]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - kernel/cgroup.c
cgroup: separate out put_css_set_locked() and remove put_css_set_taskexit()
[mirror_ubuntu-zesty-kernel.git] / kernel / cgroup.c
CommitLineData
ddbcc7e8 1/*
ddbcc7e8
PM
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
0dea1168
KS
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
ddbcc7e8
PM
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29#include <linux/cgroup.h>
2ce9738b 30#include <linux/cred.h>
c6d57f33 31#include <linux/ctype.h>
ddbcc7e8 32#include <linux/errno.h>
2ce9738b 33#include <linux/init_task.h>
ddbcc7e8
PM
34#include <linux/kernel.h>
35#include <linux/list.h>
36#include <linux/mm.h>
37#include <linux/mutex.h>
38#include <linux/mount.h>
39#include <linux/pagemap.h>
a424316c 40#include <linux/proc_fs.h>
ddbcc7e8
PM
41#include <linux/rcupdate.h>
42#include <linux/sched.h>
ddbcc7e8 43#include <linux/slab.h>
ddbcc7e8 44#include <linux/spinlock.h>
96d365e0 45#include <linux/rwsem.h>
ddbcc7e8 46#include <linux/string.h>
bbcb81d0 47#include <linux/sort.h>
81a6a5cd 48#include <linux/kmod.h>
846c7bb0
BS
49#include <linux/delayacct.h>
50#include <linux/cgroupstats.h>
0ac801fe 51#include <linux/hashtable.h>
096b7fe0 52#include <linux/pid_namespace.h>
2c6ab6d2 53#include <linux/idr.h>
d1d9fd33 54#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
081aa458 55#include <linux/flex_array.h> /* used in cgroup_attach_task */
c4c27fbd 56#include <linux/kthread.h>
776f02fa 57#include <linux/delay.h>
846c7bb0 58
60063497 59#include <linux/atomic.h>
ddbcc7e8 60
b1a21367
TH
61/*
62 * pidlists linger the following amount before being destroyed. The goal
63 * is avoiding frequent destruction in the middle of consecutive read calls
64 * Expiring in the middle is a performance problem not a correctness one.
65 * 1 sec should be enough.
66 */
67#define CGROUP_PIDLIST_DESTROY_DELAY HZ
68
8d7e6fb0
TH
69#define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
70 MAX_CFTYPE_NAME + 2)
71
ace2bee8
TH
72/*
73 * cgroup_tree_mutex nests above cgroup_mutex and protects cftypes, file
74 * creation/removal and hierarchy changing operations including cgroup
75 * creation, removal, css association and controller rebinding. This outer
76 * lock is needed mainly to resolve the circular dependency between kernfs
77 * active ref and cgroup_mutex. cgroup_tree_mutex nests above both.
78 */
79static DEFINE_MUTEX(cgroup_tree_mutex);
80
e25e2cbb
TH
81/*
82 * cgroup_mutex is the master lock. Any modification to cgroup or its
83 * hierarchy must be performed while holding it.
e25e2cbb 84 */
2219449a
TH
85#ifdef CONFIG_PROVE_RCU
86DEFINE_MUTEX(cgroup_mutex);
8af01f56 87EXPORT_SYMBOL_GPL(cgroup_mutex); /* only for lockdep */
2219449a 88#else
81a6a5cd 89static DEFINE_MUTEX(cgroup_mutex);
2219449a
TH
90#endif
91
69e943b7
TH
92/*
93 * Protects cgroup_subsys->release_agent_path. Modifying it also requires
94 * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock.
95 */
96static DEFINE_SPINLOCK(release_agent_path_lock);
97
ace2bee8 98#define cgroup_assert_mutexes_or_rcu_locked() \
87fb54f1 99 rcu_lockdep_assert(rcu_read_lock_held() || \
ace2bee8 100 lockdep_is_held(&cgroup_tree_mutex) || \
87fb54f1 101 lockdep_is_held(&cgroup_mutex), \
ace2bee8 102 "cgroup_[tree_]mutex or RCU read lock required");
87fb54f1 103
e5fca243
TH
104/*
105 * cgroup destruction makes heavy use of work items and there can be a lot
106 * of concurrent destructions. Use a separate workqueue so that cgroup
107 * destruction work items don't end up filling up max_active of system_wq
108 * which may lead to deadlock.
109 */
110static struct workqueue_struct *cgroup_destroy_wq;
111
b1a21367
TH
112/*
113 * pidlist destructions need to be flushed on cgroup destruction. Use a
114 * separate workqueue as flush domain.
115 */
116static struct workqueue_struct *cgroup_pidlist_destroy_wq;
117
3ed80a62 118/* generate an array of cgroup subsystem pointers */
073219e9 119#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
3ed80a62 120static struct cgroup_subsys *cgroup_subsys[] = {
ddbcc7e8
PM
121#include <linux/cgroup_subsys.h>
122};
073219e9
TH
123#undef SUBSYS
124
125/* array of cgroup subsystem names */
126#define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
127static const char *cgroup_subsys_name[] = {
128#include <linux/cgroup_subsys.h>
129};
130#undef SUBSYS
ddbcc7e8 131
ddbcc7e8 132/*
9871bf95
TH
133 * The dummy hierarchy, reserved for the subsystems that are otherwise
134 * unattached - it never has more than a single cgroup, and all tasks are
135 * part of that cgroup.
ddbcc7e8 136 */
9871bf95
TH
137static struct cgroupfs_root cgroup_dummy_root;
138
139/* dummy_top is a shorthand for the dummy hierarchy's top cgroup */
140static struct cgroup * const cgroup_dummy_top = &cgroup_dummy_root.top_cgroup;
ddbcc7e8
PM
141
142/* The list of hierarchy roots */
143
9871bf95
TH
144static LIST_HEAD(cgroup_roots);
145static int cgroup_root_count;
ddbcc7e8 146
3417ae1f 147/* hierarchy ID allocation and mapping, protected by cgroup_mutex */
1a574231 148static DEFINE_IDR(cgroup_hierarchy_idr);
2c6ab6d2 149
794611a1
LZ
150/*
151 * Assign a monotonically increasing serial number to cgroups. It
152 * guarantees cgroups with bigger numbers are newer than those with smaller
153 * numbers. Also, as cgroups are always appended to the parent's
154 * ->children list, it guarantees that sibling cgroups are always sorted in
00356bd5
TH
155 * the ascending serial number order on the list. Protected by
156 * cgroup_mutex.
794611a1 157 */
00356bd5 158static u64 cgroup_serial_nr_next = 1;
794611a1 159
ddbcc7e8 160/* This flag indicates whether tasks in the fork and exit paths should
a043e3b2
LZ
161 * check for fork/exit handlers to call. This avoids us having to do
162 * extra work in the fork/exit path if none of the subsystems need to
163 * be called.
ddbcc7e8 164 */
8947f9d5 165static int need_forkexit_callback __read_mostly;
ddbcc7e8 166
628f7cd4
TH
167static struct cftype cgroup_base_files[];
168
59f5296b 169static void cgroup_put(struct cgroup *cgrp);
f2e85d57
TH
170static int rebind_subsystems(struct cgroupfs_root *root,
171 unsigned long added_mask, unsigned removed_mask);
f20104de 172static void cgroup_destroy_css_killed(struct cgroup *cgrp);
42809dd4 173static int cgroup_destroy_locked(struct cgroup *cgrp);
2bb566cb
TH
174static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
175 bool is_add);
b1a21367 176static void cgroup_pidlist_destroy_all(struct cgroup *cgrp);
42809dd4 177
95109b62
TH
178/**
179 * cgroup_css - obtain a cgroup's css for the specified subsystem
180 * @cgrp: the cgroup of interest
ca8bdcaf 181 * @ss: the subsystem of interest (%NULL returns the dummy_css)
95109b62 182 *
ca8bdcaf
TH
183 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
184 * function must be called either under cgroup_mutex or rcu_read_lock() and
185 * the caller is responsible for pinning the returned css if it wants to
186 * keep accessing it outside the said locks. This function may return
187 * %NULL if @cgrp doesn't have @subsys_id enabled.
95109b62
TH
188 */
189static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
ca8bdcaf 190 struct cgroup_subsys *ss)
95109b62 191{
ca8bdcaf 192 if (ss)
aec25020 193 return rcu_dereference_check(cgrp->subsys[ss->id],
ace2bee8
TH
194 lockdep_is_held(&cgroup_tree_mutex) ||
195 lockdep_is_held(&cgroup_mutex));
ca8bdcaf
TH
196 else
197 return &cgrp->dummy_css;
95109b62 198}
42809dd4 199
ddbcc7e8 200/* convenient tests for these bits */
54766d4a 201static inline bool cgroup_is_dead(const struct cgroup *cgrp)
ddbcc7e8 202{
54766d4a 203 return test_bit(CGRP_DEAD, &cgrp->flags);
ddbcc7e8
PM
204}
205
59f5296b
TH
206struct cgroup_subsys_state *seq_css(struct seq_file *seq)
207{
2bd59d48
TH
208 struct kernfs_open_file *of = seq->private;
209 struct cgroup *cgrp = of->kn->parent->priv;
210 struct cftype *cft = seq_cft(seq);
211
212 /*
213 * This is open and unprotected implementation of cgroup_css().
214 * seq_css() is only called from a kernfs file operation which has
215 * an active reference on the file. Because all the subsystem
216 * files are drained before a css is disassociated with a cgroup,
217 * the matching css from the cgroup's subsys table is guaranteed to
218 * be and stay valid until the enclosing operation is complete.
219 */
220 if (cft->ss)
221 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
222 else
223 return &cgrp->dummy_css;
59f5296b
TH
224}
225EXPORT_SYMBOL_GPL(seq_css);
226
78574cf9
LZ
227/**
228 * cgroup_is_descendant - test ancestry
229 * @cgrp: the cgroup to be tested
230 * @ancestor: possible ancestor of @cgrp
231 *
232 * Test whether @cgrp is a descendant of @ancestor. It also returns %true
233 * if @cgrp == @ancestor. This function is safe to call as long as @cgrp
234 * and @ancestor are accessible.
235 */
236bool cgroup_is_descendant(struct cgroup *cgrp, struct cgroup *ancestor)
237{
238 while (cgrp) {
239 if (cgrp == ancestor)
240 return true;
241 cgrp = cgrp->parent;
242 }
243 return false;
244}
245EXPORT_SYMBOL_GPL(cgroup_is_descendant);
ddbcc7e8 246
e9685a03 247static int cgroup_is_releasable(const struct cgroup *cgrp)
81a6a5cd
PM
248{
249 const int bits =
bd89aabc
PM
250 (1 << CGRP_RELEASABLE) |
251 (1 << CGRP_NOTIFY_ON_RELEASE);
252 return (cgrp->flags & bits) == bits;
81a6a5cd
PM
253}
254
e9685a03 255static int notify_on_release(const struct cgroup *cgrp)
81a6a5cd 256{
bd89aabc 257 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
81a6a5cd
PM
258}
259
1c6727af
TH
260/**
261 * for_each_css - iterate all css's of a cgroup
262 * @css: the iteration cursor
263 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
264 * @cgrp: the target cgroup to iterate css's of
265 *
266 * Should be called under cgroup_mutex.
267 */
268#define for_each_css(css, ssid, cgrp) \
269 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
270 if (!((css) = rcu_dereference_check( \
271 (cgrp)->subsys[(ssid)], \
ace2bee8 272 lockdep_is_held(&cgroup_tree_mutex) || \
1c6727af
TH
273 lockdep_is_held(&cgroup_mutex)))) { } \
274 else
275
30159ec7 276/**
3ed80a62 277 * for_each_subsys - iterate all enabled cgroup subsystems
30159ec7 278 * @ss: the iteration cursor
780cd8b3 279 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
30159ec7 280 */
780cd8b3 281#define for_each_subsys(ss, ssid) \
3ed80a62
TH
282 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT && \
283 (((ss) = cgroup_subsys[ssid]) || true); (ssid)++)
30159ec7 284
5549c497
TH
285/* iterate across the active hierarchies */
286#define for_each_active_root(root) \
287 list_for_each_entry((root), &cgroup_roots, root_list)
ddbcc7e8 288
7ae1bad9
TH
289/**
290 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
291 * @cgrp: the cgroup to be checked for liveness
292 *
47cfcd09
TH
293 * On success, returns true; the mutex should be later unlocked. On
294 * failure returns false with no lock held.
7ae1bad9 295 */
b9777cf8 296static bool cgroup_lock_live_group(struct cgroup *cgrp)
7ae1bad9
TH
297{
298 mutex_lock(&cgroup_mutex);
54766d4a 299 if (cgroup_is_dead(cgrp)) {
7ae1bad9
TH
300 mutex_unlock(&cgroup_mutex);
301 return false;
302 }
303 return true;
304}
7ae1bad9 305
81a6a5cd
PM
306/* the list of cgroups eligible for automatic release. Protected by
307 * release_list_lock */
308static LIST_HEAD(release_list);
cdcc136f 309static DEFINE_RAW_SPINLOCK(release_list_lock);
81a6a5cd
PM
310static void cgroup_release_agent(struct work_struct *work);
311static DECLARE_WORK(release_agent_work, cgroup_release_agent);
bd89aabc 312static void check_for_release(struct cgroup *cgrp);
81a6a5cd 313
69d0206c
TH
314/*
315 * A cgroup can be associated with multiple css_sets as different tasks may
316 * belong to different cgroups on different hierarchies. In the other
317 * direction, a css_set is naturally associated with multiple cgroups.
318 * This M:N relationship is represented by the following link structure
319 * which exists for each association and allows traversing the associations
320 * from both sides.
321 */
322struct cgrp_cset_link {
323 /* the cgroup and css_set this link associates */
324 struct cgroup *cgrp;
325 struct css_set *cset;
326
327 /* list of cgrp_cset_links anchored at cgrp->cset_links */
328 struct list_head cset_link;
329
330 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
331 struct list_head cgrp_link;
817929ec
PM
332};
333
334/* The default css_set - used by init and its children prior to any
335 * hierarchies being mounted. It contains a pointer to the root state
336 * for each subsystem. Also used to anchor the list of css_sets. Not
337 * reference-counted, to improve performance when child cgroups
338 * haven't been created.
339 */
340
341static struct css_set init_css_set;
69d0206c 342static struct cgrp_cset_link init_cgrp_cset_link;
817929ec 343
0942eeee 344/*
96d365e0
TH
345 * css_set_rwsem protects the list of css_set objects, and the chain of
346 * tasks off each css_set.
0942eeee 347 */
96d365e0 348static DECLARE_RWSEM(css_set_rwsem);
817929ec
PM
349static int css_set_count;
350
7717f7ba
PM
351/*
352 * hash table for cgroup groups. This improves the performance to find
353 * an existing css_set. This hash doesn't (currently) take into
354 * account cgroups in empty hierarchies.
355 */
472b1053 356#define CSS_SET_HASH_BITS 7
0ac801fe 357static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
472b1053 358
0ac801fe 359static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
472b1053 360{
0ac801fe 361 unsigned long key = 0UL;
30159ec7
TH
362 struct cgroup_subsys *ss;
363 int i;
472b1053 364
30159ec7 365 for_each_subsys(ss, i)
0ac801fe
LZ
366 key += (unsigned long)css[i];
367 key = (key >> 16) ^ key;
472b1053 368
0ac801fe 369 return key;
472b1053
LZ
370}
371
89c5509b 372static void put_css_set_locked(struct css_set *cset, bool taskexit)
b4f48b63 373{
69d0206c 374 struct cgrp_cset_link *link, *tmp_link;
5abb8855 375
89c5509b
TH
376 lockdep_assert_held(&css_set_rwsem);
377
378 if (!atomic_dec_and_test(&cset->refcount))
146aa1bd 379 return;
81a6a5cd 380
2c6ab6d2 381 /* This css_set is dead. unlink it and release cgroup refcounts */
5abb8855 382 hash_del(&cset->hlist);
2c6ab6d2
PM
383 css_set_count--;
384
69d0206c 385 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
2c6ab6d2 386 struct cgroup *cgrp = link->cgrp;
5abb8855 387
69d0206c
TH
388 list_del(&link->cset_link);
389 list_del(&link->cgrp_link);
71b5707e 390
96d365e0 391 /* @cgrp can't go away while we're holding css_set_rwsem */
6f3d828f 392 if (list_empty(&cgrp->cset_links) && notify_on_release(cgrp)) {
81a6a5cd 393 if (taskexit)
bd89aabc
PM
394 set_bit(CGRP_RELEASABLE, &cgrp->flags);
395 check_for_release(cgrp);
81a6a5cd 396 }
2c6ab6d2
PM
397
398 kfree(link);
81a6a5cd 399 }
2c6ab6d2 400
5abb8855 401 kfree_rcu(cset, rcu_head);
b4f48b63
PM
402}
403
89c5509b
TH
404static void put_css_set(struct css_set *cset, bool taskexit)
405{
406 /*
407 * Ensure that the refcount doesn't hit zero while any readers
408 * can see it. Similar to atomic_dec_and_lock(), but for an
409 * rwlock
410 */
411 if (atomic_add_unless(&cset->refcount, -1, 1))
412 return;
413
414 down_write(&css_set_rwsem);
415 put_css_set_locked(cset, taskexit);
416 up_write(&css_set_rwsem);
417}
418
817929ec
PM
419/*
420 * refcounted get/put for css_set objects
421 */
5abb8855 422static inline void get_css_set(struct css_set *cset)
817929ec 423{
5abb8855 424 atomic_inc(&cset->refcount);
817929ec
PM
425}
426
b326f9d0 427/**
7717f7ba 428 * compare_css_sets - helper function for find_existing_css_set().
5abb8855
TH
429 * @cset: candidate css_set being tested
430 * @old_cset: existing css_set for a task
7717f7ba
PM
431 * @new_cgrp: cgroup that's being entered by the task
432 * @template: desired set of css pointers in css_set (pre-calculated)
433 *
6f4b7e63 434 * Returns true if "cset" matches "old_cset" except for the hierarchy
7717f7ba
PM
435 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
436 */
5abb8855
TH
437static bool compare_css_sets(struct css_set *cset,
438 struct css_set *old_cset,
7717f7ba
PM
439 struct cgroup *new_cgrp,
440 struct cgroup_subsys_state *template[])
441{
442 struct list_head *l1, *l2;
443
5abb8855 444 if (memcmp(template, cset->subsys, sizeof(cset->subsys))) {
7717f7ba
PM
445 /* Not all subsystems matched */
446 return false;
447 }
448
449 /*
450 * Compare cgroup pointers in order to distinguish between
451 * different cgroups in heirarchies with no subsystems. We
452 * could get by with just this check alone (and skip the
453 * memcmp above) but on most setups the memcmp check will
454 * avoid the need for this more expensive check on almost all
455 * candidates.
456 */
457
69d0206c
TH
458 l1 = &cset->cgrp_links;
459 l2 = &old_cset->cgrp_links;
7717f7ba 460 while (1) {
69d0206c 461 struct cgrp_cset_link *link1, *link2;
5abb8855 462 struct cgroup *cgrp1, *cgrp2;
7717f7ba
PM
463
464 l1 = l1->next;
465 l2 = l2->next;
466 /* See if we reached the end - both lists are equal length. */
69d0206c
TH
467 if (l1 == &cset->cgrp_links) {
468 BUG_ON(l2 != &old_cset->cgrp_links);
7717f7ba
PM
469 break;
470 } else {
69d0206c 471 BUG_ON(l2 == &old_cset->cgrp_links);
7717f7ba
PM
472 }
473 /* Locate the cgroups associated with these links. */
69d0206c
TH
474 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
475 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
476 cgrp1 = link1->cgrp;
477 cgrp2 = link2->cgrp;
7717f7ba 478 /* Hierarchies should be linked in the same order. */
5abb8855 479 BUG_ON(cgrp1->root != cgrp2->root);
7717f7ba
PM
480
481 /*
482 * If this hierarchy is the hierarchy of the cgroup
483 * that's changing, then we need to check that this
484 * css_set points to the new cgroup; if it's any other
485 * hierarchy, then this css_set should point to the
486 * same cgroup as the old css_set.
487 */
5abb8855
TH
488 if (cgrp1->root == new_cgrp->root) {
489 if (cgrp1 != new_cgrp)
7717f7ba
PM
490 return false;
491 } else {
5abb8855 492 if (cgrp1 != cgrp2)
7717f7ba
PM
493 return false;
494 }
495 }
496 return true;
497}
498
b326f9d0
TH
499/**
500 * find_existing_css_set - init css array and find the matching css_set
501 * @old_cset: the css_set that we're using before the cgroup transition
502 * @cgrp: the cgroup that we're moving into
503 * @template: out param for the new set of csses, should be clear on entry
817929ec 504 */
5abb8855
TH
505static struct css_set *find_existing_css_set(struct css_set *old_cset,
506 struct cgroup *cgrp,
507 struct cgroup_subsys_state *template[])
b4f48b63 508{
bd89aabc 509 struct cgroupfs_root *root = cgrp->root;
30159ec7 510 struct cgroup_subsys *ss;
5abb8855 511 struct css_set *cset;
0ac801fe 512 unsigned long key;
b326f9d0 513 int i;
817929ec 514
aae8aab4
BB
515 /*
516 * Build the set of subsystem state objects that we want to see in the
517 * new css_set. while subsystems can change globally, the entries here
518 * won't change, so no need for locking.
519 */
30159ec7 520 for_each_subsys(ss, i) {
a1a71b45 521 if (root->subsys_mask & (1UL << i)) {
817929ec
PM
522 /* Subsystem is in this hierarchy. So we want
523 * the subsystem state from the new
524 * cgroup */
ca8bdcaf 525 template[i] = cgroup_css(cgrp, ss);
817929ec
PM
526 } else {
527 /* Subsystem is not in this hierarchy, so we
528 * don't want to change the subsystem state */
5abb8855 529 template[i] = old_cset->subsys[i];
817929ec
PM
530 }
531 }
532
0ac801fe 533 key = css_set_hash(template);
5abb8855
TH
534 hash_for_each_possible(css_set_table, cset, hlist, key) {
535 if (!compare_css_sets(cset, old_cset, cgrp, template))
7717f7ba
PM
536 continue;
537
538 /* This css_set matches what we need */
5abb8855 539 return cset;
472b1053 540 }
817929ec
PM
541
542 /* No existing cgroup group matched */
543 return NULL;
544}
545
69d0206c 546static void free_cgrp_cset_links(struct list_head *links_to_free)
36553434 547{
69d0206c 548 struct cgrp_cset_link *link, *tmp_link;
36553434 549
69d0206c
TH
550 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
551 list_del(&link->cset_link);
36553434
LZ
552 kfree(link);
553 }
554}
555
69d0206c
TH
556/**
557 * allocate_cgrp_cset_links - allocate cgrp_cset_links
558 * @count: the number of links to allocate
559 * @tmp_links: list_head the allocated links are put on
560 *
561 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
562 * through ->cset_link. Returns 0 on success or -errno.
817929ec 563 */
69d0206c 564static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
817929ec 565{
69d0206c 566 struct cgrp_cset_link *link;
817929ec 567 int i;
69d0206c
TH
568
569 INIT_LIST_HEAD(tmp_links);
570
817929ec 571 for (i = 0; i < count; i++) {
f4f4be2b 572 link = kzalloc(sizeof(*link), GFP_KERNEL);
817929ec 573 if (!link) {
69d0206c 574 free_cgrp_cset_links(tmp_links);
817929ec
PM
575 return -ENOMEM;
576 }
69d0206c 577 list_add(&link->cset_link, tmp_links);
817929ec
PM
578 }
579 return 0;
580}
581
c12f65d4
LZ
582/**
583 * link_css_set - a helper function to link a css_set to a cgroup
69d0206c 584 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
5abb8855 585 * @cset: the css_set to be linked
c12f65d4
LZ
586 * @cgrp: the destination cgroup
587 */
69d0206c
TH
588static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
589 struct cgroup *cgrp)
c12f65d4 590{
69d0206c 591 struct cgrp_cset_link *link;
c12f65d4 592
69d0206c
TH
593 BUG_ON(list_empty(tmp_links));
594 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
595 link->cset = cset;
7717f7ba 596 link->cgrp = cgrp;
69d0206c 597 list_move(&link->cset_link, &cgrp->cset_links);
7717f7ba
PM
598 /*
599 * Always add links to the tail of the list so that the list
600 * is sorted by order of hierarchy creation
601 */
69d0206c 602 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
c12f65d4
LZ
603}
604
b326f9d0
TH
605/**
606 * find_css_set - return a new css_set with one cgroup updated
607 * @old_cset: the baseline css_set
608 * @cgrp: the cgroup to be updated
609 *
610 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
611 * substituted into the appropriate hierarchy.
