]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - kernel/cgroup.c
cgroup: restructure locking and error handling in cgroup_mount()
[mirror_ubuntu-hirsute-kernel.git] / kernel / cgroup.c
CommitLineData
ddbcc7e8 1/*
ddbcc7e8
PM
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
0dea1168
KS
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
ddbcc7e8
PM
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29#include <linux/cgroup.h>
2ce9738b 30#include <linux/cred.h>
c6d57f33 31#include <linux/ctype.h>
ddbcc7e8 32#include <linux/errno.h>
2ce9738b 33#include <linux/init_task.h>
ddbcc7e8
PM
34#include <linux/kernel.h>
35#include <linux/list.h>
36#include <linux/mm.h>
37#include <linux/mutex.h>
38#include <linux/mount.h>
39#include <linux/pagemap.h>
a424316c 40#include <linux/proc_fs.h>
ddbcc7e8
PM
41#include <linux/rcupdate.h>
42#include <linux/sched.h>
817929ec 43#include <linux/backing-dev.h>
ddbcc7e8
PM
44#include <linux/slab.h>
45#include <linux/magic.h>
46#include <linux/spinlock.h>
47#include <linux/string.h>
bbcb81d0 48#include <linux/sort.h>
81a6a5cd 49#include <linux/kmod.h>
846c7bb0
BS
50#include <linux/delayacct.h>
51#include <linux/cgroupstats.h>
0ac801fe 52#include <linux/hashtable.h>
3f8206d4 53#include <linux/namei.h>
096b7fe0 54#include <linux/pid_namespace.h>
2c6ab6d2 55#include <linux/idr.h>
d1d9fd33 56#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
081aa458 57#include <linux/flex_array.h> /* used in cgroup_attach_task */
c4c27fbd 58#include <linux/kthread.h>
846c7bb0 59
60063497 60#include <linux/atomic.h>
ddbcc7e8 61
b1a21367
TH
62/*
63 * pidlists linger the following amount before being destroyed. The goal
64 * is avoiding frequent destruction in the middle of consecutive read calls
65 * Expiring in the middle is a performance problem not a correctness one.
66 * 1 sec should be enough.
67 */
68#define CGROUP_PIDLIST_DESTROY_DELAY HZ
69
ace2bee8
TH
70/*
71 * cgroup_tree_mutex nests above cgroup_mutex and protects cftypes, file
72 * creation/removal and hierarchy changing operations including cgroup
73 * creation, removal, css association and controller rebinding. This outer
74 * lock is needed mainly to resolve the circular dependency between kernfs
75 * active ref and cgroup_mutex. cgroup_tree_mutex nests above both.
76 */
77static DEFINE_MUTEX(cgroup_tree_mutex);
78
e25e2cbb
TH
79/*
80 * cgroup_mutex is the master lock. Any modification to cgroup or its
81 * hierarchy must be performed while holding it.
e25e2cbb 82 */
2219449a
TH
83#ifdef CONFIG_PROVE_RCU
84DEFINE_MUTEX(cgroup_mutex);
8af01f56 85EXPORT_SYMBOL_GPL(cgroup_mutex); /* only for lockdep */
2219449a 86#else
81a6a5cd 87static DEFINE_MUTEX(cgroup_mutex);
2219449a
TH
88#endif
89
69e943b7
TH
90/*
91 * Protects cgroup_subsys->release_agent_path. Modifying it also requires
92 * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock.
93 */
94static DEFINE_SPINLOCK(release_agent_path_lock);
95
ace2bee8 96#define cgroup_assert_mutexes_or_rcu_locked() \
87fb54f1 97 rcu_lockdep_assert(rcu_read_lock_held() || \
ace2bee8 98 lockdep_is_held(&cgroup_tree_mutex) || \
87fb54f1 99 lockdep_is_held(&cgroup_mutex), \
ace2bee8 100 "cgroup_[tree_]mutex or RCU read lock required");
87fb54f1 101
e5fca243
TH
102/*
103 * cgroup destruction makes heavy use of work items and there can be a lot
104 * of concurrent destructions. Use a separate workqueue so that cgroup
105 * destruction work items don't end up filling up max_active of system_wq
106 * which may lead to deadlock.
107 */
108static struct workqueue_struct *cgroup_destroy_wq;
109
b1a21367
TH
110/*
111 * pidlist destructions need to be flushed on cgroup destruction. Use a
112 * separate workqueue as flush domain.
113 */
114static struct workqueue_struct *cgroup_pidlist_destroy_wq;
115
3ed80a62 116/* generate an array of cgroup subsystem pointers */
073219e9 117#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
3ed80a62 118static struct cgroup_subsys *cgroup_subsys[] = {
ddbcc7e8
PM
119#include <linux/cgroup_subsys.h>
120};
073219e9
TH
121#undef SUBSYS
122
123/* array of cgroup subsystem names */
124#define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
125static const char *cgroup_subsys_name[] = {
126#include <linux/cgroup_subsys.h>
127};
128#undef SUBSYS
ddbcc7e8 129
ddbcc7e8 130/*
9871bf95
TH
131 * The dummy hierarchy, reserved for the subsystems that are otherwise
132 * unattached - it never has more than a single cgroup, and all tasks are
133 * part of that cgroup.
ddbcc7e8 134 */
9871bf95
TH
135static struct cgroupfs_root cgroup_dummy_root;
136
137/* dummy_top is a shorthand for the dummy hierarchy's top cgroup */
138static struct cgroup * const cgroup_dummy_top = &cgroup_dummy_root.top_cgroup;
ddbcc7e8
PM
139
140/* The list of hierarchy roots */
141
9871bf95
TH
142static LIST_HEAD(cgroup_roots);
143static int cgroup_root_count;
ddbcc7e8 144
3417ae1f 145/* hierarchy ID allocation and mapping, protected by cgroup_mutex */
1a574231 146static DEFINE_IDR(cgroup_hierarchy_idr);
2c6ab6d2 147
65dff759
LZ
148static struct cgroup_name root_cgroup_name = { .name = "/" };
149
794611a1
LZ
150/*
151 * Assign a monotonically increasing serial number to cgroups. It
152 * guarantees cgroups with bigger numbers are newer than those with smaller
153 * numbers. Also, as cgroups are always appended to the parent's
154 * ->children list, it guarantees that sibling cgroups are always sorted in
00356bd5
TH
155 * the ascending serial number order on the list. Protected by
156 * cgroup_mutex.
794611a1 157 */
00356bd5 158static u64 cgroup_serial_nr_next = 1;
794611a1 159
ddbcc7e8 160/* This flag indicates whether tasks in the fork and exit paths should
a043e3b2
LZ
161 * check for fork/exit handlers to call. This avoids us having to do
162 * extra work in the fork/exit path if none of the subsystems need to
163 * be called.
ddbcc7e8 164 */
8947f9d5 165static int need_forkexit_callback __read_mostly;
ddbcc7e8 166
628f7cd4
TH
167static struct cftype cgroup_base_files[];
168
f20104de 169static void cgroup_destroy_css_killed(struct cgroup *cgrp);
42809dd4 170static int cgroup_destroy_locked(struct cgroup *cgrp);
2bb566cb
TH
171static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
172 bool is_add);
e605b365 173static int cgroup_file_release(struct inode *inode, struct file *file);
b1a21367 174static void cgroup_pidlist_destroy_all(struct cgroup *cgrp);
42809dd4 175
95109b62
TH
176/**
177 * cgroup_css - obtain a cgroup's css for the specified subsystem
178 * @cgrp: the cgroup of interest
ca8bdcaf 179 * @ss: the subsystem of interest (%NULL returns the dummy_css)
95109b62 180 *
ca8bdcaf
TH
181 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
182 * function must be called either under cgroup_mutex or rcu_read_lock() and
183 * the caller is responsible for pinning the returned css if it wants to
184 * keep accessing it outside the said locks. This function may return
185 * %NULL if @cgrp doesn't have @subsys_id enabled.
95109b62
TH
186 */
187static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
ca8bdcaf 188 struct cgroup_subsys *ss)
95109b62 189{
ca8bdcaf 190 if (ss)
aec25020 191 return rcu_dereference_check(cgrp->subsys[ss->id],
ace2bee8
TH
192 lockdep_is_held(&cgroup_tree_mutex) ||
193 lockdep_is_held(&cgroup_mutex));
ca8bdcaf
TH
194 else
195 return &cgrp->dummy_css;
95109b62 196}
42809dd4 197
ddbcc7e8 198/* convenient tests for these bits */
54766d4a 199static inline bool cgroup_is_dead(const struct cgroup *cgrp)
ddbcc7e8 200{
54766d4a 201 return test_bit(CGRP_DEAD, &cgrp->flags);
ddbcc7e8
PM
202}
203
78574cf9
LZ
204/**
205 * cgroup_is_descendant - test ancestry
206 * @cgrp: the cgroup to be tested
207 * @ancestor: possible ancestor of @cgrp
208 *
209 * Test whether @cgrp is a descendant of @ancestor. It also returns %true
210 * if @cgrp == @ancestor. This function is safe to call as long as @cgrp
211 * and @ancestor are accessible.
212 */
213bool cgroup_is_descendant(struct cgroup *cgrp, struct cgroup *ancestor)
214{
215 while (cgrp) {
216 if (cgrp == ancestor)
217 return true;
218 cgrp = cgrp->parent;
219 }
220 return false;
221}
222EXPORT_SYMBOL_GPL(cgroup_is_descendant);
ddbcc7e8 223
e9685a03 224static int cgroup_is_releasable(const struct cgroup *cgrp)
81a6a5cd
PM
225{
226 const int bits =
bd89aabc
PM
227 (1 << CGRP_RELEASABLE) |
228 (1 << CGRP_NOTIFY_ON_RELEASE);
229 return (cgrp->flags & bits) == bits;
81a6a5cd
PM
230}
231
e9685a03 232static int notify_on_release(const struct cgroup *cgrp)
81a6a5cd 233{
bd89aabc 234 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
81a6a5cd
PM
235}
236
1c6727af
TH
237/**
238 * for_each_css - iterate all css's of a cgroup
239 * @css: the iteration cursor
240 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
241 * @cgrp: the target cgroup to iterate css's of
242 *
243 * Should be called under cgroup_mutex.
244 */
245#define for_each_css(css, ssid, cgrp) \
246 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
247 if (!((css) = rcu_dereference_check( \
248 (cgrp)->subsys[(ssid)], \
ace2bee8 249 lockdep_is_held(&cgroup_tree_mutex) || \
1c6727af
TH
250 lockdep_is_held(&cgroup_mutex)))) { } \
251 else
252
30159ec7 253/**
3ed80a62 254 * for_each_subsys - iterate all enabled cgroup subsystems
30159ec7 255 * @ss: the iteration cursor
780cd8b3 256 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
30159ec7 257 */
780cd8b3 258#define for_each_subsys(ss, ssid) \
3ed80a62
TH
259 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT && \
260 (((ss) = cgroup_subsys[ssid]) || true); (ssid)++)
30159ec7 261
5549c497
TH
262/* iterate across the active hierarchies */
263#define for_each_active_root(root) \
264 list_for_each_entry((root), &cgroup_roots, root_list)
ddbcc7e8 265
f6ea9372
TH
266static inline struct cgroup *__d_cgrp(struct dentry *dentry)
267{
268 return dentry->d_fsdata;
269}
270
05ef1d7c 271static inline struct cfent *__d_cfe(struct dentry *dentry)
f6ea9372
TH
272{
273 return dentry->d_fsdata;
274}
275
05ef1d7c
TH
276static inline struct cftype *__d_cft(struct dentry *dentry)
277{
278 return __d_cfe(dentry)->type;
279}
280
7ae1bad9
TH
281/**
282 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
283 * @cgrp: the cgroup to be checked for liveness
284 *
47cfcd09
TH
285 * On success, returns true; the mutex should be later unlocked. On
286 * failure returns false with no lock held.
7ae1bad9 287 */
b9777cf8 288static bool cgroup_lock_live_group(struct cgroup *cgrp)
7ae1bad9
TH
289{
290 mutex_lock(&cgroup_mutex);
54766d4a 291 if (cgroup_is_dead(cgrp)) {
7ae1bad9
TH
292 mutex_unlock(&cgroup_mutex);
293 return false;
294 }
295 return true;
296}
7ae1bad9 297
81a6a5cd
PM
298/* the list of cgroups eligible for automatic release. Protected by
299 * release_list_lock */
300static LIST_HEAD(release_list);
cdcc136f 301static DEFINE_RAW_SPINLOCK(release_list_lock);
81a6a5cd
PM
302static void cgroup_release_agent(struct work_struct *work);
303static DECLARE_WORK(release_agent_work, cgroup_release_agent);
bd89aabc 304static void check_for_release(struct cgroup *cgrp);
81a6a5cd 305
69d0206c
TH
306/*
307 * A cgroup can be associated with multiple css_sets as different tasks may
308 * belong to different cgroups on different hierarchies. In the other
309 * direction, a css_set is naturally associated with multiple cgroups.
310 * This M:N relationship is represented by the following link structure
311 * which exists for each association and allows traversing the associations
312 * from both sides.
313 */
314struct cgrp_cset_link {
315 /* the cgroup and css_set this link associates */
316 struct cgroup *cgrp;
317 struct css_set *cset;
318
319 /* list of cgrp_cset_links anchored at cgrp->cset_links */
320 struct list_head cset_link;
321
322 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
323 struct list_head cgrp_link;
817929ec
PM
324};
325
326/* The default css_set - used by init and its children prior to any
327 * hierarchies being mounted. It contains a pointer to the root state
328 * for each subsystem. Also used to anchor the list of css_sets. Not
329 * reference-counted, to improve performance when child cgroups
330 * haven't been created.
331 */
332
333static struct css_set init_css_set;
69d0206c 334static struct cgrp_cset_link init_cgrp_cset_link;
817929ec 335
0942eeee
TH
336/*
337 * css_set_lock protects the list of css_set objects, and the chain of
338 * tasks off each css_set. Nests outside task->alloc_lock due to
72ec7029 339 * css_task_iter_start().
0942eeee 340 */
817929ec
PM
341static DEFINE_RWLOCK(css_set_lock);
342static int css_set_count;
343
7717f7ba
PM
344/*
345 * hash table for cgroup groups. This improves the performance to find
346 * an existing css_set. This hash doesn't (currently) take into
347 * account cgroups in empty hierarchies.
348 */
472b1053 349#define CSS_SET_HASH_BITS 7
0ac801fe 350static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
472b1053 351
0ac801fe 352static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
472b1053 353{
0ac801fe 354 unsigned long key = 0UL;
30159ec7
TH
355 struct cgroup_subsys *ss;
356 int i;
472b1053 357
30159ec7 358 for_each_subsys(ss, i)
0ac801fe
LZ
359 key += (unsigned long)css[i];
360 key = (key >> 16) ^ key;
472b1053 361
0ac801fe 362 return key;
472b1053
LZ
363}
364
0942eeee
TH
365/*
366 * We don't maintain the lists running through each css_set to its task
72ec7029
TH
367 * until after the first call to css_task_iter_start(). This reduces the
368 * fork()/exit() overhead for people who have cgroups compiled into their
369 * kernel but not actually in use.
0942eeee 370 */
8947f9d5 371static int use_task_css_set_links __read_mostly;
817929ec 372
5abb8855 373static void __put_css_set(struct css_set *cset, int taskexit)
b4f48b63 374{
69d0206c 375 struct cgrp_cset_link *link, *tmp_link;
5abb8855 376
146aa1bd
LJ
377 /*
378 * Ensure that the refcount doesn't hit zero while any readers
379 * can see it. Similar to atomic_dec_and_lock(), but for an
380 * rwlock
381 */
5abb8855 382 if (atomic_add_unless(&cset->refcount, -1, 1))
146aa1bd
LJ
383 return;
384 write_lock(&css_set_lock);
5abb8855 385 if (!atomic_dec_and_test(&cset->refcount)) {
146aa1bd
LJ
386 write_unlock(&css_set_lock);
387 return;
388 }
81a6a5cd 389
2c6ab6d2 390 /* This css_set is dead. unlink it and release cgroup refcounts */
5abb8855 391 hash_del(&cset->hlist);
2c6ab6d2
PM
392 css_set_count--;
393
69d0206c 394 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
2c6ab6d2 395 struct cgroup *cgrp = link->cgrp;
5abb8855 396
69d0206c
TH
397 list_del(&link->cset_link);
398 list_del(&link->cgrp_link);
71b5707e 399
ddd69148 400 /* @cgrp can't go away while we're holding css_set_lock */
6f3d828f 401 if (list_empty(&cgrp->cset_links) && notify_on_release(cgrp)) {
81a6a5cd 402 if (taskexit)
bd89aabc
PM
403 set_bit(CGRP_RELEASABLE, &cgrp->flags);
404 check_for_release(cgrp);
81a6a5cd 405 }
2c6ab6d2
PM
406
407 kfree(link);
81a6a5cd 408 }
2c6ab6d2
PM
409
410 write_unlock(&css_set_lock);
5abb8855 411 kfree_rcu(cset, rcu_head);
b4f48b63
PM
412}
413
817929ec
PM
414/*
415 * refcounted get/put for css_set objects
416 */
5abb8855 417static inline void get_css_set(struct css_set *cset)
817929ec 418{
5abb8855 419 atomic_inc(&cset->refcount);
817929ec
PM
420}
421
5abb8855 422static inline void put_css_set(struct css_set *cset)
817929ec 423{
5abb8855 424 __put_css_set(cset, 0);
817929ec
PM
425}
426
5abb8855 427static inline void put_css_set_taskexit(struct css_set *cset)
81a6a5cd 428{
5abb8855 429 __put_css_set(cset, 1);
81a6a5cd
PM
430}
431
b326f9d0 432/**
7717f7ba 433 * compare_css_sets - helper function for find_existing_css_set().
5abb8855
TH
434 * @cset: candidate css_set being tested
435 * @old_cset: existing css_set for a task
7717f7ba
PM
436 * @new_cgrp: cgroup that's being entered by the task
437 * @template: desired set of css pointers in css_set (pre-calculated)
438 *
6f4b7e63 439 * Returns true if "cset" matches "old_cset" except for the hierarchy
7717f7ba
PM
440 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
441 */
5abb8855
TH
442static bool compare_css_sets(struct css_set *cset,
443 struct css_set *old_cset,
7717f7ba
PM
444 struct cgroup *new_cgrp,
445 struct cgroup_subsys_state *template[])
446{
447 struct list_head *l1, *l2;
448
5abb8855 449 if (memcmp(template, cset->subsys, sizeof(cset->subsys))) {
7717f7ba
PM
450 /* Not all subsystems matched */
451 return false;
452 }
453
454 /*
455 * Compare cgroup pointers in order to distinguish between
456 * different cgroups in heirarchies with no subsystems. We
457 * could get by with just this check alone (and skip the
458 * memcmp above) but on most setups the memcmp check will
459 * avoid the need for this more expensive check on almost all
460 * candidates.
461 */
462
69d0206c
TH
463 l1 = &cset->cgrp_links;
464 l2 = &old_cset->cgrp_links;
7717f7ba 465 while (1) {
69d0206c 466 struct cgrp_cset_link *link1, *link2;
5abb8855 467 struct cgroup *cgrp1, *cgrp2;
7717f7ba
PM
468
469 l1 = l1->next;
470 l2 = l2->next;
471 /* See if we reached the end - both lists are equal length. */
69d0206c
TH
472 if (l1 == &cset->cgrp_links) {
473 BUG_ON(l2 != &old_cset->cgrp_links);
7717f7ba
PM
474 break;
475 } else {
69d0206c 476 BUG_ON(l2 == &old_cset->cgrp_links);
7717f7ba
PM
477 }
478 /* Locate the cgroups associated with these links. */
69d0206c
TH
479 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
480 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
481 cgrp1 = link1->cgrp;
482 cgrp2 = link2->cgrp;
7717f7ba 483 /* Hierarchies should be linked in the same order. */
5abb8855 484 BUG_ON(cgrp1->root != cgrp2->root);
7717f7ba
PM
485
486 /*
487 * If this hierarchy is the hierarchy of the cgroup
488 * that's changing, then we need to check that this
489 * css_set points to the new cgroup; if it's any other
490 * hierarchy, then this css_set should point to the
491 * same cgroup as the old css_set.
492 */
5abb8855
TH
493 if (cgrp1->root == new_cgrp->root) {
494 if (cgrp1 != new_cgrp)
7717f7ba
PM
495 return false;
496 } else {
5abb8855 497 if (cgrp1 != cgrp2)
7717f7ba
PM
498 return false;
499 }
500 }
501 return true;
502}
503
b326f9d0
TH
504/**
505 * find_existing_css_set - init css array and find the matching css_set
506 * @old_cset: the css_set that we're using before the cgroup transition
507 * @cgrp: the cgroup that we're moving into
508 * @template: out param for the new set of csses, should be clear on entry
817929ec 509 */
5abb8855
TH
510static struct css_set *find_existing_css_set(struct css_set *old_cset,
511 struct cgroup *cgrp,
512 struct cgroup_subsys_state *template[])
b4f48b63 513{
bd89aabc 514 struct cgroupfs_root *root = cgrp->root;
30159ec7 515 struct cgroup_subsys *ss;
5abb8855 516 struct css_set *cset;
0ac801fe 517 unsigned long key;
b326f9d0 518 int i;
817929ec 519
aae8aab4
BB
520 /*
521 * Build the set of subsystem state objects that we want to see in the
522 * new css_set. while subsystems can change globally, the entries here
523 * won't change, so no need for locking.
524 */
30159ec7 525 for_each_subsys(ss, i) {
a1a71b45 526 if (root->subsys_mask & (1UL << i)) {
817929ec
PM
527 /* Subsystem is in this hierarchy. So we want
528 * the subsystem state from the new
529 * cgroup */
ca8bdcaf 530 template[i] = cgroup_css(cgrp, ss);
817929ec
PM
531 } else {
532 /* Subsystem is not in this hierarchy, so we
533 * don't want to change the subsystem state */
5abb8855 534 template[i] = old_cset->subsys[i];
817929ec
PM
535 }
536 }
537
0ac801fe 538 key = css_set_hash(template);
5abb8855
TH
539 hash_for_each_possible(css_set_table, cset, hlist, key) {
540 if (!compare_css_sets(cset, old_cset, cgrp, template))
7717f7ba
PM
541 continue;
542
543 /* This css_set matches what we need */
5abb8855 544 return cset;
472b1053 545 }
817929ec
PM
546
547 /* No existing cgroup group matched */
548 return NULL;
549}
550
69d0206c 551static void free_cgrp_cset_links(struct list_head *links_to_free)
36553434 552{
69d0206c 553 struct cgrp_cset_link *link, *tmp_link;
36553434 554
69d0206c
TH
555 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
556 list_del(&link->cset_link);
36553434
LZ
557 kfree(link);
558 }
559}
560
69d0206c
TH
561/**
562 * allocate_cgrp_cset_links - allocate cgrp_cset_links
563 * @count: the number of links to allocate
564 * @tmp_links: list_head the allocated links are put on
565 *
566 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
567 * through ->cset_link. Returns 0 on success or -errno.
817929ec 568 */
69d0206c 569static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
817929ec 570{
69d0206c 571 struct cgrp_cset_link *link;
817929ec 572 int i;
69d0206c
TH
573
574 INIT_LIST_HEAD(tmp_links);
575
817929ec 576 for (i = 0; i < count; i++) {
f4f4be2b 577 link = kzalloc(sizeof(*link), GFP_KERNEL);
817929ec 578 if (!link) {
69d0206c 579 free_cgrp_cset_links(tmp_links);
817929ec
PM
580 return -ENOMEM;
581 }
69d0206c 582 list_add(&link->cset_link, tmp_links);
817929ec
PM
583 }
584 return 0;
585}
586
c12f65d4
LZ
587/**
588 * link_css_set - a helper function to link a css_set to a cgroup
69d0206c 589 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
5abb8855 590 * @cset: the css_set to be linked
c12f65d4
LZ
591 * @cgrp: the destination cgroup
592 */
69d0206c
TH
593static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
594 struct cgroup *cgrp)
c12f65d4 595{
69d0206c 596 struct cgrp_cset_link *link;
c12f65d4 597
69d0206c
TH
598 BUG_ON(list_empty(tmp_links));
599 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
600 link->cset = cset;
7717f7ba 601 link->cgrp = cgrp;
69d0206c 602 list_move(&link->cset_link, &cgrp->cset_links);
7717f7ba
PM
603 /*
604 * Always add links to the tail of the list so that the list
605 * is sorted by order of hierarchy creation
606 */
69d0206c 607 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
c12f65d4
LZ
608}
609
b326f9d0
TH
610/**
611 * find_css_set - return a new css_set with one cgroup updated
612 * @old_cset: the baseline css_set
613 * @cgrp: the cgroup to be updated
614 *
615 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
616 * substituted into the appropriate hierarchy.
817929ec 617 */
5abb8855
TH
618static struct css_set *find_css_set(struct css_set *old_cset,
619 struct cgroup *cgrp)
817929ec 620{
b326f9d0 621 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
5abb8855 622 struct css_set *cset;
69d0206c
TH
623 struct list_head tmp_links;
624 struct cgrp_cset_link *link;
0ac801fe 625 unsigned long key;
472b1053 626
b326f9d0
TH
627 lockdep_assert_held(&cgroup_mutex);
628
817929ec
PM
629 /* First see if we already have a cgroup group that matches
630 * the desired set */
7e9abd89 631 read_lock(&css_set_lock);
5abb8855
TH
632 cset = find_existing_css_set(old_cset, cgrp, template);
633 if (cset)
634 get_css_set(cset);
7e9abd89 635 read_unlock(&css_set_lock);
817929ec 636
5abb8855
TH
637 if (cset)
638 return cset;
817929ec 639
f4f4be2b 640 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
5abb8855 641 if (!cset)
817929ec
PM
642 return NULL;
643
69d0206c 644 /* Allocate all the cgrp_cset_link objects that we'll need */
9871bf95 645 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
5abb8855 646 kfree(cset);
817929ec
PM
647 return NULL;
648 }
649
5abb8855 650 atomic_set(&cset->refcount, 1);
69d0206c 651 INIT_LIST_HEAD(&cset->cgrp_links);
5abb8855
TH
652 INIT_LIST_HEAD(&cset->tasks);
653 INIT_HLIST_NODE(&cset->hlist);
817929ec
PM
654
655 /* Copy the set of subsystem state objects generated in
656 * find_existing_css_set() */
5abb8855 657 memcpy(cset->subsys, template, sizeof(cset->subsys));
817929ec
PM
658
659 write_lock(&css_set_lock);
660 /* Add reference counts and links from the new css_set. */
69d0206c 661 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
7717f7ba 662 struct cgroup *c = link->cgrp;
69d0206c 663
7717f7ba
PM
664 if (c->root == cgrp->root)
665 c = cgrp;
69d0206c 666 link_css_set(&tmp_links, cset, c);
7717f7ba 667 }
817929ec 668
69d0206c 669 BUG_ON(!list_empty(&tmp_links));
817929ec 670
817929ec 671 css_set_count++;
472b1053
LZ
672
673 /* Add this cgroup group to the hash table */
5abb8855
TH
674 key = css_set_hash(cset->subsys);
675 hash_add(css_set_table, &cset->hlist, key);
472b1053 676
817929ec
PM
677 write_unlock(&css_set_lock);
678
5abb8855 679 return cset;
b4f48b63
PM
680}
681
7717f7ba
PM
682/*
683 * Return the cgroup for "task" from the given hierarchy. Must be
684 * called with cgroup_mutex held.
