]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - kernel/cgroup.c
cgroup: more naming cleanups
[mirror_ubuntu-artful-kernel.git] / kernel / cgroup.c
CommitLineData
ddbcc7e8 1/*
ddbcc7e8
PM
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
0dea1168
KS
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
ddbcc7e8
PM
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29#include <linux/cgroup.h>
2ce9738b 30#include <linux/cred.h>
c6d57f33 31#include <linux/ctype.h>
ddbcc7e8 32#include <linux/errno.h>
2ce9738b 33#include <linux/init_task.h>
ddbcc7e8
PM
34#include <linux/kernel.h>
35#include <linux/list.h>
36#include <linux/mm.h>
37#include <linux/mutex.h>
38#include <linux/mount.h>
39#include <linux/pagemap.h>
a424316c 40#include <linux/proc_fs.h>
ddbcc7e8
PM
41#include <linux/rcupdate.h>
42#include <linux/sched.h>
817929ec 43#include <linux/backing-dev.h>
ddbcc7e8
PM
44#include <linux/seq_file.h>
45#include <linux/slab.h>
46#include <linux/magic.h>
47#include <linux/spinlock.h>
48#include <linux/string.h>
bbcb81d0 49#include <linux/sort.h>
81a6a5cd 50#include <linux/kmod.h>
e6a1105b 51#include <linux/module.h>
846c7bb0
BS
52#include <linux/delayacct.h>
53#include <linux/cgroupstats.h>
0ac801fe 54#include <linux/hashtable.h>
3f8206d4 55#include <linux/namei.h>
096b7fe0 56#include <linux/pid_namespace.h>
2c6ab6d2 57#include <linux/idr.h>
d1d9fd33 58#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
0dea1168
KS
59#include <linux/eventfd.h>
60#include <linux/poll.h>
081aa458 61#include <linux/flex_array.h> /* used in cgroup_attach_task */
c4c27fbd 62#include <linux/kthread.h>
846c7bb0 63
60063497 64#include <linux/atomic.h>
ddbcc7e8 65
e25e2cbb
TH
66/*
67 * cgroup_mutex is the master lock. Any modification to cgroup or its
68 * hierarchy must be performed while holding it.
69 *
70 * cgroup_root_mutex nests inside cgroup_mutex and should be held to modify
71 * cgroupfs_root of any cgroup hierarchy - subsys list, flags,
72 * release_agent_path and so on. Modifying requires both cgroup_mutex and
73 * cgroup_root_mutex. Readers can acquire either of the two. This is to
74 * break the following locking order cycle.
75 *
76 * A. cgroup_mutex -> cred_guard_mutex -> s_type->i_mutex_key -> namespace_sem
77 * B. namespace_sem -> cgroup_mutex
78 *
79 * B happens only through cgroup_show_options() and using cgroup_root_mutex
80 * breaks it.
81 */
2219449a
TH
82#ifdef CONFIG_PROVE_RCU
83DEFINE_MUTEX(cgroup_mutex);
84EXPORT_SYMBOL_GPL(cgroup_mutex); /* only for task_subsys_state_check() */
85#else
81a6a5cd 86static DEFINE_MUTEX(cgroup_mutex);
2219449a
TH
87#endif
88
e25e2cbb 89static DEFINE_MUTEX(cgroup_root_mutex);
81a6a5cd 90
aae8aab4
BB
91/*
92 * Generate an array of cgroup subsystem pointers. At boot time, this is
be45c900 93 * populated with the built in subsystems, and modular subsystems are
aae8aab4
BB
94 * registered after that. The mutable section of this array is protected by
95 * cgroup_mutex.
96 */
80f4c877 97#define SUBSYS(_x) [_x ## _subsys_id] = &_x ## _subsys,
5fc0b025 98#define IS_SUBSYS_ENABLED(option) IS_BUILTIN(option)
9871bf95 99static struct cgroup_subsys *cgroup_subsys[CGROUP_SUBSYS_COUNT] = {
ddbcc7e8
PM
100#include <linux/cgroup_subsys.h>
101};
102
ddbcc7e8 103/*
9871bf95
TH
104 * The dummy hierarchy, reserved for the subsystems that are otherwise
105 * unattached - it never has more than a single cgroup, and all tasks are
106 * part of that cgroup.
ddbcc7e8 107 */
9871bf95
TH
108static struct cgroupfs_root cgroup_dummy_root;
109
110/* dummy_top is a shorthand for the dummy hierarchy's top cgroup */
111static struct cgroup * const cgroup_dummy_top = &cgroup_dummy_root.top_cgroup;
ddbcc7e8 112
05ef1d7c
TH
113/*
114 * cgroupfs file entry, pointed to from leaf dentry->d_fsdata.
115 */
116struct cfent {
117 struct list_head node;
118 struct dentry *dentry;
119 struct cftype *type;
712317ad
LZ
120
121 /* file xattrs */
122 struct simple_xattrs xattrs;
05ef1d7c
TH
123};
124
38460b48
KH
125/*
126 * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
127 * cgroup_subsys->use_id != 0.
128 */
129#define CSS_ID_MAX (65535)
130struct css_id {
131 /*
132 * The css to which this ID points. This pointer is set to valid value
133 * after cgroup is populated. If cgroup is removed, this will be NULL.
134 * This pointer is expected to be RCU-safe because destroy()
e9316080
TH
135 * is called after synchronize_rcu(). But for safe use, css_tryget()
136 * should be used for avoiding race.
38460b48 137 */
2c392b8c 138 struct cgroup_subsys_state __rcu *css;
38460b48
KH
139 /*
140 * ID of this css.
141 */
142 unsigned short id;
143 /*
144 * Depth in hierarchy which this ID belongs to.
145 */
146 unsigned short depth;
147 /*
148 * ID is freed by RCU. (and lookup routine is RCU safe.)
149 */
150 struct rcu_head rcu_head;
151 /*
152 * Hierarchy of CSS ID belongs to.
153 */
154 unsigned short stack[0]; /* Array of Length (depth+1) */
155};
156
0dea1168 157/*
25985edc 158 * cgroup_event represents events which userspace want to receive.
0dea1168
KS
159 */
160struct cgroup_event {
161 /*
162 * Cgroup which the event belongs to.
163 */
164 struct cgroup *cgrp;
165 /*
166 * Control file which the event associated.
167 */
168 struct cftype *cft;
169 /*
170 * eventfd to signal userspace about the event.
171 */
172 struct eventfd_ctx *eventfd;
173 /*
174 * Each of these stored in a list by the cgroup.
175 */
176 struct list_head list;
177 /*
178 * All fields below needed to unregister event when
179 * userspace closes eventfd.
180 */
181 poll_table pt;
182 wait_queue_head_t *wqh;
183 wait_queue_t wait;
184 struct work_struct remove;
185};
38460b48 186
ddbcc7e8
PM
187/* The list of hierarchy roots */
188
9871bf95
TH
189static LIST_HEAD(cgroup_roots);
190static int cgroup_root_count;
ddbcc7e8 191
54e7b4eb
TH
192/*
193 * Hierarchy ID allocation and mapping. It follows the same exclusion
194 * rules as other root ops - both cgroup_mutex and cgroup_root_mutex for
195 * writes, either for reads.
196 */
1a574231 197static DEFINE_IDR(cgroup_hierarchy_idr);
2c6ab6d2 198
65dff759
LZ
199static struct cgroup_name root_cgroup_name = { .name = "/" };
200
794611a1
LZ
201/*
202 * Assign a monotonically increasing serial number to cgroups. It
203 * guarantees cgroups with bigger numbers are newer than those with smaller
204 * numbers. Also, as cgroups are always appended to the parent's
205 * ->children list, it guarantees that sibling cgroups are always sorted in
00356bd5
TH
206 * the ascending serial number order on the list. Protected by
207 * cgroup_mutex.
794611a1 208 */
00356bd5 209static u64 cgroup_serial_nr_next = 1;
794611a1 210
ddbcc7e8 211/* This flag indicates whether tasks in the fork and exit paths should
a043e3b2
LZ
212 * check for fork/exit handlers to call. This avoids us having to do
213 * extra work in the fork/exit path if none of the subsystems need to
214 * be called.
ddbcc7e8 215 */
8947f9d5 216static int need_forkexit_callback __read_mostly;
ddbcc7e8 217
628f7cd4
TH
218static struct cftype cgroup_base_files[];
219
ea15f8cc 220static void cgroup_offline_fn(struct work_struct *work);
42809dd4 221static int cgroup_destroy_locked(struct cgroup *cgrp);
879a3d9d
G
222static int cgroup_addrm_files(struct cgroup *cgrp, struct cgroup_subsys *subsys,
223 struct cftype cfts[], bool is_add);
42809dd4 224
ddbcc7e8 225/* convenient tests for these bits */
54766d4a 226static inline bool cgroup_is_dead(const struct cgroup *cgrp)
ddbcc7e8 227{
54766d4a 228 return test_bit(CGRP_DEAD, &cgrp->flags);
ddbcc7e8
PM
229}
230
78574cf9
LZ
231/**
232 * cgroup_is_descendant - test ancestry
233 * @cgrp: the cgroup to be tested
234 * @ancestor: possible ancestor of @cgrp
235 *
236 * Test whether @cgrp is a descendant of @ancestor. It also returns %true
237 * if @cgrp == @ancestor. This function is safe to call as long as @cgrp
238 * and @ancestor are accessible.
239 */
240bool cgroup_is_descendant(struct cgroup *cgrp, struct cgroup *ancestor)
241{
242 while (cgrp) {
243 if (cgrp == ancestor)
244 return true;
245 cgrp = cgrp->parent;
246 }
247 return false;
248}
249EXPORT_SYMBOL_GPL(cgroup_is_descendant);
ddbcc7e8 250
e9685a03 251static int cgroup_is_releasable(const struct cgroup *cgrp)
81a6a5cd
PM
252{
253 const int bits =
bd89aabc
PM
254 (1 << CGRP_RELEASABLE) |
255 (1 << CGRP_NOTIFY_ON_RELEASE);
256 return (cgrp->flags & bits) == bits;
81a6a5cd
PM
257}
258
e9685a03 259static int notify_on_release(const struct cgroup *cgrp)
81a6a5cd 260{
bd89aabc 261 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
81a6a5cd
PM
262}
263
30159ec7
TH
264/**
265 * for_each_subsys - iterate all loaded cgroup subsystems
266 * @ss: the iteration cursor
267 * @i: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
268 *
269 * Should be called under cgroup_mutex.
270 */
271#define for_each_subsys(ss, i) \
272 for ((i) = 0; (i) < CGROUP_SUBSYS_COUNT; (i)++) \
273 if (({ lockdep_assert_held(&cgroup_mutex); \
274 !((ss) = cgroup_subsys[i]); })) { } \
275 else
276
277/**
278 * for_each_builtin_subsys - iterate all built-in cgroup subsystems
279 * @ss: the iteration cursor
280 * @i: the index of @ss, CGROUP_BUILTIN_SUBSYS_COUNT after reaching the end
281 *
282 * Bulit-in subsystems are always present and iteration itself doesn't
283 * require any synchronization.
284 */
285#define for_each_builtin_subsys(ss, i) \
286 for ((i) = 0; (i) < CGROUP_BUILTIN_SUBSYS_COUNT && \
287 (((ss) = cgroup_subsys[i]) || true); (i)++)
288
5549c497
TH
289/* iterate each subsystem attached to a hierarchy */
290#define for_each_root_subsys(root, ss) \
291 list_for_each_entry((ss), &(root)->subsys_list, sibling)
ddbcc7e8 292
5549c497
TH
293/* iterate across the active hierarchies */
294#define for_each_active_root(root) \
295 list_for_each_entry((root), &cgroup_roots, root_list)
ddbcc7e8 296
f6ea9372
TH
297static inline struct cgroup *__d_cgrp(struct dentry *dentry)
298{
299 return dentry->d_fsdata;
300}
301
05ef1d7c 302static inline struct cfent *__d_cfe(struct dentry *dentry)
f6ea9372
TH
303{
304 return dentry->d_fsdata;
305}
306
05ef1d7c
TH
307static inline struct cftype *__d_cft(struct dentry *dentry)
308{
309 return __d_cfe(dentry)->type;
310}
311
7ae1bad9
TH
312/**
313 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
314 * @cgrp: the cgroup to be checked for liveness
315 *
47cfcd09
TH
316 * On success, returns true; the mutex should be later unlocked. On
317 * failure returns false with no lock held.
7ae1bad9 318 */
b9777cf8 319static bool cgroup_lock_live_group(struct cgroup *cgrp)
7ae1bad9
TH
320{
321 mutex_lock(&cgroup_mutex);
54766d4a 322 if (cgroup_is_dead(cgrp)) {
7ae1bad9
TH
323 mutex_unlock(&cgroup_mutex);
324 return false;
325 }
326 return true;
327}
7ae1bad9 328
81a6a5cd
PM
329/* the list of cgroups eligible for automatic release. Protected by
330 * release_list_lock */
331static LIST_HEAD(release_list);
cdcc136f 332static DEFINE_RAW_SPINLOCK(release_list_lock);
81a6a5cd
PM
333static void cgroup_release_agent(struct work_struct *work);
334static DECLARE_WORK(release_agent_work, cgroup_release_agent);
bd89aabc 335static void check_for_release(struct cgroup *cgrp);
81a6a5cd 336
69d0206c
TH
337/*
338 * A cgroup can be associated with multiple css_sets as different tasks may
339 * belong to different cgroups on different hierarchies. In the other
340 * direction, a css_set is naturally associated with multiple cgroups.
341 * This M:N relationship is represented by the following link structure
342 * which exists for each association and allows traversing the associations
343 * from both sides.
344 */
345struct cgrp_cset_link {
346 /* the cgroup and css_set this link associates */
347 struct cgroup *cgrp;
348 struct css_set *cset;
349
350 /* list of cgrp_cset_links anchored at cgrp->cset_links */
351 struct list_head cset_link;
352
353 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
354 struct list_head cgrp_link;
817929ec
PM
355};
356
357/* The default css_set - used by init and its children prior to any
358 * hierarchies being mounted. It contains a pointer to the root state
359 * for each subsystem. Also used to anchor the list of css_sets. Not
360 * reference-counted, to improve performance when child cgroups
361 * haven't been created.
362 */
363
364static struct css_set init_css_set;
69d0206c 365static struct cgrp_cset_link init_cgrp_cset_link;
817929ec 366
e6a1105b
BB
367static int cgroup_init_idr(struct cgroup_subsys *ss,
368 struct cgroup_subsys_state *css);
38460b48 369
817929ec
PM
370/* css_set_lock protects the list of css_set objects, and the
371 * chain of tasks off each css_set. Nests outside task->alloc_lock
372 * due to cgroup_iter_start() */
373static DEFINE_RWLOCK(css_set_lock);
374static int css_set_count;
375
7717f7ba
PM
376/*
377 * hash table for cgroup groups. This improves the performance to find
378 * an existing css_set. This hash doesn't (currently) take into
379 * account cgroups in empty hierarchies.
380 */
472b1053 381#define CSS_SET_HASH_BITS 7
0ac801fe 382static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
472b1053 383
0ac801fe 384static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
472b1053 385{
0ac801fe 386 unsigned long key = 0UL;
30159ec7
TH
387 struct cgroup_subsys *ss;
388 int i;
472b1053 389
30159ec7 390 for_each_subsys(ss, i)
0ac801fe
LZ
391 key += (unsigned long)css[i];
392 key = (key >> 16) ^ key;
472b1053 393
0ac801fe 394 return key;
472b1053
LZ
395}
396
817929ec
PM
397/* We don't maintain the lists running through each css_set to its
398 * task until after the first call to cgroup_iter_start(). This
399 * reduces the fork()/exit() overhead for people who have cgroups
400 * compiled into their kernel but not actually in use */
8947f9d5 401static int use_task_css_set_links __read_mostly;
817929ec 402
5abb8855 403static void __put_css_set(struct css_set *cset, int taskexit)
b4f48b63 404{
69d0206c 405 struct cgrp_cset_link *link, *tmp_link;
5abb8855 406
146aa1bd
LJ
407 /*
408 * Ensure that the refcount doesn't hit zero while any readers
409 * can see it. Similar to atomic_dec_and_lock(), but for an
410 * rwlock
411 */
5abb8855 412 if (atomic_add_unless(&cset->refcount, -1, 1))
146aa1bd
LJ
413 return;
414 write_lock(&css_set_lock);
5abb8855 415 if (!atomic_dec_and_test(&cset->refcount)) {
146aa1bd
LJ
416 write_unlock(&css_set_lock);
417 return;
418 }
81a6a5cd 419
2c6ab6d2 420 /* This css_set is dead. unlink it and release cgroup refcounts */
5abb8855 421 hash_del(&cset->hlist);
2c6ab6d2
PM
422 css_set_count--;
423
69d0206c 424 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
2c6ab6d2 425 struct cgroup *cgrp = link->cgrp;
5abb8855 426
69d0206c
TH
427 list_del(&link->cset_link);
428 list_del(&link->cgrp_link);
71b5707e 429
ddd69148 430 /* @cgrp can't go away while we're holding css_set_lock */
6f3d828f 431 if (list_empty(&cgrp->cset_links) && notify_on_release(cgrp)) {
81a6a5cd 432 if (taskexit)
bd89aabc
PM
433 set_bit(CGRP_RELEASABLE, &cgrp->flags);
434 check_for_release(cgrp);
81a6a5cd 435 }
2c6ab6d2
PM
436
437 kfree(link);
81a6a5cd 438 }
2c6ab6d2
PM
439
440 write_unlock(&css_set_lock);
5abb8855 441 kfree_rcu(cset, rcu_head);
b4f48b63
PM
442}
443
817929ec
PM
444/*
445 * refcounted get/put for css_set objects
446 */
5abb8855 447static inline void get_css_set(struct css_set *cset)
817929ec 448{
5abb8855 449 atomic_inc(&cset->refcount);
817929ec
PM
450}
451
5abb8855 452static inline void put_css_set(struct css_set *cset)
817929ec 453{
5abb8855 454 __put_css_set(cset, 0);
817929ec
PM
455}
456
5abb8855 457static inline void put_css_set_taskexit(struct css_set *cset)
81a6a5cd 458{
5abb8855 459 __put_css_set(cset, 1);
81a6a5cd
PM
460}
461
b326f9d0 462/**
7717f7ba 463 * compare_css_sets - helper function for find_existing_css_set().
5abb8855
TH
464 * @cset: candidate css_set being tested
465 * @old_cset: existing css_set for a task
7717f7ba
PM
466 * @new_cgrp: cgroup that's being entered by the task
467 * @template: desired set of css pointers in css_set (pre-calculated)
468 *
6f4b7e63 469 * Returns true if "cset" matches "old_cset" except for the hierarchy
7717f7ba
PM
470 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
471 */
5abb8855
TH
472static bool compare_css_sets(struct css_set *cset,
473 struct css_set *old_cset,
7717f7ba
PM
474 struct cgroup *new_cgrp,
475 struct cgroup_subsys_state *template[])
476{
477 struct list_head *l1, *l2;
478
5abb8855 479 if (memcmp(template, cset->subsys, sizeof(cset->subsys))) {
7717f7ba
PM
480 /* Not all subsystems matched */
481 return false;
482 }
483
484 /*
485 * Compare cgroup pointers in order to distinguish between
486 * different cgroups in heirarchies with no subsystems. We
487 * could get by with just this check alone (and skip the
488 * memcmp above) but on most setups the memcmp check will
489 * avoid the need for this more expensive check on almost all
490 * candidates.
491 */
492
69d0206c
TH
493 l1 = &cset->cgrp_links;
494 l2 = &old_cset->cgrp_links;
7717f7ba 495 while (1) {
69d0206c 496 struct cgrp_cset_link *link1, *link2;
5abb8855 497 struct cgroup *cgrp1, *cgrp2;
7717f7ba
PM
498
499 l1 = l1->next;
500 l2 = l2->next;
501 /* See if we reached the end - both lists are equal length. */
69d0206c
TH
502 if (l1 == &cset->cgrp_links) {
503 BUG_ON(l2 != &old_cset->cgrp_links);
7717f7ba
PM
504 break;
505 } else {
69d0206c 506 BUG_ON(l2 == &old_cset->cgrp_links);
7717f7ba
PM
507 }
508 /* Locate the cgroups associated with these links. */
69d0206c
TH
509 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
510 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
511 cgrp1 = link1->cgrp;
512 cgrp2 = link2->cgrp;
7717f7ba 513 /* Hierarchies should be linked in the same order. */
5abb8855 514 BUG_ON(cgrp1->root != cgrp2->root);
7717f7ba
PM
515
516 /*
517 * If this hierarchy is the hierarchy of the cgroup
518 * that's changing, then we need to check that this
519 * css_set points to the new cgroup; if it's any other
520 * hierarchy, then this css_set should point to the
521 * same cgroup as the old css_set.
522 */
5abb8855
TH
523 if (cgrp1->root == new_cgrp->root) {
524 if (cgrp1 != new_cgrp)
7717f7ba
PM
525 return false;
526 } else {
5abb8855 527 if (cgrp1 != cgrp2)
7717f7ba
PM
528 return false;
529 }
530 }
531 return true;
532}
533
b326f9d0
TH
534/**
535 * find_existing_css_set - init css array and find the matching css_set
536 * @old_cset: the css_set that we're using before the cgroup transition
537 * @cgrp: the cgroup that we're moving into
538 * @template: out param for the new set of csses, should be clear on entry
817929ec 539 */
5abb8855
TH
540static struct css_set *find_existing_css_set(struct css_set *old_cset,
541 struct cgroup *cgrp,
542 struct cgroup_subsys_state *template[])
b4f48b63 543{
bd89aabc 544 struct cgroupfs_root *root = cgrp->root;
30159ec7 545 struct cgroup_subsys *ss;
5abb8855 546 struct css_set *cset;
0ac801fe 547 unsigned long key;
b326f9d0 548 int i;
817929ec 549
aae8aab4
BB
550 /*
551 * Build the set of subsystem state objects that we want to see in the
552 * new css_set. while subsystems can change globally, the entries here
553 * won't change, so no need for locking.
554 */
30159ec7 555 for_each_subsys(ss, i) {
a1a71b45 556 if (root->subsys_mask & (1UL << i)) {
817929ec
PM
557 /* Subsystem is in this hierarchy. So we want
558 * the subsystem state from the new
559 * cgroup */
bd89aabc 560 template[i] = cgrp->subsys[i];
817929ec
PM
561 } else {
562 /* Subsystem is not in this hierarchy, so we
563 * don't want to change the subsystem state */
5abb8855 564 template[i] = old_cset->subsys[i];
817929ec
PM
565 }
566 }
567
0ac801fe 568 key = css_set_hash(template);
5abb8855
TH
569 hash_for_each_possible(css_set_table, cset, hlist, key) {
570 if (!compare_css_sets(cset, old_cset, cgrp, template))
7717f7ba
PM
571 continue;
572
573 /* This css_set matches what we need */
5abb8855 574 return cset;
472b1053 575 }
817929ec
PM
576
577 /* No existing cgroup group matched */
578 return NULL;
579}
580
69d0206c 581static void free_cgrp_cset_links(struct list_head *links_to_free)
36553434 582{
69d0206c 583 struct cgrp_cset_link *link, *tmp_link;
36553434 584
69d0206c
TH
585 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
586 list_del(&link->cset_link);
36553434
LZ
587 kfree(link);
588 }
589}
590
69d0206c
TH
591/**
592 * allocate_cgrp_cset_links - allocate cgrp_cset_links
593 * @count: the number of links to allocate
594 * @tmp_links: list_head the allocated links are put on
595 *
596 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
597 * through ->cset_link. Returns 0 on success or -errno.
817929ec 598 */
69d0206c 599static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
817929ec 600{
69d0206c 601 struct cgrp_cset_link *link;
817929ec 602 int i;
69d0206c
TH
603
604 INIT_LIST_HEAD(tmp_links);
605
817929ec 606 for (i = 0; i < count; i++) {
f4f4be2b 607 link = kzalloc(sizeof(*link), GFP_KERNEL);
817929ec 608 if (!link) {
69d0206c 609 free_cgrp_cset_links(tmp_links);
817929ec
PM
610 return -ENOMEM;
611 }
69d0206c 612 list_add(&link->cset_link, tmp_links);
817929ec
PM
613 }
614 return 0;
615}
616
c12f65d4
LZ
617/**
618 * link_css_set - a helper function to link a css_set to a cgroup
69d0206c 619 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
5abb8855 620 * @cset: the css_set to be linked
c12f65d4
LZ
621 * @cgrp: the destination cgroup
622 */
69d0206c
TH
623static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
624 struct cgroup *cgrp)
c12f65d4 625{
69d0206c 626 struct cgrp_cset_link *link;
c12f65d4 627
69d0206c
TH
628 BUG_ON(list_empty(tmp_links));
629 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
630 link->cset = cset;
7717f7ba 631 link->cgrp = cgrp;
69d0206c 632 list_move(&link->cset_link, &cgrp->cset_links);
7717f7ba
PM
633 /*
634 * Always add links to the tail of the list so that the list
635 * is sorted by order of hierarchy creation
636 */
69d0206c 637 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
c12f65d4
LZ
638}
639
b326f9d0
TH
640/**
641 * find_css_set - return a new css_set with one cgroup updated
642 * @old_cset: the baseline css_set
643 * @cgrp: the cgroup to be updated
644 *
645 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
646 * substituted into the appropriate hierarchy.
817929ec 647 */
5abb8855
TH
648static struct css_set *find_css_set(struct css_set *old_cset,
649 struct cgroup *cgrp)
817929ec 650{
b326f9d0 651 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
5abb8855 652 struct css_set *cset;
69d0206c
TH
653 struct list_head tmp_links;
654 struct cgrp_cset_link *link;
0ac801fe 655 unsigned long key;
472b1053 656
b326f9d0
TH
657 lockdep_assert_held(&cgroup_mutex);
658
817929ec
PM
659 /* First see if we already have a cgroup group that matches
660 * the desired set */
7e9abd89 661 read_lock(&css_set_lock);
5abb8855
TH
662 cset = find_existing_css_set(old_cset, cgrp, template);
663 if (cset)
664 get_css_set(cset);
7e9abd89 665 read_unlock(&css_set_lock);
817929ec 666
5abb8855
TH
667 if (cset)
668 return cset;
817929ec 669
f4f4be2b 670 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
5abb8855 671 if (!cset)
817929ec
PM
672 return NULL;
673
69d0206c 674 /* Allocate all the cgrp_cset_link objects that we'll need */
9871bf95 675 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
5abb8855 676 kfree(cset);
817929ec
PM
677 return NULL;
678 }
679
5abb8855 680 atomic_set(&cset->refcount, 1);
69d0206c 681 INIT_LIST_HEAD(&cset->cgrp_links);
5abb8855
TH
682 INIT_LIST_HEAD(&cset->tasks);
683 INIT_HLIST_NODE(&cset->hlist);
817929ec
PM
684
685 /* Copy the set of subsystem state objects generated in
686 * find_existing_css_set() */
5abb8855 687 memcpy(cset->subsys, template, sizeof(cset->subsys));
817929ec
PM
688
689 write_lock(&css_set_lock);
690 /* Add reference counts and links from the new css_set. */
69d0206c 691 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
7717f7ba 692 struct cgroup *c = link->cgrp;
69d0206c 693
7717f7ba
PM
694 if (c->root == cgrp->root)
695 c = cgrp;
69d0206c 696 link_css_set(&tmp_links, cset, c);
7717f7ba 697 }
817929ec 698
69d0206c 699 BUG_ON(!list_empty(&tmp_links));
817929ec 700
817929ec 701 css_set_count++;
472b1053
LZ
702
703 /* Add this cgroup group to the hash table */
5abb8855
TH
704 key = css_set_hash(cset->subsys);
705 hash_add(css_set_table, &cset->hlist, key);
472b1053 706
817929ec
PM
707 write_unlock(&css_set_lock);
708
5abb8855 709 return cset;
b4f48b63
PM
710}
711
7717f7ba
PM
712/*
713 * Return the cgroup for "task" from the given hierarchy. Must be
714 * called with cgroup_mutex held.
715 */
716static struct cgroup *task_cgroup_from_root(struct task_struct *task,
717 struct cgroupfs_root *root)
718{
5abb8855 719 struct css_set *cset;
7717f7ba
PM
720 struct cgroup *res = NULL;
721
722 BUG_ON(!mutex_is_locked(&cgroup_mutex));
723 read_lock(&css_set_lock);
724 /*
725 * No need to lock the task - since we hold cgroup_mutex the
726 * task can't change groups, so the only thing that can happen
727 * is that it exits and its css is set back to init_css_set.
728 */
a8ad805c 729 cset = task_css_set(task);
5abb8855 730 if (cset == &init_css_set) {
7717f7ba
PM
731 res = &root->top_cgroup;
732 } else {
69d0206c
TH
733 struct cgrp_cset_link *link;
734
735 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 736 struct cgroup *c = link->cgrp;
69d0206c 737
7717f7ba
PM
738 if (c->root == root) {
739 res = c;
740 break;
741 }
742 }
743 }
744 read_unlock(&css_set_lock);
745 BUG_ON(!res);
746 return res;
747}
748
ddbcc7e8
PM
749/*
750 * There is one global cgroup mutex. We also require taking
751 * task_lock() when dereferencing a task's cgroup subsys pointers.