817929ec 612 */
5abb8855
TH
613static struct css_set *find_css_set(struct css_set *old_cset,
614 struct cgroup *cgrp)
817929ec 615{
b326f9d0 616 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
5abb8855 617 struct css_set *cset;
69d0206c
TH
618 struct list_head tmp_links;
619 struct cgrp_cset_link *link;
0ac801fe 620 unsigned long key;
472b1053 621
b326f9d0
TH
622 lockdep_assert_held(&cgroup_mutex);
623
817929ec
PM
624 /* First see if we already have a cgroup group that matches
625 * the desired set */
96d365e0 626 down_read(&css_set_rwsem);
5abb8855
TH
627 cset = find_existing_css_set(old_cset, cgrp, template);
628 if (cset)
629 get_css_set(cset);
96d365e0 630 up_read(&css_set_rwsem);
817929ec 631
5abb8855
TH
632 if (cset)
633 return cset;
817929ec 634
f4f4be2b 635 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
5abb8855 636 if (!cset)
817929ec
PM
637 return NULL;
638
69d0206c 639 /* Allocate all the cgrp_cset_link objects that we'll need */
9871bf95 640 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
5abb8855 641 kfree(cset);
817929ec
PM
642 return NULL;
643 }
644
5abb8855 645 atomic_set(&cset->refcount, 1);
69d0206c 646 INIT_LIST_HEAD(&cset->cgrp_links);
5abb8855
TH
647 INIT_LIST_HEAD(&cset->tasks);
648 INIT_HLIST_NODE(&cset->hlist);
817929ec
PM
649
650 /* Copy the set of subsystem state objects generated in
651 * find_existing_css_set() */
5abb8855 652 memcpy(cset->subsys, template, sizeof(cset->subsys));
817929ec 653
96d365e0 654 down_write(&css_set_rwsem);
817929ec 655 /* Add reference counts and links from the new css_set. */
69d0206c 656 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
7717f7ba 657 struct cgroup *c = link->cgrp;
69d0206c 658
7717f7ba
PM
659 if (c->root == cgrp->root)
660 c = cgrp;
69d0206c 661 link_css_set(&tmp_links, cset, c);
7717f7ba 662 }
817929ec 663
69d0206c 664 BUG_ON(!list_empty(&tmp_links));
817929ec 665
817929ec 666 css_set_count++;
472b1053
LZ
667
668 /* Add this cgroup group to the hash table */
5abb8855
TH
669 key = css_set_hash(cset->subsys);
670 hash_add(css_set_table, &cset->hlist, key);
472b1053 671
96d365e0 672 up_write(&css_set_rwsem);
817929ec 673
5abb8855 674 return cset;
b4f48b63
PM
675}
676
2bd59d48
TH
677static struct cgroupfs_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
678{
679 struct cgroup *top_cgrp = kf_root->kn->priv;
680
681 return top_cgrp->root;
682}
683
f2e85d57
TH
684static int cgroup_init_root_id(struct cgroupfs_root *root, int start, int end)
685{
686 int id;
687
688 lockdep_assert_held(&cgroup_mutex);
689
690 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, start, end,
691 GFP_KERNEL);
692 if (id < 0)
693 return id;
694
695 root->hierarchy_id = id;
696 return 0;
697}
698
699static void cgroup_exit_root_id(struct cgroupfs_root *root)
700{
701 lockdep_assert_held(&cgroup_mutex);
702
703 if (root->hierarchy_id) {
704 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
705 root->hierarchy_id = 0;
706 }
707}
708
709static void cgroup_free_root(struct cgroupfs_root *root)
710{
711 if (root) {
712 /* hierarhcy ID shoulid already have been released */
713 WARN_ON_ONCE(root->hierarchy_id);
714
715 idr_destroy(&root->cgroup_idr);
716 kfree(root);
717 }
718}
719
776f02fa 720static void cgroup_destroy_root(struct cgroupfs_root *root)
59f5296b 721{
f2e85d57
TH
722 struct cgroup *cgrp = &root->top_cgroup;
723 struct cgrp_cset_link *link, *tmp_link;
f2e85d57 724
2bd59d48 725 mutex_lock(&cgroup_tree_mutex);
2bd59d48 726 mutex_lock(&cgroup_mutex);
f2e85d57 727
776f02fa 728 BUG_ON(atomic_read(&root->nr_cgrps));
f2e85d57
TH
729 BUG_ON(!list_empty(&cgrp->children));
730
f2e85d57 731 /* Rebind all subsystems back to the default hierarchy */
35585573 732 WARN_ON(rebind_subsystems(root, 0, root->subsys_mask));
f2e85d57
TH
733
734 /*
735 * Release all the links from cset_links to this hierarchy's
736 * root cgroup
737 */
96d365e0 738 down_write(&css_set_rwsem);
f2e85d57
TH
739
740 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
741 list_del(&link->cset_link);
742 list_del(&link->cgrp_link);
743 kfree(link);
744 }
96d365e0 745 up_write(&css_set_rwsem);
f2e85d57
TH
746
747 if (!list_empty(&root->root_list)) {
748 list_del(&root->root_list);
749 cgroup_root_count--;
750 }
751
752 cgroup_exit_root_id(root);
753
754 mutex_unlock(&cgroup_mutex);
755 mutex_unlock(&cgroup_tree_mutex);
f2e85d57 756
2bd59d48 757 kernfs_destroy_root(root->kf_root);
f2e85d57
TH
758 cgroup_free_root(root);
759}
760
7717f7ba
PM
761/*
762 * Return the cgroup for "task" from the given hierarchy. Must be
96d365e0 763 * called with cgroup_mutex and css_set_rwsem held.
7717f7ba
PM
764 */
765static struct cgroup *task_cgroup_from_root(struct task_struct *task,
766 struct cgroupfs_root *root)
767{
5abb8855 768 struct css_set *cset;
7717f7ba
PM
769 struct cgroup *res = NULL;
770
96d365e0
TH
771 lockdep_assert_held(&cgroup_mutex);
772 lockdep_assert_held(&css_set_rwsem);
773
7717f7ba
PM
774 /*
775 * No need to lock the task - since we hold cgroup_mutex the
776 * task can't change groups, so the only thing that can happen
777 * is that it exits and its css is set back to init_css_set.
778 */
a8ad805c 779 cset = task_css_set(task);
5abb8855 780 if (cset == &init_css_set) {
7717f7ba
PM
781 res = &root->top_cgroup;
782 } else {
69d0206c
TH
783 struct cgrp_cset_link *link;
784
785 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 786 struct cgroup *c = link->cgrp;
69d0206c 787
7717f7ba
PM
788 if (c->root == root) {
789 res = c;
790 break;
791 }
792 }
793 }
96d365e0 794
7717f7ba
PM
795 BUG_ON(!res);
796 return res;
797}
798
ddbcc7e8
PM
799/*
800 * There is one global cgroup mutex. We also require taking
801 * task_lock() when dereferencing a task's cgroup subsys pointers.
802 * See "The task_lock() exception", at the end of this comment.
803 *
804 * A task must hold cgroup_mutex to modify cgroups.
805 *
806 * Any task can increment and decrement the count field without lock.
807 * So in general, code holding cgroup_mutex can't rely on the count
808 * field not changing. However, if the count goes to zero, then only
956db3ca 809 * cgroup_attach_task() can increment it again. Because a count of zero
ddbcc7e8
PM
810 * means that no tasks are currently attached, therefore there is no
811 * way a task attached to that cgroup can fork (the other way to
812 * increment the count). So code holding cgroup_mutex can safely
813 * assume that if the count is zero, it will stay zero. Similarly, if
814 * a task holds cgroup_mutex on a cgroup with zero count, it
815 * knows that the cgroup won't be removed, as cgroup_rmdir()
816 * needs that mutex.
817 *
ddbcc7e8
PM
818 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
819 * (usually) take cgroup_mutex. These are the two most performance
820 * critical pieces of code here. The exception occurs on cgroup_exit(),
821 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
822 * is taken, and if the cgroup count is zero, a usermode call made
a043e3b2
LZ
823 * to the release agent with the name of the cgroup (path relative to
824 * the root of cgroup file system) as the argument.
ddbcc7e8
PM
825 *
826 * A cgroup can only be deleted if both its 'count' of using tasks
827 * is zero, and its list of 'children' cgroups is empty. Since all
828 * tasks in the system use _some_ cgroup, and since there is always at
829 * least one task in the system (init, pid == 1), therefore, top_cgroup
830 * always has either children cgroups and/or using tasks. So we don't
831 * need a special hack to ensure that top_cgroup cannot be deleted.
832 *
833 * The task_lock() exception
834 *
835 * The need for this exception arises from the action of
d0b2fdd2 836 * cgroup_attach_task(), which overwrites one task's cgroup pointer with
a043e3b2 837 * another. It does so using cgroup_mutex, however there are
ddbcc7e8
PM
838 * several performance critical places that need to reference
839 * task->cgroup without the expense of grabbing a system global
840 * mutex. Therefore except as noted below, when dereferencing or, as
d0b2fdd2 841 * in cgroup_attach_task(), modifying a task's cgroup pointer we use
ddbcc7e8
PM
842 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
843 * the task_struct routinely used for such matters.
844 *
845 * P.S. One more locking exception. RCU is used to guard the
956db3ca 846 * update of a tasks cgroup pointer by cgroup_attach_task()
ddbcc7e8
PM
847 */
848
628f7cd4 849static int cgroup_populate_dir(struct cgroup *cgrp, unsigned long subsys_mask);
2bd59d48 850static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
828c0950 851static const struct file_operations proc_cgroupstats_operations;
a424316c 852
8d7e6fb0
TH
853static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
854 char *buf)
855{
856 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
857 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
858 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
859 cft->ss->name, cft->name);
860 else
861 strncpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
862 return buf;
863}
864
f2e85d57
TH
865/**
866 * cgroup_file_mode - deduce file mode of a control file
867 * @cft: the control file in question
868 *
869 * returns cft->mode if ->mode is not 0
870 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
871 * returns S_IRUGO if it has only a read handler
872 * returns S_IWUSR if it has only a write hander
873 */
874static umode_t cgroup_file_mode(const struct cftype *cft)
875{
876 umode_t mode = 0;
877
878 if (cft->mode)
879 return cft->mode;
880
881 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
882 mode |= S_IRUGO;
883
884 if (cft->write_u64 || cft->write_s64 || cft->write_string ||
885 cft->trigger)
886 mode |= S_IWUSR;
887
888 return mode;
889}
890
be445626
LZ
891static void cgroup_free_fn(struct work_struct *work)
892{
ea15f8cc 893 struct cgroup *cgrp = container_of(work, struct cgroup, destroy_work);
be445626 894
3c9c825b 895 atomic_dec(&cgrp->root->nr_cgrps);
b1a21367 896 cgroup_pidlist_destroy_all(cgrp);
be445626 897
776f02fa
TH
898 if (cgrp->parent) {
899 /*
900 * We get a ref to the parent, and put the ref when this
901 * cgroup is being freed, so it's guaranteed that the
902 * parent won't be destroyed before its children.
903 */
904 cgroup_put(cgrp->parent);
905 kernfs_put(cgrp->kn);
906 kfree(cgrp);
907 } else {
908 /*
909 * This is top cgroup's refcnt reaching zero, which
910 * indicates that the root should be released.
911 */
912 cgroup_destroy_root(cgrp->root);
913 }
be445626
LZ
914}
915
916static void cgroup_free_rcu(struct rcu_head *head)
917{
918 struct cgroup *cgrp = container_of(head, struct cgroup, rcu_head);
919
ea15f8cc 920 INIT_WORK(&cgrp->destroy_work, cgroup_free_fn);
e5fca243 921 queue_work(cgroup_destroy_wq, &cgrp->destroy_work);
be445626
LZ
922}
923
59f5296b
TH
924static void cgroup_get(struct cgroup *cgrp)
925{
2bd59d48
TH
926 WARN_ON_ONCE(cgroup_is_dead(cgrp));
927 WARN_ON_ONCE(atomic_read(&cgrp->refcnt) <= 0);
928 atomic_inc(&cgrp->refcnt);
ddbcc7e8
PM
929}
930
59f5296b
TH
931static void cgroup_put(struct cgroup *cgrp)
932{
2bd59d48
TH
933 if (!atomic_dec_and_test(&cgrp->refcnt))
934 return;
776f02fa 935 if (WARN_ON_ONCE(cgrp->parent && !cgroup_is_dead(cgrp)))
2bd59d48 936 return;
59f5296b 937
2bd59d48
TH
938 /*
939 * XXX: cgrp->id is only used to look up css's. As cgroup and
940 * css's lifetimes will be decoupled, it should be made
941 * per-subsystem and moved to css->id so that lookups are
942 * successful until the target css is released.
943 */
944 mutex_lock(&cgroup_mutex);
945 idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
946 mutex_unlock(&cgroup_mutex);
947 cgrp->id = -1;
ddbcc7e8 948
2bd59d48 949 call_rcu(&cgrp->rcu_head, cgroup_free_rcu);
ddbcc7e8
PM
950}
951
2739d3cc 952static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
05ef1d7c 953{
2bd59d48 954 char name[CGROUP_FILE_NAME_MAX];
05ef1d7c 955
ace2bee8 956 lockdep_assert_held(&cgroup_tree_mutex);
2bd59d48 957 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
05ef1d7c
TH
958}
959
13af07df 960/**
628f7cd4 961 * cgroup_clear_dir - remove subsys files in a cgroup directory
8f89140a 962 * @cgrp: target cgroup
13af07df
AR
963 * @subsys_mask: mask of the subsystem ids whose files should be removed
964 */
628f7cd4 965static void cgroup_clear_dir(struct cgroup *cgrp, unsigned long subsys_mask)
05ef1d7c 966{
13af07df 967 struct cgroup_subsys *ss;
b420ba7d 968 int i;
05ef1d7c 969
b420ba7d 970 for_each_subsys(ss, i) {
0adb0704 971 struct cftype *cfts;
b420ba7d
TH
972
973 if (!test_bit(i, &subsys_mask))
13af07df 974 continue;
0adb0704
TH
975 list_for_each_entry(cfts, &ss->cfts, node)
976 cgroup_addrm_files(cgrp, cfts, false);
13af07df 977 }
ddbcc7e8
PM
978}
979
ddbcc7e8 980static int rebind_subsystems(struct cgroupfs_root *root,
a8a648c4 981 unsigned long added_mask, unsigned removed_mask)
ddbcc7e8 982{
bd89aabc 983 struct cgroup *cgrp = &root->top_cgroup;
30159ec7 984 struct cgroup_subsys *ss;
3126121f 985 int i, ret;
ddbcc7e8 986
ace2bee8
TH
987 lockdep_assert_held(&cgroup_tree_mutex);
988 lockdep_assert_held(&cgroup_mutex);
aae8aab4 989
ddbcc7e8 990 /* Check that any added subsystems are currently free */
3ed80a62
TH
991 for_each_subsys(ss, i)
992 if ((added_mask & (1 << i)) && ss->root != &cgroup_dummy_root)
993 return -EBUSY;
ddbcc7e8 994
3126121f
TH
995 ret = cgroup_populate_dir(cgrp, added_mask);
996 if (ret)
3ed80a62 997 return ret;
3126121f
TH
998
999 /*
1000 * Nothing can fail from this point on. Remove files for the
1001 * removed subsystems and rebind each subsystem.
1002 */
4ac06017 1003 mutex_unlock(&cgroup_mutex);
3126121f 1004 cgroup_clear_dir(cgrp, removed_mask);
4ac06017 1005 mutex_lock(&cgroup_mutex);
ddbcc7e8 1006
30159ec7 1007 for_each_subsys(ss, i) {
ddbcc7e8 1008 unsigned long bit = 1UL << i;
30159ec7 1009
a1a71b45 1010 if (bit & added_mask) {
ddbcc7e8 1011 /* We're binding this subsystem to this hierarchy */
ca8bdcaf
TH
1012 BUG_ON(cgroup_css(cgrp, ss));
1013 BUG_ON(!cgroup_css(cgroup_dummy_top, ss));
1014 BUG_ON(cgroup_css(cgroup_dummy_top, ss)->cgroup != cgroup_dummy_top);
a8a648c4 1015
73e80ed8 1016 rcu_assign_pointer(cgrp->subsys[i],
ca8bdcaf
TH
1017 cgroup_css(cgroup_dummy_top, ss));
1018 cgroup_css(cgrp, ss)->cgroup = cgrp;
a8a648c4 1019
b2aa30f7 1020 ss->root = root;
ddbcc7e8 1021 if (ss->bind)
ca8bdcaf 1022 ss->bind(cgroup_css(cgrp, ss));
a8a648c4 1023
cf5d5941 1024 /* refcount was already taken, and we're keeping it */
a8a648c4 1025 root->subsys_mask |= bit;
a1a71b45 1026 } else if (bit & removed_mask) {
ddbcc7e8 1027 /* We're removing this subsystem */
ca8bdcaf
TH
1028 BUG_ON(cgroup_css(cgrp, ss) != cgroup_css(cgroup_dummy_top, ss));
1029 BUG_ON(cgroup_css(cgrp, ss)->cgroup != cgrp);
a8a648c4 1030
ddbcc7e8 1031 if (ss->bind)
ca8bdcaf 1032 ss->bind(cgroup_css(cgroup_dummy_top, ss));
73e80ed8 1033
ca8bdcaf 1034 cgroup_css(cgroup_dummy_top, ss)->cgroup = cgroup_dummy_top;
73e80ed8
TH
1035 RCU_INIT_POINTER(cgrp->subsys[i], NULL);
1036
9871bf95 1037 cgroup_subsys[i]->root = &cgroup_dummy_root;
a8a648c4 1038 root->subsys_mask &= ~bit;
ddbcc7e8
PM
1039 }
1040 }
ddbcc7e8 1041
2bd59d48 1042 kernfs_activate(cgrp->kn);
ddbcc7e8
PM
1043 return 0;
1044}
1045
2bd59d48
TH
1046static int cgroup_show_options(struct seq_file *seq,
1047 struct kernfs_root *kf_root)
ddbcc7e8 1048{
2bd59d48 1049 struct cgroupfs_root *root = cgroup_root_from_kf(kf_root);
ddbcc7e8 1050 struct cgroup_subsys *ss;
b85d2040 1051 int ssid;
ddbcc7e8 1052
b85d2040
TH
1053 for_each_subsys(ss, ssid)
1054 if (root->subsys_mask & (1 << ssid))
1055 seq_printf(seq, ",%s", ss->name);
873fe09e
TH
1056 if (root->flags & CGRP_ROOT_SANE_BEHAVIOR)
1057 seq_puts(seq, ",sane_behavior");
93438629 1058 if (root->flags & CGRP_ROOT_NOPREFIX)
ddbcc7e8 1059 seq_puts(seq, ",noprefix");
93438629 1060 if (root->flags & CGRP_ROOT_XATTR)
03b1cde6 1061 seq_puts(seq, ",xattr");
69e943b7
TH
1062
1063 spin_lock(&release_agent_path_lock);
81a6a5cd
PM
1064 if (strlen(root->release_agent_path))
1065 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
69e943b7
TH
1066 spin_unlock(&release_agent_path_lock);
1067
2260e7fc 1068 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->top_cgroup.flags))
97978e6d 1069 seq_puts(seq, ",clone_children");
c6d57f33
PM
1070 if (strlen(root->name))
1071 seq_printf(seq, ",name=%s", root->name);
ddbcc7e8
PM
1072 return 0;
1073}
1074
1075struct cgroup_sb_opts {
a1a71b45 1076 unsigned long subsys_mask;
ddbcc7e8 1077 unsigned long flags;
81a6a5cd 1078 char *release_agent;
2260e7fc 1079 bool cpuset_clone_children;
c6d57f33 1080 char *name;
2c6ab6d2
PM
1081 /* User explicitly requested empty subsystem */
1082 bool none;
ddbcc7e8
PM
1083};
1084
aae8aab4 1085/*
9871bf95
TH
1086 * Convert a hierarchy specifier into a bitmask of subsystems and
1087 * flags. Call with cgroup_mutex held to protect the cgroup_subsys[]
1088 * array. This function takes refcounts on subsystems to be used, unless it
1089 * returns error, in which case no refcounts are taken.
aae8aab4 1090 */
cf5d5941 1091static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
ddbcc7e8 1092{
32a8cf23
DL
1093 char *token, *o = data;
1094 bool all_ss = false, one_ss = false;
f9ab5b5b 1095 unsigned long mask = (unsigned long)-1;
30159ec7
TH
1096 struct cgroup_subsys *ss;
1097 int i;
f9ab5b5b 1098
aae8aab4
BB
1099 BUG_ON(!mutex_is_locked(&cgroup_mutex));
1100
f9ab5b5b 1101#ifdef CONFIG_CPUSETS
073219e9 1102 mask = ~(1UL << cpuset_cgrp_id);
f9ab5b5b 1103#endif
ddbcc7e8 1104
c6d57f33 1105 memset(opts, 0, sizeof(*opts));
ddbcc7e8
PM
1106
1107 while ((token = strsep(&o, ",")) != NULL) {
1108 if (!*token)
1109 return -EINVAL;
32a8cf23 1110 if (!strcmp(token, "none")) {
2c6ab6d2
PM
1111 /* Explicitly have no subsystems */
1112 opts->none = true;
32a8cf23
DL
1113 continue;
1114 }
1115 if (!strcmp(token, "all")) {
1116 /* Mutually exclusive option 'all' + subsystem name */
1117 if (one_ss)
1118 return -EINVAL;
1119 all_ss = true;
1120 continue;
1121 }
873fe09e
TH
1122 if (!strcmp(token, "__DEVEL__sane_behavior")) {
1123 opts->flags |= CGRP_ROOT_SANE_BEHAVIOR;
1124 continue;
1125 }
32a8cf23 1126 if (!strcmp(token, "noprefix")) {
93438629 1127 opts->flags |= CGRP_ROOT_NOPREFIX;
32a8cf23
DL
1128 continue;
1129 }
1130 if (!strcmp(token, "clone_children")) {
2260e7fc 1131 opts->cpuset_clone_children = true;
32a8cf23
DL
1132 continue;
1133 }
03b1cde6 1134 if (!strcmp(token, "xattr")) {
93438629 1135 opts->flags |= CGRP_ROOT_XATTR;
03b1cde6
AR
1136 continue;
1137 }
32a8cf23 1138 if (!strncmp(token, "release_agent=", 14)) {
81a6a5cd
PM
1139 /* Specifying two release agents is forbidden */
1140 if (opts->release_agent)
1141 return -EINVAL;
c6d57f33 1142 opts->release_agent =
e400c285 1143 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
81a6a5cd
PM
1144 if (!opts->release_agent)
1145 return -ENOMEM;
32a8cf23
DL
1146 continue;
1147 }
1148 if (!strncmp(token, "name=", 5)) {
c6d57f33
PM
1149 const char *name = token + 5;
1150 /* Can't specify an empty name */
1151 if (!strlen(name))
1152 return -EINVAL;
1153 /* Must match [\w.-]+ */
1154 for (i = 0; i < strlen(name); i++) {
1155 char c = name[i];
1156 if (isalnum(c))
1157 continue;
1158 if ((c == '.') || (c == '-') || (c == '_'))
1159 continue;
1160 return -EINVAL;
1161 }
1162 /* Specifying two names is forbidden */
1163 if (opts->name)
1164 return -EINVAL;
1165 opts->name = kstrndup(name,
e400c285 1166 MAX_CGROUP_ROOT_NAMELEN - 1,
c6d57f33
PM
1167 GFP_KERNEL);
1168 if (!opts->name)
1169 return -ENOMEM;
32a8cf23
DL
1170
1171 continue;
1172 }
1173
30159ec7 1174 for_each_subsys(ss, i) {
32a8cf23
DL
1175 if (strcmp(token, ss->name))
1176 continue;
1177 if (ss->disabled)
1178 continue;
1179
1180 /* Mutually exclusive option 'all' + subsystem name */
1181 if (all_ss)
1182 return -EINVAL;
a1a71b45 1183 set_bit(i, &opts->subsys_mask);
32a8cf23
DL
1184 one_ss = true;
1185
1186 break;
1187 }
1188 if (i == CGROUP_SUBSYS_COUNT)
1189 return -ENOENT;
1190 }
1191
1192 /*
1193 * If the 'all' option was specified select all the subsystems,
0d19ea86
LZ
1194 * otherwise if 'none', 'name=' and a subsystem name options
1195 * were not specified, let's default to 'all'
32a8cf23 1196 */
30159ec7
TH
1197 if (all_ss || (!one_ss && !opts->none && !opts->name))
1198 for_each_subsys(ss, i)
1199 if (!ss->disabled)
1200 set_bit(i, &opts->subsys_mask);
ddbcc7e8 1201
2c6ab6d2
PM
1202 /* Consistency checks */
1203
873fe09e
TH
1204 if (opts->flags & CGRP_ROOT_SANE_BEHAVIOR) {
1205 pr_warning("cgroup: sane_behavior: this is still under development and its behaviors will change, proceed at your own risk\n");
1206
d3ba07c3
TH
1207 if ((opts->flags & (CGRP_ROOT_NOPREFIX | CGRP_ROOT_XATTR)) ||
1208 opts->cpuset_clone_children || opts->release_agent ||
1209 opts->name) {
1210 pr_err("cgroup: sane_behavior: noprefix, xattr, clone_children, release_agent and name are not allowed\n");
873fe09e
TH
1211 return -EINVAL;
1212 }
873fe09e
TH
1213 }
1214
f9ab5b5b
LZ
1215 /*
1216 * Option noprefix was introduced just for backward compatibility
1217 * with the old cpuset, so we allow noprefix only if mounting just
1218 * the cpuset subsystem.
