]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - kernel/cgroup.c
cgroup_freezer: simplify propagation of CGROUP_FROZEN clearing in freezer_attach()
[mirror_ubuntu-zesty-kernel.git] / kernel / cgroup.c
CommitLineData
ddbcc7e8 1/*
ddbcc7e8
PM
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
0dea1168
KS
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
ddbcc7e8
PM
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
ed3d261b
JP
29#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
ddbcc7e8 31#include <linux/cgroup.h>
2ce9738b 32#include <linux/cred.h>
c6d57f33 33#include <linux/ctype.h>
ddbcc7e8 34#include <linux/errno.h>
2ce9738b 35#include <linux/init_task.h>
ddbcc7e8
PM
36#include <linux/kernel.h>
37#include <linux/list.h>
c9482a5b 38#include <linux/magic.h>
ddbcc7e8
PM
39#include <linux/mm.h>
40#include <linux/mutex.h>
41#include <linux/mount.h>
42#include <linux/pagemap.h>
a424316c 43#include <linux/proc_fs.h>
ddbcc7e8
PM
44#include <linux/rcupdate.h>
45#include <linux/sched.h>
ddbcc7e8 46#include <linux/slab.h>
ddbcc7e8 47#include <linux/spinlock.h>
1ed13287 48#include <linux/percpu-rwsem.h>
ddbcc7e8 49#include <linux/string.h>
bbcb81d0 50#include <linux/sort.h>
81a6a5cd 51#include <linux/kmod.h>
846c7bb0
BS
52#include <linux/delayacct.h>
53#include <linux/cgroupstats.h>
0ac801fe 54#include <linux/hashtable.h>
096b7fe0 55#include <linux/pid_namespace.h>
2c6ab6d2 56#include <linux/idr.h>
d1d9fd33 57#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
c4c27fbd 58#include <linux/kthread.h>
776f02fa 59#include <linux/delay.h>
846c7bb0 60
60063497 61#include <linux/atomic.h>
ddbcc7e8 62
b1a21367
TH
63/*
64 * pidlists linger the following amount before being destroyed. The goal
65 * is avoiding frequent destruction in the middle of consecutive read calls
66 * Expiring in the middle is a performance problem not a correctness one.
67 * 1 sec should be enough.
68 */
69#define CGROUP_PIDLIST_DESTROY_DELAY HZ
70
8d7e6fb0
TH
71#define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
72 MAX_CFTYPE_NAME + 2)
73
e25e2cbb
TH
74/*
75 * cgroup_mutex is the master lock. Any modification to cgroup or its
76 * hierarchy must be performed while holding it.
77 *
f0d9a5f1 78 * css_set_lock protects task->cgroups pointer, the list of css_set
0e1d768f 79 * objects, and the chain of tasks off each css_set.
e25e2cbb 80 *
0e1d768f
TH
81 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
82 * cgroup.h can use them for lockdep annotations.
e25e2cbb 83 */
2219449a
TH
84#ifdef CONFIG_PROVE_RCU
85DEFINE_MUTEX(cgroup_mutex);
f0d9a5f1 86DEFINE_SPINLOCK(css_set_lock);
0e1d768f 87EXPORT_SYMBOL_GPL(cgroup_mutex);
f0d9a5f1 88EXPORT_SYMBOL_GPL(css_set_lock);
2219449a 89#else
81a6a5cd 90static DEFINE_MUTEX(cgroup_mutex);
f0d9a5f1 91static DEFINE_SPINLOCK(css_set_lock);
2219449a
TH
92#endif
93
6fa4918d 94/*
15a4c835
TH
95 * Protects cgroup_idr and css_idr so that IDs can be released without
96 * grabbing cgroup_mutex.
6fa4918d
TH
97 */
98static DEFINE_SPINLOCK(cgroup_idr_lock);
99
34c06254
TH
100/*
101 * Protects cgroup_file->kn for !self csses. It synchronizes notifications
102 * against file removal/re-creation across css hiding.
103 */
104static DEFINE_SPINLOCK(cgroup_file_kn_lock);
105
69e943b7
TH
106/*
107 * Protects cgroup_subsys->release_agent_path. Modifying it also requires
108 * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock.
109 */
110static DEFINE_SPINLOCK(release_agent_path_lock);
81a6a5cd 111
1ed13287
TH
112struct percpu_rw_semaphore cgroup_threadgroup_rwsem;
113
8353da1f 114#define cgroup_assert_mutex_or_rcu_locked() \
f78f5b90
PM
115 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
116 !lockdep_is_held(&cgroup_mutex), \
8353da1f 117 "cgroup_mutex or RCU read lock required");
780cd8b3 118
e5fca243
TH
119/*
120 * cgroup destruction makes heavy use of work items and there can be a lot
121 * of concurrent destructions. Use a separate workqueue so that cgroup
122 * destruction work items don't end up filling up max_active of system_wq
123 * which may lead to deadlock.
124 */
125static struct workqueue_struct *cgroup_destroy_wq;
126
b1a21367
TH
127/*
128 * pidlist destructions need to be flushed on cgroup destruction. Use a
129 * separate workqueue as flush domain.
130 */
131static struct workqueue_struct *cgroup_pidlist_destroy_wq;
132
3ed80a62 133/* generate an array of cgroup subsystem pointers */
073219e9 134#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
3ed80a62 135static struct cgroup_subsys *cgroup_subsys[] = {
ddbcc7e8
PM
136#include <linux/cgroup_subsys.h>
137};
073219e9
TH
138#undef SUBSYS
139
140/* array of cgroup subsystem names */
141#define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
142static const char *cgroup_subsys_name[] = {
ddbcc7e8
PM
143#include <linux/cgroup_subsys.h>
144};
073219e9 145#undef SUBSYS
ddbcc7e8 146
49d1dc4b
TH
147/* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
148#define SUBSYS(_x) \
149 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \
150 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \
151 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \
152 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
153#include <linux/cgroup_subsys.h>
154#undef SUBSYS
155
156#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
157static struct static_key_true *cgroup_subsys_enabled_key[] = {
158#include <linux/cgroup_subsys.h>
159};
160#undef SUBSYS
161
162#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
163static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
164#include <linux/cgroup_subsys.h>
165};
166#undef SUBSYS
167
ddbcc7e8 168/*
3dd06ffa 169 * The default hierarchy, reserved for the subsystems that are otherwise
9871bf95
TH
170 * unattached - it never has more than a single cgroup, and all tasks are
171 * part of that cgroup.
ddbcc7e8 172 */
a2dd4247 173struct cgroup_root cgrp_dfl_root;
d0ec4230 174EXPORT_SYMBOL_GPL(cgrp_dfl_root);
9871bf95 175
a2dd4247
TH
176/*
177 * The default hierarchy always exists but is hidden until mounted for the
178 * first time. This is for backward compatibility.
179 */
180static bool cgrp_dfl_root_visible;
ddbcc7e8 181
5533e011 182/* some controllers are not supported in the default hierarchy */
8ab456ac 183static unsigned long cgrp_dfl_root_inhibit_ss_mask;
5533e011 184
ddbcc7e8
PM
185/* The list of hierarchy roots */
186
9871bf95
TH
187static LIST_HEAD(cgroup_roots);
188static int cgroup_root_count;
ddbcc7e8 189
3417ae1f 190/* hierarchy ID allocation and mapping, protected by cgroup_mutex */
1a574231 191static DEFINE_IDR(cgroup_hierarchy_idr);
2c6ab6d2 192
794611a1 193/*
0cb51d71
TH
194 * Assign a monotonically increasing serial number to csses. It guarantees
195 * cgroups with bigger numbers are newer than those with smaller numbers.
196 * Also, as csses are always appended to the parent's ->children list, it
197 * guarantees that sibling csses are always sorted in the ascending serial
198 * number order on the list. Protected by cgroup_mutex.
794611a1 199 */
0cb51d71 200static u64 css_serial_nr_next = 1;
794611a1 201
cb4a3167
AS
202/*
203 * These bitmask flags indicate whether tasks in the fork and exit paths have
204 * fork/exit handlers to call. This avoids us having to do extra work in the
205 * fork/exit path to check which subsystems have fork/exit callbacks.
ddbcc7e8 206 */
cb4a3167
AS
207static unsigned long have_fork_callback __read_mostly;
208static unsigned long have_exit_callback __read_mostly;
afcf6c8b 209static unsigned long have_free_callback __read_mostly;
ddbcc7e8 210
7e47682e
AS
211/* Ditto for the can_fork callback. */
212static unsigned long have_canfork_callback __read_mostly;
213
a14c6874
TH
214static struct cftype cgroup_dfl_base_files[];
215static struct cftype cgroup_legacy_base_files[];
628f7cd4 216
3dd06ffa 217static int rebind_subsystems(struct cgroup_root *dst_root,
8ab456ac 218 unsigned long ss_mask);
ed27b9f7 219static void css_task_iter_advance(struct css_task_iter *it);
42809dd4 220static int cgroup_destroy_locked(struct cgroup *cgrp);
f63070d3
TH
221static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss,
222 bool visible);
9d755d33 223static void css_release(struct percpu_ref *ref);
f8f22e53 224static void kill_css(struct cgroup_subsys_state *css);
4df8dc90
TH
225static int cgroup_addrm_files(struct cgroup_subsys_state *css,
226 struct cgroup *cgrp, struct cftype cfts[],
2bb566cb 227 bool is_add);
42809dd4 228
fc5ed1e9
TH
229/**
230 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
231 * @ssid: subsys ID of interest
232 *
233 * cgroup_subsys_enabled() can only be used with literal subsys names which
234 * is fine for individual subsystems but unsuitable for cgroup core. This
235 * is slower static_key_enabled() based test indexed by @ssid.
236 */
237static bool cgroup_ssid_enabled(int ssid)
238{
239 return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
240}
241
9e10a130
TH
242/**
243 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
244 * @cgrp: the cgroup of interest
245 *
246 * The default hierarchy is the v2 interface of cgroup and this function
247 * can be used to test whether a cgroup is on the default hierarchy for
248 * cases where a subsystem should behave differnetly depending on the
249 * interface version.
250 *
251 * The set of behaviors which change on the default hierarchy are still
252 * being determined and the mount option is prefixed with __DEVEL__.
253 *
254 * List of changed behaviors:
255 *
256 * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
257 * and "name" are disallowed.
258 *
259 * - When mounting an existing superblock, mount options should match.
260 *
261 * - Remount is disallowed.
262 *
263 * - rename(2) is disallowed.
264 *
265 * - "tasks" is removed. Everything should be at process granularity. Use
266 * "cgroup.procs" instead.
267 *
268 * - "cgroup.procs" is not sorted. pids will be unique unless they got
269 * recycled inbetween reads.
270 *
271 * - "release_agent" and "notify_on_release" are removed. Replacement
272 * notification mechanism will be implemented.
273 *
274 * - "cgroup.clone_children" is removed.
275 *
276 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup
277 * and its descendants contain no task; otherwise, 1. The file also
278 * generates kernfs notification which can be monitored through poll and
279 * [di]notify when the value of the file changes.
280 *
281 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
282 * take masks of ancestors with non-empty cpus/mems, instead of being
283 * moved to an ancestor.
284 *
285 * - cpuset: a task can be moved into an empty cpuset, and again it takes
286 * masks of ancestors.
287 *
288 * - memcg: use_hierarchy is on by default and the cgroup file for the flag
289 * is not created.
290 *
291 * - blkcg: blk-throttle becomes properly hierarchical.
292 *
293 * - debug: disallowed on the default hierarchy.
294 */
295static bool cgroup_on_dfl(const struct cgroup *cgrp)
296{
297 return cgrp->root == &cgrp_dfl_root;
298}
299
6fa4918d
TH
300/* IDR wrappers which synchronize using cgroup_idr_lock */
301static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
302 gfp_t gfp_mask)
303{
304 int ret;
305
306 idr_preload(gfp_mask);
54504e97 307 spin_lock_bh(&cgroup_idr_lock);
d0164adc 308 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
54504e97 309 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
310 idr_preload_end();
311 return ret;
312}
313
314static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
315{
316 void *ret;
317
54504e97 318 spin_lock_bh(&cgroup_idr_lock);
6fa4918d 319 ret = idr_replace(idr, ptr, id);
54504e97 320 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
321 return ret;
322}
323
324static void cgroup_idr_remove(struct idr *idr, int id)
325{
54504e97 326 spin_lock_bh(&cgroup_idr_lock);
6fa4918d 327 idr_remove(idr, id);
54504e97 328 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
329}
330
d51f39b0
TH
331static struct cgroup *cgroup_parent(struct cgroup *cgrp)
332{
333 struct cgroup_subsys_state *parent_css = cgrp->self.parent;
334
335 if (parent_css)
336 return container_of(parent_css, struct cgroup, self);
337 return NULL;
338}
339
95109b62
TH
340/**
341 * cgroup_css - obtain a cgroup's css for the specified subsystem
342 * @cgrp: the cgroup of interest
9d800df1 343 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
95109b62 344 *
ca8bdcaf
TH
345 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
346 * function must be called either under cgroup_mutex or rcu_read_lock() and
347 * the caller is responsible for pinning the returned css if it wants to
348 * keep accessing it outside the said locks. This function may return
349 * %NULL if @cgrp doesn't have @subsys_id enabled.
95109b62
TH
350 */
351static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
ca8bdcaf 352 struct cgroup_subsys *ss)
95109b62 353{
ca8bdcaf 354 if (ss)
aec25020 355 return rcu_dereference_check(cgrp->subsys[ss->id],
ace2bee8 356 lockdep_is_held(&cgroup_mutex));
ca8bdcaf 357 else
9d800df1 358 return &cgrp->self;
95109b62 359}
42809dd4 360
aec3dfcb
TH
361/**
362 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
363 * @cgrp: the cgroup of interest
9d800df1 364 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
aec3dfcb 365 *
d0f702e6 366 * Similar to cgroup_css() but returns the effective css, which is defined
aec3dfcb
TH
367 * as the matching css of the nearest ancestor including self which has @ss
368 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
369 * function is guaranteed to return non-NULL css.
370 */
371static struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
372 struct cgroup_subsys *ss)
373{
374 lockdep_assert_held(&cgroup_mutex);
375
376 if (!ss)
9d800df1 377 return &cgrp->self;
aec3dfcb
TH
378
379 if (!(cgrp->root->subsys_mask & (1 << ss->id)))
380 return NULL;
381
eeecbd19
TH
382 /*
383 * This function is used while updating css associations and thus
384 * can't test the csses directly. Use ->child_subsys_mask.
385 */
d51f39b0
TH
386 while (cgroup_parent(cgrp) &&
387 !(cgroup_parent(cgrp)->child_subsys_mask & (1 << ss->id)))
388 cgrp = cgroup_parent(cgrp);
aec3dfcb
TH
389
390 return cgroup_css(cgrp, ss);
95109b62 391}
42809dd4 392
eeecbd19
TH
393/**
394 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
395 * @cgrp: the cgroup of interest
396 * @ss: the subsystem of interest
397 *
398 * Find and get the effective css of @cgrp for @ss. The effective css is
399 * defined as the matching css of the nearest ancestor including self which
400 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
401 * the root css is returned, so this function always returns a valid css.
402 * The returned css must be put using css_put().
403 */
404struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
405 struct cgroup_subsys *ss)
406{
407 struct cgroup_subsys_state *css;
408
409 rcu_read_lock();
410
411 do {
412 css = cgroup_css(cgrp, ss);
413
414 if (css && css_tryget_online(css))
415 goto out_unlock;
416 cgrp = cgroup_parent(cgrp);
417 } while (cgrp);
418
419 css = init_css_set.subsys[ss->id];
420 css_get(css);
421out_unlock:
422 rcu_read_unlock();
423 return css;
424}
425
ddbcc7e8 426/* convenient tests for these bits */
54766d4a 427static inline bool cgroup_is_dead(const struct cgroup *cgrp)
ddbcc7e8 428{
184faf32 429 return !(cgrp->self.flags & CSS_ONLINE);
ddbcc7e8
PM
430}
431
052c3f3a
TH
432static void cgroup_get(struct cgroup *cgrp)
433{
434 WARN_ON_ONCE(cgroup_is_dead(cgrp));
435 css_get(&cgrp->self);
436}
437
438static bool cgroup_tryget(struct cgroup *cgrp)
439{
440 return css_tryget(&cgrp->self);
441}
442
443static void cgroup_put(struct cgroup *cgrp)
444{
445 css_put(&cgrp->self);
446}
447
b4168640 448struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
59f5296b 449{
2bd59d48 450 struct cgroup *cgrp = of->kn->parent->priv;
b4168640 451 struct cftype *cft = of_cft(of);
2bd59d48
TH
452
453 /*
454 * This is open and unprotected implementation of cgroup_css().
455 * seq_css() is only called from a kernfs file operation which has
456 * an active reference on the file. Because all the subsystem
457 * files are drained before a css is disassociated with a cgroup,
458 * the matching css from the cgroup's subsys table is guaranteed to
459 * be and stay valid until the enclosing operation is complete.
460 */
461 if (cft->ss)
462 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
463 else
9d800df1 464 return &cgrp->self;
59f5296b 465}
b4168640 466EXPORT_SYMBOL_GPL(of_css);
59f5296b 467
78574cf9
LZ
468/**
469 * cgroup_is_descendant - test ancestry
470 * @cgrp: the cgroup to be tested
471 * @ancestor: possible ancestor of @cgrp
472 *
473 * Test whether @cgrp is a descendant of @ancestor. It also returns %true
474 * if @cgrp == @ancestor. This function is safe to call as long as @cgrp
475 * and @ancestor are accessible.
476 */
477bool cgroup_is_descendant(struct cgroup *cgrp, struct cgroup *ancestor)
478{
479 while (cgrp) {
480 if (cgrp == ancestor)
481 return true;
d51f39b0 482 cgrp = cgroup_parent(cgrp);
78574cf9
LZ
483 }
484 return false;
485}
ddbcc7e8 486
e9685a03 487static int notify_on_release(const struct cgroup *cgrp)
81a6a5cd 488{
bd89aabc 489 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
81a6a5cd
PM
490}
491
1c6727af
TH
492/**
493 * for_each_css - iterate all css's of a cgroup
494 * @css: the iteration cursor
495 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
496 * @cgrp: the target cgroup to iterate css's of
497 *
aec3dfcb 498 * Should be called under cgroup_[tree_]mutex.
1c6727af
TH
499 */
500#define for_each_css(css, ssid, cgrp) \
501 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
502 if (!((css) = rcu_dereference_check( \
503 (cgrp)->subsys[(ssid)], \
504 lockdep_is_held(&cgroup_mutex)))) { } \
505 else
506
aec3dfcb
TH
507/**
508 * for_each_e_css - iterate all effective css's of a cgroup
509 * @css: the iteration cursor
510 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
511 * @cgrp: the target cgroup to iterate css's of
512 *
513 * Should be called under cgroup_[tree_]mutex.
514 */
515#define for_each_e_css(css, ssid, cgrp) \
516 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
517 if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \
518 ; \
519 else
520
30159ec7 521/**
3ed80a62 522 * for_each_subsys - iterate all enabled cgroup subsystems
30159ec7 523 * @ss: the iteration cursor
780cd8b3 524 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
30159ec7 525 */
780cd8b3 526#define for_each_subsys(ss, ssid) \
3ed80a62
TH
527 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT && \
528 (((ss) = cgroup_subsys[ssid]) || true); (ssid)++)
30159ec7 529
cb4a3167
AS
530/**
531 * for_each_subsys_which - filter for_each_subsys with a bitmask
532 * @ss: the iteration cursor
533 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
534 * @ss_maskp: a pointer to the bitmask
535 *
536 * The block will only run for cases where the ssid-th bit (1 << ssid) of
537 * mask is set to 1.
538 */
539#define for_each_subsys_which(ss, ssid, ss_maskp) \
540 if (!CGROUP_SUBSYS_COUNT) /* to avoid spurious gcc warning */ \
4a705c5c 541 (ssid) = 0; \
cb4a3167
AS
542 else \
543 for_each_set_bit(ssid, ss_maskp, CGROUP_SUBSYS_COUNT) \
544 if (((ss) = cgroup_subsys[ssid]) && false) \
545 break; \
546 else
547
985ed670
TH
548/* iterate across the hierarchies */
549#define for_each_root(root) \
5549c497 550 list_for_each_entry((root), &cgroup_roots, root_list)
ddbcc7e8 551
f8f22e53
TH
552/* iterate over child cgrps, lock should be held throughout iteration */
553#define cgroup_for_each_live_child(child, cgrp) \
d5c419b6 554 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
8353da1f 555 if (({ lockdep_assert_held(&cgroup_mutex); \
f8f22e53
TH
556 cgroup_is_dead(child); })) \
557 ; \
558 else
7ae1bad9 559
81a6a5cd 560static void cgroup_release_agent(struct work_struct *work);
bd89aabc 561static void check_for_release(struct cgroup *cgrp);
81a6a5cd 562
69d0206c
TH
563/*
564 * A cgroup can be associated with multiple css_sets as different tasks may
565 * belong to different cgroups on different hierarchies. In the other
566 * direction, a css_set is naturally associated with multiple cgroups.
567 * This M:N relationship is represented by the following link structure
568 * which exists for each association and allows traversing the associations
569 * from both sides.
570 */
571struct cgrp_cset_link {
572 /* the cgroup and css_set this link associates */
573 struct cgroup *cgrp;
574 struct css_set *cset;
575
576 /* list of cgrp_cset_links anchored at cgrp->cset_links */
577 struct list_head cset_link;
578
579 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
580 struct list_head cgrp_link;
817929ec
PM
581};
582
172a2c06
TH
583/*
584 * The default css_set - used by init and its children prior to any
817929ec
PM
585 * hierarchies being mounted. It contains a pointer to the root state
586 * for each subsystem. Also used to anchor the list of css_sets. Not
587 * reference-counted, to improve performance when child cgroups
588 * haven't been created.
589 */
5024ae29 590struct css_set init_css_set = {
172a2c06
TH
591 .refcount = ATOMIC_INIT(1),
592 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links),
593 .tasks = LIST_HEAD_INIT(init_css_set.tasks),
594 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks),
595 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node),
596 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node),
ed27b9f7 597 .task_iters = LIST_HEAD_INIT(init_css_set.task_iters),
172a2c06 598};
817929ec 599
172a2c06 600static int css_set_count = 1; /* 1 for init_css_set */
817929ec 601
0de0942d
TH
602/**
603 * css_set_populated - does a css_set contain any tasks?
604 * @cset: target css_set
605 */
606static bool css_set_populated(struct css_set *cset)
607{
f0d9a5f1 608 lockdep_assert_held(&css_set_lock);
0de0942d
TH
609
610 return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
611}
612
842b597e
TH
613/**
614 * cgroup_update_populated - updated populated count of a cgroup
615 * @cgrp: the target cgroup
616 * @populated: inc or dec populated count
617 *
0de0942d
TH
618 * One of the css_sets associated with @cgrp is either getting its first
619 * task or losing the last. Update @cgrp->populated_cnt accordingly. The
620 * count is propagated towards root so that a given cgroup's populated_cnt
621 * is zero iff the cgroup and all its descendants don't contain any tasks.
842b597e
TH
622 *
623 * @cgrp's interface file "cgroup.populated" is zero if
624 * @cgrp->populated_cnt is zero and 1 otherwise. When @cgrp->populated_cnt
625 * changes from or to zero, userland is notified that the content of the
626 * interface file has changed. This can be used to detect when @cgrp and
627 * its descendants become populated or empty.
628 */
629static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
630{
f0d9a5f1 631 lockdep_assert_held(&css_set_lock);
842b597e
TH
632
633 do {
634 bool trigger;
635
636 if (populated)
637 trigger = !cgrp->populated_cnt++;
638 else
639 trigger = !--cgrp->populated_cnt;
640
641 if (!trigger)
642 break;
643
ad2ed2b3 644 check_for_release(cgrp);
6f60eade
TH
645 cgroup_file_notify(&cgrp->events_file);
646
d51f39b0 647 cgrp = cgroup_parent(cgrp);
842b597e
TH
648 } while (cgrp);
649}
650
0de0942d
TH
651/**
652 * css_set_update_populated - update populated state of a css_set
653 * @cset: target css_set
654 * @populated: whether @cset is populated or depopulated
655 *
656 * @cset is either getting the first task or losing the last. Update the
657 * ->populated_cnt of all associated cgroups accordingly.
658 */
659static void css_set_update_populated(struct css_set *cset, bool populated)
660{
661 struct cgrp_cset_link *link;
662
f0d9a5f1 663 lockdep_assert_held(&css_set_lock);
0de0942d
TH
664
665 list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
666 cgroup_update_populated(link->cgrp, populated);
667}
668
f6d7d049
TH
669/**
670 * css_set_move_task - move a task from one css_set to another
671 * @task: task being moved
672 * @from_cset: css_set @task currently belongs to (may be NULL)
673 * @to_cset: new css_set @task is being moved to (may be NULL)
674 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
675 *
676 * Move @task from @from_cset to @to_cset. If @task didn't belong to any
677 * css_set, @from_cset can be NULL. If @task is being disassociated
678 * instead of moved, @to_cset can be NULL.
679 *
ed27b9f7
TH
680 * This function automatically handles populated_cnt updates and
681 * css_task_iter adjustments but the caller is responsible for managing
682 * @from_cset and @to_cset's reference counts.
f6d7d049
TH
683 */
684static void css_set_move_task(struct task_struct *task,
685 struct css_set *from_cset, struct css_set *to_cset,
686 bool use_mg_tasks)
687{
f0d9a5f1 688 lockdep_assert_held(&css_set_lock);
f6d7d049
TH
689
690 if (from_cset) {
ed27b9f7
TH
691 struct css_task_iter *it, *pos;
692
f6d7d049 693 WARN_ON_ONCE(list_empty(&task->cg_list));
ed27b9f7
TH
694
695 /*
696 * @task is leaving, advance task iterators which are
697 * pointing to it so that they can resume at the next
698 * position. Advancing an iterator might remove it from
699 * the list, use safe walk. See css_task_iter_advance*()
700 * for details.
701 */
702 list_for_each_entry_safe(it, pos, &from_cset->task_iters,
703 iters_node)
704 if (it->task_pos == &task->cg_list)
705 css_task_iter_advance(it);
706
f6d7d049
TH
707 list_del_init(&task->cg_list);
708 if (!css_set_populated(from_cset))
709 css_set_update_populated(from_cset, false);
710 } else {
711 WARN_ON_ONCE(!list_empty(&task->cg_list));
712 }
713
714 if (to_cset) {
715 /*
716 * We are synchronized through cgroup_threadgroup_rwsem
717 * against PF_EXITING setting such that we can't race
718 * against cgroup_exit() changing the css_set to
719 * init_css_set and dropping the old one.
720 */
721 WARN_ON_ONCE(task->flags & PF_EXITING);
722
723 if (!css_set_populated(to_cset))
724 css_set_update_populated(to_cset, true);
725 rcu_assign_pointer(task->cgroups, to_cset);
726 list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
727 &to_cset->tasks);
728 }
729}
730
7717f7ba
PM
731/*
732 * hash table for cgroup groups. This improves the performance to find
733 * an existing css_set. This hash doesn't (currently) take into
734 * account cgroups in empty hierarchies.
735 */
472b1053 736#define CSS_SET_HASH_BITS 7
0ac801fe 737static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
472b1053 738
0ac801fe 739static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
472b1053 740{
0ac801fe 741 unsigned long key = 0UL;
30159ec7
TH
742 struct cgroup_subsys *ss;
743 int i;
472b1053 744
30159ec7 745 for_each_subsys(ss, i)
0ac801fe
LZ
746 key += (unsigned long)css[i];
747 key = (key >> 16) ^ key;
472b1053 748
0ac801fe 749 return key;
472b1053
LZ
750}
751
a25eb52e 752static void put_css_set_locked(struct css_set *cset)
b4f48b63 753{
69d0206c 754 struct cgrp_cset_link *link, *tmp_link;
2d8f243a
TH
755 struct cgroup_subsys *ss;
756 int ssid;
5abb8855 757
f0d9a5f1 758 lockdep_assert_held(&css_set_lock);
89c5509b
TH
759
760 if (!atomic_dec_and_test(&cset->refcount))
146aa1bd 761 return;
81a6a5cd 762
53254f90
TH
763 /* This css_set is dead. unlink it and release cgroup and css refs */
764 for_each_subsys(ss, ssid) {
2d8f243a 765 list_del(&cset->e_cset_node[ssid]);
53254f90
TH
766 css_put(cset->subsys[ssid]);
767 }
5abb8855 768 hash_del(&cset->hlist);
2c6ab6d2
PM
769 css_set_count--;
770
69d0206c 771 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
69d0206c
TH
772 list_del(&link->cset_link);
773 list_del(&link->cgrp_link);
2ceb231b
TH
774 if (cgroup_parent(link->cgrp))
775 cgroup_put(link->cgrp);
2c6ab6d2 776 kfree(link);
81a6a5cd 777 }
2c6ab6d2 778
5abb8855 779 kfree_rcu(cset, rcu_head);
b4f48b63
PM
780}
781
a25eb52e 782static void put_css_set(struct css_set *cset)
89c5509b
TH
783{
784 /*
785 * Ensure that the refcount doesn't hit zero while any readers
786 * can see it. Similar to atomic_dec_and_lock(), but for an
787 * rwlock
788 */
789 if (atomic_add_unless(&cset->refcount, -1, 1))
790 return;
791
f0d9a5f1 792 spin_lock_bh(&css_set_lock);
a25eb52e 793 put_css_set_locked(cset);
f0d9a5f1 794 spin_unlock_bh(&css_set_lock);
89c5509b
TH
795}
796
817929ec
PM
797/*
798 * refcounted get/put for css_set objects
799 */
5abb8855 800static inline void get_css_set(struct css_set *cset)
817929ec 801{
5abb8855 802 atomic_inc(&cset->refcount);
817929ec
PM
803}
804
b326f9d0 805/**
7717f7ba 806 * compare_css_sets - helper function for find_existing_css_set().
5abb8855
TH
807 * @cset: candidate css_set being tested
808 * @old_cset: existing css_set for a task
7717f7ba
PM
809 * @new_cgrp: cgroup that's being entered by the task
810 * @template: desired set of css pointers in css_set (pre-calculated)
811 *
6f4b7e63 812 * Returns true if "cset" matches "old_cset" except for the hierarchy
7717f7ba
PM
813 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
814 */
5abb8855
TH
815static bool compare_css_sets(struct css_set *cset,
816 struct css_set *old_cset,
7717f7ba
PM
817 struct cgroup *new_cgrp,
818 struct cgroup_subsys_state *template[])
819{
820 struct list_head *l1, *l2;
821
aec3dfcb
TH
822 /*
823 * On the default hierarchy, there can be csets which are
824 * associated with the same set of cgroups but different csses.
