]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - kernel/cgroup.c
cgroup: add __rcu modifier to cgroup->subsys[]
[mirror_ubuntu-artful-kernel.git] / kernel / cgroup.c
CommitLineData
ddbcc7e8 1/*
ddbcc7e8
PM
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
0dea1168
KS
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
ddbcc7e8
PM
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29#include <linux/cgroup.h>
2ce9738b 30#include <linux/cred.h>
c6d57f33 31#include <linux/ctype.h>
ddbcc7e8 32#include <linux/errno.h>
2ce9738b 33#include <linux/init_task.h>
ddbcc7e8
PM
34#include <linux/kernel.h>
35#include <linux/list.h>
36#include <linux/mm.h>
37#include <linux/mutex.h>
38#include <linux/mount.h>
39#include <linux/pagemap.h>
a424316c 40#include <linux/proc_fs.h>
ddbcc7e8
PM
41#include <linux/rcupdate.h>
42#include <linux/sched.h>
817929ec 43#include <linux/backing-dev.h>
ddbcc7e8
PM
44#include <linux/seq_file.h>
45#include <linux/slab.h>
46#include <linux/magic.h>
47#include <linux/spinlock.h>
48#include <linux/string.h>
bbcb81d0 49#include <linux/sort.h>
81a6a5cd 50#include <linux/kmod.h>
e6a1105b 51#include <linux/module.h>
846c7bb0
BS
52#include <linux/delayacct.h>
53#include <linux/cgroupstats.h>
0ac801fe 54#include <linux/hashtable.h>
3f8206d4 55#include <linux/namei.h>
096b7fe0 56#include <linux/pid_namespace.h>
2c6ab6d2 57#include <linux/idr.h>
d1d9fd33 58#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
0dea1168
KS
59#include <linux/eventfd.h>
60#include <linux/poll.h>
081aa458 61#include <linux/flex_array.h> /* used in cgroup_attach_task */
c4c27fbd 62#include <linux/kthread.h>
846c7bb0 63
60063497 64#include <linux/atomic.h>
ddbcc7e8 65
e25e2cbb
TH
66/*
67 * cgroup_mutex is the master lock. Any modification to cgroup or its
68 * hierarchy must be performed while holding it.
69 *
70 * cgroup_root_mutex nests inside cgroup_mutex and should be held to modify
71 * cgroupfs_root of any cgroup hierarchy - subsys list, flags,
72 * release_agent_path and so on. Modifying requires both cgroup_mutex and
73 * cgroup_root_mutex. Readers can acquire either of the two. This is to
74 * break the following locking order cycle.
75 *
76 * A. cgroup_mutex -> cred_guard_mutex -> s_type->i_mutex_key -> namespace_sem
77 * B. namespace_sem -> cgroup_mutex
78 *
79 * B happens only through cgroup_show_options() and using cgroup_root_mutex
80 * breaks it.
81 */
2219449a
TH
82#ifdef CONFIG_PROVE_RCU
83DEFINE_MUTEX(cgroup_mutex);
8af01f56 84EXPORT_SYMBOL_GPL(cgroup_mutex); /* only for lockdep */
2219449a 85#else
81a6a5cd 86static DEFINE_MUTEX(cgroup_mutex);
2219449a
TH
87#endif
88
e25e2cbb 89static DEFINE_MUTEX(cgroup_root_mutex);
81a6a5cd 90
aae8aab4
BB
91/*
92 * Generate an array of cgroup subsystem pointers. At boot time, this is
be45c900 93 * populated with the built in subsystems, and modular subsystems are
aae8aab4
BB
94 * registered after that. The mutable section of this array is protected by
95 * cgroup_mutex.
96 */
80f4c877 97#define SUBSYS(_x) [_x ## _subsys_id] = &_x ## _subsys,
5fc0b025 98#define IS_SUBSYS_ENABLED(option) IS_BUILTIN(option)
9871bf95 99static struct cgroup_subsys *cgroup_subsys[CGROUP_SUBSYS_COUNT] = {
ddbcc7e8
PM
100#include <linux/cgroup_subsys.h>
101};
102
ddbcc7e8 103/*
9871bf95
TH
104 * The dummy hierarchy, reserved for the subsystems that are otherwise
105 * unattached - it never has more than a single cgroup, and all tasks are
106 * part of that cgroup.
ddbcc7e8 107 */
9871bf95
TH
108static struct cgroupfs_root cgroup_dummy_root;
109
110/* dummy_top is a shorthand for the dummy hierarchy's top cgroup */
111static struct cgroup * const cgroup_dummy_top = &cgroup_dummy_root.top_cgroup;
ddbcc7e8 112
05ef1d7c
TH
113/*
114 * cgroupfs file entry, pointed to from leaf dentry->d_fsdata.
115 */
116struct cfent {
117 struct list_head node;
118 struct dentry *dentry;
119 struct cftype *type;
105347ba 120 struct cgroup_subsys_state *css;
712317ad
LZ
121
122 /* file xattrs */
123 struct simple_xattrs xattrs;
05ef1d7c
TH
124};
125
38460b48
KH
126/*
127 * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
128 * cgroup_subsys->use_id != 0.
129 */
130#define CSS_ID_MAX (65535)
131struct css_id {
132 /*
133 * The css to which this ID points. This pointer is set to valid value
134 * after cgroup is populated. If cgroup is removed, this will be NULL.
135 * This pointer is expected to be RCU-safe because destroy()
e9316080
TH
136 * is called after synchronize_rcu(). But for safe use, css_tryget()
137 * should be used for avoiding race.
38460b48 138 */
2c392b8c 139 struct cgroup_subsys_state __rcu *css;
38460b48
KH
140 /*
141 * ID of this css.
142 */
143 unsigned short id;
144 /*
145 * Depth in hierarchy which this ID belongs to.
146 */
147 unsigned short depth;
148 /*
149 * ID is freed by RCU. (and lookup routine is RCU safe.)
150 */
151 struct rcu_head rcu_head;
152 /*
153 * Hierarchy of CSS ID belongs to.
154 */
155 unsigned short stack[0]; /* Array of Length (depth+1) */
156};
157
0dea1168 158/*
25985edc 159 * cgroup_event represents events which userspace want to receive.
0dea1168
KS
160 */
161struct cgroup_event {
162 /*
81eeaf04 163 * css which the event belongs to.
0dea1168 164 */
81eeaf04 165 struct cgroup_subsys_state *css;
0dea1168
KS
166 /*
167 * Control file which the event associated.
168 */
169 struct cftype *cft;
170 /*
171 * eventfd to signal userspace about the event.
172 */
173 struct eventfd_ctx *eventfd;
174 /*
175 * Each of these stored in a list by the cgroup.
176 */
177 struct list_head list;
178 /*
179 * All fields below needed to unregister event when
180 * userspace closes eventfd.
181 */
182 poll_table pt;
183 wait_queue_head_t *wqh;
184 wait_queue_t wait;
185 struct work_struct remove;
186};
38460b48 187
ddbcc7e8
PM
188/* The list of hierarchy roots */
189
9871bf95
TH
190static LIST_HEAD(cgroup_roots);
191static int cgroup_root_count;
ddbcc7e8 192
54e7b4eb
TH
193/*
194 * Hierarchy ID allocation and mapping. It follows the same exclusion
195 * rules as other root ops - both cgroup_mutex and cgroup_root_mutex for
196 * writes, either for reads.
197 */
1a574231 198static DEFINE_IDR(cgroup_hierarchy_idr);
2c6ab6d2 199
65dff759
LZ
200static struct cgroup_name root_cgroup_name = { .name = "/" };
201
794611a1
LZ
202/*
203 * Assign a monotonically increasing serial number to cgroups. It
204 * guarantees cgroups with bigger numbers are newer than those with smaller
205 * numbers. Also, as cgroups are always appended to the parent's
206 * ->children list, it guarantees that sibling cgroups are always sorted in
00356bd5
TH
207 * the ascending serial number order on the list. Protected by
208 * cgroup_mutex.
794611a1 209 */
00356bd5 210static u64 cgroup_serial_nr_next = 1;
794611a1 211
ddbcc7e8 212/* This flag indicates whether tasks in the fork and exit paths should
a043e3b2
LZ
213 * check for fork/exit handlers to call. This avoids us having to do
214 * extra work in the fork/exit path if none of the subsystems need to
215 * be called.
ddbcc7e8 216 */
8947f9d5 217static int need_forkexit_callback __read_mostly;
ddbcc7e8 218
628f7cd4
TH
219static struct cftype cgroup_base_files[];
220
ea15f8cc 221static void cgroup_offline_fn(struct work_struct *work);
42809dd4 222static int cgroup_destroy_locked(struct cgroup *cgrp);
2bb566cb
TH
223static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
224 bool is_add);
42809dd4 225
95109b62
TH
226/**
227 * cgroup_css - obtain a cgroup's css for the specified subsystem
228 * @cgrp: the cgroup of interest
229 * @subsys_id: the subsystem of interest
230 *
231 * Return @cgrp's css (cgroup_subsys_state) associated with @subsys_id.
73e80ed8
TH
232 * This function must be called either under cgroup_mutex or
233 * rcu_read_lock() and the caller is responsible for pinning the returned
234 * css if it wants to keep accessing it outside the said locks. This
235 * function may return %NULL if @cgrp doesn't have @subsys_id enabled.
95109b62
TH
236 */
237static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
238 int subsys_id)
239{
73e80ed8
TH
240 return rcu_dereference_check(cgrp->subsys[subsys_id],
241 lockdep_is_held(&cgroup_mutex));
95109b62
TH
242}
243
ddbcc7e8 244/* convenient tests for these bits */
54766d4a 245static inline bool cgroup_is_dead(const struct cgroup *cgrp)
ddbcc7e8 246{
54766d4a 247 return test_bit(CGRP_DEAD, &cgrp->flags);
ddbcc7e8
PM
248}
249
78574cf9
LZ
250/**
251 * cgroup_is_descendant - test ancestry
252 * @cgrp: the cgroup to be tested
253 * @ancestor: possible ancestor of @cgrp
254 *
255 * Test whether @cgrp is a descendant of @ancestor. It also returns %true
256 * if @cgrp == @ancestor. This function is safe to call as long as @cgrp
257 * and @ancestor are accessible.
258 */
259bool cgroup_is_descendant(struct cgroup *cgrp, struct cgroup *ancestor)
260{
261 while (cgrp) {
262 if (cgrp == ancestor)
263 return true;
264 cgrp = cgrp->parent;
265 }
266 return false;
267}
268EXPORT_SYMBOL_GPL(cgroup_is_descendant);
ddbcc7e8 269
e9685a03 270static int cgroup_is_releasable(const struct cgroup *cgrp)
81a6a5cd
PM
271{
272 const int bits =
bd89aabc
PM
273 (1 << CGRP_RELEASABLE) |
274 (1 << CGRP_NOTIFY_ON_RELEASE);
275 return (cgrp->flags & bits) == bits;
81a6a5cd
PM
276}
277
e9685a03 278static int notify_on_release(const struct cgroup *cgrp)
81a6a5cd 279{
bd89aabc 280 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
81a6a5cd
PM
281}
282
30159ec7
TH
283/**
284 * for_each_subsys - iterate all loaded cgroup subsystems
285 * @ss: the iteration cursor
286 * @i: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
287 *
288 * Should be called under cgroup_mutex.
289 */
290#define for_each_subsys(ss, i) \
291 for ((i) = 0; (i) < CGROUP_SUBSYS_COUNT; (i)++) \
292 if (({ lockdep_assert_held(&cgroup_mutex); \
293 !((ss) = cgroup_subsys[i]); })) { } \
294 else
295
296/**
297 * for_each_builtin_subsys - iterate all built-in cgroup subsystems
298 * @ss: the iteration cursor
299 * @i: the index of @ss, CGROUP_BUILTIN_SUBSYS_COUNT after reaching the end
300 *
301 * Bulit-in subsystems are always present and iteration itself doesn't
302 * require any synchronization.
303 */
304#define for_each_builtin_subsys(ss, i) \
305 for ((i) = 0; (i) < CGROUP_BUILTIN_SUBSYS_COUNT && \
306 (((ss) = cgroup_subsys[i]) || true); (i)++)
307
5549c497
TH
308/* iterate each subsystem attached to a hierarchy */
309#define for_each_root_subsys(root, ss) \
310 list_for_each_entry((ss), &(root)->subsys_list, sibling)
ddbcc7e8 311
5549c497
TH
312/* iterate across the active hierarchies */
313#define for_each_active_root(root) \
314 list_for_each_entry((root), &cgroup_roots, root_list)
ddbcc7e8 315
f6ea9372
TH
316static inline struct cgroup *__d_cgrp(struct dentry *dentry)
317{
318 return dentry->d_fsdata;
319}
320
05ef1d7c 321static inline struct cfent *__d_cfe(struct dentry *dentry)
f6ea9372
TH
322{
323 return dentry->d_fsdata;
324}
325
05ef1d7c
TH
326static inline struct cftype *__d_cft(struct dentry *dentry)
327{
328 return __d_cfe(dentry)->type;
329}
330
7ae1bad9
TH
331/**
332 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
333 * @cgrp: the cgroup to be checked for liveness
334 *
47cfcd09
TH
335 * On success, returns true; the mutex should be later unlocked. On
336 * failure returns false with no lock held.
7ae1bad9 337 */
b9777cf8 338static bool cgroup_lock_live_group(struct cgroup *cgrp)
7ae1bad9
TH
339{
340 mutex_lock(&cgroup_mutex);
54766d4a 341 if (cgroup_is_dead(cgrp)) {
7ae1bad9
TH
342 mutex_unlock(&cgroup_mutex);
343 return false;
344 }
345 return true;
346}
7ae1bad9 347
81a6a5cd
PM
348/* the list of cgroups eligible for automatic release. Protected by
349 * release_list_lock */
350static LIST_HEAD(release_list);
cdcc136f 351static DEFINE_RAW_SPINLOCK(release_list_lock);
81a6a5cd
PM
352static void cgroup_release_agent(struct work_struct *work);
353static DECLARE_WORK(release_agent_work, cgroup_release_agent);
bd89aabc 354static void check_for_release(struct cgroup *cgrp);
81a6a5cd 355
69d0206c
TH
356/*
357 * A cgroup can be associated with multiple css_sets as different tasks may
358 * belong to different cgroups on different hierarchies. In the other
359 * direction, a css_set is naturally associated with multiple cgroups.
360 * This M:N relationship is represented by the following link structure
361 * which exists for each association and allows traversing the associations
362 * from both sides.
363 */
364struct cgrp_cset_link {
365 /* the cgroup and css_set this link associates */
366 struct cgroup *cgrp;
367 struct css_set *cset;
368
369 /* list of cgrp_cset_links anchored at cgrp->cset_links */
370 struct list_head cset_link;
371
372 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
373 struct list_head cgrp_link;
817929ec
PM
374};
375
376/* The default css_set - used by init and its children prior to any
377 * hierarchies being mounted. It contains a pointer to the root state
378 * for each subsystem. Also used to anchor the list of css_sets. Not
379 * reference-counted, to improve performance when child cgroups
380 * haven't been created.
381 */
382
383static struct css_set init_css_set;
69d0206c 384static struct cgrp_cset_link init_cgrp_cset_link;
817929ec 385
e6a1105b
BB
386static int cgroup_init_idr(struct cgroup_subsys *ss,
387 struct cgroup_subsys_state *css);
38460b48 388
0942eeee
TH
389/*
390 * css_set_lock protects the list of css_set objects, and the chain of
391 * tasks off each css_set. Nests outside task->alloc_lock due to
72ec7029 392 * css_task_iter_start().
0942eeee 393 */
817929ec
PM
394static DEFINE_RWLOCK(css_set_lock);
395static int css_set_count;
396
7717f7ba
PM
397/*
398 * hash table for cgroup groups. This improves the performance to find
399 * an existing css_set. This hash doesn't (currently) take into
400 * account cgroups in empty hierarchies.
401 */
472b1053 402#define CSS_SET_HASH_BITS 7
0ac801fe 403static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
472b1053 404
0ac801fe 405static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
472b1053 406{
0ac801fe 407 unsigned long key = 0UL;
30159ec7
TH
408 struct cgroup_subsys *ss;
409 int i;
472b1053 410
30159ec7 411 for_each_subsys(ss, i)
0ac801fe
LZ
412 key += (unsigned long)css[i];
413 key = (key >> 16) ^ key;
472b1053 414
0ac801fe 415 return key;
472b1053
LZ
416}
417
0942eeee
TH
418/*
419 * We don't maintain the lists running through each css_set to its task
72ec7029
TH
420 * until after the first call to css_task_iter_start(). This reduces the
421 * fork()/exit() overhead for people who have cgroups compiled into their
422 * kernel but not actually in use.
0942eeee 423 */
8947f9d5 424static int use_task_css_set_links __read_mostly;
817929ec 425
5abb8855 426static void __put_css_set(struct css_set *cset, int taskexit)
b4f48b63 427{
69d0206c 428 struct cgrp_cset_link *link, *tmp_link;
5abb8855 429
146aa1bd
LJ
430 /*
431 * Ensure that the refcount doesn't hit zero while any readers
432 * can see it. Similar to atomic_dec_and_lock(), but for an
433 * rwlock
434 */
5abb8855 435 if (atomic_add_unless(&cset->refcount, -1, 1))
146aa1bd
LJ
436 return;
437 write_lock(&css_set_lock);
5abb8855 438 if (!atomic_dec_and_test(&cset->refcount)) {
146aa1bd
LJ
439 write_unlock(&css_set_lock);
440 return;
441 }
81a6a5cd 442
2c6ab6d2 443 /* This css_set is dead. unlink it and release cgroup refcounts */
5abb8855 444 hash_del(&cset->hlist);
2c6ab6d2
PM
445 css_set_count--;
446
69d0206c 447 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
2c6ab6d2 448 struct cgroup *cgrp = link->cgrp;
5abb8855 449
69d0206c
TH
450 list_del(&link->cset_link);
451 list_del(&link->cgrp_link);
71b5707e 452
ddd69148 453 /* @cgrp can't go away while we're holding css_set_lock */
6f3d828f 454 if (list_empty(&cgrp->cset_links) && notify_on_release(cgrp)) {
81a6a5cd 455 if (taskexit)
bd89aabc
PM
456 set_bit(CGRP_RELEASABLE, &cgrp->flags);
457 check_for_release(cgrp);
81a6a5cd 458 }
2c6ab6d2
PM
459
460 kfree(link);
81a6a5cd 461 }
2c6ab6d2
PM
462
463 write_unlock(&css_set_lock);
5abb8855 464 kfree_rcu(cset, rcu_head);
b4f48b63
PM
465}
466
817929ec
PM
467/*
468 * refcounted get/put for css_set objects
469 */
5abb8855 470static inline void get_css_set(struct css_set *cset)
817929ec 471{
5abb8855 472 atomic_inc(&cset->refcount);
817929ec
PM
473}
474
5abb8855 475static inline void put_css_set(struct css_set *cset)
817929ec 476{
5abb8855 477 __put_css_set(cset, 0);
817929ec
PM
478}
479
5abb8855 480static inline void put_css_set_taskexit(struct css_set *cset)
81a6a5cd 481{
5abb8855 482 __put_css_set(cset, 1);
81a6a5cd
PM
483}
484
b326f9d0 485/**
7717f7ba 486 * compare_css_sets - helper function for find_existing_css_set().
5abb8855
TH
487 * @cset: candidate css_set being tested
488 * @old_cset: existing css_set for a task
7717f7ba
PM
489 * @new_cgrp: cgroup that's being entered by the task
490 * @template: desired set of css pointers in css_set (pre-calculated)
491 *
6f4b7e63 492 * Returns true if "cset" matches "old_cset" except for the hierarchy
7717f7ba
PM
493 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
494 */
5abb8855
TH
495static bool compare_css_sets(struct css_set *cset,
496 struct css_set *old_cset,
7717f7ba
PM
497 struct cgroup *new_cgrp,
498 struct cgroup_subsys_state *template[])
499{
500 struct list_head *l1, *l2;
501
5abb8855 502 if (memcmp(template, cset->subsys, sizeof(cset->subsys))) {
7717f7ba
PM
503 /* Not all subsystems matched */
504 return false;
505 }
506
507 /*
508 * Compare cgroup pointers in order to distinguish between
509 * different cgroups in heirarchies with no subsystems. We
510 * could get by with just this check alone (and skip the
511 * memcmp above) but on most setups the memcmp check will
512 * avoid the need for this more expensive check on almost all
513 * candidates.
514 */
515
69d0206c
TH
516 l1 = &cset->cgrp_links;
517 l2 = &old_cset->cgrp_links;
7717f7ba 518 while (1) {
69d0206c 519 struct cgrp_cset_link *link1, *link2;
5abb8855 520 struct cgroup *cgrp1, *cgrp2;
7717f7ba
PM
521
522 l1 = l1->next;
523 l2 = l2->next;
524 /* See if we reached the end - both lists are equal length. */
69d0206c
TH
525 if (l1 == &cset->cgrp_links) {
526 BUG_ON(l2 != &old_cset->cgrp_links);
7717f7ba
PM
527 break;
528 } else {
69d0206c 529 BUG_ON(l2 == &old_cset->cgrp_links);
7717f7ba
PM
530 }
531 /* Locate the cgroups associated with these links. */
69d0206c
TH
532 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
533 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
534 cgrp1 = link1->cgrp;
535 cgrp2 = link2->cgrp;
7717f7ba 536 /* Hierarchies should be linked in the same order. */
5abb8855 537 BUG_ON(cgrp1->root != cgrp2->root);
7717f7ba
PM
538
539 /*
540 * If this hierarchy is the hierarchy of the cgroup
541 * that's changing, then we need to check that this
542 * css_set points to the new cgroup; if it's any other
543 * hierarchy, then this css_set should point to the
544 * same cgroup as the old css_set.
545 */
5abb8855
TH
546 if (cgrp1->root == new_cgrp->root) {
547 if (cgrp1 != new_cgrp)
7717f7ba
PM
548 return false;
549 } else {
5abb8855 550 if (cgrp1 != cgrp2)
7717f7ba
PM
551 return false;
552 }
553 }
554 return true;
555}
556
b326f9d0
TH
557/**
558 * find_existing_css_set - init css array and find the matching css_set
559 * @old_cset: the css_set that we're using before the cgroup transition
560 * @cgrp: the cgroup that we're moving into
561 * @template: out param for the new set of csses, should be clear on entry
817929ec 562 */
5abb8855
TH
563static struct css_set *find_existing_css_set(struct css_set *old_cset,
564 struct cgroup *cgrp,
565 struct cgroup_subsys_state *template[])
b4f48b63 566{
bd89aabc 567 struct cgroupfs_root *root = cgrp->root;
30159ec7 568 struct cgroup_subsys *ss;
5abb8855 569 struct css_set *cset;
0ac801fe 570 unsigned long key;
b326f9d0 571 int i;
817929ec 572
aae8aab4
BB
573 /*
574 * Build the set of subsystem state objects that we want to see in the
575 * new css_set. while subsystems can change globally, the entries here
576 * won't change, so no need for locking.
577 */
30159ec7 578 for_each_subsys(ss, i) {
a1a71b45 579 if (root->subsys_mask & (1UL << i)) {
817929ec
PM
580 /* Subsystem is in this hierarchy. So we want
581 * the subsystem state from the new
582 * cgroup */
40e93b39 583 template[i] = cgroup_css(cgrp, i);
817929ec
PM
584 } else {
585 /* Subsystem is not in this hierarchy, so we
586 * don't want to change the subsystem state */
5abb8855 587 template[i] = old_cset->subsys[i];
817929ec
PM
588 }
589 }
590
0ac801fe 591 key = css_set_hash(template);
5abb8855
TH
592 hash_for_each_possible(css_set_table, cset, hlist, key) {
593 if (!compare_css_sets(cset, old_cset, cgrp, template))
7717f7ba
PM
594 continue;
595
596 /* This css_set matches what we need */
5abb8855 597 return cset;
472b1053 598 }
817929ec
PM
599
600 /* No existing cgroup group matched */
601 return NULL;
602}
603
69d0206c 604static void free_cgrp_cset_links(struct list_head *links_to_free)
36553434 605{
69d0206c 606 struct cgrp_cset_link *link, *tmp_link;
36553434 607
69d0206c
TH
608 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
609 list_del(&link->cset_link);
36553434
LZ
610 kfree(link);
611 }
612}
613
69d0206c
TH
614/**
615 * allocate_cgrp_cset_links - allocate cgrp_cset_links
616 * @count: the number of links to allocate
617 * @tmp_links: list_head the allocated links are put on
618 *
619 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
620 * through ->cset_link. Returns 0 on success or -errno.
817929ec 621 */
69d0206c 622static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
817929ec 623{
69d0206c 624 struct cgrp_cset_link *link;
817929ec 625 int i;
69d0206c
TH
626
627 INIT_LIST_HEAD(tmp_links);
628
817929ec 629 for (i = 0; i < count; i++) {
f4f4be2b 630 link = kzalloc(sizeof(*link), GFP_KERNEL);
817929ec 631 if (!link) {
69d0206c 632 free_cgrp_cset_links(tmp_links);
817929ec
PM
633 return -ENOMEM;
634 }
69d0206c 635 list_add(&link->cset_link, tmp_links);
817929ec
PM
636 }
637 return 0;
638}
639
c12f65d4
LZ
640/**
641 * link_css_set - a helper function to link a css_set to a cgroup
69d0206c 642 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
5abb8855 643 * @cset: the css_set to be linked
c12f65d4
LZ
644 * @cgrp: the destination cgroup
645 */
69d0206c
TH
646static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
647 struct cgroup *cgrp)
c12f65d4 648{
69d0206c 649 struct cgrp_cset_link *link;
c12f65d4 650
69d0206c
TH
651 BUG_ON(list_empty(tmp_links));
652 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
653 link->cset = cset;
7717f7ba 654 link->cgrp = cgrp;
69d0206c 655 list_move(&link->cset_link, &cgrp->cset_links);
7717f7ba
PM
656 /*
657 * Always add links to the tail of the list so that the list
658 * is sorted by order of hierarchy creation
659 */
69d0206c 660 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
c12f65d4
LZ
661}
662
b326f9d0
TH
663/**
664 * find_css_set - return a new css_set with one cgroup updated
665 * @old_cset: the baseline css_set
666 * @cgrp: the cgroup to be updated
667 *
668 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
669 * substituted into the appropriate hierarchy.
817929ec 670 */
5abb8855
TH
671static struct css_set *find_css_set(struct css_set *old_cset,
672 struct cgroup *cgrp)
817929ec 673{
b326f9d0 674 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
5abb8855 675 struct css_set *cset;
69d0206c
TH
676 struct list_head tmp_links;
677 struct cgrp_cset_link *link;
0ac801fe 678 unsigned long key;
472b1053 679
b326f9d0
TH
680 lockdep_assert_held(&cgroup_mutex);
681
817929ec
PM
682 /* First see if we already have a cgroup group that matches
683 * the desired set */
7e9abd89 684 read_lock(&css_set_lock);
5abb8855
TH
685 cset = find_existing_css_set(old_cset, cgrp, template);
686 if (cset)
687 get_css_set(cset);
7e9abd89 688 read_unlock(&css_set_lock);
817929ec 689
5abb8855
TH
690 if (cset)
691 return cset;
817929ec 692
f4f4be2b 693 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
5abb8855 694 if (!cset)
817929ec
PM
695 return NULL;
696
69d0206c 697 /* Allocate all the cgrp_cset_link objects that we'll need */
9871bf95 698 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
5abb8855 699 kfree(cset);
817929ec
PM
700 return NULL;
701 }
702
5abb8855 703 atomic_set(&cset->refcount, 1);
69d0206c 704 INIT_LIST_HEAD(&cset->cgrp_links);
5abb8855
TH
705 INIT_LIST_HEAD(&cset->tasks);
706 INIT_HLIST_NODE(&cset->hlist);
817929ec
PM
707
708 /* Copy the set of subsystem state objects generated in
709 * find_existing_css_set() */
5abb8855 710 memcpy(cset->subsys, template, sizeof(cset->subsys));
817929ec
PM
711
712 write_lock(&css_set_lock);
713 /* Add reference counts and links from the new css_set. */
69d0206c 714 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
7717f7ba 715 struct cgroup *c = link->cgrp;
69d0206c 716
7717f7ba
PM
717 if (c->root == cgrp->root)
718 c = cgrp;
69d0206c 719 link_css_set(&tmp_links, cset, c);
7717f7ba 720 }
817929ec 721
69d0206c 722 BUG_ON(!list_empty(&tmp_links));
817929ec 723
817929ec 724 css_set_count++;
472b1053
LZ
725
726 /* Add this cgroup group to the hash table */
5abb8855
TH
727 key = css_set_hash(cset->subsys);
728 hash_add(css_set_table, &cset->hlist, key);
472b1053 729
817929ec
PM
730 write_unlock(&css_set_lock);
731
5abb8855 732 return cset;
b4f48b63
PM
733}
734
7717f7ba
PM
735/*
736 * Return the cgroup for "task" from the given hierarchy. Must be
737 * called with cgroup_mutex held.
738 */
739static struct cgroup *task_cgroup_from_root(struct task_struct *task,
740 struct cgroupfs_root *root)
741{
5abb8855 742 struct css_set *cset;
7717f7ba
PM
743 struct cgroup *res = NULL;
744
745 BUG_ON(!mutex_is_locked(&cgroup_mutex));
746 read_lock(&css_set_lock);
747 /*
748 * No need to lock the task - since we hold cgroup_mutex the
749 * task can't change groups, so the only thing that can happen
750 * is that it exits and its css is set back to init_css_set.
751 */
a8ad805c 752 cset = task_css_set(task);
5abb8855 753 if (cset == &init_css_set) {
7717f7ba
PM
754 res = &root->top_cgroup;
755 } else {
69d0206c
TH
756 struct cgrp_cset_link *link;
757
758 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 759 struct cgroup *c = link->cgrp;
69d0206c 760
7717f7ba
PM
761 if (c->root == root) {
762 res = c;
763 break;
764 }
765 }
766 }
767 read_unlock(&css_set_lock);
768 BUG_ON(!res);
769 return res;
770}
771
ddbcc7e8
PM
772/*
773 * There is one global cgroup mutex. We also require taking
774 * task_lock() when dereferencing a task's cgroup subsys pointers.
775 * See "The task_lock() exception", at the end of this comment.
776 *
777 * A task must hold cgroup_mutex to modify cgroups.
778 *
779 * Any task can increment and decrement the count field without lock.
