294 }
4295
9d755d33
TH
4296 ret = percpu_ref_init(&cgrp->self.refcnt, css_release);
4297 if (ret)
4298 goto out_free_cgrp;
4299
0ab02ca8
LZ
4300 /*
4301 * Temporarily set the pointer to NULL, so idr_find() won't return
4302 * a half-baked cgroup.
4303 */
6fa4918d 4304 cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_NOWAIT);
0ab02ca8 4305 if (cgrp->id < 0) {
ba0f4d76 4306 ret = -ENOMEM;
9d755d33 4307 goto out_cancel_ref;
976c06bc
TH
4308 }
4309
cc31edce 4310 init_cgroup_housekeeping(cgrp);
ddbcc7e8 4311
bd89aabc 4312 cgrp->parent = parent;
9d800df1 4313 cgrp->self.parent = &parent->self;
ba0f4d76 4314 cgrp->root = root;
ddbcc7e8 4315
b6abdb0e
LZ
4316 if (notify_on_release(parent))
4317 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
4318
2260e7fc
TH
4319 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
4320 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
97978e6d 4321
2bd59d48 4322 /* create the directory */
e61734c5 4323 kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
2bd59d48 4324 if (IS_ERR(kn)) {
ba0f4d76
TH
4325 ret = PTR_ERR(kn);
4326 goto out_free_id;
2bd59d48
TH
4327 }
4328 cgrp->kn = kn;
ddbcc7e8 4329
4e139afc 4330 /*
6f30558f
TH
4331 * This extra ref will be put in cgroup_free_fn() and guarantees
4332 * that @cgrp->kn is always accessible.
4e139afc 4333 */
6f30558f 4334 kernfs_get(kn);
ddbcc7e8 4335
00356bd5 4336 cgrp->serial_nr = cgroup_serial_nr_next++;
53fa5261 4337
4e139afc 4338 /* allocation complete, commit to creation */
4e139afc 4339 list_add_tail_rcu(&cgrp->sibling, &cgrp->parent->children);
3c9c825b 4340 atomic_inc(&root->nr_cgrps);
59f5296b 4341 cgroup_get(parent);
415cf07a 4342
0d80255e
TH
4343 /*
4344 * @cgrp is now fully operational. If something fails after this
4345 * point, it'll be released via the normal destruction path.
4346 */
6fa4918d 4347 cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
4e96ee8e 4348
ba0f4d76
TH
4349 ret = cgroup_kn_set_ugid(kn);
4350 if (ret)
4351 goto out_destroy;
49957f8e 4352
ba0f4d76
TH
4353 ret = cgroup_addrm_files(cgrp, cgroup_base_files, true);
4354 if (ret)
4355 goto out_destroy;
628f7cd4 4356
9d403e99 4357 /* let's create and online css's */
b85d2040 4358 for_each_subsys(ss, ssid) {
f392e51c 4359 if (parent->child_subsys_mask & (1 << ssid)) {
ba0f4d76
TH
4360 ret = create_css(cgrp, ss);
4361 if (ret)
4362 goto out_destroy;
b85d2040 4363 }
a8638030 4364 }
ddbcc7e8 4365
bd53d617
TH
4366 /*
4367 * On the default hierarchy, a child doesn't automatically inherit
4368 * child_subsys_mask from the parent. Each is configured manually.
4369 */
4370 if (!cgroup_on_dfl(cgrp))
4371 cgrp->child_subsys_mask = parent->child_subsys_mask;
f392e51c 4372
2bd59d48
TH
4373 kernfs_activate(kn);
4374
ba0f4d76
TH
4375 ret = 0;
4376 goto out_unlock;
ddbcc7e8 4377
ba0f4d76 4378out_free_id:
6fa4918d 4379 cgroup_idr_remove(&root->cgroup_idr, cgrp->id);
9d755d33
TH
4380out_cancel_ref:
4381 percpu_ref_cancel_init(&cgrp->self.refcnt);
ba0f4d76
TH
4382out_free_cgrp:
4383 kfree(cgrp);
4384out_unlock:
a9746d8d 4385 cgroup_kn_unlock(parent_kn);
ba0f4d76 4386 return ret;
4b8b47eb 4387
ba0f4d76 4388out_destroy:
4b8b47eb 4389 cgroup_destroy_locked(cgrp);
ba0f4d76 4390 goto out_unlock;
ddbcc7e8
PM
4391}
4392
223dbc38
TH
4393/*
4394 * This is called when the refcnt of a css is confirmed to be killed.
249f3468
TH
4395 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to
4396 * initate destruction and put the css ref from kill_css().
223dbc38
TH
4397 */
4398static void css_killed_work_fn(struct work_struct *work)
d3daf28d 4399{
223dbc38
TH
4400 struct cgroup_subsys_state *css =
4401 container_of(work, struct cgroup_subsys_state, destroy_work);
d3daf28d 4402
f20104de 4403 mutex_lock(&cgroup_mutex);
09a503ea 4404 offline_css(css);
f20104de 4405 mutex_unlock(&cgroup_mutex);
09a503ea 4406
09a503ea 4407 css_put(css);
d3daf28d
TH
4408}
4409
223dbc38
TH
4410/* css kill confirmation processing requires process context, bounce */
4411static void css_killed_ref_fn(struct percpu_ref *ref)
d3daf28d
TH
4412{
4413 struct cgroup_subsys_state *css =
4414 container_of(ref, struct cgroup_subsys_state, refcnt);
4415
223dbc38 4416 INIT_WORK(&css->destroy_work, css_killed_work_fn);
e5fca243 4417 queue_work(cgroup_destroy_wq, &css->destroy_work);
d3daf28d
TH
4418}
4419
f392e51c
TH
4420/**
4421 * kill_css - destroy a css
4422 * @css: css to destroy
4423 *
4424 * This function initiates destruction of @css by removing cgroup interface
4425 * files and putting its base reference. ->css_offline() will be invoked
ec903c0c
TH
4426 * asynchronously once css_tryget_online() is guaranteed to fail and when
4427 * the reference count reaches zero, @css will be released.