752 * See "The task_lock() exception", at the end of this comment.
753 *
754 * A task must hold cgroup_mutex to modify cgroups.
755 *
756 * Any task can increment and decrement the count field without lock.
757 * So in general, code holding cgroup_mutex can't rely on the count
758 * field not changing. However, if the count goes to zero, then only
956db3ca 759 * cgroup_attach_task() can increment it again. Because a count of zero
ddbcc7e8
PM
760 * means that no tasks are currently attached, therefore there is no
761 * way a task attached to that cgroup can fork (the other way to
762 * increment the count). So code holding cgroup_mutex can safely
763 * assume that if the count is zero, it will stay zero. Similarly, if
764 * a task holds cgroup_mutex on a cgroup with zero count, it
765 * knows that the cgroup won't be removed, as cgroup_rmdir()
766 * needs that mutex.
767 *
ddbcc7e8
PM
768 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
769 * (usually) take cgroup_mutex. These are the two most performance
770 * critical pieces of code here. The exception occurs on cgroup_exit(),
771 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
772 * is taken, and if the cgroup count is zero, a usermode call made
a043e3b2
LZ
773 * to the release agent with the name of the cgroup (path relative to
774 * the root of cgroup file system) as the argument.
ddbcc7e8
PM
775 *
776 * A cgroup can only be deleted if both its 'count' of using tasks
777 * is zero, and its list of 'children' cgroups is empty. Since all
778 * tasks in the system use _some_ cgroup, and since there is always at
779 * least one task in the system (init, pid == 1), therefore, top_cgroup
780 * always has either children cgroups and/or using tasks. So we don't
781 * need a special hack to ensure that top_cgroup cannot be deleted.
782 *
783 * The task_lock() exception
784 *
785 * The need for this exception arises from the action of
d0b2fdd2 786 * cgroup_attach_task(), which overwrites one task's cgroup pointer with
a043e3b2 787 * another. It does so using cgroup_mutex, however there are
ddbcc7e8
PM
788 * several performance critical places that need to reference
789 * task->cgroup without the expense of grabbing a system global
790 * mutex. Therefore except as noted below, when dereferencing or, as
d0b2fdd2 791 * in cgroup_attach_task(), modifying a task's cgroup pointer we use
ddbcc7e8
PM
792 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
793 * the task_struct routinely used for such matters.
794 *
795 * P.S. One more locking exception. RCU is used to guard the
956db3ca 796 * update of a tasks cgroup pointer by cgroup_attach_task()
ddbcc7e8
PM
797 */
798
ddbcc7e8
PM
799/*
800 * A couple of forward declarations required, due to cyclic reference loop:
801 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
802 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
803 * -> cgroup_mkdir.
804 */
805
18bb1db3 806static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode);
00cd8dd3 807static struct dentry *cgroup_lookup(struct inode *, struct dentry *, unsigned int);
ddbcc7e8 808static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
628f7cd4 809static int cgroup_populate_dir(struct cgroup *cgrp, unsigned long subsys_mask);
6e1d5dcc 810static const struct inode_operations cgroup_dir_inode_operations;
828c0950 811static const struct file_operations proc_cgroupstats_operations;
a424316c
PM
812
813static struct backing_dev_info cgroup_backing_dev_info = {
d993831f 814 .name = "cgroup",
e4ad08fe 815 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK,
a424316c 816};
ddbcc7e8 817
38460b48
KH
818static int alloc_css_id(struct cgroup_subsys *ss,
819 struct cgroup *parent, struct cgroup *child);
820
a5e7ed32 821static struct inode *cgroup_new_inode(umode_t mode, struct super_block *sb)
ddbcc7e8
PM
822{
823 struct inode *inode = new_inode(sb);
ddbcc7e8
PM
824
825 if (inode) {
85fe4025 826 inode->i_ino = get_next_ino();
ddbcc7e8 827 inode->i_mode = mode;
76aac0e9
DH
828 inode->i_uid = current_fsuid();
829 inode->i_gid = current_fsgid();
ddbcc7e8
PM
830 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
831 inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
832 }
833 return inode;
834}
835
65dff759
LZ
836static struct cgroup_name *cgroup_alloc_name(struct dentry *dentry)
837{
838 struct cgroup_name *name;
839
840 name = kmalloc(sizeof(*name) + dentry->d_name.len + 1, GFP_KERNEL);
841 if (!name)
842 return NULL;
843 strcpy(name->name, dentry->d_name.name);
844 return name;
845}
846
be445626
LZ
847static void cgroup_free_fn(struct work_struct *work)
848{
ea15f8cc 849 struct cgroup *cgrp = container_of(work, struct cgroup, destroy_work);
be445626
LZ
850 struct cgroup_subsys *ss;
851
852 mutex_lock(&cgroup_mutex);
853 /*
854 * Release the subsystem state objects.
855 */
5549c497 856 for_each_root_subsys(cgrp->root, ss)
be445626
LZ
857 ss->css_free(cgrp);
858
859 cgrp->root->number_of_cgroups--;
860 mutex_unlock(&cgroup_mutex);
861
415cf07a
LZ
862 /*
863 * We get a ref to the parent's dentry, and put the ref when
864 * this cgroup is being freed, so it's guaranteed that the
865 * parent won't be destroyed before its children.
866 */
867 dput(cgrp->parent->dentry);
868
cc20e01c
LZ
869 ida_simple_remove(&cgrp->root->cgroup_ida, cgrp->id);
870
be445626
LZ
871 /*
872 * Drop the active superblock reference that we took when we
cc20e01c
LZ
873 * created the cgroup. This will free cgrp->root, if we are
874 * holding the last reference to @sb.
be445626
LZ
875 */
876 deactivate_super(cgrp->root->sb);
877
878 /*
879 * if we're getting rid of the cgroup, refcount should ensure
880 * that there are no pidlists left.
881 */
882 BUG_ON(!list_empty(&cgrp->pidlists));
883
884 simple_xattrs_free(&cgrp->xattrs);
885
65dff759 886 kfree(rcu_dereference_raw(cgrp->name));
be445626
LZ
887 kfree(cgrp);
888}
889
890static void cgroup_free_rcu(struct rcu_head *head)
891{
892 struct cgroup *cgrp = container_of(head, struct cgroup, rcu_head);
893
ea15f8cc
TH
894 INIT_WORK(&cgrp->destroy_work, cgroup_free_fn);
895 schedule_work(&cgrp->destroy_work);
be445626
LZ
896}
897
ddbcc7e8
PM
898static void cgroup_diput(struct dentry *dentry, struct inode *inode)
899{
900 /* is dentry a directory ? if so, kfree() associated cgroup */
901 if (S_ISDIR(inode->i_mode)) {
bd89aabc 902 struct cgroup *cgrp = dentry->d_fsdata;
be445626 903
54766d4a 904 BUG_ON(!(cgroup_is_dead(cgrp)));
be445626 905 call_rcu(&cgrp->rcu_head, cgroup_free_rcu);
05ef1d7c
TH
906 } else {
907 struct cfent *cfe = __d_cfe(dentry);
908 struct cgroup *cgrp = dentry->d_parent->d_fsdata;
909
910 WARN_ONCE(!list_empty(&cfe->node) &&
911 cgrp != &cgrp->root->top_cgroup,
912 "cfe still linked for %s\n", cfe->type->name);
712317ad 913 simple_xattrs_free(&cfe->xattrs);
05ef1d7c 914 kfree(cfe);
ddbcc7e8
PM
915 }
916 iput(inode);
917}
918
c72a04e3
AV
919static int cgroup_delete(const struct dentry *d)
920{
921 return 1;
922}
923
ddbcc7e8
PM
924static void remove_dir(struct dentry *d)
925{
926 struct dentry *parent = dget(d->d_parent);
927
928 d_delete(d);
929 simple_rmdir(parent->d_inode, d);
930 dput(parent);
931}
932
2739d3cc 933static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
05ef1d7c
TH
934{
935 struct cfent *cfe;
936
937 lockdep_assert_held(&cgrp->dentry->d_inode->i_mutex);
938 lockdep_assert_held(&cgroup_mutex);
939
2739d3cc
LZ
940 /*
941 * If we're doing cleanup due to failure of cgroup_create(),
942 * the corresponding @cfe may not exist.
943 */
05ef1d7c
TH
944 list_for_each_entry(cfe, &cgrp->files, node) {
945 struct dentry *d = cfe->dentry;
946
947 if (cft && cfe->type != cft)
948 continue;
949
950 dget(d);
951 d_delete(d);
ce27e317 952 simple_unlink(cgrp->dentry->d_inode, d);
05ef1d7c
TH
953 list_del_init(&cfe->node);
954 dput(d);
955
2739d3cc 956 break;
ddbcc7e8 957 }
05ef1d7c
TH
958}
959
13af07df 960/**
628f7cd4 961 * cgroup_clear_dir - remove subsys files in a cgroup directory
8f89140a 962 * @cgrp: target cgroup
13af07df
AR
963 * @subsys_mask: mask of the subsystem ids whose files should be removed
964 */
628f7cd4 965static void cgroup_clear_dir(struct cgroup *cgrp, unsigned long subsys_mask)
05ef1d7c 966{
13af07df 967 struct cgroup_subsys *ss;
b420ba7d 968 int i;
05ef1d7c 969
b420ba7d 970 for_each_subsys(ss, i) {
13af07df 971 struct cftype_set *set;
b420ba7d
TH
972
973 if (!test_bit(i, &subsys_mask))
13af07df
AR
974 continue;
975 list_for_each_entry(set, &ss->cftsets, node)
879a3d9d 976 cgroup_addrm_files(cgrp, NULL, set->cfts, false);
13af07df 977 }
ddbcc7e8
PM
978}
979
980/*
981 * NOTE : the dentry must have been dget()'ed
982 */
983static void cgroup_d_remove_dir(struct dentry *dentry)
984{
2fd6b7f5 985 struct dentry *parent;
ddbcc7e8 986
2fd6b7f5
NP
987 parent = dentry->d_parent;
988 spin_lock(&parent->d_lock);
3ec762ad 989 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
ddbcc7e8 990 list_del_init(&dentry->d_u.d_child);
2fd6b7f5
NP
991 spin_unlock(&dentry->d_lock);
992 spin_unlock(&parent->d_lock);
ddbcc7e8
PM
993 remove_dir(dentry);
994}
995
aae8aab4 996/*
cf5d5941
BB
997 * Call with cgroup_mutex held. Drops reference counts on modules, including
998 * any duplicate ones that parse_cgroupfs_options took. If this function
999 * returns an error, no reference counts are touched.
aae8aab4 1000 */
ddbcc7e8 1001static int rebind_subsystems(struct cgroupfs_root *root,
a8a648c4 1002 unsigned long added_mask, unsigned removed_mask)
ddbcc7e8 1003{
bd89aabc 1004 struct cgroup *cgrp = &root->top_cgroup;
30159ec7 1005 struct cgroup_subsys *ss;
1d5be6b2 1006 unsigned long pinned = 0;
3126121f 1007 int i, ret;
ddbcc7e8 1008
aae8aab4 1009 BUG_ON(!mutex_is_locked(&cgroup_mutex));
e25e2cbb 1010 BUG_ON(!mutex_is_locked(&cgroup_root_mutex));
aae8aab4 1011
ddbcc7e8 1012 /* Check that any added subsystems are currently free */
30159ec7 1013 for_each_subsys(ss, i) {
1d5be6b2 1014 if (!(added_mask & (1 << i)))
ddbcc7e8 1015 continue;
30159ec7 1016
1d5be6b2 1017 /* is the subsystem mounted elsewhere? */
9871bf95 1018 if (ss->root != &cgroup_dummy_root) {
1d5be6b2
TH
1019 ret = -EBUSY;
1020 goto out_put;
1021 }
1022
1023 /* pin the module */
1024 if (!try_module_get(ss->module)) {
1025 ret = -ENOENT;
1026 goto out_put;
ddbcc7e8 1027 }
1d5be6b2
TH
1028 pinned |= 1 << i;
1029 }
1030
1031 /* subsys could be missing if unloaded between parsing and here */
1032 if (added_mask != pinned) {
1033 ret = -ENOENT;
1034 goto out_put;
ddbcc7e8
PM
1035 }
1036
3126121f
TH
1037 ret = cgroup_populate_dir(cgrp, added_mask);
1038 if (ret)
1d5be6b2 1039 goto out_put;
3126121f
TH
1040
1041 /*
1042 * Nothing can fail from this point on. Remove files for the
1043 * removed subsystems and rebind each subsystem.
1044 */
1045 cgroup_clear_dir(cgrp, removed_mask);
1046
30159ec7 1047 for_each_subsys(ss, i) {
ddbcc7e8 1048 unsigned long bit = 1UL << i;
30159ec7 1049
a1a71b45 1050 if (bit & added_mask) {
ddbcc7e8 1051 /* We're binding this subsystem to this hierarchy */
bd89aabc 1052 BUG_ON(cgrp->subsys[i]);
9871bf95
TH
1053 BUG_ON(!cgroup_dummy_top->subsys[i]);
1054 BUG_ON(cgroup_dummy_top->subsys[i]->cgroup != cgroup_dummy_top);
a8a648c4 1055
9871bf95 1056 cgrp->subsys[i] = cgroup_dummy_top->subsys[i];
bd89aabc 1057 cgrp->subsys[i]->cgroup = cgrp;
33a68ac1 1058 list_move(&ss->sibling, &root->subsys_list);
b2aa30f7 1059 ss->root = root;
ddbcc7e8 1060 if (ss->bind)
761b3ef5 1061 ss->bind(cgrp);
a8a648c4 1062
cf5d5941 1063 /* refcount was already taken, and we're keeping it */
a8a648c4 1064 root->subsys_mask |= bit;
a1a71b45 1065 } else if (bit & removed_mask) {
ddbcc7e8 1066 /* We're removing this subsystem */
9871bf95 1067 BUG_ON(cgrp->subsys[i] != cgroup_dummy_top->subsys[i]);
bd89aabc 1068 BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
a8a648c4 1069
ddbcc7e8 1070 if (ss->bind)
9871bf95
TH
1071 ss->bind(cgroup_dummy_top);
1072 cgroup_dummy_top->subsys[i]->cgroup = cgroup_dummy_top;
bd89aabc 1073 cgrp->subsys[i] = NULL;
9871bf95
TH
1074 cgroup_subsys[i]->root = &cgroup_dummy_root;
1075 list_move(&ss->sibling, &cgroup_dummy_root.subsys_list);
a8a648c4 1076
cf5d5941
BB
1077 /* subsystem is now free - drop reference on module */
1078 module_put(ss->module);
a8a648c4 1079 root->subsys_mask &= ~bit;
ddbcc7e8
PM
1080 }
1081 }
ddbcc7e8 1082
1672d040
TH
1083 /*
1084 * Mark @root has finished binding subsystems. @root->subsys_mask
1085 * now matches the bound subsystems.
1086 */
1087 root->flags |= CGRP_ROOT_SUBSYS_BOUND;
1088
ddbcc7e8 1089 return 0;
1d5be6b2
TH
1090
1091out_put:
1092 for_each_subsys(ss, i)
1093 if (pinned & (1 << i))
1094 module_put(ss->module);
1095 return ret;
ddbcc7e8
PM
1096}
1097
34c80b1d 1098static int cgroup_show_options(struct seq_file *seq, struct dentry *dentry)
ddbcc7e8 1099{
34c80b1d 1100 struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
ddbcc7e8
PM
1101 struct cgroup_subsys *ss;
1102
e25e2cbb 1103 mutex_lock(&cgroup_root_mutex);
5549c497 1104 for_each_root_subsys(root, ss)
ddbcc7e8 1105 seq_printf(seq, ",%s", ss->name);
873fe09e
TH
1106 if (root->flags & CGRP_ROOT_SANE_BEHAVIOR)
1107 seq_puts(seq, ",sane_behavior");
93438629 1108 if (root->flags & CGRP_ROOT_NOPREFIX)
ddbcc7e8 1109 seq_puts(seq, ",noprefix");
93438629 1110 if (root->flags & CGRP_ROOT_XATTR)
03b1cde6 1111 seq_puts(seq, ",xattr");
81a6a5cd
PM
1112 if (strlen(root->release_agent_path))
1113 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
2260e7fc 1114 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->top_cgroup.flags))
97978e6d 1115 seq_puts(seq, ",clone_children");
c6d57f33
PM
1116 if (strlen(root->name))
1117 seq_printf(seq, ",name=%s", root->name);
e25e2cbb 1118 mutex_unlock(&cgroup_root_mutex);
ddbcc7e8
PM
1119 return 0;
1120}
1121
1122struct cgroup_sb_opts {
a1a71b45 1123 unsigned long subsys_mask;
ddbcc7e8 1124 unsigned long flags;
81a6a5cd 1125 char *release_agent;
2260e7fc 1126 bool cpuset_clone_children;
c6d57f33 1127 char *name;
2c6ab6d2
PM
1128 /* User explicitly requested empty subsystem */
1129 bool none;
c6d57f33
PM
1130
1131 struct cgroupfs_root *new_root;
2c6ab6d2 1132
ddbcc7e8
PM
1133};
1134
aae8aab4 1135/*
9871bf95
TH
1136 * Convert a hierarchy specifier into a bitmask of subsystems and
1137 * flags. Call with cgroup_mutex held to protect the cgroup_subsys[]
1138 * array. This function takes refcounts on subsystems to be used, unless it
1139 * returns error, in which case no refcounts are taken.
aae8aab4 1140 */
cf5d5941 1141static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
ddbcc7e8 1142{
32a8cf23
DL
1143 char *token, *o = data;
1144 bool all_ss = false, one_ss = false;
f9ab5b5b 1145 unsigned long mask = (unsigned long)-1;
30159ec7
TH
1146 struct cgroup_subsys *ss;
1147 int i;
f9ab5b5b 1148
aae8aab4
BB
1149 BUG_ON(!mutex_is_locked(&cgroup_mutex));
1150
f9ab5b5b
LZ
1151#ifdef CONFIG_CPUSETS
1152 mask = ~(1UL << cpuset_subsys_id);
1153#endif
ddbcc7e8 1154
c6d57f33 1155 memset(opts, 0, sizeof(*opts));
ddbcc7e8
PM
1156
1157 while ((token = strsep(&o, ",")) != NULL) {
1158 if (!*token)
1159 return -EINVAL;
32a8cf23 1160 if (!strcmp(token, "none")) {
2c6ab6d2
PM
1161 /* Explicitly have no subsystems */
1162 opts->none = true;
32a8cf23
DL
1163 continue;
1164 }
1165 if (!strcmp(token, "all")) {
1166 /* Mutually exclusive option 'all' + subsystem name */
1167 if (one_ss)
1168 return -EINVAL;
1169 all_ss = true;
1170 continue;
1171 }
873fe09e
TH
1172 if (!strcmp(token, "__DEVEL__sane_behavior")) {
1173 opts->flags |= CGRP_ROOT_SANE_BEHAVIOR;
1174 continue;
1175 }
32a8cf23 1176 if (!strcmp(token, "noprefix")) {
93438629 1177 opts->flags |= CGRP_ROOT_NOPREFIX;
32a8cf23
DL
1178 continue;
1179 }
1180 if (!strcmp(token, "clone_children")) {
2260e7fc 1181 opts->cpuset_clone_children = true;
32a8cf23
DL
1182 continue;
1183 }
03b1cde6 1184 if (!strcmp(token, "xattr")) {
93438629 1185 opts->flags |= CGRP_ROOT_XATTR;
03b1cde6
AR
1186 continue;
1187 }
32a8cf23 1188 if (!strncmp(token, "release_agent=", 14)) {
81a6a5cd
PM
1189 /* Specifying two release agents is forbidden */
1190 if (opts->release_agent)
1191 return -EINVAL;
c6d57f33 1192 opts->release_agent =
e400c285 1193 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
81a6a5cd
PM
1194 if (!opts->release_agent)
1195 return -ENOMEM;
32a8cf23
DL
1196 continue;
1197 }
1198 if (!strncmp(token, "name=", 5)) {
c6d57f33
PM
1199 const char *name = token + 5;
1200 /* Can't specify an empty name */
1201 if (!strlen(name))
1202 return -EINVAL;
1203 /* Must match [\w.-]+ */
1204 for (i = 0; i < strlen(name); i++) {
1205 char c = name[i];
1206 if (isalnum(c))
1207 continue;
1208 if ((c == '.') || (c == '-') || (c == '_'))
1209 continue;
1210 return -EINVAL;
1211 }
1212 /* Specifying two names is forbidden */
1213 if (opts->name)
1214 return -EINVAL;
1215 opts->name = kstrndup(name,
e400c285 1216 MAX_CGROUP_ROOT_NAMELEN - 1,
c6d57f33
PM
1217 GFP_KERNEL);
1218 if (!opts->name)
1219 return -ENOMEM;
32a8cf23
DL
1220
1221 continue;
1222 }
1223
30159ec7 1224 for_each_subsys(ss, i) {
32a8cf23
DL
1225 if (strcmp(token, ss->name))
1226 continue;
1227 if (ss->disabled)
1228 continue;
1229
1230 /* Mutually exclusive option 'all' + subsystem name */
1231 if (all_ss)
1232 return -EINVAL;
a1a71b45 1233 set_bit(i, &opts->subsys_mask);
32a8cf23
DL
1234 one_ss = true;
1235
1236 break;
1237 }
1238 if (i == CGROUP_SUBSYS_COUNT)
1239 return -ENOENT;
1240 }
1241
1242 /*
1243 * If the 'all' option was specified select all the subsystems,
0d19ea86
LZ
1244 * otherwise if 'none', 'name=' and a subsystem name options
1245 * were not specified, let's default to 'all'
32a8cf23 1246 */
30159ec7
TH
1247 if (all_ss || (!one_ss && !opts->none && !opts->name))
1248 for_each_subsys(ss, i)
1249 if (!ss->disabled)
1250 set_bit(i, &opts->subsys_mask);
ddbcc7e8 1251
2c6ab6d2
PM
1252 /* Consistency checks */
1253
873fe09e
TH
1254 if (opts->flags & CGRP_ROOT_SANE_BEHAVIOR) {
1255 pr_warning("cgroup: sane_behavior: this is still under development and its behaviors will change, proceed at your own risk\n");
1256
1257 if (opts->flags & CGRP_ROOT_NOPREFIX) {
1258 pr_err("cgroup: sane_behavior: noprefix is not allowed\n");
1259 return -EINVAL;
1260 }
1261
1262 if (opts->cpuset_clone_children) {
1263 pr_err("cgroup: sane_behavior: clone_children is not allowed\n");
1264 return -EINVAL;
1265 }
1266 }
1267
f9ab5b5b
LZ
1268 /*
1269 * Option noprefix was introduced just for backward compatibility
1270 * with the old cpuset, so we allow noprefix only if mounting just
1271 * the cpuset subsystem.
1272 */
93438629 1273 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
f9ab5b5b
LZ
1274 return -EINVAL;
1275
2c6ab6d2
PM
1276
1277 /* Can't specify "none" and some subsystems */
a1a71b45 1278 if (opts->subsys_mask && opts->none)
2c6ab6d2
PM
1279 return -EINVAL;
1280
1281 /*
1282 * We either have to specify by name or by subsystems. (So all
1283 * empty hierarchies must have a name).
1284 */
a1a71b45 1285 if (!opts->subsys_mask && !opts->name)
ddbcc7e8
PM
1286 return -EINVAL;
1287
1288 return 0;
1289}
1290
1291static int cgroup_remount(struct super_block *sb, int *flags, char *data)
1292{
1293 int ret = 0;
1294 struct cgroupfs_root *root = sb->s_fs_info;
bd89aabc 1295 struct cgroup *cgrp = &root->top_cgroup;
ddbcc7e8 1296 struct cgroup_sb_opts opts;
a1a71b45 1297 unsigned long added_mask, removed_mask;
ddbcc7e8 1298
873fe09e
TH
1299 if (root->flags & CGRP_ROOT_SANE_BEHAVIOR) {
1300 pr_err("cgroup: sane_behavior: remount is not allowed\n");
1301 return -EINVAL;
1302 }
1303
bd89aabc 1304 mutex_lock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8 1305 mutex_lock(&cgroup_mutex);
e25e2cbb 1306 mutex_lock(&cgroup_root_mutex);
ddbcc7e8
PM
1307
1308 /* See what subsystems are wanted */
1309 ret = parse_cgroupfs_options(data, &opts);
1310 if (ret)
1311 goto out_unlock;
1312
a8a648c4 1313 if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
8b5a5a9d
TH
1314 pr_warning("cgroup: option changes via remount are deprecated (pid=%d comm=%s)\n",
1315 task_tgid_nr(current), current->comm);
1316
a1a71b45
AR
1317 added_mask = opts.subsys_mask & ~root->subsys_mask;
1318 removed_mask = root->subsys_mask & ~opts.subsys_mask;
13af07df 1319
cf5d5941 1320 /* Don't allow flags or name to change at remount */
0ce6cba3 1321 if (((opts.flags ^ root->flags) & CGRP_ROOT_OPTION_MASK) ||
cf5d5941 1322 (opts.name && strcmp(opts.name, root->name))) {
0ce6cba3
TH
1323 pr_err("cgroup: option or name mismatch, new: 0x%lx \"%s\", old: 0x%lx \"%s\"\n",
1324 opts.flags & CGRP_ROOT_OPTION_MASK, opts.name ?: "",
1325 root->flags & CGRP_ROOT_OPTION_MASK, root->name);
c6d57f33
PM
1326 ret = -EINVAL;
1327 goto out_unlock;
1328 }
1329
f172e67c
TH
1330 /* remounting is not allowed for populated hierarchies */
1331 if (root->number_of_cgroups > 1) {
1332 ret = -EBUSY;
1333 goto out_unlock;
1334 }
1335
a8a648c4 1336 ret = rebind_subsystems(root, added_mask, removed_mask);
3126121f 1337 if (ret)
0670e08b 1338 goto out_unlock;
ddbcc7e8 1339
81a6a5cd
PM
1340 if (opts.release_agent)
1341 strcpy(root->release_agent_path, opts.release_agent);
ddbcc7e8 1342 out_unlock:
66bdc9cf 1343 kfree(opts.release_agent);
c6d57f33 1344 kfree(opts.name);
e25e2cbb 1345 mutex_unlock(&cgroup_root_mutex);
ddbcc7e8 1346 mutex_unlock(&cgroup_mutex);
bd89aabc 1347 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8
PM
1348 return ret;
1349}
1350
b87221de 1351static const struct super_operations cgroup_ops = {
ddbcc7e8
PM
1352 .statfs = simple_statfs,
1353 .drop_inode = generic_delete_inode,
1354 .show_options = cgroup_show_options,
1355 .remount_fs = cgroup_remount,
1356};
1357
cc31edce
PM
1358static void init_cgroup_housekeeping(struct cgroup *cgrp)
1359{
1360 INIT_LIST_HEAD(&cgrp->sibling);
1361 INIT_LIST_HEAD(&cgrp->children);
05ef1d7c 1362 INIT_LIST_HEAD(&cgrp->files);
69d0206c 1363 INIT_LIST_HEAD(&cgrp->cset_links);
cc31edce 1364 INIT_LIST_HEAD(&cgrp->release_list);
72a8cb30
BB
1365 INIT_LIST_HEAD(&cgrp->pidlists);
1366 mutex_init(&cgrp->pidlist_mutex);
0dea1168
KS
1367 INIT_LIST_HEAD(&cgrp->event_list);
1368 spin_lock_init(&cgrp->event_list_lock);
03b1cde6 1369 simple_xattrs_init(&cgrp->xattrs);
cc31edce 1370}
c6d57f33 1371
ddbcc7e8
PM
1372static void init_cgroup_root(struct cgroupfs_root *root)
1373{
bd89aabc 1374 struct cgroup *cgrp = &root->top_cgroup;
b0ca5a84 1375
ddbcc7e8
PM
1376 INIT_LIST_HEAD(&root->subsys_list);
1377 INIT_LIST_HEAD(&root->root_list);
1378 root->number_of_cgroups = 1;
bd89aabc 1379 cgrp->root = root;
a4ea1cc9 1380 RCU_INIT_POINTER(cgrp->name, &root_cgroup_name);
cc31edce 1381 init_cgroup_housekeeping(cgrp);
ddbcc7e8
PM
1382}
1383
fc76df70 1384static int cgroup_init_root_id(struct cgroupfs_root *root, int start, int end)
2c6ab6d2 1385{
1a574231 1386 int id;
2c6ab6d2 1387
54e7b4eb
TH
1388 lockdep_assert_held(&cgroup_mutex);
1389 lockdep_assert_held(&cgroup_root_mutex);
1390
fc76df70
TH
1391 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, start, end,
1392 GFP_KERNEL);
1a574231
TH
1393 if (id < 0)
1394 return id;
1395
1396 root->hierarchy_id = id;
fa3ca07e
TH
1397 return 0;
1398}
1399
1400static void cgroup_exit_root_id(struct cgroupfs_root *root)
1401{
54e7b4eb
TH
1402 lockdep_assert_held(&cgroup_mutex);
1403 lockdep_assert_held(&cgroup_root_mutex);
1404
fa3ca07e 1405 if (root->hierarchy_id) {
1a574231 1406 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
fa3ca07e
TH
1407 root->hierarchy_id = 0;
1408 }
2c6ab6d2
PM
1409}
1410
ddbcc7e8
PM
1411static int cgroup_test_super(struct super_block *sb, void *data)
1412{
c6d57f33 1413 struct cgroup_sb_opts *opts = data;
ddbcc7e8
PM
1414 struct cgroupfs_root *root = sb->s_fs_info;
1415
c6d57f33
PM
1416 /* If we asked for a name then it must match */
1417 if (opts->name && strcmp(opts->name, root->name))
1418 return 0;
ddbcc7e8 1419
2c6ab6d2
PM
1420 /*
1421 * If we asked for subsystems (or explicitly for no
1422 * subsystems) then they must match
1423 */
a1a71b45
AR
1424 if ((opts->subsys_mask || opts->none)
1425 && (opts->subsys_mask != root->subsys_mask))
ddbcc7e8
PM
1426 return 0;
1427
1428 return 1;
1429}
1430
c6d57f33
PM
1431static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts)
1432{
1433 struct cgroupfs_root *root;
1434
a1a71b45 1435 if (!opts->subsys_mask && !opts->none)
c6d57f33
PM
1436 return NULL;
1437
1438 root = kzalloc(sizeof(*root), GFP_KERNEL);
1439 if (!root)
1440 return ERR_PTR(-ENOMEM);
1441
1442 init_cgroup_root(root);
2c6ab6d2 1443
1672d040
TH
1444 /*
1445 * We need to set @root->subsys_mask now so that @root can be
1446 * matched by cgroup_test_super() before it finishes
1447 * initialization; otherwise, competing mounts with the same
1448 * options may try to bind the same subsystems instead of waiting
1449 * for the first one leading to unexpected mount errors.
