]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - kernel/cgroup.c
cgroup: separate out interface file creation from css creation
[mirror_ubuntu-zesty-kernel.git] / kernel / cgroup.c
CommitLineData
ddbcc7e8 1/*
ddbcc7e8
PM
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
0dea1168
KS
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
ddbcc7e8
PM
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
ed3d261b
JP
29#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
ddbcc7e8 31#include <linux/cgroup.h>
2ce9738b 32#include <linux/cred.h>
c6d57f33 33#include <linux/ctype.h>
ddbcc7e8 34#include <linux/errno.h>
2ce9738b 35#include <linux/init_task.h>
ddbcc7e8
PM
36#include <linux/kernel.h>
37#include <linux/list.h>
c9482a5b 38#include <linux/magic.h>
ddbcc7e8
PM
39#include <linux/mm.h>
40#include <linux/mutex.h>
41#include <linux/mount.h>
42#include <linux/pagemap.h>
a424316c 43#include <linux/proc_fs.h>
ddbcc7e8
PM
44#include <linux/rcupdate.h>
45#include <linux/sched.h>
ddbcc7e8 46#include <linux/slab.h>
ddbcc7e8 47#include <linux/spinlock.h>
1ed13287 48#include <linux/percpu-rwsem.h>
ddbcc7e8 49#include <linux/string.h>
bbcb81d0 50#include <linux/sort.h>
81a6a5cd 51#include <linux/kmod.h>
846c7bb0
BS
52#include <linux/delayacct.h>
53#include <linux/cgroupstats.h>
0ac801fe 54#include <linux/hashtable.h>
096b7fe0 55#include <linux/pid_namespace.h>
2c6ab6d2 56#include <linux/idr.h>
d1d9fd33 57#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
c4c27fbd 58#include <linux/kthread.h>
776f02fa 59#include <linux/delay.h>
60063497 60#include <linux/atomic.h>
e93ad19d 61#include <linux/cpuset.h>
bd1060a1 62#include <net/sock.h>
ddbcc7e8 63
b1a21367
TH
64/*
65 * pidlists linger the following amount before being destroyed. The goal
66 * is avoiding frequent destruction in the middle of consecutive read calls
67 * Expiring in the middle is a performance problem not a correctness one.
68 * 1 sec should be enough.
69 */
70#define CGROUP_PIDLIST_DESTROY_DELAY HZ
71
8d7e6fb0
TH
72#define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
73 MAX_CFTYPE_NAME + 2)
74
e25e2cbb
TH
75/*
76 * cgroup_mutex is the master lock. Any modification to cgroup or its
77 * hierarchy must be performed while holding it.
78 *
f0d9a5f1 79 * css_set_lock protects task->cgroups pointer, the list of css_set
0e1d768f 80 * objects, and the chain of tasks off each css_set.
e25e2cbb 81 *
0e1d768f
TH
82 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
83 * cgroup.h can use them for lockdep annotations.
e25e2cbb 84 */
2219449a
TH
85#ifdef CONFIG_PROVE_RCU
86DEFINE_MUTEX(cgroup_mutex);
f0d9a5f1 87DEFINE_SPINLOCK(css_set_lock);
0e1d768f 88EXPORT_SYMBOL_GPL(cgroup_mutex);
f0d9a5f1 89EXPORT_SYMBOL_GPL(css_set_lock);
2219449a 90#else
81a6a5cd 91static DEFINE_MUTEX(cgroup_mutex);
f0d9a5f1 92static DEFINE_SPINLOCK(css_set_lock);
2219449a
TH
93#endif
94
6fa4918d 95/*
15a4c835
TH
96 * Protects cgroup_idr and css_idr so that IDs can be released without
97 * grabbing cgroup_mutex.
6fa4918d
TH
98 */
99static DEFINE_SPINLOCK(cgroup_idr_lock);
100
34c06254
TH
101/*
102 * Protects cgroup_file->kn for !self csses. It synchronizes notifications
103 * against file removal/re-creation across css hiding.
104 */
105static DEFINE_SPINLOCK(cgroup_file_kn_lock);
106
69e943b7
TH
107/*
108 * Protects cgroup_subsys->release_agent_path. Modifying it also requires
109 * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock.
110 */
111static DEFINE_SPINLOCK(release_agent_path_lock);
81a6a5cd 112
1ed13287
TH
113struct percpu_rw_semaphore cgroup_threadgroup_rwsem;
114
8353da1f 115#define cgroup_assert_mutex_or_rcu_locked() \
f78f5b90
PM
116 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
117 !lockdep_is_held(&cgroup_mutex), \
8353da1f 118 "cgroup_mutex or RCU read lock required");
780cd8b3 119
e5fca243
TH
120/*
121 * cgroup destruction makes heavy use of work items and there can be a lot
122 * of concurrent destructions. Use a separate workqueue so that cgroup
123 * destruction work items don't end up filling up max_active of system_wq
124 * which may lead to deadlock.
125 */
126static struct workqueue_struct *cgroup_destroy_wq;
127
b1a21367
TH
128/*
129 * pidlist destructions need to be flushed on cgroup destruction. Use a
130 * separate workqueue as flush domain.
131 */
132static struct workqueue_struct *cgroup_pidlist_destroy_wq;
133
3ed80a62 134/* generate an array of cgroup subsystem pointers */
073219e9 135#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
3ed80a62 136static struct cgroup_subsys *cgroup_subsys[] = {
ddbcc7e8
PM
137#include <linux/cgroup_subsys.h>
138};
073219e9
TH
139#undef SUBSYS
140
141/* array of cgroup subsystem names */
142#define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
143static const char *cgroup_subsys_name[] = {
ddbcc7e8
PM
144#include <linux/cgroup_subsys.h>
145};
073219e9 146#undef SUBSYS
ddbcc7e8 147
49d1dc4b
TH
148/* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
149#define SUBSYS(_x) \
150 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \
151 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \
152 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \
153 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
154#include <linux/cgroup_subsys.h>
155#undef SUBSYS
156
157#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
158static struct static_key_true *cgroup_subsys_enabled_key[] = {
159#include <linux/cgroup_subsys.h>
160};
161#undef SUBSYS
162
163#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
164static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
165#include <linux/cgroup_subsys.h>
166};
167#undef SUBSYS
168
ddbcc7e8 169/*
3dd06ffa 170 * The default hierarchy, reserved for the subsystems that are otherwise
9871bf95
TH
171 * unattached - it never has more than a single cgroup, and all tasks are
172 * part of that cgroup.
ddbcc7e8 173 */
a2dd4247 174struct cgroup_root cgrp_dfl_root;
d0ec4230 175EXPORT_SYMBOL_GPL(cgrp_dfl_root);
9871bf95 176
a2dd4247
TH
177/*
178 * The default hierarchy always exists but is hidden until mounted for the
179 * first time. This is for backward compatibility.
180 */
a7165264 181static bool cgrp_dfl_visible;
ddbcc7e8 182
223ffb29 183/* Controllers blocked by the commandline in v1 */
6e5c8307 184static u16 cgroup_no_v1_mask;
223ffb29 185
5533e011 186/* some controllers are not supported in the default hierarchy */
a7165264 187static u16 cgrp_dfl_inhibit_ss_mask;
5533e011 188
ddbcc7e8
PM
189/* The list of hierarchy roots */
190
9871bf95
TH
191static LIST_HEAD(cgroup_roots);
192static int cgroup_root_count;
ddbcc7e8 193
3417ae1f 194/* hierarchy ID allocation and mapping, protected by cgroup_mutex */
1a574231 195static DEFINE_IDR(cgroup_hierarchy_idr);
2c6ab6d2 196
794611a1 197/*
0cb51d71
TH
198 * Assign a monotonically increasing serial number to csses. It guarantees
199 * cgroups with bigger numbers are newer than those with smaller numbers.
200 * Also, as csses are always appended to the parent's ->children list, it
201 * guarantees that sibling csses are always sorted in the ascending serial
202 * number order on the list. Protected by cgroup_mutex.
794611a1 203 */
0cb51d71 204static u64 css_serial_nr_next = 1;
794611a1 205
cb4a3167
AS
206/*
207 * These bitmask flags indicate whether tasks in the fork and exit paths have
208 * fork/exit handlers to call. This avoids us having to do extra work in the
209 * fork/exit path to check which subsystems have fork/exit callbacks.
ddbcc7e8 210 */
6e5c8307
TH
211static u16 have_fork_callback __read_mostly;
212static u16 have_exit_callback __read_mostly;
213static u16 have_free_callback __read_mostly;
ddbcc7e8 214
7e47682e 215/* Ditto for the can_fork callback. */
6e5c8307 216static u16 have_canfork_callback __read_mostly;
7e47682e 217
67e9c74b 218static struct file_system_type cgroup2_fs_type;
a14c6874
TH
219static struct cftype cgroup_dfl_base_files[];
220static struct cftype cgroup_legacy_base_files[];
628f7cd4 221
6e5c8307 222static int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask);
ed27b9f7 223static void css_task_iter_advance(struct css_task_iter *it);
42809dd4 224static int cgroup_destroy_locked(struct cgroup *cgrp);
6cd0f5bb
TH
225static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
226 struct cgroup_subsys *ss);
9d755d33 227static void css_release(struct percpu_ref *ref);
f8f22e53 228static void kill_css(struct cgroup_subsys_state *css);
4df8dc90
TH
229static int cgroup_addrm_files(struct cgroup_subsys_state *css,
230 struct cgroup *cgrp, struct cftype cfts[],
2bb566cb 231 bool is_add);
42809dd4 232
fc5ed1e9
TH
233/**
234 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
235 * @ssid: subsys ID of interest
236 *
237 * cgroup_subsys_enabled() can only be used with literal subsys names which
238 * is fine for individual subsystems but unsuitable for cgroup core. This
239 * is slower static_key_enabled() based test indexed by @ssid.
240 */
241static bool cgroup_ssid_enabled(int ssid)
242{
243 return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
244}
245
223ffb29
JW
246static bool cgroup_ssid_no_v1(int ssid)
247{
248 return cgroup_no_v1_mask & (1 << ssid);
249}
250
9e10a130
TH
251/**
252 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
253 * @cgrp: the cgroup of interest
254 *
255 * The default hierarchy is the v2 interface of cgroup and this function
256 * can be used to test whether a cgroup is on the default hierarchy for
257 * cases where a subsystem should behave differnetly depending on the
258 * interface version.
259 *
260 * The set of behaviors which change on the default hierarchy are still
261 * being determined and the mount option is prefixed with __DEVEL__.
262 *
263 * List of changed behaviors:
264 *
265 * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
266 * and "name" are disallowed.
267 *
268 * - When mounting an existing superblock, mount options should match.
269 *
270 * - Remount is disallowed.
271 *
272 * - rename(2) is disallowed.
273 *
274 * - "tasks" is removed. Everything should be at process granularity. Use
275 * "cgroup.procs" instead.
276 *
277 * - "cgroup.procs" is not sorted. pids will be unique unless they got
278 * recycled inbetween reads.
279 *
280 * - "release_agent" and "notify_on_release" are removed. Replacement
281 * notification mechanism will be implemented.
282 *
283 * - "cgroup.clone_children" is removed.
284 *
285 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup
286 * and its descendants contain no task; otherwise, 1. The file also
287 * generates kernfs notification which can be monitored through poll and
288 * [di]notify when the value of the file changes.
289 *
290 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
291 * take masks of ancestors with non-empty cpus/mems, instead of being
292 * moved to an ancestor.
293 *
294 * - cpuset: a task can be moved into an empty cpuset, and again it takes
295 * masks of ancestors.
296 *
297 * - memcg: use_hierarchy is on by default and the cgroup file for the flag
298 * is not created.
299 *
300 * - blkcg: blk-throttle becomes properly hierarchical.
301 *
302 * - debug: disallowed on the default hierarchy.
303 */
304static bool cgroup_on_dfl(const struct cgroup *cgrp)
305{
306 return cgrp->root == &cgrp_dfl_root;
307}
308
6fa4918d
TH
309/* IDR wrappers which synchronize using cgroup_idr_lock */
310static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
311 gfp_t gfp_mask)
312{
313 int ret;
314
315 idr_preload(gfp_mask);
54504e97 316 spin_lock_bh(&cgroup_idr_lock);
d0164adc 317 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
54504e97 318 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
319 idr_preload_end();
320 return ret;
321}
322
323static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
324{
325 void *ret;
326
54504e97 327 spin_lock_bh(&cgroup_idr_lock);
6fa4918d 328 ret = idr_replace(idr, ptr, id);
54504e97 329 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
330 return ret;
331}
332
333static void cgroup_idr_remove(struct idr *idr, int id)
334{
54504e97 335 spin_lock_bh(&cgroup_idr_lock);
6fa4918d 336 idr_remove(idr, id);
54504e97 337 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
338}
339
d51f39b0
TH
340static struct cgroup *cgroup_parent(struct cgroup *cgrp)
341{
342 struct cgroup_subsys_state *parent_css = cgrp->self.parent;
343
344 if (parent_css)
345 return container_of(parent_css, struct cgroup, self);
346 return NULL;
347}
348
95109b62
TH
349/**
350 * cgroup_css - obtain a cgroup's css for the specified subsystem
351 * @cgrp: the cgroup of interest
9d800df1 352 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
95109b62 353 *
ca8bdcaf
TH
354 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
355 * function must be called either under cgroup_mutex or rcu_read_lock() and
356 * the caller is responsible for pinning the returned css if it wants to
357 * keep accessing it outside the said locks. This function may return
358 * %NULL if @cgrp doesn't have @subsys_id enabled.
95109b62
TH
359 */
360static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
ca8bdcaf 361 struct cgroup_subsys *ss)
95109b62 362{
ca8bdcaf 363 if (ss)
aec25020 364 return rcu_dereference_check(cgrp->subsys[ss->id],
ace2bee8 365 lockdep_is_held(&cgroup_mutex));
ca8bdcaf 366 else
9d800df1 367 return &cgrp->self;
95109b62 368}
42809dd4 369
aec3dfcb
TH
370/**
371 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
372 * @cgrp: the cgroup of interest
9d800df1 373 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
aec3dfcb 374 *
d0f702e6 375 * Similar to cgroup_css() but returns the effective css, which is defined
aec3dfcb
TH
376 * as the matching css of the nearest ancestor including self which has @ss
377 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
378 * function is guaranteed to return non-NULL css.
379 */
380static struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
381 struct cgroup_subsys *ss)
382{
383 lockdep_assert_held(&cgroup_mutex);
384
385 if (!ss)
9d800df1 386 return &cgrp->self;
aec3dfcb
TH
387
388 if (!(cgrp->root->subsys_mask & (1 << ss->id)))
389 return NULL;
390
eeecbd19
TH
391 /*
392 * This function is used while updating css associations and thus
8699b776 393 * can't test the csses directly. Use ->subtree_ss_mask.
eeecbd19 394 */
d51f39b0 395 while (cgroup_parent(cgrp) &&
8699b776 396 !(cgroup_parent(cgrp)->subtree_ss_mask & (1 << ss->id)))
d51f39b0 397 cgrp = cgroup_parent(cgrp);
aec3dfcb
TH
398
399 return cgroup_css(cgrp, ss);
95109b62 400}
42809dd4 401
eeecbd19
TH
402/**
403 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
404 * @cgrp: the cgroup of interest
405 * @ss: the subsystem of interest
406 *
407 * Find and get the effective css of @cgrp for @ss. The effective css is
408 * defined as the matching css of the nearest ancestor including self which
409 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
410 * the root css is returned, so this function always returns a valid css.
411 * The returned css must be put using css_put().
412 */
413struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
414 struct cgroup_subsys *ss)
415{
416 struct cgroup_subsys_state *css;
417
418 rcu_read_lock();
419
420 do {
421 css = cgroup_css(cgrp, ss);
422
423 if (css && css_tryget_online(css))
424 goto out_unlock;
425 cgrp = cgroup_parent(cgrp);
426 } while (cgrp);
427
428 css = init_css_set.subsys[ss->id];
429 css_get(css);
430out_unlock:
431 rcu_read_unlock();
432 return css;
433}
434
ddbcc7e8 435/* convenient tests for these bits */
54766d4a 436static inline bool cgroup_is_dead(const struct cgroup *cgrp)
ddbcc7e8 437{
184faf32 438 return !(cgrp->self.flags & CSS_ONLINE);
ddbcc7e8
PM
439}
440
052c3f3a
TH
441static void cgroup_get(struct cgroup *cgrp)
442{
443 WARN_ON_ONCE(cgroup_is_dead(cgrp));
444 css_get(&cgrp->self);
445}
446
447static bool cgroup_tryget(struct cgroup *cgrp)
448{
449 return css_tryget(&cgrp->self);
450}
451
b4168640 452struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
59f5296b 453{
2bd59d48 454 struct cgroup *cgrp = of->kn->parent->priv;
b4168640 455 struct cftype *cft = of_cft(of);
2bd59d48
TH
456
457 /*
458 * This is open and unprotected implementation of cgroup_css().
459 * seq_css() is only called from a kernfs file operation which has
460 * an active reference on the file. Because all the subsystem
461 * files are drained before a css is disassociated with a cgroup,
462 * the matching css from the cgroup's subsys table is guaranteed to
463 * be and stay valid until the enclosing operation is complete.
464 */
465 if (cft->ss)
466 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
467 else
9d800df1 468 return &cgrp->self;
59f5296b 469}
b4168640 470EXPORT_SYMBOL_GPL(of_css);
59f5296b 471
e9685a03 472static int notify_on_release(const struct cgroup *cgrp)
81a6a5cd 473{
bd89aabc 474 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
81a6a5cd
PM
475}
476
1c6727af
TH
477/**
478 * for_each_css - iterate all css's of a cgroup
479 * @css: the iteration cursor
480 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
481 * @cgrp: the target cgroup to iterate css's of
482 *
aec3dfcb 483 * Should be called under cgroup_[tree_]mutex.
1c6727af
TH
484 */
485#define for_each_css(css, ssid, cgrp) \
486 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
487 if (!((css) = rcu_dereference_check( \
488 (cgrp)->subsys[(ssid)], \
489 lockdep_is_held(&cgroup_mutex)))) { } \
490 else
491
aec3dfcb
TH
492/**
493 * for_each_e_css - iterate all effective css's of a cgroup
494 * @css: the iteration cursor
495 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
496 * @cgrp: the target cgroup to iterate css's of
497 *
498 * Should be called under cgroup_[tree_]mutex.
499 */
500#define for_each_e_css(css, ssid, cgrp) \
501 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
502 if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \
503 ; \
504 else
505
30159ec7 506/**
3ed80a62 507 * for_each_subsys - iterate all enabled cgroup subsystems
30159ec7 508 * @ss: the iteration cursor
780cd8b3 509 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
30159ec7 510 */
780cd8b3 511#define for_each_subsys(ss, ssid) \
3ed80a62
TH
512 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT && \
513 (((ss) = cgroup_subsys[ssid]) || true); (ssid)++)
30159ec7 514
cb4a3167 515/**
b4e0eeaf 516 * do_each_subsys_mask - filter for_each_subsys with a bitmask
cb4a3167
AS
517 * @ss: the iteration cursor
518 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
b4e0eeaf 519 * @ss_mask: the bitmask
cb4a3167
AS
520 *
521 * The block will only run for cases where the ssid-th bit (1 << ssid) of
b4e0eeaf 522 * @ss_mask is set.
cb4a3167 523 */
b4e0eeaf
TH
524#define do_each_subsys_mask(ss, ssid, ss_mask) do { \
525 unsigned long __ss_mask = (ss_mask); \
526 if (!CGROUP_SUBSYS_COUNT) { /* to avoid spurious gcc warning */ \
4a705c5c 527 (ssid) = 0; \
b4e0eeaf
TH
528 break; \
529 } \
530 for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) { \
531 (ss) = cgroup_subsys[ssid]; \
532 {
533
534#define while_each_subsys_mask() \
535 } \
536 } \
537} while (false)
cb4a3167 538
985ed670
TH
539/* iterate across the hierarchies */
540#define for_each_root(root) \
5549c497 541 list_for_each_entry((root), &cgroup_roots, root_list)
ddbcc7e8 542
f8f22e53
TH
543/* iterate over child cgrps, lock should be held throughout iteration */
544#define cgroup_for_each_live_child(child, cgrp) \
d5c419b6 545 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
8353da1f 546 if (({ lockdep_assert_held(&cgroup_mutex); \
f8f22e53
TH
547 cgroup_is_dead(child); })) \
548 ; \
549 else
7ae1bad9 550
81a6a5cd 551static void cgroup_release_agent(struct work_struct *work);
bd89aabc 552static void check_for_release(struct cgroup *cgrp);
81a6a5cd 553
69d0206c
TH
554/*
555 * A cgroup can be associated with multiple css_sets as different tasks may
556 * belong to different cgroups on different hierarchies. In the other
557 * direction, a css_set is naturally associated with multiple cgroups.
558 * This M:N relationship is represented by the following link structure
559 * which exists for each association and allows traversing the associations
560 * from both sides.
561 */
562struct cgrp_cset_link {
563 /* the cgroup and css_set this link associates */
564 struct cgroup *cgrp;
565 struct css_set *cset;
566
567 /* list of cgrp_cset_links anchored at cgrp->cset_links */
568 struct list_head cset_link;
569
570 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
571 struct list_head cgrp_link;
817929ec
PM
572};
573
172a2c06
TH
574/*
575 * The default css_set - used by init and its children prior to any
817929ec
PM
576 * hierarchies being mounted. It contains a pointer to the root state
577 * for each subsystem. Also used to anchor the list of css_sets. Not
578 * reference-counted, to improve performance when child cgroups
579 * haven't been created.
580 */
5024ae29 581struct css_set init_css_set = {
172a2c06
TH
582 .refcount = ATOMIC_INIT(1),
583 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links),
584 .tasks = LIST_HEAD_INIT(init_css_set.tasks),
585 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks),
586 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node),
587 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node),
ed27b9f7 588 .task_iters = LIST_HEAD_INIT(init_css_set.task_iters),
172a2c06 589};
817929ec 590
172a2c06 591static int css_set_count = 1; /* 1 for init_css_set */
817929ec 592
0de0942d
TH
593/**
594 * css_set_populated - does a css_set contain any tasks?
595 * @cset: target css_set
596 */
597static bool css_set_populated(struct css_set *cset)
598{
f0d9a5f1 599 lockdep_assert_held(&css_set_lock);
0de0942d
TH
600
601 return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
602}
603
842b597e
TH
604/**
605 * cgroup_update_populated - updated populated count of a cgroup
606 * @cgrp: the target cgroup
607 * @populated: inc or dec populated count
608 *
0de0942d
TH
609 * One of the css_sets associated with @cgrp is either getting its first
610 * task or losing the last. Update @cgrp->populated_cnt accordingly. The
611 * count is propagated towards root so that a given cgroup's populated_cnt
612 * is zero iff the cgroup and all its descendants don't contain any tasks.
842b597e
TH
613 *
614 * @cgrp's interface file "cgroup.populated" is zero if
615 * @cgrp->populated_cnt is zero and 1 otherwise. When @cgrp->populated_cnt
616 * changes from or to zero, userland is notified that the content of the
617 * interface file has changed. This can be used to detect when @cgrp and
618 * its descendants become populated or empty.
619 */
620static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
621{
f0d9a5f1 622 lockdep_assert_held(&css_set_lock);
842b597e
TH
623
624 do {
625 bool trigger;
626
627 if (populated)
628 trigger = !cgrp->populated_cnt++;
629 else
630 trigger = !--cgrp->populated_cnt;
631
632 if (!trigger)
633 break;
634
ad2ed2b3 635 check_for_release(cgrp);
6f60eade
TH
636 cgroup_file_notify(&cgrp->events_file);
637
d51f39b0 638 cgrp = cgroup_parent(cgrp);
842b597e
TH
639 } while (cgrp);
640}
641
0de0942d
TH
642/**
643 * css_set_update_populated - update populated state of a css_set
644 * @cset: target css_set
645 * @populated: whether @cset is populated or depopulated
646 *
647 * @cset is either getting the first task or losing the last. Update the
648 * ->populated_cnt of all associated cgroups accordingly.
649 */
650static void css_set_update_populated(struct css_set *cset, bool populated)
651{
652 struct cgrp_cset_link *link;
653
f0d9a5f1 654 lockdep_assert_held(&css_set_lock);
0de0942d
TH
655
656 list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
657 cgroup_update_populated(link->cgrp, populated);
658}
659
f6d7d049
TH
660/**
661 * css_set_move_task - move a task from one css_set to another
662 * @task: task being moved
663 * @from_cset: css_set @task currently belongs to (may be NULL)
664 * @to_cset: new css_set @task is being moved to (may be NULL)
665 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
666 *
667 * Move @task from @from_cset to @to_cset. If @task didn't belong to any
668 * css_set, @from_cset can be NULL. If @task is being disassociated
669 * instead of moved, @to_cset can be NULL.
670 *
ed27b9f7
TH
671 * This function automatically handles populated_cnt updates and
672 * css_task_iter adjustments but the caller is responsible for managing
673 * @from_cset and @to_cset's reference counts.
f6d7d049
TH
674 */
675static void css_set_move_task(struct task_struct *task,
676 struct css_set *from_cset, struct css_set *to_cset,
677 bool use_mg_tasks)
678{
f0d9a5f1 679 lockdep_assert_held(&css_set_lock);
f6d7d049 680
20b454a6
TH
681 if (to_cset && !css_set_populated(to_cset))
682 css_set_update_populated(to_cset, true);
683
f6d7d049 684 if (from_cset) {
ed27b9f7
TH
685 struct css_task_iter *it, *pos;
686
f6d7d049 687 WARN_ON_ONCE(list_empty(&task->cg_list));
ed27b9f7
TH
688
689 /*
690 * @task is leaving, advance task iterators which are
691 * pointing to it so that they can resume at the next
692 * position. Advancing an iterator might remove it from
693 * the list, use safe walk. See css_task_iter_advance*()
694 * for details.
695 */
696 list_for_each_entry_safe(it, pos, &from_cset->task_iters,
697 iters_node)
698 if (it->task_pos == &task->cg_list)
699 css_task_iter_advance(it);
700
f6d7d049
TH
701 list_del_init(&task->cg_list);
702 if (!css_set_populated(from_cset))
703 css_set_update_populated(from_cset, false);
704 } else {
705 WARN_ON_ONCE(!list_empty(&task->cg_list));
706 }
707
708 if (to_cset) {
709 /*
710 * We are synchronized through cgroup_threadgroup_rwsem
711 * against PF_EXITING setting such that we can't race
712 * against cgroup_exit() changing the css_set to
713 * init_css_set and dropping the old one.
714 */
715 WARN_ON_ONCE(task->flags & PF_EXITING);
716
f6d7d049
TH
717 rcu_assign_pointer(task->cgroups, to_cset);
718 list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
719 &to_cset->tasks);
720 }
721}
722
7717f7ba
PM
723/*
724 * hash table for cgroup groups. This improves the performance to find
725 * an existing css_set. This hash doesn't (currently) take into
726 * account cgroups in empty hierarchies.
727 */
472b1053 728#define CSS_SET_HASH_BITS 7
0ac801fe 729static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
472b1053 730
0ac801fe 731static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
472b1053 732{
0ac801fe 733 unsigned long key = 0UL;
30159ec7
TH
734 struct cgroup_subsys *ss;
735 int i;
472b1053 736
30159ec7 737 for_each_subsys(ss, i)
0ac801fe
LZ
738 key += (unsigned long)css[i];
739 key = (key >> 16) ^ key;
472b1053 740
0ac801fe 741 return key;
472b1053
LZ
742}
743
a25eb52e 744static void put_css_set_locked(struct css_set *cset)
b4f48b63 745{
69d0206c 746 struct cgrp_cset_link *link, *tmp_link;
2d8f243a
TH
747 struct cgroup_subsys *ss;
748 int ssid;
5abb8855 749
f0d9a5f1 750 lockdep_assert_held(&css_set_lock);
89c5509b
TH
751
752 if (!atomic_dec_and_test(&cset->refcount))
146aa1bd 753 return;
81a6a5cd 754
53254f90
TH
755 /* This css_set is dead. unlink it and release cgroup and css refs */
756 for_each_subsys(ss, ssid) {
2d8f243a 757 list_del(&cset->e_cset_node[ssid]);
53254f90
TH
758 css_put(cset->subsys[ssid]);
759 }
5abb8855 760 hash_del(&cset->hlist);
2c6ab6d2
PM
761 css_set_count--;
762
69d0206c 763 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
69d0206c
TH
764 list_del(&link->cset_link);
765 list_del(&link->cgrp_link);
2ceb231b
TH
766 if (cgroup_parent(link->cgrp))
767 cgroup_put(link->cgrp);
2c6ab6d2 768 kfree(link);
81a6a5cd 769 }
2c6ab6d2 770
5abb8855 771 kfree_rcu(cset, rcu_head);
b4f48b63
PM
772}
773
a25eb52e 774static void put_css_set(struct css_set *cset)
89c5509b
TH
775{
776 /*
777 * Ensure that the refcount doesn't hit zero while any readers
778 * can see it. Similar to atomic_dec_and_lock(), but for an
779 * rwlock
780 */
781 if (atomic_add_unless(&cset->refcount, -1, 1))
782 return;
783
f0d9a5f1 784 spin_lock_bh(&css_set_lock);
a25eb52e 785 put_css_set_locked(cset);
f0d9a5f1 786 spin_unlock_bh(&css_set_lock);
89c5509b
TH
787}
788
817929ec
PM
789/*
790 * refcounted get/put for css_set objects
791 */
5abb8855 792static inline void get_css_set(struct css_set *cset)
817929ec 793{
5abb8855 794 atomic_inc(&cset->refcount);
817929ec
PM
795}
796
b326f9d0 797/**
7717f7ba 798 * compare_css_sets - helper function for find_existing_css_set().
5abb8855
TH
799 * @cset: candidate css_set being tested
800 * @old_cset: existing css_set for a task
7717f7ba
PM
801 * @new_cgrp: cgroup that's being entered by the task
802 * @template: desired set of css pointers in css_set (pre-calculated)
803 *
6f4b7e63 804 * Returns true if "cset" matches "old_cset" except for the hierarchy
7717f7ba
PM
805 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
806 */
5abb8855
TH
807static bool compare_css_sets(struct css_set *cset,
808 struct css_set *old_cset,
7717f7ba
PM
809 struct cgroup *new_cgrp,
810 struct cgroup_subsys_state *template[])
811{
812 struct list_head *l1, *l2;
813
aec3dfcb
TH
814 /*
815 * On the default hierarchy, there can be csets which are
816 * associated with the same set of cgroups but different csses.
817 * Let's first ensure that csses match.
818 */
819 if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
7717f7ba 820 return false;
7717f7ba
PM
821
822 /*
823 * Compare cgroup pointers in order to distinguish between
aec3dfcb
TH
824 * different cgroups in hierarchies. As different cgroups may
825 * share the same effective css, this comparison is always
826 * necessary.
