]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blame - kernel/cgroup.c
Revert "cgroup: add cgroup_subsys->css_e_css_changed()"
[mirror_ubuntu-focal-kernel.git] / kernel / cgroup.c
CommitLineData
ddbcc7e8 1/*
ddbcc7e8
PM
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
0dea1168
KS
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
ddbcc7e8
PM
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
ed3d261b
JP
29#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
ddbcc7e8 31#include <linux/cgroup.h>
2ce9738b 32#include <linux/cred.h>
c6d57f33 33#include <linux/ctype.h>
ddbcc7e8 34#include <linux/errno.h>
2ce9738b 35#include <linux/init_task.h>
ddbcc7e8
PM
36#include <linux/kernel.h>
37#include <linux/list.h>
c9482a5b 38#include <linux/magic.h>
ddbcc7e8
PM
39#include <linux/mm.h>
40#include <linux/mutex.h>
41#include <linux/mount.h>
42#include <linux/pagemap.h>
a424316c 43#include <linux/proc_fs.h>
ddbcc7e8
PM
44#include <linux/rcupdate.h>
45#include <linux/sched.h>
ddbcc7e8 46#include <linux/slab.h>
ddbcc7e8 47#include <linux/spinlock.h>
1ed13287 48#include <linux/percpu-rwsem.h>
ddbcc7e8 49#include <linux/string.h>
bbcb81d0 50#include <linux/sort.h>
81a6a5cd 51#include <linux/kmod.h>
846c7bb0
BS
52#include <linux/delayacct.h>
53#include <linux/cgroupstats.h>
0ac801fe 54#include <linux/hashtable.h>
096b7fe0 55#include <linux/pid_namespace.h>
2c6ab6d2 56#include <linux/idr.h>
d1d9fd33 57#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
c4c27fbd 58#include <linux/kthread.h>
776f02fa 59#include <linux/delay.h>
60063497 60#include <linux/atomic.h>
e93ad19d 61#include <linux/cpuset.h>
bd1060a1 62#include <net/sock.h>
ddbcc7e8 63
b1a21367
TH
64/*
65 * pidlists linger the following amount before being destroyed. The goal
66 * is avoiding frequent destruction in the middle of consecutive read calls
67 * Expiring in the middle is a performance problem not a correctness one.
68 * 1 sec should be enough.
69 */
70#define CGROUP_PIDLIST_DESTROY_DELAY HZ
71
8d7e6fb0
TH
72#define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
73 MAX_CFTYPE_NAME + 2)
74
e25e2cbb
TH
75/*
76 * cgroup_mutex is the master lock. Any modification to cgroup or its
77 * hierarchy must be performed while holding it.
78 *
f0d9a5f1 79 * css_set_lock protects task->cgroups pointer, the list of css_set
0e1d768f 80 * objects, and the chain of tasks off each css_set.
e25e2cbb 81 *
0e1d768f
TH
82 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
83 * cgroup.h can use them for lockdep annotations.
e25e2cbb 84 */
2219449a
TH
85#ifdef CONFIG_PROVE_RCU
86DEFINE_MUTEX(cgroup_mutex);
f0d9a5f1 87DEFINE_SPINLOCK(css_set_lock);
0e1d768f 88EXPORT_SYMBOL_GPL(cgroup_mutex);
f0d9a5f1 89EXPORT_SYMBOL_GPL(css_set_lock);
2219449a 90#else
81a6a5cd 91static DEFINE_MUTEX(cgroup_mutex);
f0d9a5f1 92static DEFINE_SPINLOCK(css_set_lock);
2219449a
TH
93#endif
94
6fa4918d 95/*
15a4c835
TH
96 * Protects cgroup_idr and css_idr so that IDs can be released without
97 * grabbing cgroup_mutex.
6fa4918d
TH
98 */
99static DEFINE_SPINLOCK(cgroup_idr_lock);
100
34c06254
TH
101/*
102 * Protects cgroup_file->kn for !self csses. It synchronizes notifications
103 * against file removal/re-creation across css hiding.
104 */
105static DEFINE_SPINLOCK(cgroup_file_kn_lock);
106
69e943b7
TH
107/*
108 * Protects cgroup_subsys->release_agent_path. Modifying it also requires
109 * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock.
110 */
111static DEFINE_SPINLOCK(release_agent_path_lock);
81a6a5cd 112
1ed13287
TH
113struct percpu_rw_semaphore cgroup_threadgroup_rwsem;
114
8353da1f 115#define cgroup_assert_mutex_or_rcu_locked() \
f78f5b90
PM
116 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
117 !lockdep_is_held(&cgroup_mutex), \
8353da1f 118 "cgroup_mutex or RCU read lock required");
780cd8b3 119
e5fca243
TH
120/*
121 * cgroup destruction makes heavy use of work items and there can be a lot
122 * of concurrent destructions. Use a separate workqueue so that cgroup
123 * destruction work items don't end up filling up max_active of system_wq
124 * which may lead to deadlock.
125 */
126static struct workqueue_struct *cgroup_destroy_wq;
127
b1a21367
TH
128/*
129 * pidlist destructions need to be flushed on cgroup destruction. Use a
130 * separate workqueue as flush domain.
131 */
132static struct workqueue_struct *cgroup_pidlist_destroy_wq;
133
3ed80a62 134/* generate an array of cgroup subsystem pointers */
073219e9 135#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
3ed80a62 136static struct cgroup_subsys *cgroup_subsys[] = {
ddbcc7e8
PM
137#include <linux/cgroup_subsys.h>
138};
073219e9
TH
139#undef SUBSYS
140
141/* array of cgroup subsystem names */
142#define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
143static const char *cgroup_subsys_name[] = {
ddbcc7e8
PM
144#include <linux/cgroup_subsys.h>
145};
073219e9 146#undef SUBSYS
ddbcc7e8 147
49d1dc4b
TH
148/* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
149#define SUBSYS(_x) \
150 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \
151 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \
152 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \
153 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
154#include <linux/cgroup_subsys.h>
155#undef SUBSYS
156
157#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
158static struct static_key_true *cgroup_subsys_enabled_key[] = {
159#include <linux/cgroup_subsys.h>
160};
161#undef SUBSYS
162
163#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
164static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
165#include <linux/cgroup_subsys.h>
166};
167#undef SUBSYS
168
ddbcc7e8 169/*
3dd06ffa 170 * The default hierarchy, reserved for the subsystems that are otherwise
9871bf95
TH
171 * unattached - it never has more than a single cgroup, and all tasks are
172 * part of that cgroup.
ddbcc7e8 173 */
a2dd4247 174struct cgroup_root cgrp_dfl_root;
d0ec4230 175EXPORT_SYMBOL_GPL(cgrp_dfl_root);
9871bf95 176
a2dd4247
TH
177/*
178 * The default hierarchy always exists but is hidden until mounted for the
179 * first time. This is for backward compatibility.
180 */
181static bool cgrp_dfl_root_visible;
ddbcc7e8 182
223ffb29
JW
183/* Controllers blocked by the commandline in v1 */
184static unsigned long cgroup_no_v1_mask;
185
5533e011 186/* some controllers are not supported in the default hierarchy */
8ab456ac 187static unsigned long cgrp_dfl_root_inhibit_ss_mask;
5533e011 188
ddbcc7e8
PM
189/* The list of hierarchy roots */
190
9871bf95
TH
191static LIST_HEAD(cgroup_roots);
192static int cgroup_root_count;
ddbcc7e8 193
3417ae1f 194/* hierarchy ID allocation and mapping, protected by cgroup_mutex */
1a574231 195static DEFINE_IDR(cgroup_hierarchy_idr);
2c6ab6d2 196
794611a1 197/*
0cb51d71
TH
198 * Assign a monotonically increasing serial number to csses. It guarantees
199 * cgroups with bigger numbers are newer than those with smaller numbers.
200 * Also, as csses are always appended to the parent's ->children list, it
201 * guarantees that sibling csses are always sorted in the ascending serial
202 * number order on the list. Protected by cgroup_mutex.
794611a1 203 */
0cb51d71 204static u64 css_serial_nr_next = 1;
794611a1 205
cb4a3167
AS
206/*
207 * These bitmask flags indicate whether tasks in the fork and exit paths have
208 * fork/exit handlers to call. This avoids us having to do extra work in the
209 * fork/exit path to check which subsystems have fork/exit callbacks.
ddbcc7e8 210 */
cb4a3167
AS
211static unsigned long have_fork_callback __read_mostly;
212static unsigned long have_exit_callback __read_mostly;
afcf6c8b 213static unsigned long have_free_callback __read_mostly;
ddbcc7e8 214
7e47682e
AS
215/* Ditto for the can_fork callback. */
216static unsigned long have_canfork_callback __read_mostly;
217
67e9c74b 218static struct file_system_type cgroup2_fs_type;
a14c6874
TH
219static struct cftype cgroup_dfl_base_files[];
220static struct cftype cgroup_legacy_base_files[];
628f7cd4 221
3dd06ffa 222static int rebind_subsystems(struct cgroup_root *dst_root,
8ab456ac 223 unsigned long ss_mask);
ed27b9f7 224static void css_task_iter_advance(struct css_task_iter *it);
42809dd4 225static int cgroup_destroy_locked(struct cgroup *cgrp);
f63070d3
TH
226static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss,
227 bool visible);
9d755d33 228static void css_release(struct percpu_ref *ref);
f8f22e53 229static void kill_css(struct cgroup_subsys_state *css);
4df8dc90
TH
230static int cgroup_addrm_files(struct cgroup_subsys_state *css,
231 struct cgroup *cgrp, struct cftype cfts[],
2bb566cb 232 bool is_add);
42809dd4 233
fc5ed1e9
TH
234/**
235 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
236 * @ssid: subsys ID of interest
237 *
238 * cgroup_subsys_enabled() can only be used with literal subsys names which
239 * is fine for individual subsystems but unsuitable for cgroup core. This
240 * is slower static_key_enabled() based test indexed by @ssid.
241 */
242static bool cgroup_ssid_enabled(int ssid)
243{
244 return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
245}
246
223ffb29
JW
247static bool cgroup_ssid_no_v1(int ssid)
248{
249 return cgroup_no_v1_mask & (1 << ssid);
250}
251
9e10a130
TH
252/**
253 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
254 * @cgrp: the cgroup of interest
255 *
256 * The default hierarchy is the v2 interface of cgroup and this function
257 * can be used to test whether a cgroup is on the default hierarchy for
258 * cases where a subsystem should behave differnetly depending on the
259 * interface version.
260 *
261 * The set of behaviors which change on the default hierarchy are still
262 * being determined and the mount option is prefixed with __DEVEL__.
263 *
264 * List of changed behaviors:
265 *
266 * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
267 * and "name" are disallowed.
268 *
269 * - When mounting an existing superblock, mount options should match.
270 *
271 * - Remount is disallowed.
272 *
273 * - rename(2) is disallowed.
274 *
275 * - "tasks" is removed. Everything should be at process granularity. Use
276 * "cgroup.procs" instead.
277 *
278 * - "cgroup.procs" is not sorted. pids will be unique unless they got
279 * recycled inbetween reads.
280 *
281 * - "release_agent" and "notify_on_release" are removed. Replacement
282 * notification mechanism will be implemented.
283 *
284 * - "cgroup.clone_children" is removed.
285 *
286 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup
287 * and its descendants contain no task; otherwise, 1. The file also
288 * generates kernfs notification which can be monitored through poll and
289 * [di]notify when the value of the file changes.
290 *
291 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
292 * take masks of ancestors with non-empty cpus/mems, instead of being
293 * moved to an ancestor.
294 *
295 * - cpuset: a task can be moved into an empty cpuset, and again it takes
296 * masks of ancestors.
297 *
298 * - memcg: use_hierarchy is on by default and the cgroup file for the flag
299 * is not created.
300 *
301 * - blkcg: blk-throttle becomes properly hierarchical.
302 *
303 * - debug: disallowed on the default hierarchy.
304 */
305static bool cgroup_on_dfl(const struct cgroup *cgrp)
306{
307 return cgrp->root == &cgrp_dfl_root;
308}
309
6fa4918d
TH
310/* IDR wrappers which synchronize using cgroup_idr_lock */
311static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
312 gfp_t gfp_mask)
313{
314 int ret;
315
316 idr_preload(gfp_mask);
54504e97 317 spin_lock_bh(&cgroup_idr_lock);
d0164adc 318 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
54504e97 319 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
320 idr_preload_end();
321 return ret;
322}
323
324static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
325{
326 void *ret;
327
54504e97 328 spin_lock_bh(&cgroup_idr_lock);
6fa4918d 329 ret = idr_replace(idr, ptr, id);
54504e97 330 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
331 return ret;
332}
333
334static void cgroup_idr_remove(struct idr *idr, int id)
335{
54504e97 336 spin_lock_bh(&cgroup_idr_lock);
6fa4918d 337 idr_remove(idr, id);
54504e97 338 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
339}
340
d51f39b0
TH
341static struct cgroup *cgroup_parent(struct cgroup *cgrp)
342{
343 struct cgroup_subsys_state *parent_css = cgrp->self.parent;
344
345 if (parent_css)
346 return container_of(parent_css, struct cgroup, self);
347 return NULL;
348}
349
95109b62
TH
350/**
351 * cgroup_css - obtain a cgroup's css for the specified subsystem
352 * @cgrp: the cgroup of interest
9d800df1 353 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
95109b62 354 *
ca8bdcaf
TH
355 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
356 * function must be called either under cgroup_mutex or rcu_read_lock() and
357 * the caller is responsible for pinning the returned css if it wants to
358 * keep accessing it outside the said locks. This function may return
359 * %NULL if @cgrp doesn't have @subsys_id enabled.
95109b62
TH
360 */
361static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
ca8bdcaf 362 struct cgroup_subsys *ss)
95109b62 363{
ca8bdcaf 364 if (ss)
aec25020 365 return rcu_dereference_check(cgrp->subsys[ss->id],
ace2bee8 366 lockdep_is_held(&cgroup_mutex));
ca8bdcaf 367 else
9d800df1 368 return &cgrp->self;
95109b62 369}
42809dd4 370
aec3dfcb
TH
371/**
372 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
373 * @cgrp: the cgroup of interest
9d800df1 374 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
aec3dfcb 375 *
d0f702e6 376 * Similar to cgroup_css() but returns the effective css, which is defined
aec3dfcb
TH
377 * as the matching css of the nearest ancestor including self which has @ss
378 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
379 * function is guaranteed to return non-NULL css.
380 */
381static struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
382 struct cgroup_subsys *ss)
383{
384 lockdep_assert_held(&cgroup_mutex);
385
386 if (!ss)
9d800df1 387 return &cgrp->self;
aec3dfcb
TH
388
389 if (!(cgrp->root->subsys_mask & (1 << ss->id)))
390 return NULL;
391
eeecbd19
TH
392 /*
393 * This function is used while updating css associations and thus
394 * can't test the csses directly. Use ->child_subsys_mask.
395 */
d51f39b0
TH
396 while (cgroup_parent(cgrp) &&
397 !(cgroup_parent(cgrp)->child_subsys_mask & (1 << ss->id)))
398 cgrp = cgroup_parent(cgrp);
aec3dfcb
TH
399
400 return cgroup_css(cgrp, ss);
95109b62 401}
42809dd4 402
eeecbd19
TH
403/**
404 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
405 * @cgrp: the cgroup of interest
406 * @ss: the subsystem of interest
407 *
408 * Find and get the effective css of @cgrp for @ss. The effective css is
409 * defined as the matching css of the nearest ancestor including self which
410 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
411 * the root css is returned, so this function always returns a valid css.
412 * The returned css must be put using css_put().
413 */
414struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
415 struct cgroup_subsys *ss)
416{
417 struct cgroup_subsys_state *css;
418
419 rcu_read_lock();
420
421 do {
422 css = cgroup_css(cgrp, ss);
423
424 if (css && css_tryget_online(css))
425 goto out_unlock;
426 cgrp = cgroup_parent(cgrp);
427 } while (cgrp);
428
429 css = init_css_set.subsys[ss->id];
430 css_get(css);
431out_unlock:
432 rcu_read_unlock();
433 return css;
434}
435
ddbcc7e8 436/* convenient tests for these bits */
54766d4a 437static inline bool cgroup_is_dead(const struct cgroup *cgrp)
ddbcc7e8 438{
184faf32 439 return !(cgrp->self.flags & CSS_ONLINE);
ddbcc7e8
PM
440}
441
052c3f3a
TH
442static void cgroup_get(struct cgroup *cgrp)
443{
444 WARN_ON_ONCE(cgroup_is_dead(cgrp));
445 css_get(&cgrp->self);
446}
447
448static bool cgroup_tryget(struct cgroup *cgrp)
449{
450 return css_tryget(&cgrp->self);
451}
452
b4168640 453struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
59f5296b 454{
2bd59d48 455 struct cgroup *cgrp = of->kn->parent->priv;
b4168640 456 struct cftype *cft = of_cft(of);
2bd59d48
TH
457
458 /*
459 * This is open and unprotected implementation of cgroup_css().
460 * seq_css() is only called from a kernfs file operation which has
461 * an active reference on the file. Because all the subsystem
462 * files are drained before a css is disassociated with a cgroup,
463 * the matching css from the cgroup's subsys table is guaranteed to
464 * be and stay valid until the enclosing operation is complete.
465 */
466 if (cft->ss)
467 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
468 else
9d800df1 469 return &cgrp->self;
59f5296b 470}
b4168640 471EXPORT_SYMBOL_GPL(of_css);
59f5296b 472
e9685a03 473static int notify_on_release(const struct cgroup *cgrp)
81a6a5cd 474{
bd89aabc 475 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
81a6a5cd
PM
476}
477
1c6727af
TH
478/**
479 * for_each_css - iterate all css's of a cgroup
480 * @css: the iteration cursor
481 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
482 * @cgrp: the target cgroup to iterate css's of
483 *
aec3dfcb 484 * Should be called under cgroup_[tree_]mutex.
1c6727af
TH
485 */
486#define for_each_css(css, ssid, cgrp) \
487 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
488 if (!((css) = rcu_dereference_check( \
489 (cgrp)->subsys[(ssid)], \
490 lockdep_is_held(&cgroup_mutex)))) { } \
491 else
492
aec3dfcb
TH
493/**
494 * for_each_e_css - iterate all effective css's of a cgroup
495 * @css: the iteration cursor
496 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
497 * @cgrp: the target cgroup to iterate css's of
498 *
499 * Should be called under cgroup_[tree_]mutex.
500 */
501#define for_each_e_css(css, ssid, cgrp) \
502 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
503 if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \
504 ; \
505 else
506
30159ec7 507/**
3ed80a62 508 * for_each_subsys - iterate all enabled cgroup subsystems
30159ec7 509 * @ss: the iteration cursor
780cd8b3 510 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
30159ec7 511 */
780cd8b3 512#define for_each_subsys(ss, ssid) \
3ed80a62
TH
513 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT && \
514 (((ss) = cgroup_subsys[ssid]) || true); (ssid)++)
30159ec7 515
cb4a3167
AS
516/**
517 * for_each_subsys_which - filter for_each_subsys with a bitmask
518 * @ss: the iteration cursor
519 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
520 * @ss_maskp: a pointer to the bitmask
521 *
522 * The block will only run for cases where the ssid-th bit (1 << ssid) of
523 * mask is set to 1.
524 */
525#define for_each_subsys_which(ss, ssid, ss_maskp) \
526 if (!CGROUP_SUBSYS_COUNT) /* to avoid spurious gcc warning */ \
4a705c5c 527 (ssid) = 0; \
cb4a3167
AS
528 else \
529 for_each_set_bit(ssid, ss_maskp, CGROUP_SUBSYS_COUNT) \
530 if (((ss) = cgroup_subsys[ssid]) && false) \
531 break; \
532 else
533
985ed670
TH
534/* iterate across the hierarchies */
535#define for_each_root(root) \
5549c497 536 list_for_each_entry((root), &cgroup_roots, root_list)
ddbcc7e8 537
f8f22e53
TH
538/* iterate over child cgrps, lock should be held throughout iteration */
539#define cgroup_for_each_live_child(child, cgrp) \
d5c419b6 540 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
8353da1f 541 if (({ lockdep_assert_held(&cgroup_mutex); \
f8f22e53
TH
542 cgroup_is_dead(child); })) \
543 ; \
544 else
7ae1bad9 545
81a6a5cd 546static void cgroup_release_agent(struct work_struct *work);
bd89aabc 547static void check_for_release(struct cgroup *cgrp);
81a6a5cd 548
69d0206c
TH
549/*
550 * A cgroup can be associated with multiple css_sets as different tasks may
551 * belong to different cgroups on different hierarchies. In the other
552 * direction, a css_set is naturally associated with multiple cgroups.
553 * This M:N relationship is represented by the following link structure
554 * which exists for each association and allows traversing the associations
555 * from both sides.
556 */
557struct cgrp_cset_link {
558 /* the cgroup and css_set this link associates */
559 struct cgroup *cgrp;
560 struct css_set *cset;
561
562 /* list of cgrp_cset_links anchored at cgrp->cset_links */
563 struct list_head cset_link;
564
565 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
566 struct list_head cgrp_link;
817929ec
PM
567};
568
172a2c06
TH
569/*
570 * The default css_set - used by init and its children prior to any
817929ec
PM
571 * hierarchies being mounted. It contains a pointer to the root state
572 * for each subsystem. Also used to anchor the list of css_sets. Not
573 * reference-counted, to improve performance when child cgroups
574 * haven't been created.
575 */
5024ae29 576struct css_set init_css_set = {
172a2c06
TH
577 .refcount = ATOMIC_INIT(1),
578 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links),
579 .tasks = LIST_HEAD_INIT(init_css_set.tasks),
580 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks),
581 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node),
582 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node),
ed27b9f7 583 .task_iters = LIST_HEAD_INIT(init_css_set.task_iters),
172a2c06 584};
817929ec 585
172a2c06 586static int css_set_count = 1; /* 1 for init_css_set */
817929ec 587
0de0942d
TH
588/**
589 * css_set_populated - does a css_set contain any tasks?
590 * @cset: target css_set
591 */
592static bool css_set_populated(struct css_set *cset)
593{
f0d9a5f1 594 lockdep_assert_held(&css_set_lock);
0de0942d
TH
595
596 return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
597}
598
842b597e
TH
599/**
600 * cgroup_update_populated - updated populated count of a cgroup
601 * @cgrp: the target cgroup
602 * @populated: inc or dec populated count
603 *
0de0942d
TH
604 * One of the css_sets associated with @cgrp is either getting its first
605 * task or losing the last. Update @cgrp->populated_cnt accordingly. The
606 * count is propagated towards root so that a given cgroup's populated_cnt
607 * is zero iff the cgroup and all its descendants don't contain any tasks.
842b597e
TH
608 *
609 * @cgrp's interface file "cgroup.populated" is zero if
610 * @cgrp->populated_cnt is zero and 1 otherwise. When @cgrp->populated_cnt
611 * changes from or to zero, userland is notified that the content of the
612 * interface file has changed. This can be used to detect when @cgrp and
613 * its descendants become populated or empty.
614 */
615static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
616{
f0d9a5f1 617 lockdep_assert_held(&css_set_lock);
842b597e
TH
618
619 do {
620 bool trigger;
621
622 if (populated)
623 trigger = !cgrp->populated_cnt++;
624 else
625 trigger = !--cgrp->populated_cnt;
626
627 if (!trigger)
628 break;
629
ad2ed2b3 630 check_for_release(cgrp);
6f60eade
TH
631 cgroup_file_notify(&cgrp->events_file);
632
d51f39b0 633 cgrp = cgroup_parent(cgrp);
842b597e
TH
634 } while (cgrp);
635}
636
0de0942d
TH
637/**
638 * css_set_update_populated - update populated state of a css_set
639 * @cset: target css_set
640 * @populated: whether @cset is populated or depopulated
641 *
642 * @cset is either getting the first task or losing the last. Update the
643 * ->populated_cnt of all associated cgroups accordingly.
644 */
645static void css_set_update_populated(struct css_set *cset, bool populated)
646{
647 struct cgrp_cset_link *link;
648
f0d9a5f1 649 lockdep_assert_held(&css_set_lock);
0de0942d
TH
650
651 list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
652 cgroup_update_populated(link->cgrp, populated);
653}
654
f6d7d049
TH
655/**
656 * css_set_move_task - move a task from one css_set to another
657 * @task: task being moved
658 * @from_cset: css_set @task currently belongs to (may be NULL)
659 * @to_cset: new css_set @task is being moved to (may be NULL)
660 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
661 *
662 * Move @task from @from_cset to @to_cset. If @task didn't belong to any
663 * css_set, @from_cset can be NULL. If @task is being disassociated
664 * instead of moved, @to_cset can be NULL.
665 *
ed27b9f7
TH
666 * This function automatically handles populated_cnt updates and
667 * css_task_iter adjustments but the caller is responsible for managing
668 * @from_cset and @to_cset's reference counts.
f6d7d049
TH
669 */
670static void css_set_move_task(struct task_struct *task,
671 struct css_set *from_cset, struct css_set *to_cset,
672 bool use_mg_tasks)
673{
f0d9a5f1 674 lockdep_assert_held(&css_set_lock);
f6d7d049
TH
675
676 if (from_cset) {
ed27b9f7
TH
677 struct css_task_iter *it, *pos;
678
f6d7d049 679 WARN_ON_ONCE(list_empty(&task->cg_list));
ed27b9f7
TH
680
681 /*
682 * @task is leaving, advance task iterators which are
683 * pointing to it so that they can resume at the next
684 * position. Advancing an iterator might remove it from
685 * the list, use safe walk. See css_task_iter_advance*()
686 * for details.
687 */
688 list_for_each_entry_safe(it, pos, &from_cset->task_iters,
689 iters_node)
690 if (it->task_pos == &task->cg_list)
691 css_task_iter_advance(it);
692
f6d7d049
TH
693 list_del_init(&task->cg_list);
694 if (!css_set_populated(from_cset))
695 css_set_update_populated(from_cset, false);
696 } else {
697 WARN_ON_ONCE(!list_empty(&task->cg_list));
698 }
699
700 if (to_cset) {
701 /*
702 * We are synchronized through cgroup_threadgroup_rwsem
703 * against PF_EXITING setting such that we can't race
704 * against cgroup_exit() changing the css_set to
705 * init_css_set and dropping the old one.
706 */
707 WARN_ON_ONCE(task->flags & PF_EXITING);
708
709 if (!css_set_populated(to_cset))
710 css_set_update_populated(to_cset, true);
711 rcu_assign_pointer(task->cgroups, to_cset);
712 list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
713 &to_cset->tasks);
714 }
715}
716
7717f7ba
PM
717/*
718 * hash table for cgroup groups. This improves the performance to find
719 * an existing css_set. This hash doesn't (currently) take into
720 * account cgroups in empty hierarchies.
721 */
472b1053 722#define CSS_SET_HASH_BITS 7
0ac801fe 723static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
472b1053 724
0ac801fe 725static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
472b1053 726{
0ac801fe 727 unsigned long key = 0UL;
30159ec7
TH
728 struct cgroup_subsys *ss;
729 int i;
472b1053 730
30159ec7 731 for_each_subsys(ss, i)
0ac801fe
LZ
732 key += (unsigned long)css[i];
733 key = (key >> 16) ^ key;
472b1053 734
0ac801fe 735 return key;
472b1053
LZ
736}
737
a25eb52e 738static void put_css_set_locked(struct css_set *cset)
b4f48b63 739{
69d0206c 740 struct cgrp_cset_link *link, *tmp_link;
2d8f243a
TH
741 struct cgroup_subsys *ss;
742 int ssid;
5abb8855 743
f0d9a5f1 744 lockdep_assert_held(&css_set_lock);
89c5509b
TH
745
746 if (!atomic_dec_and_test(&cset->refcount))
146aa1bd 747 return;
81a6a5cd 748
53254f90
TH
749 /* This css_set is dead. unlink it and release cgroup and css refs */
750 for_each_subsys(ss, ssid) {
2d8f243a 751 list_del(&cset->e_cset_node[ssid]);
53254f90
TH
752 css_put(cset->subsys[ssid]);
753 }
5abb8855 754 hash_del(&cset->hlist);
2c6ab6d2
PM
755 css_set_count--;
756
69d0206c 757 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
69d0206c
TH
758 list_del(&link->cset_link);
759 list_del(&link->cgrp_link);
2ceb231b
TH
760 if (cgroup_parent(link->cgrp))
761 cgroup_put(link->cgrp);
2c6ab6d2 762 kfree(link);
81a6a5cd 763 }
2c6ab6d2 764
5abb8855 765 kfree_rcu(cset, rcu_head);
b4f48b63
PM
766}
767
a25eb52e 768static void put_css_set(struct css_set *cset)
89c5509b
TH
769{
770 /*
771 * Ensure that the refcount doesn't hit zero while any readers
772 * can see it. Similar to atomic_dec_and_lock(), but for an
773 * rwlock
774 */
775 if (atomic_add_unless(&cset->refcount, -1, 1))
776 return;
777
f0d9a5f1 778 spin_lock_bh(&css_set_lock);
a25eb52e 779 put_css_set_locked(cset);
f0d9a5f1 780 spin_unlock_bh(&css_set_lock);
89c5509b
TH
781}
782
817929ec
PM
783/*
784 * refcounted get/put for css_set objects
785 */
5abb8855 786static inline void get_css_set(struct css_set *cset)
817929ec 787{
5abb8855 788 atomic_inc(&cset->refcount);
817929ec
PM
789}
790
b326f9d0 791/**
7717f7ba 792 * compare_css_sets - helper function for find_existing_css_set().
5abb8855
TH
793 * @cset: candidate css_set being tested
794 * @old_cset: existing css_set for a task
7717f7ba
PM
795 * @new_cgrp: cgroup that's being entered by the task
796 * @template: desired set of css pointers in css_set (pre-calculated)
797 *
6f4b7e63 798 * Returns true if "cset" matches "old_cset" except for the hierarchy
7717f7ba
PM
799 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
800 */
5abb8855
TH
801static bool compare_css_sets(struct css_set *cset,
802 struct css_set *old_cset,
7717f7ba
PM
803 struct cgroup *new_cgrp,
804 struct cgroup_subsys_state *template[])
805{
806 struct list_head *l1, *l2;
807
aec3dfcb
TH
808 /*
809 * On the default hierarchy, there can be csets which are
810 * associated with the same set of cgroups but different csses.
811 * Let's first ensure that csses match.
812 */
813 if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
7717f7ba 814 return false;
7717f7ba
PM
815
816 /*
817 * Compare cgroup pointers in order to distinguish between
aec3dfcb
TH
818 * different cgroups in hierarchies. As different cgroups may
819 * share the same effective css, this comparison is always
820 * necessary.