1219 */
93438629 1220 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
f9ab5b5b
LZ
1221 return -EINVAL;
1222
2c6ab6d2
PM
1223
1224 /* Can't specify "none" and some subsystems */
a1a71b45 1225 if (opts->subsys_mask && opts->none)
2c6ab6d2
PM
1226 return -EINVAL;
1227
1228 /*
1229 * We either have to specify by name or by subsystems. (So all
1230 * empty hierarchies must have a name).
1231 */
a1a71b45 1232 if (!opts->subsys_mask && !opts->name)
ddbcc7e8
PM
1233 return -EINVAL;
1234
1235 return 0;
1236}
1237
2bd59d48 1238static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
ddbcc7e8
PM
1239{
1240 int ret = 0;
2bd59d48 1241 struct cgroupfs_root *root = cgroup_root_from_kf(kf_root);
ddbcc7e8 1242 struct cgroup_sb_opts opts;
a1a71b45 1243 unsigned long added_mask, removed_mask;
ddbcc7e8 1244
873fe09e
TH
1245 if (root->flags & CGRP_ROOT_SANE_BEHAVIOR) {
1246 pr_err("cgroup: sane_behavior: remount is not allowed\n");
1247 return -EINVAL;
1248 }
1249
ace2bee8 1250 mutex_lock(&cgroup_tree_mutex);
ddbcc7e8
PM
1251 mutex_lock(&cgroup_mutex);
1252
1253 /* See what subsystems are wanted */
1254 ret = parse_cgroupfs_options(data, &opts);
1255 if (ret)
1256 goto out_unlock;
1257
a8a648c4 1258 if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
8b5a5a9d
TH
1259 pr_warning("cgroup: option changes via remount are deprecated (pid=%d comm=%s)\n",
1260 task_tgid_nr(current), current->comm);
1261
a1a71b45
AR
1262 added_mask = opts.subsys_mask & ~root->subsys_mask;
1263 removed_mask = root->subsys_mask & ~opts.subsys_mask;
13af07df 1264
cf5d5941 1265 /* Don't allow flags or name to change at remount */
0ce6cba3 1266 if (((opts.flags ^ root->flags) & CGRP_ROOT_OPTION_MASK) ||
cf5d5941 1267 (opts.name && strcmp(opts.name, root->name))) {
0ce6cba3
TH
1268 pr_err("cgroup: option or name mismatch, new: 0x%lx \"%s\", old: 0x%lx \"%s\"\n",
1269 opts.flags & CGRP_ROOT_OPTION_MASK, opts.name ?: "",
1270 root->flags & CGRP_ROOT_OPTION_MASK, root->name);
c6d57f33
PM
1271 ret = -EINVAL;
1272 goto out_unlock;
1273 }
1274
f172e67c 1275 /* remounting is not allowed for populated hierarchies */
3c9c825b 1276 if (!list_empty(&root->top_cgroup.children)) {
f172e67c 1277 ret = -EBUSY;
0670e08b 1278 goto out_unlock;
cf5d5941 1279 }
ddbcc7e8 1280
a8a648c4 1281 ret = rebind_subsystems(root, added_mask, removed_mask);
3126121f 1282 if (ret)
0670e08b 1283 goto out_unlock;
ddbcc7e8 1284
69e943b7
TH
1285 if (opts.release_agent) {
1286 spin_lock(&release_agent_path_lock);
81a6a5cd 1287 strcpy(root->release_agent_path, opts.release_agent);
69e943b7
TH
1288 spin_unlock(&release_agent_path_lock);
1289 }
ddbcc7e8 1290 out_unlock:
66bdc9cf 1291 kfree(opts.release_agent);
c6d57f33 1292 kfree(opts.name);
ddbcc7e8 1293 mutex_unlock(&cgroup_mutex);
ace2bee8 1294 mutex_unlock(&cgroup_tree_mutex);
ddbcc7e8
PM
1295 return ret;
1296}
1297
afeb0f9f
TH
1298/*
1299 * To reduce the fork() overhead for systems that are not actually using
1300 * their cgroups capability, we don't maintain the lists running through
1301 * each css_set to its tasks until we see the list actually used - in other
1302 * words after the first mount.
1303 */
1304static bool use_task_css_set_links __read_mostly;
1305
1306static void cgroup_enable_task_cg_lists(void)
1307{
1308 struct task_struct *p, *g;
1309
96d365e0 1310 down_write(&css_set_rwsem);
afeb0f9f
TH
1311
1312 if (use_task_css_set_links)
1313 goto out_unlock;
1314
1315 use_task_css_set_links = true;
1316
1317 /*
1318 * We need tasklist_lock because RCU is not safe against
1319 * while_each_thread(). Besides, a forking task that has passed
1320 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1321 * is not guaranteed to have its child immediately visible in the
1322 * tasklist if we walk through it with RCU.
1323 */
1324 read_lock(&tasklist_lock);
1325 do_each_thread(g, p) {
1326 task_lock(p);
1327
1328 WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1329 task_css_set(p) != &init_css_set);
1330
1331 /*
1332 * We should check if the process is exiting, otherwise
1333 * it will race with cgroup_exit() in that the list
1334 * entry won't be deleted though the process has exited.
1335 */
1336 if (!(p->flags & PF_EXITING))
1337 list_add(&p->cg_list, &task_css_set(p)->tasks);
1338
1339 task_unlock(p);
1340 } while_each_thread(g, p);
1341 read_unlock(&tasklist_lock);
1342out_unlock:
96d365e0 1343 up_write(&css_set_rwsem);
afeb0f9f
TH
1344}
1345
cc31edce
PM
1346static void init_cgroup_housekeeping(struct cgroup *cgrp)
1347{
2bd59d48 1348 atomic_set(&cgrp->refcnt, 1);
cc31edce
PM
1349 INIT_LIST_HEAD(&cgrp->sibling);
1350 INIT_LIST_HEAD(&cgrp->children);
69d0206c 1351 INIT_LIST_HEAD(&cgrp->cset_links);
cc31edce 1352 INIT_LIST_HEAD(&cgrp->release_list);
72a8cb30
BB
1353 INIT_LIST_HEAD(&cgrp->pidlists);
1354 mutex_init(&cgrp->pidlist_mutex);
67f4c36f 1355 cgrp->dummy_css.cgroup = cgrp;
cc31edce 1356}
c6d57f33 1357
ddbcc7e8
PM
1358static void init_cgroup_root(struct cgroupfs_root *root)
1359{
bd89aabc 1360 struct cgroup *cgrp = &root->top_cgroup;
b0ca5a84 1361
ddbcc7e8 1362 INIT_LIST_HEAD(&root->root_list);
3c9c825b 1363 atomic_set(&root->nr_cgrps, 1);
bd89aabc 1364 cgrp->root = root;
cc31edce 1365 init_cgroup_housekeeping(cgrp);
4e96ee8e 1366 idr_init(&root->cgroup_idr);
ddbcc7e8
PM
1367}
1368
c6d57f33
PM
1369static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts)
1370{
1371 struct cgroupfs_root *root;
1372
a1a71b45 1373 if (!opts->subsys_mask && !opts->none)
2bd59d48 1374 return ERR_PTR(-EINVAL);
c6d57f33
PM
1375
1376 root = kzalloc(sizeof(*root), GFP_KERNEL);
1377 if (!root)
1378 return ERR_PTR(-ENOMEM);
1379
1380 init_cgroup_root(root);
2c6ab6d2 1381
c6d57f33
PM
1382 root->flags = opts->flags;
1383 if (opts->release_agent)
1384 strcpy(root->release_agent_path, opts->release_agent);
1385 if (opts->name)
1386 strcpy(root->name, opts->name);
2260e7fc
TH
1387 if (opts->cpuset_clone_children)
1388 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->top_cgroup.flags);
c6d57f33
PM
1389 return root;
1390}
1391
35585573 1392static int cgroup_setup_root(struct cgroupfs_root *root, unsigned long ss_mask)
d427dfeb
TH
1393{
1394 LIST_HEAD(tmp_links);
d427dfeb 1395 struct cgroup *root_cgrp = &root->top_cgroup;
d427dfeb 1396 struct css_set *cset;
d427dfeb
TH
1397 int i, ret;
1398
1399 lockdep_assert_held(&cgroup_tree_mutex);
1400 lockdep_assert_held(&cgroup_mutex);
d427dfeb
TH
1401
1402 ret = idr_alloc(&root->cgroup_idr, root_cgrp, 0, 1, GFP_KERNEL);
1403 if (ret < 0)
2bd59d48 1404 goto out;
d427dfeb
TH
1405 root_cgrp->id = ret;
1406
d427dfeb 1407 /*
96d365e0 1408 * We're accessing css_set_count without locking css_set_rwsem here,
d427dfeb
TH
1409 * but that's OK - it can only be increased by someone holding
1410 * cgroup_lock, and that's us. The worst that can happen is that we
1411 * have some link structures left over
1412 */
1413 ret = allocate_cgrp_cset_links(css_set_count, &tmp_links);
1414 if (ret)
2bd59d48 1415 goto out;
d427dfeb
TH
1416
1417 /* ID 0 is reserved for dummy root, 1 for unified hierarchy */
1418 ret = cgroup_init_root_id(root, 2, 0);
1419 if (ret)
2bd59d48 1420 goto out;
d427dfeb 1421
2bd59d48
TH
1422 root->kf_root = kernfs_create_root(&cgroup_kf_syscall_ops,
1423 KERNFS_ROOT_CREATE_DEACTIVATED,
1424 root_cgrp);
1425 if (IS_ERR(root->kf_root)) {
1426 ret = PTR_ERR(root->kf_root);
1427 goto exit_root_id;
1428 }
1429 root_cgrp->kn = root->kf_root->kn;
d427dfeb
TH
1430
1431 ret = cgroup_addrm_files(root_cgrp, cgroup_base_files, true);
1432 if (ret)
2bd59d48 1433 goto destroy_root;
d427dfeb 1434
35585573 1435 ret = rebind_subsystems(root, ss_mask, 0);
d427dfeb 1436 if (ret)
2bd59d48 1437 goto destroy_root;
d427dfeb
TH
1438
1439 /*
1440 * There must be no failure case after here, since rebinding takes
1441 * care of subsystems' refcounts, which are explicitly dropped in
1442 * the failure exit path.
1443 */
1444 list_add(&root->root_list, &cgroup_roots);
1445 cgroup_root_count++;
1446
1447 /*
1448 * Link the top cgroup in this hierarchy into all the css_set
1449 * objects.
1450 */
96d365e0 1451 down_write(&css_set_rwsem);
d427dfeb
TH
1452 hash_for_each(css_set_table, i, cset, hlist)
1453 link_css_set(&tmp_links, cset, root_cgrp);
96d365e0 1454 up_write(&css_set_rwsem);
d427dfeb
TH
1455
1456 BUG_ON(!list_empty(&root_cgrp->children));
3c9c825b 1457 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
d427dfeb 1458
2bd59d48 1459 kernfs_activate(root_cgrp->kn);
d427dfeb 1460 ret = 0;
2bd59d48 1461 goto out;
d427dfeb 1462
2bd59d48
TH
1463destroy_root:
1464 kernfs_destroy_root(root->kf_root);
1465 root->kf_root = NULL;
1466exit_root_id:
d427dfeb 1467 cgroup_exit_root_id(root);
2bd59d48 1468out:
d427dfeb
TH
1469 free_cgrp_cset_links(&tmp_links);
1470 return ret;
1471}
1472
f7e83571 1473static struct dentry *cgroup_mount(struct file_system_type *fs_type,
ddbcc7e8 1474 int flags, const char *unused_dev_name,
f7e83571 1475 void *data)
ddbcc7e8 1476{
2bd59d48 1477 struct cgroupfs_root *root;
ddbcc7e8 1478 struct cgroup_sb_opts opts;
2bd59d48 1479 struct dentry *dentry;
8e30e2b8 1480 int ret;
56fde9e0
TH
1481
1482 /*
1483 * The first time anyone tries to mount a cgroup, enable the list
1484 * linking each css_set to its tasks and fix up all existing tasks.
1485 */
1486 if (!use_task_css_set_links)
1487 cgroup_enable_task_cg_lists();
776f02fa 1488retry:
8e30e2b8 1489 mutex_lock(&cgroup_tree_mutex);
aae8aab4 1490 mutex_lock(&cgroup_mutex);
8e30e2b8
TH
1491
1492 /* First find the desired set of subsystems */
ddbcc7e8 1493 ret = parse_cgroupfs_options(data, &opts);
c6d57f33 1494 if (ret)
8e30e2b8 1495 goto out_unlock;
ddbcc7e8 1496
2bd59d48
TH
1497 /* look for a matching existing root */
1498 for_each_active_root(root) {
1499 bool name_match = false;
ddbcc7e8 1500
2bd59d48
TH
1501 /*
1502 * If we asked for a name then it must match. Also, if
1503 * name matches but sybsys_mask doesn't, we should fail.
1504 * Remember whether name matched.
1505 */
1506 if (opts.name) {
1507 if (strcmp(opts.name, root->name))
1508 continue;
1509 name_match = true;
1510 }
ddbcc7e8 1511
c6d57f33 1512 /*
2bd59d48
TH
1513 * If we asked for subsystems (or explicitly for no
1514 * subsystems) then they must match.
c6d57f33 1515 */
2bd59d48
TH
1516 if ((opts.subsys_mask || opts.none) &&
1517 (opts.subsys_mask != root->subsys_mask)) {
1518 if (!name_match)
1519 continue;
1520 ret = -EBUSY;
1521 goto out_unlock;
1522 }
873fe09e 1523
c7ba8287 1524 if ((root->flags ^ opts.flags) & CGRP_ROOT_OPTION_MASK) {
2a0ff3fb
JL
1525 if ((root->flags | opts.flags) & CGRP_ROOT_SANE_BEHAVIOR) {
1526 pr_err("cgroup: sane_behavior: new mount options should match the existing superblock\n");
1527 ret = -EINVAL;
8e30e2b8 1528 goto out_unlock;
2a0ff3fb
JL
1529 } else {
1530 pr_warning("cgroup: new mount options do not match the existing superblock, will be ignored\n");
1531 }
873fe09e 1532 }
2bd59d48 1533
776f02fa
TH
1534 /*
1535 * A root's lifetime is governed by its top cgroup. Zero
1536 * ref indicate that the root is being destroyed. Wait for
1537 * destruction to complete so that the subsystems are free.
1538 * We can use wait_queue for the wait but this path is
1539 * super cold. Let's just sleep for a bit and retry.
1540 */
1541 if (!atomic_inc_not_zero(&root->top_cgroup.refcnt)) {
1542 mutex_unlock(&cgroup_mutex);
1543 mutex_unlock(&cgroup_tree_mutex);
1544 msleep(10);
1545 goto retry;
1546 }
1547
1548 ret = 0;
2bd59d48 1549 goto out_unlock;
ddbcc7e8
PM
1550 }
1551
2bd59d48
TH
1552 /* no such thing, create a new one */
1553 root = cgroup_root_from_opts(&opts);
1554 if (IS_ERR(root)) {
1555 ret = PTR_ERR(root);
1556 goto out_unlock;
1557 }
1558
35585573 1559 ret = cgroup_setup_root(root, opts.subsys_mask);
2bd59d48
TH
1560 if (ret)
1561 cgroup_free_root(root);
1562
8e30e2b8 1563out_unlock:
e25e2cbb 1564 mutex_unlock(&cgroup_mutex);
ace2bee8 1565 mutex_unlock(&cgroup_tree_mutex);
8e30e2b8 1566
c6d57f33
PM
1567 kfree(opts.release_agent);
1568 kfree(opts.name);
8e30e2b8 1569
2bd59d48 1570 if (ret)
8e30e2b8 1571 return ERR_PTR(ret);
2bd59d48
TH
1572
1573 dentry = kernfs_mount(fs_type, flags, root->kf_root);
1574 if (IS_ERR(dentry))
776f02fa 1575 cgroup_put(&root->top_cgroup);
2bd59d48
TH
1576 return dentry;
1577}
1578
1579static void cgroup_kill_sb(struct super_block *sb)
1580{
1581 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
1582 struct cgroupfs_root *root = cgroup_root_from_kf(kf_root);
1583
776f02fa 1584 cgroup_put(&root->top_cgroup);
2bd59d48 1585 kernfs_kill_sb(sb);
ddbcc7e8
PM
1586}
1587
ddbcc7e8
PM
1588static struct file_system_type cgroup_fs_type = {
1589 .name = "cgroup",
f7e83571 1590 .mount = cgroup_mount,
ddbcc7e8
PM
1591 .kill_sb = cgroup_kill_sb,
1592};
1593
676db4af
GKH
1594static struct kobject *cgroup_kobj;
1595
857a2beb 1596/**
913ffdb5 1597 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
857a2beb 1598 * @task: target task
857a2beb
TH
1599 * @buf: the buffer to write the path into
1600 * @buflen: the length of the buffer
1601 *
913ffdb5
TH
1602 * Determine @task's cgroup on the first (the one with the lowest non-zero
1603 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
1604 * function grabs cgroup_mutex and shouldn't be used inside locks used by
1605 * cgroup controller callbacks.
1606 *
e61734c5 1607 * Return value is the same as kernfs_path().
857a2beb 1608 */
e61734c5 1609char *task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
857a2beb
TH
1610{
1611 struct cgroupfs_root *root;
913ffdb5 1612 struct cgroup *cgrp;
e61734c5
TH
1613 int hierarchy_id = 1;
1614 char *path = NULL;
857a2beb
TH
1615
1616 mutex_lock(&cgroup_mutex);
96d365e0 1617 down_read(&css_set_rwsem);
857a2beb 1618
913ffdb5
TH
1619 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
1620
857a2beb
TH
1621 if (root) {
1622 cgrp = task_cgroup_from_root(task, root);
e61734c5 1623 path = cgroup_path(cgrp, buf, buflen);
913ffdb5
TH
1624 } else {
1625 /* if no hierarchy exists, everyone is in "/" */
e61734c5
TH
1626 if (strlcpy(buf, "/", buflen) < buflen)
1627 path = buf;
857a2beb
TH
1628 }
1629
96d365e0 1630 up_read(&css_set_rwsem);
857a2beb 1631 mutex_unlock(&cgroup_mutex);
e61734c5 1632 return path;
857a2beb 1633}
913ffdb5 1634EXPORT_SYMBOL_GPL(task_cgroup_path);
857a2beb 1635
2f7ee569
TH
1636/*
1637 * Control Group taskset
1638 */
134d3373
TH
1639struct task_and_cgroup {
1640 struct task_struct *task;
1641 struct cgroup *cgrp;
6f4b7e63 1642 struct css_set *cset;
134d3373
TH
1643};
1644
2f7ee569
TH
1645struct cgroup_taskset {
1646 struct task_and_cgroup single;
1647 struct flex_array *tc_array;
1648 int tc_array_len;
1649 int idx;
1650 struct cgroup *cur_cgrp;
1651};
1652
1653/**
1654 * cgroup_taskset_first - reset taskset and return the first task
1655 * @tset: taskset of interest
1656 *
1657 * @tset iteration is initialized and the first task is returned.
1658 */
1659struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
1660{
1661 if (tset->tc_array) {
1662 tset->idx = 0;
1663 return cgroup_taskset_next(tset);
1664 } else {
1665 tset->cur_cgrp = tset->single.cgrp;
1666 return tset->single.task;
1667 }
1668}
1669EXPORT_SYMBOL_GPL(cgroup_taskset_first);
1670
1671/**
1672 * cgroup_taskset_next - iterate to the next task in taskset
1673 * @tset: taskset of interest
1674 *
1675 * Return the next task in @tset. Iteration must have been initialized
1676 * with cgroup_taskset_first().
1677 */
1678struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
1679{
1680 struct task_and_cgroup *tc;
1681
1682 if (!tset->tc_array || tset->idx >= tset->tc_array_len)
1683 return NULL;
1684
1685 tc = flex_array_get(tset->tc_array, tset->idx++);
1686 tset->cur_cgrp = tc->cgrp;
1687 return tc->task;
1688}
1689EXPORT_SYMBOL_GPL(cgroup_taskset_next);
1690
1691/**
d99c8727 1692 * cgroup_taskset_cur_css - return the matching css for the current task
2f7ee569 1693 * @tset: taskset of interest
d99c8727 1694 * @subsys_id: the ID of the target subsystem
2f7ee569 1695 *
d99c8727
TH
1696 * Return the css for the current (last returned) task of @tset for
1697 * subsystem specified by @subsys_id. This function must be preceded by
1698 * either cgroup_taskset_first() or cgroup_taskset_next().
2f7ee569 1699 */
d99c8727
TH
1700struct cgroup_subsys_state *cgroup_taskset_cur_css(struct cgroup_taskset *tset,
1701 int subsys_id)
2f7ee569 1702{
ca8bdcaf 1703 return cgroup_css(tset->cur_cgrp, cgroup_subsys[subsys_id]);
2f7ee569 1704}
d99c8727 1705EXPORT_SYMBOL_GPL(cgroup_taskset_cur_css);
2f7ee569
TH
1706
1707/**
1708 * cgroup_taskset_size - return the number of tasks in taskset
1709 * @tset: taskset of interest
1710 */
1711int cgroup_taskset_size(struct cgroup_taskset *tset)
1712{
1713 return tset->tc_array ? tset->tc_array_len : 1;
1714}
1715EXPORT_SYMBOL_GPL(cgroup_taskset_size);
1716
1717
74a1166d
BB
1718/*
1719 * cgroup_task_migrate - move a task from one cgroup to another.
1720 *
d0b2fdd2 1721 * Must be called with cgroup_mutex and threadgroup locked.
74a1166d 1722 */
5abb8855
TH
1723static void cgroup_task_migrate(struct cgroup *old_cgrp,
1724 struct task_struct *tsk,
1725 struct css_set *new_cset)
74a1166d 1726{
5abb8855 1727 struct css_set *old_cset;
74a1166d
BB
1728
1729 /*
026085ef
MSB
1730 * We are synchronized through threadgroup_lock() against PF_EXITING
1731 * setting such that we can't race against cgroup_exit() changing the
1732 * css_set to init_css_set and dropping the old one.
