]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - kernel/cgroup.c
cgroup: Remove wrong comment on cgroup_enable_task_cg_list()
[mirror_ubuntu-artful-kernel.git] / kernel / cgroup.c
CommitLineData
ddbcc7e8 1/*
ddbcc7e8
PM
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
0dea1168
KS
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
ddbcc7e8
PM
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29#include <linux/cgroup.h>
2ce9738b 30#include <linux/cred.h>
c6d57f33 31#include <linux/ctype.h>
ddbcc7e8
PM
32#include <linux/errno.h>
33#include <linux/fs.h>
2ce9738b 34#include <linux/init_task.h>
ddbcc7e8
PM
35#include <linux/kernel.h>
36#include <linux/list.h>
37#include <linux/mm.h>
38#include <linux/mutex.h>
39#include <linux/mount.h>
40#include <linux/pagemap.h>
a424316c 41#include <linux/proc_fs.h>
ddbcc7e8
PM
42#include <linux/rcupdate.h>
43#include <linux/sched.h>
817929ec 44#include <linux/backing-dev.h>
ddbcc7e8
PM
45#include <linux/seq_file.h>
46#include <linux/slab.h>
47#include <linux/magic.h>
48#include <linux/spinlock.h>
49#include <linux/string.h>
bbcb81d0 50#include <linux/sort.h>
81a6a5cd 51#include <linux/kmod.h>
e6a1105b 52#include <linux/module.h>
846c7bb0
BS
53#include <linux/delayacct.h>
54#include <linux/cgroupstats.h>
472b1053 55#include <linux/hash.h>
3f8206d4 56#include <linux/namei.h>
096b7fe0 57#include <linux/pid_namespace.h>
2c6ab6d2 58#include <linux/idr.h>
d1d9fd33 59#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
0dea1168
KS
60#include <linux/eventfd.h>
61#include <linux/poll.h>
d846687d 62#include <linux/flex_array.h> /* used in cgroup_attach_proc */
846c7bb0 63
60063497 64#include <linux/atomic.h>
ddbcc7e8 65
e25e2cbb
TH
66/*
67 * cgroup_mutex is the master lock. Any modification to cgroup or its
68 * hierarchy must be performed while holding it.
69 *
70 * cgroup_root_mutex nests inside cgroup_mutex and should be held to modify
71 * cgroupfs_root of any cgroup hierarchy - subsys list, flags,
72 * release_agent_path and so on. Modifying requires both cgroup_mutex and
73 * cgroup_root_mutex. Readers can acquire either of the two. This is to
74 * break the following locking order cycle.
75 *
76 * A. cgroup_mutex -> cred_guard_mutex -> s_type->i_mutex_key -> namespace_sem
77 * B. namespace_sem -> cgroup_mutex
78 *
79 * B happens only through cgroup_show_options() and using cgroup_root_mutex
80 * breaks it.
81 */
81a6a5cd 82static DEFINE_MUTEX(cgroup_mutex);
e25e2cbb 83static DEFINE_MUTEX(cgroup_root_mutex);
81a6a5cd 84
aae8aab4
BB
85/*
86 * Generate an array of cgroup subsystem pointers. At boot time, this is
87 * populated up to CGROUP_BUILTIN_SUBSYS_COUNT, and modular subsystems are
88 * registered after that. The mutable section of this array is protected by
89 * cgroup_mutex.
90 */
ddbcc7e8 91#define SUBSYS(_x) &_x ## _subsys,
aae8aab4 92static struct cgroup_subsys *subsys[CGROUP_SUBSYS_COUNT] = {
ddbcc7e8
PM
93#include <linux/cgroup_subsys.h>
94};
95
c6d57f33
PM
96#define MAX_CGROUP_ROOT_NAMELEN 64
97
ddbcc7e8
PM
98/*
99 * A cgroupfs_root represents the root of a cgroup hierarchy,
100 * and may be associated with a superblock to form an active
101 * hierarchy
102 */
103struct cgroupfs_root {
104 struct super_block *sb;
105
106 /*
107 * The bitmask of subsystems intended to be attached to this
108 * hierarchy
109 */
110 unsigned long subsys_bits;
111
2c6ab6d2
PM
112 /* Unique id for this hierarchy. */
113 int hierarchy_id;
114
ddbcc7e8
PM
115 /* The bitmask of subsystems currently attached to this hierarchy */
116 unsigned long actual_subsys_bits;
117
118 /* A list running through the attached subsystems */
119 struct list_head subsys_list;
120
121 /* The root cgroup for this hierarchy */
122 struct cgroup top_cgroup;
123
124 /* Tracks how many cgroups are currently defined in hierarchy.*/
125 int number_of_cgroups;
126
e5f6a860 127 /* A list running through the active hierarchies */
ddbcc7e8
PM
128 struct list_head root_list;
129
130 /* Hierarchy-specific flags */
131 unsigned long flags;
81a6a5cd 132
e788e066 133 /* The path to use for release notifications. */
81a6a5cd 134 char release_agent_path[PATH_MAX];
c6d57f33
PM
135
136 /* The name for this hierarchy - may be empty */
137 char name[MAX_CGROUP_ROOT_NAMELEN];
ddbcc7e8
PM
138};
139
ddbcc7e8
PM
140/*
141 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
142 * subsystems that are otherwise unattached - it never has more than a
143 * single cgroup, and all tasks are part of that cgroup.
144 */
145static struct cgroupfs_root rootnode;
146
38460b48
KH
147/*
148 * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
149 * cgroup_subsys->use_id != 0.
150 */
151#define CSS_ID_MAX (65535)
152struct css_id {
153 /*
154 * The css to which this ID points. This pointer is set to valid value
155 * after cgroup is populated. If cgroup is removed, this will be NULL.
156 * This pointer is expected to be RCU-safe because destroy()
157 * is called after synchronize_rcu(). But for safe use, css_is_removed()
158 * css_tryget() should be used for avoiding race.
159 */
2c392b8c 160 struct cgroup_subsys_state __rcu *css;
38460b48
KH
161 /*
162 * ID of this css.
163 */
164 unsigned short id;
165 /*
166 * Depth in hierarchy which this ID belongs to.
167 */
168 unsigned short depth;
169 /*
170 * ID is freed by RCU. (and lookup routine is RCU safe.)
171 */
172 struct rcu_head rcu_head;
173 /*
174 * Hierarchy of CSS ID belongs to.
175 */
176 unsigned short stack[0]; /* Array of Length (depth+1) */
177};
178
0dea1168 179/*
25985edc 180 * cgroup_event represents events which userspace want to receive.
0dea1168
KS
181 */
182struct cgroup_event {
183 /*
184 * Cgroup which the event belongs to.
185 */
186 struct cgroup *cgrp;
187 /*
188 * Control file which the event associated.
189 */
190 struct cftype *cft;
191 /*
192 * eventfd to signal userspace about the event.
193 */
194 struct eventfd_ctx *eventfd;
195 /*
196 * Each of these stored in a list by the cgroup.
197 */
198 struct list_head list;
199 /*
200 * All fields below needed to unregister event when
201 * userspace closes eventfd.
202 */
203 poll_table pt;
204 wait_queue_head_t *wqh;
205 wait_queue_t wait;
206 struct work_struct remove;
207};
38460b48 208
ddbcc7e8
PM
209/* The list of hierarchy roots */
210
211static LIST_HEAD(roots);
817929ec 212static int root_count;
ddbcc7e8 213
2c6ab6d2
PM
214static DEFINE_IDA(hierarchy_ida);
215static int next_hierarchy_id;
216static DEFINE_SPINLOCK(hierarchy_id_lock);
217
ddbcc7e8
PM
218/* dummytop is a shorthand for the dummy hierarchy's top cgroup */
219#define dummytop (&rootnode.top_cgroup)
220
221/* This flag indicates whether tasks in the fork and exit paths should
a043e3b2
LZ
222 * check for fork/exit handlers to call. This avoids us having to do
223 * extra work in the fork/exit path if none of the subsystems need to
224 * be called.
ddbcc7e8 225 */
8947f9d5 226static int need_forkexit_callback __read_mostly;
ddbcc7e8 227
d11c563d
PM
228#ifdef CONFIG_PROVE_LOCKING
229int cgroup_lock_is_held(void)
230{
231 return lockdep_is_held(&cgroup_mutex);
232}
233#else /* #ifdef CONFIG_PROVE_LOCKING */
234int cgroup_lock_is_held(void)
235{
236 return mutex_is_locked(&cgroup_mutex);
237}
238#endif /* #else #ifdef CONFIG_PROVE_LOCKING */
239
240EXPORT_SYMBOL_GPL(cgroup_lock_is_held);
241
ddbcc7e8 242/* convenient tests for these bits */
bd89aabc 243inline int cgroup_is_removed(const struct cgroup *cgrp)
ddbcc7e8 244{
bd89aabc 245 return test_bit(CGRP_REMOVED, &cgrp->flags);
ddbcc7e8
PM
246}
247
248/* bits in struct cgroupfs_root flags field */
249enum {
250 ROOT_NOPREFIX, /* mounted subsystems have no named prefix */
251};
252
e9685a03 253static int cgroup_is_releasable(const struct cgroup *cgrp)
81a6a5cd
PM
254{
255 const int bits =
bd89aabc
PM
256 (1 << CGRP_RELEASABLE) |
257 (1 << CGRP_NOTIFY_ON_RELEASE);
258 return (cgrp->flags & bits) == bits;
81a6a5cd
PM
259}
260
e9685a03 261static int notify_on_release(const struct cgroup *cgrp)
81a6a5cd 262{
bd89aabc 263 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
81a6a5cd
PM
264}
265
97978e6d
DL
266static int clone_children(const struct cgroup *cgrp)
267{
268 return test_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
269}
270
ddbcc7e8
PM
271/*
272 * for_each_subsys() allows you to iterate on each subsystem attached to
273 * an active hierarchy
274 */
275#define for_each_subsys(_root, _ss) \
276list_for_each_entry(_ss, &_root->subsys_list, sibling)
277
e5f6a860
LZ
278/* for_each_active_root() allows you to iterate across the active hierarchies */
279#define for_each_active_root(_root) \
ddbcc7e8
PM
280list_for_each_entry(_root, &roots, root_list)
281
81a6a5cd
PM
282/* the list of cgroups eligible for automatic release. Protected by
283 * release_list_lock */
284static LIST_HEAD(release_list);
cdcc136f 285static DEFINE_RAW_SPINLOCK(release_list_lock);
81a6a5cd
PM
286static void cgroup_release_agent(struct work_struct *work);
287static DECLARE_WORK(release_agent_work, cgroup_release_agent);
bd89aabc 288static void check_for_release(struct cgroup *cgrp);
81a6a5cd 289
817929ec
PM
290/* Link structure for associating css_set objects with cgroups */
291struct cg_cgroup_link {
292 /*
293 * List running through cg_cgroup_links associated with a
294 * cgroup, anchored on cgroup->css_sets
295 */
bd89aabc 296 struct list_head cgrp_link_list;
7717f7ba 297 struct cgroup *cgrp;
817929ec
PM
298 /*
299 * List running through cg_cgroup_links pointing at a
300 * single css_set object, anchored on css_set->cg_links
301 */
302 struct list_head cg_link_list;
303 struct css_set *cg;
304};
305
306/* The default css_set - used by init and its children prior to any
307 * hierarchies being mounted. It contains a pointer to the root state
308 * for each subsystem. Also used to anchor the list of css_sets. Not
309 * reference-counted, to improve performance when child cgroups
310 * haven't been created.
311 */
312
313static struct css_set init_css_set;
314static struct cg_cgroup_link init_css_set_link;
315
e6a1105b
BB
316static int cgroup_init_idr(struct cgroup_subsys *ss,
317 struct cgroup_subsys_state *css);
38460b48 318
817929ec
PM
319/* css_set_lock protects the list of css_set objects, and the
320 * chain of tasks off each css_set. Nests outside task->alloc_lock
321 * due to cgroup_iter_start() */
322static DEFINE_RWLOCK(css_set_lock);
323static int css_set_count;
324
7717f7ba
PM
325/*
326 * hash table for cgroup groups. This improves the performance to find
327 * an existing css_set. This hash doesn't (currently) take into
328 * account cgroups in empty hierarchies.
329 */
472b1053
LZ
330#define CSS_SET_HASH_BITS 7
331#define CSS_SET_TABLE_SIZE (1 << CSS_SET_HASH_BITS)
332static struct hlist_head css_set_table[CSS_SET_TABLE_SIZE];
333
334static struct hlist_head *css_set_hash(struct cgroup_subsys_state *css[])
335{
336 int i;
337 int index;
338 unsigned long tmp = 0UL;
339
340 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++)
341 tmp += (unsigned long)css[i];
342 tmp = (tmp >> 16) ^ tmp;
343
344 index = hash_long(tmp, CSS_SET_HASH_BITS);
345
346 return &css_set_table[index];
347}
348
817929ec
PM
349/* We don't maintain the lists running through each css_set to its
350 * task until after the first call to cgroup_iter_start(). This
351 * reduces the fork()/exit() overhead for people who have cgroups
352 * compiled into their kernel but not actually in use */
8947f9d5 353static int use_task_css_set_links __read_mostly;
817929ec 354
2c6ab6d2 355static void __put_css_set(struct css_set *cg, int taskexit)
b4f48b63 356{
71cbb949
KM
357 struct cg_cgroup_link *link;
358 struct cg_cgroup_link *saved_link;
146aa1bd
LJ
359 /*
360 * Ensure that the refcount doesn't hit zero while any readers
361 * can see it. Similar to atomic_dec_and_lock(), but for an
362 * rwlock
363 */
364 if (atomic_add_unless(&cg->refcount, -1, 1))
365 return;
366 write_lock(&css_set_lock);
367 if (!atomic_dec_and_test(&cg->refcount)) {
368 write_unlock(&css_set_lock);
369 return;
370 }
81a6a5cd 371
2c6ab6d2
PM
372 /* This css_set is dead. unlink it and release cgroup refcounts */
373 hlist_del(&cg->hlist);
374 css_set_count--;
375
376 list_for_each_entry_safe(link, saved_link, &cg->cg_links,
377 cg_link_list) {
378 struct cgroup *cgrp = link->cgrp;
379 list_del(&link->cg_link_list);
380 list_del(&link->cgrp_link_list);
bd89aabc
PM
381 if (atomic_dec_and_test(&cgrp->count) &&
382 notify_on_release(cgrp)) {
81a6a5cd 383 if (taskexit)
bd89aabc
PM
384 set_bit(CGRP_RELEASABLE, &cgrp->flags);
385 check_for_release(cgrp);
81a6a5cd 386 }
2c6ab6d2
PM
387
388 kfree(link);
81a6a5cd 389 }
2c6ab6d2
PM
390
391 write_unlock(&css_set_lock);
30088ad8 392 kfree_rcu(cg, rcu_head);
b4f48b63
PM
393}
394
817929ec
PM
395/*
396 * refcounted get/put for css_set objects
397 */
398static inline void get_css_set(struct css_set *cg)
399{
146aa1bd 400 atomic_inc(&cg->refcount);
817929ec
PM
401}
402
403static inline void put_css_set(struct css_set *cg)
404{
146aa1bd 405 __put_css_set(cg, 0);
817929ec
PM
406}
407
81a6a5cd
PM
408static inline void put_css_set_taskexit(struct css_set *cg)
409{
146aa1bd 410 __put_css_set(cg, 1);
81a6a5cd
PM
411}
412
7717f7ba
PM
413/*
414 * compare_css_sets - helper function for find_existing_css_set().
415 * @cg: candidate css_set being tested
416 * @old_cg: existing css_set for a task
417 * @new_cgrp: cgroup that's being entered by the task
418 * @template: desired set of css pointers in css_set (pre-calculated)
419 *
420 * Returns true if "cg" matches "old_cg" except for the hierarchy
421 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
422 */
423static bool compare_css_sets(struct css_set *cg,
424 struct css_set *old_cg,
425 struct cgroup *new_cgrp,
426 struct cgroup_subsys_state *template[])
427{
428 struct list_head *l1, *l2;
429
430 if (memcmp(template, cg->subsys, sizeof(cg->subsys))) {
431 /* Not all subsystems matched */
432 return false;
433 }
434
435 /*
436 * Compare cgroup pointers in order to distinguish between
437 * different cgroups in heirarchies with no subsystems. We
438 * could get by with just this check alone (and skip the
439 * memcmp above) but on most setups the memcmp check will
440 * avoid the need for this more expensive check on almost all
441 * candidates.
442 */
443
444 l1 = &cg->cg_links;
445 l2 = &old_cg->cg_links;
446 while (1) {
447 struct cg_cgroup_link *cgl1, *cgl2;
448 struct cgroup *cg1, *cg2;
449
450 l1 = l1->next;
451 l2 = l2->next;
452 /* See if we reached the end - both lists are equal length. */
453 if (l1 == &cg->cg_links) {
454 BUG_ON(l2 != &old_cg->cg_links);
455 break;
456 } else {
457 BUG_ON(l2 == &old_cg->cg_links);
458 }
459 /* Locate the cgroups associated with these links. */
460 cgl1 = list_entry(l1, struct cg_cgroup_link, cg_link_list);
461 cgl2 = list_entry(l2, struct cg_cgroup_link, cg_link_list);
462 cg1 = cgl1->cgrp;
463 cg2 = cgl2->cgrp;
464 /* Hierarchies should be linked in the same order. */
465 BUG_ON(cg1->root != cg2->root);
466
467 /*
468 * If this hierarchy is the hierarchy of the cgroup
469 * that's changing, then we need to check that this
470 * css_set points to the new cgroup; if it's any other
471 * hierarchy, then this css_set should point to the
472 * same cgroup as the old css_set.
473 */
474 if (cg1->root == new_cgrp->root) {
475 if (cg1 != new_cgrp)
476 return false;
477 } else {
478 if (cg1 != cg2)
479 return false;
480 }
481 }
482 return true;
483}
484
817929ec
PM
485/*
486 * find_existing_css_set() is a helper for
487 * find_css_set(), and checks to see whether an existing
472b1053 488 * css_set is suitable.
817929ec
PM
489 *
490 * oldcg: the cgroup group that we're using before the cgroup
491 * transition
492 *
bd89aabc 493 * cgrp: the cgroup that we're moving into
817929ec
PM
494 *
495 * template: location in which to build the desired set of subsystem
496 * state objects for the new cgroup group
497 */
817929ec
PM
498static struct css_set *find_existing_css_set(
499 struct css_set *oldcg,
bd89aabc 500 struct cgroup *cgrp,
817929ec 501 struct cgroup_subsys_state *template[])
b4f48b63
PM
502{
503 int i;
bd89aabc 504 struct cgroupfs_root *root = cgrp->root;
472b1053
LZ
505 struct hlist_head *hhead;
506 struct hlist_node *node;
507 struct css_set *cg;
817929ec 508
aae8aab4
BB
509 /*
510 * Build the set of subsystem state objects that we want to see in the
511 * new css_set. while subsystems can change globally, the entries here
512 * won't change, so no need for locking.
513 */
817929ec 514 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
8d53d55d 515 if (root->subsys_bits & (1UL << i)) {
817929ec
PM
516 /* Subsystem is in this hierarchy. So we want
517 * the subsystem state from the new
518 * cgroup */
bd89aabc 519 template[i] = cgrp->subsys[i];
817929ec
PM
520 } else {
521 /* Subsystem is not in this hierarchy, so we
522 * don't want to change the subsystem state */
523 template[i] = oldcg->subsys[i];
524 }
525 }
526
472b1053
LZ
527 hhead = css_set_hash(template);
528 hlist_for_each_entry(cg, node, hhead, hlist) {
7717f7ba
PM
529 if (!compare_css_sets(cg, oldcg, cgrp, template))
530 continue;
531
532 /* This css_set matches what we need */
533 return cg;
472b1053 534 }
817929ec
PM
535
536 /* No existing cgroup group matched */
537 return NULL;
538}
539
36553434
LZ
540static void free_cg_links(struct list_head *tmp)
541{
542 struct cg_cgroup_link *link;
543 struct cg_cgroup_link *saved_link;
544
545 list_for_each_entry_safe(link, saved_link, tmp, cgrp_link_list) {
546 list_del(&link->cgrp_link_list);
547 kfree(link);
548 }
549}
550
817929ec
PM
551/*
552 * allocate_cg_links() allocates "count" cg_cgroup_link structures
bd89aabc 553 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
817929ec
PM
554 * success or a negative error
555 */
817929ec
PM
556static int allocate_cg_links(int count, struct list_head *tmp)
557{
558 struct cg_cgroup_link *link;
559 int i;
560 INIT_LIST_HEAD(tmp);
561 for (i = 0; i < count; i++) {
562 link = kmalloc(sizeof(*link), GFP_KERNEL);
563 if (!link) {
36553434 564 free_cg_links(tmp);
817929ec
PM
565 return -ENOMEM;
566 }
bd89aabc 567 list_add(&link->cgrp_link_list, tmp);
817929ec
PM
568 }
569 return 0;
570}
571
c12f65d4
LZ
572/**
573 * link_css_set - a helper function to link a css_set to a cgroup
574 * @tmp_cg_links: cg_cgroup_link objects allocated by allocate_cg_links()
575 * @cg: the css_set to be linked
576 * @cgrp: the destination cgroup
577 */
578static void link_css_set(struct list_head *tmp_cg_links,
579 struct css_set *cg, struct cgroup *cgrp)
580{
581 struct cg_cgroup_link *link;
582
583 BUG_ON(list_empty(tmp_cg_links));
584 link = list_first_entry(tmp_cg_links, struct cg_cgroup_link,
585 cgrp_link_list);
586 link->cg = cg;
7717f7ba 587 link->cgrp = cgrp;
2c6ab6d2 588 atomic_inc(&cgrp->count);
c12f65d4 589 list_move(&link->cgrp_link_list, &cgrp->css_sets);
7717f7ba
PM
590 /*
591 * Always add links to the tail of the list so that the list
592 * is sorted by order of hierarchy creation
593 */
594 list_add_tail(&link->cg_link_list, &cg->cg_links);
c12f65d4
LZ
595}
596
817929ec
PM
597/*
598 * find_css_set() takes an existing cgroup group and a
599 * cgroup object, and returns a css_set object that's
600 * equivalent to the old group, but with the given cgroup
601 * substituted into the appropriate hierarchy. Must be called with
602 * cgroup_mutex held
603 */
817929ec 604static struct css_set *find_css_set(
bd89aabc 605 struct css_set *oldcg, struct cgroup *cgrp)
817929ec
PM
606{
607 struct css_set *res;
608 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
817929ec
PM
609
610 struct list_head tmp_cg_links;
817929ec 611
472b1053 612 struct hlist_head *hhead;
7717f7ba 613 struct cg_cgroup_link *link;
472b1053 614
817929ec
PM
615 /* First see if we already have a cgroup group that matches
616 * the desired set */
7e9abd89 617 read_lock(&css_set_lock);
bd89aabc 618 res = find_existing_css_set(oldcg, cgrp, template);
817929ec
PM
619 if (res)
620 get_css_set(res);
7e9abd89 621 read_unlock(&css_set_lock);
817929ec
PM
622
623 if (res)
624 return res;
625
626 res = kmalloc(sizeof(*res), GFP_KERNEL);
627 if (!res)
628 return NULL;
629
630 /* Allocate all the cg_cgroup_link objects that we'll need */
631 if (allocate_cg_links(root_count, &tmp_cg_links) < 0) {
632 kfree(res);
633 return NULL;
634 }
635
146aa1bd 636 atomic_set(&res->refcount, 1);
817929ec
PM
637 INIT_LIST_HEAD(&res->cg_links);
638 INIT_LIST_HEAD(&res->tasks);
472b1053 639 INIT_HLIST_NODE(&res->hlist);
817929ec
PM
640
641 /* Copy the set of subsystem state objects generated in
642 * find_existing_css_set() */
643 memcpy(res->subsys, template, sizeof(res->subsys));
644
645 write_lock(&css_set_lock);
646 /* Add reference counts and links from the new css_set. */
7717f7ba
PM
647 list_for_each_entry(link, &oldcg->cg_links, cg_link_list) {
648 struct cgroup *c = link->cgrp;
649 if (c->root == cgrp->root)
650 c = cgrp;
651 link_css_set(&tmp_cg_links, res, c);
652 }
817929ec
PM
653
654 BUG_ON(!list_empty(&tmp_cg_links));
655
817929ec 656 css_set_count++;
472b1053
LZ
657
658 /* Add this cgroup group to the hash table */
659 hhead = css_set_hash(res->subsys);
660 hlist_add_head(&res->hlist, hhead);
661
817929ec
PM
662 write_unlock(&css_set_lock);
663
664 return res;
b4f48b63
PM
665}
666
7717f7ba
PM
667/*
668 * Return the cgroup for "task" from the given hierarchy. Must be
669 * called with cgroup_mutex held.
670 */
671static struct cgroup *task_cgroup_from_root(struct task_struct *task,
672 struct cgroupfs_root *root)
673{
674 struct css_set *css;
675 struct cgroup *res = NULL;
676
677 BUG_ON(!mutex_is_locked(&cgroup_mutex));
678 read_lock(&css_set_lock);
679 /*
680 * No need to lock the task - since we hold cgroup_mutex the
681 * task can't change groups, so the only thing that can happen
682 * is that it exits and its css is set back to init_css_set.
683 */
684 css = task->cgroups;
685 if (css == &init_css_set) {
686 res = &root->top_cgroup;
687 } else {
688 struct cg_cgroup_link *link;
689 list_for_each_entry(link, &css->cg_links, cg_link_list) {
690 struct cgroup *c = link->cgrp;
691 if (c->root == root) {
692 res = c;
693 break;
694 }
695 }
696 }
697 read_unlock(&css_set_lock);
698 BUG_ON(!res);
699 return res;
700}
701
ddbcc7e8
PM
702/*
703 * There is one global cgroup mutex. We also require taking
704 * task_lock() when dereferencing a task's cgroup subsys pointers.