7717f7ba 827 */
69d0206c
TH
828 l1 = &cset->cgrp_links;
829 l2 = &old_cset->cgrp_links;
7717f7ba 830 while (1) {
69d0206c 831 struct cgrp_cset_link *link1, *link2;
5abb8855 832 struct cgroup *cgrp1, *cgrp2;
7717f7ba
PM
833
834 l1 = l1->next;
835 l2 = l2->next;
836 /* See if we reached the end - both lists are equal length. */
69d0206c
TH
837 if (l1 == &cset->cgrp_links) {
838 BUG_ON(l2 != &old_cset->cgrp_links);
7717f7ba
PM
839 break;
840 } else {
69d0206c 841 BUG_ON(l2 == &old_cset->cgrp_links);
7717f7ba
PM
842 }
843 /* Locate the cgroups associated with these links. */
69d0206c
TH
844 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
845 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
846 cgrp1 = link1->cgrp;
847 cgrp2 = link2->cgrp;
7717f7ba 848 /* Hierarchies should be linked in the same order. */
5abb8855 849 BUG_ON(cgrp1->root != cgrp2->root);
7717f7ba
PM
850
851 /*
852 * If this hierarchy is the hierarchy of the cgroup
853 * that's changing, then we need to check that this
854 * css_set points to the new cgroup; if it's any other
855 * hierarchy, then this css_set should point to the
856 * same cgroup as the old css_set.
857 */
5abb8855
TH
858 if (cgrp1->root == new_cgrp->root) {
859 if (cgrp1 != new_cgrp)
7717f7ba
PM
860 return false;
861 } else {
5abb8855 862 if (cgrp1 != cgrp2)
7717f7ba
PM
863 return false;
864 }
865 }
866 return true;
867}
868
b326f9d0
TH
869/**
870 * find_existing_css_set - init css array and find the matching css_set
871 * @old_cset: the css_set that we're using before the cgroup transition
872 * @cgrp: the cgroup that we're moving into
873 * @template: out param for the new set of csses, should be clear on entry
817929ec 874 */
5abb8855
TH
875static struct css_set *find_existing_css_set(struct css_set *old_cset,
876 struct cgroup *cgrp,
877 struct cgroup_subsys_state *template[])
b4f48b63 878{
3dd06ffa 879 struct cgroup_root *root = cgrp->root;
30159ec7 880 struct cgroup_subsys *ss;
5abb8855 881 struct css_set *cset;
0ac801fe 882 unsigned long key;
b326f9d0 883 int i;
817929ec 884
aae8aab4
BB
885 /*
886 * Build the set of subsystem state objects that we want to see in the
887 * new css_set. while subsystems can change globally, the entries here
888 * won't change, so no need for locking.
889 */
30159ec7 890 for_each_subsys(ss, i) {
f392e51c 891 if (root->subsys_mask & (1UL << i)) {
aec3dfcb
TH
892 /*
893 * @ss is in this hierarchy, so we want the
894 * effective css from @cgrp.
895 */
896 template[i] = cgroup_e_css(cgrp, ss);
817929ec 897 } else {
aec3dfcb
TH
898 /*
899 * @ss is not in this hierarchy, so we don't want
900 * to change the css.
901 */
5abb8855 902 template[i] = old_cset->subsys[i];
817929ec
PM
903 }
904 }
905
0ac801fe 906 key = css_set_hash(template);
5abb8855
TH
907 hash_for_each_possible(css_set_table, cset, hlist, key) {
908 if (!compare_css_sets(cset, old_cset, cgrp, template))
7717f7ba
PM
909 continue;
910
911 /* This css_set matches what we need */
5abb8855 912 return cset;
472b1053 913 }
817929ec
PM
914
915 /* No existing cgroup group matched */
916 return NULL;
917}
918
69d0206c 919static void free_cgrp_cset_links(struct list_head *links_to_free)
36553434 920{
69d0206c 921 struct cgrp_cset_link *link, *tmp_link;
36553434 922
69d0206c
TH
923 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
924 list_del(&link->cset_link);
36553434
LZ
925 kfree(link);
926 }
927}
928
69d0206c
TH
929/**
930 * allocate_cgrp_cset_links - allocate cgrp_cset_links
931 * @count: the number of links to allocate
932 * @tmp_links: list_head the allocated links are put on
933 *
934 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
935 * through ->cset_link. Returns 0 on success or -errno.
817929ec 936 */
69d0206c 937static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
817929ec 938{
69d0206c 939 struct cgrp_cset_link *link;
817929ec 940 int i;
69d0206c
TH
941
942 INIT_LIST_HEAD(tmp_links);
943
817929ec 944 for (i = 0; i < count; i++) {
f4f4be2b 945 link = kzalloc(sizeof(*link), GFP_KERNEL);
817929ec 946 if (!link) {
69d0206c 947 free_cgrp_cset_links(tmp_links);
817929ec
PM
948 return -ENOMEM;
949 }
69d0206c 950 list_add(&link->cset_link, tmp_links);
817929ec
PM
951 }
952 return 0;
953}
954
c12f65d4
LZ
955/**
956 * link_css_set - a helper function to link a css_set to a cgroup
69d0206c 957 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
5abb8855 958 * @cset: the css_set to be linked
c12f65d4
LZ
959 * @cgrp: the destination cgroup
960 */
69d0206c
TH
961static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
962 struct cgroup *cgrp)
c12f65d4 963{
69d0206c 964 struct cgrp_cset_link *link;
c12f65d4 965
69d0206c 966 BUG_ON(list_empty(tmp_links));
6803c006
TH
967
968 if (cgroup_on_dfl(cgrp))
969 cset->dfl_cgrp = cgrp;
970
69d0206c
TH
971 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
972 link->cset = cset;
7717f7ba 973 link->cgrp = cgrp;
842b597e 974
7717f7ba 975 /*
389b9c1b
TH
976 * Always add links to the tail of the lists so that the lists are
977 * in choronological order.
7717f7ba 978 */
389b9c1b 979 list_move_tail(&link->cset_link, &cgrp->cset_links);
69d0206c 980 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
2ceb231b
TH
981
982 if (cgroup_parent(cgrp))
983 cgroup_get(cgrp);
c12f65d4
LZ
984}
985
b326f9d0
TH
986/**
987 * find_css_set - return a new css_set with one cgroup updated
988 * @old_cset: the baseline css_set
989 * @cgrp: the cgroup to be updated
990 *
991 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
992 * substituted into the appropriate hierarchy.
817929ec 993 */
5abb8855
TH
994static struct css_set *find_css_set(struct css_set *old_cset,
995 struct cgroup *cgrp)
817929ec 996{
b326f9d0 997 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
5abb8855 998 struct css_set *cset;
69d0206c
TH
999 struct list_head tmp_links;
1000 struct cgrp_cset_link *link;
2d8f243a 1001 struct cgroup_subsys *ss;
0ac801fe 1002 unsigned long key;
2d8f243a 1003 int ssid;
472b1053 1004
b326f9d0
TH
1005 lockdep_assert_held(&cgroup_mutex);
1006
817929ec
PM
1007 /* First see if we already have a cgroup group that matches
1008 * the desired set */
f0d9a5f1 1009 spin_lock_bh(&css_set_lock);
5abb8855
TH
1010 cset = find_existing_css_set(old_cset, cgrp, template);
1011 if (cset)
1012 get_css_set(cset);
f0d9a5f1 1013 spin_unlock_bh(&css_set_lock);
817929ec 1014
5abb8855
TH
1015 if (cset)
1016 return cset;
817929ec 1017
f4f4be2b 1018 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
5abb8855 1019 if (!cset)
817929ec
PM
1020 return NULL;
1021
69d0206c 1022 /* Allocate all the cgrp_cset_link objects that we'll need */
9871bf95 1023 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
5abb8855 1024 kfree(cset);
817929ec
PM
1025 return NULL;
1026 }
1027
5abb8855 1028 atomic_set(&cset->refcount, 1);
69d0206c 1029 INIT_LIST_HEAD(&cset->cgrp_links);
5abb8855 1030 INIT_LIST_HEAD(&cset->tasks);
c7561128 1031 INIT_LIST_HEAD(&cset->mg_tasks);
1958d2d5 1032 INIT_LIST_HEAD(&cset->mg_preload_node);
b3dc094e 1033 INIT_LIST_HEAD(&cset->mg_node);
ed27b9f7 1034 INIT_LIST_HEAD(&cset->task_iters);
5abb8855 1035 INIT_HLIST_NODE(&cset->hlist);
817929ec
PM
1036
1037 /* Copy the set of subsystem state objects generated in
1038 * find_existing_css_set() */
5abb8855 1039 memcpy(cset->subsys, template, sizeof(cset->subsys));
817929ec 1040
f0d9a5f1 1041 spin_lock_bh(&css_set_lock);
817929ec 1042 /* Add reference counts and links from the new css_set. */
69d0206c 1043 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
7717f7ba 1044 struct cgroup *c = link->cgrp;
69d0206c 1045
7717f7ba
PM
1046 if (c->root == cgrp->root)
1047 c = cgrp;
69d0206c 1048 link_css_set(&tmp_links, cset, c);
7717f7ba 1049 }
817929ec 1050
69d0206c 1051 BUG_ON(!list_empty(&tmp_links));
817929ec 1052
817929ec 1053 css_set_count++;
472b1053 1054
2d8f243a 1055 /* Add @cset to the hash table */
5abb8855
TH
1056 key = css_set_hash(cset->subsys);
1057 hash_add(css_set_table, &cset->hlist, key);
472b1053 1058
53254f90
TH
1059 for_each_subsys(ss, ssid) {
1060 struct cgroup_subsys_state *css = cset->subsys[ssid];
1061
2d8f243a 1062 list_add_tail(&cset->e_cset_node[ssid],
53254f90
TH
1063 &css->cgroup->e_csets[ssid]);
1064 css_get(css);
1065 }
2d8f243a 1066
f0d9a5f1 1067 spin_unlock_bh(&css_set_lock);
817929ec 1068
5abb8855 1069 return cset;
b4f48b63
PM
1070}
1071
3dd06ffa 1072static struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
7717f7ba 1073{
3dd06ffa 1074 struct cgroup *root_cgrp = kf_root->kn->priv;
2bd59d48 1075
3dd06ffa 1076 return root_cgrp->root;
2bd59d48
TH
1077}
1078
3dd06ffa 1079static int cgroup_init_root_id(struct cgroup_root *root)
f2e85d57
TH
1080{
1081 int id;
1082
1083 lockdep_assert_held(&cgroup_mutex);
1084
985ed670 1085 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
f2e85d57
TH
1086 if (id < 0)
1087 return id;
1088
1089 root->hierarchy_id = id;
1090 return 0;
1091}
1092
3dd06ffa 1093static void cgroup_exit_root_id(struct cgroup_root *root)
f2e85d57
TH
1094{
1095 lockdep_assert_held(&cgroup_mutex);
1096
1097 if (root->hierarchy_id) {
1098 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1099 root->hierarchy_id = 0;
1100 }
1101}
1102
3dd06ffa 1103static void cgroup_free_root(struct cgroup_root *root)
f2e85d57
TH
1104{
1105 if (root) {
d0f702e6 1106 /* hierarchy ID should already have been released */
f2e85d57
TH
1107 WARN_ON_ONCE(root->hierarchy_id);
1108
1109 idr_destroy(&root->cgroup_idr);
1110 kfree(root);
1111 }
1112}
1113
3dd06ffa 1114static void cgroup_destroy_root(struct cgroup_root *root)
59f5296b 1115{
3dd06ffa 1116 struct cgroup *cgrp = &root->cgrp;
f2e85d57 1117 struct cgrp_cset_link *link, *tmp_link;
f2e85d57 1118
2bd59d48 1119 mutex_lock(&cgroup_mutex);
f2e85d57 1120
776f02fa 1121 BUG_ON(atomic_read(&root->nr_cgrps));
d5c419b6 1122 BUG_ON(!list_empty(&cgrp->self.children));
f2e85d57 1123
f2e85d57 1124 /* Rebind all subsystems back to the default hierarchy */
f392e51c 1125 rebind_subsystems(&cgrp_dfl_root, root->subsys_mask);
7717f7ba 1126
7717f7ba 1127 /*
f2e85d57
TH
1128 * Release all the links from cset_links to this hierarchy's
1129 * root cgroup
7717f7ba 1130 */
f0d9a5f1 1131 spin_lock_bh(&css_set_lock);
f2e85d57
TH
1132
1133 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1134 list_del(&link->cset_link);
1135 list_del(&link->cgrp_link);
1136 kfree(link);
1137 }
f0d9a5f1
TH
1138
1139 spin_unlock_bh(&css_set_lock);
f2e85d57
TH
1140
1141 if (!list_empty(&root->root_list)) {
1142 list_del(&root->root_list);
1143 cgroup_root_count--;
1144 }
1145
1146 cgroup_exit_root_id(root);
1147
1148 mutex_unlock(&cgroup_mutex);
f2e85d57 1149
2bd59d48 1150 kernfs_destroy_root(root->kf_root);
f2e85d57
TH
1151 cgroup_free_root(root);
1152}
1153
ceb6a081
TH
1154/* look up cgroup associated with given css_set on the specified hierarchy */
1155static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
3dd06ffa 1156 struct cgroup_root *root)
7717f7ba 1157{
7717f7ba
PM
1158 struct cgroup *res = NULL;
1159
96d365e0 1160 lockdep_assert_held(&cgroup_mutex);
f0d9a5f1 1161 lockdep_assert_held(&css_set_lock);
96d365e0 1162
5abb8855 1163 if (cset == &init_css_set) {
3dd06ffa 1164 res = &root->cgrp;
7717f7ba 1165 } else {
69d0206c
TH
1166 struct cgrp_cset_link *link;
1167
1168 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 1169 struct cgroup *c = link->cgrp;
69d0206c 1170
7717f7ba
PM
1171 if (c->root == root) {
1172 res = c;
1173 break;
1174 }
1175 }
1176 }
96d365e0 1177
7717f7ba
PM
1178 BUG_ON(!res);
1179 return res;
1180}
1181
ddbcc7e8 1182/*
ceb6a081 1183 * Return the cgroup for "task" from the given hierarchy. Must be
f0d9a5f1 1184 * called with cgroup_mutex and css_set_lock held.
ceb6a081
TH
1185 */
1186static struct cgroup *task_cgroup_from_root(struct task_struct *task,
3dd06ffa 1187 struct cgroup_root *root)
ceb6a081
TH
1188{
1189 /*
1190 * No need to lock the task - since we hold cgroup_mutex the
1191 * task can't change groups, so the only thing that can happen
1192 * is that it exits and its css is set back to init_css_set.
1193 */
1194 return cset_cgroup_from_root(task_css_set(task), root);
1195}
1196
ddbcc7e8 1197/*
ddbcc7e8
PM
1198 * A task must hold cgroup_mutex to modify cgroups.
1199 *
1200 * Any task can increment and decrement the count field without lock.
1201 * So in general, code holding cgroup_mutex can't rely on the count
1202 * field not changing. However, if the count goes to zero, then only
956db3ca 1203 * cgroup_attach_task() can increment it again. Because a count of zero
ddbcc7e8
PM
1204 * means that no tasks are currently attached, therefore there is no
1205 * way a task attached to that cgroup can fork (the other way to
1206 * increment the count). So code holding cgroup_mutex can safely
1207 * assume that if the count is zero, it will stay zero. Similarly, if
1208 * a task holds cgroup_mutex on a cgroup with zero count, it
1209 * knows that the cgroup won't be removed, as cgroup_rmdir()
1210 * needs that mutex.
1211 *
ddbcc7e8
PM
1212 * A cgroup can only be deleted if both its 'count' of using tasks
1213 * is zero, and its list of 'children' cgroups is empty. Since all
1214 * tasks in the system use _some_ cgroup, and since there is always at
3dd06ffa 1215 * least one task in the system (init, pid == 1), therefore, root cgroup
ddbcc7e8 1216 * always has either children cgroups and/or using tasks. So we don't
3dd06ffa 1217 * need a special hack to ensure that root cgroup cannot be deleted.
ddbcc7e8
PM
1218 *
1219 * P.S. One more locking exception. RCU is used to guard the
956db3ca 1220 * update of a tasks cgroup pointer by cgroup_attach_task()
ddbcc7e8
PM
1221 */
1222
2bd59d48 1223static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
828c0950 1224static const struct file_operations proc_cgroupstats_operations;
a424316c 1225
8d7e6fb0
TH
1226static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1227 char *buf)
ddbcc7e8 1228{
3e1d2eed
TH
1229 struct cgroup_subsys *ss = cft->ss;
1230
8d7e6fb0
TH
1231 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1232 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
1233 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
3e1d2eed
TH
1234 cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1235 cft->name);
8d7e6fb0
TH
1236 else
1237 strncpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1238 return buf;
ddbcc7e8
PM
1239}
1240
f2e85d57
TH
1241/**
1242 * cgroup_file_mode - deduce file mode of a control file
1243 * @cft: the control file in question
1244 *
7dbdb199 1245 * S_IRUGO for read, S_IWUSR for write.
f2e85d57
TH
1246 */
1247static umode_t cgroup_file_mode(const struct cftype *cft)
65dff759 1248{
f2e85d57 1249 umode_t mode = 0;
65dff759 1250
f2e85d57
TH
1251 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1252 mode |= S_IRUGO;
1253
7dbdb199
TH
1254 if (cft->write_u64 || cft->write_s64 || cft->write) {
1255 if (cft->flags & CFTYPE_WORLD_WRITABLE)
1256 mode |= S_IWUGO;
1257 else
1258 mode |= S_IWUSR;
1259 }
f2e85d57
TH
1260
1261 return mode;
65dff759
LZ
1262}
1263
af0ba678 1264/**
8699b776 1265 * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask
af0ba678 1266 * @cgrp: the target cgroup
0f060deb 1267 * @subtree_control: the new subtree_control mask to consider
af0ba678
TH
1268 *
1269 * On the default hierarchy, a subsystem may request other subsystems to be
1270 * enabled together through its ->depends_on mask. In such cases, more
1271 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1272 *
0f060deb
TH
1273 * This function calculates which subsystems need to be enabled if
1274 * @subtree_control is to be applied to @cgrp. The returned mask is always
1275 * a superset of @subtree_control and follows the usual hierarchy rules.
af0ba678 1276 */
6e5c8307 1277static u16 cgroup_calc_subtree_ss_mask(struct cgroup *cgrp, u16 subtree_control)
667c2491 1278{
af0ba678 1279 struct cgroup *parent = cgroup_parent(cgrp);
6e5c8307 1280 u16 cur_ss_mask = subtree_control;
af0ba678
TH
1281 struct cgroup_subsys *ss;
1282 int ssid;
1283
1284 lockdep_assert_held(&cgroup_mutex);
1285
0f060deb
TH
1286 if (!cgroup_on_dfl(cgrp))
1287 return cur_ss_mask;
af0ba678
TH
1288
1289 while (true) {
6e5c8307 1290 u16 new_ss_mask = cur_ss_mask;
af0ba678 1291
b4e0eeaf 1292 do_each_subsys_mask(ss, ssid, cur_ss_mask) {
a966a4ed 1293 new_ss_mask |= ss->depends_on;
b4e0eeaf 1294 } while_each_subsys_mask();
af0ba678
TH
1295
1296 /*
1297 * Mask out subsystems which aren't available. This can
1298 * happen only if some depended-upon subsystems were bound
1299 * to non-default hierarchies.
1300 */
1301 if (parent)
8699b776 1302 new_ss_mask &= parent->subtree_ss_mask;
af0ba678
TH
1303 else
1304 new_ss_mask &= cgrp->root->subsys_mask;
1305
1306 if (new_ss_mask == cur_ss_mask)
1307 break;
1308 cur_ss_mask = new_ss_mask;
1309 }
1310
0f060deb
TH
1311 return cur_ss_mask;
1312}
1313
1314/**
8699b776 1315 * cgroup_refresh_subtree_ss_mask - update subtree_ss_mask
0f060deb
TH
1316 * @cgrp: the target cgroup
1317 *
8699b776
TH
1318 * Update @cgrp->subtree_ss_mask according to the current
1319 * @cgrp->subtree_control using cgroup_calc_subtree_ss_mask().
0f060deb 1320 */
8699b776 1321static void cgroup_refresh_subtree_ss_mask(struct cgroup *cgrp)
0f060deb 1322{
8699b776
TH
1323 cgrp->subtree_ss_mask =
1324 cgroup_calc_subtree_ss_mask(cgrp, cgrp->subtree_control);
667c2491
TH
1325}
1326
a9746d8d
TH
1327/**
1328 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1329 * @kn: the kernfs_node being serviced
1330 *
1331 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1332 * the method finishes if locking succeeded. Note that once this function
1333 * returns the cgroup returned by cgroup_kn_lock_live() may become
1334 * inaccessible any time. If the caller intends to continue to access the
1335 * cgroup, it should pin it before invoking this function.
1336 */
1337static void cgroup_kn_unlock(struct kernfs_node *kn)
ddbcc7e8 1338{
a9746d8d
TH
1339 struct cgroup *cgrp;
1340
1341 if (kernfs_type(kn) == KERNFS_DIR)
1342 cgrp = kn->priv;
1343 else
1344 cgrp = kn->parent->priv;
1345
1346 mutex_unlock(&cgroup_mutex);
a9746d8d
TH
1347
1348 kernfs_unbreak_active_protection(kn);
1349 cgroup_put(cgrp);
ddbcc7e8
PM
1350}
1351
a9746d8d
TH
1352/**
1353 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1354 * @kn: the kernfs_node being serviced
1355 *
1356 * This helper is to be used by a cgroup kernfs method currently servicing
1357 * @kn. It breaks the active protection, performs cgroup locking and
1358 * verifies that the associated cgroup is alive. Returns the cgroup if
1359 * alive; otherwise, %NULL. A successful return should be undone by a
1360 * matching cgroup_kn_unlock() invocation.
1361 *
1362 * Any cgroup kernfs method implementation which requires locking the
1363 * associated cgroup should use this helper. It avoids nesting cgroup
1364 * locking under kernfs active protection and allows all kernfs operations
1365 * including self-removal.
1366 */
1367static struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn)
05ef1d7c 1368{
a9746d8d
TH
1369 struct cgroup *cgrp;
1370
1371 if (kernfs_type(kn) == KERNFS_DIR)
1372 cgrp = kn->priv;
1373 else
1374 cgrp = kn->parent->priv;
05ef1d7c 1375
2739d3cc 1376 /*
01f6474c 1377 * We're gonna grab cgroup_mutex which nests outside kernfs
a9746d8d
TH
1378 * active_ref. cgroup liveliness check alone provides enough
1379 * protection against removal. Ensure @cgrp stays accessible and
1380 * break the active_ref protection.
2739d3cc 1381 */
aa32362f
LZ
1382 if (!cgroup_tryget(cgrp))
1383 return NULL;
a9746d8d
TH
1384 kernfs_break_active_protection(kn);
1385
2bd59d48 1386 mutex_lock(&cgroup_mutex);
05ef1d7c 1387
a9746d8d
TH
1388 if (!cgroup_is_dead(cgrp))
1389 return cgrp;
1390
1391 cgroup_kn_unlock(kn);
1392 return NULL;
ddbcc7e8 1393}
05ef1d7c 1394
2739d3cc 1395static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
05ef1d7c 1396{
2bd59d48 1397 char name[CGROUP_FILE_NAME_MAX];
05ef1d7c 1398
01f6474c 1399 lockdep_assert_held(&cgroup_mutex);
34c06254
TH
1400
1401 if (cft->file_offset) {
1402 struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
1403 struct cgroup_file *cfile = (void *)css + cft->file_offset;
1404
1405 spin_lock_irq(&cgroup_file_kn_lock);
1406 cfile->kn = NULL;
1407 spin_unlock_irq(&cgroup_file_kn_lock);
1408 }
1409
2bd59d48 1410 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
05ef1d7c
TH
1411}
1412
13af07df 1413/**
4df8dc90
TH
1414 * css_clear_dir - remove subsys files in a cgroup directory
1415 * @css: taget css
1416 * @cgrp_override: specify if target cgroup is different from css->cgroup
13af07df 1417 */
4df8dc90
TH
1418static void css_clear_dir(struct cgroup_subsys_state *css,
1419 struct cgroup *cgrp_override)
05ef1d7c 1420{
4df8dc90
TH
1421 struct cgroup *cgrp = cgrp_override ?: css->cgroup;
1422 struct cftype *cfts;
05ef1d7c 1423
4df8dc90
TH
1424 list_for_each_entry(cfts, &css->ss->cfts, node)
1425 cgroup_addrm_files(css, cgrp, cfts, false);
ddbcc7e8
PM
1426}
1427
ccdca218 1428/**
4df8dc90
TH
1429 * css_populate_dir - create subsys files in a cgroup directory
1430 * @css: target css
1431 * @cgrp_overried: specify if target cgroup is different from css->cgroup
ccdca218
TH
1432 *
1433 * On failure, no file is added.
1434 */
4df8dc90
TH
1435static int css_populate_dir(struct cgroup_subsys_state *css,
1436 struct cgroup *cgrp_override)
ccdca218 1437{
4df8dc90
TH
1438 struct cgroup *cgrp = cgrp_override ?: css->cgroup;
1439 struct cftype *cfts, *failed_cfts;
1440 int ret;
ccdca218 1441
4df8dc90
TH
1442 if (!css->ss) {
1443 if (cgroup_on_dfl(cgrp))
1444 cfts = cgroup_dfl_base_files;
1445 else
1446 cfts = cgroup_legacy_base_files;
ccdca218 1447
4df8dc90
TH
1448 return cgroup_addrm_files(&cgrp->self, cgrp, cfts, true);
1449 }
ccdca218 1450
4df8dc90
TH
1451 list_for_each_entry(cfts, &css->ss->cfts, node) {
1452 ret = cgroup_addrm_files(css, cgrp, cfts, true);
1453 if (ret < 0) {
1454 failed_cfts = cfts;
1455 goto err;
ccdca218
TH
1456 }
1457 }
1458 return 0;
1459err:
4df8dc90
TH
1460 list_for_each_entry(cfts, &css->ss->cfts, node) {
1461 if (cfts == failed_cfts)
1462 break;
1463 cgroup_addrm_files(css, cgrp, cfts, false);
1464 }
ccdca218
TH
1465 return ret;
1466}
1467
6e5c8307 1468static int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask)
ddbcc7e8 1469{
1ada4838 1470 struct cgroup *dcgrp = &dst_root->cgrp;
30159ec7 1471 struct cgroup_subsys *ss;
6e5c8307 1472 u16 tmp_ss_mask;
2d8f243a 1473 int ssid, i, ret;
ddbcc7e8 1474
ace2bee8 1475 lockdep_assert_held(&cgroup_mutex);
ddbcc7e8 1476
b4e0eeaf 1477 do_each_subsys_mask(ss, ssid, ss_mask) {
7fd8c565
TH
1478 /* if @ss has non-root csses attached to it, can't move */
1479 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)))
3ed80a62 1480 return -EBUSY;
1d5be6b2 1481
5df36032 1482 /* can't move between two non-dummy roots either */
7fd8c565 1483 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
5df36032 1484 return -EBUSY;
b4e0eeaf 1485 } while_each_subsys_mask();
ddbcc7e8 1486
5533e011
TH
1487 /* skip creating root files on dfl_root for inhibited subsystems */
1488 tmp_ss_mask = ss_mask;
1489 if (dst_root == &cgrp_dfl_root)
a7165264 1490 tmp_ss_mask &= ~cgrp_dfl_inhibit_ss_mask;
5533e011 1491
b4e0eeaf 1492 do_each_subsys_mask(ss, ssid, tmp_ss_mask) {
4df8dc90
TH
1493 struct cgroup *scgrp = &ss->root->cgrp;
1494 int tssid;
1495
1496 ret = css_populate_dir(cgroup_css(scgrp, ss), dcgrp);
1497 if (!ret)
1498 continue;
ddbcc7e8 1499
a2dd4247
TH
1500 /*
1501 * Rebinding back to the default root is not allowed to
1502 * fail. Using both default and non-default roots should
1503 * be rare. Moving subsystems back and forth even more so.
1504 * Just warn about it and continue.
1505 */
4df8dc90 1506 if (dst_root == &cgrp_dfl_root) {
a7165264 1507 if (cgrp_dfl_visible) {
6e5c8307 1508 pr_warn("failed to create files (%d) while rebinding 0x%x to default root\n",
4df8dc90
TH
1509 ret, ss_mask);
1510 pr_warn("you may retry by moving them to a different hierarchy and unbinding\n");
1511 }
1512 continue;
a2dd4247 1513 }
4df8dc90 1514
b4e0eeaf 1515 do_each_subsys_mask(ss, tssid, tmp_ss_mask) {
4df8dc90
TH
1516 if (tssid == ssid)
1517 break;
1518 css_clear_dir(cgroup_css(scgrp, ss), dcgrp);
b4e0eeaf 1519 } while_each_subsys_mask();
4df8dc90 1520 return ret;
b4e0eeaf 1521 } while_each_subsys_mask();
3126121f
TH
1522
1523 /*
1524 * Nothing can fail from this point on. Remove files for the
1525 * removed subsystems and rebind each subsystem.