780 * So in general, code holding cgroup_mutex can't rely on the count
781 * field not changing. However, if the count goes to zero, then only
956db3ca 782 * cgroup_attach_task() can increment it again. Because a count of zero
ddbcc7e8
PM
783 * means that no tasks are currently attached, therefore there is no
784 * way a task attached to that cgroup can fork (the other way to
785 * increment the count). So code holding cgroup_mutex can safely
786 * assume that if the count is zero, it will stay zero. Similarly, if
787 * a task holds cgroup_mutex on a cgroup with zero count, it
788 * knows that the cgroup won't be removed, as cgroup_rmdir()
789 * needs that mutex.
790 *
ddbcc7e8
PM
791 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
792 * (usually) take cgroup_mutex. These are the two most performance
793 * critical pieces of code here. The exception occurs on cgroup_exit(),
794 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
795 * is taken, and if the cgroup count is zero, a usermode call made
a043e3b2
LZ
796 * to the release agent with the name of the cgroup (path relative to
797 * the root of cgroup file system) as the argument.
ddbcc7e8
PM
798 *
799 * A cgroup can only be deleted if both its 'count' of using tasks
800 * is zero, and its list of 'children' cgroups is empty. Since all
801 * tasks in the system use _some_ cgroup, and since there is always at
802 * least one task in the system (init, pid == 1), therefore, top_cgroup
803 * always has either children cgroups and/or using tasks. So we don't
804 * need a special hack to ensure that top_cgroup cannot be deleted.
805 *
806 * The task_lock() exception
807 *
808 * The need for this exception arises from the action of
d0b2fdd2 809 * cgroup_attach_task(), which overwrites one task's cgroup pointer with
a043e3b2 810 * another. It does so using cgroup_mutex, however there are
ddbcc7e8
PM
811 * several performance critical places that need to reference
812 * task->cgroup without the expense of grabbing a system global
813 * mutex. Therefore except as noted below, when dereferencing or, as
d0b2fdd2 814 * in cgroup_attach_task(), modifying a task's cgroup pointer we use
ddbcc7e8
PM
815 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
816 * the task_struct routinely used for such matters.
817 *
818 * P.S. One more locking exception. RCU is used to guard the
956db3ca 819 * update of a tasks cgroup pointer by cgroup_attach_task()
ddbcc7e8
PM
820 */
821
ddbcc7e8
PM
822/*
823 * A couple of forward declarations required, due to cyclic reference loop:
824 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
825 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
826 * -> cgroup_mkdir.
827 */
828
18bb1db3 829static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode);
00cd8dd3 830static struct dentry *cgroup_lookup(struct inode *, struct dentry *, unsigned int);
ddbcc7e8 831static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
628f7cd4 832static int cgroup_populate_dir(struct cgroup *cgrp, unsigned long subsys_mask);
6e1d5dcc 833static const struct inode_operations cgroup_dir_inode_operations;
828c0950 834static const struct file_operations proc_cgroupstats_operations;
a424316c
PM
835
836static struct backing_dev_info cgroup_backing_dev_info = {
d993831f 837 .name = "cgroup",
e4ad08fe 838 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK,
a424316c 839};
ddbcc7e8 840
38460b48
KH
841static int alloc_css_id(struct cgroup_subsys *ss,
842 struct cgroup *parent, struct cgroup *child);
843
a5e7ed32 844static struct inode *cgroup_new_inode(umode_t mode, struct super_block *sb)
ddbcc7e8
PM
845{
846 struct inode *inode = new_inode(sb);
ddbcc7e8
PM
847
848 if (inode) {
85fe4025 849 inode->i_ino = get_next_ino();
ddbcc7e8 850 inode->i_mode = mode;
76aac0e9
DH
851 inode->i_uid = current_fsuid();
852 inode->i_gid = current_fsgid();
ddbcc7e8
PM
853 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
854 inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
855 }
856 return inode;
857}
858
65dff759
LZ
859static struct cgroup_name *cgroup_alloc_name(struct dentry *dentry)
860{
861 struct cgroup_name *name;
862
863 name = kmalloc(sizeof(*name) + dentry->d_name.len + 1, GFP_KERNEL);
864 if (!name)
865 return NULL;
866 strcpy(name->name, dentry->d_name.name);
867 return name;
868}
869
be445626
LZ
870static void cgroup_free_fn(struct work_struct *work)
871{
ea15f8cc 872 struct cgroup *cgrp = container_of(work, struct cgroup, destroy_work);
be445626
LZ
873 struct cgroup_subsys *ss;
874
875 mutex_lock(&cgroup_mutex);
876 /*
877 * Release the subsystem state objects.
878 */
eb95419b 879 for_each_root_subsys(cgrp->root, ss) {
40e93b39 880 struct cgroup_subsys_state *css = cgroup_css(cgrp, ss->subsys_id);
eb95419b
TH
881
882 ss->css_free(css);
883 }
be445626
LZ
884
885 cgrp->root->number_of_cgroups--;
886 mutex_unlock(&cgroup_mutex);
887
415cf07a
LZ
888 /*
889 * We get a ref to the parent's dentry, and put the ref when
890 * this cgroup is being freed, so it's guaranteed that the
891 * parent won't be destroyed before its children.
892 */
893 dput(cgrp->parent->dentry);
894
be445626
LZ
895 /*
896 * Drop the active superblock reference that we took when we
cc20e01c
LZ
897 * created the cgroup. This will free cgrp->root, if we are
898 * holding the last reference to @sb.
be445626
LZ
899 */
900 deactivate_super(cgrp->root->sb);
901
902 /*
903 * if we're getting rid of the cgroup, refcount should ensure
904 * that there are no pidlists left.
905 */
906 BUG_ON(!list_empty(&cgrp->pidlists));
907
908 simple_xattrs_free(&cgrp->xattrs);
909
65dff759 910 kfree(rcu_dereference_raw(cgrp->name));
be445626
LZ
911 kfree(cgrp);
912}
913
914static void cgroup_free_rcu(struct rcu_head *head)
915{
916 struct cgroup *cgrp = container_of(head, struct cgroup, rcu_head);
917
ea15f8cc
TH
918 INIT_WORK(&cgrp->destroy_work, cgroup_free_fn);
919 schedule_work(&cgrp->destroy_work);
be445626
LZ
920}
921
ddbcc7e8
PM
922static void cgroup_diput(struct dentry *dentry, struct inode *inode)
923{
924 /* is dentry a directory ? if so, kfree() associated cgroup */
925 if (S_ISDIR(inode->i_mode)) {
bd89aabc 926 struct cgroup *cgrp = dentry->d_fsdata;
be445626 927
54766d4a 928 BUG_ON(!(cgroup_is_dead(cgrp)));
be445626 929 call_rcu(&cgrp->rcu_head, cgroup_free_rcu);
05ef1d7c
TH
930 } else {
931 struct cfent *cfe = __d_cfe(dentry);
932 struct cgroup *cgrp = dentry->d_parent->d_fsdata;
933
934 WARN_ONCE(!list_empty(&cfe->node) &&
935 cgrp != &cgrp->root->top_cgroup,
936 "cfe still linked for %s\n", cfe->type->name);
712317ad 937 simple_xattrs_free(&cfe->xattrs);
05ef1d7c 938 kfree(cfe);
ddbcc7e8
PM
939 }
940 iput(inode);
941}
942
c72a04e3
AV
943static int cgroup_delete(const struct dentry *d)
944{
945 return 1;
946}
947
ddbcc7e8
PM
948static void remove_dir(struct dentry *d)
949{
950 struct dentry *parent = dget(d->d_parent);
951
952 d_delete(d);
953 simple_rmdir(parent->d_inode, d);
954 dput(parent);
955}
956
2739d3cc 957static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
05ef1d7c
TH
958{
959 struct cfent *cfe;
960
961 lockdep_assert_held(&cgrp->dentry->d_inode->i_mutex);
962 lockdep_assert_held(&cgroup_mutex);
963
2739d3cc
LZ
964 /*
965 * If we're doing cleanup due to failure of cgroup_create(),
966 * the corresponding @cfe may not exist.
967 */
05ef1d7c
TH
968 list_for_each_entry(cfe, &cgrp->files, node) {
969 struct dentry *d = cfe->dentry;
970
971 if (cft && cfe->type != cft)
972 continue;
973
974 dget(d);
975 d_delete(d);
ce27e317 976 simple_unlink(cgrp->dentry->d_inode, d);
05ef1d7c
TH
977 list_del_init(&cfe->node);
978 dput(d);
979
2739d3cc 980 break;
ddbcc7e8 981 }
05ef1d7c
TH
982}
983
13af07df 984/**
628f7cd4 985 * cgroup_clear_dir - remove subsys files in a cgroup directory
8f89140a 986 * @cgrp: target cgroup
13af07df
AR
987 * @subsys_mask: mask of the subsystem ids whose files should be removed
988 */
628f7cd4 989static void cgroup_clear_dir(struct cgroup *cgrp, unsigned long subsys_mask)
05ef1d7c 990{
13af07df 991 struct cgroup_subsys *ss;
b420ba7d 992 int i;
05ef1d7c 993
b420ba7d 994 for_each_subsys(ss, i) {
13af07df 995 struct cftype_set *set;
b420ba7d
TH
996
997 if (!test_bit(i, &subsys_mask))
13af07df
AR
998 continue;
999 list_for_each_entry(set, &ss->cftsets, node)
2bb566cb 1000 cgroup_addrm_files(cgrp, set->cfts, false);
13af07df 1001 }
ddbcc7e8
PM
1002}
1003
1004/*
1005 * NOTE : the dentry must have been dget()'ed
1006 */
1007static void cgroup_d_remove_dir(struct dentry *dentry)
1008{
2fd6b7f5 1009 struct dentry *parent;
ddbcc7e8 1010
2fd6b7f5
NP
1011 parent = dentry->d_parent;
1012 spin_lock(&parent->d_lock);
3ec762ad 1013 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
ddbcc7e8 1014 list_del_init(&dentry->d_u.d_child);
2fd6b7f5
NP
1015 spin_unlock(&dentry->d_lock);
1016 spin_unlock(&parent->d_lock);
ddbcc7e8
PM
1017 remove_dir(dentry);
1018}
1019
aae8aab4 1020/*
cf5d5941
BB
1021 * Call with cgroup_mutex held. Drops reference counts on modules, including
1022 * any duplicate ones that parse_cgroupfs_options took. If this function
1023 * returns an error, no reference counts are touched.
aae8aab4 1024 */
ddbcc7e8 1025static int rebind_subsystems(struct cgroupfs_root *root,
a8a648c4 1026 unsigned long added_mask, unsigned removed_mask)
ddbcc7e8 1027{
bd89aabc 1028 struct cgroup *cgrp = &root->top_cgroup;
30159ec7 1029 struct cgroup_subsys *ss;
1d5be6b2 1030 unsigned long pinned = 0;
3126121f 1031 int i, ret;
ddbcc7e8 1032
aae8aab4 1033 BUG_ON(!mutex_is_locked(&cgroup_mutex));
e25e2cbb 1034 BUG_ON(!mutex_is_locked(&cgroup_root_mutex));
aae8aab4 1035
ddbcc7e8 1036 /* Check that any added subsystems are currently free */
30159ec7 1037 for_each_subsys(ss, i) {
1d5be6b2 1038 if (!(added_mask & (1 << i)))
ddbcc7e8 1039 continue;
30159ec7 1040
1d5be6b2 1041 /* is the subsystem mounted elsewhere? */
9871bf95 1042 if (ss->root != &cgroup_dummy_root) {
1d5be6b2
TH
1043 ret = -EBUSY;
1044 goto out_put;
1045 }
1046
1047 /* pin the module */
1048 if (!try_module_get(ss->module)) {
1049 ret = -ENOENT;
1050 goto out_put;
ddbcc7e8 1051 }
1d5be6b2
TH
1052 pinned |= 1 << i;
1053 }
1054
1055 /* subsys could be missing if unloaded between parsing and here */
1056 if (added_mask != pinned) {
1057 ret = -ENOENT;
1058 goto out_put;
ddbcc7e8
PM
1059 }
1060
3126121f
TH
1061 ret = cgroup_populate_dir(cgrp, added_mask);
1062 if (ret)
1d5be6b2 1063 goto out_put;
3126121f
TH
1064
1065 /*
1066 * Nothing can fail from this point on. Remove files for the
1067 * removed subsystems and rebind each subsystem.
1068 */
1069 cgroup_clear_dir(cgrp, removed_mask);
1070
30159ec7 1071 for_each_subsys(ss, i) {
ddbcc7e8 1072 unsigned long bit = 1UL << i;
30159ec7 1073
a1a71b45 1074 if (bit & added_mask) {
ddbcc7e8 1075 /* We're binding this subsystem to this hierarchy */
40e93b39
TH
1076 BUG_ON(cgroup_css(cgrp, i));
1077 BUG_ON(!cgroup_css(cgroup_dummy_top, i));
1078 BUG_ON(cgroup_css(cgroup_dummy_top, i)->cgroup != cgroup_dummy_top);
a8a648c4 1079
73e80ed8
TH
1080 rcu_assign_pointer(cgrp->subsys[i],
1081 cgroup_css(cgroup_dummy_top, i));
40e93b39 1082 cgroup_css(cgrp, i)->cgroup = cgrp;
73e80ed8 1083
33a68ac1 1084 list_move(&ss->sibling, &root->subsys_list);
b2aa30f7 1085 ss->root = root;
ddbcc7e8 1086 if (ss->bind)
40e93b39 1087 ss->bind(cgroup_css(cgrp, i));
a8a648c4 1088
cf5d5941 1089 /* refcount was already taken, and we're keeping it */
a8a648c4 1090 root->subsys_mask |= bit;
a1a71b45 1091 } else if (bit & removed_mask) {
ddbcc7e8 1092 /* We're removing this subsystem */
40e93b39
TH
1093 BUG_ON(cgroup_css(cgrp, i) != cgroup_css(cgroup_dummy_top, i));
1094 BUG_ON(cgroup_css(cgrp, i)->cgroup != cgrp);
a8a648c4 1095
ddbcc7e8 1096 if (ss->bind)
40e93b39 1097 ss->bind(cgroup_css(cgroup_dummy_top, i));
73e80ed8 1098
40e93b39 1099 cgroup_css(cgroup_dummy_top, i)->cgroup = cgroup_dummy_top;
73e80ed8
TH
1100 RCU_INIT_POINTER(cgrp->subsys[i], NULL);
1101
9871bf95
TH
1102 cgroup_subsys[i]->root = &cgroup_dummy_root;
1103 list_move(&ss->sibling, &cgroup_dummy_root.subsys_list);
a8a648c4 1104
cf5d5941
BB
1105 /* subsystem is now free - drop reference on module */
1106 module_put(ss->module);
a8a648c4 1107 root->subsys_mask &= ~bit;
ddbcc7e8
PM
1108 }
1109 }
ddbcc7e8 1110
1672d040
TH
1111 /*
1112 * Mark @root has finished binding subsystems. @root->subsys_mask
1113 * now matches the bound subsystems.
1114 */
1115 root->flags |= CGRP_ROOT_SUBSYS_BOUND;
1116
ddbcc7e8 1117 return 0;
1d5be6b2
TH
1118
1119out_put:
1120 for_each_subsys(ss, i)
1121 if (pinned & (1 << i))
1122 module_put(ss->module);
1123 return ret;
ddbcc7e8
PM
1124}
1125
34c80b1d 1126static int cgroup_show_options(struct seq_file *seq, struct dentry *dentry)
ddbcc7e8 1127{
34c80b1d 1128 struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
ddbcc7e8
PM
1129 struct cgroup_subsys *ss;
1130
e25e2cbb 1131 mutex_lock(&cgroup_root_mutex);
5549c497 1132 for_each_root_subsys(root, ss)
ddbcc7e8 1133 seq_printf(seq, ",%s", ss->name);
873fe09e
TH
1134 if (root->flags & CGRP_ROOT_SANE_BEHAVIOR)
1135 seq_puts(seq, ",sane_behavior");
93438629 1136 if (root->flags & CGRP_ROOT_NOPREFIX)
ddbcc7e8 1137 seq_puts(seq, ",noprefix");
93438629 1138 if (root->flags & CGRP_ROOT_XATTR)
03b1cde6 1139 seq_puts(seq, ",xattr");
81a6a5cd
PM
1140 if (strlen(root->release_agent_path))
1141 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
2260e7fc 1142 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->top_cgroup.flags))
97978e6d 1143 seq_puts(seq, ",clone_children");
c6d57f33
PM
1144 if (strlen(root->name))
1145 seq_printf(seq, ",name=%s", root->name);
e25e2cbb 1146 mutex_unlock(&cgroup_root_mutex);
ddbcc7e8
PM
1147 return 0;
1148}
1149
1150struct cgroup_sb_opts {
a1a71b45 1151 unsigned long subsys_mask;
ddbcc7e8 1152 unsigned long flags;
81a6a5cd 1153 char *release_agent;
2260e7fc 1154 bool cpuset_clone_children;
c6d57f33 1155 char *name;
2c6ab6d2
PM
1156 /* User explicitly requested empty subsystem */
1157 bool none;
c6d57f33
PM
1158
1159 struct cgroupfs_root *new_root;
2c6ab6d2 1160
ddbcc7e8
PM
1161};
1162
aae8aab4 1163/*
9871bf95
TH
1164 * Convert a hierarchy specifier into a bitmask of subsystems and
1165 * flags. Call with cgroup_mutex held to protect the cgroup_subsys[]
1166 * array. This function takes refcounts on subsystems to be used, unless it
1167 * returns error, in which case no refcounts are taken.
aae8aab4 1168 */
cf5d5941 1169static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
ddbcc7e8 1170{
32a8cf23
DL
1171 char *token, *o = data;
1172 bool all_ss = false, one_ss = false;
f9ab5b5b 1173 unsigned long mask = (unsigned long)-1;
30159ec7
TH
1174 struct cgroup_subsys *ss;
1175 int i;
f9ab5b5b 1176
aae8aab4
BB
1177 BUG_ON(!mutex_is_locked(&cgroup_mutex));
1178
f9ab5b5b
LZ
1179#ifdef CONFIG_CPUSETS
1180 mask = ~(1UL << cpuset_subsys_id);
1181#endif
ddbcc7e8 1182
c6d57f33 1183 memset(opts, 0, sizeof(*opts));
ddbcc7e8
PM
1184
1185 while ((token = strsep(&o, ",")) != NULL) {
1186 if (!*token)
1187 return -EINVAL;
32a8cf23 1188 if (!strcmp(token, "none")) {
2c6ab6d2
PM
1189 /* Explicitly have no subsystems */
1190 opts->none = true;
32a8cf23
DL
1191 continue;
1192 }
1193 if (!strcmp(token, "all")) {
1194 /* Mutually exclusive option 'all' + subsystem name */
1195 if (one_ss)
1196 return -EINVAL;
1197 all_ss = true;
1198 continue;
1199 }
873fe09e
TH
1200 if (!strcmp(token, "__DEVEL__sane_behavior")) {
1201 opts->flags |= CGRP_ROOT_SANE_BEHAVIOR;
1202 continue;
1203 }
32a8cf23 1204 if (!strcmp(token, "noprefix")) {
93438629 1205 opts->flags |= CGRP_ROOT_NOPREFIX;
32a8cf23
DL
1206 continue;
1207 }
1208 if (!strcmp(token, "clone_children")) {
2260e7fc 1209 opts->cpuset_clone_children = true;
32a8cf23
DL
1210 continue;
1211 }
03b1cde6 1212 if (!strcmp(token, "xattr")) {
93438629 1213 opts->flags |= CGRP_ROOT_XATTR;
03b1cde6
AR
1214 continue;
1215 }
32a8cf23 1216 if (!strncmp(token, "release_agent=", 14)) {
81a6a5cd
PM
1217 /* Specifying two release agents is forbidden */
1218 if (opts->release_agent)
1219 return -EINVAL;
c6d57f33 1220 opts->release_agent =
e400c285 1221 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
81a6a5cd
PM
1222 if (!opts->release_agent)
1223 return -ENOMEM;
32a8cf23
DL
1224 continue;
1225 }
1226 if (!strncmp(token, "name=", 5)) {
c6d57f33
PM
1227 const char *name = token + 5;
1228 /* Can't specify an empty name */
1229 if (!strlen(name))
1230 return -EINVAL;
1231 /* Must match [\w.-]+ */
1232 for (i = 0; i < strlen(name); i++) {
1233 char c = name[i];
1234 if (isalnum(c))
1235 continue;
1236 if ((c == '.') || (c == '-') || (c == '_'))
1237 continue;
1238 return -EINVAL;
1239 }
1240 /* Specifying two names is forbidden */
1241 if (opts->name)
1242 return -EINVAL;
1243 opts->name = kstrndup(name,
e400c285 1244 MAX_CGROUP_ROOT_NAMELEN - 1,
c6d57f33
PM
1245 GFP_KERNEL);
1246 if (!opts->name)
1247 return -ENOMEM;
32a8cf23
DL
1248
1249 continue;
1250 }
1251
30159ec7 1252 for_each_subsys(ss, i) {
32a8cf23
DL
1253 if (strcmp(token, ss->name))
1254 continue;
1255 if (ss->disabled)
1256 continue;
1257
1258 /* Mutually exclusive option 'all' + subsystem name */
1259 if (all_ss)
1260 return -EINVAL;
a1a71b45 1261 set_bit(i, &opts->subsys_mask);
32a8cf23
DL
1262 one_ss = true;
1263
1264 break;
1265 }
1266 if (i == CGROUP_SUBSYS_COUNT)
1267 return -ENOENT;
1268 }
1269
1270 /*
1271 * If the 'all' option was specified select all the subsystems,
0d19ea86
LZ
1272 * otherwise if 'none', 'name=' and a subsystem name options
1273 * were not specified, let's default to 'all'
32a8cf23 1274 */
30159ec7
TH
1275 if (all_ss || (!one_ss && !opts->none && !opts->name))
1276 for_each_subsys(ss, i)
1277 if (!ss->disabled)
1278 set_bit(i, &opts->subsys_mask);
ddbcc7e8 1279
2c6ab6d2
PM
1280 /* Consistency checks */
1281
873fe09e
TH
1282 if (opts->flags & CGRP_ROOT_SANE_BEHAVIOR) {
1283 pr_warning("cgroup: sane_behavior: this is still under development and its behaviors will change, proceed at your own risk\n");
1284
1285 if (opts->flags & CGRP_ROOT_NOPREFIX) {
1286 pr_err("cgroup: sane_behavior: noprefix is not allowed\n");
1287 return -EINVAL;
1288 }
1289
1290 if (opts->cpuset_clone_children) {
1291 pr_err("cgroup: sane_behavior: clone_children is not allowed\n");
1292 return -EINVAL;
1293 }
1294 }
1295
f9ab5b5b
LZ
1296 /*
1297 * Option noprefix was introduced just for backward compatibility
1298 * with the old cpuset, so we allow noprefix only if mounting just
1299 * the cpuset subsystem.
1300 */
93438629 1301 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
f9ab5b5b
LZ
1302 return -EINVAL;
1303
2c6ab6d2
PM
1304
1305 /* Can't specify "none" and some subsystems */
a1a71b45 1306 if (opts->subsys_mask && opts->none)
2c6ab6d2
PM
1307 return -EINVAL;
1308
1309 /*
1310 * We either have to specify by name or by subsystems. (So all
1311 * empty hierarchies must have a name).
1312 */
a1a71b45 1313 if (!opts->subsys_mask && !opts->name)
ddbcc7e8
PM
1314 return -EINVAL;
1315
1316 return 0;
1317}
1318
1319static int cgroup_remount(struct super_block *sb, int *flags, char *data)
1320{
1321 int ret = 0;
1322 struct cgroupfs_root *root = sb->s_fs_info;
bd89aabc 1323 struct cgroup *cgrp = &root->top_cgroup;
ddbcc7e8 1324 struct cgroup_sb_opts opts;
a1a71b45 1325 unsigned long added_mask, removed_mask;
ddbcc7e8 1326
873fe09e
TH
1327 if (root->flags & CGRP_ROOT_SANE_BEHAVIOR) {
1328 pr_err("cgroup: sane_behavior: remount is not allowed\n");
1329 return -EINVAL;
1330 }
1331
bd89aabc 1332 mutex_lock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8 1333 mutex_lock(&cgroup_mutex);
e25e2cbb 1334 mutex_lock(&cgroup_root_mutex);
ddbcc7e8
PM
1335
1336 /* See what subsystems are wanted */
1337 ret = parse_cgroupfs_options(data, &opts);
1338 if (ret)
1339 goto out_unlock;
1340
a8a648c4 1341 if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
8b5a5a9d
TH
1342 pr_warning("cgroup: option changes via remount are deprecated (pid=%d comm=%s)\n",
1343 task_tgid_nr(current), current->comm);
1344
a1a71b45
AR
1345 added_mask = opts.subsys_mask & ~root->subsys_mask;
1346 removed_mask = root->subsys_mask & ~opts.subsys_mask;
13af07df 1347
cf5d5941 1348 /* Don't allow flags or name to change at remount */
0ce6cba3 1349 if (((opts.flags ^ root->flags) & CGRP_ROOT_OPTION_MASK) ||
cf5d5941 1350 (opts.name && strcmp(opts.name, root->name))) {
0ce6cba3
TH
1351 pr_err("cgroup: option or name mismatch, new: 0x%lx \"%s\", old: 0x%lx \"%s\"\n",
1352 opts.flags & CGRP_ROOT_OPTION_MASK, opts.name ?: "",
1353 root->flags & CGRP_ROOT_OPTION_MASK, root->name);
c6d57f33
PM
1354 ret = -EINVAL;
1355 goto out_unlock;
1356 }
1357
f172e67c
TH
1358 /* remounting is not allowed for populated hierarchies */
1359 if (root->number_of_cgroups > 1) {
1360 ret = -EBUSY;
1361 goto out_unlock;
1362 }
1363
a8a648c4 1364 ret = rebind_subsystems(root, added_mask, removed_mask);
3126121f 1365 if (ret)
0670e08b 1366 goto out_unlock;
ddbcc7e8 1367
81a6a5cd
PM
1368 if (opts.release_agent)
1369 strcpy(root->release_agent_path, opts.release_agent);
ddbcc7e8 1370 out_unlock:
66bdc9cf 1371 kfree(opts.release_agent);
c6d57f33 1372 kfree(opts.name);
e25e2cbb 1373 mutex_unlock(&cgroup_root_mutex);
ddbcc7e8 1374 mutex_unlock(&cgroup_mutex);
bd89aabc 1375 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8
PM
1376 return ret;
1377}
1378
b87221de 1379static const struct super_operations cgroup_ops = {
ddbcc7e8
PM
1380 .statfs = simple_statfs,
1381 .drop_inode = generic_delete_inode,
1382 .show_options = cgroup_show_options,
1383 .remount_fs = cgroup_remount,
1384};
1385
cc31edce
PM
1386static void init_cgroup_housekeeping(struct cgroup *cgrp)
1387{
1388 INIT_LIST_HEAD(&cgrp->sibling);
1389 INIT_LIST_HEAD(&cgrp->children);
05ef1d7c 1390 INIT_LIST_HEAD(&cgrp->files);
69d0206c 1391 INIT_LIST_HEAD(&cgrp->cset_links);
cc31edce 1392 INIT_LIST_HEAD(&cgrp->release_list);
72a8cb30
BB
1393 INIT_LIST_HEAD(&cgrp->pidlists);
1394 mutex_init(&cgrp->pidlist_mutex);
67f4c36f 1395 cgrp->dummy_css.cgroup = cgrp;
0dea1168
KS
1396 INIT_LIST_HEAD(&cgrp->event_list);
1397 spin_lock_init(&cgrp->event_list_lock);
03b1cde6 1398 simple_xattrs_init(&cgrp->xattrs);
cc31edce 1399}
c6d57f33 1400
ddbcc7e8
PM
1401static void init_cgroup_root(struct cgroupfs_root *root)
1402{
bd89aabc 1403 struct cgroup *cgrp = &root->top_cgroup;
b0ca5a84 1404
ddbcc7e8
PM
1405 INIT_LIST_HEAD(&root->subsys_list);
1406 INIT_LIST_HEAD(&root->root_list);
1407 root->number_of_cgroups = 1;
bd89aabc 1408 cgrp->root = root;
a4ea1cc9 1409 RCU_INIT_POINTER(cgrp->name, &root_cgroup_name);
cc31edce 1410 init_cgroup_housekeeping(cgrp);
4e96ee8e 1411 idr_init(&root->cgroup_idr);
ddbcc7e8
PM
1412}
1413
fc76df70 1414static int cgroup_init_root_id(struct cgroupfs_root *root, int start, int end)
2c6ab6d2 1415{
1a574231 1416 int id;
2c6ab6d2 1417
54e7b4eb
TH
1418 lockdep_assert_held(&cgroup_mutex);
1419 lockdep_assert_held(&cgroup_root_mutex);
1420
fc76df70
TH
1421 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, start, end,
1422 GFP_KERNEL);
1a574231
TH
1423 if (id < 0)
1424 return id;
1425
1426 root->hierarchy_id = id;
fa3ca07e
TH
1427 return 0;
1428}
1429
1430static void cgroup_exit_root_id(struct cgroupfs_root *root)
1431{
54e7b4eb
TH
1432 lockdep_assert_held(&cgroup_mutex);
1433 lockdep_assert_held(&cgroup_root_mutex);
1434
fa3ca07e 1435 if (root->hierarchy_id) {
1a574231 1436 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
fa3ca07e
TH
1437 root->hierarchy_id = 0;
1438 }
2c6ab6d2
PM
1439}
1440
ddbcc7e8
PM
1441static int cgroup_test_super(struct super_block *sb, void *data)
1442{
c6d57f33 1443 struct cgroup_sb_opts *opts = data;
ddbcc7e8
PM
1444 struct cgroupfs_root *root = sb->s_fs_info;
1445
c6d57f33
PM
1446 /* If we asked for a name then it must match */
1447 if (opts->name && strcmp(opts->name, root->name))
1448 return 0;
ddbcc7e8 1449
2c6ab6d2
PM
1450 /*
1451 * If we asked for subsystems (or explicitly for no
1452 * subsystems) then they must match
1453 */
a1a71b45
AR
1454 if ((opts->subsys_mask || opts->none)
1455 && (opts->subsys_mask != root->subsys_mask))
ddbcc7e8
PM
1456 return 0;
1457
1458 return 1;
1459}
1460
c6d57f33
PM
1461static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts)
1462{
1463 struct cgroupfs_root *root;
1464
a1a71b45 1465 if (!opts->subsys_mask && !opts->none)
c6d57f33
PM
1466 return NULL;
1467
1468 root = kzalloc(sizeof(*root), GFP_KERNEL);
1469 if (!root)
1470 return ERR_PTR(-ENOMEM);
1471
1472 init_cgroup_root(root);
2c6ab6d2 1473
1672d040
TH
1474 /*
1475 * We need to set @root->subsys_mask now so that @root can be
1476 * matched by cgroup_test_super() before it finishes
1477 * initialization; otherwise, competing mounts with the same
1478 * options may try to bind the same subsystems instead of waiting
1479 * for the first one leading to unexpected mount errors.
