]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blame - kernel/cgroup.c
cgroup: warn if "xattr" is specified with "sane_behavior"
[mirror_ubuntu-focal-kernel.git] / kernel / cgroup.c
CommitLineData
ddbcc7e8 1/*
ddbcc7e8
PM
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
0dea1168
KS
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
ddbcc7e8
PM
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29#include <linux/cgroup.h>
2ce9738b 30#include <linux/cred.h>
c6d57f33 31#include <linux/ctype.h>
ddbcc7e8 32#include <linux/errno.h>
2ce9738b 33#include <linux/init_task.h>
ddbcc7e8
PM
34#include <linux/kernel.h>
35#include <linux/list.h>
36#include <linux/mm.h>
37#include <linux/mutex.h>
38#include <linux/mount.h>
39#include <linux/pagemap.h>
a424316c 40#include <linux/proc_fs.h>
ddbcc7e8
PM
41#include <linux/rcupdate.h>
42#include <linux/sched.h>
ddbcc7e8 43#include <linux/slab.h>
ddbcc7e8
PM
44#include <linux/spinlock.h>
45#include <linux/string.h>
bbcb81d0 46#include <linux/sort.h>
81a6a5cd 47#include <linux/kmod.h>
846c7bb0
BS
48#include <linux/delayacct.h>
49#include <linux/cgroupstats.h>
0ac801fe 50#include <linux/hashtable.h>
096b7fe0 51#include <linux/pid_namespace.h>
2c6ab6d2 52#include <linux/idr.h>
d1d9fd33 53#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
081aa458 54#include <linux/flex_array.h> /* used in cgroup_attach_task */
c4c27fbd 55#include <linux/kthread.h>
846c7bb0 56
60063497 57#include <linux/atomic.h>
ddbcc7e8 58
b1a21367
TH
59/*
60 * pidlists linger the following amount before being destroyed. The goal
61 * is avoiding frequent destruction in the middle of consecutive read calls
62 * Expiring in the middle is a performance problem not a correctness one.
63 * 1 sec should be enough.
64 */
65#define CGROUP_PIDLIST_DESTROY_DELAY HZ
66
8d7e6fb0
TH
67#define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
68 MAX_CFTYPE_NAME + 2)
69
ace2bee8
TH
70/*
71 * cgroup_tree_mutex nests above cgroup_mutex and protects cftypes, file
72 * creation/removal and hierarchy changing operations including cgroup
73 * creation, removal, css association and controller rebinding. This outer
74 * lock is needed mainly to resolve the circular dependency between kernfs
75 * active ref and cgroup_mutex. cgroup_tree_mutex nests above both.
76 */
77static DEFINE_MUTEX(cgroup_tree_mutex);
78
e25e2cbb
TH
79/*
80 * cgroup_mutex is the master lock. Any modification to cgroup or its
81 * hierarchy must be performed while holding it.
e25e2cbb 82 */
2219449a
TH
83#ifdef CONFIG_PROVE_RCU
84DEFINE_MUTEX(cgroup_mutex);
8af01f56 85EXPORT_SYMBOL_GPL(cgroup_mutex); /* only for lockdep */
2219449a 86#else
81a6a5cd 87static DEFINE_MUTEX(cgroup_mutex);
2219449a
TH
88#endif
89
69e943b7
TH
90/*
91 * Protects cgroup_subsys->release_agent_path. Modifying it also requires
92 * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock.
93 */
94static DEFINE_SPINLOCK(release_agent_path_lock);
95
ace2bee8 96#define cgroup_assert_mutexes_or_rcu_locked() \
87fb54f1 97 rcu_lockdep_assert(rcu_read_lock_held() || \
ace2bee8 98 lockdep_is_held(&cgroup_tree_mutex) || \
87fb54f1 99 lockdep_is_held(&cgroup_mutex), \
ace2bee8 100 "cgroup_[tree_]mutex or RCU read lock required");
87fb54f1 101
e5fca243
TH
102/*
103 * cgroup destruction makes heavy use of work items and there can be a lot
104 * of concurrent destructions. Use a separate workqueue so that cgroup
105 * destruction work items don't end up filling up max_active of system_wq
106 * which may lead to deadlock.
107 */
108static struct workqueue_struct *cgroup_destroy_wq;
109
b1a21367
TH
110/*
111 * pidlist destructions need to be flushed on cgroup destruction. Use a
112 * separate workqueue as flush domain.
113 */
114static struct workqueue_struct *cgroup_pidlist_destroy_wq;
115
3ed80a62 116/* generate an array of cgroup subsystem pointers */
073219e9 117#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
3ed80a62 118static struct cgroup_subsys *cgroup_subsys[] = {
ddbcc7e8
PM
119#include <linux/cgroup_subsys.h>
120};
073219e9
TH
121#undef SUBSYS
122
123/* array of cgroup subsystem names */
124#define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
125static const char *cgroup_subsys_name[] = {
126#include <linux/cgroup_subsys.h>
127};
128#undef SUBSYS
ddbcc7e8 129
ddbcc7e8 130/*
9871bf95
TH
131 * The dummy hierarchy, reserved for the subsystems that are otherwise
132 * unattached - it never has more than a single cgroup, and all tasks are
133 * part of that cgroup.
ddbcc7e8 134 */
9871bf95
TH
135static struct cgroupfs_root cgroup_dummy_root;
136
137/* dummy_top is a shorthand for the dummy hierarchy's top cgroup */
138static struct cgroup * const cgroup_dummy_top = &cgroup_dummy_root.top_cgroup;
ddbcc7e8
PM
139
140/* The list of hierarchy roots */
141
9871bf95
TH
142static LIST_HEAD(cgroup_roots);
143static int cgroup_root_count;
ddbcc7e8 144
3417ae1f 145/* hierarchy ID allocation and mapping, protected by cgroup_mutex */
1a574231 146static DEFINE_IDR(cgroup_hierarchy_idr);
2c6ab6d2 147
65dff759
LZ
148static struct cgroup_name root_cgroup_name = { .name = "/" };
149
794611a1
LZ
150/*
151 * Assign a monotonically increasing serial number to cgroups. It
152 * guarantees cgroups with bigger numbers are newer than those with smaller
153 * numbers. Also, as cgroups are always appended to the parent's
154 * ->children list, it guarantees that sibling cgroups are always sorted in
00356bd5
TH
155 * the ascending serial number order on the list. Protected by
156 * cgroup_mutex.
794611a1 157 */
00356bd5 158static u64 cgroup_serial_nr_next = 1;
794611a1 159
ddbcc7e8 160/* This flag indicates whether tasks in the fork and exit paths should
a043e3b2
LZ
161 * check for fork/exit handlers to call. This avoids us having to do
162 * extra work in the fork/exit path if none of the subsystems need to
163 * be called.
ddbcc7e8 164 */
8947f9d5 165static int need_forkexit_callback __read_mostly;
ddbcc7e8 166
628f7cd4
TH
167static struct cftype cgroup_base_files[];
168
59f5296b 169static void cgroup_put(struct cgroup *cgrp);
f2e85d57
TH
170static int rebind_subsystems(struct cgroupfs_root *root,
171 unsigned long added_mask, unsigned removed_mask);
f20104de 172static void cgroup_destroy_css_killed(struct cgroup *cgrp);
42809dd4 173static int cgroup_destroy_locked(struct cgroup *cgrp);
2bb566cb
TH
174static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
175 bool is_add);
b1a21367 176static void cgroup_pidlist_destroy_all(struct cgroup *cgrp);
42809dd4 177
95109b62
TH
178/**
179 * cgroup_css - obtain a cgroup's css for the specified subsystem
180 * @cgrp: the cgroup of interest
ca8bdcaf 181 * @ss: the subsystem of interest (%NULL returns the dummy_css)
95109b62 182 *
ca8bdcaf
TH
183 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
184 * function must be called either under cgroup_mutex or rcu_read_lock() and
185 * the caller is responsible for pinning the returned css if it wants to
186 * keep accessing it outside the said locks. This function may return
187 * %NULL if @cgrp doesn't have @subsys_id enabled.
95109b62
TH
188 */
189static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
ca8bdcaf 190 struct cgroup_subsys *ss)
95109b62 191{
ca8bdcaf 192 if (ss)
aec25020 193 return rcu_dereference_check(cgrp->subsys[ss->id],
ace2bee8
TH
194 lockdep_is_held(&cgroup_tree_mutex) ||
195 lockdep_is_held(&cgroup_mutex));
ca8bdcaf
TH
196 else
197 return &cgrp->dummy_css;
95109b62 198}
42809dd4 199
ddbcc7e8 200/* convenient tests for these bits */
54766d4a 201static inline bool cgroup_is_dead(const struct cgroup *cgrp)
ddbcc7e8 202{
54766d4a 203 return test_bit(CGRP_DEAD, &cgrp->flags);
ddbcc7e8
PM
204}
205
59f5296b
TH
206struct cgroup_subsys_state *seq_css(struct seq_file *seq)
207{
2bd59d48
TH
208 struct kernfs_open_file *of = seq->private;
209 struct cgroup *cgrp = of->kn->parent->priv;
210 struct cftype *cft = seq_cft(seq);
211
212 /*
213 * This is open and unprotected implementation of cgroup_css().
214 * seq_css() is only called from a kernfs file operation which has
215 * an active reference on the file. Because all the subsystem
216 * files are drained before a css is disassociated with a cgroup,
217 * the matching css from the cgroup's subsys table is guaranteed to
218 * be and stay valid until the enclosing operation is complete.
219 */
220 if (cft->ss)
221 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
222 else
223 return &cgrp->dummy_css;
59f5296b
TH
224}
225EXPORT_SYMBOL_GPL(seq_css);
226
78574cf9
LZ
227/**
228 * cgroup_is_descendant - test ancestry
229 * @cgrp: the cgroup to be tested
230 * @ancestor: possible ancestor of @cgrp
231 *
232 * Test whether @cgrp is a descendant of @ancestor. It also returns %true
233 * if @cgrp == @ancestor. This function is safe to call as long as @cgrp
234 * and @ancestor are accessible.
235 */
236bool cgroup_is_descendant(struct cgroup *cgrp, struct cgroup *ancestor)
237{
238 while (cgrp) {
239 if (cgrp == ancestor)
240 return true;
241 cgrp = cgrp->parent;
242 }
243 return false;
244}
245EXPORT_SYMBOL_GPL(cgroup_is_descendant);
ddbcc7e8 246
e9685a03 247static int cgroup_is_releasable(const struct cgroup *cgrp)
81a6a5cd
PM
248{
249 const int bits =
bd89aabc
PM
250 (1 << CGRP_RELEASABLE) |
251 (1 << CGRP_NOTIFY_ON_RELEASE);
252 return (cgrp->flags & bits) == bits;
81a6a5cd
PM
253}
254
e9685a03 255static int notify_on_release(const struct cgroup *cgrp)
81a6a5cd 256{
bd89aabc 257 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
81a6a5cd
PM
258}
259
1c6727af
TH
260/**
261 * for_each_css - iterate all css's of a cgroup
262 * @css: the iteration cursor
263 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
264 * @cgrp: the target cgroup to iterate css's of
265 *
266 * Should be called under cgroup_mutex.
267 */
268#define for_each_css(css, ssid, cgrp) \
269 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
270 if (!((css) = rcu_dereference_check( \
271 (cgrp)->subsys[(ssid)], \
ace2bee8 272 lockdep_is_held(&cgroup_tree_mutex) || \
1c6727af
TH
273 lockdep_is_held(&cgroup_mutex)))) { } \
274 else
275
30159ec7 276/**
3ed80a62 277 * for_each_subsys - iterate all enabled cgroup subsystems
30159ec7 278 * @ss: the iteration cursor
780cd8b3 279 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
30159ec7 280 */
780cd8b3 281#define for_each_subsys(ss, ssid) \
3ed80a62
TH
282 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT && \
283 (((ss) = cgroup_subsys[ssid]) || true); (ssid)++)
30159ec7 284
5549c497
TH
285/* iterate across the active hierarchies */
286#define for_each_active_root(root) \
287 list_for_each_entry((root), &cgroup_roots, root_list)
ddbcc7e8 288
7ae1bad9
TH
289/**
290 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
291 * @cgrp: the cgroup to be checked for liveness
292 *
47cfcd09
TH
293 * On success, returns true; the mutex should be later unlocked. On
294 * failure returns false with no lock held.
7ae1bad9 295 */
b9777cf8 296static bool cgroup_lock_live_group(struct cgroup *cgrp)
7ae1bad9
TH
297{
298 mutex_lock(&cgroup_mutex);
54766d4a 299 if (cgroup_is_dead(cgrp)) {
7ae1bad9
TH
300 mutex_unlock(&cgroup_mutex);
301 return false;
302 }
303 return true;
304}
7ae1bad9 305
81a6a5cd
PM
306/* the list of cgroups eligible for automatic release. Protected by
307 * release_list_lock */
308static LIST_HEAD(release_list);
cdcc136f 309static DEFINE_RAW_SPINLOCK(release_list_lock);
81a6a5cd
PM
310static void cgroup_release_agent(struct work_struct *work);
311static DECLARE_WORK(release_agent_work, cgroup_release_agent);
bd89aabc 312static void check_for_release(struct cgroup *cgrp);
81a6a5cd 313
69d0206c
TH
314/*
315 * A cgroup can be associated with multiple css_sets as different tasks may
316 * belong to different cgroups on different hierarchies. In the other
317 * direction, a css_set is naturally associated with multiple cgroups.
318 * This M:N relationship is represented by the following link structure
319 * which exists for each association and allows traversing the associations
320 * from both sides.
321 */
322struct cgrp_cset_link {
323 /* the cgroup and css_set this link associates */
324 struct cgroup *cgrp;
325 struct css_set *cset;
326
327 /* list of cgrp_cset_links anchored at cgrp->cset_links */
328 struct list_head cset_link;
329
330 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
331 struct list_head cgrp_link;
817929ec
PM
332};
333
334/* The default css_set - used by init and its children prior to any
335 * hierarchies being mounted. It contains a pointer to the root state
336 * for each subsystem. Also used to anchor the list of css_sets. Not
337 * reference-counted, to improve performance when child cgroups
338 * haven't been created.
339 */
340
341static struct css_set init_css_set;
69d0206c 342static struct cgrp_cset_link init_cgrp_cset_link;
817929ec 343
0942eeee
TH
344/*
345 * css_set_lock protects the list of css_set objects, and the chain of
346 * tasks off each css_set. Nests outside task->alloc_lock due to
72ec7029 347 * css_task_iter_start().
0942eeee 348 */
817929ec
PM
349static DEFINE_RWLOCK(css_set_lock);
350static int css_set_count;
351
7717f7ba
PM
352/*
353 * hash table for cgroup groups. This improves the performance to find
354 * an existing css_set. This hash doesn't (currently) take into
355 * account cgroups in empty hierarchies.
356 */
472b1053 357#define CSS_SET_HASH_BITS 7
0ac801fe 358static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
472b1053 359
0ac801fe 360static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
472b1053 361{
0ac801fe 362 unsigned long key = 0UL;
30159ec7
TH
363 struct cgroup_subsys *ss;
364 int i;
472b1053 365
30159ec7 366 for_each_subsys(ss, i)
0ac801fe
LZ
367 key += (unsigned long)css[i];
368 key = (key >> 16) ^ key;
472b1053 369
0ac801fe 370 return key;
472b1053
LZ
371}
372
0942eeee
TH
373/*
374 * We don't maintain the lists running through each css_set to its task
72ec7029
TH
375 * until after the first call to css_task_iter_start(). This reduces the
376 * fork()/exit() overhead for people who have cgroups compiled into their
377 * kernel but not actually in use.
0942eeee 378 */
8947f9d5 379static int use_task_css_set_links __read_mostly;
817929ec 380
5abb8855 381static void __put_css_set(struct css_set *cset, int taskexit)
b4f48b63 382{
69d0206c 383 struct cgrp_cset_link *link, *tmp_link;
5abb8855 384
146aa1bd
LJ
385 /*
386 * Ensure that the refcount doesn't hit zero while any readers
387 * can see it. Similar to atomic_dec_and_lock(), but for an
388 * rwlock
389 */
5abb8855 390 if (atomic_add_unless(&cset->refcount, -1, 1))
146aa1bd
LJ
391 return;
392 write_lock(&css_set_lock);
5abb8855 393 if (!atomic_dec_and_test(&cset->refcount)) {
146aa1bd
LJ
394 write_unlock(&css_set_lock);
395 return;
396 }
81a6a5cd 397
2c6ab6d2 398 /* This css_set is dead. unlink it and release cgroup refcounts */
5abb8855 399 hash_del(&cset->hlist);
2c6ab6d2
PM
400 css_set_count--;
401
69d0206c 402 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
2c6ab6d2 403 struct cgroup *cgrp = link->cgrp;
5abb8855 404
69d0206c
TH
405 list_del(&link->cset_link);
406 list_del(&link->cgrp_link);
71b5707e 407
ddd69148 408 /* @cgrp can't go away while we're holding css_set_lock */
6f3d828f 409 if (list_empty(&cgrp->cset_links) && notify_on_release(cgrp)) {
81a6a5cd 410 if (taskexit)
bd89aabc
PM
411 set_bit(CGRP_RELEASABLE, &cgrp->flags);
412 check_for_release(cgrp);
81a6a5cd 413 }
2c6ab6d2
PM
414
415 kfree(link);
81a6a5cd 416 }
2c6ab6d2
PM
417
418 write_unlock(&css_set_lock);
5abb8855 419 kfree_rcu(cset, rcu_head);
b4f48b63
PM
420}
421
817929ec
PM
422/*
423 * refcounted get/put for css_set objects
424 */
5abb8855 425static inline void get_css_set(struct css_set *cset)
817929ec 426{
5abb8855 427 atomic_inc(&cset->refcount);
817929ec
PM
428}
429
5abb8855 430static inline void put_css_set(struct css_set *cset)
817929ec 431{
5abb8855 432 __put_css_set(cset, 0);
817929ec
PM
433}
434
5abb8855 435static inline void put_css_set_taskexit(struct css_set *cset)
81a6a5cd 436{
5abb8855 437 __put_css_set(cset, 1);
81a6a5cd
PM
438}
439
b326f9d0 440/**
7717f7ba 441 * compare_css_sets - helper function for find_existing_css_set().
5abb8855
TH
442 * @cset: candidate css_set being tested
443 * @old_cset: existing css_set for a task
7717f7ba
PM
444 * @new_cgrp: cgroup that's being entered by the task
445 * @template: desired set of css pointers in css_set (pre-calculated)
446 *
6f4b7e63 447 * Returns true if "cset" matches "old_cset" except for the hierarchy
7717f7ba
PM
448 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
449 */
5abb8855
TH
450static bool compare_css_sets(struct css_set *cset,
451 struct css_set *old_cset,
7717f7ba
PM
452 struct cgroup *new_cgrp,
453 struct cgroup_subsys_state *template[])
454{
455 struct list_head *l1, *l2;
456
5abb8855 457 if (memcmp(template, cset->subsys, sizeof(cset->subsys))) {
7717f7ba
PM
458 /* Not all subsystems matched */
459 return false;
460 }
461
462 /*
463 * Compare cgroup pointers in order to distinguish between
464 * different cgroups in heirarchies with no subsystems. We
465 * could get by with just this check alone (and skip the
466 * memcmp above) but on most setups the memcmp check will
467 * avoid the need for this more expensive check on almost all
468 * candidates.
469 */
470
69d0206c
TH
471 l1 = &cset->cgrp_links;
472 l2 = &old_cset->cgrp_links;
7717f7ba 473 while (1) {
69d0206c 474 struct cgrp_cset_link *link1, *link2;
5abb8855 475 struct cgroup *cgrp1, *cgrp2;
7717f7ba
PM
476
477 l1 = l1->next;
478 l2 = l2->next;
479 /* See if we reached the end - both lists are equal length. */
69d0206c
TH
480 if (l1 == &cset->cgrp_links) {
481 BUG_ON(l2 != &old_cset->cgrp_links);
7717f7ba
PM
482 break;
483 } else {
69d0206c 484 BUG_ON(l2 == &old_cset->cgrp_links);
7717f7ba
PM
485 }
486 /* Locate the cgroups associated with these links. */
69d0206c
TH
487 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
488 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
489 cgrp1 = link1->cgrp;
490 cgrp2 = link2->cgrp;
7717f7ba 491 /* Hierarchies should be linked in the same order. */
5abb8855 492 BUG_ON(cgrp1->root != cgrp2->root);
7717f7ba
PM
493
494 /*
495 * If this hierarchy is the hierarchy of the cgroup
496 * that's changing, then we need to check that this
497 * css_set points to the new cgroup; if it's any other
498 * hierarchy, then this css_set should point to the
499 * same cgroup as the old css_set.
500 */
5abb8855
TH
501 if (cgrp1->root == new_cgrp->root) {
502 if (cgrp1 != new_cgrp)
7717f7ba
PM
503 return false;
504 } else {
5abb8855 505 if (cgrp1 != cgrp2)
7717f7ba
PM
506 return false;
507 }
508 }
509 return true;
510}
511
b326f9d0
TH
512/**
513 * find_existing_css_set - init css array and find the matching css_set
514 * @old_cset: the css_set that we're using before the cgroup transition
515 * @cgrp: the cgroup that we're moving into
516 * @template: out param for the new set of csses, should be clear on entry
817929ec 517 */
5abb8855
TH
518static struct css_set *find_existing_css_set(struct css_set *old_cset,
519 struct cgroup *cgrp,
520 struct cgroup_subsys_state *template[])
b4f48b63 521{
bd89aabc 522 struct cgroupfs_root *root = cgrp->root;
30159ec7 523 struct cgroup_subsys *ss;
5abb8855 524 struct css_set *cset;
0ac801fe 525 unsigned long key;
b326f9d0 526 int i;
817929ec 527
aae8aab4
BB
528 /*
529 * Build the set of subsystem state objects that we want to see in the
530 * new css_set. while subsystems can change globally, the entries here
531 * won't change, so no need for locking.
532 */
30159ec7 533 for_each_subsys(ss, i) {
a1a71b45 534 if (root->subsys_mask & (1UL << i)) {
817929ec
PM
535 /* Subsystem is in this hierarchy. So we want
536 * the subsystem state from the new
537 * cgroup */
ca8bdcaf 538 template[i] = cgroup_css(cgrp, ss);
817929ec
PM
539 } else {
540 /* Subsystem is not in this hierarchy, so we
541 * don't want to change the subsystem state */
5abb8855 542 template[i] = old_cset->subsys[i];
817929ec
PM
543 }
544 }
545
0ac801fe 546 key = css_set_hash(template);
5abb8855
TH
547 hash_for_each_possible(css_set_table, cset, hlist, key) {
548 if (!compare_css_sets(cset, old_cset, cgrp, template))
7717f7ba
PM
549 continue;
550
551 /* This css_set matches what we need */
5abb8855 552 return cset;
472b1053 553 }
817929ec
PM
554
555 /* No existing cgroup group matched */
556 return NULL;
557}
558
69d0206c 559static void free_cgrp_cset_links(struct list_head *links_to_free)
36553434 560{
69d0206c 561 struct cgrp_cset_link *link, *tmp_link;
36553434 562
69d0206c
TH
563 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
564 list_del(&link->cset_link);
36553434
LZ
565 kfree(link);
566 }
567}
568
69d0206c
TH
569/**
570 * allocate_cgrp_cset_links - allocate cgrp_cset_links
571 * @count: the number of links to allocate
572 * @tmp_links: list_head the allocated links are put on
573 *
574 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
575 * through ->cset_link. Returns 0 on success or -errno.
817929ec 576 */
69d0206c 577static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
817929ec 578{
69d0206c 579 struct cgrp_cset_link *link;
817929ec 580 int i;
69d0206c
TH
581
582 INIT_LIST_HEAD(tmp_links);
583
817929ec 584 for (i = 0; i < count; i++) {
f4f4be2b 585 link = kzalloc(sizeof(*link), GFP_KERNEL);
817929ec 586 if (!link) {
69d0206c 587 free_cgrp_cset_links(tmp_links);
817929ec
PM
588 return -ENOMEM;
589 }
69d0206c 590 list_add(&link->cset_link, tmp_links);
817929ec
PM
591 }
592 return 0;
593}
594
c12f65d4
LZ
595/**
596 * link_css_set - a helper function to link a css_set to a cgroup
69d0206c 597 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
5abb8855 598 * @cset: the css_set to be linked
c12f65d4
LZ
599 * @cgrp: the destination cgroup
600 */
69d0206c
TH
601static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
602 struct cgroup *cgrp)
c12f65d4 603{
69d0206c 604 struct cgrp_cset_link *link;
c12f65d4 605
69d0206c
TH
606 BUG_ON(list_empty(tmp_links));
607 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
608 link->cset = cset;
7717f7ba 609 link->cgrp = cgrp;
69d0206c 610 list_move(&link->cset_link, &cgrp->cset_links);
7717f7ba
PM
611 /*
612 * Always add links to the tail of the list so that the list
613 * is sorted by order of hierarchy creation
614 */
69d0206c 615 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
c12f65d4
LZ
616}
617
b326f9d0
TH
618/**
619 * find_css_set - return a new css_set with one cgroup updated
620 * @old_cset: the baseline css_set
621 * @cgrp: the cgroup to be updated
622 *
623 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
624 * substituted into the appropriate hierarchy.