825 * Let's first ensure that csses match.
826 */
827 if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
7717f7ba 828 return false;
7717f7ba
PM
829
830 /*
831 * Compare cgroup pointers in order to distinguish between
aec3dfcb
TH
832 * different cgroups in hierarchies. As different cgroups may
833 * share the same effective css, this comparison is always
834 * necessary.
7717f7ba 835 */
69d0206c
TH
836 l1 = &cset->cgrp_links;
837 l2 = &old_cset->cgrp_links;
7717f7ba 838 while (1) {
69d0206c 839 struct cgrp_cset_link *link1, *link2;
5abb8855 840 struct cgroup *cgrp1, *cgrp2;
7717f7ba
PM
841
842 l1 = l1->next;
843 l2 = l2->next;
844 /* See if we reached the end - both lists are equal length. */
69d0206c
TH
845 if (l1 == &cset->cgrp_links) {
846 BUG_ON(l2 != &old_cset->cgrp_links);
7717f7ba
PM
847 break;
848 } else {
69d0206c 849 BUG_ON(l2 == &old_cset->cgrp_links);
7717f7ba
PM
850 }
851 /* Locate the cgroups associated with these links. */
69d0206c
TH
852 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
853 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
854 cgrp1 = link1->cgrp;
855 cgrp2 = link2->cgrp;
7717f7ba 856 /* Hierarchies should be linked in the same order. */
5abb8855 857 BUG_ON(cgrp1->root != cgrp2->root);
7717f7ba
PM
858
859 /*
860 * If this hierarchy is the hierarchy of the cgroup
861 * that's changing, then we need to check that this
862 * css_set points to the new cgroup; if it's any other
863 * hierarchy, then this css_set should point to the
864 * same cgroup as the old css_set.
865 */
5abb8855
TH
866 if (cgrp1->root == new_cgrp->root) {
867 if (cgrp1 != new_cgrp)
7717f7ba
PM
868 return false;
869 } else {
5abb8855 870 if (cgrp1 != cgrp2)
7717f7ba
PM
871 return false;
872 }
873 }
874 return true;
875}
876
b326f9d0
TH
877/**
878 * find_existing_css_set - init css array and find the matching css_set
879 * @old_cset: the css_set that we're using before the cgroup transition
880 * @cgrp: the cgroup that we're moving into
881 * @template: out param for the new set of csses, should be clear on entry
817929ec 882 */
5abb8855
TH
883static struct css_set *find_existing_css_set(struct css_set *old_cset,
884 struct cgroup *cgrp,
885 struct cgroup_subsys_state *template[])
b4f48b63 886{
3dd06ffa 887 struct cgroup_root *root = cgrp->root;
30159ec7 888 struct cgroup_subsys *ss;
5abb8855 889 struct css_set *cset;
0ac801fe 890 unsigned long key;
b326f9d0 891 int i;
817929ec 892
aae8aab4
BB
893 /*
894 * Build the set of subsystem state objects that we want to see in the
895 * new css_set. while subsystems can change globally, the entries here
896 * won't change, so no need for locking.
897 */
30159ec7 898 for_each_subsys(ss, i) {
f392e51c 899 if (root->subsys_mask & (1UL << i)) {
aec3dfcb
TH
900 /*
901 * @ss is in this hierarchy, so we want the
902 * effective css from @cgrp.
903 */
904 template[i] = cgroup_e_css(cgrp, ss);
817929ec 905 } else {
aec3dfcb
TH
906 /*
907 * @ss is not in this hierarchy, so we don't want
908 * to change the css.
909 */
5abb8855 910 template[i] = old_cset->subsys[i];
817929ec
PM
911 }
912 }
913
0ac801fe 914 key = css_set_hash(template);
5abb8855
TH
915 hash_for_each_possible(css_set_table, cset, hlist, key) {
916 if (!compare_css_sets(cset, old_cset, cgrp, template))
7717f7ba
PM
917 continue;
918
919 /* This css_set matches what we need */
5abb8855 920 return cset;
472b1053 921 }
817929ec
PM
922
923 /* No existing cgroup group matched */
924 return NULL;
925}
926
69d0206c 927static void free_cgrp_cset_links(struct list_head *links_to_free)
36553434 928{
69d0206c 929 struct cgrp_cset_link *link, *tmp_link;
36553434 930
69d0206c
TH
931 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
932 list_del(&link->cset_link);
36553434
LZ
933 kfree(link);
934 }
935}
936
69d0206c
TH
937/**
938 * allocate_cgrp_cset_links - allocate cgrp_cset_links
939 * @count: the number of links to allocate
940 * @tmp_links: list_head the allocated links are put on
941 *
942 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
943 * through ->cset_link. Returns 0 on success or -errno.
817929ec 944 */
69d0206c 945static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
817929ec 946{
69d0206c 947 struct cgrp_cset_link *link;
817929ec 948 int i;
69d0206c
TH
949
950 INIT_LIST_HEAD(tmp_links);
951
817929ec 952 for (i = 0; i < count; i++) {
f4f4be2b 953 link = kzalloc(sizeof(*link), GFP_KERNEL);
817929ec 954 if (!link) {
69d0206c 955 free_cgrp_cset_links(tmp_links);
817929ec
PM
956 return -ENOMEM;
957 }
69d0206c 958 list_add(&link->cset_link, tmp_links);
817929ec
PM
959 }
960 return 0;
961}
962
c12f65d4
LZ
963/**
964 * link_css_set - a helper function to link a css_set to a cgroup
69d0206c 965 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
5abb8855 966 * @cset: the css_set to be linked
c12f65d4
LZ
967 * @cgrp: the destination cgroup
968 */
69d0206c
TH
969static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
970 struct cgroup *cgrp)
c12f65d4 971{
69d0206c 972 struct cgrp_cset_link *link;
c12f65d4 973
69d0206c 974 BUG_ON(list_empty(tmp_links));
6803c006
TH
975
976 if (cgroup_on_dfl(cgrp))
977 cset->dfl_cgrp = cgrp;
978
69d0206c
TH
979 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
980 link->cset = cset;
7717f7ba 981 link->cgrp = cgrp;
842b597e 982
7717f7ba 983 /*
389b9c1b
TH
984 * Always add links to the tail of the lists so that the lists are
985 * in choronological order.
7717f7ba 986 */
389b9c1b 987 list_move_tail(&link->cset_link, &cgrp->cset_links);
69d0206c 988 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
2ceb231b
TH
989
990 if (cgroup_parent(cgrp))
991 cgroup_get(cgrp);
c12f65d4
LZ
992}
993
b326f9d0
TH
994/**
995 * find_css_set - return a new css_set with one cgroup updated
996 * @old_cset: the baseline css_set
997 * @cgrp: the cgroup to be updated
998 *
999 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
1000 * substituted into the appropriate hierarchy.
817929ec 1001 */
5abb8855
TH
1002static struct css_set *find_css_set(struct css_set *old_cset,
1003 struct cgroup *cgrp)
817929ec 1004{
b326f9d0 1005 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
5abb8855 1006 struct css_set *cset;
69d0206c
TH
1007 struct list_head tmp_links;
1008 struct cgrp_cset_link *link;
2d8f243a 1009 struct cgroup_subsys *ss;
0ac801fe 1010 unsigned long key;
2d8f243a 1011 int ssid;
472b1053 1012
b326f9d0
TH
1013 lockdep_assert_held(&cgroup_mutex);
1014
817929ec
PM
1015 /* First see if we already have a cgroup group that matches
1016 * the desired set */
f0d9a5f1 1017 spin_lock_bh(&css_set_lock);
5abb8855
TH
1018 cset = find_existing_css_set(old_cset, cgrp, template);
1019 if (cset)
1020 get_css_set(cset);
f0d9a5f1 1021 spin_unlock_bh(&css_set_lock);
817929ec 1022
5abb8855
TH
1023 if (cset)
1024 return cset;
817929ec 1025
f4f4be2b 1026 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
5abb8855 1027 if (!cset)
817929ec
PM
1028 return NULL;
1029
69d0206c 1030 /* Allocate all the cgrp_cset_link objects that we'll need */
9871bf95 1031 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
5abb8855 1032 kfree(cset);
817929ec
PM
1033 return NULL;
1034 }
1035
5abb8855 1036 atomic_set(&cset->refcount, 1);
69d0206c 1037 INIT_LIST_HEAD(&cset->cgrp_links);
5abb8855 1038 INIT_LIST_HEAD(&cset->tasks);
c7561128 1039 INIT_LIST_HEAD(&cset->mg_tasks);
1958d2d5 1040 INIT_LIST_HEAD(&cset->mg_preload_node);
b3dc094e 1041 INIT_LIST_HEAD(&cset->mg_node);
ed27b9f7 1042 INIT_LIST_HEAD(&cset->task_iters);
5abb8855 1043 INIT_HLIST_NODE(&cset->hlist);
817929ec
PM
1044
1045 /* Copy the set of subsystem state objects generated in
1046 * find_existing_css_set() */
5abb8855 1047 memcpy(cset->subsys, template, sizeof(cset->subsys));
817929ec 1048
f0d9a5f1 1049 spin_lock_bh(&css_set_lock);
817929ec 1050 /* Add reference counts and links from the new css_set. */
69d0206c 1051 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
7717f7ba 1052 struct cgroup *c = link->cgrp;
69d0206c 1053
7717f7ba
PM
1054 if (c->root == cgrp->root)
1055 c = cgrp;
69d0206c 1056 link_css_set(&tmp_links, cset, c);
7717f7ba 1057 }
817929ec 1058
69d0206c 1059 BUG_ON(!list_empty(&tmp_links));
817929ec 1060
817929ec 1061 css_set_count++;
472b1053 1062
2d8f243a 1063 /* Add @cset to the hash table */
5abb8855
TH
1064 key = css_set_hash(cset->subsys);
1065 hash_add(css_set_table, &cset->hlist, key);
472b1053 1066
53254f90
TH
1067 for_each_subsys(ss, ssid) {
1068 struct cgroup_subsys_state *css = cset->subsys[ssid];
1069
2d8f243a 1070 list_add_tail(&cset->e_cset_node[ssid],
53254f90
TH
1071 &css->cgroup->e_csets[ssid]);
1072 css_get(css);
1073 }
2d8f243a 1074
f0d9a5f1 1075 spin_unlock_bh(&css_set_lock);
817929ec 1076
5abb8855 1077 return cset;
b4f48b63
PM
1078}
1079
3dd06ffa 1080static struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
7717f7ba 1081{
3dd06ffa 1082 struct cgroup *root_cgrp = kf_root->kn->priv;
2bd59d48 1083
3dd06ffa 1084 return root_cgrp->root;
2bd59d48
TH
1085}
1086
3dd06ffa 1087static int cgroup_init_root_id(struct cgroup_root *root)
f2e85d57
TH
1088{
1089 int id;
1090
1091 lockdep_assert_held(&cgroup_mutex);
1092
985ed670 1093 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
f2e85d57
TH
1094 if (id < 0)
1095 return id;
1096
1097 root->hierarchy_id = id;
1098 return 0;
1099}
1100
3dd06ffa 1101static void cgroup_exit_root_id(struct cgroup_root *root)
f2e85d57
TH
1102{
1103 lockdep_assert_held(&cgroup_mutex);
1104
1105 if (root->hierarchy_id) {
1106 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1107 root->hierarchy_id = 0;
1108 }
1109}
1110
3dd06ffa 1111static void cgroup_free_root(struct cgroup_root *root)
f2e85d57
TH
1112{
1113 if (root) {
d0f702e6 1114 /* hierarchy ID should already have been released */
f2e85d57
TH
1115 WARN_ON_ONCE(root->hierarchy_id);
1116
1117 idr_destroy(&root->cgroup_idr);
1118 kfree(root);
1119 }
1120}
1121
3dd06ffa 1122static void cgroup_destroy_root(struct cgroup_root *root)
59f5296b 1123{
3dd06ffa 1124 struct cgroup *cgrp = &root->cgrp;
f2e85d57 1125 struct cgrp_cset_link *link, *tmp_link;
f2e85d57 1126
2bd59d48 1127 mutex_lock(&cgroup_mutex);
f2e85d57 1128
776f02fa 1129 BUG_ON(atomic_read(&root->nr_cgrps));
d5c419b6 1130 BUG_ON(!list_empty(&cgrp->self.children));
f2e85d57 1131
f2e85d57 1132 /* Rebind all subsystems back to the default hierarchy */
f392e51c 1133 rebind_subsystems(&cgrp_dfl_root, root->subsys_mask);
7717f7ba 1134
7717f7ba 1135 /*
f2e85d57
TH
1136 * Release all the links from cset_links to this hierarchy's
1137 * root cgroup
7717f7ba 1138 */
f0d9a5f1 1139 spin_lock_bh(&css_set_lock);
f2e85d57
TH
1140
1141 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1142 list_del(&link->cset_link);
1143 list_del(&link->cgrp_link);
1144 kfree(link);
1145 }
f0d9a5f1
TH
1146
1147 spin_unlock_bh(&css_set_lock);
f2e85d57
TH
1148
1149 if (!list_empty(&root->root_list)) {
1150 list_del(&root->root_list);
1151 cgroup_root_count--;
1152 }
1153
1154 cgroup_exit_root_id(root);
1155
1156 mutex_unlock(&cgroup_mutex);
f2e85d57 1157
2bd59d48 1158 kernfs_destroy_root(root->kf_root);
f2e85d57
TH
1159 cgroup_free_root(root);
1160}
1161
ceb6a081
TH
1162/* look up cgroup associated with given css_set on the specified hierarchy */
1163static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
3dd06ffa 1164 struct cgroup_root *root)
7717f7ba 1165{
7717f7ba
PM
1166 struct cgroup *res = NULL;
1167
96d365e0 1168 lockdep_assert_held(&cgroup_mutex);
f0d9a5f1 1169 lockdep_assert_held(&css_set_lock);
96d365e0 1170
5abb8855 1171 if (cset == &init_css_set) {
3dd06ffa 1172 res = &root->cgrp;
7717f7ba 1173 } else {
69d0206c
TH
1174 struct cgrp_cset_link *link;
1175
1176 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 1177 struct cgroup *c = link->cgrp;
69d0206c 1178
7717f7ba
PM
1179 if (c->root == root) {
1180 res = c;
1181 break;
1182 }
1183 }
1184 }
96d365e0 1185
7717f7ba
PM
1186 BUG_ON(!res);
1187 return res;
1188}
1189
ddbcc7e8 1190/*
ceb6a081 1191 * Return the cgroup for "task" from the given hierarchy. Must be
f0d9a5f1 1192 * called with cgroup_mutex and css_set_lock held.
ceb6a081
TH
1193 */
1194static struct cgroup *task_cgroup_from_root(struct task_struct *task,
3dd06ffa 1195 struct cgroup_root *root)
ceb6a081
TH
1196{
1197 /*
1198 * No need to lock the task - since we hold cgroup_mutex the
1199 * task can't change groups, so the only thing that can happen
1200 * is that it exits and its css is set back to init_css_set.
1201 */
1202 return cset_cgroup_from_root(task_css_set(task), root);
1203}
1204
ddbcc7e8 1205/*
ddbcc7e8
PM
1206 * A task must hold cgroup_mutex to modify cgroups.
1207 *
1208 * Any task can increment and decrement the count field without lock.
1209 * So in general, code holding cgroup_mutex can't rely on the count
1210 * field not changing. However, if the count goes to zero, then only
956db3ca 1211 * cgroup_attach_task() can increment it again. Because a count of zero
ddbcc7e8
PM
1212 * means that no tasks are currently attached, therefore there is no
1213 * way a task attached to that cgroup can fork (the other way to
1214 * increment the count). So code holding cgroup_mutex can safely
1215 * assume that if the count is zero, it will stay zero. Similarly, if
1216 * a task holds cgroup_mutex on a cgroup with zero count, it
1217 * knows that the cgroup won't be removed, as cgroup_rmdir()
1218 * needs that mutex.
1219 *
ddbcc7e8
PM
1220 * A cgroup can only be deleted if both its 'count' of using tasks
1221 * is zero, and its list of 'children' cgroups is empty. Since all
1222 * tasks in the system use _some_ cgroup, and since there is always at
3dd06ffa 1223 * least one task in the system (init, pid == 1), therefore, root cgroup
ddbcc7e8 1224 * always has either children cgroups and/or using tasks. So we don't
3dd06ffa 1225 * need a special hack to ensure that root cgroup cannot be deleted.
ddbcc7e8
PM
1226 *
1227 * P.S. One more locking exception. RCU is used to guard the
956db3ca 1228 * update of a tasks cgroup pointer by cgroup_attach_task()
ddbcc7e8
PM
1229 */
1230
2bd59d48 1231static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
828c0950 1232static const struct file_operations proc_cgroupstats_operations;
a424316c 1233
8d7e6fb0
TH
1234static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1235 char *buf)
ddbcc7e8 1236{
3e1d2eed
TH
1237 struct cgroup_subsys *ss = cft->ss;
1238
8d7e6fb0
TH
1239 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1240 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
1241 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
3e1d2eed
TH
1242 cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1243 cft->name);
8d7e6fb0
TH
1244 else
1245 strncpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1246 return buf;
ddbcc7e8
PM
1247}
1248
f2e85d57
TH
1249/**
1250 * cgroup_file_mode - deduce file mode of a control file
1251 * @cft: the control file in question
1252 *
7dbdb199 1253 * S_IRUGO for read, S_IWUSR for write.
f2e85d57
TH
1254 */
1255static umode_t cgroup_file_mode(const struct cftype *cft)
65dff759 1256{
f2e85d57 1257 umode_t mode = 0;
65dff759 1258
f2e85d57
TH
1259 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1260 mode |= S_IRUGO;
1261
7dbdb199
TH
1262 if (cft->write_u64 || cft->write_s64 || cft->write) {
1263 if (cft->flags & CFTYPE_WORLD_WRITABLE)
1264 mode |= S_IWUGO;
1265 else
1266 mode |= S_IWUSR;
1267 }
f2e85d57
TH
1268
1269 return mode;
65dff759
LZ
1270}
1271
af0ba678 1272/**
0f060deb 1273 * cgroup_calc_child_subsys_mask - calculate child_subsys_mask
af0ba678 1274 * @cgrp: the target cgroup
0f060deb 1275 * @subtree_control: the new subtree_control mask to consider
af0ba678
TH
1276 *
1277 * On the default hierarchy, a subsystem may request other subsystems to be
1278 * enabled together through its ->depends_on mask. In such cases, more
1279 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1280 *
0f060deb
TH
1281 * This function calculates which subsystems need to be enabled if
1282 * @subtree_control is to be applied to @cgrp. The returned mask is always
1283 * a superset of @subtree_control and follows the usual hierarchy rules.
af0ba678 1284 */
8ab456ac
AS
1285static unsigned long cgroup_calc_child_subsys_mask(struct cgroup *cgrp,
1286 unsigned long subtree_control)
667c2491 1287{
af0ba678 1288 struct cgroup *parent = cgroup_parent(cgrp);
8ab456ac 1289 unsigned long cur_ss_mask = subtree_control;
af0ba678
TH
1290 struct cgroup_subsys *ss;
1291 int ssid;
1292
1293 lockdep_assert_held(&cgroup_mutex);
1294
0f060deb
TH
1295 if (!cgroup_on_dfl(cgrp))
1296 return cur_ss_mask;
af0ba678
TH
1297
1298 while (true) {
8ab456ac 1299 unsigned long new_ss_mask = cur_ss_mask;
af0ba678 1300
a966a4ed
AS
1301 for_each_subsys_which(ss, ssid, &cur_ss_mask)
1302 new_ss_mask |= ss->depends_on;
af0ba678
TH
1303
1304 /*
1305 * Mask out subsystems which aren't available. This can
1306 * happen only if some depended-upon subsystems were bound
1307 * to non-default hierarchies.
1308 */
1309 if (parent)
1310 new_ss_mask &= parent->child_subsys_mask;
1311 else
1312 new_ss_mask &= cgrp->root->subsys_mask;
1313
1314 if (new_ss_mask == cur_ss_mask)
1315 break;
1316 cur_ss_mask = new_ss_mask;
1317 }
1318
0f060deb
TH
1319 return cur_ss_mask;
1320}
1321
1322/**
1323 * cgroup_refresh_child_subsys_mask - update child_subsys_mask
1324 * @cgrp: the target cgroup
1325 *
1326 * Update @cgrp->child_subsys_mask according to the current
1327 * @cgrp->subtree_control using cgroup_calc_child_subsys_mask().
1328 */
1329static void cgroup_refresh_child_subsys_mask(struct cgroup *cgrp)
1330{
1331 cgrp->child_subsys_mask =
1332 cgroup_calc_child_subsys_mask(cgrp, cgrp->subtree_control);
667c2491
TH
1333}
1334
a9746d8d
TH
1335/**
1336 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1337 * @kn: the kernfs_node being serviced
1338 *
1339 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1340 * the method finishes if locking succeeded. Note that once this function
1341 * returns the cgroup returned by cgroup_kn_lock_live() may become
1342 * inaccessible any time. If the caller intends to continue to access the
1343 * cgroup, it should pin it before invoking this function.
1344 */
1345static void cgroup_kn_unlock(struct kernfs_node *kn)
ddbcc7e8 1346{
a9746d8d
TH
1347 struct cgroup *cgrp;
1348
1349 if (kernfs_type(kn) == KERNFS_DIR)
1350 cgrp = kn->priv;
1351 else
1352 cgrp = kn->parent->priv;
1353
1354 mutex_unlock(&cgroup_mutex);
a9746d8d
TH
1355
1356 kernfs_unbreak_active_protection(kn);
1357 cgroup_put(cgrp);
ddbcc7e8
PM
1358}
1359
a9746d8d
TH
1360/**
1361 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1362 * @kn: the kernfs_node being serviced
1363 *
1364 * This helper is to be used by a cgroup kernfs method currently servicing
1365 * @kn. It breaks the active protection, performs cgroup locking and
1366 * verifies that the associated cgroup is alive. Returns the cgroup if
1367 * alive; otherwise, %NULL. A successful return should be undone by a
1368 * matching cgroup_kn_unlock() invocation.
1369 *
1370 * Any cgroup kernfs method implementation which requires locking the
1371 * associated cgroup should use this helper. It avoids nesting cgroup
1372 * locking under kernfs active protection and allows all kernfs operations
1373 * including self-removal.
1374 */
1375static struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn)
05ef1d7c 1376{
a9746d8d
TH
1377 struct cgroup *cgrp;
1378
1379 if (kernfs_type(kn) == KERNFS_DIR)
1380 cgrp = kn->priv;
1381 else
1382 cgrp = kn->parent->priv;
05ef1d7c 1383
2739d3cc 1384 /*
01f6474c 1385 * We're gonna grab cgroup_mutex which nests outside kernfs
a9746d8d
TH
1386 * active_ref. cgroup liveliness check alone provides enough
1387 * protection against removal. Ensure @cgrp stays accessible and
1388 * break the active_ref protection.
2739d3cc 1389 */
aa32362f
LZ
1390 if (!cgroup_tryget(cgrp))
1391 return NULL;
a9746d8d
TH
1392 kernfs_break_active_protection(kn);
1393
2bd59d48 1394 mutex_lock(&cgroup_mutex);
05ef1d7c 1395
a9746d8d
TH
1396 if (!cgroup_is_dead(cgrp))
1397 return cgrp;
1398
1399 cgroup_kn_unlock(kn);
1400 return NULL;
ddbcc7e8 1401}
05ef1d7c 1402
2739d3cc 1403static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
05ef1d7c 1404{
2bd59d48 1405 char name[CGROUP_FILE_NAME_MAX];
05ef1d7c 1406
01f6474c 1407 lockdep_assert_held(&cgroup_mutex);
34c06254
TH
1408
1409 if (cft->file_offset) {
1410 struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
1411 struct cgroup_file *cfile = (void *)css + cft->file_offset;
1412
1413 spin_lock_irq(&cgroup_file_kn_lock);
1414 cfile->kn = NULL;
1415 spin_unlock_irq(&cgroup_file_kn_lock);
1416 }
1417
2bd59d48 1418 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
05ef1d7c
TH
1419}
1420
13af07df 1421/**
4df8dc90
TH
1422 * css_clear_dir - remove subsys files in a cgroup directory
1423 * @css: taget css
1424 * @cgrp_override: specify if target cgroup is different from css->cgroup
13af07df 1425 */
4df8dc90
TH
1426static void css_clear_dir(struct cgroup_subsys_state *css,
1427 struct cgroup *cgrp_override)
05ef1d7c 1428{
4df8dc90
TH
1429 struct cgroup *cgrp = cgrp_override ?: css->cgroup;
1430 struct cftype *cfts;
05ef1d7c 1431
4df8dc90
TH
1432 list_for_each_entry(cfts, &css->ss->cfts, node)
1433 cgroup_addrm_files(css, cgrp, cfts, false);
ddbcc7e8
PM
1434}
1435
ccdca218 1436/**
4df8dc90
TH
1437 * css_populate_dir - create subsys files in a cgroup directory
1438 * @css: target css
1439 * @cgrp_overried: specify if target cgroup is different from css->cgroup
ccdca218
TH
1440 *
1441 * On failure, no file is added.
1442 */
4df8dc90
TH
1443static int css_populate_dir(struct cgroup_subsys_state *css,
1444 struct cgroup *cgrp_override)
ccdca218 1445{
4df8dc90
TH
1446 struct cgroup *cgrp = cgrp_override ?: css->cgroup;
1447 struct cftype *cfts, *failed_cfts;
1448 int ret;
ccdca218 1449
4df8dc90
TH
1450 if (!css->ss) {
1451 if (cgroup_on_dfl(cgrp))
1452 cfts = cgroup_dfl_base_files;
1453 else
1454 cfts = cgroup_legacy_base_files;
ccdca218 1455
4df8dc90
TH
1456 return cgroup_addrm_files(&cgrp->self, cgrp, cfts, true);
1457 }
ccdca218 1458
4df8dc90
TH
1459 list_for_each_entry(cfts, &css->ss->cfts, node) {
1460 ret = cgroup_addrm_files(css, cgrp, cfts, true);
1461 if (ret < 0) {
1462 failed_cfts = cfts;
1463 goto err;
ccdca218
TH
1464 }
1465 }
1466 return 0;
1467err:
4df8dc90
TH
1468 list_for_each_entry(cfts, &css->ss->cfts, node) {
1469 if (cfts == failed_cfts)
1470 break;
1471 cgroup_addrm_files(css, cgrp, cfts, false);
1472 }
ccdca218
TH
1473 return ret;
1474}
1475
8ab456ac
AS
1476static int rebind_subsystems(struct cgroup_root *dst_root,
1477 unsigned long ss_mask)
ddbcc7e8 1478{
1ada4838 1479 struct cgroup *dcgrp = &dst_root->cgrp;
30159ec7 1480 struct cgroup_subsys *ss;
8ab456ac 1481 unsigned long tmp_ss_mask;
2d8f243a 1482 int ssid, i, ret;
ddbcc7e8 1483
ace2bee8 1484 lockdep_assert_held(&cgroup_mutex);
ddbcc7e8 1485
a966a4ed 1486 for_each_subsys_which(ss, ssid, &ss_mask) {
7fd8c565
TH
1487 /* if @ss has non-root csses attached to it, can't move */
1488 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)))
3ed80a62 1489 return -EBUSY;
1d5be6b2 1490
5df36032 1491 /* can't move between two non-dummy roots either */
7fd8c565 1492 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
5df36032 1493 return -EBUSY;
ddbcc7e8
PM
1494 }
1495
5533e011
TH
1496 /* skip creating root files on dfl_root for inhibited subsystems */
1497 tmp_ss_mask = ss_mask;
1498 if (dst_root == &cgrp_dfl_root)
1499 tmp_ss_mask &= ~cgrp_dfl_root_inhibit_ss_mask;
1500
4df8dc90
TH
1501 for_each_subsys_which(ss, ssid, &tmp_ss_mask) {
1502 struct cgroup *scgrp = &ss->root->cgrp;
1503 int tssid;
1504
1505 ret = css_populate_dir(cgroup_css(scgrp, ss), dcgrp);
1506 if (!ret)
1507 continue;
ddbcc7e8 1508
a2dd4247
TH
1509 /*
1510 * Rebinding back to the default root is not allowed to
1511 * fail. Using both default and non-default roots should
1512 * be rare. Moving subsystems back and forth even more so.
1513 * Just warn about it and continue.
1514 */
4df8dc90
TH
1515 if (dst_root == &cgrp_dfl_root) {
1516 if (cgrp_dfl_root_visible) {
1517 pr_warn("failed to create files (%d) while rebinding 0x%lx to default root\n",
1518 ret, ss_mask);
1519 pr_warn("you may retry by moving them to a different hierarchy and unbinding\n");
1520 }
1521 continue;
a2dd4247 1522 }
4df8dc90
TH
1523
1524 for_each_subsys_which(ss, tssid, &tmp_ss_mask) {
1525 if (tssid == ssid)
1526 break;
1527 css_clear_dir(cgroup_css(scgrp, ss), dcgrp);
1528 }
1529 return ret;
5df36032 1530 }
3126121f
TH
1531
1532 /*
1533 * Nothing can fail from this point on. Remove files for the
1534 * removed subsystems and rebind each subsystem.
