]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - kernel/cgroup.c
cgroup: drop const from @buffer of cftype->write_string()
[mirror_ubuntu-zesty-kernel.git] / kernel / cgroup.c
CommitLineData
ddbcc7e8 1/*
ddbcc7e8
PM
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
0dea1168
KS
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
ddbcc7e8
PM
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29#include <linux/cgroup.h>
2ce9738b 30#include <linux/cred.h>
c6d57f33 31#include <linux/ctype.h>
ddbcc7e8 32#include <linux/errno.h>
2ce9738b 33#include <linux/init_task.h>
ddbcc7e8
PM
34#include <linux/kernel.h>
35#include <linux/list.h>
36#include <linux/mm.h>
37#include <linux/mutex.h>
38#include <linux/mount.h>
39#include <linux/pagemap.h>
a424316c 40#include <linux/proc_fs.h>
ddbcc7e8
PM
41#include <linux/rcupdate.h>
42#include <linux/sched.h>
ddbcc7e8 43#include <linux/slab.h>
ddbcc7e8 44#include <linux/spinlock.h>
96d365e0 45#include <linux/rwsem.h>
ddbcc7e8 46#include <linux/string.h>
bbcb81d0 47#include <linux/sort.h>
81a6a5cd 48#include <linux/kmod.h>
846c7bb0
BS
49#include <linux/delayacct.h>
50#include <linux/cgroupstats.h>
0ac801fe 51#include <linux/hashtable.h>
096b7fe0 52#include <linux/pid_namespace.h>
2c6ab6d2 53#include <linux/idr.h>
d1d9fd33 54#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
c4c27fbd 55#include <linux/kthread.h>
776f02fa 56#include <linux/delay.h>
846c7bb0 57
60063497 58#include <linux/atomic.h>
ddbcc7e8 59
b1a21367
TH
60/*
61 * pidlists linger the following amount before being destroyed. The goal
62 * is avoiding frequent destruction in the middle of consecutive read calls
63 * Expiring in the middle is a performance problem not a correctness one.
64 * 1 sec should be enough.
65 */
66#define CGROUP_PIDLIST_DESTROY_DELAY HZ
67
8d7e6fb0
TH
68#define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
69 MAX_CFTYPE_NAME + 2)
70
ace2bee8
TH
71/*
72 * cgroup_tree_mutex nests above cgroup_mutex and protects cftypes, file
73 * creation/removal and hierarchy changing operations including cgroup
74 * creation, removal, css association and controller rebinding. This outer
75 * lock is needed mainly to resolve the circular dependency between kernfs
76 * active ref and cgroup_mutex. cgroup_tree_mutex nests above both.
77 */
78static DEFINE_MUTEX(cgroup_tree_mutex);
79
e25e2cbb
TH
80/*
81 * cgroup_mutex is the master lock. Any modification to cgroup or its
82 * hierarchy must be performed while holding it.
0e1d768f
TH
83 *
84 * css_set_rwsem protects task->cgroups pointer, the list of css_set
85 * objects, and the chain of tasks off each css_set.
86 *
87 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
88 * cgroup.h can use them for lockdep annotations.
e25e2cbb 89 */
2219449a
TH
90#ifdef CONFIG_PROVE_RCU
91DEFINE_MUTEX(cgroup_mutex);
0e1d768f
TH
92DECLARE_RWSEM(css_set_rwsem);
93EXPORT_SYMBOL_GPL(cgroup_mutex);
94EXPORT_SYMBOL_GPL(css_set_rwsem);
2219449a 95#else
81a6a5cd 96static DEFINE_MUTEX(cgroup_mutex);
0e1d768f 97static DECLARE_RWSEM(css_set_rwsem);
2219449a
TH
98#endif
99
69e943b7
TH
100/*
101 * Protects cgroup_subsys->release_agent_path. Modifying it also requires
102 * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock.
103 */
104static DEFINE_SPINLOCK(release_agent_path_lock);
105
ace2bee8 106#define cgroup_assert_mutexes_or_rcu_locked() \
87fb54f1 107 rcu_lockdep_assert(rcu_read_lock_held() || \
ace2bee8 108 lockdep_is_held(&cgroup_tree_mutex) || \
87fb54f1 109 lockdep_is_held(&cgroup_mutex), \
ace2bee8 110 "cgroup_[tree_]mutex or RCU read lock required");
87fb54f1 111
e5fca243
TH
112/*
113 * cgroup destruction makes heavy use of work items and there can be a lot
114 * of concurrent destructions. Use a separate workqueue so that cgroup
115 * destruction work items don't end up filling up max_active of system_wq
116 * which may lead to deadlock.
117 */
118static struct workqueue_struct *cgroup_destroy_wq;
119
b1a21367
TH
120/*
121 * pidlist destructions need to be flushed on cgroup destruction. Use a
122 * separate workqueue as flush domain.
123 */
124static struct workqueue_struct *cgroup_pidlist_destroy_wq;
125
3ed80a62 126/* generate an array of cgroup subsystem pointers */
073219e9 127#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
3ed80a62 128static struct cgroup_subsys *cgroup_subsys[] = {
ddbcc7e8
PM
129#include <linux/cgroup_subsys.h>
130};
073219e9
TH
131#undef SUBSYS
132
133/* array of cgroup subsystem names */
134#define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
135static const char *cgroup_subsys_name[] = {
136#include <linux/cgroup_subsys.h>
137};
138#undef SUBSYS
ddbcc7e8 139
ddbcc7e8 140/*
3dd06ffa 141 * The default hierarchy, reserved for the subsystems that are otherwise
9871bf95
TH
142 * unattached - it never has more than a single cgroup, and all tasks are
143 * part of that cgroup.
ddbcc7e8 144 */
3dd06ffa 145static struct cgroup_root cgrp_dfl_root;
ddbcc7e8
PM
146
147/* The list of hierarchy roots */
148
9871bf95
TH
149static LIST_HEAD(cgroup_roots);
150static int cgroup_root_count;
ddbcc7e8 151
3417ae1f 152/* hierarchy ID allocation and mapping, protected by cgroup_mutex */
1a574231 153static DEFINE_IDR(cgroup_hierarchy_idr);
2c6ab6d2 154
794611a1
LZ
155/*
156 * Assign a monotonically increasing serial number to cgroups. It
157 * guarantees cgroups with bigger numbers are newer than those with smaller
158 * numbers. Also, as cgroups are always appended to the parent's
159 * ->children list, it guarantees that sibling cgroups are always sorted in
00356bd5
TH
160 * the ascending serial number order on the list. Protected by
161 * cgroup_mutex.
794611a1 162 */
00356bd5 163static u64 cgroup_serial_nr_next = 1;
794611a1 164
ddbcc7e8 165/* This flag indicates whether tasks in the fork and exit paths should
a043e3b2
LZ
166 * check for fork/exit handlers to call. This avoids us having to do
167 * extra work in the fork/exit path if none of the subsystems need to
168 * be called.
ddbcc7e8 169 */
8947f9d5 170static int need_forkexit_callback __read_mostly;
ddbcc7e8 171
628f7cd4
TH
172static struct cftype cgroup_base_files[];
173
59f5296b 174static void cgroup_put(struct cgroup *cgrp);
3dd06ffa 175static int rebind_subsystems(struct cgroup_root *dst_root,
5df36032 176 unsigned long ss_mask);
f20104de 177static void cgroup_destroy_css_killed(struct cgroup *cgrp);
42809dd4 178static int cgroup_destroy_locked(struct cgroup *cgrp);
2bb566cb
TH
179static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
180 bool is_add);
b1a21367 181static void cgroup_pidlist_destroy_all(struct cgroup *cgrp);
42809dd4 182
95109b62
TH
183/**
184 * cgroup_css - obtain a cgroup's css for the specified subsystem
185 * @cgrp: the cgroup of interest
ca8bdcaf 186 * @ss: the subsystem of interest (%NULL returns the dummy_css)
95109b62 187 *
ca8bdcaf
TH
188 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
189 * function must be called either under cgroup_mutex or rcu_read_lock() and
190 * the caller is responsible for pinning the returned css if it wants to
191 * keep accessing it outside the said locks. This function may return
192 * %NULL if @cgrp doesn't have @subsys_id enabled.
95109b62
TH
193 */
194static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
ca8bdcaf 195 struct cgroup_subsys *ss)
95109b62 196{
ca8bdcaf 197 if (ss)
aec25020 198 return rcu_dereference_check(cgrp->subsys[ss->id],
ace2bee8
TH
199 lockdep_is_held(&cgroup_tree_mutex) ||
200 lockdep_is_held(&cgroup_mutex));
ca8bdcaf
TH
201 else
202 return &cgrp->dummy_css;
95109b62 203}
42809dd4 204
ddbcc7e8 205/* convenient tests for these bits */
54766d4a 206static inline bool cgroup_is_dead(const struct cgroup *cgrp)
ddbcc7e8 207{
54766d4a 208 return test_bit(CGRP_DEAD, &cgrp->flags);
ddbcc7e8
PM
209}
210
59f5296b
TH
211struct cgroup_subsys_state *seq_css(struct seq_file *seq)
212{
2bd59d48
TH
213 struct kernfs_open_file *of = seq->private;
214 struct cgroup *cgrp = of->kn->parent->priv;
215 struct cftype *cft = seq_cft(seq);
216
217 /*
218 * This is open and unprotected implementation of cgroup_css().
219 * seq_css() is only called from a kernfs file operation which has
220 * an active reference on the file. Because all the subsystem
221 * files are drained before a css is disassociated with a cgroup,
222 * the matching css from the cgroup's subsys table is guaranteed to
223 * be and stay valid until the enclosing operation is complete.
224 */
225 if (cft->ss)
226 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
227 else
228 return &cgrp->dummy_css;
59f5296b
TH
229}
230EXPORT_SYMBOL_GPL(seq_css);
231
78574cf9
LZ
232/**
233 * cgroup_is_descendant - test ancestry
234 * @cgrp: the cgroup to be tested
235 * @ancestor: possible ancestor of @cgrp
236 *
237 * Test whether @cgrp is a descendant of @ancestor. It also returns %true
238 * if @cgrp == @ancestor. This function is safe to call as long as @cgrp
239 * and @ancestor are accessible.
240 */
241bool cgroup_is_descendant(struct cgroup *cgrp, struct cgroup *ancestor)
242{
243 while (cgrp) {
244 if (cgrp == ancestor)
245 return true;
246 cgrp = cgrp->parent;
247 }
248 return false;
249}
ddbcc7e8 250
e9685a03 251static int cgroup_is_releasable(const struct cgroup *cgrp)
81a6a5cd
PM
252{
253 const int bits =
bd89aabc
PM
254 (1 << CGRP_RELEASABLE) |
255 (1 << CGRP_NOTIFY_ON_RELEASE);
256 return (cgrp->flags & bits) == bits;
81a6a5cd
PM
257}
258
e9685a03 259static int notify_on_release(const struct cgroup *cgrp)
81a6a5cd 260{
bd89aabc 261 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
81a6a5cd
PM
262}
263
1c6727af
TH
264/**
265 * for_each_css - iterate all css's of a cgroup
266 * @css: the iteration cursor
267 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
268 * @cgrp: the target cgroup to iterate css's of
269 *
270 * Should be called under cgroup_mutex.
271 */
272#define for_each_css(css, ssid, cgrp) \
273 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
274 if (!((css) = rcu_dereference_check( \
275 (cgrp)->subsys[(ssid)], \
ace2bee8 276 lockdep_is_held(&cgroup_tree_mutex) || \
1c6727af
TH
277 lockdep_is_held(&cgroup_mutex)))) { } \
278 else
279
30159ec7 280/**
3ed80a62 281 * for_each_subsys - iterate all enabled cgroup subsystems
30159ec7 282 * @ss: the iteration cursor
780cd8b3 283 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
30159ec7 284 */
780cd8b3 285#define for_each_subsys(ss, ssid) \
3ed80a62
TH
286 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT && \
287 (((ss) = cgroup_subsys[ssid]) || true); (ssid)++)
30159ec7 288
985ed670
TH
289/* iterate across the hierarchies */
290#define for_each_root(root) \
5549c497 291 list_for_each_entry((root), &cgroup_roots, root_list)
ddbcc7e8 292
7ae1bad9
TH
293/**
294 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
295 * @cgrp: the cgroup to be checked for liveness
296 *
47cfcd09
TH
297 * On success, returns true; the mutex should be later unlocked. On
298 * failure returns false with no lock held.
7ae1bad9 299 */
b9777cf8 300static bool cgroup_lock_live_group(struct cgroup *cgrp)
7ae1bad9
TH
301{
302 mutex_lock(&cgroup_mutex);
54766d4a 303 if (cgroup_is_dead(cgrp)) {
7ae1bad9
TH
304 mutex_unlock(&cgroup_mutex);
305 return false;
306 }
307 return true;
308}
7ae1bad9 309
81a6a5cd
PM
310/* the list of cgroups eligible for automatic release. Protected by
311 * release_list_lock */
312static LIST_HEAD(release_list);
cdcc136f 313static DEFINE_RAW_SPINLOCK(release_list_lock);
81a6a5cd
PM
314static void cgroup_release_agent(struct work_struct *work);
315static DECLARE_WORK(release_agent_work, cgroup_release_agent);
bd89aabc 316static void check_for_release(struct cgroup *cgrp);
81a6a5cd 317
69d0206c
TH
318/*
319 * A cgroup can be associated with multiple css_sets as different tasks may
320 * belong to different cgroups on different hierarchies. In the other
321 * direction, a css_set is naturally associated with multiple cgroups.
322 * This M:N relationship is represented by the following link structure
323 * which exists for each association and allows traversing the associations
324 * from both sides.
325 */
326struct cgrp_cset_link {
327 /* the cgroup and css_set this link associates */
328 struct cgroup *cgrp;
329 struct css_set *cset;
330
331 /* list of cgrp_cset_links anchored at cgrp->cset_links */
332 struct list_head cset_link;
333
334 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
335 struct list_head cgrp_link;
817929ec
PM
336};
337
172a2c06
TH
338/*
339 * The default css_set - used by init and its children prior to any
817929ec
PM
340 * hierarchies being mounted. It contains a pointer to the root state
341 * for each subsystem. Also used to anchor the list of css_sets. Not
342 * reference-counted, to improve performance when child cgroups
343 * haven't been created.
344 */
172a2c06
TH
345static struct css_set init_css_set = {
346 .refcount = ATOMIC_INIT(1),
347 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links),
348 .tasks = LIST_HEAD_INIT(init_css_set.tasks),
349 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks),
350 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node),
351 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node),
352};
817929ec 353
172a2c06 354static int css_set_count = 1; /* 1 for init_css_set */
817929ec 355
7717f7ba
PM
356/*
357 * hash table for cgroup groups. This improves the performance to find
358 * an existing css_set. This hash doesn't (currently) take into
359 * account cgroups in empty hierarchies.
360 */
472b1053 361#define CSS_SET_HASH_BITS 7
0ac801fe 362static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
472b1053 363
0ac801fe 364static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
472b1053 365{
0ac801fe 366 unsigned long key = 0UL;
30159ec7
TH
367 struct cgroup_subsys *ss;
368 int i;
472b1053 369
30159ec7 370 for_each_subsys(ss, i)
0ac801fe
LZ
371 key += (unsigned long)css[i];
372 key = (key >> 16) ^ key;
472b1053 373
0ac801fe 374 return key;
472b1053
LZ
375}
376
89c5509b 377static void put_css_set_locked(struct css_set *cset, bool taskexit)
b4f48b63 378{
69d0206c 379 struct cgrp_cset_link *link, *tmp_link;
5abb8855 380
89c5509b
TH
381 lockdep_assert_held(&css_set_rwsem);
382
383 if (!atomic_dec_and_test(&cset->refcount))
146aa1bd 384 return;
81a6a5cd 385
2c6ab6d2 386 /* This css_set is dead. unlink it and release cgroup refcounts */
5abb8855 387 hash_del(&cset->hlist);
2c6ab6d2
PM
388 css_set_count--;
389
69d0206c 390 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
2c6ab6d2 391 struct cgroup *cgrp = link->cgrp;
5abb8855 392
69d0206c
TH
393 list_del(&link->cset_link);
394 list_del(&link->cgrp_link);
71b5707e 395
96d365e0 396 /* @cgrp can't go away while we're holding css_set_rwsem */
6f3d828f 397 if (list_empty(&cgrp->cset_links) && notify_on_release(cgrp)) {
81a6a5cd 398 if (taskexit)
bd89aabc
PM
399 set_bit(CGRP_RELEASABLE, &cgrp->flags);
400 check_for_release(cgrp);
81a6a5cd 401 }
2c6ab6d2
PM
402
403 kfree(link);
81a6a5cd 404 }
2c6ab6d2 405
5abb8855 406 kfree_rcu(cset, rcu_head);
b4f48b63
PM
407}
408
89c5509b
TH
409static void put_css_set(struct css_set *cset, bool taskexit)
410{
411 /*
412 * Ensure that the refcount doesn't hit zero while any readers
413 * can see it. Similar to atomic_dec_and_lock(), but for an
414 * rwlock
415 */
416 if (atomic_add_unless(&cset->refcount, -1, 1))
417 return;
418
419 down_write(&css_set_rwsem);
420 put_css_set_locked(cset, taskexit);
421 up_write(&css_set_rwsem);
422}
423
817929ec
PM
424/*
425 * refcounted get/put for css_set objects
426 */
5abb8855 427static inline void get_css_set(struct css_set *cset)
817929ec 428{
5abb8855 429 atomic_inc(&cset->refcount);
817929ec
PM
430}
431
b326f9d0 432/**
7717f7ba 433 * compare_css_sets - helper function for find_existing_css_set().
5abb8855
TH
434 * @cset: candidate css_set being tested
435 * @old_cset: existing css_set for a task
7717f7ba
PM
436 * @new_cgrp: cgroup that's being entered by the task
437 * @template: desired set of css pointers in css_set (pre-calculated)
438 *
6f4b7e63 439 * Returns true if "cset" matches "old_cset" except for the hierarchy
7717f7ba
PM
440 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
441 */
5abb8855
TH
442static bool compare_css_sets(struct css_set *cset,
443 struct css_set *old_cset,
7717f7ba
PM
444 struct cgroup *new_cgrp,
445 struct cgroup_subsys_state *template[])
446{
447 struct list_head *l1, *l2;
448
5abb8855 449 if (memcmp(template, cset->subsys, sizeof(cset->subsys))) {
7717f7ba
PM
450 /* Not all subsystems matched */
451 return false;
452 }
453
454 /*
455 * Compare cgroup pointers in order to distinguish between
456 * different cgroups in heirarchies with no subsystems. We
457 * could get by with just this check alone (and skip the
458 * memcmp above) but on most setups the memcmp check will
459 * avoid the need for this more expensive check on almost all
460 * candidates.
461 */
462
69d0206c
TH
463 l1 = &cset->cgrp_links;
464 l2 = &old_cset->cgrp_links;
7717f7ba 465 while (1) {
69d0206c 466 struct cgrp_cset_link *link1, *link2;
5abb8855 467 struct cgroup *cgrp1, *cgrp2;
7717f7ba
PM
468
469 l1 = l1->next;
470 l2 = l2->next;
471 /* See if we reached the end - both lists are equal length. */
69d0206c
TH
472 if (l1 == &cset->cgrp_links) {
473 BUG_ON(l2 != &old_cset->cgrp_links);
7717f7ba
PM
474 break;
475 } else {
69d0206c 476 BUG_ON(l2 == &old_cset->cgrp_links);
7717f7ba
PM
477 }
478 /* Locate the cgroups associated with these links. */
69d0206c
TH
479 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
480 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
481 cgrp1 = link1->cgrp;
482 cgrp2 = link2->cgrp;
7717f7ba 483 /* Hierarchies should be linked in the same order. */
5abb8855 484 BUG_ON(cgrp1->root != cgrp2->root);
7717f7ba
PM
485
486 /*
487 * If this hierarchy is the hierarchy of the cgroup
488 * that's changing, then we need to check that this
489 * css_set points to the new cgroup; if it's any other
490 * hierarchy, then this css_set should point to the
491 * same cgroup as the old css_set.
492 */
5abb8855
TH
493 if (cgrp1->root == new_cgrp->root) {
494 if (cgrp1 != new_cgrp)
7717f7ba
PM
495 return false;
496 } else {
5abb8855 497 if (cgrp1 != cgrp2)
7717f7ba
PM
498 return false;
499 }
500 }
501 return true;
502}
503
b326f9d0
TH
504/**
505 * find_existing_css_set - init css array and find the matching css_set
506 * @old_cset: the css_set that we're using before the cgroup transition
507 * @cgrp: the cgroup that we're moving into
508 * @template: out param for the new set of csses, should be clear on entry
817929ec 509 */
5abb8855
TH
510static struct css_set *find_existing_css_set(struct css_set *old_cset,
511 struct cgroup *cgrp,
512 struct cgroup_subsys_state *template[])
b4f48b63 513{
3dd06ffa 514 struct cgroup_root *root = cgrp->root;
30159ec7 515 struct cgroup_subsys *ss;
5abb8855 516 struct css_set *cset;
0ac801fe 517 unsigned long key;
b326f9d0 518 int i;
817929ec 519
aae8aab4
BB
520 /*
521 * Build the set of subsystem state objects that we want to see in the
522 * new css_set. while subsystems can change globally, the entries here
523 * won't change, so no need for locking.
524 */
30159ec7 525 for_each_subsys(ss, i) {
3dd06ffa 526 if (root->cgrp.subsys_mask & (1UL << i)) {
817929ec
PM
527 /* Subsystem is in this hierarchy. So we want
528 * the subsystem state from the new
529 * cgroup */
ca8bdcaf 530 template[i] = cgroup_css(cgrp, ss);
817929ec
PM
531 } else {
532 /* Subsystem is not in this hierarchy, so we
533 * don't want to change the subsystem state */
5abb8855 534 template[i] = old_cset->subsys[i];
817929ec
PM
535 }
536 }
537
0ac801fe 538 key = css_set_hash(template);
5abb8855
TH
539 hash_for_each_possible(css_set_table, cset, hlist, key) {
540 if (!compare_css_sets(cset, old_cset, cgrp, template))
7717f7ba
PM
541 continue;
542
543 /* This css_set matches what we need */
5abb8855 544 return cset;
472b1053 545 }
817929ec
PM
546
547 /* No existing cgroup group matched */
548 return NULL;
549}
550
69d0206c 551static void free_cgrp_cset_links(struct list_head *links_to_free)
36553434 552{
69d0206c 553 struct cgrp_cset_link *link, *tmp_link;
36553434 554
69d0206c
TH
555 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
556 list_del(&link->cset_link);
36553434
LZ
557 kfree(link);
558 }
559}
560
69d0206c
TH
561/**
562 * allocate_cgrp_cset_links - allocate cgrp_cset_links
563 * @count: the number of links to allocate
564 * @tmp_links: list_head the allocated links are put on
565 *
566 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
567 * through ->cset_link. Returns 0 on success or -errno.
817929ec 568 */
69d0206c 569static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
817929ec 570{
69d0206c 571 struct cgrp_cset_link *link;
817929ec 572 int i;
69d0206c
TH
573
574 INIT_LIST_HEAD(tmp_links);
575
817929ec 576 for (i = 0; i < count; i++) {
f4f4be2b 577 link = kzalloc(sizeof(*link), GFP_KERNEL);
817929ec 578 if (!link) {
69d0206c 579 free_cgrp_cset_links(tmp_links);
817929ec
PM
580 return -ENOMEM;
581 }
69d0206c 582 list_add(&link->cset_link, tmp_links);
817929ec
PM
583 }
584 return 0;
585}
586
c12f65d4
LZ
587/**
588 * link_css_set - a helper function to link a css_set to a cgroup
69d0206c 589 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
5abb8855 590 * @cset: the css_set to be linked
c12f65d4
LZ
591 * @cgrp: the destination cgroup
592 */
69d0206c
TH
593static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
594 struct cgroup *cgrp)
c12f65d4 595{
69d0206c 596 struct cgrp_cset_link *link;
c12f65d4 597
69d0206c
TH
598 BUG_ON(list_empty(tmp_links));
599 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
600 link->cset = cset;
7717f7ba 601 link->cgrp = cgrp;
69d0206c 602 list_move(&link->cset_link, &cgrp->cset_links);
7717f7ba
PM
603 /*
604 * Always add links to the tail of the list so that the list
605 * is sorted by order of hierarchy creation
606 */
69d0206c 607 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
c12f65d4
LZ
608}
609
b326f9d0
TH
610/**
611 * find_css_set - return a new css_set with one cgroup updated
612 * @old_cset: the baseline css_set
613 * @cgrp: the cgroup to be updated
614 *
615 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
616 * substituted into the appropriate hierarchy.
