]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - kernel/cgroup.c
cgroup: introduce cgroup->subtree_control
[mirror_ubuntu-artful-kernel.git] / kernel / cgroup.c
CommitLineData
ddbcc7e8 1/*
ddbcc7e8
PM
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
0dea1168
KS
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
ddbcc7e8
PM
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
ed3d261b
JP
29#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
ddbcc7e8 31#include <linux/cgroup.h>
2ce9738b 32#include <linux/cred.h>
c6d57f33 33#include <linux/ctype.h>
ddbcc7e8 34#include <linux/errno.h>
2ce9738b 35#include <linux/init_task.h>
ddbcc7e8
PM
36#include <linux/kernel.h>
37#include <linux/list.h>
c9482a5b 38#include <linux/magic.h>
ddbcc7e8
PM
39#include <linux/mm.h>
40#include <linux/mutex.h>
41#include <linux/mount.h>
42#include <linux/pagemap.h>
a424316c 43#include <linux/proc_fs.h>
ddbcc7e8
PM
44#include <linux/rcupdate.h>
45#include <linux/sched.h>
ddbcc7e8 46#include <linux/slab.h>
ddbcc7e8 47#include <linux/spinlock.h>
96d365e0 48#include <linux/rwsem.h>
ddbcc7e8 49#include <linux/string.h>
bbcb81d0 50#include <linux/sort.h>
81a6a5cd 51#include <linux/kmod.h>
846c7bb0
BS
52#include <linux/delayacct.h>
53#include <linux/cgroupstats.h>
0ac801fe 54#include <linux/hashtable.h>
096b7fe0 55#include <linux/pid_namespace.h>
2c6ab6d2 56#include <linux/idr.h>
d1d9fd33 57#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
c4c27fbd 58#include <linux/kthread.h>
776f02fa 59#include <linux/delay.h>
846c7bb0 60
60063497 61#include <linux/atomic.h>
ddbcc7e8 62
b1a21367
TH
63/*
64 * pidlists linger the following amount before being destroyed. The goal
65 * is avoiding frequent destruction in the middle of consecutive read calls
66 * Expiring in the middle is a performance problem not a correctness one.
67 * 1 sec should be enough.
68 */
69#define CGROUP_PIDLIST_DESTROY_DELAY HZ
70
8d7e6fb0
TH
71#define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
72 MAX_CFTYPE_NAME + 2)
73
e25e2cbb
TH
74/*
75 * cgroup_mutex is the master lock. Any modification to cgroup or its
76 * hierarchy must be performed while holding it.
77 *
0e1d768f
TH
78 * css_set_rwsem protects task->cgroups pointer, the list of css_set
79 * objects, and the chain of tasks off each css_set.
e25e2cbb 80 *
0e1d768f
TH
81 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
82 * cgroup.h can use them for lockdep annotations.
e25e2cbb 83 */
2219449a
TH
84#ifdef CONFIG_PROVE_RCU
85DEFINE_MUTEX(cgroup_mutex);
0e1d768f
TH
86DECLARE_RWSEM(css_set_rwsem);
87EXPORT_SYMBOL_GPL(cgroup_mutex);
88EXPORT_SYMBOL_GPL(css_set_rwsem);
2219449a 89#else
81a6a5cd 90static DEFINE_MUTEX(cgroup_mutex);
0e1d768f 91static DECLARE_RWSEM(css_set_rwsem);
2219449a
TH
92#endif
93
6fa4918d 94/*
15a4c835
TH
95 * Protects cgroup_idr and css_idr so that IDs can be released without
96 * grabbing cgroup_mutex.
6fa4918d
TH
97 */
98static DEFINE_SPINLOCK(cgroup_idr_lock);
99
69e943b7
TH
100/*
101 * Protects cgroup_subsys->release_agent_path. Modifying it also requires
102 * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock.
103 */
104static DEFINE_SPINLOCK(release_agent_path_lock);
81a6a5cd 105
8353da1f 106#define cgroup_assert_mutex_or_rcu_locked() \
87fb54f1
TH
107 rcu_lockdep_assert(rcu_read_lock_held() || \
108 lockdep_is_held(&cgroup_mutex), \
8353da1f 109 "cgroup_mutex or RCU read lock required");
780cd8b3 110
e5fca243
TH
111/*
112 * cgroup destruction makes heavy use of work items and there can be a lot
113 * of concurrent destructions. Use a separate workqueue so that cgroup
114 * destruction work items don't end up filling up max_active of system_wq
115 * which may lead to deadlock.
116 */
117static struct workqueue_struct *cgroup_destroy_wq;
118
b1a21367
TH
119/*
120 * pidlist destructions need to be flushed on cgroup destruction. Use a
121 * separate workqueue as flush domain.
122 */
123static struct workqueue_struct *cgroup_pidlist_destroy_wq;
124
3ed80a62 125/* generate an array of cgroup subsystem pointers */
073219e9 126#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
3ed80a62 127static struct cgroup_subsys *cgroup_subsys[] = {
ddbcc7e8
PM
128#include <linux/cgroup_subsys.h>
129};
073219e9
TH
130#undef SUBSYS
131
132/* array of cgroup subsystem names */
133#define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
134static const char *cgroup_subsys_name[] = {
ddbcc7e8
PM
135#include <linux/cgroup_subsys.h>
136};
073219e9 137#undef SUBSYS
ddbcc7e8 138
ddbcc7e8 139/*
3dd06ffa 140 * The default hierarchy, reserved for the subsystems that are otherwise
9871bf95
TH
141 * unattached - it never has more than a single cgroup, and all tasks are
142 * part of that cgroup.
ddbcc7e8 143 */
a2dd4247 144struct cgroup_root cgrp_dfl_root;
9871bf95 145
a2dd4247
TH
146/*
147 * The default hierarchy always exists but is hidden until mounted for the
148 * first time. This is for backward compatibility.
149 */
150static bool cgrp_dfl_root_visible;
ddbcc7e8 151
5533e011
TH
152/* some controllers are not supported in the default hierarchy */
153static const unsigned int cgrp_dfl_root_inhibit_ss_mask = 0
154#ifdef CONFIG_CGROUP_DEBUG
155 | (1 << debug_cgrp_id)
156#endif
157 ;
158
ddbcc7e8
PM
159/* The list of hierarchy roots */
160
9871bf95
TH
161static LIST_HEAD(cgroup_roots);
162static int cgroup_root_count;
ddbcc7e8 163
3417ae1f 164/* hierarchy ID allocation and mapping, protected by cgroup_mutex */
1a574231 165static DEFINE_IDR(cgroup_hierarchy_idr);
2c6ab6d2 166
794611a1 167/*
0cb51d71
TH
168 * Assign a monotonically increasing serial number to csses. It guarantees
169 * cgroups with bigger numbers are newer than those with smaller numbers.
170 * Also, as csses are always appended to the parent's ->children list, it
171 * guarantees that sibling csses are always sorted in the ascending serial
172 * number order on the list. Protected by cgroup_mutex.
794611a1 173 */
0cb51d71 174static u64 css_serial_nr_next = 1;
794611a1 175
ddbcc7e8 176/* This flag indicates whether tasks in the fork and exit paths should
a043e3b2
LZ
177 * check for fork/exit handlers to call. This avoids us having to do
178 * extra work in the fork/exit path if none of the subsystems need to
179 * be called.
ddbcc7e8 180 */
8947f9d5 181static int need_forkexit_callback __read_mostly;
ddbcc7e8 182
628f7cd4
TH
183static struct cftype cgroup_base_files[];
184
59f5296b 185static void cgroup_put(struct cgroup *cgrp);
3dd06ffa 186static int rebind_subsystems(struct cgroup_root *dst_root,
69dfa00c 187 unsigned int ss_mask);
42809dd4 188static int cgroup_destroy_locked(struct cgroup *cgrp);
f8f22e53 189static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss);
9d755d33 190static void css_release(struct percpu_ref *ref);
f8f22e53 191static void kill_css(struct cgroup_subsys_state *css);
2bb566cb
TH
192static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
193 bool is_add);
b1a21367 194static void cgroup_pidlist_destroy_all(struct cgroup *cgrp);
42809dd4 195
6fa4918d
TH
196/* IDR wrappers which synchronize using cgroup_idr_lock */
197static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
198 gfp_t gfp_mask)
199{
200 int ret;
201
202 idr_preload(gfp_mask);
54504e97 203 spin_lock_bh(&cgroup_idr_lock);
6fa4918d 204 ret = idr_alloc(idr, ptr, start, end, gfp_mask);
54504e97 205 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
206 idr_preload_end();
207 return ret;
208}
209
210static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
211{
212 void *ret;
213
54504e97 214 spin_lock_bh(&cgroup_idr_lock);
6fa4918d 215 ret = idr_replace(idr, ptr, id);
54504e97 216 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
217 return ret;
218}
219
220static void cgroup_idr_remove(struct idr *idr, int id)
221{
54504e97 222 spin_lock_bh(&cgroup_idr_lock);
6fa4918d 223 idr_remove(idr, id);
54504e97 224 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
225}
226
d51f39b0
TH
227static struct cgroup *cgroup_parent(struct cgroup *cgrp)
228{
229 struct cgroup_subsys_state *parent_css = cgrp->self.parent;
230
231 if (parent_css)
232 return container_of(parent_css, struct cgroup, self);
233 return NULL;
234}
235
95109b62
TH
236/**
237 * cgroup_css - obtain a cgroup's css for the specified subsystem
238 * @cgrp: the cgroup of interest
9d800df1 239 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
95109b62 240 *
ca8bdcaf
TH
241 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
242 * function must be called either under cgroup_mutex or rcu_read_lock() and
243 * the caller is responsible for pinning the returned css if it wants to
244 * keep accessing it outside the said locks. This function may return
245 * %NULL if @cgrp doesn't have @subsys_id enabled.
95109b62
TH
246 */
247static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
ca8bdcaf 248 struct cgroup_subsys *ss)
95109b62 249{
ca8bdcaf 250 if (ss)
aec25020 251 return rcu_dereference_check(cgrp->subsys[ss->id],
ace2bee8 252 lockdep_is_held(&cgroup_mutex));
ca8bdcaf 253 else
9d800df1 254 return &cgrp->self;
95109b62 255}
42809dd4 256
aec3dfcb
TH
257/**
258 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
259 * @cgrp: the cgroup of interest
9d800df1 260 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
aec3dfcb
TH
261 *
262 * Similar to cgroup_css() but returns the effctive css, which is defined
263 * as the matching css of the nearest ancestor including self which has @ss
264 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
265 * function is guaranteed to return non-NULL css.
266 */
267static struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
268 struct cgroup_subsys *ss)
269{
270 lockdep_assert_held(&cgroup_mutex);
271
272 if (!ss)
9d800df1 273 return &cgrp->self;
aec3dfcb
TH
274
275 if (!(cgrp->root->subsys_mask & (1 << ss->id)))
276 return NULL;
277
d51f39b0
TH
278 while (cgroup_parent(cgrp) &&
279 !(cgroup_parent(cgrp)->child_subsys_mask & (1 << ss->id)))
280 cgrp = cgroup_parent(cgrp);
aec3dfcb
TH
281
282 return cgroup_css(cgrp, ss);
95109b62 283}
42809dd4 284
ddbcc7e8 285/* convenient tests for these bits */
54766d4a 286static inline bool cgroup_is_dead(const struct cgroup *cgrp)
ddbcc7e8 287{
184faf32 288 return !(cgrp->self.flags & CSS_ONLINE);
ddbcc7e8
PM
289}
290
b4168640 291struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
59f5296b 292{
2bd59d48 293 struct cgroup *cgrp = of->kn->parent->priv;
b4168640 294 struct cftype *cft = of_cft(of);
2bd59d48
TH
295
296 /*
297 * This is open and unprotected implementation of cgroup_css().
298 * seq_css() is only called from a kernfs file operation which has
299 * an active reference on the file. Because all the subsystem
300 * files are drained before a css is disassociated with a cgroup,
301 * the matching css from the cgroup's subsys table is guaranteed to
302 * be and stay valid until the enclosing operation is complete.
303 */
304 if (cft->ss)
305 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
306 else
9d800df1 307 return &cgrp->self;
59f5296b 308}
b4168640 309EXPORT_SYMBOL_GPL(of_css);
59f5296b 310
78574cf9
LZ
311/**
312 * cgroup_is_descendant - test ancestry
313 * @cgrp: the cgroup to be tested
314 * @ancestor: possible ancestor of @cgrp
315 *
316 * Test whether @cgrp is a descendant of @ancestor. It also returns %true
317 * if @cgrp == @ancestor. This function is safe to call as long as @cgrp
318 * and @ancestor are accessible.
319 */
320bool cgroup_is_descendant(struct cgroup *cgrp, struct cgroup *ancestor)
321{
322 while (cgrp) {
323 if (cgrp == ancestor)
324 return true;
d51f39b0 325 cgrp = cgroup_parent(cgrp);
78574cf9
LZ
326 }
327 return false;
328}
ddbcc7e8 329
e9685a03 330static int cgroup_is_releasable(const struct cgroup *cgrp)
81a6a5cd
PM
331{
332 const int bits =
bd89aabc
PM
333 (1 << CGRP_RELEASABLE) |
334 (1 << CGRP_NOTIFY_ON_RELEASE);
335 return (cgrp->flags & bits) == bits;
81a6a5cd
PM
336}
337
e9685a03 338static int notify_on_release(const struct cgroup *cgrp)
81a6a5cd 339{
bd89aabc 340 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
81a6a5cd
PM
341}
342
1c6727af
TH
343/**
344 * for_each_css - iterate all css's of a cgroup
345 * @css: the iteration cursor
346 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
347 * @cgrp: the target cgroup to iterate css's of
348 *
aec3dfcb 349 * Should be called under cgroup_[tree_]mutex.
1c6727af
TH
350 */
351#define for_each_css(css, ssid, cgrp) \
352 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
353 if (!((css) = rcu_dereference_check( \
354 (cgrp)->subsys[(ssid)], \
355 lockdep_is_held(&cgroup_mutex)))) { } \
356 else
357
aec3dfcb
TH
358/**
359 * for_each_e_css - iterate all effective css's of a cgroup
360 * @css: the iteration cursor
361 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
362 * @cgrp: the target cgroup to iterate css's of
363 *
364 * Should be called under cgroup_[tree_]mutex.
365 */
366#define for_each_e_css(css, ssid, cgrp) \
367 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
368 if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \
369 ; \
370 else
371
30159ec7 372/**
3ed80a62 373 * for_each_subsys - iterate all enabled cgroup subsystems
30159ec7 374 * @ss: the iteration cursor
780cd8b3 375 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
30159ec7 376 */
780cd8b3 377#define for_each_subsys(ss, ssid) \
3ed80a62
TH
378 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT && \
379 (((ss) = cgroup_subsys[ssid]) || true); (ssid)++)
30159ec7 380
985ed670
TH
381/* iterate across the hierarchies */
382#define for_each_root(root) \
5549c497 383 list_for_each_entry((root), &cgroup_roots, root_list)
ddbcc7e8 384
f8f22e53
TH
385/* iterate over child cgrps, lock should be held throughout iteration */
386#define cgroup_for_each_live_child(child, cgrp) \
d5c419b6 387 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
8353da1f 388 if (({ lockdep_assert_held(&cgroup_mutex); \
f8f22e53
TH
389 cgroup_is_dead(child); })) \
390 ; \
391 else
7ae1bad9 392
81a6a5cd
PM
393/* the list of cgroups eligible for automatic release. Protected by
394 * release_list_lock */
395static LIST_HEAD(release_list);
cdcc136f 396static DEFINE_RAW_SPINLOCK(release_list_lock);
81a6a5cd
PM
397static void cgroup_release_agent(struct work_struct *work);
398static DECLARE_WORK(release_agent_work, cgroup_release_agent);
bd89aabc 399static void check_for_release(struct cgroup *cgrp);
81a6a5cd 400
69d0206c
TH
401/*
402 * A cgroup can be associated with multiple css_sets as different tasks may
403 * belong to different cgroups on different hierarchies. In the other
404 * direction, a css_set is naturally associated with multiple cgroups.
405 * This M:N relationship is represented by the following link structure
406 * which exists for each association and allows traversing the associations
407 * from both sides.
408 */
409struct cgrp_cset_link {
410 /* the cgroup and css_set this link associates */
411 struct cgroup *cgrp;
412 struct css_set *cset;
413
414 /* list of cgrp_cset_links anchored at cgrp->cset_links */
415 struct list_head cset_link;
416
417 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
418 struct list_head cgrp_link;
817929ec
PM
419};
420
172a2c06
TH
421/*
422 * The default css_set - used by init and its children prior to any
817929ec
PM
423 * hierarchies being mounted. It contains a pointer to the root state
424 * for each subsystem. Also used to anchor the list of css_sets. Not
425 * reference-counted, to improve performance when child cgroups
426 * haven't been created.
427 */
5024ae29 428struct css_set init_css_set = {
172a2c06
TH
429 .refcount = ATOMIC_INIT(1),
430 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links),
431 .tasks = LIST_HEAD_INIT(init_css_set.tasks),
432 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks),
433 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node),
434 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node),
435};
817929ec 436
172a2c06 437static int css_set_count = 1; /* 1 for init_css_set */
817929ec 438
842b597e
TH
439/**
440 * cgroup_update_populated - updated populated count of a cgroup
441 * @cgrp: the target cgroup
442 * @populated: inc or dec populated count
443 *
444 * @cgrp is either getting the first task (css_set) or losing the last.
445 * Update @cgrp->populated_cnt accordingly. The count is propagated
446 * towards root so that a given cgroup's populated_cnt is zero iff the
447 * cgroup and all its descendants are empty.
448 *
449 * @cgrp's interface file "cgroup.populated" is zero if
450 * @cgrp->populated_cnt is zero and 1 otherwise. When @cgrp->populated_cnt
451 * changes from or to zero, userland is notified that the content of the
452 * interface file has changed. This can be used to detect when @cgrp and
453 * its descendants become populated or empty.
454 */
455static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
456{
457 lockdep_assert_held(&css_set_rwsem);
458
459 do {
460 bool trigger;
461
462 if (populated)
463 trigger = !cgrp->populated_cnt++;
464 else
465 trigger = !--cgrp->populated_cnt;
466
467 if (!trigger)
468 break;
469
470 if (cgrp->populated_kn)
471 kernfs_notify(cgrp->populated_kn);
d51f39b0 472 cgrp = cgroup_parent(cgrp);
842b597e
TH
473 } while (cgrp);
474}
475
7717f7ba
PM
476/*
477 * hash table for cgroup groups. This improves the performance to find
478 * an existing css_set. This hash doesn't (currently) take into
479 * account cgroups in empty hierarchies.
480 */
472b1053 481#define CSS_SET_HASH_BITS 7
0ac801fe 482static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
472b1053 483
0ac801fe 484static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
472b1053 485{
0ac801fe 486 unsigned long key = 0UL;
30159ec7
TH
487 struct cgroup_subsys *ss;
488 int i;
472b1053 489
30159ec7 490 for_each_subsys(ss, i)
0ac801fe
LZ
491 key += (unsigned long)css[i];
492 key = (key >> 16) ^ key;
472b1053 493
0ac801fe 494 return key;
472b1053
LZ
495}
496
89c5509b 497static void put_css_set_locked(struct css_set *cset, bool taskexit)
b4f48b63 498{
69d0206c 499 struct cgrp_cset_link *link, *tmp_link;
2d8f243a
TH
500 struct cgroup_subsys *ss;
501 int ssid;
5abb8855 502
89c5509b
TH
503 lockdep_assert_held(&css_set_rwsem);
504
505 if (!atomic_dec_and_test(&cset->refcount))
146aa1bd 506 return;
81a6a5cd 507
2c6ab6d2 508 /* This css_set is dead. unlink it and release cgroup refcounts */
2d8f243a
TH
509 for_each_subsys(ss, ssid)
510 list_del(&cset->e_cset_node[ssid]);
5abb8855 511 hash_del(&cset->hlist);
2c6ab6d2
PM
512 css_set_count--;
513
69d0206c 514 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
2c6ab6d2 515 struct cgroup *cgrp = link->cgrp;
5abb8855 516
69d0206c
TH
517 list_del(&link->cset_link);
518 list_del(&link->cgrp_link);
71b5707e 519
96d365e0 520 /* @cgrp can't go away while we're holding css_set_rwsem */
842b597e
TH
521 if (list_empty(&cgrp->cset_links)) {
522 cgroup_update_populated(cgrp, false);
523 if (notify_on_release(cgrp)) {
524 if (taskexit)
525 set_bit(CGRP_RELEASABLE, &cgrp->flags);
526 check_for_release(cgrp);
527 }
81a6a5cd 528 }
2c6ab6d2
PM
529
530 kfree(link);
81a6a5cd 531 }
2c6ab6d2 532
5abb8855 533 kfree_rcu(cset, rcu_head);
b4f48b63
PM
534}
535
89c5509b
TH
536static void put_css_set(struct css_set *cset, bool taskexit)
537{
538 /*
539 * Ensure that the refcount doesn't hit zero while any readers
540 * can see it. Similar to atomic_dec_and_lock(), but for an
541 * rwlock
542 */
543 if (atomic_add_unless(&cset->refcount, -1, 1))
544 return;
545
546 down_write(&css_set_rwsem);
547 put_css_set_locked(cset, taskexit);
548 up_write(&css_set_rwsem);
549}
550
817929ec
PM
551/*
552 * refcounted get/put for css_set objects
553 */
5abb8855 554static inline void get_css_set(struct css_set *cset)
817929ec 555{
5abb8855 556 atomic_inc(&cset->refcount);
817929ec
PM
557}
558
b326f9d0 559/**
7717f7ba 560 * compare_css_sets - helper function for find_existing_css_set().
5abb8855
TH
561 * @cset: candidate css_set being tested
562 * @old_cset: existing css_set for a task
7717f7ba
PM
563 * @new_cgrp: cgroup that's being entered by the task
564 * @template: desired set of css pointers in css_set (pre-calculated)
565 *
6f4b7e63 566 * Returns true if "cset" matches "old_cset" except for the hierarchy
7717f7ba
PM
567 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
568 */
5abb8855
TH
569static bool compare_css_sets(struct css_set *cset,
570 struct css_set *old_cset,
7717f7ba
PM
571 struct cgroup *new_cgrp,
572 struct cgroup_subsys_state *template[])
573{
574 struct list_head *l1, *l2;
575
aec3dfcb
TH
576 /*
577 * On the default hierarchy, there can be csets which are
578 * associated with the same set of cgroups but different csses.
579 * Let's first ensure that csses match.
580 */
581 if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
7717f7ba 582 return false;
7717f7ba
PM
583
584 /*
585 * Compare cgroup pointers in order to distinguish between
aec3dfcb
TH
586 * different cgroups in hierarchies. As different cgroups may
587 * share the same effective css, this comparison is always
588 * necessary.
7717f7ba 589 */
69d0206c
TH
590 l1 = &cset->cgrp_links;
591 l2 = &old_cset->cgrp_links;
7717f7ba 592 while (1) {
69d0206c 593 struct cgrp_cset_link *link1, *link2;
5abb8855 594 struct cgroup *cgrp1, *cgrp2;
7717f7ba
PM
595
596 l1 = l1->next;
597 l2 = l2->next;
598 /* See if we reached the end - both lists are equal length. */
69d0206c
TH
599 if (l1 == &cset->cgrp_links) {
600 BUG_ON(l2 != &old_cset->cgrp_links);
7717f7ba
PM
601 break;
602 } else {
69d0206c 603 BUG_ON(l2 == &old_cset->cgrp_links);
7717f7ba
PM
604 }
605 /* Locate the cgroups associated with these links. */
69d0206c
TH
606 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
607 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
608 cgrp1 = link1->cgrp;
609 cgrp2 = link2->cgrp;
7717f7ba 610 /* Hierarchies should be linked in the same order. */
5abb8855 611 BUG_ON(cgrp1->root != cgrp2->root);
7717f7ba
PM
612
613 /*
614 * If this hierarchy is the hierarchy of the cgroup
615 * that's changing, then we need to check that this
616 * css_set points to the new cgroup; if it's any other
617 * hierarchy, then this css_set should point to the
618 * same cgroup as the old css_set.
619 */
5abb8855
TH
620 if (cgrp1->root == new_cgrp->root) {
621 if (cgrp1 != new_cgrp)
7717f7ba
PM
622 return false;
623 } else {
5abb8855 624 if (cgrp1 != cgrp2)
7717f7ba
PM
625 return false;
626 }
627 }
628 return true;
629}
630
b326f9d0
TH
631/**
632 * find_existing_css_set - init css array and find the matching css_set
633 * @old_cset: the css_set that we're using before the cgroup transition
634 * @cgrp: the cgroup that we're moving into
635 * @template: out param for the new set of csses, should be clear on entry
817929ec 636 */
5abb8855
TH
637static struct css_set *find_existing_css_set(struct css_set *old_cset,
638 struct cgroup *cgrp,
639 struct cgroup_subsys_state *template[])
b4f48b63 640{
3dd06ffa 641 struct cgroup_root *root = cgrp->root;
30159ec7 642 struct cgroup_subsys *ss;
5abb8855 643 struct css_set *cset;
0ac801fe 644 unsigned long key;
b326f9d0 645 int i;
817929ec 646
aae8aab4
BB
647 /*
648 * Build the set of subsystem state objects that we want to see in the
649 * new css_set. while subsystems can change globally, the entries here
650 * won't change, so no need for locking.
651 */
30159ec7 652 for_each_subsys(ss, i) {
f392e51c 653 if (root->subsys_mask & (1UL << i)) {
aec3dfcb
TH
654 /*
655 * @ss is in this hierarchy, so we want the
656 * effective css from @cgrp.
657 */
658 template[i] = cgroup_e_css(cgrp, ss);
817929ec 659 } else {
aec3dfcb
TH
660 /*
661 * @ss is not in this hierarchy, so we don't want
662 * to change the css.
663 */
5abb8855 664 template[i] = old_cset->subsys[i];
817929ec
PM
665 }
666 }
667
0ac801fe 668 key = css_set_hash(template);
5abb8855
TH
669 hash_for_each_possible(css_set_table, cset, hlist, key) {
670 if (!compare_css_sets(cset, old_cset, cgrp, template))
7717f7ba
PM
671 continue;
672
673 /* This css_set matches what we need */
5abb8855 674 return cset;
472b1053 675 }
817929ec
PM
676
677 /* No existing cgroup group matched */
678 return NULL;
679}
680
69d0206c 681static void free_cgrp_cset_links(struct list_head *links_to_free)
36553434 682{
69d0206c 683 struct cgrp_cset_link *link, *tmp_link;
36553434 684
69d0206c
TH
685 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
686 list_del(&link->cset_link);
36553434
LZ
687 kfree(link);
688 }
689}
690
69d0206c
TH
691/**
692 * allocate_cgrp_cset_links - allocate cgrp_cset_links
693 * @count: the number of links to allocate
694 * @tmp_links: list_head the allocated links are put on
695 *
696 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
697 * through ->cset_link. Returns 0 on success or -errno.