1480 * SUBSYS_BOUND will be set once actual binding is complete.
1481 */
a1a71b45 1482 root->subsys_mask = opts->subsys_mask;
c6d57f33
PM
1483 root->flags = opts->flags;
1484 if (opts->release_agent)
1485 strcpy(root->release_agent_path, opts->release_agent);
1486 if (opts->name)
1487 strcpy(root->name, opts->name);
2260e7fc
TH
1488 if (opts->cpuset_clone_children)
1489 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->top_cgroup.flags);
c6d57f33
PM
1490 return root;
1491}
1492
fa3ca07e 1493static void cgroup_free_root(struct cgroupfs_root *root)
2c6ab6d2 1494{
fa3ca07e
TH
1495 if (root) {
1496 /* hierarhcy ID shoulid already have been released */
1497 WARN_ON_ONCE(root->hierarchy_id);
2c6ab6d2 1498
4e96ee8e 1499 idr_destroy(&root->cgroup_idr);
fa3ca07e
TH
1500 kfree(root);
1501 }
2c6ab6d2
PM
1502}
1503
ddbcc7e8
PM
1504static int cgroup_set_super(struct super_block *sb, void *data)
1505{
1506 int ret;
c6d57f33
PM
1507 struct cgroup_sb_opts *opts = data;
1508
1509 /* If we don't have a new root, we can't set up a new sb */
1510 if (!opts->new_root)
1511 return -EINVAL;
1512
a1a71b45 1513 BUG_ON(!opts->subsys_mask && !opts->none);
ddbcc7e8
PM
1514
1515 ret = set_anon_super(sb, NULL);
1516 if (ret)
1517 return ret;
1518
c6d57f33
PM
1519 sb->s_fs_info = opts->new_root;
1520 opts->new_root->sb = sb;
ddbcc7e8
PM
1521
1522 sb->s_blocksize = PAGE_CACHE_SIZE;
1523 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
1524 sb->s_magic = CGROUP_SUPER_MAGIC;
1525 sb->s_op = &cgroup_ops;
1526
1527 return 0;
1528}
1529
1530static int cgroup_get_rootdir(struct super_block *sb)
1531{
0df6a63f
AV
1532 static const struct dentry_operations cgroup_dops = {
1533 .d_iput = cgroup_diput,
c72a04e3 1534 .d_delete = cgroup_delete,
0df6a63f
AV
1535 };
1536
ddbcc7e8
PM
1537 struct inode *inode =
1538 cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
ddbcc7e8
PM
1539
1540 if (!inode)
1541 return -ENOMEM;
1542
ddbcc7e8
PM
1543 inode->i_fop = &simple_dir_operations;
1544 inode->i_op = &cgroup_dir_inode_operations;
1545 /* directories start off with i_nlink == 2 (for "." entry) */
1546 inc_nlink(inode);
48fde701
AV
1547 sb->s_root = d_make_root(inode);
1548 if (!sb->s_root)
ddbcc7e8 1549 return -ENOMEM;
0df6a63f
AV
1550 /* for everything else we want ->d_op set */
1551 sb->s_d_op = &cgroup_dops;
ddbcc7e8
PM
1552 return 0;
1553}
1554
f7e83571 1555static struct dentry *cgroup_mount(struct file_system_type *fs_type,
ddbcc7e8 1556 int flags, const char *unused_dev_name,
f7e83571 1557 void *data)
ddbcc7e8
PM
1558{
1559 struct cgroup_sb_opts opts;
c6d57f33 1560 struct cgroupfs_root *root;
ddbcc7e8
PM
1561 int ret = 0;
1562 struct super_block *sb;
c6d57f33 1563 struct cgroupfs_root *new_root;
3126121f 1564 struct list_head tmp_links;
e25e2cbb 1565 struct inode *inode;
3126121f 1566 const struct cred *cred;
ddbcc7e8
PM
1567
1568 /* First find the desired set of subsystems */
aae8aab4 1569 mutex_lock(&cgroup_mutex);
ddbcc7e8 1570 ret = parse_cgroupfs_options(data, &opts);
aae8aab4 1571 mutex_unlock(&cgroup_mutex);
c6d57f33
PM
1572 if (ret)
1573 goto out_err;
ddbcc7e8 1574
c6d57f33
PM
1575 /*
1576 * Allocate a new cgroup root. We may not need it if we're
1577 * reusing an existing hierarchy.
1578 */
1579 new_root = cgroup_root_from_opts(&opts);
1580 if (IS_ERR(new_root)) {
1581 ret = PTR_ERR(new_root);
1d5be6b2 1582 goto out_err;
81a6a5cd 1583 }
c6d57f33 1584 opts.new_root = new_root;
ddbcc7e8 1585
c6d57f33 1586 /* Locate an existing or new sb for this hierarchy */
9249e17f 1587 sb = sget(fs_type, cgroup_test_super, cgroup_set_super, 0, &opts);
ddbcc7e8 1588 if (IS_ERR(sb)) {
c6d57f33 1589 ret = PTR_ERR(sb);
fa3ca07e 1590 cgroup_free_root(opts.new_root);
1d5be6b2 1591 goto out_err;
ddbcc7e8
PM
1592 }
1593
c6d57f33
PM
1594 root = sb->s_fs_info;
1595 BUG_ON(!root);
1596 if (root == opts.new_root) {
1597 /* We used the new root structure, so this is a new hierarchy */
c12f65d4 1598 struct cgroup *root_cgrp = &root->top_cgroup;
c6d57f33 1599 struct cgroupfs_root *existing_root;
28fd5dfc 1600 int i;
5abb8855 1601 struct css_set *cset;
ddbcc7e8
PM
1602
1603 BUG_ON(sb->s_root != NULL);
1604
1605 ret = cgroup_get_rootdir(sb);
1606 if (ret)
1607 goto drop_new_super;
817929ec 1608 inode = sb->s_root->d_inode;
ddbcc7e8 1609
817929ec 1610 mutex_lock(&inode->i_mutex);
ddbcc7e8 1611 mutex_lock(&cgroup_mutex);
e25e2cbb 1612 mutex_lock(&cgroup_root_mutex);
ddbcc7e8 1613
4e96ee8e
LZ
1614 root_cgrp->id = idr_alloc(&root->cgroup_idr, root_cgrp,
1615 0, 1, GFP_KERNEL);
1616 if (root_cgrp->id < 0)
1617 goto unlock_drop;
1618
e25e2cbb
TH
1619 /* Check for name clashes with existing mounts */
1620 ret = -EBUSY;
1621 if (strlen(root->name))
1622 for_each_active_root(existing_root)
1623 if (!strcmp(existing_root->name, root->name))
1624 goto unlock_drop;
c6d57f33 1625
817929ec
PM
1626 /*
1627 * We're accessing css_set_count without locking
1628 * css_set_lock here, but that's OK - it can only be
1629 * increased by someone holding cgroup_lock, and
1630 * that's us. The worst that can happen is that we
1631 * have some link structures left over
1632 */
69d0206c 1633 ret = allocate_cgrp_cset_links(css_set_count, &tmp_links);
e25e2cbb
TH
1634 if (ret)
1635 goto unlock_drop;
817929ec 1636
fc76df70
TH
1637 /* ID 0 is reserved for dummy root, 1 for unified hierarchy */
1638 ret = cgroup_init_root_id(root, 2, 0);
fa3ca07e
TH
1639 if (ret)
1640 goto unlock_drop;
1641
3126121f
TH
1642 sb->s_root->d_fsdata = root_cgrp;
1643 root_cgrp->dentry = sb->s_root;
1644
1645 /*
1646 * We're inside get_sb() and will call lookup_one_len() to
1647 * create the root files, which doesn't work if SELinux is
1648 * in use. The following cred dancing somehow works around
1649 * it. See 2ce9738ba ("cgroupfs: use init_cred when
1650 * populating new cgroupfs mount") for more details.
1651 */
1652 cred = override_creds(&init_cred);
1653
2bb566cb 1654 ret = cgroup_addrm_files(root_cgrp, cgroup_base_files, true);
3126121f
TH
1655 if (ret)
1656 goto rm_base_files;
1657
a8a648c4 1658 ret = rebind_subsystems(root, root->subsys_mask, 0);
3126121f
TH
1659 if (ret)
1660 goto rm_base_files;
1661
1662 revert_creds(cred);
1663
cf5d5941
BB
1664 /*
1665 * There must be no failure case after here, since rebinding
1666 * takes care of subsystems' refcounts, which are explicitly
1667 * dropped in the failure exit path.
1668 */
ddbcc7e8 1669
9871bf95
TH
1670 list_add(&root->root_list, &cgroup_roots);
1671 cgroup_root_count++;
ddbcc7e8 1672
817929ec
PM
1673 /* Link the top cgroup in this hierarchy into all
1674 * the css_set objects */
1675 write_lock(&css_set_lock);
5abb8855 1676 hash_for_each(css_set_table, i, cset, hlist)
69d0206c 1677 link_css_set(&tmp_links, cset, root_cgrp);
817929ec
PM
1678 write_unlock(&css_set_lock);
1679
69d0206c 1680 free_cgrp_cset_links(&tmp_links);
817929ec 1681
c12f65d4 1682 BUG_ON(!list_empty(&root_cgrp->children));
ddbcc7e8
PM
1683 BUG_ON(root->number_of_cgroups != 1);
1684
e25e2cbb 1685 mutex_unlock(&cgroup_root_mutex);
ddbcc7e8 1686 mutex_unlock(&cgroup_mutex);
34f77a90 1687 mutex_unlock(&inode->i_mutex);
c6d57f33
PM
1688 } else {
1689 /*
1690 * We re-used an existing hierarchy - the new root (if
1691 * any) is not needed
1692 */
fa3ca07e 1693 cgroup_free_root(opts.new_root);
873fe09e 1694
c7ba8287 1695 if ((root->flags ^ opts.flags) & CGRP_ROOT_OPTION_MASK) {
2a0ff3fb
JL
1696 if ((root->flags | opts.flags) & CGRP_ROOT_SANE_BEHAVIOR) {
1697 pr_err("cgroup: sane_behavior: new mount options should match the existing superblock\n");
1698 ret = -EINVAL;
1699 goto drop_new_super;
1700 } else {
1701 pr_warning("cgroup: new mount options do not match the existing superblock, will be ignored\n");
1702 }
873fe09e 1703 }
ddbcc7e8
PM
1704 }
1705
c6d57f33
PM
1706 kfree(opts.release_agent);
1707 kfree(opts.name);
f7e83571 1708 return dget(sb->s_root);
ddbcc7e8 1709
3126121f
TH
1710 rm_base_files:
1711 free_cgrp_cset_links(&tmp_links);
2bb566cb 1712 cgroup_addrm_files(&root->top_cgroup, cgroup_base_files, false);
3126121f 1713 revert_creds(cred);
e25e2cbb 1714 unlock_drop:
fa3ca07e 1715 cgroup_exit_root_id(root);
e25e2cbb
TH
1716 mutex_unlock(&cgroup_root_mutex);
1717 mutex_unlock(&cgroup_mutex);
1718 mutex_unlock(&inode->i_mutex);
ddbcc7e8 1719 drop_new_super:
6f5bbff9 1720 deactivate_locked_super(sb);
c6d57f33
PM
1721 out_err:
1722 kfree(opts.release_agent);
1723 kfree(opts.name);
f7e83571 1724 return ERR_PTR(ret);
ddbcc7e8
PM
1725}
1726
1727static void cgroup_kill_sb(struct super_block *sb) {
1728 struct cgroupfs_root *root = sb->s_fs_info;
bd89aabc 1729 struct cgroup *cgrp = &root->top_cgroup;
69d0206c 1730 struct cgrp_cset_link *link, *tmp_link;
ddbcc7e8
PM
1731 int ret;
1732
1733 BUG_ON(!root);
1734
1735 BUG_ON(root->number_of_cgroups != 1);
bd89aabc 1736 BUG_ON(!list_empty(&cgrp->children));
ddbcc7e8 1737
3126121f 1738 mutex_lock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8 1739 mutex_lock(&cgroup_mutex);
e25e2cbb 1740 mutex_lock(&cgroup_root_mutex);
ddbcc7e8
PM
1741
1742 /* Rebind all subsystems back to the default hierarchy */
1672d040
TH
1743 if (root->flags & CGRP_ROOT_SUBSYS_BOUND) {
1744 ret = rebind_subsystems(root, 0, root->subsys_mask);
1745 /* Shouldn't be able to fail ... */
1746 BUG_ON(ret);
1747 }
ddbcc7e8 1748
817929ec 1749 /*
69d0206c 1750 * Release all the links from cset_links to this hierarchy's
817929ec
PM
1751 * root cgroup
1752 */
1753 write_lock(&css_set_lock);
71cbb949 1754
69d0206c
TH
1755 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1756 list_del(&link->cset_link);
1757 list_del(&link->cgrp_link);
817929ec
PM
1758 kfree(link);
1759 }
1760 write_unlock(&css_set_lock);
1761
839ec545
PM
1762 if (!list_empty(&root->root_list)) {
1763 list_del(&root->root_list);
9871bf95 1764 cgroup_root_count--;
839ec545 1765 }
e5f6a860 1766
fa3ca07e
TH
1767 cgroup_exit_root_id(root);
1768
e25e2cbb 1769 mutex_unlock(&cgroup_root_mutex);
ddbcc7e8 1770 mutex_unlock(&cgroup_mutex);
3126121f 1771 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8 1772
03b1cde6
AR
1773 simple_xattrs_free(&cgrp->xattrs);
1774
ddbcc7e8 1775 kill_litter_super(sb);
fa3ca07e 1776 cgroup_free_root(root);
ddbcc7e8
PM
1777}
1778
1779static struct file_system_type cgroup_fs_type = {
1780 .name = "cgroup",
f7e83571 1781 .mount = cgroup_mount,
ddbcc7e8
PM
1782 .kill_sb = cgroup_kill_sb,
1783};
1784
676db4af
GKH
1785static struct kobject *cgroup_kobj;
1786
a043e3b2
LZ
1787/**
1788 * cgroup_path - generate the path of a cgroup
1789 * @cgrp: the cgroup in question
1790 * @buf: the buffer to write the path into
1791 * @buflen: the length of the buffer
1792 *
65dff759
LZ
1793 * Writes path of cgroup into buf. Returns 0 on success, -errno on error.
1794 *
1795 * We can't generate cgroup path using dentry->d_name, as accessing
1796 * dentry->name must be protected by irq-unsafe dentry->d_lock or parent
1797 * inode's i_mutex, while on the other hand cgroup_path() can be called
1798 * with some irq-safe spinlocks held.
ddbcc7e8 1799 */
bd89aabc 1800int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
ddbcc7e8 1801{
65dff759 1802 int ret = -ENAMETOOLONG;
ddbcc7e8 1803 char *start;
febfcef6 1804
da1f296f
TH
1805 if (!cgrp->parent) {
1806 if (strlcpy(buf, "/", buflen) >= buflen)
1807 return -ENAMETOOLONG;
ddbcc7e8
PM
1808 return 0;
1809 }
1810
316eb661 1811 start = buf + buflen - 1;
316eb661 1812 *start = '\0';
9a9686b6 1813
65dff759 1814 rcu_read_lock();
da1f296f 1815 do {
65dff759
LZ
1816 const char *name = cgroup_name(cgrp);
1817 int len;
1818
1819 len = strlen(name);
ddbcc7e8 1820 if ((start -= len) < buf)
65dff759
LZ
1821 goto out;
1822 memcpy(start, name, len);
9a9686b6 1823
ddbcc7e8 1824 if (--start < buf)
65dff759 1825 goto out;
ddbcc7e8 1826 *start = '/';
65dff759
LZ
1827
1828 cgrp = cgrp->parent;
da1f296f 1829 } while (cgrp->parent);
65dff759 1830 ret = 0;
ddbcc7e8 1831 memmove(buf, start, buf + buflen - start);
65dff759
LZ
1832out:
1833 rcu_read_unlock();
1834 return ret;
ddbcc7e8 1835}
67523c48 1836EXPORT_SYMBOL_GPL(cgroup_path);
ddbcc7e8 1837
857a2beb 1838/**
913ffdb5 1839 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
857a2beb 1840 * @task: target task
857a2beb
TH
1841 * @buf: the buffer to write the path into
1842 * @buflen: the length of the buffer
1843 *
913ffdb5
TH
1844 * Determine @task's cgroup on the first (the one with the lowest non-zero
1845 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
1846 * function grabs cgroup_mutex and shouldn't be used inside locks used by
1847 * cgroup controller callbacks.
1848 *
1849 * Returns 0 on success, fails with -%ENAMETOOLONG if @buflen is too short.
857a2beb 1850 */
913ffdb5 1851int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
857a2beb
TH
1852{
1853 struct cgroupfs_root *root;
913ffdb5
TH
1854 struct cgroup *cgrp;
1855 int hierarchy_id = 1, ret = 0;
1856
1857 if (buflen < 2)
1858 return -ENAMETOOLONG;
857a2beb
TH
1859
1860 mutex_lock(&cgroup_mutex);
1861
913ffdb5
TH
1862 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
1863
857a2beb
TH
1864 if (root) {
1865 cgrp = task_cgroup_from_root(task, root);
1866 ret = cgroup_path(cgrp, buf, buflen);
913ffdb5
TH
1867 } else {
1868 /* if no hierarchy exists, everyone is in "/" */
1869 memcpy(buf, "/", 2);
857a2beb
TH
1870 }
1871
1872 mutex_unlock(&cgroup_mutex);
857a2beb
TH
1873 return ret;
1874}
913ffdb5 1875EXPORT_SYMBOL_GPL(task_cgroup_path);
857a2beb 1876
2f7ee569
TH
1877/*
1878 * Control Group taskset
1879 */
134d3373
TH
1880struct task_and_cgroup {
1881 struct task_struct *task;
1882 struct cgroup *cgrp;
6f4b7e63 1883 struct css_set *cset;
134d3373
TH
1884};
1885
2f7ee569
TH
1886struct cgroup_taskset {
1887 struct task_and_cgroup single;
1888 struct flex_array *tc_array;
1889 int tc_array_len;
1890 int idx;
1891 struct cgroup *cur_cgrp;
1892};
1893
1894/**
1895 * cgroup_taskset_first - reset taskset and return the first task
1896 * @tset: taskset of interest
1897 *
1898 * @tset iteration is initialized and the first task is returned.
1899 */
1900struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
1901{
1902 if (tset->tc_array) {
1903 tset->idx = 0;
1904 return cgroup_taskset_next(tset);
1905 } else {
1906 tset->cur_cgrp = tset->single.cgrp;
1907 return tset->single.task;
1908 }
1909}
1910EXPORT_SYMBOL_GPL(cgroup_taskset_first);
1911
1912/**
1913 * cgroup_taskset_next - iterate to the next task in taskset
1914 * @tset: taskset of interest
1915 *
1916 * Return the next task in @tset. Iteration must have been initialized
1917 * with cgroup_taskset_first().
1918 */
1919struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
1920{
1921 struct task_and_cgroup *tc;
1922
1923 if (!tset->tc_array || tset->idx >= tset->tc_array_len)
1924 return NULL;
1925
1926 tc = flex_array_get(tset->tc_array, tset->idx++);
1927 tset->cur_cgrp = tc->cgrp;
1928 return tc->task;
1929}
1930EXPORT_SYMBOL_GPL(cgroup_taskset_next);
1931
1932/**
d99c8727 1933 * cgroup_taskset_cur_css - return the matching css for the current task
2f7ee569 1934 * @tset: taskset of interest
d99c8727 1935 * @subsys_id: the ID of the target subsystem
2f7ee569 1936 *
d99c8727
TH
1937 * Return the css for the current (last returned) task of @tset for
1938 * subsystem specified by @subsys_id. This function must be preceded by
1939 * either cgroup_taskset_first() or cgroup_taskset_next().
2f7ee569 1940 */
d99c8727
TH
1941struct cgroup_subsys_state *cgroup_taskset_cur_css(struct cgroup_taskset *tset,
1942 int subsys_id)
2f7ee569 1943{
d99c8727 1944 return cgroup_css(tset->cur_cgrp, subsys_id);
2f7ee569 1945}
d99c8727 1946EXPORT_SYMBOL_GPL(cgroup_taskset_cur_css);
2f7ee569
TH
1947
1948/**
1949 * cgroup_taskset_size - return the number of tasks in taskset
1950 * @tset: taskset of interest
1951 */
1952int cgroup_taskset_size(struct cgroup_taskset *tset)
1953{
1954 return tset->tc_array ? tset->tc_array_len : 1;
1955}
1956EXPORT_SYMBOL_GPL(cgroup_taskset_size);
1957
1958
74a1166d
BB
1959/*
1960 * cgroup_task_migrate - move a task from one cgroup to another.
1961 *
d0b2fdd2 1962 * Must be called with cgroup_mutex and threadgroup locked.
74a1166d 1963 */
5abb8855
TH
1964static void cgroup_task_migrate(struct cgroup *old_cgrp,
1965 struct task_struct *tsk,
1966 struct css_set *new_cset)
74a1166d 1967{
5abb8855 1968 struct css_set *old_cset;
74a1166d
BB
1969
1970 /*
026085ef
MSB
1971 * We are synchronized through threadgroup_lock() against PF_EXITING
1972 * setting such that we can't race against cgroup_exit() changing the
1973 * css_set to init_css_set and dropping the old one.
74a1166d 1974 */
c84cdf75 1975 WARN_ON_ONCE(tsk->flags & PF_EXITING);
a8ad805c 1976 old_cset = task_css_set(tsk);
74a1166d 1977
74a1166d 1978 task_lock(tsk);
5abb8855 1979 rcu_assign_pointer(tsk->cgroups, new_cset);
74a1166d
BB
1980 task_unlock(tsk);
1981
1982 /* Update the css_set linked lists if we're using them */
1983 write_lock(&css_set_lock);
1984 if (!list_empty(&tsk->cg_list))
5abb8855 1985 list_move(&tsk->cg_list, &new_cset->tasks);
74a1166d
BB
1986 write_unlock(&css_set_lock);
1987
1988 /*
5abb8855
TH
1989 * We just gained a reference on old_cset by taking it from the
1990 * task. As trading it for new_cset is protected by cgroup_mutex,
1991 * we're safe to drop it here; it will be freed under RCU.
74a1166d 1992 */
5abb8855
TH
1993 set_bit(CGRP_RELEASABLE, &old_cgrp->flags);
1994 put_css_set(old_cset);
74a1166d
BB
1995}
1996
a043e3b2 1997/**
081aa458 1998 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
74a1166d 1999 * @cgrp: the cgroup to attach to
081aa458
LZ
2000 * @tsk: the task or the leader of the threadgroup to be attached
2001 * @threadgroup: attach the whole threadgroup?
74a1166d 2002 *
257058ae 2003 * Call holding cgroup_mutex and the group_rwsem of the leader. Will take
081aa458 2004 * task_lock of @tsk or each thread in the threadgroup individually in turn.
74a1166d 2005 */
47cfcd09
TH
2006static int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk,
2007 bool threadgroup)
74a1166d
BB
2008{
2009 int retval, i, group_size;
2010 struct cgroup_subsys *ss, *failed_ss = NULL;
74a1166d
BB
2011 struct cgroupfs_root *root = cgrp->root;
2012 /* threadgroup list cursor and array */
081aa458 2013 struct task_struct *leader = tsk;
134d3373 2014 struct task_and_cgroup *tc;
d846687d 2015 struct flex_array *group;
2f7ee569 2016 struct cgroup_taskset tset = { };
74a1166d
BB
2017
2018 /*
2019 * step 0: in order to do expensive, possibly blocking operations for
2020 * every thread, we cannot iterate the thread group list, since it needs
2021 * rcu or tasklist locked. instead, build an array of all threads in the
257058ae
TH
2022 * group - group_rwsem prevents new threads from appearing, and if
2023 * threads exit, this will just be an over-estimate.
74a1166d 2024 */
081aa458
LZ
2025 if (threadgroup)
2026 group_size = get_nr_threads(tsk);
2027 else
2028 group_size = 1;
d846687d 2029 /* flex_array supports very large thread-groups better than kmalloc. */
134d3373 2030 group = flex_array_alloc(sizeof(*tc), group_size, GFP_KERNEL);
74a1166d
BB
2031 if (!group)
2032 return -ENOMEM;
d846687d 2033 /* pre-allocate to guarantee space while iterating in rcu read-side. */
3ac1707a 2034 retval = flex_array_prealloc(group, 0, group_size, GFP_KERNEL);
d846687d
BB
2035 if (retval)
2036 goto out_free_group_list;
74a1166d 2037
74a1166d 2038 i = 0;
fb5d2b4c
MSB
2039 /*
2040 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2041 * already PF_EXITING could be freed from underneath us unless we
2042 * take an rcu_read_lock.
2043 */
2044 rcu_read_lock();
74a1166d 2045 do {
134d3373
TH
2046 struct task_and_cgroup ent;
2047
cd3d0952
TH
2048 /* @tsk either already exited or can't exit until the end */
2049 if (tsk->flags & PF_EXITING)
2050 continue;
2051
74a1166d
BB
2052 /* as per above, nr_threads may decrease, but not increase. */
2053 BUG_ON(i >= group_size);
134d3373
TH
2054 ent.task = tsk;
2055 ent.cgrp = task_cgroup_from_root(tsk, root);
892a2b90
MSB
2056 /* nothing to do if this task is already in the cgroup */
2057 if (ent.cgrp == cgrp)
2058 continue;
61d1d219
MSB
2059 /*
2060 * saying GFP_ATOMIC has no effect here because we did prealloc
2061 * earlier, but it's good form to communicate our expectations.
2062 */
134d3373 2063 retval = flex_array_put(group, i, &ent, GFP_ATOMIC);
d846687d 2064 BUG_ON(retval != 0);
74a1166d 2065 i++;
081aa458
LZ
2066
2067 if (!threadgroup)
2068 break;
74a1166d 2069 } while_each_thread(leader, tsk);
fb5d2b4c 2070 rcu_read_unlock();
74a1166d
BB
2071 /* remember the number of threads in the array for later. */
2072 group_size = i;
2f7ee569
TH
2073 tset.tc_array = group;
2074 tset.tc_array_len = group_size;
74a1166d 2075
134d3373
TH
2076 /* methods shouldn't be called if no task is actually migrating */
2077 retval = 0;
892a2b90 2078 if (!group_size)
b07ef774 2079 goto out_free_group_list;
134d3373 2080
74a1166d
BB
2081 /*
2082 * step 1: check that we can legitimately attach to the cgroup.
2083 */
5549c497 2084 for_each_root_subsys(root, ss) {
40e93b39 2085 struct cgroup_subsys_state *css = cgroup_css(cgrp, ss->subsys_id);
eb95419b 2086
74a1166d 2087 if (ss->can_attach) {
eb95419b 2088 retval = ss->can_attach(css, &tset);
74a1166d
BB
2089 if (retval) {
2090 failed_ss = ss;
2091 goto out_cancel_attach;
2092 }
2093 }
74a1166d
BB
2094 }
2095
2096 /*
2097 * step 2: make sure css_sets exist for all threads to be migrated.
2098 * we use find_css_set, which allocates a new one if necessary.
2099 */
74a1166d 2100 for (i = 0; i < group_size; i++) {
a8ad805c
TH
2101 struct css_set *old_cset;
2102
134d3373 2103 tc = flex_array_get(group, i);
a8ad805c 2104 old_cset = task_css_set(tc->task);
6f4b7e63
LZ
2105 tc->cset = find_css_set(old_cset, cgrp);
2106 if (!tc->cset) {
61d1d219
MSB
2107 retval = -ENOMEM;
2108 goto out_put_css_set_refs;
74a1166d
BB
2109 }
2110 }
2111
2112 /*
494c167c
TH
2113 * step 3: now that we're guaranteed success wrt the css_sets,
2114 * proceed to move all tasks to the new cgroup. There are no
2115 * failure cases after here, so this is the commit point.
74a1166d 2116 */
74a1166d 2117 for (i = 0; i < group_size; i++) {
134d3373 2118 tc = flex_array_get(group, i);
6f4b7e63 2119 cgroup_task_migrate(tc->cgrp, tc->task, tc->cset);
74a1166d
BB
2120 }
2121 /* nothing is sensitive to fork() after this point. */
2122
2123 /*
494c167c 2124 * step 4: do subsystem attach callbacks.
74a1166d 2125 */
5549c497 2126 for_each_root_subsys(root, ss) {
40e93b39 2127 struct cgroup_subsys_state *css = cgroup_css(cgrp, ss->subsys_id);
eb95419b 2128
74a1166d 2129 if (ss->attach)
eb95419b 2130 ss->attach(css, &tset);
74a1166d
BB
2131 }
2132
2133 /*
2134 * step 5: success! and cleanup
2135 */
74a1166d 2136 retval = 0;
61d1d219
MSB
2137out_put_css_set_refs:
2138 if (retval) {
2139 for (i = 0; i < group_size; i++) {
2140 tc = flex_array_get(group, i);
6f4b7e63 2141 if (!tc->cset)
61d1d219 2142 break;
6f4b7e63 2143 put_css_set(tc->cset);
61d1d219 2144 }
74a1166d
BB
2145 }
2146out_cancel_attach:
74a1166d 2147 if (retval) {
5549c497 2148 for_each_root_subsys(root, ss) {
40e93b39 2149 struct cgroup_subsys_state *css = cgroup_css(cgrp, ss->subsys_id);
eb95419b 2150
494c167c 2151 if (ss == failed_ss)
74a1166d 2152 break;
74a1166d 2153 if (ss->cancel_attach)
eb95419b 2154 ss->cancel_attach(css, &tset);
74a1166d
BB
2155 }
2156 }
74a1166d 2157out_free_group_list:
d846687d 2158 flex_array_free(group);
74a1166d
BB
2159 return retval;
2160}
2161
2162/*
2163 * Find the task_struct of the task to attach by vpid and pass it along to the
cd3d0952
TH
2164 * function to attach either it or all tasks in its threadgroup. Will lock
2165 * cgroup_mutex and threadgroup; may take task_lock of task.
bbcb81d0 2166 */
74a1166d 2167static int attach_task_by_pid(struct cgroup *cgrp, u64 pid, bool threadgroup)
bbcb81d0 2168{
bbcb81d0 2169 struct task_struct *tsk;
c69e8d9c 2170 const struct cred *cred = current_cred(), *tcred;
bbcb81d0
PM
2171 int ret;
2172
74a1166d
BB
2173 if (!cgroup_lock_live_group(cgrp))
2174 return -ENODEV;
2175
b78949eb
MSB
2176retry_find_task:
2177 rcu_read_lock();
bbcb81d0 2178 if (pid) {
73507f33 2179 tsk = find_task_by_vpid(pid);
74a1166d
BB
2180 if (!tsk) {
2181 rcu_read_unlock();
b78949eb
MSB
2182 ret= -ESRCH;
2183 goto out_unlock_cgroup;
bbcb81d0 2184 }
74a1166d
BB
2185 /*
2186 * even if we're attaching all tasks in the thread group, we
2187 * only need to check permissions on one of them.