817929ec 617 */
5abb8855
TH
618static struct css_set *find_css_set(struct css_set *old_cset,
619 struct cgroup *cgrp)
817929ec 620{
b326f9d0 621 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
5abb8855 622 struct css_set *cset;
69d0206c
TH
623 struct list_head tmp_links;
624 struct cgrp_cset_link *link;
0ac801fe 625 unsigned long key;
472b1053 626
b326f9d0
TH
627 lockdep_assert_held(&cgroup_mutex);
628
817929ec
PM
629 /* First see if we already have a cgroup group that matches
630 * the desired set */
96d365e0 631 down_read(&css_set_rwsem);
5abb8855
TH
632 cset = find_existing_css_set(old_cset, cgrp, template);
633 if (cset)
634 get_css_set(cset);
96d365e0 635 up_read(&css_set_rwsem);
817929ec 636
5abb8855
TH
637 if (cset)
638 return cset;
817929ec 639
f4f4be2b 640 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
5abb8855 641 if (!cset)
817929ec
PM
642 return NULL;
643
69d0206c 644 /* Allocate all the cgrp_cset_link objects that we'll need */
9871bf95 645 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
5abb8855 646 kfree(cset);
817929ec
PM
647 return NULL;
648 }
649
5abb8855 650 atomic_set(&cset->refcount, 1);
69d0206c 651 INIT_LIST_HEAD(&cset->cgrp_links);
5abb8855 652 INIT_LIST_HEAD(&cset->tasks);
c7561128 653 INIT_LIST_HEAD(&cset->mg_tasks);
1958d2d5 654 INIT_LIST_HEAD(&cset->mg_preload_node);
b3dc094e 655 INIT_LIST_HEAD(&cset->mg_node);
5abb8855 656 INIT_HLIST_NODE(&cset->hlist);
817929ec
PM
657
658 /* Copy the set of subsystem state objects generated in
659 * find_existing_css_set() */
5abb8855 660 memcpy(cset->subsys, template, sizeof(cset->subsys));
817929ec 661
96d365e0 662 down_write(&css_set_rwsem);
817929ec 663 /* Add reference counts and links from the new css_set. */
69d0206c 664 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
7717f7ba 665 struct cgroup *c = link->cgrp;
69d0206c 666
7717f7ba
PM
667 if (c->root == cgrp->root)
668 c = cgrp;
69d0206c 669 link_css_set(&tmp_links, cset, c);
7717f7ba 670 }
817929ec 671
69d0206c 672 BUG_ON(!list_empty(&tmp_links));
817929ec 673
817929ec 674 css_set_count++;
472b1053
LZ
675
676 /* Add this cgroup group to the hash table */
5abb8855
TH
677 key = css_set_hash(cset->subsys);
678 hash_add(css_set_table, &cset->hlist, key);
472b1053 679
96d365e0 680 up_write(&css_set_rwsem);
817929ec 681
5abb8855 682 return cset;
b4f48b63
PM
683}
684
3dd06ffa 685static struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
2bd59d48 686{
3dd06ffa 687 struct cgroup *root_cgrp = kf_root->kn->priv;
2bd59d48 688
3dd06ffa 689 return root_cgrp->root;
2bd59d48
TH
690}
691
3dd06ffa 692static int cgroup_init_root_id(struct cgroup_root *root)
f2e85d57
TH
693{
694 int id;
695
696 lockdep_assert_held(&cgroup_mutex);
697
985ed670 698 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
f2e85d57
TH
699 if (id < 0)
700 return id;
701
702 root->hierarchy_id = id;
703 return 0;
704}
705
3dd06ffa 706static void cgroup_exit_root_id(struct cgroup_root *root)
f2e85d57
TH
707{
708 lockdep_assert_held(&cgroup_mutex);
709
710 if (root->hierarchy_id) {
711 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
712 root->hierarchy_id = 0;
713 }
714}
715
3dd06ffa 716static void cgroup_free_root(struct cgroup_root *root)
f2e85d57
TH
717{
718 if (root) {
719 /* hierarhcy ID shoulid already have been released */
720 WARN_ON_ONCE(root->hierarchy_id);
721
722 idr_destroy(&root->cgroup_idr);
723 kfree(root);
724 }
725}
726
3dd06ffa 727static void cgroup_destroy_root(struct cgroup_root *root)
59f5296b 728{
3dd06ffa 729 struct cgroup *cgrp = &root->cgrp;
f2e85d57 730 struct cgrp_cset_link *link, *tmp_link;
f2e85d57 731
2bd59d48 732 mutex_lock(&cgroup_tree_mutex);
2bd59d48 733 mutex_lock(&cgroup_mutex);
f2e85d57 734
776f02fa 735 BUG_ON(atomic_read(&root->nr_cgrps));
f2e85d57
TH
736 BUG_ON(!list_empty(&cgrp->children));
737
f2e85d57 738 /* Rebind all subsystems back to the default hierarchy */
3dd06ffa 739 rebind_subsystems(&cgrp_dfl_root, cgrp->subsys_mask);
f2e85d57
TH
740
741 /*
742 * Release all the links from cset_links to this hierarchy's
743 * root cgroup
744 */
96d365e0 745 down_write(&css_set_rwsem);
f2e85d57
TH
746
747 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
748 list_del(&link->cset_link);
749 list_del(&link->cgrp_link);
750 kfree(link);
751 }
96d365e0 752 up_write(&css_set_rwsem);
f2e85d57
TH
753
754 if (!list_empty(&root->root_list)) {
755 list_del(&root->root_list);
756 cgroup_root_count--;
757 }
758
759 cgroup_exit_root_id(root);
760
761 mutex_unlock(&cgroup_mutex);
762 mutex_unlock(&cgroup_tree_mutex);
f2e85d57 763
2bd59d48 764 kernfs_destroy_root(root->kf_root);
f2e85d57
TH
765 cgroup_free_root(root);
766}
767
ceb6a081
TH
768/* look up cgroup associated with given css_set on the specified hierarchy */
769static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
3dd06ffa 770 struct cgroup_root *root)
7717f7ba 771{
7717f7ba
PM
772 struct cgroup *res = NULL;
773
96d365e0
TH
774 lockdep_assert_held(&cgroup_mutex);
775 lockdep_assert_held(&css_set_rwsem);
776
5abb8855 777 if (cset == &init_css_set) {
3dd06ffa 778 res = &root->cgrp;
7717f7ba 779 } else {
69d0206c
TH
780 struct cgrp_cset_link *link;
781
782 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 783 struct cgroup *c = link->cgrp;
69d0206c 784
7717f7ba
PM
785 if (c->root == root) {
786 res = c;
787 break;
788 }
789 }
790 }
96d365e0 791
7717f7ba
PM
792 BUG_ON(!res);
793 return res;
794}
795
ceb6a081
TH
796/*
797 * Return the cgroup for "task" from the given hierarchy. Must be
798 * called with cgroup_mutex and css_set_rwsem held.
799 */
800static struct cgroup *task_cgroup_from_root(struct task_struct *task,
3dd06ffa 801 struct cgroup_root *root)
ceb6a081
TH
802{
803 /*
804 * No need to lock the task - since we hold cgroup_mutex the
805 * task can't change groups, so the only thing that can happen
806 * is that it exits and its css is set back to init_css_set.
807 */
808 return cset_cgroup_from_root(task_css_set(task), root);
809}
810
ddbcc7e8 811/*
ddbcc7e8
PM
812 * A task must hold cgroup_mutex to modify cgroups.
813 *
814 * Any task can increment and decrement the count field without lock.
815 * So in general, code holding cgroup_mutex can't rely on the count
816 * field not changing. However, if the count goes to zero, then only
956db3ca 817 * cgroup_attach_task() can increment it again. Because a count of zero
ddbcc7e8
PM
818 * means that no tasks are currently attached, therefore there is no
819 * way a task attached to that cgroup can fork (the other way to
820 * increment the count). So code holding cgroup_mutex can safely
821 * assume that if the count is zero, it will stay zero. Similarly, if
822 * a task holds cgroup_mutex on a cgroup with zero count, it
823 * knows that the cgroup won't be removed, as cgroup_rmdir()
824 * needs that mutex.
825 *
ddbcc7e8
PM
826 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
827 * (usually) take cgroup_mutex. These are the two most performance
828 * critical pieces of code here. The exception occurs on cgroup_exit(),
829 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
830 * is taken, and if the cgroup count is zero, a usermode call made
a043e3b2
LZ
831 * to the release agent with the name of the cgroup (path relative to
832 * the root of cgroup file system) as the argument.
ddbcc7e8
PM
833 *
834 * A cgroup can only be deleted if both its 'count' of using tasks
835 * is zero, and its list of 'children' cgroups is empty. Since all
836 * tasks in the system use _some_ cgroup, and since there is always at
3dd06ffa 837 * least one task in the system (init, pid == 1), therefore, root cgroup
ddbcc7e8 838 * always has either children cgroups and/or using tasks. So we don't
3dd06ffa 839 * need a special hack to ensure that root cgroup cannot be deleted.
ddbcc7e8 840 *
ddbcc7e8 841 * P.S. One more locking exception. RCU is used to guard the
956db3ca 842 * update of a tasks cgroup pointer by cgroup_attach_task()
ddbcc7e8
PM
843 */
844
628f7cd4 845static int cgroup_populate_dir(struct cgroup *cgrp, unsigned long subsys_mask);
2bd59d48 846static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
828c0950 847static const struct file_operations proc_cgroupstats_operations;
a424316c 848
8d7e6fb0
TH
849static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
850 char *buf)
851{
852 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
853 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
854 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
855 cft->ss->name, cft->name);
856 else
857 strncpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
858 return buf;
859}
860
f2e85d57
TH
861/**
862 * cgroup_file_mode - deduce file mode of a control file
863 * @cft: the control file in question
864 *
865 * returns cft->mode if ->mode is not 0
866 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
867 * returns S_IRUGO if it has only a read handler
868 * returns S_IWUSR if it has only a write hander
869 */
870static umode_t cgroup_file_mode(const struct cftype *cft)
871{
872 umode_t mode = 0;
873
874 if (cft->mode)
875 return cft->mode;
876
877 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
878 mode |= S_IRUGO;
879
880 if (cft->write_u64 || cft->write_s64 || cft->write_string ||
881 cft->trigger)
882 mode |= S_IWUSR;
883
884 return mode;
885}
886
be445626
LZ
887static void cgroup_free_fn(struct work_struct *work)
888{
ea15f8cc 889 struct cgroup *cgrp = container_of(work, struct cgroup, destroy_work);
be445626 890
3c9c825b 891 atomic_dec(&cgrp->root->nr_cgrps);
b1a21367 892 cgroup_pidlist_destroy_all(cgrp);
be445626 893
776f02fa
TH
894 if (cgrp->parent) {
895 /*
896 * We get a ref to the parent, and put the ref when this
897 * cgroup is being freed, so it's guaranteed that the
898 * parent won't be destroyed before its children.
899 */
900 cgroup_put(cgrp->parent);
901 kernfs_put(cgrp->kn);
902 kfree(cgrp);
903 } else {
904 /*
3dd06ffa 905 * This is root cgroup's refcnt reaching zero, which
776f02fa
TH
906 * indicates that the root should be released.
907 */
908 cgroup_destroy_root(cgrp->root);
909 }
be445626
LZ
910}
911
912static void cgroup_free_rcu(struct rcu_head *head)
913{
914 struct cgroup *cgrp = container_of(head, struct cgroup, rcu_head);
915
ea15f8cc 916 INIT_WORK(&cgrp->destroy_work, cgroup_free_fn);
e5fca243 917 queue_work(cgroup_destroy_wq, &cgrp->destroy_work);
be445626
LZ
918}
919
59f5296b
TH
920static void cgroup_get(struct cgroup *cgrp)
921{
2bd59d48
TH
922 WARN_ON_ONCE(cgroup_is_dead(cgrp));
923 WARN_ON_ONCE(atomic_read(&cgrp->refcnt) <= 0);
924 atomic_inc(&cgrp->refcnt);
ddbcc7e8
PM
925}
926
59f5296b
TH
927static void cgroup_put(struct cgroup *cgrp)
928{
2bd59d48
TH
929 if (!atomic_dec_and_test(&cgrp->refcnt))
930 return;
776f02fa 931 if (WARN_ON_ONCE(cgrp->parent && !cgroup_is_dead(cgrp)))
2bd59d48 932 return;
59f5296b 933
2bd59d48
TH
934 /*
935 * XXX: cgrp->id is only used to look up css's. As cgroup and
936 * css's lifetimes will be decoupled, it should be made
937 * per-subsystem and moved to css->id so that lookups are
938 * successful until the target css is released.
939 */
940 mutex_lock(&cgroup_mutex);
941 idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
942 mutex_unlock(&cgroup_mutex);
943 cgrp->id = -1;
ddbcc7e8 944
2bd59d48 945 call_rcu(&cgrp->rcu_head, cgroup_free_rcu);
ddbcc7e8
PM
946}
947
2739d3cc 948static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
05ef1d7c 949{
2bd59d48 950 char name[CGROUP_FILE_NAME_MAX];
05ef1d7c 951
ace2bee8 952 lockdep_assert_held(&cgroup_tree_mutex);
2bd59d48 953 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
05ef1d7c
TH
954}
955
13af07df 956/**
628f7cd4 957 * cgroup_clear_dir - remove subsys files in a cgroup directory
8f89140a 958 * @cgrp: target cgroup
13af07df
AR
959 * @subsys_mask: mask of the subsystem ids whose files should be removed
960 */
628f7cd4 961static void cgroup_clear_dir(struct cgroup *cgrp, unsigned long subsys_mask)
05ef1d7c 962{
13af07df 963 struct cgroup_subsys *ss;
b420ba7d 964 int i;
05ef1d7c 965
b420ba7d 966 for_each_subsys(ss, i) {
0adb0704 967 struct cftype *cfts;
b420ba7d
TH
968
969 if (!test_bit(i, &subsys_mask))
13af07df 970 continue;
0adb0704
TH
971 list_for_each_entry(cfts, &ss->cfts, node)
972 cgroup_addrm_files(cgrp, cfts, false);
13af07df 973 }
ddbcc7e8
PM
974}
975
3dd06ffa 976static int rebind_subsystems(struct cgroup_root *dst_root,
5df36032 977 unsigned long ss_mask)
ddbcc7e8 978{
30159ec7 979 struct cgroup_subsys *ss;
5df36032 980 int ssid, ret;
ddbcc7e8 981
ace2bee8
TH
982 lockdep_assert_held(&cgroup_tree_mutex);
983 lockdep_assert_held(&cgroup_mutex);
aae8aab4 984
5df36032
TH
985 for_each_subsys(ss, ssid) {
986 if (!(ss_mask & (1 << ssid)))
987 continue;
988
989 /* if @ss is on the dummy_root, we can always move it */
3dd06ffa 990 if (ss->root == &cgrp_dfl_root)
5df36032
TH
991 continue;
992
993 /* if @ss has non-root cgroups attached to it, can't move */
3dd06ffa 994 if (!list_empty(&ss->root->cgrp.children))
3ed80a62 995 return -EBUSY;
ddbcc7e8 996
5df36032 997 /* can't move between two non-dummy roots either */
3dd06ffa 998 if (dst_root != &cgrp_dfl_root)
5df36032
TH
999 return -EBUSY;
1000 }
1001
3dd06ffa
TH
1002 if (dst_root != &cgrp_dfl_root) {
1003 ret = cgroup_populate_dir(&dst_root->cgrp, ss_mask);
5df36032
TH
1004 if (ret)
1005 return ret;
1006 }
3126121f
TH
1007
1008 /*
1009 * Nothing can fail from this point on. Remove files for the
1010 * removed subsystems and rebind each subsystem.
1011 */
4ac06017 1012 mutex_unlock(&cgroup_mutex);
5df36032 1013 for_each_subsys(ss, ssid)
3dd06ffa
TH
1014 if ((ss_mask & (1 << ssid)) && ss->root != &cgrp_dfl_root)
1015 cgroup_clear_dir(&ss->root->cgrp, 1 << ssid);
4ac06017 1016 mutex_lock(&cgroup_mutex);
ddbcc7e8 1017
5df36032 1018 for_each_subsys(ss, ssid) {
3dd06ffa 1019 struct cgroup_root *src_root;
5df36032 1020 struct cgroup_subsys_state *css;
a8a648c4 1021
5df36032
TH
1022 if (!(ss_mask & (1 << ssid)))
1023 continue;
a8a648c4 1024
5df36032 1025 src_root = ss->root;
3dd06ffa 1026 css = cgroup_css(&src_root->cgrp, ss);
a8a648c4 1027
3dd06ffa 1028 WARN_ON(!css || cgroup_css(&dst_root->cgrp, ss));
a8a648c4 1029
3dd06ffa
TH
1030 RCU_INIT_POINTER(src_root->cgrp.subsys[ssid], NULL);
1031 rcu_assign_pointer(dst_root->cgrp.subsys[ssid], css);
5df36032 1032 ss->root = dst_root;
3dd06ffa 1033 css->cgroup = &dst_root->cgrp;
73e80ed8 1034
3dd06ffa
TH
1035 src_root->cgrp.subsys_mask &= ~(1 << ssid);
1036 dst_root->cgrp.subsys_mask |= 1 << ssid;
73e80ed8 1037
5df36032
TH
1038 if (ss->bind)
1039 ss->bind(css);
ddbcc7e8 1040 }
ddbcc7e8 1041
3dd06ffa
TH
1042 if (dst_root != &cgrp_dfl_root)
1043 kernfs_activate(dst_root->cgrp.kn);
ddbcc7e8
PM
1044 return 0;
1045}
1046
2bd59d48
TH
1047static int cgroup_show_options(struct seq_file *seq,
1048 struct kernfs_root *kf_root)
ddbcc7e8 1049{
3dd06ffa 1050 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
ddbcc7e8 1051 struct cgroup_subsys *ss;
b85d2040 1052 int ssid;
ddbcc7e8 1053
b85d2040 1054 for_each_subsys(ss, ssid)
3dd06ffa 1055 if (root->cgrp.subsys_mask & (1 << ssid))
b85d2040 1056 seq_printf(seq, ",%s", ss->name);
873fe09e
TH
1057 if (root->flags & CGRP_ROOT_SANE_BEHAVIOR)
1058 seq_puts(seq, ",sane_behavior");
93438629 1059 if (root->flags & CGRP_ROOT_NOPREFIX)
ddbcc7e8 1060 seq_puts(seq, ",noprefix");
93438629 1061 if (root->flags & CGRP_ROOT_XATTR)
03b1cde6 1062 seq_puts(seq, ",xattr");
69e943b7
TH
1063
1064 spin_lock(&release_agent_path_lock);
81a6a5cd
PM
1065 if (strlen(root->release_agent_path))
1066 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
69e943b7
TH
1067 spin_unlock(&release_agent_path_lock);
1068
3dd06ffa 1069 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
97978e6d 1070 seq_puts(seq, ",clone_children");
c6d57f33
PM
1071 if (strlen(root->name))
1072 seq_printf(seq, ",name=%s", root->name);
ddbcc7e8
PM
1073 return 0;
1074}
1075
1076struct cgroup_sb_opts {
a1a71b45 1077 unsigned long subsys_mask;
ddbcc7e8 1078 unsigned long flags;
81a6a5cd 1079 char *release_agent;
2260e7fc 1080 bool cpuset_clone_children;
c6d57f33 1081 char *name;
2c6ab6d2
PM
1082 /* User explicitly requested empty subsystem */
1083 bool none;
ddbcc7e8
PM
1084};
1085
aae8aab4 1086/*
9871bf95
TH
1087 * Convert a hierarchy specifier into a bitmask of subsystems and
1088 * flags. Call with cgroup_mutex held to protect the cgroup_subsys[]
1089 * array. This function takes refcounts on subsystems to be used, unless it
1090 * returns error, in which case no refcounts are taken.
aae8aab4 1091 */
cf5d5941 1092static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
ddbcc7e8 1093{
32a8cf23
DL
1094 char *token, *o = data;
1095 bool all_ss = false, one_ss = false;
f9ab5b5b 1096 unsigned long mask = (unsigned long)-1;
30159ec7
TH
1097 struct cgroup_subsys *ss;
1098 int i;
f9ab5b5b 1099
aae8aab4
BB
1100 BUG_ON(!mutex_is_locked(&cgroup_mutex));
1101
f9ab5b5b 1102#ifdef CONFIG_CPUSETS
073219e9 1103 mask = ~(1UL << cpuset_cgrp_id);
f9ab5b5b 1104#endif
ddbcc7e8 1105
c6d57f33 1106 memset(opts, 0, sizeof(*opts));
ddbcc7e8
PM
1107
1108 while ((token = strsep(&o, ",")) != NULL) {
1109 if (!*token)
1110 return -EINVAL;
32a8cf23 1111 if (!strcmp(token, "none")) {
2c6ab6d2
PM
1112 /* Explicitly have no subsystems */
1113 opts->none = true;
32a8cf23
DL
1114 continue;
1115 }
1116 if (!strcmp(token, "all")) {
1117 /* Mutually exclusive option 'all' + subsystem name */
1118 if (one_ss)
1119 return -EINVAL;
1120 all_ss = true;
1121 continue;
1122 }
873fe09e
TH
1123 if (!strcmp(token, "__DEVEL__sane_behavior")) {
1124 opts->flags |= CGRP_ROOT_SANE_BEHAVIOR;
1125 continue;
1126 }
32a8cf23 1127 if (!strcmp(token, "noprefix")) {
93438629 1128 opts->flags |= CGRP_ROOT_NOPREFIX;
32a8cf23
DL
1129 continue;
1130 }
1131 if (!strcmp(token, "clone_children")) {
2260e7fc 1132 opts->cpuset_clone_children = true;
32a8cf23
DL
1133 continue;
1134 }
03b1cde6 1135 if (!strcmp(token, "xattr")) {
93438629 1136 opts->flags |= CGRP_ROOT_XATTR;
03b1cde6
AR
1137 continue;
1138 }
32a8cf23 1139 if (!strncmp(token, "release_agent=", 14)) {
81a6a5cd
PM
1140 /* Specifying two release agents is forbidden */
1141 if (opts->release_agent)
1142 return -EINVAL;
c6d57f33 1143 opts->release_agent =
e400c285 1144 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
81a6a5cd
PM
1145 if (!opts->release_agent)
1146 return -ENOMEM;
32a8cf23
DL
1147 continue;
1148 }
1149 if (!strncmp(token, "name=", 5)) {
c6d57f33
PM
1150 const char *name = token + 5;
1151 /* Can't specify an empty name */
1152 if (!strlen(name))
1153 return -EINVAL;
1154 /* Must match [\w.-]+ */
1155 for (i = 0; i < strlen(name); i++) {
1156 char c = name[i];
1157 if (isalnum(c))
1158 continue;
1159 if ((c == '.') || (c == '-') || (c == '_'))
1160 continue;
1161 return -EINVAL;
1162 }
1163 /* Specifying two names is forbidden */
1164 if (opts->name)
1165 return -EINVAL;
1166 opts->name = kstrndup(name,
e400c285 1167 MAX_CGROUP_ROOT_NAMELEN - 1,
c6d57f33
PM
1168 GFP_KERNEL);
1169 if (!opts->name)
1170 return -ENOMEM;
32a8cf23
DL
1171
1172 continue;
1173 }
1174
30159ec7 1175 for_each_subsys(ss, i) {
32a8cf23
DL
1176 if (strcmp(token, ss->name))
1177 continue;
1178 if (ss->disabled)
1179 continue;
1180
1181 /* Mutually exclusive option 'all' + subsystem name */
1182 if (all_ss)
1183 return -EINVAL;
a1a71b45 1184 set_bit(i, &opts->subsys_mask);
32a8cf23
DL
1185 one_ss = true;
1186
1187 break;
1188 }
1189 if (i == CGROUP_SUBSYS_COUNT)
1190 return -ENOENT;
1191 }
1192
1193 /*
1194 * If the 'all' option was specified select all the subsystems,
0d19ea86
LZ
1195 * otherwise if 'none', 'name=' and a subsystem name options
1196 * were not specified, let's default to 'all'
32a8cf23 1197 */
30159ec7
TH
1198 if (all_ss || (!one_ss && !opts->none && !opts->name))
1199 for_each_subsys(ss, i)
1200 if (!ss->disabled)
1201 set_bit(i, &opts->subsys_mask);
ddbcc7e8 1202
2c6ab6d2
PM
1203 /* Consistency checks */
1204
873fe09e
TH
1205 if (opts->flags & CGRP_ROOT_SANE_BEHAVIOR) {
1206 pr_warning("cgroup: sane_behavior: this is still under development and its behaviors will change, proceed at your own risk\n");
1207
d3ba07c3
TH
1208 if ((opts->flags & (CGRP_ROOT_NOPREFIX | CGRP_ROOT_XATTR)) ||
1209 opts->cpuset_clone_children || opts->release_agent ||
1210 opts->name) {
1211 pr_err("cgroup: sane_behavior: noprefix, xattr, clone_children, release_agent and name are not allowed\n");
873fe09e
TH
1212 return -EINVAL;
1213 }
873fe09e
TH
1214 }
1215
f9ab5b5b
LZ
1216 /*
1217 * Option noprefix was introduced just for backward compatibility
1218 * with the old cpuset, so we allow noprefix only if mounting just
1219 * the cpuset subsystem.