1450 * SUBSYS_BOUND will be set once actual binding is complete.
1451 */
a1a71b45 1452 root->subsys_mask = opts->subsys_mask;
c6d57f33 1453 root->flags = opts->flags;
0a950f65 1454 ida_init(&root->cgroup_ida);
c6d57f33
PM
1455 if (opts->release_agent)
1456 strcpy(root->release_agent_path, opts->release_agent);
1457 if (opts->name)
1458 strcpy(root->name, opts->name);
2260e7fc
TH
1459 if (opts->cpuset_clone_children)
1460 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->top_cgroup.flags);
c6d57f33
PM
1461 return root;
1462}
1463
fa3ca07e 1464static void cgroup_free_root(struct cgroupfs_root *root)
2c6ab6d2 1465{
fa3ca07e
TH
1466 if (root) {
1467 /* hierarhcy ID shoulid already have been released */
1468 WARN_ON_ONCE(root->hierarchy_id);
2c6ab6d2 1469
fa3ca07e
TH
1470 ida_destroy(&root->cgroup_ida);
1471 kfree(root);
1472 }
2c6ab6d2
PM
1473}
1474
ddbcc7e8
PM
1475static int cgroup_set_super(struct super_block *sb, void *data)
1476{
1477 int ret;
c6d57f33
PM
1478 struct cgroup_sb_opts *opts = data;
1479
1480 /* If we don't have a new root, we can't set up a new sb */
1481 if (!opts->new_root)
1482 return -EINVAL;
1483
a1a71b45 1484 BUG_ON(!opts->subsys_mask && !opts->none);
ddbcc7e8
PM
1485
1486 ret = set_anon_super(sb, NULL);
1487 if (ret)
1488 return ret;
1489
c6d57f33
PM
1490 sb->s_fs_info = opts->new_root;
1491 opts->new_root->sb = sb;
ddbcc7e8
PM
1492
1493 sb->s_blocksize = PAGE_CACHE_SIZE;
1494 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
1495 sb->s_magic = CGROUP_SUPER_MAGIC;
1496 sb->s_op = &cgroup_ops;
1497
1498 return 0;
1499}
1500
1501static int cgroup_get_rootdir(struct super_block *sb)
1502{
0df6a63f
AV
1503 static const struct dentry_operations cgroup_dops = {
1504 .d_iput = cgroup_diput,
c72a04e3 1505 .d_delete = cgroup_delete,
0df6a63f
AV
1506 };
1507
ddbcc7e8
PM
1508 struct inode *inode =
1509 cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
ddbcc7e8
PM
1510
1511 if (!inode)
1512 return -ENOMEM;
1513
ddbcc7e8
PM
1514 inode->i_fop = &simple_dir_operations;
1515 inode->i_op = &cgroup_dir_inode_operations;
1516 /* directories start off with i_nlink == 2 (for "." entry) */
1517 inc_nlink(inode);
48fde701
AV
1518 sb->s_root = d_make_root(inode);
1519 if (!sb->s_root)
ddbcc7e8 1520 return -ENOMEM;
0df6a63f
AV
1521 /* for everything else we want ->d_op set */
1522 sb->s_d_op = &cgroup_dops;
ddbcc7e8
PM
1523 return 0;
1524}
1525
f7e83571 1526static struct dentry *cgroup_mount(struct file_system_type *fs_type,
ddbcc7e8 1527 int flags, const char *unused_dev_name,
f7e83571 1528 void *data)
ddbcc7e8
PM
1529{
1530 struct cgroup_sb_opts opts;
c6d57f33 1531 struct cgroupfs_root *root;
ddbcc7e8
PM
1532 int ret = 0;
1533 struct super_block *sb;
c6d57f33 1534 struct cgroupfs_root *new_root;
3126121f 1535 struct list_head tmp_links;
e25e2cbb 1536 struct inode *inode;
3126121f 1537 const struct cred *cred;
ddbcc7e8
PM
1538
1539 /* First find the desired set of subsystems */
aae8aab4 1540 mutex_lock(&cgroup_mutex);
ddbcc7e8 1541 ret = parse_cgroupfs_options(data, &opts);
aae8aab4 1542 mutex_unlock(&cgroup_mutex);
c6d57f33
PM
1543 if (ret)
1544 goto out_err;
ddbcc7e8 1545
c6d57f33
PM
1546 /*
1547 * Allocate a new cgroup root. We may not need it if we're
1548 * reusing an existing hierarchy.
1549 */
1550 new_root = cgroup_root_from_opts(&opts);
1551 if (IS_ERR(new_root)) {
1552 ret = PTR_ERR(new_root);
1d5be6b2 1553 goto out_err;
81a6a5cd 1554 }
c6d57f33 1555 opts.new_root = new_root;
ddbcc7e8 1556
c6d57f33 1557 /* Locate an existing or new sb for this hierarchy */
9249e17f 1558 sb = sget(fs_type, cgroup_test_super, cgroup_set_super, 0, &opts);
ddbcc7e8 1559 if (IS_ERR(sb)) {
c6d57f33 1560 ret = PTR_ERR(sb);
fa3ca07e 1561 cgroup_free_root(opts.new_root);
1d5be6b2 1562 goto out_err;
ddbcc7e8
PM
1563 }
1564
c6d57f33
PM
1565 root = sb->s_fs_info;
1566 BUG_ON(!root);
1567 if (root == opts.new_root) {
1568 /* We used the new root structure, so this is a new hierarchy */
c12f65d4 1569 struct cgroup *root_cgrp = &root->top_cgroup;
c6d57f33 1570 struct cgroupfs_root *existing_root;
28fd5dfc 1571 int i;
5abb8855 1572 struct css_set *cset;
ddbcc7e8
PM
1573
1574 BUG_ON(sb->s_root != NULL);
1575
1576 ret = cgroup_get_rootdir(sb);
1577 if (ret)
1578 goto drop_new_super;
817929ec 1579 inode = sb->s_root->d_inode;
ddbcc7e8 1580
817929ec 1581 mutex_lock(&inode->i_mutex);
ddbcc7e8 1582 mutex_lock(&cgroup_mutex);
e25e2cbb 1583 mutex_lock(&cgroup_root_mutex);
ddbcc7e8 1584
e25e2cbb
TH
1585 /* Check for name clashes with existing mounts */
1586 ret = -EBUSY;
1587 if (strlen(root->name))
1588 for_each_active_root(existing_root)
1589 if (!strcmp(existing_root->name, root->name))
1590 goto unlock_drop;
c6d57f33 1591
817929ec
PM
1592 /*
1593 * We're accessing css_set_count without locking
1594 * css_set_lock here, but that's OK - it can only be
1595 * increased by someone holding cgroup_lock, and
1596 * that's us. The worst that can happen is that we
1597 * have some link structures left over
1598 */
69d0206c 1599 ret = allocate_cgrp_cset_links(css_set_count, &tmp_links);
e25e2cbb
TH
1600 if (ret)
1601 goto unlock_drop;
817929ec 1602
fc76df70
TH
1603 /* ID 0 is reserved for dummy root, 1 for unified hierarchy */
1604 ret = cgroup_init_root_id(root, 2, 0);
fa3ca07e
TH
1605 if (ret)
1606 goto unlock_drop;
1607
3126121f
TH
1608 sb->s_root->d_fsdata = root_cgrp;
1609 root_cgrp->dentry = sb->s_root;
1610
1611 /*
1612 * We're inside get_sb() and will call lookup_one_len() to
1613 * create the root files, which doesn't work if SELinux is
1614 * in use. The following cred dancing somehow works around
1615 * it. See 2ce9738ba ("cgroupfs: use init_cred when
1616 * populating new cgroupfs mount") for more details.
1617 */
1618 cred = override_creds(&init_cred);
1619
1620 ret = cgroup_addrm_files(root_cgrp, NULL, cgroup_base_files, true);
1621 if (ret)
1622 goto rm_base_files;
1623
a8a648c4 1624 ret = rebind_subsystems(root, root->subsys_mask, 0);
3126121f
TH
1625 if (ret)
1626 goto rm_base_files;
1627
1628 revert_creds(cred);
1629
cf5d5941
BB
1630 /*
1631 * There must be no failure case after here, since rebinding
1632 * takes care of subsystems' refcounts, which are explicitly
1633 * dropped in the failure exit path.
1634 */
ddbcc7e8 1635
9871bf95
TH
1636 list_add(&root->root_list, &cgroup_roots);
1637 cgroup_root_count++;
ddbcc7e8 1638
817929ec
PM
1639 /* Link the top cgroup in this hierarchy into all
1640 * the css_set objects */
1641 write_lock(&css_set_lock);
5abb8855 1642 hash_for_each(css_set_table, i, cset, hlist)
69d0206c 1643 link_css_set(&tmp_links, cset, root_cgrp);
817929ec
PM
1644 write_unlock(&css_set_lock);
1645
69d0206c 1646 free_cgrp_cset_links(&tmp_links);
817929ec 1647
c12f65d4 1648 BUG_ON(!list_empty(&root_cgrp->children));
ddbcc7e8
PM
1649 BUG_ON(root->number_of_cgroups != 1);
1650
e25e2cbb 1651 mutex_unlock(&cgroup_root_mutex);
ddbcc7e8 1652 mutex_unlock(&cgroup_mutex);
34f77a90 1653 mutex_unlock(&inode->i_mutex);
c6d57f33
PM
1654 } else {
1655 /*
1656 * We re-used an existing hierarchy - the new root (if
1657 * any) is not needed
1658 */
fa3ca07e 1659 cgroup_free_root(opts.new_root);
873fe09e 1660
c7ba8287 1661 if ((root->flags ^ opts.flags) & CGRP_ROOT_OPTION_MASK) {
2a0ff3fb
JL
1662 if ((root->flags | opts.flags) & CGRP_ROOT_SANE_BEHAVIOR) {
1663 pr_err("cgroup: sane_behavior: new mount options should match the existing superblock\n");
1664 ret = -EINVAL;
1665 goto drop_new_super;
1666 } else {
1667 pr_warning("cgroup: new mount options do not match the existing superblock, will be ignored\n");
1668 }
873fe09e 1669 }
ddbcc7e8
PM
1670 }
1671
c6d57f33
PM
1672 kfree(opts.release_agent);
1673 kfree(opts.name);
f7e83571 1674 return dget(sb->s_root);
ddbcc7e8 1675
3126121f
TH
1676 rm_base_files:
1677 free_cgrp_cset_links(&tmp_links);
1678 cgroup_addrm_files(&root->top_cgroup, NULL, cgroup_base_files, false);
1679 revert_creds(cred);
e25e2cbb 1680 unlock_drop:
fa3ca07e 1681 cgroup_exit_root_id(root);
e25e2cbb
TH
1682 mutex_unlock(&cgroup_root_mutex);
1683 mutex_unlock(&cgroup_mutex);
1684 mutex_unlock(&inode->i_mutex);
ddbcc7e8 1685 drop_new_super:
6f5bbff9 1686 deactivate_locked_super(sb);
c6d57f33
PM
1687 out_err:
1688 kfree(opts.release_agent);
1689 kfree(opts.name);
f7e83571 1690 return ERR_PTR(ret);
ddbcc7e8
PM
1691}
1692
1693static void cgroup_kill_sb(struct super_block *sb) {
1694 struct cgroupfs_root *root = sb->s_fs_info;
bd89aabc 1695 struct cgroup *cgrp = &root->top_cgroup;
69d0206c 1696 struct cgrp_cset_link *link, *tmp_link;
ddbcc7e8
PM
1697 int ret;
1698
1699 BUG_ON(!root);
1700
1701 BUG_ON(root->number_of_cgroups != 1);
bd89aabc 1702 BUG_ON(!list_empty(&cgrp->children));
ddbcc7e8 1703
3126121f 1704 mutex_lock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8 1705 mutex_lock(&cgroup_mutex);
e25e2cbb 1706 mutex_lock(&cgroup_root_mutex);
ddbcc7e8
PM
1707
1708 /* Rebind all subsystems back to the default hierarchy */
1672d040
TH
1709 if (root->flags & CGRP_ROOT_SUBSYS_BOUND) {
1710 ret = rebind_subsystems(root, 0, root->subsys_mask);
1711 /* Shouldn't be able to fail ... */
1712 BUG_ON(ret);
1713 }
ddbcc7e8 1714
817929ec 1715 /*
69d0206c 1716 * Release all the links from cset_links to this hierarchy's
817929ec
PM
1717 * root cgroup
1718 */
1719 write_lock(&css_set_lock);
71cbb949 1720
69d0206c
TH
1721 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1722 list_del(&link->cset_link);
1723 list_del(&link->cgrp_link);
817929ec
PM
1724 kfree(link);
1725 }
1726 write_unlock(&css_set_lock);
1727
839ec545
PM
1728 if (!list_empty(&root->root_list)) {
1729 list_del(&root->root_list);
9871bf95 1730 cgroup_root_count--;
839ec545 1731 }
e5f6a860 1732
fa3ca07e
TH
1733 cgroup_exit_root_id(root);
1734
e25e2cbb 1735 mutex_unlock(&cgroup_root_mutex);
ddbcc7e8 1736 mutex_unlock(&cgroup_mutex);
3126121f 1737 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8 1738
03b1cde6
AR
1739 simple_xattrs_free(&cgrp->xattrs);
1740
ddbcc7e8 1741 kill_litter_super(sb);
fa3ca07e 1742 cgroup_free_root(root);
ddbcc7e8
PM
1743}
1744
1745static struct file_system_type cgroup_fs_type = {
1746 .name = "cgroup",
f7e83571 1747 .mount = cgroup_mount,
ddbcc7e8
PM
1748 .kill_sb = cgroup_kill_sb,
1749};
1750
676db4af
GKH
1751static struct kobject *cgroup_kobj;
1752
a043e3b2
LZ
1753/**
1754 * cgroup_path - generate the path of a cgroup
1755 * @cgrp: the cgroup in question
1756 * @buf: the buffer to write the path into
1757 * @buflen: the length of the buffer
1758 *
65dff759
LZ
1759 * Writes path of cgroup into buf. Returns 0 on success, -errno on error.
1760 *
1761 * We can't generate cgroup path using dentry->d_name, as accessing
1762 * dentry->name must be protected by irq-unsafe dentry->d_lock or parent
1763 * inode's i_mutex, while on the other hand cgroup_path() can be called
1764 * with some irq-safe spinlocks held.
ddbcc7e8 1765 */
bd89aabc 1766int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
ddbcc7e8 1767{
65dff759 1768 int ret = -ENAMETOOLONG;
ddbcc7e8 1769 char *start;
febfcef6 1770
da1f296f
TH
1771 if (!cgrp->parent) {
1772 if (strlcpy(buf, "/", buflen) >= buflen)
1773 return -ENAMETOOLONG;
ddbcc7e8
PM
1774 return 0;
1775 }
1776
316eb661 1777 start = buf + buflen - 1;
316eb661 1778 *start = '\0';
9a9686b6 1779
65dff759 1780 rcu_read_lock();
da1f296f 1781 do {
65dff759
LZ
1782 const char *name = cgroup_name(cgrp);
1783 int len;
1784
1785 len = strlen(name);
ddbcc7e8 1786 if ((start -= len) < buf)
65dff759
LZ
1787 goto out;
1788 memcpy(start, name, len);
9a9686b6 1789
ddbcc7e8 1790 if (--start < buf)
65dff759 1791 goto out;
ddbcc7e8 1792 *start = '/';
65dff759
LZ
1793
1794 cgrp = cgrp->parent;
da1f296f 1795 } while (cgrp->parent);
65dff759 1796 ret = 0;
ddbcc7e8 1797 memmove(buf, start, buf + buflen - start);
65dff759
LZ
1798out:
1799 rcu_read_unlock();
1800 return ret;
ddbcc7e8 1801}
67523c48 1802EXPORT_SYMBOL_GPL(cgroup_path);
ddbcc7e8 1803
857a2beb
TH
1804/**
1805 * task_cgroup_path_from_hierarchy - cgroup path of a task on a hierarchy
1806 * @task: target task
1807 * @hierarchy_id: the hierarchy to look up @task's cgroup from
1808 * @buf: the buffer to write the path into
1809 * @buflen: the length of the buffer
1810 *
1811 * Determine @task's cgroup on the hierarchy specified by @hierarchy_id and
1812 * copy its path into @buf. This function grabs cgroup_mutex and shouldn't
1813 * be used inside locks used by cgroup controller callbacks.
1814 */
1815int task_cgroup_path_from_hierarchy(struct task_struct *task, int hierarchy_id,
1816 char *buf, size_t buflen)
1817{
1818 struct cgroupfs_root *root;
1819 struct cgroup *cgrp = NULL;
1820 int ret = -ENOENT;
1821
1822 mutex_lock(&cgroup_mutex);
1823
1824 root = idr_find(&cgroup_hierarchy_idr, hierarchy_id);
1825 if (root) {
1826 cgrp = task_cgroup_from_root(task, root);
1827 ret = cgroup_path(cgrp, buf, buflen);
1828 }
1829
1830 mutex_unlock(&cgroup_mutex);
1831
1832 return ret;
1833}
1834EXPORT_SYMBOL_GPL(task_cgroup_path_from_hierarchy);
1835
2f7ee569
TH
1836/*
1837 * Control Group taskset
1838 */
134d3373
TH
1839struct task_and_cgroup {
1840 struct task_struct *task;
1841 struct cgroup *cgrp;
6f4b7e63 1842 struct css_set *cset;
134d3373
TH
1843};
1844
2f7ee569
TH
1845struct cgroup_taskset {
1846 struct task_and_cgroup single;
1847 struct flex_array *tc_array;
1848 int tc_array_len;
1849 int idx;
1850 struct cgroup *cur_cgrp;
1851};
1852
1853/**
1854 * cgroup_taskset_first - reset taskset and return the first task
1855 * @tset: taskset of interest
1856 *
1857 * @tset iteration is initialized and the first task is returned.
1858 */
1859struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
1860{
1861 if (tset->tc_array) {
1862 tset->idx = 0;
1863 return cgroup_taskset_next(tset);
1864 } else {
1865 tset->cur_cgrp = tset->single.cgrp;
1866 return tset->single.task;
1867 }
1868}
1869EXPORT_SYMBOL_GPL(cgroup_taskset_first);
1870
1871/**
1872 * cgroup_taskset_next - iterate to the next task in taskset
1873 * @tset: taskset of interest
1874 *
1875 * Return the next task in @tset. Iteration must have been initialized
1876 * with cgroup_taskset_first().
1877 */
1878struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
1879{
1880 struct task_and_cgroup *tc;
1881
1882 if (!tset->tc_array || tset->idx >= tset->tc_array_len)
1883 return NULL;
1884
1885 tc = flex_array_get(tset->tc_array, tset->idx++);
1886 tset->cur_cgrp = tc->cgrp;
1887 return tc->task;
1888}
1889EXPORT_SYMBOL_GPL(cgroup_taskset_next);
1890
1891/**
1892 * cgroup_taskset_cur_cgroup - return the matching cgroup for the current task
1893 * @tset: taskset of interest
1894 *
1895 * Return the cgroup for the current (last returned) task of @tset. This
1896 * function must be preceded by either cgroup_taskset_first() or
1897 * cgroup_taskset_next().
1898 */
1899struct cgroup *cgroup_taskset_cur_cgroup(struct cgroup_taskset *tset)
1900{
1901 return tset->cur_cgrp;
1902}
1903EXPORT_SYMBOL_GPL(cgroup_taskset_cur_cgroup);
1904
1905/**
1906 * cgroup_taskset_size - return the number of tasks in taskset
1907 * @tset: taskset of interest
1908 */
1909int cgroup_taskset_size(struct cgroup_taskset *tset)
1910{
1911 return tset->tc_array ? tset->tc_array_len : 1;
1912}
1913EXPORT_SYMBOL_GPL(cgroup_taskset_size);
1914
1915
74a1166d
BB
1916/*
1917 * cgroup_task_migrate - move a task from one cgroup to another.
1918 *
d0b2fdd2 1919 * Must be called with cgroup_mutex and threadgroup locked.
74a1166d 1920 */
5abb8855
TH
1921static void cgroup_task_migrate(struct cgroup *old_cgrp,
1922 struct task_struct *tsk,
1923 struct css_set *new_cset)
74a1166d 1924{
5abb8855 1925 struct css_set *old_cset;
74a1166d
BB
1926
1927 /*
026085ef
MSB
1928 * We are synchronized through threadgroup_lock() against PF_EXITING
1929 * setting such that we can't race against cgroup_exit() changing the
1930 * css_set to init_css_set and dropping the old one.
74a1166d 1931 */
c84cdf75 1932 WARN_ON_ONCE(tsk->flags & PF_EXITING);
a8ad805c 1933 old_cset = task_css_set(tsk);
74a1166d 1934
74a1166d 1935 task_lock(tsk);
5abb8855 1936 rcu_assign_pointer(tsk->cgroups, new_cset);
74a1166d
BB
1937 task_unlock(tsk);
1938
1939 /* Update the css_set linked lists if we're using them */
1940 write_lock(&css_set_lock);
1941 if (!list_empty(&tsk->cg_list))
5abb8855 1942 list_move(&tsk->cg_list, &new_cset->tasks);
74a1166d
BB
1943 write_unlock(&css_set_lock);
1944
1945 /*
5abb8855
TH
1946 * We just gained a reference on old_cset by taking it from the
1947 * task. As trading it for new_cset is protected by cgroup_mutex,
1948 * we're safe to drop it here; it will be freed under RCU.
74a1166d 1949 */
5abb8855
TH
1950 set_bit(CGRP_RELEASABLE, &old_cgrp->flags);
1951 put_css_set(old_cset);
74a1166d
BB
1952}
1953
a043e3b2 1954/**
081aa458 1955 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
74a1166d 1956 * @cgrp: the cgroup to attach to
081aa458
LZ
1957 * @tsk: the task or the leader of the threadgroup to be attached
1958 * @threadgroup: attach the whole threadgroup?
74a1166d 1959 *
257058ae 1960 * Call holding cgroup_mutex and the group_rwsem of the leader. Will take
081aa458 1961 * task_lock of @tsk or each thread in the threadgroup individually in turn.
74a1166d 1962 */
47cfcd09
TH
1963static int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk,
1964 bool threadgroup)
74a1166d
BB
1965{
1966 int retval, i, group_size;
1967 struct cgroup_subsys *ss, *failed_ss = NULL;
74a1166d
BB
1968 struct cgroupfs_root *root = cgrp->root;
1969 /* threadgroup list cursor and array */
081aa458 1970 struct task_struct *leader = tsk;
134d3373 1971 struct task_and_cgroup *tc;
d846687d 1972 struct flex_array *group;
2f7ee569 1973 struct cgroup_taskset tset = { };
74a1166d
BB
1974
1975 /*
1976 * step 0: in order to do expensive, possibly blocking operations for
1977 * every thread, we cannot iterate the thread group list, since it needs
1978 * rcu or tasklist locked. instead, build an array of all threads in the
257058ae
TH
1979 * group - group_rwsem prevents new threads from appearing, and if
1980 * threads exit, this will just be an over-estimate.
74a1166d 1981 */
081aa458
LZ
1982 if (threadgroup)
1983 group_size = get_nr_threads(tsk);
1984 else
1985 group_size = 1;
d846687d 1986 /* flex_array supports very large thread-groups better than kmalloc. */
134d3373 1987 group = flex_array_alloc(sizeof(*tc), group_size, GFP_KERNEL);
74a1166d
BB
1988 if (!group)
1989 return -ENOMEM;
d846687d 1990 /* pre-allocate to guarantee space while iterating in rcu read-side. */
3ac1707a 1991 retval = flex_array_prealloc(group, 0, group_size, GFP_KERNEL);
d846687d
BB
1992 if (retval)
1993 goto out_free_group_list;
74a1166d 1994
74a1166d 1995 i = 0;
fb5d2b4c
MSB
1996 /*
1997 * Prevent freeing of tasks while we take a snapshot. Tasks that are
1998 * already PF_EXITING could be freed from underneath us unless we
1999 * take an rcu_read_lock.
2000 */
2001 rcu_read_lock();
74a1166d 2002 do {
134d3373
TH
2003 struct task_and_cgroup ent;
2004
cd3d0952
TH
2005 /* @tsk either already exited or can't exit until the end */
2006 if (tsk->flags & PF_EXITING)
2007 continue;
2008
74a1166d
BB
2009 /* as per above, nr_threads may decrease, but not increase. */
2010 BUG_ON(i >= group_size);
134d3373
TH
2011 ent.task = tsk;
2012 ent.cgrp = task_cgroup_from_root(tsk, root);
892a2b90
MSB
2013 /* nothing to do if this task is already in the cgroup */
2014 if (ent.cgrp == cgrp)
2015 continue;
61d1d219
MSB
2016 /*
2017 * saying GFP_ATOMIC has no effect here because we did prealloc
2018 * earlier, but it's good form to communicate our expectations.
2019 */
134d3373 2020 retval = flex_array_put(group, i, &ent, GFP_ATOMIC);
d846687d 2021 BUG_ON(retval != 0);
74a1166d 2022 i++;
081aa458
LZ
2023
2024 if (!threadgroup)
2025 break;
74a1166d 2026 } while_each_thread(leader, tsk);
fb5d2b4c 2027 rcu_read_unlock();
74a1166d
BB
2028 /* remember the number of threads in the array for later. */
2029 group_size = i;
2f7ee569
TH
2030 tset.tc_array = group;
2031 tset.tc_array_len = group_size;
74a1166d 2032
134d3373
TH
2033 /* methods shouldn't be called if no task is actually migrating */
2034 retval = 0;
892a2b90 2035 if (!group_size)
b07ef774 2036 goto out_free_group_list;
134d3373 2037
74a1166d
BB
2038 /*
2039 * step 1: check that we can legitimately attach to the cgroup.
2040 */
5549c497 2041 for_each_root_subsys(root, ss) {
74a1166d 2042 if (ss->can_attach) {
761b3ef5 2043 retval = ss->can_attach(cgrp, &tset);
74a1166d
BB
2044 if (retval) {
2045 failed_ss = ss;
2046 goto out_cancel_attach;
2047 }
2048 }
74a1166d
BB
2049 }
2050
2051 /*
2052 * step 2: make sure css_sets exist for all threads to be migrated.
2053 * we use find_css_set, which allocates a new one if necessary.
2054 */
74a1166d 2055 for (i = 0; i < group_size; i++) {
a8ad805c
TH
2056 struct css_set *old_cset;
2057
134d3373 2058 tc = flex_array_get(group, i);
a8ad805c 2059 old_cset = task_css_set(tc->task);
6f4b7e63
LZ
2060 tc->cset = find_css_set(old_cset, cgrp);
2061 if (!tc->cset) {
61d1d219
MSB
2062 retval = -ENOMEM;
2063 goto out_put_css_set_refs;
74a1166d
BB
2064 }
2065 }
2066
2067 /*
494c167c
TH
2068 * step 3: now that we're guaranteed success wrt the css_sets,
2069 * proceed to move all tasks to the new cgroup. There are no
2070 * failure cases after here, so this is the commit point.