f392e51c
TH
4428 */
4429static void kill_css(struct cgroup_subsys_state *css)
edae0c33 4430{
01f6474c 4431 lockdep_assert_held(&cgroup_mutex);
94419627 4432
2bd59d48
TH
4433 /*
4434 * This must happen before css is disassociated with its cgroup.
4435 * See seq_css() for details.
4436 */
aec25020 4437 cgroup_clear_dir(css->cgroup, 1 << css->ss->id);
3c14f8b4 4438
edae0c33
TH
4439 /*
4440 * Killing would put the base ref, but we need to keep it alive
4441 * until after ->css_offline().
4442 */
4443 css_get(css);
4444
4445 /*
4446 * cgroup core guarantees that, by the time ->css_offline() is
4447 * invoked, no new css reference will be given out via
ec903c0c 4448 * css_tryget_online(). We can't simply call percpu_ref_kill() and
edae0c33
TH
4449 * proceed to offlining css's because percpu_ref_kill() doesn't
4450 * guarantee that the ref is seen as killed on all CPUs on return.
4451 *
4452 * Use percpu_ref_kill_and_confirm() to get notifications as each
4453 * css is confirmed to be seen as killed on all CPUs.
4454 */
4455 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
d3daf28d
TH
4456}
4457
4458/**
4459 * cgroup_destroy_locked - the first stage of cgroup destruction
4460 * @cgrp: cgroup to be destroyed
4461 *
4462 * css's make use of percpu refcnts whose killing latency shouldn't be
4463 * exposed to userland and are RCU protected. Also, cgroup core needs to
ec903c0c
TH
4464 * guarantee that css_tryget_online() won't succeed by the time
4465 * ->css_offline() is invoked. To satisfy all the requirements,
4466 * destruction is implemented in the following two steps.
d3daf28d
TH
4467 *
4468 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
4469 * userland visible parts and start killing the percpu refcnts of
4470 * css's. Set up so that the next stage will be kicked off once all
4471 * the percpu refcnts are confirmed to be killed.
4472 *
4473 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
4474 * rest of destruction. Once all cgroup references are gone, the
4475 * cgroup is RCU-freed.
4476 *
4477 * This function implements s1. After this step, @cgrp is gone as far as
4478 * the userland is concerned and a new cgroup with the same name may be
4479 * created. As cgroup doesn't care about the names internally, this
4480 * doesn't cause any problem.
4481 */
42809dd4
TH
4482static int cgroup_destroy_locked(struct cgroup *cgrp)
4483 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
ddbcc7e8 4484{
2bd59d48 4485 struct cgroup_subsys_state *css;
ddd69148 4486 bool empty;
1c6727af 4487 int ssid;
ddbcc7e8 4488
42809dd4
TH
4489 lockdep_assert_held(&cgroup_mutex);
4490
ddd69148 4491 /*
96d365e0 4492 * css_set_rwsem synchronizes access to ->cset_links and prevents
89c5509b 4493 * @cgrp from being removed while put_css_set() is in progress.
ddd69148 4494 */
96d365e0 4495 down_read(&css_set_rwsem);
bb78a92f 4496 empty = list_empty(&cgrp->cset_links);
96d365e0 4497 up_read(&css_set_rwsem);
ddd69148 4498 if (!empty)
ddbcc7e8 4499 return -EBUSY;
a043e3b2 4500
bb78a92f
HD
4501 /*
4502 * Make sure there's no live children. We can't test ->children
4503 * emptiness as dead children linger on it while being destroyed;
4504 * otherwise, "rmdir parent/child parent" may fail with -EBUSY.
4505 */
cbc125ef 4506 if (cgroup_has_live_children(cgrp))
bb78a92f
HD
4507 return -EBUSY;
4508
455050d2
TH
4509 /*
4510 * Mark @cgrp dead. This prevents further task migration and child
4511 * creation by disabling cgroup_lock_live_group(). Note that
492eb21b 4512 * CGRP_DEAD assertion is depended upon by css_next_child() to
455050d2 4513 * resume iteration after dropping RCU read lock. See
492eb21b 4514 * css_next_child() for details.
455050d2 4515 */
54766d4a 4516 set_bit(CGRP_DEAD, &cgrp->flags);
ddbcc7e8 4517
249f3468 4518 /* initiate massacre of all css's */
1c6727af
TH
4519 for_each_css(css, ssid, cgrp)
4520 kill_css(css);
455050d2 4521
455050d2
TH
4522 /* CGRP_DEAD is set, remove from ->release_list for the last time */
4523 raw_spin_lock(&release_list_lock);
4524 if (!list_empty(&cgrp->release_list))
4525 list_del_init(&cgrp->release_list);
4526 raw_spin_unlock(&release_list_lock);
4527
01f6474c
TH
4528 /*
4529 * Remove @cgrp directory along with the base files. @cgrp has an
4530 * extra ref on its kn.