1220 */
93438629 1221 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
f9ab5b5b
LZ
1222 return -EINVAL;
1223
2c6ab6d2
PM
1224
1225 /* Can't specify "none" and some subsystems */
a1a71b45 1226 if (opts->subsys_mask && opts->none)
2c6ab6d2
PM
1227 return -EINVAL;
1228
1229 /*
1230 * We either have to specify by name or by subsystems. (So all
1231 * empty hierarchies must have a name).
1232 */
a1a71b45 1233 if (!opts->subsys_mask && !opts->name)
ddbcc7e8
PM
1234 return -EINVAL;
1235
1236 return 0;
1237}
1238
2bd59d48 1239static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
ddbcc7e8
PM
1240{
1241 int ret = 0;
3dd06ffa 1242 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
ddbcc7e8 1243 struct cgroup_sb_opts opts;
a1a71b45 1244 unsigned long added_mask, removed_mask;
ddbcc7e8 1245
873fe09e
TH
1246 if (root->flags & CGRP_ROOT_SANE_BEHAVIOR) {
1247 pr_err("cgroup: sane_behavior: remount is not allowed\n");
1248 return -EINVAL;
1249 }
1250
ace2bee8 1251 mutex_lock(&cgroup_tree_mutex);
ddbcc7e8
PM
1252 mutex_lock(&cgroup_mutex);
1253
1254 /* See what subsystems are wanted */
1255 ret = parse_cgroupfs_options(data, &opts);
1256 if (ret)
1257 goto out_unlock;
1258
3dd06ffa 1259 if (opts.subsys_mask != root->cgrp.subsys_mask || opts.release_agent)
8b5a5a9d
TH
1260 pr_warning("cgroup: option changes via remount are deprecated (pid=%d comm=%s)\n",
1261 task_tgid_nr(current), current->comm);
1262
3dd06ffa
TH
1263 added_mask = opts.subsys_mask & ~root->cgrp.subsys_mask;
1264 removed_mask = root->cgrp.subsys_mask & ~opts.subsys_mask;
13af07df 1265
cf5d5941 1266 /* Don't allow flags or name to change at remount */
0ce6cba3 1267 if (((opts.flags ^ root->flags) & CGRP_ROOT_OPTION_MASK) ||
cf5d5941 1268 (opts.name && strcmp(opts.name, root->name))) {
0ce6cba3
TH
1269 pr_err("cgroup: option or name mismatch, new: 0x%lx \"%s\", old: 0x%lx \"%s\"\n",
1270 opts.flags & CGRP_ROOT_OPTION_MASK, opts.name ?: "",
1271 root->flags & CGRP_ROOT_OPTION_MASK, root->name);
c6d57f33
PM
1272 ret = -EINVAL;
1273 goto out_unlock;
1274 }
1275
f172e67c 1276 /* remounting is not allowed for populated hierarchies */
3dd06ffa 1277 if (!list_empty(&root->cgrp.children)) {
f172e67c 1278 ret = -EBUSY;
0670e08b 1279 goto out_unlock;
cf5d5941 1280 }
ddbcc7e8 1281
5df36032 1282 ret = rebind_subsystems(root, added_mask);
3126121f 1283 if (ret)
0670e08b 1284 goto out_unlock;
ddbcc7e8 1285
3dd06ffa 1286 rebind_subsystems(&cgrp_dfl_root, removed_mask);
5df36032 1287
69e943b7
TH
1288 if (opts.release_agent) {
1289 spin_lock(&release_agent_path_lock);
81a6a5cd 1290 strcpy(root->release_agent_path, opts.release_agent);
69e943b7
TH
1291 spin_unlock(&release_agent_path_lock);
1292 }
ddbcc7e8 1293 out_unlock:
66bdc9cf 1294 kfree(opts.release_agent);
c6d57f33 1295 kfree(opts.name);
ddbcc7e8 1296 mutex_unlock(&cgroup_mutex);
ace2bee8 1297 mutex_unlock(&cgroup_tree_mutex);
ddbcc7e8
PM
1298 return ret;
1299}
1300
afeb0f9f
TH
1301/*
1302 * To reduce the fork() overhead for systems that are not actually using
1303 * their cgroups capability, we don't maintain the lists running through
1304 * each css_set to its tasks until we see the list actually used - in other
1305 * words after the first mount.
1306 */
1307static bool use_task_css_set_links __read_mostly;
1308
1309static void cgroup_enable_task_cg_lists(void)
1310{
1311 struct task_struct *p, *g;
1312
96d365e0 1313 down_write(&css_set_rwsem);
afeb0f9f
TH
1314
1315 if (use_task_css_set_links)
1316 goto out_unlock;
1317
1318 use_task_css_set_links = true;
1319
1320 /*
1321 * We need tasklist_lock because RCU is not safe against
1322 * while_each_thread(). Besides, a forking task that has passed
1323 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1324 * is not guaranteed to have its child immediately visible in the
1325 * tasklist if we walk through it with RCU.
1326 */
1327 read_lock(&tasklist_lock);
1328 do_each_thread(g, p) {
afeb0f9f
TH
1329 WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1330 task_css_set(p) != &init_css_set);
1331
1332 /*
1333 * We should check if the process is exiting, otherwise
1334 * it will race with cgroup_exit() in that the list
1335 * entry won't be deleted though the process has exited.
f153ad11
TH
1336 * Do it while holding siglock so that we don't end up
1337 * racing against cgroup_exit().
afeb0f9f 1338 */
f153ad11 1339 spin_lock_irq(&p->sighand->siglock);
eaf797ab
TH
1340 if (!(p->flags & PF_EXITING)) {
1341 struct css_set *cset = task_css_set(p);
1342
1343 list_add(&p->cg_list, &cset->tasks);
1344 get_css_set(cset);
1345 }
f153ad11 1346 spin_unlock_irq(&p->sighand->siglock);
afeb0f9f
TH
1347 } while_each_thread(g, p);
1348 read_unlock(&tasklist_lock);
1349out_unlock:
96d365e0 1350 up_write(&css_set_rwsem);
afeb0f9f
TH
1351}
1352
cc31edce
PM
1353static void init_cgroup_housekeeping(struct cgroup *cgrp)
1354{
2bd59d48 1355 atomic_set(&cgrp->refcnt, 1);
cc31edce
PM
1356 INIT_LIST_HEAD(&cgrp->sibling);
1357 INIT_LIST_HEAD(&cgrp->children);
69d0206c 1358 INIT_LIST_HEAD(&cgrp->cset_links);
cc31edce 1359 INIT_LIST_HEAD(&cgrp->release_list);
72a8cb30
BB
1360 INIT_LIST_HEAD(&cgrp->pidlists);
1361 mutex_init(&cgrp->pidlist_mutex);
67f4c36f 1362 cgrp->dummy_css.cgroup = cgrp;
cc31edce 1363}
c6d57f33 1364
3dd06ffa 1365static void init_cgroup_root(struct cgroup_root *root,
172a2c06 1366 struct cgroup_sb_opts *opts)
ddbcc7e8 1367{
3dd06ffa 1368 struct cgroup *cgrp = &root->cgrp;
b0ca5a84 1369
ddbcc7e8 1370 INIT_LIST_HEAD(&root->root_list);
3c9c825b 1371 atomic_set(&root->nr_cgrps, 1);
bd89aabc 1372 cgrp->root = root;
cc31edce 1373 init_cgroup_housekeeping(cgrp);
4e96ee8e 1374 idr_init(&root->cgroup_idr);
2c6ab6d2 1375
c6d57f33
PM
1376 root->flags = opts->flags;
1377 if (opts->release_agent)
1378 strcpy(root->release_agent_path, opts->release_agent);
1379 if (opts->name)
1380 strcpy(root->name, opts->name);
2260e7fc 1381 if (opts->cpuset_clone_children)
3dd06ffa 1382 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
c6d57f33
PM
1383}
1384
3dd06ffa 1385static int cgroup_setup_root(struct cgroup_root *root, unsigned long ss_mask)
d427dfeb
TH
1386{
1387 LIST_HEAD(tmp_links);
3dd06ffa 1388 struct cgroup *root_cgrp = &root->cgrp;
d427dfeb 1389 struct css_set *cset;
d427dfeb
TH
1390 int i, ret;
1391
1392 lockdep_assert_held(&cgroup_tree_mutex);
1393 lockdep_assert_held(&cgroup_mutex);
d427dfeb
TH
1394
1395 ret = idr_alloc(&root->cgroup_idr, root_cgrp, 0, 1, GFP_KERNEL);
1396 if (ret < 0)
2bd59d48 1397 goto out;
d427dfeb
TH
1398 root_cgrp->id = ret;
1399
d427dfeb 1400 /*
96d365e0 1401 * We're accessing css_set_count without locking css_set_rwsem here,
d427dfeb
TH
1402 * but that's OK - it can only be increased by someone holding
1403 * cgroup_lock, and that's us. The worst that can happen is that we
1404 * have some link structures left over
1405 */
1406 ret = allocate_cgrp_cset_links(css_set_count, &tmp_links);
1407 if (ret)
2bd59d48 1408 goto out;
d427dfeb 1409
985ed670 1410 ret = cgroup_init_root_id(root);
d427dfeb 1411 if (ret)
2bd59d48 1412 goto out;
d427dfeb 1413
2bd59d48
TH
1414 root->kf_root = kernfs_create_root(&cgroup_kf_syscall_ops,
1415 KERNFS_ROOT_CREATE_DEACTIVATED,
1416 root_cgrp);
1417 if (IS_ERR(root->kf_root)) {
1418 ret = PTR_ERR(root->kf_root);
1419 goto exit_root_id;
1420 }
1421 root_cgrp->kn = root->kf_root->kn;
d427dfeb
TH
1422
1423 ret = cgroup_addrm_files(root_cgrp, cgroup_base_files, true);
1424 if (ret)
2bd59d48 1425 goto destroy_root;
d427dfeb 1426
5df36032 1427 ret = rebind_subsystems(root, ss_mask);
d427dfeb 1428 if (ret)
2bd59d48 1429 goto destroy_root;
d427dfeb
TH
1430
1431 /*
1432 * There must be no failure case after here, since rebinding takes
1433 * care of subsystems' refcounts, which are explicitly dropped in
1434 * the failure exit path.
1435 */
1436 list_add(&root->root_list, &cgroup_roots);
1437 cgroup_root_count++;
1438
1439 /*
3dd06ffa 1440 * Link the root cgroup in this hierarchy into all the css_set
d427dfeb
TH
1441 * objects.
1442 */
96d365e0 1443 down_write(&css_set_rwsem);
d427dfeb
TH
1444 hash_for_each(css_set_table, i, cset, hlist)
1445 link_css_set(&tmp_links, cset, root_cgrp);
96d365e0 1446 up_write(&css_set_rwsem);
d427dfeb
TH
1447
1448 BUG_ON(!list_empty(&root_cgrp->children));
3c9c825b 1449 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
d427dfeb 1450
2bd59d48 1451 kernfs_activate(root_cgrp->kn);
d427dfeb 1452 ret = 0;
2bd59d48 1453 goto out;
d427dfeb 1454
2bd59d48
TH
1455destroy_root:
1456 kernfs_destroy_root(root->kf_root);
1457 root->kf_root = NULL;
1458exit_root_id:
d427dfeb 1459 cgroup_exit_root_id(root);
2bd59d48 1460out:
d427dfeb
TH
1461 free_cgrp_cset_links(&tmp_links);
1462 return ret;
1463}
1464
f7e83571 1465static struct dentry *cgroup_mount(struct file_system_type *fs_type,
ddbcc7e8 1466 int flags, const char *unused_dev_name,
f7e83571 1467 void *data)
ddbcc7e8 1468{
3dd06ffa 1469 struct cgroup_root *root;
ddbcc7e8 1470 struct cgroup_sb_opts opts;
2bd59d48 1471 struct dentry *dentry;
8e30e2b8 1472 int ret;
56fde9e0
TH
1473
1474 /*
1475 * The first time anyone tries to mount a cgroup, enable the list
1476 * linking each css_set to its tasks and fix up all existing tasks.
1477 */
1478 if (!use_task_css_set_links)
1479 cgroup_enable_task_cg_lists();
776f02fa 1480retry:
8e30e2b8 1481 mutex_lock(&cgroup_tree_mutex);
aae8aab4 1482 mutex_lock(&cgroup_mutex);
8e30e2b8
TH
1483
1484 /* First find the desired set of subsystems */
ddbcc7e8 1485 ret = parse_cgroupfs_options(data, &opts);
c6d57f33 1486 if (ret)
8e30e2b8 1487 goto out_unlock;
ddbcc7e8 1488
2bd59d48 1489 /* look for a matching existing root */
985ed670 1490 for_each_root(root) {
2bd59d48 1491 bool name_match = false;
ddbcc7e8 1492
3dd06ffa 1493 if (root == &cgrp_dfl_root)
985ed670
TH
1494 continue;
1495
2bd59d48
TH
1496 /*
1497 * If we asked for a name then it must match. Also, if
1498 * name matches but sybsys_mask doesn't, we should fail.
1499 * Remember whether name matched.
1500 */
1501 if (opts.name) {
1502 if (strcmp(opts.name, root->name))
1503 continue;
1504 name_match = true;
1505 }
ddbcc7e8 1506
c6d57f33 1507 /*
2bd59d48
TH
1508 * If we asked for subsystems (or explicitly for no
1509 * subsystems) then they must match.
c6d57f33 1510 */
2bd59d48 1511 if ((opts.subsys_mask || opts.none) &&
3dd06ffa 1512 (opts.subsys_mask != root->cgrp.subsys_mask)) {
2bd59d48
TH
1513 if (!name_match)
1514 continue;
1515 ret = -EBUSY;
1516 goto out_unlock;
1517 }
873fe09e 1518
c7ba8287 1519 if ((root->flags ^ opts.flags) & CGRP_ROOT_OPTION_MASK) {
2a0ff3fb
JL
1520 if ((root->flags | opts.flags) & CGRP_ROOT_SANE_BEHAVIOR) {
1521 pr_err("cgroup: sane_behavior: new mount options should match the existing superblock\n");
1522 ret = -EINVAL;
8e30e2b8 1523 goto out_unlock;
2a0ff3fb
JL
1524 } else {
1525 pr_warning("cgroup: new mount options do not match the existing superblock, will be ignored\n");
1526 }
873fe09e 1527 }
2bd59d48 1528
776f02fa 1529 /*
3dd06ffa 1530 * A root's lifetime is governed by its root cgroup. Zero
776f02fa
TH
1531 * ref indicate that the root is being destroyed. Wait for
1532 * destruction to complete so that the subsystems are free.
1533 * We can use wait_queue for the wait but this path is
1534 * super cold. Let's just sleep for a bit and retry.
1535 */
3dd06ffa 1536 if (!atomic_inc_not_zero(&root->cgrp.refcnt)) {
776f02fa
TH
1537 mutex_unlock(&cgroup_mutex);
1538 mutex_unlock(&cgroup_tree_mutex);
6534fd6c
LZ
1539 kfree(opts.release_agent);
1540 kfree(opts.name);
776f02fa
TH
1541 msleep(10);
1542 goto retry;
1543 }
1544
1545 ret = 0;
2bd59d48 1546 goto out_unlock;
ddbcc7e8
PM
1547 }
1548
172a2c06
TH
1549 /*
1550 * No such thing, create a new one. name= matching without subsys
1551 * specification is allowed for already existing hierarchies but we
1552 * can't create new one without subsys specification.
1553 */
1554 if (!opts.subsys_mask && !opts.none) {
1555 ret = -EINVAL;
1556 goto out_unlock;
1557 }
1558
1559 root = kzalloc(sizeof(*root), GFP_KERNEL);
1560 if (!root) {
1561 ret = -ENOMEM;
2bd59d48
TH
1562 goto out_unlock;
1563 }
1564
172a2c06
TH
1565 init_cgroup_root(root, &opts);
1566
35585573 1567 ret = cgroup_setup_root(root, opts.subsys_mask);
2bd59d48
TH
1568 if (ret)
1569 cgroup_free_root(root);
1570
8e30e2b8 1571out_unlock:
e25e2cbb 1572 mutex_unlock(&cgroup_mutex);
ace2bee8 1573 mutex_unlock(&cgroup_tree_mutex);
8e30e2b8 1574
c6d57f33
PM
1575 kfree(opts.release_agent);
1576 kfree(opts.name);
8e30e2b8 1577
2bd59d48 1578 if (ret)
8e30e2b8 1579 return ERR_PTR(ret);
2bd59d48
TH
1580
1581 dentry = kernfs_mount(fs_type, flags, root->kf_root);
1582 if (IS_ERR(dentry))
3dd06ffa 1583 cgroup_put(&root->cgrp);
2bd59d48
TH
1584 return dentry;
1585}
1586
1587static void cgroup_kill_sb(struct super_block *sb)
1588{
1589 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
3dd06ffa 1590 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2bd59d48 1591
3dd06ffa 1592 cgroup_put(&root->cgrp);
2bd59d48 1593 kernfs_kill_sb(sb);
ddbcc7e8
PM
1594}
1595
ddbcc7e8
PM
1596static struct file_system_type cgroup_fs_type = {
1597 .name = "cgroup",
f7e83571 1598 .mount = cgroup_mount,
ddbcc7e8
PM
1599 .kill_sb = cgroup_kill_sb,
1600};
1601
676db4af
GKH
1602static struct kobject *cgroup_kobj;
1603
857a2beb 1604/**
913ffdb5 1605 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
857a2beb 1606 * @task: target task
857a2beb
TH
1607 * @buf: the buffer to write the path into
1608 * @buflen: the length of the buffer
1609 *
913ffdb5
TH
1610 * Determine @task's cgroup on the first (the one with the lowest non-zero
1611 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
1612 * function grabs cgroup_mutex and shouldn't be used inside locks used by
1613 * cgroup controller callbacks.
1614 *
e61734c5 1615 * Return value is the same as kernfs_path().
857a2beb 1616 */
e61734c5 1617char *task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
857a2beb 1618{
3dd06ffa 1619 struct cgroup_root *root;
913ffdb5 1620 struct cgroup *cgrp;
e61734c5
TH
1621 int hierarchy_id = 1;
1622 char *path = NULL;
857a2beb
TH
1623
1624 mutex_lock(&cgroup_mutex);
96d365e0 1625 down_read(&css_set_rwsem);
857a2beb 1626
913ffdb5
TH
1627 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
1628
857a2beb
TH
1629 if (root) {
1630 cgrp = task_cgroup_from_root(task, root);
e61734c5 1631 path = cgroup_path(cgrp, buf, buflen);
913ffdb5
TH
1632 } else {
1633 /* if no hierarchy exists, everyone is in "/" */
e61734c5
TH
1634 if (strlcpy(buf, "/", buflen) < buflen)
1635 path = buf;
857a2beb
TH
1636 }
1637
96d365e0 1638 up_read(&css_set_rwsem);
857a2beb 1639 mutex_unlock(&cgroup_mutex);
e61734c5 1640 return path;
857a2beb 1641}
913ffdb5 1642EXPORT_SYMBOL_GPL(task_cgroup_path);
857a2beb 1643
b3dc094e 1644/* used to track tasks and other necessary states during migration */
2f7ee569 1645struct cgroup_taskset {
b3dc094e
TH
1646 /* the src and dst cset list running through cset->mg_node */
1647 struct list_head src_csets;
1648 struct list_head dst_csets;
1649
1650 /*
1651 * Fields for cgroup_taskset_*() iteration.
1652 *
1653 * Before migration is committed, the target migration tasks are on
1654 * ->mg_tasks of the csets on ->src_csets. After, on ->mg_tasks of
1655 * the csets on ->dst_csets. ->csets point to either ->src_csets
1656 * or ->dst_csets depending on whether migration is committed.
1657 *
1658 * ->cur_csets and ->cur_task point to the current task position
1659 * during iteration.
1660 */
1661 struct list_head *csets;
1662 struct css_set *cur_cset;
1663 struct task_struct *cur_task;
2f7ee569
TH
1664};
1665
1666/**
1667 * cgroup_taskset_first - reset taskset and return the first task
1668 * @tset: taskset of interest
1669 *
1670 * @tset iteration is initialized and the first task is returned.
1671 */
1672struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
1673{
b3dc094e
TH
1674 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
1675 tset->cur_task = NULL;
1676
1677 return cgroup_taskset_next(tset);
2f7ee569 1678}
2f7ee569
TH
1679
1680/**
1681 * cgroup_taskset_next - iterate to the next task in taskset
1682 * @tset: taskset of interest
1683 *
1684 * Return the next task in @tset. Iteration must have been initialized
1685 * with cgroup_taskset_first().
1686 */
1687struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
1688{
b3dc094e
TH
1689 struct css_set *cset = tset->cur_cset;
1690 struct task_struct *task = tset->cur_task;
2f7ee569 1691
b3dc094e
TH
1692 while (&cset->mg_node != tset->csets) {
1693 if (!task)
1694 task = list_first_entry(&cset->mg_tasks,
1695 struct task_struct, cg_list);
1696 else
1697 task = list_next_entry(task, cg_list);
2f7ee569 1698
b3dc094e
TH
1699 if (&task->cg_list != &cset->mg_tasks) {
1700 tset->cur_cset = cset;
1701 tset->cur_task = task;
1702 return task;
1703 }
1704
1705 cset = list_next_entry(cset, mg_node);
1706 task = NULL;
1707 }
1708
1709 return NULL;
2f7ee569 1710}
2f7ee569 1711
cb0f1fe9 1712/**
74a1166d 1713 * cgroup_task_migrate - move a task from one cgroup to another.
cb0f1fe9
TH
1714 * @old_cgrp; the cgroup @tsk is being migrated from
1715 * @tsk: the task being migrated
1716 * @new_cset: the new css_set @tsk is being attached to
74a1166d 1717 *
cb0f1fe9 1718 * Must be called with cgroup_mutex, threadgroup and css_set_rwsem locked.
74a1166d 1719 */
5abb8855
TH
1720static void cgroup_task_migrate(struct cgroup *old_cgrp,
1721 struct task_struct *tsk,
1722 struct css_set *new_cset)
74a1166d 1723{
5abb8855 1724 struct css_set *old_cset;
74a1166d 1725
cb0f1fe9
TH
1726 lockdep_assert_held(&cgroup_mutex);
1727 lockdep_assert_held(&css_set_rwsem);
1728
74a1166d 1729 /*
026085ef
MSB
1730 * We are synchronized through threadgroup_lock() against PF_EXITING
1731 * setting such that we can't race against cgroup_exit() changing the
1732 * css_set to init_css_set and dropping the old one.
74a1166d 1733 */
c84cdf75 1734 WARN_ON_ONCE(tsk->flags & PF_EXITING);
a8ad805c 1735 old_cset = task_css_set(tsk);
74a1166d 1736
b3dc094e 1737 get_css_set(new_cset);
5abb8855 1738 rcu_assign_pointer(tsk->cgroups, new_cset);
b3dc094e 1739 list_move(&tsk->cg_list, &new_cset->mg_tasks);
74a1166d
BB
1740
1741 /*
5abb8855
TH
1742 * We just gained a reference on old_cset by taking it from the
1743 * task. As trading it for new_cset is protected by cgroup_mutex,
1744 * we're safe to drop it here; it will be freed under RCU.
74a1166d 1745 */
5abb8855 1746 set_bit(CGRP_RELEASABLE, &old_cgrp->flags);
cb0f1fe9 1747 put_css_set_locked(old_cset, false);
74a1166d
BB
1748}
1749
a043e3b2 1750/**
1958d2d5
TH
1751 * cgroup_migrate_finish - cleanup after attach
1752 * @preloaded_csets: list of preloaded css_sets
74a1166d 1753 *
1958d2d5
TH
1754 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
1755 * those functions for details.