74a1166d 2071 */
74a1166d 2072 for (i = 0; i < group_size; i++) {
134d3373 2073 tc = flex_array_get(group, i);
6f4b7e63 2074 cgroup_task_migrate(tc->cgrp, tc->task, tc->cset);
74a1166d
BB
2075 }
2076 /* nothing is sensitive to fork() after this point. */
2077
2078 /*
494c167c 2079 * step 4: do subsystem attach callbacks.
74a1166d 2080 */
5549c497 2081 for_each_root_subsys(root, ss) {
74a1166d 2082 if (ss->attach)
761b3ef5 2083 ss->attach(cgrp, &tset);
74a1166d
BB
2084 }
2085
2086 /*
2087 * step 5: success! and cleanup
2088 */
74a1166d 2089 retval = 0;
61d1d219
MSB
2090out_put_css_set_refs:
2091 if (retval) {
2092 for (i = 0; i < group_size; i++) {
2093 tc = flex_array_get(group, i);
6f4b7e63 2094 if (!tc->cset)
61d1d219 2095 break;
6f4b7e63 2096 put_css_set(tc->cset);
61d1d219 2097 }
74a1166d
BB
2098 }
2099out_cancel_attach:
74a1166d 2100 if (retval) {
5549c497 2101 for_each_root_subsys(root, ss) {
494c167c 2102 if (ss == failed_ss)
74a1166d 2103 break;
74a1166d 2104 if (ss->cancel_attach)
761b3ef5 2105 ss->cancel_attach(cgrp, &tset);
74a1166d
BB
2106 }
2107 }
74a1166d 2108out_free_group_list:
d846687d 2109 flex_array_free(group);
74a1166d
BB
2110 return retval;
2111}
2112
2113/*
2114 * Find the task_struct of the task to attach by vpid and pass it along to the
cd3d0952
TH
2115 * function to attach either it or all tasks in its threadgroup. Will lock
2116 * cgroup_mutex and threadgroup; may take task_lock of task.
bbcb81d0 2117 */
74a1166d 2118static int attach_task_by_pid(struct cgroup *cgrp, u64 pid, bool threadgroup)
bbcb81d0 2119{
bbcb81d0 2120 struct task_struct *tsk;
c69e8d9c 2121 const struct cred *cred = current_cred(), *tcred;
bbcb81d0
PM
2122 int ret;
2123
74a1166d
BB
2124 if (!cgroup_lock_live_group(cgrp))
2125 return -ENODEV;
2126
b78949eb
MSB
2127retry_find_task:
2128 rcu_read_lock();
bbcb81d0 2129 if (pid) {
73507f33 2130 tsk = find_task_by_vpid(pid);
74a1166d
BB
2131 if (!tsk) {
2132 rcu_read_unlock();
b78949eb
MSB
2133 ret= -ESRCH;
2134 goto out_unlock_cgroup;
bbcb81d0 2135 }
74a1166d
BB
2136 /*
2137 * even if we're attaching all tasks in the thread group, we
2138 * only need to check permissions on one of them.
2139 */
c69e8d9c 2140 tcred = __task_cred(tsk);
14a590c3
EB
2141 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2142 !uid_eq(cred->euid, tcred->uid) &&
2143 !uid_eq(cred->euid, tcred->suid)) {
c69e8d9c 2144 rcu_read_unlock();
b78949eb
MSB
2145 ret = -EACCES;
2146 goto out_unlock_cgroup;
bbcb81d0 2147 }
b78949eb
MSB
2148 } else
2149 tsk = current;
cd3d0952
TH
2150
2151 if (threadgroup)
b78949eb 2152 tsk = tsk->group_leader;
c4c27fbd
MG
2153
2154 /*
14a40ffc 2155 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
c4c27fbd
MG
2156 * trapped in a cpuset, or RT worker may be born in a cgroup
2157 * with no rt_runtime allocated. Just say no.
2158 */
14a40ffc 2159 if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
c4c27fbd
MG
2160 ret = -EINVAL;
2161 rcu_read_unlock();
2162 goto out_unlock_cgroup;
2163 }
2164
b78949eb
MSB
2165 get_task_struct(tsk);
2166 rcu_read_unlock();
2167
2168 threadgroup_lock(tsk);
2169 if (threadgroup) {
2170 if (!thread_group_leader(tsk)) {
2171 /*
2172 * a race with de_thread from another thread's exec()
2173 * may strip us of our leadership, if this happens,
2174 * there is no choice but to throw this task away and
2175 * try again; this is
2176 * "double-double-toil-and-trouble-check locking".
2177 */
2178 threadgroup_unlock(tsk);
2179 put_task_struct(tsk);
2180 goto retry_find_task;
2181 }
081aa458
LZ
2182 }
2183
2184 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
2185
cd3d0952
TH
2186 threadgroup_unlock(tsk);
2187
bbcb81d0 2188 put_task_struct(tsk);
b78949eb 2189out_unlock_cgroup:
47cfcd09 2190 mutex_unlock(&cgroup_mutex);
bbcb81d0
PM
2191 return ret;
2192}
2193
7ae1bad9
TH
2194/**
2195 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2196 * @from: attach to all cgroups of a given task
2197 * @tsk: the task to be attached
2198 */
2199int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2200{
2201 struct cgroupfs_root *root;
2202 int retval = 0;
2203
47cfcd09 2204 mutex_lock(&cgroup_mutex);
7ae1bad9 2205 for_each_active_root(root) {
6f4b7e63 2206 struct cgroup *from_cgrp = task_cgroup_from_root(from, root);
7ae1bad9 2207
6f4b7e63 2208 retval = cgroup_attach_task(from_cgrp, tsk, false);
7ae1bad9
TH
2209 if (retval)
2210 break;
2211 }
47cfcd09 2212 mutex_unlock(&cgroup_mutex);
7ae1bad9
TH
2213
2214 return retval;
2215}
2216EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2217
af351026 2218static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid)
74a1166d
BB
2219{
2220 return attach_task_by_pid(cgrp, pid, false);
2221}
2222
2223static int cgroup_procs_write(struct cgroup *cgrp, struct cftype *cft, u64 tgid)
af351026 2224{
b78949eb 2225 return attach_task_by_pid(cgrp, tgid, true);
af351026
PM
2226}
2227
e788e066
PM
2228static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft,
2229 const char *buffer)
2230{
2231 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
f4a2589f
EK
2232 if (strlen(buffer) >= PATH_MAX)
2233 return -EINVAL;
e788e066
PM
2234 if (!cgroup_lock_live_group(cgrp))
2235 return -ENODEV;
e25e2cbb 2236 mutex_lock(&cgroup_root_mutex);
e788e066 2237 strcpy(cgrp->root->release_agent_path, buffer);
e25e2cbb 2238 mutex_unlock(&cgroup_root_mutex);
47cfcd09 2239 mutex_unlock(&cgroup_mutex);
e788e066
PM
2240 return 0;
2241}
2242
2243static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft,
2244 struct seq_file *seq)
2245{
2246 if (!cgroup_lock_live_group(cgrp))
2247 return -ENODEV;
2248 seq_puts(seq, cgrp->root->release_agent_path);
2249 seq_putc(seq, '\n');
47cfcd09 2250 mutex_unlock(&cgroup_mutex);
e788e066
PM
2251 return 0;
2252}
2253
873fe09e
TH
2254static int cgroup_sane_behavior_show(struct cgroup *cgrp, struct cftype *cft,
2255 struct seq_file *seq)
2256{
2257 seq_printf(seq, "%d\n", cgroup_sane_behavior(cgrp));
e788e066
PM
2258 return 0;
2259}
2260
84eea842
PM
2261/* A buffer size big enough for numbers or short strings */
2262#define CGROUP_LOCAL_BUFFER_SIZE 64
2263
e73d2c61 2264static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
f4c753b7
PM
2265 struct file *file,
2266 const char __user *userbuf,
2267 size_t nbytes, loff_t *unused_ppos)
355e0c48 2268{
84eea842 2269 char buffer[CGROUP_LOCAL_BUFFER_SIZE];
355e0c48 2270 int retval = 0;
355e0c48
PM
2271 char *end;
2272
2273 if (!nbytes)
2274 return -EINVAL;
2275 if (nbytes >= sizeof(buffer))
2276 return -E2BIG;
2277 if (copy_from_user(buffer, userbuf, nbytes))
2278 return -EFAULT;
2279
2280 buffer[nbytes] = 0; /* nul-terminate */
e73d2c61 2281 if (cft->write_u64) {
478988d3 2282 u64 val = simple_strtoull(strstrip(buffer), &end, 0);
e73d2c61
PM
2283 if (*end)
2284 return -EINVAL;
2285 retval = cft->write_u64(cgrp, cft, val);
2286 } else {
478988d3 2287 s64 val = simple_strtoll(strstrip(buffer), &end, 0);
e73d2c61
PM
2288 if (*end)
2289 return -EINVAL;
2290 retval = cft->write_s64(cgrp, cft, val);
2291 }
355e0c48
PM
2292 if (!retval)
2293 retval = nbytes;
2294 return retval;
2295}
2296
db3b1497
PM
2297static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft,
2298 struct file *file,
2299 const char __user *userbuf,
2300 size_t nbytes, loff_t *unused_ppos)
2301{
84eea842 2302 char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
db3b1497
PM
2303 int retval = 0;
2304 size_t max_bytes = cft->max_write_len;
2305 char *buffer = local_buffer;
2306
2307 if (!max_bytes)
2308 max_bytes = sizeof(local_buffer) - 1;
2309 if (nbytes >= max_bytes)
2310 return -E2BIG;
2311 /* Allocate a dynamic buffer if we need one */
2312 if (nbytes >= sizeof(local_buffer)) {
2313 buffer = kmalloc(nbytes + 1, GFP_KERNEL);
2314 if (buffer == NULL)
2315 return -ENOMEM;
2316 }
5a3eb9f6
LZ
2317 if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
2318 retval = -EFAULT;
2319 goto out;
2320 }
db3b1497
PM
2321
2322 buffer[nbytes] = 0; /* nul-terminate */
478988d3 2323 retval = cft->write_string(cgrp, cft, strstrip(buffer));
db3b1497
PM
2324 if (!retval)
2325 retval = nbytes;
5a3eb9f6 2326out:
db3b1497
PM
2327 if (buffer != local_buffer)
2328 kfree(buffer);
2329 return retval;
2330}
2331
ddbcc7e8
PM
2332static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
2333 size_t nbytes, loff_t *ppos)
2334{
2335 struct cftype *cft = __d_cft(file->f_dentry);
bd89aabc 2336 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
ddbcc7e8 2337
54766d4a 2338 if (cgroup_is_dead(cgrp))
ddbcc7e8 2339 return -ENODEV;
355e0c48 2340 if (cft->write)
bd89aabc 2341 return cft->write(cgrp, cft, file, buf, nbytes, ppos);
e73d2c61
PM
2342 if (cft->write_u64 || cft->write_s64)
2343 return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
db3b1497
PM
2344 if (cft->write_string)
2345 return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos);
d447ea2f
PE
2346 if (cft->trigger) {
2347 int ret = cft->trigger(cgrp, (unsigned int)cft->private);
2348 return ret ? ret : nbytes;
2349 }
355e0c48 2350 return -EINVAL;
ddbcc7e8
PM
2351}
2352
f4c753b7
PM
2353static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
2354 struct file *file,
2355 char __user *buf, size_t nbytes,
2356 loff_t *ppos)
ddbcc7e8 2357{
84eea842 2358 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
f4c753b7 2359 u64 val = cft->read_u64(cgrp, cft);
ddbcc7e8
PM
2360 int len = sprintf(tmp, "%llu\n", (unsigned long long) val);
2361
2362 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2363}
2364
e73d2c61
PM
2365static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
2366 struct file *file,
2367 char __user *buf, size_t nbytes,
2368 loff_t *ppos)
2369{
84eea842 2370 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
e73d2c61
PM
2371 s64 val = cft->read_s64(cgrp, cft);
2372 int len = sprintf(tmp, "%lld\n", (long long) val);
2373
2374 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2375}
2376
ddbcc7e8
PM
2377static ssize_t cgroup_file_read(struct file *file, char __user *buf,
2378 size_t nbytes, loff_t *ppos)
2379{
2380 struct cftype *cft = __d_cft(file->f_dentry);
bd89aabc 2381 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
ddbcc7e8 2382
54766d4a 2383 if (cgroup_is_dead(cgrp))
ddbcc7e8
PM
2384 return -ENODEV;
2385
2386 if (cft->read)
bd89aabc 2387 return cft->read(cgrp, cft, file, buf, nbytes, ppos);
f4c753b7
PM
2388 if (cft->read_u64)
2389 return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
e73d2c61
PM
2390 if (cft->read_s64)
2391 return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
ddbcc7e8
PM
2392 return -EINVAL;
2393}
2394
91796569
PM
2395/*
2396 * seqfile ops/methods for returning structured data. Currently just
2397 * supports string->u64 maps, but can be extended in future.
2398 */
2399
91796569
PM
2400static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
2401{
2402 struct seq_file *sf = cb->state;
2403 return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
2404}
2405
2406static int cgroup_seqfile_show(struct seq_file *m, void *arg)
2407{
e0798ce2
LZ
2408 struct cfent *cfe = m->private;
2409 struct cftype *cft = cfe->type;
2410 struct cgroup *cgrp = __d_cgrp(cfe->dentry->d_parent);
2411
29486df3
SH
2412 if (cft->read_map) {
2413 struct cgroup_map_cb cb = {
2414 .fill = cgroup_map_add,
2415 .state = m,
2416 };
e0798ce2 2417 return cft->read_map(cgrp, cft, &cb);
29486df3 2418 }
e0798ce2 2419 return cft->read_seq_string(cgrp, cft, m);
91796569
PM
2420}
2421
828c0950 2422static const struct file_operations cgroup_seqfile_operations = {
91796569 2423 .read = seq_read,
e788e066 2424 .write = cgroup_file_write,
91796569 2425 .llseek = seq_lseek,
e0798ce2 2426 .release = single_release,
91796569
PM
2427};
2428
ddbcc7e8
PM
2429static int cgroup_file_open(struct inode *inode, struct file *file)
2430{
2431 int err;
e0798ce2 2432 struct cfent *cfe;
ddbcc7e8
PM
2433 struct cftype *cft;
2434
2435 err = generic_file_open(inode, file);
2436 if (err)
2437 return err;
e0798ce2
LZ
2438 cfe = __d_cfe(file->f_dentry);
2439 cft = cfe->type;
75139b82 2440
29486df3 2441 if (cft->read_map || cft->read_seq_string) {
91796569 2442 file->f_op = &cgroup_seqfile_operations;
e0798ce2
LZ
2443 err = single_open(file, cgroup_seqfile_show, cfe);
2444 } else if (cft->open) {
ddbcc7e8 2445 err = cft->open(inode, file);
e0798ce2 2446 }
ddbcc7e8
PM
2447
2448 return err;
2449}
2450
2451static int cgroup_file_release(struct inode *inode, struct file *file)
2452{
2453 struct cftype *cft = __d_cft(file->f_dentry);
2454 if (cft->release)
2455 return cft->release(inode, file);
2456 return 0;
2457}
2458
2459/*
2460 * cgroup_rename - Only allow simple rename of directories in place.
2461 */
2462static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
2463 struct inode *new_dir, struct dentry *new_dentry)
2464{
65dff759
LZ
2465 int ret;
2466 struct cgroup_name *name, *old_name;
2467 struct cgroup *cgrp;
2468
2469 /*
2470 * It's convinient to use parent dir's i_mutex to protected
2471 * cgrp->name.
2472 */
2473 lockdep_assert_held(&old_dir->i_mutex);
2474
ddbcc7e8
PM
2475 if (!S_ISDIR(old_dentry->d_inode->i_mode))
2476 return -ENOTDIR;
2477 if (new_dentry->d_inode)
2478 return -EEXIST;
2479 if (old_dir != new_dir)
2480 return -EIO;
65dff759
LZ
2481
2482 cgrp = __d_cgrp(old_dentry);
2483
6db8e85c
TH
2484 /*
2485 * This isn't a proper migration and its usefulness is very
2486 * limited. Disallow if sane_behavior.
2487 */
2488 if (cgroup_sane_behavior(cgrp))
2489 return -EPERM;
2490
65dff759
LZ
2491 name = cgroup_alloc_name(new_dentry);
2492 if (!name)
2493 return -ENOMEM;
2494
2495 ret = simple_rename(old_dir, old_dentry, new_dir, new_dentry);
2496 if (ret) {
2497 kfree(name);
2498 return ret;
2499 }
2500
a4ea1cc9 2501 old_name = rcu_dereference_protected(cgrp->name, true);
65dff759
LZ
2502 rcu_assign_pointer(cgrp->name, name);
2503
2504 kfree_rcu(old_name, rcu_head);
2505 return 0;
ddbcc7e8
PM
2506}
2507
03b1cde6
AR
2508static struct simple_xattrs *__d_xattrs(struct dentry *dentry)
2509{
2510 if (S_ISDIR(dentry->d_inode->i_mode))
2511 return &__d_cgrp(dentry)->xattrs;
2512 else
712317ad 2513 return &__d_cfe(dentry)->xattrs;
03b1cde6
AR
2514}
2515
2516static inline int xattr_enabled(struct dentry *dentry)
2517{
2518 struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
93438629 2519 return root->flags & CGRP_ROOT_XATTR;
03b1cde6
AR
2520}
2521
2522static bool is_valid_xattr(const char *name)
2523{
2524 if (!strncmp(name, XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN) ||
2525 !strncmp(name, XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN))
2526 return true;
2527 return false;
2528}
2529
2530static int cgroup_setxattr(struct dentry *dentry, const char *name,
2531 const void *val, size_t size, int flags)
2532{
2533 if (!xattr_enabled(dentry))
2534 return -EOPNOTSUPP;
2535 if (!is_valid_xattr(name))
2536 return -EINVAL;
2537 return simple_xattr_set(__d_xattrs(dentry), name, val, size, flags);
2538}
2539
2540static int cgroup_removexattr(struct dentry *dentry, const char *name)
2541{
2542 if (!xattr_enabled(dentry))
2543 return -EOPNOTSUPP;
2544 if (!is_valid_xattr(name))
2545 return -EINVAL;
2546 return simple_xattr_remove(__d_xattrs(dentry), name);
2547}
2548
2549static ssize_t cgroup_getxattr(struct dentry *dentry, const char *name,
2550 void *buf, size_t size)
2551{
2552 if (!xattr_enabled(dentry))
2553 return -EOPNOTSUPP;
2554 if (!is_valid_xattr(name))
2555 return -EINVAL;
2556 return simple_xattr_get(__d_xattrs(dentry), name, buf, size);
2557}
2558
2559static ssize_t cgroup_listxattr(struct dentry *dentry, char *buf, size_t size)
2560{
2561 if (!xattr_enabled(dentry))
2562 return -EOPNOTSUPP;
2563 return simple_xattr_list(__d_xattrs(dentry), buf, size);
2564}
2565
828c0950 2566static const struct file_operations cgroup_file_operations = {
ddbcc7e8
PM
2567 .read = cgroup_file_read,
2568 .write = cgroup_file_write,
2569 .llseek = generic_file_llseek,
2570 .open = cgroup_file_open,
2571 .release = cgroup_file_release,
2572};
2573
03b1cde6
AR
2574static const struct inode_operations cgroup_file_inode_operations = {
2575 .setxattr = cgroup_setxattr,
2576 .getxattr = cgroup_getxattr,
2577 .listxattr = cgroup_listxattr,
2578 .removexattr = cgroup_removexattr,
2579};
2580
6e1d5dcc 2581static const struct inode_operations cgroup_dir_inode_operations = {
c72a04e3 2582 .lookup = cgroup_lookup,
ddbcc7e8
PM
2583 .mkdir = cgroup_mkdir,
2584 .rmdir = cgroup_rmdir,
2585 .rename = cgroup_rename,
03b1cde6
AR
2586 .setxattr = cgroup_setxattr,
2587 .getxattr = cgroup_getxattr,
2588 .listxattr = cgroup_listxattr,
2589 .removexattr = cgroup_removexattr,
ddbcc7e8
PM
2590};
2591
00cd8dd3 2592static struct dentry *cgroup_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
c72a04e3
AV
2593{
2594 if (dentry->d_name.len > NAME_MAX)
2595 return ERR_PTR(-ENAMETOOLONG);
2596 d_add(dentry, NULL);
2597 return NULL;
2598}
2599
0dea1168
KS
2600/*
2601 * Check if a file is a control file
2602 */
2603static inline struct cftype *__file_cft(struct file *file)
2604{
496ad9aa 2605 if (file_inode(file)->i_fop != &cgroup_file_operations)
0dea1168
KS
2606 return ERR_PTR(-EINVAL);
2607 return __d_cft(file->f_dentry);
2608}
2609
a5e7ed32 2610static int cgroup_create_file(struct dentry *dentry, umode_t mode,
5adcee1d
NP
2611 struct super_block *sb)
2612{
ddbcc7e8
PM
2613 struct inode *inode;
2614
2615 if (!dentry)
2616 return -ENOENT;
2617 if (dentry->d_inode)
2618 return -EEXIST;
2619
2620 inode = cgroup_new_inode(mode, sb);
2621 if (!inode)
2622 return -ENOMEM;
2623
2624 if (S_ISDIR(mode)) {
2625 inode->i_op = &cgroup_dir_inode_operations;
2626 inode->i_fop = &simple_dir_operations;
2627
2628 /* start off with i_nlink == 2 (for "." entry) */
2629 inc_nlink(inode);
28fd6f30 2630 inc_nlink(dentry->d_parent->d_inode);
ddbcc7e8 2631
b8a2df6a
TH
2632 /*
2633 * Control reaches here with cgroup_mutex held.
2634 * @inode->i_mutex should nest outside cgroup_mutex but we
2635 * want to populate it immediately without releasing
2636 * cgroup_mutex. As @inode isn't visible to anyone else
2637 * yet, trylock will always succeed without affecting
2638 * lockdep checks.
2639 */
2640 WARN_ON_ONCE(!mutex_trylock(&inode->i_mutex));
ddbcc7e8
PM
2641 } else if (S_ISREG(mode)) {
2642 inode->i_size = 0;
2643 inode->i_fop = &cgroup_file_operations;
03b1cde6 2644 inode->i_op = &cgroup_file_inode_operations;
ddbcc7e8 2645 }
ddbcc7e8
PM
2646 d_instantiate(dentry, inode);
2647 dget(dentry); /* Extra count - pin the dentry in core */
2648 return 0;
2649}
2650
099fca32
LZ
2651/**
2652 * cgroup_file_mode - deduce file mode of a control file
2653 * @cft: the control file in question
2654 *
2655 * returns cft->mode if ->mode is not 0
2656 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
2657 * returns S_IRUGO if it has only a read handler
2658 * returns S_IWUSR if it has only a write hander
2659 */
a5e7ed32 2660static umode_t cgroup_file_mode(const struct cftype *cft)
099fca32 2661{
a5e7ed32 2662 umode_t mode = 0;
099fca32
LZ
2663
2664 if (cft->mode)
2665 return cft->mode;
2666
2667 if (cft->read || cft->read_u64 || cft->read_s64 ||
2668 cft->read_map || cft->read_seq_string)
2669 mode |= S_IRUGO;
2670
2671 if (cft->write || cft->write_u64 || cft->write_s64 ||
2672 cft->write_string || cft->trigger)
2673 mode |= S_IWUSR;
2674
2675 return mode;
2676}
2677
db0416b6 2678static int cgroup_add_file(struct cgroup *cgrp, struct cgroup_subsys *subsys,
03b1cde6 2679 struct cftype *cft)
ddbcc7e8 2680{
bd89aabc 2681 struct dentry *dir = cgrp->dentry;
05ef1d7c 2682 struct cgroup *parent = __d_cgrp(dir);
ddbcc7e8 2683 struct dentry *dentry;
05ef1d7c 2684 struct cfent *cfe;
ddbcc7e8 2685 int error;
a5e7ed32 2686 umode_t mode;
ddbcc7e8 2687 char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
8e3f6541 2688
93438629 2689 if (subsys && !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) {
ddbcc7e8
PM
2690 strcpy(name, subsys->name);
2691 strcat(name, ".");
2692 }
2693 strcat(name, cft->name);
05ef1d7c 2694
ddbcc7e8 2695 BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
05ef1d7c
TH
2696
2697 cfe = kzalloc(sizeof(*cfe), GFP_KERNEL);
2698 if (!cfe)
2699 return -ENOMEM;
2700
ddbcc7e8 2701 dentry = lookup_one_len(name, dir, strlen(name));
05ef1d7c 2702 if (IS_ERR(dentry)) {
ddbcc7e8 2703 error = PTR_ERR(dentry);
05ef1d7c
TH
2704 goto out;
2705 }
2706
d6cbf35d
LZ
2707 cfe->type = (void *)cft;
2708 cfe->dentry = dentry;
2709 dentry->d_fsdata = cfe;
2710 simple_xattrs_init(&cfe->xattrs);
2711
05ef1d7c
TH
2712 mode = cgroup_file_mode(cft);
2713 error = cgroup_create_file(dentry, mode | S_IFREG, cgrp->root->sb);
2714 if (!error) {
05ef1d7c
TH
2715 list_add_tail(&cfe->node, &parent->files);
2716 cfe = NULL;
2717 }
2718 dput(dentry);
2719out:
2720 kfree(cfe);
ddbcc7e8
PM
2721 return error;
2722}
2723
b1f28d31
TH
2724/**
2725 * cgroup_addrm_files - add or remove files to a cgroup directory
2726 * @cgrp: the target cgroup
2727 * @subsys: the subsystem of files to be added
2728 * @cfts: array of cftypes to be added
2729 * @is_add: whether to add or remove
2730 *
2731 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
2732 * All @cfts should belong to @subsys. For removals, this function never
2733 * fails. If addition fails, this function doesn't remove files already
2734 * added. The caller is responsible for cleaning up.
2735 */
79578621 2736static int cgroup_addrm_files(struct cgroup *cgrp, struct cgroup_subsys *subsys,
03b1cde6 2737 struct cftype cfts[], bool is_add)
ddbcc7e8 2738{
03b1cde6 2739 struct cftype *cft;
b1f28d31
TH
2740 int ret;
2741
2742 lockdep_assert_held(&cgrp->dentry->d_inode->i_mutex);
2743 lockdep_assert_held(&cgroup_mutex);
db0416b6
TH
2744
2745 for (cft = cfts; cft->name[0] != '\0'; cft++) {
f33fddc2 2746 /* does cft->flags tell us to skip this file on @cgrp? */
873fe09e
TH
2747 if ((cft->flags & CFTYPE_INSANE) && cgroup_sane_behavior(cgrp))
2748 continue;
f33fddc2
G
2749 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgrp->parent)
2750 continue;
2751 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgrp->parent)
2752 continue;
2753
2739d3cc 2754 if (is_add) {
b1f28d31
TH
2755 ret = cgroup_add_file(cgrp, subsys, cft);
2756 if (ret) {
2739d3cc 2757 pr_warn("cgroup_addrm_files: failed to add %s, err=%d\n",
b1f28d31
TH
2758 cft->name, ret);
2759 return ret;
2760 }
2739d3cc
LZ
2761 } else {
2762 cgroup_rm_file(cgrp, cft);
db0416b6 2763 }
ddbcc7e8 2764 }
b1f28d31 2765 return 0;
ddbcc7e8
PM
2766}
2767
8e3f6541 2768static void cgroup_cfts_prepare(void)
e8c82d20 2769 __acquires(&cgroup_mutex)
8e3f6541
TH
2770{
2771 /*
2772 * Thanks to the entanglement with vfs inode locking, we can't walk
2773 * the existing cgroups under cgroup_mutex and create files.
e8c82d20
LZ
2774 * Instead, we use cgroup_for_each_descendant_pre() and drop RCU
2775 * read lock before calling cgroup_addrm_files().
8e3f6541 2776 */
8e3f6541
TH
2777 mutex_lock(&cgroup_mutex);
2778}
2779
9ccece80
TH
2780static int cgroup_cfts_commit(struct cgroup_subsys *ss,
2781 struct cftype *cfts, bool is_add)
e8c82d20 2782 __releases(&cgroup_mutex)
8e3f6541
TH
2783{
2784 LIST_HEAD(pending);
e8c82d20 2785 struct cgroup *cgrp, *root = &ss->root->top_cgroup;
084457f2 2786 struct super_block *sb = ss->root->sb;
e8c82d20
LZ
2787 struct dentry *prev = NULL;
2788 struct inode *inode;
00356bd5 2789 u64 update_before;
9ccece80 2790 int ret = 0;
8e3f6541
TH
2791
2792 /* %NULL @cfts indicates abort and don't bother if @ss isn't attached */
9871bf95 2793 if (!cfts || ss->root == &cgroup_dummy_root ||
e8c82d20
LZ
2794 !atomic_inc_not_zero(&sb->s_active)) {
2795 mutex_unlock(&cgroup_mutex);
9ccece80 2796 return 0;
8e3f6541
TH
2797 }
2798
8e3f6541 2799 /*
e8c82d20
LZ
2800 * All cgroups which are created after we drop cgroup_mutex will
2801 * have the updated set of files, so we only need to update the
00356bd5 2802 * cgroups created before the current @cgroup_serial_nr_next.