1526 */
b4e0eeaf 1527 do_each_subsys_mask(ss, ssid, ss_mask) {
1ada4838
TH
1528 struct cgroup_root *src_root = ss->root;
1529 struct cgroup *scgrp = &src_root->cgrp;
1530 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
2d8f243a 1531 struct css_set *cset;
a8a648c4 1532
1ada4838 1533 WARN_ON(!css || cgroup_css(dcgrp, ss));
a8a648c4 1534
4df8dc90
TH
1535 css_clear_dir(css, NULL);
1536
1ada4838
TH
1537 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1538 rcu_assign_pointer(dcgrp->subsys[ssid], css);
5df36032 1539 ss->root = dst_root;
1ada4838 1540 css->cgroup = dcgrp;
73e80ed8 1541
f0d9a5f1 1542 spin_lock_bh(&css_set_lock);
2d8f243a
TH
1543 hash_for_each(css_set_table, i, cset, hlist)
1544 list_move_tail(&cset->e_cset_node[ss->id],
1ada4838 1545 &dcgrp->e_csets[ss->id]);
f0d9a5f1 1546 spin_unlock_bh(&css_set_lock);
2d8f243a 1547
f392e51c 1548 src_root->subsys_mask &= ~(1 << ssid);
1ada4838 1549 scgrp->subtree_control &= ~(1 << ssid);
8699b776 1550 cgroup_refresh_subtree_ss_mask(scgrp);
f392e51c 1551
bd53d617 1552 /* default hierarchy doesn't enable controllers by default */
f392e51c 1553 dst_root->subsys_mask |= 1 << ssid;
49d1dc4b
TH
1554 if (dst_root == &cgrp_dfl_root) {
1555 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1556 } else {
1ada4838 1557 dcgrp->subtree_control |= 1 << ssid;
8699b776 1558 cgroup_refresh_subtree_ss_mask(dcgrp);
49d1dc4b 1559 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
667c2491 1560 }
a8a648c4 1561
5df36032
TH
1562 if (ss->bind)
1563 ss->bind(css);
b4e0eeaf 1564 } while_each_subsys_mask();
ddbcc7e8 1565
1ada4838 1566 kernfs_activate(dcgrp->kn);
ddbcc7e8
PM
1567 return 0;
1568}
1569
2bd59d48
TH
1570static int cgroup_show_options(struct seq_file *seq,
1571 struct kernfs_root *kf_root)
ddbcc7e8 1572{
3dd06ffa 1573 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
ddbcc7e8 1574 struct cgroup_subsys *ss;
b85d2040 1575 int ssid;
ddbcc7e8 1576
d98817d4
TH
1577 if (root != &cgrp_dfl_root)
1578 for_each_subsys(ss, ssid)
1579 if (root->subsys_mask & (1 << ssid))
61e57c0c 1580 seq_show_option(seq, ss->legacy_name, NULL);
93438629 1581 if (root->flags & CGRP_ROOT_NOPREFIX)
ddbcc7e8 1582 seq_puts(seq, ",noprefix");
93438629 1583 if (root->flags & CGRP_ROOT_XATTR)
03b1cde6 1584 seq_puts(seq, ",xattr");
69e943b7
TH
1585
1586 spin_lock(&release_agent_path_lock);
81a6a5cd 1587 if (strlen(root->release_agent_path))
a068acf2
KC
1588 seq_show_option(seq, "release_agent",
1589 root->release_agent_path);
69e943b7
TH
1590 spin_unlock(&release_agent_path_lock);
1591
3dd06ffa 1592 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
97978e6d 1593 seq_puts(seq, ",clone_children");
c6d57f33 1594 if (strlen(root->name))
a068acf2 1595 seq_show_option(seq, "name", root->name);
ddbcc7e8
PM
1596 return 0;
1597}
1598
1599struct cgroup_sb_opts {
6e5c8307 1600 u16 subsys_mask;
69dfa00c 1601 unsigned int flags;
81a6a5cd 1602 char *release_agent;
2260e7fc 1603 bool cpuset_clone_children;
c6d57f33 1604 char *name;
2c6ab6d2
PM
1605 /* User explicitly requested empty subsystem */
1606 bool none;
ddbcc7e8
PM
1607};
1608
cf5d5941 1609static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
ddbcc7e8 1610{
32a8cf23
DL
1611 char *token, *o = data;
1612 bool all_ss = false, one_ss = false;
6e5c8307 1613 u16 mask = U16_MAX;
30159ec7 1614 struct cgroup_subsys *ss;
7b9a6ba5 1615 int nr_opts = 0;
30159ec7 1616 int i;
f9ab5b5b
LZ
1617
1618#ifdef CONFIG_CPUSETS
6e5c8307 1619 mask = ~((u16)1 << cpuset_cgrp_id);
f9ab5b5b 1620#endif
ddbcc7e8 1621
c6d57f33 1622 memset(opts, 0, sizeof(*opts));
ddbcc7e8
PM
1623
1624 while ((token = strsep(&o, ",")) != NULL) {
7b9a6ba5
TH
1625 nr_opts++;
1626
ddbcc7e8
PM
1627 if (!*token)
1628 return -EINVAL;
32a8cf23 1629 if (!strcmp(token, "none")) {
2c6ab6d2
PM
1630 /* Explicitly have no subsystems */
1631 opts->none = true;
32a8cf23
DL
1632 continue;
1633 }
1634 if (!strcmp(token, "all")) {
1635 /* Mutually exclusive option 'all' + subsystem name */
1636 if (one_ss)
1637 return -EINVAL;
1638 all_ss = true;
1639 continue;
1640 }
1641 if (!strcmp(token, "noprefix")) {
93438629 1642 opts->flags |= CGRP_ROOT_NOPREFIX;
32a8cf23
DL
1643 continue;
1644 }
1645 if (!strcmp(token, "clone_children")) {
2260e7fc 1646 opts->cpuset_clone_children = true;
32a8cf23
DL
1647 continue;
1648 }
03b1cde6 1649 if (!strcmp(token, "xattr")) {
93438629 1650 opts->flags |= CGRP_ROOT_XATTR;
03b1cde6
AR
1651 continue;
1652 }
32a8cf23 1653 if (!strncmp(token, "release_agent=", 14)) {
81a6a5cd
PM
1654 /* Specifying two release agents is forbidden */
1655 if (opts->release_agent)
1656 return -EINVAL;
c6d57f33 1657 opts->release_agent =
e400c285 1658 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
81a6a5cd
PM
1659 if (!opts->release_agent)
1660 return -ENOMEM;
32a8cf23
DL
1661 continue;
1662 }
1663 if (!strncmp(token, "name=", 5)) {
c6d57f33
PM
1664 const char *name = token + 5;
1665 /* Can't specify an empty name */
1666 if (!strlen(name))
1667 return -EINVAL;
1668 /* Must match [\w.-]+ */
1669 for (i = 0; i < strlen(name); i++) {
1670 char c = name[i];
1671 if (isalnum(c))
1672 continue;
1673 if ((c == '.') || (c == '-') || (c == '_'))
1674 continue;
1675 return -EINVAL;
1676 }
1677 /* Specifying two names is forbidden */
1678 if (opts->name)
1679 return -EINVAL;
1680 opts->name = kstrndup(name,
e400c285 1681 MAX_CGROUP_ROOT_NAMELEN - 1,
c6d57f33
PM
1682 GFP_KERNEL);
1683 if (!opts->name)
1684 return -ENOMEM;
32a8cf23
DL
1685
1686 continue;
1687 }
1688
30159ec7 1689 for_each_subsys(ss, i) {
3e1d2eed 1690 if (strcmp(token, ss->legacy_name))
32a8cf23 1691 continue;
fc5ed1e9 1692 if (!cgroup_ssid_enabled(i))
32a8cf23 1693 continue;
223ffb29
JW
1694 if (cgroup_ssid_no_v1(i))
1695 continue;
32a8cf23
DL
1696
1697 /* Mutually exclusive option 'all' + subsystem name */
1698 if (all_ss)
1699 return -EINVAL;
69dfa00c 1700 opts->subsys_mask |= (1 << i);
32a8cf23
DL
1701 one_ss = true;
1702
1703 break;
1704 }
1705 if (i == CGROUP_SUBSYS_COUNT)
1706 return -ENOENT;
1707 }
1708
7b9a6ba5
TH
1709 /*
1710 * If the 'all' option was specified select all the subsystems,
1711 * otherwise if 'none', 'name=' and a subsystem name options were
1712 * not specified, let's default to 'all'
1713 */
1714 if (all_ss || (!one_ss && !opts->none && !opts->name))
1715 for_each_subsys(ss, i)
223ffb29 1716 if (cgroup_ssid_enabled(i) && !cgroup_ssid_no_v1(i))
7b9a6ba5
TH
1717 opts->subsys_mask |= (1 << i);
1718
1719 /*
1720 * We either have to specify by name or by subsystems. (So all
1721 * empty hierarchies must have a name).
1722 */
1723 if (!opts->subsys_mask && !opts->name)
1724 return -EINVAL;
1725
f9ab5b5b
LZ
1726 /*
1727 * Option noprefix was introduced just for backward compatibility
1728 * with the old cpuset, so we allow noprefix only if mounting just
1729 * the cpuset subsystem.
1730 */
93438629 1731 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
f9ab5b5b
LZ
1732 return -EINVAL;
1733
2c6ab6d2 1734 /* Can't specify "none" and some subsystems */
a1a71b45 1735 if (opts->subsys_mask && opts->none)
2c6ab6d2
PM
1736 return -EINVAL;
1737
ddbcc7e8
PM
1738 return 0;
1739}
1740
2bd59d48 1741static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
ddbcc7e8
PM
1742{
1743 int ret = 0;
3dd06ffa 1744 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
ddbcc7e8 1745 struct cgroup_sb_opts opts;
6e5c8307 1746 u16 added_mask, removed_mask;
ddbcc7e8 1747
aa6ec29b
TH
1748 if (root == &cgrp_dfl_root) {
1749 pr_err("remount is not allowed\n");
873fe09e
TH
1750 return -EINVAL;
1751 }
1752
ddbcc7e8
PM
1753 mutex_lock(&cgroup_mutex);
1754
1755 /* See what subsystems are wanted */
1756 ret = parse_cgroupfs_options(data, &opts);
1757 if (ret)
1758 goto out_unlock;
1759
f392e51c 1760 if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
ed3d261b 1761 pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
a2a1f9ea 1762 task_tgid_nr(current), current->comm);
8b5a5a9d 1763
f392e51c
TH
1764 added_mask = opts.subsys_mask & ~root->subsys_mask;
1765 removed_mask = root->subsys_mask & ~opts.subsys_mask;
13af07df 1766
cf5d5941 1767 /* Don't allow flags or name to change at remount */
7450e90b 1768 if ((opts.flags ^ root->flags) ||
cf5d5941 1769 (opts.name && strcmp(opts.name, root->name))) {
69dfa00c 1770 pr_err("option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"\n",
7450e90b 1771 opts.flags, opts.name ?: "", root->flags, root->name);
c6d57f33
PM
1772 ret = -EINVAL;
1773 goto out_unlock;
1774 }
1775
f172e67c 1776 /* remounting is not allowed for populated hierarchies */
d5c419b6 1777 if (!list_empty(&root->cgrp.self.children)) {
f172e67c 1778 ret = -EBUSY;
0670e08b 1779 goto out_unlock;
cf5d5941 1780 }
ddbcc7e8 1781
5df36032 1782 ret = rebind_subsystems(root, added_mask);
3126121f 1783 if (ret)
0670e08b 1784 goto out_unlock;
ddbcc7e8 1785
3dd06ffa 1786 rebind_subsystems(&cgrp_dfl_root, removed_mask);
5df36032 1787
69e943b7
TH
1788 if (opts.release_agent) {
1789 spin_lock(&release_agent_path_lock);
81a6a5cd 1790 strcpy(root->release_agent_path, opts.release_agent);
69e943b7
TH
1791 spin_unlock(&release_agent_path_lock);
1792 }
ddbcc7e8 1793 out_unlock:
66bdc9cf 1794 kfree(opts.release_agent);
c6d57f33 1795 kfree(opts.name);
ddbcc7e8 1796 mutex_unlock(&cgroup_mutex);
ddbcc7e8
PM
1797 return ret;
1798}
1799
afeb0f9f
TH
1800/*
1801 * To reduce the fork() overhead for systems that are not actually using
1802 * their cgroups capability, we don't maintain the lists running through
1803 * each css_set to its tasks until we see the list actually used - in other
1804 * words after the first mount.
1805 */
1806static bool use_task_css_set_links __read_mostly;
1807
1808static void cgroup_enable_task_cg_lists(void)
1809{
1810 struct task_struct *p, *g;
1811
f0d9a5f1 1812 spin_lock_bh(&css_set_lock);
afeb0f9f
TH
1813
1814 if (use_task_css_set_links)
1815 goto out_unlock;
1816
1817 use_task_css_set_links = true;
1818
1819 /*
1820 * We need tasklist_lock because RCU is not safe against
1821 * while_each_thread(). Besides, a forking task that has passed
1822 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1823 * is not guaranteed to have its child immediately visible in the
1824 * tasklist if we walk through it with RCU.
1825 */
1826 read_lock(&tasklist_lock);
1827 do_each_thread(g, p) {
afeb0f9f
TH
1828 WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1829 task_css_set(p) != &init_css_set);
1830
1831 /*
1832 * We should check if the process is exiting, otherwise
1833 * it will race with cgroup_exit() in that the list
1834 * entry won't be deleted though the process has exited.
f153ad11
TH
1835 * Do it while holding siglock so that we don't end up
1836 * racing against cgroup_exit().
afeb0f9f 1837 */
f153ad11 1838 spin_lock_irq(&p->sighand->siglock);
eaf797ab
TH
1839 if (!(p->flags & PF_EXITING)) {
1840 struct css_set *cset = task_css_set(p);
1841
0de0942d
TH
1842 if (!css_set_populated(cset))
1843 css_set_update_populated(cset, true);
389b9c1b 1844 list_add_tail(&p->cg_list, &cset->tasks);
eaf797ab
TH
1845 get_css_set(cset);
1846 }
f153ad11 1847 spin_unlock_irq(&p->sighand->siglock);
afeb0f9f
TH
1848 } while_each_thread(g, p);
1849 read_unlock(&tasklist_lock);
1850out_unlock:
f0d9a5f1 1851 spin_unlock_bh(&css_set_lock);
afeb0f9f 1852}
ddbcc7e8 1853
cc31edce
PM
1854static void init_cgroup_housekeeping(struct cgroup *cgrp)
1855{
2d8f243a
TH
1856 struct cgroup_subsys *ss;
1857 int ssid;
1858
d5c419b6
TH
1859 INIT_LIST_HEAD(&cgrp->self.sibling);
1860 INIT_LIST_HEAD(&cgrp->self.children);
69d0206c 1861 INIT_LIST_HEAD(&cgrp->cset_links);
72a8cb30
BB
1862 INIT_LIST_HEAD(&cgrp->pidlists);
1863 mutex_init(&cgrp->pidlist_mutex);
9d800df1 1864 cgrp->self.cgroup = cgrp;
184faf32 1865 cgrp->self.flags |= CSS_ONLINE;
2d8f243a
TH
1866
1867 for_each_subsys(ss, ssid)
1868 INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
f8f22e53
TH
1869
1870 init_waitqueue_head(&cgrp->offline_waitq);
971ff493 1871 INIT_WORK(&cgrp->release_agent_work, cgroup_release_agent);
cc31edce 1872}
c6d57f33 1873
3dd06ffa 1874static void init_cgroup_root(struct cgroup_root *root,
172a2c06 1875 struct cgroup_sb_opts *opts)
ddbcc7e8 1876{
3dd06ffa 1877 struct cgroup *cgrp = &root->cgrp;
b0ca5a84 1878
ddbcc7e8 1879 INIT_LIST_HEAD(&root->root_list);
3c9c825b 1880 atomic_set(&root->nr_cgrps, 1);
bd89aabc 1881 cgrp->root = root;
cc31edce 1882 init_cgroup_housekeeping(cgrp);
4e96ee8e 1883 idr_init(&root->cgroup_idr);
c6d57f33 1884
c6d57f33
PM
1885 root->flags = opts->flags;
1886 if (opts->release_agent)
1887 strcpy(root->release_agent_path, opts->release_agent);
1888 if (opts->name)
1889 strcpy(root->name, opts->name);
2260e7fc 1890 if (opts->cpuset_clone_children)
3dd06ffa 1891 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
c6d57f33
PM
1892}
1893
6e5c8307 1894static int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask)
2c6ab6d2 1895{
d427dfeb 1896 LIST_HEAD(tmp_links);
3dd06ffa 1897 struct cgroup *root_cgrp = &root->cgrp;
d427dfeb 1898 struct css_set *cset;
d427dfeb 1899 int i, ret;
2c6ab6d2 1900
d427dfeb 1901 lockdep_assert_held(&cgroup_mutex);
c6d57f33 1902
cf780b7d 1903 ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_KERNEL);
d427dfeb 1904 if (ret < 0)
2bd59d48 1905 goto out;
d427dfeb 1906 root_cgrp->id = ret;
b11cfb58 1907 root_cgrp->ancestor_ids[0] = ret;
c6d57f33 1908
2aad2a86
TH
1909 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release, 0,
1910 GFP_KERNEL);
9d755d33
TH
1911 if (ret)
1912 goto out;
1913
d427dfeb 1914 /*
f0d9a5f1 1915 * We're accessing css_set_count without locking css_set_lock here,
d427dfeb
TH
1916 * but that's OK - it can only be increased by someone holding
1917 * cgroup_lock, and that's us. The worst that can happen is that we
1918 * have some link structures left over
1919 */
1920 ret = allocate_cgrp_cset_links(css_set_count, &tmp_links);
1921 if (ret)
9d755d33 1922 goto cancel_ref;
ddbcc7e8 1923
985ed670 1924 ret = cgroup_init_root_id(root);
ddbcc7e8 1925 if (ret)
9d755d33 1926 goto cancel_ref;
ddbcc7e8 1927
2bd59d48
TH
1928 root->kf_root = kernfs_create_root(&cgroup_kf_syscall_ops,
1929 KERNFS_ROOT_CREATE_DEACTIVATED,
1930 root_cgrp);
1931 if (IS_ERR(root->kf_root)) {
1932 ret = PTR_ERR(root->kf_root);
1933 goto exit_root_id;
1934 }
1935 root_cgrp->kn = root->kf_root->kn;
ddbcc7e8 1936
4df8dc90 1937 ret = css_populate_dir(&root_cgrp->self, NULL);
d427dfeb 1938 if (ret)
2bd59d48 1939 goto destroy_root;
ddbcc7e8 1940
5df36032 1941 ret = rebind_subsystems(root, ss_mask);
d427dfeb 1942 if (ret)
2bd59d48 1943 goto destroy_root;
ddbcc7e8 1944
d427dfeb
TH
1945 /*
1946 * There must be no failure case after here, since rebinding takes
1947 * care of subsystems' refcounts, which are explicitly dropped in
1948 * the failure exit path.
1949 */
1950 list_add(&root->root_list, &cgroup_roots);
1951 cgroup_root_count++;
0df6a63f 1952
d427dfeb 1953 /*
3dd06ffa 1954 * Link the root cgroup in this hierarchy into all the css_set
d427dfeb
TH
1955 * objects.
1956 */
f0d9a5f1 1957 spin_lock_bh(&css_set_lock);
0de0942d 1958 hash_for_each(css_set_table, i, cset, hlist) {
d427dfeb 1959 link_css_set(&tmp_links, cset, root_cgrp);
0de0942d
TH
1960 if (css_set_populated(cset))
1961 cgroup_update_populated(root_cgrp, true);
1962 }
f0d9a5f1 1963 spin_unlock_bh(&css_set_lock);
ddbcc7e8 1964
d5c419b6 1965 BUG_ON(!list_empty(&root_cgrp->self.children));
3c9c825b 1966 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
ddbcc7e8 1967
2bd59d48 1968 kernfs_activate(root_cgrp->kn);
d427dfeb 1969 ret = 0;
2bd59d48 1970 goto out;
d427dfeb 1971
2bd59d48
TH
1972destroy_root:
1973 kernfs_destroy_root(root->kf_root);
1974 root->kf_root = NULL;
1975exit_root_id:
d427dfeb 1976 cgroup_exit_root_id(root);
9d755d33 1977cancel_ref:
9a1049da 1978 percpu_ref_exit(&root_cgrp->self.refcnt);
2bd59d48 1979out:
d427dfeb
TH
1980 free_cgrp_cset_links(&tmp_links);
1981 return ret;
ddbcc7e8
PM
1982}
1983
f7e83571 1984static struct dentry *cgroup_mount(struct file_system_type *fs_type,
ddbcc7e8 1985 int flags, const char *unused_dev_name,
f7e83571 1986 void *data)
ddbcc7e8 1987{
67e9c74b 1988 bool is_v2 = fs_type == &cgroup2_fs_type;
3a32bd72 1989 struct super_block *pinned_sb = NULL;
970317aa 1990 struct cgroup_subsys *ss;
3dd06ffa 1991 struct cgroup_root *root;
ddbcc7e8 1992 struct cgroup_sb_opts opts;
2bd59d48 1993 struct dentry *dentry;
8e30e2b8 1994 int ret;
970317aa 1995 int i;
c6b3d5bc 1996 bool new_sb;
ddbcc7e8 1997
56fde9e0
TH
1998 /*
1999 * The first time anyone tries to mount a cgroup, enable the list
2000 * linking each css_set to its tasks and fix up all existing tasks.
2001 */
2002 if (!use_task_css_set_links)
2003 cgroup_enable_task_cg_lists();
e37a06f1 2004
67e9c74b
TH
2005 if (is_v2) {
2006 if (data) {
2007 pr_err("cgroup2: unknown option \"%s\"\n", (char *)data);
2008 return ERR_PTR(-EINVAL);
2009 }
a7165264 2010 cgrp_dfl_visible = true;
67e9c74b
TH
2011 root = &cgrp_dfl_root;
2012 cgroup_get(&root->cgrp);
2013 goto out_mount;
2014 }
2015
aae8aab4 2016 mutex_lock(&cgroup_mutex);
8e30e2b8
TH
2017
2018 /* First find the desired set of subsystems */
ddbcc7e8 2019 ret = parse_cgroupfs_options(data, &opts);
c6d57f33 2020 if (ret)
8e30e2b8 2021 goto out_unlock;
a015edd2 2022
970317aa
LZ
2023 /*
2024 * Destruction of cgroup root is asynchronous, so subsystems may
2025 * still be dying after the previous unmount. Let's drain the
2026 * dying subsystems. We just need to ensure that the ones
2027 * unmounted previously finish dying and don't care about new ones
2028 * starting. Testing ref liveliness is good enough.
2029 */
2030 for_each_subsys(ss, i) {
2031 if (!(opts.subsys_mask & (1 << i)) ||
2032 ss->root == &cgrp_dfl_root)
2033 continue;
2034
2035 if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt)) {
2036 mutex_unlock(&cgroup_mutex);
2037 msleep(10);
2038 ret = restart_syscall();
2039 goto out_free;
2040 }
2041 cgroup_put(&ss->root->cgrp);
2042 }
2043
985ed670 2044 for_each_root(root) {
2bd59d48 2045 bool name_match = false;
3126121f 2046
3dd06ffa 2047 if (root == &cgrp_dfl_root)
985ed670 2048 continue;
3126121f 2049
cf5d5941 2050 /*
2bd59d48
TH
2051 * If we asked for a name then it must match. Also, if
2052 * name matches but sybsys_mask doesn't, we should fail.
2053 * Remember whether name matched.
cf5d5941 2054 */
2bd59d48
TH
2055 if (opts.name) {
2056 if (strcmp(opts.name, root->name))
2057 continue;
2058 name_match = true;
2059 }
ddbcc7e8 2060
c6d57f33 2061 /*
2bd59d48
TH
2062 * If we asked for subsystems (or explicitly for no
2063 * subsystems) then they must match.
c6d57f33 2064 */
2bd59d48 2065 if ((opts.subsys_mask || opts.none) &&
f392e51c 2066 (opts.subsys_mask != root->subsys_mask)) {
2bd59d48
TH
2067 if (!name_match)
2068 continue;
2069 ret = -EBUSY;
2070 goto out_unlock;
2071 }
873fe09e 2072
7b9a6ba5
TH
2073 if (root->flags ^ opts.flags)
2074 pr_warn("new mount options do not match the existing superblock, will be ignored\n");
ddbcc7e8 2075
776f02fa 2076 /*
3a32bd72
LZ
2077 * We want to reuse @root whose lifetime is governed by its
2078 * ->cgrp. Let's check whether @root is alive and keep it
2079 * that way. As cgroup_kill_sb() can happen anytime, we
2080 * want to block it by pinning the sb so that @root doesn't
2081 * get killed before mount is complete.
2082 *
2083 * With the sb pinned, tryget_live can reliably indicate
2084 * whether @root can be reused. If it's being killed,
2085 * drain it. We can use wait_queue for the wait but this
2086 * path is super cold. Let's just sleep a bit and retry.
776f02fa 2087 */
3a32bd72
LZ
2088 pinned_sb = kernfs_pin_sb(root->kf_root, NULL);
2089 if (IS_ERR(pinned_sb) ||
2090 !percpu_ref_tryget_live(&root->cgrp.self.refcnt)) {
776f02fa 2091 mutex_unlock(&cgroup_mutex);
3a32bd72
LZ
2092 if (!IS_ERR_OR_NULL(pinned_sb))
2093 deactivate_super(pinned_sb);
776f02fa 2094 msleep(10);
a015edd2
TH
2095 ret = restart_syscall();
2096 goto out_free;
776f02fa 2097 }
ddbcc7e8 2098
776f02fa 2099 ret = 0;
2bd59d48 2100 goto out_unlock;
ddbcc7e8 2101 }
ddbcc7e8 2102
817929ec 2103 /*
172a2c06
TH
2104 * No such thing, create a new one. name= matching without subsys
2105 * specification is allowed for already existing hierarchies but we
2106 * can't create new one without subsys specification.
817929ec 2107 */
172a2c06
TH
2108 if (!opts.subsys_mask && !opts.none) {
2109 ret = -EINVAL;
2110 goto out_unlock;
817929ec 2111 }
817929ec 2112
172a2c06
TH
2113 root = kzalloc(sizeof(*root), GFP_KERNEL);
2114 if (!root) {
2115 ret = -ENOMEM;
2bd59d48 2116 goto out_unlock;
839ec545 2117 }
e5f6a860 2118
172a2c06
TH
2119 init_cgroup_root(root, &opts);
2120
35585573 2121 ret = cgroup_setup_root(root, opts.subsys_mask);
2bd59d48
TH
2122 if (ret)
2123 cgroup_free_root(root);
fa3ca07e 2124
8e30e2b8 2125out_unlock:
ddbcc7e8 2126 mutex_unlock(&cgroup_mutex);
a015edd2 2127out_free:
c6d57f33
PM
2128 kfree(opts.release_agent);
2129 kfree(opts.name);
03b1cde6 2130
2bd59d48 2131 if (ret)
8e30e2b8 2132 return ERR_PTR(ret);
67e9c74b 2133out_mount:
c9482a5b 2134 dentry = kernfs_mount(fs_type, flags, root->kf_root,
67e9c74b
TH
2135 is_v2 ? CGROUP2_SUPER_MAGIC : CGROUP_SUPER_MAGIC,
2136 &new_sb);
c6b3d5bc 2137 if (IS_ERR(dentry) || !new_sb)
3dd06ffa 2138 cgroup_put(&root->cgrp);
3a32bd72
LZ
2139
2140 /*
2141 * If @pinned_sb, we're reusing an existing root and holding an
2142 * extra ref on its sb. Mount is complete. Put the extra ref.
2143 */
2144 if (pinned_sb) {
2145 WARN_ON(new_sb);
2146 deactivate_super(pinned_sb);
2147 }
2148
2bd59d48
TH
2149 return dentry;
2150}
2151
2152static void cgroup_kill_sb(struct super_block *sb)
2153{
2154 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
3dd06ffa 2155 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2bd59d48 2156
9d755d33
TH
2157 /*
2158 * If @root doesn't have any mounts or children, start killing it.
2159 * This prevents new mounts by disabling percpu_ref_tryget_live().
2160 * cgroup_mount() may wait for @root's release.
1f779fb2
LZ
2161 *
2162 * And don't kill the default root.
9d755d33 2163 */
3c606d35 2164 if (!list_empty(&root->cgrp.self.children) ||
1f779fb2 2165 root == &cgrp_dfl_root)
9d755d33
TH
2166 cgroup_put(&root->cgrp);
2167 else
2168 percpu_ref_kill(&root->cgrp.self.refcnt);
2169
2bd59d48 2170 kernfs_kill_sb(sb);
ddbcc7e8
PM
2171}
2172
2173static struct file_system_type cgroup_fs_type = {
2174 .name = "cgroup",
f7e83571 2175 .mount = cgroup_mount,
ddbcc7e8
PM
2176 .kill_sb = cgroup_kill_sb,
2177};
2178
67e9c74b
TH
2179static struct file_system_type cgroup2_fs_type = {
2180 .name = "cgroup2",
2181 .mount = cgroup_mount,
2182 .kill_sb = cgroup_kill_sb,
2183};
2184
857a2beb 2185/**
913ffdb5 2186 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
857a2beb 2187 * @task: target task
857a2beb
TH
2188 * @buf: the buffer to write the path into
2189 * @buflen: the length of the buffer
2190 *
913ffdb5
TH
2191 * Determine @task's cgroup on the first (the one with the lowest non-zero
2192 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
2193 * function grabs cgroup_mutex and shouldn't be used inside locks used by
2194 * cgroup controller callbacks.
2195 *
e61734c5 2196 * Return value is the same as kernfs_path().
857a2beb 2197 */
e61734c5 2198char *task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
857a2beb 2199{
3dd06ffa 2200 struct cgroup_root *root;
913ffdb5 2201 struct cgroup *cgrp;
e61734c5
TH
2202 int hierarchy_id = 1;
2203 char *path = NULL;
857a2beb
TH
2204
2205 mutex_lock(&cgroup_mutex);
f0d9a5f1 2206 spin_lock_bh(&css_set_lock);
857a2beb 2207
913ffdb5
TH
2208 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
2209
857a2beb
TH
2210 if (root) {
2211 cgrp = task_cgroup_from_root(task, root);
e61734c5 2212 path = cgroup_path(cgrp, buf, buflen);
913ffdb5
TH
2213 } else {
2214 /* if no hierarchy exists, everyone is in "/" */
e61734c5
TH
2215 if (strlcpy(buf, "/", buflen) < buflen)
2216 path = buf;
857a2beb
TH
2217 }
2218
f0d9a5f1 2219 spin_unlock_bh(&css_set_lock);
857a2beb 2220 mutex_unlock(&cgroup_mutex);
e61734c5 2221 return path;
857a2beb 2222}
913ffdb5 2223EXPORT_SYMBOL_GPL(task_cgroup_path);
857a2beb 2224
b3dc094e 2225/* used to track tasks and other necessary states during migration */
2f7ee569 2226struct cgroup_taskset {
b3dc094e
TH
2227 /* the src and dst cset list running through cset->mg_node */
2228 struct list_head src_csets;
2229 struct list_head dst_csets;
2230
1f7dd3e5
TH
2231 /* the subsys currently being processed */
2232 int ssid;
2233
b3dc094e
TH
2234 /*
2235 * Fields for cgroup_taskset_*() iteration.
2236 *
2237 * Before migration is committed, the target migration tasks are on
2238 * ->mg_tasks of the csets on ->src_csets. After, on ->mg_tasks of
2239 * the csets on ->dst_csets. ->csets point to either ->src_csets
2240 * or ->dst_csets depending on whether migration is committed.
2241 *
2242 * ->cur_csets and ->cur_task point to the current task position
2243 * during iteration.
2244 */
2245 struct list_head *csets;
2246 struct css_set *cur_cset;
2247 struct task_struct *cur_task;
2f7ee569
TH
2248};
2249
adaae5dc
TH
2250#define CGROUP_TASKSET_INIT(tset) (struct cgroup_taskset){ \
2251 .src_csets = LIST_HEAD_INIT(tset.src_csets), \
2252 .dst_csets = LIST_HEAD_INIT(tset.dst_csets), \
2253 .csets = &tset.src_csets, \
2254}
2255
2256/**
2257 * cgroup_taskset_add - try to add a migration target task to a taskset
2258 * @task: target task
2259 * @tset: target taskset
2260 *
2261 * Add @task, which is a migration target, to @tset. This function becomes
2262 * noop if @task doesn't need to be migrated. @task's css_set should have
2263 * been added as a migration source and @task->cg_list will be moved from
2264 * the css_set's tasks list to mg_tasks one.
2265 */
2266static void cgroup_taskset_add(struct task_struct *task,
2267 struct cgroup_taskset *tset)
2268{
2269 struct css_set *cset;
2270
f0d9a5f1 2271 lockdep_assert_held(&css_set_lock);
adaae5dc
TH
2272
2273 /* @task either already exited or can't exit until the end */
2274 if (task->flags & PF_EXITING)
2275 return;
2276
2277 /* leave @task alone if post_fork() hasn't linked it yet */
2278 if (list_empty(&task->cg_list))
2279 return;
2280
2281 cset = task_css_set(task);
2282 if (!cset->mg_src_cgrp)
2283 return;
2284
2285 list_move_tail(&task->cg_list, &cset->mg_tasks);
2286 if (list_empty(&cset->mg_node))
2287 list_add_tail(&cset->mg_node, &tset->src_csets);
2288 if (list_empty(&cset->mg_dst_cset->mg_node))
2289 list_move_tail(&cset->mg_dst_cset->mg_node,
2290 &tset->dst_csets);
2291}
2292
2f7ee569
TH
2293/**
2294 * cgroup_taskset_first - reset taskset and return the first task
2295 * @tset: taskset of interest
1f7dd3e5 2296 * @dst_cssp: output variable for the destination css
2f7ee569
TH
2297 *
2298 * @tset iteration is initialized and the first task is returned.