74a1166d 1733 */
c84cdf75 1734 WARN_ON_ONCE(tsk->flags & PF_EXITING);
a8ad805c 1735 old_cset = task_css_set(tsk);
74a1166d 1736
74a1166d 1737 task_lock(tsk);
5abb8855 1738 rcu_assign_pointer(tsk->cgroups, new_cset);
74a1166d
BB
1739 task_unlock(tsk);
1740
96d365e0 1741 down_write(&css_set_rwsem);
56fde9e0 1742 list_move(&tsk->cg_list, &new_cset->tasks);
96d365e0 1743 up_write(&css_set_rwsem);
74a1166d
BB
1744
1745 /*
5abb8855
TH
1746 * We just gained a reference on old_cset by taking it from the
1747 * task. As trading it for new_cset is protected by cgroup_mutex,
1748 * we're safe to drop it here; it will be freed under RCU.
74a1166d 1749 */
5abb8855 1750 set_bit(CGRP_RELEASABLE, &old_cgrp->flags);
89c5509b 1751 put_css_set(old_cset, false);
74a1166d
BB
1752}
1753
a043e3b2 1754/**
081aa458 1755 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
74a1166d 1756 * @cgrp: the cgroup to attach to
081aa458
LZ
1757 * @tsk: the task or the leader of the threadgroup to be attached
1758 * @threadgroup: attach the whole threadgroup?
74a1166d 1759 *
257058ae 1760 * Call holding cgroup_mutex and the group_rwsem of the leader. Will take
081aa458 1761 * task_lock of @tsk or each thread in the threadgroup individually in turn.
74a1166d 1762 */
47cfcd09
TH
1763static int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk,
1764 bool threadgroup)
74a1166d
BB
1765{
1766 int retval, i, group_size;
74a1166d 1767 struct cgroupfs_root *root = cgrp->root;
1c6727af 1768 struct cgroup_subsys_state *css, *failed_css = NULL;
74a1166d 1769 /* threadgroup list cursor and array */
081aa458 1770 struct task_struct *leader = tsk;
134d3373 1771 struct task_and_cgroup *tc;
d846687d 1772 struct flex_array *group;
2f7ee569 1773 struct cgroup_taskset tset = { };
74a1166d
BB
1774
1775 /*
1776 * step 0: in order to do expensive, possibly blocking operations for
1777 * every thread, we cannot iterate the thread group list, since it needs
1778 * rcu or tasklist locked. instead, build an array of all threads in the
257058ae
TH
1779 * group - group_rwsem prevents new threads from appearing, and if
1780 * threads exit, this will just be an over-estimate.
74a1166d 1781 */
081aa458
LZ
1782 if (threadgroup)
1783 group_size = get_nr_threads(tsk);
1784 else
1785 group_size = 1;
d846687d 1786 /* flex_array supports very large thread-groups better than kmalloc. */
134d3373 1787 group = flex_array_alloc(sizeof(*tc), group_size, GFP_KERNEL);
74a1166d
BB
1788 if (!group)
1789 return -ENOMEM;
d846687d 1790 /* pre-allocate to guarantee space while iterating in rcu read-side. */
3ac1707a 1791 retval = flex_array_prealloc(group, 0, group_size, GFP_KERNEL);
d846687d
BB
1792 if (retval)
1793 goto out_free_group_list;
74a1166d 1794
74a1166d 1795 i = 0;
fb5d2b4c
MSB
1796 /*
1797 * Prevent freeing of tasks while we take a snapshot. Tasks that are
1798 * already PF_EXITING could be freed from underneath us unless we
1799 * take an rcu_read_lock.
1800 */
96d365e0 1801 down_read(&css_set_rwsem);
fb5d2b4c 1802 rcu_read_lock();
74a1166d 1803 do {
134d3373
TH
1804 struct task_and_cgroup ent;
1805
cd3d0952
TH
1806 /* @tsk either already exited or can't exit until the end */
1807 if (tsk->flags & PF_EXITING)
ea84753c 1808 goto next;
cd3d0952 1809
74a1166d
BB
1810 /* as per above, nr_threads may decrease, but not increase. */
1811 BUG_ON(i >= group_size);
134d3373
TH
1812 ent.task = tsk;
1813 ent.cgrp = task_cgroup_from_root(tsk, root);
892a2b90
MSB
1814 /* nothing to do if this task is already in the cgroup */
1815 if (ent.cgrp == cgrp)
ea84753c 1816 goto next;
61d1d219
MSB
1817 /*
1818 * saying GFP_ATOMIC has no effect here because we did prealloc
1819 * earlier, but it's good form to communicate our expectations.
1820 */
134d3373 1821 retval = flex_array_put(group, i, &ent, GFP_ATOMIC);
d846687d 1822 BUG_ON(retval != 0);
74a1166d 1823 i++;
ea84753c 1824 next:
081aa458
LZ
1825 if (!threadgroup)
1826 break;
74a1166d 1827 } while_each_thread(leader, tsk);
fb5d2b4c 1828 rcu_read_unlock();
96d365e0 1829 up_read(&css_set_rwsem);
74a1166d
BB
1830 /* remember the number of threads in the array for later. */
1831 group_size = i;
2f7ee569
TH
1832 tset.tc_array = group;
1833 tset.tc_array_len = group_size;
74a1166d 1834
134d3373
TH
1835 /* methods shouldn't be called if no task is actually migrating */
1836 retval = 0;
892a2b90 1837 if (!group_size)
b07ef774 1838 goto out_free_group_list;
134d3373 1839
74a1166d
BB
1840 /*
1841 * step 1: check that we can legitimately attach to the cgroup.
1842 */
1c6727af
TH
1843 for_each_css(css, i, cgrp) {
1844 if (css->ss->can_attach) {
1845 retval = css->ss->can_attach(css, &tset);
74a1166d 1846 if (retval) {
1c6727af 1847 failed_css = css;
74a1166d
BB
1848 goto out_cancel_attach;
1849 }
1850 }
74a1166d
BB
1851 }
1852
1853 /*
1854 * step 2: make sure css_sets exist for all threads to be migrated.
1855 * we use find_css_set, which allocates a new one if necessary.
1856 */
74a1166d 1857 for (i = 0; i < group_size; i++) {
a8ad805c
TH
1858 struct css_set *old_cset;
1859
134d3373 1860 tc = flex_array_get(group, i);
a8ad805c 1861 old_cset = task_css_set(tc->task);
6f4b7e63
LZ
1862 tc->cset = find_css_set(old_cset, cgrp);
1863 if (!tc->cset) {
61d1d219
MSB
1864 retval = -ENOMEM;
1865 goto out_put_css_set_refs;
74a1166d
BB
1866 }
1867 }
1868
1869 /*
494c167c
TH
1870 * step 3: now that we're guaranteed success wrt the css_sets,
1871 * proceed to move all tasks to the new cgroup. There are no
1872 * failure cases after here, so this is the commit point.
74a1166d 1873 */
74a1166d 1874 for (i = 0; i < group_size; i++) {
134d3373 1875 tc = flex_array_get(group, i);
6f4b7e63 1876 cgroup_task_migrate(tc->cgrp, tc->task, tc->cset);
74a1166d
BB
1877 }
1878 /* nothing is sensitive to fork() after this point. */
1879
1880 /*
494c167c 1881 * step 4: do subsystem attach callbacks.
74a1166d 1882 */
1c6727af
TH
1883 for_each_css(css, i, cgrp)
1884 if (css->ss->attach)
1885 css->ss->attach(css, &tset);
74a1166d
BB
1886
1887 /*
1888 * step 5: success! and cleanup
1889 */
74a1166d 1890 retval = 0;
61d1d219
MSB
1891out_put_css_set_refs:
1892 if (retval) {
1893 for (i = 0; i < group_size; i++) {
1894 tc = flex_array_get(group, i);
6f4b7e63 1895 if (!tc->cset)
61d1d219 1896 break;
89c5509b 1897 put_css_set(tc->cset, false);
61d1d219 1898 }
74a1166d
BB
1899 }
1900out_cancel_attach:
74a1166d 1901 if (retval) {
1c6727af
TH
1902 for_each_css(css, i, cgrp) {
1903 if (css == failed_css)
74a1166d 1904 break;
1c6727af
TH
1905 if (css->ss->cancel_attach)
1906 css->ss->cancel_attach(css, &tset);
74a1166d
BB
1907 }
1908 }
74a1166d 1909out_free_group_list:
d846687d 1910 flex_array_free(group);
74a1166d
BB
1911 return retval;
1912}
1913
1914/*
1915 * Find the task_struct of the task to attach by vpid and pass it along to the
cd3d0952
TH
1916 * function to attach either it or all tasks in its threadgroup. Will lock
1917 * cgroup_mutex and threadgroup; may take task_lock of task.
bbcb81d0 1918 */
74a1166d 1919static int attach_task_by_pid(struct cgroup *cgrp, u64 pid, bool threadgroup)
bbcb81d0 1920{
bbcb81d0 1921 struct task_struct *tsk;
c69e8d9c 1922 const struct cred *cred = current_cred(), *tcred;
bbcb81d0
PM
1923 int ret;
1924
74a1166d
BB
1925 if (!cgroup_lock_live_group(cgrp))
1926 return -ENODEV;
1927
b78949eb
MSB
1928retry_find_task:
1929 rcu_read_lock();
bbcb81d0 1930 if (pid) {
73507f33 1931 tsk = find_task_by_vpid(pid);
74a1166d
BB
1932 if (!tsk) {
1933 rcu_read_unlock();
dd4b0a46 1934 ret = -ESRCH;
b78949eb 1935 goto out_unlock_cgroup;
bbcb81d0 1936 }
74a1166d
BB
1937 /*
1938 * even if we're attaching all tasks in the thread group, we
1939 * only need to check permissions on one of them.
1940 */
c69e8d9c 1941 tcred = __task_cred(tsk);
14a590c3
EB
1942 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
1943 !uid_eq(cred->euid, tcred->uid) &&
1944 !uid_eq(cred->euid, tcred->suid)) {
c69e8d9c 1945 rcu_read_unlock();
b78949eb
MSB
1946 ret = -EACCES;
1947 goto out_unlock_cgroup;
bbcb81d0 1948 }
b78949eb
MSB
1949 } else
1950 tsk = current;
cd3d0952
TH
1951
1952 if (threadgroup)
b78949eb 1953 tsk = tsk->group_leader;
c4c27fbd
MG
1954
1955 /*
14a40ffc 1956 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
c4c27fbd
MG
1957 * trapped in a cpuset, or RT worker may be born in a cgroup
1958 * with no rt_runtime allocated. Just say no.
1959 */
14a40ffc 1960 if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
c4c27fbd
MG
1961 ret = -EINVAL;
1962 rcu_read_unlock();
1963 goto out_unlock_cgroup;
1964 }
1965
b78949eb
MSB
1966 get_task_struct(tsk);
1967 rcu_read_unlock();
1968
1969 threadgroup_lock(tsk);
1970 if (threadgroup) {
1971 if (!thread_group_leader(tsk)) {
1972 /*
1973 * a race with de_thread from another thread's exec()
1974 * may strip us of our leadership, if this happens,
1975 * there is no choice but to throw this task away and
1976 * try again; this is
1977 * "double-double-toil-and-trouble-check locking".
1978 */
1979 threadgroup_unlock(tsk);
1980 put_task_struct(tsk);
1981 goto retry_find_task;
1982 }
081aa458
LZ
1983 }
1984
1985 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
1986
cd3d0952
TH
1987 threadgroup_unlock(tsk);
1988
bbcb81d0 1989 put_task_struct(tsk);
b78949eb 1990out_unlock_cgroup:
47cfcd09 1991 mutex_unlock(&cgroup_mutex);
bbcb81d0
PM
1992 return ret;
1993}
1994
7ae1bad9
TH
1995/**
1996 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
1997 * @from: attach to all cgroups of a given task
1998 * @tsk: the task to be attached
1999 */
2000int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2001{
2002 struct cgroupfs_root *root;
2003 int retval = 0;
2004
47cfcd09 2005 mutex_lock(&cgroup_mutex);
7ae1bad9 2006 for_each_active_root(root) {
96d365e0
TH
2007 struct cgroup *from_cgrp;
2008
2009 down_read(&css_set_rwsem);
2010 from_cgrp = task_cgroup_from_root(from, root);
2011 up_read(&css_set_rwsem);
7ae1bad9 2012
6f4b7e63 2013 retval = cgroup_attach_task(from_cgrp, tsk, false);
7ae1bad9
TH
2014 if (retval)
2015 break;
2016 }
47cfcd09 2017 mutex_unlock(&cgroup_mutex);
7ae1bad9
TH
2018
2019 return retval;
2020}
2021EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2022
182446d0
TH
2023static int cgroup_tasks_write(struct cgroup_subsys_state *css,
2024 struct cftype *cft, u64 pid)
74a1166d 2025{
182446d0 2026 return attach_task_by_pid(css->cgroup, pid, false);
74a1166d
BB
2027}
2028
182446d0
TH
2029static int cgroup_procs_write(struct cgroup_subsys_state *css,
2030 struct cftype *cft, u64 tgid)
af351026 2031{
182446d0 2032 return attach_task_by_pid(css->cgroup, tgid, true);
af351026
PM
2033}
2034
182446d0
TH
2035static int cgroup_release_agent_write(struct cgroup_subsys_state *css,
2036 struct cftype *cft, const char *buffer)
e788e066 2037{
5f469907
TH
2038 struct cgroupfs_root *root = css->cgroup->root;
2039
2040 BUILD_BUG_ON(sizeof(root->release_agent_path) < PATH_MAX);
182446d0 2041 if (!cgroup_lock_live_group(css->cgroup))
e788e066 2042 return -ENODEV;
69e943b7 2043 spin_lock(&release_agent_path_lock);
5f469907
TH
2044 strlcpy(root->release_agent_path, buffer,
2045 sizeof(root->release_agent_path));
69e943b7 2046 spin_unlock(&release_agent_path_lock);
47cfcd09 2047 mutex_unlock(&cgroup_mutex);
e788e066
PM
2048 return 0;
2049}
2050
2da8ca82 2051static int cgroup_release_agent_show(struct seq_file *seq, void *v)
e788e066 2052{
2da8ca82 2053 struct cgroup *cgrp = seq_css(seq)->cgroup;
182446d0 2054
e788e066
PM
2055 if (!cgroup_lock_live_group(cgrp))
2056 return -ENODEV;
2057 seq_puts(seq, cgrp->root->release_agent_path);
2058 seq_putc(seq, '\n');
47cfcd09 2059 mutex_unlock(&cgroup_mutex);
e788e066
PM
2060 return 0;
2061}
2062
2da8ca82 2063static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
873fe09e 2064{
2da8ca82
TH
2065 struct cgroup *cgrp = seq_css(seq)->cgroup;
2066
2067 seq_printf(seq, "%d\n", cgroup_sane_behavior(cgrp));
e788e066
PM
2068 return 0;
2069}
2070
2bd59d48
TH
2071static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
2072 size_t nbytes, loff_t off)
355e0c48 2073{
2bd59d48
TH
2074 struct cgroup *cgrp = of->kn->parent->priv;
2075 struct cftype *cft = of->kn->priv;
2076 struct cgroup_subsys_state *css;
a742c59d 2077 int ret;
355e0c48 2078
2bd59d48
TH
2079 /*
2080 * kernfs guarantees that a file isn't deleted with operations in
2081 * flight, which means that the matching css is and stays alive and
2082 * doesn't need to be pinned. The RCU locking is not necessary
2083 * either. It's just for the convenience of using cgroup_css().
2084 */
2085 rcu_read_lock();
2086 css = cgroup_css(cgrp, cft->ss);
2087 rcu_read_unlock();
a742c59d
TH
2088
2089 if (cft->write_string) {
2090 ret = cft->write_string(css, cft, strstrip(buf));
2091 } else if (cft->write_u64) {
2092 unsigned long long v;
2093 ret = kstrtoull(buf, 0, &v);
2094 if (!ret)
2095 ret = cft->write_u64(css, cft, v);
2096 } else if (cft->write_s64) {
2097 long long v;
2098 ret = kstrtoll(buf, 0, &v);
2099 if (!ret)
2100 ret = cft->write_s64(css, cft, v);
2101 } else if (cft->trigger) {
2102 ret = cft->trigger(css, (unsigned int)cft->private);
e73d2c61 2103 } else {
a742c59d 2104 ret = -EINVAL;
e73d2c61 2105 }
2bd59d48 2106
a742c59d 2107 return ret ?: nbytes;
355e0c48
PM
2108}
2109
6612f05b 2110static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
db3b1497 2111{
2bd59d48 2112 return seq_cft(seq)->seq_start(seq, ppos);
db3b1497
PM
2113}
2114
6612f05b 2115static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
ddbcc7e8 2116{
2bd59d48 2117 return seq_cft(seq)->seq_next(seq, v, ppos);
ddbcc7e8
PM
2118}
2119
6612f05b 2120static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
ddbcc7e8 2121{
2bd59d48 2122 seq_cft(seq)->seq_stop(seq, v);
ddbcc7e8
PM
2123}
2124
91796569 2125static int cgroup_seqfile_show(struct seq_file *m, void *arg)
e73d2c61 2126{
7da11279
TH
2127 struct cftype *cft = seq_cft(m);
2128 struct cgroup_subsys_state *css = seq_css(m);
e73d2c61 2129
2da8ca82
TH
2130 if (cft->seq_show)
2131 return cft->seq_show(m, arg);
e73d2c61 2132
f4c753b7 2133 if (cft->read_u64)
896f5199
TH
2134 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
2135 else if (cft->read_s64)
2136 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
2137 else
2138 return -EINVAL;
2139 return 0;
91796569
PM
2140}
2141
2bd59d48
TH
2142static struct kernfs_ops cgroup_kf_single_ops = {
2143 .atomic_write_len = PAGE_SIZE,
2144 .write = cgroup_file_write,
2145 .seq_show = cgroup_seqfile_show,
91796569
PM
2146};
2147
2bd59d48
TH
2148static struct kernfs_ops cgroup_kf_ops = {
2149 .atomic_write_len = PAGE_SIZE,
2150 .write = cgroup_file_write,
2151 .seq_start = cgroup_seqfile_start,
2152 .seq_next = cgroup_seqfile_next,
2153 .seq_stop = cgroup_seqfile_stop,
2154 .seq_show = cgroup_seqfile_show,
2155};
ddbcc7e8
PM
2156
2157/*
2158 * cgroup_rename - Only allow simple rename of directories in place.
2159 */
2bd59d48
TH
2160static int cgroup_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
2161 const char *new_name_str)
ddbcc7e8 2162{
2bd59d48 2163 struct cgroup *cgrp = kn->priv;
2bd59d48 2164 int ret;
65dff759 2165
2bd59d48 2166 if (kernfs_type(kn) != KERNFS_DIR)
ddbcc7e8 2167 return -ENOTDIR;
2bd59d48 2168 if (kn->parent != new_parent)
ddbcc7e8 2169 return -EIO;
65dff759 2170
6db8e85c
TH
2171 /*
2172 * This isn't a proper migration and its usefulness is very
2173 * limited. Disallow if sane_behavior.
2174 */
2175 if (cgroup_sane_behavior(cgrp))
2176 return -EPERM;
2177
2bd59d48
TH
2178 mutex_lock(&cgroup_tree_mutex);
2179 mutex_lock(&cgroup_mutex);
2180
2181 ret = kernfs_rename(kn, new_parent, new_name_str);
65dff759 2182
2bd59d48
TH
2183 mutex_unlock(&cgroup_mutex);
2184 mutex_unlock(&cgroup_tree_mutex);
2bd59d48 2185 return ret;
ddbcc7e8
PM
2186}
2187
2bb566cb 2188static int cgroup_add_file(struct cgroup *cgrp, struct cftype *cft)
ddbcc7e8 2189{
8d7e6fb0 2190 char name[CGROUP_FILE_NAME_MAX];
2bd59d48
TH
2191 struct kernfs_node *kn;
2192 struct lock_class_key *key = NULL;
05ef1d7c 2193
2bd59d48
TH
2194#ifdef CONFIG_DEBUG_LOCK_ALLOC
2195 key = &cft->lockdep_key;
2196#endif
2197 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
2198 cgroup_file_mode(cft), 0, cft->kf_ops, cft,
2199 NULL, false, key);
2200 if (IS_ERR(kn))
2201 return PTR_ERR(kn);
2202 return 0;
ddbcc7e8
PM
2203}
2204
b1f28d31
TH
2205/**
2206 * cgroup_addrm_files - add or remove files to a cgroup directory
2207 * @cgrp: the target cgroup
b1f28d31
TH
2208 * @cfts: array of cftypes to be added
2209 * @is_add: whether to add or remove
2210 *
2211 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
2bb566cb
TH
2212 * For removals, this function never fails. If addition fails, this
2213 * function doesn't remove files already added. The caller is responsible
2214 * for cleaning up.
b1f28d31 2215 */
2bb566cb
TH
2216static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
2217 bool is_add)
ddbcc7e8 2218{
03b1cde6 2219 struct cftype *cft;
b1f28d31
TH
2220 int ret;
2221
ace2bee8 2222 lockdep_assert_held(&cgroup_tree_mutex);
db0416b6
TH
2223
2224 for (cft = cfts; cft->name[0] != '\0'; cft++) {
f33fddc2 2225 /* does cft->flags tell us to skip this file on @cgrp? */
873fe09e
TH
2226 if ((cft->flags & CFTYPE_INSANE) && cgroup_sane_behavior(cgrp))
2227 continue;
f33fddc2
G
2228 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgrp->parent)
2229 continue;
2230 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgrp->parent)
2231 continue;
2232
2739d3cc 2233 if (is_add) {
2bb566cb 2234 ret = cgroup_add_file(cgrp, cft);
b1f28d31 2235 if (ret) {
2739d3cc 2236 pr_warn("cgroup_addrm_files: failed to add %s, err=%d\n",
b1f28d31
TH
2237 cft->name, ret);
2238 return ret;
2239 }
2739d3cc
LZ
2240 } else {
2241 cgroup_rm_file(cgrp, cft);
db0416b6 2242 }
ddbcc7e8 2243 }
b1f28d31 2244 return 0;
ddbcc7e8
PM
2245}
2246
21a2d343 2247static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
8e3f6541
TH
2248{
2249 LIST_HEAD(pending);
2bb566cb 2250 struct cgroup_subsys *ss = cfts[0].ss;
492eb21b 2251 struct cgroup *root = &ss->root->top_cgroup;
492eb21b 2252 struct cgroup_subsys_state *css;
9ccece80 2253 int ret = 0;
8e3f6541 2254
21a2d343 2255 lockdep_assert_held(&cgroup_tree_mutex);
4ac06017 2256
21a2d343
TH
2257 /* don't bother if @ss isn't attached */
2258 if (ss->root == &cgroup_dummy_root)
9ccece80 2259 return 0;
e8c82d20 2260
e8c82d20 2261 /* add/rm files for all cgroups created before */
ca8bdcaf 2262 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
492eb21b
TH
2263 struct cgroup *cgrp = css->cgroup;
2264
e8c82d20
LZ
2265 if (cgroup_is_dead(cgrp))
2266 continue;
2267
21a2d343 2268 ret = cgroup_addrm_files(cgrp, cfts, is_add);
9ccece80
TH
2269 if (ret)
2270 break;
8e3f6541 2271 }
21a2d343
TH
2272
2273 if (is_add && !ret)
2274 kernfs_activate(root->kn);
9ccece80 2275 return ret;
8e3f6541
TH
2276}
2277
2da440a2
TH
2278static void cgroup_exit_cftypes(struct cftype *cfts)
2279{
2280 struct cftype *cft;
2281
2bd59d48
TH
2282 for (cft = cfts; cft->name[0] != '\0'; cft++) {
2283 /* free copy for custom atomic_write_len, see init_cftypes() */
2284 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
2285 kfree(cft->kf_ops);
2286 cft->kf_ops = NULL;
2da440a2 2287 cft->ss = NULL;
2bd59d48 2288 }
2da440a2
TH
2289}
2290
2bd59d48 2291static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
2da440a2
TH
2292{
2293 struct cftype *cft;
2294
2bd59d48
TH
2295 for (cft = cfts; cft->name[0] != '\0'; cft++) {
2296 struct kernfs_ops *kf_ops;
2297
0adb0704
TH
2298 WARN_ON(cft->ss || cft->kf_ops);
2299
2bd59d48
TH
2300 if (cft->seq_start)
2301 kf_ops = &cgroup_kf_ops;
2302 else
2303 kf_ops = &cgroup_kf_single_ops;
2304
2305 /*
2306 * Ugh... if @cft wants a custom max_write_len, we need to
2307 * make a copy of kf_ops to set its atomic_write_len.