705 * See "The task_lock() exception", at the end of this comment.
706 *
707 * A task must hold cgroup_mutex to modify cgroups.
708 *
709 * Any task can increment and decrement the count field without lock.
710 * So in general, code holding cgroup_mutex can't rely on the count
711 * field not changing. However, if the count goes to zero, then only
956db3ca 712 * cgroup_attach_task() can increment it again. Because a count of zero
ddbcc7e8
PM
713 * means that no tasks are currently attached, therefore there is no
714 * way a task attached to that cgroup can fork (the other way to
715 * increment the count). So code holding cgroup_mutex can safely
716 * assume that if the count is zero, it will stay zero. Similarly, if
717 * a task holds cgroup_mutex on a cgroup with zero count, it
718 * knows that the cgroup won't be removed, as cgroup_rmdir()
719 * needs that mutex.
720 *
ddbcc7e8
PM
721 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
722 * (usually) take cgroup_mutex. These are the two most performance
723 * critical pieces of code here. The exception occurs on cgroup_exit(),
724 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
725 * is taken, and if the cgroup count is zero, a usermode call made
a043e3b2
LZ
726 * to the release agent with the name of the cgroup (path relative to
727 * the root of cgroup file system) as the argument.
ddbcc7e8
PM
728 *
729 * A cgroup can only be deleted if both its 'count' of using tasks
730 * is zero, and its list of 'children' cgroups is empty. Since all
731 * tasks in the system use _some_ cgroup, and since there is always at
732 * least one task in the system (init, pid == 1), therefore, top_cgroup
733 * always has either children cgroups and/or using tasks. So we don't
734 * need a special hack to ensure that top_cgroup cannot be deleted.
735 *
736 * The task_lock() exception
737 *
738 * The need for this exception arises from the action of
956db3ca 739 * cgroup_attach_task(), which overwrites one tasks cgroup pointer with
a043e3b2 740 * another. It does so using cgroup_mutex, however there are
ddbcc7e8
PM
741 * several performance critical places that need to reference
742 * task->cgroup without the expense of grabbing a system global
743 * mutex. Therefore except as noted below, when dereferencing or, as
956db3ca 744 * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use
ddbcc7e8
PM
745 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
746 * the task_struct routinely used for such matters.
747 *
748 * P.S. One more locking exception. RCU is used to guard the
956db3ca 749 * update of a tasks cgroup pointer by cgroup_attach_task()
ddbcc7e8
PM
750 */
751
ddbcc7e8
PM
752/**
753 * cgroup_lock - lock out any changes to cgroup structures
754 *
755 */
ddbcc7e8
PM
756void cgroup_lock(void)
757{
758 mutex_lock(&cgroup_mutex);
759}
67523c48 760EXPORT_SYMBOL_GPL(cgroup_lock);
ddbcc7e8
PM
761
762/**
763 * cgroup_unlock - release lock on cgroup changes
764 *
765 * Undo the lock taken in a previous cgroup_lock() call.
766 */
ddbcc7e8
PM
767void cgroup_unlock(void)
768{
769 mutex_unlock(&cgroup_mutex);
770}
67523c48 771EXPORT_SYMBOL_GPL(cgroup_unlock);
ddbcc7e8
PM
772
773/*
774 * A couple of forward declarations required, due to cyclic reference loop:
775 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
776 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
777 * -> cgroup_mkdir.
778 */
779
18bb1db3 780static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode);
c72a04e3 781static struct dentry *cgroup_lookup(struct inode *, struct dentry *, struct nameidata *);
ddbcc7e8 782static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
bd89aabc 783static int cgroup_populate_dir(struct cgroup *cgrp);
6e1d5dcc 784static const struct inode_operations cgroup_dir_inode_operations;
828c0950 785static const struct file_operations proc_cgroupstats_operations;
a424316c
PM
786
787static struct backing_dev_info cgroup_backing_dev_info = {
d993831f 788 .name = "cgroup",
e4ad08fe 789 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK,
a424316c 790};
ddbcc7e8 791
38460b48
KH
792static int alloc_css_id(struct cgroup_subsys *ss,
793 struct cgroup *parent, struct cgroup *child);
794
a5e7ed32 795static struct inode *cgroup_new_inode(umode_t mode, struct super_block *sb)
ddbcc7e8
PM
796{
797 struct inode *inode = new_inode(sb);
ddbcc7e8
PM
798
799 if (inode) {
85fe4025 800 inode->i_ino = get_next_ino();
ddbcc7e8 801 inode->i_mode = mode;
76aac0e9
DH
802 inode->i_uid = current_fsuid();
803 inode->i_gid = current_fsgid();
ddbcc7e8
PM
804 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
805 inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
806 }
807 return inode;
808}
809
4fca88c8
KH
810/*
811 * Call subsys's pre_destroy handler.
812 * This is called before css refcnt check.
813 */
ec64f515 814static int cgroup_call_pre_destroy(struct cgroup *cgrp)
4fca88c8
KH
815{
816 struct cgroup_subsys *ss;
ec64f515
KH
817 int ret = 0;
818
4fca88c8 819 for_each_subsys(cgrp->root, ss)
ec64f515 820 if (ss->pre_destroy) {
761b3ef5 821 ret = ss->pre_destroy(cgrp);
ec64f515 822 if (ret)
4ab78683 823 break;
ec64f515 824 }
0dea1168 825
ec64f515 826 return ret;
4fca88c8
KH
827}
828
ddbcc7e8
PM
829static void cgroup_diput(struct dentry *dentry, struct inode *inode)
830{
831 /* is dentry a directory ? if so, kfree() associated cgroup */
832 if (S_ISDIR(inode->i_mode)) {
bd89aabc 833 struct cgroup *cgrp = dentry->d_fsdata;
8dc4f3e1 834 struct cgroup_subsys *ss;
bd89aabc 835 BUG_ON(!(cgroup_is_removed(cgrp)));
81a6a5cd
PM
836 /* It's possible for external users to be holding css
837 * reference counts on a cgroup; css_put() needs to
838 * be able to access the cgroup after decrementing
839 * the reference count in order to know if it needs to
840 * queue the cgroup to be handled by the release
841 * agent */
842 synchronize_rcu();
8dc4f3e1
PM
843
844 mutex_lock(&cgroup_mutex);
845 /*
846 * Release the subsystem state objects.
847 */
75139b82 848 for_each_subsys(cgrp->root, ss)
761b3ef5 849 ss->destroy(cgrp);
8dc4f3e1
PM
850
851 cgrp->root->number_of_cgroups--;
852 mutex_unlock(&cgroup_mutex);
853
a47295e6
PM
854 /*
855 * Drop the active superblock reference that we took when we
856 * created the cgroup
857 */
8dc4f3e1
PM
858 deactivate_super(cgrp->root->sb);
859
72a8cb30
BB
860 /*
861 * if we're getting rid of the cgroup, refcount should ensure
862 * that there are no pidlists left.
863 */
864 BUG_ON(!list_empty(&cgrp->pidlists));
865
f2da1c40 866 kfree_rcu(cgrp, rcu_head);
ddbcc7e8
PM
867 }
868 iput(inode);
869}
870
c72a04e3
AV
871static int cgroup_delete(const struct dentry *d)
872{
873 return 1;
874}
875
ddbcc7e8
PM
876static void remove_dir(struct dentry *d)
877{
878 struct dentry *parent = dget(d->d_parent);
879
880 d_delete(d);
881 simple_rmdir(parent->d_inode, d);
882 dput(parent);
883}
884
885static void cgroup_clear_directory(struct dentry *dentry)
886{
887 struct list_head *node;
888
889 BUG_ON(!mutex_is_locked(&dentry->d_inode->i_mutex));
2fd6b7f5 890 spin_lock(&dentry->d_lock);
ddbcc7e8
PM
891 node = dentry->d_subdirs.next;
892 while (node != &dentry->d_subdirs) {
893 struct dentry *d = list_entry(node, struct dentry, d_u.d_child);
2fd6b7f5
NP
894
895 spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
ddbcc7e8
PM
896 list_del_init(node);
897 if (d->d_inode) {
898 /* This should never be called on a cgroup
899 * directory with child cgroups */
900 BUG_ON(d->d_inode->i_mode & S_IFDIR);
dc0474be 901 dget_dlock(d);
2fd6b7f5
NP
902 spin_unlock(&d->d_lock);
903 spin_unlock(&dentry->d_lock);
ddbcc7e8
PM
904 d_delete(d);
905 simple_unlink(dentry->d_inode, d);
906 dput(d);
2fd6b7f5
NP
907 spin_lock(&dentry->d_lock);
908 } else
909 spin_unlock(&d->d_lock);
ddbcc7e8
PM
910 node = dentry->d_subdirs.next;
911 }
2fd6b7f5 912 spin_unlock(&dentry->d_lock);
ddbcc7e8
PM
913}
914
915/*
916 * NOTE : the dentry must have been dget()'ed
917 */
918static void cgroup_d_remove_dir(struct dentry *dentry)
919{
2fd6b7f5
NP
920 struct dentry *parent;
921
ddbcc7e8
PM
922 cgroup_clear_directory(dentry);
923
2fd6b7f5
NP
924 parent = dentry->d_parent;
925 spin_lock(&parent->d_lock);
3ec762ad 926 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
ddbcc7e8 927 list_del_init(&dentry->d_u.d_child);
2fd6b7f5
NP
928 spin_unlock(&dentry->d_lock);
929 spin_unlock(&parent->d_lock);
ddbcc7e8
PM
930 remove_dir(dentry);
931}
932
ec64f515
KH
933/*
934 * A queue for waiters to do rmdir() cgroup. A tasks will sleep when
935 * cgroup->count == 0 && list_empty(&cgroup->children) && subsys has some
936 * reference to css->refcnt. In general, this refcnt is expected to goes down
937 * to zero, soon.
938 *
88703267 939 * CGRP_WAIT_ON_RMDIR flag is set under cgroup's inode->i_mutex;
ec64f515 940 */
1c6c3fad 941static DECLARE_WAIT_QUEUE_HEAD(cgroup_rmdir_waitq);
ec64f515 942
88703267 943static void cgroup_wakeup_rmdir_waiter(struct cgroup *cgrp)
ec64f515 944{
88703267 945 if (unlikely(test_and_clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags)))
ec64f515
KH
946 wake_up_all(&cgroup_rmdir_waitq);
947}
948
88703267
KH
949void cgroup_exclude_rmdir(struct cgroup_subsys_state *css)
950{
951 css_get(css);
952}
953
954void cgroup_release_and_wakeup_rmdir(struct cgroup_subsys_state *css)
955{
956 cgroup_wakeup_rmdir_waiter(css->cgroup);
957 css_put(css);
958}
959
aae8aab4 960/*
cf5d5941
BB
961 * Call with cgroup_mutex held. Drops reference counts on modules, including
962 * any duplicate ones that parse_cgroupfs_options took. If this function
963 * returns an error, no reference counts are touched.
aae8aab4 964 */
ddbcc7e8
PM
965static int rebind_subsystems(struct cgroupfs_root *root,
966 unsigned long final_bits)
967{
968 unsigned long added_bits, removed_bits;
bd89aabc 969 struct cgroup *cgrp = &root->top_cgroup;
ddbcc7e8
PM
970 int i;
971
aae8aab4 972 BUG_ON(!mutex_is_locked(&cgroup_mutex));
e25e2cbb 973 BUG_ON(!mutex_is_locked(&cgroup_root_mutex));
aae8aab4 974
ddbcc7e8
PM
975 removed_bits = root->actual_subsys_bits & ~final_bits;
976 added_bits = final_bits & ~root->actual_subsys_bits;
977 /* Check that any added subsystems are currently free */
978 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
8d53d55d 979 unsigned long bit = 1UL << i;
ddbcc7e8
PM
980 struct cgroup_subsys *ss = subsys[i];
981 if (!(bit & added_bits))
982 continue;
aae8aab4
BB
983 /*
984 * Nobody should tell us to do a subsys that doesn't exist:
985 * parse_cgroupfs_options should catch that case and refcounts
986 * ensure that subsystems won't disappear once selected.
987 */
988 BUG_ON(ss == NULL);
ddbcc7e8
PM
989 if (ss->root != &rootnode) {
990 /* Subsystem isn't free */
991 return -EBUSY;
992 }
993 }
994
995 /* Currently we don't handle adding/removing subsystems when
996 * any child cgroups exist. This is theoretically supportable
997 * but involves complex error handling, so it's being left until
998 * later */
307257cf 999 if (root->number_of_cgroups > 1)
ddbcc7e8
PM
1000 return -EBUSY;
1001
1002 /* Process each subsystem */
1003 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1004 struct cgroup_subsys *ss = subsys[i];
1005 unsigned long bit = 1UL << i;
1006 if (bit & added_bits) {
1007 /* We're binding this subsystem to this hierarchy */
aae8aab4 1008 BUG_ON(ss == NULL);
bd89aabc 1009 BUG_ON(cgrp->subsys[i]);
ddbcc7e8
PM
1010 BUG_ON(!dummytop->subsys[i]);
1011 BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
999cd8a4 1012 mutex_lock(&ss->hierarchy_mutex);
bd89aabc
PM
1013 cgrp->subsys[i] = dummytop->subsys[i];
1014 cgrp->subsys[i]->cgroup = cgrp;
33a68ac1 1015 list_move(&ss->sibling, &root->subsys_list);
b2aa30f7 1016 ss->root = root;
ddbcc7e8 1017 if (ss->bind)
761b3ef5 1018 ss->bind(cgrp);
999cd8a4 1019 mutex_unlock(&ss->hierarchy_mutex);
cf5d5941 1020 /* refcount was already taken, and we're keeping it */
ddbcc7e8
PM
1021 } else if (bit & removed_bits) {
1022 /* We're removing this subsystem */
aae8aab4 1023 BUG_ON(ss == NULL);
bd89aabc
PM
1024 BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
1025 BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
999cd8a4 1026 mutex_lock(&ss->hierarchy_mutex);
ddbcc7e8 1027 if (ss->bind)
761b3ef5 1028 ss->bind(dummytop);
ddbcc7e8 1029 dummytop->subsys[i]->cgroup = dummytop;
bd89aabc 1030 cgrp->subsys[i] = NULL;
b2aa30f7 1031 subsys[i]->root = &rootnode;
33a68ac1 1032 list_move(&ss->sibling, &rootnode.subsys_list);
999cd8a4 1033 mutex_unlock(&ss->hierarchy_mutex);
cf5d5941
BB
1034 /* subsystem is now free - drop reference on module */
1035 module_put(ss->module);
ddbcc7e8
PM
1036 } else if (bit & final_bits) {
1037 /* Subsystem state should already exist */
aae8aab4 1038 BUG_ON(ss == NULL);
bd89aabc 1039 BUG_ON(!cgrp->subsys[i]);
cf5d5941
BB
1040 /*
1041 * a refcount was taken, but we already had one, so
1042 * drop the extra reference.
1043 */
1044 module_put(ss->module);
1045#ifdef CONFIG_MODULE_UNLOAD
1046 BUG_ON(ss->module && !module_refcount(ss->module));
1047#endif
ddbcc7e8
PM
1048 } else {
1049 /* Subsystem state shouldn't exist */
bd89aabc 1050 BUG_ON(cgrp->subsys[i]);
ddbcc7e8
PM
1051 }
1052 }
1053 root->subsys_bits = root->actual_subsys_bits = final_bits;
1054 synchronize_rcu();
1055
1056 return 0;
1057}
1058
34c80b1d 1059static int cgroup_show_options(struct seq_file *seq, struct dentry *dentry)
ddbcc7e8 1060{
34c80b1d 1061 struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
ddbcc7e8
PM
1062 struct cgroup_subsys *ss;
1063
e25e2cbb 1064 mutex_lock(&cgroup_root_mutex);
ddbcc7e8
PM
1065 for_each_subsys(root, ss)
1066 seq_printf(seq, ",%s", ss->name);
1067 if (test_bit(ROOT_NOPREFIX, &root->flags))
1068 seq_puts(seq, ",noprefix");
81a6a5cd
PM
1069 if (strlen(root->release_agent_path))
1070 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
97978e6d
DL
1071 if (clone_children(&root->top_cgroup))
1072 seq_puts(seq, ",clone_children");
c6d57f33
PM
1073 if (strlen(root->name))
1074 seq_printf(seq, ",name=%s", root->name);
e25e2cbb 1075 mutex_unlock(&cgroup_root_mutex);
ddbcc7e8
PM
1076 return 0;
1077}
1078
1079struct cgroup_sb_opts {
1080 unsigned long subsys_bits;
1081 unsigned long flags;
81a6a5cd 1082 char *release_agent;
97978e6d 1083 bool clone_children;
c6d57f33 1084 char *name;
2c6ab6d2
PM
1085 /* User explicitly requested empty subsystem */
1086 bool none;
c6d57f33
PM
1087
1088 struct cgroupfs_root *new_root;
2c6ab6d2 1089
ddbcc7e8
PM
1090};
1091
aae8aab4
BB
1092/*
1093 * Convert a hierarchy specifier into a bitmask of subsystems and flags. Call
cf5d5941
BB
1094 * with cgroup_mutex held to protect the subsys[] array. This function takes
1095 * refcounts on subsystems to be used, unless it returns error, in which case
1096 * no refcounts are taken.
aae8aab4 1097 */
cf5d5941 1098static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
ddbcc7e8 1099{
32a8cf23
DL
1100 char *token, *o = data;
1101 bool all_ss = false, one_ss = false;
f9ab5b5b 1102 unsigned long mask = (unsigned long)-1;
cf5d5941
BB
1103 int i;
1104 bool module_pin_failed = false;
f9ab5b5b 1105
aae8aab4
BB
1106 BUG_ON(!mutex_is_locked(&cgroup_mutex));
1107
f9ab5b5b
LZ
1108#ifdef CONFIG_CPUSETS
1109 mask = ~(1UL << cpuset_subsys_id);
1110#endif
ddbcc7e8 1111
c6d57f33 1112 memset(opts, 0, sizeof(*opts));
ddbcc7e8
PM
1113
1114 while ((token = strsep(&o, ",")) != NULL) {
1115 if (!*token)
1116 return -EINVAL;
32a8cf23 1117 if (!strcmp(token, "none")) {
2c6ab6d2
PM
1118 /* Explicitly have no subsystems */
1119 opts->none = true;
32a8cf23
DL
1120 continue;
1121 }
1122 if (!strcmp(token, "all")) {
1123 /* Mutually exclusive option 'all' + subsystem name */
1124 if (one_ss)
1125 return -EINVAL;
1126 all_ss = true;
1127 continue;
1128 }
1129 if (!strcmp(token, "noprefix")) {
ddbcc7e8 1130 set_bit(ROOT_NOPREFIX, &opts->flags);
32a8cf23
DL
1131 continue;
1132 }
1133 if (!strcmp(token, "clone_children")) {
97978e6d 1134 opts->clone_children = true;
32a8cf23
DL
1135 continue;
1136 }
1137 if (!strncmp(token, "release_agent=", 14)) {
81a6a5cd
PM
1138 /* Specifying two release agents is forbidden */
1139 if (opts->release_agent)
1140 return -EINVAL;
c6d57f33 1141 opts->release_agent =
e400c285 1142 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
81a6a5cd
PM
1143 if (!opts->release_agent)
1144 return -ENOMEM;
32a8cf23
DL
1145 continue;
1146 }
1147 if (!strncmp(token, "name=", 5)) {
c6d57f33
PM
1148 const char *name = token + 5;
1149 /* Can't specify an empty name */
1150 if (!strlen(name))
1151 return -EINVAL;
1152 /* Must match [\w.-]+ */
1153 for (i = 0; i < strlen(name); i++) {
1154 char c = name[i];
1155 if (isalnum(c))
1156 continue;
1157 if ((c == '.') || (c == '-') || (c == '_'))
1158 continue;
1159 return -EINVAL;
1160 }
1161 /* Specifying two names is forbidden */
1162 if (opts->name)
1163 return -EINVAL;
1164 opts->name = kstrndup(name,
e400c285 1165 MAX_CGROUP_ROOT_NAMELEN - 1,
c6d57f33
PM
1166 GFP_KERNEL);
1167 if (!opts->name)
1168 return -ENOMEM;
32a8cf23
DL
1169
1170 continue;
1171 }
1172
1173 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1174 struct cgroup_subsys *ss = subsys[i];
1175 if (ss == NULL)
1176 continue;
1177 if (strcmp(token, ss->name))
1178 continue;
1179 if (ss->disabled)
1180 continue;
1181
1182 /* Mutually exclusive option 'all' + subsystem name */
1183 if (all_ss)
1184 return -EINVAL;
1185 set_bit(i, &opts->subsys_bits);
1186 one_ss = true;
1187
1188 break;
1189 }
1190 if (i == CGROUP_SUBSYS_COUNT)
1191 return -ENOENT;
1192 }
1193
1194 /*
1195 * If the 'all' option was specified select all the subsystems,
0d19ea86
LZ
1196 * otherwise if 'none', 'name=' and a subsystem name options
1197 * were not specified, let's default to 'all'
32a8cf23 1198 */
0d19ea86 1199 if (all_ss || (!one_ss && !opts->none && !opts->name)) {
32a8cf23
DL
1200 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1201 struct cgroup_subsys *ss = subsys[i];
1202 if (ss == NULL)
1203 continue;
1204 if (ss->disabled)
1205 continue;
1206 set_bit(i, &opts->subsys_bits);
ddbcc7e8
PM
1207 }
1208 }
1209
2c6ab6d2
PM
1210 /* Consistency checks */
1211
f9ab5b5b
LZ
1212 /*
1213 * Option noprefix was introduced just for backward compatibility
1214 * with the old cpuset, so we allow noprefix only if mounting just
1215 * the cpuset subsystem.
1216 */
1217 if (test_bit(ROOT_NOPREFIX, &opts->flags) &&
1218 (opts->subsys_bits & mask))
1219 return -EINVAL;
1220
2c6ab6d2
PM
1221
1222 /* Can't specify "none" and some subsystems */
1223 if (opts->subsys_bits && opts->none)
1224 return -EINVAL;
1225
1226 /*
1227 * We either have to specify by name or by subsystems. (So all
1228 * empty hierarchies must have a name).
1229 */
c6d57f33 1230 if (!opts->subsys_bits && !opts->name)
ddbcc7e8
PM
1231 return -EINVAL;
1232
cf5d5941
BB
1233 /*
1234 * Grab references on all the modules we'll need, so the subsystems
1235 * don't dance around before rebind_subsystems attaches them. This may
1236 * take duplicate reference counts on a subsystem that's already used,
1237 * but rebind_subsystems handles this case.
1238 */
1239 for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
1240 unsigned long bit = 1UL << i;
1241
1242 if (!(bit & opts->subsys_bits))
1243 continue;
1244 if (!try_module_get(subsys[i]->module)) {
1245 module_pin_failed = true;
1246 break;
1247 }
1248 }
1249 if (module_pin_failed) {
1250 /*
1251 * oops, one of the modules was going away. this means that we
1252 * raced with a module_delete call, and to the user this is
1253 * essentially a "subsystem doesn't exist" case.