4531 */
4532 kernfs_remove(cgrp->kn);
455050d2 4533
9e4173e1
TH
4534 set_bit(CGRP_RELEASABLE, &cgrp->parent->flags);
4535 check_for_release(cgrp->parent);
4536
249f3468 4537 /* put the base reference */
9d755d33 4538 percpu_ref_kill(&cgrp->self.refcnt);
249f3468 4539
ea15f8cc
TH
4540 return 0;
4541};
4542
2bd59d48 4543static int cgroup_rmdir(struct kernfs_node *kn)
42809dd4 4544{
a9746d8d 4545 struct cgroup *cgrp;
2bd59d48 4546 int ret = 0;
42809dd4 4547
a9746d8d
TH
4548 cgrp = cgroup_kn_lock_live(kn);
4549 if (!cgrp)
4550 return 0;
4551 cgroup_get(cgrp); /* for @kn->priv clearing */
2bb566cb 4552
a9746d8d 4553 ret = cgroup_destroy_locked(cgrp);
2bb566cb 4554
a9746d8d 4555 cgroup_kn_unlock(kn);
cfc79d5b
TH
4556
4557 /*
4558 * There are two control paths which try to determine cgroup from
4559 * dentry without going through kernfs - cgroupstats_build() and
4560 * css_tryget_online_from_dir(). Those are supported by RCU
4561 * protecting clearing of cgrp->kn->priv backpointer, which should
4562 * happen after all files under it have been removed.
4563 */
4564 if (!ret)
4565 RCU_INIT_POINTER(*(void __rcu __force **)&kn->priv, NULL);
4566
2bd59d48 4567 cgroup_put(cgrp);
42809dd4 4568 return ret;
8e3f6541
TH
4569}
4570
2bd59d48
TH
4571static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
4572 .remount_fs = cgroup_remount,
4573 .show_options = cgroup_show_options,
4574 .mkdir = cgroup_mkdir,
4575 .rmdir = cgroup_rmdir,
4576 .rename = cgroup_rename,
4577};
4578
15a4c835 4579static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
ddbcc7e8 4580{
ddbcc7e8 4581 struct cgroup_subsys_state *css;
cfe36bde
DC
4582
4583 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
ddbcc7e8 4584
648bb56d
TH
4585 mutex_lock(&cgroup_mutex);
4586
15a4c835 4587 idr_init(&ss->css_idr);
0adb0704 4588 INIT_LIST_HEAD(&ss->cfts);
8e3f6541 4589
3dd06ffa
TH
4590 /* Create the root cgroup state for this subsystem */
4591 ss->root = &cgrp_dfl_root;
4592 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
ddbcc7e8
PM
4593 /* We don't handle early failures gracefully */
4594 BUG_ON(IS_ERR(css));
ddfcadab 4595 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
3b514d24
TH
4596
4597 /*
4598 * Root csses are never destroyed and we can't initialize
4599 * percpu_ref during early init. Disable refcnting.
4600 */
4601 css->flags |= CSS_NO_REF;
4602
15a4c835 4603 if (early) {
9395a450 4604 /* allocation can't be done safely during early init */
15a4c835
TH
4605 css->id = 1;
4606 } else {
4607 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
4608 BUG_ON(css->id < 0);
4609 }
ddbcc7e8 4610
e8d55fde 4611 /* Update the init_css_set to contain a subsys
817929ec 4612 * pointer to this state - since the subsystem is
e8d55fde 4613 * newly registered, all tasks and hence the
3dd06ffa 4614 * init_css_set is in the subsystem's root cgroup. */
aec25020 4615 init_css_set.subsys[ss->id] = css;
ddbcc7e8
PM
4616
4617 need_forkexit_callback |= ss->fork || ss->exit;
4618
e8d55fde
LZ
4619 /* At system boot, before all subsystems have been
4620 * registered, no tasks have been forked, so we don't
4621 * need to invoke fork callbacks here. */
4622 BUG_ON(!list_empty(&init_task.tasks));
4623
ae7f164a 4624 BUG_ON(online_css(css));
a8638030 4625
f392e51c 4626 cgrp_dfl_root.subsys_mask |= 1 << ss->id;
cf5d5941
BB
4627
4628 mutex_unlock(&cgroup_mutex);
4629}
cf5d5941 4630
ddbcc7e8 4631/**
a043e3b2
LZ
4632 * cgroup_init_early - cgroup initialization at system boot
4633 *
4634 * Initialize cgroups at system boot, and initialize any
4635 * subsystems that request early init.
ddbcc7e8
PM
4636 */
4637int __init cgroup_init_early(void)
4638{
a2dd4247
TH
4639 static struct cgroup_sb_opts __initdata opts =
4640 { .flags = CGRP_ROOT_SANE_BEHAVIOR };
30159ec7 4641 struct cgroup_subsys *ss;
ddbcc7e8 4642 int i;
30159ec7 4643
3dd06ffa 4644 init_cgroup_root(&cgrp_dfl_root, &opts);
3b514d24
TH
4645 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
4646
a4ea1cc9 4647 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
817929ec 4648
3ed80a62 4649 for_each_subsys(ss, i) {
aec25020 4650 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
073219e9
TH
4651 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p name:id=%d:%s\n",
4652 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
aec25020 4653 ss->id, ss->name);
073219e9
TH
4654 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
4655 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
4656
aec25020 4657 ss->id = i;
073219e9 4658 ss->name = cgroup_subsys_name[i];
ddbcc7e8
PM
4659
4660 if (ss->early_init)
15a4c835 4661 cgroup_init_subsys(ss, true);
ddbcc7e8
PM
4662 }
4663 return 0;
4664}
4665
4666/**
a043e3b2
LZ
4667 * cgroup_init - cgroup initialization
4668 *
4669 * Register cgroup filesystem and /proc file, and initialize
4670 * any subsystems that didn't request early init.