2188 */
c69e8d9c 2189 tcred = __task_cred(tsk);
14a590c3
EB
2190 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2191 !uid_eq(cred->euid, tcred->uid) &&
2192 !uid_eq(cred->euid, tcred->suid)) {
c69e8d9c 2193 rcu_read_unlock();
b78949eb
MSB
2194 ret = -EACCES;
2195 goto out_unlock_cgroup;
bbcb81d0 2196 }
b78949eb
MSB
2197 } else
2198 tsk = current;
cd3d0952
TH
2199
2200 if (threadgroup)
b78949eb 2201 tsk = tsk->group_leader;
c4c27fbd
MG
2202
2203 /*
14a40ffc 2204 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
c4c27fbd
MG
2205 * trapped in a cpuset, or RT worker may be born in a cgroup
2206 * with no rt_runtime allocated. Just say no.
2207 */
14a40ffc 2208 if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
c4c27fbd
MG
2209 ret = -EINVAL;
2210 rcu_read_unlock();
2211 goto out_unlock_cgroup;
2212 }
2213
b78949eb
MSB
2214 get_task_struct(tsk);
2215 rcu_read_unlock();
2216
2217 threadgroup_lock(tsk);
2218 if (threadgroup) {
2219 if (!thread_group_leader(tsk)) {
2220 /*
2221 * a race with de_thread from another thread's exec()
2222 * may strip us of our leadership, if this happens,
2223 * there is no choice but to throw this task away and
2224 * try again; this is
2225 * "double-double-toil-and-trouble-check locking".
2226 */
2227 threadgroup_unlock(tsk);
2228 put_task_struct(tsk);
2229 goto retry_find_task;
2230 }
081aa458
LZ
2231 }
2232
2233 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
2234
cd3d0952
TH
2235 threadgroup_unlock(tsk);
2236
bbcb81d0 2237 put_task_struct(tsk);
b78949eb 2238out_unlock_cgroup:
47cfcd09 2239 mutex_unlock(&cgroup_mutex);
bbcb81d0
PM
2240 return ret;
2241}
2242
7ae1bad9
TH
2243/**
2244 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2245 * @from: attach to all cgroups of a given task
2246 * @tsk: the task to be attached
2247 */
2248int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2249{
2250 struct cgroupfs_root *root;
2251 int retval = 0;
2252
47cfcd09 2253 mutex_lock(&cgroup_mutex);
7ae1bad9 2254 for_each_active_root(root) {
6f4b7e63 2255 struct cgroup *from_cgrp = task_cgroup_from_root(from, root);
7ae1bad9 2256
6f4b7e63 2257 retval = cgroup_attach_task(from_cgrp, tsk, false);
7ae1bad9
TH
2258 if (retval)
2259 break;
2260 }
47cfcd09 2261 mutex_unlock(&cgroup_mutex);
7ae1bad9
TH
2262
2263 return retval;
2264}
2265EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2266
182446d0
TH
2267static int cgroup_tasks_write(struct cgroup_subsys_state *css,
2268 struct cftype *cft, u64 pid)
74a1166d 2269{
182446d0 2270 return attach_task_by_pid(css->cgroup, pid, false);
74a1166d
BB
2271}
2272
182446d0
TH
2273static int cgroup_procs_write(struct cgroup_subsys_state *css,
2274 struct cftype *cft, u64 tgid)
af351026 2275{
182446d0 2276 return attach_task_by_pid(css->cgroup, tgid, true);
af351026
PM
2277}
2278
182446d0
TH
2279static int cgroup_release_agent_write(struct cgroup_subsys_state *css,
2280 struct cftype *cft, const char *buffer)
e788e066 2281{
182446d0 2282 BUILD_BUG_ON(sizeof(css->cgroup->root->release_agent_path) < PATH_MAX);
f4a2589f
EK
2283 if (strlen(buffer) >= PATH_MAX)
2284 return -EINVAL;
182446d0 2285 if (!cgroup_lock_live_group(css->cgroup))
e788e066 2286 return -ENODEV;
e25e2cbb 2287 mutex_lock(&cgroup_root_mutex);
182446d0 2288 strcpy(css->cgroup->root->release_agent_path, buffer);
e25e2cbb 2289 mutex_unlock(&cgroup_root_mutex);
47cfcd09 2290 mutex_unlock(&cgroup_mutex);
e788e066
PM
2291 return 0;
2292}
2293
182446d0
TH
2294static int cgroup_release_agent_show(struct cgroup_subsys_state *css,
2295 struct cftype *cft, struct seq_file *seq)
e788e066 2296{
182446d0
TH
2297 struct cgroup *cgrp = css->cgroup;
2298
e788e066
PM
2299 if (!cgroup_lock_live_group(cgrp))
2300 return -ENODEV;
2301 seq_puts(seq, cgrp->root->release_agent_path);
2302 seq_putc(seq, '\n');
47cfcd09 2303 mutex_unlock(&cgroup_mutex);
e788e066
PM
2304 return 0;
2305}
2306
182446d0
TH
2307static int cgroup_sane_behavior_show(struct cgroup_subsys_state *css,
2308 struct cftype *cft, struct seq_file *seq)
873fe09e 2309{
182446d0 2310 seq_printf(seq, "%d\n", cgroup_sane_behavior(css->cgroup));
e788e066
PM
2311 return 0;
2312}
2313
84eea842
PM
2314/* A buffer size big enough for numbers or short strings */
2315#define CGROUP_LOCAL_BUFFER_SIZE 64
2316
182446d0
TH
2317static ssize_t cgroup_write_X64(struct cgroup_subsys_state *css,
2318 struct cftype *cft, struct file *file,
2319 const char __user *userbuf, size_t nbytes,
2320 loff_t *unused_ppos)
355e0c48 2321{
84eea842 2322 char buffer[CGROUP_LOCAL_BUFFER_SIZE];
355e0c48 2323 int retval = 0;
355e0c48
PM
2324 char *end;
2325
2326 if (!nbytes)
2327 return -EINVAL;
2328 if (nbytes >= sizeof(buffer))
2329 return -E2BIG;
2330 if (copy_from_user(buffer, userbuf, nbytes))
2331 return -EFAULT;
2332
2333 buffer[nbytes] = 0; /* nul-terminate */
e73d2c61 2334 if (cft->write_u64) {
478988d3 2335 u64 val = simple_strtoull(strstrip(buffer), &end, 0);
e73d2c61
PM
2336 if (*end)
2337 return -EINVAL;
182446d0 2338 retval = cft->write_u64(css, cft, val);
e73d2c61 2339 } else {
478988d3 2340 s64 val = simple_strtoll(strstrip(buffer), &end, 0);
e73d2c61
PM
2341 if (*end)
2342 return -EINVAL;
182446d0 2343 retval = cft->write_s64(css, cft, val);
e73d2c61 2344 }
355e0c48
PM
2345 if (!retval)
2346 retval = nbytes;
2347 return retval;
2348}
2349
182446d0
TH
2350static ssize_t cgroup_write_string(struct cgroup_subsys_state *css,
2351 struct cftype *cft, struct file *file,
2352 const char __user *userbuf, size_t nbytes,
2353 loff_t *unused_ppos)
db3b1497 2354{
84eea842 2355 char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
db3b1497
PM
2356 int retval = 0;
2357 size_t max_bytes = cft->max_write_len;
2358 char *buffer = local_buffer;
2359
2360 if (!max_bytes)
2361 max_bytes = sizeof(local_buffer) - 1;
2362 if (nbytes >= max_bytes)
2363 return -E2BIG;
2364 /* Allocate a dynamic buffer if we need one */
2365 if (nbytes >= sizeof(local_buffer)) {
2366 buffer = kmalloc(nbytes + 1, GFP_KERNEL);
2367 if (buffer == NULL)
2368 return -ENOMEM;
2369 }
5a3eb9f6
LZ
2370 if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
2371 retval = -EFAULT;
2372 goto out;
2373 }
db3b1497
PM
2374
2375 buffer[nbytes] = 0; /* nul-terminate */
182446d0 2376 retval = cft->write_string(css, cft, strstrip(buffer));
db3b1497
PM
2377 if (!retval)
2378 retval = nbytes;
5a3eb9f6 2379out:
db3b1497
PM
2380 if (buffer != local_buffer)
2381 kfree(buffer);
2382 return retval;
2383}
2384
ddbcc7e8 2385static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
182446d0 2386 size_t nbytes, loff_t *ppos)
ddbcc7e8 2387{
182446d0 2388 struct cfent *cfe = __d_cfe(file->f_dentry);
ddbcc7e8 2389 struct cftype *cft = __d_cft(file->f_dentry);
105347ba 2390 struct cgroup_subsys_state *css = cfe->css;
ddbcc7e8 2391
355e0c48 2392 if (cft->write)
182446d0 2393 return cft->write(css, cft, file, buf, nbytes, ppos);
e73d2c61 2394 if (cft->write_u64 || cft->write_s64)
182446d0 2395 return cgroup_write_X64(css, cft, file, buf, nbytes, ppos);
db3b1497 2396 if (cft->write_string)
182446d0 2397 return cgroup_write_string(css, cft, file, buf, nbytes, ppos);
d447ea2f 2398 if (cft->trigger) {
182446d0 2399 int ret = cft->trigger(css, (unsigned int)cft->private);
d447ea2f
PE
2400 return ret ? ret : nbytes;
2401 }
355e0c48 2402 return -EINVAL;
ddbcc7e8
PM
2403}
2404
182446d0
TH
2405static ssize_t cgroup_read_u64(struct cgroup_subsys_state *css,
2406 struct cftype *cft, struct file *file,
2407 char __user *buf, size_t nbytes, loff_t *ppos)
ddbcc7e8 2408{
84eea842 2409 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
182446d0 2410 u64 val = cft->read_u64(css, cft);
ddbcc7e8
PM
2411 int len = sprintf(tmp, "%llu\n", (unsigned long long) val);
2412
2413 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2414}
2415
182446d0
TH
2416static ssize_t cgroup_read_s64(struct cgroup_subsys_state *css,
2417 struct cftype *cft, struct file *file,
2418 char __user *buf, size_t nbytes, loff_t *ppos)
e73d2c61 2419{
84eea842 2420 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
182446d0 2421 s64 val = cft->read_s64(css, cft);
e73d2c61
PM
2422 int len = sprintf(tmp, "%lld\n", (long long) val);
2423
2424 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2425}
2426
ddbcc7e8 2427static ssize_t cgroup_file_read(struct file *file, char __user *buf,
182446d0 2428 size_t nbytes, loff_t *ppos)
ddbcc7e8 2429{
182446d0 2430 struct cfent *cfe = __d_cfe(file->f_dentry);
ddbcc7e8 2431 struct cftype *cft = __d_cft(file->f_dentry);
105347ba 2432 struct cgroup_subsys_state *css = cfe->css;
ddbcc7e8 2433
ddbcc7e8 2434 if (cft->read)
182446d0 2435 return cft->read(css, cft, file, buf, nbytes, ppos);
f4c753b7 2436 if (cft->read_u64)
182446d0 2437 return cgroup_read_u64(css, cft, file, buf, nbytes, ppos);
e73d2c61 2438 if (cft->read_s64)
182446d0 2439 return cgroup_read_s64(css, cft, file, buf, nbytes, ppos);
ddbcc7e8
PM
2440 return -EINVAL;
2441}
2442
91796569
PM
2443/*
2444 * seqfile ops/methods for returning structured data. Currently just
2445 * supports string->u64 maps, but can be extended in future.
2446 */
2447
91796569
PM
2448static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
2449{
2450 struct seq_file *sf = cb->state;
2451 return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
2452}
2453
2454static int cgroup_seqfile_show(struct seq_file *m, void *arg)
2455{
e0798ce2
LZ
2456 struct cfent *cfe = m->private;
2457 struct cftype *cft = cfe->type;
105347ba 2458 struct cgroup_subsys_state *css = cfe->css;
e0798ce2 2459
29486df3
SH
2460 if (cft->read_map) {
2461 struct cgroup_map_cb cb = {
2462 .fill = cgroup_map_add,
2463 .state = m,
2464 };
182446d0 2465 return cft->read_map(css, cft, &cb);
29486df3 2466 }
182446d0 2467 return cft->read_seq_string(css, cft, m);
91796569
PM
2468}
2469
828c0950 2470static const struct file_operations cgroup_seqfile_operations = {
91796569 2471 .read = seq_read,
e788e066 2472 .write = cgroup_file_write,
91796569 2473 .llseek = seq_lseek,
e0798ce2 2474 .release = single_release,
91796569
PM
2475};
2476
ddbcc7e8
PM
2477static int cgroup_file_open(struct inode *inode, struct file *file)
2478{
f7d58818
TH
2479 struct cfent *cfe = __d_cfe(file->f_dentry);
2480 struct cftype *cft = __d_cft(file->f_dentry);
105347ba
TH
2481 struct cgroup *cgrp = __d_cgrp(cfe->dentry->d_parent);
2482 struct cgroup_subsys_state *css;
ddbcc7e8 2483 int err;
ddbcc7e8
PM
2484
2485 err = generic_file_open(inode, file);
2486 if (err)
2487 return err;
f7d58818
TH
2488
2489 /*
2490 * If the file belongs to a subsystem, pin the css. Will be
2491 * unpinned either on open failure or release. This ensures that
2492 * @css stays alive for all file operations.
2493 */
105347ba
TH
2494 rcu_read_lock();
2495 if (cft->ss) {
2496 css = cgroup_css(cgrp, cft->ss->subsys_id);
2497 if (!css_tryget(css))
2498 css = NULL;
2499 } else {
2500 css = &cgrp->dummy_css;
2501 }
2502 rcu_read_unlock();
2503
2504 /* css should match @cfe->css, see cgroup_add_file() for details */
2505 if (!css || WARN_ON_ONCE(css != cfe->css))
f7d58818 2506 return -ENODEV;
75139b82 2507
29486df3 2508 if (cft->read_map || cft->read_seq_string) {
91796569 2509 file->f_op = &cgroup_seqfile_operations;
e0798ce2
LZ
2510 err = single_open(file, cgroup_seqfile_show, cfe);
2511 } else if (cft->open) {
ddbcc7e8 2512 err = cft->open(inode, file);
e0798ce2 2513 }
ddbcc7e8 2514
67f4c36f 2515 if (css->ss && err)
f7d58818 2516 css_put(css);
ddbcc7e8
PM
2517 return err;
2518}
2519
2520static int cgroup_file_release(struct inode *inode, struct file *file)
2521{
f7d58818 2522 struct cfent *cfe = __d_cfe(file->f_dentry);
ddbcc7e8 2523 struct cftype *cft = __d_cft(file->f_dentry);
105347ba 2524 struct cgroup_subsys_state *css = cfe->css;
f7d58818
TH
2525 int ret = 0;
2526
ddbcc7e8 2527 if (cft->release)
f7d58818 2528 ret = cft->release(inode, file);
67f4c36f 2529 if (css->ss)
f7d58818
TH
2530 css_put(css);
2531 return ret;
ddbcc7e8
PM
2532}
2533
2534/*
2535 * cgroup_rename - Only allow simple rename of directories in place.
2536 */
2537static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
2538 struct inode *new_dir, struct dentry *new_dentry)
2539{
65dff759
LZ
2540 int ret;
2541 struct cgroup_name *name, *old_name;
2542 struct cgroup *cgrp;
2543
2544 /*
2545 * It's convinient to use parent dir's i_mutex to protected
2546 * cgrp->name.
2547 */
2548 lockdep_assert_held(&old_dir->i_mutex);
2549
ddbcc7e8
PM
2550 if (!S_ISDIR(old_dentry->d_inode->i_mode))
2551 return -ENOTDIR;
2552 if (new_dentry->d_inode)
2553 return -EEXIST;
2554 if (old_dir != new_dir)
2555 return -EIO;
65dff759
LZ
2556
2557 cgrp = __d_cgrp(old_dentry);
2558
6db8e85c
TH
2559 /*
2560 * This isn't a proper migration and its usefulness is very
2561 * limited. Disallow if sane_behavior.
2562 */
2563 if (cgroup_sane_behavior(cgrp))
2564 return -EPERM;
2565
65dff759
LZ
2566 name = cgroup_alloc_name(new_dentry);
2567 if (!name)
2568 return -ENOMEM;
2569
2570 ret = simple_rename(old_dir, old_dentry, new_dir, new_dentry);
2571 if (ret) {
2572 kfree(name);
2573 return ret;
2574 }
2575
a4ea1cc9 2576 old_name = rcu_dereference_protected(cgrp->name, true);
65dff759
LZ
2577 rcu_assign_pointer(cgrp->name, name);
2578
2579 kfree_rcu(old_name, rcu_head);
2580 return 0;
ddbcc7e8
PM
2581}
2582
03b1cde6
AR
2583static struct simple_xattrs *__d_xattrs(struct dentry *dentry)
2584{
2585 if (S_ISDIR(dentry->d_inode->i_mode))
2586 return &__d_cgrp(dentry)->xattrs;
2587 else
712317ad 2588 return &__d_cfe(dentry)->xattrs;
03b1cde6
AR
2589}
2590
2591static inline int xattr_enabled(struct dentry *dentry)
2592{
2593 struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
93438629 2594 return root->flags & CGRP_ROOT_XATTR;
03b1cde6
AR
2595}
2596
2597static bool is_valid_xattr(const char *name)
2598{
2599 if (!strncmp(name, XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN) ||
2600 !strncmp(name, XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN))
2601 return true;
2602 return false;
2603}
2604
2605static int cgroup_setxattr(struct dentry *dentry, const char *name,
2606 const void *val, size_t size, int flags)
2607{
2608 if (!xattr_enabled(dentry))
2609 return -EOPNOTSUPP;
2610 if (!is_valid_xattr(name))
2611 return -EINVAL;
2612 return simple_xattr_set(__d_xattrs(dentry), name, val, size, flags);
2613}
2614
2615static int cgroup_removexattr(struct dentry *dentry, const char *name)
2616{
2617 if (!xattr_enabled(dentry))
2618 return -EOPNOTSUPP;
2619 if (!is_valid_xattr(name))
2620 return -EINVAL;
2621 return simple_xattr_remove(__d_xattrs(dentry), name);
2622}
2623
2624static ssize_t cgroup_getxattr(struct dentry *dentry, const char *name,
2625 void *buf, size_t size)
2626{
2627 if (!xattr_enabled(dentry))
2628 return -EOPNOTSUPP;
2629 if (!is_valid_xattr(name))
2630 return -EINVAL;
2631 return simple_xattr_get(__d_xattrs(dentry), name, buf, size);
2632}
2633
2634static ssize_t cgroup_listxattr(struct dentry *dentry, char *buf, size_t size)
2635{
2636 if (!xattr_enabled(dentry))
2637 return -EOPNOTSUPP;
2638 return simple_xattr_list(__d_xattrs(dentry), buf, size);
2639}
2640
828c0950 2641static const struct file_operations cgroup_file_operations = {
ddbcc7e8
PM
2642 .read = cgroup_file_read,
2643 .write = cgroup_file_write,
2644 .llseek = generic_file_llseek,
2645 .open = cgroup_file_open,
2646 .release = cgroup_file_release,
2647};
2648
03b1cde6
AR
2649static const struct inode_operations cgroup_file_inode_operations = {
2650 .setxattr = cgroup_setxattr,
2651 .getxattr = cgroup_getxattr,
2652 .listxattr = cgroup_listxattr,
2653 .removexattr = cgroup_removexattr,
2654};
2655
6e1d5dcc 2656static const struct inode_operations cgroup_dir_inode_operations = {
c72a04e3 2657 .lookup = cgroup_lookup,
ddbcc7e8
PM
2658 .mkdir = cgroup_mkdir,
2659 .rmdir = cgroup_rmdir,
2660 .rename = cgroup_rename,
03b1cde6
AR
2661 .setxattr = cgroup_setxattr,
2662 .getxattr = cgroup_getxattr,
2663 .listxattr = cgroup_listxattr,
2664 .removexattr = cgroup_removexattr,
ddbcc7e8
PM
2665};
2666
00cd8dd3 2667static struct dentry *cgroup_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
c72a04e3
AV
2668{
2669 if (dentry->d_name.len > NAME_MAX)
2670 return ERR_PTR(-ENAMETOOLONG);
2671 d_add(dentry, NULL);
2672 return NULL;
2673}
2674
0dea1168
KS
2675/*
2676 * Check if a file is a control file
2677 */
2678static inline struct cftype *__file_cft(struct file *file)
2679{
496ad9aa 2680 if (file_inode(file)->i_fop != &cgroup_file_operations)
0dea1168
KS
2681 return ERR_PTR(-EINVAL);
2682 return __d_cft(file->f_dentry);
2683}
2684
a5e7ed32 2685static int cgroup_create_file(struct dentry *dentry, umode_t mode,
5adcee1d
NP
2686 struct super_block *sb)
2687{
ddbcc7e8
PM
2688 struct inode *inode;
2689
2690 if (!dentry)
2691 return -ENOENT;
2692 if (dentry->d_inode)
2693 return -EEXIST;
2694
2695 inode = cgroup_new_inode(mode, sb);
2696 if (!inode)
2697 return -ENOMEM;
2698
2699 if (S_ISDIR(mode)) {
2700 inode->i_op = &cgroup_dir_inode_operations;
2701 inode->i_fop = &simple_dir_operations;
2702
2703 /* start off with i_nlink == 2 (for "." entry) */
2704 inc_nlink(inode);
28fd6f30 2705 inc_nlink(dentry->d_parent->d_inode);
ddbcc7e8 2706
b8a2df6a
TH
2707 /*
2708 * Control reaches here with cgroup_mutex held.
2709 * @inode->i_mutex should nest outside cgroup_mutex but we
2710 * want to populate it immediately without releasing
2711 * cgroup_mutex. As @inode isn't visible to anyone else
2712 * yet, trylock will always succeed without affecting
2713 * lockdep checks.
2714 */
2715 WARN_ON_ONCE(!mutex_trylock(&inode->i_mutex));
ddbcc7e8
PM
2716 } else if (S_ISREG(mode)) {
2717 inode->i_size = 0;
2718 inode->i_fop = &cgroup_file_operations;
03b1cde6 2719 inode->i_op = &cgroup_file_inode_operations;
ddbcc7e8 2720 }
ddbcc7e8
PM
2721 d_instantiate(dentry, inode);
2722 dget(dentry); /* Extra count - pin the dentry in core */
2723 return 0;
2724}
2725
099fca32
LZ
2726/**
2727 * cgroup_file_mode - deduce file mode of a control file
2728 * @cft: the control file in question
2729 *
2730 * returns cft->mode if ->mode is not 0
2731 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
2732 * returns S_IRUGO if it has only a read handler
2733 * returns S_IWUSR if it has only a write hander
2734 */
a5e7ed32 2735static umode_t cgroup_file_mode(const struct cftype *cft)
099fca32 2736{
a5e7ed32 2737 umode_t mode = 0;
099fca32
LZ
2738
2739 if (cft->mode)
2740 return cft->mode;
2741
2742 if (cft->read || cft->read_u64 || cft->read_s64 ||
2743 cft->read_map || cft->read_seq_string)
2744 mode |= S_IRUGO;
2745
2746 if (cft->write || cft->write_u64 || cft->write_s64 ||
2747 cft->write_string || cft->trigger)
2748 mode |= S_IWUSR;
2749
2750 return mode;
2751}
2752
2bb566cb 2753static int cgroup_add_file(struct cgroup *cgrp, struct cftype *cft)
ddbcc7e8 2754{
bd89aabc 2755 struct dentry *dir = cgrp->dentry;
05ef1d7c 2756 struct cgroup *parent = __d_cgrp(dir);
ddbcc7e8 2757 struct dentry *dentry;
05ef1d7c 2758 struct cfent *cfe;
ddbcc7e8 2759 int error;
a5e7ed32 2760 umode_t mode;
ddbcc7e8 2761 char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
8e3f6541 2762
2bb566cb
TH
2763 if (cft->ss && !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) {
2764 strcpy(name, cft->ss->name);
ddbcc7e8
PM
2765 strcat(name, ".");
2766 }
2767 strcat(name, cft->name);
05ef1d7c 2768
ddbcc7e8 2769 BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
05ef1d7c
TH
2770
2771 cfe = kzalloc(sizeof(*cfe), GFP_KERNEL);
2772 if (!cfe)
2773 return -ENOMEM;
2774
ddbcc7e8 2775 dentry = lookup_one_len(name, dir, strlen(name));
05ef1d7c 2776 if (IS_ERR(dentry)) {
ddbcc7e8 2777 error = PTR_ERR(dentry);
05ef1d7c
TH
2778 goto out;
2779 }
2780
d6cbf35d
LZ
2781 cfe->type = (void *)cft;
2782 cfe->dentry = dentry;
2783 dentry->d_fsdata = cfe;
2784 simple_xattrs_init(&cfe->xattrs);
2785
105347ba
TH
2786 /*
2787 * cfe->css is used by read/write/close to determine the associated
2788 * css. file->private_data would be a better place but that's
2789 * already used by seqfile. Note that open will use the usual
2790 * cgroup_css() and css_tryget() to acquire the css and this
2791 * caching doesn't affect css lifetime management.
2792 */
2793 if (cft->ss)
2794 cfe->css = cgroup_css(cgrp, cft->ss->subsys_id);
2795 else
2796 cfe->css = &cgrp->dummy_css;
2797
05ef1d7c
TH
2798 mode = cgroup_file_mode(cft);
2799 error = cgroup_create_file(dentry, mode | S_IFREG, cgrp->root->sb);
2800 if (!error) {
05ef1d7c
TH
2801 list_add_tail(&cfe->node, &parent->files);
2802 cfe = NULL;
2803 }
2804 dput(dentry);
2805out:
2806 kfree(cfe);
ddbcc7e8
PM
2807 return error;
2808}
2809
b1f28d31
TH
2810/**
2811 * cgroup_addrm_files - add or remove files to a cgroup directory
2812 * @cgrp: the target cgroup
b1f28d31
TH
2813 * @cfts: array of cftypes to be added
2814 * @is_add: whether to add or remove
2815 *
2816 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
2bb566cb
TH
2817 * For removals, this function never fails. If addition fails, this
2818 * function doesn't remove files already added. The caller is responsible
2819 * for cleaning up.
b1f28d31 2820 */
2bb566cb
TH
2821static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
2822 bool is_add)
ddbcc7e8 2823{
03b1cde6 2824 struct cftype *cft;
b1f28d31
TH
2825 int ret;
2826
2827 lockdep_assert_held(&cgrp->dentry->d_inode->i_mutex);
2828 lockdep_assert_held(&cgroup_mutex);
db0416b6
TH
2829
2830 for (cft = cfts; cft->name[0] != '\0'; cft++) {
f33fddc2 2831 /* does cft->flags tell us to skip this file on @cgrp? */
873fe09e
TH
2832 if ((cft->flags & CFTYPE_INSANE) && cgroup_sane_behavior(cgrp))
2833 continue;
f33fddc2
G
2834 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgrp->parent)
2835 continue;
2836 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgrp->parent)
2837 continue;
2838
2739d3cc 2839 if (is_add) {
2bb566cb 2840 ret = cgroup_add_file(cgrp, cft);
b1f28d31 2841 if (ret) {
2739d3cc 2842 pr_warn("cgroup_addrm_files: failed to add %s, err=%d\n",
b1f28d31
TH
2843 cft->name, ret);
2844 return ret;
2845 }
2739d3cc
LZ
2846 } else {
2847 cgroup_rm_file(cgrp, cft);
db0416b6 2848 }
ddbcc7e8 2849 }
b1f28d31 2850 return 0;
ddbcc7e8
PM
2851}
2852
8e3f6541 2853static void cgroup_cfts_prepare(void)
e8c82d20 2854 __acquires(&cgroup_mutex)
8e3f6541
TH
2855{
2856 /*
2857 * Thanks to the entanglement with vfs inode locking, we can't walk
2858 * the existing cgroups under cgroup_mutex and create files.
492eb21b
TH
2859 * Instead, we use css_for_each_descendant_pre() and drop RCU read
2860 * lock before calling cgroup_addrm_files().
8e3f6541 2861 */
8e3f6541
TH
2862 mutex_lock(&cgroup_mutex);
2863}
2864
2bb566cb 2865static int cgroup_cfts_commit(struct cftype *cfts, bool is_add)
e8c82d20 2866 __releases(&cgroup_mutex)
8e3f6541
TH
2867{
2868 LIST_HEAD(pending);
2bb566cb 2869 struct cgroup_subsys *ss = cfts[0].ss;
492eb21b 2870 struct cgroup *root = &ss->root->top_cgroup;
084457f2 2871 struct super_block *sb = ss->root->sb;
e8c82d20
LZ
2872 struct dentry *prev = NULL;
2873 struct inode *inode;
492eb21b 2874 struct cgroup_subsys_state *css;
00356bd5 2875 u64 update_before;
9ccece80 2876 int ret = 0;
8e3f6541
TH
2877
2878 /* %NULL @cfts indicates abort and don't bother if @ss isn't attached */
9871bf95 2879 if (!cfts || ss->root == &cgroup_dummy_root ||
e8c82d20
LZ
2880 !atomic_inc_not_zero(&sb->s_active)) {
2881 mutex_unlock(&cgroup_mutex);
9ccece80 2882 return 0;
8e3f6541
TH
2883 }
2884
8e3f6541 2885 /*
e8c82d20
LZ
2886 * All cgroups which are created after we drop cgroup_mutex will
2887 * have the updated set of files, so we only need to update the
00356bd5 2888 * cgroups created before the current @cgroup_serial_nr_next.