685 */
686static struct cgroup *task_cgroup_from_root(struct task_struct *task,
687 struct cgroupfs_root *root)
688{
5abb8855 689 struct css_set *cset;
7717f7ba
PM
690 struct cgroup *res = NULL;
691
692 BUG_ON(!mutex_is_locked(&cgroup_mutex));
693 read_lock(&css_set_lock);
694 /*
695 * No need to lock the task - since we hold cgroup_mutex the
696 * task can't change groups, so the only thing that can happen
697 * is that it exits and its css is set back to init_css_set.
698 */
a8ad805c 699 cset = task_css_set(task);
5abb8855 700 if (cset == &init_css_set) {
7717f7ba
PM
701 res = &root->top_cgroup;
702 } else {
69d0206c
TH
703 struct cgrp_cset_link *link;
704
705 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 706 struct cgroup *c = link->cgrp;
69d0206c 707
7717f7ba
PM
708 if (c->root == root) {
709 res = c;
710 break;
711 }
712 }
713 }
714 read_unlock(&css_set_lock);
715 BUG_ON(!res);
716 return res;
717}
718
ddbcc7e8
PM
719/*
720 * There is one global cgroup mutex. We also require taking
721 * task_lock() when dereferencing a task's cgroup subsys pointers.
722 * See "The task_lock() exception", at the end of this comment.
723 *
724 * A task must hold cgroup_mutex to modify cgroups.
725 *
726 * Any task can increment and decrement the count field without lock.
727 * So in general, code holding cgroup_mutex can't rely on the count
728 * field not changing. However, if the count goes to zero, then only
956db3ca 729 * cgroup_attach_task() can increment it again. Because a count of zero
ddbcc7e8
PM
730 * means that no tasks are currently attached, therefore there is no
731 * way a task attached to that cgroup can fork (the other way to
732 * increment the count). So code holding cgroup_mutex can safely
733 * assume that if the count is zero, it will stay zero. Similarly, if
734 * a task holds cgroup_mutex on a cgroup with zero count, it
735 * knows that the cgroup won't be removed, as cgroup_rmdir()
736 * needs that mutex.
737 *
ddbcc7e8
PM
738 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
739 * (usually) take cgroup_mutex. These are the two most performance
740 * critical pieces of code here. The exception occurs on cgroup_exit(),
741 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
742 * is taken, and if the cgroup count is zero, a usermode call made
a043e3b2
LZ
743 * to the release agent with the name of the cgroup (path relative to
744 * the root of cgroup file system) as the argument.
ddbcc7e8
PM
745 *
746 * A cgroup can only be deleted if both its 'count' of using tasks
747 * is zero, and its list of 'children' cgroups is empty. Since all
748 * tasks in the system use _some_ cgroup, and since there is always at
749 * least one task in the system (init, pid == 1), therefore, top_cgroup
750 * always has either children cgroups and/or using tasks. So we don't
751 * need a special hack to ensure that top_cgroup cannot be deleted.
752 *
753 * The task_lock() exception
754 *
755 * The need for this exception arises from the action of
d0b2fdd2 756 * cgroup_attach_task(), which overwrites one task's cgroup pointer with
a043e3b2 757 * another. It does so using cgroup_mutex, however there are
ddbcc7e8
PM
758 * several performance critical places that need to reference
759 * task->cgroup without the expense of grabbing a system global
760 * mutex. Therefore except as noted below, when dereferencing or, as
d0b2fdd2 761 * in cgroup_attach_task(), modifying a task's cgroup pointer we use
ddbcc7e8
PM
762 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
763 * the task_struct routinely used for such matters.
764 *
765 * P.S. One more locking exception. RCU is used to guard the
956db3ca 766 * update of a tasks cgroup pointer by cgroup_attach_task()
ddbcc7e8
PM
767 */
768
ddbcc7e8
PM
769/*
770 * A couple of forward declarations required, due to cyclic reference loop:
771 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
772 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
773 * -> cgroup_mkdir.
774 */
775
18bb1db3 776static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode);
ddbcc7e8 777static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
628f7cd4 778static int cgroup_populate_dir(struct cgroup *cgrp, unsigned long subsys_mask);
6e1d5dcc 779static const struct inode_operations cgroup_dir_inode_operations;
828c0950 780static const struct file_operations proc_cgroupstats_operations;
a424316c
PM
781
782static struct backing_dev_info cgroup_backing_dev_info = {
d993831f 783 .name = "cgroup",
e4ad08fe 784 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK,
a424316c 785};
ddbcc7e8 786
a5e7ed32 787static struct inode *cgroup_new_inode(umode_t mode, struct super_block *sb)
ddbcc7e8
PM
788{
789 struct inode *inode = new_inode(sb);
ddbcc7e8
PM
790
791 if (inode) {
85fe4025 792 inode->i_ino = get_next_ino();
ddbcc7e8 793 inode->i_mode = mode;
76aac0e9
DH
794 inode->i_uid = current_fsuid();
795 inode->i_gid = current_fsgid();
ddbcc7e8
PM
796 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
797 inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
798 }
799 return inode;
800}
801
65dff759
LZ
802static struct cgroup_name *cgroup_alloc_name(struct dentry *dentry)
803{
804 struct cgroup_name *name;
805
806 name = kmalloc(sizeof(*name) + dentry->d_name.len + 1, GFP_KERNEL);
807 if (!name)
808 return NULL;
809 strcpy(name->name, dentry->d_name.name);
810 return name;
811}
812
be445626
LZ
813static void cgroup_free_fn(struct work_struct *work)
814{
ea15f8cc 815 struct cgroup *cgrp = container_of(work, struct cgroup, destroy_work);
be445626
LZ
816
817 mutex_lock(&cgroup_mutex);
be445626
LZ
818 cgrp->root->number_of_cgroups--;
819 mutex_unlock(&cgroup_mutex);
820
415cf07a
LZ
821 /*
822 * We get a ref to the parent's dentry, and put the ref when
823 * this cgroup is being freed, so it's guaranteed that the
824 * parent won't be destroyed before its children.
825 */
826 dput(cgrp->parent->dentry);
827
be445626
LZ
828 /*
829 * Drop the active superblock reference that we took when we
cc20e01c
LZ
830 * created the cgroup. This will free cgrp->root, if we are
831 * holding the last reference to @sb.
be445626
LZ
832 */
833 deactivate_super(cgrp->root->sb);
834
b1a21367 835 cgroup_pidlist_destroy_all(cgrp);
be445626
LZ
836
837 simple_xattrs_free(&cgrp->xattrs);
838
65dff759 839 kfree(rcu_dereference_raw(cgrp->name));
be445626
LZ
840 kfree(cgrp);
841}
842
843static void cgroup_free_rcu(struct rcu_head *head)
844{
845 struct cgroup *cgrp = container_of(head, struct cgroup, rcu_head);
846
ea15f8cc 847 INIT_WORK(&cgrp->destroy_work, cgroup_free_fn);
e5fca243 848 queue_work(cgroup_destroy_wq, &cgrp->destroy_work);
be445626
LZ
849}
850
ddbcc7e8
PM
851static void cgroup_diput(struct dentry *dentry, struct inode *inode)
852{
853 /* is dentry a directory ? if so, kfree() associated cgroup */
854 if (S_ISDIR(inode->i_mode)) {
bd89aabc 855 struct cgroup *cgrp = dentry->d_fsdata;
be445626 856
54766d4a 857 BUG_ON(!(cgroup_is_dead(cgrp)));
c1a71504
LZ
858
859 /*
860 * XXX: cgrp->id is only used to look up css's. As cgroup
861 * and css's lifetimes will be decoupled, it should be made
862 * per-subsystem and moved to css->id so that lookups are
863 * successful until the target css is released.
864 */
0ab02ca8 865 mutex_lock(&cgroup_mutex);
c1a71504 866 idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
0ab02ca8 867 mutex_unlock(&cgroup_mutex);
c1a71504
LZ
868 cgrp->id = -1;
869
be445626 870 call_rcu(&cgrp->rcu_head, cgroup_free_rcu);
05ef1d7c
TH
871 } else {
872 struct cfent *cfe = __d_cfe(dentry);
873 struct cgroup *cgrp = dentry->d_parent->d_fsdata;
874
875 WARN_ONCE(!list_empty(&cfe->node) &&
876 cgrp != &cgrp->root->top_cgroup,
877 "cfe still linked for %s\n", cfe->type->name);
712317ad 878 simple_xattrs_free(&cfe->xattrs);
05ef1d7c 879 kfree(cfe);
ddbcc7e8
PM
880 }
881 iput(inode);
882}
883
884static void remove_dir(struct dentry *d)
885{
886 struct dentry *parent = dget(d->d_parent);
887
888 d_delete(d);
889 simple_rmdir(parent->d_inode, d);
890 dput(parent);
891}
892
2739d3cc 893static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
05ef1d7c
TH
894{
895 struct cfent *cfe;
896
897 lockdep_assert_held(&cgrp->dentry->d_inode->i_mutex);
ace2bee8 898 lockdep_assert_held(&cgroup_tree_mutex);
05ef1d7c 899
2739d3cc
LZ
900 /*
901 * If we're doing cleanup due to failure of cgroup_create(),
902 * the corresponding @cfe may not exist.
903 */
05ef1d7c
TH
904 list_for_each_entry(cfe, &cgrp->files, node) {
905 struct dentry *d = cfe->dentry;
906
907 if (cft && cfe->type != cft)
908 continue;
909
910 dget(d);
911 d_delete(d);
ce27e317 912 simple_unlink(cgrp->dentry->d_inode, d);
05ef1d7c
TH
913 list_del_init(&cfe->node);
914 dput(d);
915
2739d3cc 916 break;
ddbcc7e8 917 }
05ef1d7c
TH
918}
919
13af07df 920/**
628f7cd4 921 * cgroup_clear_dir - remove subsys files in a cgroup directory
8f89140a 922 * @cgrp: target cgroup
13af07df
AR
923 * @subsys_mask: mask of the subsystem ids whose files should be removed
924 */
628f7cd4 925static void cgroup_clear_dir(struct cgroup *cgrp, unsigned long subsys_mask)
05ef1d7c 926{
13af07df 927 struct cgroup_subsys *ss;
b420ba7d 928 int i;
05ef1d7c 929
b420ba7d 930 for_each_subsys(ss, i) {
13af07df 931 struct cftype_set *set;
b420ba7d
TH
932
933 if (!test_bit(i, &subsys_mask))
13af07df
AR
934 continue;
935 list_for_each_entry(set, &ss->cftsets, node)
2bb566cb 936 cgroup_addrm_files(cgrp, set->cfts, false);
13af07df 937 }
ddbcc7e8
PM
938}
939
940/*
941 * NOTE : the dentry must have been dget()'ed
942 */
943static void cgroup_d_remove_dir(struct dentry *dentry)
944{
2fd6b7f5 945 struct dentry *parent;
ddbcc7e8 946
2fd6b7f5
NP
947 parent = dentry->d_parent;
948 spin_lock(&parent->d_lock);
3ec762ad 949 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
ddbcc7e8 950 list_del_init(&dentry->d_u.d_child);
2fd6b7f5
NP
951 spin_unlock(&dentry->d_lock);
952 spin_unlock(&parent->d_lock);
ddbcc7e8
PM
953 remove_dir(dentry);
954}
955
956static int rebind_subsystems(struct cgroupfs_root *root,
a8a648c4 957 unsigned long added_mask, unsigned removed_mask)
ddbcc7e8 958{
bd89aabc 959 struct cgroup *cgrp = &root->top_cgroup;
30159ec7 960 struct cgroup_subsys *ss;
3126121f 961 int i, ret;
ddbcc7e8 962
ace2bee8
TH
963 lockdep_assert_held(&cgroup_tree_mutex);
964 lockdep_assert_held(&cgroup_mutex);
aae8aab4 965
ddbcc7e8 966 /* Check that any added subsystems are currently free */
3ed80a62
TH
967 for_each_subsys(ss, i)
968 if ((added_mask & (1 << i)) && ss->root != &cgroup_dummy_root)
969 return -EBUSY;
ddbcc7e8 970
3126121f
TH
971 ret = cgroup_populate_dir(cgrp, added_mask);
972 if (ret)
3ed80a62 973 return ret;
3126121f
TH
974
975 /*
976 * Nothing can fail from this point on. Remove files for the
977 * removed subsystems and rebind each subsystem.
978 */
4ac06017 979 mutex_unlock(&cgroup_mutex);
3126121f 980 cgroup_clear_dir(cgrp, removed_mask);
4ac06017 981 mutex_lock(&cgroup_mutex);
ddbcc7e8 982
30159ec7 983 for_each_subsys(ss, i) {
ddbcc7e8 984 unsigned long bit = 1UL << i;
30159ec7 985
a1a71b45 986 if (bit & added_mask) {
ddbcc7e8 987 /* We're binding this subsystem to this hierarchy */
ca8bdcaf
TH
988 BUG_ON(cgroup_css(cgrp, ss));
989 BUG_ON(!cgroup_css(cgroup_dummy_top, ss));
990 BUG_ON(cgroup_css(cgroup_dummy_top, ss)->cgroup != cgroup_dummy_top);
a8a648c4 991
73e80ed8 992 rcu_assign_pointer(cgrp->subsys[i],
ca8bdcaf
TH
993 cgroup_css(cgroup_dummy_top, ss));
994 cgroup_css(cgrp, ss)->cgroup = cgrp;
a8a648c4 995
b2aa30f7 996 ss->root = root;
ddbcc7e8 997 if (ss->bind)
ca8bdcaf 998 ss->bind(cgroup_css(cgrp, ss));
a8a648c4 999
cf5d5941 1000 /* refcount was already taken, and we're keeping it */
a8a648c4 1001 root->subsys_mask |= bit;
a1a71b45 1002 } else if (bit & removed_mask) {
ddbcc7e8 1003 /* We're removing this subsystem */
ca8bdcaf
TH
1004 BUG_ON(cgroup_css(cgrp, ss) != cgroup_css(cgroup_dummy_top, ss));
1005 BUG_ON(cgroup_css(cgrp, ss)->cgroup != cgrp);
a8a648c4 1006
ddbcc7e8 1007 if (ss->bind)
ca8bdcaf 1008 ss->bind(cgroup_css(cgroup_dummy_top, ss));
73e80ed8 1009
ca8bdcaf 1010 cgroup_css(cgroup_dummy_top, ss)->cgroup = cgroup_dummy_top;
73e80ed8
TH
1011 RCU_INIT_POINTER(cgrp->subsys[i], NULL);
1012
9871bf95 1013 cgroup_subsys[i]->root = &cgroup_dummy_root;
a8a648c4 1014 root->subsys_mask &= ~bit;
ddbcc7e8
PM
1015 }
1016 }
ddbcc7e8 1017
1672d040
TH
1018 /*
1019 * Mark @root has finished binding subsystems. @root->subsys_mask
1020 * now matches the bound subsystems.
1021 */
1022 root->flags |= CGRP_ROOT_SUBSYS_BOUND;
1023
ddbcc7e8
PM
1024 return 0;
1025}
1026
34c80b1d 1027static int cgroup_show_options(struct seq_file *seq, struct dentry *dentry)
ddbcc7e8 1028{
34c80b1d 1029 struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
ddbcc7e8 1030 struct cgroup_subsys *ss;
b85d2040 1031 int ssid;
ddbcc7e8 1032
b85d2040
TH
1033 for_each_subsys(ss, ssid)
1034 if (root->subsys_mask & (1 << ssid))
1035 seq_printf(seq, ",%s", ss->name);
873fe09e
TH
1036 if (root->flags & CGRP_ROOT_SANE_BEHAVIOR)
1037 seq_puts(seq, ",sane_behavior");
93438629 1038 if (root->flags & CGRP_ROOT_NOPREFIX)
ddbcc7e8 1039 seq_puts(seq, ",noprefix");
93438629 1040 if (root->flags & CGRP_ROOT_XATTR)
03b1cde6 1041 seq_puts(seq, ",xattr");
69e943b7
TH
1042
1043 spin_lock(&release_agent_path_lock);
81a6a5cd
PM
1044 if (strlen(root->release_agent_path))
1045 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
69e943b7
TH
1046 spin_unlock(&release_agent_path_lock);
1047
2260e7fc 1048 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->top_cgroup.flags))
97978e6d 1049 seq_puts(seq, ",clone_children");
c6d57f33
PM
1050 if (strlen(root->name))
1051 seq_printf(seq, ",name=%s", root->name);
ddbcc7e8
PM
1052 return 0;
1053}
1054
1055struct cgroup_sb_opts {
a1a71b45 1056 unsigned long subsys_mask;
ddbcc7e8 1057 unsigned long flags;
81a6a5cd 1058 char *release_agent;
2260e7fc 1059 bool cpuset_clone_children;
c6d57f33 1060 char *name;
2c6ab6d2
PM
1061 /* User explicitly requested empty subsystem */
1062 bool none;
c6d57f33
PM
1063
1064 struct cgroupfs_root *new_root;
2c6ab6d2 1065
ddbcc7e8
PM
1066};
1067
aae8aab4 1068/*
9871bf95
TH
1069 * Convert a hierarchy specifier into a bitmask of subsystems and
1070 * flags. Call with cgroup_mutex held to protect the cgroup_subsys[]
1071 * array. This function takes refcounts on subsystems to be used, unless it
1072 * returns error, in which case no refcounts are taken.
aae8aab4 1073 */
cf5d5941 1074static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
ddbcc7e8 1075{
32a8cf23
DL
1076 char *token, *o = data;
1077 bool all_ss = false, one_ss = false;
f9ab5b5b 1078 unsigned long mask = (unsigned long)-1;
30159ec7
TH
1079 struct cgroup_subsys *ss;
1080 int i;
f9ab5b5b 1081
aae8aab4
BB
1082 BUG_ON(!mutex_is_locked(&cgroup_mutex));
1083
f9ab5b5b 1084#ifdef CONFIG_CPUSETS
073219e9 1085 mask = ~(1UL << cpuset_cgrp_id);
f9ab5b5b 1086#endif
ddbcc7e8 1087
c6d57f33 1088 memset(opts, 0, sizeof(*opts));
ddbcc7e8
PM
1089
1090 while ((token = strsep(&o, ",")) != NULL) {
1091 if (!*token)
1092 return -EINVAL;
32a8cf23 1093 if (!strcmp(token, "none")) {
2c6ab6d2
PM
1094 /* Explicitly have no subsystems */
1095 opts->none = true;
32a8cf23
DL
1096 continue;
1097 }
1098 if (!strcmp(token, "all")) {
1099 /* Mutually exclusive option 'all' + subsystem name */
1100 if (one_ss)
1101 return -EINVAL;
1102 all_ss = true;
1103 continue;
1104 }
873fe09e
TH
1105 if (!strcmp(token, "__DEVEL__sane_behavior")) {
1106 opts->flags |= CGRP_ROOT_SANE_BEHAVIOR;
1107 continue;
1108 }
32a8cf23 1109 if (!strcmp(token, "noprefix")) {
93438629 1110 opts->flags |= CGRP_ROOT_NOPREFIX;
32a8cf23
DL
1111 continue;
1112 }
1113 if (!strcmp(token, "clone_children")) {
2260e7fc 1114 opts->cpuset_clone_children = true;
32a8cf23
DL
1115 continue;
1116 }
03b1cde6 1117 if (!strcmp(token, "xattr")) {
93438629 1118 opts->flags |= CGRP_ROOT_XATTR;
03b1cde6
AR
1119 continue;
1120 }
32a8cf23 1121 if (!strncmp(token, "release_agent=", 14)) {
81a6a5cd
PM
1122 /* Specifying two release agents is forbidden */
1123 if (opts->release_agent)
1124 return -EINVAL;
c6d57f33 1125 opts->release_agent =
e400c285 1126 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
81a6a5cd
PM
1127 if (!opts->release_agent)
1128 return -ENOMEM;
32a8cf23
DL
1129 continue;
1130 }
1131 if (!strncmp(token, "name=", 5)) {
c6d57f33
PM
1132 const char *name = token + 5;
1133 /* Can't specify an empty name */
1134 if (!strlen(name))
1135 return -EINVAL;
1136 /* Must match [\w.-]+ */
1137 for (i = 0; i < strlen(name); i++) {
1138 char c = name[i];
1139 if (isalnum(c))
1140 continue;
1141 if ((c == '.') || (c == '-') || (c == '_'))
1142 continue;
1143 return -EINVAL;
1144 }
1145 /* Specifying two names is forbidden */
1146 if (opts->name)
1147 return -EINVAL;
1148 opts->name = kstrndup(name,
e400c285 1149 MAX_CGROUP_ROOT_NAMELEN - 1,
c6d57f33
PM
1150 GFP_KERNEL);
1151 if (!opts->name)
1152 return -ENOMEM;
32a8cf23
DL
1153
1154 continue;
1155 }
1156
30159ec7 1157 for_each_subsys(ss, i) {
32a8cf23
DL
1158 if (strcmp(token, ss->name))
1159 continue;
1160 if (ss->disabled)
1161 continue;
1162
1163 /* Mutually exclusive option 'all' + subsystem name */
1164 if (all_ss)
1165 return -EINVAL;
a1a71b45 1166 set_bit(i, &opts->subsys_mask);
32a8cf23
DL
1167 one_ss = true;
1168
1169 break;
1170 }
1171 if (i == CGROUP_SUBSYS_COUNT)
1172 return -ENOENT;
1173 }
1174
1175 /*
1176 * If the 'all' option was specified select all the subsystems,
0d19ea86
LZ
1177 * otherwise if 'none', 'name=' and a subsystem name options
1178 * were not specified, let's default to 'all'
32a8cf23 1179 */
30159ec7
TH
1180 if (all_ss || (!one_ss && !opts->none && !opts->name))
1181 for_each_subsys(ss, i)
1182 if (!ss->disabled)
1183 set_bit(i, &opts->subsys_mask);
ddbcc7e8 1184
2c6ab6d2
PM
1185 /* Consistency checks */
1186
873fe09e
TH
1187 if (opts->flags & CGRP_ROOT_SANE_BEHAVIOR) {
1188 pr_warning("cgroup: sane_behavior: this is still under development and its behaviors will change, proceed at your own risk\n");
1189
1190 if (opts->flags & CGRP_ROOT_NOPREFIX) {
1191 pr_err("cgroup: sane_behavior: noprefix is not allowed\n");
1192 return -EINVAL;
1193 }
1194
1195 if (opts->cpuset_clone_children) {
1196 pr_err("cgroup: sane_behavior: clone_children is not allowed\n");
1197 return -EINVAL;
1198 }
1199 }
1200
f9ab5b5b
LZ
1201 /*
1202 * Option noprefix was introduced just for backward compatibility
1203 * with the old cpuset, so we allow noprefix only if mounting just
1204 * the cpuset subsystem.
1205 */
93438629 1206 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
f9ab5b5b
LZ
1207 return -EINVAL;
1208
2c6ab6d2
PM
1209
1210 /* Can't specify "none" and some subsystems */
a1a71b45 1211 if (opts->subsys_mask && opts->none)
2c6ab6d2
PM
1212 return -EINVAL;
1213
1214 /*
1215 * We either have to specify by name or by subsystems. (So all
1216 * empty hierarchies must have a name).
1217 */
a1a71b45 1218 if (!opts->subsys_mask && !opts->name)
ddbcc7e8
PM
1219 return -EINVAL;
1220
1221 return 0;
1222}
1223
1224static int cgroup_remount(struct super_block *sb, int *flags, char *data)
1225{
1226 int ret = 0;
1227 struct cgroupfs_root *root = sb->s_fs_info;
bd89aabc 1228 struct cgroup *cgrp = &root->top_cgroup;
ddbcc7e8 1229 struct cgroup_sb_opts opts;
a1a71b45 1230 unsigned long added_mask, removed_mask;
ddbcc7e8 1231
873fe09e
TH
1232 if (root->flags & CGRP_ROOT_SANE_BEHAVIOR) {
1233 pr_err("cgroup: sane_behavior: remount is not allowed\n");
1234 return -EINVAL;
1235 }
1236
bd89aabc 1237 mutex_lock(&cgrp->dentry->d_inode->i_mutex);
ace2bee8 1238 mutex_lock(&cgroup_tree_mutex);
ddbcc7e8
PM
1239 mutex_lock(&cgroup_mutex);
1240
1241 /* See what subsystems are wanted */
1242 ret = parse_cgroupfs_options(data, &opts);
1243 if (ret)
1244 goto out_unlock;
1245
a8a648c4 1246 if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
8b5a5a9d
TH
1247 pr_warning("cgroup: option changes via remount are deprecated (pid=%d comm=%s)\n",
1248 task_tgid_nr(current), current->comm);
1249
a1a71b45
AR
1250 added_mask = opts.subsys_mask & ~root->subsys_mask;
1251 removed_mask = root->subsys_mask & ~opts.subsys_mask;
13af07df 1252
cf5d5941 1253 /* Don't allow flags or name to change at remount */
0ce6cba3 1254 if (((opts.flags ^ root->flags) & CGRP_ROOT_OPTION_MASK) ||
cf5d5941 1255 (opts.name && strcmp(opts.name, root->name))) {
0ce6cba3
TH
1256 pr_err("cgroup: option or name mismatch, new: 0x%lx \"%s\", old: 0x%lx \"%s\"\n",
1257 opts.flags & CGRP_ROOT_OPTION_MASK, opts.name ?: "",
1258 root->flags & CGRP_ROOT_OPTION_MASK, root->name);
c6d57f33
PM
1259 ret = -EINVAL;
1260 goto out_unlock;
1261 }
1262
f172e67c
TH
1263 /* remounting is not allowed for populated hierarchies */
1264 if (root->number_of_cgroups > 1) {
1265 ret = -EBUSY;
0670e08b 1266 goto out_unlock;
cf5d5941 1267 }
ddbcc7e8 1268
a8a648c4 1269 ret = rebind_subsystems(root, added_mask, removed_mask);
3126121f 1270 if (ret)
0670e08b 1271 goto out_unlock;
ddbcc7e8 1272
69e943b7
TH
1273 if (opts.release_agent) {
1274 spin_lock(&release_agent_path_lock);
81a6a5cd 1275 strcpy(root->release_agent_path, opts.release_agent);
69e943b7
TH
1276 spin_unlock(&release_agent_path_lock);
1277 }
ddbcc7e8 1278 out_unlock:
66bdc9cf 1279 kfree(opts.release_agent);
c6d57f33 1280 kfree(opts.name);
ddbcc7e8 1281 mutex_unlock(&cgroup_mutex);
ace2bee8 1282 mutex_unlock(&cgroup_tree_mutex);
bd89aabc 1283 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8
PM
1284 return ret;
1285}
1286
b87221de 1287static const struct super_operations cgroup_ops = {
ddbcc7e8
PM
1288 .statfs = simple_statfs,
1289 .drop_inode = generic_delete_inode,
1290 .show_options = cgroup_show_options,
1291 .remount_fs = cgroup_remount,
1292};
1293
cc31edce
PM
1294static void init_cgroup_housekeeping(struct cgroup *cgrp)
1295{
1296 INIT_LIST_HEAD(&cgrp->sibling);
1297 INIT_LIST_HEAD(&cgrp->children);
05ef1d7c 1298 INIT_LIST_HEAD(&cgrp->files);
69d0206c 1299 INIT_LIST_HEAD(&cgrp->cset_links);
cc31edce 1300 INIT_LIST_HEAD(&cgrp->release_list);
72a8cb30
BB
1301 INIT_LIST_HEAD(&cgrp->pidlists);
1302 mutex_init(&cgrp->pidlist_mutex);
67f4c36f 1303 cgrp->dummy_css.cgroup = cgrp;
03b1cde6 1304 simple_xattrs_init(&cgrp->xattrs);
cc31edce 1305}
c6d57f33 1306
ddbcc7e8
PM
1307static void init_cgroup_root(struct cgroupfs_root *root)
1308{
bd89aabc 1309 struct cgroup *cgrp = &root->top_cgroup;
b0ca5a84 1310
ddbcc7e8
PM
1311 INIT_LIST_HEAD(&root->root_list);
1312 root->number_of_cgroups = 1;
bd89aabc 1313 cgrp->root = root;
a4ea1cc9 1314 RCU_INIT_POINTER(cgrp->name, &root_cgroup_name);
cc31edce 1315 init_cgroup_housekeeping(cgrp);
4e96ee8e 1316 idr_init(&root->cgroup_idr);
ddbcc7e8
PM
1317}
1318
fc76df70 1319static int cgroup_init_root_id(struct cgroupfs_root *root, int start, int end)
2c6ab6d2 1320{
1a574231 1321 int id;
2c6ab6d2 1322
54e7b4eb 1323 lockdep_assert_held(&cgroup_mutex);
54e7b4eb 1324
fc76df70
TH
1325 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, start, end,
1326 GFP_KERNEL);
1a574231
TH
1327 if (id < 0)
1328 return id;
1329
1330 root->hierarchy_id = id;
fa3ca07e
TH
1331 return 0;
1332}
1333
1334static void cgroup_exit_root_id(struct cgroupfs_root *root)
1335{
54e7b4eb 1336 lockdep_assert_held(&cgroup_mutex);
54e7b4eb 1337
fa3ca07e 1338 if (root->hierarchy_id) {
1a574231 1339 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
fa3ca07e
TH
1340 root->hierarchy_id = 0;
1341 }
2c6ab6d2
PM
1342}
1343
ddbcc7e8
PM
1344static int cgroup_test_super(struct super_block *sb, void *data)
1345{
c6d57f33 1346 struct cgroup_sb_opts *opts = data;
ddbcc7e8
PM
1347 struct cgroupfs_root *root = sb->s_fs_info;
1348
c6d57f33
PM
1349 /* If we asked for a name then it must match */
1350 if (opts->name && strcmp(opts->name, root->name))
1351 return 0;
ddbcc7e8 1352
2c6ab6d2
PM
1353 /*
1354 * If we asked for subsystems (or explicitly for no
1355 * subsystems) then they must match
1356 */
a1a71b45
AR
1357 if ((opts->subsys_mask || opts->none)
1358 && (opts->subsys_mask != root->subsys_mask))
ddbcc7e8
PM
1359 return 0;
1360
1361 return 1;
1362}
1363
c6d57f33
PM
1364static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts)
1365{
1366 struct cgroupfs_root *root;
1367
a1a71b45 1368 if (!opts->subsys_mask && !opts->none)
c6d57f33
PM
1369 return NULL;
1370
1371 root = kzalloc(sizeof(*root), GFP_KERNEL);
1372 if (!root)
1373 return ERR_PTR(-ENOMEM);
1374
1375 init_cgroup_root(root);
2c6ab6d2 1376
1672d040
TH
1377 /*
1378 * We need to set @root->subsys_mask now so that @root can be
1379 * matched by cgroup_test_super() before it finishes
1380 * initialization; otherwise, competing mounts with the same
1381 * options may try to bind the same subsystems instead of waiting
1382 * for the first one leading to unexpected mount errors.