817929ec 625 */
5abb8855
TH
626static struct css_set *find_css_set(struct css_set *old_cset,
627 struct cgroup *cgrp)
817929ec 628{
b326f9d0 629 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
5abb8855 630 struct css_set *cset;
69d0206c
TH
631 struct list_head tmp_links;
632 struct cgrp_cset_link *link;
0ac801fe 633 unsigned long key;
472b1053 634
b326f9d0
TH
635 lockdep_assert_held(&cgroup_mutex);
636
817929ec
PM
637 /* First see if we already have a cgroup group that matches
638 * the desired set */
7e9abd89 639 read_lock(&css_set_lock);
5abb8855
TH
640 cset = find_existing_css_set(old_cset, cgrp, template);
641 if (cset)
642 get_css_set(cset);
7e9abd89 643 read_unlock(&css_set_lock);
817929ec 644
5abb8855
TH
645 if (cset)
646 return cset;
817929ec 647
f4f4be2b 648 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
5abb8855 649 if (!cset)
817929ec
PM
650 return NULL;
651
69d0206c 652 /* Allocate all the cgrp_cset_link objects that we'll need */
9871bf95 653 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
5abb8855 654 kfree(cset);
817929ec
PM
655 return NULL;
656 }
657
5abb8855 658 atomic_set(&cset->refcount, 1);
69d0206c 659 INIT_LIST_HEAD(&cset->cgrp_links);
5abb8855
TH
660 INIT_LIST_HEAD(&cset->tasks);
661 INIT_HLIST_NODE(&cset->hlist);
817929ec
PM
662
663 /* Copy the set of subsystem state objects generated in
664 * find_existing_css_set() */
5abb8855 665 memcpy(cset->subsys, template, sizeof(cset->subsys));
817929ec
PM
666
667 write_lock(&css_set_lock);
668 /* Add reference counts and links from the new css_set. */
69d0206c 669 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
7717f7ba 670 struct cgroup *c = link->cgrp;
69d0206c 671
7717f7ba
PM
672 if (c->root == cgrp->root)
673 c = cgrp;
69d0206c 674 link_css_set(&tmp_links, cset, c);
7717f7ba 675 }
817929ec 676
69d0206c 677 BUG_ON(!list_empty(&tmp_links));
817929ec 678
817929ec 679 css_set_count++;
472b1053
LZ
680
681 /* Add this cgroup group to the hash table */
5abb8855
TH
682 key = css_set_hash(cset->subsys);
683 hash_add(css_set_table, &cset->hlist, key);
472b1053 684
817929ec
PM
685 write_unlock(&css_set_lock);
686
5abb8855 687 return cset;
b4f48b63
PM
688}
689
2bd59d48
TH
690static struct cgroupfs_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
691{
692 struct cgroup *top_cgrp = kf_root->kn->priv;
693
694 return top_cgrp->root;
695}
696
f2e85d57
TH
697static int cgroup_init_root_id(struct cgroupfs_root *root, int start, int end)
698{
699 int id;
700
701 lockdep_assert_held(&cgroup_mutex);
702
703 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, start, end,
704 GFP_KERNEL);
705 if (id < 0)
706 return id;
707
708 root->hierarchy_id = id;
709 return 0;
710}
711
712static void cgroup_exit_root_id(struct cgroupfs_root *root)
713{
714 lockdep_assert_held(&cgroup_mutex);
715
716 if (root->hierarchy_id) {
717 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
718 root->hierarchy_id = 0;
719 }
720}
721
722static void cgroup_free_root(struct cgroupfs_root *root)
723{
724 if (root) {
725 /* hierarhcy ID shoulid already have been released */
726 WARN_ON_ONCE(root->hierarchy_id);
727
728 idr_destroy(&root->cgroup_idr);
729 kfree(root);
730 }
731}
732
59f5296b
TH
733static void cgroup_get_root(struct cgroupfs_root *root)
734{
2bd59d48
TH
735 /*
736 * The caller must ensure that @root is alive, which can be
737 * achieved by holding a ref on one of the member cgroups or
738 * following a registered reference to @root while holding
739 * cgroup_tree_mutex.
740 */
741 WARN_ON_ONCE(atomic_read(&root->refcnt) <= 0);
742 atomic_inc(&root->refcnt);
59f5296b
TH
743}
744
745static void cgroup_put_root(struct cgroupfs_root *root)
746{
f2e85d57
TH
747 struct cgroup *cgrp = &root->top_cgroup;
748 struct cgrp_cset_link *link, *tmp_link;
749 int ret;
750
2bd59d48
TH
751 /*
752 * @root's refcnt reaching zero and its deregistration should be
753 * atomic w.r.t. cgroup_tree_mutex. This ensures that
754 * cgroup_get_root() is safe to invoke if @root is registered.
755 */
756 mutex_lock(&cgroup_tree_mutex);
757 if (!atomic_dec_and_test(&root->refcnt)) {
758 mutex_unlock(&cgroup_tree_mutex);
759 return;
760 }
761 mutex_lock(&cgroup_mutex);
f2e85d57
TH
762
763 BUG_ON(root->number_of_cgroups != 1);
764 BUG_ON(!list_empty(&cgrp->children));
765
f2e85d57
TH
766 /* Rebind all subsystems back to the default hierarchy */
767 if (root->flags & CGRP_ROOT_SUBSYS_BOUND) {
768 ret = rebind_subsystems(root, 0, root->subsys_mask);
769 /* Shouldn't be able to fail ... */
770 BUG_ON(ret);
771 }
772
773 /*
774 * Release all the links from cset_links to this hierarchy's
775 * root cgroup
776 */
777 write_lock(&css_set_lock);
778
779 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
780 list_del(&link->cset_link);
781 list_del(&link->cgrp_link);
782 kfree(link);
783 }
784 write_unlock(&css_set_lock);
785
786 if (!list_empty(&root->root_list)) {
787 list_del(&root->root_list);
788 cgroup_root_count--;
789 }
790
791 cgroup_exit_root_id(root);
792
793 mutex_unlock(&cgroup_mutex);
794 mutex_unlock(&cgroup_tree_mutex);
f2e85d57 795
2bd59d48 796 kernfs_destroy_root(root->kf_root);
f2e85d57
TH
797 cgroup_free_root(root);
798}
799
7717f7ba
PM
800/*
801 * Return the cgroup for "task" from the given hierarchy. Must be
802 * called with cgroup_mutex held.
803 */
804static struct cgroup *task_cgroup_from_root(struct task_struct *task,
805 struct cgroupfs_root *root)
806{
5abb8855 807 struct css_set *cset;
7717f7ba
PM
808 struct cgroup *res = NULL;
809
810 BUG_ON(!mutex_is_locked(&cgroup_mutex));
811 read_lock(&css_set_lock);
812 /*
813 * No need to lock the task - since we hold cgroup_mutex the
814 * task can't change groups, so the only thing that can happen
815 * is that it exits and its css is set back to init_css_set.
816 */
a8ad805c 817 cset = task_css_set(task);
5abb8855 818 if (cset == &init_css_set) {
7717f7ba
PM
819 res = &root->top_cgroup;
820 } else {
69d0206c
TH
821 struct cgrp_cset_link *link;
822
823 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 824 struct cgroup *c = link->cgrp;
69d0206c 825
7717f7ba
PM
826 if (c->root == root) {
827 res = c;
828 break;
829 }
830 }
831 }
832 read_unlock(&css_set_lock);
833 BUG_ON(!res);
834 return res;
835}
836
ddbcc7e8
PM
837/*
838 * There is one global cgroup mutex. We also require taking
839 * task_lock() when dereferencing a task's cgroup subsys pointers.
840 * See "The task_lock() exception", at the end of this comment.
841 *
842 * A task must hold cgroup_mutex to modify cgroups.
843 *
844 * Any task can increment and decrement the count field without lock.
845 * So in general, code holding cgroup_mutex can't rely on the count
846 * field not changing. However, if the count goes to zero, then only
956db3ca 847 * cgroup_attach_task() can increment it again. Because a count of zero
ddbcc7e8
PM
848 * means that no tasks are currently attached, therefore there is no
849 * way a task attached to that cgroup can fork (the other way to
850 * increment the count). So code holding cgroup_mutex can safely
851 * assume that if the count is zero, it will stay zero. Similarly, if
852 * a task holds cgroup_mutex on a cgroup with zero count, it
853 * knows that the cgroup won't be removed, as cgroup_rmdir()
854 * needs that mutex.
855 *
ddbcc7e8
PM
856 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
857 * (usually) take cgroup_mutex. These are the two most performance
858 * critical pieces of code here. The exception occurs on cgroup_exit(),
859 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
860 * is taken, and if the cgroup count is zero, a usermode call made
a043e3b2
LZ
861 * to the release agent with the name of the cgroup (path relative to
862 * the root of cgroup file system) as the argument.
ddbcc7e8
PM
863 *
864 * A cgroup can only be deleted if both its 'count' of using tasks
865 * is zero, and its list of 'children' cgroups is empty. Since all
866 * tasks in the system use _some_ cgroup, and since there is always at
867 * least one task in the system (init, pid == 1), therefore, top_cgroup
868 * always has either children cgroups and/or using tasks. So we don't
869 * need a special hack to ensure that top_cgroup cannot be deleted.
870 *
871 * The task_lock() exception
872 *
873 * The need for this exception arises from the action of
d0b2fdd2 874 * cgroup_attach_task(), which overwrites one task's cgroup pointer with
a043e3b2 875 * another. It does so using cgroup_mutex, however there are
ddbcc7e8
PM
876 * several performance critical places that need to reference
877 * task->cgroup without the expense of grabbing a system global
878 * mutex. Therefore except as noted below, when dereferencing or, as
d0b2fdd2 879 * in cgroup_attach_task(), modifying a task's cgroup pointer we use
ddbcc7e8
PM
880 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
881 * the task_struct routinely used for such matters.
882 *
883 * P.S. One more locking exception. RCU is used to guard the
956db3ca 884 * update of a tasks cgroup pointer by cgroup_attach_task()
ddbcc7e8
PM
885 */
886
628f7cd4 887static int cgroup_populate_dir(struct cgroup *cgrp, unsigned long subsys_mask);
2bd59d48 888static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
828c0950 889static const struct file_operations proc_cgroupstats_operations;
a424316c 890
8d7e6fb0 891static struct cgroup_name *cgroup_alloc_name(const char *name_str)
65dff759
LZ
892{
893 struct cgroup_name *name;
894
8d7e6fb0 895 name = kmalloc(sizeof(*name) + strlen(name_str) + 1, GFP_KERNEL);
65dff759
LZ
896 if (!name)
897 return NULL;
8d7e6fb0 898 strcpy(name->name, name_str);
65dff759
LZ
899 return name;
900}
901
8d7e6fb0
TH
902static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
903 char *buf)
904{
905 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
906 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
907 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
908 cft->ss->name, cft->name);
909 else
910 strncpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
911 return buf;
912}
913
f2e85d57
TH
914/**
915 * cgroup_file_mode - deduce file mode of a control file
916 * @cft: the control file in question
917 *
918 * returns cft->mode if ->mode is not 0
919 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
920 * returns S_IRUGO if it has only a read handler
921 * returns S_IWUSR if it has only a write hander
922 */
923static umode_t cgroup_file_mode(const struct cftype *cft)
924{
925 umode_t mode = 0;
926
927 if (cft->mode)
928 return cft->mode;
929
930 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
931 mode |= S_IRUGO;
932
933 if (cft->write_u64 || cft->write_s64 || cft->write_string ||
934 cft->trigger)
935 mode |= S_IWUSR;
936
937 return mode;
938}
939
be445626
LZ
940static void cgroup_free_fn(struct work_struct *work)
941{
ea15f8cc 942 struct cgroup *cgrp = container_of(work, struct cgroup, destroy_work);
be445626
LZ
943
944 mutex_lock(&cgroup_mutex);
be445626
LZ
945 cgrp->root->number_of_cgroups--;
946 mutex_unlock(&cgroup_mutex);
947
415cf07a 948 /*
59f5296b
TH
949 * We get a ref to the parent, and put the ref when this cgroup is
950 * being freed, so it's guaranteed that the parent won't be
951 * destroyed before its children.
415cf07a 952 */
59f5296b 953 cgroup_put(cgrp->parent);
415cf07a 954
59f5296b
TH
955 /* put the root reference that we took when we created the cgroup */
956 cgroup_put_root(cgrp->root);
be445626 957
b1a21367 958 cgroup_pidlist_destroy_all(cgrp);
be445626 959
65dff759 960 kfree(rcu_dereference_raw(cgrp->name));
be445626
LZ
961 kfree(cgrp);
962}
963
964static void cgroup_free_rcu(struct rcu_head *head)
965{
966 struct cgroup *cgrp = container_of(head, struct cgroup, rcu_head);
967
ea15f8cc 968 INIT_WORK(&cgrp->destroy_work, cgroup_free_fn);
e5fca243 969 queue_work(cgroup_destroy_wq, &cgrp->destroy_work);
be445626
LZ
970}
971
59f5296b
TH
972static void cgroup_get(struct cgroup *cgrp)
973{
2bd59d48
TH
974 WARN_ON_ONCE(cgroup_is_dead(cgrp));
975 WARN_ON_ONCE(atomic_read(&cgrp->refcnt) <= 0);
976 atomic_inc(&cgrp->refcnt);
ddbcc7e8
PM
977}
978
59f5296b
TH
979static void cgroup_put(struct cgroup *cgrp)
980{
2bd59d48
TH
981 if (!atomic_dec_and_test(&cgrp->refcnt))
982 return;
983 if (WARN_ON_ONCE(!cgroup_is_dead(cgrp)))
984 return;
59f5296b 985
2bd59d48
TH
986 /*
987 * XXX: cgrp->id is only used to look up css's. As cgroup and
988 * css's lifetimes will be decoupled, it should be made
989 * per-subsystem and moved to css->id so that lookups are
990 * successful until the target css is released.
991 */
992 mutex_lock(&cgroup_mutex);
993 idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
994 mutex_unlock(&cgroup_mutex);
995 cgrp->id = -1;
ddbcc7e8 996
2bd59d48 997 call_rcu(&cgrp->rcu_head, cgroup_free_rcu);
ddbcc7e8
PM
998}
999
2739d3cc 1000static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
05ef1d7c 1001{
2bd59d48 1002 char name[CGROUP_FILE_NAME_MAX];
05ef1d7c 1003
ace2bee8 1004 lockdep_assert_held(&cgroup_tree_mutex);
2bd59d48 1005 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
05ef1d7c
TH
1006}
1007
13af07df 1008/**
628f7cd4 1009 * cgroup_clear_dir - remove subsys files in a cgroup directory
8f89140a 1010 * @cgrp: target cgroup
13af07df
AR
1011 * @subsys_mask: mask of the subsystem ids whose files should be removed
1012 */
628f7cd4 1013static void cgroup_clear_dir(struct cgroup *cgrp, unsigned long subsys_mask)
05ef1d7c 1014{
13af07df 1015 struct cgroup_subsys *ss;
b420ba7d 1016 int i;
05ef1d7c 1017
b420ba7d 1018 for_each_subsys(ss, i) {
13af07df 1019 struct cftype_set *set;
b420ba7d
TH
1020
1021 if (!test_bit(i, &subsys_mask))
13af07df
AR
1022 continue;
1023 list_for_each_entry(set, &ss->cftsets, node)
2bb566cb 1024 cgroup_addrm_files(cgrp, set->cfts, false);
13af07df 1025 }
ddbcc7e8
PM
1026}
1027
ddbcc7e8 1028static int rebind_subsystems(struct cgroupfs_root *root,
a8a648c4 1029 unsigned long added_mask, unsigned removed_mask)
ddbcc7e8 1030{
bd89aabc 1031 struct cgroup *cgrp = &root->top_cgroup;
30159ec7 1032 struct cgroup_subsys *ss;
3126121f 1033 int i, ret;
ddbcc7e8 1034
ace2bee8
TH
1035 lockdep_assert_held(&cgroup_tree_mutex);
1036 lockdep_assert_held(&cgroup_mutex);
aae8aab4 1037
ddbcc7e8 1038 /* Check that any added subsystems are currently free */
3ed80a62
TH
1039 for_each_subsys(ss, i)
1040 if ((added_mask & (1 << i)) && ss->root != &cgroup_dummy_root)
1041 return -EBUSY;
ddbcc7e8 1042
3126121f
TH
1043 ret = cgroup_populate_dir(cgrp, added_mask);
1044 if (ret)
3ed80a62 1045 return ret;
3126121f
TH
1046
1047 /*
1048 * Nothing can fail from this point on. Remove files for the
1049 * removed subsystems and rebind each subsystem.
1050 */
4ac06017 1051 mutex_unlock(&cgroup_mutex);
3126121f 1052 cgroup_clear_dir(cgrp, removed_mask);
4ac06017 1053 mutex_lock(&cgroup_mutex);
ddbcc7e8 1054
30159ec7 1055 for_each_subsys(ss, i) {
ddbcc7e8 1056 unsigned long bit = 1UL << i;
30159ec7 1057
a1a71b45 1058 if (bit & added_mask) {
ddbcc7e8 1059 /* We're binding this subsystem to this hierarchy */
ca8bdcaf
TH
1060 BUG_ON(cgroup_css(cgrp, ss));
1061 BUG_ON(!cgroup_css(cgroup_dummy_top, ss));
1062 BUG_ON(cgroup_css(cgroup_dummy_top, ss)->cgroup != cgroup_dummy_top);
a8a648c4 1063
73e80ed8 1064 rcu_assign_pointer(cgrp->subsys[i],
ca8bdcaf
TH
1065 cgroup_css(cgroup_dummy_top, ss));
1066 cgroup_css(cgrp, ss)->cgroup = cgrp;
a8a648c4 1067
b2aa30f7 1068 ss->root = root;
ddbcc7e8 1069 if (ss->bind)
ca8bdcaf 1070 ss->bind(cgroup_css(cgrp, ss));
a8a648c4 1071
cf5d5941 1072 /* refcount was already taken, and we're keeping it */
a8a648c4 1073 root->subsys_mask |= bit;
a1a71b45 1074 } else if (bit & removed_mask) {
ddbcc7e8 1075 /* We're removing this subsystem */
ca8bdcaf
TH
1076 BUG_ON(cgroup_css(cgrp, ss) != cgroup_css(cgroup_dummy_top, ss));
1077 BUG_ON(cgroup_css(cgrp, ss)->cgroup != cgrp);
a8a648c4 1078
ddbcc7e8 1079 if (ss->bind)
ca8bdcaf 1080 ss->bind(cgroup_css(cgroup_dummy_top, ss));
73e80ed8 1081
ca8bdcaf 1082 cgroup_css(cgroup_dummy_top, ss)->cgroup = cgroup_dummy_top;
73e80ed8
TH
1083 RCU_INIT_POINTER(cgrp->subsys[i], NULL);
1084
9871bf95 1085 cgroup_subsys[i]->root = &cgroup_dummy_root;
a8a648c4 1086 root->subsys_mask &= ~bit;
ddbcc7e8
PM
1087 }
1088 }
ddbcc7e8 1089
1672d040
TH
1090 /*
1091 * Mark @root has finished binding subsystems. @root->subsys_mask
1092 * now matches the bound subsystems.
1093 */
1094 root->flags |= CGRP_ROOT_SUBSYS_BOUND;
2bd59d48 1095 kernfs_activate(cgrp->kn);
1672d040 1096
ddbcc7e8
PM
1097 return 0;
1098}
1099
2bd59d48
TH
1100static int cgroup_show_options(struct seq_file *seq,
1101 struct kernfs_root *kf_root)
ddbcc7e8 1102{
2bd59d48 1103 struct cgroupfs_root *root = cgroup_root_from_kf(kf_root);
ddbcc7e8 1104 struct cgroup_subsys *ss;
b85d2040 1105 int ssid;
ddbcc7e8 1106
b85d2040
TH
1107 for_each_subsys(ss, ssid)
1108 if (root->subsys_mask & (1 << ssid))
1109 seq_printf(seq, ",%s", ss->name);
873fe09e
TH
1110 if (root->flags & CGRP_ROOT_SANE_BEHAVIOR)
1111 seq_puts(seq, ",sane_behavior");
93438629 1112 if (root->flags & CGRP_ROOT_NOPREFIX)
ddbcc7e8 1113 seq_puts(seq, ",noprefix");
93438629 1114 if (root->flags & CGRP_ROOT_XATTR)
03b1cde6 1115 seq_puts(seq, ",xattr");
69e943b7
TH
1116
1117 spin_lock(&release_agent_path_lock);
81a6a5cd
PM
1118 if (strlen(root->release_agent_path))
1119 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
69e943b7
TH
1120 spin_unlock(&release_agent_path_lock);
1121
2260e7fc 1122 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->top_cgroup.flags))
97978e6d 1123 seq_puts(seq, ",clone_children");
c6d57f33
PM
1124 if (strlen(root->name))
1125 seq_printf(seq, ",name=%s", root->name);
ddbcc7e8
PM
1126 return 0;
1127}
1128
1129struct cgroup_sb_opts {
a1a71b45 1130 unsigned long subsys_mask;
ddbcc7e8 1131 unsigned long flags;
81a6a5cd 1132 char *release_agent;
2260e7fc 1133 bool cpuset_clone_children;
c6d57f33 1134 char *name;
2c6ab6d2
PM
1135 /* User explicitly requested empty subsystem */
1136 bool none;
ddbcc7e8
PM
1137};
1138
aae8aab4 1139/*
9871bf95
TH
1140 * Convert a hierarchy specifier into a bitmask of subsystems and
1141 * flags. Call with cgroup_mutex held to protect the cgroup_subsys[]
1142 * array. This function takes refcounts on subsystems to be used, unless it
1143 * returns error, in which case no refcounts are taken.
aae8aab4 1144 */
cf5d5941 1145static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
ddbcc7e8 1146{
32a8cf23
DL
1147 char *token, *o = data;
1148 bool all_ss = false, one_ss = false;
f9ab5b5b 1149 unsigned long mask = (unsigned long)-1;
30159ec7
TH
1150 struct cgroup_subsys *ss;
1151 int i;
f9ab5b5b 1152
aae8aab4
BB
1153 BUG_ON(!mutex_is_locked(&cgroup_mutex));
1154
f9ab5b5b 1155#ifdef CONFIG_CPUSETS
073219e9 1156 mask = ~(1UL << cpuset_cgrp_id);
f9ab5b5b 1157#endif
ddbcc7e8 1158
c6d57f33 1159 memset(opts, 0, sizeof(*opts));
ddbcc7e8
PM
1160
1161 while ((token = strsep(&o, ",")) != NULL) {
1162 if (!*token)
1163 return -EINVAL;
32a8cf23 1164 if (!strcmp(token, "none")) {
2c6ab6d2
PM
1165 /* Explicitly have no subsystems */
1166 opts->none = true;
32a8cf23
DL
1167 continue;
1168 }
1169 if (!strcmp(token, "all")) {
1170 /* Mutually exclusive option 'all' + subsystem name */
1171 if (one_ss)
1172 return -EINVAL;
1173 all_ss = true;
1174 continue;
1175 }
873fe09e
TH
1176 if (!strcmp(token, "__DEVEL__sane_behavior")) {
1177 opts->flags |= CGRP_ROOT_SANE_BEHAVIOR;
1178 continue;
1179 }
32a8cf23 1180 if (!strcmp(token, "noprefix")) {
93438629 1181 opts->flags |= CGRP_ROOT_NOPREFIX;
32a8cf23
DL
1182 continue;
1183 }
1184 if (!strcmp(token, "clone_children")) {
2260e7fc 1185 opts->cpuset_clone_children = true;
32a8cf23
DL
1186 continue;
1187 }
03b1cde6 1188 if (!strcmp(token, "xattr")) {
93438629 1189 opts->flags |= CGRP_ROOT_XATTR;
03b1cde6
AR
1190 continue;
1191 }
32a8cf23 1192 if (!strncmp(token, "release_agent=", 14)) {
81a6a5cd
PM
1193 /* Specifying two release agents is forbidden */
1194 if (opts->release_agent)
1195 return -EINVAL;
c6d57f33 1196 opts->release_agent =
e400c285 1197 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
81a6a5cd
PM
1198 if (!opts->release_agent)
1199 return -ENOMEM;
32a8cf23
DL
1200 continue;
1201 }
1202 if (!strncmp(token, "name=", 5)) {
c6d57f33
PM
1203 const char *name = token + 5;
1204 /* Can't specify an empty name */
1205 if (!strlen(name))
1206 return -EINVAL;
1207 /* Must match [\w.-]+ */
1208 for (i = 0; i < strlen(name); i++) {
1209 char c = name[i];
1210 if (isalnum(c))
1211 continue;
1212 if ((c == '.') || (c == '-') || (c == '_'))
1213 continue;
1214 return -EINVAL;
1215 }
1216 /* Specifying two names is forbidden */
1217 if (opts->name)
1218 return -EINVAL;
1219 opts->name = kstrndup(name,
e400c285 1220 MAX_CGROUP_ROOT_NAMELEN - 1,
c6d57f33
PM
1221 GFP_KERNEL);
1222 if (!opts->name)
1223 return -ENOMEM;
32a8cf23
DL
1224
1225 continue;
1226 }
1227
30159ec7 1228 for_each_subsys(ss, i) {
32a8cf23
DL
1229 if (strcmp(token, ss->name))
1230 continue;
1231 if (ss->disabled)
1232 continue;
1233
1234 /* Mutually exclusive option 'all' + subsystem name */
1235 if (all_ss)
1236 return -EINVAL;
a1a71b45 1237 set_bit(i, &opts->subsys_mask);
32a8cf23
DL
1238 one_ss = true;
1239
1240 break;
1241 }
1242 if (i == CGROUP_SUBSYS_COUNT)
1243 return -ENOENT;
1244 }
1245
1246 /*
1247 * If the 'all' option was specified select all the subsystems,
0d19ea86
LZ
1248 * otherwise if 'none', 'name=' and a subsystem name options
1249 * were not specified, let's default to 'all'
32a8cf23 1250 */
30159ec7
TH
1251 if (all_ss || (!one_ss && !opts->none && !opts->name))
1252 for_each_subsys(ss, i)
1253 if (!ss->disabled)
1254 set_bit(i, &opts->subsys_mask);
ddbcc7e8 1255
2c6ab6d2
PM
1256 /* Consistency checks */
1257
873fe09e
TH
1258 if (opts->flags & CGRP_ROOT_SANE_BEHAVIOR) {
1259 pr_warning("cgroup: sane_behavior: this is still under development and its behaviors will change, proceed at your own risk\n");
1260
1261 if (opts->flags & CGRP_ROOT_NOPREFIX) {
1262 pr_err("cgroup: sane_behavior: noprefix is not allowed\n");
1263 return -EINVAL;
1264 }
1265
1266 if (opts->cpuset_clone_children) {
1267 pr_err("cgroup: sane_behavior: clone_children is not allowed\n");
1268 return -EINVAL;
1269 }
86bf4b68
TH
1270
1271 if (opts->flags & CGRP_ROOT_XATTR)
1272 pr_warning("cgroup: sane_behavior: xattr is always available, flag unnecessary\n");
873fe09e
TH
1273 }
1274
f9ab5b5b
LZ
1275 /*
1276 * Option noprefix was introduced just for backward compatibility
1277 * with the old cpuset, so we allow noprefix only if mounting just
1278 * the cpuset subsystem.