2299 */
1f7dd3e5
TH
2300struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
2301 struct cgroup_subsys_state **dst_cssp)
2f7ee569 2302{
b3dc094e
TH
2303 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2304 tset->cur_task = NULL;
2305
1f7dd3e5 2306 return cgroup_taskset_next(tset, dst_cssp);
2f7ee569 2307}
2f7ee569
TH
2308
2309/**
2310 * cgroup_taskset_next - iterate to the next task in taskset
2311 * @tset: taskset of interest
1f7dd3e5 2312 * @dst_cssp: output variable for the destination css
2f7ee569
TH
2313 *
2314 * Return the next task in @tset. Iteration must have been initialized
2315 * with cgroup_taskset_first().
2316 */
1f7dd3e5
TH
2317struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
2318 struct cgroup_subsys_state **dst_cssp)
2f7ee569 2319{
b3dc094e
TH
2320 struct css_set *cset = tset->cur_cset;
2321 struct task_struct *task = tset->cur_task;
2f7ee569 2322
b3dc094e
TH
2323 while (&cset->mg_node != tset->csets) {
2324 if (!task)
2325 task = list_first_entry(&cset->mg_tasks,
2326 struct task_struct, cg_list);
2327 else
2328 task = list_next_entry(task, cg_list);
2f7ee569 2329
b3dc094e
TH
2330 if (&task->cg_list != &cset->mg_tasks) {
2331 tset->cur_cset = cset;
2332 tset->cur_task = task;
1f7dd3e5
TH
2333
2334 /*
2335 * This function may be called both before and
2336 * after cgroup_taskset_migrate(). The two cases
2337 * can be distinguished by looking at whether @cset
2338 * has its ->mg_dst_cset set.
2339 */
2340 if (cset->mg_dst_cset)
2341 *dst_cssp = cset->mg_dst_cset->subsys[tset->ssid];
2342 else
2343 *dst_cssp = cset->subsys[tset->ssid];
2344
b3dc094e
TH
2345 return task;
2346 }
2f7ee569 2347
b3dc094e
TH
2348 cset = list_next_entry(cset, mg_node);
2349 task = NULL;
2350 }
2f7ee569 2351
b3dc094e 2352 return NULL;
2f7ee569 2353}
2f7ee569 2354
adaae5dc
TH
2355/**
2356 * cgroup_taskset_migrate - migrate a taskset to a cgroup
2357 * @tset: taget taskset
2358 * @dst_cgrp: destination cgroup
2359 *
2360 * Migrate tasks in @tset to @dst_cgrp. This function fails iff one of the
2361 * ->can_attach callbacks fails and guarantees that either all or none of
2362 * the tasks in @tset are migrated. @tset is consumed regardless of
2363 * success.
2364 */
2365static int cgroup_taskset_migrate(struct cgroup_taskset *tset,
2366 struct cgroup *dst_cgrp)
2367{
2368 struct cgroup_subsys_state *css, *failed_css = NULL;
2369 struct task_struct *task, *tmp_task;
2370 struct css_set *cset, *tmp_cset;
2371 int i, ret;
2372
2373 /* methods shouldn't be called if no task is actually migrating */
2374 if (list_empty(&tset->src_csets))
2375 return 0;
2376
2377 /* check that we can legitimately attach to the cgroup */
2378 for_each_e_css(css, i, dst_cgrp) {
2379 if (css->ss->can_attach) {
1f7dd3e5
TH
2380 tset->ssid = i;
2381 ret = css->ss->can_attach(tset);
adaae5dc
TH
2382 if (ret) {
2383 failed_css = css;
2384 goto out_cancel_attach;
2385 }
2386 }
2387 }
2388
2389 /*
2390 * Now that we're guaranteed success, proceed to move all tasks to
2391 * the new cgroup. There are no failure cases after here, so this
2392 * is the commit point.
2393 */
f0d9a5f1 2394 spin_lock_bh(&css_set_lock);
adaae5dc 2395 list_for_each_entry(cset, &tset->src_csets, mg_node) {
f6d7d049
TH
2396 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2397 struct css_set *from_cset = task_css_set(task);
2398 struct css_set *to_cset = cset->mg_dst_cset;
2399
2400 get_css_set(to_cset);
2401 css_set_move_task(task, from_cset, to_cset, true);
2402 put_css_set_locked(from_cset);
2403 }
adaae5dc 2404 }
f0d9a5f1 2405 spin_unlock_bh(&css_set_lock);
adaae5dc
TH
2406
2407 /*
2408 * Migration is committed, all target tasks are now on dst_csets.
2409 * Nothing is sensitive to fork() after this point. Notify
2410 * controllers that migration is complete.
2411 */
2412 tset->csets = &tset->dst_csets;
2413
1f7dd3e5
TH
2414 for_each_e_css(css, i, dst_cgrp) {
2415 if (css->ss->attach) {
2416 tset->ssid = i;
2417 css->ss->attach(tset);
2418 }
2419 }
adaae5dc
TH
2420
2421 ret = 0;
2422 goto out_release_tset;
2423
2424out_cancel_attach:
2425 for_each_e_css(css, i, dst_cgrp) {
2426 if (css == failed_css)
2427 break;
1f7dd3e5
TH
2428 if (css->ss->cancel_attach) {
2429 tset->ssid = i;
2430 css->ss->cancel_attach(tset);
2431 }
adaae5dc
TH
2432 }
2433out_release_tset:
f0d9a5f1 2434 spin_lock_bh(&css_set_lock);
adaae5dc
TH
2435 list_splice_init(&tset->dst_csets, &tset->src_csets);
2436 list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2437 list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2438 list_del_init(&cset->mg_node);
2439 }
f0d9a5f1 2440 spin_unlock_bh(&css_set_lock);
adaae5dc
TH
2441 return ret;
2442}
2443
a043e3b2 2444/**
1958d2d5
TH
2445 * cgroup_migrate_finish - cleanup after attach
2446 * @preloaded_csets: list of preloaded css_sets
74a1166d 2447 *
1958d2d5
TH
2448 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
2449 * those functions for details.
74a1166d 2450 */
1958d2d5 2451static void cgroup_migrate_finish(struct list_head *preloaded_csets)
74a1166d 2452{
1958d2d5 2453 struct css_set *cset, *tmp_cset;
74a1166d 2454
1958d2d5
TH
2455 lockdep_assert_held(&cgroup_mutex);
2456
f0d9a5f1 2457 spin_lock_bh(&css_set_lock);
1958d2d5
TH
2458 list_for_each_entry_safe(cset, tmp_cset, preloaded_csets, mg_preload_node) {
2459 cset->mg_src_cgrp = NULL;
2460 cset->mg_dst_cset = NULL;
2461 list_del_init(&cset->mg_preload_node);
a25eb52e 2462 put_css_set_locked(cset);
1958d2d5 2463 }
f0d9a5f1 2464 spin_unlock_bh(&css_set_lock);
1958d2d5
TH
2465}
2466
2467/**
2468 * cgroup_migrate_add_src - add a migration source css_set
2469 * @src_cset: the source css_set to add
2470 * @dst_cgrp: the destination cgroup
2471 * @preloaded_csets: list of preloaded css_sets
2472 *
2473 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
2474 * @src_cset and add it to @preloaded_csets, which should later be cleaned
2475 * up by cgroup_migrate_finish().
2476 *
1ed13287
TH
2477 * This function may be called without holding cgroup_threadgroup_rwsem
2478 * even if the target is a process. Threads may be created and destroyed
2479 * but as long as cgroup_mutex is not dropped, no new css_set can be put
2480 * into play and the preloaded css_sets are guaranteed to cover all
2481 * migrations.
1958d2d5
TH
2482 */
2483static void cgroup_migrate_add_src(struct css_set *src_cset,
2484 struct cgroup *dst_cgrp,
2485 struct list_head *preloaded_csets)
2486{
2487 struct cgroup *src_cgrp;
2488
2489 lockdep_assert_held(&cgroup_mutex);
f0d9a5f1 2490 lockdep_assert_held(&css_set_lock);
1958d2d5
TH
2491
2492 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2493
1958d2d5
TH
2494 if (!list_empty(&src_cset->mg_preload_node))
2495 return;
2496
2497 WARN_ON(src_cset->mg_src_cgrp);
2498 WARN_ON(!list_empty(&src_cset->mg_tasks));
2499 WARN_ON(!list_empty(&src_cset->mg_node));
2500
2501 src_cset->mg_src_cgrp = src_cgrp;
2502 get_css_set(src_cset);
2503 list_add(&src_cset->mg_preload_node, preloaded_csets);
2504}
2505
2506/**
2507 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
f817de98 2508 * @dst_cgrp: the destination cgroup (may be %NULL)
1958d2d5
TH
2509 * @preloaded_csets: list of preloaded source css_sets
2510 *
2511 * Tasks are about to be moved to @dst_cgrp and all the source css_sets
2512 * have been preloaded to @preloaded_csets. This function looks up and
f817de98
TH
2513 * pins all destination css_sets, links each to its source, and append them
2514 * to @preloaded_csets. If @dst_cgrp is %NULL, the destination of each
2515 * source css_set is assumed to be its cgroup on the default hierarchy.
1958d2d5
TH
2516 *
2517 * This function must be called after cgroup_migrate_add_src() has been
2518 * called on each migration source css_set. After migration is performed
2519 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2520 * @preloaded_csets.
2521 */
2522static int cgroup_migrate_prepare_dst(struct cgroup *dst_cgrp,
2523 struct list_head *preloaded_csets)
2524{
2525 LIST_HEAD(csets);
f817de98 2526 struct css_set *src_cset, *tmp_cset;
1958d2d5
TH
2527
2528 lockdep_assert_held(&cgroup_mutex);
2529
f8f22e53 2530 /*
62716ea0 2531 * Except for the root, subtree_control must be zero for a cgroup
f8f22e53
TH
2532 * with tasks so that child cgroups don't compete against tasks.
2533 */
d51f39b0 2534 if (dst_cgrp && cgroup_on_dfl(dst_cgrp) && cgroup_parent(dst_cgrp) &&
62716ea0 2535 dst_cgrp->subtree_control)
f8f22e53
TH
2536 return -EBUSY;
2537
1958d2d5 2538 /* look up the dst cset for each src cset and link it to src */
f817de98 2539 list_for_each_entry_safe(src_cset, tmp_cset, preloaded_csets, mg_preload_node) {
1958d2d5
TH
2540 struct css_set *dst_cset;
2541
f817de98
TH
2542 dst_cset = find_css_set(src_cset,
2543 dst_cgrp ?: src_cset->dfl_cgrp);
1958d2d5
TH
2544 if (!dst_cset)
2545 goto err;
2546
2547 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
f817de98
TH
2548
2549 /*
2550 * If src cset equals dst, it's noop. Drop the src.
2551 * cgroup_migrate() will skip the cset too. Note that we
2552 * can't handle src == dst as some nodes are used by both.
2553 */
2554 if (src_cset == dst_cset) {
2555 src_cset->mg_src_cgrp = NULL;
2556 list_del_init(&src_cset->mg_preload_node);
a25eb52e
ZL
2557 put_css_set(src_cset);
2558 put_css_set(dst_cset);
f817de98
TH
2559 continue;
2560 }
2561
1958d2d5
TH
2562 src_cset->mg_dst_cset = dst_cset;
2563
2564 if (list_empty(&dst_cset->mg_preload_node))
2565 list_add(&dst_cset->mg_preload_node, &csets);
2566 else
a25eb52e 2567 put_css_set(dst_cset);
1958d2d5
TH
2568 }
2569
f817de98 2570 list_splice_tail(&csets, preloaded_csets);
1958d2d5
TH
2571 return 0;
2572err:
2573 cgroup_migrate_finish(&csets);
2574 return -ENOMEM;
2575}
2576
2577/**
2578 * cgroup_migrate - migrate a process or task to a cgroup
1958d2d5
TH
2579 * @leader: the leader of the process or the task to migrate
2580 * @threadgroup: whether @leader points to the whole process or a single task
9af2ec45 2581 * @cgrp: the destination cgroup
1958d2d5
TH
2582 *
2583 * Migrate a process or task denoted by @leader to @cgrp. If migrating a
1ed13287 2584 * process, the caller must be holding cgroup_threadgroup_rwsem. The
1958d2d5
TH
2585 * caller is also responsible for invoking cgroup_migrate_add_src() and
2586 * cgroup_migrate_prepare_dst() on the targets before invoking this
2587 * function and following up with cgroup_migrate_finish().
2588 *
2589 * As long as a controller's ->can_attach() doesn't fail, this function is
2590 * guaranteed to succeed. This means that, excluding ->can_attach()
2591 * failure, when migrating multiple targets, the success or failure can be
2592 * decided for all targets by invoking group_migrate_prepare_dst() before
2593 * actually starting migrating.
2594 */
9af2ec45
TH
2595static int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2596 struct cgroup *cgrp)
74a1166d 2597{
adaae5dc
TH
2598 struct cgroup_taskset tset = CGROUP_TASKSET_INIT(tset);
2599 struct task_struct *task;
74a1166d 2600
fb5d2b4c
MSB
2601 /*
2602 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2603 * already PF_EXITING could be freed from underneath us unless we
2604 * take an rcu_read_lock.
2605 */
f0d9a5f1 2606 spin_lock_bh(&css_set_lock);
fb5d2b4c 2607 rcu_read_lock();
9db8de37 2608 task = leader;
74a1166d 2609 do {
adaae5dc 2610 cgroup_taskset_add(task, &tset);
081aa458
LZ
2611 if (!threadgroup)
2612 break;
9db8de37 2613 } while_each_thread(leader, task);
fb5d2b4c 2614 rcu_read_unlock();
f0d9a5f1 2615 spin_unlock_bh(&css_set_lock);
74a1166d 2616
adaae5dc 2617 return cgroup_taskset_migrate(&tset, cgrp);
74a1166d
BB
2618}
2619
1958d2d5
TH
2620/**
2621 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2622 * @dst_cgrp: the cgroup to attach to
2623 * @leader: the task or the leader of the threadgroup to be attached
2624 * @threadgroup: attach the whole threadgroup?
2625 *
1ed13287 2626 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
1958d2d5
TH
2627 */
2628static int cgroup_attach_task(struct cgroup *dst_cgrp,
2629 struct task_struct *leader, bool threadgroup)
2630{
2631 LIST_HEAD(preloaded_csets);
2632 struct task_struct *task;
2633 int ret;
2634
2635 /* look up all src csets */
f0d9a5f1 2636 spin_lock_bh(&css_set_lock);
1958d2d5
TH
2637 rcu_read_lock();
2638 task = leader;
2639 do {
2640 cgroup_migrate_add_src(task_css_set(task), dst_cgrp,
2641 &preloaded_csets);
2642 if (!threadgroup)
2643 break;
2644 } while_each_thread(leader, task);
2645 rcu_read_unlock();
f0d9a5f1 2646 spin_unlock_bh(&css_set_lock);
1958d2d5
TH
2647
2648 /* prepare dst csets and commit */
2649 ret = cgroup_migrate_prepare_dst(dst_cgrp, &preloaded_csets);
2650 if (!ret)
9af2ec45 2651 ret = cgroup_migrate(leader, threadgroup, dst_cgrp);
1958d2d5
TH
2652
2653 cgroup_migrate_finish(&preloaded_csets);
2654 return ret;
74a1166d
BB
2655}
2656
187fe840
TH
2657static int cgroup_procs_write_permission(struct task_struct *task,
2658 struct cgroup *dst_cgrp,
2659 struct kernfs_open_file *of)
dedf22e9
TH
2660{
2661 const struct cred *cred = current_cred();
2662 const struct cred *tcred = get_task_cred(task);
2663 int ret = 0;
2664
2665 /*
2666 * even if we're attaching all tasks in the thread group, we only
2667 * need to check permissions on one of them.
2668 */
2669 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2670 !uid_eq(cred->euid, tcred->uid) &&
2671 !uid_eq(cred->euid, tcred->suid))
2672 ret = -EACCES;
2673
187fe840
TH
2674 if (!ret && cgroup_on_dfl(dst_cgrp)) {
2675 struct super_block *sb = of->file->f_path.dentry->d_sb;
2676 struct cgroup *cgrp;
2677 struct inode *inode;
2678
f0d9a5f1 2679 spin_lock_bh(&css_set_lock);
187fe840 2680 cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
f0d9a5f1 2681 spin_unlock_bh(&css_set_lock);
187fe840
TH
2682
2683 while (!cgroup_is_descendant(dst_cgrp, cgrp))
2684 cgrp = cgroup_parent(cgrp);
2685
2686 ret = -ENOMEM;
6f60eade 2687 inode = kernfs_get_inode(sb, cgrp->procs_file.kn);
187fe840
TH
2688 if (inode) {
2689 ret = inode_permission(inode, MAY_WRITE);
2690 iput(inode);
2691 }
2692 }
2693
dedf22e9
TH
2694 put_cred(tcred);
2695 return ret;
2696}
2697
74a1166d
BB
2698/*
2699 * Find the task_struct of the task to attach by vpid and pass it along to the
cd3d0952 2700 * function to attach either it or all tasks in its threadgroup. Will lock
0e1d768f 2701 * cgroup_mutex and threadgroup.
bbcb81d0 2702 */
acbef755
TH
2703static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
2704 size_t nbytes, loff_t off, bool threadgroup)
bbcb81d0 2705{
bbcb81d0 2706 struct task_struct *tsk;
e76ecaee 2707 struct cgroup *cgrp;
acbef755 2708 pid_t pid;
bbcb81d0
PM
2709 int ret;
2710
acbef755
TH
2711 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2712 return -EINVAL;
2713
e76ecaee
TH
2714 cgrp = cgroup_kn_lock_live(of->kn);
2715 if (!cgrp)
74a1166d
BB
2716 return -ENODEV;
2717
3014dde7 2718 percpu_down_write(&cgroup_threadgroup_rwsem);
b78949eb 2719 rcu_read_lock();
bbcb81d0 2720 if (pid) {
73507f33 2721 tsk = find_task_by_vpid(pid);
74a1166d 2722 if (!tsk) {
dd4b0a46 2723 ret = -ESRCH;
3014dde7 2724 goto out_unlock_rcu;
bbcb81d0 2725 }
dedf22e9 2726 } else {
b78949eb 2727 tsk = current;
dedf22e9 2728 }
cd3d0952
TH
2729
2730 if (threadgroup)
b78949eb 2731 tsk = tsk->group_leader;
c4c27fbd
MG
2732
2733 /*
14a40ffc 2734 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
c4c27fbd
MG
2735 * trapped in a cpuset, or RT worker may be born in a cgroup
2736 * with no rt_runtime allocated. Just say no.
2737 */
14a40ffc 2738 if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
c4c27fbd 2739 ret = -EINVAL;
3014dde7 2740 goto out_unlock_rcu;
c4c27fbd
MG
2741 }
2742
b78949eb
MSB
2743 get_task_struct(tsk);
2744 rcu_read_unlock();
2745
187fe840 2746 ret = cgroup_procs_write_permission(tsk, cgrp, of);
dedf22e9
TH
2747 if (!ret)
2748 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
081aa458 2749
f9f9e7b7 2750 put_task_struct(tsk);
3014dde7
TH
2751 goto out_unlock_threadgroup;
2752
2753out_unlock_rcu:
2754 rcu_read_unlock();
2755out_unlock_threadgroup:
2756 percpu_up_write(&cgroup_threadgroup_rwsem);
e76ecaee 2757 cgroup_kn_unlock(of->kn);
e93ad19d 2758 cpuset_post_attach_flush();
acbef755 2759 return ret ?: nbytes;
bbcb81d0
PM
2760}
2761
7ae1bad9
TH
2762/**
2763 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2764 * @from: attach to all cgroups of a given task
2765 * @tsk: the task to be attached
2766 */
2767int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2768{
3dd06ffa 2769 struct cgroup_root *root;
7ae1bad9
TH
2770 int retval = 0;
2771
47cfcd09 2772 mutex_lock(&cgroup_mutex);
985ed670 2773 for_each_root(root) {
96d365e0
TH
2774 struct cgroup *from_cgrp;
2775
3dd06ffa 2776 if (root == &cgrp_dfl_root)
985ed670
TH
2777 continue;
2778
f0d9a5f1 2779 spin_lock_bh(&css_set_lock);
96d365e0 2780 from_cgrp = task_cgroup_from_root(from, root);
f0d9a5f1 2781 spin_unlock_bh(&css_set_lock);
7ae1bad9 2782
6f4b7e63 2783 retval = cgroup_attach_task(from_cgrp, tsk, false);
7ae1bad9
TH
2784 if (retval)
2785 break;
2786 }
47cfcd09 2787 mutex_unlock(&cgroup_mutex);
7ae1bad9
TH
2788
2789 return retval;
2790}
2791EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2792
acbef755
TH
2793static ssize_t cgroup_tasks_write(struct kernfs_open_file *of,
2794 char *buf, size_t nbytes, loff_t off)
74a1166d 2795{
acbef755 2796 return __cgroup_procs_write(of, buf, nbytes, off, false);
74a1166d
BB
2797}
2798
acbef755
TH
2799static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
2800 char *buf, size_t nbytes, loff_t off)
af351026 2801{
acbef755 2802 return __cgroup_procs_write(of, buf, nbytes, off, true);
af351026
PM
2803}
2804
451af504
TH
2805static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of,
2806 char *buf, size_t nbytes, loff_t off)
e788e066 2807{
e76ecaee 2808 struct cgroup *cgrp;
5f469907 2809
e76ecaee 2810 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
5f469907 2811
e76ecaee
TH
2812 cgrp = cgroup_kn_lock_live(of->kn);
2813 if (!cgrp)
e788e066 2814 return -ENODEV;
69e943b7 2815 spin_lock(&release_agent_path_lock);
e76ecaee
TH
2816 strlcpy(cgrp->root->release_agent_path, strstrip(buf),
2817 sizeof(cgrp->root->release_agent_path));
69e943b7 2818 spin_unlock(&release_agent_path_lock);
e76ecaee 2819 cgroup_kn_unlock(of->kn);
451af504 2820 return nbytes;
e788e066
PM
2821}
2822
2da8ca82 2823static int cgroup_release_agent_show(struct seq_file *seq, void *v)
e788e066 2824{
2da8ca82 2825 struct cgroup *cgrp = seq_css(seq)->cgroup;
182446d0 2826
46cfeb04 2827 spin_lock(&release_agent_path_lock);
e788e066 2828 seq_puts(seq, cgrp->root->release_agent_path);
46cfeb04 2829 spin_unlock(&release_agent_path_lock);
e788e066 2830 seq_putc(seq, '\n');
e788e066
PM
2831 return 0;
2832}
2833
2da8ca82 2834static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
873fe09e 2835{
c1d5d42e 2836 seq_puts(seq, "0\n");
e788e066
PM
2837 return 0;
2838}
2839
6e5c8307 2840static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask)
355e0c48 2841{
f8f22e53
TH
2842 struct cgroup_subsys *ss;
2843 bool printed = false;
2844 int ssid;
a742c59d 2845
b4e0eeaf 2846 do_each_subsys_mask(ss, ssid, ss_mask) {
a966a4ed
AS
2847 if (printed)
2848 seq_putc(seq, ' ');
2849 seq_printf(seq, "%s", ss->name);
2850 printed = true;
b4e0eeaf 2851 } while_each_subsys_mask();
f8f22e53
TH
2852 if (printed)
2853 seq_putc(seq, '\n');
355e0c48
PM
2854}
2855
f8f22e53
TH
2856/* show controllers which are currently attached to the default hierarchy */
2857static int cgroup_root_controllers_show(struct seq_file *seq, void *v)
db3b1497 2858{
f8f22e53
TH
2859 struct cgroup *cgrp = seq_css(seq)->cgroup;
2860
5533e011 2861 cgroup_print_ss_mask(seq, cgrp->root->subsys_mask &
a7165264 2862 ~cgrp_dfl_inhibit_ss_mask);
f8f22e53 2863 return 0;
db3b1497
PM
2864}
2865
f8f22e53
TH
2866/* show controllers which are enabled from the parent */
2867static int cgroup_controllers_show(struct seq_file *seq, void *v)
ddbcc7e8 2868{
f8f22e53
TH
2869 struct cgroup *cgrp = seq_css(seq)->cgroup;
2870
667c2491 2871 cgroup_print_ss_mask(seq, cgroup_parent(cgrp)->subtree_control);
f8f22e53 2872 return 0;
ddbcc7e8
PM
2873}
2874
f8f22e53
TH
2875/* show controllers which are enabled for a given cgroup's children */
2876static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
ddbcc7e8 2877{
f8f22e53
TH
2878 struct cgroup *cgrp = seq_css(seq)->cgroup;
2879
667c2491 2880 cgroup_print_ss_mask(seq, cgrp->subtree_control);
f8f22e53
TH
2881 return 0;
2882}
2883
2884/**
2885 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2886 * @cgrp: root of the subtree to update csses for
2887 *
8699b776 2888 * @cgrp's subtree_ss_mask has changed and its subtree's (self excluded)
f8f22e53
TH
2889 * css associations need to be updated accordingly. This function looks up
2890 * all css_sets which are attached to the subtree, creates the matching
2891 * updated css_sets and migrates the tasks to the new ones.
2892 */
2893static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2894{
2895 LIST_HEAD(preloaded_csets);
10265075 2896 struct cgroup_taskset tset = CGROUP_TASKSET_INIT(tset);
f8f22e53
TH
2897 struct cgroup_subsys_state *css;
2898 struct css_set *src_cset;
2899 int ret;
2900
f8f22e53
TH
2901 lockdep_assert_held(&cgroup_mutex);
2902
3014dde7
TH
2903 percpu_down_write(&cgroup_threadgroup_rwsem);
2904
f8f22e53 2905 /* look up all csses currently attached to @cgrp's subtree */
f0d9a5f1 2906 spin_lock_bh(&css_set_lock);
f8f22e53
TH
2907 css_for_each_descendant_pre(css, cgroup_css(cgrp, NULL)) {
2908 struct cgrp_cset_link *link;
2909
8699b776 2910 /* self is not affected by subtree_ss_mask change */
f8f22e53
TH
2911 if (css->cgroup == cgrp)
2912 continue;
2913
2914 list_for_each_entry(link, &css->cgroup->cset_links, cset_link)
2915 cgroup_migrate_add_src(link->cset, cgrp,
2916 &preloaded_csets);
2917 }
f0d9a5f1 2918 spin_unlock_bh(&css_set_lock);
f8f22e53
TH
2919
2920 /* NULL dst indicates self on default hierarchy */
2921 ret = cgroup_migrate_prepare_dst(NULL, &preloaded_csets);
2922 if (ret)
2923 goto out_finish;
2924
f0d9a5f1 2925 spin_lock_bh(&css_set_lock);
f8f22e53 2926 list_for_each_entry(src_cset, &preloaded_csets, mg_preload_node) {
10265075 2927 struct task_struct *task, *ntask;
f8f22e53
TH
2928
2929 /* src_csets precede dst_csets, break on the first dst_cset */
2930 if (!src_cset->mg_src_cgrp)
2931 break;
2932
10265075
TH
2933 /* all tasks in src_csets need to be migrated */
2934 list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
2935 cgroup_taskset_add(task, &tset);
f8f22e53 2936 }
f0d9a5f1 2937 spin_unlock_bh(&css_set_lock);
f8f22e53 2938
10265075 2939 ret = cgroup_taskset_migrate(&tset, cgrp);
f8f22e53
TH
2940out_finish:
2941 cgroup_migrate_finish(&preloaded_csets);
3014dde7 2942 percpu_up_write(&cgroup_threadgroup_rwsem);
f8f22e53
TH
2943 return ret;
2944}
2945
2946/* change the enabled child controllers for a cgroup in the default hierarchy */
451af504
TH
2947static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
2948 char *buf, size_t nbytes,
2949 loff_t off)
f8f22e53 2950{
6e5c8307
TH
2951 u16 enable = 0, disable = 0;
2952 u16 css_enable, css_disable, old_sc, new_sc, old_ss, new_ss;
a9746d8d 2953 struct cgroup *cgrp, *child;
f8f22e53 2954 struct cgroup_subsys *ss;
451af504 2955 char *tok;
f8f22e53
TH
2956 int ssid, ret;
2957
2958 /*
d37167ab
TH
2959 * Parse input - space separated list of subsystem names prefixed
2960 * with either + or -.
f8f22e53 2961 */
451af504
TH
2962 buf = strstrip(buf);
2963 while ((tok = strsep(&buf, " "))) {
d37167ab
TH
2964 if (tok[0] == '\0')
2965 continue;
a7165264 2966 do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) {
fc5ed1e9
TH
2967 if (!cgroup_ssid_enabled(ssid) ||
2968 strcmp(tok + 1, ss->name))
f8f22e53
TH
2969 continue;
2970
2971 if (*tok == '+') {
7d331fa9
TH
2972 enable |= 1 << ssid;
2973 disable &= ~(1 << ssid);
f8f22e53 2974 } else if (*tok == '-') {
7d331fa9
TH
2975 disable |= 1 << ssid;
2976 enable &= ~(1 << ssid);
f8f22e53
TH
2977 } else {
2978 return -EINVAL;
2979 }
2980 break;
b4e0eeaf 2981 } while_each_subsys_mask();
f8f22e53
TH
2982 if (ssid == CGROUP_SUBSYS_COUNT)
2983 return -EINVAL;
2984 }
2985
a9746d8d
TH
2986 cgrp = cgroup_kn_lock_live(of->kn);
2987 if (!cgrp)
2988 return -ENODEV;
f8f22e53
TH
2989
2990 for_each_subsys(ss, ssid) {
2991 if (enable & (1 << ssid)) {
667c2491 2992 if (cgrp->subtree_control & (1 << ssid)) {
f8f22e53
TH
2993 enable &= ~(1 << ssid);
2994 continue;
2995 }
2996
c29adf24
TH
2997 /* unavailable or not enabled on the parent? */
2998 if (!(cgrp_dfl_root.subsys_mask & (1 << ssid)) ||
2999 (cgroup_parent(cgrp) &&
667c2491 3000 !(cgroup_parent(cgrp)->subtree_control & (1 << ssid)))) {
c29adf24
TH
3001 ret = -ENOENT;
3002 goto out_unlock;
3003 }
f8f22e53 3004 } else if (disable & (1 << ssid)) {
667c2491 3005 if (!(cgrp->subtree_control & (1 << ssid))) {
f8f22e53
TH
3006 disable &= ~(1 << ssid);
3007 continue;
3008 }
3009
3010 /* a child has it enabled? */
3011 cgroup_for_each_live_child(child, cgrp) {
667c2491 3012 if (child->subtree_control & (1 << ssid)) {
f8f22e53 3013 ret = -EBUSY;
ddab2b6e 3014 goto out_unlock;
f8f22e53
TH
3015 }
3016 }
3017 }
3018 }
3019
3020 if (!enable && !disable) {
3021 ret = 0;
ddab2b6e 3022 goto out_unlock;
f8f22e53
TH
3023 }
3024
3025 /*
667c2491 3026 * Except for the root, subtree_control must be zero for a cgroup
f8f22e53
TH
3027 * with tasks so that child cgroups don't compete against tasks.
3028 */
d51f39b0 3029 if (enable && cgroup_parent(cgrp) && !list_empty(&cgrp->cset_links)) {
f8f22e53
TH
3030 ret = -EBUSY;
3031 goto out_unlock;
3032 }
3033
3034 /*
f63070d3
TH
3035 * Update subsys masks and calculate what needs to be done. More
3036 * subsystems than specified may need to be enabled or disabled
3037 * depending on subsystem dependencies.