7717f7ba 821 */
69d0206c
TH
822 l1 = &cset->cgrp_links;
823 l2 = &old_cset->cgrp_links;
7717f7ba 824 while (1) {
69d0206c 825 struct cgrp_cset_link *link1, *link2;
5abb8855 826 struct cgroup *cgrp1, *cgrp2;
7717f7ba
PM
827
828 l1 = l1->next;
829 l2 = l2->next;
830 /* See if we reached the end - both lists are equal length. */
69d0206c
TH
831 if (l1 == &cset->cgrp_links) {
832 BUG_ON(l2 != &old_cset->cgrp_links);
7717f7ba
PM
833 break;
834 } else {
69d0206c 835 BUG_ON(l2 == &old_cset->cgrp_links);
7717f7ba
PM
836 }
837 /* Locate the cgroups associated with these links. */
69d0206c
TH
838 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
839 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
840 cgrp1 = link1->cgrp;
841 cgrp2 = link2->cgrp;
7717f7ba 842 /* Hierarchies should be linked in the same order. */
5abb8855 843 BUG_ON(cgrp1->root != cgrp2->root);
7717f7ba
PM
844
845 /*
846 * If this hierarchy is the hierarchy of the cgroup
847 * that's changing, then we need to check that this
848 * css_set points to the new cgroup; if it's any other
849 * hierarchy, then this css_set should point to the
850 * same cgroup as the old css_set.
851 */
5abb8855
TH
852 if (cgrp1->root == new_cgrp->root) {
853 if (cgrp1 != new_cgrp)
7717f7ba
PM
854 return false;
855 } else {
5abb8855 856 if (cgrp1 != cgrp2)
7717f7ba
PM
857 return false;
858 }
859 }
860 return true;
861}
862
b326f9d0
TH
863/**
864 * find_existing_css_set - init css array and find the matching css_set
865 * @old_cset: the css_set that we're using before the cgroup transition
866 * @cgrp: the cgroup that we're moving into
867 * @template: out param for the new set of csses, should be clear on entry
817929ec 868 */
5abb8855
TH
869static struct css_set *find_existing_css_set(struct css_set *old_cset,
870 struct cgroup *cgrp,
871 struct cgroup_subsys_state *template[])
b4f48b63 872{
3dd06ffa 873 struct cgroup_root *root = cgrp->root;
30159ec7 874 struct cgroup_subsys *ss;
5abb8855 875 struct css_set *cset;
0ac801fe 876 unsigned long key;
b326f9d0 877 int i;
817929ec 878
aae8aab4
BB
879 /*
880 * Build the set of subsystem state objects that we want to see in the
881 * new css_set. while subsystems can change globally, the entries here
882 * won't change, so no need for locking.
883 */
30159ec7 884 for_each_subsys(ss, i) {
f392e51c 885 if (root->subsys_mask & (1UL << i)) {
aec3dfcb
TH
886 /*
887 * @ss is in this hierarchy, so we want the
888 * effective css from @cgrp.
889 */
890 template[i] = cgroup_e_css(cgrp, ss);
817929ec 891 } else {
aec3dfcb
TH
892 /*
893 * @ss is not in this hierarchy, so we don't want
894 * to change the css.
895 */
5abb8855 896 template[i] = old_cset->subsys[i];
817929ec
PM
897 }
898 }
899
0ac801fe 900 key = css_set_hash(template);
5abb8855
TH
901 hash_for_each_possible(css_set_table, cset, hlist, key) {
902 if (!compare_css_sets(cset, old_cset, cgrp, template))
7717f7ba
PM
903 continue;
904
905 /* This css_set matches what we need */
5abb8855 906 return cset;
472b1053 907 }
817929ec
PM
908
909 /* No existing cgroup group matched */
910 return NULL;
911}
912
69d0206c 913static void free_cgrp_cset_links(struct list_head *links_to_free)
36553434 914{
69d0206c 915 struct cgrp_cset_link *link, *tmp_link;
36553434 916
69d0206c
TH
917 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
918 list_del(&link->cset_link);
36553434
LZ
919 kfree(link);
920 }
921}
922
69d0206c
TH
923/**
924 * allocate_cgrp_cset_links - allocate cgrp_cset_links
925 * @count: the number of links to allocate
926 * @tmp_links: list_head the allocated links are put on
927 *
928 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
929 * through ->cset_link. Returns 0 on success or -errno.
817929ec 930 */
69d0206c 931static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
817929ec 932{
69d0206c 933 struct cgrp_cset_link *link;
817929ec 934 int i;
69d0206c
TH
935
936 INIT_LIST_HEAD(tmp_links);
937
817929ec 938 for (i = 0; i < count; i++) {
f4f4be2b 939 link = kzalloc(sizeof(*link), GFP_KERNEL);
817929ec 940 if (!link) {
69d0206c 941 free_cgrp_cset_links(tmp_links);
817929ec
PM
942 return -ENOMEM;
943 }
69d0206c 944 list_add(&link->cset_link, tmp_links);
817929ec
PM
945 }
946 return 0;
947}
948
c12f65d4
LZ
949/**
950 * link_css_set - a helper function to link a css_set to a cgroup
69d0206c 951 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
5abb8855 952 * @cset: the css_set to be linked
c12f65d4
LZ
953 * @cgrp: the destination cgroup
954 */
69d0206c
TH
955static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
956 struct cgroup *cgrp)
c12f65d4 957{
69d0206c 958 struct cgrp_cset_link *link;
c12f65d4 959
69d0206c 960 BUG_ON(list_empty(tmp_links));
6803c006
TH
961
962 if (cgroup_on_dfl(cgrp))
963 cset->dfl_cgrp = cgrp;
964
69d0206c
TH
965 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
966 link->cset = cset;
7717f7ba 967 link->cgrp = cgrp;
842b597e 968
7717f7ba 969 /*
389b9c1b
TH
970 * Always add links to the tail of the lists so that the lists are
971 * in choronological order.
7717f7ba 972 */
389b9c1b 973 list_move_tail(&link->cset_link, &cgrp->cset_links);
69d0206c 974 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
2ceb231b
TH
975
976 if (cgroup_parent(cgrp))
977 cgroup_get(cgrp);
c12f65d4
LZ
978}
979
b326f9d0
TH
980/**
981 * find_css_set - return a new css_set with one cgroup updated
982 * @old_cset: the baseline css_set
983 * @cgrp: the cgroup to be updated
984 *
985 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
986 * substituted into the appropriate hierarchy.
817929ec 987 */
5abb8855
TH
988static struct css_set *find_css_set(struct css_set *old_cset,
989 struct cgroup *cgrp)
817929ec 990{
b326f9d0 991 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
5abb8855 992 struct css_set *cset;
69d0206c
TH
993 struct list_head tmp_links;
994 struct cgrp_cset_link *link;
2d8f243a 995 struct cgroup_subsys *ss;
0ac801fe 996 unsigned long key;
2d8f243a 997 int ssid;
472b1053 998
b326f9d0
TH
999 lockdep_assert_held(&cgroup_mutex);
1000
817929ec
PM
1001 /* First see if we already have a cgroup group that matches
1002 * the desired set */
f0d9a5f1 1003 spin_lock_bh(&css_set_lock);
5abb8855
TH
1004 cset = find_existing_css_set(old_cset, cgrp, template);
1005 if (cset)
1006 get_css_set(cset);
f0d9a5f1 1007 spin_unlock_bh(&css_set_lock);
817929ec 1008
5abb8855
TH
1009 if (cset)
1010 return cset;
817929ec 1011
f4f4be2b 1012 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
5abb8855 1013 if (!cset)
817929ec
PM
1014 return NULL;
1015
69d0206c 1016 /* Allocate all the cgrp_cset_link objects that we'll need */
9871bf95 1017 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
5abb8855 1018 kfree(cset);
817929ec
PM
1019 return NULL;
1020 }
1021
5abb8855 1022 atomic_set(&cset->refcount, 1);
69d0206c 1023 INIT_LIST_HEAD(&cset->cgrp_links);
5abb8855 1024 INIT_LIST_HEAD(&cset->tasks);
c7561128 1025 INIT_LIST_HEAD(&cset->mg_tasks);
1958d2d5 1026 INIT_LIST_HEAD(&cset->mg_preload_node);
b3dc094e 1027 INIT_LIST_HEAD(&cset->mg_node);
ed27b9f7 1028 INIT_LIST_HEAD(&cset->task_iters);
5abb8855 1029 INIT_HLIST_NODE(&cset->hlist);
817929ec
PM
1030
1031 /* Copy the set of subsystem state objects generated in
1032 * find_existing_css_set() */
5abb8855 1033 memcpy(cset->subsys, template, sizeof(cset->subsys));
817929ec 1034
f0d9a5f1 1035 spin_lock_bh(&css_set_lock);
817929ec 1036 /* Add reference counts and links from the new css_set. */
69d0206c 1037 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
7717f7ba 1038 struct cgroup *c = link->cgrp;
69d0206c 1039
7717f7ba
PM
1040 if (c->root == cgrp->root)
1041 c = cgrp;
69d0206c 1042 link_css_set(&tmp_links, cset, c);
7717f7ba 1043 }
817929ec 1044
69d0206c 1045 BUG_ON(!list_empty(&tmp_links));
817929ec 1046
817929ec 1047 css_set_count++;
472b1053 1048
2d8f243a 1049 /* Add @cset to the hash table */
5abb8855
TH
1050 key = css_set_hash(cset->subsys);
1051 hash_add(css_set_table, &cset->hlist, key);
472b1053 1052
53254f90
TH
1053 for_each_subsys(ss, ssid) {
1054 struct cgroup_subsys_state *css = cset->subsys[ssid];
1055
2d8f243a 1056 list_add_tail(&cset->e_cset_node[ssid],
53254f90
TH
1057 &css->cgroup->e_csets[ssid]);
1058 css_get(css);
1059 }
2d8f243a 1060
f0d9a5f1 1061 spin_unlock_bh(&css_set_lock);
817929ec 1062
5abb8855 1063 return cset;
b4f48b63
PM
1064}
1065
3dd06ffa 1066static struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
7717f7ba 1067{
3dd06ffa 1068 struct cgroup *root_cgrp = kf_root->kn->priv;
2bd59d48 1069
3dd06ffa 1070 return root_cgrp->root;
2bd59d48
TH
1071}
1072
3dd06ffa 1073static int cgroup_init_root_id(struct cgroup_root *root)
f2e85d57
TH
1074{
1075 int id;
1076
1077 lockdep_assert_held(&cgroup_mutex);
1078
985ed670 1079 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
f2e85d57
TH
1080 if (id < 0)
1081 return id;
1082
1083 root->hierarchy_id = id;
1084 return 0;
1085}
1086
3dd06ffa 1087static void cgroup_exit_root_id(struct cgroup_root *root)
f2e85d57
TH
1088{
1089 lockdep_assert_held(&cgroup_mutex);
1090
1091 if (root->hierarchy_id) {
1092 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1093 root->hierarchy_id = 0;
1094 }
1095}
1096
3dd06ffa 1097static void cgroup_free_root(struct cgroup_root *root)
f2e85d57
TH
1098{
1099 if (root) {
d0f702e6 1100 /* hierarchy ID should already have been released */
f2e85d57
TH
1101 WARN_ON_ONCE(root->hierarchy_id);
1102
1103 idr_destroy(&root->cgroup_idr);
1104 kfree(root);
1105 }
1106}
1107
3dd06ffa 1108static void cgroup_destroy_root(struct cgroup_root *root)
59f5296b 1109{
3dd06ffa 1110 struct cgroup *cgrp = &root->cgrp;
f2e85d57 1111 struct cgrp_cset_link *link, *tmp_link;
f2e85d57 1112
2bd59d48 1113 mutex_lock(&cgroup_mutex);
f2e85d57 1114
776f02fa 1115 BUG_ON(atomic_read(&root->nr_cgrps));
d5c419b6 1116 BUG_ON(!list_empty(&cgrp->self.children));
f2e85d57 1117
f2e85d57 1118 /* Rebind all subsystems back to the default hierarchy */
f392e51c 1119 rebind_subsystems(&cgrp_dfl_root, root->subsys_mask);
7717f7ba 1120
7717f7ba 1121 /*
f2e85d57
TH
1122 * Release all the links from cset_links to this hierarchy's
1123 * root cgroup
7717f7ba 1124 */
f0d9a5f1 1125 spin_lock_bh(&css_set_lock);
f2e85d57
TH
1126
1127 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1128 list_del(&link->cset_link);
1129 list_del(&link->cgrp_link);
1130 kfree(link);
1131 }
f0d9a5f1
TH
1132
1133 spin_unlock_bh(&css_set_lock);
f2e85d57
TH
1134
1135 if (!list_empty(&root->root_list)) {
1136 list_del(&root->root_list);
1137 cgroup_root_count--;
1138 }
1139
1140 cgroup_exit_root_id(root);
1141
1142 mutex_unlock(&cgroup_mutex);
f2e85d57 1143
2bd59d48 1144 kernfs_destroy_root(root->kf_root);
f2e85d57
TH
1145 cgroup_free_root(root);
1146}
1147
ceb6a081
TH
1148/* look up cgroup associated with given css_set on the specified hierarchy */
1149static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
3dd06ffa 1150 struct cgroup_root *root)
7717f7ba 1151{
7717f7ba
PM
1152 struct cgroup *res = NULL;
1153
96d365e0 1154 lockdep_assert_held(&cgroup_mutex);
f0d9a5f1 1155 lockdep_assert_held(&css_set_lock);
96d365e0 1156
5abb8855 1157 if (cset == &init_css_set) {
3dd06ffa 1158 res = &root->cgrp;
7717f7ba 1159 } else {
69d0206c
TH
1160 struct cgrp_cset_link *link;
1161
1162 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 1163 struct cgroup *c = link->cgrp;
69d0206c 1164
7717f7ba
PM
1165 if (c->root == root) {
1166 res = c;
1167 break;
1168 }
1169 }
1170 }
96d365e0 1171
7717f7ba
PM
1172 BUG_ON(!res);
1173 return res;
1174}
1175
ddbcc7e8 1176/*
ceb6a081 1177 * Return the cgroup for "task" from the given hierarchy. Must be
f0d9a5f1 1178 * called with cgroup_mutex and css_set_lock held.
ceb6a081
TH
1179 */
1180static struct cgroup *task_cgroup_from_root(struct task_struct *task,
3dd06ffa 1181 struct cgroup_root *root)
ceb6a081
TH
1182{
1183 /*
1184 * No need to lock the task - since we hold cgroup_mutex the
1185 * task can't change groups, so the only thing that can happen
1186 * is that it exits and its css is set back to init_css_set.
1187 */
1188 return cset_cgroup_from_root(task_css_set(task), root);
1189}
1190
ddbcc7e8 1191/*
ddbcc7e8
PM
1192 * A task must hold cgroup_mutex to modify cgroups.
1193 *
1194 * Any task can increment and decrement the count field without lock.
1195 * So in general, code holding cgroup_mutex can't rely on the count
1196 * field not changing. However, if the count goes to zero, then only
956db3ca 1197 * cgroup_attach_task() can increment it again. Because a count of zero
ddbcc7e8
PM
1198 * means that no tasks are currently attached, therefore there is no
1199 * way a task attached to that cgroup can fork (the other way to
1200 * increment the count). So code holding cgroup_mutex can safely
1201 * assume that if the count is zero, it will stay zero. Similarly, if
1202 * a task holds cgroup_mutex on a cgroup with zero count, it
1203 * knows that the cgroup won't be removed, as cgroup_rmdir()
1204 * needs that mutex.
1205 *
ddbcc7e8
PM
1206 * A cgroup can only be deleted if both its 'count' of using tasks
1207 * is zero, and its list of 'children' cgroups is empty. Since all
1208 * tasks in the system use _some_ cgroup, and since there is always at
3dd06ffa 1209 * least one task in the system (init, pid == 1), therefore, root cgroup
ddbcc7e8 1210 * always has either children cgroups and/or using tasks. So we don't
3dd06ffa 1211 * need a special hack to ensure that root cgroup cannot be deleted.
ddbcc7e8
PM
1212 *
1213 * P.S. One more locking exception. RCU is used to guard the
956db3ca 1214 * update of a tasks cgroup pointer by cgroup_attach_task()
ddbcc7e8
PM
1215 */
1216
2bd59d48 1217static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
828c0950 1218static const struct file_operations proc_cgroupstats_operations;
a424316c 1219
8d7e6fb0
TH
1220static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1221 char *buf)
ddbcc7e8 1222{
3e1d2eed
TH
1223 struct cgroup_subsys *ss = cft->ss;
1224
8d7e6fb0
TH
1225 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1226 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
1227 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
3e1d2eed
TH
1228 cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1229 cft->name);
8d7e6fb0
TH
1230 else
1231 strncpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1232 return buf;
ddbcc7e8
PM
1233}
1234
f2e85d57
TH
1235/**
1236 * cgroup_file_mode - deduce file mode of a control file
1237 * @cft: the control file in question
1238 *
7dbdb199 1239 * S_IRUGO for read, S_IWUSR for write.
f2e85d57
TH
1240 */
1241static umode_t cgroup_file_mode(const struct cftype *cft)
65dff759 1242{
f2e85d57 1243 umode_t mode = 0;
65dff759 1244
f2e85d57
TH
1245 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1246 mode |= S_IRUGO;
1247
7dbdb199
TH
1248 if (cft->write_u64 || cft->write_s64 || cft->write) {
1249 if (cft->flags & CFTYPE_WORLD_WRITABLE)
1250 mode |= S_IWUGO;
1251 else
1252 mode |= S_IWUSR;
1253 }
f2e85d57
TH
1254
1255 return mode;
65dff759
LZ
1256}
1257
af0ba678 1258/**
0f060deb 1259 * cgroup_calc_child_subsys_mask - calculate child_subsys_mask
af0ba678 1260 * @cgrp: the target cgroup
0f060deb 1261 * @subtree_control: the new subtree_control mask to consider
af0ba678
TH
1262 *
1263 * On the default hierarchy, a subsystem may request other subsystems to be
1264 * enabled together through its ->depends_on mask. In such cases, more
1265 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1266 *
0f060deb
TH
1267 * This function calculates which subsystems need to be enabled if
1268 * @subtree_control is to be applied to @cgrp. The returned mask is always
1269 * a superset of @subtree_control and follows the usual hierarchy rules.
af0ba678 1270 */
8ab456ac
AS
1271static unsigned long cgroup_calc_child_subsys_mask(struct cgroup *cgrp,
1272 unsigned long subtree_control)
667c2491 1273{
af0ba678 1274 struct cgroup *parent = cgroup_parent(cgrp);
8ab456ac 1275 unsigned long cur_ss_mask = subtree_control;
af0ba678
TH
1276 struct cgroup_subsys *ss;
1277 int ssid;
1278
1279 lockdep_assert_held(&cgroup_mutex);
1280
0f060deb
TH
1281 if (!cgroup_on_dfl(cgrp))
1282 return cur_ss_mask;
af0ba678
TH
1283
1284 while (true) {
8ab456ac 1285 unsigned long new_ss_mask = cur_ss_mask;
af0ba678 1286
a966a4ed
AS
1287 for_each_subsys_which(ss, ssid, &cur_ss_mask)
1288 new_ss_mask |= ss->depends_on;
af0ba678
TH
1289
1290 /*
1291 * Mask out subsystems which aren't available. This can
1292 * happen only if some depended-upon subsystems were bound
1293 * to non-default hierarchies.
1294 */
1295 if (parent)
1296 new_ss_mask &= parent->child_subsys_mask;
1297 else
1298 new_ss_mask &= cgrp->root->subsys_mask;
1299
1300 if (new_ss_mask == cur_ss_mask)
1301 break;
1302 cur_ss_mask = new_ss_mask;
1303 }
1304
0f060deb
TH
1305 return cur_ss_mask;
1306}
1307
1308/**
1309 * cgroup_refresh_child_subsys_mask - update child_subsys_mask
1310 * @cgrp: the target cgroup
1311 *
1312 * Update @cgrp->child_subsys_mask according to the current
1313 * @cgrp->subtree_control using cgroup_calc_child_subsys_mask().
1314 */
1315static void cgroup_refresh_child_subsys_mask(struct cgroup *cgrp)
1316{
1317 cgrp->child_subsys_mask =
1318 cgroup_calc_child_subsys_mask(cgrp, cgrp->subtree_control);
667c2491
TH
1319}
1320
a9746d8d
TH
1321/**
1322 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1323 * @kn: the kernfs_node being serviced
1324 *
1325 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1326 * the method finishes if locking succeeded. Note that once this function
1327 * returns the cgroup returned by cgroup_kn_lock_live() may become
1328 * inaccessible any time. If the caller intends to continue to access the
1329 * cgroup, it should pin it before invoking this function.
1330 */
1331static void cgroup_kn_unlock(struct kernfs_node *kn)
ddbcc7e8 1332{
a9746d8d
TH
1333 struct cgroup *cgrp;
1334
1335 if (kernfs_type(kn) == KERNFS_DIR)
1336 cgrp = kn->priv;
1337 else
1338 cgrp = kn->parent->priv;
1339
1340 mutex_unlock(&cgroup_mutex);
a9746d8d
TH
1341
1342 kernfs_unbreak_active_protection(kn);
1343 cgroup_put(cgrp);
ddbcc7e8
PM
1344}
1345
a9746d8d
TH
1346/**
1347 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1348 * @kn: the kernfs_node being serviced
1349 *
1350 * This helper is to be used by a cgroup kernfs method currently servicing
1351 * @kn. It breaks the active protection, performs cgroup locking and
1352 * verifies that the associated cgroup is alive. Returns the cgroup if
1353 * alive; otherwise, %NULL. A successful return should be undone by a
1354 * matching cgroup_kn_unlock() invocation.
1355 *
1356 * Any cgroup kernfs method implementation which requires locking the
1357 * associated cgroup should use this helper. It avoids nesting cgroup
1358 * locking under kernfs active protection and allows all kernfs operations
1359 * including self-removal.
1360 */
1361static struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn)
05ef1d7c 1362{
a9746d8d
TH
1363 struct cgroup *cgrp;
1364
1365 if (kernfs_type(kn) == KERNFS_DIR)
1366 cgrp = kn->priv;
1367 else
1368 cgrp = kn->parent->priv;
05ef1d7c 1369
2739d3cc 1370 /*
01f6474c 1371 * We're gonna grab cgroup_mutex which nests outside kernfs
a9746d8d
TH
1372 * active_ref. cgroup liveliness check alone provides enough
1373 * protection against removal. Ensure @cgrp stays accessible and
1374 * break the active_ref protection.
2739d3cc 1375 */
aa32362f
LZ
1376 if (!cgroup_tryget(cgrp))
1377 return NULL;
a9746d8d
TH
1378 kernfs_break_active_protection(kn);
1379
2bd59d48 1380 mutex_lock(&cgroup_mutex);
05ef1d7c 1381
a9746d8d
TH
1382 if (!cgroup_is_dead(cgrp))
1383 return cgrp;
1384
1385 cgroup_kn_unlock(kn);
1386 return NULL;
ddbcc7e8 1387}
05ef1d7c 1388
2739d3cc 1389static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
05ef1d7c 1390{
2bd59d48 1391 char name[CGROUP_FILE_NAME_MAX];
05ef1d7c 1392
01f6474c 1393 lockdep_assert_held(&cgroup_mutex);
34c06254
TH
1394
1395 if (cft->file_offset) {
1396 struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
1397 struct cgroup_file *cfile = (void *)css + cft->file_offset;
1398
1399 spin_lock_irq(&cgroup_file_kn_lock);
1400 cfile->kn = NULL;
1401 spin_unlock_irq(&cgroup_file_kn_lock);
1402 }
1403
2bd59d48 1404 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
05ef1d7c
TH
1405}
1406
13af07df 1407/**
4df8dc90
TH
1408 * css_clear_dir - remove subsys files in a cgroup directory
1409 * @css: taget css
1410 * @cgrp_override: specify if target cgroup is different from css->cgroup
13af07df 1411 */
4df8dc90
TH
1412static void css_clear_dir(struct cgroup_subsys_state *css,
1413 struct cgroup *cgrp_override)
05ef1d7c 1414{
4df8dc90
TH
1415 struct cgroup *cgrp = cgrp_override ?: css->cgroup;
1416 struct cftype *cfts;
05ef1d7c 1417
4df8dc90
TH
1418 list_for_each_entry(cfts, &css->ss->cfts, node)
1419 cgroup_addrm_files(css, cgrp, cfts, false);
ddbcc7e8
PM
1420}
1421
ccdca218 1422/**
4df8dc90
TH
1423 * css_populate_dir - create subsys files in a cgroup directory
1424 * @css: target css
1425 * @cgrp_overried: specify if target cgroup is different from css->cgroup
ccdca218
TH
1426 *
1427 * On failure, no file is added.
1428 */
4df8dc90
TH
1429static int css_populate_dir(struct cgroup_subsys_state *css,
1430 struct cgroup *cgrp_override)
ccdca218 1431{
4df8dc90
TH
1432 struct cgroup *cgrp = cgrp_override ?: css->cgroup;
1433 struct cftype *cfts, *failed_cfts;
1434 int ret;
ccdca218 1435
4df8dc90
TH
1436 if (!css->ss) {
1437 if (cgroup_on_dfl(cgrp))
1438 cfts = cgroup_dfl_base_files;
1439 else
1440 cfts = cgroup_legacy_base_files;
ccdca218 1441
4df8dc90
TH
1442 return cgroup_addrm_files(&cgrp->self, cgrp, cfts, true);
1443 }
ccdca218 1444
4df8dc90
TH
1445 list_for_each_entry(cfts, &css->ss->cfts, node) {
1446 ret = cgroup_addrm_files(css, cgrp, cfts, true);
1447 if (ret < 0) {
1448 failed_cfts = cfts;
1449 goto err;
ccdca218
TH
1450 }
1451 }
1452 return 0;
1453err:
4df8dc90
TH
1454 list_for_each_entry(cfts, &css->ss->cfts, node) {
1455 if (cfts == failed_cfts)
1456 break;
1457 cgroup_addrm_files(css, cgrp, cfts, false);
1458 }
ccdca218
TH
1459 return ret;
1460}
1461
8ab456ac
AS
1462static int rebind_subsystems(struct cgroup_root *dst_root,
1463 unsigned long ss_mask)
ddbcc7e8 1464{
1ada4838 1465 struct cgroup *dcgrp = &dst_root->cgrp;
30159ec7 1466 struct cgroup_subsys *ss;
8ab456ac 1467 unsigned long tmp_ss_mask;
2d8f243a 1468 int ssid, i, ret;
ddbcc7e8 1469
ace2bee8 1470 lockdep_assert_held(&cgroup_mutex);
ddbcc7e8 1471
a966a4ed 1472 for_each_subsys_which(ss, ssid, &ss_mask) {
7fd8c565
TH
1473 /* if @ss has non-root csses attached to it, can't move */
1474 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)))
3ed80a62 1475 return -EBUSY;
1d5be6b2 1476
5df36032 1477 /* can't move between two non-dummy roots either */
7fd8c565 1478 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
5df36032 1479 return -EBUSY;
ddbcc7e8
PM
1480 }
1481
5533e011
TH
1482 /* skip creating root files on dfl_root for inhibited subsystems */
1483 tmp_ss_mask = ss_mask;
1484 if (dst_root == &cgrp_dfl_root)
1485 tmp_ss_mask &= ~cgrp_dfl_root_inhibit_ss_mask;
1486
4df8dc90
TH
1487 for_each_subsys_which(ss, ssid, &tmp_ss_mask) {
1488 struct cgroup *scgrp = &ss->root->cgrp;
1489 int tssid;
1490
1491 ret = css_populate_dir(cgroup_css(scgrp, ss), dcgrp);
1492 if (!ret)
1493 continue;
ddbcc7e8 1494
a2dd4247
TH
1495 /*
1496 * Rebinding back to the default root is not allowed to
1497 * fail. Using both default and non-default roots should
1498 * be rare. Moving subsystems back and forth even more so.
1499 * Just warn about it and continue.
1500 */
4df8dc90
TH
1501 if (dst_root == &cgrp_dfl_root) {
1502 if (cgrp_dfl_root_visible) {
1503 pr_warn("failed to create files (%d) while rebinding 0x%lx to default root\n",
1504 ret, ss_mask);
1505 pr_warn("you may retry by moving them to a different hierarchy and unbinding\n");
1506 }
1507 continue;
a2dd4247 1508 }
4df8dc90
TH
1509
1510 for_each_subsys_which(ss, tssid, &tmp_ss_mask) {
1511 if (tssid == ssid)
1512 break;
1513 css_clear_dir(cgroup_css(scgrp, ss), dcgrp);
1514 }
1515 return ret;
5df36032 1516 }
3126121f
TH
1517
1518 /*
1519 * Nothing can fail from this point on. Remove files for the
1520 * removed subsystems and rebind each subsystem.