1254 */
1255 for (i--; i >= CGROUP_BUILTIN_SUBSYS_COUNT; i--) {
1256 /* drop refcounts only on the ones we took */
1257 unsigned long bit = 1UL << i;
1258
1259 if (!(bit & opts->subsys_bits))
1260 continue;
1261 module_put(subsys[i]->module);
1262 }
1263 return -ENOENT;
1264 }
1265
ddbcc7e8
PM
1266 return 0;
1267}
1268
cf5d5941
BB
1269static void drop_parsed_module_refcounts(unsigned long subsys_bits)
1270{
1271 int i;
1272 for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
1273 unsigned long bit = 1UL << i;
1274
1275 if (!(bit & subsys_bits))
1276 continue;
1277 module_put(subsys[i]->module);
1278 }
1279}
1280
ddbcc7e8
PM
1281static int cgroup_remount(struct super_block *sb, int *flags, char *data)
1282{
1283 int ret = 0;
1284 struct cgroupfs_root *root = sb->s_fs_info;
bd89aabc 1285 struct cgroup *cgrp = &root->top_cgroup;
ddbcc7e8
PM
1286 struct cgroup_sb_opts opts;
1287
bd89aabc 1288 mutex_lock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8 1289 mutex_lock(&cgroup_mutex);
e25e2cbb 1290 mutex_lock(&cgroup_root_mutex);
ddbcc7e8
PM
1291
1292 /* See what subsystems are wanted */
1293 ret = parse_cgroupfs_options(data, &opts);
1294 if (ret)
1295 goto out_unlock;
1296
cf5d5941
BB
1297 /* Don't allow flags or name to change at remount */
1298 if (opts.flags != root->flags ||
1299 (opts.name && strcmp(opts.name, root->name))) {
c6d57f33 1300 ret = -EINVAL;
cf5d5941 1301 drop_parsed_module_refcounts(opts.subsys_bits);
c6d57f33
PM
1302 goto out_unlock;
1303 }
1304
ddbcc7e8 1305 ret = rebind_subsystems(root, opts.subsys_bits);
cf5d5941
BB
1306 if (ret) {
1307 drop_parsed_module_refcounts(opts.subsys_bits);
0670e08b 1308 goto out_unlock;
cf5d5941 1309 }
ddbcc7e8
PM
1310
1311 /* (re)populate subsystem files */
0670e08b 1312 cgroup_populate_dir(cgrp);
ddbcc7e8 1313
81a6a5cd
PM
1314 if (opts.release_agent)
1315 strcpy(root->release_agent_path, opts.release_agent);
ddbcc7e8 1316 out_unlock:
66bdc9cf 1317 kfree(opts.release_agent);
c6d57f33 1318 kfree(opts.name);
e25e2cbb 1319 mutex_unlock(&cgroup_root_mutex);
ddbcc7e8 1320 mutex_unlock(&cgroup_mutex);
bd89aabc 1321 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8
PM
1322 return ret;
1323}
1324
b87221de 1325static const struct super_operations cgroup_ops = {
ddbcc7e8
PM
1326 .statfs = simple_statfs,
1327 .drop_inode = generic_delete_inode,
1328 .show_options = cgroup_show_options,
1329 .remount_fs = cgroup_remount,
1330};
1331
cc31edce
PM
1332static void init_cgroup_housekeeping(struct cgroup *cgrp)
1333{
1334 INIT_LIST_HEAD(&cgrp->sibling);
1335 INIT_LIST_HEAD(&cgrp->children);
1336 INIT_LIST_HEAD(&cgrp->css_sets);
1337 INIT_LIST_HEAD(&cgrp->release_list);
72a8cb30
BB
1338 INIT_LIST_HEAD(&cgrp->pidlists);
1339 mutex_init(&cgrp->pidlist_mutex);
0dea1168
KS
1340 INIT_LIST_HEAD(&cgrp->event_list);
1341 spin_lock_init(&cgrp->event_list_lock);
cc31edce 1342}
c6d57f33 1343
ddbcc7e8
PM
1344static void init_cgroup_root(struct cgroupfs_root *root)
1345{
bd89aabc 1346 struct cgroup *cgrp = &root->top_cgroup;
ddbcc7e8
PM
1347 INIT_LIST_HEAD(&root->subsys_list);
1348 INIT_LIST_HEAD(&root->root_list);
1349 root->number_of_cgroups = 1;
bd89aabc
PM
1350 cgrp->root = root;
1351 cgrp->top_cgroup = cgrp;
cc31edce 1352 init_cgroup_housekeeping(cgrp);
ddbcc7e8
PM
1353}
1354
2c6ab6d2
PM
1355static bool init_root_id(struct cgroupfs_root *root)
1356{
1357 int ret = 0;
1358
1359 do {
1360 if (!ida_pre_get(&hierarchy_ida, GFP_KERNEL))
1361 return false;
1362 spin_lock(&hierarchy_id_lock);
1363 /* Try to allocate the next unused ID */
1364 ret = ida_get_new_above(&hierarchy_ida, next_hierarchy_id,
1365 &root->hierarchy_id);
1366 if (ret == -ENOSPC)
1367 /* Try again starting from 0 */
1368 ret = ida_get_new(&hierarchy_ida, &root->hierarchy_id);
1369 if (!ret) {
1370 next_hierarchy_id = root->hierarchy_id + 1;
1371 } else if (ret != -EAGAIN) {
1372 /* Can only get here if the 31-bit IDR is full ... */
1373 BUG_ON(ret);
1374 }
1375 spin_unlock(&hierarchy_id_lock);
1376 } while (ret);
1377 return true;
1378}
1379
ddbcc7e8
PM
1380static int cgroup_test_super(struct super_block *sb, void *data)
1381{
c6d57f33 1382 struct cgroup_sb_opts *opts = data;
ddbcc7e8
PM
1383 struct cgroupfs_root *root = sb->s_fs_info;
1384
c6d57f33
PM
1385 /* If we asked for a name then it must match */
1386 if (opts->name && strcmp(opts->name, root->name))
1387 return 0;
ddbcc7e8 1388
2c6ab6d2
PM
1389 /*
1390 * If we asked for subsystems (or explicitly for no
1391 * subsystems) then they must match
1392 */
1393 if ((opts->subsys_bits || opts->none)
1394 && (opts->subsys_bits != root->subsys_bits))
ddbcc7e8
PM
1395 return 0;
1396
1397 return 1;
1398}
1399
c6d57f33
PM
1400static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts)
1401{
1402 struct cgroupfs_root *root;
1403
2c6ab6d2 1404 if (!opts->subsys_bits && !opts->none)
c6d57f33
PM
1405 return NULL;
1406
1407 root = kzalloc(sizeof(*root), GFP_KERNEL);
1408 if (!root)
1409 return ERR_PTR(-ENOMEM);
1410
2c6ab6d2
PM
1411 if (!init_root_id(root)) {
1412 kfree(root);
1413 return ERR_PTR(-ENOMEM);
1414 }
c6d57f33 1415 init_cgroup_root(root);
2c6ab6d2 1416
c6d57f33
PM
1417 root->subsys_bits = opts->subsys_bits;
1418 root->flags = opts->flags;
1419 if (opts->release_agent)
1420 strcpy(root->release_agent_path, opts->release_agent);
1421 if (opts->name)
1422 strcpy(root->name, opts->name);
97978e6d
DL
1423 if (opts->clone_children)
1424 set_bit(CGRP_CLONE_CHILDREN, &root->top_cgroup.flags);
c6d57f33
PM
1425 return root;
1426}
1427
2c6ab6d2
PM
1428static void cgroup_drop_root(struct cgroupfs_root *root)
1429{
1430 if (!root)
1431 return;
1432
1433 BUG_ON(!root->hierarchy_id);
1434 spin_lock(&hierarchy_id_lock);
1435 ida_remove(&hierarchy_ida, root->hierarchy_id);
1436 spin_unlock(&hierarchy_id_lock);
1437 kfree(root);
1438}
1439
ddbcc7e8
PM
1440static int cgroup_set_super(struct super_block *sb, void *data)
1441{
1442 int ret;
c6d57f33
PM
1443 struct cgroup_sb_opts *opts = data;
1444
1445 /* If we don't have a new root, we can't set up a new sb */
1446 if (!opts->new_root)
1447 return -EINVAL;
1448
2c6ab6d2 1449 BUG_ON(!opts->subsys_bits && !opts->none);
ddbcc7e8
PM
1450
1451 ret = set_anon_super(sb, NULL);
1452 if (ret)
1453 return ret;
1454
c6d57f33
PM
1455 sb->s_fs_info = opts->new_root;
1456 opts->new_root->sb = sb;
ddbcc7e8
PM
1457
1458 sb->s_blocksize = PAGE_CACHE_SIZE;
1459 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
1460 sb->s_magic = CGROUP_SUPER_MAGIC;
1461 sb->s_op = &cgroup_ops;
1462
1463 return 0;
1464}
1465
1466static int cgroup_get_rootdir(struct super_block *sb)
1467{
0df6a63f
AV
1468 static const struct dentry_operations cgroup_dops = {
1469 .d_iput = cgroup_diput,
c72a04e3 1470 .d_delete = cgroup_delete,
0df6a63f
AV
1471 };
1472
ddbcc7e8
PM
1473 struct inode *inode =
1474 cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
1475 struct dentry *dentry;
1476
1477 if (!inode)
1478 return -ENOMEM;
1479
ddbcc7e8
PM
1480 inode->i_fop = &simple_dir_operations;
1481 inode->i_op = &cgroup_dir_inode_operations;
1482 /* directories start off with i_nlink == 2 (for "." entry) */
1483 inc_nlink(inode);
1484 dentry = d_alloc_root(inode);
1485 if (!dentry) {
1486 iput(inode);
1487 return -ENOMEM;
1488 }
1489 sb->s_root = dentry;
0df6a63f
AV
1490 /* for everything else we want ->d_op set */
1491 sb->s_d_op = &cgroup_dops;
ddbcc7e8
PM
1492 return 0;
1493}
1494
f7e83571 1495static struct dentry *cgroup_mount(struct file_system_type *fs_type,
ddbcc7e8 1496 int flags, const char *unused_dev_name,
f7e83571 1497 void *data)
ddbcc7e8
PM
1498{
1499 struct cgroup_sb_opts opts;
c6d57f33 1500 struct cgroupfs_root *root;
ddbcc7e8
PM
1501 int ret = 0;
1502 struct super_block *sb;
c6d57f33 1503 struct cgroupfs_root *new_root;
e25e2cbb 1504 struct inode *inode;
ddbcc7e8
PM
1505
1506 /* First find the desired set of subsystems */
aae8aab4 1507 mutex_lock(&cgroup_mutex);
ddbcc7e8 1508 ret = parse_cgroupfs_options(data, &opts);
aae8aab4 1509 mutex_unlock(&cgroup_mutex);
c6d57f33
PM
1510 if (ret)
1511 goto out_err;
ddbcc7e8 1512
c6d57f33
PM
1513 /*
1514 * Allocate a new cgroup root. We may not need it if we're
1515 * reusing an existing hierarchy.
1516 */
1517 new_root = cgroup_root_from_opts(&opts);
1518 if (IS_ERR(new_root)) {
1519 ret = PTR_ERR(new_root);
cf5d5941 1520 goto drop_modules;
81a6a5cd 1521 }
c6d57f33 1522 opts.new_root = new_root;
ddbcc7e8 1523
c6d57f33
PM
1524 /* Locate an existing or new sb for this hierarchy */
1525 sb = sget(fs_type, cgroup_test_super, cgroup_set_super, &opts);
ddbcc7e8 1526 if (IS_ERR(sb)) {
c6d57f33 1527 ret = PTR_ERR(sb);
2c6ab6d2 1528 cgroup_drop_root(opts.new_root);
cf5d5941 1529 goto drop_modules;
ddbcc7e8
PM
1530 }
1531
c6d57f33
PM
1532 root = sb->s_fs_info;
1533 BUG_ON(!root);
1534 if (root == opts.new_root) {
1535 /* We used the new root structure, so this is a new hierarchy */
1536 struct list_head tmp_cg_links;
c12f65d4 1537 struct cgroup *root_cgrp = &root->top_cgroup;
c6d57f33 1538 struct cgroupfs_root *existing_root;
2ce9738b 1539 const struct cred *cred;
28fd5dfc 1540 int i;
ddbcc7e8
PM
1541
1542 BUG_ON(sb->s_root != NULL);
1543
1544 ret = cgroup_get_rootdir(sb);
1545 if (ret)
1546 goto drop_new_super;
817929ec 1547 inode = sb->s_root->d_inode;
ddbcc7e8 1548
817929ec 1549 mutex_lock(&inode->i_mutex);
ddbcc7e8 1550 mutex_lock(&cgroup_mutex);
e25e2cbb 1551 mutex_lock(&cgroup_root_mutex);
ddbcc7e8 1552
e25e2cbb
TH
1553 /* Check for name clashes with existing mounts */
1554 ret = -EBUSY;
1555 if (strlen(root->name))
1556 for_each_active_root(existing_root)
1557 if (!strcmp(existing_root->name, root->name))
1558 goto unlock_drop;
c6d57f33 1559
817929ec
PM
1560 /*
1561 * We're accessing css_set_count without locking
1562 * css_set_lock here, but that's OK - it can only be
1563 * increased by someone holding cgroup_lock, and
1564 * that's us. The worst that can happen is that we
1565 * have some link structures left over
1566 */
1567 ret = allocate_cg_links(css_set_count, &tmp_cg_links);
e25e2cbb
TH
1568 if (ret)
1569 goto unlock_drop;
817929ec 1570
ddbcc7e8
PM
1571 ret = rebind_subsystems(root, root->subsys_bits);
1572 if (ret == -EBUSY) {
c6d57f33 1573 free_cg_links(&tmp_cg_links);
e25e2cbb 1574 goto unlock_drop;
ddbcc7e8 1575 }
cf5d5941
BB
1576 /*
1577 * There must be no failure case after here, since rebinding
1578 * takes care of subsystems' refcounts, which are explicitly
1579 * dropped in the failure exit path.
1580 */
ddbcc7e8
PM
1581
1582 /* EBUSY should be the only error here */
1583 BUG_ON(ret);
1584
1585 list_add(&root->root_list, &roots);
817929ec 1586 root_count++;
ddbcc7e8 1587
c12f65d4 1588 sb->s_root->d_fsdata = root_cgrp;
ddbcc7e8
PM
1589 root->top_cgroup.dentry = sb->s_root;
1590
817929ec
PM
1591 /* Link the top cgroup in this hierarchy into all
1592 * the css_set objects */
1593 write_lock(&css_set_lock);
28fd5dfc
LZ
1594 for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
1595 struct hlist_head *hhead = &css_set_table[i];
1596 struct hlist_node *node;
817929ec 1597 struct css_set *cg;
28fd5dfc 1598
c12f65d4
LZ
1599 hlist_for_each_entry(cg, node, hhead, hlist)
1600 link_css_set(&tmp_cg_links, cg, root_cgrp);
28fd5dfc 1601 }
817929ec
PM
1602 write_unlock(&css_set_lock);
1603
1604 free_cg_links(&tmp_cg_links);
1605
c12f65d4
LZ
1606 BUG_ON(!list_empty(&root_cgrp->sibling));
1607 BUG_ON(!list_empty(&root_cgrp->children));
ddbcc7e8
PM
1608 BUG_ON(root->number_of_cgroups != 1);
1609
2ce9738b 1610 cred = override_creds(&init_cred);
c12f65d4 1611 cgroup_populate_dir(root_cgrp);
2ce9738b 1612 revert_creds(cred);
e25e2cbb 1613 mutex_unlock(&cgroup_root_mutex);
ddbcc7e8 1614 mutex_unlock(&cgroup_mutex);
34f77a90 1615 mutex_unlock(&inode->i_mutex);
c6d57f33
PM
1616 } else {
1617 /*
1618 * We re-used an existing hierarchy - the new root (if
1619 * any) is not needed
1620 */
2c6ab6d2 1621 cgroup_drop_root(opts.new_root);
cf5d5941
BB
1622 /* no subsys rebinding, so refcounts don't change */
1623 drop_parsed_module_refcounts(opts.subsys_bits);
ddbcc7e8
PM
1624 }
1625
c6d57f33
PM
1626 kfree(opts.release_agent);
1627 kfree(opts.name);
f7e83571 1628 return dget(sb->s_root);
ddbcc7e8 1629
e25e2cbb
TH
1630 unlock_drop:
1631 mutex_unlock(&cgroup_root_mutex);
1632 mutex_unlock(&cgroup_mutex);
1633 mutex_unlock(&inode->i_mutex);
ddbcc7e8 1634 drop_new_super:
6f5bbff9 1635 deactivate_locked_super(sb);
cf5d5941
BB
1636 drop_modules:
1637 drop_parsed_module_refcounts(opts.subsys_bits);
c6d57f33
PM
1638 out_err:
1639 kfree(opts.release_agent);
1640 kfree(opts.name);
f7e83571 1641 return ERR_PTR(ret);
ddbcc7e8
PM
1642}
1643
1644static void cgroup_kill_sb(struct super_block *sb) {
1645 struct cgroupfs_root *root = sb->s_fs_info;
bd89aabc 1646 struct cgroup *cgrp = &root->top_cgroup;
ddbcc7e8 1647 int ret;
71cbb949
KM
1648 struct cg_cgroup_link *link;
1649 struct cg_cgroup_link *saved_link;
ddbcc7e8
PM
1650
1651 BUG_ON(!root);
1652
1653 BUG_ON(root->number_of_cgroups != 1);
bd89aabc
PM
1654 BUG_ON(!list_empty(&cgrp->children));
1655 BUG_ON(!list_empty(&cgrp->sibling));
ddbcc7e8
PM
1656
1657 mutex_lock(&cgroup_mutex);
e25e2cbb 1658 mutex_lock(&cgroup_root_mutex);
ddbcc7e8
PM
1659
1660 /* Rebind all subsystems back to the default hierarchy */
1661 ret = rebind_subsystems(root, 0);
1662 /* Shouldn't be able to fail ... */
1663 BUG_ON(ret);
1664
817929ec
PM
1665 /*
1666 * Release all the links from css_sets to this hierarchy's
1667 * root cgroup
1668 */
1669 write_lock(&css_set_lock);
71cbb949
KM
1670
1671 list_for_each_entry_safe(link, saved_link, &cgrp->css_sets,
1672 cgrp_link_list) {
817929ec 1673 list_del(&link->cg_link_list);
bd89aabc 1674 list_del(&link->cgrp_link_list);
817929ec
PM
1675 kfree(link);
1676 }
1677 write_unlock(&css_set_lock);
1678
839ec545
PM
1679 if (!list_empty(&root->root_list)) {
1680 list_del(&root->root_list);
1681 root_count--;
1682 }
e5f6a860 1683
e25e2cbb 1684 mutex_unlock(&cgroup_root_mutex);
ddbcc7e8
PM
1685 mutex_unlock(&cgroup_mutex);
1686
ddbcc7e8 1687 kill_litter_super(sb);
2c6ab6d2 1688 cgroup_drop_root(root);
ddbcc7e8
PM
1689}
1690
1691static struct file_system_type cgroup_fs_type = {
1692 .name = "cgroup",
f7e83571 1693 .mount = cgroup_mount,
ddbcc7e8
PM
1694 .kill_sb = cgroup_kill_sb,
1695};
1696
676db4af
GKH
1697static struct kobject *cgroup_kobj;
1698
bd89aabc 1699static inline struct cgroup *__d_cgrp(struct dentry *dentry)
ddbcc7e8
PM
1700{
1701 return dentry->d_fsdata;
1702}
1703
1704static inline struct cftype *__d_cft(struct dentry *dentry)
1705{
1706 return dentry->d_fsdata;
1707}
1708
a043e3b2
LZ
1709/**
1710 * cgroup_path - generate the path of a cgroup
1711 * @cgrp: the cgroup in question
1712 * @buf: the buffer to write the path into
1713 * @buflen: the length of the buffer
1714 *
a47295e6
PM
1715 * Called with cgroup_mutex held or else with an RCU-protected cgroup
1716 * reference. Writes path of cgroup into buf. Returns 0 on success,
1717 * -errno on error.
ddbcc7e8 1718 */
bd89aabc 1719int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
ddbcc7e8
PM
1720{
1721 char *start;
9a9686b6 1722 struct dentry *dentry = rcu_dereference_check(cgrp->dentry,
9a9686b6 1723 cgroup_lock_is_held());
ddbcc7e8 1724
a47295e6 1725 if (!dentry || cgrp == dummytop) {
ddbcc7e8
PM
1726 /*
1727 * Inactive subsystems have no dentry for their root
1728 * cgroup
1729 */
1730 strcpy(buf, "/");
1731 return 0;
1732 }
1733
1734 start = buf + buflen;
1735
1736 *--start = '\0';
1737 for (;;) {
a47295e6 1738 int len = dentry->d_name.len;
9a9686b6 1739
ddbcc7e8
PM
1740 if ((start -= len) < buf)
1741 return -ENAMETOOLONG;
9a9686b6 1742 memcpy(start, dentry->d_name.name, len);
bd89aabc
PM
1743 cgrp = cgrp->parent;
1744 if (!cgrp)
ddbcc7e8 1745 break;
9a9686b6
LZ
1746
1747 dentry = rcu_dereference_check(cgrp->dentry,
9a9686b6 1748 cgroup_lock_is_held());
bd89aabc 1749 if (!cgrp->parent)
ddbcc7e8
PM
1750 continue;
1751 if (--start < buf)
1752 return -ENAMETOOLONG;
1753 *start = '/';
1754 }
1755 memmove(buf, start, buf + buflen - start);
1756 return 0;
1757}
67523c48 1758EXPORT_SYMBOL_GPL(cgroup_path);
ddbcc7e8 1759
2f7ee569
TH
1760/*
1761 * Control Group taskset
1762 */
134d3373
TH
1763struct task_and_cgroup {
1764 struct task_struct *task;
1765 struct cgroup *cgrp;
61d1d219 1766 struct css_set *cg;
134d3373
TH
1767};
1768
2f7ee569
TH
1769struct cgroup_taskset {
1770 struct task_and_cgroup single;
1771 struct flex_array *tc_array;
1772 int tc_array_len;
1773 int idx;
1774 struct cgroup *cur_cgrp;
1775};
1776
1777/**
1778 * cgroup_taskset_first - reset taskset and return the first task
1779 * @tset: taskset of interest
1780 *
1781 * @tset iteration is initialized and the first task is returned.
1782 */
1783struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
1784{
1785 if (tset->tc_array) {
1786 tset->idx = 0;
1787 return cgroup_taskset_next(tset);
1788 } else {
1789 tset->cur_cgrp = tset->single.cgrp;
1790 return tset->single.task;
1791 }
1792}
1793EXPORT_SYMBOL_GPL(cgroup_taskset_first);
1794
1795/**
1796 * cgroup_taskset_next - iterate to the next task in taskset
1797 * @tset: taskset of interest
1798 *
1799 * Return the next task in @tset. Iteration must have been initialized
1800 * with cgroup_taskset_first().
1801 */
1802struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
1803{
1804 struct task_and_cgroup *tc;
1805
1806 if (!tset->tc_array || tset->idx >= tset->tc_array_len)
1807 return NULL;
1808
1809 tc = flex_array_get(tset->tc_array, tset->idx++);
1810 tset->cur_cgrp = tc->cgrp;
1811 return tc->task;
1812}
1813EXPORT_SYMBOL_GPL(cgroup_taskset_next);
1814
1815/**
1816 * cgroup_taskset_cur_cgroup - return the matching cgroup for the current task
1817 * @tset: taskset of interest
1818 *
1819 * Return the cgroup for the current (last returned) task of @tset. This
1820 * function must be preceded by either cgroup_taskset_first() or
1821 * cgroup_taskset_next().
1822 */
1823struct cgroup *cgroup_taskset_cur_cgroup(struct cgroup_taskset *tset)
1824{
1825 return tset->cur_cgrp;
1826}
1827EXPORT_SYMBOL_GPL(cgroup_taskset_cur_cgroup);
1828
1829/**
1830 * cgroup_taskset_size - return the number of tasks in taskset
1831 * @tset: taskset of interest
1832 */
1833int cgroup_taskset_size(struct cgroup_taskset *tset)
1834{
1835 return tset->tc_array ? tset->tc_array_len : 1;
1836}
1837EXPORT_SYMBOL_GPL(cgroup_taskset_size);
1838
1839
74a1166d
BB
1840/*
1841 * cgroup_task_migrate - move a task from one cgroup to another.
1842 *
1843 * 'guarantee' is set if the caller promises that a new css_set for the task
1844 * will already exist. If not set, this function might sleep, and can fail with
cd3d0952 1845 * -ENOMEM. Must be called with cgroup_mutex and threadgroup locked.
74a1166d 1846 */
61d1d219
MSB
1847static void cgroup_task_migrate(struct cgroup *cgrp, struct cgroup *oldcgrp,
1848 struct task_struct *tsk, struct css_set *newcg)
74a1166d
BB
1849{
1850 struct css_set *oldcg;
74a1166d
BB
1851
1852 /*
026085ef
MSB
1853 * We are synchronized through threadgroup_lock() against PF_EXITING
1854 * setting such that we can't race against cgroup_exit() changing the
1855 * css_set to init_css_set and dropping the old one.
74a1166d 1856 */
c84cdf75 1857 WARN_ON_ONCE(tsk->flags & PF_EXITING);
74a1166d 1858 oldcg = tsk->cgroups;
74a1166d 1859
74a1166d 1860 task_lock(tsk);
74a1166d
BB
1861 rcu_assign_pointer(tsk->cgroups, newcg);
1862 task_unlock(tsk);
1863
1864 /* Update the css_set linked lists if we're using them */
1865 write_lock(&css_set_lock);
1866 if (!list_empty(&tsk->cg_list))
1867 list_move(&tsk->cg_list, &newcg->tasks);
1868 write_unlock(&css_set_lock);
1869
1870 /*
1871 * We just gained a reference on oldcg by taking it from the task. As
1872 * trading it for newcg is protected by cgroup_mutex, we're safe to drop
1873 * it here; it will be freed under RCU.
1874 */
1875 put_css_set(oldcg);
1876
1877 set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
74a1166d
BB
1878}
1879
a043e3b2
LZ
1880/**
1881 * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp'
1882 * @cgrp: the cgroup the task is attaching to
1883 * @tsk: the task to be attached
bbcb81d0 1884 *
cd3d0952
TH
1885 * Call with cgroup_mutex and threadgroup locked. May take task_lock of
1886 * @tsk during call.
bbcb81d0 1887 */
956db3ca 1888int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
bbcb81d0 1889{
74a1166d 1890 int retval;
2468c723 1891 struct cgroup_subsys *ss, *failed_ss = NULL;
bd89aabc 1892 struct cgroup *oldcgrp;
bd89aabc 1893 struct cgroupfs_root *root = cgrp->root;
2f7ee569 1894 struct cgroup_taskset tset = { };
61d1d219 1895 struct css_set *newcg;
bbcb81d0 1896
cd3d0952
TH
1897 /* @tsk either already exited or can't exit until the end */
1898 if (tsk->flags & PF_EXITING)
1899 return -ESRCH;
bbcb81d0
PM
1900
1901 /* Nothing to do if the task is already in that cgroup */
7717f7ba 1902 oldcgrp = task_cgroup_from_root(tsk, root);
bd89aabc 1903 if (cgrp == oldcgrp)
bbcb81d0
PM
1904 return 0;
1905
2f7ee569
TH
1906 tset.single.task = tsk;
1907 tset.single.cgrp = oldcgrp;
1908
bbcb81d0
PM
1909 for_each_subsys(root, ss) {
1910 if (ss->can_attach) {
761b3ef5 1911 retval = ss->can_attach(cgrp, &tset);
2468c723
DN
1912 if (retval) {
1913 /*
1914 * Remember on which subsystem the can_attach()
1915 * failed, so that we only call cancel_attach()
1916 * against the subsystems whose can_attach()
1917 * succeeded. (See below)
1918 */
1919 failed_ss = ss;
1920 goto out;
1921 }
bbcb81d0
PM
1922 }
1923 }
1924
61d1d219
MSB
1925 newcg = find_css_set(tsk->cgroups, cgrp);
1926 if (!newcg) {
1927 retval = -ENOMEM;
2468c723 1928 goto out;
61d1d219
MSB
1929 }
1930
1931 cgroup_task_migrate(cgrp, oldcgrp, tsk, newcg);
817929ec 1932
bbcb81d0 1933 for_each_subsys(root, ss) {
e18f6318 1934 if (ss->attach)
761b3ef5 1935 ss->attach(cgrp, &tset);
bbcb81d0 1936 }
74a1166d 1937
bbcb81d0 1938 synchronize_rcu();
ec64f515
KH
1939
1940 /*
1941 * wake up rmdir() waiter. the rmdir should fail since the cgroup
1942 * is no longer empty.