3038 */
755bf5ee 3039 old_sc = cgrp->subtree_control;
8699b776 3040 old_ss = cgrp->subtree_ss_mask;
755bf5ee 3041 new_sc = (old_sc | enable) & ~disable;
8699b776 3042 new_ss = cgroup_calc_subtree_ss_mask(cgrp, new_sc);
f63070d3 3043
755bf5ee
TH
3044 css_enable = ~old_ss & new_ss;
3045 css_disable = old_ss & ~new_ss;
f63070d3
TH
3046 enable |= css_enable;
3047 disable |= css_disable;
c29adf24 3048
db6e3053
TH
3049 /*
3050 * Because css offlining is asynchronous, userland might try to
3051 * re-enable the same controller while the previous instance is
3052 * still around. In such cases, wait till it's gone using
3053 * offline_waitq.
3054 */
b4e0eeaf 3055 do_each_subsys_mask(ss, ssid, css_enable) {
db6e3053
TH
3056 cgroup_for_each_live_child(child, cgrp) {
3057 DEFINE_WAIT(wait);
3058
3059 if (!cgroup_css(child, ss))
3060 continue;
3061
3062 cgroup_get(child);
3063 prepare_to_wait(&child->offline_waitq, &wait,
3064 TASK_UNINTERRUPTIBLE);
3065 cgroup_kn_unlock(of->kn);
3066 schedule();
3067 finish_wait(&child->offline_waitq, &wait);
3068 cgroup_put(child);
3069
3070 return restart_syscall();
3071 }
b4e0eeaf 3072 } while_each_subsys_mask();
db6e3053 3073
755bf5ee 3074 cgrp->subtree_control = new_sc;
8699b776 3075 cgrp->subtree_ss_mask = new_ss;
755bf5ee 3076
f63070d3
TH
3077 /*
3078 * Create new csses or make the existing ones visible. A css is
3079 * created invisible if it's being implicitly enabled through
3080 * dependency. An invisible css is made visible when the userland
3081 * explicitly enables it.
f8f22e53 3082 */
996cd1fb 3083 do_each_subsys_mask(ss, ssid, enable) {
f8f22e53 3084 cgroup_for_each_live_child(child, cgrp) {
6cd0f5bb
TH
3085 if (css_enable & (1 << ssid)) {
3086 struct cgroup_subsys_state *css;
3087
3088 css = css_create(child, ss);
3089 if (IS_ERR(css)) {
3090 ret = PTR_ERR(css);
3091 goto err_undo_css;
3092 }
3093
3094 if (cgrp->subtree_control & (1 << ssid)) {
3095 ret = css_populate_dir(css, NULL);
3096 if (ret)
3097 goto err_undo_css;
3098 }
3099 } else {
4df8dc90
TH
3100 ret = css_populate_dir(cgroup_css(child, ss),
3101 NULL);
6cd0f5bb
TH
3102 if (ret)
3103 goto err_undo_css;
3104 }
f8f22e53 3105 }
996cd1fb 3106 } while_each_subsys_mask();
f8f22e53 3107
c29adf24
TH
3108 /*
3109 * At this point, cgroup_e_css() results reflect the new csses
3110 * making the following cgroup_update_dfl_csses() properly update
3111 * css associations of all tasks in the subtree.
3112 */
f8f22e53
TH
3113 ret = cgroup_update_dfl_csses(cgrp);
3114 if (ret)
3115 goto err_undo_css;
3116
f63070d3
TH
3117 /*
3118 * All tasks are migrated out of disabled csses. Kill or hide
3119 * them. A css is hidden when the userland requests it to be
b4536f0c
TH
3120 * disabled while other subsystems are still depending on it. The
3121 * css must not actively control resources and be in the vanilla
3122 * state if it's made visible again later. Controllers which may
3123 * be depended upon should provide ->css_reset() for this purpose.
f63070d3 3124 */
996cd1fb 3125 do_each_subsys_mask(ss, ssid, disable) {
f63070d3 3126 cgroup_for_each_live_child(child, cgrp) {
b4536f0c
TH
3127 struct cgroup_subsys_state *css = cgroup_css(child, ss);
3128
3129 if (css_disable & (1 << ssid)) {
3130 kill_css(css);
3131 } else {
4df8dc90 3132 css_clear_dir(css, NULL);
b4536f0c
TH
3133 if (ss->css_reset)
3134 ss->css_reset(css);
3135 }
f63070d3 3136 }
996cd1fb 3137 } while_each_subsys_mask();
f8f22e53
TH
3138
3139 kernfs_activate(cgrp->kn);
3140 ret = 0;
3141out_unlock:
a9746d8d 3142 cgroup_kn_unlock(of->kn);
451af504 3143 return ret ?: nbytes;
f8f22e53
TH
3144
3145err_undo_css:
755bf5ee 3146 cgrp->subtree_control = old_sc;
8699b776 3147 cgrp->subtree_ss_mask = old_ss;
f8f22e53 3148
996cd1fb 3149 do_each_subsys_mask(ss, ssid, enable) {
f8f22e53
TH
3150 cgroup_for_each_live_child(child, cgrp) {
3151 struct cgroup_subsys_state *css = cgroup_css(child, ss);
f63070d3
TH
3152
3153 if (!css)
3154 continue;
3155
3156 if (css_enable & (1 << ssid))
f8f22e53 3157 kill_css(css);
f63070d3 3158 else
4df8dc90 3159 css_clear_dir(css, NULL);
f8f22e53 3160 }
996cd1fb 3161 } while_each_subsys_mask();
f8f22e53
TH
3162 goto out_unlock;
3163}
3164
4a07c222 3165static int cgroup_events_show(struct seq_file *seq, void *v)
842b597e 3166{
4a07c222 3167 seq_printf(seq, "populated %d\n",
27bd4dbb 3168 cgroup_is_populated(seq_css(seq)->cgroup));
842b597e
TH
3169 return 0;
3170}
3171
2bd59d48
TH
3172static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
3173 size_t nbytes, loff_t off)
355e0c48 3174{
2bd59d48
TH
3175 struct cgroup *cgrp = of->kn->parent->priv;
3176 struct cftype *cft = of->kn->priv;
3177 struct cgroup_subsys_state *css;
a742c59d 3178 int ret;
355e0c48 3179
b4168640
TH
3180 if (cft->write)
3181 return cft->write(of, buf, nbytes, off);
3182
2bd59d48
TH
3183 /*
3184 * kernfs guarantees that a file isn't deleted with operations in
3185 * flight, which means that the matching css is and stays alive and
3186 * doesn't need to be pinned. The RCU locking is not necessary
3187 * either. It's just for the convenience of using cgroup_css().
3188 */
3189 rcu_read_lock();
3190 css = cgroup_css(cgrp, cft->ss);
3191 rcu_read_unlock();
a742c59d 3192
451af504 3193 if (cft->write_u64) {
a742c59d
TH
3194 unsigned long long v;
3195 ret = kstrtoull(buf, 0, &v);
3196 if (!ret)
3197 ret = cft->write_u64(css, cft, v);
3198 } else if (cft->write_s64) {
3199 long long v;
3200 ret = kstrtoll(buf, 0, &v);
3201 if (!ret)
3202 ret = cft->write_s64(css, cft, v);
e73d2c61 3203 } else {
a742c59d 3204 ret = -EINVAL;
e73d2c61 3205 }
2bd59d48 3206
a742c59d 3207 return ret ?: nbytes;
355e0c48
PM
3208}
3209
6612f05b 3210static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
db3b1497 3211{
2bd59d48 3212 return seq_cft(seq)->seq_start(seq, ppos);
db3b1497
PM
3213}
3214
6612f05b 3215static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
ddbcc7e8 3216{
2bd59d48 3217 return seq_cft(seq)->seq_next(seq, v, ppos);
ddbcc7e8
PM
3218}
3219
6612f05b 3220static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
ddbcc7e8 3221{
2bd59d48 3222 seq_cft(seq)->seq_stop(seq, v);
ddbcc7e8
PM
3223}
3224
91796569 3225static int cgroup_seqfile_show(struct seq_file *m, void *arg)
e73d2c61 3226{
7da11279
TH
3227 struct cftype *cft = seq_cft(m);
3228 struct cgroup_subsys_state *css = seq_css(m);
e73d2c61 3229
2da8ca82
TH
3230 if (cft->seq_show)
3231 return cft->seq_show(m, arg);
e73d2c61 3232
f4c753b7 3233 if (cft->read_u64)
896f5199
TH
3234 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
3235 else if (cft->read_s64)
3236 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
3237 else
3238 return -EINVAL;
3239 return 0;
91796569
PM
3240}
3241
2bd59d48
TH
3242static struct kernfs_ops cgroup_kf_single_ops = {
3243 .atomic_write_len = PAGE_SIZE,
3244 .write = cgroup_file_write,
3245 .seq_show = cgroup_seqfile_show,
91796569
PM
3246};
3247
2bd59d48
TH
3248static struct kernfs_ops cgroup_kf_ops = {
3249 .atomic_write_len = PAGE_SIZE,
3250 .write = cgroup_file_write,
3251 .seq_start = cgroup_seqfile_start,
3252 .seq_next = cgroup_seqfile_next,
3253 .seq_stop = cgroup_seqfile_stop,
3254 .seq_show = cgroup_seqfile_show,
3255};
ddbcc7e8
PM
3256
3257/*
3258 * cgroup_rename - Only allow simple rename of directories in place.
3259 */
2bd59d48
TH
3260static int cgroup_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
3261 const char *new_name_str)
ddbcc7e8 3262{
2bd59d48 3263 struct cgroup *cgrp = kn->priv;
65dff759 3264 int ret;
65dff759 3265
2bd59d48 3266 if (kernfs_type(kn) != KERNFS_DIR)
ddbcc7e8 3267 return -ENOTDIR;
2bd59d48 3268 if (kn->parent != new_parent)
ddbcc7e8 3269 return -EIO;
65dff759 3270
6db8e85c
TH
3271 /*
3272 * This isn't a proper migration and its usefulness is very
aa6ec29b 3273 * limited. Disallow on the default hierarchy.
6db8e85c 3274 */
aa6ec29b 3275 if (cgroup_on_dfl(cgrp))
6db8e85c 3276 return -EPERM;
099fca32 3277
e1b2dc17 3278 /*
8353da1f 3279 * We're gonna grab cgroup_mutex which nests outside kernfs
e1b2dc17 3280 * active_ref. kernfs_rename() doesn't require active_ref
8353da1f 3281 * protection. Break them before grabbing cgroup_mutex.
e1b2dc17
TH
3282 */
3283 kernfs_break_active_protection(new_parent);
3284 kernfs_break_active_protection(kn);
099fca32 3285
2bd59d48 3286 mutex_lock(&cgroup_mutex);
099fca32 3287
2bd59d48 3288 ret = kernfs_rename(kn, new_parent, new_name_str);
099fca32 3289
2bd59d48 3290 mutex_unlock(&cgroup_mutex);
e1b2dc17
TH
3291
3292 kernfs_unbreak_active_protection(kn);
3293 kernfs_unbreak_active_protection(new_parent);
2bd59d48 3294 return ret;
099fca32
LZ
3295}
3296
49957f8e
TH
3297/* set uid and gid of cgroup dirs and files to that of the creator */
3298static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3299{
3300 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3301 .ia_uid = current_fsuid(),
3302 .ia_gid = current_fsgid(), };
3303
3304 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3305 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
3306 return 0;
3307
3308 return kernfs_setattr(kn, &iattr);
3309}
3310
4df8dc90
TH
3311static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
3312 struct cftype *cft)
ddbcc7e8 3313{
8d7e6fb0 3314 char name[CGROUP_FILE_NAME_MAX];
2bd59d48
TH
3315 struct kernfs_node *kn;
3316 struct lock_class_key *key = NULL;
49957f8e 3317 int ret;
05ef1d7c 3318
2bd59d48
TH
3319#ifdef CONFIG_DEBUG_LOCK_ALLOC
3320 key = &cft->lockdep_key;
3321#endif
3322 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
3323 cgroup_file_mode(cft), 0, cft->kf_ops, cft,
dfeb0750 3324 NULL, key);
49957f8e
TH
3325 if (IS_ERR(kn))
3326 return PTR_ERR(kn);
3327
3328 ret = cgroup_kn_set_ugid(kn);
f8f22e53 3329 if (ret) {
49957f8e 3330 kernfs_remove(kn);
f8f22e53
TH
3331 return ret;
3332 }
3333
6f60eade
TH
3334 if (cft->file_offset) {
3335 struct cgroup_file *cfile = (void *)css + cft->file_offset;
3336
34c06254 3337 spin_lock_irq(&cgroup_file_kn_lock);
6f60eade 3338 cfile->kn = kn;
34c06254 3339 spin_unlock_irq(&cgroup_file_kn_lock);
6f60eade
TH
3340 }
3341
f8f22e53 3342 return 0;
ddbcc7e8
PM
3343}
3344
b1f28d31
TH
3345/**
3346 * cgroup_addrm_files - add or remove files to a cgroup directory
4df8dc90
TH
3347 * @css: the target css
3348 * @cgrp: the target cgroup (usually css->cgroup)
b1f28d31
TH
3349 * @cfts: array of cftypes to be added
3350 * @is_add: whether to add or remove
3351 *
3352 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
6732ed85 3353 * For removals, this function never fails.
b1f28d31 3354 */
4df8dc90
TH
3355static int cgroup_addrm_files(struct cgroup_subsys_state *css,
3356 struct cgroup *cgrp, struct cftype cfts[],
2bb566cb 3357 bool is_add)
ddbcc7e8 3358{
6732ed85 3359 struct cftype *cft, *cft_end = NULL;
b598dde3 3360 int ret = 0;
b1f28d31 3361
01f6474c 3362 lockdep_assert_held(&cgroup_mutex);
db0416b6 3363
6732ed85
TH
3364restart:
3365 for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
f33fddc2 3366 /* does cft->flags tell us to skip this file on @cgrp? */
05ebb6e6 3367 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
8cbbf2c9 3368 continue;
05ebb6e6 3369 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
873fe09e 3370 continue;
d51f39b0 3371 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
f33fddc2 3372 continue;
d51f39b0 3373 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
f33fddc2
G
3374 continue;
3375
2739d3cc 3376 if (is_add) {
4df8dc90 3377 ret = cgroup_add_file(css, cgrp, cft);
b1f28d31 3378 if (ret) {
ed3d261b
JP
3379 pr_warn("%s: failed to add %s, err=%d\n",
3380 __func__, cft->name, ret);
6732ed85
TH
3381 cft_end = cft;
3382 is_add = false;
3383 goto restart;
b1f28d31 3384 }
2739d3cc
LZ
3385 } else {
3386 cgroup_rm_file(cgrp, cft);
db0416b6 3387 }
ddbcc7e8 3388 }
b598dde3 3389 return ret;
ddbcc7e8
PM
3390}
3391
21a2d343 3392static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
8e3f6541
TH
3393{
3394 LIST_HEAD(pending);
2bb566cb 3395 struct cgroup_subsys *ss = cfts[0].ss;
3dd06ffa 3396 struct cgroup *root = &ss->root->cgrp;
492eb21b 3397 struct cgroup_subsys_state *css;
9ccece80 3398 int ret = 0;
8e3f6541 3399
01f6474c 3400 lockdep_assert_held(&cgroup_mutex);
e8c82d20 3401
e8c82d20 3402 /* add/rm files for all cgroups created before */
ca8bdcaf 3403 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
492eb21b
TH
3404 struct cgroup *cgrp = css->cgroup;
3405
e8c82d20
LZ
3406 if (cgroup_is_dead(cgrp))
3407 continue;
3408
4df8dc90 3409 ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
9ccece80
TH
3410 if (ret)
3411 break;
8e3f6541 3412 }
21a2d343
TH
3413
3414 if (is_add && !ret)
3415 kernfs_activate(root->kn);
9ccece80 3416 return ret;
8e3f6541
TH
3417}
3418
2da440a2 3419static void cgroup_exit_cftypes(struct cftype *cfts)
8e3f6541 3420{
2bb566cb 3421 struct cftype *cft;
8e3f6541 3422
2bd59d48
TH
3423 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3424 /* free copy for custom atomic_write_len, see init_cftypes() */
3425 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
3426 kfree(cft->kf_ops);
3427 cft->kf_ops = NULL;
2da440a2 3428 cft->ss = NULL;
a8ddc821
TH
3429
3430 /* revert flags set by cgroup core while adding @cfts */
05ebb6e6 3431 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
2bd59d48 3432 }
2da440a2
TH
3433}
3434
2bd59d48 3435static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
2da440a2
TH
3436{
3437 struct cftype *cft;
3438
2bd59d48
TH
3439 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3440 struct kernfs_ops *kf_ops;
3441
0adb0704
TH
3442 WARN_ON(cft->ss || cft->kf_ops);
3443
2bd59d48
TH
3444 if (cft->seq_start)
3445 kf_ops = &cgroup_kf_ops;
3446 else
3447 kf_ops = &cgroup_kf_single_ops;
3448
3449 /*
3450 * Ugh... if @cft wants a custom max_write_len, we need to
3451 * make a copy of kf_ops to set its atomic_write_len.
3452 */
3453 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
3454 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
3455 if (!kf_ops) {
3456 cgroup_exit_cftypes(cfts);
3457 return -ENOMEM;
3458 }
3459 kf_ops->atomic_write_len = cft->max_write_len;
3460 }
8e3f6541 3461
2bd59d48 3462 cft->kf_ops = kf_ops;
2bb566cb 3463 cft->ss = ss;
2bd59d48 3464 }
2bb566cb 3465
2bd59d48 3466 return 0;
2da440a2
TH
3467}
3468
21a2d343
TH
3469static int cgroup_rm_cftypes_locked(struct cftype *cfts)
3470{
01f6474c 3471 lockdep_assert_held(&cgroup_mutex);
21a2d343
TH
3472
3473 if (!cfts || !cfts[0].ss)
3474 return -ENOENT;
3475
3476 list_del(&cfts->node);
3477 cgroup_apply_cftypes(cfts, false);
3478 cgroup_exit_cftypes(cfts);
3479 return 0;
8e3f6541 3480}
8e3f6541 3481
79578621
TH
3482/**
3483 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
79578621
TH
3484 * @cfts: zero-length name terminated array of cftypes
3485 *
2bb566cb
TH
3486 * Unregister @cfts. Files described by @cfts are removed from all
3487 * existing cgroups and all future cgroups won't have them either. This
3488 * function can be called anytime whether @cfts' subsys is attached or not.
79578621
TH
3489 *
3490 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
2bb566cb 3491 * registered.
79578621 3492 */
2bb566cb 3493int cgroup_rm_cftypes(struct cftype *cfts)
79578621 3494{
21a2d343 3495 int ret;
79578621 3496
01f6474c 3497 mutex_lock(&cgroup_mutex);
21a2d343 3498 ret = cgroup_rm_cftypes_locked(cfts);
01f6474c 3499 mutex_unlock(&cgroup_mutex);
21a2d343 3500 return ret;
80b13586
TH
3501}
3502
8e3f6541
TH
3503/**
3504 * cgroup_add_cftypes - add an array of cftypes to a subsystem
3505 * @ss: target cgroup subsystem
3506 * @cfts: zero-length name terminated array of cftypes
3507 *
3508 * Register @cfts to @ss. Files described by @cfts are created for all
3509 * existing cgroups to which @ss is attached and all future cgroups will
3510 * have them too. This function can be called anytime whether @ss is
3511 * attached or not.
3512 *
3513 * Returns 0 on successful registration, -errno on failure. Note that this
3514 * function currently returns 0 as long as @cfts registration is successful
3515 * even if some file creation attempts on existing cgroups fail.
3516 */
2cf669a5 3517static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
8e3f6541 3518{
9ccece80 3519 int ret;
8e3f6541 3520
fc5ed1e9 3521 if (!cgroup_ssid_enabled(ss->id))
c731ae1d
LZ
3522 return 0;
3523
dc5736ed
LZ
3524 if (!cfts || cfts[0].name[0] == '\0')
3525 return 0;
2bb566cb 3526
2bd59d48
TH
3527 ret = cgroup_init_cftypes(ss, cfts);
3528 if (ret)
3529 return ret;
79578621 3530
01f6474c 3531 mutex_lock(&cgroup_mutex);
21a2d343 3532
0adb0704 3533 list_add_tail(&cfts->node, &ss->cfts);
21a2d343 3534 ret = cgroup_apply_cftypes(cfts, true);
9ccece80 3535 if (ret)
21a2d343 3536 cgroup_rm_cftypes_locked(cfts);
79578621 3537
01f6474c 3538 mutex_unlock(&cgroup_mutex);
9ccece80 3539 return ret;
79578621
TH
3540}
3541
a8ddc821
TH
3542/**
3543 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
3544 * @ss: target cgroup subsystem
3545 * @cfts: zero-length name terminated array of cftypes
3546 *
3547 * Similar to cgroup_add_cftypes() but the added files are only used for
3548 * the default hierarchy.
3549 */
3550int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3551{
3552 struct cftype *cft;
3553
3554 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
05ebb6e6 3555 cft->flags |= __CFTYPE_ONLY_ON_DFL;
a8ddc821
TH
3556 return cgroup_add_cftypes(ss, cfts);
3557}
3558
3559/**
3560 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
3561 * @ss: target cgroup subsystem
3562 * @cfts: zero-length name terminated array of cftypes
3563 *
3564 * Similar to cgroup_add_cftypes() but the added files are only used for
3565 * the legacy hierarchies.
3566 */
2cf669a5
TH
3567int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3568{
a8ddc821
TH
3569 struct cftype *cft;
3570
e4b7037c
TH
3571 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3572 cft->flags |= __CFTYPE_NOT_ON_DFL;
2cf669a5
TH
3573 return cgroup_add_cftypes(ss, cfts);
3574}
3575
34c06254
TH
3576/**
3577 * cgroup_file_notify - generate a file modified event for a cgroup_file
3578 * @cfile: target cgroup_file
3579 *
3580 * @cfile must have been obtained by setting cftype->file_offset.
3581 */
3582void cgroup_file_notify(struct cgroup_file *cfile)
3583{
3584 unsigned long flags;
3585
3586 spin_lock_irqsave(&cgroup_file_kn_lock, flags);
3587 if (cfile->kn)
3588 kernfs_notify(cfile->kn);
3589 spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
3590}
3591
a043e3b2
LZ
3592/**
3593 * cgroup_task_count - count the number of tasks in a cgroup.
3594 * @cgrp: the cgroup in question
3595 *
3596 * Return the number of tasks in the cgroup.
3597 */
07bc356e 3598static int cgroup_task_count(const struct cgroup *cgrp)
bbcb81d0
PM
3599{
3600 int count = 0;
69d0206c 3601 struct cgrp_cset_link *link;
817929ec 3602
f0d9a5f1 3603 spin_lock_bh(&css_set_lock);
69d0206c
TH
3604 list_for_each_entry(link, &cgrp->cset_links, cset_link)
3605 count += atomic_read(&link->cset->refcount);
f0d9a5f1 3606 spin_unlock_bh(&css_set_lock);
bbcb81d0
PM
3607 return count;
3608}
3609
53fa5261 3610/**
492eb21b 3611 * css_next_child - find the next child of a given css
c2931b70
TH
3612 * @pos: the current position (%NULL to initiate traversal)
3613 * @parent: css whose children to walk
53fa5261 3614 *
c2931b70 3615 * This function returns the next child of @parent and should be called
87fb54f1 3616 * under either cgroup_mutex or RCU read lock. The only requirement is
c2931b70
TH
3617 * that @parent and @pos are accessible. The next sibling is guaranteed to
3618 * be returned regardless of their states.
3619 *
3620 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3621 * css which finished ->css_online() is guaranteed to be visible in the
3622 * future iterations and will stay visible until the last reference is put.
3623 * A css which hasn't finished ->css_online() or already finished
3624 * ->css_offline() may show up during traversal. It's each subsystem's
3625 * responsibility to synchronize against on/offlining.
53fa5261 3626 */
c2931b70
TH
3627struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
3628 struct cgroup_subsys_state *parent)
53fa5261 3629{
c2931b70 3630 struct cgroup_subsys_state *next;
53fa5261 3631
8353da1f 3632 cgroup_assert_mutex_or_rcu_locked();
53fa5261
TH
3633
3634 /*
de3f0341
TH
3635 * @pos could already have been unlinked from the sibling list.
3636 * Once a cgroup is removed, its ->sibling.next is no longer
3637 * updated when its next sibling changes. CSS_RELEASED is set when
3638 * @pos is taken off list, at which time its next pointer is valid,
3639 * and, as releases are serialized, the one pointed to by the next
3640 * pointer is guaranteed to not have started release yet. This
3641 * implies that if we observe !CSS_RELEASED on @pos in this RCU
3642 * critical section, the one pointed to by its next pointer is
3643 * guaranteed to not have finished its RCU grace period even if we
3644 * have dropped rcu_read_lock() inbetween iterations.
3b287a50 3645 *
de3f0341
TH
3646 * If @pos has CSS_RELEASED set, its next pointer can't be
3647 * dereferenced; however, as each css is given a monotonically
3648 * increasing unique serial number and always appended to the
3649 * sibling list, the next one can be found by walking the parent's
3650 * children until the first css with higher serial number than
3651 * @pos's. While this path can be slower, it happens iff iteration
3652 * races against release and the race window is very small.
53fa5261 3653 */
3b287a50 3654 if (!pos) {
c2931b70
TH
3655 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
3656 } else if (likely(!(pos->flags & CSS_RELEASED))) {
3657 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
3b287a50 3658 } else {
c2931b70 3659 list_for_each_entry_rcu(next, &parent->children, sibling)
3b287a50
TH
3660 if (next->serial_nr > pos->serial_nr)
3661 break;
53fa5261
TH
3662 }
3663
3b281afb
TH
3664 /*
3665 * @next, if not pointing to the head, can be dereferenced and is
c2931b70 3666 * the next sibling.
3b281afb 3667 */
c2931b70
TH
3668 if (&next->sibling != &parent->children)
3669 return next;
3b281afb 3670 return NULL;
53fa5261 3671}
53fa5261 3672
574bd9f7 3673/**
492eb21b 3674 * css_next_descendant_pre - find the next descendant for pre-order walk
574bd9f7 3675 * @pos: the current position (%NULL to initiate traversal)
492eb21b 3676 * @root: css whose descendants to walk
574bd9f7 3677 *
492eb21b 3678 * To be used by css_for_each_descendant_pre(). Find the next descendant
bd8815a6
TH
3679 * to visit for pre-order traversal of @root's descendants. @root is
3680 * included in the iteration and the first node to be visited.
75501a6d 3681 *
87fb54f1
TH
3682 * While this function requires cgroup_mutex or RCU read locking, it
3683 * doesn't require the whole traversal to be contained in a single critical
3684 * section. This function will return the correct next descendant as long
3685 * as both @pos and @root are accessible and @pos is a descendant of @root.
c2931b70
TH
3686 *
3687 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3688 * css which finished ->css_online() is guaranteed to be visible in the
3689 * future iterations and will stay visible until the last reference is put.
3690 * A css which hasn't finished ->css_online() or already finished
3691 * ->css_offline() may show up during traversal. It's each subsystem's
3692 * responsibility to synchronize against on/offlining.
574bd9f7 3693 */
492eb21b
TH
3694struct cgroup_subsys_state *
3695css_next_descendant_pre(struct cgroup_subsys_state *pos,
3696 struct cgroup_subsys_state *root)
574bd9f7 3697{
492eb21b 3698 struct cgroup_subsys_state *next;
574bd9f7 3699
8353da1f 3700 cgroup_assert_mutex_or_rcu_locked();
574bd9f7 3701
bd8815a6 3702 /* if first iteration, visit @root */
7805d000 3703 if (!pos)
bd8815a6 3704 return root;
574bd9f7
TH
3705
3706 /* visit the first child if exists */
492eb21b 3707 next = css_next_child(NULL, pos);
574bd9f7
TH
3708 if (next)
3709 return next;
3710
3711 /* no child, visit my or the closest ancestor's next sibling */
492eb21b 3712 while (pos != root) {
5c9d535b 3713 next = css_next_child(pos, pos->parent);
75501a6d 3714 if (next)
574bd9f7 3715 return next;
5c9d535b 3716 pos = pos->parent;
7805d000 3717 }
574bd9f7
TH
3718
3719 return NULL;
3720}
574bd9f7 3721
12a9d2fe 3722/**
492eb21b
TH
3723 * css_rightmost_descendant - return the rightmost descendant of a css
3724 * @pos: css of interest
12a9d2fe 3725 *
492eb21b
TH
3726 * Return the rightmost descendant of @pos. If there's no descendant, @pos
3727 * is returned. This can be used during pre-order traversal to skip
12a9d2fe 3728 * subtree of @pos.
75501a6d 3729 *
87fb54f1
TH
3730 * While this function requires cgroup_mutex or RCU read locking, it
3731 * doesn't require the whole traversal to be contained in a single critical
3732 * section. This function will return the correct rightmost descendant as
3733 * long as @pos is accessible.
12a9d2fe 3734 */
492eb21b
TH
3735struct cgroup_subsys_state *
3736css_rightmost_descendant(struct cgroup_subsys_state *pos)
12a9d2fe 3737{
492eb21b 3738 struct cgroup_subsys_state *last, *tmp;
12a9d2fe 3739
8353da1f 3740 cgroup_assert_mutex_or_rcu_locked();
12a9d2fe
TH
3741
3742 do {
3743 last = pos;
3744 /* ->prev isn't RCU safe, walk ->next till the end */
3745 pos = NULL;
492eb21b 3746 css_for_each_child(tmp, last)
12a9d2fe
TH
3747 pos = tmp;
3748 } while (pos);
3749
3750 return last;
3751}
12a9d2fe 3752
492eb21b
TH
3753static struct cgroup_subsys_state *
3754css_leftmost_descendant(struct cgroup_subsys_state *pos)
574bd9f7 3755{
492eb21b 3756 struct cgroup_subsys_state *last;
574bd9f7
TH
3757
3758 do {
3759 last = pos;
492eb21b 3760 pos = css_next_child(NULL, pos);
574bd9f7
TH
3761 } while (pos);
3762
3763 return last;
3764}
3765
3766/**
492eb21b 3767 * css_next_descendant_post - find the next descendant for post-order walk
574bd9f7 3768 * @pos: the current position (%NULL to initiate traversal)
492eb21b 3769 * @root: css whose descendants to walk
574bd9f7 3770 *
492eb21b 3771 * To be used by css_for_each_descendant_post(). Find the next descendant
bd8815a6
TH
3772 * to visit for post-order traversal of @root's descendants. @root is
3773 * included in the iteration and the last node to be visited.
75501a6d 3774 *
87fb54f1
TH
3775 * While this function requires cgroup_mutex or RCU read locking, it
3776 * doesn't require the whole traversal to be contained in a single critical
3777 * section. This function will return the correct next descendant as long
3778 * as both @pos and @cgroup are accessible and @pos is a descendant of
3779 * @cgroup.
c2931b70
TH
3780 *
3781 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3782 * css which finished ->css_online() is guaranteed to be visible in the
3783 * future iterations and will stay visible until the last reference is put.
3784 * A css which hasn't finished ->css_online() or already finished
3785 * ->css_offline() may show up during traversal. It's each subsystem's
3786 * responsibility to synchronize against on/offlining.