1535 */
a966a4ed 1536 for_each_subsys_which(ss, ssid, &ss_mask) {
1ada4838
TH
1537 struct cgroup_root *src_root = ss->root;
1538 struct cgroup *scgrp = &src_root->cgrp;
1539 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
2d8f243a 1540 struct css_set *cset;
a8a648c4 1541
1ada4838 1542 WARN_ON(!css || cgroup_css(dcgrp, ss));
a8a648c4 1543
4df8dc90
TH
1544 css_clear_dir(css, NULL);
1545
1ada4838
TH
1546 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1547 rcu_assign_pointer(dcgrp->subsys[ssid], css);
5df36032 1548 ss->root = dst_root;
1ada4838 1549 css->cgroup = dcgrp;
73e80ed8 1550
f0d9a5f1 1551 spin_lock_bh(&css_set_lock);
2d8f243a
TH
1552 hash_for_each(css_set_table, i, cset, hlist)
1553 list_move_tail(&cset->e_cset_node[ss->id],
1ada4838 1554 &dcgrp->e_csets[ss->id]);
f0d9a5f1 1555 spin_unlock_bh(&css_set_lock);
2d8f243a 1556
f392e51c 1557 src_root->subsys_mask &= ~(1 << ssid);
1ada4838
TH
1558 scgrp->subtree_control &= ~(1 << ssid);
1559 cgroup_refresh_child_subsys_mask(scgrp);
f392e51c 1560
bd53d617 1561 /* default hierarchy doesn't enable controllers by default */
f392e51c 1562 dst_root->subsys_mask |= 1 << ssid;
49d1dc4b
TH
1563 if (dst_root == &cgrp_dfl_root) {
1564 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1565 } else {
1ada4838
TH
1566 dcgrp->subtree_control |= 1 << ssid;
1567 cgroup_refresh_child_subsys_mask(dcgrp);
49d1dc4b 1568 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
667c2491 1569 }
a8a648c4 1570
5df36032
TH
1571 if (ss->bind)
1572 ss->bind(css);
ddbcc7e8 1573 }
ddbcc7e8 1574
1ada4838 1575 kernfs_activate(dcgrp->kn);
ddbcc7e8
PM
1576 return 0;
1577}
1578
2bd59d48
TH
1579static int cgroup_show_options(struct seq_file *seq,
1580 struct kernfs_root *kf_root)
ddbcc7e8 1581{
3dd06ffa 1582 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
ddbcc7e8 1583 struct cgroup_subsys *ss;
b85d2040 1584 int ssid;
ddbcc7e8 1585
d98817d4
TH
1586 if (root != &cgrp_dfl_root)
1587 for_each_subsys(ss, ssid)
1588 if (root->subsys_mask & (1 << ssid))
61e57c0c 1589 seq_show_option(seq, ss->legacy_name, NULL);
93438629 1590 if (root->flags & CGRP_ROOT_NOPREFIX)
ddbcc7e8 1591 seq_puts(seq, ",noprefix");
93438629 1592 if (root->flags & CGRP_ROOT_XATTR)
03b1cde6 1593 seq_puts(seq, ",xattr");
69e943b7
TH
1594
1595 spin_lock(&release_agent_path_lock);
81a6a5cd 1596 if (strlen(root->release_agent_path))
a068acf2
KC
1597 seq_show_option(seq, "release_agent",
1598 root->release_agent_path);
69e943b7
TH
1599 spin_unlock(&release_agent_path_lock);
1600
3dd06ffa 1601 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
97978e6d 1602 seq_puts(seq, ",clone_children");
c6d57f33 1603 if (strlen(root->name))
a068acf2 1604 seq_show_option(seq, "name", root->name);
ddbcc7e8
PM
1605 return 0;
1606}
1607
1608struct cgroup_sb_opts {
8ab456ac 1609 unsigned long subsys_mask;
69dfa00c 1610 unsigned int flags;
81a6a5cd 1611 char *release_agent;
2260e7fc 1612 bool cpuset_clone_children;
c6d57f33 1613 char *name;
2c6ab6d2
PM
1614 /* User explicitly requested empty subsystem */
1615 bool none;
ddbcc7e8
PM
1616};
1617
cf5d5941 1618static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
ddbcc7e8 1619{
32a8cf23
DL
1620 char *token, *o = data;
1621 bool all_ss = false, one_ss = false;
8ab456ac 1622 unsigned long mask = -1UL;
30159ec7 1623 struct cgroup_subsys *ss;
7b9a6ba5 1624 int nr_opts = 0;
30159ec7 1625 int i;
f9ab5b5b
LZ
1626
1627#ifdef CONFIG_CPUSETS
69dfa00c 1628 mask = ~(1U << cpuset_cgrp_id);
f9ab5b5b 1629#endif
ddbcc7e8 1630
c6d57f33 1631 memset(opts, 0, sizeof(*opts));
ddbcc7e8
PM
1632
1633 while ((token = strsep(&o, ",")) != NULL) {
7b9a6ba5
TH
1634 nr_opts++;
1635
ddbcc7e8
PM
1636 if (!*token)
1637 return -EINVAL;
32a8cf23 1638 if (!strcmp(token, "none")) {
2c6ab6d2
PM
1639 /* Explicitly have no subsystems */
1640 opts->none = true;
32a8cf23
DL
1641 continue;
1642 }
1643 if (!strcmp(token, "all")) {
1644 /* Mutually exclusive option 'all' + subsystem name */
1645 if (one_ss)
1646 return -EINVAL;
1647 all_ss = true;
1648 continue;
1649 }
873fe09e
TH
1650 if (!strcmp(token, "__DEVEL__sane_behavior")) {
1651 opts->flags |= CGRP_ROOT_SANE_BEHAVIOR;
1652 continue;
1653 }
32a8cf23 1654 if (!strcmp(token, "noprefix")) {
93438629 1655 opts->flags |= CGRP_ROOT_NOPREFIX;
32a8cf23
DL
1656 continue;
1657 }
1658 if (!strcmp(token, "clone_children")) {
2260e7fc 1659 opts->cpuset_clone_children = true;
32a8cf23
DL
1660 continue;
1661 }
03b1cde6 1662 if (!strcmp(token, "xattr")) {
93438629 1663 opts->flags |= CGRP_ROOT_XATTR;
03b1cde6
AR
1664 continue;
1665 }
32a8cf23 1666 if (!strncmp(token, "release_agent=", 14)) {
81a6a5cd
PM
1667 /* Specifying two release agents is forbidden */
1668 if (opts->release_agent)
1669 return -EINVAL;
c6d57f33 1670 opts->release_agent =
e400c285 1671 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
81a6a5cd
PM
1672 if (!opts->release_agent)
1673 return -ENOMEM;
32a8cf23
DL
1674 continue;
1675 }
1676 if (!strncmp(token, "name=", 5)) {
c6d57f33
PM
1677 const char *name = token + 5;
1678 /* Can't specify an empty name */
1679 if (!strlen(name))
1680 return -EINVAL;
1681 /* Must match [\w.-]+ */
1682 for (i = 0; i < strlen(name); i++) {
1683 char c = name[i];
1684 if (isalnum(c))
1685 continue;
1686 if ((c == '.') || (c == '-') || (c == '_'))
1687 continue;
1688 return -EINVAL;
1689 }
1690 /* Specifying two names is forbidden */
1691 if (opts->name)
1692 return -EINVAL;
1693 opts->name = kstrndup(name,
e400c285 1694 MAX_CGROUP_ROOT_NAMELEN - 1,
c6d57f33
PM
1695 GFP_KERNEL);
1696 if (!opts->name)
1697 return -ENOMEM;
32a8cf23
DL
1698
1699 continue;
1700 }
1701
30159ec7 1702 for_each_subsys(ss, i) {
3e1d2eed 1703 if (strcmp(token, ss->legacy_name))
32a8cf23 1704 continue;
fc5ed1e9 1705 if (!cgroup_ssid_enabled(i))
32a8cf23
DL
1706 continue;
1707
1708 /* Mutually exclusive option 'all' + subsystem name */
1709 if (all_ss)
1710 return -EINVAL;
69dfa00c 1711 opts->subsys_mask |= (1 << i);
32a8cf23
DL
1712 one_ss = true;
1713
1714 break;
1715 }
1716 if (i == CGROUP_SUBSYS_COUNT)
1717 return -ENOENT;
1718 }
1719
873fe09e 1720 if (opts->flags & CGRP_ROOT_SANE_BEHAVIOR) {
ed3d261b 1721 pr_warn("sane_behavior: this is still under development and its behaviors will change, proceed at your own risk\n");
7b9a6ba5
TH
1722 if (nr_opts != 1) {
1723 pr_err("sane_behavior: no other mount options allowed\n");
873fe09e
TH
1724 return -EINVAL;
1725 }
7b9a6ba5 1726 return 0;
873fe09e
TH
1727 }
1728
7b9a6ba5
TH
1729 /*
1730 * If the 'all' option was specified select all the subsystems,
1731 * otherwise if 'none', 'name=' and a subsystem name options were
1732 * not specified, let's default to 'all'
1733 */
1734 if (all_ss || (!one_ss && !opts->none && !opts->name))
1735 for_each_subsys(ss, i)
fc5ed1e9 1736 if (cgroup_ssid_enabled(i))
7b9a6ba5
TH
1737 opts->subsys_mask |= (1 << i);
1738
1739 /*
1740 * We either have to specify by name or by subsystems. (So all
1741 * empty hierarchies must have a name).
1742 */
1743 if (!opts->subsys_mask && !opts->name)
1744 return -EINVAL;
1745
f9ab5b5b
LZ
1746 /*
1747 * Option noprefix was introduced just for backward compatibility
1748 * with the old cpuset, so we allow noprefix only if mounting just
1749 * the cpuset subsystem.
1750 */
93438629 1751 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
f9ab5b5b
LZ
1752 return -EINVAL;
1753
2c6ab6d2 1754 /* Can't specify "none" and some subsystems */
a1a71b45 1755 if (opts->subsys_mask && opts->none)
2c6ab6d2
PM
1756 return -EINVAL;
1757
ddbcc7e8
PM
1758 return 0;
1759}
1760
2bd59d48 1761static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
ddbcc7e8
PM
1762{
1763 int ret = 0;
3dd06ffa 1764 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
ddbcc7e8 1765 struct cgroup_sb_opts opts;
8ab456ac 1766 unsigned long added_mask, removed_mask;
ddbcc7e8 1767
aa6ec29b
TH
1768 if (root == &cgrp_dfl_root) {
1769 pr_err("remount is not allowed\n");
873fe09e
TH
1770 return -EINVAL;
1771 }
1772
ddbcc7e8
PM
1773 mutex_lock(&cgroup_mutex);
1774
1775 /* See what subsystems are wanted */
1776 ret = parse_cgroupfs_options(data, &opts);
1777 if (ret)
1778 goto out_unlock;
1779
f392e51c 1780 if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
ed3d261b 1781 pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
a2a1f9ea 1782 task_tgid_nr(current), current->comm);
8b5a5a9d 1783
f392e51c
TH
1784 added_mask = opts.subsys_mask & ~root->subsys_mask;
1785 removed_mask = root->subsys_mask & ~opts.subsys_mask;
13af07df 1786
cf5d5941 1787 /* Don't allow flags or name to change at remount */
7450e90b 1788 if ((opts.flags ^ root->flags) ||
cf5d5941 1789 (opts.name && strcmp(opts.name, root->name))) {
69dfa00c 1790 pr_err("option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"\n",
7450e90b 1791 opts.flags, opts.name ?: "", root->flags, root->name);
c6d57f33
PM
1792 ret = -EINVAL;
1793 goto out_unlock;
1794 }
1795
f172e67c 1796 /* remounting is not allowed for populated hierarchies */
d5c419b6 1797 if (!list_empty(&root->cgrp.self.children)) {
f172e67c 1798 ret = -EBUSY;
0670e08b 1799 goto out_unlock;
cf5d5941 1800 }
ddbcc7e8 1801
5df36032 1802 ret = rebind_subsystems(root, added_mask);
3126121f 1803 if (ret)
0670e08b 1804 goto out_unlock;
ddbcc7e8 1805
3dd06ffa 1806 rebind_subsystems(&cgrp_dfl_root, removed_mask);
5df36032 1807
69e943b7
TH
1808 if (opts.release_agent) {
1809 spin_lock(&release_agent_path_lock);
81a6a5cd 1810 strcpy(root->release_agent_path, opts.release_agent);
69e943b7
TH
1811 spin_unlock(&release_agent_path_lock);
1812 }
ddbcc7e8 1813 out_unlock:
66bdc9cf 1814 kfree(opts.release_agent);
c6d57f33 1815 kfree(opts.name);
ddbcc7e8 1816 mutex_unlock(&cgroup_mutex);
ddbcc7e8
PM
1817 return ret;
1818}
1819
afeb0f9f
TH
1820/*
1821 * To reduce the fork() overhead for systems that are not actually using
1822 * their cgroups capability, we don't maintain the lists running through
1823 * each css_set to its tasks until we see the list actually used - in other
1824 * words after the first mount.
1825 */
1826static bool use_task_css_set_links __read_mostly;
1827
1828static void cgroup_enable_task_cg_lists(void)
1829{
1830 struct task_struct *p, *g;
1831
f0d9a5f1 1832 spin_lock_bh(&css_set_lock);
afeb0f9f
TH
1833
1834 if (use_task_css_set_links)
1835 goto out_unlock;
1836
1837 use_task_css_set_links = true;
1838
1839 /*
1840 * We need tasklist_lock because RCU is not safe against
1841 * while_each_thread(). Besides, a forking task that has passed
1842 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1843 * is not guaranteed to have its child immediately visible in the
1844 * tasklist if we walk through it with RCU.
1845 */
1846 read_lock(&tasklist_lock);
1847 do_each_thread(g, p) {
afeb0f9f
TH
1848 WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1849 task_css_set(p) != &init_css_set);
1850
1851 /*
1852 * We should check if the process is exiting, otherwise
1853 * it will race with cgroup_exit() in that the list
1854 * entry won't be deleted though the process has exited.
f153ad11
TH
1855 * Do it while holding siglock so that we don't end up
1856 * racing against cgroup_exit().
afeb0f9f 1857 */
f153ad11 1858 spin_lock_irq(&p->sighand->siglock);
eaf797ab
TH
1859 if (!(p->flags & PF_EXITING)) {
1860 struct css_set *cset = task_css_set(p);
1861
0de0942d
TH
1862 if (!css_set_populated(cset))
1863 css_set_update_populated(cset, true);
389b9c1b 1864 list_add_tail(&p->cg_list, &cset->tasks);
eaf797ab
TH
1865 get_css_set(cset);
1866 }
f153ad11 1867 spin_unlock_irq(&p->sighand->siglock);
afeb0f9f
TH
1868 } while_each_thread(g, p);
1869 read_unlock(&tasklist_lock);
1870out_unlock:
f0d9a5f1 1871 spin_unlock_bh(&css_set_lock);
afeb0f9f 1872}
ddbcc7e8 1873
cc31edce
PM
1874static void init_cgroup_housekeeping(struct cgroup *cgrp)
1875{
2d8f243a
TH
1876 struct cgroup_subsys *ss;
1877 int ssid;
1878
d5c419b6
TH
1879 INIT_LIST_HEAD(&cgrp->self.sibling);
1880 INIT_LIST_HEAD(&cgrp->self.children);
69d0206c 1881 INIT_LIST_HEAD(&cgrp->cset_links);
72a8cb30
BB
1882 INIT_LIST_HEAD(&cgrp->pidlists);
1883 mutex_init(&cgrp->pidlist_mutex);
9d800df1 1884 cgrp->self.cgroup = cgrp;
184faf32 1885 cgrp->self.flags |= CSS_ONLINE;
2d8f243a
TH
1886
1887 for_each_subsys(ss, ssid)
1888 INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
f8f22e53
TH
1889
1890 init_waitqueue_head(&cgrp->offline_waitq);
971ff493 1891 INIT_WORK(&cgrp->release_agent_work, cgroup_release_agent);
cc31edce 1892}
c6d57f33 1893
3dd06ffa 1894static void init_cgroup_root(struct cgroup_root *root,
172a2c06 1895 struct cgroup_sb_opts *opts)
ddbcc7e8 1896{
3dd06ffa 1897 struct cgroup *cgrp = &root->cgrp;
b0ca5a84 1898
ddbcc7e8 1899 INIT_LIST_HEAD(&root->root_list);
3c9c825b 1900 atomic_set(&root->nr_cgrps, 1);
bd89aabc 1901 cgrp->root = root;
cc31edce 1902 init_cgroup_housekeeping(cgrp);
4e96ee8e 1903 idr_init(&root->cgroup_idr);
c6d57f33 1904
c6d57f33
PM
1905 root->flags = opts->flags;
1906 if (opts->release_agent)
1907 strcpy(root->release_agent_path, opts->release_agent);
1908 if (opts->name)
1909 strcpy(root->name, opts->name);
2260e7fc 1910 if (opts->cpuset_clone_children)
3dd06ffa 1911 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
c6d57f33
PM
1912}
1913
8ab456ac 1914static int cgroup_setup_root(struct cgroup_root *root, unsigned long ss_mask)
2c6ab6d2 1915{
d427dfeb 1916 LIST_HEAD(tmp_links);
3dd06ffa 1917 struct cgroup *root_cgrp = &root->cgrp;
d427dfeb 1918 struct css_set *cset;
d427dfeb 1919 int i, ret;
2c6ab6d2 1920
d427dfeb 1921 lockdep_assert_held(&cgroup_mutex);
c6d57f33 1922
cf780b7d 1923 ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_KERNEL);
d427dfeb 1924 if (ret < 0)
2bd59d48 1925 goto out;
d427dfeb 1926 root_cgrp->id = ret;
c6d57f33 1927
2aad2a86
TH
1928 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release, 0,
1929 GFP_KERNEL);
9d755d33
TH
1930 if (ret)
1931 goto out;
1932
d427dfeb 1933 /*
f0d9a5f1 1934 * We're accessing css_set_count without locking css_set_lock here,
d427dfeb
TH
1935 * but that's OK - it can only be increased by someone holding
1936 * cgroup_lock, and that's us. The worst that can happen is that we
1937 * have some link structures left over
1938 */
1939 ret = allocate_cgrp_cset_links(css_set_count, &tmp_links);
1940 if (ret)
9d755d33 1941 goto cancel_ref;
ddbcc7e8 1942
985ed670 1943 ret = cgroup_init_root_id(root);
ddbcc7e8 1944 if (ret)
9d755d33 1945 goto cancel_ref;
ddbcc7e8 1946
2bd59d48
TH
1947 root->kf_root = kernfs_create_root(&cgroup_kf_syscall_ops,
1948 KERNFS_ROOT_CREATE_DEACTIVATED,
1949 root_cgrp);
1950 if (IS_ERR(root->kf_root)) {
1951 ret = PTR_ERR(root->kf_root);
1952 goto exit_root_id;
1953 }
1954 root_cgrp->kn = root->kf_root->kn;
ddbcc7e8 1955
4df8dc90 1956 ret = css_populate_dir(&root_cgrp->self, NULL);
d427dfeb 1957 if (ret)
2bd59d48 1958 goto destroy_root;
ddbcc7e8 1959
5df36032 1960 ret = rebind_subsystems(root, ss_mask);
d427dfeb 1961 if (ret)
2bd59d48 1962 goto destroy_root;
ddbcc7e8 1963
d427dfeb
TH
1964 /*
1965 * There must be no failure case after here, since rebinding takes
1966 * care of subsystems' refcounts, which are explicitly dropped in
1967 * the failure exit path.
1968 */
1969 list_add(&root->root_list, &cgroup_roots);
1970 cgroup_root_count++;
0df6a63f 1971
d427dfeb 1972 /*
3dd06ffa 1973 * Link the root cgroup in this hierarchy into all the css_set
d427dfeb
TH
1974 * objects.
1975 */
f0d9a5f1 1976 spin_lock_bh(&css_set_lock);
0de0942d 1977 hash_for_each(css_set_table, i, cset, hlist) {
d427dfeb 1978 link_css_set(&tmp_links, cset, root_cgrp);
0de0942d
TH
1979 if (css_set_populated(cset))
1980 cgroup_update_populated(root_cgrp, true);
1981 }
f0d9a5f1 1982 spin_unlock_bh(&css_set_lock);
ddbcc7e8 1983
d5c419b6 1984 BUG_ON(!list_empty(&root_cgrp->self.children));
3c9c825b 1985 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
ddbcc7e8 1986
2bd59d48 1987 kernfs_activate(root_cgrp->kn);
d427dfeb 1988 ret = 0;
2bd59d48 1989 goto out;
d427dfeb 1990
2bd59d48
TH
1991destroy_root:
1992 kernfs_destroy_root(root->kf_root);
1993 root->kf_root = NULL;
1994exit_root_id:
d427dfeb 1995 cgroup_exit_root_id(root);
9d755d33 1996cancel_ref:
9a1049da 1997 percpu_ref_exit(&root_cgrp->self.refcnt);
2bd59d48 1998out:
d427dfeb
TH
1999 free_cgrp_cset_links(&tmp_links);
2000 return ret;
ddbcc7e8
PM
2001}
2002
f7e83571 2003static struct dentry *cgroup_mount(struct file_system_type *fs_type,
ddbcc7e8 2004 int flags, const char *unused_dev_name,
f7e83571 2005 void *data)
ddbcc7e8 2006{
3a32bd72 2007 struct super_block *pinned_sb = NULL;
970317aa 2008 struct cgroup_subsys *ss;
3dd06ffa 2009 struct cgroup_root *root;
ddbcc7e8 2010 struct cgroup_sb_opts opts;
2bd59d48 2011 struct dentry *dentry;
8e30e2b8 2012 int ret;
970317aa 2013 int i;
c6b3d5bc 2014 bool new_sb;
ddbcc7e8 2015
56fde9e0
TH
2016 /*
2017 * The first time anyone tries to mount a cgroup, enable the list
2018 * linking each css_set to its tasks and fix up all existing tasks.
2019 */
2020 if (!use_task_css_set_links)
2021 cgroup_enable_task_cg_lists();
e37a06f1 2022
aae8aab4 2023 mutex_lock(&cgroup_mutex);
8e30e2b8
TH
2024
2025 /* First find the desired set of subsystems */
ddbcc7e8 2026 ret = parse_cgroupfs_options(data, &opts);
c6d57f33 2027 if (ret)
8e30e2b8 2028 goto out_unlock;
a015edd2 2029
2bd59d48 2030 /* look for a matching existing root */
7b9a6ba5 2031 if (opts.flags & CGRP_ROOT_SANE_BEHAVIOR) {
a2dd4247
TH
2032 cgrp_dfl_root_visible = true;
2033 root = &cgrp_dfl_root;
2034 cgroup_get(&root->cgrp);
2035 ret = 0;
2036 goto out_unlock;
ddbcc7e8
PM
2037 }
2038
970317aa
LZ
2039 /*
2040 * Destruction of cgroup root is asynchronous, so subsystems may
2041 * still be dying after the previous unmount. Let's drain the
2042 * dying subsystems. We just need to ensure that the ones
2043 * unmounted previously finish dying and don't care about new ones
2044 * starting. Testing ref liveliness is good enough.
2045 */
2046 for_each_subsys(ss, i) {
2047 if (!(opts.subsys_mask & (1 << i)) ||
2048 ss->root == &cgrp_dfl_root)
2049 continue;
2050
2051 if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt)) {
2052 mutex_unlock(&cgroup_mutex);
2053 msleep(10);
2054 ret = restart_syscall();
2055 goto out_free;
2056 }
2057 cgroup_put(&ss->root->cgrp);
2058 }
2059
985ed670 2060 for_each_root(root) {
2bd59d48 2061 bool name_match = false;
3126121f 2062
3dd06ffa 2063 if (root == &cgrp_dfl_root)
985ed670 2064 continue;
3126121f 2065
cf5d5941 2066 /*
2bd59d48
TH
2067 * If we asked for a name then it must match. Also, if
2068 * name matches but sybsys_mask doesn't, we should fail.
2069 * Remember whether name matched.
cf5d5941 2070 */
2bd59d48
TH
2071 if (opts.name) {
2072 if (strcmp(opts.name, root->name))
2073 continue;
2074 name_match = true;
2075 }
ddbcc7e8 2076
c6d57f33 2077 /*
2bd59d48
TH
2078 * If we asked for subsystems (or explicitly for no
2079 * subsystems) then they must match.
c6d57f33 2080 */
2bd59d48 2081 if ((opts.subsys_mask || opts.none) &&
f392e51c 2082 (opts.subsys_mask != root->subsys_mask)) {
2bd59d48
TH
2083 if (!name_match)
2084 continue;
2085 ret = -EBUSY;
2086 goto out_unlock;
2087 }
873fe09e 2088
7b9a6ba5
TH
2089 if (root->flags ^ opts.flags)
2090 pr_warn("new mount options do not match the existing superblock, will be ignored\n");
ddbcc7e8 2091
776f02fa 2092 /*
3a32bd72
LZ
2093 * We want to reuse @root whose lifetime is governed by its
2094 * ->cgrp. Let's check whether @root is alive and keep it
2095 * that way. As cgroup_kill_sb() can happen anytime, we
2096 * want to block it by pinning the sb so that @root doesn't
2097 * get killed before mount is complete.
2098 *
2099 * With the sb pinned, tryget_live can reliably indicate
2100 * whether @root can be reused. If it's being killed,
2101 * drain it. We can use wait_queue for the wait but this
2102 * path is super cold. Let's just sleep a bit and retry.
776f02fa 2103 */
3a32bd72
LZ
2104 pinned_sb = kernfs_pin_sb(root->kf_root, NULL);
2105 if (IS_ERR(pinned_sb) ||
2106 !percpu_ref_tryget_live(&root->cgrp.self.refcnt)) {
776f02fa 2107 mutex_unlock(&cgroup_mutex);
3a32bd72
LZ
2108 if (!IS_ERR_OR_NULL(pinned_sb))
2109 deactivate_super(pinned_sb);
776f02fa 2110 msleep(10);
a015edd2
TH
2111 ret = restart_syscall();
2112 goto out_free;
776f02fa 2113 }
ddbcc7e8 2114
776f02fa 2115 ret = 0;
2bd59d48 2116 goto out_unlock;
ddbcc7e8 2117 }
ddbcc7e8 2118
817929ec 2119 /*
172a2c06
TH
2120 * No such thing, create a new one. name= matching without subsys
2121 * specification is allowed for already existing hierarchies but we
2122 * can't create new one without subsys specification.
817929ec 2123 */
172a2c06
TH
2124 if (!opts.subsys_mask && !opts.none) {
2125 ret = -EINVAL;
2126 goto out_unlock;
817929ec 2127 }
817929ec 2128
172a2c06
TH
2129 root = kzalloc(sizeof(*root), GFP_KERNEL);
2130 if (!root) {
2131 ret = -ENOMEM;
2bd59d48 2132 goto out_unlock;
839ec545 2133 }
e5f6a860 2134
172a2c06
TH
2135 init_cgroup_root(root, &opts);
2136
35585573 2137 ret = cgroup_setup_root(root, opts.subsys_mask);
2bd59d48
TH
2138 if (ret)
2139 cgroup_free_root(root);
fa3ca07e 2140
8e30e2b8 2141out_unlock:
ddbcc7e8 2142 mutex_unlock(&cgroup_mutex);
a015edd2 2143out_free:
c6d57f33
PM
2144 kfree(opts.release_agent);
2145 kfree(opts.name);
03b1cde6 2146
2bd59d48 2147 if (ret)
8e30e2b8 2148 return ERR_PTR(ret);
2bd59d48 2149
c9482a5b
JZ
2150 dentry = kernfs_mount(fs_type, flags, root->kf_root,
2151 CGROUP_SUPER_MAGIC, &new_sb);
c6b3d5bc 2152 if (IS_ERR(dentry) || !new_sb)
3dd06ffa 2153 cgroup_put(&root->cgrp);
3a32bd72
LZ
2154
2155 /*
2156 * If @pinned_sb, we're reusing an existing root and holding an
2157 * extra ref on its sb. Mount is complete. Put the extra ref.
2158 */
2159 if (pinned_sb) {
2160 WARN_ON(new_sb);
2161 deactivate_super(pinned_sb);
2162 }
2163
2bd59d48
TH
2164 return dentry;
2165}
2166
2167static void cgroup_kill_sb(struct super_block *sb)
2168{
2169 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
3dd06ffa 2170 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2bd59d48 2171
9d755d33
TH
2172 /*
2173 * If @root doesn't have any mounts or children, start killing it.
2174 * This prevents new mounts by disabling percpu_ref_tryget_live().
2175 * cgroup_mount() may wait for @root's release.
1f779fb2
LZ
2176 *
2177 * And don't kill the default root.
9d755d33 2178 */
3c606d35 2179 if (!list_empty(&root->cgrp.self.children) ||
1f779fb2 2180 root == &cgrp_dfl_root)
9d755d33
TH
2181 cgroup_put(&root->cgrp);
2182 else
2183 percpu_ref_kill(&root->cgrp.self.refcnt);
2184
2bd59d48 2185 kernfs_kill_sb(sb);
ddbcc7e8
PM
2186}
2187
2188static struct file_system_type cgroup_fs_type = {
2189 .name = "cgroup",
f7e83571 2190 .mount = cgroup_mount,
ddbcc7e8
PM
2191 .kill_sb = cgroup_kill_sb,
2192};
2193
857a2beb 2194/**
913ffdb5 2195 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
857a2beb 2196 * @task: target task
857a2beb
TH
2197 * @buf: the buffer to write the path into
2198 * @buflen: the length of the buffer
2199 *
913ffdb5
TH
2200 * Determine @task's cgroup on the first (the one with the lowest non-zero
2201 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
2202 * function grabs cgroup_mutex and shouldn't be used inside locks used by
2203 * cgroup controller callbacks.
2204 *
e61734c5 2205 * Return value is the same as kernfs_path().
857a2beb 2206 */
e61734c5 2207char *task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
857a2beb 2208{
3dd06ffa 2209 struct cgroup_root *root;
913ffdb5 2210 struct cgroup *cgrp;
e61734c5
TH
2211 int hierarchy_id = 1;
2212 char *path = NULL;
857a2beb
TH
2213
2214 mutex_lock(&cgroup_mutex);
f0d9a5f1 2215 spin_lock_bh(&css_set_lock);
857a2beb 2216
913ffdb5
TH
2217 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
2218
857a2beb
TH
2219 if (root) {
2220 cgrp = task_cgroup_from_root(task, root);
e61734c5 2221 path = cgroup_path(cgrp, buf, buflen);
913ffdb5
TH
2222 } else {
2223 /* if no hierarchy exists, everyone is in "/" */
e61734c5
TH
2224 if (strlcpy(buf, "/", buflen) < buflen)
2225 path = buf;
857a2beb
TH
2226 }
2227
f0d9a5f1 2228 spin_unlock_bh(&css_set_lock);
857a2beb 2229 mutex_unlock(&cgroup_mutex);
e61734c5 2230 return path;
857a2beb 2231}
913ffdb5 2232EXPORT_SYMBOL_GPL(task_cgroup_path);
857a2beb 2233
b3dc094e 2234/* used to track tasks and other necessary states during migration */
2f7ee569 2235struct cgroup_taskset {
b3dc094e
TH
2236 /* the src and dst cset list running through cset->mg_node */
2237 struct list_head src_csets;
2238 struct list_head dst_csets;
2239
2240 /*
2241 * Fields for cgroup_taskset_*() iteration.
2242 *
2243 * Before migration is committed, the target migration tasks are on
2244 * ->mg_tasks of the csets on ->src_csets. After, on ->mg_tasks of
2245 * the csets on ->dst_csets. ->csets point to either ->src_csets
2246 * or ->dst_csets depending on whether migration is committed.
2247 *
2248 * ->cur_csets and ->cur_task point to the current task position
2249 * during iteration.