ddbcc7e8
PM
4671 */
4672int __init cgroup_init(void)
4673{
30159ec7 4674 struct cgroup_subsys *ss;
0ac801fe 4675 unsigned long key;
172a2c06 4676 int ssid, err;
ddbcc7e8 4677
2bd59d48 4678 BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files));
ddbcc7e8 4679
54e7b4eb 4680 mutex_lock(&cgroup_mutex);
54e7b4eb 4681
82fe9b0d
TH
4682 /* Add init_css_set to the hash table */
4683 key = css_set_hash(init_css_set.subsys);
4684 hash_add(css_set_table, &init_css_set.hlist, key);
4685
3dd06ffa 4686 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
4e96ee8e 4687
54e7b4eb
TH
4688 mutex_unlock(&cgroup_mutex);
4689
172a2c06 4690 for_each_subsys(ss, ssid) {
15a4c835
TH
4691 if (ss->early_init) {
4692 struct cgroup_subsys_state *css =
4693 init_css_set.subsys[ss->id];
4694
4695 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
4696 GFP_KERNEL);
4697 BUG_ON(css->id < 0);
4698 } else {
4699 cgroup_init_subsys(ss, false);
4700 }
172a2c06 4701
2d8f243a
TH
4702 list_add_tail(&init_css_set.e_cset_node[ssid],
4703 &cgrp_dfl_root.cgrp.e_csets[ssid]);
4704
172a2c06
TH
4705 /*
4706 * cftype registration needs kmalloc and can't be done
4707 * during early_init. Register base cftypes separately.
4708 */
4709 if (ss->base_cftypes)
4710 WARN_ON(cgroup_add_cftypes(ss, ss->base_cftypes));
676db4af
GKH
4711 }
4712
676db4af 4713 cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
2bd59d48
TH
4714 if (!cgroup_kobj)
4715 return -ENOMEM;
676db4af 4716
ddbcc7e8 4717 err = register_filesystem(&cgroup_fs_type);
676db4af
GKH
4718 if (err < 0) {
4719 kobject_put(cgroup_kobj);
2bd59d48 4720 return err;
676db4af 4721 }
ddbcc7e8 4722
46ae220b 4723 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
2bd59d48 4724 return 0;
ddbcc7e8 4725}
b4f48b63 4726
e5fca243
TH
4727static int __init cgroup_wq_init(void)
4728{
4729 /*
4730 * There isn't much point in executing destruction path in
4731 * parallel. Good chunk is serialized with cgroup_mutex anyway.
1a11533f 4732 * Use 1 for @max_active.
e5fca243
TH
4733 *
4734 * We would prefer to do this in cgroup_init() above, but that
4735 * is called before init_workqueues(): so leave this until after.
4736 */
1a11533f 4737 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
e5fca243 4738 BUG_ON(!cgroup_destroy_wq);
b1a21367
TH
4739
4740 /*
4741 * Used to destroy pidlists and separate to serve as flush domain.
4742 * Cap @max_active to 1 too.
4743 */
4744 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
4745 0, 1);
4746 BUG_ON(!cgroup_pidlist_destroy_wq);
4747
e5fca243
TH
4748 return 0;
4749}
4750core_initcall(cgroup_wq_init);
4751
a424316c
PM
4752/*
4753 * proc_cgroup_show()
4754 * - Print task's cgroup paths into seq_file, one line for each hierarchy
4755 * - Used for /proc/<pid>/cgroup.
a424316c
PM
4756 */
4757
4758/* TODO: Use a proper seq_file iterator */
8d8b97ba 4759int proc_cgroup_show(struct seq_file *m, void *v)
a424316c
PM
4760{
4761 struct pid *pid;
4762 struct task_struct *tsk;
e61734c5 4763 char *buf, *path;
a424316c 4764 int retval;
3dd06ffa 4765 struct cgroup_root *root;
a424316c
PM
4766
4767 retval = -ENOMEM;
e61734c5 4768 buf = kmalloc(PATH_MAX, GFP_KERNEL);
a424316c
PM
4769 if (!buf)
4770 goto out;
4771
4772 retval = -ESRCH;
4773 pid = m->private;
4774 tsk = get_pid_task(pid, PIDTYPE_PID);
4775 if (!tsk)
4776 goto out_free;
4777
4778 retval = 0;
4779
4780 mutex_lock(&cgroup_mutex);
96d365e0 4781 down_read(&css_set_rwsem);
a424316c 4782
985ed670 4783 for_each_root(root) {
a424316c 4784 struct cgroup_subsys *ss;
bd89aabc 4785 struct cgroup *cgrp;
b85d2040 4786 int ssid, count = 0;
a424316c 4787
a2dd4247 4788 if (root == &cgrp_dfl_root && !cgrp_dfl_root_visible)
985ed670
TH
4789 continue;
4790
2c6ab6d2 4791 seq_printf(m, "%d:", root->hierarchy_id);
b85d2040 4792 for_each_subsys(ss, ssid)
f392e51c 4793 if (root->subsys_mask & (1 << ssid))
b85d2040 4794 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
c6d57f33
PM
4795 if (strlen(root->name))
4796 seq_printf(m, "%sname=%s", count ? "," : "",
4797 root->name);
a424316c 4798 seq_putc(m, ':');
7717f7ba 4799 cgrp = task_cgroup_from_root(tsk, root);
e61734c5
TH
4800 path = cgroup_path(cgrp, buf, PATH_MAX);
4801 if (!path) {
4802 retval = -ENAMETOOLONG;
a424316c 4803 goto out_unlock;
e61734c5
TH
4804 }
4805 seq_puts(m, path);
a424316c
PM
4806 seq_putc(m, '\n');
4807 }
4808
4809out_unlock:
96d365e0 4810 up_read(&css_set_rwsem);
a424316c
PM
4811 mutex_unlock(&cgroup_mutex);
4812 put_task_struct(tsk);
4813out_free:
4814 kfree(buf);
4815out:
4816 return retval;
4817}
4818
a424316c
PM
4819/* Display information about each subsystem and each hierarchy */
4820static int proc_cgroupstats_show(struct seq_file *m, void *v)
4821{
30159ec7 4822 struct cgroup_subsys *ss;
a424316c 4823 int i;
a424316c 4824
8bab8dde 4825 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
aae8aab4
BB
4826 /*
4827 * ideally we don't want subsystems moving around while we do this.