1383 * SUBSYS_BOUND will be set once actual binding is complete.
1384 */
a1a71b45 1385 root->subsys_mask = opts->subsys_mask;
c6d57f33
PM
1386 root->flags = opts->flags;
1387 if (opts->release_agent)
1388 strcpy(root->release_agent_path, opts->release_agent);
1389 if (opts->name)
1390 strcpy(root->name, opts->name);
2260e7fc
TH
1391 if (opts->cpuset_clone_children)
1392 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->top_cgroup.flags);
c6d57f33
PM
1393 return root;
1394}
1395
fa3ca07e 1396static void cgroup_free_root(struct cgroupfs_root *root)
2c6ab6d2 1397{
fa3ca07e
TH
1398 if (root) {
1399 /* hierarhcy ID shoulid already have been released */
1400 WARN_ON_ONCE(root->hierarchy_id);
2c6ab6d2 1401
4e96ee8e 1402 idr_destroy(&root->cgroup_idr);
fa3ca07e
TH
1403 kfree(root);
1404 }
2c6ab6d2
PM
1405}
1406
ddbcc7e8
PM
1407static int cgroup_set_super(struct super_block *sb, void *data)
1408{
1409 int ret;
c6d57f33
PM
1410 struct cgroup_sb_opts *opts = data;
1411
1412 /* If we don't have a new root, we can't set up a new sb */
1413 if (!opts->new_root)
1414 return -EINVAL;
1415
a1a71b45 1416 BUG_ON(!opts->subsys_mask && !opts->none);
ddbcc7e8
PM
1417
1418 ret = set_anon_super(sb, NULL);
1419 if (ret)
1420 return ret;
1421
c6d57f33
PM
1422 sb->s_fs_info = opts->new_root;
1423 opts->new_root->sb = sb;
ddbcc7e8
PM
1424
1425 sb->s_blocksize = PAGE_CACHE_SIZE;
1426 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
1427 sb->s_magic = CGROUP_SUPER_MAGIC;
1428 sb->s_op = &cgroup_ops;
1429
1430 return 0;
1431}
1432
1433static int cgroup_get_rootdir(struct super_block *sb)
1434{
0df6a63f
AV
1435 static const struct dentry_operations cgroup_dops = {
1436 .d_iput = cgroup_diput,
b26d4cd3 1437 .d_delete = always_delete_dentry,
0df6a63f
AV
1438 };
1439
ddbcc7e8
PM
1440 struct inode *inode =
1441 cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
ddbcc7e8
PM
1442
1443 if (!inode)
1444 return -ENOMEM;
1445
ddbcc7e8
PM
1446 inode->i_fop = &simple_dir_operations;
1447 inode->i_op = &cgroup_dir_inode_operations;
1448 /* directories start off with i_nlink == 2 (for "." entry) */
1449 inc_nlink(inode);
48fde701
AV
1450 sb->s_root = d_make_root(inode);
1451 if (!sb->s_root)
ddbcc7e8 1452 return -ENOMEM;
0df6a63f
AV
1453 /* for everything else we want ->d_op set */
1454 sb->s_d_op = &cgroup_dops;
ddbcc7e8
PM
1455 return 0;
1456}
1457
f7e83571 1458static struct dentry *cgroup_mount(struct file_system_type *fs_type,
ddbcc7e8 1459 int flags, const char *unused_dev_name,
f7e83571 1460 void *data)
ddbcc7e8 1461{
8e30e2b8
TH
1462 LIST_HEAD(tmp_links);
1463 struct super_block *sb = NULL;
1464 struct inode *inode = NULL;
1465 struct cgroupfs_root *root = NULL;
ddbcc7e8 1466 struct cgroup_sb_opts opts;
c6d57f33 1467 struct cgroupfs_root *new_root;
3126121f 1468 const struct cred *cred;
8e30e2b8 1469 int ret;
ddbcc7e8 1470
8e30e2b8 1471 mutex_lock(&cgroup_tree_mutex);
aae8aab4 1472 mutex_lock(&cgroup_mutex);
8e30e2b8
TH
1473
1474 /* First find the desired set of subsystems */
ddbcc7e8 1475 ret = parse_cgroupfs_options(data, &opts);
c6d57f33 1476 if (ret)
8e30e2b8 1477 goto out_unlock;
ddbcc7e8 1478
c6d57f33
PM
1479 /*
1480 * Allocate a new cgroup root. We may not need it if we're
1481 * reusing an existing hierarchy.
1482 */
1483 new_root = cgroup_root_from_opts(&opts);
1484 if (IS_ERR(new_root)) {
1485 ret = PTR_ERR(new_root);
8e30e2b8 1486 goto out_unlock;
81a6a5cd 1487 }
c6d57f33 1488 opts.new_root = new_root;
ddbcc7e8 1489
c6d57f33 1490 /* Locate an existing or new sb for this hierarchy */
8e30e2b8
TH
1491 mutex_unlock(&cgroup_mutex);
1492 mutex_unlock(&cgroup_tree_mutex);
9249e17f 1493 sb = sget(fs_type, cgroup_test_super, cgroup_set_super, 0, &opts);
8e30e2b8
TH
1494 mutex_lock(&cgroup_tree_mutex);
1495 mutex_lock(&cgroup_mutex);
ddbcc7e8 1496 if (IS_ERR(sb)) {
c6d57f33 1497 ret = PTR_ERR(sb);
fa3ca07e 1498 cgroup_free_root(opts.new_root);
8e30e2b8 1499 goto out_unlock;
ddbcc7e8
PM
1500 }
1501
c6d57f33
PM
1502 root = sb->s_fs_info;
1503 BUG_ON(!root);
1504 if (root == opts.new_root) {
1505 /* We used the new root structure, so this is a new hierarchy */
c12f65d4 1506 struct cgroup *root_cgrp = &root->top_cgroup;
c6d57f33 1507 struct cgroupfs_root *existing_root;
28fd5dfc 1508 int i;
5abb8855 1509 struct css_set *cset;
ddbcc7e8
PM
1510
1511 BUG_ON(sb->s_root != NULL);
1512
8e30e2b8
TH
1513 mutex_unlock(&cgroup_mutex);
1514 mutex_unlock(&cgroup_tree_mutex);
1515
ddbcc7e8
PM
1516 ret = cgroup_get_rootdir(sb);
1517 if (ret)
8e30e2b8 1518 goto out_unlock;
817929ec 1519 inode = sb->s_root->d_inode;
ddbcc7e8 1520
817929ec 1521 mutex_lock(&inode->i_mutex);
ace2bee8 1522 mutex_lock(&cgroup_tree_mutex);
ddbcc7e8
PM
1523 mutex_lock(&cgroup_mutex);
1524
eb46bf89
TH
1525 ret = idr_alloc(&root->cgroup_idr, root_cgrp, 0, 1, GFP_KERNEL);
1526 if (ret < 0)
8e30e2b8 1527 goto out_unlock;
eb46bf89 1528 root_cgrp->id = ret;
4e96ee8e 1529
e25e2cbb
TH
1530 /* Check for name clashes with existing mounts */
1531 ret = -EBUSY;
1532 if (strlen(root->name))
1533 for_each_active_root(existing_root)
1534 if (!strcmp(existing_root->name, root->name))
8e30e2b8 1535 goto out_unlock;
c6d57f33 1536
817929ec
PM
1537 /*
1538 * We're accessing css_set_count without locking
1539 * css_set_lock here, but that's OK - it can only be
1540 * increased by someone holding cgroup_lock, and
1541 * that's us. The worst that can happen is that we
1542 * have some link structures left over
1543 */
69d0206c 1544 ret = allocate_cgrp_cset_links(css_set_count, &tmp_links);
e25e2cbb 1545 if (ret)
8e30e2b8 1546 goto out_unlock;
817929ec 1547
fc76df70
TH
1548 /* ID 0 is reserved for dummy root, 1 for unified hierarchy */
1549 ret = cgroup_init_root_id(root, 2, 0);
fa3ca07e 1550 if (ret)
8e30e2b8 1551 goto out_unlock;
fa3ca07e 1552
3126121f
TH
1553 sb->s_root->d_fsdata = root_cgrp;
1554 root_cgrp->dentry = sb->s_root;
1555
1556 /*
1557 * We're inside get_sb() and will call lookup_one_len() to
1558 * create the root files, which doesn't work if SELinux is
1559 * in use. The following cred dancing somehow works around
1560 * it. See 2ce9738ba ("cgroupfs: use init_cred when
1561 * populating new cgroupfs mount") for more details.
1562 */
1563 cred = override_creds(&init_cred);
1564
2bb566cb 1565 ret = cgroup_addrm_files(root_cgrp, cgroup_base_files, true);
3126121f
TH
1566 if (ret)
1567 goto rm_base_files;
1568
a8a648c4 1569 ret = rebind_subsystems(root, root->subsys_mask, 0);
3126121f
TH
1570 if (ret)
1571 goto rm_base_files;
1572
1573 revert_creds(cred);
1574
cf5d5941
BB
1575 /*
1576 * There must be no failure case after here, since rebinding
1577 * takes care of subsystems' refcounts, which are explicitly
1578 * dropped in the failure exit path.
1579 */
ddbcc7e8 1580
9871bf95
TH
1581 list_add(&root->root_list, &cgroup_roots);
1582 cgroup_root_count++;
ddbcc7e8 1583
817929ec
PM
1584 /* Link the top cgroup in this hierarchy into all
1585 * the css_set objects */
1586 write_lock(&css_set_lock);
5abb8855 1587 hash_for_each(css_set_table, i, cset, hlist)
69d0206c 1588 link_css_set(&tmp_links, cset, root_cgrp);
817929ec
PM
1589 write_unlock(&css_set_lock);
1590
c12f65d4 1591 BUG_ON(!list_empty(&root_cgrp->children));
ddbcc7e8 1592 BUG_ON(root->number_of_cgroups != 1);
c6d57f33
PM
1593 } else {
1594 /*
1595 * We re-used an existing hierarchy - the new root (if
1596 * any) is not needed
1597 */
fa3ca07e 1598 cgroup_free_root(opts.new_root);
873fe09e 1599
c7ba8287 1600 if ((root->flags ^ opts.flags) & CGRP_ROOT_OPTION_MASK) {
2a0ff3fb
JL
1601 if ((root->flags | opts.flags) & CGRP_ROOT_SANE_BEHAVIOR) {
1602 pr_err("cgroup: sane_behavior: new mount options should match the existing superblock\n");
1603 ret = -EINVAL;
8e30e2b8 1604 goto out_unlock;
2a0ff3fb
JL
1605 } else {
1606 pr_warning("cgroup: new mount options do not match the existing superblock, will be ignored\n");
1607 }
873fe09e 1608 }
ddbcc7e8
PM
1609 }
1610
8e30e2b8
TH
1611 ret = 0;
1612 goto out_unlock;
ddbcc7e8 1613
8e30e2b8 1614rm_base_files:
2bb566cb 1615 cgroup_addrm_files(&root->top_cgroup, cgroup_base_files, false);
3126121f 1616 revert_creds(cred);
fa3ca07e 1617 cgroup_exit_root_id(root);
8e30e2b8 1618out_unlock:
e25e2cbb 1619 mutex_unlock(&cgroup_mutex);
ace2bee8 1620 mutex_unlock(&cgroup_tree_mutex);
8e30e2b8
TH
1621 if (inode)
1622 mutex_unlock(&inode->i_mutex);
1623
1624 if (ret && !IS_ERR_OR_NULL(sb))
1625 deactivate_locked_super(sb);
1626
1627 free_cgrp_cset_links(&tmp_links);
c6d57f33
PM
1628 kfree(opts.release_agent);
1629 kfree(opts.name);
8e30e2b8
TH
1630
1631 if (!ret)
1632 return dget(sb->s_root);
1633 else
1634 return ERR_PTR(ret);
ddbcc7e8
PM
1635}
1636
dd4b0a46
SP
1637static void cgroup_kill_sb(struct super_block *sb)
1638{
ddbcc7e8 1639 struct cgroupfs_root *root = sb->s_fs_info;
bd89aabc 1640 struct cgroup *cgrp = &root->top_cgroup;
69d0206c 1641 struct cgrp_cset_link *link, *tmp_link;
ddbcc7e8
PM
1642 int ret;
1643
1644 BUG_ON(!root);
1645
1646 BUG_ON(root->number_of_cgroups != 1);
bd89aabc 1647 BUG_ON(!list_empty(&cgrp->children));
ddbcc7e8 1648
3126121f 1649 mutex_lock(&cgrp->dentry->d_inode->i_mutex);
ace2bee8 1650 mutex_lock(&cgroup_tree_mutex);
ddbcc7e8
PM
1651 mutex_lock(&cgroup_mutex);
1652
1653 /* Rebind all subsystems back to the default hierarchy */
1672d040
TH
1654 if (root->flags & CGRP_ROOT_SUBSYS_BOUND) {
1655 ret = rebind_subsystems(root, 0, root->subsys_mask);
1656 /* Shouldn't be able to fail ... */
1657 BUG_ON(ret);
1658 }
ddbcc7e8 1659
817929ec 1660 /*
69d0206c 1661 * Release all the links from cset_links to this hierarchy's
817929ec
PM
1662 * root cgroup
1663 */
1664 write_lock(&css_set_lock);
71cbb949 1665
69d0206c
TH
1666 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1667 list_del(&link->cset_link);
1668 list_del(&link->cgrp_link);
817929ec
PM
1669 kfree(link);
1670 }
1671 write_unlock(&css_set_lock);
1672
839ec545
PM
1673 if (!list_empty(&root->root_list)) {
1674 list_del(&root->root_list);
9871bf95 1675 cgroup_root_count--;
839ec545 1676 }
e5f6a860 1677
fa3ca07e
TH
1678 cgroup_exit_root_id(root);
1679
ddbcc7e8 1680 mutex_unlock(&cgroup_mutex);
ace2bee8 1681 mutex_unlock(&cgroup_tree_mutex);
3126121f 1682 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8 1683
03b1cde6
AR
1684 simple_xattrs_free(&cgrp->xattrs);
1685
ddbcc7e8 1686 kill_litter_super(sb);
fa3ca07e 1687 cgroup_free_root(root);
ddbcc7e8
PM
1688}
1689
1690static struct file_system_type cgroup_fs_type = {
1691 .name = "cgroup",
f7e83571 1692 .mount = cgroup_mount,
ddbcc7e8
PM
1693 .kill_sb = cgroup_kill_sb,
1694};
1695
676db4af
GKH
1696static struct kobject *cgroup_kobj;
1697
a043e3b2
LZ
1698/**
1699 * cgroup_path - generate the path of a cgroup
1700 * @cgrp: the cgroup in question
1701 * @buf: the buffer to write the path into
1702 * @buflen: the length of the buffer
1703 *
65dff759
LZ
1704 * Writes path of cgroup into buf. Returns 0 on success, -errno on error.
1705 *
1706 * We can't generate cgroup path using dentry->d_name, as accessing
1707 * dentry->name must be protected by irq-unsafe dentry->d_lock or parent
1708 * inode's i_mutex, while on the other hand cgroup_path() can be called
1709 * with some irq-safe spinlocks held.
ddbcc7e8 1710 */
bd89aabc 1711int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
ddbcc7e8 1712{
65dff759 1713 int ret = -ENAMETOOLONG;
ddbcc7e8 1714 char *start;
febfcef6 1715
da1f296f
TH
1716 if (!cgrp->parent) {
1717 if (strlcpy(buf, "/", buflen) >= buflen)
1718 return -ENAMETOOLONG;
ddbcc7e8
PM
1719 return 0;
1720 }
1721
316eb661 1722 start = buf + buflen - 1;
316eb661 1723 *start = '\0';
9a9686b6 1724
65dff759 1725 rcu_read_lock();
da1f296f 1726 do {
65dff759
LZ
1727 const char *name = cgroup_name(cgrp);
1728 int len;
1729
1730 len = strlen(name);
ddbcc7e8 1731 if ((start -= len) < buf)
65dff759
LZ
1732 goto out;
1733 memcpy(start, name, len);
9a9686b6 1734
ddbcc7e8 1735 if (--start < buf)
65dff759 1736 goto out;
ddbcc7e8 1737 *start = '/';
65dff759
LZ
1738
1739 cgrp = cgrp->parent;
da1f296f 1740 } while (cgrp->parent);
65dff759 1741 ret = 0;
ddbcc7e8 1742 memmove(buf, start, buf + buflen - start);
65dff759
LZ
1743out:
1744 rcu_read_unlock();
1745 return ret;
ddbcc7e8 1746}
67523c48 1747EXPORT_SYMBOL_GPL(cgroup_path);
ddbcc7e8 1748
857a2beb 1749/**
913ffdb5 1750 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
857a2beb 1751 * @task: target task
857a2beb
TH
1752 * @buf: the buffer to write the path into
1753 * @buflen: the length of the buffer
1754 *
913ffdb5
TH
1755 * Determine @task's cgroup on the first (the one with the lowest non-zero
1756 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
1757 * function grabs cgroup_mutex and shouldn't be used inside locks used by
1758 * cgroup controller callbacks.
1759 *
1760 * Returns 0 on success, fails with -%ENAMETOOLONG if @buflen is too short.
857a2beb 1761 */
913ffdb5 1762int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
857a2beb
TH
1763{
1764 struct cgroupfs_root *root;
913ffdb5
TH
1765 struct cgroup *cgrp;
1766 int hierarchy_id = 1, ret = 0;
1767
1768 if (buflen < 2)
1769 return -ENAMETOOLONG;
857a2beb
TH
1770
1771 mutex_lock(&cgroup_mutex);
1772
913ffdb5
TH
1773 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
1774
857a2beb
TH
1775 if (root) {
1776 cgrp = task_cgroup_from_root(task, root);
1777 ret = cgroup_path(cgrp, buf, buflen);
913ffdb5
TH
1778 } else {
1779 /* if no hierarchy exists, everyone is in "/" */
1780 memcpy(buf, "/", 2);
857a2beb
TH
1781 }
1782
1783 mutex_unlock(&cgroup_mutex);
857a2beb
TH
1784 return ret;
1785}
913ffdb5 1786EXPORT_SYMBOL_GPL(task_cgroup_path);
857a2beb 1787
2f7ee569
TH
1788/*
1789 * Control Group taskset
1790 */
134d3373
TH
1791struct task_and_cgroup {
1792 struct task_struct *task;
1793 struct cgroup *cgrp;
6f4b7e63 1794 struct css_set *cset;
134d3373
TH
1795};
1796
2f7ee569
TH
1797struct cgroup_taskset {
1798 struct task_and_cgroup single;
1799 struct flex_array *tc_array;
1800 int tc_array_len;
1801 int idx;
1802 struct cgroup *cur_cgrp;
1803};
1804
1805/**
1806 * cgroup_taskset_first - reset taskset and return the first task
1807 * @tset: taskset of interest
1808 *
1809 * @tset iteration is initialized and the first task is returned.
1810 */
1811struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
1812{
1813 if (tset->tc_array) {
1814 tset->idx = 0;
1815 return cgroup_taskset_next(tset);
1816 } else {
1817 tset->cur_cgrp = tset->single.cgrp;
1818 return tset->single.task;
1819 }
1820}
1821EXPORT_SYMBOL_GPL(cgroup_taskset_first);
1822
1823/**
1824 * cgroup_taskset_next - iterate to the next task in taskset
1825 * @tset: taskset of interest
1826 *
1827 * Return the next task in @tset. Iteration must have been initialized
1828 * with cgroup_taskset_first().
1829 */
1830struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
1831{
1832 struct task_and_cgroup *tc;
1833
1834 if (!tset->tc_array || tset->idx >= tset->tc_array_len)
1835 return NULL;
1836
1837 tc = flex_array_get(tset->tc_array, tset->idx++);
1838 tset->cur_cgrp = tc->cgrp;
1839 return tc->task;
1840}
1841EXPORT_SYMBOL_GPL(cgroup_taskset_next);
1842
1843/**
d99c8727 1844 * cgroup_taskset_cur_css - return the matching css for the current task
2f7ee569 1845 * @tset: taskset of interest
d99c8727 1846 * @subsys_id: the ID of the target subsystem
2f7ee569 1847 *
d99c8727
TH
1848 * Return the css for the current (last returned) task of @tset for
1849 * subsystem specified by @subsys_id. This function must be preceded by
1850 * either cgroup_taskset_first() or cgroup_taskset_next().
2f7ee569 1851 */
d99c8727
TH
1852struct cgroup_subsys_state *cgroup_taskset_cur_css(struct cgroup_taskset *tset,
1853 int subsys_id)
2f7ee569 1854{
ca8bdcaf 1855 return cgroup_css(tset->cur_cgrp, cgroup_subsys[subsys_id]);
2f7ee569 1856}
d99c8727 1857EXPORT_SYMBOL_GPL(cgroup_taskset_cur_css);
2f7ee569
TH
1858
1859/**
1860 * cgroup_taskset_size - return the number of tasks in taskset
1861 * @tset: taskset of interest
1862 */
1863int cgroup_taskset_size(struct cgroup_taskset *tset)
1864{
1865 return tset->tc_array ? tset->tc_array_len : 1;
1866}
1867EXPORT_SYMBOL_GPL(cgroup_taskset_size);
1868
1869
74a1166d
BB
1870/*
1871 * cgroup_task_migrate - move a task from one cgroup to another.
1872 *
d0b2fdd2 1873 * Must be called with cgroup_mutex and threadgroup locked.
74a1166d 1874 */
5abb8855
TH
1875static void cgroup_task_migrate(struct cgroup *old_cgrp,
1876 struct task_struct *tsk,
1877 struct css_set *new_cset)
74a1166d 1878{
5abb8855 1879 struct css_set *old_cset;
74a1166d
BB
1880
1881 /*
026085ef
MSB
1882 * We are synchronized through threadgroup_lock() against PF_EXITING
1883 * setting such that we can't race against cgroup_exit() changing the
1884 * css_set to init_css_set and dropping the old one.
74a1166d 1885 */
c84cdf75 1886 WARN_ON_ONCE(tsk->flags & PF_EXITING);
a8ad805c 1887 old_cset = task_css_set(tsk);
74a1166d 1888
74a1166d 1889 task_lock(tsk);
5abb8855 1890 rcu_assign_pointer(tsk->cgroups, new_cset);
74a1166d
BB
1891 task_unlock(tsk);
1892
1893 /* Update the css_set linked lists if we're using them */
1894 write_lock(&css_set_lock);
1895 if (!list_empty(&tsk->cg_list))
5abb8855 1896 list_move(&tsk->cg_list, &new_cset->tasks);
74a1166d
BB
1897 write_unlock(&css_set_lock);
1898
1899 /*
5abb8855
TH
1900 * We just gained a reference on old_cset by taking it from the
1901 * task. As trading it for new_cset is protected by cgroup_mutex,
1902 * we're safe to drop it here; it will be freed under RCU.
74a1166d 1903 */
5abb8855
TH
1904 set_bit(CGRP_RELEASABLE, &old_cgrp->flags);
1905 put_css_set(old_cset);
74a1166d
BB
1906}
1907
a043e3b2 1908/**
081aa458 1909 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
74a1166d 1910 * @cgrp: the cgroup to attach to
081aa458
LZ
1911 * @tsk: the task or the leader of the threadgroup to be attached
1912 * @threadgroup: attach the whole threadgroup?
74a1166d 1913 *
257058ae 1914 * Call holding cgroup_mutex and the group_rwsem of the leader. Will take
081aa458 1915 * task_lock of @tsk or each thread in the threadgroup individually in turn.
74a1166d 1916 */
47cfcd09
TH
1917static int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk,
1918 bool threadgroup)
74a1166d
BB
1919{
1920 int retval, i, group_size;
74a1166d 1921 struct cgroupfs_root *root = cgrp->root;
1c6727af 1922 struct cgroup_subsys_state *css, *failed_css = NULL;
74a1166d 1923 /* threadgroup list cursor and array */
081aa458 1924 struct task_struct *leader = tsk;
134d3373 1925 struct task_and_cgroup *tc;
d846687d 1926 struct flex_array *group;
2f7ee569 1927 struct cgroup_taskset tset = { };
74a1166d
BB
1928
1929 /*
1930 * step 0: in order to do expensive, possibly blocking operations for
1931 * every thread, we cannot iterate the thread group list, since it needs
1932 * rcu or tasklist locked. instead, build an array of all threads in the
257058ae
TH
1933 * group - group_rwsem prevents new threads from appearing, and if
1934 * threads exit, this will just be an over-estimate.