817929ec 698 */
69d0206c 699static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
817929ec 700{
69d0206c 701 struct cgrp_cset_link *link;
817929ec 702 int i;
69d0206c
TH
703
704 INIT_LIST_HEAD(tmp_links);
705
817929ec 706 for (i = 0; i < count; i++) {
f4f4be2b 707 link = kzalloc(sizeof(*link), GFP_KERNEL);
817929ec 708 if (!link) {
69d0206c 709 free_cgrp_cset_links(tmp_links);
817929ec
PM
710 return -ENOMEM;
711 }
69d0206c 712 list_add(&link->cset_link, tmp_links);
817929ec
PM
713 }
714 return 0;
715}
716
c12f65d4
LZ
717/**
718 * link_css_set - a helper function to link a css_set to a cgroup
69d0206c 719 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
5abb8855 720 * @cset: the css_set to be linked
c12f65d4
LZ
721 * @cgrp: the destination cgroup
722 */
69d0206c
TH
723static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
724 struct cgroup *cgrp)
c12f65d4 725{
69d0206c 726 struct cgrp_cset_link *link;
c12f65d4 727
69d0206c 728 BUG_ON(list_empty(tmp_links));
6803c006
TH
729
730 if (cgroup_on_dfl(cgrp))
731 cset->dfl_cgrp = cgrp;
732
69d0206c
TH
733 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
734 link->cset = cset;
7717f7ba 735 link->cgrp = cgrp;
842b597e
TH
736
737 if (list_empty(&cgrp->cset_links))
738 cgroup_update_populated(cgrp, true);
69d0206c 739 list_move(&link->cset_link, &cgrp->cset_links);
842b597e 740
7717f7ba
PM
741 /*
742 * Always add links to the tail of the list so that the list
743 * is sorted by order of hierarchy creation
744 */
69d0206c 745 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
c12f65d4
LZ
746}
747
b326f9d0
TH
748/**
749 * find_css_set - return a new css_set with one cgroup updated
750 * @old_cset: the baseline css_set
751 * @cgrp: the cgroup to be updated
752 *
753 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
754 * substituted into the appropriate hierarchy.
817929ec 755 */
5abb8855
TH
756static struct css_set *find_css_set(struct css_set *old_cset,
757 struct cgroup *cgrp)
817929ec 758{
b326f9d0 759 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
5abb8855 760 struct css_set *cset;
69d0206c
TH
761 struct list_head tmp_links;
762 struct cgrp_cset_link *link;
2d8f243a 763 struct cgroup_subsys *ss;
0ac801fe 764 unsigned long key;
2d8f243a 765 int ssid;
472b1053 766
b326f9d0
TH
767 lockdep_assert_held(&cgroup_mutex);
768
817929ec
PM
769 /* First see if we already have a cgroup group that matches
770 * the desired set */
96d365e0 771 down_read(&css_set_rwsem);
5abb8855
TH
772 cset = find_existing_css_set(old_cset, cgrp, template);
773 if (cset)
774 get_css_set(cset);
96d365e0 775 up_read(&css_set_rwsem);
817929ec 776
5abb8855
TH
777 if (cset)
778 return cset;
817929ec 779
f4f4be2b 780 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
5abb8855 781 if (!cset)
817929ec
PM
782 return NULL;
783
69d0206c 784 /* Allocate all the cgrp_cset_link objects that we'll need */
9871bf95 785 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
5abb8855 786 kfree(cset);
817929ec
PM
787 return NULL;
788 }
789
5abb8855 790 atomic_set(&cset->refcount, 1);
69d0206c 791 INIT_LIST_HEAD(&cset->cgrp_links);
5abb8855 792 INIT_LIST_HEAD(&cset->tasks);
c7561128 793 INIT_LIST_HEAD(&cset->mg_tasks);
1958d2d5 794 INIT_LIST_HEAD(&cset->mg_preload_node);
b3dc094e 795 INIT_LIST_HEAD(&cset->mg_node);
5abb8855 796 INIT_HLIST_NODE(&cset->hlist);
817929ec
PM
797
798 /* Copy the set of subsystem state objects generated in
799 * find_existing_css_set() */
5abb8855 800 memcpy(cset->subsys, template, sizeof(cset->subsys));
817929ec 801
96d365e0 802 down_write(&css_set_rwsem);
817929ec 803 /* Add reference counts and links from the new css_set. */
69d0206c 804 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
7717f7ba 805 struct cgroup *c = link->cgrp;
69d0206c 806
7717f7ba
PM
807 if (c->root == cgrp->root)
808 c = cgrp;
69d0206c 809 link_css_set(&tmp_links, cset, c);
7717f7ba 810 }
817929ec 811
69d0206c 812 BUG_ON(!list_empty(&tmp_links));
817929ec 813
817929ec 814 css_set_count++;
472b1053 815
2d8f243a 816 /* Add @cset to the hash table */
5abb8855
TH
817 key = css_set_hash(cset->subsys);
818 hash_add(css_set_table, &cset->hlist, key);
472b1053 819
2d8f243a
TH
820 for_each_subsys(ss, ssid)
821 list_add_tail(&cset->e_cset_node[ssid],
822 &cset->subsys[ssid]->cgroup->e_csets[ssid]);
823
96d365e0 824 up_write(&css_set_rwsem);
817929ec 825
5abb8855 826 return cset;
b4f48b63
PM
827}
828
3dd06ffa 829static struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
7717f7ba 830{
3dd06ffa 831 struct cgroup *root_cgrp = kf_root->kn->priv;
2bd59d48 832
3dd06ffa 833 return root_cgrp->root;
2bd59d48
TH
834}
835
3dd06ffa 836static int cgroup_init_root_id(struct cgroup_root *root)
f2e85d57
TH
837{
838 int id;
839
840 lockdep_assert_held(&cgroup_mutex);
841
985ed670 842 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
f2e85d57
TH
843 if (id < 0)
844 return id;
845
846 root->hierarchy_id = id;
847 return 0;
848}
849
3dd06ffa 850static void cgroup_exit_root_id(struct cgroup_root *root)
f2e85d57
TH
851{
852 lockdep_assert_held(&cgroup_mutex);
853
854 if (root->hierarchy_id) {
855 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
856 root->hierarchy_id = 0;
857 }
858}
859
3dd06ffa 860static void cgroup_free_root(struct cgroup_root *root)
f2e85d57
TH
861{
862 if (root) {
863 /* hierarhcy ID shoulid already have been released */
864 WARN_ON_ONCE(root->hierarchy_id);
865
866 idr_destroy(&root->cgroup_idr);
867 kfree(root);
868 }
869}
870
3dd06ffa 871static void cgroup_destroy_root(struct cgroup_root *root)
59f5296b 872{
3dd06ffa 873 struct cgroup *cgrp = &root->cgrp;
f2e85d57 874 struct cgrp_cset_link *link, *tmp_link;
f2e85d57 875
2bd59d48 876 mutex_lock(&cgroup_mutex);
f2e85d57 877
776f02fa 878 BUG_ON(atomic_read(&root->nr_cgrps));
d5c419b6 879 BUG_ON(!list_empty(&cgrp->self.children));
f2e85d57 880
f2e85d57 881 /* Rebind all subsystems back to the default hierarchy */
f392e51c 882 rebind_subsystems(&cgrp_dfl_root, root->subsys_mask);
7717f7ba 883
7717f7ba 884 /*
f2e85d57
TH
885 * Release all the links from cset_links to this hierarchy's
886 * root cgroup
7717f7ba 887 */
96d365e0 888 down_write(&css_set_rwsem);
f2e85d57
TH
889
890 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
891 list_del(&link->cset_link);
892 list_del(&link->cgrp_link);
893 kfree(link);
894 }
96d365e0 895 up_write(&css_set_rwsem);
f2e85d57
TH
896
897 if (!list_empty(&root->root_list)) {
898 list_del(&root->root_list);
899 cgroup_root_count--;
900 }
901
902 cgroup_exit_root_id(root);
903
904 mutex_unlock(&cgroup_mutex);
f2e85d57 905
2bd59d48 906 kernfs_destroy_root(root->kf_root);
f2e85d57
TH
907 cgroup_free_root(root);
908}
909
ceb6a081
TH
910/* look up cgroup associated with given css_set on the specified hierarchy */
911static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
3dd06ffa 912 struct cgroup_root *root)
7717f7ba 913{
7717f7ba
PM
914 struct cgroup *res = NULL;
915
96d365e0
TH
916 lockdep_assert_held(&cgroup_mutex);
917 lockdep_assert_held(&css_set_rwsem);
918
5abb8855 919 if (cset == &init_css_set) {
3dd06ffa 920 res = &root->cgrp;
7717f7ba 921 } else {
69d0206c
TH
922 struct cgrp_cset_link *link;
923
924 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 925 struct cgroup *c = link->cgrp;
69d0206c 926
7717f7ba
PM
927 if (c->root == root) {
928 res = c;
929 break;
930 }
931 }
932 }
96d365e0 933
7717f7ba
PM
934 BUG_ON(!res);
935 return res;
936}
937
ddbcc7e8 938/*
ceb6a081
TH
939 * Return the cgroup for "task" from the given hierarchy. Must be
940 * called with cgroup_mutex and css_set_rwsem held.
941 */
942static struct cgroup *task_cgroup_from_root(struct task_struct *task,
3dd06ffa 943 struct cgroup_root *root)
ceb6a081
TH
944{
945 /*
946 * No need to lock the task - since we hold cgroup_mutex the
947 * task can't change groups, so the only thing that can happen
948 * is that it exits and its css is set back to init_css_set.
949 */
950 return cset_cgroup_from_root(task_css_set(task), root);
951}
952
ddbcc7e8 953/*
ddbcc7e8
PM
954 * A task must hold cgroup_mutex to modify cgroups.
955 *
956 * Any task can increment and decrement the count field without lock.
957 * So in general, code holding cgroup_mutex can't rely on the count
958 * field not changing. However, if the count goes to zero, then only
956db3ca 959 * cgroup_attach_task() can increment it again. Because a count of zero
ddbcc7e8
PM
960 * means that no tasks are currently attached, therefore there is no
961 * way a task attached to that cgroup can fork (the other way to
962 * increment the count). So code holding cgroup_mutex can safely
963 * assume that if the count is zero, it will stay zero. Similarly, if
964 * a task holds cgroup_mutex on a cgroup with zero count, it
965 * knows that the cgroup won't be removed, as cgroup_rmdir()
966 * needs that mutex.
967 *
ddbcc7e8
PM
968 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
969 * (usually) take cgroup_mutex. These are the two most performance
970 * critical pieces of code here. The exception occurs on cgroup_exit(),
971 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
972 * is taken, and if the cgroup count is zero, a usermode call made
a043e3b2
LZ
973 * to the release agent with the name of the cgroup (path relative to
974 * the root of cgroup file system) as the argument.
ddbcc7e8
PM
975 *
976 * A cgroup can only be deleted if both its 'count' of using tasks
977 * is zero, and its list of 'children' cgroups is empty. Since all
978 * tasks in the system use _some_ cgroup, and since there is always at
3dd06ffa 979 * least one task in the system (init, pid == 1), therefore, root cgroup
ddbcc7e8 980 * always has either children cgroups and/or using tasks. So we don't
3dd06ffa 981 * need a special hack to ensure that root cgroup cannot be deleted.
ddbcc7e8
PM
982 *
983 * P.S. One more locking exception. RCU is used to guard the
956db3ca 984 * update of a tasks cgroup pointer by cgroup_attach_task()
ddbcc7e8
PM
985 */
986
69dfa00c 987static int cgroup_populate_dir(struct cgroup *cgrp, unsigned int subsys_mask);
2bd59d48 988static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
828c0950 989static const struct file_operations proc_cgroupstats_operations;
a424316c 990
8d7e6fb0
TH
991static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
992 char *buf)
ddbcc7e8 993{
8d7e6fb0
TH
994 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
995 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
996 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
997 cft->ss->name, cft->name);
998 else
999 strncpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1000 return buf;
ddbcc7e8
PM
1001}
1002
f2e85d57
TH
1003/**
1004 * cgroup_file_mode - deduce file mode of a control file
1005 * @cft: the control file in question
1006 *
1007 * returns cft->mode if ->mode is not 0
1008 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
1009 * returns S_IRUGO if it has only a read handler
1010 * returns S_IWUSR if it has only a write hander
1011 */
1012static umode_t cgroup_file_mode(const struct cftype *cft)
65dff759 1013{
f2e85d57 1014 umode_t mode = 0;
65dff759 1015
f2e85d57
TH
1016 if (cft->mode)
1017 return cft->mode;
1018
1019 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1020 mode |= S_IRUGO;
1021
6770c64e 1022 if (cft->write_u64 || cft->write_s64 || cft->write)
f2e85d57
TH
1023 mode |= S_IWUSR;
1024
1025 return mode;
65dff759
LZ
1026}
1027
59f5296b 1028static void cgroup_get(struct cgroup *cgrp)
be445626 1029{
2bd59d48 1030 WARN_ON_ONCE(cgroup_is_dead(cgrp));
9d755d33 1031 css_get(&cgrp->self);
be445626
LZ
1032}
1033
59f5296b 1034static void cgroup_put(struct cgroup *cgrp)
be445626 1035{
9d755d33 1036 css_put(&cgrp->self);
be445626
LZ
1037}
1038
667c2491
TH
1039static void cgroup_refresh_child_subsys_mask(struct cgroup *cgrp)
1040{
1041 cgrp->child_subsys_mask = cgrp->subtree_control;
1042}
1043
a9746d8d
TH
1044/**
1045 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1046 * @kn: the kernfs_node being serviced
1047 *
1048 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1049 * the method finishes if locking succeeded. Note that once this function
1050 * returns the cgroup returned by cgroup_kn_lock_live() may become
1051 * inaccessible any time. If the caller intends to continue to access the
1052 * cgroup, it should pin it before invoking this function.
1053 */
1054static void cgroup_kn_unlock(struct kernfs_node *kn)
ddbcc7e8 1055{
a9746d8d
TH
1056 struct cgroup *cgrp;
1057
1058 if (kernfs_type(kn) == KERNFS_DIR)
1059 cgrp = kn->priv;
1060 else
1061 cgrp = kn->parent->priv;
1062
1063 mutex_unlock(&cgroup_mutex);
a9746d8d
TH
1064
1065 kernfs_unbreak_active_protection(kn);
1066 cgroup_put(cgrp);
ddbcc7e8
PM
1067}
1068
a9746d8d
TH
1069/**
1070 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1071 * @kn: the kernfs_node being serviced
1072 *
1073 * This helper is to be used by a cgroup kernfs method currently servicing
1074 * @kn. It breaks the active protection, performs cgroup locking and
1075 * verifies that the associated cgroup is alive. Returns the cgroup if
1076 * alive; otherwise, %NULL. A successful return should be undone by a
1077 * matching cgroup_kn_unlock() invocation.
1078 *
1079 * Any cgroup kernfs method implementation which requires locking the
1080 * associated cgroup should use this helper. It avoids nesting cgroup
1081 * locking under kernfs active protection and allows all kernfs operations
1082 * including self-removal.
1083 */
1084static struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn)
05ef1d7c 1085{
a9746d8d
TH
1086 struct cgroup *cgrp;
1087
1088 if (kernfs_type(kn) == KERNFS_DIR)
1089 cgrp = kn->priv;
1090 else
1091 cgrp = kn->parent->priv;
05ef1d7c 1092
2739d3cc 1093 /*
01f6474c 1094 * We're gonna grab cgroup_mutex which nests outside kernfs
a9746d8d
TH
1095 * active_ref. cgroup liveliness check alone provides enough
1096 * protection against removal. Ensure @cgrp stays accessible and
1097 * break the active_ref protection.
2739d3cc 1098 */
a9746d8d
TH
1099 cgroup_get(cgrp);
1100 kernfs_break_active_protection(kn);
1101
2bd59d48 1102 mutex_lock(&cgroup_mutex);
05ef1d7c 1103
a9746d8d
TH
1104 if (!cgroup_is_dead(cgrp))
1105 return cgrp;
1106
1107 cgroup_kn_unlock(kn);
1108 return NULL;
ddbcc7e8 1109}
05ef1d7c 1110
2739d3cc 1111static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
05ef1d7c 1112{
2bd59d48 1113 char name[CGROUP_FILE_NAME_MAX];
05ef1d7c 1114
01f6474c 1115 lockdep_assert_held(&cgroup_mutex);
2bd59d48 1116 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
05ef1d7c
TH
1117}
1118
13af07df 1119/**
628f7cd4 1120 * cgroup_clear_dir - remove subsys files in a cgroup directory
8f89140a 1121 * @cgrp: target cgroup
13af07df
AR
1122 * @subsys_mask: mask of the subsystem ids whose files should be removed
1123 */
69dfa00c 1124static void cgroup_clear_dir(struct cgroup *cgrp, unsigned int subsys_mask)
05ef1d7c 1125{
13af07df 1126 struct cgroup_subsys *ss;
b420ba7d 1127 int i;
05ef1d7c 1128
b420ba7d 1129 for_each_subsys(ss, i) {
0adb0704 1130 struct cftype *cfts;
b420ba7d 1131
69dfa00c 1132 if (!(subsys_mask & (1 << i)))
13af07df 1133 continue;
0adb0704
TH
1134 list_for_each_entry(cfts, &ss->cfts, node)
1135 cgroup_addrm_files(cgrp, cfts, false);
13af07df 1136 }
ddbcc7e8
PM
1137}
1138
69dfa00c 1139static int rebind_subsystems(struct cgroup_root *dst_root, unsigned int ss_mask)
ddbcc7e8 1140{
30159ec7 1141 struct cgroup_subsys *ss;
5533e011 1142 unsigned int tmp_ss_mask;
2d8f243a 1143 int ssid, i, ret;
ddbcc7e8 1144
ace2bee8 1145 lockdep_assert_held(&cgroup_mutex);
ddbcc7e8 1146
5df36032
TH
1147 for_each_subsys(ss, ssid) {
1148 if (!(ss_mask & (1 << ssid)))
1149 continue;
aae8aab4 1150
7fd8c565
TH
1151 /* if @ss has non-root csses attached to it, can't move */
1152 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)))
3ed80a62 1153 return -EBUSY;
1d5be6b2 1154
5df36032 1155 /* can't move between two non-dummy roots either */
7fd8c565 1156 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
5df36032 1157 return -EBUSY;
ddbcc7e8
PM
1158 }
1159
5533e011
TH
1160 /* skip creating root files on dfl_root for inhibited subsystems */
1161 tmp_ss_mask = ss_mask;
1162 if (dst_root == &cgrp_dfl_root)
1163 tmp_ss_mask &= ~cgrp_dfl_root_inhibit_ss_mask;
1164
1165 ret = cgroup_populate_dir(&dst_root->cgrp, tmp_ss_mask);
a2dd4247
TH
1166 if (ret) {
1167 if (dst_root != &cgrp_dfl_root)
5df36032 1168 return ret;
ddbcc7e8 1169
a2dd4247
TH
1170 /*
1171 * Rebinding back to the default root is not allowed to
1172 * fail. Using both default and non-default roots should
1173 * be rare. Moving subsystems back and forth even more so.
1174 * Just warn about it and continue.
1175 */
1176 if (cgrp_dfl_root_visible) {
69dfa00c 1177 pr_warn("failed to create files (%d) while rebinding 0x%x to default root\n",
a2a1f9ea 1178 ret, ss_mask);
ed3d261b 1179 pr_warn("you may retry by moving them to a different hierarchy and unbinding\n");
a2dd4247 1180 }
5df36032 1181 }
3126121f
TH
1182
1183 /*
1184 * Nothing can fail from this point on. Remove files for the
1185 * removed subsystems and rebind each subsystem.
1186 */
5df36032 1187 for_each_subsys(ss, ssid)
a2dd4247 1188 if (ss_mask & (1 << ssid))
3dd06ffa 1189 cgroup_clear_dir(&ss->root->cgrp, 1 << ssid);
a8a648c4 1190
5df36032 1191 for_each_subsys(ss, ssid) {
3dd06ffa 1192 struct cgroup_root *src_root;
5df36032 1193 struct cgroup_subsys_state *css;
2d8f243a 1194 struct css_set *cset;
a8a648c4 1195
5df36032
TH
1196 if (!(ss_mask & (1 << ssid)))
1197 continue;
a8a648c4 1198
5df36032 1199 src_root = ss->root;
3dd06ffa 1200 css = cgroup_css(&src_root->cgrp, ss);
a8a648c4 1201
3dd06ffa 1202 WARN_ON(!css || cgroup_css(&dst_root->cgrp, ss));
73e80ed8 1203
3dd06ffa
TH
1204 RCU_INIT_POINTER(src_root->cgrp.subsys[ssid], NULL);
1205 rcu_assign_pointer(dst_root->cgrp.subsys[ssid], css);
5df36032 1206 ss->root = dst_root;
3dd06ffa 1207 css->cgroup = &dst_root->cgrp;
73e80ed8 1208
2d8f243a
TH
1209 down_write(&css_set_rwsem);
1210 hash_for_each(css_set_table, i, cset, hlist)
1211 list_move_tail(&cset->e_cset_node[ss->id],
1212 &dst_root->cgrp.e_csets[ss->id]);
1213 up_write(&css_set_rwsem);
1214
f392e51c 1215 src_root->subsys_mask &= ~(1 << ssid);
667c2491
TH
1216 src_root->cgrp.subtree_control &= ~(1 << ssid);
1217 cgroup_refresh_child_subsys_mask(&src_root->cgrp);
f392e51c 1218
bd53d617 1219 /* default hierarchy doesn't enable controllers by default */
f392e51c 1220 dst_root->subsys_mask |= 1 << ssid;
667c2491
TH
1221 if (dst_root != &cgrp_dfl_root) {
1222 dst_root->cgrp.subtree_control |= 1 << ssid;
1223 cgroup_refresh_child_subsys_mask(&dst_root->cgrp);
1224 }
a8a648c4 1225
5df36032
TH
1226 if (ss->bind)
1227 ss->bind(css);
ddbcc7e8 1228 }
ddbcc7e8 1229
a2dd4247 1230 kernfs_activate(dst_root->cgrp.kn);
ddbcc7e8
PM
1231 return 0;
1232}
1233
2bd59d48
TH
1234static int cgroup_show_options(struct seq_file *seq,
1235 struct kernfs_root *kf_root)
ddbcc7e8 1236{
3dd06ffa 1237 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
ddbcc7e8 1238 struct cgroup_subsys *ss;
b85d2040 1239 int ssid;
ddbcc7e8 1240
b85d2040 1241 for_each_subsys(ss, ssid)
f392e51c 1242 if (root->subsys_mask & (1 << ssid))
b85d2040 1243 seq_printf(seq, ",%s", ss->name);
873fe09e
TH
1244 if (root->flags & CGRP_ROOT_SANE_BEHAVIOR)
1245 seq_puts(seq, ",sane_behavior");
93438629 1246 if (root->flags & CGRP_ROOT_NOPREFIX)
ddbcc7e8 1247 seq_puts(seq, ",noprefix");
93438629 1248 if (root->flags & CGRP_ROOT_XATTR)
03b1cde6 1249 seq_puts(seq, ",xattr");
69e943b7
TH
1250
1251 spin_lock(&release_agent_path_lock);
81a6a5cd
PM
1252 if (strlen(root->release_agent_path))
1253 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
69e943b7
TH
1254 spin_unlock(&release_agent_path_lock);
1255
3dd06ffa 1256 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
97978e6d 1257 seq_puts(seq, ",clone_children");
c6d57f33
PM
1258 if (strlen(root->name))
1259 seq_printf(seq, ",name=%s", root->name);
ddbcc7e8
PM
1260 return 0;
1261}
1262
1263struct cgroup_sb_opts {
69dfa00c
TH
1264 unsigned int subsys_mask;
1265 unsigned int flags;
81a6a5cd 1266 char *release_agent;
2260e7fc 1267 bool cpuset_clone_children;
c6d57f33 1268 char *name;
2c6ab6d2
PM
1269 /* User explicitly requested empty subsystem */
1270 bool none;
ddbcc7e8
PM
1271};
1272
cf5d5941 1273static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
ddbcc7e8 1274{
32a8cf23
DL
1275 char *token, *o = data;
1276 bool all_ss = false, one_ss = false;
69dfa00c 1277 unsigned int mask = -1U;
30159ec7
TH
1278 struct cgroup_subsys *ss;
1279 int i;
f9ab5b5b
LZ
1280
1281#ifdef CONFIG_CPUSETS
69dfa00c 1282 mask = ~(1U << cpuset_cgrp_id);
f9ab5b5b 1283#endif
ddbcc7e8 1284
c6d57f33 1285 memset(opts, 0, sizeof(*opts));
ddbcc7e8
PM
1286
1287 while ((token = strsep(&o, ",")) != NULL) {
1288 if (!*token)
1289 return -EINVAL;
32a8cf23 1290 if (!strcmp(token, "none")) {
2c6ab6d2
PM
1291 /* Explicitly have no subsystems */
1292 opts->none = true;
32a8cf23
DL
1293 continue;
1294 }
1295 if (!strcmp(token, "all")) {
1296 /* Mutually exclusive option 'all' + subsystem name */
1297 if (one_ss)
1298 return -EINVAL;
1299 all_ss = true;
1300 continue;
1301 }
873fe09e
TH
1302 if (!strcmp(token, "__DEVEL__sane_behavior")) {
1303 opts->flags |= CGRP_ROOT_SANE_BEHAVIOR;
1304 continue;
1305 }
32a8cf23 1306 if (!strcmp(token, "noprefix")) {
93438629 1307 opts->flags |= CGRP_ROOT_NOPREFIX;
32a8cf23
DL
1308 continue;
1309 }
1310 if (!strcmp(token, "clone_children")) {
2260e7fc 1311 opts->cpuset_clone_children = true;
32a8cf23
DL
1312 continue;
1313 }
03b1cde6 1314 if (!strcmp(token, "xattr")) {
93438629 1315 opts->flags |= CGRP_ROOT_XATTR;
03b1cde6
AR
1316 continue;
1317 }
32a8cf23 1318 if (!strncmp(token, "release_agent=", 14)) {
81a6a5cd
PM
1319 /* Specifying two release agents is forbidden */
1320 if (opts->release_agent)
1321 return -EINVAL;
c6d57f33 1322 opts->release_agent =
e400c285 1323 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
81a6a5cd
PM
1324 if (!opts->release_agent)
1325 return -ENOMEM;
32a8cf23
DL
1326 continue;
1327 }
1328 if (!strncmp(token, "name=", 5)) {
c6d57f33
PM
1329 const char *name = token + 5;
1330 /* Can't specify an empty name */
1331 if (!strlen(name))
1332 return -EINVAL;
1333 /* Must match [\w.-]+ */
1334 for (i = 0; i < strlen(name); i++) {
1335 char c = name[i];
1336 if (isalnum(c))
1337 continue;
1338 if ((c == '.') || (c == '-') || (c == '_'))
1339 continue;
1340 return -EINVAL;
1341 }
1342 /* Specifying two names is forbidden */
1343 if (opts->name)
1344 return -EINVAL;
1345 opts->name = kstrndup(name,
e400c285 1346 MAX_CGROUP_ROOT_NAMELEN - 1,
c6d57f33
PM
1347 GFP_KERNEL);
1348 if (!opts->name)
1349 return -ENOMEM;
32a8cf23
DL
1350
1351 continue;
1352 }
1353
30159ec7 1354 for_each_subsys(ss, i) {
32a8cf23
DL
1355 if (strcmp(token, ss->name))
1356 continue;
1357 if (ss->disabled)
1358 continue;
1359
1360 /* Mutually exclusive option 'all' + subsystem name */
1361 if (all_ss)
1362 return -EINVAL;
69dfa00c 1363 opts->subsys_mask |= (1 << i);
32a8cf23
DL
1364 one_ss = true;
1365
1366 break;
1367 }
1368 if (i == CGROUP_SUBSYS_COUNT)
1369 return -ENOENT;
1370 }
1371
2c6ab6d2
PM
1372 /* Consistency checks */
1373
873fe09e 1374 if (opts->flags & CGRP_ROOT_SANE_BEHAVIOR) {
ed3d261b 1375 pr_warn("sane_behavior: this is still under development and its behaviors will change, proceed at your own risk\n");
873fe09e 1376
d3ba07c3
TH
1377 if ((opts->flags & (CGRP_ROOT_NOPREFIX | CGRP_ROOT_XATTR)) ||
1378 opts->cpuset_clone_children || opts->release_agent ||
1379 opts->name) {
ed3d261b 1380 pr_err("sane_behavior: noprefix, xattr, clone_children, release_agent and name are not allowed\n");
873fe09e
TH
1381 return -EINVAL;
1382 }
a2dd4247
TH
1383 } else {
1384 /*
1385 * If the 'all' option was specified select all the
1386 * subsystems, otherwise if 'none', 'name=' and a subsystem
1387 * name options were not specified, let's default to 'all'
1388 */
1389 if (all_ss || (!one_ss && !opts->none && !opts->name))
1390 for_each_subsys(ss, i)
1391 if (!ss->disabled)
69dfa00c 1392 opts->subsys_mask |= (1 << i);
873fe09e 1393
a2dd4247
TH
1394 /*
1395 * We either have to specify by name or by subsystems. (So
1396 * all empty hierarchies must have a name).