1279 */
93438629 1280 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
f9ab5b5b
LZ
1281 return -EINVAL;
1282
2c6ab6d2
PM
1283
1284 /* Can't specify "none" and some subsystems */
a1a71b45 1285 if (opts->subsys_mask && opts->none)
2c6ab6d2
PM
1286 return -EINVAL;
1287
1288 /*
1289 * We either have to specify by name or by subsystems. (So all
1290 * empty hierarchies must have a name).
1291 */
a1a71b45 1292 if (!opts->subsys_mask && !opts->name)
ddbcc7e8
PM
1293 return -EINVAL;
1294
1295 return 0;
1296}
1297
2bd59d48 1298static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
ddbcc7e8
PM
1299{
1300 int ret = 0;
2bd59d48 1301 struct cgroupfs_root *root = cgroup_root_from_kf(kf_root);
ddbcc7e8 1302 struct cgroup_sb_opts opts;
a1a71b45 1303 unsigned long added_mask, removed_mask;
ddbcc7e8 1304
873fe09e
TH
1305 if (root->flags & CGRP_ROOT_SANE_BEHAVIOR) {
1306 pr_err("cgroup: sane_behavior: remount is not allowed\n");
1307 return -EINVAL;
1308 }
1309
ace2bee8 1310 mutex_lock(&cgroup_tree_mutex);
ddbcc7e8
PM
1311 mutex_lock(&cgroup_mutex);
1312
1313 /* See what subsystems are wanted */
1314 ret = parse_cgroupfs_options(data, &opts);
1315 if (ret)
1316 goto out_unlock;
1317
a8a648c4 1318 if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
8b5a5a9d
TH
1319 pr_warning("cgroup: option changes via remount are deprecated (pid=%d comm=%s)\n",
1320 task_tgid_nr(current), current->comm);
1321
a1a71b45
AR
1322 added_mask = opts.subsys_mask & ~root->subsys_mask;
1323 removed_mask = root->subsys_mask & ~opts.subsys_mask;
13af07df 1324
cf5d5941 1325 /* Don't allow flags or name to change at remount */
0ce6cba3 1326 if (((opts.flags ^ root->flags) & CGRP_ROOT_OPTION_MASK) ||
cf5d5941 1327 (opts.name && strcmp(opts.name, root->name))) {
0ce6cba3
TH
1328 pr_err("cgroup: option or name mismatch, new: 0x%lx \"%s\", old: 0x%lx \"%s\"\n",
1329 opts.flags & CGRP_ROOT_OPTION_MASK, opts.name ?: "",
1330 root->flags & CGRP_ROOT_OPTION_MASK, root->name);
c6d57f33
PM
1331 ret = -EINVAL;
1332 goto out_unlock;
1333 }
1334
f172e67c
TH
1335 /* remounting is not allowed for populated hierarchies */
1336 if (root->number_of_cgroups > 1) {
1337 ret = -EBUSY;
0670e08b 1338 goto out_unlock;
cf5d5941 1339 }
ddbcc7e8 1340
a8a648c4 1341 ret = rebind_subsystems(root, added_mask, removed_mask);
3126121f 1342 if (ret)
0670e08b 1343 goto out_unlock;
ddbcc7e8 1344
69e943b7
TH
1345 if (opts.release_agent) {
1346 spin_lock(&release_agent_path_lock);
81a6a5cd 1347 strcpy(root->release_agent_path, opts.release_agent);
69e943b7
TH
1348 spin_unlock(&release_agent_path_lock);
1349 }
ddbcc7e8 1350 out_unlock:
66bdc9cf 1351 kfree(opts.release_agent);
c6d57f33 1352 kfree(opts.name);
ddbcc7e8 1353 mutex_unlock(&cgroup_mutex);
ace2bee8 1354 mutex_unlock(&cgroup_tree_mutex);
ddbcc7e8
PM
1355 return ret;
1356}
1357
cc31edce
PM
1358static void init_cgroup_housekeeping(struct cgroup *cgrp)
1359{
2bd59d48 1360 atomic_set(&cgrp->refcnt, 1);
cc31edce
PM
1361 INIT_LIST_HEAD(&cgrp->sibling);
1362 INIT_LIST_HEAD(&cgrp->children);
69d0206c 1363 INIT_LIST_HEAD(&cgrp->cset_links);
cc31edce 1364 INIT_LIST_HEAD(&cgrp->release_list);
72a8cb30
BB
1365 INIT_LIST_HEAD(&cgrp->pidlists);
1366 mutex_init(&cgrp->pidlist_mutex);
67f4c36f 1367 cgrp->dummy_css.cgroup = cgrp;
cc31edce 1368}
c6d57f33 1369
ddbcc7e8
PM
1370static void init_cgroup_root(struct cgroupfs_root *root)
1371{
bd89aabc 1372 struct cgroup *cgrp = &root->top_cgroup;
b0ca5a84 1373
2bd59d48 1374 atomic_set(&root->refcnt, 1);
ddbcc7e8
PM
1375 INIT_LIST_HEAD(&root->root_list);
1376 root->number_of_cgroups = 1;
bd89aabc 1377 cgrp->root = root;
a4ea1cc9 1378 RCU_INIT_POINTER(cgrp->name, &root_cgroup_name);
cc31edce 1379 init_cgroup_housekeeping(cgrp);
4e96ee8e 1380 idr_init(&root->cgroup_idr);
ddbcc7e8
PM
1381}
1382
c6d57f33
PM
1383static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts)
1384{
1385 struct cgroupfs_root *root;
1386
a1a71b45 1387 if (!opts->subsys_mask && !opts->none)
2bd59d48 1388 return ERR_PTR(-EINVAL);
c6d57f33
PM
1389
1390 root = kzalloc(sizeof(*root), GFP_KERNEL);
1391 if (!root)
1392 return ERR_PTR(-ENOMEM);
1393
1394 init_cgroup_root(root);
2c6ab6d2 1395
1672d040
TH
1396 /*
1397 * We need to set @root->subsys_mask now so that @root can be
1398 * matched by cgroup_test_super() before it finishes
1399 * initialization; otherwise, competing mounts with the same
1400 * options may try to bind the same subsystems instead of waiting
1401 * for the first one leading to unexpected mount errors.
1402 * SUBSYS_BOUND will be set once actual binding is complete.
1403 */
a1a71b45 1404 root->subsys_mask = opts->subsys_mask;
c6d57f33
PM
1405 root->flags = opts->flags;
1406 if (opts->release_agent)
1407 strcpy(root->release_agent_path, opts->release_agent);
1408 if (opts->name)
1409 strcpy(root->name, opts->name);
2260e7fc
TH
1410 if (opts->cpuset_clone_children)
1411 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->top_cgroup.flags);
c6d57f33
PM
1412 return root;
1413}
1414
d427dfeb
TH
1415static int cgroup_setup_root(struct cgroupfs_root *root)
1416{
1417 LIST_HEAD(tmp_links);
d427dfeb 1418 struct cgroup *root_cgrp = &root->top_cgroup;
d427dfeb 1419 struct css_set *cset;
d427dfeb
TH
1420 int i, ret;
1421
1422 lockdep_assert_held(&cgroup_tree_mutex);
1423 lockdep_assert_held(&cgroup_mutex);
d427dfeb
TH
1424
1425 ret = idr_alloc(&root->cgroup_idr, root_cgrp, 0, 1, GFP_KERNEL);
1426 if (ret < 0)
2bd59d48 1427 goto out;
d427dfeb
TH
1428 root_cgrp->id = ret;
1429
d427dfeb
TH
1430 /*
1431 * We're accessing css_set_count without locking css_set_lock here,
1432 * but that's OK - it can only be increased by someone holding
1433 * cgroup_lock, and that's us. The worst that can happen is that we
1434 * have some link structures left over
1435 */
1436 ret = allocate_cgrp_cset_links(css_set_count, &tmp_links);
1437 if (ret)
2bd59d48 1438 goto out;
d427dfeb
TH
1439
1440 /* ID 0 is reserved for dummy root, 1 for unified hierarchy */
1441 ret = cgroup_init_root_id(root, 2, 0);
1442 if (ret)
2bd59d48 1443 goto out;
d427dfeb 1444
2bd59d48
TH
1445 root->kf_root = kernfs_create_root(&cgroup_kf_syscall_ops,
1446 KERNFS_ROOT_CREATE_DEACTIVATED,
1447 root_cgrp);
1448 if (IS_ERR(root->kf_root)) {
1449 ret = PTR_ERR(root->kf_root);
1450 goto exit_root_id;
1451 }
1452 root_cgrp->kn = root->kf_root->kn;
d427dfeb
TH
1453
1454 ret = cgroup_addrm_files(root_cgrp, cgroup_base_files, true);
1455 if (ret)
2bd59d48 1456 goto destroy_root;
d427dfeb
TH
1457
1458 ret = rebind_subsystems(root, root->subsys_mask, 0);
1459 if (ret)
2bd59d48 1460 goto destroy_root;
d427dfeb
TH
1461
1462 /*
1463 * There must be no failure case after here, since rebinding takes
1464 * care of subsystems' refcounts, which are explicitly dropped in
1465 * the failure exit path.
1466 */
1467 list_add(&root->root_list, &cgroup_roots);
1468 cgroup_root_count++;
1469
1470 /*
1471 * Link the top cgroup in this hierarchy into all the css_set
1472 * objects.
1473 */
1474 write_lock(&css_set_lock);
1475 hash_for_each(css_set_table, i, cset, hlist)
1476 link_css_set(&tmp_links, cset, root_cgrp);
1477 write_unlock(&css_set_lock);
1478
1479 BUG_ON(!list_empty(&root_cgrp->children));
1480 BUG_ON(root->number_of_cgroups != 1);
1481
2bd59d48 1482 kernfs_activate(root_cgrp->kn);
d427dfeb 1483 ret = 0;
2bd59d48 1484 goto out;
d427dfeb 1485
2bd59d48
TH
1486destroy_root:
1487 kernfs_destroy_root(root->kf_root);
1488 root->kf_root = NULL;
1489exit_root_id:
d427dfeb 1490 cgroup_exit_root_id(root);
2bd59d48 1491out:
d427dfeb
TH
1492 free_cgrp_cset_links(&tmp_links);
1493 return ret;
1494}
1495
f7e83571 1496static struct dentry *cgroup_mount(struct file_system_type *fs_type,
ddbcc7e8 1497 int flags, const char *unused_dev_name,
f7e83571 1498 void *data)
ddbcc7e8 1499{
2bd59d48 1500 struct cgroupfs_root *root;
ddbcc7e8 1501 struct cgroup_sb_opts opts;
2bd59d48 1502 struct dentry *dentry;
8e30e2b8 1503 int ret;
ddbcc7e8 1504
8e30e2b8 1505 mutex_lock(&cgroup_tree_mutex);
aae8aab4 1506 mutex_lock(&cgroup_mutex);
8e30e2b8
TH
1507
1508 /* First find the desired set of subsystems */
ddbcc7e8 1509 ret = parse_cgroupfs_options(data, &opts);
c6d57f33 1510 if (ret)
8e30e2b8 1511 goto out_unlock;
ddbcc7e8 1512
2bd59d48
TH
1513 /* look for a matching existing root */
1514 for_each_active_root(root) {
1515 bool name_match = false;
ddbcc7e8 1516
2bd59d48
TH
1517 /*
1518 * If we asked for a name then it must match. Also, if
1519 * name matches but sybsys_mask doesn't, we should fail.
1520 * Remember whether name matched.
1521 */
1522 if (opts.name) {
1523 if (strcmp(opts.name, root->name))
1524 continue;
1525 name_match = true;
1526 }
ddbcc7e8 1527
c6d57f33 1528 /*
2bd59d48
TH
1529 * If we asked for subsystems (or explicitly for no
1530 * subsystems) then they must match.
c6d57f33 1531 */
2bd59d48
TH
1532 if ((opts.subsys_mask || opts.none) &&
1533 (opts.subsys_mask != root->subsys_mask)) {
1534 if (!name_match)
1535 continue;
1536 ret = -EBUSY;
1537 goto out_unlock;
1538 }
873fe09e 1539
c7ba8287 1540 if ((root->flags ^ opts.flags) & CGRP_ROOT_OPTION_MASK) {
2a0ff3fb
JL
1541 if ((root->flags | opts.flags) & CGRP_ROOT_SANE_BEHAVIOR) {
1542 pr_err("cgroup: sane_behavior: new mount options should match the existing superblock\n");
1543 ret = -EINVAL;
8e30e2b8 1544 goto out_unlock;
2a0ff3fb
JL
1545 } else {
1546 pr_warning("cgroup: new mount options do not match the existing superblock, will be ignored\n");
1547 }
873fe09e 1548 }
2bd59d48
TH
1549
1550 cgroup_get_root(root);
1551 goto out_unlock;
ddbcc7e8
PM
1552 }
1553
2bd59d48
TH
1554 /* no such thing, create a new one */
1555 root = cgroup_root_from_opts(&opts);
1556 if (IS_ERR(root)) {
1557 ret = PTR_ERR(root);
1558 goto out_unlock;
1559 }
1560
1561 ret = cgroup_setup_root(root);
1562 if (ret)
1563 cgroup_free_root(root);
1564
8e30e2b8 1565out_unlock:
e25e2cbb 1566 mutex_unlock(&cgroup_mutex);
ace2bee8 1567 mutex_unlock(&cgroup_tree_mutex);
8e30e2b8 1568
c6d57f33
PM
1569 kfree(opts.release_agent);
1570 kfree(opts.name);
8e30e2b8 1571
2bd59d48 1572 if (ret)
8e30e2b8 1573 return ERR_PTR(ret);
2bd59d48
TH
1574
1575 dentry = kernfs_mount(fs_type, flags, root->kf_root);
1576 if (IS_ERR(dentry))
1577 cgroup_put_root(root);
1578 return dentry;
1579}
1580
1581static void cgroup_kill_sb(struct super_block *sb)
1582{
1583 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
1584 struct cgroupfs_root *root = cgroup_root_from_kf(kf_root);
1585
1586 cgroup_put_root(root);
1587 kernfs_kill_sb(sb);
ddbcc7e8
PM
1588}
1589
ddbcc7e8
PM
1590static struct file_system_type cgroup_fs_type = {
1591 .name = "cgroup",
f7e83571 1592 .mount = cgroup_mount,
ddbcc7e8
PM
1593 .kill_sb = cgroup_kill_sb,
1594};
1595
676db4af
GKH
1596static struct kobject *cgroup_kobj;
1597
a043e3b2
LZ
1598/**
1599 * cgroup_path - generate the path of a cgroup
1600 * @cgrp: the cgroup in question
1601 * @buf: the buffer to write the path into
1602 * @buflen: the length of the buffer
1603 *
65dff759
LZ
1604 * Writes path of cgroup into buf. Returns 0 on success, -errno on error.
1605 *
1606 * We can't generate cgroup path using dentry->d_name, as accessing
1607 * dentry->name must be protected by irq-unsafe dentry->d_lock or parent
1608 * inode's i_mutex, while on the other hand cgroup_path() can be called
1609 * with some irq-safe spinlocks held.
ddbcc7e8 1610 */
bd89aabc 1611int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
ddbcc7e8 1612{
65dff759 1613 int ret = -ENAMETOOLONG;
ddbcc7e8 1614 char *start;
febfcef6 1615
da1f296f
TH
1616 if (!cgrp->parent) {
1617 if (strlcpy(buf, "/", buflen) >= buflen)
1618 return -ENAMETOOLONG;
ddbcc7e8
PM
1619 return 0;
1620 }
1621
316eb661 1622 start = buf + buflen - 1;
316eb661 1623 *start = '\0';
9a9686b6 1624
65dff759 1625 rcu_read_lock();
da1f296f 1626 do {
65dff759
LZ
1627 const char *name = cgroup_name(cgrp);
1628 int len;
1629
1630 len = strlen(name);
ddbcc7e8 1631 if ((start -= len) < buf)
65dff759
LZ
1632 goto out;
1633 memcpy(start, name, len);
9a9686b6 1634
ddbcc7e8 1635 if (--start < buf)
65dff759 1636 goto out;
ddbcc7e8 1637 *start = '/';
65dff759
LZ
1638
1639 cgrp = cgrp->parent;
da1f296f 1640 } while (cgrp->parent);
65dff759 1641 ret = 0;
ddbcc7e8 1642 memmove(buf, start, buf + buflen - start);
65dff759
LZ
1643out:
1644 rcu_read_unlock();
1645 return ret;
ddbcc7e8 1646}
67523c48 1647EXPORT_SYMBOL_GPL(cgroup_path);
ddbcc7e8 1648
857a2beb 1649/**
913ffdb5 1650 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
857a2beb 1651 * @task: target task
857a2beb
TH
1652 * @buf: the buffer to write the path into
1653 * @buflen: the length of the buffer
1654 *
913ffdb5
TH
1655 * Determine @task's cgroup on the first (the one with the lowest non-zero
1656 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
1657 * function grabs cgroup_mutex and shouldn't be used inside locks used by
1658 * cgroup controller callbacks.
1659 *
1660 * Returns 0 on success, fails with -%ENAMETOOLONG if @buflen is too short.
857a2beb 1661 */
913ffdb5 1662int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
857a2beb
TH
1663{
1664 struct cgroupfs_root *root;
913ffdb5
TH
1665 struct cgroup *cgrp;
1666 int hierarchy_id = 1, ret = 0;
1667
1668 if (buflen < 2)
1669 return -ENAMETOOLONG;
857a2beb
TH
1670
1671 mutex_lock(&cgroup_mutex);
1672
913ffdb5
TH
1673 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
1674
857a2beb
TH
1675 if (root) {
1676 cgrp = task_cgroup_from_root(task, root);
1677 ret = cgroup_path(cgrp, buf, buflen);
913ffdb5
TH
1678 } else {
1679 /* if no hierarchy exists, everyone is in "/" */
1680 memcpy(buf, "/", 2);
857a2beb
TH
1681 }
1682
1683 mutex_unlock(&cgroup_mutex);
857a2beb
TH
1684 return ret;
1685}
913ffdb5 1686EXPORT_SYMBOL_GPL(task_cgroup_path);
857a2beb 1687
2f7ee569
TH
1688/*
1689 * Control Group taskset
1690 */
134d3373
TH
1691struct task_and_cgroup {
1692 struct task_struct *task;
1693 struct cgroup *cgrp;
6f4b7e63 1694 struct css_set *cset;
134d3373
TH
1695};
1696
2f7ee569
TH
1697struct cgroup_taskset {
1698 struct task_and_cgroup single;
1699 struct flex_array *tc_array;
1700 int tc_array_len;
1701 int idx;
1702 struct cgroup *cur_cgrp;
1703};
1704
1705/**
1706 * cgroup_taskset_first - reset taskset and return the first task
1707 * @tset: taskset of interest
1708 *
1709 * @tset iteration is initialized and the first task is returned.
1710 */
1711struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
1712{
1713 if (tset->tc_array) {
1714 tset->idx = 0;
1715 return cgroup_taskset_next(tset);
1716 } else {
1717 tset->cur_cgrp = tset->single.cgrp;
1718 return tset->single.task;
1719 }
1720}
1721EXPORT_SYMBOL_GPL(cgroup_taskset_first);
1722
1723/**
1724 * cgroup_taskset_next - iterate to the next task in taskset
1725 * @tset: taskset of interest
1726 *
1727 * Return the next task in @tset. Iteration must have been initialized
1728 * with cgroup_taskset_first().
1729 */
1730struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
1731{
1732 struct task_and_cgroup *tc;
1733
1734 if (!tset->tc_array || tset->idx >= tset->tc_array_len)
1735 return NULL;
1736
1737 tc = flex_array_get(tset->tc_array, tset->idx++);
1738 tset->cur_cgrp = tc->cgrp;
1739 return tc->task;
1740}
1741EXPORT_SYMBOL_GPL(cgroup_taskset_next);
1742
1743/**
d99c8727 1744 * cgroup_taskset_cur_css - return the matching css for the current task
2f7ee569 1745 * @tset: taskset of interest
d99c8727 1746 * @subsys_id: the ID of the target subsystem
2f7ee569 1747 *
d99c8727
TH
1748 * Return the css for the current (last returned) task of @tset for
1749 * subsystem specified by @subsys_id. This function must be preceded by
1750 * either cgroup_taskset_first() or cgroup_taskset_next().
2f7ee569 1751 */
d99c8727
TH
1752struct cgroup_subsys_state *cgroup_taskset_cur_css(struct cgroup_taskset *tset,
1753 int subsys_id)
2f7ee569 1754{
ca8bdcaf 1755 return cgroup_css(tset->cur_cgrp, cgroup_subsys[subsys_id]);
2f7ee569 1756}
d99c8727 1757EXPORT_SYMBOL_GPL(cgroup_taskset_cur_css);
2f7ee569
TH
1758
1759/**
1760 * cgroup_taskset_size - return the number of tasks in taskset
1761 * @tset: taskset of interest
1762 */
1763int cgroup_taskset_size(struct cgroup_taskset *tset)
1764{
1765 return tset->tc_array ? tset->tc_array_len : 1;
1766}
1767EXPORT_SYMBOL_GPL(cgroup_taskset_size);
1768
1769
74a1166d
BB
1770/*
1771 * cgroup_task_migrate - move a task from one cgroup to another.
1772 *
d0b2fdd2 1773 * Must be called with cgroup_mutex and threadgroup locked.
74a1166d 1774 */
5abb8855
TH
1775static void cgroup_task_migrate(struct cgroup *old_cgrp,
1776 struct task_struct *tsk,
1777 struct css_set *new_cset)
74a1166d 1778{
5abb8855 1779 struct css_set *old_cset;
74a1166d
BB
1780
1781 /*
026085ef
MSB
1782 * We are synchronized through threadgroup_lock() against PF_EXITING
1783 * setting such that we can't race against cgroup_exit() changing the
1784 * css_set to init_css_set and dropping the old one.
74a1166d 1785 */
c84cdf75 1786 WARN_ON_ONCE(tsk->flags & PF_EXITING);
a8ad805c 1787 old_cset = task_css_set(tsk);
74a1166d 1788
74a1166d 1789 task_lock(tsk);
5abb8855 1790 rcu_assign_pointer(tsk->cgroups, new_cset);
74a1166d
BB
1791 task_unlock(tsk);
1792
1793 /* Update the css_set linked lists if we're using them */
1794 write_lock(&css_set_lock);
1795 if (!list_empty(&tsk->cg_list))
5abb8855 1796 list_move(&tsk->cg_list, &new_cset->tasks);
74a1166d
BB
1797 write_unlock(&css_set_lock);
1798
1799 /*
5abb8855
TH
1800 * We just gained a reference on old_cset by taking it from the
1801 * task. As trading it for new_cset is protected by cgroup_mutex,
1802 * we're safe to drop it here; it will be freed under RCU.
74a1166d 1803 */
5abb8855
TH
1804 set_bit(CGRP_RELEASABLE, &old_cgrp->flags);
1805 put_css_set(old_cset);
74a1166d
BB
1806}
1807
a043e3b2 1808/**
081aa458 1809 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
74a1166d 1810 * @cgrp: the cgroup to attach to
081aa458
LZ
1811 * @tsk: the task or the leader of the threadgroup to be attached
1812 * @threadgroup: attach the whole threadgroup?
74a1166d 1813 *
257058ae 1814 * Call holding cgroup_mutex and the group_rwsem of the leader. Will take
081aa458 1815 * task_lock of @tsk or each thread in the threadgroup individually in turn.
74a1166d 1816 */
47cfcd09
TH
1817static int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk,
1818 bool threadgroup)
74a1166d
BB
1819{
1820 int retval, i, group_size;
74a1166d 1821 struct cgroupfs_root *root = cgrp->root;
1c6727af 1822 struct cgroup_subsys_state *css, *failed_css = NULL;
74a1166d 1823 /* threadgroup list cursor and array */
081aa458 1824 struct task_struct *leader = tsk;
134d3373 1825 struct task_and_cgroup *tc;
d846687d 1826 struct flex_array *group;
2f7ee569 1827 struct cgroup_taskset tset = { };
74a1166d
BB
1828
1829 /*
1830 * step 0: in order to do expensive, possibly blocking operations for
1831 * every thread, we cannot iterate the thread group list, since it needs
1832 * rcu or tasklist locked. instead, build an array of all threads in the
257058ae
TH
1833 * group - group_rwsem prevents new threads from appearing, and if
1834 * threads exit, this will just be an over-estimate.
