]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - kernel/cgroup.c
cgroup: introduce effective cgroup_subsys_state
[mirror_ubuntu-artful-kernel.git] / kernel / cgroup.c
CommitLineData
ddbcc7e8 1/*
ddbcc7e8
PM
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
0dea1168
KS
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
ddbcc7e8
PM
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29#include <linux/cgroup.h>
2ce9738b 30#include <linux/cred.h>
c6d57f33 31#include <linux/ctype.h>
ddbcc7e8 32#include <linux/errno.h>
2ce9738b 33#include <linux/init_task.h>
ddbcc7e8
PM
34#include <linux/kernel.h>
35#include <linux/list.h>
36#include <linux/mm.h>
37#include <linux/mutex.h>
38#include <linux/mount.h>
39#include <linux/pagemap.h>
a424316c 40#include <linux/proc_fs.h>
ddbcc7e8
PM
41#include <linux/rcupdate.h>
42#include <linux/sched.h>
ddbcc7e8 43#include <linux/slab.h>
ddbcc7e8 44#include <linux/spinlock.h>
96d365e0 45#include <linux/rwsem.h>
ddbcc7e8 46#include <linux/string.h>
bbcb81d0 47#include <linux/sort.h>
81a6a5cd 48#include <linux/kmod.h>
846c7bb0
BS
49#include <linux/delayacct.h>
50#include <linux/cgroupstats.h>
0ac801fe 51#include <linux/hashtable.h>
096b7fe0 52#include <linux/pid_namespace.h>
2c6ab6d2 53#include <linux/idr.h>
d1d9fd33 54#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
c4c27fbd 55#include <linux/kthread.h>
776f02fa 56#include <linux/delay.h>
846c7bb0 57
60063497 58#include <linux/atomic.h>
ddbcc7e8 59
b1a21367
TH
60/*
61 * pidlists linger the following amount before being destroyed. The goal
62 * is avoiding frequent destruction in the middle of consecutive read calls
63 * Expiring in the middle is a performance problem not a correctness one.
64 * 1 sec should be enough.
65 */
66#define CGROUP_PIDLIST_DESTROY_DELAY HZ
67
8d7e6fb0
TH
68#define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
69 MAX_CFTYPE_NAME + 2)
70
ace2bee8
TH
71/*
72 * cgroup_tree_mutex nests above cgroup_mutex and protects cftypes, file
73 * creation/removal and hierarchy changing operations including cgroup
74 * creation, removal, css association and controller rebinding. This outer
75 * lock is needed mainly to resolve the circular dependency between kernfs
76 * active ref and cgroup_mutex. cgroup_tree_mutex nests above both.
77 */
78static DEFINE_MUTEX(cgroup_tree_mutex);
79
e25e2cbb
TH
80/*
81 * cgroup_mutex is the master lock. Any modification to cgroup or its
82 * hierarchy must be performed while holding it.
83 *
0e1d768f
TH
84 * css_set_rwsem protects task->cgroups pointer, the list of css_set
85 * objects, and the chain of tasks off each css_set.
e25e2cbb 86 *
0e1d768f
TH
87 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
88 * cgroup.h can use them for lockdep annotations.
e25e2cbb 89 */
2219449a
TH
90#ifdef CONFIG_PROVE_RCU
91DEFINE_MUTEX(cgroup_mutex);
0e1d768f
TH
92DECLARE_RWSEM(css_set_rwsem);
93EXPORT_SYMBOL_GPL(cgroup_mutex);
94EXPORT_SYMBOL_GPL(css_set_rwsem);
2219449a 95#else
81a6a5cd 96static DEFINE_MUTEX(cgroup_mutex);
0e1d768f 97static DECLARE_RWSEM(css_set_rwsem);
2219449a
TH
98#endif
99
69e943b7
TH
100/*
101 * Protects cgroup_subsys->release_agent_path. Modifying it also requires
102 * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock.
103 */
104static DEFINE_SPINLOCK(release_agent_path_lock);
81a6a5cd 105
ace2bee8 106#define cgroup_assert_mutexes_or_rcu_locked() \
87fb54f1 107 rcu_lockdep_assert(rcu_read_lock_held() || \
ace2bee8 108 lockdep_is_held(&cgroup_tree_mutex) || \
87fb54f1 109 lockdep_is_held(&cgroup_mutex), \
ace2bee8 110 "cgroup_[tree_]mutex or RCU read lock required");
780cd8b3 111
e5fca243
TH
112/*
113 * cgroup destruction makes heavy use of work items and there can be a lot
114 * of concurrent destructions. Use a separate workqueue so that cgroup
115 * destruction work items don't end up filling up max_active of system_wq
116 * which may lead to deadlock.
117 */
118static struct workqueue_struct *cgroup_destroy_wq;
119
b1a21367
TH
120/*
121 * pidlist destructions need to be flushed on cgroup destruction. Use a
122 * separate workqueue as flush domain.
123 */
124static struct workqueue_struct *cgroup_pidlist_destroy_wq;
125
3ed80a62 126/* generate an array of cgroup subsystem pointers */
073219e9 127#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
3ed80a62 128static struct cgroup_subsys *cgroup_subsys[] = {
ddbcc7e8
PM
129#include <linux/cgroup_subsys.h>
130};
073219e9
TH
131#undef SUBSYS
132
133/* array of cgroup subsystem names */
134#define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
135static const char *cgroup_subsys_name[] = {
ddbcc7e8
PM
136#include <linux/cgroup_subsys.h>
137};
073219e9 138#undef SUBSYS
ddbcc7e8 139
ddbcc7e8 140/*
3dd06ffa 141 * The default hierarchy, reserved for the subsystems that are otherwise
9871bf95
TH
142 * unattached - it never has more than a single cgroup, and all tasks are
143 * part of that cgroup.
ddbcc7e8 144 */
a2dd4247 145struct cgroup_root cgrp_dfl_root;
9871bf95 146
a2dd4247
TH
147/*
148 * The default hierarchy always exists but is hidden until mounted for the
149 * first time. This is for backward compatibility.
150 */
151static bool cgrp_dfl_root_visible;
ddbcc7e8
PM
152
153/* The list of hierarchy roots */
154
9871bf95
TH
155static LIST_HEAD(cgroup_roots);
156static int cgroup_root_count;
ddbcc7e8 157
3417ae1f 158/* hierarchy ID allocation and mapping, protected by cgroup_mutex */
1a574231 159static DEFINE_IDR(cgroup_hierarchy_idr);
2c6ab6d2 160
794611a1
LZ
161/*
162 * Assign a monotonically increasing serial number to cgroups. It
163 * guarantees cgroups with bigger numbers are newer than those with smaller
164 * numbers. Also, as cgroups are always appended to the parent's
165 * ->children list, it guarantees that sibling cgroups are always sorted in
00356bd5
TH
166 * the ascending serial number order on the list. Protected by
167 * cgroup_mutex.
794611a1 168 */
00356bd5 169static u64 cgroup_serial_nr_next = 1;
794611a1 170
ddbcc7e8 171/* This flag indicates whether tasks in the fork and exit paths should
a043e3b2
LZ
172 * check for fork/exit handlers to call. This avoids us having to do
173 * extra work in the fork/exit path if none of the subsystems need to
174 * be called.
ddbcc7e8 175 */
8947f9d5 176static int need_forkexit_callback __read_mostly;
ddbcc7e8 177
628f7cd4
TH
178static struct cftype cgroup_base_files[];
179
59f5296b 180static void cgroup_put(struct cgroup *cgrp);
3dd06ffa 181static int rebind_subsystems(struct cgroup_root *dst_root,
5df36032 182 unsigned long ss_mask);
f20104de 183static void cgroup_destroy_css_killed(struct cgroup *cgrp);
42809dd4 184static int cgroup_destroy_locked(struct cgroup *cgrp);
2bb566cb
TH
185static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
186 bool is_add);
b1a21367 187static void cgroup_pidlist_destroy_all(struct cgroup *cgrp);
42809dd4 188
95109b62
TH
189/**
190 * cgroup_css - obtain a cgroup's css for the specified subsystem
191 * @cgrp: the cgroup of interest
ca8bdcaf 192 * @ss: the subsystem of interest (%NULL returns the dummy_css)
95109b62 193 *
ca8bdcaf
TH
194 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
195 * function must be called either under cgroup_mutex or rcu_read_lock() and
196 * the caller is responsible for pinning the returned css if it wants to
197 * keep accessing it outside the said locks. This function may return
198 * %NULL if @cgrp doesn't have @subsys_id enabled.
95109b62
TH
199 */
200static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
ca8bdcaf 201 struct cgroup_subsys *ss)
95109b62 202{
ca8bdcaf 203 if (ss)
aec25020 204 return rcu_dereference_check(cgrp->subsys[ss->id],
ace2bee8
TH
205 lockdep_is_held(&cgroup_tree_mutex) ||
206 lockdep_is_held(&cgroup_mutex));
ca8bdcaf
TH
207 else
208 return &cgrp->dummy_css;
95109b62 209}
42809dd4 210
aec3dfcb
TH
211/**
212 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
213 * @cgrp: the cgroup of interest
214 * @ss: the subsystem of interest (%NULL returns the dummy_css)
215 *
216 * Similar to cgroup_css() but returns the effctive css, which is defined
217 * as the matching css of the nearest ancestor including self which has @ss
218 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
219 * function is guaranteed to return non-NULL css.