74a1166d 1935 */
081aa458
LZ
1936 if (threadgroup)
1937 group_size = get_nr_threads(tsk);
1938 else
1939 group_size = 1;
d846687d 1940 /* flex_array supports very large thread-groups better than kmalloc. */
134d3373 1941 group = flex_array_alloc(sizeof(*tc), group_size, GFP_KERNEL);
74a1166d
BB
1942 if (!group)
1943 return -ENOMEM;
d846687d 1944 /* pre-allocate to guarantee space while iterating in rcu read-side. */
3ac1707a 1945 retval = flex_array_prealloc(group, 0, group_size, GFP_KERNEL);
d846687d
BB
1946 if (retval)
1947 goto out_free_group_list;
74a1166d 1948
74a1166d 1949 i = 0;
fb5d2b4c
MSB
1950 /*
1951 * Prevent freeing of tasks while we take a snapshot. Tasks that are
1952 * already PF_EXITING could be freed from underneath us unless we
1953 * take an rcu_read_lock.
1954 */
1955 rcu_read_lock();
74a1166d 1956 do {
134d3373
TH
1957 struct task_and_cgroup ent;
1958
cd3d0952
TH
1959 /* @tsk either already exited or can't exit until the end */
1960 if (tsk->flags & PF_EXITING)
ea84753c 1961 goto next;
cd3d0952 1962
74a1166d
BB
1963 /* as per above, nr_threads may decrease, but not increase. */
1964 BUG_ON(i >= group_size);
134d3373
TH
1965 ent.task = tsk;
1966 ent.cgrp = task_cgroup_from_root(tsk, root);
892a2b90
MSB
1967 /* nothing to do if this task is already in the cgroup */
1968 if (ent.cgrp == cgrp)
ea84753c 1969 goto next;
61d1d219
MSB
1970 /*
1971 * saying GFP_ATOMIC has no effect here because we did prealloc
1972 * earlier, but it's good form to communicate our expectations.
1973 */
134d3373 1974 retval = flex_array_put(group, i, &ent, GFP_ATOMIC);
d846687d 1975 BUG_ON(retval != 0);
74a1166d 1976 i++;
ea84753c 1977 next:
081aa458
LZ
1978 if (!threadgroup)
1979 break;
74a1166d 1980 } while_each_thread(leader, tsk);
fb5d2b4c 1981 rcu_read_unlock();
74a1166d
BB
1982 /* remember the number of threads in the array for later. */
1983 group_size = i;
2f7ee569
TH
1984 tset.tc_array = group;
1985 tset.tc_array_len = group_size;
74a1166d 1986
134d3373
TH
1987 /* methods shouldn't be called if no task is actually migrating */
1988 retval = 0;
892a2b90 1989 if (!group_size)
b07ef774 1990 goto out_free_group_list;
134d3373 1991
74a1166d
BB
1992 /*
1993 * step 1: check that we can legitimately attach to the cgroup.
1994 */
1c6727af
TH
1995 for_each_css(css, i, cgrp) {
1996 if (css->ss->can_attach) {
1997 retval = css->ss->can_attach(css, &tset);
74a1166d 1998 if (retval) {
1c6727af 1999 failed_css = css;
74a1166d
BB
2000 goto out_cancel_attach;
2001 }
2002 }
74a1166d
BB
2003 }
2004
2005 /*
2006 * step 2: make sure css_sets exist for all threads to be migrated.
2007 * we use find_css_set, which allocates a new one if necessary.
2008 */
74a1166d 2009 for (i = 0; i < group_size; i++) {
a8ad805c
TH
2010 struct css_set *old_cset;
2011
134d3373 2012 tc = flex_array_get(group, i);
a8ad805c 2013 old_cset = task_css_set(tc->task);
6f4b7e63
LZ
2014 tc->cset = find_css_set(old_cset, cgrp);
2015 if (!tc->cset) {
61d1d219
MSB
2016 retval = -ENOMEM;
2017 goto out_put_css_set_refs;
74a1166d
BB
2018 }
2019 }
2020
2021 /*
494c167c
TH
2022 * step 3: now that we're guaranteed success wrt the css_sets,
2023 * proceed to move all tasks to the new cgroup. There are no
2024 * failure cases after here, so this is the commit point.
74a1166d 2025 */
74a1166d 2026 for (i = 0; i < group_size; i++) {
134d3373 2027 tc = flex_array_get(group, i);
6f4b7e63 2028 cgroup_task_migrate(tc->cgrp, tc->task, tc->cset);
74a1166d
BB
2029 }
2030 /* nothing is sensitive to fork() after this point. */
2031
2032 /*
494c167c 2033 * step 4: do subsystem attach callbacks.
74a1166d 2034 */
1c6727af
TH
2035 for_each_css(css, i, cgrp)
2036 if (css->ss->attach)
2037 css->ss->attach(css, &tset);
74a1166d
BB
2038
2039 /*
2040 * step 5: success! and cleanup
2041 */
74a1166d 2042 retval = 0;
61d1d219
MSB
2043out_put_css_set_refs:
2044 if (retval) {
2045 for (i = 0; i < group_size; i++) {
2046 tc = flex_array_get(group, i);
6f4b7e63 2047 if (!tc->cset)
61d1d219 2048 break;
6f4b7e63 2049 put_css_set(tc->cset);
61d1d219 2050 }
74a1166d
BB
2051 }
2052out_cancel_attach:
74a1166d 2053 if (retval) {
1c6727af
TH
2054 for_each_css(css, i, cgrp) {
2055 if (css == failed_css)
74a1166d 2056 break;
1c6727af
TH
2057 if (css->ss->cancel_attach)
2058 css->ss->cancel_attach(css, &tset);
74a1166d
BB
2059 }
2060 }
74a1166d 2061out_free_group_list:
d846687d 2062 flex_array_free(group);
74a1166d
BB
2063 return retval;
2064}
2065
2066/*
2067 * Find the task_struct of the task to attach by vpid and pass it along to the
cd3d0952
TH
2068 * function to attach either it or all tasks in its threadgroup. Will lock
2069 * cgroup_mutex and threadgroup; may take task_lock of task.
bbcb81d0 2070 */
74a1166d 2071static int attach_task_by_pid(struct cgroup *cgrp, u64 pid, bool threadgroup)
bbcb81d0 2072{
bbcb81d0 2073 struct task_struct *tsk;
c69e8d9c 2074 const struct cred *cred = current_cred(), *tcred;
bbcb81d0
PM
2075 int ret;
2076
74a1166d
BB
2077 if (!cgroup_lock_live_group(cgrp))
2078 return -ENODEV;
2079
b78949eb
MSB
2080retry_find_task:
2081 rcu_read_lock();
bbcb81d0 2082 if (pid) {
73507f33 2083 tsk = find_task_by_vpid(pid);
74a1166d
BB
2084 if (!tsk) {
2085 rcu_read_unlock();
dd4b0a46 2086 ret = -ESRCH;
b78949eb 2087 goto out_unlock_cgroup;
bbcb81d0 2088 }
74a1166d
BB
2089 /*
2090 * even if we're attaching all tasks in the thread group, we
2091 * only need to check permissions on one of them.
2092 */
c69e8d9c 2093 tcred = __task_cred(tsk);
14a590c3
EB
2094 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2095 !uid_eq(cred->euid, tcred->uid) &&
2096 !uid_eq(cred->euid, tcred->suid)) {
c69e8d9c 2097 rcu_read_unlock();
b78949eb
MSB
2098 ret = -EACCES;
2099 goto out_unlock_cgroup;
bbcb81d0 2100 }
b78949eb
MSB
2101 } else
2102 tsk = current;
cd3d0952
TH
2103
2104 if (threadgroup)
b78949eb 2105 tsk = tsk->group_leader;
c4c27fbd
MG
2106
2107 /*
14a40ffc 2108 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
c4c27fbd
MG
2109 * trapped in a cpuset, or RT worker may be born in a cgroup
2110 * with no rt_runtime allocated. Just say no.
2111 */
14a40ffc 2112 if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
c4c27fbd
MG
2113 ret = -EINVAL;
2114 rcu_read_unlock();
2115 goto out_unlock_cgroup;
2116 }
2117
b78949eb
MSB
2118 get_task_struct(tsk);
2119 rcu_read_unlock();
2120
2121 threadgroup_lock(tsk);
2122 if (threadgroup) {
2123 if (!thread_group_leader(tsk)) {
2124 /*
2125 * a race with de_thread from another thread's exec()
2126 * may strip us of our leadership, if this happens,
2127 * there is no choice but to throw this task away and
2128 * try again; this is
2129 * "double-double-toil-and-trouble-check locking".
2130 */
2131 threadgroup_unlock(tsk);
2132 put_task_struct(tsk);
2133 goto retry_find_task;
2134 }
081aa458
LZ
2135 }
2136
2137 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
2138
cd3d0952
TH
2139 threadgroup_unlock(tsk);
2140
bbcb81d0 2141 put_task_struct(tsk);
b78949eb 2142out_unlock_cgroup:
47cfcd09 2143 mutex_unlock(&cgroup_mutex);
bbcb81d0
PM
2144 return ret;
2145}
2146
7ae1bad9
TH
2147/**
2148 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2149 * @from: attach to all cgroups of a given task
2150 * @tsk: the task to be attached
2151 */
2152int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2153{
2154 struct cgroupfs_root *root;
2155 int retval = 0;
2156
47cfcd09 2157 mutex_lock(&cgroup_mutex);
7ae1bad9 2158 for_each_active_root(root) {
6f4b7e63 2159 struct cgroup *from_cgrp = task_cgroup_from_root(from, root);
7ae1bad9 2160
6f4b7e63 2161 retval = cgroup_attach_task(from_cgrp, tsk, false);
7ae1bad9
TH
2162 if (retval)
2163 break;
2164 }
47cfcd09 2165 mutex_unlock(&cgroup_mutex);
7ae1bad9
TH
2166
2167 return retval;
2168}
2169EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2170
182446d0
TH
2171static int cgroup_tasks_write(struct cgroup_subsys_state *css,
2172 struct cftype *cft, u64 pid)
74a1166d 2173{
182446d0 2174 return attach_task_by_pid(css->cgroup, pid, false);
74a1166d
BB
2175}
2176
182446d0
TH
2177static int cgroup_procs_write(struct cgroup_subsys_state *css,
2178 struct cftype *cft, u64 tgid)
af351026 2179{
182446d0 2180 return attach_task_by_pid(css->cgroup, tgid, true);
af351026
PM
2181}
2182
182446d0
TH
2183static int cgroup_release_agent_write(struct cgroup_subsys_state *css,
2184 struct cftype *cft, const char *buffer)
e788e066 2185{
182446d0 2186 BUILD_BUG_ON(sizeof(css->cgroup->root->release_agent_path) < PATH_MAX);
f4a2589f
EK
2187 if (strlen(buffer) >= PATH_MAX)
2188 return -EINVAL;
182446d0 2189 if (!cgroup_lock_live_group(css->cgroup))
e788e066 2190 return -ENODEV;
69e943b7 2191 spin_lock(&release_agent_path_lock);
182446d0 2192 strcpy(css->cgroup->root->release_agent_path, buffer);
69e943b7 2193 spin_unlock(&release_agent_path_lock);
47cfcd09 2194 mutex_unlock(&cgroup_mutex);
e788e066
PM
2195 return 0;
2196}
2197
2da8ca82 2198static int cgroup_release_agent_show(struct seq_file *seq, void *v)
e788e066 2199{
2da8ca82 2200 struct cgroup *cgrp = seq_css(seq)->cgroup;
182446d0 2201
e788e066
PM
2202 if (!cgroup_lock_live_group(cgrp))
2203 return -ENODEV;
2204 seq_puts(seq, cgrp->root->release_agent_path);
2205 seq_putc(seq, '\n');
47cfcd09 2206 mutex_unlock(&cgroup_mutex);
e788e066
PM
2207 return 0;
2208}
2209
2da8ca82 2210static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
873fe09e 2211{
2da8ca82
TH
2212 struct cgroup *cgrp = seq_css(seq)->cgroup;
2213
2214 seq_printf(seq, "%d\n", cgroup_sane_behavior(cgrp));
e788e066
PM
2215 return 0;
2216}
2217
84eea842
PM
2218/* A buffer size big enough for numbers or short strings */
2219#define CGROUP_LOCAL_BUFFER_SIZE 64
2220
a742c59d
TH
2221static ssize_t cgroup_file_write(struct file *file, const char __user *userbuf,
2222 size_t nbytes, loff_t *ppos)
355e0c48 2223{
a742c59d
TH
2224 struct cfent *cfe = __d_cfe(file->f_dentry);
2225 struct cftype *cft = __d_cft(file->f_dentry);
2226 struct cgroup_subsys_state *css = cfe->css;
2227 size_t max_bytes = cft->max_write_len ?: CGROUP_LOCAL_BUFFER_SIZE - 1;
2228 char *buf;
2229 int ret;
355e0c48 2230
db3b1497 2231 if (nbytes >= max_bytes)
355e0c48 2232 return -E2BIG;
355e0c48 2233
a742c59d
TH
2234 buf = kmalloc(nbytes + 1, GFP_KERNEL);
2235 if (!buf)
2236 return -ENOMEM;
db3b1497 2237
a742c59d
TH
2238 if (copy_from_user(buf, userbuf, nbytes)) {
2239 ret = -EFAULT;
2240 goto out_free;
2241 }
ddbcc7e8 2242
a742c59d
TH
2243 buf[nbytes] = '\0';
2244
2245 if (cft->write_string) {
2246 ret = cft->write_string(css, cft, strstrip(buf));
2247 } else if (cft->write_u64) {
2248 unsigned long long v;
2249 ret = kstrtoull(buf, 0, &v);
2250 if (!ret)
2251 ret = cft->write_u64(css, cft, v);
2252 } else if (cft->write_s64) {
2253 long long v;
2254 ret = kstrtoll(buf, 0, &v);
2255 if (!ret)
2256 ret = cft->write_s64(css, cft, v);
2257 } else if (cft->trigger) {
2258 ret = cft->trigger(css, (unsigned int)cft->private);
e73d2c61 2259 } else {
a742c59d 2260 ret = -EINVAL;
e73d2c61 2261 }
a742c59d
TH
2262out_free:
2263 kfree(buf);
2264 return ret ?: nbytes;
355e0c48
PM
2265}
2266
91796569
PM
2267/*
2268 * seqfile ops/methods for returning structured data. Currently just
2269 * supports string->u64 maps, but can be extended in future.
2270 */
2271
6612f05b 2272static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
db3b1497 2273{
6612f05b 2274 struct cftype *cft = seq_cft(seq);
db3b1497 2275
6612f05b
TH
2276 if (cft->seq_start) {
2277 return cft->seq_start(seq, ppos);
2278 } else {
2279 /*
2280 * The same behavior and code as single_open(). Returns
2281 * !NULL if pos is at the beginning; otherwise, NULL.
2282 */
2283 return NULL + !*ppos;
5a3eb9f6 2284 }
db3b1497
PM
2285}
2286
6612f05b 2287static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
ddbcc7e8 2288{
6612f05b 2289 struct cftype *cft = seq_cft(seq);
ddbcc7e8 2290
6612f05b
TH
2291 if (cft->seq_next) {
2292 return cft->seq_next(seq, v, ppos);
2293 } else {
2294 /*
2295 * The same behavior and code as single_open(), always
2296 * terminate after the initial read.
2297 */
2298 ++*ppos;
2299 return NULL;
d447ea2f 2300 }
ddbcc7e8
PM
2301}
2302
6612f05b 2303static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
ddbcc7e8 2304{
6612f05b 2305 struct cftype *cft = seq_cft(seq);
ddbcc7e8 2306
6612f05b
TH
2307 if (cft->seq_stop)
2308 cft->seq_stop(seq, v);
ddbcc7e8
PM
2309}
2310
91796569 2311static int cgroup_seqfile_show(struct seq_file *m, void *arg)
e73d2c61 2312{
7da11279
TH
2313 struct cftype *cft = seq_cft(m);
2314 struct cgroup_subsys_state *css = seq_css(m);
e73d2c61 2315
2da8ca82
TH
2316 if (cft->seq_show)
2317 return cft->seq_show(m, arg);
e73d2c61 2318
f4c753b7 2319 if (cft->read_u64)
896f5199
TH
2320 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
2321 else if (cft->read_s64)
2322 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
2323 else
2324 return -EINVAL;
2325 return 0;
91796569
PM
2326}
2327
6612f05b
TH
2328static struct seq_operations cgroup_seq_operations = {
2329 .start = cgroup_seqfile_start,
2330 .next = cgroup_seqfile_next,
2331 .stop = cgroup_seqfile_stop,
2332 .show = cgroup_seqfile_show,
91796569
PM
2333};
2334
ddbcc7e8
PM
2335static int cgroup_file_open(struct inode *inode, struct file *file)
2336{
f7d58818
TH
2337 struct cfent *cfe = __d_cfe(file->f_dentry);
2338 struct cftype *cft = __d_cft(file->f_dentry);
105347ba
TH
2339 struct cgroup *cgrp = __d_cgrp(cfe->dentry->d_parent);
2340 struct cgroup_subsys_state *css;
6612f05b 2341 struct cgroup_open_file *of;
ddbcc7e8 2342 int err;
ddbcc7e8
PM
2343
2344 err = generic_file_open(inode, file);
2345 if (err)
2346 return err;
75139b82 2347
f7d58818
TH
2348 /*
2349 * If the file belongs to a subsystem, pin the css. Will be
2350 * unpinned either on open failure or release. This ensures that
2351 * @css stays alive for all file operations.
2352 */
105347ba 2353 rcu_read_lock();
ca8bdcaf
TH
2354 css = cgroup_css(cgrp, cft->ss);
2355 if (cft->ss && !css_tryget(css))
2356 css = NULL;
105347ba 2357 rcu_read_unlock();
f4f4be2b 2358
0bfb4aa6 2359 if (!css)
f7d58818 2360 return -ENODEV;
75139b82 2361
0bfb4aa6
TH
2362 /*
2363 * @cfe->css is used by read/write/close to determine the
2364 * associated css. @file->private_data would be a better place but
2365 * that's already used by seqfile. Multiple accessors may use it
2366 * simultaneously which is okay as the association never changes.
2367 */
2368 WARN_ON_ONCE(cfe->css && cfe->css != css);
2369 cfe->css = css;
f4f4be2b 2370
6612f05b
TH
2371 of = __seq_open_private(file, &cgroup_seq_operations,
2372 sizeof(struct cgroup_open_file));
2373 if (of) {
2374 of->cfe = cfe;
2375 return 0;
e0798ce2 2376 }
ddbcc7e8 2377
6612f05b 2378 if (css->ss)
f7d58818 2379 css_put(css);
6612f05b 2380 return -ENOMEM;
ddbcc7e8
PM
2381}
2382
2383static int cgroup_file_release(struct inode *inode, struct file *file)
2384{
f7d58818 2385 struct cfent *cfe = __d_cfe(file->f_dentry);
105347ba 2386 struct cgroup_subsys_state *css = cfe->css;
f7d58818 2387
67f4c36f 2388 if (css->ss)
f7d58818 2389 css_put(css);
6612f05b 2390 return seq_release_private(inode, file);
ddbcc7e8
PM
2391}
2392
2393/*
2394 * cgroup_rename - Only allow simple rename of directories in place.
2395 */
2396static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
2397 struct inode *new_dir, struct dentry *new_dentry)
2398{
65dff759
LZ
2399 int ret;
2400 struct cgroup_name *name, *old_name;
2401 struct cgroup *cgrp;
2402
2403 /*
2404 * It's convinient to use parent dir's i_mutex to protected
2405 * cgrp->name.
2406 */
2407 lockdep_assert_held(&old_dir->i_mutex);
2408
ddbcc7e8
PM
2409 if (!S_ISDIR(old_dentry->d_inode->i_mode))
2410 return -ENOTDIR;
2411 if (new_dentry->d_inode)
2412 return -EEXIST;
2413 if (old_dir != new_dir)
2414 return -EIO;
65dff759
LZ
2415
2416 cgrp = __d_cgrp(old_dentry);
2417
6db8e85c
TH
2418 /*
2419 * This isn't a proper migration and its usefulness is very
2420 * limited. Disallow if sane_behavior.
2421 */
2422 if (cgroup_sane_behavior(cgrp))
2423 return -EPERM;
2424
65dff759
LZ
2425 name = cgroup_alloc_name(new_dentry);
2426 if (!name)
2427 return -ENOMEM;
2428
2429 ret = simple_rename(old_dir, old_dentry, new_dir, new_dentry);
2430 if (ret) {
2431 kfree(name);
2432 return ret;
2433 }
2434
a4ea1cc9 2435 old_name = rcu_dereference_protected(cgrp->name, true);
65dff759
LZ
2436 rcu_assign_pointer(cgrp->name, name);
2437
2438 kfree_rcu(old_name, rcu_head);
2439 return 0;
ddbcc7e8
PM
2440}
2441
03b1cde6
AR
2442static struct simple_xattrs *__d_xattrs(struct dentry *dentry)
2443{
2444 if (S_ISDIR(dentry->d_inode->i_mode))
2445 return &__d_cgrp(dentry)->xattrs;
2446 else
712317ad 2447 return &__d_cfe(dentry)->xattrs;
03b1cde6
AR
2448}
2449
2450static inline int xattr_enabled(struct dentry *dentry)
2451{
2452 struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
93438629 2453 return root->flags & CGRP_ROOT_XATTR;
03b1cde6
AR
2454}
2455
2456static bool is_valid_xattr(const char *name)
2457{
2458 if (!strncmp(name, XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN) ||
2459 !strncmp(name, XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN))
2460 return true;
2461 return false;
2462}
2463
2464static int cgroup_setxattr(struct dentry *dentry, const char *name,
2465 const void *val, size_t size, int flags)
2466{
2467 if (!xattr_enabled(dentry))
2468 return -EOPNOTSUPP;
2469 if (!is_valid_xattr(name))
2470 return -EINVAL;
2471 return simple_xattr_set(__d_xattrs(dentry), name, val, size, flags);
2472}
2473
2474static int cgroup_removexattr(struct dentry *dentry, const char *name)
2475{
2476 if (!xattr_enabled(dentry))
2477 return -EOPNOTSUPP;
2478 if (!is_valid_xattr(name))
2479 return -EINVAL;
2480 return simple_xattr_remove(__d_xattrs(dentry), name);
2481}
2482
2483static ssize_t cgroup_getxattr(struct dentry *dentry, const char *name,
2484 void *buf, size_t size)
2485{
2486 if (!xattr_enabled(dentry))
2487 return -EOPNOTSUPP;
2488 if (!is_valid_xattr(name))
2489 return -EINVAL;
2490 return simple_xattr_get(__d_xattrs(dentry), name, buf, size);
2491}
2492
2493static ssize_t cgroup_listxattr(struct dentry *dentry, char *buf, size_t size)
2494{
2495 if (!xattr_enabled(dentry))
2496 return -EOPNOTSUPP;
2497 return simple_xattr_list(__d_xattrs(dentry), buf, size);
2498}
2499
828c0950 2500static const struct file_operations cgroup_file_operations = {
896f5199 2501 .read = seq_read,
ddbcc7e8
PM
2502 .write = cgroup_file_write,
2503 .llseek = generic_file_llseek,
2504 .open = cgroup_file_open,
2505 .release = cgroup_file_release,
2506};
2507
03b1cde6
AR
2508static const struct inode_operations cgroup_file_inode_operations = {
2509 .setxattr = cgroup_setxattr,
2510 .getxattr = cgroup_getxattr,
2511 .listxattr = cgroup_listxattr,
2512 .removexattr = cgroup_removexattr,
2513};
2514
6e1d5dcc 2515static const struct inode_operations cgroup_dir_inode_operations = {
786e1448 2516 .lookup = simple_lookup,
ddbcc7e8
PM
2517 .mkdir = cgroup_mkdir,
2518 .rmdir = cgroup_rmdir,
2519 .rename = cgroup_rename,
03b1cde6
AR
2520 .setxattr = cgroup_setxattr,
2521 .getxattr = cgroup_getxattr,
2522 .listxattr = cgroup_listxattr,
2523 .removexattr = cgroup_removexattr,
ddbcc7e8
PM
2524};
2525
a5e7ed32 2526static int cgroup_create_file(struct dentry *dentry, umode_t mode,
5adcee1d
NP
2527 struct super_block *sb)
2528{
ddbcc7e8
PM
2529 struct inode *inode;
2530
2531 if (!dentry)
2532 return -ENOENT;
2533 if (dentry->d_inode)
2534 return -EEXIST;
2535
2536 inode = cgroup_new_inode(mode, sb);
2537 if (!inode)
2538 return -ENOMEM;
2539
2540 if (S_ISDIR(mode)) {
2541 inode->i_op = &cgroup_dir_inode_operations;
2542 inode->i_fop = &simple_dir_operations;
2543
2544 /* start off with i_nlink == 2 (for "." entry) */
2545 inc_nlink(inode);
28fd6f30 2546 inc_nlink(dentry->d_parent->d_inode);
ddbcc7e8 2547
b8a2df6a
TH
2548 /*
2549 * Control reaches here with cgroup_mutex held.
2550 * @inode->i_mutex should nest outside cgroup_mutex but we
2551 * want to populate it immediately without releasing
2552 * cgroup_mutex. As @inode isn't visible to anyone else
2553 * yet, trylock will always succeed without affecting
2554 * lockdep checks.
