]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - kernel/cgroup.c
cgroup: reorder cgroup_migrate()'s parameters
[mirror_ubuntu-artful-kernel.git] / kernel / cgroup.c
CommitLineData
ddbcc7e8 1/*
ddbcc7e8
PM
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
0dea1168
KS
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
ddbcc7e8
PM
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
ed3d261b
JP
29#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
ddbcc7e8 31#include <linux/cgroup.h>
2ce9738b 32#include <linux/cred.h>
c6d57f33 33#include <linux/ctype.h>
ddbcc7e8 34#include <linux/errno.h>
2ce9738b 35#include <linux/init_task.h>
ddbcc7e8
PM
36#include <linux/kernel.h>
37#include <linux/list.h>
c9482a5b 38#include <linux/magic.h>
ddbcc7e8
PM
39#include <linux/mm.h>
40#include <linux/mutex.h>
41#include <linux/mount.h>
42#include <linux/pagemap.h>
a424316c 43#include <linux/proc_fs.h>
ddbcc7e8
PM
44#include <linux/rcupdate.h>
45#include <linux/sched.h>
ddbcc7e8 46#include <linux/slab.h>
ddbcc7e8 47#include <linux/spinlock.h>
96d365e0 48#include <linux/rwsem.h>
1ed13287 49#include <linux/percpu-rwsem.h>
ddbcc7e8 50#include <linux/string.h>
bbcb81d0 51#include <linux/sort.h>
81a6a5cd 52#include <linux/kmod.h>
846c7bb0
BS
53#include <linux/delayacct.h>
54#include <linux/cgroupstats.h>
0ac801fe 55#include <linux/hashtable.h>
096b7fe0 56#include <linux/pid_namespace.h>
2c6ab6d2 57#include <linux/idr.h>
d1d9fd33 58#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
c4c27fbd 59#include <linux/kthread.h>
776f02fa 60#include <linux/delay.h>
846c7bb0 61
60063497 62#include <linux/atomic.h>
ddbcc7e8 63
b1a21367
TH
64/*
65 * pidlists linger the following amount before being destroyed. The goal
66 * is avoiding frequent destruction in the middle of consecutive read calls
67 * Expiring in the middle is a performance problem not a correctness one.
68 * 1 sec should be enough.
69 */
70#define CGROUP_PIDLIST_DESTROY_DELAY HZ
71
8d7e6fb0
TH
72#define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
73 MAX_CFTYPE_NAME + 2)
74
e25e2cbb
TH
75/*
76 * cgroup_mutex is the master lock. Any modification to cgroup or its
77 * hierarchy must be performed while holding it.
78 *
0e1d768f
TH
79 * css_set_rwsem protects task->cgroups pointer, the list of css_set
80 * objects, and the chain of tasks off each css_set.
e25e2cbb 81 *
0e1d768f
TH
82 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
83 * cgroup.h can use them for lockdep annotations.
e25e2cbb 84 */
2219449a
TH
85#ifdef CONFIG_PROVE_RCU
86DEFINE_MUTEX(cgroup_mutex);
0e1d768f
TH
87DECLARE_RWSEM(css_set_rwsem);
88EXPORT_SYMBOL_GPL(cgroup_mutex);
89EXPORT_SYMBOL_GPL(css_set_rwsem);
2219449a 90#else
81a6a5cd 91static DEFINE_MUTEX(cgroup_mutex);
0e1d768f 92static DECLARE_RWSEM(css_set_rwsem);
2219449a
TH
93#endif
94
6fa4918d 95/*
15a4c835
TH
96 * Protects cgroup_idr and css_idr so that IDs can be released without
97 * grabbing cgroup_mutex.
6fa4918d
TH
98 */
99static DEFINE_SPINLOCK(cgroup_idr_lock);
100
69e943b7
TH
101/*
102 * Protects cgroup_subsys->release_agent_path. Modifying it also requires
103 * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock.
104 */
105static DEFINE_SPINLOCK(release_agent_path_lock);
81a6a5cd 106
1ed13287
TH
107struct percpu_rw_semaphore cgroup_threadgroup_rwsem;
108
8353da1f 109#define cgroup_assert_mutex_or_rcu_locked() \
f78f5b90
PM
110 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
111 !lockdep_is_held(&cgroup_mutex), \
8353da1f 112 "cgroup_mutex or RCU read lock required");
780cd8b3 113
e5fca243
TH
114/*
115 * cgroup destruction makes heavy use of work items and there can be a lot
116 * of concurrent destructions. Use a separate workqueue so that cgroup
117 * destruction work items don't end up filling up max_active of system_wq
118 * which may lead to deadlock.
119 */
120static struct workqueue_struct *cgroup_destroy_wq;
121
b1a21367
TH
122/*
123 * pidlist destructions need to be flushed on cgroup destruction. Use a
124 * separate workqueue as flush domain.
125 */
126static struct workqueue_struct *cgroup_pidlist_destroy_wq;
127
3ed80a62 128/* generate an array of cgroup subsystem pointers */
073219e9 129#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
3ed80a62 130static struct cgroup_subsys *cgroup_subsys[] = {
ddbcc7e8
PM
131#include <linux/cgroup_subsys.h>
132};
073219e9
TH
133#undef SUBSYS
134
135/* array of cgroup subsystem names */
136#define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
137static const char *cgroup_subsys_name[] = {
ddbcc7e8
PM
138#include <linux/cgroup_subsys.h>
139};
073219e9 140#undef SUBSYS
ddbcc7e8 141
49d1dc4b
TH
142/* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
143#define SUBSYS(_x) \
144 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \
145 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \
146 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \
147 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
148#include <linux/cgroup_subsys.h>
149#undef SUBSYS
150
151#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
152static struct static_key_true *cgroup_subsys_enabled_key[] = {
153#include <linux/cgroup_subsys.h>
154};
155#undef SUBSYS
156
157#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
158static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
159#include <linux/cgroup_subsys.h>
160};
161#undef SUBSYS
162
ddbcc7e8 163/*
3dd06ffa 164 * The default hierarchy, reserved for the subsystems that are otherwise
9871bf95
TH
165 * unattached - it never has more than a single cgroup, and all tasks are
166 * part of that cgroup.
ddbcc7e8 167 */
a2dd4247 168struct cgroup_root cgrp_dfl_root;
d0ec4230 169EXPORT_SYMBOL_GPL(cgrp_dfl_root);
9871bf95 170
a2dd4247
TH
171/*
172 * The default hierarchy always exists but is hidden until mounted for the
173 * first time. This is for backward compatibility.
174 */
175static bool cgrp_dfl_root_visible;
ddbcc7e8 176
a8ddc821
TH
177/*
178 * Set by the boot param of the same name and makes subsystems with NULL
179 * ->dfl_files to use ->legacy_files on the default hierarchy.
180 */
181static bool cgroup_legacy_files_on_dfl;
182
5533e011 183/* some controllers are not supported in the default hierarchy */
8ab456ac 184static unsigned long cgrp_dfl_root_inhibit_ss_mask;
5533e011 185
ddbcc7e8
PM
186/* The list of hierarchy roots */
187
9871bf95
TH
188static LIST_HEAD(cgroup_roots);
189static int cgroup_root_count;
ddbcc7e8 190
3417ae1f 191/* hierarchy ID allocation and mapping, protected by cgroup_mutex */
1a574231 192static DEFINE_IDR(cgroup_hierarchy_idr);
2c6ab6d2 193
794611a1 194/*
0cb51d71
TH
195 * Assign a monotonically increasing serial number to csses. It guarantees
196 * cgroups with bigger numbers are newer than those with smaller numbers.
197 * Also, as csses are always appended to the parent's ->children list, it
198 * guarantees that sibling csses are always sorted in the ascending serial
199 * number order on the list. Protected by cgroup_mutex.
794611a1 200 */
0cb51d71 201static u64 css_serial_nr_next = 1;
794611a1 202
cb4a3167
AS
203/*
204 * These bitmask flags indicate whether tasks in the fork and exit paths have
205 * fork/exit handlers to call. This avoids us having to do extra work in the
206 * fork/exit path to check which subsystems have fork/exit callbacks.
ddbcc7e8 207 */
cb4a3167
AS
208static unsigned long have_fork_callback __read_mostly;
209static unsigned long have_exit_callback __read_mostly;
ddbcc7e8 210
7e47682e
AS
211/* Ditto for the can_fork callback. */
212static unsigned long have_canfork_callback __read_mostly;
213
a14c6874
TH
214static struct cftype cgroup_dfl_base_files[];
215static struct cftype cgroup_legacy_base_files[];
628f7cd4 216
3dd06ffa 217static int rebind_subsystems(struct cgroup_root *dst_root,
8ab456ac 218 unsigned long ss_mask);
42809dd4 219static int cgroup_destroy_locked(struct cgroup *cgrp);
f63070d3
TH
220static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss,
221 bool visible);
9d755d33 222static void css_release(struct percpu_ref *ref);
f8f22e53 223static void kill_css(struct cgroup_subsys_state *css);
4df8dc90
TH
224static int cgroup_addrm_files(struct cgroup_subsys_state *css,
225 struct cgroup *cgrp, struct cftype cfts[],
2bb566cb 226 bool is_add);
42809dd4 227
fc5ed1e9
TH
228/**
229 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
230 * @ssid: subsys ID of interest
231 *
232 * cgroup_subsys_enabled() can only be used with literal subsys names which
233 * is fine for individual subsystems but unsuitable for cgroup core. This
234 * is slower static_key_enabled() based test indexed by @ssid.
235 */
236static bool cgroup_ssid_enabled(int ssid)
237{
238 return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
239}
240
9e10a130
TH
241/**
242 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
243 * @cgrp: the cgroup of interest
244 *
245 * The default hierarchy is the v2 interface of cgroup and this function
246 * can be used to test whether a cgroup is on the default hierarchy for
247 * cases where a subsystem should behave differnetly depending on the
248 * interface version.
249 *
250 * The set of behaviors which change on the default hierarchy are still
251 * being determined and the mount option is prefixed with __DEVEL__.
252 *
253 * List of changed behaviors:
254 *
255 * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
256 * and "name" are disallowed.
257 *
258 * - When mounting an existing superblock, mount options should match.
259 *
260 * - Remount is disallowed.
261 *
262 * - rename(2) is disallowed.
263 *
264 * - "tasks" is removed. Everything should be at process granularity. Use
265 * "cgroup.procs" instead.
266 *
267 * - "cgroup.procs" is not sorted. pids will be unique unless they got
268 * recycled inbetween reads.
269 *
270 * - "release_agent" and "notify_on_release" are removed. Replacement
271 * notification mechanism will be implemented.
272 *
273 * - "cgroup.clone_children" is removed.
274 *
275 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup
276 * and its descendants contain no task; otherwise, 1. The file also
277 * generates kernfs notification which can be monitored through poll and
278 * [di]notify when the value of the file changes.
279 *
280 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
281 * take masks of ancestors with non-empty cpus/mems, instead of being
282 * moved to an ancestor.
283 *
284 * - cpuset: a task can be moved into an empty cpuset, and again it takes
285 * masks of ancestors.
286 *
287 * - memcg: use_hierarchy is on by default and the cgroup file for the flag
288 * is not created.
289 *
290 * - blkcg: blk-throttle becomes properly hierarchical.
291 *
292 * - debug: disallowed on the default hierarchy.
293 */
294static bool cgroup_on_dfl(const struct cgroup *cgrp)
295{
296 return cgrp->root == &cgrp_dfl_root;
297}
298
6fa4918d
TH
299/* IDR wrappers which synchronize using cgroup_idr_lock */
300static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
301 gfp_t gfp_mask)
302{
303 int ret;
304
305 idr_preload(gfp_mask);
54504e97 306 spin_lock_bh(&cgroup_idr_lock);
cf780b7d 307 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_WAIT);
54504e97 308 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
309 idr_preload_end();
310 return ret;
311}
312
313static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
314{
315 void *ret;
316
54504e97 317 spin_lock_bh(&cgroup_idr_lock);
6fa4918d 318 ret = idr_replace(idr, ptr, id);
54504e97 319 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
320 return ret;
321}
322
323static void cgroup_idr_remove(struct idr *idr, int id)
324{
54504e97 325 spin_lock_bh(&cgroup_idr_lock);
6fa4918d 326 idr_remove(idr, id);
54504e97 327 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
328}
329
d51f39b0
TH
330static struct cgroup *cgroup_parent(struct cgroup *cgrp)
331{
332 struct cgroup_subsys_state *parent_css = cgrp->self.parent;
333
334 if (parent_css)
335 return container_of(parent_css, struct cgroup, self);
336 return NULL;
337}
338
95109b62
TH
339/**
340 * cgroup_css - obtain a cgroup's css for the specified subsystem
341 * @cgrp: the cgroup of interest
9d800df1 342 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
95109b62 343 *
ca8bdcaf
TH
344 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
345 * function must be called either under cgroup_mutex or rcu_read_lock() and
346 * the caller is responsible for pinning the returned css if it wants to
347 * keep accessing it outside the said locks. This function may return
348 * %NULL if @cgrp doesn't have @subsys_id enabled.
95109b62
TH
349 */
350static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
ca8bdcaf 351 struct cgroup_subsys *ss)
95109b62 352{
ca8bdcaf 353 if (ss)
aec25020 354 return rcu_dereference_check(cgrp->subsys[ss->id],
ace2bee8 355 lockdep_is_held(&cgroup_mutex));
ca8bdcaf 356 else
9d800df1 357 return &cgrp->self;
95109b62 358}
42809dd4 359
aec3dfcb
TH
360/**
361 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
362 * @cgrp: the cgroup of interest
9d800df1 363 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
aec3dfcb 364 *
d0f702e6 365 * Similar to cgroup_css() but returns the effective css, which is defined
aec3dfcb
TH
366 * as the matching css of the nearest ancestor including self which has @ss
367 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
368 * function is guaranteed to return non-NULL css.
369 */
370static struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
371 struct cgroup_subsys *ss)
372{
373 lockdep_assert_held(&cgroup_mutex);
374
375 if (!ss)
9d800df1 376 return &cgrp->self;
aec3dfcb
TH
377
378 if (!(cgrp->root->subsys_mask & (1 << ss->id)))
379 return NULL;
380
eeecbd19
TH
381 /*
382 * This function is used while updating css associations and thus
383 * can't test the csses directly. Use ->child_subsys_mask.
384 */
d51f39b0
TH
385 while (cgroup_parent(cgrp) &&
386 !(cgroup_parent(cgrp)->child_subsys_mask & (1 << ss->id)))
387 cgrp = cgroup_parent(cgrp);
aec3dfcb
TH
388
389 return cgroup_css(cgrp, ss);
95109b62 390}
42809dd4 391
eeecbd19
TH
392/**
393 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
394 * @cgrp: the cgroup of interest
395 * @ss: the subsystem of interest
396 *
397 * Find and get the effective css of @cgrp for @ss. The effective css is
398 * defined as the matching css of the nearest ancestor including self which
399 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
400 * the root css is returned, so this function always returns a valid css.
401 * The returned css must be put using css_put().
402 */
403struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
404 struct cgroup_subsys *ss)
405{
406 struct cgroup_subsys_state *css;
407
408 rcu_read_lock();
409
410 do {
411 css = cgroup_css(cgrp, ss);
412
413 if (css && css_tryget_online(css))
414 goto out_unlock;
415 cgrp = cgroup_parent(cgrp);
416 } while (cgrp);
417
418 css = init_css_set.subsys[ss->id];
419 css_get(css);
420out_unlock:
421 rcu_read_unlock();
422 return css;
423}
424
ddbcc7e8 425/* convenient tests for these bits */
54766d4a 426static inline bool cgroup_is_dead(const struct cgroup *cgrp)
ddbcc7e8 427{
184faf32 428 return !(cgrp->self.flags & CSS_ONLINE);
ddbcc7e8
PM
429}
430
b4168640 431struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
59f5296b 432{
2bd59d48 433 struct cgroup *cgrp = of->kn->parent->priv;
b4168640 434 struct cftype *cft = of_cft(of);
2bd59d48
TH
435
436 /*
437 * This is open and unprotected implementation of cgroup_css().
438 * seq_css() is only called from a kernfs file operation which has
439 * an active reference on the file. Because all the subsystem
440 * files are drained before a css is disassociated with a cgroup,
441 * the matching css from the cgroup's subsys table is guaranteed to
442 * be and stay valid until the enclosing operation is complete.
443 */
444 if (cft->ss)
445 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
446 else
9d800df1 447 return &cgrp->self;
59f5296b 448}
b4168640 449EXPORT_SYMBOL_GPL(of_css);
59f5296b 450
78574cf9
LZ
451/**
452 * cgroup_is_descendant - test ancestry
453 * @cgrp: the cgroup to be tested
454 * @ancestor: possible ancestor of @cgrp
455 *
456 * Test whether @cgrp is a descendant of @ancestor. It also returns %true
457 * if @cgrp == @ancestor. This function is safe to call as long as @cgrp
458 * and @ancestor are accessible.
459 */
460bool cgroup_is_descendant(struct cgroup *cgrp, struct cgroup *ancestor)
461{
462 while (cgrp) {
463 if (cgrp == ancestor)
464 return true;
d51f39b0 465 cgrp = cgroup_parent(cgrp);
78574cf9
LZ
466 }
467 return false;
468}
ddbcc7e8 469
e9685a03 470static int notify_on_release(const struct cgroup *cgrp)
81a6a5cd 471{
bd89aabc 472 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
81a6a5cd
PM
473}
474
1c6727af
TH
475/**
476 * for_each_css - iterate all css's of a cgroup
477 * @css: the iteration cursor
478 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
479 * @cgrp: the target cgroup to iterate css's of
480 *
aec3dfcb 481 * Should be called under cgroup_[tree_]mutex.
1c6727af
TH
482 */
483#define for_each_css(css, ssid, cgrp) \
484 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
485 if (!((css) = rcu_dereference_check( \
486 (cgrp)->subsys[(ssid)], \
487 lockdep_is_held(&cgroup_mutex)))) { } \
488 else
489
aec3dfcb
TH
490/**
491 * for_each_e_css - iterate all effective css's of a cgroup
492 * @css: the iteration cursor
493 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
494 * @cgrp: the target cgroup to iterate css's of
495 *
496 * Should be called under cgroup_[tree_]mutex.
497 */
498#define for_each_e_css(css, ssid, cgrp) \
499 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
500 if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \
501 ; \
502 else
503
30159ec7 504/**
3ed80a62 505 * for_each_subsys - iterate all enabled cgroup subsystems
30159ec7 506 * @ss: the iteration cursor
780cd8b3 507 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
30159ec7 508 */
780cd8b3 509#define for_each_subsys(ss, ssid) \
3ed80a62
TH
510 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT && \
511 (((ss) = cgroup_subsys[ssid]) || true); (ssid)++)
30159ec7 512
cb4a3167
AS
513/**
514 * for_each_subsys_which - filter for_each_subsys with a bitmask
515 * @ss: the iteration cursor
516 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
517 * @ss_maskp: a pointer to the bitmask
518 *
519 * The block will only run for cases where the ssid-th bit (1 << ssid) of
520 * mask is set to 1.
521 */
522#define for_each_subsys_which(ss, ssid, ss_maskp) \
523 if (!CGROUP_SUBSYS_COUNT) /* to avoid spurious gcc warning */ \
4a705c5c 524 (ssid) = 0; \
cb4a3167
AS
525 else \
526 for_each_set_bit(ssid, ss_maskp, CGROUP_SUBSYS_COUNT) \
527 if (((ss) = cgroup_subsys[ssid]) && false) \
528 break; \
529 else
530
985ed670
TH
531/* iterate across the hierarchies */
532#define for_each_root(root) \
5549c497 533 list_for_each_entry((root), &cgroup_roots, root_list)
ddbcc7e8 534
f8f22e53
TH
535/* iterate over child cgrps, lock should be held throughout iteration */
536#define cgroup_for_each_live_child(child, cgrp) \
d5c419b6 537 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
8353da1f 538 if (({ lockdep_assert_held(&cgroup_mutex); \
f8f22e53
TH
539 cgroup_is_dead(child); })) \
540 ; \
541 else
7ae1bad9 542
81a6a5cd 543static void cgroup_release_agent(struct work_struct *work);
bd89aabc 544static void check_for_release(struct cgroup *cgrp);
81a6a5cd 545
69d0206c
TH
546/*
547 * A cgroup can be associated with multiple css_sets as different tasks may
548 * belong to different cgroups on different hierarchies. In the other
549 * direction, a css_set is naturally associated with multiple cgroups.
550 * This M:N relationship is represented by the following link structure
551 * which exists for each association and allows traversing the associations
552 * from both sides.
553 */
554struct cgrp_cset_link {
555 /* the cgroup and css_set this link associates */
556 struct cgroup *cgrp;
557 struct css_set *cset;
558
559 /* list of cgrp_cset_links anchored at cgrp->cset_links */
560 struct list_head cset_link;
561
562 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
563 struct list_head cgrp_link;
817929ec
PM
564};
565
172a2c06
TH
566/*
567 * The default css_set - used by init and its children prior to any
817929ec
PM
568 * hierarchies being mounted. It contains a pointer to the root state
569 * for each subsystem. Also used to anchor the list of css_sets. Not
570 * reference-counted, to improve performance when child cgroups
571 * haven't been created.
572 */
5024ae29 573struct css_set init_css_set = {
172a2c06
TH
574 .refcount = ATOMIC_INIT(1),
575 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links),
576 .tasks = LIST_HEAD_INIT(init_css_set.tasks),
577 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks),
578 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node),
579 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node),
580};
817929ec 581
172a2c06 582static int css_set_count = 1; /* 1 for init_css_set */
817929ec 583
842b597e
TH
584/**
585 * cgroup_update_populated - updated populated count of a cgroup
586 * @cgrp: the target cgroup
587 * @populated: inc or dec populated count
588 *
589 * @cgrp is either getting the first task (css_set) or losing the last.
590 * Update @cgrp->populated_cnt accordingly. The count is propagated
591 * towards root so that a given cgroup's populated_cnt is zero iff the
592 * cgroup and all its descendants are empty.
593 *
594 * @cgrp's interface file "cgroup.populated" is zero if
595 * @cgrp->populated_cnt is zero and 1 otherwise. When @cgrp->populated_cnt
596 * changes from or to zero, userland is notified that the content of the
597 * interface file has changed. This can be used to detect when @cgrp and
598 * its descendants become populated or empty.
599 */
600static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
601{
602 lockdep_assert_held(&css_set_rwsem);
603
604 do {
605 bool trigger;
606
607 if (populated)
608 trigger = !cgrp->populated_cnt++;
609 else
610 trigger = !--cgrp->populated_cnt;
611
612 if (!trigger)
613 break;
614
6f60eade
TH
615 cgroup_file_notify(&cgrp->events_file);
616
d51f39b0 617 cgrp = cgroup_parent(cgrp);
842b597e
TH
618 } while (cgrp);
619}
620
7717f7ba
PM
621/*
622 * hash table for cgroup groups. This improves the performance to find
623 * an existing css_set. This hash doesn't (currently) take into
624 * account cgroups in empty hierarchies.
625 */
472b1053 626#define CSS_SET_HASH_BITS 7
0ac801fe 627static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
472b1053 628
0ac801fe 629static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
472b1053 630{
0ac801fe 631 unsigned long key = 0UL;
30159ec7
TH
632 struct cgroup_subsys *ss;
633 int i;
472b1053 634
30159ec7 635 for_each_subsys(ss, i)
0ac801fe
LZ
636 key += (unsigned long)css[i];
637 key = (key >> 16) ^ key;
472b1053 638
0ac801fe 639 return key;
472b1053
LZ
640}
641
a25eb52e 642static void put_css_set_locked(struct css_set *cset)
b4f48b63 643{
69d0206c 644 struct cgrp_cset_link *link, *tmp_link;
2d8f243a
TH
645 struct cgroup_subsys *ss;
646 int ssid;
5abb8855 647
89c5509b
TH
648 lockdep_assert_held(&css_set_rwsem);
649
650 if (!atomic_dec_and_test(&cset->refcount))
146aa1bd 651 return;
81a6a5cd 652
2c6ab6d2 653 /* This css_set is dead. unlink it and release cgroup refcounts */
2d8f243a
TH
654 for_each_subsys(ss, ssid)
655 list_del(&cset->e_cset_node[ssid]);
5abb8855 656 hash_del(&cset->hlist);
2c6ab6d2
PM
657 css_set_count--;
658
69d0206c 659 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
2c6ab6d2 660 struct cgroup *cgrp = link->cgrp;
5abb8855 661
69d0206c
TH
662 list_del(&link->cset_link);
663 list_del(&link->cgrp_link);
71b5707e 664
96d365e0 665 /* @cgrp can't go away while we're holding css_set_rwsem */
842b597e
TH
666 if (list_empty(&cgrp->cset_links)) {
667 cgroup_update_populated(cgrp, false);
a25eb52e 668 check_for_release(cgrp);
81a6a5cd 669 }
2c6ab6d2
PM
670
671 kfree(link);
81a6a5cd 672 }
2c6ab6d2 673
5abb8855 674 kfree_rcu(cset, rcu_head);
b4f48b63
PM
675}
676
a25eb52e 677static void put_css_set(struct css_set *cset)
89c5509b
TH
678{
679 /*
680 * Ensure that the refcount doesn't hit zero while any readers
681 * can see it. Similar to atomic_dec_and_lock(), but for an
682 * rwlock
683 */
684 if (atomic_add_unless(&cset->refcount, -1, 1))
685 return;
686
687 down_write(&css_set_rwsem);
a25eb52e 688 put_css_set_locked(cset);
89c5509b
TH
689 up_write(&css_set_rwsem);
690}
691
817929ec
PM
692/*
693 * refcounted get/put for css_set objects
694 */
5abb8855 695static inline void get_css_set(struct css_set *cset)
817929ec 696{
5abb8855 697 atomic_inc(&cset->refcount);
817929ec
PM
698}
699
b326f9d0 700/**
7717f7ba 701 * compare_css_sets - helper function for find_existing_css_set().
5abb8855
TH
702 * @cset: candidate css_set being tested
703 * @old_cset: existing css_set for a task
7717f7ba
PM
704 * @new_cgrp: cgroup that's being entered by the task
705 * @template: desired set of css pointers in css_set (pre-calculated)
706 *
6f4b7e63 707 * Returns true if "cset" matches "old_cset" except for the hierarchy
7717f7ba
PM
708 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
709 */
5abb8855
TH
710static bool compare_css_sets(struct css_set *cset,
711 struct css_set *old_cset,
7717f7ba
PM
712 struct cgroup *new_cgrp,
713 struct cgroup_subsys_state *template[])
714{
715 struct list_head *l1, *l2;
716
aec3dfcb
TH
717 /*
718 * On the default hierarchy, there can be csets which are
719 * associated with the same set of cgroups but different csses.
720 * Let's first ensure that csses match.
721 */
722 if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
7717f7ba 723 return false;
7717f7ba
PM
724
725 /*
726 * Compare cgroup pointers in order to distinguish between
aec3dfcb
TH
727 * different cgroups in hierarchies. As different cgroups may
728 * share the same effective css, this comparison is always
729 * necessary.
7717f7ba 730 */
69d0206c
TH
731 l1 = &cset->cgrp_links;
732 l2 = &old_cset->cgrp_links;
7717f7ba 733 while (1) {
69d0206c 734 struct cgrp_cset_link *link1, *link2;
5abb8855 735 struct cgroup *cgrp1, *cgrp2;
7717f7ba
PM
736
737 l1 = l1->next;
738 l2 = l2->next;
739 /* See if we reached the end - both lists are equal length. */
69d0206c
TH
740 if (l1 == &cset->cgrp_links) {
741 BUG_ON(l2 != &old_cset->cgrp_links);
7717f7ba
PM
742 break;
743 } else {
69d0206c 744 BUG_ON(l2 == &old_cset->cgrp_links);
7717f7ba
PM
745 }
746 /* Locate the cgroups associated with these links. */
69d0206c
TH
747 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
748 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
749 cgrp1 = link1->cgrp;
750 cgrp2 = link2->cgrp;
7717f7ba 751 /* Hierarchies should be linked in the same order. */
5abb8855 752 BUG_ON(cgrp1->root != cgrp2->root);
7717f7ba
PM
753
754 /*
755 * If this hierarchy is the hierarchy of the cgroup
756 * that's changing, then we need to check that this
757 * css_set points to the new cgroup; if it's any other
758 * hierarchy, then this css_set should point to the
759 * same cgroup as the old css_set.
760 */
5abb8855
TH
761 if (cgrp1->root == new_cgrp->root) {
762 if (cgrp1 != new_cgrp)
7717f7ba
PM
763 return false;
764 } else {
5abb8855 765 if (cgrp1 != cgrp2)
7717f7ba
PM
766 return false;
767 }
768 }
769 return true;
770}
771
b326f9d0
TH
772/**
773 * find_existing_css_set - init css array and find the matching css_set
774 * @old_cset: the css_set that we're using before the cgroup transition
775 * @cgrp: the cgroup that we're moving into
776 * @template: out param for the new set of csses, should be clear on entry
817929ec 777 */
5abb8855
TH
778static struct css_set *find_existing_css_set(struct css_set *old_cset,
779 struct cgroup *cgrp,
780 struct cgroup_subsys_state *template[])
b4f48b63 781{
3dd06ffa 782 struct cgroup_root *root = cgrp->root;
30159ec7 783 struct cgroup_subsys *ss;
5abb8855 784 struct css_set *cset;
0ac801fe 785 unsigned long key;
b326f9d0 786 int i;
817929ec 787
aae8aab4
BB
788 /*
789 * Build the set of subsystem state objects that we want to see in the
790 * new css_set. while subsystems can change globally, the entries here
791 * won't change, so no need for locking.
792 */
30159ec7 793 for_each_subsys(ss, i) {
f392e51c 794 if (root->subsys_mask & (1UL << i)) {
aec3dfcb
TH
795 /*
796 * @ss is in this hierarchy, so we want the
797 * effective css from @cgrp.