4828 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
4829 * subsys/hierarchy state.
4830 */
a424316c 4831 mutex_lock(&cgroup_mutex);
30159ec7
TH
4832
4833 for_each_subsys(ss, i)
2c6ab6d2
PM
4834 seq_printf(m, "%s\t%d\t%d\t%d\n",
4835 ss->name, ss->root->hierarchy_id,
3c9c825b 4836 atomic_read(&ss->root->nr_cgrps), !ss->disabled);
30159ec7 4837
a424316c
PM
4838 mutex_unlock(&cgroup_mutex);
4839 return 0;
4840}
4841
4842static int cgroupstats_open(struct inode *inode, struct file *file)
4843{
9dce07f1 4844 return single_open(file, proc_cgroupstats_show, NULL);
a424316c
PM
4845}
4846
828c0950 4847static const struct file_operations proc_cgroupstats_operations = {
a424316c
PM
4848 .open = cgroupstats_open,
4849 .read = seq_read,
4850 .llseek = seq_lseek,
4851 .release = single_release,
4852};
4853
b4f48b63 4854/**
eaf797ab 4855 * cgroup_fork - initialize cgroup related fields during copy_process()
a043e3b2 4856 * @child: pointer to task_struct of forking parent process.
b4f48b63 4857 *
eaf797ab
TH
4858 * A task is associated with the init_css_set until cgroup_post_fork()
4859 * attaches it to the parent's css_set. Empty cg_list indicates that
4860 * @child isn't holding reference to its css_set.
b4f48b63
PM
4861 */
4862void cgroup_fork(struct task_struct *child)
4863{
eaf797ab 4864 RCU_INIT_POINTER(child->cgroups, &init_css_set);
817929ec 4865 INIT_LIST_HEAD(&child->cg_list);
b4f48b63
PM
4866}
4867
817929ec 4868/**
a043e3b2
LZ
4869 * cgroup_post_fork - called on a new task after adding it to the task list
4870 * @child: the task in question
4871 *
5edee61e
TH
4872 * Adds the task to the list running through its css_set if necessary and
4873 * call the subsystem fork() callbacks. Has to be after the task is
4874 * visible on the task list in case we race with the first call to
0942eeee 4875 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5edee61e 4876 * list.
a043e3b2 4877 */
817929ec
PM
4878void cgroup_post_fork(struct task_struct *child)
4879{
30159ec7 4880 struct cgroup_subsys *ss;
5edee61e
TH
4881 int i;
4882
3ce3230a 4883 /*
eaf797ab
TH
4884 * This may race against cgroup_enable_task_cg_links(). As that
4885 * function sets use_task_css_set_links before grabbing
4886 * tasklist_lock and we just went through tasklist_lock to add
4887 * @child, it's guaranteed that either we see the set
4888 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
4889 * @child during its iteration.
4890 *
4891 * If we won the race, @child is associated with %current's
4892 * css_set. Grabbing css_set_rwsem guarantees both that the
4893 * association is stable, and, on completion of the parent's
4894 * migration, @child is visible in the source of migration or
4895 * already in the destination cgroup. This guarantee is necessary
4896 * when implementing operations which need to migrate all tasks of
4897 * a cgroup to another.
4898 *
4899 * Note that if we lose to cgroup_enable_task_cg_links(), @child
4900 * will remain in init_css_set. This is safe because all tasks are
4901 * in the init_css_set before cg_links is enabled and there's no
4902 * operation which transfers all tasks out of init_css_set.
3ce3230a 4903 */
817929ec 4904 if (use_task_css_set_links) {
eaf797ab
TH
4905 struct css_set *cset;
4906
96d365e0 4907 down_write(&css_set_rwsem);
0e1d768f 4908 cset = task_css_set(current);
eaf797ab
TH
4909 if (list_empty(&child->cg_list)) {
4910 rcu_assign_pointer(child->cgroups, cset);
4911 list_add(&child->cg_list, &cset->tasks);
4912 get_css_set(cset);
4913 }
96d365e0 4914 up_write(&css_set_rwsem);
817929ec 4915 }
5edee61e
TH
4916
4917 /*
4918 * Call ss->fork(). This must happen after @child is linked on
4919 * css_set; otherwise, @child might change state between ->fork()
4920 * and addition to css_set.