574bd9f7 3787 */
492eb21b
TH
3788struct cgroup_subsys_state *
3789css_next_descendant_post(struct cgroup_subsys_state *pos,
3790 struct cgroup_subsys_state *root)
574bd9f7 3791{
492eb21b 3792 struct cgroup_subsys_state *next;
574bd9f7 3793
8353da1f 3794 cgroup_assert_mutex_or_rcu_locked();
574bd9f7 3795
58b79a91
TH
3796 /* if first iteration, visit leftmost descendant which may be @root */
3797 if (!pos)
3798 return css_leftmost_descendant(root);
574bd9f7 3799
bd8815a6
TH
3800 /* if we visited @root, we're done */
3801 if (pos == root)
3802 return NULL;
3803
574bd9f7 3804 /* if there's an unvisited sibling, visit its leftmost descendant */
5c9d535b 3805 next = css_next_child(pos, pos->parent);
75501a6d 3806 if (next)
492eb21b 3807 return css_leftmost_descendant(next);
574bd9f7
TH
3808
3809 /* no sibling left, visit parent */
5c9d535b 3810 return pos->parent;
574bd9f7 3811}
574bd9f7 3812
f3d46500
TH
3813/**
3814 * css_has_online_children - does a css have online children
3815 * @css: the target css
3816 *
3817 * Returns %true if @css has any online children; otherwise, %false. This
3818 * function can be called from any context but the caller is responsible
3819 * for synchronizing against on/offlining as necessary.
3820 */
3821bool css_has_online_children(struct cgroup_subsys_state *css)
cbc125ef 3822{
f3d46500
TH
3823 struct cgroup_subsys_state *child;
3824 bool ret = false;
cbc125ef
TH
3825
3826 rcu_read_lock();
f3d46500 3827 css_for_each_child(child, css) {
99bae5f9 3828 if (child->flags & CSS_ONLINE) {
f3d46500
TH
3829 ret = true;
3830 break;
cbc125ef
TH
3831 }
3832 }
3833 rcu_read_unlock();
f3d46500 3834 return ret;
574bd9f7 3835}
574bd9f7 3836
0942eeee 3837/**
ecb9d535 3838 * css_task_iter_advance_css_set - advance a task itererator to the next css_set
0942eeee
TH
3839 * @it: the iterator to advance
3840 *
3841 * Advance @it to the next css_set to walk.
d515876e 3842 */
ecb9d535 3843static void css_task_iter_advance_css_set(struct css_task_iter *it)
d515876e 3844{
0f0a2b4f 3845 struct list_head *l = it->cset_pos;
d515876e
TH
3846 struct cgrp_cset_link *link;
3847 struct css_set *cset;
3848
f0d9a5f1 3849 lockdep_assert_held(&css_set_lock);
ed27b9f7 3850
d515876e
TH
3851 /* Advance to the next non-empty css_set */
3852 do {
3853 l = l->next;
0f0a2b4f
TH
3854 if (l == it->cset_head) {
3855 it->cset_pos = NULL;
ecb9d535 3856 it->task_pos = NULL;
d515876e
TH
3857 return;
3858 }
3ebb2b6e
TH
3859
3860 if (it->ss) {
3861 cset = container_of(l, struct css_set,
3862 e_cset_node[it->ss->id]);
3863 } else {
3864 link = list_entry(l, struct cgrp_cset_link, cset_link);
3865 cset = link->cset;
3866 }
0de0942d 3867 } while (!css_set_populated(cset));
c7561128 3868
0f0a2b4f 3869 it->cset_pos = l;
c7561128
TH
3870
3871 if (!list_empty(&cset->tasks))
0f0a2b4f 3872 it->task_pos = cset->tasks.next;
c7561128 3873 else
0f0a2b4f
TH
3874 it->task_pos = cset->mg_tasks.next;
3875
3876 it->tasks_head = &cset->tasks;
3877 it->mg_tasks_head = &cset->mg_tasks;
ed27b9f7
TH
3878
3879 /*
3880 * We don't keep css_sets locked across iteration steps and thus
3881 * need to take steps to ensure that iteration can be resumed after
3882 * the lock is re-acquired. Iteration is performed at two levels -
3883 * css_sets and tasks in them.
3884 *
3885 * Once created, a css_set never leaves its cgroup lists, so a
3886 * pinned css_set is guaranteed to stay put and we can resume
3887 * iteration afterwards.
3888 *
3889 * Tasks may leave @cset across iteration steps. This is resolved
3890 * by registering each iterator with the css_set currently being
3891 * walked and making css_set_move_task() advance iterators whose
3892 * next task is leaving.
3893 */
3894 if (it->cur_cset) {
3895 list_del(&it->iters_node);
3896 put_css_set_locked(it->cur_cset);
3897 }
3898 get_css_set(cset);
3899 it->cur_cset = cset;
3900 list_add(&it->iters_node, &cset->task_iters);
d515876e
TH
3901}
3902
ecb9d535
TH
3903static void css_task_iter_advance(struct css_task_iter *it)
3904{
3905 struct list_head *l = it->task_pos;
3906
f0d9a5f1 3907 lockdep_assert_held(&css_set_lock);
ecb9d535
TH
3908 WARN_ON_ONCE(!l);
3909
3910 /*
3911 * Advance iterator to find next entry. cset->tasks is consumed
3912 * first and then ->mg_tasks. After ->mg_tasks, we move onto the
3913 * next cset.
3914 */
3915 l = l->next;
3916
3917 if (l == it->tasks_head)
3918 l = it->mg_tasks_head->next;
3919
3920 if (l == it->mg_tasks_head)
3921 css_task_iter_advance_css_set(it);
3922 else
3923 it->task_pos = l;
3924}
3925
0942eeee 3926/**
72ec7029
TH
3927 * css_task_iter_start - initiate task iteration
3928 * @css: the css to walk tasks of
0942eeee
TH
3929 * @it: the task iterator to use
3930 *
72ec7029
TH
3931 * Initiate iteration through the tasks of @css. The caller can call
3932 * css_task_iter_next() to walk through the tasks until the function
3933 * returns NULL. On completion of iteration, css_task_iter_end() must be
3934 * called.
0942eeee 3935 */
72ec7029
TH
3936void css_task_iter_start(struct cgroup_subsys_state *css,
3937 struct css_task_iter *it)
817929ec 3938{
56fde9e0
TH
3939 /* no one should try to iterate before mounting cgroups */
3940 WARN_ON_ONCE(!use_task_css_set_links);
31a7df01 3941
ed27b9f7
TH
3942 memset(it, 0, sizeof(*it));
3943
f0d9a5f1 3944 spin_lock_bh(&css_set_lock);
c59cd3d8 3945
3ebb2b6e
TH
3946 it->ss = css->ss;
3947
3948 if (it->ss)
3949 it->cset_pos = &css->cgroup->e_csets[css->ss->id];
3950 else
3951 it->cset_pos = &css->cgroup->cset_links;
3952
0f0a2b4f 3953 it->cset_head = it->cset_pos;
c59cd3d8 3954
ecb9d535 3955 css_task_iter_advance_css_set(it);
ed27b9f7 3956
f0d9a5f1 3957 spin_unlock_bh(&css_set_lock);
817929ec
PM
3958}
3959
0942eeee 3960/**
72ec7029 3961 * css_task_iter_next - return the next task for the iterator
0942eeee
TH
3962 * @it: the task iterator being iterated
3963 *
3964 * The "next" function for task iteration. @it should have been
72ec7029
TH
3965 * initialized via css_task_iter_start(). Returns NULL when the iteration
3966 * reaches the end.
0942eeee 3967 */
72ec7029 3968struct task_struct *css_task_iter_next(struct css_task_iter *it)
817929ec 3969{
d5745675 3970 if (it->cur_task) {
ed27b9f7 3971 put_task_struct(it->cur_task);
d5745675
TH
3972 it->cur_task = NULL;
3973 }
ed27b9f7 3974
f0d9a5f1 3975 spin_lock_bh(&css_set_lock);
ed27b9f7 3976
d5745675
TH
3977 if (it->task_pos) {
3978 it->cur_task = list_entry(it->task_pos, struct task_struct,
3979 cg_list);
3980 get_task_struct(it->cur_task);
3981 css_task_iter_advance(it);
3982 }
ed27b9f7 3983
f0d9a5f1 3984 spin_unlock_bh(&css_set_lock);
ed27b9f7
TH
3985
3986 return it->cur_task;
817929ec
PM
3987}
3988
0942eeee 3989/**
72ec7029 3990 * css_task_iter_end - finish task iteration
0942eeee
TH
3991 * @it: the task iterator to finish
3992 *
72ec7029 3993 * Finish task iteration started by css_task_iter_start().
0942eeee 3994 */
72ec7029 3995void css_task_iter_end(struct css_task_iter *it)
31a7df01 3996{
ed27b9f7 3997 if (it->cur_cset) {
f0d9a5f1 3998 spin_lock_bh(&css_set_lock);
ed27b9f7
TH
3999 list_del(&it->iters_node);
4000 put_css_set_locked(it->cur_cset);
f0d9a5f1 4001 spin_unlock_bh(&css_set_lock);
ed27b9f7
TH
4002 }
4003
4004 if (it->cur_task)
4005 put_task_struct(it->cur_task);
31a7df01
CW
4006}
4007
4008/**
8cc99345
TH
4009 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
4010 * @to: cgroup to which the tasks will be moved
4011 * @from: cgroup in which the tasks currently reside
31a7df01 4012 *
eaf797ab
TH
4013 * Locking rules between cgroup_post_fork() and the migration path
4014 * guarantee that, if a task is forking while being migrated, the new child
4015 * is guaranteed to be either visible in the source cgroup after the
4016 * parent's migration is complete or put into the target cgroup. No task
4017 * can slip out of migration through forking.
31a7df01 4018 */
8cc99345 4019int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
31a7df01 4020{
952aaa12
TH
4021 LIST_HEAD(preloaded_csets);
4022 struct cgrp_cset_link *link;
72ec7029 4023 struct css_task_iter it;
e406d1cf 4024 struct task_struct *task;
952aaa12 4025 int ret;
31a7df01 4026
952aaa12 4027 mutex_lock(&cgroup_mutex);
31a7df01 4028
952aaa12 4029 /* all tasks in @from are being moved, all csets are source */
f0d9a5f1 4030 spin_lock_bh(&css_set_lock);
952aaa12
TH
4031 list_for_each_entry(link, &from->cset_links, cset_link)
4032 cgroup_migrate_add_src(link->cset, to, &preloaded_csets);
f0d9a5f1 4033 spin_unlock_bh(&css_set_lock);
31a7df01 4034
952aaa12
TH
4035 ret = cgroup_migrate_prepare_dst(to, &preloaded_csets);
4036 if (ret)
4037 goto out_err;
8cc99345 4038
952aaa12 4039 /*
2cfa2b19 4040 * Migrate tasks one-by-one until @from is empty. This fails iff
952aaa12
TH
4041 * ->can_attach() fails.
4042 */
e406d1cf 4043 do {
9d800df1 4044 css_task_iter_start(&from->self, &it);
e406d1cf
TH
4045 task = css_task_iter_next(&it);
4046 if (task)
4047 get_task_struct(task);
4048 css_task_iter_end(&it);
4049
4050 if (task) {
9af2ec45 4051 ret = cgroup_migrate(task, false, to);
e406d1cf
TH
4052 put_task_struct(task);
4053 }
4054 } while (task && !ret);
952aaa12
TH
4055out_err:
4056 cgroup_migrate_finish(&preloaded_csets);
47cfcd09 4057 mutex_unlock(&cgroup_mutex);
e406d1cf 4058 return ret;
8cc99345
TH
4059}
4060
bbcb81d0 4061/*
102a775e 4062 * Stuff for reading the 'tasks'/'procs' files.
bbcb81d0
PM
4063 *
4064 * Reading this file can return large amounts of data if a cgroup has
4065 * *lots* of attached tasks. So it may need several calls to read(),
4066 * but we cannot guarantee that the information we produce is correct
4067 * unless we produce it entirely atomically.
4068 *
bbcb81d0 4069 */
bbcb81d0 4070
24528255
LZ
4071/* which pidlist file are we talking about? */
4072enum cgroup_filetype {
4073 CGROUP_FILE_PROCS,
4074 CGROUP_FILE_TASKS,
4075};
4076
4077/*
4078 * A pidlist is a list of pids that virtually represents the contents of one
4079 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
4080 * a pair (one each for procs, tasks) for each pid namespace that's relevant
4081 * to the cgroup.
4082 */
4083struct cgroup_pidlist {
4084 /*
4085 * used to find which pidlist is wanted. doesn't change as long as
4086 * this particular list stays in the list.
4087 */
4088 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
4089 /* array of xids */
4090 pid_t *list;
4091 /* how many elements the above list has */
4092 int length;
24528255
LZ
4093 /* each of these stored in a list by its cgroup */
4094 struct list_head links;
4095 /* pointer to the cgroup we belong to, for list removal purposes */
4096 struct cgroup *owner;
b1a21367
TH
4097 /* for delayed destruction */
4098 struct delayed_work destroy_dwork;
24528255
LZ
4099};
4100
d1d9fd33
BB
4101/*
4102 * The following two functions "fix" the issue where there are more pids
4103 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
4104 * TODO: replace with a kernel-wide solution to this problem
4105 */
4106#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
4107static void *pidlist_allocate(int count)
4108{
4109 if (PIDLIST_TOO_LARGE(count))
4110 return vmalloc(count * sizeof(pid_t));
4111 else
4112 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
4113}
b1a21367 4114
d1d9fd33
BB
4115static void pidlist_free(void *p)
4116{
58794514 4117 kvfree(p);
d1d9fd33 4118}
d1d9fd33 4119
b1a21367
TH
4120/*
4121 * Used to destroy all pidlists lingering waiting for destroy timer. None
4122 * should be left afterwards.
4123 */
4124static void cgroup_pidlist_destroy_all(struct cgroup *cgrp)
4125{
4126 struct cgroup_pidlist *l, *tmp_l;
4127
4128 mutex_lock(&cgrp->pidlist_mutex);
4129 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
4130 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
4131 mutex_unlock(&cgrp->pidlist_mutex);
4132
4133 flush_workqueue(cgroup_pidlist_destroy_wq);
4134 BUG_ON(!list_empty(&cgrp->pidlists));
4135}
4136
4137static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
4138{
4139 struct delayed_work *dwork = to_delayed_work(work);
4140 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
4141 destroy_dwork);
4142 struct cgroup_pidlist *tofree = NULL;
4143
4144 mutex_lock(&l->owner->pidlist_mutex);
b1a21367
TH
4145
4146 /*
04502365
TH
4147 * Destroy iff we didn't get queued again. The state won't change
4148 * as destroy_dwork can only be queued while locked.
b1a21367 4149 */
04502365 4150 if (!delayed_work_pending(dwork)) {
b1a21367
TH
4151 list_del(&l->links);
4152 pidlist_free(l->list);
4153 put_pid_ns(l->key.ns);
4154 tofree = l;
4155 }
4156
b1a21367
TH
4157 mutex_unlock(&l->owner->pidlist_mutex);
4158 kfree(tofree);
4159}
4160
bbcb81d0 4161/*
102a775e 4162 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
6ee211ad 4163 * Returns the number of unique elements.
bbcb81d0 4164 */
6ee211ad 4165static int pidlist_uniq(pid_t *list, int length)
bbcb81d0 4166{
102a775e 4167 int src, dest = 1;
102a775e
BB
4168
4169 /*
4170 * we presume the 0th element is unique, so i starts at 1. trivial
4171 * edge cases first; no work needs to be done for either
4172 */
4173 if (length == 0 || length == 1)
4174 return length;
4175 /* src and dest walk down the list; dest counts unique elements */
4176 for (src = 1; src < length; src++) {
4177 /* find next unique element */
4178 while (list[src] == list[src-1]) {
4179 src++;
4180 if (src == length)
4181 goto after;
4182 }
4183 /* dest always points to where the next unique element goes */
4184 list[dest] = list[src];
4185 dest++;
4186 }
4187after:
102a775e
BB
4188 return dest;
4189}
4190
afb2bc14
TH
4191/*
4192 * The two pid files - task and cgroup.procs - guaranteed that the result
4193 * is sorted, which forced this whole pidlist fiasco. As pid order is
4194 * different per namespace, each namespace needs differently sorted list,
4195 * making it impossible to use, for example, single rbtree of member tasks
4196 * sorted by task pointer. As pidlists can be fairly large, allocating one
4197 * per open file is dangerous, so cgroup had to implement shared pool of
4198 * pidlists keyed by cgroup and namespace.
4199 *
4200 * All this extra complexity was caused by the original implementation
4201 * committing to an entirely unnecessary property. In the long term, we
aa6ec29b
TH
4202 * want to do away with it. Explicitly scramble sort order if on the
4203 * default hierarchy so that no such expectation exists in the new
4204 * interface.
afb2bc14
TH
4205 *
4206 * Scrambling is done by swapping every two consecutive bits, which is
4207 * non-identity one-to-one mapping which disturbs sort order sufficiently.
4208 */
4209static pid_t pid_fry(pid_t pid)
4210{
4211 unsigned a = pid & 0x55555555;
4212 unsigned b = pid & 0xAAAAAAAA;
4213
4214 return (a << 1) | (b >> 1);
4215}
4216
4217static pid_t cgroup_pid_fry(struct cgroup *cgrp, pid_t pid)
4218{
aa6ec29b 4219 if (cgroup_on_dfl(cgrp))
afb2bc14
TH
4220 return pid_fry(pid);
4221 else
4222 return pid;
4223}
4224
102a775e
BB
4225static int cmppid(const void *a, const void *b)
4226{
4227 return *(pid_t *)a - *(pid_t *)b;
4228}
4229
afb2bc14
TH
4230static int fried_cmppid(const void *a, const void *b)
4231{
4232 return pid_fry(*(pid_t *)a) - pid_fry(*(pid_t *)b);
4233}
4234
e6b81710
TH
4235static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
4236 enum cgroup_filetype type)
4237{
4238 struct cgroup_pidlist *l;
4239 /* don't need task_nsproxy() if we're looking at ourself */
4240 struct pid_namespace *ns = task_active_pid_ns(current);
4241
4242 lockdep_assert_held(&cgrp->pidlist_mutex);
4243
4244 list_for_each_entry(l, &cgrp->pidlists, links)
4245 if (l->key.type == type && l->key.ns == ns)
4246 return l;
4247 return NULL;
4248}
4249
72a8cb30
BB
4250/*
4251 * find the appropriate pidlist for our purpose (given procs vs tasks)
4252 * returns with the lock on that pidlist already held, and takes care
4253 * of the use count, or returns NULL with no locks held if we're out of
4254 * memory.
4255 */
e6b81710
TH
4256static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
4257 enum cgroup_filetype type)
72a8cb30
BB
4258{
4259 struct cgroup_pidlist *l;
b70cc5fd 4260
e6b81710
TH
4261 lockdep_assert_held(&cgrp->pidlist_mutex);
4262
4263 l = cgroup_pidlist_find(cgrp, type);
4264 if (l)
4265 return l;
4266
72a8cb30 4267 /* entry not found; create a new one */
f4f4be2b 4268 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
e6b81710 4269 if (!l)
72a8cb30 4270 return l;
e6b81710 4271
b1a21367 4272 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
72a8cb30 4273 l->key.type = type;
e6b81710
TH
4274 /* don't need task_nsproxy() if we're looking at ourself */
4275 l->key.ns = get_pid_ns(task_active_pid_ns(current));
72a8cb30
BB
4276 l->owner = cgrp;
4277 list_add(&l->links, &cgrp->pidlists);
72a8cb30
BB
4278 return l;
4279}
4280
102a775e
BB
4281/*
4282 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
4283 */
72a8cb30
BB
4284static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
4285 struct cgroup_pidlist **lp)
102a775e
BB
4286{
4287 pid_t *array;
4288 int length;
4289 int pid, n = 0; /* used for populating the array */
72ec7029 4290 struct css_task_iter it;
817929ec 4291 struct task_struct *tsk;
102a775e
BB
4292 struct cgroup_pidlist *l;
4293
4bac00d1
TH
4294 lockdep_assert_held(&cgrp->pidlist_mutex);
4295
102a775e
BB
4296 /*
4297 * If cgroup gets more users after we read count, we won't have
4298 * enough space - tough. This race is indistinguishable to the
4299 * caller from the case that the additional cgroup users didn't
4300 * show up until sometime later on.
4301 */
4302 length = cgroup_task_count(cgrp);
d1d9fd33 4303 array = pidlist_allocate(length);
102a775e
BB
4304 if (!array)
4305 return -ENOMEM;
4306 /* now, populate the array */
9d800df1 4307 css_task_iter_start(&cgrp->self, &it);
72ec7029 4308 while ((tsk = css_task_iter_next(&it))) {
102a775e 4309 if (unlikely(n == length))
817929ec 4310 break;
102a775e 4311 /* get tgid or pid for procs or tasks file respectively */
72a8cb30
BB
4312 if (type == CGROUP_FILE_PROCS)
4313 pid = task_tgid_vnr(tsk);
4314 else
4315 pid = task_pid_vnr(tsk);
102a775e
BB
4316 if (pid > 0) /* make sure to only use valid results */
4317 array[n++] = pid;
817929ec 4318 }
72ec7029 4319 css_task_iter_end(&it);
102a775e
BB
4320 length = n;
4321 /* now sort & (if procs) strip out duplicates */
aa6ec29b 4322 if (cgroup_on_dfl(cgrp))
afb2bc14
TH
4323 sort(array, length, sizeof(pid_t), fried_cmppid, NULL);
4324 else
4325 sort(array, length, sizeof(pid_t), cmppid, NULL);
72a8cb30 4326 if (type == CGROUP_FILE_PROCS)
6ee211ad 4327 length = pidlist_uniq(array, length);
e6b81710 4328
e6b81710 4329 l = cgroup_pidlist_find_create(cgrp, type);
72a8cb30 4330 if (!l) {
d1d9fd33 4331 pidlist_free(array);
72a8cb30 4332 return -ENOMEM;
102a775e 4333 }
e6b81710
TH
4334
4335 /* store array, freeing old if necessary */
d1d9fd33 4336 pidlist_free(l->list);
102a775e
BB
4337 l->list = array;
4338 l->length = length;
72a8cb30 4339 *lp = l;
102a775e 4340 return 0;
bbcb81d0
PM
4341}
4342
846c7bb0 4343/**
a043e3b2 4344 * cgroupstats_build - build and fill cgroupstats
846c7bb0
BS
4345 * @stats: cgroupstats to fill information into
4346 * @dentry: A dentry entry belonging to the cgroup for which stats have
4347 * been requested.
a043e3b2
LZ
4348 *
4349 * Build and fill cgroupstats so that taskstats can export it to user
4350 * space.
846c7bb0
BS
4351 */
4352int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
4353{
2bd59d48 4354 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
bd89aabc 4355 struct cgroup *cgrp;
72ec7029 4356 struct css_task_iter it;
846c7bb0 4357 struct task_struct *tsk;
33d283be 4358
2bd59d48
TH
4359 /* it should be kernfs_node belonging to cgroupfs and is a directory */
4360 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
4361 kernfs_type(kn) != KERNFS_DIR)
4362 return -EINVAL;
4363
bad34660
LZ
4364 mutex_lock(&cgroup_mutex);
4365
846c7bb0 4366 /*
2bd59d48 4367 * We aren't being called from kernfs and there's no guarantee on
ec903c0c 4368 * @kn->priv's validity. For this and css_tryget_online_from_dir(),
2bd59d48 4369 * @kn->priv is RCU safe. Let's do the RCU dancing.
846c7bb0 4370 */
2bd59d48
TH
4371 rcu_read_lock();
4372 cgrp = rcu_dereference(kn->priv);
bad34660 4373 if (!cgrp || cgroup_is_dead(cgrp)) {
2bd59d48 4374 rcu_read_unlock();
bad34660 4375 mutex_unlock(&cgroup_mutex);
2bd59d48
TH
4376 return -ENOENT;
4377 }
bad34660 4378 rcu_read_unlock();
846c7bb0 4379
9d800df1 4380 css_task_iter_start(&cgrp->self, &it);
72ec7029 4381 while ((tsk = css_task_iter_next(&it))) {
846c7bb0
BS
4382 switch (tsk->state) {
4383 case TASK_RUNNING:
4384 stats->nr_running++;
4385 break;
4386 case TASK_INTERRUPTIBLE:
4387 stats->nr_sleeping++;
4388 break;
4389 case TASK_UNINTERRUPTIBLE:
4390 stats->nr_uninterruptible++;
4391 break;
4392 case TASK_STOPPED:
4393 stats->nr_stopped++;
4394 break;
4395 default:
4396 if (delayacct_is_task_waiting_on_io(tsk))
4397 stats->nr_io_wait++;
4398 break;
4399 }
4400 }
72ec7029 4401 css_task_iter_end(&it);
846c7bb0 4402
bad34660 4403 mutex_unlock(&cgroup_mutex);
2bd59d48 4404 return 0;
846c7bb0
BS
4405}
4406
8f3ff208 4407
bbcb81d0 4408/*
102a775e 4409 * seq_file methods for the tasks/procs files. The seq_file position is the
cc31edce 4410 * next pid to display; the seq_file iterator is a pointer to the pid
102a775e 4411 * in the cgroup->l->list array.
bbcb81d0 4412 */
cc31edce 4413
102a775e 4414static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
bbcb81d0 4415{
cc31edce
PM
4416 /*
4417 * Initially we receive a position value that corresponds to
4418 * one more than the last pid shown (or 0 on the first call or
4419 * after a seek to the start). Use a binary-search to find the
4420 * next pid to display, if any
4421 */
2bd59d48 4422 struct kernfs_open_file *of = s->private;
7da11279 4423 struct cgroup *cgrp = seq_css(s)->cgroup;
4bac00d1 4424 struct cgroup_pidlist *l;
7da11279 4425 enum cgroup_filetype type = seq_cft(s)->private;
cc31edce 4426 int index = 0, pid = *pos;
4bac00d1
TH
4427 int *iter, ret;
4428
4429 mutex_lock(&cgrp->pidlist_mutex);
4430
4431 /*
5d22444f 4432 * !NULL @of->priv indicates that this isn't the first start()
4bac00d1 4433 * after open. If the matching pidlist is around, we can use that.
5d22444f 4434 * Look for it. Note that @of->priv can't be used directly. It
4bac00d1
TH
4435 * could already have been destroyed.
4436 */
5d22444f
TH
4437 if (of->priv)
4438 of->priv = cgroup_pidlist_find(cgrp, type);
4bac00d1
TH
4439
4440 /*
4441 * Either this is the first start() after open or the matching
4442 * pidlist has been destroyed inbetween. Create a new one.
4443 */
5d22444f
TH
4444 if (!of->priv) {
4445 ret = pidlist_array_load(cgrp, type,
4446 (struct cgroup_pidlist **)&of->priv);
4bac00d1
TH
4447 if (ret)
4448 return ERR_PTR(ret);
4449 }
5d22444f 4450 l = of->priv;
cc31edce 4451
cc31edce 4452 if (pid) {
102a775e 4453 int end = l->length;
20777766 4454
cc31edce
PM
4455 while (index < end) {
4456 int mid = (index + end) / 2;
afb2bc14 4457 if (cgroup_pid_fry(cgrp, l->list[mid]) == pid) {
cc31edce
PM
4458 index = mid;
4459 break;
afb2bc14 4460 } else if (cgroup_pid_fry(cgrp, l->list[mid]) <= pid)
cc31edce
PM
4461 index = mid + 1;
4462 else
4463 end = mid;
4464 }
4465 }
4466 /* If we're off the end of the array, we're done */
102a775e 4467 if (index >= l->length)
cc31edce
PM
4468 return NULL;
4469 /* Update the abstract position to be the actual pid that we found */
102a775e 4470 iter = l->list + index;
afb2bc14 4471 *pos = cgroup_pid_fry(cgrp, *iter);
cc31edce
PM
4472 return iter;
4473}
4474
102a775e 4475static void cgroup_pidlist_stop(struct seq_file *s, void *v)
cc31edce 4476{
2bd59d48 4477 struct kernfs_open_file *of = s->private;
5d22444f 4478 struct cgroup_pidlist *l = of->priv;
62236858 4479
5d22444f
TH
4480 if (l)
4481 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
04502365 4482 CGROUP_PIDLIST_DESTROY_DELAY);
7da11279 4483 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
cc31edce
PM
4484}
4485
102a775e 4486static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
cc31edce 4487{
2bd59d48 4488 struct kernfs_open_file *of = s->private;
5d22444f 4489 struct cgroup_pidlist *l = of->priv;
102a775e
BB
4490 pid_t *p = v;
4491 pid_t *end = l->list + l->length;
cc31edce
PM
4492 /*
4493 * Advance to the next pid in the array. If this goes off the
4494 * end, we're done
4495 */
4496 p++;
4497 if (p >= end) {
4498 return NULL;
4499 } else {
7da11279 4500 *pos = cgroup_pid_fry(seq_css(s)->cgroup, *p);
cc31edce
PM
4501 return p;
4502 }
4503}
4504
102a775e 4505static int cgroup_pidlist_show(struct seq_file *s, void *v)
cc31edce 4506{
94ff212d
JP
4507 seq_printf(s, "%d\n", *(int *)v);
4508
4509 return 0;
cc31edce 4510}
bbcb81d0 4511
182446d0
TH
4512static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
4513 struct cftype *cft)
81a6a5cd 4514{
182446d0 4515 return notify_on_release(css->cgroup);
81a6a5cd
PM
4516}
4517
182446d0
TH
4518static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
4519 struct cftype *cft, u64 val)
6379c106 4520{
6379c106 4521 if (val)
182446d0 4522 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106 4523 else
182446d0 4524 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106
PM
4525 return 0;
4526}
4527
182446d0
TH
4528static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
4529 struct cftype *cft)
97978e6d 4530{
182446d0 4531 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
4532}
4533
182446d0
TH
4534static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
4535 struct cftype *cft, u64 val)
97978e6d
DL
4536{
4537 if (val)
182446d0 4538 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d 4539 else
182446d0 4540 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
4541 return 0;
4542}
4543
a14c6874
TH
4544/* cgroup core interface files for the default hierarchy */
4545static struct cftype cgroup_dfl_base_files[] = {
81a6a5cd 4546 {
d5c56ced 4547 .name = "cgroup.procs",
6f60eade 4548 .file_offset = offsetof(struct cgroup, procs_file),
6612f05b
TH
4549 .seq_start = cgroup_pidlist_start,
4550 .seq_next = cgroup_pidlist_next,
4551 .seq_stop = cgroup_pidlist_stop,
4552 .seq_show = cgroup_pidlist_show,
5d22444f 4553 .private = CGROUP_FILE_PROCS,
acbef755 4554 .write = cgroup_procs_write,
102a775e 4555 },
f8f22e53
TH
4556 {
4557 .name = "cgroup.controllers",
a14c6874 4558 .flags = CFTYPE_ONLY_ON_ROOT,
f8f22e53
TH
4559 .seq_show = cgroup_root_controllers_show,
4560 },
4561 {
4562 .name = "cgroup.controllers",
a14c6874 4563 .flags = CFTYPE_NOT_ON_ROOT,
f8f22e53
TH
4564 .seq_show = cgroup_controllers_show,
4565 },
4566 {
4567 .name = "cgroup.subtree_control",
f8f22e53 4568 .seq_show = cgroup_subtree_control_show,
451af504 4569 .write = cgroup_subtree_control_write,
f8f22e53 4570 },
842b597e 4571 {
4a07c222 4572 .name = "cgroup.events",
a14c6874 4573 .flags = CFTYPE_NOT_ON_ROOT,
6f60eade 4574 .file_offset = offsetof(struct cgroup, events_file),
4a07c222 4575 .seq_show = cgroup_events_show,
842b597e 4576 },
a14c6874
TH
4577 { } /* terminate */
4578};
d5c56ced 4579
a14c6874
TH
4580/* cgroup core interface files for the legacy hierarchies */
4581static struct cftype cgroup_legacy_base_files[] = {
4582 {
4583 .name = "cgroup.procs",
4584 .seq_start = cgroup_pidlist_start,
4585 .seq_next = cgroup_pidlist_next,
4586 .seq_stop = cgroup_pidlist_stop,
4587 .seq_show = cgroup_pidlist_show,
4588 .private = CGROUP_FILE_PROCS,
4589 .write = cgroup_procs_write,
a14c6874
TH
4590 },
4591 {
4592 .name = "cgroup.clone_children",
4593 .read_u64 = cgroup_clone_children_read,
4594 .write_u64 = cgroup_clone_children_write,
4595 },
4596 {
4597 .name = "cgroup.sane_behavior",
4598 .flags = CFTYPE_ONLY_ON_ROOT,
4599 .seq_show = cgroup_sane_behavior_show,
4600 },
d5c56ced
TH
4601 {
4602 .name = "tasks",
6612f05b
TH
4603 .seq_start = cgroup_pidlist_start,
4604 .seq_next = cgroup_pidlist_next,
4605 .seq_stop = cgroup_pidlist_stop,
4606 .seq_show = cgroup_pidlist_show,
5d22444f 4607 .private = CGROUP_FILE_TASKS,
acbef755 4608 .write = cgroup_tasks_write,
d5c56ced
TH
4609 },
4610 {
4611 .name = "notify_on_release",
d5c56ced
TH
4612 .read_u64 = cgroup_read_notify_on_release,
4613 .write_u64 = cgroup_write_notify_on_release,
4614 },
6e6ff25b
TH
4615 {
4616 .name = "release_agent",
a14c6874 4617 .flags = CFTYPE_ONLY_ON_ROOT,
2da8ca82 4618 .seq_show = cgroup_release_agent_show,
451af504 4619 .write = cgroup_release_agent_write,
5f469907 4620 .max_write_len = PATH_MAX - 1,
6e6ff25b 4621 },
db0416b6 4622 { } /* terminate */
bbcb81d0
PM
4623};
4624
0c21ead1
TH
4625/*
4626 * css destruction is four-stage process.