74a1166d 1835 */
081aa458
LZ
1836 if (threadgroup)
1837 group_size = get_nr_threads(tsk);
1838 else
1839 group_size = 1;
d846687d 1840 /* flex_array supports very large thread-groups better than kmalloc. */
134d3373 1841 group = flex_array_alloc(sizeof(*tc), group_size, GFP_KERNEL);
74a1166d
BB
1842 if (!group)
1843 return -ENOMEM;
d846687d 1844 /* pre-allocate to guarantee space while iterating in rcu read-side. */
3ac1707a 1845 retval = flex_array_prealloc(group, 0, group_size, GFP_KERNEL);
d846687d
BB
1846 if (retval)
1847 goto out_free_group_list;
74a1166d 1848
74a1166d 1849 i = 0;
fb5d2b4c
MSB
1850 /*
1851 * Prevent freeing of tasks while we take a snapshot. Tasks that are
1852 * already PF_EXITING could be freed from underneath us unless we
1853 * take an rcu_read_lock.
1854 */
1855 rcu_read_lock();
74a1166d 1856 do {
134d3373
TH
1857 struct task_and_cgroup ent;
1858
cd3d0952
TH
1859 /* @tsk either already exited or can't exit until the end */
1860 if (tsk->flags & PF_EXITING)
ea84753c 1861 goto next;
cd3d0952 1862
74a1166d
BB
1863 /* as per above, nr_threads may decrease, but not increase. */
1864 BUG_ON(i >= group_size);
134d3373
TH
1865 ent.task = tsk;
1866 ent.cgrp = task_cgroup_from_root(tsk, root);
892a2b90
MSB
1867 /* nothing to do if this task is already in the cgroup */
1868 if (ent.cgrp == cgrp)
ea84753c 1869 goto next;
61d1d219
MSB
1870 /*
1871 * saying GFP_ATOMIC has no effect here because we did prealloc
1872 * earlier, but it's good form to communicate our expectations.
1873 */
134d3373 1874 retval = flex_array_put(group, i, &ent, GFP_ATOMIC);
d846687d 1875 BUG_ON(retval != 0);
74a1166d 1876 i++;
ea84753c 1877 next:
081aa458
LZ
1878 if (!threadgroup)
1879 break;
74a1166d 1880 } while_each_thread(leader, tsk);
fb5d2b4c 1881 rcu_read_unlock();
74a1166d
BB
1882 /* remember the number of threads in the array for later. */
1883 group_size = i;
2f7ee569
TH
1884 tset.tc_array = group;
1885 tset.tc_array_len = group_size;
74a1166d 1886
134d3373
TH
1887 /* methods shouldn't be called if no task is actually migrating */
1888 retval = 0;
892a2b90 1889 if (!group_size)
b07ef774 1890 goto out_free_group_list;
134d3373 1891
74a1166d
BB
1892 /*
1893 * step 1: check that we can legitimately attach to the cgroup.
1894 */
1c6727af
TH
1895 for_each_css(css, i, cgrp) {
1896 if (css->ss->can_attach) {
1897 retval = css->ss->can_attach(css, &tset);
74a1166d 1898 if (retval) {
1c6727af 1899 failed_css = css;
74a1166d
BB
1900 goto out_cancel_attach;
1901 }
1902 }
74a1166d
BB
1903 }
1904
1905 /*
1906 * step 2: make sure css_sets exist for all threads to be migrated.
1907 * we use find_css_set, which allocates a new one if necessary.
1908 */
74a1166d 1909 for (i = 0; i < group_size; i++) {
a8ad805c
TH
1910 struct css_set *old_cset;
1911
134d3373 1912 tc = flex_array_get(group, i);
a8ad805c 1913 old_cset = task_css_set(tc->task);
6f4b7e63
LZ
1914 tc->cset = find_css_set(old_cset, cgrp);
1915 if (!tc->cset) {
61d1d219
MSB
1916 retval = -ENOMEM;
1917 goto out_put_css_set_refs;
74a1166d
BB
1918 }
1919 }
1920
1921 /*
494c167c
TH
1922 * step 3: now that we're guaranteed success wrt the css_sets,
1923 * proceed to move all tasks to the new cgroup. There are no
1924 * failure cases after here, so this is the commit point.
74a1166d 1925 */
74a1166d 1926 for (i = 0; i < group_size; i++) {
134d3373 1927 tc = flex_array_get(group, i);
6f4b7e63 1928 cgroup_task_migrate(tc->cgrp, tc->task, tc->cset);
74a1166d
BB
1929 }
1930 /* nothing is sensitive to fork() after this point. */
1931
1932 /*
494c167c 1933 * step 4: do subsystem attach callbacks.
74a1166d 1934 */
1c6727af
TH
1935 for_each_css(css, i, cgrp)
1936 if (css->ss->attach)
1937 css->ss->attach(css, &tset);
74a1166d
BB
1938
1939 /*
1940 * step 5: success! and cleanup
1941 */
74a1166d 1942 retval = 0;
61d1d219
MSB
1943out_put_css_set_refs:
1944 if (retval) {
1945 for (i = 0; i < group_size; i++) {
1946 tc = flex_array_get(group, i);
6f4b7e63 1947 if (!tc->cset)
61d1d219 1948 break;
6f4b7e63 1949 put_css_set(tc->cset);
61d1d219 1950 }
74a1166d
BB
1951 }
1952out_cancel_attach:
74a1166d 1953 if (retval) {
1c6727af
TH
1954 for_each_css(css, i, cgrp) {
1955 if (css == failed_css)
74a1166d 1956 break;
1c6727af
TH
1957 if (css->ss->cancel_attach)
1958 css->ss->cancel_attach(css, &tset);
74a1166d
BB
1959 }
1960 }
74a1166d 1961out_free_group_list:
d846687d 1962 flex_array_free(group);
74a1166d
BB
1963 return retval;
1964}
1965
1966/*
1967 * Find the task_struct of the task to attach by vpid and pass it along to the
cd3d0952
TH
1968 * function to attach either it or all tasks in its threadgroup. Will lock
1969 * cgroup_mutex and threadgroup; may take task_lock of task.
bbcb81d0 1970 */
74a1166d 1971static int attach_task_by_pid(struct cgroup *cgrp, u64 pid, bool threadgroup)
bbcb81d0 1972{
bbcb81d0 1973 struct task_struct *tsk;
c69e8d9c 1974 const struct cred *cred = current_cred(), *tcred;
bbcb81d0
PM
1975 int ret;
1976
74a1166d
BB
1977 if (!cgroup_lock_live_group(cgrp))
1978 return -ENODEV;
1979
b78949eb
MSB
1980retry_find_task:
1981 rcu_read_lock();
bbcb81d0 1982 if (pid) {
73507f33 1983 tsk = find_task_by_vpid(pid);
74a1166d
BB
1984 if (!tsk) {
1985 rcu_read_unlock();
dd4b0a46 1986 ret = -ESRCH;
b78949eb 1987 goto out_unlock_cgroup;
bbcb81d0 1988 }
74a1166d
BB
1989 /*
1990 * even if we're attaching all tasks in the thread group, we
1991 * only need to check permissions on one of them.
1992 */
c69e8d9c 1993 tcred = __task_cred(tsk);
14a590c3
EB
1994 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
1995 !uid_eq(cred->euid, tcred->uid) &&
1996 !uid_eq(cred->euid, tcred->suid)) {
c69e8d9c 1997 rcu_read_unlock();
b78949eb
MSB
1998 ret = -EACCES;
1999 goto out_unlock_cgroup;
bbcb81d0 2000 }
b78949eb
MSB
2001 } else
2002 tsk = current;
cd3d0952
TH
2003
2004 if (threadgroup)
b78949eb 2005 tsk = tsk->group_leader;
c4c27fbd
MG
2006
2007 /*
14a40ffc 2008 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
c4c27fbd
MG
2009 * trapped in a cpuset, or RT worker may be born in a cgroup
2010 * with no rt_runtime allocated. Just say no.
2011 */
14a40ffc 2012 if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
c4c27fbd
MG
2013 ret = -EINVAL;
2014 rcu_read_unlock();
2015 goto out_unlock_cgroup;
2016 }
2017
b78949eb
MSB
2018 get_task_struct(tsk);
2019 rcu_read_unlock();
2020
2021 threadgroup_lock(tsk);
2022 if (threadgroup) {
2023 if (!thread_group_leader(tsk)) {
2024 /*
2025 * a race with de_thread from another thread's exec()
2026 * may strip us of our leadership, if this happens,
2027 * there is no choice but to throw this task away and
2028 * try again; this is
2029 * "double-double-toil-and-trouble-check locking".
2030 */
2031 threadgroup_unlock(tsk);
2032 put_task_struct(tsk);
2033 goto retry_find_task;
2034 }
081aa458
LZ
2035 }
2036
2037 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
2038
cd3d0952
TH
2039 threadgroup_unlock(tsk);
2040
bbcb81d0 2041 put_task_struct(tsk);
b78949eb 2042out_unlock_cgroup:
47cfcd09 2043 mutex_unlock(&cgroup_mutex);
bbcb81d0
PM
2044 return ret;
2045}
2046
7ae1bad9
TH
2047/**
2048 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2049 * @from: attach to all cgroups of a given task
2050 * @tsk: the task to be attached
2051 */
2052int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2053{
2054 struct cgroupfs_root *root;
2055 int retval = 0;
2056
47cfcd09 2057 mutex_lock(&cgroup_mutex);
7ae1bad9 2058 for_each_active_root(root) {
6f4b7e63 2059 struct cgroup *from_cgrp = task_cgroup_from_root(from, root);
7ae1bad9 2060
6f4b7e63 2061 retval = cgroup_attach_task(from_cgrp, tsk, false);
7ae1bad9
TH
2062 if (retval)
2063 break;
2064 }
47cfcd09 2065 mutex_unlock(&cgroup_mutex);
7ae1bad9
TH
2066
2067 return retval;
2068}
2069EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2070
182446d0
TH
2071static int cgroup_tasks_write(struct cgroup_subsys_state *css,
2072 struct cftype *cft, u64 pid)
74a1166d 2073{
182446d0 2074 return attach_task_by_pid(css->cgroup, pid, false);
74a1166d
BB
2075}
2076
182446d0
TH
2077static int cgroup_procs_write(struct cgroup_subsys_state *css,
2078 struct cftype *cft, u64 tgid)
af351026 2079{
182446d0 2080 return attach_task_by_pid(css->cgroup, tgid, true);
af351026
PM
2081}
2082
182446d0
TH
2083static int cgroup_release_agent_write(struct cgroup_subsys_state *css,
2084 struct cftype *cft, const char *buffer)
e788e066 2085{
5f469907
TH
2086 struct cgroupfs_root *root = css->cgroup->root;
2087
2088 BUILD_BUG_ON(sizeof(root->release_agent_path) < PATH_MAX);
182446d0 2089 if (!cgroup_lock_live_group(css->cgroup))
e788e066 2090 return -ENODEV;
69e943b7 2091 spin_lock(&release_agent_path_lock);
5f469907
TH
2092 strlcpy(root->release_agent_path, buffer,
2093 sizeof(root->release_agent_path));
69e943b7 2094 spin_unlock(&release_agent_path_lock);
47cfcd09 2095 mutex_unlock(&cgroup_mutex);
e788e066
PM
2096 return 0;
2097}
2098
2da8ca82 2099static int cgroup_release_agent_show(struct seq_file *seq, void *v)
e788e066 2100{
2da8ca82 2101 struct cgroup *cgrp = seq_css(seq)->cgroup;
182446d0 2102
e788e066
PM
2103 if (!cgroup_lock_live_group(cgrp))
2104 return -ENODEV;
2105 seq_puts(seq, cgrp->root->release_agent_path);
2106 seq_putc(seq, '\n');
47cfcd09 2107 mutex_unlock(&cgroup_mutex);
e788e066
PM
2108 return 0;
2109}
2110
2da8ca82 2111static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
873fe09e 2112{
2da8ca82
TH
2113 struct cgroup *cgrp = seq_css(seq)->cgroup;
2114
2115 seq_printf(seq, "%d\n", cgroup_sane_behavior(cgrp));
e788e066
PM
2116 return 0;
2117}
2118
2bd59d48
TH
2119static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
2120 size_t nbytes, loff_t off)
355e0c48 2121{
2bd59d48
TH
2122 struct cgroup *cgrp = of->kn->parent->priv;
2123 struct cftype *cft = of->kn->priv;
2124 struct cgroup_subsys_state *css;
a742c59d 2125 int ret;
355e0c48 2126
2bd59d48
TH
2127 /*
2128 * kernfs guarantees that a file isn't deleted with operations in
2129 * flight, which means that the matching css is and stays alive and
2130 * doesn't need to be pinned. The RCU locking is not necessary
2131 * either. It's just for the convenience of using cgroup_css().
2132 */
2133 rcu_read_lock();
2134 css = cgroup_css(cgrp, cft->ss);
2135 rcu_read_unlock();
a742c59d
TH
2136
2137 if (cft->write_string) {
2138 ret = cft->write_string(css, cft, strstrip(buf));
2139 } else if (cft->write_u64) {
2140 unsigned long long v;
2141 ret = kstrtoull(buf, 0, &v);
2142 if (!ret)
2143 ret = cft->write_u64(css, cft, v);
2144 } else if (cft->write_s64) {
2145 long long v;
2146 ret = kstrtoll(buf, 0, &v);
2147 if (!ret)
2148 ret = cft->write_s64(css, cft, v);
2149 } else if (cft->trigger) {
2150 ret = cft->trigger(css, (unsigned int)cft->private);
e73d2c61 2151 } else {
a742c59d 2152 ret = -EINVAL;
e73d2c61 2153 }
2bd59d48 2154
a742c59d 2155 return ret ?: nbytes;
355e0c48
PM
2156}
2157
6612f05b 2158static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
db3b1497 2159{
2bd59d48 2160 return seq_cft(seq)->seq_start(seq, ppos);
db3b1497
PM
2161}
2162
6612f05b 2163static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
ddbcc7e8 2164{
2bd59d48 2165 return seq_cft(seq)->seq_next(seq, v, ppos);
ddbcc7e8
PM
2166}
2167
6612f05b 2168static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
ddbcc7e8 2169{
2bd59d48 2170 seq_cft(seq)->seq_stop(seq, v);
ddbcc7e8
PM
2171}
2172
91796569 2173static int cgroup_seqfile_show(struct seq_file *m, void *arg)
e73d2c61 2174{
7da11279
TH
2175 struct cftype *cft = seq_cft(m);
2176 struct cgroup_subsys_state *css = seq_css(m);
e73d2c61 2177
2da8ca82
TH
2178 if (cft->seq_show)
2179 return cft->seq_show(m, arg);
e73d2c61 2180
f4c753b7 2181 if (cft->read_u64)
896f5199
TH
2182 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
2183 else if (cft->read_s64)
2184 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
2185 else
2186 return -EINVAL;
2187 return 0;
91796569
PM
2188}
2189
2bd59d48
TH
2190static struct kernfs_ops cgroup_kf_single_ops = {
2191 .atomic_write_len = PAGE_SIZE,
2192 .write = cgroup_file_write,
2193 .seq_show = cgroup_seqfile_show,
91796569
PM
2194};
2195
2bd59d48
TH
2196static struct kernfs_ops cgroup_kf_ops = {
2197 .atomic_write_len = PAGE_SIZE,
2198 .write = cgroup_file_write,
2199 .seq_start = cgroup_seqfile_start,
2200 .seq_next = cgroup_seqfile_next,
2201 .seq_stop = cgroup_seqfile_stop,
2202 .seq_show = cgroup_seqfile_show,
2203};
ddbcc7e8
PM
2204
2205/*
2206 * cgroup_rename - Only allow simple rename of directories in place.
2207 */
2bd59d48
TH
2208static int cgroup_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
2209 const char *new_name_str)
ddbcc7e8 2210{
2bd59d48 2211 struct cgroup *cgrp = kn->priv;
65dff759 2212 struct cgroup_name *name, *old_name;
2bd59d48 2213 int ret;
65dff759 2214
2bd59d48 2215 if (kernfs_type(kn) != KERNFS_DIR)
ddbcc7e8 2216 return -ENOTDIR;
2bd59d48 2217 if (kn->parent != new_parent)
ddbcc7e8 2218 return -EIO;
65dff759 2219
6db8e85c
TH
2220 /*
2221 * This isn't a proper migration and its usefulness is very
2222 * limited. Disallow if sane_behavior.
2223 */
2224 if (cgroup_sane_behavior(cgrp))
2225 return -EPERM;
2226
2bd59d48 2227 name = cgroup_alloc_name(new_name_str);
65dff759
LZ
2228 if (!name)
2229 return -ENOMEM;
2230
2bd59d48
TH
2231 mutex_lock(&cgroup_tree_mutex);
2232 mutex_lock(&cgroup_mutex);
2233
2234 ret = kernfs_rename(kn, new_parent, new_name_str);
2235 if (!ret) {
2236 old_name = rcu_dereference_protected(cgrp->name, true);
2237 rcu_assign_pointer(cgrp->name, name);
2238 } else {
2239 old_name = name;
65dff759
LZ
2240 }
2241
2bd59d48
TH
2242 mutex_unlock(&cgroup_mutex);
2243 mutex_unlock(&cgroup_tree_mutex);
65dff759
LZ
2244
2245 kfree_rcu(old_name, rcu_head);
2bd59d48 2246 return ret;
ddbcc7e8
PM
2247}
2248
2bb566cb 2249static int cgroup_add_file(struct cgroup *cgrp, struct cftype *cft)
ddbcc7e8 2250{
8d7e6fb0 2251 char name[CGROUP_FILE_NAME_MAX];
2bd59d48
TH
2252 struct kernfs_node *kn;
2253 struct lock_class_key *key = NULL;
05ef1d7c 2254
2bd59d48
TH
2255#ifdef CONFIG_DEBUG_LOCK_ALLOC
2256 key = &cft->lockdep_key;
2257#endif
2258 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
2259 cgroup_file_mode(cft), 0, cft->kf_ops, cft,
2260 NULL, false, key);
2261 if (IS_ERR(kn))
2262 return PTR_ERR(kn);
2263 return 0;
ddbcc7e8
PM
2264}
2265
b1f28d31
TH
2266/**
2267 * cgroup_addrm_files - add or remove files to a cgroup directory
2268 * @cgrp: the target cgroup
b1f28d31
TH
2269 * @cfts: array of cftypes to be added
2270 * @is_add: whether to add or remove
2271 *
2272 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
2bb566cb
TH
2273 * For removals, this function never fails. If addition fails, this
2274 * function doesn't remove files already added. The caller is responsible
2275 * for cleaning up.
b1f28d31 2276 */
2bb566cb
TH
2277static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
2278 bool is_add)
ddbcc7e8 2279{
03b1cde6 2280 struct cftype *cft;
b1f28d31
TH
2281 int ret;
2282
ace2bee8 2283 lockdep_assert_held(&cgroup_tree_mutex);
db0416b6
TH
2284
2285 for (cft = cfts; cft->name[0] != '\0'; cft++) {
f33fddc2 2286 /* does cft->flags tell us to skip this file on @cgrp? */
873fe09e
TH
2287 if ((cft->flags & CFTYPE_INSANE) && cgroup_sane_behavior(cgrp))
2288 continue;
f33fddc2
G
2289 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgrp->parent)
2290 continue;
2291 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgrp->parent)
2292 continue;
2293
2739d3cc 2294 if (is_add) {
2bb566cb 2295 ret = cgroup_add_file(cgrp, cft);
b1f28d31 2296 if (ret) {
2739d3cc 2297 pr_warn("cgroup_addrm_files: failed to add %s, err=%d\n",
b1f28d31
TH
2298 cft->name, ret);
2299 return ret;
2300 }
2739d3cc
LZ
2301 } else {
2302 cgroup_rm_file(cgrp, cft);
db0416b6 2303 }
ddbcc7e8 2304 }
b1f28d31 2305 return 0;
ddbcc7e8
PM
2306}
2307
8e3f6541 2308static void cgroup_cfts_prepare(void)
e8c82d20 2309 __acquires(&cgroup_mutex)
8e3f6541
TH
2310{
2311 /*
2312 * Thanks to the entanglement with vfs inode locking, we can't walk
2313 * the existing cgroups under cgroup_mutex and create files.
492eb21b
TH
2314 * Instead, we use css_for_each_descendant_pre() and drop RCU read
2315 * lock before calling cgroup_addrm_files().
8e3f6541 2316 */
ace2bee8 2317 mutex_lock(&cgroup_tree_mutex);
8e3f6541
TH
2318 mutex_lock(&cgroup_mutex);
2319}
2320
2bb566cb 2321static int cgroup_cfts_commit(struct cftype *cfts, bool is_add)
e8c82d20 2322 __releases(&cgroup_mutex)
8e3f6541
TH
2323{
2324 LIST_HEAD(pending);
2bb566cb 2325 struct cgroup_subsys *ss = cfts[0].ss;
492eb21b 2326 struct cgroup *root = &ss->root->top_cgroup;
59f5296b 2327 struct cgroup *prev = NULL;
492eb21b 2328 struct cgroup_subsys_state *css;
00356bd5 2329 u64 update_before;
9ccece80 2330 int ret = 0;
8e3f6541 2331
4ac06017
TH
2332 mutex_unlock(&cgroup_mutex);
2333
8e3f6541 2334 /* %NULL @cfts indicates abort and don't bother if @ss isn't attached */
2bd59d48 2335 if (!cfts || ss->root == &cgroup_dummy_root) {
ace2bee8 2336 mutex_unlock(&cgroup_tree_mutex);
9ccece80 2337 return 0;
8e3f6541
TH
2338 }
2339
2bd59d48
TH
2340 cgroup_get_root(ss->root);
2341
8e3f6541 2342 /*
e8c82d20
LZ
2343 * All cgroups which are created after we drop cgroup_mutex will
2344 * have the updated set of files, so we only need to update the
00356bd5 2345 * cgroups created before the current @cgroup_serial_nr_next.
8e3f6541 2346 */
00356bd5 2347 update_before = cgroup_serial_nr_next;
e8c82d20 2348
e8c82d20 2349 /* add/rm files for all cgroups created before */
ca8bdcaf 2350 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
492eb21b
TH
2351 struct cgroup *cgrp = css->cgroup;
2352
e8c82d20
LZ
2353 if (cgroup_is_dead(cgrp))
2354 continue;
2355
59f5296b
TH
2356 cgroup_get(cgrp);
2357 if (prev)
2358 cgroup_put(prev);
2359 prev = cgrp;
8e3f6541 2360
2bd59d48 2361 if (cgrp->serial_nr < update_before && !cgroup_is_dead(cgrp)) {
2bb566cb 2362 ret = cgroup_addrm_files(cgrp, cfts, is_add);
2bd59d48
TH
2363 if (is_add)
2364 kernfs_activate(cgrp->kn);
2365 }
9ccece80
TH
2366 if (ret)
2367 break;
8e3f6541 2368 }
ace2bee8 2369 mutex_unlock(&cgroup_tree_mutex);
59f5296b
TH
2370 cgroup_put(prev);
2371 cgroup_put_root(ss->root);
9ccece80 2372 return ret;
8e3f6541
TH
2373}
2374
2da440a2
TH
2375static void cgroup_exit_cftypes(struct cftype *cfts)
2376{
2377 struct cftype *cft;
2378
2bd59d48
TH
2379 for (cft = cfts; cft->name[0] != '\0'; cft++) {
2380 /* free copy for custom atomic_write_len, see init_cftypes() */
2381 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
2382 kfree(cft->kf_ops);
2383 cft->kf_ops = NULL;
2da440a2 2384 cft->ss = NULL;
2bd59d48 2385 }
2da440a2
TH
2386}
2387
2bd59d48 2388static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
2da440a2
TH
2389{
2390 struct cftype *cft;
2391
2bd59d48
TH
2392 for (cft = cfts; cft->name[0] != '\0'; cft++) {
2393 struct kernfs_ops *kf_ops;
2394
2395 if (cft->seq_start)
2396 kf_ops = &cgroup_kf_ops;
2397 else
2398 kf_ops = &cgroup_kf_single_ops;
2399
2400 /*
2401 * Ugh... if @cft wants a custom max_write_len, we need to
2402 * make a copy of kf_ops to set its atomic_write_len.
2403 */
2404 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
2405 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
2406 if (!kf_ops) {
2407 cgroup_exit_cftypes(cfts);
2408 return -ENOMEM;
2409 }
2410 kf_ops->atomic_write_len = cft->max_write_len;
2411 }
2412
2413 cft->kf_ops = kf_ops;
2da440a2 2414 cft->ss = ss;
2bd59d48
TH
2415 }
2416
2417 return 0;
2da440a2
TH
2418}
2419
8e3f6541
TH
2420/**
2421 * cgroup_add_cftypes - add an array of cftypes to a subsystem
2422 * @ss: target cgroup subsystem
2423 * @cfts: zero-length name terminated array of cftypes
2424 *
2425 * Register @cfts to @ss. Files described by @cfts are created for all
2426 * existing cgroups to which @ss is attached and all future cgroups will
2427 * have them too. This function can be called anytime whether @ss is
2428 * attached or not.
2429 *
2430 * Returns 0 on successful registration, -errno on failure. Note that this
2431 * function currently returns 0 as long as @cfts registration is successful
2432 * even if some file creation attempts on existing cgroups fail.