8e3f6541 2803 */
00356bd5 2804 update_before = cgroup_serial_nr_next;
e8c82d20
LZ
2805
2806 mutex_unlock(&cgroup_mutex);
2807
2808 /* @root always needs to be updated */
2809 inode = root->dentry->d_inode;
2810 mutex_lock(&inode->i_mutex);
2811 mutex_lock(&cgroup_mutex);
9ccece80 2812 ret = cgroup_addrm_files(root, ss, cfts, is_add);
e8c82d20
LZ
2813 mutex_unlock(&cgroup_mutex);
2814 mutex_unlock(&inode->i_mutex);
2815
9ccece80
TH
2816 if (ret)
2817 goto out_deact;
2818
e8c82d20
LZ
2819 /* add/rm files for all cgroups created before */
2820 rcu_read_lock();
2821 cgroup_for_each_descendant_pre(cgrp, root) {
2822 if (cgroup_is_dead(cgrp))
2823 continue;
2824
2825 inode = cgrp->dentry->d_inode;
2826 dget(cgrp->dentry);
2827 rcu_read_unlock();
2828
2829 dput(prev);
2830 prev = cgrp->dentry;
8e3f6541
TH
2831
2832 mutex_lock(&inode->i_mutex);
2833 mutex_lock(&cgroup_mutex);
00356bd5 2834 if (cgrp->serial_nr < update_before && !cgroup_is_dead(cgrp))
9ccece80 2835 ret = cgroup_addrm_files(cgrp, ss, cfts, is_add);
8e3f6541
TH
2836 mutex_unlock(&cgroup_mutex);
2837 mutex_unlock(&inode->i_mutex);
2838
e8c82d20 2839 rcu_read_lock();
9ccece80
TH
2840 if (ret)
2841 break;
8e3f6541 2842 }
e8c82d20
LZ
2843 rcu_read_unlock();
2844 dput(prev);
9ccece80 2845out_deact:
e8c82d20 2846 deactivate_super(sb);
9ccece80 2847 return ret;
8e3f6541
TH
2848}
2849
2850/**
2851 * cgroup_add_cftypes - add an array of cftypes to a subsystem
2852 * @ss: target cgroup subsystem
2853 * @cfts: zero-length name terminated array of cftypes
2854 *
2855 * Register @cfts to @ss. Files described by @cfts are created for all
2856 * existing cgroups to which @ss is attached and all future cgroups will
2857 * have them too. This function can be called anytime whether @ss is
2858 * attached or not.
2859 *
2860 * Returns 0 on successful registration, -errno on failure. Note that this
2861 * function currently returns 0 as long as @cfts registration is successful
2862 * even if some file creation attempts on existing cgroups fail.
2863 */
03b1cde6 2864int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
8e3f6541
TH
2865{
2866 struct cftype_set *set;
9ccece80 2867 int ret;
8e3f6541
TH
2868
2869 set = kzalloc(sizeof(*set), GFP_KERNEL);
2870 if (!set)
2871 return -ENOMEM;
2872
2873 cgroup_cfts_prepare();
2874 set->cfts = cfts;
2875 list_add_tail(&set->node, &ss->cftsets);
9ccece80
TH
2876 ret = cgroup_cfts_commit(ss, cfts, true);
2877 if (ret)
2878 cgroup_rm_cftypes(ss, cfts);
2879 return ret;
8e3f6541
TH
2880}
2881EXPORT_SYMBOL_GPL(cgroup_add_cftypes);
2882
79578621
TH
2883/**
2884 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
2885 * @ss: target cgroup subsystem
2886 * @cfts: zero-length name terminated array of cftypes
2887 *
2888 * Unregister @cfts from @ss. Files described by @cfts are removed from
2889 * all existing cgroups to which @ss is attached and all future cgroups
2890 * won't have them either. This function can be called anytime whether @ss
2891 * is attached or not.
2892 *
2893 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
2894 * registered with @ss.
2895 */
03b1cde6 2896int cgroup_rm_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
79578621
TH
2897{
2898 struct cftype_set *set;
2899
2900 cgroup_cfts_prepare();
2901
2902 list_for_each_entry(set, &ss->cftsets, node) {
2903 if (set->cfts == cfts) {
f57947d2
LZ
2904 list_del(&set->node);
2905 kfree(set);
79578621
TH
2906 cgroup_cfts_commit(ss, cfts, false);
2907 return 0;
2908 }
2909 }
2910
2911 cgroup_cfts_commit(ss, NULL, false);
2912 return -ENOENT;
2913}
2914
a043e3b2
LZ
2915/**
2916 * cgroup_task_count - count the number of tasks in a cgroup.
2917 * @cgrp: the cgroup in question
2918 *
2919 * Return the number of tasks in the cgroup.
2920 */
bd89aabc 2921int cgroup_task_count(const struct cgroup *cgrp)
bbcb81d0
PM
2922{
2923 int count = 0;
69d0206c 2924 struct cgrp_cset_link *link;
817929ec
PM
2925
2926 read_lock(&css_set_lock);
69d0206c
TH
2927 list_for_each_entry(link, &cgrp->cset_links, cset_link)
2928 count += atomic_read(&link->cset->refcount);
817929ec 2929 read_unlock(&css_set_lock);
bbcb81d0
PM
2930 return count;
2931}
2932
817929ec
PM
2933/*
2934 * Advance a list_head iterator. The iterator should be positioned at
2935 * the start of a css_set
2936 */
69d0206c 2937static void cgroup_advance_iter(struct cgroup *cgrp, struct cgroup_iter *it)
817929ec 2938{
69d0206c
TH
2939 struct list_head *l = it->cset_link;
2940 struct cgrp_cset_link *link;
5abb8855 2941 struct css_set *cset;
817929ec
PM
2942
2943 /* Advance to the next non-empty css_set */
2944 do {
2945 l = l->next;
69d0206c
TH
2946 if (l == &cgrp->cset_links) {
2947 it->cset_link = NULL;
817929ec
PM
2948 return;
2949 }
69d0206c
TH
2950 link = list_entry(l, struct cgrp_cset_link, cset_link);
2951 cset = link->cset;
5abb8855 2952 } while (list_empty(&cset->tasks));
69d0206c 2953 it->cset_link = l;
5abb8855 2954 it->task = cset->tasks.next;
817929ec
PM
2955}
2956
31a7df01
CW
2957/*
2958 * To reduce the fork() overhead for systems that are not actually
2959 * using their cgroups capability, we don't maintain the lists running
2960 * through each css_set to its tasks until we see the list actually
2961 * used - in other words after the first call to cgroup_iter_start().
31a7df01 2962 */
3df91fe3 2963static void cgroup_enable_task_cg_lists(void)
31a7df01
CW
2964{
2965 struct task_struct *p, *g;
2966 write_lock(&css_set_lock);
2967 use_task_css_set_links = 1;
3ce3230a
FW
2968 /*
2969 * We need tasklist_lock because RCU is not safe against
2970 * while_each_thread(). Besides, a forking task that has passed
2971 * cgroup_post_fork() without seeing use_task_css_set_links = 1
2972 * is not guaranteed to have its child immediately visible in the
2973 * tasklist if we walk through it with RCU.
2974 */
2975 read_lock(&tasklist_lock);
31a7df01
CW
2976 do_each_thread(g, p) {
2977 task_lock(p);
0e04388f
LZ
2978 /*
2979 * We should check if the process is exiting, otherwise
2980 * it will race with cgroup_exit() in that the list
2981 * entry won't be deleted though the process has exited.
2982 */
2983 if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
a8ad805c 2984 list_add(&p->cg_list, &task_css_set(p)->tasks);
31a7df01
CW
2985 task_unlock(p);
2986 } while_each_thread(g, p);
3ce3230a 2987 read_unlock(&tasklist_lock);
31a7df01
CW
2988 write_unlock(&css_set_lock);
2989}
2990
53fa5261
TH
2991/**
2992 * cgroup_next_sibling - find the next sibling of a given cgroup
2993 * @pos: the current cgroup
2994 *
2995 * This function returns the next sibling of @pos and should be called
2996 * under RCU read lock. The only requirement is that @pos is accessible.
2997 * The next sibling is guaranteed to be returned regardless of @pos's
2998 * state.
2999 */
3000struct cgroup *cgroup_next_sibling(struct cgroup *pos)
3001{
3002 struct cgroup *next;
3003
3004 WARN_ON_ONCE(!rcu_read_lock_held());
3005
3006 /*
3007 * @pos could already have been removed. Once a cgroup is removed,
3008 * its ->sibling.next is no longer updated when its next sibling
ea15f8cc
TH
3009 * changes. As CGRP_DEAD assertion is serialized and happens
3010 * before the cgroup is taken off the ->sibling list, if we see it
3011 * unasserted, it's guaranteed that the next sibling hasn't
3012 * finished its grace period even if it's already removed, and thus
3013 * safe to dereference from this RCU critical section. If
3014 * ->sibling.next is inaccessible, cgroup_is_dead() is guaranteed
3015 * to be visible as %true here.
53fa5261 3016 */
54766d4a 3017 if (likely(!cgroup_is_dead(pos))) {
53fa5261
TH
3018 next = list_entry_rcu(pos->sibling.next, struct cgroup, sibling);
3019 if (&next->sibling != &pos->parent->children)
3020 return next;
3021 return NULL;
3022 }
3023
3024 /*
3025 * Can't dereference the next pointer. Each cgroup is given a
3026 * monotonically increasing unique serial number and always
3027 * appended to the sibling list, so the next one can be found by
3028 * walking the parent's children until we see a cgroup with higher
3029 * serial number than @pos's.
3030 *
3031 * While this path can be slow, it's taken only when either the
3032 * current cgroup is removed or iteration and removal race.
3033 */
3034 list_for_each_entry_rcu(next, &pos->parent->children, sibling)
3035 if (next->serial_nr > pos->serial_nr)
3036 return next;
3037 return NULL;
3038}
3039EXPORT_SYMBOL_GPL(cgroup_next_sibling);
3040
574bd9f7
TH
3041/**
3042 * cgroup_next_descendant_pre - find the next descendant for pre-order walk
3043 * @pos: the current position (%NULL to initiate traversal)
3044 * @cgroup: cgroup whose descendants to walk
3045 *
3046 * To be used by cgroup_for_each_descendant_pre(). Find the next
3047 * descendant to visit for pre-order traversal of @cgroup's descendants.
75501a6d
TH
3048 *
3049 * While this function requires RCU read locking, it doesn't require the
3050 * whole traversal to be contained in a single RCU critical section. This
3051 * function will return the correct next descendant as long as both @pos
3052 * and @cgroup are accessible and @pos is a descendant of @cgroup.
574bd9f7
TH
3053 */
3054struct cgroup *cgroup_next_descendant_pre(struct cgroup *pos,
3055 struct cgroup *cgroup)
3056{
3057 struct cgroup *next;
3058
3059 WARN_ON_ONCE(!rcu_read_lock_held());
3060
3061 /* if first iteration, pretend we just visited @cgroup */
7805d000 3062 if (!pos)
574bd9f7 3063 pos = cgroup;
574bd9f7
TH
3064
3065 /* visit the first child if exists */
3066 next = list_first_or_null_rcu(&pos->children, struct cgroup, sibling);
3067 if (next)
3068 return next;
3069
3070 /* no child, visit my or the closest ancestor's next sibling */
7805d000 3071 while (pos != cgroup) {
75501a6d
TH
3072 next = cgroup_next_sibling(pos);
3073 if (next)
574bd9f7 3074 return next;
574bd9f7 3075 pos = pos->parent;
7805d000 3076 }
574bd9f7
TH
3077
3078 return NULL;
3079}
3080EXPORT_SYMBOL_GPL(cgroup_next_descendant_pre);
3081
12a9d2fe
TH
3082/**
3083 * cgroup_rightmost_descendant - return the rightmost descendant of a cgroup
3084 * @pos: cgroup of interest
3085 *
3086 * Return the rightmost descendant of @pos. If there's no descendant,
3087 * @pos is returned. This can be used during pre-order traversal to skip
3088 * subtree of @pos.
75501a6d
TH
3089 *
3090 * While this function requires RCU read locking, it doesn't require the
3091 * whole traversal to be contained in a single RCU critical section. This
3092 * function will return the correct rightmost descendant as long as @pos is
3093 * accessible.
12a9d2fe
TH
3094 */
3095struct cgroup *cgroup_rightmost_descendant(struct cgroup *pos)
3096{
3097 struct cgroup *last, *tmp;
3098
3099 WARN_ON_ONCE(!rcu_read_lock_held());
3100
3101 do {
3102 last = pos;
3103 /* ->prev isn't RCU safe, walk ->next till the end */
3104 pos = NULL;
3105 list_for_each_entry_rcu(tmp, &last->children, sibling)
3106 pos = tmp;
3107 } while (pos);
3108
3109 return last;
3110}
3111EXPORT_SYMBOL_GPL(cgroup_rightmost_descendant);
3112
574bd9f7
TH
3113static struct cgroup *cgroup_leftmost_descendant(struct cgroup *pos)
3114{
3115 struct cgroup *last;
3116
3117 do {
3118 last = pos;
3119 pos = list_first_or_null_rcu(&pos->children, struct cgroup,
3120 sibling);
3121 } while (pos);
3122
3123 return last;
3124}
3125
3126/**
3127 * cgroup_next_descendant_post - find the next descendant for post-order walk
3128 * @pos: the current position (%NULL to initiate traversal)
3129 * @cgroup: cgroup whose descendants to walk
3130 *
3131 * To be used by cgroup_for_each_descendant_post(). Find the next
3132 * descendant to visit for post-order traversal of @cgroup's descendants.
75501a6d
TH
3133 *
3134 * While this function requires RCU read locking, it doesn't require the
3135 * whole traversal to be contained in a single RCU critical section. This
3136 * function will return the correct next descendant as long as both @pos
3137 * and @cgroup are accessible and @pos is a descendant of @cgroup.
574bd9f7
TH
3138 */
3139struct cgroup *cgroup_next_descendant_post(struct cgroup *pos,
3140 struct cgroup *cgroup)
3141{
3142 struct cgroup *next;
3143
3144 WARN_ON_ONCE(!rcu_read_lock_held());
3145
3146 /* if first iteration, visit the leftmost descendant */
3147 if (!pos) {
3148 next = cgroup_leftmost_descendant(cgroup);
3149 return next != cgroup ? next : NULL;
3150 }
3151
3152 /* if there's an unvisited sibling, visit its leftmost descendant */
75501a6d
TH
3153 next = cgroup_next_sibling(pos);
3154 if (next)
574bd9f7
TH
3155 return cgroup_leftmost_descendant(next);
3156
3157 /* no sibling left, visit parent */
3158 next = pos->parent;
3159 return next != cgroup ? next : NULL;
3160}
3161EXPORT_SYMBOL_GPL(cgroup_next_descendant_post);
3162
bd89aabc 3163void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
c6ca5750 3164 __acquires(css_set_lock)
817929ec
PM
3165{
3166 /*
3167 * The first time anyone tries to iterate across a cgroup,
3168 * we need to enable the list linking each css_set to its
3169 * tasks, and fix up all existing tasks.
3170 */
31a7df01
CW
3171 if (!use_task_css_set_links)
3172 cgroup_enable_task_cg_lists();
3173
817929ec 3174 read_lock(&css_set_lock);
69d0206c 3175 it->cset_link = &cgrp->cset_links;
bd89aabc 3176 cgroup_advance_iter(cgrp, it);
817929ec
PM
3177}
3178
bd89aabc 3179struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
817929ec
PM
3180 struct cgroup_iter *it)
3181{
3182 struct task_struct *res;
3183 struct list_head *l = it->task;
69d0206c 3184 struct cgrp_cset_link *link;
817929ec
PM
3185
3186 /* If the iterator cg is NULL, we have no tasks */
69d0206c 3187 if (!it->cset_link)
817929ec
PM
3188 return NULL;
3189 res = list_entry(l, struct task_struct, cg_list);
3190 /* Advance iterator to find next entry */
3191 l = l->next;
69d0206c
TH
3192 link = list_entry(it->cset_link, struct cgrp_cset_link, cset_link);
3193 if (l == &link->cset->tasks) {
817929ec
PM
3194 /* We reached the end of this task list - move on to
3195 * the next cg_cgroup_link */
bd89aabc 3196 cgroup_advance_iter(cgrp, it);
817929ec
PM
3197 } else {
3198 it->task = l;
3199 }
3200 return res;
3201}
3202
bd89aabc 3203void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
c6ca5750 3204 __releases(css_set_lock)
817929ec
PM
3205{
3206 read_unlock(&css_set_lock);
3207}
3208
31a7df01
CW
3209static inline int started_after_time(struct task_struct *t1,
3210 struct timespec *time,
3211 struct task_struct *t2)
3212{
3213 int start_diff = timespec_compare(&t1->start_time, time);
3214 if (start_diff > 0) {
3215 return 1;
3216 } else if (start_diff < 0) {
3217 return 0;
3218 } else {
3219 /*
3220 * Arbitrarily, if two processes started at the same
3221 * time, we'll say that the lower pointer value
3222 * started first. Note that t2 may have exited by now
3223 * so this may not be a valid pointer any longer, but
3224 * that's fine - it still serves to distinguish
3225 * between two tasks started (effectively) simultaneously.
3226 */
3227 return t1 > t2;
3228 }
3229}
3230
3231/*
3232 * This function is a callback from heap_insert() and is used to order
3233 * the heap.
3234 * In this case we order the heap in descending task start time.
3235 */
3236static inline int started_after(void *p1, void *p2)
3237{
3238 struct task_struct *t1 = p1;
3239 struct task_struct *t2 = p2;
3240 return started_after_time(t1, &t2->start_time, t2);
3241}
3242
3243/**
3244 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
3245 * @scan: struct cgroup_scanner containing arguments for the scan
3246 *
3247 * Arguments include pointers to callback functions test_task() and
3248 * process_task().
3249 * Iterate through all the tasks in a cgroup, calling test_task() for each,
3250 * and if it returns true, call process_task() for it also.
3251 * The test_task pointer may be NULL, meaning always true (select all tasks).
3252 * Effectively duplicates cgroup_iter_{start,next,end}()
3253 * but does not lock css_set_lock for the call to process_task().
3254 * The struct cgroup_scanner may be embedded in any structure of the caller's
3255 * creation.
3256 * It is guaranteed that process_task() will act on every task that
3257 * is a member of the cgroup for the duration of this call. This
3258 * function may or may not call process_task() for tasks that exit
3259 * or move to a different cgroup during the call, or are forked or
3260 * move into the cgroup during the call.
3261 *
3262 * Note that test_task() may be called with locks held, and may in some
3263 * situations be called multiple times for the same task, so it should
3264 * be cheap.
3265 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
3266 * pre-allocated and will be used for heap operations (and its "gt" member will
3267 * be overwritten), else a temporary heap will be used (allocation of which
3268 * may cause this function to fail).
3269 */
3270int cgroup_scan_tasks(struct cgroup_scanner *scan)
3271{
3272 int retval, i;
3273 struct cgroup_iter it;
3274 struct task_struct *p, *dropped;
3275 /* Never dereference latest_task, since it's not refcounted */
3276 struct task_struct *latest_task = NULL;
3277 struct ptr_heap tmp_heap;
3278 struct ptr_heap *heap;
3279 struct timespec latest_time = { 0, 0 };
3280
3281 if (scan->heap) {
3282 /* The caller supplied our heap and pre-allocated its memory */
3283 heap = scan->heap;
3284 heap->gt = &started_after;
3285 } else {
3286 /* We need to allocate our own heap memory */
3287 heap = &tmp_heap;
3288 retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
3289 if (retval)
3290 /* cannot allocate the heap */
3291 return retval;
3292 }
3293
3294 again:
3295 /*
3296 * Scan tasks in the cgroup, using the scanner's "test_task" callback
3297 * to determine which are of interest, and using the scanner's
3298 * "process_task" callback to process any of them that need an update.
3299 * Since we don't want to hold any locks during the task updates,
3300 * gather tasks to be processed in a heap structure.
3301 * The heap is sorted by descending task start time.
3302 * If the statically-sized heap fills up, we overflow tasks that
3303 * started later, and in future iterations only consider tasks that
3304 * started after the latest task in the previous pass. This
3305 * guarantees forward progress and that we don't miss any tasks.
3306 */
3307 heap->size = 0;
6f4b7e63
LZ
3308 cgroup_iter_start(scan->cgrp, &it);
3309 while ((p = cgroup_iter_next(scan->cgrp, &it))) {
31a7df01
CW
3310 /*
3311 * Only affect tasks that qualify per the caller's callback,
3312 * if he provided one
3313 */
3314 if (scan->test_task && !scan->test_task(p, scan))
3315 continue;
3316 /*
3317 * Only process tasks that started after the last task
3318 * we processed
3319 */
3320 if (!started_after_time(p, &latest_time, latest_task))
3321 continue;
3322 dropped = heap_insert(heap, p);
3323 if (dropped == NULL) {
3324 /*
3325 * The new task was inserted; the heap wasn't
3326 * previously full
3327 */
3328 get_task_struct(p);
3329 } else if (dropped != p) {
3330 /*
3331 * The new task was inserted, and pushed out a
3332 * different task
3333 */
3334 get_task_struct(p);
3335 put_task_struct(dropped);
3336 }
3337 /*
3338 * Else the new task was newer than anything already in
3339 * the heap and wasn't inserted
3340 */
3341 }
6f4b7e63 3342 cgroup_iter_end(scan->cgrp, &it);
31a7df01
CW
3343
3344 if (heap->size) {
3345 for (i = 0; i < heap->size; i++) {
4fe91d51 3346 struct task_struct *q = heap->ptrs[i];
31a7df01 3347 if (i == 0) {
4fe91d51
PJ
3348 latest_time = q->start_time;
3349 latest_task = q;
31a7df01
CW
3350 }
3351 /* Process the task per the caller's callback */
4fe91d51
PJ
3352 scan->process_task(q, scan);
3353 put_task_struct(q);
31a7df01
CW
3354 }
3355 /*
3356 * If we had to process any tasks at all, scan again
3357 * in case some of them were in the middle of forking
3358 * children that didn't get processed.
3359 * Not the most efficient way to do it, but it avoids
3360 * having to take callback_mutex in the fork path
3361 */
3362 goto again;
3363 }
3364 if (heap == &tmp_heap)
3365 heap_free(&tmp_heap);
3366 return 0;
3367}
3368
8cc99345
TH
3369static void cgroup_transfer_one_task(struct task_struct *task,
3370 struct cgroup_scanner *scan)
3371{
3372 struct cgroup *new_cgroup = scan->data;
3373
47cfcd09 3374 mutex_lock(&cgroup_mutex);
8cc99345 3375 cgroup_attach_task(new_cgroup, task, false);
47cfcd09 3376 mutex_unlock(&cgroup_mutex);
8cc99345
TH
3377}
3378
3379/**
3380 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
3381 * @to: cgroup to which the tasks will be moved
3382 * @from: cgroup in which the tasks currently reside
3383 */
3384int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
3385{
3386 struct cgroup_scanner scan;
3387
6f4b7e63 3388 scan.cgrp = from;
8cc99345
TH
3389 scan.test_task = NULL; /* select all tasks in cgroup */
3390 scan.process_task = cgroup_transfer_one_task;
3391 scan.heap = NULL;
3392 scan.data = to;
3393
3394 return cgroup_scan_tasks(&scan);
3395}
3396
bbcb81d0 3397/*
102a775e 3398 * Stuff for reading the 'tasks'/'procs' files.
bbcb81d0
PM
3399 *
3400 * Reading this file can return large amounts of data if a cgroup has
3401 * *lots* of attached tasks. So it may need several calls to read(),
3402 * but we cannot guarantee that the information we produce is correct
3403 * unless we produce it entirely atomically.
3404 *
bbcb81d0 3405 */
bbcb81d0 3406
24528255
LZ
3407/* which pidlist file are we talking about? */
3408enum cgroup_filetype {
3409 CGROUP_FILE_PROCS,
3410 CGROUP_FILE_TASKS,
3411};
3412
3413/*
3414 * A pidlist is a list of pids that virtually represents the contents of one
3415 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
3416 * a pair (one each for procs, tasks) for each pid namespace that's relevant
3417 * to the cgroup.
3418 */
3419struct cgroup_pidlist {
3420 /*
3421 * used to find which pidlist is wanted. doesn't change as long as
3422 * this particular list stays in the list.
3423 */
3424 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
3425 /* array of xids */
3426 pid_t *list;
3427 /* how many elements the above list has */
3428 int length;
3429 /* how many files are using the current array */
3430 int use_count;
3431 /* each of these stored in a list by its cgroup */
3432 struct list_head links;
3433 /* pointer to the cgroup we belong to, for list removal purposes */
3434 struct cgroup *owner;
3435 /* protects the other fields */
3436 struct rw_semaphore mutex;
3437};
3438
d1d9fd33
BB
3439/*
3440 * The following two functions "fix" the issue where there are more pids
3441 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
3442 * TODO: replace with a kernel-wide solution to this problem
3443 */
3444#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
3445static void *pidlist_allocate(int count)
3446{
3447 if (PIDLIST_TOO_LARGE(count))
3448 return vmalloc(count * sizeof(pid_t));
3449 else
3450 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
3451}
3452static void pidlist_free(void *p)
3453{
3454 if (is_vmalloc_addr(p))
3455 vfree(p);
3456 else
3457 kfree(p);
3458}
d1d9fd33 3459
bbcb81d0 3460/*
102a775e 3461 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
6ee211ad 3462 * Returns the number of unique elements.
bbcb81d0 3463 */
6ee211ad 3464static int pidlist_uniq(pid_t *list, int length)
bbcb81d0 3465{
102a775e 3466 int src, dest = 1;
102a775e
BB
3467
3468 /*
3469 * we presume the 0th element is unique, so i starts at 1. trivial
3470 * edge cases first; no work needs to be done for either
3471 */
3472 if (length == 0 || length == 1)
3473 return length;
3474 /* src and dest walk down the list; dest counts unique elements */
3475 for (src = 1; src < length; src++) {
3476 /* find next unique element */
3477 while (list[src] == list[src-1]) {
3478 src++;
3479 if (src == length)
3480 goto after;
3481 }
3482 /* dest always points to where the next unique element goes */
3483 list[dest] = list[src];
3484 dest++;
3485 }
3486after:
102a775e
BB
3487 return dest;
3488}
3489
3490static int cmppid(const void *a, const void *b)
3491{
3492 return *(pid_t *)a - *(pid_t *)b;
3493}
3494
72a8cb30
BB
3495/*
3496 * find the appropriate pidlist for our purpose (given procs vs tasks)
3497 * returns with the lock on that pidlist already held, and takes care
3498 * of the use count, or returns NULL with no locks held if we're out of
3499 * memory.
3500 */
3501static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
3502 enum cgroup_filetype type)
3503{
3504 struct cgroup_pidlist *l;
3505 /* don't need task_nsproxy() if we're looking at ourself */
17cf22c3 3506 struct pid_namespace *ns = task_active_pid_ns(current);
b70cc5fd 3507
72a8cb30
BB
3508 /*
3509 * We can't drop the pidlist_mutex before taking the l->mutex in case
3510 * the last ref-holder is trying to remove l from the list at the same
3511 * time. Holding the pidlist_mutex precludes somebody taking whichever
3512 * list we find out from under us - compare release_pid_array().
3513 */
3514 mutex_lock(&cgrp->pidlist_mutex);
3515 list_for_each_entry(l, &cgrp->pidlists, links) {
3516 if (l->key.type == type && l->key.ns == ns) {
72a8cb30
BB
3517 /* make sure l doesn't vanish out from under us */
3518 down_write(&l->mutex);
3519 mutex_unlock(&cgrp->pidlist_mutex);
72a8cb30
BB
3520 return l;
3521 }
3522 }
3523 /* entry not found; create a new one */
f4f4be2b 3524 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
72a8cb30
BB
3525 if (!l) {
3526 mutex_unlock(&cgrp->pidlist_mutex);
72a8cb30
BB
3527 return l;
3528 }
3529 init_rwsem(&l->mutex);
3530 down_write(&l->mutex);
3531 l->key.type = type;
b70cc5fd 3532 l->key.ns = get_pid_ns(ns);
72a8cb30
BB
3533 l->owner = cgrp;
3534 list_add(&l->links, &cgrp->pidlists);
3535 mutex_unlock(&cgrp->pidlist_mutex);
3536 return l;
3537}
3538
102a775e
BB
3539/*
3540 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
3541 */
72a8cb30
BB
3542static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
3543 struct cgroup_pidlist **lp)
102a775e
BB
3544{
3545 pid_t *array;
3546 int length;
3547 int pid, n = 0; /* used for populating the array */
817929ec
PM
3548 struct cgroup_iter it;
3549 struct task_struct *tsk;
102a775e
BB
3550 struct cgroup_pidlist *l;
3551
3552 /*
3553 * If cgroup gets more users after we read count, we won't have
3554 * enough space - tough. This race is indistinguishable to the
3555 * caller from the case that the additional cgroup users didn't
3556 * show up until sometime later on.