220 */
221static struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
222 struct cgroup_subsys *ss)
223{
224 lockdep_assert_held(&cgroup_mutex);
225
226 if (!ss)
227 return &cgrp->dummy_css;
228
229 if (!(cgrp->root->subsys_mask & (1 << ss->id)))
230 return NULL;
231
232 while (cgrp->parent &&
233 !(cgrp->parent->child_subsys_mask & (1 << ss->id)))
234 cgrp = cgrp->parent;
235
236 return cgroup_css(cgrp, ss);
237}
238
ddbcc7e8 239/* convenient tests for these bits */
54766d4a 240static inline bool cgroup_is_dead(const struct cgroup *cgrp)
ddbcc7e8 241{
54766d4a 242 return test_bit(CGRP_DEAD, &cgrp->flags);
ddbcc7e8
PM
243}
244
59f5296b
TH
245struct cgroup_subsys_state *seq_css(struct seq_file *seq)
246{
2bd59d48
TH
247 struct kernfs_open_file *of = seq->private;
248 struct cgroup *cgrp = of->kn->parent->priv;
249 struct cftype *cft = seq_cft(seq);
250
251 /*
252 * This is open and unprotected implementation of cgroup_css().
253 * seq_css() is only called from a kernfs file operation which has
254 * an active reference on the file. Because all the subsystem
255 * files are drained before a css is disassociated with a cgroup,
256 * the matching css from the cgroup's subsys table is guaranteed to
257 * be and stay valid until the enclosing operation is complete.
258 */
259 if (cft->ss)
260 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
261 else
262 return &cgrp->dummy_css;
59f5296b
TH
263}
264EXPORT_SYMBOL_GPL(seq_css);
265
78574cf9
LZ
266/**
267 * cgroup_is_descendant - test ancestry
268 * @cgrp: the cgroup to be tested
269 * @ancestor: possible ancestor of @cgrp
270 *
271 * Test whether @cgrp is a descendant of @ancestor. It also returns %true
272 * if @cgrp == @ancestor. This function is safe to call as long as @cgrp
273 * and @ancestor are accessible.
274 */
275bool cgroup_is_descendant(struct cgroup *cgrp, struct cgroup *ancestor)
276{
277 while (cgrp) {
278 if (cgrp == ancestor)
279 return true;
280 cgrp = cgrp->parent;
281 }
282 return false;
283}
ddbcc7e8 284
e9685a03 285static int cgroup_is_releasable(const struct cgroup *cgrp)
81a6a5cd
PM
286{
287 const int bits =
bd89aabc
PM
288 (1 << CGRP_RELEASABLE) |
289 (1 << CGRP_NOTIFY_ON_RELEASE);
290 return (cgrp->flags & bits) == bits;
81a6a5cd
PM
291}
292
e9685a03 293static int notify_on_release(const struct cgroup *cgrp)
81a6a5cd 294{
bd89aabc 295 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
81a6a5cd
PM
296}
297
1c6727af
TH
298/**
299 * for_each_css - iterate all css's of a cgroup
300 * @css: the iteration cursor
301 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
302 * @cgrp: the target cgroup to iterate css's of
303 *
aec3dfcb 304 * Should be called under cgroup_[tree_]mutex.
1c6727af
TH
305 */
306#define for_each_css(css, ssid, cgrp) \
307 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
308 if (!((css) = rcu_dereference_check( \
309 (cgrp)->subsys[(ssid)], \
ace2bee8 310 lockdep_is_held(&cgroup_tree_mutex) || \
1c6727af
TH
311 lockdep_is_held(&cgroup_mutex)))) { } \
312 else
313
aec3dfcb
TH
314/**
315 * for_each_e_css - iterate all effective css's of a cgroup
316 * @css: the iteration cursor
317 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
318 * @cgrp: the target cgroup to iterate css's of
319 *
320 * Should be called under cgroup_[tree_]mutex.
321 */
322#define for_each_e_css(css, ssid, cgrp) \
323 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
324 if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \
325 ; \
326 else
327
30159ec7 328/**
3ed80a62 329 * for_each_subsys - iterate all enabled cgroup subsystems
30159ec7 330 * @ss: the iteration cursor
780cd8b3 331 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
30159ec7 332 */
780cd8b3 333#define for_each_subsys(ss, ssid) \
3ed80a62
TH
334 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT && \
335 (((ss) = cgroup_subsys[ssid]) || true); (ssid)++)
30159ec7 336
985ed670
TH
337/* iterate across the hierarchies */
338#define for_each_root(root) \
5549c497 339 list_for_each_entry((root), &cgroup_roots, root_list)
ddbcc7e8 340
7ae1bad9
TH
341/**
342 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
343 * @cgrp: the cgroup to be checked for liveness
344 *
47cfcd09
TH
345 * On success, returns true; the mutex should be later unlocked. On
346 * failure returns false with no lock held.
7ae1bad9 347 */
b9777cf8 348static bool cgroup_lock_live_group(struct cgroup *cgrp)
7ae1bad9
TH
349{
350 mutex_lock(&cgroup_mutex);
54766d4a 351 if (cgroup_is_dead(cgrp)) {
7ae1bad9
TH
352 mutex_unlock(&cgroup_mutex);
353 return false;
354 }
355 return true;
356}
7ae1bad9 357
81a6a5cd
PM
358/* the list of cgroups eligible for automatic release. Protected by
359 * release_list_lock */
360static LIST_HEAD(release_list);
cdcc136f 361static DEFINE_RAW_SPINLOCK(release_list_lock);
81a6a5cd
PM
362static void cgroup_release_agent(struct work_struct *work);
363static DECLARE_WORK(release_agent_work, cgroup_release_agent);
bd89aabc 364static void check_for_release(struct cgroup *cgrp);
81a6a5cd 365
69d0206c
TH
366/*
367 * A cgroup can be associated with multiple css_sets as different tasks may
368 * belong to different cgroups on different hierarchies. In the other
369 * direction, a css_set is naturally associated with multiple cgroups.
370 * This M:N relationship is represented by the following link structure
371 * which exists for each association and allows traversing the associations
372 * from both sides.
373 */
374struct cgrp_cset_link {
375 /* the cgroup and css_set this link associates */
376 struct cgroup *cgrp;
377 struct css_set *cset;
378
379 /* list of cgrp_cset_links anchored at cgrp->cset_links */
380 struct list_head cset_link;
381
382 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
383 struct list_head cgrp_link;
817929ec
PM
384};
385
172a2c06
TH
386/*
387 * The default css_set - used by init and its children prior to any
817929ec
PM
388 * hierarchies being mounted. It contains a pointer to the root state
389 * for each subsystem. Also used to anchor the list of css_sets. Not
390 * reference-counted, to improve performance when child cgroups
391 * haven't been created.
392 */
172a2c06
TH
393static struct css_set init_css_set = {
394 .refcount = ATOMIC_INIT(1),
395 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links),
396 .tasks = LIST_HEAD_INIT(init_css_set.tasks),
397 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks),
398 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node),
399 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node),
400};
817929ec 401
172a2c06 402static int css_set_count = 1; /* 1 for init_css_set */
817929ec 403
7717f7ba
PM
404/*
405 * hash table for cgroup groups. This improves the performance to find
406 * an existing css_set. This hash doesn't (currently) take into
407 * account cgroups in empty hierarchies.
408 */
472b1053 409#define CSS_SET_HASH_BITS 7
0ac801fe 410static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
472b1053 411
0ac801fe 412static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
472b1053 413{
0ac801fe 414 unsigned long key = 0UL;
30159ec7
TH
415 struct cgroup_subsys *ss;
416 int i;
472b1053 417
30159ec7 418 for_each_subsys(ss, i)
0ac801fe
LZ
419 key += (unsigned long)css[i];
420 key = (key >> 16) ^ key;
472b1053 421
0ac801fe 422 return key;
472b1053
LZ
423}
424
89c5509b 425static void put_css_set_locked(struct css_set *cset, bool taskexit)
b4f48b63 426{
69d0206c 427 struct cgrp_cset_link *link, *tmp_link;
5abb8855 428
89c5509b
TH
429 lockdep_assert_held(&css_set_rwsem);
430
431 if (!atomic_dec_and_test(&cset->refcount))
146aa1bd 432 return;
81a6a5cd 433
2c6ab6d2 434 /* This css_set is dead. unlink it and release cgroup refcounts */
5abb8855 435 hash_del(&cset->hlist);
2c6ab6d2
PM
436 css_set_count--;
437
69d0206c 438 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
2c6ab6d2 439 struct cgroup *cgrp = link->cgrp;
5abb8855 440
69d0206c
TH
441 list_del(&link->cset_link);
442 list_del(&link->cgrp_link);
71b5707e 443
96d365e0 444 /* @cgrp can't go away while we're holding css_set_rwsem */
6f3d828f 445 if (list_empty(&cgrp->cset_links) && notify_on_release(cgrp)) {
81a6a5cd 446 if (taskexit)
bd89aabc
PM
447 set_bit(CGRP_RELEASABLE, &cgrp->flags);
448 check_for_release(cgrp);
81a6a5cd 449 }
2c6ab6d2
PM
450
451 kfree(link);
81a6a5cd 452 }
2c6ab6d2 453
5abb8855 454 kfree_rcu(cset, rcu_head);
b4f48b63
PM
455}
456
89c5509b
TH
457static void put_css_set(struct css_set *cset, bool taskexit)
458{
459 /*
460 * Ensure that the refcount doesn't hit zero while any readers
461 * can see it. Similar to atomic_dec_and_lock(), but for an
462 * rwlock
463 */
464 if (atomic_add_unless(&cset->refcount, -1, 1))
465 return;
466
467 down_write(&css_set_rwsem);
468 put_css_set_locked(cset, taskexit);
469 up_write(&css_set_rwsem);
470}
471
817929ec
PM
472/*
473 * refcounted get/put for css_set objects
474 */
5abb8855 475static inline void get_css_set(struct css_set *cset)
817929ec 476{
5abb8855 477 atomic_inc(&cset->refcount);
817929ec
PM
478}
479
b326f9d0 480/**
7717f7ba 481 * compare_css_sets - helper function for find_existing_css_set().