2308 */
2309 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
2310 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
2311 if (!kf_ops) {
2312 cgroup_exit_cftypes(cfts);
2313 return -ENOMEM;
2314 }
2315 kf_ops->atomic_write_len = cft->max_write_len;
2316 }
2317
2318 cft->kf_ops = kf_ops;
2da440a2 2319 cft->ss = ss;
2bd59d48
TH
2320 }
2321
2322 return 0;
2da440a2
TH
2323}
2324
21a2d343
TH
2325static int cgroup_rm_cftypes_locked(struct cftype *cfts)
2326{
2327 lockdep_assert_held(&cgroup_tree_mutex);
2328
2329 if (!cfts || !cfts[0].ss)
2330 return -ENOENT;
2331
2332 list_del(&cfts->node);
2333 cgroup_apply_cftypes(cfts, false);
2334 cgroup_exit_cftypes(cfts);
2335 return 0;
2336}
2337
80b13586
TH
2338/**
2339 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
2340 * @cfts: zero-length name terminated array of cftypes
2341 *
2342 * Unregister @cfts. Files described by @cfts are removed from all
2343 * existing cgroups and all future cgroups won't have them either. This
2344 * function can be called anytime whether @cfts' subsys is attached or not.
2345 *
2346 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
2347 * registered.
2348 */
2349int cgroup_rm_cftypes(struct cftype *cfts)
2350{
21a2d343 2351 int ret;
80b13586 2352
21a2d343
TH
2353 mutex_lock(&cgroup_tree_mutex);
2354 ret = cgroup_rm_cftypes_locked(cfts);
2355 mutex_unlock(&cgroup_tree_mutex);
2356 return ret;
80b13586
TH
2357}
2358
8e3f6541
TH
2359/**
2360 * cgroup_add_cftypes - add an array of cftypes to a subsystem
2361 * @ss: target cgroup subsystem
2362 * @cfts: zero-length name terminated array of cftypes
2363 *
2364 * Register @cfts to @ss. Files described by @cfts are created for all
2365 * existing cgroups to which @ss is attached and all future cgroups will
2366 * have them too. This function can be called anytime whether @ss is
2367 * attached or not.
2368 *
2369 * Returns 0 on successful registration, -errno on failure. Note that this
2370 * function currently returns 0 as long as @cfts registration is successful
2371 * even if some file creation attempts on existing cgroups fail.
2372 */
03b1cde6 2373int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
8e3f6541 2374{
9ccece80 2375 int ret;
8e3f6541 2376
2bd59d48
TH
2377 ret = cgroup_init_cftypes(ss, cfts);
2378 if (ret)
2379 return ret;
2bb566cb 2380
21a2d343
TH
2381 mutex_lock(&cgroup_tree_mutex);
2382
0adb0704 2383 list_add_tail(&cfts->node, &ss->cfts);
21a2d343 2384 ret = cgroup_apply_cftypes(cfts, true);
9ccece80 2385 if (ret)
21a2d343
TH
2386 cgroup_rm_cftypes_locked(cfts);
2387
2388 mutex_unlock(&cgroup_tree_mutex);
9ccece80 2389 return ret;
8e3f6541
TH
2390}
2391EXPORT_SYMBOL_GPL(cgroup_add_cftypes);
2392
a043e3b2
LZ
2393/**
2394 * cgroup_task_count - count the number of tasks in a cgroup.
2395 * @cgrp: the cgroup in question
2396 *
2397 * Return the number of tasks in the cgroup.
2398 */
07bc356e 2399static int cgroup_task_count(const struct cgroup *cgrp)
bbcb81d0
PM
2400{
2401 int count = 0;
69d0206c 2402 struct cgrp_cset_link *link;
817929ec 2403
96d365e0 2404 down_read(&css_set_rwsem);
69d0206c
TH
2405 list_for_each_entry(link, &cgrp->cset_links, cset_link)
2406 count += atomic_read(&link->cset->refcount);
96d365e0 2407 up_read(&css_set_rwsem);
bbcb81d0
PM
2408 return count;
2409}
2410
53fa5261 2411/**
492eb21b
TH
2412 * css_next_child - find the next child of a given css
2413 * @pos_css: the current position (%NULL to initiate traversal)
2414 * @parent_css: css whose children to walk
53fa5261 2415 *
492eb21b 2416 * This function returns the next child of @parent_css and should be called
87fb54f1
TH
2417 * under either cgroup_mutex or RCU read lock. The only requirement is
2418 * that @parent_css and @pos_css are accessible. The next sibling is
2419 * guaranteed to be returned regardless of their states.
53fa5261 2420 */
492eb21b
TH
2421struct cgroup_subsys_state *
2422css_next_child(struct cgroup_subsys_state *pos_css,
2423 struct cgroup_subsys_state *parent_css)
53fa5261 2424{
492eb21b
TH
2425 struct cgroup *pos = pos_css ? pos_css->cgroup : NULL;
2426 struct cgroup *cgrp = parent_css->cgroup;
53fa5261
TH
2427 struct cgroup *next;
2428
ace2bee8 2429 cgroup_assert_mutexes_or_rcu_locked();
53fa5261
TH
2430
2431 /*
2432 * @pos could already have been removed. Once a cgroup is removed,
2433 * its ->sibling.next is no longer updated when its next sibling
ea15f8cc
TH
2434 * changes. As CGRP_DEAD assertion is serialized and happens
2435 * before the cgroup is taken off the ->sibling list, if we see it
2436 * unasserted, it's guaranteed that the next sibling hasn't
2437 * finished its grace period even if it's already removed, and thus
2438 * safe to dereference from this RCU critical section. If
2439 * ->sibling.next is inaccessible, cgroup_is_dead() is guaranteed
2440 * to be visible as %true here.
3b287a50
TH
2441 *
2442 * If @pos is dead, its next pointer can't be dereferenced;
2443 * however, as each cgroup is given a monotonically increasing
2444 * unique serial number and always appended to the sibling list,
2445 * the next one can be found by walking the parent's children until
2446 * we see a cgroup with higher serial number than @pos's. While
2447 * this path can be slower, it's taken only when either the current
2448 * cgroup is removed or iteration and removal race.
53fa5261 2449 */
3b287a50
TH
2450 if (!pos) {
2451 next = list_entry_rcu(cgrp->children.next, struct cgroup, sibling);
2452 } else if (likely(!cgroup_is_dead(pos))) {
53fa5261 2453 next = list_entry_rcu(pos->sibling.next, struct cgroup, sibling);
3b287a50
TH
2454 } else {
2455 list_for_each_entry_rcu(next, &cgrp->children, sibling)
2456 if (next->serial_nr > pos->serial_nr)
2457 break;
53fa5261
TH
2458 }
2459
492eb21b
TH
2460 if (&next->sibling == &cgrp->children)
2461 return NULL;
2462
ca8bdcaf 2463 return cgroup_css(next, parent_css->ss);
53fa5261 2464}
492eb21b 2465EXPORT_SYMBOL_GPL(css_next_child);
53fa5261 2466
574bd9f7 2467/**
492eb21b 2468 * css_next_descendant_pre - find the next descendant for pre-order walk
574bd9f7 2469 * @pos: the current position (%NULL to initiate traversal)
492eb21b 2470 * @root: css whose descendants to walk
574bd9f7 2471 *
492eb21b 2472 * To be used by css_for_each_descendant_pre(). Find the next descendant
bd8815a6
TH
2473 * to visit for pre-order traversal of @root's descendants. @root is
2474 * included in the iteration and the first node to be visited.
75501a6d 2475 *
87fb54f1
TH
2476 * While this function requires cgroup_mutex or RCU read locking, it
2477 * doesn't require the whole traversal to be contained in a single critical
2478 * section. This function will return the correct next descendant as long
2479 * as both @pos and @root are accessible and @pos is a descendant of @root.
574bd9f7 2480 */
492eb21b
TH
2481struct cgroup_subsys_state *
2482css_next_descendant_pre(struct cgroup_subsys_state *pos,
2483 struct cgroup_subsys_state *root)
574bd9f7 2484{
492eb21b 2485 struct cgroup_subsys_state *next;
574bd9f7 2486
ace2bee8 2487 cgroup_assert_mutexes_or_rcu_locked();
574bd9f7 2488
bd8815a6 2489 /* if first iteration, visit @root */
7805d000 2490 if (!pos)
bd8815a6 2491 return root;
574bd9f7
TH
2492
2493 /* visit the first child if exists */
492eb21b 2494 next = css_next_child(NULL, pos);
574bd9f7
TH
2495 if (next)
2496 return next;
2497
2498 /* no child, visit my or the closest ancestor's next sibling */
492eb21b
TH
2499 while (pos != root) {
2500 next = css_next_child(pos, css_parent(pos));
75501a6d 2501 if (next)
574bd9f7 2502 return next;
492eb21b 2503 pos = css_parent(pos);
7805d000 2504 }
574bd9f7
TH
2505
2506 return NULL;
2507}
492eb21b 2508EXPORT_SYMBOL_GPL(css_next_descendant_pre);
574bd9f7 2509
12a9d2fe 2510/**
492eb21b
TH
2511 * css_rightmost_descendant - return the rightmost descendant of a css
2512 * @pos: css of interest
12a9d2fe 2513 *
492eb21b
TH
2514 * Return the rightmost descendant of @pos. If there's no descendant, @pos
2515 * is returned. This can be used during pre-order traversal to skip
12a9d2fe 2516 * subtree of @pos.
75501a6d 2517 *
87fb54f1
TH
2518 * While this function requires cgroup_mutex or RCU read locking, it
2519 * doesn't require the whole traversal to be contained in a single critical
2520 * section. This function will return the correct rightmost descendant as
2521 * long as @pos is accessible.
12a9d2fe 2522 */
492eb21b
TH
2523struct cgroup_subsys_state *
2524css_rightmost_descendant(struct cgroup_subsys_state *pos)
12a9d2fe 2525{
492eb21b 2526 struct cgroup_subsys_state *last, *tmp;
12a9d2fe 2527
ace2bee8 2528 cgroup_assert_mutexes_or_rcu_locked();
12a9d2fe
TH
2529
2530 do {
2531 last = pos;
2532 /* ->prev isn't RCU safe, walk ->next till the end */
2533 pos = NULL;
492eb21b 2534 css_for_each_child(tmp, last)
12a9d2fe
TH
2535 pos = tmp;
2536 } while (pos);
2537
2538 return last;
2539}
492eb21b 2540EXPORT_SYMBOL_GPL(css_rightmost_descendant);
12a9d2fe 2541
492eb21b
TH
2542static struct cgroup_subsys_state *
2543css_leftmost_descendant(struct cgroup_subsys_state *pos)
574bd9f7 2544{
492eb21b 2545 struct cgroup_subsys_state *last;
574bd9f7
TH
2546
2547 do {
2548 last = pos;
492eb21b 2549 pos = css_next_child(NULL, pos);
574bd9f7
TH
2550 } while (pos);
2551
2552 return last;
2553}
2554
2555/**
492eb21b 2556 * css_next_descendant_post - find the next descendant for post-order walk
574bd9f7 2557 * @pos: the current position (%NULL to initiate traversal)
492eb21b 2558 * @root: css whose descendants to walk
574bd9f7 2559 *
492eb21b 2560 * To be used by css_for_each_descendant_post(). Find the next descendant
bd8815a6
TH
2561 * to visit for post-order traversal of @root's descendants. @root is
2562 * included in the iteration and the last node to be visited.
75501a6d 2563 *
87fb54f1
TH
2564 * While this function requires cgroup_mutex or RCU read locking, it
2565 * doesn't require the whole traversal to be contained in a single critical
2566 * section. This function will return the correct next descendant as long
2567 * as both @pos and @cgroup are accessible and @pos is a descendant of
2568 * @cgroup.
574bd9f7 2569 */
492eb21b
TH
2570struct cgroup_subsys_state *
2571css_next_descendant_post(struct cgroup_subsys_state *pos,
2572 struct cgroup_subsys_state *root)
574bd9f7 2573{
492eb21b 2574 struct cgroup_subsys_state *next;
574bd9f7 2575
ace2bee8 2576 cgroup_assert_mutexes_or_rcu_locked();
574bd9f7 2577
58b79a91
TH
2578 /* if first iteration, visit leftmost descendant which may be @root */
2579 if (!pos)
2580 return css_leftmost_descendant(root);
574bd9f7 2581
bd8815a6
TH
2582 /* if we visited @root, we're done */
2583 if (pos == root)
2584 return NULL;
2585
574bd9f7 2586 /* if there's an unvisited sibling, visit its leftmost descendant */
492eb21b 2587 next = css_next_child(pos, css_parent(pos));
75501a6d 2588 if (next)
492eb21b 2589 return css_leftmost_descendant(next);
574bd9f7
TH
2590
2591 /* no sibling left, visit parent */
bd8815a6 2592 return css_parent(pos);
574bd9f7 2593}
492eb21b 2594EXPORT_SYMBOL_GPL(css_next_descendant_post);
574bd9f7 2595
0942eeee 2596/**
72ec7029 2597 * css_advance_task_iter - advance a task itererator to the next css_set
0942eeee
TH
2598 * @it: the iterator to advance
2599 *
2600 * Advance @it to the next css_set to walk.
d515876e 2601 */
72ec7029 2602static void css_advance_task_iter(struct css_task_iter *it)
d515876e
TH
2603{
2604 struct list_head *l = it->cset_link;
2605 struct cgrp_cset_link *link;
2606 struct css_set *cset;
2607
2608 /* Advance to the next non-empty css_set */
2609 do {
2610 l = l->next;
72ec7029 2611 if (l == &it->origin_css->cgroup->cset_links) {
d515876e
TH
2612 it->cset_link = NULL;
2613 return;
2614 }
2615 link = list_entry(l, struct cgrp_cset_link, cset_link);
2616 cset = link->cset;
2617 } while (list_empty(&cset->tasks));
2618 it->cset_link = l;
2619 it->task = cset->tasks.next;
2620}
2621
0942eeee 2622/**
72ec7029
TH
2623 * css_task_iter_start - initiate task iteration
2624 * @css: the css to walk tasks of
0942eeee
TH
2625 * @it: the task iterator to use
2626 *
72ec7029
TH
2627 * Initiate iteration through the tasks of @css. The caller can call
2628 * css_task_iter_next() to walk through the tasks until the function
2629 * returns NULL. On completion of iteration, css_task_iter_end() must be
2630 * called.
0942eeee
TH
2631 *
2632 * Note that this function acquires a lock which is released when the
2633 * iteration finishes. The caller can't sleep while iteration is in
2634 * progress.
2635 */
72ec7029
TH
2636void css_task_iter_start(struct cgroup_subsys_state *css,
2637 struct css_task_iter *it)
96d365e0 2638 __acquires(css_set_rwsem)
817929ec 2639{
56fde9e0
TH
2640 /* no one should try to iterate before mounting cgroups */
2641 WARN_ON_ONCE(!use_task_css_set_links);
31a7df01 2642
96d365e0 2643 down_read(&css_set_rwsem);
c59cd3d8 2644
72ec7029
TH
2645 it->origin_css = css;
2646 it->cset_link = &css->cgroup->cset_links;
c59cd3d8 2647
72ec7029 2648 css_advance_task_iter(it);
817929ec
PM
2649}
2650
0942eeee 2651/**
72ec7029 2652 * css_task_iter_next - return the next task for the iterator
0942eeee
TH
2653 * @it: the task iterator being iterated
2654 *
2655 * The "next" function for task iteration. @it should have been
72ec7029
TH
2656 * initialized via css_task_iter_start(). Returns NULL when the iteration
2657 * reaches the end.
0942eeee 2658 */
72ec7029 2659struct task_struct *css_task_iter_next(struct css_task_iter *it)
817929ec
PM
2660{
2661 struct task_struct *res;
2662 struct list_head *l = it->task;
69d0206c 2663 struct cgrp_cset_link *link;
817929ec
PM
2664
2665 /* If the iterator cg is NULL, we have no tasks */
69d0206c 2666 if (!it->cset_link)
817929ec
PM
2667 return NULL;
2668 res = list_entry(l, struct task_struct, cg_list);
2669 /* Advance iterator to find next entry */
2670 l = l->next;
69d0206c
TH
2671 link = list_entry(it->cset_link, struct cgrp_cset_link, cset_link);
2672 if (l == &link->cset->tasks) {
0942eeee
TH
2673 /*
2674 * We reached the end of this task list - move on to the
2675 * next cgrp_cset_link.
2676 */
72ec7029 2677 css_advance_task_iter(it);
817929ec
PM
2678 } else {
2679 it->task = l;
2680 }
2681 return res;
2682}
2683
0942eeee 2684/**
72ec7029 2685 * css_task_iter_end - finish task iteration
0942eeee
TH
2686 * @it: the task iterator to finish
2687 *
72ec7029 2688 * Finish task iteration started by css_task_iter_start().
0942eeee 2689 */
72ec7029 2690void css_task_iter_end(struct css_task_iter *it)
96d365e0 2691 __releases(css_set_rwsem)
817929ec 2692{
96d365e0 2693 up_read(&css_set_rwsem);
817929ec
PM
2694}
2695
8cc99345
TH
2696/**
2697 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
2698 * @to: cgroup to which the tasks will be moved
2699 * @from: cgroup in which the tasks currently reside
2700 */
2701int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
2702{
e406d1cf
TH
2703 struct css_task_iter it;
2704 struct task_struct *task;
2705 int ret = 0;
2706
2707 do {
2708 css_task_iter_start(&from->dummy_css, &it);
2709 task = css_task_iter_next(&it);
2710 if (task)
2711 get_task_struct(task);
2712 css_task_iter_end(&it);
2713
2714 if (task) {
2715 mutex_lock(&cgroup_mutex);
2716 ret = cgroup_attach_task(to, task, false);
2717 mutex_unlock(&cgroup_mutex);
2718 put_task_struct(task);
2719 }
2720 } while (task && !ret);
2721
2722 return ret;
8cc99345
TH
2723}
2724
bbcb81d0 2725/*
102a775e 2726 * Stuff for reading the 'tasks'/'procs' files.
bbcb81d0
PM
2727 *
2728 * Reading this file can return large amounts of data if a cgroup has
2729 * *lots* of attached tasks. So it may need several calls to read(),
2730 * but we cannot guarantee that the information we produce is correct
2731 * unless we produce it entirely atomically.
2732 *
bbcb81d0 2733 */
bbcb81d0 2734
24528255
LZ
2735/* which pidlist file are we talking about? */
2736enum cgroup_filetype {
2737 CGROUP_FILE_PROCS,
2738 CGROUP_FILE_TASKS,
2739};
2740
2741/*
2742 * A pidlist is a list of pids that virtually represents the contents of one
2743 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
2744 * a pair (one each for procs, tasks) for each pid namespace that's relevant
2745 * to the cgroup.
2746 */
2747struct cgroup_pidlist {
2748 /*
2749 * used to find which pidlist is wanted. doesn't change as long as
2750 * this particular list stays in the list.
2751 */
2752 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
2753 /* array of xids */
2754 pid_t *list;
2755 /* how many elements the above list has */
2756 int length;
24528255
LZ
2757 /* each of these stored in a list by its cgroup */
2758 struct list_head links;
2759 /* pointer to the cgroup we belong to, for list removal purposes */
2760 struct cgroup *owner;
b1a21367
TH
2761 /* for delayed destruction */
2762 struct delayed_work destroy_dwork;
24528255
LZ
2763};
2764
d1d9fd33
BB
2765/*
2766 * The following two functions "fix" the issue where there are more pids
2767 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
2768 * TODO: replace with a kernel-wide solution to this problem
2769 */
2770#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
2771static void *pidlist_allocate(int count)
2772{
2773 if (PIDLIST_TOO_LARGE(count))
2774 return vmalloc(count * sizeof(pid_t));
2775 else
2776 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
2777}
b1a21367 2778
d1d9fd33
BB
2779static void pidlist_free(void *p)
2780{
2781 if (is_vmalloc_addr(p))
2782 vfree(p);
2783 else
2784 kfree(p);
2785}
d1d9fd33 2786
b1a21367
TH
2787/*
2788 * Used to destroy all pidlists lingering waiting for destroy timer. None
2789 * should be left afterwards.
2790 */
2791static void cgroup_pidlist_destroy_all(struct cgroup *cgrp)
2792{
2793 struct cgroup_pidlist *l, *tmp_l;
2794
2795 mutex_lock(&cgrp->pidlist_mutex);
2796 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
2797 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
2798 mutex_unlock(&cgrp->pidlist_mutex);
2799
2800 flush_workqueue(cgroup_pidlist_destroy_wq);
2801 BUG_ON(!list_empty(&cgrp->pidlists));
2802}
2803
2804static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
2805{
2806 struct delayed_work *dwork = to_delayed_work(work);
2807 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
2808 destroy_dwork);
2809 struct cgroup_pidlist *tofree = NULL;
2810
2811 mutex_lock(&l->owner->pidlist_mutex);
b1a21367
TH
2812
2813 /*
04502365
TH
2814 * Destroy iff we didn't get queued again. The state won't change
2815 * as destroy_dwork can only be queued while locked.
b1a21367 2816 */
04502365 2817 if (!delayed_work_pending(dwork)) {
b1a21367
TH
2818 list_del(&l->links);
2819 pidlist_free(l->list);
2820 put_pid_ns(l->key.ns);
2821 tofree = l;
2822 }
2823
b1a21367
TH
2824 mutex_unlock(&l->owner->pidlist_mutex);
2825 kfree(tofree);
2826}
2827
bbcb81d0 2828/*
102a775e 2829 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
6ee211ad 2830 * Returns the number of unique elements.
bbcb81d0 2831 */
6ee211ad 2832static int pidlist_uniq(pid_t *list, int length)
bbcb81d0 2833{
102a775e 2834 int src, dest = 1;
102a775e
BB
2835
2836 /*
2837 * we presume the 0th element is unique, so i starts at 1. trivial
2838 * edge cases first; no work needs to be done for either
2839 */
2840 if (length == 0 || length == 1)
2841 return length;
2842 /* src and dest walk down the list; dest counts unique elements */
2843 for (src = 1; src < length; src++) {
2844 /* find next unique element */
2845 while (list[src] == list[src-1]) {
2846 src++;
2847 if (src == length)
2848 goto after;
2849 }
2850 /* dest always points to where the next unique element goes */
2851 list[dest] = list[src];
2852 dest++;
2853 }
2854after:
102a775e
BB
2855 return dest;
2856}
2857
afb2bc14
TH
2858/*
2859 * The two pid files - task and cgroup.procs - guaranteed that the result
2860 * is sorted, which forced this whole pidlist fiasco. As pid order is
2861 * different per namespace, each namespace needs differently sorted list,
2862 * making it impossible to use, for example, single rbtree of member tasks
2863 * sorted by task pointer. As pidlists can be fairly large, allocating one
2864 * per open file is dangerous, so cgroup had to implement shared pool of
2865 * pidlists keyed by cgroup and namespace.
2866 *
2867 * All this extra complexity was caused by the original implementation
2868 * committing to an entirely unnecessary property. In the long term, we
2869 * want to do away with it. Explicitly scramble sort order if
2870 * sane_behavior so that no such expectation exists in the new interface.
2871 *
2872 * Scrambling is done by swapping every two consecutive bits, which is
2873 * non-identity one-to-one mapping which disturbs sort order sufficiently.