798 */
799 template[i] = cgroup_e_css(cgrp, ss);
817929ec 800 } else {
aec3dfcb
TH
801 /*
802 * @ss is not in this hierarchy, so we don't want
803 * to change the css.
804 */
5abb8855 805 template[i] = old_cset->subsys[i];
817929ec
PM
806 }
807 }
808
0ac801fe 809 key = css_set_hash(template);
5abb8855
TH
810 hash_for_each_possible(css_set_table, cset, hlist, key) {
811 if (!compare_css_sets(cset, old_cset, cgrp, template))
7717f7ba
PM
812 continue;
813
814 /* This css_set matches what we need */
5abb8855 815 return cset;
472b1053 816 }
817929ec
PM
817
818 /* No existing cgroup group matched */
819 return NULL;
820}
821
69d0206c 822static void free_cgrp_cset_links(struct list_head *links_to_free)
36553434 823{
69d0206c 824 struct cgrp_cset_link *link, *tmp_link;
36553434 825
69d0206c
TH
826 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
827 list_del(&link->cset_link);
36553434
LZ
828 kfree(link);
829 }
830}
831
69d0206c
TH
832/**
833 * allocate_cgrp_cset_links - allocate cgrp_cset_links
834 * @count: the number of links to allocate
835 * @tmp_links: list_head the allocated links are put on
836 *
837 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
838 * through ->cset_link. Returns 0 on success or -errno.
817929ec 839 */
69d0206c 840static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
817929ec 841{
69d0206c 842 struct cgrp_cset_link *link;
817929ec 843 int i;
69d0206c
TH
844
845 INIT_LIST_HEAD(tmp_links);
846
817929ec 847 for (i = 0; i < count; i++) {
f4f4be2b 848 link = kzalloc(sizeof(*link), GFP_KERNEL);
817929ec 849 if (!link) {
69d0206c 850 free_cgrp_cset_links(tmp_links);
817929ec
PM
851 return -ENOMEM;
852 }
69d0206c 853 list_add(&link->cset_link, tmp_links);
817929ec
PM
854 }
855 return 0;
856}
857
c12f65d4
LZ
858/**
859 * link_css_set - a helper function to link a css_set to a cgroup
69d0206c 860 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
5abb8855 861 * @cset: the css_set to be linked
c12f65d4
LZ
862 * @cgrp: the destination cgroup
863 */
69d0206c
TH
864static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
865 struct cgroup *cgrp)
c12f65d4 866{
69d0206c 867 struct cgrp_cset_link *link;
c12f65d4 868
69d0206c 869 BUG_ON(list_empty(tmp_links));
6803c006
TH
870
871 if (cgroup_on_dfl(cgrp))
872 cset->dfl_cgrp = cgrp;
873
69d0206c
TH
874 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
875 link->cset = cset;
7717f7ba 876 link->cgrp = cgrp;
842b597e
TH
877
878 if (list_empty(&cgrp->cset_links))
879 cgroup_update_populated(cgrp, true);
69d0206c 880 list_move(&link->cset_link, &cgrp->cset_links);
842b597e 881
7717f7ba
PM
882 /*
883 * Always add links to the tail of the list so that the list
884 * is sorted by order of hierarchy creation
885 */
69d0206c 886 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
c12f65d4
LZ
887}
888
b326f9d0
TH
889/**
890 * find_css_set - return a new css_set with one cgroup updated
891 * @old_cset: the baseline css_set
892 * @cgrp: the cgroup to be updated
893 *
894 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
895 * substituted into the appropriate hierarchy.
817929ec 896 */
5abb8855
TH
897static struct css_set *find_css_set(struct css_set *old_cset,
898 struct cgroup *cgrp)
817929ec 899{
b326f9d0 900 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
5abb8855 901 struct css_set *cset;
69d0206c
TH
902 struct list_head tmp_links;
903 struct cgrp_cset_link *link;
2d8f243a 904 struct cgroup_subsys *ss;
0ac801fe 905 unsigned long key;
2d8f243a 906 int ssid;
472b1053 907
b326f9d0
TH
908 lockdep_assert_held(&cgroup_mutex);
909
817929ec
PM
910 /* First see if we already have a cgroup group that matches
911 * the desired set */
96d365e0 912 down_read(&css_set_rwsem);
5abb8855
TH
913 cset = find_existing_css_set(old_cset, cgrp, template);
914 if (cset)
915 get_css_set(cset);
96d365e0 916 up_read(&css_set_rwsem);
817929ec 917
5abb8855
TH
918 if (cset)
919 return cset;
817929ec 920
f4f4be2b 921 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
5abb8855 922 if (!cset)
817929ec
PM
923 return NULL;
924
69d0206c 925 /* Allocate all the cgrp_cset_link objects that we'll need */
9871bf95 926 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
5abb8855 927 kfree(cset);
817929ec
PM
928 return NULL;
929 }
930
5abb8855 931 atomic_set(&cset->refcount, 1);
69d0206c 932 INIT_LIST_HEAD(&cset->cgrp_links);
5abb8855 933 INIT_LIST_HEAD(&cset->tasks);
c7561128 934 INIT_LIST_HEAD(&cset->mg_tasks);
1958d2d5 935 INIT_LIST_HEAD(&cset->mg_preload_node);
b3dc094e 936 INIT_LIST_HEAD(&cset->mg_node);
5abb8855 937 INIT_HLIST_NODE(&cset->hlist);
817929ec
PM
938
939 /* Copy the set of subsystem state objects generated in
940 * find_existing_css_set() */
5abb8855 941 memcpy(cset->subsys, template, sizeof(cset->subsys));
817929ec 942
96d365e0 943 down_write(&css_set_rwsem);
817929ec 944 /* Add reference counts and links from the new css_set. */
69d0206c 945 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
7717f7ba 946 struct cgroup *c = link->cgrp;
69d0206c 947
7717f7ba
PM
948 if (c->root == cgrp->root)
949 c = cgrp;
69d0206c 950 link_css_set(&tmp_links, cset, c);
7717f7ba 951 }
817929ec 952
69d0206c 953 BUG_ON(!list_empty(&tmp_links));
817929ec 954
817929ec 955 css_set_count++;
472b1053 956
2d8f243a 957 /* Add @cset to the hash table */
5abb8855
TH
958 key = css_set_hash(cset->subsys);
959 hash_add(css_set_table, &cset->hlist, key);
472b1053 960
2d8f243a
TH
961 for_each_subsys(ss, ssid)
962 list_add_tail(&cset->e_cset_node[ssid],
963 &cset->subsys[ssid]->cgroup->e_csets[ssid]);
964
96d365e0 965 up_write(&css_set_rwsem);
817929ec 966
5abb8855 967 return cset;
b4f48b63
PM
968}
969
3dd06ffa 970static struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
7717f7ba 971{
3dd06ffa 972 struct cgroup *root_cgrp = kf_root->kn->priv;
2bd59d48 973
3dd06ffa 974 return root_cgrp->root;
2bd59d48
TH
975}
976
3dd06ffa 977static int cgroup_init_root_id(struct cgroup_root *root)
f2e85d57
TH
978{
979 int id;
980
981 lockdep_assert_held(&cgroup_mutex);
982
985ed670 983 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
f2e85d57
TH
984 if (id < 0)
985 return id;
986
987 root->hierarchy_id = id;
988 return 0;
989}
990
3dd06ffa 991static void cgroup_exit_root_id(struct cgroup_root *root)
f2e85d57
TH
992{
993 lockdep_assert_held(&cgroup_mutex);
994
995 if (root->hierarchy_id) {
996 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
997 root->hierarchy_id = 0;
998 }
999}
1000
3dd06ffa 1001static void cgroup_free_root(struct cgroup_root *root)
f2e85d57
TH
1002{
1003 if (root) {
d0f702e6 1004 /* hierarchy ID should already have been released */
f2e85d57
TH
1005 WARN_ON_ONCE(root->hierarchy_id);
1006
1007 idr_destroy(&root->cgroup_idr);
1008 kfree(root);
1009 }
1010}
1011
3dd06ffa 1012static void cgroup_destroy_root(struct cgroup_root *root)
59f5296b 1013{
3dd06ffa 1014 struct cgroup *cgrp = &root->cgrp;
f2e85d57 1015 struct cgrp_cset_link *link, *tmp_link;
f2e85d57 1016
2bd59d48 1017 mutex_lock(&cgroup_mutex);
f2e85d57 1018
776f02fa 1019 BUG_ON(atomic_read(&root->nr_cgrps));
d5c419b6 1020 BUG_ON(!list_empty(&cgrp->self.children));
f2e85d57 1021
f2e85d57 1022 /* Rebind all subsystems back to the default hierarchy */
f392e51c 1023 rebind_subsystems(&cgrp_dfl_root, root->subsys_mask);
7717f7ba 1024
7717f7ba 1025 /*
f2e85d57
TH
1026 * Release all the links from cset_links to this hierarchy's
1027 * root cgroup
7717f7ba 1028 */
96d365e0 1029 down_write(&css_set_rwsem);
f2e85d57
TH
1030
1031 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1032 list_del(&link->cset_link);
1033 list_del(&link->cgrp_link);
1034 kfree(link);
1035 }
96d365e0 1036 up_write(&css_set_rwsem);
f2e85d57
TH
1037
1038 if (!list_empty(&root->root_list)) {
1039 list_del(&root->root_list);
1040 cgroup_root_count--;
1041 }
1042
1043 cgroup_exit_root_id(root);
1044
1045 mutex_unlock(&cgroup_mutex);
f2e85d57 1046
2bd59d48 1047 kernfs_destroy_root(root->kf_root);
f2e85d57
TH
1048 cgroup_free_root(root);
1049}
1050
ceb6a081
TH
1051/* look up cgroup associated with given css_set on the specified hierarchy */
1052static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
3dd06ffa 1053 struct cgroup_root *root)
7717f7ba 1054{
7717f7ba
PM
1055 struct cgroup *res = NULL;
1056
96d365e0
TH
1057 lockdep_assert_held(&cgroup_mutex);
1058 lockdep_assert_held(&css_set_rwsem);
1059
5abb8855 1060 if (cset == &init_css_set) {
3dd06ffa 1061 res = &root->cgrp;
7717f7ba 1062 } else {
69d0206c
TH
1063 struct cgrp_cset_link *link;
1064
1065 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 1066 struct cgroup *c = link->cgrp;
69d0206c 1067
7717f7ba
PM
1068 if (c->root == root) {
1069 res = c;
1070 break;
1071 }
1072 }
1073 }
96d365e0 1074
7717f7ba
PM
1075 BUG_ON(!res);
1076 return res;
1077}
1078
ddbcc7e8 1079/*
ceb6a081
TH
1080 * Return the cgroup for "task" from the given hierarchy. Must be
1081 * called with cgroup_mutex and css_set_rwsem held.
1082 */
1083static struct cgroup *task_cgroup_from_root(struct task_struct *task,
3dd06ffa 1084 struct cgroup_root *root)
ceb6a081
TH
1085{
1086 /*
1087 * No need to lock the task - since we hold cgroup_mutex the
1088 * task can't change groups, so the only thing that can happen
1089 * is that it exits and its css is set back to init_css_set.
1090 */
1091 return cset_cgroup_from_root(task_css_set(task), root);
1092}
1093
ddbcc7e8 1094/*
ddbcc7e8
PM
1095 * A task must hold cgroup_mutex to modify cgroups.
1096 *
1097 * Any task can increment and decrement the count field without lock.
1098 * So in general, code holding cgroup_mutex can't rely on the count
1099 * field not changing. However, if the count goes to zero, then only
956db3ca 1100 * cgroup_attach_task() can increment it again. Because a count of zero
ddbcc7e8
PM
1101 * means that no tasks are currently attached, therefore there is no
1102 * way a task attached to that cgroup can fork (the other way to
1103 * increment the count). So code holding cgroup_mutex can safely
1104 * assume that if the count is zero, it will stay zero. Similarly, if
1105 * a task holds cgroup_mutex on a cgroup with zero count, it
1106 * knows that the cgroup won't be removed, as cgroup_rmdir()
1107 * needs that mutex.
1108 *
ddbcc7e8
PM
1109 * A cgroup can only be deleted if both its 'count' of using tasks
1110 * is zero, and its list of 'children' cgroups is empty. Since all
1111 * tasks in the system use _some_ cgroup, and since there is always at
3dd06ffa 1112 * least one task in the system (init, pid == 1), therefore, root cgroup
ddbcc7e8 1113 * always has either children cgroups and/or using tasks. So we don't
3dd06ffa 1114 * need a special hack to ensure that root cgroup cannot be deleted.
ddbcc7e8
PM
1115 *
1116 * P.S. One more locking exception. RCU is used to guard the
956db3ca 1117 * update of a tasks cgroup pointer by cgroup_attach_task()
ddbcc7e8
PM
1118 */
1119
2bd59d48 1120static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
828c0950 1121static const struct file_operations proc_cgroupstats_operations;
a424316c 1122
8d7e6fb0
TH
1123static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1124 char *buf)
ddbcc7e8 1125{
3e1d2eed
TH
1126 struct cgroup_subsys *ss = cft->ss;
1127
8d7e6fb0
TH
1128 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1129 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
1130 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
3e1d2eed
TH
1131 cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1132 cft->name);
8d7e6fb0
TH
1133 else
1134 strncpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1135 return buf;
ddbcc7e8
PM
1136}
1137
f2e85d57
TH
1138/**
1139 * cgroup_file_mode - deduce file mode of a control file
1140 * @cft: the control file in question
1141 *
7dbdb199 1142 * S_IRUGO for read, S_IWUSR for write.
f2e85d57
TH
1143 */
1144static umode_t cgroup_file_mode(const struct cftype *cft)
65dff759 1145{
f2e85d57 1146 umode_t mode = 0;
65dff759 1147
f2e85d57
TH
1148 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1149 mode |= S_IRUGO;
1150
7dbdb199
TH
1151 if (cft->write_u64 || cft->write_s64 || cft->write) {
1152 if (cft->flags & CFTYPE_WORLD_WRITABLE)
1153 mode |= S_IWUGO;
1154 else
1155 mode |= S_IWUSR;
1156 }
f2e85d57
TH
1157
1158 return mode;
65dff759
LZ
1159}
1160
59f5296b 1161static void cgroup_get(struct cgroup *cgrp)
be445626 1162{
2bd59d48 1163 WARN_ON_ONCE(cgroup_is_dead(cgrp));
9d755d33 1164 css_get(&cgrp->self);
be445626
LZ
1165}
1166
aa32362f
LZ
1167static bool cgroup_tryget(struct cgroup *cgrp)
1168{
1169 return css_tryget(&cgrp->self);
1170}
1171
59f5296b 1172static void cgroup_put(struct cgroup *cgrp)
be445626 1173{
9d755d33 1174 css_put(&cgrp->self);
be445626
LZ
1175}
1176
af0ba678 1177/**
0f060deb 1178 * cgroup_calc_child_subsys_mask - calculate child_subsys_mask
af0ba678 1179 * @cgrp: the target cgroup
0f060deb 1180 * @subtree_control: the new subtree_control mask to consider
af0ba678
TH
1181 *
1182 * On the default hierarchy, a subsystem may request other subsystems to be
1183 * enabled together through its ->depends_on mask. In such cases, more
1184 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1185 *
0f060deb
TH
1186 * This function calculates which subsystems need to be enabled if
1187 * @subtree_control is to be applied to @cgrp. The returned mask is always
1188 * a superset of @subtree_control and follows the usual hierarchy rules.
af0ba678 1189 */
8ab456ac
AS
1190static unsigned long cgroup_calc_child_subsys_mask(struct cgroup *cgrp,
1191 unsigned long subtree_control)
667c2491 1192{
af0ba678 1193 struct cgroup *parent = cgroup_parent(cgrp);
8ab456ac 1194 unsigned long cur_ss_mask = subtree_control;
af0ba678
TH
1195 struct cgroup_subsys *ss;
1196 int ssid;
1197
1198 lockdep_assert_held(&cgroup_mutex);
1199
0f060deb
TH
1200 if (!cgroup_on_dfl(cgrp))
1201 return cur_ss_mask;
af0ba678
TH
1202
1203 while (true) {
8ab456ac 1204 unsigned long new_ss_mask = cur_ss_mask;
af0ba678 1205
a966a4ed
AS
1206 for_each_subsys_which(ss, ssid, &cur_ss_mask)
1207 new_ss_mask |= ss->depends_on;
af0ba678
TH
1208
1209 /*
1210 * Mask out subsystems which aren't available. This can
1211 * happen only if some depended-upon subsystems were bound
1212 * to non-default hierarchies.
1213 */
1214 if (parent)
1215 new_ss_mask &= parent->child_subsys_mask;
1216 else
1217 new_ss_mask &= cgrp->root->subsys_mask;
1218
1219 if (new_ss_mask == cur_ss_mask)
1220 break;
1221 cur_ss_mask = new_ss_mask;
1222 }
1223
0f060deb
TH
1224 return cur_ss_mask;
1225}
1226
1227/**
1228 * cgroup_refresh_child_subsys_mask - update child_subsys_mask
1229 * @cgrp: the target cgroup
1230 *
1231 * Update @cgrp->child_subsys_mask according to the current
1232 * @cgrp->subtree_control using cgroup_calc_child_subsys_mask().
1233 */
1234static void cgroup_refresh_child_subsys_mask(struct cgroup *cgrp)
1235{
1236 cgrp->child_subsys_mask =
1237 cgroup_calc_child_subsys_mask(cgrp, cgrp->subtree_control);
667c2491
TH
1238}
1239
a9746d8d
TH
1240/**
1241 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1242 * @kn: the kernfs_node being serviced
1243 *
1244 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1245 * the method finishes if locking succeeded. Note that once this function
1246 * returns the cgroup returned by cgroup_kn_lock_live() may become
1247 * inaccessible any time. If the caller intends to continue to access the
1248 * cgroup, it should pin it before invoking this function.
1249 */
1250static void cgroup_kn_unlock(struct kernfs_node *kn)
ddbcc7e8 1251{
a9746d8d
TH
1252 struct cgroup *cgrp;
1253
1254 if (kernfs_type(kn) == KERNFS_DIR)
1255 cgrp = kn->priv;
1256 else
1257 cgrp = kn->parent->priv;
1258
1259 mutex_unlock(&cgroup_mutex);
a9746d8d
TH
1260
1261 kernfs_unbreak_active_protection(kn);
1262 cgroup_put(cgrp);
ddbcc7e8
PM
1263}
1264
a9746d8d
TH
1265/**
1266 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1267 * @kn: the kernfs_node being serviced
1268 *
1269 * This helper is to be used by a cgroup kernfs method currently servicing
1270 * @kn. It breaks the active protection, performs cgroup locking and
1271 * verifies that the associated cgroup is alive. Returns the cgroup if
1272 * alive; otherwise, %NULL. A successful return should be undone by a
1273 * matching cgroup_kn_unlock() invocation.
1274 *
1275 * Any cgroup kernfs method implementation which requires locking the
1276 * associated cgroup should use this helper. It avoids nesting cgroup
1277 * locking under kernfs active protection and allows all kernfs operations
1278 * including self-removal.
1279 */
1280static struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn)
05ef1d7c 1281{
a9746d8d
TH
1282 struct cgroup *cgrp;
1283
1284 if (kernfs_type(kn) == KERNFS_DIR)
1285 cgrp = kn->priv;
1286 else
1287 cgrp = kn->parent->priv;
05ef1d7c 1288
2739d3cc 1289 /*
01f6474c 1290 * We're gonna grab cgroup_mutex which nests outside kernfs
a9746d8d
TH
1291 * active_ref. cgroup liveliness check alone provides enough
1292 * protection against removal. Ensure @cgrp stays accessible and
1293 * break the active_ref protection.
2739d3cc 1294 */
aa32362f
LZ
1295 if (!cgroup_tryget(cgrp))
1296 return NULL;
a9746d8d
TH
1297 kernfs_break_active_protection(kn);
1298
2bd59d48 1299 mutex_lock(&cgroup_mutex);
05ef1d7c 1300
a9746d8d
TH
1301 if (!cgroup_is_dead(cgrp))
1302 return cgrp;
1303
1304 cgroup_kn_unlock(kn);
1305 return NULL;
ddbcc7e8 1306}
05ef1d7c 1307
2739d3cc 1308static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
05ef1d7c 1309{
2bd59d48 1310 char name[CGROUP_FILE_NAME_MAX];
05ef1d7c 1311
01f6474c 1312 lockdep_assert_held(&cgroup_mutex);
2bd59d48 1313 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
05ef1d7c
TH
1314}
1315
13af07df 1316/**
4df8dc90
TH
1317 * css_clear_dir - remove subsys files in a cgroup directory
1318 * @css: taget css
1319 * @cgrp_override: specify if target cgroup is different from css->cgroup
13af07df 1320 */
4df8dc90
TH
1321static void css_clear_dir(struct cgroup_subsys_state *css,
1322 struct cgroup *cgrp_override)
05ef1d7c 1323{
4df8dc90
TH
1324 struct cgroup *cgrp = cgrp_override ?: css->cgroup;
1325 struct cftype *cfts;
05ef1d7c 1326
4df8dc90
TH
1327 list_for_each_entry(cfts, &css->ss->cfts, node)
1328 cgroup_addrm_files(css, cgrp, cfts, false);
ddbcc7e8
PM
1329}
1330
ccdca218 1331/**
4df8dc90
TH
1332 * css_populate_dir - create subsys files in a cgroup directory
1333 * @css: target css
1334 * @cgrp_overried: specify if target cgroup is different from css->cgroup
ccdca218
TH
1335 *
1336 * On failure, no file is added.
1337 */
4df8dc90
TH
1338static int css_populate_dir(struct cgroup_subsys_state *css,
1339 struct cgroup *cgrp_override)
ccdca218 1340{
4df8dc90
TH
1341 struct cgroup *cgrp = cgrp_override ?: css->cgroup;
1342 struct cftype *cfts, *failed_cfts;
1343 int ret;
ccdca218 1344
4df8dc90
TH
1345 if (!css->ss) {
1346 if (cgroup_on_dfl(cgrp))
1347 cfts = cgroup_dfl_base_files;
1348 else
1349 cfts = cgroup_legacy_base_files;
ccdca218 1350
4df8dc90
TH
1351 return cgroup_addrm_files(&cgrp->self, cgrp, cfts, true);
1352 }
ccdca218 1353
4df8dc90
TH
1354 list_for_each_entry(cfts, &css->ss->cfts, node) {
1355 ret = cgroup_addrm_files(css, cgrp, cfts, true);
1356 if (ret < 0) {
1357 failed_cfts = cfts;
1358 goto err;
ccdca218
TH
1359 }
1360 }
1361 return 0;
1362err:
4df8dc90
TH
1363 list_for_each_entry(cfts, &css->ss->cfts, node) {
1364 if (cfts == failed_cfts)
1365 break;
1366 cgroup_addrm_files(css, cgrp, cfts, false);
1367 }
ccdca218
TH
1368 return ret;
1369}
1370
8ab456ac
AS
1371static int rebind_subsystems(struct cgroup_root *dst_root,
1372 unsigned long ss_mask)
ddbcc7e8 1373{
1ada4838 1374 struct cgroup *dcgrp = &dst_root->cgrp;
30159ec7 1375 struct cgroup_subsys *ss;
8ab456ac 1376 unsigned long tmp_ss_mask;
2d8f243a 1377 int ssid, i, ret;
ddbcc7e8 1378
ace2bee8 1379 lockdep_assert_held(&cgroup_mutex);
ddbcc7e8 1380
a966a4ed 1381 for_each_subsys_which(ss, ssid, &ss_mask) {
7fd8c565
TH
1382 /* if @ss has non-root csses attached to it, can't move */
1383 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)))
3ed80a62 1384 return -EBUSY;
1d5be6b2 1385
5df36032 1386 /* can't move between two non-dummy roots either */
7fd8c565 1387 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
5df36032 1388 return -EBUSY;
ddbcc7e8
PM
1389 }
1390
5533e011
TH
1391 /* skip creating root files on dfl_root for inhibited subsystems */
1392 tmp_ss_mask = ss_mask;
1393 if (dst_root == &cgrp_dfl_root)
1394 tmp_ss_mask &= ~cgrp_dfl_root_inhibit_ss_mask;
1395
4df8dc90
TH
1396 for_each_subsys_which(ss, ssid, &tmp_ss_mask) {
1397 struct cgroup *scgrp = &ss->root->cgrp;
1398 int tssid;
1399
1400 ret = css_populate_dir(cgroup_css(scgrp, ss), dcgrp);
1401 if (!ret)
1402 continue;
ddbcc7e8 1403
a2dd4247
TH
1404 /*
1405 * Rebinding back to the default root is not allowed to
1406 * fail. Using both default and non-default roots should
1407 * be rare. Moving subsystems back and forth even more so.
1408 * Just warn about it and continue.
1409 */
4df8dc90
TH
1410 if (dst_root == &cgrp_dfl_root) {
1411 if (cgrp_dfl_root_visible) {
1412 pr_warn("failed to create files (%d) while rebinding 0x%lx to default root\n",
1413 ret, ss_mask);
1414 pr_warn("you may retry by moving them to a different hierarchy and unbinding\n");
1415 }
1416 continue;
a2dd4247 1417 }
4df8dc90
TH
1418
1419 for_each_subsys_which(ss, tssid, &tmp_ss_mask) {
1420 if (tssid == ssid)
1421 break;
1422 css_clear_dir(cgroup_css(scgrp, ss), dcgrp);
1423 }
1424 return ret;
5df36032 1425 }
3126121f
TH
1426
1427 /*
1428 * Nothing can fail from this point on. Remove files for the
1429 * removed subsystems and rebind each subsystem.