1397 */
1398 if (!opts->subsys_mask && !opts->name)
873fe09e 1399 return -EINVAL;
873fe09e
TH
1400 }
1401
f9ab5b5b
LZ
1402 /*
1403 * Option noprefix was introduced just for backward compatibility
1404 * with the old cpuset, so we allow noprefix only if mounting just
1405 * the cpuset subsystem.
1406 */
93438629 1407 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
f9ab5b5b
LZ
1408 return -EINVAL;
1409
2c6ab6d2
PM
1410
1411 /* Can't specify "none" and some subsystems */
a1a71b45 1412 if (opts->subsys_mask && opts->none)
2c6ab6d2
PM
1413 return -EINVAL;
1414
ddbcc7e8
PM
1415 return 0;
1416}
1417
2bd59d48 1418static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
ddbcc7e8
PM
1419{
1420 int ret = 0;
3dd06ffa 1421 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
ddbcc7e8 1422 struct cgroup_sb_opts opts;
69dfa00c 1423 unsigned int added_mask, removed_mask;
ddbcc7e8 1424
873fe09e 1425 if (root->flags & CGRP_ROOT_SANE_BEHAVIOR) {
ed3d261b 1426 pr_err("sane_behavior: remount is not allowed\n");
873fe09e
TH
1427 return -EINVAL;
1428 }
1429
ddbcc7e8
PM
1430 mutex_lock(&cgroup_mutex);
1431
1432 /* See what subsystems are wanted */
1433 ret = parse_cgroupfs_options(data, &opts);
1434 if (ret)
1435 goto out_unlock;
1436
f392e51c 1437 if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
ed3d261b 1438 pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
a2a1f9ea 1439 task_tgid_nr(current), current->comm);
8b5a5a9d 1440
f392e51c
TH
1441 added_mask = opts.subsys_mask & ~root->subsys_mask;
1442 removed_mask = root->subsys_mask & ~opts.subsys_mask;
13af07df 1443
cf5d5941 1444 /* Don't allow flags or name to change at remount */
0ce6cba3 1445 if (((opts.flags ^ root->flags) & CGRP_ROOT_OPTION_MASK) ||
cf5d5941 1446 (opts.name && strcmp(opts.name, root->name))) {
69dfa00c 1447 pr_err("option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"\n",
0ce6cba3
TH
1448 opts.flags & CGRP_ROOT_OPTION_MASK, opts.name ?: "",
1449 root->flags & CGRP_ROOT_OPTION_MASK, root->name);
c6d57f33
PM
1450 ret = -EINVAL;
1451 goto out_unlock;
1452 }
1453
f172e67c 1454 /* remounting is not allowed for populated hierarchies */
d5c419b6 1455 if (!list_empty(&root->cgrp.self.children)) {
f172e67c 1456 ret = -EBUSY;
0670e08b 1457 goto out_unlock;
cf5d5941 1458 }
ddbcc7e8 1459
5df36032 1460 ret = rebind_subsystems(root, added_mask);
3126121f 1461 if (ret)
0670e08b 1462 goto out_unlock;
ddbcc7e8 1463
3dd06ffa 1464 rebind_subsystems(&cgrp_dfl_root, removed_mask);
5df36032 1465
69e943b7
TH
1466 if (opts.release_agent) {
1467 spin_lock(&release_agent_path_lock);
81a6a5cd 1468 strcpy(root->release_agent_path, opts.release_agent);
69e943b7
TH
1469 spin_unlock(&release_agent_path_lock);
1470 }
ddbcc7e8 1471 out_unlock:
66bdc9cf 1472 kfree(opts.release_agent);
c6d57f33 1473 kfree(opts.name);
ddbcc7e8 1474 mutex_unlock(&cgroup_mutex);
ddbcc7e8
PM
1475 return ret;
1476}
1477
afeb0f9f
TH
1478/*
1479 * To reduce the fork() overhead for systems that are not actually using
1480 * their cgroups capability, we don't maintain the lists running through
1481 * each css_set to its tasks until we see the list actually used - in other
1482 * words after the first mount.
1483 */
1484static bool use_task_css_set_links __read_mostly;
1485
1486static void cgroup_enable_task_cg_lists(void)
1487{
1488 struct task_struct *p, *g;
1489
96d365e0 1490 down_write(&css_set_rwsem);
afeb0f9f
TH
1491
1492 if (use_task_css_set_links)
1493 goto out_unlock;
1494
1495 use_task_css_set_links = true;
1496
1497 /*
1498 * We need tasklist_lock because RCU is not safe against
1499 * while_each_thread(). Besides, a forking task that has passed
1500 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1501 * is not guaranteed to have its child immediately visible in the
1502 * tasklist if we walk through it with RCU.
1503 */
1504 read_lock(&tasklist_lock);
1505 do_each_thread(g, p) {
afeb0f9f
TH
1506 WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1507 task_css_set(p) != &init_css_set);
1508
1509 /*
1510 * We should check if the process is exiting, otherwise
1511 * it will race with cgroup_exit() in that the list
1512 * entry won't be deleted though the process has exited.
f153ad11
TH
1513 * Do it while holding siglock so that we don't end up
1514 * racing against cgroup_exit().
afeb0f9f 1515 */
f153ad11 1516 spin_lock_irq(&p->sighand->siglock);
eaf797ab
TH
1517 if (!(p->flags & PF_EXITING)) {
1518 struct css_set *cset = task_css_set(p);
1519
1520 list_add(&p->cg_list, &cset->tasks);
1521 get_css_set(cset);
1522 }
f153ad11 1523 spin_unlock_irq(&p->sighand->siglock);
afeb0f9f
TH
1524 } while_each_thread(g, p);
1525 read_unlock(&tasklist_lock);
1526out_unlock:
96d365e0 1527 up_write(&css_set_rwsem);
afeb0f9f 1528}
ddbcc7e8 1529
cc31edce
PM
1530static void init_cgroup_housekeeping(struct cgroup *cgrp)
1531{
2d8f243a
TH
1532 struct cgroup_subsys *ss;
1533 int ssid;
1534
d5c419b6
TH
1535 INIT_LIST_HEAD(&cgrp->self.sibling);
1536 INIT_LIST_HEAD(&cgrp->self.children);
69d0206c 1537 INIT_LIST_HEAD(&cgrp->cset_links);
cc31edce 1538 INIT_LIST_HEAD(&cgrp->release_list);
72a8cb30
BB
1539 INIT_LIST_HEAD(&cgrp->pidlists);
1540 mutex_init(&cgrp->pidlist_mutex);
9d800df1 1541 cgrp->self.cgroup = cgrp;
184faf32 1542 cgrp->self.flags |= CSS_ONLINE;
2d8f243a
TH
1543
1544 for_each_subsys(ss, ssid)
1545 INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
f8f22e53
TH
1546
1547 init_waitqueue_head(&cgrp->offline_waitq);
cc31edce 1548}
c6d57f33 1549
3dd06ffa 1550static void init_cgroup_root(struct cgroup_root *root,
172a2c06 1551 struct cgroup_sb_opts *opts)
ddbcc7e8 1552{
3dd06ffa 1553 struct cgroup *cgrp = &root->cgrp;
b0ca5a84 1554
ddbcc7e8 1555 INIT_LIST_HEAD(&root->root_list);
3c9c825b 1556 atomic_set(&root->nr_cgrps, 1);
bd89aabc 1557 cgrp->root = root;
cc31edce 1558 init_cgroup_housekeeping(cgrp);
4e96ee8e 1559 idr_init(&root->cgroup_idr);
c6d57f33 1560
c6d57f33
PM
1561 root->flags = opts->flags;
1562 if (opts->release_agent)
1563 strcpy(root->release_agent_path, opts->release_agent);
1564 if (opts->name)
1565 strcpy(root->name, opts->name);
2260e7fc 1566 if (opts->cpuset_clone_children)
3dd06ffa 1567 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
c6d57f33
PM
1568}
1569
69dfa00c 1570static int cgroup_setup_root(struct cgroup_root *root, unsigned int ss_mask)
2c6ab6d2 1571{
d427dfeb 1572 LIST_HEAD(tmp_links);
3dd06ffa 1573 struct cgroup *root_cgrp = &root->cgrp;
d427dfeb 1574 struct css_set *cset;
d427dfeb 1575 int i, ret;
2c6ab6d2 1576
d427dfeb 1577 lockdep_assert_held(&cgroup_mutex);
c6d57f33 1578
6fa4918d 1579 ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_NOWAIT);
d427dfeb 1580 if (ret < 0)
2bd59d48 1581 goto out;
d427dfeb 1582 root_cgrp->id = ret;
c6d57f33 1583
9d755d33
TH
1584 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release);
1585 if (ret)
1586 goto out;
1587
d427dfeb 1588 /*
96d365e0 1589 * We're accessing css_set_count without locking css_set_rwsem here,
d427dfeb
TH
1590 * but that's OK - it can only be increased by someone holding
1591 * cgroup_lock, and that's us. The worst that can happen is that we
1592 * have some link structures left over
1593 */
1594 ret = allocate_cgrp_cset_links(css_set_count, &tmp_links);
1595 if (ret)
9d755d33 1596 goto cancel_ref;
ddbcc7e8 1597
985ed670 1598 ret = cgroup_init_root_id(root);
ddbcc7e8 1599 if (ret)
9d755d33 1600 goto cancel_ref;
ddbcc7e8 1601
2bd59d48
TH
1602 root->kf_root = kernfs_create_root(&cgroup_kf_syscall_ops,
1603 KERNFS_ROOT_CREATE_DEACTIVATED,
1604 root_cgrp);
1605 if (IS_ERR(root->kf_root)) {
1606 ret = PTR_ERR(root->kf_root);
1607 goto exit_root_id;
1608 }
1609 root_cgrp->kn = root->kf_root->kn;
ddbcc7e8 1610
d427dfeb
TH
1611 ret = cgroup_addrm_files(root_cgrp, cgroup_base_files, true);
1612 if (ret)
2bd59d48 1613 goto destroy_root;
ddbcc7e8 1614
5df36032 1615 ret = rebind_subsystems(root, ss_mask);
d427dfeb 1616 if (ret)
2bd59d48 1617 goto destroy_root;
ddbcc7e8 1618
d427dfeb
TH
1619 /*
1620 * There must be no failure case after here, since rebinding takes
1621 * care of subsystems' refcounts, which are explicitly dropped in
1622 * the failure exit path.
1623 */
1624 list_add(&root->root_list, &cgroup_roots);
1625 cgroup_root_count++;
0df6a63f 1626
d427dfeb 1627 /*
3dd06ffa 1628 * Link the root cgroup in this hierarchy into all the css_set
d427dfeb
TH
1629 * objects.
1630 */
96d365e0 1631 down_write(&css_set_rwsem);
d427dfeb
TH
1632 hash_for_each(css_set_table, i, cset, hlist)
1633 link_css_set(&tmp_links, cset, root_cgrp);
96d365e0 1634 up_write(&css_set_rwsem);
ddbcc7e8 1635
d5c419b6 1636 BUG_ON(!list_empty(&root_cgrp->self.children));
3c9c825b 1637 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
ddbcc7e8 1638
2bd59d48 1639 kernfs_activate(root_cgrp->kn);
d427dfeb 1640 ret = 0;
2bd59d48 1641 goto out;
d427dfeb 1642
2bd59d48
TH
1643destroy_root:
1644 kernfs_destroy_root(root->kf_root);
1645 root->kf_root = NULL;
1646exit_root_id:
d427dfeb 1647 cgroup_exit_root_id(root);
9d755d33
TH
1648cancel_ref:
1649 percpu_ref_cancel_init(&root_cgrp->self.refcnt);
2bd59d48 1650out:
d427dfeb
TH
1651 free_cgrp_cset_links(&tmp_links);
1652 return ret;
ddbcc7e8
PM
1653}
1654
f7e83571 1655static struct dentry *cgroup_mount(struct file_system_type *fs_type,
ddbcc7e8 1656 int flags, const char *unused_dev_name,
f7e83571 1657 void *data)
ddbcc7e8 1658{
3dd06ffa 1659 struct cgroup_root *root;
ddbcc7e8 1660 struct cgroup_sb_opts opts;
2bd59d48 1661 struct dentry *dentry;
8e30e2b8 1662 int ret;
c6b3d5bc 1663 bool new_sb;
ddbcc7e8 1664
56fde9e0
TH
1665 /*
1666 * The first time anyone tries to mount a cgroup, enable the list
1667 * linking each css_set to its tasks and fix up all existing tasks.
1668 */
1669 if (!use_task_css_set_links)
1670 cgroup_enable_task_cg_lists();
e37a06f1 1671
aae8aab4 1672 mutex_lock(&cgroup_mutex);
8e30e2b8
TH
1673
1674 /* First find the desired set of subsystems */
ddbcc7e8 1675 ret = parse_cgroupfs_options(data, &opts);
c6d57f33 1676 if (ret)
8e30e2b8 1677 goto out_unlock;
a015edd2 1678
2bd59d48 1679 /* look for a matching existing root */
a2dd4247
TH
1680 if (!opts.subsys_mask && !opts.none && !opts.name) {
1681 cgrp_dfl_root_visible = true;
1682 root = &cgrp_dfl_root;
1683 cgroup_get(&root->cgrp);
1684 ret = 0;
1685 goto out_unlock;
ddbcc7e8
PM
1686 }
1687
985ed670 1688 for_each_root(root) {
2bd59d48 1689 bool name_match = false;
3126121f 1690
3dd06ffa 1691 if (root == &cgrp_dfl_root)
985ed670 1692 continue;
3126121f 1693
cf5d5941 1694 /*
2bd59d48
TH
1695 * If we asked for a name then it must match. Also, if
1696 * name matches but sybsys_mask doesn't, we should fail.
1697 * Remember whether name matched.
cf5d5941 1698 */
2bd59d48
TH
1699 if (opts.name) {
1700 if (strcmp(opts.name, root->name))
1701 continue;
1702 name_match = true;
1703 }
ddbcc7e8 1704
c6d57f33 1705 /*
2bd59d48
TH
1706 * If we asked for subsystems (or explicitly for no
1707 * subsystems) then they must match.
c6d57f33 1708 */
2bd59d48 1709 if ((opts.subsys_mask || opts.none) &&
f392e51c 1710 (opts.subsys_mask != root->subsys_mask)) {
2bd59d48
TH
1711 if (!name_match)
1712 continue;
1713 ret = -EBUSY;
1714 goto out_unlock;
1715 }
873fe09e 1716
c7ba8287 1717 if ((root->flags ^ opts.flags) & CGRP_ROOT_OPTION_MASK) {
2a0ff3fb 1718 if ((root->flags | opts.flags) & CGRP_ROOT_SANE_BEHAVIOR) {
ed3d261b 1719 pr_err("sane_behavior: new mount options should match the existing superblock\n");
2a0ff3fb 1720 ret = -EINVAL;
8e30e2b8 1721 goto out_unlock;
2a0ff3fb 1722 } else {
ed3d261b 1723 pr_warn("new mount options do not match the existing superblock, will be ignored\n");
2a0ff3fb 1724 }
873fe09e 1725 }
ddbcc7e8 1726
776f02fa 1727 /*
9d755d33
TH
1728 * A root's lifetime is governed by its root cgroup.
1729 * tryget_live failure indicate that the root is being
1730 * destroyed. Wait for destruction to complete so that the
1731 * subsystems are free. We can use wait_queue for the wait
1732 * but this path is super cold. Let's just sleep for a bit
1733 * and retry.
776f02fa 1734 */
9d755d33 1735 if (!percpu_ref_tryget_live(&root->cgrp.self.refcnt)) {
776f02fa 1736 mutex_unlock(&cgroup_mutex);
776f02fa 1737 msleep(10);
a015edd2
TH
1738 ret = restart_syscall();
1739 goto out_free;
776f02fa 1740 }
ddbcc7e8 1741
776f02fa 1742 ret = 0;
2bd59d48 1743 goto out_unlock;
ddbcc7e8 1744 }
ddbcc7e8 1745
817929ec 1746 /*
172a2c06
TH
1747 * No such thing, create a new one. name= matching without subsys
1748 * specification is allowed for already existing hierarchies but we
1749 * can't create new one without subsys specification.
817929ec 1750 */
172a2c06
TH
1751 if (!opts.subsys_mask && !opts.none) {
1752 ret = -EINVAL;
1753 goto out_unlock;
817929ec 1754 }
817929ec 1755
172a2c06
TH
1756 root = kzalloc(sizeof(*root), GFP_KERNEL);
1757 if (!root) {
1758 ret = -ENOMEM;
2bd59d48 1759 goto out_unlock;
839ec545 1760 }
e5f6a860 1761
172a2c06
TH
1762 init_cgroup_root(root, &opts);
1763
35585573 1764 ret = cgroup_setup_root(root, opts.subsys_mask);
2bd59d48
TH
1765 if (ret)
1766 cgroup_free_root(root);
fa3ca07e 1767
8e30e2b8 1768out_unlock:
ddbcc7e8 1769 mutex_unlock(&cgroup_mutex);
a015edd2 1770out_free:
c6d57f33
PM
1771 kfree(opts.release_agent);
1772 kfree(opts.name);
03b1cde6 1773
2bd59d48 1774 if (ret)
8e30e2b8 1775 return ERR_PTR(ret);
2bd59d48 1776
c9482a5b
JZ
1777 dentry = kernfs_mount(fs_type, flags, root->kf_root,
1778 CGROUP_SUPER_MAGIC, &new_sb);
c6b3d5bc 1779 if (IS_ERR(dentry) || !new_sb)
3dd06ffa 1780 cgroup_put(&root->cgrp);
2bd59d48
TH
1781 return dentry;
1782}
1783
1784static void cgroup_kill_sb(struct super_block *sb)
1785{
1786 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
3dd06ffa 1787 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2bd59d48 1788
9d755d33
TH
1789 /*
1790 * If @root doesn't have any mounts or children, start killing it.
1791 * This prevents new mounts by disabling percpu_ref_tryget_live().
1792 * cgroup_mount() may wait for @root's release.
1f779fb2
LZ
1793 *
1794 * And don't kill the default root.
9d755d33 1795 */
1f779fb2
LZ
1796 if (css_has_online_children(&root->cgrp.self) ||
1797 root == &cgrp_dfl_root)
9d755d33
TH
1798 cgroup_put(&root->cgrp);
1799 else
1800 percpu_ref_kill(&root->cgrp.self.refcnt);
1801
2bd59d48 1802 kernfs_kill_sb(sb);
ddbcc7e8
PM
1803}
1804
1805static struct file_system_type cgroup_fs_type = {
1806 .name = "cgroup",
f7e83571 1807 .mount = cgroup_mount,
ddbcc7e8
PM
1808 .kill_sb = cgroup_kill_sb,
1809};
1810
676db4af
GKH
1811static struct kobject *cgroup_kobj;
1812
857a2beb 1813/**
913ffdb5 1814 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
857a2beb 1815 * @task: target task
857a2beb
TH
1816 * @buf: the buffer to write the path into
1817 * @buflen: the length of the buffer
1818 *
913ffdb5
TH
1819 * Determine @task's cgroup on the first (the one with the lowest non-zero
1820 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
1821 * function grabs cgroup_mutex and shouldn't be used inside locks used by
1822 * cgroup controller callbacks.
1823 *
e61734c5 1824 * Return value is the same as kernfs_path().
857a2beb 1825 */
e61734c5 1826char *task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
857a2beb 1827{
3dd06ffa 1828 struct cgroup_root *root;
913ffdb5 1829 struct cgroup *cgrp;
e61734c5
TH
1830 int hierarchy_id = 1;
1831 char *path = NULL;
857a2beb
TH
1832
1833 mutex_lock(&cgroup_mutex);
96d365e0 1834 down_read(&css_set_rwsem);
857a2beb 1835
913ffdb5
TH
1836 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
1837
857a2beb
TH
1838 if (root) {
1839 cgrp = task_cgroup_from_root(task, root);
e61734c5 1840 path = cgroup_path(cgrp, buf, buflen);
913ffdb5
TH
1841 } else {
1842 /* if no hierarchy exists, everyone is in "/" */
e61734c5
TH
1843 if (strlcpy(buf, "/", buflen) < buflen)
1844 path = buf;
857a2beb
TH
1845 }
1846
96d365e0 1847 up_read(&css_set_rwsem);
857a2beb 1848 mutex_unlock(&cgroup_mutex);
e61734c5 1849 return path;
857a2beb 1850}
913ffdb5 1851EXPORT_SYMBOL_GPL(task_cgroup_path);
857a2beb 1852
b3dc094e 1853/* used to track tasks and other necessary states during migration */
2f7ee569 1854struct cgroup_taskset {
b3dc094e
TH
1855 /* the src and dst cset list running through cset->mg_node */
1856 struct list_head src_csets;
1857 struct list_head dst_csets;
1858
1859 /*
1860 * Fields for cgroup_taskset_*() iteration.
1861 *
1862 * Before migration is committed, the target migration tasks are on
1863 * ->mg_tasks of the csets on ->src_csets. After, on ->mg_tasks of
1864 * the csets on ->dst_csets. ->csets point to either ->src_csets
1865 * or ->dst_csets depending on whether migration is committed.
1866 *
1867 * ->cur_csets and ->cur_task point to the current task position
1868 * during iteration.
1869 */
1870 struct list_head *csets;
1871 struct css_set *cur_cset;
1872 struct task_struct *cur_task;
2f7ee569
TH
1873};
1874
1875/**
1876 * cgroup_taskset_first - reset taskset and return the first task
1877 * @tset: taskset of interest
1878 *
1879 * @tset iteration is initialized and the first task is returned.
1880 */
1881struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
1882{
b3dc094e
TH
1883 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
1884 tset->cur_task = NULL;
1885
1886 return cgroup_taskset_next(tset);
2f7ee569 1887}
2f7ee569
TH
1888
1889/**
1890 * cgroup_taskset_next - iterate to the next task in taskset
1891 * @tset: taskset of interest
1892 *
1893 * Return the next task in @tset. Iteration must have been initialized
1894 * with cgroup_taskset_first().
1895 */
1896struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
1897{
b3dc094e
TH
1898 struct css_set *cset = tset->cur_cset;
1899 struct task_struct *task = tset->cur_task;
2f7ee569 1900
b3dc094e
TH
1901 while (&cset->mg_node != tset->csets) {
1902 if (!task)
1903 task = list_first_entry(&cset->mg_tasks,
1904 struct task_struct, cg_list);
1905 else
1906 task = list_next_entry(task, cg_list);
2f7ee569 1907
b3dc094e
TH
1908 if (&task->cg_list != &cset->mg_tasks) {
1909 tset->cur_cset = cset;
1910 tset->cur_task = task;
1911 return task;
1912 }
2f7ee569 1913
b3dc094e
TH
1914 cset = list_next_entry(cset, mg_node);
1915 task = NULL;
1916 }
2f7ee569 1917
b3dc094e 1918 return NULL;
2f7ee569 1919}
2f7ee569 1920
cb0f1fe9 1921/**
74a1166d 1922 * cgroup_task_migrate - move a task from one cgroup to another.
60106946 1923 * @old_cgrp: the cgroup @tsk is being migrated from
cb0f1fe9
TH
1924 * @tsk: the task being migrated
1925 * @new_cset: the new css_set @tsk is being attached to
74a1166d 1926 *
cb0f1fe9 1927 * Must be called with cgroup_mutex, threadgroup and css_set_rwsem locked.
74a1166d 1928 */
5abb8855
TH
1929static void cgroup_task_migrate(struct cgroup *old_cgrp,
1930 struct task_struct *tsk,
1931 struct css_set *new_cset)
74a1166d 1932{
5abb8855 1933 struct css_set *old_cset;
74a1166d 1934
cb0f1fe9
TH
1935 lockdep_assert_held(&cgroup_mutex);
1936 lockdep_assert_held(&css_set_rwsem);
1937
74a1166d 1938 /*
026085ef
MSB
1939 * We are synchronized through threadgroup_lock() against PF_EXITING
1940 * setting such that we can't race against cgroup_exit() changing the
1941 * css_set to init_css_set and dropping the old one.
74a1166d 1942 */
c84cdf75 1943 WARN_ON_ONCE(tsk->flags & PF_EXITING);
a8ad805c 1944 old_cset = task_css_set(tsk);
74a1166d 1945
b3dc094e 1946 get_css_set(new_cset);
5abb8855 1947 rcu_assign_pointer(tsk->cgroups, new_cset);
74a1166d 1948
1b9aba49
TH
1949 /*
1950 * Use move_tail so that cgroup_taskset_first() still returns the
1951 * leader after migration. This works because cgroup_migrate()
1952 * ensures that the dst_cset of the leader is the first on the
1953 * tset's dst_csets list.
1954 */
1955 list_move_tail(&tsk->cg_list, &new_cset->mg_tasks);
74a1166d
BB
1956
1957 /*
5abb8855
TH
1958 * We just gained a reference on old_cset by taking it from the
1959 * task. As trading it for new_cset is protected by cgroup_mutex,
1960 * we're safe to drop it here; it will be freed under RCU.
74a1166d 1961 */
5abb8855 1962 set_bit(CGRP_RELEASABLE, &old_cgrp->flags);
cb0f1fe9 1963 put_css_set_locked(old_cset, false);
74a1166d
BB
1964}
1965
a043e3b2 1966/**
1958d2d5
TH
1967 * cgroup_migrate_finish - cleanup after attach
1968 * @preloaded_csets: list of preloaded css_sets
74a1166d 1969 *
1958d2d5
TH
1970 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
1971 * those functions for details.
74a1166d 1972 */
1958d2d5 1973static void cgroup_migrate_finish(struct list_head *preloaded_csets)
74a1166d 1974{
1958d2d5 1975 struct css_set *cset, *tmp_cset;
74a1166d 1976
1958d2d5
TH
1977 lockdep_assert_held(&cgroup_mutex);
1978
1979 down_write(&css_set_rwsem);
1980 list_for_each_entry_safe(cset, tmp_cset, preloaded_csets, mg_preload_node) {
1981 cset->mg_src_cgrp = NULL;
1982 cset->mg_dst_cset = NULL;
1983 list_del_init(&cset->mg_preload_node);
1984 put_css_set_locked(cset, false);
1985 }
1986 up_write(&css_set_rwsem);
1987}
1988
1989/**
1990 * cgroup_migrate_add_src - add a migration source css_set
1991 * @src_cset: the source css_set to add
1992 * @dst_cgrp: the destination cgroup
1993 * @preloaded_csets: list of preloaded css_sets
1994 *
1995 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
1996 * @src_cset and add it to @preloaded_csets, which should later be cleaned
1997 * up by cgroup_migrate_finish().
1998 *
1999 * This function may be called without holding threadgroup_lock even if the
2000 * target is a process. Threads may be created and destroyed but as long
2001 * as cgroup_mutex is not dropped, no new css_set can be put into play and
2002 * the preloaded css_sets are guaranteed to cover all migrations.
2003 */
2004static void cgroup_migrate_add_src(struct css_set *src_cset,
2005 struct cgroup *dst_cgrp,
2006 struct list_head *preloaded_csets)
2007{
2008 struct cgroup *src_cgrp;
2009
2010 lockdep_assert_held(&cgroup_mutex);
2011 lockdep_assert_held(&css_set_rwsem);
2012
2013 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2014
1958d2d5
TH
2015 if (!list_empty(&src_cset->mg_preload_node))
2016 return;
2017
2018 WARN_ON(src_cset->mg_src_cgrp);
2019 WARN_ON(!list_empty(&src_cset->mg_tasks));
2020 WARN_ON(!list_empty(&src_cset->mg_node));
2021
2022 src_cset->mg_src_cgrp = src_cgrp;
2023 get_css_set(src_cset);
2024 list_add(&src_cset->mg_preload_node, preloaded_csets);
2025}
2026
2027/**
2028 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
f817de98 2029 * @dst_cgrp: the destination cgroup (may be %NULL)
1958d2d5
TH
2030 * @preloaded_csets: list of preloaded source css_sets
2031 *
2032 * Tasks are about to be moved to @dst_cgrp and all the source css_sets
2033 * have been preloaded to @preloaded_csets. This function looks up and
f817de98
TH
2034 * pins all destination css_sets, links each to its source, and append them
2035 * to @preloaded_csets. If @dst_cgrp is %NULL, the destination of each
2036 * source css_set is assumed to be its cgroup on the default hierarchy.