3557 */
3558 length = cgroup_task_count(cgrp);
d1d9fd33 3559 array = pidlist_allocate(length);
102a775e
BB
3560 if (!array)
3561 return -ENOMEM;
3562 /* now, populate the array */
bd89aabc
PM
3563 cgroup_iter_start(cgrp, &it);
3564 while ((tsk = cgroup_iter_next(cgrp, &it))) {
102a775e 3565 if (unlikely(n == length))
817929ec 3566 break;
102a775e 3567 /* get tgid or pid for procs or tasks file respectively */
72a8cb30
BB
3568 if (type == CGROUP_FILE_PROCS)
3569 pid = task_tgid_vnr(tsk);
3570 else
3571 pid = task_pid_vnr(tsk);
102a775e
BB
3572 if (pid > 0) /* make sure to only use valid results */
3573 array[n++] = pid;
817929ec 3574 }
bd89aabc 3575 cgroup_iter_end(cgrp, &it);
102a775e
BB
3576 length = n;
3577 /* now sort & (if procs) strip out duplicates */
3578 sort(array, length, sizeof(pid_t), cmppid, NULL);
72a8cb30 3579 if (type == CGROUP_FILE_PROCS)
6ee211ad 3580 length = pidlist_uniq(array, length);
72a8cb30
BB
3581 l = cgroup_pidlist_find(cgrp, type);
3582 if (!l) {
d1d9fd33 3583 pidlist_free(array);
72a8cb30 3584 return -ENOMEM;
102a775e 3585 }
72a8cb30 3586 /* store array, freeing old if necessary - lock already held */
d1d9fd33 3587 pidlist_free(l->list);
102a775e
BB
3588 l->list = array;
3589 l->length = length;
3590 l->use_count++;
3591 up_write(&l->mutex);
72a8cb30 3592 *lp = l;
102a775e 3593 return 0;
bbcb81d0
PM
3594}
3595
846c7bb0 3596/**
a043e3b2 3597 * cgroupstats_build - build and fill cgroupstats
846c7bb0
BS
3598 * @stats: cgroupstats to fill information into
3599 * @dentry: A dentry entry belonging to the cgroup for which stats have
3600 * been requested.
a043e3b2
LZ
3601 *
3602 * Build and fill cgroupstats so that taskstats can export it to user
3603 * space.
846c7bb0
BS
3604 */
3605int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
3606{
3607 int ret = -EINVAL;
bd89aabc 3608 struct cgroup *cgrp;
846c7bb0
BS
3609 struct cgroup_iter it;
3610 struct task_struct *tsk;
33d283be 3611
846c7bb0 3612 /*
33d283be
LZ
3613 * Validate dentry by checking the superblock operations,
3614 * and make sure it's a directory.
846c7bb0 3615 */
33d283be
LZ
3616 if (dentry->d_sb->s_op != &cgroup_ops ||
3617 !S_ISDIR(dentry->d_inode->i_mode))
846c7bb0
BS
3618 goto err;
3619
3620 ret = 0;
bd89aabc 3621 cgrp = dentry->d_fsdata;
846c7bb0 3622
bd89aabc
PM
3623 cgroup_iter_start(cgrp, &it);
3624 while ((tsk = cgroup_iter_next(cgrp, &it))) {
846c7bb0
BS
3625 switch (tsk->state) {
3626 case TASK_RUNNING:
3627 stats->nr_running++;
3628 break;
3629 case TASK_INTERRUPTIBLE:
3630 stats->nr_sleeping++;
3631 break;
3632 case TASK_UNINTERRUPTIBLE:
3633 stats->nr_uninterruptible++;
3634 break;
3635 case TASK_STOPPED:
3636 stats->nr_stopped++;
3637 break;
3638 default:
3639 if (delayacct_is_task_waiting_on_io(tsk))
3640 stats->nr_io_wait++;
3641 break;
3642 }
3643 }
bd89aabc 3644 cgroup_iter_end(cgrp, &it);
846c7bb0 3645
846c7bb0
BS
3646err:
3647 return ret;
3648}
3649
8f3ff208 3650
bbcb81d0 3651/*
102a775e 3652 * seq_file methods for the tasks/procs files. The seq_file position is the
cc31edce 3653 * next pid to display; the seq_file iterator is a pointer to the pid
102a775e 3654 * in the cgroup->l->list array.
bbcb81d0 3655 */
cc31edce 3656
102a775e 3657static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
bbcb81d0 3658{
cc31edce
PM
3659 /*
3660 * Initially we receive a position value that corresponds to
3661 * one more than the last pid shown (or 0 on the first call or
3662 * after a seek to the start). Use a binary-search to find the
3663 * next pid to display, if any
3664 */
102a775e 3665 struct cgroup_pidlist *l = s->private;
cc31edce
PM
3666 int index = 0, pid = *pos;
3667 int *iter;
3668
102a775e 3669 down_read(&l->mutex);
cc31edce 3670 if (pid) {
102a775e 3671 int end = l->length;
20777766 3672
cc31edce
PM
3673 while (index < end) {
3674 int mid = (index + end) / 2;
102a775e 3675 if (l->list[mid] == pid) {
cc31edce
PM
3676 index = mid;
3677 break;
102a775e 3678 } else if (l->list[mid] <= pid)
cc31edce
PM
3679 index = mid + 1;
3680 else
3681 end = mid;
3682 }
3683 }
3684 /* If we're off the end of the array, we're done */
102a775e 3685 if (index >= l->length)
cc31edce
PM
3686 return NULL;
3687 /* Update the abstract position to be the actual pid that we found */
102a775e 3688 iter = l->list + index;
cc31edce
PM
3689 *pos = *iter;
3690 return iter;
3691}
3692
102a775e 3693static void cgroup_pidlist_stop(struct seq_file *s, void *v)
cc31edce 3694{
102a775e
BB
3695 struct cgroup_pidlist *l = s->private;
3696 up_read(&l->mutex);
cc31edce
PM
3697}
3698
102a775e 3699static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
cc31edce 3700{
102a775e
BB
3701 struct cgroup_pidlist *l = s->private;
3702 pid_t *p = v;
3703 pid_t *end = l->list + l->length;
cc31edce
PM
3704 /*
3705 * Advance to the next pid in the array. If this goes off the
3706 * end, we're done
3707 */
3708 p++;
3709 if (p >= end) {
3710 return NULL;
3711 } else {
3712 *pos = *p;
3713 return p;
3714 }
3715}
3716
102a775e 3717static int cgroup_pidlist_show(struct seq_file *s, void *v)
cc31edce
PM
3718{
3719 return seq_printf(s, "%d\n", *(int *)v);
3720}
bbcb81d0 3721
102a775e
BB
3722/*
3723 * seq_operations functions for iterating on pidlists through seq_file -
3724 * independent of whether it's tasks or procs
3725 */
3726static const struct seq_operations cgroup_pidlist_seq_operations = {
3727 .start = cgroup_pidlist_start,
3728 .stop = cgroup_pidlist_stop,
3729 .next = cgroup_pidlist_next,
3730 .show = cgroup_pidlist_show,
cc31edce
PM
3731};
3732
102a775e 3733static void cgroup_release_pid_array(struct cgroup_pidlist *l)
cc31edce 3734{
72a8cb30
BB
3735 /*
3736 * the case where we're the last user of this particular pidlist will
3737 * have us remove it from the cgroup's list, which entails taking the
3738 * mutex. since in pidlist_find the pidlist->lock depends on cgroup->
3739 * pidlist_mutex, we have to take pidlist_mutex first.
3740 */
3741 mutex_lock(&l->owner->pidlist_mutex);
102a775e
BB
3742 down_write(&l->mutex);
3743 BUG_ON(!l->use_count);
3744 if (!--l->use_count) {
72a8cb30
BB
3745 /* we're the last user if refcount is 0; remove and free */
3746 list_del(&l->links);
3747 mutex_unlock(&l->owner->pidlist_mutex);
d1d9fd33 3748 pidlist_free(l->list);
72a8cb30
BB
3749 put_pid_ns(l->key.ns);
3750 up_write(&l->mutex);
3751 kfree(l);
3752 return;
cc31edce 3753 }
72a8cb30 3754 mutex_unlock(&l->owner->pidlist_mutex);
102a775e 3755 up_write(&l->mutex);
bbcb81d0
PM
3756}
3757
102a775e 3758static int cgroup_pidlist_release(struct inode *inode, struct file *file)
cc31edce 3759{
102a775e 3760 struct cgroup_pidlist *l;
cc31edce
PM
3761 if (!(file->f_mode & FMODE_READ))
3762 return 0;
102a775e
BB
3763 /*
3764 * the seq_file will only be initialized if the file was opened for
3765 * reading; hence we check if it's not null only in that case.
3766 */
3767 l = ((struct seq_file *)file->private_data)->private;
3768 cgroup_release_pid_array(l);
cc31edce
PM
3769 return seq_release(inode, file);
3770}
3771
102a775e 3772static const struct file_operations cgroup_pidlist_operations = {
cc31edce
PM
3773 .read = seq_read,
3774 .llseek = seq_lseek,
3775 .write = cgroup_file_write,
102a775e 3776 .release = cgroup_pidlist_release,
cc31edce
PM
3777};
3778
bbcb81d0 3779/*
102a775e
BB
3780 * The following functions handle opens on a file that displays a pidlist
3781 * (tasks or procs). Prepare an array of the process/thread IDs of whoever's
3782 * in the cgroup.
bbcb81d0 3783 */
102a775e 3784/* helper function for the two below it */
72a8cb30 3785static int cgroup_pidlist_open(struct file *file, enum cgroup_filetype type)
bbcb81d0 3786{
bd89aabc 3787 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
72a8cb30 3788 struct cgroup_pidlist *l;
cc31edce 3789 int retval;
bbcb81d0 3790
cc31edce 3791 /* Nothing to do for write-only files */
bbcb81d0
PM
3792 if (!(file->f_mode & FMODE_READ))
3793 return 0;
3794
102a775e 3795 /* have the array populated */
72a8cb30 3796 retval = pidlist_array_load(cgrp, type, &l);
102a775e
BB
3797 if (retval)
3798 return retval;
3799 /* configure file information */
3800 file->f_op = &cgroup_pidlist_operations;
cc31edce 3801
102a775e 3802 retval = seq_open(file, &cgroup_pidlist_seq_operations);
cc31edce 3803 if (retval) {
102a775e 3804 cgroup_release_pid_array(l);
cc31edce 3805 return retval;
bbcb81d0 3806 }
102a775e 3807 ((struct seq_file *)file->private_data)->private = l;
bbcb81d0
PM
3808 return 0;
3809}
102a775e
BB
3810static int cgroup_tasks_open(struct inode *unused, struct file *file)
3811{
72a8cb30 3812 return cgroup_pidlist_open(file, CGROUP_FILE_TASKS);
102a775e
BB
3813}
3814static int cgroup_procs_open(struct inode *unused, struct file *file)
3815{
72a8cb30 3816 return cgroup_pidlist_open(file, CGROUP_FILE_PROCS);
102a775e 3817}
bbcb81d0 3818
bd89aabc 3819static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
81a6a5cd
PM
3820 struct cftype *cft)
3821{
bd89aabc 3822 return notify_on_release(cgrp);
81a6a5cd
PM
3823}
3824
6379c106
PM
3825static int cgroup_write_notify_on_release(struct cgroup *cgrp,
3826 struct cftype *cft,
3827 u64 val)
3828{
3829 clear_bit(CGRP_RELEASABLE, &cgrp->flags);
3830 if (val)
3831 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3832 else
3833 clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3834 return 0;
3835}
3836
1c8158ee
LZ
3837/*
3838 * When dput() is called asynchronously, if umount has been done and
3839 * then deactivate_super() in cgroup_free_fn() kills the superblock,
3840 * there's a small window that vfs will see the root dentry with non-zero
3841 * refcnt and trigger BUG().
3842 *
3843 * That's why we hold a reference before dput() and drop it right after.
3844 */
3845static void cgroup_dput(struct cgroup *cgrp)
3846{
3847 struct super_block *sb = cgrp->root->sb;
3848
3849 atomic_inc(&sb->s_active);
3850 dput(cgrp->dentry);
3851 deactivate_super(sb);
3852}
3853
0dea1168
KS
3854/*
3855 * Unregister event and free resources.
3856 *
3857 * Gets called from workqueue.
3858 */
3859static void cgroup_event_remove(struct work_struct *work)
3860{
3861 struct cgroup_event *event = container_of(work, struct cgroup_event,
3862 remove);
3863 struct cgroup *cgrp = event->cgrp;
3864
810cbee4
LZ
3865 remove_wait_queue(event->wqh, &event->wait);
3866
0dea1168
KS
3867 event->cft->unregister_event(cgrp, event->cft, event->eventfd);
3868
810cbee4
LZ
3869 /* Notify userspace the event is going away. */
3870 eventfd_signal(event->eventfd, 1);
3871
0dea1168 3872 eventfd_ctx_put(event->eventfd);
0dea1168 3873 kfree(event);
1c8158ee 3874 cgroup_dput(cgrp);
0dea1168
KS
3875}
3876
3877/*
3878 * Gets called on POLLHUP on eventfd when user closes it.
3879 *
3880 * Called with wqh->lock held and interrupts disabled.
3881 */
3882static int cgroup_event_wake(wait_queue_t *wait, unsigned mode,
3883 int sync, void *key)
3884{
3885 struct cgroup_event *event = container_of(wait,
3886 struct cgroup_event, wait);
3887 struct cgroup *cgrp = event->cgrp;
3888 unsigned long flags = (unsigned long)key;
3889
3890 if (flags & POLLHUP) {
0dea1168 3891 /*
810cbee4
LZ
3892 * If the event has been detached at cgroup removal, we
3893 * can simply return knowing the other side will cleanup
3894 * for us.
3895 *
3896 * We can't race against event freeing since the other
3897 * side will require wqh->lock via remove_wait_queue(),
3898 * which we hold.
0dea1168 3899 */
810cbee4
LZ
3900 spin_lock(&cgrp->event_list_lock);
3901 if (!list_empty(&event->list)) {
3902 list_del_init(&event->list);
3903 /*
3904 * We are in atomic context, but cgroup_event_remove()
3905 * may sleep, so we have to call it in workqueue.
3906 */
3907 schedule_work(&event->remove);
3908 }
3909 spin_unlock(&cgrp->event_list_lock);
0dea1168
KS
3910 }
3911
3912 return 0;
3913}
3914
3915static void cgroup_event_ptable_queue_proc(struct file *file,
3916 wait_queue_head_t *wqh, poll_table *pt)
3917{
3918 struct cgroup_event *event = container_of(pt,
3919 struct cgroup_event, pt);
3920
3921 event->wqh = wqh;
3922 add_wait_queue(wqh, &event->wait);
3923}
3924
3925/*
3926 * Parse input and register new cgroup event handler.
3927 *
3928 * Input must be in format '<event_fd> <control_fd> <args>'.
3929 * Interpretation of args is defined by control file implementation.
3930 */
3931static int cgroup_write_event_control(struct cgroup *cgrp, struct cftype *cft,
3932 const char *buffer)
3933{
3934 struct cgroup_event *event = NULL;
f169007b 3935 struct cgroup *cgrp_cfile;
0dea1168
KS
3936 unsigned int efd, cfd;
3937 struct file *efile = NULL;
3938 struct file *cfile = NULL;
3939 char *endp;
3940 int ret;
3941
3942 efd = simple_strtoul(buffer, &endp, 10);
3943 if (*endp != ' ')
3944 return -EINVAL;
3945 buffer = endp + 1;
3946
3947 cfd = simple_strtoul(buffer, &endp, 10);
3948 if ((*endp != ' ') && (*endp != '\0'))
3949 return -EINVAL;
3950 buffer = endp + 1;
3951
3952 event = kzalloc(sizeof(*event), GFP_KERNEL);
3953 if (!event)
3954 return -ENOMEM;
3955 event->cgrp = cgrp;
3956 INIT_LIST_HEAD(&event->list);
3957 init_poll_funcptr(&event->pt, cgroup_event_ptable_queue_proc);
3958 init_waitqueue_func_entry(&event->wait, cgroup_event_wake);
3959 INIT_WORK(&event->remove, cgroup_event_remove);
3960
3961 efile = eventfd_fget(efd);
3962 if (IS_ERR(efile)) {
3963 ret = PTR_ERR(efile);
3964 goto fail;
3965 }
3966
3967 event->eventfd = eventfd_ctx_fileget(efile);
3968 if (IS_ERR(event->eventfd)) {
3969 ret = PTR_ERR(event->eventfd);
3970 goto fail;
3971 }
3972
3973 cfile = fget(cfd);
3974 if (!cfile) {
3975 ret = -EBADF;
3976 goto fail;
3977 }
3978
3979 /* the process need read permission on control file */
3bfa784a 3980 /* AV: shouldn't we check that it's been opened for read instead? */
496ad9aa 3981 ret = inode_permission(file_inode(cfile), MAY_READ);
0dea1168
KS
3982 if (ret < 0)
3983 goto fail;
3984
3985 event->cft = __file_cft(cfile);
3986 if (IS_ERR(event->cft)) {
3987 ret = PTR_ERR(event->cft);
3988 goto fail;
3989 }
3990
f169007b
LZ
3991 /*
3992 * The file to be monitored must be in the same cgroup as
3993 * cgroup.event_control is.
3994 */
3995 cgrp_cfile = __d_cgrp(cfile->f_dentry->d_parent);
3996 if (cgrp_cfile != cgrp) {
3997 ret = -EINVAL;
3998 goto fail;
3999 }
4000
0dea1168
KS
4001 if (!event->cft->register_event || !event->cft->unregister_event) {
4002 ret = -EINVAL;
4003 goto fail;
4004 }
4005
4006 ret = event->cft->register_event(cgrp, event->cft,
4007 event->eventfd, buffer);
4008 if (ret)
4009 goto fail;
4010
7ef70e48 4011 efile->f_op->poll(efile, &event->pt);
0dea1168 4012
a0a4db54
KS
4013 /*
4014 * Events should be removed after rmdir of cgroup directory, but before
4015 * destroying subsystem state objects. Let's take reference to cgroup
4016 * directory dentry to do that.
4017 */
4018 dget(cgrp->dentry);
4019
0dea1168
KS
4020 spin_lock(&cgrp->event_list_lock);
4021 list_add(&event->list, &cgrp->event_list);
4022 spin_unlock(&cgrp->event_list_lock);
4023
4024 fput(cfile);
4025 fput(efile);
4026
4027 return 0;
4028
4029fail:
4030 if (cfile)
4031 fput(cfile);
4032
4033 if (event && event->eventfd && !IS_ERR(event->eventfd))
4034 eventfd_ctx_put(event->eventfd);
4035
4036 if (!IS_ERR_OR_NULL(efile))
4037 fput(efile);
4038
4039 kfree(event);
4040
4041 return ret;
4042}
4043
97978e6d
DL
4044static u64 cgroup_clone_children_read(struct cgroup *cgrp,
4045 struct cftype *cft)
4046{
2260e7fc 4047 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
97978e6d
DL
4048}
4049
4050static int cgroup_clone_children_write(struct cgroup *cgrp,
4051 struct cftype *cft,
4052 u64 val)
4053{
4054 if (val)
2260e7fc 4055 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
97978e6d 4056 else
2260e7fc 4057 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
97978e6d
DL
4058 return 0;
4059}
4060
d5c56ced 4061static struct cftype cgroup_base_files[] = {
81a6a5cd 4062 {
d5c56ced 4063 .name = "cgroup.procs",
102a775e 4064 .open = cgroup_procs_open,
74a1166d 4065 .write_u64 = cgroup_procs_write,
102a775e 4066 .release = cgroup_pidlist_release,
74a1166d 4067 .mode = S_IRUGO | S_IWUSR,
102a775e 4068 },
81a6a5cd 4069 {
d5c56ced 4070 .name = "cgroup.event_control",
0dea1168
KS
4071 .write_string = cgroup_write_event_control,
4072 .mode = S_IWUGO,
4073 },
97978e6d
DL
4074 {
4075 .name = "cgroup.clone_children",
873fe09e 4076 .flags = CFTYPE_INSANE,
97978e6d
DL
4077 .read_u64 = cgroup_clone_children_read,
4078 .write_u64 = cgroup_clone_children_write,
4079 },
873fe09e
TH
4080 {
4081 .name = "cgroup.sane_behavior",
4082 .flags = CFTYPE_ONLY_ON_ROOT,
4083 .read_seq_string = cgroup_sane_behavior_show,
4084 },
d5c56ced
TH
4085
4086 /*
4087 * Historical crazy stuff. These don't have "cgroup." prefix and
4088 * don't exist if sane_behavior. If you're depending on these, be
4089 * prepared to be burned.
4090 */
4091 {
4092 .name = "tasks",
4093 .flags = CFTYPE_INSANE, /* use "procs" instead */
4094 .open = cgroup_tasks_open,
4095 .write_u64 = cgroup_tasks_write,
4096 .release = cgroup_pidlist_release,
4097 .mode = S_IRUGO | S_IWUSR,
4098 },
4099 {
4100 .name = "notify_on_release",
4101 .flags = CFTYPE_INSANE,
4102 .read_u64 = cgroup_read_notify_on_release,
4103 .write_u64 = cgroup_write_notify_on_release,
4104 },
6e6ff25b
TH
4105 {
4106 .name = "release_agent",
cc5943a7 4107 .flags = CFTYPE_INSANE | CFTYPE_ONLY_ON_ROOT,
6e6ff25b
TH
4108 .read_seq_string = cgroup_release_agent_show,
4109 .write_string = cgroup_release_agent_write,
4110 .max_write_len = PATH_MAX,
4111 },
db0416b6 4112 { } /* terminate */
bbcb81d0
PM
4113};
4114
13af07df 4115/**
628f7cd4 4116 * cgroup_populate_dir - create subsys files in a cgroup directory
13af07df 4117 * @cgrp: target cgroup
13af07df 4118 * @subsys_mask: mask of the subsystem ids whose files should be added
bee55099
TH
4119 *
4120 * On failure, no file is added.
13af07df 4121 */
628f7cd4 4122static int cgroup_populate_dir(struct cgroup *cgrp, unsigned long subsys_mask)
ddbcc7e8 4123{
ddbcc7e8 4124 struct cgroup_subsys *ss;
b420ba7d 4125 int i, ret = 0;
ddbcc7e8 4126
8e3f6541 4127 /* process cftsets of each subsystem */
b420ba7d 4128 for_each_subsys(ss, i) {
8e3f6541 4129 struct cftype_set *set;
b420ba7d
TH
4130
4131 if (!test_bit(i, &subsys_mask))
13af07df 4132 continue;
8e3f6541 4133
bee55099
TH
4134 list_for_each_entry(set, &ss->cftsets, node) {
4135 ret = cgroup_addrm_files(cgrp, ss, set->cfts, true);
4136 if (ret < 0)
4137 goto err;
4138 }
ddbcc7e8 4139 }
8e3f6541 4140
38460b48 4141 /* This cgroup is ready now */
5549c497 4142 for_each_root_subsys(cgrp->root, ss) {
38460b48 4143 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
a4ea1cc9
TH
4144 struct css_id *id = rcu_dereference_protected(css->id, true);
4145
38460b48
KH
4146 /*
4147 * Update id->css pointer and make this css visible from
4148 * CSS ID functions. This pointer will be dereferened
4149 * from RCU-read-side without locks.
4150 */
a4ea1cc9
TH
4151 if (id)
4152 rcu_assign_pointer(id->css, css);
38460b48 4153 }
ddbcc7e8
PM
4154
4155 return 0;
bee55099
TH
4156err:
4157 cgroup_clear_dir(cgrp, subsys_mask);
4158 return ret;
ddbcc7e8
PM
4159}
4160
48ddbe19
TH
4161static void css_dput_fn(struct work_struct *work)
4162{
4163 struct cgroup_subsys_state *css =
4164 container_of(work, struct cgroup_subsys_state, dput_work);
4165
1c8158ee 4166 cgroup_dput(css->cgroup);
48ddbe19
TH
4167}
4168
d3daf28d
TH
4169static void css_release(struct percpu_ref *ref)
4170{
4171 struct cgroup_subsys_state *css =
4172 container_of(ref, struct cgroup_subsys_state, refcnt);
4173
4174 schedule_work(&css->dput_work);
4175}
4176
ddbcc7e8
PM
4177static void init_cgroup_css(struct cgroup_subsys_state *css,
4178 struct cgroup_subsys *ss,
bd89aabc 4179 struct cgroup *cgrp)
ddbcc7e8 4180{
bd89aabc 4181 css->cgroup = cgrp;
ddbcc7e8 4182 css->flags = 0;
38460b48 4183 css->id = NULL;
9871bf95 4184 if (cgrp == cgroup_dummy_top)
38b53aba 4185 css->flags |= CSS_ROOT;
bd89aabc
PM
4186 BUG_ON(cgrp->subsys[ss->subsys_id]);
4187 cgrp->subsys[ss->subsys_id] = css;
48ddbe19
TH
4188
4189 /*
ed957793
TH
4190 * css holds an extra ref to @cgrp->dentry which is put on the last
4191 * css_put(). dput() requires process context, which css_put() may
4192 * be called without. @css->dput_work will be used to invoke
4193 * dput() asynchronously from css_put().
48ddbe19
TH
4194 */
4195 INIT_WORK(&css->dput_work, css_dput_fn);
ddbcc7e8
PM
4196}
4197
2a4ac633 4198/* invoke ->css_online() on a new CSS and mark it online if successful */
b1929db4 4199static int online_css(struct cgroup_subsys *ss, struct cgroup *cgrp)
a31f2d3f 4200{
b1929db4
TH
4201 int ret = 0;
4202
a31f2d3f
TH
4203 lockdep_assert_held(&cgroup_mutex);
4204
92fb9748
TH
4205 if (ss->css_online)
4206 ret = ss->css_online(cgrp);
b1929db4
TH
4207 if (!ret)
4208 cgrp->subsys[ss->subsys_id]->flags |= CSS_ONLINE;
4209 return ret;
a31f2d3f
TH
4210}
4211
2a4ac633 4212/* if the CSS is online, invoke ->css_offline() on it and mark it offline */
a31f2d3f 4213static void offline_css(struct cgroup_subsys *ss, struct cgroup *cgrp)
a31f2d3f
TH
4214{
4215 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
4216
4217 lockdep_assert_held(&cgroup_mutex);
4218
4219 if (!(css->flags & CSS_ONLINE))
4220 return;
4221
d7eeac19 4222 if (ss->css_offline)
92fb9748 4223 ss->css_offline(cgrp);
a31f2d3f
TH
4224
4225 cgrp->subsys[ss->subsys_id]->flags &= ~CSS_ONLINE;
4226}
4227
ddbcc7e8 4228/*
a043e3b2
LZ
4229 * cgroup_create - create a cgroup
4230 * @parent: cgroup that will be parent of the new cgroup
4231 * @dentry: dentry of the new cgroup
4232 * @mode: mode to set on new inode
ddbcc7e8 4233 *
a043e3b2 4234 * Must be called with the mutex on the parent inode held
ddbcc7e8 4235 */
ddbcc7e8 4236static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
a5e7ed32 4237 umode_t mode)
ddbcc7e8 4238{
bd89aabc 4239 struct cgroup *cgrp;
65dff759 4240 struct cgroup_name *name;
ddbcc7e8
PM
4241 struct cgroupfs_root *root = parent->root;
4242 int err = 0;
4243 struct cgroup_subsys *ss;
4244 struct super_block *sb = root->sb;
4245
0a950f65 4246 /* allocate the cgroup and its ID, 0 is reserved for the root */
bd89aabc
PM
4247 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
4248 if (!cgrp)
ddbcc7e8
PM
4249 return -ENOMEM;
4250
65dff759
LZ
4251 name = cgroup_alloc_name(dentry);
4252 if (!name)
4253 goto err_free_cgrp;
4254 rcu_assign_pointer(cgrp->name, name);
4255
0a950f65
TH
4256 cgrp->id = ida_simple_get(&root->cgroup_ida, 1, 0, GFP_KERNEL);
4257 if (cgrp->id < 0)
65dff759 4258 goto err_free_name;
0a950f65 4259
976c06bc
TH
4260 /*
4261 * Only live parents can have children. Note that the liveliness
4262 * check isn't strictly necessary because cgroup_mkdir() and
4263 * cgroup_rmdir() are fully synchronized by i_mutex; however, do it
4264 * anyway so that locking is contained inside cgroup proper and we
4265 * don't get nasty surprises if we ever grow another caller.