1430 */
a966a4ed 1431 for_each_subsys_which(ss, ssid, &ss_mask) {
1ada4838
TH
1432 struct cgroup_root *src_root = ss->root;
1433 struct cgroup *scgrp = &src_root->cgrp;
1434 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
2d8f243a 1435 struct css_set *cset;
a8a648c4 1436
1ada4838 1437 WARN_ON(!css || cgroup_css(dcgrp, ss));
a8a648c4 1438
4df8dc90
TH
1439 css_clear_dir(css, NULL);
1440
1ada4838
TH
1441 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1442 rcu_assign_pointer(dcgrp->subsys[ssid], css);
5df36032 1443 ss->root = dst_root;
1ada4838 1444 css->cgroup = dcgrp;
73e80ed8 1445
2d8f243a
TH
1446 down_write(&css_set_rwsem);
1447 hash_for_each(css_set_table, i, cset, hlist)
1448 list_move_tail(&cset->e_cset_node[ss->id],
1ada4838 1449 &dcgrp->e_csets[ss->id]);
2d8f243a
TH
1450 up_write(&css_set_rwsem);
1451
f392e51c 1452 src_root->subsys_mask &= ~(1 << ssid);
1ada4838
TH
1453 scgrp->subtree_control &= ~(1 << ssid);
1454 cgroup_refresh_child_subsys_mask(scgrp);
f392e51c 1455
bd53d617 1456 /* default hierarchy doesn't enable controllers by default */
f392e51c 1457 dst_root->subsys_mask |= 1 << ssid;
49d1dc4b
TH
1458 if (dst_root == &cgrp_dfl_root) {
1459 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1460 } else {
1ada4838
TH
1461 dcgrp->subtree_control |= 1 << ssid;
1462 cgroup_refresh_child_subsys_mask(dcgrp);
49d1dc4b 1463 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
667c2491 1464 }
a8a648c4 1465
5df36032
TH
1466 if (ss->bind)
1467 ss->bind(css);
ddbcc7e8 1468 }
ddbcc7e8 1469
1ada4838 1470 kernfs_activate(dcgrp->kn);
ddbcc7e8
PM
1471 return 0;
1472}
1473
2bd59d48
TH
1474static int cgroup_show_options(struct seq_file *seq,
1475 struct kernfs_root *kf_root)
ddbcc7e8 1476{
3dd06ffa 1477 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
ddbcc7e8 1478 struct cgroup_subsys *ss;
b85d2040 1479 int ssid;
ddbcc7e8 1480
d98817d4
TH
1481 if (root != &cgrp_dfl_root)
1482 for_each_subsys(ss, ssid)
1483 if (root->subsys_mask & (1 << ssid))
61e57c0c 1484 seq_show_option(seq, ss->legacy_name, NULL);
93438629 1485 if (root->flags & CGRP_ROOT_NOPREFIX)
ddbcc7e8 1486 seq_puts(seq, ",noprefix");
93438629 1487 if (root->flags & CGRP_ROOT_XATTR)
03b1cde6 1488 seq_puts(seq, ",xattr");
69e943b7
TH
1489
1490 spin_lock(&release_agent_path_lock);
81a6a5cd 1491 if (strlen(root->release_agent_path))
a068acf2
KC
1492 seq_show_option(seq, "release_agent",
1493 root->release_agent_path);
69e943b7
TH
1494 spin_unlock(&release_agent_path_lock);
1495
3dd06ffa 1496 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
97978e6d 1497 seq_puts(seq, ",clone_children");
c6d57f33 1498 if (strlen(root->name))
a068acf2 1499 seq_show_option(seq, "name", root->name);
ddbcc7e8
PM
1500 return 0;
1501}
1502
1503struct cgroup_sb_opts {
8ab456ac 1504 unsigned long subsys_mask;
69dfa00c 1505 unsigned int flags;
81a6a5cd 1506 char *release_agent;
2260e7fc 1507 bool cpuset_clone_children;
c6d57f33 1508 char *name;
2c6ab6d2
PM
1509 /* User explicitly requested empty subsystem */
1510 bool none;
ddbcc7e8
PM
1511};
1512
cf5d5941 1513static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
ddbcc7e8 1514{
32a8cf23
DL
1515 char *token, *o = data;
1516 bool all_ss = false, one_ss = false;
8ab456ac 1517 unsigned long mask = -1UL;
30159ec7 1518 struct cgroup_subsys *ss;
7b9a6ba5 1519 int nr_opts = 0;
30159ec7 1520 int i;
f9ab5b5b
LZ
1521
1522#ifdef CONFIG_CPUSETS
69dfa00c 1523 mask = ~(1U << cpuset_cgrp_id);
f9ab5b5b 1524#endif
ddbcc7e8 1525
c6d57f33 1526 memset(opts, 0, sizeof(*opts));
ddbcc7e8
PM
1527
1528 while ((token = strsep(&o, ",")) != NULL) {
7b9a6ba5
TH
1529 nr_opts++;
1530
ddbcc7e8
PM
1531 if (!*token)
1532 return -EINVAL;
32a8cf23 1533 if (!strcmp(token, "none")) {
2c6ab6d2
PM
1534 /* Explicitly have no subsystems */
1535 opts->none = true;
32a8cf23
DL
1536 continue;
1537 }
1538 if (!strcmp(token, "all")) {
1539 /* Mutually exclusive option 'all' + subsystem name */
1540 if (one_ss)
1541 return -EINVAL;
1542 all_ss = true;
1543 continue;
1544 }
873fe09e
TH
1545 if (!strcmp(token, "__DEVEL__sane_behavior")) {
1546 opts->flags |= CGRP_ROOT_SANE_BEHAVIOR;
1547 continue;
1548 }
32a8cf23 1549 if (!strcmp(token, "noprefix")) {
93438629 1550 opts->flags |= CGRP_ROOT_NOPREFIX;
32a8cf23
DL
1551 continue;
1552 }
1553 if (!strcmp(token, "clone_children")) {
2260e7fc 1554 opts->cpuset_clone_children = true;
32a8cf23
DL
1555 continue;
1556 }
03b1cde6 1557 if (!strcmp(token, "xattr")) {
93438629 1558 opts->flags |= CGRP_ROOT_XATTR;
03b1cde6
AR
1559 continue;
1560 }
32a8cf23 1561 if (!strncmp(token, "release_agent=", 14)) {
81a6a5cd
PM
1562 /* Specifying two release agents is forbidden */
1563 if (opts->release_agent)
1564 return -EINVAL;
c6d57f33 1565 opts->release_agent =
e400c285 1566 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
81a6a5cd
PM
1567 if (!opts->release_agent)
1568 return -ENOMEM;
32a8cf23
DL
1569 continue;
1570 }
1571 if (!strncmp(token, "name=", 5)) {
c6d57f33
PM
1572 const char *name = token + 5;
1573 /* Can't specify an empty name */
1574 if (!strlen(name))
1575 return -EINVAL;
1576 /* Must match [\w.-]+ */
1577 for (i = 0; i < strlen(name); i++) {
1578 char c = name[i];
1579 if (isalnum(c))
1580 continue;
1581 if ((c == '.') || (c == '-') || (c == '_'))
1582 continue;
1583 return -EINVAL;
1584 }
1585 /* Specifying two names is forbidden */
1586 if (opts->name)
1587 return -EINVAL;
1588 opts->name = kstrndup(name,
e400c285 1589 MAX_CGROUP_ROOT_NAMELEN - 1,
c6d57f33
PM
1590 GFP_KERNEL);
1591 if (!opts->name)
1592 return -ENOMEM;
32a8cf23
DL
1593
1594 continue;
1595 }
1596
30159ec7 1597 for_each_subsys(ss, i) {
3e1d2eed 1598 if (strcmp(token, ss->legacy_name))
32a8cf23 1599 continue;
fc5ed1e9 1600 if (!cgroup_ssid_enabled(i))
32a8cf23
DL
1601 continue;
1602
1603 /* Mutually exclusive option 'all' + subsystem name */
1604 if (all_ss)
1605 return -EINVAL;
69dfa00c 1606 opts->subsys_mask |= (1 << i);
32a8cf23
DL
1607 one_ss = true;
1608
1609 break;
1610 }
1611 if (i == CGROUP_SUBSYS_COUNT)
1612 return -ENOENT;
1613 }
1614
873fe09e 1615 if (opts->flags & CGRP_ROOT_SANE_BEHAVIOR) {
ed3d261b 1616 pr_warn("sane_behavior: this is still under development and its behaviors will change, proceed at your own risk\n");
7b9a6ba5
TH
1617 if (nr_opts != 1) {
1618 pr_err("sane_behavior: no other mount options allowed\n");
873fe09e
TH
1619 return -EINVAL;
1620 }
7b9a6ba5 1621 return 0;
873fe09e
TH
1622 }
1623
7b9a6ba5
TH
1624 /*
1625 * If the 'all' option was specified select all the subsystems,
1626 * otherwise if 'none', 'name=' and a subsystem name options were
1627 * not specified, let's default to 'all'
1628 */
1629 if (all_ss || (!one_ss && !opts->none && !opts->name))
1630 for_each_subsys(ss, i)
fc5ed1e9 1631 if (cgroup_ssid_enabled(i))
7b9a6ba5
TH
1632 opts->subsys_mask |= (1 << i);
1633
1634 /*
1635 * We either have to specify by name or by subsystems. (So all
1636 * empty hierarchies must have a name).
1637 */
1638 if (!opts->subsys_mask && !opts->name)
1639 return -EINVAL;
1640
f9ab5b5b
LZ
1641 /*
1642 * Option noprefix was introduced just for backward compatibility
1643 * with the old cpuset, so we allow noprefix only if mounting just
1644 * the cpuset subsystem.
1645 */
93438629 1646 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
f9ab5b5b
LZ
1647 return -EINVAL;
1648
2c6ab6d2 1649 /* Can't specify "none" and some subsystems */
a1a71b45 1650 if (opts->subsys_mask && opts->none)
2c6ab6d2
PM
1651 return -EINVAL;
1652
ddbcc7e8
PM
1653 return 0;
1654}
1655
2bd59d48 1656static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
ddbcc7e8
PM
1657{
1658 int ret = 0;
3dd06ffa 1659 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
ddbcc7e8 1660 struct cgroup_sb_opts opts;
8ab456ac 1661 unsigned long added_mask, removed_mask;
ddbcc7e8 1662
aa6ec29b
TH
1663 if (root == &cgrp_dfl_root) {
1664 pr_err("remount is not allowed\n");
873fe09e
TH
1665 return -EINVAL;
1666 }
1667
ddbcc7e8
PM
1668 mutex_lock(&cgroup_mutex);
1669
1670 /* See what subsystems are wanted */
1671 ret = parse_cgroupfs_options(data, &opts);
1672 if (ret)
1673 goto out_unlock;
1674
f392e51c 1675 if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
ed3d261b 1676 pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
a2a1f9ea 1677 task_tgid_nr(current), current->comm);
8b5a5a9d 1678
f392e51c
TH
1679 added_mask = opts.subsys_mask & ~root->subsys_mask;
1680 removed_mask = root->subsys_mask & ~opts.subsys_mask;
13af07df 1681
cf5d5941 1682 /* Don't allow flags or name to change at remount */
7450e90b 1683 if ((opts.flags ^ root->flags) ||
cf5d5941 1684 (opts.name && strcmp(opts.name, root->name))) {
69dfa00c 1685 pr_err("option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"\n",
7450e90b 1686 opts.flags, opts.name ?: "", root->flags, root->name);
c6d57f33
PM
1687 ret = -EINVAL;
1688 goto out_unlock;
1689 }
1690
f172e67c 1691 /* remounting is not allowed for populated hierarchies */
d5c419b6 1692 if (!list_empty(&root->cgrp.self.children)) {
f172e67c 1693 ret = -EBUSY;
0670e08b 1694 goto out_unlock;
cf5d5941 1695 }
ddbcc7e8 1696
5df36032 1697 ret = rebind_subsystems(root, added_mask);
3126121f 1698 if (ret)
0670e08b 1699 goto out_unlock;
ddbcc7e8 1700
3dd06ffa 1701 rebind_subsystems(&cgrp_dfl_root, removed_mask);
5df36032 1702
69e943b7
TH
1703 if (opts.release_agent) {
1704 spin_lock(&release_agent_path_lock);
81a6a5cd 1705 strcpy(root->release_agent_path, opts.release_agent);
69e943b7
TH
1706 spin_unlock(&release_agent_path_lock);
1707 }
ddbcc7e8 1708 out_unlock:
66bdc9cf 1709 kfree(opts.release_agent);
c6d57f33 1710 kfree(opts.name);
ddbcc7e8 1711 mutex_unlock(&cgroup_mutex);
ddbcc7e8
PM
1712 return ret;
1713}
1714
afeb0f9f
TH
1715/*
1716 * To reduce the fork() overhead for systems that are not actually using
1717 * their cgroups capability, we don't maintain the lists running through
1718 * each css_set to its tasks until we see the list actually used - in other
1719 * words after the first mount.
1720 */
1721static bool use_task_css_set_links __read_mostly;
1722
1723static void cgroup_enable_task_cg_lists(void)
1724{
1725 struct task_struct *p, *g;
1726
96d365e0 1727 down_write(&css_set_rwsem);
afeb0f9f
TH
1728
1729 if (use_task_css_set_links)
1730 goto out_unlock;
1731
1732 use_task_css_set_links = true;
1733
1734 /*
1735 * We need tasklist_lock because RCU is not safe against
1736 * while_each_thread(). Besides, a forking task that has passed
1737 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1738 * is not guaranteed to have its child immediately visible in the
1739 * tasklist if we walk through it with RCU.
1740 */
1741 read_lock(&tasklist_lock);
1742 do_each_thread(g, p) {
afeb0f9f
TH
1743 WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1744 task_css_set(p) != &init_css_set);
1745
1746 /*
1747 * We should check if the process is exiting, otherwise
1748 * it will race with cgroup_exit() in that the list
1749 * entry won't be deleted though the process has exited.
f153ad11
TH
1750 * Do it while holding siglock so that we don't end up
1751 * racing against cgroup_exit().
afeb0f9f 1752 */
f153ad11 1753 spin_lock_irq(&p->sighand->siglock);
eaf797ab
TH
1754 if (!(p->flags & PF_EXITING)) {
1755 struct css_set *cset = task_css_set(p);
1756
1757 list_add(&p->cg_list, &cset->tasks);
1758 get_css_set(cset);
1759 }
f153ad11 1760 spin_unlock_irq(&p->sighand->siglock);
afeb0f9f
TH
1761 } while_each_thread(g, p);
1762 read_unlock(&tasklist_lock);
1763out_unlock:
96d365e0 1764 up_write(&css_set_rwsem);
afeb0f9f 1765}
ddbcc7e8 1766
cc31edce
PM
1767static void init_cgroup_housekeeping(struct cgroup *cgrp)
1768{
2d8f243a
TH
1769 struct cgroup_subsys *ss;
1770 int ssid;
1771
d5c419b6
TH
1772 INIT_LIST_HEAD(&cgrp->self.sibling);
1773 INIT_LIST_HEAD(&cgrp->self.children);
6f60eade 1774 INIT_LIST_HEAD(&cgrp->self.files);
69d0206c 1775 INIT_LIST_HEAD(&cgrp->cset_links);
72a8cb30
BB
1776 INIT_LIST_HEAD(&cgrp->pidlists);
1777 mutex_init(&cgrp->pidlist_mutex);
9d800df1 1778 cgrp->self.cgroup = cgrp;
184faf32 1779 cgrp->self.flags |= CSS_ONLINE;
2d8f243a
TH
1780
1781 for_each_subsys(ss, ssid)
1782 INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
f8f22e53
TH
1783
1784 init_waitqueue_head(&cgrp->offline_waitq);
971ff493 1785 INIT_WORK(&cgrp->release_agent_work, cgroup_release_agent);
cc31edce 1786}
c6d57f33 1787
3dd06ffa 1788static void init_cgroup_root(struct cgroup_root *root,
172a2c06 1789 struct cgroup_sb_opts *opts)
ddbcc7e8 1790{
3dd06ffa 1791 struct cgroup *cgrp = &root->cgrp;
b0ca5a84 1792
ddbcc7e8 1793 INIT_LIST_HEAD(&root->root_list);
3c9c825b 1794 atomic_set(&root->nr_cgrps, 1);
bd89aabc 1795 cgrp->root = root;
cc31edce 1796 init_cgroup_housekeeping(cgrp);
4e96ee8e 1797 idr_init(&root->cgroup_idr);
c6d57f33 1798
c6d57f33
PM
1799 root->flags = opts->flags;
1800 if (opts->release_agent)
1801 strcpy(root->release_agent_path, opts->release_agent);
1802 if (opts->name)
1803 strcpy(root->name, opts->name);
2260e7fc 1804 if (opts->cpuset_clone_children)
3dd06ffa 1805 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
c6d57f33
PM
1806}
1807
8ab456ac 1808static int cgroup_setup_root(struct cgroup_root *root, unsigned long ss_mask)
2c6ab6d2 1809{
d427dfeb 1810 LIST_HEAD(tmp_links);
3dd06ffa 1811 struct cgroup *root_cgrp = &root->cgrp;
d427dfeb 1812 struct css_set *cset;
d427dfeb 1813 int i, ret;
2c6ab6d2 1814
d427dfeb 1815 lockdep_assert_held(&cgroup_mutex);
c6d57f33 1816
cf780b7d 1817 ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_KERNEL);
d427dfeb 1818 if (ret < 0)
2bd59d48 1819 goto out;
d427dfeb 1820 root_cgrp->id = ret;
c6d57f33 1821
2aad2a86
TH
1822 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release, 0,
1823 GFP_KERNEL);
9d755d33
TH
1824 if (ret)
1825 goto out;
1826
d427dfeb 1827 /*
96d365e0 1828 * We're accessing css_set_count without locking css_set_rwsem here,
d427dfeb
TH
1829 * but that's OK - it can only be increased by someone holding
1830 * cgroup_lock, and that's us. The worst that can happen is that we
1831 * have some link structures left over
1832 */
1833 ret = allocate_cgrp_cset_links(css_set_count, &tmp_links);
1834 if (ret)
9d755d33 1835 goto cancel_ref;
ddbcc7e8 1836
985ed670 1837 ret = cgroup_init_root_id(root);
ddbcc7e8 1838 if (ret)
9d755d33 1839 goto cancel_ref;
ddbcc7e8 1840
2bd59d48
TH
1841 root->kf_root = kernfs_create_root(&cgroup_kf_syscall_ops,
1842 KERNFS_ROOT_CREATE_DEACTIVATED,
1843 root_cgrp);
1844 if (IS_ERR(root->kf_root)) {
1845 ret = PTR_ERR(root->kf_root);
1846 goto exit_root_id;
1847 }
1848 root_cgrp->kn = root->kf_root->kn;
ddbcc7e8 1849
4df8dc90 1850 ret = css_populate_dir(&root_cgrp->self, NULL);
d427dfeb 1851 if (ret)
2bd59d48 1852 goto destroy_root;
ddbcc7e8 1853
5df36032 1854 ret = rebind_subsystems(root, ss_mask);
d427dfeb 1855 if (ret)
2bd59d48 1856 goto destroy_root;
ddbcc7e8 1857
d427dfeb
TH
1858 /*
1859 * There must be no failure case after here, since rebinding takes
1860 * care of subsystems' refcounts, which are explicitly dropped in
1861 * the failure exit path.
1862 */
1863 list_add(&root->root_list, &cgroup_roots);
1864 cgroup_root_count++;
0df6a63f 1865
d427dfeb 1866 /*
3dd06ffa 1867 * Link the root cgroup in this hierarchy into all the css_set
d427dfeb
TH
1868 * objects.
1869 */
96d365e0 1870 down_write(&css_set_rwsem);
d427dfeb
TH
1871 hash_for_each(css_set_table, i, cset, hlist)
1872 link_css_set(&tmp_links, cset, root_cgrp);
96d365e0 1873 up_write(&css_set_rwsem);
ddbcc7e8 1874
d5c419b6 1875 BUG_ON(!list_empty(&root_cgrp->self.children));
3c9c825b 1876 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
ddbcc7e8 1877
2bd59d48 1878 kernfs_activate(root_cgrp->kn);
d427dfeb 1879 ret = 0;
2bd59d48 1880 goto out;
d427dfeb 1881
2bd59d48
TH
1882destroy_root:
1883 kernfs_destroy_root(root->kf_root);
1884 root->kf_root = NULL;
1885exit_root_id:
d427dfeb 1886 cgroup_exit_root_id(root);
9d755d33 1887cancel_ref:
9a1049da 1888 percpu_ref_exit(&root_cgrp->self.refcnt);
2bd59d48 1889out:
d427dfeb
TH
1890 free_cgrp_cset_links(&tmp_links);
1891 return ret;
ddbcc7e8
PM
1892}
1893
f7e83571 1894static struct dentry *cgroup_mount(struct file_system_type *fs_type,
ddbcc7e8 1895 int flags, const char *unused_dev_name,
f7e83571 1896 void *data)
ddbcc7e8 1897{
3a32bd72 1898 struct super_block *pinned_sb = NULL;
970317aa 1899 struct cgroup_subsys *ss;
3dd06ffa 1900 struct cgroup_root *root;
ddbcc7e8 1901 struct cgroup_sb_opts opts;
2bd59d48 1902 struct dentry *dentry;
8e30e2b8 1903 int ret;
970317aa 1904 int i;
c6b3d5bc 1905 bool new_sb;
ddbcc7e8 1906
56fde9e0
TH
1907 /*
1908 * The first time anyone tries to mount a cgroup, enable the list
1909 * linking each css_set to its tasks and fix up all existing tasks.
1910 */
1911 if (!use_task_css_set_links)
1912 cgroup_enable_task_cg_lists();
e37a06f1 1913
aae8aab4 1914 mutex_lock(&cgroup_mutex);
8e30e2b8
TH
1915
1916 /* First find the desired set of subsystems */
ddbcc7e8 1917 ret = parse_cgroupfs_options(data, &opts);
c6d57f33 1918 if (ret)
8e30e2b8 1919 goto out_unlock;
a015edd2 1920
2bd59d48 1921 /* look for a matching existing root */
7b9a6ba5 1922 if (opts.flags & CGRP_ROOT_SANE_BEHAVIOR) {
a2dd4247
TH
1923 cgrp_dfl_root_visible = true;
1924 root = &cgrp_dfl_root;
1925 cgroup_get(&root->cgrp);
1926 ret = 0;
1927 goto out_unlock;
ddbcc7e8
PM
1928 }
1929
970317aa
LZ
1930 /*
1931 * Destruction of cgroup root is asynchronous, so subsystems may
1932 * still be dying after the previous unmount. Let's drain the
1933 * dying subsystems. We just need to ensure that the ones
1934 * unmounted previously finish dying and don't care about new ones
1935 * starting. Testing ref liveliness is good enough.
1936 */
1937 for_each_subsys(ss, i) {
1938 if (!(opts.subsys_mask & (1 << i)) ||
1939 ss->root == &cgrp_dfl_root)
1940 continue;
1941
1942 if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt)) {
1943 mutex_unlock(&cgroup_mutex);
1944 msleep(10);
1945 ret = restart_syscall();
1946 goto out_free;
1947 }
1948 cgroup_put(&ss->root->cgrp);
1949 }
1950
985ed670 1951 for_each_root(root) {
2bd59d48 1952 bool name_match = false;
3126121f 1953
3dd06ffa 1954 if (root == &cgrp_dfl_root)
985ed670 1955 continue;
3126121f 1956
cf5d5941 1957 /*
2bd59d48
TH
1958 * If we asked for a name then it must match. Also, if
1959 * name matches but sybsys_mask doesn't, we should fail.
1960 * Remember whether name matched.
cf5d5941 1961 */
2bd59d48
TH
1962 if (opts.name) {
1963 if (strcmp(opts.name, root->name))
1964 continue;
1965 name_match = true;
1966 }
ddbcc7e8 1967
c6d57f33 1968 /*
2bd59d48
TH
1969 * If we asked for subsystems (or explicitly for no
1970 * subsystems) then they must match.
c6d57f33 1971 */
2bd59d48 1972 if ((opts.subsys_mask || opts.none) &&
f392e51c 1973 (opts.subsys_mask != root->subsys_mask)) {
2bd59d48
TH
1974 if (!name_match)
1975 continue;
1976 ret = -EBUSY;
1977 goto out_unlock;
1978 }
873fe09e 1979
7b9a6ba5
TH
1980 if (root->flags ^ opts.flags)
1981 pr_warn("new mount options do not match the existing superblock, will be ignored\n");
ddbcc7e8 1982
776f02fa 1983 /*
3a32bd72
LZ
1984 * We want to reuse @root whose lifetime is governed by its
1985 * ->cgrp. Let's check whether @root is alive and keep it
1986 * that way. As cgroup_kill_sb() can happen anytime, we
1987 * want to block it by pinning the sb so that @root doesn't
1988 * get killed before mount is complete.
1989 *
1990 * With the sb pinned, tryget_live can reliably indicate
1991 * whether @root can be reused. If it's being killed,
1992 * drain it. We can use wait_queue for the wait but this
1993 * path is super cold. Let's just sleep a bit and retry.
776f02fa 1994 */
3a32bd72
LZ
1995 pinned_sb = kernfs_pin_sb(root->kf_root, NULL);
1996 if (IS_ERR(pinned_sb) ||
1997 !percpu_ref_tryget_live(&root->cgrp.self.refcnt)) {
776f02fa 1998 mutex_unlock(&cgroup_mutex);
3a32bd72
LZ
1999 if (!IS_ERR_OR_NULL(pinned_sb))
2000 deactivate_super(pinned_sb);
776f02fa 2001 msleep(10);
a015edd2
TH
2002 ret = restart_syscall();
2003 goto out_free;
776f02fa 2004 }
ddbcc7e8 2005
776f02fa 2006 ret = 0;
2bd59d48 2007 goto out_unlock;
ddbcc7e8 2008 }
ddbcc7e8 2009
817929ec 2010 /*
172a2c06
TH
2011 * No such thing, create a new one. name= matching without subsys
2012 * specification is allowed for already existing hierarchies but we
2013 * can't create new one without subsys specification.
817929ec 2014 */
172a2c06
TH
2015 if (!opts.subsys_mask && !opts.none) {
2016 ret = -EINVAL;
2017 goto out_unlock;
817929ec 2018 }
817929ec 2019
172a2c06
TH
2020 root = kzalloc(sizeof(*root), GFP_KERNEL);
2021 if (!root) {
2022 ret = -ENOMEM;
2bd59d48 2023 goto out_unlock;
839ec545 2024 }
e5f6a860 2025
172a2c06
TH
2026 init_cgroup_root(root, &opts);
2027
35585573 2028 ret = cgroup_setup_root(root, opts.subsys_mask);
2bd59d48
TH
2029 if (ret)
2030 cgroup_free_root(root);
fa3ca07e 2031
8e30e2b8 2032out_unlock:
ddbcc7e8 2033 mutex_unlock(&cgroup_mutex);
a015edd2 2034out_free:
c6d57f33
PM
2035 kfree(opts.release_agent);
2036 kfree(opts.name);
03b1cde6 2037
2bd59d48 2038 if (ret)
8e30e2b8 2039 return ERR_PTR(ret);
2bd59d48 2040
c9482a5b
JZ
2041 dentry = kernfs_mount(fs_type, flags, root->kf_root,
2042 CGROUP_SUPER_MAGIC, &new_sb);
c6b3d5bc 2043 if (IS_ERR(dentry) || !new_sb)
3dd06ffa 2044 cgroup_put(&root->cgrp);
3a32bd72
LZ
2045
2046 /*
2047 * If @pinned_sb, we're reusing an existing root and holding an
2048 * extra ref on its sb. Mount is complete. Put the extra ref.
2049 */
2050 if (pinned_sb) {
2051 WARN_ON(new_sb);
2052 deactivate_super(pinned_sb);
2053 }
2054
2bd59d48
TH
2055 return dentry;
2056}
2057
2058static void cgroup_kill_sb(struct super_block *sb)
2059{
2060 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
3dd06ffa 2061 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2bd59d48 2062
9d755d33
TH
2063 /*
2064 * If @root doesn't have any mounts or children, start killing it.
2065 * This prevents new mounts by disabling percpu_ref_tryget_live().
2066 * cgroup_mount() may wait for @root's release.
1f779fb2
LZ
2067 *
2068 * And don't kill the default root.
9d755d33 2069 */
3c606d35 2070 if (!list_empty(&root->cgrp.self.children) ||
1f779fb2 2071 root == &cgrp_dfl_root)
9d755d33
TH
2072 cgroup_put(&root->cgrp);
2073 else
2074 percpu_ref_kill(&root->cgrp.self.refcnt);
2075
2bd59d48 2076 kernfs_kill_sb(sb);
ddbcc7e8
PM
2077}
2078
2079static struct file_system_type cgroup_fs_type = {
2080 .name = "cgroup",
f7e83571 2081 .mount = cgroup_mount,
ddbcc7e8
PM
2082 .kill_sb = cgroup_kill_sb,
2083};
2084
857a2beb 2085/**
913ffdb5 2086 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
857a2beb 2087 * @task: target task
857a2beb
TH
2088 * @buf: the buffer to write the path into
2089 * @buflen: the length of the buffer
2090 *
913ffdb5
TH
2091 * Determine @task's cgroup on the first (the one with the lowest non-zero
2092 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
2093 * function grabs cgroup_mutex and shouldn't be used inside locks used by
2094 * cgroup controller callbacks.
2095 *
e61734c5 2096 * Return value is the same as kernfs_path().
857a2beb 2097 */
e61734c5 2098char *task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
857a2beb 2099{
3dd06ffa 2100 struct cgroup_root *root;
913ffdb5 2101 struct cgroup *cgrp;
e61734c5
TH
2102 int hierarchy_id = 1;
2103 char *path = NULL;
857a2beb
TH
2104
2105 mutex_lock(&cgroup_mutex);
96d365e0 2106 down_read(&css_set_rwsem);
857a2beb 2107
913ffdb5
TH
2108 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
2109
857a2beb
TH
2110 if (root) {
2111 cgrp = task_cgroup_from_root(task, root);
e61734c5 2112 path = cgroup_path(cgrp, buf, buflen);
913ffdb5
TH
2113 } else {
2114 /* if no hierarchy exists, everyone is in "/" */
e61734c5
TH
2115 if (strlcpy(buf, "/", buflen) < buflen)
2116 path = buf;
857a2beb
TH
2117 }
2118
96d365e0 2119 up_read(&css_set_rwsem);
857a2beb 2120 mutex_unlock(&cgroup_mutex);
e61734c5 2121 return path;
857a2beb 2122}
913ffdb5 2123EXPORT_SYMBOL_GPL(task_cgroup_path);
857a2beb 2124
b3dc094e 2125/* used to track tasks and other necessary states during migration */
2f7ee569 2126struct cgroup_taskset {
b3dc094e
TH
2127 /* the src and dst cset list running through cset->mg_node */
2128 struct list_head src_csets;
2129 struct list_head dst_csets;
2130
2131 /*
2132 * Fields for cgroup_taskset_*() iteration.
2133 *
2134 * Before migration is committed, the target migration tasks are on
2135 * ->mg_tasks of the csets on ->src_csets. After, on ->mg_tasks of
2136 * the csets on ->dst_csets. ->csets point to either ->src_csets
2137 * or ->dst_csets depending on whether migration is committed.
2138 *
2139 * ->cur_csets and ->cur_task point to the current task position
2140 * during iteration.
2141 */
2142 struct list_head *csets;
2143 struct css_set *cur_cset;
2144 struct task_struct *cur_task;
2f7ee569
TH
2145};
2146
2147/**
2148 * cgroup_taskset_first - reset taskset and return the first task
2149 * @tset: taskset of interest
2150 *
2151 * @tset iteration is initialized and the first task is returned.
2152 */
2153struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
2154{
b3dc094e
TH
2155 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2156 tset->cur_task = NULL;
2157
2158 return cgroup_taskset_next(tset);
2f7ee569 2159}
2f7ee569
TH
2160
2161/**
2162 * cgroup_taskset_next - iterate to the next task in taskset
2163 * @tset: taskset of interest
2164 *
2165 * Return the next task in @tset. Iteration must have been initialized
2166 * with cgroup_taskset_first().
2167 */
2168struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
2169{
b3dc094e
TH
2170 struct css_set *cset = tset->cur_cset;
2171 struct task_struct *task = tset->cur_task;
2f7ee569 2172
b3dc094e
TH
2173 while (&cset->mg_node != tset->csets) {
2174 if (!task)
2175 task = list_first_entry(&cset->mg_tasks,
2176 struct task_struct, cg_list);
2177 else
2178 task = list_next_entry(task, cg_list);
2f7ee569 2179
b3dc094e
TH
2180 if (&task->cg_list != &cset->mg_tasks) {
2181 tset->cur_cset = cset;
2182 tset->cur_task = task;
2183 return task;
2184 }
2f7ee569 2185
b3dc094e
TH
2186 cset = list_next_entry(cset, mg_node);
2187 task = NULL;
2188 }
2f7ee569 2189
b3dc094e 2190 return NULL;
2f7ee569 2191}
2f7ee569 2192
cb0f1fe9 2193/**
74a1166d 2194 * cgroup_task_migrate - move a task from one cgroup to another.
60106946 2195 * @old_cgrp: the cgroup @tsk is being migrated from
cb0f1fe9
TH
2196 * @tsk: the task being migrated
2197 * @new_cset: the new css_set @tsk is being attached to
74a1166d 2198 *
cb0f1fe9 2199 * Must be called with cgroup_mutex, threadgroup and css_set_rwsem locked.
74a1166d 2200 */
5abb8855
TH
2201static void cgroup_task_migrate(struct cgroup *old_cgrp,
2202 struct task_struct *tsk,
2203 struct css_set *new_cset)
74a1166d 2204{
5abb8855 2205 struct css_set *old_cset;
74a1166d 2206
cb0f1fe9
TH
2207 lockdep_assert_held(&cgroup_mutex);
2208 lockdep_assert_held(&css_set_rwsem);
2209
74a1166d 2210 /*
1ed13287
TH
2211 * We are synchronized through cgroup_threadgroup_rwsem against
2212 * PF_EXITING setting such that we can't race against cgroup_exit()
2213 * changing the css_set to init_css_set and dropping the old one.
