]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - kernel/cgroup.c
kernfs: introduce kernfs_pin_sb()
[mirror_ubuntu-zesty-kernel.git] / kernel / cgroup.c
CommitLineData
ddbcc7e8 1/*
ddbcc7e8
PM
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
0dea1168
KS
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
ddbcc7e8
PM
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
ed3d261b
JP
29#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
ddbcc7e8 31#include <linux/cgroup.h>
2ce9738b 32#include <linux/cred.h>
c6d57f33 33#include <linux/ctype.h>
ddbcc7e8 34#include <linux/errno.h>
2ce9738b 35#include <linux/init_task.h>
ddbcc7e8
PM
36#include <linux/kernel.h>
37#include <linux/list.h>
c9482a5b 38#include <linux/magic.h>
ddbcc7e8
PM
39#include <linux/mm.h>
40#include <linux/mutex.h>
41#include <linux/mount.h>
42#include <linux/pagemap.h>
a424316c 43#include <linux/proc_fs.h>
ddbcc7e8
PM
44#include <linux/rcupdate.h>
45#include <linux/sched.h>
ddbcc7e8 46#include <linux/slab.h>
ddbcc7e8 47#include <linux/spinlock.h>
96d365e0 48#include <linux/rwsem.h>
ddbcc7e8 49#include <linux/string.h>
bbcb81d0 50#include <linux/sort.h>
81a6a5cd 51#include <linux/kmod.h>
846c7bb0
BS
52#include <linux/delayacct.h>
53#include <linux/cgroupstats.h>
0ac801fe 54#include <linux/hashtable.h>
096b7fe0 55#include <linux/pid_namespace.h>
2c6ab6d2 56#include <linux/idr.h>
d1d9fd33 57#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
c4c27fbd 58#include <linux/kthread.h>
776f02fa 59#include <linux/delay.h>
846c7bb0 60
60063497 61#include <linux/atomic.h>
ddbcc7e8 62
b1a21367
TH
63/*
64 * pidlists linger the following amount before being destroyed. The goal
65 * is avoiding frequent destruction in the middle of consecutive read calls
66 * Expiring in the middle is a performance problem not a correctness one.
67 * 1 sec should be enough.
68 */
69#define CGROUP_PIDLIST_DESTROY_DELAY HZ
70
8d7e6fb0
TH
71#define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
72 MAX_CFTYPE_NAME + 2)
73
e25e2cbb
TH
74/*
75 * cgroup_mutex is the master lock. Any modification to cgroup or its
76 * hierarchy must be performed while holding it.
77 *
0e1d768f
TH
78 * css_set_rwsem protects task->cgroups pointer, the list of css_set
79 * objects, and the chain of tasks off each css_set.
e25e2cbb 80 *
0e1d768f
TH
81 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
82 * cgroup.h can use them for lockdep annotations.
e25e2cbb 83 */
2219449a
TH
84#ifdef CONFIG_PROVE_RCU
85DEFINE_MUTEX(cgroup_mutex);
0e1d768f
TH
86DECLARE_RWSEM(css_set_rwsem);
87EXPORT_SYMBOL_GPL(cgroup_mutex);
88EXPORT_SYMBOL_GPL(css_set_rwsem);
2219449a 89#else
81a6a5cd 90static DEFINE_MUTEX(cgroup_mutex);
0e1d768f 91static DECLARE_RWSEM(css_set_rwsem);
2219449a
TH
92#endif
93
6fa4918d 94/*
15a4c835
TH
95 * Protects cgroup_idr and css_idr so that IDs can be released without
96 * grabbing cgroup_mutex.
6fa4918d
TH
97 */
98static DEFINE_SPINLOCK(cgroup_idr_lock);
99
69e943b7
TH
100/*
101 * Protects cgroup_subsys->release_agent_path. Modifying it also requires
102 * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock.
103 */
104static DEFINE_SPINLOCK(release_agent_path_lock);
81a6a5cd 105
8353da1f 106#define cgroup_assert_mutex_or_rcu_locked() \
87fb54f1
TH
107 rcu_lockdep_assert(rcu_read_lock_held() || \
108 lockdep_is_held(&cgroup_mutex), \
8353da1f 109 "cgroup_mutex or RCU read lock required");
780cd8b3 110
e5fca243
TH
111/*
112 * cgroup destruction makes heavy use of work items and there can be a lot
113 * of concurrent destructions. Use a separate workqueue so that cgroup
114 * destruction work items don't end up filling up max_active of system_wq
115 * which may lead to deadlock.
116 */
117static struct workqueue_struct *cgroup_destroy_wq;
118
b1a21367
TH
119/*
120 * pidlist destructions need to be flushed on cgroup destruction. Use a
121 * separate workqueue as flush domain.
122 */
123static struct workqueue_struct *cgroup_pidlist_destroy_wq;
124
3ed80a62 125/* generate an array of cgroup subsystem pointers */
073219e9 126#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
3ed80a62 127static struct cgroup_subsys *cgroup_subsys[] = {
ddbcc7e8
PM
128#include <linux/cgroup_subsys.h>
129};
073219e9
TH
130#undef SUBSYS
131
132/* array of cgroup subsystem names */
133#define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
134static const char *cgroup_subsys_name[] = {
ddbcc7e8
PM
135#include <linux/cgroup_subsys.h>
136};
073219e9 137#undef SUBSYS
ddbcc7e8 138
ddbcc7e8 139/*
3dd06ffa 140 * The default hierarchy, reserved for the subsystems that are otherwise
9871bf95
TH
141 * unattached - it never has more than a single cgroup, and all tasks are
142 * part of that cgroup.
ddbcc7e8 143 */
a2dd4247 144struct cgroup_root cgrp_dfl_root;
9871bf95 145
a2dd4247
TH
146/*
147 * The default hierarchy always exists but is hidden until mounted for the
148 * first time. This is for backward compatibility.
149 */
150static bool cgrp_dfl_root_visible;
ddbcc7e8 151
5533e011
TH
152/* some controllers are not supported in the default hierarchy */
153static const unsigned int cgrp_dfl_root_inhibit_ss_mask = 0
154#ifdef CONFIG_CGROUP_DEBUG
155 | (1 << debug_cgrp_id)
156#endif
157 ;
158
ddbcc7e8
PM
159/* The list of hierarchy roots */
160
9871bf95
TH
161static LIST_HEAD(cgroup_roots);
162static int cgroup_root_count;
ddbcc7e8 163
3417ae1f 164/* hierarchy ID allocation and mapping, protected by cgroup_mutex */
1a574231 165static DEFINE_IDR(cgroup_hierarchy_idr);
2c6ab6d2 166
794611a1 167/*
0cb51d71
TH
168 * Assign a monotonically increasing serial number to csses. It guarantees
169 * cgroups with bigger numbers are newer than those with smaller numbers.
170 * Also, as csses are always appended to the parent's ->children list, it
171 * guarantees that sibling csses are always sorted in the ascending serial
172 * number order on the list. Protected by cgroup_mutex.
794611a1 173 */
0cb51d71 174static u64 css_serial_nr_next = 1;
794611a1 175
ddbcc7e8 176/* This flag indicates whether tasks in the fork and exit paths should
a043e3b2
LZ
177 * check for fork/exit handlers to call. This avoids us having to do
178 * extra work in the fork/exit path if none of the subsystems need to
179 * be called.
ddbcc7e8 180 */
8947f9d5 181static int need_forkexit_callback __read_mostly;
ddbcc7e8 182
628f7cd4
TH
183static struct cftype cgroup_base_files[];
184
59f5296b 185static void cgroup_put(struct cgroup *cgrp);
3dd06ffa 186static int rebind_subsystems(struct cgroup_root *dst_root,
69dfa00c 187 unsigned int ss_mask);
42809dd4 188static int cgroup_destroy_locked(struct cgroup *cgrp);
f8f22e53 189static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss);
9d755d33 190static void css_release(struct percpu_ref *ref);
f8f22e53 191static void kill_css(struct cgroup_subsys_state *css);
2bb566cb
TH
192static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
193 bool is_add);
b1a21367 194static void cgroup_pidlist_destroy_all(struct cgroup *cgrp);
42809dd4 195
6fa4918d
TH
196/* IDR wrappers which synchronize using cgroup_idr_lock */
197static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
198 gfp_t gfp_mask)
199{
200 int ret;
201
202 idr_preload(gfp_mask);
54504e97 203 spin_lock_bh(&cgroup_idr_lock);
6fa4918d 204 ret = idr_alloc(idr, ptr, start, end, gfp_mask);
54504e97 205 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
206 idr_preload_end();
207 return ret;
208}
209
210static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
211{
212 void *ret;
213
54504e97 214 spin_lock_bh(&cgroup_idr_lock);
6fa4918d 215 ret = idr_replace(idr, ptr, id);
54504e97 216 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
217 return ret;
218}
219
220static void cgroup_idr_remove(struct idr *idr, int id)
221{
54504e97 222 spin_lock_bh(&cgroup_idr_lock);
6fa4918d 223 idr_remove(idr, id);
54504e97 224 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
225}
226
d51f39b0
TH
227static struct cgroup *cgroup_parent(struct cgroup *cgrp)
228{
229 struct cgroup_subsys_state *parent_css = cgrp->self.parent;
230
231 if (parent_css)
232 return container_of(parent_css, struct cgroup, self);
233 return NULL;
234}
235
95109b62
TH
236/**
237 * cgroup_css - obtain a cgroup's css for the specified subsystem
238 * @cgrp: the cgroup of interest
9d800df1 239 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
95109b62 240 *
ca8bdcaf
TH
241 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
242 * function must be called either under cgroup_mutex or rcu_read_lock() and
243 * the caller is responsible for pinning the returned css if it wants to
244 * keep accessing it outside the said locks. This function may return
245 * %NULL if @cgrp doesn't have @subsys_id enabled.
95109b62
TH
246 */
247static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
ca8bdcaf 248 struct cgroup_subsys *ss)
95109b62 249{
ca8bdcaf 250 if (ss)
aec25020 251 return rcu_dereference_check(cgrp->subsys[ss->id],
ace2bee8 252 lockdep_is_held(&cgroup_mutex));
ca8bdcaf 253 else
9d800df1 254 return &cgrp->self;
95109b62 255}
42809dd4 256
aec3dfcb
TH
257/**
258 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
259 * @cgrp: the cgroup of interest
9d800df1 260 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
aec3dfcb
TH
261 *
262 * Similar to cgroup_css() but returns the effctive css, which is defined
263 * as the matching css of the nearest ancestor including self which has @ss
264 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
265 * function is guaranteed to return non-NULL css.
266 */
267static struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
268 struct cgroup_subsys *ss)
269{
270 lockdep_assert_held(&cgroup_mutex);
271
272 if (!ss)
9d800df1 273 return &cgrp->self;
aec3dfcb
TH
274
275 if (!(cgrp->root->subsys_mask & (1 << ss->id)))
276 return NULL;
277
d51f39b0
TH
278 while (cgroup_parent(cgrp) &&
279 !(cgroup_parent(cgrp)->child_subsys_mask & (1 << ss->id)))
280 cgrp = cgroup_parent(cgrp);
aec3dfcb
TH
281
282 return cgroup_css(cgrp, ss);
95109b62 283}
42809dd4 284
ddbcc7e8 285/* convenient tests for these bits */
54766d4a 286static inline bool cgroup_is_dead(const struct cgroup *cgrp)
ddbcc7e8 287{
184faf32 288 return !(cgrp->self.flags & CSS_ONLINE);
ddbcc7e8
PM
289}
290
b4168640 291struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
59f5296b 292{
2bd59d48 293 struct cgroup *cgrp = of->kn->parent->priv;
b4168640 294 struct cftype *cft = of_cft(of);
2bd59d48
TH
295
296 /*
297 * This is open and unprotected implementation of cgroup_css().
298 * seq_css() is only called from a kernfs file operation which has
299 * an active reference on the file. Because all the subsystem
300 * files are drained before a css is disassociated with a cgroup,
301 * the matching css from the cgroup's subsys table is guaranteed to
302 * be and stay valid until the enclosing operation is complete.
303 */
304 if (cft->ss)
305 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
306 else
9d800df1 307 return &cgrp->self;
59f5296b 308}
b4168640 309EXPORT_SYMBOL_GPL(of_css);
59f5296b 310
78574cf9
LZ
311/**
312 * cgroup_is_descendant - test ancestry
313 * @cgrp: the cgroup to be tested
314 * @ancestor: possible ancestor of @cgrp
315 *
316 * Test whether @cgrp is a descendant of @ancestor. It also returns %true
317 * if @cgrp == @ancestor. This function is safe to call as long as @cgrp
318 * and @ancestor are accessible.
319 */
320bool cgroup_is_descendant(struct cgroup *cgrp, struct cgroup *ancestor)
321{
322 while (cgrp) {
323 if (cgrp == ancestor)
324 return true;
d51f39b0 325 cgrp = cgroup_parent(cgrp);
78574cf9
LZ
326 }
327 return false;
328}
ddbcc7e8 329
e9685a03 330static int cgroup_is_releasable(const struct cgroup *cgrp)
81a6a5cd
PM
331{
332 const int bits =
bd89aabc
PM
333 (1 << CGRP_RELEASABLE) |
334 (1 << CGRP_NOTIFY_ON_RELEASE);
335 return (cgrp->flags & bits) == bits;
81a6a5cd
PM
336}
337
e9685a03 338static int notify_on_release(const struct cgroup *cgrp)
81a6a5cd 339{
bd89aabc 340 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
81a6a5cd
PM
341}
342
1c6727af
TH
343/**
344 * for_each_css - iterate all css's of a cgroup
345 * @css: the iteration cursor
346 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
347 * @cgrp: the target cgroup to iterate css's of
348 *
aec3dfcb 349 * Should be called under cgroup_[tree_]mutex.
1c6727af
TH
350 */
351#define for_each_css(css, ssid, cgrp) \
352 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
353 if (!((css) = rcu_dereference_check( \
354 (cgrp)->subsys[(ssid)], \
355 lockdep_is_held(&cgroup_mutex)))) { } \
356 else
357
aec3dfcb
TH
358/**
359 * for_each_e_css - iterate all effective css's of a cgroup
360 * @css: the iteration cursor
361 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
362 * @cgrp: the target cgroup to iterate css's of
363 *
364 * Should be called under cgroup_[tree_]mutex.
365 */
366#define for_each_e_css(css, ssid, cgrp) \
367 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
368 if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \
369 ; \
370 else
371
30159ec7 372/**
3ed80a62 373 * for_each_subsys - iterate all enabled cgroup subsystems
30159ec7 374 * @ss: the iteration cursor
780cd8b3 375 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
30159ec7 376 */
780cd8b3 377#define for_each_subsys(ss, ssid) \
3ed80a62
TH
378 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT && \
379 (((ss) = cgroup_subsys[ssid]) || true); (ssid)++)
30159ec7 380
985ed670
TH
381/* iterate across the hierarchies */
382#define for_each_root(root) \
5549c497 383 list_for_each_entry((root), &cgroup_roots, root_list)
ddbcc7e8 384
f8f22e53
TH
385/* iterate over child cgrps, lock should be held throughout iteration */
386#define cgroup_for_each_live_child(child, cgrp) \
d5c419b6 387 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
8353da1f 388 if (({ lockdep_assert_held(&cgroup_mutex); \
f8f22e53
TH
389 cgroup_is_dead(child); })) \
390 ; \
391 else
7ae1bad9 392
81a6a5cd
PM
393/* the list of cgroups eligible for automatic release. Protected by
394 * release_list_lock */
395static LIST_HEAD(release_list);
cdcc136f 396static DEFINE_RAW_SPINLOCK(release_list_lock);
81a6a5cd
PM
397static void cgroup_release_agent(struct work_struct *work);
398static DECLARE_WORK(release_agent_work, cgroup_release_agent);
bd89aabc 399static void check_for_release(struct cgroup *cgrp);
81a6a5cd 400
69d0206c
TH
401/*
402 * A cgroup can be associated with multiple css_sets as different tasks may
403 * belong to different cgroups on different hierarchies. In the other
404 * direction, a css_set is naturally associated with multiple cgroups.
405 * This M:N relationship is represented by the following link structure
406 * which exists for each association and allows traversing the associations
407 * from both sides.
408 */
409struct cgrp_cset_link {
410 /* the cgroup and css_set this link associates */
411 struct cgroup *cgrp;
412 struct css_set *cset;
413
414 /* list of cgrp_cset_links anchored at cgrp->cset_links */
415 struct list_head cset_link;
416
417 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
418 struct list_head cgrp_link;
817929ec
PM
419};
420
172a2c06
TH
421/*
422 * The default css_set - used by init and its children prior to any
817929ec
PM
423 * hierarchies being mounted. It contains a pointer to the root state
424 * for each subsystem. Also used to anchor the list of css_sets. Not
425 * reference-counted, to improve performance when child cgroups
426 * haven't been created.
427 */
5024ae29 428struct css_set init_css_set = {
172a2c06
TH
429 .refcount = ATOMIC_INIT(1),
430 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links),
431 .tasks = LIST_HEAD_INIT(init_css_set.tasks),
432 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks),
433 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node),
434 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node),
435};
817929ec 436
172a2c06 437static int css_set_count = 1; /* 1 for init_css_set */
817929ec 438
842b597e
TH
439/**
440 * cgroup_update_populated - updated populated count of a cgroup
441 * @cgrp: the target cgroup
442 * @populated: inc or dec populated count
443 *
444 * @cgrp is either getting the first task (css_set) or losing the last.
445 * Update @cgrp->populated_cnt accordingly. The count is propagated
446 * towards root so that a given cgroup's populated_cnt is zero iff the
447 * cgroup and all its descendants are empty.
448 *
449 * @cgrp's interface file "cgroup.populated" is zero if
450 * @cgrp->populated_cnt is zero and 1 otherwise. When @cgrp->populated_cnt
451 * changes from or to zero, userland is notified that the content of the
452 * interface file has changed. This can be used to detect when @cgrp and
453 * its descendants become populated or empty.
454 */
455static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
456{
457 lockdep_assert_held(&css_set_rwsem);
458
459 do {
460 bool trigger;
461
462 if (populated)
463 trigger = !cgrp->populated_cnt++;
464 else
465 trigger = !--cgrp->populated_cnt;
466
467 if (!trigger)
468 break;
469
470 if (cgrp->populated_kn)
471 kernfs_notify(cgrp->populated_kn);
d51f39b0 472 cgrp = cgroup_parent(cgrp);
842b597e
TH
473 } while (cgrp);
474}
475
7717f7ba
PM
476/*
477 * hash table for cgroup groups. This improves the performance to find
478 * an existing css_set. This hash doesn't (currently) take into
479 * account cgroups in empty hierarchies.
480 */
472b1053 481#define CSS_SET_HASH_BITS 7
0ac801fe 482static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
472b1053 483
0ac801fe 484static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
472b1053 485{
0ac801fe 486 unsigned long key = 0UL;
30159ec7
TH
487 struct cgroup_subsys *ss;
488 int i;
472b1053 489
30159ec7 490 for_each_subsys(ss, i)
0ac801fe
LZ
491 key += (unsigned long)css[i];
492 key = (key >> 16) ^ key;
472b1053 493
0ac801fe 494 return key;
472b1053
LZ
495}
496
89c5509b 497static void put_css_set_locked(struct css_set *cset, bool taskexit)
b4f48b63 498{
69d0206c 499 struct cgrp_cset_link *link, *tmp_link;
2d8f243a
TH
500 struct cgroup_subsys *ss;
501 int ssid;
5abb8855 502
89c5509b
TH
503 lockdep_assert_held(&css_set_rwsem);
504
505 if (!atomic_dec_and_test(&cset->refcount))
146aa1bd 506 return;
81a6a5cd 507
2c6ab6d2 508 /* This css_set is dead. unlink it and release cgroup refcounts */
2d8f243a
TH
509 for_each_subsys(ss, ssid)
510 list_del(&cset->e_cset_node[ssid]);
5abb8855 511 hash_del(&cset->hlist);
2c6ab6d2
PM
512 css_set_count--;
513
69d0206c 514 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
2c6ab6d2 515 struct cgroup *cgrp = link->cgrp;
5abb8855 516
69d0206c
TH
517 list_del(&link->cset_link);
518 list_del(&link->cgrp_link);
71b5707e 519
96d365e0 520 /* @cgrp can't go away while we're holding css_set_rwsem */
842b597e
TH
521 if (list_empty(&cgrp->cset_links)) {
522 cgroup_update_populated(cgrp, false);
523 if (notify_on_release(cgrp)) {
524 if (taskexit)
525 set_bit(CGRP_RELEASABLE, &cgrp->flags);
526 check_for_release(cgrp);
527 }
81a6a5cd 528 }
2c6ab6d2
PM
529
530 kfree(link);
81a6a5cd 531 }
2c6ab6d2 532
5abb8855 533 kfree_rcu(cset, rcu_head);
b4f48b63
PM
534}
535
89c5509b
TH
536static void put_css_set(struct css_set *cset, bool taskexit)
537{
538 /*
539 * Ensure that the refcount doesn't hit zero while any readers
540 * can see it. Similar to atomic_dec_and_lock(), but for an
541 * rwlock
542 */
543 if (atomic_add_unless(&cset->refcount, -1, 1))
544 return;
545
546 down_write(&css_set_rwsem);
547 put_css_set_locked(cset, taskexit);
548 up_write(&css_set_rwsem);
549}
550
817929ec
PM
551/*
552 * refcounted get/put for css_set objects
553 */
5abb8855 554static inline void get_css_set(struct css_set *cset)
817929ec 555{
5abb8855 556 atomic_inc(&cset->refcount);
817929ec
PM
557}
558
b326f9d0 559/**
7717f7ba 560 * compare_css_sets - helper function for find_existing_css_set().
5abb8855
TH
561 * @cset: candidate css_set being tested
562 * @old_cset: existing css_set for a task
7717f7ba
PM
563 * @new_cgrp: cgroup that's being entered by the task
564 * @template: desired set of css pointers in css_set (pre-calculated)
565 *
6f4b7e63 566 * Returns true if "cset" matches "old_cset" except for the hierarchy
7717f7ba
PM
567 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
568 */
5abb8855
TH
569static bool compare_css_sets(struct css_set *cset,
570 struct css_set *old_cset,
7717f7ba
PM
571 struct cgroup *new_cgrp,
572 struct cgroup_subsys_state *template[])
573{
574 struct list_head *l1, *l2;
575
aec3dfcb
TH
576 /*
577 * On the default hierarchy, there can be csets which are
578 * associated with the same set of cgroups but different csses.
579 * Let's first ensure that csses match.
580 */
581 if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
7717f7ba 582 return false;
7717f7ba
PM
583
584 /*
585 * Compare cgroup pointers in order to distinguish between
aec3dfcb
TH
586 * different cgroups in hierarchies. As different cgroups may
587 * share the same effective css, this comparison is always
588 * necessary.
7717f7ba 589 */
69d0206c
TH
590 l1 = &cset->cgrp_links;
591 l2 = &old_cset->cgrp_links;
7717f7ba 592 while (1) {
69d0206c 593 struct cgrp_cset_link *link1, *link2;
5abb8855 594 struct cgroup *cgrp1, *cgrp2;
7717f7ba
PM
595
596 l1 = l1->next;
597 l2 = l2->next;
598 /* See if we reached the end - both lists are equal length. */
69d0206c
TH
599 if (l1 == &cset->cgrp_links) {
600 BUG_ON(l2 != &old_cset->cgrp_links);
7717f7ba
PM
601 break;
602 } else {
69d0206c 603 BUG_ON(l2 == &old_cset->cgrp_links);
7717f7ba
PM
604 }
605 /* Locate the cgroups associated with these links. */
69d0206c
TH
606 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
607 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
608 cgrp1 = link1->cgrp;
609 cgrp2 = link2->cgrp;
7717f7ba 610 /* Hierarchies should be linked in the same order. */
5abb8855 611 BUG_ON(cgrp1->root != cgrp2->root);
7717f7ba
PM
612
613 /*
614 * If this hierarchy is the hierarchy of the cgroup
615 * that's changing, then we need to check that this
616 * css_set points to the new cgroup; if it's any other
617 * hierarchy, then this css_set should point to the
618 * same cgroup as the old css_set.
619 */
5abb8855
TH
620 if (cgrp1->root == new_cgrp->root) {
621 if (cgrp1 != new_cgrp)
7717f7ba
PM
622 return false;
623 } else {
5abb8855 624 if (cgrp1 != cgrp2)
7717f7ba
PM
625 return false;
626 }
627 }
628 return true;
629}
630
b326f9d0
TH
631/**
632 * find_existing_css_set - init css array and find the matching css_set
633 * @old_cset: the css_set that we're using before the cgroup transition
634 * @cgrp: the cgroup that we're moving into
635 * @template: out param for the new set of csses, should be clear on entry
817929ec 636 */
5abb8855
TH
637static struct css_set *find_existing_css_set(struct css_set *old_cset,
638 struct cgroup *cgrp,
639 struct cgroup_subsys_state *template[])
b4f48b63 640{
3dd06ffa 641 struct cgroup_root *root = cgrp->root;
30159ec7 642 struct cgroup_subsys *ss;
5abb8855 643 struct css_set *cset;
0ac801fe 644 unsigned long key;
b326f9d0 645 int i;
817929ec 646
aae8aab4
BB
647 /*
648 * Build the set of subsystem state objects that we want to see in the
649 * new css_set. while subsystems can change globally, the entries here
650 * won't change, so no need for locking.
651 */
30159ec7 652 for_each_subsys(ss, i) {
f392e51c 653 if (root->subsys_mask & (1UL << i)) {
aec3dfcb
TH
654 /*
655 * @ss is in this hierarchy, so we want the
656 * effective css from @cgrp.
657 */
658 template[i] = cgroup_e_css(cgrp, ss);
817929ec 659 } else {
aec3dfcb
TH
660 /*
661 * @ss is not in this hierarchy, so we don't want
662 * to change the css.
663 */
5abb8855 664 template[i] = old_cset->subsys[i];
817929ec
PM
665 }
666 }
667
0ac801fe 668 key = css_set_hash(template);
5abb8855
TH
669 hash_for_each_possible(css_set_table, cset, hlist, key) {
670 if (!compare_css_sets(cset, old_cset, cgrp, template))
7717f7ba
PM
671 continue;
672
673 /* This css_set matches what we need */
5abb8855 674 return cset;
472b1053 675 }
817929ec
PM
676
677 /* No existing cgroup group matched */
678 return NULL;
679}
680
69d0206c 681static void free_cgrp_cset_links(struct list_head *links_to_free)
36553434 682{
69d0206c 683 struct cgrp_cset_link *link, *tmp_link;
36553434 684
69d0206c
TH
685 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
686 list_del(&link->cset_link);
36553434
LZ
687 kfree(link);
688 }
689}
690
69d0206c
TH
691/**
692 * allocate_cgrp_cset_links - allocate cgrp_cset_links
693 * @count: the number of links to allocate
694 * @tmp_links: list_head the allocated links are put on
695 *
696 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
697 * through ->cset_link. Returns 0 on success or -errno.