1521 */
a966a4ed 1522 for_each_subsys_which(ss, ssid, &ss_mask) {
1ada4838
TH
1523 struct cgroup_root *src_root = ss->root;
1524 struct cgroup *scgrp = &src_root->cgrp;
1525 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
2d8f243a 1526 struct css_set *cset;
a8a648c4 1527
1ada4838 1528 WARN_ON(!css || cgroup_css(dcgrp, ss));
a8a648c4 1529
4df8dc90
TH
1530 css_clear_dir(css, NULL);
1531
1ada4838
TH
1532 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1533 rcu_assign_pointer(dcgrp->subsys[ssid], css);
5df36032 1534 ss->root = dst_root;
1ada4838 1535 css->cgroup = dcgrp;
73e80ed8 1536
f0d9a5f1 1537 spin_lock_bh(&css_set_lock);
2d8f243a
TH
1538 hash_for_each(css_set_table, i, cset, hlist)
1539 list_move_tail(&cset->e_cset_node[ss->id],
1ada4838 1540 &dcgrp->e_csets[ss->id]);
f0d9a5f1 1541 spin_unlock_bh(&css_set_lock);
2d8f243a 1542
f392e51c 1543 src_root->subsys_mask &= ~(1 << ssid);
1ada4838
TH
1544 scgrp->subtree_control &= ~(1 << ssid);
1545 cgroup_refresh_child_subsys_mask(scgrp);
f392e51c 1546
bd53d617 1547 /* default hierarchy doesn't enable controllers by default */
f392e51c 1548 dst_root->subsys_mask |= 1 << ssid;
49d1dc4b
TH
1549 if (dst_root == &cgrp_dfl_root) {
1550 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1551 } else {
1ada4838
TH
1552 dcgrp->subtree_control |= 1 << ssid;
1553 cgroup_refresh_child_subsys_mask(dcgrp);
49d1dc4b 1554 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
667c2491 1555 }
a8a648c4 1556
5df36032
TH
1557 if (ss->bind)
1558 ss->bind(css);
ddbcc7e8 1559 }
ddbcc7e8 1560
1ada4838 1561 kernfs_activate(dcgrp->kn);
ddbcc7e8
PM
1562 return 0;
1563}
1564
2bd59d48
TH
1565static int cgroup_show_options(struct seq_file *seq,
1566 struct kernfs_root *kf_root)
ddbcc7e8 1567{
3dd06ffa 1568 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
ddbcc7e8 1569 struct cgroup_subsys *ss;
b85d2040 1570 int ssid;
ddbcc7e8 1571
d98817d4
TH
1572 if (root != &cgrp_dfl_root)
1573 for_each_subsys(ss, ssid)
1574 if (root->subsys_mask & (1 << ssid))
61e57c0c 1575 seq_show_option(seq, ss->legacy_name, NULL);
93438629 1576 if (root->flags & CGRP_ROOT_NOPREFIX)
ddbcc7e8 1577 seq_puts(seq, ",noprefix");
93438629 1578 if (root->flags & CGRP_ROOT_XATTR)
03b1cde6 1579 seq_puts(seq, ",xattr");
69e943b7
TH
1580
1581 spin_lock(&release_agent_path_lock);
81a6a5cd 1582 if (strlen(root->release_agent_path))
a068acf2
KC
1583 seq_show_option(seq, "release_agent",
1584 root->release_agent_path);
69e943b7
TH
1585 spin_unlock(&release_agent_path_lock);
1586
3dd06ffa 1587 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
97978e6d 1588 seq_puts(seq, ",clone_children");
c6d57f33 1589 if (strlen(root->name))
a068acf2 1590 seq_show_option(seq, "name", root->name);
ddbcc7e8
PM
1591 return 0;
1592}
1593
1594struct cgroup_sb_opts {
8ab456ac 1595 unsigned long subsys_mask;
69dfa00c 1596 unsigned int flags;
81a6a5cd 1597 char *release_agent;
2260e7fc 1598 bool cpuset_clone_children;
c6d57f33 1599 char *name;
2c6ab6d2
PM
1600 /* User explicitly requested empty subsystem */
1601 bool none;
ddbcc7e8
PM
1602};
1603
cf5d5941 1604static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
ddbcc7e8 1605{
32a8cf23
DL
1606 char *token, *o = data;
1607 bool all_ss = false, one_ss = false;
8ab456ac 1608 unsigned long mask = -1UL;
30159ec7 1609 struct cgroup_subsys *ss;
7b9a6ba5 1610 int nr_opts = 0;
30159ec7 1611 int i;
f9ab5b5b
LZ
1612
1613#ifdef CONFIG_CPUSETS
69dfa00c 1614 mask = ~(1U << cpuset_cgrp_id);
f9ab5b5b 1615#endif
ddbcc7e8 1616
c6d57f33 1617 memset(opts, 0, sizeof(*opts));
ddbcc7e8
PM
1618
1619 while ((token = strsep(&o, ",")) != NULL) {
7b9a6ba5
TH
1620 nr_opts++;
1621
ddbcc7e8
PM
1622 if (!*token)
1623 return -EINVAL;
32a8cf23 1624 if (!strcmp(token, "none")) {
2c6ab6d2
PM
1625 /* Explicitly have no subsystems */
1626 opts->none = true;
32a8cf23
DL
1627 continue;
1628 }
1629 if (!strcmp(token, "all")) {
1630 /* Mutually exclusive option 'all' + subsystem name */
1631 if (one_ss)
1632 return -EINVAL;
1633 all_ss = true;
1634 continue;
1635 }
1636 if (!strcmp(token, "noprefix")) {
93438629 1637 opts->flags |= CGRP_ROOT_NOPREFIX;
32a8cf23
DL
1638 continue;
1639 }
1640 if (!strcmp(token, "clone_children")) {
2260e7fc 1641 opts->cpuset_clone_children = true;
32a8cf23
DL
1642 continue;
1643 }
03b1cde6 1644 if (!strcmp(token, "xattr")) {
93438629 1645 opts->flags |= CGRP_ROOT_XATTR;
03b1cde6
AR
1646 continue;
1647 }
32a8cf23 1648 if (!strncmp(token, "release_agent=", 14)) {
81a6a5cd
PM
1649 /* Specifying two release agents is forbidden */
1650 if (opts->release_agent)
1651 return -EINVAL;
c6d57f33 1652 opts->release_agent =
e400c285 1653 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
81a6a5cd
PM
1654 if (!opts->release_agent)
1655 return -ENOMEM;
32a8cf23
DL
1656 continue;
1657 }
1658 if (!strncmp(token, "name=", 5)) {
c6d57f33
PM
1659 const char *name = token + 5;
1660 /* Can't specify an empty name */
1661 if (!strlen(name))
1662 return -EINVAL;
1663 /* Must match [\w.-]+ */
1664 for (i = 0; i < strlen(name); i++) {
1665 char c = name[i];
1666 if (isalnum(c))
1667 continue;
1668 if ((c == '.') || (c == '-') || (c == '_'))
1669 continue;
1670 return -EINVAL;
1671 }
1672 /* Specifying two names is forbidden */
1673 if (opts->name)
1674 return -EINVAL;
1675 opts->name = kstrndup(name,
e400c285 1676 MAX_CGROUP_ROOT_NAMELEN - 1,
c6d57f33
PM
1677 GFP_KERNEL);
1678 if (!opts->name)
1679 return -ENOMEM;
32a8cf23
DL
1680
1681 continue;
1682 }
1683
30159ec7 1684 for_each_subsys(ss, i) {
3e1d2eed 1685 if (strcmp(token, ss->legacy_name))
32a8cf23 1686 continue;
fc5ed1e9 1687 if (!cgroup_ssid_enabled(i))
32a8cf23 1688 continue;
223ffb29
JW
1689 if (cgroup_ssid_no_v1(i))
1690 continue;
32a8cf23
DL
1691
1692 /* Mutually exclusive option 'all' + subsystem name */
1693 if (all_ss)
1694 return -EINVAL;
69dfa00c 1695 opts->subsys_mask |= (1 << i);
32a8cf23
DL
1696 one_ss = true;
1697
1698 break;
1699 }
1700 if (i == CGROUP_SUBSYS_COUNT)
1701 return -ENOENT;
1702 }
1703
7b9a6ba5
TH
1704 /*
1705 * If the 'all' option was specified select all the subsystems,
1706 * otherwise if 'none', 'name=' and a subsystem name options were
1707 * not specified, let's default to 'all'
1708 */
1709 if (all_ss || (!one_ss && !opts->none && !opts->name))
1710 for_each_subsys(ss, i)
223ffb29 1711 if (cgroup_ssid_enabled(i) && !cgroup_ssid_no_v1(i))
7b9a6ba5
TH
1712 opts->subsys_mask |= (1 << i);
1713
1714 /*
1715 * We either have to specify by name or by subsystems. (So all
1716 * empty hierarchies must have a name).
1717 */
1718 if (!opts->subsys_mask && !opts->name)
1719 return -EINVAL;
1720
f9ab5b5b
LZ
1721 /*
1722 * Option noprefix was introduced just for backward compatibility
1723 * with the old cpuset, so we allow noprefix only if mounting just
1724 * the cpuset subsystem.
1725 */
93438629 1726 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
f9ab5b5b
LZ
1727 return -EINVAL;
1728
2c6ab6d2 1729 /* Can't specify "none" and some subsystems */
a1a71b45 1730 if (opts->subsys_mask && opts->none)
2c6ab6d2
PM
1731 return -EINVAL;
1732
ddbcc7e8
PM
1733 return 0;
1734}
1735
2bd59d48 1736static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
ddbcc7e8
PM
1737{
1738 int ret = 0;
3dd06ffa 1739 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
ddbcc7e8 1740 struct cgroup_sb_opts opts;
8ab456ac 1741 unsigned long added_mask, removed_mask;
ddbcc7e8 1742
aa6ec29b
TH
1743 if (root == &cgrp_dfl_root) {
1744 pr_err("remount is not allowed\n");
873fe09e
TH
1745 return -EINVAL;
1746 }
1747
ddbcc7e8
PM
1748 mutex_lock(&cgroup_mutex);
1749
1750 /* See what subsystems are wanted */
1751 ret = parse_cgroupfs_options(data, &opts);
1752 if (ret)
1753 goto out_unlock;
1754
f392e51c 1755 if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
ed3d261b 1756 pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
a2a1f9ea 1757 task_tgid_nr(current), current->comm);
8b5a5a9d 1758
f392e51c
TH
1759 added_mask = opts.subsys_mask & ~root->subsys_mask;
1760 removed_mask = root->subsys_mask & ~opts.subsys_mask;
13af07df 1761
cf5d5941 1762 /* Don't allow flags or name to change at remount */
7450e90b 1763 if ((opts.flags ^ root->flags) ||
cf5d5941 1764 (opts.name && strcmp(opts.name, root->name))) {
69dfa00c 1765 pr_err("option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"\n",
7450e90b 1766 opts.flags, opts.name ?: "", root->flags, root->name);
c6d57f33
PM
1767 ret = -EINVAL;
1768 goto out_unlock;
1769 }
1770
f172e67c 1771 /* remounting is not allowed for populated hierarchies */
d5c419b6 1772 if (!list_empty(&root->cgrp.self.children)) {
f172e67c 1773 ret = -EBUSY;
0670e08b 1774 goto out_unlock;
cf5d5941 1775 }
ddbcc7e8 1776
5df36032 1777 ret = rebind_subsystems(root, added_mask);
3126121f 1778 if (ret)
0670e08b 1779 goto out_unlock;
ddbcc7e8 1780
3dd06ffa 1781 rebind_subsystems(&cgrp_dfl_root, removed_mask);
5df36032 1782
69e943b7
TH
1783 if (opts.release_agent) {
1784 spin_lock(&release_agent_path_lock);
81a6a5cd 1785 strcpy(root->release_agent_path, opts.release_agent);
69e943b7
TH
1786 spin_unlock(&release_agent_path_lock);
1787 }
ddbcc7e8 1788 out_unlock:
66bdc9cf 1789 kfree(opts.release_agent);
c6d57f33 1790 kfree(opts.name);
ddbcc7e8 1791 mutex_unlock(&cgroup_mutex);
ddbcc7e8
PM
1792 return ret;
1793}
1794
afeb0f9f
TH
1795/*
1796 * To reduce the fork() overhead for systems that are not actually using
1797 * their cgroups capability, we don't maintain the lists running through
1798 * each css_set to its tasks until we see the list actually used - in other
1799 * words after the first mount.
1800 */
1801static bool use_task_css_set_links __read_mostly;
1802
1803static void cgroup_enable_task_cg_lists(void)
1804{
1805 struct task_struct *p, *g;
1806
f0d9a5f1 1807 spin_lock_bh(&css_set_lock);
afeb0f9f
TH
1808
1809 if (use_task_css_set_links)
1810 goto out_unlock;
1811
1812 use_task_css_set_links = true;
1813
1814 /*
1815 * We need tasklist_lock because RCU is not safe against
1816 * while_each_thread(). Besides, a forking task that has passed
1817 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1818 * is not guaranteed to have its child immediately visible in the
1819 * tasklist if we walk through it with RCU.
1820 */
1821 read_lock(&tasklist_lock);
1822 do_each_thread(g, p) {
afeb0f9f
TH
1823 WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1824 task_css_set(p) != &init_css_set);
1825
1826 /*
1827 * We should check if the process is exiting, otherwise
1828 * it will race with cgroup_exit() in that the list
1829 * entry won't be deleted though the process has exited.
f153ad11
TH
1830 * Do it while holding siglock so that we don't end up
1831 * racing against cgroup_exit().
afeb0f9f 1832 */
f153ad11 1833 spin_lock_irq(&p->sighand->siglock);
eaf797ab
TH
1834 if (!(p->flags & PF_EXITING)) {
1835 struct css_set *cset = task_css_set(p);
1836
0de0942d
TH
1837 if (!css_set_populated(cset))
1838 css_set_update_populated(cset, true);
389b9c1b 1839 list_add_tail(&p->cg_list, &cset->tasks);
eaf797ab
TH
1840 get_css_set(cset);
1841 }
f153ad11 1842 spin_unlock_irq(&p->sighand->siglock);
afeb0f9f
TH
1843 } while_each_thread(g, p);
1844 read_unlock(&tasklist_lock);
1845out_unlock:
f0d9a5f1 1846 spin_unlock_bh(&css_set_lock);
afeb0f9f 1847}
ddbcc7e8 1848
cc31edce
PM
1849static void init_cgroup_housekeeping(struct cgroup *cgrp)
1850{
2d8f243a
TH
1851 struct cgroup_subsys *ss;
1852 int ssid;
1853
d5c419b6
TH
1854 INIT_LIST_HEAD(&cgrp->self.sibling);
1855 INIT_LIST_HEAD(&cgrp->self.children);
69d0206c 1856 INIT_LIST_HEAD(&cgrp->cset_links);
72a8cb30
BB
1857 INIT_LIST_HEAD(&cgrp->pidlists);
1858 mutex_init(&cgrp->pidlist_mutex);
9d800df1 1859 cgrp->self.cgroup = cgrp;
184faf32 1860 cgrp->self.flags |= CSS_ONLINE;
2d8f243a
TH
1861
1862 for_each_subsys(ss, ssid)
1863 INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
f8f22e53
TH
1864
1865 init_waitqueue_head(&cgrp->offline_waitq);
971ff493 1866 INIT_WORK(&cgrp->release_agent_work, cgroup_release_agent);
cc31edce 1867}
c6d57f33 1868
3dd06ffa 1869static void init_cgroup_root(struct cgroup_root *root,
172a2c06 1870 struct cgroup_sb_opts *opts)
ddbcc7e8 1871{
3dd06ffa 1872 struct cgroup *cgrp = &root->cgrp;
b0ca5a84 1873
ddbcc7e8 1874 INIT_LIST_HEAD(&root->root_list);
3c9c825b 1875 atomic_set(&root->nr_cgrps, 1);
bd89aabc 1876 cgrp->root = root;
cc31edce 1877 init_cgroup_housekeeping(cgrp);
4e96ee8e 1878 idr_init(&root->cgroup_idr);
c6d57f33 1879
c6d57f33
PM
1880 root->flags = opts->flags;
1881 if (opts->release_agent)
1882 strcpy(root->release_agent_path, opts->release_agent);
1883 if (opts->name)
1884 strcpy(root->name, opts->name);
2260e7fc 1885 if (opts->cpuset_clone_children)
3dd06ffa 1886 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
c6d57f33
PM
1887}
1888
8ab456ac 1889static int cgroup_setup_root(struct cgroup_root *root, unsigned long ss_mask)
2c6ab6d2 1890{
d427dfeb 1891 LIST_HEAD(tmp_links);
3dd06ffa 1892 struct cgroup *root_cgrp = &root->cgrp;
d427dfeb 1893 struct css_set *cset;
d427dfeb 1894 int i, ret;
2c6ab6d2 1895
d427dfeb 1896 lockdep_assert_held(&cgroup_mutex);
c6d57f33 1897
cf780b7d 1898 ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_KERNEL);
d427dfeb 1899 if (ret < 0)
2bd59d48 1900 goto out;
d427dfeb 1901 root_cgrp->id = ret;
b11cfb58 1902 root_cgrp->ancestor_ids[0] = ret;
c6d57f33 1903
2aad2a86
TH
1904 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release, 0,
1905 GFP_KERNEL);
9d755d33
TH
1906 if (ret)
1907 goto out;
1908
d427dfeb 1909 /*
f0d9a5f1 1910 * We're accessing css_set_count without locking css_set_lock here,
d427dfeb
TH
1911 * but that's OK - it can only be increased by someone holding
1912 * cgroup_lock, and that's us. The worst that can happen is that we
1913 * have some link structures left over
1914 */
1915 ret = allocate_cgrp_cset_links(css_set_count, &tmp_links);
1916 if (ret)
9d755d33 1917 goto cancel_ref;
ddbcc7e8 1918
985ed670 1919 ret = cgroup_init_root_id(root);
ddbcc7e8 1920 if (ret)
9d755d33 1921 goto cancel_ref;
ddbcc7e8 1922
2bd59d48
TH
1923 root->kf_root = kernfs_create_root(&cgroup_kf_syscall_ops,
1924 KERNFS_ROOT_CREATE_DEACTIVATED,
1925 root_cgrp);
1926 if (IS_ERR(root->kf_root)) {
1927 ret = PTR_ERR(root->kf_root);
1928 goto exit_root_id;
1929 }
1930 root_cgrp->kn = root->kf_root->kn;
ddbcc7e8 1931
4df8dc90 1932 ret = css_populate_dir(&root_cgrp->self, NULL);
d427dfeb 1933 if (ret)
2bd59d48 1934 goto destroy_root;
ddbcc7e8 1935
5df36032 1936 ret = rebind_subsystems(root, ss_mask);
d427dfeb 1937 if (ret)
2bd59d48 1938 goto destroy_root;
ddbcc7e8 1939
d427dfeb
TH
1940 /*
1941 * There must be no failure case after here, since rebinding takes
1942 * care of subsystems' refcounts, which are explicitly dropped in
1943 * the failure exit path.
1944 */
1945 list_add(&root->root_list, &cgroup_roots);
1946 cgroup_root_count++;
0df6a63f 1947
d427dfeb 1948 /*
3dd06ffa 1949 * Link the root cgroup in this hierarchy into all the css_set
d427dfeb
TH
1950 * objects.
1951 */
f0d9a5f1 1952 spin_lock_bh(&css_set_lock);
0de0942d 1953 hash_for_each(css_set_table, i, cset, hlist) {
d427dfeb 1954 link_css_set(&tmp_links, cset, root_cgrp);
0de0942d
TH
1955 if (css_set_populated(cset))
1956 cgroup_update_populated(root_cgrp, true);
1957 }
f0d9a5f1 1958 spin_unlock_bh(&css_set_lock);
ddbcc7e8 1959
d5c419b6 1960 BUG_ON(!list_empty(&root_cgrp->self.children));
3c9c825b 1961 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
ddbcc7e8 1962
2bd59d48 1963 kernfs_activate(root_cgrp->kn);
d427dfeb 1964 ret = 0;
2bd59d48 1965 goto out;
d427dfeb 1966
2bd59d48
TH
1967destroy_root:
1968 kernfs_destroy_root(root->kf_root);
1969 root->kf_root = NULL;
1970exit_root_id:
d427dfeb 1971 cgroup_exit_root_id(root);
9d755d33 1972cancel_ref:
9a1049da 1973 percpu_ref_exit(&root_cgrp->self.refcnt);
2bd59d48 1974out:
d427dfeb
TH
1975 free_cgrp_cset_links(&tmp_links);
1976 return ret;
ddbcc7e8
PM
1977}
1978
f7e83571 1979static struct dentry *cgroup_mount(struct file_system_type *fs_type,
ddbcc7e8 1980 int flags, const char *unused_dev_name,
f7e83571 1981 void *data)
ddbcc7e8 1982{
67e9c74b 1983 bool is_v2 = fs_type == &cgroup2_fs_type;
3a32bd72 1984 struct super_block *pinned_sb = NULL;
970317aa 1985 struct cgroup_subsys *ss;
3dd06ffa 1986 struct cgroup_root *root;
ddbcc7e8 1987 struct cgroup_sb_opts opts;
2bd59d48 1988 struct dentry *dentry;
8e30e2b8 1989 int ret;
970317aa 1990 int i;
c6b3d5bc 1991 bool new_sb;
ddbcc7e8 1992
56fde9e0
TH
1993 /*
1994 * The first time anyone tries to mount a cgroup, enable the list
1995 * linking each css_set to its tasks and fix up all existing tasks.
1996 */
1997 if (!use_task_css_set_links)
1998 cgroup_enable_task_cg_lists();
e37a06f1 1999
67e9c74b
TH
2000 if (is_v2) {
2001 if (data) {
2002 pr_err("cgroup2: unknown option \"%s\"\n", (char *)data);
2003 return ERR_PTR(-EINVAL);
2004 }
2005 cgrp_dfl_root_visible = true;
2006 root = &cgrp_dfl_root;
2007 cgroup_get(&root->cgrp);
2008 goto out_mount;
2009 }
2010
aae8aab4 2011 mutex_lock(&cgroup_mutex);
8e30e2b8
TH
2012
2013 /* First find the desired set of subsystems */
ddbcc7e8 2014 ret = parse_cgroupfs_options(data, &opts);
c6d57f33 2015 if (ret)
8e30e2b8 2016 goto out_unlock;
a015edd2 2017
970317aa
LZ
2018 /*
2019 * Destruction of cgroup root is asynchronous, so subsystems may
2020 * still be dying after the previous unmount. Let's drain the
2021 * dying subsystems. We just need to ensure that the ones
2022 * unmounted previously finish dying and don't care about new ones
2023 * starting. Testing ref liveliness is good enough.
2024 */
2025 for_each_subsys(ss, i) {
2026 if (!(opts.subsys_mask & (1 << i)) ||
2027 ss->root == &cgrp_dfl_root)
2028 continue;
2029
2030 if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt)) {
2031 mutex_unlock(&cgroup_mutex);
2032 msleep(10);
2033 ret = restart_syscall();
2034 goto out_free;
2035 }
2036 cgroup_put(&ss->root->cgrp);
2037 }
2038
985ed670 2039 for_each_root(root) {
2bd59d48 2040 bool name_match = false;
3126121f 2041
3dd06ffa 2042 if (root == &cgrp_dfl_root)
985ed670 2043 continue;
3126121f 2044
cf5d5941 2045 /*
2bd59d48
TH
2046 * If we asked for a name then it must match. Also, if
2047 * name matches but sybsys_mask doesn't, we should fail.
2048 * Remember whether name matched.
cf5d5941 2049 */
2bd59d48
TH
2050 if (opts.name) {
2051 if (strcmp(opts.name, root->name))
2052 continue;
2053 name_match = true;
2054 }
ddbcc7e8 2055
c6d57f33 2056 /*
2bd59d48
TH
2057 * If we asked for subsystems (or explicitly for no
2058 * subsystems) then they must match.
c6d57f33 2059 */
2bd59d48 2060 if ((opts.subsys_mask || opts.none) &&
f392e51c 2061 (opts.subsys_mask != root->subsys_mask)) {
2bd59d48
TH
2062 if (!name_match)
2063 continue;
2064 ret = -EBUSY;
2065 goto out_unlock;
2066 }
873fe09e 2067
7b9a6ba5
TH
2068 if (root->flags ^ opts.flags)
2069 pr_warn("new mount options do not match the existing superblock, will be ignored\n");
ddbcc7e8 2070
776f02fa 2071 /*
3a32bd72
LZ
2072 * We want to reuse @root whose lifetime is governed by its
2073 * ->cgrp. Let's check whether @root is alive and keep it
2074 * that way. As cgroup_kill_sb() can happen anytime, we
2075 * want to block it by pinning the sb so that @root doesn't
2076 * get killed before mount is complete.
2077 *
2078 * With the sb pinned, tryget_live can reliably indicate
2079 * whether @root can be reused. If it's being killed,
2080 * drain it. We can use wait_queue for the wait but this
2081 * path is super cold. Let's just sleep a bit and retry.
776f02fa 2082 */
3a32bd72
LZ
2083 pinned_sb = kernfs_pin_sb(root->kf_root, NULL);
2084 if (IS_ERR(pinned_sb) ||
2085 !percpu_ref_tryget_live(&root->cgrp.self.refcnt)) {
776f02fa 2086 mutex_unlock(&cgroup_mutex);
3a32bd72
LZ
2087 if (!IS_ERR_OR_NULL(pinned_sb))
2088 deactivate_super(pinned_sb);
776f02fa 2089 msleep(10);
a015edd2
TH
2090 ret = restart_syscall();
2091 goto out_free;
776f02fa 2092 }
ddbcc7e8 2093
776f02fa 2094 ret = 0;
2bd59d48 2095 goto out_unlock;
ddbcc7e8 2096 }
ddbcc7e8 2097
817929ec 2098 /*
172a2c06
TH
2099 * No such thing, create a new one. name= matching without subsys
2100 * specification is allowed for already existing hierarchies but we
2101 * can't create new one without subsys specification.
817929ec 2102 */
172a2c06
TH
2103 if (!opts.subsys_mask && !opts.none) {
2104 ret = -EINVAL;
2105 goto out_unlock;
817929ec 2106 }
817929ec 2107
172a2c06
TH
2108 root = kzalloc(sizeof(*root), GFP_KERNEL);
2109 if (!root) {
2110 ret = -ENOMEM;
2bd59d48 2111 goto out_unlock;
839ec545 2112 }
e5f6a860 2113
172a2c06
TH
2114 init_cgroup_root(root, &opts);
2115
35585573 2116 ret = cgroup_setup_root(root, opts.subsys_mask);
2bd59d48
TH
2117 if (ret)
2118 cgroup_free_root(root);
fa3ca07e 2119
8e30e2b8 2120out_unlock:
ddbcc7e8 2121 mutex_unlock(&cgroup_mutex);
a015edd2 2122out_free:
c6d57f33
PM
2123 kfree(opts.release_agent);
2124 kfree(opts.name);
03b1cde6 2125
2bd59d48 2126 if (ret)
8e30e2b8 2127 return ERR_PTR(ret);
67e9c74b 2128out_mount:
c9482a5b 2129 dentry = kernfs_mount(fs_type, flags, root->kf_root,
67e9c74b
TH
2130 is_v2 ? CGROUP2_SUPER_MAGIC : CGROUP_SUPER_MAGIC,
2131 &new_sb);
c6b3d5bc 2132 if (IS_ERR(dentry) || !new_sb)
3dd06ffa 2133 cgroup_put(&root->cgrp);
3a32bd72
LZ
2134
2135 /*
2136 * If @pinned_sb, we're reusing an existing root and holding an
2137 * extra ref on its sb. Mount is complete. Put the extra ref.
2138 */
2139 if (pinned_sb) {
2140 WARN_ON(new_sb);
2141 deactivate_super(pinned_sb);
2142 }
2143
2bd59d48
TH
2144 return dentry;
2145}
2146
2147static void cgroup_kill_sb(struct super_block *sb)
2148{
2149 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
3dd06ffa 2150 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2bd59d48 2151
9d755d33
TH
2152 /*
2153 * If @root doesn't have any mounts or children, start killing it.
2154 * This prevents new mounts by disabling percpu_ref_tryget_live().
2155 * cgroup_mount() may wait for @root's release.
1f779fb2
LZ
2156 *
2157 * And don't kill the default root.
9d755d33 2158 */
3c606d35 2159 if (!list_empty(&root->cgrp.self.children) ||
1f779fb2 2160 root == &cgrp_dfl_root)
9d755d33
TH
2161 cgroup_put(&root->cgrp);
2162 else
2163 percpu_ref_kill(&root->cgrp.self.refcnt);
2164
2bd59d48 2165 kernfs_kill_sb(sb);
ddbcc7e8
PM
2166}
2167
2168static struct file_system_type cgroup_fs_type = {
2169 .name = "cgroup",
f7e83571 2170 .mount = cgroup_mount,
ddbcc7e8
PM
2171 .kill_sb = cgroup_kill_sb,
2172};
2173
67e9c74b
TH
2174static struct file_system_type cgroup2_fs_type = {
2175 .name = "cgroup2",
2176 .mount = cgroup_mount,
2177 .kill_sb = cgroup_kill_sb,
2178};
2179
857a2beb 2180/**
913ffdb5 2181 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
857a2beb 2182 * @task: target task
857a2beb
TH
2183 * @buf: the buffer to write the path into
2184 * @buflen: the length of the buffer
2185 *
913ffdb5
TH
2186 * Determine @task's cgroup on the first (the one with the lowest non-zero
2187 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
2188 * function grabs cgroup_mutex and shouldn't be used inside locks used by
2189 * cgroup controller callbacks.
2190 *
e61734c5 2191 * Return value is the same as kernfs_path().
857a2beb 2192 */
e61734c5 2193char *task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
857a2beb 2194{
3dd06ffa 2195 struct cgroup_root *root;
913ffdb5 2196 struct cgroup *cgrp;
e61734c5
TH
2197 int hierarchy_id = 1;
2198 char *path = NULL;
857a2beb
TH
2199
2200 mutex_lock(&cgroup_mutex);
f0d9a5f1 2201 spin_lock_bh(&css_set_lock);
857a2beb 2202
913ffdb5
TH
2203 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
2204
857a2beb
TH
2205 if (root) {
2206 cgrp = task_cgroup_from_root(task, root);
e61734c5 2207 path = cgroup_path(cgrp, buf, buflen);
913ffdb5
TH
2208 } else {
2209 /* if no hierarchy exists, everyone is in "/" */
e61734c5
TH
2210 if (strlcpy(buf, "/", buflen) < buflen)
2211 path = buf;
857a2beb
TH
2212 }
2213
f0d9a5f1 2214 spin_unlock_bh(&css_set_lock);
857a2beb 2215 mutex_unlock(&cgroup_mutex);
e61734c5 2216 return path;
857a2beb 2217}
913ffdb5 2218EXPORT_SYMBOL_GPL(task_cgroup_path);
857a2beb 2219
b3dc094e 2220/* used to track tasks and other necessary states during migration */
2f7ee569 2221struct cgroup_taskset {
b3dc094e
TH
2222 /* the src and dst cset list running through cset->mg_node */
2223 struct list_head src_csets;
2224 struct list_head dst_csets;
2225
1f7dd3e5
TH
2226 /* the subsys currently being processed */
2227 int ssid;
2228
b3dc094e
TH
2229 /*
2230 * Fields for cgroup_taskset_*() iteration.
2231 *
2232 * Before migration is committed, the target migration tasks are on
2233 * ->mg_tasks of the csets on ->src_csets. After, on ->mg_tasks of
2234 * the csets on ->dst_csets. ->csets point to either ->src_csets
2235 * or ->dst_csets depending on whether migration is committed.
2236 *
2237 * ->cur_csets and ->cur_task point to the current task position
2238 * during iteration.
2239 */
2240 struct list_head *csets;
2241 struct css_set *cur_cset;
2242 struct task_struct *cur_task;
2f7ee569
TH
2243};
2244
adaae5dc
TH
2245#define CGROUP_TASKSET_INIT(tset) (struct cgroup_taskset){ \
2246 .src_csets = LIST_HEAD_INIT(tset.src_csets), \
2247 .dst_csets = LIST_HEAD_INIT(tset.dst_csets), \
2248 .csets = &tset.src_csets, \
2249}
2250
2251/**
2252 * cgroup_taskset_add - try to add a migration target task to a taskset
2253 * @task: target task
2254 * @tset: target taskset
2255 *
2256 * Add @task, which is a migration target, to @tset. This function becomes
2257 * noop if @task doesn't need to be migrated. @task's css_set should have
2258 * been added as a migration source and @task->cg_list will be moved from
2259 * the css_set's tasks list to mg_tasks one.
2260 */
2261static void cgroup_taskset_add(struct task_struct *task,
2262 struct cgroup_taskset *tset)
2263{
2264 struct css_set *cset;
2265
f0d9a5f1 2266 lockdep_assert_held(&css_set_lock);
adaae5dc
TH
2267
2268 /* @task either already exited or can't exit until the end */
2269 if (task->flags & PF_EXITING)
2270 return;
2271
2272 /* leave @task alone if post_fork() hasn't linked it yet */
2273 if (list_empty(&task->cg_list))
2274 return;
2275
2276 cset = task_css_set(task);
2277 if (!cset->mg_src_cgrp)
2278 return;
2279
2280 list_move_tail(&task->cg_list, &cset->mg_tasks);
2281 if (list_empty(&cset->mg_node))
2282 list_add_tail(&cset->mg_node, &tset->src_csets);
2283 if (list_empty(&cset->mg_dst_cset->mg_node))
2284 list_move_tail(&cset->mg_dst_cset->mg_node,
2285 &tset->dst_csets);
2286}
2287
2f7ee569
TH
2288/**
2289 * cgroup_taskset_first - reset taskset and return the first task
2290 * @tset: taskset of interest
1f7dd3e5 2291 * @dst_cssp: output variable for the destination css
2f7ee569
TH
2292 *
2293 * @tset iteration is initialized and the first task is returned.