74a1166d 2214 */
c84cdf75 2215 WARN_ON_ONCE(tsk->flags & PF_EXITING);
a8ad805c 2216 old_cset = task_css_set(tsk);
74a1166d 2217
b3dc094e 2218 get_css_set(new_cset);
5abb8855 2219 rcu_assign_pointer(tsk->cgroups, new_cset);
1b9aba49 2220 list_move_tail(&tsk->cg_list, &new_cset->mg_tasks);
74a1166d
BB
2221
2222 /*
5abb8855
TH
2223 * We just gained a reference on old_cset by taking it from the
2224 * task. As trading it for new_cset is protected by cgroup_mutex,
2225 * we're safe to drop it here; it will be freed under RCU.
74a1166d 2226 */
a25eb52e 2227 put_css_set_locked(old_cset);
74a1166d
BB
2228}
2229
a043e3b2 2230/**
1958d2d5
TH
2231 * cgroup_migrate_finish - cleanup after attach
2232 * @preloaded_csets: list of preloaded css_sets
74a1166d 2233 *
1958d2d5
TH
2234 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
2235 * those functions for details.
74a1166d 2236 */
1958d2d5 2237static void cgroup_migrate_finish(struct list_head *preloaded_csets)
74a1166d 2238{
1958d2d5 2239 struct css_set *cset, *tmp_cset;
74a1166d 2240
1958d2d5
TH
2241 lockdep_assert_held(&cgroup_mutex);
2242
2243 down_write(&css_set_rwsem);
2244 list_for_each_entry_safe(cset, tmp_cset, preloaded_csets, mg_preload_node) {
2245 cset->mg_src_cgrp = NULL;
2246 cset->mg_dst_cset = NULL;
2247 list_del_init(&cset->mg_preload_node);
a25eb52e 2248 put_css_set_locked(cset);
1958d2d5
TH
2249 }
2250 up_write(&css_set_rwsem);
2251}
2252
2253/**
2254 * cgroup_migrate_add_src - add a migration source css_set
2255 * @src_cset: the source css_set to add
2256 * @dst_cgrp: the destination cgroup
2257 * @preloaded_csets: list of preloaded css_sets
2258 *
2259 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
2260 * @src_cset and add it to @preloaded_csets, which should later be cleaned
2261 * up by cgroup_migrate_finish().
2262 *
1ed13287
TH
2263 * This function may be called without holding cgroup_threadgroup_rwsem
2264 * even if the target is a process. Threads may be created and destroyed
2265 * but as long as cgroup_mutex is not dropped, no new css_set can be put
2266 * into play and the preloaded css_sets are guaranteed to cover all
2267 * migrations.
1958d2d5
TH
2268 */
2269static void cgroup_migrate_add_src(struct css_set *src_cset,
2270 struct cgroup *dst_cgrp,
2271 struct list_head *preloaded_csets)
2272{
2273 struct cgroup *src_cgrp;
2274
2275 lockdep_assert_held(&cgroup_mutex);
2276 lockdep_assert_held(&css_set_rwsem);
2277
2278 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2279
1958d2d5
TH
2280 if (!list_empty(&src_cset->mg_preload_node))
2281 return;
2282
2283 WARN_ON(src_cset->mg_src_cgrp);
2284 WARN_ON(!list_empty(&src_cset->mg_tasks));
2285 WARN_ON(!list_empty(&src_cset->mg_node));
2286
2287 src_cset->mg_src_cgrp = src_cgrp;
2288 get_css_set(src_cset);
2289 list_add(&src_cset->mg_preload_node, preloaded_csets);
2290}
2291
2292/**
2293 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
f817de98 2294 * @dst_cgrp: the destination cgroup (may be %NULL)
1958d2d5
TH
2295 * @preloaded_csets: list of preloaded source css_sets
2296 *
2297 * Tasks are about to be moved to @dst_cgrp and all the source css_sets
2298 * have been preloaded to @preloaded_csets. This function looks up and
f817de98
TH
2299 * pins all destination css_sets, links each to its source, and append them
2300 * to @preloaded_csets. If @dst_cgrp is %NULL, the destination of each
2301 * source css_set is assumed to be its cgroup on the default hierarchy.
1958d2d5
TH
2302 *
2303 * This function must be called after cgroup_migrate_add_src() has been
2304 * called on each migration source css_set. After migration is performed
2305 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2306 * @preloaded_csets.
2307 */
2308static int cgroup_migrate_prepare_dst(struct cgroup *dst_cgrp,
2309 struct list_head *preloaded_csets)
2310{
2311 LIST_HEAD(csets);
f817de98 2312 struct css_set *src_cset, *tmp_cset;
1958d2d5
TH
2313
2314 lockdep_assert_held(&cgroup_mutex);
2315
f8f22e53
TH
2316 /*
2317 * Except for the root, child_subsys_mask must be zero for a cgroup
2318 * with tasks so that child cgroups don't compete against tasks.
2319 */
d51f39b0 2320 if (dst_cgrp && cgroup_on_dfl(dst_cgrp) && cgroup_parent(dst_cgrp) &&
f8f22e53
TH
2321 dst_cgrp->child_subsys_mask)
2322 return -EBUSY;
2323
1958d2d5 2324 /* look up the dst cset for each src cset and link it to src */
f817de98 2325 list_for_each_entry_safe(src_cset, tmp_cset, preloaded_csets, mg_preload_node) {
1958d2d5
TH
2326 struct css_set *dst_cset;
2327
f817de98
TH
2328 dst_cset = find_css_set(src_cset,
2329 dst_cgrp ?: src_cset->dfl_cgrp);
1958d2d5
TH
2330 if (!dst_cset)
2331 goto err;
2332
2333 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
f817de98
TH
2334
2335 /*
2336 * If src cset equals dst, it's noop. Drop the src.
2337 * cgroup_migrate() will skip the cset too. Note that we
2338 * can't handle src == dst as some nodes are used by both.
2339 */
2340 if (src_cset == dst_cset) {
2341 src_cset->mg_src_cgrp = NULL;
2342 list_del_init(&src_cset->mg_preload_node);
a25eb52e
ZL
2343 put_css_set(src_cset);
2344 put_css_set(dst_cset);
f817de98
TH
2345 continue;
2346 }
2347
1958d2d5
TH
2348 src_cset->mg_dst_cset = dst_cset;
2349
2350 if (list_empty(&dst_cset->mg_preload_node))
2351 list_add(&dst_cset->mg_preload_node, &csets);
2352 else
a25eb52e 2353 put_css_set(dst_cset);
1958d2d5
TH
2354 }
2355
f817de98 2356 list_splice_tail(&csets, preloaded_csets);
1958d2d5
TH
2357 return 0;
2358err:
2359 cgroup_migrate_finish(&csets);
2360 return -ENOMEM;
2361}
2362
2363/**
2364 * cgroup_migrate - migrate a process or task to a cgroup
1958d2d5
TH
2365 * @leader: the leader of the process or the task to migrate
2366 * @threadgroup: whether @leader points to the whole process or a single task
9af2ec45 2367 * @cgrp: the destination cgroup
1958d2d5
TH
2368 *
2369 * Migrate a process or task denoted by @leader to @cgrp. If migrating a
1ed13287 2370 * process, the caller must be holding cgroup_threadgroup_rwsem. The
1958d2d5
TH
2371 * caller is also responsible for invoking cgroup_migrate_add_src() and
2372 * cgroup_migrate_prepare_dst() on the targets before invoking this
2373 * function and following up with cgroup_migrate_finish().
2374 *
2375 * As long as a controller's ->can_attach() doesn't fail, this function is
2376 * guaranteed to succeed. This means that, excluding ->can_attach()
2377 * failure, when migrating multiple targets, the success or failure can be
2378 * decided for all targets by invoking group_migrate_prepare_dst() before
2379 * actually starting migrating.
2380 */
9af2ec45
TH
2381static int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2382 struct cgroup *cgrp)
74a1166d 2383{
b3dc094e
TH
2384 struct cgroup_taskset tset = {
2385 .src_csets = LIST_HEAD_INIT(tset.src_csets),
2386 .dst_csets = LIST_HEAD_INIT(tset.dst_csets),
2387 .csets = &tset.src_csets,
2388 };
1c6727af 2389 struct cgroup_subsys_state *css, *failed_css = NULL;
b3dc094e
TH
2390 struct css_set *cset, *tmp_cset;
2391 struct task_struct *task, *tmp_task;
2392 int i, ret;
74a1166d 2393
fb5d2b4c
MSB
2394 /*
2395 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2396 * already PF_EXITING could be freed from underneath us unless we
2397 * take an rcu_read_lock.
2398 */
b3dc094e 2399 down_write(&css_set_rwsem);
fb5d2b4c 2400 rcu_read_lock();
9db8de37 2401 task = leader;
74a1166d 2402 do {
9db8de37
TH
2403 /* @task either already exited or can't exit until the end */
2404 if (task->flags & PF_EXITING)
ea84753c 2405 goto next;
134d3373 2406
eaf797ab
TH
2407 /* leave @task alone if post_fork() hasn't linked it yet */
2408 if (list_empty(&task->cg_list))
ea84753c 2409 goto next;
cd3d0952 2410
b3dc094e 2411 cset = task_css_set(task);
1958d2d5 2412 if (!cset->mg_src_cgrp)
ea84753c 2413 goto next;
b3dc094e 2414
1b9aba49
TH
2415 list_move_tail(&task->cg_list, &cset->mg_tasks);
2416 if (list_empty(&cset->mg_node))
2417 list_add_tail(&cset->mg_node, &tset.src_csets);
2418 if (list_empty(&cset->mg_dst_cset->mg_node))
2419 list_move_tail(&cset->mg_dst_cset->mg_node,
2420 &tset.dst_csets);
ea84753c 2421 next:
081aa458
LZ
2422 if (!threadgroup)
2423 break;
9db8de37 2424 } while_each_thread(leader, task);
fb5d2b4c 2425 rcu_read_unlock();
b3dc094e 2426 up_write(&css_set_rwsem);
74a1166d 2427
134d3373 2428 /* methods shouldn't be called if no task is actually migrating */
b3dc094e
TH
2429 if (list_empty(&tset.src_csets))
2430 return 0;
134d3373 2431
1958d2d5 2432 /* check that we can legitimately attach to the cgroup */
aec3dfcb 2433 for_each_e_css(css, i, cgrp) {
1c6727af 2434 if (css->ss->can_attach) {
9db8de37
TH
2435 ret = css->ss->can_attach(css, &tset);
2436 if (ret) {
1c6727af 2437 failed_css = css;
74a1166d
BB
2438 goto out_cancel_attach;
2439 }
2440 }
74a1166d
BB
2441 }
2442
2443 /*
1958d2d5
TH
2444 * Now that we're guaranteed success, proceed to move all tasks to
2445 * the new cgroup. There are no failure cases after here, so this
2446 * is the commit point.
74a1166d 2447 */
cb0f1fe9 2448 down_write(&css_set_rwsem);
b3dc094e
TH
2449 list_for_each_entry(cset, &tset.src_csets, mg_node) {
2450 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list)
2451 cgroup_task_migrate(cset->mg_src_cgrp, task,
2452 cset->mg_dst_cset);
74a1166d 2453 }
cb0f1fe9 2454 up_write(&css_set_rwsem);
74a1166d
BB
2455
2456 /*
1958d2d5
TH
2457 * Migration is committed, all target tasks are now on dst_csets.
2458 * Nothing is sensitive to fork() after this point. Notify
2459 * controllers that migration is complete.
74a1166d 2460 */
1958d2d5 2461 tset.csets = &tset.dst_csets;
74a1166d 2462
aec3dfcb 2463 for_each_e_css(css, i, cgrp)
1c6727af
TH
2464 if (css->ss->attach)
2465 css->ss->attach(css, &tset);
74a1166d 2466
9db8de37 2467 ret = 0;
b3dc094e
TH
2468 goto out_release_tset;
2469
74a1166d 2470out_cancel_attach:
aec3dfcb 2471 for_each_e_css(css, i, cgrp) {
b3dc094e
TH
2472 if (css == failed_css)
2473 break;
2474 if (css->ss->cancel_attach)
2475 css->ss->cancel_attach(css, &tset);
74a1166d 2476 }
b3dc094e
TH
2477out_release_tset:
2478 down_write(&css_set_rwsem);
2479 list_splice_init(&tset.dst_csets, &tset.src_csets);
2480 list_for_each_entry_safe(cset, tmp_cset, &tset.src_csets, mg_node) {
1b9aba49 2481 list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
b3dc094e 2482 list_del_init(&cset->mg_node);
b3dc094e
TH
2483 }
2484 up_write(&css_set_rwsem);
9db8de37 2485 return ret;
74a1166d
BB
2486}
2487
1958d2d5
TH
2488/**
2489 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2490 * @dst_cgrp: the cgroup to attach to
2491 * @leader: the task or the leader of the threadgroup to be attached
2492 * @threadgroup: attach the whole threadgroup?
2493 *
1ed13287 2494 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
1958d2d5
TH
2495 */
2496static int cgroup_attach_task(struct cgroup *dst_cgrp,
2497 struct task_struct *leader, bool threadgroup)
2498{
2499 LIST_HEAD(preloaded_csets);
2500 struct task_struct *task;
2501 int ret;
2502
2503 /* look up all src csets */
2504 down_read(&css_set_rwsem);
2505 rcu_read_lock();
2506 task = leader;
2507 do {
2508 cgroup_migrate_add_src(task_css_set(task), dst_cgrp,
2509 &preloaded_csets);
2510 if (!threadgroup)
2511 break;
2512 } while_each_thread(leader, task);
2513 rcu_read_unlock();
2514 up_read(&css_set_rwsem);
2515
2516 /* prepare dst csets and commit */
2517 ret = cgroup_migrate_prepare_dst(dst_cgrp, &preloaded_csets);
2518 if (!ret)
9af2ec45 2519 ret = cgroup_migrate(leader, threadgroup, dst_cgrp);
1958d2d5
TH
2520
2521 cgroup_migrate_finish(&preloaded_csets);
2522 return ret;
74a1166d
BB
2523}
2524
187fe840
TH
2525static int cgroup_procs_write_permission(struct task_struct *task,
2526 struct cgroup *dst_cgrp,
2527 struct kernfs_open_file *of)
dedf22e9
TH
2528{
2529 const struct cred *cred = current_cred();
2530 const struct cred *tcred = get_task_cred(task);
2531 int ret = 0;
2532
2533 /*
2534 * even if we're attaching all tasks in the thread group, we only
2535 * need to check permissions on one of them.
2536 */
2537 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2538 !uid_eq(cred->euid, tcred->uid) &&
2539 !uid_eq(cred->euid, tcred->suid))
2540 ret = -EACCES;
2541
187fe840
TH
2542 if (!ret && cgroup_on_dfl(dst_cgrp)) {
2543 struct super_block *sb = of->file->f_path.dentry->d_sb;
2544 struct cgroup *cgrp;
2545 struct inode *inode;
2546
2547 down_read(&css_set_rwsem);
2548 cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
2549 up_read(&css_set_rwsem);
2550
2551 while (!cgroup_is_descendant(dst_cgrp, cgrp))
2552 cgrp = cgroup_parent(cgrp);
2553
2554 ret = -ENOMEM;
6f60eade 2555 inode = kernfs_get_inode(sb, cgrp->procs_file.kn);
187fe840
TH
2556 if (inode) {
2557 ret = inode_permission(inode, MAY_WRITE);
2558 iput(inode);
2559 }
2560 }
2561
dedf22e9
TH
2562 put_cred(tcred);
2563 return ret;
2564}
2565
74a1166d
BB
2566/*
2567 * Find the task_struct of the task to attach by vpid and pass it along to the
cd3d0952 2568 * function to attach either it or all tasks in its threadgroup. Will lock
0e1d768f 2569 * cgroup_mutex and threadgroup.
bbcb81d0 2570 */
acbef755
TH
2571static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
2572 size_t nbytes, loff_t off, bool threadgroup)
bbcb81d0 2573{
bbcb81d0 2574 struct task_struct *tsk;
e76ecaee 2575 struct cgroup *cgrp;
acbef755 2576 pid_t pid;
bbcb81d0
PM
2577 int ret;
2578
acbef755
TH
2579 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2580 return -EINVAL;
2581
e76ecaee
TH
2582 cgrp = cgroup_kn_lock_live(of->kn);
2583 if (!cgrp)
74a1166d
BB
2584 return -ENODEV;
2585
3014dde7 2586 percpu_down_write(&cgroup_threadgroup_rwsem);
b78949eb 2587 rcu_read_lock();
bbcb81d0 2588 if (pid) {
73507f33 2589 tsk = find_task_by_vpid(pid);
74a1166d 2590 if (!tsk) {
dd4b0a46 2591 ret = -ESRCH;
3014dde7 2592 goto out_unlock_rcu;
bbcb81d0 2593 }
dedf22e9 2594 } else {
b78949eb 2595 tsk = current;
dedf22e9 2596 }
cd3d0952
TH
2597
2598 if (threadgroup)
b78949eb 2599 tsk = tsk->group_leader;
c4c27fbd
MG
2600
2601 /*
14a40ffc 2602 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
c4c27fbd
MG
2603 * trapped in a cpuset, or RT worker may be born in a cgroup
2604 * with no rt_runtime allocated. Just say no.
2605 */
14a40ffc 2606 if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
c4c27fbd 2607 ret = -EINVAL;
3014dde7 2608 goto out_unlock_rcu;
c4c27fbd
MG
2609 }
2610
b78949eb
MSB
2611 get_task_struct(tsk);
2612 rcu_read_unlock();
2613
187fe840 2614 ret = cgroup_procs_write_permission(tsk, cgrp, of);
dedf22e9
TH
2615 if (!ret)
2616 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
081aa458 2617
f9f9e7b7 2618 put_task_struct(tsk);
3014dde7
TH
2619 goto out_unlock_threadgroup;
2620
2621out_unlock_rcu:
2622 rcu_read_unlock();
2623out_unlock_threadgroup:
2624 percpu_up_write(&cgroup_threadgroup_rwsem);
e76ecaee 2625 cgroup_kn_unlock(of->kn);
acbef755 2626 return ret ?: nbytes;
bbcb81d0
PM
2627}
2628
7ae1bad9
TH
2629/**
2630 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2631 * @from: attach to all cgroups of a given task
2632 * @tsk: the task to be attached
2633 */
2634int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2635{
3dd06ffa 2636 struct cgroup_root *root;
7ae1bad9
TH
2637 int retval = 0;
2638
47cfcd09 2639 mutex_lock(&cgroup_mutex);
985ed670 2640 for_each_root(root) {
96d365e0
TH
2641 struct cgroup *from_cgrp;
2642
3dd06ffa 2643 if (root == &cgrp_dfl_root)
985ed670
TH
2644 continue;
2645
96d365e0
TH
2646 down_read(&css_set_rwsem);
2647 from_cgrp = task_cgroup_from_root(from, root);
2648 up_read(&css_set_rwsem);
7ae1bad9 2649
6f4b7e63 2650 retval = cgroup_attach_task(from_cgrp, tsk, false);
7ae1bad9
TH
2651 if (retval)
2652 break;
2653 }
47cfcd09 2654 mutex_unlock(&cgroup_mutex);
7ae1bad9
TH
2655
2656 return retval;
2657}
2658EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2659
acbef755
TH
2660static ssize_t cgroup_tasks_write(struct kernfs_open_file *of,
2661 char *buf, size_t nbytes, loff_t off)
74a1166d 2662{
acbef755 2663 return __cgroup_procs_write(of, buf, nbytes, off, false);
74a1166d
BB
2664}
2665
acbef755
TH
2666static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
2667 char *buf, size_t nbytes, loff_t off)
af351026 2668{
acbef755 2669 return __cgroup_procs_write(of, buf, nbytes, off, true);
af351026
PM
2670}
2671
451af504
TH
2672static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of,
2673 char *buf, size_t nbytes, loff_t off)
e788e066 2674{
e76ecaee 2675 struct cgroup *cgrp;
5f469907 2676
e76ecaee 2677 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
5f469907 2678
e76ecaee
TH
2679 cgrp = cgroup_kn_lock_live(of->kn);
2680 if (!cgrp)
e788e066 2681 return -ENODEV;
69e943b7 2682 spin_lock(&release_agent_path_lock);
e76ecaee
TH
2683 strlcpy(cgrp->root->release_agent_path, strstrip(buf),
2684 sizeof(cgrp->root->release_agent_path));
69e943b7 2685 spin_unlock(&release_agent_path_lock);
e76ecaee 2686 cgroup_kn_unlock(of->kn);
451af504 2687 return nbytes;
e788e066
PM
2688}
2689
2da8ca82 2690static int cgroup_release_agent_show(struct seq_file *seq, void *v)
e788e066 2691{
2da8ca82 2692 struct cgroup *cgrp = seq_css(seq)->cgroup;
182446d0 2693
46cfeb04 2694 spin_lock(&release_agent_path_lock);
e788e066 2695 seq_puts(seq, cgrp->root->release_agent_path);
46cfeb04 2696 spin_unlock(&release_agent_path_lock);
e788e066 2697 seq_putc(seq, '\n');
e788e066
PM
2698 return 0;
2699}
2700
2da8ca82 2701static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
873fe09e 2702{
c1d5d42e 2703 seq_puts(seq, "0\n");
e788e066
PM
2704 return 0;
2705}
2706
8ab456ac 2707static void cgroup_print_ss_mask(struct seq_file *seq, unsigned long ss_mask)
355e0c48 2708{
f8f22e53
TH
2709 struct cgroup_subsys *ss;
2710 bool printed = false;
2711 int ssid;
a742c59d 2712
a966a4ed
AS
2713 for_each_subsys_which(ss, ssid, &ss_mask) {
2714 if (printed)
2715 seq_putc(seq, ' ');
2716 seq_printf(seq, "%s", ss->name);
2717 printed = true;
e73d2c61 2718 }
f8f22e53
TH
2719 if (printed)
2720 seq_putc(seq, '\n');
355e0c48
PM
2721}
2722
f8f22e53
TH
2723/* show controllers which are currently attached to the default hierarchy */
2724static int cgroup_root_controllers_show(struct seq_file *seq, void *v)
db3b1497 2725{
f8f22e53
TH
2726 struct cgroup *cgrp = seq_css(seq)->cgroup;
2727
5533e011
TH
2728 cgroup_print_ss_mask(seq, cgrp->root->subsys_mask &
2729 ~cgrp_dfl_root_inhibit_ss_mask);
f8f22e53 2730 return 0;
db3b1497
PM
2731}
2732
f8f22e53
TH
2733/* show controllers which are enabled from the parent */
2734static int cgroup_controllers_show(struct seq_file *seq, void *v)
ddbcc7e8 2735{
f8f22e53
TH
2736 struct cgroup *cgrp = seq_css(seq)->cgroup;
2737
667c2491 2738 cgroup_print_ss_mask(seq, cgroup_parent(cgrp)->subtree_control);
f8f22e53 2739 return 0;
ddbcc7e8
PM
2740}
2741
f8f22e53
TH
2742/* show controllers which are enabled for a given cgroup's children */
2743static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
ddbcc7e8 2744{
f8f22e53
TH
2745 struct cgroup *cgrp = seq_css(seq)->cgroup;
2746
667c2491 2747 cgroup_print_ss_mask(seq, cgrp->subtree_control);
f8f22e53
TH
2748 return 0;
2749}
2750
2751/**
2752 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2753 * @cgrp: root of the subtree to update csses for
2754 *
2755 * @cgrp's child_subsys_mask has changed and its subtree's (self excluded)
2756 * css associations need to be updated accordingly. This function looks up
2757 * all css_sets which are attached to the subtree, creates the matching
2758 * updated css_sets and migrates the tasks to the new ones.
2759 */
2760static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2761{
2762 LIST_HEAD(preloaded_csets);
2763 struct cgroup_subsys_state *css;
2764 struct css_set *src_cset;
2765 int ret;
2766
f8f22e53
TH
2767 lockdep_assert_held(&cgroup_mutex);
2768
3014dde7
TH
2769 percpu_down_write(&cgroup_threadgroup_rwsem);
2770
f8f22e53
TH
2771 /* look up all csses currently attached to @cgrp's subtree */
2772 down_read(&css_set_rwsem);
2773 css_for_each_descendant_pre(css, cgroup_css(cgrp, NULL)) {
2774 struct cgrp_cset_link *link;
2775
2776 /* self is not affected by child_subsys_mask change */
2777 if (css->cgroup == cgrp)
2778 continue;
2779
2780 list_for_each_entry(link, &css->cgroup->cset_links, cset_link)
2781 cgroup_migrate_add_src(link->cset, cgrp,
2782 &preloaded_csets);
2783 }
2784 up_read(&css_set_rwsem);
2785
2786 /* NULL dst indicates self on default hierarchy */
2787 ret = cgroup_migrate_prepare_dst(NULL, &preloaded_csets);
2788 if (ret)
2789 goto out_finish;
2790
2791 list_for_each_entry(src_cset, &preloaded_csets, mg_preload_node) {
2792 struct task_struct *last_task = NULL, *task;
2793
2794 /* src_csets precede dst_csets, break on the first dst_cset */
2795 if (!src_cset->mg_src_cgrp)
2796 break;
2797
2798 /*
2799 * All tasks in src_cset need to be migrated to the
2800 * matching dst_cset. Empty it process by process. We
2801 * walk tasks but migrate processes. The leader might even
2802 * belong to a different cset but such src_cset would also
2803 * be among the target src_csets because the default
2804 * hierarchy enforces per-process membership.
2805 */
2806 while (true) {
2807 down_read(&css_set_rwsem);
2808 task = list_first_entry_or_null(&src_cset->tasks,
2809 struct task_struct, cg_list);
2810 if (task) {
2811 task = task->group_leader;
2812 WARN_ON_ONCE(!task_css_set(task)->mg_src_cgrp);
2813 get_task_struct(task);
2814 }
2815 up_read(&css_set_rwsem);
2816
2817 if (!task)
2818 break;
2819
2820 /* guard against possible infinite loop */
2821 if (WARN(last_task == task,
2822 "cgroup: update_dfl_csses failed to make progress, aborting in inconsistent state\n"))
2823 goto out_finish;
2824 last_task = task;
2825
9af2ec45 2826 ret = cgroup_migrate(task, true, src_cset->dfl_cgrp);
f8f22e53 2827
f8f22e53
TH
2828 put_task_struct(task);
2829
2830 if (WARN(ret, "cgroup: failed to update controllers for the default hierarchy (%d), further operations may crash or hang\n", ret))
2831 goto out_finish;
2832 }
2833 }
2834
2835out_finish:
2836 cgroup_migrate_finish(&preloaded_csets);
3014dde7 2837 percpu_up_write(&cgroup_threadgroup_rwsem);
f8f22e53
TH
2838 return ret;
2839}
2840
2841/* change the enabled child controllers for a cgroup in the default hierarchy */
451af504
TH
2842static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
2843 char *buf, size_t nbytes,
2844 loff_t off)
f8f22e53 2845{
8ab456ac
AS
2846 unsigned long enable = 0, disable = 0;
2847 unsigned long css_enable, css_disable, old_sc, new_sc, old_ss, new_ss;
a9746d8d 2848 struct cgroup *cgrp, *child;
f8f22e53 2849 struct cgroup_subsys *ss;
451af504 2850 char *tok;
f8f22e53
TH
2851 int ssid, ret;
2852
2853 /*
d37167ab
TH
2854 * Parse input - space separated list of subsystem names prefixed
2855 * with either + or -.
f8f22e53 2856 */
451af504
TH
2857 buf = strstrip(buf);
2858 while ((tok = strsep(&buf, " "))) {
a966a4ed
AS
2859 unsigned long tmp_ss_mask = ~cgrp_dfl_root_inhibit_ss_mask;
2860
d37167ab
TH
2861 if (tok[0] == '\0')
2862 continue;
a966a4ed 2863 for_each_subsys_which(ss, ssid, &tmp_ss_mask) {
fc5ed1e9
TH
2864 if (!cgroup_ssid_enabled(ssid) ||
2865 strcmp(tok + 1, ss->name))
f8f22e53
TH
2866 continue;
2867
2868 if (*tok == '+') {
7d331fa9
TH
2869 enable |= 1 << ssid;
2870 disable &= ~(1 << ssid);
f8f22e53 2871 } else if (*tok == '-') {
7d331fa9
TH
2872 disable |= 1 << ssid;
2873 enable &= ~(1 << ssid);
f8f22e53
TH
2874 } else {
2875 return -EINVAL;
2876 }
2877 break;
2878 }
2879 if (ssid == CGROUP_SUBSYS_COUNT)
2880 return -EINVAL;
2881 }
2882
a9746d8d
TH
2883 cgrp = cgroup_kn_lock_live(of->kn);
2884 if (!cgrp)
2885 return -ENODEV;
f8f22e53
TH
2886
2887 for_each_subsys(ss, ssid) {
2888 if (enable & (1 << ssid)) {
667c2491 2889 if (cgrp->subtree_control & (1 << ssid)) {
f8f22e53
TH
2890 enable &= ~(1 << ssid);
2891 continue;
2892 }
2893
c29adf24
TH
2894 /* unavailable or not enabled on the parent? */
2895 if (!(cgrp_dfl_root.subsys_mask & (1 << ssid)) ||
2896 (cgroup_parent(cgrp) &&
667c2491 2897 !(cgroup_parent(cgrp)->subtree_control & (1 << ssid)))) {
c29adf24
TH
2898 ret = -ENOENT;
2899 goto out_unlock;
2900 }
f8f22e53 2901 } else if (disable & (1 << ssid)) {
667c2491 2902 if (!(cgrp->subtree_control & (1 << ssid))) {
f8f22e53
TH
2903 disable &= ~(1 << ssid);
2904 continue;
2905 }
2906
2907 /* a child has it enabled? */
2908 cgroup_for_each_live_child(child, cgrp) {
667c2491 2909 if (child->subtree_control & (1 << ssid)) {
f8f22e53 2910 ret = -EBUSY;
ddab2b6e 2911 goto out_unlock;
f8f22e53
TH
2912 }
2913 }
2914 }
2915 }
2916
2917 if (!enable && !disable) {
2918 ret = 0;
ddab2b6e 2919 goto out_unlock;
f8f22e53
TH
2920 }
2921
2922 /*
667c2491 2923 * Except for the root, subtree_control must be zero for a cgroup
f8f22e53
TH
2924 * with tasks so that child cgroups don't compete against tasks.