817929ec 698 */
69d0206c 699static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
817929ec 700{
69d0206c 701 struct cgrp_cset_link *link;
817929ec 702 int i;
69d0206c
TH
703
704 INIT_LIST_HEAD(tmp_links);
705
817929ec 706 for (i = 0; i < count; i++) {
f4f4be2b 707 link = kzalloc(sizeof(*link), GFP_KERNEL);
817929ec 708 if (!link) {
69d0206c 709 free_cgrp_cset_links(tmp_links);
817929ec
PM
710 return -ENOMEM;
711 }
69d0206c 712 list_add(&link->cset_link, tmp_links);
817929ec
PM
713 }
714 return 0;
715}
716
c12f65d4
LZ
717/**
718 * link_css_set - a helper function to link a css_set to a cgroup
69d0206c 719 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
5abb8855 720 * @cset: the css_set to be linked
c12f65d4
LZ
721 * @cgrp: the destination cgroup
722 */
69d0206c
TH
723static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
724 struct cgroup *cgrp)
c12f65d4 725{
69d0206c 726 struct cgrp_cset_link *link;
c12f65d4 727
69d0206c 728 BUG_ON(list_empty(tmp_links));
6803c006
TH
729
730 if (cgroup_on_dfl(cgrp))
731 cset->dfl_cgrp = cgrp;
732
69d0206c
TH
733 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
734 link->cset = cset;
7717f7ba 735 link->cgrp = cgrp;
842b597e
TH
736
737 if (list_empty(&cgrp->cset_links))
738 cgroup_update_populated(cgrp, true);
69d0206c 739 list_move(&link->cset_link, &cgrp->cset_links);
842b597e 740
7717f7ba
PM
741 /*
742 * Always add links to the tail of the list so that the list
743 * is sorted by order of hierarchy creation
744 */
69d0206c 745 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
c12f65d4
LZ
746}
747
b326f9d0
TH
748/**
749 * find_css_set - return a new css_set with one cgroup updated
750 * @old_cset: the baseline css_set
751 * @cgrp: the cgroup to be updated
752 *
753 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
754 * substituted into the appropriate hierarchy.
817929ec 755 */
5abb8855
TH
756static struct css_set *find_css_set(struct css_set *old_cset,
757 struct cgroup *cgrp)
817929ec 758{
b326f9d0 759 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
5abb8855 760 struct css_set *cset;
69d0206c
TH
761 struct list_head tmp_links;
762 struct cgrp_cset_link *link;
2d8f243a 763 struct cgroup_subsys *ss;
0ac801fe 764 unsigned long key;
2d8f243a 765 int ssid;
472b1053 766
b326f9d0
TH
767 lockdep_assert_held(&cgroup_mutex);
768
817929ec
PM
769 /* First see if we already have a cgroup group that matches
770 * the desired set */
96d365e0 771 down_read(&css_set_rwsem);
5abb8855
TH
772 cset = find_existing_css_set(old_cset, cgrp, template);
773 if (cset)
774 get_css_set(cset);
96d365e0 775 up_read(&css_set_rwsem);
817929ec 776
5abb8855
TH
777 if (cset)
778 return cset;
817929ec 779
f4f4be2b 780 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
5abb8855 781 if (!cset)
817929ec
PM
782 return NULL;
783
69d0206c 784 /* Allocate all the cgrp_cset_link objects that we'll need */
9871bf95 785 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
5abb8855 786 kfree(cset);
817929ec
PM
787 return NULL;
788 }
789
5abb8855 790 atomic_set(&cset->refcount, 1);
69d0206c 791 INIT_LIST_HEAD(&cset->cgrp_links);
5abb8855 792 INIT_LIST_HEAD(&cset->tasks);
c7561128 793 INIT_LIST_HEAD(&cset->mg_tasks);
1958d2d5 794 INIT_LIST_HEAD(&cset->mg_preload_node);
b3dc094e 795 INIT_LIST_HEAD(&cset->mg_node);
5abb8855 796 INIT_HLIST_NODE(&cset->hlist);
817929ec
PM
797
798 /* Copy the set of subsystem state objects generated in
799 * find_existing_css_set() */
5abb8855 800 memcpy(cset->subsys, template, sizeof(cset->subsys));
817929ec 801
96d365e0 802 down_write(&css_set_rwsem);
817929ec 803 /* Add reference counts and links from the new css_set. */
69d0206c 804 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
7717f7ba 805 struct cgroup *c = link->cgrp;
69d0206c 806
7717f7ba
PM
807 if (c->root == cgrp->root)
808 c = cgrp;
69d0206c 809 link_css_set(&tmp_links, cset, c);
7717f7ba 810 }
817929ec 811
69d0206c 812 BUG_ON(!list_empty(&tmp_links));
817929ec 813
817929ec 814 css_set_count++;
472b1053 815
2d8f243a 816 /* Add @cset to the hash table */
5abb8855
TH
817 key = css_set_hash(cset->subsys);
818 hash_add(css_set_table, &cset->hlist, key);
472b1053 819
2d8f243a
TH
820 for_each_subsys(ss, ssid)
821 list_add_tail(&cset->e_cset_node[ssid],
822 &cset->subsys[ssid]->cgroup->e_csets[ssid]);
823
96d365e0 824 up_write(&css_set_rwsem);
817929ec 825
5abb8855 826 return cset;
b4f48b63
PM
827}
828
3dd06ffa 829static struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
7717f7ba 830{
3dd06ffa 831 struct cgroup *root_cgrp = kf_root->kn->priv;
2bd59d48 832
3dd06ffa 833 return root_cgrp->root;
2bd59d48
TH
834}
835
3dd06ffa 836static int cgroup_init_root_id(struct cgroup_root *root)
f2e85d57
TH
837{
838 int id;
839
840 lockdep_assert_held(&cgroup_mutex);
841
985ed670 842 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
f2e85d57
TH
843 if (id < 0)
844 return id;
845
846 root->hierarchy_id = id;
847 return 0;
848}
849
3dd06ffa 850static void cgroup_exit_root_id(struct cgroup_root *root)
f2e85d57
TH
851{
852 lockdep_assert_held(&cgroup_mutex);
853
854 if (root->hierarchy_id) {
855 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
856 root->hierarchy_id = 0;
857 }
858}
859
3dd06ffa 860static void cgroup_free_root(struct cgroup_root *root)
f2e85d57
TH
861{
862 if (root) {
863 /* hierarhcy ID shoulid already have been released */
864 WARN_ON_ONCE(root->hierarchy_id);
865
866 idr_destroy(&root->cgroup_idr);
867 kfree(root);
868 }
869}
870
3dd06ffa 871static void cgroup_destroy_root(struct cgroup_root *root)
59f5296b 872{
3dd06ffa 873 struct cgroup *cgrp = &root->cgrp;
f2e85d57 874 struct cgrp_cset_link *link, *tmp_link;
f2e85d57 875
2bd59d48 876 mutex_lock(&cgroup_mutex);
f2e85d57 877
776f02fa 878 BUG_ON(atomic_read(&root->nr_cgrps));
d5c419b6 879 BUG_ON(!list_empty(&cgrp->self.children));
f2e85d57 880
f2e85d57 881 /* Rebind all subsystems back to the default hierarchy */
f392e51c 882 rebind_subsystems(&cgrp_dfl_root, root->subsys_mask);
7717f7ba 883
7717f7ba 884 /*
f2e85d57
TH
885 * Release all the links from cset_links to this hierarchy's
886 * root cgroup
7717f7ba 887 */
96d365e0 888 down_write(&css_set_rwsem);
f2e85d57
TH
889
890 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
891 list_del(&link->cset_link);
892 list_del(&link->cgrp_link);
893 kfree(link);
894 }
96d365e0 895 up_write(&css_set_rwsem);
f2e85d57
TH
896
897 if (!list_empty(&root->root_list)) {
898 list_del(&root->root_list);
899 cgroup_root_count--;
900 }
901
902 cgroup_exit_root_id(root);
903
904 mutex_unlock(&cgroup_mutex);
f2e85d57 905
2bd59d48 906 kernfs_destroy_root(root->kf_root);
f2e85d57
TH
907 cgroup_free_root(root);
908}
909
ceb6a081
TH
910/* look up cgroup associated with given css_set on the specified hierarchy */
911static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
3dd06ffa 912 struct cgroup_root *root)
7717f7ba 913{
7717f7ba
PM
914 struct cgroup *res = NULL;
915
96d365e0
TH
916 lockdep_assert_held(&cgroup_mutex);
917 lockdep_assert_held(&css_set_rwsem);
918
5abb8855 919 if (cset == &init_css_set) {
3dd06ffa 920 res = &root->cgrp;
7717f7ba 921 } else {
69d0206c
TH
922 struct cgrp_cset_link *link;
923
924 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 925 struct cgroup *c = link->cgrp;
69d0206c 926
7717f7ba
PM
927 if (c->root == root) {
928 res = c;
929 break;
930 }
931 }
932 }
96d365e0 933
7717f7ba
PM
934 BUG_ON(!res);
935 return res;
936}
937
ddbcc7e8 938/*
ceb6a081
TH
939 * Return the cgroup for "task" from the given hierarchy. Must be
940 * called with cgroup_mutex and css_set_rwsem held.
941 */
942static struct cgroup *task_cgroup_from_root(struct task_struct *task,
3dd06ffa 943 struct cgroup_root *root)
ceb6a081
TH
944{
945 /*
946 * No need to lock the task - since we hold cgroup_mutex the
947 * task can't change groups, so the only thing that can happen
948 * is that it exits and its css is set back to init_css_set.
949 */
950 return cset_cgroup_from_root(task_css_set(task), root);
951}
952
ddbcc7e8 953/*
ddbcc7e8
PM
954 * A task must hold cgroup_mutex to modify cgroups.
955 *
956 * Any task can increment and decrement the count field without lock.
957 * So in general, code holding cgroup_mutex can't rely on the count
958 * field not changing. However, if the count goes to zero, then only
956db3ca 959 * cgroup_attach_task() can increment it again. Because a count of zero
ddbcc7e8
PM
960 * means that no tasks are currently attached, therefore there is no
961 * way a task attached to that cgroup can fork (the other way to
962 * increment the count). So code holding cgroup_mutex can safely
963 * assume that if the count is zero, it will stay zero. Similarly, if
964 * a task holds cgroup_mutex on a cgroup with zero count, it
965 * knows that the cgroup won't be removed, as cgroup_rmdir()
966 * needs that mutex.
967 *
ddbcc7e8
PM
968 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
969 * (usually) take cgroup_mutex. These are the two most performance
970 * critical pieces of code here. The exception occurs on cgroup_exit(),
971 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
972 * is taken, and if the cgroup count is zero, a usermode call made
a043e3b2
LZ
973 * to the release agent with the name of the cgroup (path relative to
974 * the root of cgroup file system) as the argument.
ddbcc7e8
PM
975 *
976 * A cgroup can only be deleted if both its 'count' of using tasks
977 * is zero, and its list of 'children' cgroups is empty. Since all
978 * tasks in the system use _some_ cgroup, and since there is always at
3dd06ffa 979 * least one task in the system (init, pid == 1), therefore, root cgroup
ddbcc7e8 980 * always has either children cgroups and/or using tasks. So we don't
3dd06ffa 981 * need a special hack to ensure that root cgroup cannot be deleted.
ddbcc7e8
PM
982 *
983 * P.S. One more locking exception. RCU is used to guard the
956db3ca 984 * update of a tasks cgroup pointer by cgroup_attach_task()
ddbcc7e8
PM
985 */
986
69dfa00c 987static int cgroup_populate_dir(struct cgroup *cgrp, unsigned int subsys_mask);
2bd59d48 988static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
828c0950 989static const struct file_operations proc_cgroupstats_operations;
a424316c 990
8d7e6fb0
TH
991static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
992 char *buf)
ddbcc7e8 993{
8d7e6fb0
TH
994 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
995 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
996 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
997 cft->ss->name, cft->name);
998 else
999 strncpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1000 return buf;
ddbcc7e8
PM
1001}
1002
f2e85d57
TH
1003/**
1004 * cgroup_file_mode - deduce file mode of a control file
1005 * @cft: the control file in question
1006 *
1007 * returns cft->mode if ->mode is not 0
1008 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
1009 * returns S_IRUGO if it has only a read handler
1010 * returns S_IWUSR if it has only a write hander
1011 */
1012static umode_t cgroup_file_mode(const struct cftype *cft)
65dff759 1013{
f2e85d57 1014 umode_t mode = 0;
65dff759 1015
f2e85d57
TH
1016 if (cft->mode)
1017 return cft->mode;
1018
1019 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1020 mode |= S_IRUGO;
1021
6770c64e 1022 if (cft->write_u64 || cft->write_s64 || cft->write)
f2e85d57
TH
1023 mode |= S_IWUSR;
1024
1025 return mode;
65dff759
LZ
1026}
1027
59f5296b 1028static void cgroup_get(struct cgroup *cgrp)
be445626 1029{
2bd59d48 1030 WARN_ON_ONCE(cgroup_is_dead(cgrp));
9d755d33 1031 css_get(&cgrp->self);
be445626
LZ
1032}
1033
59f5296b 1034static void cgroup_put(struct cgroup *cgrp)
be445626 1035{
9d755d33 1036 css_put(&cgrp->self);
be445626
LZ
1037}
1038
a9746d8d
TH
1039/**
1040 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1041 * @kn: the kernfs_node being serviced
1042 *
1043 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1044 * the method finishes if locking succeeded. Note that once this function
1045 * returns the cgroup returned by cgroup_kn_lock_live() may become
1046 * inaccessible any time. If the caller intends to continue to access the
1047 * cgroup, it should pin it before invoking this function.
1048 */
1049static void cgroup_kn_unlock(struct kernfs_node *kn)
ddbcc7e8 1050{
a9746d8d
TH
1051 struct cgroup *cgrp;
1052
1053 if (kernfs_type(kn) == KERNFS_DIR)
1054 cgrp = kn->priv;
1055 else
1056 cgrp = kn->parent->priv;
1057
1058 mutex_unlock(&cgroup_mutex);
a9746d8d
TH
1059
1060 kernfs_unbreak_active_protection(kn);
1061 cgroup_put(cgrp);
ddbcc7e8
PM
1062}
1063
a9746d8d
TH
1064/**
1065 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1066 * @kn: the kernfs_node being serviced
1067 *
1068 * This helper is to be used by a cgroup kernfs method currently servicing
1069 * @kn. It breaks the active protection, performs cgroup locking and
1070 * verifies that the associated cgroup is alive. Returns the cgroup if
1071 * alive; otherwise, %NULL. A successful return should be undone by a
1072 * matching cgroup_kn_unlock() invocation.
1073 *
1074 * Any cgroup kernfs method implementation which requires locking the
1075 * associated cgroup should use this helper. It avoids nesting cgroup
1076 * locking under kernfs active protection and allows all kernfs operations
1077 * including self-removal.
1078 */
1079static struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn)
05ef1d7c 1080{
a9746d8d
TH
1081 struct cgroup *cgrp;
1082
1083 if (kernfs_type(kn) == KERNFS_DIR)
1084 cgrp = kn->priv;
1085 else
1086 cgrp = kn->parent->priv;
05ef1d7c 1087
2739d3cc 1088 /*
01f6474c 1089 * We're gonna grab cgroup_mutex which nests outside kernfs
a9746d8d
TH
1090 * active_ref. cgroup liveliness check alone provides enough
1091 * protection against removal. Ensure @cgrp stays accessible and
1092 * break the active_ref protection.
2739d3cc 1093 */
a9746d8d
TH
1094 cgroup_get(cgrp);
1095 kernfs_break_active_protection(kn);
1096
2bd59d48 1097 mutex_lock(&cgroup_mutex);
05ef1d7c 1098
a9746d8d
TH
1099 if (!cgroup_is_dead(cgrp))
1100 return cgrp;
1101
1102 cgroup_kn_unlock(kn);
1103 return NULL;
ddbcc7e8 1104}
05ef1d7c 1105
2739d3cc 1106static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
05ef1d7c 1107{
2bd59d48 1108 char name[CGROUP_FILE_NAME_MAX];
05ef1d7c 1109
01f6474c 1110 lockdep_assert_held(&cgroup_mutex);
2bd59d48 1111 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
05ef1d7c
TH
1112}
1113
13af07df 1114/**
628f7cd4 1115 * cgroup_clear_dir - remove subsys files in a cgroup directory
8f89140a 1116 * @cgrp: target cgroup
13af07df
AR
1117 * @subsys_mask: mask of the subsystem ids whose files should be removed
1118 */
69dfa00c 1119static void cgroup_clear_dir(struct cgroup *cgrp, unsigned int subsys_mask)
05ef1d7c 1120{
13af07df 1121 struct cgroup_subsys *ss;
b420ba7d 1122 int i;
05ef1d7c 1123
b420ba7d 1124 for_each_subsys(ss, i) {
0adb0704 1125 struct cftype *cfts;
b420ba7d 1126
69dfa00c 1127 if (!(subsys_mask & (1 << i)))
13af07df 1128 continue;
0adb0704
TH
1129 list_for_each_entry(cfts, &ss->cfts, node)
1130 cgroup_addrm_files(cgrp, cfts, false);
13af07df 1131 }
ddbcc7e8
PM
1132}
1133
69dfa00c 1134static int rebind_subsystems(struct cgroup_root *dst_root, unsigned int ss_mask)
ddbcc7e8 1135{
30159ec7 1136 struct cgroup_subsys *ss;
5533e011 1137 unsigned int tmp_ss_mask;
2d8f243a 1138 int ssid, i, ret;
ddbcc7e8 1139
ace2bee8 1140 lockdep_assert_held(&cgroup_mutex);
ddbcc7e8 1141
5df36032
TH
1142 for_each_subsys(ss, ssid) {
1143 if (!(ss_mask & (1 << ssid)))
1144 continue;
aae8aab4 1145
7fd8c565
TH
1146 /* if @ss has non-root csses attached to it, can't move */
1147 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)))
3ed80a62 1148 return -EBUSY;
1d5be6b2 1149
5df36032 1150 /* can't move between two non-dummy roots either */
7fd8c565 1151 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
5df36032 1152 return -EBUSY;
ddbcc7e8
PM
1153 }
1154
5533e011
TH
1155 /* skip creating root files on dfl_root for inhibited subsystems */
1156 tmp_ss_mask = ss_mask;
1157 if (dst_root == &cgrp_dfl_root)
1158 tmp_ss_mask &= ~cgrp_dfl_root_inhibit_ss_mask;
1159
1160 ret = cgroup_populate_dir(&dst_root->cgrp, tmp_ss_mask);
a2dd4247
TH
1161 if (ret) {
1162 if (dst_root != &cgrp_dfl_root)
5df36032 1163 return ret;
ddbcc7e8 1164
a2dd4247
TH
1165 /*
1166 * Rebinding back to the default root is not allowed to
1167 * fail. Using both default and non-default roots should
1168 * be rare. Moving subsystems back and forth even more so.
1169 * Just warn about it and continue.
1170 */
1171 if (cgrp_dfl_root_visible) {
69dfa00c 1172 pr_warn("failed to create files (%d) while rebinding 0x%x to default root\n",
a2a1f9ea 1173 ret, ss_mask);
ed3d261b 1174 pr_warn("you may retry by moving them to a different hierarchy and unbinding\n");
a2dd4247 1175 }
5df36032 1176 }
3126121f
TH
1177
1178 /*
1179 * Nothing can fail from this point on. Remove files for the
1180 * removed subsystems and rebind each subsystem.
1181 */
5df36032 1182 for_each_subsys(ss, ssid)
a2dd4247 1183 if (ss_mask & (1 << ssid))
3dd06ffa 1184 cgroup_clear_dir(&ss->root->cgrp, 1 << ssid);
a8a648c4 1185
5df36032 1186 for_each_subsys(ss, ssid) {
3dd06ffa 1187 struct cgroup_root *src_root;
5df36032 1188 struct cgroup_subsys_state *css;
2d8f243a 1189 struct css_set *cset;
a8a648c4 1190
5df36032
TH
1191 if (!(ss_mask & (1 << ssid)))
1192 continue;
a8a648c4 1193
5df36032 1194 src_root = ss->root;
3dd06ffa 1195 css = cgroup_css(&src_root->cgrp, ss);
a8a648c4 1196
3dd06ffa 1197 WARN_ON(!css || cgroup_css(&dst_root->cgrp, ss));
73e80ed8 1198
3dd06ffa
TH
1199 RCU_INIT_POINTER(src_root->cgrp.subsys[ssid], NULL);
1200 rcu_assign_pointer(dst_root->cgrp.subsys[ssid], css);
5df36032 1201 ss->root = dst_root;
3dd06ffa 1202 css->cgroup = &dst_root->cgrp;
73e80ed8 1203
2d8f243a
TH
1204 down_write(&css_set_rwsem);
1205 hash_for_each(css_set_table, i, cset, hlist)
1206 list_move_tail(&cset->e_cset_node[ss->id],
1207 &dst_root->cgrp.e_csets[ss->id]);
1208 up_write(&css_set_rwsem);
1209
f392e51c
TH
1210 src_root->subsys_mask &= ~(1 << ssid);
1211 src_root->cgrp.child_subsys_mask &= ~(1 << ssid);
1212
bd53d617 1213 /* default hierarchy doesn't enable controllers by default */
f392e51c 1214 dst_root->subsys_mask |= 1 << ssid;
bd53d617
TH
1215 if (dst_root != &cgrp_dfl_root)
1216 dst_root->cgrp.child_subsys_mask |= 1 << ssid;
a8a648c4 1217
5df36032
TH
1218 if (ss->bind)
1219 ss->bind(css);
ddbcc7e8 1220 }
ddbcc7e8 1221
a2dd4247 1222 kernfs_activate(dst_root->cgrp.kn);
ddbcc7e8
PM
1223 return 0;
1224}
1225
2bd59d48
TH
1226static int cgroup_show_options(struct seq_file *seq,
1227 struct kernfs_root *kf_root)
ddbcc7e8 1228{
3dd06ffa 1229 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
ddbcc7e8 1230 struct cgroup_subsys *ss;
b85d2040 1231 int ssid;
ddbcc7e8 1232
b85d2040 1233 for_each_subsys(ss, ssid)
f392e51c 1234 if (root->subsys_mask & (1 << ssid))
b85d2040 1235 seq_printf(seq, ",%s", ss->name);
873fe09e
TH
1236 if (root->flags & CGRP_ROOT_SANE_BEHAVIOR)
1237 seq_puts(seq, ",sane_behavior");
93438629 1238 if (root->flags & CGRP_ROOT_NOPREFIX)
ddbcc7e8 1239 seq_puts(seq, ",noprefix");
93438629 1240 if (root->flags & CGRP_ROOT_XATTR)
03b1cde6 1241 seq_puts(seq, ",xattr");
69e943b7
TH
1242
1243 spin_lock(&release_agent_path_lock);
81a6a5cd
PM
1244 if (strlen(root->release_agent_path))
1245 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
69e943b7
TH
1246 spin_unlock(&release_agent_path_lock);
1247
3dd06ffa 1248 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
97978e6d 1249 seq_puts(seq, ",clone_children");
c6d57f33
PM
1250 if (strlen(root->name))
1251 seq_printf(seq, ",name=%s", root->name);
ddbcc7e8
PM
1252 return 0;
1253}
1254
1255struct cgroup_sb_opts {
69dfa00c
TH
1256 unsigned int subsys_mask;
1257 unsigned int flags;
81a6a5cd 1258 char *release_agent;
2260e7fc 1259 bool cpuset_clone_children;
c6d57f33 1260 char *name;
2c6ab6d2
PM
1261 /* User explicitly requested empty subsystem */
1262 bool none;
ddbcc7e8
PM
1263};
1264
cf5d5941 1265static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
ddbcc7e8 1266{
32a8cf23
DL
1267 char *token, *o = data;
1268 bool all_ss = false, one_ss = false;
69dfa00c 1269 unsigned int mask = -1U;
30159ec7
TH
1270 struct cgroup_subsys *ss;
1271 int i;
f9ab5b5b
LZ
1272
1273#ifdef CONFIG_CPUSETS
69dfa00c 1274 mask = ~(1U << cpuset_cgrp_id);
f9ab5b5b 1275#endif
ddbcc7e8 1276
c6d57f33 1277 memset(opts, 0, sizeof(*opts));
ddbcc7e8
PM
1278
1279 while ((token = strsep(&o, ",")) != NULL) {
1280 if (!*token)
1281 return -EINVAL;
32a8cf23 1282 if (!strcmp(token, "none")) {
2c6ab6d2
PM
1283 /* Explicitly have no subsystems */
1284 opts->none = true;
32a8cf23
DL
1285 continue;
1286 }
1287 if (!strcmp(token, "all")) {
1288 /* Mutually exclusive option 'all' + subsystem name */
1289 if (one_ss)
1290 return -EINVAL;
1291 all_ss = true;
1292 continue;
1293 }
873fe09e
TH
1294 if (!strcmp(token, "__DEVEL__sane_behavior")) {
1295 opts->flags |= CGRP_ROOT_SANE_BEHAVIOR;
1296 continue;
1297 }
32a8cf23 1298 if (!strcmp(token, "noprefix")) {
93438629 1299 opts->flags |= CGRP_ROOT_NOPREFIX;
32a8cf23
DL
1300 continue;
1301 }
1302 if (!strcmp(token, "clone_children")) {
2260e7fc 1303 opts->cpuset_clone_children = true;
32a8cf23
DL
1304 continue;
1305 }
03b1cde6 1306 if (!strcmp(token, "xattr")) {
93438629 1307 opts->flags |= CGRP_ROOT_XATTR;
03b1cde6
AR
1308 continue;
1309 }
32a8cf23 1310 if (!strncmp(token, "release_agent=", 14)) {
81a6a5cd
PM
1311 /* Specifying two release agents is forbidden */
1312 if (opts->release_agent)
1313 return -EINVAL;
c6d57f33 1314 opts->release_agent =
e400c285 1315 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
81a6a5cd
PM
1316 if (!opts->release_agent)
1317 return -ENOMEM;
32a8cf23
DL
1318 continue;
1319 }
1320 if (!strncmp(token, "name=", 5)) {
c6d57f33
PM
1321 const char *name = token + 5;
1322 /* Can't specify an empty name */
1323 if (!strlen(name))
1324 return -EINVAL;
1325 /* Must match [\w.-]+ */
1326 for (i = 0; i < strlen(name); i++) {
1327 char c = name[i];
1328 if (isalnum(c))
1329 continue;
1330 if ((c == '.') || (c == '-') || (c == '_'))
1331 continue;
1332 return -EINVAL;
1333 }
1334 /* Specifying two names is forbidden */
1335 if (opts->name)
1336 return -EINVAL;
1337 opts->name = kstrndup(name,
e400c285 1338 MAX_CGROUP_ROOT_NAMELEN - 1,
c6d57f33
PM
1339 GFP_KERNEL);
1340 if (!opts->name)
1341 return -ENOMEM;
32a8cf23
DL
1342
1343 continue;
1344 }
1345
30159ec7 1346 for_each_subsys(ss, i) {
32a8cf23
DL
1347 if (strcmp(token, ss->name))
1348 continue;
1349 if (ss->disabled)
1350 continue;
1351
1352 /* Mutually exclusive option 'all' + subsystem name */
1353 if (all_ss)
1354 return -EINVAL;
69dfa00c 1355 opts->subsys_mask |= (1 << i);
32a8cf23
DL
1356 one_ss = true;
1357
1358 break;
1359 }
1360 if (i == CGROUP_SUBSYS_COUNT)
1361 return -ENOENT;
1362 }
1363
2c6ab6d2
PM
1364 /* Consistency checks */
1365
873fe09e 1366 if (opts->flags & CGRP_ROOT_SANE_BEHAVIOR) {
ed3d261b 1367 pr_warn("sane_behavior: this is still under development and its behaviors will change, proceed at your own risk\n");
873fe09e 1368
d3ba07c3
TH
1369 if ((opts->flags & (CGRP_ROOT_NOPREFIX | CGRP_ROOT_XATTR)) ||
1370 opts->cpuset_clone_children || opts->release_agent ||
1371 opts->name) {
ed3d261b 1372 pr_err("sane_behavior: noprefix, xattr, clone_children, release_agent and name are not allowed\n");
873fe09e
TH
1373 return -EINVAL;
1374 }
a2dd4247
TH
1375 } else {
1376 /*
1377 * If the 'all' option was specified select all the
1378 * subsystems, otherwise if 'none', 'name=' and a subsystem
1379 * name options were not specified, let's default to 'all'
1380 */
1381 if (all_ss || (!one_ss && !opts->none && !opts->name))
1382 for_each_subsys(ss, i)
1383 if (!ss->disabled)
69dfa00c 1384 opts->subsys_mask |= (1 << i);
873fe09e 1385
a2dd4247
TH
1386 /*
1387 * We either have to specify by name or by subsystems. (So
1388 * all empty hierarchies must have a name).