74a1166d 1756 */
1958d2d5
TH
1757static void cgroup_migrate_finish(struct list_head *preloaded_csets)
1758{
1759 struct css_set *cset, *tmp_cset;
1760
1761 lockdep_assert_held(&cgroup_mutex);
1762
1763 down_write(&css_set_rwsem);
1764 list_for_each_entry_safe(cset, tmp_cset, preloaded_csets, mg_preload_node) {
1765 cset->mg_src_cgrp = NULL;
1766 cset->mg_dst_cset = NULL;
1767 list_del_init(&cset->mg_preload_node);
1768 put_css_set_locked(cset, false);
1769 }
1770 up_write(&css_set_rwsem);
1771}
1772
1773/**
1774 * cgroup_migrate_add_src - add a migration source css_set
1775 * @src_cset: the source css_set to add
1776 * @dst_cgrp: the destination cgroup
1777 * @preloaded_csets: list of preloaded css_sets
1778 *
1779 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
1780 * @src_cset and add it to @preloaded_csets, which should later be cleaned
1781 * up by cgroup_migrate_finish().
1782 *
1783 * This function may be called without holding threadgroup_lock even if the
1784 * target is a process. Threads may be created and destroyed but as long
1785 * as cgroup_mutex is not dropped, no new css_set can be put into play and
1786 * the preloaded css_sets are guaranteed to cover all migrations.
1787 */
1788static void cgroup_migrate_add_src(struct css_set *src_cset,
1789 struct cgroup *dst_cgrp,
1790 struct list_head *preloaded_csets)
1791{
1792 struct cgroup *src_cgrp;
1793
1794 lockdep_assert_held(&cgroup_mutex);
1795 lockdep_assert_held(&css_set_rwsem);
1796
1797 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
1798
1799 /* nothing to do if this cset already belongs to the cgroup */
1800 if (src_cgrp == dst_cgrp)
1801 return;
1802
1803 if (!list_empty(&src_cset->mg_preload_node))
1804 return;
1805
1806 WARN_ON(src_cset->mg_src_cgrp);
1807 WARN_ON(!list_empty(&src_cset->mg_tasks));
1808 WARN_ON(!list_empty(&src_cset->mg_node));
1809
1810 src_cset->mg_src_cgrp = src_cgrp;
1811 get_css_set(src_cset);
1812 list_add(&src_cset->mg_preload_node, preloaded_csets);
1813}
1814
1815/**
1816 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
1817 * @dst_cgrp: the destination cgroup
1818 * @preloaded_csets: list of preloaded source css_sets
1819 *
1820 * Tasks are about to be moved to @dst_cgrp and all the source css_sets
1821 * have been preloaded to @preloaded_csets. This function looks up and
1822 * pins all destination css_sets, links each to its source, and put them on
1823 * @preloaded_csets.
1824 *
1825 * This function must be called after cgroup_migrate_add_src() has been
1826 * called on each migration source css_set. After migration is performed
1827 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
1828 * @preloaded_csets.
1829 */
1830static int cgroup_migrate_prepare_dst(struct cgroup *dst_cgrp,
1831 struct list_head *preloaded_csets)
1832{
1833 LIST_HEAD(csets);
1834 struct css_set *src_cset;
1835
1836 lockdep_assert_held(&cgroup_mutex);
1837
1838 /* look up the dst cset for each src cset and link it to src */
1839 list_for_each_entry(src_cset, preloaded_csets, mg_preload_node) {
1840 struct css_set *dst_cset;
1841
1842 dst_cset = find_css_set(src_cset, dst_cgrp);
1843 if (!dst_cset)
1844 goto err;
1845
1846 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
1847 src_cset->mg_dst_cset = dst_cset;
1848
1849 if (list_empty(&dst_cset->mg_preload_node))
1850 list_add(&dst_cset->mg_preload_node, &csets);
1851 else
1852 put_css_set(dst_cset, false);
1853 }
1854
1855 list_splice(&csets, preloaded_csets);
1856 return 0;
1857err:
1858 cgroup_migrate_finish(&csets);
1859 return -ENOMEM;
1860}
1861
1862/**
1863 * cgroup_migrate - migrate a process or task to a cgroup
1864 * @cgrp: the destination cgroup
1865 * @leader: the leader of the process or the task to migrate
1866 * @threadgroup: whether @leader points to the whole process or a single task
1867 *
1868 * Migrate a process or task denoted by @leader to @cgrp. If migrating a
1869 * process, the caller must be holding threadgroup_lock of @leader. The
1870 * caller is also responsible for invoking cgroup_migrate_add_src() and
1871 * cgroup_migrate_prepare_dst() on the targets before invoking this
1872 * function and following up with cgroup_migrate_finish().
1873 *
1874 * As long as a controller's ->can_attach() doesn't fail, this function is
1875 * guaranteed to succeed. This means that, excluding ->can_attach()
1876 * failure, when migrating multiple targets, the success or failure can be
1877 * decided for all targets by invoking group_migrate_prepare_dst() before
1878 * actually starting migrating.
1879 */
1880static int cgroup_migrate(struct cgroup *cgrp, struct task_struct *leader,
1881 bool threadgroup)
74a1166d 1882{
b3dc094e
TH
1883 struct cgroup_taskset tset = {
1884 .src_csets = LIST_HEAD_INIT(tset.src_csets),
1885 .dst_csets = LIST_HEAD_INIT(tset.dst_csets),
1886 .csets = &tset.src_csets,
1887 };
1c6727af 1888 struct cgroup_subsys_state *css, *failed_css = NULL;
b3dc094e
TH
1889 struct css_set *cset, *tmp_cset;
1890 struct task_struct *task, *tmp_task;
1891 int i, ret;
74a1166d 1892
fb5d2b4c
MSB
1893 /*
1894 * Prevent freeing of tasks while we take a snapshot. Tasks that are
1895 * already PF_EXITING could be freed from underneath us unless we
1896 * take an rcu_read_lock.
1897 */
b3dc094e 1898 down_write(&css_set_rwsem);
fb5d2b4c 1899 rcu_read_lock();
9db8de37 1900 task = leader;
74a1166d 1901 do {
9db8de37
TH
1902 /* @task either already exited or can't exit until the end */
1903 if (task->flags & PF_EXITING)
ea84753c 1904 goto next;
cd3d0952 1905
eaf797ab
TH
1906 /* leave @task alone if post_fork() hasn't linked it yet */
1907 if (list_empty(&task->cg_list))
1908 goto next;
1909
b3dc094e 1910 cset = task_css_set(task);
1958d2d5 1911 if (!cset->mg_src_cgrp)
ea84753c 1912 goto next;
b3dc094e 1913
b3dc094e 1914 list_move(&task->cg_list, &cset->mg_tasks);
1958d2d5
TH
1915 list_move(&cset->mg_node, &tset.src_csets);
1916 list_move(&cset->mg_dst_cset->mg_node, &tset.dst_csets);
ea84753c 1917 next:
081aa458
LZ
1918 if (!threadgroup)
1919 break;
9db8de37 1920 } while_each_thread(leader, task);
fb5d2b4c 1921 rcu_read_unlock();
b3dc094e 1922 up_write(&css_set_rwsem);
74a1166d 1923
134d3373 1924 /* methods shouldn't be called if no task is actually migrating */
b3dc094e
TH
1925 if (list_empty(&tset.src_csets))
1926 return 0;
134d3373 1927
1958d2d5 1928 /* check that we can legitimately attach to the cgroup */
1c6727af
TH
1929 for_each_css(css, i, cgrp) {
1930 if (css->ss->can_attach) {
9db8de37
TH
1931 ret = css->ss->can_attach(css, &tset);
1932 if (ret) {
1c6727af 1933 failed_css = css;
74a1166d
BB
1934 goto out_cancel_attach;
1935 }
1936 }
74a1166d
BB
1937 }
1938
1939 /*
1958d2d5
TH
1940 * Now that we're guaranteed success, proceed to move all tasks to
1941 * the new cgroup. There are no failure cases after here, so this
1942 * is the commit point.
74a1166d 1943 */
cb0f1fe9 1944 down_write(&css_set_rwsem);
b3dc094e
TH
1945 list_for_each_entry(cset, &tset.src_csets, mg_node) {
1946 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list)
1947 cgroup_task_migrate(cset->mg_src_cgrp, task,
1948 cset->mg_dst_cset);
74a1166d 1949 }
cb0f1fe9 1950 up_write(&css_set_rwsem);
b3dc094e 1951
74a1166d 1952 /*
1958d2d5
TH
1953 * Migration is committed, all target tasks are now on dst_csets.
1954 * Nothing is sensitive to fork() after this point. Notify
1955 * controllers that migration is complete.
74a1166d 1956 */
1958d2d5
TH
1957 tset.csets = &tset.dst_csets;
1958
1c6727af
TH
1959 for_each_css(css, i, cgrp)
1960 if (css->ss->attach)
1961 css->ss->attach(css, &tset);
74a1166d 1962
9db8de37 1963 ret = 0;
b3dc094e
TH
1964 goto out_release_tset;
1965
74a1166d 1966out_cancel_attach:
b3dc094e
TH
1967 for_each_css(css, i, cgrp) {
1968 if (css == failed_css)
1969 break;
1970 if (css->ss->cancel_attach)
1971 css->ss->cancel_attach(css, &tset);
74a1166d 1972 }
b3dc094e
TH
1973out_release_tset:
1974 down_write(&css_set_rwsem);
1975 list_splice_init(&tset.dst_csets, &tset.src_csets);
1976 list_for_each_entry_safe(cset, tmp_cset, &tset.src_csets, mg_node) {
1977 list_splice_init(&cset->mg_tasks, &cset->tasks);
b3dc094e 1978 list_del_init(&cset->mg_node);
b3dc094e
TH
1979 }
1980 up_write(&css_set_rwsem);
9db8de37 1981 return ret;
74a1166d
BB
1982}
1983
1958d2d5
TH
1984/**
1985 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
1986 * @dst_cgrp: the cgroup to attach to
1987 * @leader: the task or the leader of the threadgroup to be attached
1988 * @threadgroup: attach the whole threadgroup?
1989 *
0e1d768f 1990 * Call holding cgroup_mutex and threadgroup_lock of @leader.
1958d2d5
TH
1991 */
1992static int cgroup_attach_task(struct cgroup *dst_cgrp,
1993 struct task_struct *leader, bool threadgroup)
1994{
1995 LIST_HEAD(preloaded_csets);
1996 struct task_struct *task;
1997 int ret;
1998
1999 /* look up all src csets */
2000 down_read(&css_set_rwsem);
2001 rcu_read_lock();
2002 task = leader;
2003 do {
2004 cgroup_migrate_add_src(task_css_set(task), dst_cgrp,
2005 &preloaded_csets);
2006 if (!threadgroup)
2007 break;
2008 } while_each_thread(leader, task);
2009 rcu_read_unlock();
2010 up_read(&css_set_rwsem);
2011
2012 /* prepare dst csets and commit */
2013 ret = cgroup_migrate_prepare_dst(dst_cgrp, &preloaded_csets);
2014 if (!ret)
2015 ret = cgroup_migrate(dst_cgrp, leader, threadgroup);
2016
2017 cgroup_migrate_finish(&preloaded_csets);
2018 return ret;
2019}
2020
74a1166d
BB
2021/*
2022 * Find the task_struct of the task to attach by vpid and pass it along to the
cd3d0952 2023 * function to attach either it or all tasks in its threadgroup. Will lock
0e1d768f 2024 * cgroup_mutex and threadgroup.
bbcb81d0 2025 */
74a1166d 2026static int attach_task_by_pid(struct cgroup *cgrp, u64 pid, bool threadgroup)
bbcb81d0 2027{
bbcb81d0 2028 struct task_struct *tsk;
c69e8d9c 2029 const struct cred *cred = current_cred(), *tcred;
bbcb81d0
PM
2030 int ret;
2031
74a1166d
BB
2032 if (!cgroup_lock_live_group(cgrp))
2033 return -ENODEV;
2034
b78949eb
MSB
2035retry_find_task:
2036 rcu_read_lock();
bbcb81d0 2037 if (pid) {
73507f33 2038 tsk = find_task_by_vpid(pid);
74a1166d
BB
2039 if (!tsk) {
2040 rcu_read_unlock();
dd4b0a46 2041 ret = -ESRCH;
b78949eb 2042 goto out_unlock_cgroup;
bbcb81d0 2043 }
74a1166d
BB
2044 /*
2045 * even if we're attaching all tasks in the thread group, we
2046 * only need to check permissions on one of them.
2047 */
c69e8d9c 2048 tcred = __task_cred(tsk);
14a590c3
EB
2049 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2050 !uid_eq(cred->euid, tcred->uid) &&
2051 !uid_eq(cred->euid, tcred->suid)) {
c69e8d9c 2052 rcu_read_unlock();
b78949eb
MSB
2053 ret = -EACCES;
2054 goto out_unlock_cgroup;
bbcb81d0 2055 }
b78949eb
MSB
2056 } else
2057 tsk = current;
cd3d0952
TH
2058
2059 if (threadgroup)
b78949eb 2060 tsk = tsk->group_leader;
c4c27fbd
MG
2061
2062 /*
14a40ffc 2063 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
c4c27fbd
MG
2064 * trapped in a cpuset, or RT worker may be born in a cgroup
2065 * with no rt_runtime allocated. Just say no.
2066 */
14a40ffc 2067 if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
c4c27fbd
MG
2068 ret = -EINVAL;
2069 rcu_read_unlock();
2070 goto out_unlock_cgroup;
2071 }
2072
b78949eb
MSB
2073 get_task_struct(tsk);
2074 rcu_read_unlock();
2075
2076 threadgroup_lock(tsk);
2077 if (threadgroup) {
2078 if (!thread_group_leader(tsk)) {
2079 /*
2080 * a race with de_thread from another thread's exec()
2081 * may strip us of our leadership, if this happens,
2082 * there is no choice but to throw this task away and
2083 * try again; this is
2084 * "double-double-toil-and-trouble-check locking".
2085 */
2086 threadgroup_unlock(tsk);
2087 put_task_struct(tsk);
2088 goto retry_find_task;
2089 }
081aa458
LZ
2090 }
2091
2092 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
2093
cd3d0952
TH
2094 threadgroup_unlock(tsk);
2095
bbcb81d0 2096 put_task_struct(tsk);
b78949eb 2097out_unlock_cgroup:
47cfcd09 2098 mutex_unlock(&cgroup_mutex);
bbcb81d0
PM
2099 return ret;
2100}
2101
7ae1bad9
TH
2102/**
2103 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2104 * @from: attach to all cgroups of a given task
2105 * @tsk: the task to be attached
2106 */
2107int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2108{
3dd06ffa 2109 struct cgroup_root *root;
7ae1bad9
TH
2110 int retval = 0;
2111
47cfcd09 2112 mutex_lock(&cgroup_mutex);
985ed670 2113 for_each_root(root) {
96d365e0
TH
2114 struct cgroup *from_cgrp;
2115
3dd06ffa 2116 if (root == &cgrp_dfl_root)
985ed670
TH
2117 continue;
2118
96d365e0
TH
2119 down_read(&css_set_rwsem);
2120 from_cgrp = task_cgroup_from_root(from, root);
2121 up_read(&css_set_rwsem);
7ae1bad9 2122
6f4b7e63 2123 retval = cgroup_attach_task(from_cgrp, tsk, false);
7ae1bad9
TH
2124 if (retval)
2125 break;
2126 }
47cfcd09 2127 mutex_unlock(&cgroup_mutex);
7ae1bad9
TH
2128
2129 return retval;
2130}
2131EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2132
182446d0
TH
2133static int cgroup_tasks_write(struct cgroup_subsys_state *css,
2134 struct cftype *cft, u64 pid)
74a1166d 2135{
182446d0 2136 return attach_task_by_pid(css->cgroup, pid, false);
74a1166d
BB
2137}
2138
182446d0
TH
2139static int cgroup_procs_write(struct cgroup_subsys_state *css,
2140 struct cftype *cft, u64 tgid)
af351026 2141{
182446d0 2142 return attach_task_by_pid(css->cgroup, tgid, true);
af351026
PM
2143}
2144
182446d0 2145static int cgroup_release_agent_write(struct cgroup_subsys_state *css,
4d3bb511 2146 struct cftype *cft, char *buffer)
e788e066 2147{
3dd06ffa 2148 struct cgroup_root *root = css->cgroup->root;
5f469907
TH
2149
2150 BUILD_BUG_ON(sizeof(root->release_agent_path) < PATH_MAX);
182446d0 2151 if (!cgroup_lock_live_group(css->cgroup))
e788e066 2152 return -ENODEV;
69e943b7 2153 spin_lock(&release_agent_path_lock);
5f469907
TH
2154 strlcpy(root->release_agent_path, buffer,
2155 sizeof(root->release_agent_path));
69e943b7 2156 spin_unlock(&release_agent_path_lock);
47cfcd09 2157 mutex_unlock(&cgroup_mutex);
e788e066
PM
2158 return 0;
2159}
2160
2da8ca82 2161static int cgroup_release_agent_show(struct seq_file *seq, void *v)
e788e066 2162{
2da8ca82 2163 struct cgroup *cgrp = seq_css(seq)->cgroup;
182446d0 2164
e788e066
PM
2165 if (!cgroup_lock_live_group(cgrp))
2166 return -ENODEV;
2167 seq_puts(seq, cgrp->root->release_agent_path);
2168 seq_putc(seq, '\n');
47cfcd09 2169 mutex_unlock(&cgroup_mutex);
e788e066
PM
2170 return 0;
2171}
2172
2da8ca82 2173static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
873fe09e 2174{
2da8ca82
TH
2175 struct cgroup *cgrp = seq_css(seq)->cgroup;
2176
2177 seq_printf(seq, "%d\n", cgroup_sane_behavior(cgrp));
e788e066
PM
2178 return 0;
2179}
2180
2bd59d48
TH
2181static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
2182 size_t nbytes, loff_t off)
355e0c48 2183{
2bd59d48
TH
2184 struct cgroup *cgrp = of->kn->parent->priv;
2185 struct cftype *cft = of->kn->priv;
2186 struct cgroup_subsys_state *css;
a742c59d 2187 int ret;
355e0c48 2188
2bd59d48
TH
2189 /*
2190 * kernfs guarantees that a file isn't deleted with operations in
2191 * flight, which means that the matching css is and stays alive and
2192 * doesn't need to be pinned. The RCU locking is not necessary
2193 * either. It's just for the convenience of using cgroup_css().
2194 */
2195 rcu_read_lock();
2196 css = cgroup_css(cgrp, cft->ss);
2197 rcu_read_unlock();
a742c59d
TH
2198
2199 if (cft->write_string) {
2200 ret = cft->write_string(css, cft, strstrip(buf));
2201 } else if (cft->write_u64) {
2202 unsigned long long v;
2203 ret = kstrtoull(buf, 0, &v);
2204 if (!ret)
2205 ret = cft->write_u64(css, cft, v);
2206 } else if (cft->write_s64) {
2207 long long v;
2208 ret = kstrtoll(buf, 0, &v);
2209 if (!ret)
2210 ret = cft->write_s64(css, cft, v);
2211 } else if (cft->trigger) {
2212 ret = cft->trigger(css, (unsigned int)cft->private);
e73d2c61 2213 } else {
a742c59d 2214 ret = -EINVAL;
e73d2c61 2215 }
2bd59d48 2216
a742c59d 2217 return ret ?: nbytes;
355e0c48
PM
2218}
2219
6612f05b 2220static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
db3b1497 2221{
2bd59d48 2222 return seq_cft(seq)->seq_start(seq, ppos);
db3b1497
PM
2223}
2224
6612f05b 2225static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
ddbcc7e8 2226{
2bd59d48 2227 return seq_cft(seq)->seq_next(seq, v, ppos);
ddbcc7e8
PM
2228}
2229
6612f05b 2230static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
ddbcc7e8 2231{
2bd59d48 2232 seq_cft(seq)->seq_stop(seq, v);
ddbcc7e8
PM
2233}
2234
91796569 2235static int cgroup_seqfile_show(struct seq_file *m, void *arg)
e73d2c61 2236{
7da11279
TH
2237 struct cftype *cft = seq_cft(m);
2238 struct cgroup_subsys_state *css = seq_css(m);
e73d2c61 2239
2da8ca82
TH
2240 if (cft->seq_show)
2241 return cft->seq_show(m, arg);
e73d2c61 2242
f4c753b7 2243 if (cft->read_u64)
896f5199
TH
2244 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
2245 else if (cft->read_s64)
2246 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
2247 else
2248 return -EINVAL;
2249 return 0;
91796569
PM
2250}
2251
2bd59d48
TH
2252static struct kernfs_ops cgroup_kf_single_ops = {
2253 .atomic_write_len = PAGE_SIZE,
2254 .write = cgroup_file_write,
2255 .seq_show = cgroup_seqfile_show,
91796569
PM
2256};
2257
2bd59d48
TH
2258static struct kernfs_ops cgroup_kf_ops = {
2259 .atomic_write_len = PAGE_SIZE,
2260 .write = cgroup_file_write,
2261 .seq_start = cgroup_seqfile_start,
2262 .seq_next = cgroup_seqfile_next,
2263 .seq_stop = cgroup_seqfile_stop,
2264 .seq_show = cgroup_seqfile_show,
2265};
ddbcc7e8
PM
2266
2267/*
2268 * cgroup_rename - Only allow simple rename of directories in place.
2269 */
2bd59d48
TH
2270static int cgroup_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
2271 const char *new_name_str)
ddbcc7e8 2272{
2bd59d48 2273 struct cgroup *cgrp = kn->priv;
2bd59d48 2274 int ret;
65dff759 2275
2bd59d48 2276 if (kernfs_type(kn) != KERNFS_DIR)
ddbcc7e8 2277 return -ENOTDIR;
2bd59d48 2278 if (kn->parent != new_parent)
ddbcc7e8 2279 return -EIO;
65dff759 2280
6db8e85c
TH
2281 /*
2282 * This isn't a proper migration and its usefulness is very
2283 * limited. Disallow if sane_behavior.
2284 */
2285 if (cgroup_sane_behavior(cgrp))
2286 return -EPERM;
2287
2bd59d48
TH
2288 mutex_lock(&cgroup_tree_mutex);
2289 mutex_lock(&cgroup_mutex);
2290
2291 ret = kernfs_rename(kn, new_parent, new_name_str);
65dff759 2292
2bd59d48
TH
2293 mutex_unlock(&cgroup_mutex);
2294 mutex_unlock(&cgroup_tree_mutex);
2bd59d48 2295 return ret;
ddbcc7e8
PM
2296}
2297
2bb566cb 2298static int cgroup_add_file(struct cgroup *cgrp, struct cftype *cft)
ddbcc7e8 2299{
8d7e6fb0 2300 char name[CGROUP_FILE_NAME_MAX];
2bd59d48
TH
2301 struct kernfs_node *kn;
2302 struct lock_class_key *key = NULL;
05ef1d7c 2303
2bd59d48
TH
2304#ifdef CONFIG_DEBUG_LOCK_ALLOC
2305 key = &cft->lockdep_key;
2306#endif
2307 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
2308 cgroup_file_mode(cft), 0, cft->kf_ops, cft,
2309 NULL, false, key);
430af8ad 2310 return PTR_ERR_OR_ZERO(kn);
ddbcc7e8
PM
2311}
2312
b1f28d31
TH
2313/**
2314 * cgroup_addrm_files - add or remove files to a cgroup directory
2315 * @cgrp: the target cgroup
b1f28d31
TH
2316 * @cfts: array of cftypes to be added
2317 * @is_add: whether to add or remove
2318 *
2319 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
2bb566cb
TH
2320 * For removals, this function never fails. If addition fails, this
2321 * function doesn't remove files already added. The caller is responsible
2322 * for cleaning up.
b1f28d31 2323 */
2bb566cb
TH
2324static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
2325 bool is_add)
ddbcc7e8 2326{
03b1cde6 2327 struct cftype *cft;
b1f28d31
TH
2328 int ret;
2329
ace2bee8 2330 lockdep_assert_held(&cgroup_tree_mutex);
db0416b6
TH
2331
2332 for (cft = cfts; cft->name[0] != '\0'; cft++) {
f33fddc2 2333 /* does cft->flags tell us to skip this file on @cgrp? */
873fe09e
TH
2334 if ((cft->flags & CFTYPE_INSANE) && cgroup_sane_behavior(cgrp))
2335 continue;
f33fddc2
G
2336 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgrp->parent)
2337 continue;
2338 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgrp->parent)
2339 continue;
2340
2739d3cc 2341 if (is_add) {
2bb566cb 2342 ret = cgroup_add_file(cgrp, cft);
b1f28d31 2343 if (ret) {
2739d3cc 2344 pr_warn("cgroup_addrm_files: failed to add %s, err=%d\n",
b1f28d31
TH
2345 cft->name, ret);
2346 return ret;
2347 }
2739d3cc
LZ
2348 } else {
2349 cgroup_rm_file(cgrp, cft);
db0416b6 2350 }
ddbcc7e8 2351 }
b1f28d31 2352 return 0;
ddbcc7e8
PM
2353}
2354
21a2d343 2355static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
8e3f6541
TH
2356{
2357 LIST_HEAD(pending);
2bb566cb 2358 struct cgroup_subsys *ss = cfts[0].ss;
3dd06ffa 2359 struct cgroup *root = &ss->root->cgrp;
492eb21b 2360 struct cgroup_subsys_state *css;
9ccece80 2361 int ret = 0;
8e3f6541 2362
21a2d343 2363 lockdep_assert_held(&cgroup_tree_mutex);
4ac06017 2364
21a2d343 2365 /* don't bother if @ss isn't attached */
3dd06ffa 2366 if (ss->root == &cgrp_dfl_root)
9ccece80 2367 return 0;
e8c82d20 2368
e8c82d20 2369 /* add/rm files for all cgroups created before */
ca8bdcaf 2370 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
492eb21b
TH
2371 struct cgroup *cgrp = css->cgroup;
2372
e8c82d20
LZ
2373 if (cgroup_is_dead(cgrp))
2374 continue;
2375
21a2d343 2376 ret = cgroup_addrm_files(cgrp, cfts, is_add);
9ccece80
TH
2377 if (ret)
2378 break;
8e3f6541 2379 }
21a2d343
TH
2380
2381 if (is_add && !ret)
2382 kernfs_activate(root->kn);
9ccece80 2383 return ret;
8e3f6541
TH
2384}
2385
2da440a2
TH
2386static void cgroup_exit_cftypes(struct cftype *cfts)
2387{
2388 struct cftype *cft;
2389
2bd59d48
TH
2390 for (cft = cfts; cft->name[0] != '\0'; cft++) {
2391 /* free copy for custom atomic_write_len, see init_cftypes() */
2392 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
2393 kfree(cft->kf_ops);
2394 cft->kf_ops = NULL;
2da440a2 2395 cft->ss = NULL;
2bd59d48 2396 }
2da440a2
TH
2397}
2398
2bd59d48 2399static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
2da440a2
TH
2400{
2401 struct cftype *cft;
2402
2bd59d48
TH
2403 for (cft = cfts; cft->name[0] != '\0'; cft++) {
2404 struct kernfs_ops *kf_ops;
2405
0adb0704
TH
2406 WARN_ON(cft->ss || cft->kf_ops);
2407
2bd59d48
TH
2408 if (cft->seq_start)
2409 kf_ops = &cgroup_kf_ops;
2410 else
2411 kf_ops = &cgroup_kf_single_ops;
2412
2413 /*
2414 * Ugh... if @cft wants a custom max_write_len, we need to
2415 * make a copy of kf_ops to set its atomic_write_len.