2925 */
d51f39b0 2926 if (enable && cgroup_parent(cgrp) && !list_empty(&cgrp->cset_links)) {
f8f22e53
TH
2927 ret = -EBUSY;
2928 goto out_unlock;
2929 }
2930
2931 /*
f63070d3
TH
2932 * Update subsys masks and calculate what needs to be done. More
2933 * subsystems than specified may need to be enabled or disabled
2934 * depending on subsystem dependencies.
2935 */
755bf5ee
TH
2936 old_sc = cgrp->subtree_control;
2937 old_ss = cgrp->child_subsys_mask;
2938 new_sc = (old_sc | enable) & ~disable;
2939 new_ss = cgroup_calc_child_subsys_mask(cgrp, new_sc);
f63070d3 2940
755bf5ee
TH
2941 css_enable = ~old_ss & new_ss;
2942 css_disable = old_ss & ~new_ss;
f63070d3
TH
2943 enable |= css_enable;
2944 disable |= css_disable;
c29adf24 2945
db6e3053
TH
2946 /*
2947 * Because css offlining is asynchronous, userland might try to
2948 * re-enable the same controller while the previous instance is
2949 * still around. In such cases, wait till it's gone using
2950 * offline_waitq.
2951 */
a966a4ed 2952 for_each_subsys_which(ss, ssid, &css_enable) {
db6e3053
TH
2953 cgroup_for_each_live_child(child, cgrp) {
2954 DEFINE_WAIT(wait);
2955
2956 if (!cgroup_css(child, ss))
2957 continue;
2958
2959 cgroup_get(child);
2960 prepare_to_wait(&child->offline_waitq, &wait,
2961 TASK_UNINTERRUPTIBLE);
2962 cgroup_kn_unlock(of->kn);
2963 schedule();
2964 finish_wait(&child->offline_waitq, &wait);
2965 cgroup_put(child);
2966
2967 return restart_syscall();
2968 }
2969 }
2970
755bf5ee
TH
2971 cgrp->subtree_control = new_sc;
2972 cgrp->child_subsys_mask = new_ss;
2973
f63070d3
TH
2974 /*
2975 * Create new csses or make the existing ones visible. A css is
2976 * created invisible if it's being implicitly enabled through
2977 * dependency. An invisible css is made visible when the userland
2978 * explicitly enables it.
f8f22e53
TH
2979 */
2980 for_each_subsys(ss, ssid) {
2981 if (!(enable & (1 << ssid)))
2982 continue;
2983
2984 cgroup_for_each_live_child(child, cgrp) {
f63070d3
TH
2985 if (css_enable & (1 << ssid))
2986 ret = create_css(child, ss,
2987 cgrp->subtree_control & (1 << ssid));
2988 else
4df8dc90
TH
2989 ret = css_populate_dir(cgroup_css(child, ss),
2990 NULL);
f8f22e53
TH
2991 if (ret)
2992 goto err_undo_css;
2993 }
2994 }
2995
c29adf24
TH
2996 /*
2997 * At this point, cgroup_e_css() results reflect the new csses
2998 * making the following cgroup_update_dfl_csses() properly update
2999 * css associations of all tasks in the subtree.
3000 */
f8f22e53
TH
3001 ret = cgroup_update_dfl_csses(cgrp);
3002 if (ret)
3003 goto err_undo_css;
3004
f63070d3
TH
3005 /*
3006 * All tasks are migrated out of disabled csses. Kill or hide
3007 * them. A css is hidden when the userland requests it to be
b4536f0c
TH
3008 * disabled while other subsystems are still depending on it. The
3009 * css must not actively control resources and be in the vanilla
3010 * state if it's made visible again later. Controllers which may
3011 * be depended upon should provide ->css_reset() for this purpose.
f63070d3 3012 */
f8f22e53
TH
3013 for_each_subsys(ss, ssid) {
3014 if (!(disable & (1 << ssid)))
3015 continue;
3016
f63070d3 3017 cgroup_for_each_live_child(child, cgrp) {
b4536f0c
TH
3018 struct cgroup_subsys_state *css = cgroup_css(child, ss);
3019
3020 if (css_disable & (1 << ssid)) {
3021 kill_css(css);
3022 } else {
4df8dc90 3023 css_clear_dir(css, NULL);
b4536f0c
TH
3024 if (ss->css_reset)
3025 ss->css_reset(css);
3026 }
f63070d3 3027 }
f8f22e53
TH
3028 }
3029
56c807ba
TH
3030 /*
3031 * The effective csses of all the descendants (excluding @cgrp) may
3032 * have changed. Subsystems can optionally subscribe to this event
3033 * by implementing ->css_e_css_changed() which is invoked if any of
3034 * the effective csses seen from the css's cgroup may have changed.
3035 */
3036 for_each_subsys(ss, ssid) {
3037 struct cgroup_subsys_state *this_css = cgroup_css(cgrp, ss);
3038 struct cgroup_subsys_state *css;
3039
3040 if (!ss->css_e_css_changed || !this_css)
3041 continue;
3042
3043 css_for_each_descendant_pre(css, this_css)
3044 if (css != this_css)
3045 ss->css_e_css_changed(css);
3046 }
3047
f8f22e53
TH
3048 kernfs_activate(cgrp->kn);
3049 ret = 0;
3050out_unlock:
a9746d8d 3051 cgroup_kn_unlock(of->kn);
451af504 3052 return ret ?: nbytes;
f8f22e53
TH
3053
3054err_undo_css:
755bf5ee
TH
3055 cgrp->subtree_control = old_sc;
3056 cgrp->child_subsys_mask = old_ss;
f8f22e53
TH
3057
3058 for_each_subsys(ss, ssid) {
3059 if (!(enable & (1 << ssid)))
3060 continue;
3061
3062 cgroup_for_each_live_child(child, cgrp) {
3063 struct cgroup_subsys_state *css = cgroup_css(child, ss);
f63070d3
TH
3064
3065 if (!css)
3066 continue;
3067
3068 if (css_enable & (1 << ssid))
f8f22e53 3069 kill_css(css);
f63070d3 3070 else
4df8dc90 3071 css_clear_dir(css, NULL);
f8f22e53
TH
3072 }
3073 }
3074 goto out_unlock;
3075}
3076
4a07c222 3077static int cgroup_events_show(struct seq_file *seq, void *v)
842b597e 3078{
4a07c222
TH
3079 seq_printf(seq, "populated %d\n",
3080 (bool)seq_css(seq)->cgroup->populated_cnt);
842b597e
TH
3081 return 0;
3082}
3083
2bd59d48
TH
3084static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
3085 size_t nbytes, loff_t off)
355e0c48 3086{
2bd59d48
TH
3087 struct cgroup *cgrp = of->kn->parent->priv;
3088 struct cftype *cft = of->kn->priv;
3089 struct cgroup_subsys_state *css;
a742c59d 3090 int ret;
355e0c48 3091
b4168640
TH
3092 if (cft->write)
3093 return cft->write(of, buf, nbytes, off);
3094
2bd59d48
TH
3095 /*
3096 * kernfs guarantees that a file isn't deleted with operations in
3097 * flight, which means that the matching css is and stays alive and
3098 * doesn't need to be pinned. The RCU locking is not necessary
3099 * either. It's just for the convenience of using cgroup_css().
3100 */
3101 rcu_read_lock();
3102 css = cgroup_css(cgrp, cft->ss);
3103 rcu_read_unlock();
a742c59d 3104
451af504 3105 if (cft->write_u64) {
a742c59d
TH
3106 unsigned long long v;
3107 ret = kstrtoull(buf, 0, &v);
3108 if (!ret)
3109 ret = cft->write_u64(css, cft, v);
3110 } else if (cft->write_s64) {
3111 long long v;
3112 ret = kstrtoll(buf, 0, &v);
3113 if (!ret)
3114 ret = cft->write_s64(css, cft, v);
e73d2c61 3115 } else {
a742c59d 3116 ret = -EINVAL;
e73d2c61 3117 }
2bd59d48 3118
a742c59d 3119 return ret ?: nbytes;
355e0c48
PM
3120}
3121
6612f05b 3122static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
db3b1497 3123{
2bd59d48 3124 return seq_cft(seq)->seq_start(seq, ppos);
db3b1497
PM
3125}
3126
6612f05b 3127static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
ddbcc7e8 3128{
2bd59d48 3129 return seq_cft(seq)->seq_next(seq, v, ppos);
ddbcc7e8
PM
3130}
3131
6612f05b 3132static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
ddbcc7e8 3133{
2bd59d48 3134 seq_cft(seq)->seq_stop(seq, v);
ddbcc7e8
PM
3135}
3136
91796569 3137static int cgroup_seqfile_show(struct seq_file *m, void *arg)
e73d2c61 3138{
7da11279
TH
3139 struct cftype *cft = seq_cft(m);
3140 struct cgroup_subsys_state *css = seq_css(m);
e73d2c61 3141
2da8ca82
TH
3142 if (cft->seq_show)
3143 return cft->seq_show(m, arg);
e73d2c61 3144
f4c753b7 3145 if (cft->read_u64)
896f5199
TH
3146 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
3147 else if (cft->read_s64)
3148 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
3149 else
3150 return -EINVAL;
3151 return 0;
91796569
PM
3152}
3153
2bd59d48
TH
3154static struct kernfs_ops cgroup_kf_single_ops = {
3155 .atomic_write_len = PAGE_SIZE,
3156 .write = cgroup_file_write,
3157 .seq_show = cgroup_seqfile_show,
91796569
PM
3158};
3159
2bd59d48
TH
3160static struct kernfs_ops cgroup_kf_ops = {
3161 .atomic_write_len = PAGE_SIZE,
3162 .write = cgroup_file_write,
3163 .seq_start = cgroup_seqfile_start,
3164 .seq_next = cgroup_seqfile_next,
3165 .seq_stop = cgroup_seqfile_stop,
3166 .seq_show = cgroup_seqfile_show,
3167};
ddbcc7e8
PM
3168
3169/*
3170 * cgroup_rename - Only allow simple rename of directories in place.
3171 */
2bd59d48
TH
3172static int cgroup_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
3173 const char *new_name_str)
ddbcc7e8 3174{
2bd59d48 3175 struct cgroup *cgrp = kn->priv;
65dff759 3176 int ret;
65dff759 3177
2bd59d48 3178 if (kernfs_type(kn) != KERNFS_DIR)
ddbcc7e8 3179 return -ENOTDIR;
2bd59d48 3180 if (kn->parent != new_parent)
ddbcc7e8 3181 return -EIO;
65dff759 3182
6db8e85c
TH
3183 /*
3184 * This isn't a proper migration and its usefulness is very
aa6ec29b 3185 * limited. Disallow on the default hierarchy.
6db8e85c 3186 */
aa6ec29b 3187 if (cgroup_on_dfl(cgrp))
6db8e85c 3188 return -EPERM;
099fca32 3189
e1b2dc17 3190 /*
8353da1f 3191 * We're gonna grab cgroup_mutex which nests outside kernfs
e1b2dc17 3192 * active_ref. kernfs_rename() doesn't require active_ref
8353da1f 3193 * protection. Break them before grabbing cgroup_mutex.
e1b2dc17
TH
3194 */
3195 kernfs_break_active_protection(new_parent);
3196 kernfs_break_active_protection(kn);
099fca32 3197
2bd59d48 3198 mutex_lock(&cgroup_mutex);
099fca32 3199
2bd59d48 3200 ret = kernfs_rename(kn, new_parent, new_name_str);
099fca32 3201
2bd59d48 3202 mutex_unlock(&cgroup_mutex);
e1b2dc17
TH
3203
3204 kernfs_unbreak_active_protection(kn);
3205 kernfs_unbreak_active_protection(new_parent);
2bd59d48 3206 return ret;
099fca32
LZ
3207}
3208
49957f8e
TH
3209/* set uid and gid of cgroup dirs and files to that of the creator */
3210static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3211{
3212 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3213 .ia_uid = current_fsuid(),
3214 .ia_gid = current_fsgid(), };
3215
3216 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3217 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
3218 return 0;
3219
3220 return kernfs_setattr(kn, &iattr);
3221}
3222
4df8dc90
TH
3223static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
3224 struct cftype *cft)
ddbcc7e8 3225{
8d7e6fb0 3226 char name[CGROUP_FILE_NAME_MAX];
2bd59d48
TH
3227 struct kernfs_node *kn;
3228 struct lock_class_key *key = NULL;
49957f8e 3229 int ret;
05ef1d7c 3230
2bd59d48
TH
3231#ifdef CONFIG_DEBUG_LOCK_ALLOC
3232 key = &cft->lockdep_key;
3233#endif
3234 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
3235 cgroup_file_mode(cft), 0, cft->kf_ops, cft,
dfeb0750 3236 NULL, key);
49957f8e
TH
3237 if (IS_ERR(kn))
3238 return PTR_ERR(kn);
3239
3240 ret = cgroup_kn_set_ugid(kn);
f8f22e53 3241 if (ret) {
49957f8e 3242 kernfs_remove(kn);
f8f22e53
TH
3243 return ret;
3244 }
3245
6f60eade
TH
3246 if (cft->file_offset) {
3247 struct cgroup_file *cfile = (void *)css + cft->file_offset;
3248
3249 kernfs_get(kn);
3250 cfile->kn = kn;
3251 list_add(&cfile->node, &css->files);
3252 }
3253
f8f22e53 3254 return 0;
ddbcc7e8
PM
3255}
3256
b1f28d31
TH
3257/**
3258 * cgroup_addrm_files - add or remove files to a cgroup directory
4df8dc90
TH
3259 * @css: the target css
3260 * @cgrp: the target cgroup (usually css->cgroup)
b1f28d31
TH
3261 * @cfts: array of cftypes to be added
3262 * @is_add: whether to add or remove
3263 *
3264 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
6732ed85 3265 * For removals, this function never fails.
b1f28d31 3266 */
4df8dc90
TH
3267static int cgroup_addrm_files(struct cgroup_subsys_state *css,
3268 struct cgroup *cgrp, struct cftype cfts[],
2bb566cb 3269 bool is_add)
ddbcc7e8 3270{
6732ed85 3271 struct cftype *cft, *cft_end = NULL;
b1f28d31
TH
3272 int ret;
3273
01f6474c 3274 lockdep_assert_held(&cgroup_mutex);
db0416b6 3275
6732ed85
TH
3276restart:
3277 for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
f33fddc2 3278 /* does cft->flags tell us to skip this file on @cgrp? */
05ebb6e6 3279 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
8cbbf2c9 3280 continue;
05ebb6e6 3281 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
873fe09e 3282 continue;
d51f39b0 3283 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
f33fddc2 3284 continue;
d51f39b0 3285 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
f33fddc2
G
3286 continue;
3287
2739d3cc 3288 if (is_add) {
4df8dc90 3289 ret = cgroup_add_file(css, cgrp, cft);
b1f28d31 3290 if (ret) {
ed3d261b
JP
3291 pr_warn("%s: failed to add %s, err=%d\n",
3292 __func__, cft->name, ret);
6732ed85
TH
3293 cft_end = cft;
3294 is_add = false;
3295 goto restart;
b1f28d31 3296 }
2739d3cc
LZ
3297 } else {
3298 cgroup_rm_file(cgrp, cft);
db0416b6 3299 }
ddbcc7e8 3300 }
b1f28d31 3301 return 0;
ddbcc7e8
PM
3302}
3303
21a2d343 3304static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
8e3f6541
TH
3305{
3306 LIST_HEAD(pending);
2bb566cb 3307 struct cgroup_subsys *ss = cfts[0].ss;
3dd06ffa 3308 struct cgroup *root = &ss->root->cgrp;
492eb21b 3309 struct cgroup_subsys_state *css;
9ccece80 3310 int ret = 0;
8e3f6541 3311
01f6474c 3312 lockdep_assert_held(&cgroup_mutex);
e8c82d20 3313
e8c82d20 3314 /* add/rm files for all cgroups created before */
ca8bdcaf 3315 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
492eb21b
TH
3316 struct cgroup *cgrp = css->cgroup;
3317
e8c82d20
LZ
3318 if (cgroup_is_dead(cgrp))
3319 continue;
3320
4df8dc90 3321 ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
9ccece80
TH
3322 if (ret)
3323 break;
8e3f6541 3324 }
21a2d343
TH
3325
3326 if (is_add && !ret)
3327 kernfs_activate(root->kn);
9ccece80 3328 return ret;
8e3f6541
TH
3329}
3330
2da440a2 3331static void cgroup_exit_cftypes(struct cftype *cfts)
8e3f6541 3332{
2bb566cb 3333 struct cftype *cft;
8e3f6541 3334
2bd59d48
TH
3335 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3336 /* free copy for custom atomic_write_len, see init_cftypes() */
3337 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
3338 kfree(cft->kf_ops);
3339 cft->kf_ops = NULL;
2da440a2 3340 cft->ss = NULL;
a8ddc821
TH
3341
3342 /* revert flags set by cgroup core while adding @cfts */
05ebb6e6 3343 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
2bd59d48 3344 }
2da440a2
TH
3345}
3346
2bd59d48 3347static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
2da440a2
TH
3348{
3349 struct cftype *cft;
3350
2bd59d48
TH
3351 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3352 struct kernfs_ops *kf_ops;
3353
0adb0704
TH
3354 WARN_ON(cft->ss || cft->kf_ops);
3355
2bd59d48
TH
3356 if (cft->seq_start)
3357 kf_ops = &cgroup_kf_ops;
3358 else
3359 kf_ops = &cgroup_kf_single_ops;
3360
3361 /*
3362 * Ugh... if @cft wants a custom max_write_len, we need to
3363 * make a copy of kf_ops to set its atomic_write_len.
3364 */
3365 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
3366 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
3367 if (!kf_ops) {
3368 cgroup_exit_cftypes(cfts);
3369 return -ENOMEM;
3370 }
3371 kf_ops->atomic_write_len = cft->max_write_len;
3372 }
8e3f6541 3373
2bd59d48 3374 cft->kf_ops = kf_ops;
2bb566cb 3375 cft->ss = ss;
2bd59d48 3376 }
2bb566cb 3377
2bd59d48 3378 return 0;
2da440a2
TH
3379}
3380
21a2d343
TH
3381static int cgroup_rm_cftypes_locked(struct cftype *cfts)
3382{
01f6474c 3383 lockdep_assert_held(&cgroup_mutex);
21a2d343
TH
3384
3385 if (!cfts || !cfts[0].ss)
3386 return -ENOENT;
3387
3388 list_del(&cfts->node);
3389 cgroup_apply_cftypes(cfts, false);
3390 cgroup_exit_cftypes(cfts);
3391 return 0;
8e3f6541 3392}
8e3f6541 3393
79578621
TH
3394/**
3395 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
79578621
TH
3396 * @cfts: zero-length name terminated array of cftypes
3397 *
2bb566cb
TH
3398 * Unregister @cfts. Files described by @cfts are removed from all
3399 * existing cgroups and all future cgroups won't have them either. This
3400 * function can be called anytime whether @cfts' subsys is attached or not.
79578621
TH
3401 *
3402 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
2bb566cb 3403 * registered.
79578621 3404 */
2bb566cb 3405int cgroup_rm_cftypes(struct cftype *cfts)
79578621 3406{
21a2d343 3407 int ret;
79578621 3408
01f6474c 3409 mutex_lock(&cgroup_mutex);
21a2d343 3410 ret = cgroup_rm_cftypes_locked(cfts);
01f6474c 3411 mutex_unlock(&cgroup_mutex);
21a2d343 3412 return ret;
80b13586
TH
3413}
3414
8e3f6541
TH
3415/**
3416 * cgroup_add_cftypes - add an array of cftypes to a subsystem
3417 * @ss: target cgroup subsystem
3418 * @cfts: zero-length name terminated array of cftypes
3419 *
3420 * Register @cfts to @ss. Files described by @cfts are created for all
3421 * existing cgroups to which @ss is attached and all future cgroups will
3422 * have them too. This function can be called anytime whether @ss is
3423 * attached or not.
3424 *
3425 * Returns 0 on successful registration, -errno on failure. Note that this
3426 * function currently returns 0 as long as @cfts registration is successful
3427 * even if some file creation attempts on existing cgroups fail.
3428 */
2cf669a5 3429static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
8e3f6541 3430{
9ccece80 3431 int ret;
8e3f6541 3432
fc5ed1e9 3433 if (!cgroup_ssid_enabled(ss->id))
c731ae1d
LZ
3434 return 0;
3435
dc5736ed
LZ
3436 if (!cfts || cfts[0].name[0] == '\0')
3437 return 0;
2bb566cb 3438
2bd59d48
TH
3439 ret = cgroup_init_cftypes(ss, cfts);
3440 if (ret)
3441 return ret;
79578621 3442
01f6474c 3443 mutex_lock(&cgroup_mutex);
21a2d343 3444
0adb0704 3445 list_add_tail(&cfts->node, &ss->cfts);
21a2d343 3446 ret = cgroup_apply_cftypes(cfts, true);
9ccece80 3447 if (ret)
21a2d343 3448 cgroup_rm_cftypes_locked(cfts);
79578621 3449
01f6474c 3450 mutex_unlock(&cgroup_mutex);
9ccece80 3451 return ret;
79578621
TH
3452}
3453
a8ddc821
TH
3454/**
3455 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
3456 * @ss: target cgroup subsystem
3457 * @cfts: zero-length name terminated array of cftypes
3458 *
3459 * Similar to cgroup_add_cftypes() but the added files are only used for
3460 * the default hierarchy.
3461 */
3462int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3463{
3464 struct cftype *cft;
3465
3466 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
05ebb6e6 3467 cft->flags |= __CFTYPE_ONLY_ON_DFL;
a8ddc821
TH
3468 return cgroup_add_cftypes(ss, cfts);
3469}
3470
3471/**
3472 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
3473 * @ss: target cgroup subsystem
3474 * @cfts: zero-length name terminated array of cftypes
3475 *
3476 * Similar to cgroup_add_cftypes() but the added files are only used for
3477 * the legacy hierarchies.
3478 */
2cf669a5
TH
3479int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3480{
a8ddc821
TH
3481 struct cftype *cft;
3482
fa8137be
VG
3483 /*
3484 * If legacy_flies_on_dfl, we want to show the legacy files on the
3485 * dfl hierarchy but iff the target subsystem hasn't been updated
3486 * for the dfl hierarchy yet.
3487 */
3488 if (!cgroup_legacy_files_on_dfl ||
3489 ss->dfl_cftypes != ss->legacy_cftypes) {
3490 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3491 cft->flags |= __CFTYPE_NOT_ON_DFL;
3492 }
3493
2cf669a5
TH
3494 return cgroup_add_cftypes(ss, cfts);
3495}
3496
a043e3b2
LZ
3497/**
3498 * cgroup_task_count - count the number of tasks in a cgroup.
3499 * @cgrp: the cgroup in question
3500 *
3501 * Return the number of tasks in the cgroup.
3502 */
07bc356e 3503static int cgroup_task_count(const struct cgroup *cgrp)
bbcb81d0
PM
3504{
3505 int count = 0;
69d0206c 3506 struct cgrp_cset_link *link;
817929ec 3507
96d365e0 3508 down_read(&css_set_rwsem);
69d0206c
TH
3509 list_for_each_entry(link, &cgrp->cset_links, cset_link)
3510 count += atomic_read(&link->cset->refcount);
96d365e0 3511 up_read(&css_set_rwsem);
bbcb81d0
PM
3512 return count;
3513}
3514
53fa5261 3515/**
492eb21b 3516 * css_next_child - find the next child of a given css
c2931b70
TH
3517 * @pos: the current position (%NULL to initiate traversal)
3518 * @parent: css whose children to walk
53fa5261 3519 *
c2931b70 3520 * This function returns the next child of @parent and should be called
87fb54f1 3521 * under either cgroup_mutex or RCU read lock. The only requirement is
c2931b70
TH
3522 * that @parent and @pos are accessible. The next sibling is guaranteed to
3523 * be returned regardless of their states.
3524 *
3525 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3526 * css which finished ->css_online() is guaranteed to be visible in the
3527 * future iterations and will stay visible until the last reference is put.
3528 * A css which hasn't finished ->css_online() or already finished
3529 * ->css_offline() may show up during traversal. It's each subsystem's
3530 * responsibility to synchronize against on/offlining.
53fa5261 3531 */
c2931b70
TH
3532struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
3533 struct cgroup_subsys_state *parent)
53fa5261 3534{
c2931b70 3535 struct cgroup_subsys_state *next;
53fa5261 3536
8353da1f 3537 cgroup_assert_mutex_or_rcu_locked();
53fa5261
TH
3538
3539 /*
de3f0341
TH
3540 * @pos could already have been unlinked from the sibling list.
3541 * Once a cgroup is removed, its ->sibling.next is no longer
3542 * updated when its next sibling changes. CSS_RELEASED is set when
3543 * @pos is taken off list, at which time its next pointer is valid,
3544 * and, as releases are serialized, the one pointed to by the next
3545 * pointer is guaranteed to not have started release yet. This
3546 * implies that if we observe !CSS_RELEASED on @pos in this RCU
3547 * critical section, the one pointed to by its next pointer is
3548 * guaranteed to not have finished its RCU grace period even if we
3549 * have dropped rcu_read_lock() inbetween iterations.
3b287a50 3550 *
de3f0341
TH
3551 * If @pos has CSS_RELEASED set, its next pointer can't be
3552 * dereferenced; however, as each css is given a monotonically
3553 * increasing unique serial number and always appended to the
3554 * sibling list, the next one can be found by walking the parent's
3555 * children until the first css with higher serial number than
3556 * @pos's. While this path can be slower, it happens iff iteration
3557 * races against release and the race window is very small.
53fa5261 3558 */
3b287a50 3559 if (!pos) {
c2931b70
TH
3560 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
3561 } else if (likely(!(pos->flags & CSS_RELEASED))) {
3562 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
3b287a50 3563 } else {
c2931b70 3564 list_for_each_entry_rcu(next, &parent->children, sibling)
3b287a50
TH
3565 if (next->serial_nr > pos->serial_nr)
3566 break;
53fa5261
TH
3567 }
3568
3b281afb
TH
3569 /*
3570 * @next, if not pointing to the head, can be dereferenced and is
c2931b70 3571 * the next sibling.
3b281afb 3572 */
c2931b70
TH
3573 if (&next->sibling != &parent->children)
3574 return next;
3b281afb 3575 return NULL;
53fa5261 3576}
53fa5261 3577
574bd9f7 3578/**
492eb21b 3579 * css_next_descendant_pre - find the next descendant for pre-order walk
574bd9f7 3580 * @pos: the current position (%NULL to initiate traversal)
492eb21b 3581 * @root: css whose descendants to walk
574bd9f7 3582 *
492eb21b 3583 * To be used by css_for_each_descendant_pre(). Find the next descendant
bd8815a6
TH
3584 * to visit for pre-order traversal of @root's descendants. @root is
3585 * included in the iteration and the first node to be visited.
75501a6d 3586 *
87fb54f1
TH
3587 * While this function requires cgroup_mutex or RCU read locking, it
3588 * doesn't require the whole traversal to be contained in a single critical
3589 * section. This function will return the correct next descendant as long
3590 * as both @pos and @root are accessible and @pos is a descendant of @root.
c2931b70
TH
3591 *
3592 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3593 * css which finished ->css_online() is guaranteed to be visible in the
3594 * future iterations and will stay visible until the last reference is put.
3595 * A css which hasn't finished ->css_online() or already finished
3596 * ->css_offline() may show up during traversal. It's each subsystem's
3597 * responsibility to synchronize against on/offlining.
574bd9f7 3598 */
492eb21b
TH
3599struct cgroup_subsys_state *
3600css_next_descendant_pre(struct cgroup_subsys_state *pos,
3601 struct cgroup_subsys_state *root)
574bd9f7 3602{
492eb21b 3603 struct cgroup_subsys_state *next;
574bd9f7 3604
8353da1f 3605 cgroup_assert_mutex_or_rcu_locked();
574bd9f7 3606
bd8815a6 3607 /* if first iteration, visit @root */
7805d000 3608 if (!pos)
bd8815a6 3609 return root;
574bd9f7
TH
3610
3611 /* visit the first child if exists */
492eb21b 3612 next = css_next_child(NULL, pos);
574bd9f7
TH
3613 if (next)
3614 return next;
3615
3616 /* no child, visit my or the closest ancestor's next sibling */
492eb21b 3617 while (pos != root) {
5c9d535b 3618 next = css_next_child(pos, pos->parent);
75501a6d 3619 if (next)
574bd9f7 3620 return next;
5c9d535b 3621 pos = pos->parent;
7805d000 3622 }
574bd9f7
TH
3623
3624 return NULL;
3625}
574bd9f7 3626
12a9d2fe 3627/**
492eb21b
TH
3628 * css_rightmost_descendant - return the rightmost descendant of a css
3629 * @pos: css of interest
12a9d2fe 3630 *
492eb21b
TH
3631 * Return the rightmost descendant of @pos. If there's no descendant, @pos
3632 * is returned. This can be used during pre-order traversal to skip
12a9d2fe 3633 * subtree of @pos.
75501a6d 3634 *
87fb54f1
TH
3635 * While this function requires cgroup_mutex or RCU read locking, it
3636 * doesn't require the whole traversal to be contained in a single critical
3637 * section. This function will return the correct rightmost descendant as
3638 * long as @pos is accessible.