1389 */
1390 if (!opts->subsys_mask && !opts->name)
873fe09e 1391 return -EINVAL;
873fe09e
TH
1392 }
1393
f9ab5b5b
LZ
1394 /*
1395 * Option noprefix was introduced just for backward compatibility
1396 * with the old cpuset, so we allow noprefix only if mounting just
1397 * the cpuset subsystem.
1398 */
93438629 1399 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
f9ab5b5b
LZ
1400 return -EINVAL;
1401
2c6ab6d2
PM
1402
1403 /* Can't specify "none" and some subsystems */
a1a71b45 1404 if (opts->subsys_mask && opts->none)
2c6ab6d2
PM
1405 return -EINVAL;
1406
ddbcc7e8
PM
1407 return 0;
1408}
1409
2bd59d48 1410static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
ddbcc7e8
PM
1411{
1412 int ret = 0;
3dd06ffa 1413 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
ddbcc7e8 1414 struct cgroup_sb_opts opts;
69dfa00c 1415 unsigned int added_mask, removed_mask;
ddbcc7e8 1416
873fe09e 1417 if (root->flags & CGRP_ROOT_SANE_BEHAVIOR) {
ed3d261b 1418 pr_err("sane_behavior: remount is not allowed\n");
873fe09e
TH
1419 return -EINVAL;
1420 }
1421
ddbcc7e8
PM
1422 mutex_lock(&cgroup_mutex);
1423
1424 /* See what subsystems are wanted */
1425 ret = parse_cgroupfs_options(data, &opts);
1426 if (ret)
1427 goto out_unlock;
1428
f392e51c 1429 if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
ed3d261b 1430 pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
a2a1f9ea 1431 task_tgid_nr(current), current->comm);
8b5a5a9d 1432
f392e51c
TH
1433 added_mask = opts.subsys_mask & ~root->subsys_mask;
1434 removed_mask = root->subsys_mask & ~opts.subsys_mask;
13af07df 1435
cf5d5941 1436 /* Don't allow flags or name to change at remount */
0ce6cba3 1437 if (((opts.flags ^ root->flags) & CGRP_ROOT_OPTION_MASK) ||
cf5d5941 1438 (opts.name && strcmp(opts.name, root->name))) {
69dfa00c 1439 pr_err("option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"\n",
0ce6cba3
TH
1440 opts.flags & CGRP_ROOT_OPTION_MASK, opts.name ?: "",
1441 root->flags & CGRP_ROOT_OPTION_MASK, root->name);
c6d57f33
PM
1442 ret = -EINVAL;
1443 goto out_unlock;
1444 }
1445
f172e67c 1446 /* remounting is not allowed for populated hierarchies */
d5c419b6 1447 if (!list_empty(&root->cgrp.self.children)) {
f172e67c 1448 ret = -EBUSY;
0670e08b 1449 goto out_unlock;
cf5d5941 1450 }
ddbcc7e8 1451
5df36032 1452 ret = rebind_subsystems(root, added_mask);
3126121f 1453 if (ret)
0670e08b 1454 goto out_unlock;
ddbcc7e8 1455
3dd06ffa 1456 rebind_subsystems(&cgrp_dfl_root, removed_mask);
5df36032 1457
69e943b7
TH
1458 if (opts.release_agent) {
1459 spin_lock(&release_agent_path_lock);
81a6a5cd 1460 strcpy(root->release_agent_path, opts.release_agent);
69e943b7
TH
1461 spin_unlock(&release_agent_path_lock);
1462 }
ddbcc7e8 1463 out_unlock:
66bdc9cf 1464 kfree(opts.release_agent);
c6d57f33 1465 kfree(opts.name);
ddbcc7e8 1466 mutex_unlock(&cgroup_mutex);
ddbcc7e8
PM
1467 return ret;
1468}
1469
afeb0f9f
TH
1470/*
1471 * To reduce the fork() overhead for systems that are not actually using
1472 * their cgroups capability, we don't maintain the lists running through
1473 * each css_set to its tasks until we see the list actually used - in other
1474 * words after the first mount.
1475 */
1476static bool use_task_css_set_links __read_mostly;
1477
1478static void cgroup_enable_task_cg_lists(void)
1479{
1480 struct task_struct *p, *g;
1481
96d365e0 1482 down_write(&css_set_rwsem);
afeb0f9f
TH
1483
1484 if (use_task_css_set_links)
1485 goto out_unlock;
1486
1487 use_task_css_set_links = true;
1488
1489 /*
1490 * We need tasklist_lock because RCU is not safe against
1491 * while_each_thread(). Besides, a forking task that has passed
1492 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1493 * is not guaranteed to have its child immediately visible in the
1494 * tasklist if we walk through it with RCU.
1495 */
1496 read_lock(&tasklist_lock);
1497 do_each_thread(g, p) {
afeb0f9f
TH
1498 WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1499 task_css_set(p) != &init_css_set);
1500
1501 /*
1502 * We should check if the process is exiting, otherwise
1503 * it will race with cgroup_exit() in that the list
1504 * entry won't be deleted though the process has exited.
f153ad11
TH
1505 * Do it while holding siglock so that we don't end up
1506 * racing against cgroup_exit().
afeb0f9f 1507 */
f153ad11 1508 spin_lock_irq(&p->sighand->siglock);
eaf797ab
TH
1509 if (!(p->flags & PF_EXITING)) {
1510 struct css_set *cset = task_css_set(p);
1511
1512 list_add(&p->cg_list, &cset->tasks);
1513 get_css_set(cset);
1514 }
f153ad11 1515 spin_unlock_irq(&p->sighand->siglock);
afeb0f9f
TH
1516 } while_each_thread(g, p);
1517 read_unlock(&tasklist_lock);
1518out_unlock:
96d365e0 1519 up_write(&css_set_rwsem);
afeb0f9f 1520}
ddbcc7e8 1521
cc31edce
PM
1522static void init_cgroup_housekeeping(struct cgroup *cgrp)
1523{
2d8f243a
TH
1524 struct cgroup_subsys *ss;
1525 int ssid;
1526
d5c419b6
TH
1527 INIT_LIST_HEAD(&cgrp->self.sibling);
1528 INIT_LIST_HEAD(&cgrp->self.children);
69d0206c 1529 INIT_LIST_HEAD(&cgrp->cset_links);
cc31edce 1530 INIT_LIST_HEAD(&cgrp->release_list);
72a8cb30
BB
1531 INIT_LIST_HEAD(&cgrp->pidlists);
1532 mutex_init(&cgrp->pidlist_mutex);
9d800df1 1533 cgrp->self.cgroup = cgrp;
184faf32 1534 cgrp->self.flags |= CSS_ONLINE;
2d8f243a
TH
1535
1536 for_each_subsys(ss, ssid)
1537 INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
f8f22e53
TH
1538
1539 init_waitqueue_head(&cgrp->offline_waitq);
cc31edce 1540}
c6d57f33 1541
3dd06ffa 1542static void init_cgroup_root(struct cgroup_root *root,
172a2c06 1543 struct cgroup_sb_opts *opts)
ddbcc7e8 1544{
3dd06ffa 1545 struct cgroup *cgrp = &root->cgrp;
b0ca5a84 1546
ddbcc7e8 1547 INIT_LIST_HEAD(&root->root_list);
3c9c825b 1548 atomic_set(&root->nr_cgrps, 1);
bd89aabc 1549 cgrp->root = root;
cc31edce 1550 init_cgroup_housekeeping(cgrp);
4e96ee8e 1551 idr_init(&root->cgroup_idr);
c6d57f33 1552
c6d57f33
PM
1553 root->flags = opts->flags;
1554 if (opts->release_agent)
1555 strcpy(root->release_agent_path, opts->release_agent);
1556 if (opts->name)
1557 strcpy(root->name, opts->name);
2260e7fc 1558 if (opts->cpuset_clone_children)
3dd06ffa 1559 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
c6d57f33
PM
1560}
1561
69dfa00c 1562static int cgroup_setup_root(struct cgroup_root *root, unsigned int ss_mask)
2c6ab6d2 1563{
d427dfeb 1564 LIST_HEAD(tmp_links);
3dd06ffa 1565 struct cgroup *root_cgrp = &root->cgrp;
d427dfeb 1566 struct css_set *cset;
d427dfeb 1567 int i, ret;
2c6ab6d2 1568
d427dfeb 1569 lockdep_assert_held(&cgroup_mutex);
c6d57f33 1570
6fa4918d 1571 ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_NOWAIT);
d427dfeb 1572 if (ret < 0)
2bd59d48 1573 goto out;
d427dfeb 1574 root_cgrp->id = ret;
c6d57f33 1575
9d755d33
TH
1576 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release);
1577 if (ret)
1578 goto out;
1579
d427dfeb 1580 /*
96d365e0 1581 * We're accessing css_set_count without locking css_set_rwsem here,
d427dfeb
TH
1582 * but that's OK - it can only be increased by someone holding
1583 * cgroup_lock, and that's us. The worst that can happen is that we
1584 * have some link structures left over
1585 */
1586 ret = allocate_cgrp_cset_links(css_set_count, &tmp_links);
1587 if (ret)
9d755d33 1588 goto cancel_ref;
ddbcc7e8 1589
985ed670 1590 ret = cgroup_init_root_id(root);
ddbcc7e8 1591 if (ret)
9d755d33 1592 goto cancel_ref;
ddbcc7e8 1593
2bd59d48
TH
1594 root->kf_root = kernfs_create_root(&cgroup_kf_syscall_ops,
1595 KERNFS_ROOT_CREATE_DEACTIVATED,
1596 root_cgrp);
1597 if (IS_ERR(root->kf_root)) {
1598 ret = PTR_ERR(root->kf_root);
1599 goto exit_root_id;
1600 }
1601 root_cgrp->kn = root->kf_root->kn;
ddbcc7e8 1602
d427dfeb
TH
1603 ret = cgroup_addrm_files(root_cgrp, cgroup_base_files, true);
1604 if (ret)
2bd59d48 1605 goto destroy_root;
ddbcc7e8 1606
5df36032 1607 ret = rebind_subsystems(root, ss_mask);
d427dfeb 1608 if (ret)
2bd59d48 1609 goto destroy_root;
ddbcc7e8 1610
d427dfeb
TH
1611 /*
1612 * There must be no failure case after here, since rebinding takes
1613 * care of subsystems' refcounts, which are explicitly dropped in
1614 * the failure exit path.
1615 */
1616 list_add(&root->root_list, &cgroup_roots);
1617 cgroup_root_count++;
0df6a63f 1618
d427dfeb 1619 /*
3dd06ffa 1620 * Link the root cgroup in this hierarchy into all the css_set
d427dfeb
TH
1621 * objects.
1622 */
96d365e0 1623 down_write(&css_set_rwsem);
d427dfeb
TH
1624 hash_for_each(css_set_table, i, cset, hlist)
1625 link_css_set(&tmp_links, cset, root_cgrp);
96d365e0 1626 up_write(&css_set_rwsem);
ddbcc7e8 1627
d5c419b6 1628 BUG_ON(!list_empty(&root_cgrp->self.children));
3c9c825b 1629 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
ddbcc7e8 1630
2bd59d48 1631 kernfs_activate(root_cgrp->kn);
d427dfeb 1632 ret = 0;
2bd59d48 1633 goto out;
d427dfeb 1634
2bd59d48
TH
1635destroy_root:
1636 kernfs_destroy_root(root->kf_root);
1637 root->kf_root = NULL;
1638exit_root_id:
d427dfeb 1639 cgroup_exit_root_id(root);
9d755d33
TH
1640cancel_ref:
1641 percpu_ref_cancel_init(&root_cgrp->self.refcnt);
2bd59d48 1642out:
d427dfeb
TH
1643 free_cgrp_cset_links(&tmp_links);
1644 return ret;
ddbcc7e8
PM
1645}
1646
f7e83571 1647static struct dentry *cgroup_mount(struct file_system_type *fs_type,
ddbcc7e8 1648 int flags, const char *unused_dev_name,
f7e83571 1649 void *data)
ddbcc7e8 1650{
970317aa 1651 struct cgroup_subsys *ss;
3dd06ffa 1652 struct cgroup_root *root;
ddbcc7e8 1653 struct cgroup_sb_opts opts;
2bd59d48 1654 struct dentry *dentry;
8e30e2b8 1655 int ret;
970317aa 1656 int i;
c6b3d5bc 1657 bool new_sb;
ddbcc7e8 1658
56fde9e0
TH
1659 /*
1660 * The first time anyone tries to mount a cgroup, enable the list
1661 * linking each css_set to its tasks and fix up all existing tasks.
1662 */
1663 if (!use_task_css_set_links)
1664 cgroup_enable_task_cg_lists();
e37a06f1 1665
aae8aab4 1666 mutex_lock(&cgroup_mutex);
8e30e2b8
TH
1667
1668 /* First find the desired set of subsystems */
ddbcc7e8 1669 ret = parse_cgroupfs_options(data, &opts);
c6d57f33 1670 if (ret)
8e30e2b8 1671 goto out_unlock;
a015edd2 1672
2bd59d48 1673 /* look for a matching existing root */
a2dd4247
TH
1674 if (!opts.subsys_mask && !opts.none && !opts.name) {
1675 cgrp_dfl_root_visible = true;
1676 root = &cgrp_dfl_root;
1677 cgroup_get(&root->cgrp);
1678 ret = 0;
1679 goto out_unlock;
ddbcc7e8
PM
1680 }
1681
970317aa
LZ
1682 /*
1683 * Destruction of cgroup root is asynchronous, so subsystems may
1684 * still be dying after the previous unmount. Let's drain the
1685 * dying subsystems. We just need to ensure that the ones
1686 * unmounted previously finish dying and don't care about new ones
1687 * starting. Testing ref liveliness is good enough.
1688 */
1689 for_each_subsys(ss, i) {
1690 if (!(opts.subsys_mask & (1 << i)) ||
1691 ss->root == &cgrp_dfl_root)
1692 continue;
1693
1694 if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt)) {
1695 mutex_unlock(&cgroup_mutex);
1696 msleep(10);
1697 ret = restart_syscall();
1698 goto out_free;
1699 }
1700 cgroup_put(&ss->root->cgrp);
1701 }
1702
985ed670 1703 for_each_root(root) {
2bd59d48 1704 bool name_match = false;
3126121f 1705
3dd06ffa 1706 if (root == &cgrp_dfl_root)
985ed670 1707 continue;
3126121f 1708
cf5d5941 1709 /*
2bd59d48
TH
1710 * If we asked for a name then it must match. Also, if
1711 * name matches but sybsys_mask doesn't, we should fail.
1712 * Remember whether name matched.
cf5d5941 1713 */
2bd59d48
TH
1714 if (opts.name) {
1715 if (strcmp(opts.name, root->name))
1716 continue;
1717 name_match = true;
1718 }
ddbcc7e8 1719
c6d57f33 1720 /*
2bd59d48
TH
1721 * If we asked for subsystems (or explicitly for no
1722 * subsystems) then they must match.
c6d57f33 1723 */
2bd59d48 1724 if ((opts.subsys_mask || opts.none) &&
f392e51c 1725 (opts.subsys_mask != root->subsys_mask)) {
2bd59d48
TH
1726 if (!name_match)
1727 continue;
1728 ret = -EBUSY;
1729 goto out_unlock;
1730 }
873fe09e 1731
c7ba8287 1732 if ((root->flags ^ opts.flags) & CGRP_ROOT_OPTION_MASK) {
2a0ff3fb 1733 if ((root->flags | opts.flags) & CGRP_ROOT_SANE_BEHAVIOR) {
ed3d261b 1734 pr_err("sane_behavior: new mount options should match the existing superblock\n");
2a0ff3fb 1735 ret = -EINVAL;
8e30e2b8 1736 goto out_unlock;
2a0ff3fb 1737 } else {
ed3d261b 1738 pr_warn("new mount options do not match the existing superblock, will be ignored\n");
2a0ff3fb 1739 }
873fe09e 1740 }
ddbcc7e8 1741
776f02fa 1742 /*
9d755d33
TH
1743 * A root's lifetime is governed by its root cgroup.
1744 * tryget_live failure indicate that the root is being
1745 * destroyed. Wait for destruction to complete so that the
1746 * subsystems are free. We can use wait_queue for the wait
1747 * but this path is super cold. Let's just sleep for a bit
1748 * and retry.
776f02fa 1749 */
9d755d33 1750 if (!percpu_ref_tryget_live(&root->cgrp.self.refcnt)) {
776f02fa 1751 mutex_unlock(&cgroup_mutex);
776f02fa 1752 msleep(10);
a015edd2
TH
1753 ret = restart_syscall();
1754 goto out_free;
776f02fa 1755 }
ddbcc7e8 1756
776f02fa 1757 ret = 0;
2bd59d48 1758 goto out_unlock;
ddbcc7e8 1759 }
ddbcc7e8 1760
817929ec 1761 /*
172a2c06
TH
1762 * No such thing, create a new one. name= matching without subsys
1763 * specification is allowed for already existing hierarchies but we
1764 * can't create new one without subsys specification.
817929ec 1765 */
172a2c06
TH
1766 if (!opts.subsys_mask && !opts.none) {
1767 ret = -EINVAL;
1768 goto out_unlock;
817929ec 1769 }
817929ec 1770
172a2c06
TH
1771 root = kzalloc(sizeof(*root), GFP_KERNEL);
1772 if (!root) {
1773 ret = -ENOMEM;
2bd59d48 1774 goto out_unlock;
839ec545 1775 }
e5f6a860 1776
172a2c06
TH
1777 init_cgroup_root(root, &opts);
1778
35585573 1779 ret = cgroup_setup_root(root, opts.subsys_mask);
2bd59d48
TH
1780 if (ret)
1781 cgroup_free_root(root);
fa3ca07e 1782
8e30e2b8 1783out_unlock:
ddbcc7e8 1784 mutex_unlock(&cgroup_mutex);
a015edd2 1785out_free:
c6d57f33
PM
1786 kfree(opts.release_agent);
1787 kfree(opts.name);
03b1cde6 1788
2bd59d48 1789 if (ret)
8e30e2b8 1790 return ERR_PTR(ret);
2bd59d48 1791
c9482a5b
JZ
1792 dentry = kernfs_mount(fs_type, flags, root->kf_root,
1793 CGROUP_SUPER_MAGIC, &new_sb);
c6b3d5bc 1794 if (IS_ERR(dentry) || !new_sb)
3dd06ffa 1795 cgroup_put(&root->cgrp);
2bd59d48
TH
1796 return dentry;
1797}
1798
1799static void cgroup_kill_sb(struct super_block *sb)
1800{
1801 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
3dd06ffa 1802 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2bd59d48 1803
9d755d33
TH
1804 /*
1805 * If @root doesn't have any mounts or children, start killing it.
1806 * This prevents new mounts by disabling percpu_ref_tryget_live().
1807 * cgroup_mount() may wait for @root's release.
1f779fb2
LZ
1808 *
1809 * And don't kill the default root.
9d755d33 1810 */
1f779fb2
LZ
1811 if (css_has_online_children(&root->cgrp.self) ||
1812 root == &cgrp_dfl_root)
9d755d33
TH
1813 cgroup_put(&root->cgrp);
1814 else
1815 percpu_ref_kill(&root->cgrp.self.refcnt);
1816
2bd59d48 1817 kernfs_kill_sb(sb);
ddbcc7e8
PM
1818}
1819
1820static struct file_system_type cgroup_fs_type = {
1821 .name = "cgroup",
f7e83571 1822 .mount = cgroup_mount,
ddbcc7e8
PM
1823 .kill_sb = cgroup_kill_sb,
1824};
1825
676db4af
GKH
1826static struct kobject *cgroup_kobj;
1827
857a2beb 1828/**
913ffdb5 1829 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
857a2beb 1830 * @task: target task
857a2beb
TH
1831 * @buf: the buffer to write the path into
1832 * @buflen: the length of the buffer
1833 *
913ffdb5
TH
1834 * Determine @task's cgroup on the first (the one with the lowest non-zero
1835 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
1836 * function grabs cgroup_mutex and shouldn't be used inside locks used by
1837 * cgroup controller callbacks.
1838 *
e61734c5 1839 * Return value is the same as kernfs_path().
857a2beb 1840 */
e61734c5 1841char *task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
857a2beb 1842{
3dd06ffa 1843 struct cgroup_root *root;
913ffdb5 1844 struct cgroup *cgrp;
e61734c5
TH
1845 int hierarchy_id = 1;
1846 char *path = NULL;
857a2beb
TH
1847
1848 mutex_lock(&cgroup_mutex);
96d365e0 1849 down_read(&css_set_rwsem);
857a2beb 1850
913ffdb5
TH
1851 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
1852
857a2beb
TH
1853 if (root) {
1854 cgrp = task_cgroup_from_root(task, root);
e61734c5 1855 path = cgroup_path(cgrp, buf, buflen);
913ffdb5
TH
1856 } else {
1857 /* if no hierarchy exists, everyone is in "/" */
e61734c5
TH
1858 if (strlcpy(buf, "/", buflen) < buflen)
1859 path = buf;
857a2beb
TH
1860 }
1861
96d365e0 1862 up_read(&css_set_rwsem);
857a2beb 1863 mutex_unlock(&cgroup_mutex);
e61734c5 1864 return path;
857a2beb 1865}
913ffdb5 1866EXPORT_SYMBOL_GPL(task_cgroup_path);
857a2beb 1867
b3dc094e 1868/* used to track tasks and other necessary states during migration */
2f7ee569 1869struct cgroup_taskset {
b3dc094e
TH
1870 /* the src and dst cset list running through cset->mg_node */
1871 struct list_head src_csets;
1872 struct list_head dst_csets;
1873
1874 /*
1875 * Fields for cgroup_taskset_*() iteration.
1876 *
1877 * Before migration is committed, the target migration tasks are on
1878 * ->mg_tasks of the csets on ->src_csets. After, on ->mg_tasks of
1879 * the csets on ->dst_csets. ->csets point to either ->src_csets
1880 * or ->dst_csets depending on whether migration is committed.
1881 *
1882 * ->cur_csets and ->cur_task point to the current task position
1883 * during iteration.
1884 */
1885 struct list_head *csets;
1886 struct css_set *cur_cset;
1887 struct task_struct *cur_task;
2f7ee569
TH
1888};
1889
1890/**
1891 * cgroup_taskset_first - reset taskset and return the first task
1892 * @tset: taskset of interest
1893 *
1894 * @tset iteration is initialized and the first task is returned.
1895 */
1896struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
1897{
b3dc094e
TH
1898 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
1899 tset->cur_task = NULL;
1900
1901 return cgroup_taskset_next(tset);
2f7ee569 1902}
2f7ee569
TH
1903
1904/**
1905 * cgroup_taskset_next - iterate to the next task in taskset
1906 * @tset: taskset of interest
1907 *
1908 * Return the next task in @tset. Iteration must have been initialized
1909 * with cgroup_taskset_first().
1910 */
1911struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
1912{
b3dc094e
TH
1913 struct css_set *cset = tset->cur_cset;
1914 struct task_struct *task = tset->cur_task;
2f7ee569 1915
b3dc094e
TH
1916 while (&cset->mg_node != tset->csets) {
1917 if (!task)
1918 task = list_first_entry(&cset->mg_tasks,
1919 struct task_struct, cg_list);
1920 else
1921 task = list_next_entry(task, cg_list);
2f7ee569 1922
b3dc094e
TH
1923 if (&task->cg_list != &cset->mg_tasks) {
1924 tset->cur_cset = cset;
1925 tset->cur_task = task;
1926 return task;
1927 }
2f7ee569 1928
b3dc094e
TH
1929 cset = list_next_entry(cset, mg_node);
1930 task = NULL;
1931 }
2f7ee569 1932
b3dc094e 1933 return NULL;
2f7ee569 1934}
2f7ee569 1935
cb0f1fe9 1936/**
74a1166d 1937 * cgroup_task_migrate - move a task from one cgroup to another.
60106946 1938 * @old_cgrp: the cgroup @tsk is being migrated from
cb0f1fe9
TH
1939 * @tsk: the task being migrated
1940 * @new_cset: the new css_set @tsk is being attached to
74a1166d 1941 *
cb0f1fe9 1942 * Must be called with cgroup_mutex, threadgroup and css_set_rwsem locked.
74a1166d 1943 */
5abb8855
TH
1944static void cgroup_task_migrate(struct cgroup *old_cgrp,
1945 struct task_struct *tsk,
1946 struct css_set *new_cset)
74a1166d 1947{
5abb8855 1948 struct css_set *old_cset;
74a1166d 1949
cb0f1fe9
TH
1950 lockdep_assert_held(&cgroup_mutex);
1951 lockdep_assert_held(&css_set_rwsem);
1952
74a1166d 1953 /*
026085ef
MSB
1954 * We are synchronized through threadgroup_lock() against PF_EXITING
1955 * setting such that we can't race against cgroup_exit() changing the
1956 * css_set to init_css_set and dropping the old one.
74a1166d 1957 */
c84cdf75 1958 WARN_ON_ONCE(tsk->flags & PF_EXITING);
a8ad805c 1959 old_cset = task_css_set(tsk);
74a1166d 1960
b3dc094e 1961 get_css_set(new_cset);
5abb8855 1962 rcu_assign_pointer(tsk->cgroups, new_cset);
74a1166d 1963
1b9aba49
TH
1964 /*
1965 * Use move_tail so that cgroup_taskset_first() still returns the
1966 * leader after migration. This works because cgroup_migrate()
1967 * ensures that the dst_cset of the leader is the first on the
1968 * tset's dst_csets list.
1969 */
1970 list_move_tail(&tsk->cg_list, &new_cset->mg_tasks);
74a1166d
BB
1971
1972 /*
5abb8855
TH
1973 * We just gained a reference on old_cset by taking it from the
1974 * task. As trading it for new_cset is protected by cgroup_mutex,
1975 * we're safe to drop it here; it will be freed under RCU.
74a1166d 1976 */
5abb8855 1977 set_bit(CGRP_RELEASABLE, &old_cgrp->flags);
cb0f1fe9 1978 put_css_set_locked(old_cset, false);
74a1166d
BB
1979}
1980
a043e3b2 1981/**
1958d2d5
TH
1982 * cgroup_migrate_finish - cleanup after attach
1983 * @preloaded_csets: list of preloaded css_sets
74a1166d 1984 *
1958d2d5
TH
1985 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
1986 * those functions for details.
74a1166d 1987 */
1958d2d5 1988static void cgroup_migrate_finish(struct list_head *preloaded_csets)
74a1166d 1989{
1958d2d5 1990 struct css_set *cset, *tmp_cset;
74a1166d 1991
1958d2d5
TH
1992 lockdep_assert_held(&cgroup_mutex);
1993
1994 down_write(&css_set_rwsem);
1995 list_for_each_entry_safe(cset, tmp_cset, preloaded_csets, mg_preload_node) {
1996 cset->mg_src_cgrp = NULL;
1997 cset->mg_dst_cset = NULL;
1998 list_del_init(&cset->mg_preload_node);
1999 put_css_set_locked(cset, false);
2000 }
2001 up_write(&css_set_rwsem);
2002}
2003
2004/**
2005 * cgroup_migrate_add_src - add a migration source css_set
2006 * @src_cset: the source css_set to add
2007 * @dst_cgrp: the destination cgroup
2008 * @preloaded_csets: list of preloaded css_sets
2009 *
2010 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
2011 * @src_cset and add it to @preloaded_csets, which should later be cleaned
2012 * up by cgroup_migrate_finish().
2013 *
2014 * This function may be called without holding threadgroup_lock even if the
2015 * target is a process. Threads may be created and destroyed but as long
2016 * as cgroup_mutex is not dropped, no new css_set can be put into play and
2017 * the preloaded css_sets are guaranteed to cover all migrations.