2416 */
2417 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
2418 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
2419 if (!kf_ops) {
2420 cgroup_exit_cftypes(cfts);
2421 return -ENOMEM;
2422 }
2423 kf_ops->atomic_write_len = cft->max_write_len;
2424 }
2425
2426 cft->kf_ops = kf_ops;
2da440a2 2427 cft->ss = ss;
2bd59d48
TH
2428 }
2429
2430 return 0;
2da440a2
TH
2431}
2432
21a2d343
TH
2433static int cgroup_rm_cftypes_locked(struct cftype *cfts)
2434{
2435 lockdep_assert_held(&cgroup_tree_mutex);
2436
2437 if (!cfts || !cfts[0].ss)
2438 return -ENOENT;
2439
2440 list_del(&cfts->node);
2441 cgroup_apply_cftypes(cfts, false);
2442 cgroup_exit_cftypes(cfts);
2443 return 0;
2444}
2445
80b13586
TH
2446/**
2447 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
2448 * @cfts: zero-length name terminated array of cftypes
2449 *
2450 * Unregister @cfts. Files described by @cfts are removed from all
2451 * existing cgroups and all future cgroups won't have them either. This
2452 * function can be called anytime whether @cfts' subsys is attached or not.
2453 *
2454 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
2455 * registered.
2456 */
2457int cgroup_rm_cftypes(struct cftype *cfts)
2458{
21a2d343 2459 int ret;
80b13586 2460
21a2d343
TH
2461 mutex_lock(&cgroup_tree_mutex);
2462 ret = cgroup_rm_cftypes_locked(cfts);
2463 mutex_unlock(&cgroup_tree_mutex);
2464 return ret;
80b13586
TH
2465}
2466
8e3f6541
TH
2467/**
2468 * cgroup_add_cftypes - add an array of cftypes to a subsystem
2469 * @ss: target cgroup subsystem
2470 * @cfts: zero-length name terminated array of cftypes
2471 *
2472 * Register @cfts to @ss. Files described by @cfts are created for all
2473 * existing cgroups to which @ss is attached and all future cgroups will
2474 * have them too. This function can be called anytime whether @ss is
2475 * attached or not.
2476 *
2477 * Returns 0 on successful registration, -errno on failure. Note that this
2478 * function currently returns 0 as long as @cfts registration is successful
2479 * even if some file creation attempts on existing cgroups fail.
2480 */
03b1cde6 2481int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
8e3f6541 2482{
9ccece80 2483 int ret;
8e3f6541 2484
dc5736ed
LZ
2485 if (!cfts || cfts[0].name[0] == '\0')
2486 return 0;
2487
2bd59d48
TH
2488 ret = cgroup_init_cftypes(ss, cfts);
2489 if (ret)
2490 return ret;
2bb566cb 2491
21a2d343
TH
2492 mutex_lock(&cgroup_tree_mutex);
2493
0adb0704 2494 list_add_tail(&cfts->node, &ss->cfts);
21a2d343 2495 ret = cgroup_apply_cftypes(cfts, true);
9ccece80 2496 if (ret)
21a2d343
TH
2497 cgroup_rm_cftypes_locked(cfts);
2498
2499 mutex_unlock(&cgroup_tree_mutex);
9ccece80 2500 return ret;
8e3f6541 2501}
8e3f6541 2502
a043e3b2
LZ
2503/**
2504 * cgroup_task_count - count the number of tasks in a cgroup.
2505 * @cgrp: the cgroup in question
2506 *
2507 * Return the number of tasks in the cgroup.
2508 */
07bc356e 2509static int cgroup_task_count(const struct cgroup *cgrp)
bbcb81d0
PM
2510{
2511 int count = 0;
69d0206c 2512 struct cgrp_cset_link *link;
817929ec 2513
96d365e0 2514 down_read(&css_set_rwsem);
69d0206c
TH
2515 list_for_each_entry(link, &cgrp->cset_links, cset_link)
2516 count += atomic_read(&link->cset->refcount);
96d365e0 2517 up_read(&css_set_rwsem);
bbcb81d0
PM
2518 return count;
2519}
2520
53fa5261 2521/**
492eb21b
TH
2522 * css_next_child - find the next child of a given css
2523 * @pos_css: the current position (%NULL to initiate traversal)
2524 * @parent_css: css whose children to walk
53fa5261 2525 *
492eb21b 2526 * This function returns the next child of @parent_css and should be called
87fb54f1
TH
2527 * under either cgroup_mutex or RCU read lock. The only requirement is
2528 * that @parent_css and @pos_css are accessible. The next sibling is
2529 * guaranteed to be returned regardless of their states.
53fa5261 2530 */
492eb21b
TH
2531struct cgroup_subsys_state *
2532css_next_child(struct cgroup_subsys_state *pos_css,
2533 struct cgroup_subsys_state *parent_css)
53fa5261 2534{
492eb21b
TH
2535 struct cgroup *pos = pos_css ? pos_css->cgroup : NULL;
2536 struct cgroup *cgrp = parent_css->cgroup;
53fa5261
TH
2537 struct cgroup *next;
2538
ace2bee8 2539 cgroup_assert_mutexes_or_rcu_locked();
53fa5261
TH
2540
2541 /*
2542 * @pos could already have been removed. Once a cgroup is removed,
2543 * its ->sibling.next is no longer updated when its next sibling
ea15f8cc
TH
2544 * changes. As CGRP_DEAD assertion is serialized and happens
2545 * before the cgroup is taken off the ->sibling list, if we see it
2546 * unasserted, it's guaranteed that the next sibling hasn't
2547 * finished its grace period even if it's already removed, and thus
2548 * safe to dereference from this RCU critical section. If
2549 * ->sibling.next is inaccessible, cgroup_is_dead() is guaranteed
2550 * to be visible as %true here.
3b287a50
TH
2551 *
2552 * If @pos is dead, its next pointer can't be dereferenced;
2553 * however, as each cgroup is given a monotonically increasing
2554 * unique serial number and always appended to the sibling list,
2555 * the next one can be found by walking the parent's children until
2556 * we see a cgroup with higher serial number than @pos's. While
2557 * this path can be slower, it's taken only when either the current
2558 * cgroup is removed or iteration and removal race.
53fa5261 2559 */
3b287a50
TH
2560 if (!pos) {
2561 next = list_entry_rcu(cgrp->children.next, struct cgroup, sibling);
2562 } else if (likely(!cgroup_is_dead(pos))) {
53fa5261 2563 next = list_entry_rcu(pos->sibling.next, struct cgroup, sibling);
3b287a50
TH
2564 } else {
2565 list_for_each_entry_rcu(next, &cgrp->children, sibling)
2566 if (next->serial_nr > pos->serial_nr)
2567 break;
53fa5261
TH
2568 }
2569
492eb21b
TH
2570 if (&next->sibling == &cgrp->children)
2571 return NULL;
2572
ca8bdcaf 2573 return cgroup_css(next, parent_css->ss);
53fa5261 2574}
53fa5261 2575
574bd9f7 2576/**
492eb21b 2577 * css_next_descendant_pre - find the next descendant for pre-order walk
574bd9f7 2578 * @pos: the current position (%NULL to initiate traversal)
492eb21b 2579 * @root: css whose descendants to walk
574bd9f7 2580 *
492eb21b 2581 * To be used by css_for_each_descendant_pre(). Find the next descendant
bd8815a6
TH
2582 * to visit for pre-order traversal of @root's descendants. @root is
2583 * included in the iteration and the first node to be visited.
75501a6d 2584 *
87fb54f1
TH
2585 * While this function requires cgroup_mutex or RCU read locking, it
2586 * doesn't require the whole traversal to be contained in a single critical
2587 * section. This function will return the correct next descendant as long
2588 * as both @pos and @root are accessible and @pos is a descendant of @root.
574bd9f7 2589 */
492eb21b
TH
2590struct cgroup_subsys_state *
2591css_next_descendant_pre(struct cgroup_subsys_state *pos,
2592 struct cgroup_subsys_state *root)
574bd9f7 2593{
492eb21b 2594 struct cgroup_subsys_state *next;
574bd9f7 2595
ace2bee8 2596 cgroup_assert_mutexes_or_rcu_locked();
574bd9f7 2597
bd8815a6 2598 /* if first iteration, visit @root */
7805d000 2599 if (!pos)
bd8815a6 2600 return root;
574bd9f7
TH
2601
2602 /* visit the first child if exists */
492eb21b 2603 next = css_next_child(NULL, pos);
574bd9f7
TH
2604 if (next)
2605 return next;
2606
2607 /* no child, visit my or the closest ancestor's next sibling */
492eb21b
TH
2608 while (pos != root) {
2609 next = css_next_child(pos, css_parent(pos));
75501a6d 2610 if (next)
574bd9f7 2611 return next;
492eb21b 2612 pos = css_parent(pos);
7805d000 2613 }
574bd9f7
TH
2614
2615 return NULL;
2616}
574bd9f7 2617
12a9d2fe 2618/**
492eb21b
TH
2619 * css_rightmost_descendant - return the rightmost descendant of a css
2620 * @pos: css of interest
12a9d2fe 2621 *
492eb21b
TH
2622 * Return the rightmost descendant of @pos. If there's no descendant, @pos
2623 * is returned. This can be used during pre-order traversal to skip
12a9d2fe 2624 * subtree of @pos.
75501a6d 2625 *
87fb54f1
TH
2626 * While this function requires cgroup_mutex or RCU read locking, it
2627 * doesn't require the whole traversal to be contained in a single critical
2628 * section. This function will return the correct rightmost descendant as
2629 * long as @pos is accessible.
12a9d2fe 2630 */
492eb21b
TH
2631struct cgroup_subsys_state *
2632css_rightmost_descendant(struct cgroup_subsys_state *pos)
12a9d2fe 2633{
492eb21b 2634 struct cgroup_subsys_state *last, *tmp;
12a9d2fe 2635
ace2bee8 2636 cgroup_assert_mutexes_or_rcu_locked();
12a9d2fe
TH
2637
2638 do {
2639 last = pos;
2640 /* ->prev isn't RCU safe, walk ->next till the end */
2641 pos = NULL;
492eb21b 2642 css_for_each_child(tmp, last)
12a9d2fe
TH
2643 pos = tmp;
2644 } while (pos);
2645
2646 return last;
2647}
12a9d2fe 2648
492eb21b
TH
2649static struct cgroup_subsys_state *
2650css_leftmost_descendant(struct cgroup_subsys_state *pos)
574bd9f7 2651{
492eb21b 2652 struct cgroup_subsys_state *last;
574bd9f7
TH
2653
2654 do {
2655 last = pos;
492eb21b 2656 pos = css_next_child(NULL, pos);
574bd9f7
TH
2657 } while (pos);
2658
2659 return last;
2660}
2661
2662/**
492eb21b 2663 * css_next_descendant_post - find the next descendant for post-order walk
574bd9f7 2664 * @pos: the current position (%NULL to initiate traversal)
492eb21b 2665 * @root: css whose descendants to walk
574bd9f7 2666 *
492eb21b 2667 * To be used by css_for_each_descendant_post(). Find the next descendant
bd8815a6
TH
2668 * to visit for post-order traversal of @root's descendants. @root is
2669 * included in the iteration and the last node to be visited.
75501a6d 2670 *
87fb54f1
TH
2671 * While this function requires cgroup_mutex or RCU read locking, it
2672 * doesn't require the whole traversal to be contained in a single critical
2673 * section. This function will return the correct next descendant as long
2674 * as both @pos and @cgroup are accessible and @pos is a descendant of
2675 * @cgroup.
574bd9f7 2676 */
492eb21b
TH
2677struct cgroup_subsys_state *
2678css_next_descendant_post(struct cgroup_subsys_state *pos,
2679 struct cgroup_subsys_state *root)
574bd9f7 2680{
492eb21b 2681 struct cgroup_subsys_state *next;
574bd9f7 2682
ace2bee8 2683 cgroup_assert_mutexes_or_rcu_locked();
574bd9f7 2684
58b79a91
TH
2685 /* if first iteration, visit leftmost descendant which may be @root */
2686 if (!pos)
2687 return css_leftmost_descendant(root);
574bd9f7 2688
bd8815a6
TH
2689 /* if we visited @root, we're done */
2690 if (pos == root)
2691 return NULL;
2692
574bd9f7 2693 /* if there's an unvisited sibling, visit its leftmost descendant */
492eb21b 2694 next = css_next_child(pos, css_parent(pos));
75501a6d 2695 if (next)
492eb21b 2696 return css_leftmost_descendant(next);
574bd9f7
TH
2697
2698 /* no sibling left, visit parent */
bd8815a6 2699 return css_parent(pos);
574bd9f7 2700}
574bd9f7 2701
0942eeee 2702/**
72ec7029 2703 * css_advance_task_iter - advance a task itererator to the next css_set
0942eeee
TH
2704 * @it: the iterator to advance
2705 *
2706 * Advance @it to the next css_set to walk.
d515876e 2707 */
72ec7029 2708static void css_advance_task_iter(struct css_task_iter *it)
d515876e
TH
2709{
2710 struct list_head *l = it->cset_link;
2711 struct cgrp_cset_link *link;
2712 struct css_set *cset;
2713
2714 /* Advance to the next non-empty css_set */
2715 do {
2716 l = l->next;
72ec7029 2717 if (l == &it->origin_css->cgroup->cset_links) {
d515876e
TH
2718 it->cset_link = NULL;
2719 return;
2720 }
2721 link = list_entry(l, struct cgrp_cset_link, cset_link);
2722 cset = link->cset;
c7561128
TH
2723 } while (list_empty(&cset->tasks) && list_empty(&cset->mg_tasks));
2724
d515876e 2725 it->cset_link = l;
c7561128
TH
2726
2727 if (!list_empty(&cset->tasks))
2728 it->task = cset->tasks.next;
2729 else
2730 it->task = cset->mg_tasks.next;
d515876e
TH
2731}
2732
0942eeee 2733/**
72ec7029
TH
2734 * css_task_iter_start - initiate task iteration
2735 * @css: the css to walk tasks of
0942eeee
TH
2736 * @it: the task iterator to use
2737 *
72ec7029
TH
2738 * Initiate iteration through the tasks of @css. The caller can call
2739 * css_task_iter_next() to walk through the tasks until the function
2740 * returns NULL. On completion of iteration, css_task_iter_end() must be
2741 * called.
0942eeee
TH
2742 *
2743 * Note that this function acquires a lock which is released when the
2744 * iteration finishes. The caller can't sleep while iteration is in
2745 * progress.
2746 */
72ec7029
TH
2747void css_task_iter_start(struct cgroup_subsys_state *css,
2748 struct css_task_iter *it)
96d365e0 2749 __acquires(css_set_rwsem)
817929ec 2750{
56fde9e0
TH
2751 /* no one should try to iterate before mounting cgroups */
2752 WARN_ON_ONCE(!use_task_css_set_links);
31a7df01 2753
96d365e0 2754 down_read(&css_set_rwsem);
c59cd3d8 2755
72ec7029
TH
2756 it->origin_css = css;
2757 it->cset_link = &css->cgroup->cset_links;
c59cd3d8 2758
72ec7029 2759 css_advance_task_iter(it);
817929ec
PM
2760}
2761
0942eeee 2762/**
72ec7029 2763 * css_task_iter_next - return the next task for the iterator
0942eeee
TH
2764 * @it: the task iterator being iterated
2765 *
2766 * The "next" function for task iteration. @it should have been
72ec7029
TH
2767 * initialized via css_task_iter_start(). Returns NULL when the iteration
2768 * reaches the end.
0942eeee 2769 */
72ec7029 2770struct task_struct *css_task_iter_next(struct css_task_iter *it)
817929ec
PM
2771{
2772 struct task_struct *res;
2773 struct list_head *l = it->task;
c7561128
TH
2774 struct cgrp_cset_link *link = list_entry(it->cset_link,
2775 struct cgrp_cset_link, cset_link);
817929ec
PM
2776
2777 /* If the iterator cg is NULL, we have no tasks */
69d0206c 2778 if (!it->cset_link)
817929ec
PM
2779 return NULL;
2780 res = list_entry(l, struct task_struct, cg_list);
c7561128
TH
2781
2782 /*
2783 * Advance iterator to find next entry. cset->tasks is consumed
2784 * first and then ->mg_tasks. After ->mg_tasks, we move onto the
2785 * next cset.
2786 */
817929ec 2787 l = l->next;
c7561128
TH
2788
2789 if (l == &link->cset->tasks)
2790 l = link->cset->mg_tasks.next;
2791
2792 if (l == &link->cset->mg_tasks)
72ec7029 2793 css_advance_task_iter(it);
c7561128 2794 else
817929ec 2795 it->task = l;
c7561128 2796
817929ec
PM
2797 return res;
2798}
2799
0942eeee 2800/**
72ec7029 2801 * css_task_iter_end - finish task iteration
0942eeee
TH
2802 * @it: the task iterator to finish
2803 *
72ec7029 2804 * Finish task iteration started by css_task_iter_start().
0942eeee 2805 */
72ec7029 2806void css_task_iter_end(struct css_task_iter *it)
96d365e0 2807 __releases(css_set_rwsem)
817929ec 2808{
96d365e0 2809 up_read(&css_set_rwsem);
817929ec
PM
2810}
2811
8cc99345
TH
2812/**
2813 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
2814 * @to: cgroup to which the tasks will be moved
2815 * @from: cgroup in which the tasks currently reside
eaf797ab
TH
2816 *
2817 * Locking rules between cgroup_post_fork() and the migration path
2818 * guarantee that, if a task is forking while being migrated, the new child
2819 * is guaranteed to be either visible in the source cgroup after the
2820 * parent's migration is complete or put into the target cgroup. No task
2821 * can slip out of migration through forking.
8cc99345
TH
2822 */
2823int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
2824{
952aaa12
TH
2825 LIST_HEAD(preloaded_csets);
2826 struct cgrp_cset_link *link;
e406d1cf
TH
2827 struct css_task_iter it;
2828 struct task_struct *task;
952aaa12
TH
2829 int ret;
2830
2831 mutex_lock(&cgroup_mutex);
2832
2833 /* all tasks in @from are being moved, all csets are source */
2834 down_read(&css_set_rwsem);
2835 list_for_each_entry(link, &from->cset_links, cset_link)
2836 cgroup_migrate_add_src(link->cset, to, &preloaded_csets);
2837 up_read(&css_set_rwsem);
e406d1cf 2838
952aaa12
TH
2839 ret = cgroup_migrate_prepare_dst(to, &preloaded_csets);
2840 if (ret)
2841 goto out_err;
2842
2843 /*
2844 * Migrate tasks one-by-one until @form is empty. This fails iff
2845 * ->can_attach() fails.
2846 */
e406d1cf
TH
2847 do {
2848 css_task_iter_start(&from->dummy_css, &it);
2849 task = css_task_iter_next(&it);
2850 if (task)
2851 get_task_struct(task);
2852 css_task_iter_end(&it);
2853
2854 if (task) {
952aaa12 2855 ret = cgroup_migrate(to, task, false);
e406d1cf
TH
2856 put_task_struct(task);
2857 }
2858 } while (task && !ret);
952aaa12
TH
2859out_err:
2860 cgroup_migrate_finish(&preloaded_csets);
2861 mutex_unlock(&cgroup_mutex);
e406d1cf 2862 return ret;
8cc99345
TH
2863}
2864
bbcb81d0 2865/*
102a775e 2866 * Stuff for reading the 'tasks'/'procs' files.
bbcb81d0
PM
2867 *
2868 * Reading this file can return large amounts of data if a cgroup has
2869 * *lots* of attached tasks. So it may need several calls to read(),
2870 * but we cannot guarantee that the information we produce is correct
2871 * unless we produce it entirely atomically.
2872 *
bbcb81d0 2873 */
bbcb81d0 2874
24528255
LZ
2875/* which pidlist file are we talking about? */
2876enum cgroup_filetype {
2877 CGROUP_FILE_PROCS,
2878 CGROUP_FILE_TASKS,
2879};
2880
2881/*
2882 * A pidlist is a list of pids that virtually represents the contents of one
2883 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
2884 * a pair (one each for procs, tasks) for each pid namespace that's relevant
2885 * to the cgroup.
2886 */
2887struct cgroup_pidlist {
2888 /*
2889 * used to find which pidlist is wanted. doesn't change as long as
2890 * this particular list stays in the list.
2891 */
2892 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
2893 /* array of xids */
2894 pid_t *list;
2895 /* how many elements the above list has */
2896 int length;
24528255
LZ
2897 /* each of these stored in a list by its cgroup */
2898 struct list_head links;
2899 /* pointer to the cgroup we belong to, for list removal purposes */
2900 struct cgroup *owner;
b1a21367
TH
2901 /* for delayed destruction */
2902 struct delayed_work destroy_dwork;
24528255
LZ
2903};
2904
d1d9fd33
BB
2905/*
2906 * The following two functions "fix" the issue where there are more pids
2907 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
2908 * TODO: replace with a kernel-wide solution to this problem
2909 */
2910#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
2911static void *pidlist_allocate(int count)
2912{
2913 if (PIDLIST_TOO_LARGE(count))
2914 return vmalloc(count * sizeof(pid_t));
2915 else
2916 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
2917}
b1a21367 2918
d1d9fd33
BB
2919static void pidlist_free(void *p)
2920{
2921 if (is_vmalloc_addr(p))
2922 vfree(p);
2923 else
2924 kfree(p);
2925}
d1d9fd33 2926
b1a21367
TH
2927/*
2928 * Used to destroy all pidlists lingering waiting for destroy timer. None
2929 * should be left afterwards.