1958d2d5
TH
2037 *
2038 * This function must be called after cgroup_migrate_add_src() has been
2039 * called on each migration source css_set. After migration is performed
2040 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2041 * @preloaded_csets.
2042 */
2043static int cgroup_migrate_prepare_dst(struct cgroup *dst_cgrp,
2044 struct list_head *preloaded_csets)
2045{
2046 LIST_HEAD(csets);
f817de98 2047 struct css_set *src_cset, *tmp_cset;
1958d2d5
TH
2048
2049 lockdep_assert_held(&cgroup_mutex);
2050
f8f22e53
TH
2051 /*
2052 * Except for the root, child_subsys_mask must be zero for a cgroup
2053 * with tasks so that child cgroups don't compete against tasks.
2054 */
d51f39b0 2055 if (dst_cgrp && cgroup_on_dfl(dst_cgrp) && cgroup_parent(dst_cgrp) &&
f8f22e53
TH
2056 dst_cgrp->child_subsys_mask)
2057 return -EBUSY;
2058
1958d2d5 2059 /* look up the dst cset for each src cset and link it to src */
f817de98 2060 list_for_each_entry_safe(src_cset, tmp_cset, preloaded_csets, mg_preload_node) {
1958d2d5
TH
2061 struct css_set *dst_cset;
2062
f817de98
TH
2063 dst_cset = find_css_set(src_cset,
2064 dst_cgrp ?: src_cset->dfl_cgrp);
1958d2d5
TH
2065 if (!dst_cset)
2066 goto err;
2067
2068 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
f817de98
TH
2069
2070 /*
2071 * If src cset equals dst, it's noop. Drop the src.
2072 * cgroup_migrate() will skip the cset too. Note that we
2073 * can't handle src == dst as some nodes are used by both.
2074 */
2075 if (src_cset == dst_cset) {
2076 src_cset->mg_src_cgrp = NULL;
2077 list_del_init(&src_cset->mg_preload_node);
2078 put_css_set(src_cset, false);
2079 put_css_set(dst_cset, false);
2080 continue;
2081 }
2082
1958d2d5
TH
2083 src_cset->mg_dst_cset = dst_cset;
2084
2085 if (list_empty(&dst_cset->mg_preload_node))
2086 list_add(&dst_cset->mg_preload_node, &csets);
2087 else
2088 put_css_set(dst_cset, false);
2089 }
2090
f817de98 2091 list_splice_tail(&csets, preloaded_csets);
1958d2d5
TH
2092 return 0;
2093err:
2094 cgroup_migrate_finish(&csets);
2095 return -ENOMEM;
2096}
2097
2098/**
2099 * cgroup_migrate - migrate a process or task to a cgroup
2100 * @cgrp: the destination cgroup
2101 * @leader: the leader of the process or the task to migrate
2102 * @threadgroup: whether @leader points to the whole process or a single task
2103 *
2104 * Migrate a process or task denoted by @leader to @cgrp. If migrating a
2105 * process, the caller must be holding threadgroup_lock of @leader. The
2106 * caller is also responsible for invoking cgroup_migrate_add_src() and
2107 * cgroup_migrate_prepare_dst() on the targets before invoking this
2108 * function and following up with cgroup_migrate_finish().
2109 *
2110 * As long as a controller's ->can_attach() doesn't fail, this function is
2111 * guaranteed to succeed. This means that, excluding ->can_attach()
2112 * failure, when migrating multiple targets, the success or failure can be
2113 * decided for all targets by invoking group_migrate_prepare_dst() before
2114 * actually starting migrating.
2115 */
2116static int cgroup_migrate(struct cgroup *cgrp, struct task_struct *leader,
2117 bool threadgroup)
74a1166d 2118{
b3dc094e
TH
2119 struct cgroup_taskset tset = {
2120 .src_csets = LIST_HEAD_INIT(tset.src_csets),
2121 .dst_csets = LIST_HEAD_INIT(tset.dst_csets),
2122 .csets = &tset.src_csets,
2123 };
1c6727af 2124 struct cgroup_subsys_state *css, *failed_css = NULL;
b3dc094e
TH
2125 struct css_set *cset, *tmp_cset;
2126 struct task_struct *task, *tmp_task;
2127 int i, ret;
74a1166d 2128
fb5d2b4c
MSB
2129 /*
2130 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2131 * already PF_EXITING could be freed from underneath us unless we
2132 * take an rcu_read_lock.
2133 */
b3dc094e 2134 down_write(&css_set_rwsem);
fb5d2b4c 2135 rcu_read_lock();
9db8de37 2136 task = leader;
74a1166d 2137 do {
9db8de37
TH
2138 /* @task either already exited or can't exit until the end */
2139 if (task->flags & PF_EXITING)
ea84753c 2140 goto next;
134d3373 2141
eaf797ab
TH
2142 /* leave @task alone if post_fork() hasn't linked it yet */
2143 if (list_empty(&task->cg_list))
ea84753c 2144 goto next;
cd3d0952 2145
b3dc094e 2146 cset = task_css_set(task);
1958d2d5 2147 if (!cset->mg_src_cgrp)
ea84753c 2148 goto next;
b3dc094e 2149
61d1d219 2150 /*
1b9aba49
TH
2151 * cgroup_taskset_first() must always return the leader.
2152 * Take care to avoid disturbing the ordering.
61d1d219 2153 */
1b9aba49
TH
2154 list_move_tail(&task->cg_list, &cset->mg_tasks);
2155 if (list_empty(&cset->mg_node))
2156 list_add_tail(&cset->mg_node, &tset.src_csets);
2157 if (list_empty(&cset->mg_dst_cset->mg_node))
2158 list_move_tail(&cset->mg_dst_cset->mg_node,
2159 &tset.dst_csets);
ea84753c 2160 next:
081aa458
LZ
2161 if (!threadgroup)
2162 break;
9db8de37 2163 } while_each_thread(leader, task);
fb5d2b4c 2164 rcu_read_unlock();
b3dc094e 2165 up_write(&css_set_rwsem);
74a1166d 2166
134d3373 2167 /* methods shouldn't be called if no task is actually migrating */
b3dc094e
TH
2168 if (list_empty(&tset.src_csets))
2169 return 0;
134d3373 2170
1958d2d5 2171 /* check that we can legitimately attach to the cgroup */
aec3dfcb 2172 for_each_e_css(css, i, cgrp) {
1c6727af 2173 if (css->ss->can_attach) {
9db8de37
TH
2174 ret = css->ss->can_attach(css, &tset);
2175 if (ret) {
1c6727af 2176 failed_css = css;
74a1166d
BB
2177 goto out_cancel_attach;
2178 }
2179 }
74a1166d
BB
2180 }
2181
2182 /*
1958d2d5
TH
2183 * Now that we're guaranteed success, proceed to move all tasks to
2184 * the new cgroup. There are no failure cases after here, so this
2185 * is the commit point.
74a1166d 2186 */
cb0f1fe9 2187 down_write(&css_set_rwsem);
b3dc094e
TH
2188 list_for_each_entry(cset, &tset.src_csets, mg_node) {
2189 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list)
2190 cgroup_task_migrate(cset->mg_src_cgrp, task,
2191 cset->mg_dst_cset);
74a1166d 2192 }
cb0f1fe9 2193 up_write(&css_set_rwsem);
74a1166d
BB
2194
2195 /*
1958d2d5
TH
2196 * Migration is committed, all target tasks are now on dst_csets.
2197 * Nothing is sensitive to fork() after this point. Notify
2198 * controllers that migration is complete.
74a1166d 2199 */
1958d2d5 2200 tset.csets = &tset.dst_csets;
74a1166d 2201
aec3dfcb 2202 for_each_e_css(css, i, cgrp)
1c6727af
TH
2203 if (css->ss->attach)
2204 css->ss->attach(css, &tset);
74a1166d 2205
9db8de37 2206 ret = 0;
b3dc094e
TH
2207 goto out_release_tset;
2208
74a1166d 2209out_cancel_attach:
aec3dfcb 2210 for_each_e_css(css, i, cgrp) {
b3dc094e
TH
2211 if (css == failed_css)
2212 break;
2213 if (css->ss->cancel_attach)
2214 css->ss->cancel_attach(css, &tset);
74a1166d 2215 }
b3dc094e
TH
2216out_release_tset:
2217 down_write(&css_set_rwsem);
2218 list_splice_init(&tset.dst_csets, &tset.src_csets);
2219 list_for_each_entry_safe(cset, tmp_cset, &tset.src_csets, mg_node) {
1b9aba49 2220 list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
b3dc094e 2221 list_del_init(&cset->mg_node);
b3dc094e
TH
2222 }
2223 up_write(&css_set_rwsem);
9db8de37 2224 return ret;
74a1166d
BB
2225}
2226
1958d2d5
TH
2227/**
2228 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2229 * @dst_cgrp: the cgroup to attach to
2230 * @leader: the task or the leader of the threadgroup to be attached
2231 * @threadgroup: attach the whole threadgroup?
2232 *
0e1d768f 2233 * Call holding cgroup_mutex and threadgroup_lock of @leader.
1958d2d5
TH
2234 */
2235static int cgroup_attach_task(struct cgroup *dst_cgrp,
2236 struct task_struct *leader, bool threadgroup)
2237{
2238 LIST_HEAD(preloaded_csets);
2239 struct task_struct *task;
2240 int ret;
2241
2242 /* look up all src csets */
2243 down_read(&css_set_rwsem);
2244 rcu_read_lock();
2245 task = leader;
2246 do {
2247 cgroup_migrate_add_src(task_css_set(task), dst_cgrp,
2248 &preloaded_csets);
2249 if (!threadgroup)
2250 break;
2251 } while_each_thread(leader, task);
2252 rcu_read_unlock();
2253 up_read(&css_set_rwsem);
2254
2255 /* prepare dst csets and commit */
2256 ret = cgroup_migrate_prepare_dst(dst_cgrp, &preloaded_csets);
2257 if (!ret)
2258 ret = cgroup_migrate(dst_cgrp, leader, threadgroup);
2259
2260 cgroup_migrate_finish(&preloaded_csets);
2261 return ret;
74a1166d
BB
2262}
2263
2264/*
2265 * Find the task_struct of the task to attach by vpid and pass it along to the
cd3d0952 2266 * function to attach either it or all tasks in its threadgroup. Will lock
0e1d768f 2267 * cgroup_mutex and threadgroup.
bbcb81d0 2268 */
acbef755
TH
2269static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
2270 size_t nbytes, loff_t off, bool threadgroup)
bbcb81d0 2271{
bbcb81d0 2272 struct task_struct *tsk;
c69e8d9c 2273 const struct cred *cred = current_cred(), *tcred;
e76ecaee 2274 struct cgroup *cgrp;
acbef755 2275 pid_t pid;
bbcb81d0
PM
2276 int ret;
2277
acbef755
TH
2278 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2279 return -EINVAL;
2280
e76ecaee
TH
2281 cgrp = cgroup_kn_lock_live(of->kn);
2282 if (!cgrp)
74a1166d
BB
2283 return -ENODEV;
2284
b78949eb
MSB
2285retry_find_task:
2286 rcu_read_lock();
bbcb81d0 2287 if (pid) {
73507f33 2288 tsk = find_task_by_vpid(pid);
74a1166d
BB
2289 if (!tsk) {
2290 rcu_read_unlock();
dd4b0a46 2291 ret = -ESRCH;
b78949eb 2292 goto out_unlock_cgroup;
bbcb81d0 2293 }
74a1166d
BB
2294 /*
2295 * even if we're attaching all tasks in the thread group, we
2296 * only need to check permissions on one of them.
2297 */
c69e8d9c 2298 tcred = __task_cred(tsk);
14a590c3
EB
2299 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2300 !uid_eq(cred->euid, tcred->uid) &&
2301 !uid_eq(cred->euid, tcred->suid)) {
c69e8d9c 2302 rcu_read_unlock();
b78949eb
MSB
2303 ret = -EACCES;
2304 goto out_unlock_cgroup;
bbcb81d0 2305 }
b78949eb
MSB
2306 } else
2307 tsk = current;
cd3d0952
TH
2308
2309 if (threadgroup)
b78949eb 2310 tsk = tsk->group_leader;
c4c27fbd
MG
2311
2312 /*
14a40ffc 2313 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
c4c27fbd
MG
2314 * trapped in a cpuset, or RT worker may be born in a cgroup
2315 * with no rt_runtime allocated. Just say no.
2316 */
14a40ffc 2317 if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
c4c27fbd
MG
2318 ret = -EINVAL;
2319 rcu_read_unlock();
2320 goto out_unlock_cgroup;
2321 }
2322
b78949eb
MSB
2323 get_task_struct(tsk);
2324 rcu_read_unlock();
2325
2326 threadgroup_lock(tsk);
2327 if (threadgroup) {
2328 if (!thread_group_leader(tsk)) {
2329 /*
2330 * a race with de_thread from another thread's exec()
2331 * may strip us of our leadership, if this happens,
2332 * there is no choice but to throw this task away and
2333 * try again; this is
2334 * "double-double-toil-and-trouble-check locking".
2335 */
2336 threadgroup_unlock(tsk);
2337 put_task_struct(tsk);
2338 goto retry_find_task;
2339 }
081aa458
LZ
2340 }
2341
2342 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
2343
cd3d0952
TH
2344 threadgroup_unlock(tsk);
2345
bbcb81d0 2346 put_task_struct(tsk);
b78949eb 2347out_unlock_cgroup:
e76ecaee 2348 cgroup_kn_unlock(of->kn);
acbef755 2349 return ret ?: nbytes;
bbcb81d0
PM
2350}
2351
7ae1bad9
TH
2352/**
2353 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2354 * @from: attach to all cgroups of a given task
2355 * @tsk: the task to be attached
2356 */
2357int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2358{
3dd06ffa 2359 struct cgroup_root *root;
7ae1bad9
TH
2360 int retval = 0;
2361
47cfcd09 2362 mutex_lock(&cgroup_mutex);
985ed670 2363 for_each_root(root) {
96d365e0
TH
2364 struct cgroup *from_cgrp;
2365
3dd06ffa 2366 if (root == &cgrp_dfl_root)
985ed670
TH
2367 continue;
2368
96d365e0
TH
2369 down_read(&css_set_rwsem);
2370 from_cgrp = task_cgroup_from_root(from, root);
2371 up_read(&css_set_rwsem);
7ae1bad9 2372
6f4b7e63 2373 retval = cgroup_attach_task(from_cgrp, tsk, false);
7ae1bad9
TH
2374 if (retval)
2375 break;
2376 }
47cfcd09 2377 mutex_unlock(&cgroup_mutex);
7ae1bad9
TH
2378
2379 return retval;
2380}
2381EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2382
acbef755
TH
2383static ssize_t cgroup_tasks_write(struct kernfs_open_file *of,
2384 char *buf, size_t nbytes, loff_t off)
74a1166d 2385{
acbef755 2386 return __cgroup_procs_write(of, buf, nbytes, off, false);
74a1166d
BB
2387}
2388
acbef755
TH
2389static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
2390 char *buf, size_t nbytes, loff_t off)
af351026 2391{
acbef755 2392 return __cgroup_procs_write(of, buf, nbytes, off, true);
af351026
PM
2393}
2394
451af504
TH
2395static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of,
2396 char *buf, size_t nbytes, loff_t off)
e788e066 2397{
e76ecaee 2398 struct cgroup *cgrp;
5f469907 2399
e76ecaee 2400 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
5f469907 2401
e76ecaee
TH
2402 cgrp = cgroup_kn_lock_live(of->kn);
2403 if (!cgrp)
e788e066 2404 return -ENODEV;
69e943b7 2405 spin_lock(&release_agent_path_lock);
e76ecaee
TH
2406 strlcpy(cgrp->root->release_agent_path, strstrip(buf),
2407 sizeof(cgrp->root->release_agent_path));
69e943b7 2408 spin_unlock(&release_agent_path_lock);
e76ecaee 2409 cgroup_kn_unlock(of->kn);
451af504 2410 return nbytes;
e788e066
PM
2411}
2412
2da8ca82 2413static int cgroup_release_agent_show(struct seq_file *seq, void *v)
e788e066 2414{
2da8ca82 2415 struct cgroup *cgrp = seq_css(seq)->cgroup;
182446d0 2416
46cfeb04 2417 spin_lock(&release_agent_path_lock);
e788e066 2418 seq_puts(seq, cgrp->root->release_agent_path);
46cfeb04 2419 spin_unlock(&release_agent_path_lock);
e788e066 2420 seq_putc(seq, '\n');
e788e066
PM
2421 return 0;
2422}
2423
2da8ca82 2424static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
873fe09e 2425{
2da8ca82
TH
2426 struct cgroup *cgrp = seq_css(seq)->cgroup;
2427
2428 seq_printf(seq, "%d\n", cgroup_sane_behavior(cgrp));
e788e066
PM
2429 return 0;
2430}
2431
f8f22e53 2432static void cgroup_print_ss_mask(struct seq_file *seq, unsigned int ss_mask)
355e0c48 2433{
f8f22e53
TH
2434 struct cgroup_subsys *ss;
2435 bool printed = false;
2436 int ssid;
a742c59d 2437
f8f22e53
TH
2438 for_each_subsys(ss, ssid) {
2439 if (ss_mask & (1 << ssid)) {
2440 if (printed)
2441 seq_putc(seq, ' ');
2442 seq_printf(seq, "%s", ss->name);
2443 printed = true;
2444 }
e73d2c61 2445 }
f8f22e53
TH
2446 if (printed)
2447 seq_putc(seq, '\n');
355e0c48
PM
2448}
2449
f8f22e53
TH
2450/* show controllers which are currently attached to the default hierarchy */
2451static int cgroup_root_controllers_show(struct seq_file *seq, void *v)
db3b1497 2452{
f8f22e53
TH
2453 struct cgroup *cgrp = seq_css(seq)->cgroup;
2454
5533e011
TH
2455 cgroup_print_ss_mask(seq, cgrp->root->subsys_mask &
2456 ~cgrp_dfl_root_inhibit_ss_mask);
f8f22e53 2457 return 0;
db3b1497
PM
2458}
2459
f8f22e53
TH
2460/* show controllers which are enabled from the parent */
2461static int cgroup_controllers_show(struct seq_file *seq, void *v)
ddbcc7e8 2462{
f8f22e53
TH
2463 struct cgroup *cgrp = seq_css(seq)->cgroup;
2464
667c2491 2465 cgroup_print_ss_mask(seq, cgroup_parent(cgrp)->subtree_control);
f8f22e53 2466 return 0;
ddbcc7e8
PM
2467}
2468
f8f22e53
TH
2469/* show controllers which are enabled for a given cgroup's children */
2470static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
ddbcc7e8 2471{
f8f22e53
TH
2472 struct cgroup *cgrp = seq_css(seq)->cgroup;
2473
667c2491 2474 cgroup_print_ss_mask(seq, cgrp->subtree_control);
f8f22e53
TH
2475 return 0;
2476}
2477
2478/**
2479 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2480 * @cgrp: root of the subtree to update csses for
2481 *
2482 * @cgrp's child_subsys_mask has changed and its subtree's (self excluded)
2483 * css associations need to be updated accordingly. This function looks up
2484 * all css_sets which are attached to the subtree, creates the matching
2485 * updated css_sets and migrates the tasks to the new ones.
2486 */
2487static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2488{
2489 LIST_HEAD(preloaded_csets);
2490 struct cgroup_subsys_state *css;
2491 struct css_set *src_cset;
2492 int ret;
2493
f8f22e53
TH
2494 lockdep_assert_held(&cgroup_mutex);
2495
2496 /* look up all csses currently attached to @cgrp's subtree */
2497 down_read(&css_set_rwsem);
2498 css_for_each_descendant_pre(css, cgroup_css(cgrp, NULL)) {
2499 struct cgrp_cset_link *link;
2500
2501 /* self is not affected by child_subsys_mask change */
2502 if (css->cgroup == cgrp)
2503 continue;
2504
2505 list_for_each_entry(link, &css->cgroup->cset_links, cset_link)
2506 cgroup_migrate_add_src(link->cset, cgrp,
2507 &preloaded_csets);
2508 }
2509 up_read(&css_set_rwsem);
2510
2511 /* NULL dst indicates self on default hierarchy */
2512 ret = cgroup_migrate_prepare_dst(NULL, &preloaded_csets);
2513 if (ret)
2514 goto out_finish;
2515
2516 list_for_each_entry(src_cset, &preloaded_csets, mg_preload_node) {
2517 struct task_struct *last_task = NULL, *task;
2518
2519 /* src_csets precede dst_csets, break on the first dst_cset */
2520 if (!src_cset->mg_src_cgrp)
2521 break;
2522
2523 /*
2524 * All tasks in src_cset need to be migrated to the
2525 * matching dst_cset. Empty it process by process. We
2526 * walk tasks but migrate processes. The leader might even
2527 * belong to a different cset but such src_cset would also
2528 * be among the target src_csets because the default
2529 * hierarchy enforces per-process membership.
2530 */
2531 while (true) {
2532 down_read(&css_set_rwsem);
2533 task = list_first_entry_or_null(&src_cset->tasks,
2534 struct task_struct, cg_list);
2535 if (task) {
2536 task = task->group_leader;
2537 WARN_ON_ONCE(!task_css_set(task)->mg_src_cgrp);
2538 get_task_struct(task);
2539 }
2540 up_read(&css_set_rwsem);
2541
2542 if (!task)
2543 break;
2544
2545 /* guard against possible infinite loop */
2546 if (WARN(last_task == task,
2547 "cgroup: update_dfl_csses failed to make progress, aborting in inconsistent state\n"))
2548 goto out_finish;
2549 last_task = task;
2550
2551 threadgroup_lock(task);
2552 /* raced against de_thread() from another thread? */
2553 if (!thread_group_leader(task)) {
2554 threadgroup_unlock(task);
2555 put_task_struct(task);
2556 continue;
2557 }
2558
2559 ret = cgroup_migrate(src_cset->dfl_cgrp, task, true);
2560
2561 threadgroup_unlock(task);
2562 put_task_struct(task);
2563
2564 if (WARN(ret, "cgroup: failed to update controllers for the default hierarchy (%d), further operations may crash or hang\n", ret))
2565 goto out_finish;
2566 }
2567 }
2568
2569out_finish:
2570 cgroup_migrate_finish(&preloaded_csets);
2571 return ret;
2572}
2573
2574/* change the enabled child controllers for a cgroup in the default hierarchy */
451af504
TH
2575static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
2576 char *buf, size_t nbytes,
2577 loff_t off)
f8f22e53 2578{
7d331fa9 2579 unsigned int enable = 0, disable = 0;
a9746d8d 2580 struct cgroup *cgrp, *child;
f8f22e53 2581 struct cgroup_subsys *ss;
451af504 2582 char *tok;
f8f22e53
TH
2583 int ssid, ret;
2584
2585 /*
d37167ab
TH
2586 * Parse input - space separated list of subsystem names prefixed
2587 * with either + or -.
f8f22e53 2588 */
451af504
TH
2589 buf = strstrip(buf);
2590 while ((tok = strsep(&buf, " "))) {
d37167ab
TH
2591 if (tok[0] == '\0')
2592 continue;
f8f22e53 2593 for_each_subsys(ss, ssid) {
5533e011
TH
2594 if (ss->disabled || strcmp(tok + 1, ss->name) ||
2595 ((1 << ss->id) & cgrp_dfl_root_inhibit_ss_mask))
f8f22e53
TH
2596 continue;
2597
2598 if (*tok == '+') {
7d331fa9
TH
2599 enable |= 1 << ssid;
2600 disable &= ~(1 << ssid);
f8f22e53 2601 } else if (*tok == '-') {
7d331fa9
TH
2602 disable |= 1 << ssid;
2603 enable &= ~(1 << ssid);
f8f22e53
TH
2604 } else {
2605 return -EINVAL;
2606 }
2607 break;
2608 }
2609 if (ssid == CGROUP_SUBSYS_COUNT)
2610 return -EINVAL;
2611 }
2612
a9746d8d
TH
2613 cgrp = cgroup_kn_lock_live(of->kn);
2614 if (!cgrp)
2615 return -ENODEV;
f8f22e53
TH
2616
2617 for_each_subsys(ss, ssid) {
2618 if (enable & (1 << ssid)) {
667c2491 2619 if (cgrp->subtree_control & (1 << ssid)) {
f8f22e53
TH
2620 enable &= ~(1 << ssid);
2621 continue;
2622 }
2623
c29adf24
TH
2624 /* unavailable or not enabled on the parent? */
2625 if (!(cgrp_dfl_root.subsys_mask & (1 << ssid)) ||
2626 (cgroup_parent(cgrp) &&
667c2491 2627 !(cgroup_parent(cgrp)->subtree_control & (1 << ssid)))) {
c29adf24
TH
2628 ret = -ENOENT;
2629 goto out_unlock;
2630 }
2631
f8f22e53
TH
2632 /*
2633 * Because css offlining is asynchronous, userland
2634 * might try to re-enable the same controller while
2635 * the previous instance is still around. In such
2636 * cases, wait till it's gone using offline_waitq.
2637 */
2638 cgroup_for_each_live_child(child, cgrp) {
0cee8b77 2639 DEFINE_WAIT(wait);
f8f22e53
TH
2640
2641 if (!cgroup_css(child, ss))
2642 continue;
2643
0cee8b77 2644 cgroup_get(child);
f8f22e53
TH
2645 prepare_to_wait(&child->offline_waitq, &wait,
2646 TASK_UNINTERRUPTIBLE);
a9746d8d 2647 cgroup_kn_unlock(of->kn);
f8f22e53
TH
2648 schedule();
2649 finish_wait(&child->offline_waitq, &wait);
0cee8b77 2650 cgroup_put(child);
7d331fa9 2651
a9746d8d 2652 return restart_syscall();
f8f22e53 2653 }
f8f22e53 2654 } else if (disable & (1 << ssid)) {
667c2491 2655 if (!(cgrp->subtree_control & (1 << ssid))) {
f8f22e53
TH
2656 disable &= ~(1 << ssid);
2657 continue;
2658 }
2659
2660 /* a child has it enabled? */
2661 cgroup_for_each_live_child(child, cgrp) {
667c2491 2662 if (child->subtree_control & (1 << ssid)) {
f8f22e53 2663 ret = -EBUSY;
ddab2b6e 2664 goto out_unlock;
f8f22e53
TH
2665 }
2666 }
2667 }
2668 }
2669
2670 if (!enable && !disable) {
2671 ret = 0;
ddab2b6e 2672 goto out_unlock;
f8f22e53
TH
2673 }
2674
2675 /*
667c2491 2676 * Except for the root, subtree_control must be zero for a cgroup
f8f22e53
TH
2677 * with tasks so that child cgroups don't compete against tasks.
2678 */
d51f39b0 2679 if (enable && cgroup_parent(cgrp) && !list_empty(&cgrp->cset_links)) {
f8f22e53
TH
2680 ret = -EBUSY;
2681 goto out_unlock;
2682 }
2683
667c2491
TH
2684 cgrp->subtree_control |= enable;
2685 cgrp->subtree_control &= ~disable;
2686 cgroup_refresh_child_subsys_mask(cgrp);
c29adf24
TH
2687
2688 /* create new csses */
f8f22e53
TH
2689 for_each_subsys(ss, ssid) {
2690 if (!(enable & (1 << ssid)))
2691 continue;
2692
2693 cgroup_for_each_live_child(child, cgrp) {
2694 ret = create_css(child, ss);
2695 if (ret)
2696 goto err_undo_css;
2697 }
2698 }
2699
c29adf24
TH
2700 /*
2701 * At this point, cgroup_e_css() results reflect the new csses
2702 * making the following cgroup_update_dfl_csses() properly update
2703 * css associations of all tasks in the subtree.