2018 */
2019static void cgroup_migrate_add_src(struct css_set *src_cset,
2020 struct cgroup *dst_cgrp,
2021 struct list_head *preloaded_csets)
2022{
2023 struct cgroup *src_cgrp;
2024
2025 lockdep_assert_held(&cgroup_mutex);
2026 lockdep_assert_held(&css_set_rwsem);
2027
2028 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2029
1958d2d5
TH
2030 if (!list_empty(&src_cset->mg_preload_node))
2031 return;
2032
2033 WARN_ON(src_cset->mg_src_cgrp);
2034 WARN_ON(!list_empty(&src_cset->mg_tasks));
2035 WARN_ON(!list_empty(&src_cset->mg_node));
2036
2037 src_cset->mg_src_cgrp = src_cgrp;
2038 get_css_set(src_cset);
2039 list_add(&src_cset->mg_preload_node, preloaded_csets);
2040}
2041
2042/**
2043 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
f817de98 2044 * @dst_cgrp: the destination cgroup (may be %NULL)
1958d2d5
TH
2045 * @preloaded_csets: list of preloaded source css_sets
2046 *
2047 * Tasks are about to be moved to @dst_cgrp and all the source css_sets
2048 * have been preloaded to @preloaded_csets. This function looks up and
f817de98
TH
2049 * pins all destination css_sets, links each to its source, and append them
2050 * to @preloaded_csets. If @dst_cgrp is %NULL, the destination of each
2051 * source css_set is assumed to be its cgroup on the default hierarchy.
1958d2d5
TH
2052 *
2053 * This function must be called after cgroup_migrate_add_src() has been
2054 * called on each migration source css_set. After migration is performed
2055 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2056 * @preloaded_csets.
2057 */
2058static int cgroup_migrate_prepare_dst(struct cgroup *dst_cgrp,
2059 struct list_head *preloaded_csets)
2060{
2061 LIST_HEAD(csets);
f817de98 2062 struct css_set *src_cset, *tmp_cset;
1958d2d5
TH
2063
2064 lockdep_assert_held(&cgroup_mutex);
2065
f8f22e53
TH
2066 /*
2067 * Except for the root, child_subsys_mask must be zero for a cgroup
2068 * with tasks so that child cgroups don't compete against tasks.
2069 */
d51f39b0 2070 if (dst_cgrp && cgroup_on_dfl(dst_cgrp) && cgroup_parent(dst_cgrp) &&
f8f22e53
TH
2071 dst_cgrp->child_subsys_mask)
2072 return -EBUSY;
2073
1958d2d5 2074 /* look up the dst cset for each src cset and link it to src */
f817de98 2075 list_for_each_entry_safe(src_cset, tmp_cset, preloaded_csets, mg_preload_node) {
1958d2d5
TH
2076 struct css_set *dst_cset;
2077
f817de98
TH
2078 dst_cset = find_css_set(src_cset,
2079 dst_cgrp ?: src_cset->dfl_cgrp);
1958d2d5
TH
2080 if (!dst_cset)
2081 goto err;
2082
2083 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
f817de98
TH
2084
2085 /*
2086 * If src cset equals dst, it's noop. Drop the src.
2087 * cgroup_migrate() will skip the cset too. Note that we
2088 * can't handle src == dst as some nodes are used by both.
2089 */
2090 if (src_cset == dst_cset) {
2091 src_cset->mg_src_cgrp = NULL;
2092 list_del_init(&src_cset->mg_preload_node);
2093 put_css_set(src_cset, false);
2094 put_css_set(dst_cset, false);
2095 continue;
2096 }
2097
1958d2d5
TH
2098 src_cset->mg_dst_cset = dst_cset;
2099
2100 if (list_empty(&dst_cset->mg_preload_node))
2101 list_add(&dst_cset->mg_preload_node, &csets);
2102 else
2103 put_css_set(dst_cset, false);
2104 }
2105
f817de98 2106 list_splice_tail(&csets, preloaded_csets);
1958d2d5
TH
2107 return 0;
2108err:
2109 cgroup_migrate_finish(&csets);
2110 return -ENOMEM;
2111}
2112
2113/**
2114 * cgroup_migrate - migrate a process or task to a cgroup
2115 * @cgrp: the destination cgroup
2116 * @leader: the leader of the process or the task to migrate
2117 * @threadgroup: whether @leader points to the whole process or a single task
2118 *
2119 * Migrate a process or task denoted by @leader to @cgrp. If migrating a
2120 * process, the caller must be holding threadgroup_lock of @leader. The
2121 * caller is also responsible for invoking cgroup_migrate_add_src() and
2122 * cgroup_migrate_prepare_dst() on the targets before invoking this
2123 * function and following up with cgroup_migrate_finish().
2124 *
2125 * As long as a controller's ->can_attach() doesn't fail, this function is
2126 * guaranteed to succeed. This means that, excluding ->can_attach()
2127 * failure, when migrating multiple targets, the success or failure can be
2128 * decided for all targets by invoking group_migrate_prepare_dst() before
2129 * actually starting migrating.
2130 */
2131static int cgroup_migrate(struct cgroup *cgrp, struct task_struct *leader,
2132 bool threadgroup)
74a1166d 2133{
b3dc094e
TH
2134 struct cgroup_taskset tset = {
2135 .src_csets = LIST_HEAD_INIT(tset.src_csets),
2136 .dst_csets = LIST_HEAD_INIT(tset.dst_csets),
2137 .csets = &tset.src_csets,
2138 };
1c6727af 2139 struct cgroup_subsys_state *css, *failed_css = NULL;
b3dc094e
TH
2140 struct css_set *cset, *tmp_cset;
2141 struct task_struct *task, *tmp_task;
2142 int i, ret;
74a1166d 2143
fb5d2b4c
MSB
2144 /*
2145 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2146 * already PF_EXITING could be freed from underneath us unless we
2147 * take an rcu_read_lock.
2148 */
b3dc094e 2149 down_write(&css_set_rwsem);
fb5d2b4c 2150 rcu_read_lock();
9db8de37 2151 task = leader;
74a1166d 2152 do {
9db8de37
TH
2153 /* @task either already exited or can't exit until the end */
2154 if (task->flags & PF_EXITING)
ea84753c 2155 goto next;
134d3373 2156
eaf797ab
TH
2157 /* leave @task alone if post_fork() hasn't linked it yet */
2158 if (list_empty(&task->cg_list))
ea84753c 2159 goto next;
cd3d0952 2160
b3dc094e 2161 cset = task_css_set(task);
1958d2d5 2162 if (!cset->mg_src_cgrp)
ea84753c 2163 goto next;
b3dc094e 2164
61d1d219 2165 /*
1b9aba49
TH
2166 * cgroup_taskset_first() must always return the leader.
2167 * Take care to avoid disturbing the ordering.
61d1d219 2168 */
1b9aba49
TH
2169 list_move_tail(&task->cg_list, &cset->mg_tasks);
2170 if (list_empty(&cset->mg_node))
2171 list_add_tail(&cset->mg_node, &tset.src_csets);
2172 if (list_empty(&cset->mg_dst_cset->mg_node))
2173 list_move_tail(&cset->mg_dst_cset->mg_node,
2174 &tset.dst_csets);
ea84753c 2175 next:
081aa458
LZ
2176 if (!threadgroup)
2177 break;
9db8de37 2178 } while_each_thread(leader, task);
fb5d2b4c 2179 rcu_read_unlock();
b3dc094e 2180 up_write(&css_set_rwsem);
74a1166d 2181
134d3373 2182 /* methods shouldn't be called if no task is actually migrating */
b3dc094e
TH
2183 if (list_empty(&tset.src_csets))
2184 return 0;
134d3373 2185
1958d2d5 2186 /* check that we can legitimately attach to the cgroup */
aec3dfcb 2187 for_each_e_css(css, i, cgrp) {
1c6727af 2188 if (css->ss->can_attach) {
9db8de37
TH
2189 ret = css->ss->can_attach(css, &tset);
2190 if (ret) {
1c6727af 2191 failed_css = css;
74a1166d
BB
2192 goto out_cancel_attach;
2193 }
2194 }
74a1166d
BB
2195 }
2196
2197 /*
1958d2d5
TH
2198 * Now that we're guaranteed success, proceed to move all tasks to
2199 * the new cgroup. There are no failure cases after here, so this
2200 * is the commit point.
74a1166d 2201 */
cb0f1fe9 2202 down_write(&css_set_rwsem);
b3dc094e
TH
2203 list_for_each_entry(cset, &tset.src_csets, mg_node) {
2204 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list)
2205 cgroup_task_migrate(cset->mg_src_cgrp, task,
2206 cset->mg_dst_cset);
74a1166d 2207 }
cb0f1fe9 2208 up_write(&css_set_rwsem);
74a1166d
BB
2209
2210 /*
1958d2d5
TH
2211 * Migration is committed, all target tasks are now on dst_csets.
2212 * Nothing is sensitive to fork() after this point. Notify
2213 * controllers that migration is complete.
74a1166d 2214 */
1958d2d5 2215 tset.csets = &tset.dst_csets;
74a1166d 2216
aec3dfcb 2217 for_each_e_css(css, i, cgrp)
1c6727af
TH
2218 if (css->ss->attach)
2219 css->ss->attach(css, &tset);
74a1166d 2220
9db8de37 2221 ret = 0;
b3dc094e
TH
2222 goto out_release_tset;
2223
74a1166d 2224out_cancel_attach:
aec3dfcb 2225 for_each_e_css(css, i, cgrp) {
b3dc094e
TH
2226 if (css == failed_css)
2227 break;
2228 if (css->ss->cancel_attach)
2229 css->ss->cancel_attach(css, &tset);
74a1166d 2230 }
b3dc094e
TH
2231out_release_tset:
2232 down_write(&css_set_rwsem);
2233 list_splice_init(&tset.dst_csets, &tset.src_csets);
2234 list_for_each_entry_safe(cset, tmp_cset, &tset.src_csets, mg_node) {
1b9aba49 2235 list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
b3dc094e 2236 list_del_init(&cset->mg_node);
b3dc094e
TH
2237 }
2238 up_write(&css_set_rwsem);
9db8de37 2239 return ret;
74a1166d
BB
2240}
2241
1958d2d5
TH
2242/**
2243 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2244 * @dst_cgrp: the cgroup to attach to
2245 * @leader: the task or the leader of the threadgroup to be attached
2246 * @threadgroup: attach the whole threadgroup?
2247 *
0e1d768f 2248 * Call holding cgroup_mutex and threadgroup_lock of @leader.
1958d2d5
TH
2249 */
2250static int cgroup_attach_task(struct cgroup *dst_cgrp,
2251 struct task_struct *leader, bool threadgroup)
2252{
2253 LIST_HEAD(preloaded_csets);
2254 struct task_struct *task;
2255 int ret;
2256
2257 /* look up all src csets */
2258 down_read(&css_set_rwsem);
2259 rcu_read_lock();
2260 task = leader;
2261 do {
2262 cgroup_migrate_add_src(task_css_set(task), dst_cgrp,
2263 &preloaded_csets);
2264 if (!threadgroup)
2265 break;
2266 } while_each_thread(leader, task);
2267 rcu_read_unlock();
2268 up_read(&css_set_rwsem);
2269
2270 /* prepare dst csets and commit */
2271 ret = cgroup_migrate_prepare_dst(dst_cgrp, &preloaded_csets);
2272 if (!ret)
2273 ret = cgroup_migrate(dst_cgrp, leader, threadgroup);
2274
2275 cgroup_migrate_finish(&preloaded_csets);
2276 return ret;
74a1166d
BB
2277}
2278
2279/*
2280 * Find the task_struct of the task to attach by vpid and pass it along to the
cd3d0952 2281 * function to attach either it or all tasks in its threadgroup. Will lock
0e1d768f 2282 * cgroup_mutex and threadgroup.
bbcb81d0 2283 */
acbef755
TH
2284static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
2285 size_t nbytes, loff_t off, bool threadgroup)
bbcb81d0 2286{
bbcb81d0 2287 struct task_struct *tsk;
c69e8d9c 2288 const struct cred *cred = current_cred(), *tcred;
e76ecaee 2289 struct cgroup *cgrp;
acbef755 2290 pid_t pid;
bbcb81d0
PM
2291 int ret;
2292
acbef755
TH
2293 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2294 return -EINVAL;
2295
e76ecaee
TH
2296 cgrp = cgroup_kn_lock_live(of->kn);
2297 if (!cgrp)
74a1166d
BB
2298 return -ENODEV;
2299
b78949eb
MSB
2300retry_find_task:
2301 rcu_read_lock();
bbcb81d0 2302 if (pid) {
73507f33 2303 tsk = find_task_by_vpid(pid);
74a1166d
BB
2304 if (!tsk) {
2305 rcu_read_unlock();
dd4b0a46 2306 ret = -ESRCH;
b78949eb 2307 goto out_unlock_cgroup;
bbcb81d0 2308 }
74a1166d
BB
2309 /*
2310 * even if we're attaching all tasks in the thread group, we
2311 * only need to check permissions on one of them.
2312 */
c69e8d9c 2313 tcred = __task_cred(tsk);
14a590c3
EB
2314 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2315 !uid_eq(cred->euid, tcred->uid) &&
2316 !uid_eq(cred->euid, tcred->suid)) {
c69e8d9c 2317 rcu_read_unlock();
b78949eb
MSB
2318 ret = -EACCES;
2319 goto out_unlock_cgroup;
bbcb81d0 2320 }
b78949eb
MSB
2321 } else
2322 tsk = current;
cd3d0952
TH
2323
2324 if (threadgroup)
b78949eb 2325 tsk = tsk->group_leader;
c4c27fbd
MG
2326
2327 /*
14a40ffc 2328 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
c4c27fbd
MG
2329 * trapped in a cpuset, or RT worker may be born in a cgroup
2330 * with no rt_runtime allocated. Just say no.
2331 */
14a40ffc 2332 if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
c4c27fbd
MG
2333 ret = -EINVAL;
2334 rcu_read_unlock();
2335 goto out_unlock_cgroup;
2336 }
2337
b78949eb
MSB
2338 get_task_struct(tsk);
2339 rcu_read_unlock();
2340
2341 threadgroup_lock(tsk);
2342 if (threadgroup) {
2343 if (!thread_group_leader(tsk)) {
2344 /*
2345 * a race with de_thread from another thread's exec()
2346 * may strip us of our leadership, if this happens,
2347 * there is no choice but to throw this task away and
2348 * try again; this is
2349 * "double-double-toil-and-trouble-check locking".
2350 */
2351 threadgroup_unlock(tsk);
2352 put_task_struct(tsk);
2353 goto retry_find_task;
2354 }
081aa458
LZ
2355 }
2356
2357 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
2358
cd3d0952
TH
2359 threadgroup_unlock(tsk);
2360
bbcb81d0 2361 put_task_struct(tsk);
b78949eb 2362out_unlock_cgroup:
e76ecaee 2363 cgroup_kn_unlock(of->kn);
acbef755 2364 return ret ?: nbytes;
bbcb81d0
PM
2365}
2366
7ae1bad9
TH
2367/**
2368 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2369 * @from: attach to all cgroups of a given task
2370 * @tsk: the task to be attached
2371 */
2372int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2373{
3dd06ffa 2374 struct cgroup_root *root;
7ae1bad9
TH
2375 int retval = 0;
2376
47cfcd09 2377 mutex_lock(&cgroup_mutex);
985ed670 2378 for_each_root(root) {
96d365e0
TH
2379 struct cgroup *from_cgrp;
2380
3dd06ffa 2381 if (root == &cgrp_dfl_root)
985ed670
TH
2382 continue;
2383
96d365e0
TH
2384 down_read(&css_set_rwsem);
2385 from_cgrp = task_cgroup_from_root(from, root);
2386 up_read(&css_set_rwsem);
7ae1bad9 2387
6f4b7e63 2388 retval = cgroup_attach_task(from_cgrp, tsk, false);
7ae1bad9
TH
2389 if (retval)
2390 break;
2391 }
47cfcd09 2392 mutex_unlock(&cgroup_mutex);
7ae1bad9
TH
2393
2394 return retval;
2395}
2396EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2397
acbef755
TH
2398static ssize_t cgroup_tasks_write(struct kernfs_open_file *of,
2399 char *buf, size_t nbytes, loff_t off)
74a1166d 2400{
acbef755 2401 return __cgroup_procs_write(of, buf, nbytes, off, false);
74a1166d
BB
2402}
2403
acbef755
TH
2404static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
2405 char *buf, size_t nbytes, loff_t off)
af351026 2406{
acbef755 2407 return __cgroup_procs_write(of, buf, nbytes, off, true);
af351026
PM
2408}
2409
451af504
TH
2410static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of,
2411 char *buf, size_t nbytes, loff_t off)
e788e066 2412{
e76ecaee 2413 struct cgroup *cgrp;
5f469907 2414
e76ecaee 2415 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
5f469907 2416
e76ecaee
TH
2417 cgrp = cgroup_kn_lock_live(of->kn);
2418 if (!cgrp)
e788e066 2419 return -ENODEV;
69e943b7 2420 spin_lock(&release_agent_path_lock);
e76ecaee
TH
2421 strlcpy(cgrp->root->release_agent_path, strstrip(buf),
2422 sizeof(cgrp->root->release_agent_path));
69e943b7 2423 spin_unlock(&release_agent_path_lock);
e76ecaee 2424 cgroup_kn_unlock(of->kn);
451af504 2425 return nbytes;
e788e066
PM
2426}
2427
2da8ca82 2428static int cgroup_release_agent_show(struct seq_file *seq, void *v)
e788e066 2429{
2da8ca82 2430 struct cgroup *cgrp = seq_css(seq)->cgroup;
182446d0 2431
46cfeb04 2432 spin_lock(&release_agent_path_lock);
e788e066 2433 seq_puts(seq, cgrp->root->release_agent_path);
46cfeb04 2434 spin_unlock(&release_agent_path_lock);
e788e066 2435 seq_putc(seq, '\n');
e788e066
PM
2436 return 0;
2437}
2438
2da8ca82 2439static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
873fe09e 2440{
2da8ca82
TH
2441 struct cgroup *cgrp = seq_css(seq)->cgroup;
2442
2443 seq_printf(seq, "%d\n", cgroup_sane_behavior(cgrp));
e788e066
PM
2444 return 0;
2445}
2446
f8f22e53 2447static void cgroup_print_ss_mask(struct seq_file *seq, unsigned int ss_mask)
355e0c48 2448{
f8f22e53
TH
2449 struct cgroup_subsys *ss;
2450 bool printed = false;
2451 int ssid;
a742c59d 2452
f8f22e53
TH
2453 for_each_subsys(ss, ssid) {
2454 if (ss_mask & (1 << ssid)) {
2455 if (printed)
2456 seq_putc(seq, ' ');
2457 seq_printf(seq, "%s", ss->name);
2458 printed = true;
2459 }
e73d2c61 2460 }
f8f22e53
TH
2461 if (printed)
2462 seq_putc(seq, '\n');
355e0c48
PM
2463}
2464
f8f22e53
TH
2465/* show controllers which are currently attached to the default hierarchy */
2466static int cgroup_root_controllers_show(struct seq_file *seq, void *v)
db3b1497 2467{
f8f22e53
TH
2468 struct cgroup *cgrp = seq_css(seq)->cgroup;
2469
5533e011
TH
2470 cgroup_print_ss_mask(seq, cgrp->root->subsys_mask &
2471 ~cgrp_dfl_root_inhibit_ss_mask);
f8f22e53 2472 return 0;
db3b1497
PM
2473}
2474
f8f22e53
TH
2475/* show controllers which are enabled from the parent */
2476static int cgroup_controllers_show(struct seq_file *seq, void *v)
ddbcc7e8 2477{
f8f22e53
TH
2478 struct cgroup *cgrp = seq_css(seq)->cgroup;
2479
d51f39b0 2480 cgroup_print_ss_mask(seq, cgroup_parent(cgrp)->child_subsys_mask);
f8f22e53 2481 return 0;
ddbcc7e8
PM
2482}
2483
f8f22e53
TH
2484/* show controllers which are enabled for a given cgroup's children */
2485static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
ddbcc7e8 2486{
f8f22e53
TH
2487 struct cgroup *cgrp = seq_css(seq)->cgroup;
2488
2489 cgroup_print_ss_mask(seq, cgrp->child_subsys_mask);
2490 return 0;
2491}
2492
2493/**
2494 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2495 * @cgrp: root of the subtree to update csses for
2496 *
2497 * @cgrp's child_subsys_mask has changed and its subtree's (self excluded)
2498 * css associations need to be updated accordingly. This function looks up
2499 * all css_sets which are attached to the subtree, creates the matching
2500 * updated css_sets and migrates the tasks to the new ones.
2501 */
2502static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2503{
2504 LIST_HEAD(preloaded_csets);
2505 struct cgroup_subsys_state *css;
2506 struct css_set *src_cset;
2507 int ret;
2508
f8f22e53
TH
2509 lockdep_assert_held(&cgroup_mutex);
2510
2511 /* look up all csses currently attached to @cgrp's subtree */
2512 down_read(&css_set_rwsem);
2513 css_for_each_descendant_pre(css, cgroup_css(cgrp, NULL)) {
2514 struct cgrp_cset_link *link;
2515
2516 /* self is not affected by child_subsys_mask change */
2517 if (css->cgroup == cgrp)
2518 continue;
2519
2520 list_for_each_entry(link, &css->cgroup->cset_links, cset_link)
2521 cgroup_migrate_add_src(link->cset, cgrp,
2522 &preloaded_csets);
2523 }
2524 up_read(&css_set_rwsem);
2525
2526 /* NULL dst indicates self on default hierarchy */
2527 ret = cgroup_migrate_prepare_dst(NULL, &preloaded_csets);
2528 if (ret)
2529 goto out_finish;
2530
2531 list_for_each_entry(src_cset, &preloaded_csets, mg_preload_node) {
2532 struct task_struct *last_task = NULL, *task;
2533
2534 /* src_csets precede dst_csets, break on the first dst_cset */
2535 if (!src_cset->mg_src_cgrp)
2536 break;
2537
2538 /*
2539 * All tasks in src_cset need to be migrated to the
2540 * matching dst_cset. Empty it process by process. We
2541 * walk tasks but migrate processes. The leader might even
2542 * belong to a different cset but such src_cset would also
2543 * be among the target src_csets because the default
2544 * hierarchy enforces per-process membership.
2545 */
2546 while (true) {
2547 down_read(&css_set_rwsem);
2548 task = list_first_entry_or_null(&src_cset->tasks,
2549 struct task_struct, cg_list);
2550 if (task) {
2551 task = task->group_leader;
2552 WARN_ON_ONCE(!task_css_set(task)->mg_src_cgrp);
2553 get_task_struct(task);
2554 }
2555 up_read(&css_set_rwsem);
2556
2557 if (!task)
2558 break;
2559
2560 /* guard against possible infinite loop */
2561 if (WARN(last_task == task,
2562 "cgroup: update_dfl_csses failed to make progress, aborting in inconsistent state\n"))
2563 goto out_finish;
2564 last_task = task;
2565
2566 threadgroup_lock(task);
2567 /* raced against de_thread() from another thread? */
2568 if (!thread_group_leader(task)) {
2569 threadgroup_unlock(task);
2570 put_task_struct(task);
2571 continue;
2572 }
2573
2574 ret = cgroup_migrate(src_cset->dfl_cgrp, task, true);
2575
2576 threadgroup_unlock(task);
2577 put_task_struct(task);
2578
2579 if (WARN(ret, "cgroup: failed to update controllers for the default hierarchy (%d), further operations may crash or hang\n", ret))
2580 goto out_finish;
2581 }
2582 }
2583
2584out_finish:
2585 cgroup_migrate_finish(&preloaded_csets);
2586 return ret;
2587}
2588
2589/* change the enabled child controllers for a cgroup in the default hierarchy */
451af504
TH
2590static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
2591 char *buf, size_t nbytes,
2592 loff_t off)
f8f22e53 2593{
7d331fa9 2594 unsigned int enable = 0, disable = 0;
a9746d8d 2595 struct cgroup *cgrp, *child;
f8f22e53 2596 struct cgroup_subsys *ss;
451af504 2597 char *tok;
f8f22e53
TH
2598 int ssid, ret;
2599
2600 /*
d37167ab
TH
2601 * Parse input - space separated list of subsystem names prefixed
2602 * with either + or -.
f8f22e53 2603 */
451af504
TH
2604 buf = strstrip(buf);
2605 while ((tok = strsep(&buf, " "))) {
d37167ab
TH
2606 if (tok[0] == '\0')
2607 continue;
f8f22e53 2608 for_each_subsys(ss, ssid) {
5533e011
TH
2609 if (ss->disabled || strcmp(tok + 1, ss->name) ||
2610 ((1 << ss->id) & cgrp_dfl_root_inhibit_ss_mask))
f8f22e53
TH
2611 continue;
2612
2613 if (*tok == '+') {
7d331fa9
TH
2614 enable |= 1 << ssid;
2615 disable &= ~(1 << ssid);
f8f22e53 2616 } else if (*tok == '-') {
7d331fa9
TH
2617 disable |= 1 << ssid;
2618 enable &= ~(1 << ssid);
f8f22e53
TH
2619 } else {
2620 return -EINVAL;
2621 }
2622 break;
2623 }
2624 if (ssid == CGROUP_SUBSYS_COUNT)
2625 return -EINVAL;
2626 }
2627
a9746d8d
TH
2628 cgrp = cgroup_kn_lock_live(of->kn);
2629 if (!cgrp)
2630 return -ENODEV;
f8f22e53
TH
2631
2632 for_each_subsys(ss, ssid) {
2633 if (enable & (1 << ssid)) {
2634 if (cgrp->child_subsys_mask & (1 << ssid)) {
2635 enable &= ~(1 << ssid);
2636 continue;
2637 }
2638
2639 /*
2640 * Because css offlining is asynchronous, userland
2641 * might try to re-enable the same controller while
2642 * the previous instance is still around. In such
2643 * cases, wait till it's gone using offline_waitq.
2644 */
2645 cgroup_for_each_live_child(child, cgrp) {
0cee8b77 2646 DEFINE_WAIT(wait);
f8f22e53
TH
2647
2648 if (!cgroup_css(child, ss))
2649 continue;
2650
0cee8b77 2651 cgroup_get(child);
f8f22e53
TH
2652 prepare_to_wait(&child->offline_waitq, &wait,
2653 TASK_UNINTERRUPTIBLE);
a9746d8d 2654 cgroup_kn_unlock(of->kn);
f8f22e53
TH
2655 schedule();
2656 finish_wait(&child->offline_waitq, &wait);
0cee8b77 2657 cgroup_put(child);
7d331fa9 2658
a9746d8d 2659 return restart_syscall();
f8f22e53
TH
2660 }
2661
2662 /* unavailable or not enabled on the parent? */
2663 if (!(cgrp_dfl_root.subsys_mask & (1 << ssid)) ||
d51f39b0
TH
2664 (cgroup_parent(cgrp) &&
2665 !(cgroup_parent(cgrp)->child_subsys_mask & (1 << ssid)))) {
f8f22e53 2666 ret = -ENOENT;
ddab2b6e 2667 goto out_unlock;
f8f22e53
TH
2668 }
2669 } else if (disable & (1 << ssid)) {
2670 if (!(cgrp->child_subsys_mask & (1 << ssid))) {
2671 disable &= ~(1 << ssid);
2672 continue;
2673 }
2674
2675 /* a child has it enabled? */
2676 cgroup_for_each_live_child(child, cgrp) {
2677 if (child->child_subsys_mask & (1 << ssid)) {
2678 ret = -EBUSY;
ddab2b6e 2679 goto out_unlock;
f8f22e53
TH
2680 }
2681 }
2682 }
2683 }
2684
2685 if (!enable && !disable) {
2686 ret = 0;
ddab2b6e 2687 goto out_unlock;
f8f22e53
TH
2688 }
2689
2690 /*
2691 * Except for the root, child_subsys_mask must be zero for a cgroup
2692 * with tasks so that child cgroups don't compete against tasks.
2693 */
d51f39b0 2694 if (enable && cgroup_parent(cgrp) && !list_empty(&cgrp->cset_links)) {
f8f22e53
TH
2695 ret = -EBUSY;
2696 goto out_unlock;
2697 }
2698
2699 /*
2700 * Create csses for enables and update child_subsys_mask. This
2701 * changes cgroup_e_css() results which in turn makes the
2702 * subsequent cgroup_update_dfl_csses() associate all tasks in the
2703 * subtree to the updated csses.