2930 */
2931static void cgroup_pidlist_destroy_all(struct cgroup *cgrp)
2932{
2933 struct cgroup_pidlist *l, *tmp_l;
2934
2935 mutex_lock(&cgrp->pidlist_mutex);
2936 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
2937 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
2938 mutex_unlock(&cgrp->pidlist_mutex);
2939
2940 flush_workqueue(cgroup_pidlist_destroy_wq);
2941 BUG_ON(!list_empty(&cgrp->pidlists));
2942}
2943
2944static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
2945{
2946 struct delayed_work *dwork = to_delayed_work(work);
2947 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
2948 destroy_dwork);
2949 struct cgroup_pidlist *tofree = NULL;
2950
2951 mutex_lock(&l->owner->pidlist_mutex);
b1a21367
TH
2952
2953 /*
04502365
TH
2954 * Destroy iff we didn't get queued again. The state won't change
2955 * as destroy_dwork can only be queued while locked.
b1a21367 2956 */
04502365 2957 if (!delayed_work_pending(dwork)) {
b1a21367
TH
2958 list_del(&l->links);
2959 pidlist_free(l->list);
2960 put_pid_ns(l->key.ns);
2961 tofree = l;
2962 }
2963
b1a21367
TH
2964 mutex_unlock(&l->owner->pidlist_mutex);
2965 kfree(tofree);
2966}
2967
bbcb81d0 2968/*
102a775e 2969 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
6ee211ad 2970 * Returns the number of unique elements.
bbcb81d0 2971 */
6ee211ad 2972static int pidlist_uniq(pid_t *list, int length)
bbcb81d0 2973{
102a775e 2974 int src, dest = 1;
102a775e
BB
2975
2976 /*
2977 * we presume the 0th element is unique, so i starts at 1. trivial
2978 * edge cases first; no work needs to be done for either
2979 */
2980 if (length == 0 || length == 1)
2981 return length;
2982 /* src and dest walk down the list; dest counts unique elements */
2983 for (src = 1; src < length; src++) {
2984 /* find next unique element */
2985 while (list[src] == list[src-1]) {
2986 src++;
2987 if (src == length)
2988 goto after;
2989 }
2990 /* dest always points to where the next unique element goes */
2991 list[dest] = list[src];
2992 dest++;
2993 }
2994after:
102a775e
BB
2995 return dest;
2996}
2997
afb2bc14
TH
2998/*
2999 * The two pid files - task and cgroup.procs - guaranteed that the result
3000 * is sorted, which forced this whole pidlist fiasco. As pid order is
3001 * different per namespace, each namespace needs differently sorted list,
3002 * making it impossible to use, for example, single rbtree of member tasks
3003 * sorted by task pointer. As pidlists can be fairly large, allocating one
3004 * per open file is dangerous, so cgroup had to implement shared pool of
3005 * pidlists keyed by cgroup and namespace.
3006 *
3007 * All this extra complexity was caused by the original implementation
3008 * committing to an entirely unnecessary property. In the long term, we
3009 * want to do away with it. Explicitly scramble sort order if
3010 * sane_behavior so that no such expectation exists in the new interface.
3011 *
3012 * Scrambling is done by swapping every two consecutive bits, which is
3013 * non-identity one-to-one mapping which disturbs sort order sufficiently.
3014 */
3015static pid_t pid_fry(pid_t pid)
3016{
3017 unsigned a = pid & 0x55555555;
3018 unsigned b = pid & 0xAAAAAAAA;
3019
3020 return (a << 1) | (b >> 1);
3021}
3022
3023static pid_t cgroup_pid_fry(struct cgroup *cgrp, pid_t pid)
3024{
3025 if (cgroup_sane_behavior(cgrp))
3026 return pid_fry(pid);
3027 else
3028 return pid;
3029}
3030
102a775e
BB
3031static int cmppid(const void *a, const void *b)
3032{
3033 return *(pid_t *)a - *(pid_t *)b;
3034}
3035
afb2bc14
TH
3036static int fried_cmppid(const void *a, const void *b)
3037{
3038 return pid_fry(*(pid_t *)a) - pid_fry(*(pid_t *)b);
3039}
3040
e6b81710
TH
3041static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
3042 enum cgroup_filetype type)
3043{
3044 struct cgroup_pidlist *l;
3045 /* don't need task_nsproxy() if we're looking at ourself */
3046 struct pid_namespace *ns = task_active_pid_ns(current);
3047
3048 lockdep_assert_held(&cgrp->pidlist_mutex);
3049
3050 list_for_each_entry(l, &cgrp->pidlists, links)
3051 if (l->key.type == type && l->key.ns == ns)
3052 return l;
3053 return NULL;
3054}
3055
72a8cb30
BB
3056/*
3057 * find the appropriate pidlist for our purpose (given procs vs tasks)
3058 * returns with the lock on that pidlist already held, and takes care
3059 * of the use count, or returns NULL with no locks held if we're out of
3060 * memory.
3061 */
e6b81710
TH
3062static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
3063 enum cgroup_filetype type)
72a8cb30
BB
3064{
3065 struct cgroup_pidlist *l;
b70cc5fd 3066
e6b81710
TH
3067 lockdep_assert_held(&cgrp->pidlist_mutex);
3068
3069 l = cgroup_pidlist_find(cgrp, type);
3070 if (l)
3071 return l;
3072
72a8cb30 3073 /* entry not found; create a new one */
f4f4be2b 3074 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
e6b81710 3075 if (!l)
72a8cb30 3076 return l;
e6b81710 3077
b1a21367 3078 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
72a8cb30 3079 l->key.type = type;
e6b81710
TH
3080 /* don't need task_nsproxy() if we're looking at ourself */
3081 l->key.ns = get_pid_ns(task_active_pid_ns(current));
72a8cb30
BB
3082 l->owner = cgrp;
3083 list_add(&l->links, &cgrp->pidlists);
72a8cb30
BB
3084 return l;
3085}
3086
102a775e
BB
3087/*
3088 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
3089 */
72a8cb30
BB
3090static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
3091 struct cgroup_pidlist **lp)
102a775e
BB
3092{
3093 pid_t *array;
3094 int length;
3095 int pid, n = 0; /* used for populating the array */
72ec7029 3096 struct css_task_iter it;
817929ec 3097 struct task_struct *tsk;
102a775e
BB
3098 struct cgroup_pidlist *l;
3099
4bac00d1
TH
3100 lockdep_assert_held(&cgrp->pidlist_mutex);
3101
102a775e
BB
3102 /*
3103 * If cgroup gets more users after we read count, we won't have
3104 * enough space - tough. This race is indistinguishable to the
3105 * caller from the case that the additional cgroup users didn't
3106 * show up until sometime later on.
3107 */
3108 length = cgroup_task_count(cgrp);
d1d9fd33 3109 array = pidlist_allocate(length);
102a775e
BB
3110 if (!array)
3111 return -ENOMEM;
3112 /* now, populate the array */
72ec7029
TH
3113 css_task_iter_start(&cgrp->dummy_css, &it);
3114 while ((tsk = css_task_iter_next(&it))) {
102a775e 3115 if (unlikely(n == length))
817929ec 3116 break;
102a775e 3117 /* get tgid or pid for procs or tasks file respectively */
72a8cb30
BB
3118 if (type == CGROUP_FILE_PROCS)
3119 pid = task_tgid_vnr(tsk);
3120 else
3121 pid = task_pid_vnr(tsk);
102a775e
BB
3122 if (pid > 0) /* make sure to only use valid results */
3123 array[n++] = pid;
817929ec 3124 }
72ec7029 3125 css_task_iter_end(&it);
102a775e
BB
3126 length = n;
3127 /* now sort & (if procs) strip out duplicates */
afb2bc14
TH
3128 if (cgroup_sane_behavior(cgrp))
3129 sort(array, length, sizeof(pid_t), fried_cmppid, NULL);
3130 else
3131 sort(array, length, sizeof(pid_t), cmppid, NULL);
72a8cb30 3132 if (type == CGROUP_FILE_PROCS)
6ee211ad 3133 length = pidlist_uniq(array, length);
e6b81710 3134
e6b81710 3135 l = cgroup_pidlist_find_create(cgrp, type);
72a8cb30 3136 if (!l) {
e6b81710 3137 mutex_unlock(&cgrp->pidlist_mutex);
d1d9fd33 3138 pidlist_free(array);
72a8cb30 3139 return -ENOMEM;
102a775e 3140 }
e6b81710
TH
3141
3142 /* store array, freeing old if necessary */
d1d9fd33 3143 pidlist_free(l->list);
102a775e
BB
3144 l->list = array;
3145 l->length = length;
72a8cb30 3146 *lp = l;
102a775e 3147 return 0;
bbcb81d0
PM
3148}
3149
846c7bb0 3150/**
a043e3b2 3151 * cgroupstats_build - build and fill cgroupstats
846c7bb0
BS
3152 * @stats: cgroupstats to fill information into
3153 * @dentry: A dentry entry belonging to the cgroup for which stats have
3154 * been requested.
a043e3b2
LZ
3155 *
3156 * Build and fill cgroupstats so that taskstats can export it to user
3157 * space.
846c7bb0
BS
3158 */
3159int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
3160{
2bd59d48 3161 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
bd89aabc 3162 struct cgroup *cgrp;
72ec7029 3163 struct css_task_iter it;
846c7bb0 3164 struct task_struct *tsk;
33d283be 3165
2bd59d48
TH
3166 /* it should be kernfs_node belonging to cgroupfs and is a directory */
3167 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
3168 kernfs_type(kn) != KERNFS_DIR)
3169 return -EINVAL;
3170
bad34660
LZ
3171 mutex_lock(&cgroup_mutex);
3172
846c7bb0 3173 /*
2bd59d48
TH
3174 * We aren't being called from kernfs and there's no guarantee on
3175 * @kn->priv's validity. For this and css_tryget_from_dir(),
3176 * @kn->priv is RCU safe. Let's do the RCU dancing.
846c7bb0 3177 */
2bd59d48
TH
3178 rcu_read_lock();
3179 cgrp = rcu_dereference(kn->priv);
bad34660 3180 if (!cgrp || cgroup_is_dead(cgrp)) {
2bd59d48 3181 rcu_read_unlock();
bad34660 3182 mutex_unlock(&cgroup_mutex);
2bd59d48
TH
3183 return -ENOENT;
3184 }
bad34660 3185 rcu_read_unlock();
846c7bb0 3186
72ec7029
TH
3187 css_task_iter_start(&cgrp->dummy_css, &it);
3188 while ((tsk = css_task_iter_next(&it))) {
846c7bb0
BS
3189 switch (tsk->state) {
3190 case TASK_RUNNING:
3191 stats->nr_running++;
3192 break;
3193 case TASK_INTERRUPTIBLE:
3194 stats->nr_sleeping++;
3195 break;
3196 case TASK_UNINTERRUPTIBLE:
3197 stats->nr_uninterruptible++;
3198 break;
3199 case TASK_STOPPED:
3200 stats->nr_stopped++;
3201 break;
3202 default:
3203 if (delayacct_is_task_waiting_on_io(tsk))
3204 stats->nr_io_wait++;
3205 break;
3206 }
3207 }
72ec7029 3208 css_task_iter_end(&it);
846c7bb0 3209
bad34660 3210 mutex_unlock(&cgroup_mutex);
2bd59d48 3211 return 0;
846c7bb0
BS
3212}
3213
8f3ff208 3214
bbcb81d0 3215/*
102a775e 3216 * seq_file methods for the tasks/procs files. The seq_file position is the
cc31edce 3217 * next pid to display; the seq_file iterator is a pointer to the pid
102a775e 3218 * in the cgroup->l->list array.
bbcb81d0 3219 */
cc31edce 3220
102a775e 3221static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
bbcb81d0 3222{
cc31edce
PM
3223 /*
3224 * Initially we receive a position value that corresponds to
3225 * one more than the last pid shown (or 0 on the first call or
3226 * after a seek to the start). Use a binary-search to find the
3227 * next pid to display, if any
3228 */
2bd59d48 3229 struct kernfs_open_file *of = s->private;
7da11279 3230 struct cgroup *cgrp = seq_css(s)->cgroup;
4bac00d1 3231 struct cgroup_pidlist *l;
7da11279 3232 enum cgroup_filetype type = seq_cft(s)->private;
cc31edce 3233 int index = 0, pid = *pos;
4bac00d1
TH
3234 int *iter, ret;
3235
3236 mutex_lock(&cgrp->pidlist_mutex);
3237
3238 /*
5d22444f 3239 * !NULL @of->priv indicates that this isn't the first start()
4bac00d1 3240 * after open. If the matching pidlist is around, we can use that.
5d22444f 3241 * Look for it. Note that @of->priv can't be used directly. It
4bac00d1
TH
3242 * could already have been destroyed.
3243 */
5d22444f
TH
3244 if (of->priv)
3245 of->priv = cgroup_pidlist_find(cgrp, type);
4bac00d1
TH
3246
3247 /*
3248 * Either this is the first start() after open or the matching
3249 * pidlist has been destroyed inbetween. Create a new one.
3250 */
5d22444f
TH
3251 if (!of->priv) {
3252 ret = pidlist_array_load(cgrp, type,
3253 (struct cgroup_pidlist **)&of->priv);
4bac00d1
TH
3254 if (ret)
3255 return ERR_PTR(ret);
3256 }
5d22444f 3257 l = of->priv;
cc31edce 3258
cc31edce 3259 if (pid) {
102a775e 3260 int end = l->length;
20777766 3261
cc31edce
PM
3262 while (index < end) {
3263 int mid = (index + end) / 2;
afb2bc14 3264 if (cgroup_pid_fry(cgrp, l->list[mid]) == pid) {
cc31edce
PM
3265 index = mid;
3266 break;
afb2bc14 3267 } else if (cgroup_pid_fry(cgrp, l->list[mid]) <= pid)
cc31edce
PM
3268 index = mid + 1;
3269 else
3270 end = mid;
3271 }
3272 }
3273 /* If we're off the end of the array, we're done */
102a775e 3274 if (index >= l->length)
cc31edce
PM
3275 return NULL;
3276 /* Update the abstract position to be the actual pid that we found */
102a775e 3277 iter = l->list + index;
afb2bc14 3278 *pos = cgroup_pid_fry(cgrp, *iter);
cc31edce
PM
3279 return iter;
3280}
3281
102a775e 3282static void cgroup_pidlist_stop(struct seq_file *s, void *v)
cc31edce 3283{
2bd59d48 3284 struct kernfs_open_file *of = s->private;
5d22444f 3285 struct cgroup_pidlist *l = of->priv;
62236858 3286
5d22444f
TH
3287 if (l)
3288 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
04502365 3289 CGROUP_PIDLIST_DESTROY_DELAY);
7da11279 3290 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
cc31edce
PM
3291}
3292
102a775e 3293static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
cc31edce 3294{
2bd59d48 3295 struct kernfs_open_file *of = s->private;
5d22444f 3296 struct cgroup_pidlist *l = of->priv;
102a775e
BB
3297 pid_t *p = v;
3298 pid_t *end = l->list + l->length;
cc31edce
PM
3299 /*
3300 * Advance to the next pid in the array. If this goes off the
3301 * end, we're done
3302 */
3303 p++;
3304 if (p >= end) {
3305 return NULL;
3306 } else {
7da11279 3307 *pos = cgroup_pid_fry(seq_css(s)->cgroup, *p);
cc31edce
PM
3308 return p;
3309 }
3310}
3311
102a775e 3312static int cgroup_pidlist_show(struct seq_file *s, void *v)
cc31edce
PM
3313{
3314 return seq_printf(s, "%d\n", *(int *)v);
3315}
bbcb81d0 3316
102a775e
BB
3317/*
3318 * seq_operations functions for iterating on pidlists through seq_file -
3319 * independent of whether it's tasks or procs
3320 */
3321static const struct seq_operations cgroup_pidlist_seq_operations = {
3322 .start = cgroup_pidlist_start,
3323 .stop = cgroup_pidlist_stop,
3324 .next = cgroup_pidlist_next,
3325 .show = cgroup_pidlist_show,
cc31edce
PM
3326};
3327
182446d0
TH
3328static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
3329 struct cftype *cft)
81a6a5cd 3330{
182446d0 3331 return notify_on_release(css->cgroup);
81a6a5cd
PM
3332}
3333
182446d0
TH
3334static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
3335 struct cftype *cft, u64 val)
6379c106 3336{
182446d0 3337 clear_bit(CGRP_RELEASABLE, &css->cgroup->flags);
6379c106 3338 if (val)
182446d0 3339 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106 3340 else
182446d0 3341 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106
PM
3342 return 0;
3343}
3344
182446d0
TH
3345static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
3346 struct cftype *cft)
97978e6d 3347{
182446d0 3348 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
3349}
3350
182446d0
TH
3351static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
3352 struct cftype *cft, u64 val)
97978e6d
DL
3353{
3354 if (val)
182446d0 3355 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d 3356 else
182446d0 3357 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
3358 return 0;
3359}
3360
d5c56ced 3361static struct cftype cgroup_base_files[] = {
81a6a5cd 3362 {
d5c56ced 3363 .name = "cgroup.procs",
6612f05b
TH
3364 .seq_start = cgroup_pidlist_start,
3365 .seq_next = cgroup_pidlist_next,
3366 .seq_stop = cgroup_pidlist_stop,
3367 .seq_show = cgroup_pidlist_show,
5d22444f 3368 .private = CGROUP_FILE_PROCS,
74a1166d 3369 .write_u64 = cgroup_procs_write,
74a1166d 3370 .mode = S_IRUGO | S_IWUSR,
102a775e 3371 },
97978e6d
DL
3372 {
3373 .name = "cgroup.clone_children",
873fe09e 3374 .flags = CFTYPE_INSANE,
97978e6d
DL
3375 .read_u64 = cgroup_clone_children_read,
3376 .write_u64 = cgroup_clone_children_write,
3377 },
873fe09e
TH
3378 {
3379 .name = "cgroup.sane_behavior",
3380 .flags = CFTYPE_ONLY_ON_ROOT,
2da8ca82 3381 .seq_show = cgroup_sane_behavior_show,
873fe09e 3382 },
d5c56ced
TH
3383
3384 /*
3385 * Historical crazy stuff. These don't have "cgroup." prefix and
3386 * don't exist if sane_behavior. If you're depending on these, be
3387 * prepared to be burned.
3388 */
3389 {
3390 .name = "tasks",
3391 .flags = CFTYPE_INSANE, /* use "procs" instead */
6612f05b
TH
3392 .seq_start = cgroup_pidlist_start,
3393 .seq_next = cgroup_pidlist_next,
3394 .seq_stop = cgroup_pidlist_stop,
3395 .seq_show = cgroup_pidlist_show,
5d22444f 3396 .private = CGROUP_FILE_TASKS,
d5c56ced 3397 .write_u64 = cgroup_tasks_write,
d5c56ced
TH
3398 .mode = S_IRUGO | S_IWUSR,
3399 },
3400 {
3401 .name = "notify_on_release",
3402 .flags = CFTYPE_INSANE,
3403 .read_u64 = cgroup_read_notify_on_release,
3404 .write_u64 = cgroup_write_notify_on_release,
3405 },
6e6ff25b
TH
3406 {
3407 .name = "release_agent",
cc5943a7 3408 .flags = CFTYPE_INSANE | CFTYPE_ONLY_ON_ROOT,
2da8ca82 3409 .seq_show = cgroup_release_agent_show,
6e6ff25b 3410 .write_string = cgroup_release_agent_write,
5f469907 3411 .max_write_len = PATH_MAX - 1,
6e6ff25b 3412 },
db0416b6 3413 { } /* terminate */
bbcb81d0
PM
3414};
3415
13af07df 3416/**
628f7cd4 3417 * cgroup_populate_dir - create subsys files in a cgroup directory
13af07df 3418 * @cgrp: target cgroup
13af07df 3419 * @subsys_mask: mask of the subsystem ids whose files should be added
bee55099
TH
3420 *
3421 * On failure, no file is added.
13af07df 3422 */
628f7cd4 3423static int cgroup_populate_dir(struct cgroup *cgrp, unsigned long subsys_mask)
ddbcc7e8 3424{
ddbcc7e8 3425 struct cgroup_subsys *ss;
b420ba7d 3426 int i, ret = 0;
bbcb81d0 3427
8e3f6541 3428 /* process cftsets of each subsystem */
b420ba7d 3429 for_each_subsys(ss, i) {
0adb0704 3430 struct cftype *cfts;
b420ba7d
TH
3431
3432 if (!test_bit(i, &subsys_mask))
13af07df 3433 continue;
8e3f6541 3434
0adb0704
TH
3435 list_for_each_entry(cfts, &ss->cfts, node) {
3436 ret = cgroup_addrm_files(cgrp, cfts, true);
bee55099
TH
3437 if (ret < 0)
3438 goto err;
3439 }
ddbcc7e8 3440 }
ddbcc7e8 3441 return 0;
bee55099
TH
3442err:
3443 cgroup_clear_dir(cgrp, subsys_mask);
3444 return ret;
ddbcc7e8
PM
3445}
3446
0c21ead1
TH
3447/*
3448 * css destruction is four-stage process.
3449 *
3450 * 1. Destruction starts. Killing of the percpu_ref is initiated.
3451 * Implemented in kill_css().
3452 *
3453 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
3454 * and thus css_tryget() is guaranteed to fail, the css can be offlined
3455 * by invoking offline_css(). After offlining, the base ref is put.
3456 * Implemented in css_killed_work_fn().
3457 *
3458 * 3. When the percpu_ref reaches zero, the only possible remaining
3459 * accessors are inside RCU read sections. css_release() schedules the
3460 * RCU callback.
3461 *
3462 * 4. After the grace period, the css can be freed. Implemented in
3463 * css_free_work_fn().
3464 *
3465 * It is actually hairier because both step 2 and 4 require process context
3466 * and thus involve punting to css->destroy_work adding two additional
3467 * steps to the already complex sequence.
3468 */
35ef10da 3469static void css_free_work_fn(struct work_struct *work)
48ddbe19
TH
3470{
3471 struct cgroup_subsys_state *css =
35ef10da 3472 container_of(work, struct cgroup_subsys_state, destroy_work);
0c21ead1 3473 struct cgroup *cgrp = css->cgroup;
48ddbe19 3474
0ae78e0b
TH
3475 if (css->parent)
3476 css_put(css->parent);
3477
0c21ead1 3478 css->ss->css_free(css);
2bd59d48 3479 cgroup_put(cgrp);
48ddbe19
TH
3480}
3481
0c21ead1 3482static void css_free_rcu_fn(struct rcu_head *rcu_head)
d3daf28d
TH
3483{
3484 struct cgroup_subsys_state *css =
0c21ead1 3485 container_of(rcu_head, struct cgroup_subsys_state, rcu_head);
d3daf28d 3486
35ef10da 3487 INIT_WORK(&css->destroy_work, css_free_work_fn);
e5fca243 3488 queue_work(cgroup_destroy_wq, &css->destroy_work);
48ddbe19
TH
3489}
3490
d3daf28d
TH
3491static void css_release(struct percpu_ref *ref)
3492{
3493 struct cgroup_subsys_state *css =
3494 container_of(ref, struct cgroup_subsys_state, refcnt);
3495
aec25020 3496 rcu_assign_pointer(css->cgroup->subsys[css->ss->id], NULL);
0c21ead1 3497 call_rcu(&css->rcu_head, css_free_rcu_fn);
d3daf28d
TH
3498}
3499
623f926b
TH
3500static void init_css(struct cgroup_subsys_state *css, struct cgroup_subsys *ss,
3501 struct cgroup *cgrp)
ddbcc7e8 3502{
bd89aabc 3503 css->cgroup = cgrp;
72c97e54 3504 css->ss = ss;
ddbcc7e8 3505 css->flags = 0;
0ae78e0b
TH
3506
3507 if (cgrp->parent)
ca8bdcaf 3508 css->parent = cgroup_css(cgrp->parent, ss);
0ae78e0b 3509 else
38b53aba 3510 css->flags |= CSS_ROOT;
48ddbe19 3511
ca8bdcaf 3512 BUG_ON(cgroup_css(cgrp, ss));
ddbcc7e8
PM
3513}
3514
2a4ac633 3515/* invoke ->css_online() on a new CSS and mark it online if successful */
623f926b 3516static int online_css(struct cgroup_subsys_state *css)
a31f2d3f 3517{
623f926b 3518 struct cgroup_subsys *ss = css->ss;
b1929db4
TH
3519 int ret = 0;
3520
ace2bee8 3521 lockdep_assert_held(&cgroup_tree_mutex);
a31f2d3f
TH
3522 lockdep_assert_held(&cgroup_mutex);
3523
92fb9748 3524 if (ss->css_online)
eb95419b 3525 ret = ss->css_online(css);
ae7f164a 3526 if (!ret) {
eb95419b 3527 css->flags |= CSS_ONLINE;
f20104de 3528 css->cgroup->nr_css++;
aec25020 3529 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
ae7f164a 3530 }
b1929db4 3531 return ret;
a31f2d3f
TH
3532}
3533
2a4ac633 3534/* if the CSS is online, invoke ->css_offline() on it and mark it offline */
623f926b 3535static void offline_css(struct cgroup_subsys_state *css)
a31f2d3f 3536{
623f926b 3537 struct cgroup_subsys *ss = css->ss;
a31f2d3f 3538
ace2bee8 3539 lockdep_assert_held(&cgroup_tree_mutex);
a31f2d3f
TH
3540 lockdep_assert_held(&cgroup_mutex);
3541
3542 if (!(css->flags & CSS_ONLINE))
3543 return;
3544
d7eeac19 3545 if (ss->css_offline)
eb95419b 3546 ss->css_offline(css);
a31f2d3f 3547
eb95419b 3548 css->flags &= ~CSS_ONLINE;
09a503ea 3549 css->cgroup->nr_css--;
aec25020 3550 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], css);
a31f2d3f
TH
3551}
3552
c81c925a
TH
3553/**
3554 * create_css - create a cgroup_subsys_state
3555 * @cgrp: the cgroup new css will be associated with
3556 * @ss: the subsys of new css
3557 *
3558 * Create a new css associated with @cgrp - @ss pair. On success, the new
3559 * css is online and installed in @cgrp with all interface files created.