2250 */
2251 struct list_head *csets;
2252 struct css_set *cur_cset;
2253 struct task_struct *cur_task;
2f7ee569
TH
2254};
2255
adaae5dc
TH
2256#define CGROUP_TASKSET_INIT(tset) (struct cgroup_taskset){ \
2257 .src_csets = LIST_HEAD_INIT(tset.src_csets), \
2258 .dst_csets = LIST_HEAD_INIT(tset.dst_csets), \
2259 .csets = &tset.src_csets, \
2260}
2261
2262/**
2263 * cgroup_taskset_add - try to add a migration target task to a taskset
2264 * @task: target task
2265 * @tset: target taskset
2266 *
2267 * Add @task, which is a migration target, to @tset. This function becomes
2268 * noop if @task doesn't need to be migrated. @task's css_set should have
2269 * been added as a migration source and @task->cg_list will be moved from
2270 * the css_set's tasks list to mg_tasks one.
2271 */
2272static void cgroup_taskset_add(struct task_struct *task,
2273 struct cgroup_taskset *tset)
2274{
2275 struct css_set *cset;
2276
f0d9a5f1 2277 lockdep_assert_held(&css_set_lock);
adaae5dc
TH
2278
2279 /* @task either already exited or can't exit until the end */
2280 if (task->flags & PF_EXITING)
2281 return;
2282
2283 /* leave @task alone if post_fork() hasn't linked it yet */
2284 if (list_empty(&task->cg_list))
2285 return;
2286
2287 cset = task_css_set(task);
2288 if (!cset->mg_src_cgrp)
2289 return;
2290
2291 list_move_tail(&task->cg_list, &cset->mg_tasks);
2292 if (list_empty(&cset->mg_node))
2293 list_add_tail(&cset->mg_node, &tset->src_csets);
2294 if (list_empty(&cset->mg_dst_cset->mg_node))
2295 list_move_tail(&cset->mg_dst_cset->mg_node,
2296 &tset->dst_csets);
2297}
2298
2f7ee569
TH
2299/**
2300 * cgroup_taskset_first - reset taskset and return the first task
2301 * @tset: taskset of interest
2302 *
2303 * @tset iteration is initialized and the first task is returned.
2304 */
2305struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
2306{
b3dc094e
TH
2307 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2308 tset->cur_task = NULL;
2309
2310 return cgroup_taskset_next(tset);
2f7ee569 2311}
2f7ee569
TH
2312
2313/**
2314 * cgroup_taskset_next - iterate to the next task in taskset
2315 * @tset: taskset of interest
2316 *
2317 * Return the next task in @tset. Iteration must have been initialized
2318 * with cgroup_taskset_first().
2319 */
2320struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
2321{
b3dc094e
TH
2322 struct css_set *cset = tset->cur_cset;
2323 struct task_struct *task = tset->cur_task;
2f7ee569 2324
b3dc094e
TH
2325 while (&cset->mg_node != tset->csets) {
2326 if (!task)
2327 task = list_first_entry(&cset->mg_tasks,
2328 struct task_struct, cg_list);
2329 else
2330 task = list_next_entry(task, cg_list);
2f7ee569 2331
b3dc094e
TH
2332 if (&task->cg_list != &cset->mg_tasks) {
2333 tset->cur_cset = cset;
2334 tset->cur_task = task;
2335 return task;
2336 }
2f7ee569 2337
b3dc094e
TH
2338 cset = list_next_entry(cset, mg_node);
2339 task = NULL;
2340 }
2f7ee569 2341
b3dc094e 2342 return NULL;
2f7ee569 2343}
2f7ee569 2344
adaae5dc
TH
2345/**
2346 * cgroup_taskset_migrate - migrate a taskset to a cgroup
2347 * @tset: taget taskset
2348 * @dst_cgrp: destination cgroup
2349 *
2350 * Migrate tasks in @tset to @dst_cgrp. This function fails iff one of the
2351 * ->can_attach callbacks fails and guarantees that either all or none of
2352 * the tasks in @tset are migrated. @tset is consumed regardless of
2353 * success.
2354 */
2355static int cgroup_taskset_migrate(struct cgroup_taskset *tset,
2356 struct cgroup *dst_cgrp)
2357{
2358 struct cgroup_subsys_state *css, *failed_css = NULL;
2359 struct task_struct *task, *tmp_task;
2360 struct css_set *cset, *tmp_cset;
2361 int i, ret;
2362
2363 /* methods shouldn't be called if no task is actually migrating */
2364 if (list_empty(&tset->src_csets))
2365 return 0;
2366
2367 /* check that we can legitimately attach to the cgroup */
2368 for_each_e_css(css, i, dst_cgrp) {
2369 if (css->ss->can_attach) {
2370 ret = css->ss->can_attach(css, tset);
2371 if (ret) {
2372 failed_css = css;
2373 goto out_cancel_attach;
2374 }
2375 }
2376 }
2377
2378 /*
2379 * Now that we're guaranteed success, proceed to move all tasks to
2380 * the new cgroup. There are no failure cases after here, so this
2381 * is the commit point.
2382 */
f0d9a5f1 2383 spin_lock_bh(&css_set_lock);
adaae5dc 2384 list_for_each_entry(cset, &tset->src_csets, mg_node) {
f6d7d049
TH
2385 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2386 struct css_set *from_cset = task_css_set(task);
2387 struct css_set *to_cset = cset->mg_dst_cset;
2388
2389 get_css_set(to_cset);
2390 css_set_move_task(task, from_cset, to_cset, true);
2391 put_css_set_locked(from_cset);
2392 }
adaae5dc 2393 }
f0d9a5f1 2394 spin_unlock_bh(&css_set_lock);
adaae5dc
TH
2395
2396 /*
2397 * Migration is committed, all target tasks are now on dst_csets.
2398 * Nothing is sensitive to fork() after this point. Notify
2399 * controllers that migration is complete.
2400 */
2401 tset->csets = &tset->dst_csets;
2402
2403 for_each_e_css(css, i, dst_cgrp)
2404 if (css->ss->attach)
2405 css->ss->attach(css, tset);
2406
2407 ret = 0;
2408 goto out_release_tset;
2409
2410out_cancel_attach:
2411 for_each_e_css(css, i, dst_cgrp) {
2412 if (css == failed_css)
2413 break;
2414 if (css->ss->cancel_attach)
2415 css->ss->cancel_attach(css, tset);
2416 }
2417out_release_tset:
f0d9a5f1 2418 spin_lock_bh(&css_set_lock);
adaae5dc
TH
2419 list_splice_init(&tset->dst_csets, &tset->src_csets);
2420 list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2421 list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2422 list_del_init(&cset->mg_node);
2423 }
f0d9a5f1 2424 spin_unlock_bh(&css_set_lock);
adaae5dc
TH
2425 return ret;
2426}
2427
a043e3b2 2428/**
1958d2d5
TH
2429 * cgroup_migrate_finish - cleanup after attach
2430 * @preloaded_csets: list of preloaded css_sets
74a1166d 2431 *
1958d2d5
TH
2432 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
2433 * those functions for details.
74a1166d 2434 */
1958d2d5 2435static void cgroup_migrate_finish(struct list_head *preloaded_csets)
74a1166d 2436{
1958d2d5 2437 struct css_set *cset, *tmp_cset;
74a1166d 2438
1958d2d5
TH
2439 lockdep_assert_held(&cgroup_mutex);
2440
f0d9a5f1 2441 spin_lock_bh(&css_set_lock);
1958d2d5
TH
2442 list_for_each_entry_safe(cset, tmp_cset, preloaded_csets, mg_preload_node) {
2443 cset->mg_src_cgrp = NULL;
2444 cset->mg_dst_cset = NULL;
2445 list_del_init(&cset->mg_preload_node);
a25eb52e 2446 put_css_set_locked(cset);
1958d2d5 2447 }
f0d9a5f1 2448 spin_unlock_bh(&css_set_lock);
1958d2d5
TH
2449}
2450
2451/**
2452 * cgroup_migrate_add_src - add a migration source css_set
2453 * @src_cset: the source css_set to add
2454 * @dst_cgrp: the destination cgroup
2455 * @preloaded_csets: list of preloaded css_sets
2456 *
2457 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
2458 * @src_cset and add it to @preloaded_csets, which should later be cleaned
2459 * up by cgroup_migrate_finish().
2460 *
1ed13287
TH
2461 * This function may be called without holding cgroup_threadgroup_rwsem
2462 * even if the target is a process. Threads may be created and destroyed
2463 * but as long as cgroup_mutex is not dropped, no new css_set can be put
2464 * into play and the preloaded css_sets are guaranteed to cover all
2465 * migrations.
1958d2d5
TH
2466 */
2467static void cgroup_migrate_add_src(struct css_set *src_cset,
2468 struct cgroup *dst_cgrp,
2469 struct list_head *preloaded_csets)
2470{
2471 struct cgroup *src_cgrp;
2472
2473 lockdep_assert_held(&cgroup_mutex);
f0d9a5f1 2474 lockdep_assert_held(&css_set_lock);
1958d2d5
TH
2475
2476 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2477
1958d2d5
TH
2478 if (!list_empty(&src_cset->mg_preload_node))
2479 return;
2480
2481 WARN_ON(src_cset->mg_src_cgrp);
2482 WARN_ON(!list_empty(&src_cset->mg_tasks));
2483 WARN_ON(!list_empty(&src_cset->mg_node));
2484
2485 src_cset->mg_src_cgrp = src_cgrp;
2486 get_css_set(src_cset);
2487 list_add(&src_cset->mg_preload_node, preloaded_csets);
2488}
2489
2490/**
2491 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
f817de98 2492 * @dst_cgrp: the destination cgroup (may be %NULL)
1958d2d5
TH
2493 * @preloaded_csets: list of preloaded source css_sets
2494 *
2495 * Tasks are about to be moved to @dst_cgrp and all the source css_sets
2496 * have been preloaded to @preloaded_csets. This function looks up and
f817de98
TH
2497 * pins all destination css_sets, links each to its source, and append them
2498 * to @preloaded_csets. If @dst_cgrp is %NULL, the destination of each
2499 * source css_set is assumed to be its cgroup on the default hierarchy.
1958d2d5
TH
2500 *
2501 * This function must be called after cgroup_migrate_add_src() has been
2502 * called on each migration source css_set. After migration is performed
2503 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2504 * @preloaded_csets.
2505 */
2506static int cgroup_migrate_prepare_dst(struct cgroup *dst_cgrp,
2507 struct list_head *preloaded_csets)
2508{
2509 LIST_HEAD(csets);
f817de98 2510 struct css_set *src_cset, *tmp_cset;
1958d2d5
TH
2511
2512 lockdep_assert_held(&cgroup_mutex);
2513
f8f22e53
TH
2514 /*
2515 * Except for the root, child_subsys_mask must be zero for a cgroup
2516 * with tasks so that child cgroups don't compete against tasks.
2517 */
d51f39b0 2518 if (dst_cgrp && cgroup_on_dfl(dst_cgrp) && cgroup_parent(dst_cgrp) &&
f8f22e53
TH
2519 dst_cgrp->child_subsys_mask)
2520 return -EBUSY;
2521
1958d2d5 2522 /* look up the dst cset for each src cset and link it to src */
f817de98 2523 list_for_each_entry_safe(src_cset, tmp_cset, preloaded_csets, mg_preload_node) {
1958d2d5
TH
2524 struct css_set *dst_cset;
2525
f817de98
TH
2526 dst_cset = find_css_set(src_cset,
2527 dst_cgrp ?: src_cset->dfl_cgrp);
1958d2d5
TH
2528 if (!dst_cset)
2529 goto err;
2530
2531 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
f817de98
TH
2532
2533 /*
2534 * If src cset equals dst, it's noop. Drop the src.
2535 * cgroup_migrate() will skip the cset too. Note that we
2536 * can't handle src == dst as some nodes are used by both.
2537 */
2538 if (src_cset == dst_cset) {
2539 src_cset->mg_src_cgrp = NULL;
2540 list_del_init(&src_cset->mg_preload_node);
a25eb52e
ZL
2541 put_css_set(src_cset);
2542 put_css_set(dst_cset);
f817de98
TH
2543 continue;
2544 }
2545
1958d2d5
TH
2546 src_cset->mg_dst_cset = dst_cset;
2547
2548 if (list_empty(&dst_cset->mg_preload_node))
2549 list_add(&dst_cset->mg_preload_node, &csets);
2550 else
a25eb52e 2551 put_css_set(dst_cset);
1958d2d5
TH
2552 }
2553
f817de98 2554 list_splice_tail(&csets, preloaded_csets);
1958d2d5
TH
2555 return 0;
2556err:
2557 cgroup_migrate_finish(&csets);
2558 return -ENOMEM;
2559}
2560
2561/**
2562 * cgroup_migrate - migrate a process or task to a cgroup
1958d2d5
TH
2563 * @leader: the leader of the process or the task to migrate
2564 * @threadgroup: whether @leader points to the whole process or a single task
9af2ec45 2565 * @cgrp: the destination cgroup
1958d2d5
TH
2566 *
2567 * Migrate a process or task denoted by @leader to @cgrp. If migrating a
1ed13287 2568 * process, the caller must be holding cgroup_threadgroup_rwsem. The
1958d2d5
TH
2569 * caller is also responsible for invoking cgroup_migrate_add_src() and
2570 * cgroup_migrate_prepare_dst() on the targets before invoking this
2571 * function and following up with cgroup_migrate_finish().
2572 *
2573 * As long as a controller's ->can_attach() doesn't fail, this function is
2574 * guaranteed to succeed. This means that, excluding ->can_attach()
2575 * failure, when migrating multiple targets, the success or failure can be
2576 * decided for all targets by invoking group_migrate_prepare_dst() before
2577 * actually starting migrating.
2578 */
9af2ec45
TH
2579static int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2580 struct cgroup *cgrp)
74a1166d 2581{
adaae5dc
TH
2582 struct cgroup_taskset tset = CGROUP_TASKSET_INIT(tset);
2583 struct task_struct *task;
74a1166d 2584
fb5d2b4c
MSB
2585 /*
2586 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2587 * already PF_EXITING could be freed from underneath us unless we
2588 * take an rcu_read_lock.
2589 */
f0d9a5f1 2590 spin_lock_bh(&css_set_lock);
fb5d2b4c 2591 rcu_read_lock();
9db8de37 2592 task = leader;
74a1166d 2593 do {
adaae5dc 2594 cgroup_taskset_add(task, &tset);
081aa458
LZ
2595 if (!threadgroup)
2596 break;
9db8de37 2597 } while_each_thread(leader, task);
fb5d2b4c 2598 rcu_read_unlock();
f0d9a5f1 2599 spin_unlock_bh(&css_set_lock);
74a1166d 2600
adaae5dc 2601 return cgroup_taskset_migrate(&tset, cgrp);
74a1166d
BB
2602}
2603
1958d2d5
TH
2604/**
2605 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2606 * @dst_cgrp: the cgroup to attach to
2607 * @leader: the task or the leader of the threadgroup to be attached
2608 * @threadgroup: attach the whole threadgroup?
2609 *
1ed13287 2610 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
1958d2d5
TH
2611 */
2612static int cgroup_attach_task(struct cgroup *dst_cgrp,
2613 struct task_struct *leader, bool threadgroup)
2614{
2615 LIST_HEAD(preloaded_csets);
2616 struct task_struct *task;
2617 int ret;
2618
2619 /* look up all src csets */
f0d9a5f1 2620 spin_lock_bh(&css_set_lock);
1958d2d5
TH
2621 rcu_read_lock();
2622 task = leader;
2623 do {
2624 cgroup_migrate_add_src(task_css_set(task), dst_cgrp,
2625 &preloaded_csets);
2626 if (!threadgroup)
2627 break;
2628 } while_each_thread(leader, task);
2629 rcu_read_unlock();
f0d9a5f1 2630 spin_unlock_bh(&css_set_lock);
1958d2d5
TH
2631
2632 /* prepare dst csets and commit */
2633 ret = cgroup_migrate_prepare_dst(dst_cgrp, &preloaded_csets);
2634 if (!ret)
9af2ec45 2635 ret = cgroup_migrate(leader, threadgroup, dst_cgrp);
1958d2d5
TH
2636
2637 cgroup_migrate_finish(&preloaded_csets);
2638 return ret;
74a1166d
BB
2639}
2640
187fe840
TH
2641static int cgroup_procs_write_permission(struct task_struct *task,
2642 struct cgroup *dst_cgrp,
2643 struct kernfs_open_file *of)
dedf22e9
TH
2644{
2645 const struct cred *cred = current_cred();
2646 const struct cred *tcred = get_task_cred(task);
2647 int ret = 0;
2648
2649 /*
2650 * even if we're attaching all tasks in the thread group, we only
2651 * need to check permissions on one of them.
2652 */
2653 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2654 !uid_eq(cred->euid, tcred->uid) &&
2655 !uid_eq(cred->euid, tcred->suid))
2656 ret = -EACCES;
2657
187fe840
TH
2658 if (!ret && cgroup_on_dfl(dst_cgrp)) {
2659 struct super_block *sb = of->file->f_path.dentry->d_sb;
2660 struct cgroup *cgrp;
2661 struct inode *inode;
2662
f0d9a5f1 2663 spin_lock_bh(&css_set_lock);
187fe840 2664 cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
f0d9a5f1 2665 spin_unlock_bh(&css_set_lock);
187fe840
TH
2666
2667 while (!cgroup_is_descendant(dst_cgrp, cgrp))
2668 cgrp = cgroup_parent(cgrp);
2669
2670 ret = -ENOMEM;
6f60eade 2671 inode = kernfs_get_inode(sb, cgrp->procs_file.kn);
187fe840
TH
2672 if (inode) {
2673 ret = inode_permission(inode, MAY_WRITE);
2674 iput(inode);
2675 }
2676 }
2677
dedf22e9
TH
2678 put_cred(tcred);
2679 return ret;
2680}
2681
74a1166d
BB
2682/*
2683 * Find the task_struct of the task to attach by vpid and pass it along to the
cd3d0952 2684 * function to attach either it or all tasks in its threadgroup. Will lock
0e1d768f 2685 * cgroup_mutex and threadgroup.
bbcb81d0 2686 */
acbef755
TH
2687static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
2688 size_t nbytes, loff_t off, bool threadgroup)
bbcb81d0 2689{
bbcb81d0 2690 struct task_struct *tsk;
e76ecaee 2691 struct cgroup *cgrp;
acbef755 2692 pid_t pid;
bbcb81d0
PM
2693 int ret;
2694
acbef755
TH
2695 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2696 return -EINVAL;
2697
e76ecaee
TH
2698 cgrp = cgroup_kn_lock_live(of->kn);
2699 if (!cgrp)
74a1166d
BB
2700 return -ENODEV;
2701
3014dde7 2702 percpu_down_write(&cgroup_threadgroup_rwsem);
b78949eb 2703 rcu_read_lock();
bbcb81d0 2704 if (pid) {
73507f33 2705 tsk = find_task_by_vpid(pid);
74a1166d 2706 if (!tsk) {
dd4b0a46 2707 ret = -ESRCH;
3014dde7 2708 goto out_unlock_rcu;
bbcb81d0 2709 }
dedf22e9 2710 } else {
b78949eb 2711 tsk = current;
dedf22e9 2712 }
cd3d0952
TH
2713
2714 if (threadgroup)
b78949eb 2715 tsk = tsk->group_leader;
c4c27fbd
MG
2716
2717 /*
14a40ffc 2718 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
c4c27fbd
MG
2719 * trapped in a cpuset, or RT worker may be born in a cgroup
2720 * with no rt_runtime allocated. Just say no.
2721 */
14a40ffc 2722 if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
c4c27fbd 2723 ret = -EINVAL;
3014dde7 2724 goto out_unlock_rcu;
c4c27fbd
MG
2725 }
2726
b78949eb
MSB
2727 get_task_struct(tsk);
2728 rcu_read_unlock();
2729
187fe840 2730 ret = cgroup_procs_write_permission(tsk, cgrp, of);
dedf22e9
TH
2731 if (!ret)
2732 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
081aa458 2733
f9f9e7b7 2734 put_task_struct(tsk);
3014dde7
TH
2735 goto out_unlock_threadgroup;
2736
2737out_unlock_rcu:
2738 rcu_read_unlock();
2739out_unlock_threadgroup:
2740 percpu_up_write(&cgroup_threadgroup_rwsem);
e76ecaee 2741 cgroup_kn_unlock(of->kn);
acbef755 2742 return ret ?: nbytes;
bbcb81d0
PM
2743}
2744
7ae1bad9
TH
2745/**
2746 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2747 * @from: attach to all cgroups of a given task
2748 * @tsk: the task to be attached
2749 */
2750int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2751{
3dd06ffa 2752 struct cgroup_root *root;
7ae1bad9
TH
2753 int retval = 0;
2754
47cfcd09 2755 mutex_lock(&cgroup_mutex);
985ed670 2756 for_each_root(root) {
96d365e0
TH
2757 struct cgroup *from_cgrp;
2758
3dd06ffa 2759 if (root == &cgrp_dfl_root)
985ed670
TH
2760 continue;
2761
f0d9a5f1 2762 spin_lock_bh(&css_set_lock);
96d365e0 2763 from_cgrp = task_cgroup_from_root(from, root);
f0d9a5f1 2764 spin_unlock_bh(&css_set_lock);
7ae1bad9 2765
6f4b7e63 2766 retval = cgroup_attach_task(from_cgrp, tsk, false);
7ae1bad9
TH
2767 if (retval)
2768 break;
2769 }
47cfcd09 2770 mutex_unlock(&cgroup_mutex);
7ae1bad9
TH
2771
2772 return retval;
2773}
2774EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2775
acbef755
TH
2776static ssize_t cgroup_tasks_write(struct kernfs_open_file *of,
2777 char *buf, size_t nbytes, loff_t off)
74a1166d 2778{
acbef755 2779 return __cgroup_procs_write(of, buf, nbytes, off, false);
74a1166d
BB
2780}
2781
acbef755
TH
2782static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
2783 char *buf, size_t nbytes, loff_t off)
af351026 2784{
acbef755 2785 return __cgroup_procs_write(of, buf, nbytes, off, true);
af351026
PM
2786}
2787
451af504
TH
2788static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of,
2789 char *buf, size_t nbytes, loff_t off)
e788e066 2790{
e76ecaee 2791 struct cgroup *cgrp;
5f469907 2792
e76ecaee 2793 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
5f469907 2794
e76ecaee
TH
2795 cgrp = cgroup_kn_lock_live(of->kn);
2796 if (!cgrp)
e788e066 2797 return -ENODEV;
69e943b7 2798 spin_lock(&release_agent_path_lock);
e76ecaee
TH
2799 strlcpy(cgrp->root->release_agent_path, strstrip(buf),
2800 sizeof(cgrp->root->release_agent_path));
69e943b7 2801 spin_unlock(&release_agent_path_lock);
e76ecaee 2802 cgroup_kn_unlock(of->kn);
451af504 2803 return nbytes;
e788e066
PM
2804}
2805
2da8ca82 2806static int cgroup_release_agent_show(struct seq_file *seq, void *v)
e788e066 2807{
2da8ca82 2808 struct cgroup *cgrp = seq_css(seq)->cgroup;
182446d0 2809
46cfeb04 2810 spin_lock(&release_agent_path_lock);
e788e066 2811 seq_puts(seq, cgrp->root->release_agent_path);
46cfeb04 2812 spin_unlock(&release_agent_path_lock);
e788e066 2813 seq_putc(seq, '\n');
e788e066
PM
2814 return 0;
2815}
2816
2da8ca82 2817static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
873fe09e 2818{
c1d5d42e 2819 seq_puts(seq, "0\n");
e788e066
PM
2820 return 0;
2821}
2822
8ab456ac 2823static void cgroup_print_ss_mask(struct seq_file *seq, unsigned long ss_mask)
355e0c48 2824{
f8f22e53
TH
2825 struct cgroup_subsys *ss;
2826 bool printed = false;
2827 int ssid;
a742c59d 2828
a966a4ed
AS
2829 for_each_subsys_which(ss, ssid, &ss_mask) {
2830 if (printed)
2831 seq_putc(seq, ' ');
2832 seq_printf(seq, "%s", ss->name);
2833 printed = true;
e73d2c61 2834 }
f8f22e53
TH
2835 if (printed)
2836 seq_putc(seq, '\n');
355e0c48
PM
2837}
2838
f8f22e53
TH
2839/* show controllers which are currently attached to the default hierarchy */
2840static int cgroup_root_controllers_show(struct seq_file *seq, void *v)
db3b1497 2841{
f8f22e53
TH
2842 struct cgroup *cgrp = seq_css(seq)->cgroup;
2843
5533e011
TH
2844 cgroup_print_ss_mask(seq, cgrp->root->subsys_mask &
2845 ~cgrp_dfl_root_inhibit_ss_mask);
f8f22e53 2846 return 0;
db3b1497
PM
2847}
2848
f8f22e53
TH
2849/* show controllers which are enabled from the parent */
2850static int cgroup_controllers_show(struct seq_file *seq, void *v)
ddbcc7e8 2851{
f8f22e53
TH
2852 struct cgroup *cgrp = seq_css(seq)->cgroup;
2853
667c2491 2854 cgroup_print_ss_mask(seq, cgroup_parent(cgrp)->subtree_control);
f8f22e53 2855 return 0;
ddbcc7e8
PM
2856}
2857
f8f22e53
TH
2858/* show controllers which are enabled for a given cgroup's children */
2859static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
ddbcc7e8 2860{
f8f22e53
TH
2861 struct cgroup *cgrp = seq_css(seq)->cgroup;
2862
667c2491 2863 cgroup_print_ss_mask(seq, cgrp->subtree_control);
f8f22e53
TH
2864 return 0;
2865}
2866
2867/**
2868 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2869 * @cgrp: root of the subtree to update csses for
2870 *
2871 * @cgrp's child_subsys_mask has changed and its subtree's (self excluded)
2872 * css associations need to be updated accordingly. This function looks up
2873 * all css_sets which are attached to the subtree, creates the matching
2874 * updated css_sets and migrates the tasks to the new ones.
2875 */
2876static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2877{
2878 LIST_HEAD(preloaded_csets);
10265075 2879 struct cgroup_taskset tset = CGROUP_TASKSET_INIT(tset);
f8f22e53
TH
2880 struct cgroup_subsys_state *css;
2881 struct css_set *src_cset;
2882 int ret;
2883
f8f22e53
TH
2884 lockdep_assert_held(&cgroup_mutex);
2885
3014dde7
TH
2886 percpu_down_write(&cgroup_threadgroup_rwsem);
2887
f8f22e53 2888 /* look up all csses currently attached to @cgrp's subtree */
f0d9a5f1 2889 spin_lock_bh(&css_set_lock);
f8f22e53
TH
2890 css_for_each_descendant_pre(css, cgroup_css(cgrp, NULL)) {
2891 struct cgrp_cset_link *link;
2892
2893 /* self is not affected by child_subsys_mask change */
2894 if (css->cgroup == cgrp)
2895 continue;
2896
2897 list_for_each_entry(link, &css->cgroup->cset_links, cset_link)
2898 cgroup_migrate_add_src(link->cset, cgrp,
2899 &preloaded_csets);
2900 }
f0d9a5f1 2901 spin_unlock_bh(&css_set_lock);
f8f22e53
TH
2902
2903 /* NULL dst indicates self on default hierarchy */
2904 ret = cgroup_migrate_prepare_dst(NULL, &preloaded_csets);
2905 if (ret)
2906 goto out_finish;
2907
f0d9a5f1 2908 spin_lock_bh(&css_set_lock);
f8f22e53 2909 list_for_each_entry(src_cset, &preloaded_csets, mg_preload_node) {
10265075 2910 struct task_struct *task, *ntask;
f8f22e53
TH
2911
2912 /* src_csets precede dst_csets, break on the first dst_cset */
2913 if (!src_cset->mg_src_cgrp)
2914 break;
2915
10265075
TH
2916 /* all tasks in src_csets need to be migrated */
2917 list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
2918 cgroup_taskset_add(task, &tset);
f8f22e53 2919 }
f0d9a5f1 2920 spin_unlock_bh(&css_set_lock);
f8f22e53 2921
10265075 2922 ret = cgroup_taskset_migrate(&tset, cgrp);
f8f22e53
TH
2923out_finish:
2924 cgroup_migrate_finish(&preloaded_csets);
3014dde7 2925 percpu_up_write(&cgroup_threadgroup_rwsem);
f8f22e53
TH
2926 return ret;
2927}
2928
2929/* change the enabled child controllers for a cgroup in the default hierarchy */
451af504
TH
2930static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
2931 char *buf, size_t nbytes,
2932 loff_t off)
f8f22e53 2933{
8ab456ac
AS
2934 unsigned long enable = 0, disable = 0;
2935 unsigned long css_enable, css_disable, old_sc, new_sc, old_ss, new_ss;
a9746d8d 2936 struct cgroup *cgrp, *child;
f8f22e53 2937 struct cgroup_subsys *ss;
451af504 2938 char *tok;
f8f22e53
TH
2939 int ssid, ret;
2940
2941 /*
d37167ab
TH
2942 * Parse input - space separated list of subsystem names prefixed
2943 * with either + or -.
f8f22e53 2944 */
451af504
TH
2945 buf = strstrip(buf);
2946 while ((tok = strsep(&buf, " "))) {
a966a4ed
AS
2947 unsigned long tmp_ss_mask = ~cgrp_dfl_root_inhibit_ss_mask;
2948
d37167ab
TH
2949 if (tok[0] == '\0')
2950 continue;
a966a4ed 2951 for_each_subsys_which(ss, ssid, &tmp_ss_mask) {
fc5ed1e9
TH
2952 if (!cgroup_ssid_enabled(ssid) ||
2953 strcmp(tok + 1, ss->name))
f8f22e53
TH
2954 continue;
2955
2956 if (*tok == '+') {
7d331fa9
TH
2957 enable |= 1 << ssid;
2958 disable &= ~(1 << ssid);
f8f22e53 2959 } else if (*tok == '-') {
7d331fa9
TH
2960 disable |= 1 << ssid;
2961 enable &= ~(1 << ssid);
f8f22e53
TH
2962 } else {
2963 return -EINVAL;
2964 }
2965 break;
2966 }
2967 if (ssid == CGROUP_SUBSYS_COUNT)
2968 return -EINVAL;
2969 }
2970
a9746d8d
TH
2971 cgrp = cgroup_kn_lock_live(of->kn);
2972 if (!cgrp)
2973 return -ENODEV;
f8f22e53
TH
2974
2975 for_each_subsys(ss, ssid) {
2976 if (enable & (1 << ssid)) {
667c2491 2977 if (cgrp->subtree_control & (1 << ssid)) {
f8f22e53
TH
2978 enable &= ~(1 << ssid);
2979 continue;
2980 }
2981
c29adf24
TH
2982 /* unavailable or not enabled on the parent? */
2983 if (!(cgrp_dfl_root.subsys_mask & (1 << ssid)) ||
2984 (cgroup_parent(cgrp) &&
667c2491 2985 !(cgroup_parent(cgrp)->subtree_control & (1 << ssid)))) {
c29adf24
TH
2986 ret = -ENOENT;
2987 goto out_unlock;
2988 }
f8f22e53 2989 } else if (disable & (1 << ssid)) {
667c2491 2990 if (!(cgrp->subtree_control & (1 << ssid))) {
f8f22e53
TH
2991 disable &= ~(1 << ssid);
2992 continue;
2993 }
2994
2995 /* a child has it enabled? */
2996 cgroup_for_each_live_child(child, cgrp) {
667c2491 2997 if (child->subtree_control & (1 << ssid)) {
f8f22e53 2998 ret = -EBUSY;
ddab2b6e 2999 goto out_unlock;
f8f22e53
TH
3000 }
3001 }
3002 }
3003 }
3004
3005 if (!enable && !disable) {
3006 ret = 0;
ddab2b6e 3007 goto out_unlock;
f8f22e53
TH
3008 }
3009
3010 /*
667c2491 3011 * Except for the root, subtree_control must be zero for a cgroup
f8f22e53
TH
3012 * with tasks so that child cgroups don't compete against tasks.