2294 */
1f7dd3e5
TH
2295struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
2296 struct cgroup_subsys_state **dst_cssp)
2f7ee569 2297{
b3dc094e
TH
2298 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2299 tset->cur_task = NULL;
2300
1f7dd3e5 2301 return cgroup_taskset_next(tset, dst_cssp);
2f7ee569 2302}
2f7ee569
TH
2303
2304/**
2305 * cgroup_taskset_next - iterate to the next task in taskset
2306 * @tset: taskset of interest
1f7dd3e5 2307 * @dst_cssp: output variable for the destination css
2f7ee569
TH
2308 *
2309 * Return the next task in @tset. Iteration must have been initialized
2310 * with cgroup_taskset_first().
2311 */
1f7dd3e5
TH
2312struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
2313 struct cgroup_subsys_state **dst_cssp)
2f7ee569 2314{
b3dc094e
TH
2315 struct css_set *cset = tset->cur_cset;
2316 struct task_struct *task = tset->cur_task;
2f7ee569 2317
b3dc094e
TH
2318 while (&cset->mg_node != tset->csets) {
2319 if (!task)
2320 task = list_first_entry(&cset->mg_tasks,
2321 struct task_struct, cg_list);
2322 else
2323 task = list_next_entry(task, cg_list);
2f7ee569 2324
b3dc094e
TH
2325 if (&task->cg_list != &cset->mg_tasks) {
2326 tset->cur_cset = cset;
2327 tset->cur_task = task;
1f7dd3e5
TH
2328
2329 /*
2330 * This function may be called both before and
2331 * after cgroup_taskset_migrate(). The two cases
2332 * can be distinguished by looking at whether @cset
2333 * has its ->mg_dst_cset set.
2334 */
2335 if (cset->mg_dst_cset)
2336 *dst_cssp = cset->mg_dst_cset->subsys[tset->ssid];
2337 else
2338 *dst_cssp = cset->subsys[tset->ssid];
2339
b3dc094e
TH
2340 return task;
2341 }
2f7ee569 2342
b3dc094e
TH
2343 cset = list_next_entry(cset, mg_node);
2344 task = NULL;
2345 }
2f7ee569 2346
b3dc094e 2347 return NULL;
2f7ee569 2348}
2f7ee569 2349
adaae5dc
TH
2350/**
2351 * cgroup_taskset_migrate - migrate a taskset to a cgroup
2352 * @tset: taget taskset
2353 * @dst_cgrp: destination cgroup
2354 *
2355 * Migrate tasks in @tset to @dst_cgrp. This function fails iff one of the
2356 * ->can_attach callbacks fails and guarantees that either all or none of
2357 * the tasks in @tset are migrated. @tset is consumed regardless of
2358 * success.
2359 */
2360static int cgroup_taskset_migrate(struct cgroup_taskset *tset,
2361 struct cgroup *dst_cgrp)
2362{
2363 struct cgroup_subsys_state *css, *failed_css = NULL;
2364 struct task_struct *task, *tmp_task;
2365 struct css_set *cset, *tmp_cset;
2366 int i, ret;
2367
2368 /* methods shouldn't be called if no task is actually migrating */
2369 if (list_empty(&tset->src_csets))
2370 return 0;
2371
2372 /* check that we can legitimately attach to the cgroup */
2373 for_each_e_css(css, i, dst_cgrp) {
2374 if (css->ss->can_attach) {
1f7dd3e5
TH
2375 tset->ssid = i;
2376 ret = css->ss->can_attach(tset);
adaae5dc
TH
2377 if (ret) {
2378 failed_css = css;
2379 goto out_cancel_attach;
2380 }
2381 }
2382 }
2383
2384 /*
2385 * Now that we're guaranteed success, proceed to move all tasks to
2386 * the new cgroup. There are no failure cases after here, so this
2387 * is the commit point.
2388 */
f0d9a5f1 2389 spin_lock_bh(&css_set_lock);
adaae5dc 2390 list_for_each_entry(cset, &tset->src_csets, mg_node) {
f6d7d049
TH
2391 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2392 struct css_set *from_cset = task_css_set(task);
2393 struct css_set *to_cset = cset->mg_dst_cset;
2394
2395 get_css_set(to_cset);
2396 css_set_move_task(task, from_cset, to_cset, true);
2397 put_css_set_locked(from_cset);
2398 }
adaae5dc 2399 }
f0d9a5f1 2400 spin_unlock_bh(&css_set_lock);
adaae5dc
TH
2401
2402 /*
2403 * Migration is committed, all target tasks are now on dst_csets.
2404 * Nothing is sensitive to fork() after this point. Notify
2405 * controllers that migration is complete.
2406 */
2407 tset->csets = &tset->dst_csets;
2408
1f7dd3e5
TH
2409 for_each_e_css(css, i, dst_cgrp) {
2410 if (css->ss->attach) {
2411 tset->ssid = i;
2412 css->ss->attach(tset);
2413 }
2414 }
adaae5dc
TH
2415
2416 ret = 0;
2417 goto out_release_tset;
2418
2419out_cancel_attach:
2420 for_each_e_css(css, i, dst_cgrp) {
2421 if (css == failed_css)
2422 break;
1f7dd3e5
TH
2423 if (css->ss->cancel_attach) {
2424 tset->ssid = i;
2425 css->ss->cancel_attach(tset);
2426 }
adaae5dc
TH
2427 }
2428out_release_tset:
f0d9a5f1 2429 spin_lock_bh(&css_set_lock);
adaae5dc
TH
2430 list_splice_init(&tset->dst_csets, &tset->src_csets);
2431 list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2432 list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2433 list_del_init(&cset->mg_node);
2434 }
f0d9a5f1 2435 spin_unlock_bh(&css_set_lock);
adaae5dc
TH
2436 return ret;
2437}
2438
a043e3b2 2439/**
1958d2d5
TH
2440 * cgroup_migrate_finish - cleanup after attach
2441 * @preloaded_csets: list of preloaded css_sets
74a1166d 2442 *
1958d2d5
TH
2443 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
2444 * those functions for details.
74a1166d 2445 */
1958d2d5 2446static void cgroup_migrate_finish(struct list_head *preloaded_csets)
74a1166d 2447{
1958d2d5 2448 struct css_set *cset, *tmp_cset;
74a1166d 2449
1958d2d5
TH
2450 lockdep_assert_held(&cgroup_mutex);
2451
f0d9a5f1 2452 spin_lock_bh(&css_set_lock);
1958d2d5
TH
2453 list_for_each_entry_safe(cset, tmp_cset, preloaded_csets, mg_preload_node) {
2454 cset->mg_src_cgrp = NULL;
2455 cset->mg_dst_cset = NULL;
2456 list_del_init(&cset->mg_preload_node);
a25eb52e 2457 put_css_set_locked(cset);
1958d2d5 2458 }
f0d9a5f1 2459 spin_unlock_bh(&css_set_lock);
1958d2d5
TH
2460}
2461
2462/**
2463 * cgroup_migrate_add_src - add a migration source css_set
2464 * @src_cset: the source css_set to add
2465 * @dst_cgrp: the destination cgroup
2466 * @preloaded_csets: list of preloaded css_sets
2467 *
2468 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
2469 * @src_cset and add it to @preloaded_csets, which should later be cleaned
2470 * up by cgroup_migrate_finish().
2471 *
1ed13287
TH
2472 * This function may be called without holding cgroup_threadgroup_rwsem
2473 * even if the target is a process. Threads may be created and destroyed
2474 * but as long as cgroup_mutex is not dropped, no new css_set can be put
2475 * into play and the preloaded css_sets are guaranteed to cover all
2476 * migrations.
1958d2d5
TH
2477 */
2478static void cgroup_migrate_add_src(struct css_set *src_cset,
2479 struct cgroup *dst_cgrp,
2480 struct list_head *preloaded_csets)
2481{
2482 struct cgroup *src_cgrp;
2483
2484 lockdep_assert_held(&cgroup_mutex);
f0d9a5f1 2485 lockdep_assert_held(&css_set_lock);
1958d2d5
TH
2486
2487 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2488
1958d2d5
TH
2489 if (!list_empty(&src_cset->mg_preload_node))
2490 return;
2491
2492 WARN_ON(src_cset->mg_src_cgrp);
2493 WARN_ON(!list_empty(&src_cset->mg_tasks));
2494 WARN_ON(!list_empty(&src_cset->mg_node));
2495
2496 src_cset->mg_src_cgrp = src_cgrp;
2497 get_css_set(src_cset);
2498 list_add(&src_cset->mg_preload_node, preloaded_csets);
2499}
2500
2501/**
2502 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
f817de98 2503 * @dst_cgrp: the destination cgroup (may be %NULL)
1958d2d5
TH
2504 * @preloaded_csets: list of preloaded source css_sets
2505 *
2506 * Tasks are about to be moved to @dst_cgrp and all the source css_sets
2507 * have been preloaded to @preloaded_csets. This function looks up and
f817de98
TH
2508 * pins all destination css_sets, links each to its source, and append them
2509 * to @preloaded_csets. If @dst_cgrp is %NULL, the destination of each
2510 * source css_set is assumed to be its cgroup on the default hierarchy.
1958d2d5
TH
2511 *
2512 * This function must be called after cgroup_migrate_add_src() has been
2513 * called on each migration source css_set. After migration is performed
2514 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2515 * @preloaded_csets.
2516 */
2517static int cgroup_migrate_prepare_dst(struct cgroup *dst_cgrp,
2518 struct list_head *preloaded_csets)
2519{
2520 LIST_HEAD(csets);
f817de98 2521 struct css_set *src_cset, *tmp_cset;
1958d2d5
TH
2522
2523 lockdep_assert_held(&cgroup_mutex);
2524
f8f22e53
TH
2525 /*
2526 * Except for the root, child_subsys_mask must be zero for a cgroup
2527 * with tasks so that child cgroups don't compete against tasks.
2528 */
d51f39b0 2529 if (dst_cgrp && cgroup_on_dfl(dst_cgrp) && cgroup_parent(dst_cgrp) &&
f8f22e53
TH
2530 dst_cgrp->child_subsys_mask)
2531 return -EBUSY;
2532
1958d2d5 2533 /* look up the dst cset for each src cset and link it to src */
f817de98 2534 list_for_each_entry_safe(src_cset, tmp_cset, preloaded_csets, mg_preload_node) {
1958d2d5
TH
2535 struct css_set *dst_cset;
2536
f817de98
TH
2537 dst_cset = find_css_set(src_cset,
2538 dst_cgrp ?: src_cset->dfl_cgrp);
1958d2d5
TH
2539 if (!dst_cset)
2540 goto err;
2541
2542 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
f817de98
TH
2543
2544 /*
2545 * If src cset equals dst, it's noop. Drop the src.
2546 * cgroup_migrate() will skip the cset too. Note that we
2547 * can't handle src == dst as some nodes are used by both.
2548 */
2549 if (src_cset == dst_cset) {
2550 src_cset->mg_src_cgrp = NULL;
2551 list_del_init(&src_cset->mg_preload_node);
a25eb52e
ZL
2552 put_css_set(src_cset);
2553 put_css_set(dst_cset);
f817de98
TH
2554 continue;
2555 }
2556
1958d2d5
TH
2557 src_cset->mg_dst_cset = dst_cset;
2558
2559 if (list_empty(&dst_cset->mg_preload_node))
2560 list_add(&dst_cset->mg_preload_node, &csets);
2561 else
a25eb52e 2562 put_css_set(dst_cset);
1958d2d5
TH
2563 }
2564
f817de98 2565 list_splice_tail(&csets, preloaded_csets);
1958d2d5
TH
2566 return 0;
2567err:
2568 cgroup_migrate_finish(&csets);
2569 return -ENOMEM;
2570}
2571
2572/**
2573 * cgroup_migrate - migrate a process or task to a cgroup
1958d2d5
TH
2574 * @leader: the leader of the process or the task to migrate
2575 * @threadgroup: whether @leader points to the whole process or a single task
9af2ec45 2576 * @cgrp: the destination cgroup
1958d2d5
TH
2577 *
2578 * Migrate a process or task denoted by @leader to @cgrp. If migrating a
1ed13287 2579 * process, the caller must be holding cgroup_threadgroup_rwsem. The
1958d2d5
TH
2580 * caller is also responsible for invoking cgroup_migrate_add_src() and
2581 * cgroup_migrate_prepare_dst() on the targets before invoking this
2582 * function and following up with cgroup_migrate_finish().
2583 *
2584 * As long as a controller's ->can_attach() doesn't fail, this function is
2585 * guaranteed to succeed. This means that, excluding ->can_attach()
2586 * failure, when migrating multiple targets, the success or failure can be
2587 * decided for all targets by invoking group_migrate_prepare_dst() before
2588 * actually starting migrating.
2589 */
9af2ec45
TH
2590static int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2591 struct cgroup *cgrp)
74a1166d 2592{
adaae5dc
TH
2593 struct cgroup_taskset tset = CGROUP_TASKSET_INIT(tset);
2594 struct task_struct *task;
74a1166d 2595
fb5d2b4c
MSB
2596 /*
2597 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2598 * already PF_EXITING could be freed from underneath us unless we
2599 * take an rcu_read_lock.
2600 */
f0d9a5f1 2601 spin_lock_bh(&css_set_lock);
fb5d2b4c 2602 rcu_read_lock();
9db8de37 2603 task = leader;
74a1166d 2604 do {
adaae5dc 2605 cgroup_taskset_add(task, &tset);
081aa458
LZ
2606 if (!threadgroup)
2607 break;
9db8de37 2608 } while_each_thread(leader, task);
fb5d2b4c 2609 rcu_read_unlock();
f0d9a5f1 2610 spin_unlock_bh(&css_set_lock);
74a1166d 2611
adaae5dc 2612 return cgroup_taskset_migrate(&tset, cgrp);
74a1166d
BB
2613}
2614
1958d2d5
TH
2615/**
2616 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2617 * @dst_cgrp: the cgroup to attach to
2618 * @leader: the task or the leader of the threadgroup to be attached
2619 * @threadgroup: attach the whole threadgroup?
2620 *
1ed13287 2621 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
1958d2d5
TH
2622 */
2623static int cgroup_attach_task(struct cgroup *dst_cgrp,
2624 struct task_struct *leader, bool threadgroup)
2625{
2626 LIST_HEAD(preloaded_csets);
2627 struct task_struct *task;
2628 int ret;
2629
2630 /* look up all src csets */
f0d9a5f1 2631 spin_lock_bh(&css_set_lock);
1958d2d5
TH
2632 rcu_read_lock();
2633 task = leader;
2634 do {
2635 cgroup_migrate_add_src(task_css_set(task), dst_cgrp,
2636 &preloaded_csets);
2637 if (!threadgroup)
2638 break;
2639 } while_each_thread(leader, task);
2640 rcu_read_unlock();
f0d9a5f1 2641 spin_unlock_bh(&css_set_lock);
1958d2d5
TH
2642
2643 /* prepare dst csets and commit */
2644 ret = cgroup_migrate_prepare_dst(dst_cgrp, &preloaded_csets);
2645 if (!ret)
9af2ec45 2646 ret = cgroup_migrate(leader, threadgroup, dst_cgrp);
1958d2d5
TH
2647
2648 cgroup_migrate_finish(&preloaded_csets);
2649 return ret;
74a1166d
BB
2650}
2651
187fe840
TH
2652static int cgroup_procs_write_permission(struct task_struct *task,
2653 struct cgroup *dst_cgrp,
2654 struct kernfs_open_file *of)
dedf22e9
TH
2655{
2656 const struct cred *cred = current_cred();
2657 const struct cred *tcred = get_task_cred(task);
2658 int ret = 0;
2659
2660 /*
2661 * even if we're attaching all tasks in the thread group, we only
2662 * need to check permissions on one of them.
2663 */
2664 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2665 !uid_eq(cred->euid, tcred->uid) &&
2666 !uid_eq(cred->euid, tcred->suid))
2667 ret = -EACCES;
2668
187fe840
TH
2669 if (!ret && cgroup_on_dfl(dst_cgrp)) {
2670 struct super_block *sb = of->file->f_path.dentry->d_sb;
2671 struct cgroup *cgrp;
2672 struct inode *inode;
2673
f0d9a5f1 2674 spin_lock_bh(&css_set_lock);
187fe840 2675 cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
f0d9a5f1 2676 spin_unlock_bh(&css_set_lock);
187fe840
TH
2677
2678 while (!cgroup_is_descendant(dst_cgrp, cgrp))
2679 cgrp = cgroup_parent(cgrp);
2680
2681 ret = -ENOMEM;
6f60eade 2682 inode = kernfs_get_inode(sb, cgrp->procs_file.kn);
187fe840
TH
2683 if (inode) {
2684 ret = inode_permission(inode, MAY_WRITE);
2685 iput(inode);
2686 }
2687 }
2688
dedf22e9
TH
2689 put_cred(tcred);
2690 return ret;
2691}
2692
74a1166d
BB
2693/*
2694 * Find the task_struct of the task to attach by vpid and pass it along to the
cd3d0952 2695 * function to attach either it or all tasks in its threadgroup. Will lock
0e1d768f 2696 * cgroup_mutex and threadgroup.
bbcb81d0 2697 */
acbef755
TH
2698static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
2699 size_t nbytes, loff_t off, bool threadgroup)
bbcb81d0 2700{
bbcb81d0 2701 struct task_struct *tsk;
e76ecaee 2702 struct cgroup *cgrp;
acbef755 2703 pid_t pid;
bbcb81d0
PM
2704 int ret;
2705
acbef755
TH
2706 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2707 return -EINVAL;
2708
e76ecaee
TH
2709 cgrp = cgroup_kn_lock_live(of->kn);
2710 if (!cgrp)
74a1166d
BB
2711 return -ENODEV;
2712
3014dde7 2713 percpu_down_write(&cgroup_threadgroup_rwsem);
b78949eb 2714 rcu_read_lock();
bbcb81d0 2715 if (pid) {
73507f33 2716 tsk = find_task_by_vpid(pid);
74a1166d 2717 if (!tsk) {
dd4b0a46 2718 ret = -ESRCH;
3014dde7 2719 goto out_unlock_rcu;
bbcb81d0 2720 }
dedf22e9 2721 } else {
b78949eb 2722 tsk = current;
dedf22e9 2723 }
cd3d0952
TH
2724
2725 if (threadgroup)
b78949eb 2726 tsk = tsk->group_leader;
c4c27fbd
MG
2727
2728 /*
14a40ffc 2729 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
c4c27fbd
MG
2730 * trapped in a cpuset, or RT worker may be born in a cgroup
2731 * with no rt_runtime allocated. Just say no.
2732 */
14a40ffc 2733 if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
c4c27fbd 2734 ret = -EINVAL;
3014dde7 2735 goto out_unlock_rcu;
c4c27fbd
MG
2736 }
2737
b78949eb
MSB
2738 get_task_struct(tsk);
2739 rcu_read_unlock();
2740
187fe840 2741 ret = cgroup_procs_write_permission(tsk, cgrp, of);
dedf22e9
TH
2742 if (!ret)
2743 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
081aa458 2744
f9f9e7b7 2745 put_task_struct(tsk);
3014dde7
TH
2746 goto out_unlock_threadgroup;
2747
2748out_unlock_rcu:
2749 rcu_read_unlock();
2750out_unlock_threadgroup:
2751 percpu_up_write(&cgroup_threadgroup_rwsem);
e76ecaee 2752 cgroup_kn_unlock(of->kn);
e93ad19d 2753 cpuset_post_attach_flush();
acbef755 2754 return ret ?: nbytes;
bbcb81d0
PM
2755}
2756
7ae1bad9
TH
2757/**
2758 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2759 * @from: attach to all cgroups of a given task
2760 * @tsk: the task to be attached
2761 */
2762int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2763{
3dd06ffa 2764 struct cgroup_root *root;
7ae1bad9
TH
2765 int retval = 0;
2766
47cfcd09 2767 mutex_lock(&cgroup_mutex);
985ed670 2768 for_each_root(root) {
96d365e0
TH
2769 struct cgroup *from_cgrp;
2770
3dd06ffa 2771 if (root == &cgrp_dfl_root)
985ed670
TH
2772 continue;
2773
f0d9a5f1 2774 spin_lock_bh(&css_set_lock);
96d365e0 2775 from_cgrp = task_cgroup_from_root(from, root);
f0d9a5f1 2776 spin_unlock_bh(&css_set_lock);
7ae1bad9 2777
6f4b7e63 2778 retval = cgroup_attach_task(from_cgrp, tsk, false);
7ae1bad9
TH
2779 if (retval)
2780 break;
2781 }
47cfcd09 2782 mutex_unlock(&cgroup_mutex);
7ae1bad9
TH
2783
2784 return retval;
2785}
2786EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2787
acbef755
TH
2788static ssize_t cgroup_tasks_write(struct kernfs_open_file *of,
2789 char *buf, size_t nbytes, loff_t off)
74a1166d 2790{
acbef755 2791 return __cgroup_procs_write(of, buf, nbytes, off, false);
74a1166d
BB
2792}
2793
acbef755
TH
2794static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
2795 char *buf, size_t nbytes, loff_t off)
af351026 2796{
acbef755 2797 return __cgroup_procs_write(of, buf, nbytes, off, true);
af351026
PM
2798}
2799
451af504
TH
2800static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of,
2801 char *buf, size_t nbytes, loff_t off)
e788e066 2802{
e76ecaee 2803 struct cgroup *cgrp;
5f469907 2804
e76ecaee 2805 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
5f469907 2806
e76ecaee
TH
2807 cgrp = cgroup_kn_lock_live(of->kn);
2808 if (!cgrp)
e788e066 2809 return -ENODEV;
69e943b7 2810 spin_lock(&release_agent_path_lock);
e76ecaee
TH
2811 strlcpy(cgrp->root->release_agent_path, strstrip(buf),
2812 sizeof(cgrp->root->release_agent_path));
69e943b7 2813 spin_unlock(&release_agent_path_lock);
e76ecaee 2814 cgroup_kn_unlock(of->kn);
451af504 2815 return nbytes;
e788e066
PM
2816}
2817
2da8ca82 2818static int cgroup_release_agent_show(struct seq_file *seq, void *v)
e788e066 2819{
2da8ca82 2820 struct cgroup *cgrp = seq_css(seq)->cgroup;
182446d0 2821
46cfeb04 2822 spin_lock(&release_agent_path_lock);
e788e066 2823 seq_puts(seq, cgrp->root->release_agent_path);
46cfeb04 2824 spin_unlock(&release_agent_path_lock);
e788e066 2825 seq_putc(seq, '\n');
e788e066
PM
2826 return 0;
2827}
2828
2da8ca82 2829static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
873fe09e 2830{
c1d5d42e 2831 seq_puts(seq, "0\n");
e788e066
PM
2832 return 0;
2833}
2834
8ab456ac 2835static void cgroup_print_ss_mask(struct seq_file *seq, unsigned long ss_mask)
355e0c48 2836{
f8f22e53
TH
2837 struct cgroup_subsys *ss;
2838 bool printed = false;
2839 int ssid;
a742c59d 2840
a966a4ed
AS
2841 for_each_subsys_which(ss, ssid, &ss_mask) {
2842 if (printed)
2843 seq_putc(seq, ' ');
2844 seq_printf(seq, "%s", ss->name);
2845 printed = true;
e73d2c61 2846 }
f8f22e53
TH
2847 if (printed)
2848 seq_putc(seq, '\n');
355e0c48
PM
2849}
2850
f8f22e53
TH
2851/* show controllers which are currently attached to the default hierarchy */
2852static int cgroup_root_controllers_show(struct seq_file *seq, void *v)
db3b1497 2853{
f8f22e53
TH
2854 struct cgroup *cgrp = seq_css(seq)->cgroup;
2855
5533e011
TH
2856 cgroup_print_ss_mask(seq, cgrp->root->subsys_mask &
2857 ~cgrp_dfl_root_inhibit_ss_mask);
f8f22e53 2858 return 0;
db3b1497
PM
2859}
2860
f8f22e53
TH
2861/* show controllers which are enabled from the parent */
2862static int cgroup_controllers_show(struct seq_file *seq, void *v)
ddbcc7e8 2863{
f8f22e53
TH
2864 struct cgroup *cgrp = seq_css(seq)->cgroup;
2865
667c2491 2866 cgroup_print_ss_mask(seq, cgroup_parent(cgrp)->subtree_control);
f8f22e53 2867 return 0;
ddbcc7e8
PM
2868}
2869
f8f22e53
TH
2870/* show controllers which are enabled for a given cgroup's children */
2871static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
ddbcc7e8 2872{
f8f22e53
TH
2873 struct cgroup *cgrp = seq_css(seq)->cgroup;
2874
667c2491 2875 cgroup_print_ss_mask(seq, cgrp->subtree_control);
f8f22e53
TH
2876 return 0;
2877}
2878
2879/**
2880 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2881 * @cgrp: root of the subtree to update csses for
2882 *
2883 * @cgrp's child_subsys_mask has changed and its subtree's (self excluded)
2884 * css associations need to be updated accordingly. This function looks up
2885 * all css_sets which are attached to the subtree, creates the matching
2886 * updated css_sets and migrates the tasks to the new ones.
2887 */
2888static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2889{
2890 LIST_HEAD(preloaded_csets);
10265075 2891 struct cgroup_taskset tset = CGROUP_TASKSET_INIT(tset);
f8f22e53
TH
2892 struct cgroup_subsys_state *css;
2893 struct css_set *src_cset;
2894 int ret;
2895
f8f22e53
TH
2896 lockdep_assert_held(&cgroup_mutex);
2897
3014dde7
TH
2898 percpu_down_write(&cgroup_threadgroup_rwsem);
2899
f8f22e53 2900 /* look up all csses currently attached to @cgrp's subtree */
f0d9a5f1 2901 spin_lock_bh(&css_set_lock);
f8f22e53
TH
2902 css_for_each_descendant_pre(css, cgroup_css(cgrp, NULL)) {
2903 struct cgrp_cset_link *link;
2904
2905 /* self is not affected by child_subsys_mask change */
2906 if (css->cgroup == cgrp)
2907 continue;
2908
2909 list_for_each_entry(link, &css->cgroup->cset_links, cset_link)
2910 cgroup_migrate_add_src(link->cset, cgrp,
2911 &preloaded_csets);
2912 }
f0d9a5f1 2913 spin_unlock_bh(&css_set_lock);
f8f22e53
TH
2914
2915 /* NULL dst indicates self on default hierarchy */
2916 ret = cgroup_migrate_prepare_dst(NULL, &preloaded_csets);
2917 if (ret)
2918 goto out_finish;
2919
f0d9a5f1 2920 spin_lock_bh(&css_set_lock);
f8f22e53 2921 list_for_each_entry(src_cset, &preloaded_csets, mg_preload_node) {
10265075 2922 struct task_struct *task, *ntask;
f8f22e53
TH
2923
2924 /* src_csets precede dst_csets, break on the first dst_cset */
2925 if (!src_cset->mg_src_cgrp)
2926 break;
2927
10265075
TH
2928 /* all tasks in src_csets need to be migrated */
2929 list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
2930 cgroup_taskset_add(task, &tset);
f8f22e53 2931 }
f0d9a5f1 2932 spin_unlock_bh(&css_set_lock);
f8f22e53 2933
10265075 2934 ret = cgroup_taskset_migrate(&tset, cgrp);
f8f22e53
TH
2935out_finish:
2936 cgroup_migrate_finish(&preloaded_csets);
3014dde7 2937 percpu_up_write(&cgroup_threadgroup_rwsem);
f8f22e53
TH
2938 return ret;
2939}
2940
2941/* change the enabled child controllers for a cgroup in the default hierarchy */
451af504
TH
2942static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
2943 char *buf, size_t nbytes,
2944 loff_t off)
f8f22e53 2945{
8ab456ac
AS
2946 unsigned long enable = 0, disable = 0;
2947 unsigned long css_enable, css_disable, old_sc, new_sc, old_ss, new_ss;
a9746d8d 2948 struct cgroup *cgrp, *child;
f8f22e53 2949 struct cgroup_subsys *ss;
451af504 2950 char *tok;
f8f22e53
TH
2951 int ssid, ret;
2952
2953 /*
d37167ab
TH
2954 * Parse input - space separated list of subsystem names prefixed
2955 * with either + or -.
f8f22e53 2956 */
451af504
TH
2957 buf = strstrip(buf);
2958 while ((tok = strsep(&buf, " "))) {
a966a4ed
AS
2959 unsigned long tmp_ss_mask = ~cgrp_dfl_root_inhibit_ss_mask;
2960
d37167ab
TH
2961 if (tok[0] == '\0')
2962 continue;
a966a4ed 2963 for_each_subsys_which(ss, ssid, &tmp_ss_mask) {
fc5ed1e9
TH
2964 if (!cgroup_ssid_enabled(ssid) ||
2965 strcmp(tok + 1, ss->name))
f8f22e53
TH
2966 continue;
2967
2968 if (*tok == '+') {
7d331fa9
TH
2969 enable |= 1 << ssid;
2970 disable &= ~(1 << ssid);
f8f22e53 2971 } else if (*tok == '-') {
7d331fa9
TH
2972 disable |= 1 << ssid;
2973 enable &= ~(1 << ssid);
f8f22e53
TH
2974 } else {
2975 return -EINVAL;
2976 }
2977 break;
2978 }
2979 if (ssid == CGROUP_SUBSYS_COUNT)
2980 return -EINVAL;
2981 }
2982
a9746d8d
TH
2983 cgrp = cgroup_kn_lock_live(of->kn);
2984 if (!cgrp)
2985 return -ENODEV;
f8f22e53
TH
2986
2987 for_each_subsys(ss, ssid) {
2988 if (enable & (1 << ssid)) {
667c2491 2989 if (cgrp->subtree_control & (1 << ssid)) {
f8f22e53
TH
2990 enable &= ~(1 << ssid);
2991 continue;
2992 }
2993
c29adf24
TH
2994 /* unavailable or not enabled on the parent? */
2995 if (!(cgrp_dfl_root.subsys_mask & (1 << ssid)) ||
2996 (cgroup_parent(cgrp) &&
667c2491 2997 !(cgroup_parent(cgrp)->subtree_control & (1 << ssid)))) {
c29adf24
TH
2998 ret = -ENOENT;
2999 goto out_unlock;
3000 }
f8f22e53 3001 } else if (disable & (1 << ssid)) {
667c2491 3002 if (!(cgrp->subtree_control & (1 << ssid))) {
f8f22e53
TH
3003 disable &= ~(1 << ssid);
3004 continue;
3005 }
3006
3007 /* a child has it enabled? */
3008 cgroup_for_each_live_child(child, cgrp) {
667c2491 3009 if (child->subtree_control & (1 << ssid)) {
f8f22e53 3010 ret = -EBUSY;
ddab2b6e 3011 goto out_unlock;
f8f22e53
TH
3012 }
3013 }
3014 }
3015 }
3016
3017 if (!enable && !disable) {
3018 ret = 0;
ddab2b6e 3019 goto out_unlock;
f8f22e53
TH
3020 }
3021
3022 /*
667c2491 3023 * Except for the root, subtree_control must be zero for a cgroup
f8f22e53
TH
3024 * with tasks so that child cgroups don't compete against tasks.