2704 */
2705 for_each_subsys(ss, ssid) {
2706 if (!(enable & (1 << ssid)))
2707 continue;
2708
2709 cgroup_for_each_live_child(child, cgrp) {
2710 ret = create_css(child, ss);
2711 if (ret)
2712 goto err_undo_css;
2713 }
2714 }
2715
2716 cgrp->child_subsys_mask |= enable;
2717 cgrp->child_subsys_mask &= ~disable;
2718
2719 ret = cgroup_update_dfl_csses(cgrp);
2720 if (ret)
2721 goto err_undo_css;
2722
2723 /* all tasks are now migrated away from the old csses, kill them */
2724 for_each_subsys(ss, ssid) {
2725 if (!(disable & (1 << ssid)))
2726 continue;
2727
2728 cgroup_for_each_live_child(child, cgrp)
2729 kill_css(cgroup_css(child, ss));
2730 }
2731
2732 kernfs_activate(cgrp->kn);
2733 ret = 0;
2734out_unlock:
a9746d8d 2735 cgroup_kn_unlock(of->kn);
451af504 2736 return ret ?: nbytes;
f8f22e53
TH
2737
2738err_undo_css:
2739 cgrp->child_subsys_mask &= ~enable;
2740 cgrp->child_subsys_mask |= disable;
2741
2742 for_each_subsys(ss, ssid) {
2743 if (!(enable & (1 << ssid)))
2744 continue;
2745
2746 cgroup_for_each_live_child(child, cgrp) {
2747 struct cgroup_subsys_state *css = cgroup_css(child, ss);
2748 if (css)
2749 kill_css(css);
2750 }
2751 }
2752 goto out_unlock;
2753}
2754
842b597e
TH
2755static int cgroup_populated_show(struct seq_file *seq, void *v)
2756{
2757 seq_printf(seq, "%d\n", (bool)seq_css(seq)->cgroup->populated_cnt);
2758 return 0;
2759}
2760
2bd59d48
TH
2761static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
2762 size_t nbytes, loff_t off)
355e0c48 2763{
2bd59d48
TH
2764 struct cgroup *cgrp = of->kn->parent->priv;
2765 struct cftype *cft = of->kn->priv;
2766 struct cgroup_subsys_state *css;
a742c59d 2767 int ret;
355e0c48 2768
b4168640
TH
2769 if (cft->write)
2770 return cft->write(of, buf, nbytes, off);
2771
2bd59d48
TH
2772 /*
2773 * kernfs guarantees that a file isn't deleted with operations in
2774 * flight, which means that the matching css is and stays alive and
2775 * doesn't need to be pinned. The RCU locking is not necessary
2776 * either. It's just for the convenience of using cgroup_css().
2777 */
2778 rcu_read_lock();
2779 css = cgroup_css(cgrp, cft->ss);
2780 rcu_read_unlock();
a742c59d 2781
451af504 2782 if (cft->write_u64) {
a742c59d
TH
2783 unsigned long long v;
2784 ret = kstrtoull(buf, 0, &v);
2785 if (!ret)
2786 ret = cft->write_u64(css, cft, v);
2787 } else if (cft->write_s64) {
2788 long long v;
2789 ret = kstrtoll(buf, 0, &v);
2790 if (!ret)
2791 ret = cft->write_s64(css, cft, v);
e73d2c61 2792 } else {
a742c59d 2793 ret = -EINVAL;
e73d2c61 2794 }
2bd59d48 2795
a742c59d 2796 return ret ?: nbytes;
355e0c48
PM
2797}
2798
6612f05b 2799static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
db3b1497 2800{
2bd59d48 2801 return seq_cft(seq)->seq_start(seq, ppos);
db3b1497
PM
2802}
2803
6612f05b 2804static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
ddbcc7e8 2805{
2bd59d48 2806 return seq_cft(seq)->seq_next(seq, v, ppos);
ddbcc7e8
PM
2807}
2808
6612f05b 2809static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
ddbcc7e8 2810{
2bd59d48 2811 seq_cft(seq)->seq_stop(seq, v);
ddbcc7e8
PM
2812}
2813
91796569 2814static int cgroup_seqfile_show(struct seq_file *m, void *arg)
e73d2c61 2815{
7da11279
TH
2816 struct cftype *cft = seq_cft(m);
2817 struct cgroup_subsys_state *css = seq_css(m);
e73d2c61 2818
2da8ca82
TH
2819 if (cft->seq_show)
2820 return cft->seq_show(m, arg);
e73d2c61 2821
f4c753b7 2822 if (cft->read_u64)
896f5199
TH
2823 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
2824 else if (cft->read_s64)
2825 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
2826 else
2827 return -EINVAL;
2828 return 0;
91796569
PM
2829}
2830
2bd59d48
TH
2831static struct kernfs_ops cgroup_kf_single_ops = {
2832 .atomic_write_len = PAGE_SIZE,
2833 .write = cgroup_file_write,
2834 .seq_show = cgroup_seqfile_show,
91796569
PM
2835};
2836
2bd59d48
TH
2837static struct kernfs_ops cgroup_kf_ops = {
2838 .atomic_write_len = PAGE_SIZE,
2839 .write = cgroup_file_write,
2840 .seq_start = cgroup_seqfile_start,
2841 .seq_next = cgroup_seqfile_next,
2842 .seq_stop = cgroup_seqfile_stop,
2843 .seq_show = cgroup_seqfile_show,
2844};
ddbcc7e8
PM
2845
2846/*
2847 * cgroup_rename - Only allow simple rename of directories in place.
2848 */
2bd59d48
TH
2849static int cgroup_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
2850 const char *new_name_str)
ddbcc7e8 2851{
2bd59d48 2852 struct cgroup *cgrp = kn->priv;
65dff759 2853 int ret;
65dff759 2854
2bd59d48 2855 if (kernfs_type(kn) != KERNFS_DIR)
ddbcc7e8 2856 return -ENOTDIR;
2bd59d48 2857 if (kn->parent != new_parent)
ddbcc7e8 2858 return -EIO;
65dff759 2859
6db8e85c
TH
2860 /*
2861 * This isn't a proper migration and its usefulness is very
2862 * limited. Disallow if sane_behavior.
2863 */
2864 if (cgroup_sane_behavior(cgrp))
2865 return -EPERM;
099fca32 2866
e1b2dc17 2867 /*
8353da1f 2868 * We're gonna grab cgroup_mutex which nests outside kernfs
e1b2dc17 2869 * active_ref. kernfs_rename() doesn't require active_ref
8353da1f 2870 * protection. Break them before grabbing cgroup_mutex.
e1b2dc17
TH
2871 */
2872 kernfs_break_active_protection(new_parent);
2873 kernfs_break_active_protection(kn);
099fca32 2874
2bd59d48 2875 mutex_lock(&cgroup_mutex);
099fca32 2876
2bd59d48 2877 ret = kernfs_rename(kn, new_parent, new_name_str);
099fca32 2878
2bd59d48 2879 mutex_unlock(&cgroup_mutex);
e1b2dc17
TH
2880
2881 kernfs_unbreak_active_protection(kn);
2882 kernfs_unbreak_active_protection(new_parent);
2bd59d48 2883 return ret;
099fca32
LZ
2884}
2885
49957f8e
TH
2886/* set uid and gid of cgroup dirs and files to that of the creator */
2887static int cgroup_kn_set_ugid(struct kernfs_node *kn)
2888{
2889 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
2890 .ia_uid = current_fsuid(),
2891 .ia_gid = current_fsgid(), };
2892
2893 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
2894 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
2895 return 0;
2896
2897 return kernfs_setattr(kn, &iattr);
2898}
2899
2bb566cb 2900static int cgroup_add_file(struct cgroup *cgrp, struct cftype *cft)
ddbcc7e8 2901{
8d7e6fb0 2902 char name[CGROUP_FILE_NAME_MAX];
2bd59d48
TH
2903 struct kernfs_node *kn;
2904 struct lock_class_key *key = NULL;
49957f8e 2905 int ret;
05ef1d7c 2906
2bd59d48
TH
2907#ifdef CONFIG_DEBUG_LOCK_ALLOC
2908 key = &cft->lockdep_key;
2909#endif
2910 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
2911 cgroup_file_mode(cft), 0, cft->kf_ops, cft,
2912 NULL, false, key);
49957f8e
TH
2913 if (IS_ERR(kn))
2914 return PTR_ERR(kn);
2915
2916 ret = cgroup_kn_set_ugid(kn);
f8f22e53 2917 if (ret) {
49957f8e 2918 kernfs_remove(kn);
f8f22e53
TH
2919 return ret;
2920 }
2921
b7fc5ad2 2922 if (cft->seq_show == cgroup_populated_show)
842b597e 2923 cgrp->populated_kn = kn;
f8f22e53 2924 return 0;
ddbcc7e8
PM
2925}
2926
b1f28d31
TH
2927/**
2928 * cgroup_addrm_files - add or remove files to a cgroup directory
2929 * @cgrp: the target cgroup
b1f28d31
TH
2930 * @cfts: array of cftypes to be added
2931 * @is_add: whether to add or remove
2932 *
2933 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
2bb566cb
TH
2934 * For removals, this function never fails. If addition fails, this
2935 * function doesn't remove files already added. The caller is responsible
2936 * for cleaning up.
b1f28d31 2937 */
2bb566cb
TH
2938static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
2939 bool is_add)
ddbcc7e8 2940{
03b1cde6 2941 struct cftype *cft;
b1f28d31
TH
2942 int ret;
2943
01f6474c 2944 lockdep_assert_held(&cgroup_mutex);
db0416b6
TH
2945
2946 for (cft = cfts; cft->name[0] != '\0'; cft++) {
f33fddc2 2947 /* does cft->flags tell us to skip this file on @cgrp? */
8cbbf2c9
TH
2948 if ((cft->flags & CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
2949 continue;
873fe09e
TH
2950 if ((cft->flags & CFTYPE_INSANE) && cgroup_sane_behavior(cgrp))
2951 continue;
d51f39b0 2952 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
f33fddc2 2953 continue;
d51f39b0 2954 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
f33fddc2
G
2955 continue;
2956
2739d3cc 2957 if (is_add) {
2bb566cb 2958 ret = cgroup_add_file(cgrp, cft);
b1f28d31 2959 if (ret) {
ed3d261b
JP
2960 pr_warn("%s: failed to add %s, err=%d\n",
2961 __func__, cft->name, ret);
b1f28d31
TH
2962 return ret;
2963 }
2739d3cc
LZ
2964 } else {
2965 cgroup_rm_file(cgrp, cft);
db0416b6 2966 }
ddbcc7e8 2967 }
b1f28d31 2968 return 0;
ddbcc7e8
PM
2969}
2970
21a2d343 2971static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
8e3f6541
TH
2972{
2973 LIST_HEAD(pending);
2bb566cb 2974 struct cgroup_subsys *ss = cfts[0].ss;
3dd06ffa 2975 struct cgroup *root = &ss->root->cgrp;
492eb21b 2976 struct cgroup_subsys_state *css;
9ccece80 2977 int ret = 0;
8e3f6541 2978
01f6474c 2979 lockdep_assert_held(&cgroup_mutex);
e8c82d20 2980
e8c82d20 2981 /* add/rm files for all cgroups created before */
ca8bdcaf 2982 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
492eb21b
TH
2983 struct cgroup *cgrp = css->cgroup;
2984
e8c82d20
LZ
2985 if (cgroup_is_dead(cgrp))
2986 continue;
2987
21a2d343 2988 ret = cgroup_addrm_files(cgrp, cfts, is_add);
9ccece80
TH
2989 if (ret)
2990 break;
8e3f6541 2991 }
21a2d343
TH
2992
2993 if (is_add && !ret)
2994 kernfs_activate(root->kn);
9ccece80 2995 return ret;
8e3f6541
TH
2996}
2997
2da440a2 2998static void cgroup_exit_cftypes(struct cftype *cfts)
8e3f6541 2999{
2bb566cb 3000 struct cftype *cft;
8e3f6541 3001
2bd59d48
TH
3002 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3003 /* free copy for custom atomic_write_len, see init_cftypes() */
3004 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
3005 kfree(cft->kf_ops);
3006 cft->kf_ops = NULL;
2da440a2 3007 cft->ss = NULL;
2bd59d48 3008 }
2da440a2
TH
3009}
3010
2bd59d48 3011static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
2da440a2
TH
3012{
3013 struct cftype *cft;
3014
2bd59d48
TH
3015 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3016 struct kernfs_ops *kf_ops;
3017
0adb0704
TH
3018 WARN_ON(cft->ss || cft->kf_ops);
3019
2bd59d48
TH
3020 if (cft->seq_start)
3021 kf_ops = &cgroup_kf_ops;
3022 else
3023 kf_ops = &cgroup_kf_single_ops;
3024
3025 /*
3026 * Ugh... if @cft wants a custom max_write_len, we need to
3027 * make a copy of kf_ops to set its atomic_write_len.
3028 */
3029 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
3030 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
3031 if (!kf_ops) {
3032 cgroup_exit_cftypes(cfts);
3033 return -ENOMEM;
3034 }
3035 kf_ops->atomic_write_len = cft->max_write_len;
3036 }
8e3f6541 3037
2bd59d48 3038 cft->kf_ops = kf_ops;
2bb566cb 3039 cft->ss = ss;
2bd59d48 3040 }
2bb566cb 3041
2bd59d48 3042 return 0;
2da440a2
TH
3043}
3044
21a2d343
TH
3045static int cgroup_rm_cftypes_locked(struct cftype *cfts)
3046{
01f6474c 3047 lockdep_assert_held(&cgroup_mutex);
21a2d343
TH
3048
3049 if (!cfts || !cfts[0].ss)
3050 return -ENOENT;
3051
3052 list_del(&cfts->node);
3053 cgroup_apply_cftypes(cfts, false);
3054 cgroup_exit_cftypes(cfts);
3055 return 0;
8e3f6541 3056}
8e3f6541 3057
79578621
TH
3058/**
3059 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
79578621
TH
3060 * @cfts: zero-length name terminated array of cftypes
3061 *
2bb566cb
TH
3062 * Unregister @cfts. Files described by @cfts are removed from all
3063 * existing cgroups and all future cgroups won't have them either. This
3064 * function can be called anytime whether @cfts' subsys is attached or not.
79578621
TH
3065 *
3066 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
2bb566cb 3067 * registered.
79578621 3068 */
2bb566cb 3069int cgroup_rm_cftypes(struct cftype *cfts)
79578621 3070{
21a2d343 3071 int ret;
79578621 3072
01f6474c 3073 mutex_lock(&cgroup_mutex);
21a2d343 3074 ret = cgroup_rm_cftypes_locked(cfts);
01f6474c 3075 mutex_unlock(&cgroup_mutex);
21a2d343 3076 return ret;
80b13586
TH
3077}
3078
8e3f6541
TH
3079/**
3080 * cgroup_add_cftypes - add an array of cftypes to a subsystem
3081 * @ss: target cgroup subsystem
3082 * @cfts: zero-length name terminated array of cftypes
3083 *
3084 * Register @cfts to @ss. Files described by @cfts are created for all
3085 * existing cgroups to which @ss is attached and all future cgroups will
3086 * have them too. This function can be called anytime whether @ss is
3087 * attached or not.
3088 *
3089 * Returns 0 on successful registration, -errno on failure. Note that this
3090 * function currently returns 0 as long as @cfts registration is successful
3091 * even if some file creation attempts on existing cgroups fail.
3092 */
03b1cde6 3093int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
8e3f6541 3094{
9ccece80 3095 int ret;
8e3f6541 3096
c731ae1d
LZ
3097 if (ss->disabled)
3098 return 0;
3099
dc5736ed
LZ
3100 if (!cfts || cfts[0].name[0] == '\0')
3101 return 0;
2bb566cb 3102
2bd59d48
TH
3103 ret = cgroup_init_cftypes(ss, cfts);
3104 if (ret)
3105 return ret;
79578621 3106
01f6474c 3107 mutex_lock(&cgroup_mutex);
21a2d343 3108
0adb0704 3109 list_add_tail(&cfts->node, &ss->cfts);
21a2d343 3110 ret = cgroup_apply_cftypes(cfts, true);
9ccece80 3111 if (ret)
21a2d343 3112 cgroup_rm_cftypes_locked(cfts);
79578621 3113
01f6474c 3114 mutex_unlock(&cgroup_mutex);
9ccece80 3115 return ret;
79578621
TH
3116}
3117
a043e3b2
LZ
3118/**
3119 * cgroup_task_count - count the number of tasks in a cgroup.
3120 * @cgrp: the cgroup in question
3121 *
3122 * Return the number of tasks in the cgroup.
3123 */
07bc356e 3124static int cgroup_task_count(const struct cgroup *cgrp)
bbcb81d0
PM
3125{
3126 int count = 0;
69d0206c 3127 struct cgrp_cset_link *link;
817929ec 3128
96d365e0 3129 down_read(&css_set_rwsem);
69d0206c
TH
3130 list_for_each_entry(link, &cgrp->cset_links, cset_link)
3131 count += atomic_read(&link->cset->refcount);
96d365e0 3132 up_read(&css_set_rwsem);
bbcb81d0
PM
3133 return count;
3134}
3135
53fa5261 3136/**
492eb21b 3137 * css_next_child - find the next child of a given css
c2931b70
TH
3138 * @pos: the current position (%NULL to initiate traversal)
3139 * @parent: css whose children to walk
53fa5261 3140 *
c2931b70 3141 * This function returns the next child of @parent and should be called
87fb54f1 3142 * under either cgroup_mutex or RCU read lock. The only requirement is
c2931b70
TH
3143 * that @parent and @pos are accessible. The next sibling is guaranteed to
3144 * be returned regardless of their states.
3145 *
3146 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3147 * css which finished ->css_online() is guaranteed to be visible in the
3148 * future iterations and will stay visible until the last reference is put.
3149 * A css which hasn't finished ->css_online() or already finished
3150 * ->css_offline() may show up during traversal. It's each subsystem's
3151 * responsibility to synchronize against on/offlining.
53fa5261 3152 */
c2931b70
TH
3153struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
3154 struct cgroup_subsys_state *parent)
53fa5261 3155{
c2931b70 3156 struct cgroup_subsys_state *next;
53fa5261 3157
8353da1f 3158 cgroup_assert_mutex_or_rcu_locked();
53fa5261
TH
3159
3160 /*
de3f0341
TH
3161 * @pos could already have been unlinked from the sibling list.
3162 * Once a cgroup is removed, its ->sibling.next is no longer
3163 * updated when its next sibling changes. CSS_RELEASED is set when
3164 * @pos is taken off list, at which time its next pointer is valid,
3165 * and, as releases are serialized, the one pointed to by the next
3166 * pointer is guaranteed to not have started release yet. This
3167 * implies that if we observe !CSS_RELEASED on @pos in this RCU
3168 * critical section, the one pointed to by its next pointer is
3169 * guaranteed to not have finished its RCU grace period even if we
3170 * have dropped rcu_read_lock() inbetween iterations.
3b287a50 3171 *
de3f0341
TH
3172 * If @pos has CSS_RELEASED set, its next pointer can't be
3173 * dereferenced; however, as each css is given a monotonically
3174 * increasing unique serial number and always appended to the
3175 * sibling list, the next one can be found by walking the parent's
3176 * children until the first css with higher serial number than
3177 * @pos's. While this path can be slower, it happens iff iteration
3178 * races against release and the race window is very small.
53fa5261 3179 */
3b287a50 3180 if (!pos) {
c2931b70
TH
3181 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
3182 } else if (likely(!(pos->flags & CSS_RELEASED))) {
3183 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
3b287a50 3184 } else {
c2931b70 3185 list_for_each_entry_rcu(next, &parent->children, sibling)
3b287a50
TH
3186 if (next->serial_nr > pos->serial_nr)
3187 break;
53fa5261
TH
3188 }
3189
3b281afb
TH
3190 /*
3191 * @next, if not pointing to the head, can be dereferenced and is
c2931b70 3192 * the next sibling.
3b281afb 3193 */
c2931b70
TH
3194 if (&next->sibling != &parent->children)
3195 return next;
3b281afb 3196 return NULL;
53fa5261 3197}
53fa5261 3198
574bd9f7 3199/**
492eb21b 3200 * css_next_descendant_pre - find the next descendant for pre-order walk
574bd9f7 3201 * @pos: the current position (%NULL to initiate traversal)
492eb21b 3202 * @root: css whose descendants to walk
574bd9f7 3203 *
492eb21b 3204 * To be used by css_for_each_descendant_pre(). Find the next descendant
bd8815a6
TH
3205 * to visit for pre-order traversal of @root's descendants. @root is
3206 * included in the iteration and the first node to be visited.
75501a6d 3207 *
87fb54f1
TH
3208 * While this function requires cgroup_mutex or RCU read locking, it
3209 * doesn't require the whole traversal to be contained in a single critical
3210 * section. This function will return the correct next descendant as long
3211 * as both @pos and @root are accessible and @pos is a descendant of @root.
c2931b70
TH
3212 *
3213 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3214 * css which finished ->css_online() is guaranteed to be visible in the
3215 * future iterations and will stay visible until the last reference is put.
3216 * A css which hasn't finished ->css_online() or already finished
3217 * ->css_offline() may show up during traversal. It's each subsystem's
3218 * responsibility to synchronize against on/offlining.
574bd9f7 3219 */
492eb21b
TH
3220struct cgroup_subsys_state *
3221css_next_descendant_pre(struct cgroup_subsys_state *pos,
3222 struct cgroup_subsys_state *root)
574bd9f7 3223{
492eb21b 3224 struct cgroup_subsys_state *next;
574bd9f7 3225
8353da1f 3226 cgroup_assert_mutex_or_rcu_locked();
574bd9f7 3227
bd8815a6 3228 /* if first iteration, visit @root */
7805d000 3229 if (!pos)
bd8815a6 3230 return root;
574bd9f7
TH
3231
3232 /* visit the first child if exists */
492eb21b 3233 next = css_next_child(NULL, pos);
574bd9f7
TH
3234 if (next)
3235 return next;
3236
3237 /* no child, visit my or the closest ancestor's next sibling */
492eb21b 3238 while (pos != root) {
5c9d535b 3239 next = css_next_child(pos, pos->parent);
75501a6d 3240 if (next)
574bd9f7 3241 return next;
5c9d535b 3242 pos = pos->parent;
7805d000 3243 }
574bd9f7
TH
3244
3245 return NULL;
3246}
574bd9f7 3247
12a9d2fe 3248/**
492eb21b
TH
3249 * css_rightmost_descendant - return the rightmost descendant of a css
3250 * @pos: css of interest
12a9d2fe 3251 *
492eb21b
TH
3252 * Return the rightmost descendant of @pos. If there's no descendant, @pos
3253 * is returned. This can be used during pre-order traversal to skip
12a9d2fe 3254 * subtree of @pos.
75501a6d 3255 *
87fb54f1
TH
3256 * While this function requires cgroup_mutex or RCU read locking, it
3257 * doesn't require the whole traversal to be contained in a single critical
3258 * section. This function will return the correct rightmost descendant as
3259 * long as @pos is accessible.
12a9d2fe 3260 */
492eb21b
TH
3261struct cgroup_subsys_state *
3262css_rightmost_descendant(struct cgroup_subsys_state *pos)
12a9d2fe 3263{
492eb21b 3264 struct cgroup_subsys_state *last, *tmp;
12a9d2fe 3265
8353da1f 3266 cgroup_assert_mutex_or_rcu_locked();
12a9d2fe
TH
3267
3268 do {
3269 last = pos;
3270 /* ->prev isn't RCU safe, walk ->next till the end */
3271 pos = NULL;
492eb21b 3272 css_for_each_child(tmp, last)
12a9d2fe
TH
3273 pos = tmp;
3274 } while (pos);
3275
3276 return last;
3277}
12a9d2fe 3278
492eb21b
TH
3279static struct cgroup_subsys_state *
3280css_leftmost_descendant(struct cgroup_subsys_state *pos)
574bd9f7 3281{
492eb21b 3282 struct cgroup_subsys_state *last;
574bd9f7
TH
3283
3284 do {
3285 last = pos;
492eb21b 3286 pos = css_next_child(NULL, pos);
574bd9f7
TH
3287 } while (pos);
3288
3289 return last;
3290}
3291
3292/**
492eb21b 3293 * css_next_descendant_post - find the next descendant for post-order walk
574bd9f7 3294 * @pos: the current position (%NULL to initiate traversal)
492eb21b 3295 * @root: css whose descendants to walk
574bd9f7 3296 *
492eb21b 3297 * To be used by css_for_each_descendant_post(). Find the next descendant
bd8815a6
TH
3298 * to visit for post-order traversal of @root's descendants. @root is
3299 * included in the iteration and the last node to be visited.
75501a6d 3300 *
87fb54f1
TH
3301 * While this function requires cgroup_mutex or RCU read locking, it
3302 * doesn't require the whole traversal to be contained in a single critical
3303 * section. This function will return the correct next descendant as long
3304 * as both @pos and @cgroup are accessible and @pos is a descendant of
3305 * @cgroup.
c2931b70
TH
3306 *
3307 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3308 * css which finished ->css_online() is guaranteed to be visible in the
3309 * future iterations and will stay visible until the last reference is put.
3310 * A css which hasn't finished ->css_online() or already finished
3311 * ->css_offline() may show up during traversal. It's each subsystem's
3312 * responsibility to synchronize against on/offlining.
574bd9f7 3313 */
492eb21b
TH
3314struct cgroup_subsys_state *
3315css_next_descendant_post(struct cgroup_subsys_state *pos,
3316 struct cgroup_subsys_state *root)
574bd9f7 3317{
492eb21b 3318 struct cgroup_subsys_state *next;
574bd9f7 3319
8353da1f 3320 cgroup_assert_mutex_or_rcu_locked();
574bd9f7 3321
58b79a91
TH
3322 /* if first iteration, visit leftmost descendant which may be @root */
3323 if (!pos)
3324 return css_leftmost_descendant(root);
574bd9f7 3325
bd8815a6
TH
3326 /* if we visited @root, we're done */
3327 if (pos == root)
3328 return NULL;
3329
574bd9f7 3330 /* if there's an unvisited sibling, visit its leftmost descendant */
5c9d535b 3331 next = css_next_child(pos, pos->parent);
75501a6d 3332 if (next)
492eb21b 3333 return css_leftmost_descendant(next);
574bd9f7
TH
3334
3335 /* no sibling left, visit parent */
5c9d535b 3336 return pos->parent;
574bd9f7 3337}
574bd9f7 3338
f3d46500
TH
3339/**
3340 * css_has_online_children - does a css have online children
3341 * @css: the target css
3342 *
3343 * Returns %true if @css has any online children; otherwise, %false. This
3344 * function can be called from any context but the caller is responsible
3345 * for synchronizing against on/offlining as necessary.