2555 */
2556 WARN_ON_ONCE(!mutex_trylock(&inode->i_mutex));
ddbcc7e8
PM
2557 } else if (S_ISREG(mode)) {
2558 inode->i_size = 0;
2559 inode->i_fop = &cgroup_file_operations;
03b1cde6 2560 inode->i_op = &cgroup_file_inode_operations;
ddbcc7e8 2561 }
ddbcc7e8
PM
2562 d_instantiate(dentry, inode);
2563 dget(dentry); /* Extra count - pin the dentry in core */
2564 return 0;
2565}
2566
099fca32
LZ
2567/**
2568 * cgroup_file_mode - deduce file mode of a control file
2569 * @cft: the control file in question
2570 *
2571 * returns cft->mode if ->mode is not 0
2572 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
2573 * returns S_IRUGO if it has only a read handler
2574 * returns S_IWUSR if it has only a write hander
2575 */
a5e7ed32 2576static umode_t cgroup_file_mode(const struct cftype *cft)
099fca32 2577{
a5e7ed32 2578 umode_t mode = 0;
099fca32
LZ
2579
2580 if (cft->mode)
2581 return cft->mode;
2582
2da8ca82 2583 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
099fca32
LZ
2584 mode |= S_IRUGO;
2585
6e0755b0
TH
2586 if (cft->write_u64 || cft->write_s64 || cft->write_string ||
2587 cft->trigger)
099fca32
LZ
2588 mode |= S_IWUSR;
2589
2590 return mode;
2591}
2592
2bb566cb 2593static int cgroup_add_file(struct cgroup *cgrp, struct cftype *cft)
ddbcc7e8 2594{
bd89aabc 2595 struct dentry *dir = cgrp->dentry;
05ef1d7c 2596 struct cgroup *parent = __d_cgrp(dir);
ddbcc7e8 2597 struct dentry *dentry;
05ef1d7c 2598 struct cfent *cfe;
ddbcc7e8 2599 int error;
a5e7ed32 2600 umode_t mode;
ddbcc7e8 2601 char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
8e3f6541 2602
9fa4db33
TH
2603 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
2604 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) {
2bb566cb 2605 strcpy(name, cft->ss->name);
ddbcc7e8
PM
2606 strcat(name, ".");
2607 }
2608 strcat(name, cft->name);
05ef1d7c 2609
ddbcc7e8 2610 BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
05ef1d7c
TH
2611
2612 cfe = kzalloc(sizeof(*cfe), GFP_KERNEL);
2613 if (!cfe)
2614 return -ENOMEM;
2615
ddbcc7e8 2616 dentry = lookup_one_len(name, dir, strlen(name));
05ef1d7c 2617 if (IS_ERR(dentry)) {
ddbcc7e8 2618 error = PTR_ERR(dentry);
05ef1d7c
TH
2619 goto out;
2620 }
2621
d6cbf35d
LZ
2622 cfe->type = (void *)cft;
2623 cfe->dentry = dentry;
2624 dentry->d_fsdata = cfe;
2625 simple_xattrs_init(&cfe->xattrs);
2626
05ef1d7c
TH
2627 mode = cgroup_file_mode(cft);
2628 error = cgroup_create_file(dentry, mode | S_IFREG, cgrp->root->sb);
2629 if (!error) {
05ef1d7c
TH
2630 list_add_tail(&cfe->node, &parent->files);
2631 cfe = NULL;
2632 }
2633 dput(dentry);
2634out:
2635 kfree(cfe);
ddbcc7e8
PM
2636 return error;
2637}
2638
b1f28d31
TH
2639/**
2640 * cgroup_addrm_files - add or remove files to a cgroup directory
2641 * @cgrp: the target cgroup
b1f28d31
TH
2642 * @cfts: array of cftypes to be added
2643 * @is_add: whether to add or remove
2644 *
2645 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
2bb566cb
TH
2646 * For removals, this function never fails. If addition fails, this
2647 * function doesn't remove files already added. The caller is responsible
2648 * for cleaning up.
b1f28d31 2649 */
2bb566cb
TH
2650static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
2651 bool is_add)
ddbcc7e8 2652{
03b1cde6 2653 struct cftype *cft;
b1f28d31
TH
2654 int ret;
2655
2656 lockdep_assert_held(&cgrp->dentry->d_inode->i_mutex);
ace2bee8 2657 lockdep_assert_held(&cgroup_tree_mutex);
db0416b6
TH
2658
2659 for (cft = cfts; cft->name[0] != '\0'; cft++) {
f33fddc2 2660 /* does cft->flags tell us to skip this file on @cgrp? */
873fe09e
TH
2661 if ((cft->flags & CFTYPE_INSANE) && cgroup_sane_behavior(cgrp))
2662 continue;
f33fddc2
G
2663 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgrp->parent)
2664 continue;
2665 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgrp->parent)
2666 continue;
2667
2739d3cc 2668 if (is_add) {
2bb566cb 2669 ret = cgroup_add_file(cgrp, cft);
b1f28d31 2670 if (ret) {
2739d3cc 2671 pr_warn("cgroup_addrm_files: failed to add %s, err=%d\n",
b1f28d31
TH
2672 cft->name, ret);
2673 return ret;
2674 }
2739d3cc
LZ
2675 } else {
2676 cgroup_rm_file(cgrp, cft);
db0416b6 2677 }
ddbcc7e8 2678 }
b1f28d31 2679 return 0;
ddbcc7e8
PM
2680}
2681
8e3f6541 2682static void cgroup_cfts_prepare(void)
e8c82d20 2683 __acquires(&cgroup_mutex)
8e3f6541
TH
2684{
2685 /*
2686 * Thanks to the entanglement with vfs inode locking, we can't walk
2687 * the existing cgroups under cgroup_mutex and create files.
492eb21b
TH
2688 * Instead, we use css_for_each_descendant_pre() and drop RCU read
2689 * lock before calling cgroup_addrm_files().
8e3f6541 2690 */
ace2bee8 2691 mutex_lock(&cgroup_tree_mutex);
8e3f6541
TH
2692 mutex_lock(&cgroup_mutex);
2693}
2694
2bb566cb 2695static int cgroup_cfts_commit(struct cftype *cfts, bool is_add)
e8c82d20 2696 __releases(&cgroup_mutex)
8e3f6541
TH
2697{
2698 LIST_HEAD(pending);
2bb566cb 2699 struct cgroup_subsys *ss = cfts[0].ss;
492eb21b 2700 struct cgroup *root = &ss->root->top_cgroup;
084457f2 2701 struct super_block *sb = ss->root->sb;
e8c82d20
LZ
2702 struct dentry *prev = NULL;
2703 struct inode *inode;
492eb21b 2704 struct cgroup_subsys_state *css;
00356bd5 2705 u64 update_before;
9ccece80 2706 int ret = 0;
8e3f6541 2707
4ac06017
TH
2708 mutex_unlock(&cgroup_mutex);
2709
8e3f6541 2710 /* %NULL @cfts indicates abort and don't bother if @ss isn't attached */
9871bf95 2711 if (!cfts || ss->root == &cgroup_dummy_root ||
e8c82d20 2712 !atomic_inc_not_zero(&sb->s_active)) {
ace2bee8 2713 mutex_unlock(&cgroup_tree_mutex);
9ccece80 2714 return 0;
8e3f6541
TH
2715 }
2716
8e3f6541 2717 /*
e8c82d20
LZ
2718 * All cgroups which are created after we drop cgroup_mutex will
2719 * have the updated set of files, so we only need to update the
00356bd5 2720 * cgroups created before the current @cgroup_serial_nr_next.
8e3f6541 2721 */
00356bd5 2722 update_before = cgroup_serial_nr_next;
e8c82d20 2723
e8c82d20 2724 /* add/rm files for all cgroups created before */
ca8bdcaf 2725 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
492eb21b
TH
2726 struct cgroup *cgrp = css->cgroup;
2727
e8c82d20
LZ
2728 if (cgroup_is_dead(cgrp))
2729 continue;
2730
2731 inode = cgrp->dentry->d_inode;
2732 dget(cgrp->dentry);
e8c82d20
LZ
2733 dput(prev);
2734 prev = cgrp->dentry;
8e3f6541 2735
ace2bee8 2736 mutex_unlock(&cgroup_tree_mutex);
8e3f6541 2737 mutex_lock(&inode->i_mutex);
ace2bee8 2738 mutex_lock(&cgroup_tree_mutex);
00356bd5 2739 if (cgrp->serial_nr < update_before && !cgroup_is_dead(cgrp))
2bb566cb 2740 ret = cgroup_addrm_files(cgrp, cfts, is_add);
8e3f6541 2741 mutex_unlock(&inode->i_mutex);
9ccece80
TH
2742 if (ret)
2743 break;
8e3f6541 2744 }
ace2bee8 2745 mutex_unlock(&cgroup_tree_mutex);
e8c82d20
LZ
2746 dput(prev);
2747 deactivate_super(sb);
9ccece80 2748 return ret;
8e3f6541
TH
2749}
2750
2751/**
2752 * cgroup_add_cftypes - add an array of cftypes to a subsystem
2753 * @ss: target cgroup subsystem
2754 * @cfts: zero-length name terminated array of cftypes
2755 *
2756 * Register @cfts to @ss. Files described by @cfts are created for all
2757 * existing cgroups to which @ss is attached and all future cgroups will
2758 * have them too. This function can be called anytime whether @ss is
2759 * attached or not.
2760 *
2761 * Returns 0 on successful registration, -errno on failure. Note that this
2762 * function currently returns 0 as long as @cfts registration is successful
2763 * even if some file creation attempts on existing cgroups fail.
2764 */
03b1cde6 2765int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
8e3f6541
TH
2766{
2767 struct cftype_set *set;
2bb566cb 2768 struct cftype *cft;
9ccece80 2769 int ret;
8e3f6541
TH
2770
2771 set = kzalloc(sizeof(*set), GFP_KERNEL);
2772 if (!set)
2773 return -ENOMEM;
2774
2bb566cb
TH
2775 for (cft = cfts; cft->name[0] != '\0'; cft++)
2776 cft->ss = ss;
2777
8e3f6541
TH
2778 cgroup_cfts_prepare();
2779 set->cfts = cfts;
2780 list_add_tail(&set->node, &ss->cftsets);
2bb566cb 2781 ret = cgroup_cfts_commit(cfts, true);
9ccece80 2782 if (ret)
2bb566cb 2783 cgroup_rm_cftypes(cfts);
9ccece80 2784 return ret;
8e3f6541
TH
2785}
2786EXPORT_SYMBOL_GPL(cgroup_add_cftypes);
2787
79578621
TH
2788/**
2789 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
79578621
TH
2790 * @cfts: zero-length name terminated array of cftypes
2791 *
2bb566cb
TH
2792 * Unregister @cfts. Files described by @cfts are removed from all
2793 * existing cgroups and all future cgroups won't have them either. This
2794 * function can be called anytime whether @cfts' subsys is attached or not.
79578621
TH
2795 *
2796 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
2bb566cb 2797 * registered.
79578621 2798 */
2bb566cb 2799int cgroup_rm_cftypes(struct cftype *cfts)
79578621
TH
2800{
2801 struct cftype_set *set;
2802
2bb566cb
TH
2803 if (!cfts || !cfts[0].ss)
2804 return -ENOENT;
2805
79578621
TH
2806 cgroup_cfts_prepare();
2807
2bb566cb 2808 list_for_each_entry(set, &cfts[0].ss->cftsets, node) {
79578621 2809 if (set->cfts == cfts) {
f57947d2
LZ
2810 list_del(&set->node);
2811 kfree(set);
2bb566cb 2812 cgroup_cfts_commit(cfts, false);
79578621
TH
2813 return 0;
2814 }
2815 }
2816
2bb566cb 2817 cgroup_cfts_commit(NULL, false);
79578621
TH
2818 return -ENOENT;
2819}
2820
a043e3b2
LZ
2821/**
2822 * cgroup_task_count - count the number of tasks in a cgroup.
2823 * @cgrp: the cgroup in question
2824 *
2825 * Return the number of tasks in the cgroup.
2826 */
bd89aabc 2827int cgroup_task_count(const struct cgroup *cgrp)
bbcb81d0
PM
2828{
2829 int count = 0;
69d0206c 2830 struct cgrp_cset_link *link;
817929ec
PM
2831
2832 read_lock(&css_set_lock);
69d0206c
TH
2833 list_for_each_entry(link, &cgrp->cset_links, cset_link)
2834 count += atomic_read(&link->cset->refcount);
817929ec 2835 read_unlock(&css_set_lock);
bbcb81d0
PM
2836 return count;
2837}
2838
817929ec 2839/*
0942eeee
TH
2840 * To reduce the fork() overhead for systems that are not actually using
2841 * their cgroups capability, we don't maintain the lists running through
2842 * each css_set to its tasks until we see the list actually used - in other
72ec7029 2843 * words after the first call to css_task_iter_start().
31a7df01 2844 */
3df91fe3 2845static void cgroup_enable_task_cg_lists(void)
31a7df01
CW
2846{
2847 struct task_struct *p, *g;
2848 write_lock(&css_set_lock);
2849 use_task_css_set_links = 1;
3ce3230a
FW
2850 /*
2851 * We need tasklist_lock because RCU is not safe against
2852 * while_each_thread(). Besides, a forking task that has passed
2853 * cgroup_post_fork() without seeing use_task_css_set_links = 1
2854 * is not guaranteed to have its child immediately visible in the
2855 * tasklist if we walk through it with RCU.
2856 */
2857 read_lock(&tasklist_lock);
31a7df01
CW
2858 do_each_thread(g, p) {
2859 task_lock(p);
0e04388f
LZ
2860 /*
2861 * We should check if the process is exiting, otherwise
2862 * it will race with cgroup_exit() in that the list
2863 * entry won't be deleted though the process has exited.
2864 */
2865 if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
a8ad805c 2866 list_add(&p->cg_list, &task_css_set(p)->tasks);
31a7df01
CW
2867 task_unlock(p);
2868 } while_each_thread(g, p);
3ce3230a 2869 read_unlock(&tasklist_lock);
31a7df01
CW
2870 write_unlock(&css_set_lock);
2871}
2872
53fa5261 2873/**
492eb21b
TH
2874 * css_next_child - find the next child of a given css
2875 * @pos_css: the current position (%NULL to initiate traversal)
2876 * @parent_css: css whose children to walk
53fa5261 2877 *
492eb21b 2878 * This function returns the next child of @parent_css and should be called
87fb54f1
TH
2879 * under either cgroup_mutex or RCU read lock. The only requirement is
2880 * that @parent_css and @pos_css are accessible. The next sibling is
2881 * guaranteed to be returned regardless of their states.
53fa5261 2882 */
492eb21b
TH
2883struct cgroup_subsys_state *
2884css_next_child(struct cgroup_subsys_state *pos_css,
2885 struct cgroup_subsys_state *parent_css)
53fa5261 2886{
492eb21b
TH
2887 struct cgroup *pos = pos_css ? pos_css->cgroup : NULL;
2888 struct cgroup *cgrp = parent_css->cgroup;
53fa5261
TH
2889 struct cgroup *next;
2890
ace2bee8 2891 cgroup_assert_mutexes_or_rcu_locked();
53fa5261
TH
2892
2893 /*
2894 * @pos could already have been removed. Once a cgroup is removed,
2895 * its ->sibling.next is no longer updated when its next sibling
ea15f8cc
TH
2896 * changes. As CGRP_DEAD assertion is serialized and happens
2897 * before the cgroup is taken off the ->sibling list, if we see it
2898 * unasserted, it's guaranteed that the next sibling hasn't
2899 * finished its grace period even if it's already removed, and thus
2900 * safe to dereference from this RCU critical section. If
2901 * ->sibling.next is inaccessible, cgroup_is_dead() is guaranteed
2902 * to be visible as %true here.
3b287a50
TH
2903 *
2904 * If @pos is dead, its next pointer can't be dereferenced;
2905 * however, as each cgroup is given a monotonically increasing
2906 * unique serial number and always appended to the sibling list,
2907 * the next one can be found by walking the parent's children until
2908 * we see a cgroup with higher serial number than @pos's. While
2909 * this path can be slower, it's taken only when either the current
2910 * cgroup is removed or iteration and removal race.
53fa5261 2911 */
3b287a50
TH
2912 if (!pos) {
2913 next = list_entry_rcu(cgrp->children.next, struct cgroup, sibling);
2914 } else if (likely(!cgroup_is_dead(pos))) {
53fa5261 2915 next = list_entry_rcu(pos->sibling.next, struct cgroup, sibling);
3b287a50
TH
2916 } else {
2917 list_for_each_entry_rcu(next, &cgrp->children, sibling)
2918 if (next->serial_nr > pos->serial_nr)
2919 break;
53fa5261
TH
2920 }
2921
492eb21b
TH
2922 if (&next->sibling == &cgrp->children)
2923 return NULL;
2924
ca8bdcaf 2925 return cgroup_css(next, parent_css->ss);
53fa5261 2926}
492eb21b 2927EXPORT_SYMBOL_GPL(css_next_child);
53fa5261 2928
574bd9f7 2929/**
492eb21b 2930 * css_next_descendant_pre - find the next descendant for pre-order walk
574bd9f7 2931 * @pos: the current position (%NULL to initiate traversal)
492eb21b 2932 * @root: css whose descendants to walk
574bd9f7 2933 *
492eb21b 2934 * To be used by css_for_each_descendant_pre(). Find the next descendant
bd8815a6
TH
2935 * to visit for pre-order traversal of @root's descendants. @root is
2936 * included in the iteration and the first node to be visited.
75501a6d 2937 *
87fb54f1
TH
2938 * While this function requires cgroup_mutex or RCU read locking, it
2939 * doesn't require the whole traversal to be contained in a single critical
2940 * section. This function will return the correct next descendant as long
2941 * as both @pos and @root are accessible and @pos is a descendant of @root.
574bd9f7 2942 */
492eb21b
TH
2943struct cgroup_subsys_state *
2944css_next_descendant_pre(struct cgroup_subsys_state *pos,
2945 struct cgroup_subsys_state *root)
574bd9f7 2946{
492eb21b 2947 struct cgroup_subsys_state *next;
574bd9f7 2948
ace2bee8 2949 cgroup_assert_mutexes_or_rcu_locked();
574bd9f7 2950
bd8815a6 2951 /* if first iteration, visit @root */
7805d000 2952 if (!pos)
bd8815a6 2953 return root;
574bd9f7
TH
2954
2955 /* visit the first child if exists */
492eb21b 2956 next = css_next_child(NULL, pos);
574bd9f7
TH
2957 if (next)
2958 return next;
2959
2960 /* no child, visit my or the closest ancestor's next sibling */
492eb21b
TH
2961 while (pos != root) {
2962 next = css_next_child(pos, css_parent(pos));
75501a6d 2963 if (next)
574bd9f7 2964 return next;
492eb21b 2965 pos = css_parent(pos);
7805d000 2966 }
574bd9f7
TH
2967
2968 return NULL;
2969}
492eb21b 2970EXPORT_SYMBOL_GPL(css_next_descendant_pre);
574bd9f7 2971
12a9d2fe 2972/**
492eb21b
TH
2973 * css_rightmost_descendant - return the rightmost descendant of a css
2974 * @pos: css of interest
12a9d2fe 2975 *
492eb21b
TH
2976 * Return the rightmost descendant of @pos. If there's no descendant, @pos
2977 * is returned. This can be used during pre-order traversal to skip
12a9d2fe 2978 * subtree of @pos.
75501a6d 2979 *
87fb54f1
TH
2980 * While this function requires cgroup_mutex or RCU read locking, it
2981 * doesn't require the whole traversal to be contained in a single critical
2982 * section. This function will return the correct rightmost descendant as
2983 * long as @pos is accessible.
12a9d2fe 2984 */
492eb21b
TH
2985struct cgroup_subsys_state *
2986css_rightmost_descendant(struct cgroup_subsys_state *pos)
12a9d2fe 2987{
492eb21b 2988 struct cgroup_subsys_state *last, *tmp;
12a9d2fe 2989
ace2bee8 2990 cgroup_assert_mutexes_or_rcu_locked();
12a9d2fe
TH
2991
2992 do {
2993 last = pos;
2994 /* ->prev isn't RCU safe, walk ->next till the end */
2995 pos = NULL;
492eb21b 2996 css_for_each_child(tmp, last)
12a9d2fe
TH
2997 pos = tmp;
2998 } while (pos);
2999
3000 return last;
3001}
492eb21b 3002EXPORT_SYMBOL_GPL(css_rightmost_descendant);
12a9d2fe 3003
492eb21b
TH
3004static struct cgroup_subsys_state *
3005css_leftmost_descendant(struct cgroup_subsys_state *pos)
574bd9f7 3006{
492eb21b 3007 struct cgroup_subsys_state *last;
574bd9f7
TH
3008
3009 do {
3010 last = pos;
492eb21b 3011 pos = css_next_child(NULL, pos);
574bd9f7
TH
3012 } while (pos);
3013
3014 return last;
3015}
3016
3017/**
492eb21b 3018 * css_next_descendant_post - find the next descendant for post-order walk
574bd9f7 3019 * @pos: the current position (%NULL to initiate traversal)
492eb21b 3020 * @root: css whose descendants to walk
574bd9f7 3021 *
492eb21b 3022 * To be used by css_for_each_descendant_post(). Find the next descendant
bd8815a6
TH
3023 * to visit for post-order traversal of @root's descendants. @root is
3024 * included in the iteration and the last node to be visited.
75501a6d 3025 *
87fb54f1
TH
3026 * While this function requires cgroup_mutex or RCU read locking, it
3027 * doesn't require the whole traversal to be contained in a single critical
3028 * section. This function will return the correct next descendant as long
3029 * as both @pos and @cgroup are accessible and @pos is a descendant of
3030 * @cgroup.
574bd9f7 3031 */
492eb21b
TH
3032struct cgroup_subsys_state *
3033css_next_descendant_post(struct cgroup_subsys_state *pos,
3034 struct cgroup_subsys_state *root)
574bd9f7 3035{
492eb21b 3036 struct cgroup_subsys_state *next;
574bd9f7 3037
ace2bee8 3038 cgroup_assert_mutexes_or_rcu_locked();
574bd9f7 3039
58b79a91
TH
3040 /* if first iteration, visit leftmost descendant which may be @root */
3041 if (!pos)
3042 return css_leftmost_descendant(root);
574bd9f7 3043
bd8815a6
TH
3044 /* if we visited @root, we're done */
3045 if (pos == root)
3046 return NULL;
3047
574bd9f7 3048 /* if there's an unvisited sibling, visit its leftmost descendant */
492eb21b 3049 next = css_next_child(pos, css_parent(pos));
75501a6d 3050 if (next)
492eb21b 3051 return css_leftmost_descendant(next);
574bd9f7
TH
3052
3053 /* no sibling left, visit parent */
bd8815a6 3054 return css_parent(pos);
574bd9f7 3055}
492eb21b 3056EXPORT_SYMBOL_GPL(css_next_descendant_post);
574bd9f7 3057
0942eeee 3058/**
72ec7029 3059 * css_advance_task_iter - advance a task itererator to the next css_set
0942eeee
TH
3060 * @it: the iterator to advance
3061 *
3062 * Advance @it to the next css_set to walk.
d515876e 3063 */
72ec7029 3064static void css_advance_task_iter(struct css_task_iter *it)
d515876e
TH
3065{
3066 struct list_head *l = it->cset_link;
3067 struct cgrp_cset_link *link;
3068 struct css_set *cset;
3069
3070 /* Advance to the next non-empty css_set */
3071 do {
3072 l = l->next;
72ec7029 3073 if (l == &it->origin_css->cgroup->cset_links) {
d515876e
TH
3074 it->cset_link = NULL;
3075 return;
3076 }
3077 link = list_entry(l, struct cgrp_cset_link, cset_link);
3078 cset = link->cset;
3079 } while (list_empty(&cset->tasks));
3080 it->cset_link = l;
3081 it->task = cset->tasks.next;
3082}
3083
0942eeee 3084/**
72ec7029
TH
3085 * css_task_iter_start - initiate task iteration
3086 * @css: the css to walk tasks of
0942eeee
TH
3087 * @it: the task iterator to use
3088 *
72ec7029
TH
3089 * Initiate iteration through the tasks of @css. The caller can call
3090 * css_task_iter_next() to walk through the tasks until the function
3091 * returns NULL. On completion of iteration, css_task_iter_end() must be
3092 * called.
0942eeee
TH
3093 *
3094 * Note that this function acquires a lock which is released when the
3095 * iteration finishes. The caller can't sleep while iteration is in
3096 * progress.
3097 */
72ec7029
TH
3098void css_task_iter_start(struct cgroup_subsys_state *css,
3099 struct css_task_iter *it)
c6ca5750 3100 __acquires(css_set_lock)
817929ec
PM
3101{
3102 /*
72ec7029
TH
3103 * The first time anyone tries to iterate across a css, we need to
3104 * enable the list linking each css_set to its tasks, and fix up
3105 * all existing tasks.
817929ec 3106 */
31a7df01
CW
3107 if (!use_task_css_set_links)
3108 cgroup_enable_task_cg_lists();
3109
817929ec 3110 read_lock(&css_set_lock);
c59cd3d8 3111
72ec7029
TH
3112 it->origin_css = css;
3113 it->cset_link = &css->cgroup->cset_links;
c59cd3d8 3114
72ec7029 3115 css_advance_task_iter(it);
817929ec
PM
3116}
3117
0942eeee 3118/**
72ec7029 3119 * css_task_iter_next - return the next task for the iterator
0942eeee
TH
3120 * @it: the task iterator being iterated
3121 *
3122 * The "next" function for task iteration. @it should have been
72ec7029
TH
3123 * initialized via css_task_iter_start(). Returns NULL when the iteration
3124 * reaches the end.
0942eeee 3125 */
72ec7029 3126struct task_struct *css_task_iter_next(struct css_task_iter *it)
817929ec
PM
3127{
3128 struct task_struct *res;
3129 struct list_head *l = it->task;
69d0206c 3130 struct cgrp_cset_link *link;
817929ec
PM
3131
3132 /* If the iterator cg is NULL, we have no tasks */
69d0206c 3133 if (!it->cset_link)
817929ec
PM
3134 return NULL;
3135 res = list_entry(l, struct task_struct, cg_list);
3136 /* Advance iterator to find next entry */
3137 l = l->next;
69d0206c
TH
3138 link = list_entry(it->cset_link, struct cgrp_cset_link, cset_link);
3139 if (l == &link->cset->tasks) {
0942eeee
TH
3140 /*
3141 * We reached the end of this task list - move on to the
3142 * next cgrp_cset_link.
3143 */
72ec7029 3144 css_advance_task_iter(it);
817929ec
PM
3145 } else {
3146 it->task = l;
3147 }
3148 return res;
3149}
3150
0942eeee 3151/**
72ec7029 3152 * css_task_iter_end - finish task iteration
0942eeee
TH
3153 * @it: the task iterator to finish
3154 *
72ec7029 3155 * Finish task iteration started by css_task_iter_start().
0942eeee 3156 */
72ec7029 3157void css_task_iter_end(struct css_task_iter *it)
c6ca5750 3158 __releases(css_set_lock)
817929ec
PM
3159{
3160 read_unlock(&css_set_lock);
3161}
3162
31a7df01
CW
3163static inline int started_after_time(struct task_struct *t1,
3164 struct timespec *time,
3165 struct task_struct *t2)
3166{
3167 int start_diff = timespec_compare(&t1->start_time, time);
3168 if (start_diff > 0) {
3169 return 1;
3170 } else if (start_diff < 0) {
3171 return 0;
3172 } else {
3173 /*
3174 * Arbitrarily, if two processes started at the same
3175 * time, we'll say that the lower pointer value
3176 * started first. Note that t2 may have exited by now
3177 * so this may not be a valid pointer any longer, but
3178 * that's fine - it still serves to distinguish
3179 * between two tasks started (effectively) simultaneously.
3180 */
3181 return t1 > t2;
3182 }
3183}
3184
3185/*
3186 * This function is a callback from heap_insert() and is used to order
3187 * the heap.
3188 * In this case we order the heap in descending task start time.
3189 */
3190static inline int started_after(void *p1, void *p2)
3191{
3192 struct task_struct *t1 = p1;
3193 struct task_struct *t2 = p2;
3194 return started_after_time(t1, &t2->start_time, t2);
3195}
3196
3197/**
72ec7029
TH
3198 * css_scan_tasks - iterate though all the tasks in a css
3199 * @css: the css to iterate tasks of
e535837b
TH
3200 * @test: optional test callback
3201 * @process: process callback
3202 * @data: data passed to @test and @process
3203 * @heap: optional pre-allocated heap used for task iteration
31a7df01 3204 *
72ec7029
TH
3205 * Iterate through all the tasks in @css, calling @test for each, and if it
3206 * returns %true, call @process for it also.
31a7df01 3207 *
e535837b 3208 * @test may be NULL, meaning always true (select all tasks), which
72ec7029 3209 * effectively duplicates css_task_iter_{start,next,end}() but does not
e535837b
TH
3210 * lock css_set_lock for the call to @process.
3211 *
3212 * It is guaranteed that @process will act on every task that is a member
72ec7029
TH
3213 * of @css for the duration of this call. This function may or may not
3214 * call @process for tasks that exit or move to a different css during the
3215 * call, or are forked or move into the css during the call.