3013 */
d51f39b0 3014 if (enable && cgroup_parent(cgrp) && !list_empty(&cgrp->cset_links)) {
f8f22e53
TH
3015 ret = -EBUSY;
3016 goto out_unlock;
3017 }
3018
3019 /*
f63070d3
TH
3020 * Update subsys masks and calculate what needs to be done. More
3021 * subsystems than specified may need to be enabled or disabled
3022 * depending on subsystem dependencies.
3023 */
755bf5ee
TH
3024 old_sc = cgrp->subtree_control;
3025 old_ss = cgrp->child_subsys_mask;
3026 new_sc = (old_sc | enable) & ~disable;
3027 new_ss = cgroup_calc_child_subsys_mask(cgrp, new_sc);
f63070d3 3028
755bf5ee
TH
3029 css_enable = ~old_ss & new_ss;
3030 css_disable = old_ss & ~new_ss;
f63070d3
TH
3031 enable |= css_enable;
3032 disable |= css_disable;
c29adf24 3033
db6e3053
TH
3034 /*
3035 * Because css offlining is asynchronous, userland might try to
3036 * re-enable the same controller while the previous instance is
3037 * still around. In such cases, wait till it's gone using
3038 * offline_waitq.
3039 */
a966a4ed 3040 for_each_subsys_which(ss, ssid, &css_enable) {
db6e3053
TH
3041 cgroup_for_each_live_child(child, cgrp) {
3042 DEFINE_WAIT(wait);
3043
3044 if (!cgroup_css(child, ss))
3045 continue;
3046
3047 cgroup_get(child);
3048 prepare_to_wait(&child->offline_waitq, &wait,
3049 TASK_UNINTERRUPTIBLE);
3050 cgroup_kn_unlock(of->kn);
3051 schedule();
3052 finish_wait(&child->offline_waitq, &wait);
3053 cgroup_put(child);
3054
3055 return restart_syscall();
3056 }
3057 }
3058
755bf5ee
TH
3059 cgrp->subtree_control = new_sc;
3060 cgrp->child_subsys_mask = new_ss;
3061
f63070d3
TH
3062 /*
3063 * Create new csses or make the existing ones visible. A css is
3064 * created invisible if it's being implicitly enabled through
3065 * dependency. An invisible css is made visible when the userland
3066 * explicitly enables it.
f8f22e53
TH
3067 */
3068 for_each_subsys(ss, ssid) {
3069 if (!(enable & (1 << ssid)))
3070 continue;
3071
3072 cgroup_for_each_live_child(child, cgrp) {
f63070d3
TH
3073 if (css_enable & (1 << ssid))
3074 ret = create_css(child, ss,
3075 cgrp->subtree_control & (1 << ssid));
3076 else
4df8dc90
TH
3077 ret = css_populate_dir(cgroup_css(child, ss),
3078 NULL);
f8f22e53
TH
3079 if (ret)
3080 goto err_undo_css;
3081 }
3082 }
3083
c29adf24
TH
3084 /*
3085 * At this point, cgroup_e_css() results reflect the new csses
3086 * making the following cgroup_update_dfl_csses() properly update
3087 * css associations of all tasks in the subtree.
3088 */
f8f22e53
TH
3089 ret = cgroup_update_dfl_csses(cgrp);
3090 if (ret)
3091 goto err_undo_css;
3092
f63070d3
TH
3093 /*
3094 * All tasks are migrated out of disabled csses. Kill or hide
3095 * them. A css is hidden when the userland requests it to be
b4536f0c
TH
3096 * disabled while other subsystems are still depending on it. The
3097 * css must not actively control resources and be in the vanilla
3098 * state if it's made visible again later. Controllers which may
3099 * be depended upon should provide ->css_reset() for this purpose.
f63070d3 3100 */
f8f22e53
TH
3101 for_each_subsys(ss, ssid) {
3102 if (!(disable & (1 << ssid)))
3103 continue;
3104
f63070d3 3105 cgroup_for_each_live_child(child, cgrp) {
b4536f0c
TH
3106 struct cgroup_subsys_state *css = cgroup_css(child, ss);
3107
3108 if (css_disable & (1 << ssid)) {
3109 kill_css(css);
3110 } else {
4df8dc90 3111 css_clear_dir(css, NULL);
b4536f0c
TH
3112 if (ss->css_reset)
3113 ss->css_reset(css);
3114 }
f63070d3 3115 }
f8f22e53
TH
3116 }
3117
56c807ba
TH
3118 /*
3119 * The effective csses of all the descendants (excluding @cgrp) may
3120 * have changed. Subsystems can optionally subscribe to this event
3121 * by implementing ->css_e_css_changed() which is invoked if any of
3122 * the effective csses seen from the css's cgroup may have changed.
3123 */
3124 for_each_subsys(ss, ssid) {
3125 struct cgroup_subsys_state *this_css = cgroup_css(cgrp, ss);
3126 struct cgroup_subsys_state *css;
3127
3128 if (!ss->css_e_css_changed || !this_css)
3129 continue;
3130
3131 css_for_each_descendant_pre(css, this_css)
3132 if (css != this_css)
3133 ss->css_e_css_changed(css);
3134 }
3135
f8f22e53
TH
3136 kernfs_activate(cgrp->kn);
3137 ret = 0;
3138out_unlock:
a9746d8d 3139 cgroup_kn_unlock(of->kn);
451af504 3140 return ret ?: nbytes;
f8f22e53
TH
3141
3142err_undo_css:
755bf5ee
TH
3143 cgrp->subtree_control = old_sc;
3144 cgrp->child_subsys_mask = old_ss;
f8f22e53
TH
3145
3146 for_each_subsys(ss, ssid) {
3147 if (!(enable & (1 << ssid)))
3148 continue;
3149
3150 cgroup_for_each_live_child(child, cgrp) {
3151 struct cgroup_subsys_state *css = cgroup_css(child, ss);
f63070d3
TH
3152
3153 if (!css)
3154 continue;
3155
3156 if (css_enable & (1 << ssid))
f8f22e53 3157 kill_css(css);
f63070d3 3158 else
4df8dc90 3159 css_clear_dir(css, NULL);
f8f22e53
TH
3160 }
3161 }
3162 goto out_unlock;
3163}
3164
4a07c222 3165static int cgroup_events_show(struct seq_file *seq, void *v)
842b597e 3166{
4a07c222 3167 seq_printf(seq, "populated %d\n",
27bd4dbb 3168 cgroup_is_populated(seq_css(seq)->cgroup));
842b597e
TH
3169 return 0;
3170}
3171
2bd59d48
TH
3172static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
3173 size_t nbytes, loff_t off)
355e0c48 3174{
2bd59d48
TH
3175 struct cgroup *cgrp = of->kn->parent->priv;
3176 struct cftype *cft = of->kn->priv;
3177 struct cgroup_subsys_state *css;
a742c59d 3178 int ret;
355e0c48 3179
b4168640
TH
3180 if (cft->write)
3181 return cft->write(of, buf, nbytes, off);
3182
2bd59d48
TH
3183 /*
3184 * kernfs guarantees that a file isn't deleted with operations in
3185 * flight, which means that the matching css is and stays alive and
3186 * doesn't need to be pinned. The RCU locking is not necessary
3187 * either. It's just for the convenience of using cgroup_css().
3188 */
3189 rcu_read_lock();
3190 css = cgroup_css(cgrp, cft->ss);
3191 rcu_read_unlock();
a742c59d 3192
451af504 3193 if (cft->write_u64) {
a742c59d
TH
3194 unsigned long long v;
3195 ret = kstrtoull(buf, 0, &v);
3196 if (!ret)
3197 ret = cft->write_u64(css, cft, v);
3198 } else if (cft->write_s64) {
3199 long long v;
3200 ret = kstrtoll(buf, 0, &v);
3201 if (!ret)
3202 ret = cft->write_s64(css, cft, v);
e73d2c61 3203 } else {
a742c59d 3204 ret = -EINVAL;
e73d2c61 3205 }
2bd59d48 3206
a742c59d 3207 return ret ?: nbytes;
355e0c48
PM
3208}
3209
6612f05b 3210static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
db3b1497 3211{
2bd59d48 3212 return seq_cft(seq)->seq_start(seq, ppos);
db3b1497
PM
3213}
3214
6612f05b 3215static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
ddbcc7e8 3216{
2bd59d48 3217 return seq_cft(seq)->seq_next(seq, v, ppos);
ddbcc7e8
PM
3218}
3219
6612f05b 3220static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
ddbcc7e8 3221{
2bd59d48 3222 seq_cft(seq)->seq_stop(seq, v);
ddbcc7e8
PM
3223}
3224
91796569 3225static int cgroup_seqfile_show(struct seq_file *m, void *arg)
e73d2c61 3226{
7da11279
TH
3227 struct cftype *cft = seq_cft(m);
3228 struct cgroup_subsys_state *css = seq_css(m);
e73d2c61 3229
2da8ca82
TH
3230 if (cft->seq_show)
3231 return cft->seq_show(m, arg);
e73d2c61 3232
f4c753b7 3233 if (cft->read_u64)
896f5199
TH
3234 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
3235 else if (cft->read_s64)
3236 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
3237 else
3238 return -EINVAL;
3239 return 0;
91796569
PM
3240}
3241
2bd59d48
TH
3242static struct kernfs_ops cgroup_kf_single_ops = {
3243 .atomic_write_len = PAGE_SIZE,
3244 .write = cgroup_file_write,
3245 .seq_show = cgroup_seqfile_show,
91796569
PM
3246};
3247
2bd59d48
TH
3248static struct kernfs_ops cgroup_kf_ops = {
3249 .atomic_write_len = PAGE_SIZE,
3250 .write = cgroup_file_write,
3251 .seq_start = cgroup_seqfile_start,
3252 .seq_next = cgroup_seqfile_next,
3253 .seq_stop = cgroup_seqfile_stop,
3254 .seq_show = cgroup_seqfile_show,
3255};
ddbcc7e8
PM
3256
3257/*
3258 * cgroup_rename - Only allow simple rename of directories in place.
3259 */
2bd59d48
TH
3260static int cgroup_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
3261 const char *new_name_str)
ddbcc7e8 3262{
2bd59d48 3263 struct cgroup *cgrp = kn->priv;
65dff759 3264 int ret;
65dff759 3265
2bd59d48 3266 if (kernfs_type(kn) != KERNFS_DIR)
ddbcc7e8 3267 return -ENOTDIR;
2bd59d48 3268 if (kn->parent != new_parent)
ddbcc7e8 3269 return -EIO;
65dff759 3270
6db8e85c
TH
3271 /*
3272 * This isn't a proper migration and its usefulness is very
aa6ec29b 3273 * limited. Disallow on the default hierarchy.
6db8e85c 3274 */
aa6ec29b 3275 if (cgroup_on_dfl(cgrp))
6db8e85c 3276 return -EPERM;
099fca32 3277
e1b2dc17 3278 /*
8353da1f 3279 * We're gonna grab cgroup_mutex which nests outside kernfs
e1b2dc17 3280 * active_ref. kernfs_rename() doesn't require active_ref
8353da1f 3281 * protection. Break them before grabbing cgroup_mutex.
e1b2dc17
TH
3282 */
3283 kernfs_break_active_protection(new_parent);
3284 kernfs_break_active_protection(kn);
099fca32 3285
2bd59d48 3286 mutex_lock(&cgroup_mutex);
099fca32 3287
2bd59d48 3288 ret = kernfs_rename(kn, new_parent, new_name_str);
099fca32 3289
2bd59d48 3290 mutex_unlock(&cgroup_mutex);
e1b2dc17
TH
3291
3292 kernfs_unbreak_active_protection(kn);
3293 kernfs_unbreak_active_protection(new_parent);
2bd59d48 3294 return ret;
099fca32
LZ
3295}
3296
49957f8e
TH
3297/* set uid and gid of cgroup dirs and files to that of the creator */
3298static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3299{
3300 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3301 .ia_uid = current_fsuid(),
3302 .ia_gid = current_fsgid(), };
3303
3304 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3305 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
3306 return 0;
3307
3308 return kernfs_setattr(kn, &iattr);
3309}
3310
4df8dc90
TH
3311static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
3312 struct cftype *cft)
ddbcc7e8 3313{
8d7e6fb0 3314 char name[CGROUP_FILE_NAME_MAX];
2bd59d48
TH
3315 struct kernfs_node *kn;
3316 struct lock_class_key *key = NULL;
49957f8e 3317 int ret;
05ef1d7c 3318
2bd59d48
TH
3319#ifdef CONFIG_DEBUG_LOCK_ALLOC
3320 key = &cft->lockdep_key;
3321#endif
3322 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
3323 cgroup_file_mode(cft), 0, cft->kf_ops, cft,
dfeb0750 3324 NULL, key);
49957f8e
TH
3325 if (IS_ERR(kn))
3326 return PTR_ERR(kn);
3327
3328 ret = cgroup_kn_set_ugid(kn);
f8f22e53 3329 if (ret) {
49957f8e 3330 kernfs_remove(kn);
f8f22e53
TH
3331 return ret;
3332 }
3333
6f60eade
TH
3334 if (cft->file_offset) {
3335 struct cgroup_file *cfile = (void *)css + cft->file_offset;
3336
34c06254 3337 spin_lock_irq(&cgroup_file_kn_lock);
6f60eade 3338 cfile->kn = kn;
34c06254 3339 spin_unlock_irq(&cgroup_file_kn_lock);
6f60eade
TH
3340 }
3341
f8f22e53 3342 return 0;
ddbcc7e8
PM
3343}
3344
b1f28d31
TH
3345/**
3346 * cgroup_addrm_files - add or remove files to a cgroup directory
4df8dc90
TH
3347 * @css: the target css
3348 * @cgrp: the target cgroup (usually css->cgroup)
b1f28d31
TH
3349 * @cfts: array of cftypes to be added
3350 * @is_add: whether to add or remove
3351 *
3352 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
6732ed85 3353 * For removals, this function never fails.
b1f28d31 3354 */
4df8dc90
TH
3355static int cgroup_addrm_files(struct cgroup_subsys_state *css,
3356 struct cgroup *cgrp, struct cftype cfts[],
2bb566cb 3357 bool is_add)
ddbcc7e8 3358{
6732ed85 3359 struct cftype *cft, *cft_end = NULL;
b1f28d31
TH
3360 int ret;
3361
01f6474c 3362 lockdep_assert_held(&cgroup_mutex);
db0416b6 3363
6732ed85
TH
3364restart:
3365 for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
f33fddc2 3366 /* does cft->flags tell us to skip this file on @cgrp? */
05ebb6e6 3367 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
8cbbf2c9 3368 continue;
05ebb6e6 3369 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
873fe09e 3370 continue;
d51f39b0 3371 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
f33fddc2 3372 continue;
d51f39b0 3373 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
f33fddc2
G
3374 continue;
3375
2739d3cc 3376 if (is_add) {
4df8dc90 3377 ret = cgroup_add_file(css, cgrp, cft);
b1f28d31 3378 if (ret) {
ed3d261b
JP
3379 pr_warn("%s: failed to add %s, err=%d\n",
3380 __func__, cft->name, ret);
6732ed85
TH
3381 cft_end = cft;
3382 is_add = false;
3383 goto restart;
b1f28d31 3384 }
2739d3cc
LZ
3385 } else {
3386 cgroup_rm_file(cgrp, cft);
db0416b6 3387 }
ddbcc7e8 3388 }
b1f28d31 3389 return 0;
ddbcc7e8
PM
3390}
3391
21a2d343 3392static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
8e3f6541
TH
3393{
3394 LIST_HEAD(pending);
2bb566cb 3395 struct cgroup_subsys *ss = cfts[0].ss;
3dd06ffa 3396 struct cgroup *root = &ss->root->cgrp;
492eb21b 3397 struct cgroup_subsys_state *css;
9ccece80 3398 int ret = 0;
8e3f6541 3399
01f6474c 3400 lockdep_assert_held(&cgroup_mutex);
e8c82d20 3401
e8c82d20 3402 /* add/rm files for all cgroups created before */
ca8bdcaf 3403 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
492eb21b
TH
3404 struct cgroup *cgrp = css->cgroup;
3405
e8c82d20
LZ
3406 if (cgroup_is_dead(cgrp))
3407 continue;
3408
4df8dc90 3409 ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
9ccece80
TH
3410 if (ret)
3411 break;
8e3f6541 3412 }
21a2d343
TH
3413
3414 if (is_add && !ret)
3415 kernfs_activate(root->kn);
9ccece80 3416 return ret;
8e3f6541
TH
3417}
3418
2da440a2 3419static void cgroup_exit_cftypes(struct cftype *cfts)
8e3f6541 3420{
2bb566cb 3421 struct cftype *cft;
8e3f6541 3422
2bd59d48
TH
3423 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3424 /* free copy for custom atomic_write_len, see init_cftypes() */
3425 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
3426 kfree(cft->kf_ops);
3427 cft->kf_ops = NULL;
2da440a2 3428 cft->ss = NULL;
a8ddc821
TH
3429
3430 /* revert flags set by cgroup core while adding @cfts */
05ebb6e6 3431 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
2bd59d48 3432 }
2da440a2
TH
3433}
3434
2bd59d48 3435static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
2da440a2
TH
3436{
3437 struct cftype *cft;
3438
2bd59d48
TH
3439 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3440 struct kernfs_ops *kf_ops;
3441
0adb0704
TH
3442 WARN_ON(cft->ss || cft->kf_ops);
3443
2bd59d48
TH
3444 if (cft->seq_start)
3445 kf_ops = &cgroup_kf_ops;
3446 else
3447 kf_ops = &cgroup_kf_single_ops;
3448
3449 /*
3450 * Ugh... if @cft wants a custom max_write_len, we need to
3451 * make a copy of kf_ops to set its atomic_write_len.
3452 */
3453 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
3454 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
3455 if (!kf_ops) {
3456 cgroup_exit_cftypes(cfts);
3457 return -ENOMEM;
3458 }
3459 kf_ops->atomic_write_len = cft->max_write_len;
3460 }
8e3f6541 3461
2bd59d48 3462 cft->kf_ops = kf_ops;
2bb566cb 3463 cft->ss = ss;
2bd59d48 3464 }
2bb566cb 3465
2bd59d48 3466 return 0;
2da440a2
TH
3467}
3468
21a2d343
TH
3469static int cgroup_rm_cftypes_locked(struct cftype *cfts)
3470{
01f6474c 3471 lockdep_assert_held(&cgroup_mutex);
21a2d343
TH
3472
3473 if (!cfts || !cfts[0].ss)
3474 return -ENOENT;
3475
3476 list_del(&cfts->node);
3477 cgroup_apply_cftypes(cfts, false);
3478 cgroup_exit_cftypes(cfts);
3479 return 0;
8e3f6541 3480}
8e3f6541 3481
79578621
TH
3482/**
3483 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
79578621
TH
3484 * @cfts: zero-length name terminated array of cftypes
3485 *
2bb566cb
TH
3486 * Unregister @cfts. Files described by @cfts are removed from all
3487 * existing cgroups and all future cgroups won't have them either. This
3488 * function can be called anytime whether @cfts' subsys is attached or not.
79578621
TH
3489 *
3490 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
2bb566cb 3491 * registered.
79578621 3492 */
2bb566cb 3493int cgroup_rm_cftypes(struct cftype *cfts)
79578621 3494{
21a2d343 3495 int ret;
79578621 3496
01f6474c 3497 mutex_lock(&cgroup_mutex);
21a2d343 3498 ret = cgroup_rm_cftypes_locked(cfts);
01f6474c 3499 mutex_unlock(&cgroup_mutex);
21a2d343 3500 return ret;
80b13586
TH
3501}
3502
8e3f6541
TH
3503/**
3504 * cgroup_add_cftypes - add an array of cftypes to a subsystem
3505 * @ss: target cgroup subsystem
3506 * @cfts: zero-length name terminated array of cftypes
3507 *
3508 * Register @cfts to @ss. Files described by @cfts are created for all
3509 * existing cgroups to which @ss is attached and all future cgroups will
3510 * have them too. This function can be called anytime whether @ss is
3511 * attached or not.
3512 *
3513 * Returns 0 on successful registration, -errno on failure. Note that this
3514 * function currently returns 0 as long as @cfts registration is successful
3515 * even if some file creation attempts on existing cgroups fail.
3516 */
2cf669a5 3517static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
8e3f6541 3518{
9ccece80 3519 int ret;
8e3f6541 3520
fc5ed1e9 3521 if (!cgroup_ssid_enabled(ss->id))
c731ae1d
LZ
3522 return 0;
3523
dc5736ed
LZ
3524 if (!cfts || cfts[0].name[0] == '\0')
3525 return 0;
2bb566cb 3526
2bd59d48
TH
3527 ret = cgroup_init_cftypes(ss, cfts);
3528 if (ret)
3529 return ret;
79578621 3530
01f6474c 3531 mutex_lock(&cgroup_mutex);
21a2d343 3532
0adb0704 3533 list_add_tail(&cfts->node, &ss->cfts);
21a2d343 3534 ret = cgroup_apply_cftypes(cfts, true);
9ccece80 3535 if (ret)
21a2d343 3536 cgroup_rm_cftypes_locked(cfts);
79578621 3537
01f6474c 3538 mutex_unlock(&cgroup_mutex);
9ccece80 3539 return ret;
79578621
TH
3540}
3541
a8ddc821
TH
3542/**
3543 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
3544 * @ss: target cgroup subsystem
3545 * @cfts: zero-length name terminated array of cftypes
3546 *
3547 * Similar to cgroup_add_cftypes() but the added files are only used for
3548 * the default hierarchy.
3549 */
3550int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3551{
3552 struct cftype *cft;
3553
3554 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
05ebb6e6 3555 cft->flags |= __CFTYPE_ONLY_ON_DFL;
a8ddc821
TH
3556 return cgroup_add_cftypes(ss, cfts);
3557}
3558
3559/**
3560 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
3561 * @ss: target cgroup subsystem
3562 * @cfts: zero-length name terminated array of cftypes
3563 *
3564 * Similar to cgroup_add_cftypes() but the added files are only used for
3565 * the legacy hierarchies.
3566 */
2cf669a5
TH
3567int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3568{
a8ddc821
TH
3569 struct cftype *cft;
3570
e4b7037c
TH
3571 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3572 cft->flags |= __CFTYPE_NOT_ON_DFL;
2cf669a5
TH
3573 return cgroup_add_cftypes(ss, cfts);
3574}
3575
34c06254
TH
3576/**
3577 * cgroup_file_notify - generate a file modified event for a cgroup_file
3578 * @cfile: target cgroup_file
3579 *
3580 * @cfile must have been obtained by setting cftype->file_offset.
3581 */
3582void cgroup_file_notify(struct cgroup_file *cfile)
3583{
3584 unsigned long flags;
3585
3586 spin_lock_irqsave(&cgroup_file_kn_lock, flags);
3587 if (cfile->kn)
3588 kernfs_notify(cfile->kn);
3589 spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
3590}
3591
a043e3b2
LZ
3592/**
3593 * cgroup_task_count - count the number of tasks in a cgroup.
3594 * @cgrp: the cgroup in question
3595 *
3596 * Return the number of tasks in the cgroup.
3597 */
07bc356e 3598static int cgroup_task_count(const struct cgroup *cgrp)
bbcb81d0
PM
3599{
3600 int count = 0;
69d0206c 3601 struct cgrp_cset_link *link;
817929ec 3602
f0d9a5f1 3603 spin_lock_bh(&css_set_lock);
69d0206c
TH
3604 list_for_each_entry(link, &cgrp->cset_links, cset_link)
3605 count += atomic_read(&link->cset->refcount);
f0d9a5f1 3606 spin_unlock_bh(&css_set_lock);
bbcb81d0
PM
3607 return count;
3608}
3609
53fa5261 3610/**
492eb21b 3611 * css_next_child - find the next child of a given css
c2931b70
TH
3612 * @pos: the current position (%NULL to initiate traversal)
3613 * @parent: css whose children to walk
53fa5261 3614 *
c2931b70 3615 * This function returns the next child of @parent and should be called
87fb54f1 3616 * under either cgroup_mutex or RCU read lock. The only requirement is
c2931b70
TH
3617 * that @parent and @pos are accessible. The next sibling is guaranteed to
3618 * be returned regardless of their states.
3619 *
3620 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3621 * css which finished ->css_online() is guaranteed to be visible in the
3622 * future iterations and will stay visible until the last reference is put.
3623 * A css which hasn't finished ->css_online() or already finished
3624 * ->css_offline() may show up during traversal. It's each subsystem's
3625 * responsibility to synchronize against on/offlining.
53fa5261 3626 */
c2931b70
TH
3627struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
3628 struct cgroup_subsys_state *parent)
53fa5261 3629{
c2931b70 3630 struct cgroup_subsys_state *next;
53fa5261 3631
8353da1f 3632 cgroup_assert_mutex_or_rcu_locked();
53fa5261
TH
3633
3634 /*
de3f0341
TH
3635 * @pos could already have been unlinked from the sibling list.
3636 * Once a cgroup is removed, its ->sibling.next is no longer
3637 * updated when its next sibling changes. CSS_RELEASED is set when
3638 * @pos is taken off list, at which time its next pointer is valid,
3639 * and, as releases are serialized, the one pointed to by the next
3640 * pointer is guaranteed to not have started release yet. This
3641 * implies that if we observe !CSS_RELEASED on @pos in this RCU
3642 * critical section, the one pointed to by its next pointer is
3643 * guaranteed to not have finished its RCU grace period even if we
3644 * have dropped rcu_read_lock() inbetween iterations.
3b287a50 3645 *
de3f0341
TH
3646 * If @pos has CSS_RELEASED set, its next pointer can't be
3647 * dereferenced; however, as each css is given a monotonically
3648 * increasing unique serial number and always appended to the
3649 * sibling list, the next one can be found by walking the parent's
3650 * children until the first css with higher serial number than
3651 * @pos's. While this path can be slower, it happens iff iteration
3652 * races against release and the race window is very small.
53fa5261 3653 */
3b287a50 3654 if (!pos) {
c2931b70
TH
3655 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
3656 } else if (likely(!(pos->flags & CSS_RELEASED))) {
3657 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
3b287a50 3658 } else {
c2931b70 3659 list_for_each_entry_rcu(next, &parent->children, sibling)
3b287a50
TH
3660 if (next->serial_nr > pos->serial_nr)
3661 break;
53fa5261
TH
3662 }
3663
3b281afb
TH
3664 /*
3665 * @next, if not pointing to the head, can be dereferenced and is
c2931b70 3666 * the next sibling.
3b281afb 3667 */
c2931b70
TH
3668 if (&next->sibling != &parent->children)
3669 return next;
3b281afb 3670 return NULL;
53fa5261 3671}
53fa5261 3672
574bd9f7 3673/**
492eb21b 3674 * css_next_descendant_pre - find the next descendant for pre-order walk
574bd9f7 3675 * @pos: the current position (%NULL to initiate traversal)
492eb21b 3676 * @root: css whose descendants to walk
574bd9f7 3677 *
492eb21b 3678 * To be used by css_for_each_descendant_pre(). Find the next descendant
bd8815a6
TH
3679 * to visit for pre-order traversal of @root's descendants. @root is
3680 * included in the iteration and the first node to be visited.
75501a6d 3681 *
87fb54f1
TH
3682 * While this function requires cgroup_mutex or RCU read locking, it
3683 * doesn't require the whole traversal to be contained in a single critical
3684 * section. This function will return the correct next descendant as long
3685 * as both @pos and @root are accessible and @pos is a descendant of @root.
c2931b70
TH
3686 *
3687 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3688 * css which finished ->css_online() is guaranteed to be visible in the
3689 * future iterations and will stay visible until the last reference is put.
3690 * A css which hasn't finished ->css_online() or already finished
3691 * ->css_offline() may show up during traversal. It's each subsystem's
3692 * responsibility to synchronize against on/offlining.
574bd9f7 3693 */
492eb21b
TH
3694struct cgroup_subsys_state *
3695css_next_descendant_pre(struct cgroup_subsys_state *pos,
3696 struct cgroup_subsys_state *root)
574bd9f7 3697{
492eb21b 3698 struct cgroup_subsys_state *next;
574bd9f7 3699
8353da1f 3700 cgroup_assert_mutex_or_rcu_locked();
574bd9f7 3701
bd8815a6 3702 /* if first iteration, visit @root */
7805d000 3703 if (!pos)
bd8815a6 3704 return root;
574bd9f7
TH
3705
3706 /* visit the first child if exists */
492eb21b 3707 next = css_next_child(NULL, pos);
574bd9f7
TH
3708 if (next)
3709 return next;
3710
3711 /* no child, visit my or the closest ancestor's next sibling */
492eb21b 3712 while (pos != root) {
5c9d535b 3713 next = css_next_child(pos, pos->parent);
75501a6d 3714 if (next)
574bd9f7 3715 return next;
5c9d535b 3716 pos = pos->parent;
7805d000 3717 }
574bd9f7
TH
3718
3719 return NULL;
3720}
574bd9f7 3721
12a9d2fe 3722/**
492eb21b
TH
3723 * css_rightmost_descendant - return the rightmost descendant of a css
3724 * @pos: css of interest
12a9d2fe 3725 *
492eb21b
TH
3726 * Return the rightmost descendant of @pos. If there's no descendant, @pos
3727 * is returned. This can be used during pre-order traversal to skip
12a9d2fe 3728 * subtree of @pos.