3025 */
d51f39b0 3026 if (enable && cgroup_parent(cgrp) && !list_empty(&cgrp->cset_links)) {
f8f22e53
TH
3027 ret = -EBUSY;
3028 goto out_unlock;
3029 }
3030
3031 /*
f63070d3
TH
3032 * Update subsys masks and calculate what needs to be done. More
3033 * subsystems than specified may need to be enabled or disabled
3034 * depending on subsystem dependencies.
3035 */
755bf5ee
TH
3036 old_sc = cgrp->subtree_control;
3037 old_ss = cgrp->child_subsys_mask;
3038 new_sc = (old_sc | enable) & ~disable;
3039 new_ss = cgroup_calc_child_subsys_mask(cgrp, new_sc);
f63070d3 3040
755bf5ee
TH
3041 css_enable = ~old_ss & new_ss;
3042 css_disable = old_ss & ~new_ss;
f63070d3
TH
3043 enable |= css_enable;
3044 disable |= css_disable;
c29adf24 3045
db6e3053
TH
3046 /*
3047 * Because css offlining is asynchronous, userland might try to
3048 * re-enable the same controller while the previous instance is
3049 * still around. In such cases, wait till it's gone using
3050 * offline_waitq.
3051 */
a966a4ed 3052 for_each_subsys_which(ss, ssid, &css_enable) {
db6e3053
TH
3053 cgroup_for_each_live_child(child, cgrp) {
3054 DEFINE_WAIT(wait);
3055
3056 if (!cgroup_css(child, ss))
3057 continue;
3058
3059 cgroup_get(child);
3060 prepare_to_wait(&child->offline_waitq, &wait,
3061 TASK_UNINTERRUPTIBLE);
3062 cgroup_kn_unlock(of->kn);
3063 schedule();
3064 finish_wait(&child->offline_waitq, &wait);
3065 cgroup_put(child);
3066
3067 return restart_syscall();
3068 }
3069 }
3070
755bf5ee
TH
3071 cgrp->subtree_control = new_sc;
3072 cgrp->child_subsys_mask = new_ss;
3073
f63070d3
TH
3074 /*
3075 * Create new csses or make the existing ones visible. A css is
3076 * created invisible if it's being implicitly enabled through
3077 * dependency. An invisible css is made visible when the userland
3078 * explicitly enables it.
f8f22e53
TH
3079 */
3080 for_each_subsys(ss, ssid) {
3081 if (!(enable & (1 << ssid)))
3082 continue;
3083
3084 cgroup_for_each_live_child(child, cgrp) {
f63070d3
TH
3085 if (css_enable & (1 << ssid))
3086 ret = create_css(child, ss,
3087 cgrp->subtree_control & (1 << ssid));
3088 else
4df8dc90
TH
3089 ret = css_populate_dir(cgroup_css(child, ss),
3090 NULL);
f8f22e53
TH
3091 if (ret)
3092 goto err_undo_css;
3093 }
3094 }
3095
c29adf24
TH
3096 /*
3097 * At this point, cgroup_e_css() results reflect the new csses
3098 * making the following cgroup_update_dfl_csses() properly update
3099 * css associations of all tasks in the subtree.
3100 */
f8f22e53
TH
3101 ret = cgroup_update_dfl_csses(cgrp);
3102 if (ret)
3103 goto err_undo_css;
3104
f63070d3
TH
3105 /*
3106 * All tasks are migrated out of disabled csses. Kill or hide
3107 * them. A css is hidden when the userland requests it to be
b4536f0c
TH
3108 * disabled while other subsystems are still depending on it. The
3109 * css must not actively control resources and be in the vanilla
3110 * state if it's made visible again later. Controllers which may
3111 * be depended upon should provide ->css_reset() for this purpose.
f63070d3 3112 */
f8f22e53
TH
3113 for_each_subsys(ss, ssid) {
3114 if (!(disable & (1 << ssid)))
3115 continue;
3116
f63070d3 3117 cgroup_for_each_live_child(child, cgrp) {
b4536f0c
TH
3118 struct cgroup_subsys_state *css = cgroup_css(child, ss);
3119
3120 if (css_disable & (1 << ssid)) {
3121 kill_css(css);
3122 } else {
4df8dc90 3123 css_clear_dir(css, NULL);
b4536f0c
TH
3124 if (ss->css_reset)
3125 ss->css_reset(css);
3126 }
f63070d3 3127 }
f8f22e53
TH
3128 }
3129
3130 kernfs_activate(cgrp->kn);
3131 ret = 0;
3132out_unlock:
a9746d8d 3133 cgroup_kn_unlock(of->kn);
451af504 3134 return ret ?: nbytes;
f8f22e53
TH
3135
3136err_undo_css:
755bf5ee
TH
3137 cgrp->subtree_control = old_sc;
3138 cgrp->child_subsys_mask = old_ss;
f8f22e53
TH
3139
3140 for_each_subsys(ss, ssid) {
3141 if (!(enable & (1 << ssid)))
3142 continue;
3143
3144 cgroup_for_each_live_child(child, cgrp) {
3145 struct cgroup_subsys_state *css = cgroup_css(child, ss);
f63070d3
TH
3146
3147 if (!css)
3148 continue;
3149
3150 if (css_enable & (1 << ssid))
f8f22e53 3151 kill_css(css);
f63070d3 3152 else
4df8dc90 3153 css_clear_dir(css, NULL);
f8f22e53
TH
3154 }
3155 }
3156 goto out_unlock;
3157}
3158
4a07c222 3159static int cgroup_events_show(struct seq_file *seq, void *v)
842b597e 3160{
4a07c222 3161 seq_printf(seq, "populated %d\n",
27bd4dbb 3162 cgroup_is_populated(seq_css(seq)->cgroup));
842b597e
TH
3163 return 0;
3164}
3165
2bd59d48
TH
3166static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
3167 size_t nbytes, loff_t off)
355e0c48 3168{
2bd59d48
TH
3169 struct cgroup *cgrp = of->kn->parent->priv;
3170 struct cftype *cft = of->kn->priv;
3171 struct cgroup_subsys_state *css;
a742c59d 3172 int ret;
355e0c48 3173
b4168640
TH
3174 if (cft->write)
3175 return cft->write(of, buf, nbytes, off);
3176
2bd59d48
TH
3177 /*
3178 * kernfs guarantees that a file isn't deleted with operations in
3179 * flight, which means that the matching css is and stays alive and
3180 * doesn't need to be pinned. The RCU locking is not necessary
3181 * either. It's just for the convenience of using cgroup_css().
3182 */
3183 rcu_read_lock();
3184 css = cgroup_css(cgrp, cft->ss);
3185 rcu_read_unlock();
a742c59d 3186
451af504 3187 if (cft->write_u64) {
a742c59d
TH
3188 unsigned long long v;
3189 ret = kstrtoull(buf, 0, &v);
3190 if (!ret)
3191 ret = cft->write_u64(css, cft, v);
3192 } else if (cft->write_s64) {
3193 long long v;
3194 ret = kstrtoll(buf, 0, &v);
3195 if (!ret)
3196 ret = cft->write_s64(css, cft, v);
e73d2c61 3197 } else {
a742c59d 3198 ret = -EINVAL;
e73d2c61 3199 }
2bd59d48 3200
a742c59d 3201 return ret ?: nbytes;
355e0c48
PM
3202}
3203
6612f05b 3204static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
db3b1497 3205{
2bd59d48 3206 return seq_cft(seq)->seq_start(seq, ppos);
db3b1497
PM
3207}
3208
6612f05b 3209static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
ddbcc7e8 3210{
2bd59d48 3211 return seq_cft(seq)->seq_next(seq, v, ppos);
ddbcc7e8
PM
3212}
3213
6612f05b 3214static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
ddbcc7e8 3215{
2bd59d48 3216 seq_cft(seq)->seq_stop(seq, v);
ddbcc7e8
PM
3217}
3218
91796569 3219static int cgroup_seqfile_show(struct seq_file *m, void *arg)
e73d2c61 3220{
7da11279
TH
3221 struct cftype *cft = seq_cft(m);
3222 struct cgroup_subsys_state *css = seq_css(m);
e73d2c61 3223
2da8ca82
TH
3224 if (cft->seq_show)
3225 return cft->seq_show(m, arg);
e73d2c61 3226
f4c753b7 3227 if (cft->read_u64)
896f5199
TH
3228 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
3229 else if (cft->read_s64)
3230 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
3231 else
3232 return -EINVAL;
3233 return 0;
91796569
PM
3234}
3235
2bd59d48
TH
3236static struct kernfs_ops cgroup_kf_single_ops = {
3237 .atomic_write_len = PAGE_SIZE,
3238 .write = cgroup_file_write,
3239 .seq_show = cgroup_seqfile_show,
91796569
PM
3240};
3241
2bd59d48
TH
3242static struct kernfs_ops cgroup_kf_ops = {
3243 .atomic_write_len = PAGE_SIZE,
3244 .write = cgroup_file_write,
3245 .seq_start = cgroup_seqfile_start,
3246 .seq_next = cgroup_seqfile_next,
3247 .seq_stop = cgroup_seqfile_stop,
3248 .seq_show = cgroup_seqfile_show,
3249};
ddbcc7e8
PM
3250
3251/*
3252 * cgroup_rename - Only allow simple rename of directories in place.
3253 */
2bd59d48
TH
3254static int cgroup_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
3255 const char *new_name_str)
ddbcc7e8 3256{
2bd59d48 3257 struct cgroup *cgrp = kn->priv;
65dff759 3258 int ret;
65dff759 3259
2bd59d48 3260 if (kernfs_type(kn) != KERNFS_DIR)
ddbcc7e8 3261 return -ENOTDIR;
2bd59d48 3262 if (kn->parent != new_parent)
ddbcc7e8 3263 return -EIO;
65dff759 3264
6db8e85c
TH
3265 /*
3266 * This isn't a proper migration and its usefulness is very
aa6ec29b 3267 * limited. Disallow on the default hierarchy.
6db8e85c 3268 */
aa6ec29b 3269 if (cgroup_on_dfl(cgrp))
6db8e85c 3270 return -EPERM;
099fca32 3271
e1b2dc17 3272 /*
8353da1f 3273 * We're gonna grab cgroup_mutex which nests outside kernfs
e1b2dc17 3274 * active_ref. kernfs_rename() doesn't require active_ref
8353da1f 3275 * protection. Break them before grabbing cgroup_mutex.
e1b2dc17
TH
3276 */
3277 kernfs_break_active_protection(new_parent);
3278 kernfs_break_active_protection(kn);
099fca32 3279
2bd59d48 3280 mutex_lock(&cgroup_mutex);
099fca32 3281
2bd59d48 3282 ret = kernfs_rename(kn, new_parent, new_name_str);
099fca32 3283
2bd59d48 3284 mutex_unlock(&cgroup_mutex);
e1b2dc17
TH
3285
3286 kernfs_unbreak_active_protection(kn);
3287 kernfs_unbreak_active_protection(new_parent);
2bd59d48 3288 return ret;
099fca32
LZ
3289}
3290
49957f8e
TH
3291/* set uid and gid of cgroup dirs and files to that of the creator */
3292static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3293{
3294 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3295 .ia_uid = current_fsuid(),
3296 .ia_gid = current_fsgid(), };
3297
3298 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3299 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
3300 return 0;
3301
3302 return kernfs_setattr(kn, &iattr);
3303}
3304
4df8dc90
TH
3305static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
3306 struct cftype *cft)
ddbcc7e8 3307{
8d7e6fb0 3308 char name[CGROUP_FILE_NAME_MAX];
2bd59d48
TH
3309 struct kernfs_node *kn;
3310 struct lock_class_key *key = NULL;
49957f8e 3311 int ret;
05ef1d7c 3312
2bd59d48
TH
3313#ifdef CONFIG_DEBUG_LOCK_ALLOC
3314 key = &cft->lockdep_key;
3315#endif
3316 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
3317 cgroup_file_mode(cft), 0, cft->kf_ops, cft,
dfeb0750 3318 NULL, key);
49957f8e
TH
3319 if (IS_ERR(kn))
3320 return PTR_ERR(kn);
3321
3322 ret = cgroup_kn_set_ugid(kn);
f8f22e53 3323 if (ret) {
49957f8e 3324 kernfs_remove(kn);
f8f22e53
TH
3325 return ret;
3326 }
3327
6f60eade
TH
3328 if (cft->file_offset) {
3329 struct cgroup_file *cfile = (void *)css + cft->file_offset;
3330
34c06254 3331 spin_lock_irq(&cgroup_file_kn_lock);
6f60eade 3332 cfile->kn = kn;
34c06254 3333 spin_unlock_irq(&cgroup_file_kn_lock);
6f60eade
TH
3334 }
3335
f8f22e53 3336 return 0;
ddbcc7e8
PM
3337}
3338
b1f28d31
TH
3339/**
3340 * cgroup_addrm_files - add or remove files to a cgroup directory
4df8dc90
TH
3341 * @css: the target css
3342 * @cgrp: the target cgroup (usually css->cgroup)
b1f28d31
TH
3343 * @cfts: array of cftypes to be added
3344 * @is_add: whether to add or remove
3345 *
3346 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
6732ed85 3347 * For removals, this function never fails.
b1f28d31 3348 */
4df8dc90
TH
3349static int cgroup_addrm_files(struct cgroup_subsys_state *css,
3350 struct cgroup *cgrp, struct cftype cfts[],
2bb566cb 3351 bool is_add)
ddbcc7e8 3352{
6732ed85 3353 struct cftype *cft, *cft_end = NULL;
b598dde3 3354 int ret = 0;
b1f28d31 3355
01f6474c 3356 lockdep_assert_held(&cgroup_mutex);
db0416b6 3357
6732ed85
TH
3358restart:
3359 for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
f33fddc2 3360 /* does cft->flags tell us to skip this file on @cgrp? */
05ebb6e6 3361 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
8cbbf2c9 3362 continue;
05ebb6e6 3363 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
873fe09e 3364 continue;
d51f39b0 3365 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
f33fddc2 3366 continue;
d51f39b0 3367 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
f33fddc2
G
3368 continue;
3369
2739d3cc 3370 if (is_add) {
4df8dc90 3371 ret = cgroup_add_file(css, cgrp, cft);
b1f28d31 3372 if (ret) {
ed3d261b
JP
3373 pr_warn("%s: failed to add %s, err=%d\n",
3374 __func__, cft->name, ret);
6732ed85
TH
3375 cft_end = cft;
3376 is_add = false;
3377 goto restart;
b1f28d31 3378 }
2739d3cc
LZ
3379 } else {
3380 cgroup_rm_file(cgrp, cft);
db0416b6 3381 }
ddbcc7e8 3382 }
b598dde3 3383 return ret;
ddbcc7e8
PM
3384}
3385
21a2d343 3386static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
8e3f6541
TH
3387{
3388 LIST_HEAD(pending);
2bb566cb 3389 struct cgroup_subsys *ss = cfts[0].ss;
3dd06ffa 3390 struct cgroup *root = &ss->root->cgrp;
492eb21b 3391 struct cgroup_subsys_state *css;
9ccece80 3392 int ret = 0;
8e3f6541 3393
01f6474c 3394 lockdep_assert_held(&cgroup_mutex);
e8c82d20 3395
e8c82d20 3396 /* add/rm files for all cgroups created before */
ca8bdcaf 3397 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
492eb21b
TH
3398 struct cgroup *cgrp = css->cgroup;
3399
e8c82d20
LZ
3400 if (cgroup_is_dead(cgrp))
3401 continue;
3402
4df8dc90 3403 ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
9ccece80
TH
3404 if (ret)
3405 break;
8e3f6541 3406 }
21a2d343
TH
3407
3408 if (is_add && !ret)
3409 kernfs_activate(root->kn);
9ccece80 3410 return ret;
8e3f6541
TH
3411}
3412
2da440a2 3413static void cgroup_exit_cftypes(struct cftype *cfts)
8e3f6541 3414{
2bb566cb 3415 struct cftype *cft;
8e3f6541 3416
2bd59d48
TH
3417 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3418 /* free copy for custom atomic_write_len, see init_cftypes() */
3419 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
3420 kfree(cft->kf_ops);
3421 cft->kf_ops = NULL;
2da440a2 3422 cft->ss = NULL;
a8ddc821
TH
3423
3424 /* revert flags set by cgroup core while adding @cfts */
05ebb6e6 3425 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
2bd59d48 3426 }
2da440a2
TH
3427}
3428
2bd59d48 3429static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
2da440a2
TH
3430{
3431 struct cftype *cft;
3432
2bd59d48
TH
3433 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3434 struct kernfs_ops *kf_ops;
3435
0adb0704
TH
3436 WARN_ON(cft->ss || cft->kf_ops);
3437
2bd59d48
TH
3438 if (cft->seq_start)
3439 kf_ops = &cgroup_kf_ops;
3440 else
3441 kf_ops = &cgroup_kf_single_ops;
3442
3443 /*
3444 * Ugh... if @cft wants a custom max_write_len, we need to
3445 * make a copy of kf_ops to set its atomic_write_len.
3446 */
3447 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
3448 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
3449 if (!kf_ops) {
3450 cgroup_exit_cftypes(cfts);
3451 return -ENOMEM;
3452 }
3453 kf_ops->atomic_write_len = cft->max_write_len;
3454 }
8e3f6541 3455
2bd59d48 3456 cft->kf_ops = kf_ops;
2bb566cb 3457 cft->ss = ss;
2bd59d48 3458 }
2bb566cb 3459
2bd59d48 3460 return 0;
2da440a2
TH
3461}
3462
21a2d343
TH
3463static int cgroup_rm_cftypes_locked(struct cftype *cfts)
3464{
01f6474c 3465 lockdep_assert_held(&cgroup_mutex);
21a2d343
TH
3466
3467 if (!cfts || !cfts[0].ss)
3468 return -ENOENT;
3469
3470 list_del(&cfts->node);
3471 cgroup_apply_cftypes(cfts, false);
3472 cgroup_exit_cftypes(cfts);
3473 return 0;
8e3f6541 3474}
8e3f6541 3475
79578621
TH
3476/**
3477 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
79578621
TH
3478 * @cfts: zero-length name terminated array of cftypes
3479 *
2bb566cb
TH
3480 * Unregister @cfts. Files described by @cfts are removed from all
3481 * existing cgroups and all future cgroups won't have them either. This
3482 * function can be called anytime whether @cfts' subsys is attached or not.
79578621
TH
3483 *
3484 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
2bb566cb 3485 * registered.
79578621 3486 */
2bb566cb 3487int cgroup_rm_cftypes(struct cftype *cfts)
79578621 3488{
21a2d343 3489 int ret;
79578621 3490
01f6474c 3491 mutex_lock(&cgroup_mutex);
21a2d343 3492 ret = cgroup_rm_cftypes_locked(cfts);
01f6474c 3493 mutex_unlock(&cgroup_mutex);
21a2d343 3494 return ret;
80b13586
TH
3495}
3496
8e3f6541
TH
3497/**
3498 * cgroup_add_cftypes - add an array of cftypes to a subsystem
3499 * @ss: target cgroup subsystem
3500 * @cfts: zero-length name terminated array of cftypes
3501 *
3502 * Register @cfts to @ss. Files described by @cfts are created for all
3503 * existing cgroups to which @ss is attached and all future cgroups will
3504 * have them too. This function can be called anytime whether @ss is
3505 * attached or not.
3506 *
3507 * Returns 0 on successful registration, -errno on failure. Note that this
3508 * function currently returns 0 as long as @cfts registration is successful
3509 * even if some file creation attempts on existing cgroups fail.
3510 */
2cf669a5 3511static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
8e3f6541 3512{
9ccece80 3513 int ret;
8e3f6541 3514
fc5ed1e9 3515 if (!cgroup_ssid_enabled(ss->id))
c731ae1d
LZ
3516 return 0;
3517
dc5736ed
LZ
3518 if (!cfts || cfts[0].name[0] == '\0')
3519 return 0;
2bb566cb 3520
2bd59d48
TH
3521 ret = cgroup_init_cftypes(ss, cfts);
3522 if (ret)
3523 return ret;
79578621 3524
01f6474c 3525 mutex_lock(&cgroup_mutex);
21a2d343 3526
0adb0704 3527 list_add_tail(&cfts->node, &ss->cfts);
21a2d343 3528 ret = cgroup_apply_cftypes(cfts, true);
9ccece80 3529 if (ret)
21a2d343 3530 cgroup_rm_cftypes_locked(cfts);
79578621 3531
01f6474c 3532 mutex_unlock(&cgroup_mutex);
9ccece80 3533 return ret;
79578621
TH
3534}
3535
a8ddc821
TH
3536/**
3537 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
3538 * @ss: target cgroup subsystem
3539 * @cfts: zero-length name terminated array of cftypes
3540 *
3541 * Similar to cgroup_add_cftypes() but the added files are only used for
3542 * the default hierarchy.
3543 */
3544int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3545{
3546 struct cftype *cft;
3547
3548 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
05ebb6e6 3549 cft->flags |= __CFTYPE_ONLY_ON_DFL;
a8ddc821
TH
3550 return cgroup_add_cftypes(ss, cfts);
3551}
3552
3553/**
3554 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
3555 * @ss: target cgroup subsystem
3556 * @cfts: zero-length name terminated array of cftypes
3557 *
3558 * Similar to cgroup_add_cftypes() but the added files are only used for
3559 * the legacy hierarchies.
3560 */
2cf669a5
TH
3561int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3562{
a8ddc821
TH
3563 struct cftype *cft;
3564
e4b7037c
TH
3565 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3566 cft->flags |= __CFTYPE_NOT_ON_DFL;
2cf669a5
TH
3567 return cgroup_add_cftypes(ss, cfts);
3568}
3569
34c06254
TH
3570/**
3571 * cgroup_file_notify - generate a file modified event for a cgroup_file
3572 * @cfile: target cgroup_file
3573 *
3574 * @cfile must have been obtained by setting cftype->file_offset.
3575 */
3576void cgroup_file_notify(struct cgroup_file *cfile)
3577{
3578 unsigned long flags;
3579
3580 spin_lock_irqsave(&cgroup_file_kn_lock, flags);
3581 if (cfile->kn)
3582 kernfs_notify(cfile->kn);
3583 spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
3584}
3585
a043e3b2
LZ
3586/**
3587 * cgroup_task_count - count the number of tasks in a cgroup.
3588 * @cgrp: the cgroup in question
3589 *
3590 * Return the number of tasks in the cgroup.
3591 */
07bc356e 3592static int cgroup_task_count(const struct cgroup *cgrp)
bbcb81d0
PM
3593{
3594 int count = 0;
69d0206c 3595 struct cgrp_cset_link *link;
817929ec 3596
f0d9a5f1 3597 spin_lock_bh(&css_set_lock);
69d0206c
TH
3598 list_for_each_entry(link, &cgrp->cset_links, cset_link)
3599 count += atomic_read(&link->cset->refcount);
f0d9a5f1 3600 spin_unlock_bh(&css_set_lock);
bbcb81d0
PM
3601 return count;
3602}
3603
53fa5261 3604/**
492eb21b 3605 * css_next_child - find the next child of a given css
c2931b70
TH
3606 * @pos: the current position (%NULL to initiate traversal)
3607 * @parent: css whose children to walk
53fa5261 3608 *
c2931b70 3609 * This function returns the next child of @parent and should be called
87fb54f1 3610 * under either cgroup_mutex or RCU read lock. The only requirement is
c2931b70
TH
3611 * that @parent and @pos are accessible. The next sibling is guaranteed to
3612 * be returned regardless of their states.
3613 *
3614 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3615 * css which finished ->css_online() is guaranteed to be visible in the
3616 * future iterations and will stay visible until the last reference is put.
3617 * A css which hasn't finished ->css_online() or already finished
3618 * ->css_offline() may show up during traversal. It's each subsystem's
3619 * responsibility to synchronize against on/offlining.
53fa5261 3620 */
c2931b70
TH
3621struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
3622 struct cgroup_subsys_state *parent)
53fa5261 3623{
c2931b70 3624 struct cgroup_subsys_state *next;
53fa5261 3625
8353da1f 3626 cgroup_assert_mutex_or_rcu_locked();
53fa5261
TH
3627
3628 /*
de3f0341
TH
3629 * @pos could already have been unlinked from the sibling list.
3630 * Once a cgroup is removed, its ->sibling.next is no longer
3631 * updated when its next sibling changes. CSS_RELEASED is set when
3632 * @pos is taken off list, at which time its next pointer is valid,
3633 * and, as releases are serialized, the one pointed to by the next
3634 * pointer is guaranteed to not have started release yet. This
3635 * implies that if we observe !CSS_RELEASED on @pos in this RCU
3636 * critical section, the one pointed to by its next pointer is
3637 * guaranteed to not have finished its RCU grace period even if we
3638 * have dropped rcu_read_lock() inbetween iterations.
3b287a50 3639 *
de3f0341
TH
3640 * If @pos has CSS_RELEASED set, its next pointer can't be
3641 * dereferenced; however, as each css is given a monotonically
3642 * increasing unique serial number and always appended to the
3643 * sibling list, the next one can be found by walking the parent's
3644 * children until the first css with higher serial number than
3645 * @pos's. While this path can be slower, it happens iff iteration
3646 * races against release and the race window is very small.
53fa5261 3647 */
3b287a50 3648 if (!pos) {
c2931b70
TH
3649 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
3650 } else if (likely(!(pos->flags & CSS_RELEASED))) {
3651 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
3b287a50 3652 } else {
c2931b70 3653 list_for_each_entry_rcu(next, &parent->children, sibling)
3b287a50
TH
3654 if (next->serial_nr > pos->serial_nr)
3655 break;
53fa5261
TH
3656 }
3657
3b281afb
TH
3658 /*
3659 * @next, if not pointing to the head, can be dereferenced and is
c2931b70 3660 * the next sibling.
3b281afb 3661 */
c2931b70
TH
3662 if (&next->sibling != &parent->children)
3663 return next;
3b281afb 3664 return NULL;
53fa5261 3665}
53fa5261 3666
574bd9f7 3667/**
492eb21b 3668 * css_next_descendant_pre - find the next descendant for pre-order walk
574bd9f7 3669 * @pos: the current position (%NULL to initiate traversal)
492eb21b 3670 * @root: css whose descendants to walk
574bd9f7 3671 *
492eb21b 3672 * To be used by css_for_each_descendant_pre(). Find the next descendant
bd8815a6
TH
3673 * to visit for pre-order traversal of @root's descendants. @root is
3674 * included in the iteration and the first node to be visited.
75501a6d 3675 *
87fb54f1
TH
3676 * While this function requires cgroup_mutex or RCU read locking, it
3677 * doesn't require the whole traversal to be contained in a single critical
3678 * section. This function will return the correct next descendant as long
3679 * as both @pos and @root are accessible and @pos is a descendant of @root.
c2931b70
TH
3680 *
3681 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3682 * css which finished ->css_online() is guaranteed to be visible in the
3683 * future iterations and will stay visible until the last reference is put.
3684 * A css which hasn't finished ->css_online() or already finished
3685 * ->css_offline() may show up during traversal. It's each subsystem's
3686 * responsibility to synchronize against on/offlining.
574bd9f7 3687 */
492eb21b
TH
3688struct cgroup_subsys_state *
3689css_next_descendant_pre(struct cgroup_subsys_state *pos,
3690 struct cgroup_subsys_state *root)
574bd9f7 3691{
492eb21b 3692 struct cgroup_subsys_state *next;
574bd9f7 3693
8353da1f 3694 cgroup_assert_mutex_or_rcu_locked();
574bd9f7 3695
bd8815a6 3696 /* if first iteration, visit @root */
7805d000 3697 if (!pos)
bd8815a6 3698 return root;
574bd9f7
TH
3699
3700 /* visit the first child if exists */
492eb21b 3701 next = css_next_child(NULL, pos);
574bd9f7
TH
3702 if (next)
3703 return next;
3704
3705 /* no child, visit my or the closest ancestor's next sibling */
492eb21b 3706 while (pos != root) {
5c9d535b 3707 next = css_next_child(pos, pos->parent);
75501a6d 3708 if (next)
574bd9f7 3709 return next;
5c9d535b 3710 pos = pos->parent;
7805d000 3711 }
574bd9f7
TH
3712
3713 return NULL;
3714}
574bd9f7 3715
12a9d2fe 3716/**
492eb21b
TH
3717 * css_rightmost_descendant - return the rightmost descendant of a css
3718 * @pos: css of interest
12a9d2fe 3719 *
492eb21b
TH
3720 * Return the rightmost descendant of @pos. If there's no descendant, @pos
3721 * is returned. This can be used during pre-order traversal to skip
12a9d2fe 3722 * subtree of @pos.
75501a6d 3723 *
87fb54f1
TH
3724 * While this function requires cgroup_mutex or RCU read locking, it
3725 * doesn't require the whole traversal to be contained in a single critical
3726 * section. This function will return the correct rightmost descendant as
3727 * long as @pos is accessible.
12a9d2fe 3728 */
492eb21b
TH
3729struct cgroup_subsys_state *
3730css_rightmost_descendant(struct cgroup_subsys_state *pos)
12a9d2fe 3731{
492eb21b 3732 struct cgroup_subsys_state *last, *tmp;
12a9d2fe 3733
8353da1f 3734 cgroup_assert_mutex_or_rcu_locked();
12a9d2fe
TH
3735
3736 do {
3737 last = pos;
3738 /* ->prev isn't RCU safe, walk ->next till the end */
3739 pos = NULL;
492eb21b 3740 css_for_each_child(tmp, last)
12a9d2fe
TH
3741 pos = tmp;
3742 } while (pos);
3743
3744 return last;
3745}
12a9d2fe 3746
492eb21b
TH
3747static struct cgroup_subsys_state *
3748css_leftmost_descendant(struct cgroup_subsys_state *pos)
574bd9f7 3749{
492eb21b 3750 struct cgroup_subsys_state *last;
574bd9f7
TH
3751
3752 do {
3753 last = pos;
492eb21b 3754 pos = css_next_child(NULL, pos);
574bd9f7
TH
3755 } while (pos);
3756
3757 return last;
3758}
3759
3760/**
492eb21b 3761 * css_next_descendant_post - find the next descendant for post-order walk
574bd9f7 3762 * @pos: the current position (%NULL to initiate traversal)
492eb21b 3763 * @root: css whose descendants to walk
574bd9f7 3764 *
492eb21b 3765 * To be used by css_for_each_descendant_post(). Find the next descendant
bd8815a6
TH
3766 * to visit for post-order traversal of @root's descendants. @root is
3767 * included in the iteration and the last node to be visited.
75501a6d 3768 *
87fb54f1
TH
3769 * While this function requires cgroup_mutex or RCU read locking, it
3770 * doesn't require the whole traversal to be contained in a single critical
3771 * section. This function will return the correct next descendant as long
3772 * as both @pos and @cgroup are accessible and @pos is a descendant of
3773 * @cgroup.
c2931b70
TH
3774 *
3775 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3776 * css which finished ->css_online() is guaranteed to be visible in the
3777 * future iterations and will stay visible until the last reference is put.
3778 * A css which hasn't finished ->css_online() or already finished
3779 * ->css_offline() may show up during traversal. It's each subsystem's
3780 * responsibility to synchronize against on/offlining.