4266 */
4267 if (!cgroup_lock_live_group(parent)) {
4268 err = -ENODEV;
0a950f65 4269 goto err_free_id;
976c06bc
TH
4270 }
4271
ddbcc7e8
PM
4272 /* Grab a reference on the superblock so the hierarchy doesn't
4273 * get deleted on unmount if there are child cgroups. This
4274 * can be done outside cgroup_mutex, since the sb can't
4275 * disappear while someone has an open control file on the
4276 * fs */
4277 atomic_inc(&sb->s_active);
4278
cc31edce 4279 init_cgroup_housekeeping(cgrp);
ddbcc7e8 4280
fe1c06ca
LZ
4281 dentry->d_fsdata = cgrp;
4282 cgrp->dentry = dentry;
4283
bd89aabc
PM
4284 cgrp->parent = parent;
4285 cgrp->root = parent->root;
ddbcc7e8 4286
b6abdb0e
LZ
4287 if (notify_on_release(parent))
4288 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
4289
2260e7fc
TH
4290 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
4291 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
97978e6d 4292
5549c497 4293 for_each_root_subsys(root, ss) {
8c7f6edb 4294 struct cgroup_subsys_state *css;
4528fd05 4295
92fb9748 4296 css = ss->css_alloc(cgrp);
ddbcc7e8
PM
4297 if (IS_ERR(css)) {
4298 err = PTR_ERR(css);
4b8b47eb 4299 goto err_free_all;
ddbcc7e8 4300 }
d3daf28d
TH
4301
4302 err = percpu_ref_init(&css->refcnt, css_release);
4303 if (err)
4304 goto err_free_all;
4305
bd89aabc 4306 init_cgroup_css(css, ss, cgrp);
d3daf28d 4307
4528fd05
LZ
4308 if (ss->use_id) {
4309 err = alloc_css_id(ss, parent, cgrp);
4310 if (err)
4b8b47eb 4311 goto err_free_all;
4528fd05 4312 }
ddbcc7e8
PM
4313 }
4314
4e139afc
TH
4315 /*
4316 * Create directory. cgroup_create_file() returns with the new
4317 * directory locked on success so that it can be populated without
4318 * dropping cgroup_mutex.
4319 */
28fd6f30 4320 err = cgroup_create_file(dentry, S_IFDIR | mode, sb);
ddbcc7e8 4321 if (err < 0)
4b8b47eb 4322 goto err_free_all;
4e139afc 4323 lockdep_assert_held(&dentry->d_inode->i_mutex);
ddbcc7e8 4324
00356bd5 4325 cgrp->serial_nr = cgroup_serial_nr_next++;
53fa5261 4326
4e139afc 4327 /* allocation complete, commit to creation */
4e139afc
TH
4328 list_add_tail_rcu(&cgrp->sibling, &cgrp->parent->children);
4329 root->number_of_cgroups++;
28fd6f30 4330
b1929db4 4331 /* each css holds a ref to the cgroup's dentry */
5549c497 4332 for_each_root_subsys(root, ss)
ed957793 4333 dget(dentry);
48ddbe19 4334
415cf07a
LZ
4335 /* hold a ref to the parent's dentry */
4336 dget(parent->dentry);
4337
b1929db4 4338 /* creation succeeded, notify subsystems */
5549c497 4339 for_each_root_subsys(root, ss) {
b1929db4
TH
4340 err = online_css(ss, cgrp);
4341 if (err)
4342 goto err_destroy;
1f869e87
GC
4343
4344 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
4345 parent->parent) {
4346 pr_warning("cgroup: %s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
4347 current->comm, current->pid, ss->name);
4348 if (!strcmp(ss->name, "memory"))
4349 pr_warning("cgroup: \"memory\" requires setting use_hierarchy to 1 on the root.\n");
4350 ss->warned_broken_hierarchy = true;
4351 }
a8638030
TH
4352 }
4353
628f7cd4
TH
4354 err = cgroup_addrm_files(cgrp, NULL, cgroup_base_files, true);
4355 if (err)
4356 goto err_destroy;
4357
4358 err = cgroup_populate_dir(cgrp, root->subsys_mask);
4b8b47eb
TH
4359 if (err)
4360 goto err_destroy;
ddbcc7e8
PM
4361
4362 mutex_unlock(&cgroup_mutex);
bd89aabc 4363 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8
PM
4364
4365 return 0;
4366
4b8b47eb 4367err_free_all:
5549c497 4368 for_each_root_subsys(root, ss) {
d3daf28d
TH
4369 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
4370
4371 if (css) {
4372 percpu_ref_cancel_init(&css->refcnt);
92fb9748 4373 ss->css_free(cgrp);
d3daf28d 4374 }
ddbcc7e8 4375 }
ddbcc7e8 4376 mutex_unlock(&cgroup_mutex);
ddbcc7e8
PM
4377 /* Release the reference count that we took on the superblock */
4378 deactivate_super(sb);
0a950f65
TH
4379err_free_id:
4380 ida_simple_remove(&root->cgroup_ida, cgrp->id);
65dff759
LZ
4381err_free_name:
4382 kfree(rcu_dereference_raw(cgrp->name));
4b8b47eb 4383err_free_cgrp:
bd89aabc 4384 kfree(cgrp);
ddbcc7e8 4385 return err;
4b8b47eb
TH
4386
4387err_destroy:
4388 cgroup_destroy_locked(cgrp);
4389 mutex_unlock(&cgroup_mutex);
4390 mutex_unlock(&dentry->d_inode->i_mutex);
4391 return err;
ddbcc7e8
PM
4392}
4393
18bb1db3 4394static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
ddbcc7e8
PM
4395{
4396 struct cgroup *c_parent = dentry->d_parent->d_fsdata;
4397
4398 /* the vfs holds inode->i_mutex already */
4399 return cgroup_create(c_parent, dentry, mode | S_IFDIR);
4400}
4401
d3daf28d
TH
4402static void cgroup_css_killed(struct cgroup *cgrp)
4403{
4404 if (!atomic_dec_and_test(&cgrp->css_kill_cnt))
4405 return;
4406
4407 /* percpu ref's of all css's are killed, kick off the next step */
4408 INIT_WORK(&cgrp->destroy_work, cgroup_offline_fn);
4409 schedule_work(&cgrp->destroy_work);
4410}
4411
4412static void css_ref_killed_fn(struct percpu_ref *ref)
4413{
4414 struct cgroup_subsys_state *css =
4415 container_of(ref, struct cgroup_subsys_state, refcnt);
4416
4417 cgroup_css_killed(css->cgroup);
4418}
4419
4420/**
4421 * cgroup_destroy_locked - the first stage of cgroup destruction
4422 * @cgrp: cgroup to be destroyed
4423 *
4424 * css's make use of percpu refcnts whose killing latency shouldn't be
4425 * exposed to userland and are RCU protected. Also, cgroup core needs to
4426 * guarantee that css_tryget() won't succeed by the time ->css_offline() is
4427 * invoked. To satisfy all the requirements, destruction is implemented in
4428 * the following two steps.
4429 *
4430 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
4431 * userland visible parts and start killing the percpu refcnts of
4432 * css's. Set up so that the next stage will be kicked off once all
4433 * the percpu refcnts are confirmed to be killed.
4434 *
4435 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
4436 * rest of destruction. Once all cgroup references are gone, the
4437 * cgroup is RCU-freed.
4438 *
4439 * This function implements s1. After this step, @cgrp is gone as far as
4440 * the userland is concerned and a new cgroup with the same name may be
4441 * created. As cgroup doesn't care about the names internally, this
4442 * doesn't cause any problem.
4443 */
42809dd4
TH
4444static int cgroup_destroy_locked(struct cgroup *cgrp)
4445 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
ddbcc7e8 4446{
42809dd4 4447 struct dentry *d = cgrp->dentry;
4ab78683 4448 struct cgroup_event *event, *tmp;
ed957793 4449 struct cgroup_subsys *ss;
ddd69148 4450 bool empty;
ddbcc7e8 4451
42809dd4
TH
4452 lockdep_assert_held(&d->d_inode->i_mutex);
4453 lockdep_assert_held(&cgroup_mutex);
4454
ddd69148 4455 /*
6f3d828f
TH
4456 * css_set_lock synchronizes access to ->cset_links and prevents
4457 * @cgrp from being removed while __put_css_set() is in progress.
ddd69148
TH
4458 */
4459 read_lock(&css_set_lock);
6f3d828f 4460 empty = list_empty(&cgrp->cset_links) && list_empty(&cgrp->children);
ddd69148
TH
4461 read_unlock(&css_set_lock);
4462 if (!empty)
ddbcc7e8 4463 return -EBUSY;
a043e3b2 4464
88703267 4465 /*
d3daf28d
TH
4466 * Block new css_tryget() by killing css refcnts. cgroup core
4467 * guarantees that, by the time ->css_offline() is invoked, no new
4468 * css reference will be given out via css_tryget(). We can't
4469 * simply call percpu_ref_kill() and proceed to offlining css's
4470 * because percpu_ref_kill() doesn't guarantee that the ref is seen
4471 * as killed on all CPUs on return.
4472 *
4473 * Use percpu_ref_kill_and_confirm() to get notifications as each
4474 * css is confirmed to be seen as killed on all CPUs. The
4475 * notification callback keeps track of the number of css's to be
4476 * killed and schedules cgroup_offline_fn() to perform the rest of
4477 * destruction once the percpu refs of all css's are confirmed to
4478 * be killed.
88703267 4479 */
d3daf28d 4480 atomic_set(&cgrp->css_kill_cnt, 1);
5549c497 4481 for_each_root_subsys(cgrp->root, ss) {
ed957793 4482 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
88703267 4483
d3daf28d
TH
4484 /*
4485 * Killing would put the base ref, but we need to keep it
4486 * alive until after ->css_offline.
4487 */
4488 percpu_ref_get(&css->refcnt);
4489
4490 atomic_inc(&cgrp->css_kill_cnt);
4491 percpu_ref_kill_and_confirm(&css->refcnt, css_ref_killed_fn);
88703267 4492 }
d3daf28d 4493 cgroup_css_killed(cgrp);
455050d2
TH
4494
4495 /*
4496 * Mark @cgrp dead. This prevents further task migration and child
4497 * creation by disabling cgroup_lock_live_group(). Note that
4498 * CGRP_DEAD assertion is depended upon by cgroup_next_sibling() to
4499 * resume iteration after dropping RCU read lock. See
4500 * cgroup_next_sibling() for details.
4501 */
54766d4a 4502 set_bit(CGRP_DEAD, &cgrp->flags);
ddbcc7e8 4503
455050d2
TH
4504 /* CGRP_DEAD is set, remove from ->release_list for the last time */
4505 raw_spin_lock(&release_list_lock);
4506 if (!list_empty(&cgrp->release_list))
4507 list_del_init(&cgrp->release_list);
4508 raw_spin_unlock(&release_list_lock);
4509
4510 /*
8f89140a
TH
4511 * Clear and remove @cgrp directory. The removal puts the base ref
4512 * but we aren't quite done with @cgrp yet, so hold onto it.
455050d2 4513 */
628f7cd4
TH
4514 cgroup_clear_dir(cgrp, cgrp->root->subsys_mask);
4515 cgroup_addrm_files(cgrp, NULL, cgroup_base_files, false);
455050d2
TH
4516 dget(d);
4517 cgroup_d_remove_dir(d);
4518
4519 /*
4520 * Unregister events and notify userspace.
4521 * Notify userspace about cgroup removing only after rmdir of cgroup
4522 * directory to avoid race between userspace and kernelspace.
4523 */
4524 spin_lock(&cgrp->event_list_lock);
4525 list_for_each_entry_safe(event, tmp, &cgrp->event_list, list) {
4526 list_del_init(&event->list);
4527 schedule_work(&event->remove);
4528 }
4529 spin_unlock(&cgrp->event_list_lock);
4530
ea15f8cc
TH
4531 return 0;
4532};
4533
d3daf28d
TH
4534/**
4535 * cgroup_offline_fn - the second step of cgroup destruction
4536 * @work: cgroup->destroy_free_work
4537 *
4538 * This function is invoked from a work item for a cgroup which is being
4539 * destroyed after the percpu refcnts of all css's are guaranteed to be
4540 * seen as killed on all CPUs, and performs the rest of destruction. This
4541 * is the second step of destruction described in the comment above
4542 * cgroup_destroy_locked().
4543 */
ea15f8cc
TH
4544static void cgroup_offline_fn(struct work_struct *work)
4545{
4546 struct cgroup *cgrp = container_of(work, struct cgroup, destroy_work);
4547 struct cgroup *parent = cgrp->parent;
4548 struct dentry *d = cgrp->dentry;
4549 struct cgroup_subsys *ss;
4550
4551 mutex_lock(&cgroup_mutex);
4552
d3daf28d
TH
4553 /*
4554 * css_tryget() is guaranteed to fail now. Tell subsystems to
4555 * initate destruction.
4556 */
5549c497 4557 for_each_root_subsys(cgrp->root, ss)
a31f2d3f 4558 offline_css(ss, cgrp);
ed957793
TH
4559
4560 /*
d3daf28d
TH
4561 * Put the css refs from cgroup_destroy_locked(). Each css holds
4562 * an extra reference to the cgroup's dentry and cgroup removal
4563 * proceeds regardless of css refs. On the last put of each css,
4564 * whenever that may be, the extra dentry ref is put so that dentry
4565 * destruction happens only after all css's are released.
ed957793 4566 */
5549c497 4567 for_each_root_subsys(cgrp->root, ss)
e9316080 4568 css_put(cgrp->subsys[ss->subsys_id]);
ddbcc7e8 4569
999cd8a4 4570 /* delete this cgroup from parent->children */
eb6fd504 4571 list_del_rcu(&cgrp->sibling);
b0ca5a84 4572
ddbcc7e8 4573 dput(d);
ddbcc7e8 4574
bd89aabc 4575 set_bit(CGRP_RELEASABLE, &parent->flags);
81a6a5cd
PM
4576 check_for_release(parent);
4577
ea15f8cc 4578 mutex_unlock(&cgroup_mutex);
ddbcc7e8
PM
4579}
4580
42809dd4
TH
4581static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
4582{
4583 int ret;
4584
4585 mutex_lock(&cgroup_mutex);
4586 ret = cgroup_destroy_locked(dentry->d_fsdata);
4587 mutex_unlock(&cgroup_mutex);
4588
4589 return ret;
4590}
4591
8e3f6541
TH
4592static void __init_or_module cgroup_init_cftsets(struct cgroup_subsys *ss)
4593{
4594 INIT_LIST_HEAD(&ss->cftsets);
4595
4596 /*
4597 * base_cftset is embedded in subsys itself, no need to worry about
4598 * deregistration.
4599 */
4600 if (ss->base_cftypes) {
4601 ss->base_cftset.cfts = ss->base_cftypes;
4602 list_add_tail(&ss->base_cftset.node, &ss->cftsets);
4603 }
4604}
4605
06a11920 4606static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
ddbcc7e8 4607{
ddbcc7e8 4608 struct cgroup_subsys_state *css;
cfe36bde
DC
4609
4610 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
ddbcc7e8 4611
648bb56d
TH
4612 mutex_lock(&cgroup_mutex);
4613
8e3f6541
TH
4614 /* init base cftset */
4615 cgroup_init_cftsets(ss);
4616
ddbcc7e8 4617 /* Create the top cgroup state for this subsystem */
9871bf95
TH
4618 list_add(&ss->sibling, &cgroup_dummy_root.subsys_list);
4619 ss->root = &cgroup_dummy_root;
4620 css = ss->css_alloc(cgroup_dummy_top);
ddbcc7e8
PM
4621 /* We don't handle early failures gracefully */
4622 BUG_ON(IS_ERR(css));
9871bf95 4623 init_cgroup_css(css, ss, cgroup_dummy_top);
ddbcc7e8 4624
e8d55fde 4625 /* Update the init_css_set to contain a subsys
817929ec 4626 * pointer to this state - since the subsystem is
e8d55fde
LZ
4627 * newly registered, all tasks and hence the
4628 * init_css_set is in the subsystem's top cgroup. */
b48c6a80 4629 init_css_set.subsys[ss->subsys_id] = css;
ddbcc7e8
PM
4630
4631 need_forkexit_callback |= ss->fork || ss->exit;
4632
e8d55fde
LZ
4633 /* At system boot, before all subsystems have been
4634 * registered, no tasks have been forked, so we don't
4635 * need to invoke fork callbacks here. */
4636 BUG_ON(!list_empty(&init_task.tasks));
4637
9871bf95 4638 BUG_ON(online_css(ss, cgroup_dummy_top));
a8638030 4639
648bb56d
TH
4640 mutex_unlock(&cgroup_mutex);
4641
e6a1105b
BB
4642 /* this function shouldn't be used with modular subsystems, since they
4643 * need to register a subsys_id, among other things */
4644 BUG_ON(ss->module);
4645}
4646
4647/**
4648 * cgroup_load_subsys: load and register a modular subsystem at runtime
4649 * @ss: the subsystem to load
4650 *
4651 * This function should be called in a modular subsystem's initcall. If the
88393161 4652 * subsystem is built as a module, it will be assigned a new subsys_id and set
e6a1105b
BB
4653 * up for use. If the subsystem is built-in anyway, work is delegated to the
4654 * simpler cgroup_init_subsys.
4655 */
4656int __init_or_module cgroup_load_subsys(struct cgroup_subsys *ss)
4657{
e6a1105b 4658 struct cgroup_subsys_state *css;
d19e19de 4659 int i, ret;
b67bfe0d 4660 struct hlist_node *tmp;
5abb8855 4661 struct css_set *cset;
0ac801fe 4662 unsigned long key;
e6a1105b
BB
4663
4664 /* check name and function validity */
4665 if (ss->name == NULL || strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN ||
92fb9748 4666 ss->css_alloc == NULL || ss->css_free == NULL)
e6a1105b
BB
4667 return -EINVAL;
4668
4669 /*
4670 * we don't support callbacks in modular subsystems. this check is
4671 * before the ss->module check for consistency; a subsystem that could
4672 * be a module should still have no callbacks even if the user isn't
4673 * compiling it as one.
4674 */
4675 if (ss->fork || ss->exit)
4676 return -EINVAL;
4677
4678 /*
4679 * an optionally modular subsystem is built-in: we want to do nothing,
4680 * since cgroup_init_subsys will have already taken care of it.
4681 */
4682 if (ss->module == NULL) {
be45c900 4683 /* a sanity check */
9871bf95 4684 BUG_ON(cgroup_subsys[ss->subsys_id] != ss);
e6a1105b
BB
4685 return 0;
4686 }
4687
8e3f6541
TH
4688 /* init base cftset */
4689 cgroup_init_cftsets(ss);
4690
e6a1105b 4691 mutex_lock(&cgroup_mutex);
9871bf95 4692 cgroup_subsys[ss->subsys_id] = ss;
e6a1105b
BB
4693
4694 /*
92fb9748 4695 * no ss->css_alloc seems to need anything important in the ss
9871bf95 4696 * struct, so this can happen first (i.e. before the dummy root
92fb9748 4697 * attachment).
e6a1105b 4698 */
9871bf95 4699 css = ss->css_alloc(cgroup_dummy_top);
e6a1105b 4700 if (IS_ERR(css)) {
9871bf95
TH
4701 /* failure case - need to deassign the cgroup_subsys[] slot. */
4702 cgroup_subsys[ss->subsys_id] = NULL;
e6a1105b
BB
4703 mutex_unlock(&cgroup_mutex);
4704 return PTR_ERR(css);
4705 }
4706
9871bf95
TH
4707 list_add(&ss->sibling, &cgroup_dummy_root.subsys_list);
4708 ss->root = &cgroup_dummy_root;
e6a1105b
BB
4709
4710 /* our new subsystem will be attached to the dummy hierarchy. */
9871bf95 4711 init_cgroup_css(css, ss, cgroup_dummy_top);
e6a1105b
BB
4712 /* init_idr must be after init_cgroup_css because it sets css->id. */
4713 if (ss->use_id) {
d19e19de
TH
4714 ret = cgroup_init_idr(ss, css);
4715 if (ret)
4716 goto err_unload;
e6a1105b
BB
4717 }
4718
4719 /*
4720 * Now we need to entangle the css into the existing css_sets. unlike
4721 * in cgroup_init_subsys, there are now multiple css_sets, so each one
4722 * will need a new pointer to it; done by iterating the css_set_table.
4723 * furthermore, modifying the existing css_sets will corrupt the hash
4724 * table state, so each changed css_set will need its hash recomputed.
4725 * this is all done under the css_set_lock.
4726 */
4727 write_lock(&css_set_lock);
5abb8855 4728 hash_for_each_safe(css_set_table, i, tmp, cset, hlist) {
0ac801fe 4729 /* skip entries that we already rehashed */
5abb8855 4730 if (cset->subsys[ss->subsys_id])
0ac801fe
LZ
4731 continue;
4732 /* remove existing entry */
5abb8855 4733 hash_del(&cset->hlist);
0ac801fe 4734 /* set new value */
5abb8855 4735 cset->subsys[ss->subsys_id] = css;
0ac801fe 4736 /* recompute hash and restore entry */
5abb8855
TH
4737 key = css_set_hash(cset->subsys);
4738 hash_add(css_set_table, &cset->hlist, key);
e6a1105b
BB
4739 }
4740 write_unlock(&css_set_lock);
4741
9871bf95 4742 ret = online_css(ss, cgroup_dummy_top);
b1929db4
TH
4743 if (ret)
4744 goto err_unload;
a8638030 4745
e6a1105b
BB
4746 /* success! */
4747 mutex_unlock(&cgroup_mutex);
4748 return 0;
d19e19de
TH
4749
4750err_unload:
4751 mutex_unlock(&cgroup_mutex);
4752 /* @ss can't be mounted here as try_module_get() would fail */
4753 cgroup_unload_subsys(ss);
4754 return ret;
ddbcc7e8 4755}
e6a1105b 4756EXPORT_SYMBOL_GPL(cgroup_load_subsys);
ddbcc7e8 4757
cf5d5941
BB
4758/**
4759 * cgroup_unload_subsys: unload a modular subsystem
4760 * @ss: the subsystem to unload
4761 *
4762 * This function should be called in a modular subsystem's exitcall. When this
4763 * function is invoked, the refcount on the subsystem's module will be 0, so
4764 * the subsystem will not be attached to any hierarchy.
4765 */
4766void cgroup_unload_subsys(struct cgroup_subsys *ss)
4767{
69d0206c 4768 struct cgrp_cset_link *link;
cf5d5941
BB
4769
4770 BUG_ON(ss->module == NULL);
4771
4772 /*
4773 * we shouldn't be called if the subsystem is in use, and the use of
1d5be6b2 4774 * try_module_get() in rebind_subsystems() should ensure that it
cf5d5941
BB
4775 * doesn't start being used while we're killing it off.
4776 */
9871bf95 4777 BUG_ON(ss->root != &cgroup_dummy_root);
cf5d5941
BB
4778
4779 mutex_lock(&cgroup_mutex);
02ae7486 4780
9871bf95 4781 offline_css(ss, cgroup_dummy_top);
02ae7486 4782
c897ff68 4783 if (ss->use_id)
02ae7486 4784 idr_destroy(&ss->idr);
02ae7486 4785
cf5d5941 4786 /* deassign the subsys_id */
9871bf95 4787 cgroup_subsys[ss->subsys_id] = NULL;
cf5d5941 4788
9871bf95 4789 /* remove subsystem from the dummy root's list of subsystems */
8d258797 4790 list_del_init(&ss->sibling);
cf5d5941
BB
4791
4792 /*
9871bf95
TH
4793 * disentangle the css from all css_sets attached to the dummy
4794 * top. as in loading, we need to pay our respects to the hashtable
4795 * gods.
cf5d5941
BB
4796 */
4797 write_lock(&css_set_lock);
9871bf95 4798 list_for_each_entry(link, &cgroup_dummy_top->cset_links, cset_link) {
69d0206c 4799 struct css_set *cset = link->cset;
0ac801fe 4800 unsigned long key;
cf5d5941 4801
5abb8855
TH
4802 hash_del(&cset->hlist);
4803 cset->subsys[ss->subsys_id] = NULL;
4804 key = css_set_hash(cset->subsys);
4805 hash_add(css_set_table, &cset->hlist, key);
cf5d5941
BB
4806 }
4807 write_unlock(&css_set_lock);
4808
4809 /*
9871bf95
TH
4810 * remove subsystem's css from the cgroup_dummy_top and free it -
4811 * need to free before marking as null because ss->css_free needs
4812 * the cgrp->subsys pointer to find their state. note that this
4813 * also takes care of freeing the css_id.
cf5d5941 4814 */
9871bf95
TH
4815 ss->css_free(cgroup_dummy_top);
4816 cgroup_dummy_top->subsys[ss->subsys_id] = NULL;
cf5d5941
BB
4817
4818 mutex_unlock(&cgroup_mutex);
4819}
4820EXPORT_SYMBOL_GPL(cgroup_unload_subsys);
4821
ddbcc7e8 4822/**
a043e3b2
LZ
4823 * cgroup_init_early - cgroup initialization at system boot
4824 *
4825 * Initialize cgroups at system boot, and initialize any
4826 * subsystems that request early init.
ddbcc7e8
PM
4827 */
4828int __init cgroup_init_early(void)
4829{
30159ec7 4830 struct cgroup_subsys *ss;
ddbcc7e8 4831 int i;
30159ec7 4832
146aa1bd 4833 atomic_set(&init_css_set.refcount, 1);
69d0206c 4834 INIT_LIST_HEAD(&init_css_set.cgrp_links);
817929ec 4835 INIT_LIST_HEAD(&init_css_set.tasks);
472b1053 4836 INIT_HLIST_NODE(&init_css_set.hlist);
817929ec 4837 css_set_count = 1;
9871bf95
TH
4838 init_cgroup_root(&cgroup_dummy_root);
4839 cgroup_root_count = 1;
a4ea1cc9 4840 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
817929ec 4841
69d0206c 4842 init_cgrp_cset_link.cset = &init_css_set;
9871bf95
TH
4843 init_cgrp_cset_link.cgrp = cgroup_dummy_top;
4844 list_add(&init_cgrp_cset_link.cset_link, &cgroup_dummy_top->cset_links);
69d0206c 4845 list_add(&init_cgrp_cset_link.cgrp_link, &init_css_set.cgrp_links);
ddbcc7e8 4846
30159ec7
TH
4847 /* at bootup time, we don't worry about modular subsystems */
4848 for_each_builtin_subsys(ss, i) {
ddbcc7e8
PM
4849 BUG_ON(!ss->name);
4850 BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
92fb9748
TH
4851 BUG_ON(!ss->css_alloc);
4852 BUG_ON(!ss->css_free);
ddbcc7e8 4853 if (ss->subsys_id != i) {
cfe36bde 4854 printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
ddbcc7e8
PM
4855 ss->name, ss->subsys_id);
4856 BUG();
4857 }
4858
4859 if (ss->early_init)
4860 cgroup_init_subsys(ss);
4861 }
4862 return 0;
4863}
4864
4865/**
a043e3b2
LZ
4866 * cgroup_init - cgroup initialization
4867 *
4868 * Register cgroup filesystem and /proc file, and initialize
4869 * any subsystems that didn't request early init.
ddbcc7e8
PM
4870 */
4871int __init cgroup_init(void)
4872{
30159ec7 4873 struct cgroup_subsys *ss;
0ac801fe 4874 unsigned long key;
30159ec7 4875 int i, err;
a424316c
PM
4876
4877 err = bdi_init(&cgroup_backing_dev_info);
4878 if (err)
4879 return err;
ddbcc7e8 4880
30159ec7 4881 for_each_builtin_subsys(ss, i) {
ddbcc7e8
PM
4882 if (!ss->early_init)
4883 cgroup_init_subsys(ss);
38460b48 4884 if (ss->use_id)
e6a1105b 4885 cgroup_init_idr(ss, init_css_set.subsys[ss->subsys_id]);
ddbcc7e8
PM
4886 }
4887
fa3ca07e 4888 /* allocate id for the dummy hierarchy */
54e7b4eb
TH
4889 mutex_lock(&cgroup_mutex);
4890 mutex_lock(&cgroup_root_mutex);
4891
82fe9b0d
TH
4892 /* Add init_css_set to the hash table */
4893 key = css_set_hash(init_css_set.subsys);
4894 hash_add(css_set_table, &init_css_set.hlist, key);
4895
fc76df70 4896 BUG_ON(cgroup_init_root_id(&cgroup_dummy_root, 0, 1));
676db4af 4897
54e7b4eb
TH
4898 mutex_unlock(&cgroup_root_mutex);
4899 mutex_unlock(&cgroup_mutex);
4900
676db4af
GKH
4901 cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
4902 if (!cgroup_kobj) {
4903 err = -ENOMEM;
4904 goto out;
4905 }
4906
ddbcc7e8 4907 err = register_filesystem(&cgroup_fs_type);
676db4af
GKH
4908 if (err < 0) {
4909 kobject_put(cgroup_kobj);
ddbcc7e8 4910 goto out;
676db4af 4911 }
ddbcc7e8 4912
46ae220b 4913 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
a424316c 4914
ddbcc7e8 4915out:
a424316c
PM
4916 if (err)
4917 bdi_destroy(&cgroup_backing_dev_info);
4918
ddbcc7e8
PM
4919 return err;
4920}
b4f48b63 4921
a424316c
PM
4922/*
4923 * proc_cgroup_show()
4924 * - Print task's cgroup paths into seq_file, one line for each hierarchy
4925 * - Used for /proc/<pid>/cgroup.