2433 */
03b1cde6 2434int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
8e3f6541
TH
2435{
2436 struct cftype_set *set;
9ccece80 2437 int ret;
8e3f6541
TH
2438
2439 set = kzalloc(sizeof(*set), GFP_KERNEL);
2440 if (!set)
2441 return -ENOMEM;
2442
2bd59d48
TH
2443 ret = cgroup_init_cftypes(ss, cfts);
2444 if (ret)
2445 return ret;
2bb566cb 2446
8e3f6541
TH
2447 cgroup_cfts_prepare();
2448 set->cfts = cfts;
2449 list_add_tail(&set->node, &ss->cftsets);
2bb566cb 2450 ret = cgroup_cfts_commit(cfts, true);
9ccece80 2451 if (ret)
2bb566cb 2452 cgroup_rm_cftypes(cfts);
9ccece80 2453 return ret;
8e3f6541
TH
2454}
2455EXPORT_SYMBOL_GPL(cgroup_add_cftypes);
2456
79578621
TH
2457/**
2458 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
79578621
TH
2459 * @cfts: zero-length name terminated array of cftypes
2460 *
2bb566cb
TH
2461 * Unregister @cfts. Files described by @cfts are removed from all
2462 * existing cgroups and all future cgroups won't have them either. This
2463 * function can be called anytime whether @cfts' subsys is attached or not.
79578621
TH
2464 *
2465 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
2bb566cb 2466 * registered.
79578621 2467 */
2bb566cb 2468int cgroup_rm_cftypes(struct cftype *cfts)
79578621 2469{
2da440a2 2470 struct cftype *found = NULL;
79578621
TH
2471 struct cftype_set *set;
2472
2bb566cb
TH
2473 if (!cfts || !cfts[0].ss)
2474 return -ENOENT;
2475
79578621
TH
2476 cgroup_cfts_prepare();
2477
2bb566cb 2478 list_for_each_entry(set, &cfts[0].ss->cftsets, node) {
79578621 2479 if (set->cfts == cfts) {
f57947d2
LZ
2480 list_del(&set->node);
2481 kfree(set);
2da440a2
TH
2482 found = cfts;
2483 break;
79578621
TH
2484 }
2485 }
2486
2da440a2
TH
2487 cgroup_cfts_commit(found, false);
2488 cgroup_exit_cftypes(cfts);
2489 return found ? 0 : -ENOENT;
79578621
TH
2490}
2491
a043e3b2
LZ
2492/**
2493 * cgroup_task_count - count the number of tasks in a cgroup.
2494 * @cgrp: the cgroup in question
2495 *
2496 * Return the number of tasks in the cgroup.
2497 */
bd89aabc 2498int cgroup_task_count(const struct cgroup *cgrp)
bbcb81d0
PM
2499{
2500 int count = 0;
69d0206c 2501 struct cgrp_cset_link *link;
817929ec
PM
2502
2503 read_lock(&css_set_lock);
69d0206c
TH
2504 list_for_each_entry(link, &cgrp->cset_links, cset_link)
2505 count += atomic_read(&link->cset->refcount);
817929ec 2506 read_unlock(&css_set_lock);
bbcb81d0
PM
2507 return count;
2508}
2509
817929ec 2510/*
0942eeee
TH
2511 * To reduce the fork() overhead for systems that are not actually using
2512 * their cgroups capability, we don't maintain the lists running through
2513 * each css_set to its tasks until we see the list actually used - in other
72ec7029 2514 * words after the first call to css_task_iter_start().
31a7df01 2515 */
3df91fe3 2516static void cgroup_enable_task_cg_lists(void)
31a7df01
CW
2517{
2518 struct task_struct *p, *g;
2519 write_lock(&css_set_lock);
2520 use_task_css_set_links = 1;
3ce3230a
FW
2521 /*
2522 * We need tasklist_lock because RCU is not safe against
2523 * while_each_thread(). Besides, a forking task that has passed
2524 * cgroup_post_fork() without seeing use_task_css_set_links = 1
2525 * is not guaranteed to have its child immediately visible in the
2526 * tasklist if we walk through it with RCU.
2527 */
2528 read_lock(&tasklist_lock);
31a7df01
CW
2529 do_each_thread(g, p) {
2530 task_lock(p);
0e04388f
LZ
2531 /*
2532 * We should check if the process is exiting, otherwise
2533 * it will race with cgroup_exit() in that the list
2534 * entry won't be deleted though the process has exited.
2535 */
2536 if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
a8ad805c 2537 list_add(&p->cg_list, &task_css_set(p)->tasks);
31a7df01
CW
2538 task_unlock(p);
2539 } while_each_thread(g, p);
3ce3230a 2540 read_unlock(&tasklist_lock);
31a7df01
CW
2541 write_unlock(&css_set_lock);
2542}
2543
53fa5261 2544/**
492eb21b
TH
2545 * css_next_child - find the next child of a given css
2546 * @pos_css: the current position (%NULL to initiate traversal)
2547 * @parent_css: css whose children to walk
53fa5261 2548 *
492eb21b 2549 * This function returns the next child of @parent_css and should be called
87fb54f1
TH
2550 * under either cgroup_mutex or RCU read lock. The only requirement is
2551 * that @parent_css and @pos_css are accessible. The next sibling is
2552 * guaranteed to be returned regardless of their states.
53fa5261 2553 */
492eb21b
TH
2554struct cgroup_subsys_state *
2555css_next_child(struct cgroup_subsys_state *pos_css,
2556 struct cgroup_subsys_state *parent_css)
53fa5261 2557{
492eb21b
TH
2558 struct cgroup *pos = pos_css ? pos_css->cgroup : NULL;
2559 struct cgroup *cgrp = parent_css->cgroup;
53fa5261
TH
2560 struct cgroup *next;
2561
ace2bee8 2562 cgroup_assert_mutexes_or_rcu_locked();
53fa5261
TH
2563
2564 /*
2565 * @pos could already have been removed. Once a cgroup is removed,
2566 * its ->sibling.next is no longer updated when its next sibling
ea15f8cc
TH
2567 * changes. As CGRP_DEAD assertion is serialized and happens
2568 * before the cgroup is taken off the ->sibling list, if we see it
2569 * unasserted, it's guaranteed that the next sibling hasn't
2570 * finished its grace period even if it's already removed, and thus
2571 * safe to dereference from this RCU critical section. If
2572 * ->sibling.next is inaccessible, cgroup_is_dead() is guaranteed
2573 * to be visible as %true here.
3b287a50
TH
2574 *
2575 * If @pos is dead, its next pointer can't be dereferenced;
2576 * however, as each cgroup is given a monotonically increasing
2577 * unique serial number and always appended to the sibling list,
2578 * the next one can be found by walking the parent's children until
2579 * we see a cgroup with higher serial number than @pos's. While
2580 * this path can be slower, it's taken only when either the current
2581 * cgroup is removed or iteration and removal race.
53fa5261 2582 */
3b287a50
TH
2583 if (!pos) {
2584 next = list_entry_rcu(cgrp->children.next, struct cgroup, sibling);
2585 } else if (likely(!cgroup_is_dead(pos))) {
53fa5261 2586 next = list_entry_rcu(pos->sibling.next, struct cgroup, sibling);
3b287a50
TH
2587 } else {
2588 list_for_each_entry_rcu(next, &cgrp->children, sibling)
2589 if (next->serial_nr > pos->serial_nr)
2590 break;
53fa5261
TH
2591 }
2592
492eb21b
TH
2593 if (&next->sibling == &cgrp->children)
2594 return NULL;
2595
ca8bdcaf 2596 return cgroup_css(next, parent_css->ss);
53fa5261 2597}
492eb21b 2598EXPORT_SYMBOL_GPL(css_next_child);
53fa5261 2599
574bd9f7 2600/**
492eb21b 2601 * css_next_descendant_pre - find the next descendant for pre-order walk
574bd9f7 2602 * @pos: the current position (%NULL to initiate traversal)
492eb21b 2603 * @root: css whose descendants to walk
574bd9f7 2604 *
492eb21b 2605 * To be used by css_for_each_descendant_pre(). Find the next descendant
bd8815a6
TH
2606 * to visit for pre-order traversal of @root's descendants. @root is
2607 * included in the iteration and the first node to be visited.
75501a6d 2608 *
87fb54f1
TH
2609 * While this function requires cgroup_mutex or RCU read locking, it
2610 * doesn't require the whole traversal to be contained in a single critical
2611 * section. This function will return the correct next descendant as long
2612 * as both @pos and @root are accessible and @pos is a descendant of @root.
574bd9f7 2613 */
492eb21b
TH
2614struct cgroup_subsys_state *
2615css_next_descendant_pre(struct cgroup_subsys_state *pos,
2616 struct cgroup_subsys_state *root)
574bd9f7 2617{
492eb21b 2618 struct cgroup_subsys_state *next;
574bd9f7 2619
ace2bee8 2620 cgroup_assert_mutexes_or_rcu_locked();
574bd9f7 2621
bd8815a6 2622 /* if first iteration, visit @root */
7805d000 2623 if (!pos)
bd8815a6 2624 return root;
574bd9f7
TH
2625
2626 /* visit the first child if exists */
492eb21b 2627 next = css_next_child(NULL, pos);
574bd9f7
TH
2628 if (next)
2629 return next;
2630
2631 /* no child, visit my or the closest ancestor's next sibling */
492eb21b
TH
2632 while (pos != root) {
2633 next = css_next_child(pos, css_parent(pos));
75501a6d 2634 if (next)
574bd9f7 2635 return next;
492eb21b 2636 pos = css_parent(pos);
7805d000 2637 }
574bd9f7
TH
2638
2639 return NULL;
2640}
492eb21b 2641EXPORT_SYMBOL_GPL(css_next_descendant_pre);
574bd9f7 2642
12a9d2fe 2643/**
492eb21b
TH
2644 * css_rightmost_descendant - return the rightmost descendant of a css
2645 * @pos: css of interest
12a9d2fe 2646 *
492eb21b
TH
2647 * Return the rightmost descendant of @pos. If there's no descendant, @pos
2648 * is returned. This can be used during pre-order traversal to skip
12a9d2fe 2649 * subtree of @pos.
75501a6d 2650 *
87fb54f1
TH
2651 * While this function requires cgroup_mutex or RCU read locking, it
2652 * doesn't require the whole traversal to be contained in a single critical
2653 * section. This function will return the correct rightmost descendant as
2654 * long as @pos is accessible.
12a9d2fe 2655 */
492eb21b
TH
2656struct cgroup_subsys_state *
2657css_rightmost_descendant(struct cgroup_subsys_state *pos)
12a9d2fe 2658{
492eb21b 2659 struct cgroup_subsys_state *last, *tmp;
12a9d2fe 2660
ace2bee8 2661 cgroup_assert_mutexes_or_rcu_locked();
12a9d2fe
TH
2662
2663 do {
2664 last = pos;
2665 /* ->prev isn't RCU safe, walk ->next till the end */
2666 pos = NULL;
492eb21b 2667 css_for_each_child(tmp, last)
12a9d2fe
TH
2668 pos = tmp;
2669 } while (pos);
2670
2671 return last;
2672}
492eb21b 2673EXPORT_SYMBOL_GPL(css_rightmost_descendant);
12a9d2fe 2674
492eb21b
TH
2675static struct cgroup_subsys_state *
2676css_leftmost_descendant(struct cgroup_subsys_state *pos)
574bd9f7 2677{
492eb21b 2678 struct cgroup_subsys_state *last;
574bd9f7
TH
2679
2680 do {
2681 last = pos;
492eb21b 2682 pos = css_next_child(NULL, pos);
574bd9f7
TH
2683 } while (pos);
2684
2685 return last;
2686}
2687
2688/**
492eb21b 2689 * css_next_descendant_post - find the next descendant for post-order walk
574bd9f7 2690 * @pos: the current position (%NULL to initiate traversal)
492eb21b 2691 * @root: css whose descendants to walk
574bd9f7 2692 *
492eb21b 2693 * To be used by css_for_each_descendant_post(). Find the next descendant
bd8815a6
TH
2694 * to visit for post-order traversal of @root's descendants. @root is
2695 * included in the iteration and the last node to be visited.
75501a6d 2696 *
87fb54f1
TH
2697 * While this function requires cgroup_mutex or RCU read locking, it
2698 * doesn't require the whole traversal to be contained in a single critical
2699 * section. This function will return the correct next descendant as long
2700 * as both @pos and @cgroup are accessible and @pos is a descendant of
2701 * @cgroup.
574bd9f7 2702 */
492eb21b
TH
2703struct cgroup_subsys_state *
2704css_next_descendant_post(struct cgroup_subsys_state *pos,
2705 struct cgroup_subsys_state *root)
574bd9f7 2706{
492eb21b 2707 struct cgroup_subsys_state *next;
574bd9f7 2708
ace2bee8 2709 cgroup_assert_mutexes_or_rcu_locked();
574bd9f7 2710
58b79a91
TH
2711 /* if first iteration, visit leftmost descendant which may be @root */
2712 if (!pos)
2713 return css_leftmost_descendant(root);
574bd9f7 2714
bd8815a6
TH
2715 /* if we visited @root, we're done */
2716 if (pos == root)
2717 return NULL;
2718
574bd9f7 2719 /* if there's an unvisited sibling, visit its leftmost descendant */
492eb21b 2720 next = css_next_child(pos, css_parent(pos));
75501a6d 2721 if (next)
492eb21b 2722 return css_leftmost_descendant(next);
574bd9f7
TH
2723
2724 /* no sibling left, visit parent */
bd8815a6 2725 return css_parent(pos);
574bd9f7 2726}
492eb21b 2727EXPORT_SYMBOL_GPL(css_next_descendant_post);
574bd9f7 2728
0942eeee 2729/**
72ec7029 2730 * css_advance_task_iter - advance a task itererator to the next css_set
0942eeee
TH
2731 * @it: the iterator to advance
2732 *
2733 * Advance @it to the next css_set to walk.
d515876e 2734 */
72ec7029 2735static void css_advance_task_iter(struct css_task_iter *it)
d515876e
TH
2736{
2737 struct list_head *l = it->cset_link;
2738 struct cgrp_cset_link *link;
2739 struct css_set *cset;
2740
2741 /* Advance to the next non-empty css_set */
2742 do {
2743 l = l->next;
72ec7029 2744 if (l == &it->origin_css->cgroup->cset_links) {
d515876e
TH
2745 it->cset_link = NULL;
2746 return;
2747 }
2748 link = list_entry(l, struct cgrp_cset_link, cset_link);
2749 cset = link->cset;
2750 } while (list_empty(&cset->tasks));
2751 it->cset_link = l;
2752 it->task = cset->tasks.next;
2753}
2754
0942eeee 2755/**
72ec7029
TH
2756 * css_task_iter_start - initiate task iteration
2757 * @css: the css to walk tasks of
0942eeee
TH
2758 * @it: the task iterator to use
2759 *
72ec7029
TH
2760 * Initiate iteration through the tasks of @css. The caller can call
2761 * css_task_iter_next() to walk through the tasks until the function
2762 * returns NULL. On completion of iteration, css_task_iter_end() must be
2763 * called.
0942eeee
TH
2764 *
2765 * Note that this function acquires a lock which is released when the
2766 * iteration finishes. The caller can't sleep while iteration is in
2767 * progress.
2768 */
72ec7029
TH
2769void css_task_iter_start(struct cgroup_subsys_state *css,
2770 struct css_task_iter *it)
c6ca5750 2771 __acquires(css_set_lock)
817929ec
PM
2772{
2773 /*
72ec7029
TH
2774 * The first time anyone tries to iterate across a css, we need to
2775 * enable the list linking each css_set to its tasks, and fix up
2776 * all existing tasks.
817929ec 2777 */
31a7df01
CW
2778 if (!use_task_css_set_links)
2779 cgroup_enable_task_cg_lists();
2780
817929ec 2781 read_lock(&css_set_lock);
c59cd3d8 2782
72ec7029
TH
2783 it->origin_css = css;
2784 it->cset_link = &css->cgroup->cset_links;
c59cd3d8 2785
72ec7029 2786 css_advance_task_iter(it);
817929ec
PM
2787}
2788
0942eeee 2789/**
72ec7029 2790 * css_task_iter_next - return the next task for the iterator
0942eeee
TH
2791 * @it: the task iterator being iterated
2792 *
2793 * The "next" function for task iteration. @it should have been
72ec7029
TH
2794 * initialized via css_task_iter_start(). Returns NULL when the iteration
2795 * reaches the end.
0942eeee 2796 */
72ec7029 2797struct task_struct *css_task_iter_next(struct css_task_iter *it)
817929ec
PM
2798{
2799 struct task_struct *res;
2800 struct list_head *l = it->task;
69d0206c 2801 struct cgrp_cset_link *link;
817929ec
PM
2802
2803 /* If the iterator cg is NULL, we have no tasks */
69d0206c 2804 if (!it->cset_link)
817929ec
PM
2805 return NULL;
2806 res = list_entry(l, struct task_struct, cg_list);
2807 /* Advance iterator to find next entry */
2808 l = l->next;
69d0206c
TH
2809 link = list_entry(it->cset_link, struct cgrp_cset_link, cset_link);
2810 if (l == &link->cset->tasks) {
0942eeee
TH
2811 /*
2812 * We reached the end of this task list - move on to the
2813 * next cgrp_cset_link.
2814 */
72ec7029 2815 css_advance_task_iter(it);
817929ec
PM
2816 } else {
2817 it->task = l;
2818 }
2819 return res;
2820}
2821
0942eeee 2822/**
72ec7029 2823 * css_task_iter_end - finish task iteration
0942eeee
TH
2824 * @it: the task iterator to finish
2825 *
72ec7029 2826 * Finish task iteration started by css_task_iter_start().
0942eeee 2827 */
72ec7029 2828void css_task_iter_end(struct css_task_iter *it)
c6ca5750 2829 __releases(css_set_lock)
817929ec
PM
2830{
2831 read_unlock(&css_set_lock);
2832}
2833
31a7df01
CW
2834static inline int started_after_time(struct task_struct *t1,
2835 struct timespec *time,
2836 struct task_struct *t2)
2837{
2838 int start_diff = timespec_compare(&t1->start_time, time);
2839 if (start_diff > 0) {
2840 return 1;
2841 } else if (start_diff < 0) {
2842 return 0;
2843 } else {
2844 /*
2845 * Arbitrarily, if two processes started at the same
2846 * time, we'll say that the lower pointer value
2847 * started first. Note that t2 may have exited by now
2848 * so this may not be a valid pointer any longer, but
2849 * that's fine - it still serves to distinguish
2850 * between two tasks started (effectively) simultaneously.
2851 */
2852 return t1 > t2;
2853 }
2854}
2855
2856/*
2857 * This function is a callback from heap_insert() and is used to order
2858 * the heap.
2859 * In this case we order the heap in descending task start time.
2860 */
2861static inline int started_after(void *p1, void *p2)
2862{
2863 struct task_struct *t1 = p1;
2864 struct task_struct *t2 = p2;
2865 return started_after_time(t1, &t2->start_time, t2);
2866}
2867
2868/**
72ec7029
TH
2869 * css_scan_tasks - iterate though all the tasks in a css
2870 * @css: the css to iterate tasks of
e535837b
TH
2871 * @test: optional test callback
2872 * @process: process callback
2873 * @data: data passed to @test and @process
2874 * @heap: optional pre-allocated heap used for task iteration
31a7df01 2875 *
72ec7029
TH
2876 * Iterate through all the tasks in @css, calling @test for each, and if it
2877 * returns %true, call @process for it also.
31a7df01 2878 *
e535837b 2879 * @test may be NULL, meaning always true (select all tasks), which
72ec7029 2880 * effectively duplicates css_task_iter_{start,next,end}() but does not
e535837b
TH
2881 * lock css_set_lock for the call to @process.
2882 *
2883 * It is guaranteed that @process will act on every task that is a member
72ec7029
TH
2884 * of @css for the duration of this call. This function may or may not
2885 * call @process for tasks that exit or move to a different css during the
2886 * call, or are forked or move into the css during the call.
31a7df01 2887 *
e535837b
TH
2888 * Note that @test may be called with locks held, and may in some
2889 * situations be called multiple times for the same task, so it should be
2890 * cheap.
31a7df01 2891 *
e535837b
TH
2892 * If @heap is non-NULL, a heap has been pre-allocated and will be used for
2893 * heap operations (and its "gt" member will be overwritten), else a
2894 * temporary heap will be used (allocation of which may cause this function
2895 * to fail).
31a7df01 2896 */
72ec7029
TH
2897int css_scan_tasks(struct cgroup_subsys_state *css,
2898 bool (*test)(struct task_struct *, void *),
2899 void (*process)(struct task_struct *, void *),
2900 void *data, struct ptr_heap *heap)
31a7df01
CW
2901{
2902 int retval, i;
72ec7029 2903 struct css_task_iter it;
31a7df01
CW
2904 struct task_struct *p, *dropped;
2905 /* Never dereference latest_task, since it's not refcounted */
2906 struct task_struct *latest_task = NULL;
2907 struct ptr_heap tmp_heap;
31a7df01
CW
2908 struct timespec latest_time = { 0, 0 };
2909
e535837b 2910 if (heap) {
31a7df01 2911 /* The caller supplied our heap and pre-allocated its memory */
31a7df01
CW
2912 heap->gt = &started_after;
2913 } else {
2914 /* We need to allocate our own heap memory */
2915 heap = &tmp_heap;
2916 retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
2917 if (retval)
2918 /* cannot allocate the heap */
2919 return retval;
2920 }
2921
2922 again:
2923 /*
72ec7029 2924 * Scan tasks in the css, using the @test callback to determine
e535837b
TH
2925 * which are of interest, and invoking @process callback on the
2926 * ones which need an update. Since we don't want to hold any
2927 * locks during the task updates, gather tasks to be processed in a
2928 * heap structure. The heap is sorted by descending task start
2929 * time. If the statically-sized heap fills up, we overflow tasks
2930 * that started later, and in future iterations only consider tasks
2931 * that started after the latest task in the previous pass. This
31a7df01
CW
2932 * guarantees forward progress and that we don't miss any tasks.
2933 */
2934 heap->size = 0;
72ec7029
TH
2935 css_task_iter_start(css, &it);
2936 while ((p = css_task_iter_next(&it))) {
31a7df01
CW
2937 /*
2938 * Only affect tasks that qualify per the caller's callback,
2939 * if he provided one
2940 */
e535837b 2941 if (test && !test(p, data))
31a7df01
CW
2942 continue;
2943 /*
2944 * Only process tasks that started after the last task
2945 * we processed
2946 */
2947 if (!started_after_time(p, &latest_time, latest_task))
2948 continue;
2949 dropped = heap_insert(heap, p);
2950 if (dropped == NULL) {
2951 /*
2952 * The new task was inserted; the heap wasn't
2953 * previously full
2954 */
2955 get_task_struct(p);
2956 } else if (dropped != p) {
2957 /*
2958 * The new task was inserted, and pushed out a
2959 * different task
2960 */
2961 get_task_struct(p);
2962 put_task_struct(dropped);
2963 }
2964 /*
2965 * Else the new task was newer than anything already in
2966 * the heap and wasn't inserted
2967 */
2968 }
72ec7029 2969 css_task_iter_end(&it);
31a7df01
CW
2970
2971 if (heap->size) {
2972 for (i = 0; i < heap->size; i++) {
4fe91d51 2973 struct task_struct *q = heap->ptrs[i];
31a7df01 2974 if (i == 0) {
4fe91d51
PJ
2975 latest_time = q->start_time;
2976 latest_task = q;
31a7df01
CW
2977 }
2978 /* Process the task per the caller's callback */
e535837b 2979 process(q, data);
4fe91d51 2980 put_task_struct(q);
31a7df01
CW
2981 }
2982 /*
2983 * If we had to process any tasks at all, scan again
2984 * in case some of them were in the middle of forking
2985 * children that didn't get processed.
2986 * Not the most efficient way to do it, but it avoids
2987 * having to take callback_mutex in the fork path
2988 */
2989 goto again;
2990 }
2991 if (heap == &tmp_heap)
2992 heap_free(&tmp_heap);
2993 return 0;
2994}
2995
e535837b 2996static void cgroup_transfer_one_task(struct task_struct *task, void *data)
8cc99345 2997{
e535837b 2998 struct cgroup *new_cgroup = data;
8cc99345 2999
47cfcd09 3000 mutex_lock(&cgroup_mutex);
8cc99345 3001 cgroup_attach_task(new_cgroup, task, false);
47cfcd09 3002 mutex_unlock(&cgroup_mutex);
8cc99345
TH
3003}
3004
3005/**
3006 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
3007 * @to: cgroup to which the tasks will be moved
3008 * @from: cgroup in which the tasks currently reside
3009 */
3010int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
3011{
72ec7029
TH
3012 return css_scan_tasks(&from->dummy_css, NULL, cgroup_transfer_one_task,
3013 to, NULL);
8cc99345
TH
3014}
3015
bbcb81d0 3016/*
102a775e 3017 * Stuff for reading the 'tasks'/'procs' files.
bbcb81d0
PM
3018 *
3019 * Reading this file can return large amounts of data if a cgroup has
3020 * *lots* of attached tasks. So it may need several calls to read(),
3021 * but we cannot guarantee that the information we produce is correct
3022 * unless we produce it entirely atomically.
3023 *
bbcb81d0 3024 */
bbcb81d0 3025
24528255
LZ
3026/* which pidlist file are we talking about? */
3027enum cgroup_filetype {
3028 CGROUP_FILE_PROCS,
3029 CGROUP_FILE_TASKS,
3030};
3031
3032/*
3033 * A pidlist is a list of pids that virtually represents the contents of one
3034 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
3035 * a pair (one each for procs, tasks) for each pid namespace that's relevant
3036 * to the cgroup.