31a7df01 3216 *
e535837b
TH
3217 * Note that @test may be called with locks held, and may in some
3218 * situations be called multiple times for the same task, so it should be
3219 * cheap.
31a7df01 3220 *
e535837b
TH
3221 * If @heap is non-NULL, a heap has been pre-allocated and will be used for
3222 * heap operations (and its "gt" member will be overwritten), else a
3223 * temporary heap will be used (allocation of which may cause this function
3224 * to fail).
31a7df01 3225 */
72ec7029
TH
3226int css_scan_tasks(struct cgroup_subsys_state *css,
3227 bool (*test)(struct task_struct *, void *),
3228 void (*process)(struct task_struct *, void *),
3229 void *data, struct ptr_heap *heap)
31a7df01
CW
3230{
3231 int retval, i;
72ec7029 3232 struct css_task_iter it;
31a7df01
CW
3233 struct task_struct *p, *dropped;
3234 /* Never dereference latest_task, since it's not refcounted */
3235 struct task_struct *latest_task = NULL;
3236 struct ptr_heap tmp_heap;
31a7df01
CW
3237 struct timespec latest_time = { 0, 0 };
3238
e535837b 3239 if (heap) {
31a7df01 3240 /* The caller supplied our heap and pre-allocated its memory */
31a7df01
CW
3241 heap->gt = &started_after;
3242 } else {
3243 /* We need to allocate our own heap memory */
3244 heap = &tmp_heap;
3245 retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
3246 if (retval)
3247 /* cannot allocate the heap */
3248 return retval;
3249 }
3250
3251 again:
3252 /*
72ec7029 3253 * Scan tasks in the css, using the @test callback to determine
e535837b
TH
3254 * which are of interest, and invoking @process callback on the
3255 * ones which need an update. Since we don't want to hold any
3256 * locks during the task updates, gather tasks to be processed in a
3257 * heap structure. The heap is sorted by descending task start
3258 * time. If the statically-sized heap fills up, we overflow tasks
3259 * that started later, and in future iterations only consider tasks
3260 * that started after the latest task in the previous pass. This
31a7df01
CW
3261 * guarantees forward progress and that we don't miss any tasks.
3262 */
3263 heap->size = 0;
72ec7029
TH
3264 css_task_iter_start(css, &it);
3265 while ((p = css_task_iter_next(&it))) {
31a7df01
CW
3266 /*
3267 * Only affect tasks that qualify per the caller's callback,
3268 * if he provided one
3269 */
e535837b 3270 if (test && !test(p, data))
31a7df01
CW
3271 continue;
3272 /*
3273 * Only process tasks that started after the last task
3274 * we processed
3275 */
3276 if (!started_after_time(p, &latest_time, latest_task))
3277 continue;
3278 dropped = heap_insert(heap, p);
3279 if (dropped == NULL) {
3280 /*
3281 * The new task was inserted; the heap wasn't
3282 * previously full
3283 */
3284 get_task_struct(p);
3285 } else if (dropped != p) {
3286 /*
3287 * The new task was inserted, and pushed out a
3288 * different task
3289 */
3290 get_task_struct(p);
3291 put_task_struct(dropped);
3292 }
3293 /*
3294 * Else the new task was newer than anything already in
3295 * the heap and wasn't inserted
3296 */
3297 }
72ec7029 3298 css_task_iter_end(&it);
31a7df01
CW
3299
3300 if (heap->size) {
3301 for (i = 0; i < heap->size; i++) {
4fe91d51 3302 struct task_struct *q = heap->ptrs[i];
31a7df01 3303 if (i == 0) {
4fe91d51
PJ
3304 latest_time = q->start_time;
3305 latest_task = q;
31a7df01
CW
3306 }
3307 /* Process the task per the caller's callback */
e535837b 3308 process(q, data);
4fe91d51 3309 put_task_struct(q);
31a7df01
CW
3310 }
3311 /*
3312 * If we had to process any tasks at all, scan again
3313 * in case some of them were in the middle of forking
3314 * children that didn't get processed.
3315 * Not the most efficient way to do it, but it avoids
3316 * having to take callback_mutex in the fork path
3317 */
3318 goto again;
3319 }
3320 if (heap == &tmp_heap)
3321 heap_free(&tmp_heap);
3322 return 0;
3323}
3324
e535837b 3325static void cgroup_transfer_one_task(struct task_struct *task, void *data)
8cc99345 3326{
e535837b 3327 struct cgroup *new_cgroup = data;
8cc99345 3328
47cfcd09 3329 mutex_lock(&cgroup_mutex);
8cc99345 3330 cgroup_attach_task(new_cgroup, task, false);
47cfcd09 3331 mutex_unlock(&cgroup_mutex);
8cc99345
TH
3332}
3333
3334/**
3335 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
3336 * @to: cgroup to which the tasks will be moved
3337 * @from: cgroup in which the tasks currently reside
3338 */
3339int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
3340{
72ec7029
TH
3341 return css_scan_tasks(&from->dummy_css, NULL, cgroup_transfer_one_task,
3342 to, NULL);
8cc99345
TH
3343}
3344
bbcb81d0 3345/*
102a775e 3346 * Stuff for reading the 'tasks'/'procs' files.
bbcb81d0
PM
3347 *
3348 * Reading this file can return large amounts of data if a cgroup has
3349 * *lots* of attached tasks. So it may need several calls to read(),
3350 * but we cannot guarantee that the information we produce is correct
3351 * unless we produce it entirely atomically.
3352 *
bbcb81d0 3353 */
bbcb81d0 3354
24528255
LZ
3355/* which pidlist file are we talking about? */
3356enum cgroup_filetype {
3357 CGROUP_FILE_PROCS,
3358 CGROUP_FILE_TASKS,
3359};
3360
3361/*
3362 * A pidlist is a list of pids that virtually represents the contents of one
3363 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
3364 * a pair (one each for procs, tasks) for each pid namespace that's relevant
3365 * to the cgroup.
3366 */
3367struct cgroup_pidlist {
3368 /*
3369 * used to find which pidlist is wanted. doesn't change as long as
3370 * this particular list stays in the list.
3371 */
3372 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
3373 /* array of xids */
3374 pid_t *list;
3375 /* how many elements the above list has */
3376 int length;
24528255
LZ
3377 /* each of these stored in a list by its cgroup */
3378 struct list_head links;
3379 /* pointer to the cgroup we belong to, for list removal purposes */
3380 struct cgroup *owner;
b1a21367
TH
3381 /* for delayed destruction */
3382 struct delayed_work destroy_dwork;
24528255
LZ
3383};
3384
d1d9fd33
BB
3385/*
3386 * The following two functions "fix" the issue where there are more pids
3387 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
3388 * TODO: replace with a kernel-wide solution to this problem
3389 */
3390#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
3391static void *pidlist_allocate(int count)
3392{
3393 if (PIDLIST_TOO_LARGE(count))
3394 return vmalloc(count * sizeof(pid_t));
3395 else
3396 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
3397}
b1a21367 3398
d1d9fd33
BB
3399static void pidlist_free(void *p)
3400{
3401 if (is_vmalloc_addr(p))
3402 vfree(p);
3403 else
3404 kfree(p);
3405}
d1d9fd33 3406
b1a21367
TH
3407/*
3408 * Used to destroy all pidlists lingering waiting for destroy timer. None
3409 * should be left afterwards.
3410 */
3411static void cgroup_pidlist_destroy_all(struct cgroup *cgrp)
3412{
3413 struct cgroup_pidlist *l, *tmp_l;
3414
3415 mutex_lock(&cgrp->pidlist_mutex);
3416 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
3417 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
3418 mutex_unlock(&cgrp->pidlist_mutex);
3419
3420 flush_workqueue(cgroup_pidlist_destroy_wq);
3421 BUG_ON(!list_empty(&cgrp->pidlists));
3422}
3423
3424static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
3425{
3426 struct delayed_work *dwork = to_delayed_work(work);
3427 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
3428 destroy_dwork);
3429 struct cgroup_pidlist *tofree = NULL;
3430
3431 mutex_lock(&l->owner->pidlist_mutex);
b1a21367
TH
3432
3433 /*
04502365
TH
3434 * Destroy iff we didn't get queued again. The state won't change
3435 * as destroy_dwork can only be queued while locked.
b1a21367 3436 */
04502365 3437 if (!delayed_work_pending(dwork)) {
b1a21367
TH
3438 list_del(&l->links);
3439 pidlist_free(l->list);
3440 put_pid_ns(l->key.ns);
3441 tofree = l;
3442 }
3443
b1a21367
TH
3444 mutex_unlock(&l->owner->pidlist_mutex);
3445 kfree(tofree);
3446}
3447
bbcb81d0 3448/*
102a775e 3449 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
6ee211ad 3450 * Returns the number of unique elements.
bbcb81d0 3451 */
6ee211ad 3452static int pidlist_uniq(pid_t *list, int length)
bbcb81d0 3453{
102a775e 3454 int src, dest = 1;
102a775e
BB
3455
3456 /*
3457 * we presume the 0th element is unique, so i starts at 1. trivial
3458 * edge cases first; no work needs to be done for either
3459 */
3460 if (length == 0 || length == 1)
3461 return length;
3462 /* src and dest walk down the list; dest counts unique elements */
3463 for (src = 1; src < length; src++) {
3464 /* find next unique element */
3465 while (list[src] == list[src-1]) {
3466 src++;
3467 if (src == length)
3468 goto after;
3469 }
3470 /* dest always points to where the next unique element goes */
3471 list[dest] = list[src];
3472 dest++;
3473 }
3474after:
102a775e
BB
3475 return dest;
3476}
3477
afb2bc14
TH
3478/*
3479 * The two pid files - task and cgroup.procs - guaranteed that the result
3480 * is sorted, which forced this whole pidlist fiasco. As pid order is
3481 * different per namespace, each namespace needs differently sorted list,
3482 * making it impossible to use, for example, single rbtree of member tasks
3483 * sorted by task pointer. As pidlists can be fairly large, allocating one
3484 * per open file is dangerous, so cgroup had to implement shared pool of
3485 * pidlists keyed by cgroup and namespace.
3486 *
3487 * All this extra complexity was caused by the original implementation
3488 * committing to an entirely unnecessary property. In the long term, we
3489 * want to do away with it. Explicitly scramble sort order if
3490 * sane_behavior so that no such expectation exists in the new interface.
3491 *
3492 * Scrambling is done by swapping every two consecutive bits, which is
3493 * non-identity one-to-one mapping which disturbs sort order sufficiently.
3494 */
3495static pid_t pid_fry(pid_t pid)
3496{
3497 unsigned a = pid & 0x55555555;
3498 unsigned b = pid & 0xAAAAAAAA;
3499
3500 return (a << 1) | (b >> 1);
3501}
3502
3503static pid_t cgroup_pid_fry(struct cgroup *cgrp, pid_t pid)
3504{
3505 if (cgroup_sane_behavior(cgrp))
3506 return pid_fry(pid);
3507 else
3508 return pid;
3509}
3510
102a775e
BB
3511static int cmppid(const void *a, const void *b)
3512{
3513 return *(pid_t *)a - *(pid_t *)b;
3514}
3515
afb2bc14
TH
3516static int fried_cmppid(const void *a, const void *b)
3517{
3518 return pid_fry(*(pid_t *)a) - pid_fry(*(pid_t *)b);
3519}
3520
e6b81710
TH
3521static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
3522 enum cgroup_filetype type)
3523{
3524 struct cgroup_pidlist *l;
3525 /* don't need task_nsproxy() if we're looking at ourself */
3526 struct pid_namespace *ns = task_active_pid_ns(current);
3527
3528 lockdep_assert_held(&cgrp->pidlist_mutex);
3529
3530 list_for_each_entry(l, &cgrp->pidlists, links)
3531 if (l->key.type == type && l->key.ns == ns)
3532 return l;
3533 return NULL;
3534}
3535
72a8cb30
BB
3536/*
3537 * find the appropriate pidlist for our purpose (given procs vs tasks)
3538 * returns with the lock on that pidlist already held, and takes care
3539 * of the use count, or returns NULL with no locks held if we're out of
3540 * memory.
3541 */
e6b81710
TH
3542static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
3543 enum cgroup_filetype type)
72a8cb30
BB
3544{
3545 struct cgroup_pidlist *l;
b70cc5fd 3546
e6b81710
TH
3547 lockdep_assert_held(&cgrp->pidlist_mutex);
3548
3549 l = cgroup_pidlist_find(cgrp, type);
3550 if (l)
3551 return l;
3552
72a8cb30 3553 /* entry not found; create a new one */
f4f4be2b 3554 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
e6b81710 3555 if (!l)
72a8cb30 3556 return l;
e6b81710 3557
b1a21367 3558 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
72a8cb30 3559 l->key.type = type;
e6b81710
TH
3560 /* don't need task_nsproxy() if we're looking at ourself */
3561 l->key.ns = get_pid_ns(task_active_pid_ns(current));
72a8cb30
BB
3562 l->owner = cgrp;
3563 list_add(&l->links, &cgrp->pidlists);
72a8cb30
BB
3564 return l;
3565}
3566
102a775e
BB
3567/*
3568 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
3569 */
72a8cb30
BB
3570static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
3571 struct cgroup_pidlist **lp)
102a775e
BB
3572{
3573 pid_t *array;
3574 int length;
3575 int pid, n = 0; /* used for populating the array */
72ec7029 3576 struct css_task_iter it;
817929ec 3577 struct task_struct *tsk;
102a775e
BB
3578 struct cgroup_pidlist *l;
3579
4bac00d1
TH
3580 lockdep_assert_held(&cgrp->pidlist_mutex);
3581
102a775e
BB
3582 /*
3583 * If cgroup gets more users after we read count, we won't have
3584 * enough space - tough. This race is indistinguishable to the
3585 * caller from the case that the additional cgroup users didn't
3586 * show up until sometime later on.
3587 */
3588 length = cgroup_task_count(cgrp);
d1d9fd33 3589 array = pidlist_allocate(length);
102a775e
BB
3590 if (!array)
3591 return -ENOMEM;
3592 /* now, populate the array */
72ec7029
TH
3593 css_task_iter_start(&cgrp->dummy_css, &it);
3594 while ((tsk = css_task_iter_next(&it))) {
102a775e 3595 if (unlikely(n == length))
817929ec 3596 break;
102a775e 3597 /* get tgid or pid for procs or tasks file respectively */
72a8cb30
BB
3598 if (type == CGROUP_FILE_PROCS)
3599 pid = task_tgid_vnr(tsk);
3600 else
3601 pid = task_pid_vnr(tsk);
102a775e
BB
3602 if (pid > 0) /* make sure to only use valid results */
3603 array[n++] = pid;
817929ec 3604 }
72ec7029 3605 css_task_iter_end(&it);
102a775e
BB
3606 length = n;
3607 /* now sort & (if procs) strip out duplicates */
afb2bc14
TH
3608 if (cgroup_sane_behavior(cgrp))
3609 sort(array, length, sizeof(pid_t), fried_cmppid, NULL);
3610 else
3611 sort(array, length, sizeof(pid_t), cmppid, NULL);
72a8cb30 3612 if (type == CGROUP_FILE_PROCS)
6ee211ad 3613 length = pidlist_uniq(array, length);
e6b81710 3614
e6b81710 3615 l = cgroup_pidlist_find_create(cgrp, type);
72a8cb30 3616 if (!l) {
e6b81710 3617 mutex_unlock(&cgrp->pidlist_mutex);
d1d9fd33 3618 pidlist_free(array);
72a8cb30 3619 return -ENOMEM;
102a775e 3620 }
e6b81710
TH
3621
3622 /* store array, freeing old if necessary */
d1d9fd33 3623 pidlist_free(l->list);
102a775e
BB
3624 l->list = array;
3625 l->length = length;
72a8cb30 3626 *lp = l;
102a775e 3627 return 0;
bbcb81d0
PM
3628}
3629
846c7bb0 3630/**
a043e3b2 3631 * cgroupstats_build - build and fill cgroupstats
846c7bb0
BS
3632 * @stats: cgroupstats to fill information into
3633 * @dentry: A dentry entry belonging to the cgroup for which stats have
3634 * been requested.
a043e3b2
LZ
3635 *
3636 * Build and fill cgroupstats so that taskstats can export it to user
3637 * space.
846c7bb0
BS
3638 */
3639int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
3640{
3641 int ret = -EINVAL;
bd89aabc 3642 struct cgroup *cgrp;
72ec7029 3643 struct css_task_iter it;
846c7bb0 3644 struct task_struct *tsk;
33d283be 3645
846c7bb0 3646 /*
33d283be
LZ
3647 * Validate dentry by checking the superblock operations,
3648 * and make sure it's a directory.
846c7bb0 3649 */
33d283be
LZ
3650 if (dentry->d_sb->s_op != &cgroup_ops ||
3651 !S_ISDIR(dentry->d_inode->i_mode))
846c7bb0
BS
3652 goto err;
3653
3654 ret = 0;
bd89aabc 3655 cgrp = dentry->d_fsdata;
846c7bb0 3656
72ec7029
TH
3657 css_task_iter_start(&cgrp->dummy_css, &it);
3658 while ((tsk = css_task_iter_next(&it))) {
846c7bb0
BS
3659 switch (tsk->state) {
3660 case TASK_RUNNING:
3661 stats->nr_running++;
3662 break;
3663 case TASK_INTERRUPTIBLE:
3664 stats->nr_sleeping++;
3665 break;
3666 case TASK_UNINTERRUPTIBLE:
3667 stats->nr_uninterruptible++;
3668 break;
3669 case TASK_STOPPED:
3670 stats->nr_stopped++;
3671 break;
3672 default:
3673 if (delayacct_is_task_waiting_on_io(tsk))
3674 stats->nr_io_wait++;
3675 break;
3676 }
3677 }
72ec7029 3678 css_task_iter_end(&it);
846c7bb0 3679
846c7bb0
BS
3680err:
3681 return ret;
3682}
3683
8f3ff208 3684
bbcb81d0 3685/*
102a775e 3686 * seq_file methods for the tasks/procs files. The seq_file position is the
cc31edce 3687 * next pid to display; the seq_file iterator is a pointer to the pid
102a775e 3688 * in the cgroup->l->list array.
bbcb81d0 3689 */
cc31edce 3690
102a775e 3691static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
bbcb81d0 3692{
cc31edce
PM
3693 /*
3694 * Initially we receive a position value that corresponds to
3695 * one more than the last pid shown (or 0 on the first call or
3696 * after a seek to the start). Use a binary-search to find the
3697 * next pid to display, if any
3698 */
5d22444f 3699 struct cgroup_open_file *of = s->private;
7da11279 3700 struct cgroup *cgrp = seq_css(s)->cgroup;
4bac00d1 3701 struct cgroup_pidlist *l;
7da11279 3702 enum cgroup_filetype type = seq_cft(s)->private;
cc31edce 3703 int index = 0, pid = *pos;
4bac00d1
TH
3704 int *iter, ret;
3705
3706 mutex_lock(&cgrp->pidlist_mutex);
3707
3708 /*
5d22444f 3709 * !NULL @of->priv indicates that this isn't the first start()
4bac00d1 3710 * after open. If the matching pidlist is around, we can use that.
5d22444f 3711 * Look for it. Note that @of->priv can't be used directly. It
4bac00d1
TH
3712 * could already have been destroyed.
3713 */
5d22444f
TH
3714 if (of->priv)
3715 of->priv = cgroup_pidlist_find(cgrp, type);
4bac00d1
TH
3716
3717 /*
3718 * Either this is the first start() after open or the matching
3719 * pidlist has been destroyed inbetween. Create a new one.
3720 */
5d22444f
TH
3721 if (!of->priv) {
3722 ret = pidlist_array_load(cgrp, type,
3723 (struct cgroup_pidlist **)&of->priv);
4bac00d1
TH
3724 if (ret)
3725 return ERR_PTR(ret);
3726 }
5d22444f 3727 l = of->priv;
cc31edce 3728
cc31edce 3729 if (pid) {
102a775e 3730 int end = l->length;
20777766 3731
cc31edce
PM
3732 while (index < end) {
3733 int mid = (index + end) / 2;
afb2bc14 3734 if (cgroup_pid_fry(cgrp, l->list[mid]) == pid) {
cc31edce
PM
3735 index = mid;
3736 break;
afb2bc14 3737 } else if (cgroup_pid_fry(cgrp, l->list[mid]) <= pid)
cc31edce
PM
3738 index = mid + 1;
3739 else
3740 end = mid;
3741 }
3742 }
3743 /* If we're off the end of the array, we're done */
102a775e 3744 if (index >= l->length)
cc31edce
PM
3745 return NULL;
3746 /* Update the abstract position to be the actual pid that we found */
102a775e 3747 iter = l->list + index;
afb2bc14 3748 *pos = cgroup_pid_fry(cgrp, *iter);
cc31edce
PM
3749 return iter;
3750}
3751
102a775e 3752static void cgroup_pidlist_stop(struct seq_file *s, void *v)
cc31edce 3753{
5d22444f
TH
3754 struct cgroup_open_file *of = s->private;
3755 struct cgroup_pidlist *l = of->priv;
62236858 3756
5d22444f
TH
3757 if (l)
3758 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
04502365 3759 CGROUP_PIDLIST_DESTROY_DELAY);
7da11279 3760 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
cc31edce
PM
3761}
3762
102a775e 3763static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
cc31edce 3764{
5d22444f
TH
3765 struct cgroup_open_file *of = s->private;
3766 struct cgroup_pidlist *l = of->priv;
102a775e
BB
3767 pid_t *p = v;
3768 pid_t *end = l->list + l->length;
cc31edce
PM
3769 /*
3770 * Advance to the next pid in the array. If this goes off the
3771 * end, we're done
3772 */
3773 p++;
3774 if (p >= end) {
3775 return NULL;
3776 } else {
7da11279 3777 *pos = cgroup_pid_fry(seq_css(s)->cgroup, *p);
cc31edce
PM
3778 return p;
3779 }
3780}
3781
102a775e 3782static int cgroup_pidlist_show(struct seq_file *s, void *v)
cc31edce
PM
3783{
3784 return seq_printf(s, "%d\n", *(int *)v);
3785}
bbcb81d0 3786
102a775e
BB
3787/*
3788 * seq_operations functions for iterating on pidlists through seq_file -
3789 * independent of whether it's tasks or procs
3790 */
3791static const struct seq_operations cgroup_pidlist_seq_operations = {
3792 .start = cgroup_pidlist_start,
3793 .stop = cgroup_pidlist_stop,
3794 .next = cgroup_pidlist_next,
3795 .show = cgroup_pidlist_show,
cc31edce
PM
3796};
3797
182446d0
TH
3798static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
3799 struct cftype *cft)
81a6a5cd 3800{
182446d0 3801 return notify_on_release(css->cgroup);
81a6a5cd
PM
3802}
3803
182446d0
TH
3804static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
3805 struct cftype *cft, u64 val)
6379c106 3806{
182446d0 3807 clear_bit(CGRP_RELEASABLE, &css->cgroup->flags);
6379c106 3808 if (val)
182446d0 3809 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106 3810 else
182446d0 3811 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106
PM
3812 return 0;
3813}
3814
1c8158ee
LZ
3815/*
3816 * When dput() is called asynchronously, if umount has been done and
3817 * then deactivate_super() in cgroup_free_fn() kills the superblock,
3818 * there's a small window that vfs will see the root dentry with non-zero
3819 * refcnt and trigger BUG().
3820 *
3821 * That's why we hold a reference before dput() and drop it right after.
3822 */
3823static void cgroup_dput(struct cgroup *cgrp)
3824{
3825 struct super_block *sb = cgrp->root->sb;
3826
3827 atomic_inc(&sb->s_active);
3828 dput(cgrp->dentry);
3829 deactivate_super(sb);
3830}
3831
182446d0
TH
3832static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
3833 struct cftype *cft)
97978e6d 3834{
182446d0 3835 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
3836}
3837
182446d0
TH
3838static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
3839 struct cftype *cft, u64 val)
97978e6d
DL
3840{
3841 if (val)
182446d0 3842 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d 3843 else
182446d0 3844 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
3845 return 0;
3846}
3847
d5c56ced 3848static struct cftype cgroup_base_files[] = {
81a6a5cd 3849 {
d5c56ced 3850 .name = "cgroup.procs",
6612f05b
TH
3851 .seq_start = cgroup_pidlist_start,
3852 .seq_next = cgroup_pidlist_next,
3853 .seq_stop = cgroup_pidlist_stop,
3854 .seq_show = cgroup_pidlist_show,
5d22444f 3855 .private = CGROUP_FILE_PROCS,
74a1166d 3856 .write_u64 = cgroup_procs_write,
74a1166d 3857 .mode = S_IRUGO | S_IWUSR,
102a775e 3858 },
97978e6d
DL
3859 {
3860 .name = "cgroup.clone_children",
873fe09e 3861 .flags = CFTYPE_INSANE,
97978e6d
DL
3862 .read_u64 = cgroup_clone_children_read,
3863 .write_u64 = cgroup_clone_children_write,
3864 },
873fe09e
TH
3865 {
3866 .name = "cgroup.sane_behavior",
3867 .flags = CFTYPE_ONLY_ON_ROOT,
2da8ca82 3868 .seq_show = cgroup_sane_behavior_show,
873fe09e 3869 },
d5c56ced
TH
3870
3871 /*
3872 * Historical crazy stuff. These don't have "cgroup." prefix and
3873 * don't exist if sane_behavior. If you're depending on these, be
3874 * prepared to be burned.
3875 */
3876 {
3877 .name = "tasks",
3878 .flags = CFTYPE_INSANE, /* use "procs" instead */
6612f05b
TH
3879 .seq_start = cgroup_pidlist_start,
3880 .seq_next = cgroup_pidlist_next,
3881 .seq_stop = cgroup_pidlist_stop,
3882 .seq_show = cgroup_pidlist_show,
5d22444f 3883 .private = CGROUP_FILE_TASKS,
d5c56ced 3884 .write_u64 = cgroup_tasks_write,
d5c56ced
TH
3885 .mode = S_IRUGO | S_IWUSR,
3886 },
3887 {
3888 .name = "notify_on_release",
3889 .flags = CFTYPE_INSANE,
3890 .read_u64 = cgroup_read_notify_on_release,
3891 .write_u64 = cgroup_write_notify_on_release,
3892 },
6e6ff25b
TH
3893 {
3894 .name = "release_agent",
cc5943a7 3895 .flags = CFTYPE_INSANE | CFTYPE_ONLY_ON_ROOT,
2da8ca82 3896 .seq_show = cgroup_release_agent_show,
6e6ff25b
TH
3897 .write_string = cgroup_release_agent_write,
3898 .max_write_len = PATH_MAX,
3899 },
db0416b6 3900 { } /* terminate */
bbcb81d0
PM
3901};
3902
13af07df 3903/**
628f7cd4 3904 * cgroup_populate_dir - create subsys files in a cgroup directory
13af07df 3905 * @cgrp: target cgroup
13af07df 3906 * @subsys_mask: mask of the subsystem ids whose files should be added
bee55099
TH
3907 *
3908 * On failure, no file is added.