5abb8855
TH
482 * @cset: candidate css_set being tested
483 * @old_cset: existing css_set for a task
7717f7ba
PM
484 * @new_cgrp: cgroup that's being entered by the task
485 * @template: desired set of css pointers in css_set (pre-calculated)
486 *
6f4b7e63 487 * Returns true if "cset" matches "old_cset" except for the hierarchy
7717f7ba
PM
488 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
489 */
5abb8855
TH
490static bool compare_css_sets(struct css_set *cset,
491 struct css_set *old_cset,
7717f7ba
PM
492 struct cgroup *new_cgrp,
493 struct cgroup_subsys_state *template[])
494{
495 struct list_head *l1, *l2;
496
aec3dfcb
TH
497 /*
498 * On the default hierarchy, there can be csets which are
499 * associated with the same set of cgroups but different csses.
500 * Let's first ensure that csses match.
501 */
502 if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
7717f7ba 503 return false;
7717f7ba
PM
504
505 /*
506 * Compare cgroup pointers in order to distinguish between
aec3dfcb
TH
507 * different cgroups in hierarchies. As different cgroups may
508 * share the same effective css, this comparison is always
509 * necessary.
7717f7ba 510 */
69d0206c
TH
511 l1 = &cset->cgrp_links;
512 l2 = &old_cset->cgrp_links;
7717f7ba 513 while (1) {
69d0206c 514 struct cgrp_cset_link *link1, *link2;
5abb8855 515 struct cgroup *cgrp1, *cgrp2;
7717f7ba
PM
516
517 l1 = l1->next;
518 l2 = l2->next;
519 /* See if we reached the end - both lists are equal length. */
69d0206c
TH
520 if (l1 == &cset->cgrp_links) {
521 BUG_ON(l2 != &old_cset->cgrp_links);
7717f7ba
PM
522 break;
523 } else {
69d0206c 524 BUG_ON(l2 == &old_cset->cgrp_links);
7717f7ba
PM
525 }
526 /* Locate the cgroups associated with these links. */
69d0206c
TH
527 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
528 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
529 cgrp1 = link1->cgrp;
530 cgrp2 = link2->cgrp;
7717f7ba 531 /* Hierarchies should be linked in the same order. */
5abb8855 532 BUG_ON(cgrp1->root != cgrp2->root);
7717f7ba
PM
533
534 /*
535 * If this hierarchy is the hierarchy of the cgroup
536 * that's changing, then we need to check that this
537 * css_set points to the new cgroup; if it's any other
538 * hierarchy, then this css_set should point to the
539 * same cgroup as the old css_set.
540 */
5abb8855
TH
541 if (cgrp1->root == new_cgrp->root) {
542 if (cgrp1 != new_cgrp)
7717f7ba
PM
543 return false;
544 } else {
5abb8855 545 if (cgrp1 != cgrp2)
7717f7ba
PM
546 return false;
547 }
548 }
549 return true;
550}
551
b326f9d0
TH
552/**
553 * find_existing_css_set - init css array and find the matching css_set
554 * @old_cset: the css_set that we're using before the cgroup transition
555 * @cgrp: the cgroup that we're moving into
556 * @template: out param for the new set of csses, should be clear on entry
817929ec 557 */
5abb8855
TH
558static struct css_set *find_existing_css_set(struct css_set *old_cset,
559 struct cgroup *cgrp,
560 struct cgroup_subsys_state *template[])
b4f48b63 561{
3dd06ffa 562 struct cgroup_root *root = cgrp->root;
30159ec7 563 struct cgroup_subsys *ss;
5abb8855 564 struct css_set *cset;
0ac801fe 565 unsigned long key;
b326f9d0 566 int i;
817929ec 567
aae8aab4
BB
568 /*
569 * Build the set of subsystem state objects that we want to see in the
570 * new css_set. while subsystems can change globally, the entries here
571 * won't change, so no need for locking.
572 */
30159ec7 573 for_each_subsys(ss, i) {
f392e51c 574 if (root->subsys_mask & (1UL << i)) {
aec3dfcb
TH
575 /*
576 * @ss is in this hierarchy, so we want the
577 * effective css from @cgrp.
578 */
579 template[i] = cgroup_e_css(cgrp, ss);
817929ec 580 } else {
aec3dfcb
TH
581 /*
582 * @ss is not in this hierarchy, so we don't want
583 * to change the css.
584 */
5abb8855 585 template[i] = old_cset->subsys[i];
817929ec
PM
586 }
587 }
588
0ac801fe 589 key = css_set_hash(template);
5abb8855
TH
590 hash_for_each_possible(css_set_table, cset, hlist, key) {
591 if (!compare_css_sets(cset, old_cset, cgrp, template))
7717f7ba
PM
592 continue;
593
594 /* This css_set matches what we need */
5abb8855 595 return cset;
472b1053 596 }
817929ec
PM
597
598 /* No existing cgroup group matched */
599 return NULL;
600}
601
69d0206c 602static void free_cgrp_cset_links(struct list_head *links_to_free)
36553434 603{
69d0206c 604 struct cgrp_cset_link *link, *tmp_link;
36553434 605
69d0206c
TH
606 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
607 list_del(&link->cset_link);
36553434
LZ
608 kfree(link);
609 }
610}
611
69d0206c
TH
612/**
613 * allocate_cgrp_cset_links - allocate cgrp_cset_links
614 * @count: the number of links to allocate
615 * @tmp_links: list_head the allocated links are put on
616 *
617 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
618 * through ->cset_link. Returns 0 on success or -errno.
817929ec 619 */
69d0206c 620static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
817929ec 621{
69d0206c 622 struct cgrp_cset_link *link;
817929ec 623 int i;
69d0206c
TH
624
625 INIT_LIST_HEAD(tmp_links);
626
817929ec 627 for (i = 0; i < count; i++) {
f4f4be2b 628 link = kzalloc(sizeof(*link), GFP_KERNEL);
817929ec 629 if (!link) {
69d0206c 630 free_cgrp_cset_links(tmp_links);
817929ec
PM
631 return -ENOMEM;
632 }
69d0206c 633 list_add(&link->cset_link, tmp_links);
817929ec
PM
634 }
635 return 0;
636}
637
c12f65d4
LZ
638/**
639 * link_css_set - a helper function to link a css_set to a cgroup
69d0206c 640 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
5abb8855 641 * @cset: the css_set to be linked
c12f65d4
LZ
642 * @cgrp: the destination cgroup
643 */
69d0206c
TH
644static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
645 struct cgroup *cgrp)
c12f65d4 646{
69d0206c 647 struct cgrp_cset_link *link;
c12f65d4 648
69d0206c
TH
649 BUG_ON(list_empty(tmp_links));
650 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
651 link->cset = cset;
7717f7ba 652 link->cgrp = cgrp;
69d0206c 653 list_move(&link->cset_link, &cgrp->cset_links);
7717f7ba
PM
654 /*
655 * Always add links to the tail of the list so that the list
656 * is sorted by order of hierarchy creation
657 */
69d0206c 658 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
c12f65d4
LZ
659}
660
b326f9d0
TH
661/**
662 * find_css_set - return a new css_set with one cgroup updated
663 * @old_cset: the baseline css_set
664 * @cgrp: the cgroup to be updated
665 *
666 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
667 * substituted into the appropriate hierarchy.