3037 */
3038struct cgroup_pidlist {
3039 /*
3040 * used to find which pidlist is wanted. doesn't change as long as
3041 * this particular list stays in the list.
3042 */
3043 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
3044 /* array of xids */
3045 pid_t *list;
3046 /* how many elements the above list has */
3047 int length;
24528255
LZ
3048 /* each of these stored in a list by its cgroup */
3049 struct list_head links;
3050 /* pointer to the cgroup we belong to, for list removal purposes */
3051 struct cgroup *owner;
b1a21367
TH
3052 /* for delayed destruction */
3053 struct delayed_work destroy_dwork;
24528255
LZ
3054};
3055
d1d9fd33
BB
3056/*
3057 * The following two functions "fix" the issue where there are more pids
3058 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
3059 * TODO: replace with a kernel-wide solution to this problem
3060 */
3061#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
3062static void *pidlist_allocate(int count)
3063{
3064 if (PIDLIST_TOO_LARGE(count))
3065 return vmalloc(count * sizeof(pid_t));
3066 else
3067 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
3068}
b1a21367 3069
d1d9fd33
BB
3070static void pidlist_free(void *p)
3071{
3072 if (is_vmalloc_addr(p))
3073 vfree(p);
3074 else
3075 kfree(p);
3076}
d1d9fd33 3077
b1a21367
TH
3078/*
3079 * Used to destroy all pidlists lingering waiting for destroy timer. None
3080 * should be left afterwards.
3081 */
3082static void cgroup_pidlist_destroy_all(struct cgroup *cgrp)
3083{
3084 struct cgroup_pidlist *l, *tmp_l;
3085
3086 mutex_lock(&cgrp->pidlist_mutex);
3087 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
3088 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
3089 mutex_unlock(&cgrp->pidlist_mutex);
3090
3091 flush_workqueue(cgroup_pidlist_destroy_wq);
3092 BUG_ON(!list_empty(&cgrp->pidlists));
3093}
3094
3095static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
3096{
3097 struct delayed_work *dwork = to_delayed_work(work);
3098 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
3099 destroy_dwork);
3100 struct cgroup_pidlist *tofree = NULL;
3101
3102 mutex_lock(&l->owner->pidlist_mutex);
b1a21367
TH
3103
3104 /*
04502365
TH
3105 * Destroy iff we didn't get queued again. The state won't change
3106 * as destroy_dwork can only be queued while locked.
b1a21367 3107 */
04502365 3108 if (!delayed_work_pending(dwork)) {
b1a21367
TH
3109 list_del(&l->links);
3110 pidlist_free(l->list);
3111 put_pid_ns(l->key.ns);
3112 tofree = l;
3113 }
3114
b1a21367
TH
3115 mutex_unlock(&l->owner->pidlist_mutex);
3116 kfree(tofree);
3117}
3118
bbcb81d0 3119/*
102a775e 3120 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
6ee211ad 3121 * Returns the number of unique elements.
bbcb81d0 3122 */
6ee211ad 3123static int pidlist_uniq(pid_t *list, int length)
bbcb81d0 3124{
102a775e 3125 int src, dest = 1;
102a775e
BB
3126
3127 /*
3128 * we presume the 0th element is unique, so i starts at 1. trivial
3129 * edge cases first; no work needs to be done for either
3130 */
3131 if (length == 0 || length == 1)
3132 return length;
3133 /* src and dest walk down the list; dest counts unique elements */
3134 for (src = 1; src < length; src++) {
3135 /* find next unique element */
3136 while (list[src] == list[src-1]) {
3137 src++;
3138 if (src == length)
3139 goto after;
3140 }
3141 /* dest always points to where the next unique element goes */
3142 list[dest] = list[src];
3143 dest++;
3144 }
3145after:
102a775e
BB
3146 return dest;
3147}
3148
afb2bc14
TH
3149/*
3150 * The two pid files - task and cgroup.procs - guaranteed that the result
3151 * is sorted, which forced this whole pidlist fiasco. As pid order is
3152 * different per namespace, each namespace needs differently sorted list,
3153 * making it impossible to use, for example, single rbtree of member tasks
3154 * sorted by task pointer. As pidlists can be fairly large, allocating one
3155 * per open file is dangerous, so cgroup had to implement shared pool of
3156 * pidlists keyed by cgroup and namespace.
3157 *
3158 * All this extra complexity was caused by the original implementation
3159 * committing to an entirely unnecessary property. In the long term, we
3160 * want to do away with it. Explicitly scramble sort order if
3161 * sane_behavior so that no such expectation exists in the new interface.
3162 *
3163 * Scrambling is done by swapping every two consecutive bits, which is
3164 * non-identity one-to-one mapping which disturbs sort order sufficiently.
3165 */
3166static pid_t pid_fry(pid_t pid)
3167{
3168 unsigned a = pid & 0x55555555;
3169 unsigned b = pid & 0xAAAAAAAA;
3170
3171 return (a << 1) | (b >> 1);
3172}
3173
3174static pid_t cgroup_pid_fry(struct cgroup *cgrp, pid_t pid)
3175{
3176 if (cgroup_sane_behavior(cgrp))
3177 return pid_fry(pid);
3178 else
3179 return pid;
3180}
3181
102a775e
BB
3182static int cmppid(const void *a, const void *b)
3183{
3184 return *(pid_t *)a - *(pid_t *)b;
3185}
3186
afb2bc14
TH
3187static int fried_cmppid(const void *a, const void *b)
3188{
3189 return pid_fry(*(pid_t *)a) - pid_fry(*(pid_t *)b);
3190}
3191
e6b81710
TH
3192static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
3193 enum cgroup_filetype type)
3194{
3195 struct cgroup_pidlist *l;
3196 /* don't need task_nsproxy() if we're looking at ourself */
3197 struct pid_namespace *ns = task_active_pid_ns(current);
3198
3199 lockdep_assert_held(&cgrp->pidlist_mutex);
3200
3201 list_for_each_entry(l, &cgrp->pidlists, links)
3202 if (l->key.type == type && l->key.ns == ns)
3203 return l;
3204 return NULL;
3205}
3206
72a8cb30
BB
3207/*
3208 * find the appropriate pidlist for our purpose (given procs vs tasks)
3209 * returns with the lock on that pidlist already held, and takes care
3210 * of the use count, or returns NULL with no locks held if we're out of
3211 * memory.
3212 */
e6b81710
TH
3213static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
3214 enum cgroup_filetype type)
72a8cb30
BB
3215{
3216 struct cgroup_pidlist *l;
b70cc5fd 3217
e6b81710
TH
3218 lockdep_assert_held(&cgrp->pidlist_mutex);
3219
3220 l = cgroup_pidlist_find(cgrp, type);
3221 if (l)
3222 return l;
3223
72a8cb30 3224 /* entry not found; create a new one */
f4f4be2b 3225 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
e6b81710 3226 if (!l)
72a8cb30 3227 return l;
e6b81710 3228
b1a21367 3229 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
72a8cb30 3230 l->key.type = type;
e6b81710
TH
3231 /* don't need task_nsproxy() if we're looking at ourself */
3232 l->key.ns = get_pid_ns(task_active_pid_ns(current));
72a8cb30
BB
3233 l->owner = cgrp;
3234 list_add(&l->links, &cgrp->pidlists);
72a8cb30
BB
3235 return l;
3236}
3237
102a775e
BB
3238/*
3239 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
3240 */
72a8cb30
BB
3241static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
3242 struct cgroup_pidlist **lp)
102a775e
BB
3243{
3244 pid_t *array;
3245 int length;
3246 int pid, n = 0; /* used for populating the array */
72ec7029 3247 struct css_task_iter it;
817929ec 3248 struct task_struct *tsk;
102a775e
BB
3249 struct cgroup_pidlist *l;
3250
4bac00d1
TH
3251 lockdep_assert_held(&cgrp->pidlist_mutex);
3252
102a775e
BB
3253 /*
3254 * If cgroup gets more users after we read count, we won't have
3255 * enough space - tough. This race is indistinguishable to the
3256 * caller from the case that the additional cgroup users didn't
3257 * show up until sometime later on.
3258 */
3259 length = cgroup_task_count(cgrp);
d1d9fd33 3260 array = pidlist_allocate(length);
102a775e
BB
3261 if (!array)
3262 return -ENOMEM;
3263 /* now, populate the array */
72ec7029
TH
3264 css_task_iter_start(&cgrp->dummy_css, &it);
3265 while ((tsk = css_task_iter_next(&it))) {
102a775e 3266 if (unlikely(n == length))
817929ec 3267 break;
102a775e 3268 /* get tgid or pid for procs or tasks file respectively */
72a8cb30
BB
3269 if (type == CGROUP_FILE_PROCS)
3270 pid = task_tgid_vnr(tsk);
3271 else
3272 pid = task_pid_vnr(tsk);
102a775e
BB
3273 if (pid > 0) /* make sure to only use valid results */
3274 array[n++] = pid;
817929ec 3275 }
72ec7029 3276 css_task_iter_end(&it);
102a775e
BB
3277 length = n;
3278 /* now sort & (if procs) strip out duplicates */
afb2bc14
TH
3279 if (cgroup_sane_behavior(cgrp))
3280 sort(array, length, sizeof(pid_t), fried_cmppid, NULL);
3281 else
3282 sort(array, length, sizeof(pid_t), cmppid, NULL);
72a8cb30 3283 if (type == CGROUP_FILE_PROCS)
6ee211ad 3284 length = pidlist_uniq(array, length);
e6b81710 3285
e6b81710 3286 l = cgroup_pidlist_find_create(cgrp, type);
72a8cb30 3287 if (!l) {
e6b81710 3288 mutex_unlock(&cgrp->pidlist_mutex);
d1d9fd33 3289 pidlist_free(array);
72a8cb30 3290 return -ENOMEM;
102a775e 3291 }
e6b81710
TH
3292
3293 /* store array, freeing old if necessary */
d1d9fd33 3294 pidlist_free(l->list);
102a775e
BB
3295 l->list = array;
3296 l->length = length;
72a8cb30 3297 *lp = l;
102a775e 3298 return 0;
bbcb81d0
PM
3299}
3300
846c7bb0 3301/**
a043e3b2 3302 * cgroupstats_build - build and fill cgroupstats
846c7bb0
BS
3303 * @stats: cgroupstats to fill information into
3304 * @dentry: A dentry entry belonging to the cgroup for which stats have
3305 * been requested.
a043e3b2
LZ
3306 *
3307 * Build and fill cgroupstats so that taskstats can export it to user
3308 * space.
846c7bb0
BS
3309 */
3310int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
3311{
2bd59d48 3312 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
bd89aabc 3313 struct cgroup *cgrp;
72ec7029 3314 struct css_task_iter it;
846c7bb0 3315 struct task_struct *tsk;
33d283be 3316
2bd59d48
TH
3317 /* it should be kernfs_node belonging to cgroupfs and is a directory */
3318 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
3319 kernfs_type(kn) != KERNFS_DIR)
3320 return -EINVAL;
3321
846c7bb0 3322 /*
2bd59d48
TH
3323 * We aren't being called from kernfs and there's no guarantee on
3324 * @kn->priv's validity. For this and css_tryget_from_dir(),
3325 * @kn->priv is RCU safe. Let's do the RCU dancing.
846c7bb0 3326 */
2bd59d48
TH
3327 rcu_read_lock();
3328 cgrp = rcu_dereference(kn->priv);
3329 if (!cgrp) {
3330 rcu_read_unlock();
3331 return -ENOENT;
3332 }
846c7bb0 3333
72ec7029
TH
3334 css_task_iter_start(&cgrp->dummy_css, &it);
3335 while ((tsk = css_task_iter_next(&it))) {
846c7bb0
BS
3336 switch (tsk->state) {
3337 case TASK_RUNNING:
3338 stats->nr_running++;
3339 break;
3340 case TASK_INTERRUPTIBLE:
3341 stats->nr_sleeping++;
3342 break;
3343 case TASK_UNINTERRUPTIBLE:
3344 stats->nr_uninterruptible++;
3345 break;
3346 case TASK_STOPPED:
3347 stats->nr_stopped++;
3348 break;
3349 default:
3350 if (delayacct_is_task_waiting_on_io(tsk))
3351 stats->nr_io_wait++;
3352 break;
3353 }
3354 }
72ec7029 3355 css_task_iter_end(&it);
846c7bb0 3356
2bd59d48
TH
3357 rcu_read_unlock();
3358 return 0;
846c7bb0
BS
3359}
3360
8f3ff208 3361
bbcb81d0 3362/*
102a775e 3363 * seq_file methods for the tasks/procs files. The seq_file position is the
cc31edce 3364 * next pid to display; the seq_file iterator is a pointer to the pid
102a775e 3365 * in the cgroup->l->list array.
bbcb81d0 3366 */
cc31edce 3367
102a775e 3368static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
bbcb81d0 3369{
cc31edce
PM
3370 /*
3371 * Initially we receive a position value that corresponds to
3372 * one more than the last pid shown (or 0 on the first call or
3373 * after a seek to the start). Use a binary-search to find the
3374 * next pid to display, if any
3375 */
2bd59d48 3376 struct kernfs_open_file *of = s->private;
7da11279 3377 struct cgroup *cgrp = seq_css(s)->cgroup;
4bac00d1 3378 struct cgroup_pidlist *l;
7da11279 3379 enum cgroup_filetype type = seq_cft(s)->private;
cc31edce 3380 int index = 0, pid = *pos;
4bac00d1
TH
3381 int *iter, ret;
3382
3383 mutex_lock(&cgrp->pidlist_mutex);
3384
3385 /*
5d22444f 3386 * !NULL @of->priv indicates that this isn't the first start()
4bac00d1 3387 * after open. If the matching pidlist is around, we can use that.
5d22444f 3388 * Look for it. Note that @of->priv can't be used directly. It
4bac00d1
TH
3389 * could already have been destroyed.
3390 */
5d22444f
TH
3391 if (of->priv)
3392 of->priv = cgroup_pidlist_find(cgrp, type);
4bac00d1
TH
3393
3394 /*
3395 * Either this is the first start() after open or the matching
3396 * pidlist has been destroyed inbetween. Create a new one.
3397 */
5d22444f
TH
3398 if (!of->priv) {
3399 ret = pidlist_array_load(cgrp, type,
3400 (struct cgroup_pidlist **)&of->priv);
4bac00d1
TH
3401 if (ret)
3402 return ERR_PTR(ret);
3403 }
5d22444f 3404 l = of->priv;
cc31edce 3405
cc31edce 3406 if (pid) {
102a775e 3407 int end = l->length;
20777766 3408
cc31edce
PM
3409 while (index < end) {
3410 int mid = (index + end) / 2;
afb2bc14 3411 if (cgroup_pid_fry(cgrp, l->list[mid]) == pid) {
cc31edce
PM
3412 index = mid;
3413 break;
afb2bc14 3414 } else if (cgroup_pid_fry(cgrp, l->list[mid]) <= pid)
cc31edce
PM
3415 index = mid + 1;
3416 else
3417 end = mid;
3418 }
3419 }
3420 /* If we're off the end of the array, we're done */
102a775e 3421 if (index >= l->length)
cc31edce
PM
3422 return NULL;
3423 /* Update the abstract position to be the actual pid that we found */
102a775e 3424 iter = l->list + index;
afb2bc14 3425 *pos = cgroup_pid_fry(cgrp, *iter);
cc31edce
PM
3426 return iter;
3427}
3428
102a775e 3429static void cgroup_pidlist_stop(struct seq_file *s, void *v)
cc31edce 3430{
2bd59d48 3431 struct kernfs_open_file *of = s->private;
5d22444f 3432 struct cgroup_pidlist *l = of->priv;
62236858 3433
5d22444f
TH
3434 if (l)
3435 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
04502365 3436 CGROUP_PIDLIST_DESTROY_DELAY);
7da11279 3437 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
cc31edce
PM
3438}
3439
102a775e 3440static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
cc31edce 3441{
2bd59d48 3442 struct kernfs_open_file *of = s->private;
5d22444f 3443 struct cgroup_pidlist *l = of->priv;
102a775e
BB
3444 pid_t *p = v;
3445 pid_t *end = l->list + l->length;
cc31edce
PM
3446 /*
3447 * Advance to the next pid in the array. If this goes off the
3448 * end, we're done
3449 */
3450 p++;
3451 if (p >= end) {
3452 return NULL;
3453 } else {
7da11279 3454 *pos = cgroup_pid_fry(seq_css(s)->cgroup, *p);
cc31edce
PM
3455 return p;
3456 }
3457}
3458
102a775e 3459static int cgroup_pidlist_show(struct seq_file *s, void *v)
cc31edce
PM
3460{
3461 return seq_printf(s, "%d\n", *(int *)v);
3462}
bbcb81d0 3463
102a775e
BB
3464/*
3465 * seq_operations functions for iterating on pidlists through seq_file -
3466 * independent of whether it's tasks or procs
3467 */
3468static const struct seq_operations cgroup_pidlist_seq_operations = {
3469 .start = cgroup_pidlist_start,
3470 .stop = cgroup_pidlist_stop,
3471 .next = cgroup_pidlist_next,
3472 .show = cgroup_pidlist_show,
cc31edce
PM
3473};
3474
182446d0
TH
3475static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
3476 struct cftype *cft)
81a6a5cd 3477{
182446d0 3478 return notify_on_release(css->cgroup);
81a6a5cd
PM
3479}
3480
182446d0
TH
3481static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
3482 struct cftype *cft, u64 val)
6379c106 3483{
182446d0 3484 clear_bit(CGRP_RELEASABLE, &css->cgroup->flags);
6379c106 3485 if (val)
182446d0 3486 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106 3487 else
182446d0 3488 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106
PM
3489 return 0;
3490}
3491
182446d0
TH
3492static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
3493 struct cftype *cft)
97978e6d 3494{
182446d0 3495 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
3496}
3497
182446d0
TH
3498static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
3499 struct cftype *cft, u64 val)
97978e6d
DL
3500{
3501 if (val)
182446d0 3502 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d 3503 else
182446d0 3504 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
3505 return 0;
3506}
3507
d5c56ced 3508static struct cftype cgroup_base_files[] = {
81a6a5cd 3509 {
d5c56ced 3510 .name = "cgroup.procs",
6612f05b
TH
3511 .seq_start = cgroup_pidlist_start,
3512 .seq_next = cgroup_pidlist_next,
3513 .seq_stop = cgroup_pidlist_stop,
3514 .seq_show = cgroup_pidlist_show,
5d22444f 3515 .private = CGROUP_FILE_PROCS,
74a1166d 3516 .write_u64 = cgroup_procs_write,
74a1166d 3517 .mode = S_IRUGO | S_IWUSR,
102a775e 3518 },
97978e6d
DL
3519 {
3520 .name = "cgroup.clone_children",
873fe09e 3521 .flags = CFTYPE_INSANE,
97978e6d
DL
3522 .read_u64 = cgroup_clone_children_read,
3523 .write_u64 = cgroup_clone_children_write,
3524 },
873fe09e
TH
3525 {
3526 .name = "cgroup.sane_behavior",
3527 .flags = CFTYPE_ONLY_ON_ROOT,
2da8ca82 3528 .seq_show = cgroup_sane_behavior_show,
873fe09e 3529 },
d5c56ced
TH
3530
3531 /*
3532 * Historical crazy stuff. These don't have "cgroup." prefix and
3533 * don't exist if sane_behavior. If you're depending on these, be
3534 * prepared to be burned.
3535 */
3536 {
3537 .name = "tasks",
3538 .flags = CFTYPE_INSANE, /* use "procs" instead */
6612f05b
TH
3539 .seq_start = cgroup_pidlist_start,
3540 .seq_next = cgroup_pidlist_next,
3541 .seq_stop = cgroup_pidlist_stop,
3542 .seq_show = cgroup_pidlist_show,
5d22444f 3543 .private = CGROUP_FILE_TASKS,
d5c56ced 3544 .write_u64 = cgroup_tasks_write,
d5c56ced
TH
3545 .mode = S_IRUGO | S_IWUSR,
3546 },
3547 {
3548 .name = "notify_on_release",
3549 .flags = CFTYPE_INSANE,
3550 .read_u64 = cgroup_read_notify_on_release,
3551 .write_u64 = cgroup_write_notify_on_release,
3552 },
6e6ff25b
TH
3553 {
3554 .name = "release_agent",
cc5943a7 3555 .flags = CFTYPE_INSANE | CFTYPE_ONLY_ON_ROOT,
2da8ca82 3556 .seq_show = cgroup_release_agent_show,
6e6ff25b 3557 .write_string = cgroup_release_agent_write,
5f469907 3558 .max_write_len = PATH_MAX - 1,
6e6ff25b 3559 },
db0416b6 3560 { } /* terminate */
bbcb81d0
PM
3561};
3562
13af07df 3563/**
628f7cd4 3564 * cgroup_populate_dir - create subsys files in a cgroup directory
13af07df 3565 * @cgrp: target cgroup
13af07df 3566 * @subsys_mask: mask of the subsystem ids whose files should be added
bee55099
TH
3567 *
3568 * On failure, no file is added.
13af07df 3569 */
628f7cd4 3570static int cgroup_populate_dir(struct cgroup *cgrp, unsigned long subsys_mask)
ddbcc7e8 3571{
ddbcc7e8 3572 struct cgroup_subsys *ss;
b420ba7d 3573 int i, ret = 0;
bbcb81d0 3574
8e3f6541 3575 /* process cftsets of each subsystem */
b420ba7d 3576 for_each_subsys(ss, i) {
8e3f6541 3577 struct cftype_set *set;
b420ba7d
TH
3578
3579 if (!test_bit(i, &subsys_mask))
13af07df 3580 continue;
8e3f6541 3581
bee55099 3582 list_for_each_entry(set, &ss->cftsets, node) {
2bb566cb 3583 ret = cgroup_addrm_files(cgrp, set->cfts, true);
bee55099
TH
3584 if (ret < 0)
3585 goto err;
3586 }
ddbcc7e8 3587 }
ddbcc7e8 3588 return 0;
bee55099
TH
3589err:
3590 cgroup_clear_dir(cgrp, subsys_mask);
3591 return ret;
ddbcc7e8
PM
3592}
3593
0c21ead1
TH
3594/*
3595 * css destruction is four-stage process.
3596 *
3597 * 1. Destruction starts. Killing of the percpu_ref is initiated.
3598 * Implemented in kill_css().
3599 *
3600 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
3601 * and thus css_tryget() is guaranteed to fail, the css can be offlined
3602 * by invoking offline_css(). After offlining, the base ref is put.
3603 * Implemented in css_killed_work_fn().
3604 *
3605 * 3. When the percpu_ref reaches zero, the only possible remaining
3606 * accessors are inside RCU read sections. css_release() schedules the
3607 * RCU callback.
3608 *
3609 * 4. After the grace period, the css can be freed. Implemented in
3610 * css_free_work_fn().
3611 *
3612 * It is actually hairier because both step 2 and 4 require process context
3613 * and thus involve punting to css->destroy_work adding two additional
3614 * steps to the already complex sequence.
3615 */
35ef10da 3616static void css_free_work_fn(struct work_struct *work)
48ddbe19
TH
3617{
3618 struct cgroup_subsys_state *css =
35ef10da 3619 container_of(work, struct cgroup_subsys_state, destroy_work);
0c21ead1 3620 struct cgroup *cgrp = css->cgroup;
48ddbe19 3621
0ae78e0b
TH
3622 if (css->parent)
3623 css_put(css->parent);
3624
0c21ead1 3625 css->ss->css_free(css);
2bd59d48 3626 cgroup_put(cgrp);
48ddbe19
TH
3627}
3628
0c21ead1 3629static void css_free_rcu_fn(struct rcu_head *rcu_head)
d3daf28d
TH
3630{
3631 struct cgroup_subsys_state *css =
0c21ead1 3632 container_of(rcu_head, struct cgroup_subsys_state, rcu_head);
d3daf28d 3633
35ef10da 3634 INIT_WORK(&css->destroy_work, css_free_work_fn);
e5fca243 3635 queue_work(cgroup_destroy_wq, &css->destroy_work);
48ddbe19
TH
3636}
3637
d3daf28d
TH
3638static void css_release(struct percpu_ref *ref)
3639{
3640 struct cgroup_subsys_state *css =
3641 container_of(ref, struct cgroup_subsys_state, refcnt);
3642
aec25020 3643 rcu_assign_pointer(css->cgroup->subsys[css->ss->id], NULL);
0c21ead1 3644 call_rcu(&css->rcu_head, css_free_rcu_fn);
d3daf28d
TH
3645}
3646
623f926b
TH
3647static void init_css(struct cgroup_subsys_state *css, struct cgroup_subsys *ss,
3648 struct cgroup *cgrp)
ddbcc7e8 3649{
bd89aabc 3650 css->cgroup = cgrp;
72c97e54 3651 css->ss = ss;
ddbcc7e8 3652 css->flags = 0;
0ae78e0b
TH
3653
3654 if (cgrp->parent)
ca8bdcaf 3655 css->parent = cgroup_css(cgrp->parent, ss);
0ae78e0b 3656 else
38b53aba 3657 css->flags |= CSS_ROOT;
48ddbe19 3658
ca8bdcaf 3659 BUG_ON(cgroup_css(cgrp, ss));
ddbcc7e8
PM
3660}
3661
2a4ac633 3662/* invoke ->css_online() on a new CSS and mark it online if successful */
623f926b 3663static int online_css(struct cgroup_subsys_state *css)
a31f2d3f 3664{
623f926b 3665 struct cgroup_subsys *ss = css->ss;
b1929db4
TH
3666 int ret = 0;
3667
ace2bee8 3668 lockdep_assert_held(&cgroup_tree_mutex);
a31f2d3f
TH
3669 lockdep_assert_held(&cgroup_mutex);
3670
92fb9748 3671 if (ss->css_online)
eb95419b 3672 ret = ss->css_online(css);
ae7f164a 3673 if (!ret) {
eb95419b 3674 css->flags |= CSS_ONLINE;
f20104de 3675 css->cgroup->nr_css++;
aec25020 3676 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
ae7f164a 3677 }
b1929db4 3678 return ret;
a31f2d3f
TH
3679}
3680
2a4ac633 3681/* if the CSS is online, invoke ->css_offline() on it and mark it offline */
623f926b 3682static void offline_css(struct cgroup_subsys_state *css)
a31f2d3f 3683{
623f926b 3684 struct cgroup_subsys *ss = css->ss;
a31f2d3f 3685
ace2bee8 3686 lockdep_assert_held(&cgroup_tree_mutex);
a31f2d3f
TH
3687 lockdep_assert_held(&cgroup_mutex);
3688
3689 if (!(css->flags & CSS_ONLINE))
3690 return;
3691
d7eeac19 3692 if (ss->css_offline)
eb95419b 3693 ss->css_offline(css);
a31f2d3f 3694
eb95419b 3695 css->flags &= ~CSS_ONLINE;
09a503ea 3696 css->cgroup->nr_css--;
aec25020 3697 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], css);
a31f2d3f
TH
3698}
3699
c81c925a
TH
3700/**
3701 * create_css - create a cgroup_subsys_state
3702 * @cgrp: the cgroup new css will be associated with
3703 * @ss: the subsys of new css
3704 *
3705 * Create a new css associated with @cgrp - @ss pair. On success, the new
3706 * css is online and installed in @cgrp with all interface files created.