2874 */
2875static pid_t pid_fry(pid_t pid)
2876{
2877 unsigned a = pid & 0x55555555;
2878 unsigned b = pid & 0xAAAAAAAA;
2879
2880 return (a << 1) | (b >> 1);
2881}
2882
2883static pid_t cgroup_pid_fry(struct cgroup *cgrp, pid_t pid)
2884{
2885 if (cgroup_sane_behavior(cgrp))
2886 return pid_fry(pid);
2887 else
2888 return pid;
2889}
2890
102a775e
BB
2891static int cmppid(const void *a, const void *b)
2892{
2893 return *(pid_t *)a - *(pid_t *)b;
2894}
2895
afb2bc14
TH
2896static int fried_cmppid(const void *a, const void *b)
2897{
2898 return pid_fry(*(pid_t *)a) - pid_fry(*(pid_t *)b);
2899}
2900
e6b81710
TH
2901static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
2902 enum cgroup_filetype type)
2903{
2904 struct cgroup_pidlist *l;
2905 /* don't need task_nsproxy() if we're looking at ourself */
2906 struct pid_namespace *ns = task_active_pid_ns(current);
2907
2908 lockdep_assert_held(&cgrp->pidlist_mutex);
2909
2910 list_for_each_entry(l, &cgrp->pidlists, links)
2911 if (l->key.type == type && l->key.ns == ns)
2912 return l;
2913 return NULL;
2914}
2915
72a8cb30
BB
2916/*
2917 * find the appropriate pidlist for our purpose (given procs vs tasks)
2918 * returns with the lock on that pidlist already held, and takes care
2919 * of the use count, or returns NULL with no locks held if we're out of
2920 * memory.
2921 */
e6b81710
TH
2922static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
2923 enum cgroup_filetype type)
72a8cb30
BB
2924{
2925 struct cgroup_pidlist *l;
b70cc5fd 2926
e6b81710
TH
2927 lockdep_assert_held(&cgrp->pidlist_mutex);
2928
2929 l = cgroup_pidlist_find(cgrp, type);
2930 if (l)
2931 return l;
2932
72a8cb30 2933 /* entry not found; create a new one */
f4f4be2b 2934 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
e6b81710 2935 if (!l)
72a8cb30 2936 return l;
e6b81710 2937
b1a21367 2938 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
72a8cb30 2939 l->key.type = type;
e6b81710
TH
2940 /* don't need task_nsproxy() if we're looking at ourself */
2941 l->key.ns = get_pid_ns(task_active_pid_ns(current));
72a8cb30
BB
2942 l->owner = cgrp;
2943 list_add(&l->links, &cgrp->pidlists);
72a8cb30
BB
2944 return l;
2945}
2946
102a775e
BB
2947/*
2948 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
2949 */
72a8cb30
BB
2950static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
2951 struct cgroup_pidlist **lp)
102a775e
BB
2952{
2953 pid_t *array;
2954 int length;
2955 int pid, n = 0; /* used for populating the array */
72ec7029 2956 struct css_task_iter it;
817929ec 2957 struct task_struct *tsk;
102a775e
BB
2958 struct cgroup_pidlist *l;
2959
4bac00d1
TH
2960 lockdep_assert_held(&cgrp->pidlist_mutex);
2961
102a775e
BB
2962 /*
2963 * If cgroup gets more users after we read count, we won't have
2964 * enough space - tough. This race is indistinguishable to the
2965 * caller from the case that the additional cgroup users didn't
2966 * show up until sometime later on.
2967 */
2968 length = cgroup_task_count(cgrp);
d1d9fd33 2969 array = pidlist_allocate(length);
102a775e
BB
2970 if (!array)
2971 return -ENOMEM;
2972 /* now, populate the array */
72ec7029
TH
2973 css_task_iter_start(&cgrp->dummy_css, &it);
2974 while ((tsk = css_task_iter_next(&it))) {
102a775e 2975 if (unlikely(n == length))
817929ec 2976 break;
102a775e 2977 /* get tgid or pid for procs or tasks file respectively */
72a8cb30
BB
2978 if (type == CGROUP_FILE_PROCS)
2979 pid = task_tgid_vnr(tsk);
2980 else
2981 pid = task_pid_vnr(tsk);
102a775e
BB
2982 if (pid > 0) /* make sure to only use valid results */
2983 array[n++] = pid;
817929ec 2984 }
72ec7029 2985 css_task_iter_end(&it);
102a775e
BB
2986 length = n;
2987 /* now sort & (if procs) strip out duplicates */
afb2bc14
TH
2988 if (cgroup_sane_behavior(cgrp))
2989 sort(array, length, sizeof(pid_t), fried_cmppid, NULL);
2990 else
2991 sort(array, length, sizeof(pid_t), cmppid, NULL);
72a8cb30 2992 if (type == CGROUP_FILE_PROCS)
6ee211ad 2993 length = pidlist_uniq(array, length);
e6b81710 2994
e6b81710 2995 l = cgroup_pidlist_find_create(cgrp, type);
72a8cb30 2996 if (!l) {
e6b81710 2997 mutex_unlock(&cgrp->pidlist_mutex);
d1d9fd33 2998 pidlist_free(array);
72a8cb30 2999 return -ENOMEM;
102a775e 3000 }
e6b81710
TH
3001
3002 /* store array, freeing old if necessary */
d1d9fd33 3003 pidlist_free(l->list);
102a775e
BB
3004 l->list = array;
3005 l->length = length;
72a8cb30 3006 *lp = l;
102a775e 3007 return 0;
bbcb81d0
PM
3008}
3009
846c7bb0 3010/**
a043e3b2 3011 * cgroupstats_build - build and fill cgroupstats
846c7bb0
BS
3012 * @stats: cgroupstats to fill information into
3013 * @dentry: A dentry entry belonging to the cgroup for which stats have
3014 * been requested.
a043e3b2
LZ
3015 *
3016 * Build and fill cgroupstats so that taskstats can export it to user
3017 * space.
846c7bb0
BS
3018 */
3019int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
3020{
2bd59d48 3021 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
bd89aabc 3022 struct cgroup *cgrp;
72ec7029 3023 struct css_task_iter it;
846c7bb0 3024 struct task_struct *tsk;
33d283be 3025
2bd59d48
TH
3026 /* it should be kernfs_node belonging to cgroupfs and is a directory */
3027 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
3028 kernfs_type(kn) != KERNFS_DIR)
3029 return -EINVAL;
3030
846c7bb0 3031 /*
2bd59d48
TH
3032 * We aren't being called from kernfs and there's no guarantee on
3033 * @kn->priv's validity. For this and css_tryget_from_dir(),
3034 * @kn->priv is RCU safe. Let's do the RCU dancing.
846c7bb0 3035 */
2bd59d48
TH
3036 rcu_read_lock();
3037 cgrp = rcu_dereference(kn->priv);
3038 if (!cgrp) {
3039 rcu_read_unlock();
3040 return -ENOENT;
3041 }
846c7bb0 3042
72ec7029
TH
3043 css_task_iter_start(&cgrp->dummy_css, &it);
3044 while ((tsk = css_task_iter_next(&it))) {
846c7bb0
BS
3045 switch (tsk->state) {
3046 case TASK_RUNNING:
3047 stats->nr_running++;
3048 break;
3049 case TASK_INTERRUPTIBLE:
3050 stats->nr_sleeping++;
3051 break;
3052 case TASK_UNINTERRUPTIBLE:
3053 stats->nr_uninterruptible++;
3054 break;
3055 case TASK_STOPPED:
3056 stats->nr_stopped++;
3057 break;
3058 default:
3059 if (delayacct_is_task_waiting_on_io(tsk))
3060 stats->nr_io_wait++;
3061 break;
3062 }
3063 }
72ec7029 3064 css_task_iter_end(&it);
846c7bb0 3065
2bd59d48
TH
3066 rcu_read_unlock();
3067 return 0;
846c7bb0
BS
3068}
3069
8f3ff208 3070
bbcb81d0 3071/*
102a775e 3072 * seq_file methods for the tasks/procs files. The seq_file position is the
cc31edce 3073 * next pid to display; the seq_file iterator is a pointer to the pid
102a775e 3074 * in the cgroup->l->list array.
bbcb81d0 3075 */
cc31edce 3076
102a775e 3077static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
bbcb81d0 3078{
cc31edce
PM
3079 /*
3080 * Initially we receive a position value that corresponds to
3081 * one more than the last pid shown (or 0 on the first call or
3082 * after a seek to the start). Use a binary-search to find the
3083 * next pid to display, if any
3084 */
2bd59d48 3085 struct kernfs_open_file *of = s->private;
7da11279 3086 struct cgroup *cgrp = seq_css(s)->cgroup;
4bac00d1 3087 struct cgroup_pidlist *l;
7da11279 3088 enum cgroup_filetype type = seq_cft(s)->private;
cc31edce 3089 int index = 0, pid = *pos;
4bac00d1
TH
3090 int *iter, ret;
3091
3092 mutex_lock(&cgrp->pidlist_mutex);
3093
3094 /*
5d22444f 3095 * !NULL @of->priv indicates that this isn't the first start()
4bac00d1 3096 * after open. If the matching pidlist is around, we can use that.
5d22444f 3097 * Look for it. Note that @of->priv can't be used directly. It
4bac00d1
TH
3098 * could already have been destroyed.
3099 */
5d22444f
TH
3100 if (of->priv)
3101 of->priv = cgroup_pidlist_find(cgrp, type);
4bac00d1
TH
3102
3103 /*
3104 * Either this is the first start() after open or the matching
3105 * pidlist has been destroyed inbetween. Create a new one.
3106 */
5d22444f
TH
3107 if (!of->priv) {
3108 ret = pidlist_array_load(cgrp, type,
3109 (struct cgroup_pidlist **)&of->priv);
4bac00d1
TH
3110 if (ret)
3111 return ERR_PTR(ret);
3112 }
5d22444f 3113 l = of->priv;
cc31edce 3114
cc31edce 3115 if (pid) {
102a775e 3116 int end = l->length;
20777766 3117
cc31edce
PM
3118 while (index < end) {
3119 int mid = (index + end) / 2;
afb2bc14 3120 if (cgroup_pid_fry(cgrp, l->list[mid]) == pid) {
cc31edce
PM
3121 index = mid;
3122 break;
afb2bc14 3123 } else if (cgroup_pid_fry(cgrp, l->list[mid]) <= pid)
cc31edce
PM
3124 index = mid + 1;
3125 else
3126 end = mid;
3127 }
3128 }
3129 /* If we're off the end of the array, we're done */
102a775e 3130 if (index >= l->length)
cc31edce
PM
3131 return NULL;
3132 /* Update the abstract position to be the actual pid that we found */
102a775e 3133 iter = l->list + index;
afb2bc14 3134 *pos = cgroup_pid_fry(cgrp, *iter);
cc31edce
PM
3135 return iter;
3136}
3137
102a775e 3138static void cgroup_pidlist_stop(struct seq_file *s, void *v)
cc31edce 3139{
2bd59d48 3140 struct kernfs_open_file *of = s->private;
5d22444f 3141 struct cgroup_pidlist *l = of->priv;
62236858 3142
5d22444f
TH
3143 if (l)
3144 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
04502365 3145 CGROUP_PIDLIST_DESTROY_DELAY);
7da11279 3146 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
cc31edce
PM
3147}
3148
102a775e 3149static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
cc31edce 3150{
2bd59d48 3151 struct kernfs_open_file *of = s->private;
5d22444f 3152 struct cgroup_pidlist *l = of->priv;
102a775e
BB
3153 pid_t *p = v;
3154 pid_t *end = l->list + l->length;
cc31edce
PM
3155 /*
3156 * Advance to the next pid in the array. If this goes off the
3157 * end, we're done
3158 */
3159 p++;
3160 if (p >= end) {
3161 return NULL;
3162 } else {
7da11279 3163 *pos = cgroup_pid_fry(seq_css(s)->cgroup, *p);
cc31edce
PM
3164 return p;
3165 }
3166}
3167
102a775e 3168static int cgroup_pidlist_show(struct seq_file *s, void *v)
cc31edce
PM
3169{
3170 return seq_printf(s, "%d\n", *(int *)v);
3171}
bbcb81d0 3172
102a775e
BB
3173/*
3174 * seq_operations functions for iterating on pidlists through seq_file -
3175 * independent of whether it's tasks or procs
3176 */
3177static const struct seq_operations cgroup_pidlist_seq_operations = {
3178 .start = cgroup_pidlist_start,
3179 .stop = cgroup_pidlist_stop,
3180 .next = cgroup_pidlist_next,
3181 .show = cgroup_pidlist_show,
cc31edce
PM
3182};
3183
182446d0
TH
3184static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
3185 struct cftype *cft)
81a6a5cd 3186{
182446d0 3187 return notify_on_release(css->cgroup);
81a6a5cd
PM
3188}
3189
182446d0
TH
3190static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
3191 struct cftype *cft, u64 val)
6379c106 3192{
182446d0 3193 clear_bit(CGRP_RELEASABLE, &css->cgroup->flags);
6379c106 3194 if (val)
182446d0 3195 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106 3196 else
182446d0 3197 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106
PM
3198 return 0;
3199}
3200
182446d0
TH
3201static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
3202 struct cftype *cft)
97978e6d 3203{
182446d0 3204 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
3205}
3206
182446d0
TH
3207static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
3208 struct cftype *cft, u64 val)
97978e6d
DL
3209{
3210 if (val)
182446d0 3211 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d 3212 else
182446d0 3213 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
3214 return 0;
3215}
3216
d5c56ced 3217static struct cftype cgroup_base_files[] = {
81a6a5cd 3218 {
d5c56ced 3219 .name = "cgroup.procs",
6612f05b
TH
3220 .seq_start = cgroup_pidlist_start,
3221 .seq_next = cgroup_pidlist_next,
3222 .seq_stop = cgroup_pidlist_stop,
3223 .seq_show = cgroup_pidlist_show,
5d22444f 3224 .private = CGROUP_FILE_PROCS,
74a1166d 3225 .write_u64 = cgroup_procs_write,
74a1166d 3226 .mode = S_IRUGO | S_IWUSR,
102a775e 3227 },
97978e6d
DL
3228 {
3229 .name = "cgroup.clone_children",
873fe09e 3230 .flags = CFTYPE_INSANE,
97978e6d
DL
3231 .read_u64 = cgroup_clone_children_read,
3232 .write_u64 = cgroup_clone_children_write,
3233 },
873fe09e
TH
3234 {
3235 .name = "cgroup.sane_behavior",
3236 .flags = CFTYPE_ONLY_ON_ROOT,
2da8ca82 3237 .seq_show = cgroup_sane_behavior_show,
873fe09e 3238 },
d5c56ced
TH
3239
3240 /*
3241 * Historical crazy stuff. These don't have "cgroup." prefix and
3242 * don't exist if sane_behavior. If you're depending on these, be
3243 * prepared to be burned.
3244 */
3245 {
3246 .name = "tasks",
3247 .flags = CFTYPE_INSANE, /* use "procs" instead */
6612f05b
TH
3248 .seq_start = cgroup_pidlist_start,
3249 .seq_next = cgroup_pidlist_next,
3250 .seq_stop = cgroup_pidlist_stop,
3251 .seq_show = cgroup_pidlist_show,
5d22444f 3252 .private = CGROUP_FILE_TASKS,
d5c56ced 3253 .write_u64 = cgroup_tasks_write,
d5c56ced
TH
3254 .mode = S_IRUGO | S_IWUSR,
3255 },
3256 {
3257 .name = "notify_on_release",
3258 .flags = CFTYPE_INSANE,
3259 .read_u64 = cgroup_read_notify_on_release,
3260 .write_u64 = cgroup_write_notify_on_release,
3261 },
6e6ff25b
TH
3262 {
3263 .name = "release_agent",
cc5943a7 3264 .flags = CFTYPE_INSANE | CFTYPE_ONLY_ON_ROOT,
2da8ca82 3265 .seq_show = cgroup_release_agent_show,
6e6ff25b 3266 .write_string = cgroup_release_agent_write,
5f469907 3267 .max_write_len = PATH_MAX - 1,
6e6ff25b 3268 },
db0416b6 3269 { } /* terminate */
bbcb81d0
PM
3270};
3271
13af07df 3272/**
628f7cd4 3273 * cgroup_populate_dir - create subsys files in a cgroup directory
13af07df 3274 * @cgrp: target cgroup
13af07df 3275 * @subsys_mask: mask of the subsystem ids whose files should be added
bee55099
TH
3276 *
3277 * On failure, no file is added.
13af07df 3278 */
628f7cd4 3279static int cgroup_populate_dir(struct cgroup *cgrp, unsigned long subsys_mask)
ddbcc7e8 3280{
ddbcc7e8 3281 struct cgroup_subsys *ss;
b420ba7d 3282 int i, ret = 0;
bbcb81d0 3283
8e3f6541 3284 /* process cftsets of each subsystem */
b420ba7d 3285 for_each_subsys(ss, i) {
0adb0704 3286 struct cftype *cfts;
b420ba7d
TH
3287
3288 if (!test_bit(i, &subsys_mask))
13af07df 3289 continue;
8e3f6541 3290
0adb0704
TH
3291 list_for_each_entry(cfts, &ss->cfts, node) {
3292 ret = cgroup_addrm_files(cgrp, cfts, true);
bee55099
TH
3293 if (ret < 0)
3294 goto err;
3295 }
ddbcc7e8 3296 }
ddbcc7e8 3297 return 0;
bee55099
TH
3298err:
3299 cgroup_clear_dir(cgrp, subsys_mask);
3300 return ret;
ddbcc7e8
PM
3301}
3302
0c21ead1
TH
3303/*
3304 * css destruction is four-stage process.
3305 *
3306 * 1. Destruction starts. Killing of the percpu_ref is initiated.
3307 * Implemented in kill_css().
3308 *
3309 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
3310 * and thus css_tryget() is guaranteed to fail, the css can be offlined
3311 * by invoking offline_css(). After offlining, the base ref is put.
3312 * Implemented in css_killed_work_fn().
3313 *
3314 * 3. When the percpu_ref reaches zero, the only possible remaining
3315 * accessors are inside RCU read sections. css_release() schedules the
3316 * RCU callback.
3317 *
3318 * 4. After the grace period, the css can be freed. Implemented in
3319 * css_free_work_fn().
3320 *
3321 * It is actually hairier because both step 2 and 4 require process context
3322 * and thus involve punting to css->destroy_work adding two additional
3323 * steps to the already complex sequence.
3324 */
35ef10da 3325static void css_free_work_fn(struct work_struct *work)
48ddbe19
TH
3326{
3327 struct cgroup_subsys_state *css =
35ef10da 3328 container_of(work, struct cgroup_subsys_state, destroy_work);
0c21ead1 3329 struct cgroup *cgrp = css->cgroup;
48ddbe19 3330
0ae78e0b
TH
3331 if (css->parent)
3332 css_put(css->parent);
3333
0c21ead1 3334 css->ss->css_free(css);
2bd59d48 3335 cgroup_put(cgrp);
48ddbe19
TH
3336}
3337
0c21ead1 3338static void css_free_rcu_fn(struct rcu_head *rcu_head)
d3daf28d
TH
3339{
3340 struct cgroup_subsys_state *css =
0c21ead1 3341 container_of(rcu_head, struct cgroup_subsys_state, rcu_head);
d3daf28d 3342
35ef10da 3343 INIT_WORK(&css->destroy_work, css_free_work_fn);
e5fca243 3344 queue_work(cgroup_destroy_wq, &css->destroy_work);
48ddbe19
TH
3345}
3346
d3daf28d
TH
3347static void css_release(struct percpu_ref *ref)
3348{
3349 struct cgroup_subsys_state *css =
3350 container_of(ref, struct cgroup_subsys_state, refcnt);
3351
aec25020 3352 rcu_assign_pointer(css->cgroup->subsys[css->ss->id], NULL);
0c21ead1 3353 call_rcu(&css->rcu_head, css_free_rcu_fn);
d3daf28d
TH
3354}
3355
623f926b
TH
3356static void init_css(struct cgroup_subsys_state *css, struct cgroup_subsys *ss,
3357 struct cgroup *cgrp)
ddbcc7e8 3358{
bd89aabc 3359 css->cgroup = cgrp;
72c97e54 3360 css->ss = ss;
ddbcc7e8 3361 css->flags = 0;
0ae78e0b
TH
3362
3363 if (cgrp->parent)
ca8bdcaf 3364 css->parent = cgroup_css(cgrp->parent, ss);
0ae78e0b 3365 else
38b53aba 3366 css->flags |= CSS_ROOT;
48ddbe19 3367
ca8bdcaf 3368 BUG_ON(cgroup_css(cgrp, ss));
ddbcc7e8
PM
3369}
3370
2a4ac633 3371/* invoke ->css_online() on a new CSS and mark it online if successful */
623f926b 3372static int online_css(struct cgroup_subsys_state *css)
a31f2d3f 3373{
623f926b 3374 struct cgroup_subsys *ss = css->ss;
b1929db4
TH
3375 int ret = 0;
3376
ace2bee8 3377 lockdep_assert_held(&cgroup_tree_mutex);
a31f2d3f
TH
3378 lockdep_assert_held(&cgroup_mutex);
3379
92fb9748 3380 if (ss->css_online)
eb95419b 3381 ret = ss->css_online(css);
ae7f164a 3382 if (!ret) {
eb95419b 3383 css->flags |= CSS_ONLINE;
f20104de 3384 css->cgroup->nr_css++;
aec25020 3385 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
ae7f164a 3386 }
b1929db4 3387 return ret;
a31f2d3f
TH
3388}
3389
2a4ac633 3390/* if the CSS is online, invoke ->css_offline() on it and mark it offline */
623f926b 3391static void offline_css(struct cgroup_subsys_state *css)
a31f2d3f 3392{
623f926b 3393 struct cgroup_subsys *ss = css->ss;
a31f2d3f 3394
ace2bee8 3395 lockdep_assert_held(&cgroup_tree_mutex);
a31f2d3f
TH
3396 lockdep_assert_held(&cgroup_mutex);
3397
3398 if (!(css->flags & CSS_ONLINE))
3399 return;
3400
d7eeac19 3401 if (ss->css_offline)
eb95419b 3402 ss->css_offline(css);
a31f2d3f 3403
eb95419b 3404 css->flags &= ~CSS_ONLINE;
09a503ea 3405 css->cgroup->nr_css--;
aec25020 3406 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], css);
a31f2d3f
TH
3407}
3408
c81c925a
TH
3409/**
3410 * create_css - create a cgroup_subsys_state
3411 * @cgrp: the cgroup new css will be associated with
3412 * @ss: the subsys of new css
3413 *
3414 * Create a new css associated with @cgrp - @ss pair. On success, the new
3415 * css is online and installed in @cgrp with all interface files created.
3416 * Returns 0 on success, -errno on failure.
3417 */
3418static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss)
3419{
3420 struct cgroup *parent = cgrp->parent;
3421 struct cgroup_subsys_state *css;
3422 int err;
3423
c81c925a
TH
3424 lockdep_assert_held(&cgroup_mutex);
3425
3426 css = ss->css_alloc(cgroup_css(parent, ss));
3427 if (IS_ERR(css))
3428 return PTR_ERR(css);
3429
3430 err = percpu_ref_init(&css->refcnt, css_release);
3431 if (err)
3432 goto err_free;
3433
3434 init_css(css, ss, cgrp);
3435
aec25020 3436 err = cgroup_populate_dir(cgrp, 1 << ss->id);
c81c925a
TH
3437 if (err)
3438 goto err_free;
3439
3440 err = online_css(css);
3441 if (err)
3442 goto err_free;
3443
59f5296b 3444 cgroup_get(cgrp);
c81c925a
TH
3445 css_get(css->parent);
3446
3447 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
3448 parent->parent) {
3449 pr_warning("cgroup: %s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
3450 current->comm, current->pid, ss->name);
3451 if (!strcmp(ss->name, "memory"))
3452 pr_warning("cgroup: \"memory\" requires setting use_hierarchy to 1 on the root.\n");
3453 ss->warned_broken_hierarchy = true;
3454 }
3455
3456 return 0;
3457
3458err_free:
3459 percpu_ref_cancel_init(&css->refcnt);
3460 ss->css_free(css);
3461 return err;
3462}
3463
2bd59d48 3464/**
a043e3b2
LZ
3465 * cgroup_create - create a cgroup
3466 * @parent: cgroup that will be parent of the new cgroup
e61734c5 3467 * @name: name of the new cgroup
2bd59d48 3468 * @mode: mode to set on new cgroup
ddbcc7e8 3469 */
e61734c5 3470static long cgroup_create(struct cgroup *parent, const char *name,
2bd59d48 3471 umode_t mode)
ddbcc7e8 3472{
bd89aabc 3473 struct cgroup *cgrp;
ddbcc7e8 3474 struct cgroupfs_root *root = parent->root;
b58c8998 3475 int ssid, err;
ddbcc7e8 3476 struct cgroup_subsys *ss;
2bd59d48 3477 struct kernfs_node *kn;
ddbcc7e8 3478
0a950f65 3479 /* allocate the cgroup and its ID, 0 is reserved for the root */
bd89aabc
PM
3480 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
3481 if (!cgrp)
ddbcc7e8
PM
3482 return -ENOMEM;
3483
ace2bee8
TH
3484 mutex_lock(&cgroup_tree_mutex);
3485
976c06bc
TH
3486 /*
3487 * Only live parents can have children. Note that the liveliness
3488 * check isn't strictly necessary because cgroup_mkdir() and
3489 * cgroup_rmdir() are fully synchronized by i_mutex; however, do it
3490 * anyway so that locking is contained inside cgroup proper and we
3491 * don't get nasty surprises if we ever grow another caller.