817929ec 668 */
5abb8855
TH
669static struct css_set *find_css_set(struct css_set *old_cset,
670 struct cgroup *cgrp)
817929ec 671{
b326f9d0 672 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
5abb8855 673 struct css_set *cset;
69d0206c
TH
674 struct list_head tmp_links;
675 struct cgrp_cset_link *link;
0ac801fe 676 unsigned long key;
472b1053 677
b326f9d0
TH
678 lockdep_assert_held(&cgroup_mutex);
679
817929ec
PM
680 /* First see if we already have a cgroup group that matches
681 * the desired set */
96d365e0 682 down_read(&css_set_rwsem);
5abb8855
TH
683 cset = find_existing_css_set(old_cset, cgrp, template);
684 if (cset)
685 get_css_set(cset);
96d365e0 686 up_read(&css_set_rwsem);
817929ec 687
5abb8855
TH
688 if (cset)
689 return cset;
817929ec 690
f4f4be2b 691 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
5abb8855 692 if (!cset)
817929ec
PM
693 return NULL;
694
69d0206c 695 /* Allocate all the cgrp_cset_link objects that we'll need */
9871bf95 696 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
5abb8855 697 kfree(cset);
817929ec
PM
698 return NULL;
699 }
700
5abb8855 701 atomic_set(&cset->refcount, 1);
69d0206c 702 INIT_LIST_HEAD(&cset->cgrp_links);
5abb8855 703 INIT_LIST_HEAD(&cset->tasks);
c7561128 704 INIT_LIST_HEAD(&cset->mg_tasks);
1958d2d5 705 INIT_LIST_HEAD(&cset->mg_preload_node);
b3dc094e 706 INIT_LIST_HEAD(&cset->mg_node);
5abb8855 707 INIT_HLIST_NODE(&cset->hlist);
817929ec
PM
708
709 /* Copy the set of subsystem state objects generated in
710 * find_existing_css_set() */
5abb8855 711 memcpy(cset->subsys, template, sizeof(cset->subsys));
817929ec 712
96d365e0 713 down_write(&css_set_rwsem);
817929ec 714 /* Add reference counts and links from the new css_set. */
69d0206c 715 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
7717f7ba 716 struct cgroup *c = link->cgrp;
69d0206c 717
7717f7ba
PM
718 if (c->root == cgrp->root)
719 c = cgrp;
69d0206c 720 link_css_set(&tmp_links, cset, c);
7717f7ba 721 }
817929ec 722
69d0206c 723 BUG_ON(!list_empty(&tmp_links));
817929ec 724
817929ec 725 css_set_count++;
472b1053
LZ
726
727 /* Add this cgroup group to the hash table */
5abb8855
TH
728 key = css_set_hash(cset->subsys);
729 hash_add(css_set_table, &cset->hlist, key);
472b1053 730
96d365e0 731 up_write(&css_set_rwsem);
817929ec 732
5abb8855 733 return cset;
b4f48b63
PM
734}
735
3dd06ffa 736static struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
7717f7ba 737{
3dd06ffa 738 struct cgroup *root_cgrp = kf_root->kn->priv;
2bd59d48 739
3dd06ffa 740 return root_cgrp->root;
2bd59d48
TH
741}
742
3dd06ffa 743static int cgroup_init_root_id(struct cgroup_root *root)
f2e85d57
TH
744{
745 int id;
746
747 lockdep_assert_held(&cgroup_mutex);
748
985ed670 749 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
f2e85d57
TH
750 if (id < 0)
751 return id;
752
753 root->hierarchy_id = id;
754 return 0;
755}
756
3dd06ffa 757static void cgroup_exit_root_id(struct cgroup_root *root)
f2e85d57
TH
758{
759 lockdep_assert_held(&cgroup_mutex);
760
761 if (root->hierarchy_id) {
762 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
763 root->hierarchy_id = 0;
764 }
765}
766
3dd06ffa 767static void cgroup_free_root(struct cgroup_root *root)
f2e85d57
TH
768{
769 if (root) {
770 /* hierarhcy ID shoulid already have been released */
771 WARN_ON_ONCE(root->hierarchy_id);
772
773 idr_destroy(&root->cgroup_idr);
774 kfree(root);
775 }
776}
777
3dd06ffa 778static void cgroup_destroy_root(struct cgroup_root *root)
59f5296b 779{
3dd06ffa 780 struct cgroup *cgrp = &root->cgrp;
f2e85d57 781 struct cgrp_cset_link *link, *tmp_link;
f2e85d57 782
2bd59d48 783 mutex_lock(&cgroup_tree_mutex);
2bd59d48 784 mutex_lock(&cgroup_mutex);
f2e85d57 785
776f02fa 786 BUG_ON(atomic_read(&root->nr_cgrps));
f2e85d57
TH
787 BUG_ON(!list_empty(&cgrp->children));
788
f2e85d57 789 /* Rebind all subsystems back to the default hierarchy */
f392e51c 790 rebind_subsystems(&cgrp_dfl_root, root->subsys_mask);
7717f7ba 791
7717f7ba 792 /*
f2e85d57
TH
793 * Release all the links from cset_links to this hierarchy's
794 * root cgroup
7717f7ba 795 */
96d365e0 796 down_write(&css_set_rwsem);
f2e85d57
TH
797
798 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
799 list_del(&link->cset_link);
800 list_del(&link->cgrp_link);
801 kfree(link);
802 }
96d365e0 803 up_write(&css_set_rwsem);
f2e85d57
TH
804
805 if (!list_empty(&root->root_list)) {
806 list_del(&root->root_list);
807 cgroup_root_count--;
808 }
809
810 cgroup_exit_root_id(root);
811
812 mutex_unlock(&cgroup_mutex);
813 mutex_unlock(&cgroup_tree_mutex);
f2e85d57 814
2bd59d48 815 kernfs_destroy_root(root->kf_root);
f2e85d57
TH
816 cgroup_free_root(root);
817}
818
ceb6a081
TH
819/* look up cgroup associated with given css_set on the specified hierarchy */
820static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
3dd06ffa 821 struct cgroup_root *root)
7717f7ba 822{
7717f7ba
PM
823 struct cgroup *res = NULL;
824
96d365e0
TH
825 lockdep_assert_held(&cgroup_mutex);
826 lockdep_assert_held(&css_set_rwsem);
827
5abb8855 828 if (cset == &init_css_set) {
3dd06ffa 829 res = &root->cgrp;
7717f7ba 830 } else {
69d0206c
TH
831 struct cgrp_cset_link *link;
832
833 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 834 struct cgroup *c = link->cgrp;
69d0206c 835
7717f7ba
PM
836 if (c->root == root) {
837 res = c;
838 break;
839 }
840 }
841 }
96d365e0 842
7717f7ba
PM
843 BUG_ON(!res);
844 return res;
845}
846
ddbcc7e8 847/*
ceb6a081
TH
848 * Return the cgroup for "task" from the given hierarchy. Must be
849 * called with cgroup_mutex and css_set_rwsem held.
850 */
851static struct cgroup *task_cgroup_from_root(struct task_struct *task,
3dd06ffa 852 struct cgroup_root *root)
ceb6a081
TH
853{
854 /*
855 * No need to lock the task - since we hold cgroup_mutex the
856 * task can't change groups, so the only thing that can happen
857 * is that it exits and its css is set back to init_css_set.
858 */
859 return cset_cgroup_from_root(task_css_set(task), root);
860}
861
ddbcc7e8 862/*
ddbcc7e8
PM
863 * A task must hold cgroup_mutex to modify cgroups.
864 *
865 * Any task can increment and decrement the count field without lock.
866 * So in general, code holding cgroup_mutex can't rely on the count
867 * field not changing. However, if the count goes to zero, then only
956db3ca 868 * cgroup_attach_task() can increment it again. Because a count of zero
ddbcc7e8
PM
869 * means that no tasks are currently attached, therefore there is no
870 * way a task attached to that cgroup can fork (the other way to
871 * increment the count). So code holding cgroup_mutex can safely
872 * assume that if the count is zero, it will stay zero. Similarly, if
873 * a task holds cgroup_mutex on a cgroup with zero count, it
874 * knows that the cgroup won't be removed, as cgroup_rmdir()
875 * needs that mutex.
876 *
ddbcc7e8
PM
877 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
878 * (usually) take cgroup_mutex. These are the two most performance
879 * critical pieces of code here. The exception occurs on cgroup_exit(),
880 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
881 * is taken, and if the cgroup count is zero, a usermode call made
a043e3b2
LZ
882 * to the release agent with the name of the cgroup (path relative to
883 * the root of cgroup file system) as the argument.
ddbcc7e8
PM
884 *
885 * A cgroup can only be deleted if both its 'count' of using tasks
886 * is zero, and its list of 'children' cgroups is empty. Since all
887 * tasks in the system use _some_ cgroup, and since there is always at
3dd06ffa 888 * least one task in the system (init, pid == 1), therefore, root cgroup
ddbcc7e8 889 * always has either children cgroups and/or using tasks. So we don't
3dd06ffa 890 * need a special hack to ensure that root cgroup cannot be deleted.
ddbcc7e8
PM
891 *
892 * P.S. One more locking exception. RCU is used to guard the
956db3ca 893 * update of a tasks cgroup pointer by cgroup_attach_task()
ddbcc7e8
PM
894 */
895
628f7cd4 896static int cgroup_populate_dir(struct cgroup *cgrp, unsigned long subsys_mask);
2bd59d48 897static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
828c0950 898static const struct file_operations proc_cgroupstats_operations;
a424316c 899
8d7e6fb0
TH
900static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
901 char *buf)
ddbcc7e8 902{
8d7e6fb0
TH
903 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
904 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
905 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
906 cft->ss->name, cft->name);
907 else
908 strncpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
909 return buf;
ddbcc7e8
PM
910}
911
f2e85d57
TH
912/**
913 * cgroup_file_mode - deduce file mode of a control file
914 * @cft: the control file in question
915 *
916 * returns cft->mode if ->mode is not 0
917 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
918 * returns S_IRUGO if it has only a read handler
919 * returns S_IWUSR if it has only a write hander
920 */
921static umode_t cgroup_file_mode(const struct cftype *cft)
65dff759 922{
f2e85d57 923 umode_t mode = 0;
65dff759 924
f2e85d57
TH
925 if (cft->mode)
926 return cft->mode;
927
928 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
929 mode |= S_IRUGO;
930
931 if (cft->write_u64 || cft->write_s64 || cft->write_string ||
932 cft->trigger)
933 mode |= S_IWUSR;
934
935 return mode;
65dff759
LZ
936}
937
be445626
LZ
938static void cgroup_free_fn(struct work_struct *work)
939{
ea15f8cc 940 struct cgroup *cgrp = container_of(work, struct cgroup, destroy_work);
be445626 941
3c9c825b 942 atomic_dec(&cgrp->root->nr_cgrps);
b1a21367 943 cgroup_pidlist_destroy_all(cgrp);
be445626 944
776f02fa
TH
945 if (cgrp->parent) {
946 /*
947 * We get a ref to the parent, and put the ref when this
948 * cgroup is being freed, so it's guaranteed that the
949 * parent won't be destroyed before its children.
950 */
951 cgroup_put(cgrp->parent);
952 kernfs_put(cgrp->kn);
953 kfree(cgrp);
954 } else {
955 /*
3dd06ffa 956 * This is root cgroup's refcnt reaching zero, which
776f02fa
TH
957 * indicates that the root should be released.
958 */
959 cgroup_destroy_root(cgrp->root);
960 }
be445626
LZ
961}
962
963static void cgroup_free_rcu(struct rcu_head *head)
964{
965 struct cgroup *cgrp = container_of(head, struct cgroup, rcu_head);
966
ea15f8cc 967 INIT_WORK(&cgrp->destroy_work, cgroup_free_fn);
e5fca243 968 queue_work(cgroup_destroy_wq, &cgrp->destroy_work);
be445626
LZ
969}
970
59f5296b 971static void cgroup_get(struct cgroup *cgrp)
ddbcc7e8 972{
2bd59d48
TH
973 WARN_ON_ONCE(cgroup_is_dead(cgrp));
974 WARN_ON_ONCE(atomic_read(&cgrp->refcnt) <= 0);
975 atomic_inc(&cgrp->refcnt);
ddbcc7e8
PM
976}
977
59f5296b 978static void cgroup_put(struct cgroup *cgrp)
05ef1d7c 979{
2bd59d48
TH
980 if (!atomic_dec_and_test(&cgrp->refcnt))
981 return;
776f02fa 982 if (WARN_ON_ONCE(cgrp->parent && !cgroup_is_dead(cgrp)))
2bd59d48 983 return;
05ef1d7c 984
2739d3cc 985 /*
2bd59d48
TH
986 * XXX: cgrp->id is only used to look up css's. As cgroup and
987 * css's lifetimes will be decoupled, it should be made
988 * per-subsystem and moved to css->id so that lookups are
989 * successful until the target css is released.