3707 * Returns 0 on success, -errno on failure.
3708 */
3709static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss)
3710{
3711 struct cgroup *parent = cgrp->parent;
3712 struct cgroup_subsys_state *css;
3713 int err;
3714
c81c925a
TH
3715 lockdep_assert_held(&cgroup_mutex);
3716
3717 css = ss->css_alloc(cgroup_css(parent, ss));
3718 if (IS_ERR(css))
3719 return PTR_ERR(css);
3720
3721 err = percpu_ref_init(&css->refcnt, css_release);
3722 if (err)
3723 goto err_free;
3724
3725 init_css(css, ss, cgrp);
3726
aec25020 3727 err = cgroup_populate_dir(cgrp, 1 << ss->id);
c81c925a
TH
3728 if (err)
3729 goto err_free;
3730
3731 err = online_css(css);
3732 if (err)
3733 goto err_free;
3734
59f5296b 3735 cgroup_get(cgrp);
c81c925a
TH
3736 css_get(css->parent);
3737
3738 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
3739 parent->parent) {
3740 pr_warning("cgroup: %s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
3741 current->comm, current->pid, ss->name);
3742 if (!strcmp(ss->name, "memory"))
3743 pr_warning("cgroup: \"memory\" requires setting use_hierarchy to 1 on the root.\n");
3744 ss->warned_broken_hierarchy = true;
3745 }
3746
3747 return 0;
3748
3749err_free:
3750 percpu_ref_cancel_init(&css->refcnt);
3751 ss->css_free(css);
3752 return err;
3753}
3754
2bd59d48 3755/**
a043e3b2
LZ
3756 * cgroup_create - create a cgroup
3757 * @parent: cgroup that will be parent of the new cgroup
2bd59d48
TH
3758 * @name_str: name of the new cgroup
3759 * @mode: mode to set on new cgroup
ddbcc7e8 3760 */
2bd59d48
TH
3761static long cgroup_create(struct cgroup *parent, const char *name_str,
3762 umode_t mode)
ddbcc7e8 3763{
bd89aabc 3764 struct cgroup *cgrp;
65dff759 3765 struct cgroup_name *name;
ddbcc7e8 3766 struct cgroupfs_root *root = parent->root;
b58c8998 3767 int ssid, err;
ddbcc7e8 3768 struct cgroup_subsys *ss;
2bd59d48 3769 struct kernfs_node *kn;
ddbcc7e8 3770
0a950f65 3771 /* allocate the cgroup and its ID, 0 is reserved for the root */
bd89aabc
PM
3772 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
3773 if (!cgrp)
ddbcc7e8
PM
3774 return -ENOMEM;
3775
2bd59d48 3776 name = cgroup_alloc_name(name_str);
b58c8998
TH
3777 if (!name) {
3778 err = -ENOMEM;
65dff759 3779 goto err_free_cgrp;
b58c8998 3780 }
65dff759
LZ
3781 rcu_assign_pointer(cgrp->name, name);
3782
ace2bee8
TH
3783 mutex_lock(&cgroup_tree_mutex);
3784
976c06bc
TH
3785 /*
3786 * Only live parents can have children. Note that the liveliness
3787 * check isn't strictly necessary because cgroup_mkdir() and
3788 * cgroup_rmdir() are fully synchronized by i_mutex; however, do it
3789 * anyway so that locking is contained inside cgroup proper and we
3790 * don't get nasty surprises if we ever grow another caller.
3791 */
3792 if (!cgroup_lock_live_group(parent)) {
3793 err = -ENODEV;
ace2bee8 3794 goto err_unlock_tree;
0ab02ca8
LZ
3795 }
3796
3797 /*
3798 * Temporarily set the pointer to NULL, so idr_find() won't return
3799 * a half-baked cgroup.
3800 */
3801 cgrp->id = idr_alloc(&root->cgroup_idr, NULL, 1, 0, GFP_KERNEL);
3802 if (cgrp->id < 0) {
3803 err = -ENOMEM;
3804 goto err_unlock;
976c06bc
TH
3805 }
3806
cc31edce 3807 init_cgroup_housekeeping(cgrp);
ddbcc7e8 3808
bd89aabc 3809 cgrp->parent = parent;
0ae78e0b 3810 cgrp->dummy_css.parent = &parent->dummy_css;
bd89aabc 3811 cgrp->root = parent->root;
ddbcc7e8 3812
b6abdb0e
LZ
3813 if (notify_on_release(parent))
3814 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3815
2260e7fc
TH
3816 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
3817 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
97978e6d 3818
2bd59d48
TH
3819 /* create the directory */
3820 kn = kernfs_create_dir(parent->kn, name->name, mode, cgrp);
3821 if (IS_ERR(kn)) {
3822 err = PTR_ERR(kn);
0ab02ca8 3823 goto err_free_id;
2bd59d48
TH
3824 }
3825 cgrp->kn = kn;
ddbcc7e8 3826
00356bd5 3827 cgrp->serial_nr = cgroup_serial_nr_next++;
53fa5261 3828
4e139afc 3829 /* allocation complete, commit to creation */
4e139afc
TH
3830 list_add_tail_rcu(&cgrp->sibling, &cgrp->parent->children);
3831 root->number_of_cgroups++;
28fd6f30 3832
2bd59d48
TH
3833 /*
3834 * Grab a reference on the root and parent so that they don't get
3835 * deleted while there are child cgroups.
3836 */
3837 cgroup_get_root(root);
59f5296b 3838 cgroup_get(parent);
415cf07a 3839
0d80255e
TH
3840 /*
3841 * @cgrp is now fully operational. If something fails after this
3842 * point, it'll be released via the normal destruction path.
3843 */
4e96ee8e
LZ
3844 idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
3845
2bb566cb 3846 err = cgroup_addrm_files(cgrp, cgroup_base_files, true);
628f7cd4
TH
3847 if (err)
3848 goto err_destroy;
3849
9d403e99 3850 /* let's create and online css's */
b85d2040
TH
3851 for_each_subsys(ss, ssid) {
3852 if (root->subsys_mask & (1 << ssid)) {
3853 err = create_css(cgrp, ss);
3854 if (err)
3855 goto err_destroy;
3856 }
a8638030 3857 }
ddbcc7e8 3858
2bd59d48
TH
3859 kernfs_activate(kn);
3860
ddbcc7e8 3861 mutex_unlock(&cgroup_mutex);
ace2bee8 3862 mutex_unlock(&cgroup_tree_mutex);
ddbcc7e8
PM
3863
3864 return 0;
3865
0a950f65 3866err_free_id:
4e96ee8e 3867 idr_remove(&root->cgroup_idr, cgrp->id);
0ab02ca8
LZ
3868err_unlock:
3869 mutex_unlock(&cgroup_mutex);
ace2bee8
TH
3870err_unlock_tree:
3871 mutex_unlock(&cgroup_tree_mutex);
65dff759 3872 kfree(rcu_dereference_raw(cgrp->name));
4b8b47eb 3873err_free_cgrp:
bd89aabc 3874 kfree(cgrp);
ddbcc7e8 3875 return err;
4b8b47eb
TH
3876
3877err_destroy:
3878 cgroup_destroy_locked(cgrp);
3879 mutex_unlock(&cgroup_mutex);
ace2bee8 3880 mutex_unlock(&cgroup_tree_mutex);
4b8b47eb 3881 return err;
ddbcc7e8
PM
3882}
3883
2bd59d48
TH
3884static int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
3885 umode_t mode)
ddbcc7e8 3886{
2bd59d48 3887 struct cgroup *parent = parent_kn->priv;
ddbcc7e8 3888
2bd59d48 3889 return cgroup_create(parent, name, mode);
ddbcc7e8
PM
3890}
3891
223dbc38
TH
3892/*
3893 * This is called when the refcnt of a css is confirmed to be killed.
3894 * css_tryget() is now guaranteed to fail.
3895 */
3896static void css_killed_work_fn(struct work_struct *work)
d3daf28d 3897{
223dbc38
TH
3898 struct cgroup_subsys_state *css =
3899 container_of(work, struct cgroup_subsys_state, destroy_work);
3900 struct cgroup *cgrp = css->cgroup;
d3daf28d 3901
ace2bee8 3902 mutex_lock(&cgroup_tree_mutex);
f20104de
TH
3903 mutex_lock(&cgroup_mutex);
3904
09a503ea
TH
3905 /*
3906 * css_tryget() is guaranteed to fail now. Tell subsystems to
3907 * initate destruction.
3908 */
3909 offline_css(css);
3910
f20104de
TH
3911 /*
3912 * If @cgrp is marked dead, it's waiting for refs of all css's to
3913 * be disabled before proceeding to the second phase of cgroup
3914 * destruction. If we are the last one, kick it off.
3915 */
09a503ea 3916 if (!cgrp->nr_css && cgroup_is_dead(cgrp))
f20104de
TH
3917 cgroup_destroy_css_killed(cgrp);
3918
3919 mutex_unlock(&cgroup_mutex);
ace2bee8 3920 mutex_unlock(&cgroup_tree_mutex);
09a503ea
TH
3921
3922 /*
3923 * Put the css refs from kill_css(). Each css holds an extra
3924 * reference to the cgroup's dentry and cgroup removal proceeds
3925 * regardless of css refs. On the last put of each css, whenever
3926 * that may be, the extra dentry ref is put so that dentry
3927 * destruction happens only after all css's are released.
3928 */
3929 css_put(css);
d3daf28d
TH
3930}
3931
223dbc38
TH
3932/* css kill confirmation processing requires process context, bounce */
3933static void css_killed_ref_fn(struct percpu_ref *ref)
d3daf28d
TH
3934{
3935 struct cgroup_subsys_state *css =
3936 container_of(ref, struct cgroup_subsys_state, refcnt);
3937
223dbc38 3938 INIT_WORK(&css->destroy_work, css_killed_work_fn);
e5fca243 3939 queue_work(cgroup_destroy_wq, &css->destroy_work);
d3daf28d
TH
3940}
3941
edae0c33
TH
3942/**
3943 * kill_css - destroy a css
3944 * @css: css to destroy
3945 *
3c14f8b4
TH
3946 * This function initiates destruction of @css by removing cgroup interface
3947 * files and putting its base reference. ->css_offline() will be invoked
3948 * asynchronously once css_tryget() is guaranteed to fail and when the
3949 * reference count reaches zero, @css will be released.
edae0c33
TH
3950 */
3951static void kill_css(struct cgroup_subsys_state *css)
3952{
2bd59d48
TH
3953 /*
3954 * This must happen before css is disassociated with its cgroup.
3955 * See seq_css() for details.
3956 */
aec25020 3957 cgroup_clear_dir(css->cgroup, 1 << css->ss->id);
3c14f8b4 3958
edae0c33
TH
3959 /*
3960 * Killing would put the base ref, but we need to keep it alive
3961 * until after ->css_offline().
3962 */
3963 css_get(css);
3964
3965 /*
3966 * cgroup core guarantees that, by the time ->css_offline() is
3967 * invoked, no new css reference will be given out via
3968 * css_tryget(). We can't simply call percpu_ref_kill() and
3969 * proceed to offlining css's because percpu_ref_kill() doesn't
3970 * guarantee that the ref is seen as killed on all CPUs on return.
3971 *
3972 * Use percpu_ref_kill_and_confirm() to get notifications as each
3973 * css is confirmed to be seen as killed on all CPUs.
3974 */
3975 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
d3daf28d
TH
3976}
3977
3978/**
3979 * cgroup_destroy_locked - the first stage of cgroup destruction
3980 * @cgrp: cgroup to be destroyed
3981 *
3982 * css's make use of percpu refcnts whose killing latency shouldn't be
3983 * exposed to userland and are RCU protected. Also, cgroup core needs to
3984 * guarantee that css_tryget() won't succeed by the time ->css_offline() is
3985 * invoked. To satisfy all the requirements, destruction is implemented in
3986 * the following two steps.
3987 *
3988 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
3989 * userland visible parts and start killing the percpu refcnts of
3990 * css's. Set up so that the next stage will be kicked off once all
3991 * the percpu refcnts are confirmed to be killed.
3992 *
3993 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
3994 * rest of destruction. Once all cgroup references are gone, the
3995 * cgroup is RCU-freed.
3996 *
3997 * This function implements s1. After this step, @cgrp is gone as far as
3998 * the userland is concerned and a new cgroup with the same name may be
3999 * created. As cgroup doesn't care about the names internally, this
4000 * doesn't cause any problem.
4001 */
42809dd4
TH
4002static int cgroup_destroy_locked(struct cgroup *cgrp)
4003 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
ddbcc7e8 4004{
bb78a92f 4005 struct cgroup *child;
2bd59d48
TH
4006 struct cgroup_subsys_state *css;
4007 struct kernfs_node *kn;
ddd69148 4008 bool empty;
1c6727af 4009 int ssid;
ddbcc7e8 4010
ace2bee8 4011 lockdep_assert_held(&cgroup_tree_mutex);
42809dd4
TH
4012 lockdep_assert_held(&cgroup_mutex);
4013
ddd69148 4014 /*
6f3d828f
TH
4015 * css_set_lock synchronizes access to ->cset_links and prevents
4016 * @cgrp from being removed while __put_css_set() is in progress.
ddd69148
TH
4017 */
4018 read_lock(&css_set_lock);
bb78a92f 4019 empty = list_empty(&cgrp->cset_links);
ddd69148
TH
4020 read_unlock(&css_set_lock);
4021 if (!empty)
ddbcc7e8 4022 return -EBUSY;
a043e3b2 4023
bb78a92f
HD
4024 /*
4025 * Make sure there's no live children. We can't test ->children
4026 * emptiness as dead children linger on it while being destroyed;
4027 * otherwise, "rmdir parent/child parent" may fail with -EBUSY.
4028 */
4029 empty = true;
4030 rcu_read_lock();
4031 list_for_each_entry_rcu(child, &cgrp->children, sibling) {
4032 empty = cgroup_is_dead(child);
4033 if (!empty)
4034 break;
4035 }
4036 rcu_read_unlock();
4037 if (!empty)
4038 return -EBUSY;
4039
88703267 4040 /*
edae0c33
TH
4041 * Initiate massacre of all css's. cgroup_destroy_css_killed()
4042 * will be invoked to perform the rest of destruction once the
4ac06017
TH
4043 * percpu refs of all css's are confirmed to be killed. This
4044 * involves removing the subsystem's files, drop cgroup_mutex.
88703267 4045 */
4ac06017 4046 mutex_unlock(&cgroup_mutex);
1c6727af
TH
4047 for_each_css(css, ssid, cgrp)
4048 kill_css(css);
4ac06017 4049 mutex_lock(&cgroup_mutex);
455050d2
TH
4050
4051 /*
4052 * Mark @cgrp dead. This prevents further task migration and child
4053 * creation by disabling cgroup_lock_live_group(). Note that
492eb21b 4054 * CGRP_DEAD assertion is depended upon by css_next_child() to
455050d2 4055 * resume iteration after dropping RCU read lock. See
492eb21b 4056 * css_next_child() for details.
455050d2 4057 */
54766d4a 4058 set_bit(CGRP_DEAD, &cgrp->flags);
ddbcc7e8 4059
455050d2
TH
4060 /* CGRP_DEAD is set, remove from ->release_list for the last time */
4061 raw_spin_lock(&release_list_lock);
4062 if (!list_empty(&cgrp->release_list))
4063 list_del_init(&cgrp->release_list);
4064 raw_spin_unlock(&release_list_lock);
4065
4066 /*
f20104de
TH
4067 * If @cgrp has css's attached, the second stage of cgroup
4068 * destruction is kicked off from css_killed_work_fn() after the
4069 * refs of all attached css's are killed. If @cgrp doesn't have
4070 * any css, we kick it off here.
4071 */
4072 if (!cgrp->nr_css)
4073 cgroup_destroy_css_killed(cgrp);
4074
2bd59d48
TH
4075 /* remove @cgrp directory along with the base files */
4076 mutex_unlock(&cgroup_mutex);
4077
455050d2 4078 /*
2bd59d48
TH
4079 * There are two control paths which try to determine cgroup from
4080 * dentry without going through kernfs - cgroupstats_build() and
4081 * css_tryget_from_dir(). Those are supported by RCU protecting
4082 * clearing of cgrp->kn->priv backpointer, which should happen
4083 * after all files under it have been removed.
455050d2 4084 */
2bd59d48
TH
4085 kn = cgrp->kn;
4086 kernfs_get(kn);
4087
4088 kernfs_remove(cgrp->kn);
4089
4090 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv, NULL);
4091 kernfs_put(kn);
4092
4ac06017 4093 mutex_lock(&cgroup_mutex);
455050d2 4094
ea15f8cc
TH
4095 return 0;
4096};
4097
d3daf28d 4098/**
f20104de 4099 * cgroup_destroy_css_killed - the second step of cgroup destruction
d3daf28d
TH
4100 * @work: cgroup->destroy_free_work
4101 *
4102 * This function is invoked from a work item for a cgroup which is being
09a503ea
TH
4103 * destroyed after all css's are offlined and performs the rest of
4104 * destruction. This is the second step of destruction described in the
4105 * comment above cgroup_destroy_locked().
d3daf28d 4106 */
f20104de 4107static void cgroup_destroy_css_killed(struct cgroup *cgrp)
ea15f8cc 4108{
ea15f8cc 4109 struct cgroup *parent = cgrp->parent;
ea15f8cc 4110
ace2bee8 4111 lockdep_assert_held(&cgroup_tree_mutex);
f20104de 4112 lockdep_assert_held(&cgroup_mutex);
ea15f8cc 4113
999cd8a4 4114 /* delete this cgroup from parent->children */
eb6fd504 4115 list_del_rcu(&cgrp->sibling);
ed957793 4116
59f5296b 4117 cgroup_put(cgrp);
ddbcc7e8 4118
bd89aabc 4119 set_bit(CGRP_RELEASABLE, &parent->flags);
81a6a5cd 4120 check_for_release(parent);
ddbcc7e8
PM
4121}
4122
2bd59d48 4123static int cgroup_rmdir(struct kernfs_node *kn)
42809dd4 4124{
2bd59d48
TH
4125 struct cgroup *cgrp = kn->priv;
4126 int ret = 0;
4127
4128 /*
4129 * This is self-destruction but @kn can't be removed while this
4130 * callback is in progress. Let's break active protection. Once
4131 * the protection is broken, @cgrp can be destroyed at any point.
4132 * Pin it so that it stays accessible.
4133 */
4134 cgroup_get(cgrp);
4135 kernfs_break_active_protection(kn);
42809dd4 4136
ace2bee8 4137 mutex_lock(&cgroup_tree_mutex);
42809dd4 4138 mutex_lock(&cgroup_mutex);
2bd59d48
TH
4139
4140 /*
4141 * @cgrp might already have been destroyed while we're trying to
4142 * grab the mutexes.
4143 */
4144 if (!cgroup_is_dead(cgrp))
4145 ret = cgroup_destroy_locked(cgrp);
4146
42809dd4 4147 mutex_unlock(&cgroup_mutex);
ace2bee8 4148 mutex_unlock(&cgroup_tree_mutex);
42809dd4 4149
2bd59d48
TH
4150 kernfs_unbreak_active_protection(kn);
4151 cgroup_put(cgrp);
42809dd4
TH
4152 return ret;
4153}
4154
2bd59d48
TH
4155static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
4156 .remount_fs = cgroup_remount,
4157 .show_options = cgroup_show_options,
4158 .mkdir = cgroup_mkdir,
4159 .rmdir = cgroup_rmdir,
4160 .rename = cgroup_rename,
4161};
4162
06a11920 4163static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
ddbcc7e8 4164{
ddbcc7e8 4165 struct cgroup_subsys_state *css;
cfe36bde
DC
4166
4167 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
ddbcc7e8 4168
ace2bee8 4169 mutex_lock(&cgroup_tree_mutex);
648bb56d
TH
4170 mutex_lock(&cgroup_mutex);
4171
de00ffa5 4172 INIT_LIST_HEAD(&ss->cftsets);
8e3f6541 4173
ddbcc7e8 4174 /* Create the top cgroup state for this subsystem */
9871bf95 4175 ss->root = &cgroup_dummy_root;
ca8bdcaf 4176 css = ss->css_alloc(cgroup_css(cgroup_dummy_top, ss));
ddbcc7e8
PM
4177 /* We don't handle early failures gracefully */
4178 BUG_ON(IS_ERR(css));
623f926b 4179 init_css(css, ss, cgroup_dummy_top);
ddbcc7e8 4180
e8d55fde 4181 /* Update the init_css_set to contain a subsys
817929ec 4182 * pointer to this state - since the subsystem is
e8d55fde
LZ
4183 * newly registered, all tasks and hence the
4184 * init_css_set is in the subsystem's top cgroup. */
aec25020 4185 init_css_set.subsys[ss->id] = css;
ddbcc7e8
PM
4186
4187 need_forkexit_callback |= ss->fork || ss->exit;
4188
e8d55fde
LZ
4189 /* At system boot, before all subsystems have been
4190 * registered, no tasks have been forked, so we don't
4191 * need to invoke fork callbacks here. */
4192 BUG_ON(!list_empty(&init_task.tasks));
4193
ae7f164a 4194 BUG_ON(online_css(css));
a8638030 4195
648bb56d 4196 mutex_unlock(&cgroup_mutex);
ace2bee8 4197 mutex_unlock(&cgroup_tree_mutex);
e6a1105b
BB
4198}
4199
ddbcc7e8 4200/**
a043e3b2
LZ
4201 * cgroup_init_early - cgroup initialization at system boot
4202 *
4203 * Initialize cgroups at system boot, and initialize any
4204 * subsystems that request early init.
ddbcc7e8
PM
4205 */
4206int __init cgroup_init_early(void)
4207{
30159ec7 4208 struct cgroup_subsys *ss;
ddbcc7e8 4209 int i;
30159ec7 4210
146aa1bd 4211 atomic_set(&init_css_set.refcount, 1);
69d0206c 4212 INIT_LIST_HEAD(&init_css_set.cgrp_links);
817929ec 4213 INIT_LIST_HEAD(&init_css_set.tasks);
472b1053 4214 INIT_HLIST_NODE(&init_css_set.hlist);
817929ec 4215 css_set_count = 1;
9871bf95
TH
4216 init_cgroup_root(&cgroup_dummy_root);
4217 cgroup_root_count = 1;
a4ea1cc9 4218 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
817929ec 4219
69d0206c 4220 init_cgrp_cset_link.cset = &init_css_set;
9871bf95
TH
4221 init_cgrp_cset_link.cgrp = cgroup_dummy_top;
4222 list_add(&init_cgrp_cset_link.cset_link, &cgroup_dummy_top->cset_links);
69d0206c 4223 list_add(&init_cgrp_cset_link.cgrp_link, &init_css_set.cgrp_links);
ddbcc7e8 4224
3ed80a62 4225 for_each_subsys(ss, i) {
aec25020 4226 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
073219e9
TH
4227 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p name:id=%d:%s\n",
4228 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
aec25020 4229 ss->id, ss->name);
073219e9
TH
4230 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
4231 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
4232
aec25020 4233 ss->id = i;
073219e9 4234 ss->name = cgroup_subsys_name[i];
ddbcc7e8
PM
4235
4236 if (ss->early_init)
4237 cgroup_init_subsys(ss);
4238 }
4239 return 0;
4240}
4241
4242/**
a043e3b2
LZ
4243 * cgroup_init - cgroup initialization
4244 *
4245 * Register cgroup filesystem and /proc file, and initialize
4246 * any subsystems that didn't request early init.
ddbcc7e8
PM
4247 */
4248int __init cgroup_init(void)
4249{
30159ec7 4250 struct cgroup_subsys *ss;
0ac801fe 4251 unsigned long key;
30159ec7 4252 int i, err;
a424316c 4253
2bd59d48 4254 BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files));
2da440a2 4255
3ed80a62 4256 for_each_subsys(ss, i) {
ddbcc7e8
PM
4257 if (!ss->early_init)
4258 cgroup_init_subsys(ss);
de00ffa5
TH
4259
4260 /*
4261 * cftype registration needs kmalloc and can't be done
4262 * during early_init. Register base cftypes separately.