13af07df 3909 */
628f7cd4 3910static int cgroup_populate_dir(struct cgroup *cgrp, unsigned long subsys_mask)
ddbcc7e8 3911{
ddbcc7e8 3912 struct cgroup_subsys *ss;
b420ba7d 3913 int i, ret = 0;
bbcb81d0 3914
8e3f6541 3915 /* process cftsets of each subsystem */
b420ba7d 3916 for_each_subsys(ss, i) {
8e3f6541 3917 struct cftype_set *set;
b420ba7d
TH
3918
3919 if (!test_bit(i, &subsys_mask))
13af07df 3920 continue;
8e3f6541 3921
bee55099 3922 list_for_each_entry(set, &ss->cftsets, node) {
2bb566cb 3923 ret = cgroup_addrm_files(cgrp, set->cfts, true);
bee55099
TH
3924 if (ret < 0)
3925 goto err;
3926 }
ddbcc7e8 3927 }
ddbcc7e8 3928 return 0;
bee55099
TH
3929err:
3930 cgroup_clear_dir(cgrp, subsys_mask);
3931 return ret;
ddbcc7e8
PM
3932}
3933
0c21ead1
TH
3934/*
3935 * css destruction is four-stage process.
3936 *
3937 * 1. Destruction starts. Killing of the percpu_ref is initiated.
3938 * Implemented in kill_css().
3939 *
3940 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
3941 * and thus css_tryget() is guaranteed to fail, the css can be offlined
3942 * by invoking offline_css(). After offlining, the base ref is put.
3943 * Implemented in css_killed_work_fn().
3944 *
3945 * 3. When the percpu_ref reaches zero, the only possible remaining
3946 * accessors are inside RCU read sections. css_release() schedules the
3947 * RCU callback.
3948 *
3949 * 4. After the grace period, the css can be freed. Implemented in
3950 * css_free_work_fn().
3951 *
3952 * It is actually hairier because both step 2 and 4 require process context
3953 * and thus involve punting to css->destroy_work adding two additional
3954 * steps to the already complex sequence.
3955 */
35ef10da 3956static void css_free_work_fn(struct work_struct *work)
48ddbe19
TH
3957{
3958 struct cgroup_subsys_state *css =
35ef10da 3959 container_of(work, struct cgroup_subsys_state, destroy_work);
0c21ead1 3960 struct cgroup *cgrp = css->cgroup;
48ddbe19 3961
0ae78e0b
TH
3962 if (css->parent)
3963 css_put(css->parent);
3964
0c21ead1
TH
3965 css->ss->css_free(css);
3966 cgroup_dput(cgrp);
48ddbe19
TH
3967}
3968
0c21ead1 3969static void css_free_rcu_fn(struct rcu_head *rcu_head)
d3daf28d
TH
3970{
3971 struct cgroup_subsys_state *css =
0c21ead1 3972 container_of(rcu_head, struct cgroup_subsys_state, rcu_head);
d3daf28d 3973
35ef10da
TH
3974 /*
3975 * css holds an extra ref to @cgrp->dentry which is put on the last
0c21ead1 3976 * css_put(). dput() requires process context which we don't have.
35ef10da
TH
3977 */
3978 INIT_WORK(&css->destroy_work, css_free_work_fn);
e5fca243 3979 queue_work(cgroup_destroy_wq, &css->destroy_work);
48ddbe19
TH
3980}
3981
d3daf28d
TH
3982static void css_release(struct percpu_ref *ref)
3983{
3984 struct cgroup_subsys_state *css =
3985 container_of(ref, struct cgroup_subsys_state, refcnt);
3986
aec25020 3987 rcu_assign_pointer(css->cgroup->subsys[css->ss->id], NULL);
0c21ead1 3988 call_rcu(&css->rcu_head, css_free_rcu_fn);
d3daf28d
TH
3989}
3990
623f926b
TH
3991static void init_css(struct cgroup_subsys_state *css, struct cgroup_subsys *ss,
3992 struct cgroup *cgrp)
ddbcc7e8 3993{
bd89aabc 3994 css->cgroup = cgrp;
72c97e54 3995 css->ss = ss;
ddbcc7e8 3996 css->flags = 0;
0ae78e0b
TH
3997
3998 if (cgrp->parent)
ca8bdcaf 3999 css->parent = cgroup_css(cgrp->parent, ss);
0ae78e0b 4000 else
38b53aba 4001 css->flags |= CSS_ROOT;
48ddbe19 4002
ca8bdcaf 4003 BUG_ON(cgroup_css(cgrp, ss));
ddbcc7e8
PM
4004}
4005
2a4ac633 4006/* invoke ->css_online() on a new CSS and mark it online if successful */
623f926b 4007static int online_css(struct cgroup_subsys_state *css)
a31f2d3f 4008{
623f926b 4009 struct cgroup_subsys *ss = css->ss;
b1929db4
TH
4010 int ret = 0;
4011
ace2bee8 4012 lockdep_assert_held(&cgroup_tree_mutex);
a31f2d3f
TH
4013 lockdep_assert_held(&cgroup_mutex);
4014
92fb9748 4015 if (ss->css_online)
eb95419b 4016 ret = ss->css_online(css);
ae7f164a 4017 if (!ret) {
eb95419b 4018 css->flags |= CSS_ONLINE;
f20104de 4019 css->cgroup->nr_css++;
aec25020 4020 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
ae7f164a 4021 }
b1929db4 4022 return ret;
a31f2d3f
TH
4023}
4024
2a4ac633 4025/* if the CSS is online, invoke ->css_offline() on it and mark it offline */
623f926b 4026static void offline_css(struct cgroup_subsys_state *css)
a31f2d3f 4027{
623f926b 4028 struct cgroup_subsys *ss = css->ss;
a31f2d3f 4029
ace2bee8 4030 lockdep_assert_held(&cgroup_tree_mutex);
a31f2d3f
TH
4031 lockdep_assert_held(&cgroup_mutex);
4032
4033 if (!(css->flags & CSS_ONLINE))
4034 return;
4035
d7eeac19 4036 if (ss->css_offline)
eb95419b 4037 ss->css_offline(css);
a31f2d3f 4038
eb95419b 4039 css->flags &= ~CSS_ONLINE;
09a503ea 4040 css->cgroup->nr_css--;
aec25020 4041 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], css);
a31f2d3f
TH
4042}
4043
c81c925a
TH
4044/**
4045 * create_css - create a cgroup_subsys_state
4046 * @cgrp: the cgroup new css will be associated with
4047 * @ss: the subsys of new css
4048 *
4049 * Create a new css associated with @cgrp - @ss pair. On success, the new
4050 * css is online and installed in @cgrp with all interface files created.
4051 * Returns 0 on success, -errno on failure.
4052 */
4053static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss)
4054{
4055 struct cgroup *parent = cgrp->parent;
4056 struct cgroup_subsys_state *css;
4057 int err;
4058
4059 lockdep_assert_held(&cgrp->dentry->d_inode->i_mutex);
4060 lockdep_assert_held(&cgroup_mutex);
4061
4062 css = ss->css_alloc(cgroup_css(parent, ss));
4063 if (IS_ERR(css))
4064 return PTR_ERR(css);
4065
4066 err = percpu_ref_init(&css->refcnt, css_release);
4067 if (err)
4068 goto err_free;
4069
4070 init_css(css, ss, cgrp);
4071
aec25020 4072 err = cgroup_populate_dir(cgrp, 1 << ss->id);
c81c925a
TH
4073 if (err)
4074 goto err_free;
4075
4076 err = online_css(css);
4077 if (err)
4078 goto err_free;
4079
4080 dget(cgrp->dentry);
4081 css_get(css->parent);
4082
4083 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
4084 parent->parent) {
4085 pr_warning("cgroup: %s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
4086 current->comm, current->pid, ss->name);
4087 if (!strcmp(ss->name, "memory"))
4088 pr_warning("cgroup: \"memory\" requires setting use_hierarchy to 1 on the root.\n");
4089 ss->warned_broken_hierarchy = true;
4090 }
4091
4092 return 0;
4093
4094err_free:
4095 percpu_ref_cancel_init(&css->refcnt);
4096 ss->css_free(css);
4097 return err;
4098}
4099
ddbcc7e8 4100/*
a043e3b2
LZ
4101 * cgroup_create - create a cgroup
4102 * @parent: cgroup that will be parent of the new cgroup
4103 * @dentry: dentry of the new cgroup
4104 * @mode: mode to set on new inode
ddbcc7e8 4105 *
a043e3b2 4106 * Must be called with the mutex on the parent inode held
ddbcc7e8 4107 */
ddbcc7e8 4108static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
a5e7ed32 4109 umode_t mode)
ddbcc7e8 4110{
bd89aabc 4111 struct cgroup *cgrp;
65dff759 4112 struct cgroup_name *name;
ddbcc7e8 4113 struct cgroupfs_root *root = parent->root;
b58c8998 4114 int ssid, err;
ddbcc7e8
PM
4115 struct cgroup_subsys *ss;
4116 struct super_block *sb = root->sb;
4117
0a950f65 4118 /* allocate the cgroup and its ID, 0 is reserved for the root */
bd89aabc
PM
4119 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
4120 if (!cgrp)
ddbcc7e8
PM
4121 return -ENOMEM;
4122
65dff759 4123 name = cgroup_alloc_name(dentry);
b58c8998
TH
4124 if (!name) {
4125 err = -ENOMEM;
65dff759 4126 goto err_free_cgrp;
b58c8998 4127 }
65dff759
LZ
4128 rcu_assign_pointer(cgrp->name, name);
4129
ace2bee8
TH
4130 mutex_lock(&cgroup_tree_mutex);
4131
976c06bc
TH
4132 /*
4133 * Only live parents can have children. Note that the liveliness
4134 * check isn't strictly necessary because cgroup_mkdir() and
4135 * cgroup_rmdir() are fully synchronized by i_mutex; however, do it
4136 * anyway so that locking is contained inside cgroup proper and we
4137 * don't get nasty surprises if we ever grow another caller.
4138 */
4139 if (!cgroup_lock_live_group(parent)) {
4140 err = -ENODEV;
ace2bee8 4141 goto err_unlock_tree;
0ab02ca8
LZ
4142 }
4143
4144 /*
4145 * Temporarily set the pointer to NULL, so idr_find() won't return
4146 * a half-baked cgroup.
4147 */
4148 cgrp->id = idr_alloc(&root->cgroup_idr, NULL, 1, 0, GFP_KERNEL);
4149 if (cgrp->id < 0) {
4150 err = -ENOMEM;
4151 goto err_unlock;
976c06bc
TH
4152 }
4153
ddbcc7e8
PM
4154 /* Grab a reference on the superblock so the hierarchy doesn't
4155 * get deleted on unmount if there are child cgroups. This
4156 * can be done outside cgroup_mutex, since the sb can't
4157 * disappear while someone has an open control file on the
4158 * fs */
4159 atomic_inc(&sb->s_active);
4160
cc31edce 4161 init_cgroup_housekeeping(cgrp);
ddbcc7e8 4162
fe1c06ca
LZ
4163 dentry->d_fsdata = cgrp;
4164 cgrp->dentry = dentry;
4165
bd89aabc 4166 cgrp->parent = parent;
0ae78e0b 4167 cgrp->dummy_css.parent = &parent->dummy_css;
bd89aabc 4168 cgrp->root = parent->root;
ddbcc7e8 4169
b6abdb0e
LZ
4170 if (notify_on_release(parent))
4171 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
4172
2260e7fc
TH
4173 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
4174 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
97978e6d 4175
4e139afc
TH
4176 /*
4177 * Create directory. cgroup_create_file() returns with the new
4178 * directory locked on success so that it can be populated without
4179 * dropping cgroup_mutex.
4180 */
28fd6f30 4181 err = cgroup_create_file(dentry, S_IFDIR | mode, sb);
ddbcc7e8 4182 if (err < 0)
0ab02ca8 4183 goto err_free_id;
4e139afc 4184 lockdep_assert_held(&dentry->d_inode->i_mutex);
ddbcc7e8 4185
00356bd5 4186 cgrp->serial_nr = cgroup_serial_nr_next++;
53fa5261 4187
4e139afc 4188 /* allocation complete, commit to creation */
4e139afc
TH
4189 list_add_tail_rcu(&cgrp->sibling, &cgrp->parent->children);
4190 root->number_of_cgroups++;
28fd6f30 4191
415cf07a
LZ
4192 /* hold a ref to the parent's dentry */
4193 dget(parent->dentry);
4194
0d80255e
TH
4195 /*
4196 * @cgrp is now fully operational. If something fails after this
4197 * point, it'll be released via the normal destruction path.
4198 */
4e96ee8e
LZ
4199 idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
4200
2bb566cb 4201 err = cgroup_addrm_files(cgrp, cgroup_base_files, true);
628f7cd4
TH
4202 if (err)
4203 goto err_destroy;
4204
9d403e99 4205 /* let's create and online css's */
b85d2040
TH
4206 for_each_subsys(ss, ssid) {
4207 if (root->subsys_mask & (1 << ssid)) {
4208 err = create_css(cgrp, ss);
4209 if (err)
4210 goto err_destroy;
4211 }
a8638030 4212 }
ddbcc7e8
PM
4213
4214 mutex_unlock(&cgroup_mutex);
ace2bee8 4215 mutex_unlock(&cgroup_tree_mutex);
bd89aabc 4216 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8
PM
4217
4218 return 0;
4219
0a950f65 4220err_free_id:
4e96ee8e 4221 idr_remove(&root->cgroup_idr, cgrp->id);
0ab02ca8
LZ
4222 /* Release the reference count that we took on the superblock */
4223 deactivate_super(sb);
4224err_unlock:
4225 mutex_unlock(&cgroup_mutex);
ace2bee8
TH
4226err_unlock_tree:
4227 mutex_unlock(&cgroup_tree_mutex);
65dff759 4228 kfree(rcu_dereference_raw(cgrp->name));
4b8b47eb 4229err_free_cgrp:
bd89aabc 4230 kfree(cgrp);
ddbcc7e8 4231 return err;
4b8b47eb
TH
4232
4233err_destroy:
4234 cgroup_destroy_locked(cgrp);
4235 mutex_unlock(&cgroup_mutex);
ace2bee8 4236 mutex_unlock(&cgroup_tree_mutex);
4b8b47eb
TH
4237 mutex_unlock(&dentry->d_inode->i_mutex);
4238 return err;
ddbcc7e8
PM
4239}
4240
18bb1db3 4241static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
ddbcc7e8
PM
4242{
4243 struct cgroup *c_parent = dentry->d_parent->d_fsdata;
4244
4245 /* the vfs holds inode->i_mutex already */
4246 return cgroup_create(c_parent, dentry, mode | S_IFDIR);
4247}
4248
223dbc38
TH
4249/*
4250 * This is called when the refcnt of a css is confirmed to be killed.
4251 * css_tryget() is now guaranteed to fail.
4252 */
4253static void css_killed_work_fn(struct work_struct *work)
d3daf28d 4254{
223dbc38
TH
4255 struct cgroup_subsys_state *css =
4256 container_of(work, struct cgroup_subsys_state, destroy_work);
4257 struct cgroup *cgrp = css->cgroup;
d3daf28d 4258
ace2bee8 4259 mutex_lock(&cgroup_tree_mutex);
f20104de
TH
4260 mutex_lock(&cgroup_mutex);
4261
09a503ea
TH
4262 /*
4263 * css_tryget() is guaranteed to fail now. Tell subsystems to
4264 * initate destruction.
4265 */
4266 offline_css(css);
4267
f20104de
TH
4268 /*
4269 * If @cgrp is marked dead, it's waiting for refs of all css's to
4270 * be disabled before proceeding to the second phase of cgroup
4271 * destruction. If we are the last one, kick it off.
4272 */
09a503ea 4273 if (!cgrp->nr_css && cgroup_is_dead(cgrp))
f20104de
TH
4274 cgroup_destroy_css_killed(cgrp);
4275
4276 mutex_unlock(&cgroup_mutex);
ace2bee8 4277 mutex_unlock(&cgroup_tree_mutex);
09a503ea
TH
4278
4279 /*
4280 * Put the css refs from kill_css(). Each css holds an extra
4281 * reference to the cgroup's dentry and cgroup removal proceeds
4282 * regardless of css refs. On the last put of each css, whenever
4283 * that may be, the extra dentry ref is put so that dentry
4284 * destruction happens only after all css's are released.
4285 */
4286 css_put(css);
d3daf28d
TH
4287}
4288
223dbc38
TH
4289/* css kill confirmation processing requires process context, bounce */
4290static void css_killed_ref_fn(struct percpu_ref *ref)
d3daf28d
TH
4291{
4292 struct cgroup_subsys_state *css =
4293 container_of(ref, struct cgroup_subsys_state, refcnt);
4294
223dbc38 4295 INIT_WORK(&css->destroy_work, css_killed_work_fn);
e5fca243 4296 queue_work(cgroup_destroy_wq, &css->destroy_work);
d3daf28d
TH
4297}
4298
edae0c33
TH
4299/**
4300 * kill_css - destroy a css
4301 * @css: css to destroy
4302 *
3c14f8b4
TH
4303 * This function initiates destruction of @css by removing cgroup interface
4304 * files and putting its base reference. ->css_offline() will be invoked
4305 * asynchronously once css_tryget() is guaranteed to fail and when the
4306 * reference count reaches zero, @css will be released.
edae0c33
TH
4307 */
4308static void kill_css(struct cgroup_subsys_state *css)
4309{
aec25020 4310 cgroup_clear_dir(css->cgroup, 1 << css->ss->id);
3c14f8b4 4311
edae0c33
TH
4312 /*
4313 * Killing would put the base ref, but we need to keep it alive
4314 * until after ->css_offline().
4315 */
4316 css_get(css);
4317
4318 /*
4319 * cgroup core guarantees that, by the time ->css_offline() is
4320 * invoked, no new css reference will be given out via
4321 * css_tryget(). We can't simply call percpu_ref_kill() and
4322 * proceed to offlining css's because percpu_ref_kill() doesn't
4323 * guarantee that the ref is seen as killed on all CPUs on return.
4324 *
4325 * Use percpu_ref_kill_and_confirm() to get notifications as each
4326 * css is confirmed to be seen as killed on all CPUs.
4327 */
4328 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
d3daf28d
TH
4329}
4330
4331/**
4332 * cgroup_destroy_locked - the first stage of cgroup destruction
4333 * @cgrp: cgroup to be destroyed
4334 *
4335 * css's make use of percpu refcnts whose killing latency shouldn't be
4336 * exposed to userland and are RCU protected. Also, cgroup core needs to
4337 * guarantee that css_tryget() won't succeed by the time ->css_offline() is
4338 * invoked. To satisfy all the requirements, destruction is implemented in
4339 * the following two steps.
4340 *
4341 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
4342 * userland visible parts and start killing the percpu refcnts of
4343 * css's. Set up so that the next stage will be kicked off once all
4344 * the percpu refcnts are confirmed to be killed.
4345 *
4346 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
4347 * rest of destruction. Once all cgroup references are gone, the
4348 * cgroup is RCU-freed.
4349 *
4350 * This function implements s1. After this step, @cgrp is gone as far as
4351 * the userland is concerned and a new cgroup with the same name may be
4352 * created. As cgroup doesn't care about the names internally, this
4353 * doesn't cause any problem.
4354 */
42809dd4
TH
4355static int cgroup_destroy_locked(struct cgroup *cgrp)
4356 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
ddbcc7e8 4357{
42809dd4 4358 struct dentry *d = cgrp->dentry;
1c6727af 4359 struct cgroup_subsys_state *css;
bb78a92f 4360 struct cgroup *child;
ddd69148 4361 bool empty;
1c6727af 4362 int ssid;
ddbcc7e8 4363
42809dd4 4364 lockdep_assert_held(&d->d_inode->i_mutex);
ace2bee8 4365 lockdep_assert_held(&cgroup_tree_mutex);
42809dd4
TH
4366 lockdep_assert_held(&cgroup_mutex);
4367
ddd69148 4368 /*
6f3d828f
TH
4369 * css_set_lock synchronizes access to ->cset_links and prevents
4370 * @cgrp from being removed while __put_css_set() is in progress.
ddd69148
TH
4371 */
4372 read_lock(&css_set_lock);
bb78a92f 4373 empty = list_empty(&cgrp->cset_links);
ddd69148
TH
4374 read_unlock(&css_set_lock);
4375 if (!empty)
ddbcc7e8 4376 return -EBUSY;
a043e3b2 4377
bb78a92f
HD
4378 /*
4379 * Make sure there's no live children. We can't test ->children
4380 * emptiness as dead children linger on it while being destroyed;
4381 * otherwise, "rmdir parent/child parent" may fail with -EBUSY.
4382 */
4383 empty = true;
4384 rcu_read_lock();
4385 list_for_each_entry_rcu(child, &cgrp->children, sibling) {
4386 empty = cgroup_is_dead(child);
4387 if (!empty)
4388 break;
4389 }
4390 rcu_read_unlock();
4391 if (!empty)
4392 return -EBUSY;
4393
88703267 4394 /*
edae0c33
TH
4395 * Initiate massacre of all css's. cgroup_destroy_css_killed()
4396 * will be invoked to perform the rest of destruction once the
4ac06017
TH
4397 * percpu refs of all css's are confirmed to be killed. This
4398 * involves removing the subsystem's files, drop cgroup_mutex.
88703267 4399 */
4ac06017 4400 mutex_unlock(&cgroup_mutex);
1c6727af
TH
4401 for_each_css(css, ssid, cgrp)
4402 kill_css(css);
4ac06017 4403 mutex_lock(&cgroup_mutex);
455050d2
TH
4404
4405 /*
4406 * Mark @cgrp dead. This prevents further task migration and child
4407 * creation by disabling cgroup_lock_live_group(). Note that
492eb21b 4408 * CGRP_DEAD assertion is depended upon by css_next_child() to
455050d2 4409 * resume iteration after dropping RCU read lock. See
492eb21b 4410 * css_next_child() for details.
455050d2 4411 */
54766d4a 4412 set_bit(CGRP_DEAD, &cgrp->flags);
ddbcc7e8 4413
455050d2
TH
4414 /* CGRP_DEAD is set, remove from ->release_list for the last time */
4415 raw_spin_lock(&release_list_lock);
4416 if (!list_empty(&cgrp->release_list))
4417 list_del_init(&cgrp->release_list);
4418 raw_spin_unlock(&release_list_lock);
4419
4420 /*
f20104de
TH
4421 * If @cgrp has css's attached, the second stage of cgroup
4422 * destruction is kicked off from css_killed_work_fn() after the
4423 * refs of all attached css's are killed. If @cgrp doesn't have
4424 * any css, we kick it off here.
4425 */
4426 if (!cgrp->nr_css)
4427 cgroup_destroy_css_killed(cgrp);
4428
455050d2 4429 /*
3c14f8b4
TH
4430 * Clear the base files and remove @cgrp directory. The removal
4431 * puts the base ref but we aren't quite done with @cgrp yet, so
4432 * hold onto it.
455050d2 4433 */
4ac06017 4434 mutex_unlock(&cgroup_mutex);
2bb566cb 4435 cgroup_addrm_files(cgrp, cgroup_base_files, false);
455050d2
TH
4436 dget(d);
4437 cgroup_d_remove_dir(d);
4ac06017 4438 mutex_lock(&cgroup_mutex);
455050d2 4439
ea15f8cc
TH
4440 return 0;
4441};
4442
d3daf28d 4443/**
f20104de 4444 * cgroup_destroy_css_killed - the second step of cgroup destruction
d3daf28d
TH
4445 * @work: cgroup->destroy_free_work
4446 *
4447 * This function is invoked from a work item for a cgroup which is being
09a503ea
TH
4448 * destroyed after all css's are offlined and performs the rest of
4449 * destruction. This is the second step of destruction described in the
4450 * comment above cgroup_destroy_locked().
d3daf28d 4451 */
f20104de 4452static void cgroup_destroy_css_killed(struct cgroup *cgrp)
ea15f8cc 4453{
ea15f8cc
TH
4454 struct cgroup *parent = cgrp->parent;
4455 struct dentry *d = cgrp->dentry;
ea15f8cc 4456
ace2bee8 4457 lockdep_assert_held(&cgroup_tree_mutex);
f20104de 4458 lockdep_assert_held(&cgroup_mutex);
ea15f8cc 4459
999cd8a4 4460 /* delete this cgroup from parent->children */
eb6fd504 4461 list_del_rcu(&cgrp->sibling);
ed957793 4462
ddbcc7e8 4463 dput(d);
ddbcc7e8 4464
bd89aabc 4465 set_bit(CGRP_RELEASABLE, &parent->flags);
81a6a5cd 4466 check_for_release(parent);
ddbcc7e8
PM
4467}
4468
42809dd4
TH
4469static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
4470{
4471 int ret;
4472
ace2bee8 4473 mutex_lock(&cgroup_tree_mutex);
42809dd4
TH
4474 mutex_lock(&cgroup_mutex);
4475 ret = cgroup_destroy_locked(dentry->d_fsdata);
4476 mutex_unlock(&cgroup_mutex);
ace2bee8 4477 mutex_unlock(&cgroup_tree_mutex);
42809dd4
TH
4478
4479 return ret;
4480}
4481
3ed80a62 4482static void __init cgroup_init_cftsets(struct cgroup_subsys *ss)
8e3f6541
TH
4483{
4484 INIT_LIST_HEAD(&ss->cftsets);
4485
4486 /*
4487 * base_cftset is embedded in subsys itself, no need to worry about
4488 * deregistration.