2739d3cc 990 */
2bd59d48
TH
991 mutex_lock(&cgroup_mutex);
992 idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
993 mutex_unlock(&cgroup_mutex);
994 cgrp->id = -1;
05ef1d7c 995
2bd59d48 996 call_rcu(&cgrp->rcu_head, cgroup_free_rcu);
ddbcc7e8 997}
05ef1d7c 998
2739d3cc 999static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
05ef1d7c 1000{
2bd59d48 1001 char name[CGROUP_FILE_NAME_MAX];
05ef1d7c 1002
ace2bee8 1003 lockdep_assert_held(&cgroup_tree_mutex);
2bd59d48 1004 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
05ef1d7c
TH
1005}
1006
13af07df 1007/**
628f7cd4 1008 * cgroup_clear_dir - remove subsys files in a cgroup directory
8f89140a 1009 * @cgrp: target cgroup
13af07df
AR
1010 * @subsys_mask: mask of the subsystem ids whose files should be removed
1011 */
628f7cd4 1012static void cgroup_clear_dir(struct cgroup *cgrp, unsigned long subsys_mask)
05ef1d7c 1013{
13af07df 1014 struct cgroup_subsys *ss;
b420ba7d 1015 int i;
05ef1d7c 1016
b420ba7d 1017 for_each_subsys(ss, i) {
0adb0704 1018 struct cftype *cfts;
b420ba7d
TH
1019
1020 if (!test_bit(i, &subsys_mask))
13af07df 1021 continue;
0adb0704
TH
1022 list_for_each_entry(cfts, &ss->cfts, node)
1023 cgroup_addrm_files(cgrp, cfts, false);
13af07df 1024 }
ddbcc7e8
PM
1025}
1026
3dd06ffa 1027static int rebind_subsystems(struct cgroup_root *dst_root,
5df36032 1028 unsigned long ss_mask)
ddbcc7e8 1029{
30159ec7 1030 struct cgroup_subsys *ss;
5df36032 1031 int ssid, ret;
ddbcc7e8 1032
ace2bee8
TH
1033 lockdep_assert_held(&cgroup_tree_mutex);
1034 lockdep_assert_held(&cgroup_mutex);
ddbcc7e8 1035
5df36032
TH
1036 for_each_subsys(ss, ssid) {
1037 if (!(ss_mask & (1 << ssid)))
1038 continue;
aae8aab4 1039
5df36032 1040 /* if @ss is on the dummy_root, we can always move it */
3dd06ffa 1041 if (ss->root == &cgrp_dfl_root)
ddbcc7e8 1042 continue;
30159ec7 1043
5df36032 1044 /* if @ss has non-root cgroups attached to it, can't move */
3dd06ffa 1045 if (!list_empty(&ss->root->cgrp.children))
3ed80a62 1046 return -EBUSY;
1d5be6b2 1047
5df36032 1048 /* can't move between two non-dummy roots either */
3dd06ffa 1049 if (dst_root != &cgrp_dfl_root)
5df36032 1050 return -EBUSY;
ddbcc7e8
PM
1051 }
1052
a2dd4247
TH
1053 ret = cgroup_populate_dir(&dst_root->cgrp, ss_mask);
1054 if (ret) {
1055 if (dst_root != &cgrp_dfl_root)
5df36032 1056 return ret;
ddbcc7e8 1057
a2dd4247
TH
1058 /*
1059 * Rebinding back to the default root is not allowed to
1060 * fail. Using both default and non-default roots should
1061 * be rare. Moving subsystems back and forth even more so.
1062 * Just warn about it and continue.
1063 */
1064 if (cgrp_dfl_root_visible) {
1065 pr_warning("cgroup: failed to create files (%d) while rebinding 0x%lx to default root\n",
1066 ret, ss_mask);
1067 pr_warning("cgroup: you may retry by moving them to a different hierarchy and unbinding\n");
1068 }
5df36032 1069 }
3126121f
TH
1070
1071 /*
1072 * Nothing can fail from this point on. Remove files for the
1073 * removed subsystems and rebind each subsystem.
1074 */
4ac06017 1075 mutex_unlock(&cgroup_mutex);
5df36032 1076 for_each_subsys(ss, ssid)
a2dd4247 1077 if (ss_mask & (1 << ssid))
3dd06ffa 1078 cgroup_clear_dir(&ss->root->cgrp, 1 << ssid);
4ac06017 1079 mutex_lock(&cgroup_mutex);
a8a648c4 1080
5df36032 1081 for_each_subsys(ss, ssid) {
3dd06ffa 1082 struct cgroup_root *src_root;
5df36032 1083 struct cgroup_subsys_state *css;
a8a648c4 1084
5df36032
TH
1085 if (!(ss_mask & (1 << ssid)))
1086 continue;
a8a648c4 1087
5df36032 1088 src_root = ss->root;
3dd06ffa 1089 css = cgroup_css(&src_root->cgrp, ss);
a8a648c4 1090
3dd06ffa 1091 WARN_ON(!css || cgroup_css(&dst_root->cgrp, ss));
73e80ed8 1092
3dd06ffa
TH
1093 RCU_INIT_POINTER(src_root->cgrp.subsys[ssid], NULL);
1094 rcu_assign_pointer(dst_root->cgrp.subsys[ssid], css);
5df36032 1095 ss->root = dst_root;
3dd06ffa 1096 css->cgroup = &dst_root->cgrp;
73e80ed8 1097
f392e51c
TH
1098 src_root->subsys_mask &= ~(1 << ssid);
1099 src_root->cgrp.child_subsys_mask &= ~(1 << ssid);
1100
1101 dst_root->subsys_mask |= 1 << ssid;
1102 dst_root->cgrp.child_subsys_mask |= 1 << ssid;
a8a648c4 1103
5df36032
TH
1104 if (ss->bind)
1105 ss->bind(css);
ddbcc7e8 1106 }
ddbcc7e8 1107
a2dd4247 1108 kernfs_activate(dst_root->cgrp.kn);
ddbcc7e8
PM
1109 return 0;
1110}
1111
2bd59d48
TH
1112static int cgroup_show_options(struct seq_file *seq,
1113 struct kernfs_root *kf_root)
ddbcc7e8 1114{
3dd06ffa 1115 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
ddbcc7e8 1116 struct cgroup_subsys *ss;
b85d2040 1117 int ssid;
ddbcc7e8 1118
b85d2040 1119 for_each_subsys(ss, ssid)
f392e51c 1120 if (root->subsys_mask & (1 << ssid))
b85d2040 1121 seq_printf(seq, ",%s", ss->name);
873fe09e
TH
1122 if (root->flags & CGRP_ROOT_SANE_BEHAVIOR)
1123 seq_puts(seq, ",sane_behavior");
93438629 1124 if (root->flags & CGRP_ROOT_NOPREFIX)
ddbcc7e8 1125 seq_puts(seq, ",noprefix");
93438629 1126 if (root->flags & CGRP_ROOT_XATTR)
03b1cde6 1127 seq_puts(seq, ",xattr");
69e943b7
TH
1128
1129 spin_lock(&release_agent_path_lock);
81a6a5cd
PM
1130 if (strlen(root->release_agent_path))
1131 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
69e943b7
TH
1132 spin_unlock(&release_agent_path_lock);
1133
3dd06ffa 1134 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
97978e6d 1135 seq_puts(seq, ",clone_children");
c6d57f33
PM
1136 if (strlen(root->name))
1137 seq_printf(seq, ",name=%s", root->name);
ddbcc7e8
PM
1138 return 0;
1139}
1140
1141struct cgroup_sb_opts {
a1a71b45 1142 unsigned long subsys_mask;
ddbcc7e8 1143 unsigned long flags;
81a6a5cd 1144 char *release_agent;
2260e7fc 1145 bool cpuset_clone_children;
c6d57f33 1146 char *name;
2c6ab6d2
PM
1147 /* User explicitly requested empty subsystem */
1148 bool none;
ddbcc7e8
PM
1149};
1150
aae8aab4 1151/*
9871bf95
TH
1152 * Convert a hierarchy specifier into a bitmask of subsystems and
1153 * flags. Call with cgroup_mutex held to protect the cgroup_subsys[]
1154 * array. This function takes refcounts on subsystems to be used, unless it
1155 * returns error, in which case no refcounts are taken.