3346 */
3347bool css_has_online_children(struct cgroup_subsys_state *css)
cbc125ef 3348{
f3d46500
TH
3349 struct cgroup_subsys_state *child;
3350 bool ret = false;
cbc125ef
TH
3351
3352 rcu_read_lock();
f3d46500 3353 css_for_each_child(child, css) {
99bae5f9 3354 if (child->flags & CSS_ONLINE) {
f3d46500
TH
3355 ret = true;
3356 break;
cbc125ef
TH
3357 }
3358 }
3359 rcu_read_unlock();
f3d46500 3360 return ret;
574bd9f7 3361}
574bd9f7 3362
0942eeee 3363/**
72ec7029 3364 * css_advance_task_iter - advance a task itererator to the next css_set
0942eeee
TH
3365 * @it: the iterator to advance
3366 *
3367 * Advance @it to the next css_set to walk.
d515876e 3368 */
72ec7029 3369static void css_advance_task_iter(struct css_task_iter *it)
d515876e 3370{
0f0a2b4f 3371 struct list_head *l = it->cset_pos;
d515876e
TH
3372 struct cgrp_cset_link *link;
3373 struct css_set *cset;
3374
3375 /* Advance to the next non-empty css_set */
3376 do {
3377 l = l->next;
0f0a2b4f
TH
3378 if (l == it->cset_head) {
3379 it->cset_pos = NULL;
d515876e
TH
3380 return;
3381 }
3ebb2b6e
TH
3382
3383 if (it->ss) {
3384 cset = container_of(l, struct css_set,
3385 e_cset_node[it->ss->id]);
3386 } else {
3387 link = list_entry(l, struct cgrp_cset_link, cset_link);
3388 cset = link->cset;
3389 }
c7561128
TH
3390 } while (list_empty(&cset->tasks) && list_empty(&cset->mg_tasks));
3391
0f0a2b4f 3392 it->cset_pos = l;
c7561128
TH
3393
3394 if (!list_empty(&cset->tasks))
0f0a2b4f 3395 it->task_pos = cset->tasks.next;
c7561128 3396 else
0f0a2b4f
TH
3397 it->task_pos = cset->mg_tasks.next;
3398
3399 it->tasks_head = &cset->tasks;
3400 it->mg_tasks_head = &cset->mg_tasks;
d515876e
TH
3401}
3402
0942eeee 3403/**
72ec7029
TH
3404 * css_task_iter_start - initiate task iteration
3405 * @css: the css to walk tasks of
0942eeee
TH
3406 * @it: the task iterator to use
3407 *
72ec7029
TH
3408 * Initiate iteration through the tasks of @css. The caller can call
3409 * css_task_iter_next() to walk through the tasks until the function
3410 * returns NULL. On completion of iteration, css_task_iter_end() must be
3411 * called.
0942eeee
TH
3412 *
3413 * Note that this function acquires a lock which is released when the
3414 * iteration finishes. The caller can't sleep while iteration is in
3415 * progress.
3416 */
72ec7029
TH
3417void css_task_iter_start(struct cgroup_subsys_state *css,
3418 struct css_task_iter *it)
96d365e0 3419 __acquires(css_set_rwsem)
817929ec 3420{
56fde9e0
TH
3421 /* no one should try to iterate before mounting cgroups */
3422 WARN_ON_ONCE(!use_task_css_set_links);
31a7df01 3423
96d365e0 3424 down_read(&css_set_rwsem);
c59cd3d8 3425
3ebb2b6e
TH
3426 it->ss = css->ss;
3427
3428 if (it->ss)
3429 it->cset_pos = &css->cgroup->e_csets[css->ss->id];
3430 else
3431 it->cset_pos = &css->cgroup->cset_links;
3432
0f0a2b4f 3433 it->cset_head = it->cset_pos;
c59cd3d8 3434
72ec7029 3435 css_advance_task_iter(it);
817929ec
PM
3436}
3437
0942eeee 3438/**
72ec7029 3439 * css_task_iter_next - return the next task for the iterator
0942eeee
TH
3440 * @it: the task iterator being iterated
3441 *
3442 * The "next" function for task iteration. @it should have been
72ec7029
TH
3443 * initialized via css_task_iter_start(). Returns NULL when the iteration
3444 * reaches the end.
0942eeee 3445 */
72ec7029 3446struct task_struct *css_task_iter_next(struct css_task_iter *it)
817929ec
PM
3447{
3448 struct task_struct *res;
0f0a2b4f 3449 struct list_head *l = it->task_pos;
817929ec
PM
3450
3451 /* If the iterator cg is NULL, we have no tasks */
0f0a2b4f 3452 if (!it->cset_pos)
817929ec
PM
3453 return NULL;
3454 res = list_entry(l, struct task_struct, cg_list);
c7561128
TH
3455
3456 /*
3457 * Advance iterator to find next entry. cset->tasks is consumed
3458 * first and then ->mg_tasks. After ->mg_tasks, we move onto the
3459 * next cset.
3460 */
817929ec 3461 l = l->next;
c7561128 3462
0f0a2b4f
TH
3463 if (l == it->tasks_head)
3464 l = it->mg_tasks_head->next;
c7561128 3465
0f0a2b4f 3466 if (l == it->mg_tasks_head)
72ec7029 3467 css_advance_task_iter(it);
c7561128 3468 else
0f0a2b4f 3469 it->task_pos = l;
c7561128 3470
817929ec
PM
3471 return res;
3472}
3473
0942eeee 3474/**
72ec7029 3475 * css_task_iter_end - finish task iteration
0942eeee
TH
3476 * @it: the task iterator to finish
3477 *
72ec7029 3478 * Finish task iteration started by css_task_iter_start().
0942eeee 3479 */
72ec7029 3480void css_task_iter_end(struct css_task_iter *it)
96d365e0 3481 __releases(css_set_rwsem)
31a7df01 3482{
96d365e0 3483 up_read(&css_set_rwsem);
31a7df01
CW
3484}
3485
3486/**
8cc99345
TH
3487 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
3488 * @to: cgroup to which the tasks will be moved
3489 * @from: cgroup in which the tasks currently reside
31a7df01 3490 *
eaf797ab
TH
3491 * Locking rules between cgroup_post_fork() and the migration path
3492 * guarantee that, if a task is forking while being migrated, the new child
3493 * is guaranteed to be either visible in the source cgroup after the
3494 * parent's migration is complete or put into the target cgroup. No task
3495 * can slip out of migration through forking.
31a7df01 3496 */
8cc99345 3497int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
31a7df01 3498{
952aaa12
TH
3499 LIST_HEAD(preloaded_csets);
3500 struct cgrp_cset_link *link;
72ec7029 3501 struct css_task_iter it;
e406d1cf 3502 struct task_struct *task;
952aaa12 3503 int ret;
31a7df01 3504
952aaa12 3505 mutex_lock(&cgroup_mutex);
31a7df01 3506
952aaa12
TH
3507 /* all tasks in @from are being moved, all csets are source */
3508 down_read(&css_set_rwsem);
3509 list_for_each_entry(link, &from->cset_links, cset_link)
3510 cgroup_migrate_add_src(link->cset, to, &preloaded_csets);
3511 up_read(&css_set_rwsem);
31a7df01 3512
952aaa12
TH
3513 ret = cgroup_migrate_prepare_dst(to, &preloaded_csets);
3514 if (ret)
3515 goto out_err;
8cc99345 3516
952aaa12
TH
3517 /*
3518 * Migrate tasks one-by-one until @form is empty. This fails iff
3519 * ->can_attach() fails.
3520 */
e406d1cf 3521 do {
9d800df1 3522 css_task_iter_start(&from->self, &it);
e406d1cf
TH
3523 task = css_task_iter_next(&it);
3524 if (task)
3525 get_task_struct(task);
3526 css_task_iter_end(&it);
3527
3528 if (task) {
952aaa12 3529 ret = cgroup_migrate(to, task, false);
e406d1cf
TH
3530 put_task_struct(task);
3531 }
3532 } while (task && !ret);
952aaa12
TH
3533out_err:
3534 cgroup_migrate_finish(&preloaded_csets);
47cfcd09 3535 mutex_unlock(&cgroup_mutex);
e406d1cf 3536 return ret;
8cc99345
TH
3537}
3538
bbcb81d0 3539/*
102a775e 3540 * Stuff for reading the 'tasks'/'procs' files.
bbcb81d0
PM
3541 *
3542 * Reading this file can return large amounts of data if a cgroup has
3543 * *lots* of attached tasks. So it may need several calls to read(),
3544 * but we cannot guarantee that the information we produce is correct
3545 * unless we produce it entirely atomically.
3546 *
bbcb81d0 3547 */
bbcb81d0 3548
24528255
LZ
3549/* which pidlist file are we talking about? */
3550enum cgroup_filetype {
3551 CGROUP_FILE_PROCS,
3552 CGROUP_FILE_TASKS,
3553};
3554
3555/*
3556 * A pidlist is a list of pids that virtually represents the contents of one
3557 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
3558 * a pair (one each for procs, tasks) for each pid namespace that's relevant
3559 * to the cgroup.
3560 */
3561struct cgroup_pidlist {
3562 /*
3563 * used to find which pidlist is wanted. doesn't change as long as
3564 * this particular list stays in the list.
3565 */
3566 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
3567 /* array of xids */
3568 pid_t *list;
3569 /* how many elements the above list has */
3570 int length;
24528255
LZ
3571 /* each of these stored in a list by its cgroup */
3572 struct list_head links;
3573 /* pointer to the cgroup we belong to, for list removal purposes */
3574 struct cgroup *owner;
b1a21367
TH
3575 /* for delayed destruction */
3576 struct delayed_work destroy_dwork;
24528255
LZ
3577};
3578
d1d9fd33
BB
3579/*
3580 * The following two functions "fix" the issue where there are more pids
3581 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
3582 * TODO: replace with a kernel-wide solution to this problem
3583 */
3584#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
3585static void *pidlist_allocate(int count)
3586{
3587 if (PIDLIST_TOO_LARGE(count))
3588 return vmalloc(count * sizeof(pid_t));
3589 else
3590 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
3591}
b1a21367 3592
d1d9fd33
BB
3593static void pidlist_free(void *p)
3594{
3595 if (is_vmalloc_addr(p))
3596 vfree(p);
3597 else
3598 kfree(p);
3599}
d1d9fd33 3600
b1a21367
TH
3601/*
3602 * Used to destroy all pidlists lingering waiting for destroy timer. None
3603 * should be left afterwards.
3604 */
3605static void cgroup_pidlist_destroy_all(struct cgroup *cgrp)
3606{
3607 struct cgroup_pidlist *l, *tmp_l;
3608
3609 mutex_lock(&cgrp->pidlist_mutex);
3610 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
3611 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
3612 mutex_unlock(&cgrp->pidlist_mutex);
3613
3614 flush_workqueue(cgroup_pidlist_destroy_wq);
3615 BUG_ON(!list_empty(&cgrp->pidlists));
3616}
3617
3618static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
3619{
3620 struct delayed_work *dwork = to_delayed_work(work);
3621 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
3622 destroy_dwork);
3623 struct cgroup_pidlist *tofree = NULL;
3624
3625 mutex_lock(&l->owner->pidlist_mutex);
b1a21367
TH
3626
3627 /*
04502365
TH
3628 * Destroy iff we didn't get queued again. The state won't change
3629 * as destroy_dwork can only be queued while locked.
b1a21367 3630 */
04502365 3631 if (!delayed_work_pending(dwork)) {
b1a21367
TH
3632 list_del(&l->links);
3633 pidlist_free(l->list);
3634 put_pid_ns(l->key.ns);
3635 tofree = l;
3636 }
3637
b1a21367
TH
3638 mutex_unlock(&l->owner->pidlist_mutex);
3639 kfree(tofree);
3640}
3641
bbcb81d0 3642/*
102a775e 3643 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
6ee211ad 3644 * Returns the number of unique elements.
bbcb81d0 3645 */
6ee211ad 3646static int pidlist_uniq(pid_t *list, int length)
bbcb81d0 3647{
102a775e 3648 int src, dest = 1;
102a775e
BB
3649
3650 /*
3651 * we presume the 0th element is unique, so i starts at 1. trivial
3652 * edge cases first; no work needs to be done for either
3653 */
3654 if (length == 0 || length == 1)
3655 return length;
3656 /* src and dest walk down the list; dest counts unique elements */
3657 for (src = 1; src < length; src++) {
3658 /* find next unique element */
3659 while (list[src] == list[src-1]) {
3660 src++;
3661 if (src == length)
3662 goto after;
3663 }
3664 /* dest always points to where the next unique element goes */
3665 list[dest] = list[src];
3666 dest++;
3667 }
3668after:
102a775e
BB
3669 return dest;
3670}
3671
afb2bc14
TH
3672/*
3673 * The two pid files - task and cgroup.procs - guaranteed that the result
3674 * is sorted, which forced this whole pidlist fiasco. As pid order is
3675 * different per namespace, each namespace needs differently sorted list,
3676 * making it impossible to use, for example, single rbtree of member tasks
3677 * sorted by task pointer. As pidlists can be fairly large, allocating one
3678 * per open file is dangerous, so cgroup had to implement shared pool of
3679 * pidlists keyed by cgroup and namespace.
3680 *
3681 * All this extra complexity was caused by the original implementation
3682 * committing to an entirely unnecessary property. In the long term, we
3683 * want to do away with it. Explicitly scramble sort order if
3684 * sane_behavior so that no such expectation exists in the new interface.
3685 *
3686 * Scrambling is done by swapping every two consecutive bits, which is
3687 * non-identity one-to-one mapping which disturbs sort order sufficiently.
3688 */
3689static pid_t pid_fry(pid_t pid)
3690{
3691 unsigned a = pid & 0x55555555;
3692 unsigned b = pid & 0xAAAAAAAA;
3693
3694 return (a << 1) | (b >> 1);
3695}
3696
3697static pid_t cgroup_pid_fry(struct cgroup *cgrp, pid_t pid)
3698{
3699 if (cgroup_sane_behavior(cgrp))
3700 return pid_fry(pid);
3701 else
3702 return pid;
3703}
3704
102a775e
BB
3705static int cmppid(const void *a, const void *b)
3706{
3707 return *(pid_t *)a - *(pid_t *)b;
3708}
3709
afb2bc14
TH
3710static int fried_cmppid(const void *a, const void *b)
3711{
3712 return pid_fry(*(pid_t *)a) - pid_fry(*(pid_t *)b);
3713}
3714
e6b81710
TH
3715static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
3716 enum cgroup_filetype type)
3717{
3718 struct cgroup_pidlist *l;
3719 /* don't need task_nsproxy() if we're looking at ourself */
3720 struct pid_namespace *ns = task_active_pid_ns(current);
3721
3722 lockdep_assert_held(&cgrp->pidlist_mutex);
3723
3724 list_for_each_entry(l, &cgrp->pidlists, links)
3725 if (l->key.type == type && l->key.ns == ns)
3726 return l;
3727 return NULL;
3728}
3729
72a8cb30
BB
3730/*
3731 * find the appropriate pidlist for our purpose (given procs vs tasks)
3732 * returns with the lock on that pidlist already held, and takes care
3733 * of the use count, or returns NULL with no locks held if we're out of
3734 * memory.
3735 */
e6b81710
TH
3736static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
3737 enum cgroup_filetype type)
72a8cb30
BB
3738{
3739 struct cgroup_pidlist *l;
b70cc5fd 3740
e6b81710
TH
3741 lockdep_assert_held(&cgrp->pidlist_mutex);
3742
3743 l = cgroup_pidlist_find(cgrp, type);
3744 if (l)
3745 return l;
3746
72a8cb30 3747 /* entry not found; create a new one */
f4f4be2b 3748 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
e6b81710 3749 if (!l)
72a8cb30 3750 return l;
e6b81710 3751
b1a21367 3752 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
72a8cb30 3753 l->key.type = type;
e6b81710
TH
3754 /* don't need task_nsproxy() if we're looking at ourself */
3755 l->key.ns = get_pid_ns(task_active_pid_ns(current));
72a8cb30
BB
3756 l->owner = cgrp;
3757 list_add(&l->links, &cgrp->pidlists);
72a8cb30
BB
3758 return l;
3759}
3760
102a775e
BB
3761/*
3762 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
3763 */
72a8cb30
BB
3764static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
3765 struct cgroup_pidlist **lp)
102a775e
BB
3766{
3767 pid_t *array;
3768 int length;
3769 int pid, n = 0; /* used for populating the array */
72ec7029 3770 struct css_task_iter it;
817929ec 3771 struct task_struct *tsk;
102a775e
BB
3772 struct cgroup_pidlist *l;
3773
4bac00d1
TH
3774 lockdep_assert_held(&cgrp->pidlist_mutex);
3775
102a775e
BB
3776 /*
3777 * If cgroup gets more users after we read count, we won't have
3778 * enough space - tough. This race is indistinguishable to the
3779 * caller from the case that the additional cgroup users didn't
3780 * show up until sometime later on.
3781 */
3782 length = cgroup_task_count(cgrp);
d1d9fd33 3783 array = pidlist_allocate(length);
102a775e
BB
3784 if (!array)
3785 return -ENOMEM;
3786 /* now, populate the array */
9d800df1 3787 css_task_iter_start(&cgrp->self, &it);
72ec7029 3788 while ((tsk = css_task_iter_next(&it))) {
102a775e 3789 if (unlikely(n == length))
817929ec 3790 break;
102a775e 3791 /* get tgid or pid for procs or tasks file respectively */
72a8cb30
BB
3792 if (type == CGROUP_FILE_PROCS)
3793 pid = task_tgid_vnr(tsk);
3794 else
3795 pid = task_pid_vnr(tsk);
102a775e
BB
3796 if (pid > 0) /* make sure to only use valid results */
3797 array[n++] = pid;
817929ec 3798 }
72ec7029 3799 css_task_iter_end(&it);
102a775e
BB
3800 length = n;
3801 /* now sort & (if procs) strip out duplicates */
afb2bc14
TH
3802 if (cgroup_sane_behavior(cgrp))
3803 sort(array, length, sizeof(pid_t), fried_cmppid, NULL);
3804 else
3805 sort(array, length, sizeof(pid_t), cmppid, NULL);
72a8cb30 3806 if (type == CGROUP_FILE_PROCS)
6ee211ad 3807 length = pidlist_uniq(array, length);
e6b81710 3808
e6b81710 3809 l = cgroup_pidlist_find_create(cgrp, type);
72a8cb30 3810 if (!l) {
e6b81710 3811 mutex_unlock(&cgrp->pidlist_mutex);
d1d9fd33 3812 pidlist_free(array);
72a8cb30 3813 return -ENOMEM;
102a775e 3814 }
e6b81710
TH
3815
3816 /* store array, freeing old if necessary */
d1d9fd33 3817 pidlist_free(l->list);
102a775e
BB
3818 l->list = array;
3819 l->length = length;
72a8cb30 3820 *lp = l;
102a775e 3821 return 0;
bbcb81d0
PM
3822}
3823
846c7bb0 3824/**
a043e3b2 3825 * cgroupstats_build - build and fill cgroupstats
846c7bb0
BS
3826 * @stats: cgroupstats to fill information into
3827 * @dentry: A dentry entry belonging to the cgroup for which stats have
3828 * been requested.
a043e3b2
LZ
3829 *
3830 * Build and fill cgroupstats so that taskstats can export it to user
3831 * space.
846c7bb0
BS
3832 */
3833int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
3834{
2bd59d48 3835 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
bd89aabc 3836 struct cgroup *cgrp;
72ec7029 3837 struct css_task_iter it;
846c7bb0 3838 struct task_struct *tsk;
33d283be 3839
2bd59d48
TH
3840 /* it should be kernfs_node belonging to cgroupfs and is a directory */
3841 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
3842 kernfs_type(kn) != KERNFS_DIR)
3843 return -EINVAL;
3844
bad34660
LZ
3845 mutex_lock(&cgroup_mutex);
3846
846c7bb0 3847 /*
2bd59d48 3848 * We aren't being called from kernfs and there's no guarantee on
ec903c0c 3849 * @kn->priv's validity. For this and css_tryget_online_from_dir(),
2bd59d48 3850 * @kn->priv is RCU safe. Let's do the RCU dancing.
846c7bb0 3851 */
2bd59d48
TH
3852 rcu_read_lock();
3853 cgrp = rcu_dereference(kn->priv);
bad34660 3854 if (!cgrp || cgroup_is_dead(cgrp)) {
2bd59d48 3855 rcu_read_unlock();
bad34660 3856 mutex_unlock(&cgroup_mutex);
2bd59d48
TH
3857 return -ENOENT;
3858 }
bad34660 3859 rcu_read_unlock();
846c7bb0 3860
9d800df1 3861 css_task_iter_start(&cgrp->self, &it);
72ec7029 3862 while ((tsk = css_task_iter_next(&it))) {
846c7bb0
BS
3863 switch (tsk->state) {
3864 case TASK_RUNNING:
3865 stats->nr_running++;
3866 break;
3867 case TASK_INTERRUPTIBLE:
3868 stats->nr_sleeping++;
3869 break;
3870 case TASK_UNINTERRUPTIBLE:
3871 stats->nr_uninterruptible++;
3872 break;
3873 case TASK_STOPPED:
3874 stats->nr_stopped++;
3875 break;
3876 default:
3877 if (delayacct_is_task_waiting_on_io(tsk))
3878 stats->nr_io_wait++;
3879 break;
3880 }
3881 }
72ec7029 3882 css_task_iter_end(&it);
846c7bb0 3883
bad34660 3884 mutex_unlock(&cgroup_mutex);
2bd59d48 3885 return 0;
846c7bb0
BS
3886}
3887
8f3ff208 3888
bbcb81d0 3889/*
102a775e 3890 * seq_file methods for the tasks/procs files. The seq_file position is the
cc31edce 3891 * next pid to display; the seq_file iterator is a pointer to the pid
102a775e 3892 * in the cgroup->l->list array.
bbcb81d0 3893 */
cc31edce 3894
102a775e 3895static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
bbcb81d0 3896{
cc31edce
PM
3897 /*
3898 * Initially we receive a position value that corresponds to
3899 * one more than the last pid shown (or 0 on the first call or
3900 * after a seek to the start). Use a binary-search to find the
3901 * next pid to display, if any
3902 */
2bd59d48 3903 struct kernfs_open_file *of = s->private;
7da11279 3904 struct cgroup *cgrp = seq_css(s)->cgroup;
4bac00d1 3905 struct cgroup_pidlist *l;
7da11279 3906 enum cgroup_filetype type = seq_cft(s)->private;
cc31edce 3907 int index = 0, pid = *pos;
4bac00d1
TH
3908 int *iter, ret;
3909
3910 mutex_lock(&cgrp->pidlist_mutex);
3911
3912 /*
5d22444f 3913 * !NULL @of->priv indicates that this isn't the first start()
4bac00d1 3914 * after open. If the matching pidlist is around, we can use that.
5d22444f 3915 * Look for it. Note that @of->priv can't be used directly. It
4bac00d1
TH
3916 * could already have been destroyed.
3917 */
5d22444f
TH
3918 if (of->priv)
3919 of->priv = cgroup_pidlist_find(cgrp, type);
4bac00d1
TH
3920
3921 /*
3922 * Either this is the first start() after open or the matching
3923 * pidlist has been destroyed inbetween. Create a new one.
3924 */
5d22444f
TH
3925 if (!of->priv) {
3926 ret = pidlist_array_load(cgrp, type,
3927 (struct cgroup_pidlist **)&of->priv);
4bac00d1
TH
3928 if (ret)
3929 return ERR_PTR(ret);
3930 }
5d22444f 3931 l = of->priv;
cc31edce 3932
cc31edce 3933 if (pid) {
102a775e 3934 int end = l->length;
20777766 3935
cc31edce
PM
3936 while (index < end) {
3937 int mid = (index + end) / 2;
afb2bc14 3938 if (cgroup_pid_fry(cgrp, l->list[mid]) == pid) {
cc31edce
PM
3939 index = mid;
3940 break;
afb2bc14 3941 } else if (cgroup_pid_fry(cgrp, l->list[mid]) <= pid)
cc31edce
PM
3942 index = mid + 1;
3943 else
3944 end = mid;
3945 }
3946 }
3947 /* If we're off the end of the array, we're done */
102a775e 3948 if (index >= l->length)
cc31edce
PM
3949 return NULL;
3950 /* Update the abstract position to be the actual pid that we found */
102a775e 3951 iter = l->list + index;
afb2bc14 3952 *pos = cgroup_pid_fry(cgrp, *iter);
cc31edce
PM
3953 return iter;
3954}
3955
102a775e 3956static void cgroup_pidlist_stop(struct seq_file *s, void *v)
cc31edce 3957{
2bd59d48 3958 struct kernfs_open_file *of = s->private;
5d22444f 3959 struct cgroup_pidlist *l = of->priv;
62236858 3960
5d22444f
TH
3961 if (l)
3962 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
04502365 3963 CGROUP_PIDLIST_DESTROY_DELAY);
7da11279 3964 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
cc31edce
PM
3965}
3966
102a775e 3967static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
cc31edce 3968{
2bd59d48 3969 struct kernfs_open_file *of = s->private;
5d22444f 3970 struct cgroup_pidlist *l = of->priv;
102a775e
BB
3971 pid_t *p = v;
3972 pid_t *end = l->list + l->length;
cc31edce
PM
3973 /*
3974 * Advance to the next pid in the array. If this goes off the
3975 * end, we're done
3976 */
3977 p++;
3978 if (p >= end) {
3979 return NULL;
3980 } else {
7da11279 3981 *pos = cgroup_pid_fry(seq_css(s)->cgroup, *p);
cc31edce
PM
3982 return p;
3983 }
3984}
3985
102a775e 3986static int cgroup_pidlist_show(struct seq_file *s, void *v)
cc31edce
PM
3987{
3988 return seq_printf(s, "%d\n", *(int *)v);
3989}
bbcb81d0 3990
182446d0
TH
3991static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
3992 struct cftype *cft)
81a6a5cd 3993{
182446d0 3994 return notify_on_release(css->cgroup);
81a6a5cd
PM
3995}
3996
182446d0
TH
3997static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
3998 struct cftype *cft, u64 val)
6379c106 3999{
182446d0 4000 clear_bit(CGRP_RELEASABLE, &css->cgroup->flags);
6379c106 4001 if (val)
182446d0 4002 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106 4003 else
182446d0 4004 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106
PM
4005 return 0;
4006}
4007
182446d0
TH
4008static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
4009 struct cftype *cft)
97978e6d 4010{
182446d0 4011 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
4012}
4013
182446d0
TH
4014static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
4015 struct cftype *cft, u64 val)
97978e6d
DL
4016{
4017 if (val)
182446d0 4018 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d 4019 else
182446d0 4020 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
4021 return 0;
4022}
4023
d5c56ced 4024static struct cftype cgroup_base_files[] = {
81a6a5cd 4025 {
d5c56ced 4026 .name = "cgroup.procs",
6612f05b
TH
4027 .seq_start = cgroup_pidlist_start,
4028 .seq_next = cgroup_pidlist_next,
4029 .seq_stop = cgroup_pidlist_stop,
4030 .seq_show = cgroup_pidlist_show,
5d22444f 4031 .private = CGROUP_FILE_PROCS,
acbef755 4032 .write = cgroup_procs_write,
74a1166d 4033 .mode = S_IRUGO | S_IWUSR,
102a775e 4034 },
97978e6d
DL
4035 {
4036 .name = "cgroup.clone_children",
873fe09e 4037 .flags = CFTYPE_INSANE,
97978e6d
DL
4038 .read_u64 = cgroup_clone_children_read,
4039 .write_u64 = cgroup_clone_children_write,
4040 },
873fe09e
TH
4041 {
4042 .name = "cgroup.sane_behavior",
4043 .flags = CFTYPE_ONLY_ON_ROOT,
2da8ca82 4044 .seq_show = cgroup_sane_behavior_show,
873fe09e 4045 },
f8f22e53
TH
4046 {
4047 .name = "cgroup.controllers",
4048 .flags = CFTYPE_ONLY_ON_DFL | CFTYPE_ONLY_ON_ROOT,
4049 .seq_show = cgroup_root_controllers_show,
4050 },
4051 {
4052 .name = "cgroup.controllers",
4053 .flags = CFTYPE_ONLY_ON_DFL | CFTYPE_NOT_ON_ROOT,
4054 .seq_show = cgroup_controllers_show,
4055 },
4056 {
4057 .name = "cgroup.subtree_control",
4058 .flags = CFTYPE_ONLY_ON_DFL,
4059 .seq_show = cgroup_subtree_control_show,
451af504 4060 .write = cgroup_subtree_control_write,
f8f22e53 4061 },
842b597e
TH
4062 {
4063 .name = "cgroup.populated",
4064 .flags = CFTYPE_ONLY_ON_DFL | CFTYPE_NOT_ON_ROOT,
4065 .seq_show = cgroup_populated_show,
4066 },
d5c56ced
TH
4067
4068 /*
4069 * Historical crazy stuff. These don't have "cgroup." prefix and
4070 * don't exist if sane_behavior. If you're depending on these, be
4071 * prepared to be burned.