8e3f6541 2889 */
00356bd5 2890 update_before = cgroup_serial_nr_next;
e8c82d20
LZ
2891
2892 mutex_unlock(&cgroup_mutex);
2893
e8c82d20
LZ
2894 /* add/rm files for all cgroups created before */
2895 rcu_read_lock();
492eb21b
TH
2896 css_for_each_descendant_pre(css, cgroup_css(root, ss->subsys_id)) {
2897 struct cgroup *cgrp = css->cgroup;
2898
e8c82d20
LZ
2899 if (cgroup_is_dead(cgrp))
2900 continue;
2901
2902 inode = cgrp->dentry->d_inode;
2903 dget(cgrp->dentry);
2904 rcu_read_unlock();
2905
2906 dput(prev);
2907 prev = cgrp->dentry;
8e3f6541
TH
2908
2909 mutex_lock(&inode->i_mutex);
2910 mutex_lock(&cgroup_mutex);
00356bd5 2911 if (cgrp->serial_nr < update_before && !cgroup_is_dead(cgrp))
2bb566cb 2912 ret = cgroup_addrm_files(cgrp, cfts, is_add);
8e3f6541
TH
2913 mutex_unlock(&cgroup_mutex);
2914 mutex_unlock(&inode->i_mutex);
2915
e8c82d20 2916 rcu_read_lock();
9ccece80
TH
2917 if (ret)
2918 break;
8e3f6541 2919 }
e8c82d20
LZ
2920 rcu_read_unlock();
2921 dput(prev);
2922 deactivate_super(sb);
9ccece80 2923 return ret;
8e3f6541
TH
2924}
2925
2926/**
2927 * cgroup_add_cftypes - add an array of cftypes to a subsystem
2928 * @ss: target cgroup subsystem
2929 * @cfts: zero-length name terminated array of cftypes
2930 *
2931 * Register @cfts to @ss. Files described by @cfts are created for all
2932 * existing cgroups to which @ss is attached and all future cgroups will
2933 * have them too. This function can be called anytime whether @ss is
2934 * attached or not.
2935 *
2936 * Returns 0 on successful registration, -errno on failure. Note that this
2937 * function currently returns 0 as long as @cfts registration is successful
2938 * even if some file creation attempts on existing cgroups fail.
2939 */
03b1cde6 2940int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
8e3f6541
TH
2941{
2942 struct cftype_set *set;
2bb566cb 2943 struct cftype *cft;
9ccece80 2944 int ret;
8e3f6541
TH
2945
2946 set = kzalloc(sizeof(*set), GFP_KERNEL);
2947 if (!set)
2948 return -ENOMEM;
2949
2bb566cb
TH
2950 for (cft = cfts; cft->name[0] != '\0'; cft++)
2951 cft->ss = ss;
2952
8e3f6541
TH
2953 cgroup_cfts_prepare();
2954 set->cfts = cfts;
2955 list_add_tail(&set->node, &ss->cftsets);
2bb566cb 2956 ret = cgroup_cfts_commit(cfts, true);
9ccece80 2957 if (ret)
2bb566cb 2958 cgroup_rm_cftypes(cfts);
9ccece80 2959 return ret;
8e3f6541
TH
2960}
2961EXPORT_SYMBOL_GPL(cgroup_add_cftypes);
2962
79578621
TH
2963/**
2964 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
79578621
TH
2965 * @cfts: zero-length name terminated array of cftypes
2966 *
2bb566cb
TH
2967 * Unregister @cfts. Files described by @cfts are removed from all
2968 * existing cgroups and all future cgroups won't have them either. This
2969 * function can be called anytime whether @cfts' subsys is attached or not.
79578621
TH
2970 *
2971 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
2bb566cb 2972 * registered.
79578621 2973 */
2bb566cb 2974int cgroup_rm_cftypes(struct cftype *cfts)
79578621
TH
2975{
2976 struct cftype_set *set;
2977
2bb566cb
TH
2978 if (!cfts || !cfts[0].ss)
2979 return -ENOENT;
2980
79578621
TH
2981 cgroup_cfts_prepare();
2982
2bb566cb 2983 list_for_each_entry(set, &cfts[0].ss->cftsets, node) {
79578621 2984 if (set->cfts == cfts) {
f57947d2
LZ
2985 list_del(&set->node);
2986 kfree(set);
2bb566cb 2987 cgroup_cfts_commit(cfts, false);
79578621
TH
2988 return 0;
2989 }
2990 }
2991
2bb566cb 2992 cgroup_cfts_commit(NULL, false);
79578621
TH
2993 return -ENOENT;
2994}
2995
a043e3b2
LZ
2996/**
2997 * cgroup_task_count - count the number of tasks in a cgroup.
2998 * @cgrp: the cgroup in question
2999 *
3000 * Return the number of tasks in the cgroup.
3001 */
bd89aabc 3002int cgroup_task_count(const struct cgroup *cgrp)
bbcb81d0
PM
3003{
3004 int count = 0;
69d0206c 3005 struct cgrp_cset_link *link;
817929ec
PM
3006
3007 read_lock(&css_set_lock);
69d0206c
TH
3008 list_for_each_entry(link, &cgrp->cset_links, cset_link)
3009 count += atomic_read(&link->cset->refcount);
817929ec 3010 read_unlock(&css_set_lock);
bbcb81d0
PM
3011 return count;
3012}
3013
31a7df01 3014/*
0942eeee
TH
3015 * To reduce the fork() overhead for systems that are not actually using
3016 * their cgroups capability, we don't maintain the lists running through
3017 * each css_set to its tasks until we see the list actually used - in other
72ec7029 3018 * words after the first call to css_task_iter_start().
31a7df01 3019 */
3df91fe3 3020static void cgroup_enable_task_cg_lists(void)
31a7df01
CW
3021{
3022 struct task_struct *p, *g;
3023 write_lock(&css_set_lock);
3024 use_task_css_set_links = 1;
3ce3230a
FW
3025 /*
3026 * We need tasklist_lock because RCU is not safe against
3027 * while_each_thread(). Besides, a forking task that has passed
3028 * cgroup_post_fork() without seeing use_task_css_set_links = 1
3029 * is not guaranteed to have its child immediately visible in the
3030 * tasklist if we walk through it with RCU.
3031 */
3032 read_lock(&tasklist_lock);
31a7df01
CW
3033 do_each_thread(g, p) {
3034 task_lock(p);
0e04388f
LZ
3035 /*
3036 * We should check if the process is exiting, otherwise
3037 * it will race with cgroup_exit() in that the list
3038 * entry won't be deleted though the process has exited.
3039 */
3040 if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
a8ad805c 3041 list_add(&p->cg_list, &task_css_set(p)->tasks);
31a7df01
CW
3042 task_unlock(p);
3043 } while_each_thread(g, p);
3ce3230a 3044 read_unlock(&tasklist_lock);
31a7df01
CW
3045 write_unlock(&css_set_lock);
3046}
3047
53fa5261 3048/**
492eb21b
TH
3049 * css_next_child - find the next child of a given css
3050 * @pos_css: the current position (%NULL to initiate traversal)
3051 * @parent_css: css whose children to walk
53fa5261 3052 *
492eb21b
TH
3053 * This function returns the next child of @parent_css and should be called
3054 * under RCU read lock. The only requirement is that @parent_css and
3055 * @pos_css are accessible. The next sibling is guaranteed to be returned
3056 * regardless of their states.
53fa5261 3057 */
492eb21b
TH
3058struct cgroup_subsys_state *
3059css_next_child(struct cgroup_subsys_state *pos_css,
3060 struct cgroup_subsys_state *parent_css)
53fa5261 3061{
492eb21b
TH
3062 struct cgroup *pos = pos_css ? pos_css->cgroup : NULL;
3063 struct cgroup *cgrp = parent_css->cgroup;
53fa5261
TH
3064 struct cgroup *next;
3065
3066 WARN_ON_ONCE(!rcu_read_lock_held());
3067
3068 /*
3069 * @pos could already have been removed. Once a cgroup is removed,
3070 * its ->sibling.next is no longer updated when its next sibling
ea15f8cc
TH
3071 * changes. As CGRP_DEAD assertion is serialized and happens
3072 * before the cgroup is taken off the ->sibling list, if we see it
3073 * unasserted, it's guaranteed that the next sibling hasn't
3074 * finished its grace period even if it's already removed, and thus
3075 * safe to dereference from this RCU critical section. If
3076 * ->sibling.next is inaccessible, cgroup_is_dead() is guaranteed
3077 * to be visible as %true here.
3b287a50
TH
3078 *
3079 * If @pos is dead, its next pointer can't be dereferenced;
3080 * however, as each cgroup is given a monotonically increasing
3081 * unique serial number and always appended to the sibling list,
3082 * the next one can be found by walking the parent's children until
3083 * we see a cgroup with higher serial number than @pos's. While
3084 * this path can be slower, it's taken only when either the current
3085 * cgroup is removed or iteration and removal race.
53fa5261 3086 */
3b287a50
TH
3087 if (!pos) {
3088 next = list_entry_rcu(cgrp->children.next, struct cgroup, sibling);
3089 } else if (likely(!cgroup_is_dead(pos))) {
53fa5261 3090 next = list_entry_rcu(pos->sibling.next, struct cgroup, sibling);
3b287a50
TH
3091 } else {
3092 list_for_each_entry_rcu(next, &cgrp->children, sibling)
3093 if (next->serial_nr > pos->serial_nr)
3094 break;
53fa5261
TH
3095 }
3096
492eb21b
TH
3097 if (&next->sibling == &cgrp->children)
3098 return NULL;
3099
3100 if (parent_css->ss)
3101 return cgroup_css(next, parent_css->ss->subsys_id);
3102 else
3103 return &next->dummy_css;
53fa5261 3104}
492eb21b 3105EXPORT_SYMBOL_GPL(css_next_child);
53fa5261 3106
574bd9f7 3107/**
492eb21b 3108 * css_next_descendant_pre - find the next descendant for pre-order walk
574bd9f7 3109 * @pos: the current position (%NULL to initiate traversal)
492eb21b 3110 * @root: css whose descendants to walk
574bd9f7 3111 *
492eb21b 3112 * To be used by css_for_each_descendant_pre(). Find the next descendant
bd8815a6
TH
3113 * to visit for pre-order traversal of @root's descendants. @root is
3114 * included in the iteration and the first node to be visited.
75501a6d
TH
3115 *
3116 * While this function requires RCU read locking, it doesn't require the
3117 * whole traversal to be contained in a single RCU critical section. This
3118 * function will return the correct next descendant as long as both @pos
492eb21b 3119 * and @root are accessible and @pos is a descendant of @root.
574bd9f7 3120 */
492eb21b
TH
3121struct cgroup_subsys_state *
3122css_next_descendant_pre(struct cgroup_subsys_state *pos,
3123 struct cgroup_subsys_state *root)
574bd9f7 3124{
492eb21b 3125 struct cgroup_subsys_state *next;
574bd9f7
TH
3126
3127 WARN_ON_ONCE(!rcu_read_lock_held());
3128
bd8815a6 3129 /* if first iteration, visit @root */
7805d000 3130 if (!pos)
bd8815a6 3131 return root;
574bd9f7
TH
3132
3133 /* visit the first child if exists */
492eb21b 3134 next = css_next_child(NULL, pos);
574bd9f7
TH
3135 if (next)
3136 return next;
3137
3138 /* no child, visit my or the closest ancestor's next sibling */
492eb21b
TH
3139 while (pos != root) {
3140 next = css_next_child(pos, css_parent(pos));
75501a6d 3141 if (next)
574bd9f7 3142 return next;
492eb21b 3143 pos = css_parent(pos);
7805d000 3144 }
574bd9f7
TH
3145
3146 return NULL;
3147}
492eb21b 3148EXPORT_SYMBOL_GPL(css_next_descendant_pre);
574bd9f7 3149
12a9d2fe 3150/**
492eb21b
TH
3151 * css_rightmost_descendant - return the rightmost descendant of a css
3152 * @pos: css of interest
12a9d2fe 3153 *
492eb21b
TH
3154 * Return the rightmost descendant of @pos. If there's no descendant, @pos
3155 * is returned. This can be used during pre-order traversal to skip
12a9d2fe 3156 * subtree of @pos.
75501a6d
TH
3157 *
3158 * While this function requires RCU read locking, it doesn't require the
3159 * whole traversal to be contained in a single RCU critical section. This
3160 * function will return the correct rightmost descendant as long as @pos is
3161 * accessible.
12a9d2fe 3162 */
492eb21b
TH
3163struct cgroup_subsys_state *
3164css_rightmost_descendant(struct cgroup_subsys_state *pos)
12a9d2fe 3165{
492eb21b 3166 struct cgroup_subsys_state *last, *tmp;
12a9d2fe
TH
3167
3168 WARN_ON_ONCE(!rcu_read_lock_held());
3169
3170 do {
3171 last = pos;
3172 /* ->prev isn't RCU safe, walk ->next till the end */
3173 pos = NULL;
492eb21b 3174 css_for_each_child(tmp, last)
12a9d2fe
TH
3175 pos = tmp;
3176 } while (pos);
3177
3178 return last;
3179}
492eb21b 3180EXPORT_SYMBOL_GPL(css_rightmost_descendant);
12a9d2fe 3181
492eb21b
TH
3182static struct cgroup_subsys_state *
3183css_leftmost_descendant(struct cgroup_subsys_state *pos)
574bd9f7 3184{
492eb21b 3185 struct cgroup_subsys_state *last;
574bd9f7
TH
3186
3187 do {
3188 last = pos;
492eb21b 3189 pos = css_next_child(NULL, pos);
574bd9f7
TH
3190 } while (pos);
3191
3192 return last;
3193}
3194
3195/**
492eb21b 3196 * css_next_descendant_post - find the next descendant for post-order walk
574bd9f7 3197 * @pos: the current position (%NULL to initiate traversal)
492eb21b 3198 * @root: css whose descendants to walk
574bd9f7 3199 *
492eb21b 3200 * To be used by css_for_each_descendant_post(). Find the next descendant
bd8815a6
TH
3201 * to visit for post-order traversal of @root's descendants. @root is
3202 * included in the iteration and the last node to be visited.
75501a6d
TH
3203 *
3204 * While this function requires RCU read locking, it doesn't require the
3205 * whole traversal to be contained in a single RCU critical section. This
3206 * function will return the correct next descendant as long as both @pos
3207 * and @cgroup are accessible and @pos is a descendant of @cgroup.
574bd9f7 3208 */
492eb21b
TH
3209struct cgroup_subsys_state *
3210css_next_descendant_post(struct cgroup_subsys_state *pos,
3211 struct cgroup_subsys_state *root)
574bd9f7 3212{
492eb21b 3213 struct cgroup_subsys_state *next;
574bd9f7
TH
3214
3215 WARN_ON_ONCE(!rcu_read_lock_held());
3216
3217 /* if first iteration, visit the leftmost descendant */
3218 if (!pos) {
492eb21b
TH
3219 next = css_leftmost_descendant(root);
3220 return next != root ? next : NULL;
574bd9f7
TH
3221 }
3222
bd8815a6
TH
3223 /* if we visited @root, we're done */
3224 if (pos == root)
3225 return NULL;
3226
574bd9f7 3227 /* if there's an unvisited sibling, visit its leftmost descendant */
492eb21b 3228 next = css_next_child(pos, css_parent(pos));
75501a6d 3229 if (next)
492eb21b 3230 return css_leftmost_descendant(next);
574bd9f7
TH
3231
3232 /* no sibling left, visit parent */
bd8815a6 3233 return css_parent(pos);
574bd9f7 3234}
492eb21b 3235EXPORT_SYMBOL_GPL(css_next_descendant_post);
574bd9f7 3236
0942eeee 3237/**
72ec7029 3238 * css_advance_task_iter - advance a task itererator to the next css_set
0942eeee
TH
3239 * @it: the iterator to advance
3240 *
3241 * Advance @it to the next css_set to walk.
d515876e 3242 */
72ec7029 3243static void css_advance_task_iter(struct css_task_iter *it)
d515876e
TH
3244{
3245 struct list_head *l = it->cset_link;
3246 struct cgrp_cset_link *link;
3247 struct css_set *cset;
3248
3249 /* Advance to the next non-empty css_set */
3250 do {
3251 l = l->next;
72ec7029 3252 if (l == &it->origin_css->cgroup->cset_links) {
d515876e
TH
3253 it->cset_link = NULL;
3254 return;
3255 }
3256 link = list_entry(l, struct cgrp_cset_link, cset_link);
3257 cset = link->cset;
3258 } while (list_empty(&cset->tasks));
3259 it->cset_link = l;
3260 it->task = cset->tasks.next;
3261}
3262
0942eeee 3263/**
72ec7029
TH
3264 * css_task_iter_start - initiate task iteration
3265 * @css: the css to walk tasks of
0942eeee
TH
3266 * @it: the task iterator to use
3267 *
72ec7029
TH
3268 * Initiate iteration through the tasks of @css. The caller can call
3269 * css_task_iter_next() to walk through the tasks until the function
3270 * returns NULL. On completion of iteration, css_task_iter_end() must be
3271 * called.
0942eeee
TH
3272 *
3273 * Note that this function acquires a lock which is released when the
3274 * iteration finishes. The caller can't sleep while iteration is in
3275 * progress.
3276 */
72ec7029
TH
3277void css_task_iter_start(struct cgroup_subsys_state *css,
3278 struct css_task_iter *it)
c6ca5750 3279 __acquires(css_set_lock)
817929ec
PM
3280{
3281 /*
72ec7029
TH
3282 * The first time anyone tries to iterate across a css, we need to
3283 * enable the list linking each css_set to its tasks, and fix up
3284 * all existing tasks.
817929ec 3285 */
31a7df01
CW
3286 if (!use_task_css_set_links)
3287 cgroup_enable_task_cg_lists();
3288
817929ec 3289 read_lock(&css_set_lock);
c59cd3d8 3290
72ec7029
TH
3291 it->origin_css = css;
3292 it->cset_link = &css->cgroup->cset_links;
c59cd3d8 3293
72ec7029 3294 css_advance_task_iter(it);
817929ec
PM
3295}
3296
0942eeee 3297/**
72ec7029 3298 * css_task_iter_next - return the next task for the iterator
0942eeee
TH
3299 * @it: the task iterator being iterated
3300 *
3301 * The "next" function for task iteration. @it should have been
72ec7029
TH
3302 * initialized via css_task_iter_start(). Returns NULL when the iteration
3303 * reaches the end.
0942eeee 3304 */
72ec7029 3305struct task_struct *css_task_iter_next(struct css_task_iter *it)
817929ec
PM
3306{
3307 struct task_struct *res;
3308 struct list_head *l = it->task;
69d0206c 3309 struct cgrp_cset_link *link;
817929ec
PM
3310
3311 /* If the iterator cg is NULL, we have no tasks */
69d0206c 3312 if (!it->cset_link)
817929ec
PM
3313 return NULL;
3314 res = list_entry(l, struct task_struct, cg_list);
3315 /* Advance iterator to find next entry */
3316 l = l->next;
69d0206c
TH
3317 link = list_entry(it->cset_link, struct cgrp_cset_link, cset_link);
3318 if (l == &link->cset->tasks) {
0942eeee
TH
3319 /*
3320 * We reached the end of this task list - move on to the
3321 * next cgrp_cset_link.
3322 */
72ec7029 3323 css_advance_task_iter(it);
817929ec
PM
3324 } else {
3325 it->task = l;
3326 }
3327 return res;
3328}
3329
0942eeee 3330/**
72ec7029 3331 * css_task_iter_end - finish task iteration
0942eeee
TH
3332 * @it: the task iterator to finish
3333 *
72ec7029 3334 * Finish task iteration started by css_task_iter_start().
0942eeee 3335 */
72ec7029 3336void css_task_iter_end(struct css_task_iter *it)
c6ca5750 3337 __releases(css_set_lock)
817929ec
PM
3338{
3339 read_unlock(&css_set_lock);
3340}
3341
31a7df01
CW
3342static inline int started_after_time(struct task_struct *t1,
3343 struct timespec *time,
3344 struct task_struct *t2)
3345{
3346 int start_diff = timespec_compare(&t1->start_time, time);
3347 if (start_diff > 0) {
3348 return 1;
3349 } else if (start_diff < 0) {
3350 return 0;
3351 } else {
3352 /*
3353 * Arbitrarily, if two processes started at the same
3354 * time, we'll say that the lower pointer value
3355 * started first. Note that t2 may have exited by now
3356 * so this may not be a valid pointer any longer, but
3357 * that's fine - it still serves to distinguish
3358 * between two tasks started (effectively) simultaneously.
3359 */
3360 return t1 > t2;
3361 }
3362}
3363
3364/*
3365 * This function is a callback from heap_insert() and is used to order
3366 * the heap.
3367 * In this case we order the heap in descending task start time.
3368 */
3369static inline int started_after(void *p1, void *p2)
3370{
3371 struct task_struct *t1 = p1;
3372 struct task_struct *t2 = p2;
3373 return started_after_time(t1, &t2->start_time, t2);
3374}
3375
3376/**
72ec7029
TH
3377 * css_scan_tasks - iterate though all the tasks in a css
3378 * @css: the css to iterate tasks of
e535837b
TH
3379 * @test: optional test callback
3380 * @process: process callback
3381 * @data: data passed to @test and @process
3382 * @heap: optional pre-allocated heap used for task iteration
31a7df01 3383 *
72ec7029
TH
3384 * Iterate through all the tasks in @css, calling @test for each, and if it
3385 * returns %true, call @process for it also.
31a7df01 3386 *
e535837b 3387 * @test may be NULL, meaning always true (select all tasks), which
72ec7029 3388 * effectively duplicates css_task_iter_{start,next,end}() but does not
e535837b
TH
3389 * lock css_set_lock for the call to @process.
3390 *
3391 * It is guaranteed that @process will act on every task that is a member
72ec7029
TH
3392 * of @css for the duration of this call. This function may or may not
3393 * call @process for tasks that exit or move to a different css during the
3394 * call, or are forked or move into the css during the call.
e535837b
TH
3395 *
3396 * Note that @test may be called with locks held, and may in some
3397 * situations be called multiple times for the same task, so it should be
3398 * cheap.
3399 *
3400 * If @heap is non-NULL, a heap has been pre-allocated and will be used for
3401 * heap operations (and its "gt" member will be overwritten), else a
3402 * temporary heap will be used (allocation of which may cause this function
3403 * to fail).
31a7df01 3404 */
72ec7029
TH
3405int css_scan_tasks(struct cgroup_subsys_state *css,
3406 bool (*test)(struct task_struct *, void *),
3407 void (*process)(struct task_struct *, void *),
3408 void *data, struct ptr_heap *heap)
31a7df01
CW
3409{
3410 int retval, i;
72ec7029 3411 struct css_task_iter it;
31a7df01
CW
3412 struct task_struct *p, *dropped;
3413 /* Never dereference latest_task, since it's not refcounted */
3414 struct task_struct *latest_task = NULL;
3415 struct ptr_heap tmp_heap;
31a7df01
CW
3416 struct timespec latest_time = { 0, 0 };
3417
e535837b 3418 if (heap) {
31a7df01 3419 /* The caller supplied our heap and pre-allocated its memory */
31a7df01
CW
3420 heap->gt = &started_after;
3421 } else {
3422 /* We need to allocate our own heap memory */
3423 heap = &tmp_heap;
3424 retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
3425 if (retval)
3426 /* cannot allocate the heap */
3427 return retval;
3428 }
3429
3430 again:
3431 /*
72ec7029 3432 * Scan tasks in the css, using the @test callback to determine
e535837b
TH
3433 * which are of interest, and invoking @process callback on the
3434 * ones which need an update. Since we don't want to hold any
3435 * locks during the task updates, gather tasks to be processed in a
3436 * heap structure. The heap is sorted by descending task start
3437 * time. If the statically-sized heap fills up, we overflow tasks
3438 * that started later, and in future iterations only consider tasks
3439 * that started after the latest task in the previous pass. This
31a7df01
CW
3440 * guarantees forward progress and that we don't miss any tasks.
3441 */
3442 heap->size = 0;
72ec7029
TH
3443 css_task_iter_start(css, &it);
3444 while ((p = css_task_iter_next(&it))) {
31a7df01
CW
3445 /*
3446 * Only affect tasks that qualify per the caller's callback,
3447 * if he provided one
3448 */
e535837b 3449 if (test && !test(p, data))
31a7df01
CW
3450 continue;
3451 /*
3452 * Only process tasks that started after the last task
3453 * we processed
3454 */
3455 if (!started_after_time(p, &latest_time, latest_task))
3456 continue;
3457 dropped = heap_insert(heap, p);
3458 if (dropped == NULL) {
3459 /*
3460 * The new task was inserted; the heap wasn't
3461 * previously full
3462 */
3463 get_task_struct(p);
3464 } else if (dropped != p) {
3465 /*
3466 * The new task was inserted, and pushed out a
3467 * different task
3468 */
3469 get_task_struct(p);
3470 put_task_struct(dropped);
3471 }
3472 /*
3473 * Else the new task was newer than anything already in
3474 * the heap and wasn't inserted
3475 */
3476 }
72ec7029 3477 css_task_iter_end(&it);
31a7df01
CW
3478
3479 if (heap->size) {
3480 for (i = 0; i < heap->size; i++) {
4fe91d51 3481 struct task_struct *q = heap->ptrs[i];
31a7df01 3482 if (i == 0) {
4fe91d51
PJ
3483 latest_time = q->start_time;
3484 latest_task = q;
31a7df01
CW
3485 }
3486 /* Process the task per the caller's callback */
e535837b 3487 process(q, data);
4fe91d51 3488 put_task_struct(q);
31a7df01
CW
3489 }
3490 /*
3491 * If we had to process any tasks at all, scan again
3492 * in case some of them were in the middle of forking
3493 * children that didn't get processed.
3494 * Not the most efficient way to do it, but it avoids
3495 * having to take callback_mutex in the fork path
3496 */
3497 goto again;
3498 }
3499 if (heap == &tmp_heap)
3500 heap_free(&tmp_heap);
3501 return 0;
3502}
3503
e535837b 3504static void cgroup_transfer_one_task(struct task_struct *task, void *data)
8cc99345 3505{
e535837b 3506 struct cgroup *new_cgroup = data;
8cc99345 3507
47cfcd09 3508 mutex_lock(&cgroup_mutex);
8cc99345 3509 cgroup_attach_task(new_cgroup, task, false);
47cfcd09 3510 mutex_unlock(&cgroup_mutex);
8cc99345
TH
3511}
3512
3513/**
3514 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
3515 * @to: cgroup to which the tasks will be moved
3516 * @from: cgroup in which the tasks currently reside
3517 */
3518int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
3519{
72ec7029
TH
3520 return css_scan_tasks(&from->dummy_css, NULL, cgroup_transfer_one_task,
3521 to, NULL);
8cc99345
TH
3522}
3523
bbcb81d0 3524/*
102a775e 3525 * Stuff for reading the 'tasks'/'procs' files.
bbcb81d0
PM
3526 *
3527 * Reading this file can return large amounts of data if a cgroup has
3528 * *lots* of attached tasks. So it may need several calls to read(),
3529 * but we cannot guarantee that the information we produce is correct
3530 * unless we produce it entirely atomically.
3531 *
bbcb81d0 3532 */
bbcb81d0 3533
24528255
LZ
3534/* which pidlist file are we talking about? */
3535enum cgroup_filetype {
3536 CGROUP_FILE_PROCS,
3537 CGROUP_FILE_TASKS,
3538};
3539
3540/*
3541 * A pidlist is a list of pids that virtually represents the contents of one
3542 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
3543 * a pair (one each for procs, tasks) for each pid namespace that's relevant
3544 * to the cgroup.
3545 */
3546struct cgroup_pidlist {
3547 /*
3548 * used to find which pidlist is wanted. doesn't change as long as
3549 * this particular list stays in the list.
3550 */
3551 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
3552 /* array of xids */
3553 pid_t *list;
3554 /* how many elements the above list has */
3555 int length;
3556 /* how many files are using the current array */
3557 int use_count;
3558 /* each of these stored in a list by its cgroup */
3559 struct list_head links;
3560 /* pointer to the cgroup we belong to, for list removal purposes */
3561 struct cgroup *owner;
3562 /* protects the other fields */
b395890a 3563 struct rw_semaphore rwsem;
24528255
LZ
3564};
3565
d1d9fd33
BB
3566/*
3567 * The following two functions "fix" the issue where there are more pids
3568 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
3569 * TODO: replace with a kernel-wide solution to this problem
3570 */
3571#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
3572static void *pidlist_allocate(int count)
3573{
3574 if (PIDLIST_TOO_LARGE(count))
3575 return vmalloc(count * sizeof(pid_t));
3576 else
3577 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
3578}
3579static void pidlist_free(void *p)
3580{
3581 if (is_vmalloc_addr(p))
3582 vfree(p);
3583 else
3584 kfree(p);
3585}
d1d9fd33 3586
bbcb81d0 3587/*
102a775e 3588 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
6ee211ad 3589 * Returns the number of unique elements.
bbcb81d0 3590 */
6ee211ad 3591static int pidlist_uniq(pid_t *list, int length)
bbcb81d0 3592{
102a775e 3593 int src, dest = 1;
102a775e
BB
3594
3595 /*
3596 * we presume the 0th element is unique, so i starts at 1. trivial
3597 * edge cases first; no work needs to be done for either
3598 */
3599 if (length == 0 || length == 1)
3600 return length;
3601 /* src and dest walk down the list; dest counts unique elements */
3602 for (src = 1; src < length; src++) {
3603 /* find next unique element */
3604 while (list[src] == list[src-1]) {
3605 src++;
3606 if (src == length)
3607 goto after;
3608 }
3609 /* dest always points to where the next unique element goes */
3610 list[dest] = list[src];
3611 dest++;
3612 }
3613after:
102a775e
BB
3614 return dest;
3615}
3616
3617static int cmppid(const void *a, const void *b)
3618{
3619 return *(pid_t *)a - *(pid_t *)b;
3620}
3621
72a8cb30
BB
3622/*
3623 * find the appropriate pidlist for our purpose (given procs vs tasks)
3624 * returns with the lock on that pidlist already held, and takes care
3625 * of the use count, or returns NULL with no locks held if we're out of
3626 * memory.
3627 */
3628static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
3629 enum cgroup_filetype type)
3630{
3631 struct cgroup_pidlist *l;
3632 /* don't need task_nsproxy() if we're looking at ourself */
17cf22c3 3633 struct pid_namespace *ns = task_active_pid_ns(current);
b70cc5fd 3634
72a8cb30 3635 /*
b395890a 3636 * We can't drop the pidlist_mutex before taking the l->rwsem in case
72a8cb30
BB
3637 * the last ref-holder is trying to remove l from the list at the same
3638 * time. Holding the pidlist_mutex precludes somebody taking whichever
3639 * list we find out from under us - compare release_pid_array().