2704 */
f8f22e53
TH
2705 ret = cgroup_update_dfl_csses(cgrp);
2706 if (ret)
2707 goto err_undo_css;
2708
2709 /* all tasks are now migrated away from the old csses, kill them */
2710 for_each_subsys(ss, ssid) {
2711 if (!(disable & (1 << ssid)))
2712 continue;
2713
2714 cgroup_for_each_live_child(child, cgrp)
2715 kill_css(cgroup_css(child, ss));
2716 }
2717
2718 kernfs_activate(cgrp->kn);
2719 ret = 0;
2720out_unlock:
a9746d8d 2721 cgroup_kn_unlock(of->kn);
451af504 2722 return ret ?: nbytes;
f8f22e53
TH
2723
2724err_undo_css:
667c2491
TH
2725 cgrp->subtree_control &= ~enable;
2726 cgrp->subtree_control |= disable;
2727 cgroup_refresh_child_subsys_mask(cgrp);
f8f22e53
TH
2728
2729 for_each_subsys(ss, ssid) {
2730 if (!(enable & (1 << ssid)))
2731 continue;
2732
2733 cgroup_for_each_live_child(child, cgrp) {
2734 struct cgroup_subsys_state *css = cgroup_css(child, ss);
2735 if (css)
2736 kill_css(css);
2737 }
2738 }
2739 goto out_unlock;
2740}
2741
842b597e
TH
2742static int cgroup_populated_show(struct seq_file *seq, void *v)
2743{
2744 seq_printf(seq, "%d\n", (bool)seq_css(seq)->cgroup->populated_cnt);
2745 return 0;
2746}
2747
2bd59d48
TH
2748static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
2749 size_t nbytes, loff_t off)
355e0c48 2750{
2bd59d48
TH
2751 struct cgroup *cgrp = of->kn->parent->priv;
2752 struct cftype *cft = of->kn->priv;
2753 struct cgroup_subsys_state *css;
a742c59d 2754 int ret;
355e0c48 2755
b4168640
TH
2756 if (cft->write)
2757 return cft->write(of, buf, nbytes, off);
2758
2bd59d48
TH
2759 /*
2760 * kernfs guarantees that a file isn't deleted with operations in
2761 * flight, which means that the matching css is and stays alive and
2762 * doesn't need to be pinned. The RCU locking is not necessary
2763 * either. It's just for the convenience of using cgroup_css().
2764 */
2765 rcu_read_lock();
2766 css = cgroup_css(cgrp, cft->ss);
2767 rcu_read_unlock();
a742c59d 2768
451af504 2769 if (cft->write_u64) {
a742c59d
TH
2770 unsigned long long v;
2771 ret = kstrtoull(buf, 0, &v);
2772 if (!ret)
2773 ret = cft->write_u64(css, cft, v);
2774 } else if (cft->write_s64) {
2775 long long v;
2776 ret = kstrtoll(buf, 0, &v);
2777 if (!ret)
2778 ret = cft->write_s64(css, cft, v);
e73d2c61 2779 } else {
a742c59d 2780 ret = -EINVAL;
e73d2c61 2781 }
2bd59d48 2782
a742c59d 2783 return ret ?: nbytes;
355e0c48
PM
2784}
2785
6612f05b 2786static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
db3b1497 2787{
2bd59d48 2788 return seq_cft(seq)->seq_start(seq, ppos);
db3b1497
PM
2789}
2790
6612f05b 2791static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
ddbcc7e8 2792{
2bd59d48 2793 return seq_cft(seq)->seq_next(seq, v, ppos);
ddbcc7e8
PM
2794}
2795
6612f05b 2796static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
ddbcc7e8 2797{
2bd59d48 2798 seq_cft(seq)->seq_stop(seq, v);
ddbcc7e8
PM
2799}
2800
91796569 2801static int cgroup_seqfile_show(struct seq_file *m, void *arg)
e73d2c61 2802{
7da11279
TH
2803 struct cftype *cft = seq_cft(m);
2804 struct cgroup_subsys_state *css = seq_css(m);
e73d2c61 2805
2da8ca82
TH
2806 if (cft->seq_show)
2807 return cft->seq_show(m, arg);
e73d2c61 2808
f4c753b7 2809 if (cft->read_u64)
896f5199
TH
2810 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
2811 else if (cft->read_s64)
2812 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
2813 else
2814 return -EINVAL;
2815 return 0;
91796569
PM
2816}
2817
2bd59d48
TH
2818static struct kernfs_ops cgroup_kf_single_ops = {
2819 .atomic_write_len = PAGE_SIZE,
2820 .write = cgroup_file_write,
2821 .seq_show = cgroup_seqfile_show,
91796569
PM
2822};
2823
2bd59d48
TH
2824static struct kernfs_ops cgroup_kf_ops = {
2825 .atomic_write_len = PAGE_SIZE,
2826 .write = cgroup_file_write,
2827 .seq_start = cgroup_seqfile_start,
2828 .seq_next = cgroup_seqfile_next,
2829 .seq_stop = cgroup_seqfile_stop,
2830 .seq_show = cgroup_seqfile_show,
2831};
ddbcc7e8
PM
2832
2833/*
2834 * cgroup_rename - Only allow simple rename of directories in place.
2835 */
2bd59d48
TH
2836static int cgroup_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
2837 const char *new_name_str)
ddbcc7e8 2838{
2bd59d48 2839 struct cgroup *cgrp = kn->priv;
65dff759 2840 int ret;
65dff759 2841
2bd59d48 2842 if (kernfs_type(kn) != KERNFS_DIR)
ddbcc7e8 2843 return -ENOTDIR;
2bd59d48 2844 if (kn->parent != new_parent)
ddbcc7e8 2845 return -EIO;
65dff759 2846
6db8e85c
TH
2847 /*
2848 * This isn't a proper migration and its usefulness is very
2849 * limited. Disallow if sane_behavior.
2850 */
2851 if (cgroup_sane_behavior(cgrp))
2852 return -EPERM;
099fca32 2853
e1b2dc17 2854 /*
8353da1f 2855 * We're gonna grab cgroup_mutex which nests outside kernfs
e1b2dc17 2856 * active_ref. kernfs_rename() doesn't require active_ref
8353da1f 2857 * protection. Break them before grabbing cgroup_mutex.
e1b2dc17
TH
2858 */
2859 kernfs_break_active_protection(new_parent);
2860 kernfs_break_active_protection(kn);
099fca32 2861
2bd59d48 2862 mutex_lock(&cgroup_mutex);
099fca32 2863
2bd59d48 2864 ret = kernfs_rename(kn, new_parent, new_name_str);
099fca32 2865
2bd59d48 2866 mutex_unlock(&cgroup_mutex);
e1b2dc17
TH
2867
2868 kernfs_unbreak_active_protection(kn);
2869 kernfs_unbreak_active_protection(new_parent);
2bd59d48 2870 return ret;
099fca32
LZ
2871}
2872
49957f8e
TH
2873/* set uid and gid of cgroup dirs and files to that of the creator */
2874static int cgroup_kn_set_ugid(struct kernfs_node *kn)
2875{
2876 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
2877 .ia_uid = current_fsuid(),
2878 .ia_gid = current_fsgid(), };
2879
2880 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
2881 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
2882 return 0;
2883
2884 return kernfs_setattr(kn, &iattr);
2885}
2886
2bb566cb 2887static int cgroup_add_file(struct cgroup *cgrp, struct cftype *cft)
ddbcc7e8 2888{
8d7e6fb0 2889 char name[CGROUP_FILE_NAME_MAX];
2bd59d48
TH
2890 struct kernfs_node *kn;
2891 struct lock_class_key *key = NULL;
49957f8e 2892 int ret;
05ef1d7c 2893
2bd59d48
TH
2894#ifdef CONFIG_DEBUG_LOCK_ALLOC
2895 key = &cft->lockdep_key;
2896#endif
2897 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
2898 cgroup_file_mode(cft), 0, cft->kf_ops, cft,
2899 NULL, false, key);
49957f8e
TH
2900 if (IS_ERR(kn))
2901 return PTR_ERR(kn);
2902
2903 ret = cgroup_kn_set_ugid(kn);
f8f22e53 2904 if (ret) {
49957f8e 2905 kernfs_remove(kn);
f8f22e53
TH
2906 return ret;
2907 }
2908
b7fc5ad2 2909 if (cft->seq_show == cgroup_populated_show)
842b597e 2910 cgrp->populated_kn = kn;
f8f22e53 2911 return 0;
ddbcc7e8
PM
2912}
2913
b1f28d31
TH
2914/**
2915 * cgroup_addrm_files - add or remove files to a cgroup directory
2916 * @cgrp: the target cgroup
b1f28d31
TH
2917 * @cfts: array of cftypes to be added
2918 * @is_add: whether to add or remove
2919 *
2920 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
2bb566cb
TH
2921 * For removals, this function never fails. If addition fails, this
2922 * function doesn't remove files already added. The caller is responsible
2923 * for cleaning up.
b1f28d31 2924 */
2bb566cb
TH
2925static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
2926 bool is_add)
ddbcc7e8 2927{
03b1cde6 2928 struct cftype *cft;
b1f28d31
TH
2929 int ret;
2930
01f6474c 2931 lockdep_assert_held(&cgroup_mutex);
db0416b6
TH
2932
2933 for (cft = cfts; cft->name[0] != '\0'; cft++) {
f33fddc2 2934 /* does cft->flags tell us to skip this file on @cgrp? */
8cbbf2c9
TH
2935 if ((cft->flags & CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
2936 continue;
873fe09e
TH
2937 if ((cft->flags & CFTYPE_INSANE) && cgroup_sane_behavior(cgrp))
2938 continue;
d51f39b0 2939 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
f33fddc2 2940 continue;
d51f39b0 2941 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
f33fddc2
G
2942 continue;
2943
2739d3cc 2944 if (is_add) {
2bb566cb 2945 ret = cgroup_add_file(cgrp, cft);
b1f28d31 2946 if (ret) {
ed3d261b
JP
2947 pr_warn("%s: failed to add %s, err=%d\n",
2948 __func__, cft->name, ret);
b1f28d31
TH
2949 return ret;
2950 }
2739d3cc
LZ
2951 } else {
2952 cgroup_rm_file(cgrp, cft);
db0416b6 2953 }
ddbcc7e8 2954 }
b1f28d31 2955 return 0;
ddbcc7e8
PM
2956}
2957
21a2d343 2958static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
8e3f6541
TH
2959{
2960 LIST_HEAD(pending);
2bb566cb 2961 struct cgroup_subsys *ss = cfts[0].ss;
3dd06ffa 2962 struct cgroup *root = &ss->root->cgrp;
492eb21b 2963 struct cgroup_subsys_state *css;
9ccece80 2964 int ret = 0;
8e3f6541 2965
01f6474c 2966 lockdep_assert_held(&cgroup_mutex);
e8c82d20 2967
e8c82d20 2968 /* add/rm files for all cgroups created before */
ca8bdcaf 2969 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
492eb21b
TH
2970 struct cgroup *cgrp = css->cgroup;
2971
e8c82d20
LZ
2972 if (cgroup_is_dead(cgrp))
2973 continue;
2974
21a2d343 2975 ret = cgroup_addrm_files(cgrp, cfts, is_add);
9ccece80
TH
2976 if (ret)
2977 break;
8e3f6541 2978 }
21a2d343
TH
2979
2980 if (is_add && !ret)
2981 kernfs_activate(root->kn);
9ccece80 2982 return ret;
8e3f6541
TH
2983}
2984
2da440a2 2985static void cgroup_exit_cftypes(struct cftype *cfts)
8e3f6541 2986{
2bb566cb 2987 struct cftype *cft;
8e3f6541 2988
2bd59d48
TH
2989 for (cft = cfts; cft->name[0] != '\0'; cft++) {
2990 /* free copy for custom atomic_write_len, see init_cftypes() */
2991 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
2992 kfree(cft->kf_ops);
2993 cft->kf_ops = NULL;
2da440a2 2994 cft->ss = NULL;
2bd59d48 2995 }
2da440a2
TH
2996}
2997
2bd59d48 2998static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
2da440a2
TH
2999{
3000 struct cftype *cft;
3001
2bd59d48
TH
3002 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3003 struct kernfs_ops *kf_ops;
3004
0adb0704
TH
3005 WARN_ON(cft->ss || cft->kf_ops);
3006
2bd59d48
TH
3007 if (cft->seq_start)
3008 kf_ops = &cgroup_kf_ops;
3009 else
3010 kf_ops = &cgroup_kf_single_ops;
3011
3012 /*
3013 * Ugh... if @cft wants a custom max_write_len, we need to
3014 * make a copy of kf_ops to set its atomic_write_len.
3015 */
3016 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
3017 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
3018 if (!kf_ops) {
3019 cgroup_exit_cftypes(cfts);
3020 return -ENOMEM;
3021 }
3022 kf_ops->atomic_write_len = cft->max_write_len;
3023 }
8e3f6541 3024
2bd59d48 3025 cft->kf_ops = kf_ops;
2bb566cb 3026 cft->ss = ss;
2bd59d48 3027 }
2bb566cb 3028
2bd59d48 3029 return 0;
2da440a2
TH
3030}
3031
21a2d343
TH
3032static int cgroup_rm_cftypes_locked(struct cftype *cfts)
3033{
01f6474c 3034 lockdep_assert_held(&cgroup_mutex);
21a2d343
TH
3035
3036 if (!cfts || !cfts[0].ss)
3037 return -ENOENT;
3038
3039 list_del(&cfts->node);
3040 cgroup_apply_cftypes(cfts, false);
3041 cgroup_exit_cftypes(cfts);
3042 return 0;
8e3f6541 3043}
8e3f6541 3044
79578621
TH
3045/**
3046 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
79578621
TH
3047 * @cfts: zero-length name terminated array of cftypes
3048 *
2bb566cb
TH
3049 * Unregister @cfts. Files described by @cfts are removed from all
3050 * existing cgroups and all future cgroups won't have them either. This
3051 * function can be called anytime whether @cfts' subsys is attached or not.
79578621
TH
3052 *
3053 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
2bb566cb 3054 * registered.
79578621 3055 */
2bb566cb 3056int cgroup_rm_cftypes(struct cftype *cfts)
79578621 3057{
21a2d343 3058 int ret;
79578621 3059
01f6474c 3060 mutex_lock(&cgroup_mutex);
21a2d343 3061 ret = cgroup_rm_cftypes_locked(cfts);
01f6474c 3062 mutex_unlock(&cgroup_mutex);
21a2d343 3063 return ret;
80b13586
TH
3064}
3065
8e3f6541
TH
3066/**
3067 * cgroup_add_cftypes - add an array of cftypes to a subsystem
3068 * @ss: target cgroup subsystem
3069 * @cfts: zero-length name terminated array of cftypes
3070 *
3071 * Register @cfts to @ss. Files described by @cfts are created for all
3072 * existing cgroups to which @ss is attached and all future cgroups will
3073 * have them too. This function can be called anytime whether @ss is
3074 * attached or not.
3075 *
3076 * Returns 0 on successful registration, -errno on failure. Note that this
3077 * function currently returns 0 as long as @cfts registration is successful
3078 * even if some file creation attempts on existing cgroups fail.
3079 */
03b1cde6 3080int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
8e3f6541 3081{
9ccece80 3082 int ret;
8e3f6541 3083
c731ae1d
LZ
3084 if (ss->disabled)
3085 return 0;
3086
dc5736ed
LZ
3087 if (!cfts || cfts[0].name[0] == '\0')
3088 return 0;
2bb566cb 3089
2bd59d48
TH
3090 ret = cgroup_init_cftypes(ss, cfts);
3091 if (ret)
3092 return ret;
79578621 3093
01f6474c 3094 mutex_lock(&cgroup_mutex);
21a2d343 3095
0adb0704 3096 list_add_tail(&cfts->node, &ss->cfts);
21a2d343 3097 ret = cgroup_apply_cftypes(cfts, true);
9ccece80 3098 if (ret)
21a2d343 3099 cgroup_rm_cftypes_locked(cfts);
79578621 3100
01f6474c 3101 mutex_unlock(&cgroup_mutex);
9ccece80 3102 return ret;
79578621
TH
3103}
3104
a043e3b2
LZ
3105/**
3106 * cgroup_task_count - count the number of tasks in a cgroup.
3107 * @cgrp: the cgroup in question
3108 *
3109 * Return the number of tasks in the cgroup.
3110 */
07bc356e 3111static int cgroup_task_count(const struct cgroup *cgrp)
bbcb81d0
PM
3112{
3113 int count = 0;
69d0206c 3114 struct cgrp_cset_link *link;
817929ec 3115
96d365e0 3116 down_read(&css_set_rwsem);
69d0206c
TH
3117 list_for_each_entry(link, &cgrp->cset_links, cset_link)
3118 count += atomic_read(&link->cset->refcount);
96d365e0 3119 up_read(&css_set_rwsem);
bbcb81d0
PM
3120 return count;
3121}
3122
53fa5261 3123/**
492eb21b 3124 * css_next_child - find the next child of a given css
c2931b70
TH
3125 * @pos: the current position (%NULL to initiate traversal)
3126 * @parent: css whose children to walk
53fa5261 3127 *
c2931b70 3128 * This function returns the next child of @parent and should be called
87fb54f1 3129 * under either cgroup_mutex or RCU read lock. The only requirement is
c2931b70
TH
3130 * that @parent and @pos are accessible. The next sibling is guaranteed to
3131 * be returned regardless of their states.
3132 *
3133 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3134 * css which finished ->css_online() is guaranteed to be visible in the
3135 * future iterations and will stay visible until the last reference is put.
3136 * A css which hasn't finished ->css_online() or already finished
3137 * ->css_offline() may show up during traversal. It's each subsystem's
3138 * responsibility to synchronize against on/offlining.
53fa5261 3139 */
c2931b70
TH
3140struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
3141 struct cgroup_subsys_state *parent)
53fa5261 3142{
c2931b70 3143 struct cgroup_subsys_state *next;
53fa5261 3144
8353da1f 3145 cgroup_assert_mutex_or_rcu_locked();
53fa5261
TH
3146
3147 /*
de3f0341
TH
3148 * @pos could already have been unlinked from the sibling list.
3149 * Once a cgroup is removed, its ->sibling.next is no longer
3150 * updated when its next sibling changes. CSS_RELEASED is set when
3151 * @pos is taken off list, at which time its next pointer is valid,
3152 * and, as releases are serialized, the one pointed to by the next
3153 * pointer is guaranteed to not have started release yet. This
3154 * implies that if we observe !CSS_RELEASED on @pos in this RCU
3155 * critical section, the one pointed to by its next pointer is
3156 * guaranteed to not have finished its RCU grace period even if we
3157 * have dropped rcu_read_lock() inbetween iterations.
3b287a50 3158 *
de3f0341
TH
3159 * If @pos has CSS_RELEASED set, its next pointer can't be
3160 * dereferenced; however, as each css is given a monotonically
3161 * increasing unique serial number and always appended to the
3162 * sibling list, the next one can be found by walking the parent's
3163 * children until the first css with higher serial number than
3164 * @pos's. While this path can be slower, it happens iff iteration
3165 * races against release and the race window is very small.
53fa5261 3166 */
3b287a50 3167 if (!pos) {
c2931b70
TH
3168 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
3169 } else if (likely(!(pos->flags & CSS_RELEASED))) {
3170 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
3b287a50 3171 } else {
c2931b70 3172 list_for_each_entry_rcu(next, &parent->children, sibling)
3b287a50
TH
3173 if (next->serial_nr > pos->serial_nr)
3174 break;
53fa5261
TH
3175 }
3176
3b281afb
TH
3177 /*
3178 * @next, if not pointing to the head, can be dereferenced and is
c2931b70 3179 * the next sibling.
3b281afb 3180 */
c2931b70
TH
3181 if (&next->sibling != &parent->children)
3182 return next;
3b281afb 3183 return NULL;
53fa5261 3184}
53fa5261 3185
574bd9f7 3186/**
492eb21b 3187 * css_next_descendant_pre - find the next descendant for pre-order walk
574bd9f7 3188 * @pos: the current position (%NULL to initiate traversal)
492eb21b 3189 * @root: css whose descendants to walk
574bd9f7 3190 *
492eb21b 3191 * To be used by css_for_each_descendant_pre(). Find the next descendant
bd8815a6
TH
3192 * to visit for pre-order traversal of @root's descendants. @root is
3193 * included in the iteration and the first node to be visited.
75501a6d 3194 *
87fb54f1
TH
3195 * While this function requires cgroup_mutex or RCU read locking, it
3196 * doesn't require the whole traversal to be contained in a single critical
3197 * section. This function will return the correct next descendant as long
3198 * as both @pos and @root are accessible and @pos is a descendant of @root.
c2931b70
TH
3199 *
3200 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3201 * css which finished ->css_online() is guaranteed to be visible in the
3202 * future iterations and will stay visible until the last reference is put.
3203 * A css which hasn't finished ->css_online() or already finished
3204 * ->css_offline() may show up during traversal. It's each subsystem's
3205 * responsibility to synchronize against on/offlining.
574bd9f7 3206 */
492eb21b
TH
3207struct cgroup_subsys_state *
3208css_next_descendant_pre(struct cgroup_subsys_state *pos,
3209 struct cgroup_subsys_state *root)
574bd9f7 3210{
492eb21b 3211 struct cgroup_subsys_state *next;
574bd9f7 3212
8353da1f 3213 cgroup_assert_mutex_or_rcu_locked();
574bd9f7 3214
bd8815a6 3215 /* if first iteration, visit @root */
7805d000 3216 if (!pos)
bd8815a6 3217 return root;
574bd9f7
TH
3218
3219 /* visit the first child if exists */
492eb21b 3220 next = css_next_child(NULL, pos);
574bd9f7
TH
3221 if (next)
3222 return next;
3223
3224 /* no child, visit my or the closest ancestor's next sibling */
492eb21b 3225 while (pos != root) {
5c9d535b 3226 next = css_next_child(pos, pos->parent);
75501a6d 3227 if (next)
574bd9f7 3228 return next;
5c9d535b 3229 pos = pos->parent;
7805d000 3230 }
574bd9f7
TH
3231
3232 return NULL;
3233}
574bd9f7 3234
12a9d2fe 3235/**
492eb21b
TH
3236 * css_rightmost_descendant - return the rightmost descendant of a css
3237 * @pos: css of interest
12a9d2fe 3238 *
492eb21b
TH
3239 * Return the rightmost descendant of @pos. If there's no descendant, @pos
3240 * is returned. This can be used during pre-order traversal to skip
12a9d2fe 3241 * subtree of @pos.
75501a6d 3242 *
87fb54f1
TH
3243 * While this function requires cgroup_mutex or RCU read locking, it
3244 * doesn't require the whole traversal to be contained in a single critical
3245 * section. This function will return the correct rightmost descendant as
3246 * long as @pos is accessible.
12a9d2fe 3247 */
492eb21b
TH
3248struct cgroup_subsys_state *
3249css_rightmost_descendant(struct cgroup_subsys_state *pos)
12a9d2fe 3250{
492eb21b 3251 struct cgroup_subsys_state *last, *tmp;
12a9d2fe 3252
8353da1f 3253 cgroup_assert_mutex_or_rcu_locked();
12a9d2fe
TH
3254
3255 do {
3256 last = pos;
3257 /* ->prev isn't RCU safe, walk ->next till the end */
3258 pos = NULL;
492eb21b 3259 css_for_each_child(tmp, last)
12a9d2fe
TH
3260 pos = tmp;
3261 } while (pos);
3262
3263 return last;
3264}
12a9d2fe 3265
492eb21b
TH
3266static struct cgroup_subsys_state *
3267css_leftmost_descendant(struct cgroup_subsys_state *pos)
574bd9f7 3268{
492eb21b 3269 struct cgroup_subsys_state *last;
574bd9f7
TH
3270
3271 do {
3272 last = pos;
492eb21b 3273 pos = css_next_child(NULL, pos);
574bd9f7
TH
3274 } while (pos);
3275
3276 return last;
3277}
3278
3279/**
492eb21b 3280 * css_next_descendant_post - find the next descendant for post-order walk
574bd9f7 3281 * @pos: the current position (%NULL to initiate traversal)
492eb21b 3282 * @root: css whose descendants to walk
574bd9f7 3283 *
492eb21b 3284 * To be used by css_for_each_descendant_post(). Find the next descendant
bd8815a6
TH
3285 * to visit for post-order traversal of @root's descendants. @root is
3286 * included in the iteration and the last node to be visited.
75501a6d 3287 *
87fb54f1
TH
3288 * While this function requires cgroup_mutex or RCU read locking, it
3289 * doesn't require the whole traversal to be contained in a single critical
3290 * section. This function will return the correct next descendant as long
3291 * as both @pos and @cgroup are accessible and @pos is a descendant of
3292 * @cgroup.
c2931b70
TH
3293 *
3294 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3295 * css which finished ->css_online() is guaranteed to be visible in the
3296 * future iterations and will stay visible until the last reference is put.
3297 * A css which hasn't finished ->css_online() or already finished
3298 * ->css_offline() may show up during traversal. It's each subsystem's
3299 * responsibility to synchronize against on/offlining.
574bd9f7 3300 */
492eb21b
TH
3301struct cgroup_subsys_state *
3302css_next_descendant_post(struct cgroup_subsys_state *pos,
3303 struct cgroup_subsys_state *root)
574bd9f7 3304{
492eb21b 3305 struct cgroup_subsys_state *next;
574bd9f7 3306
8353da1f 3307 cgroup_assert_mutex_or_rcu_locked();
574bd9f7 3308
58b79a91
TH
3309 /* if first iteration, visit leftmost descendant which may be @root */
3310 if (!pos)
3311 return css_leftmost_descendant(root);
574bd9f7 3312
bd8815a6
TH
3313 /* if we visited @root, we're done */
3314 if (pos == root)
3315 return NULL;
3316
574bd9f7 3317 /* if there's an unvisited sibling, visit its leftmost descendant */
5c9d535b 3318 next = css_next_child(pos, pos->parent);
75501a6d 3319 if (next)
492eb21b 3320 return css_leftmost_descendant(next);
574bd9f7
TH
3321
3322 /* no sibling left, visit parent */
5c9d535b 3323 return pos->parent;
574bd9f7 3324}
574bd9f7 3325
f3d46500
TH
3326/**
3327 * css_has_online_children - does a css have online children
3328 * @css: the target css
3329 *
3330 * Returns %true if @css has any online children; otherwise, %false. This
3331 * function can be called from any context but the caller is responsible
3332 * for synchronizing against on/offlining as necessary.