75501a6d 3729 *
87fb54f1
TH
3730 * While this function requires cgroup_mutex or RCU read locking, it
3731 * doesn't require the whole traversal to be contained in a single critical
3732 * section. This function will return the correct rightmost descendant as
3733 * long as @pos is accessible.
12a9d2fe 3734 */
492eb21b
TH
3735struct cgroup_subsys_state *
3736css_rightmost_descendant(struct cgroup_subsys_state *pos)
12a9d2fe 3737{
492eb21b 3738 struct cgroup_subsys_state *last, *tmp;
12a9d2fe 3739
8353da1f 3740 cgroup_assert_mutex_or_rcu_locked();
12a9d2fe
TH
3741
3742 do {
3743 last = pos;
3744 /* ->prev isn't RCU safe, walk ->next till the end */
3745 pos = NULL;
492eb21b 3746 css_for_each_child(tmp, last)
12a9d2fe
TH
3747 pos = tmp;
3748 } while (pos);
3749
3750 return last;
3751}
12a9d2fe 3752
492eb21b
TH
3753static struct cgroup_subsys_state *
3754css_leftmost_descendant(struct cgroup_subsys_state *pos)
574bd9f7 3755{
492eb21b 3756 struct cgroup_subsys_state *last;
574bd9f7
TH
3757
3758 do {
3759 last = pos;
492eb21b 3760 pos = css_next_child(NULL, pos);
574bd9f7
TH
3761 } while (pos);
3762
3763 return last;
3764}
3765
3766/**
492eb21b 3767 * css_next_descendant_post - find the next descendant for post-order walk
574bd9f7 3768 * @pos: the current position (%NULL to initiate traversal)
492eb21b 3769 * @root: css whose descendants to walk
574bd9f7 3770 *
492eb21b 3771 * To be used by css_for_each_descendant_post(). Find the next descendant
bd8815a6
TH
3772 * to visit for post-order traversal of @root's descendants. @root is
3773 * included in the iteration and the last node to be visited.
75501a6d 3774 *
87fb54f1
TH
3775 * While this function requires cgroup_mutex or RCU read locking, it
3776 * doesn't require the whole traversal to be contained in a single critical
3777 * section. This function will return the correct next descendant as long
3778 * as both @pos and @cgroup are accessible and @pos is a descendant of
3779 * @cgroup.
c2931b70
TH
3780 *
3781 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3782 * css which finished ->css_online() is guaranteed to be visible in the
3783 * future iterations and will stay visible until the last reference is put.
3784 * A css which hasn't finished ->css_online() or already finished
3785 * ->css_offline() may show up during traversal. It's each subsystem's
3786 * responsibility to synchronize against on/offlining.
574bd9f7 3787 */
492eb21b
TH
3788struct cgroup_subsys_state *
3789css_next_descendant_post(struct cgroup_subsys_state *pos,
3790 struct cgroup_subsys_state *root)
574bd9f7 3791{
492eb21b 3792 struct cgroup_subsys_state *next;
574bd9f7 3793
8353da1f 3794 cgroup_assert_mutex_or_rcu_locked();
574bd9f7 3795
58b79a91
TH
3796 /* if first iteration, visit leftmost descendant which may be @root */
3797 if (!pos)
3798 return css_leftmost_descendant(root);
574bd9f7 3799
bd8815a6
TH
3800 /* if we visited @root, we're done */
3801 if (pos == root)
3802 return NULL;
3803
574bd9f7 3804 /* if there's an unvisited sibling, visit its leftmost descendant */
5c9d535b 3805 next = css_next_child(pos, pos->parent);
75501a6d 3806 if (next)
492eb21b 3807 return css_leftmost_descendant(next);
574bd9f7
TH
3808
3809 /* no sibling left, visit parent */
5c9d535b 3810 return pos->parent;
574bd9f7 3811}
574bd9f7 3812
f3d46500
TH
3813/**
3814 * css_has_online_children - does a css have online children
3815 * @css: the target css
3816 *
3817 * Returns %true if @css has any online children; otherwise, %false. This
3818 * function can be called from any context but the caller is responsible
3819 * for synchronizing against on/offlining as necessary.
3820 */
3821bool css_has_online_children(struct cgroup_subsys_state *css)
cbc125ef 3822{
f3d46500
TH
3823 struct cgroup_subsys_state *child;
3824 bool ret = false;
cbc125ef
TH
3825
3826 rcu_read_lock();
f3d46500 3827 css_for_each_child(child, css) {
99bae5f9 3828 if (child->flags & CSS_ONLINE) {
f3d46500
TH
3829 ret = true;
3830 break;
cbc125ef
TH
3831 }
3832 }
3833 rcu_read_unlock();
f3d46500 3834 return ret;
574bd9f7 3835}
574bd9f7 3836
0942eeee 3837/**
ecb9d535 3838 * css_task_iter_advance_css_set - advance a task itererator to the next css_set
0942eeee
TH
3839 * @it: the iterator to advance
3840 *
3841 * Advance @it to the next css_set to walk.
d515876e 3842 */
ecb9d535 3843static void css_task_iter_advance_css_set(struct css_task_iter *it)
d515876e 3844{
0f0a2b4f 3845 struct list_head *l = it->cset_pos;
d515876e
TH
3846 struct cgrp_cset_link *link;
3847 struct css_set *cset;
3848
f0d9a5f1 3849 lockdep_assert_held(&css_set_lock);
ed27b9f7 3850
d515876e
TH
3851 /* Advance to the next non-empty css_set */
3852 do {
3853 l = l->next;
0f0a2b4f
TH
3854 if (l == it->cset_head) {
3855 it->cset_pos = NULL;
ecb9d535 3856 it->task_pos = NULL;
d515876e
TH
3857 return;
3858 }
3ebb2b6e
TH
3859
3860 if (it->ss) {
3861 cset = container_of(l, struct css_set,
3862 e_cset_node[it->ss->id]);
3863 } else {
3864 link = list_entry(l, struct cgrp_cset_link, cset_link);
3865 cset = link->cset;
3866 }
0de0942d 3867 } while (!css_set_populated(cset));
c7561128 3868
0f0a2b4f 3869 it->cset_pos = l;
c7561128
TH
3870
3871 if (!list_empty(&cset->tasks))
0f0a2b4f 3872 it->task_pos = cset->tasks.next;
c7561128 3873 else
0f0a2b4f
TH
3874 it->task_pos = cset->mg_tasks.next;
3875
3876 it->tasks_head = &cset->tasks;
3877 it->mg_tasks_head = &cset->mg_tasks;
ed27b9f7
TH
3878
3879 /*
3880 * We don't keep css_sets locked across iteration steps and thus
3881 * need to take steps to ensure that iteration can be resumed after
3882 * the lock is re-acquired. Iteration is performed at two levels -
3883 * css_sets and tasks in them.
3884 *
3885 * Once created, a css_set never leaves its cgroup lists, so a
3886 * pinned css_set is guaranteed to stay put and we can resume
3887 * iteration afterwards.
3888 *
3889 * Tasks may leave @cset across iteration steps. This is resolved
3890 * by registering each iterator with the css_set currently being
3891 * walked and making css_set_move_task() advance iterators whose
3892 * next task is leaving.
3893 */
3894 if (it->cur_cset) {
3895 list_del(&it->iters_node);
3896 put_css_set_locked(it->cur_cset);
3897 }
3898 get_css_set(cset);
3899 it->cur_cset = cset;
3900 list_add(&it->iters_node, &cset->task_iters);
d515876e
TH
3901}
3902
ecb9d535
TH
3903static void css_task_iter_advance(struct css_task_iter *it)
3904{
3905 struct list_head *l = it->task_pos;
3906
f0d9a5f1 3907 lockdep_assert_held(&css_set_lock);
ecb9d535
TH
3908 WARN_ON_ONCE(!l);
3909
3910 /*
3911 * Advance iterator to find next entry. cset->tasks is consumed
3912 * first and then ->mg_tasks. After ->mg_tasks, we move onto the
3913 * next cset.
3914 */
3915 l = l->next;
3916
3917 if (l == it->tasks_head)
3918 l = it->mg_tasks_head->next;
3919
3920 if (l == it->mg_tasks_head)
3921 css_task_iter_advance_css_set(it);
3922 else
3923 it->task_pos = l;
3924}
3925
0942eeee 3926/**
72ec7029
TH
3927 * css_task_iter_start - initiate task iteration
3928 * @css: the css to walk tasks of
0942eeee
TH
3929 * @it: the task iterator to use
3930 *
72ec7029
TH
3931 * Initiate iteration through the tasks of @css. The caller can call
3932 * css_task_iter_next() to walk through the tasks until the function
3933 * returns NULL. On completion of iteration, css_task_iter_end() must be
3934 * called.
0942eeee 3935 */
72ec7029
TH
3936void css_task_iter_start(struct cgroup_subsys_state *css,
3937 struct css_task_iter *it)
817929ec 3938{
56fde9e0
TH
3939 /* no one should try to iterate before mounting cgroups */
3940 WARN_ON_ONCE(!use_task_css_set_links);
31a7df01 3941
ed27b9f7
TH
3942 memset(it, 0, sizeof(*it));
3943
f0d9a5f1 3944 spin_lock_bh(&css_set_lock);
c59cd3d8 3945
3ebb2b6e
TH
3946 it->ss = css->ss;
3947
3948 if (it->ss)
3949 it->cset_pos = &css->cgroup->e_csets[css->ss->id];
3950 else
3951 it->cset_pos = &css->cgroup->cset_links;
3952
0f0a2b4f 3953 it->cset_head = it->cset_pos;
c59cd3d8 3954
ecb9d535 3955 css_task_iter_advance_css_set(it);
ed27b9f7 3956
f0d9a5f1 3957 spin_unlock_bh(&css_set_lock);
817929ec
PM
3958}
3959
0942eeee 3960/**
72ec7029 3961 * css_task_iter_next - return the next task for the iterator
0942eeee
TH
3962 * @it: the task iterator being iterated
3963 *
3964 * The "next" function for task iteration. @it should have been
72ec7029
TH
3965 * initialized via css_task_iter_start(). Returns NULL when the iteration
3966 * reaches the end.
0942eeee 3967 */
72ec7029 3968struct task_struct *css_task_iter_next(struct css_task_iter *it)
817929ec 3969{
d5745675 3970 if (it->cur_task) {
ed27b9f7 3971 put_task_struct(it->cur_task);
d5745675
TH
3972 it->cur_task = NULL;
3973 }
ed27b9f7 3974
f0d9a5f1 3975 spin_lock_bh(&css_set_lock);
ed27b9f7 3976
d5745675
TH
3977 if (it->task_pos) {
3978 it->cur_task = list_entry(it->task_pos, struct task_struct,
3979 cg_list);
3980 get_task_struct(it->cur_task);
3981 css_task_iter_advance(it);
3982 }
ed27b9f7 3983
f0d9a5f1 3984 spin_unlock_bh(&css_set_lock);
ed27b9f7
TH
3985
3986 return it->cur_task;
817929ec
PM
3987}
3988
0942eeee 3989/**
72ec7029 3990 * css_task_iter_end - finish task iteration
0942eeee
TH
3991 * @it: the task iterator to finish
3992 *
72ec7029 3993 * Finish task iteration started by css_task_iter_start().
0942eeee 3994 */
72ec7029 3995void css_task_iter_end(struct css_task_iter *it)
31a7df01 3996{
ed27b9f7 3997 if (it->cur_cset) {
f0d9a5f1 3998 spin_lock_bh(&css_set_lock);
ed27b9f7
TH
3999 list_del(&it->iters_node);
4000 put_css_set_locked(it->cur_cset);
f0d9a5f1 4001 spin_unlock_bh(&css_set_lock);
ed27b9f7
TH
4002 }
4003
4004 if (it->cur_task)
4005 put_task_struct(it->cur_task);
31a7df01
CW
4006}
4007
4008/**
8cc99345
TH
4009 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
4010 * @to: cgroup to which the tasks will be moved
4011 * @from: cgroup in which the tasks currently reside
31a7df01 4012 *
eaf797ab
TH
4013 * Locking rules between cgroup_post_fork() and the migration path
4014 * guarantee that, if a task is forking while being migrated, the new child
4015 * is guaranteed to be either visible in the source cgroup after the
4016 * parent's migration is complete or put into the target cgroup. No task
4017 * can slip out of migration through forking.
31a7df01 4018 */
8cc99345 4019int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
31a7df01 4020{
952aaa12
TH
4021 LIST_HEAD(preloaded_csets);
4022 struct cgrp_cset_link *link;
72ec7029 4023 struct css_task_iter it;
e406d1cf 4024 struct task_struct *task;
952aaa12 4025 int ret;
31a7df01 4026
952aaa12 4027 mutex_lock(&cgroup_mutex);
31a7df01 4028
952aaa12 4029 /* all tasks in @from are being moved, all csets are source */
f0d9a5f1 4030 spin_lock_bh(&css_set_lock);
952aaa12
TH
4031 list_for_each_entry(link, &from->cset_links, cset_link)
4032 cgroup_migrate_add_src(link->cset, to, &preloaded_csets);
f0d9a5f1 4033 spin_unlock_bh(&css_set_lock);
31a7df01 4034
952aaa12
TH
4035 ret = cgroup_migrate_prepare_dst(to, &preloaded_csets);
4036 if (ret)
4037 goto out_err;
8cc99345 4038
952aaa12
TH
4039 /*
4040 * Migrate tasks one-by-one until @form is empty. This fails iff
4041 * ->can_attach() fails.
4042 */
e406d1cf 4043 do {
9d800df1 4044 css_task_iter_start(&from->self, &it);
e406d1cf
TH
4045 task = css_task_iter_next(&it);
4046 if (task)
4047 get_task_struct(task);
4048 css_task_iter_end(&it);
4049
4050 if (task) {
9af2ec45 4051 ret = cgroup_migrate(task, false, to);
e406d1cf
TH
4052 put_task_struct(task);
4053 }
4054 } while (task && !ret);
952aaa12
TH
4055out_err:
4056 cgroup_migrate_finish(&preloaded_csets);
47cfcd09 4057 mutex_unlock(&cgroup_mutex);
e406d1cf 4058 return ret;
8cc99345
TH
4059}
4060
bbcb81d0 4061/*
102a775e 4062 * Stuff for reading the 'tasks'/'procs' files.
bbcb81d0
PM
4063 *
4064 * Reading this file can return large amounts of data if a cgroup has
4065 * *lots* of attached tasks. So it may need several calls to read(),
4066 * but we cannot guarantee that the information we produce is correct
4067 * unless we produce it entirely atomically.
4068 *
bbcb81d0 4069 */
bbcb81d0 4070
24528255
LZ
4071/* which pidlist file are we talking about? */
4072enum cgroup_filetype {
4073 CGROUP_FILE_PROCS,
4074 CGROUP_FILE_TASKS,
4075};
4076
4077/*
4078 * A pidlist is a list of pids that virtually represents the contents of one
4079 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
4080 * a pair (one each for procs, tasks) for each pid namespace that's relevant
4081 * to the cgroup.
4082 */
4083struct cgroup_pidlist {
4084 /*
4085 * used to find which pidlist is wanted. doesn't change as long as
4086 * this particular list stays in the list.
4087 */
4088 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
4089 /* array of xids */
4090 pid_t *list;
4091 /* how many elements the above list has */
4092 int length;
24528255
LZ
4093 /* each of these stored in a list by its cgroup */
4094 struct list_head links;
4095 /* pointer to the cgroup we belong to, for list removal purposes */
4096 struct cgroup *owner;
b1a21367
TH
4097 /* for delayed destruction */
4098 struct delayed_work destroy_dwork;
24528255
LZ
4099};
4100
d1d9fd33
BB
4101/*
4102 * The following two functions "fix" the issue where there are more pids
4103 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
4104 * TODO: replace with a kernel-wide solution to this problem
4105 */
4106#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
4107static void *pidlist_allocate(int count)
4108{
4109 if (PIDLIST_TOO_LARGE(count))
4110 return vmalloc(count * sizeof(pid_t));
4111 else
4112 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
4113}
b1a21367 4114
d1d9fd33
BB
4115static void pidlist_free(void *p)
4116{
58794514 4117 kvfree(p);
d1d9fd33 4118}
d1d9fd33 4119
b1a21367
TH
4120/*
4121 * Used to destroy all pidlists lingering waiting for destroy timer. None
4122 * should be left afterwards.
4123 */
4124static void cgroup_pidlist_destroy_all(struct cgroup *cgrp)
4125{
4126 struct cgroup_pidlist *l, *tmp_l;
4127
4128 mutex_lock(&cgrp->pidlist_mutex);
4129 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
4130 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
4131 mutex_unlock(&cgrp->pidlist_mutex);
4132
4133 flush_workqueue(cgroup_pidlist_destroy_wq);
4134 BUG_ON(!list_empty(&cgrp->pidlists));
4135}
4136
4137static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
4138{
4139 struct delayed_work *dwork = to_delayed_work(work);
4140 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
4141 destroy_dwork);
4142 struct cgroup_pidlist *tofree = NULL;
4143
4144 mutex_lock(&l->owner->pidlist_mutex);
b1a21367
TH
4145
4146 /*
04502365
TH
4147 * Destroy iff we didn't get queued again. The state won't change
4148 * as destroy_dwork can only be queued while locked.
b1a21367 4149 */
04502365 4150 if (!delayed_work_pending(dwork)) {
b1a21367
TH
4151 list_del(&l->links);
4152 pidlist_free(l->list);
4153 put_pid_ns(l->key.ns);
4154 tofree = l;
4155 }
4156
b1a21367
TH
4157 mutex_unlock(&l->owner->pidlist_mutex);
4158 kfree(tofree);
4159}
4160
bbcb81d0 4161/*
102a775e 4162 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
6ee211ad 4163 * Returns the number of unique elements.
bbcb81d0 4164 */
6ee211ad 4165static int pidlist_uniq(pid_t *list, int length)
bbcb81d0 4166{
102a775e 4167 int src, dest = 1;
102a775e
BB
4168
4169 /*
4170 * we presume the 0th element is unique, so i starts at 1. trivial
4171 * edge cases first; no work needs to be done for either
4172 */
4173 if (length == 0 || length == 1)
4174 return length;
4175 /* src and dest walk down the list; dest counts unique elements */
4176 for (src = 1; src < length; src++) {
4177 /* find next unique element */
4178 while (list[src] == list[src-1]) {
4179 src++;
4180 if (src == length)
4181 goto after;
4182 }
4183 /* dest always points to where the next unique element goes */
4184 list[dest] = list[src];
4185 dest++;
4186 }
4187after:
102a775e
BB
4188 return dest;
4189}
4190
afb2bc14
TH
4191/*
4192 * The two pid files - task and cgroup.procs - guaranteed that the result
4193 * is sorted, which forced this whole pidlist fiasco. As pid order is
4194 * different per namespace, each namespace needs differently sorted list,
4195 * making it impossible to use, for example, single rbtree of member tasks
4196 * sorted by task pointer. As pidlists can be fairly large, allocating one
4197 * per open file is dangerous, so cgroup had to implement shared pool of
4198 * pidlists keyed by cgroup and namespace.
4199 *
4200 * All this extra complexity was caused by the original implementation
4201 * committing to an entirely unnecessary property. In the long term, we
aa6ec29b
TH
4202 * want to do away with it. Explicitly scramble sort order if on the
4203 * default hierarchy so that no such expectation exists in the new
4204 * interface.
afb2bc14
TH
4205 *
4206 * Scrambling is done by swapping every two consecutive bits, which is
4207 * non-identity one-to-one mapping which disturbs sort order sufficiently.
4208 */
4209static pid_t pid_fry(pid_t pid)
4210{
4211 unsigned a = pid & 0x55555555;
4212 unsigned b = pid & 0xAAAAAAAA;
4213
4214 return (a << 1) | (b >> 1);
4215}
4216
4217static pid_t cgroup_pid_fry(struct cgroup *cgrp, pid_t pid)
4218{
aa6ec29b 4219 if (cgroup_on_dfl(cgrp))
afb2bc14
TH
4220 return pid_fry(pid);
4221 else
4222 return pid;
4223}
4224
102a775e
BB
4225static int cmppid(const void *a, const void *b)
4226{
4227 return *(pid_t *)a - *(pid_t *)b;
4228}
4229
afb2bc14
TH
4230static int fried_cmppid(const void *a, const void *b)
4231{
4232 return pid_fry(*(pid_t *)a) - pid_fry(*(pid_t *)b);
4233}
4234
e6b81710
TH
4235static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
4236 enum cgroup_filetype type)
4237{
4238 struct cgroup_pidlist *l;
4239 /* don't need task_nsproxy() if we're looking at ourself */
4240 struct pid_namespace *ns = task_active_pid_ns(current);
4241
4242 lockdep_assert_held(&cgrp->pidlist_mutex);
4243
4244 list_for_each_entry(l, &cgrp->pidlists, links)
4245 if (l->key.type == type && l->key.ns == ns)
4246 return l;
4247 return NULL;
4248}
4249
72a8cb30
BB
4250/*
4251 * find the appropriate pidlist for our purpose (given procs vs tasks)
4252 * returns with the lock on that pidlist already held, and takes care
4253 * of the use count, or returns NULL with no locks held if we're out of
4254 * memory.
4255 */
e6b81710
TH
4256static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
4257 enum cgroup_filetype type)
72a8cb30
BB
4258{
4259 struct cgroup_pidlist *l;
b70cc5fd 4260
e6b81710
TH
4261 lockdep_assert_held(&cgrp->pidlist_mutex);
4262
4263 l = cgroup_pidlist_find(cgrp, type);
4264 if (l)
4265 return l;
4266
72a8cb30 4267 /* entry not found; create a new one */
f4f4be2b 4268 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
e6b81710 4269 if (!l)
72a8cb30 4270 return l;
e6b81710 4271
b1a21367 4272 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
72a8cb30 4273 l->key.type = type;
e6b81710
TH
4274 /* don't need task_nsproxy() if we're looking at ourself */
4275 l->key.ns = get_pid_ns(task_active_pid_ns(current));
72a8cb30
BB
4276 l->owner = cgrp;
4277 list_add(&l->links, &cgrp->pidlists);
72a8cb30
BB
4278 return l;
4279}
4280
102a775e
BB
4281/*
4282 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
4283 */
72a8cb30
BB
4284static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
4285 struct cgroup_pidlist **lp)
102a775e
BB
4286{
4287 pid_t *array;
4288 int length;
4289 int pid, n = 0; /* used for populating the array */
72ec7029 4290 struct css_task_iter it;
817929ec 4291 struct task_struct *tsk;
102a775e
BB
4292 struct cgroup_pidlist *l;
4293
4bac00d1
TH
4294 lockdep_assert_held(&cgrp->pidlist_mutex);
4295
102a775e
BB
4296 /*
4297 * If cgroup gets more users after we read count, we won't have
4298 * enough space - tough. This race is indistinguishable to the
4299 * caller from the case that the additional cgroup users didn't
4300 * show up until sometime later on.
4301 */
4302 length = cgroup_task_count(cgrp);
d1d9fd33 4303 array = pidlist_allocate(length);
102a775e
BB
4304 if (!array)
4305 return -ENOMEM;
4306 /* now, populate the array */
9d800df1 4307 css_task_iter_start(&cgrp->self, &it);
72ec7029 4308 while ((tsk = css_task_iter_next(&it))) {
102a775e 4309 if (unlikely(n == length))
817929ec 4310 break;
102a775e 4311 /* get tgid or pid for procs or tasks file respectively */
72a8cb30
BB
4312 if (type == CGROUP_FILE_PROCS)
4313 pid = task_tgid_vnr(tsk);
4314 else
4315 pid = task_pid_vnr(tsk);
102a775e
BB
4316 if (pid > 0) /* make sure to only use valid results */
4317 array[n++] = pid;
817929ec 4318 }
72ec7029 4319 css_task_iter_end(&it);
102a775e
BB
4320 length = n;
4321 /* now sort & (if procs) strip out duplicates */
aa6ec29b 4322 if (cgroup_on_dfl(cgrp))
afb2bc14
TH
4323 sort(array, length, sizeof(pid_t), fried_cmppid, NULL);
4324 else
4325 sort(array, length, sizeof(pid_t), cmppid, NULL);
72a8cb30 4326 if (type == CGROUP_FILE_PROCS)
6ee211ad 4327 length = pidlist_uniq(array, length);
e6b81710 4328
e6b81710 4329 l = cgroup_pidlist_find_create(cgrp, type);
72a8cb30 4330 if (!l) {
d1d9fd33 4331 pidlist_free(array);
72a8cb30 4332 return -ENOMEM;
102a775e 4333 }
e6b81710
TH
4334
4335 /* store array, freeing old if necessary */
d1d9fd33 4336 pidlist_free(l->list);
102a775e
BB
4337 l->list = array;
4338 l->length = length;
72a8cb30 4339 *lp = l;
102a775e 4340 return 0;
bbcb81d0
PM
4341}
4342
846c7bb0 4343/**
a043e3b2 4344 * cgroupstats_build - build and fill cgroupstats
846c7bb0
BS
4345 * @stats: cgroupstats to fill information into
4346 * @dentry: A dentry entry belonging to the cgroup for which stats have
4347 * been requested.
a043e3b2
LZ
4348 *
4349 * Build and fill cgroupstats so that taskstats can export it to user
4350 * space.
846c7bb0
BS
4351 */
4352int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
4353{
2bd59d48 4354 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
bd89aabc 4355 struct cgroup *cgrp;
72ec7029 4356 struct css_task_iter it;
846c7bb0 4357 struct task_struct *tsk;
33d283be 4358
2bd59d48
TH
4359 /* it should be kernfs_node belonging to cgroupfs and is a directory */
4360 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
4361 kernfs_type(kn) != KERNFS_DIR)
4362 return -EINVAL;
4363
bad34660
LZ
4364 mutex_lock(&cgroup_mutex);
4365
846c7bb0 4366 /*
2bd59d48 4367 * We aren't being called from kernfs and there's no guarantee on
ec903c0c 4368 * @kn->priv's validity. For this and css_tryget_online_from_dir(),
2bd59d48 4369 * @kn->priv is RCU safe. Let's do the RCU dancing.
846c7bb0 4370 */
2bd59d48
TH
4371 rcu_read_lock();
4372 cgrp = rcu_dereference(kn->priv);
bad34660 4373 if (!cgrp || cgroup_is_dead(cgrp)) {
2bd59d48 4374 rcu_read_unlock();
bad34660 4375 mutex_unlock(&cgroup_mutex);
2bd59d48
TH
4376 return -ENOENT;
4377 }
bad34660 4378 rcu_read_unlock();
846c7bb0 4379
9d800df1 4380 css_task_iter_start(&cgrp->self, &it);
72ec7029 4381 while ((tsk = css_task_iter_next(&it))) {
846c7bb0
BS
4382 switch (tsk->state) {
4383 case TASK_RUNNING:
4384 stats->nr_running++;
4385 break;
4386 case TASK_INTERRUPTIBLE:
4387 stats->nr_sleeping++;
4388 break;
4389 case TASK_UNINTERRUPTIBLE:
4390 stats->nr_uninterruptible++;
4391 break;
4392 case TASK_STOPPED:
4393 stats->nr_stopped++;
4394 break;
4395 default:
4396 if (delayacct_is_task_waiting_on_io(tsk))
4397 stats->nr_io_wait++;
4398 break;
4399 }
4400 }
72ec7029 4401 css_task_iter_end(&it);
846c7bb0 4402
bad34660 4403 mutex_unlock(&cgroup_mutex);
2bd59d48 4404 return 0;
846c7bb0
BS
4405}
4406
8f3ff208 4407
bbcb81d0 4408/*
102a775e 4409 * seq_file methods for the tasks/procs files. The seq_file position is the
cc31edce 4410 * next pid to display; the seq_file iterator is a pointer to the pid
102a775e 4411 * in the cgroup->l->list array.
bbcb81d0 4412 */
cc31edce 4413
102a775e 4414static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
bbcb81d0 4415{
cc31edce
PM
4416 /*
4417 * Initially we receive a position value that corresponds to
4418 * one more than the last pid shown (or 0 on the first call or
4419 * after a seek to the start). Use a binary-search to find the
4420 * next pid to display, if any
4421 */
2bd59d48 4422 struct kernfs_open_file *of = s->private;
7da11279 4423 struct cgroup *cgrp = seq_css(s)->cgroup;
4bac00d1 4424 struct cgroup_pidlist *l;
7da11279 4425 enum cgroup_filetype type = seq_cft(s)->private;
cc31edce 4426 int index = 0, pid = *pos;
4bac00d1
TH
4427 int *iter, ret;
4428
4429 mutex_lock(&cgrp->pidlist_mutex);
4430
4431 /*
5d22444f 4432 * !NULL @of->priv indicates that this isn't the first start()
4bac00d1 4433 * after open. If the matching pidlist is around, we can use that.
5d22444f 4434 * Look for it. Note that @of->priv can't be used directly. It
4bac00d1
TH
4435 * could already have been destroyed.
4436 */
5d22444f
TH
4437 if (of->priv)
4438 of->priv = cgroup_pidlist_find(cgrp, type);
4bac00d1
TH
4439
4440 /*
4441 * Either this is the first start() after open or the matching
4442 * pidlist has been destroyed inbetween. Create a new one.