4489 */
4490 if (ss->base_cftypes) {
2bb566cb
TH
4491 struct cftype *cft;
4492
4493 for (cft = ss->base_cftypes; cft->name[0] != '\0'; cft++)
4494 cft->ss = ss;
4495
8e3f6541
TH
4496 ss->base_cftset.cfts = ss->base_cftypes;
4497 list_add_tail(&ss->base_cftset.node, &ss->cftsets);
4498 }
4499}
4500
06a11920 4501static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
ddbcc7e8 4502{
ddbcc7e8 4503 struct cgroup_subsys_state *css;
cfe36bde
DC
4504
4505 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
ddbcc7e8 4506
ace2bee8 4507 mutex_lock(&cgroup_tree_mutex);
648bb56d
TH
4508 mutex_lock(&cgroup_mutex);
4509
8e3f6541
TH
4510 /* init base cftset */
4511 cgroup_init_cftsets(ss);
4512
ddbcc7e8 4513 /* Create the top cgroup state for this subsystem */
9871bf95 4514 ss->root = &cgroup_dummy_root;
ca8bdcaf 4515 css = ss->css_alloc(cgroup_css(cgroup_dummy_top, ss));
ddbcc7e8
PM
4516 /* We don't handle early failures gracefully */
4517 BUG_ON(IS_ERR(css));
623f926b 4518 init_css(css, ss, cgroup_dummy_top);
ddbcc7e8 4519
e8d55fde 4520 /* Update the init_css_set to contain a subsys
817929ec 4521 * pointer to this state - since the subsystem is
e8d55fde
LZ
4522 * newly registered, all tasks and hence the
4523 * init_css_set is in the subsystem's top cgroup. */
aec25020 4524 init_css_set.subsys[ss->id] = css;
ddbcc7e8
PM
4525
4526 need_forkexit_callback |= ss->fork || ss->exit;
4527
e8d55fde
LZ
4528 /* At system boot, before all subsystems have been
4529 * registered, no tasks have been forked, so we don't
4530 * need to invoke fork callbacks here. */
4531 BUG_ON(!list_empty(&init_task.tasks));
4532
ae7f164a 4533 BUG_ON(online_css(css));
a8638030 4534
648bb56d 4535 mutex_unlock(&cgroup_mutex);
ace2bee8 4536 mutex_unlock(&cgroup_tree_mutex);
e6a1105b
BB
4537}
4538
ddbcc7e8 4539/**
a043e3b2
LZ
4540 * cgroup_init_early - cgroup initialization at system boot
4541 *
4542 * Initialize cgroups at system boot, and initialize any
4543 * subsystems that request early init.
ddbcc7e8
PM
4544 */
4545int __init cgroup_init_early(void)
4546{
30159ec7 4547 struct cgroup_subsys *ss;
ddbcc7e8 4548 int i;
30159ec7 4549
146aa1bd 4550 atomic_set(&init_css_set.refcount, 1);
69d0206c 4551 INIT_LIST_HEAD(&init_css_set.cgrp_links);
817929ec 4552 INIT_LIST_HEAD(&init_css_set.tasks);
472b1053 4553 INIT_HLIST_NODE(&init_css_set.hlist);
817929ec 4554 css_set_count = 1;
9871bf95
TH
4555 init_cgroup_root(&cgroup_dummy_root);
4556 cgroup_root_count = 1;
a4ea1cc9 4557 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
817929ec 4558
69d0206c 4559 init_cgrp_cset_link.cset = &init_css_set;
9871bf95
TH
4560 init_cgrp_cset_link.cgrp = cgroup_dummy_top;
4561 list_add(&init_cgrp_cset_link.cset_link, &cgroup_dummy_top->cset_links);
69d0206c 4562 list_add(&init_cgrp_cset_link.cgrp_link, &init_css_set.cgrp_links);
ddbcc7e8 4563
3ed80a62 4564 for_each_subsys(ss, i) {
aec25020 4565 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
073219e9
TH
4566 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p name:id=%d:%s\n",
4567 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
aec25020 4568 ss->id, ss->name);
073219e9
TH
4569 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
4570 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
4571
aec25020 4572 ss->id = i;
073219e9 4573 ss->name = cgroup_subsys_name[i];
ddbcc7e8
PM
4574
4575 if (ss->early_init)
4576 cgroup_init_subsys(ss);
4577 }
4578 return 0;
4579}
4580
4581/**
a043e3b2
LZ
4582 * cgroup_init - cgroup initialization
4583 *
4584 * Register cgroup filesystem and /proc file, and initialize
4585 * any subsystems that didn't request early init.
ddbcc7e8
PM
4586 */
4587int __init cgroup_init(void)
4588{
30159ec7 4589 struct cgroup_subsys *ss;
0ac801fe 4590 unsigned long key;
30159ec7 4591 int i, err;
a424316c
PM
4592
4593 err = bdi_init(&cgroup_backing_dev_info);
4594 if (err)
4595 return err;
ddbcc7e8 4596
3ed80a62 4597 for_each_subsys(ss, i) {
ddbcc7e8
PM
4598 if (!ss->early_init)
4599 cgroup_init_subsys(ss);
4600 }
4601
fa3ca07e 4602 /* allocate id for the dummy hierarchy */
54e7b4eb 4603 mutex_lock(&cgroup_mutex);
54e7b4eb 4604
82fe9b0d
TH
4605 /* Add init_css_set to the hash table */
4606 key = css_set_hash(init_css_set.subsys);
4607 hash_add(css_set_table, &init_css_set.hlist, key);
4608
fc76df70 4609 BUG_ON(cgroup_init_root_id(&cgroup_dummy_root, 0, 1));
676db4af 4610
4e96ee8e
LZ
4611 err = idr_alloc(&cgroup_dummy_root.cgroup_idr, cgroup_dummy_top,
4612 0, 1, GFP_KERNEL);
4613 BUG_ON(err < 0);
4614
54e7b4eb
TH
4615 mutex_unlock(&cgroup_mutex);
4616
676db4af
GKH
4617 cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
4618 if (!cgroup_kobj) {
4619 err = -ENOMEM;
4620 goto out;
4621 }
4622
ddbcc7e8 4623 err = register_filesystem(&cgroup_fs_type);
676db4af
GKH
4624 if (err < 0) {
4625 kobject_put(cgroup_kobj);
ddbcc7e8 4626 goto out;
676db4af 4627 }
ddbcc7e8 4628
46ae220b 4629 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
a424316c 4630
ddbcc7e8 4631out:
a424316c
PM
4632 if (err)
4633 bdi_destroy(&cgroup_backing_dev_info);
4634
ddbcc7e8
PM
4635 return err;
4636}
b4f48b63 4637
e5fca243
TH
4638static int __init cgroup_wq_init(void)
4639{
4640 /*
4641 * There isn't much point in executing destruction path in
4642 * parallel. Good chunk is serialized with cgroup_mutex anyway.
ab3f5faa
HD
4643 *
4644 * XXX: Must be ordered to make sure parent is offlined after
4645 * children. The ordering requirement is for memcg where a
4646 * parent's offline may wait for a child's leading to deadlock. In
4647 * the long term, this should be fixed from memcg side.
e5fca243
TH
4648 *
4649 * We would prefer to do this in cgroup_init() above, but that
4650 * is called before init_workqueues(): so leave this until after.
4651 */
ab3f5faa 4652 cgroup_destroy_wq = alloc_ordered_workqueue("cgroup_destroy", 0);
e5fca243 4653 BUG_ON(!cgroup_destroy_wq);
b1a21367
TH
4654
4655 /*
4656 * Used to destroy pidlists and separate to serve as flush domain.
4657 * Cap @max_active to 1 too.
4658 */
4659 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
4660 0, 1);
4661 BUG_ON(!cgroup_pidlist_destroy_wq);
4662
e5fca243
TH
4663 return 0;
4664}
4665core_initcall(cgroup_wq_init);
4666
a424316c
PM
4667/*
4668 * proc_cgroup_show()
4669 * - Print task's cgroup paths into seq_file, one line for each hierarchy
4670 * - Used for /proc/<pid>/cgroup.
4671 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
4672 * doesn't really matter if tsk->cgroup changes after we read it,
956db3ca 4673 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
a424316c
PM
4674 * anyway. No need to check that tsk->cgroup != NULL, thanks to
4675 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
4676 * cgroup to top_cgroup.
4677 */
4678
4679/* TODO: Use a proper seq_file iterator */
8d8b97ba 4680int proc_cgroup_show(struct seq_file *m, void *v)
a424316c
PM
4681{
4682 struct pid *pid;
4683 struct task_struct *tsk;
4684 char *buf;
4685 int retval;
4686 struct cgroupfs_root *root;
4687
4688 retval = -ENOMEM;
4689 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4690 if (!buf)
4691 goto out;
4692
4693 retval = -ESRCH;
4694 pid = m->private;
4695 tsk = get_pid_task(pid, PIDTYPE_PID);
4696 if (!tsk)
4697 goto out_free;
4698
4699 retval = 0;
4700
4701 mutex_lock(&cgroup_mutex);
4702
e5f6a860 4703 for_each_active_root(root) {
a424316c 4704 struct cgroup_subsys *ss;
bd89aabc 4705 struct cgroup *cgrp;
b85d2040 4706 int ssid, count = 0;
a424316c 4707
2c6ab6d2 4708 seq_printf(m, "%d:", root->hierarchy_id);
b85d2040
TH
4709 for_each_subsys(ss, ssid)
4710 if (root->subsys_mask & (1 << ssid))
4711 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
c6d57f33
PM
4712 if (strlen(root->name))
4713 seq_printf(m, "%sname=%s", count ? "," : "",
4714 root->name);
a424316c 4715 seq_putc(m, ':');
7717f7ba 4716 cgrp = task_cgroup_from_root(tsk, root);
bd89aabc 4717 retval = cgroup_path(cgrp, buf, PAGE_SIZE);
a424316c
PM
4718 if (retval < 0)
4719 goto out_unlock;
4720 seq_puts(m, buf);
4721 seq_putc(m, '\n');
4722 }
4723
4724out_unlock:
4725 mutex_unlock(&cgroup_mutex);
4726 put_task_struct(tsk);
4727out_free:
4728 kfree(buf);
4729out:
4730 return retval;
4731}
4732
a424316c
PM
4733/* Display information about each subsystem and each hierarchy */
4734static int proc_cgroupstats_show(struct seq_file *m, void *v)
4735{
30159ec7 4736 struct cgroup_subsys *ss;
a424316c 4737 int i;
a424316c 4738
8bab8dde 4739 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
aae8aab4
BB
4740 /*
4741 * ideally we don't want subsystems moving around while we do this.
4742 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
4743 * subsys/hierarchy state.
4744 */
a424316c 4745 mutex_lock(&cgroup_mutex);
30159ec7
TH
4746
4747 for_each_subsys(ss, i)
2c6ab6d2
PM
4748 seq_printf(m, "%s\t%d\t%d\t%d\n",
4749 ss->name, ss->root->hierarchy_id,
8bab8dde 4750 ss->root->number_of_cgroups, !ss->disabled);
30159ec7 4751
a424316c
PM
4752 mutex_unlock(&cgroup_mutex);
4753 return 0;
4754}
4755
4756static int cgroupstats_open(struct inode *inode, struct file *file)
4757{
9dce07f1 4758 return single_open(file, proc_cgroupstats_show, NULL);
a424316c
PM
4759}
4760
828c0950 4761static const struct file_operations proc_cgroupstats_operations = {
a424316c
PM
4762 .open = cgroupstats_open,
4763 .read = seq_read,
4764 .llseek = seq_lseek,
4765 .release = single_release,
4766};
4767
b4f48b63
PM
4768/**
4769 * cgroup_fork - attach newly forked task to its parents cgroup.
a043e3b2 4770 * @child: pointer to task_struct of forking parent process.
b4f48b63
PM
4771 *
4772 * Description: A task inherits its parent's cgroup at fork().
4773 *
4774 * A pointer to the shared css_set was automatically copied in
4775 * fork.c by dup_task_struct(). However, we ignore that copy, since
9bb71308
TH
4776 * it was not made under the protection of RCU or cgroup_mutex, so
4777 * might no longer be a valid cgroup pointer. cgroup_attach_task() might
4778 * have already changed current->cgroups, allowing the previously
4779 * referenced cgroup group to be removed and freed.
b4f48b63
PM
4780 *
4781 * At the point that cgroup_fork() is called, 'current' is the parent
4782 * task, and the passed argument 'child' points to the child task.
4783 */
4784void cgroup_fork(struct task_struct *child)
4785{
9bb71308 4786 task_lock(current);
a8ad805c 4787 get_css_set(task_css_set(current));
817929ec 4788 child->cgroups = current->cgroups;
9bb71308 4789 task_unlock(current);
817929ec 4790 INIT_LIST_HEAD(&child->cg_list);
b4f48b63
PM
4791}
4792
817929ec 4793/**
a043e3b2
LZ
4794 * cgroup_post_fork - called on a new task after adding it to the task list
4795 * @child: the task in question
4796 *
5edee61e
TH
4797 * Adds the task to the list running through its css_set if necessary and
4798 * call the subsystem fork() callbacks. Has to be after the task is
4799 * visible on the task list in case we race with the first call to
0942eeee 4800 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5edee61e 4801 * list.
a043e3b2 4802 */
817929ec
PM
4803void cgroup_post_fork(struct task_struct *child)
4804{
30159ec7 4805 struct cgroup_subsys *ss;
5edee61e
TH
4806 int i;
4807
3ce3230a
FW
4808 /*
4809 * use_task_css_set_links is set to 1 before we walk the tasklist
4810 * under the tasklist_lock and we read it here after we added the child
4811 * to the tasklist under the tasklist_lock as well. If the child wasn't
4812 * yet in the tasklist when we walked through it from
4813 * cgroup_enable_task_cg_lists(), then use_task_css_set_links value
4814 * should be visible now due to the paired locking and barriers implied
4815 * by LOCK/UNLOCK: it is written before the tasklist_lock unlock
4816 * in cgroup_enable_task_cg_lists() and read here after the tasklist_lock
4817 * lock on fork.
4818 */
817929ec
PM
4819 if (use_task_css_set_links) {
4820 write_lock(&css_set_lock);
d8783832
TH
4821 task_lock(child);
4822 if (list_empty(&child->cg_list))
a8ad805c 4823 list_add(&child->cg_list, &task_css_set(child)->tasks);
d8783832 4824 task_unlock(child);
817929ec
PM
4825 write_unlock(&css_set_lock);
4826 }
5edee61e
TH
4827
4828 /*
4829 * Call ss->fork(). This must happen after @child is linked on
4830 * css_set; otherwise, @child might change state between ->fork()
4831 * and addition to css_set.
4832 */
4833 if (need_forkexit_callback) {
3ed80a62 4834 for_each_subsys(ss, i)
5edee61e
TH
4835 if (ss->fork)
4836 ss->fork(child);
5edee61e 4837 }
817929ec 4838}
5edee61e 4839
b4f48b63
PM
4840/**
4841 * cgroup_exit - detach cgroup from exiting task
4842 * @tsk: pointer to task_struct of exiting process
a043e3b2 4843 * @run_callback: run exit callbacks?
b4f48b63
PM
4844 *
4845 * Description: Detach cgroup from @tsk and release it.
4846 *
4847 * Note that cgroups marked notify_on_release force every task in
4848 * them to take the global cgroup_mutex mutex when exiting.
4849 * This could impact scaling on very large systems. Be reluctant to
4850 * use notify_on_release cgroups where very high task exit scaling
4851 * is required on large systems.
4852 *
4853 * the_top_cgroup_hack:
4854 *
4855 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
4856 *
4857 * We call cgroup_exit() while the task is still competent to
4858 * handle notify_on_release(), then leave the task attached to the
4859 * root cgroup in each hierarchy for the remainder of its exit.
4860 *
4861 * To do this properly, we would increment the reference count on
4862 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
4863 * code we would add a second cgroup function call, to drop that
4864 * reference. This would just create an unnecessary hot spot on
4865 * the top_cgroup reference count, to no avail.
4866 *
4867 * Normally, holding a reference to a cgroup without bumping its
4868 * count is unsafe. The cgroup could go away, or someone could
4869 * attach us to a different cgroup, decrementing the count on
4870 * the first cgroup that we never incremented. But in this case,
4871 * top_cgroup isn't going away, and either task has PF_EXITING set,
956db3ca
CW
4872 * which wards off any cgroup_attach_task() attempts, or task is a failed
4873 * fork, never visible to cgroup_attach_task.
b4f48b63
PM
4874 */
4875void cgroup_exit(struct task_struct *tsk, int run_callbacks)
4876{
30159ec7 4877 struct cgroup_subsys *ss;
5abb8855 4878 struct css_set *cset;
d41d5a01 4879 int i;
817929ec
PM
4880
4881 /*
4882 * Unlink from the css_set task list if necessary.
4883 * Optimistically check cg_list before taking
4884 * css_set_lock
4885 */
4886 if (!list_empty(&tsk->cg_list)) {
4887 write_lock(&css_set_lock);
4888 if (!list_empty(&tsk->cg_list))
8d258797 4889 list_del_init(&tsk->cg_list);
817929ec
PM
4890 write_unlock(&css_set_lock);
4891 }
4892
b4f48b63
PM
4893 /* Reassign the task to the init_css_set. */
4894 task_lock(tsk);
a8ad805c
TH
4895 cset = task_css_set(tsk);
4896 RCU_INIT_POINTER(tsk->cgroups, &init_css_set);
d41d5a01
PZ
4897
4898 if (run_callbacks && need_forkexit_callback) {
3ed80a62
TH
4899 /* see cgroup_post_fork() for details */
4900 for_each_subsys(ss, i) {
d41d5a01 4901 if (ss->exit) {
eb95419b
TH
4902 struct cgroup_subsys_state *old_css = cset->subsys[i];
4903 struct cgroup_subsys_state *css = task_css(tsk, i);
30159ec7 4904
eb95419b 4905 ss->exit(css, old_css, tsk);
d41d5a01
PZ
4906 }
4907 }
4908 }
b4f48b63 4909 task_unlock(tsk);
d41d5a01 4910
5abb8855 4911 put_css_set_taskexit(cset);
b4f48b63 4912}
697f4161 4913
bd89aabc 4914static void check_for_release(struct cgroup *cgrp)
81a6a5cd 4915{
f50daa70 4916 if (cgroup_is_releasable(cgrp) &&
6f3d828f 4917 list_empty(&cgrp->cset_links) && list_empty(&cgrp->children)) {
f50daa70
LZ
4918 /*
4919 * Control Group is currently removeable. If it's not
81a6a5cd 4920 * already queued for a userspace notification, queue
f50daa70
LZ
4921 * it now
4922 */
81a6a5cd 4923 int need_schedule_work = 0;
f50daa70 4924
cdcc136f 4925 raw_spin_lock(&release_list_lock);
54766d4a 4926 if (!cgroup_is_dead(cgrp) &&
bd89aabc
PM
4927 list_empty(&cgrp->release_list)) {
4928 list_add(&cgrp->release_list, &release_list);
81a6a5cd
PM
4929 need_schedule_work = 1;
4930 }
cdcc136f 4931 raw_spin_unlock(&release_list_lock);
81a6a5cd
PM
4932 if (need_schedule_work)
4933 schedule_work(&release_agent_work);
4934 }
4935}
4936
81a6a5cd
PM
4937/*
4938 * Notify userspace when a cgroup is released, by running the
4939 * configured release agent with the name of the cgroup (path
4940 * relative to the root of cgroup file system) as the argument.
4941 *
4942 * Most likely, this user command will try to rmdir this cgroup.
4943 *
4944 * This races with the possibility that some other task will be
4945 * attached to this cgroup before it is removed, or that some other
4946 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
4947 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
4948 * unused, and this cgroup will be reprieved from its death sentence,
4949 * to continue to serve a useful existence. Next time it's released,
4950 * we will get notified again, if it still has 'notify_on_release' set.
4951 *
4952 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
4953 * means only wait until the task is successfully execve()'d. The
4954 * separate release agent task is forked by call_usermodehelper(),
4955 * then control in this thread returns here, without waiting for the
4956 * release agent task. We don't bother to wait because the caller of
4957 * this routine has no use for the exit status of the release agent
4958 * task, so no sense holding our caller up for that.
81a6a5cd 4959 */
81a6a5cd
PM
4960static void cgroup_release_agent(struct work_struct *work)
4961{
4962 BUG_ON(work != &release_agent_work);
4963 mutex_lock(&cgroup_mutex);
cdcc136f 4964 raw_spin_lock(&release_list_lock);
81a6a5cd
PM
4965 while (!list_empty(&release_list)) {
4966 char *argv[3], *envp[3];
4967 int i;
e788e066 4968 char *pathbuf = NULL, *agentbuf = NULL;
bd89aabc 4969 struct cgroup *cgrp = list_entry(release_list.next,
81a6a5cd
PM
4970 struct cgroup,
4971 release_list);
bd89aabc 4972 list_del_init(&cgrp->release_list);
cdcc136f 4973 raw_spin_unlock(&release_list_lock);
81a6a5cd 4974 pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
e788e066
PM
4975 if (!pathbuf)
4976 goto continue_free;
4977 if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
4978 goto continue_free;
4979 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
4980 if (!agentbuf)
4981 goto continue_free;
81a6a5cd
PM
4982
4983 i = 0;
e788e066
PM
4984 argv[i++] = agentbuf;
4985 argv[i++] = pathbuf;
81a6a5cd
PM
4986 argv[i] = NULL;
4987
4988 i = 0;
4989 /* minimal command environment */
4990 envp[i++] = "HOME=/";
4991 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
4992 envp[i] = NULL;
4993
4994 /* Drop the lock while we invoke the usermode helper,
4995 * since the exec could involve hitting disk and hence
4996 * be a slow process */
4997 mutex_unlock(&cgroup_mutex);
4998 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
81a6a5cd 4999 mutex_lock(&cgroup_mutex);
e788e066
PM
5000 continue_free:
5001 kfree(pathbuf);
5002 kfree(agentbuf);
cdcc136f 5003 raw_spin_lock(&release_list_lock);
81a6a5cd 5004 }
cdcc136f 5005 raw_spin_unlock(&release_list_lock);
81a6a5cd
PM
5006 mutex_unlock(&cgroup_mutex);
5007}
8bab8dde
PM
5008
5009static int __init cgroup_disable(char *str)
5010{
30159ec7 5011 struct cgroup_subsys *ss;
8bab8dde 5012 char *token;
30159ec7 5013 int i;
8bab8dde
PM
5014
5015 while ((token = strsep(&str, ",")) != NULL) {
5016 if (!*token)
5017 continue;
be45c900 5018
3ed80a62 5019 for_each_subsys(ss, i) {
8bab8dde
PM
5020 if (!strcmp(token, ss->name)) {
5021 ss->disabled = 1;
5022 printk(KERN_INFO "Disabling %s control group"
5023 " subsystem\n", ss->name);
5024 break;
5025 }
5026 }
5027 }
5028 return 1;
5029}
5030__setup("cgroup_disable=", cgroup_disable);
38460b48 5031
b77d7b60 5032/**
5a17f543 5033 * css_tryget_from_dir - get corresponding css from the dentry of a cgroup dir
35cf0836
TH
5034 * @dentry: directory dentry of interest
5035 * @ss: subsystem of interest
b77d7b60 5036 *
5a17f543
TH
5037 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
5038 * to get the corresponding css and return it. If such css doesn't exist
5039 * or can't be pinned, an ERR_PTR value is returned.
e5d1367f 5040 */
5a17f543
TH
5041struct cgroup_subsys_state *css_tryget_from_dir(struct dentry *dentry,
5042 struct cgroup_subsys *ss)
e5d1367f
SE
5043{
5044 struct cgroup *cgrp;
5a17f543 5045 struct cgroup_subsys_state *css;
b77d7b60 5046
35cf0836
TH
5047 /* is @dentry a cgroup dir? */
5048 if (!dentry->d_inode ||
5049 dentry->d_inode->i_op != &cgroup_dir_inode_operations)
e5d1367f
SE
5050 return ERR_PTR(-EBADF);
5051
5a17f543
TH
5052 rcu_read_lock();
5053
35cf0836 5054 cgrp = __d_cgrp(dentry);
5a17f543
TH
5055 css = cgroup_css(cgrp, ss);
5056
5057 if (!css || !css_tryget(css))
5058 css = ERR_PTR(-ENOENT);
5059
5060 rcu_read_unlock();
5061 return css;
e5d1367f 5062}
e5d1367f 5063
1cb650b9
LZ
5064/**
5065 * css_from_id - lookup css by id
5066 * @id: the cgroup id
5067 * @ss: cgroup subsys to be looked into
5068 *
5069 * Returns the css if there's valid one with @id, otherwise returns NULL.
5070 * Should be called under rcu_read_lock().
5071 */
5072struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
5073{
5074 struct cgroup *cgrp;
5075
ace2bee8 5076 cgroup_assert_mutexes_or_rcu_locked();
1cb650b9
LZ
5077
5078 cgrp = idr_find(&ss->root->cgroup_idr, id);
5079 if (cgrp)
d1625964 5080 return cgroup_css(cgrp, ss);
1cb650b9 5081 return NULL;
e5d1367f
SE
5082}
5083
fe693435 5084#ifdef CONFIG_CGROUP_DEBUG
eb95419b
TH
5085static struct cgroup_subsys_state *
5086debug_css_alloc(struct cgroup_subsys_state *parent_css)
fe693435
PM
5087{
5088 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5089
5090 if (!css)
5091 return ERR_PTR(-ENOMEM);
5092
5093 return css;
5094}
5095
eb95419b 5096static void debug_css_free(struct cgroup_subsys_state *css)
fe693435 5097{
eb95419b 5098 kfree(css);
fe693435
PM
5099}
5100
182446d0
TH
5101static u64 debug_taskcount_read(struct cgroup_subsys_state *css,
5102 struct cftype *cft)
fe693435 5103{
182446d0 5104 return cgroup_task_count(css->cgroup);
fe693435
PM
5105}
5106
182446d0
TH
5107static u64 current_css_set_read(struct cgroup_subsys_state *css,
5108 struct cftype *cft)
fe693435
PM
5109{
5110 return (u64)(unsigned long)current->cgroups;
5111}
5112
182446d0 5113static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css,
03c78cbe 5114 struct cftype *cft)
fe693435
PM
5115{
5116 u64 count;
5117
5118 rcu_read_lock();
a8ad805c 5119 count = atomic_read(&task_css_set(current)->refcount);
fe693435
PM
5120 rcu_read_unlock();
5121 return count;
5122}
5123
2da8ca82 5124static int current_css_set_cg_links_read(struct seq_file *seq, void *v)
7717f7ba 5125{
69d0206c 5126 struct cgrp_cset_link *link;
5abb8855 5127 struct css_set *cset;
7717f7ba
PM
5128
5129 read_lock(&css_set_lock);
5130 rcu_read_lock();
5abb8855 5131 cset = rcu_dereference(current->cgroups);
69d0206c 5132 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba
PM
5133 struct cgroup *c = link->cgrp;
5134 const char *name;
5135
5136 if (c->dentry)
5137 name = c->dentry->d_name.name;
5138 else
5139 name = "?";
2c6ab6d2
PM
5140 seq_printf(seq, "Root %d group %s\n",
5141 c->root->hierarchy_id, name);
7717f7ba
PM
5142 }
5143 rcu_read_unlock();
5144 read_unlock(&css_set_lock);
5145 return 0;
5146}
5147
5148#define MAX_TASKS_SHOWN_PER_CSS 25
2da8ca82 5149static int cgroup_css_links_read(struct seq_file *seq, void *v)
7717f7ba 5150{
2da8ca82 5151 struct cgroup_subsys_state *css = seq_css(seq);
69d0206c 5152 struct cgrp_cset_link *link;
7717f7ba
PM
5153
5154 read_lock(&css_set_lock);
182446d0 5155 list_for_each_entry(link, &css->cgroup->cset_links, cset_link) {
69d0206c 5156 struct css_set *cset = link->cset;
7717f7ba
PM
5157 struct task_struct *task;
5158 int count = 0;
5abb8855
TH
5159 seq_printf(seq, "css_set %p\n", cset);
5160 list_for_each_entry(task, &cset->tasks, cg_list) {
7717f7ba
PM
5161 if (count++ > MAX_TASKS_SHOWN_PER_CSS) {
5162 seq_puts(seq, " ...\n");
5163 break;
5164 } else {
5165 seq_printf(seq, " task %d\n",
5166 task_pid_vnr(task));
5167 }
5168 }
5169 }
5170 read_unlock(&css_set_lock);
5171 return 0;
5172}
5173
182446d0 5174static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft)
fe693435 5175{
182446d0 5176 return test_bit(CGRP_RELEASABLE, &css->cgroup->flags);
fe693435
PM
5177}
5178
5179static struct cftype debug_files[] = {
fe693435
PM
5180 {
5181 .name = "taskcount",
5182 .read_u64 = debug_taskcount_read,
5183 },
5184
5185 {
5186 .name = "current_css_set",
5187 .read_u64 = current_css_set_read,
5188 },
5189
5190 {
5191 .name = "current_css_set_refcount",
5192 .read_u64 = current_css_set_refcount_read,
5193 },
5194
7717f7ba
PM
5195 {
5196 .name = "current_css_set_cg_links",
2da8ca82 5197 .seq_show = current_css_set_cg_links_read,
7717f7ba
PM
5198 },
5199
5200 {
5201 .name = "cgroup_css_links",
2da8ca82 5202 .seq_show = cgroup_css_links_read,
7717f7ba
PM
5203 },
5204
fe693435
PM
5205 {
5206 .name = "releasable",
5207 .read_u64 = releasable_read,
5208 },
fe693435 5209
4baf6e33
TH
5210 { } /* terminate */
5211};
fe693435 5212
073219e9 5213struct cgroup_subsys debug_cgrp_subsys = {
92fb9748
TH
5214 .css_alloc = debug_css_alloc,
5215 .css_free = debug_css_free,
4baf6e33 5216 .base_cftypes = debug_files,
fe693435
PM
5217};
5218#endif /* CONFIG_CGROUP_DEBUG */