1943 */
88703267 1944 cgroup_wakeup_rmdir_waiter(cgrp);
2468c723
DN
1945out:
1946 if (retval) {
1947 for_each_subsys(root, ss) {
1948 if (ss == failed_ss)
1949 /*
1950 * This subsystem was the one that failed the
1951 * can_attach() check earlier, so we don't need
1952 * to call cancel_attach() against it or any
1953 * remaining subsystems.
1954 */
1955 break;
1956 if (ss->cancel_attach)
761b3ef5 1957 ss->cancel_attach(cgrp, &tset);
2468c723
DN
1958 }
1959 }
1960 return retval;
bbcb81d0
PM
1961}
1962
d7926ee3 1963/**
31583bb0
MT
1964 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
1965 * @from: attach to all cgroups of a given task
d7926ee3
SS
1966 * @tsk: the task to be attached
1967 */
31583bb0 1968int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
d7926ee3
SS
1969{
1970 struct cgroupfs_root *root;
d7926ee3
SS
1971 int retval = 0;
1972
1973 cgroup_lock();
1974 for_each_active_root(root) {
31583bb0
MT
1975 struct cgroup *from_cg = task_cgroup_from_root(from, root);
1976
1977 retval = cgroup_attach_task(from_cg, tsk);
d7926ee3
SS
1978 if (retval)
1979 break;
1980 }
1981 cgroup_unlock();
1982
1983 return retval;
1984}
31583bb0 1985EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
d7926ee3 1986
74a1166d
BB
1987/**
1988 * cgroup_attach_proc - attach all threads in a threadgroup to a cgroup
1989 * @cgrp: the cgroup to attach to
1990 * @leader: the threadgroup leader task_struct of the group to be attached
1991 *
257058ae
TH
1992 * Call holding cgroup_mutex and the group_rwsem of the leader. Will take
1993 * task_lock of each thread in leader's threadgroup individually in turn.
74a1166d 1994 */
1c6c3fad 1995static int cgroup_attach_proc(struct cgroup *cgrp, struct task_struct *leader)
74a1166d
BB
1996{
1997 int retval, i, group_size;
1998 struct cgroup_subsys *ss, *failed_ss = NULL;
74a1166d 1999 /* guaranteed to be initialized later, but the compiler needs this */
74a1166d
BB
2000 struct cgroupfs_root *root = cgrp->root;
2001 /* threadgroup list cursor and array */
2002 struct task_struct *tsk;
134d3373 2003 struct task_and_cgroup *tc;
d846687d 2004 struct flex_array *group;
2f7ee569 2005 struct cgroup_taskset tset = { };
74a1166d
BB
2006
2007 /*
2008 * step 0: in order to do expensive, possibly blocking operations for
2009 * every thread, we cannot iterate the thread group list, since it needs
2010 * rcu or tasklist locked. instead, build an array of all threads in the
257058ae
TH
2011 * group - group_rwsem prevents new threads from appearing, and if
2012 * threads exit, this will just be an over-estimate.
74a1166d
BB
2013 */
2014 group_size = get_nr_threads(leader);
d846687d 2015 /* flex_array supports very large thread-groups better than kmalloc. */
134d3373 2016 group = flex_array_alloc(sizeof(*tc), group_size, GFP_KERNEL);
74a1166d
BB
2017 if (!group)
2018 return -ENOMEM;
d846687d
BB
2019 /* pre-allocate to guarantee space while iterating in rcu read-side. */
2020 retval = flex_array_prealloc(group, 0, group_size - 1, GFP_KERNEL);
2021 if (retval)
2022 goto out_free_group_list;
74a1166d 2023
74a1166d
BB
2024 tsk = leader;
2025 i = 0;
fb5d2b4c
MSB
2026 /*
2027 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2028 * already PF_EXITING could be freed from underneath us unless we
2029 * take an rcu_read_lock.
2030 */
2031 rcu_read_lock();
74a1166d 2032 do {
134d3373
TH
2033 struct task_and_cgroup ent;
2034
cd3d0952
TH
2035 /* @tsk either already exited or can't exit until the end */
2036 if (tsk->flags & PF_EXITING)
2037 continue;
2038
74a1166d
BB
2039 /* as per above, nr_threads may decrease, but not increase. */
2040 BUG_ON(i >= group_size);
134d3373
TH
2041 ent.task = tsk;
2042 ent.cgrp = task_cgroup_from_root(tsk, root);
892a2b90
MSB
2043 /* nothing to do if this task is already in the cgroup */
2044 if (ent.cgrp == cgrp)
2045 continue;
61d1d219
MSB
2046 /*
2047 * saying GFP_ATOMIC has no effect here because we did prealloc
2048 * earlier, but it's good form to communicate our expectations.
2049 */
134d3373 2050 retval = flex_array_put(group, i, &ent, GFP_ATOMIC);
d846687d 2051 BUG_ON(retval != 0);
74a1166d
BB
2052 i++;
2053 } while_each_thread(leader, tsk);
fb5d2b4c 2054 rcu_read_unlock();
74a1166d
BB
2055 /* remember the number of threads in the array for later. */
2056 group_size = i;
2f7ee569
TH
2057 tset.tc_array = group;
2058 tset.tc_array_len = group_size;
74a1166d 2059
134d3373
TH
2060 /* methods shouldn't be called if no task is actually migrating */
2061 retval = 0;
892a2b90 2062 if (!group_size)
b07ef774 2063 goto out_free_group_list;
134d3373 2064
74a1166d
BB
2065 /*
2066 * step 1: check that we can legitimately attach to the cgroup.
2067 */
2068 for_each_subsys(root, ss) {
2069 if (ss->can_attach) {
761b3ef5 2070 retval = ss->can_attach(cgrp, &tset);
74a1166d
BB
2071 if (retval) {
2072 failed_ss = ss;
2073 goto out_cancel_attach;
2074 }
2075 }
74a1166d
BB
2076 }
2077
2078 /*
2079 * step 2: make sure css_sets exist for all threads to be migrated.
2080 * we use find_css_set, which allocates a new one if necessary.
2081 */
74a1166d 2082 for (i = 0; i < group_size; i++) {
134d3373 2083 tc = flex_array_get(group, i);
61d1d219
MSB
2084 tc->cg = find_css_set(tc->task->cgroups, cgrp);
2085 if (!tc->cg) {
2086 retval = -ENOMEM;
2087 goto out_put_css_set_refs;
74a1166d
BB
2088 }
2089 }
2090
2091 /*
494c167c
TH
2092 * step 3: now that we're guaranteed success wrt the css_sets,
2093 * proceed to move all tasks to the new cgroup. There are no
2094 * failure cases after here, so this is the commit point.
74a1166d 2095 */
74a1166d 2096 for (i = 0; i < group_size; i++) {
134d3373 2097 tc = flex_array_get(group, i);
61d1d219 2098 cgroup_task_migrate(cgrp, tc->cgrp, tc->task, tc->cg);
74a1166d
BB
2099 }
2100 /* nothing is sensitive to fork() after this point. */
2101
2102 /*
494c167c 2103 * step 4: do subsystem attach callbacks.
74a1166d
BB
2104 */
2105 for_each_subsys(root, ss) {
2106 if (ss->attach)
761b3ef5 2107 ss->attach(cgrp, &tset);
74a1166d
BB
2108 }
2109
2110 /*
2111 * step 5: success! and cleanup
2112 */
2113 synchronize_rcu();
2114 cgroup_wakeup_rmdir_waiter(cgrp);
2115 retval = 0;
61d1d219
MSB
2116out_put_css_set_refs:
2117 if (retval) {
2118 for (i = 0; i < group_size; i++) {
2119 tc = flex_array_get(group, i);
2120 if (!tc->cg)
2121 break;
2122 put_css_set(tc->cg);
2123 }
74a1166d
BB
2124 }
2125out_cancel_attach:
74a1166d
BB
2126 if (retval) {
2127 for_each_subsys(root, ss) {
494c167c 2128 if (ss == failed_ss)
74a1166d 2129 break;
74a1166d 2130 if (ss->cancel_attach)
761b3ef5 2131 ss->cancel_attach(cgrp, &tset);
74a1166d
BB
2132 }
2133 }
74a1166d 2134out_free_group_list:
d846687d 2135 flex_array_free(group);
74a1166d
BB
2136 return retval;
2137}
2138
2139/*
2140 * Find the task_struct of the task to attach by vpid and pass it along to the
cd3d0952
TH
2141 * function to attach either it or all tasks in its threadgroup. Will lock
2142 * cgroup_mutex and threadgroup; may take task_lock of task.
bbcb81d0 2143 */
74a1166d 2144static int attach_task_by_pid(struct cgroup *cgrp, u64 pid, bool threadgroup)
bbcb81d0 2145{
bbcb81d0 2146 struct task_struct *tsk;
c69e8d9c 2147 const struct cred *cred = current_cred(), *tcred;
bbcb81d0
PM
2148 int ret;
2149
74a1166d
BB
2150 if (!cgroup_lock_live_group(cgrp))
2151 return -ENODEV;
2152
b78949eb
MSB
2153retry_find_task:
2154 rcu_read_lock();
bbcb81d0 2155 if (pid) {
73507f33 2156 tsk = find_task_by_vpid(pid);
74a1166d
BB
2157 if (!tsk) {
2158 rcu_read_unlock();
b78949eb
MSB
2159 ret= -ESRCH;
2160 goto out_unlock_cgroup;
bbcb81d0 2161 }
74a1166d
BB
2162 /*
2163 * even if we're attaching all tasks in the thread group, we
2164 * only need to check permissions on one of them.
2165 */
c69e8d9c
DH
2166 tcred = __task_cred(tsk);
2167 if (cred->euid &&
2168 cred->euid != tcred->uid &&
2169 cred->euid != tcred->suid) {
2170 rcu_read_unlock();
b78949eb
MSB
2171 ret = -EACCES;
2172 goto out_unlock_cgroup;
bbcb81d0 2173 }
b78949eb
MSB
2174 } else
2175 tsk = current;
cd3d0952
TH
2176
2177 if (threadgroup)
b78949eb
MSB
2178 tsk = tsk->group_leader;
2179 get_task_struct(tsk);
2180 rcu_read_unlock();
2181
2182 threadgroup_lock(tsk);
2183 if (threadgroup) {
2184 if (!thread_group_leader(tsk)) {
2185 /*
2186 * a race with de_thread from another thread's exec()
2187 * may strip us of our leadership, if this happens,
2188 * there is no choice but to throw this task away and
2189 * try again; this is
2190 * "double-double-toil-and-trouble-check locking".
2191 */
2192 threadgroup_unlock(tsk);
2193 put_task_struct(tsk);
2194 goto retry_find_task;
2195 }
74a1166d 2196 ret = cgroup_attach_proc(cgrp, tsk);
b78949eb 2197 } else
74a1166d 2198 ret = cgroup_attach_task(cgrp, tsk);
cd3d0952
TH
2199 threadgroup_unlock(tsk);
2200
bbcb81d0 2201 put_task_struct(tsk);
b78949eb 2202out_unlock_cgroup:
74a1166d 2203 cgroup_unlock();
bbcb81d0
PM
2204 return ret;
2205}
2206
af351026 2207static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid)
74a1166d
BB
2208{
2209 return attach_task_by_pid(cgrp, pid, false);
2210}
2211
2212static int cgroup_procs_write(struct cgroup *cgrp, struct cftype *cft, u64 tgid)
af351026 2213{
b78949eb 2214 return attach_task_by_pid(cgrp, tgid, true);
af351026
PM
2215}
2216
e788e066
PM
2217/**
2218 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
2219 * @cgrp: the cgroup to be checked for liveness
2220 *
84eea842
PM
2221 * On success, returns true; the lock should be later released with
2222 * cgroup_unlock(). On failure returns false with no lock held.
e788e066 2223 */
84eea842 2224bool cgroup_lock_live_group(struct cgroup *cgrp)
e788e066
PM
2225{
2226 mutex_lock(&cgroup_mutex);
2227 if (cgroup_is_removed(cgrp)) {
2228 mutex_unlock(&cgroup_mutex);
2229 return false;
2230 }
2231 return true;
2232}
67523c48 2233EXPORT_SYMBOL_GPL(cgroup_lock_live_group);
e788e066
PM
2234
2235static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft,
2236 const char *buffer)
2237{
2238 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
f4a2589f
EK
2239 if (strlen(buffer) >= PATH_MAX)
2240 return -EINVAL;
e788e066
PM
2241 if (!cgroup_lock_live_group(cgrp))
2242 return -ENODEV;
e25e2cbb 2243 mutex_lock(&cgroup_root_mutex);
e788e066 2244 strcpy(cgrp->root->release_agent_path, buffer);
e25e2cbb 2245 mutex_unlock(&cgroup_root_mutex);
84eea842 2246 cgroup_unlock();
e788e066
PM
2247 return 0;
2248}
2249
2250static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft,
2251 struct seq_file *seq)
2252{
2253 if (!cgroup_lock_live_group(cgrp))
2254 return -ENODEV;
2255 seq_puts(seq, cgrp->root->release_agent_path);
2256 seq_putc(seq, '\n');
84eea842 2257 cgroup_unlock();
e788e066
PM
2258 return 0;
2259}
2260
84eea842
PM
2261/* A buffer size big enough for numbers or short strings */
2262#define CGROUP_LOCAL_BUFFER_SIZE 64
2263
e73d2c61 2264static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
f4c753b7
PM
2265 struct file *file,
2266 const char __user *userbuf,
2267 size_t nbytes, loff_t *unused_ppos)
355e0c48 2268{
84eea842 2269 char buffer[CGROUP_LOCAL_BUFFER_SIZE];
355e0c48 2270 int retval = 0;
355e0c48
PM
2271 char *end;
2272
2273 if (!nbytes)
2274 return -EINVAL;
2275 if (nbytes >= sizeof(buffer))
2276 return -E2BIG;
2277 if (copy_from_user(buffer, userbuf, nbytes))
2278 return -EFAULT;
2279
2280 buffer[nbytes] = 0; /* nul-terminate */
e73d2c61 2281 if (cft->write_u64) {
478988d3 2282 u64 val = simple_strtoull(strstrip(buffer), &end, 0);
e73d2c61
PM
2283 if (*end)
2284 return -EINVAL;
2285 retval = cft->write_u64(cgrp, cft, val);
2286 } else {
478988d3 2287 s64 val = simple_strtoll(strstrip(buffer), &end, 0);
e73d2c61
PM
2288 if (*end)
2289 return -EINVAL;
2290 retval = cft->write_s64(cgrp, cft, val);
2291 }
355e0c48
PM
2292 if (!retval)
2293 retval = nbytes;
2294 return retval;
2295}
2296
db3b1497
PM
2297static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft,
2298 struct file *file,
2299 const char __user *userbuf,
2300 size_t nbytes, loff_t *unused_ppos)
2301{
84eea842 2302 char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
db3b1497
PM
2303 int retval = 0;
2304 size_t max_bytes = cft->max_write_len;
2305 char *buffer = local_buffer;
2306
2307 if (!max_bytes)
2308 max_bytes = sizeof(local_buffer) - 1;
2309 if (nbytes >= max_bytes)
2310 return -E2BIG;
2311 /* Allocate a dynamic buffer if we need one */
2312 if (nbytes >= sizeof(local_buffer)) {
2313 buffer = kmalloc(nbytes + 1, GFP_KERNEL);
2314 if (buffer == NULL)
2315 return -ENOMEM;
2316 }
5a3eb9f6
LZ
2317 if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
2318 retval = -EFAULT;
2319 goto out;
2320 }
db3b1497
PM
2321
2322 buffer[nbytes] = 0; /* nul-terminate */
478988d3 2323 retval = cft->write_string(cgrp, cft, strstrip(buffer));
db3b1497
PM
2324 if (!retval)
2325 retval = nbytes;
5a3eb9f6 2326out:
db3b1497
PM
2327 if (buffer != local_buffer)
2328 kfree(buffer);
2329 return retval;
2330}
2331
ddbcc7e8
PM
2332static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
2333 size_t nbytes, loff_t *ppos)
2334{
2335 struct cftype *cft = __d_cft(file->f_dentry);
bd89aabc 2336 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
ddbcc7e8 2337
75139b82 2338 if (cgroup_is_removed(cgrp))
ddbcc7e8 2339 return -ENODEV;
355e0c48 2340 if (cft->write)
bd89aabc 2341 return cft->write(cgrp, cft, file, buf, nbytes, ppos);
e73d2c61
PM
2342 if (cft->write_u64 || cft->write_s64)
2343 return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
db3b1497
PM
2344 if (cft->write_string)
2345 return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos);
d447ea2f
PE
2346 if (cft->trigger) {
2347 int ret = cft->trigger(cgrp, (unsigned int)cft->private);
2348 return ret ? ret : nbytes;
2349 }
355e0c48 2350 return -EINVAL;
ddbcc7e8
PM
2351}
2352
f4c753b7
PM
2353static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
2354 struct file *file,
2355 char __user *buf, size_t nbytes,
2356 loff_t *ppos)
ddbcc7e8 2357{
84eea842 2358 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
f4c753b7 2359 u64 val = cft->read_u64(cgrp, cft);
ddbcc7e8
PM
2360 int len = sprintf(tmp, "%llu\n", (unsigned long long) val);
2361
2362 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2363}
2364
e73d2c61
PM
2365static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
2366 struct file *file,
2367 char __user *buf, size_t nbytes,
2368 loff_t *ppos)
2369{
84eea842 2370 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
e73d2c61
PM
2371 s64 val = cft->read_s64(cgrp, cft);
2372 int len = sprintf(tmp, "%lld\n", (long long) val);
2373
2374 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2375}
2376
ddbcc7e8
PM
2377static ssize_t cgroup_file_read(struct file *file, char __user *buf,
2378 size_t nbytes, loff_t *ppos)
2379{
2380 struct cftype *cft = __d_cft(file->f_dentry);
bd89aabc 2381 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
ddbcc7e8 2382
75139b82 2383 if (cgroup_is_removed(cgrp))
ddbcc7e8
PM
2384 return -ENODEV;
2385
2386 if (cft->read)
bd89aabc 2387 return cft->read(cgrp, cft, file, buf, nbytes, ppos);
f4c753b7
PM
2388 if (cft->read_u64)
2389 return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
e73d2c61
PM
2390 if (cft->read_s64)
2391 return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
ddbcc7e8
PM
2392 return -EINVAL;
2393}
2394
91796569
PM
2395/*
2396 * seqfile ops/methods for returning structured data. Currently just
2397 * supports string->u64 maps, but can be extended in future.
2398 */
2399
2400struct cgroup_seqfile_state {
2401 struct cftype *cft;
2402 struct cgroup *cgroup;
2403};
2404
2405static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
2406{
2407 struct seq_file *sf = cb->state;
2408 return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
2409}
2410
2411static int cgroup_seqfile_show(struct seq_file *m, void *arg)
2412{
2413 struct cgroup_seqfile_state *state = m->private;
2414 struct cftype *cft = state->cft;
29486df3
SH
2415 if (cft->read_map) {
2416 struct cgroup_map_cb cb = {
2417 .fill = cgroup_map_add,
2418 .state = m,
2419 };
2420 return cft->read_map(state->cgroup, cft, &cb);
2421 }
2422 return cft->read_seq_string(state->cgroup, cft, m);
91796569
PM
2423}
2424
96930a63 2425static int cgroup_seqfile_release(struct inode *inode, struct file *file)
91796569
PM
2426{
2427 struct seq_file *seq = file->private_data;
2428 kfree(seq->private);
2429 return single_release(inode, file);
2430}
2431
828c0950 2432static const struct file_operations cgroup_seqfile_operations = {
91796569 2433 .read = seq_read,
e788e066 2434 .write = cgroup_file_write,
91796569
PM
2435 .llseek = seq_lseek,
2436 .release = cgroup_seqfile_release,
2437};
2438
ddbcc7e8
PM
2439static int cgroup_file_open(struct inode *inode, struct file *file)
2440{
2441 int err;
2442 struct cftype *cft;
2443
2444 err = generic_file_open(inode, file);
2445 if (err)
2446 return err;
ddbcc7e8 2447 cft = __d_cft(file->f_dentry);
75139b82 2448
29486df3 2449 if (cft->read_map || cft->read_seq_string) {
91796569
PM
2450 struct cgroup_seqfile_state *state =
2451 kzalloc(sizeof(*state), GFP_USER);
2452 if (!state)
2453 return -ENOMEM;
2454 state->cft = cft;
2455 state->cgroup = __d_cgrp(file->f_dentry->d_parent);
2456 file->f_op = &cgroup_seqfile_operations;
2457 err = single_open(file, cgroup_seqfile_show, state);
2458 if (err < 0)
2459 kfree(state);
2460 } else if (cft->open)
ddbcc7e8
PM
2461 err = cft->open(inode, file);
2462 else
2463 err = 0;
2464
2465 return err;
2466}
2467
2468static int cgroup_file_release(struct inode *inode, struct file *file)
2469{
2470 struct cftype *cft = __d_cft(file->f_dentry);
2471 if (cft->release)
2472 return cft->release(inode, file);
2473 return 0;
2474}
2475
2476/*
2477 * cgroup_rename - Only allow simple rename of directories in place.
2478 */
2479static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
2480 struct inode *new_dir, struct dentry *new_dentry)
2481{
2482 if (!S_ISDIR(old_dentry->d_inode->i_mode))
2483 return -ENOTDIR;
2484 if (new_dentry->d_inode)
2485 return -EEXIST;
2486 if (old_dir != new_dir)
2487 return -EIO;
2488 return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
2489}
2490
828c0950 2491static const struct file_operations cgroup_file_operations = {
ddbcc7e8
PM
2492 .read = cgroup_file_read,
2493 .write = cgroup_file_write,
2494 .llseek = generic_file_llseek,
2495 .open = cgroup_file_open,
2496 .release = cgroup_file_release,
2497};
2498
6e1d5dcc 2499static const struct inode_operations cgroup_dir_inode_operations = {
c72a04e3 2500 .lookup = cgroup_lookup,
ddbcc7e8
PM
2501 .mkdir = cgroup_mkdir,
2502 .rmdir = cgroup_rmdir,
2503 .rename = cgroup_rename,
2504};
2505
c72a04e3
AV
2506static struct dentry *cgroup_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
2507{
2508 if (dentry->d_name.len > NAME_MAX)
2509 return ERR_PTR(-ENAMETOOLONG);
2510 d_add(dentry, NULL);
2511 return NULL;
2512}
2513
0dea1168
KS
2514/*
2515 * Check if a file is a control file
2516 */
2517static inline struct cftype *__file_cft(struct file *file)
2518{
2519 if (file->f_dentry->d_inode->i_fop != &cgroup_file_operations)
2520 return ERR_PTR(-EINVAL);
2521 return __d_cft(file->f_dentry);
2522}
2523
a5e7ed32 2524static int cgroup_create_file(struct dentry *dentry, umode_t mode,
5adcee1d
NP
2525 struct super_block *sb)
2526{
ddbcc7e8
PM
2527 struct inode *inode;
2528
2529 if (!dentry)
2530 return -ENOENT;
2531 if (dentry->d_inode)
2532 return -EEXIST;
2533
2534 inode = cgroup_new_inode(mode, sb);
2535 if (!inode)
2536 return -ENOMEM;
2537
2538 if (S_ISDIR(mode)) {
2539 inode->i_op = &cgroup_dir_inode_operations;
2540 inode->i_fop = &simple_dir_operations;
2541
2542 /* start off with i_nlink == 2 (for "." entry) */
2543 inc_nlink(inode);
2544
2545 /* start with the directory inode held, so that we can
2546 * populate it without racing with another mkdir */
817929ec 2547 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
ddbcc7e8
PM
2548 } else if (S_ISREG(mode)) {
2549 inode->i_size = 0;
2550 inode->i_fop = &cgroup_file_operations;
2551 }
ddbcc7e8
PM
2552 d_instantiate(dentry, inode);
2553 dget(dentry); /* Extra count - pin the dentry in core */
2554 return 0;
2555}
2556
2557/*
a043e3b2
LZ
2558 * cgroup_create_dir - create a directory for an object.
2559 * @cgrp: the cgroup we create the directory for. It must have a valid
2560 * ->parent field. And we are going to fill its ->dentry field.