3333 */
3334bool css_has_online_children(struct cgroup_subsys_state *css)
cbc125ef 3335{
f3d46500
TH
3336 struct cgroup_subsys_state *child;
3337 bool ret = false;
cbc125ef
TH
3338
3339 rcu_read_lock();
f3d46500
TH
3340 css_for_each_child(child, css) {
3341 if (css->flags & CSS_ONLINE) {
3342 ret = true;
3343 break;
cbc125ef
TH
3344 }
3345 }
3346 rcu_read_unlock();
f3d46500 3347 return ret;
574bd9f7 3348}
574bd9f7 3349
0942eeee 3350/**
72ec7029 3351 * css_advance_task_iter - advance a task itererator to the next css_set
0942eeee
TH
3352 * @it: the iterator to advance
3353 *
3354 * Advance @it to the next css_set to walk.
d515876e 3355 */
72ec7029 3356static void css_advance_task_iter(struct css_task_iter *it)
d515876e 3357{
0f0a2b4f 3358 struct list_head *l = it->cset_pos;
d515876e
TH
3359 struct cgrp_cset_link *link;
3360 struct css_set *cset;
3361
3362 /* Advance to the next non-empty css_set */
3363 do {
3364 l = l->next;
0f0a2b4f
TH
3365 if (l == it->cset_head) {
3366 it->cset_pos = NULL;
d515876e
TH
3367 return;
3368 }
3ebb2b6e
TH
3369
3370 if (it->ss) {
3371 cset = container_of(l, struct css_set,
3372 e_cset_node[it->ss->id]);
3373 } else {
3374 link = list_entry(l, struct cgrp_cset_link, cset_link);
3375 cset = link->cset;
3376 }
c7561128
TH
3377 } while (list_empty(&cset->tasks) && list_empty(&cset->mg_tasks));
3378
0f0a2b4f 3379 it->cset_pos = l;
c7561128
TH
3380
3381 if (!list_empty(&cset->tasks))
0f0a2b4f 3382 it->task_pos = cset->tasks.next;
c7561128 3383 else
0f0a2b4f
TH
3384 it->task_pos = cset->mg_tasks.next;
3385
3386 it->tasks_head = &cset->tasks;
3387 it->mg_tasks_head = &cset->mg_tasks;
d515876e
TH
3388}
3389
0942eeee 3390/**
72ec7029
TH
3391 * css_task_iter_start - initiate task iteration
3392 * @css: the css to walk tasks of
0942eeee
TH
3393 * @it: the task iterator to use
3394 *
72ec7029
TH
3395 * Initiate iteration through the tasks of @css. The caller can call
3396 * css_task_iter_next() to walk through the tasks until the function
3397 * returns NULL. On completion of iteration, css_task_iter_end() must be
3398 * called.
0942eeee
TH
3399 *
3400 * Note that this function acquires a lock which is released when the
3401 * iteration finishes. The caller can't sleep while iteration is in
3402 * progress.
3403 */
72ec7029
TH
3404void css_task_iter_start(struct cgroup_subsys_state *css,
3405 struct css_task_iter *it)
96d365e0 3406 __acquires(css_set_rwsem)
817929ec 3407{
56fde9e0
TH
3408 /* no one should try to iterate before mounting cgroups */
3409 WARN_ON_ONCE(!use_task_css_set_links);
31a7df01 3410
96d365e0 3411 down_read(&css_set_rwsem);
c59cd3d8 3412
3ebb2b6e
TH
3413 it->ss = css->ss;
3414
3415 if (it->ss)
3416 it->cset_pos = &css->cgroup->e_csets[css->ss->id];
3417 else
3418 it->cset_pos = &css->cgroup->cset_links;
3419
0f0a2b4f 3420 it->cset_head = it->cset_pos;
c59cd3d8 3421
72ec7029 3422 css_advance_task_iter(it);
817929ec
PM
3423}
3424
0942eeee 3425/**
72ec7029 3426 * css_task_iter_next - return the next task for the iterator
0942eeee
TH
3427 * @it: the task iterator being iterated
3428 *
3429 * The "next" function for task iteration. @it should have been
72ec7029
TH
3430 * initialized via css_task_iter_start(). Returns NULL when the iteration
3431 * reaches the end.
0942eeee 3432 */
72ec7029 3433struct task_struct *css_task_iter_next(struct css_task_iter *it)
817929ec
PM
3434{
3435 struct task_struct *res;
0f0a2b4f 3436 struct list_head *l = it->task_pos;
817929ec
PM
3437
3438 /* If the iterator cg is NULL, we have no tasks */
0f0a2b4f 3439 if (!it->cset_pos)
817929ec
PM
3440 return NULL;
3441 res = list_entry(l, struct task_struct, cg_list);
c7561128
TH
3442
3443 /*
3444 * Advance iterator to find next entry. cset->tasks is consumed
3445 * first and then ->mg_tasks. After ->mg_tasks, we move onto the
3446 * next cset.
3447 */
817929ec 3448 l = l->next;
c7561128 3449
0f0a2b4f
TH
3450 if (l == it->tasks_head)
3451 l = it->mg_tasks_head->next;
c7561128 3452
0f0a2b4f 3453 if (l == it->mg_tasks_head)
72ec7029 3454 css_advance_task_iter(it);
c7561128 3455 else
0f0a2b4f 3456 it->task_pos = l;
c7561128 3457
817929ec
PM
3458 return res;
3459}
3460
0942eeee 3461/**
72ec7029 3462 * css_task_iter_end - finish task iteration
0942eeee
TH
3463 * @it: the task iterator to finish
3464 *
72ec7029 3465 * Finish task iteration started by css_task_iter_start().
0942eeee 3466 */
72ec7029 3467void css_task_iter_end(struct css_task_iter *it)
96d365e0 3468 __releases(css_set_rwsem)
31a7df01 3469{
96d365e0 3470 up_read(&css_set_rwsem);
31a7df01
CW
3471}
3472
3473/**
8cc99345
TH
3474 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
3475 * @to: cgroup to which the tasks will be moved
3476 * @from: cgroup in which the tasks currently reside
31a7df01 3477 *
eaf797ab
TH
3478 * Locking rules between cgroup_post_fork() and the migration path
3479 * guarantee that, if a task is forking while being migrated, the new child
3480 * is guaranteed to be either visible in the source cgroup after the
3481 * parent's migration is complete or put into the target cgroup. No task
3482 * can slip out of migration through forking.
31a7df01 3483 */
8cc99345 3484int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
31a7df01 3485{
952aaa12
TH
3486 LIST_HEAD(preloaded_csets);
3487 struct cgrp_cset_link *link;
72ec7029 3488 struct css_task_iter it;
e406d1cf 3489 struct task_struct *task;
952aaa12 3490 int ret;
31a7df01 3491
952aaa12 3492 mutex_lock(&cgroup_mutex);
31a7df01 3493
952aaa12
TH
3494 /* all tasks in @from are being moved, all csets are source */
3495 down_read(&css_set_rwsem);
3496 list_for_each_entry(link, &from->cset_links, cset_link)
3497 cgroup_migrate_add_src(link->cset, to, &preloaded_csets);
3498 up_read(&css_set_rwsem);
31a7df01 3499
952aaa12
TH
3500 ret = cgroup_migrate_prepare_dst(to, &preloaded_csets);
3501 if (ret)
3502 goto out_err;
8cc99345 3503
952aaa12
TH
3504 /*
3505 * Migrate tasks one-by-one until @form is empty. This fails iff
3506 * ->can_attach() fails.
3507 */
e406d1cf 3508 do {
9d800df1 3509 css_task_iter_start(&from->self, &it);
e406d1cf
TH
3510 task = css_task_iter_next(&it);
3511 if (task)
3512 get_task_struct(task);
3513 css_task_iter_end(&it);
3514
3515 if (task) {
952aaa12 3516 ret = cgroup_migrate(to, task, false);
e406d1cf
TH
3517 put_task_struct(task);
3518 }
3519 } while (task && !ret);
952aaa12
TH
3520out_err:
3521 cgroup_migrate_finish(&preloaded_csets);
47cfcd09 3522 mutex_unlock(&cgroup_mutex);
e406d1cf 3523 return ret;
8cc99345
TH
3524}
3525
bbcb81d0 3526/*
102a775e 3527 * Stuff for reading the 'tasks'/'procs' files.
bbcb81d0
PM
3528 *
3529 * Reading this file can return large amounts of data if a cgroup has
3530 * *lots* of attached tasks. So it may need several calls to read(),
3531 * but we cannot guarantee that the information we produce is correct
3532 * unless we produce it entirely atomically.
3533 *
bbcb81d0 3534 */
bbcb81d0 3535
24528255
LZ
3536/* which pidlist file are we talking about? */
3537enum cgroup_filetype {
3538 CGROUP_FILE_PROCS,
3539 CGROUP_FILE_TASKS,
3540};
3541
3542/*
3543 * A pidlist is a list of pids that virtually represents the contents of one
3544 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
3545 * a pair (one each for procs, tasks) for each pid namespace that's relevant
3546 * to the cgroup.
3547 */
3548struct cgroup_pidlist {
3549 /*
3550 * used to find which pidlist is wanted. doesn't change as long as
3551 * this particular list stays in the list.
3552 */
3553 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
3554 /* array of xids */
3555 pid_t *list;
3556 /* how many elements the above list has */
3557 int length;
24528255
LZ
3558 /* each of these stored in a list by its cgroup */
3559 struct list_head links;
3560 /* pointer to the cgroup we belong to, for list removal purposes */
3561 struct cgroup *owner;
b1a21367
TH
3562 /* for delayed destruction */
3563 struct delayed_work destroy_dwork;
24528255
LZ
3564};
3565
d1d9fd33
BB
3566/*
3567 * The following two functions "fix" the issue where there are more pids
3568 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
3569 * TODO: replace with a kernel-wide solution to this problem
3570 */
3571#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
3572static void *pidlist_allocate(int count)
3573{
3574 if (PIDLIST_TOO_LARGE(count))
3575 return vmalloc(count * sizeof(pid_t));
3576 else
3577 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
3578}
b1a21367 3579
d1d9fd33
BB
3580static void pidlist_free(void *p)
3581{
3582 if (is_vmalloc_addr(p))
3583 vfree(p);
3584 else
3585 kfree(p);
3586}
d1d9fd33 3587
b1a21367
TH
3588/*
3589 * Used to destroy all pidlists lingering waiting for destroy timer. None
3590 * should be left afterwards.
3591 */
3592static void cgroup_pidlist_destroy_all(struct cgroup *cgrp)
3593{
3594 struct cgroup_pidlist *l, *tmp_l;
3595
3596 mutex_lock(&cgrp->pidlist_mutex);
3597 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
3598 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
3599 mutex_unlock(&cgrp->pidlist_mutex);
3600
3601 flush_workqueue(cgroup_pidlist_destroy_wq);
3602 BUG_ON(!list_empty(&cgrp->pidlists));
3603}
3604
3605static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
3606{
3607 struct delayed_work *dwork = to_delayed_work(work);
3608 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
3609 destroy_dwork);
3610 struct cgroup_pidlist *tofree = NULL;
3611
3612 mutex_lock(&l->owner->pidlist_mutex);
b1a21367
TH
3613
3614 /*
04502365
TH
3615 * Destroy iff we didn't get queued again. The state won't change
3616 * as destroy_dwork can only be queued while locked.
b1a21367 3617 */
04502365 3618 if (!delayed_work_pending(dwork)) {
b1a21367
TH
3619 list_del(&l->links);
3620 pidlist_free(l->list);
3621 put_pid_ns(l->key.ns);
3622 tofree = l;
3623 }
3624
b1a21367
TH
3625 mutex_unlock(&l->owner->pidlist_mutex);
3626 kfree(tofree);
3627}
3628
bbcb81d0 3629/*
102a775e 3630 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
6ee211ad 3631 * Returns the number of unique elements.
bbcb81d0 3632 */
6ee211ad 3633static int pidlist_uniq(pid_t *list, int length)
bbcb81d0 3634{
102a775e 3635 int src, dest = 1;
102a775e
BB
3636
3637 /*
3638 * we presume the 0th element is unique, so i starts at 1. trivial
3639 * edge cases first; no work needs to be done for either
3640 */
3641 if (length == 0 || length == 1)
3642 return length;
3643 /* src and dest walk down the list; dest counts unique elements */
3644 for (src = 1; src < length; src++) {
3645 /* find next unique element */
3646 while (list[src] == list[src-1]) {
3647 src++;
3648 if (src == length)
3649 goto after;
3650 }
3651 /* dest always points to where the next unique element goes */
3652 list[dest] = list[src];
3653 dest++;
3654 }
3655after:
102a775e
BB
3656 return dest;
3657}
3658
afb2bc14
TH
3659/*
3660 * The two pid files - task and cgroup.procs - guaranteed that the result
3661 * is sorted, which forced this whole pidlist fiasco. As pid order is
3662 * different per namespace, each namespace needs differently sorted list,
3663 * making it impossible to use, for example, single rbtree of member tasks
3664 * sorted by task pointer. As pidlists can be fairly large, allocating one
3665 * per open file is dangerous, so cgroup had to implement shared pool of
3666 * pidlists keyed by cgroup and namespace.
3667 *
3668 * All this extra complexity was caused by the original implementation
3669 * committing to an entirely unnecessary property. In the long term, we
3670 * want to do away with it. Explicitly scramble sort order if
3671 * sane_behavior so that no such expectation exists in the new interface.
3672 *
3673 * Scrambling is done by swapping every two consecutive bits, which is
3674 * non-identity one-to-one mapping which disturbs sort order sufficiently.
3675 */
3676static pid_t pid_fry(pid_t pid)
3677{
3678 unsigned a = pid & 0x55555555;
3679 unsigned b = pid & 0xAAAAAAAA;
3680
3681 return (a << 1) | (b >> 1);
3682}
3683
3684static pid_t cgroup_pid_fry(struct cgroup *cgrp, pid_t pid)
3685{
3686 if (cgroup_sane_behavior(cgrp))
3687 return pid_fry(pid);
3688 else
3689 return pid;
3690}
3691
102a775e
BB
3692static int cmppid(const void *a, const void *b)
3693{
3694 return *(pid_t *)a - *(pid_t *)b;
3695}
3696
afb2bc14
TH
3697static int fried_cmppid(const void *a, const void *b)
3698{
3699 return pid_fry(*(pid_t *)a) - pid_fry(*(pid_t *)b);
3700}
3701
e6b81710
TH
3702static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
3703 enum cgroup_filetype type)
3704{
3705 struct cgroup_pidlist *l;
3706 /* don't need task_nsproxy() if we're looking at ourself */
3707 struct pid_namespace *ns = task_active_pid_ns(current);
3708
3709 lockdep_assert_held(&cgrp->pidlist_mutex);
3710
3711 list_for_each_entry(l, &cgrp->pidlists, links)
3712 if (l->key.type == type && l->key.ns == ns)
3713 return l;
3714 return NULL;
3715}
3716
72a8cb30
BB
3717/*
3718 * find the appropriate pidlist for our purpose (given procs vs tasks)
3719 * returns with the lock on that pidlist already held, and takes care
3720 * of the use count, or returns NULL with no locks held if we're out of
3721 * memory.
3722 */
e6b81710
TH
3723static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
3724 enum cgroup_filetype type)
72a8cb30
BB
3725{
3726 struct cgroup_pidlist *l;
b70cc5fd 3727
e6b81710
TH
3728 lockdep_assert_held(&cgrp->pidlist_mutex);
3729
3730 l = cgroup_pidlist_find(cgrp, type);
3731 if (l)
3732 return l;
3733
72a8cb30 3734 /* entry not found; create a new one */
f4f4be2b 3735 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
e6b81710 3736 if (!l)
72a8cb30 3737 return l;
e6b81710 3738
b1a21367 3739 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
72a8cb30 3740 l->key.type = type;
e6b81710
TH
3741 /* don't need task_nsproxy() if we're looking at ourself */
3742 l->key.ns = get_pid_ns(task_active_pid_ns(current));
72a8cb30
BB
3743 l->owner = cgrp;
3744 list_add(&l->links, &cgrp->pidlists);
72a8cb30
BB
3745 return l;
3746}
3747
102a775e
BB
3748/*
3749 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
3750 */
72a8cb30
BB
3751static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
3752 struct cgroup_pidlist **lp)
102a775e
BB
3753{
3754 pid_t *array;
3755 int length;
3756 int pid, n = 0; /* used for populating the array */
72ec7029 3757 struct css_task_iter it;
817929ec 3758 struct task_struct *tsk;
102a775e
BB
3759 struct cgroup_pidlist *l;
3760
4bac00d1
TH
3761 lockdep_assert_held(&cgrp->pidlist_mutex);
3762
102a775e
BB
3763 /*
3764 * If cgroup gets more users after we read count, we won't have
3765 * enough space - tough. This race is indistinguishable to the
3766 * caller from the case that the additional cgroup users didn't
3767 * show up until sometime later on.
3768 */
3769 length = cgroup_task_count(cgrp);
d1d9fd33 3770 array = pidlist_allocate(length);
102a775e
BB
3771 if (!array)
3772 return -ENOMEM;
3773 /* now, populate the array */
9d800df1 3774 css_task_iter_start(&cgrp->self, &it);
72ec7029 3775 while ((tsk = css_task_iter_next(&it))) {
102a775e 3776 if (unlikely(n == length))
817929ec 3777 break;
102a775e 3778 /* get tgid or pid for procs or tasks file respectively */
72a8cb30
BB
3779 if (type == CGROUP_FILE_PROCS)
3780 pid = task_tgid_vnr(tsk);
3781 else
3782 pid = task_pid_vnr(tsk);
102a775e
BB
3783 if (pid > 0) /* make sure to only use valid results */
3784 array[n++] = pid;
817929ec 3785 }
72ec7029 3786 css_task_iter_end(&it);
102a775e
BB
3787 length = n;
3788 /* now sort & (if procs) strip out duplicates */
afb2bc14
TH
3789 if (cgroup_sane_behavior(cgrp))
3790 sort(array, length, sizeof(pid_t), fried_cmppid, NULL);
3791 else
3792 sort(array, length, sizeof(pid_t), cmppid, NULL);
72a8cb30 3793 if (type == CGROUP_FILE_PROCS)
6ee211ad 3794 length = pidlist_uniq(array, length);
e6b81710 3795
e6b81710 3796 l = cgroup_pidlist_find_create(cgrp, type);
72a8cb30 3797 if (!l) {
e6b81710 3798 mutex_unlock(&cgrp->pidlist_mutex);
d1d9fd33 3799 pidlist_free(array);
72a8cb30 3800 return -ENOMEM;
102a775e 3801 }
e6b81710
TH
3802
3803 /* store array, freeing old if necessary */
d1d9fd33 3804 pidlist_free(l->list);
102a775e
BB
3805 l->list = array;
3806 l->length = length;
72a8cb30 3807 *lp = l;
102a775e 3808 return 0;
bbcb81d0
PM
3809}
3810
846c7bb0 3811/**
a043e3b2 3812 * cgroupstats_build - build and fill cgroupstats
846c7bb0
BS
3813 * @stats: cgroupstats to fill information into
3814 * @dentry: A dentry entry belonging to the cgroup for which stats have
3815 * been requested.
a043e3b2
LZ
3816 *
3817 * Build and fill cgroupstats so that taskstats can export it to user
3818 * space.
846c7bb0
BS
3819 */
3820int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
3821{
2bd59d48 3822 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
bd89aabc 3823 struct cgroup *cgrp;
72ec7029 3824 struct css_task_iter it;
846c7bb0 3825 struct task_struct *tsk;
33d283be 3826
2bd59d48
TH
3827 /* it should be kernfs_node belonging to cgroupfs and is a directory */
3828 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
3829 kernfs_type(kn) != KERNFS_DIR)
3830 return -EINVAL;
3831
bad34660
LZ
3832 mutex_lock(&cgroup_mutex);
3833
846c7bb0 3834 /*
2bd59d48 3835 * We aren't being called from kernfs and there's no guarantee on
ec903c0c 3836 * @kn->priv's validity. For this and css_tryget_online_from_dir(),
2bd59d48 3837 * @kn->priv is RCU safe. Let's do the RCU dancing.
846c7bb0 3838 */
2bd59d48
TH
3839 rcu_read_lock();
3840 cgrp = rcu_dereference(kn->priv);
bad34660 3841 if (!cgrp || cgroup_is_dead(cgrp)) {
2bd59d48 3842 rcu_read_unlock();
bad34660 3843 mutex_unlock(&cgroup_mutex);
2bd59d48
TH
3844 return -ENOENT;
3845 }
bad34660 3846 rcu_read_unlock();
846c7bb0 3847
9d800df1 3848 css_task_iter_start(&cgrp->self, &it);
72ec7029 3849 while ((tsk = css_task_iter_next(&it))) {
846c7bb0
BS
3850 switch (tsk->state) {
3851 case TASK_RUNNING:
3852 stats->nr_running++;
3853 break;
3854 case TASK_INTERRUPTIBLE:
3855 stats->nr_sleeping++;
3856 break;
3857 case TASK_UNINTERRUPTIBLE:
3858 stats->nr_uninterruptible++;
3859 break;
3860 case TASK_STOPPED:
3861 stats->nr_stopped++;
3862 break;
3863 default:
3864 if (delayacct_is_task_waiting_on_io(tsk))
3865 stats->nr_io_wait++;
3866 break;
3867 }
3868 }
72ec7029 3869 css_task_iter_end(&it);
846c7bb0 3870
bad34660 3871 mutex_unlock(&cgroup_mutex);
2bd59d48 3872 return 0;
846c7bb0
BS
3873}
3874
8f3ff208 3875
bbcb81d0 3876/*
102a775e 3877 * seq_file methods for the tasks/procs files. The seq_file position is the
cc31edce 3878 * next pid to display; the seq_file iterator is a pointer to the pid
102a775e 3879 * in the cgroup->l->list array.
bbcb81d0 3880 */
cc31edce 3881
102a775e 3882static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
bbcb81d0 3883{
cc31edce
PM
3884 /*
3885 * Initially we receive a position value that corresponds to
3886 * one more than the last pid shown (or 0 on the first call or
3887 * after a seek to the start). Use a binary-search to find the
3888 * next pid to display, if any
3889 */
2bd59d48 3890 struct kernfs_open_file *of = s->private;
7da11279 3891 struct cgroup *cgrp = seq_css(s)->cgroup;
4bac00d1 3892 struct cgroup_pidlist *l;
7da11279 3893 enum cgroup_filetype type = seq_cft(s)->private;
cc31edce 3894 int index = 0, pid = *pos;
4bac00d1
TH
3895 int *iter, ret;
3896
3897 mutex_lock(&cgrp->pidlist_mutex);
3898
3899 /*
5d22444f 3900 * !NULL @of->priv indicates that this isn't the first start()
4bac00d1 3901 * after open. If the matching pidlist is around, we can use that.
5d22444f 3902 * Look for it. Note that @of->priv can't be used directly. It
4bac00d1
TH
3903 * could already have been destroyed.
3904 */
5d22444f
TH
3905 if (of->priv)
3906 of->priv = cgroup_pidlist_find(cgrp, type);
4bac00d1
TH
3907
3908 /*
3909 * Either this is the first start() after open or the matching
3910 * pidlist has been destroyed inbetween. Create a new one.
3911 */
5d22444f
TH
3912 if (!of->priv) {
3913 ret = pidlist_array_load(cgrp, type,
3914 (struct cgroup_pidlist **)&of->priv);
4bac00d1
TH
3915 if (ret)
3916 return ERR_PTR(ret);
3917 }
5d22444f 3918 l = of->priv;
cc31edce 3919
cc31edce 3920 if (pid) {
102a775e 3921 int end = l->length;
20777766 3922
cc31edce
PM
3923 while (index < end) {
3924 int mid = (index + end) / 2;
afb2bc14 3925 if (cgroup_pid_fry(cgrp, l->list[mid]) == pid) {
cc31edce
PM
3926 index = mid;
3927 break;
afb2bc14 3928 } else if (cgroup_pid_fry(cgrp, l->list[mid]) <= pid)
cc31edce
PM
3929 index = mid + 1;
3930 else
3931 end = mid;
3932 }
3933 }
3934 /* If we're off the end of the array, we're done */
102a775e 3935 if (index >= l->length)
cc31edce
PM
3936 return NULL;
3937 /* Update the abstract position to be the actual pid that we found */
102a775e 3938 iter = l->list + index;
afb2bc14 3939 *pos = cgroup_pid_fry(cgrp, *iter);
cc31edce
PM
3940 return iter;
3941}
3942
102a775e 3943static void cgroup_pidlist_stop(struct seq_file *s, void *v)
cc31edce 3944{
2bd59d48 3945 struct kernfs_open_file *of = s->private;
5d22444f 3946 struct cgroup_pidlist *l = of->priv;
62236858 3947
5d22444f
TH
3948 if (l)
3949 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
04502365 3950 CGROUP_PIDLIST_DESTROY_DELAY);
7da11279 3951 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
cc31edce
PM
3952}
3953
102a775e 3954static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
cc31edce 3955{
2bd59d48 3956 struct kernfs_open_file *of = s->private;
5d22444f 3957 struct cgroup_pidlist *l = of->priv;
102a775e
BB
3958 pid_t *p = v;
3959 pid_t *end = l->list + l->length;
cc31edce
PM
3960 /*
3961 * Advance to the next pid in the array. If this goes off the
3962 * end, we're done
3963 */
3964 p++;
3965 if (p >= end) {
3966 return NULL;
3967 } else {
7da11279 3968 *pos = cgroup_pid_fry(seq_css(s)->cgroup, *p);
cc31edce
PM
3969 return p;
3970 }
3971}
3972
102a775e 3973static int cgroup_pidlist_show(struct seq_file *s, void *v)
cc31edce
PM
3974{
3975 return seq_printf(s, "%d\n", *(int *)v);
3976}
bbcb81d0 3977
182446d0
TH
3978static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
3979 struct cftype *cft)
81a6a5cd 3980{
182446d0 3981 return notify_on_release(css->cgroup);
81a6a5cd
PM
3982}
3983
182446d0
TH
3984static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
3985 struct cftype *cft, u64 val)
6379c106 3986{
182446d0 3987 clear_bit(CGRP_RELEASABLE, &css->cgroup->flags);
6379c106 3988 if (val)
182446d0 3989 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106 3990 else
182446d0 3991 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106
PM
3992 return 0;
3993}
3994
182446d0
TH
3995static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
3996 struct cftype *cft)
97978e6d 3997{
182446d0 3998 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
3999}
4000
182446d0
TH
4001static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
4002 struct cftype *cft, u64 val)
97978e6d
DL
4003{
4004 if (val)
182446d0 4005 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d 4006 else
182446d0 4007 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
4008 return 0;
4009}
4010
d5c56ced 4011static struct cftype cgroup_base_files[] = {
81a6a5cd 4012 {
d5c56ced 4013 .name = "cgroup.procs",
6612f05b
TH
4014 .seq_start = cgroup_pidlist_start,
4015 .seq_next = cgroup_pidlist_next,
4016 .seq_stop = cgroup_pidlist_stop,
4017 .seq_show = cgroup_pidlist_show,
5d22444f 4018 .private = CGROUP_FILE_PROCS,
acbef755 4019 .write = cgroup_procs_write,
74a1166d 4020 .mode = S_IRUGO | S_IWUSR,
102a775e 4021 },
97978e6d
DL
4022 {
4023 .name = "cgroup.clone_children",
873fe09e 4024 .flags = CFTYPE_INSANE,
97978e6d
DL
4025 .read_u64 = cgroup_clone_children_read,
4026 .write_u64 = cgroup_clone_children_write,
4027 },
873fe09e
TH
4028 {
4029 .name = "cgroup.sane_behavior",
4030 .flags = CFTYPE_ONLY_ON_ROOT,
2da8ca82 4031 .seq_show = cgroup_sane_behavior_show,
873fe09e 4032 },
f8f22e53
TH
4033 {
4034 .name = "cgroup.controllers",
4035 .flags = CFTYPE_ONLY_ON_DFL | CFTYPE_ONLY_ON_ROOT,
4036 .seq_show = cgroup_root_controllers_show,
4037 },
4038 {
4039 .name = "cgroup.controllers",
4040 .flags = CFTYPE_ONLY_ON_DFL | CFTYPE_NOT_ON_ROOT,
4041 .seq_show = cgroup_controllers_show,
4042 },
4043 {
4044 .name = "cgroup.subtree_control",
4045 .flags = CFTYPE_ONLY_ON_DFL,
4046 .seq_show = cgroup_subtree_control_show,
451af504 4047 .write = cgroup_subtree_control_write,
f8f22e53 4048 },
842b597e
TH
4049 {
4050 .name = "cgroup.populated",
4051 .flags = CFTYPE_ONLY_ON_DFL | CFTYPE_NOT_ON_ROOT,
4052 .seq_show = cgroup_populated_show,
4053 },
d5c56ced
TH
4054
4055 /*
4056 * Historical crazy stuff. These don't have "cgroup." prefix and
4057 * don't exist if sane_behavior. If you're depending on these, be
4058 * prepared to be burned.