3492 */
3493 if (!cgroup_lock_live_group(parent)) {
3494 err = -ENODEV;
ace2bee8 3495 goto err_unlock_tree;
0ab02ca8
LZ
3496 }
3497
3498 /*
3499 * Temporarily set the pointer to NULL, so idr_find() won't return
3500 * a half-baked cgroup.
3501 */
3502 cgrp->id = idr_alloc(&root->cgroup_idr, NULL, 1, 0, GFP_KERNEL);
3503 if (cgrp->id < 0) {
3504 err = -ENOMEM;
3505 goto err_unlock;
976c06bc
TH
3506 }
3507
cc31edce 3508 init_cgroup_housekeeping(cgrp);
ddbcc7e8 3509
bd89aabc 3510 cgrp->parent = parent;
0ae78e0b 3511 cgrp->dummy_css.parent = &parent->dummy_css;
bd89aabc 3512 cgrp->root = parent->root;
ddbcc7e8 3513
b6abdb0e
LZ
3514 if (notify_on_release(parent))
3515 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3516
2260e7fc
TH
3517 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
3518 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
97978e6d 3519
2bd59d48 3520 /* create the directory */
e61734c5 3521 kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
2bd59d48
TH
3522 if (IS_ERR(kn)) {
3523 err = PTR_ERR(kn);
0ab02ca8 3524 goto err_free_id;
2bd59d48
TH
3525 }
3526 cgrp->kn = kn;
ddbcc7e8 3527
6f30558f
TH
3528 /*
3529 * This extra ref will be put in cgroup_free_fn() and guarantees
3530 * that @cgrp->kn is always accessible.
3531 */
3532 kernfs_get(kn);
3533
00356bd5 3534 cgrp->serial_nr = cgroup_serial_nr_next++;
53fa5261 3535
4e139afc 3536 /* allocation complete, commit to creation */
4e139afc 3537 list_add_tail_rcu(&cgrp->sibling, &cgrp->parent->children);
3c9c825b 3538 atomic_inc(&root->nr_cgrps);
59f5296b 3539 cgroup_get(parent);
415cf07a 3540
0d80255e
TH
3541 /*
3542 * @cgrp is now fully operational. If something fails after this
3543 * point, it'll be released via the normal destruction path.
3544 */
4e96ee8e
LZ
3545 idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
3546
2bb566cb 3547 err = cgroup_addrm_files(cgrp, cgroup_base_files, true);
628f7cd4
TH
3548 if (err)
3549 goto err_destroy;
3550
9d403e99 3551 /* let's create and online css's */
b85d2040
TH
3552 for_each_subsys(ss, ssid) {
3553 if (root->subsys_mask & (1 << ssid)) {
3554 err = create_css(cgrp, ss);
3555 if (err)
3556 goto err_destroy;
3557 }
a8638030 3558 }
ddbcc7e8 3559
2bd59d48
TH
3560 kernfs_activate(kn);
3561
ddbcc7e8 3562 mutex_unlock(&cgroup_mutex);
ace2bee8 3563 mutex_unlock(&cgroup_tree_mutex);
ddbcc7e8
PM
3564
3565 return 0;
3566
0a950f65 3567err_free_id:
4e96ee8e 3568 idr_remove(&root->cgroup_idr, cgrp->id);
0ab02ca8
LZ
3569err_unlock:
3570 mutex_unlock(&cgroup_mutex);
ace2bee8
TH
3571err_unlock_tree:
3572 mutex_unlock(&cgroup_tree_mutex);
bd89aabc 3573 kfree(cgrp);
ddbcc7e8 3574 return err;
4b8b47eb
TH
3575
3576err_destroy:
3577 cgroup_destroy_locked(cgrp);
3578 mutex_unlock(&cgroup_mutex);
ace2bee8 3579 mutex_unlock(&cgroup_tree_mutex);
4b8b47eb 3580 return err;
ddbcc7e8
PM
3581}
3582
2bd59d48
TH
3583static int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
3584 umode_t mode)
ddbcc7e8 3585{
2bd59d48 3586 struct cgroup *parent = parent_kn->priv;
ddbcc7e8 3587
2bd59d48 3588 return cgroup_create(parent, name, mode);
ddbcc7e8
PM
3589}
3590
223dbc38
TH
3591/*
3592 * This is called when the refcnt of a css is confirmed to be killed.
3593 * css_tryget() is now guaranteed to fail.
3594 */
3595static void css_killed_work_fn(struct work_struct *work)
d3daf28d 3596{
223dbc38
TH
3597 struct cgroup_subsys_state *css =
3598 container_of(work, struct cgroup_subsys_state, destroy_work);
3599 struct cgroup *cgrp = css->cgroup;
d3daf28d 3600
ace2bee8 3601 mutex_lock(&cgroup_tree_mutex);
f20104de
TH
3602 mutex_lock(&cgroup_mutex);
3603
09a503ea
TH
3604 /*
3605 * css_tryget() is guaranteed to fail now. Tell subsystems to
3606 * initate destruction.
3607 */
3608 offline_css(css);
3609
f20104de
TH
3610 /*
3611 * If @cgrp is marked dead, it's waiting for refs of all css's to
3612 * be disabled before proceeding to the second phase of cgroup
3613 * destruction. If we are the last one, kick it off.
3614 */
09a503ea 3615 if (!cgrp->nr_css && cgroup_is_dead(cgrp))
f20104de
TH
3616 cgroup_destroy_css_killed(cgrp);
3617
3618 mutex_unlock(&cgroup_mutex);
ace2bee8 3619 mutex_unlock(&cgroup_tree_mutex);
09a503ea
TH
3620
3621 /*
3622 * Put the css refs from kill_css(). Each css holds an extra
3623 * reference to the cgroup's dentry and cgroup removal proceeds
3624 * regardless of css refs. On the last put of each css, whenever
3625 * that may be, the extra dentry ref is put so that dentry
3626 * destruction happens only after all css's are released.
3627 */
3628 css_put(css);
d3daf28d
TH
3629}
3630
223dbc38
TH
3631/* css kill confirmation processing requires process context, bounce */
3632static void css_killed_ref_fn(struct percpu_ref *ref)
d3daf28d
TH
3633{
3634 struct cgroup_subsys_state *css =
3635 container_of(ref, struct cgroup_subsys_state, refcnt);
3636
223dbc38 3637 INIT_WORK(&css->destroy_work, css_killed_work_fn);
e5fca243 3638 queue_work(cgroup_destroy_wq, &css->destroy_work);
d3daf28d
TH
3639}
3640
edae0c33
TH
3641/**
3642 * kill_css - destroy a css
3643 * @css: css to destroy
3644 *
3c14f8b4
TH
3645 * This function initiates destruction of @css by removing cgroup interface
3646 * files and putting its base reference. ->css_offline() will be invoked
3647 * asynchronously once css_tryget() is guaranteed to fail and when the
3648 * reference count reaches zero, @css will be released.
edae0c33
TH
3649 */
3650static void kill_css(struct cgroup_subsys_state *css)
3651{
2bd59d48
TH
3652 /*
3653 * This must happen before css is disassociated with its cgroup.
3654 * See seq_css() for details.
3655 */
aec25020 3656 cgroup_clear_dir(css->cgroup, 1 << css->ss->id);
3c14f8b4 3657
edae0c33
TH
3658 /*
3659 * Killing would put the base ref, but we need to keep it alive
3660 * until after ->css_offline().
3661 */
3662 css_get(css);
3663
3664 /*
3665 * cgroup core guarantees that, by the time ->css_offline() is
3666 * invoked, no new css reference will be given out via
3667 * css_tryget(). We can't simply call percpu_ref_kill() and
3668 * proceed to offlining css's because percpu_ref_kill() doesn't
3669 * guarantee that the ref is seen as killed on all CPUs on return.
3670 *
3671 * Use percpu_ref_kill_and_confirm() to get notifications as each
3672 * css is confirmed to be seen as killed on all CPUs.
3673 */
3674 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
d3daf28d
TH
3675}
3676
3677/**
3678 * cgroup_destroy_locked - the first stage of cgroup destruction
3679 * @cgrp: cgroup to be destroyed
3680 *
3681 * css's make use of percpu refcnts whose killing latency shouldn't be
3682 * exposed to userland and are RCU protected. Also, cgroup core needs to
3683 * guarantee that css_tryget() won't succeed by the time ->css_offline() is
3684 * invoked. To satisfy all the requirements, destruction is implemented in
3685 * the following two steps.
3686 *
3687 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
3688 * userland visible parts and start killing the percpu refcnts of
3689 * css's. Set up so that the next stage will be kicked off once all
3690 * the percpu refcnts are confirmed to be killed.
3691 *
3692 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
3693 * rest of destruction. Once all cgroup references are gone, the
3694 * cgroup is RCU-freed.
3695 *
3696 * This function implements s1. After this step, @cgrp is gone as far as
3697 * the userland is concerned and a new cgroup with the same name may be
3698 * created. As cgroup doesn't care about the names internally, this
3699 * doesn't cause any problem.
3700 */
42809dd4
TH
3701static int cgroup_destroy_locked(struct cgroup *cgrp)
3702 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
ddbcc7e8 3703{
bb78a92f 3704 struct cgroup *child;
2bd59d48 3705 struct cgroup_subsys_state *css;
ddd69148 3706 bool empty;
1c6727af 3707 int ssid;
ddbcc7e8 3708
ace2bee8 3709 lockdep_assert_held(&cgroup_tree_mutex);
42809dd4
TH
3710 lockdep_assert_held(&cgroup_mutex);
3711
ddd69148 3712 /*
96d365e0 3713 * css_set_rwsem synchronizes access to ->cset_links and prevents
89c5509b 3714 * @cgrp from being removed while put_css_set() is in progress.
ddd69148 3715 */
96d365e0 3716 down_read(&css_set_rwsem);
bb78a92f 3717 empty = list_empty(&cgrp->cset_links);
96d365e0 3718 up_read(&css_set_rwsem);
ddd69148 3719 if (!empty)
ddbcc7e8 3720 return -EBUSY;
a043e3b2 3721
bb78a92f
HD
3722 /*
3723 * Make sure there's no live children. We can't test ->children
3724 * emptiness as dead children linger on it while being destroyed;
3725 * otherwise, "rmdir parent/child parent" may fail with -EBUSY.
3726 */
3727 empty = true;
3728 rcu_read_lock();
3729 list_for_each_entry_rcu(child, &cgrp->children, sibling) {
3730 empty = cgroup_is_dead(child);
3731 if (!empty)
3732 break;
3733 }
3734 rcu_read_unlock();
3735 if (!empty)
3736 return -EBUSY;
3737
88703267 3738 /*
edae0c33
TH
3739 * Initiate massacre of all css's. cgroup_destroy_css_killed()
3740 * will be invoked to perform the rest of destruction once the
4ac06017
TH
3741 * percpu refs of all css's are confirmed to be killed. This
3742 * involves removing the subsystem's files, drop cgroup_mutex.
88703267 3743 */
4ac06017 3744 mutex_unlock(&cgroup_mutex);
1c6727af
TH
3745 for_each_css(css, ssid, cgrp)
3746 kill_css(css);
4ac06017 3747 mutex_lock(&cgroup_mutex);
455050d2
TH
3748
3749 /*
3750 * Mark @cgrp dead. This prevents further task migration and child
3751 * creation by disabling cgroup_lock_live_group(). Note that
492eb21b 3752 * CGRP_DEAD assertion is depended upon by css_next_child() to
455050d2 3753 * resume iteration after dropping RCU read lock. See
492eb21b 3754 * css_next_child() for details.
455050d2 3755 */
54766d4a 3756 set_bit(CGRP_DEAD, &cgrp->flags);
ddbcc7e8 3757
455050d2
TH
3758 /* CGRP_DEAD is set, remove from ->release_list for the last time */
3759 raw_spin_lock(&release_list_lock);
3760 if (!list_empty(&cgrp->release_list))
3761 list_del_init(&cgrp->release_list);
3762 raw_spin_unlock(&release_list_lock);
3763
3764 /*
f20104de
TH
3765 * If @cgrp has css's attached, the second stage of cgroup
3766 * destruction is kicked off from css_killed_work_fn() after the
3767 * refs of all attached css's are killed. If @cgrp doesn't have
3768 * any css, we kick it off here.
3769 */
3770 if (!cgrp->nr_css)
3771 cgroup_destroy_css_killed(cgrp);
3772
2bd59d48
TH
3773 /* remove @cgrp directory along with the base files */
3774 mutex_unlock(&cgroup_mutex);
3775
455050d2 3776 /*
2bd59d48
TH
3777 * There are two control paths which try to determine cgroup from
3778 * dentry without going through kernfs - cgroupstats_build() and
3779 * css_tryget_from_dir(). Those are supported by RCU protecting
3780 * clearing of cgrp->kn->priv backpointer, which should happen
3781 * after all files under it have been removed.
455050d2 3782 */
6f30558f 3783 kernfs_remove(cgrp->kn); /* @cgrp has an extra ref on its kn */
2bd59d48 3784 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv, NULL);
2bd59d48 3785
4ac06017 3786 mutex_lock(&cgroup_mutex);
455050d2 3787
ea15f8cc
TH
3788 return 0;
3789};
3790
d3daf28d 3791/**
f20104de 3792 * cgroup_destroy_css_killed - the second step of cgroup destruction
d3daf28d
TH
3793 * @work: cgroup->destroy_free_work
3794 *
3795 * This function is invoked from a work item for a cgroup which is being
09a503ea
TH
3796 * destroyed after all css's are offlined and performs the rest of
3797 * destruction. This is the second step of destruction described in the
3798 * comment above cgroup_destroy_locked().
d3daf28d 3799 */
f20104de 3800static void cgroup_destroy_css_killed(struct cgroup *cgrp)
ea15f8cc 3801{
ea15f8cc 3802 struct cgroup *parent = cgrp->parent;
ea15f8cc 3803
ace2bee8 3804 lockdep_assert_held(&cgroup_tree_mutex);
f20104de 3805 lockdep_assert_held(&cgroup_mutex);
ea15f8cc 3806
999cd8a4 3807 /* delete this cgroup from parent->children */
eb6fd504 3808 list_del_rcu(&cgrp->sibling);
ed957793 3809
59f5296b 3810 cgroup_put(cgrp);
ddbcc7e8 3811
bd89aabc 3812 set_bit(CGRP_RELEASABLE, &parent->flags);
81a6a5cd 3813 check_for_release(parent);
ddbcc7e8
PM
3814}
3815
2bd59d48 3816static int cgroup_rmdir(struct kernfs_node *kn)
42809dd4 3817{
2bd59d48
TH
3818 struct cgroup *cgrp = kn->priv;
3819 int ret = 0;
3820
3821 /*
3822 * This is self-destruction but @kn can't be removed while this
3823 * callback is in progress. Let's break active protection. Once
3824 * the protection is broken, @cgrp can be destroyed at any point.
3825 * Pin it so that it stays accessible.
3826 */
3827 cgroup_get(cgrp);
3828 kernfs_break_active_protection(kn);
42809dd4 3829
ace2bee8 3830 mutex_lock(&cgroup_tree_mutex);
42809dd4 3831 mutex_lock(&cgroup_mutex);
2bd59d48
TH
3832
3833 /*
3834 * @cgrp might already have been destroyed while we're trying to
3835 * grab the mutexes.
3836 */
3837 if (!cgroup_is_dead(cgrp))
3838 ret = cgroup_destroy_locked(cgrp);
3839
42809dd4 3840 mutex_unlock(&cgroup_mutex);
ace2bee8 3841 mutex_unlock(&cgroup_tree_mutex);
42809dd4 3842
2bd59d48
TH
3843 kernfs_unbreak_active_protection(kn);
3844 cgroup_put(cgrp);
42809dd4
TH
3845 return ret;
3846}
3847
2bd59d48
TH
3848static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
3849 .remount_fs = cgroup_remount,
3850 .show_options = cgroup_show_options,
3851 .mkdir = cgroup_mkdir,
3852 .rmdir = cgroup_rmdir,
3853 .rename = cgroup_rename,
3854};
3855
06a11920 3856static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
ddbcc7e8 3857{
ddbcc7e8 3858 struct cgroup_subsys_state *css;
cfe36bde
DC
3859
3860 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
ddbcc7e8 3861
ace2bee8 3862 mutex_lock(&cgroup_tree_mutex);
648bb56d
TH
3863 mutex_lock(&cgroup_mutex);
3864
0adb0704 3865 INIT_LIST_HEAD(&ss->cfts);
8e3f6541 3866
ddbcc7e8 3867 /* Create the top cgroup state for this subsystem */
9871bf95 3868 ss->root = &cgroup_dummy_root;
ca8bdcaf 3869 css = ss->css_alloc(cgroup_css(cgroup_dummy_top, ss));
ddbcc7e8
PM
3870 /* We don't handle early failures gracefully */
3871 BUG_ON(IS_ERR(css));
623f926b 3872 init_css(css, ss, cgroup_dummy_top);
ddbcc7e8 3873
e8d55fde 3874 /* Update the init_css_set to contain a subsys
817929ec 3875 * pointer to this state - since the subsystem is
e8d55fde
LZ
3876 * newly registered, all tasks and hence the
3877 * init_css_set is in the subsystem's top cgroup. */
aec25020 3878 init_css_set.subsys[ss->id] = css;
ddbcc7e8
PM
3879
3880 need_forkexit_callback |= ss->fork || ss->exit;
3881
e8d55fde
LZ
3882 /* At system boot, before all subsystems have been
3883 * registered, no tasks have been forked, so we don't
3884 * need to invoke fork callbacks here. */
3885 BUG_ON(!list_empty(&init_task.tasks));
3886
ae7f164a 3887 BUG_ON(online_css(css));
a8638030 3888
648bb56d 3889 mutex_unlock(&cgroup_mutex);
ace2bee8 3890 mutex_unlock(&cgroup_tree_mutex);
e6a1105b
BB
3891}
3892
ddbcc7e8 3893/**
a043e3b2
LZ
3894 * cgroup_init_early - cgroup initialization at system boot
3895 *
3896 * Initialize cgroups at system boot, and initialize any
3897 * subsystems that request early init.
ddbcc7e8
PM
3898 */
3899int __init cgroup_init_early(void)
3900{
30159ec7 3901 struct cgroup_subsys *ss;
ddbcc7e8 3902 int i;
30159ec7 3903
146aa1bd 3904 atomic_set(&init_css_set.refcount, 1);
69d0206c 3905 INIT_LIST_HEAD(&init_css_set.cgrp_links);
817929ec 3906 INIT_LIST_HEAD(&init_css_set.tasks);
472b1053 3907 INIT_HLIST_NODE(&init_css_set.hlist);
817929ec 3908 css_set_count = 1;
9871bf95
TH
3909 init_cgroup_root(&cgroup_dummy_root);
3910 cgroup_root_count = 1;
a4ea1cc9 3911 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
817929ec 3912
69d0206c 3913 init_cgrp_cset_link.cset = &init_css_set;
9871bf95
TH
3914 init_cgrp_cset_link.cgrp = cgroup_dummy_top;
3915 list_add(&init_cgrp_cset_link.cset_link, &cgroup_dummy_top->cset_links);
69d0206c 3916 list_add(&init_cgrp_cset_link.cgrp_link, &init_css_set.cgrp_links);
ddbcc7e8 3917
3ed80a62 3918 for_each_subsys(ss, i) {
aec25020 3919 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
073219e9
TH
3920 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p name:id=%d:%s\n",
3921 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
aec25020 3922 ss->id, ss->name);
073219e9
TH
3923 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
3924 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
3925
aec25020 3926 ss->id = i;
073219e9 3927 ss->name = cgroup_subsys_name[i];
ddbcc7e8
PM
3928
3929 if (ss->early_init)
3930 cgroup_init_subsys(ss);
3931 }
3932 return 0;
3933}
3934
3935/**
a043e3b2
LZ
3936 * cgroup_init - cgroup initialization
3937 *
3938 * Register cgroup filesystem and /proc file, and initialize
3939 * any subsystems that didn't request early init.
ddbcc7e8
PM
3940 */
3941int __init cgroup_init(void)
3942{
30159ec7 3943 struct cgroup_subsys *ss;
0ac801fe 3944 unsigned long key;
30159ec7 3945 int i, err;
a424316c 3946
2bd59d48 3947 BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files));
2da440a2 3948
3ed80a62 3949 for_each_subsys(ss, i) {
ddbcc7e8
PM
3950 if (!ss->early_init)
3951 cgroup_init_subsys(ss);
de00ffa5
TH
3952
3953 /*
3954 * cftype registration needs kmalloc and can't be done
3955 * during early_init. Register base cftypes separately.
3956 */
3957 if (ss->base_cftypes)
3958 WARN_ON(cgroup_add_cftypes(ss, ss->base_cftypes));
ddbcc7e8
PM
3959 }
3960
fa3ca07e 3961 /* allocate id for the dummy hierarchy */
54e7b4eb 3962 mutex_lock(&cgroup_mutex);
54e7b4eb 3963
82fe9b0d
TH
3964 /* Add init_css_set to the hash table */
3965 key = css_set_hash(init_css_set.subsys);
3966 hash_add(css_set_table, &init_css_set.hlist, key);
3967
fc76df70 3968 BUG_ON(cgroup_init_root_id(&cgroup_dummy_root, 0, 1));
676db4af 3969
4e96ee8e
LZ
3970 err = idr_alloc(&cgroup_dummy_root.cgroup_idr, cgroup_dummy_top,
3971 0, 1, GFP_KERNEL);
3972 BUG_ON(err < 0);
3973
54e7b4eb
TH
3974 mutex_unlock(&cgroup_mutex);
3975
676db4af 3976 cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
2bd59d48
TH
3977 if (!cgroup_kobj)
3978 return -ENOMEM;
676db4af 3979
ddbcc7e8 3980 err = register_filesystem(&cgroup_fs_type);
676db4af
GKH
3981 if (err < 0) {
3982 kobject_put(cgroup_kobj);
2bd59d48 3983 return err;
676db4af 3984 }
ddbcc7e8 3985
46ae220b 3986 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
2bd59d48 3987 return 0;
ddbcc7e8 3988}
b4f48b63 3989
e5fca243
TH
3990static int __init cgroup_wq_init(void)
3991{
3992 /*
3993 * There isn't much point in executing destruction path in
3994 * parallel. Good chunk is serialized with cgroup_mutex anyway.
ab3f5faa
HD
3995 *
3996 * XXX: Must be ordered to make sure parent is offlined after
3997 * children. The ordering requirement is for memcg where a
3998 * parent's offline may wait for a child's leading to deadlock. In
3999 * the long term, this should be fixed from memcg side.
e5fca243
TH
4000 *
4001 * We would prefer to do this in cgroup_init() above, but that
4002 * is called before init_workqueues(): so leave this until after.
4003 */
ab3f5faa 4004 cgroup_destroy_wq = alloc_ordered_workqueue("cgroup_destroy", 0);
e5fca243 4005 BUG_ON(!cgroup_destroy_wq);
b1a21367
TH
4006
4007 /*
4008 * Used to destroy pidlists and separate to serve as flush domain.