3640 */
3641 mutex_lock(&cgrp->pidlist_mutex);
3642 list_for_each_entry(l, &cgrp->pidlists, links) {
3643 if (l->key.type == type && l->key.ns == ns) {
72a8cb30 3644 /* make sure l doesn't vanish out from under us */
b395890a 3645 down_write(&l->rwsem);
72a8cb30 3646 mutex_unlock(&cgrp->pidlist_mutex);
72a8cb30
BB
3647 return l;
3648 }
3649 }
3650 /* entry not found; create a new one */
f4f4be2b 3651 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
72a8cb30
BB
3652 if (!l) {
3653 mutex_unlock(&cgrp->pidlist_mutex);
72a8cb30
BB
3654 return l;
3655 }
b395890a
LZ
3656 init_rwsem(&l->rwsem);
3657 down_write(&l->rwsem);
72a8cb30 3658 l->key.type = type;
b70cc5fd 3659 l->key.ns = get_pid_ns(ns);
72a8cb30
BB
3660 l->owner = cgrp;
3661 list_add(&l->links, &cgrp->pidlists);
3662 mutex_unlock(&cgrp->pidlist_mutex);
3663 return l;
3664}
3665
102a775e
BB
3666/*
3667 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
3668 */
72a8cb30
BB
3669static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
3670 struct cgroup_pidlist **lp)
102a775e
BB
3671{
3672 pid_t *array;
3673 int length;
3674 int pid, n = 0; /* used for populating the array */
72ec7029 3675 struct css_task_iter it;
817929ec 3676 struct task_struct *tsk;
102a775e
BB
3677 struct cgroup_pidlist *l;
3678
3679 /*
3680 * If cgroup gets more users after we read count, we won't have
3681 * enough space - tough. This race is indistinguishable to the
3682 * caller from the case that the additional cgroup users didn't
3683 * show up until sometime later on.
3684 */
3685 length = cgroup_task_count(cgrp);
d1d9fd33 3686 array = pidlist_allocate(length);
102a775e
BB
3687 if (!array)
3688 return -ENOMEM;
3689 /* now, populate the array */
72ec7029
TH
3690 css_task_iter_start(&cgrp->dummy_css, &it);
3691 while ((tsk = css_task_iter_next(&it))) {
102a775e 3692 if (unlikely(n == length))
817929ec 3693 break;
102a775e 3694 /* get tgid or pid for procs or tasks file respectively */
72a8cb30
BB
3695 if (type == CGROUP_FILE_PROCS)
3696 pid = task_tgid_vnr(tsk);
3697 else
3698 pid = task_pid_vnr(tsk);
102a775e
BB
3699 if (pid > 0) /* make sure to only use valid results */
3700 array[n++] = pid;
817929ec 3701 }
72ec7029 3702 css_task_iter_end(&it);
102a775e
BB
3703 length = n;
3704 /* now sort & (if procs) strip out duplicates */
3705 sort(array, length, sizeof(pid_t), cmppid, NULL);
72a8cb30 3706 if (type == CGROUP_FILE_PROCS)
6ee211ad 3707 length = pidlist_uniq(array, length);
72a8cb30
BB
3708 l = cgroup_pidlist_find(cgrp, type);
3709 if (!l) {
d1d9fd33 3710 pidlist_free(array);
72a8cb30 3711 return -ENOMEM;
102a775e 3712 }
72a8cb30 3713 /* store array, freeing old if necessary - lock already held */
d1d9fd33 3714 pidlist_free(l->list);
102a775e
BB
3715 l->list = array;
3716 l->length = length;
3717 l->use_count++;
b395890a 3718 up_write(&l->rwsem);
72a8cb30 3719 *lp = l;
102a775e 3720 return 0;
bbcb81d0
PM
3721}
3722
846c7bb0 3723/**
a043e3b2 3724 * cgroupstats_build - build and fill cgroupstats
846c7bb0
BS
3725 * @stats: cgroupstats to fill information into
3726 * @dentry: A dentry entry belonging to the cgroup for which stats have
3727 * been requested.
a043e3b2
LZ
3728 *
3729 * Build and fill cgroupstats so that taskstats can export it to user
3730 * space.
846c7bb0
BS
3731 */
3732int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
3733{
3734 int ret = -EINVAL;
bd89aabc 3735 struct cgroup *cgrp;
72ec7029 3736 struct css_task_iter it;
846c7bb0 3737 struct task_struct *tsk;
33d283be 3738
846c7bb0 3739 /*
33d283be
LZ
3740 * Validate dentry by checking the superblock operations,
3741 * and make sure it's a directory.
846c7bb0 3742 */
33d283be
LZ
3743 if (dentry->d_sb->s_op != &cgroup_ops ||
3744 !S_ISDIR(dentry->d_inode->i_mode))
846c7bb0
BS
3745 goto err;
3746
3747 ret = 0;
bd89aabc 3748 cgrp = dentry->d_fsdata;
846c7bb0 3749
72ec7029
TH
3750 css_task_iter_start(&cgrp->dummy_css, &it);
3751 while ((tsk = css_task_iter_next(&it))) {
846c7bb0
BS
3752 switch (tsk->state) {
3753 case TASK_RUNNING:
3754 stats->nr_running++;
3755 break;
3756 case TASK_INTERRUPTIBLE:
3757 stats->nr_sleeping++;
3758 break;
3759 case TASK_UNINTERRUPTIBLE:
3760 stats->nr_uninterruptible++;
3761 break;
3762 case TASK_STOPPED:
3763 stats->nr_stopped++;
3764 break;
3765 default:
3766 if (delayacct_is_task_waiting_on_io(tsk))
3767 stats->nr_io_wait++;
3768 break;
3769 }
3770 }
72ec7029 3771 css_task_iter_end(&it);
846c7bb0 3772
846c7bb0
BS
3773err:
3774 return ret;
3775}
3776
8f3ff208 3777
bbcb81d0 3778/*
102a775e 3779 * seq_file methods for the tasks/procs files. The seq_file position is the
cc31edce 3780 * next pid to display; the seq_file iterator is a pointer to the pid
102a775e 3781 * in the cgroup->l->list array.
bbcb81d0 3782 */
cc31edce 3783
102a775e 3784static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
bbcb81d0 3785{
cc31edce
PM
3786 /*
3787 * Initially we receive a position value that corresponds to
3788 * one more than the last pid shown (or 0 on the first call or
3789 * after a seek to the start). Use a binary-search to find the
3790 * next pid to display, if any
3791 */
102a775e 3792 struct cgroup_pidlist *l = s->private;
cc31edce
PM
3793 int index = 0, pid = *pos;
3794 int *iter;
3795
b395890a 3796 down_read(&l->rwsem);
cc31edce 3797 if (pid) {
102a775e 3798 int end = l->length;
20777766 3799
cc31edce
PM
3800 while (index < end) {
3801 int mid = (index + end) / 2;
102a775e 3802 if (l->list[mid] == pid) {
cc31edce
PM
3803 index = mid;
3804 break;
102a775e 3805 } else if (l->list[mid] <= pid)
cc31edce
PM
3806 index = mid + 1;
3807 else
3808 end = mid;
3809 }
3810 }
3811 /* If we're off the end of the array, we're done */
102a775e 3812 if (index >= l->length)
cc31edce
PM
3813 return NULL;
3814 /* Update the abstract position to be the actual pid that we found */
102a775e 3815 iter = l->list + index;
cc31edce
PM
3816 *pos = *iter;
3817 return iter;
3818}
3819
102a775e 3820static void cgroup_pidlist_stop(struct seq_file *s, void *v)
cc31edce 3821{
102a775e 3822 struct cgroup_pidlist *l = s->private;
b395890a 3823 up_read(&l->rwsem);
cc31edce
PM
3824}
3825
102a775e 3826static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
cc31edce 3827{
102a775e
BB
3828 struct cgroup_pidlist *l = s->private;
3829 pid_t *p = v;
3830 pid_t *end = l->list + l->length;
cc31edce
PM
3831 /*
3832 * Advance to the next pid in the array. If this goes off the
3833 * end, we're done
3834 */
3835 p++;
3836 if (p >= end) {
3837 return NULL;
3838 } else {
3839 *pos = *p;
3840 return p;
3841 }
3842}
3843
102a775e 3844static int cgroup_pidlist_show(struct seq_file *s, void *v)
cc31edce
PM
3845{
3846 return seq_printf(s, "%d\n", *(int *)v);
3847}
bbcb81d0 3848
102a775e
BB
3849/*
3850 * seq_operations functions for iterating on pidlists through seq_file -
3851 * independent of whether it's tasks or procs
3852 */
3853static const struct seq_operations cgroup_pidlist_seq_operations = {
3854 .start = cgroup_pidlist_start,
3855 .stop = cgroup_pidlist_stop,
3856 .next = cgroup_pidlist_next,
3857 .show = cgroup_pidlist_show,
cc31edce
PM
3858};
3859
102a775e 3860static void cgroup_release_pid_array(struct cgroup_pidlist *l)
cc31edce 3861{
72a8cb30
BB
3862 /*
3863 * the case where we're the last user of this particular pidlist will
3864 * have us remove it from the cgroup's list, which entails taking the
3865 * mutex. since in pidlist_find the pidlist->lock depends on cgroup->
3866 * pidlist_mutex, we have to take pidlist_mutex first.
3867 */
3868 mutex_lock(&l->owner->pidlist_mutex);
b395890a 3869 down_write(&l->rwsem);
102a775e
BB
3870 BUG_ON(!l->use_count);
3871 if (!--l->use_count) {
72a8cb30
BB
3872 /* we're the last user if refcount is 0; remove and free */
3873 list_del(&l->links);
3874 mutex_unlock(&l->owner->pidlist_mutex);
d1d9fd33 3875 pidlist_free(l->list);
72a8cb30 3876 put_pid_ns(l->key.ns);
b395890a 3877 up_write(&l->rwsem);
72a8cb30
BB
3878 kfree(l);
3879 return;
cc31edce 3880 }
72a8cb30 3881 mutex_unlock(&l->owner->pidlist_mutex);
b395890a 3882 up_write(&l->rwsem);
bbcb81d0
PM
3883}
3884
102a775e 3885static int cgroup_pidlist_release(struct inode *inode, struct file *file)
cc31edce 3886{
102a775e 3887 struct cgroup_pidlist *l;
cc31edce
PM
3888 if (!(file->f_mode & FMODE_READ))
3889 return 0;
102a775e
BB
3890 /*
3891 * the seq_file will only be initialized if the file was opened for
3892 * reading; hence we check if it's not null only in that case.
3893 */
3894 l = ((struct seq_file *)file->private_data)->private;
3895 cgroup_release_pid_array(l);
cc31edce
PM
3896 return seq_release(inode, file);
3897}
3898
102a775e 3899static const struct file_operations cgroup_pidlist_operations = {
cc31edce
PM
3900 .read = seq_read,
3901 .llseek = seq_lseek,
3902 .write = cgroup_file_write,
102a775e 3903 .release = cgroup_pidlist_release,
cc31edce
PM
3904};
3905
bbcb81d0 3906/*
102a775e
BB
3907 * The following functions handle opens on a file that displays a pidlist
3908 * (tasks or procs). Prepare an array of the process/thread IDs of whoever's
3909 * in the cgroup.
bbcb81d0 3910 */
102a775e 3911/* helper function for the two below it */
72a8cb30 3912static int cgroup_pidlist_open(struct file *file, enum cgroup_filetype type)
bbcb81d0 3913{
bd89aabc 3914 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
72a8cb30 3915 struct cgroup_pidlist *l;
cc31edce 3916 int retval;
bbcb81d0 3917
cc31edce 3918 /* Nothing to do for write-only files */
bbcb81d0
PM
3919 if (!(file->f_mode & FMODE_READ))
3920 return 0;
3921
102a775e 3922 /* have the array populated */
72a8cb30 3923 retval = pidlist_array_load(cgrp, type, &l);
102a775e
BB
3924 if (retval)
3925 return retval;
3926 /* configure file information */
3927 file->f_op = &cgroup_pidlist_operations;
cc31edce 3928
102a775e 3929 retval = seq_open(file, &cgroup_pidlist_seq_operations);
cc31edce 3930 if (retval) {
102a775e 3931 cgroup_release_pid_array(l);
cc31edce 3932 return retval;
bbcb81d0 3933 }
102a775e 3934 ((struct seq_file *)file->private_data)->private = l;
bbcb81d0
PM
3935 return 0;
3936}
102a775e
BB
3937static int cgroup_tasks_open(struct inode *unused, struct file *file)
3938{
72a8cb30 3939 return cgroup_pidlist_open(file, CGROUP_FILE_TASKS);
102a775e
BB
3940}
3941static int cgroup_procs_open(struct inode *unused, struct file *file)
3942{
72a8cb30 3943 return cgroup_pidlist_open(file, CGROUP_FILE_PROCS);
102a775e 3944}
bbcb81d0 3945
182446d0
TH
3946static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
3947 struct cftype *cft)
81a6a5cd 3948{
182446d0 3949 return notify_on_release(css->cgroup);
81a6a5cd
PM
3950}
3951
182446d0
TH
3952static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
3953 struct cftype *cft, u64 val)
6379c106 3954{
182446d0 3955 clear_bit(CGRP_RELEASABLE, &css->cgroup->flags);
6379c106 3956 if (val)
182446d0 3957 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106 3958 else
182446d0 3959 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106
PM
3960 return 0;
3961}
3962
1c8158ee
LZ
3963/*
3964 * When dput() is called asynchronously, if umount has been done and
3965 * then deactivate_super() in cgroup_free_fn() kills the superblock,
3966 * there's a small window that vfs will see the root dentry with non-zero
3967 * refcnt and trigger BUG().
3968 *
3969 * That's why we hold a reference before dput() and drop it right after.
3970 */
3971static void cgroup_dput(struct cgroup *cgrp)
3972{
3973 struct super_block *sb = cgrp->root->sb;
3974
3975 atomic_inc(&sb->s_active);
3976 dput(cgrp->dentry);
3977 deactivate_super(sb);
3978}
3979
0dea1168
KS
3980/*
3981 * Unregister event and free resources.
3982 *
3983 * Gets called from workqueue.
3984 */
3985static void cgroup_event_remove(struct work_struct *work)
3986{
3987 struct cgroup_event *event = container_of(work, struct cgroup_event,
3988 remove);
81eeaf04
TH
3989 struct cgroup_subsys_state *css = event->css;
3990 struct cgroup *cgrp = css->cgroup;
0dea1168 3991
810cbee4
LZ
3992 remove_wait_queue(event->wqh, &event->wait);
3993
81eeaf04 3994 event->cft->unregister_event(css, event->cft, event->eventfd);
0dea1168 3995
810cbee4
LZ
3996 /* Notify userspace the event is going away. */
3997 eventfd_signal(event->eventfd, 1);
3998
0dea1168 3999 eventfd_ctx_put(event->eventfd);
0dea1168 4000 kfree(event);
1c8158ee 4001 cgroup_dput(cgrp);
0dea1168
KS
4002}
4003
4004/*
4005 * Gets called on POLLHUP on eventfd when user closes it.
4006 *
4007 * Called with wqh->lock held and interrupts disabled.
4008 */
4009static int cgroup_event_wake(wait_queue_t *wait, unsigned mode,
4010 int sync, void *key)
4011{
4012 struct cgroup_event *event = container_of(wait,
4013 struct cgroup_event, wait);
81eeaf04 4014 struct cgroup *cgrp = event->css->cgroup;
0dea1168
KS
4015 unsigned long flags = (unsigned long)key;
4016
4017 if (flags & POLLHUP) {
0dea1168 4018 /*
810cbee4
LZ
4019 * If the event has been detached at cgroup removal, we
4020 * can simply return knowing the other side will cleanup
4021 * for us.
4022 *
4023 * We can't race against event freeing since the other
4024 * side will require wqh->lock via remove_wait_queue(),
4025 * which we hold.
0dea1168 4026 */
810cbee4
LZ
4027 spin_lock(&cgrp->event_list_lock);
4028 if (!list_empty(&event->list)) {
4029 list_del_init(&event->list);
4030 /*
4031 * We are in atomic context, but cgroup_event_remove()
4032 * may sleep, so we have to call it in workqueue.
4033 */
4034 schedule_work(&event->remove);
4035 }
4036 spin_unlock(&cgrp->event_list_lock);
0dea1168
KS
4037 }
4038
4039 return 0;
4040}
4041
4042static void cgroup_event_ptable_queue_proc(struct file *file,
4043 wait_queue_head_t *wqh, poll_table *pt)
4044{
4045 struct cgroup_event *event = container_of(pt,
4046 struct cgroup_event, pt);
4047
4048 event->wqh = wqh;
4049 add_wait_queue(wqh, &event->wait);
4050}
4051
4052/*
4053 * Parse input and register new cgroup event handler.
4054 *
4055 * Input must be in format '<event_fd> <control_fd> <args>'.
4056 * Interpretation of args is defined by control file implementation.
4057 */
182446d0
TH
4058static int cgroup_write_event_control(struct cgroup_subsys_state *css,
4059 struct cftype *cft, const char *buffer)
0dea1168 4060{
182446d0 4061 struct cgroup *cgrp = css->cgroup;
876ede8b 4062 struct cgroup_event *event;
f169007b 4063 struct cgroup *cgrp_cfile;
0dea1168 4064 unsigned int efd, cfd;
876ede8b
LZ
4065 struct file *efile;
4066 struct file *cfile;
0dea1168
KS
4067 char *endp;
4068 int ret;
4069
4070 efd = simple_strtoul(buffer, &endp, 10);
4071 if (*endp != ' ')
4072 return -EINVAL;
4073 buffer = endp + 1;
4074
4075 cfd = simple_strtoul(buffer, &endp, 10);
4076 if ((*endp != ' ') && (*endp != '\0'))
4077 return -EINVAL;
4078 buffer = endp + 1;
4079
4080 event = kzalloc(sizeof(*event), GFP_KERNEL);
4081 if (!event)
4082 return -ENOMEM;
81eeaf04 4083 event->css = css;
0dea1168
KS
4084 INIT_LIST_HEAD(&event->list);
4085 init_poll_funcptr(&event->pt, cgroup_event_ptable_queue_proc);
4086 init_waitqueue_func_entry(&event->wait, cgroup_event_wake);
4087 INIT_WORK(&event->remove, cgroup_event_remove);
4088
4089 efile = eventfd_fget(efd);
4090 if (IS_ERR(efile)) {
4091 ret = PTR_ERR(efile);
876ede8b 4092 goto out_kfree;
0dea1168
KS
4093 }
4094
4095 event->eventfd = eventfd_ctx_fileget(efile);
4096 if (IS_ERR(event->eventfd)) {
4097 ret = PTR_ERR(event->eventfd);
876ede8b 4098 goto out_put_efile;
0dea1168
KS
4099 }
4100
4101 cfile = fget(cfd);
4102 if (!cfile) {
4103 ret = -EBADF;
876ede8b 4104 goto out_put_eventfd;
0dea1168
KS
4105 }
4106
4107 /* the process need read permission on control file */
3bfa784a 4108 /* AV: shouldn't we check that it's been opened for read instead? */
496ad9aa 4109 ret = inode_permission(file_inode(cfile), MAY_READ);
0dea1168 4110 if (ret < 0)
876ede8b 4111 goto out_put_cfile;
0dea1168
KS
4112
4113 event->cft = __file_cft(cfile);
4114 if (IS_ERR(event->cft)) {
4115 ret = PTR_ERR(event->cft);
876ede8b 4116 goto out_put_cfile;
0dea1168
KS
4117 }
4118
f169007b
LZ
4119 /*
4120 * The file to be monitored must be in the same cgroup as
4121 * cgroup.event_control is.
4122 */
4123 cgrp_cfile = __d_cgrp(cfile->f_dentry->d_parent);
4124 if (cgrp_cfile != cgrp) {
4125 ret = -EINVAL;
876ede8b 4126 goto out_put_cfile;
f169007b
LZ
4127 }
4128
0dea1168
KS
4129 if (!event->cft->register_event || !event->cft->unregister_event) {
4130 ret = -EINVAL;
876ede8b 4131 goto out_put_cfile;
0dea1168
KS
4132 }
4133
81eeaf04 4134 ret = event->cft->register_event(css, event->cft,
0dea1168
KS
4135 event->eventfd, buffer);
4136 if (ret)
876ede8b 4137 goto out_put_cfile;
0dea1168 4138
7ef70e48 4139 efile->f_op->poll(efile, &event->pt);
0dea1168 4140
a0a4db54
KS
4141 /*
4142 * Events should be removed after rmdir of cgroup directory, but before
4143 * destroying subsystem state objects. Let's take reference to cgroup
4144 * directory dentry to do that.
4145 */
4146 dget(cgrp->dentry);
4147
0dea1168
KS
4148 spin_lock(&cgrp->event_list_lock);
4149 list_add(&event->list, &cgrp->event_list);
4150 spin_unlock(&cgrp->event_list_lock);
4151
4152 fput(cfile);
4153 fput(efile);
4154
4155 return 0;
4156
876ede8b
LZ
4157out_put_cfile:
4158 fput(cfile);
4159out_put_eventfd:
4160 eventfd_ctx_put(event->eventfd);
4161out_put_efile:
4162 fput(efile);
4163out_kfree:
0dea1168
KS
4164 kfree(event);
4165
4166 return ret;
4167}
4168
182446d0
TH
4169static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
4170 struct cftype *cft)
97978e6d 4171{
182446d0 4172 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
4173}
4174
182446d0
TH
4175static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
4176 struct cftype *cft, u64 val)
97978e6d
DL
4177{
4178 if (val)
182446d0 4179 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d 4180 else
182446d0 4181 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
4182 return 0;
4183}
4184
d5c56ced 4185static struct cftype cgroup_base_files[] = {
81a6a5cd 4186 {
d5c56ced 4187 .name = "cgroup.procs",
102a775e 4188 .open = cgroup_procs_open,
74a1166d 4189 .write_u64 = cgroup_procs_write,
102a775e 4190 .release = cgroup_pidlist_release,
74a1166d 4191 .mode = S_IRUGO | S_IWUSR,
102a775e 4192 },
81a6a5cd 4193 {
d5c56ced 4194 .name = "cgroup.event_control",
0dea1168
KS
4195 .write_string = cgroup_write_event_control,
4196 .mode = S_IWUGO,
4197 },
97978e6d
DL
4198 {
4199 .name = "cgroup.clone_children",
873fe09e 4200 .flags = CFTYPE_INSANE,
97978e6d
DL
4201 .read_u64 = cgroup_clone_children_read,
4202 .write_u64 = cgroup_clone_children_write,
4203 },
873fe09e
TH
4204 {
4205 .name = "cgroup.sane_behavior",
4206 .flags = CFTYPE_ONLY_ON_ROOT,
4207 .read_seq_string = cgroup_sane_behavior_show,
4208 },
d5c56ced
TH
4209
4210 /*
4211 * Historical crazy stuff. These don't have "cgroup." prefix and
4212 * don't exist if sane_behavior. If you're depending on these, be
4213 * prepared to be burned.
4214 */
4215 {
4216 .name = "tasks",
4217 .flags = CFTYPE_INSANE, /* use "procs" instead */
4218 .open = cgroup_tasks_open,
4219 .write_u64 = cgroup_tasks_write,
4220 .release = cgroup_pidlist_release,
4221 .mode = S_IRUGO | S_IWUSR,
4222 },
4223 {
4224 .name = "notify_on_release",
4225 .flags = CFTYPE_INSANE,
4226 .read_u64 = cgroup_read_notify_on_release,
4227 .write_u64 = cgroup_write_notify_on_release,
4228 },
6e6ff25b
TH
4229 {
4230 .name = "release_agent",
cc5943a7 4231 .flags = CFTYPE_INSANE | CFTYPE_ONLY_ON_ROOT,
6e6ff25b
TH
4232 .read_seq_string = cgroup_release_agent_show,
4233 .write_string = cgroup_release_agent_write,
4234 .max_write_len = PATH_MAX,
4235 },
db0416b6 4236 { } /* terminate */
bbcb81d0
PM
4237};
4238
13af07df 4239/**
628f7cd4 4240 * cgroup_populate_dir - create subsys files in a cgroup directory
13af07df 4241 * @cgrp: target cgroup
13af07df 4242 * @subsys_mask: mask of the subsystem ids whose files should be added
bee55099
TH
4243 *
4244 * On failure, no file is added.
13af07df 4245 */
628f7cd4 4246static int cgroup_populate_dir(struct cgroup *cgrp, unsigned long subsys_mask)
ddbcc7e8 4247{
ddbcc7e8 4248 struct cgroup_subsys *ss;
b420ba7d 4249 int i, ret = 0;
ddbcc7e8 4250
8e3f6541 4251 /* process cftsets of each subsystem */
b420ba7d 4252 for_each_subsys(ss, i) {
8e3f6541 4253 struct cftype_set *set;
b420ba7d
TH
4254
4255 if (!test_bit(i, &subsys_mask))
13af07df 4256 continue;
8e3f6541 4257
bee55099 4258 list_for_each_entry(set, &ss->cftsets, node) {
2bb566cb 4259 ret = cgroup_addrm_files(cgrp, set->cfts, true);
bee55099
TH
4260 if (ret < 0)
4261 goto err;
4262 }
ddbcc7e8 4263 }
8e3f6541 4264
38460b48 4265 /* This cgroup is ready now */
5549c497 4266 for_each_root_subsys(cgrp->root, ss) {
40e93b39 4267 struct cgroup_subsys_state *css = cgroup_css(cgrp, ss->subsys_id);
a4ea1cc9
TH
4268 struct css_id *id = rcu_dereference_protected(css->id, true);
4269
38460b48
KH
4270 /*
4271 * Update id->css pointer and make this css visible from
4272 * CSS ID functions. This pointer will be dereferened
4273 * from RCU-read-side without locks.
4274 */
a4ea1cc9
TH
4275 if (id)
4276 rcu_assign_pointer(id->css, css);
38460b48 4277 }
ddbcc7e8
PM
4278
4279 return 0;
bee55099
TH
4280err:
4281 cgroup_clear_dir(cgrp, subsys_mask);
4282 return ret;
ddbcc7e8
PM
4283}
4284
35ef10da 4285static void css_free_work_fn(struct work_struct *work)
48ddbe19
TH
4286{
4287 struct cgroup_subsys_state *css =
35ef10da 4288 container_of(work, struct cgroup_subsys_state, destroy_work);
48ddbe19 4289
0ae78e0b
TH
4290 if (css->parent)
4291 css_put(css->parent);
4292
1c8158ee 4293 cgroup_dput(css->cgroup);
48ddbe19
TH
4294}
4295
d3daf28d
TH
4296static void css_release(struct percpu_ref *ref)
4297{
4298 struct cgroup_subsys_state *css =
4299 container_of(ref, struct cgroup_subsys_state, refcnt);
4300
35ef10da
TH
4301 /*
4302 * css holds an extra ref to @cgrp->dentry which is put on the last
4303 * css_put(). dput() requires process context, which css_put() may
4304 * be called without. @css->destroy_work will be used to invoke
4305 * dput() asynchronously from css_put().
4306 */
4307 INIT_WORK(&css->destroy_work, css_free_work_fn);
4308 schedule_work(&css->destroy_work);
d3daf28d
TH
4309}
4310
ddbcc7e8
PM
4311static void init_cgroup_css(struct cgroup_subsys_state *css,
4312 struct cgroup_subsys *ss,
bd89aabc 4313 struct cgroup *cgrp)
ddbcc7e8 4314{
bd89aabc 4315 css->cgroup = cgrp;
72c97e54 4316 css->ss = ss;
ddbcc7e8 4317 css->flags = 0;
38460b48 4318 css->id = NULL;
0ae78e0b
TH
4319
4320 if (cgrp->parent)
4321 css->parent = cgroup_css(cgrp->parent, ss->subsys_id);
4322 else
38b53aba 4323 css->flags |= CSS_ROOT;
0ae78e0b 4324
40e93b39 4325 BUG_ON(cgroup_css(cgrp, ss->subsys_id));
73e80ed8 4326 rcu_assign_pointer(cgrp->subsys[ss->subsys_id], css);
ddbcc7e8
PM
4327}
4328
2a4ac633 4329/* invoke ->css_online() on a new CSS and mark it online if successful */
b1929db4 4330static int online_css(struct cgroup_subsys *ss, struct cgroup *cgrp)
a31f2d3f 4331{
40e93b39 4332 struct cgroup_subsys_state *css = cgroup_css(cgrp, ss->subsys_id);
b1929db4
TH
4333 int ret = 0;
4334
a31f2d3f
TH
4335 lockdep_assert_held(&cgroup_mutex);
4336
92fb9748 4337 if (ss->css_online)
eb95419b 4338 ret = ss->css_online(css);
b1929db4 4339 if (!ret)
eb95419b 4340 css->flags |= CSS_ONLINE;
b1929db4 4341 return ret;
a31f2d3f
TH
4342}
4343
2a4ac633 4344/* if the CSS is online, invoke ->css_offline() on it and mark it offline */
a31f2d3f 4345static void offline_css(struct cgroup_subsys *ss, struct cgroup *cgrp)
a31f2d3f 4346{
40e93b39 4347 struct cgroup_subsys_state *css = cgroup_css(cgrp, ss->subsys_id);
a31f2d3f
TH
4348
4349 lockdep_assert_held(&cgroup_mutex);
4350
4351 if (!(css->flags & CSS_ONLINE))
4352 return;
4353
d7eeac19 4354 if (ss->css_offline)
eb95419b 4355 ss->css_offline(css);
a31f2d3f 4356
eb95419b 4357 css->flags &= ~CSS_ONLINE;
a31f2d3f
TH
4358}
4359
ddbcc7e8 4360/*
a043e3b2
LZ
4361 * cgroup_create - create a cgroup
4362 * @parent: cgroup that will be parent of the new cgroup
4363 * @dentry: dentry of the new cgroup
4364 * @mode: mode to set on new inode
ddbcc7e8 4365 *
a043e3b2 4366 * Must be called with the mutex on the parent inode held
ddbcc7e8 4367 */
ddbcc7e8 4368static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
a5e7ed32 4369 umode_t mode)
ddbcc7e8 4370{
bd89aabc 4371 struct cgroup *cgrp;
65dff759 4372 struct cgroup_name *name;
ddbcc7e8
PM
4373 struct cgroupfs_root *root = parent->root;
4374 int err = 0;
4375 struct cgroup_subsys *ss;
4376 struct super_block *sb = root->sb;
4377
0a950f65 4378 /* allocate the cgroup and its ID, 0 is reserved for the root */
bd89aabc
PM
4379 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
4380 if (!cgrp)
ddbcc7e8
PM
4381 return -ENOMEM;
4382
65dff759
LZ
4383 name = cgroup_alloc_name(dentry);
4384 if (!name)
4385 goto err_free_cgrp;
4386 rcu_assign_pointer(cgrp->name, name);
4387
4e96ee8e
LZ
4388 /*
4389 * Temporarily set the pointer to NULL, so idr_find() won't return
4390 * a half-baked cgroup.