574bd9f7 3781 */
492eb21b
TH
3782struct cgroup_subsys_state *
3783css_next_descendant_post(struct cgroup_subsys_state *pos,
3784 struct cgroup_subsys_state *root)
574bd9f7 3785{
492eb21b 3786 struct cgroup_subsys_state *next;
574bd9f7 3787
8353da1f 3788 cgroup_assert_mutex_or_rcu_locked();
574bd9f7 3789
58b79a91
TH
3790 /* if first iteration, visit leftmost descendant which may be @root */
3791 if (!pos)
3792 return css_leftmost_descendant(root);
574bd9f7 3793
bd8815a6
TH
3794 /* if we visited @root, we're done */
3795 if (pos == root)
3796 return NULL;
3797
574bd9f7 3798 /* if there's an unvisited sibling, visit its leftmost descendant */
5c9d535b 3799 next = css_next_child(pos, pos->parent);
75501a6d 3800 if (next)
492eb21b 3801 return css_leftmost_descendant(next);
574bd9f7
TH
3802
3803 /* no sibling left, visit parent */
5c9d535b 3804 return pos->parent;
574bd9f7 3805}
574bd9f7 3806
f3d46500
TH
3807/**
3808 * css_has_online_children - does a css have online children
3809 * @css: the target css
3810 *
3811 * Returns %true if @css has any online children; otherwise, %false. This
3812 * function can be called from any context but the caller is responsible
3813 * for synchronizing against on/offlining as necessary.
3814 */
3815bool css_has_online_children(struct cgroup_subsys_state *css)
cbc125ef 3816{
f3d46500
TH
3817 struct cgroup_subsys_state *child;
3818 bool ret = false;
cbc125ef
TH
3819
3820 rcu_read_lock();
f3d46500 3821 css_for_each_child(child, css) {
99bae5f9 3822 if (child->flags & CSS_ONLINE) {
f3d46500
TH
3823 ret = true;
3824 break;
cbc125ef
TH
3825 }
3826 }
3827 rcu_read_unlock();
f3d46500 3828 return ret;
574bd9f7 3829}
574bd9f7 3830
0942eeee 3831/**
ecb9d535 3832 * css_task_iter_advance_css_set - advance a task itererator to the next css_set
0942eeee
TH
3833 * @it: the iterator to advance
3834 *
3835 * Advance @it to the next css_set to walk.
d515876e 3836 */
ecb9d535 3837static void css_task_iter_advance_css_set(struct css_task_iter *it)
d515876e 3838{
0f0a2b4f 3839 struct list_head *l = it->cset_pos;
d515876e
TH
3840 struct cgrp_cset_link *link;
3841 struct css_set *cset;
3842
f0d9a5f1 3843 lockdep_assert_held(&css_set_lock);
ed27b9f7 3844
d515876e
TH
3845 /* Advance to the next non-empty css_set */
3846 do {
3847 l = l->next;
0f0a2b4f
TH
3848 if (l == it->cset_head) {
3849 it->cset_pos = NULL;
ecb9d535 3850 it->task_pos = NULL;
d515876e
TH
3851 return;
3852 }
3ebb2b6e
TH
3853
3854 if (it->ss) {
3855 cset = container_of(l, struct css_set,
3856 e_cset_node[it->ss->id]);
3857 } else {
3858 link = list_entry(l, struct cgrp_cset_link, cset_link);
3859 cset = link->cset;
3860 }
0de0942d 3861 } while (!css_set_populated(cset));
c7561128 3862
0f0a2b4f 3863 it->cset_pos = l;
c7561128
TH
3864
3865 if (!list_empty(&cset->tasks))
0f0a2b4f 3866 it->task_pos = cset->tasks.next;
c7561128 3867 else
0f0a2b4f
TH
3868 it->task_pos = cset->mg_tasks.next;
3869
3870 it->tasks_head = &cset->tasks;
3871 it->mg_tasks_head = &cset->mg_tasks;
ed27b9f7
TH
3872
3873 /*
3874 * We don't keep css_sets locked across iteration steps and thus
3875 * need to take steps to ensure that iteration can be resumed after
3876 * the lock is re-acquired. Iteration is performed at two levels -
3877 * css_sets and tasks in them.
3878 *
3879 * Once created, a css_set never leaves its cgroup lists, so a
3880 * pinned css_set is guaranteed to stay put and we can resume
3881 * iteration afterwards.
3882 *
3883 * Tasks may leave @cset across iteration steps. This is resolved
3884 * by registering each iterator with the css_set currently being
3885 * walked and making css_set_move_task() advance iterators whose
3886 * next task is leaving.
3887 */
3888 if (it->cur_cset) {
3889 list_del(&it->iters_node);
3890 put_css_set_locked(it->cur_cset);
3891 }
3892 get_css_set(cset);
3893 it->cur_cset = cset;
3894 list_add(&it->iters_node, &cset->task_iters);
d515876e
TH
3895}
3896
ecb9d535
TH
3897static void css_task_iter_advance(struct css_task_iter *it)
3898{
3899 struct list_head *l = it->task_pos;
3900
f0d9a5f1 3901 lockdep_assert_held(&css_set_lock);
ecb9d535
TH
3902 WARN_ON_ONCE(!l);
3903
3904 /*
3905 * Advance iterator to find next entry. cset->tasks is consumed
3906 * first and then ->mg_tasks. After ->mg_tasks, we move onto the
3907 * next cset.
3908 */
3909 l = l->next;
3910
3911 if (l == it->tasks_head)
3912 l = it->mg_tasks_head->next;
3913
3914 if (l == it->mg_tasks_head)
3915 css_task_iter_advance_css_set(it);
3916 else
3917 it->task_pos = l;
3918}
3919
0942eeee 3920/**
72ec7029
TH
3921 * css_task_iter_start - initiate task iteration
3922 * @css: the css to walk tasks of
0942eeee
TH
3923 * @it: the task iterator to use
3924 *
72ec7029
TH
3925 * Initiate iteration through the tasks of @css. The caller can call
3926 * css_task_iter_next() to walk through the tasks until the function
3927 * returns NULL. On completion of iteration, css_task_iter_end() must be
3928 * called.
0942eeee 3929 */
72ec7029
TH
3930void css_task_iter_start(struct cgroup_subsys_state *css,
3931 struct css_task_iter *it)
817929ec 3932{
56fde9e0
TH
3933 /* no one should try to iterate before mounting cgroups */
3934 WARN_ON_ONCE(!use_task_css_set_links);
31a7df01 3935
ed27b9f7
TH
3936 memset(it, 0, sizeof(*it));
3937
f0d9a5f1 3938 spin_lock_bh(&css_set_lock);
c59cd3d8 3939
3ebb2b6e
TH
3940 it->ss = css->ss;
3941
3942 if (it->ss)
3943 it->cset_pos = &css->cgroup->e_csets[css->ss->id];
3944 else
3945 it->cset_pos = &css->cgroup->cset_links;
3946
0f0a2b4f 3947 it->cset_head = it->cset_pos;
c59cd3d8 3948
ecb9d535 3949 css_task_iter_advance_css_set(it);
ed27b9f7 3950
f0d9a5f1 3951 spin_unlock_bh(&css_set_lock);
817929ec
PM
3952}
3953
0942eeee 3954/**
72ec7029 3955 * css_task_iter_next - return the next task for the iterator
0942eeee
TH
3956 * @it: the task iterator being iterated
3957 *
3958 * The "next" function for task iteration. @it should have been
72ec7029
TH
3959 * initialized via css_task_iter_start(). Returns NULL when the iteration
3960 * reaches the end.
0942eeee 3961 */
72ec7029 3962struct task_struct *css_task_iter_next(struct css_task_iter *it)
817929ec 3963{
d5745675 3964 if (it->cur_task) {
ed27b9f7 3965 put_task_struct(it->cur_task);
d5745675
TH
3966 it->cur_task = NULL;
3967 }
ed27b9f7 3968
f0d9a5f1 3969 spin_lock_bh(&css_set_lock);
ed27b9f7 3970
d5745675
TH
3971 if (it->task_pos) {
3972 it->cur_task = list_entry(it->task_pos, struct task_struct,
3973 cg_list);
3974 get_task_struct(it->cur_task);
3975 css_task_iter_advance(it);
3976 }
ed27b9f7 3977
f0d9a5f1 3978 spin_unlock_bh(&css_set_lock);
ed27b9f7
TH
3979
3980 return it->cur_task;
817929ec
PM
3981}
3982
0942eeee 3983/**
72ec7029 3984 * css_task_iter_end - finish task iteration
0942eeee
TH
3985 * @it: the task iterator to finish
3986 *
72ec7029 3987 * Finish task iteration started by css_task_iter_start().
0942eeee 3988 */
72ec7029 3989void css_task_iter_end(struct css_task_iter *it)
31a7df01 3990{
ed27b9f7 3991 if (it->cur_cset) {
f0d9a5f1 3992 spin_lock_bh(&css_set_lock);
ed27b9f7
TH
3993 list_del(&it->iters_node);
3994 put_css_set_locked(it->cur_cset);
f0d9a5f1 3995 spin_unlock_bh(&css_set_lock);
ed27b9f7
TH
3996 }
3997
3998 if (it->cur_task)
3999 put_task_struct(it->cur_task);
31a7df01
CW
4000}
4001
4002/**
8cc99345
TH
4003 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
4004 * @to: cgroup to which the tasks will be moved
4005 * @from: cgroup in which the tasks currently reside
31a7df01 4006 *
eaf797ab
TH
4007 * Locking rules between cgroup_post_fork() and the migration path
4008 * guarantee that, if a task is forking while being migrated, the new child
4009 * is guaranteed to be either visible in the source cgroup after the
4010 * parent's migration is complete or put into the target cgroup. No task
4011 * can slip out of migration through forking.
31a7df01 4012 */
8cc99345 4013int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
31a7df01 4014{
952aaa12
TH
4015 LIST_HEAD(preloaded_csets);
4016 struct cgrp_cset_link *link;
72ec7029 4017 struct css_task_iter it;
e406d1cf 4018 struct task_struct *task;
952aaa12 4019 int ret;
31a7df01 4020
952aaa12 4021 mutex_lock(&cgroup_mutex);
31a7df01 4022
952aaa12 4023 /* all tasks in @from are being moved, all csets are source */
f0d9a5f1 4024 spin_lock_bh(&css_set_lock);
952aaa12
TH
4025 list_for_each_entry(link, &from->cset_links, cset_link)
4026 cgroup_migrate_add_src(link->cset, to, &preloaded_csets);
f0d9a5f1 4027 spin_unlock_bh(&css_set_lock);
31a7df01 4028
952aaa12
TH
4029 ret = cgroup_migrate_prepare_dst(to, &preloaded_csets);
4030 if (ret)
4031 goto out_err;
8cc99345 4032
952aaa12 4033 /*
2cfa2b19 4034 * Migrate tasks one-by-one until @from is empty. This fails iff
952aaa12
TH
4035 * ->can_attach() fails.
4036 */
e406d1cf 4037 do {
9d800df1 4038 css_task_iter_start(&from->self, &it);
e406d1cf
TH
4039 task = css_task_iter_next(&it);
4040 if (task)
4041 get_task_struct(task);
4042 css_task_iter_end(&it);
4043
4044 if (task) {
9af2ec45 4045 ret = cgroup_migrate(task, false, to);
e406d1cf
TH
4046 put_task_struct(task);
4047 }
4048 } while (task && !ret);
952aaa12
TH
4049out_err:
4050 cgroup_migrate_finish(&preloaded_csets);
47cfcd09 4051 mutex_unlock(&cgroup_mutex);
e406d1cf 4052 return ret;
8cc99345
TH
4053}
4054
bbcb81d0 4055/*
102a775e 4056 * Stuff for reading the 'tasks'/'procs' files.
bbcb81d0
PM
4057 *
4058 * Reading this file can return large amounts of data if a cgroup has
4059 * *lots* of attached tasks. So it may need several calls to read(),
4060 * but we cannot guarantee that the information we produce is correct
4061 * unless we produce it entirely atomically.
4062 *
bbcb81d0 4063 */
bbcb81d0 4064
24528255
LZ
4065/* which pidlist file are we talking about? */
4066enum cgroup_filetype {
4067 CGROUP_FILE_PROCS,
4068 CGROUP_FILE_TASKS,
4069};
4070
4071/*
4072 * A pidlist is a list of pids that virtually represents the contents of one
4073 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
4074 * a pair (one each for procs, tasks) for each pid namespace that's relevant
4075 * to the cgroup.
4076 */
4077struct cgroup_pidlist {
4078 /*
4079 * used to find which pidlist is wanted. doesn't change as long as
4080 * this particular list stays in the list.
4081 */
4082 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
4083 /* array of xids */
4084 pid_t *list;
4085 /* how many elements the above list has */
4086 int length;
24528255
LZ
4087 /* each of these stored in a list by its cgroup */
4088 struct list_head links;
4089 /* pointer to the cgroup we belong to, for list removal purposes */
4090 struct cgroup *owner;
b1a21367
TH
4091 /* for delayed destruction */
4092 struct delayed_work destroy_dwork;
24528255
LZ
4093};
4094
d1d9fd33
BB
4095/*
4096 * The following two functions "fix" the issue where there are more pids
4097 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
4098 * TODO: replace with a kernel-wide solution to this problem
4099 */
4100#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
4101static void *pidlist_allocate(int count)
4102{
4103 if (PIDLIST_TOO_LARGE(count))
4104 return vmalloc(count * sizeof(pid_t));
4105 else
4106 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
4107}
b1a21367 4108
d1d9fd33
BB
4109static void pidlist_free(void *p)
4110{
58794514 4111 kvfree(p);
d1d9fd33 4112}
d1d9fd33 4113
b1a21367
TH
4114/*
4115 * Used to destroy all pidlists lingering waiting for destroy timer. None
4116 * should be left afterwards.
4117 */
4118static void cgroup_pidlist_destroy_all(struct cgroup *cgrp)
4119{
4120 struct cgroup_pidlist *l, *tmp_l;
4121
4122 mutex_lock(&cgrp->pidlist_mutex);
4123 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
4124 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
4125 mutex_unlock(&cgrp->pidlist_mutex);
4126
4127 flush_workqueue(cgroup_pidlist_destroy_wq);
4128 BUG_ON(!list_empty(&cgrp->pidlists));
4129}
4130
4131static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
4132{
4133 struct delayed_work *dwork = to_delayed_work(work);
4134 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
4135 destroy_dwork);
4136 struct cgroup_pidlist *tofree = NULL;
4137
4138 mutex_lock(&l->owner->pidlist_mutex);
b1a21367
TH
4139
4140 /*
04502365
TH
4141 * Destroy iff we didn't get queued again. The state won't change
4142 * as destroy_dwork can only be queued while locked.
b1a21367 4143 */
04502365 4144 if (!delayed_work_pending(dwork)) {
b1a21367
TH
4145 list_del(&l->links);
4146 pidlist_free(l->list);
4147 put_pid_ns(l->key.ns);
4148 tofree = l;
4149 }
4150
b1a21367
TH
4151 mutex_unlock(&l->owner->pidlist_mutex);
4152 kfree(tofree);
4153}
4154
bbcb81d0 4155/*
102a775e 4156 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
6ee211ad 4157 * Returns the number of unique elements.
bbcb81d0 4158 */
6ee211ad 4159static int pidlist_uniq(pid_t *list, int length)
bbcb81d0 4160{
102a775e 4161 int src, dest = 1;
102a775e
BB
4162
4163 /*
4164 * we presume the 0th element is unique, so i starts at 1. trivial
4165 * edge cases first; no work needs to be done for either
4166 */
4167 if (length == 0 || length == 1)
4168 return length;
4169 /* src and dest walk down the list; dest counts unique elements */
4170 for (src = 1; src < length; src++) {
4171 /* find next unique element */
4172 while (list[src] == list[src-1]) {
4173 src++;
4174 if (src == length)
4175 goto after;
4176 }
4177 /* dest always points to where the next unique element goes */
4178 list[dest] = list[src];
4179 dest++;
4180 }
4181after:
102a775e
BB
4182 return dest;
4183}
4184
afb2bc14
TH
4185/*
4186 * The two pid files - task and cgroup.procs - guaranteed that the result
4187 * is sorted, which forced this whole pidlist fiasco. As pid order is
4188 * different per namespace, each namespace needs differently sorted list,
4189 * making it impossible to use, for example, single rbtree of member tasks
4190 * sorted by task pointer. As pidlists can be fairly large, allocating one
4191 * per open file is dangerous, so cgroup had to implement shared pool of
4192 * pidlists keyed by cgroup and namespace.
4193 *
4194 * All this extra complexity was caused by the original implementation
4195 * committing to an entirely unnecessary property. In the long term, we
aa6ec29b
TH
4196 * want to do away with it. Explicitly scramble sort order if on the
4197 * default hierarchy so that no such expectation exists in the new
4198 * interface.
afb2bc14
TH
4199 *
4200 * Scrambling is done by swapping every two consecutive bits, which is
4201 * non-identity one-to-one mapping which disturbs sort order sufficiently.
4202 */
4203static pid_t pid_fry(pid_t pid)
4204{
4205 unsigned a = pid & 0x55555555;
4206 unsigned b = pid & 0xAAAAAAAA;
4207
4208 return (a << 1) | (b >> 1);
4209}
4210
4211static pid_t cgroup_pid_fry(struct cgroup *cgrp, pid_t pid)
4212{
aa6ec29b 4213 if (cgroup_on_dfl(cgrp))
afb2bc14
TH
4214 return pid_fry(pid);
4215 else
4216 return pid;
4217}
4218
102a775e
BB
4219static int cmppid(const void *a, const void *b)
4220{
4221 return *(pid_t *)a - *(pid_t *)b;
4222}
4223
afb2bc14
TH
4224static int fried_cmppid(const void *a, const void *b)
4225{
4226 return pid_fry(*(pid_t *)a) - pid_fry(*(pid_t *)b);
4227}
4228
e6b81710
TH
4229static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
4230 enum cgroup_filetype type)
4231{
4232 struct cgroup_pidlist *l;
4233 /* don't need task_nsproxy() if we're looking at ourself */
4234 struct pid_namespace *ns = task_active_pid_ns(current);
4235
4236 lockdep_assert_held(&cgrp->pidlist_mutex);
4237
4238 list_for_each_entry(l, &cgrp->pidlists, links)
4239 if (l->key.type == type && l->key.ns == ns)
4240 return l;
4241 return NULL;
4242}
4243
72a8cb30
BB
4244/*
4245 * find the appropriate pidlist for our purpose (given procs vs tasks)
4246 * returns with the lock on that pidlist already held, and takes care
4247 * of the use count, or returns NULL with no locks held if we're out of
4248 * memory.
4249 */
e6b81710
TH
4250static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
4251 enum cgroup_filetype type)
72a8cb30
BB
4252{
4253 struct cgroup_pidlist *l;
b70cc5fd 4254
e6b81710
TH
4255 lockdep_assert_held(&cgrp->pidlist_mutex);
4256
4257 l = cgroup_pidlist_find(cgrp, type);
4258 if (l)
4259 return l;
4260
72a8cb30 4261 /* entry not found; create a new one */
f4f4be2b 4262 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
e6b81710 4263 if (!l)
72a8cb30 4264 return l;
e6b81710 4265
b1a21367 4266 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
72a8cb30 4267 l->key.type = type;
e6b81710
TH
4268 /* don't need task_nsproxy() if we're looking at ourself */
4269 l->key.ns = get_pid_ns(task_active_pid_ns(current));
72a8cb30
BB
4270 l->owner = cgrp;
4271 list_add(&l->links, &cgrp->pidlists);
72a8cb30
BB
4272 return l;
4273}
4274
102a775e
BB
4275/*
4276 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
4277 */
72a8cb30
BB
4278static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
4279 struct cgroup_pidlist **lp)
102a775e
BB
4280{
4281 pid_t *array;
4282 int length;
4283 int pid, n = 0; /* used for populating the array */
72ec7029 4284 struct css_task_iter it;
817929ec 4285 struct task_struct *tsk;
102a775e
BB
4286 struct cgroup_pidlist *l;
4287
4bac00d1
TH
4288 lockdep_assert_held(&cgrp->pidlist_mutex);
4289
102a775e
BB
4290 /*
4291 * If cgroup gets more users after we read count, we won't have
4292 * enough space - tough. This race is indistinguishable to the
4293 * caller from the case that the additional cgroup users didn't
4294 * show up until sometime later on.
4295 */
4296 length = cgroup_task_count(cgrp);
d1d9fd33 4297 array = pidlist_allocate(length);
102a775e
BB
4298 if (!array)
4299 return -ENOMEM;
4300 /* now, populate the array */
9d800df1 4301 css_task_iter_start(&cgrp->self, &it);
72ec7029 4302 while ((tsk = css_task_iter_next(&it))) {
102a775e 4303 if (unlikely(n == length))
817929ec 4304 break;
102a775e 4305 /* get tgid or pid for procs or tasks file respectively */
72a8cb30
BB
4306 if (type == CGROUP_FILE_PROCS)
4307 pid = task_tgid_vnr(tsk);
4308 else
4309 pid = task_pid_vnr(tsk);
102a775e
BB
4310 if (pid > 0) /* make sure to only use valid results */
4311 array[n++] = pid;
817929ec 4312 }
72ec7029 4313 css_task_iter_end(&it);
102a775e
BB
4314 length = n;
4315 /* now sort & (if procs) strip out duplicates */
aa6ec29b 4316 if (cgroup_on_dfl(cgrp))
afb2bc14
TH
4317 sort(array, length, sizeof(pid_t), fried_cmppid, NULL);
4318 else
4319 sort(array, length, sizeof(pid_t), cmppid, NULL);
72a8cb30 4320 if (type == CGROUP_FILE_PROCS)
6ee211ad 4321 length = pidlist_uniq(array, length);
e6b81710 4322
e6b81710 4323 l = cgroup_pidlist_find_create(cgrp, type);
72a8cb30 4324 if (!l) {
d1d9fd33 4325 pidlist_free(array);
72a8cb30 4326 return -ENOMEM;
102a775e 4327 }
e6b81710
TH
4328
4329 /* store array, freeing old if necessary */
d1d9fd33 4330 pidlist_free(l->list);
102a775e
BB
4331 l->list = array;
4332 l->length = length;
72a8cb30 4333 *lp = l;
102a775e 4334 return 0;
bbcb81d0
PM
4335}
4336
846c7bb0 4337/**
a043e3b2 4338 * cgroupstats_build - build and fill cgroupstats
846c7bb0
BS
4339 * @stats: cgroupstats to fill information into
4340 * @dentry: A dentry entry belonging to the cgroup for which stats have
4341 * been requested.
a043e3b2
LZ
4342 *
4343 * Build and fill cgroupstats so that taskstats can export it to user
4344 * space.
846c7bb0
BS
4345 */
4346int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
4347{
2bd59d48 4348 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
bd89aabc 4349 struct cgroup *cgrp;
72ec7029 4350 struct css_task_iter it;
846c7bb0 4351 struct task_struct *tsk;
33d283be 4352
2bd59d48
TH
4353 /* it should be kernfs_node belonging to cgroupfs and is a directory */
4354 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
4355 kernfs_type(kn) != KERNFS_DIR)
4356 return -EINVAL;
4357
bad34660
LZ
4358 mutex_lock(&cgroup_mutex);
4359
846c7bb0 4360 /*
2bd59d48 4361 * We aren't being called from kernfs and there's no guarantee on
ec903c0c 4362 * @kn->priv's validity. For this and css_tryget_online_from_dir(),
2bd59d48 4363 * @kn->priv is RCU safe. Let's do the RCU dancing.
846c7bb0 4364 */
2bd59d48
TH
4365 rcu_read_lock();
4366 cgrp = rcu_dereference(kn->priv);
bad34660 4367 if (!cgrp || cgroup_is_dead(cgrp)) {
2bd59d48 4368 rcu_read_unlock();
bad34660 4369 mutex_unlock(&cgroup_mutex);
2bd59d48
TH
4370 return -ENOENT;
4371 }
bad34660 4372 rcu_read_unlock();
846c7bb0 4373
9d800df1 4374 css_task_iter_start(&cgrp->self, &it);
72ec7029 4375 while ((tsk = css_task_iter_next(&it))) {
846c7bb0
BS
4376 switch (tsk->state) {
4377 case TASK_RUNNING:
4378 stats->nr_running++;
4379 break;
4380 case TASK_INTERRUPTIBLE:
4381 stats->nr_sleeping++;
4382 break;
4383 case TASK_UNINTERRUPTIBLE:
4384 stats->nr_uninterruptible++;
4385 break;
4386 case TASK_STOPPED:
4387 stats->nr_stopped++;
4388 break;
4389 default:
4390 if (delayacct_is_task_waiting_on_io(tsk))
4391 stats->nr_io_wait++;
4392 break;
4393 }
4394 }
72ec7029 4395 css_task_iter_end(&it);
846c7bb0 4396
bad34660 4397 mutex_unlock(&cgroup_mutex);
2bd59d48 4398 return 0;
846c7bb0
BS
4399}
4400
8f3ff208 4401
bbcb81d0 4402/*
102a775e 4403 * seq_file methods for the tasks/procs files. The seq_file position is the
cc31edce 4404 * next pid to display; the seq_file iterator is a pointer to the pid
102a775e 4405 * in the cgroup->l->list array.
bbcb81d0 4406 */
cc31edce 4407
102a775e 4408static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
bbcb81d0 4409{
cc31edce
PM
4410 /*
4411 * Initially we receive a position value that corresponds to
4412 * one more than the last pid shown (or 0 on the first call or
4413 * after a seek to the start). Use a binary-search to find the
4414 * next pid to display, if any
4415 */
2bd59d48 4416 struct kernfs_open_file *of = s->private;
7da11279 4417 struct cgroup *cgrp = seq_css(s)->cgroup;
4bac00d1 4418 struct cgroup_pidlist *l;
7da11279 4419 enum cgroup_filetype type = seq_cft(s)->private;
cc31edce 4420 int index = 0, pid = *pos;
4bac00d1
TH
4421 int *iter, ret;
4422
4423 mutex_lock(&cgrp->pidlist_mutex);
4424
4425 /*
5d22444f 4426 * !NULL @of->priv indicates that this isn't the first start()
4bac00d1 4427 * after open. If the matching pidlist is around, we can use that.
5d22444f 4428 * Look for it. Note that @of->priv can't be used directly. It
4bac00d1
TH
4429 * could already have been destroyed.
4430 */
5d22444f
TH
4431 if (of->priv)
4432 of->priv = cgroup_pidlist_find(cgrp, type);
4bac00d1
TH
4433
4434 /*
4435 * Either this is the first start() after open or the matching
4436 * pidlist has been destroyed inbetween. Create a new one.
4437 */
5d22444f
TH
4438 if (!of->priv) {
4439 ret = pidlist_array_load(cgrp, type,
4440 (struct cgroup_pidlist **)&of->priv);
4bac00d1
TH
4441 if (ret)
4442 return ERR_PTR(ret);
4443 }
5d22444f 4444 l = of->priv;
cc31edce 4445
cc31edce 4446 if (pid) {
102a775e 4447 int end = l->length;
20777766 4448
cc31edce
PM
4449 while (index < end) {
4450 int mid = (index + end) / 2;
afb2bc14 4451 if (cgroup_pid_fry(cgrp, l->list[mid]) == pid) {
cc31edce
PM
4452 index = mid;
4453 break;
afb2bc14 4454 } else if (cgroup_pid_fry(cgrp, l->list[mid]) <= pid)
cc31edce
PM
4455 index = mid + 1;
4456 else
4457 end = mid;
4458 }
4459 }
4460 /* If we're off the end of the array, we're done */
102a775e 4461 if (index >= l->length)
cc31edce
PM
4462 return NULL;
4463 /* Update the abstract position to be the actual pid that we found */
102a775e 4464 iter = l->list + index;
afb2bc14 4465 *pos = cgroup_pid_fry(cgrp, *iter);
cc31edce
PM
4466 return iter;
4467}
4468
102a775e 4469static void cgroup_pidlist_stop(struct seq_file *s, void *v)
cc31edce 4470{
2bd59d48 4471 struct kernfs_open_file *of = s->private;
5d22444f 4472 struct cgroup_pidlist *l = of->priv;
62236858 4473
5d22444f
TH
4474 if (l)
4475 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
04502365 4476 CGROUP_PIDLIST_DESTROY_DELAY);
7da11279 4477 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
cc31edce
PM
4478}
4479
102a775e 4480static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
cc31edce 4481{
2bd59d48 4482 struct kernfs_open_file *of = s->private;
5d22444f 4483 struct cgroup_pidlist *l = of->priv;
102a775e
BB
4484 pid_t *p = v;
4485 pid_t *end = l->list + l->length;
cc31edce
PM
4486 /*
4487 * Advance to the next pid in the array. If this goes off the
4488 * end, we're done
4489 */
4490 p++;
4491 if (p >= end) {
4492 return NULL;
4493 } else {
7da11279 4494 *pos = cgroup_pid_fry(seq_css(s)->cgroup, *p);
cc31edce
PM
4495 return p;
4496 }
4497}
4498
102a775e 4499static int cgroup_pidlist_show(struct seq_file *s, void *v)
cc31edce 4500{
94ff212d
JP
4501 seq_printf(s, "%d\n", *(int *)v);
4502
4503 return 0;
cc31edce 4504}
bbcb81d0 4505
182446d0
TH
4506static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
4507 struct cftype *cft)
81a6a5cd 4508{
182446d0 4509 return notify_on_release(css->cgroup);
81a6a5cd
PM
4510}
4511
182446d0
TH
4512static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
4513 struct cftype *cft, u64 val)
6379c106 4514{
6379c106 4515 if (val)
182446d0 4516 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106 4517 else
182446d0 4518 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106
PM
4519 return 0;
4520}
4521
182446d0
TH
4522static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
4523 struct cftype *cft)
97978e6d 4524{
182446d0 4525 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
4526}
4527
182446d0
TH
4528static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
4529 struct cftype *cft, u64 val)
97978e6d
DL
4530{
4531 if (val)
182446d0 4532 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d 4533 else
182446d0 4534 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
4535 return 0;
4536}
4537
a14c6874
TH
4538/* cgroup core interface files for the default hierarchy */
4539static struct cftype cgroup_dfl_base_files[] = {
81a6a5cd 4540 {
d5c56ced 4541 .name = "cgroup.procs",
6f60eade 4542 .file_offset = offsetof(struct cgroup, procs_file),
6612f05b
TH
4543 .seq_start = cgroup_pidlist_start,
4544 .seq_next = cgroup_pidlist_next,
4545 .seq_stop = cgroup_pidlist_stop,
4546 .seq_show = cgroup_pidlist_show,
5d22444f 4547 .private = CGROUP_FILE_PROCS,
acbef755 4548 .write = cgroup_procs_write,
102a775e 4549 },
f8f22e53
TH
4550 {
4551 .name = "cgroup.controllers",
a14c6874 4552 .flags = CFTYPE_ONLY_ON_ROOT,
f8f22e53
TH
4553 .seq_show = cgroup_root_controllers_show,
4554 },
4555 {
4556 .name = "cgroup.controllers",
a14c6874 4557 .flags = CFTYPE_NOT_ON_ROOT,
f8f22e53
TH
4558 .seq_show = cgroup_controllers_show,
4559 },
4560 {
4561 .name = "cgroup.subtree_control",
f8f22e53 4562 .seq_show = cgroup_subtree_control_show,
451af504 4563 .write = cgroup_subtree_control_write,
f8f22e53 4564 },
842b597e 4565 {
4a07c222 4566 .name = "cgroup.events",
a14c6874 4567 .flags = CFTYPE_NOT_ON_ROOT,
6f60eade 4568 .file_offset = offsetof(struct cgroup, events_file),
4a07c222 4569 .seq_show = cgroup_events_show,
842b597e 4570 },
a14c6874
TH
4571 { } /* terminate */
4572};
d5c56ced 4573
a14c6874
TH
4574/* cgroup core interface files for the legacy hierarchies */
4575static struct cftype cgroup_legacy_base_files[] = {
4576 {
4577 .name = "cgroup.procs",
4578 .seq_start = cgroup_pidlist_start,
4579 .seq_next = cgroup_pidlist_next,
4580 .seq_stop = cgroup_pidlist_stop,
4581 .seq_show = cgroup_pidlist_show,
4582 .private = CGROUP_FILE_PROCS,
4583 .write = cgroup_procs_write,
a14c6874
TH
4584 },
4585 {
4586 .name = "cgroup.clone_children",
4587 .read_u64 = cgroup_clone_children_read,
4588 .write_u64 = cgroup_clone_children_write,
4589 },
4590 {
4591 .name = "cgroup.sane_behavior",
4592 .flags = CFTYPE_ONLY_ON_ROOT,
4593 .seq_show = cgroup_sane_behavior_show,
4594 },
d5c56ced
TH
4595 {
4596 .name = "tasks",
6612f05b
TH
4597 .seq_start = cgroup_pidlist_start,
4598 .seq_next = cgroup_pidlist_next,
4599 .seq_stop = cgroup_pidlist_stop,
4600 .seq_show = cgroup_pidlist_show,
5d22444f 4601 .private = CGROUP_FILE_TASKS,
acbef755 4602 .write = cgroup_tasks_write,
d5c56ced
TH
4603 },
4604 {
4605 .name = "notify_on_release",
d5c56ced
TH
4606 .read_u64 = cgroup_read_notify_on_release,
4607 .write_u64 = cgroup_write_notify_on_release,
4608 },
6e6ff25b
TH
4609 {
4610 .name = "release_agent",
a14c6874 4611 .flags = CFTYPE_ONLY_ON_ROOT,
2da8ca82 4612 .seq_show = cgroup_release_agent_show,
451af504 4613 .write = cgroup_release_agent_write,
5f469907 4614 .max_write_len = PATH_MAX - 1,
6e6ff25b 4615 },
db0416b6 4616 { } /* terminate */
bbcb81d0
PM
4617};
4618
0c21ead1
TH
4619/*
4620 * css destruction is four-stage process.