aae8aab4 1156 */
cf5d5941 1157static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
ddbcc7e8 1158{
32a8cf23
DL
1159 char *token, *o = data;
1160 bool all_ss = false, one_ss = false;
f9ab5b5b 1161 unsigned long mask = (unsigned long)-1;
30159ec7
TH
1162 struct cgroup_subsys *ss;
1163 int i;
f9ab5b5b 1164
aae8aab4
BB
1165 BUG_ON(!mutex_is_locked(&cgroup_mutex));
1166
f9ab5b5b 1167#ifdef CONFIG_CPUSETS
073219e9 1168 mask = ~(1UL << cpuset_cgrp_id);
f9ab5b5b 1169#endif
ddbcc7e8 1170
c6d57f33 1171 memset(opts, 0, sizeof(*opts));
ddbcc7e8
PM
1172
1173 while ((token = strsep(&o, ",")) != NULL) {
1174 if (!*token)
1175 return -EINVAL;
32a8cf23 1176 if (!strcmp(token, "none")) {
2c6ab6d2
PM
1177 /* Explicitly have no subsystems */
1178 opts->none = true;
32a8cf23
DL
1179 continue;
1180 }
1181 if (!strcmp(token, "all")) {
1182 /* Mutually exclusive option 'all' + subsystem name */
1183 if (one_ss)
1184 return -EINVAL;
1185 all_ss = true;
1186 continue;
1187 }
873fe09e
TH
1188 if (!strcmp(token, "__DEVEL__sane_behavior")) {
1189 opts->flags |= CGRP_ROOT_SANE_BEHAVIOR;
1190 continue;
1191 }
32a8cf23 1192 if (!strcmp(token, "noprefix")) {
93438629 1193 opts->flags |= CGRP_ROOT_NOPREFIX;
32a8cf23
DL
1194 continue;
1195 }
1196 if (!strcmp(token, "clone_children")) {
2260e7fc 1197 opts->cpuset_clone_children = true;
32a8cf23
DL
1198 continue;
1199 }
03b1cde6 1200 if (!strcmp(token, "xattr")) {
93438629 1201 opts->flags |= CGRP_ROOT_XATTR;
03b1cde6
AR
1202 continue;
1203 }
32a8cf23 1204 if (!strncmp(token, "release_agent=", 14)) {
81a6a5cd
PM
1205 /* Specifying two release agents is forbidden */
1206 if (opts->release_agent)
1207 return -EINVAL;
c6d57f33 1208 opts->release_agent =
e400c285 1209 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
81a6a5cd
PM
1210 if (!opts->release_agent)
1211 return -ENOMEM;
32a8cf23
DL
1212 continue;
1213 }
1214 if (!strncmp(token, "name=", 5)) {
c6d57f33
PM
1215 const char *name = token + 5;
1216 /* Can't specify an empty name */
1217 if (!strlen(name))
1218 return -EINVAL;
1219 /* Must match [\w.-]+ */
1220 for (i = 0; i < strlen(name); i++) {
1221 char c = name[i];
1222 if (isalnum(c))
1223 continue;
1224 if ((c == '.') || (c == '-') || (c == '_'))
1225 continue;
1226 return -EINVAL;
1227 }
1228 /* Specifying two names is forbidden */
1229 if (opts->name)
1230 return -EINVAL;
1231 opts->name = kstrndup(name,
e400c285 1232 MAX_CGROUP_ROOT_NAMELEN - 1,
c6d57f33
PM
1233 GFP_KERNEL);
1234 if (!opts->name)
1235 return -ENOMEM;
32a8cf23
DL
1236
1237 continue;
1238 }
1239
30159ec7 1240 for_each_subsys(ss, i) {
32a8cf23
DL
1241 if (strcmp(token, ss->name))
1242 continue;
1243 if (ss->disabled)
1244 continue;
1245
1246 /* Mutually exclusive option 'all' + subsystem name */
1247 if (all_ss)
1248 return -EINVAL;
a1a71b45 1249 set_bit(i, &opts->subsys_mask);
32a8cf23
DL
1250 one_ss = true;
1251
1252 break;
1253 }
1254 if (i == CGROUP_SUBSYS_COUNT)
1255 return -ENOENT;
1256 }
1257
2c6ab6d2
PM
1258 /* Consistency checks */
1259
873fe09e
TH
1260 if (opts->flags & CGRP_ROOT_SANE_BEHAVIOR) {
1261 pr_warning("cgroup: sane_behavior: this is still under development and its behaviors will change, proceed at your own risk\n");
1262
d3ba07c3
TH
1263 if ((opts->flags & (CGRP_ROOT_NOPREFIX | CGRP_ROOT_XATTR)) ||
1264 opts->cpuset_clone_children || opts->release_agent ||
1265 opts->name) {
1266 pr_err("cgroup: sane_behavior: noprefix, xattr, clone_children, release_agent and name are not allowed\n");
873fe09e
TH
1267 return -EINVAL;
1268 }
a2dd4247
TH
1269 } else {
1270 /*
1271 * If the 'all' option was specified select all the
1272 * subsystems, otherwise if 'none', 'name=' and a subsystem
1273 * name options were not specified, let's default to 'all'
1274 */
1275 if (all_ss || (!one_ss && !opts->none && !opts->name))
1276 for_each_subsys(ss, i)
1277 if (!ss->disabled)
1278 set_bit(i, &opts->subsys_mask);
873fe09e 1279
a2dd4247
TH
1280 /*
1281 * We either have to specify by name or by subsystems. (So
1282 * all empty hierarchies must have a name).
1283 */
1284 if (!opts->subsys_mask && !opts->name)
873fe09e 1285 return -EINVAL;
873fe09e
TH
1286 }
1287
f9ab5b5b
LZ
1288 /*
1289 * Option noprefix was introduced just for backward compatibility
1290 * with the old cpuset, so we allow noprefix only if mounting just
1291 * the cpuset subsystem.
1292 */
93438629 1293 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
f9ab5b5b
LZ
1294 return -EINVAL;
1295
2c6ab6d2
PM
1296
1297 /* Can't specify "none" and some subsystems */
a1a71b45 1298 if (opts->subsys_mask && opts->none)
2c6ab6d2
PM
1299 return -EINVAL;
1300
ddbcc7e8
PM
1301 return 0;
1302}
1303
2bd59d48 1304static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
ddbcc7e8
PM
1305{
1306 int ret = 0;
3dd06ffa 1307 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
ddbcc7e8 1308 struct cgroup_sb_opts opts;
a1a71b45 1309 unsigned long added_mask, removed_mask;
ddbcc7e8 1310
873fe09e
TH
1311 if (root->flags & CGRP_ROOT_SANE_BEHAVIOR) {
1312 pr_err("cgroup: sane_behavior: remount is not allowed\n");
1313 return -EINVAL;
1314 }
1315
ace2bee8 1316 mutex_lock(&cgroup_tree_mutex);
ddbcc7e8
PM
1317 mutex_lock(&cgroup_mutex);
1318
1319 /* See what subsystems are wanted */
1320 ret = parse_cgroupfs_options(data, &opts);
1321 if (ret)
1322 goto out_unlock;
1323
f392e51c 1324 if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
8b5a5a9d
TH
1325 pr_warning("cgroup: option changes via remount are deprecated (pid=%d comm=%s)\n",
1326 task_tgid_nr(current), current->comm);
1327
f392e51c
TH
1328 added_mask = opts.subsys_mask & ~root->subsys_mask;
1329 removed_mask = root->subsys_mask & ~opts.subsys_mask;
13af07df 1330
cf5d5941 1331 /* Don't allow flags or name to change at remount */
0ce6cba3 1332 if (((opts.flags ^ root->flags) & CGRP_ROOT_OPTION_MASK) ||
cf5d5941 1333 (opts.name && strcmp(opts.name, root->name))) {
0ce6cba3
TH
1334 pr_err("cgroup: option or name mismatch, new: 0x%lx \"%s\", old: 0x%lx \"%s\"\n",
1335 opts.flags & CGRP_ROOT_OPTION_MASK, opts.name ?: "",
1336 root->flags & CGRP_ROOT_OPTION_MASK, root->name);
c6d57f33
PM
1337 ret = -EINVAL;
1338 goto out_unlock;
1339 }
1340
f172e67c 1341 /* remounting is not allowed for populated hierarchies */
3dd06ffa 1342 if (!list_empty(&root->cgrp.children)) {
f172e67c 1343 ret = -EBUSY;
0670e08b 1344 goto out_unlock;
cf5d5941 1345 }
ddbcc7e8 1346
5df36032 1347 ret = rebind_subsystems(root, added_mask);
3126121f 1348 if (ret)
0670e08b 1349 goto out_unlock;
ddbcc7e8 1350
3dd06ffa 1351 rebind_subsystems(&cgrp_dfl_root, removed_mask);
5df36032 1352
69e943b7
TH
1353 if (opts.release_agent) {
1354 spin_lock(&release_agent_path_lock);
81a6a5cd 1355 strcpy(root->release_agent_path, opts.release_agent);
69e943b7
TH
1356 spin_unlock(&release_agent_path_lock);
1357 }
ddbcc7e8 1358 out_unlock:
66bdc9cf 1359 kfree(opts.release_agent);
c6d57f33 1360 kfree(opts.name);
ddbcc7e8 1361 mutex_unlock(&cgroup_mutex);
ace2bee8 1362 mutex_unlock(&cgroup_tree_mutex);
ddbcc7e8
PM
1363 return ret;
1364}
1365
afeb0f9f
TH
1366/*
1367 * To reduce the fork() overhead for systems that are not actually using
1368 * their cgroups capability, we don't maintain the lists running through
1369 * each css_set to its tasks until we see the list actually used - in other
1370 * words after the first mount.
1371 */
1372static bool use_task_css_set_links __read_mostly;
1373
1374static void cgroup_enable_task_cg_lists(void)
1375{
1376 struct task_struct *p, *g;
1377
96d365e0 1378 down_write(&css_set_rwsem);
afeb0f9f
TH
1379
1380 if (use_task_css_set_links)
1381 goto out_unlock;
1382
1383 use_task_css_set_links = true;
1384
1385 /*
1386 * We need tasklist_lock because RCU is not safe against
1387 * while_each_thread(). Besides, a forking task that has passed
1388 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1389 * is not guaranteed to have its child immediately visible in the
1390 * tasklist if we walk through it with RCU.