4627 *
4628 * 1. Destruction starts. Killing of the percpu_ref is initiated.
4629 * Implemented in kill_css().
4630 *
4631 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
ec903c0c
TH
4632 * and thus css_tryget_online() is guaranteed to fail, the css can be
4633 * offlined by invoking offline_css(). After offlining, the base ref is
4634 * put. Implemented in css_killed_work_fn().
0c21ead1
TH
4635 *
4636 * 3. When the percpu_ref reaches zero, the only possible remaining
4637 * accessors are inside RCU read sections. css_release() schedules the
4638 * RCU callback.
4639 *
4640 * 4. After the grace period, the css can be freed. Implemented in
4641 * css_free_work_fn().
4642 *
4643 * It is actually hairier because both step 2 and 4 require process context
4644 * and thus involve punting to css->destroy_work adding two additional
4645 * steps to the already complex sequence.
4646 */
35ef10da 4647static void css_free_work_fn(struct work_struct *work)
48ddbe19
TH
4648{
4649 struct cgroup_subsys_state *css =
35ef10da 4650 container_of(work, struct cgroup_subsys_state, destroy_work);
01e58659 4651 struct cgroup_subsys *ss = css->ss;
0c21ead1 4652 struct cgroup *cgrp = css->cgroup;
48ddbe19 4653
9a1049da
TH
4654 percpu_ref_exit(&css->refcnt);
4655
01e58659 4656 if (ss) {
9d755d33 4657 /* css free path */
8bb5ef79 4658 struct cgroup_subsys_state *parent = css->parent;
01e58659
VD
4659 int id = css->id;
4660
01e58659
VD
4661 ss->css_free(css);
4662 cgroup_idr_remove(&ss->css_idr, id);
9d755d33 4663 cgroup_put(cgrp);
8bb5ef79
TH
4664
4665 if (parent)
4666 css_put(parent);
9d755d33
TH
4667 } else {
4668 /* cgroup free path */
4669 atomic_dec(&cgrp->root->nr_cgrps);
4670 cgroup_pidlist_destroy_all(cgrp);
971ff493 4671 cancel_work_sync(&cgrp->release_agent_work);
9d755d33 4672
d51f39b0 4673 if (cgroup_parent(cgrp)) {
9d755d33
TH
4674 /*
4675 * We get a ref to the parent, and put the ref when
4676 * this cgroup is being freed, so it's guaranteed
4677 * that the parent won't be destroyed before its
4678 * children.
4679 */
d51f39b0 4680 cgroup_put(cgroup_parent(cgrp));
9d755d33
TH
4681 kernfs_put(cgrp->kn);
4682 kfree(cgrp);
4683 } else {
4684 /*
4685 * This is root cgroup's refcnt reaching zero,
4686 * which indicates that the root should be
4687 * released.
4688 */
4689 cgroup_destroy_root(cgrp->root);
4690 }
4691 }
48ddbe19
TH
4692}
4693
0c21ead1 4694static void css_free_rcu_fn(struct rcu_head *rcu_head)
d3daf28d
TH
4695{
4696 struct cgroup_subsys_state *css =
0c21ead1 4697 container_of(rcu_head, struct cgroup_subsys_state, rcu_head);
d3daf28d 4698
35ef10da 4699 INIT_WORK(&css->destroy_work, css_free_work_fn);
e5fca243 4700 queue_work(cgroup_destroy_wq, &css->destroy_work);
48ddbe19
TH
4701}
4702
25e15d83 4703static void css_release_work_fn(struct work_struct *work)
d3daf28d
TH
4704{
4705 struct cgroup_subsys_state *css =
25e15d83 4706 container_of(work, struct cgroup_subsys_state, destroy_work);
15a4c835 4707 struct cgroup_subsys *ss = css->ss;
9d755d33 4708 struct cgroup *cgrp = css->cgroup;
15a4c835 4709
1fed1b2e
TH
4710 mutex_lock(&cgroup_mutex);
4711
de3f0341 4712 css->flags |= CSS_RELEASED;
1fed1b2e
TH
4713 list_del_rcu(&css->sibling);
4714
9d755d33
TH
4715 if (ss) {
4716 /* css release path */
01e58659 4717 cgroup_idr_replace(&ss->css_idr, NULL, css->id);
7d172cc8
TH
4718 if (ss->css_released)
4719 ss->css_released(css);
9d755d33
TH
4720 } else {
4721 /* cgroup release path */
9d755d33
TH
4722 cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
4723 cgrp->id = -1;
a4189487
LZ
4724
4725 /*
4726 * There are two control paths which try to determine
4727 * cgroup from dentry without going through kernfs -
4728 * cgroupstats_build() and css_tryget_online_from_dir().
4729 * Those are supported by RCU protecting clearing of
4730 * cgrp->kn->priv backpointer.
4731 */
6cd0f5bb
TH
4732 if (cgrp->kn)
4733 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv,
4734 NULL);
9d755d33 4735 }
d3daf28d 4736
1fed1b2e
TH
4737 mutex_unlock(&cgroup_mutex);
4738
0c21ead1 4739 call_rcu(&css->rcu_head, css_free_rcu_fn);
d3daf28d
TH
4740}
4741
d3daf28d
TH
4742static void css_release(struct percpu_ref *ref)
4743{
4744 struct cgroup_subsys_state *css =
4745 container_of(ref, struct cgroup_subsys_state, refcnt);
4746
25e15d83
TH
4747 INIT_WORK(&css->destroy_work, css_release_work_fn);
4748 queue_work(cgroup_destroy_wq, &css->destroy_work);
d3daf28d
TH
4749}
4750
ddfcadab
TH
4751static void init_and_link_css(struct cgroup_subsys_state *css,
4752 struct cgroup_subsys *ss, struct cgroup *cgrp)
ddbcc7e8 4753{
0cb51d71
TH
4754 lockdep_assert_held(&cgroup_mutex);
4755
ddfcadab
TH
4756 cgroup_get(cgrp);
4757
d5c419b6 4758 memset(css, 0, sizeof(*css));
bd89aabc 4759 css->cgroup = cgrp;
72c97e54 4760 css->ss = ss;
d5c419b6
TH
4761 INIT_LIST_HEAD(&css->sibling);
4762 INIT_LIST_HEAD(&css->children);
0cb51d71 4763 css->serial_nr = css_serial_nr_next++;
aa226ff4 4764 atomic_set(&css->online_cnt, 0);
0ae78e0b 4765
d51f39b0
TH
4766 if (cgroup_parent(cgrp)) {
4767 css->parent = cgroup_css(cgroup_parent(cgrp), ss);
ddfcadab 4768 css_get(css->parent);
ddfcadab 4769 }
48ddbe19 4770
ca8bdcaf 4771 BUG_ON(cgroup_css(cgrp, ss));
ddbcc7e8
PM
4772}
4773
2a4ac633 4774/* invoke ->css_online() on a new CSS and mark it online if successful */
623f926b 4775static int online_css(struct cgroup_subsys_state *css)
a31f2d3f 4776{
623f926b 4777 struct cgroup_subsys *ss = css->ss;
b1929db4
TH
4778 int ret = 0;
4779
a31f2d3f
TH
4780 lockdep_assert_held(&cgroup_mutex);
4781
92fb9748 4782 if (ss->css_online)
eb95419b 4783 ret = ss->css_online(css);
ae7f164a 4784 if (!ret) {
eb95419b 4785 css->flags |= CSS_ONLINE;
aec25020 4786 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
aa226ff4
TH
4787
4788 atomic_inc(&css->online_cnt);
4789 if (css->parent)
4790 atomic_inc(&css->parent->online_cnt);
ae7f164a 4791 }
b1929db4 4792 return ret;
a31f2d3f
TH
4793}
4794
2a4ac633 4795/* if the CSS is online, invoke ->css_offline() on it and mark it offline */
623f926b 4796static void offline_css(struct cgroup_subsys_state *css)
a31f2d3f 4797{
623f926b 4798 struct cgroup_subsys *ss = css->ss;
a31f2d3f
TH
4799
4800 lockdep_assert_held(&cgroup_mutex);
4801
4802 if (!(css->flags & CSS_ONLINE))
4803 return;
4804
fa06235b
VD
4805 if (ss->css_reset)
4806 ss->css_reset(css);
4807
d7eeac19 4808 if (ss->css_offline)
eb95419b 4809 ss->css_offline(css);
a31f2d3f 4810
eb95419b 4811 css->flags &= ~CSS_ONLINE;
e3297803 4812 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
f8f22e53
TH
4813
4814 wake_up_all(&css->cgroup->offline_waitq);
a31f2d3f
TH
4815}
4816
c81c925a 4817/**
6cd0f5bb 4818 * css_create - create a cgroup_subsys_state
c81c925a
TH
4819 * @cgrp: the cgroup new css will be associated with
4820 * @ss: the subsys of new css
4821 *
4822 * Create a new css associated with @cgrp - @ss pair. On success, the new
6cd0f5bb
TH
4823 * css is online and installed in @cgrp. This function doesn't create the
4824 * interface files. Returns 0 on success, -errno on failure.
c81c925a 4825 */
6cd0f5bb
TH
4826static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
4827 struct cgroup_subsys *ss)
c81c925a 4828{
d51f39b0 4829 struct cgroup *parent = cgroup_parent(cgrp);
1fed1b2e 4830 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
c81c925a
TH
4831 struct cgroup_subsys_state *css;
4832 int err;
4833
c81c925a
TH
4834 lockdep_assert_held(&cgroup_mutex);
4835
1fed1b2e 4836 css = ss->css_alloc(parent_css);
c81c925a 4837 if (IS_ERR(css))
6cd0f5bb 4838 return css;
c81c925a 4839
ddfcadab 4840 init_and_link_css(css, ss, cgrp);
a2bed820 4841
2aad2a86 4842 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
c81c925a 4843 if (err)
3eb59ec6 4844 goto err_free_css;
c81c925a 4845
cf780b7d 4846 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
15a4c835
TH
4847 if (err < 0)
4848 goto err_free_percpu_ref;
4849 css->id = err;
c81c925a 4850
15a4c835 4851 /* @css is ready to be brought online now, make it visible */
1fed1b2e 4852 list_add_tail_rcu(&css->sibling, &parent_css->children);
15a4c835 4853 cgroup_idr_replace(&ss->css_idr, css, css->id);
c81c925a
TH
4854
4855 err = online_css(css);
4856 if (err)
1fed1b2e 4857 goto err_list_del;
94419627 4858
c81c925a 4859 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
d51f39b0 4860 cgroup_parent(parent)) {
ed3d261b 4861 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
a2a1f9ea 4862 current->comm, current->pid, ss->name);
c81c925a 4863 if (!strcmp(ss->name, "memory"))
ed3d261b 4864 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
c81c925a
TH
4865 ss->warned_broken_hierarchy = true;
4866 }
4867
6cd0f5bb 4868 return css;
c81c925a 4869
1fed1b2e
TH
4870err_list_del:
4871 list_del_rcu(&css->sibling);
15a4c835 4872 cgroup_idr_remove(&ss->css_idr, css->id);
3eb59ec6 4873err_free_percpu_ref:
9a1049da 4874 percpu_ref_exit(&css->refcnt);
3eb59ec6 4875err_free_css:
a2bed820 4876 call_rcu(&css->rcu_head, css_free_rcu_fn);
6cd0f5bb 4877 return ERR_PTR(err);
c81c925a
TH
4878}
4879
b3bfd983
TH
4880static int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
4881 umode_t mode)
ddbcc7e8 4882{
b11cfb58 4883 struct cgroup *parent, *cgrp, *tcgrp;
a9746d8d 4884 struct cgroup_root *root;
ddbcc7e8 4885 struct cgroup_subsys *ss;
2bd59d48 4886 struct kernfs_node *kn;
b11cfb58 4887 int level, ssid, ret;
ddbcc7e8 4888
71b1fb5c
AC
4889 /* Do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable.
4890 */
4891 if (strchr(name, '\n'))
4892 return -EINVAL;
4893
a9746d8d
TH
4894 parent = cgroup_kn_lock_live(parent_kn);
4895 if (!parent)
4896 return -ENODEV;
4897 root = parent->root;
b11cfb58 4898 level = parent->level + 1;
ddbcc7e8 4899
0a950f65 4900 /* allocate the cgroup and its ID, 0 is reserved for the root */
b11cfb58
TH
4901 cgrp = kzalloc(sizeof(*cgrp) +
4902 sizeof(cgrp->ancestor_ids[0]) * (level + 1), GFP_KERNEL);
ba0f4d76
TH
4903 if (!cgrp) {
4904 ret = -ENOMEM;
4905 goto out_unlock;
0ab02ca8
LZ
4906 }
4907
2aad2a86 4908 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
9d755d33
TH
4909 if (ret)
4910 goto out_free_cgrp;
4911
0ab02ca8
LZ
4912 /*
4913 * Temporarily set the pointer to NULL, so idr_find() won't return
4914 * a half-baked cgroup.
4915 */
cf780b7d 4916 cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_KERNEL);
0ab02ca8 4917 if (cgrp->id < 0) {
ba0f4d76 4918 ret = -ENOMEM;
9d755d33 4919 goto out_cancel_ref;
976c06bc
TH
4920 }
4921
cc31edce 4922 init_cgroup_housekeeping(cgrp);
ddbcc7e8 4923
9d800df1 4924 cgrp->self.parent = &parent->self;
ba0f4d76 4925 cgrp->root = root;
b11cfb58
TH
4926 cgrp->level = level;
4927
4928 for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp))
4929 cgrp->ancestor_ids[tcgrp->level] = tcgrp->id;
ddbcc7e8 4930
b6abdb0e
LZ
4931 if (notify_on_release(parent))
4932 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
4933
2260e7fc
TH
4934 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
4935 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
97978e6d 4936
2bd59d48 4937 /* create the directory */
e61734c5 4938 kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
2bd59d48 4939 if (IS_ERR(kn)) {
ba0f4d76
TH
4940 ret = PTR_ERR(kn);
4941 goto out_free_id;
2bd59d48
TH
4942 }
4943 cgrp->kn = kn;
ddbcc7e8 4944
4e139afc 4945 /*
6f30558f
TH
4946 * This extra ref will be put in cgroup_free_fn() and guarantees
4947 * that @cgrp->kn is always accessible.
4e139afc 4948 */
6f30558f 4949 kernfs_get(kn);
ddbcc7e8 4950
0cb51d71 4951 cgrp->self.serial_nr = css_serial_nr_next++;
53fa5261 4952
4e139afc 4953 /* allocation complete, commit to creation */
d5c419b6 4954 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
3c9c825b 4955 atomic_inc(&root->nr_cgrps);
59f5296b 4956 cgroup_get(parent);
415cf07a 4957
0d80255e
TH
4958 /*
4959 * @cgrp is now fully operational. If something fails after this
4960 * point, it'll be released via the normal destruction path.
4961 */
6fa4918d 4962 cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
4e96ee8e 4963
ba0f4d76
TH
4964 ret = cgroup_kn_set_ugid(kn);
4965 if (ret)
4966 goto out_destroy;
49957f8e 4967
4df8dc90 4968 ret = css_populate_dir(&cgrp->self, NULL);
ba0f4d76
TH
4969 if (ret)
4970 goto out_destroy;
628f7cd4 4971
9d403e99 4972 /* let's create and online css's */
996cd1fb 4973 do_each_subsys_mask(ss, ssid, parent->subtree_ss_mask) {
6cd0f5bb
TH
4974 struct cgroup_subsys_state *css;
4975
4976 css = css_create(cgrp, ss);
4977 if (IS_ERR(css)) {
4978 ret = PTR_ERR(css);
996cd1fb 4979 goto out_destroy;
6cd0f5bb
TH
4980 }
4981
4982 if (parent->subtree_control & (1 << ssid)) {
4983 ret = css_populate_dir(css, NULL);
4984 if (ret)
4985 goto out_destroy;
4986 }
996cd1fb 4987 } while_each_subsys_mask();
ddbcc7e8 4988
bd53d617
TH
4989 /*
4990 * On the default hierarchy, a child doesn't automatically inherit
667c2491 4991 * subtree_control from the parent. Each is configured manually.
bd53d617 4992 */
667c2491
TH
4993 if (!cgroup_on_dfl(cgrp)) {
4994 cgrp->subtree_control = parent->subtree_control;
8699b776 4995 cgroup_refresh_subtree_ss_mask(cgrp);
667c2491 4996 }
2bd59d48 4997
2bd59d48 4998 kernfs_activate(kn);
ddbcc7e8 4999
ba0f4d76
TH
5000 ret = 0;
5001 goto out_unlock;
ddbcc7e8 5002
ba0f4d76 5003out_free_id:
6fa4918d 5004 cgroup_idr_remove(&root->cgroup_idr, cgrp->id);
9d755d33 5005out_cancel_ref:
9a1049da 5006 percpu_ref_exit(&cgrp->self.refcnt);
ba0f4d76 5007out_free_cgrp:
bd89aabc 5008 kfree(cgrp);
ba0f4d76 5009out_unlock:
a9746d8d 5010 cgroup_kn_unlock(parent_kn);
ba0f4d76 5011 return ret;
4b8b47eb 5012
ba0f4d76 5013out_destroy:
4b8b47eb 5014 cgroup_destroy_locked(cgrp);
ba0f4d76 5015 goto out_unlock;
ddbcc7e8
PM
5016}
5017
223dbc38
TH
5018/*
5019 * This is called when the refcnt of a css is confirmed to be killed.
249f3468
TH
5020 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to
5021 * initate destruction and put the css ref from kill_css().
223dbc38
TH
5022 */
5023static void css_killed_work_fn(struct work_struct *work)
d3daf28d 5024{
223dbc38
TH
5025 struct cgroup_subsys_state *css =
5026 container_of(work, struct cgroup_subsys_state, destroy_work);
d3daf28d 5027
f20104de 5028 mutex_lock(&cgroup_mutex);
09a503ea 5029
aa226ff4
TH
5030 do {
5031 offline_css(css);
5032 css_put(css);
5033 /* @css can't go away while we're holding cgroup_mutex */
5034 css = css->parent;
5035 } while (css && atomic_dec_and_test(&css->online_cnt));
5036
5037 mutex_unlock(&cgroup_mutex);
d3daf28d
TH
5038}
5039
223dbc38
TH
5040/* css kill confirmation processing requires process context, bounce */
5041static void css_killed_ref_fn(struct percpu_ref *ref)
d3daf28d
TH
5042{
5043 struct cgroup_subsys_state *css =
5044 container_of(ref, struct cgroup_subsys_state, refcnt);
5045
aa226ff4
TH
5046 if (atomic_dec_and_test(&css->online_cnt)) {
5047 INIT_WORK(&css->destroy_work, css_killed_work_fn);
5048 queue_work(cgroup_destroy_wq, &css->destroy_work);
5049 }
d3daf28d
TH
5050}
5051
f392e51c
TH
5052/**
5053 * kill_css - destroy a css
5054 * @css: css to destroy
5055 *
5056 * This function initiates destruction of @css by removing cgroup interface
5057 * files and putting its base reference. ->css_offline() will be invoked
ec903c0c
TH
5058 * asynchronously once css_tryget_online() is guaranteed to fail and when
5059 * the reference count reaches zero, @css will be released.
f392e51c
TH
5060 */
5061static void kill_css(struct cgroup_subsys_state *css)
edae0c33 5062{
01f6474c 5063 lockdep_assert_held(&cgroup_mutex);
94419627 5064
2bd59d48
TH
5065 /*
5066 * This must happen before css is disassociated with its cgroup.
5067 * See seq_css() for details.
5068 */
4df8dc90 5069 css_clear_dir(css, NULL);
3c14f8b4 5070
edae0c33
TH
5071 /*
5072 * Killing would put the base ref, but we need to keep it alive
5073 * until after ->css_offline().
5074 */
5075 css_get(css);
5076
5077 /*
5078 * cgroup core guarantees that, by the time ->css_offline() is
5079 * invoked, no new css reference will be given out via
ec903c0c 5080 * css_tryget_online(). We can't simply call percpu_ref_kill() and
edae0c33
TH
5081 * proceed to offlining css's because percpu_ref_kill() doesn't
5082 * guarantee that the ref is seen as killed on all CPUs on return.
5083 *
5084 * Use percpu_ref_kill_and_confirm() to get notifications as each
5085 * css is confirmed to be seen as killed on all CPUs.
5086 */
5087 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
d3daf28d
TH
5088}
5089
5090/**
5091 * cgroup_destroy_locked - the first stage of cgroup destruction
5092 * @cgrp: cgroup to be destroyed
5093 *
5094 * css's make use of percpu refcnts whose killing latency shouldn't be
5095 * exposed to userland and are RCU protected. Also, cgroup core needs to
ec903c0c
TH
5096 * guarantee that css_tryget_online() won't succeed by the time
5097 * ->css_offline() is invoked. To satisfy all the requirements,
5098 * destruction is implemented in the following two steps.
d3daf28d
TH
5099 *
5100 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
5101 * userland visible parts and start killing the percpu refcnts of
5102 * css's. Set up so that the next stage will be kicked off once all
5103 * the percpu refcnts are confirmed to be killed.
5104 *
5105 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5106 * rest of destruction. Once all cgroup references are gone, the
5107 * cgroup is RCU-freed.
5108 *
5109 * This function implements s1. After this step, @cgrp is gone as far as
5110 * the userland is concerned and a new cgroup with the same name may be
5111 * created. As cgroup doesn't care about the names internally, this
5112 * doesn't cause any problem.
5113 */
42809dd4
TH
5114static int cgroup_destroy_locked(struct cgroup *cgrp)
5115 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
ddbcc7e8 5116{
2bd59d48 5117 struct cgroup_subsys_state *css;
1c6727af 5118 int ssid;
ddbcc7e8 5119
42809dd4
TH
5120 lockdep_assert_held(&cgroup_mutex);
5121
91486f61
TH
5122 /*
5123 * Only migration can raise populated from zero and we're already
5124 * holding cgroup_mutex.
5125 */
5126 if (cgroup_is_populated(cgrp))
ddbcc7e8 5127 return -EBUSY;
a043e3b2 5128
bb78a92f 5129 /*
d5c419b6
TH
5130 * Make sure there's no live children. We can't test emptiness of
5131 * ->self.children as dead children linger on it while being
5132 * drained; otherwise, "rmdir parent/child parent" may fail.
bb78a92f 5133 */
f3d46500 5134 if (css_has_online_children(&cgrp->self))
bb78a92f
HD
5135 return -EBUSY;
5136
455050d2
TH
5137 /*
5138 * Mark @cgrp dead. This prevents further task migration and child
de3f0341 5139 * creation by disabling cgroup_lock_live_group().
455050d2 5140 */
184faf32 5141 cgrp->self.flags &= ~CSS_ONLINE;
ddbcc7e8 5142
249f3468 5143 /* initiate massacre of all css's */
1c6727af
TH
5144 for_each_css(css, ssid, cgrp)
5145 kill_css(css);
455050d2 5146
455050d2 5147 /*
01f6474c
TH
5148 * Remove @cgrp directory along with the base files. @cgrp has an
5149 * extra ref on its kn.
f20104de 5150 */
01f6474c 5151 kernfs_remove(cgrp->kn);
f20104de 5152
d51f39b0 5153 check_for_release(cgroup_parent(cgrp));
2bd59d48 5154
249f3468 5155 /* put the base reference */
9d755d33 5156 percpu_ref_kill(&cgrp->self.refcnt);
455050d2 5157
ea15f8cc
TH
5158 return 0;
5159};
5160
2bd59d48 5161static int cgroup_rmdir(struct kernfs_node *kn)
42809dd4 5162{
a9746d8d 5163 struct cgroup *cgrp;
2bd59d48 5164 int ret = 0;
42809dd4 5165
a9746d8d
TH
5166 cgrp = cgroup_kn_lock_live(kn);
5167 if (!cgrp)
5168 return 0;
42809dd4 5169
a9746d8d 5170 ret = cgroup_destroy_locked(cgrp);
2bb566cb 5171
a9746d8d 5172 cgroup_kn_unlock(kn);
42809dd4 5173 return ret;
8e3f6541
TH
5174}
5175
2bd59d48
TH
5176static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
5177 .remount_fs = cgroup_remount,
5178 .show_options = cgroup_show_options,
5179 .mkdir = cgroup_mkdir,
5180 .rmdir = cgroup_rmdir,
5181 .rename = cgroup_rename,
5182};
5183
15a4c835 5184static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
ddbcc7e8 5185{
ddbcc7e8 5186 struct cgroup_subsys_state *css;
cfe36bde 5187
a5ae9899 5188 pr_debug("Initializing cgroup subsys %s\n", ss->name);
ddbcc7e8 5189
648bb56d
TH
5190 mutex_lock(&cgroup_mutex);
5191
15a4c835 5192 idr_init(&ss->css_idr);
0adb0704 5193 INIT_LIST_HEAD(&ss->cfts);
8e3f6541 5194
3dd06ffa
TH
5195 /* Create the root cgroup state for this subsystem */
5196 ss->root = &cgrp_dfl_root;
5197 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
ddbcc7e8
PM
5198 /* We don't handle early failures gracefully */
5199 BUG_ON(IS_ERR(css));
ddfcadab 5200 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
3b514d24
TH
5201
5202 /*
5203 * Root csses are never destroyed and we can't initialize
5204 * percpu_ref during early init. Disable refcnting.
5205 */
5206 css->flags |= CSS_NO_REF;
5207
15a4c835 5208 if (early) {
9395a450 5209 /* allocation can't be done safely during early init */
15a4c835
TH
5210 css->id = 1;
5211 } else {
5212 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
5213 BUG_ON(css->id < 0);
5214 }
ddbcc7e8 5215
e8d55fde 5216 /* Update the init_css_set to contain a subsys
817929ec 5217 * pointer to this state - since the subsystem is
e8d55fde 5218 * newly registered, all tasks and hence the
3dd06ffa 5219 * init_css_set is in the subsystem's root cgroup. */
aec25020 5220 init_css_set.subsys[ss->id] = css;
ddbcc7e8 5221
cb4a3167
AS
5222 have_fork_callback |= (bool)ss->fork << ss->id;
5223 have_exit_callback |= (bool)ss->exit << ss->id;
afcf6c8b 5224 have_free_callback |= (bool)ss->free << ss->id;
7e47682e 5225 have_canfork_callback |= (bool)ss->can_fork << ss->id;
ddbcc7e8 5226
e8d55fde
LZ
5227 /* At system boot, before all subsystems have been
5228 * registered, no tasks have been forked, so we don't
5229 * need to invoke fork callbacks here. */
5230 BUG_ON(!list_empty(&init_task.tasks));
5231
ae7f164a 5232 BUG_ON(online_css(css));
a8638030 5233
cf5d5941
BB
5234 mutex_unlock(&cgroup_mutex);
5235}
cf5d5941 5236
ddbcc7e8 5237/**
a043e3b2
LZ
5238 * cgroup_init_early - cgroup initialization at system boot
5239 *
5240 * Initialize cgroups at system boot, and initialize any
5241 * subsystems that request early init.
ddbcc7e8
PM
5242 */
5243int __init cgroup_init_early(void)
5244{
7b9a6ba5 5245 static struct cgroup_sb_opts __initdata opts;
30159ec7 5246 struct cgroup_subsys *ss;
ddbcc7e8 5247 int i;
30159ec7 5248
3dd06ffa 5249 init_cgroup_root(&cgrp_dfl_root, &opts);
3b514d24
TH
5250 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
5251
a4ea1cc9 5252 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
817929ec 5253
3ed80a62 5254 for_each_subsys(ss, i) {
aec25020 5255 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
63253ad8 5256 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n",
073219e9 5257 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
aec25020 5258 ss->id, ss->name);
073219e9
TH
5259 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
5260 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
5261
aec25020 5262 ss->id = i;
073219e9 5263 ss->name = cgroup_subsys_name[i];
3e1d2eed
TH
5264 if (!ss->legacy_name)
5265 ss->legacy_name = cgroup_subsys_name[i];
ddbcc7e8
PM
5266
5267 if (ss->early_init)
15a4c835 5268 cgroup_init_subsys(ss, true);
ddbcc7e8
PM
5269 }
5270 return 0;
5271}
5272
6e5c8307 5273static u16 cgroup_disable_mask __initdata;
a3e72739 5274
ddbcc7e8 5275/**
a043e3b2
LZ
5276 * cgroup_init - cgroup initialization
5277 *
5278 * Register cgroup filesystem and /proc file, and initialize
5279 * any subsystems that didn't request early init.
ddbcc7e8
PM
5280 */
5281int __init cgroup_init(void)
5282{
30159ec7 5283 struct cgroup_subsys *ss;
035f4f51 5284 int ssid;
ddbcc7e8 5285
6e5c8307 5286 BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16);
1ed13287 5287 BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem));
a14c6874
TH
5288 BUG_ON(cgroup_init_cftypes(NULL, cgroup_dfl_base_files));
5289 BUG_ON(cgroup_init_cftypes(NULL, cgroup_legacy_base_files));
ddbcc7e8 5290
54e7b4eb 5291 mutex_lock(&cgroup_mutex);
54e7b4eb 5292
2378d8b8
TH
5293 /*
5294 * Add init_css_set to the hash table so that dfl_root can link to
5295 * it during init.