4621 *
4622 * 1. Destruction starts. Killing of the percpu_ref is initiated.
4623 * Implemented in kill_css().
4624 *
4625 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
ec903c0c
TH
4626 * and thus css_tryget_online() is guaranteed to fail, the css can be
4627 * offlined by invoking offline_css(). After offlining, the base ref is
4628 * put. Implemented in css_killed_work_fn().
0c21ead1
TH
4629 *
4630 * 3. When the percpu_ref reaches zero, the only possible remaining
4631 * accessors are inside RCU read sections. css_release() schedules the
4632 * RCU callback.
4633 *
4634 * 4. After the grace period, the css can be freed. Implemented in
4635 * css_free_work_fn().
4636 *
4637 * It is actually hairier because both step 2 and 4 require process context
4638 * and thus involve punting to css->destroy_work adding two additional
4639 * steps to the already complex sequence.
4640 */
35ef10da 4641static void css_free_work_fn(struct work_struct *work)
48ddbe19
TH
4642{
4643 struct cgroup_subsys_state *css =
35ef10da 4644 container_of(work, struct cgroup_subsys_state, destroy_work);
01e58659 4645 struct cgroup_subsys *ss = css->ss;
0c21ead1 4646 struct cgroup *cgrp = css->cgroup;
48ddbe19 4647
9a1049da
TH
4648 percpu_ref_exit(&css->refcnt);
4649
01e58659 4650 if (ss) {
9d755d33 4651 /* css free path */
8bb5ef79 4652 struct cgroup_subsys_state *parent = css->parent;
01e58659
VD
4653 int id = css->id;
4654
01e58659
VD
4655 ss->css_free(css);
4656 cgroup_idr_remove(&ss->css_idr, id);
9d755d33 4657 cgroup_put(cgrp);
8bb5ef79
TH
4658
4659 if (parent)
4660 css_put(parent);
9d755d33
TH
4661 } else {
4662 /* cgroup free path */
4663 atomic_dec(&cgrp->root->nr_cgrps);
4664 cgroup_pidlist_destroy_all(cgrp);
971ff493 4665 cancel_work_sync(&cgrp->release_agent_work);
9d755d33 4666
d51f39b0 4667 if (cgroup_parent(cgrp)) {
9d755d33
TH
4668 /*
4669 * We get a ref to the parent, and put the ref when
4670 * this cgroup is being freed, so it's guaranteed
4671 * that the parent won't be destroyed before its
4672 * children.
4673 */
d51f39b0 4674 cgroup_put(cgroup_parent(cgrp));
9d755d33
TH
4675 kernfs_put(cgrp->kn);
4676 kfree(cgrp);
4677 } else {
4678 /*
4679 * This is root cgroup's refcnt reaching zero,
4680 * which indicates that the root should be
4681 * released.
4682 */
4683 cgroup_destroy_root(cgrp->root);
4684 }
4685 }
48ddbe19
TH
4686}
4687
0c21ead1 4688static void css_free_rcu_fn(struct rcu_head *rcu_head)
d3daf28d
TH
4689{
4690 struct cgroup_subsys_state *css =
0c21ead1 4691 container_of(rcu_head, struct cgroup_subsys_state, rcu_head);
d3daf28d 4692
35ef10da 4693 INIT_WORK(&css->destroy_work, css_free_work_fn);
e5fca243 4694 queue_work(cgroup_destroy_wq, &css->destroy_work);
48ddbe19
TH
4695}
4696
25e15d83 4697static void css_release_work_fn(struct work_struct *work)
d3daf28d
TH
4698{
4699 struct cgroup_subsys_state *css =
25e15d83 4700 container_of(work, struct cgroup_subsys_state, destroy_work);
15a4c835 4701 struct cgroup_subsys *ss = css->ss;
9d755d33 4702 struct cgroup *cgrp = css->cgroup;
15a4c835 4703
1fed1b2e
TH
4704 mutex_lock(&cgroup_mutex);
4705
de3f0341 4706 css->flags |= CSS_RELEASED;
1fed1b2e
TH
4707 list_del_rcu(&css->sibling);
4708
9d755d33
TH
4709 if (ss) {
4710 /* css release path */
01e58659 4711 cgroup_idr_replace(&ss->css_idr, NULL, css->id);
7d172cc8
TH
4712 if (ss->css_released)
4713 ss->css_released(css);
9d755d33
TH
4714 } else {
4715 /* cgroup release path */
9d755d33
TH
4716 cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
4717 cgrp->id = -1;
a4189487
LZ
4718
4719 /*
4720 * There are two control paths which try to determine
4721 * cgroup from dentry without going through kernfs -
4722 * cgroupstats_build() and css_tryget_online_from_dir().
4723 * Those are supported by RCU protecting clearing of
4724 * cgrp->kn->priv backpointer.
4725 */
4726 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv, NULL);
9d755d33 4727 }
d3daf28d 4728
1fed1b2e
TH
4729 mutex_unlock(&cgroup_mutex);
4730
0c21ead1 4731 call_rcu(&css->rcu_head, css_free_rcu_fn);
d3daf28d
TH
4732}
4733
d3daf28d
TH
4734static void css_release(struct percpu_ref *ref)
4735{
4736 struct cgroup_subsys_state *css =
4737 container_of(ref, struct cgroup_subsys_state, refcnt);
4738
25e15d83
TH
4739 INIT_WORK(&css->destroy_work, css_release_work_fn);
4740 queue_work(cgroup_destroy_wq, &css->destroy_work);
d3daf28d
TH
4741}
4742
ddfcadab
TH
4743static void init_and_link_css(struct cgroup_subsys_state *css,
4744 struct cgroup_subsys *ss, struct cgroup *cgrp)
ddbcc7e8 4745{
0cb51d71
TH
4746 lockdep_assert_held(&cgroup_mutex);
4747
ddfcadab
TH
4748 cgroup_get(cgrp);
4749
d5c419b6 4750 memset(css, 0, sizeof(*css));
bd89aabc 4751 css->cgroup = cgrp;
72c97e54 4752 css->ss = ss;
d5c419b6
TH
4753 INIT_LIST_HEAD(&css->sibling);
4754 INIT_LIST_HEAD(&css->children);
0cb51d71 4755 css->serial_nr = css_serial_nr_next++;
aa226ff4 4756 atomic_set(&css->online_cnt, 0);
0ae78e0b 4757
d51f39b0
TH
4758 if (cgroup_parent(cgrp)) {
4759 css->parent = cgroup_css(cgroup_parent(cgrp), ss);
ddfcadab 4760 css_get(css->parent);
ddfcadab 4761 }
48ddbe19 4762
ca8bdcaf 4763 BUG_ON(cgroup_css(cgrp, ss));
ddbcc7e8
PM
4764}
4765
2a4ac633 4766/* invoke ->css_online() on a new CSS and mark it online if successful */
623f926b 4767static int online_css(struct cgroup_subsys_state *css)
a31f2d3f 4768{
623f926b 4769 struct cgroup_subsys *ss = css->ss;
b1929db4
TH
4770 int ret = 0;
4771
a31f2d3f
TH
4772 lockdep_assert_held(&cgroup_mutex);
4773
92fb9748 4774 if (ss->css_online)
eb95419b 4775 ret = ss->css_online(css);
ae7f164a 4776 if (!ret) {
eb95419b 4777 css->flags |= CSS_ONLINE;
aec25020 4778 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
aa226ff4
TH
4779
4780 atomic_inc(&css->online_cnt);
4781 if (css->parent)
4782 atomic_inc(&css->parent->online_cnt);
ae7f164a 4783 }
b1929db4 4784 return ret;
a31f2d3f
TH
4785}
4786
2a4ac633 4787/* if the CSS is online, invoke ->css_offline() on it and mark it offline */
623f926b 4788static void offline_css(struct cgroup_subsys_state *css)
a31f2d3f 4789{
623f926b 4790 struct cgroup_subsys *ss = css->ss;
a31f2d3f
TH
4791
4792 lockdep_assert_held(&cgroup_mutex);
4793
4794 if (!(css->flags & CSS_ONLINE))
4795 return;
4796
d7eeac19 4797 if (ss->css_offline)
eb95419b 4798 ss->css_offline(css);
a31f2d3f 4799
eb95419b 4800 css->flags &= ~CSS_ONLINE;
e3297803 4801 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
f8f22e53
TH
4802
4803 wake_up_all(&css->cgroup->offline_waitq);
a31f2d3f
TH
4804}
4805
c81c925a
TH
4806/**
4807 * create_css - create a cgroup_subsys_state
4808 * @cgrp: the cgroup new css will be associated with
4809 * @ss: the subsys of new css
f63070d3 4810 * @visible: whether to create control knobs for the new css or not
c81c925a
TH
4811 *
4812 * Create a new css associated with @cgrp - @ss pair. On success, the new
f63070d3
TH
4813 * css is online and installed in @cgrp with all interface files created if
4814 * @visible. Returns 0 on success, -errno on failure.
c81c925a 4815 */
f63070d3
TH
4816static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss,
4817 bool visible)
c81c925a 4818{
d51f39b0 4819 struct cgroup *parent = cgroup_parent(cgrp);
1fed1b2e 4820 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
c81c925a
TH
4821 struct cgroup_subsys_state *css;
4822 int err;
4823
c81c925a
TH
4824 lockdep_assert_held(&cgroup_mutex);
4825
1fed1b2e 4826 css = ss->css_alloc(parent_css);
c81c925a
TH
4827 if (IS_ERR(css))
4828 return PTR_ERR(css);
4829
ddfcadab 4830 init_and_link_css(css, ss, cgrp);
a2bed820 4831
2aad2a86 4832 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
c81c925a 4833 if (err)
3eb59ec6 4834 goto err_free_css;
c81c925a 4835
cf780b7d 4836 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
15a4c835
TH
4837 if (err < 0)
4838 goto err_free_percpu_ref;
4839 css->id = err;
c81c925a 4840
f63070d3 4841 if (visible) {
4df8dc90 4842 err = css_populate_dir(css, NULL);
f63070d3
TH
4843 if (err)
4844 goto err_free_id;
4845 }
15a4c835
TH
4846
4847 /* @css is ready to be brought online now, make it visible */
1fed1b2e 4848 list_add_tail_rcu(&css->sibling, &parent_css->children);
15a4c835 4849 cgroup_idr_replace(&ss->css_idr, css, css->id);
c81c925a
TH
4850
4851 err = online_css(css);
4852 if (err)
1fed1b2e 4853 goto err_list_del;
94419627 4854
c81c925a 4855 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
d51f39b0 4856 cgroup_parent(parent)) {
ed3d261b 4857 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
a2a1f9ea 4858 current->comm, current->pid, ss->name);
c81c925a 4859 if (!strcmp(ss->name, "memory"))
ed3d261b 4860 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
c81c925a
TH
4861 ss->warned_broken_hierarchy = true;
4862 }
4863
4864 return 0;
4865
1fed1b2e
TH
4866err_list_del:
4867 list_del_rcu(&css->sibling);
4df8dc90 4868 css_clear_dir(css, NULL);
15a4c835
TH
4869err_free_id:
4870 cgroup_idr_remove(&ss->css_idr, css->id);
3eb59ec6 4871err_free_percpu_ref:
9a1049da 4872 percpu_ref_exit(&css->refcnt);
3eb59ec6 4873err_free_css:
a2bed820 4874 call_rcu(&css->rcu_head, css_free_rcu_fn);
c81c925a
TH
4875 return err;
4876}
4877
b3bfd983
TH
4878static int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
4879 umode_t mode)
ddbcc7e8 4880{
b11cfb58 4881 struct cgroup *parent, *cgrp, *tcgrp;
a9746d8d 4882 struct cgroup_root *root;
ddbcc7e8 4883 struct cgroup_subsys *ss;
2bd59d48 4884 struct kernfs_node *kn;
b11cfb58 4885 int level, ssid, ret;
ddbcc7e8 4886
71b1fb5c
AC
4887 /* Do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable.
4888 */
4889 if (strchr(name, '\n'))
4890 return -EINVAL;
4891
a9746d8d
TH
4892 parent = cgroup_kn_lock_live(parent_kn);
4893 if (!parent)
4894 return -ENODEV;
4895 root = parent->root;
b11cfb58 4896 level = parent->level + 1;
ddbcc7e8 4897
0a950f65 4898 /* allocate the cgroup and its ID, 0 is reserved for the root */
b11cfb58
TH
4899 cgrp = kzalloc(sizeof(*cgrp) +
4900 sizeof(cgrp->ancestor_ids[0]) * (level + 1), GFP_KERNEL);
ba0f4d76
TH
4901 if (!cgrp) {
4902 ret = -ENOMEM;
4903 goto out_unlock;
0ab02ca8
LZ
4904 }
4905
2aad2a86 4906 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
9d755d33
TH
4907 if (ret)
4908 goto out_free_cgrp;
4909
0ab02ca8
LZ
4910 /*
4911 * Temporarily set the pointer to NULL, so idr_find() won't return
4912 * a half-baked cgroup.
4913 */
cf780b7d 4914 cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_KERNEL);
0ab02ca8 4915 if (cgrp->id < 0) {
ba0f4d76 4916 ret = -ENOMEM;
9d755d33 4917 goto out_cancel_ref;
976c06bc
TH
4918 }
4919
cc31edce 4920 init_cgroup_housekeeping(cgrp);
ddbcc7e8 4921
9d800df1 4922 cgrp->self.parent = &parent->self;
ba0f4d76 4923 cgrp->root = root;
b11cfb58
TH
4924 cgrp->level = level;
4925
4926 for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp))
4927 cgrp->ancestor_ids[tcgrp->level] = tcgrp->id;
ddbcc7e8 4928
b6abdb0e
LZ
4929 if (notify_on_release(parent))
4930 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
4931
2260e7fc
TH
4932 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
4933 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
97978e6d 4934
2bd59d48 4935 /* create the directory */
e61734c5 4936 kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
2bd59d48 4937 if (IS_ERR(kn)) {
ba0f4d76
TH
4938 ret = PTR_ERR(kn);
4939 goto out_free_id;
2bd59d48
TH
4940 }
4941 cgrp->kn = kn;
ddbcc7e8 4942
4e139afc 4943 /*
6f30558f
TH
4944 * This extra ref will be put in cgroup_free_fn() and guarantees
4945 * that @cgrp->kn is always accessible.
4e139afc 4946 */
6f30558f 4947 kernfs_get(kn);
ddbcc7e8 4948
0cb51d71 4949 cgrp->self.serial_nr = css_serial_nr_next++;
53fa5261 4950
4e139afc 4951 /* allocation complete, commit to creation */
d5c419b6 4952 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
3c9c825b 4953 atomic_inc(&root->nr_cgrps);
59f5296b 4954 cgroup_get(parent);
415cf07a 4955
0d80255e
TH
4956 /*
4957 * @cgrp is now fully operational. If something fails after this
4958 * point, it'll be released via the normal destruction path.
4959 */
6fa4918d 4960 cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
4e96ee8e 4961
ba0f4d76
TH
4962 ret = cgroup_kn_set_ugid(kn);
4963 if (ret)
4964 goto out_destroy;
49957f8e 4965
4df8dc90 4966 ret = css_populate_dir(&cgrp->self, NULL);
ba0f4d76
TH
4967 if (ret)
4968 goto out_destroy;
628f7cd4 4969
9d403e99 4970 /* let's create and online css's */
b85d2040 4971 for_each_subsys(ss, ssid) {
f392e51c 4972 if (parent->child_subsys_mask & (1 << ssid)) {
f63070d3
TH
4973 ret = create_css(cgrp, ss,
4974 parent->subtree_control & (1 << ssid));
ba0f4d76
TH
4975 if (ret)
4976 goto out_destroy;
b85d2040 4977 }
a8638030 4978 }
ddbcc7e8 4979
bd53d617
TH
4980 /*
4981 * On the default hierarchy, a child doesn't automatically inherit
667c2491 4982 * subtree_control from the parent. Each is configured manually.
bd53d617 4983 */
667c2491
TH
4984 if (!cgroup_on_dfl(cgrp)) {
4985 cgrp->subtree_control = parent->subtree_control;
4986 cgroup_refresh_child_subsys_mask(cgrp);
4987 }
2bd59d48 4988
2bd59d48 4989 kernfs_activate(kn);
ddbcc7e8 4990
ba0f4d76
TH
4991 ret = 0;
4992 goto out_unlock;
ddbcc7e8 4993
ba0f4d76 4994out_free_id:
6fa4918d 4995 cgroup_idr_remove(&root->cgroup_idr, cgrp->id);
9d755d33 4996out_cancel_ref:
9a1049da 4997 percpu_ref_exit(&cgrp->self.refcnt);
ba0f4d76 4998out_free_cgrp:
bd89aabc 4999 kfree(cgrp);
ba0f4d76 5000out_unlock:
a9746d8d 5001 cgroup_kn_unlock(parent_kn);
ba0f4d76 5002 return ret;
4b8b47eb 5003
ba0f4d76 5004out_destroy:
4b8b47eb 5005 cgroup_destroy_locked(cgrp);
ba0f4d76 5006 goto out_unlock;
ddbcc7e8
PM
5007}
5008
223dbc38
TH
5009/*
5010 * This is called when the refcnt of a css is confirmed to be killed.
249f3468
TH
5011 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to
5012 * initate destruction and put the css ref from kill_css().
223dbc38
TH
5013 */
5014static void css_killed_work_fn(struct work_struct *work)
d3daf28d 5015{
223dbc38
TH
5016 struct cgroup_subsys_state *css =
5017 container_of(work, struct cgroup_subsys_state, destroy_work);
d3daf28d 5018
f20104de 5019 mutex_lock(&cgroup_mutex);
09a503ea 5020
aa226ff4
TH
5021 do {
5022 offline_css(css);
5023 css_put(css);
5024 /* @css can't go away while we're holding cgroup_mutex */
5025 css = css->parent;
5026 } while (css && atomic_dec_and_test(&css->online_cnt));
5027
5028 mutex_unlock(&cgroup_mutex);
d3daf28d
TH
5029}
5030
223dbc38
TH
5031/* css kill confirmation processing requires process context, bounce */
5032static void css_killed_ref_fn(struct percpu_ref *ref)
d3daf28d
TH
5033{
5034 struct cgroup_subsys_state *css =
5035 container_of(ref, struct cgroup_subsys_state, refcnt);
5036
aa226ff4
TH
5037 if (atomic_dec_and_test(&css->online_cnt)) {
5038 INIT_WORK(&css->destroy_work, css_killed_work_fn);
5039 queue_work(cgroup_destroy_wq, &css->destroy_work);
5040 }
d3daf28d
TH
5041}
5042
f392e51c
TH
5043/**
5044 * kill_css - destroy a css
5045 * @css: css to destroy
5046 *
5047 * This function initiates destruction of @css by removing cgroup interface
5048 * files and putting its base reference. ->css_offline() will be invoked
ec903c0c
TH
5049 * asynchronously once css_tryget_online() is guaranteed to fail and when
5050 * the reference count reaches zero, @css will be released.
f392e51c
TH
5051 */
5052static void kill_css(struct cgroup_subsys_state *css)
edae0c33 5053{
01f6474c 5054 lockdep_assert_held(&cgroup_mutex);
94419627 5055
2bd59d48
TH
5056 /*
5057 * This must happen before css is disassociated with its cgroup.
5058 * See seq_css() for details.
5059 */
4df8dc90 5060 css_clear_dir(css, NULL);
3c14f8b4 5061
edae0c33
TH
5062 /*
5063 * Killing would put the base ref, but we need to keep it alive
5064 * until after ->css_offline().
5065 */
5066 css_get(css);
5067
5068 /*
5069 * cgroup core guarantees that, by the time ->css_offline() is
5070 * invoked, no new css reference will be given out via
ec903c0c 5071 * css_tryget_online(). We can't simply call percpu_ref_kill() and
edae0c33
TH
5072 * proceed to offlining css's because percpu_ref_kill() doesn't
5073 * guarantee that the ref is seen as killed on all CPUs on return.
5074 *
5075 * Use percpu_ref_kill_and_confirm() to get notifications as each
5076 * css is confirmed to be seen as killed on all CPUs.
5077 */
5078 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
d3daf28d
TH
5079}
5080
5081/**
5082 * cgroup_destroy_locked - the first stage of cgroup destruction
5083 * @cgrp: cgroup to be destroyed
5084 *
5085 * css's make use of percpu refcnts whose killing latency shouldn't be
5086 * exposed to userland and are RCU protected. Also, cgroup core needs to
ec903c0c
TH
5087 * guarantee that css_tryget_online() won't succeed by the time
5088 * ->css_offline() is invoked. To satisfy all the requirements,
5089 * destruction is implemented in the following two steps.
d3daf28d
TH
5090 *
5091 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
5092 * userland visible parts and start killing the percpu refcnts of
5093 * css's. Set up so that the next stage will be kicked off once all
5094 * the percpu refcnts are confirmed to be killed.
5095 *
5096 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5097 * rest of destruction. Once all cgroup references are gone, the
5098 * cgroup is RCU-freed.
5099 *
5100 * This function implements s1. After this step, @cgrp is gone as far as
5101 * the userland is concerned and a new cgroup with the same name may be
5102 * created. As cgroup doesn't care about the names internally, this
5103 * doesn't cause any problem.
5104 */
42809dd4
TH
5105static int cgroup_destroy_locked(struct cgroup *cgrp)
5106 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
ddbcc7e8 5107{
2bd59d48 5108 struct cgroup_subsys_state *css;
1c6727af 5109 int ssid;
ddbcc7e8 5110
42809dd4
TH
5111 lockdep_assert_held(&cgroup_mutex);
5112
91486f61
TH
5113 /*
5114 * Only migration can raise populated from zero and we're already
5115 * holding cgroup_mutex.
5116 */
5117 if (cgroup_is_populated(cgrp))
ddbcc7e8 5118 return -EBUSY;
a043e3b2 5119
bb78a92f 5120 /*
d5c419b6
TH
5121 * Make sure there's no live children. We can't test emptiness of
5122 * ->self.children as dead children linger on it while being
5123 * drained; otherwise, "rmdir parent/child parent" may fail.
bb78a92f 5124 */
f3d46500 5125 if (css_has_online_children(&cgrp->self))
bb78a92f
HD
5126 return -EBUSY;
5127
455050d2
TH
5128 /*
5129 * Mark @cgrp dead. This prevents further task migration and child
de3f0341 5130 * creation by disabling cgroup_lock_live_group().
455050d2 5131 */
184faf32 5132 cgrp->self.flags &= ~CSS_ONLINE;
ddbcc7e8 5133
249f3468 5134 /* initiate massacre of all css's */
1c6727af
TH
5135 for_each_css(css, ssid, cgrp)
5136 kill_css(css);
455050d2 5137
455050d2 5138 /*
01f6474c
TH
5139 * Remove @cgrp directory along with the base files. @cgrp has an
5140 * extra ref on its kn.
f20104de 5141 */
01f6474c 5142 kernfs_remove(cgrp->kn);
f20104de 5143
d51f39b0 5144 check_for_release(cgroup_parent(cgrp));
2bd59d48 5145
249f3468 5146 /* put the base reference */
9d755d33 5147 percpu_ref_kill(&cgrp->self.refcnt);
455050d2 5148
ea15f8cc
TH
5149 return 0;
5150};
5151
2bd59d48 5152static int cgroup_rmdir(struct kernfs_node *kn)
42809dd4 5153{
a9746d8d 5154 struct cgroup *cgrp;
2bd59d48 5155 int ret = 0;
42809dd4 5156
a9746d8d
TH
5157 cgrp = cgroup_kn_lock_live(kn);
5158 if (!cgrp)
5159 return 0;
42809dd4 5160
a9746d8d 5161 ret = cgroup_destroy_locked(cgrp);
2bb566cb 5162
a9746d8d 5163 cgroup_kn_unlock(kn);
42809dd4 5164 return ret;
8e3f6541
TH
5165}
5166
2bd59d48
TH
5167static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
5168 .remount_fs = cgroup_remount,
5169 .show_options = cgroup_show_options,
5170 .mkdir = cgroup_mkdir,
5171 .rmdir = cgroup_rmdir,
5172 .rename = cgroup_rename,
5173};
5174
15a4c835 5175static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
ddbcc7e8 5176{
ddbcc7e8 5177 struct cgroup_subsys_state *css;
cfe36bde 5178
a5ae9899 5179 pr_debug("Initializing cgroup subsys %s\n", ss->name);
ddbcc7e8 5180
648bb56d
TH
5181 mutex_lock(&cgroup_mutex);
5182
15a4c835 5183 idr_init(&ss->css_idr);
0adb0704 5184 INIT_LIST_HEAD(&ss->cfts);
8e3f6541 5185
3dd06ffa
TH
5186 /* Create the root cgroup state for this subsystem */
5187 ss->root = &cgrp_dfl_root;
5188 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
ddbcc7e8
PM
5189 /* We don't handle early failures gracefully */
5190 BUG_ON(IS_ERR(css));
ddfcadab 5191 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
3b514d24
TH
5192
5193 /*
5194 * Root csses are never destroyed and we can't initialize
5195 * percpu_ref during early init. Disable refcnting.
5196 */
5197 css->flags |= CSS_NO_REF;
5198
15a4c835 5199 if (early) {
9395a450 5200 /* allocation can't be done safely during early init */
15a4c835
TH
5201 css->id = 1;
5202 } else {
5203 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
5204 BUG_ON(css->id < 0);
5205 }
ddbcc7e8 5206
e8d55fde 5207 /* Update the init_css_set to contain a subsys
817929ec 5208 * pointer to this state - since the subsystem is
e8d55fde 5209 * newly registered, all tasks and hence the
3dd06ffa 5210 * init_css_set is in the subsystem's root cgroup. */
aec25020 5211 init_css_set.subsys[ss->id] = css;
ddbcc7e8 5212
cb4a3167
AS
5213 have_fork_callback |= (bool)ss->fork << ss->id;
5214 have_exit_callback |= (bool)ss->exit << ss->id;
afcf6c8b 5215 have_free_callback |= (bool)ss->free << ss->id;
7e47682e 5216 have_canfork_callback |= (bool)ss->can_fork << ss->id;
ddbcc7e8 5217
e8d55fde
LZ
5218 /* At system boot, before all subsystems have been
5219 * registered, no tasks have been forked, so we don't
5220 * need to invoke fork callbacks here. */
5221 BUG_ON(!list_empty(&init_task.tasks));
5222
ae7f164a 5223 BUG_ON(online_css(css));
a8638030 5224
cf5d5941
BB
5225 mutex_unlock(&cgroup_mutex);
5226}
cf5d5941 5227
ddbcc7e8 5228/**
a043e3b2
LZ
5229 * cgroup_init_early - cgroup initialization at system boot
5230 *
5231 * Initialize cgroups at system boot, and initialize any
5232 * subsystems that request early init.
ddbcc7e8
PM
5233 */
5234int __init cgroup_init_early(void)
5235{
7b9a6ba5 5236 static struct cgroup_sb_opts __initdata opts;
30159ec7 5237 struct cgroup_subsys *ss;
ddbcc7e8 5238 int i;
30159ec7 5239
3dd06ffa 5240 init_cgroup_root(&cgrp_dfl_root, &opts);
3b514d24
TH
5241 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
5242
a4ea1cc9 5243 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
817929ec 5244
3ed80a62 5245 for_each_subsys(ss, i) {
aec25020 5246 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
073219e9
TH
5247 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p name:id=%d:%s\n",
5248 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
aec25020 5249 ss->id, ss->name);
073219e9
TH
5250 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
5251 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
5252
aec25020 5253 ss->id = i;
073219e9 5254 ss->name = cgroup_subsys_name[i];
3e1d2eed
TH
5255 if (!ss->legacy_name)
5256 ss->legacy_name = cgroup_subsys_name[i];
ddbcc7e8
PM
5257
5258 if (ss->early_init)
15a4c835 5259 cgroup_init_subsys(ss, true);
ddbcc7e8
PM
5260 }
5261 return 0;
5262}
5263
a3e72739
TH
5264static unsigned long cgroup_disable_mask __initdata;
5265
ddbcc7e8 5266/**
a043e3b2
LZ
5267 * cgroup_init - cgroup initialization
5268 *
5269 * Register cgroup filesystem and /proc file, and initialize
5270 * any subsystems that didn't request early init.
ddbcc7e8
PM
5271 */
5272int __init cgroup_init(void)
5273{
30159ec7 5274 struct cgroup_subsys *ss;
0ac801fe 5275 unsigned long key;
035f4f51 5276 int ssid;
ddbcc7e8 5277
1ed13287 5278 BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem));
a14c6874
TH
5279 BUG_ON(cgroup_init_cftypes(NULL, cgroup_dfl_base_files));
5280 BUG_ON(cgroup_init_cftypes(NULL, cgroup_legacy_base_files));
ddbcc7e8 5281
54e7b4eb 5282 mutex_lock(&cgroup_mutex);
54e7b4eb 5283
82fe9b0d
TH
5284 /* Add init_css_set to the hash table */
5285 key = css_set_hash(init_css_set.subsys);
5286 hash_add(css_set_table, &init_css_set.hlist, key);
5287
3dd06ffa 5288 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
4e96ee8e 5289
54e7b4eb
TH
5290 mutex_unlock(&cgroup_mutex);
5291
172a2c06 5292 for_each_subsys(ss, ssid) {
15a4c835
TH
5293 if (ss->early_init) {
5294 struct cgroup_subsys_state *css =
5295 init_css_set.subsys[ss->id];
5296
5297 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
5298 GFP_KERNEL);
5299 BUG_ON(css->id < 0);
5300 } else {
5301 cgroup_init_subsys(ss, false);
5302 }
172a2c06 5303
2d8f243a
TH
5304 list_add_tail(&init_css_set.e_cset_node[ssid],
5305 &cgrp_dfl_root.cgrp.e_csets[ssid]);
172a2c06
TH
5306
5307 /*
c731ae1d
LZ
5308 * Setting dfl_root subsys_mask needs to consider the
5309 * disabled flag and cftype registration needs kmalloc,
5310 * both of which aren't available during early_init.