4059 */
4060 {
4061 .name = "tasks",
4062 .flags = CFTYPE_INSANE, /* use "procs" instead */
6612f05b
TH
4063 .seq_start = cgroup_pidlist_start,
4064 .seq_next = cgroup_pidlist_next,
4065 .seq_stop = cgroup_pidlist_stop,
4066 .seq_show = cgroup_pidlist_show,
5d22444f 4067 .private = CGROUP_FILE_TASKS,
acbef755 4068 .write = cgroup_tasks_write,
d5c56ced
TH
4069 .mode = S_IRUGO | S_IWUSR,
4070 },
4071 {
4072 .name = "notify_on_release",
4073 .flags = CFTYPE_INSANE,
4074 .read_u64 = cgroup_read_notify_on_release,
4075 .write_u64 = cgroup_write_notify_on_release,
4076 },
6e6ff25b
TH
4077 {
4078 .name = "release_agent",
cc5943a7 4079 .flags = CFTYPE_INSANE | CFTYPE_ONLY_ON_ROOT,
2da8ca82 4080 .seq_show = cgroup_release_agent_show,
451af504 4081 .write = cgroup_release_agent_write,
5f469907 4082 .max_write_len = PATH_MAX - 1,
6e6ff25b 4083 },
db0416b6 4084 { } /* terminate */
bbcb81d0
PM
4085};
4086
13af07df 4087/**
628f7cd4 4088 * cgroup_populate_dir - create subsys files in a cgroup directory
13af07df 4089 * @cgrp: target cgroup
13af07df 4090 * @subsys_mask: mask of the subsystem ids whose files should be added
bee55099
TH
4091 *
4092 * On failure, no file is added.
13af07df 4093 */
69dfa00c 4094static int cgroup_populate_dir(struct cgroup *cgrp, unsigned int subsys_mask)
ddbcc7e8 4095{
ddbcc7e8 4096 struct cgroup_subsys *ss;
b420ba7d 4097 int i, ret = 0;
bbcb81d0 4098
8e3f6541 4099 /* process cftsets of each subsystem */
b420ba7d 4100 for_each_subsys(ss, i) {
0adb0704 4101 struct cftype *cfts;
b420ba7d 4102
69dfa00c 4103 if (!(subsys_mask & (1 << i)))
13af07df 4104 continue;
8e3f6541 4105
0adb0704
TH
4106 list_for_each_entry(cfts, &ss->cfts, node) {
4107 ret = cgroup_addrm_files(cgrp, cfts, true);
bee55099
TH
4108 if (ret < 0)
4109 goto err;
4110 }
ddbcc7e8 4111 }
ddbcc7e8 4112 return 0;
bee55099
TH
4113err:
4114 cgroup_clear_dir(cgrp, subsys_mask);
4115 return ret;
ddbcc7e8
PM
4116}
4117
0c21ead1
TH
4118/*
4119 * css destruction is four-stage process.
4120 *
4121 * 1. Destruction starts. Killing of the percpu_ref is initiated.
4122 * Implemented in kill_css().
4123 *
4124 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
ec903c0c
TH
4125 * and thus css_tryget_online() is guaranteed to fail, the css can be
4126 * offlined by invoking offline_css(). After offlining, the base ref is
4127 * put. Implemented in css_killed_work_fn().
0c21ead1
TH
4128 *
4129 * 3. When the percpu_ref reaches zero, the only possible remaining
4130 * accessors are inside RCU read sections. css_release() schedules the
4131 * RCU callback.
4132 *
4133 * 4. After the grace period, the css can be freed. Implemented in
4134 * css_free_work_fn().
4135 *
4136 * It is actually hairier because both step 2 and 4 require process context
4137 * and thus involve punting to css->destroy_work adding two additional
4138 * steps to the already complex sequence.
4139 */
35ef10da 4140static void css_free_work_fn(struct work_struct *work)
48ddbe19
TH
4141{
4142 struct cgroup_subsys_state *css =
35ef10da 4143 container_of(work, struct cgroup_subsys_state, destroy_work);
0c21ead1 4144 struct cgroup *cgrp = css->cgroup;
48ddbe19 4145
9d755d33
TH
4146 if (css->ss) {
4147 /* css free path */
4148 if (css->parent)
4149 css_put(css->parent);
0ae78e0b 4150
9d755d33
TH
4151 css->ss->css_free(css);
4152 cgroup_put(cgrp);
4153 } else {
4154 /* cgroup free path */
4155 atomic_dec(&cgrp->root->nr_cgrps);
4156 cgroup_pidlist_destroy_all(cgrp);
4157
d51f39b0 4158 if (cgroup_parent(cgrp)) {
9d755d33
TH
4159 /*
4160 * We get a ref to the parent, and put the ref when
4161 * this cgroup is being freed, so it's guaranteed
4162 * that the parent won't be destroyed before its
4163 * children.
4164 */
d51f39b0 4165 cgroup_put(cgroup_parent(cgrp));
9d755d33
TH
4166 kernfs_put(cgrp->kn);
4167 kfree(cgrp);
4168 } else {
4169 /*
4170 * This is root cgroup's refcnt reaching zero,
4171 * which indicates that the root should be
4172 * released.
4173 */
4174 cgroup_destroy_root(cgrp->root);
4175 }
4176 }
48ddbe19
TH
4177}
4178
0c21ead1 4179static void css_free_rcu_fn(struct rcu_head *rcu_head)
d3daf28d
TH
4180{
4181 struct cgroup_subsys_state *css =
0c21ead1 4182 container_of(rcu_head, struct cgroup_subsys_state, rcu_head);
d3daf28d 4183
35ef10da 4184 INIT_WORK(&css->destroy_work, css_free_work_fn);
e5fca243 4185 queue_work(cgroup_destroy_wq, &css->destroy_work);
48ddbe19
TH
4186}
4187
25e15d83 4188static void css_release_work_fn(struct work_struct *work)
d3daf28d
TH
4189{
4190 struct cgroup_subsys_state *css =
25e15d83 4191 container_of(work, struct cgroup_subsys_state, destroy_work);
15a4c835 4192 struct cgroup_subsys *ss = css->ss;
9d755d33 4193 struct cgroup *cgrp = css->cgroup;
15a4c835 4194
1fed1b2e
TH
4195 mutex_lock(&cgroup_mutex);
4196
de3f0341 4197 css->flags |= CSS_RELEASED;
1fed1b2e
TH
4198 list_del_rcu(&css->sibling);
4199
9d755d33
TH
4200 if (ss) {
4201 /* css release path */
4202 cgroup_idr_remove(&ss->css_idr, css->id);
4203 } else {
4204 /* cgroup release path */
9d755d33
TH
4205 cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
4206 cgrp->id = -1;
4207 }
d3daf28d 4208
1fed1b2e
TH
4209 mutex_unlock(&cgroup_mutex);
4210
0c21ead1 4211 call_rcu(&css->rcu_head, css_free_rcu_fn);
d3daf28d
TH
4212}
4213
d3daf28d
TH
4214static void css_release(struct percpu_ref *ref)
4215{
4216 struct cgroup_subsys_state *css =
4217 container_of(ref, struct cgroup_subsys_state, refcnt);
4218
25e15d83
TH
4219 INIT_WORK(&css->destroy_work, css_release_work_fn);
4220 queue_work(cgroup_destroy_wq, &css->destroy_work);
d3daf28d
TH
4221}
4222
ddfcadab
TH
4223static void init_and_link_css(struct cgroup_subsys_state *css,
4224 struct cgroup_subsys *ss, struct cgroup *cgrp)
ddbcc7e8 4225{
0cb51d71
TH
4226 lockdep_assert_held(&cgroup_mutex);
4227
ddfcadab
TH
4228 cgroup_get(cgrp);
4229
d5c419b6 4230 memset(css, 0, sizeof(*css));
bd89aabc 4231 css->cgroup = cgrp;
72c97e54 4232 css->ss = ss;
d5c419b6
TH
4233 INIT_LIST_HEAD(&css->sibling);
4234 INIT_LIST_HEAD(&css->children);
0cb51d71 4235 css->serial_nr = css_serial_nr_next++;
0ae78e0b 4236
d51f39b0
TH
4237 if (cgroup_parent(cgrp)) {
4238 css->parent = cgroup_css(cgroup_parent(cgrp), ss);
ddfcadab 4239 css_get(css->parent);
ddfcadab 4240 }
48ddbe19 4241
ca8bdcaf 4242 BUG_ON(cgroup_css(cgrp, ss));
ddbcc7e8
PM
4243}
4244
2a4ac633 4245/* invoke ->css_online() on a new CSS and mark it online if successful */
623f926b 4246static int online_css(struct cgroup_subsys_state *css)
a31f2d3f 4247{
623f926b 4248 struct cgroup_subsys *ss = css->ss;
b1929db4
TH
4249 int ret = 0;
4250
a31f2d3f
TH
4251 lockdep_assert_held(&cgroup_mutex);
4252
92fb9748 4253 if (ss->css_online)
eb95419b 4254 ret = ss->css_online(css);
ae7f164a 4255 if (!ret) {
eb95419b 4256 css->flags |= CSS_ONLINE;
aec25020 4257 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
ae7f164a 4258 }
b1929db4 4259 return ret;
a31f2d3f
TH
4260}
4261
2a4ac633 4262/* if the CSS is online, invoke ->css_offline() on it and mark it offline */
623f926b 4263static void offline_css(struct cgroup_subsys_state *css)
a31f2d3f 4264{
623f926b 4265 struct cgroup_subsys *ss = css->ss;
a31f2d3f
TH
4266
4267 lockdep_assert_held(&cgroup_mutex);
4268
4269 if (!(css->flags & CSS_ONLINE))
4270 return;
4271
d7eeac19 4272 if (ss->css_offline)
eb95419b 4273 ss->css_offline(css);
a31f2d3f 4274
eb95419b 4275 css->flags &= ~CSS_ONLINE;
e3297803 4276 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
f8f22e53
TH
4277
4278 wake_up_all(&css->cgroup->offline_waitq);
a31f2d3f
TH
4279}
4280
c81c925a
TH
4281/**
4282 * create_css - create a cgroup_subsys_state
4283 * @cgrp: the cgroup new css will be associated with
4284 * @ss: the subsys of new css
4285 *
4286 * Create a new css associated with @cgrp - @ss pair. On success, the new
4287 * css is online and installed in @cgrp with all interface files created.
4288 * Returns 0 on success, -errno on failure.
4289 */
4290static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss)
4291{
d51f39b0 4292 struct cgroup *parent = cgroup_parent(cgrp);
1fed1b2e 4293 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
c81c925a
TH
4294 struct cgroup_subsys_state *css;
4295 int err;
4296
c81c925a
TH
4297 lockdep_assert_held(&cgroup_mutex);
4298
1fed1b2e 4299 css = ss->css_alloc(parent_css);
c81c925a
TH
4300 if (IS_ERR(css))
4301 return PTR_ERR(css);
4302
ddfcadab 4303 init_and_link_css(css, ss, cgrp);
a2bed820 4304
c81c925a
TH
4305 err = percpu_ref_init(&css->refcnt, css_release);
4306 if (err)
3eb59ec6 4307 goto err_free_css;
c81c925a 4308
15a4c835
TH
4309 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_NOWAIT);
4310 if (err < 0)
4311 goto err_free_percpu_ref;
4312 css->id = err;
c81c925a 4313
aec25020 4314 err = cgroup_populate_dir(cgrp, 1 << ss->id);
c81c925a 4315 if (err)
15a4c835
TH
4316 goto err_free_id;
4317
4318 /* @css is ready to be brought online now, make it visible */
1fed1b2e 4319 list_add_tail_rcu(&css->sibling, &parent_css->children);
15a4c835 4320 cgroup_idr_replace(&ss->css_idr, css, css->id);
c81c925a
TH
4321
4322 err = online_css(css);
4323 if (err)
1fed1b2e 4324 goto err_list_del;
94419627 4325
c81c925a 4326 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
d51f39b0 4327 cgroup_parent(parent)) {
ed3d261b 4328 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
a2a1f9ea 4329 current->comm, current->pid, ss->name);
c81c925a 4330 if (!strcmp(ss->name, "memory"))
ed3d261b 4331 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
c81c925a
TH
4332 ss->warned_broken_hierarchy = true;
4333 }
4334
4335 return 0;
4336
1fed1b2e
TH
4337err_list_del:
4338 list_del_rcu(&css->sibling);
32d01dc7 4339 cgroup_clear_dir(css->cgroup, 1 << css->ss->id);
15a4c835
TH
4340err_free_id:
4341 cgroup_idr_remove(&ss->css_idr, css->id);
3eb59ec6 4342err_free_percpu_ref:
c81c925a 4343 percpu_ref_cancel_init(&css->refcnt);
3eb59ec6 4344err_free_css:
a2bed820 4345 call_rcu(&css->rcu_head, css_free_rcu_fn);
c81c925a
TH
4346 return err;
4347}
4348
b3bfd983
TH
4349static int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
4350 umode_t mode)
ddbcc7e8 4351{
a9746d8d
TH
4352 struct cgroup *parent, *cgrp;
4353 struct cgroup_root *root;
ddbcc7e8 4354 struct cgroup_subsys *ss;
2bd59d48 4355 struct kernfs_node *kn;
b3bfd983 4356 int ssid, ret;
ddbcc7e8 4357
a9746d8d
TH
4358 parent = cgroup_kn_lock_live(parent_kn);
4359 if (!parent)
4360 return -ENODEV;
4361 root = parent->root;
ddbcc7e8 4362
0a950f65 4363 /* allocate the cgroup and its ID, 0 is reserved for the root */
bd89aabc 4364 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
ba0f4d76
TH
4365 if (!cgrp) {
4366 ret = -ENOMEM;
4367 goto out_unlock;
0ab02ca8
LZ
4368 }
4369
9d755d33
TH
4370 ret = percpu_ref_init(&cgrp->self.refcnt, css_release);
4371 if (ret)
4372 goto out_free_cgrp;
4373
0ab02ca8
LZ
4374 /*
4375 * Temporarily set the pointer to NULL, so idr_find() won't return
4376 * a half-baked cgroup.
4377 */
6fa4918d 4378 cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_NOWAIT);
0ab02ca8 4379 if (cgrp->id < 0) {
ba0f4d76 4380 ret = -ENOMEM;
9d755d33 4381 goto out_cancel_ref;
976c06bc
TH
4382 }
4383
cc31edce 4384 init_cgroup_housekeeping(cgrp);
ddbcc7e8 4385
9d800df1 4386 cgrp->self.parent = &parent->self;
ba0f4d76 4387 cgrp->root = root;
ddbcc7e8 4388
b6abdb0e
LZ
4389 if (notify_on_release(parent))
4390 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
4391
2260e7fc
TH
4392 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
4393 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
97978e6d 4394
2bd59d48 4395 /* create the directory */
e61734c5 4396 kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
2bd59d48 4397 if (IS_ERR(kn)) {
ba0f4d76
TH
4398 ret = PTR_ERR(kn);
4399 goto out_free_id;
2bd59d48
TH
4400 }
4401 cgrp->kn = kn;
ddbcc7e8 4402
4e139afc 4403 /*
6f30558f
TH
4404 * This extra ref will be put in cgroup_free_fn() and guarantees
4405 * that @cgrp->kn is always accessible.
4e139afc 4406 */
6f30558f 4407 kernfs_get(kn);
ddbcc7e8 4408
0cb51d71 4409 cgrp->self.serial_nr = css_serial_nr_next++;
53fa5261 4410
4e139afc 4411 /* allocation complete, commit to creation */
d5c419b6 4412 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
3c9c825b 4413 atomic_inc(&root->nr_cgrps);
59f5296b 4414 cgroup_get(parent);
415cf07a 4415
0d80255e
TH
4416 /*
4417 * @cgrp is now fully operational. If something fails after this
4418 * point, it'll be released via the normal destruction path.
4419 */
6fa4918d 4420 cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
4e96ee8e 4421
ba0f4d76
TH
4422 ret = cgroup_kn_set_ugid(kn);
4423 if (ret)
4424 goto out_destroy;
49957f8e 4425
ba0f4d76
TH
4426 ret = cgroup_addrm_files(cgrp, cgroup_base_files, true);
4427 if (ret)
4428 goto out_destroy;
628f7cd4 4429
9d403e99 4430 /* let's create and online css's */
b85d2040 4431 for_each_subsys(ss, ssid) {
f392e51c 4432 if (parent->child_subsys_mask & (1 << ssid)) {
ba0f4d76
TH
4433 ret = create_css(cgrp, ss);
4434 if (ret)
4435 goto out_destroy;
b85d2040 4436 }
a8638030 4437 }
ddbcc7e8 4438
bd53d617
TH
4439 /*
4440 * On the default hierarchy, a child doesn't automatically inherit
667c2491 4441 * subtree_control from the parent. Each is configured manually.
bd53d617 4442 */
667c2491
TH
4443 if (!cgroup_on_dfl(cgrp)) {
4444 cgrp->subtree_control = parent->subtree_control;
4445 cgroup_refresh_child_subsys_mask(cgrp);
4446 }
2bd59d48 4447
2bd59d48 4448 kernfs_activate(kn);
ddbcc7e8 4449
ba0f4d76
TH
4450 ret = 0;
4451 goto out_unlock;
ddbcc7e8 4452
ba0f4d76 4453out_free_id:
6fa4918d 4454 cgroup_idr_remove(&root->cgroup_idr, cgrp->id);
9d755d33
TH
4455out_cancel_ref:
4456 percpu_ref_cancel_init(&cgrp->self.refcnt);
ba0f4d76 4457out_free_cgrp:
bd89aabc 4458 kfree(cgrp);
ba0f4d76 4459out_unlock:
a9746d8d 4460 cgroup_kn_unlock(parent_kn);
ba0f4d76 4461 return ret;
4b8b47eb 4462
ba0f4d76 4463out_destroy:
4b8b47eb 4464 cgroup_destroy_locked(cgrp);
ba0f4d76 4465 goto out_unlock;
ddbcc7e8
PM
4466}
4467
223dbc38
TH
4468/*
4469 * This is called when the refcnt of a css is confirmed to be killed.
249f3468
TH
4470 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to
4471 * initate destruction and put the css ref from kill_css().
223dbc38
TH
4472 */
4473static void css_killed_work_fn(struct work_struct *work)
d3daf28d 4474{
223dbc38
TH
4475 struct cgroup_subsys_state *css =
4476 container_of(work, struct cgroup_subsys_state, destroy_work);
d3daf28d 4477
f20104de 4478 mutex_lock(&cgroup_mutex);
09a503ea 4479 offline_css(css);
f20104de 4480 mutex_unlock(&cgroup_mutex);
09a503ea 4481
09a503ea 4482 css_put(css);
d3daf28d
TH
4483}
4484
223dbc38
TH
4485/* css kill confirmation processing requires process context, bounce */
4486static void css_killed_ref_fn(struct percpu_ref *ref)
d3daf28d
TH
4487{
4488 struct cgroup_subsys_state *css =
4489 container_of(ref, struct cgroup_subsys_state, refcnt);
4490
223dbc38 4491 INIT_WORK(&css->destroy_work, css_killed_work_fn);
e5fca243 4492 queue_work(cgroup_destroy_wq, &css->destroy_work);
d3daf28d
TH
4493}
4494
f392e51c
TH
4495/**
4496 * kill_css - destroy a css
4497 * @css: css to destroy
4498 *
4499 * This function initiates destruction of @css by removing cgroup interface
4500 * files and putting its base reference. ->css_offline() will be invoked
ec903c0c
TH
4501 * asynchronously once css_tryget_online() is guaranteed to fail and when
4502 * the reference count reaches zero, @css will be released.
f392e51c
TH
4503 */
4504static void kill_css(struct cgroup_subsys_state *css)
edae0c33 4505{
01f6474c 4506 lockdep_assert_held(&cgroup_mutex);
94419627 4507
2bd59d48
TH
4508 /*
4509 * This must happen before css is disassociated with its cgroup.
4510 * See seq_css() for details.
4511 */
aec25020 4512 cgroup_clear_dir(css->cgroup, 1 << css->ss->id);
3c14f8b4 4513
edae0c33
TH
4514 /*
4515 * Killing would put the base ref, but we need to keep it alive
4516 * until after ->css_offline().
4517 */
4518 css_get(css);
4519
4520 /*
4521 * cgroup core guarantees that, by the time ->css_offline() is
4522 * invoked, no new css reference will be given out via
ec903c0c 4523 * css_tryget_online(). We can't simply call percpu_ref_kill() and
edae0c33
TH
4524 * proceed to offlining css's because percpu_ref_kill() doesn't
4525 * guarantee that the ref is seen as killed on all CPUs on return.
4526 *
4527 * Use percpu_ref_kill_and_confirm() to get notifications as each
4528 * css is confirmed to be seen as killed on all CPUs.
4529 */
4530 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
d3daf28d
TH
4531}
4532
4533/**
4534 * cgroup_destroy_locked - the first stage of cgroup destruction
4535 * @cgrp: cgroup to be destroyed
4536 *
4537 * css's make use of percpu refcnts whose killing latency shouldn't be
4538 * exposed to userland and are RCU protected. Also, cgroup core needs to
ec903c0c
TH
4539 * guarantee that css_tryget_online() won't succeed by the time
4540 * ->css_offline() is invoked. To satisfy all the requirements,
4541 * destruction is implemented in the following two steps.
d3daf28d
TH
4542 *
4543 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
4544 * userland visible parts and start killing the percpu refcnts of
4545 * css's. Set up so that the next stage will be kicked off once all
4546 * the percpu refcnts are confirmed to be killed.
4547 *
4548 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
4549 * rest of destruction. Once all cgroup references are gone, the
4550 * cgroup is RCU-freed.
4551 *
4552 * This function implements s1. After this step, @cgrp is gone as far as
4553 * the userland is concerned and a new cgroup with the same name may be
4554 * created. As cgroup doesn't care about the names internally, this
4555 * doesn't cause any problem.
4556 */
42809dd4
TH
4557static int cgroup_destroy_locked(struct cgroup *cgrp)
4558 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
ddbcc7e8 4559{
2bd59d48 4560 struct cgroup_subsys_state *css;
ddd69148 4561 bool empty;
1c6727af 4562 int ssid;
ddbcc7e8 4563
42809dd4
TH
4564 lockdep_assert_held(&cgroup_mutex);
4565
ddd69148 4566 /*
96d365e0 4567 * css_set_rwsem synchronizes access to ->cset_links and prevents
89c5509b 4568 * @cgrp from being removed while put_css_set() is in progress.
ddd69148 4569 */
96d365e0 4570 down_read(&css_set_rwsem);
bb78a92f 4571 empty = list_empty(&cgrp->cset_links);
96d365e0 4572 up_read(&css_set_rwsem);
ddd69148 4573 if (!empty)
ddbcc7e8 4574 return -EBUSY;
a043e3b2 4575
bb78a92f 4576 /*
d5c419b6
TH
4577 * Make sure there's no live children. We can't test emptiness of
4578 * ->self.children as dead children linger on it while being
4579 * drained; otherwise, "rmdir parent/child parent" may fail.
bb78a92f 4580 */
f3d46500 4581 if (css_has_online_children(&cgrp->self))
bb78a92f
HD
4582 return -EBUSY;
4583
455050d2
TH
4584 /*
4585 * Mark @cgrp dead. This prevents further task migration and child
de3f0341 4586 * creation by disabling cgroup_lock_live_group().
455050d2 4587 */
184faf32 4588 cgrp->self.flags &= ~CSS_ONLINE;
ddbcc7e8 4589
249f3468 4590 /* initiate massacre of all css's */
1c6727af
TH
4591 for_each_css(css, ssid, cgrp)
4592 kill_css(css);
455050d2 4593
184faf32 4594 /* CSS_ONLINE is clear, remove from ->release_list for the last time */
455050d2
TH
4595 raw_spin_lock(&release_list_lock);
4596 if (!list_empty(&cgrp->release_list))
4597 list_del_init(&cgrp->release_list);
4598 raw_spin_unlock(&release_list_lock);
4599
4600 /*
01f6474c
TH
4601 * Remove @cgrp directory along with the base files. @cgrp has an
4602 * extra ref on its kn.
f20104de 4603 */
01f6474c 4604 kernfs_remove(cgrp->kn);
f20104de 4605
d51f39b0
TH
4606 set_bit(CGRP_RELEASABLE, &cgroup_parent(cgrp)->flags);
4607 check_for_release(cgroup_parent(cgrp));
2bd59d48 4608
249f3468 4609 /* put the base reference */
9d755d33 4610 percpu_ref_kill(&cgrp->self.refcnt);
455050d2 4611
ea15f8cc
TH
4612 return 0;
4613};
4614
2bd59d48 4615static int cgroup_rmdir(struct kernfs_node *kn)
42809dd4 4616{
a9746d8d 4617 struct cgroup *cgrp;
2bd59d48 4618 int ret = 0;
42809dd4 4619
a9746d8d
TH
4620 cgrp = cgroup_kn_lock_live(kn);
4621 if (!cgrp)
4622 return 0;
4623 cgroup_get(cgrp); /* for @kn->priv clearing */
42809dd4 4624
a9746d8d 4625 ret = cgroup_destroy_locked(cgrp);
2bb566cb 4626
a9746d8d 4627 cgroup_kn_unlock(kn);
8e3f6541
TH
4628
4629 /*
cfc79d5b
TH
4630 * There are two control paths which try to determine cgroup from
4631 * dentry without going through kernfs - cgroupstats_build() and
4632 * css_tryget_online_from_dir(). Those are supported by RCU
4633 * protecting clearing of cgrp->kn->priv backpointer, which should
4634 * happen after all files under it have been removed.
8e3f6541 4635 */
cfc79d5b
TH
4636 if (!ret)
4637 RCU_INIT_POINTER(*(void __rcu __force **)&kn->priv, NULL);
2bb566cb 4638
2bd59d48 4639 cgroup_put(cgrp);
42809dd4 4640 return ret;
8e3f6541
TH
4641}
4642
2bd59d48
TH
4643static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
4644 .remount_fs = cgroup_remount,
4645 .show_options = cgroup_show_options,
4646 .mkdir = cgroup_mkdir,
4647 .rmdir = cgroup_rmdir,
4648 .rename = cgroup_rename,
4649};
4650
15a4c835 4651static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
ddbcc7e8 4652{
ddbcc7e8 4653 struct cgroup_subsys_state *css;
cfe36bde
DC
4654
4655 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
ddbcc7e8 4656
648bb56d
TH
4657 mutex_lock(&cgroup_mutex);
4658
15a4c835 4659 idr_init(&ss->css_idr);
0adb0704 4660 INIT_LIST_HEAD(&ss->cfts);
8e3f6541 4661
3dd06ffa
TH
4662 /* Create the root cgroup state for this subsystem */
4663 ss->root = &cgrp_dfl_root;
4664 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
ddbcc7e8
PM
4665 /* We don't handle early failures gracefully */
4666 BUG_ON(IS_ERR(css));
ddfcadab 4667 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
3b514d24
TH
4668
4669 /*
4670 * Root csses are never destroyed and we can't initialize
4671 * percpu_ref during early init. Disable refcnting.