4391 */
4392 cgrp->id = idr_alloc(&root->cgroup_idr, NULL, 1, 0, GFP_KERNEL);
0a950f65 4393 if (cgrp->id < 0)
65dff759 4394 goto err_free_name;
0a950f65 4395
976c06bc
TH
4396 /*
4397 * Only live parents can have children. Note that the liveliness
4398 * check isn't strictly necessary because cgroup_mkdir() and
4399 * cgroup_rmdir() are fully synchronized by i_mutex; however, do it
4400 * anyway so that locking is contained inside cgroup proper and we
4401 * don't get nasty surprises if we ever grow another caller.
4402 */
4403 if (!cgroup_lock_live_group(parent)) {
4404 err = -ENODEV;
0a950f65 4405 goto err_free_id;
976c06bc
TH
4406 }
4407
ddbcc7e8
PM
4408 /* Grab a reference on the superblock so the hierarchy doesn't
4409 * get deleted on unmount if there are child cgroups. This
4410 * can be done outside cgroup_mutex, since the sb can't
4411 * disappear while someone has an open control file on the
4412 * fs */
4413 atomic_inc(&sb->s_active);
4414
cc31edce 4415 init_cgroup_housekeeping(cgrp);
ddbcc7e8 4416
fe1c06ca
LZ
4417 dentry->d_fsdata = cgrp;
4418 cgrp->dentry = dentry;
4419
bd89aabc 4420 cgrp->parent = parent;
0ae78e0b 4421 cgrp->dummy_css.parent = &parent->dummy_css;
bd89aabc 4422 cgrp->root = parent->root;
ddbcc7e8 4423
b6abdb0e
LZ
4424 if (notify_on_release(parent))
4425 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
4426
2260e7fc
TH
4427 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
4428 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
97978e6d 4429
5549c497 4430 for_each_root_subsys(root, ss) {
8c7f6edb 4431 struct cgroup_subsys_state *css;
4528fd05 4432
40e93b39 4433 css = ss->css_alloc(cgroup_css(parent, ss->subsys_id));
ddbcc7e8
PM
4434 if (IS_ERR(css)) {
4435 err = PTR_ERR(css);
4b8b47eb 4436 goto err_free_all;
ddbcc7e8 4437 }
d3daf28d
TH
4438
4439 err = percpu_ref_init(&css->refcnt, css_release);
da0a12ca 4440 if (err) {
eb95419b 4441 ss->css_free(css);
d3daf28d 4442 goto err_free_all;
da0a12ca 4443 }
d3daf28d 4444
bd89aabc 4445 init_cgroup_css(css, ss, cgrp);
d3daf28d 4446
4528fd05
LZ
4447 if (ss->use_id) {
4448 err = alloc_css_id(ss, parent, cgrp);
4449 if (err)
4b8b47eb 4450 goto err_free_all;
4528fd05 4451 }
ddbcc7e8
PM
4452 }
4453
4e139afc
TH
4454 /*
4455 * Create directory. cgroup_create_file() returns with the new
4456 * directory locked on success so that it can be populated without
4457 * dropping cgroup_mutex.
4458 */
28fd6f30 4459 err = cgroup_create_file(dentry, S_IFDIR | mode, sb);
ddbcc7e8 4460 if (err < 0)
4b8b47eb 4461 goto err_free_all;
4e139afc 4462 lockdep_assert_held(&dentry->d_inode->i_mutex);
ddbcc7e8 4463
00356bd5 4464 cgrp->serial_nr = cgroup_serial_nr_next++;
53fa5261 4465
4e139afc 4466 /* allocation complete, commit to creation */
4e139afc
TH
4467 list_add_tail_rcu(&cgrp->sibling, &cgrp->parent->children);
4468 root->number_of_cgroups++;
28fd6f30 4469
0ae78e0b
TH
4470 /* each css holds a ref to the cgroup's dentry and the parent css */
4471 for_each_root_subsys(root, ss) {
4472 struct cgroup_subsys_state *css = cgroup_css(cgrp, ss->subsys_id);
4473
ed957793 4474 dget(dentry);
0ae78e0b
TH
4475 percpu_ref_get(&css->parent->refcnt);
4476 }
48ddbe19 4477
415cf07a
LZ
4478 /* hold a ref to the parent's dentry */
4479 dget(parent->dentry);
4480
b1929db4 4481 /* creation succeeded, notify subsystems */
5549c497 4482 for_each_root_subsys(root, ss) {
b1929db4
TH
4483 err = online_css(ss, cgrp);
4484 if (err)
4485 goto err_destroy;
1f869e87
GC
4486
4487 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
4488 parent->parent) {
4489 pr_warning("cgroup: %s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
4490 current->comm, current->pid, ss->name);
4491 if (!strcmp(ss->name, "memory"))
4492 pr_warning("cgroup: \"memory\" requires setting use_hierarchy to 1 on the root.\n");
4493 ss->warned_broken_hierarchy = true;
4494 }
a8638030
TH
4495 }
4496
4e96ee8e
LZ
4497 idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
4498
2bb566cb 4499 err = cgroup_addrm_files(cgrp, cgroup_base_files, true);
628f7cd4
TH
4500 if (err)
4501 goto err_destroy;
4502
4503 err = cgroup_populate_dir(cgrp, root->subsys_mask);
4b8b47eb
TH
4504 if (err)
4505 goto err_destroy;
ddbcc7e8
PM
4506
4507 mutex_unlock(&cgroup_mutex);
bd89aabc 4508 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8
PM
4509
4510 return 0;
4511
4b8b47eb 4512err_free_all:
5549c497 4513 for_each_root_subsys(root, ss) {
40e93b39 4514 struct cgroup_subsys_state *css = cgroup_css(cgrp, ss->subsys_id);
d3daf28d
TH
4515
4516 if (css) {
4517 percpu_ref_cancel_init(&css->refcnt);
eb95419b 4518 ss->css_free(css);
d3daf28d 4519 }
ddbcc7e8 4520 }
ddbcc7e8 4521 mutex_unlock(&cgroup_mutex);
ddbcc7e8
PM
4522 /* Release the reference count that we took on the superblock */
4523 deactivate_super(sb);
0a950f65 4524err_free_id:
4e96ee8e 4525 idr_remove(&root->cgroup_idr, cgrp->id);
65dff759
LZ
4526err_free_name:
4527 kfree(rcu_dereference_raw(cgrp->name));
4b8b47eb 4528err_free_cgrp:
bd89aabc 4529 kfree(cgrp);
ddbcc7e8 4530 return err;
4b8b47eb
TH
4531
4532err_destroy:
4533 cgroup_destroy_locked(cgrp);
4534 mutex_unlock(&cgroup_mutex);
4535 mutex_unlock(&dentry->d_inode->i_mutex);
4536 return err;
ddbcc7e8
PM
4537}
4538
18bb1db3 4539static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
ddbcc7e8
PM
4540{
4541 struct cgroup *c_parent = dentry->d_parent->d_fsdata;
4542
4543 /* the vfs holds inode->i_mutex already */
4544 return cgroup_create(c_parent, dentry, mode | S_IFDIR);
4545}
4546
d3daf28d
TH
4547static void cgroup_css_killed(struct cgroup *cgrp)
4548{
4549 if (!atomic_dec_and_test(&cgrp->css_kill_cnt))
4550 return;
4551
4552 /* percpu ref's of all css's are killed, kick off the next step */
4553 INIT_WORK(&cgrp->destroy_work, cgroup_offline_fn);
4554 schedule_work(&cgrp->destroy_work);
4555}
4556
4557static void css_ref_killed_fn(struct percpu_ref *ref)
4558{
4559 struct cgroup_subsys_state *css =
4560 container_of(ref, struct cgroup_subsys_state, refcnt);
4561
4562 cgroup_css_killed(css->cgroup);
4563}
4564
4565/**
4566 * cgroup_destroy_locked - the first stage of cgroup destruction
4567 * @cgrp: cgroup to be destroyed
4568 *
4569 * css's make use of percpu refcnts whose killing latency shouldn't be
4570 * exposed to userland and are RCU protected. Also, cgroup core needs to
4571 * guarantee that css_tryget() won't succeed by the time ->css_offline() is
4572 * invoked. To satisfy all the requirements, destruction is implemented in
4573 * the following two steps.
4574 *
4575 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
4576 * userland visible parts and start killing the percpu refcnts of
4577 * css's. Set up so that the next stage will be kicked off once all
4578 * the percpu refcnts are confirmed to be killed.
4579 *
4580 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
4581 * rest of destruction. Once all cgroup references are gone, the
4582 * cgroup is RCU-freed.
4583 *
4584 * This function implements s1. After this step, @cgrp is gone as far as
4585 * the userland is concerned and a new cgroup with the same name may be
4586 * created. As cgroup doesn't care about the names internally, this
4587 * doesn't cause any problem.
4588 */
42809dd4
TH
4589static int cgroup_destroy_locked(struct cgroup *cgrp)
4590 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
ddbcc7e8 4591{
42809dd4 4592 struct dentry *d = cgrp->dentry;
4ab78683 4593 struct cgroup_event *event, *tmp;
ed957793 4594 struct cgroup_subsys *ss;
ddd69148 4595 bool empty;
ddbcc7e8 4596
42809dd4
TH
4597 lockdep_assert_held(&d->d_inode->i_mutex);
4598 lockdep_assert_held(&cgroup_mutex);
4599
ddd69148 4600 /*
6f3d828f
TH
4601 * css_set_lock synchronizes access to ->cset_links and prevents
4602 * @cgrp from being removed while __put_css_set() is in progress.
ddd69148
TH
4603 */
4604 read_lock(&css_set_lock);
6f3d828f 4605 empty = list_empty(&cgrp->cset_links) && list_empty(&cgrp->children);
ddd69148
TH
4606 read_unlock(&css_set_lock);
4607 if (!empty)
ddbcc7e8 4608 return -EBUSY;
a043e3b2 4609
88703267 4610 /*
d3daf28d
TH
4611 * Block new css_tryget() by killing css refcnts. cgroup core
4612 * guarantees that, by the time ->css_offline() is invoked, no new
4613 * css reference will be given out via css_tryget(). We can't
4614 * simply call percpu_ref_kill() and proceed to offlining css's
4615 * because percpu_ref_kill() doesn't guarantee that the ref is seen
4616 * as killed on all CPUs on return.
4617 *
4618 * Use percpu_ref_kill_and_confirm() to get notifications as each
4619 * css is confirmed to be seen as killed on all CPUs. The
4620 * notification callback keeps track of the number of css's to be
4621 * killed and schedules cgroup_offline_fn() to perform the rest of
4622 * destruction once the percpu refs of all css's are confirmed to
4623 * be killed.
88703267 4624 */
d3daf28d 4625 atomic_set(&cgrp->css_kill_cnt, 1);
5549c497 4626 for_each_root_subsys(cgrp->root, ss) {
40e93b39 4627 struct cgroup_subsys_state *css = cgroup_css(cgrp, ss->subsys_id);
88703267 4628
d3daf28d
TH
4629 /*
4630 * Killing would put the base ref, but we need to keep it
4631 * alive until after ->css_offline.
4632 */
4633 percpu_ref_get(&css->refcnt);
4634
4635 atomic_inc(&cgrp->css_kill_cnt);
4636 percpu_ref_kill_and_confirm(&css->refcnt, css_ref_killed_fn);
88703267 4637 }
d3daf28d 4638 cgroup_css_killed(cgrp);
455050d2
TH
4639
4640 /*
4641 * Mark @cgrp dead. This prevents further task migration and child
4642 * creation by disabling cgroup_lock_live_group(). Note that
492eb21b 4643 * CGRP_DEAD assertion is depended upon by css_next_child() to
455050d2 4644 * resume iteration after dropping RCU read lock. See
492eb21b 4645 * css_next_child() for details.
455050d2 4646 */
54766d4a 4647 set_bit(CGRP_DEAD, &cgrp->flags);
ddbcc7e8 4648
455050d2
TH
4649 /* CGRP_DEAD is set, remove from ->release_list for the last time */
4650 raw_spin_lock(&release_list_lock);
4651 if (!list_empty(&cgrp->release_list))
4652 list_del_init(&cgrp->release_list);
4653 raw_spin_unlock(&release_list_lock);
4654
4655 /*
8f89140a
TH
4656 * Clear and remove @cgrp directory. The removal puts the base ref
4657 * but we aren't quite done with @cgrp yet, so hold onto it.
455050d2 4658 */
628f7cd4 4659 cgroup_clear_dir(cgrp, cgrp->root->subsys_mask);
2bb566cb 4660 cgroup_addrm_files(cgrp, cgroup_base_files, false);
455050d2
TH
4661 dget(d);
4662 cgroup_d_remove_dir(d);
4663
4664 /*
4665 * Unregister events and notify userspace.
4666 * Notify userspace about cgroup removing only after rmdir of cgroup
4667 * directory to avoid race between userspace and kernelspace.
4668 */
4669 spin_lock(&cgrp->event_list_lock);
4670 list_for_each_entry_safe(event, tmp, &cgrp->event_list, list) {
4671 list_del_init(&event->list);
4672 schedule_work(&event->remove);
4673 }
4674 spin_unlock(&cgrp->event_list_lock);
4675
ea15f8cc
TH
4676 return 0;
4677};
4678
d3daf28d
TH
4679/**
4680 * cgroup_offline_fn - the second step of cgroup destruction
4681 * @work: cgroup->destroy_free_work
4682 *
4683 * This function is invoked from a work item for a cgroup which is being
4684 * destroyed after the percpu refcnts of all css's are guaranteed to be
4685 * seen as killed on all CPUs, and performs the rest of destruction. This
4686 * is the second step of destruction described in the comment above
4687 * cgroup_destroy_locked().
4688 */
ea15f8cc
TH
4689static void cgroup_offline_fn(struct work_struct *work)
4690{
4691 struct cgroup *cgrp = container_of(work, struct cgroup, destroy_work);
4692 struct cgroup *parent = cgrp->parent;
4693 struct dentry *d = cgrp->dentry;
4694 struct cgroup_subsys *ss;
4695
4696 mutex_lock(&cgroup_mutex);
4697
d3daf28d
TH
4698 /*
4699 * css_tryget() is guaranteed to fail now. Tell subsystems to
4700 * initate destruction.
4701 */
5549c497 4702 for_each_root_subsys(cgrp->root, ss)
a31f2d3f 4703 offline_css(ss, cgrp);
ed957793
TH
4704
4705 /*
d3daf28d
TH
4706 * Put the css refs from cgroup_destroy_locked(). Each css holds
4707 * an extra reference to the cgroup's dentry and cgroup removal
4708 * proceeds regardless of css refs. On the last put of each css,
4709 * whenever that may be, the extra dentry ref is put so that dentry
4710 * destruction happens only after all css's are released.
ed957793 4711 */
5549c497 4712 for_each_root_subsys(cgrp->root, ss)
40e93b39 4713 css_put(cgroup_css(cgrp, ss->subsys_id));
ddbcc7e8 4714
999cd8a4 4715 /* delete this cgroup from parent->children */
eb6fd504 4716 list_del_rcu(&cgrp->sibling);
b0ca5a84 4717
4e96ee8e
LZ
4718 /*
4719 * We should remove the cgroup object from idr before its grace
4720 * period starts, so we won't be looking up a cgroup while the
4721 * cgroup is being freed.
4722 */
4723 idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
4724 cgrp->id = -1;
4725
ddbcc7e8 4726 dput(d);
ddbcc7e8 4727
bd89aabc 4728 set_bit(CGRP_RELEASABLE, &parent->flags);
81a6a5cd
PM
4729 check_for_release(parent);
4730
ea15f8cc 4731 mutex_unlock(&cgroup_mutex);
ddbcc7e8
PM
4732}
4733
42809dd4
TH
4734static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
4735{
4736 int ret;
4737
4738 mutex_lock(&cgroup_mutex);
4739 ret = cgroup_destroy_locked(dentry->d_fsdata);
4740 mutex_unlock(&cgroup_mutex);
4741
4742 return ret;
4743}
4744
8e3f6541
TH
4745static void __init_or_module cgroup_init_cftsets(struct cgroup_subsys *ss)
4746{
4747 INIT_LIST_HEAD(&ss->cftsets);
4748
4749 /*
4750 * base_cftset is embedded in subsys itself, no need to worry about
4751 * deregistration.
4752 */
4753 if (ss->base_cftypes) {
2bb566cb
TH
4754 struct cftype *cft;
4755
4756 for (cft = ss->base_cftypes; cft->name[0] != '\0'; cft++)
4757 cft->ss = ss;
4758
8e3f6541
TH
4759 ss->base_cftset.cfts = ss->base_cftypes;
4760 list_add_tail(&ss->base_cftset.node, &ss->cftsets);
4761 }
4762}
4763
06a11920 4764static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
ddbcc7e8 4765{
ddbcc7e8 4766 struct cgroup_subsys_state *css;
cfe36bde
DC
4767
4768 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
ddbcc7e8 4769
648bb56d
TH
4770 mutex_lock(&cgroup_mutex);
4771
8e3f6541
TH
4772 /* init base cftset */
4773 cgroup_init_cftsets(ss);
4774
ddbcc7e8 4775 /* Create the top cgroup state for this subsystem */
9871bf95
TH
4776 list_add(&ss->sibling, &cgroup_dummy_root.subsys_list);
4777 ss->root = &cgroup_dummy_root;
40e93b39 4778 css = ss->css_alloc(cgroup_css(cgroup_dummy_top, ss->subsys_id));
ddbcc7e8
PM
4779 /* We don't handle early failures gracefully */
4780 BUG_ON(IS_ERR(css));
9871bf95 4781 init_cgroup_css(css, ss, cgroup_dummy_top);
ddbcc7e8 4782
e8d55fde 4783 /* Update the init_css_set to contain a subsys
817929ec 4784 * pointer to this state - since the subsystem is
e8d55fde
LZ
4785 * newly registered, all tasks and hence the
4786 * init_css_set is in the subsystem's top cgroup. */
b48c6a80 4787 init_css_set.subsys[ss->subsys_id] = css;
ddbcc7e8
PM
4788
4789 need_forkexit_callback |= ss->fork || ss->exit;
4790
e8d55fde
LZ
4791 /* At system boot, before all subsystems have been
4792 * registered, no tasks have been forked, so we don't
4793 * need to invoke fork callbacks here. */
4794 BUG_ON(!list_empty(&init_task.tasks));
4795
9871bf95 4796 BUG_ON(online_css(ss, cgroup_dummy_top));
a8638030 4797
648bb56d
TH
4798 mutex_unlock(&cgroup_mutex);
4799
e6a1105b
BB
4800 /* this function shouldn't be used with modular subsystems, since they
4801 * need to register a subsys_id, among other things */
4802 BUG_ON(ss->module);
4803}
4804
4805/**
4806 * cgroup_load_subsys: load and register a modular subsystem at runtime
4807 * @ss: the subsystem to load
4808 *
4809 * This function should be called in a modular subsystem's initcall. If the
88393161 4810 * subsystem is built as a module, it will be assigned a new subsys_id and set
e6a1105b
BB
4811 * up for use. If the subsystem is built-in anyway, work is delegated to the
4812 * simpler cgroup_init_subsys.
4813 */
4814int __init_or_module cgroup_load_subsys(struct cgroup_subsys *ss)
4815{
e6a1105b 4816 struct cgroup_subsys_state *css;
d19e19de 4817 int i, ret;
b67bfe0d 4818 struct hlist_node *tmp;
5abb8855 4819 struct css_set *cset;
0ac801fe 4820 unsigned long key;
e6a1105b
BB
4821
4822 /* check name and function validity */
4823 if (ss->name == NULL || strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN ||
92fb9748 4824 ss->css_alloc == NULL || ss->css_free == NULL)
e6a1105b
BB
4825 return -EINVAL;
4826
4827 /*
4828 * we don't support callbacks in modular subsystems. this check is
4829 * before the ss->module check for consistency; a subsystem that could
4830 * be a module should still have no callbacks even if the user isn't
4831 * compiling it as one.
4832 */
4833 if (ss->fork || ss->exit)
4834 return -EINVAL;
4835
4836 /*
4837 * an optionally modular subsystem is built-in: we want to do nothing,
4838 * since cgroup_init_subsys will have already taken care of it.
4839 */
4840 if (ss->module == NULL) {
be45c900 4841 /* a sanity check */
9871bf95 4842 BUG_ON(cgroup_subsys[ss->subsys_id] != ss);
e6a1105b
BB
4843 return 0;
4844 }
4845
8e3f6541
TH
4846 /* init base cftset */
4847 cgroup_init_cftsets(ss);
4848
e6a1105b 4849 mutex_lock(&cgroup_mutex);
9871bf95 4850 cgroup_subsys[ss->subsys_id] = ss;
e6a1105b
BB
4851
4852 /*
92fb9748 4853 * no ss->css_alloc seems to need anything important in the ss
9871bf95 4854 * struct, so this can happen first (i.e. before the dummy root
92fb9748 4855 * attachment).
e6a1105b 4856 */
40e93b39 4857 css = ss->css_alloc(cgroup_css(cgroup_dummy_top, ss->subsys_id));
e6a1105b 4858 if (IS_ERR(css)) {
9871bf95
TH
4859 /* failure case - need to deassign the cgroup_subsys[] slot. */
4860 cgroup_subsys[ss->subsys_id] = NULL;
e6a1105b
BB
4861 mutex_unlock(&cgroup_mutex);
4862 return PTR_ERR(css);
4863 }
4864
9871bf95
TH
4865 list_add(&ss->sibling, &cgroup_dummy_root.subsys_list);
4866 ss->root = &cgroup_dummy_root;
e6a1105b
BB
4867
4868 /* our new subsystem will be attached to the dummy hierarchy. */
9871bf95 4869 init_cgroup_css(css, ss, cgroup_dummy_top);
e6a1105b
BB
4870 /* init_idr must be after init_cgroup_css because it sets css->id. */
4871 if (ss->use_id) {
d19e19de
TH
4872 ret = cgroup_init_idr(ss, css);
4873 if (ret)
4874 goto err_unload;
e6a1105b
BB
4875 }
4876
4877 /*
4878 * Now we need to entangle the css into the existing css_sets. unlike
4879 * in cgroup_init_subsys, there are now multiple css_sets, so each one
4880 * will need a new pointer to it; done by iterating the css_set_table.
4881 * furthermore, modifying the existing css_sets will corrupt the hash
4882 * table state, so each changed css_set will need its hash recomputed.
4883 * this is all done under the css_set_lock.
4884 */
4885 write_lock(&css_set_lock);
5abb8855 4886 hash_for_each_safe(css_set_table, i, tmp, cset, hlist) {
0ac801fe 4887 /* skip entries that we already rehashed */
5abb8855 4888 if (cset->subsys[ss->subsys_id])
0ac801fe
LZ
4889 continue;
4890 /* remove existing entry */
5abb8855 4891 hash_del(&cset->hlist);
0ac801fe 4892 /* set new value */
5abb8855 4893 cset->subsys[ss->subsys_id] = css;
0ac801fe 4894 /* recompute hash and restore entry */
5abb8855
TH
4895 key = css_set_hash(cset->subsys);
4896 hash_add(css_set_table, &cset->hlist, key);
e6a1105b
BB
4897 }
4898 write_unlock(&css_set_lock);
4899
9871bf95 4900 ret = online_css(ss, cgroup_dummy_top);
b1929db4
TH
4901 if (ret)
4902 goto err_unload;
a8638030 4903
e6a1105b
BB
4904 /* success! */
4905 mutex_unlock(&cgroup_mutex);
4906 return 0;
d19e19de
TH
4907
4908err_unload:
4909 mutex_unlock(&cgroup_mutex);
4910 /* @ss can't be mounted here as try_module_get() would fail */
4911 cgroup_unload_subsys(ss);
4912 return ret;
ddbcc7e8 4913}
e6a1105b 4914EXPORT_SYMBOL_GPL(cgroup_load_subsys);
ddbcc7e8 4915
cf5d5941
BB
4916/**
4917 * cgroup_unload_subsys: unload a modular subsystem
4918 * @ss: the subsystem to unload
4919 *
4920 * This function should be called in a modular subsystem's exitcall. When this
4921 * function is invoked, the refcount on the subsystem's module will be 0, so
4922 * the subsystem will not be attached to any hierarchy.
4923 */
4924void cgroup_unload_subsys(struct cgroup_subsys *ss)
4925{
69d0206c 4926 struct cgrp_cset_link *link;
cf5d5941
BB
4927
4928 BUG_ON(ss->module == NULL);
4929
4930 /*
4931 * we shouldn't be called if the subsystem is in use, and the use of
1d5be6b2 4932 * try_module_get() in rebind_subsystems() should ensure that it
cf5d5941
BB
4933 * doesn't start being used while we're killing it off.
4934 */
9871bf95 4935 BUG_ON(ss->root != &cgroup_dummy_root);
cf5d5941
BB
4936
4937 mutex_lock(&cgroup_mutex);
02ae7486 4938
9871bf95 4939 offline_css(ss, cgroup_dummy_top);
02ae7486 4940
c897ff68 4941 if (ss->use_id)
02ae7486 4942 idr_destroy(&ss->idr);
02ae7486 4943
cf5d5941 4944 /* deassign the subsys_id */
9871bf95 4945 cgroup_subsys[ss->subsys_id] = NULL;
cf5d5941 4946
9871bf95 4947 /* remove subsystem from the dummy root's list of subsystems */
8d258797 4948 list_del_init(&ss->sibling);
cf5d5941
BB
4949
4950 /*
9871bf95
TH
4951 * disentangle the css from all css_sets attached to the dummy
4952 * top. as in loading, we need to pay our respects to the hashtable
4953 * gods.
cf5d5941
BB
4954 */
4955 write_lock(&css_set_lock);
9871bf95 4956 list_for_each_entry(link, &cgroup_dummy_top->cset_links, cset_link) {
69d0206c 4957 struct css_set *cset = link->cset;
0ac801fe 4958 unsigned long key;
cf5d5941 4959
5abb8855
TH
4960 hash_del(&cset->hlist);
4961 cset->subsys[ss->subsys_id] = NULL;
4962 key = css_set_hash(cset->subsys);
4963 hash_add(css_set_table, &cset->hlist, key);
cf5d5941
BB
4964 }
4965 write_unlock(&css_set_lock);
4966
4967 /*
9871bf95
TH
4968 * remove subsystem's css from the cgroup_dummy_top and free it -
4969 * need to free before marking as null because ss->css_free needs
4970 * the cgrp->subsys pointer to find their state. note that this
4971 * also takes care of freeing the css_id.
cf5d5941 4972 */
40e93b39 4973 ss->css_free(cgroup_css(cgroup_dummy_top, ss->subsys_id));
73e80ed8 4974 RCU_INIT_POINTER(cgroup_dummy_top->subsys[ss->subsys_id], NULL);
cf5d5941
BB
4975
4976 mutex_unlock(&cgroup_mutex);
4977}
4978EXPORT_SYMBOL_GPL(cgroup_unload_subsys);
4979
ddbcc7e8 4980/**
a043e3b2
LZ
4981 * cgroup_init_early - cgroup initialization at system boot
4982 *
4983 * Initialize cgroups at system boot, and initialize any
4984 * subsystems that request early init.
ddbcc7e8
PM
4985 */
4986int __init cgroup_init_early(void)
4987{
30159ec7 4988 struct cgroup_subsys *ss;
ddbcc7e8 4989 int i;
30159ec7 4990
146aa1bd 4991 atomic_set(&init_css_set.refcount, 1);
69d0206c 4992 INIT_LIST_HEAD(&init_css_set.cgrp_links);
817929ec 4993 INIT_LIST_HEAD(&init_css_set.tasks);
472b1053 4994 INIT_HLIST_NODE(&init_css_set.hlist);
817929ec 4995 css_set_count = 1;
9871bf95
TH
4996 init_cgroup_root(&cgroup_dummy_root);
4997 cgroup_root_count = 1;
a4ea1cc9 4998 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
817929ec 4999
69d0206c 5000 init_cgrp_cset_link.cset = &init_css_set;
9871bf95
TH
5001 init_cgrp_cset_link.cgrp = cgroup_dummy_top;
5002 list_add(&init_cgrp_cset_link.cset_link, &cgroup_dummy_top->cset_links);
69d0206c 5003 list_add(&init_cgrp_cset_link.cgrp_link, &init_css_set.cgrp_links);
ddbcc7e8 5004
30159ec7
TH
5005 /* at bootup time, we don't worry about modular subsystems */
5006 for_each_builtin_subsys(ss, i) {
ddbcc7e8
PM
5007 BUG_ON(!ss->name);
5008 BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
92fb9748
TH
5009 BUG_ON(!ss->css_alloc);
5010 BUG_ON(!ss->css_free);
ddbcc7e8 5011 if (ss->subsys_id != i) {
cfe36bde 5012 printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
ddbcc7e8
PM
5013 ss->name, ss->subsys_id);
5014 BUG();
5015 }
5016
5017 if (ss->early_init)
5018 cgroup_init_subsys(ss);
5019 }
5020 return 0;
5021}
5022
5023/**
a043e3b2
LZ
5024 * cgroup_init - cgroup initialization
5025 *
5026 * Register cgroup filesystem and /proc file, and initialize
5027 * any subsystems that didn't request early init.
ddbcc7e8
PM
5028 */
5029int __init cgroup_init(void)
5030{
30159ec7 5031 struct cgroup_subsys *ss;
0ac801fe 5032 unsigned long key;
30159ec7 5033 int i, err;
a424316c
PM
5034
5035 err = bdi_init(&cgroup_backing_dev_info);
5036 if (err)
5037 return err;
ddbcc7e8 5038
30159ec7 5039 for_each_builtin_subsys(ss, i) {
ddbcc7e8
PM
5040 if (!ss->early_init)
5041 cgroup_init_subsys(ss);
38460b48 5042 if (ss->use_id)
e6a1105b 5043 cgroup_init_idr(ss, init_css_set.subsys[ss->subsys_id]);
ddbcc7e8
PM
5044 }
5045
fa3ca07e 5046 /* allocate id for the dummy hierarchy */
54e7b4eb
TH
5047 mutex_lock(&cgroup_mutex);
5048 mutex_lock(&cgroup_root_mutex);
5049
82fe9b0d
TH
5050 /* Add init_css_set to the hash table */
5051 key = css_set_hash(init_css_set.subsys);
5052 hash_add(css_set_table, &init_css_set.hlist, key);
5053
fc76df70 5054 BUG_ON(cgroup_init_root_id(&cgroup_dummy_root, 0, 1));
676db4af 5055
4e96ee8e
LZ
5056 err = idr_alloc(&cgroup_dummy_root.cgroup_idr, cgroup_dummy_top,
5057 0, 1, GFP_KERNEL);
5058 BUG_ON(err < 0);
5059
54e7b4eb
TH
5060 mutex_unlock(&cgroup_root_mutex);
5061 mutex_unlock(&cgroup_mutex);
5062
676db4af
GKH
5063 cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
5064 if (!cgroup_kobj) {
5065 err = -ENOMEM;
5066 goto out;
5067 }
5068
ddbcc7e8 5069 err = register_filesystem(&cgroup_fs_type);
676db4af
GKH
5070 if (err < 0) {
5071 kobject_put(cgroup_kobj);
ddbcc7e8 5072 goto out;
676db4af 5073 }
ddbcc7e8 5074
46ae220b 5075 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
a424316c 5076
ddbcc7e8 5077out:
a424316c
PM
5078 if (err)
5079 bdi_destroy(&cgroup_backing_dev_info);
5080
ddbcc7e8
PM
5081 return err;
5082}
b4f48b63 5083
a424316c
PM
5084/*
5085 * proc_cgroup_show()
5086 * - Print task's cgroup paths into seq_file, one line for each hierarchy
5087 * - Used for /proc/<pid>/cgroup.