4921 */
4922 if (need_forkexit_callback) {
3ed80a62 4923 for_each_subsys(ss, i)
5edee61e
TH
4924 if (ss->fork)
4925 ss->fork(child);
5edee61e 4926 }
817929ec 4927}
5edee61e 4928
b4f48b63
PM
4929/**
4930 * cgroup_exit - detach cgroup from exiting task
4931 * @tsk: pointer to task_struct of exiting process
4932 *
4933 * Description: Detach cgroup from @tsk and release it.
4934 *
4935 * Note that cgroups marked notify_on_release force every task in
4936 * them to take the global cgroup_mutex mutex when exiting.
4937 * This could impact scaling on very large systems. Be reluctant to
4938 * use notify_on_release cgroups where very high task exit scaling
4939 * is required on large systems.
4940 *
0e1d768f
TH
4941 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We
4942 * call cgroup_exit() while the task is still competent to handle
4943 * notify_on_release(), then leave the task attached to the root cgroup in
4944 * each hierarchy for the remainder of its exit. No need to bother with
4945 * init_css_set refcnting. init_css_set never goes away and we can't race
e8604cb4 4946 * with migration path - PF_EXITING is visible to migration path.
b4f48b63 4947 */
1ec41830 4948void cgroup_exit(struct task_struct *tsk)
b4f48b63 4949{
30159ec7 4950 struct cgroup_subsys *ss;
5abb8855 4951 struct css_set *cset;
eaf797ab 4952 bool put_cset = false;
d41d5a01 4953 int i;
817929ec
PM
4954
4955 /*
0e1d768f
TH
4956 * Unlink from @tsk from its css_set. As migration path can't race
4957 * with us, we can check cg_list without grabbing css_set_rwsem.
817929ec
PM
4958 */
4959 if (!list_empty(&tsk->cg_list)) {
96d365e0 4960 down_write(&css_set_rwsem);
0e1d768f 4961 list_del_init(&tsk->cg_list);
96d365e0 4962 up_write(&css_set_rwsem);
0e1d768f 4963 put_cset = true;
817929ec
PM
4964 }
4965
b4f48b63 4966 /* Reassign the task to the init_css_set. */
a8ad805c
TH
4967 cset = task_css_set(tsk);
4968 RCU_INIT_POINTER(tsk->cgroups, &init_css_set);
d41d5a01 4969
1ec41830 4970 if (need_forkexit_callback) {
3ed80a62
TH
4971 /* see cgroup_post_fork() for details */
4972 for_each_subsys(ss, i) {
d41d5a01 4973 if (ss->exit) {
eb95419b
TH
4974 struct cgroup_subsys_state *old_css = cset->subsys[i];
4975 struct cgroup_subsys_state *css = task_css(tsk, i);
30159ec7 4976
eb95419b 4977 ss->exit(css, old_css, tsk);
d41d5a01
PZ
4978 }
4979 }
4980 }
d41d5a01 4981
eaf797ab
TH
4982 if (put_cset)
4983 put_css_set(cset, true);
b4f48b63 4984}
697f4161 4985
bd89aabc 4986static void check_for_release(struct cgroup *cgrp)
81a6a5cd 4987{
f50daa70 4988 if (cgroup_is_releasable(cgrp) &&
9e4173e1 4989 list_empty(&cgrp->cset_links) && !cgroup_has_live_children(cgrp)) {
f50daa70
LZ
4990 /*
4991 * Control Group is currently removeable. If it's not
81a6a5cd 4992 * already queued for a userspace notification, queue
f50daa70
LZ
4993 * it now
4994 */
81a6a5cd 4995 int need_schedule_work = 0;
f50daa70 4996
cdcc136f 4997 raw_spin_lock(&release_list_lock);
54766d4a 4998 if (!cgroup_is_dead(cgrp) &&
bd89aabc
PM
4999 list_empty(&cgrp->release_list)) {
5000 list_add(&cgrp->release_list, &release_list);
81a6a5cd
PM
5001 need_schedule_work = 1;
5002 }
cdcc136f 5003 raw_spin_unlock(&release_list_lock);
81a6a5cd
PM
5004 if (need_schedule_work)
5005 schedule_work(&release_agent_work);
5006 }
5007}
5008
81a6a5cd
PM
5009/*
5010 * Notify userspace when a cgroup is released, by running the
5011 * configured release agent with the name of the cgroup (path
5012 * relative to the root of cgroup file system) as the argument.
5013 *
5014 * Most likely, this user command will try to rmdir this cgroup.
5015 *
5016 * This races with the possibility that some other task will be
5017 * attached to this cgroup before it is removed, or that some other
5018 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
5019 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
5020 * unused, and this cgroup will be reprieved from its death sentence,
5021 * to continue to serve a useful existence. Next time it's released,
5022 * we will get notified again, if it still has 'notify_on_release' set.
5023 *
5024 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
5025 * means only wait until the task is successfully execve()'d. The
5026 * separate release agent task is forked by call_usermodehelper(),
5027 * then control in this thread returns here, without waiting for the
5028 * release agent task. We don't bother to wait because the caller of
5029 * this routine has no use for the exit status of the release agent
5030 * task, so no sense holding our caller up for that.