3560 * Returns 0 on success, -errno on failure.
3561 */
3562static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss)
3563{
3564 struct cgroup *parent = cgrp->parent;
3565 struct cgroup_subsys_state *css;
3566 int err;
3567
c81c925a
TH
3568 lockdep_assert_held(&cgroup_mutex);
3569
3570 css = ss->css_alloc(cgroup_css(parent, ss));
3571 if (IS_ERR(css))
3572 return PTR_ERR(css);
3573
3574 err = percpu_ref_init(&css->refcnt, css_release);
3575 if (err)
3576 goto err_free;
3577
3578 init_css(css, ss, cgrp);
3579
aec25020 3580 err = cgroup_populate_dir(cgrp, 1 << ss->id);
c81c925a
TH
3581 if (err)
3582 goto err_free;
3583
3584 err = online_css(css);
3585 if (err)
3586 goto err_free;
3587
59f5296b 3588 cgroup_get(cgrp);
c81c925a
TH
3589 css_get(css->parent);
3590
94419627
TH
3591 cgrp->subsys_mask |= 1 << ss->id;
3592
c81c925a
TH
3593 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
3594 parent->parent) {
3595 pr_warning("cgroup: %s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
3596 current->comm, current->pid, ss->name);
3597 if (!strcmp(ss->name, "memory"))
3598 pr_warning("cgroup: \"memory\" requires setting use_hierarchy to 1 on the root.\n");
3599 ss->warned_broken_hierarchy = true;
3600 }
3601
3602 return 0;
3603
3604err_free:
3605 percpu_ref_cancel_init(&css->refcnt);
3606 ss->css_free(css);
3607 return err;
3608}
3609
2bd59d48 3610/**
a043e3b2
LZ
3611 * cgroup_create - create a cgroup
3612 * @parent: cgroup that will be parent of the new cgroup
e61734c5 3613 * @name: name of the new cgroup
2bd59d48 3614 * @mode: mode to set on new cgroup
ddbcc7e8 3615 */
e61734c5 3616static long cgroup_create(struct cgroup *parent, const char *name,
2bd59d48 3617 umode_t mode)
ddbcc7e8 3618{
bd89aabc 3619 struct cgroup *cgrp;
3dd06ffa 3620 struct cgroup_root *root = parent->root;
b58c8998 3621 int ssid, err;
ddbcc7e8 3622 struct cgroup_subsys *ss;
2bd59d48 3623 struct kernfs_node *kn;
ddbcc7e8 3624
0a950f65 3625 /* allocate the cgroup and its ID, 0 is reserved for the root */
bd89aabc
PM
3626 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
3627 if (!cgrp)
ddbcc7e8
PM
3628 return -ENOMEM;
3629
ace2bee8
TH
3630 mutex_lock(&cgroup_tree_mutex);
3631
976c06bc
TH
3632 /*
3633 * Only live parents can have children. Note that the liveliness
3634 * check isn't strictly necessary because cgroup_mkdir() and
3635 * cgroup_rmdir() are fully synchronized by i_mutex; however, do it
3636 * anyway so that locking is contained inside cgroup proper and we
3637 * don't get nasty surprises if we ever grow another caller.
3638 */
3639 if (!cgroup_lock_live_group(parent)) {
3640 err = -ENODEV;
ace2bee8 3641 goto err_unlock_tree;
0ab02ca8
LZ
3642 }
3643
3644 /*
3645 * Temporarily set the pointer to NULL, so idr_find() won't return
3646 * a half-baked cgroup.
3647 */
3648 cgrp->id = idr_alloc(&root->cgroup_idr, NULL, 1, 0, GFP_KERNEL);
3649 if (cgrp->id < 0) {
3650 err = -ENOMEM;
3651 goto err_unlock;
976c06bc
TH
3652 }
3653
cc31edce 3654 init_cgroup_housekeeping(cgrp);
ddbcc7e8 3655
bd89aabc 3656 cgrp->parent = parent;
0ae78e0b 3657 cgrp->dummy_css.parent = &parent->dummy_css;
bd89aabc 3658 cgrp->root = parent->root;
ddbcc7e8 3659
b6abdb0e
LZ
3660 if (notify_on_release(parent))
3661 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3662
2260e7fc
TH
3663 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
3664 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
97978e6d 3665
2bd59d48 3666 /* create the directory */
e61734c5 3667 kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
2bd59d48
TH
3668 if (IS_ERR(kn)) {
3669 err = PTR_ERR(kn);
0ab02ca8 3670 goto err_free_id;
2bd59d48
TH
3671 }
3672 cgrp->kn = kn;
ddbcc7e8 3673
6f30558f
TH
3674 /*
3675 * This extra ref will be put in cgroup_free_fn() and guarantees
3676 * that @cgrp->kn is always accessible.
3677 */
3678 kernfs_get(kn);
3679
00356bd5 3680 cgrp->serial_nr = cgroup_serial_nr_next++;
53fa5261 3681
4e139afc 3682 /* allocation complete, commit to creation */
4e139afc 3683 list_add_tail_rcu(&cgrp->sibling, &cgrp->parent->children);
3c9c825b 3684 atomic_inc(&root->nr_cgrps);
59f5296b 3685 cgroup_get(parent);
415cf07a 3686
0d80255e
TH
3687 /*
3688 * @cgrp is now fully operational. If something fails after this
3689 * point, it'll be released via the normal destruction path.
3690 */
4e96ee8e
LZ
3691 idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
3692
2bb566cb 3693 err = cgroup_addrm_files(cgrp, cgroup_base_files, true);
628f7cd4
TH
3694 if (err)
3695 goto err_destroy;
3696
9d403e99 3697 /* let's create and online css's */
b85d2040 3698 for_each_subsys(ss, ssid) {
3dd06ffa 3699 if (root->cgrp.subsys_mask & (1 << ssid)) {
b85d2040
TH
3700 err = create_css(cgrp, ss);
3701 if (err)
3702 goto err_destroy;
3703 }
a8638030 3704 }
ddbcc7e8 3705
2bd59d48
TH
3706 kernfs_activate(kn);
3707
ddbcc7e8 3708 mutex_unlock(&cgroup_mutex);
ace2bee8 3709 mutex_unlock(&cgroup_tree_mutex);
ddbcc7e8
PM
3710
3711 return 0;
3712
0a950f65 3713err_free_id:
4e96ee8e 3714 idr_remove(&root->cgroup_idr, cgrp->id);
0ab02ca8
LZ
3715err_unlock:
3716 mutex_unlock(&cgroup_mutex);
ace2bee8
TH
3717err_unlock_tree:
3718 mutex_unlock(&cgroup_tree_mutex);
bd89aabc 3719 kfree(cgrp);
ddbcc7e8 3720 return err;
4b8b47eb
TH
3721
3722err_destroy:
3723 cgroup_destroy_locked(cgrp);
3724 mutex_unlock(&cgroup_mutex);
ace2bee8 3725 mutex_unlock(&cgroup_tree_mutex);
4b8b47eb 3726 return err;
ddbcc7e8
PM
3727}
3728
2bd59d48
TH
3729static int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
3730 umode_t mode)
ddbcc7e8 3731{
2bd59d48 3732 struct cgroup *parent = parent_kn->priv;
ddbcc7e8 3733
2bd59d48 3734 return cgroup_create(parent, name, mode);
ddbcc7e8
PM
3735}
3736
223dbc38
TH
3737/*
3738 * This is called when the refcnt of a css is confirmed to be killed.
3739 * css_tryget() is now guaranteed to fail.
3740 */
3741static void css_killed_work_fn(struct work_struct *work)
d3daf28d 3742{
223dbc38
TH
3743 struct cgroup_subsys_state *css =
3744 container_of(work, struct cgroup_subsys_state, destroy_work);
3745 struct cgroup *cgrp = css->cgroup;
d3daf28d 3746
ace2bee8 3747 mutex_lock(&cgroup_tree_mutex);
f20104de
TH
3748 mutex_lock(&cgroup_mutex);
3749
09a503ea
TH
3750 /*
3751 * css_tryget() is guaranteed to fail now. Tell subsystems to
3752 * initate destruction.
3753 */
3754 offline_css(css);
3755
f20104de
TH
3756 /*
3757 * If @cgrp is marked dead, it's waiting for refs of all css's to
3758 * be disabled before proceeding to the second phase of cgroup
3759 * destruction. If we are the last one, kick it off.
3760 */
09a503ea 3761 if (!cgrp->nr_css && cgroup_is_dead(cgrp))
f20104de
TH
3762 cgroup_destroy_css_killed(cgrp);
3763
3764 mutex_unlock(&cgroup_mutex);
ace2bee8 3765 mutex_unlock(&cgroup_tree_mutex);
09a503ea
TH
3766
3767 /*
3768 * Put the css refs from kill_css(). Each css holds an extra
3769 * reference to the cgroup's dentry and cgroup removal proceeds
3770 * regardless of css refs. On the last put of each css, whenever
3771 * that may be, the extra dentry ref is put so that dentry
3772 * destruction happens only after all css's are released.
3773 */
3774 css_put(css);
d3daf28d
TH
3775}
3776
223dbc38
TH
3777/* css kill confirmation processing requires process context, bounce */
3778static void css_killed_ref_fn(struct percpu_ref *ref)
d3daf28d
TH
3779{
3780 struct cgroup_subsys_state *css =
3781 container_of(ref, struct cgroup_subsys_state, refcnt);
3782
223dbc38 3783 INIT_WORK(&css->destroy_work, css_killed_work_fn);
e5fca243 3784 queue_work(cgroup_destroy_wq, &css->destroy_work);
d3daf28d
TH
3785}
3786
94419627 3787static void __kill_css(struct cgroup_subsys_state *css)
edae0c33 3788{
94419627
TH
3789 lockdep_assert_held(&cgroup_tree_mutex);
3790
2bd59d48
TH
3791 /*
3792 * This must happen before css is disassociated with its cgroup.
3793 * See seq_css() for details.
3794 */
aec25020 3795 cgroup_clear_dir(css->cgroup, 1 << css->ss->id);
3c14f8b4 3796
edae0c33
TH
3797 /*
3798 * Killing would put the base ref, but we need to keep it alive
3799 * until after ->css_offline().
3800 */
3801 css_get(css);
3802
3803 /*
3804 * cgroup core guarantees that, by the time ->css_offline() is
3805 * invoked, no new css reference will be given out via
3806 * css_tryget(). We can't simply call percpu_ref_kill() and
3807 * proceed to offlining css's because percpu_ref_kill() doesn't
3808 * guarantee that the ref is seen as killed on all CPUs on return.
3809 *
3810 * Use percpu_ref_kill_and_confirm() to get notifications as each
3811 * css is confirmed to be seen as killed on all CPUs.
3812 */
3813 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
d3daf28d
TH
3814}
3815
94419627
TH
3816/**
3817 * kill_css - destroy a css
3818 * @css: css to destroy
3819 *
3820 * This function initiates destruction of @css by removing cgroup interface
3821 * files and putting its base reference. ->css_offline() will be invoked
3822 * asynchronously once css_tryget() is guaranteed to fail and when the
3823 * reference count reaches zero, @css will be released.
3824 */
3825static void kill_css(struct cgroup_subsys_state *css)
3826{
3827 struct cgroup *cgrp = css->cgroup;
3828
3829 lockdep_assert_held(&cgroup_tree_mutex);
3830
3831 /* if already killed, noop */
3832 if (cgrp->subsys_mask & (1 << css->ss->id)) {
3833 cgrp->subsys_mask &= ~(1 << css->ss->id);
3834 __kill_css(css);
3835 }
3836}
3837
d3daf28d
TH
3838/**
3839 * cgroup_destroy_locked - the first stage of cgroup destruction
3840 * @cgrp: cgroup to be destroyed
3841 *
3842 * css's make use of percpu refcnts whose killing latency shouldn't be
3843 * exposed to userland and are RCU protected. Also, cgroup core needs to
3844 * guarantee that css_tryget() won't succeed by the time ->css_offline() is
3845 * invoked. To satisfy all the requirements, destruction is implemented in
3846 * the following two steps.
3847 *
3848 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
3849 * userland visible parts and start killing the percpu refcnts of
3850 * css's. Set up so that the next stage will be kicked off once all
3851 * the percpu refcnts are confirmed to be killed.
3852 *
3853 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
3854 * rest of destruction. Once all cgroup references are gone, the
3855 * cgroup is RCU-freed.
3856 *
3857 * This function implements s1. After this step, @cgrp is gone as far as
3858 * the userland is concerned and a new cgroup with the same name may be
3859 * created. As cgroup doesn't care about the names internally, this
3860 * doesn't cause any problem.
3861 */
42809dd4
TH
3862static int cgroup_destroy_locked(struct cgroup *cgrp)
3863 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
ddbcc7e8 3864{
bb78a92f 3865 struct cgroup *child;
2bd59d48 3866 struct cgroup_subsys_state *css;
ddd69148 3867 bool empty;
1c6727af 3868 int ssid;
ddbcc7e8 3869
ace2bee8 3870 lockdep_assert_held(&cgroup_tree_mutex);
42809dd4
TH
3871 lockdep_assert_held(&cgroup_mutex);
3872
ddd69148 3873 /*
96d365e0 3874 * css_set_rwsem synchronizes access to ->cset_links and prevents
89c5509b 3875 * @cgrp from being removed while put_css_set() is in progress.
ddd69148 3876 */
96d365e0 3877 down_read(&css_set_rwsem);
bb78a92f 3878 empty = list_empty(&cgrp->cset_links);
96d365e0 3879 up_read(&css_set_rwsem);
ddd69148 3880 if (!empty)
ddbcc7e8 3881 return -EBUSY;
a043e3b2 3882
bb78a92f
HD
3883 /*
3884 * Make sure there's no live children. We can't test ->children
3885 * emptiness as dead children linger on it while being destroyed;
3886 * otherwise, "rmdir parent/child parent" may fail with -EBUSY.
3887 */
3888 empty = true;
3889 rcu_read_lock();
3890 list_for_each_entry_rcu(child, &cgrp->children, sibling) {
3891 empty = cgroup_is_dead(child);
3892 if (!empty)
3893 break;
3894 }
3895 rcu_read_unlock();
3896 if (!empty)
3897 return -EBUSY;
3898
5d77381f
TH
3899 /*
3900 * Mark @cgrp dead. This prevents further task migration and child
3901 * creation by disabling cgroup_lock_live_group(). Note that
3902 * CGRP_DEAD assertion is depended upon by css_next_child() to
3903 * resume iteration after dropping RCU read lock. See
3904 * css_next_child() for details.
3905 */
3906 set_bit(CGRP_DEAD, &cgrp->flags);
3907
88703267 3908 /*
edae0c33
TH
3909 * Initiate massacre of all css's. cgroup_destroy_css_killed()
3910 * will be invoked to perform the rest of destruction once the
4ac06017
TH
3911 * percpu refs of all css's are confirmed to be killed. This
3912 * involves removing the subsystem's files, drop cgroup_mutex.
88703267 3913 */
4ac06017 3914 mutex_unlock(&cgroup_mutex);
1c6727af
TH
3915 for_each_css(css, ssid, cgrp)
3916 kill_css(css);
4ac06017 3917 mutex_lock(&cgroup_mutex);
455050d2 3918
455050d2
TH
3919 /* CGRP_DEAD is set, remove from ->release_list for the last time */
3920 raw_spin_lock(&release_list_lock);
3921 if (!list_empty(&cgrp->release_list))
3922 list_del_init(&cgrp->release_list);
3923 raw_spin_unlock(&release_list_lock);
3924
3925 /*
f20104de
TH
3926 * If @cgrp has css's attached, the second stage of cgroup
3927 * destruction is kicked off from css_killed_work_fn() after the
3928 * refs of all attached css's are killed. If @cgrp doesn't have
3929 * any css, we kick it off here.
3930 */
3931 if (!cgrp->nr_css)
3932 cgroup_destroy_css_killed(cgrp);
3933
2bd59d48
TH
3934 /* remove @cgrp directory along with the base files */
3935 mutex_unlock(&cgroup_mutex);
3936
455050d2 3937 /*
2bd59d48
TH
3938 * There are two control paths which try to determine cgroup from
3939 * dentry without going through kernfs - cgroupstats_build() and
3940 * css_tryget_from_dir(). Those are supported by RCU protecting
3941 * clearing of cgrp->kn->priv backpointer, which should happen
3942 * after all files under it have been removed.
455050d2 3943 */
6f30558f 3944 kernfs_remove(cgrp->kn); /* @cgrp has an extra ref on its kn */
2bd59d48 3945 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv, NULL);
2bd59d48 3946
4ac06017 3947 mutex_lock(&cgroup_mutex);
455050d2 3948
ea15f8cc
TH
3949 return 0;
3950};
3951
d3daf28d 3952/**
f20104de 3953 * cgroup_destroy_css_killed - the second step of cgroup destruction
d3daf28d
TH
3954 * @work: cgroup->destroy_free_work
3955 *
3956 * This function is invoked from a work item for a cgroup which is being
09a503ea
TH
3957 * destroyed after all css's are offlined and performs the rest of
3958 * destruction. This is the second step of destruction described in the
3959 * comment above cgroup_destroy_locked().
d3daf28d 3960 */
f20104de 3961static void cgroup_destroy_css_killed(struct cgroup *cgrp)
ea15f8cc 3962{
ea15f8cc 3963 struct cgroup *parent = cgrp->parent;
ea15f8cc 3964
ace2bee8 3965 lockdep_assert_held(&cgroup_tree_mutex);
f20104de 3966 lockdep_assert_held(&cgroup_mutex);
ea15f8cc 3967
999cd8a4 3968 /* delete this cgroup from parent->children */
eb6fd504 3969 list_del_rcu(&cgrp->sibling);
ed957793 3970
59f5296b 3971 cgroup_put(cgrp);
ddbcc7e8 3972
bd89aabc 3973 set_bit(CGRP_RELEASABLE, &parent->flags);
81a6a5cd 3974 check_for_release(parent);
ddbcc7e8
PM
3975}
3976
2bd59d48 3977static int cgroup_rmdir(struct kernfs_node *kn)
42809dd4 3978{
2bd59d48
TH
3979 struct cgroup *cgrp = kn->priv;
3980 int ret = 0;
3981
3982 /*
3983 * This is self-destruction but @kn can't be removed while this
3984 * callback is in progress. Let's break active protection. Once
3985 * the protection is broken, @cgrp can be destroyed at any point.
3986 * Pin it so that it stays accessible.
3987 */
3988 cgroup_get(cgrp);
3989 kernfs_break_active_protection(kn);
42809dd4 3990
ace2bee8 3991 mutex_lock(&cgroup_tree_mutex);
42809dd4 3992 mutex_lock(&cgroup_mutex);
2bd59d48
TH
3993
3994 /*
3995 * @cgrp might already have been destroyed while we're trying to
3996 * grab the mutexes.
3997 */
3998 if (!cgroup_is_dead(cgrp))
3999 ret = cgroup_destroy_locked(cgrp);
4000
42809dd4 4001 mutex_unlock(&cgroup_mutex);
ace2bee8 4002 mutex_unlock(&cgroup_tree_mutex);
42809dd4 4003
2bd59d48
TH
4004 kernfs_unbreak_active_protection(kn);
4005 cgroup_put(cgrp);
42809dd4
TH
4006 return ret;
4007}
4008
2bd59d48
TH
4009static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
4010 .remount_fs = cgroup_remount,
4011 .show_options = cgroup_show_options,
4012 .mkdir = cgroup_mkdir,
4013 .rmdir = cgroup_rmdir,
4014 .rename = cgroup_rename,
4015};
4016
06a11920 4017static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
ddbcc7e8 4018{
ddbcc7e8 4019 struct cgroup_subsys_state *css;
cfe36bde
DC
4020
4021 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
ddbcc7e8 4022
ace2bee8 4023 mutex_lock(&cgroup_tree_mutex);
648bb56d
TH
4024 mutex_lock(&cgroup_mutex);
4025
0adb0704 4026 INIT_LIST_HEAD(&ss->cfts);
8e3f6541 4027
3dd06ffa
TH
4028 /* Create the root cgroup state for this subsystem */
4029 ss->root = &cgrp_dfl_root;
4030 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
ddbcc7e8
PM
4031 /* We don't handle early failures gracefully */
4032 BUG_ON(IS_ERR(css));
3dd06ffa 4033 init_css(css, ss, &cgrp_dfl_root.cgrp);
ddbcc7e8 4034
e8d55fde 4035 /* Update the init_css_set to contain a subsys
817929ec 4036 * pointer to this state - since the subsystem is
e8d55fde 4037 * newly registered, all tasks and hence the
3dd06ffa 4038 * init_css_set is in the subsystem's root cgroup. */
aec25020 4039 init_css_set.subsys[ss->id] = css;
ddbcc7e8
PM
4040
4041 need_forkexit_callback |= ss->fork || ss->exit;
4042
e8d55fde
LZ
4043 /* At system boot, before all subsystems have been
4044 * registered, no tasks have been forked, so we don't
4045 * need to invoke fork callbacks here. */
4046 BUG_ON(!list_empty(&init_task.tasks));
4047
ae7f164a 4048 BUG_ON(online_css(css));
a8638030 4049
3dd06ffa 4050 cgrp_dfl_root.cgrp.subsys_mask |= 1 << ss->id;
5df36032 4051
648bb56d 4052 mutex_unlock(&cgroup_mutex);
ace2bee8 4053 mutex_unlock(&cgroup_tree_mutex);
e6a1105b
BB
4054}
4055
ddbcc7e8 4056/**
a043e3b2
LZ
4057 * cgroup_init_early - cgroup initialization at system boot
4058 *
4059 * Initialize cgroups at system boot, and initialize any
4060 * subsystems that request early init.
ddbcc7e8
PM
4061 */
4062int __init cgroup_init_early(void)
4063{
172a2c06 4064 static struct cgroup_sb_opts __initdata opts = { };
30159ec7 4065 struct cgroup_subsys *ss;
ddbcc7e8 4066 int i;
30159ec7 4067
3dd06ffa 4068 init_cgroup_root(&cgrp_dfl_root, &opts);
a4ea1cc9 4069 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
817929ec 4070
3ed80a62 4071 for_each_subsys(ss, i) {
aec25020 4072 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
073219e9
TH
4073 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p name:id=%d:%s\n",
4074 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
aec25020 4075 ss->id, ss->name);
073219e9
TH
4076 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
4077 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
4078
aec25020 4079 ss->id = i;
073219e9 4080 ss->name = cgroup_subsys_name[i];
ddbcc7e8
PM
4081
4082 if (ss->early_init)
4083 cgroup_init_subsys(ss);
4084 }
4085 return 0;
4086}
4087
4088/**
a043e3b2
LZ
4089 * cgroup_init - cgroup initialization
4090 *
4091 * Register cgroup filesystem and /proc file, and initialize
4092 * any subsystems that didn't request early init.
ddbcc7e8
PM
4093 */
4094int __init cgroup_init(void)
4095{
30159ec7 4096 struct cgroup_subsys *ss;
0ac801fe 4097 unsigned long key;
172a2c06 4098 int ssid, err;
a424316c 4099
2bd59d48 4100 BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files));
2da440a2 4101
985ed670 4102 mutex_lock(&cgroup_tree_mutex);
54e7b4eb 4103 mutex_lock(&cgroup_mutex);
54e7b4eb 4104
82fe9b0d
TH
4105 /* Add init_css_set to the hash table */
4106 key = css_set_hash(init_css_set.subsys);
4107 hash_add(css_set_table, &init_css_set.hlist, key);
4108
3dd06ffa 4109 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
172a2c06 4110
54e7b4eb 4111 mutex_unlock(&cgroup_mutex);
985ed670 4112 mutex_unlock(&cgroup_tree_mutex);
54e7b4eb 4113
172a2c06
TH
4114 for_each_subsys(ss, ssid) {
4115 if (!ss->early_init)
4116 cgroup_init_subsys(ss);
4117
4118 /*
4119 * cftype registration needs kmalloc and can't be done
4120 * during early_init. Register base cftypes separately.