4443 */
5d22444f
TH
4444 if (!of->priv) {
4445 ret = pidlist_array_load(cgrp, type,
4446 (struct cgroup_pidlist **)&of->priv);
4bac00d1
TH
4447 if (ret)
4448 return ERR_PTR(ret);
4449 }
5d22444f 4450 l = of->priv;
cc31edce 4451
cc31edce 4452 if (pid) {
102a775e 4453 int end = l->length;
20777766 4454
cc31edce
PM
4455 while (index < end) {
4456 int mid = (index + end) / 2;
afb2bc14 4457 if (cgroup_pid_fry(cgrp, l->list[mid]) == pid) {
cc31edce
PM
4458 index = mid;
4459 break;
afb2bc14 4460 } else if (cgroup_pid_fry(cgrp, l->list[mid]) <= pid)
cc31edce
PM
4461 index = mid + 1;
4462 else
4463 end = mid;
4464 }
4465 }
4466 /* If we're off the end of the array, we're done */
102a775e 4467 if (index >= l->length)
cc31edce
PM
4468 return NULL;
4469 /* Update the abstract position to be the actual pid that we found */
102a775e 4470 iter = l->list + index;
afb2bc14 4471 *pos = cgroup_pid_fry(cgrp, *iter);
cc31edce
PM
4472 return iter;
4473}
4474
102a775e 4475static void cgroup_pidlist_stop(struct seq_file *s, void *v)
cc31edce 4476{
2bd59d48 4477 struct kernfs_open_file *of = s->private;
5d22444f 4478 struct cgroup_pidlist *l = of->priv;
62236858 4479
5d22444f
TH
4480 if (l)
4481 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
04502365 4482 CGROUP_PIDLIST_DESTROY_DELAY);
7da11279 4483 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
cc31edce
PM
4484}
4485
102a775e 4486static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
cc31edce 4487{
2bd59d48 4488 struct kernfs_open_file *of = s->private;
5d22444f 4489 struct cgroup_pidlist *l = of->priv;
102a775e
BB
4490 pid_t *p = v;
4491 pid_t *end = l->list + l->length;
cc31edce
PM
4492 /*
4493 * Advance to the next pid in the array. If this goes off the
4494 * end, we're done
4495 */
4496 p++;
4497 if (p >= end) {
4498 return NULL;
4499 } else {
7da11279 4500 *pos = cgroup_pid_fry(seq_css(s)->cgroup, *p);
cc31edce
PM
4501 return p;
4502 }
4503}
4504
102a775e 4505static int cgroup_pidlist_show(struct seq_file *s, void *v)
cc31edce 4506{
94ff212d
JP
4507 seq_printf(s, "%d\n", *(int *)v);
4508
4509 return 0;
cc31edce 4510}
bbcb81d0 4511
182446d0
TH
4512static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
4513 struct cftype *cft)
81a6a5cd 4514{
182446d0 4515 return notify_on_release(css->cgroup);
81a6a5cd
PM
4516}
4517
182446d0
TH
4518static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
4519 struct cftype *cft, u64 val)
6379c106 4520{
6379c106 4521 if (val)
182446d0 4522 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106 4523 else
182446d0 4524 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106
PM
4525 return 0;
4526}
4527
182446d0
TH
4528static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
4529 struct cftype *cft)
97978e6d 4530{
182446d0 4531 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
4532}
4533
182446d0
TH
4534static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
4535 struct cftype *cft, u64 val)
97978e6d
DL
4536{
4537 if (val)
182446d0 4538 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d 4539 else
182446d0 4540 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
4541 return 0;
4542}
4543
a14c6874
TH
4544/* cgroup core interface files for the default hierarchy */
4545static struct cftype cgroup_dfl_base_files[] = {
81a6a5cd 4546 {
d5c56ced 4547 .name = "cgroup.procs",
6f60eade 4548 .file_offset = offsetof(struct cgroup, procs_file),
6612f05b
TH
4549 .seq_start = cgroup_pidlist_start,
4550 .seq_next = cgroup_pidlist_next,
4551 .seq_stop = cgroup_pidlist_stop,
4552 .seq_show = cgroup_pidlist_show,
5d22444f 4553 .private = CGROUP_FILE_PROCS,
acbef755 4554 .write = cgroup_procs_write,
102a775e 4555 },
f8f22e53
TH
4556 {
4557 .name = "cgroup.controllers",
a14c6874 4558 .flags = CFTYPE_ONLY_ON_ROOT,
f8f22e53
TH
4559 .seq_show = cgroup_root_controllers_show,
4560 },
4561 {
4562 .name = "cgroup.controllers",
a14c6874 4563 .flags = CFTYPE_NOT_ON_ROOT,
f8f22e53
TH
4564 .seq_show = cgroup_controllers_show,
4565 },
4566 {
4567 .name = "cgroup.subtree_control",
f8f22e53 4568 .seq_show = cgroup_subtree_control_show,
451af504 4569 .write = cgroup_subtree_control_write,
f8f22e53 4570 },
842b597e 4571 {
4a07c222 4572 .name = "cgroup.events",
a14c6874 4573 .flags = CFTYPE_NOT_ON_ROOT,
6f60eade 4574 .file_offset = offsetof(struct cgroup, events_file),
4a07c222 4575 .seq_show = cgroup_events_show,
842b597e 4576 },
a14c6874
TH
4577 { } /* terminate */
4578};
d5c56ced 4579
a14c6874
TH
4580/* cgroup core interface files for the legacy hierarchies */
4581static struct cftype cgroup_legacy_base_files[] = {
4582 {
4583 .name = "cgroup.procs",
4584 .seq_start = cgroup_pidlist_start,
4585 .seq_next = cgroup_pidlist_next,
4586 .seq_stop = cgroup_pidlist_stop,
4587 .seq_show = cgroup_pidlist_show,
4588 .private = CGROUP_FILE_PROCS,
4589 .write = cgroup_procs_write,
a14c6874
TH
4590 },
4591 {
4592 .name = "cgroup.clone_children",
4593 .read_u64 = cgroup_clone_children_read,
4594 .write_u64 = cgroup_clone_children_write,
4595 },
4596 {
4597 .name = "cgroup.sane_behavior",
4598 .flags = CFTYPE_ONLY_ON_ROOT,
4599 .seq_show = cgroup_sane_behavior_show,
4600 },
d5c56ced
TH
4601 {
4602 .name = "tasks",
6612f05b
TH
4603 .seq_start = cgroup_pidlist_start,
4604 .seq_next = cgroup_pidlist_next,
4605 .seq_stop = cgroup_pidlist_stop,
4606 .seq_show = cgroup_pidlist_show,
5d22444f 4607 .private = CGROUP_FILE_TASKS,
acbef755 4608 .write = cgroup_tasks_write,
d5c56ced
TH
4609 },
4610 {
4611 .name = "notify_on_release",
d5c56ced
TH
4612 .read_u64 = cgroup_read_notify_on_release,
4613 .write_u64 = cgroup_write_notify_on_release,
4614 },
6e6ff25b
TH
4615 {
4616 .name = "release_agent",
a14c6874 4617 .flags = CFTYPE_ONLY_ON_ROOT,
2da8ca82 4618 .seq_show = cgroup_release_agent_show,
451af504 4619 .write = cgroup_release_agent_write,
5f469907 4620 .max_write_len = PATH_MAX - 1,
6e6ff25b 4621 },
db0416b6 4622 { } /* terminate */
bbcb81d0
PM
4623};
4624
0c21ead1
TH
4625/*
4626 * css destruction is four-stage process.
4627 *
4628 * 1. Destruction starts. Killing of the percpu_ref is initiated.
4629 * Implemented in kill_css().
4630 *
4631 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
ec903c0c
TH
4632 * and thus css_tryget_online() is guaranteed to fail, the css can be
4633 * offlined by invoking offline_css(). After offlining, the base ref is
4634 * put. Implemented in css_killed_work_fn().
0c21ead1
TH
4635 *
4636 * 3. When the percpu_ref reaches zero, the only possible remaining
4637 * accessors are inside RCU read sections. css_release() schedules the
4638 * RCU callback.
4639 *
4640 * 4. After the grace period, the css can be freed. Implemented in
4641 * css_free_work_fn().
4642 *
4643 * It is actually hairier because both step 2 and 4 require process context
4644 * and thus involve punting to css->destroy_work adding two additional
4645 * steps to the already complex sequence.
4646 */
35ef10da 4647static void css_free_work_fn(struct work_struct *work)
48ddbe19
TH
4648{
4649 struct cgroup_subsys_state *css =
35ef10da 4650 container_of(work, struct cgroup_subsys_state, destroy_work);
01e58659 4651 struct cgroup_subsys *ss = css->ss;
0c21ead1 4652 struct cgroup *cgrp = css->cgroup;
48ddbe19 4653
9a1049da
TH
4654 percpu_ref_exit(&css->refcnt);
4655
01e58659 4656 if (ss) {
9d755d33 4657 /* css free path */
01e58659
VD
4658 int id = css->id;
4659
9d755d33
TH
4660 if (css->parent)
4661 css_put(css->parent);
0ae78e0b 4662
01e58659
VD
4663 ss->css_free(css);
4664 cgroup_idr_remove(&ss->css_idr, id);
9d755d33
TH
4665 cgroup_put(cgrp);
4666 } else {
4667 /* cgroup free path */
4668 atomic_dec(&cgrp->root->nr_cgrps);
4669 cgroup_pidlist_destroy_all(cgrp);
971ff493 4670 cancel_work_sync(&cgrp->release_agent_work);
9d755d33 4671
d51f39b0 4672 if (cgroup_parent(cgrp)) {
9d755d33
TH
4673 /*
4674 * We get a ref to the parent, and put the ref when
4675 * this cgroup is being freed, so it's guaranteed
4676 * that the parent won't be destroyed before its
4677 * children.
4678 */
d51f39b0 4679 cgroup_put(cgroup_parent(cgrp));
9d755d33
TH
4680 kernfs_put(cgrp->kn);
4681 kfree(cgrp);
4682 } else {
4683 /*
4684 * This is root cgroup's refcnt reaching zero,
4685 * which indicates that the root should be
4686 * released.
4687 */
4688 cgroup_destroy_root(cgrp->root);
4689 }
4690 }
48ddbe19
TH
4691}
4692
0c21ead1 4693static void css_free_rcu_fn(struct rcu_head *rcu_head)
d3daf28d
TH
4694{
4695 struct cgroup_subsys_state *css =
0c21ead1 4696 container_of(rcu_head, struct cgroup_subsys_state, rcu_head);
d3daf28d 4697
35ef10da 4698 INIT_WORK(&css->destroy_work, css_free_work_fn);
e5fca243 4699 queue_work(cgroup_destroy_wq, &css->destroy_work);
48ddbe19
TH
4700}
4701
25e15d83 4702static void css_release_work_fn(struct work_struct *work)
d3daf28d
TH
4703{
4704 struct cgroup_subsys_state *css =
25e15d83 4705 container_of(work, struct cgroup_subsys_state, destroy_work);
15a4c835 4706 struct cgroup_subsys *ss = css->ss;
9d755d33 4707 struct cgroup *cgrp = css->cgroup;
15a4c835 4708
1fed1b2e
TH
4709 mutex_lock(&cgroup_mutex);
4710
de3f0341 4711 css->flags |= CSS_RELEASED;
1fed1b2e
TH
4712 list_del_rcu(&css->sibling);
4713
9d755d33
TH
4714 if (ss) {
4715 /* css release path */
01e58659 4716 cgroup_idr_replace(&ss->css_idr, NULL, css->id);
7d172cc8
TH
4717 if (ss->css_released)
4718 ss->css_released(css);
9d755d33
TH
4719 } else {
4720 /* cgroup release path */
9d755d33
TH
4721 cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
4722 cgrp->id = -1;
a4189487
LZ
4723
4724 /*
4725 * There are two control paths which try to determine
4726 * cgroup from dentry without going through kernfs -
4727 * cgroupstats_build() and css_tryget_online_from_dir().
4728 * Those are supported by RCU protecting clearing of
4729 * cgrp->kn->priv backpointer.
4730 */
4731 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv, NULL);
9d755d33 4732 }
d3daf28d 4733
1fed1b2e
TH
4734 mutex_unlock(&cgroup_mutex);
4735
0c21ead1 4736 call_rcu(&css->rcu_head, css_free_rcu_fn);
d3daf28d
TH
4737}
4738
d3daf28d
TH
4739static void css_release(struct percpu_ref *ref)
4740{
4741 struct cgroup_subsys_state *css =
4742 container_of(ref, struct cgroup_subsys_state, refcnt);
4743
25e15d83
TH
4744 INIT_WORK(&css->destroy_work, css_release_work_fn);
4745 queue_work(cgroup_destroy_wq, &css->destroy_work);
d3daf28d
TH
4746}
4747
ddfcadab
TH
4748static void init_and_link_css(struct cgroup_subsys_state *css,
4749 struct cgroup_subsys *ss, struct cgroup *cgrp)
ddbcc7e8 4750{
0cb51d71
TH
4751 lockdep_assert_held(&cgroup_mutex);
4752
ddfcadab
TH
4753 cgroup_get(cgrp);
4754
d5c419b6 4755 memset(css, 0, sizeof(*css));
bd89aabc 4756 css->cgroup = cgrp;
72c97e54 4757 css->ss = ss;
d5c419b6
TH
4758 INIT_LIST_HEAD(&css->sibling);
4759 INIT_LIST_HEAD(&css->children);
0cb51d71 4760 css->serial_nr = css_serial_nr_next++;
0ae78e0b 4761
d51f39b0
TH
4762 if (cgroup_parent(cgrp)) {
4763 css->parent = cgroup_css(cgroup_parent(cgrp), ss);
ddfcadab 4764 css_get(css->parent);
ddfcadab 4765 }
48ddbe19 4766
ca8bdcaf 4767 BUG_ON(cgroup_css(cgrp, ss));
ddbcc7e8
PM
4768}
4769
2a4ac633 4770/* invoke ->css_online() on a new CSS and mark it online if successful */
623f926b 4771static int online_css(struct cgroup_subsys_state *css)
a31f2d3f 4772{
623f926b 4773 struct cgroup_subsys *ss = css->ss;
b1929db4
TH
4774 int ret = 0;
4775
a31f2d3f
TH
4776 lockdep_assert_held(&cgroup_mutex);
4777
92fb9748 4778 if (ss->css_online)
eb95419b 4779 ret = ss->css_online(css);
ae7f164a 4780 if (!ret) {
eb95419b 4781 css->flags |= CSS_ONLINE;
aec25020 4782 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
ae7f164a 4783 }
b1929db4 4784 return ret;
a31f2d3f
TH
4785}
4786
2a4ac633 4787/* if the CSS is online, invoke ->css_offline() on it and mark it offline */
623f926b 4788static void offline_css(struct cgroup_subsys_state *css)
a31f2d3f 4789{
623f926b 4790 struct cgroup_subsys *ss = css->ss;
a31f2d3f
TH
4791
4792 lockdep_assert_held(&cgroup_mutex);
4793
4794 if (!(css->flags & CSS_ONLINE))
4795 return;
4796
d7eeac19 4797 if (ss->css_offline)
eb95419b 4798 ss->css_offline(css);
a31f2d3f 4799
eb95419b 4800 css->flags &= ~CSS_ONLINE;
e3297803 4801 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
f8f22e53
TH
4802
4803 wake_up_all(&css->cgroup->offline_waitq);
a31f2d3f
TH
4804}
4805
c81c925a
TH
4806/**
4807 * create_css - create a cgroup_subsys_state
4808 * @cgrp: the cgroup new css will be associated with
4809 * @ss: the subsys of new css
f63070d3 4810 * @visible: whether to create control knobs for the new css or not
c81c925a
TH
4811 *
4812 * Create a new css associated with @cgrp - @ss pair. On success, the new
f63070d3
TH
4813 * css is online and installed in @cgrp with all interface files created if
4814 * @visible. Returns 0 on success, -errno on failure.
c81c925a 4815 */
f63070d3
TH
4816static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss,
4817 bool visible)
c81c925a 4818{
d51f39b0 4819 struct cgroup *parent = cgroup_parent(cgrp);
1fed1b2e 4820 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
c81c925a
TH
4821 struct cgroup_subsys_state *css;
4822 int err;
4823
c81c925a
TH
4824 lockdep_assert_held(&cgroup_mutex);
4825
1fed1b2e 4826 css = ss->css_alloc(parent_css);
c81c925a
TH
4827 if (IS_ERR(css))
4828 return PTR_ERR(css);
4829
ddfcadab 4830 init_and_link_css(css, ss, cgrp);
a2bed820 4831
2aad2a86 4832 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
c81c925a 4833 if (err)
3eb59ec6 4834 goto err_free_css;
c81c925a 4835
cf780b7d 4836 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
15a4c835
TH
4837 if (err < 0)
4838 goto err_free_percpu_ref;
4839 css->id = err;
c81c925a 4840
f63070d3 4841 if (visible) {
4df8dc90 4842 err = css_populate_dir(css, NULL);
f63070d3
TH
4843 if (err)
4844 goto err_free_id;
4845 }
15a4c835
TH
4846
4847 /* @css is ready to be brought online now, make it visible */
1fed1b2e 4848 list_add_tail_rcu(&css->sibling, &parent_css->children);
15a4c835 4849 cgroup_idr_replace(&ss->css_idr, css, css->id);
c81c925a
TH
4850
4851 err = online_css(css);
4852 if (err)
1fed1b2e 4853 goto err_list_del;
94419627 4854
c81c925a 4855 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
d51f39b0 4856 cgroup_parent(parent)) {
ed3d261b 4857 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
a2a1f9ea 4858 current->comm, current->pid, ss->name);
c81c925a 4859 if (!strcmp(ss->name, "memory"))
ed3d261b 4860 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
c81c925a
TH
4861 ss->warned_broken_hierarchy = true;
4862 }
4863
4864 return 0;
4865
1fed1b2e
TH
4866err_list_del:
4867 list_del_rcu(&css->sibling);
4df8dc90 4868 css_clear_dir(css, NULL);
15a4c835
TH
4869err_free_id:
4870 cgroup_idr_remove(&ss->css_idr, css->id);
3eb59ec6 4871err_free_percpu_ref:
9a1049da 4872 percpu_ref_exit(&css->refcnt);
3eb59ec6 4873err_free_css:
a2bed820 4874 call_rcu(&css->rcu_head, css_free_rcu_fn);
c81c925a
TH
4875 return err;
4876}
4877
b3bfd983
TH
4878static int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
4879 umode_t mode)
ddbcc7e8 4880{
a9746d8d
TH
4881 struct cgroup *parent, *cgrp;
4882 struct cgroup_root *root;
ddbcc7e8 4883 struct cgroup_subsys *ss;
2bd59d48 4884 struct kernfs_node *kn;
b3bfd983 4885 int ssid, ret;
ddbcc7e8 4886
71b1fb5c
AC
4887 /* Do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable.
4888 */
4889 if (strchr(name, '\n'))
4890 return -EINVAL;
4891
a9746d8d
TH
4892 parent = cgroup_kn_lock_live(parent_kn);
4893 if (!parent)
4894 return -ENODEV;
4895 root = parent->root;
ddbcc7e8 4896
0a950f65 4897 /* allocate the cgroup and its ID, 0 is reserved for the root */
bd89aabc 4898 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
ba0f4d76
TH
4899 if (!cgrp) {
4900 ret = -ENOMEM;
4901 goto out_unlock;
0ab02ca8
LZ
4902 }
4903
2aad2a86 4904 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
9d755d33
TH
4905 if (ret)
4906 goto out_free_cgrp;
4907
0ab02ca8
LZ
4908 /*
4909 * Temporarily set the pointer to NULL, so idr_find() won't return
4910 * a half-baked cgroup.
4911 */
cf780b7d 4912 cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_KERNEL);
0ab02ca8 4913 if (cgrp->id < 0) {
ba0f4d76 4914 ret = -ENOMEM;
9d755d33 4915 goto out_cancel_ref;
976c06bc
TH
4916 }
4917
cc31edce 4918 init_cgroup_housekeeping(cgrp);
ddbcc7e8 4919
9d800df1 4920 cgrp->self.parent = &parent->self;
ba0f4d76 4921 cgrp->root = root;
ddbcc7e8 4922
b6abdb0e
LZ
4923 if (notify_on_release(parent))
4924 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
4925
2260e7fc
TH
4926 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
4927 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
97978e6d 4928
2bd59d48 4929 /* create the directory */
e61734c5 4930 kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
2bd59d48 4931 if (IS_ERR(kn)) {
ba0f4d76
TH
4932 ret = PTR_ERR(kn);
4933 goto out_free_id;
2bd59d48
TH
4934 }
4935 cgrp->kn = kn;
ddbcc7e8 4936
4e139afc 4937 /*
6f30558f
TH
4938 * This extra ref will be put in cgroup_free_fn() and guarantees
4939 * that @cgrp->kn is always accessible.
4e139afc 4940 */
6f30558f 4941 kernfs_get(kn);
ddbcc7e8 4942
0cb51d71 4943 cgrp->self.serial_nr = css_serial_nr_next++;
53fa5261 4944
4e139afc 4945 /* allocation complete, commit to creation */
d5c419b6 4946 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
3c9c825b 4947 atomic_inc(&root->nr_cgrps);
59f5296b 4948 cgroup_get(parent);
415cf07a 4949
0d80255e
TH
4950 /*
4951 * @cgrp is now fully operational. If something fails after this
4952 * point, it'll be released via the normal destruction path.
4953 */
6fa4918d 4954 cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
4e96ee8e 4955
ba0f4d76
TH
4956 ret = cgroup_kn_set_ugid(kn);
4957 if (ret)
4958 goto out_destroy;
49957f8e 4959
4df8dc90 4960 ret = css_populate_dir(&cgrp->self, NULL);
ba0f4d76
TH
4961 if (ret)
4962 goto out_destroy;
628f7cd4 4963
9d403e99 4964 /* let's create and online css's */
b85d2040 4965 for_each_subsys(ss, ssid) {
f392e51c 4966 if (parent->child_subsys_mask & (1 << ssid)) {
f63070d3
TH
4967 ret = create_css(cgrp, ss,
4968 parent->subtree_control & (1 << ssid));
ba0f4d76
TH
4969 if (ret)
4970 goto out_destroy;
b85d2040 4971 }
a8638030 4972 }
ddbcc7e8 4973
bd53d617
TH
4974 /*
4975 * On the default hierarchy, a child doesn't automatically inherit
667c2491 4976 * subtree_control from the parent. Each is configured manually.
bd53d617 4977 */
667c2491
TH
4978 if (!cgroup_on_dfl(cgrp)) {
4979 cgrp->subtree_control = parent->subtree_control;
4980 cgroup_refresh_child_subsys_mask(cgrp);
4981 }
2bd59d48 4982
2bd59d48 4983 kernfs_activate(kn);
ddbcc7e8 4984
ba0f4d76
TH
4985 ret = 0;
4986 goto out_unlock;
ddbcc7e8 4987
ba0f4d76 4988out_free_id:
6fa4918d 4989 cgroup_idr_remove(&root->cgroup_idr, cgrp->id);
9d755d33 4990out_cancel_ref:
9a1049da 4991 percpu_ref_exit(&cgrp->self.refcnt);
ba0f4d76 4992out_free_cgrp:
bd89aabc 4993 kfree(cgrp);
ba0f4d76 4994out_unlock:
a9746d8d 4995 cgroup_kn_unlock(parent_kn);
ba0f4d76 4996 return ret;
4b8b47eb 4997
ba0f4d76 4998out_destroy:
4b8b47eb 4999 cgroup_destroy_locked(cgrp);
ba0f4d76 5000 goto out_unlock;
ddbcc7e8
PM
5001}
5002
223dbc38
TH
5003/*
5004 * This is called when the refcnt of a css is confirmed to be killed.
249f3468
TH
5005 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to
5006 * initate destruction and put the css ref from kill_css().
223dbc38
TH
5007 */
5008static void css_killed_work_fn(struct work_struct *work)
d3daf28d 5009{
223dbc38
TH
5010 struct cgroup_subsys_state *css =
5011 container_of(work, struct cgroup_subsys_state, destroy_work);
d3daf28d 5012
f20104de 5013 mutex_lock(&cgroup_mutex);
09a503ea 5014 offline_css(css);
f20104de 5015 mutex_unlock(&cgroup_mutex);
09a503ea 5016
09a503ea 5017 css_put(css);
d3daf28d
TH
5018}
5019
223dbc38
TH
5020/* css kill confirmation processing requires process context, bounce */
5021static void css_killed_ref_fn(struct percpu_ref *ref)
d3daf28d
TH
5022{
5023 struct cgroup_subsys_state *css =
5024 container_of(ref, struct cgroup_subsys_state, refcnt);
5025
223dbc38 5026 INIT_WORK(&css->destroy_work, css_killed_work_fn);
e5fca243 5027 queue_work(cgroup_destroy_wq, &css->destroy_work);
d3daf28d
TH
5028}
5029
f392e51c
TH
5030/**
5031 * kill_css - destroy a css
5032 * @css: css to destroy
5033 *
5034 * This function initiates destruction of @css by removing cgroup interface
5035 * files and putting its base reference. ->css_offline() will be invoked
ec903c0c
TH
5036 * asynchronously once css_tryget_online() is guaranteed to fail and when
5037 * the reference count reaches zero, @css will be released.
f392e51c
TH
5038 */
5039static void kill_css(struct cgroup_subsys_state *css)
edae0c33 5040{
01f6474c 5041 lockdep_assert_held(&cgroup_mutex);
94419627 5042
2bd59d48
TH
5043 /*
5044 * This must happen before css is disassociated with its cgroup.
5045 * See seq_css() for details.
5046 */
4df8dc90 5047 css_clear_dir(css, NULL);
3c14f8b4 5048
edae0c33
TH
5049 /*
5050 * Killing would put the base ref, but we need to keep it alive
5051 * until after ->css_offline().
5052 */
5053 css_get(css);
5054
5055 /*
5056 * cgroup core guarantees that, by the time ->css_offline() is
5057 * invoked, no new css reference will be given out via
ec903c0c 5058 * css_tryget_online(). We can't simply call percpu_ref_kill() and
edae0c33
TH
5059 * proceed to offlining css's because percpu_ref_kill() doesn't
5060 * guarantee that the ref is seen as killed on all CPUs on return.
5061 *
5062 * Use percpu_ref_kill_and_confirm() to get notifications as each
5063 * css is confirmed to be seen as killed on all CPUs.
5064 */
5065 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
d3daf28d
TH
5066}
5067
5068/**
5069 * cgroup_destroy_locked - the first stage of cgroup destruction
5070 * @cgrp: cgroup to be destroyed
5071 *
5072 * css's make use of percpu refcnts whose killing latency shouldn't be
5073 * exposed to userland and are RCU protected. Also, cgroup core needs to
ec903c0c
TH
5074 * guarantee that css_tryget_online() won't succeed by the time
5075 * ->css_offline() is invoked. To satisfy all the requirements,
5076 * destruction is implemented in the following two steps.
d3daf28d
TH
5077 *
5078 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
5079 * userland visible parts and start killing the percpu refcnts of
5080 * css's. Set up so that the next stage will be kicked off once all
5081 * the percpu refcnts are confirmed to be killed.
5082 *
5083 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5084 * rest of destruction. Once all cgroup references are gone, the
5085 * cgroup is RCU-freed.
5086 *
5087 * This function implements s1. After this step, @cgrp is gone as far as
5088 * the userland is concerned and a new cgroup with the same name may be
5089 * created. As cgroup doesn't care about the names internally, this
5090 * doesn't cause any problem.
5091 */
42809dd4
TH
5092static int cgroup_destroy_locked(struct cgroup *cgrp)
5093 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
ddbcc7e8 5094{
2bd59d48 5095 struct cgroup_subsys_state *css;
1c6727af 5096 int ssid;
ddbcc7e8 5097
42809dd4
TH
5098 lockdep_assert_held(&cgroup_mutex);
5099
91486f61
TH
5100 /*
5101 * Only migration can raise populated from zero and we're already
5102 * holding cgroup_mutex.
5103 */
5104 if (cgroup_is_populated(cgrp))
ddbcc7e8 5105 return -EBUSY;
a043e3b2 5106
bb78a92f 5107 /*
d5c419b6
TH
5108 * Make sure there's no live children. We can't test emptiness of
5109 * ->self.children as dead children linger on it while being
5110 * drained; otherwise, "rmdir parent/child parent" may fail.
bb78a92f 5111 */
f3d46500 5112 if (css_has_online_children(&cgrp->self))
bb78a92f
HD
5113 return -EBUSY;
5114
455050d2
TH
5115 /*
5116 * Mark @cgrp dead. This prevents further task migration and child
de3f0341 5117 * creation by disabling cgroup_lock_live_group().
455050d2 5118 */
184faf32 5119 cgrp->self.flags &= ~CSS_ONLINE;
ddbcc7e8 5120
249f3468 5121 /* initiate massacre of all css's */
1c6727af
TH
5122 for_each_css(css, ssid, cgrp)
5123 kill_css(css);
455050d2 5124
455050d2 5125 /*
01f6474c
TH
5126 * Remove @cgrp directory along with the base files. @cgrp has an
5127 * extra ref on its kn.
f20104de 5128 */
01f6474c 5129 kernfs_remove(cgrp->kn);
f20104de 5130
d51f39b0 5131 check_for_release(cgroup_parent(cgrp));
2bd59d48 5132
249f3468 5133 /* put the base reference */
9d755d33 5134 percpu_ref_kill(&cgrp->self.refcnt);
455050d2 5135
ea15f8cc
TH
5136 return 0;
5137};
5138
2bd59d48 5139static int cgroup_rmdir(struct kernfs_node *kn)
42809dd4 5140{
a9746d8d 5141 struct cgroup *cgrp;
2bd59d48 5142 int ret = 0;
42809dd4 5143
a9746d8d
TH
5144 cgrp = cgroup_kn_lock_live(kn);
5145 if (!cgrp)
5146 return 0;
42809dd4 5147
a9746d8d 5148 ret = cgroup_destroy_locked(cgrp);
2bb566cb 5149
a9746d8d 5150 cgroup_kn_unlock(kn);
42809dd4 5151 return ret;
8e3f6541
TH
5152}
5153
2bd59d48
TH
5154static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
5155 .remount_fs = cgroup_remount,
5156 .show_options = cgroup_show_options,
5157 .mkdir = cgroup_mkdir,
5158 .rmdir = cgroup_rmdir,
5159 .rename = cgroup_rename,
5160};
5161
15a4c835 5162static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
ddbcc7e8 5163{
ddbcc7e8 5164 struct cgroup_subsys_state *css;
cfe36bde
DC
5165
5166 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
ddbcc7e8 5167
648bb56d
TH
5168 mutex_lock(&cgroup_mutex);
5169
15a4c835 5170 idr_init(&ss->css_idr);
0adb0704 5171 INIT_LIST_HEAD(&ss->cfts);
8e3f6541 5172
3dd06ffa
TH
5173 /* Create the root cgroup state for this subsystem */
5174 ss->root = &cgrp_dfl_root;
5175 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
ddbcc7e8
PM
5176 /* We don't handle early failures gracefully */
5177 BUG_ON(IS_ERR(css));
ddfcadab 5178 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
3b514d24
TH
5179
5180 /*
5181 * Root csses are never destroyed and we can't initialize
5182 * percpu_ref during early init. Disable refcnting.