81a6a5cd 5031 */
81a6a5cd
PM
5032static void cgroup_release_agent(struct work_struct *work)
5033{
5034 BUG_ON(work != &release_agent_work);
5035 mutex_lock(&cgroup_mutex);
cdcc136f 5036 raw_spin_lock(&release_list_lock);
81a6a5cd
PM
5037 while (!list_empty(&release_list)) {
5038 char *argv[3], *envp[3];
5039 int i;
e61734c5 5040 char *pathbuf = NULL, *agentbuf = NULL, *path;
bd89aabc 5041 struct cgroup *cgrp = list_entry(release_list.next,
81a6a5cd
PM
5042 struct cgroup,
5043 release_list);
bd89aabc 5044 list_del_init(&cgrp->release_list);
cdcc136f 5045 raw_spin_unlock(&release_list_lock);
e61734c5 5046 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
e788e066
PM
5047 if (!pathbuf)
5048 goto continue_free;
e61734c5
TH
5049 path = cgroup_path(cgrp, pathbuf, PATH_MAX);
5050 if (!path)
e788e066
PM
5051 goto continue_free;
5052 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
5053 if (!agentbuf)
5054 goto continue_free;
81a6a5cd
PM
5055
5056 i = 0;
e788e066 5057 argv[i++] = agentbuf;
e61734c5 5058 argv[i++] = path;
81a6a5cd
PM
5059 argv[i] = NULL;
5060
5061 i = 0;
5062 /* minimal command environment */
5063 envp[i++] = "HOME=/";
5064 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
5065 envp[i] = NULL;
5066
5067 /* Drop the lock while we invoke the usermode helper,
5068 * since the exec could involve hitting disk and hence
5069 * be a slow process */
5070 mutex_unlock(&cgroup_mutex);
5071 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
81a6a5cd 5072 mutex_lock(&cgroup_mutex);
e788e066
PM
5073 continue_free:
5074 kfree(pathbuf);
5075 kfree(agentbuf);
cdcc136f 5076 raw_spin_lock(&release_list_lock);
81a6a5cd 5077 }
cdcc136f 5078 raw_spin_unlock(&release_list_lock);
81a6a5cd
PM
5079 mutex_unlock(&cgroup_mutex);
5080}
8bab8dde
PM
5081
5082static int __init cgroup_disable(char *str)
5083{
30159ec7 5084 struct cgroup_subsys *ss;
8bab8dde 5085 char *token;
30159ec7 5086 int i;
8bab8dde
PM
5087
5088 while ((token = strsep(&str, ",")) != NULL) {
5089 if (!*token)
5090 continue;
be45c900 5091
3ed80a62 5092 for_each_subsys(ss, i) {
8bab8dde
PM
5093 if (!strcmp(token, ss->name)) {
5094 ss->disabled = 1;
5095 printk(KERN_INFO "Disabling %s control group"
5096 " subsystem\n", ss->name);
5097 break;
5098 }
5099 }
5100 }
5101 return 1;
5102}
5103__setup("cgroup_disable=", cgroup_disable);
38460b48 5104
b77d7b60 5105/**
ec903c0c 5106 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
35cf0836
TH
5107 * @dentry: directory dentry of interest
5108 * @ss: subsystem of interest
b77d7b60 5109 *
5a17f543
TH
5110 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
5111 * to get the corresponding css and return it. If such css doesn't exist
5112 * or can't be pinned, an ERR_PTR value is returned.
e5d1367f 5113 */
ec903c0c
TH
5114struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
5115 struct cgroup_subsys *ss)
e5d1367f 5116{
2bd59d48
TH
5117 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
5118 struct cgroup_subsys_state *css = NULL;
e5d1367f 5119 struct cgroup *cgrp;
e5d1367f 5120
35cf0836 5121 /* is @dentry a cgroup dir? */
2bd59d48
TH
5122 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
5123 kernfs_type(kn) != KERNFS_DIR)
e5d1367f
SE
5124 return ERR_PTR(-EBADF);
5125
5a17f543
TH
5126 rcu_read_lock();
5127
2bd59d48
TH
5128 /*
5129 * This path doesn't originate from kernfs and @kn could already
5130 * have been or be removed at any point. @kn->priv is RCU
cfc79d5b 5131 * protected for this access. See cgroup_rmdir() for details.
2bd59d48
TH
5132 */
5133 cgrp = rcu_dereference(kn->priv);
5134 if (cgrp)
5135 css = cgroup_css(cgrp, ss);
5a17f543 5136
ec903c0c 5137 if (!css || !css_tryget_online(css))
5a17f543
TH
5138 css = ERR_PTR(-ENOENT);
5139
5140 rcu_read_unlock();
5141 return css;
e5d1367f 5142}
e5d1367f 5143
1cb650b9
LZ
5144/**
5145 * css_from_id - lookup css by id
5146 * @id: the cgroup id
5147 * @ss: cgroup subsys to be looked into
5148 *
5149 * Returns the css if there's valid one with @id, otherwise returns NULL.
5150 * Should be called under rcu_read_lock().