4121 */
4122 if (ss->base_cftypes)
4123 WARN_ON(cgroup_add_cftypes(ss, ss->base_cftypes));
4124 }
4125
676db4af 4126 cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
2bd59d48
TH
4127 if (!cgroup_kobj)
4128 return -ENOMEM;
676db4af 4129
ddbcc7e8 4130 err = register_filesystem(&cgroup_fs_type);
676db4af
GKH
4131 if (err < 0) {
4132 kobject_put(cgroup_kobj);
2bd59d48 4133 return err;
676db4af 4134 }
ddbcc7e8 4135
46ae220b 4136 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
2bd59d48 4137 return 0;
ddbcc7e8 4138}
b4f48b63 4139
e5fca243
TH
4140static int __init cgroup_wq_init(void)
4141{
4142 /*
4143 * There isn't much point in executing destruction path in
4144 * parallel. Good chunk is serialized with cgroup_mutex anyway.
1a11533f 4145 * Use 1 for @max_active.
e5fca243
TH
4146 *
4147 * We would prefer to do this in cgroup_init() above, but that
4148 * is called before init_workqueues(): so leave this until after.
4149 */
1a11533f 4150 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
e5fca243 4151 BUG_ON(!cgroup_destroy_wq);
b1a21367
TH
4152
4153 /*
4154 * Used to destroy pidlists and separate to serve as flush domain.
4155 * Cap @max_active to 1 too.
4156 */
4157 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
4158 0, 1);
4159 BUG_ON(!cgroup_pidlist_destroy_wq);
4160
e5fca243
TH
4161 return 0;
4162}
4163core_initcall(cgroup_wq_init);
4164
a424316c
PM
4165/*
4166 * proc_cgroup_show()
4167 * - Print task's cgroup paths into seq_file, one line for each hierarchy
4168 * - Used for /proc/<pid>/cgroup.
a424316c
PM
4169 */
4170
4171/* TODO: Use a proper seq_file iterator */
8d8b97ba 4172int proc_cgroup_show(struct seq_file *m, void *v)
a424316c
PM
4173{
4174 struct pid *pid;
4175 struct task_struct *tsk;
e61734c5 4176 char *buf, *path;
a424316c 4177 int retval;
3dd06ffa 4178 struct cgroup_root *root;
a424316c
PM
4179
4180 retval = -ENOMEM;
e61734c5 4181 buf = kmalloc(PATH_MAX, GFP_KERNEL);
a424316c
PM
4182 if (!buf)
4183 goto out;
4184
4185 retval = -ESRCH;
4186 pid = m->private;
4187 tsk = get_pid_task(pid, PIDTYPE_PID);
4188 if (!tsk)
4189 goto out_free;
4190
4191 retval = 0;
4192
4193 mutex_lock(&cgroup_mutex);
96d365e0 4194 down_read(&css_set_rwsem);
a424316c 4195
985ed670 4196 for_each_root(root) {
a424316c 4197 struct cgroup_subsys *ss;
bd89aabc 4198 struct cgroup *cgrp;
b85d2040 4199 int ssid, count = 0;
a424316c 4200
3dd06ffa 4201 if (root == &cgrp_dfl_root)
985ed670
TH
4202 continue;
4203
2c6ab6d2 4204 seq_printf(m, "%d:", root->hierarchy_id);
b85d2040 4205 for_each_subsys(ss, ssid)
3dd06ffa 4206 if (root->cgrp.subsys_mask & (1 << ssid))
b85d2040 4207 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
c6d57f33
PM
4208 if (strlen(root->name))
4209 seq_printf(m, "%sname=%s", count ? "," : "",
4210 root->name);
a424316c 4211 seq_putc(m, ':');
7717f7ba 4212 cgrp = task_cgroup_from_root(tsk, root);
e61734c5
TH
4213 path = cgroup_path(cgrp, buf, PATH_MAX);
4214 if (!path) {
4215 retval = -ENAMETOOLONG;
a424316c 4216 goto out_unlock;
e61734c5
TH
4217 }
4218 seq_puts(m, path);
a424316c
PM
4219 seq_putc(m, '\n');
4220 }
4221
4222out_unlock:
96d365e0 4223 up_read(&css_set_rwsem);
a424316c
PM
4224 mutex_unlock(&cgroup_mutex);
4225 put_task_struct(tsk);
4226out_free:
4227 kfree(buf);
4228out:
4229 return retval;
4230}
4231
a424316c
PM
4232/* Display information about each subsystem and each hierarchy */
4233static int proc_cgroupstats_show(struct seq_file *m, void *v)
4234{
30159ec7 4235 struct cgroup_subsys *ss;
a424316c 4236 int i;
a424316c 4237
8bab8dde 4238 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
aae8aab4
BB
4239 /*
4240 * ideally we don't want subsystems moving around while we do this.
4241 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
4242 * subsys/hierarchy state.
4243 */
a424316c 4244 mutex_lock(&cgroup_mutex);
30159ec7
TH
4245
4246 for_each_subsys(ss, i)
2c6ab6d2
PM
4247 seq_printf(m, "%s\t%d\t%d\t%d\n",
4248 ss->name, ss->root->hierarchy_id,
3c9c825b 4249 atomic_read(&ss->root->nr_cgrps), !ss->disabled);
30159ec7 4250
a424316c
PM
4251 mutex_unlock(&cgroup_mutex);
4252 return 0;
4253}
4254
4255static int cgroupstats_open(struct inode *inode, struct file *file)
4256{
9dce07f1 4257 return single_open(file, proc_cgroupstats_show, NULL);
a424316c
PM
4258}
4259
828c0950 4260static const struct file_operations proc_cgroupstats_operations = {
a424316c
PM
4261 .open = cgroupstats_open,
4262 .read = seq_read,
4263 .llseek = seq_lseek,
4264 .release = single_release,
4265};
4266
b4f48b63 4267/**
eaf797ab 4268 * cgroup_fork - initialize cgroup related fields during copy_process()
a043e3b2 4269 * @child: pointer to task_struct of forking parent process.
b4f48b63 4270 *
eaf797ab
TH
4271 * A task is associated with the init_css_set until cgroup_post_fork()
4272 * attaches it to the parent's css_set. Empty cg_list indicates that
4273 * @child isn't holding reference to its css_set.
b4f48b63
PM
4274 */
4275void cgroup_fork(struct task_struct *child)
4276{
eaf797ab 4277 RCU_INIT_POINTER(child->cgroups, &init_css_set);
817929ec 4278 INIT_LIST_HEAD(&child->cg_list);
b4f48b63
PM
4279}
4280
817929ec 4281/**
a043e3b2
LZ
4282 * cgroup_post_fork - called on a new task after adding it to the task list
4283 * @child: the task in question
4284 *
5edee61e
TH
4285 * Adds the task to the list running through its css_set if necessary and
4286 * call the subsystem fork() callbacks. Has to be after the task is
4287 * visible on the task list in case we race with the first call to
0942eeee 4288 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5edee61e 4289 * list.
a043e3b2 4290 */
817929ec
PM
4291void cgroup_post_fork(struct task_struct *child)
4292{
30159ec7 4293 struct cgroup_subsys *ss;
5edee61e
TH
4294 int i;
4295
3ce3230a 4296 /*
eaf797ab
TH
4297 * This may race against cgroup_enable_task_cg_links(). As that
4298 * function sets use_task_css_set_links before grabbing
4299 * tasklist_lock and we just went through tasklist_lock to add
4300 * @child, it's guaranteed that either we see the set
4301 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
4302 * @child during its iteration.
4303 *
4304 * If we won the race, @child is associated with %current's
4305 * css_set. Grabbing css_set_rwsem guarantees both that the
4306 * association is stable, and, on completion of the parent's
4307 * migration, @child is visible in the source of migration or
4308 * already in the destination cgroup. This guarantee is necessary
4309 * when implementing operations which need to migrate all tasks of
4310 * a cgroup to another.
4311 *
4312 * Note that if we lose to cgroup_enable_task_cg_links(), @child
4313 * will remain in init_css_set. This is safe because all tasks are
4314 * in the init_css_set before cg_links is enabled and there's no
4315 * operation which transfers all tasks out of init_css_set.
3ce3230a 4316 */
817929ec 4317 if (use_task_css_set_links) {
eaf797ab
TH
4318 struct css_set *cset;
4319
96d365e0 4320 down_write(&css_set_rwsem);
0e1d768f 4321 cset = task_css_set(current);
eaf797ab
TH
4322 if (list_empty(&child->cg_list)) {
4323 rcu_assign_pointer(child->cgroups, cset);
4324 list_add(&child->cg_list, &cset->tasks);
4325 get_css_set(cset);
4326 }
96d365e0 4327 up_write(&css_set_rwsem);
817929ec 4328 }
5edee61e
TH
4329
4330 /*
4331 * Call ss->fork(). This must happen after @child is linked on
4332 * css_set; otherwise, @child might change state between ->fork()
4333 * and addition to css_set.
4334 */
4335 if (need_forkexit_callback) {
3ed80a62 4336 for_each_subsys(ss, i)
5edee61e
TH
4337 if (ss->fork)
4338 ss->fork(child);
5edee61e 4339 }
817929ec 4340}
5edee61e 4341
b4f48b63
PM
4342/**
4343 * cgroup_exit - detach cgroup from exiting task
4344 * @tsk: pointer to task_struct of exiting process
a043e3b2 4345 * @run_callback: run exit callbacks?
b4f48b63
PM
4346 *
4347 * Description: Detach cgroup from @tsk and release it.
4348 *
4349 * Note that cgroups marked notify_on_release force every task in
4350 * them to take the global cgroup_mutex mutex when exiting.
4351 * This could impact scaling on very large systems. Be reluctant to
4352 * use notify_on_release cgroups where very high task exit scaling
4353 * is required on large systems.
4354 *
0e1d768f
TH
4355 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We
4356 * call cgroup_exit() while the task is still competent to handle
4357 * notify_on_release(), then leave the task attached to the root cgroup in
4358 * each hierarchy for the remainder of its exit. No need to bother with
4359 * init_css_set refcnting. init_css_set never goes away and we can't race
4360 * with migration path - either PF_EXITING is visible to migration path or
4361 * @tsk never got on the tasklist.
b4f48b63
PM
4362 */
4363void cgroup_exit(struct task_struct *tsk, int run_callbacks)
4364{
30159ec7 4365 struct cgroup_subsys *ss;
5abb8855 4366 struct css_set *cset;
eaf797ab 4367 bool put_cset = false;
d41d5a01 4368 int i;
817929ec
PM
4369
4370 /*
0e1d768f
TH
4371 * Unlink from @tsk from its css_set. As migration path can't race
4372 * with us, we can check cg_list without grabbing css_set_rwsem.
817929ec
PM
4373 */
4374 if (!list_empty(&tsk->cg_list)) {
96d365e0 4375 down_write(&css_set_rwsem);
0e1d768f 4376 list_del_init(&tsk->cg_list);
96d365e0 4377 up_write(&css_set_rwsem);
0e1d768f 4378 put_cset = true;
817929ec
PM
4379 }
4380
b4f48b63 4381 /* Reassign the task to the init_css_set. */
a8ad805c
TH
4382 cset = task_css_set(tsk);
4383 RCU_INIT_POINTER(tsk->cgroups, &init_css_set);
d41d5a01
PZ
4384
4385 if (run_callbacks && need_forkexit_callback) {
3ed80a62
TH
4386 /* see cgroup_post_fork() for details */
4387 for_each_subsys(ss, i) {
d41d5a01 4388 if (ss->exit) {
eb95419b
TH
4389 struct cgroup_subsys_state *old_css = cset->subsys[i];
4390 struct cgroup_subsys_state *css = task_css(tsk, i);
30159ec7 4391
eb95419b 4392 ss->exit(css, old_css, tsk);
d41d5a01
PZ
4393 }
4394 }
4395 }
d41d5a01 4396
eaf797ab
TH
4397 if (put_cset)
4398 put_css_set(cset, true);
b4f48b63 4399}
697f4161 4400
bd89aabc 4401static void check_for_release(struct cgroup *cgrp)
81a6a5cd 4402{
f50daa70 4403 if (cgroup_is_releasable(cgrp) &&
6f3d828f 4404 list_empty(&cgrp->cset_links) && list_empty(&cgrp->children)) {
f50daa70
LZ
4405 /*
4406 * Control Group is currently removeable. If it's not
81a6a5cd 4407 * already queued for a userspace notification, queue
f50daa70
LZ
4408 * it now
4409 */
81a6a5cd 4410 int need_schedule_work = 0;
f50daa70 4411
cdcc136f 4412 raw_spin_lock(&release_list_lock);
54766d4a 4413 if (!cgroup_is_dead(cgrp) &&
bd89aabc
PM
4414 list_empty(&cgrp->release_list)) {
4415 list_add(&cgrp->release_list, &release_list);
81a6a5cd
PM
4416 need_schedule_work = 1;
4417 }
cdcc136f 4418 raw_spin_unlock(&release_list_lock);
81a6a5cd
PM
4419 if (need_schedule_work)
4420 schedule_work(&release_agent_work);
4421 }
4422}
4423
81a6a5cd
PM
4424/*
4425 * Notify userspace when a cgroup is released, by running the
4426 * configured release agent with the name of the cgroup (path
4427 * relative to the root of cgroup file system) as the argument.
4428 *
4429 * Most likely, this user command will try to rmdir this cgroup.
4430 *
4431 * This races with the possibility that some other task will be
4432 * attached to this cgroup before it is removed, or that some other
4433 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
4434 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
4435 * unused, and this cgroup will be reprieved from its death sentence,
4436 * to continue to serve a useful existence. Next time it's released,
4437 * we will get notified again, if it still has 'notify_on_release' set.
4438 *
4439 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
4440 * means only wait until the task is successfully execve()'d. The
4441 * separate release agent task is forked by call_usermodehelper(),
4442 * then control in this thread returns here, without waiting for the
4443 * release agent task. We don't bother to wait because the caller of
4444 * this routine has no use for the exit status of the release agent
4445 * task, so no sense holding our caller up for that.
81a6a5cd 4446 */
81a6a5cd
PM
4447static void cgroup_release_agent(struct work_struct *work)
4448{
4449 BUG_ON(work != &release_agent_work);
4450 mutex_lock(&cgroup_mutex);
cdcc136f 4451 raw_spin_lock(&release_list_lock);
81a6a5cd
PM
4452 while (!list_empty(&release_list)) {
4453 char *argv[3], *envp[3];
4454 int i;
e61734c5 4455 char *pathbuf = NULL, *agentbuf = NULL, *path;
bd89aabc 4456 struct cgroup *cgrp = list_entry(release_list.next,
81a6a5cd
PM
4457 struct cgroup,
4458 release_list);
bd89aabc 4459 list_del_init(&cgrp->release_list);
cdcc136f 4460 raw_spin_unlock(&release_list_lock);
e61734c5 4461 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
e788e066
PM
4462 if (!pathbuf)
4463 goto continue_free;
e61734c5
TH
4464 path = cgroup_path(cgrp, pathbuf, PATH_MAX);
4465 if (!path)
e788e066
PM
4466 goto continue_free;
4467 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
4468 if (!agentbuf)
4469 goto continue_free;
81a6a5cd
PM
4470
4471 i = 0;
e788e066 4472 argv[i++] = agentbuf;
e61734c5 4473 argv[i++] = path;
81a6a5cd
PM
4474 argv[i] = NULL;
4475
4476 i = 0;
4477 /* minimal command environment */
4478 envp[i++] = "HOME=/";
4479 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
4480 envp[i] = NULL;
4481
4482 /* Drop the lock while we invoke the usermode helper,
4483 * since the exec could involve hitting disk and hence
4484 * be a slow process */
4485 mutex_unlock(&cgroup_mutex);
4486 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
81a6a5cd 4487 mutex_lock(&cgroup_mutex);
e788e066
PM
4488 continue_free:
4489 kfree(pathbuf);
4490 kfree(agentbuf);
cdcc136f 4491 raw_spin_lock(&release_list_lock);
81a6a5cd 4492 }
cdcc136f 4493 raw_spin_unlock(&release_list_lock);
81a6a5cd
PM
4494 mutex_unlock(&cgroup_mutex);
4495}
8bab8dde
PM
4496
4497static int __init cgroup_disable(char *str)
4498{
30159ec7 4499 struct cgroup_subsys *ss;
8bab8dde 4500 char *token;
30159ec7 4501 int i;
8bab8dde
PM
4502
4503 while ((token = strsep(&str, ",")) != NULL) {
4504 if (!*token)
4505 continue;
be45c900 4506
3ed80a62 4507 for_each_subsys(ss, i) {
8bab8dde
PM
4508 if (!strcmp(token, ss->name)) {
4509 ss->disabled = 1;
4510 printk(KERN_INFO "Disabling %s control group"
4511 " subsystem\n", ss->name);
4512 break;
4513 }
4514 }
4515 }
4516 return 1;
4517}
4518__setup("cgroup_disable=", cgroup_disable);
38460b48 4519
b77d7b60 4520/**
5a17f543 4521 * css_tryget_from_dir - get corresponding css from the dentry of a cgroup dir
35cf0836
TH
4522 * @dentry: directory dentry of interest
4523 * @ss: subsystem of interest
b77d7b60 4524 *
5a17f543
TH
4525 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
4526 * to get the corresponding css and return it. If such css doesn't exist
4527 * or can't be pinned, an ERR_PTR value is returned.
e5d1367f 4528 */
5a17f543
TH
4529struct cgroup_subsys_state *css_tryget_from_dir(struct dentry *dentry,
4530 struct cgroup_subsys *ss)
e5d1367f 4531{
2bd59d48
TH
4532 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
4533 struct cgroup_subsys_state *css = NULL;
e5d1367f 4534 struct cgroup *cgrp;
b77d7b60 4535
35cf0836 4536 /* is @dentry a cgroup dir? */
2bd59d48
TH
4537 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
4538 kernfs_type(kn) != KERNFS_DIR)
e5d1367f
SE
4539 return ERR_PTR(-EBADF);
4540
5a17f543
TH
4541 rcu_read_lock();
4542
2bd59d48
TH
4543 /*
4544 * This path doesn't originate from kernfs and @kn could already
4545 * have been or be removed at any point. @kn->priv is RCU
4546 * protected for this access. See destroy_locked() for details.
4547 */
4548 cgrp = rcu_dereference(kn->priv);
4549 if (cgrp)
4550 css = cgroup_css(cgrp, ss);
5a17f543
TH
4551
4552 if (!css || !css_tryget(css))
4553 css = ERR_PTR(-ENOENT);
4554
4555 rcu_read_unlock();
4556 return css;
e5d1367f 4557}
e5d1367f 4558
1cb650b9
LZ
4559/**
4560 * css_from_id - lookup css by id
4561 * @id: the cgroup id
4562 * @ss: cgroup subsys to be looked into
4563 *
4564 * Returns the css if there's valid one with @id, otherwise returns NULL.
4565 * Should be called under rcu_read_lock().
4566 */
4567struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
4568{
4569 struct cgroup *cgrp;
4570
ace2bee8 4571 cgroup_assert_mutexes_or_rcu_locked();
1cb650b9
LZ
4572
4573 cgrp = idr_find(&ss->root->cgroup_idr, id);
4574 if (cgrp)
d1625964 4575 return cgroup_css(cgrp, ss);
1cb650b9 4576 return NULL;
e5d1367f
SE
4577}
4578
fe693435 4579#ifdef CONFIG_CGROUP_DEBUG
eb95419b
TH
4580static struct cgroup_subsys_state *
4581debug_css_alloc(struct cgroup_subsys_state *parent_css)
fe693435
PM
4582{
4583 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
4584
4585 if (!css)
4586 return ERR_PTR(-ENOMEM);
4587
4588 return css;
4589}
4590
eb95419b 4591static void debug_css_free(struct cgroup_subsys_state *css)
fe693435 4592{
eb95419b 4593 kfree(css);
fe693435
PM
4594}
4595
182446d0
TH
4596static u64 debug_taskcount_read(struct cgroup_subsys_state *css,
4597 struct cftype *cft)
fe693435 4598{
182446d0 4599 return cgroup_task_count(css->cgroup);
fe693435
PM
4600}
4601
182446d0
TH
4602static u64 current_css_set_read(struct cgroup_subsys_state *css,
4603 struct cftype *cft)
fe693435
PM
4604{
4605 return (u64)(unsigned long)current->cgroups;
4606}
4607
182446d0 4608static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css,
03c78cbe 4609 struct cftype *cft)
fe693435
PM
4610{
4611 u64 count;
4612
4613 rcu_read_lock();
a8ad805c 4614 count = atomic_read(&task_css_set(current)->refcount);
fe693435
PM
4615 rcu_read_unlock();
4616 return count;
4617}
4618
2da8ca82 4619static int current_css_set_cg_links_read(struct seq_file *seq, void *v)
7717f7ba 4620{
69d0206c 4621 struct cgrp_cset_link *link;
5abb8855 4622 struct css_set *cset;
e61734c5
TH
4623 char *name_buf;
4624
4625 name_buf = kmalloc(NAME_MAX + 1, GFP_KERNEL);
4626 if (!name_buf)
4627 return -ENOMEM;
7717f7ba 4628
96d365e0 4629 down_read(&css_set_rwsem);
7717f7ba 4630 rcu_read_lock();
5abb8855 4631 cset = rcu_dereference(current->cgroups);
69d0206c 4632 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 4633 struct cgroup *c = link->cgrp;
59f5296b
TH
4634 const char *name = "?";
4635
3dd06ffa 4636 if (c != &cgrp_dfl_root.cgrp) {
e61734c5
TH
4637 cgroup_name(c, name_buf, NAME_MAX + 1);
4638 name = name_buf;
4639 }
7717f7ba 4640
2c6ab6d2
PM
4641 seq_printf(seq, "Root %d group %s\n",
4642 c->root->hierarchy_id, name);
7717f7ba
PM
4643 }
4644 rcu_read_unlock();
96d365e0 4645 up_read(&css_set_rwsem);
e61734c5 4646 kfree(name_buf);
7717f7ba
PM
4647 return 0;
4648}
4649
4650#define MAX_TASKS_SHOWN_PER_CSS 25
2da8ca82 4651static int cgroup_css_links_read(struct seq_file *seq, void *v)
7717f7ba 4652{
2da8ca82 4653 struct cgroup_subsys_state *css = seq_css(seq);
69d0206c 4654 struct cgrp_cset_link *link;
7717f7ba 4655
96d365e0 4656 down_read(&css_set_rwsem);
182446d0 4657 list_for_each_entry(link, &css->cgroup->cset_links, cset_link) {
69d0206c 4658 struct css_set *cset = link->cset;
7717f7ba
PM
4659 struct task_struct *task;
4660 int count = 0;
c7561128 4661
5abb8855 4662 seq_printf(seq, "css_set %p\n", cset);
c7561128 4663
5abb8855 4664 list_for_each_entry(task, &cset->tasks, cg_list) {
c7561128
TH
4665 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
4666 goto overflow;
4667 seq_printf(seq, " task %d\n", task_pid_vnr(task));
4668 }
4669
4670 list_for_each_entry(task, &cset->mg_tasks, cg_list) {
4671 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
4672 goto overflow;
4673 seq_printf(seq, " task %d\n", task_pid_vnr(task));
7717f7ba 4674 }
c7561128
TH
4675 continue;
4676 overflow:
4677 seq_puts(seq, " ...\n");
7717f7ba 4678 }
96d365e0 4679 up_read(&css_set_rwsem);
7717f7ba
PM
4680 return 0;
4681}
4682
182446d0 4683static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft)
fe693435 4684{
182446d0 4685 return test_bit(CGRP_RELEASABLE, &css->cgroup->flags);
fe693435
PM
4686}
4687
4688static struct cftype debug_files[] = {
fe693435
PM
4689 {
4690 .name = "taskcount",
4691 .read_u64 = debug_taskcount_read,
4692 },
4693
4694 {
4695 .name = "current_css_set",
4696 .read_u64 = current_css_set_read,
4697 },
4698
4699 {
4700 .name = "current_css_set_refcount",
4701 .read_u64 = current_css_set_refcount_read,
4702 },
4703
7717f7ba
PM
4704 {
4705 .name = "current_css_set_cg_links",
2da8ca82 4706 .seq_show = current_css_set_cg_links_read,
7717f7ba
PM
4707 },
4708
4709 {
4710 .name = "cgroup_css_links",
2da8ca82 4711 .seq_show = cgroup_css_links_read,
7717f7ba
PM
4712 },
4713
fe693435
PM
4714 {
4715 .name = "releasable",
4716 .read_u64 = releasable_read,
4717 },
fe693435 4718
4baf6e33
TH
4719 { } /* terminate */
4720};
fe693435 4721
073219e9 4722struct cgroup_subsys debug_cgrp_subsys = {
92fb9748
TH
4723 .css_alloc = debug_css_alloc,
4724 .css_free = debug_css_free,
4baf6e33 4725 .base_cftypes = debug_files,
fe693435
PM
4726};
4727#endif /* CONFIG_CGROUP_DEBUG */