1391 */
1392 read_lock(&tasklist_lock);
1393 do_each_thread(g, p) {
afeb0f9f
TH
1394 WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1395 task_css_set(p) != &init_css_set);
1396
1397 /*
1398 * We should check if the process is exiting, otherwise
1399 * it will race with cgroup_exit() in that the list
1400 * entry won't be deleted though the process has exited.
f153ad11
TH
1401 * Do it while holding siglock so that we don't end up
1402 * racing against cgroup_exit().
afeb0f9f 1403 */
f153ad11 1404 spin_lock_irq(&p->sighand->siglock);
eaf797ab
TH
1405 if (!(p->flags & PF_EXITING)) {
1406 struct css_set *cset = task_css_set(p);
1407
1408 list_add(&p->cg_list, &cset->tasks);
1409 get_css_set(cset);
1410 }
f153ad11 1411 spin_unlock_irq(&p->sighand->siglock);
afeb0f9f
TH
1412 } while_each_thread(g, p);
1413 read_unlock(&tasklist_lock);
1414out_unlock:
96d365e0 1415 up_write(&css_set_rwsem);
afeb0f9f 1416}
ddbcc7e8 1417
cc31edce
PM
1418static void init_cgroup_housekeeping(struct cgroup *cgrp)
1419{
2bd59d48 1420 atomic_set(&cgrp->refcnt, 1);
cc31edce
PM
1421 INIT_LIST_HEAD(&cgrp->sibling);
1422 INIT_LIST_HEAD(&cgrp->children);
69d0206c 1423 INIT_LIST_HEAD(&cgrp->cset_links);
cc31edce 1424 INIT_LIST_HEAD(&cgrp->release_list);
72a8cb30
BB
1425 INIT_LIST_HEAD(&cgrp->pidlists);
1426 mutex_init(&cgrp->pidlist_mutex);
67f4c36f 1427 cgrp->dummy_css.cgroup = cgrp;
cc31edce 1428}
c6d57f33 1429
3dd06ffa 1430static void init_cgroup_root(struct cgroup_root *root,
172a2c06 1431 struct cgroup_sb_opts *opts)
ddbcc7e8 1432{
3dd06ffa 1433 struct cgroup *cgrp = &root->cgrp;
b0ca5a84 1434
ddbcc7e8 1435 INIT_LIST_HEAD(&root->root_list);
3c9c825b 1436 atomic_set(&root->nr_cgrps, 1);
bd89aabc 1437 cgrp->root = root;
cc31edce 1438 init_cgroup_housekeeping(cgrp);
4e96ee8e 1439 idr_init(&root->cgroup_idr);
c6d57f33 1440
c6d57f33
PM
1441 root->flags = opts->flags;
1442 if (opts->release_agent)
1443 strcpy(root->release_agent_path, opts->release_agent);
1444 if (opts->name)
1445 strcpy(root->name, opts->name);
2260e7fc 1446 if (opts->cpuset_clone_children)
3dd06ffa 1447 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
c6d57f33
PM
1448}
1449
3dd06ffa 1450static int cgroup_setup_root(struct cgroup_root *root, unsigned long ss_mask)
2c6ab6d2 1451{
d427dfeb 1452 LIST_HEAD(tmp_links);
3dd06ffa 1453 struct cgroup *root_cgrp = &root->cgrp;
d427dfeb 1454 struct css_set *cset;
d427dfeb 1455 int i, ret;
2c6ab6d2 1456
d427dfeb
TH
1457 lockdep_assert_held(&cgroup_tree_mutex);
1458 lockdep_assert_held(&cgroup_mutex);
c6d57f33 1459
d427dfeb
TH
1460 ret = idr_alloc(&root->cgroup_idr, root_cgrp, 0, 1, GFP_KERNEL);
1461 if (ret < 0)
2bd59d48 1462 goto out;
d427dfeb 1463 root_cgrp->id = ret;
c6d57f33 1464
d427dfeb 1465 /*
96d365e0 1466 * We're accessing css_set_count without locking css_set_rwsem here,
d427dfeb
TH
1467 * but that's OK - it can only be increased by someone holding
1468 * cgroup_lock, and that's us. The worst that can happen is that we
1469 * have some link structures left over
1470 */
1471 ret = allocate_cgrp_cset_links(css_set_count, &tmp_links);
1472 if (ret)
2bd59d48 1473 goto out;
ddbcc7e8 1474
985ed670 1475 ret = cgroup_init_root_id(root);
ddbcc7e8 1476 if (ret)
2bd59d48 1477 goto out;
ddbcc7e8 1478
2bd59d48
TH
1479 root->kf_root = kernfs_create_root(&cgroup_kf_syscall_ops,
1480 KERNFS_ROOT_CREATE_DEACTIVATED,
1481 root_cgrp);
1482 if (IS_ERR(root->kf_root)) {
1483 ret = PTR_ERR(root->kf_root);
1484 goto exit_root_id;
1485 }
1486 root_cgrp->kn = root->kf_root->kn;
ddbcc7e8 1487
d427dfeb
TH
1488 ret = cgroup_addrm_files(root_cgrp, cgroup_base_files, true);
1489 if (ret)
2bd59d48 1490 goto destroy_root;
ddbcc7e8 1491
5df36032 1492 ret = rebind_subsystems(root, ss_mask);
d427dfeb 1493 if (ret)
2bd59d48 1494 goto destroy_root;
ddbcc7e8 1495
d427dfeb
TH
1496 /*
1497 * There must be no failure case after here, since rebinding takes
1498 * care of subsystems' refcounts, which are explicitly dropped in
1499 * the failure exit path.
1500 */
1501 list_add(&root->root_list, &cgroup_roots);
1502 cgroup_root_count++;
0df6a63f 1503
d427dfeb 1504 /*
3dd06ffa 1505 * Link the root cgroup in this hierarchy into all the css_set
d427dfeb
TH
1506 * objects.
1507 */
96d365e0 1508 down_write(&css_set_rwsem);
d427dfeb
TH
1509 hash_for_each(css_set_table, i, cset, hlist)
1510 link_css_set(&tmp_links, cset, root_cgrp);
96d365e0 1511 up_write(&css_set_rwsem);
ddbcc7e8 1512
d427dfeb 1513 BUG_ON(!list_empty(&root_cgrp->children));
3c9c825b 1514 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
ddbcc7e8 1515
2bd59d48 1516 kernfs_activate(root_cgrp->kn);
d427dfeb 1517 ret = 0;
2bd59d48 1518 goto out;
d427dfeb 1519
2bd59d48
TH
1520destroy_root:
1521 kernfs_destroy_root(root->kf_root);
1522 root->kf_root = NULL;
1523exit_root_id:
d427dfeb 1524 cgroup_exit_root_id(root);
2bd59d48 1525out:
d427dfeb
TH
1526 free_cgrp_cset_links(&tmp_links);
1527 return ret;
ddbcc7e8
PM
1528}
1529
f7e83571 1530static struct dentry *cgroup_mount(struct file_system_type *fs_type,
ddbcc7e8 1531 int flags, const char *unused_dev_name,
f7e83571 1532 void *data)
ddbcc7e8 1533{
3dd06ffa 1534 struct cgroup_root *root;
ddbcc7e8 1535 struct cgroup_sb_opts opts;
2bd59d48 1536 struct dentry *dentry;
8e30e2b8 1537 int ret;
c6b3d5bc 1538 bool new_sb;
ddbcc7e8 1539
56fde9e0
TH
1540 /*
1541 * The first time anyone tries to mount a cgroup, enable the list
1542 * linking each css_set to its tasks and fix up all existing tasks.
1543 */
1544 if (!use_task_css_set_links)
1545 cgroup_enable_task_cg_lists();
e37a06f1 1546
8e30e2b8 1547 mutex_lock(&cgroup_tree_mutex);
aae8aab4 1548 mutex_lock(&cgroup_mutex);
8e30e2b8
TH
1549
1550 /* First find the desired set of subsystems */
ddbcc7e8 1551 ret = parse_cgroupfs_options(data, &opts);
c6d57f33 1552 if (ret)
8e30e2b8 1553 goto out_unlock;
e37a06f1 1554retry:
2bd59d48 1555 /* look for a matching existing root */
a2dd4247
TH
1556 if (!opts.subsys_mask && !opts.none && !opts.name) {
1557 cgrp_dfl_root_visible = true;
1558 root = &cgrp_dfl_root;
1559 cgroup_get(&root->cgrp);
1560 ret = 0;
1561 goto out_unlock;
ddbcc7e8
PM
1562 }
1563
985ed670 1564 for_each_root(root) {
2bd59d48 1565 bool name_match = false;
3126121f 1566
3dd06ffa 1567 if (root == &cgrp_dfl_root)
985ed670 1568 continue;
3126121f 1569
cf5d5941 1570 /*
2bd59d48
TH
1571 * If we asked for a name then it must match. Also, if
1572 * name matches but sybsys_mask doesn't, we should fail.
1573 * Remember whether name matched.
cf5d5941 1574 */
2bd59d48
TH
1575 if (opts.name) {
1576 if (strcmp(opts.name, root->name))
1577 continue;
1578 name_match = true;
1579 }
ddbcc7e8 1580
c6d57f33 1581 /*
2bd59d48
TH
1582 * If we asked for subsystems (or explicitly for no
1583 * subsystems) then they must match.
c6d57f33 1584 */
2bd59d48 1585 if ((opts.subsys_mask || opts.none) &&
f392e51c 1586 (opts.subsys_mask != root->subsys_mask)) {
2bd59d48
TH
1587 if (!name_match)
1588 continue;
1589 ret = -EBUSY;
1590 goto out_unlock;
1591 }
873fe09e 1592
c7ba8287 1593 if ((root->flags ^ opts.flags) & CGRP_ROOT_OPTION_MASK) {
2a0ff3fb
JL
1594 if ((root->flags | opts.flags) & CGRP_ROOT_SANE_BEHAVIOR) {
1595 pr_err("cgroup: sane_behavior: new mount options should match the existing superblock\n");
1596 ret = -EINVAL;
8e30e2b8 1597 goto out_unlock;
2a0ff3fb
JL
1598 } else {
1599 pr_warning("cgroup: new mount options do not match the existing superblock, will be ignored\n");
1600 }
873fe09e 1601 }
ddbcc7e8 1602
776f02fa 1603 /*
3dd06ffa 1604 * A root's lifetime is governed by its root cgroup. Zero
776f02fa
TH
1605 * ref indicate that the root is being destroyed. Wait for
1606 * destruction to complete so that the subsystems are free.
1607 * We can use wait_queue for the wait but this path is
1608 * super cold. Let's just sleep for a bit and retry.