4926 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
4927 * doesn't really matter if tsk->cgroup changes after we read it,
956db3ca 4928 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
a424316c
PM
4929 * anyway. No need to check that tsk->cgroup != NULL, thanks to
4930 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
4931 * cgroup to top_cgroup.
4932 */
4933
4934/* TODO: Use a proper seq_file iterator */
8d8b97ba 4935int proc_cgroup_show(struct seq_file *m, void *v)
a424316c
PM
4936{
4937 struct pid *pid;
4938 struct task_struct *tsk;
4939 char *buf;
4940 int retval;
4941 struct cgroupfs_root *root;
4942
4943 retval = -ENOMEM;
4944 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4945 if (!buf)
4946 goto out;
4947
4948 retval = -ESRCH;
4949 pid = m->private;
4950 tsk = get_pid_task(pid, PIDTYPE_PID);
4951 if (!tsk)
4952 goto out_free;
4953
4954 retval = 0;
4955
4956 mutex_lock(&cgroup_mutex);
4957
e5f6a860 4958 for_each_active_root(root) {
a424316c 4959 struct cgroup_subsys *ss;
bd89aabc 4960 struct cgroup *cgrp;
a424316c
PM
4961 int count = 0;
4962
2c6ab6d2 4963 seq_printf(m, "%d:", root->hierarchy_id);
5549c497 4964 for_each_root_subsys(root, ss)
a424316c 4965 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
c6d57f33
PM
4966 if (strlen(root->name))
4967 seq_printf(m, "%sname=%s", count ? "," : "",
4968 root->name);
a424316c 4969 seq_putc(m, ':');
7717f7ba 4970 cgrp = task_cgroup_from_root(tsk, root);
bd89aabc 4971 retval = cgroup_path(cgrp, buf, PAGE_SIZE);
a424316c
PM
4972 if (retval < 0)
4973 goto out_unlock;
4974 seq_puts(m, buf);
4975 seq_putc(m, '\n');
4976 }
4977
4978out_unlock:
4979 mutex_unlock(&cgroup_mutex);
4980 put_task_struct(tsk);
4981out_free:
4982 kfree(buf);
4983out:
4984 return retval;
4985}
4986
a424316c
PM
4987/* Display information about each subsystem and each hierarchy */
4988static int proc_cgroupstats_show(struct seq_file *m, void *v)
4989{
30159ec7 4990 struct cgroup_subsys *ss;
a424316c 4991 int i;
a424316c 4992
8bab8dde 4993 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
aae8aab4
BB
4994 /*
4995 * ideally we don't want subsystems moving around while we do this.
4996 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
4997 * subsys/hierarchy state.
4998 */
a424316c 4999 mutex_lock(&cgroup_mutex);
30159ec7
TH
5000
5001 for_each_subsys(ss, i)
2c6ab6d2
PM
5002 seq_printf(m, "%s\t%d\t%d\t%d\n",
5003 ss->name, ss->root->hierarchy_id,
8bab8dde 5004 ss->root->number_of_cgroups, !ss->disabled);
30159ec7 5005
a424316c
PM
5006 mutex_unlock(&cgroup_mutex);
5007 return 0;
5008}
5009
5010static int cgroupstats_open(struct inode *inode, struct file *file)
5011{
9dce07f1 5012 return single_open(file, proc_cgroupstats_show, NULL);
a424316c
PM
5013}
5014
828c0950 5015static const struct file_operations proc_cgroupstats_operations = {
a424316c
PM
5016 .open = cgroupstats_open,
5017 .read = seq_read,
5018 .llseek = seq_lseek,
5019 .release = single_release,
5020};
5021
b4f48b63
PM
5022/**
5023 * cgroup_fork - attach newly forked task to its parents cgroup.
a043e3b2 5024 * @child: pointer to task_struct of forking parent process.
b4f48b63
PM
5025 *
5026 * Description: A task inherits its parent's cgroup at fork().
5027 *
5028 * A pointer to the shared css_set was automatically copied in
5029 * fork.c by dup_task_struct(). However, we ignore that copy, since
9bb71308
TH
5030 * it was not made under the protection of RCU or cgroup_mutex, so
5031 * might no longer be a valid cgroup pointer. cgroup_attach_task() might
5032 * have already changed current->cgroups, allowing the previously
5033 * referenced cgroup group to be removed and freed.
b4f48b63
PM
5034 *
5035 * At the point that cgroup_fork() is called, 'current' is the parent
5036 * task, and the passed argument 'child' points to the child task.
5037 */
5038void cgroup_fork(struct task_struct *child)
5039{
9bb71308 5040 task_lock(current);
a8ad805c 5041 get_css_set(task_css_set(current));
817929ec 5042 child->cgroups = current->cgroups;
9bb71308 5043 task_unlock(current);
817929ec 5044 INIT_LIST_HEAD(&child->cg_list);
b4f48b63
PM
5045}
5046
817929ec 5047/**
a043e3b2
LZ
5048 * cgroup_post_fork - called on a new task after adding it to the task list
5049 * @child: the task in question
5050 *
5edee61e
TH
5051 * Adds the task to the list running through its css_set if necessary and
5052 * call the subsystem fork() callbacks. Has to be after the task is
5053 * visible on the task list in case we race with the first call to
5054 * cgroup_iter_start() - to guarantee that the new task ends up on its
5055 * list.
a043e3b2 5056 */
817929ec
PM
5057void cgroup_post_fork(struct task_struct *child)
5058{
30159ec7 5059 struct cgroup_subsys *ss;
5edee61e
TH
5060 int i;
5061
3ce3230a
FW
5062 /*
5063 * use_task_css_set_links is set to 1 before we walk the tasklist
5064 * under the tasklist_lock and we read it here after we added the child
5065 * to the tasklist under the tasklist_lock as well. If the child wasn't
5066 * yet in the tasklist when we walked through it from
5067 * cgroup_enable_task_cg_lists(), then use_task_css_set_links value
5068 * should be visible now due to the paired locking and barriers implied
5069 * by LOCK/UNLOCK: it is written before the tasklist_lock unlock
5070 * in cgroup_enable_task_cg_lists() and read here after the tasklist_lock
5071 * lock on fork.
5072 */
817929ec
PM
5073 if (use_task_css_set_links) {
5074 write_lock(&css_set_lock);
d8783832
TH
5075 task_lock(child);
5076 if (list_empty(&child->cg_list))
a8ad805c 5077 list_add(&child->cg_list, &task_css_set(child)->tasks);
d8783832 5078 task_unlock(child);
817929ec
PM
5079 write_unlock(&css_set_lock);
5080 }
5edee61e
TH
5081
5082 /*
5083 * Call ss->fork(). This must happen after @child is linked on
5084 * css_set; otherwise, @child might change state between ->fork()
5085 * and addition to css_set.
5086 */
5087 if (need_forkexit_callback) {
7d8e0bf5
LZ
5088 /*
5089 * fork/exit callbacks are supported only for builtin
5090 * subsystems, and the builtin section of the subsys
5091 * array is immutable, so we don't need to lock the
5092 * subsys array here. On the other hand, modular section
5093 * of the array can be freed at module unload, so we
5094 * can't touch that.
5095 */
30159ec7 5096 for_each_builtin_subsys(ss, i)
5edee61e
TH
5097 if (ss->fork)
5098 ss->fork(child);
5edee61e 5099 }
817929ec 5100}
5edee61e 5101
b4f48b63
PM
5102/**
5103 * cgroup_exit - detach cgroup from exiting task
5104 * @tsk: pointer to task_struct of exiting process
a043e3b2 5105 * @run_callback: run exit callbacks?
b4f48b63
PM
5106 *
5107 * Description: Detach cgroup from @tsk and release it.
5108 *
5109 * Note that cgroups marked notify_on_release force every task in
5110 * them to take the global cgroup_mutex mutex when exiting.
5111 * This could impact scaling on very large systems. Be reluctant to
5112 * use notify_on_release cgroups where very high task exit scaling
5113 * is required on large systems.
5114 *
5115 * the_top_cgroup_hack:
5116 *
5117 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
5118 *
5119 * We call cgroup_exit() while the task is still competent to
5120 * handle notify_on_release(), then leave the task attached to the
5121 * root cgroup in each hierarchy for the remainder of its exit.
5122 *
5123 * To do this properly, we would increment the reference count on
5124 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
5125 * code we would add a second cgroup function call, to drop that
5126 * reference. This would just create an unnecessary hot spot on
5127 * the top_cgroup reference count, to no avail.
5128 *
5129 * Normally, holding a reference to a cgroup without bumping its
5130 * count is unsafe. The cgroup could go away, or someone could
5131 * attach us to a different cgroup, decrementing the count on
5132 * the first cgroup that we never incremented. But in this case,
5133 * top_cgroup isn't going away, and either task has PF_EXITING set,
956db3ca
CW
5134 * which wards off any cgroup_attach_task() attempts, or task is a failed
5135 * fork, never visible to cgroup_attach_task.
b4f48b63
PM
5136 */
5137void cgroup_exit(struct task_struct *tsk, int run_callbacks)
5138{
30159ec7 5139 struct cgroup_subsys *ss;
5abb8855 5140 struct css_set *cset;
d41d5a01 5141 int i;
817929ec
PM
5142
5143 /*
5144 * Unlink from the css_set task list if necessary.
5145 * Optimistically check cg_list before taking
5146 * css_set_lock
5147 */
5148 if (!list_empty(&tsk->cg_list)) {
5149 write_lock(&css_set_lock);
5150 if (!list_empty(&tsk->cg_list))
8d258797 5151 list_del_init(&tsk->cg_list);
817929ec
PM
5152 write_unlock(&css_set_lock);
5153 }
5154
b4f48b63
PM
5155 /* Reassign the task to the init_css_set. */
5156 task_lock(tsk);
a8ad805c
TH
5157 cset = task_css_set(tsk);
5158 RCU_INIT_POINTER(tsk->cgroups, &init_css_set);
d41d5a01
PZ
5159
5160 if (run_callbacks && need_forkexit_callback) {
7d8e0bf5
LZ
5161 /*
5162 * fork/exit callbacks are supported only for builtin
5163 * subsystems, see cgroup_post_fork() for details.
5164 */
30159ec7 5165 for_each_builtin_subsys(ss, i) {
d41d5a01 5166 if (ss->exit) {
a8ad805c 5167 struct cgroup *old_cgrp = cset->subsys[i]->cgroup;
d41d5a01 5168 struct cgroup *cgrp = task_cgroup(tsk, i);
30159ec7 5169
761b3ef5 5170 ss->exit(cgrp, old_cgrp, tsk);
d41d5a01
PZ
5171 }
5172 }
5173 }
b4f48b63 5174 task_unlock(tsk);
d41d5a01 5175
5abb8855 5176 put_css_set_taskexit(cset);
b4f48b63 5177}
697f4161 5178
bd89aabc 5179static void check_for_release(struct cgroup *cgrp)
81a6a5cd 5180{
f50daa70 5181 if (cgroup_is_releasable(cgrp) &&
6f3d828f 5182 list_empty(&cgrp->cset_links) && list_empty(&cgrp->children)) {
f50daa70
LZ
5183 /*
5184 * Control Group is currently removeable. If it's not
81a6a5cd 5185 * already queued for a userspace notification, queue
f50daa70
LZ
5186 * it now
5187 */
81a6a5cd 5188 int need_schedule_work = 0;
f50daa70 5189
cdcc136f 5190 raw_spin_lock(&release_list_lock);
54766d4a 5191 if (!cgroup_is_dead(cgrp) &&
bd89aabc
PM
5192 list_empty(&cgrp->release_list)) {
5193 list_add(&cgrp->release_list, &release_list);
81a6a5cd
PM
5194 need_schedule_work = 1;
5195 }
cdcc136f 5196 raw_spin_unlock(&release_list_lock);
81a6a5cd
PM
5197 if (need_schedule_work)
5198 schedule_work(&release_agent_work);
5199 }
5200}
5201
81a6a5cd
PM
5202/*
5203 * Notify userspace when a cgroup is released, by running the
5204 * configured release agent with the name of the cgroup (path
5205 * relative to the root of cgroup file system) as the argument.
5206 *
5207 * Most likely, this user command will try to rmdir this cgroup.
5208 *
5209 * This races with the possibility that some other task will be
5210 * attached to this cgroup before it is removed, or that some other
5211 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
5212 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
5213 * unused, and this cgroup will be reprieved from its death sentence,
5214 * to continue to serve a useful existence. Next time it's released,
5215 * we will get notified again, if it still has 'notify_on_release' set.
5216 *
5217 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
5218 * means only wait until the task is successfully execve()'d. The
5219 * separate release agent task is forked by call_usermodehelper(),
5220 * then control in this thread returns here, without waiting for the
5221 * release agent task. We don't bother to wait because the caller of
5222 * this routine has no use for the exit status of the release agent
5223 * task, so no sense holding our caller up for that.
81a6a5cd 5224 */
81a6a5cd
PM
5225static void cgroup_release_agent(struct work_struct *work)
5226{
5227 BUG_ON(work != &release_agent_work);
5228 mutex_lock(&cgroup_mutex);
cdcc136f 5229 raw_spin_lock(&release_list_lock);
81a6a5cd
PM
5230 while (!list_empty(&release_list)) {
5231 char *argv[3], *envp[3];
5232 int i;
e788e066 5233 char *pathbuf = NULL, *agentbuf = NULL;
bd89aabc 5234 struct cgroup *cgrp = list_entry(release_list.next,
81a6a5cd
PM
5235 struct cgroup,
5236 release_list);
bd89aabc 5237 list_del_init(&cgrp->release_list);
cdcc136f 5238 raw_spin_unlock(&release_list_lock);
81a6a5cd 5239 pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
e788e066
PM
5240 if (!pathbuf)
5241 goto continue_free;
5242 if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
5243 goto continue_free;
5244 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
5245 if (!agentbuf)
5246 goto continue_free;
81a6a5cd
PM
5247
5248 i = 0;
e788e066
PM
5249 argv[i++] = agentbuf;
5250 argv[i++] = pathbuf;
81a6a5cd
PM
5251 argv[i] = NULL;
5252
5253 i = 0;
5254 /* minimal command environment */
5255 envp[i++] = "HOME=/";
5256 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
5257 envp[i] = NULL;
5258
5259 /* Drop the lock while we invoke the usermode helper,
5260 * since the exec could involve hitting disk and hence
5261 * be a slow process */
5262 mutex_unlock(&cgroup_mutex);
5263 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
81a6a5cd 5264 mutex_lock(&cgroup_mutex);
e788e066
PM
5265 continue_free:
5266 kfree(pathbuf);
5267 kfree(agentbuf);
cdcc136f 5268 raw_spin_lock(&release_list_lock);
81a6a5cd 5269 }
cdcc136f 5270 raw_spin_unlock(&release_list_lock);
81a6a5cd
PM
5271 mutex_unlock(&cgroup_mutex);
5272}
8bab8dde
PM
5273
5274static int __init cgroup_disable(char *str)
5275{
30159ec7 5276 struct cgroup_subsys *ss;
8bab8dde 5277 char *token;
30159ec7 5278 int i;
8bab8dde
PM
5279
5280 while ((token = strsep(&str, ",")) != NULL) {
5281 if (!*token)
5282 continue;
be45c900 5283
30159ec7
TH
5284 /*
5285 * cgroup_disable, being at boot time, can't know about
5286 * module subsystems, so we don't worry about them.
5287 */
5288 for_each_builtin_subsys(ss, i) {
8bab8dde
PM
5289 if (!strcmp(token, ss->name)) {
5290 ss->disabled = 1;
5291 printk(KERN_INFO "Disabling %s control group"
5292 " subsystem\n", ss->name);
5293 break;
5294 }
5295 }
5296 }
5297 return 1;
5298}
5299__setup("cgroup_disable=", cgroup_disable);
38460b48
KH
5300
5301/*
5302 * Functons for CSS ID.
5303 */
5304
54766d4a 5305/* to get ID other than 0, this should be called when !cgroup_is_dead() */
38460b48
KH
5306unsigned short css_id(struct cgroup_subsys_state *css)
5307{
7f0f1546
KH
5308 struct css_id *cssid;
5309
5310 /*
5311 * This css_id() can return correct value when somone has refcnt
5312 * on this or this is under rcu_read_lock(). Once css->id is allocated,
5313 * it's unchanged until freed.
5314 */
d3daf28d 5315 cssid = rcu_dereference_raw(css->id);
38460b48
KH
5316
5317 if (cssid)
5318 return cssid->id;
5319 return 0;
5320}
67523c48 5321EXPORT_SYMBOL_GPL(css_id);
38460b48 5322
747388d7
KH
5323/**
5324 * css_is_ancestor - test "root" css is an ancestor of "child"
5325 * @child: the css to be tested.
5326 * @root: the css supporsed to be an ancestor of the child.
5327 *
5328 * Returns true if "root" is an ancestor of "child" in its hierarchy. Because
91c63734 5329 * this function reads css->id, the caller must hold rcu_read_lock().
747388d7
KH
5330 * But, considering usual usage, the csses should be valid objects after test.
5331 * Assuming that the caller will do some action to the child if this returns
5332 * returns true, the caller must take "child";s reference count.
5333 * If "child" is valid object and this returns true, "root" is valid, too.
5334 */
5335
38460b48 5336bool css_is_ancestor(struct cgroup_subsys_state *child,
0b7f569e 5337 const struct cgroup_subsys_state *root)
38460b48 5338{
747388d7
KH
5339 struct css_id *child_id;
5340 struct css_id *root_id;
38460b48 5341
747388d7 5342 child_id = rcu_dereference(child->id);
91c63734
JW
5343 if (!child_id)
5344 return false;
747388d7 5345 root_id = rcu_dereference(root->id);
91c63734
JW
5346 if (!root_id)
5347 return false;
5348 if (child_id->depth < root_id->depth)
5349 return false;
5350 if (child_id->stack[root_id->depth] != root_id->id)
5351 return false;
5352 return true;
38460b48
KH
5353}
5354
38460b48
KH
5355void free_css_id(struct cgroup_subsys *ss, struct cgroup_subsys_state *css)
5356{
a4ea1cc9
TH
5357 struct css_id *id = rcu_dereference_protected(css->id, true);
5358
38460b48
KH
5359 /* When this is called before css_id initialization, id can be NULL */
5360 if (!id)
5361 return;
5362
5363 BUG_ON(!ss->use_id);
5364
5365 rcu_assign_pointer(id->css, NULL);
5366 rcu_assign_pointer(css->id, NULL);
42aee6c4 5367 spin_lock(&ss->id_lock);
38460b48 5368 idr_remove(&ss->idr, id->id);
42aee6c4 5369 spin_unlock(&ss->id_lock);
025cea99 5370 kfree_rcu(id, rcu_head);
38460b48 5371}
67523c48 5372EXPORT_SYMBOL_GPL(free_css_id);
38460b48
KH
5373
5374/*
5375 * This is called by init or create(). Then, calls to this function are
5376 * always serialized (By cgroup_mutex() at create()).
5377 */
5378
5379static struct css_id *get_new_cssid(struct cgroup_subsys *ss, int depth)
5380{
5381 struct css_id *newid;
d228d9ec 5382 int ret, size;
38460b48
KH
5383
5384 BUG_ON(!ss->use_id);
5385
5386 size = sizeof(*newid) + sizeof(unsigned short) * (depth + 1);
5387 newid = kzalloc(size, GFP_KERNEL);
5388 if (!newid)
5389 return ERR_PTR(-ENOMEM);
d228d9ec
TH
5390
5391 idr_preload(GFP_KERNEL);
42aee6c4 5392 spin_lock(&ss->id_lock);
38460b48 5393 /* Don't use 0. allocates an ID of 1-65535 */
d228d9ec 5394 ret = idr_alloc(&ss->idr, newid, 1, CSS_ID_MAX + 1, GFP_NOWAIT);
42aee6c4 5395 spin_unlock(&ss->id_lock);
d228d9ec 5396 idr_preload_end();
38460b48
KH
5397
5398 /* Returns error when there are no free spaces for new ID.*/
d228d9ec 5399 if (ret < 0)
38460b48 5400 goto err_out;
38460b48 5401
d228d9ec 5402 newid->id = ret;
38460b48
KH
5403 newid->depth = depth;
5404 return newid;
38460b48
KH
5405err_out:
5406 kfree(newid);
d228d9ec 5407 return ERR_PTR(ret);
38460b48
KH
5408
5409}
5410
e6a1105b
BB
5411static int __init_or_module cgroup_init_idr(struct cgroup_subsys *ss,
5412 struct cgroup_subsys_state *rootcss)
38460b48
KH
5413{
5414 struct css_id *newid;
38460b48 5415
42aee6c4 5416 spin_lock_init(&ss->id_lock);
38460b48
KH
5417 idr_init(&ss->idr);
5418
38460b48
KH
5419 newid = get_new_cssid(ss, 0);
5420 if (IS_ERR(newid))
5421 return PTR_ERR(newid);
5422
5423 newid->stack[0] = newid->id;
a4ea1cc9
TH
5424 RCU_INIT_POINTER(newid->css, rootcss);
5425 RCU_INIT_POINTER(rootcss->id, newid);
38460b48
KH
5426 return 0;
5427}
5428
5429static int alloc_css_id(struct cgroup_subsys *ss, struct cgroup *parent,
5430 struct cgroup *child)
5431{
5432 int subsys_id, i, depth = 0;
5433 struct cgroup_subsys_state *parent_css, *child_css;
fae9c791 5434 struct css_id *child_id, *parent_id;
38460b48
KH
5435
5436 subsys_id = ss->subsys_id;
5437 parent_css = parent->subsys[subsys_id];
5438 child_css = child->subsys[subsys_id];
a4ea1cc9 5439 parent_id = rcu_dereference_protected(parent_css->id, true);
94b3dd0f 5440 depth = parent_id->depth + 1;
38460b48
KH
5441
5442 child_id = get_new_cssid(ss, depth);
5443 if (IS_ERR(child_id))
5444 return PTR_ERR(child_id);
5445
5446 for (i = 0; i < depth; i++)
5447 child_id->stack[i] = parent_id->stack[i];
5448 child_id->stack[depth] = child_id->id;
5449 /*
5450 * child_id->css pointer will be set after this cgroup is available
5451 * see cgroup_populate_dir()
5452 */
5453 rcu_assign_pointer(child_css->id, child_id);
5454
5455 return 0;
5456}
5457
5458/**
5459 * css_lookup - lookup css by id
5460 * @ss: cgroup subsys to be looked into.
5461 * @id: the id
5462 *
5463 * Returns pointer to cgroup_subsys_state if there is valid one with id.
5464 * NULL if not. Should be called under rcu_read_lock()
5465 */
5466struct cgroup_subsys_state *css_lookup(struct cgroup_subsys *ss, int id)
5467{
5468 struct css_id *cssid = NULL;
5469
5470 BUG_ON(!ss->use_id);
5471 cssid = idr_find(&ss->idr, id);
5472
5473 if (unlikely(!cssid))
5474 return NULL;
5475
5476 return rcu_dereference(cssid->css);
5477}
67523c48 5478EXPORT_SYMBOL_GPL(css_lookup);
38460b48 5479
e5d1367f
SE
5480/*
5481 * get corresponding css from file open on cgroupfs directory
5482 */
5483struct cgroup_subsys_state *cgroup_css_from_dir(struct file *f, int id)
5484{
5485 struct cgroup *cgrp;
5486 struct inode *inode;
5487 struct cgroup_subsys_state *css;
5488
496ad9aa 5489 inode = file_inode(f);
e5d1367f
SE
5490 /* check in cgroup filesystem dir */
5491 if (inode->i_op != &cgroup_dir_inode_operations)
5492 return ERR_PTR(-EBADF);
5493
5494 if (id < 0 || id >= CGROUP_SUBSYS_COUNT)
5495 return ERR_PTR(-EINVAL);
5496
5497 /* get cgroup */
5498 cgrp = __d_cgrp(f->f_dentry);
5499 css = cgrp->subsys[id];
5500 return css ? css : ERR_PTR(-ENOENT);
5501}
5502
fe693435 5503#ifdef CONFIG_CGROUP_DEBUG
03c78cbe 5504static struct cgroup_subsys_state *debug_css_alloc(struct cgroup *cgrp)
fe693435
PM
5505{
5506 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5507
5508 if (!css)
5509 return ERR_PTR(-ENOMEM);
5510
5511 return css;
5512}
5513
03c78cbe 5514static void debug_css_free(struct cgroup *cgrp)
fe693435 5515{
03c78cbe 5516 kfree(cgrp->subsys[debug_subsys_id]);
fe693435
PM
5517}
5518
03c78cbe 5519static u64 debug_taskcount_read(struct cgroup *cgrp, struct cftype *cft)
fe693435 5520{
03c78cbe 5521 return cgroup_task_count(cgrp);
fe693435
PM
5522}
5523
03c78cbe 5524static u64 current_css_set_read(struct cgroup *cgrp, struct cftype *cft)
fe693435
PM
5525{
5526 return (u64)(unsigned long)current->cgroups;
5527}
5528
03c78cbe
LZ
5529static u64 current_css_set_refcount_read(struct cgroup *cgrp,
5530 struct cftype *cft)
fe693435
PM
5531{
5532 u64 count;
5533
5534 rcu_read_lock();
a8ad805c 5535 count = atomic_read(&task_css_set(current)->refcount);
fe693435
PM
5536 rcu_read_unlock();
5537 return count;
5538}
5539
03c78cbe 5540static int current_css_set_cg_links_read(struct cgroup *cgrp,
7717f7ba
PM
5541 struct cftype *cft,
5542 struct seq_file *seq)
5543{
69d0206c 5544 struct cgrp_cset_link *link;
5abb8855 5545 struct css_set *cset;
7717f7ba
PM
5546
5547 read_lock(&css_set_lock);
5548 rcu_read_lock();
5abb8855 5549 cset = rcu_dereference(current->cgroups);
69d0206c 5550 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba
PM
5551 struct cgroup *c = link->cgrp;
5552 const char *name;
5553
5554 if (c->dentry)
5555 name = c->dentry->d_name.name;
5556 else
5557 name = "?";
2c6ab6d2
PM
5558 seq_printf(seq, "Root %d group %s\n",
5559 c->root->hierarchy_id, name);
7717f7ba
PM
5560 }
5561 rcu_read_unlock();
5562 read_unlock(&css_set_lock);
5563 return 0;
5564}
5565
5566#define MAX_TASKS_SHOWN_PER_CSS 25
03c78cbe 5567static int cgroup_css_links_read(struct cgroup *cgrp,
7717f7ba
PM
5568 struct cftype *cft,
5569 struct seq_file *seq)
5570{
69d0206c 5571 struct cgrp_cset_link *link;
7717f7ba
PM
5572
5573 read_lock(&css_set_lock);
03c78cbe 5574 list_for_each_entry(link, &cgrp->cset_links, cset_link) {
69d0206c 5575 struct css_set *cset = link->cset;
7717f7ba
PM
5576 struct task_struct *task;
5577 int count = 0;
5abb8855
TH
5578 seq_printf(seq, "css_set %p\n", cset);
5579 list_for_each_entry(task, &cset->tasks, cg_list) {
7717f7ba
PM
5580 if (count++ > MAX_TASKS_SHOWN_PER_CSS) {
5581 seq_puts(seq, " ...\n");
5582 break;
5583 } else {
5584 seq_printf(seq, " task %d\n",
5585 task_pid_vnr(task));
5586 }
5587 }
5588 }
5589 read_unlock(&css_set_lock);
5590 return 0;
5591}
5592
fe693435
PM
5593static u64 releasable_read(struct cgroup *cgrp, struct cftype *cft)
5594{
5595 return test_bit(CGRP_RELEASABLE, &cgrp->flags);
5596}
5597
5598static struct cftype debug_files[] = {
fe693435
PM
5599 {
5600 .name = "taskcount",
5601 .read_u64 = debug_taskcount_read,
5602 },
5603
5604 {
5605 .name = "current_css_set",
5606 .read_u64 = current_css_set_read,
5607 },
5608
5609 {
5610 .name = "current_css_set_refcount",
5611 .read_u64 = current_css_set_refcount_read,
5612 },
5613
7717f7ba
PM
5614 {
5615 .name = "current_css_set_cg_links",
5616 .read_seq_string = current_css_set_cg_links_read,
5617 },
5618
5619 {
5620 .name = "cgroup_css_links",
5621 .read_seq_string = cgroup_css_links_read,
5622 },
5623
fe693435
PM
5624 {
5625 .name = "releasable",
5626 .read_u64 = releasable_read,
5627 },
fe693435 5628
4baf6e33
TH
5629 { } /* terminate */
5630};
fe693435
PM
5631
5632struct cgroup_subsys debug_subsys = {
5633 .name = "debug",
92fb9748
TH
5634 .css_alloc = debug_css_alloc,
5635 .css_free = debug_css_free,
fe693435 5636 .subsys_id = debug_subsys_id,
4baf6e33 5637 .base_cftypes = debug_files,
fe693435
PM
5638};
5639#endif /* CONFIG_CGROUP_DEBUG */