5296 */
5297 hash_add(css_set_table, &init_css_set.hlist,
5298 css_set_hash(init_css_set.subsys));
82fe9b0d 5299
3dd06ffa 5300 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
4e96ee8e 5301
54e7b4eb
TH
5302 mutex_unlock(&cgroup_mutex);
5303
172a2c06 5304 for_each_subsys(ss, ssid) {
15a4c835
TH
5305 if (ss->early_init) {
5306 struct cgroup_subsys_state *css =
5307 init_css_set.subsys[ss->id];
5308
5309 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
5310 GFP_KERNEL);
5311 BUG_ON(css->id < 0);
5312 } else {
5313 cgroup_init_subsys(ss, false);
5314 }
172a2c06 5315
2d8f243a
TH
5316 list_add_tail(&init_css_set.e_cset_node[ssid],
5317 &cgrp_dfl_root.cgrp.e_csets[ssid]);
172a2c06
TH
5318
5319 /*
c731ae1d
LZ
5320 * Setting dfl_root subsys_mask needs to consider the
5321 * disabled flag and cftype registration needs kmalloc,
5322 * both of which aren't available during early_init.
172a2c06 5323 */
a3e72739
TH
5324 if (cgroup_disable_mask & (1 << ssid)) {
5325 static_branch_disable(cgroup_subsys_enabled_key[ssid]);
5326 printk(KERN_INFO "Disabling %s control group subsystem\n",
5327 ss->name);
a8ddc821 5328 continue;
a3e72739 5329 }
a8ddc821 5330
223ffb29
JW
5331 if (cgroup_ssid_no_v1(ssid))
5332 printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n",
5333 ss->name);
5334
a8ddc821
TH
5335 cgrp_dfl_root.subsys_mask |= 1 << ss->id;
5336
5de4fa13 5337 if (!ss->dfl_cftypes)
a7165264 5338 cgrp_dfl_inhibit_ss_mask |= 1 << ss->id;
5de4fa13 5339
a8ddc821
TH
5340 if (ss->dfl_cftypes == ss->legacy_cftypes) {
5341 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
5342 } else {
5343 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5344 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
c731ae1d 5345 }
295458e6
VD
5346
5347 if (ss->bind)
5348 ss->bind(init_css_set.subsys[ssid]);
676db4af
GKH
5349 }
5350
2378d8b8
TH
5351 /* init_css_set.subsys[] has been updated, re-hash */
5352 hash_del(&init_css_set.hlist);
5353 hash_add(css_set_table, &init_css_set.hlist,
5354 css_set_hash(init_css_set.subsys));
5355
035f4f51
TH
5356 WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
5357 WARN_ON(register_filesystem(&cgroup_fs_type));
67e9c74b 5358 WARN_ON(register_filesystem(&cgroup2_fs_type));
035f4f51 5359 WARN_ON(!proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations));
ddbcc7e8 5360
2bd59d48 5361 return 0;
ddbcc7e8 5362}
b4f48b63 5363
e5fca243
TH
5364static int __init cgroup_wq_init(void)
5365{
5366 /*
5367 * There isn't much point in executing destruction path in
5368 * parallel. Good chunk is serialized with cgroup_mutex anyway.
1a11533f 5369 * Use 1 for @max_active.
e5fca243
TH
5370 *
5371 * We would prefer to do this in cgroup_init() above, but that
5372 * is called before init_workqueues(): so leave this until after.
5373 */
1a11533f 5374 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
e5fca243 5375 BUG_ON(!cgroup_destroy_wq);
b1a21367
TH
5376
5377 /*
5378 * Used to destroy pidlists and separate to serve as flush domain.
5379 * Cap @max_active to 1 too.
5380 */
5381 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
5382 0, 1);
5383 BUG_ON(!cgroup_pidlist_destroy_wq);
5384
e5fca243
TH
5385 return 0;
5386}
5387core_initcall(cgroup_wq_init);
5388
a424316c
PM
5389/*
5390 * proc_cgroup_show()
5391 * - Print task's cgroup paths into seq_file, one line for each hierarchy
5392 * - Used for /proc/<pid>/cgroup.
a424316c 5393 */
006f4ac4
ZL
5394int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
5395 struct pid *pid, struct task_struct *tsk)
a424316c 5396{
e61734c5 5397 char *buf, *path;
a424316c 5398 int retval;
3dd06ffa 5399 struct cgroup_root *root;
a424316c
PM
5400
5401 retval = -ENOMEM;
e61734c5 5402 buf = kmalloc(PATH_MAX, GFP_KERNEL);
a424316c
PM
5403 if (!buf)
5404 goto out;
5405
a424316c 5406 mutex_lock(&cgroup_mutex);
f0d9a5f1 5407 spin_lock_bh(&css_set_lock);
a424316c 5408
985ed670 5409 for_each_root(root) {
a424316c 5410 struct cgroup_subsys *ss;
bd89aabc 5411 struct cgroup *cgrp;
b85d2040 5412 int ssid, count = 0;
a424316c 5413
a7165264 5414 if (root == &cgrp_dfl_root && !cgrp_dfl_visible)
985ed670
TH
5415 continue;
5416
2c6ab6d2 5417 seq_printf(m, "%d:", root->hierarchy_id);
d98817d4
TH
5418 if (root != &cgrp_dfl_root)
5419 for_each_subsys(ss, ssid)
5420 if (root->subsys_mask & (1 << ssid))
5421 seq_printf(m, "%s%s", count++ ? "," : "",
3e1d2eed 5422 ss->legacy_name);
c6d57f33
PM
5423 if (strlen(root->name))
5424 seq_printf(m, "%sname=%s", count ? "," : "",
5425 root->name);
a424316c 5426 seq_putc(m, ':');
2e91fa7f 5427
7717f7ba 5428 cgrp = task_cgroup_from_root(tsk, root);
2e91fa7f
TH
5429
5430 /*
5431 * On traditional hierarchies, all zombie tasks show up as
5432 * belonging to the root cgroup. On the default hierarchy,
5433 * while a zombie doesn't show up in "cgroup.procs" and
5434 * thus can't be migrated, its /proc/PID/cgroup keeps
5435 * reporting the cgroup it belonged to before exiting. If
5436 * the cgroup is removed before the zombie is reaped,
5437 * " (deleted)" is appended to the cgroup path.
5438 */
5439 if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
5440 path = cgroup_path(cgrp, buf, PATH_MAX);
5441 if (!path) {
5442 retval = -ENAMETOOLONG;
5443 goto out_unlock;
5444 }
5445 } else {
5446 path = "/";
e61734c5 5447 }
2e91fa7f 5448
e61734c5 5449 seq_puts(m, path);
2e91fa7f
TH
5450
5451 if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
5452 seq_puts(m, " (deleted)\n");
5453 else
5454 seq_putc(m, '\n');
a424316c
PM
5455 }
5456
006f4ac4 5457 retval = 0;
a424316c 5458out_unlock:
f0d9a5f1 5459 spin_unlock_bh(&css_set_lock);
a424316c 5460 mutex_unlock(&cgroup_mutex);
a424316c
PM
5461 kfree(buf);
5462out:
5463 return retval;
5464}
5465
a424316c
PM
5466/* Display information about each subsystem and each hierarchy */
5467static int proc_cgroupstats_show(struct seq_file *m, void *v)
5468{
30159ec7 5469 struct cgroup_subsys *ss;
a424316c 5470 int i;
a424316c 5471
8bab8dde 5472 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
aae8aab4
BB
5473 /*
5474 * ideally we don't want subsystems moving around while we do this.
5475 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
5476 * subsys/hierarchy state.
5477 */
a424316c 5478 mutex_lock(&cgroup_mutex);
30159ec7
TH
5479
5480 for_each_subsys(ss, i)
2c6ab6d2 5481 seq_printf(m, "%s\t%d\t%d\t%d\n",
3e1d2eed 5482 ss->legacy_name, ss->root->hierarchy_id,
fc5ed1e9
TH
5483 atomic_read(&ss->root->nr_cgrps),
5484 cgroup_ssid_enabled(i));
30159ec7 5485
a424316c
PM
5486 mutex_unlock(&cgroup_mutex);
5487 return 0;
5488}
5489
5490static int cgroupstats_open(struct inode *inode, struct file *file)
5491{
9dce07f1 5492 return single_open(file, proc_cgroupstats_show, NULL);
a424316c
PM
5493}
5494
828c0950 5495static const struct file_operations proc_cgroupstats_operations = {
a424316c
PM
5496 .open = cgroupstats_open,
5497 .read = seq_read,
5498 .llseek = seq_lseek,
5499 .release = single_release,
5500};
5501
b4f48b63 5502/**
eaf797ab 5503 * cgroup_fork - initialize cgroup related fields during copy_process()
a043e3b2 5504 * @child: pointer to task_struct of forking parent process.
b4f48b63 5505 *
eaf797ab
TH
5506 * A task is associated with the init_css_set until cgroup_post_fork()
5507 * attaches it to the parent's css_set. Empty cg_list indicates that
5508 * @child isn't holding reference to its css_set.
b4f48b63
PM
5509 */
5510void cgroup_fork(struct task_struct *child)
5511{
eaf797ab 5512 RCU_INIT_POINTER(child->cgroups, &init_css_set);
817929ec 5513 INIT_LIST_HEAD(&child->cg_list);
b4f48b63
PM
5514}
5515
7e47682e
AS
5516/**
5517 * cgroup_can_fork - called on a new task before the process is exposed
5518 * @child: the task in question.
5519 *
5520 * This calls the subsystem can_fork() callbacks. If the can_fork() callback
5521 * returns an error, the fork aborts with that error code. This allows for
5522 * a cgroup subsystem to conditionally allow or deny new forks.
5523 */
b53202e6 5524int cgroup_can_fork(struct task_struct *child)
7e47682e
AS
5525{
5526 struct cgroup_subsys *ss;
5527 int i, j, ret;
5528
b4e0eeaf 5529 do_each_subsys_mask(ss, i, have_canfork_callback) {
b53202e6 5530 ret = ss->can_fork(child);
7e47682e
AS
5531 if (ret)
5532 goto out_revert;
b4e0eeaf 5533 } while_each_subsys_mask();
7e47682e
AS
5534
5535 return 0;
5536
5537out_revert:
5538 for_each_subsys(ss, j) {
5539 if (j >= i)
5540 break;
5541 if (ss->cancel_fork)
b53202e6 5542 ss->cancel_fork(child);
7e47682e
AS
5543 }
5544
5545 return ret;
5546}
5547
5548/**
5549 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
5550 * @child: the task in question
5551 *
5552 * This calls the cancel_fork() callbacks if a fork failed *after*
5553 * cgroup_can_fork() succeded.
5554 */
b53202e6 5555void cgroup_cancel_fork(struct task_struct *child)
7e47682e
AS
5556{
5557 struct cgroup_subsys *ss;
5558 int i;
5559
5560 for_each_subsys(ss, i)
5561 if (ss->cancel_fork)
b53202e6 5562 ss->cancel_fork(child);
7e47682e
AS
5563}
5564
817929ec 5565/**
a043e3b2
LZ
5566 * cgroup_post_fork - called on a new task after adding it to the task list
5567 * @child: the task in question
5568 *
5edee61e
TH
5569 * Adds the task to the list running through its css_set if necessary and
5570 * call the subsystem fork() callbacks. Has to be after the task is
5571 * visible on the task list in case we race with the first call to
0942eeee 5572 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5edee61e 5573 * list.
a043e3b2 5574 */
b53202e6 5575void cgroup_post_fork(struct task_struct *child)
817929ec 5576{
30159ec7 5577 struct cgroup_subsys *ss;
5edee61e
TH
5578 int i;
5579
3ce3230a 5580 /*
251f8c03 5581 * This may race against cgroup_enable_task_cg_lists(). As that
eaf797ab
TH
5582 * function sets use_task_css_set_links before grabbing
5583 * tasklist_lock and we just went through tasklist_lock to add
5584 * @child, it's guaranteed that either we see the set
5585 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
5586 * @child during its iteration.
5587 *
5588 * If we won the race, @child is associated with %current's
f0d9a5f1 5589 * css_set. Grabbing css_set_lock guarantees both that the
eaf797ab
TH
5590 * association is stable, and, on completion of the parent's
5591 * migration, @child is visible in the source of migration or
5592 * already in the destination cgroup. This guarantee is necessary
5593 * when implementing operations which need to migrate all tasks of
5594 * a cgroup to another.
5595 *
251f8c03 5596 * Note that if we lose to cgroup_enable_task_cg_lists(), @child
eaf797ab
TH
5597 * will remain in init_css_set. This is safe because all tasks are
5598 * in the init_css_set before cg_links is enabled and there's no
5599 * operation which transfers all tasks out of init_css_set.
3ce3230a 5600 */
817929ec 5601 if (use_task_css_set_links) {
eaf797ab
TH
5602 struct css_set *cset;
5603
f0d9a5f1 5604 spin_lock_bh(&css_set_lock);
0e1d768f 5605 cset = task_css_set(current);
eaf797ab 5606 if (list_empty(&child->cg_list)) {
eaf797ab 5607 get_css_set(cset);
f6d7d049 5608 css_set_move_task(child, NULL, cset, false);
eaf797ab 5609 }
f0d9a5f1 5610 spin_unlock_bh(&css_set_lock);
817929ec 5611 }
5edee61e
TH
5612
5613 /*
5614 * Call ss->fork(). This must happen after @child is linked on
5615 * css_set; otherwise, @child might change state between ->fork()
5616 * and addition to css_set.
5617 */
b4e0eeaf 5618 do_each_subsys_mask(ss, i, have_fork_callback) {
b53202e6 5619 ss->fork(child);
b4e0eeaf 5620 } while_each_subsys_mask();
817929ec 5621}
5edee61e 5622
b4f48b63
PM
5623/**
5624 * cgroup_exit - detach cgroup from exiting task
5625 * @tsk: pointer to task_struct of exiting process
5626 *
5627 * Description: Detach cgroup from @tsk and release it.
5628 *
5629 * Note that cgroups marked notify_on_release force every task in
5630 * them to take the global cgroup_mutex mutex when exiting.
5631 * This could impact scaling on very large systems. Be reluctant to
5632 * use notify_on_release cgroups where very high task exit scaling
5633 * is required on large systems.
5634 *
0e1d768f
TH
5635 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We
5636 * call cgroup_exit() while the task is still competent to handle
5637 * notify_on_release(), then leave the task attached to the root cgroup in
5638 * each hierarchy for the remainder of its exit. No need to bother with
5639 * init_css_set refcnting. init_css_set never goes away and we can't race
e8604cb4 5640 * with migration path - PF_EXITING is visible to migration path.
b4f48b63 5641 */
1ec41830 5642void cgroup_exit(struct task_struct *tsk)
b4f48b63 5643{
30159ec7 5644 struct cgroup_subsys *ss;
5abb8855 5645 struct css_set *cset;
d41d5a01 5646 int i;
817929ec
PM
5647
5648 /*
0e1d768f 5649 * Unlink from @tsk from its css_set. As migration path can't race
0de0942d 5650 * with us, we can check css_set and cg_list without synchronization.
817929ec 5651 */
0de0942d
TH
5652 cset = task_css_set(tsk);
5653
817929ec 5654 if (!list_empty(&tsk->cg_list)) {
f0d9a5f1 5655 spin_lock_bh(&css_set_lock);
f6d7d049 5656 css_set_move_task(tsk, cset, NULL, false);
f0d9a5f1 5657 spin_unlock_bh(&css_set_lock);
2e91fa7f
TH
5658 } else {
5659 get_css_set(cset);
817929ec
PM
5660 }
5661
cb4a3167 5662 /* see cgroup_post_fork() for details */
b4e0eeaf 5663 do_each_subsys_mask(ss, i, have_exit_callback) {
2e91fa7f 5664 ss->exit(tsk);
b4e0eeaf 5665 } while_each_subsys_mask();
2e91fa7f 5666}
30159ec7 5667
2e91fa7f
TH
5668void cgroup_free(struct task_struct *task)
5669{
5670 struct css_set *cset = task_css_set(task);
afcf6c8b
TH
5671 struct cgroup_subsys *ss;
5672 int ssid;
5673
b4e0eeaf 5674 do_each_subsys_mask(ss, ssid, have_free_callback) {
afcf6c8b 5675 ss->free(task);
b4e0eeaf 5676 } while_each_subsys_mask();
d41d5a01 5677
2e91fa7f 5678 put_css_set(cset);
b4f48b63 5679}
697f4161 5680
bd89aabc 5681static void check_for_release(struct cgroup *cgrp)
81a6a5cd 5682{
27bd4dbb 5683 if (notify_on_release(cgrp) && !cgroup_is_populated(cgrp) &&
971ff493
ZL
5684 !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp))
5685 schedule_work(&cgrp->release_agent_work);
81a6a5cd
PM
5686}
5687
81a6a5cd
PM
5688/*
5689 * Notify userspace when a cgroup is released, by running the
5690 * configured release agent with the name of the cgroup (path
5691 * relative to the root of cgroup file system) as the argument.
5692 *
5693 * Most likely, this user command will try to rmdir this cgroup.
5694 *
5695 * This races with the possibility that some other task will be
5696 * attached to this cgroup before it is removed, or that some other
5697 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
5698 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
5699 * unused, and this cgroup will be reprieved from its death sentence,
5700 * to continue to serve a useful existence. Next time it's released,
5701 * we will get notified again, if it still has 'notify_on_release' set.
5702 *
5703 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
5704 * means only wait until the task is successfully execve()'d. The
5705 * separate release agent task is forked by call_usermodehelper(),
5706 * then control in this thread returns here, without waiting for the
5707 * release agent task. We don't bother to wait because the caller of
5708 * this routine has no use for the exit status of the release agent
5709 * task, so no sense holding our caller up for that.
81a6a5cd 5710 */
81a6a5cd
PM
5711static void cgroup_release_agent(struct work_struct *work)
5712{
971ff493
ZL
5713 struct cgroup *cgrp =
5714 container_of(work, struct cgroup, release_agent_work);
5715 char *pathbuf = NULL, *agentbuf = NULL, *path;
5716 char *argv[3], *envp[3];
5717
81a6a5cd 5718 mutex_lock(&cgroup_mutex);
971ff493
ZL
5719
5720 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
5721 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
5722 if (!pathbuf || !agentbuf)
5723 goto out;
5724
5725 path = cgroup_path(cgrp, pathbuf, PATH_MAX);
5726 if (!path)
5727 goto out;
5728
5729 argv[0] = agentbuf;
5730 argv[1] = path;
5731 argv[2] = NULL;
5732
5733 /* minimal command environment */
5734 envp[0] = "HOME=/";
5735 envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
5736 envp[2] = NULL;
5737
81a6a5cd 5738 mutex_unlock(&cgroup_mutex);
971ff493 5739 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
3e2cd91a 5740 goto out_free;
971ff493 5741out:
81a6a5cd 5742 mutex_unlock(&cgroup_mutex);
3e2cd91a 5743out_free:
971ff493
ZL
5744 kfree(agentbuf);
5745 kfree(pathbuf);
81a6a5cd 5746}
8bab8dde
PM
5747
5748static int __init cgroup_disable(char *str)
5749{
30159ec7 5750 struct cgroup_subsys *ss;
8bab8dde 5751 char *token;
30159ec7 5752 int i;
8bab8dde
PM
5753
5754 while ((token = strsep(&str, ",")) != NULL) {
5755 if (!*token)
5756 continue;
be45c900 5757
3ed80a62 5758 for_each_subsys(ss, i) {
3e1d2eed
TH
5759 if (strcmp(token, ss->name) &&
5760 strcmp(token, ss->legacy_name))
5761 continue;
a3e72739 5762 cgroup_disable_mask |= 1 << i;
8bab8dde
PM
5763 }
5764 }
5765 return 1;
5766}
5767__setup("cgroup_disable=", cgroup_disable);
38460b48 5768
223ffb29
JW
5769static int __init cgroup_no_v1(char *str)
5770{
5771 struct cgroup_subsys *ss;
5772 char *token;
5773 int i;
5774
5775 while ((token = strsep(&str, ",")) != NULL) {
5776 if (!*token)
5777 continue;
5778
5779 if (!strcmp(token, "all")) {
6e5c8307 5780 cgroup_no_v1_mask = U16_MAX;
223ffb29
JW
5781 break;
5782 }
5783
5784 for_each_subsys(ss, i) {
5785 if (strcmp(token, ss->name) &&
5786 strcmp(token, ss->legacy_name))
5787 continue;
5788
5789 cgroup_no_v1_mask |= 1 << i;
5790 }
5791 }
5792 return 1;
5793}
5794__setup("cgroup_no_v1=", cgroup_no_v1);
5795
b77d7b60 5796/**
ec903c0c 5797 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
35cf0836
TH
5798 * @dentry: directory dentry of interest
5799 * @ss: subsystem of interest
b77d7b60 5800 *
5a17f543
TH
5801 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
5802 * to get the corresponding css and return it. If such css doesn't exist
5803 * or can't be pinned, an ERR_PTR value is returned.
e5d1367f 5804 */
ec903c0c
TH
5805struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
5806 struct cgroup_subsys *ss)
e5d1367f 5807{
2bd59d48 5808 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
f17fc25f 5809 struct file_system_type *s_type = dentry->d_sb->s_type;
2bd59d48 5810 struct cgroup_subsys_state *css = NULL;
e5d1367f 5811 struct cgroup *cgrp;
e5d1367f 5812
35cf0836 5813 /* is @dentry a cgroup dir? */
f17fc25f
TH
5814 if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) ||
5815 !kn || kernfs_type(kn) != KERNFS_DIR)
e5d1367f
SE
5816 return ERR_PTR(-EBADF);
5817
5a17f543
TH
5818 rcu_read_lock();
5819
2bd59d48
TH
5820 /*
5821 * This path doesn't originate from kernfs and @kn could already
5822 * have been or be removed at any point. @kn->priv is RCU
a4189487 5823 * protected for this access. See css_release_work_fn() for details.
2bd59d48
TH
5824 */
5825 cgrp = rcu_dereference(kn->priv);
5826 if (cgrp)
5827 css = cgroup_css(cgrp, ss);
5a17f543 5828
ec903c0c 5829 if (!css || !css_tryget_online(css))
5a17f543
TH
5830 css = ERR_PTR(-ENOENT);
5831
5832 rcu_read_unlock();
5833 return css;
e5d1367f 5834}
e5d1367f 5835
1cb650b9
LZ
5836/**
5837 * css_from_id - lookup css by id
5838 * @id: the cgroup id
5839 * @ss: cgroup subsys to be looked into
5840 *
5841 * Returns the css if there's valid one with @id, otherwise returns NULL.
5842 * Should be called under rcu_read_lock().
5843 */
5844struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
5845{
6fa4918d 5846 WARN_ON_ONCE(!rcu_read_lock_held());
adbe427b 5847 return id > 0 ? idr_find(&ss->css_idr, id) : NULL;
e5d1367f
SE
5848}
5849
16af4396
TH
5850/**
5851 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
5852 * @path: path on the default hierarchy
5853 *
5854 * Find the cgroup at @path on the default hierarchy, increment its
5855 * reference count and return it. Returns pointer to the found cgroup on
5856 * success, ERR_PTR(-ENOENT) if @path doens't exist and ERR_PTR(-ENOTDIR)
5857 * if @path points to a non-directory.
5858 */
5859struct cgroup *cgroup_get_from_path(const char *path)
5860{
5861 struct kernfs_node *kn;
5862 struct cgroup *cgrp;
5863
5864 mutex_lock(&cgroup_mutex);
5865
5866 kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path);
5867 if (kn) {
5868 if (kernfs_type(kn) == KERNFS_DIR) {
5869 cgrp = kn->priv;
5870 cgroup_get(cgrp);
5871 } else {
5872 cgrp = ERR_PTR(-ENOTDIR);
5873 }
5874 kernfs_put(kn);
5875 } else {
5876 cgrp = ERR_PTR(-ENOENT);
5877 }
5878
5879 mutex_unlock(&cgroup_mutex);
5880 return cgrp;
5881}
5882EXPORT_SYMBOL_GPL(cgroup_get_from_path);
5883
bd1060a1
TH
5884/*
5885 * sock->sk_cgrp_data handling. For more info, see sock_cgroup_data
5886 * definition in cgroup-defs.h.
5887 */
5888#ifdef CONFIG_SOCK_CGROUP_DATA
5889
5890#if defined(CONFIG_CGROUP_NET_PRIO) || defined(CONFIG_CGROUP_NET_CLASSID)
5891
3fa4cc9c 5892DEFINE_SPINLOCK(cgroup_sk_update_lock);
bd1060a1
TH
5893static bool cgroup_sk_alloc_disabled __read_mostly;
5894
5895void cgroup_sk_alloc_disable(void)
5896{
5897 if (cgroup_sk_alloc_disabled)
5898 return;
5899 pr_info("cgroup: disabling cgroup2 socket matching due to net_prio or net_cls activation\n");
5900 cgroup_sk_alloc_disabled = true;
5901}
5902
5903#else
5904
5905#define cgroup_sk_alloc_disabled false
5906
5907#endif
5908
5909void cgroup_sk_alloc(struct sock_cgroup_data *skcd)
5910{
5911 if (cgroup_sk_alloc_disabled)
5912 return;
5913
5914 rcu_read_lock();
5915
5916 while (true) {
5917 struct css_set *cset;
5918
5919 cset = task_css_set(current);
5920 if (likely(cgroup_tryget(cset->dfl_cgrp))) {
5921 skcd->val = (unsigned long)cset->dfl_cgrp;
5922 break;
5923 }
5924 cpu_relax();
5925 }
5926
5927 rcu_read_unlock();
5928}
5929
5930void cgroup_sk_free(struct sock_cgroup_data *skcd)
5931{
5932 cgroup_put(sock_cgroup_ptr(skcd));
5933}
5934
5935#endif /* CONFIG_SOCK_CGROUP_DATA */
5936
fe693435 5937#ifdef CONFIG_CGROUP_DEBUG
eb95419b
TH
5938static struct cgroup_subsys_state *
5939debug_css_alloc(struct cgroup_subsys_state *parent_css)
fe693435
PM
5940{
5941 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5942
5943 if (!css)
5944 return ERR_PTR(-ENOMEM);
5945
5946 return css;
5947}
5948
eb95419b 5949static void debug_css_free(struct cgroup_subsys_state *css)
fe693435 5950{
eb95419b 5951 kfree(css);
fe693435
PM
5952}
5953
182446d0
TH
5954static u64 debug_taskcount_read(struct cgroup_subsys_state *css,
5955 struct cftype *cft)
fe693435 5956{
182446d0 5957 return cgroup_task_count(css->cgroup);
fe693435
PM
5958}
5959
182446d0
TH
5960static u64 current_css_set_read(struct cgroup_subsys_state *css,
5961 struct cftype *cft)
fe693435
PM
5962{
5963 return (u64)(unsigned long)current->cgroups;
5964}
5965
182446d0 5966static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css,
03c78cbe 5967 struct cftype *cft)
fe693435
PM
5968{
5969 u64 count;
5970
5971 rcu_read_lock();
a8ad805c 5972 count = atomic_read(&task_css_set(current)->refcount);
fe693435
PM
5973 rcu_read_unlock();
5974 return count;
5975}
5976
2da8ca82 5977static int current_css_set_cg_links_read(struct seq_file *seq, void *v)
7717f7ba 5978{
69d0206c 5979 struct cgrp_cset_link *link;
5abb8855 5980 struct css_set *cset;
e61734c5
TH
5981 char *name_buf;
5982
5983 name_buf = kmalloc(NAME_MAX + 1, GFP_KERNEL);
5984 if (!name_buf)
5985 return -ENOMEM;
7717f7ba 5986
f0d9a5f1 5987 spin_lock_bh(&css_set_lock);
7717f7ba 5988 rcu_read_lock();
5abb8855 5989 cset = rcu_dereference(current->cgroups);
69d0206c 5990 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 5991 struct cgroup *c = link->cgrp;
7717f7ba 5992
a2dd4247 5993 cgroup_name(c, name_buf, NAME_MAX + 1);
2c6ab6d2 5994 seq_printf(seq, "Root %d group %s\n",
a2dd4247 5995 c->root->hierarchy_id, name_buf);
7717f7ba
PM
5996 }
5997 rcu_read_unlock();
f0d9a5f1 5998 spin_unlock_bh(&css_set_lock);
e61734c5 5999 kfree(name_buf);
7717f7ba
PM
6000 return 0;
6001}
6002
6003#define MAX_TASKS_SHOWN_PER_CSS 25
2da8ca82 6004static int cgroup_css_links_read(struct seq_file *seq, void *v)
7717f7ba 6005{
2da8ca82 6006 struct cgroup_subsys_state *css = seq_css(seq);
69d0206c 6007 struct cgrp_cset_link *link;
7717f7ba 6008
f0d9a5f1 6009 spin_lock_bh(&css_set_lock);
182446d0 6010 list_for_each_entry(link, &css->cgroup->cset_links, cset_link) {
69d0206c 6011 struct css_set *cset = link->cset;
7717f7ba
PM
6012 struct task_struct *task;
6013 int count = 0;
c7561128 6014
5abb8855 6015 seq_printf(seq, "css_set %p\n", cset);
c7561128 6016
5abb8855 6017 list_for_each_entry(task, &cset->tasks, cg_list) {
c7561128
TH
6018 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
6019 goto overflow;
6020 seq_printf(seq, " task %d\n", task_pid_vnr(task));
6021 }
6022
6023 list_for_each_entry(task, &cset->mg_tasks, cg_list) {
6024 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
6025 goto overflow;
6026 seq_printf(seq, " task %d\n", task_pid_vnr(task));
7717f7ba 6027 }
c7561128
TH
6028 continue;
6029 overflow:
6030 seq_puts(seq, " ...\n");
7717f7ba 6031 }
f0d9a5f1 6032 spin_unlock_bh(&css_set_lock);
7717f7ba
PM
6033 return 0;
6034}
6035
182446d0 6036static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft)
fe693435 6037{
27bd4dbb 6038 return (!cgroup_is_populated(css->cgroup) &&
a25eb52e 6039 !css_has_online_children(&css->cgroup->self));
fe693435
PM
6040}
6041
6042static struct cftype debug_files[] = {
fe693435
PM
6043 {
6044 .name = "taskcount",
6045 .read_u64 = debug_taskcount_read,
6046 },
6047
6048 {
6049 .name = "current_css_set",
6050 .read_u64 = current_css_set_read,
6051 },
6052
6053 {
6054 .name = "current_css_set_refcount",
6055 .read_u64 = current_css_set_refcount_read,
6056 },
6057
7717f7ba
PM
6058 {
6059 .name = "current_css_set_cg_links",
2da8ca82 6060 .seq_show = current_css_set_cg_links_read,
7717f7ba
PM
6061 },
6062
6063 {
6064 .name = "cgroup_css_links",
2da8ca82 6065 .seq_show = cgroup_css_links_read,
7717f7ba
PM
6066 },
6067
fe693435
PM
6068 {
6069 .name = "releasable",
6070 .read_u64 = releasable_read,
6071 },
fe693435 6072
4baf6e33
TH
6073 { } /* terminate */
6074};
fe693435 6075
073219e9 6076struct cgroup_subsys debug_cgrp_subsys = {
92fb9748
TH
6077 .css_alloc = debug_css_alloc,
6078 .css_free = debug_css_free,
5577964e 6079 .legacy_cftypes = debug_files,
fe693435
PM
6080};
6081#endif /* CONFIG_CGROUP_DEBUG */