2561 * @dentry: dentry of the new cgroup
2562 * @mode: mode to set on new directory.
ddbcc7e8 2563 */
bd89aabc 2564static int cgroup_create_dir(struct cgroup *cgrp, struct dentry *dentry,
a5e7ed32 2565 umode_t mode)
ddbcc7e8
PM
2566{
2567 struct dentry *parent;
2568 int error = 0;
2569
bd89aabc
PM
2570 parent = cgrp->parent->dentry;
2571 error = cgroup_create_file(dentry, S_IFDIR | mode, cgrp->root->sb);
ddbcc7e8 2572 if (!error) {
bd89aabc 2573 dentry->d_fsdata = cgrp;
ddbcc7e8 2574 inc_nlink(parent->d_inode);
a47295e6 2575 rcu_assign_pointer(cgrp->dentry, dentry);
ddbcc7e8
PM
2576 dget(dentry);
2577 }
2578 dput(dentry);
2579
2580 return error;
2581}
2582
099fca32
LZ
2583/**
2584 * cgroup_file_mode - deduce file mode of a control file
2585 * @cft: the control file in question
2586 *
2587 * returns cft->mode if ->mode is not 0
2588 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
2589 * returns S_IRUGO if it has only a read handler
2590 * returns S_IWUSR if it has only a write hander
2591 */
a5e7ed32 2592static umode_t cgroup_file_mode(const struct cftype *cft)
099fca32 2593{
a5e7ed32 2594 umode_t mode = 0;
099fca32
LZ
2595
2596 if (cft->mode)
2597 return cft->mode;
2598
2599 if (cft->read || cft->read_u64 || cft->read_s64 ||
2600 cft->read_map || cft->read_seq_string)
2601 mode |= S_IRUGO;
2602
2603 if (cft->write || cft->write_u64 || cft->write_s64 ||
2604 cft->write_string || cft->trigger)
2605 mode |= S_IWUSR;
2606
2607 return mode;
2608}
2609
bd89aabc 2610int cgroup_add_file(struct cgroup *cgrp,
ddbcc7e8
PM
2611 struct cgroup_subsys *subsys,
2612 const struct cftype *cft)
2613{
bd89aabc 2614 struct dentry *dir = cgrp->dentry;
ddbcc7e8
PM
2615 struct dentry *dentry;
2616 int error;
a5e7ed32 2617 umode_t mode;
ddbcc7e8
PM
2618
2619 char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
bd89aabc 2620 if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) {
ddbcc7e8
PM
2621 strcpy(name, subsys->name);
2622 strcat(name, ".");
2623 }
2624 strcat(name, cft->name);
2625 BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
2626 dentry = lookup_one_len(name, dir, strlen(name));
2627 if (!IS_ERR(dentry)) {
099fca32
LZ
2628 mode = cgroup_file_mode(cft);
2629 error = cgroup_create_file(dentry, mode | S_IFREG,
bd89aabc 2630 cgrp->root->sb);
ddbcc7e8
PM
2631 if (!error)
2632 dentry->d_fsdata = (void *)cft;
2633 dput(dentry);
2634 } else
2635 error = PTR_ERR(dentry);
2636 return error;
2637}
e6a1105b 2638EXPORT_SYMBOL_GPL(cgroup_add_file);
ddbcc7e8 2639
bd89aabc 2640int cgroup_add_files(struct cgroup *cgrp,
ddbcc7e8
PM
2641 struct cgroup_subsys *subsys,
2642 const struct cftype cft[],
2643 int count)
2644{
2645 int i, err;
2646 for (i = 0; i < count; i++) {
bd89aabc 2647 err = cgroup_add_file(cgrp, subsys, &cft[i]);
ddbcc7e8
PM
2648 if (err)
2649 return err;
2650 }
2651 return 0;
2652}
e6a1105b 2653EXPORT_SYMBOL_GPL(cgroup_add_files);
ddbcc7e8 2654
a043e3b2
LZ
2655/**
2656 * cgroup_task_count - count the number of tasks in a cgroup.
2657 * @cgrp: the cgroup in question
2658 *
2659 * Return the number of tasks in the cgroup.
2660 */
bd89aabc 2661int cgroup_task_count(const struct cgroup *cgrp)
bbcb81d0
PM
2662{
2663 int count = 0;
71cbb949 2664 struct cg_cgroup_link *link;
817929ec
PM
2665
2666 read_lock(&css_set_lock);
71cbb949 2667 list_for_each_entry(link, &cgrp->css_sets, cgrp_link_list) {
146aa1bd 2668 count += atomic_read(&link->cg->refcount);
817929ec
PM
2669 }
2670 read_unlock(&css_set_lock);
bbcb81d0
PM
2671 return count;
2672}
2673
817929ec
PM
2674/*
2675 * Advance a list_head iterator. The iterator should be positioned at
2676 * the start of a css_set
2677 */
bd89aabc 2678static void cgroup_advance_iter(struct cgroup *cgrp,
7717f7ba 2679 struct cgroup_iter *it)
817929ec
PM
2680{
2681 struct list_head *l = it->cg_link;
2682 struct cg_cgroup_link *link;
2683 struct css_set *cg;
2684
2685 /* Advance to the next non-empty css_set */
2686 do {
2687 l = l->next;
bd89aabc 2688 if (l == &cgrp->css_sets) {
817929ec
PM
2689 it->cg_link = NULL;
2690 return;
2691 }
bd89aabc 2692 link = list_entry(l, struct cg_cgroup_link, cgrp_link_list);
817929ec
PM
2693 cg = link->cg;
2694 } while (list_empty(&cg->tasks));
2695 it->cg_link = l;
2696 it->task = cg->tasks.next;
2697}
2698
31a7df01
CW
2699/*
2700 * To reduce the fork() overhead for systems that are not actually
2701 * using their cgroups capability, we don't maintain the lists running
2702 * through each css_set to its tasks until we see the list actually
2703 * used - in other words after the first call to cgroup_iter_start().
31a7df01 2704 */
3df91fe3 2705static void cgroup_enable_task_cg_lists(void)
31a7df01
CW
2706{
2707 struct task_struct *p, *g;
2708 write_lock(&css_set_lock);
2709 use_task_css_set_links = 1;
2710 do_each_thread(g, p) {
2711 task_lock(p);
0e04388f
LZ
2712 /*
2713 * We should check if the process is exiting, otherwise
2714 * it will race with cgroup_exit() in that the list
2715 * entry won't be deleted though the process has exited.
2716 */
2717 if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
31a7df01
CW
2718 list_add(&p->cg_list, &p->cgroups->tasks);
2719 task_unlock(p);
2720 } while_each_thread(g, p);
2721 write_unlock(&css_set_lock);
2722}
2723
bd89aabc 2724void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
c6ca5750 2725 __acquires(css_set_lock)
817929ec
PM
2726{
2727 /*
2728 * The first time anyone tries to iterate across a cgroup,
2729 * we need to enable the list linking each css_set to its
2730 * tasks, and fix up all existing tasks.
2731 */
31a7df01
CW
2732 if (!use_task_css_set_links)
2733 cgroup_enable_task_cg_lists();
2734
817929ec 2735 read_lock(&css_set_lock);
bd89aabc
PM
2736 it->cg_link = &cgrp->css_sets;
2737 cgroup_advance_iter(cgrp, it);
817929ec
PM
2738}
2739
bd89aabc 2740struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
817929ec
PM
2741 struct cgroup_iter *it)
2742{
2743 struct task_struct *res;
2744 struct list_head *l = it->task;
2019f634 2745 struct cg_cgroup_link *link;
817929ec
PM
2746
2747 /* If the iterator cg is NULL, we have no tasks */
2748 if (!it->cg_link)
2749 return NULL;
2750 res = list_entry(l, struct task_struct, cg_list);
2751 /* Advance iterator to find next entry */
2752 l = l->next;
2019f634
LJ
2753 link = list_entry(it->cg_link, struct cg_cgroup_link, cgrp_link_list);
2754 if (l == &link->cg->tasks) {
817929ec
PM
2755 /* We reached the end of this task list - move on to
2756 * the next cg_cgroup_link */
bd89aabc 2757 cgroup_advance_iter(cgrp, it);
817929ec
PM
2758 } else {
2759 it->task = l;
2760 }
2761 return res;
2762}
2763
bd89aabc 2764void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
c6ca5750 2765 __releases(css_set_lock)
817929ec
PM
2766{
2767 read_unlock(&css_set_lock);
2768}
2769
31a7df01
CW
2770static inline int started_after_time(struct task_struct *t1,
2771 struct timespec *time,
2772 struct task_struct *t2)
2773{
2774 int start_diff = timespec_compare(&t1->start_time, time);
2775 if (start_diff > 0) {
2776 return 1;
2777 } else if (start_diff < 0) {
2778 return 0;
2779 } else {
2780 /*
2781 * Arbitrarily, if two processes started at the same
2782 * time, we'll say that the lower pointer value
2783 * started first. Note that t2 may have exited by now
2784 * so this may not be a valid pointer any longer, but
2785 * that's fine - it still serves to distinguish
2786 * between two tasks started (effectively) simultaneously.
2787 */
2788 return t1 > t2;
2789 }
2790}
2791
2792/*
2793 * This function is a callback from heap_insert() and is used to order
2794 * the heap.
2795 * In this case we order the heap in descending task start time.
2796 */
2797static inline int started_after(void *p1, void *p2)
2798{
2799 struct task_struct *t1 = p1;
2800 struct task_struct *t2 = p2;
2801 return started_after_time(t1, &t2->start_time, t2);
2802}
2803
2804/**
2805 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
2806 * @scan: struct cgroup_scanner containing arguments for the scan
2807 *
2808 * Arguments include pointers to callback functions test_task() and
2809 * process_task().
2810 * Iterate through all the tasks in a cgroup, calling test_task() for each,
2811 * and if it returns true, call process_task() for it also.
2812 * The test_task pointer may be NULL, meaning always true (select all tasks).
2813 * Effectively duplicates cgroup_iter_{start,next,end}()
2814 * but does not lock css_set_lock for the call to process_task().
2815 * The struct cgroup_scanner may be embedded in any structure of the caller's
2816 * creation.
2817 * It is guaranteed that process_task() will act on every task that
2818 * is a member of the cgroup for the duration of this call. This
2819 * function may or may not call process_task() for tasks that exit
2820 * or move to a different cgroup during the call, or are forked or
2821 * move into the cgroup during the call.
2822 *
2823 * Note that test_task() may be called with locks held, and may in some
2824 * situations be called multiple times for the same task, so it should
2825 * be cheap.
2826 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
2827 * pre-allocated and will be used for heap operations (and its "gt" member will
2828 * be overwritten), else a temporary heap will be used (allocation of which
2829 * may cause this function to fail).
2830 */
2831int cgroup_scan_tasks(struct cgroup_scanner *scan)
2832{
2833 int retval, i;
2834 struct cgroup_iter it;
2835 struct task_struct *p, *dropped;
2836 /* Never dereference latest_task, since it's not refcounted */
2837 struct task_struct *latest_task = NULL;
2838 struct ptr_heap tmp_heap;
2839 struct ptr_heap *heap;
2840 struct timespec latest_time = { 0, 0 };
2841
2842 if (scan->heap) {
2843 /* The caller supplied our heap and pre-allocated its memory */
2844 heap = scan->heap;
2845 heap->gt = &started_after;
2846 } else {
2847 /* We need to allocate our own heap memory */
2848 heap = &tmp_heap;
2849 retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
2850 if (retval)
2851 /* cannot allocate the heap */
2852 return retval;
2853 }
2854
2855 again:
2856 /*
2857 * Scan tasks in the cgroup, using the scanner's "test_task" callback
2858 * to determine which are of interest, and using the scanner's
2859 * "process_task" callback to process any of them that need an update.
2860 * Since we don't want to hold any locks during the task updates,
2861 * gather tasks to be processed in a heap structure.
2862 * The heap is sorted by descending task start time.
2863 * If the statically-sized heap fills up, we overflow tasks that
2864 * started later, and in future iterations only consider tasks that
2865 * started after the latest task in the previous pass. This
2866 * guarantees forward progress and that we don't miss any tasks.
2867 */
2868 heap->size = 0;
2869 cgroup_iter_start(scan->cg, &it);
2870 while ((p = cgroup_iter_next(scan->cg, &it))) {
2871 /*
2872 * Only affect tasks that qualify per the caller's callback,
2873 * if he provided one
2874 */
2875 if (scan->test_task && !scan->test_task(p, scan))
2876 continue;
2877 /*
2878 * Only process tasks that started after the last task
2879 * we processed
2880 */
2881 if (!started_after_time(p, &latest_time, latest_task))
2882 continue;
2883 dropped = heap_insert(heap, p);
2884 if (dropped == NULL) {
2885 /*
2886 * The new task was inserted; the heap wasn't
2887 * previously full
2888 */
2889 get_task_struct(p);
2890 } else if (dropped != p) {
2891 /*
2892 * The new task was inserted, and pushed out a
2893 * different task
2894 */
2895 get_task_struct(p);
2896 put_task_struct(dropped);
2897 }
2898 /*
2899 * Else the new task was newer than anything already in
2900 * the heap and wasn't inserted
2901 */
2902 }
2903 cgroup_iter_end(scan->cg, &it);
2904
2905 if (heap->size) {
2906 for (i = 0; i < heap->size; i++) {
4fe91d51 2907 struct task_struct *q = heap->ptrs[i];
31a7df01 2908 if (i == 0) {
4fe91d51
PJ
2909 latest_time = q->start_time;
2910 latest_task = q;
31a7df01
CW
2911 }
2912 /* Process the task per the caller's callback */
4fe91d51
PJ
2913 scan->process_task(q, scan);
2914 put_task_struct(q);
31a7df01
CW
2915 }
2916 /*
2917 * If we had to process any tasks at all, scan again
2918 * in case some of them were in the middle of forking
2919 * children that didn't get processed.
2920 * Not the most efficient way to do it, but it avoids
2921 * having to take callback_mutex in the fork path
2922 */
2923 goto again;
2924 }
2925 if (heap == &tmp_heap)
2926 heap_free(&tmp_heap);
2927 return 0;
2928}
2929
bbcb81d0 2930/*
102a775e 2931 * Stuff for reading the 'tasks'/'procs' files.
bbcb81d0
PM
2932 *
2933 * Reading this file can return large amounts of data if a cgroup has
2934 * *lots* of attached tasks. So it may need several calls to read(),
2935 * but we cannot guarantee that the information we produce is correct
2936 * unless we produce it entirely atomically.
2937 *
bbcb81d0 2938 */
bbcb81d0 2939
24528255
LZ
2940/* which pidlist file are we talking about? */
2941enum cgroup_filetype {
2942 CGROUP_FILE_PROCS,
2943 CGROUP_FILE_TASKS,
2944};
2945
2946/*
2947 * A pidlist is a list of pids that virtually represents the contents of one
2948 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
2949 * a pair (one each for procs, tasks) for each pid namespace that's relevant
2950 * to the cgroup.
2951 */
2952struct cgroup_pidlist {
2953 /*
2954 * used to find which pidlist is wanted. doesn't change as long as
2955 * this particular list stays in the list.
2956 */
2957 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
2958 /* array of xids */
2959 pid_t *list;
2960 /* how many elements the above list has */
2961 int length;
2962 /* how many files are using the current array */
2963 int use_count;
2964 /* each of these stored in a list by its cgroup */
2965 struct list_head links;
2966 /* pointer to the cgroup we belong to, for list removal purposes */
2967 struct cgroup *owner;
2968 /* protects the other fields */
2969 struct rw_semaphore mutex;
2970};
2971
d1d9fd33
BB
2972/*
2973 * The following two functions "fix" the issue where there are more pids
2974 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
2975 * TODO: replace with a kernel-wide solution to this problem
2976 */
2977#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
2978static void *pidlist_allocate(int count)
2979{
2980 if (PIDLIST_TOO_LARGE(count))
2981 return vmalloc(count * sizeof(pid_t));
2982 else
2983 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
2984}
2985static void pidlist_free(void *p)
2986{
2987 if (is_vmalloc_addr(p))
2988 vfree(p);
2989 else
2990 kfree(p);
2991}
2992static void *pidlist_resize(void *p, int newcount)
2993{
2994 void *newlist;
2995 /* note: if new alloc fails, old p will still be valid either way */
2996 if (is_vmalloc_addr(p)) {
2997 newlist = vmalloc(newcount * sizeof(pid_t));
2998 if (!newlist)
2999 return NULL;
3000 memcpy(newlist, p, newcount * sizeof(pid_t));
3001 vfree(p);
3002 } else {
3003 newlist = krealloc(p, newcount * sizeof(pid_t), GFP_KERNEL);
3004 }
3005 return newlist;
3006}
3007
bbcb81d0 3008/*
102a775e
BB
3009 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
3010 * If the new stripped list is sufficiently smaller and there's enough memory
3011 * to allocate a new buffer, will let go of the unneeded memory. Returns the
3012 * number of unique elements.
bbcb81d0 3013 */
102a775e
BB
3014/* is the size difference enough that we should re-allocate the array? */
3015#define PIDLIST_REALLOC_DIFFERENCE(old, new) ((old) - PAGE_SIZE >= (new))
3016static int pidlist_uniq(pid_t **p, int length)
bbcb81d0 3017{
102a775e
BB
3018 int src, dest = 1;
3019 pid_t *list = *p;
3020 pid_t *newlist;
3021
3022 /*
3023 * we presume the 0th element is unique, so i starts at 1. trivial
3024 * edge cases first; no work needs to be done for either
3025 */
3026 if (length == 0 || length == 1)
3027 return length;
3028 /* src and dest walk down the list; dest counts unique elements */
3029 for (src = 1; src < length; src++) {
3030 /* find next unique element */
3031 while (list[src] == list[src-1]) {
3032 src++;
3033 if (src == length)
3034 goto after;
3035 }
3036 /* dest always points to where the next unique element goes */
3037 list[dest] = list[src];
3038 dest++;
3039 }
3040after:
3041 /*
3042 * if the length difference is large enough, we want to allocate a
3043 * smaller buffer to save memory. if this fails due to out of memory,
3044 * we'll just stay with what we've got.
3045 */
3046 if (PIDLIST_REALLOC_DIFFERENCE(length, dest)) {
d1d9fd33 3047 newlist = pidlist_resize(list, dest);
102a775e
BB
3048 if (newlist)
3049 *p = newlist;
3050 }
3051 return dest;
3052}
3053
3054static int cmppid(const void *a, const void *b)
3055{
3056 return *(pid_t *)a - *(pid_t *)b;
3057}
3058
72a8cb30
BB
3059/*
3060 * find the appropriate pidlist for our purpose (given procs vs tasks)
3061 * returns with the lock on that pidlist already held, and takes care
3062 * of the use count, or returns NULL with no locks held if we're out of
3063 * memory.
3064 */
3065static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
3066 enum cgroup_filetype type)
3067{
3068 struct cgroup_pidlist *l;
3069 /* don't need task_nsproxy() if we're looking at ourself */
b70cc5fd
LZ
3070 struct pid_namespace *ns = current->nsproxy->pid_ns;
3071
72a8cb30
BB
3072 /*
3073 * We can't drop the pidlist_mutex before taking the l->mutex in case
3074 * the last ref-holder is trying to remove l from the list at the same
3075 * time. Holding the pidlist_mutex precludes somebody taking whichever
3076 * list we find out from under us - compare release_pid_array().
3077 */
3078 mutex_lock(&cgrp->pidlist_mutex);
3079 list_for_each_entry(l, &cgrp->pidlists, links) {
3080 if (l->key.type == type && l->key.ns == ns) {
72a8cb30
BB
3081 /* make sure l doesn't vanish out from under us */
3082 down_write(&l->mutex);
3083 mutex_unlock(&cgrp->pidlist_mutex);
72a8cb30
BB
3084 return l;
3085 }
3086 }
3087 /* entry not found; create a new one */
3088 l = kmalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
3089 if (!l) {
3090 mutex_unlock(&cgrp->pidlist_mutex);
72a8cb30
BB
3091 return l;
3092 }
3093 init_rwsem(&l->mutex);
3094 down_write(&l->mutex);
3095 l->key.type = type;
b70cc5fd 3096 l->key.ns = get_pid_ns(ns);
72a8cb30
BB
3097 l->use_count = 0; /* don't increment here */
3098 l->list = NULL;
3099 l->owner = cgrp;
3100 list_add(&l->links, &cgrp->pidlists);
3101 mutex_unlock(&cgrp->pidlist_mutex);
3102 return l;
3103}
3104
102a775e
BB
3105/*
3106 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
3107 */
72a8cb30
BB
3108static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
3109 struct cgroup_pidlist **lp)
102a775e
BB
3110{
3111 pid_t *array;
3112 int length;
3113 int pid, n = 0; /* used for populating the array */
817929ec
PM
3114 struct cgroup_iter it;
3115 struct task_struct *tsk;
102a775e
BB
3116 struct cgroup_pidlist *l;
3117
3118 /*
3119 * If cgroup gets more users after we read count, we won't have
3120 * enough space - tough. This race is indistinguishable to the
3121 * caller from the case that the additional cgroup users didn't
3122 * show up until sometime later on.
3123 */
3124 length = cgroup_task_count(cgrp);
d1d9fd33 3125 array = pidlist_allocate(length);
102a775e
BB
3126 if (!array)
3127 return -ENOMEM;
3128 /* now, populate the array */
bd89aabc
PM
3129 cgroup_iter_start(cgrp, &it);
3130 while ((tsk = cgroup_iter_next(cgrp, &it))) {
102a775e 3131 if (unlikely(n == length))
817929ec 3132 break;
102a775e 3133 /* get tgid or pid for procs or tasks file respectively */
72a8cb30
BB
3134 if (type == CGROUP_FILE_PROCS)
3135 pid = task_tgid_vnr(tsk);
3136 else
3137 pid = task_pid_vnr(tsk);
102a775e
BB
3138 if (pid > 0) /* make sure to only use valid results */
3139 array[n++] = pid;
817929ec 3140 }
bd89aabc 3141 cgroup_iter_end(cgrp, &it);
102a775e
BB
3142 length = n;
3143 /* now sort & (if procs) strip out duplicates */
3144 sort(array, length, sizeof(pid_t), cmppid, NULL);
72a8cb30 3145 if (type == CGROUP_FILE_PROCS)
102a775e 3146 length = pidlist_uniq(&array, length);
72a8cb30
BB
3147 l = cgroup_pidlist_find(cgrp, type);
3148 if (!l) {
d1d9fd33 3149 pidlist_free(array);
72a8cb30 3150 return -ENOMEM;
102a775e 3151 }
72a8cb30 3152 /* store array, freeing old if necessary - lock already held */
d1d9fd33 3153 pidlist_free(l->list);
102a775e
BB
3154 l->list = array;
3155 l->length = length;
3156 l->use_count++;
3157 up_write(&l->mutex);
72a8cb30 3158 *lp = l;
102a775e 3159 return 0;
bbcb81d0
PM
3160}
3161
846c7bb0 3162/**
a043e3b2 3163 * cgroupstats_build - build and fill cgroupstats
846c7bb0
BS
3164 * @stats: cgroupstats to fill information into
3165 * @dentry: A dentry entry belonging to the cgroup for which stats have
3166 * been requested.
a043e3b2
LZ
3167 *
3168 * Build and fill cgroupstats so that taskstats can export it to user
3169 * space.
846c7bb0
BS
3170 */
3171int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
3172{
3173 int ret = -EINVAL;
bd89aabc 3174 struct cgroup *cgrp;
846c7bb0
BS
3175 struct cgroup_iter it;
3176 struct task_struct *tsk;
33d283be 3177
846c7bb0 3178 /*
33d283be
LZ
3179 * Validate dentry by checking the superblock operations,
3180 * and make sure it's a directory.
846c7bb0 3181 */
33d283be
LZ
3182 if (dentry->d_sb->s_op != &cgroup_ops ||
3183 !S_ISDIR(dentry->d_inode->i_mode))
846c7bb0
BS
3184 goto err;
3185
3186 ret = 0;
bd89aabc 3187 cgrp = dentry->d_fsdata;
846c7bb0 3188
bd89aabc
PM
3189 cgroup_iter_start(cgrp, &it);
3190 while ((tsk = cgroup_iter_next(cgrp, &it))) {
846c7bb0
BS
3191 switch (tsk->state) {
3192 case TASK_RUNNING:
3193 stats->nr_running++;
3194 break;
3195 case TASK_INTERRUPTIBLE:
3196 stats->nr_sleeping++;
3197 break;
3198 case TASK_UNINTERRUPTIBLE:
3199 stats->nr_uninterruptible++;
3200 break;
3201 case TASK_STOPPED:
3202 stats->nr_stopped++;
3203 break;
3204 default:
3205 if (delayacct_is_task_waiting_on_io(tsk))
3206 stats->nr_io_wait++;
3207 break;
3208 }
3209 }
bd89aabc 3210 cgroup_iter_end(cgrp, &it);
846c7bb0 3211
846c7bb0
BS
3212err:
3213 return ret;
3214}
3215
8f3ff208 3216
bbcb81d0 3217/*
102a775e 3218 * seq_file methods for the tasks/procs files. The seq_file position is the
cc31edce 3219 * next pid to display; the seq_file iterator is a pointer to the pid
102a775e 3220 * in the cgroup->l->list array.
bbcb81d0 3221 */
cc31edce 3222
102a775e 3223static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
bbcb81d0 3224{
cc31edce
PM
3225 /*
3226 * Initially we receive a position value that corresponds to
3227 * one more than the last pid shown (or 0 on the first call or
3228 * after a seek to the start). Use a binary-search to find the
3229 * next pid to display, if any
3230 */
102a775e 3231 struct cgroup_pidlist *l = s->private;
cc31edce
PM
3232 int index = 0, pid = *pos;
3233 int *iter;
3234
102a775e 3235 down_read(&l->mutex);
cc31edce 3236 if (pid) {
102a775e 3237 int end = l->length;
20777766 3238
cc31edce
PM
3239 while (index < end) {
3240 int mid = (index + end) / 2;
102a775e 3241 if (l->list[mid] == pid) {
cc31edce
PM
3242 index = mid;
3243 break;
102a775e 3244 } else if (l->list[mid] <= pid)
cc31edce
PM
3245 index = mid + 1;
3246 else
3247 end = mid;
3248 }
3249 }
3250 /* If we're off the end of the array, we're done */
102a775e 3251 if (index >= l->length)
cc31edce
PM
3252 return NULL;
3253 /* Update the abstract position to be the actual pid that we found */
102a775e 3254 iter = l->list + index;
cc31edce
PM
3255 *pos = *iter;
3256 return iter;
3257}
3258
102a775e 3259static void cgroup_pidlist_stop(struct seq_file *s, void *v)
cc31edce 3260{
102a775e
BB
3261 struct cgroup_pidlist *l = s->private;
3262 up_read(&l->mutex);
cc31edce
PM
3263}
3264
102a775e 3265static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
cc31edce 3266{
102a775e
BB
3267 struct cgroup_pidlist *l = s->private;
3268 pid_t *p = v;
3269 pid_t *end = l->list + l->length;
cc31edce
PM
3270 /*
3271 * Advance to the next pid in the array. If this goes off the
3272 * end, we're done
3273 */
3274 p++;
3275 if (p >= end) {
3276 return NULL;
3277 } else {
3278 *pos = *p;
3279 return p;
3280 }
3281}
3282
102a775e 3283static int cgroup_pidlist_show(struct seq_file *s, void *v)
cc31edce
PM
3284{
3285 return seq_printf(s, "%d\n", *(int *)v);
3286}
bbcb81d0 3287
102a775e
BB
3288/*
3289 * seq_operations functions for iterating on pidlists through seq_file -
3290 * independent of whether it's tasks or procs
3291 */
3292static const struct seq_operations cgroup_pidlist_seq_operations = {
3293 .start = cgroup_pidlist_start,
3294 .stop = cgroup_pidlist_stop,
3295 .next = cgroup_pidlist_next,
3296 .show = cgroup_pidlist_show,
cc31edce
PM
3297};
3298
102a775e 3299static void cgroup_release_pid_array(struct cgroup_pidlist *l)
cc31edce 3300{
72a8cb30
BB
3301 /*
3302 * the case where we're the last user of this particular pidlist will
3303 * have us remove it from the cgroup's list, which entails taking the
3304 * mutex. since in pidlist_find the pidlist->lock depends on cgroup->
3305 * pidlist_mutex, we have to take pidlist_mutex first.