5088 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
5089 * doesn't really matter if tsk->cgroup changes after we read it,
956db3ca 5090 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
a424316c
PM
5091 * anyway. No need to check that tsk->cgroup != NULL, thanks to
5092 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
5093 * cgroup to top_cgroup.
5094 */
5095
5096/* TODO: Use a proper seq_file iterator */
8d8b97ba 5097int proc_cgroup_show(struct seq_file *m, void *v)
a424316c
PM
5098{
5099 struct pid *pid;
5100 struct task_struct *tsk;
5101 char *buf;
5102 int retval;
5103 struct cgroupfs_root *root;
5104
5105 retval = -ENOMEM;
5106 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
5107 if (!buf)
5108 goto out;
5109
5110 retval = -ESRCH;
5111 pid = m->private;
5112 tsk = get_pid_task(pid, PIDTYPE_PID);
5113 if (!tsk)
5114 goto out_free;
5115
5116 retval = 0;
5117
5118 mutex_lock(&cgroup_mutex);
5119
e5f6a860 5120 for_each_active_root(root) {
a424316c 5121 struct cgroup_subsys *ss;
bd89aabc 5122 struct cgroup *cgrp;
a424316c
PM
5123 int count = 0;
5124
2c6ab6d2 5125 seq_printf(m, "%d:", root->hierarchy_id);
5549c497 5126 for_each_root_subsys(root, ss)
a424316c 5127 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
c6d57f33
PM
5128 if (strlen(root->name))
5129 seq_printf(m, "%sname=%s", count ? "," : "",
5130 root->name);
a424316c 5131 seq_putc(m, ':');
7717f7ba 5132 cgrp = task_cgroup_from_root(tsk, root);
bd89aabc 5133 retval = cgroup_path(cgrp, buf, PAGE_SIZE);
a424316c
PM
5134 if (retval < 0)
5135 goto out_unlock;
5136 seq_puts(m, buf);
5137 seq_putc(m, '\n');
5138 }
5139
5140out_unlock:
5141 mutex_unlock(&cgroup_mutex);
5142 put_task_struct(tsk);
5143out_free:
5144 kfree(buf);
5145out:
5146 return retval;
5147}
5148
a424316c
PM
5149/* Display information about each subsystem and each hierarchy */
5150static int proc_cgroupstats_show(struct seq_file *m, void *v)
5151{
30159ec7 5152 struct cgroup_subsys *ss;
a424316c 5153 int i;
a424316c 5154
8bab8dde 5155 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
aae8aab4
BB
5156 /*
5157 * ideally we don't want subsystems moving around while we do this.
5158 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
5159 * subsys/hierarchy state.
5160 */
a424316c 5161 mutex_lock(&cgroup_mutex);
30159ec7
TH
5162
5163 for_each_subsys(ss, i)
2c6ab6d2
PM
5164 seq_printf(m, "%s\t%d\t%d\t%d\n",
5165 ss->name, ss->root->hierarchy_id,
8bab8dde 5166 ss->root->number_of_cgroups, !ss->disabled);
30159ec7 5167
a424316c
PM
5168 mutex_unlock(&cgroup_mutex);
5169 return 0;
5170}
5171
5172static int cgroupstats_open(struct inode *inode, struct file *file)
5173{
9dce07f1 5174 return single_open(file, proc_cgroupstats_show, NULL);
a424316c
PM
5175}
5176
828c0950 5177static const struct file_operations proc_cgroupstats_operations = {
a424316c
PM
5178 .open = cgroupstats_open,
5179 .read = seq_read,
5180 .llseek = seq_lseek,
5181 .release = single_release,
5182};
5183
b4f48b63
PM
5184/**
5185 * cgroup_fork - attach newly forked task to its parents cgroup.
a043e3b2 5186 * @child: pointer to task_struct of forking parent process.
b4f48b63
PM
5187 *
5188 * Description: A task inherits its parent's cgroup at fork().
5189 *
5190 * A pointer to the shared css_set was automatically copied in
5191 * fork.c by dup_task_struct(). However, we ignore that copy, since
9bb71308
TH
5192 * it was not made under the protection of RCU or cgroup_mutex, so
5193 * might no longer be a valid cgroup pointer. cgroup_attach_task() might
5194 * have already changed current->cgroups, allowing the previously
5195 * referenced cgroup group to be removed and freed.
b4f48b63
PM
5196 *
5197 * At the point that cgroup_fork() is called, 'current' is the parent
5198 * task, and the passed argument 'child' points to the child task.
5199 */
5200void cgroup_fork(struct task_struct *child)
5201{
9bb71308 5202 task_lock(current);
a8ad805c 5203 get_css_set(task_css_set(current));
817929ec 5204 child->cgroups = current->cgroups;
9bb71308 5205 task_unlock(current);
817929ec 5206 INIT_LIST_HEAD(&child->cg_list);
b4f48b63
PM
5207}
5208
817929ec 5209/**
a043e3b2
LZ
5210 * cgroup_post_fork - called on a new task after adding it to the task list
5211 * @child: the task in question
5212 *
5edee61e
TH
5213 * Adds the task to the list running through its css_set if necessary and
5214 * call the subsystem fork() callbacks. Has to be after the task is
5215 * visible on the task list in case we race with the first call to
0942eeee 5216 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5edee61e 5217 * list.
a043e3b2 5218 */
817929ec
PM
5219void cgroup_post_fork(struct task_struct *child)
5220{
30159ec7 5221 struct cgroup_subsys *ss;
5edee61e
TH
5222 int i;
5223
3ce3230a
FW
5224 /*
5225 * use_task_css_set_links is set to 1 before we walk the tasklist
5226 * under the tasklist_lock and we read it here after we added the child
5227 * to the tasklist under the tasklist_lock as well. If the child wasn't
5228 * yet in the tasklist when we walked through it from
5229 * cgroup_enable_task_cg_lists(), then use_task_css_set_links value
5230 * should be visible now due to the paired locking and barriers implied
5231 * by LOCK/UNLOCK: it is written before the tasklist_lock unlock
5232 * in cgroup_enable_task_cg_lists() and read here after the tasklist_lock
5233 * lock on fork.
5234 */
817929ec
PM
5235 if (use_task_css_set_links) {
5236 write_lock(&css_set_lock);
d8783832
TH
5237 task_lock(child);
5238 if (list_empty(&child->cg_list))
a8ad805c 5239 list_add(&child->cg_list, &task_css_set(child)->tasks);
d8783832 5240 task_unlock(child);
817929ec
PM
5241 write_unlock(&css_set_lock);
5242 }
5edee61e
TH
5243
5244 /*
5245 * Call ss->fork(). This must happen after @child is linked on
5246 * css_set; otherwise, @child might change state between ->fork()
5247 * and addition to css_set.
5248 */
5249 if (need_forkexit_callback) {
7d8e0bf5
LZ
5250 /*
5251 * fork/exit callbacks are supported only for builtin
5252 * subsystems, and the builtin section of the subsys
5253 * array is immutable, so we don't need to lock the
5254 * subsys array here. On the other hand, modular section
5255 * of the array can be freed at module unload, so we
5256 * can't touch that.
5257 */
30159ec7 5258 for_each_builtin_subsys(ss, i)
5edee61e
TH
5259 if (ss->fork)
5260 ss->fork(child);
5edee61e 5261 }
817929ec 5262}
5edee61e 5263
b4f48b63
PM
5264/**
5265 * cgroup_exit - detach cgroup from exiting task
5266 * @tsk: pointer to task_struct of exiting process
a043e3b2 5267 * @run_callback: run exit callbacks?
b4f48b63
PM
5268 *
5269 * Description: Detach cgroup from @tsk and release it.
5270 *
5271 * Note that cgroups marked notify_on_release force every task in
5272 * them to take the global cgroup_mutex mutex when exiting.
5273 * This could impact scaling on very large systems. Be reluctant to
5274 * use notify_on_release cgroups where very high task exit scaling
5275 * is required on large systems.
5276 *
5277 * the_top_cgroup_hack:
5278 *
5279 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
5280 *
5281 * We call cgroup_exit() while the task is still competent to
5282 * handle notify_on_release(), then leave the task attached to the
5283 * root cgroup in each hierarchy for the remainder of its exit.
5284 *
5285 * To do this properly, we would increment the reference count on
5286 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
5287 * code we would add a second cgroup function call, to drop that
5288 * reference. This would just create an unnecessary hot spot on
5289 * the top_cgroup reference count, to no avail.
5290 *
5291 * Normally, holding a reference to a cgroup without bumping its
5292 * count is unsafe. The cgroup could go away, or someone could
5293 * attach us to a different cgroup, decrementing the count on
5294 * the first cgroup that we never incremented. But in this case,
5295 * top_cgroup isn't going away, and either task has PF_EXITING set,
956db3ca
CW
5296 * which wards off any cgroup_attach_task() attempts, or task is a failed
5297 * fork, never visible to cgroup_attach_task.
b4f48b63
PM
5298 */
5299void cgroup_exit(struct task_struct *tsk, int run_callbacks)
5300{
30159ec7 5301 struct cgroup_subsys *ss;
5abb8855 5302 struct css_set *cset;
d41d5a01 5303 int i;
817929ec
PM
5304
5305 /*
5306 * Unlink from the css_set task list if necessary.
5307 * Optimistically check cg_list before taking
5308 * css_set_lock
5309 */
5310 if (!list_empty(&tsk->cg_list)) {
5311 write_lock(&css_set_lock);
5312 if (!list_empty(&tsk->cg_list))
8d258797 5313 list_del_init(&tsk->cg_list);
817929ec
PM
5314 write_unlock(&css_set_lock);
5315 }
5316
b4f48b63
PM
5317 /* Reassign the task to the init_css_set. */
5318 task_lock(tsk);
a8ad805c
TH
5319 cset = task_css_set(tsk);
5320 RCU_INIT_POINTER(tsk->cgroups, &init_css_set);
d41d5a01
PZ
5321
5322 if (run_callbacks && need_forkexit_callback) {
7d8e0bf5
LZ
5323 /*
5324 * fork/exit callbacks are supported only for builtin
5325 * subsystems, see cgroup_post_fork() for details.
5326 */
30159ec7 5327 for_each_builtin_subsys(ss, i) {
d41d5a01 5328 if (ss->exit) {
eb95419b
TH
5329 struct cgroup_subsys_state *old_css = cset->subsys[i];
5330 struct cgroup_subsys_state *css = task_css(tsk, i);
30159ec7 5331
eb95419b 5332 ss->exit(css, old_css, tsk);
d41d5a01
PZ
5333 }
5334 }
5335 }
b4f48b63 5336 task_unlock(tsk);
d41d5a01 5337
5abb8855 5338 put_css_set_taskexit(cset);
b4f48b63 5339}
697f4161 5340
bd89aabc 5341static void check_for_release(struct cgroup *cgrp)
81a6a5cd 5342{
f50daa70 5343 if (cgroup_is_releasable(cgrp) &&
6f3d828f 5344 list_empty(&cgrp->cset_links) && list_empty(&cgrp->children)) {
f50daa70
LZ
5345 /*
5346 * Control Group is currently removeable. If it's not
81a6a5cd 5347 * already queued for a userspace notification, queue
f50daa70
LZ
5348 * it now
5349 */
81a6a5cd 5350 int need_schedule_work = 0;
f50daa70 5351
cdcc136f 5352 raw_spin_lock(&release_list_lock);
54766d4a 5353 if (!cgroup_is_dead(cgrp) &&
bd89aabc
PM
5354 list_empty(&cgrp->release_list)) {
5355 list_add(&cgrp->release_list, &release_list);
81a6a5cd
PM
5356 need_schedule_work = 1;
5357 }
cdcc136f 5358 raw_spin_unlock(&release_list_lock);
81a6a5cd
PM
5359 if (need_schedule_work)
5360 schedule_work(&release_agent_work);
5361 }
5362}
5363
81a6a5cd
PM
5364/*
5365 * Notify userspace when a cgroup is released, by running the
5366 * configured release agent with the name of the cgroup (path
5367 * relative to the root of cgroup file system) as the argument.
5368 *
5369 * Most likely, this user command will try to rmdir this cgroup.
5370 *
5371 * This races with the possibility that some other task will be
5372 * attached to this cgroup before it is removed, or that some other
5373 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
5374 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
5375 * unused, and this cgroup will be reprieved from its death sentence,
5376 * to continue to serve a useful existence. Next time it's released,
5377 * we will get notified again, if it still has 'notify_on_release' set.
5378 *
5379 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
5380 * means only wait until the task is successfully execve()'d. The
5381 * separate release agent task is forked by call_usermodehelper(),
5382 * then control in this thread returns here, without waiting for the
5383 * release agent task. We don't bother to wait because the caller of
5384 * this routine has no use for the exit status of the release agent
5385 * task, so no sense holding our caller up for that.
81a6a5cd 5386 */
81a6a5cd
PM
5387static void cgroup_release_agent(struct work_struct *work)
5388{
5389 BUG_ON(work != &release_agent_work);
5390 mutex_lock(&cgroup_mutex);
cdcc136f 5391 raw_spin_lock(&release_list_lock);
81a6a5cd
PM
5392 while (!list_empty(&release_list)) {
5393 char *argv[3], *envp[3];
5394 int i;
e788e066 5395 char *pathbuf = NULL, *agentbuf = NULL;
bd89aabc 5396 struct cgroup *cgrp = list_entry(release_list.next,
81a6a5cd
PM
5397 struct cgroup,
5398 release_list);
bd89aabc 5399 list_del_init(&cgrp->release_list);
cdcc136f 5400 raw_spin_unlock(&release_list_lock);
81a6a5cd 5401 pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
e788e066
PM
5402 if (!pathbuf)
5403 goto continue_free;
5404 if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
5405 goto continue_free;
5406 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
5407 if (!agentbuf)
5408 goto continue_free;
81a6a5cd
PM
5409
5410 i = 0;
e788e066
PM
5411 argv[i++] = agentbuf;
5412 argv[i++] = pathbuf;
81a6a5cd
PM
5413 argv[i] = NULL;
5414
5415 i = 0;
5416 /* minimal command environment */
5417 envp[i++] = "HOME=/";
5418 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
5419 envp[i] = NULL;
5420
5421 /* Drop the lock while we invoke the usermode helper,
5422 * since the exec could involve hitting disk and hence
5423 * be a slow process */
5424 mutex_unlock(&cgroup_mutex);
5425 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
81a6a5cd 5426 mutex_lock(&cgroup_mutex);
e788e066
PM
5427 continue_free:
5428 kfree(pathbuf);
5429 kfree(agentbuf);
cdcc136f 5430 raw_spin_lock(&release_list_lock);
81a6a5cd 5431 }
cdcc136f 5432 raw_spin_unlock(&release_list_lock);
81a6a5cd
PM
5433 mutex_unlock(&cgroup_mutex);
5434}
8bab8dde
PM
5435
5436static int __init cgroup_disable(char *str)
5437{
30159ec7 5438 struct cgroup_subsys *ss;
8bab8dde 5439 char *token;
30159ec7 5440 int i;
8bab8dde
PM
5441
5442 while ((token = strsep(&str, ",")) != NULL) {
5443 if (!*token)
5444 continue;
be45c900 5445
30159ec7
TH
5446 /*
5447 * cgroup_disable, being at boot time, can't know about
5448 * module subsystems, so we don't worry about them.
5449 */
5450 for_each_builtin_subsys(ss, i) {
8bab8dde
PM
5451 if (!strcmp(token, ss->name)) {
5452 ss->disabled = 1;
5453 printk(KERN_INFO "Disabling %s control group"
5454 " subsystem\n", ss->name);
5455 break;
5456 }
5457 }
5458 }
5459 return 1;
5460}
5461__setup("cgroup_disable=", cgroup_disable);
38460b48
KH
5462
5463/*
5464 * Functons for CSS ID.
5465 */
5466
54766d4a 5467/* to get ID other than 0, this should be called when !cgroup_is_dead() */
38460b48
KH
5468unsigned short css_id(struct cgroup_subsys_state *css)
5469{
7f0f1546
KH
5470 struct css_id *cssid;
5471
5472 /*
5473 * This css_id() can return correct value when somone has refcnt
5474 * on this or this is under rcu_read_lock(). Once css->id is allocated,
5475 * it's unchanged until freed.
5476 */
d3daf28d 5477 cssid = rcu_dereference_raw(css->id);
38460b48
KH
5478
5479 if (cssid)
5480 return cssid->id;
5481 return 0;
5482}
67523c48 5483EXPORT_SYMBOL_GPL(css_id);
38460b48 5484
747388d7
KH
5485/**
5486 * css_is_ancestor - test "root" css is an ancestor of "child"
5487 * @child: the css to be tested.
5488 * @root: the css supporsed to be an ancestor of the child.
5489 *
5490 * Returns true if "root" is an ancestor of "child" in its hierarchy. Because
91c63734 5491 * this function reads css->id, the caller must hold rcu_read_lock().
747388d7
KH
5492 * But, considering usual usage, the csses should be valid objects after test.
5493 * Assuming that the caller will do some action to the child if this returns
5494 * returns true, the caller must take "child";s reference count.
5495 * If "child" is valid object and this returns true, "root" is valid, too.
5496 */
5497
38460b48 5498bool css_is_ancestor(struct cgroup_subsys_state *child,
0b7f569e 5499 const struct cgroup_subsys_state *root)
38460b48 5500{
747388d7
KH
5501 struct css_id *child_id;
5502 struct css_id *root_id;
38460b48 5503
747388d7 5504 child_id = rcu_dereference(child->id);
91c63734
JW
5505 if (!child_id)
5506 return false;
747388d7 5507 root_id = rcu_dereference(root->id);
91c63734
JW
5508 if (!root_id)
5509 return false;
5510 if (child_id->depth < root_id->depth)
5511 return false;
5512 if (child_id->stack[root_id->depth] != root_id->id)
5513 return false;
5514 return true;
38460b48
KH
5515}
5516
38460b48
KH
5517void free_css_id(struct cgroup_subsys *ss, struct cgroup_subsys_state *css)
5518{
a4ea1cc9
TH
5519 struct css_id *id = rcu_dereference_protected(css->id, true);
5520
38460b48
KH
5521 /* When this is called before css_id initialization, id can be NULL */
5522 if (!id)
5523 return;
5524
5525 BUG_ON(!ss->use_id);
5526
5527 rcu_assign_pointer(id->css, NULL);
5528 rcu_assign_pointer(css->id, NULL);
42aee6c4 5529 spin_lock(&ss->id_lock);
38460b48 5530 idr_remove(&ss->idr, id->id);
42aee6c4 5531 spin_unlock(&ss->id_lock);
025cea99 5532 kfree_rcu(id, rcu_head);
38460b48 5533}
67523c48 5534EXPORT_SYMBOL_GPL(free_css_id);
38460b48
KH
5535
5536/*
5537 * This is called by init or create(). Then, calls to this function are
5538 * always serialized (By cgroup_mutex() at create()).
5539 */
5540
5541static struct css_id *get_new_cssid(struct cgroup_subsys *ss, int depth)
5542{
5543 struct css_id *newid;
d228d9ec 5544 int ret, size;
38460b48
KH
5545
5546 BUG_ON(!ss->use_id);
5547
5548 size = sizeof(*newid) + sizeof(unsigned short) * (depth + 1);
5549 newid = kzalloc(size, GFP_KERNEL);
5550 if (!newid)
5551 return ERR_PTR(-ENOMEM);
d228d9ec
TH
5552
5553 idr_preload(GFP_KERNEL);
42aee6c4 5554 spin_lock(&ss->id_lock);
38460b48 5555 /* Don't use 0. allocates an ID of 1-65535 */
d228d9ec 5556 ret = idr_alloc(&ss->idr, newid, 1, CSS_ID_MAX + 1, GFP_NOWAIT);
42aee6c4 5557 spin_unlock(&ss->id_lock);
d228d9ec 5558 idr_preload_end();
38460b48
KH
5559
5560 /* Returns error when there are no free spaces for new ID.*/
d228d9ec 5561 if (ret < 0)
38460b48 5562 goto err_out;
38460b48 5563
d228d9ec 5564 newid->id = ret;
38460b48
KH
5565 newid->depth = depth;
5566 return newid;
38460b48
KH
5567err_out:
5568 kfree(newid);
d228d9ec 5569 return ERR_PTR(ret);
38460b48
KH
5570
5571}
5572
e6a1105b
BB
5573static int __init_or_module cgroup_init_idr(struct cgroup_subsys *ss,
5574 struct cgroup_subsys_state *rootcss)
38460b48
KH
5575{
5576 struct css_id *newid;
38460b48 5577
42aee6c4 5578 spin_lock_init(&ss->id_lock);
38460b48
KH
5579 idr_init(&ss->idr);
5580
38460b48
KH
5581 newid = get_new_cssid(ss, 0);
5582 if (IS_ERR(newid))
5583 return PTR_ERR(newid);
5584
5585 newid->stack[0] = newid->id;
a4ea1cc9
TH
5586 RCU_INIT_POINTER(newid->css, rootcss);
5587 RCU_INIT_POINTER(rootcss->id, newid);
38460b48
KH
5588 return 0;
5589}
5590
5591static int alloc_css_id(struct cgroup_subsys *ss, struct cgroup *parent,
5592 struct cgroup *child)
5593{
5594 int subsys_id, i, depth = 0;
5595 struct cgroup_subsys_state *parent_css, *child_css;
fae9c791 5596 struct css_id *child_id, *parent_id;
38460b48
KH
5597
5598 subsys_id = ss->subsys_id;
40e93b39
TH
5599 parent_css = cgroup_css(parent, subsys_id);
5600 child_css = cgroup_css(child, subsys_id);
a4ea1cc9 5601 parent_id = rcu_dereference_protected(parent_css->id, true);
94b3dd0f 5602 depth = parent_id->depth + 1;
38460b48
KH
5603
5604 child_id = get_new_cssid(ss, depth);
5605 if (IS_ERR(child_id))
5606 return PTR_ERR(child_id);
5607
5608 for (i = 0; i < depth; i++)
5609 child_id->stack[i] = parent_id->stack[i];
5610 child_id->stack[depth] = child_id->id;
5611 /*
5612 * child_id->css pointer will be set after this cgroup is available
5613 * see cgroup_populate_dir()
5614 */
5615 rcu_assign_pointer(child_css->id, child_id);
5616
5617 return 0;
5618}
5619
5620/**
5621 * css_lookup - lookup css by id
5622 * @ss: cgroup subsys to be looked into.
5623 * @id: the id
5624 *
5625 * Returns pointer to cgroup_subsys_state if there is valid one with id.
5626 * NULL if not. Should be called under rcu_read_lock()
5627 */
5628struct cgroup_subsys_state *css_lookup(struct cgroup_subsys *ss, int id)
5629{
5630 struct css_id *cssid = NULL;
5631
5632 BUG_ON(!ss->use_id);
5633 cssid = idr_find(&ss->idr, id);
5634
5635 if (unlikely(!cssid))
5636 return NULL;
5637
5638 return rcu_dereference(cssid->css);
5639}
67523c48 5640EXPORT_SYMBOL_GPL(css_lookup);
38460b48 5641
b77d7b60
TH
5642/**
5643 * cgroup_css_from_dir - get corresponding css from file open on cgroup dir
5644 * @f: directory file of interest
5645 * @id: subsystem id of interest
5646 *
5647 * Must be called under RCU read lock. The caller is responsible for
5648 * pinning the returned css if it needs to be accessed outside the RCU
5649 * critical section.
e5d1367f
SE
5650 */
5651struct cgroup_subsys_state *cgroup_css_from_dir(struct file *f, int id)
5652{
5653 struct cgroup *cgrp;
5654 struct inode *inode;
5655 struct cgroup_subsys_state *css;
5656
b77d7b60
TH
5657 WARN_ON_ONCE(!rcu_read_lock_held());
5658
496ad9aa 5659 inode = file_inode(f);
e5d1367f
SE
5660 /* check in cgroup filesystem dir */
5661 if (inode->i_op != &cgroup_dir_inode_operations)
5662 return ERR_PTR(-EBADF);
5663
5664 if (id < 0 || id >= CGROUP_SUBSYS_COUNT)
5665 return ERR_PTR(-EINVAL);
5666
5667 /* get cgroup */
5668 cgrp = __d_cgrp(f->f_dentry);
40e93b39 5669 css = cgroup_css(cgrp, id);
e5d1367f
SE
5670 return css ? css : ERR_PTR(-ENOENT);
5671}
5672
fe693435 5673#ifdef CONFIG_CGROUP_DEBUG
eb95419b
TH
5674static struct cgroup_subsys_state *
5675debug_css_alloc(struct cgroup_subsys_state *parent_css)
fe693435
PM
5676{
5677 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5678
5679 if (!css)
5680 return ERR_PTR(-ENOMEM);
5681
5682 return css;
5683}
5684
eb95419b 5685static void debug_css_free(struct cgroup_subsys_state *css)
fe693435 5686{
eb95419b 5687 kfree(css);
fe693435
PM
5688}
5689
182446d0
TH
5690static u64 debug_taskcount_read(struct cgroup_subsys_state *css,
5691 struct cftype *cft)
fe693435 5692{
182446d0 5693 return cgroup_task_count(css->cgroup);
fe693435
PM
5694}
5695
182446d0
TH
5696static u64 current_css_set_read(struct cgroup_subsys_state *css,
5697 struct cftype *cft)
fe693435
PM
5698{
5699 return (u64)(unsigned long)current->cgroups;
5700}
5701
182446d0 5702static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css,
03c78cbe 5703 struct cftype *cft)
fe693435
PM
5704{
5705 u64 count;
5706
5707 rcu_read_lock();
a8ad805c 5708 count = atomic_read(&task_css_set(current)->refcount);
fe693435
PM
5709 rcu_read_unlock();
5710 return count;
5711}
5712
182446d0 5713static int current_css_set_cg_links_read(struct cgroup_subsys_state *css,
7717f7ba
PM
5714 struct cftype *cft,
5715 struct seq_file *seq)
5716{
69d0206c 5717 struct cgrp_cset_link *link;
5abb8855 5718 struct css_set *cset;
7717f7ba
PM
5719
5720 read_lock(&css_set_lock);
5721 rcu_read_lock();
5abb8855 5722 cset = rcu_dereference(current->cgroups);
69d0206c 5723 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba
PM
5724 struct cgroup *c = link->cgrp;
5725 const char *name;
5726
5727 if (c->dentry)
5728 name = c->dentry->d_name.name;
5729 else
5730 name = "?";
2c6ab6d2
PM
5731 seq_printf(seq, "Root %d group %s\n",
5732 c->root->hierarchy_id, name);
7717f7ba
PM
5733 }
5734 rcu_read_unlock();
5735 read_unlock(&css_set_lock);
5736 return 0;
5737}
5738
5739#define MAX_TASKS_SHOWN_PER_CSS 25
182446d0
TH
5740static int cgroup_css_links_read(struct cgroup_subsys_state *css,
5741 struct cftype *cft, struct seq_file *seq)
7717f7ba 5742{
69d0206c 5743 struct cgrp_cset_link *link;
7717f7ba
PM
5744
5745 read_lock(&css_set_lock);
182446d0 5746 list_for_each_entry(link, &css->cgroup->cset_links, cset_link) {
69d0206c 5747 struct css_set *cset = link->cset;
7717f7ba
PM
5748 struct task_struct *task;
5749 int count = 0;
5abb8855
TH
5750 seq_printf(seq, "css_set %p\n", cset);
5751 list_for_each_entry(task, &cset->tasks, cg_list) {
7717f7ba
PM
5752 if (count++ > MAX_TASKS_SHOWN_PER_CSS) {
5753 seq_puts(seq, " ...\n");
5754 break;
5755 } else {
5756 seq_printf(seq, " task %d\n",
5757 task_pid_vnr(task));
5758 }
5759 }
5760 }
5761 read_unlock(&css_set_lock);
5762 return 0;
5763}
5764
182446d0 5765static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft)
fe693435 5766{
182446d0 5767 return test_bit(CGRP_RELEASABLE, &css->cgroup->flags);
fe693435
PM
5768}
5769
5770static struct cftype debug_files[] = {
fe693435
PM
5771 {
5772 .name = "taskcount",
5773 .read_u64 = debug_taskcount_read,
5774 },
5775
5776 {
5777 .name = "current_css_set",
5778 .read_u64 = current_css_set_read,
5779 },
5780
5781 {
5782 .name = "current_css_set_refcount",
5783 .read_u64 = current_css_set_refcount_read,
5784 },
5785
7717f7ba
PM
5786 {
5787 .name = "current_css_set_cg_links",
5788 .read_seq_string = current_css_set_cg_links_read,
5789 },
5790
5791 {
5792 .name = "cgroup_css_links",
5793 .read_seq_string = cgroup_css_links_read,
5794 },
5795
fe693435
PM
5796 {
5797 .name = "releasable",
5798 .read_u64 = releasable_read,
5799 },
fe693435 5800
4baf6e33
TH
5801 { } /* terminate */
5802};
fe693435
PM
5803
5804struct cgroup_subsys debug_subsys = {
5805 .name = "debug",
92fb9748
TH
5806 .css_alloc = debug_css_alloc,
5807 .css_free = debug_css_free,
fe693435 5808 .subsys_id = debug_subsys_id,
4baf6e33 5809 .base_cftypes = debug_files,
fe693435
PM
5810};
5811#endif /* CONFIG_CGROUP_DEBUG */