4009 * Cap @max_active to 1 too.
4010 */
4011 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
4012 0, 1);
4013 BUG_ON(!cgroup_pidlist_destroy_wq);
4014
e5fca243
TH
4015 return 0;
4016}
4017core_initcall(cgroup_wq_init);
4018
a424316c
PM
4019/*
4020 * proc_cgroup_show()
4021 * - Print task's cgroup paths into seq_file, one line for each hierarchy
4022 * - Used for /proc/<pid>/cgroup.
4023 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
4024 * doesn't really matter if tsk->cgroup changes after we read it,
956db3ca 4025 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
a424316c
PM
4026 * anyway. No need to check that tsk->cgroup != NULL, thanks to
4027 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
4028 * cgroup to top_cgroup.
4029 */
4030
4031/* TODO: Use a proper seq_file iterator */
8d8b97ba 4032int proc_cgroup_show(struct seq_file *m, void *v)
a424316c
PM
4033{
4034 struct pid *pid;
4035 struct task_struct *tsk;
e61734c5 4036 char *buf, *path;
a424316c
PM
4037 int retval;
4038 struct cgroupfs_root *root;
4039
4040 retval = -ENOMEM;
e61734c5 4041 buf = kmalloc(PATH_MAX, GFP_KERNEL);
a424316c
PM
4042 if (!buf)
4043 goto out;
4044
4045 retval = -ESRCH;
4046 pid = m->private;
4047 tsk = get_pid_task(pid, PIDTYPE_PID);
4048 if (!tsk)
4049 goto out_free;
4050
4051 retval = 0;
4052
4053 mutex_lock(&cgroup_mutex);
96d365e0 4054 down_read(&css_set_rwsem);
a424316c 4055
e5f6a860 4056 for_each_active_root(root) {
a424316c 4057 struct cgroup_subsys *ss;
bd89aabc 4058 struct cgroup *cgrp;
b85d2040 4059 int ssid, count = 0;
a424316c 4060
2c6ab6d2 4061 seq_printf(m, "%d:", root->hierarchy_id);
b85d2040
TH
4062 for_each_subsys(ss, ssid)
4063 if (root->subsys_mask & (1 << ssid))
4064 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
c6d57f33
PM
4065 if (strlen(root->name))
4066 seq_printf(m, "%sname=%s", count ? "," : "",
4067 root->name);
a424316c 4068 seq_putc(m, ':');
7717f7ba 4069 cgrp = task_cgroup_from_root(tsk, root);
e61734c5
TH
4070 path = cgroup_path(cgrp, buf, PATH_MAX);
4071 if (!path) {
4072 retval = -ENAMETOOLONG;
a424316c 4073 goto out_unlock;
e61734c5
TH
4074 }
4075 seq_puts(m, path);
a424316c
PM
4076 seq_putc(m, '\n');
4077 }
4078
4079out_unlock:
96d365e0 4080 up_read(&css_set_rwsem);
a424316c
PM
4081 mutex_unlock(&cgroup_mutex);
4082 put_task_struct(tsk);
4083out_free:
4084 kfree(buf);
4085out:
4086 return retval;
4087}
4088
a424316c
PM
4089/* Display information about each subsystem and each hierarchy */
4090static int proc_cgroupstats_show(struct seq_file *m, void *v)
4091{
30159ec7 4092 struct cgroup_subsys *ss;
a424316c 4093 int i;
a424316c 4094
8bab8dde 4095 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
aae8aab4
BB
4096 /*
4097 * ideally we don't want subsystems moving around while we do this.
4098 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
4099 * subsys/hierarchy state.
4100 */
a424316c 4101 mutex_lock(&cgroup_mutex);
30159ec7
TH
4102
4103 for_each_subsys(ss, i)
2c6ab6d2
PM
4104 seq_printf(m, "%s\t%d\t%d\t%d\n",
4105 ss->name, ss->root->hierarchy_id,
3c9c825b 4106 atomic_read(&ss->root->nr_cgrps), !ss->disabled);
30159ec7 4107
a424316c
PM
4108 mutex_unlock(&cgroup_mutex);
4109 return 0;
4110}
4111
4112static int cgroupstats_open(struct inode *inode, struct file *file)
4113{
9dce07f1 4114 return single_open(file, proc_cgroupstats_show, NULL);
a424316c
PM
4115}
4116
828c0950 4117static const struct file_operations proc_cgroupstats_operations = {
a424316c
PM
4118 .open = cgroupstats_open,
4119 .read = seq_read,
4120 .llseek = seq_lseek,
4121 .release = single_release,
4122};
4123
b4f48b63
PM
4124/**
4125 * cgroup_fork - attach newly forked task to its parents cgroup.
a043e3b2 4126 * @child: pointer to task_struct of forking parent process.
b4f48b63
PM
4127 *
4128 * Description: A task inherits its parent's cgroup at fork().
4129 *
4130 * A pointer to the shared css_set was automatically copied in
4131 * fork.c by dup_task_struct(). However, we ignore that copy, since
9bb71308
TH
4132 * it was not made under the protection of RCU or cgroup_mutex, so
4133 * might no longer be a valid cgroup pointer. cgroup_attach_task() might
4134 * have already changed current->cgroups, allowing the previously
4135 * referenced cgroup group to be removed and freed.
b4f48b63
PM
4136 *
4137 * At the point that cgroup_fork() is called, 'current' is the parent
4138 * task, and the passed argument 'child' points to the child task.
4139 */
4140void cgroup_fork(struct task_struct *child)
4141{
9bb71308 4142 task_lock(current);
a8ad805c 4143 get_css_set(task_css_set(current));
817929ec 4144 child->cgroups = current->cgroups;
9bb71308 4145 task_unlock(current);
817929ec 4146 INIT_LIST_HEAD(&child->cg_list);
b4f48b63
PM
4147}
4148
817929ec 4149/**
a043e3b2
LZ
4150 * cgroup_post_fork - called on a new task after adding it to the task list
4151 * @child: the task in question
4152 *
5edee61e
TH
4153 * Adds the task to the list running through its css_set if necessary and
4154 * call the subsystem fork() callbacks. Has to be after the task is
4155 * visible on the task list in case we race with the first call to
0942eeee 4156 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5edee61e 4157 * list.
a043e3b2 4158 */
817929ec
PM
4159void cgroup_post_fork(struct task_struct *child)
4160{
30159ec7 4161 struct cgroup_subsys *ss;
5edee61e
TH
4162 int i;
4163
3ce3230a
FW
4164 /*
4165 * use_task_css_set_links is set to 1 before we walk the tasklist
4166 * under the tasklist_lock and we read it here after we added the child
4167 * to the tasklist under the tasklist_lock as well. If the child wasn't
4168 * yet in the tasklist when we walked through it from
4169 * cgroup_enable_task_cg_lists(), then use_task_css_set_links value
4170 * should be visible now due to the paired locking and barriers implied
4171 * by LOCK/UNLOCK: it is written before the tasklist_lock unlock
4172 * in cgroup_enable_task_cg_lists() and read here after the tasklist_lock
4173 * lock on fork.
4174 */
817929ec 4175 if (use_task_css_set_links) {
96d365e0 4176 down_write(&css_set_rwsem);
d8783832
TH
4177 task_lock(child);
4178 if (list_empty(&child->cg_list))
a8ad805c 4179 list_add(&child->cg_list, &task_css_set(child)->tasks);
d8783832 4180 task_unlock(child);
96d365e0 4181 up_write(&css_set_rwsem);
817929ec 4182 }
5edee61e
TH
4183
4184 /*
4185 * Call ss->fork(). This must happen after @child is linked on
4186 * css_set; otherwise, @child might change state between ->fork()
4187 * and addition to css_set.
4188 */
4189 if (need_forkexit_callback) {
3ed80a62 4190 for_each_subsys(ss, i)
5edee61e
TH
4191 if (ss->fork)
4192 ss->fork(child);
5edee61e 4193 }
817929ec 4194}
5edee61e 4195
b4f48b63
PM
4196/**
4197 * cgroup_exit - detach cgroup from exiting task
4198 * @tsk: pointer to task_struct of exiting process
a043e3b2 4199 * @run_callback: run exit callbacks?
b4f48b63
PM
4200 *
4201 * Description: Detach cgroup from @tsk and release it.
4202 *
4203 * Note that cgroups marked notify_on_release force every task in
4204 * them to take the global cgroup_mutex mutex when exiting.
4205 * This could impact scaling on very large systems. Be reluctant to
4206 * use notify_on_release cgroups where very high task exit scaling
4207 * is required on large systems.
4208 *
4209 * the_top_cgroup_hack:
4210 *
4211 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
4212 *
4213 * We call cgroup_exit() while the task is still competent to
4214 * handle notify_on_release(), then leave the task attached to the
4215 * root cgroup in each hierarchy for the remainder of its exit.
4216 *
4217 * To do this properly, we would increment the reference count on
4218 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
4219 * code we would add a second cgroup function call, to drop that
4220 * reference. This would just create an unnecessary hot spot on
4221 * the top_cgroup reference count, to no avail.
4222 *
4223 * Normally, holding a reference to a cgroup without bumping its
4224 * count is unsafe. The cgroup could go away, or someone could
4225 * attach us to a different cgroup, decrementing the count on
4226 * the first cgroup that we never incremented. But in this case,
4227 * top_cgroup isn't going away, and either task has PF_EXITING set,
956db3ca
CW
4228 * which wards off any cgroup_attach_task() attempts, or task is a failed
4229 * fork, never visible to cgroup_attach_task.
b4f48b63
PM
4230 */
4231void cgroup_exit(struct task_struct *tsk, int run_callbacks)
4232{
30159ec7 4233 struct cgroup_subsys *ss;
5abb8855 4234 struct css_set *cset;
d41d5a01 4235 int i;
817929ec
PM
4236
4237 /*
96d365e0
TH
4238 * Unlink from the css_set task list if necessary. Optimistically
4239 * check cg_list before taking css_set_rwsem.
817929ec
PM
4240 */
4241 if (!list_empty(&tsk->cg_list)) {
96d365e0 4242 down_write(&css_set_rwsem);
817929ec 4243 if (!list_empty(&tsk->cg_list))
8d258797 4244 list_del_init(&tsk->cg_list);
96d365e0 4245 up_write(&css_set_rwsem);
817929ec
PM
4246 }
4247
b4f48b63
PM
4248 /* Reassign the task to the init_css_set. */
4249 task_lock(tsk);
a8ad805c
TH
4250 cset = task_css_set(tsk);
4251 RCU_INIT_POINTER(tsk->cgroups, &init_css_set);
d41d5a01
PZ
4252
4253 if (run_callbacks && need_forkexit_callback) {
3ed80a62
TH
4254 /* see cgroup_post_fork() for details */
4255 for_each_subsys(ss, i) {
d41d5a01 4256 if (ss->exit) {
eb95419b
TH
4257 struct cgroup_subsys_state *old_css = cset->subsys[i];
4258 struct cgroup_subsys_state *css = task_css(tsk, i);
30159ec7 4259
eb95419b 4260 ss->exit(css, old_css, tsk);
d41d5a01
PZ
4261 }
4262 }
4263 }
b4f48b63 4264 task_unlock(tsk);
d41d5a01 4265
89c5509b 4266 put_css_set(cset, true);
b4f48b63 4267}
697f4161 4268
bd89aabc 4269static void check_for_release(struct cgroup *cgrp)
81a6a5cd 4270{
f50daa70 4271 if (cgroup_is_releasable(cgrp) &&
6f3d828f 4272 list_empty(&cgrp->cset_links) && list_empty(&cgrp->children)) {
f50daa70
LZ
4273 /*
4274 * Control Group is currently removeable. If it's not
81a6a5cd 4275 * already queued for a userspace notification, queue
f50daa70
LZ
4276 * it now
4277 */
81a6a5cd 4278 int need_schedule_work = 0;
f50daa70 4279
cdcc136f 4280 raw_spin_lock(&release_list_lock);
54766d4a 4281 if (!cgroup_is_dead(cgrp) &&
bd89aabc
PM
4282 list_empty(&cgrp->release_list)) {
4283 list_add(&cgrp->release_list, &release_list);
81a6a5cd
PM
4284 need_schedule_work = 1;
4285 }
cdcc136f 4286 raw_spin_unlock(&release_list_lock);
81a6a5cd
PM
4287 if (need_schedule_work)
4288 schedule_work(&release_agent_work);
4289 }
4290}
4291
81a6a5cd
PM
4292/*
4293 * Notify userspace when a cgroup is released, by running the
4294 * configured release agent with the name of the cgroup (path
4295 * relative to the root of cgroup file system) as the argument.
4296 *
4297 * Most likely, this user command will try to rmdir this cgroup.
4298 *
4299 * This races with the possibility that some other task will be
4300 * attached to this cgroup before it is removed, or that some other
4301 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
4302 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
4303 * unused, and this cgroup will be reprieved from its death sentence,
4304 * to continue to serve a useful existence. Next time it's released,
4305 * we will get notified again, if it still has 'notify_on_release' set.
4306 *
4307 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
4308 * means only wait until the task is successfully execve()'d. The
4309 * separate release agent task is forked by call_usermodehelper(),
4310 * then control in this thread returns here, without waiting for the
4311 * release agent task. We don't bother to wait because the caller of
4312 * this routine has no use for the exit status of the release agent
4313 * task, so no sense holding our caller up for that.
81a6a5cd 4314 */
81a6a5cd
PM
4315static void cgroup_release_agent(struct work_struct *work)
4316{
4317 BUG_ON(work != &release_agent_work);
4318 mutex_lock(&cgroup_mutex);
cdcc136f 4319 raw_spin_lock(&release_list_lock);
81a6a5cd
PM
4320 while (!list_empty(&release_list)) {
4321 char *argv[3], *envp[3];
4322 int i;
e61734c5 4323 char *pathbuf = NULL, *agentbuf = NULL, *path;
bd89aabc 4324 struct cgroup *cgrp = list_entry(release_list.next,
81a6a5cd
PM
4325 struct cgroup,
4326 release_list);
bd89aabc 4327 list_del_init(&cgrp->release_list);
cdcc136f 4328 raw_spin_unlock(&release_list_lock);
e61734c5 4329 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
e788e066
PM
4330 if (!pathbuf)
4331 goto continue_free;
e61734c5
TH
4332 path = cgroup_path(cgrp, pathbuf, PATH_MAX);
4333 if (!path)
e788e066
PM
4334 goto continue_free;
4335 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
4336 if (!agentbuf)
4337 goto continue_free;
81a6a5cd
PM
4338
4339 i = 0;
e788e066 4340 argv[i++] = agentbuf;
e61734c5 4341 argv[i++] = path;
81a6a5cd
PM
4342 argv[i] = NULL;
4343
4344 i = 0;
4345 /* minimal command environment */
4346 envp[i++] = "HOME=/";
4347 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
4348 envp[i] = NULL;
4349
4350 /* Drop the lock while we invoke the usermode helper,
4351 * since the exec could involve hitting disk and hence
4352 * be a slow process */
4353 mutex_unlock(&cgroup_mutex);
4354 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
81a6a5cd 4355 mutex_lock(&cgroup_mutex);
e788e066
PM
4356 continue_free:
4357 kfree(pathbuf);
4358 kfree(agentbuf);
cdcc136f 4359 raw_spin_lock(&release_list_lock);
81a6a5cd 4360 }
cdcc136f 4361 raw_spin_unlock(&release_list_lock);
81a6a5cd
PM
4362 mutex_unlock(&cgroup_mutex);
4363}
8bab8dde
PM
4364
4365static int __init cgroup_disable(char *str)
4366{
30159ec7 4367 struct cgroup_subsys *ss;
8bab8dde 4368 char *token;
30159ec7 4369 int i;
8bab8dde
PM
4370
4371 while ((token = strsep(&str, ",")) != NULL) {
4372 if (!*token)
4373 continue;
be45c900 4374
3ed80a62 4375 for_each_subsys(ss, i) {
8bab8dde
PM
4376 if (!strcmp(token, ss->name)) {
4377 ss->disabled = 1;
4378 printk(KERN_INFO "Disabling %s control group"
4379 " subsystem\n", ss->name);
4380 break;
4381 }
4382 }
4383 }
4384 return 1;
4385}
4386__setup("cgroup_disable=", cgroup_disable);
38460b48 4387
b77d7b60 4388/**
5a17f543 4389 * css_tryget_from_dir - get corresponding css from the dentry of a cgroup dir
35cf0836
TH
4390 * @dentry: directory dentry of interest
4391 * @ss: subsystem of interest
b77d7b60 4392 *
5a17f543
TH
4393 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
4394 * to get the corresponding css and return it. If such css doesn't exist
4395 * or can't be pinned, an ERR_PTR value is returned.
e5d1367f 4396 */
5a17f543
TH
4397struct cgroup_subsys_state *css_tryget_from_dir(struct dentry *dentry,
4398 struct cgroup_subsys *ss)
e5d1367f 4399{
2bd59d48
TH
4400 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
4401 struct cgroup_subsys_state *css = NULL;
e5d1367f 4402 struct cgroup *cgrp;
b77d7b60 4403
35cf0836 4404 /* is @dentry a cgroup dir? */
2bd59d48
TH
4405 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
4406 kernfs_type(kn) != KERNFS_DIR)
e5d1367f
SE
4407 return ERR_PTR(-EBADF);
4408
5a17f543
TH
4409 rcu_read_lock();
4410
2bd59d48
TH
4411 /*
4412 * This path doesn't originate from kernfs and @kn could already
4413 * have been or be removed at any point. @kn->priv is RCU
4414 * protected for this access. See destroy_locked() for details.
4415 */
4416 cgrp = rcu_dereference(kn->priv);
4417 if (cgrp)
4418 css = cgroup_css(cgrp, ss);
5a17f543
TH
4419
4420 if (!css || !css_tryget(css))
4421 css = ERR_PTR(-ENOENT);
4422
4423 rcu_read_unlock();
4424 return css;
e5d1367f 4425}
e5d1367f 4426
1cb650b9
LZ
4427/**
4428 * css_from_id - lookup css by id
4429 * @id: the cgroup id
4430 * @ss: cgroup subsys to be looked into
4431 *
4432 * Returns the css if there's valid one with @id, otherwise returns NULL.
4433 * Should be called under rcu_read_lock().
4434 */
4435struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
4436{
4437 struct cgroup *cgrp;
4438
ace2bee8 4439 cgroup_assert_mutexes_or_rcu_locked();
1cb650b9
LZ
4440
4441 cgrp = idr_find(&ss->root->cgroup_idr, id);
4442 if (cgrp)
d1625964 4443 return cgroup_css(cgrp, ss);
1cb650b9 4444 return NULL;
e5d1367f
SE
4445}
4446
fe693435 4447#ifdef CONFIG_CGROUP_DEBUG
eb95419b
TH
4448static struct cgroup_subsys_state *
4449debug_css_alloc(struct cgroup_subsys_state *parent_css)
fe693435
PM
4450{
4451 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
4452
4453 if (!css)
4454 return ERR_PTR(-ENOMEM);
4455
4456 return css;
4457}
4458
eb95419b 4459static void debug_css_free(struct cgroup_subsys_state *css)
fe693435 4460{
eb95419b 4461 kfree(css);
fe693435
PM
4462}
4463
182446d0
TH
4464static u64 debug_taskcount_read(struct cgroup_subsys_state *css,
4465 struct cftype *cft)
fe693435 4466{
182446d0 4467 return cgroup_task_count(css->cgroup);
fe693435
PM
4468}
4469
182446d0
TH
4470static u64 current_css_set_read(struct cgroup_subsys_state *css,
4471 struct cftype *cft)
fe693435
PM
4472{
4473 return (u64)(unsigned long)current->cgroups;
4474}
4475
182446d0 4476static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css,
03c78cbe 4477 struct cftype *cft)
fe693435
PM
4478{
4479 u64 count;
4480
4481 rcu_read_lock();
a8ad805c 4482 count = atomic_read(&task_css_set(current)->refcount);
fe693435
PM
4483 rcu_read_unlock();
4484 return count;
4485}
4486
2da8ca82 4487static int current_css_set_cg_links_read(struct seq_file *seq, void *v)
7717f7ba 4488{
69d0206c 4489 struct cgrp_cset_link *link;
5abb8855 4490 struct css_set *cset;
e61734c5
TH
4491 char *name_buf;
4492
4493 name_buf = kmalloc(NAME_MAX + 1, GFP_KERNEL);
4494 if (!name_buf)
4495 return -ENOMEM;
7717f7ba 4496
96d365e0 4497 down_read(&css_set_rwsem);
7717f7ba 4498 rcu_read_lock();
5abb8855 4499 cset = rcu_dereference(current->cgroups);
69d0206c 4500 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 4501 struct cgroup *c = link->cgrp;
59f5296b
TH
4502 const char *name = "?";
4503
e61734c5
TH
4504 if (c != cgroup_dummy_top) {
4505 cgroup_name(c, name_buf, NAME_MAX + 1);
4506 name = name_buf;
4507 }
7717f7ba 4508
2c6ab6d2
PM
4509 seq_printf(seq, "Root %d group %s\n",
4510 c->root->hierarchy_id, name);
7717f7ba
PM
4511 }
4512 rcu_read_unlock();
96d365e0 4513 up_read(&css_set_rwsem);
e61734c5 4514 kfree(name_buf);
7717f7ba
PM
4515 return 0;
4516}
4517
4518#define MAX_TASKS_SHOWN_PER_CSS 25
2da8ca82 4519static int cgroup_css_links_read(struct seq_file *seq, void *v)
7717f7ba 4520{
2da8ca82 4521 struct cgroup_subsys_state *css = seq_css(seq);
69d0206c 4522 struct cgrp_cset_link *link;
7717f7ba 4523
96d365e0 4524 down_read(&css_set_rwsem);
182446d0 4525 list_for_each_entry(link, &css->cgroup->cset_links, cset_link) {
69d0206c 4526 struct css_set *cset = link->cset;
7717f7ba
PM
4527 struct task_struct *task;
4528 int count = 0;
5abb8855
TH
4529 seq_printf(seq, "css_set %p\n", cset);
4530 list_for_each_entry(task, &cset->tasks, cg_list) {
7717f7ba
PM
4531 if (count++ > MAX_TASKS_SHOWN_PER_CSS) {
4532 seq_puts(seq, " ...\n");
4533 break;
4534 } else {
4535 seq_printf(seq, " task %d\n",
4536 task_pid_vnr(task));
4537 }
4538 }
4539 }
96d365e0 4540 up_read(&css_set_rwsem);
7717f7ba
PM
4541 return 0;
4542}
4543
182446d0 4544static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft)
fe693435 4545{
182446d0 4546 return test_bit(CGRP_RELEASABLE, &css->cgroup->flags);
fe693435
PM
4547}
4548
4549static struct cftype debug_files[] = {
fe693435
PM
4550 {
4551 .name = "taskcount",
4552 .read_u64 = debug_taskcount_read,
4553 },
4554
4555 {
4556 .name = "current_css_set",
4557 .read_u64 = current_css_set_read,
4558 },
4559
4560 {
4561 .name = "current_css_set_refcount",
4562 .read_u64 = current_css_set_refcount_read,
4563 },
4564
7717f7ba
PM
4565 {
4566 .name = "current_css_set_cg_links",
2da8ca82 4567 .seq_show = current_css_set_cg_links_read,
7717f7ba
PM
4568 },
4569
4570 {
4571 .name = "cgroup_css_links",
2da8ca82 4572 .seq_show = cgroup_css_links_read,
7717f7ba
PM
4573 },
4574
fe693435
PM
4575 {
4576 .name = "releasable",
4577 .read_u64 = releasable_read,
4578 },
fe693435 4579
4baf6e33
TH
4580 { } /* terminate */
4581};
fe693435 4582
073219e9 4583struct cgroup_subsys debug_cgrp_subsys = {
92fb9748
TH
4584 .css_alloc = debug_css_alloc,
4585 .css_free = debug_css_free,
4baf6e33 4586 .base_cftypes = debug_files,
fe693435
PM
4587};
4588#endif /* CONFIG_CGROUP_DEBUG */