3306 */
3307 mutex_lock(&l->owner->pidlist_mutex);
102a775e
BB
3308 down_write(&l->mutex);
3309 BUG_ON(!l->use_count);
3310 if (!--l->use_count) {
72a8cb30
BB
3311 /* we're the last user if refcount is 0; remove and free */
3312 list_del(&l->links);
3313 mutex_unlock(&l->owner->pidlist_mutex);
d1d9fd33 3314 pidlist_free(l->list);
72a8cb30
BB
3315 put_pid_ns(l->key.ns);
3316 up_write(&l->mutex);
3317 kfree(l);
3318 return;
cc31edce 3319 }
72a8cb30 3320 mutex_unlock(&l->owner->pidlist_mutex);
102a775e 3321 up_write(&l->mutex);
bbcb81d0
PM
3322}
3323
102a775e 3324static int cgroup_pidlist_release(struct inode *inode, struct file *file)
cc31edce 3325{
102a775e 3326 struct cgroup_pidlist *l;
cc31edce
PM
3327 if (!(file->f_mode & FMODE_READ))
3328 return 0;
102a775e
BB
3329 /*
3330 * the seq_file will only be initialized if the file was opened for
3331 * reading; hence we check if it's not null only in that case.
3332 */
3333 l = ((struct seq_file *)file->private_data)->private;
3334 cgroup_release_pid_array(l);
cc31edce
PM
3335 return seq_release(inode, file);
3336}
3337
102a775e 3338static const struct file_operations cgroup_pidlist_operations = {
cc31edce
PM
3339 .read = seq_read,
3340 .llseek = seq_lseek,
3341 .write = cgroup_file_write,
102a775e 3342 .release = cgroup_pidlist_release,
cc31edce
PM
3343};
3344
bbcb81d0 3345/*
102a775e
BB
3346 * The following functions handle opens on a file that displays a pidlist
3347 * (tasks or procs). Prepare an array of the process/thread IDs of whoever's
3348 * in the cgroup.
bbcb81d0 3349 */
102a775e 3350/* helper function for the two below it */
72a8cb30 3351static int cgroup_pidlist_open(struct file *file, enum cgroup_filetype type)
bbcb81d0 3352{
bd89aabc 3353 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
72a8cb30 3354 struct cgroup_pidlist *l;
cc31edce 3355 int retval;
bbcb81d0 3356
cc31edce 3357 /* Nothing to do for write-only files */
bbcb81d0
PM
3358 if (!(file->f_mode & FMODE_READ))
3359 return 0;
3360
102a775e 3361 /* have the array populated */
72a8cb30 3362 retval = pidlist_array_load(cgrp, type, &l);
102a775e
BB
3363 if (retval)
3364 return retval;
3365 /* configure file information */
3366 file->f_op = &cgroup_pidlist_operations;
cc31edce 3367
102a775e 3368 retval = seq_open(file, &cgroup_pidlist_seq_operations);
cc31edce 3369 if (retval) {
102a775e 3370 cgroup_release_pid_array(l);
cc31edce 3371 return retval;
bbcb81d0 3372 }
102a775e 3373 ((struct seq_file *)file->private_data)->private = l;
bbcb81d0
PM
3374 return 0;
3375}
102a775e
BB
3376static int cgroup_tasks_open(struct inode *unused, struct file *file)
3377{
72a8cb30 3378 return cgroup_pidlist_open(file, CGROUP_FILE_TASKS);
102a775e
BB
3379}
3380static int cgroup_procs_open(struct inode *unused, struct file *file)
3381{
72a8cb30 3382 return cgroup_pidlist_open(file, CGROUP_FILE_PROCS);
102a775e 3383}
bbcb81d0 3384
bd89aabc 3385static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
81a6a5cd
PM
3386 struct cftype *cft)
3387{
bd89aabc 3388 return notify_on_release(cgrp);
81a6a5cd
PM
3389}
3390
6379c106
PM
3391static int cgroup_write_notify_on_release(struct cgroup *cgrp,
3392 struct cftype *cft,
3393 u64 val)
3394{
3395 clear_bit(CGRP_RELEASABLE, &cgrp->flags);
3396 if (val)
3397 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3398 else
3399 clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3400 return 0;
3401}
3402
0dea1168
KS
3403/*
3404 * Unregister event and free resources.
3405 *
3406 * Gets called from workqueue.
3407 */
3408static void cgroup_event_remove(struct work_struct *work)
3409{
3410 struct cgroup_event *event = container_of(work, struct cgroup_event,
3411 remove);
3412 struct cgroup *cgrp = event->cgrp;
3413
0dea1168
KS
3414 event->cft->unregister_event(cgrp, event->cft, event->eventfd);
3415
3416 eventfd_ctx_put(event->eventfd);
0dea1168 3417 kfree(event);
a0a4db54 3418 dput(cgrp->dentry);
0dea1168
KS
3419}
3420
3421/*
3422 * Gets called on POLLHUP on eventfd when user closes it.
3423 *
3424 * Called with wqh->lock held and interrupts disabled.
3425 */
3426static int cgroup_event_wake(wait_queue_t *wait, unsigned mode,
3427 int sync, void *key)
3428{
3429 struct cgroup_event *event = container_of(wait,
3430 struct cgroup_event, wait);
3431 struct cgroup *cgrp = event->cgrp;
3432 unsigned long flags = (unsigned long)key;
3433
3434 if (flags & POLLHUP) {
a93d2f17 3435 __remove_wait_queue(event->wqh, &event->wait);
0dea1168
KS
3436 spin_lock(&cgrp->event_list_lock);
3437 list_del(&event->list);
3438 spin_unlock(&cgrp->event_list_lock);
3439 /*
3440 * We are in atomic context, but cgroup_event_remove() may
3441 * sleep, so we have to call it in workqueue.
3442 */
3443 schedule_work(&event->remove);
3444 }
3445
3446 return 0;
3447}
3448
3449static void cgroup_event_ptable_queue_proc(struct file *file,
3450 wait_queue_head_t *wqh, poll_table *pt)
3451{
3452 struct cgroup_event *event = container_of(pt,
3453 struct cgroup_event, pt);
3454
3455 event->wqh = wqh;
3456 add_wait_queue(wqh, &event->wait);
3457}
3458
3459/*
3460 * Parse input and register new cgroup event handler.
3461 *
3462 * Input must be in format '<event_fd> <control_fd> <args>'.
3463 * Interpretation of args is defined by control file implementation.
3464 */
3465static int cgroup_write_event_control(struct cgroup *cgrp, struct cftype *cft,
3466 const char *buffer)
3467{
3468 struct cgroup_event *event = NULL;
3469 unsigned int efd, cfd;
3470 struct file *efile = NULL;
3471 struct file *cfile = NULL;
3472 char *endp;
3473 int ret;
3474
3475 efd = simple_strtoul(buffer, &endp, 10);
3476 if (*endp != ' ')
3477 return -EINVAL;
3478 buffer = endp + 1;
3479
3480 cfd = simple_strtoul(buffer, &endp, 10);
3481 if ((*endp != ' ') && (*endp != '\0'))
3482 return -EINVAL;
3483 buffer = endp + 1;
3484
3485 event = kzalloc(sizeof(*event), GFP_KERNEL);
3486 if (!event)
3487 return -ENOMEM;
3488 event->cgrp = cgrp;
3489 INIT_LIST_HEAD(&event->list);
3490 init_poll_funcptr(&event->pt, cgroup_event_ptable_queue_proc);
3491 init_waitqueue_func_entry(&event->wait, cgroup_event_wake);
3492 INIT_WORK(&event->remove, cgroup_event_remove);
3493
3494 efile = eventfd_fget(efd);
3495 if (IS_ERR(efile)) {
3496 ret = PTR_ERR(efile);
3497 goto fail;
3498 }
3499
3500 event->eventfd = eventfd_ctx_fileget(efile);
3501 if (IS_ERR(event->eventfd)) {
3502 ret = PTR_ERR(event->eventfd);
3503 goto fail;
3504 }
3505
3506 cfile = fget(cfd);
3507 if (!cfile) {
3508 ret = -EBADF;
3509 goto fail;
3510 }
3511
3512 /* the process need read permission on control file */
3bfa784a
AV
3513 /* AV: shouldn't we check that it's been opened for read instead? */
3514 ret = inode_permission(cfile->f_path.dentry->d_inode, MAY_READ);
0dea1168
KS
3515 if (ret < 0)
3516 goto fail;
3517
3518 event->cft = __file_cft(cfile);
3519 if (IS_ERR(event->cft)) {
3520 ret = PTR_ERR(event->cft);
3521 goto fail;
3522 }
3523
3524 if (!event->cft->register_event || !event->cft->unregister_event) {
3525 ret = -EINVAL;
3526 goto fail;
3527 }
3528
3529 ret = event->cft->register_event(cgrp, event->cft,
3530 event->eventfd, buffer);
3531 if (ret)
3532 goto fail;
3533
3534 if (efile->f_op->poll(efile, &event->pt) & POLLHUP) {
3535 event->cft->unregister_event(cgrp, event->cft, event->eventfd);
3536 ret = 0;
3537 goto fail;
3538 }
3539
a0a4db54
KS
3540 /*
3541 * Events should be removed after rmdir of cgroup directory, but before
3542 * destroying subsystem state objects. Let's take reference to cgroup
3543 * directory dentry to do that.
3544 */
3545 dget(cgrp->dentry);
3546
0dea1168
KS
3547 spin_lock(&cgrp->event_list_lock);
3548 list_add(&event->list, &cgrp->event_list);
3549 spin_unlock(&cgrp->event_list_lock);
3550
3551 fput(cfile);
3552 fput(efile);
3553
3554 return 0;
3555
3556fail:
3557 if (cfile)
3558 fput(cfile);
3559
3560 if (event && event->eventfd && !IS_ERR(event->eventfd))
3561 eventfd_ctx_put(event->eventfd);
3562
3563 if (!IS_ERR_OR_NULL(efile))
3564 fput(efile);
3565
3566 kfree(event);
3567
3568 return ret;
3569}
3570
97978e6d
DL
3571static u64 cgroup_clone_children_read(struct cgroup *cgrp,
3572 struct cftype *cft)
3573{
3574 return clone_children(cgrp);
3575}
3576
3577static int cgroup_clone_children_write(struct cgroup *cgrp,
3578 struct cftype *cft,
3579 u64 val)
3580{
3581 if (val)
3582 set_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
3583 else
3584 clear_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
3585 return 0;
3586}
3587
bbcb81d0
PM
3588/*
3589 * for the common functions, 'private' gives the type of file
3590 */
102a775e
BB
3591/* for hysterical raisins, we can't put this on the older files */
3592#define CGROUP_FILE_GENERIC_PREFIX "cgroup."
81a6a5cd
PM
3593static struct cftype files[] = {
3594 {
3595 .name = "tasks",
3596 .open = cgroup_tasks_open,
af351026 3597 .write_u64 = cgroup_tasks_write,
102a775e 3598 .release = cgroup_pidlist_release,
099fca32 3599 .mode = S_IRUGO | S_IWUSR,
81a6a5cd 3600 },
102a775e
BB
3601 {
3602 .name = CGROUP_FILE_GENERIC_PREFIX "procs",
3603 .open = cgroup_procs_open,
74a1166d 3604 .write_u64 = cgroup_procs_write,
102a775e 3605 .release = cgroup_pidlist_release,
74a1166d 3606 .mode = S_IRUGO | S_IWUSR,
102a775e 3607 },
81a6a5cd
PM
3608 {
3609 .name = "notify_on_release",
f4c753b7 3610 .read_u64 = cgroup_read_notify_on_release,
6379c106 3611 .write_u64 = cgroup_write_notify_on_release,
81a6a5cd 3612 },
0dea1168
KS
3613 {
3614 .name = CGROUP_FILE_GENERIC_PREFIX "event_control",
3615 .write_string = cgroup_write_event_control,
3616 .mode = S_IWUGO,
3617 },
97978e6d
DL
3618 {
3619 .name = "cgroup.clone_children",
3620 .read_u64 = cgroup_clone_children_read,
3621 .write_u64 = cgroup_clone_children_write,
3622 },
81a6a5cd
PM
3623};
3624
3625static struct cftype cft_release_agent = {
3626 .name = "release_agent",
e788e066
PM
3627 .read_seq_string = cgroup_release_agent_show,
3628 .write_string = cgroup_release_agent_write,
3629 .max_write_len = PATH_MAX,
bbcb81d0
PM
3630};
3631
bd89aabc 3632static int cgroup_populate_dir(struct cgroup *cgrp)
ddbcc7e8
PM
3633{
3634 int err;
3635 struct cgroup_subsys *ss;
3636
3637 /* First clear out any existing files */
bd89aabc 3638 cgroup_clear_directory(cgrp->dentry);
ddbcc7e8 3639
bd89aabc 3640 err = cgroup_add_files(cgrp, NULL, files, ARRAY_SIZE(files));
bbcb81d0
PM
3641 if (err < 0)
3642 return err;
3643
bd89aabc
PM
3644 if (cgrp == cgrp->top_cgroup) {
3645 if ((err = cgroup_add_file(cgrp, NULL, &cft_release_agent)) < 0)
81a6a5cd
PM
3646 return err;
3647 }
3648
bd89aabc
PM
3649 for_each_subsys(cgrp->root, ss) {
3650 if (ss->populate && (err = ss->populate(ss, cgrp)) < 0)
ddbcc7e8
PM
3651 return err;
3652 }
38460b48
KH
3653 /* This cgroup is ready now */
3654 for_each_subsys(cgrp->root, ss) {
3655 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
3656 /*
3657 * Update id->css pointer and make this css visible from
3658 * CSS ID functions. This pointer will be dereferened
3659 * from RCU-read-side without locks.
3660 */
3661 if (css->id)
3662 rcu_assign_pointer(css->id->css, css);
3663 }
ddbcc7e8
PM
3664
3665 return 0;
3666}
3667
3668static void init_cgroup_css(struct cgroup_subsys_state *css,
3669 struct cgroup_subsys *ss,
bd89aabc 3670 struct cgroup *cgrp)
ddbcc7e8 3671{
bd89aabc 3672 css->cgroup = cgrp;
e7c5ec91 3673 atomic_set(&css->refcnt, 1);
ddbcc7e8 3674 css->flags = 0;
38460b48 3675 css->id = NULL;
bd89aabc 3676 if (cgrp == dummytop)
ddbcc7e8 3677 set_bit(CSS_ROOT, &css->flags);
bd89aabc
PM
3678 BUG_ON(cgrp->subsys[ss->subsys_id]);
3679 cgrp->subsys[ss->subsys_id] = css;
ddbcc7e8
PM
3680}
3681
999cd8a4
PM
3682static void cgroup_lock_hierarchy(struct cgroupfs_root *root)
3683{
3684 /* We need to take each hierarchy_mutex in a consistent order */
3685 int i;
3686
aae8aab4
BB
3687 /*
3688 * No worry about a race with rebind_subsystems that might mess up the
3689 * locking order, since both parties are under cgroup_mutex.
3690 */
999cd8a4
PM
3691 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3692 struct cgroup_subsys *ss = subsys[i];
aae8aab4
BB
3693 if (ss == NULL)
3694 continue;
999cd8a4 3695 if (ss->root == root)
cfebe563 3696 mutex_lock(&ss->hierarchy_mutex);
999cd8a4
PM
3697 }
3698}
3699
3700static void cgroup_unlock_hierarchy(struct cgroupfs_root *root)
3701{
3702 int i;
3703
3704 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3705 struct cgroup_subsys *ss = subsys[i];
aae8aab4
BB
3706 if (ss == NULL)
3707 continue;
999cd8a4
PM
3708 if (ss->root == root)
3709 mutex_unlock(&ss->hierarchy_mutex);
3710 }
3711}
3712
ddbcc7e8 3713/*
a043e3b2
LZ
3714 * cgroup_create - create a cgroup
3715 * @parent: cgroup that will be parent of the new cgroup
3716 * @dentry: dentry of the new cgroup
3717 * @mode: mode to set on new inode
ddbcc7e8 3718 *
a043e3b2 3719 * Must be called with the mutex on the parent inode held
ddbcc7e8 3720 */
ddbcc7e8 3721static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
a5e7ed32 3722 umode_t mode)
ddbcc7e8 3723{
bd89aabc 3724 struct cgroup *cgrp;
ddbcc7e8
PM
3725 struct cgroupfs_root *root = parent->root;
3726 int err = 0;
3727 struct cgroup_subsys *ss;
3728 struct super_block *sb = root->sb;
3729
bd89aabc
PM
3730 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
3731 if (!cgrp)
ddbcc7e8
PM
3732 return -ENOMEM;
3733
3734 /* Grab a reference on the superblock so the hierarchy doesn't
3735 * get deleted on unmount if there are child cgroups. This
3736 * can be done outside cgroup_mutex, since the sb can't
3737 * disappear while someone has an open control file on the
3738 * fs */
3739 atomic_inc(&sb->s_active);
3740
3741 mutex_lock(&cgroup_mutex);
3742
cc31edce 3743 init_cgroup_housekeeping(cgrp);
ddbcc7e8 3744
bd89aabc
PM
3745 cgrp->parent = parent;
3746 cgrp->root = parent->root;
3747 cgrp->top_cgroup = parent->top_cgroup;
ddbcc7e8 3748
b6abdb0e
LZ
3749 if (notify_on_release(parent))
3750 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3751
97978e6d
DL
3752 if (clone_children(parent))
3753 set_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
3754
ddbcc7e8 3755 for_each_subsys(root, ss) {
761b3ef5 3756 struct cgroup_subsys_state *css = ss->create(cgrp);
4528fd05 3757
ddbcc7e8
PM
3758 if (IS_ERR(css)) {
3759 err = PTR_ERR(css);
3760 goto err_destroy;
3761 }
bd89aabc 3762 init_cgroup_css(css, ss, cgrp);
4528fd05
LZ
3763 if (ss->use_id) {
3764 err = alloc_css_id(ss, parent, cgrp);
3765 if (err)
38460b48 3766 goto err_destroy;
4528fd05 3767 }
38460b48 3768 /* At error, ->destroy() callback has to free assigned ID. */
97978e6d 3769 if (clone_children(parent) && ss->post_clone)
761b3ef5 3770 ss->post_clone(cgrp);
ddbcc7e8
PM
3771 }
3772
999cd8a4 3773 cgroup_lock_hierarchy(root);
bd89aabc 3774 list_add(&cgrp->sibling, &cgrp->parent->children);
999cd8a4 3775 cgroup_unlock_hierarchy(root);
ddbcc7e8
PM
3776 root->number_of_cgroups++;
3777
bd89aabc 3778 err = cgroup_create_dir(cgrp, dentry, mode);
ddbcc7e8
PM
3779 if (err < 0)
3780 goto err_remove;
3781
3782 /* The cgroup directory was pre-locked for us */
bd89aabc 3783 BUG_ON(!mutex_is_locked(&cgrp->dentry->d_inode->i_mutex));
ddbcc7e8 3784
bd89aabc 3785 err = cgroup_populate_dir(cgrp);
ddbcc7e8
PM
3786 /* If err < 0, we have a half-filled directory - oh well ;) */
3787
3788 mutex_unlock(&cgroup_mutex);
bd89aabc 3789 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8
PM
3790
3791 return 0;
3792
3793 err_remove:
3794
baef99a0 3795 cgroup_lock_hierarchy(root);
bd89aabc 3796 list_del(&cgrp->sibling);
baef99a0 3797 cgroup_unlock_hierarchy(root);
ddbcc7e8
PM
3798 root->number_of_cgroups--;
3799
3800 err_destroy:
3801
3802 for_each_subsys(root, ss) {
bd89aabc 3803 if (cgrp->subsys[ss->subsys_id])
761b3ef5 3804 ss->destroy(cgrp);
ddbcc7e8
PM
3805 }
3806
3807 mutex_unlock(&cgroup_mutex);
3808
3809 /* Release the reference count that we took on the superblock */
3810 deactivate_super(sb);
3811
bd89aabc 3812 kfree(cgrp);
ddbcc7e8
PM
3813 return err;
3814}
3815
18bb1db3 3816static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
ddbcc7e8
PM
3817{
3818 struct cgroup *c_parent = dentry->d_parent->d_fsdata;
3819
3820 /* the vfs holds inode->i_mutex already */
3821 return cgroup_create(c_parent, dentry, mode | S_IFDIR);
3822}
3823
55b6fd01 3824static int cgroup_has_css_refs(struct cgroup *cgrp)
81a6a5cd
PM
3825{
3826 /* Check the reference count on each subsystem. Since we
3827 * already established that there are no tasks in the
e7c5ec91 3828 * cgroup, if the css refcount is also 1, then there should
81a6a5cd
PM
3829 * be no outstanding references, so the subsystem is safe to
3830 * destroy. We scan across all subsystems rather than using
3831 * the per-hierarchy linked list of mounted subsystems since
3832 * we can be called via check_for_release() with no
3833 * synchronization other than RCU, and the subsystem linked
3834 * list isn't RCU-safe */
3835 int i;
aae8aab4
BB
3836 /*
3837 * We won't need to lock the subsys array, because the subsystems
3838 * we're concerned about aren't going anywhere since our cgroup root
3839 * has a reference on them.
3840 */
81a6a5cd
PM
3841 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3842 struct cgroup_subsys *ss = subsys[i];
3843 struct cgroup_subsys_state *css;
aae8aab4
BB
3844 /* Skip subsystems not present or not in this hierarchy */
3845 if (ss == NULL || ss->root != cgrp->root)
81a6a5cd 3846 continue;
bd89aabc 3847 css = cgrp->subsys[ss->subsys_id];
81a6a5cd
PM
3848 /* When called from check_for_release() it's possible
3849 * that by this point the cgroup has been removed
3850 * and the css deleted. But a false-positive doesn't
3851 * matter, since it can only happen if the cgroup
3852 * has been deleted and hence no longer needs the
3853 * release agent to be called anyway. */
e7c5ec91 3854 if (css && (atomic_read(&css->refcnt) > 1))
81a6a5cd 3855 return 1;
81a6a5cd
PM
3856 }
3857 return 0;
3858}
3859
e7c5ec91
PM
3860/*
3861 * Atomically mark all (or else none) of the cgroup's CSS objects as
3862 * CSS_REMOVED. Return true on success, or false if the cgroup has
3863 * busy subsystems. Call with cgroup_mutex held
3864 */
3865
3866static int cgroup_clear_css_refs(struct cgroup *cgrp)
3867{
3868 struct cgroup_subsys *ss;
3869 unsigned long flags;
3870 bool failed = false;
3871 local_irq_save(flags);
3872 for_each_subsys(cgrp->root, ss) {
3873 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
3874 int refcnt;
804b3c28 3875 while (1) {
e7c5ec91
PM
3876 /* We can only remove a CSS with a refcnt==1 */
3877 refcnt = atomic_read(&css->refcnt);
3878 if (refcnt > 1) {
3879 failed = true;
3880 goto done;
3881 }
3882 BUG_ON(!refcnt);
3883 /*
3884 * Drop the refcnt to 0 while we check other
3885 * subsystems. This will cause any racing
3886 * css_tryget() to spin until we set the
3887 * CSS_REMOVED bits or abort
3888 */
804b3c28
PM
3889 if (atomic_cmpxchg(&css->refcnt, refcnt, 0) == refcnt)
3890 break;
3891 cpu_relax();
3892 }
e7c5ec91
PM
3893 }
3894 done:
3895 for_each_subsys(cgrp->root, ss) {
3896 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
3897 if (failed) {
3898 /*
3899 * Restore old refcnt if we previously managed
3900 * to clear it from 1 to 0
3901 */
3902 if (!atomic_read(&css->refcnt))
3903 atomic_set(&css->refcnt, 1);
3904 } else {
3905 /* Commit the fact that the CSS is removed */
3906 set_bit(CSS_REMOVED, &css->flags);
3907 }
3908 }
3909 local_irq_restore(flags);
3910 return !failed;
3911}
3912
ddbcc7e8
PM
3913static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
3914{
bd89aabc 3915 struct cgroup *cgrp = dentry->d_fsdata;
ddbcc7e8
PM
3916 struct dentry *d;
3917 struct cgroup *parent;
ec64f515 3918 DEFINE_WAIT(wait);
4ab78683 3919 struct cgroup_event *event, *tmp;
ec64f515 3920 int ret;
ddbcc7e8
PM
3921
3922 /* the vfs holds both inode->i_mutex already */
ec64f515 3923again:
ddbcc7e8 3924 mutex_lock(&cgroup_mutex);
bd89aabc 3925 if (atomic_read(&cgrp->count) != 0) {
ddbcc7e8
PM
3926 mutex_unlock(&cgroup_mutex);
3927 return -EBUSY;
3928 }
bd89aabc 3929 if (!list_empty(&cgrp->children)) {
ddbcc7e8
PM
3930 mutex_unlock(&cgroup_mutex);
3931 return -EBUSY;
3932 }
3fa59dfb 3933 mutex_unlock(&cgroup_mutex);
a043e3b2 3934
88703267
KH
3935 /*
3936 * In general, subsystem has no css->refcnt after pre_destroy(). But
3937 * in racy cases, subsystem may have to get css->refcnt after
3938 * pre_destroy() and it makes rmdir return with -EBUSY. This sometimes
3939 * make rmdir return -EBUSY too often. To avoid that, we use waitqueue
3940 * for cgroup's rmdir. CGRP_WAIT_ON_RMDIR is for synchronizing rmdir
3941 * and subsystem's reference count handling. Please see css_get/put
3942 * and css_tryget() and cgroup_wakeup_rmdir_waiter() implementation.