5151 */
5152struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
5153{
6fa4918d 5154 WARN_ON_ONCE(!rcu_read_lock_held());
15a4c835 5155 return idr_find(&ss->css_idr, id);
e5d1367f
SE
5156}
5157
fe693435 5158#ifdef CONFIG_CGROUP_DEBUG
eb95419b
TH
5159static struct cgroup_subsys_state *
5160debug_css_alloc(struct cgroup_subsys_state *parent_css)
fe693435
PM
5161{
5162 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5163
5164 if (!css)
5165 return ERR_PTR(-ENOMEM);
5166
5167 return css;
5168}
5169
eb95419b 5170static void debug_css_free(struct cgroup_subsys_state *css)
fe693435 5171{
eb95419b 5172 kfree(css);
fe693435
PM
5173}
5174
182446d0
TH
5175static u64 debug_taskcount_read(struct cgroup_subsys_state *css,
5176 struct cftype *cft)
fe693435 5177{
182446d0 5178 return cgroup_task_count(css->cgroup);
fe693435
PM
5179}
5180
182446d0
TH
5181static u64 current_css_set_read(struct cgroup_subsys_state *css,
5182 struct cftype *cft)
fe693435
PM
5183{
5184 return (u64)(unsigned long)current->cgroups;
5185}
5186
182446d0 5187static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css,
03c78cbe 5188 struct cftype *cft)
fe693435
PM
5189{
5190 u64 count;
5191
5192 rcu_read_lock();
a8ad805c 5193 count = atomic_read(&task_css_set(current)->refcount);
fe693435
PM
5194 rcu_read_unlock();
5195 return count;
5196}
5197
2da8ca82 5198static int current_css_set_cg_links_read(struct seq_file *seq, void *v)
7717f7ba 5199{
69d0206c 5200 struct cgrp_cset_link *link;
5abb8855 5201 struct css_set *cset;
e61734c5
TH
5202 char *name_buf;
5203
5204 name_buf = kmalloc(NAME_MAX + 1, GFP_KERNEL);
5205 if (!name_buf)
5206 return -ENOMEM;
7717f7ba 5207
96d365e0 5208 down_read(&css_set_rwsem);
7717f7ba 5209 rcu_read_lock();
5abb8855 5210 cset = rcu_dereference(current->cgroups);
69d0206c 5211 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 5212 struct cgroup *c = link->cgrp;
7717f7ba 5213
a2dd4247 5214 cgroup_name(c, name_buf, NAME_MAX + 1);
2c6ab6d2 5215 seq_printf(seq, "Root %d group %s\n",
a2dd4247 5216 c->root->hierarchy_id, name_buf);
7717f7ba
PM
5217 }
5218 rcu_read_unlock();
96d365e0 5219 up_read(&css_set_rwsem);
e61734c5 5220 kfree(name_buf);
7717f7ba
PM
5221 return 0;
5222}
5223
5224#define MAX_TASKS_SHOWN_PER_CSS 25
2da8ca82 5225static int cgroup_css_links_read(struct seq_file *seq, void *v)
7717f7ba 5226{
2da8ca82 5227 struct cgroup_subsys_state *css = seq_css(seq);
69d0206c 5228 struct cgrp_cset_link *link;
7717f7ba 5229
96d365e0 5230 down_read(&css_set_rwsem);
182446d0 5231 list_for_each_entry(link, &css->cgroup->cset_links, cset_link) {
69d0206c 5232 struct css_set *cset = link->cset;
7717f7ba
PM
5233 struct task_struct *task;
5234 int count = 0;
c7561128 5235
5abb8855 5236 seq_printf(seq, "css_set %p\n", cset);
c7561128 5237
5abb8855 5238 list_for_each_entry(task, &cset->tasks, cg_list) {
c7561128
TH
5239 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
5240 goto overflow;
5241 seq_printf(seq, " task %d\n", task_pid_vnr(task));
5242 }
5243
5244 list_for_each_entry(task, &cset->mg_tasks, cg_list) {
5245 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
5246 goto overflow;
5247 seq_printf(seq, " task %d\n", task_pid_vnr(task));
7717f7ba 5248 }
c7561128
TH
5249 continue;
5250 overflow:
5251 seq_puts(seq, " ...\n");
7717f7ba 5252 }
96d365e0 5253 up_read(&css_set_rwsem);
7717f7ba
PM
5254 return 0;
5255}
5256
182446d0 5257static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft)
fe693435 5258{
182446d0 5259 return test_bit(CGRP_RELEASABLE, &css->cgroup->flags);
fe693435
PM
5260}
5261
5262static struct cftype debug_files[] = {
fe693435
PM
5263 {
5264 .name = "taskcount",
5265 .read_u64 = debug_taskcount_read,
5266 },
5267
5268 {
5269 .name = "current_css_set",
5270 .read_u64 = current_css_set_read,
5271 },
5272
5273 {
5274 .name = "current_css_set_refcount",
5275 .read_u64 = current_css_set_refcount_read,
5276 },
5277
7717f7ba
PM
5278 {
5279 .name = "current_css_set_cg_links",
2da8ca82 5280 .seq_show = current_css_set_cg_links_read,
7717f7ba
PM
5281 },
5282
5283 {
5284 .name = "cgroup_css_links",
2da8ca82 5285 .seq_show = cgroup_css_links_read,
7717f7ba
PM
5286 },
5287
fe693435
PM
5288 {
5289 .name = "releasable",
5290 .read_u64 = releasable_read,
5291 },
fe693435 5292
4baf6e33
TH
5293 { } /* terminate */
5294};
fe693435 5295
073219e9 5296struct cgroup_subsys debug_cgrp_subsys = {
92fb9748
TH
5297 .css_alloc = debug_css_alloc,
5298 .css_free = debug_css_free,
4baf6e33 5299 .base_cftypes = debug_files,
fe693435
PM
5300};
5301#endif /* CONFIG_CGROUP_DEBUG */