5183 */
5184 css->flags |= CSS_NO_REF;
5185
15a4c835 5186 if (early) {
9395a450 5187 /* allocation can't be done safely during early init */
15a4c835
TH
5188 css->id = 1;
5189 } else {
5190 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
5191 BUG_ON(css->id < 0);
5192 }
ddbcc7e8 5193
e8d55fde 5194 /* Update the init_css_set to contain a subsys
817929ec 5195 * pointer to this state - since the subsystem is
e8d55fde 5196 * newly registered, all tasks and hence the
3dd06ffa 5197 * init_css_set is in the subsystem's root cgroup. */
aec25020 5198 init_css_set.subsys[ss->id] = css;
ddbcc7e8 5199
cb4a3167
AS
5200 have_fork_callback |= (bool)ss->fork << ss->id;
5201 have_exit_callback |= (bool)ss->exit << ss->id;
afcf6c8b 5202 have_free_callback |= (bool)ss->free << ss->id;
7e47682e 5203 have_canfork_callback |= (bool)ss->can_fork << ss->id;
ddbcc7e8 5204
e8d55fde
LZ
5205 /* At system boot, before all subsystems have been
5206 * registered, no tasks have been forked, so we don't
5207 * need to invoke fork callbacks here. */
5208 BUG_ON(!list_empty(&init_task.tasks));
5209
ae7f164a 5210 BUG_ON(online_css(css));
a8638030 5211
cf5d5941
BB
5212 mutex_unlock(&cgroup_mutex);
5213}
cf5d5941 5214
ddbcc7e8 5215/**
a043e3b2
LZ
5216 * cgroup_init_early - cgroup initialization at system boot
5217 *
5218 * Initialize cgroups at system boot, and initialize any
5219 * subsystems that request early init.
ddbcc7e8
PM
5220 */
5221int __init cgroup_init_early(void)
5222{
7b9a6ba5 5223 static struct cgroup_sb_opts __initdata opts;
30159ec7 5224 struct cgroup_subsys *ss;
ddbcc7e8 5225 int i;
30159ec7 5226
3dd06ffa 5227 init_cgroup_root(&cgrp_dfl_root, &opts);
3b514d24
TH
5228 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
5229
a4ea1cc9 5230 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
817929ec 5231
3ed80a62 5232 for_each_subsys(ss, i) {
aec25020 5233 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
073219e9
TH
5234 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p name:id=%d:%s\n",
5235 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
aec25020 5236 ss->id, ss->name);
073219e9
TH
5237 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
5238 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
5239
aec25020 5240 ss->id = i;
073219e9 5241 ss->name = cgroup_subsys_name[i];
3e1d2eed
TH
5242 if (!ss->legacy_name)
5243 ss->legacy_name = cgroup_subsys_name[i];
ddbcc7e8
PM
5244
5245 if (ss->early_init)
15a4c835 5246 cgroup_init_subsys(ss, true);
ddbcc7e8
PM
5247 }
5248 return 0;
5249}
5250
a3e72739
TH
5251static unsigned long cgroup_disable_mask __initdata;
5252
ddbcc7e8 5253/**
a043e3b2
LZ
5254 * cgroup_init - cgroup initialization
5255 *
5256 * Register cgroup filesystem and /proc file, and initialize
5257 * any subsystems that didn't request early init.
ddbcc7e8
PM
5258 */
5259int __init cgroup_init(void)
5260{
30159ec7 5261 struct cgroup_subsys *ss;
0ac801fe 5262 unsigned long key;
035f4f51 5263 int ssid;
ddbcc7e8 5264
1ed13287 5265 BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem));
a14c6874
TH
5266 BUG_ON(cgroup_init_cftypes(NULL, cgroup_dfl_base_files));
5267 BUG_ON(cgroup_init_cftypes(NULL, cgroup_legacy_base_files));
ddbcc7e8 5268
54e7b4eb 5269 mutex_lock(&cgroup_mutex);
54e7b4eb 5270
82fe9b0d
TH
5271 /* Add init_css_set to the hash table */
5272 key = css_set_hash(init_css_set.subsys);
5273 hash_add(css_set_table, &init_css_set.hlist, key);
5274
3dd06ffa 5275 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
4e96ee8e 5276
54e7b4eb
TH
5277 mutex_unlock(&cgroup_mutex);
5278
172a2c06 5279 for_each_subsys(ss, ssid) {
15a4c835
TH
5280 if (ss->early_init) {
5281 struct cgroup_subsys_state *css =
5282 init_css_set.subsys[ss->id];
5283
5284 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
5285 GFP_KERNEL);
5286 BUG_ON(css->id < 0);
5287 } else {
5288 cgroup_init_subsys(ss, false);
5289 }
172a2c06 5290
2d8f243a
TH
5291 list_add_tail(&init_css_set.e_cset_node[ssid],
5292 &cgrp_dfl_root.cgrp.e_csets[ssid]);
172a2c06
TH
5293
5294 /*
c731ae1d
LZ
5295 * Setting dfl_root subsys_mask needs to consider the
5296 * disabled flag and cftype registration needs kmalloc,
5297 * both of which aren't available during early_init.
172a2c06 5298 */
a3e72739
TH
5299 if (cgroup_disable_mask & (1 << ssid)) {
5300 static_branch_disable(cgroup_subsys_enabled_key[ssid]);
5301 printk(KERN_INFO "Disabling %s control group subsystem\n",
5302 ss->name);
a8ddc821 5303 continue;
a3e72739 5304 }
a8ddc821
TH
5305
5306 cgrp_dfl_root.subsys_mask |= 1 << ss->id;
5307
5de4fa13
TH
5308 if (!ss->dfl_cftypes)
5309 cgrp_dfl_root_inhibit_ss_mask |= 1 << ss->id;
5310
a8ddc821
TH
5311 if (ss->dfl_cftypes == ss->legacy_cftypes) {
5312 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
5313 } else {
5314 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5315 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
c731ae1d 5316 }
295458e6
VD
5317
5318 if (ss->bind)
5319 ss->bind(init_css_set.subsys[ssid]);
676db4af
GKH
5320 }
5321
035f4f51
TH
5322 WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
5323 WARN_ON(register_filesystem(&cgroup_fs_type));
5324 WARN_ON(!proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations));
ddbcc7e8 5325
2bd59d48 5326 return 0;
ddbcc7e8 5327}
b4f48b63 5328
e5fca243
TH
5329static int __init cgroup_wq_init(void)
5330{
5331 /*
5332 * There isn't much point in executing destruction path in
5333 * parallel. Good chunk is serialized with cgroup_mutex anyway.
1a11533f 5334 * Use 1 for @max_active.
e5fca243
TH
5335 *
5336 * We would prefer to do this in cgroup_init() above, but that
5337 * is called before init_workqueues(): so leave this until after.
5338 */
1a11533f 5339 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
e5fca243 5340 BUG_ON(!cgroup_destroy_wq);
b1a21367
TH
5341
5342 /*
5343 * Used to destroy pidlists and separate to serve as flush domain.
5344 * Cap @max_active to 1 too.
5345 */
5346 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
5347 0, 1);
5348 BUG_ON(!cgroup_pidlist_destroy_wq);
5349
e5fca243
TH
5350 return 0;
5351}
5352core_initcall(cgroup_wq_init);
5353
a424316c
PM
5354/*
5355 * proc_cgroup_show()
5356 * - Print task's cgroup paths into seq_file, one line for each hierarchy
5357 * - Used for /proc/<pid>/cgroup.
a424316c 5358 */
006f4ac4
ZL
5359int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
5360 struct pid *pid, struct task_struct *tsk)
a424316c 5361{
e61734c5 5362 char *buf, *path;
a424316c 5363 int retval;
3dd06ffa 5364 struct cgroup_root *root;
a424316c
PM
5365
5366 retval = -ENOMEM;
e61734c5 5367 buf = kmalloc(PATH_MAX, GFP_KERNEL);
a424316c
PM
5368 if (!buf)
5369 goto out;
5370
a424316c 5371 mutex_lock(&cgroup_mutex);
f0d9a5f1 5372 spin_lock_bh(&css_set_lock);
a424316c 5373
985ed670 5374 for_each_root(root) {
a424316c 5375 struct cgroup_subsys *ss;
bd89aabc 5376 struct cgroup *cgrp;
b85d2040 5377 int ssid, count = 0;
a424316c 5378
a2dd4247 5379 if (root == &cgrp_dfl_root && !cgrp_dfl_root_visible)
985ed670
TH
5380 continue;
5381
2c6ab6d2 5382 seq_printf(m, "%d:", root->hierarchy_id);
d98817d4
TH
5383 if (root != &cgrp_dfl_root)
5384 for_each_subsys(ss, ssid)
5385 if (root->subsys_mask & (1 << ssid))
5386 seq_printf(m, "%s%s", count++ ? "," : "",
3e1d2eed 5387 ss->legacy_name);
c6d57f33
PM
5388 if (strlen(root->name))
5389 seq_printf(m, "%sname=%s", count ? "," : "",
5390 root->name);
a424316c 5391 seq_putc(m, ':');
2e91fa7f 5392
7717f7ba 5393 cgrp = task_cgroup_from_root(tsk, root);
2e91fa7f
TH
5394
5395 /*
5396 * On traditional hierarchies, all zombie tasks show up as
5397 * belonging to the root cgroup. On the default hierarchy,
5398 * while a zombie doesn't show up in "cgroup.procs" and
5399 * thus can't be migrated, its /proc/PID/cgroup keeps
5400 * reporting the cgroup it belonged to before exiting. If
5401 * the cgroup is removed before the zombie is reaped,
5402 * " (deleted)" is appended to the cgroup path.
5403 */
5404 if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
5405 path = cgroup_path(cgrp, buf, PATH_MAX);
5406 if (!path) {
5407 retval = -ENAMETOOLONG;
5408 goto out_unlock;
5409 }
5410 } else {
5411 path = "/";
e61734c5 5412 }
2e91fa7f 5413
e61734c5 5414 seq_puts(m, path);
2e91fa7f
TH
5415
5416 if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
5417 seq_puts(m, " (deleted)\n");
5418 else
5419 seq_putc(m, '\n');
a424316c
PM
5420 }
5421
006f4ac4 5422 retval = 0;
a424316c 5423out_unlock:
f0d9a5f1 5424 spin_unlock_bh(&css_set_lock);
a424316c 5425 mutex_unlock(&cgroup_mutex);
a424316c
PM
5426 kfree(buf);
5427out:
5428 return retval;
5429}
5430
a424316c
PM
5431/* Display information about each subsystem and each hierarchy */
5432static int proc_cgroupstats_show(struct seq_file *m, void *v)
5433{
30159ec7 5434 struct cgroup_subsys *ss;
a424316c 5435 int i;
a424316c 5436
8bab8dde 5437 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
aae8aab4
BB
5438 /*
5439 * ideally we don't want subsystems moving around while we do this.
5440 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
5441 * subsys/hierarchy state.
5442 */
a424316c 5443 mutex_lock(&cgroup_mutex);
30159ec7
TH
5444
5445 for_each_subsys(ss, i)
2c6ab6d2 5446 seq_printf(m, "%s\t%d\t%d\t%d\n",
3e1d2eed 5447 ss->legacy_name, ss->root->hierarchy_id,
fc5ed1e9
TH
5448 atomic_read(&ss->root->nr_cgrps),
5449 cgroup_ssid_enabled(i));
30159ec7 5450
a424316c
PM
5451 mutex_unlock(&cgroup_mutex);
5452 return 0;
5453}
5454
5455static int cgroupstats_open(struct inode *inode, struct file *file)
5456{
9dce07f1 5457 return single_open(file, proc_cgroupstats_show, NULL);
a424316c
PM
5458}
5459
828c0950 5460static const struct file_operations proc_cgroupstats_operations = {
a424316c
PM
5461 .open = cgroupstats_open,
5462 .read = seq_read,
5463 .llseek = seq_lseek,
5464 .release = single_release,
5465};
5466
7e47682e
AS
5467static void **subsys_canfork_priv_p(void *ss_priv[CGROUP_CANFORK_COUNT], int i)
5468{
5469 if (CGROUP_CANFORK_START <= i && i < CGROUP_CANFORK_END)
5470 return &ss_priv[i - CGROUP_CANFORK_START];
5471 return NULL;
5472}
5473
5474static void *subsys_canfork_priv(void *ss_priv[CGROUP_CANFORK_COUNT], int i)
5475{
5476 void **private = subsys_canfork_priv_p(ss_priv, i);
5477 return private ? *private : NULL;
5478}
5479
b4f48b63 5480/**
eaf797ab 5481 * cgroup_fork - initialize cgroup related fields during copy_process()
a043e3b2 5482 * @child: pointer to task_struct of forking parent process.
b4f48b63 5483 *
eaf797ab
TH
5484 * A task is associated with the init_css_set until cgroup_post_fork()
5485 * attaches it to the parent's css_set. Empty cg_list indicates that
5486 * @child isn't holding reference to its css_set.
b4f48b63
PM
5487 */
5488void cgroup_fork(struct task_struct *child)
5489{
eaf797ab 5490 RCU_INIT_POINTER(child->cgroups, &init_css_set);
817929ec 5491 INIT_LIST_HEAD(&child->cg_list);
b4f48b63
PM
5492}
5493
7e47682e
AS
5494/**
5495 * cgroup_can_fork - called on a new task before the process is exposed
5496 * @child: the task in question.
5497 *
5498 * This calls the subsystem can_fork() callbacks. If the can_fork() callback
5499 * returns an error, the fork aborts with that error code. This allows for
5500 * a cgroup subsystem to conditionally allow or deny new forks.
5501 */
5502int cgroup_can_fork(struct task_struct *child,
5503 void *ss_priv[CGROUP_CANFORK_COUNT])
5504{
5505 struct cgroup_subsys *ss;
5506 int i, j, ret;
5507
5508 for_each_subsys_which(ss, i, &have_canfork_callback) {
5509 ret = ss->can_fork(child, subsys_canfork_priv_p(ss_priv, i));
5510 if (ret)
5511 goto out_revert;
5512 }
5513
5514 return 0;
5515
5516out_revert:
5517 for_each_subsys(ss, j) {
5518 if (j >= i)
5519 break;
5520 if (ss->cancel_fork)
5521 ss->cancel_fork(child, subsys_canfork_priv(ss_priv, j));
5522 }
5523
5524 return ret;
5525}
5526
5527/**
5528 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
5529 * @child: the task in question
5530 *
5531 * This calls the cancel_fork() callbacks if a fork failed *after*
5532 * cgroup_can_fork() succeded.
5533 */
5534void cgroup_cancel_fork(struct task_struct *child,
5535 void *ss_priv[CGROUP_CANFORK_COUNT])
5536{
5537 struct cgroup_subsys *ss;
5538 int i;
5539
5540 for_each_subsys(ss, i)
5541 if (ss->cancel_fork)
5542 ss->cancel_fork(child, subsys_canfork_priv(ss_priv, i));
5543}
5544
817929ec 5545/**
a043e3b2
LZ
5546 * cgroup_post_fork - called on a new task after adding it to the task list
5547 * @child: the task in question
5548 *
5edee61e
TH
5549 * Adds the task to the list running through its css_set if necessary and
5550 * call the subsystem fork() callbacks. Has to be after the task is
5551 * visible on the task list in case we race with the first call to
0942eeee 5552 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5edee61e 5553 * list.
a043e3b2 5554 */
7e47682e
AS
5555void cgroup_post_fork(struct task_struct *child,
5556 void *old_ss_priv[CGROUP_CANFORK_COUNT])
817929ec 5557{
30159ec7 5558 struct cgroup_subsys *ss;
5edee61e
TH
5559 int i;
5560
3ce3230a 5561 /*
251f8c03 5562 * This may race against cgroup_enable_task_cg_lists(). As that
eaf797ab
TH
5563 * function sets use_task_css_set_links before grabbing
5564 * tasklist_lock and we just went through tasklist_lock to add
5565 * @child, it's guaranteed that either we see the set
5566 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
5567 * @child during its iteration.
5568 *
5569 * If we won the race, @child is associated with %current's
f0d9a5f1 5570 * css_set. Grabbing css_set_lock guarantees both that the
eaf797ab
TH
5571 * association is stable, and, on completion of the parent's
5572 * migration, @child is visible in the source of migration or
5573 * already in the destination cgroup. This guarantee is necessary
5574 * when implementing operations which need to migrate all tasks of
5575 * a cgroup to another.
5576 *
251f8c03 5577 * Note that if we lose to cgroup_enable_task_cg_lists(), @child
eaf797ab
TH
5578 * will remain in init_css_set. This is safe because all tasks are
5579 * in the init_css_set before cg_links is enabled and there's no
5580 * operation which transfers all tasks out of init_css_set.
3ce3230a 5581 */
817929ec 5582 if (use_task_css_set_links) {
eaf797ab
TH
5583 struct css_set *cset;
5584
f0d9a5f1 5585 spin_lock_bh(&css_set_lock);
0e1d768f 5586 cset = task_css_set(current);
eaf797ab 5587 if (list_empty(&child->cg_list)) {
eaf797ab 5588 get_css_set(cset);
f6d7d049 5589 css_set_move_task(child, NULL, cset, false);
eaf797ab 5590 }
f0d9a5f1 5591 spin_unlock_bh(&css_set_lock);
817929ec 5592 }
5edee61e
TH
5593
5594 /*
5595 * Call ss->fork(). This must happen after @child is linked on
5596 * css_set; otherwise, @child might change state between ->fork()
5597 * and addition to css_set.
5598 */
cb4a3167 5599 for_each_subsys_which(ss, i, &have_fork_callback)
7e47682e 5600 ss->fork(child, subsys_canfork_priv(old_ss_priv, i));
817929ec 5601}
5edee61e 5602
b4f48b63
PM
5603/**
5604 * cgroup_exit - detach cgroup from exiting task
5605 * @tsk: pointer to task_struct of exiting process
5606 *
5607 * Description: Detach cgroup from @tsk and release it.
5608 *
5609 * Note that cgroups marked notify_on_release force every task in
5610 * them to take the global cgroup_mutex mutex when exiting.
5611 * This could impact scaling on very large systems. Be reluctant to
5612 * use notify_on_release cgroups where very high task exit scaling
5613 * is required on large systems.
5614 *
0e1d768f
TH
5615 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We
5616 * call cgroup_exit() while the task is still competent to handle
5617 * notify_on_release(), then leave the task attached to the root cgroup in
5618 * each hierarchy for the remainder of its exit. No need to bother with
5619 * init_css_set refcnting. init_css_set never goes away and we can't race
e8604cb4 5620 * with migration path - PF_EXITING is visible to migration path.
b4f48b63 5621 */
1ec41830 5622void cgroup_exit(struct task_struct *tsk)
b4f48b63 5623{
30159ec7 5624 struct cgroup_subsys *ss;
5abb8855 5625 struct css_set *cset;
d41d5a01 5626 int i;
817929ec
PM
5627
5628 /*
0e1d768f 5629 * Unlink from @tsk from its css_set. As migration path can't race
0de0942d 5630 * with us, we can check css_set and cg_list without synchronization.
817929ec 5631 */
0de0942d
TH
5632 cset = task_css_set(tsk);
5633
817929ec 5634 if (!list_empty(&tsk->cg_list)) {
f0d9a5f1 5635 spin_lock_bh(&css_set_lock);
f6d7d049 5636 css_set_move_task(tsk, cset, NULL, false);
f0d9a5f1 5637 spin_unlock_bh(&css_set_lock);
2e91fa7f
TH
5638 } else {
5639 get_css_set(cset);
817929ec
PM
5640 }
5641
cb4a3167 5642 /* see cgroup_post_fork() for details */
2e91fa7f
TH
5643 for_each_subsys_which(ss, i, &have_exit_callback)
5644 ss->exit(tsk);
5645}
30159ec7 5646
2e91fa7f
TH
5647void cgroup_free(struct task_struct *task)
5648{
5649 struct css_set *cset = task_css_set(task);
afcf6c8b
TH
5650 struct cgroup_subsys *ss;
5651 int ssid;
5652
5653 for_each_subsys_which(ss, ssid, &have_free_callback)
5654 ss->free(task);
d41d5a01 5655
2e91fa7f 5656 put_css_set(cset);
b4f48b63 5657}
697f4161 5658
bd89aabc 5659static void check_for_release(struct cgroup *cgrp)
81a6a5cd 5660{
27bd4dbb 5661 if (notify_on_release(cgrp) && !cgroup_is_populated(cgrp) &&
971ff493
ZL
5662 !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp))
5663 schedule_work(&cgrp->release_agent_work);
81a6a5cd
PM
5664}
5665
81a6a5cd
PM
5666/*
5667 * Notify userspace when a cgroup is released, by running the
5668 * configured release agent with the name of the cgroup (path
5669 * relative to the root of cgroup file system) as the argument.
5670 *
5671 * Most likely, this user command will try to rmdir this cgroup.
5672 *
5673 * This races with the possibility that some other task will be
5674 * attached to this cgroup before it is removed, or that some other
5675 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
5676 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
5677 * unused, and this cgroup will be reprieved from its death sentence,
5678 * to continue to serve a useful existence. Next time it's released,
5679 * we will get notified again, if it still has 'notify_on_release' set.
5680 *
5681 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
5682 * means only wait until the task is successfully execve()'d. The
5683 * separate release agent task is forked by call_usermodehelper(),
5684 * then control in this thread returns here, without waiting for the
5685 * release agent task. We don't bother to wait because the caller of
5686 * this routine has no use for the exit status of the release agent
5687 * task, so no sense holding our caller up for that.
81a6a5cd 5688 */
81a6a5cd
PM
5689static void cgroup_release_agent(struct work_struct *work)
5690{
971ff493
ZL
5691 struct cgroup *cgrp =
5692 container_of(work, struct cgroup, release_agent_work);
5693 char *pathbuf = NULL, *agentbuf = NULL, *path;
5694 char *argv[3], *envp[3];
5695
81a6a5cd 5696 mutex_lock(&cgroup_mutex);
971ff493
ZL
5697
5698 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
5699 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
5700 if (!pathbuf || !agentbuf)
5701 goto out;
5702
5703 path = cgroup_path(cgrp, pathbuf, PATH_MAX);
5704 if (!path)
5705 goto out;
5706
5707 argv[0] = agentbuf;
5708 argv[1] = path;
5709 argv[2] = NULL;
5710
5711 /* minimal command environment */
5712 envp[0] = "HOME=/";
5713 envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
5714 envp[2] = NULL;
5715
81a6a5cd 5716 mutex_unlock(&cgroup_mutex);
971ff493 5717 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
3e2cd91a 5718 goto out_free;
971ff493 5719out:
81a6a5cd 5720 mutex_unlock(&cgroup_mutex);
3e2cd91a 5721out_free:
971ff493
ZL
5722 kfree(agentbuf);
5723 kfree(pathbuf);
81a6a5cd 5724}
8bab8dde
PM
5725
5726static int __init cgroup_disable(char *str)
5727{
30159ec7 5728 struct cgroup_subsys *ss;
8bab8dde 5729 char *token;
30159ec7 5730 int i;
8bab8dde
PM
5731
5732 while ((token = strsep(&str, ",")) != NULL) {
5733 if (!*token)
5734 continue;
be45c900 5735
3ed80a62 5736 for_each_subsys(ss, i) {
3e1d2eed
TH
5737 if (strcmp(token, ss->name) &&
5738 strcmp(token, ss->legacy_name))
5739 continue;
a3e72739 5740 cgroup_disable_mask |= 1 << i;
8bab8dde
PM
5741 }
5742 }
5743 return 1;
5744}
5745__setup("cgroup_disable=", cgroup_disable);
38460b48 5746
b77d7b60 5747/**
ec903c0c 5748 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
35cf0836
TH
5749 * @dentry: directory dentry of interest
5750 * @ss: subsystem of interest
b77d7b60 5751 *
5a17f543
TH
5752 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
5753 * to get the corresponding css and return it. If such css doesn't exist
5754 * or can't be pinned, an ERR_PTR value is returned.
e5d1367f 5755 */
ec903c0c
TH
5756struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
5757 struct cgroup_subsys *ss)
e5d1367f 5758{
2bd59d48
TH
5759 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
5760 struct cgroup_subsys_state *css = NULL;
e5d1367f 5761 struct cgroup *cgrp;
e5d1367f 5762
35cf0836 5763 /* is @dentry a cgroup dir? */
2bd59d48
TH
5764 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
5765 kernfs_type(kn) != KERNFS_DIR)
e5d1367f
SE
5766 return ERR_PTR(-EBADF);
5767
5a17f543
TH
5768 rcu_read_lock();
5769
2bd59d48
TH
5770 /*
5771 * This path doesn't originate from kernfs and @kn could already
5772 * have been or be removed at any point. @kn->priv is RCU
a4189487 5773 * protected for this access. See css_release_work_fn() for details.
2bd59d48
TH
5774 */
5775 cgrp = rcu_dereference(kn->priv);
5776 if (cgrp)
5777 css = cgroup_css(cgrp, ss);
5a17f543 5778
ec903c0c 5779 if (!css || !css_tryget_online(css))
5a17f543
TH
5780 css = ERR_PTR(-ENOENT);
5781
5782 rcu_read_unlock();
5783 return css;
e5d1367f 5784}
e5d1367f 5785
1cb650b9
LZ
5786/**
5787 * css_from_id - lookup css by id
5788 * @id: the cgroup id
5789 * @ss: cgroup subsys to be looked into
5790 *
5791 * Returns the css if there's valid one with @id, otherwise returns NULL.
5792 * Should be called under rcu_read_lock().
5793 */
5794struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
5795{
6fa4918d 5796 WARN_ON_ONCE(!rcu_read_lock_held());
adbe427b 5797 return id > 0 ? idr_find(&ss->css_idr, id) : NULL;
e5d1367f
SE
5798}
5799
fe693435 5800#ifdef CONFIG_CGROUP_DEBUG
eb95419b
TH
5801static struct cgroup_subsys_state *
5802debug_css_alloc(struct cgroup_subsys_state *parent_css)
fe693435
PM
5803{
5804 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5805
5806 if (!css)
5807 return ERR_PTR(-ENOMEM);
5808
5809 return css;
5810}
5811
eb95419b 5812static void debug_css_free(struct cgroup_subsys_state *css)
fe693435 5813{
eb95419b 5814 kfree(css);
fe693435
PM
5815}
5816
182446d0
TH
5817static u64 debug_taskcount_read(struct cgroup_subsys_state *css,
5818 struct cftype *cft)
fe693435 5819{
182446d0 5820 return cgroup_task_count(css->cgroup);
fe693435
PM
5821}
5822
182446d0
TH
5823static u64 current_css_set_read(struct cgroup_subsys_state *css,
5824 struct cftype *cft)
fe693435
PM
5825{
5826 return (u64)(unsigned long)current->cgroups;
5827}
5828
182446d0 5829static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css,
03c78cbe 5830 struct cftype *cft)
fe693435
PM
5831{
5832 u64 count;
5833
5834 rcu_read_lock();
a8ad805c 5835 count = atomic_read(&task_css_set(current)->refcount);
fe693435
PM
5836 rcu_read_unlock();
5837 return count;
5838}
5839
2da8ca82 5840static int current_css_set_cg_links_read(struct seq_file *seq, void *v)
7717f7ba 5841{
69d0206c 5842 struct cgrp_cset_link *link;
5abb8855 5843 struct css_set *cset;
e61734c5
TH
5844 char *name_buf;
5845
5846 name_buf = kmalloc(NAME_MAX + 1, GFP_KERNEL);
5847 if (!name_buf)
5848 return -ENOMEM;
7717f7ba 5849
f0d9a5f1 5850 spin_lock_bh(&css_set_lock);
7717f7ba 5851 rcu_read_lock();
5abb8855 5852 cset = rcu_dereference(current->cgroups);
69d0206c 5853 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 5854 struct cgroup *c = link->cgrp;
7717f7ba 5855
a2dd4247 5856 cgroup_name(c, name_buf, NAME_MAX + 1);
2c6ab6d2 5857 seq_printf(seq, "Root %d group %s\n",
a2dd4247 5858 c->root->hierarchy_id, name_buf);
7717f7ba
PM
5859 }
5860 rcu_read_unlock();
f0d9a5f1 5861 spin_unlock_bh(&css_set_lock);
e61734c5 5862 kfree(name_buf);
7717f7ba
PM
5863 return 0;
5864}
5865
5866#define MAX_TASKS_SHOWN_PER_CSS 25
2da8ca82 5867static int cgroup_css_links_read(struct seq_file *seq, void *v)
7717f7ba 5868{
2da8ca82 5869 struct cgroup_subsys_state *css = seq_css(seq);
69d0206c 5870 struct cgrp_cset_link *link;
7717f7ba 5871
f0d9a5f1 5872 spin_lock_bh(&css_set_lock);
182446d0 5873 list_for_each_entry(link, &css->cgroup->cset_links, cset_link) {
69d0206c 5874 struct css_set *cset = link->cset;
7717f7ba
PM
5875 struct task_struct *task;
5876 int count = 0;
c7561128 5877
5abb8855 5878 seq_printf(seq, "css_set %p\n", cset);
c7561128 5879
5abb8855 5880 list_for_each_entry(task, &cset->tasks, cg_list) {
c7561128
TH
5881 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
5882 goto overflow;
5883 seq_printf(seq, " task %d\n", task_pid_vnr(task));
5884 }
5885
5886 list_for_each_entry(task, &cset->mg_tasks, cg_list) {
5887 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
5888 goto overflow;
5889 seq_printf(seq, " task %d\n", task_pid_vnr(task));
7717f7ba 5890 }
c7561128
TH
5891 continue;
5892 overflow:
5893 seq_puts(seq, " ...\n");
7717f7ba 5894 }
f0d9a5f1 5895 spin_unlock_bh(&css_set_lock);
7717f7ba
PM
5896 return 0;
5897}
5898
182446d0 5899static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft)
fe693435 5900{
27bd4dbb 5901 return (!cgroup_is_populated(css->cgroup) &&
a25eb52e 5902 !css_has_online_children(&css->cgroup->self));
fe693435
PM
5903}
5904
5905static struct cftype debug_files[] = {
fe693435
PM
5906 {
5907 .name = "taskcount",
5908 .read_u64 = debug_taskcount_read,
5909 },
5910
5911 {
5912 .name = "current_css_set",
5913 .read_u64 = current_css_set_read,
5914 },
5915
5916 {
5917 .name = "current_css_set_refcount",
5918 .read_u64 = current_css_set_refcount_read,
5919 },
5920
7717f7ba
PM
5921 {
5922 .name = "current_css_set_cg_links",
2da8ca82 5923 .seq_show = current_css_set_cg_links_read,
7717f7ba
PM
5924 },
5925
5926 {
5927 .name = "cgroup_css_links",
2da8ca82 5928 .seq_show = cgroup_css_links_read,
7717f7ba
PM
5929 },
5930
fe693435
PM
5931 {
5932 .name = "releasable",
5933 .read_u64 = releasable_read,
5934 },
fe693435 5935
4baf6e33
TH
5936 { } /* terminate */
5937};
fe693435 5938
073219e9 5939struct cgroup_subsys debug_cgrp_subsys = {
92fb9748
TH
5940 .css_alloc = debug_css_alloc,
5941 .css_free = debug_css_free,
5577964e 5942 .legacy_cftypes = debug_files,
fe693435
PM
5943};
5944#endif /* CONFIG_CGROUP_DEBUG */