12a9d2fe 3639 */
492eb21b
TH
3640struct cgroup_subsys_state *
3641css_rightmost_descendant(struct cgroup_subsys_state *pos)
12a9d2fe 3642{
492eb21b 3643 struct cgroup_subsys_state *last, *tmp;
12a9d2fe 3644
8353da1f 3645 cgroup_assert_mutex_or_rcu_locked();
12a9d2fe
TH
3646
3647 do {
3648 last = pos;
3649 /* ->prev isn't RCU safe, walk ->next till the end */
3650 pos = NULL;
492eb21b 3651 css_for_each_child(tmp, last)
12a9d2fe
TH
3652 pos = tmp;
3653 } while (pos);
3654
3655 return last;
3656}
12a9d2fe 3657
492eb21b
TH
3658static struct cgroup_subsys_state *
3659css_leftmost_descendant(struct cgroup_subsys_state *pos)
574bd9f7 3660{
492eb21b 3661 struct cgroup_subsys_state *last;
574bd9f7
TH
3662
3663 do {
3664 last = pos;
492eb21b 3665 pos = css_next_child(NULL, pos);
574bd9f7
TH
3666 } while (pos);
3667
3668 return last;
3669}
3670
3671/**
492eb21b 3672 * css_next_descendant_post - find the next descendant for post-order walk
574bd9f7 3673 * @pos: the current position (%NULL to initiate traversal)
492eb21b 3674 * @root: css whose descendants to walk
574bd9f7 3675 *
492eb21b 3676 * To be used by css_for_each_descendant_post(). Find the next descendant
bd8815a6
TH
3677 * to visit for post-order traversal of @root's descendants. @root is
3678 * included in the iteration and the last node to be visited.
75501a6d 3679 *
87fb54f1
TH
3680 * While this function requires cgroup_mutex or RCU read locking, it
3681 * doesn't require the whole traversal to be contained in a single critical
3682 * section. This function will return the correct next descendant as long
3683 * as both @pos and @cgroup are accessible and @pos is a descendant of
3684 * @cgroup.
c2931b70
TH
3685 *
3686 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3687 * css which finished ->css_online() is guaranteed to be visible in the
3688 * future iterations and will stay visible until the last reference is put.
3689 * A css which hasn't finished ->css_online() or already finished
3690 * ->css_offline() may show up during traversal. It's each subsystem's
3691 * responsibility to synchronize against on/offlining.
574bd9f7 3692 */
492eb21b
TH
3693struct cgroup_subsys_state *
3694css_next_descendant_post(struct cgroup_subsys_state *pos,
3695 struct cgroup_subsys_state *root)
574bd9f7 3696{
492eb21b 3697 struct cgroup_subsys_state *next;
574bd9f7 3698
8353da1f 3699 cgroup_assert_mutex_or_rcu_locked();
574bd9f7 3700
58b79a91
TH
3701 /* if first iteration, visit leftmost descendant which may be @root */
3702 if (!pos)
3703 return css_leftmost_descendant(root);
574bd9f7 3704
bd8815a6
TH
3705 /* if we visited @root, we're done */
3706 if (pos == root)
3707 return NULL;
3708
574bd9f7 3709 /* if there's an unvisited sibling, visit its leftmost descendant */
5c9d535b 3710 next = css_next_child(pos, pos->parent);
75501a6d 3711 if (next)
492eb21b 3712 return css_leftmost_descendant(next);
574bd9f7
TH
3713
3714 /* no sibling left, visit parent */
5c9d535b 3715 return pos->parent;
574bd9f7 3716}
574bd9f7 3717
f3d46500
TH
3718/**
3719 * css_has_online_children - does a css have online children
3720 * @css: the target css
3721 *
3722 * Returns %true if @css has any online children; otherwise, %false. This
3723 * function can be called from any context but the caller is responsible
3724 * for synchronizing against on/offlining as necessary.
3725 */
3726bool css_has_online_children(struct cgroup_subsys_state *css)
cbc125ef 3727{
f3d46500
TH
3728 struct cgroup_subsys_state *child;
3729 bool ret = false;
cbc125ef
TH
3730
3731 rcu_read_lock();
f3d46500 3732 css_for_each_child(child, css) {
99bae5f9 3733 if (child->flags & CSS_ONLINE) {
f3d46500
TH
3734 ret = true;
3735 break;
cbc125ef
TH
3736 }
3737 }
3738 rcu_read_unlock();
f3d46500 3739 return ret;
574bd9f7 3740}
574bd9f7 3741
0942eeee 3742/**
72ec7029 3743 * css_advance_task_iter - advance a task itererator to the next css_set
0942eeee
TH
3744 * @it: the iterator to advance
3745 *
3746 * Advance @it to the next css_set to walk.
d515876e 3747 */
72ec7029 3748static void css_advance_task_iter(struct css_task_iter *it)
d515876e 3749{
0f0a2b4f 3750 struct list_head *l = it->cset_pos;
d515876e
TH
3751 struct cgrp_cset_link *link;
3752 struct css_set *cset;
3753
3754 /* Advance to the next non-empty css_set */
3755 do {
3756 l = l->next;
0f0a2b4f
TH
3757 if (l == it->cset_head) {
3758 it->cset_pos = NULL;
d515876e
TH
3759 return;
3760 }
3ebb2b6e
TH
3761
3762 if (it->ss) {
3763 cset = container_of(l, struct css_set,
3764 e_cset_node[it->ss->id]);
3765 } else {
3766 link = list_entry(l, struct cgrp_cset_link, cset_link);
3767 cset = link->cset;
3768 }
c7561128
TH
3769 } while (list_empty(&cset->tasks) && list_empty(&cset->mg_tasks));
3770
0f0a2b4f 3771 it->cset_pos = l;
c7561128
TH
3772
3773 if (!list_empty(&cset->tasks))
0f0a2b4f 3774 it->task_pos = cset->tasks.next;
c7561128 3775 else
0f0a2b4f
TH
3776 it->task_pos = cset->mg_tasks.next;
3777
3778 it->tasks_head = &cset->tasks;
3779 it->mg_tasks_head = &cset->mg_tasks;
d515876e
TH
3780}
3781
0942eeee 3782/**
72ec7029
TH
3783 * css_task_iter_start - initiate task iteration
3784 * @css: the css to walk tasks of
0942eeee
TH
3785 * @it: the task iterator to use
3786 *
72ec7029
TH
3787 * Initiate iteration through the tasks of @css. The caller can call
3788 * css_task_iter_next() to walk through the tasks until the function
3789 * returns NULL. On completion of iteration, css_task_iter_end() must be
3790 * called.
0942eeee
TH
3791 *
3792 * Note that this function acquires a lock which is released when the
3793 * iteration finishes. The caller can't sleep while iteration is in
3794 * progress.
3795 */
72ec7029
TH
3796void css_task_iter_start(struct cgroup_subsys_state *css,
3797 struct css_task_iter *it)
96d365e0 3798 __acquires(css_set_rwsem)
817929ec 3799{
56fde9e0
TH
3800 /* no one should try to iterate before mounting cgroups */
3801 WARN_ON_ONCE(!use_task_css_set_links);
31a7df01 3802
96d365e0 3803 down_read(&css_set_rwsem);
c59cd3d8 3804
3ebb2b6e
TH
3805 it->ss = css->ss;
3806
3807 if (it->ss)
3808 it->cset_pos = &css->cgroup->e_csets[css->ss->id];
3809 else
3810 it->cset_pos = &css->cgroup->cset_links;
3811
0f0a2b4f 3812 it->cset_head = it->cset_pos;
c59cd3d8 3813
72ec7029 3814 css_advance_task_iter(it);
817929ec
PM
3815}
3816
0942eeee 3817/**
72ec7029 3818 * css_task_iter_next - return the next task for the iterator
0942eeee
TH
3819 * @it: the task iterator being iterated
3820 *
3821 * The "next" function for task iteration. @it should have been
72ec7029
TH
3822 * initialized via css_task_iter_start(). Returns NULL when the iteration
3823 * reaches the end.
0942eeee 3824 */
72ec7029 3825struct task_struct *css_task_iter_next(struct css_task_iter *it)
817929ec
PM
3826{
3827 struct task_struct *res;
0f0a2b4f 3828 struct list_head *l = it->task_pos;
817929ec
PM
3829
3830 /* If the iterator cg is NULL, we have no tasks */
0f0a2b4f 3831 if (!it->cset_pos)
817929ec
PM
3832 return NULL;
3833 res = list_entry(l, struct task_struct, cg_list);
c7561128
TH
3834
3835 /*
3836 * Advance iterator to find next entry. cset->tasks is consumed
3837 * first and then ->mg_tasks. After ->mg_tasks, we move onto the
3838 * next cset.
3839 */
817929ec 3840 l = l->next;
c7561128 3841
0f0a2b4f
TH
3842 if (l == it->tasks_head)
3843 l = it->mg_tasks_head->next;
c7561128 3844
0f0a2b4f 3845 if (l == it->mg_tasks_head)
72ec7029 3846 css_advance_task_iter(it);
c7561128 3847 else
0f0a2b4f 3848 it->task_pos = l;
c7561128 3849
817929ec
PM
3850 return res;
3851}
3852
0942eeee 3853/**
72ec7029 3854 * css_task_iter_end - finish task iteration
0942eeee
TH
3855 * @it: the task iterator to finish
3856 *
72ec7029 3857 * Finish task iteration started by css_task_iter_start().
0942eeee 3858 */
72ec7029 3859void css_task_iter_end(struct css_task_iter *it)
96d365e0 3860 __releases(css_set_rwsem)
31a7df01 3861{
96d365e0 3862 up_read(&css_set_rwsem);
31a7df01
CW
3863}
3864
3865/**
8cc99345
TH
3866 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
3867 * @to: cgroup to which the tasks will be moved
3868 * @from: cgroup in which the tasks currently reside
31a7df01 3869 *
eaf797ab
TH
3870 * Locking rules between cgroup_post_fork() and the migration path
3871 * guarantee that, if a task is forking while being migrated, the new child
3872 * is guaranteed to be either visible in the source cgroup after the
3873 * parent's migration is complete or put into the target cgroup. No task
3874 * can slip out of migration through forking.
31a7df01 3875 */
8cc99345 3876int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
31a7df01 3877{
952aaa12
TH
3878 LIST_HEAD(preloaded_csets);
3879 struct cgrp_cset_link *link;
72ec7029 3880 struct css_task_iter it;
e406d1cf 3881 struct task_struct *task;
952aaa12 3882 int ret;
31a7df01 3883
952aaa12 3884 mutex_lock(&cgroup_mutex);
31a7df01 3885
952aaa12
TH
3886 /* all tasks in @from are being moved, all csets are source */
3887 down_read(&css_set_rwsem);
3888 list_for_each_entry(link, &from->cset_links, cset_link)
3889 cgroup_migrate_add_src(link->cset, to, &preloaded_csets);
3890 up_read(&css_set_rwsem);
31a7df01 3891
952aaa12
TH
3892 ret = cgroup_migrate_prepare_dst(to, &preloaded_csets);
3893 if (ret)
3894 goto out_err;
8cc99345 3895
952aaa12
TH
3896 /*
3897 * Migrate tasks one-by-one until @form is empty. This fails iff
3898 * ->can_attach() fails.
3899 */
e406d1cf 3900 do {
9d800df1 3901 css_task_iter_start(&from->self, &it);
e406d1cf
TH
3902 task = css_task_iter_next(&it);
3903 if (task)
3904 get_task_struct(task);
3905 css_task_iter_end(&it);
3906
3907 if (task) {
9af2ec45 3908 ret = cgroup_migrate(task, false, to);
e406d1cf
TH
3909 put_task_struct(task);
3910 }
3911 } while (task && !ret);
952aaa12
TH
3912out_err:
3913 cgroup_migrate_finish(&preloaded_csets);
47cfcd09 3914 mutex_unlock(&cgroup_mutex);
e406d1cf 3915 return ret;
8cc99345
TH
3916}
3917
bbcb81d0 3918/*
102a775e 3919 * Stuff for reading the 'tasks'/'procs' files.
bbcb81d0
PM
3920 *
3921 * Reading this file can return large amounts of data if a cgroup has
3922 * *lots* of attached tasks. So it may need several calls to read(),
3923 * but we cannot guarantee that the information we produce is correct
3924 * unless we produce it entirely atomically.
3925 *
bbcb81d0 3926 */
bbcb81d0 3927
24528255
LZ
3928/* which pidlist file are we talking about? */
3929enum cgroup_filetype {
3930 CGROUP_FILE_PROCS,
3931 CGROUP_FILE_TASKS,
3932};
3933
3934/*
3935 * A pidlist is a list of pids that virtually represents the contents of one
3936 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
3937 * a pair (one each for procs, tasks) for each pid namespace that's relevant
3938 * to the cgroup.
3939 */
3940struct cgroup_pidlist {
3941 /*
3942 * used to find which pidlist is wanted. doesn't change as long as
3943 * this particular list stays in the list.
3944 */
3945 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
3946 /* array of xids */
3947 pid_t *list;
3948 /* how many elements the above list has */
3949 int length;
24528255
LZ
3950 /* each of these stored in a list by its cgroup */
3951 struct list_head links;
3952 /* pointer to the cgroup we belong to, for list removal purposes */
3953 struct cgroup *owner;
b1a21367
TH
3954 /* for delayed destruction */
3955 struct delayed_work destroy_dwork;
24528255
LZ
3956};
3957
d1d9fd33
BB
3958/*
3959 * The following two functions "fix" the issue where there are more pids
3960 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
3961 * TODO: replace with a kernel-wide solution to this problem
3962 */
3963#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
3964static void *pidlist_allocate(int count)
3965{
3966 if (PIDLIST_TOO_LARGE(count))
3967 return vmalloc(count * sizeof(pid_t));
3968 else
3969 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
3970}
b1a21367 3971
d1d9fd33
BB
3972static void pidlist_free(void *p)
3973{
58794514 3974 kvfree(p);
d1d9fd33 3975}
d1d9fd33 3976
b1a21367
TH
3977/*
3978 * Used to destroy all pidlists lingering waiting for destroy timer. None
3979 * should be left afterwards.
3980 */
3981static void cgroup_pidlist_destroy_all(struct cgroup *cgrp)
3982{
3983 struct cgroup_pidlist *l, *tmp_l;
3984
3985 mutex_lock(&cgrp->pidlist_mutex);
3986 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
3987 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
3988 mutex_unlock(&cgrp->pidlist_mutex);
3989
3990 flush_workqueue(cgroup_pidlist_destroy_wq);
3991 BUG_ON(!list_empty(&cgrp->pidlists));
3992}
3993
3994static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
3995{
3996 struct delayed_work *dwork = to_delayed_work(work);
3997 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
3998 destroy_dwork);
3999 struct cgroup_pidlist *tofree = NULL;
4000
4001 mutex_lock(&l->owner->pidlist_mutex);
b1a21367
TH
4002
4003 /*
04502365
TH
4004 * Destroy iff we didn't get queued again. The state won't change
4005 * as destroy_dwork can only be queued while locked.
b1a21367 4006 */
04502365 4007 if (!delayed_work_pending(dwork)) {
b1a21367
TH
4008 list_del(&l->links);
4009 pidlist_free(l->list);
4010 put_pid_ns(l->key.ns);
4011 tofree = l;
4012 }
4013
b1a21367
TH
4014 mutex_unlock(&l->owner->pidlist_mutex);
4015 kfree(tofree);
4016}
4017
bbcb81d0 4018/*
102a775e 4019 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
6ee211ad 4020 * Returns the number of unique elements.
bbcb81d0 4021 */
6ee211ad 4022static int pidlist_uniq(pid_t *list, int length)
bbcb81d0 4023{
102a775e 4024 int src, dest = 1;
102a775e
BB
4025
4026 /*
4027 * we presume the 0th element is unique, so i starts at 1. trivial
4028 * edge cases first; no work needs to be done for either
4029 */
4030 if (length == 0 || length == 1)
4031 return length;
4032 /* src and dest walk down the list; dest counts unique elements */
4033 for (src = 1; src < length; src++) {
4034 /* find next unique element */
4035 while (list[src] == list[src-1]) {
4036 src++;
4037 if (src == length)
4038 goto after;
4039 }
4040 /* dest always points to where the next unique element goes */
4041 list[dest] = list[src];
4042 dest++;
4043 }
4044after:
102a775e
BB
4045 return dest;
4046}
4047
afb2bc14
TH
4048/*
4049 * The two pid files - task and cgroup.procs - guaranteed that the result
4050 * is sorted, which forced this whole pidlist fiasco. As pid order is
4051 * different per namespace, each namespace needs differently sorted list,
4052 * making it impossible to use, for example, single rbtree of member tasks
4053 * sorted by task pointer. As pidlists can be fairly large, allocating one
4054 * per open file is dangerous, so cgroup had to implement shared pool of
4055 * pidlists keyed by cgroup and namespace.
4056 *
4057 * All this extra complexity was caused by the original implementation
4058 * committing to an entirely unnecessary property. In the long term, we
aa6ec29b
TH
4059 * want to do away with it. Explicitly scramble sort order if on the
4060 * default hierarchy so that no such expectation exists in the new
4061 * interface.
afb2bc14
TH
4062 *
4063 * Scrambling is done by swapping every two consecutive bits, which is
4064 * non-identity one-to-one mapping which disturbs sort order sufficiently.
4065 */
4066static pid_t pid_fry(pid_t pid)
4067{
4068 unsigned a = pid & 0x55555555;
4069 unsigned b = pid & 0xAAAAAAAA;
4070
4071 return (a << 1) | (b >> 1);
4072}
4073
4074static pid_t cgroup_pid_fry(struct cgroup *cgrp, pid_t pid)
4075{
aa6ec29b 4076 if (cgroup_on_dfl(cgrp))
afb2bc14
TH
4077 return pid_fry(pid);
4078 else
4079 return pid;
4080}
4081
102a775e
BB
4082static int cmppid(const void *a, const void *b)
4083{
4084 return *(pid_t *)a - *(pid_t *)b;
4085}
4086
afb2bc14
TH
4087static int fried_cmppid(const void *a, const void *b)
4088{
4089 return pid_fry(*(pid_t *)a) - pid_fry(*(pid_t *)b);
4090}
4091
e6b81710
TH
4092static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
4093 enum cgroup_filetype type)
4094{
4095 struct cgroup_pidlist *l;
4096 /* don't need task_nsproxy() if we're looking at ourself */
4097 struct pid_namespace *ns = task_active_pid_ns(current);
4098
4099 lockdep_assert_held(&cgrp->pidlist_mutex);
4100
4101 list_for_each_entry(l, &cgrp->pidlists, links)
4102 if (l->key.type == type && l->key.ns == ns)
4103 return l;
4104 return NULL;
4105}
4106
72a8cb30
BB
4107/*
4108 * find the appropriate pidlist for our purpose (given procs vs tasks)
4109 * returns with the lock on that pidlist already held, and takes care
4110 * of the use count, or returns NULL with no locks held if we're out of
4111 * memory.
4112 */
e6b81710
TH
4113static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
4114 enum cgroup_filetype type)
72a8cb30
BB
4115{
4116 struct cgroup_pidlist *l;
b70cc5fd 4117
e6b81710
TH
4118 lockdep_assert_held(&cgrp->pidlist_mutex);
4119
4120 l = cgroup_pidlist_find(cgrp, type);
4121 if (l)
4122 return l;
4123
72a8cb30 4124 /* entry not found; create a new one */
f4f4be2b 4125 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
e6b81710 4126 if (!l)
72a8cb30 4127 return l;
e6b81710 4128
b1a21367 4129 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
72a8cb30 4130 l->key.type = type;
e6b81710
TH
4131 /* don't need task_nsproxy() if we're looking at ourself */
4132 l->key.ns = get_pid_ns(task_active_pid_ns(current));
72a8cb30
BB
4133 l->owner = cgrp;
4134 list_add(&l->links, &cgrp->pidlists);
72a8cb30
BB
4135 return l;
4136}
4137
102a775e
BB
4138/*
4139 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
4140 */
72a8cb30
BB
4141static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
4142 struct cgroup_pidlist **lp)
102a775e
BB
4143{
4144 pid_t *array;
4145 int length;
4146 int pid, n = 0; /* used for populating the array */
72ec7029 4147 struct css_task_iter it;
817929ec 4148 struct task_struct *tsk;
102a775e
BB
4149 struct cgroup_pidlist *l;
4150
4bac00d1
TH
4151 lockdep_assert_held(&cgrp->pidlist_mutex);
4152
102a775e
BB
4153 /*
4154 * If cgroup gets more users after we read count, we won't have
4155 * enough space - tough. This race is indistinguishable to the
4156 * caller from the case that the additional cgroup users didn't
4157 * show up until sometime later on.
4158 */
4159 length = cgroup_task_count(cgrp);
d1d9fd33 4160 array = pidlist_allocate(length);
102a775e
BB
4161 if (!array)
4162 return -ENOMEM;
4163 /* now, populate the array */
9d800df1 4164 css_task_iter_start(&cgrp->self, &it);
72ec7029 4165 while ((tsk = css_task_iter_next(&it))) {
102a775e 4166 if (unlikely(n == length))
817929ec 4167 break;
102a775e 4168 /* get tgid or pid for procs or tasks file respectively */
72a8cb30
BB
4169 if (type == CGROUP_FILE_PROCS)
4170 pid = task_tgid_vnr(tsk);
4171 else
4172 pid = task_pid_vnr(tsk);
102a775e
BB
4173 if (pid > 0) /* make sure to only use valid results */
4174 array[n++] = pid;
817929ec 4175 }
72ec7029 4176 css_task_iter_end(&it);
102a775e
BB
4177 length = n;
4178 /* now sort & (if procs) strip out duplicates */
aa6ec29b 4179 if (cgroup_on_dfl(cgrp))
afb2bc14
TH
4180 sort(array, length, sizeof(pid_t), fried_cmppid, NULL);
4181 else
4182 sort(array, length, sizeof(pid_t), cmppid, NULL);
72a8cb30 4183 if (type == CGROUP_FILE_PROCS)
6ee211ad 4184 length = pidlist_uniq(array, length);
e6b81710 4185
e6b81710 4186 l = cgroup_pidlist_find_create(cgrp, type);
72a8cb30 4187 if (!l) {
d1d9fd33 4188 pidlist_free(array);
72a8cb30 4189 return -ENOMEM;
102a775e 4190 }
e6b81710
TH
4191
4192 /* store array, freeing old if necessary */
d1d9fd33 4193 pidlist_free(l->list);
102a775e
BB
4194 l->list = array;
4195 l->length = length;
72a8cb30 4196 *lp = l;
102a775e 4197 return 0;
bbcb81d0
PM
4198}
4199
846c7bb0 4200/**
a043e3b2 4201 * cgroupstats_build - build and fill cgroupstats
846c7bb0
BS
4202 * @stats: cgroupstats to fill information into
4203 * @dentry: A dentry entry belonging to the cgroup for which stats have
4204 * been requested.
a043e3b2
LZ
4205 *
4206 * Build and fill cgroupstats so that taskstats can export it to user
4207 * space.
846c7bb0
BS
4208 */
4209int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
4210{
2bd59d48 4211 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
bd89aabc 4212 struct cgroup *cgrp;
72ec7029 4213 struct css_task_iter it;
846c7bb0 4214 struct task_struct *tsk;
33d283be 4215
2bd59d48
TH
4216 /* it should be kernfs_node belonging to cgroupfs and is a directory */
4217 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
4218 kernfs_type(kn) != KERNFS_DIR)
4219 return -EINVAL;
4220
bad34660
LZ
4221 mutex_lock(&cgroup_mutex);
4222
846c7bb0 4223 /*
2bd59d48 4224 * We aren't being called from kernfs and there's no guarantee on
ec903c0c 4225 * @kn->priv's validity. For this and css_tryget_online_from_dir(),
2bd59d48 4226 * @kn->priv is RCU safe. Let's do the RCU dancing.
846c7bb0 4227 */
2bd59d48
TH
4228 rcu_read_lock();
4229 cgrp = rcu_dereference(kn->priv);
bad34660 4230 if (!cgrp || cgroup_is_dead(cgrp)) {
2bd59d48 4231 rcu_read_unlock();
bad34660 4232 mutex_unlock(&cgroup_mutex);
2bd59d48
TH
4233 return -ENOENT;
4234 }
bad34660 4235 rcu_read_unlock();
846c7bb0 4236
9d800df1 4237 css_task_iter_start(&cgrp->self, &it);
72ec7029 4238 while ((tsk = css_task_iter_next(&it))) {
846c7bb0
BS
4239 switch (tsk->state) {
4240 case TASK_RUNNING:
4241 stats->nr_running++;
4242 break;
4243 case TASK_INTERRUPTIBLE:
4244 stats->nr_sleeping++;
4245 break;
4246 case TASK_UNINTERRUPTIBLE:
4247 stats->nr_uninterruptible++;
4248 break;
4249 case TASK_STOPPED:
4250 stats->nr_stopped++;
4251 break;
4252 default:
4253 if (delayacct_is_task_waiting_on_io(tsk))
4254 stats->nr_io_wait++;
4255 break;
4256 }
4257 }
72ec7029 4258 css_task_iter_end(&it);
846c7bb0 4259
bad34660 4260 mutex_unlock(&cgroup_mutex);
2bd59d48 4261 return 0;
846c7bb0
BS
4262}
4263
8f3ff208 4264
bbcb81d0 4265/*
102a775e 4266 * seq_file methods for the tasks/procs files. The seq_file position is the
cc31edce 4267 * next pid to display; the seq_file iterator is a pointer to the pid
102a775e 4268 * in the cgroup->l->list array.
bbcb81d0 4269 */
cc31edce 4270
102a775e 4271static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
bbcb81d0 4272{
cc31edce
PM
4273 /*
4274 * Initially we receive a position value that corresponds to
4275 * one more than the last pid shown (or 0 on the first call or
4276 * after a seek to the start). Use a binary-search to find the
4277 * next pid to display, if any
4278 */
2bd59d48 4279 struct kernfs_open_file *of = s->private;
7da11279 4280 struct cgroup *cgrp = seq_css(s)->cgroup;
4bac00d1 4281 struct cgroup_pidlist *l;
7da11279 4282 enum cgroup_filetype type = seq_cft(s)->private;
cc31edce 4283 int index = 0, pid = *pos;
4bac00d1
TH
4284 int *iter, ret;
4285
4286 mutex_lock(&cgrp->pidlist_mutex);
4287
4288 /*
5d22444f 4289 * !NULL @of->priv indicates that this isn't the first start()
4bac00d1 4290 * after open. If the matching pidlist is around, we can use that.
5d22444f 4291 * Look for it. Note that @of->priv can't be used directly. It
4bac00d1
TH
4292 * could already have been destroyed.
4293 */
5d22444f
TH
4294 if (of->priv)
4295 of->priv = cgroup_pidlist_find(cgrp, type);
4bac00d1
TH
4296
4297 /*
4298 * Either this is the first start() after open or the matching
4299 * pidlist has been destroyed inbetween. Create a new one.