4072 */
4073 {
4074 .name = "tasks",
4075 .flags = CFTYPE_INSANE, /* use "procs" instead */
6612f05b
TH
4076 .seq_start = cgroup_pidlist_start,
4077 .seq_next = cgroup_pidlist_next,
4078 .seq_stop = cgroup_pidlist_stop,
4079 .seq_show = cgroup_pidlist_show,
5d22444f 4080 .private = CGROUP_FILE_TASKS,
acbef755 4081 .write = cgroup_tasks_write,
d5c56ced
TH
4082 .mode = S_IRUGO | S_IWUSR,
4083 },
4084 {
4085 .name = "notify_on_release",
4086 .flags = CFTYPE_INSANE,
4087 .read_u64 = cgroup_read_notify_on_release,
4088 .write_u64 = cgroup_write_notify_on_release,
4089 },
6e6ff25b
TH
4090 {
4091 .name = "release_agent",
cc5943a7 4092 .flags = CFTYPE_INSANE | CFTYPE_ONLY_ON_ROOT,
2da8ca82 4093 .seq_show = cgroup_release_agent_show,
451af504 4094 .write = cgroup_release_agent_write,
5f469907 4095 .max_write_len = PATH_MAX - 1,
6e6ff25b 4096 },
db0416b6 4097 { } /* terminate */
bbcb81d0
PM
4098};
4099
13af07df 4100/**
628f7cd4 4101 * cgroup_populate_dir - create subsys files in a cgroup directory
13af07df 4102 * @cgrp: target cgroup
13af07df 4103 * @subsys_mask: mask of the subsystem ids whose files should be added
bee55099
TH
4104 *
4105 * On failure, no file is added.
13af07df 4106 */
69dfa00c 4107static int cgroup_populate_dir(struct cgroup *cgrp, unsigned int subsys_mask)
ddbcc7e8 4108{
ddbcc7e8 4109 struct cgroup_subsys *ss;
b420ba7d 4110 int i, ret = 0;
bbcb81d0 4111
8e3f6541 4112 /* process cftsets of each subsystem */
b420ba7d 4113 for_each_subsys(ss, i) {
0adb0704 4114 struct cftype *cfts;
b420ba7d 4115
69dfa00c 4116 if (!(subsys_mask & (1 << i)))
13af07df 4117 continue;
8e3f6541 4118
0adb0704
TH
4119 list_for_each_entry(cfts, &ss->cfts, node) {
4120 ret = cgroup_addrm_files(cgrp, cfts, true);
bee55099
TH
4121 if (ret < 0)
4122 goto err;
4123 }
ddbcc7e8 4124 }
ddbcc7e8 4125 return 0;
bee55099
TH
4126err:
4127 cgroup_clear_dir(cgrp, subsys_mask);
4128 return ret;
ddbcc7e8
PM
4129}
4130
0c21ead1
TH
4131/*
4132 * css destruction is four-stage process.
4133 *
4134 * 1. Destruction starts. Killing of the percpu_ref is initiated.
4135 * Implemented in kill_css().
4136 *
4137 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
ec903c0c
TH
4138 * and thus css_tryget_online() is guaranteed to fail, the css can be
4139 * offlined by invoking offline_css(). After offlining, the base ref is
4140 * put. Implemented in css_killed_work_fn().
0c21ead1
TH
4141 *
4142 * 3. When the percpu_ref reaches zero, the only possible remaining
4143 * accessors are inside RCU read sections. css_release() schedules the
4144 * RCU callback.
4145 *
4146 * 4. After the grace period, the css can be freed. Implemented in
4147 * css_free_work_fn().
4148 *
4149 * It is actually hairier because both step 2 and 4 require process context
4150 * and thus involve punting to css->destroy_work adding two additional
4151 * steps to the already complex sequence.
4152 */
35ef10da 4153static void css_free_work_fn(struct work_struct *work)
48ddbe19
TH
4154{
4155 struct cgroup_subsys_state *css =
35ef10da 4156 container_of(work, struct cgroup_subsys_state, destroy_work);
0c21ead1 4157 struct cgroup *cgrp = css->cgroup;
48ddbe19 4158
9d755d33
TH
4159 if (css->ss) {
4160 /* css free path */
4161 if (css->parent)
4162 css_put(css->parent);
0ae78e0b 4163
9d755d33
TH
4164 css->ss->css_free(css);
4165 cgroup_put(cgrp);
4166 } else {
4167 /* cgroup free path */
4168 atomic_dec(&cgrp->root->nr_cgrps);
4169 cgroup_pidlist_destroy_all(cgrp);
4170
d51f39b0 4171 if (cgroup_parent(cgrp)) {
9d755d33
TH
4172 /*
4173 * We get a ref to the parent, and put the ref when
4174 * this cgroup is being freed, so it's guaranteed
4175 * that the parent won't be destroyed before its
4176 * children.
4177 */
d51f39b0 4178 cgroup_put(cgroup_parent(cgrp));
9d755d33
TH
4179 kernfs_put(cgrp->kn);
4180 kfree(cgrp);
4181 } else {
4182 /*
4183 * This is root cgroup's refcnt reaching zero,
4184 * which indicates that the root should be
4185 * released.
4186 */
4187 cgroup_destroy_root(cgrp->root);
4188 }
4189 }
48ddbe19
TH
4190}
4191
0c21ead1 4192static void css_free_rcu_fn(struct rcu_head *rcu_head)
d3daf28d
TH
4193{
4194 struct cgroup_subsys_state *css =
0c21ead1 4195 container_of(rcu_head, struct cgroup_subsys_state, rcu_head);
d3daf28d 4196
35ef10da 4197 INIT_WORK(&css->destroy_work, css_free_work_fn);
e5fca243 4198 queue_work(cgroup_destroy_wq, &css->destroy_work);
48ddbe19
TH
4199}
4200
25e15d83 4201static void css_release_work_fn(struct work_struct *work)
d3daf28d
TH
4202{
4203 struct cgroup_subsys_state *css =
25e15d83 4204 container_of(work, struct cgroup_subsys_state, destroy_work);
15a4c835 4205 struct cgroup_subsys *ss = css->ss;
9d755d33 4206 struct cgroup *cgrp = css->cgroup;
15a4c835 4207
1fed1b2e
TH
4208 mutex_lock(&cgroup_mutex);
4209
de3f0341 4210 css->flags |= CSS_RELEASED;
1fed1b2e
TH
4211 list_del_rcu(&css->sibling);
4212
9d755d33
TH
4213 if (ss) {
4214 /* css release path */
4215 cgroup_idr_remove(&ss->css_idr, css->id);
4216 } else {
4217 /* cgroup release path */
9d755d33
TH
4218 cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
4219 cgrp->id = -1;
4220 }
d3daf28d 4221
1fed1b2e
TH
4222 mutex_unlock(&cgroup_mutex);
4223
0c21ead1 4224 call_rcu(&css->rcu_head, css_free_rcu_fn);
d3daf28d
TH
4225}
4226
d3daf28d
TH
4227static void css_release(struct percpu_ref *ref)
4228{
4229 struct cgroup_subsys_state *css =
4230 container_of(ref, struct cgroup_subsys_state, refcnt);
4231
25e15d83
TH
4232 INIT_WORK(&css->destroy_work, css_release_work_fn);
4233 queue_work(cgroup_destroy_wq, &css->destroy_work);
d3daf28d
TH
4234}
4235
ddfcadab
TH
4236static void init_and_link_css(struct cgroup_subsys_state *css,
4237 struct cgroup_subsys *ss, struct cgroup *cgrp)
ddbcc7e8 4238{
0cb51d71
TH
4239 lockdep_assert_held(&cgroup_mutex);
4240
ddfcadab
TH
4241 cgroup_get(cgrp);
4242
d5c419b6 4243 memset(css, 0, sizeof(*css));
bd89aabc 4244 css->cgroup = cgrp;
72c97e54 4245 css->ss = ss;
d5c419b6
TH
4246 INIT_LIST_HEAD(&css->sibling);
4247 INIT_LIST_HEAD(&css->children);
0cb51d71 4248 css->serial_nr = css_serial_nr_next++;
0ae78e0b 4249
d51f39b0
TH
4250 if (cgroup_parent(cgrp)) {
4251 css->parent = cgroup_css(cgroup_parent(cgrp), ss);
ddfcadab 4252 css_get(css->parent);
ddfcadab 4253 }
48ddbe19 4254
ca8bdcaf 4255 BUG_ON(cgroup_css(cgrp, ss));
ddbcc7e8
PM
4256}
4257
2a4ac633 4258/* invoke ->css_online() on a new CSS and mark it online if successful */
623f926b 4259static int online_css(struct cgroup_subsys_state *css)
a31f2d3f 4260{
623f926b 4261 struct cgroup_subsys *ss = css->ss;
b1929db4
TH
4262 int ret = 0;
4263
a31f2d3f
TH
4264 lockdep_assert_held(&cgroup_mutex);
4265
92fb9748 4266 if (ss->css_online)
eb95419b 4267 ret = ss->css_online(css);
ae7f164a 4268 if (!ret) {
eb95419b 4269 css->flags |= CSS_ONLINE;
aec25020 4270 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
ae7f164a 4271 }
b1929db4 4272 return ret;
a31f2d3f
TH
4273}
4274
2a4ac633 4275/* if the CSS is online, invoke ->css_offline() on it and mark it offline */
623f926b 4276static void offline_css(struct cgroup_subsys_state *css)
a31f2d3f 4277{
623f926b 4278 struct cgroup_subsys *ss = css->ss;
a31f2d3f
TH
4279
4280 lockdep_assert_held(&cgroup_mutex);
4281
4282 if (!(css->flags & CSS_ONLINE))
4283 return;
4284
d7eeac19 4285 if (ss->css_offline)
eb95419b 4286 ss->css_offline(css);
a31f2d3f 4287
eb95419b 4288 css->flags &= ~CSS_ONLINE;
e3297803 4289 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
f8f22e53
TH
4290
4291 wake_up_all(&css->cgroup->offline_waitq);
a31f2d3f
TH
4292}
4293
c81c925a
TH
4294/**
4295 * create_css - create a cgroup_subsys_state
4296 * @cgrp: the cgroup new css will be associated with
4297 * @ss: the subsys of new css
4298 *
4299 * Create a new css associated with @cgrp - @ss pair. On success, the new
4300 * css is online and installed in @cgrp with all interface files created.
4301 * Returns 0 on success, -errno on failure.
4302 */
4303static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss)
4304{
d51f39b0 4305 struct cgroup *parent = cgroup_parent(cgrp);
1fed1b2e 4306 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
c81c925a
TH
4307 struct cgroup_subsys_state *css;
4308 int err;
4309
c81c925a
TH
4310 lockdep_assert_held(&cgroup_mutex);
4311
1fed1b2e 4312 css = ss->css_alloc(parent_css);
c81c925a
TH
4313 if (IS_ERR(css))
4314 return PTR_ERR(css);
4315
ddfcadab 4316 init_and_link_css(css, ss, cgrp);
a2bed820 4317
c81c925a
TH
4318 err = percpu_ref_init(&css->refcnt, css_release);
4319 if (err)
3eb59ec6 4320 goto err_free_css;
c81c925a 4321
15a4c835
TH
4322 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_NOWAIT);
4323 if (err < 0)
4324 goto err_free_percpu_ref;
4325 css->id = err;
c81c925a 4326
aec25020 4327 err = cgroup_populate_dir(cgrp, 1 << ss->id);
c81c925a 4328 if (err)
15a4c835
TH
4329 goto err_free_id;
4330
4331 /* @css is ready to be brought online now, make it visible */
1fed1b2e 4332 list_add_tail_rcu(&css->sibling, &parent_css->children);
15a4c835 4333 cgroup_idr_replace(&ss->css_idr, css, css->id);
c81c925a
TH
4334
4335 err = online_css(css);
4336 if (err)
1fed1b2e 4337 goto err_list_del;
94419627 4338
c81c925a 4339 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
d51f39b0 4340 cgroup_parent(parent)) {
ed3d261b 4341 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
a2a1f9ea 4342 current->comm, current->pid, ss->name);
c81c925a 4343 if (!strcmp(ss->name, "memory"))
ed3d261b 4344 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
c81c925a
TH
4345 ss->warned_broken_hierarchy = true;
4346 }
4347
4348 return 0;
4349
1fed1b2e
TH
4350err_list_del:
4351 list_del_rcu(&css->sibling);
32d01dc7 4352 cgroup_clear_dir(css->cgroup, 1 << css->ss->id);
15a4c835
TH
4353err_free_id:
4354 cgroup_idr_remove(&ss->css_idr, css->id);
3eb59ec6 4355err_free_percpu_ref:
c81c925a 4356 percpu_ref_cancel_init(&css->refcnt);
3eb59ec6 4357err_free_css:
a2bed820 4358 call_rcu(&css->rcu_head, css_free_rcu_fn);
c81c925a
TH
4359 return err;
4360}
4361
b3bfd983
TH
4362static int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
4363 umode_t mode)
ddbcc7e8 4364{
a9746d8d
TH
4365 struct cgroup *parent, *cgrp;
4366 struct cgroup_root *root;
ddbcc7e8 4367 struct cgroup_subsys *ss;
2bd59d48 4368 struct kernfs_node *kn;
b3bfd983 4369 int ssid, ret;
ddbcc7e8 4370
a9746d8d
TH
4371 parent = cgroup_kn_lock_live(parent_kn);
4372 if (!parent)
4373 return -ENODEV;
4374 root = parent->root;
ddbcc7e8 4375
0a950f65 4376 /* allocate the cgroup and its ID, 0 is reserved for the root */
bd89aabc 4377 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
ba0f4d76
TH
4378 if (!cgrp) {
4379 ret = -ENOMEM;
4380 goto out_unlock;
0ab02ca8
LZ
4381 }
4382
9d755d33
TH
4383 ret = percpu_ref_init(&cgrp->self.refcnt, css_release);
4384 if (ret)
4385 goto out_free_cgrp;
4386
0ab02ca8
LZ
4387 /*
4388 * Temporarily set the pointer to NULL, so idr_find() won't return
4389 * a half-baked cgroup.
4390 */
6fa4918d 4391 cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_NOWAIT);
0ab02ca8 4392 if (cgrp->id < 0) {
ba0f4d76 4393 ret = -ENOMEM;
9d755d33 4394 goto out_cancel_ref;
976c06bc
TH
4395 }
4396
cc31edce 4397 init_cgroup_housekeeping(cgrp);
ddbcc7e8 4398
9d800df1 4399 cgrp->self.parent = &parent->self;
ba0f4d76 4400 cgrp->root = root;
ddbcc7e8 4401
b6abdb0e
LZ
4402 if (notify_on_release(parent))
4403 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
4404
2260e7fc
TH
4405 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
4406 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
97978e6d 4407
2bd59d48 4408 /* create the directory */
e61734c5 4409 kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
2bd59d48 4410 if (IS_ERR(kn)) {
ba0f4d76
TH
4411 ret = PTR_ERR(kn);
4412 goto out_free_id;
2bd59d48
TH
4413 }
4414 cgrp->kn = kn;
ddbcc7e8 4415
4e139afc 4416 /*
6f30558f
TH
4417 * This extra ref will be put in cgroup_free_fn() and guarantees
4418 * that @cgrp->kn is always accessible.
4e139afc 4419 */
6f30558f 4420 kernfs_get(kn);
ddbcc7e8 4421
0cb51d71 4422 cgrp->self.serial_nr = css_serial_nr_next++;
53fa5261 4423
4e139afc 4424 /* allocation complete, commit to creation */
d5c419b6 4425 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
3c9c825b 4426 atomic_inc(&root->nr_cgrps);
59f5296b 4427 cgroup_get(parent);
415cf07a 4428
0d80255e
TH
4429 /*
4430 * @cgrp is now fully operational. If something fails after this
4431 * point, it'll be released via the normal destruction path.
4432 */
6fa4918d 4433 cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
4e96ee8e 4434
ba0f4d76
TH
4435 ret = cgroup_kn_set_ugid(kn);
4436 if (ret)
4437 goto out_destroy;
49957f8e 4438
ba0f4d76
TH
4439 ret = cgroup_addrm_files(cgrp, cgroup_base_files, true);
4440 if (ret)
4441 goto out_destroy;
628f7cd4 4442
9d403e99 4443 /* let's create and online css's */
b85d2040 4444 for_each_subsys(ss, ssid) {
f392e51c 4445 if (parent->child_subsys_mask & (1 << ssid)) {
ba0f4d76
TH
4446 ret = create_css(cgrp, ss);
4447 if (ret)
4448 goto out_destroy;
b85d2040 4449 }
a8638030 4450 }
ddbcc7e8 4451
bd53d617
TH
4452 /*
4453 * On the default hierarchy, a child doesn't automatically inherit
4454 * child_subsys_mask from the parent. Each is configured manually.
4455 */
4456 if (!cgroup_on_dfl(cgrp))
4457 cgrp->child_subsys_mask = parent->child_subsys_mask;
2bd59d48 4458
2bd59d48 4459 kernfs_activate(kn);
ddbcc7e8 4460
ba0f4d76
TH
4461 ret = 0;
4462 goto out_unlock;
ddbcc7e8 4463
ba0f4d76 4464out_free_id:
6fa4918d 4465 cgroup_idr_remove(&root->cgroup_idr, cgrp->id);
9d755d33
TH
4466out_cancel_ref:
4467 percpu_ref_cancel_init(&cgrp->self.refcnt);
ba0f4d76 4468out_free_cgrp:
bd89aabc 4469 kfree(cgrp);
ba0f4d76 4470out_unlock:
a9746d8d 4471 cgroup_kn_unlock(parent_kn);
ba0f4d76 4472 return ret;
4b8b47eb 4473
ba0f4d76 4474out_destroy:
4b8b47eb 4475 cgroup_destroy_locked(cgrp);
ba0f4d76 4476 goto out_unlock;
ddbcc7e8
PM
4477}
4478
223dbc38
TH
4479/*
4480 * This is called when the refcnt of a css is confirmed to be killed.
249f3468
TH
4481 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to
4482 * initate destruction and put the css ref from kill_css().
223dbc38
TH
4483 */
4484static void css_killed_work_fn(struct work_struct *work)
d3daf28d 4485{
223dbc38
TH
4486 struct cgroup_subsys_state *css =
4487 container_of(work, struct cgroup_subsys_state, destroy_work);
d3daf28d 4488
f20104de 4489 mutex_lock(&cgroup_mutex);
09a503ea 4490 offline_css(css);
f20104de 4491 mutex_unlock(&cgroup_mutex);
09a503ea 4492
09a503ea 4493 css_put(css);
d3daf28d
TH
4494}
4495
223dbc38
TH
4496/* css kill confirmation processing requires process context, bounce */
4497static void css_killed_ref_fn(struct percpu_ref *ref)
d3daf28d
TH
4498{
4499 struct cgroup_subsys_state *css =
4500 container_of(ref, struct cgroup_subsys_state, refcnt);
4501
223dbc38 4502 INIT_WORK(&css->destroy_work, css_killed_work_fn);
e5fca243 4503 queue_work(cgroup_destroy_wq, &css->destroy_work);
d3daf28d
TH
4504}
4505
f392e51c
TH
4506/**
4507 * kill_css - destroy a css
4508 * @css: css to destroy
4509 *
4510 * This function initiates destruction of @css by removing cgroup interface
4511 * files and putting its base reference. ->css_offline() will be invoked
ec903c0c
TH
4512 * asynchronously once css_tryget_online() is guaranteed to fail and when
4513 * the reference count reaches zero, @css will be released.
f392e51c
TH
4514 */
4515static void kill_css(struct cgroup_subsys_state *css)
edae0c33 4516{
01f6474c 4517 lockdep_assert_held(&cgroup_mutex);
94419627 4518
2bd59d48
TH
4519 /*
4520 * This must happen before css is disassociated with its cgroup.
4521 * See seq_css() for details.
4522 */
aec25020 4523 cgroup_clear_dir(css->cgroup, 1 << css->ss->id);
3c14f8b4 4524
edae0c33
TH
4525 /*
4526 * Killing would put the base ref, but we need to keep it alive
4527 * until after ->css_offline().
4528 */
4529 css_get(css);
4530
4531 /*
4532 * cgroup core guarantees that, by the time ->css_offline() is
4533 * invoked, no new css reference will be given out via
ec903c0c 4534 * css_tryget_online(). We can't simply call percpu_ref_kill() and
edae0c33
TH
4535 * proceed to offlining css's because percpu_ref_kill() doesn't
4536 * guarantee that the ref is seen as killed on all CPUs on return.
4537 *
4538 * Use percpu_ref_kill_and_confirm() to get notifications as each
4539 * css is confirmed to be seen as killed on all CPUs.
4540 */
4541 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
d3daf28d
TH
4542}
4543
4544/**
4545 * cgroup_destroy_locked - the first stage of cgroup destruction
4546 * @cgrp: cgroup to be destroyed
4547 *
4548 * css's make use of percpu refcnts whose killing latency shouldn't be
4549 * exposed to userland and are RCU protected. Also, cgroup core needs to
ec903c0c
TH
4550 * guarantee that css_tryget_online() won't succeed by the time
4551 * ->css_offline() is invoked. To satisfy all the requirements,
4552 * destruction is implemented in the following two steps.
d3daf28d
TH
4553 *
4554 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
4555 * userland visible parts and start killing the percpu refcnts of
4556 * css's. Set up so that the next stage will be kicked off once all
4557 * the percpu refcnts are confirmed to be killed.
4558 *
4559 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
4560 * rest of destruction. Once all cgroup references are gone, the
4561 * cgroup is RCU-freed.
4562 *
4563 * This function implements s1. After this step, @cgrp is gone as far as
4564 * the userland is concerned and a new cgroup with the same name may be
4565 * created. As cgroup doesn't care about the names internally, this
4566 * doesn't cause any problem.
4567 */
42809dd4
TH
4568static int cgroup_destroy_locked(struct cgroup *cgrp)
4569 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
ddbcc7e8 4570{
2bd59d48 4571 struct cgroup_subsys_state *css;
ddd69148 4572 bool empty;
1c6727af 4573 int ssid;
ddbcc7e8 4574
42809dd4
TH
4575 lockdep_assert_held(&cgroup_mutex);
4576
ddd69148 4577 /*
96d365e0 4578 * css_set_rwsem synchronizes access to ->cset_links and prevents
89c5509b 4579 * @cgrp from being removed while put_css_set() is in progress.
ddd69148 4580 */
96d365e0 4581 down_read(&css_set_rwsem);
bb78a92f 4582 empty = list_empty(&cgrp->cset_links);
96d365e0 4583 up_read(&css_set_rwsem);
ddd69148 4584 if (!empty)
ddbcc7e8 4585 return -EBUSY;
a043e3b2 4586
bb78a92f 4587 /*
d5c419b6
TH
4588 * Make sure there's no live children. We can't test emptiness of
4589 * ->self.children as dead children linger on it while being
4590 * drained; otherwise, "rmdir parent/child parent" may fail.
bb78a92f 4591 */
f3d46500 4592 if (css_has_online_children(&cgrp->self))
bb78a92f
HD
4593 return -EBUSY;
4594
455050d2
TH
4595 /*
4596 * Mark @cgrp dead. This prevents further task migration and child
de3f0341 4597 * creation by disabling cgroup_lock_live_group().
455050d2 4598 */
184faf32 4599 cgrp->self.flags &= ~CSS_ONLINE;
ddbcc7e8 4600
249f3468 4601 /* initiate massacre of all css's */
1c6727af
TH
4602 for_each_css(css, ssid, cgrp)
4603 kill_css(css);
455050d2 4604
184faf32 4605 /* CSS_ONLINE is clear, remove from ->release_list for the last time */
455050d2
TH
4606 raw_spin_lock(&release_list_lock);
4607 if (!list_empty(&cgrp->release_list))
4608 list_del_init(&cgrp->release_list);
4609 raw_spin_unlock(&release_list_lock);
4610
4611 /*
01f6474c
TH
4612 * Remove @cgrp directory along with the base files. @cgrp has an
4613 * extra ref on its kn.
f20104de 4614 */
01f6474c 4615 kernfs_remove(cgrp->kn);
f20104de 4616
d51f39b0
TH
4617 set_bit(CGRP_RELEASABLE, &cgroup_parent(cgrp)->flags);
4618 check_for_release(cgroup_parent(cgrp));
2bd59d48 4619
249f3468 4620 /* put the base reference */
9d755d33 4621 percpu_ref_kill(&cgrp->self.refcnt);
455050d2 4622
ea15f8cc
TH
4623 return 0;
4624};
4625
2bd59d48 4626static int cgroup_rmdir(struct kernfs_node *kn)
42809dd4 4627{
a9746d8d 4628 struct cgroup *cgrp;
2bd59d48 4629 int ret = 0;
42809dd4 4630
a9746d8d
TH
4631 cgrp = cgroup_kn_lock_live(kn);
4632 if (!cgrp)
4633 return 0;
4634 cgroup_get(cgrp); /* for @kn->priv clearing */
42809dd4 4635
a9746d8d 4636 ret = cgroup_destroy_locked(cgrp);
2bb566cb 4637
a9746d8d 4638 cgroup_kn_unlock(kn);
8e3f6541
TH
4639
4640 /*
cfc79d5b
TH
4641 * There are two control paths which try to determine cgroup from
4642 * dentry without going through kernfs - cgroupstats_build() and
4643 * css_tryget_online_from_dir(). Those are supported by RCU
4644 * protecting clearing of cgrp->kn->priv backpointer, which should
4645 * happen after all files under it have been removed.
8e3f6541 4646 */
cfc79d5b
TH
4647 if (!ret)
4648 RCU_INIT_POINTER(*(void __rcu __force **)&kn->priv, NULL);
2bb566cb 4649
2bd59d48 4650 cgroup_put(cgrp);
42809dd4 4651 return ret;
8e3f6541
TH
4652}
4653
2bd59d48
TH
4654static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
4655 .remount_fs = cgroup_remount,
4656 .show_options = cgroup_show_options,
4657 .mkdir = cgroup_mkdir,
4658 .rmdir = cgroup_rmdir,
4659 .rename = cgroup_rename,
4660};
4661
15a4c835 4662static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
ddbcc7e8 4663{
ddbcc7e8 4664 struct cgroup_subsys_state *css;
cfe36bde
DC
4665
4666 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
ddbcc7e8 4667
648bb56d
TH
4668 mutex_lock(&cgroup_mutex);
4669
15a4c835 4670 idr_init(&ss->css_idr);
0adb0704 4671 INIT_LIST_HEAD(&ss->cfts);
8e3f6541 4672
3dd06ffa
TH
4673 /* Create the root cgroup state for this subsystem */
4674 ss->root = &cgrp_dfl_root;
4675 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
ddbcc7e8
PM
4676 /* We don't handle early failures gracefully */
4677 BUG_ON(IS_ERR(css));
ddfcadab 4678 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
3b514d24
TH
4679
4680 /*
4681 * Root csses are never destroyed and we can't initialize
4682 * percpu_ref during early init. Disable refcnting.