4672 */
4673 css->flags |= CSS_NO_REF;
4674
15a4c835 4675 if (early) {
9395a450 4676 /* allocation can't be done safely during early init */
15a4c835
TH
4677 css->id = 1;
4678 } else {
4679 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
4680 BUG_ON(css->id < 0);
4681 }
ddbcc7e8 4682
e8d55fde 4683 /* Update the init_css_set to contain a subsys
817929ec 4684 * pointer to this state - since the subsystem is
e8d55fde 4685 * newly registered, all tasks and hence the
3dd06ffa 4686 * init_css_set is in the subsystem's root cgroup. */
aec25020 4687 init_css_set.subsys[ss->id] = css;
ddbcc7e8
PM
4688
4689 need_forkexit_callback |= ss->fork || ss->exit;
4690
e8d55fde
LZ
4691 /* At system boot, before all subsystems have been
4692 * registered, no tasks have been forked, so we don't
4693 * need to invoke fork callbacks here. */
4694 BUG_ON(!list_empty(&init_task.tasks));
4695
ae7f164a 4696 BUG_ON(online_css(css));
a8638030 4697
cf5d5941
BB
4698 mutex_unlock(&cgroup_mutex);
4699}
cf5d5941 4700
ddbcc7e8 4701/**
a043e3b2
LZ
4702 * cgroup_init_early - cgroup initialization at system boot
4703 *
4704 * Initialize cgroups at system boot, and initialize any
4705 * subsystems that request early init.
ddbcc7e8
PM
4706 */
4707int __init cgroup_init_early(void)
4708{
a2dd4247
TH
4709 static struct cgroup_sb_opts __initdata opts =
4710 { .flags = CGRP_ROOT_SANE_BEHAVIOR };
30159ec7 4711 struct cgroup_subsys *ss;
ddbcc7e8 4712 int i;
30159ec7 4713
3dd06ffa 4714 init_cgroup_root(&cgrp_dfl_root, &opts);
3b514d24
TH
4715 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
4716
a4ea1cc9 4717 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
817929ec 4718
3ed80a62 4719 for_each_subsys(ss, i) {
aec25020 4720 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
073219e9
TH
4721 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p name:id=%d:%s\n",
4722 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
aec25020 4723 ss->id, ss->name);
073219e9
TH
4724 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
4725 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
4726
aec25020 4727 ss->id = i;
073219e9 4728 ss->name = cgroup_subsys_name[i];
ddbcc7e8
PM
4729
4730 if (ss->early_init)
15a4c835 4731 cgroup_init_subsys(ss, true);
ddbcc7e8
PM
4732 }
4733 return 0;
4734}
4735
4736/**
a043e3b2
LZ
4737 * cgroup_init - cgroup initialization
4738 *
4739 * Register cgroup filesystem and /proc file, and initialize
4740 * any subsystems that didn't request early init.
ddbcc7e8
PM
4741 */
4742int __init cgroup_init(void)
4743{
30159ec7 4744 struct cgroup_subsys *ss;
0ac801fe 4745 unsigned long key;
172a2c06 4746 int ssid, err;
ddbcc7e8 4747
2bd59d48 4748 BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files));
ddbcc7e8 4749
54e7b4eb 4750 mutex_lock(&cgroup_mutex);
54e7b4eb 4751
82fe9b0d
TH
4752 /* Add init_css_set to the hash table */
4753 key = css_set_hash(init_css_set.subsys);
4754 hash_add(css_set_table, &init_css_set.hlist, key);
4755
3dd06ffa 4756 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
4e96ee8e 4757
54e7b4eb
TH
4758 mutex_unlock(&cgroup_mutex);
4759
172a2c06 4760 for_each_subsys(ss, ssid) {
15a4c835
TH
4761 if (ss->early_init) {
4762 struct cgroup_subsys_state *css =
4763 init_css_set.subsys[ss->id];
4764
4765 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
4766 GFP_KERNEL);
4767 BUG_ON(css->id < 0);
4768 } else {
4769 cgroup_init_subsys(ss, false);
4770 }
172a2c06 4771
2d8f243a
TH
4772 list_add_tail(&init_css_set.e_cset_node[ssid],
4773 &cgrp_dfl_root.cgrp.e_csets[ssid]);
172a2c06
TH
4774
4775 /*
c731ae1d
LZ
4776 * Setting dfl_root subsys_mask needs to consider the
4777 * disabled flag and cftype registration needs kmalloc,
4778 * both of which aren't available during early_init.
172a2c06 4779 */
c731ae1d
LZ
4780 if (!ss->disabled) {
4781 cgrp_dfl_root.subsys_mask |= 1 << ss->id;
172a2c06 4782 WARN_ON(cgroup_add_cftypes(ss, ss->base_cftypes));
c731ae1d 4783 }
676db4af
GKH
4784 }
4785
676db4af 4786 cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
2bd59d48
TH
4787 if (!cgroup_kobj)
4788 return -ENOMEM;
676db4af 4789
ddbcc7e8 4790 err = register_filesystem(&cgroup_fs_type);
676db4af
GKH
4791 if (err < 0) {
4792 kobject_put(cgroup_kobj);
2bd59d48 4793 return err;
676db4af 4794 }
ddbcc7e8 4795
46ae220b 4796 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
2bd59d48 4797 return 0;
ddbcc7e8 4798}
b4f48b63 4799
e5fca243
TH
4800static int __init cgroup_wq_init(void)
4801{
4802 /*
4803 * There isn't much point in executing destruction path in
4804 * parallel. Good chunk is serialized with cgroup_mutex anyway.
1a11533f 4805 * Use 1 for @max_active.
e5fca243
TH
4806 *
4807 * We would prefer to do this in cgroup_init() above, but that
4808 * is called before init_workqueues(): so leave this until after.
4809 */
1a11533f 4810 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
e5fca243 4811 BUG_ON(!cgroup_destroy_wq);
b1a21367
TH
4812
4813 /*
4814 * Used to destroy pidlists and separate to serve as flush domain.
4815 * Cap @max_active to 1 too.
4816 */
4817 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
4818 0, 1);
4819 BUG_ON(!cgroup_pidlist_destroy_wq);
4820
e5fca243
TH
4821 return 0;
4822}
4823core_initcall(cgroup_wq_init);
4824
a424316c
PM
4825/*
4826 * proc_cgroup_show()
4827 * - Print task's cgroup paths into seq_file, one line for each hierarchy
4828 * - Used for /proc/<pid>/cgroup.
a424316c
PM
4829 */
4830
4831/* TODO: Use a proper seq_file iterator */
8d8b97ba 4832int proc_cgroup_show(struct seq_file *m, void *v)
a424316c
PM
4833{
4834 struct pid *pid;
4835 struct task_struct *tsk;
e61734c5 4836 char *buf, *path;
a424316c 4837 int retval;
3dd06ffa 4838 struct cgroup_root *root;
a424316c
PM
4839
4840 retval = -ENOMEM;
e61734c5 4841 buf = kmalloc(PATH_MAX, GFP_KERNEL);
a424316c
PM
4842 if (!buf)
4843 goto out;
4844
4845 retval = -ESRCH;
4846 pid = m->private;
4847 tsk = get_pid_task(pid, PIDTYPE_PID);
4848 if (!tsk)
4849 goto out_free;
4850
4851 retval = 0;
4852
4853 mutex_lock(&cgroup_mutex);
96d365e0 4854 down_read(&css_set_rwsem);
a424316c 4855
985ed670 4856 for_each_root(root) {
a424316c 4857 struct cgroup_subsys *ss;
bd89aabc 4858 struct cgroup *cgrp;
b85d2040 4859 int ssid, count = 0;
a424316c 4860
a2dd4247 4861 if (root == &cgrp_dfl_root && !cgrp_dfl_root_visible)
985ed670
TH
4862 continue;
4863
2c6ab6d2 4864 seq_printf(m, "%d:", root->hierarchy_id);
b85d2040 4865 for_each_subsys(ss, ssid)
f392e51c 4866 if (root->subsys_mask & (1 << ssid))
b85d2040 4867 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
c6d57f33
PM
4868 if (strlen(root->name))
4869 seq_printf(m, "%sname=%s", count ? "," : "",
4870 root->name);
a424316c 4871 seq_putc(m, ':');
7717f7ba 4872 cgrp = task_cgroup_from_root(tsk, root);
e61734c5
TH
4873 path = cgroup_path(cgrp, buf, PATH_MAX);
4874 if (!path) {
4875 retval = -ENAMETOOLONG;
a424316c 4876 goto out_unlock;
e61734c5
TH
4877 }
4878 seq_puts(m, path);
a424316c
PM
4879 seq_putc(m, '\n');
4880 }
4881
4882out_unlock:
96d365e0 4883 up_read(&css_set_rwsem);
a424316c
PM
4884 mutex_unlock(&cgroup_mutex);
4885 put_task_struct(tsk);
4886out_free:
4887 kfree(buf);
4888out:
4889 return retval;
4890}
4891
a424316c
PM
4892/* Display information about each subsystem and each hierarchy */
4893static int proc_cgroupstats_show(struct seq_file *m, void *v)
4894{
30159ec7 4895 struct cgroup_subsys *ss;
a424316c 4896 int i;
a424316c 4897
8bab8dde 4898 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
aae8aab4
BB
4899 /*
4900 * ideally we don't want subsystems moving around while we do this.
4901 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
4902 * subsys/hierarchy state.
4903 */
a424316c 4904 mutex_lock(&cgroup_mutex);
30159ec7
TH
4905
4906 for_each_subsys(ss, i)
2c6ab6d2
PM
4907 seq_printf(m, "%s\t%d\t%d\t%d\n",
4908 ss->name, ss->root->hierarchy_id,
3c9c825b 4909 atomic_read(&ss->root->nr_cgrps), !ss->disabled);
30159ec7 4910
a424316c
PM
4911 mutex_unlock(&cgroup_mutex);
4912 return 0;
4913}
4914
4915static int cgroupstats_open(struct inode *inode, struct file *file)
4916{
9dce07f1 4917 return single_open(file, proc_cgroupstats_show, NULL);
a424316c
PM
4918}
4919
828c0950 4920static const struct file_operations proc_cgroupstats_operations = {
a424316c
PM
4921 .open = cgroupstats_open,
4922 .read = seq_read,
4923 .llseek = seq_lseek,
4924 .release = single_release,
4925};
4926
b4f48b63 4927/**
eaf797ab 4928 * cgroup_fork - initialize cgroup related fields during copy_process()
a043e3b2 4929 * @child: pointer to task_struct of forking parent process.
b4f48b63 4930 *
eaf797ab
TH
4931 * A task is associated with the init_css_set until cgroup_post_fork()
4932 * attaches it to the parent's css_set. Empty cg_list indicates that
4933 * @child isn't holding reference to its css_set.
b4f48b63
PM
4934 */
4935void cgroup_fork(struct task_struct *child)
4936{
eaf797ab 4937 RCU_INIT_POINTER(child->cgroups, &init_css_set);
817929ec 4938 INIT_LIST_HEAD(&child->cg_list);
b4f48b63
PM
4939}
4940
817929ec 4941/**
a043e3b2
LZ
4942 * cgroup_post_fork - called on a new task after adding it to the task list
4943 * @child: the task in question
4944 *
5edee61e
TH
4945 * Adds the task to the list running through its css_set if necessary and
4946 * call the subsystem fork() callbacks. Has to be after the task is
4947 * visible on the task list in case we race with the first call to
0942eeee 4948 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5edee61e 4949 * list.
a043e3b2 4950 */
817929ec
PM
4951void cgroup_post_fork(struct task_struct *child)
4952{
30159ec7 4953 struct cgroup_subsys *ss;
5edee61e
TH
4954 int i;
4955
3ce3230a 4956 /*
eaf797ab
TH
4957 * This may race against cgroup_enable_task_cg_links(). As that
4958 * function sets use_task_css_set_links before grabbing
4959 * tasklist_lock and we just went through tasklist_lock to add
4960 * @child, it's guaranteed that either we see the set
4961 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
4962 * @child during its iteration.
4963 *
4964 * If we won the race, @child is associated with %current's
4965 * css_set. Grabbing css_set_rwsem guarantees both that the
4966 * association is stable, and, on completion of the parent's
4967 * migration, @child is visible in the source of migration or
4968 * already in the destination cgroup. This guarantee is necessary
4969 * when implementing operations which need to migrate all tasks of
4970 * a cgroup to another.
4971 *
4972 * Note that if we lose to cgroup_enable_task_cg_links(), @child
4973 * will remain in init_css_set. This is safe because all tasks are
4974 * in the init_css_set before cg_links is enabled and there's no
4975 * operation which transfers all tasks out of init_css_set.
3ce3230a 4976 */
817929ec 4977 if (use_task_css_set_links) {
eaf797ab
TH
4978 struct css_set *cset;
4979
96d365e0 4980 down_write(&css_set_rwsem);
0e1d768f 4981 cset = task_css_set(current);
eaf797ab
TH
4982 if (list_empty(&child->cg_list)) {
4983 rcu_assign_pointer(child->cgroups, cset);
4984 list_add(&child->cg_list, &cset->tasks);
4985 get_css_set(cset);
4986 }
96d365e0 4987 up_write(&css_set_rwsem);
817929ec 4988 }
5edee61e
TH
4989
4990 /*
4991 * Call ss->fork(). This must happen after @child is linked on
4992 * css_set; otherwise, @child might change state between ->fork()
4993 * and addition to css_set.
4994 */
4995 if (need_forkexit_callback) {
3ed80a62 4996 for_each_subsys(ss, i)
5edee61e
TH
4997 if (ss->fork)
4998 ss->fork(child);
5edee61e 4999 }
817929ec 5000}
5edee61e 5001
b4f48b63
PM
5002/**
5003 * cgroup_exit - detach cgroup from exiting task
5004 * @tsk: pointer to task_struct of exiting process
5005 *
5006 * Description: Detach cgroup from @tsk and release it.
5007 *
5008 * Note that cgroups marked notify_on_release force every task in
5009 * them to take the global cgroup_mutex mutex when exiting.
5010 * This could impact scaling on very large systems. Be reluctant to
5011 * use notify_on_release cgroups where very high task exit scaling
5012 * is required on large systems.
5013 *
0e1d768f
TH
5014 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We
5015 * call cgroup_exit() while the task is still competent to handle
5016 * notify_on_release(), then leave the task attached to the root cgroup in
5017 * each hierarchy for the remainder of its exit. No need to bother with
5018 * init_css_set refcnting. init_css_set never goes away and we can't race
e8604cb4 5019 * with migration path - PF_EXITING is visible to migration path.
b4f48b63 5020 */
1ec41830 5021void cgroup_exit(struct task_struct *tsk)
b4f48b63 5022{
30159ec7 5023 struct cgroup_subsys *ss;
5abb8855 5024 struct css_set *cset;
eaf797ab 5025 bool put_cset = false;
d41d5a01 5026 int i;
817929ec
PM
5027
5028 /*
0e1d768f
TH
5029 * Unlink from @tsk from its css_set. As migration path can't race
5030 * with us, we can check cg_list without grabbing css_set_rwsem.
817929ec
PM
5031 */
5032 if (!list_empty(&tsk->cg_list)) {
96d365e0 5033 down_write(&css_set_rwsem);
0e1d768f 5034 list_del_init(&tsk->cg_list);
96d365e0 5035 up_write(&css_set_rwsem);
0e1d768f 5036 put_cset = true;
817929ec
PM
5037 }
5038
b4f48b63 5039 /* Reassign the task to the init_css_set. */
a8ad805c
TH
5040 cset = task_css_set(tsk);
5041 RCU_INIT_POINTER(tsk->cgroups, &init_css_set);
d41d5a01 5042
1ec41830 5043 if (need_forkexit_callback) {
3ed80a62
TH
5044 /* see cgroup_post_fork() for details */
5045 for_each_subsys(ss, i) {
d41d5a01 5046 if (ss->exit) {
eb95419b
TH
5047 struct cgroup_subsys_state *old_css = cset->subsys[i];
5048 struct cgroup_subsys_state *css = task_css(tsk, i);
30159ec7 5049
eb95419b 5050 ss->exit(css, old_css, tsk);
d41d5a01
PZ
5051 }
5052 }
5053 }
d41d5a01 5054
eaf797ab
TH
5055 if (put_cset)
5056 put_css_set(cset, true);
b4f48b63 5057}
697f4161 5058
bd89aabc 5059static void check_for_release(struct cgroup *cgrp)
81a6a5cd 5060{
f3d46500
TH
5061 if (cgroup_is_releasable(cgrp) && list_empty(&cgrp->cset_links) &&
5062 !css_has_online_children(&cgrp->self)) {
f50daa70
LZ
5063 /*
5064 * Control Group is currently removeable. If it's not
81a6a5cd 5065 * already queued for a userspace notification, queue
f50daa70
LZ
5066 * it now
5067 */
81a6a5cd 5068 int need_schedule_work = 0;
f50daa70 5069
cdcc136f 5070 raw_spin_lock(&release_list_lock);
54766d4a 5071 if (!cgroup_is_dead(cgrp) &&
bd89aabc
PM
5072 list_empty(&cgrp->release_list)) {
5073 list_add(&cgrp->release_list, &release_list);
81a6a5cd
PM
5074 need_schedule_work = 1;
5075 }
cdcc136f 5076 raw_spin_unlock(&release_list_lock);
81a6a5cd
PM
5077 if (need_schedule_work)
5078 schedule_work(&release_agent_work);
5079 }
5080}
5081
81a6a5cd
PM
5082/*
5083 * Notify userspace when a cgroup is released, by running the
5084 * configured release agent with the name of the cgroup (path
5085 * relative to the root of cgroup file system) as the argument.
5086 *
5087 * Most likely, this user command will try to rmdir this cgroup.
5088 *
5089 * This races with the possibility that some other task will be
5090 * attached to this cgroup before it is removed, or that some other
5091 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
5092 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
5093 * unused, and this cgroup will be reprieved from its death sentence,
5094 * to continue to serve a useful existence. Next time it's released,
5095 * we will get notified again, if it still has 'notify_on_release' set.
5096 *
5097 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
5098 * means only wait until the task is successfully execve()'d. The
5099 * separate release agent task is forked by call_usermodehelper(),
5100 * then control in this thread returns here, without waiting for the
5101 * release agent task. We don't bother to wait because the caller of
5102 * this routine has no use for the exit status of the release agent
5103 * task, so no sense holding our caller up for that.
81a6a5cd 5104 */
81a6a5cd
PM
5105static void cgroup_release_agent(struct work_struct *work)
5106{
5107 BUG_ON(work != &release_agent_work);
5108 mutex_lock(&cgroup_mutex);
cdcc136f 5109 raw_spin_lock(&release_list_lock);
81a6a5cd
PM
5110 while (!list_empty(&release_list)) {
5111 char *argv[3], *envp[3];
5112 int i;
e61734c5 5113 char *pathbuf = NULL, *agentbuf = NULL, *path;
bd89aabc 5114 struct cgroup *cgrp = list_entry(release_list.next,
81a6a5cd
PM
5115 struct cgroup,
5116 release_list);
bd89aabc 5117 list_del_init(&cgrp->release_list);
cdcc136f 5118 raw_spin_unlock(&release_list_lock);
e61734c5 5119 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
e788e066
PM
5120 if (!pathbuf)
5121 goto continue_free;
e61734c5
TH
5122 path = cgroup_path(cgrp, pathbuf, PATH_MAX);
5123 if (!path)
e788e066
PM
5124 goto continue_free;
5125 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
5126 if (!agentbuf)
5127 goto continue_free;
81a6a5cd
PM
5128
5129 i = 0;
e788e066 5130 argv[i++] = agentbuf;
e61734c5 5131 argv[i++] = path;
81a6a5cd
PM
5132 argv[i] = NULL;
5133
5134 i = 0;
5135 /* minimal command environment */
5136 envp[i++] = "HOME=/";
5137 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
5138 envp[i] = NULL;
5139
5140 /* Drop the lock while we invoke the usermode helper,
5141 * since the exec could involve hitting disk and hence
5142 * be a slow process */
5143 mutex_unlock(&cgroup_mutex);
5144 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
81a6a5cd 5145 mutex_lock(&cgroup_mutex);
e788e066
PM
5146 continue_free:
5147 kfree(pathbuf);
5148 kfree(agentbuf);
cdcc136f 5149 raw_spin_lock(&release_list_lock);
81a6a5cd 5150 }
cdcc136f 5151 raw_spin_unlock(&release_list_lock);
81a6a5cd
PM
5152 mutex_unlock(&cgroup_mutex);
5153}
8bab8dde
PM
5154
5155static int __init cgroup_disable(char *str)
5156{
30159ec7 5157 struct cgroup_subsys *ss;
8bab8dde 5158 char *token;
30159ec7 5159 int i;
8bab8dde
PM
5160
5161 while ((token = strsep(&str, ",")) != NULL) {
5162 if (!*token)
5163 continue;
be45c900 5164
3ed80a62 5165 for_each_subsys(ss, i) {
8bab8dde
PM
5166 if (!strcmp(token, ss->name)) {
5167 ss->disabled = 1;
5168 printk(KERN_INFO "Disabling %s control group"
5169 " subsystem\n", ss->name);
5170 break;
5171 }
5172 }
5173 }
5174 return 1;
5175}
5176__setup("cgroup_disable=", cgroup_disable);
38460b48 5177
b77d7b60 5178/**
ec903c0c 5179 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
35cf0836
TH
5180 * @dentry: directory dentry of interest
5181 * @ss: subsystem of interest
b77d7b60 5182 *
5a17f543
TH
5183 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
5184 * to get the corresponding css and return it. If such css doesn't exist
5185 * or can't be pinned, an ERR_PTR value is returned.
e5d1367f 5186 */
ec903c0c
TH
5187struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
5188 struct cgroup_subsys *ss)
e5d1367f 5189{
2bd59d48
TH
5190 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
5191 struct cgroup_subsys_state *css = NULL;
e5d1367f 5192 struct cgroup *cgrp;
e5d1367f 5193
35cf0836 5194 /* is @dentry a cgroup dir? */
2bd59d48
TH
5195 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
5196 kernfs_type(kn) != KERNFS_DIR)
e5d1367f
SE
5197 return ERR_PTR(-EBADF);
5198
5a17f543
TH
5199 rcu_read_lock();
5200
2bd59d48
TH
5201 /*
5202 * This path doesn't originate from kernfs and @kn could already
5203 * have been or be removed at any point. @kn->priv is RCU
cfc79d5b 5204 * protected for this access. See cgroup_rmdir() for details.
2bd59d48
TH
5205 */
5206 cgrp = rcu_dereference(kn->priv);
5207 if (cgrp)
5208 css = cgroup_css(cgrp, ss);
5a17f543 5209
ec903c0c 5210 if (!css || !css_tryget_online(css))
5a17f543
TH
5211 css = ERR_PTR(-ENOENT);
5212
5213 rcu_read_unlock();
5214 return css;
e5d1367f 5215}
e5d1367f 5216
1cb650b9
LZ
5217/**
5218 * css_from_id - lookup css by id
5219 * @id: the cgroup id
5220 * @ss: cgroup subsys to be looked into
5221 *
5222 * Returns the css if there's valid one with @id, otherwise returns NULL.
5223 * Should be called under rcu_read_lock().
5224 */
5225struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
5226{
6fa4918d 5227 WARN_ON_ONCE(!rcu_read_lock_held());
15a4c835 5228 return idr_find(&ss->css_idr, id);
e5d1367f
SE
5229}
5230
fe693435 5231#ifdef CONFIG_CGROUP_DEBUG
eb95419b
TH
5232static struct cgroup_subsys_state *
5233debug_css_alloc(struct cgroup_subsys_state *parent_css)
fe693435
PM
5234{
5235 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5236
5237 if (!css)
5238 return ERR_PTR(-ENOMEM);
5239
5240 return css;
5241}
5242
eb95419b 5243static void debug_css_free(struct cgroup_subsys_state *css)
fe693435 5244{
eb95419b 5245 kfree(css);
fe693435
PM
5246}
5247
182446d0
TH
5248static u64 debug_taskcount_read(struct cgroup_subsys_state *css,
5249 struct cftype *cft)
fe693435 5250{
182446d0 5251 return cgroup_task_count(css->cgroup);
fe693435
PM
5252}
5253
182446d0
TH
5254static u64 current_css_set_read(struct cgroup_subsys_state *css,
5255 struct cftype *cft)
fe693435
PM
5256{
5257 return (u64)(unsigned long)current->cgroups;
5258}
5259
182446d0 5260static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css,
03c78cbe 5261 struct cftype *cft)
fe693435
PM
5262{
5263 u64 count;
5264
5265 rcu_read_lock();
a8ad805c 5266 count = atomic_read(&task_css_set(current)->refcount);
fe693435
PM
5267 rcu_read_unlock();
5268 return count;
5269}
5270
2da8ca82 5271static int current_css_set_cg_links_read(struct seq_file *seq, void *v)
7717f7ba 5272{
69d0206c 5273 struct cgrp_cset_link *link;
5abb8855 5274 struct css_set *cset;
e61734c5
TH
5275 char *name_buf;
5276
5277 name_buf = kmalloc(NAME_MAX + 1, GFP_KERNEL);
5278 if (!name_buf)
5279 return -ENOMEM;
7717f7ba 5280
96d365e0 5281 down_read(&css_set_rwsem);
7717f7ba 5282 rcu_read_lock();
5abb8855 5283 cset = rcu_dereference(current->cgroups);
69d0206c 5284 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 5285 struct cgroup *c = link->cgrp;
7717f7ba 5286
a2dd4247 5287 cgroup_name(c, name_buf, NAME_MAX + 1);
2c6ab6d2 5288 seq_printf(seq, "Root %d group %s\n",
a2dd4247 5289 c->root->hierarchy_id, name_buf);
7717f7ba
PM
5290 }
5291 rcu_read_unlock();
96d365e0 5292 up_read(&css_set_rwsem);
e61734c5 5293 kfree(name_buf);
7717f7ba
PM
5294 return 0;
5295}
5296
5297#define MAX_TASKS_SHOWN_PER_CSS 25
2da8ca82 5298static int cgroup_css_links_read(struct seq_file *seq, void *v)
7717f7ba 5299{
2da8ca82 5300 struct cgroup_subsys_state *css = seq_css(seq);
69d0206c 5301 struct cgrp_cset_link *link;
7717f7ba 5302
96d365e0 5303 down_read(&css_set_rwsem);
182446d0 5304 list_for_each_entry(link, &css->cgroup->cset_links, cset_link) {
69d0206c 5305 struct css_set *cset = link->cset;
7717f7ba
PM
5306 struct task_struct *task;
5307 int count = 0;
c7561128 5308
5abb8855 5309 seq_printf(seq, "css_set %p\n", cset);
c7561128 5310
5abb8855 5311 list_for_each_entry(task, &cset->tasks, cg_list) {
c7561128
TH
5312 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
5313 goto overflow;
5314 seq_printf(seq, " task %d\n", task_pid_vnr(task));
5315 }
5316
5317 list_for_each_entry(task, &cset->mg_tasks, cg_list) {
5318 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
5319 goto overflow;
5320 seq_printf(seq, " task %d\n", task_pid_vnr(task));
7717f7ba 5321 }
c7561128
TH
5322 continue;
5323 overflow:
5324 seq_puts(seq, " ...\n");
7717f7ba 5325 }
96d365e0 5326 up_read(&css_set_rwsem);
7717f7ba
PM
5327 return 0;
5328}
5329
182446d0 5330static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft)
fe693435 5331{
182446d0 5332 return test_bit(CGRP_RELEASABLE, &css->cgroup->flags);
fe693435
PM
5333}
5334
5335static struct cftype debug_files[] = {
fe693435
PM
5336 {
5337 .name = "taskcount",
5338 .read_u64 = debug_taskcount_read,
5339 },
5340
5341 {
5342 .name = "current_css_set",
5343 .read_u64 = current_css_set_read,
5344 },
5345
5346 {
5347 .name = "current_css_set_refcount",
5348 .read_u64 = current_css_set_refcount_read,
5349 },
5350
7717f7ba
PM
5351 {
5352 .name = "current_css_set_cg_links",
2da8ca82 5353 .seq_show = current_css_set_cg_links_read,
7717f7ba
PM
5354 },
5355
5356 {
5357 .name = "cgroup_css_links",
2da8ca82 5358 .seq_show = cgroup_css_links_read,
7717f7ba
PM
5359 },
5360
fe693435
PM
5361 {
5362 .name = "releasable",
5363 .read_u64 = releasable_read,
5364 },
fe693435 5365
4baf6e33
TH
5366 { } /* terminate */
5367};
fe693435 5368
073219e9 5369struct cgroup_subsys debug_cgrp_subsys = {
92fb9748
TH
5370 .css_alloc = debug_css_alloc,
5371 .css_free = debug_css_free,
4baf6e33 5372 .base_cftypes = debug_files,
fe693435
PM
5373};
5374#endif /* CONFIG_CGROUP_DEBUG */