172a2c06 5311 */
a3e72739
TH
5312 if (cgroup_disable_mask & (1 << ssid)) {
5313 static_branch_disable(cgroup_subsys_enabled_key[ssid]);
5314 printk(KERN_INFO "Disabling %s control group subsystem\n",
5315 ss->name);
a8ddc821 5316 continue;
a3e72739 5317 }
a8ddc821 5318
223ffb29
JW
5319 if (cgroup_ssid_no_v1(ssid))
5320 printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n",
5321 ss->name);
5322
a8ddc821
TH
5323 cgrp_dfl_root.subsys_mask |= 1 << ss->id;
5324
5de4fa13
TH
5325 if (!ss->dfl_cftypes)
5326 cgrp_dfl_root_inhibit_ss_mask |= 1 << ss->id;
5327
a8ddc821
TH
5328 if (ss->dfl_cftypes == ss->legacy_cftypes) {
5329 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
5330 } else {
5331 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5332 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
c731ae1d 5333 }
295458e6
VD
5334
5335 if (ss->bind)
5336 ss->bind(init_css_set.subsys[ssid]);
676db4af
GKH
5337 }
5338
035f4f51
TH
5339 WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
5340 WARN_ON(register_filesystem(&cgroup_fs_type));
67e9c74b 5341 WARN_ON(register_filesystem(&cgroup2_fs_type));
035f4f51 5342 WARN_ON(!proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations));
ddbcc7e8 5343
2bd59d48 5344 return 0;
ddbcc7e8 5345}
b4f48b63 5346
e5fca243
TH
5347static int __init cgroup_wq_init(void)
5348{
5349 /*
5350 * There isn't much point in executing destruction path in
5351 * parallel. Good chunk is serialized with cgroup_mutex anyway.
1a11533f 5352 * Use 1 for @max_active.
e5fca243
TH
5353 *
5354 * We would prefer to do this in cgroup_init() above, but that
5355 * is called before init_workqueues(): so leave this until after.
5356 */
1a11533f 5357 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
e5fca243 5358 BUG_ON(!cgroup_destroy_wq);
b1a21367
TH
5359
5360 /*
5361 * Used to destroy pidlists and separate to serve as flush domain.
5362 * Cap @max_active to 1 too.
5363 */
5364 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
5365 0, 1);
5366 BUG_ON(!cgroup_pidlist_destroy_wq);
5367
e5fca243
TH
5368 return 0;
5369}
5370core_initcall(cgroup_wq_init);
5371
a424316c
PM
5372/*
5373 * proc_cgroup_show()
5374 * - Print task's cgroup paths into seq_file, one line for each hierarchy
5375 * - Used for /proc/<pid>/cgroup.
a424316c 5376 */
006f4ac4
ZL
5377int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
5378 struct pid *pid, struct task_struct *tsk)
a424316c 5379{
e61734c5 5380 char *buf, *path;
a424316c 5381 int retval;
3dd06ffa 5382 struct cgroup_root *root;
a424316c
PM
5383
5384 retval = -ENOMEM;
e61734c5 5385 buf = kmalloc(PATH_MAX, GFP_KERNEL);
a424316c
PM
5386 if (!buf)
5387 goto out;
5388
a424316c 5389 mutex_lock(&cgroup_mutex);
f0d9a5f1 5390 spin_lock_bh(&css_set_lock);
a424316c 5391
985ed670 5392 for_each_root(root) {
a424316c 5393 struct cgroup_subsys *ss;
bd89aabc 5394 struct cgroup *cgrp;
b85d2040 5395 int ssid, count = 0;
a424316c 5396
a2dd4247 5397 if (root == &cgrp_dfl_root && !cgrp_dfl_root_visible)
985ed670
TH
5398 continue;
5399
2c6ab6d2 5400 seq_printf(m, "%d:", root->hierarchy_id);
d98817d4
TH
5401 if (root != &cgrp_dfl_root)
5402 for_each_subsys(ss, ssid)
5403 if (root->subsys_mask & (1 << ssid))
5404 seq_printf(m, "%s%s", count++ ? "," : "",
3e1d2eed 5405 ss->legacy_name);
c6d57f33
PM
5406 if (strlen(root->name))
5407 seq_printf(m, "%sname=%s", count ? "," : "",
5408 root->name);
a424316c 5409 seq_putc(m, ':');
2e91fa7f 5410
7717f7ba 5411 cgrp = task_cgroup_from_root(tsk, root);
2e91fa7f
TH
5412
5413 /*
5414 * On traditional hierarchies, all zombie tasks show up as
5415 * belonging to the root cgroup. On the default hierarchy,
5416 * while a zombie doesn't show up in "cgroup.procs" and
5417 * thus can't be migrated, its /proc/PID/cgroup keeps
5418 * reporting the cgroup it belonged to before exiting. If
5419 * the cgroup is removed before the zombie is reaped,
5420 * " (deleted)" is appended to the cgroup path.
5421 */
5422 if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
5423 path = cgroup_path(cgrp, buf, PATH_MAX);
5424 if (!path) {
5425 retval = -ENAMETOOLONG;
5426 goto out_unlock;
5427 }
5428 } else {
5429 path = "/";
e61734c5 5430 }
2e91fa7f 5431
e61734c5 5432 seq_puts(m, path);
2e91fa7f
TH
5433
5434 if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
5435 seq_puts(m, " (deleted)\n");
5436 else
5437 seq_putc(m, '\n');
a424316c
PM
5438 }
5439
006f4ac4 5440 retval = 0;
a424316c 5441out_unlock:
f0d9a5f1 5442 spin_unlock_bh(&css_set_lock);
a424316c 5443 mutex_unlock(&cgroup_mutex);
a424316c
PM
5444 kfree(buf);
5445out:
5446 return retval;
5447}
5448
a424316c
PM
5449/* Display information about each subsystem and each hierarchy */
5450static int proc_cgroupstats_show(struct seq_file *m, void *v)
5451{
30159ec7 5452 struct cgroup_subsys *ss;
a424316c 5453 int i;
a424316c 5454
8bab8dde 5455 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
aae8aab4
BB
5456 /*
5457 * ideally we don't want subsystems moving around while we do this.
5458 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
5459 * subsys/hierarchy state.
5460 */
a424316c 5461 mutex_lock(&cgroup_mutex);
30159ec7
TH
5462
5463 for_each_subsys(ss, i)
2c6ab6d2 5464 seq_printf(m, "%s\t%d\t%d\t%d\n",
3e1d2eed 5465 ss->legacy_name, ss->root->hierarchy_id,
fc5ed1e9
TH
5466 atomic_read(&ss->root->nr_cgrps),
5467 cgroup_ssid_enabled(i));
30159ec7 5468
a424316c
PM
5469 mutex_unlock(&cgroup_mutex);
5470 return 0;
5471}
5472
5473static int cgroupstats_open(struct inode *inode, struct file *file)
5474{
9dce07f1 5475 return single_open(file, proc_cgroupstats_show, NULL);
a424316c
PM
5476}
5477
828c0950 5478static const struct file_operations proc_cgroupstats_operations = {
a424316c
PM
5479 .open = cgroupstats_open,
5480 .read = seq_read,
5481 .llseek = seq_lseek,
5482 .release = single_release,
5483};
5484
b4f48b63 5485/**
eaf797ab 5486 * cgroup_fork - initialize cgroup related fields during copy_process()
a043e3b2 5487 * @child: pointer to task_struct of forking parent process.
b4f48b63 5488 *
eaf797ab
TH
5489 * A task is associated with the init_css_set until cgroup_post_fork()
5490 * attaches it to the parent's css_set. Empty cg_list indicates that
5491 * @child isn't holding reference to its css_set.
b4f48b63
PM
5492 */
5493void cgroup_fork(struct task_struct *child)
5494{
eaf797ab 5495 RCU_INIT_POINTER(child->cgroups, &init_css_set);
817929ec 5496 INIT_LIST_HEAD(&child->cg_list);
b4f48b63
PM
5497}
5498
7e47682e
AS
5499/**
5500 * cgroup_can_fork - called on a new task before the process is exposed
5501 * @child: the task in question.
5502 *
5503 * This calls the subsystem can_fork() callbacks. If the can_fork() callback
5504 * returns an error, the fork aborts with that error code. This allows for
5505 * a cgroup subsystem to conditionally allow or deny new forks.
5506 */
b53202e6 5507int cgroup_can_fork(struct task_struct *child)
7e47682e
AS
5508{
5509 struct cgroup_subsys *ss;
5510 int i, j, ret;
5511
5512 for_each_subsys_which(ss, i, &have_canfork_callback) {
b53202e6 5513 ret = ss->can_fork(child);
7e47682e
AS
5514 if (ret)
5515 goto out_revert;
5516 }
5517
5518 return 0;
5519
5520out_revert:
5521 for_each_subsys(ss, j) {
5522 if (j >= i)
5523 break;
5524 if (ss->cancel_fork)
b53202e6 5525 ss->cancel_fork(child);
7e47682e
AS
5526 }
5527
5528 return ret;
5529}
5530
5531/**
5532 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
5533 * @child: the task in question
5534 *
5535 * This calls the cancel_fork() callbacks if a fork failed *after*
5536 * cgroup_can_fork() succeded.
5537 */
b53202e6 5538void cgroup_cancel_fork(struct task_struct *child)
7e47682e
AS
5539{
5540 struct cgroup_subsys *ss;
5541 int i;
5542
5543 for_each_subsys(ss, i)
5544 if (ss->cancel_fork)
b53202e6 5545 ss->cancel_fork(child);
7e47682e
AS
5546}
5547
817929ec 5548/**
a043e3b2
LZ
5549 * cgroup_post_fork - called on a new task after adding it to the task list
5550 * @child: the task in question
5551 *
5edee61e
TH
5552 * Adds the task to the list running through its css_set if necessary and
5553 * call the subsystem fork() callbacks. Has to be after the task is
5554 * visible on the task list in case we race with the first call to
0942eeee 5555 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5edee61e 5556 * list.
a043e3b2 5557 */
b53202e6 5558void cgroup_post_fork(struct task_struct *child)
817929ec 5559{
30159ec7 5560 struct cgroup_subsys *ss;
5edee61e
TH
5561 int i;
5562
3ce3230a 5563 /*
251f8c03 5564 * This may race against cgroup_enable_task_cg_lists(). As that
eaf797ab
TH
5565 * function sets use_task_css_set_links before grabbing
5566 * tasklist_lock and we just went through tasklist_lock to add
5567 * @child, it's guaranteed that either we see the set
5568 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
5569 * @child during its iteration.
5570 *
5571 * If we won the race, @child is associated with %current's
f0d9a5f1 5572 * css_set. Grabbing css_set_lock guarantees both that the
eaf797ab
TH
5573 * association is stable, and, on completion of the parent's
5574 * migration, @child is visible in the source of migration or
5575 * already in the destination cgroup. This guarantee is necessary
5576 * when implementing operations which need to migrate all tasks of
5577 * a cgroup to another.
5578 *
251f8c03 5579 * Note that if we lose to cgroup_enable_task_cg_lists(), @child
eaf797ab
TH
5580 * will remain in init_css_set. This is safe because all tasks are
5581 * in the init_css_set before cg_links is enabled and there's no
5582 * operation which transfers all tasks out of init_css_set.
3ce3230a 5583 */
817929ec 5584 if (use_task_css_set_links) {
eaf797ab
TH
5585 struct css_set *cset;
5586
f0d9a5f1 5587 spin_lock_bh(&css_set_lock);
0e1d768f 5588 cset = task_css_set(current);
eaf797ab 5589 if (list_empty(&child->cg_list)) {
eaf797ab 5590 get_css_set(cset);
f6d7d049 5591 css_set_move_task(child, NULL, cset, false);
eaf797ab 5592 }
f0d9a5f1 5593 spin_unlock_bh(&css_set_lock);
817929ec 5594 }
5edee61e
TH
5595
5596 /*
5597 * Call ss->fork(). This must happen after @child is linked on
5598 * css_set; otherwise, @child might change state between ->fork()
5599 * and addition to css_set.
5600 */
cb4a3167 5601 for_each_subsys_which(ss, i, &have_fork_callback)
b53202e6 5602 ss->fork(child);
817929ec 5603}
5edee61e 5604
b4f48b63
PM
5605/**
5606 * cgroup_exit - detach cgroup from exiting task
5607 * @tsk: pointer to task_struct of exiting process
5608 *
5609 * Description: Detach cgroup from @tsk and release it.
5610 *
5611 * Note that cgroups marked notify_on_release force every task in
5612 * them to take the global cgroup_mutex mutex when exiting.
5613 * This could impact scaling on very large systems. Be reluctant to
5614 * use notify_on_release cgroups where very high task exit scaling
5615 * is required on large systems.
5616 *
0e1d768f
TH
5617 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We
5618 * call cgroup_exit() while the task is still competent to handle
5619 * notify_on_release(), then leave the task attached to the root cgroup in
5620 * each hierarchy for the remainder of its exit. No need to bother with
5621 * init_css_set refcnting. init_css_set never goes away and we can't race
e8604cb4 5622 * with migration path - PF_EXITING is visible to migration path.
b4f48b63 5623 */
1ec41830 5624void cgroup_exit(struct task_struct *tsk)
b4f48b63 5625{
30159ec7 5626 struct cgroup_subsys *ss;
5abb8855 5627 struct css_set *cset;
d41d5a01 5628 int i;
817929ec
PM
5629
5630 /*
0e1d768f 5631 * Unlink from @tsk from its css_set. As migration path can't race
0de0942d 5632 * with us, we can check css_set and cg_list without synchronization.
817929ec 5633 */
0de0942d
TH
5634 cset = task_css_set(tsk);
5635
817929ec 5636 if (!list_empty(&tsk->cg_list)) {
f0d9a5f1 5637 spin_lock_bh(&css_set_lock);
f6d7d049 5638 css_set_move_task(tsk, cset, NULL, false);
f0d9a5f1 5639 spin_unlock_bh(&css_set_lock);
2e91fa7f
TH
5640 } else {
5641 get_css_set(cset);
817929ec
PM
5642 }
5643
cb4a3167 5644 /* see cgroup_post_fork() for details */
2e91fa7f
TH
5645 for_each_subsys_which(ss, i, &have_exit_callback)
5646 ss->exit(tsk);
5647}
30159ec7 5648
2e91fa7f
TH
5649void cgroup_free(struct task_struct *task)
5650{
5651 struct css_set *cset = task_css_set(task);
afcf6c8b
TH
5652 struct cgroup_subsys *ss;
5653 int ssid;
5654
5655 for_each_subsys_which(ss, ssid, &have_free_callback)
5656 ss->free(task);
d41d5a01 5657
2e91fa7f 5658 put_css_set(cset);
b4f48b63 5659}
697f4161 5660
bd89aabc 5661static void check_for_release(struct cgroup *cgrp)
81a6a5cd 5662{
27bd4dbb 5663 if (notify_on_release(cgrp) && !cgroup_is_populated(cgrp) &&
971ff493
ZL
5664 !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp))
5665 schedule_work(&cgrp->release_agent_work);
81a6a5cd
PM
5666}
5667
81a6a5cd
PM
5668/*
5669 * Notify userspace when a cgroup is released, by running the
5670 * configured release agent with the name of the cgroup (path
5671 * relative to the root of cgroup file system) as the argument.
5672 *
5673 * Most likely, this user command will try to rmdir this cgroup.
5674 *
5675 * This races with the possibility that some other task will be
5676 * attached to this cgroup before it is removed, or that some other
5677 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
5678 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
5679 * unused, and this cgroup will be reprieved from its death sentence,
5680 * to continue to serve a useful existence. Next time it's released,
5681 * we will get notified again, if it still has 'notify_on_release' set.
5682 *
5683 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
5684 * means only wait until the task is successfully execve()'d. The
5685 * separate release agent task is forked by call_usermodehelper(),
5686 * then control in this thread returns here, without waiting for the
5687 * release agent task. We don't bother to wait because the caller of
5688 * this routine has no use for the exit status of the release agent
5689 * task, so no sense holding our caller up for that.
81a6a5cd 5690 */
81a6a5cd
PM
5691static void cgroup_release_agent(struct work_struct *work)
5692{
971ff493
ZL
5693 struct cgroup *cgrp =
5694 container_of(work, struct cgroup, release_agent_work);
5695 char *pathbuf = NULL, *agentbuf = NULL, *path;
5696 char *argv[3], *envp[3];
5697
81a6a5cd 5698 mutex_lock(&cgroup_mutex);
971ff493
ZL
5699
5700 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
5701 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
5702 if (!pathbuf || !agentbuf)
5703 goto out;
5704
5705 path = cgroup_path(cgrp, pathbuf, PATH_MAX);
5706 if (!path)
5707 goto out;
5708
5709 argv[0] = agentbuf;
5710 argv[1] = path;
5711 argv[2] = NULL;
5712
5713 /* minimal command environment */
5714 envp[0] = "HOME=/";
5715 envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
5716 envp[2] = NULL;
5717
81a6a5cd 5718 mutex_unlock(&cgroup_mutex);
971ff493 5719 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
3e2cd91a 5720 goto out_free;
971ff493 5721out:
81a6a5cd 5722 mutex_unlock(&cgroup_mutex);
3e2cd91a 5723out_free:
971ff493
ZL
5724 kfree(agentbuf);
5725 kfree(pathbuf);
81a6a5cd 5726}
8bab8dde
PM
5727
5728static int __init cgroup_disable(char *str)
5729{
30159ec7 5730 struct cgroup_subsys *ss;
8bab8dde 5731 char *token;
30159ec7 5732 int i;
8bab8dde
PM
5733
5734 while ((token = strsep(&str, ",")) != NULL) {
5735 if (!*token)
5736 continue;
be45c900 5737
3ed80a62 5738 for_each_subsys(ss, i) {
3e1d2eed
TH
5739 if (strcmp(token, ss->name) &&
5740 strcmp(token, ss->legacy_name))
5741 continue;
a3e72739 5742 cgroup_disable_mask |= 1 << i;
8bab8dde
PM
5743 }
5744 }
5745 return 1;
5746}
5747__setup("cgroup_disable=", cgroup_disable);
38460b48 5748
223ffb29
JW
5749static int __init cgroup_no_v1(char *str)
5750{
5751 struct cgroup_subsys *ss;
5752 char *token;
5753 int i;
5754
5755 while ((token = strsep(&str, ",")) != NULL) {
5756 if (!*token)
5757 continue;
5758
5759 if (!strcmp(token, "all")) {
5760 cgroup_no_v1_mask = ~0UL;
5761 break;
5762 }
5763
5764 for_each_subsys(ss, i) {
5765 if (strcmp(token, ss->name) &&
5766 strcmp(token, ss->legacy_name))
5767 continue;
5768
5769 cgroup_no_v1_mask |= 1 << i;
5770 }
5771 }
5772 return 1;
5773}
5774__setup("cgroup_no_v1=", cgroup_no_v1);
5775
b77d7b60 5776/**
ec903c0c 5777 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
35cf0836
TH
5778 * @dentry: directory dentry of interest
5779 * @ss: subsystem of interest
b77d7b60 5780 *
5a17f543
TH
5781 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
5782 * to get the corresponding css and return it. If such css doesn't exist
5783 * or can't be pinned, an ERR_PTR value is returned.
e5d1367f 5784 */
ec903c0c
TH
5785struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
5786 struct cgroup_subsys *ss)
e5d1367f 5787{
2bd59d48
TH
5788 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
5789 struct cgroup_subsys_state *css = NULL;
e5d1367f 5790 struct cgroup *cgrp;
e5d1367f 5791
35cf0836 5792 /* is @dentry a cgroup dir? */
2bd59d48
TH
5793 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
5794 kernfs_type(kn) != KERNFS_DIR)
e5d1367f
SE
5795 return ERR_PTR(-EBADF);
5796
5a17f543
TH
5797 rcu_read_lock();
5798
2bd59d48
TH
5799 /*
5800 * This path doesn't originate from kernfs and @kn could already
5801 * have been or be removed at any point. @kn->priv is RCU
a4189487 5802 * protected for this access. See css_release_work_fn() for details.
2bd59d48
TH
5803 */
5804 cgrp = rcu_dereference(kn->priv);
5805 if (cgrp)
5806 css = cgroup_css(cgrp, ss);
5a17f543 5807
ec903c0c 5808 if (!css || !css_tryget_online(css))
5a17f543
TH
5809 css = ERR_PTR(-ENOENT);
5810
5811 rcu_read_unlock();
5812 return css;
e5d1367f 5813}
e5d1367f 5814
1cb650b9
LZ
5815/**
5816 * css_from_id - lookup css by id
5817 * @id: the cgroup id
5818 * @ss: cgroup subsys to be looked into
5819 *
5820 * Returns the css if there's valid one with @id, otherwise returns NULL.
5821 * Should be called under rcu_read_lock().
5822 */
5823struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
5824{
6fa4918d 5825 WARN_ON_ONCE(!rcu_read_lock_held());
adbe427b 5826 return id > 0 ? idr_find(&ss->css_idr, id) : NULL;
e5d1367f
SE
5827}
5828
16af4396
TH
5829/**
5830 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
5831 * @path: path on the default hierarchy
5832 *
5833 * Find the cgroup at @path on the default hierarchy, increment its
5834 * reference count and return it. Returns pointer to the found cgroup on
5835 * success, ERR_PTR(-ENOENT) if @path doens't exist and ERR_PTR(-ENOTDIR)
5836 * if @path points to a non-directory.
5837 */
5838struct cgroup *cgroup_get_from_path(const char *path)
5839{
5840 struct kernfs_node *kn;
5841 struct cgroup *cgrp;
5842
5843 mutex_lock(&cgroup_mutex);
5844
5845 kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path);
5846 if (kn) {
5847 if (kernfs_type(kn) == KERNFS_DIR) {
5848 cgrp = kn->priv;
5849 cgroup_get(cgrp);
5850 } else {
5851 cgrp = ERR_PTR(-ENOTDIR);
5852 }
5853 kernfs_put(kn);
5854 } else {
5855 cgrp = ERR_PTR(-ENOENT);
5856 }
5857
5858 mutex_unlock(&cgroup_mutex);
5859 return cgrp;
5860}
5861EXPORT_SYMBOL_GPL(cgroup_get_from_path);
5862
bd1060a1
TH
5863/*
5864 * sock->sk_cgrp_data handling. For more info, see sock_cgroup_data
5865 * definition in cgroup-defs.h.
5866 */
5867#ifdef CONFIG_SOCK_CGROUP_DATA
5868
5869#if defined(CONFIG_CGROUP_NET_PRIO) || defined(CONFIG_CGROUP_NET_CLASSID)
5870
3fa4cc9c 5871DEFINE_SPINLOCK(cgroup_sk_update_lock);
bd1060a1
TH
5872static bool cgroup_sk_alloc_disabled __read_mostly;
5873
5874void cgroup_sk_alloc_disable(void)
5875{
5876 if (cgroup_sk_alloc_disabled)
5877 return;
5878 pr_info("cgroup: disabling cgroup2 socket matching due to net_prio or net_cls activation\n");
5879 cgroup_sk_alloc_disabled = true;
5880}
5881
5882#else
5883
5884#define cgroup_sk_alloc_disabled false
5885
5886#endif
5887
5888void cgroup_sk_alloc(struct sock_cgroup_data *skcd)
5889{
5890 if (cgroup_sk_alloc_disabled)
5891 return;
5892
5893 rcu_read_lock();
5894
5895 while (true) {
5896 struct css_set *cset;
5897
5898 cset = task_css_set(current);
5899 if (likely(cgroup_tryget(cset->dfl_cgrp))) {
5900 skcd->val = (unsigned long)cset->dfl_cgrp;
5901 break;
5902 }
5903 cpu_relax();
5904 }
5905
5906 rcu_read_unlock();
5907}
5908
5909void cgroup_sk_free(struct sock_cgroup_data *skcd)
5910{
5911 cgroup_put(sock_cgroup_ptr(skcd));
5912}
5913
5914#endif /* CONFIG_SOCK_CGROUP_DATA */
5915
fe693435 5916#ifdef CONFIG_CGROUP_DEBUG
eb95419b
TH
5917static struct cgroup_subsys_state *
5918debug_css_alloc(struct cgroup_subsys_state *parent_css)
fe693435
PM
5919{
5920 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5921
5922 if (!css)
5923 return ERR_PTR(-ENOMEM);
5924
5925 return css;
5926}
5927
eb95419b 5928static void debug_css_free(struct cgroup_subsys_state *css)
fe693435 5929{
eb95419b 5930 kfree(css);
fe693435
PM
5931}
5932
182446d0
TH
5933static u64 debug_taskcount_read(struct cgroup_subsys_state *css,
5934 struct cftype *cft)
fe693435 5935{
182446d0 5936 return cgroup_task_count(css->cgroup);
fe693435
PM
5937}
5938
182446d0
TH
5939static u64 current_css_set_read(struct cgroup_subsys_state *css,
5940 struct cftype *cft)
fe693435
PM
5941{
5942 return (u64)(unsigned long)current->cgroups;
5943}
5944
182446d0 5945static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css,
03c78cbe 5946 struct cftype *cft)
fe693435
PM
5947{
5948 u64 count;
5949
5950 rcu_read_lock();
a8ad805c 5951 count = atomic_read(&task_css_set(current)->refcount);
fe693435
PM
5952 rcu_read_unlock();
5953 return count;
5954}
5955
2da8ca82 5956static int current_css_set_cg_links_read(struct seq_file *seq, void *v)
7717f7ba 5957{
69d0206c 5958 struct cgrp_cset_link *link;
5abb8855 5959 struct css_set *cset;
e61734c5
TH
5960 char *name_buf;
5961
5962 name_buf = kmalloc(NAME_MAX + 1, GFP_KERNEL);
5963 if (!name_buf)
5964 return -ENOMEM;
7717f7ba 5965
f0d9a5f1 5966 spin_lock_bh(&css_set_lock);
7717f7ba 5967 rcu_read_lock();
5abb8855 5968 cset = rcu_dereference(current->cgroups);
69d0206c 5969 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 5970 struct cgroup *c = link->cgrp;
7717f7ba 5971
a2dd4247 5972 cgroup_name(c, name_buf, NAME_MAX + 1);
2c6ab6d2 5973 seq_printf(seq, "Root %d group %s\n",
a2dd4247 5974 c->root->hierarchy_id, name_buf);
7717f7ba
PM
5975 }
5976 rcu_read_unlock();
f0d9a5f1 5977 spin_unlock_bh(&css_set_lock);
e61734c5 5978 kfree(name_buf);
7717f7ba
PM
5979 return 0;
5980}
5981
5982#define MAX_TASKS_SHOWN_PER_CSS 25
2da8ca82 5983static int cgroup_css_links_read(struct seq_file *seq, void *v)
7717f7ba 5984{
2da8ca82 5985 struct cgroup_subsys_state *css = seq_css(seq);
69d0206c 5986 struct cgrp_cset_link *link;
7717f7ba 5987
f0d9a5f1 5988 spin_lock_bh(&css_set_lock);
182446d0 5989 list_for_each_entry(link, &css->cgroup->cset_links, cset_link) {
69d0206c 5990 struct css_set *cset = link->cset;
7717f7ba
PM
5991 struct task_struct *task;
5992 int count = 0;
c7561128 5993
5abb8855 5994 seq_printf(seq, "css_set %p\n", cset);
c7561128 5995
5abb8855 5996 list_for_each_entry(task, &cset->tasks, cg_list) {
c7561128
TH
5997 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
5998 goto overflow;
5999 seq_printf(seq, " task %d\n", task_pid_vnr(task));
6000 }
6001
6002 list_for_each_entry(task, &cset->mg_tasks, cg_list) {
6003 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
6004 goto overflow;
6005 seq_printf(seq, " task %d\n", task_pid_vnr(task));
7717f7ba 6006 }
c7561128
TH
6007 continue;
6008 overflow:
6009 seq_puts(seq, " ...\n");
7717f7ba 6010 }
f0d9a5f1 6011 spin_unlock_bh(&css_set_lock);
7717f7ba
PM
6012 return 0;
6013}
6014
182446d0 6015static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft)
fe693435 6016{
27bd4dbb 6017 return (!cgroup_is_populated(css->cgroup) &&
a25eb52e 6018 !css_has_online_children(&css->cgroup->self));
fe693435
PM
6019}
6020
6021static struct cftype debug_files[] = {
fe693435
PM
6022 {
6023 .name = "taskcount",
6024 .read_u64 = debug_taskcount_read,
6025 },
6026
6027 {
6028 .name = "current_css_set",
6029 .read_u64 = current_css_set_read,
6030 },
6031
6032 {
6033 .name = "current_css_set_refcount",
6034 .read_u64 = current_css_set_refcount_read,
6035 },
6036
7717f7ba
PM
6037 {
6038 .name = "current_css_set_cg_links",
2da8ca82 6039 .seq_show = current_css_set_cg_links_read,
7717f7ba
PM
6040 },
6041
6042 {
6043 .name = "cgroup_css_links",
2da8ca82 6044 .seq_show = cgroup_css_links_read,
7717f7ba
PM
6045 },
6046
fe693435
PM
6047 {
6048 .name = "releasable",
6049 .read_u64 = releasable_read,
6050 },
fe693435 6051
4baf6e33
TH
6052 { } /* terminate */
6053};
fe693435 6054
073219e9 6055struct cgroup_subsys debug_cgrp_subsys = {
92fb9748
TH
6056 .css_alloc = debug_css_alloc,
6057 .css_free = debug_css_free,
5577964e 6058 .legacy_cftypes = debug_files,
fe693435
PM
6059};
6060#endif /* CONFIG_CGROUP_DEBUG */