4263 */
4264 if (ss->base_cftypes)
4265 WARN_ON(cgroup_add_cftypes(ss, ss->base_cftypes));
ddbcc7e8
PM
4266 }
4267
fa3ca07e 4268 /* allocate id for the dummy hierarchy */
54e7b4eb 4269 mutex_lock(&cgroup_mutex);
54e7b4eb 4270
82fe9b0d
TH
4271 /* Add init_css_set to the hash table */
4272 key = css_set_hash(init_css_set.subsys);
4273 hash_add(css_set_table, &init_css_set.hlist, key);
4274
fc76df70 4275 BUG_ON(cgroup_init_root_id(&cgroup_dummy_root, 0, 1));
676db4af 4276
4e96ee8e
LZ
4277 err = idr_alloc(&cgroup_dummy_root.cgroup_idr, cgroup_dummy_top,
4278 0, 1, GFP_KERNEL);
4279 BUG_ON(err < 0);
4280
54e7b4eb
TH
4281 mutex_unlock(&cgroup_mutex);
4282
676db4af 4283 cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
2bd59d48
TH
4284 if (!cgroup_kobj)
4285 return -ENOMEM;
676db4af 4286
ddbcc7e8 4287 err = register_filesystem(&cgroup_fs_type);
676db4af
GKH
4288 if (err < 0) {
4289 kobject_put(cgroup_kobj);
2bd59d48 4290 return err;
676db4af 4291 }
ddbcc7e8 4292
46ae220b 4293 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
2bd59d48 4294 return 0;
ddbcc7e8 4295}
b4f48b63 4296
e5fca243
TH
4297static int __init cgroup_wq_init(void)
4298{
4299 /*
4300 * There isn't much point in executing destruction path in
4301 * parallel. Good chunk is serialized with cgroup_mutex anyway.
ab3f5faa
HD
4302 *
4303 * XXX: Must be ordered to make sure parent is offlined after
4304 * children. The ordering requirement is for memcg where a
4305 * parent's offline may wait for a child's leading to deadlock. In
4306 * the long term, this should be fixed from memcg side.
e5fca243
TH
4307 *
4308 * We would prefer to do this in cgroup_init() above, but that
4309 * is called before init_workqueues(): so leave this until after.
4310 */
ab3f5faa 4311 cgroup_destroy_wq = alloc_ordered_workqueue("cgroup_destroy", 0);
e5fca243 4312 BUG_ON(!cgroup_destroy_wq);
b1a21367
TH
4313
4314 /*
4315 * Used to destroy pidlists and separate to serve as flush domain.
4316 * Cap @max_active to 1 too.
4317 */
4318 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
4319 0, 1);
4320 BUG_ON(!cgroup_pidlist_destroy_wq);
4321
e5fca243
TH
4322 return 0;
4323}
4324core_initcall(cgroup_wq_init);
4325
a424316c
PM
4326/*
4327 * proc_cgroup_show()
4328 * - Print task's cgroup paths into seq_file, one line for each hierarchy
4329 * - Used for /proc/<pid>/cgroup.
4330 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
4331 * doesn't really matter if tsk->cgroup changes after we read it,
956db3ca 4332 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
a424316c
PM
4333 * anyway. No need to check that tsk->cgroup != NULL, thanks to
4334 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
4335 * cgroup to top_cgroup.
4336 */
4337
4338/* TODO: Use a proper seq_file iterator */
8d8b97ba 4339int proc_cgroup_show(struct seq_file *m, void *v)
a424316c
PM
4340{
4341 struct pid *pid;
4342 struct task_struct *tsk;
4343 char *buf;
4344 int retval;
4345 struct cgroupfs_root *root;
4346
4347 retval = -ENOMEM;
4348 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4349 if (!buf)
4350 goto out;
4351
4352 retval = -ESRCH;
4353 pid = m->private;
4354 tsk = get_pid_task(pid, PIDTYPE_PID);
4355 if (!tsk)
4356 goto out_free;
4357
4358 retval = 0;
4359
4360 mutex_lock(&cgroup_mutex);
4361
e5f6a860 4362 for_each_active_root(root) {
a424316c 4363 struct cgroup_subsys *ss;
bd89aabc 4364 struct cgroup *cgrp;
b85d2040 4365 int ssid, count = 0;
a424316c 4366
2c6ab6d2 4367 seq_printf(m, "%d:", root->hierarchy_id);
b85d2040
TH
4368 for_each_subsys(ss, ssid)
4369 if (root->subsys_mask & (1 << ssid))
4370 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
c6d57f33
PM
4371 if (strlen(root->name))
4372 seq_printf(m, "%sname=%s", count ? "," : "",
4373 root->name);
a424316c 4374 seq_putc(m, ':');
7717f7ba 4375 cgrp = task_cgroup_from_root(tsk, root);
bd89aabc 4376 retval = cgroup_path(cgrp, buf, PAGE_SIZE);
a424316c
PM
4377 if (retval < 0)
4378 goto out_unlock;
4379 seq_puts(m, buf);
4380 seq_putc(m, '\n');
4381 }
4382
4383out_unlock:
4384 mutex_unlock(&cgroup_mutex);
4385 put_task_struct(tsk);
4386out_free:
4387 kfree(buf);
4388out:
4389 return retval;
4390}
4391
a424316c
PM
4392/* Display information about each subsystem and each hierarchy */
4393static int proc_cgroupstats_show(struct seq_file *m, void *v)
4394{
30159ec7 4395 struct cgroup_subsys *ss;
a424316c 4396 int i;
a424316c 4397
8bab8dde 4398 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
aae8aab4
BB
4399 /*
4400 * ideally we don't want subsystems moving around while we do this.
4401 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
4402 * subsys/hierarchy state.
4403 */
a424316c 4404 mutex_lock(&cgroup_mutex);
30159ec7
TH
4405
4406 for_each_subsys(ss, i)
2c6ab6d2
PM
4407 seq_printf(m, "%s\t%d\t%d\t%d\n",
4408 ss->name, ss->root->hierarchy_id,
8bab8dde 4409 ss->root->number_of_cgroups, !ss->disabled);
30159ec7 4410
a424316c
PM
4411 mutex_unlock(&cgroup_mutex);
4412 return 0;
4413}
4414
4415static int cgroupstats_open(struct inode *inode, struct file *file)
4416{
9dce07f1 4417 return single_open(file, proc_cgroupstats_show, NULL);
a424316c
PM
4418}
4419
828c0950 4420static const struct file_operations proc_cgroupstats_operations = {
a424316c
PM
4421 .open = cgroupstats_open,
4422 .read = seq_read,
4423 .llseek = seq_lseek,
4424 .release = single_release,
4425};
4426
b4f48b63
PM
4427/**
4428 * cgroup_fork - attach newly forked task to its parents cgroup.
a043e3b2 4429 * @child: pointer to task_struct of forking parent process.
b4f48b63
PM
4430 *
4431 * Description: A task inherits its parent's cgroup at fork().
4432 *
4433 * A pointer to the shared css_set was automatically copied in
4434 * fork.c by dup_task_struct(). However, we ignore that copy, since
9bb71308
TH
4435 * it was not made under the protection of RCU or cgroup_mutex, so
4436 * might no longer be a valid cgroup pointer. cgroup_attach_task() might
4437 * have already changed current->cgroups, allowing the previously
4438 * referenced cgroup group to be removed and freed.
b4f48b63
PM
4439 *
4440 * At the point that cgroup_fork() is called, 'current' is the parent
4441 * task, and the passed argument 'child' points to the child task.
4442 */
4443void cgroup_fork(struct task_struct *child)
4444{
9bb71308 4445 task_lock(current);
a8ad805c 4446 get_css_set(task_css_set(current));
817929ec 4447 child->cgroups = current->cgroups;
9bb71308 4448 task_unlock(current);
817929ec 4449 INIT_LIST_HEAD(&child->cg_list);
b4f48b63
PM
4450}
4451
817929ec 4452/**
a043e3b2
LZ
4453 * cgroup_post_fork - called on a new task after adding it to the task list
4454 * @child: the task in question
4455 *
5edee61e
TH
4456 * Adds the task to the list running through its css_set if necessary and
4457 * call the subsystem fork() callbacks. Has to be after the task is
4458 * visible on the task list in case we race with the first call to
0942eeee 4459 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5edee61e 4460 * list.
a043e3b2 4461 */
817929ec
PM
4462void cgroup_post_fork(struct task_struct *child)
4463{
30159ec7 4464 struct cgroup_subsys *ss;
5edee61e
TH
4465 int i;
4466
3ce3230a
FW
4467 /*
4468 * use_task_css_set_links is set to 1 before we walk the tasklist
4469 * under the tasklist_lock and we read it here after we added the child
4470 * to the tasklist under the tasklist_lock as well. If the child wasn't
4471 * yet in the tasklist when we walked through it from
4472 * cgroup_enable_task_cg_lists(), then use_task_css_set_links value
4473 * should be visible now due to the paired locking and barriers implied
4474 * by LOCK/UNLOCK: it is written before the tasklist_lock unlock
4475 * in cgroup_enable_task_cg_lists() and read here after the tasklist_lock
4476 * lock on fork.
4477 */
817929ec
PM
4478 if (use_task_css_set_links) {
4479 write_lock(&css_set_lock);
d8783832
TH
4480 task_lock(child);
4481 if (list_empty(&child->cg_list))
a8ad805c 4482 list_add(&child->cg_list, &task_css_set(child)->tasks);
d8783832 4483 task_unlock(child);
817929ec
PM
4484 write_unlock(&css_set_lock);
4485 }
5edee61e
TH
4486
4487 /*
4488 * Call ss->fork(). This must happen after @child is linked on
4489 * css_set; otherwise, @child might change state between ->fork()
4490 * and addition to css_set.
4491 */
4492 if (need_forkexit_callback) {
3ed80a62 4493 for_each_subsys(ss, i)
5edee61e
TH
4494 if (ss->fork)
4495 ss->fork(child);
5edee61e 4496 }
817929ec 4497}
5edee61e 4498
b4f48b63
PM
4499/**
4500 * cgroup_exit - detach cgroup from exiting task
4501 * @tsk: pointer to task_struct of exiting process
a043e3b2 4502 * @run_callback: run exit callbacks?
b4f48b63
PM
4503 *
4504 * Description: Detach cgroup from @tsk and release it.
4505 *
4506 * Note that cgroups marked notify_on_release force every task in
4507 * them to take the global cgroup_mutex mutex when exiting.
4508 * This could impact scaling on very large systems. Be reluctant to
4509 * use notify_on_release cgroups where very high task exit scaling
4510 * is required on large systems.
4511 *
4512 * the_top_cgroup_hack:
4513 *
4514 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
4515 *
4516 * We call cgroup_exit() while the task is still competent to
4517 * handle notify_on_release(), then leave the task attached to the
4518 * root cgroup in each hierarchy for the remainder of its exit.
4519 *
4520 * To do this properly, we would increment the reference count on
4521 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
4522 * code we would add a second cgroup function call, to drop that
4523 * reference. This would just create an unnecessary hot spot on
4524 * the top_cgroup reference count, to no avail.
4525 *
4526 * Normally, holding a reference to a cgroup without bumping its
4527 * count is unsafe. The cgroup could go away, or someone could
4528 * attach us to a different cgroup, decrementing the count on
4529 * the first cgroup that we never incremented. But in this case,
4530 * top_cgroup isn't going away, and either task has PF_EXITING set,
956db3ca
CW
4531 * which wards off any cgroup_attach_task() attempts, or task is a failed
4532 * fork, never visible to cgroup_attach_task.
b4f48b63
PM
4533 */
4534void cgroup_exit(struct task_struct *tsk, int run_callbacks)
4535{
30159ec7 4536 struct cgroup_subsys *ss;
5abb8855 4537 struct css_set *cset;
d41d5a01 4538 int i;
817929ec
PM
4539
4540 /*
4541 * Unlink from the css_set task list if necessary.
4542 * Optimistically check cg_list before taking
4543 * css_set_lock
4544 */
4545 if (!list_empty(&tsk->cg_list)) {
4546 write_lock(&css_set_lock);
4547 if (!list_empty(&tsk->cg_list))
8d258797 4548 list_del_init(&tsk->cg_list);
817929ec
PM
4549 write_unlock(&css_set_lock);
4550 }
4551
b4f48b63
PM
4552 /* Reassign the task to the init_css_set. */
4553 task_lock(tsk);
a8ad805c
TH
4554 cset = task_css_set(tsk);
4555 RCU_INIT_POINTER(tsk->cgroups, &init_css_set);
d41d5a01
PZ
4556
4557 if (run_callbacks && need_forkexit_callback) {
3ed80a62
TH
4558 /* see cgroup_post_fork() for details */
4559 for_each_subsys(ss, i) {
d41d5a01 4560 if (ss->exit) {
eb95419b
TH
4561 struct cgroup_subsys_state *old_css = cset->subsys[i];
4562 struct cgroup_subsys_state *css = task_css(tsk, i);
30159ec7 4563
eb95419b 4564 ss->exit(css, old_css, tsk);
d41d5a01
PZ
4565 }
4566 }
4567 }
b4f48b63 4568 task_unlock(tsk);
d41d5a01 4569
5abb8855 4570 put_css_set_taskexit(cset);
b4f48b63 4571}
697f4161 4572
bd89aabc 4573static void check_for_release(struct cgroup *cgrp)
81a6a5cd 4574{
f50daa70 4575 if (cgroup_is_releasable(cgrp) &&
6f3d828f 4576 list_empty(&cgrp->cset_links) && list_empty(&cgrp->children)) {
f50daa70
LZ
4577 /*
4578 * Control Group is currently removeable. If it's not
81a6a5cd 4579 * already queued for a userspace notification, queue
f50daa70
LZ
4580 * it now
4581 */
81a6a5cd 4582 int need_schedule_work = 0;
f50daa70 4583
cdcc136f 4584 raw_spin_lock(&release_list_lock);
54766d4a 4585 if (!cgroup_is_dead(cgrp) &&
bd89aabc
PM
4586 list_empty(&cgrp->release_list)) {
4587 list_add(&cgrp->release_list, &release_list);
81a6a5cd
PM
4588 need_schedule_work = 1;
4589 }
cdcc136f 4590 raw_spin_unlock(&release_list_lock);
81a6a5cd
PM
4591 if (need_schedule_work)
4592 schedule_work(&release_agent_work);
4593 }
4594}
4595
81a6a5cd
PM
4596/*
4597 * Notify userspace when a cgroup is released, by running the
4598 * configured release agent with the name of the cgroup (path
4599 * relative to the root of cgroup file system) as the argument.
4600 *
4601 * Most likely, this user command will try to rmdir this cgroup.
4602 *
4603 * This races with the possibility that some other task will be
4604 * attached to this cgroup before it is removed, or that some other
4605 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
4606 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
4607 * unused, and this cgroup will be reprieved from its death sentence,
4608 * to continue to serve a useful existence. Next time it's released,
4609 * we will get notified again, if it still has 'notify_on_release' set.
4610 *
4611 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
4612 * means only wait until the task is successfully execve()'d. The
4613 * separate release agent task is forked by call_usermodehelper(),
4614 * then control in this thread returns here, without waiting for the
4615 * release agent task. We don't bother to wait because the caller of
4616 * this routine has no use for the exit status of the release agent
4617 * task, so no sense holding our caller up for that.
81a6a5cd 4618 */
81a6a5cd
PM
4619static void cgroup_release_agent(struct work_struct *work)
4620{
4621 BUG_ON(work != &release_agent_work);
4622 mutex_lock(&cgroup_mutex);
cdcc136f 4623 raw_spin_lock(&release_list_lock);
81a6a5cd
PM
4624 while (!list_empty(&release_list)) {
4625 char *argv[3], *envp[3];
4626 int i;
e788e066 4627 char *pathbuf = NULL, *agentbuf = NULL;
bd89aabc 4628 struct cgroup *cgrp = list_entry(release_list.next,
81a6a5cd
PM
4629 struct cgroup,
4630 release_list);
bd89aabc 4631 list_del_init(&cgrp->release_list);
cdcc136f 4632 raw_spin_unlock(&release_list_lock);
81a6a5cd 4633 pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
e788e066
PM
4634 if (!pathbuf)
4635 goto continue_free;
4636 if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
4637 goto continue_free;
4638 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
4639 if (!agentbuf)
4640 goto continue_free;
81a6a5cd
PM
4641
4642 i = 0;
e788e066
PM
4643 argv[i++] = agentbuf;
4644 argv[i++] = pathbuf;
81a6a5cd
PM
4645 argv[i] = NULL;
4646
4647 i = 0;
4648 /* minimal command environment */
4649 envp[i++] = "HOME=/";
4650 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
4651 envp[i] = NULL;
4652
4653 /* Drop the lock while we invoke the usermode helper,
4654 * since the exec could involve hitting disk and hence
4655 * be a slow process */
4656 mutex_unlock(&cgroup_mutex);
4657 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
81a6a5cd 4658 mutex_lock(&cgroup_mutex);
e788e066
PM
4659 continue_free:
4660 kfree(pathbuf);
4661 kfree(agentbuf);
cdcc136f 4662 raw_spin_lock(&release_list_lock);
81a6a5cd 4663 }
cdcc136f 4664 raw_spin_unlock(&release_list_lock);
81a6a5cd
PM
4665 mutex_unlock(&cgroup_mutex);
4666}
8bab8dde
PM
4667
4668static int __init cgroup_disable(char *str)
4669{
30159ec7 4670 struct cgroup_subsys *ss;
8bab8dde 4671 char *token;
30159ec7 4672 int i;
8bab8dde
PM
4673
4674 while ((token = strsep(&str, ",")) != NULL) {
4675 if (!*token)
4676 continue;
be45c900 4677
3ed80a62 4678 for_each_subsys(ss, i) {
8bab8dde
PM
4679 if (!strcmp(token, ss->name)) {
4680 ss->disabled = 1;
4681 printk(KERN_INFO "Disabling %s control group"
4682 " subsystem\n", ss->name);
4683 break;
4684 }
4685 }
4686 }
4687 return 1;
4688}
4689__setup("cgroup_disable=", cgroup_disable);
38460b48 4690
b77d7b60 4691/**
5a17f543 4692 * css_tryget_from_dir - get corresponding css from the dentry of a cgroup dir
35cf0836
TH
4693 * @dentry: directory dentry of interest
4694 * @ss: subsystem of interest
b77d7b60 4695 *
5a17f543
TH
4696 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
4697 * to get the corresponding css and return it. If such css doesn't exist
4698 * or can't be pinned, an ERR_PTR value is returned.
e5d1367f 4699 */
5a17f543
TH
4700struct cgroup_subsys_state *css_tryget_from_dir(struct dentry *dentry,
4701 struct cgroup_subsys *ss)
e5d1367f 4702{
2bd59d48
TH
4703 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
4704 struct cgroup_subsys_state *css = NULL;
e5d1367f 4705 struct cgroup *cgrp;
b77d7b60 4706
35cf0836 4707 /* is @dentry a cgroup dir? */
2bd59d48
TH
4708 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
4709 kernfs_type(kn) != KERNFS_DIR)
e5d1367f
SE
4710 return ERR_PTR(-EBADF);
4711
5a17f543
TH
4712 rcu_read_lock();
4713
2bd59d48
TH
4714 /*
4715 * This path doesn't originate from kernfs and @kn could already
4716 * have been or be removed at any point. @kn->priv is RCU
4717 * protected for this access. See destroy_locked() for details.
4718 */
4719 cgrp = rcu_dereference(kn->priv);
4720 if (cgrp)
4721 css = cgroup_css(cgrp, ss);
5a17f543
TH
4722
4723 if (!css || !css_tryget(css))
4724 css = ERR_PTR(-ENOENT);
4725
4726 rcu_read_unlock();
4727 return css;
e5d1367f 4728}
e5d1367f 4729
1cb650b9
LZ
4730/**
4731 * css_from_id - lookup css by id
4732 * @id: the cgroup id
4733 * @ss: cgroup subsys to be looked into
4734 *
4735 * Returns the css if there's valid one with @id, otherwise returns NULL.
4736 * Should be called under rcu_read_lock().
4737 */
4738struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
4739{
4740 struct cgroup *cgrp;
4741
ace2bee8 4742 cgroup_assert_mutexes_or_rcu_locked();
1cb650b9
LZ
4743
4744 cgrp = idr_find(&ss->root->cgroup_idr, id);
4745 if (cgrp)
d1625964 4746 return cgroup_css(cgrp, ss);
1cb650b9 4747 return NULL;
e5d1367f
SE
4748}
4749
fe693435 4750#ifdef CONFIG_CGROUP_DEBUG
eb95419b
TH
4751static struct cgroup_subsys_state *
4752debug_css_alloc(struct cgroup_subsys_state *parent_css)
fe693435
PM
4753{
4754 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
4755
4756 if (!css)
4757 return ERR_PTR(-ENOMEM);
4758
4759 return css;
4760}
4761
eb95419b 4762static void debug_css_free(struct cgroup_subsys_state *css)
fe693435 4763{
eb95419b 4764 kfree(css);
fe693435
PM
4765}
4766
182446d0
TH
4767static u64 debug_taskcount_read(struct cgroup_subsys_state *css,
4768 struct cftype *cft)
fe693435 4769{
182446d0 4770 return cgroup_task_count(css->cgroup);
fe693435
PM
4771}
4772
182446d0
TH
4773static u64 current_css_set_read(struct cgroup_subsys_state *css,
4774 struct cftype *cft)
fe693435
PM
4775{
4776 return (u64)(unsigned long)current->cgroups;
4777}
4778
182446d0 4779static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css,
03c78cbe 4780 struct cftype *cft)
fe693435
PM
4781{
4782 u64 count;
4783
4784 rcu_read_lock();
a8ad805c 4785 count = atomic_read(&task_css_set(current)->refcount);
fe693435
PM
4786 rcu_read_unlock();
4787 return count;
4788}
4789
2da8ca82 4790static int current_css_set_cg_links_read(struct seq_file *seq, void *v)
7717f7ba 4791{
69d0206c 4792 struct cgrp_cset_link *link;
5abb8855 4793 struct css_set *cset;
7717f7ba
PM
4794
4795 read_lock(&css_set_lock);
4796 rcu_read_lock();
5abb8855 4797 cset = rcu_dereference(current->cgroups);
69d0206c 4798 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 4799 struct cgroup *c = link->cgrp;
59f5296b
TH
4800 const char *name = "?";
4801
4802 if (c != cgroup_dummy_top)
4803 name = cgroup_name(c);
7717f7ba 4804
2c6ab6d2
PM
4805 seq_printf(seq, "Root %d group %s\n",
4806 c->root->hierarchy_id, name);
7717f7ba
PM
4807 }
4808 rcu_read_unlock();
4809 read_unlock(&css_set_lock);
4810 return 0;
4811}
4812
4813#define MAX_TASKS_SHOWN_PER_CSS 25
2da8ca82 4814static int cgroup_css_links_read(struct seq_file *seq, void *v)
7717f7ba 4815{
2da8ca82 4816 struct cgroup_subsys_state *css = seq_css(seq);
69d0206c 4817 struct cgrp_cset_link *link;
7717f7ba
PM
4818
4819 read_lock(&css_set_lock);
182446d0 4820 list_for_each_entry(link, &css->cgroup->cset_links, cset_link) {
69d0206c 4821 struct css_set *cset = link->cset;
7717f7ba
PM
4822 struct task_struct *task;
4823 int count = 0;
5abb8855
TH
4824 seq_printf(seq, "css_set %p\n", cset);
4825 list_for_each_entry(task, &cset->tasks, cg_list) {
7717f7ba
PM
4826 if (count++ > MAX_TASKS_SHOWN_PER_CSS) {
4827 seq_puts(seq, " ...\n");
4828 break;
4829 } else {
4830 seq_printf(seq, " task %d\n",
4831 task_pid_vnr(task));
4832 }
4833 }
4834 }
4835 read_unlock(&css_set_lock);
4836 return 0;
4837}
4838
182446d0 4839static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft)
fe693435 4840{
182446d0 4841 return test_bit(CGRP_RELEASABLE, &css->cgroup->flags);
fe693435
PM
4842}
4843
4844static struct cftype debug_files[] = {
fe693435
PM
4845 {
4846 .name = "taskcount",
4847 .read_u64 = debug_taskcount_read,
4848 },
4849
4850 {
4851 .name = "current_css_set",
4852 .read_u64 = current_css_set_read,
4853 },
4854
4855 {
4856 .name = "current_css_set_refcount",
4857 .read_u64 = current_css_set_refcount_read,
4858 },
4859
7717f7ba
PM
4860 {
4861 .name = "current_css_set_cg_links",
2da8ca82 4862 .seq_show = current_css_set_cg_links_read,
7717f7ba
PM
4863 },
4864
4865 {
4866 .name = "cgroup_css_links",
2da8ca82 4867 .seq_show = cgroup_css_links_read,
7717f7ba
PM
4868 },
4869
fe693435
PM
4870 {
4871 .name = "releasable",
4872 .read_u64 = releasable_read,
4873 },
fe693435 4874
4baf6e33
TH
4875 { } /* terminate */
4876};
fe693435 4877
073219e9 4878struct cgroup_subsys debug_cgrp_subsys = {
92fb9748
TH
4879 .css_alloc = debug_css_alloc,
4880 .css_free = debug_css_free,
4baf6e33 4881 .base_cftypes = debug_files,
fe693435
PM
4882};
4883#endif /* CONFIG_CGROUP_DEBUG */