4683 */
4684 css->flags |= CSS_NO_REF;
4685
15a4c835 4686 if (early) {
9395a450 4687 /* allocation can't be done safely during early init */
15a4c835
TH
4688 css->id = 1;
4689 } else {
4690 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
4691 BUG_ON(css->id < 0);
4692 }
ddbcc7e8 4693
e8d55fde 4694 /* Update the init_css_set to contain a subsys
817929ec 4695 * pointer to this state - since the subsystem is
e8d55fde 4696 * newly registered, all tasks and hence the
3dd06ffa 4697 * init_css_set is in the subsystem's root cgroup. */
aec25020 4698 init_css_set.subsys[ss->id] = css;
ddbcc7e8
PM
4699
4700 need_forkexit_callback |= ss->fork || ss->exit;
4701
e8d55fde
LZ
4702 /* At system boot, before all subsystems have been
4703 * registered, no tasks have been forked, so we don't
4704 * need to invoke fork callbacks here. */
4705 BUG_ON(!list_empty(&init_task.tasks));
4706
ae7f164a 4707 BUG_ON(online_css(css));
a8638030 4708
cf5d5941
BB
4709 mutex_unlock(&cgroup_mutex);
4710}
cf5d5941 4711
ddbcc7e8 4712/**
a043e3b2
LZ
4713 * cgroup_init_early - cgroup initialization at system boot
4714 *
4715 * Initialize cgroups at system boot, and initialize any
4716 * subsystems that request early init.
ddbcc7e8
PM
4717 */
4718int __init cgroup_init_early(void)
4719{
a2dd4247
TH
4720 static struct cgroup_sb_opts __initdata opts =
4721 { .flags = CGRP_ROOT_SANE_BEHAVIOR };
30159ec7 4722 struct cgroup_subsys *ss;
ddbcc7e8 4723 int i;
30159ec7 4724
3dd06ffa 4725 init_cgroup_root(&cgrp_dfl_root, &opts);
3b514d24
TH
4726 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
4727
a4ea1cc9 4728 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
817929ec 4729
3ed80a62 4730 for_each_subsys(ss, i) {
aec25020 4731 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
073219e9
TH
4732 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p name:id=%d:%s\n",
4733 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
aec25020 4734 ss->id, ss->name);
073219e9
TH
4735 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
4736 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
4737
aec25020 4738 ss->id = i;
073219e9 4739 ss->name = cgroup_subsys_name[i];
ddbcc7e8
PM
4740
4741 if (ss->early_init)
15a4c835 4742 cgroup_init_subsys(ss, true);
ddbcc7e8
PM
4743 }
4744 return 0;
4745}
4746
4747/**
a043e3b2
LZ
4748 * cgroup_init - cgroup initialization
4749 *
4750 * Register cgroup filesystem and /proc file, and initialize
4751 * any subsystems that didn't request early init.
ddbcc7e8
PM
4752 */
4753int __init cgroup_init(void)
4754{
30159ec7 4755 struct cgroup_subsys *ss;
0ac801fe 4756 unsigned long key;
172a2c06 4757 int ssid, err;
ddbcc7e8 4758
2bd59d48 4759 BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files));
ddbcc7e8 4760
54e7b4eb 4761 mutex_lock(&cgroup_mutex);
54e7b4eb 4762
82fe9b0d
TH
4763 /* Add init_css_set to the hash table */
4764 key = css_set_hash(init_css_set.subsys);
4765 hash_add(css_set_table, &init_css_set.hlist, key);
4766
3dd06ffa 4767 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
4e96ee8e 4768
54e7b4eb
TH
4769 mutex_unlock(&cgroup_mutex);
4770
172a2c06 4771 for_each_subsys(ss, ssid) {
15a4c835
TH
4772 if (ss->early_init) {
4773 struct cgroup_subsys_state *css =
4774 init_css_set.subsys[ss->id];
4775
4776 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
4777 GFP_KERNEL);
4778 BUG_ON(css->id < 0);
4779 } else {
4780 cgroup_init_subsys(ss, false);
4781 }
172a2c06 4782
2d8f243a
TH
4783 list_add_tail(&init_css_set.e_cset_node[ssid],
4784 &cgrp_dfl_root.cgrp.e_csets[ssid]);
172a2c06
TH
4785
4786 /*
c731ae1d
LZ
4787 * Setting dfl_root subsys_mask needs to consider the
4788 * disabled flag and cftype registration needs kmalloc,
4789 * both of which aren't available during early_init.
172a2c06 4790 */
c731ae1d
LZ
4791 if (!ss->disabled) {
4792 cgrp_dfl_root.subsys_mask |= 1 << ss->id;
172a2c06 4793 WARN_ON(cgroup_add_cftypes(ss, ss->base_cftypes));
c731ae1d 4794 }
676db4af
GKH
4795 }
4796
676db4af 4797 cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
2bd59d48
TH
4798 if (!cgroup_kobj)
4799 return -ENOMEM;
676db4af 4800
ddbcc7e8 4801 err = register_filesystem(&cgroup_fs_type);
676db4af
GKH
4802 if (err < 0) {
4803 kobject_put(cgroup_kobj);
2bd59d48 4804 return err;
676db4af 4805 }
ddbcc7e8 4806
46ae220b 4807 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
2bd59d48 4808 return 0;
ddbcc7e8 4809}
b4f48b63 4810
e5fca243
TH
4811static int __init cgroup_wq_init(void)
4812{
4813 /*
4814 * There isn't much point in executing destruction path in
4815 * parallel. Good chunk is serialized with cgroup_mutex anyway.
1a11533f 4816 * Use 1 for @max_active.
e5fca243
TH
4817 *
4818 * We would prefer to do this in cgroup_init() above, but that
4819 * is called before init_workqueues(): so leave this until after.
4820 */
1a11533f 4821 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
e5fca243 4822 BUG_ON(!cgroup_destroy_wq);
b1a21367
TH
4823
4824 /*
4825 * Used to destroy pidlists and separate to serve as flush domain.
4826 * Cap @max_active to 1 too.
4827 */
4828 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
4829 0, 1);
4830 BUG_ON(!cgroup_pidlist_destroy_wq);
4831
e5fca243
TH
4832 return 0;
4833}
4834core_initcall(cgroup_wq_init);
4835
a424316c
PM
4836/*
4837 * proc_cgroup_show()
4838 * - Print task's cgroup paths into seq_file, one line for each hierarchy
4839 * - Used for /proc/<pid>/cgroup.
a424316c
PM
4840 */
4841
4842/* TODO: Use a proper seq_file iterator */
8d8b97ba 4843int proc_cgroup_show(struct seq_file *m, void *v)
a424316c
PM
4844{
4845 struct pid *pid;
4846 struct task_struct *tsk;
e61734c5 4847 char *buf, *path;
a424316c 4848 int retval;
3dd06ffa 4849 struct cgroup_root *root;
a424316c
PM
4850
4851 retval = -ENOMEM;
e61734c5 4852 buf = kmalloc(PATH_MAX, GFP_KERNEL);
a424316c
PM
4853 if (!buf)
4854 goto out;
4855
4856 retval = -ESRCH;
4857 pid = m->private;
4858 tsk = get_pid_task(pid, PIDTYPE_PID);
4859 if (!tsk)
4860 goto out_free;
4861
4862 retval = 0;
4863
4864 mutex_lock(&cgroup_mutex);
96d365e0 4865 down_read(&css_set_rwsem);
a424316c 4866
985ed670 4867 for_each_root(root) {
a424316c 4868 struct cgroup_subsys *ss;
bd89aabc 4869 struct cgroup *cgrp;
b85d2040 4870 int ssid, count = 0;
a424316c 4871
a2dd4247 4872 if (root == &cgrp_dfl_root && !cgrp_dfl_root_visible)
985ed670
TH
4873 continue;
4874
2c6ab6d2 4875 seq_printf(m, "%d:", root->hierarchy_id);
b85d2040 4876 for_each_subsys(ss, ssid)
f392e51c 4877 if (root->subsys_mask & (1 << ssid))
b85d2040 4878 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
c6d57f33
PM
4879 if (strlen(root->name))
4880 seq_printf(m, "%sname=%s", count ? "," : "",
4881 root->name);
a424316c 4882 seq_putc(m, ':');
7717f7ba 4883 cgrp = task_cgroup_from_root(tsk, root);
e61734c5
TH
4884 path = cgroup_path(cgrp, buf, PATH_MAX);
4885 if (!path) {
4886 retval = -ENAMETOOLONG;
a424316c 4887 goto out_unlock;
e61734c5
TH
4888 }
4889 seq_puts(m, path);
a424316c
PM
4890 seq_putc(m, '\n');
4891 }
4892
4893out_unlock:
96d365e0 4894 up_read(&css_set_rwsem);
a424316c
PM
4895 mutex_unlock(&cgroup_mutex);
4896 put_task_struct(tsk);
4897out_free:
4898 kfree(buf);
4899out:
4900 return retval;
4901}
4902
a424316c
PM
4903/* Display information about each subsystem and each hierarchy */
4904static int proc_cgroupstats_show(struct seq_file *m, void *v)
4905{
30159ec7 4906 struct cgroup_subsys *ss;
a424316c 4907 int i;
a424316c 4908
8bab8dde 4909 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
aae8aab4
BB
4910 /*
4911 * ideally we don't want subsystems moving around while we do this.
4912 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
4913 * subsys/hierarchy state.
4914 */
a424316c 4915 mutex_lock(&cgroup_mutex);
30159ec7
TH
4916
4917 for_each_subsys(ss, i)
2c6ab6d2
PM
4918 seq_printf(m, "%s\t%d\t%d\t%d\n",
4919 ss->name, ss->root->hierarchy_id,
3c9c825b 4920 atomic_read(&ss->root->nr_cgrps), !ss->disabled);
30159ec7 4921
a424316c
PM
4922 mutex_unlock(&cgroup_mutex);
4923 return 0;
4924}
4925
4926static int cgroupstats_open(struct inode *inode, struct file *file)
4927{
9dce07f1 4928 return single_open(file, proc_cgroupstats_show, NULL);
a424316c
PM
4929}
4930
828c0950 4931static const struct file_operations proc_cgroupstats_operations = {
a424316c
PM
4932 .open = cgroupstats_open,
4933 .read = seq_read,
4934 .llseek = seq_lseek,
4935 .release = single_release,
4936};
4937
b4f48b63 4938/**
eaf797ab 4939 * cgroup_fork - initialize cgroup related fields during copy_process()
a043e3b2 4940 * @child: pointer to task_struct of forking parent process.
b4f48b63 4941 *
eaf797ab
TH
4942 * A task is associated with the init_css_set until cgroup_post_fork()
4943 * attaches it to the parent's css_set. Empty cg_list indicates that
4944 * @child isn't holding reference to its css_set.
b4f48b63
PM
4945 */
4946void cgroup_fork(struct task_struct *child)
4947{
eaf797ab 4948 RCU_INIT_POINTER(child->cgroups, &init_css_set);
817929ec 4949 INIT_LIST_HEAD(&child->cg_list);
b4f48b63
PM
4950}
4951
817929ec 4952/**
a043e3b2
LZ
4953 * cgroup_post_fork - called on a new task after adding it to the task list
4954 * @child: the task in question
4955 *
5edee61e
TH
4956 * Adds the task to the list running through its css_set if necessary and
4957 * call the subsystem fork() callbacks. Has to be after the task is
4958 * visible on the task list in case we race with the first call to
0942eeee 4959 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5edee61e 4960 * list.
a043e3b2 4961 */
817929ec
PM
4962void cgroup_post_fork(struct task_struct *child)
4963{
30159ec7 4964 struct cgroup_subsys *ss;
5edee61e
TH
4965 int i;
4966
3ce3230a 4967 /*
eaf797ab
TH
4968 * This may race against cgroup_enable_task_cg_links(). As that
4969 * function sets use_task_css_set_links before grabbing
4970 * tasklist_lock and we just went through tasklist_lock to add
4971 * @child, it's guaranteed that either we see the set
4972 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
4973 * @child during its iteration.
4974 *
4975 * If we won the race, @child is associated with %current's
4976 * css_set. Grabbing css_set_rwsem guarantees both that the
4977 * association is stable, and, on completion of the parent's
4978 * migration, @child is visible in the source of migration or
4979 * already in the destination cgroup. This guarantee is necessary
4980 * when implementing operations which need to migrate all tasks of
4981 * a cgroup to another.
4982 *
4983 * Note that if we lose to cgroup_enable_task_cg_links(), @child
4984 * will remain in init_css_set. This is safe because all tasks are
4985 * in the init_css_set before cg_links is enabled and there's no
4986 * operation which transfers all tasks out of init_css_set.
3ce3230a 4987 */
817929ec 4988 if (use_task_css_set_links) {
eaf797ab
TH
4989 struct css_set *cset;
4990
96d365e0 4991 down_write(&css_set_rwsem);
0e1d768f 4992 cset = task_css_set(current);
eaf797ab
TH
4993 if (list_empty(&child->cg_list)) {
4994 rcu_assign_pointer(child->cgroups, cset);
4995 list_add(&child->cg_list, &cset->tasks);
4996 get_css_set(cset);
4997 }
96d365e0 4998 up_write(&css_set_rwsem);
817929ec 4999 }
5edee61e
TH
5000
5001 /*
5002 * Call ss->fork(). This must happen after @child is linked on
5003 * css_set; otherwise, @child might change state between ->fork()
5004 * and addition to css_set.
5005 */
5006 if (need_forkexit_callback) {
3ed80a62 5007 for_each_subsys(ss, i)
5edee61e
TH
5008 if (ss->fork)
5009 ss->fork(child);
5edee61e 5010 }
817929ec 5011}
5edee61e 5012
b4f48b63
PM
5013/**
5014 * cgroup_exit - detach cgroup from exiting task
5015 * @tsk: pointer to task_struct of exiting process
5016 *
5017 * Description: Detach cgroup from @tsk and release it.
5018 *
5019 * Note that cgroups marked notify_on_release force every task in
5020 * them to take the global cgroup_mutex mutex when exiting.
5021 * This could impact scaling on very large systems. Be reluctant to
5022 * use notify_on_release cgroups where very high task exit scaling
5023 * is required on large systems.
5024 *
0e1d768f
TH
5025 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We
5026 * call cgroup_exit() while the task is still competent to handle
5027 * notify_on_release(), then leave the task attached to the root cgroup in
5028 * each hierarchy for the remainder of its exit. No need to bother with
5029 * init_css_set refcnting. init_css_set never goes away and we can't race
e8604cb4 5030 * with migration path - PF_EXITING is visible to migration path.
b4f48b63 5031 */
1ec41830 5032void cgroup_exit(struct task_struct *tsk)
b4f48b63 5033{
30159ec7 5034 struct cgroup_subsys *ss;
5abb8855 5035 struct css_set *cset;
eaf797ab 5036 bool put_cset = false;
d41d5a01 5037 int i;
817929ec
PM
5038
5039 /*
0e1d768f
TH
5040 * Unlink from @tsk from its css_set. As migration path can't race
5041 * with us, we can check cg_list without grabbing css_set_rwsem.
817929ec
PM
5042 */
5043 if (!list_empty(&tsk->cg_list)) {
96d365e0 5044 down_write(&css_set_rwsem);
0e1d768f 5045 list_del_init(&tsk->cg_list);
96d365e0 5046 up_write(&css_set_rwsem);
0e1d768f 5047 put_cset = true;
817929ec
PM
5048 }
5049
b4f48b63 5050 /* Reassign the task to the init_css_set. */
a8ad805c
TH
5051 cset = task_css_set(tsk);
5052 RCU_INIT_POINTER(tsk->cgroups, &init_css_set);
d41d5a01 5053
1ec41830 5054 if (need_forkexit_callback) {
3ed80a62
TH
5055 /* see cgroup_post_fork() for details */
5056 for_each_subsys(ss, i) {
d41d5a01 5057 if (ss->exit) {
eb95419b
TH
5058 struct cgroup_subsys_state *old_css = cset->subsys[i];
5059 struct cgroup_subsys_state *css = task_css(tsk, i);
30159ec7 5060
eb95419b 5061 ss->exit(css, old_css, tsk);
d41d5a01
PZ
5062 }
5063 }
5064 }
d41d5a01 5065
eaf797ab
TH
5066 if (put_cset)
5067 put_css_set(cset, true);
b4f48b63 5068}
697f4161 5069
bd89aabc 5070static void check_for_release(struct cgroup *cgrp)
81a6a5cd 5071{
f3d46500
TH
5072 if (cgroup_is_releasable(cgrp) && list_empty(&cgrp->cset_links) &&
5073 !css_has_online_children(&cgrp->self)) {
f50daa70
LZ
5074 /*
5075 * Control Group is currently removeable. If it's not
81a6a5cd 5076 * already queued for a userspace notification, queue
f50daa70
LZ
5077 * it now
5078 */
81a6a5cd 5079 int need_schedule_work = 0;
f50daa70 5080
cdcc136f 5081 raw_spin_lock(&release_list_lock);
54766d4a 5082 if (!cgroup_is_dead(cgrp) &&
bd89aabc
PM
5083 list_empty(&cgrp->release_list)) {
5084 list_add(&cgrp->release_list, &release_list);
81a6a5cd
PM
5085 need_schedule_work = 1;
5086 }
cdcc136f 5087 raw_spin_unlock(&release_list_lock);
81a6a5cd
PM
5088 if (need_schedule_work)
5089 schedule_work(&release_agent_work);
5090 }
5091}
5092
81a6a5cd
PM
5093/*
5094 * Notify userspace when a cgroup is released, by running the
5095 * configured release agent with the name of the cgroup (path
5096 * relative to the root of cgroup file system) as the argument.
5097 *
5098 * Most likely, this user command will try to rmdir this cgroup.
5099 *
5100 * This races with the possibility that some other task will be
5101 * attached to this cgroup before it is removed, or that some other
5102 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
5103 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
5104 * unused, and this cgroup will be reprieved from its death sentence,
5105 * to continue to serve a useful existence. Next time it's released,
5106 * we will get notified again, if it still has 'notify_on_release' set.
5107 *
5108 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
5109 * means only wait until the task is successfully execve()'d. The
5110 * separate release agent task is forked by call_usermodehelper(),
5111 * then control in this thread returns here, without waiting for the
5112 * release agent task. We don't bother to wait because the caller of
5113 * this routine has no use for the exit status of the release agent
5114 * task, so no sense holding our caller up for that.
81a6a5cd 5115 */
81a6a5cd
PM
5116static void cgroup_release_agent(struct work_struct *work)
5117{
5118 BUG_ON(work != &release_agent_work);
5119 mutex_lock(&cgroup_mutex);
cdcc136f 5120 raw_spin_lock(&release_list_lock);
81a6a5cd
PM
5121 while (!list_empty(&release_list)) {
5122 char *argv[3], *envp[3];
5123 int i;
e61734c5 5124 char *pathbuf = NULL, *agentbuf = NULL, *path;
bd89aabc 5125 struct cgroup *cgrp = list_entry(release_list.next,
81a6a5cd
PM
5126 struct cgroup,
5127 release_list);
bd89aabc 5128 list_del_init(&cgrp->release_list);
cdcc136f 5129 raw_spin_unlock(&release_list_lock);
e61734c5 5130 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
e788e066
PM
5131 if (!pathbuf)
5132 goto continue_free;
e61734c5
TH
5133 path = cgroup_path(cgrp, pathbuf, PATH_MAX);
5134 if (!path)
e788e066
PM
5135 goto continue_free;
5136 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
5137 if (!agentbuf)
5138 goto continue_free;
81a6a5cd
PM
5139
5140 i = 0;
e788e066 5141 argv[i++] = agentbuf;
e61734c5 5142 argv[i++] = path;
81a6a5cd
PM
5143 argv[i] = NULL;
5144
5145 i = 0;
5146 /* minimal command environment */
5147 envp[i++] = "HOME=/";
5148 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
5149 envp[i] = NULL;
5150
5151 /* Drop the lock while we invoke the usermode helper,
5152 * since the exec could involve hitting disk and hence
5153 * be a slow process */
5154 mutex_unlock(&cgroup_mutex);
5155 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
81a6a5cd 5156 mutex_lock(&cgroup_mutex);
e788e066
PM
5157 continue_free:
5158 kfree(pathbuf);
5159 kfree(agentbuf);
cdcc136f 5160 raw_spin_lock(&release_list_lock);
81a6a5cd 5161 }
cdcc136f 5162 raw_spin_unlock(&release_list_lock);
81a6a5cd
PM
5163 mutex_unlock(&cgroup_mutex);
5164}
8bab8dde
PM
5165
5166static int __init cgroup_disable(char *str)
5167{
30159ec7 5168 struct cgroup_subsys *ss;
8bab8dde 5169 char *token;
30159ec7 5170 int i;
8bab8dde
PM
5171
5172 while ((token = strsep(&str, ",")) != NULL) {
5173 if (!*token)
5174 continue;
be45c900 5175
3ed80a62 5176 for_each_subsys(ss, i) {
8bab8dde
PM
5177 if (!strcmp(token, ss->name)) {
5178 ss->disabled = 1;
5179 printk(KERN_INFO "Disabling %s control group"
5180 " subsystem\n", ss->name);
5181 break;
5182 }
5183 }
5184 }
5185 return 1;
5186}
5187__setup("cgroup_disable=", cgroup_disable);
38460b48 5188
b77d7b60 5189/**
ec903c0c 5190 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
35cf0836
TH
5191 * @dentry: directory dentry of interest
5192 * @ss: subsystem of interest
b77d7b60 5193 *
5a17f543
TH
5194 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
5195 * to get the corresponding css and return it. If such css doesn't exist
5196 * or can't be pinned, an ERR_PTR value is returned.
e5d1367f 5197 */
ec903c0c
TH
5198struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
5199 struct cgroup_subsys *ss)
e5d1367f 5200{
2bd59d48
TH
5201 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
5202 struct cgroup_subsys_state *css = NULL;
e5d1367f 5203 struct cgroup *cgrp;
e5d1367f 5204
35cf0836 5205 /* is @dentry a cgroup dir? */
2bd59d48
TH
5206 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
5207 kernfs_type(kn) != KERNFS_DIR)
e5d1367f
SE
5208 return ERR_PTR(-EBADF);
5209
5a17f543
TH
5210 rcu_read_lock();
5211
2bd59d48
TH
5212 /*
5213 * This path doesn't originate from kernfs and @kn could already
5214 * have been or be removed at any point. @kn->priv is RCU
cfc79d5b 5215 * protected for this access. See cgroup_rmdir() for details.
2bd59d48
TH
5216 */
5217 cgrp = rcu_dereference(kn->priv);
5218 if (cgrp)
5219 css = cgroup_css(cgrp, ss);
5a17f543 5220
ec903c0c 5221 if (!css || !css_tryget_online(css))
5a17f543
TH
5222 css = ERR_PTR(-ENOENT);
5223
5224 rcu_read_unlock();
5225 return css;
e5d1367f 5226}
e5d1367f 5227
1cb650b9
LZ
5228/**
5229 * css_from_id - lookup css by id
5230 * @id: the cgroup id
5231 * @ss: cgroup subsys to be looked into
5232 *
5233 * Returns the css if there's valid one with @id, otherwise returns NULL.
5234 * Should be called under rcu_read_lock().
5235 */
5236struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
5237{
6fa4918d 5238 WARN_ON_ONCE(!rcu_read_lock_held());
15a4c835 5239 return idr_find(&ss->css_idr, id);
e5d1367f
SE
5240}
5241
fe693435 5242#ifdef CONFIG_CGROUP_DEBUG
eb95419b
TH
5243static struct cgroup_subsys_state *
5244debug_css_alloc(struct cgroup_subsys_state *parent_css)
fe693435
PM
5245{
5246 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5247
5248 if (!css)
5249 return ERR_PTR(-ENOMEM);
5250
5251 return css;
5252}
5253
eb95419b 5254static void debug_css_free(struct cgroup_subsys_state *css)
fe693435 5255{
eb95419b 5256 kfree(css);
fe693435
PM
5257}
5258
182446d0
TH
5259static u64 debug_taskcount_read(struct cgroup_subsys_state *css,
5260 struct cftype *cft)
fe693435 5261{
182446d0 5262 return cgroup_task_count(css->cgroup);
fe693435
PM
5263}
5264
182446d0
TH
5265static u64 current_css_set_read(struct cgroup_subsys_state *css,
5266 struct cftype *cft)
fe693435
PM
5267{
5268 return (u64)(unsigned long)current->cgroups;
5269}
5270
182446d0 5271static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css,
03c78cbe 5272 struct cftype *cft)
fe693435
PM
5273{
5274 u64 count;
5275
5276 rcu_read_lock();
a8ad805c 5277 count = atomic_read(&task_css_set(current)->refcount);
fe693435
PM
5278 rcu_read_unlock();
5279 return count;
5280}
5281
2da8ca82 5282static int current_css_set_cg_links_read(struct seq_file *seq, void *v)
7717f7ba 5283{
69d0206c 5284 struct cgrp_cset_link *link;
5abb8855 5285 struct css_set *cset;
e61734c5
TH
5286 char *name_buf;
5287
5288 name_buf = kmalloc(NAME_MAX + 1, GFP_KERNEL);
5289 if (!name_buf)
5290 return -ENOMEM;
7717f7ba 5291
96d365e0 5292 down_read(&css_set_rwsem);
7717f7ba 5293 rcu_read_lock();
5abb8855 5294 cset = rcu_dereference(current->cgroups);
69d0206c 5295 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 5296 struct cgroup *c = link->cgrp;
7717f7ba 5297
a2dd4247 5298 cgroup_name(c, name_buf, NAME_MAX + 1);
2c6ab6d2 5299 seq_printf(seq, "Root %d group %s\n",
a2dd4247 5300 c->root->hierarchy_id, name_buf);
7717f7ba
PM
5301 }
5302 rcu_read_unlock();
96d365e0 5303 up_read(&css_set_rwsem);
e61734c5 5304 kfree(name_buf);
7717f7ba
PM
5305 return 0;
5306}
5307
5308#define MAX_TASKS_SHOWN_PER_CSS 25
2da8ca82 5309static int cgroup_css_links_read(struct seq_file *seq, void *v)
7717f7ba 5310{
2da8ca82 5311 struct cgroup_subsys_state *css = seq_css(seq);
69d0206c 5312 struct cgrp_cset_link *link;
7717f7ba 5313
96d365e0 5314 down_read(&css_set_rwsem);
182446d0 5315 list_for_each_entry(link, &css->cgroup->cset_links, cset_link) {
69d0206c 5316 struct css_set *cset = link->cset;
7717f7ba
PM
5317 struct task_struct *task;
5318 int count = 0;
c7561128 5319
5abb8855 5320 seq_printf(seq, "css_set %p\n", cset);
c7561128 5321
5abb8855 5322 list_for_each_entry(task, &cset->tasks, cg_list) {
c7561128
TH
5323 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
5324 goto overflow;
5325 seq_printf(seq, " task %d\n", task_pid_vnr(task));
5326 }
5327
5328 list_for_each_entry(task, &cset->mg_tasks, cg_list) {
5329 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
5330 goto overflow;
5331 seq_printf(seq, " task %d\n", task_pid_vnr(task));
7717f7ba 5332 }
c7561128
TH
5333 continue;
5334 overflow:
5335 seq_puts(seq, " ...\n");
7717f7ba 5336 }
96d365e0 5337 up_read(&css_set_rwsem);
7717f7ba
PM
5338 return 0;
5339}
5340
182446d0 5341static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft)
fe693435 5342{
182446d0 5343 return test_bit(CGRP_RELEASABLE, &css->cgroup->flags);
fe693435
PM
5344}
5345
5346static struct cftype debug_files[] = {
fe693435
PM
5347 {
5348 .name = "taskcount",
5349 .read_u64 = debug_taskcount_read,
5350 },
5351
5352 {
5353 .name = "current_css_set",
5354 .read_u64 = current_css_set_read,
5355 },
5356
5357 {
5358 .name = "current_css_set_refcount",
5359 .read_u64 = current_css_set_refcount_read,
5360 },
5361
7717f7ba
PM
5362 {
5363 .name = "current_css_set_cg_links",
2da8ca82 5364 .seq_show = current_css_set_cg_links_read,
7717f7ba
PM
5365 },
5366
5367 {
5368 .name = "cgroup_css_links",
2da8ca82 5369 .seq_show = cgroup_css_links_read,
7717f7ba
PM
5370 },
5371
fe693435
PM
5372 {
5373 .name = "releasable",
5374 .read_u64 = releasable_read,
5375 },
fe693435 5376
4baf6e33
TH
5377 { } /* terminate */
5378};
fe693435 5379
073219e9 5380struct cgroup_subsys debug_cgrp_subsys = {
92fb9748
TH
5381 .css_alloc = debug_css_alloc,
5382 .css_free = debug_css_free,
4baf6e33 5383 .base_cftypes = debug_files,
fe693435
PM
5384};
5385#endif /* CONFIG_CGROUP_DEBUG */