3943 */
3944 set_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3945
4fca88c8 3946 /*
a043e3b2
LZ
3947 * Call pre_destroy handlers of subsys. Notify subsystems
3948 * that rmdir() request comes.
4fca88c8 3949 */
ec64f515 3950 ret = cgroup_call_pre_destroy(cgrp);
88703267
KH
3951 if (ret) {
3952 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
ec64f515 3953 return ret;
88703267 3954 }
ddbcc7e8 3955
3fa59dfb
KH
3956 mutex_lock(&cgroup_mutex);
3957 parent = cgrp->parent;
ec64f515 3958 if (atomic_read(&cgrp->count) || !list_empty(&cgrp->children)) {
88703267 3959 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
ddbcc7e8
PM
3960 mutex_unlock(&cgroup_mutex);
3961 return -EBUSY;
3962 }
ec64f515 3963 prepare_to_wait(&cgroup_rmdir_waitq, &wait, TASK_INTERRUPTIBLE);
ec64f515
KH
3964 if (!cgroup_clear_css_refs(cgrp)) {
3965 mutex_unlock(&cgroup_mutex);
88703267
KH
3966 /*
3967 * Because someone may call cgroup_wakeup_rmdir_waiter() before
3968 * prepare_to_wait(), we need to check this flag.
3969 */
3970 if (test_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags))
3971 schedule();
ec64f515
KH
3972 finish_wait(&cgroup_rmdir_waitq, &wait);
3973 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3974 if (signal_pending(current))
3975 return -EINTR;
3976 goto again;
3977 }
3978 /* NO css_tryget() can success after here. */
3979 finish_wait(&cgroup_rmdir_waitq, &wait);
3980 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
ddbcc7e8 3981
cdcc136f 3982 raw_spin_lock(&release_list_lock);
bd89aabc
PM
3983 set_bit(CGRP_REMOVED, &cgrp->flags);
3984 if (!list_empty(&cgrp->release_list))
8d258797 3985 list_del_init(&cgrp->release_list);
cdcc136f 3986 raw_spin_unlock(&release_list_lock);
999cd8a4
PM
3987
3988 cgroup_lock_hierarchy(cgrp->root);
3989 /* delete this cgroup from parent->children */
8d258797 3990 list_del_init(&cgrp->sibling);
999cd8a4
PM
3991 cgroup_unlock_hierarchy(cgrp->root);
3992
bd89aabc 3993 d = dget(cgrp->dentry);
ddbcc7e8
PM
3994
3995 cgroup_d_remove_dir(d);
3996 dput(d);
ddbcc7e8 3997
bd89aabc 3998 set_bit(CGRP_RELEASABLE, &parent->flags);
81a6a5cd
PM
3999 check_for_release(parent);
4000
4ab78683
KS
4001 /*
4002 * Unregister events and notify userspace.
4003 * Notify userspace about cgroup removing only after rmdir of cgroup
4004 * directory to avoid race between userspace and kernelspace
4005 */
4006 spin_lock(&cgrp->event_list_lock);
4007 list_for_each_entry_safe(event, tmp, &cgrp->event_list, list) {
4008 list_del(&event->list);
4009 remove_wait_queue(event->wqh, &event->wait);
4010 eventfd_signal(event->eventfd, 1);
4011 schedule_work(&event->remove);
4012 }
4013 spin_unlock(&cgrp->event_list_lock);
4014
ddbcc7e8 4015 mutex_unlock(&cgroup_mutex);
ddbcc7e8
PM
4016 return 0;
4017}
4018
06a11920 4019static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
ddbcc7e8 4020{
ddbcc7e8 4021 struct cgroup_subsys_state *css;
cfe36bde
DC
4022
4023 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
ddbcc7e8
PM
4024
4025 /* Create the top cgroup state for this subsystem */
33a68ac1 4026 list_add(&ss->sibling, &rootnode.subsys_list);
ddbcc7e8 4027 ss->root = &rootnode;
761b3ef5 4028 css = ss->create(dummytop);
ddbcc7e8
PM
4029 /* We don't handle early failures gracefully */
4030 BUG_ON(IS_ERR(css));
4031 init_cgroup_css(css, ss, dummytop);
4032
e8d55fde 4033 /* Update the init_css_set to contain a subsys
817929ec 4034 * pointer to this state - since the subsystem is
e8d55fde
LZ
4035 * newly registered, all tasks and hence the
4036 * init_css_set is in the subsystem's top cgroup. */
4037 init_css_set.subsys[ss->subsys_id] = dummytop->subsys[ss->subsys_id];
ddbcc7e8
PM
4038
4039 need_forkexit_callback |= ss->fork || ss->exit;
4040
e8d55fde
LZ
4041 /* At system boot, before all subsystems have been
4042 * registered, no tasks have been forked, so we don't
4043 * need to invoke fork callbacks here. */
4044 BUG_ON(!list_empty(&init_task.tasks));
4045
999cd8a4 4046 mutex_init(&ss->hierarchy_mutex);
cfebe563 4047 lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key);
ddbcc7e8 4048 ss->active = 1;
e6a1105b
BB
4049
4050 /* this function shouldn't be used with modular subsystems, since they
4051 * need to register a subsys_id, among other things */
4052 BUG_ON(ss->module);
4053}
4054
4055/**
4056 * cgroup_load_subsys: load and register a modular subsystem at runtime
4057 * @ss: the subsystem to load
4058 *
4059 * This function should be called in a modular subsystem's initcall. If the
88393161 4060 * subsystem is built as a module, it will be assigned a new subsys_id and set
e6a1105b
BB
4061 * up for use. If the subsystem is built-in anyway, work is delegated to the
4062 * simpler cgroup_init_subsys.
4063 */
4064int __init_or_module cgroup_load_subsys(struct cgroup_subsys *ss)
4065{
4066 int i;
4067 struct cgroup_subsys_state *css;
4068
4069 /* check name and function validity */
4070 if (ss->name == NULL || strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN ||
4071 ss->create == NULL || ss->destroy == NULL)
4072 return -EINVAL;
4073
4074 /*
4075 * we don't support callbacks in modular subsystems. this check is
4076 * before the ss->module check for consistency; a subsystem that could
4077 * be a module should still have no callbacks even if the user isn't
4078 * compiling it as one.
4079 */
4080 if (ss->fork || ss->exit)
4081 return -EINVAL;
4082
4083 /*
4084 * an optionally modular subsystem is built-in: we want to do nothing,
4085 * since cgroup_init_subsys will have already taken care of it.
4086 */
4087 if (ss->module == NULL) {
4088 /* a few sanity checks */
4089 BUG_ON(ss->subsys_id >= CGROUP_BUILTIN_SUBSYS_COUNT);
4090 BUG_ON(subsys[ss->subsys_id] != ss);
4091 return 0;
4092 }
4093
4094 /*
4095 * need to register a subsys id before anything else - for example,
4096 * init_cgroup_css needs it.
4097 */
4098 mutex_lock(&cgroup_mutex);
4099 /* find the first empty slot in the array */
4100 for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
4101 if (subsys[i] == NULL)
4102 break;
4103 }
4104 if (i == CGROUP_SUBSYS_COUNT) {
4105 /* maximum number of subsystems already registered! */
4106 mutex_unlock(&cgroup_mutex);
4107 return -EBUSY;
4108 }
4109 /* assign ourselves the subsys_id */
4110 ss->subsys_id = i;
4111 subsys[i] = ss;
4112
4113 /*
4114 * no ss->create seems to need anything important in the ss struct, so
4115 * this can happen first (i.e. before the rootnode attachment).
4116 */
761b3ef5 4117 css = ss->create(dummytop);
e6a1105b
BB
4118 if (IS_ERR(css)) {
4119 /* failure case - need to deassign the subsys[] slot. */
4120 subsys[i] = NULL;
4121 mutex_unlock(&cgroup_mutex);
4122 return PTR_ERR(css);
4123 }
4124
4125 list_add(&ss->sibling, &rootnode.subsys_list);
4126 ss->root = &rootnode;
4127
4128 /* our new subsystem will be attached to the dummy hierarchy. */
4129 init_cgroup_css(css, ss, dummytop);
4130 /* init_idr must be after init_cgroup_css because it sets css->id. */
4131 if (ss->use_id) {
4132 int ret = cgroup_init_idr(ss, css);
4133 if (ret) {
4134 dummytop->subsys[ss->subsys_id] = NULL;
761b3ef5 4135 ss->destroy(dummytop);
e6a1105b
BB
4136 subsys[i] = NULL;
4137 mutex_unlock(&cgroup_mutex);
4138 return ret;
4139 }
4140 }
4141
4142 /*
4143 * Now we need to entangle the css into the existing css_sets. unlike
4144 * in cgroup_init_subsys, there are now multiple css_sets, so each one
4145 * will need a new pointer to it; done by iterating the css_set_table.
4146 * furthermore, modifying the existing css_sets will corrupt the hash
4147 * table state, so each changed css_set will need its hash recomputed.
4148 * this is all done under the css_set_lock.
4149 */
4150 write_lock(&css_set_lock);
4151 for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
4152 struct css_set *cg;
4153 struct hlist_node *node, *tmp;
4154 struct hlist_head *bucket = &css_set_table[i], *new_bucket;
4155
4156 hlist_for_each_entry_safe(cg, node, tmp, bucket, hlist) {
4157 /* skip entries that we already rehashed */
4158 if (cg->subsys[ss->subsys_id])
4159 continue;
4160 /* remove existing entry */
4161 hlist_del(&cg->hlist);
4162 /* set new value */
4163 cg->subsys[ss->subsys_id] = css;
4164 /* recompute hash and restore entry */
4165 new_bucket = css_set_hash(cg->subsys);
4166 hlist_add_head(&cg->hlist, new_bucket);
4167 }
4168 }
4169 write_unlock(&css_set_lock);
4170
4171 mutex_init(&ss->hierarchy_mutex);
4172 lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key);
4173 ss->active = 1;
4174
e6a1105b
BB
4175 /* success! */
4176 mutex_unlock(&cgroup_mutex);
4177 return 0;
ddbcc7e8 4178}
e6a1105b 4179EXPORT_SYMBOL_GPL(cgroup_load_subsys);
ddbcc7e8 4180
cf5d5941
BB
4181/**
4182 * cgroup_unload_subsys: unload a modular subsystem
4183 * @ss: the subsystem to unload
4184 *
4185 * This function should be called in a modular subsystem's exitcall. When this
4186 * function is invoked, the refcount on the subsystem's module will be 0, so
4187 * the subsystem will not be attached to any hierarchy.
4188 */
4189void cgroup_unload_subsys(struct cgroup_subsys *ss)
4190{
4191 struct cg_cgroup_link *link;
4192 struct hlist_head *hhead;
4193
4194 BUG_ON(ss->module == NULL);
4195
4196 /*
4197 * we shouldn't be called if the subsystem is in use, and the use of
4198 * try_module_get in parse_cgroupfs_options should ensure that it
4199 * doesn't start being used while we're killing it off.
4200 */
4201 BUG_ON(ss->root != &rootnode);
4202
4203 mutex_lock(&cgroup_mutex);
4204 /* deassign the subsys_id */
4205 BUG_ON(ss->subsys_id < CGROUP_BUILTIN_SUBSYS_COUNT);
4206 subsys[ss->subsys_id] = NULL;
4207
4208 /* remove subsystem from rootnode's list of subsystems */
8d258797 4209 list_del_init(&ss->sibling);
cf5d5941
BB
4210
4211 /*
4212 * disentangle the css from all css_sets attached to the dummytop. as
4213 * in loading, we need to pay our respects to the hashtable gods.
4214 */
4215 write_lock(&css_set_lock);
4216 list_for_each_entry(link, &dummytop->css_sets, cgrp_link_list) {
4217 struct css_set *cg = link->cg;
4218
4219 hlist_del(&cg->hlist);
4220 BUG_ON(!cg->subsys[ss->subsys_id]);
4221 cg->subsys[ss->subsys_id] = NULL;
4222 hhead = css_set_hash(cg->subsys);
4223 hlist_add_head(&cg->hlist, hhead);
4224 }
4225 write_unlock(&css_set_lock);
4226
4227 /*
4228 * remove subsystem's css from the dummytop and free it - need to free
4229 * before marking as null because ss->destroy needs the cgrp->subsys
4230 * pointer to find their state. note that this also takes care of
4231 * freeing the css_id.
4232 */
761b3ef5 4233 ss->destroy(dummytop);
cf5d5941
BB
4234 dummytop->subsys[ss->subsys_id] = NULL;
4235
4236 mutex_unlock(&cgroup_mutex);
4237}
4238EXPORT_SYMBOL_GPL(cgroup_unload_subsys);
4239
ddbcc7e8 4240/**
a043e3b2
LZ
4241 * cgroup_init_early - cgroup initialization at system boot
4242 *
4243 * Initialize cgroups at system boot, and initialize any
4244 * subsystems that request early init.
ddbcc7e8
PM
4245 */
4246int __init cgroup_init_early(void)
4247{
4248 int i;
146aa1bd 4249 atomic_set(&init_css_set.refcount, 1);
817929ec
PM
4250 INIT_LIST_HEAD(&init_css_set.cg_links);
4251 INIT_LIST_HEAD(&init_css_set.tasks);
472b1053 4252 INIT_HLIST_NODE(&init_css_set.hlist);
817929ec 4253 css_set_count = 1;
ddbcc7e8 4254 init_cgroup_root(&rootnode);
817929ec
PM
4255 root_count = 1;
4256 init_task.cgroups = &init_css_set;
4257
4258 init_css_set_link.cg = &init_css_set;
7717f7ba 4259 init_css_set_link.cgrp = dummytop;
bd89aabc 4260 list_add(&init_css_set_link.cgrp_link_list,
817929ec
PM
4261 &rootnode.top_cgroup.css_sets);
4262 list_add(&init_css_set_link.cg_link_list,
4263 &init_css_set.cg_links);
ddbcc7e8 4264
472b1053
LZ
4265 for (i = 0; i < CSS_SET_TABLE_SIZE; i++)
4266 INIT_HLIST_HEAD(&css_set_table[i]);
4267
aae8aab4
BB
4268 /* at bootup time, we don't worry about modular subsystems */
4269 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
ddbcc7e8
PM
4270 struct cgroup_subsys *ss = subsys[i];
4271
4272 BUG_ON(!ss->name);
4273 BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
4274 BUG_ON(!ss->create);
4275 BUG_ON(!ss->destroy);
4276 if (ss->subsys_id != i) {
cfe36bde 4277 printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
ddbcc7e8
PM
4278 ss->name, ss->subsys_id);
4279 BUG();
4280 }
4281
4282 if (ss->early_init)
4283 cgroup_init_subsys(ss);
4284 }
4285 return 0;
4286}
4287
4288/**
a043e3b2
LZ
4289 * cgroup_init - cgroup initialization
4290 *
4291 * Register cgroup filesystem and /proc file, and initialize
4292 * any subsystems that didn't request early init.
ddbcc7e8
PM
4293 */
4294int __init cgroup_init(void)
4295{
4296 int err;
4297 int i;
472b1053 4298 struct hlist_head *hhead;
a424316c
PM
4299
4300 err = bdi_init(&cgroup_backing_dev_info);
4301 if (err)
4302 return err;
ddbcc7e8 4303
aae8aab4
BB
4304 /* at bootup time, we don't worry about modular subsystems */
4305 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
ddbcc7e8
PM
4306 struct cgroup_subsys *ss = subsys[i];
4307 if (!ss->early_init)
4308 cgroup_init_subsys(ss);
38460b48 4309 if (ss->use_id)
e6a1105b 4310 cgroup_init_idr(ss, init_css_set.subsys[ss->subsys_id]);
ddbcc7e8
PM
4311 }
4312
472b1053
LZ
4313 /* Add init_css_set to the hash table */
4314 hhead = css_set_hash(init_css_set.subsys);
4315 hlist_add_head(&init_css_set.hlist, hhead);
2c6ab6d2 4316 BUG_ON(!init_root_id(&rootnode));
676db4af
GKH
4317
4318 cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
4319 if (!cgroup_kobj) {
4320 err = -ENOMEM;
4321 goto out;
4322 }
4323
ddbcc7e8 4324 err = register_filesystem(&cgroup_fs_type);
676db4af
GKH
4325 if (err < 0) {
4326 kobject_put(cgroup_kobj);
ddbcc7e8 4327 goto out;
676db4af 4328 }
ddbcc7e8 4329
46ae220b 4330 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
a424316c 4331
ddbcc7e8 4332out:
a424316c
PM
4333 if (err)
4334 bdi_destroy(&cgroup_backing_dev_info);
4335
ddbcc7e8
PM
4336 return err;
4337}
b4f48b63 4338
a424316c
PM
4339/*
4340 * proc_cgroup_show()
4341 * - Print task's cgroup paths into seq_file, one line for each hierarchy
4342 * - Used for /proc/<pid>/cgroup.
4343 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
4344 * doesn't really matter if tsk->cgroup changes after we read it,
956db3ca 4345 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
a424316c
PM
4346 * anyway. No need to check that tsk->cgroup != NULL, thanks to
4347 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
4348 * cgroup to top_cgroup.
4349 */
4350
4351/* TODO: Use a proper seq_file iterator */
4352static int proc_cgroup_show(struct seq_file *m, void *v)
4353{
4354 struct pid *pid;
4355 struct task_struct *tsk;
4356 char *buf;
4357 int retval;
4358 struct cgroupfs_root *root;
4359
4360 retval = -ENOMEM;
4361 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4362 if (!buf)
4363 goto out;
4364
4365 retval = -ESRCH;
4366 pid = m->private;
4367 tsk = get_pid_task(pid, PIDTYPE_PID);
4368 if (!tsk)
4369 goto out_free;
4370
4371 retval = 0;
4372
4373 mutex_lock(&cgroup_mutex);
4374
e5f6a860 4375 for_each_active_root(root) {
a424316c 4376 struct cgroup_subsys *ss;
bd89aabc 4377 struct cgroup *cgrp;
a424316c
PM
4378 int count = 0;
4379
2c6ab6d2 4380 seq_printf(m, "%d:", root->hierarchy_id);
a424316c
PM
4381 for_each_subsys(root, ss)
4382 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
c6d57f33
PM
4383 if (strlen(root->name))
4384 seq_printf(m, "%sname=%s", count ? "," : "",
4385 root->name);
a424316c 4386 seq_putc(m, ':');
7717f7ba 4387 cgrp = task_cgroup_from_root(tsk, root);
bd89aabc 4388 retval = cgroup_path(cgrp, buf, PAGE_SIZE);
a424316c
PM
4389 if (retval < 0)
4390 goto out_unlock;
4391 seq_puts(m, buf);
4392 seq_putc(m, '\n');
4393 }
4394
4395out_unlock:
4396 mutex_unlock(&cgroup_mutex);
4397 put_task_struct(tsk);
4398out_free:
4399 kfree(buf);
4400out:
4401 return retval;
4402}
4403
4404static int cgroup_open(struct inode *inode, struct file *file)
4405{
4406 struct pid *pid = PROC_I(inode)->pid;
4407 return single_open(file, proc_cgroup_show, pid);
4408}
4409
828c0950 4410const struct file_operations proc_cgroup_operations = {
a424316c
PM
4411 .open = cgroup_open,
4412 .read = seq_read,
4413 .llseek = seq_lseek,
4414 .release = single_release,
4415};
4416
4417/* Display information about each subsystem and each hierarchy */
4418static int proc_cgroupstats_show(struct seq_file *m, void *v)
4419{
4420 int i;
a424316c 4421
8bab8dde 4422 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
aae8aab4
BB
4423 /*
4424 * ideally we don't want subsystems moving around while we do this.
4425 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
4426 * subsys/hierarchy state.
4427 */
a424316c 4428 mutex_lock(&cgroup_mutex);
a424316c
PM
4429 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
4430 struct cgroup_subsys *ss = subsys[i];
aae8aab4
BB
4431 if (ss == NULL)
4432 continue;
2c6ab6d2
PM
4433 seq_printf(m, "%s\t%d\t%d\t%d\n",
4434 ss->name, ss->root->hierarchy_id,
8bab8dde 4435 ss->root->number_of_cgroups, !ss->disabled);
a424316c
PM
4436 }
4437 mutex_unlock(&cgroup_mutex);
4438 return 0;
4439}
4440
4441static int cgroupstats_open(struct inode *inode, struct file *file)
4442{
9dce07f1 4443 return single_open(file, proc_cgroupstats_show, NULL);
a424316c
PM
4444}
4445
828c0950 4446static const struct file_operations proc_cgroupstats_operations = {
a424316c
PM
4447 .open = cgroupstats_open,
4448 .read = seq_read,
4449 .llseek = seq_lseek,
4450 .release = single_release,
4451};
4452
b4f48b63
PM
4453/**
4454 * cgroup_fork - attach newly forked task to its parents cgroup.
a043e3b2 4455 * @child: pointer to task_struct of forking parent process.
b4f48b63
PM
4456 *
4457 * Description: A task inherits its parent's cgroup at fork().
4458 *
4459 * A pointer to the shared css_set was automatically copied in
4460 * fork.c by dup_task_struct(). However, we ignore that copy, since
7e381b0e
FW
4461 * it was not made under the protection of RCU, cgroup_mutex or
4462 * threadgroup_change_begin(), so it might no longer be a valid
4463 * cgroup pointer. cgroup_attach_task() might have already changed
4464 * current->cgroups, allowing the previously referenced cgroup
4465 * group to be removed and freed.
4466 *
4467 * Outside the pointer validity we also need to process the css_set
4468 * inheritance between threadgoup_change_begin() and
4469 * threadgoup_change_end(), this way there is no leak in any process
4470 * wide migration performed by cgroup_attach_proc() that could otherwise
4471 * miss a thread because it is too early or too late in the fork stage.
b4f48b63
PM
4472 *
4473 * At the point that cgroup_fork() is called, 'current' is the parent
4474 * task, and the passed argument 'child' points to the child task.
4475 */
4476void cgroup_fork(struct task_struct *child)
4477{
7e381b0e
FW
4478 /*
4479 * We don't need to task_lock() current because current->cgroups
4480 * can't be changed concurrently here. The parent obviously hasn't
4481 * exited and called cgroup_exit(), and we are synchronized against
4482 * cgroup migration through threadgroup_change_begin().
4483 */
817929ec
PM
4484 child->cgroups = current->cgroups;
4485 get_css_set(child->cgroups);
817929ec 4486 INIT_LIST_HEAD(&child->cg_list);
b4f48b63
PM
4487}
4488
4489/**
a043e3b2
LZ
4490 * cgroup_fork_callbacks - run fork callbacks
4491 * @child: the new task
4492 *
4493 * Called on a new task very soon before adding it to the
4494 * tasklist. No need to take any locks since no-one can
4495 * be operating on this task.
b4f48b63
PM
4496 */
4497void cgroup_fork_callbacks(struct task_struct *child)
4498{
4499 if (need_forkexit_callback) {
4500 int i;
aae8aab4
BB
4501 /*
4502 * forkexit callbacks are only supported for builtin
4503 * subsystems, and the builtin section of the subsys array is
4504 * immutable, so we don't need to lock the subsys array here.
4505 */
4506 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
b4f48b63
PM
4507 struct cgroup_subsys *ss = subsys[i];
4508 if (ss->fork)
761b3ef5 4509 ss->fork(child);
b4f48b63
PM
4510 }
4511 }
4512}
4513
817929ec 4514/**
a043e3b2
LZ
4515 * cgroup_post_fork - called on a new task after adding it to the task list
4516 * @child: the task in question
4517 *
4518 * Adds the task to the list running through its css_set if necessary.
4519 * Has to be after the task is visible on the task list in case we race
4520 * with the first call to cgroup_iter_start() - to guarantee that the
4521 * new task ends up on its list.
4522 */
817929ec
PM
4523void cgroup_post_fork(struct task_struct *child)
4524{
4525 if (use_task_css_set_links) {
4526 write_lock(&css_set_lock);
7e3aa30a
FW
4527 if (list_empty(&child->cg_list)) {
4528 /*
4529 * It's safe to use child->cgroups without task_lock()
4530 * here because we are protected through
4531 * threadgroup_change_begin() against concurrent
4532 * css_set change in cgroup_task_migrate(). Also
4533 * the task can't exit at that point until
4534 * wake_up_new_task() is called, so we are protected
4535 * against cgroup_exit() setting child->cgroup to
4536 * init_css_set.