4300 */
5d22444f
TH
4301 if (!of->priv) {
4302 ret = pidlist_array_load(cgrp, type,
4303 (struct cgroup_pidlist **)&of->priv);
4bac00d1
TH
4304 if (ret)
4305 return ERR_PTR(ret);
4306 }
5d22444f 4307 l = of->priv;
cc31edce 4308
cc31edce 4309 if (pid) {
102a775e 4310 int end = l->length;
20777766 4311
cc31edce
PM
4312 while (index < end) {
4313 int mid = (index + end) / 2;
afb2bc14 4314 if (cgroup_pid_fry(cgrp, l->list[mid]) == pid) {
cc31edce
PM
4315 index = mid;
4316 break;
afb2bc14 4317 } else if (cgroup_pid_fry(cgrp, l->list[mid]) <= pid)
cc31edce
PM
4318 index = mid + 1;
4319 else
4320 end = mid;
4321 }
4322 }
4323 /* If we're off the end of the array, we're done */
102a775e 4324 if (index >= l->length)
cc31edce
PM
4325 return NULL;
4326 /* Update the abstract position to be the actual pid that we found */
102a775e 4327 iter = l->list + index;
afb2bc14 4328 *pos = cgroup_pid_fry(cgrp, *iter);
cc31edce
PM
4329 return iter;
4330}
4331
102a775e 4332static void cgroup_pidlist_stop(struct seq_file *s, void *v)
cc31edce 4333{
2bd59d48 4334 struct kernfs_open_file *of = s->private;
5d22444f 4335 struct cgroup_pidlist *l = of->priv;
62236858 4336
5d22444f
TH
4337 if (l)
4338 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
04502365 4339 CGROUP_PIDLIST_DESTROY_DELAY);
7da11279 4340 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
cc31edce
PM
4341}
4342
102a775e 4343static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
cc31edce 4344{
2bd59d48 4345 struct kernfs_open_file *of = s->private;
5d22444f 4346 struct cgroup_pidlist *l = of->priv;
102a775e
BB
4347 pid_t *p = v;
4348 pid_t *end = l->list + l->length;
cc31edce
PM
4349 /*
4350 * Advance to the next pid in the array. If this goes off the
4351 * end, we're done
4352 */
4353 p++;
4354 if (p >= end) {
4355 return NULL;
4356 } else {
7da11279 4357 *pos = cgroup_pid_fry(seq_css(s)->cgroup, *p);
cc31edce
PM
4358 return p;
4359 }
4360}
4361
102a775e 4362static int cgroup_pidlist_show(struct seq_file *s, void *v)
cc31edce 4363{
94ff212d
JP
4364 seq_printf(s, "%d\n", *(int *)v);
4365
4366 return 0;
cc31edce 4367}
bbcb81d0 4368
182446d0
TH
4369static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
4370 struct cftype *cft)
81a6a5cd 4371{
182446d0 4372 return notify_on_release(css->cgroup);
81a6a5cd
PM
4373}
4374
182446d0
TH
4375static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
4376 struct cftype *cft, u64 val)
6379c106 4377{
6379c106 4378 if (val)
182446d0 4379 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106 4380 else
182446d0 4381 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106
PM
4382 return 0;
4383}
4384
182446d0
TH
4385static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
4386 struct cftype *cft)
97978e6d 4387{
182446d0 4388 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
4389}
4390
182446d0
TH
4391static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
4392 struct cftype *cft, u64 val)
97978e6d
DL
4393{
4394 if (val)
182446d0 4395 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d 4396 else
182446d0 4397 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
4398 return 0;
4399}
4400
a14c6874
TH
4401/* cgroup core interface files for the default hierarchy */
4402static struct cftype cgroup_dfl_base_files[] = {
81a6a5cd 4403 {
d5c56ced 4404 .name = "cgroup.procs",
6f60eade 4405 .file_offset = offsetof(struct cgroup, procs_file),
6612f05b
TH
4406 .seq_start = cgroup_pidlist_start,
4407 .seq_next = cgroup_pidlist_next,
4408 .seq_stop = cgroup_pidlist_stop,
4409 .seq_show = cgroup_pidlist_show,
5d22444f 4410 .private = CGROUP_FILE_PROCS,
acbef755 4411 .write = cgroup_procs_write,
102a775e 4412 },
f8f22e53
TH
4413 {
4414 .name = "cgroup.controllers",
a14c6874 4415 .flags = CFTYPE_ONLY_ON_ROOT,
f8f22e53
TH
4416 .seq_show = cgroup_root_controllers_show,
4417 },
4418 {
4419 .name = "cgroup.controllers",
a14c6874 4420 .flags = CFTYPE_NOT_ON_ROOT,
f8f22e53
TH
4421 .seq_show = cgroup_controllers_show,
4422 },
4423 {
4424 .name = "cgroup.subtree_control",
f8f22e53 4425 .seq_show = cgroup_subtree_control_show,
451af504 4426 .write = cgroup_subtree_control_write,
f8f22e53 4427 },
842b597e 4428 {
4a07c222 4429 .name = "cgroup.events",
a14c6874 4430 .flags = CFTYPE_NOT_ON_ROOT,
6f60eade 4431 .file_offset = offsetof(struct cgroup, events_file),
4a07c222 4432 .seq_show = cgroup_events_show,
842b597e 4433 },
a14c6874
TH
4434 { } /* terminate */
4435};
d5c56ced 4436
a14c6874
TH
4437/* cgroup core interface files for the legacy hierarchies */
4438static struct cftype cgroup_legacy_base_files[] = {
4439 {
4440 .name = "cgroup.procs",
4441 .seq_start = cgroup_pidlist_start,
4442 .seq_next = cgroup_pidlist_next,
4443 .seq_stop = cgroup_pidlist_stop,
4444 .seq_show = cgroup_pidlist_show,
4445 .private = CGROUP_FILE_PROCS,
4446 .write = cgroup_procs_write,
a14c6874
TH
4447 },
4448 {
4449 .name = "cgroup.clone_children",
4450 .read_u64 = cgroup_clone_children_read,
4451 .write_u64 = cgroup_clone_children_write,
4452 },
4453 {
4454 .name = "cgroup.sane_behavior",
4455 .flags = CFTYPE_ONLY_ON_ROOT,
4456 .seq_show = cgroup_sane_behavior_show,
4457 },
d5c56ced
TH
4458 {
4459 .name = "tasks",
6612f05b
TH
4460 .seq_start = cgroup_pidlist_start,
4461 .seq_next = cgroup_pidlist_next,
4462 .seq_stop = cgroup_pidlist_stop,
4463 .seq_show = cgroup_pidlist_show,
5d22444f 4464 .private = CGROUP_FILE_TASKS,
acbef755 4465 .write = cgroup_tasks_write,
d5c56ced
TH
4466 },
4467 {
4468 .name = "notify_on_release",
d5c56ced
TH
4469 .read_u64 = cgroup_read_notify_on_release,
4470 .write_u64 = cgroup_write_notify_on_release,
4471 },
6e6ff25b
TH
4472 {
4473 .name = "release_agent",
a14c6874 4474 .flags = CFTYPE_ONLY_ON_ROOT,
2da8ca82 4475 .seq_show = cgroup_release_agent_show,
451af504 4476 .write = cgroup_release_agent_write,
5f469907 4477 .max_write_len = PATH_MAX - 1,
6e6ff25b 4478 },
db0416b6 4479 { } /* terminate */
bbcb81d0
PM
4480};
4481
0c21ead1
TH
4482/*
4483 * css destruction is four-stage process.
4484 *
4485 * 1. Destruction starts. Killing of the percpu_ref is initiated.
4486 * Implemented in kill_css().
4487 *
4488 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
ec903c0c
TH
4489 * and thus css_tryget_online() is guaranteed to fail, the css can be
4490 * offlined by invoking offline_css(). After offlining, the base ref is
4491 * put. Implemented in css_killed_work_fn().
0c21ead1
TH
4492 *
4493 * 3. When the percpu_ref reaches zero, the only possible remaining
4494 * accessors are inside RCU read sections. css_release() schedules the
4495 * RCU callback.
4496 *
4497 * 4. After the grace period, the css can be freed. Implemented in
4498 * css_free_work_fn().
4499 *
4500 * It is actually hairier because both step 2 and 4 require process context
4501 * and thus involve punting to css->destroy_work adding two additional
4502 * steps to the already complex sequence.
4503 */
35ef10da 4504static void css_free_work_fn(struct work_struct *work)
48ddbe19
TH
4505{
4506 struct cgroup_subsys_state *css =
35ef10da 4507 container_of(work, struct cgroup_subsys_state, destroy_work);
01e58659 4508 struct cgroup_subsys *ss = css->ss;
0c21ead1 4509 struct cgroup *cgrp = css->cgroup;
6f60eade 4510 struct cgroup_file *cfile;
48ddbe19 4511
9a1049da
TH
4512 percpu_ref_exit(&css->refcnt);
4513
6f60eade
TH
4514 list_for_each_entry(cfile, &css->files, node)
4515 kernfs_put(cfile->kn);
4516
01e58659 4517 if (ss) {
9d755d33 4518 /* css free path */
01e58659
VD
4519 int id = css->id;
4520
9d755d33
TH
4521 if (css->parent)
4522 css_put(css->parent);
0ae78e0b 4523
01e58659
VD
4524 ss->css_free(css);
4525 cgroup_idr_remove(&ss->css_idr, id);
9d755d33
TH
4526 cgroup_put(cgrp);
4527 } else {
4528 /* cgroup free path */
4529 atomic_dec(&cgrp->root->nr_cgrps);
4530 cgroup_pidlist_destroy_all(cgrp);
971ff493 4531 cancel_work_sync(&cgrp->release_agent_work);
9d755d33 4532
d51f39b0 4533 if (cgroup_parent(cgrp)) {
9d755d33
TH
4534 /*
4535 * We get a ref to the parent, and put the ref when
4536 * this cgroup is being freed, so it's guaranteed
4537 * that the parent won't be destroyed before its
4538 * children.
4539 */
d51f39b0 4540 cgroup_put(cgroup_parent(cgrp));
9d755d33
TH
4541 kernfs_put(cgrp->kn);
4542 kfree(cgrp);
4543 } else {
4544 /*
4545 * This is root cgroup's refcnt reaching zero,
4546 * which indicates that the root should be
4547 * released.
4548 */
4549 cgroup_destroy_root(cgrp->root);
4550 }
4551 }
48ddbe19
TH
4552}
4553
0c21ead1 4554static void css_free_rcu_fn(struct rcu_head *rcu_head)
d3daf28d
TH
4555{
4556 struct cgroup_subsys_state *css =
0c21ead1 4557 container_of(rcu_head, struct cgroup_subsys_state, rcu_head);
d3daf28d 4558
35ef10da 4559 INIT_WORK(&css->destroy_work, css_free_work_fn);
e5fca243 4560 queue_work(cgroup_destroy_wq, &css->destroy_work);
48ddbe19
TH
4561}
4562
25e15d83 4563static void css_release_work_fn(struct work_struct *work)
d3daf28d
TH
4564{
4565 struct cgroup_subsys_state *css =
25e15d83 4566 container_of(work, struct cgroup_subsys_state, destroy_work);
15a4c835 4567 struct cgroup_subsys *ss = css->ss;
9d755d33 4568 struct cgroup *cgrp = css->cgroup;
15a4c835 4569
1fed1b2e
TH
4570 mutex_lock(&cgroup_mutex);
4571
de3f0341 4572 css->flags |= CSS_RELEASED;
1fed1b2e
TH
4573 list_del_rcu(&css->sibling);
4574
9d755d33
TH
4575 if (ss) {
4576 /* css release path */
01e58659 4577 cgroup_idr_replace(&ss->css_idr, NULL, css->id);
7d172cc8
TH
4578 if (ss->css_released)
4579 ss->css_released(css);
9d755d33
TH
4580 } else {
4581 /* cgroup release path */
9d755d33
TH
4582 cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
4583 cgrp->id = -1;
a4189487
LZ
4584
4585 /*
4586 * There are two control paths which try to determine
4587 * cgroup from dentry without going through kernfs -
4588 * cgroupstats_build() and css_tryget_online_from_dir().
4589 * Those are supported by RCU protecting clearing of
4590 * cgrp->kn->priv backpointer.
4591 */
4592 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv, NULL);
9d755d33 4593 }
d3daf28d 4594
1fed1b2e
TH
4595 mutex_unlock(&cgroup_mutex);
4596
0c21ead1 4597 call_rcu(&css->rcu_head, css_free_rcu_fn);
d3daf28d
TH
4598}
4599
d3daf28d
TH
4600static void css_release(struct percpu_ref *ref)
4601{
4602 struct cgroup_subsys_state *css =
4603 container_of(ref, struct cgroup_subsys_state, refcnt);
4604
25e15d83
TH
4605 INIT_WORK(&css->destroy_work, css_release_work_fn);
4606 queue_work(cgroup_destroy_wq, &css->destroy_work);
d3daf28d
TH
4607}
4608
ddfcadab
TH
4609static void init_and_link_css(struct cgroup_subsys_state *css,
4610 struct cgroup_subsys *ss, struct cgroup *cgrp)
ddbcc7e8 4611{
0cb51d71
TH
4612 lockdep_assert_held(&cgroup_mutex);
4613
ddfcadab
TH
4614 cgroup_get(cgrp);
4615
d5c419b6 4616 memset(css, 0, sizeof(*css));
bd89aabc 4617 css->cgroup = cgrp;
72c97e54 4618 css->ss = ss;
d5c419b6
TH
4619 INIT_LIST_HEAD(&css->sibling);
4620 INIT_LIST_HEAD(&css->children);
6f60eade 4621 INIT_LIST_HEAD(&css->files);
0cb51d71 4622 css->serial_nr = css_serial_nr_next++;
0ae78e0b 4623
d51f39b0
TH
4624 if (cgroup_parent(cgrp)) {
4625 css->parent = cgroup_css(cgroup_parent(cgrp), ss);
ddfcadab 4626 css_get(css->parent);
ddfcadab 4627 }
48ddbe19 4628
ca8bdcaf 4629 BUG_ON(cgroup_css(cgrp, ss));
ddbcc7e8
PM
4630}
4631
2a4ac633 4632/* invoke ->css_online() on a new CSS and mark it online if successful */
623f926b 4633static int online_css(struct cgroup_subsys_state *css)
a31f2d3f 4634{
623f926b 4635 struct cgroup_subsys *ss = css->ss;
b1929db4
TH
4636 int ret = 0;
4637
a31f2d3f
TH
4638 lockdep_assert_held(&cgroup_mutex);
4639
92fb9748 4640 if (ss->css_online)
eb95419b 4641 ret = ss->css_online(css);
ae7f164a 4642 if (!ret) {
eb95419b 4643 css->flags |= CSS_ONLINE;
aec25020 4644 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
ae7f164a 4645 }
b1929db4 4646 return ret;
a31f2d3f
TH
4647}
4648
2a4ac633 4649/* if the CSS is online, invoke ->css_offline() on it and mark it offline */
623f926b 4650static void offline_css(struct cgroup_subsys_state *css)
a31f2d3f 4651{
623f926b 4652 struct cgroup_subsys *ss = css->ss;
a31f2d3f
TH
4653
4654 lockdep_assert_held(&cgroup_mutex);
4655
4656 if (!(css->flags & CSS_ONLINE))
4657 return;
4658
d7eeac19 4659 if (ss->css_offline)
eb95419b 4660 ss->css_offline(css);
a31f2d3f 4661
eb95419b 4662 css->flags &= ~CSS_ONLINE;
e3297803 4663 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
f8f22e53
TH
4664
4665 wake_up_all(&css->cgroup->offline_waitq);
a31f2d3f
TH
4666}
4667
c81c925a
TH
4668/**
4669 * create_css - create a cgroup_subsys_state
4670 * @cgrp: the cgroup new css will be associated with
4671 * @ss: the subsys of new css
f63070d3 4672 * @visible: whether to create control knobs for the new css or not
c81c925a
TH
4673 *
4674 * Create a new css associated with @cgrp - @ss pair. On success, the new
f63070d3
TH
4675 * css is online and installed in @cgrp with all interface files created if
4676 * @visible. Returns 0 on success, -errno on failure.
c81c925a 4677 */
f63070d3
TH
4678static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss,
4679 bool visible)
c81c925a 4680{
d51f39b0 4681 struct cgroup *parent = cgroup_parent(cgrp);
1fed1b2e 4682 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
c81c925a
TH
4683 struct cgroup_subsys_state *css;
4684 int err;
4685
c81c925a
TH
4686 lockdep_assert_held(&cgroup_mutex);
4687
1fed1b2e 4688 css = ss->css_alloc(parent_css);
c81c925a
TH
4689 if (IS_ERR(css))
4690 return PTR_ERR(css);
4691
ddfcadab 4692 init_and_link_css(css, ss, cgrp);
a2bed820 4693
2aad2a86 4694 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
c81c925a 4695 if (err)
3eb59ec6 4696 goto err_free_css;
c81c925a 4697
cf780b7d 4698 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
15a4c835
TH
4699 if (err < 0)
4700 goto err_free_percpu_ref;
4701 css->id = err;
c81c925a 4702
f63070d3 4703 if (visible) {
4df8dc90 4704 err = css_populate_dir(css, NULL);
f63070d3
TH
4705 if (err)
4706 goto err_free_id;
4707 }
15a4c835
TH
4708
4709 /* @css is ready to be brought online now, make it visible */
1fed1b2e 4710 list_add_tail_rcu(&css->sibling, &parent_css->children);
15a4c835 4711 cgroup_idr_replace(&ss->css_idr, css, css->id);
c81c925a
TH
4712
4713 err = online_css(css);
4714 if (err)
1fed1b2e 4715 goto err_list_del;
94419627 4716
c81c925a 4717 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
d51f39b0 4718 cgroup_parent(parent)) {
ed3d261b 4719 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
a2a1f9ea 4720 current->comm, current->pid, ss->name);
c81c925a 4721 if (!strcmp(ss->name, "memory"))
ed3d261b 4722 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
c81c925a
TH
4723 ss->warned_broken_hierarchy = true;
4724 }
4725
4726 return 0;
4727
1fed1b2e
TH
4728err_list_del:
4729 list_del_rcu(&css->sibling);
4df8dc90 4730 css_clear_dir(css, NULL);
15a4c835
TH
4731err_free_id:
4732 cgroup_idr_remove(&ss->css_idr, css->id);
3eb59ec6 4733err_free_percpu_ref:
9a1049da 4734 percpu_ref_exit(&css->refcnt);
3eb59ec6 4735err_free_css:
a2bed820 4736 call_rcu(&css->rcu_head, css_free_rcu_fn);
c81c925a
TH
4737 return err;
4738}
4739
b3bfd983
TH
4740static int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
4741 umode_t mode)
ddbcc7e8 4742{
a9746d8d
TH
4743 struct cgroup *parent, *cgrp;
4744 struct cgroup_root *root;
ddbcc7e8 4745 struct cgroup_subsys *ss;
2bd59d48 4746 struct kernfs_node *kn;
b3bfd983 4747 int ssid, ret;
ddbcc7e8 4748
71b1fb5c
AC
4749 /* Do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable.
4750 */
4751 if (strchr(name, '\n'))
4752 return -EINVAL;
4753
a9746d8d
TH
4754 parent = cgroup_kn_lock_live(parent_kn);
4755 if (!parent)
4756 return -ENODEV;
4757 root = parent->root;
ddbcc7e8 4758
0a950f65 4759 /* allocate the cgroup and its ID, 0 is reserved for the root */
bd89aabc 4760 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
ba0f4d76
TH
4761 if (!cgrp) {
4762 ret = -ENOMEM;
4763 goto out_unlock;
0ab02ca8
LZ
4764 }
4765
2aad2a86 4766 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
9d755d33
TH
4767 if (ret)
4768 goto out_free_cgrp;
4769
0ab02ca8
LZ
4770 /*
4771 * Temporarily set the pointer to NULL, so idr_find() won't return
4772 * a half-baked cgroup.
4773 */
cf780b7d 4774 cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_KERNEL);
0ab02ca8 4775 if (cgrp->id < 0) {
ba0f4d76 4776 ret = -ENOMEM;
9d755d33 4777 goto out_cancel_ref;
976c06bc
TH
4778 }
4779
cc31edce 4780 init_cgroup_housekeeping(cgrp);
ddbcc7e8 4781
9d800df1 4782 cgrp->self.parent = &parent->self;
ba0f4d76 4783 cgrp->root = root;
ddbcc7e8 4784
b6abdb0e
LZ
4785 if (notify_on_release(parent))
4786 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
4787
2260e7fc
TH
4788 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
4789 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
97978e6d 4790
2bd59d48 4791 /* create the directory */
e61734c5 4792 kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
2bd59d48 4793 if (IS_ERR(kn)) {
ba0f4d76
TH
4794 ret = PTR_ERR(kn);
4795 goto out_free_id;
2bd59d48
TH
4796 }
4797 cgrp->kn = kn;
ddbcc7e8 4798
4e139afc 4799 /*
6f30558f
TH
4800 * This extra ref will be put in cgroup_free_fn() and guarantees
4801 * that @cgrp->kn is always accessible.
4e139afc 4802 */
6f30558f 4803 kernfs_get(kn);
ddbcc7e8 4804
0cb51d71 4805 cgrp->self.serial_nr = css_serial_nr_next++;
53fa5261 4806
4e139afc 4807 /* allocation complete, commit to creation */
d5c419b6 4808 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
3c9c825b 4809 atomic_inc(&root->nr_cgrps);
59f5296b 4810 cgroup_get(parent);
415cf07a 4811
0d80255e
TH
4812 /*
4813 * @cgrp is now fully operational. If something fails after this
4814 * point, it'll be released via the normal destruction path.
4815 */
6fa4918d 4816 cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
4e96ee8e 4817
ba0f4d76
TH
4818 ret = cgroup_kn_set_ugid(kn);
4819 if (ret)
4820 goto out_destroy;
49957f8e 4821
4df8dc90 4822 ret = css_populate_dir(&cgrp->self, NULL);
ba0f4d76
TH
4823 if (ret)
4824 goto out_destroy;
628f7cd4 4825
9d403e99 4826 /* let's create and online css's */
b85d2040 4827 for_each_subsys(ss, ssid) {
f392e51c 4828 if (parent->child_subsys_mask & (1 << ssid)) {
f63070d3
TH
4829 ret = create_css(cgrp, ss,
4830 parent->subtree_control & (1 << ssid));
ba0f4d76
TH
4831 if (ret)
4832 goto out_destroy;
b85d2040 4833 }
a8638030 4834 }
ddbcc7e8 4835
bd53d617
TH
4836 /*
4837 * On the default hierarchy, a child doesn't automatically inherit
667c2491 4838 * subtree_control from the parent. Each is configured manually.
bd53d617 4839 */
667c2491
TH
4840 if (!cgroup_on_dfl(cgrp)) {
4841 cgrp->subtree_control = parent->subtree_control;
4842 cgroup_refresh_child_subsys_mask(cgrp);
4843 }
2bd59d48 4844
2bd59d48 4845 kernfs_activate(kn);
ddbcc7e8 4846
ba0f4d76
TH
4847 ret = 0;
4848 goto out_unlock;
ddbcc7e8 4849
ba0f4d76 4850out_free_id:
6fa4918d 4851 cgroup_idr_remove(&root->cgroup_idr, cgrp->id);
9d755d33 4852out_cancel_ref:
9a1049da 4853 percpu_ref_exit(&cgrp->self.refcnt);
ba0f4d76 4854out_free_cgrp:
bd89aabc 4855 kfree(cgrp);
ba0f4d76 4856out_unlock:
a9746d8d 4857 cgroup_kn_unlock(parent_kn);
ba0f4d76 4858 return ret;
4b8b47eb 4859
ba0f4d76 4860out_destroy:
4b8b47eb 4861 cgroup_destroy_locked(cgrp);
ba0f4d76 4862 goto out_unlock;
ddbcc7e8
PM
4863}
4864
223dbc38
TH
4865/*
4866 * This is called when the refcnt of a css is confirmed to be killed.
249f3468
TH
4867 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to
4868 * initate destruction and put the css ref from kill_css().
223dbc38
TH
4869 */
4870static void css_killed_work_fn(struct work_struct *work)
d3daf28d 4871{
223dbc38
TH
4872 struct cgroup_subsys_state *css =
4873 container_of(work, struct cgroup_subsys_state, destroy_work);
d3daf28d 4874
f20104de 4875 mutex_lock(&cgroup_mutex);
09a503ea 4876 offline_css(css);
f20104de 4877 mutex_unlock(&cgroup_mutex);
09a503ea 4878
09a503ea 4879 css_put(css);
d3daf28d
TH
4880}
4881
223dbc38
TH
4882/* css kill confirmation processing requires process context, bounce */
4883static void css_killed_ref_fn(struct percpu_ref *ref)
d3daf28d
TH
4884{
4885 struct cgroup_subsys_state *css =
4886 container_of(ref, struct cgroup_subsys_state, refcnt);
4887
223dbc38 4888 INIT_WORK(&css->destroy_work, css_killed_work_fn);
e5fca243 4889 queue_work(cgroup_destroy_wq, &css->destroy_work);
d3daf28d
TH
4890}
4891
f392e51c
TH
4892/**
4893 * kill_css - destroy a css
4894 * @css: css to destroy
4895 *
4896 * This function initiates destruction of @css by removing cgroup interface
4897 * files and putting its base reference. ->css_offline() will be invoked
ec903c0c
TH
4898 * asynchronously once css_tryget_online() is guaranteed to fail and when
4899 * the reference count reaches zero, @css will be released.
f392e51c
TH
4900 */
4901static void kill_css(struct cgroup_subsys_state *css)
edae0c33 4902{
01f6474c 4903 lockdep_assert_held(&cgroup_mutex);
94419627 4904
2bd59d48
TH
4905 /*
4906 * This must happen before css is disassociated with its cgroup.
4907 * See seq_css() for details.
4908 */
4df8dc90 4909 css_clear_dir(css, NULL);
3c14f8b4 4910
edae0c33
TH
4911 /*
4912 * Killing would put the base ref, but we need to keep it alive
4913 * until after ->css_offline().
4914 */
4915 css_get(css);
4916
4917 /*
4918 * cgroup core guarantees that, by the time ->css_offline() is
4919 * invoked, no new css reference will be given out via
ec903c0c 4920 * css_tryget_online(). We can't simply call percpu_ref_kill() and
edae0c33
TH
4921 * proceed to offlining css's because percpu_ref_kill() doesn't
4922 * guarantee that the ref is seen as killed on all CPUs on return.
4923 *
4924 * Use percpu_ref_kill_and_confirm() to get notifications as each
4925 * css is confirmed to be seen as killed on all CPUs.
4926 */
4927 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
d3daf28d
TH
4928}
4929
4930/**
4931 * cgroup_destroy_locked - the first stage of cgroup destruction
4932 * @cgrp: cgroup to be destroyed
4933 *
4934 * css's make use of percpu refcnts whose killing latency shouldn't be
4935 * exposed to userland and are RCU protected. Also, cgroup core needs to
ec903c0c
TH
4936 * guarantee that css_tryget_online() won't succeed by the time
4937 * ->css_offline() is invoked. To satisfy all the requirements,
4938 * destruction is implemented in the following two steps.
d3daf28d
TH
4939 *
4940 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
4941 * userland visible parts and start killing the percpu refcnts of
4942 * css's. Set up so that the next stage will be kicked off once all
4943 * the percpu refcnts are confirmed to be killed.
4944 *
4945 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
4946 * rest of destruction. Once all cgroup references are gone, the
4947 * cgroup is RCU-freed.
4948 *
4949 * This function implements s1. After this step, @cgrp is gone as far as
4950 * the userland is concerned and a new cgroup with the same name may be
4951 * created. As cgroup doesn't care about the names internally, this
4952 * doesn't cause any problem.
4953 */
42809dd4
TH
4954static int cgroup_destroy_locked(struct cgroup *cgrp)
4955 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
ddbcc7e8 4956{
2bd59d48 4957 struct cgroup_subsys_state *css;
ddd69148 4958 bool empty;
1c6727af 4959 int ssid;
ddbcc7e8 4960
42809dd4
TH
4961 lockdep_assert_held(&cgroup_mutex);
4962
ddd69148 4963 /*
96d365e0 4964 * css_set_rwsem synchronizes access to ->cset_links and prevents
89c5509b 4965 * @cgrp from being removed while put_css_set() is in progress.
ddd69148 4966 */
96d365e0 4967 down_read(&css_set_rwsem);
bb78a92f 4968 empty = list_empty(&cgrp->cset_links);
96d365e0 4969 up_read(&css_set_rwsem);
ddd69148 4970 if (!empty)
ddbcc7e8 4971 return -EBUSY;
a043e3b2 4972
bb78a92f 4973 /*
d5c419b6
TH
4974 * Make sure there's no live children. We can't test emptiness of
4975 * ->self.children as dead children linger on it while being
4976 * drained; otherwise, "rmdir parent/child parent" may fail.
bb78a92f 4977 */
f3d46500 4978 if (css_has_online_children(&cgrp->self))
bb78a92f
HD
4979 return -EBUSY;
4980
455050d2
TH
4981 /*
4982 * Mark @cgrp dead. This prevents further task migration and child
de3f0341 4983 * creation by disabling cgroup_lock_live_group().
455050d2 4984 */
184faf32 4985 cgrp->self.flags &= ~CSS_ONLINE;
ddbcc7e8 4986
249f3468 4987 /* initiate massacre of all css's */
1c6727af
TH
4988 for_each_css(css, ssid, cgrp)
4989 kill_css(css);
455050d2 4990
455050d2 4991 /*
01f6474c
TH
4992 * Remove @cgrp directory along with the base files. @cgrp has an
4993 * extra ref on its kn.
f20104de 4994 */
01f6474c 4995 kernfs_remove(cgrp->kn);
f20104de 4996
d51f39b0 4997 check_for_release(cgroup_parent(cgrp));
2bd59d48 4998
249f3468 4999 /* put the base reference */
9d755d33 5000 percpu_ref_kill(&cgrp->self.refcnt);
455050d2 5001
ea15f8cc
TH
5002 return 0;
5003};
5004
2bd59d48 5005static int cgroup_rmdir(struct kernfs_node *kn)
42809dd4 5006{
a9746d8d 5007 struct cgroup *cgrp;
2bd59d48 5008 int ret = 0;
42809dd4 5009
a9746d8d
TH
5010 cgrp = cgroup_kn_lock_live(kn);
5011 if (!cgrp)
5012 return 0;
42809dd4 5013
a9746d8d 5014 ret = cgroup_destroy_locked(cgrp);
2bb566cb 5015
a9746d8d 5016 cgroup_kn_unlock(kn);
42809dd4 5017 return ret;
8e3f6541
TH
5018}
5019
2bd59d48
TH
5020static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
5021 .remount_fs = cgroup_remount,
5022 .show_options = cgroup_show_options,
5023 .mkdir = cgroup_mkdir,
5024 .rmdir = cgroup_rmdir,
5025 .rename = cgroup_rename,
5026};
5027
15a4c835 5028static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
ddbcc7e8 5029{
ddbcc7e8 5030 struct cgroup_subsys_state *css;
cfe36bde
DC
5031
5032 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
ddbcc7e8 5033
648bb56d
TH
5034 mutex_lock(&cgroup_mutex);
5035
15a4c835 5036 idr_init(&ss->css_idr);
0adb0704 5037 INIT_LIST_HEAD(&ss->cfts);
8e3f6541 5038
3dd06ffa
TH
5039 /* Create the root cgroup state for this subsystem */
5040 ss->root = &cgrp_dfl_root;
5041 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
ddbcc7e8
PM
5042 /* We don't handle early failures gracefully */
5043 BUG_ON(IS_ERR(css));
ddfcadab 5044 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
3b514d24
TH
5045
5046 /*
5047 * Root csses are never destroyed and we can't initialize
5048 * percpu_ref during early init. Disable refcnting.
5049 */
5050 css->flags |= CSS_NO_REF;
5051
15a4c835 5052 if (early) {
9395a450 5053 /* allocation can't be done safely during early init */
15a4c835
TH
5054 css->id = 1;
5055 } else {
5056 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
5057 BUG_ON(css->id < 0);
5058 }
ddbcc7e8 5059
e8d55fde 5060 /* Update the init_css_set to contain a subsys
817929ec 5061 * pointer to this state - since the subsystem is
e8d55fde 5062 * newly registered, all tasks and hence the
3dd06ffa 5063 * init_css_set is in the subsystem's root cgroup. */
aec25020 5064 init_css_set.subsys[ss->id] = css;
ddbcc7e8 5065
cb4a3167
AS
5066 have_fork_callback |= (bool)ss->fork << ss->id;
5067 have_exit_callback |= (bool)ss->exit << ss->id;
7e47682e 5068 have_canfork_callback |= (bool)ss->can_fork << ss->id;
ddbcc7e8 5069
e8d55fde
LZ
5070 /* At system boot, before all subsystems have been
5071 * registered, no tasks have been forked, so we don't
5072 * need to invoke fork callbacks here. */
5073 BUG_ON(!list_empty(&init_task.tasks));
5074
ae7f164a 5075 BUG_ON(online_css(css));
a8638030 5076
cf5d5941
BB
5077 mutex_unlock(&cgroup_mutex);
5078}
cf5d5941 5079
ddbcc7e8 5080/**
a043e3b2
LZ
5081 * cgroup_init_early - cgroup initialization at system boot
5082 *
5083 * Initialize cgroups at system boot, and initialize any
5084 * subsystems that request early init.
ddbcc7e8
PM
5085 */
5086int __init cgroup_init_early(void)
5087{
7b9a6ba5 5088 static struct cgroup_sb_opts __initdata opts;
30159ec7 5089 struct cgroup_subsys *ss;
ddbcc7e8 5090 int i;
30159ec7 5091
3dd06ffa 5092 init_cgroup_root(&cgrp_dfl_root, &opts);
3b514d24
TH
5093 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
5094
a4ea1cc9 5095 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
817929ec 5096
3ed80a62 5097 for_each_subsys(ss, i) {
aec25020 5098 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
073219e9
TH
5099 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p name:id=%d:%s\n",
5100 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
aec25020 5101 ss->id, ss->name);
073219e9
TH
5102 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
5103 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
5104
aec25020 5105 ss->id = i;
073219e9 5106 ss->name = cgroup_subsys_name[i];
3e1d2eed
TH
5107 if (!ss->legacy_name)
5108 ss->legacy_name = cgroup_subsys_name[i];
ddbcc7e8
PM
5109
5110 if (ss->early_init)
15a4c835 5111 cgroup_init_subsys(ss, true);
ddbcc7e8
PM
5112 }
5113 return 0;
5114}
5115
5116/**
a043e3b2
LZ
5117 * cgroup_init - cgroup initialization
5118 *
5119 * Register cgroup filesystem and /proc file, and initialize
5120 * any subsystems that didn't request early init.
ddbcc7e8
PM
5121 */
5122int __init cgroup_init(void)
5123{
30159ec7 5124 struct cgroup_subsys *ss;
0ac801fe 5125 unsigned long key;
172a2c06 5126 int ssid, err;
ddbcc7e8 5127
1ed13287 5128 BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem));
a14c6874
TH
5129 BUG_ON(cgroup_init_cftypes(NULL, cgroup_dfl_base_files));
5130 BUG_ON(cgroup_init_cftypes(NULL, cgroup_legacy_base_files));
ddbcc7e8 5131
54e7b4eb 5132 mutex_lock(&cgroup_mutex);
54e7b4eb 5133
82fe9b0d
TH
5134 /* Add init_css_set to the hash table */
5135 key = css_set_hash(init_css_set.subsys);
5136 hash_add(css_set_table, &init_css_set.hlist, key);
5137
3dd06ffa 5138 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
4e96ee8e 5139
54e7b4eb
TH
5140 mutex_unlock(&cgroup_mutex);
5141
172a2c06 5142 for_each_subsys(ss, ssid) {
15a4c835
TH
5143 if (ss->early_init) {
5144 struct cgroup_subsys_state *css =
5145 init_css_set.subsys[ss->id];
5146
5147 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
5148 GFP_KERNEL);
5149 BUG_ON(css->id < 0);
5150 } else {
5151 cgroup_init_subsys(ss, false);
5152 }
172a2c06 5153
2d8f243a
TH
5154 list_add_tail(&init_css_set.e_cset_node[ssid],
5155 &cgrp_dfl_root.cgrp.e_csets[ssid]);
172a2c06
TH
5156
5157 /*
c731ae1d
LZ
5158 * Setting dfl_root subsys_mask needs to consider the
5159 * disabled flag and cftype registration needs kmalloc,
5160 * both of which aren't available during early_init.
172a2c06 5161 */
fc5ed1e9 5162 if (!cgroup_ssid_enabled(ssid))
a8ddc821
TH
5163 continue;
5164
5165 cgrp_dfl_root.subsys_mask |= 1 << ss->id;
5166
5167 if (cgroup_legacy_files_on_dfl && !ss->dfl_cftypes)
5168 ss->dfl_cftypes = ss->legacy_cftypes;
5169
5de4fa13
TH
5170 if (!ss->dfl_cftypes)
5171 cgrp_dfl_root_inhibit_ss_mask |= 1 << ss->id;
5172
a8ddc821
TH
5173 if (ss->dfl_cftypes == ss->legacy_cftypes) {
5174 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
5175 } else {
5176 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5177 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
c731ae1d 5178 }
295458e6
VD
5179
5180 if (ss->bind)
5181 ss->bind(init_css_set.subsys[ssid]);
676db4af
GKH
5182 }
5183
f9bb4882
EB
5184 err = sysfs_create_mount_point(fs_kobj, "cgroup");
5185 if (err)
5186 return err;
676db4af 5187
ddbcc7e8 5188 err = register_filesystem(&cgroup_fs_type);
676db4af 5189 if (err < 0) {
f9bb4882 5190 sysfs_remove_mount_point(fs_kobj, "cgroup");
2bd59d48 5191 return err;
676db4af 5192 }
ddbcc7e8 5193
46ae220b 5194 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
2bd59d48 5195 return 0;
ddbcc7e8 5196}
b4f48b63 5197
e5fca243
TH
5198static int __init cgroup_wq_init(void)
5199{
5200 /*
5201 * There isn't much point in executing destruction path in
5202 * parallel. Good chunk is serialized with cgroup_mutex anyway.
1a11533f 5203 * Use 1 for @max_active.
e5fca243
TH
5204 *
5205 * We would prefer to do this in cgroup_init() above, but that
5206 * is called before init_workqueues(): so leave this until after.
5207 */
1a11533f 5208 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
e5fca243 5209 BUG_ON(!cgroup_destroy_wq);
b1a21367
TH
5210
5211 /*
5212 * Used to destroy pidlists and separate to serve as flush domain.
5213 * Cap @max_active to 1 too.
5214 */
5215 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
5216 0, 1);
5217 BUG_ON(!cgroup_pidlist_destroy_wq);
5218
e5fca243
TH
5219 return 0;
5220}
5221core_initcall(cgroup_wq_init);
5222
a424316c
PM
5223/*
5224 * proc_cgroup_show()
5225 * - Print task's cgroup paths into seq_file, one line for each hierarchy
5226 * - Used for /proc/<pid>/cgroup.
a424316c 5227 */
006f4ac4
ZL
5228int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
5229 struct pid *pid, struct task_struct *tsk)
a424316c 5230{
e61734c5 5231 char *buf, *path;
a424316c 5232 int retval;
3dd06ffa 5233 struct cgroup_root *root;
a424316c
PM
5234
5235 retval = -ENOMEM;
e61734c5 5236 buf = kmalloc(PATH_MAX, GFP_KERNEL);
a424316c
PM
5237 if (!buf)
5238 goto out;
5239
a424316c 5240 mutex_lock(&cgroup_mutex);
96d365e0 5241 down_read(&css_set_rwsem);
a424316c 5242
985ed670 5243 for_each_root(root) {
a424316c 5244 struct cgroup_subsys *ss;
bd89aabc 5245 struct cgroup *cgrp;
b85d2040 5246 int ssid, count = 0;
a424316c 5247
a2dd4247 5248 if (root == &cgrp_dfl_root && !cgrp_dfl_root_visible)
985ed670
TH
5249 continue;
5250
2c6ab6d2 5251 seq_printf(m, "%d:", root->hierarchy_id);
d98817d4
TH
5252 if (root != &cgrp_dfl_root)
5253 for_each_subsys(ss, ssid)
5254 if (root->subsys_mask & (1 << ssid))
5255 seq_printf(m, "%s%s", count++ ? "," : "",
3e1d2eed 5256 ss->legacy_name);
c6d57f33
PM
5257 if (strlen(root->name))
5258 seq_printf(m, "%sname=%s", count ? "," : "",
5259 root->name);
a424316c 5260 seq_putc(m, ':');
7717f7ba 5261 cgrp = task_cgroup_from_root(tsk, root);
e61734c5
TH
5262 path = cgroup_path(cgrp, buf, PATH_MAX);
5263 if (!path) {
5264 retval = -ENAMETOOLONG;
a424316c 5265 goto out_unlock;
e61734c5
TH
5266 }
5267 seq_puts(m, path);
a424316c
PM
5268 seq_putc(m, '\n');
5269 }
5270
006f4ac4 5271 retval = 0;
a424316c 5272out_unlock:
96d365e0 5273 up_read(&css_set_rwsem);
a424316c 5274 mutex_unlock(&cgroup_mutex);
a424316c
PM
5275 kfree(buf);
5276out:
5277 return retval;
5278}
5279
a424316c
PM
5280/* Display information about each subsystem and each hierarchy */
5281static int proc_cgroupstats_show(struct seq_file *m, void *v)
5282{
30159ec7 5283 struct cgroup_subsys *ss;
a424316c 5284 int i;
a424316c 5285
8bab8dde 5286 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
aae8aab4
BB
5287 /*
5288 * ideally we don't want subsystems moving around while we do this.
5289 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
5290 * subsys/hierarchy state.
5291 */
a424316c 5292 mutex_lock(&cgroup_mutex);
30159ec7
TH
5293
5294 for_each_subsys(ss, i)
2c6ab6d2 5295 seq_printf(m, "%s\t%d\t%d\t%d\n",
3e1d2eed 5296 ss->legacy_name, ss->root->hierarchy_id,
fc5ed1e9
TH
5297 atomic_read(&ss->root->nr_cgrps),
5298 cgroup_ssid_enabled(i));
30159ec7 5299
a424316c
PM
5300 mutex_unlock(&cgroup_mutex);
5301 return 0;
5302}
5303
5304static int cgroupstats_open(struct inode *inode, struct file *file)
5305{
9dce07f1 5306 return single_open(file, proc_cgroupstats_show, NULL);
a424316c
PM
5307}
5308
828c0950 5309static const struct file_operations proc_cgroupstats_operations = {
a424316c
PM
5310 .open = cgroupstats_open,
5311 .read = seq_read,
5312 .llseek = seq_lseek,
5313 .release = single_release,
5314};
5315
7e47682e
AS
5316static void **subsys_canfork_priv_p(void *ss_priv[CGROUP_CANFORK_COUNT], int i)
5317{
5318 if (CGROUP_CANFORK_START <= i && i < CGROUP_CANFORK_END)
5319 return &ss_priv[i - CGROUP_CANFORK_START];
5320 return NULL;
5321}
5322
5323static void *subsys_canfork_priv(void *ss_priv[CGROUP_CANFORK_COUNT], int i)
5324{
5325 void **private = subsys_canfork_priv_p(ss_priv, i);
5326 return private ? *private : NULL;
5327}
5328
b4f48b63 5329/**
eaf797ab 5330 * cgroup_fork - initialize cgroup related fields during copy_process()
a043e3b2 5331 * @child: pointer to task_struct of forking parent process.
b4f48b63 5332 *
eaf797ab
TH
5333 * A task is associated with the init_css_set until cgroup_post_fork()
5334 * attaches it to the parent's css_set. Empty cg_list indicates that
5335 * @child isn't holding reference to its css_set.
b4f48b63
PM
5336 */
5337void cgroup_fork(struct task_struct *child)
5338{
eaf797ab 5339 RCU_INIT_POINTER(child->cgroups, &init_css_set);
817929ec 5340 INIT_LIST_HEAD(&child->cg_list);
b4f48b63
PM
5341}
5342
7e47682e
AS
5343/**
5344 * cgroup_can_fork - called on a new task before the process is exposed
5345 * @child: the task in question.
5346 *
5347 * This calls the subsystem can_fork() callbacks. If the can_fork() callback
5348 * returns an error, the fork aborts with that error code. This allows for
5349 * a cgroup subsystem to conditionally allow or deny new forks.
5350 */
5351int cgroup_can_fork(struct task_struct *child,
5352 void *ss_priv[CGROUP_CANFORK_COUNT])
5353{
5354 struct cgroup_subsys *ss;
5355 int i, j, ret;
5356
5357 for_each_subsys_which(ss, i, &have_canfork_callback) {
5358 ret = ss->can_fork(child, subsys_canfork_priv_p(ss_priv, i));
5359 if (ret)
5360 goto out_revert;
5361 }
5362
5363 return 0;
5364
5365out_revert:
5366 for_each_subsys(ss, j) {
5367 if (j >= i)
5368 break;
5369 if (ss->cancel_fork)
5370 ss->cancel_fork(child, subsys_canfork_priv(ss_priv, j));
5371 }
5372
5373 return ret;
5374}
5375
5376/**
5377 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
5378 * @child: the task in question
5379 *
5380 * This calls the cancel_fork() callbacks if a fork failed *after*
5381 * cgroup_can_fork() succeded.
5382 */
5383void cgroup_cancel_fork(struct task_struct *child,
5384 void *ss_priv[CGROUP_CANFORK_COUNT])
5385{
5386 struct cgroup_subsys *ss;
5387 int i;
5388
5389 for_each_subsys(ss, i)
5390 if (ss->cancel_fork)
5391 ss->cancel_fork(child, subsys_canfork_priv(ss_priv, i));
5392}
5393
817929ec 5394/**
a043e3b2
LZ
5395 * cgroup_post_fork - called on a new task after adding it to the task list
5396 * @child: the task in question
5397 *
5edee61e
TH
5398 * Adds the task to the list running through its css_set if necessary and
5399 * call the subsystem fork() callbacks. Has to be after the task is
5400 * visible on the task list in case we race with the first call to
0942eeee 5401 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5edee61e 5402 * list.
a043e3b2 5403 */
7e47682e
AS
5404void cgroup_post_fork(struct task_struct *child,
5405 void *old_ss_priv[CGROUP_CANFORK_COUNT])
817929ec 5406{
30159ec7 5407 struct cgroup_subsys *ss;
5edee61e
TH
5408 int i;
5409
3ce3230a 5410 /*
251f8c03 5411 * This may race against cgroup_enable_task_cg_lists(). As that
eaf797ab
TH
5412 * function sets use_task_css_set_links before grabbing
5413 * tasklist_lock and we just went through tasklist_lock to add
5414 * @child, it's guaranteed that either we see the set
5415 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
5416 * @child during its iteration.
5417 *
5418 * If we won the race, @child is associated with %current's
5419 * css_set. Grabbing css_set_rwsem guarantees both that the
5420 * association is stable, and, on completion of the parent's
5421 * migration, @child is visible in the source of migration or
5422 * already in the destination cgroup. This guarantee is necessary
5423 * when implementing operations which need to migrate all tasks of
5424 * a cgroup to another.
5425 *
251f8c03 5426 * Note that if we lose to cgroup_enable_task_cg_lists(), @child
eaf797ab
TH
5427 * will remain in init_css_set. This is safe because all tasks are
5428 * in the init_css_set before cg_links is enabled and there's no
5429 * operation which transfers all tasks out of init_css_set.
3ce3230a 5430 */
817929ec 5431 if (use_task_css_set_links) {
eaf797ab
TH
5432 struct css_set *cset;
5433
96d365e0 5434 down_write(&css_set_rwsem);
0e1d768f 5435 cset = task_css_set(current);
eaf797ab
TH
5436 if (list_empty(&child->cg_list)) {
5437 rcu_assign_pointer(child->cgroups, cset);
5438 list_add(&child->cg_list, &cset->tasks);
5439 get_css_set(cset);
5440 }
96d365e0 5441 up_write(&css_set_rwsem);
817929ec 5442 }
5edee61e
TH
5443
5444 /*
5445 * Call ss->fork(). This must happen after @child is linked on
5446 * css_set; otherwise, @child might change state between ->fork()
5447 * and addition to css_set.
5448 */
cb4a3167 5449 for_each_subsys_which(ss, i, &have_fork_callback)
7e47682e 5450 ss->fork(child, subsys_canfork_priv(old_ss_priv, i));
817929ec 5451}
5edee61e 5452
b4f48b63
PM
5453/**
5454 * cgroup_exit - detach cgroup from exiting task
5455 * @tsk: pointer to task_struct of exiting process
5456 *
5457 * Description: Detach cgroup from @tsk and release it.
5458 *
5459 * Note that cgroups marked notify_on_release force every task in
5460 * them to take the global cgroup_mutex mutex when exiting.
5461 * This could impact scaling on very large systems. Be reluctant to
5462 * use notify_on_release cgroups where very high task exit scaling
5463 * is required on large systems.
5464 *
0e1d768f
TH
5465 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We
5466 * call cgroup_exit() while the task is still competent to handle
5467 * notify_on_release(), then leave the task attached to the root cgroup in
5468 * each hierarchy for the remainder of its exit. No need to bother with
5469 * init_css_set refcnting. init_css_set never goes away and we can't race
e8604cb4 5470 * with migration path - PF_EXITING is visible to migration path.
b4f48b63 5471 */
1ec41830 5472void cgroup_exit(struct task_struct *tsk)
b4f48b63 5473{
30159ec7 5474 struct cgroup_subsys *ss;
5abb8855 5475 struct css_set *cset;
eaf797ab 5476 bool put_cset = false;
d41d5a01 5477 int i;
817929ec
PM
5478
5479 /*
0e1d768f
TH
5480 * Unlink from @tsk from its css_set. As migration path can't race
5481 * with us, we can check cg_list without grabbing css_set_rwsem.
817929ec
PM
5482 */
5483 if (!list_empty(&tsk->cg_list)) {
96d365e0 5484 down_write(&css_set_rwsem);
0e1d768f 5485 list_del_init(&tsk->cg_list);
96d365e0 5486 up_write(&css_set_rwsem);
0e1d768f 5487 put_cset = true;
817929ec
PM
5488 }
5489
b4f48b63 5490 /* Reassign the task to the init_css_set. */
a8ad805c
TH
5491 cset = task_css_set(tsk);
5492 RCU_INIT_POINTER(tsk->cgroups, &init_css_set);
d41d5a01 5493
cb4a3167
AS
5494 /* see cgroup_post_fork() for details */
5495 for_each_subsys_which(ss, i, &have_exit_callback) {
5496 struct cgroup_subsys_state *old_css = cset->subsys[i];
5497 struct cgroup_subsys_state *css = task_css(tsk, i);
30159ec7 5498
cb4a3167 5499 ss->exit(css, old_css, tsk);
d41d5a01 5500 }
d41d5a01 5501
eaf797ab 5502 if (put_cset)
a25eb52e 5503 put_css_set(cset);
b4f48b63 5504}
697f4161 5505
bd89aabc 5506static void check_for_release(struct cgroup *cgrp)
81a6a5cd 5507{
a25eb52e 5508 if (notify_on_release(cgrp) && !cgroup_has_tasks(cgrp) &&
971ff493
ZL
5509 !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp))
5510 schedule_work(&cgrp->release_agent_work);
81a6a5cd
PM
5511}
5512
81a6a5cd
PM
5513/*
5514 * Notify userspace when a cgroup is released, by running the
5515 * configured release agent with the name of the cgroup (path
5516 * relative to the root of cgroup file system) as the argument.
5517 *
5518 * Most likely, this user command will try to rmdir this cgroup.
5519 *
5520 * This races with the possibility that some other task will be
5521 * attached to this cgroup before it is removed, or that some other
5522 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
5523 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
5524 * unused, and this cgroup will be reprieved from its death sentence,
5525 * to continue to serve a useful existence. Next time it's released,
5526 * we will get notified again, if it still has 'notify_on_release' set.
5527 *
5528 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
5529 * means only wait until the task is successfully execve()'d. The
5530 * separate release agent task is forked by call_usermodehelper(),
5531 * then control in this thread returns here, without waiting for the
5532 * release agent task. We don't bother to wait because the caller of
5533 * this routine has no use for the exit status of the release agent
5534 * task, so no sense holding our caller up for that.
81a6a5cd 5535 */
81a6a5cd
PM
5536static void cgroup_release_agent(struct work_struct *work)
5537{
971ff493
ZL
5538 struct cgroup *cgrp =
5539 container_of(work, struct cgroup, release_agent_work);
5540 char *pathbuf = NULL, *agentbuf = NULL, *path;
5541 char *argv[3], *envp[3];
5542
81a6a5cd 5543 mutex_lock(&cgroup_mutex);
971ff493
ZL
5544
5545 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
5546 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
5547 if (!pathbuf || !agentbuf)
5548 goto out;
5549
5550 path = cgroup_path(cgrp, pathbuf, PATH_MAX);
5551 if (!path)
5552 goto out;
5553
5554 argv[0] = agentbuf;
5555 argv[1] = path;
5556 argv[2] = NULL;
5557
5558 /* minimal command environment */
5559 envp[0] = "HOME=/";
5560 envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
5561 envp[2] = NULL;
5562
81a6a5cd 5563 mutex_unlock(&cgroup_mutex);
971ff493 5564 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
3e2cd91a 5565 goto out_free;
971ff493 5566out:
81a6a5cd 5567 mutex_unlock(&cgroup_mutex);
3e2cd91a 5568out_free:
971ff493
ZL
5569 kfree(agentbuf);
5570 kfree(pathbuf);
81a6a5cd 5571}
8bab8dde
PM
5572
5573static int __init cgroup_disable(char *str)
5574{
30159ec7 5575 struct cgroup_subsys *ss;
8bab8dde 5576 char *token;
30159ec7 5577 int i;
8bab8dde
PM
5578
5579 while ((token = strsep(&str, ",")) != NULL) {
5580 if (!*token)
5581 continue;
be45c900 5582
3ed80a62 5583 for_each_subsys(ss, i) {
3e1d2eed
TH
5584 if (strcmp(token, ss->name) &&
5585 strcmp(token, ss->legacy_name))
5586 continue;
5587
49d1dc4b 5588 static_branch_disable(cgroup_subsys_enabled_key[i]);
3e1d2eed
TH
5589 printk(KERN_INFO "Disabling %s control group subsystem\n",
5590 ss->name);
5591 break;
8bab8dde
PM
5592 }
5593 }
5594 return 1;
5595}
5596__setup("cgroup_disable=", cgroup_disable);
38460b48 5597
a8ddc821
TH
5598static int __init cgroup_set_legacy_files_on_dfl(char *str)
5599{
5600 printk("cgroup: using legacy files on the default hierarchy\n");
5601 cgroup_legacy_files_on_dfl = true;
5602 return 0;
5603}
5604__setup("cgroup__DEVEL__legacy_files_on_dfl", cgroup_set_legacy_files_on_dfl);
5605
b77d7b60 5606/**
ec903c0c 5607 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
35cf0836
TH
5608 * @dentry: directory dentry of interest
5609 * @ss: subsystem of interest
b77d7b60 5610 *
5a17f543
TH
5611 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
5612 * to get the corresponding css and return it. If such css doesn't exist
5613 * or can't be pinned, an ERR_PTR value is returned.
e5d1367f 5614 */
ec903c0c
TH
5615struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
5616 struct cgroup_subsys *ss)
e5d1367f 5617{
2bd59d48
TH
5618 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
5619 struct cgroup_subsys_state *css = NULL;
e5d1367f 5620 struct cgroup *cgrp;
e5d1367f 5621
35cf0836 5622 /* is @dentry a cgroup dir? */
2bd59d48
TH
5623 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
5624 kernfs_type(kn) != KERNFS_DIR)
e5d1367f
SE
5625 return ERR_PTR(-EBADF);
5626
5a17f543
TH
5627 rcu_read_lock();
5628
2bd59d48
TH
5629 /*
5630 * This path doesn't originate from kernfs and @kn could already
5631 * have been or be removed at any point. @kn->priv is RCU
a4189487 5632 * protected for this access. See css_release_work_fn() for details.
2bd59d48
TH
5633 */
5634 cgrp = rcu_dereference(kn->priv);
5635 if (cgrp)
5636 css = cgroup_css(cgrp, ss);
5a17f543 5637
ec903c0c 5638 if (!css || !css_tryget_online(css))
5a17f543
TH
5639 css = ERR_PTR(-ENOENT);
5640
5641 rcu_read_unlock();
5642 return css;
e5d1367f 5643}
e5d1367f 5644
1cb650b9
LZ
5645/**
5646 * css_from_id - lookup css by id
5647 * @id: the cgroup id
5648 * @ss: cgroup subsys to be looked into
5649 *
5650 * Returns the css if there's valid one with @id, otherwise returns NULL.
5651 * Should be called under rcu_read_lock().
5652 */
5653struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
5654{
6fa4918d 5655 WARN_ON_ONCE(!rcu_read_lock_held());
adbe427b 5656 return id > 0 ? idr_find(&ss->css_idr, id) : NULL;
e5d1367f
SE
5657}
5658
fe693435 5659#ifdef CONFIG_CGROUP_DEBUG
eb95419b
TH
5660static struct cgroup_subsys_state *
5661debug_css_alloc(struct cgroup_subsys_state *parent_css)
fe693435
PM
5662{
5663 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5664
5665 if (!css)
5666 return ERR_PTR(-ENOMEM);
5667
5668 return css;
5669}
5670
eb95419b 5671static void debug_css_free(struct cgroup_subsys_state *css)
fe693435 5672{
eb95419b 5673 kfree(css);
fe693435
PM
5674}
5675
182446d0
TH
5676static u64 debug_taskcount_read(struct cgroup_subsys_state *css,
5677 struct cftype *cft)
fe693435 5678{
182446d0 5679 return cgroup_task_count(css->cgroup);
fe693435
PM
5680}
5681
182446d0
TH
5682static u64 current_css_set_read(struct cgroup_subsys_state *css,
5683 struct cftype *cft)
fe693435
PM
5684{
5685 return (u64)(unsigned long)current->cgroups;
5686}
5687
182446d0 5688static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css,
03c78cbe 5689 struct cftype *cft)
fe693435
PM
5690{
5691 u64 count;
5692
5693 rcu_read_lock();
a8ad805c 5694 count = atomic_read(&task_css_set(current)->refcount);
fe693435
PM
5695 rcu_read_unlock();
5696 return count;
5697}
5698
2da8ca82 5699static int current_css_set_cg_links_read(struct seq_file *seq, void *v)
7717f7ba 5700{
69d0206c 5701 struct cgrp_cset_link *link;
5abb8855 5702 struct css_set *cset;
e61734c5
TH
5703 char *name_buf;
5704
5705 name_buf = kmalloc(NAME_MAX + 1, GFP_KERNEL);
5706 if (!name_buf)
5707 return -ENOMEM;
7717f7ba 5708
96d365e0 5709 down_read(&css_set_rwsem);
7717f7ba 5710 rcu_read_lock();
5abb8855 5711 cset = rcu_dereference(current->cgroups);
69d0206c 5712 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 5713 struct cgroup *c = link->cgrp;
7717f7ba 5714
a2dd4247 5715 cgroup_name(c, name_buf, NAME_MAX + 1);
2c6ab6d2 5716 seq_printf(seq, "Root %d group %s\n",
a2dd4247 5717 c->root->hierarchy_id, name_buf);
7717f7ba
PM
5718 }
5719 rcu_read_unlock();
96d365e0 5720 up_read(&css_set_rwsem);
e61734c5 5721 kfree(name_buf);
7717f7ba
PM
5722 return 0;
5723}
5724
5725#define MAX_TASKS_SHOWN_PER_CSS 25
2da8ca82 5726static int cgroup_css_links_read(struct seq_file *seq, void *v)
7717f7ba 5727{
2da8ca82 5728 struct cgroup_subsys_state *css = seq_css(seq);
69d0206c 5729 struct cgrp_cset_link *link;
7717f7ba 5730
96d365e0 5731 down_read(&css_set_rwsem);
182446d0 5732 list_for_each_entry(link, &css->cgroup->cset_links, cset_link) {
69d0206c 5733 struct css_set *cset = link->cset;
7717f7ba
PM
5734 struct task_struct *task;
5735 int count = 0;
c7561128 5736
5abb8855 5737 seq_printf(seq, "css_set %p\n", cset);
c7561128 5738
5abb8855 5739 list_for_each_entry(task, &cset->tasks, cg_list) {
c7561128
TH
5740 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
5741 goto overflow;
5742 seq_printf(seq, " task %d\n", task_pid_vnr(task));
5743 }
5744
5745 list_for_each_entry(task, &cset->mg_tasks, cg_list) {
5746 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
5747 goto overflow;
5748 seq_printf(seq, " task %d\n", task_pid_vnr(task));
7717f7ba 5749 }
c7561128
TH
5750 continue;
5751 overflow:
5752 seq_puts(seq, " ...\n");
7717f7ba 5753 }
96d365e0 5754 up_read(&css_set_rwsem);
7717f7ba
PM
5755 return 0;
5756}
5757
182446d0 5758static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft)
fe693435 5759{
a25eb52e
ZL
5760 return (!cgroup_has_tasks(css->cgroup) &&
5761 !css_has_online_children(&css->cgroup->self));
fe693435
PM
5762}
5763
5764static struct cftype debug_files[] = {
fe693435
PM
5765 {
5766 .name = "taskcount",
5767 .read_u64 = debug_taskcount_read,
5768 },
5769
5770 {
5771 .name = "current_css_set",
5772 .read_u64 = current_css_set_read,
5773 },
5774
5775 {
5776 .name = "current_css_set_refcount",
5777 .read_u64 = current_css_set_refcount_read,
5778 },
5779
7717f7ba
PM
5780 {
5781 .name = "current_css_set_cg_links",
2da8ca82 5782 .seq_show = current_css_set_cg_links_read,
7717f7ba
PM
5783 },
5784
5785 {
5786 .name = "cgroup_css_links",
2da8ca82 5787 .seq_show = cgroup_css_links_read,
7717f7ba
PM
5788 },
5789
fe693435
PM
5790 {
5791 .name = "releasable",
5792 .read_u64 = releasable_read,
5793 },
fe693435 5794
4baf6e33
TH
5795 { } /* terminate */
5796};
fe693435 5797
073219e9 5798struct cgroup_subsys debug_cgrp_subsys = {
92fb9748
TH
5799 .css_alloc = debug_css_alloc,
5800 .css_free = debug_css_free,
5577964e 5801 .legacy_cftypes = debug_files,
fe693435
PM
5802};
5803#endif /* CONFIG_CGROUP_DEBUG */