4537 */
817929ec 4538 list_add(&child->cg_list, &child->cgroups->tasks);
7e3aa30a 4539 }
817929ec
PM
4540 write_unlock(&css_set_lock);
4541 }
4542}
b4f48b63
PM
4543/**
4544 * cgroup_exit - detach cgroup from exiting task
4545 * @tsk: pointer to task_struct of exiting process
a043e3b2 4546 * @run_callback: run exit callbacks?
b4f48b63
PM
4547 *
4548 * Description: Detach cgroup from @tsk and release it.
4549 *
4550 * Note that cgroups marked notify_on_release force every task in
4551 * them to take the global cgroup_mutex mutex when exiting.
4552 * This could impact scaling on very large systems. Be reluctant to
4553 * use notify_on_release cgroups where very high task exit scaling
4554 * is required on large systems.
4555 *
4556 * the_top_cgroup_hack:
4557 *
4558 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
4559 *
4560 * We call cgroup_exit() while the task is still competent to
4561 * handle notify_on_release(), then leave the task attached to the
4562 * root cgroup in each hierarchy for the remainder of its exit.
4563 *
4564 * To do this properly, we would increment the reference count on
4565 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
4566 * code we would add a second cgroup function call, to drop that
4567 * reference. This would just create an unnecessary hot spot on
4568 * the top_cgroup reference count, to no avail.
4569 *
4570 * Normally, holding a reference to a cgroup without bumping its
4571 * count is unsafe. The cgroup could go away, or someone could
4572 * attach us to a different cgroup, decrementing the count on
4573 * the first cgroup that we never incremented. But in this case,
4574 * top_cgroup isn't going away, and either task has PF_EXITING set,
956db3ca
CW
4575 * which wards off any cgroup_attach_task() attempts, or task is a failed
4576 * fork, never visible to cgroup_attach_task.
b4f48b63
PM
4577 */
4578void cgroup_exit(struct task_struct *tsk, int run_callbacks)
4579{
817929ec 4580 struct css_set *cg;
d41d5a01 4581 int i;
817929ec
PM
4582
4583 /*
4584 * Unlink from the css_set task list if necessary.
4585 * Optimistically check cg_list before taking
4586 * css_set_lock
4587 */
4588 if (!list_empty(&tsk->cg_list)) {
4589 write_lock(&css_set_lock);
4590 if (!list_empty(&tsk->cg_list))
8d258797 4591 list_del_init(&tsk->cg_list);
817929ec
PM
4592 write_unlock(&css_set_lock);
4593 }
4594
b4f48b63
PM
4595 /* Reassign the task to the init_css_set. */
4596 task_lock(tsk);
817929ec
PM
4597 cg = tsk->cgroups;
4598 tsk->cgroups = &init_css_set;
d41d5a01
PZ
4599
4600 if (run_callbacks && need_forkexit_callback) {
4601 /*
4602 * modular subsystems can't use callbacks, so no need to lock
4603 * the subsys array
4604 */
4605 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4606 struct cgroup_subsys *ss = subsys[i];
4607 if (ss->exit) {
4608 struct cgroup *old_cgrp =
4609 rcu_dereference_raw(cg->subsys[i])->cgroup;
4610 struct cgroup *cgrp = task_cgroup(tsk, i);
761b3ef5 4611 ss->exit(cgrp, old_cgrp, tsk);
d41d5a01
PZ
4612 }
4613 }
4614 }
b4f48b63 4615 task_unlock(tsk);
d41d5a01 4616
817929ec 4617 if (cg)
81a6a5cd 4618 put_css_set_taskexit(cg);
b4f48b63 4619}
697f4161 4620
a043e3b2 4621/**
313e924c 4622 * cgroup_is_descendant - see if @cgrp is a descendant of @task's cgrp
a043e3b2 4623 * @cgrp: the cgroup in question
313e924c 4624 * @task: the task in question
a043e3b2 4625 *
313e924c
GN
4626 * See if @cgrp is a descendant of @task's cgroup in the appropriate
4627 * hierarchy.
697f4161
PM
4628 *
4629 * If we are sending in dummytop, then presumably we are creating
4630 * the top cgroup in the subsystem.
4631 *
4632 * Called only by the ns (nsproxy) cgroup.
4633 */
313e924c 4634int cgroup_is_descendant(const struct cgroup *cgrp, struct task_struct *task)
697f4161
PM
4635{
4636 int ret;
4637 struct cgroup *target;
697f4161 4638
bd89aabc 4639 if (cgrp == dummytop)
697f4161
PM
4640 return 1;
4641
7717f7ba 4642 target = task_cgroup_from_root(task, cgrp->root);
bd89aabc
PM
4643 while (cgrp != target && cgrp!= cgrp->top_cgroup)
4644 cgrp = cgrp->parent;
4645 ret = (cgrp == target);
697f4161
PM
4646 return ret;
4647}
81a6a5cd 4648
bd89aabc 4649static void check_for_release(struct cgroup *cgrp)
81a6a5cd
PM
4650{
4651 /* All of these checks rely on RCU to keep the cgroup
4652 * structure alive */
bd89aabc
PM
4653 if (cgroup_is_releasable(cgrp) && !atomic_read(&cgrp->count)
4654 && list_empty(&cgrp->children) && !cgroup_has_css_refs(cgrp)) {
81a6a5cd
PM
4655 /* Control Group is currently removeable. If it's not
4656 * already queued for a userspace notification, queue
4657 * it now */
4658 int need_schedule_work = 0;
cdcc136f 4659 raw_spin_lock(&release_list_lock);
bd89aabc
PM
4660 if (!cgroup_is_removed(cgrp) &&
4661 list_empty(&cgrp->release_list)) {
4662 list_add(&cgrp->release_list, &release_list);
81a6a5cd
PM
4663 need_schedule_work = 1;
4664 }
cdcc136f 4665 raw_spin_unlock(&release_list_lock);
81a6a5cd
PM
4666 if (need_schedule_work)
4667 schedule_work(&release_agent_work);
4668 }
4669}
4670
d7b9fff7
DN
4671/* Caller must verify that the css is not for root cgroup */
4672void __css_put(struct cgroup_subsys_state *css, int count)
81a6a5cd 4673{
bd89aabc 4674 struct cgroup *cgrp = css->cgroup;
3dece834 4675 int val;
81a6a5cd 4676 rcu_read_lock();
d7b9fff7 4677 val = atomic_sub_return(count, &css->refcnt);
3dece834 4678 if (val == 1) {
ec64f515
KH
4679 if (notify_on_release(cgrp)) {
4680 set_bit(CGRP_RELEASABLE, &cgrp->flags);
4681 check_for_release(cgrp);
4682 }
88703267 4683 cgroup_wakeup_rmdir_waiter(cgrp);
81a6a5cd
PM
4684 }
4685 rcu_read_unlock();
3dece834 4686 WARN_ON_ONCE(val < 1);
81a6a5cd 4687}
67523c48 4688EXPORT_SYMBOL_GPL(__css_put);
81a6a5cd
PM
4689
4690/*
4691 * Notify userspace when a cgroup is released, by running the
4692 * configured release agent with the name of the cgroup (path
4693 * relative to the root of cgroup file system) as the argument.
4694 *
4695 * Most likely, this user command will try to rmdir this cgroup.
4696 *
4697 * This races with the possibility that some other task will be
4698 * attached to this cgroup before it is removed, or that some other
4699 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
4700 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
4701 * unused, and this cgroup will be reprieved from its death sentence,
4702 * to continue to serve a useful existence. Next time it's released,
4703 * we will get notified again, if it still has 'notify_on_release' set.
4704 *
4705 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
4706 * means only wait until the task is successfully execve()'d. The
4707 * separate release agent task is forked by call_usermodehelper(),
4708 * then control in this thread returns here, without waiting for the
4709 * release agent task. We don't bother to wait because the caller of
4710 * this routine has no use for the exit status of the release agent
4711 * task, so no sense holding our caller up for that.
81a6a5cd 4712 */
81a6a5cd
PM
4713static void cgroup_release_agent(struct work_struct *work)
4714{
4715 BUG_ON(work != &release_agent_work);
4716 mutex_lock(&cgroup_mutex);
cdcc136f 4717 raw_spin_lock(&release_list_lock);
81a6a5cd
PM
4718 while (!list_empty(&release_list)) {
4719 char *argv[3], *envp[3];
4720 int i;
e788e066 4721 char *pathbuf = NULL, *agentbuf = NULL;
bd89aabc 4722 struct cgroup *cgrp = list_entry(release_list.next,
81a6a5cd
PM
4723 struct cgroup,
4724 release_list);
bd89aabc 4725 list_del_init(&cgrp->release_list);
cdcc136f 4726 raw_spin_unlock(&release_list_lock);
81a6a5cd 4727 pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
e788e066
PM
4728 if (!pathbuf)
4729 goto continue_free;
4730 if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
4731 goto continue_free;
4732 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
4733 if (!agentbuf)
4734 goto continue_free;
81a6a5cd
PM
4735
4736 i = 0;
e788e066
PM
4737 argv[i++] = agentbuf;
4738 argv[i++] = pathbuf;
81a6a5cd
PM
4739 argv[i] = NULL;
4740
4741 i = 0;
4742 /* minimal command environment */
4743 envp[i++] = "HOME=/";
4744 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
4745 envp[i] = NULL;
4746
4747 /* Drop the lock while we invoke the usermode helper,
4748 * since the exec could involve hitting disk and hence
4749 * be a slow process */
4750 mutex_unlock(&cgroup_mutex);
4751 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
81a6a5cd 4752 mutex_lock(&cgroup_mutex);
e788e066
PM
4753 continue_free:
4754 kfree(pathbuf);
4755 kfree(agentbuf);
cdcc136f 4756 raw_spin_lock(&release_list_lock);
81a6a5cd 4757 }
cdcc136f 4758 raw_spin_unlock(&release_list_lock);
81a6a5cd
PM
4759 mutex_unlock(&cgroup_mutex);
4760}
8bab8dde
PM
4761
4762static int __init cgroup_disable(char *str)
4763{
4764 int i;
4765 char *token;
4766
4767 while ((token = strsep(&str, ",")) != NULL) {
4768 if (!*token)
4769 continue;
aae8aab4
BB
4770 /*
4771 * cgroup_disable, being at boot time, can't know about module
4772 * subsystems, so we don't worry about them.
4773 */
4774 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
8bab8dde
PM
4775 struct cgroup_subsys *ss = subsys[i];
4776
4777 if (!strcmp(token, ss->name)) {
4778 ss->disabled = 1;
4779 printk(KERN_INFO "Disabling %s control group"
4780 " subsystem\n", ss->name);
4781 break;
4782 }
4783 }
4784 }
4785 return 1;
4786}
4787__setup("cgroup_disable=", cgroup_disable);
38460b48
KH
4788
4789/*
4790 * Functons for CSS ID.
4791 */
4792
4793/*
4794 *To get ID other than 0, this should be called when !cgroup_is_removed().
4795 */
4796unsigned short css_id(struct cgroup_subsys_state *css)
4797{
7f0f1546
KH
4798 struct css_id *cssid;
4799
4800 /*
4801 * This css_id() can return correct value when somone has refcnt
4802 * on this or this is under rcu_read_lock(). Once css->id is allocated,
4803 * it's unchanged until freed.
4804 */
d8bf4ca9 4805 cssid = rcu_dereference_check(css->id, atomic_read(&css->refcnt));
38460b48
KH
4806
4807 if (cssid)
4808 return cssid->id;
4809 return 0;
4810}
67523c48 4811EXPORT_SYMBOL_GPL(css_id);
38460b48
KH
4812
4813unsigned short css_depth(struct cgroup_subsys_state *css)
4814{
7f0f1546
KH
4815 struct css_id *cssid;
4816
d8bf4ca9 4817 cssid = rcu_dereference_check(css->id, atomic_read(&css->refcnt));
38460b48
KH
4818
4819 if (cssid)
4820 return cssid->depth;
4821 return 0;
4822}
67523c48 4823EXPORT_SYMBOL_GPL(css_depth);
38460b48 4824
747388d7
KH
4825/**
4826 * css_is_ancestor - test "root" css is an ancestor of "child"
4827 * @child: the css to be tested.
4828 * @root: the css supporsed to be an ancestor of the child.
4829 *
4830 * Returns true if "root" is an ancestor of "child" in its hierarchy. Because
4831 * this function reads css->id, this use rcu_dereference() and rcu_read_lock().
4832 * But, considering usual usage, the csses should be valid objects after test.
4833 * Assuming that the caller will do some action to the child if this returns
4834 * returns true, the caller must take "child";s reference count.
4835 * If "child" is valid object and this returns true, "root" is valid, too.
4836 */
4837
38460b48 4838bool css_is_ancestor(struct cgroup_subsys_state *child,
0b7f569e 4839 const struct cgroup_subsys_state *root)
38460b48 4840{
747388d7
KH
4841 struct css_id *child_id;
4842 struct css_id *root_id;
4843 bool ret = true;
38460b48 4844
747388d7
KH
4845 rcu_read_lock();
4846 child_id = rcu_dereference(child->id);
4847 root_id = rcu_dereference(root->id);
4848 if (!child_id
4849 || !root_id
4850 || (child_id->depth < root_id->depth)
4851 || (child_id->stack[root_id->depth] != root_id->id))
4852 ret = false;
4853 rcu_read_unlock();
4854 return ret;
38460b48
KH
4855}
4856
38460b48
KH
4857void free_css_id(struct cgroup_subsys *ss, struct cgroup_subsys_state *css)
4858{
4859 struct css_id *id = css->id;
4860 /* When this is called before css_id initialization, id can be NULL */
4861 if (!id)
4862 return;
4863
4864 BUG_ON(!ss->use_id);
4865
4866 rcu_assign_pointer(id->css, NULL);
4867 rcu_assign_pointer(css->id, NULL);
c1e2ee2d 4868 write_lock(&ss->id_lock);
38460b48 4869 idr_remove(&ss->idr, id->id);
c1e2ee2d 4870 write_unlock(&ss->id_lock);
025cea99 4871 kfree_rcu(id, rcu_head);
38460b48 4872}
67523c48 4873EXPORT_SYMBOL_GPL(free_css_id);
38460b48
KH
4874
4875/*
4876 * This is called by init or create(). Then, calls to this function are
4877 * always serialized (By cgroup_mutex() at create()).
4878 */
4879
4880static struct css_id *get_new_cssid(struct cgroup_subsys *ss, int depth)
4881{
4882 struct css_id *newid;
4883 int myid, error, size;
4884
4885 BUG_ON(!ss->use_id);
4886
4887 size = sizeof(*newid) + sizeof(unsigned short) * (depth + 1);
4888 newid = kzalloc(size, GFP_KERNEL);
4889 if (!newid)
4890 return ERR_PTR(-ENOMEM);
4891 /* get id */
4892 if (unlikely(!idr_pre_get(&ss->idr, GFP_KERNEL))) {
4893 error = -ENOMEM;
4894 goto err_out;
4895 }
c1e2ee2d 4896 write_lock(&ss->id_lock);
38460b48
KH
4897 /* Don't use 0. allocates an ID of 1-65535 */
4898 error = idr_get_new_above(&ss->idr, newid, 1, &myid);
c1e2ee2d 4899 write_unlock(&ss->id_lock);
38460b48
KH
4900
4901 /* Returns error when there are no free spaces for new ID.*/
4902 if (error) {
4903 error = -ENOSPC;
4904 goto err_out;
4905 }
4906 if (myid > CSS_ID_MAX)
4907 goto remove_idr;
4908
4909 newid->id = myid;
4910 newid->depth = depth;
4911 return newid;
4912remove_idr:
4913 error = -ENOSPC;
c1e2ee2d 4914 write_lock(&ss->id_lock);
38460b48 4915 idr_remove(&ss->idr, myid);
c1e2ee2d 4916 write_unlock(&ss->id_lock);
38460b48
KH
4917err_out:
4918 kfree(newid);
4919 return ERR_PTR(error);
4920
4921}
4922
e6a1105b
BB
4923static int __init_or_module cgroup_init_idr(struct cgroup_subsys *ss,
4924 struct cgroup_subsys_state *rootcss)
38460b48
KH
4925{
4926 struct css_id *newid;
38460b48 4927
c1e2ee2d 4928 rwlock_init(&ss->id_lock);
38460b48
KH
4929 idr_init(&ss->idr);
4930
38460b48
KH
4931 newid = get_new_cssid(ss, 0);
4932 if (IS_ERR(newid))
4933 return PTR_ERR(newid);
4934
4935 newid->stack[0] = newid->id;
4936 newid->css = rootcss;
4937 rootcss->id = newid;
4938 return 0;
4939}
4940
4941static int alloc_css_id(struct cgroup_subsys *ss, struct cgroup *parent,
4942 struct cgroup *child)
4943{
4944 int subsys_id, i, depth = 0;
4945 struct cgroup_subsys_state *parent_css, *child_css;
fae9c791 4946 struct css_id *child_id, *parent_id;
38460b48
KH
4947
4948 subsys_id = ss->subsys_id;
4949 parent_css = parent->subsys[subsys_id];
4950 child_css = child->subsys[subsys_id];
38460b48 4951 parent_id = parent_css->id;
94b3dd0f 4952 depth = parent_id->depth + 1;
38460b48
KH
4953
4954 child_id = get_new_cssid(ss, depth);
4955 if (IS_ERR(child_id))
4956 return PTR_ERR(child_id);
4957
4958 for (i = 0; i < depth; i++)
4959 child_id->stack[i] = parent_id->stack[i];
4960 child_id->stack[depth] = child_id->id;
4961 /*
4962 * child_id->css pointer will be set after this cgroup is available
4963 * see cgroup_populate_dir()
4964 */
4965 rcu_assign_pointer(child_css->id, child_id);
4966
4967 return 0;
4968}
4969
4970/**
4971 * css_lookup - lookup css by id
4972 * @ss: cgroup subsys to be looked into.
4973 * @id: the id
4974 *
4975 * Returns pointer to cgroup_subsys_state if there is valid one with id.
4976 * NULL if not. Should be called under rcu_read_lock()
4977 */
4978struct cgroup_subsys_state *css_lookup(struct cgroup_subsys *ss, int id)
4979{
4980 struct css_id *cssid = NULL;
4981
4982 BUG_ON(!ss->use_id);
4983 cssid = idr_find(&ss->idr, id);
4984
4985 if (unlikely(!cssid))
4986 return NULL;
4987
4988 return rcu_dereference(cssid->css);
4989}
67523c48 4990EXPORT_SYMBOL_GPL(css_lookup);
38460b48
KH
4991
4992/**
4993 * css_get_next - lookup next cgroup under specified hierarchy.
4994 * @ss: pointer to subsystem
4995 * @id: current position of iteration.
4996 * @root: pointer to css. search tree under this.
4997 * @foundid: position of found object.
4998 *
4999 * Search next css under the specified hierarchy of rootid. Calling under
5000 * rcu_read_lock() is necessary. Returns NULL if it reaches the end.
5001 */
5002struct cgroup_subsys_state *
5003css_get_next(struct cgroup_subsys *ss, int id,
5004 struct cgroup_subsys_state *root, int *foundid)
5005{
5006 struct cgroup_subsys_state *ret = NULL;
5007 struct css_id *tmp;
5008 int tmpid;
5009 int rootid = css_id(root);
5010 int depth = css_depth(root);
5011
5012 if (!rootid)
5013 return NULL;
5014
5015 BUG_ON(!ss->use_id);
5016 /* fill start point for scan */
5017 tmpid = id;
5018 while (1) {
5019 /*
5020 * scan next entry from bitmap(tree), tmpid is updated after
5021 * idr_get_next().
5022 */
c1e2ee2d 5023 read_lock(&ss->id_lock);
38460b48 5024 tmp = idr_get_next(&ss->idr, &tmpid);
c1e2ee2d 5025 read_unlock(&ss->id_lock);
38460b48
KH
5026
5027 if (!tmp)
5028 break;
5029 if (tmp->depth >= depth && tmp->stack[depth] == rootid) {
5030 ret = rcu_dereference(tmp->css);
5031 if (ret) {
5032 *foundid = tmpid;
5033 break;
5034 }
5035 }
5036 /* continue to scan from next id */
5037 tmpid = tmpid + 1;
5038 }
5039 return ret;
5040}
5041
e5d1367f
SE
5042/*
5043 * get corresponding css from file open on cgroupfs directory
5044 */
5045struct cgroup_subsys_state *cgroup_css_from_dir(struct file *f, int id)
5046{
5047 struct cgroup *cgrp;
5048 struct inode *inode;
5049 struct cgroup_subsys_state *css;
5050
5051 inode = f->f_dentry->d_inode;
5052 /* check in cgroup filesystem dir */
5053 if (inode->i_op != &cgroup_dir_inode_operations)
5054 return ERR_PTR(-EBADF);
5055
5056 if (id < 0 || id >= CGROUP_SUBSYS_COUNT)
5057 return ERR_PTR(-EINVAL);
5058
5059 /* get cgroup */
5060 cgrp = __d_cgrp(f->f_dentry);
5061 css = cgrp->subsys[id];
5062 return css ? css : ERR_PTR(-ENOENT);
5063}
5064
fe693435 5065#ifdef CONFIG_CGROUP_DEBUG
761b3ef5 5066static struct cgroup_subsys_state *debug_create(struct cgroup *cont)
fe693435
PM
5067{
5068 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5069
5070 if (!css)
5071 return ERR_PTR(-ENOMEM);
5072
5073 return css;
5074}
5075
761b3ef5 5076static void debug_destroy(struct cgroup *cont)
fe693435
PM
5077{
5078 kfree(cont->subsys[debug_subsys_id]);
5079}
5080
5081static u64 cgroup_refcount_read(struct cgroup *cont, struct cftype *cft)
5082{
5083 return atomic_read(&cont->count);
5084}
5085
5086static u64 debug_taskcount_read(struct cgroup *cont, struct cftype *cft)
5087{
5088 return cgroup_task_count(cont);
5089}
5090
5091static u64 current_css_set_read(struct cgroup *cont, struct cftype *cft)
5092{
5093 return (u64)(unsigned long)current->cgroups;
5094}
5095
5096static u64 current_css_set_refcount_read(struct cgroup *cont,
5097 struct cftype *cft)
5098{
5099 u64 count;
5100
5101 rcu_read_lock();
5102 count = atomic_read(&current->cgroups->refcount);
5103 rcu_read_unlock();
5104 return count;
5105}
5106
7717f7ba
PM
5107static int current_css_set_cg_links_read(struct cgroup *cont,
5108 struct cftype *cft,
5109 struct seq_file *seq)
5110{
5111 struct cg_cgroup_link *link;
5112 struct css_set *cg;
5113
5114 read_lock(&css_set_lock);
5115 rcu_read_lock();
5116 cg = rcu_dereference(current->cgroups);
5117 list_for_each_entry(link, &cg->cg_links, cg_link_list) {
5118 struct cgroup *c = link->cgrp;
5119 const char *name;
5120
5121 if (c->dentry)
5122 name = c->dentry->d_name.name;
5123 else
5124 name = "?";
2c6ab6d2
PM
5125 seq_printf(seq, "Root %d group %s\n",
5126 c->root->hierarchy_id, name);
7717f7ba
PM
5127 }
5128 rcu_read_unlock();
5129 read_unlock(&css_set_lock);
5130 return 0;
5131}
5132
5133#define MAX_TASKS_SHOWN_PER_CSS 25
5134static int cgroup_css_links_read(struct cgroup *cont,
5135 struct cftype *cft,
5136 struct seq_file *seq)
5137{
5138 struct cg_cgroup_link *link;
5139
5140 read_lock(&css_set_lock);
5141 list_for_each_entry(link, &cont->css_sets, cgrp_link_list) {
5142 struct css_set *cg = link->cg;
5143 struct task_struct *task;
5144 int count = 0;
5145 seq_printf(seq, "css_set %p\n", cg);
5146 list_for_each_entry(task, &cg->tasks, cg_list) {
5147 if (count++ > MAX_TASKS_SHOWN_PER_CSS) {
5148 seq_puts(seq, " ...\n");
5149 break;
5150 } else {
5151 seq_printf(seq, " task %d\n",
5152 task_pid_vnr(task));
5153 }
5154 }
5155 }
5156 read_unlock(&css_set_lock);
5157 return 0;
5158}
5159
fe693435
PM
5160static u64 releasable_read(struct cgroup *cgrp, struct cftype *cft)
5161{
5162 return test_bit(CGRP_RELEASABLE, &cgrp->flags);
5163}
5164
5165static struct cftype debug_files[] = {
5166 {
5167 .name = "cgroup_refcount",
5168 .read_u64 = cgroup_refcount_read,
5169 },
5170 {
5171 .name = "taskcount",
5172 .read_u64 = debug_taskcount_read,
5173 },
5174
5175 {
5176 .name = "current_css_set",
5177 .read_u64 = current_css_set_read,
5178 },
5179
5180 {
5181 .name = "current_css_set_refcount",
5182 .read_u64 = current_css_set_refcount_read,
5183 },
5184
7717f7ba
PM
5185 {
5186 .name = "current_css_set_cg_links",
5187 .read_seq_string = current_css_set_cg_links_read,
5188 },
5189
5190 {
5191 .name = "cgroup_css_links",
5192 .read_seq_string = cgroup_css_links_read,
5193 },
5194
fe693435
PM
5195 {
5196 .name = "releasable",
5197 .read_u64 = releasable_read,
5198 },
5199};
5200
5201static int debug_populate(struct cgroup_subsys *ss, struct cgroup *cont)
5202{
5203 return cgroup_add_files(cont, ss, debug_files,
5204 ARRAY_SIZE(debug_files));
5205}
5206
5207struct cgroup_subsys debug_subsys = {
5208 .name = "debug",
5209 .create = debug_create,
5210 .destroy = debug_destroy,
5211 .populate = debug_populate,
5212 .subsys_id = debug_subsys_id,
5213};
5214#endif /* CONFIG_CGROUP_DEBUG */