1609 */
3dd06ffa 1610 if (!atomic_inc_not_zero(&root->cgrp.refcnt)) {
776f02fa
TH
1611 mutex_unlock(&cgroup_mutex);
1612 mutex_unlock(&cgroup_tree_mutex);
1613 msleep(10);
e37a06f1
LZ
1614 mutex_lock(&cgroup_tree_mutex);
1615 mutex_lock(&cgroup_mutex);
776f02fa
TH
1616 goto retry;
1617 }
ddbcc7e8 1618
776f02fa 1619 ret = 0;
2bd59d48 1620 goto out_unlock;
ddbcc7e8 1621 }
ddbcc7e8 1622
817929ec 1623 /*
172a2c06
TH
1624 * No such thing, create a new one. name= matching without subsys
1625 * specification is allowed for already existing hierarchies but we
1626 * can't create new one without subsys specification.
817929ec 1627 */
172a2c06
TH
1628 if (!opts.subsys_mask && !opts.none) {
1629 ret = -EINVAL;
1630 goto out_unlock;
817929ec 1631 }
817929ec 1632
172a2c06
TH
1633 root = kzalloc(sizeof(*root), GFP_KERNEL);
1634 if (!root) {
1635 ret = -ENOMEM;
2bd59d48 1636 goto out_unlock;
839ec545 1637 }
e5f6a860 1638
172a2c06
TH
1639 init_cgroup_root(root, &opts);
1640
35585573 1641 ret = cgroup_setup_root(root, opts.subsys_mask);
2bd59d48
TH
1642 if (ret)
1643 cgroup_free_root(root);
fa3ca07e 1644
8e30e2b8 1645out_unlock:
ddbcc7e8 1646 mutex_unlock(&cgroup_mutex);
ace2bee8 1647 mutex_unlock(&cgroup_tree_mutex);
ddbcc7e8 1648
c6d57f33
PM
1649 kfree(opts.release_agent);
1650 kfree(opts.name);
03b1cde6 1651
2bd59d48 1652 if (ret)
8e30e2b8 1653 return ERR_PTR(ret);
2bd59d48 1654
c6b3d5bc
LZ
1655 dentry = kernfs_mount(fs_type, flags, root->kf_root, &new_sb);
1656 if (IS_ERR(dentry) || !new_sb)
3dd06ffa 1657 cgroup_put(&root->cgrp);
2bd59d48
TH
1658 return dentry;
1659}
1660
1661static void cgroup_kill_sb(struct super_block *sb)
1662{
1663 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
3dd06ffa 1664 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2bd59d48 1665
3dd06ffa 1666 cgroup_put(&root->cgrp);
2bd59d48 1667 kernfs_kill_sb(sb);
ddbcc7e8
PM
1668}
1669
1670static struct file_system_type cgroup_fs_type = {
1671 .name = "cgroup",
f7e83571 1672 .mount = cgroup_mount,
ddbcc7e8
PM
1673 .kill_sb = cgroup_kill_sb,
1674};
1675
676db4af
GKH
1676static struct kobject *cgroup_kobj;
1677
857a2beb 1678/**
913ffdb5 1679 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
857a2beb 1680 * @task: target task
857a2beb
TH
1681 * @buf: the buffer to write the path into
1682 * @buflen: the length of the buffer
1683 *
913ffdb5
TH
1684 * Determine @task's cgroup on the first (the one with the lowest non-zero
1685 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
1686 * function grabs cgroup_mutex and shouldn't be used inside locks used by
1687 * cgroup controller callbacks.
1688 *
e61734c5 1689 * Return value is the same as kernfs_path().
857a2beb 1690 */
e61734c5 1691char *task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
857a2beb 1692{
3dd06ffa 1693 struct cgroup_root *root;
913ffdb5 1694 struct cgroup *cgrp;
e61734c5
TH
1695 int hierarchy_id = 1;
1696 char *path = NULL;
857a2beb
TH
1697
1698 mutex_lock(&cgroup_mutex);
96d365e0 1699 down_read(&css_set_rwsem);
857a2beb 1700
913ffdb5
TH
1701 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
1702
857a2beb
TH
1703 if (root) {
1704 cgrp = task_cgroup_from_root(task, root);
e61734c5 1705 path = cgroup_path(cgrp, buf, buflen);
913ffdb5
TH
1706 } else {
1707 /* if no hierarchy exists, everyone is in "/" */
e61734c5
TH
1708 if (strlcpy(buf, "/", buflen) < buflen)
1709 path = buf;
857a2beb
TH
1710 }
1711
96d365e0 1712 up_read(&css_set_rwsem);
857a2beb 1713 mutex_unlock(&cgroup_mutex);
e61734c5 1714 return path;
857a2beb 1715}
913ffdb5 1716EXPORT_SYMBOL_GPL(task_cgroup_path);
857a2beb 1717
b3dc094e 1718/* used to track tasks and other necessary states during migration */
2f7ee569 1719struct cgroup_taskset {
b3dc094e
TH
1720 /* the src and dst cset list running through cset->mg_node */
1721 struct list_head src_csets;
1722 struct list_head dst_csets;
1723
1724 /*
1725 * Fields for cgroup_taskset_*() iteration.
1726 *
1727 * Before migration is committed, the target migration tasks are on
1728 * ->mg_tasks of the csets on ->src_csets. After, on ->mg_tasks of
1729 * the csets on ->dst_csets. ->csets point to either ->src_csets
1730 * or ->dst_csets depending on whether migration is committed.
1731 *
1732 * ->cur_csets and ->cur_task point to the current task position
1733 * during iteration.
1734 */
1735 struct list_head *csets;
1736 struct css_set *cur_cset;
1737 struct task_struct *cur_task;
2f7ee569
TH
1738};
1739
1740/**
1741 * cgroup_taskset_first - reset taskset and return the first task
1742 * @tset: taskset of interest
1743 *
1744 * @tset iteration is initialized and the first task is returned.
1745 */
1746struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
1747{
b3dc094e
TH
1748 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
1749 tset->cur_task = NULL;
1750
1751 return cgroup_taskset_next(tset);
2f7ee569 1752}
2f7ee569
TH
1753
1754/**
1755 * cgroup_taskset_next - iterate to the next task in taskset
1756 * @tset: taskset of interest
1757 *
1758 * Return the next task in @tset. Iteration must have been initialized
1759 * with cgroup_taskset_first().
1760 */
1761struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
1762{
b3dc094e
TH
1763 struct css_set *cset = tset->cur_cset;
1764 struct task_struct *task = tset->cur_task;
2f7ee569 1765
b3dc094e
TH
1766 while (&cset->mg_node != tset->csets) {
1767 if (!task)
1768 task = list_first_entry(&cset->mg_tasks,
1769 struct task_struct, cg_list);
1770 else
1771 task = list_next_entry(task, cg_list);
2f7ee569 1772
b3dc094e
TH
1773 if (&task->cg_list != &cset->mg_tasks) {
1774 tset->cur_cset = cset;
1775 tset->cur_task = task;
1776 return task;
1777 }
2f7ee569 1778
b3dc094e
TH
1779 cset = list_next_entry(cset, mg_node);
1780 task = NULL;
1781 }
2f7ee569 1782
b3dc094e 1783 return NULL;
2f7ee569 1784}
2f7ee569 1785
cb0f1fe9 1786/**
74a1166d 1787 * cgroup_task_migrate - move a task from one cgroup to another.
cb0f1fe9
TH
1788 * @old_cgrp; the cgroup @tsk is being migrated from
1789 * @tsk: the task being migrated
1790 * @new_cset: the new css_set @tsk is being attached to
74a1166d 1791 *
cb0f1fe9 1792 * Must be called with cgroup_mutex, threadgroup and css_set_rwsem locked.
74a1166d 1793 */
5abb8855
TH
1794static void cgroup_task_migrate(struct cgroup *old_cgrp,
1795 struct task_struct *tsk,
1796 struct css_set *new_cset)
74a1166d 1797{
5abb8855 1798 struct css_set *old_cset;
74a1166d 1799
cb0f1fe9
TH
1800 lockdep_assert_held(&cgroup_mutex);
1801 lockdep_assert_held(&css_set_rwsem);
1802
74a1166d 1803 /*
026085ef
MSB
1804 * We are synchronized through threadgroup_lock() against PF_EXITING
1805 * setting such that we can't race against cgroup_exit() changing the
1806 * css_set to init_css_set and dropping the old one.
74a1166d 1807 */
c84cdf75 1808 WARN_ON_ONCE(tsk->flags & PF_EXITING);
a8ad805c 1809 old_cset = task_css_set(tsk);
74a1166d 1810
b3dc094e 1811 get_css_set(new_cset);
5abb8855 1812 rcu_assign_pointer(tsk->cgroups, new_cset);
74a1166d 1813
1b9aba49
TH
1814 /*
1815 * Use move_tail so that cgroup_taskset_first() still returns the
1816 * leader after migration. This works because cgroup_migrate()
1817 * ensures that the dst_cset of the leader is the first on the
1818 * tset's dst_csets list.
1819 */
1820 list_move_tail(&tsk->cg_list, &new_cset->mg_tasks);
74a1166d
BB
1821
1822 /*
5abb8855
TH
1823 * We just gained a reference on old_cset by taking it from the
1824 * task. As trading it for new_cset is protected by cgroup_mutex,
1825 * we're safe to drop it here; it will be freed under RCU.
74a1166d 1826 */
5abb8855 1827 set_bit(CGRP_RELEASABLE, &old_cgrp->flags);
cb0f1fe9 1828 put_css_set_locked(old_cset, false);
74a1166d
BB
1829}
1830
a043e3b2 1831/**
1958d2d5
TH
1832 * cgroup_migrate_finish - cleanup after attach
1833 * @preloaded_csets: list of preloaded css_sets
74a1166d 1834 *
1958d2d5
TH
1835 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
1836 * those functions for details.
74a1166d 1837 */
1958d2d5 1838static void cgroup_migrate_finish(struct list_head *preloaded_csets)
74a1166d 1839{
1958d2d5 1840 struct css_set *cset, *tmp_cset;
74a1166d 1841
1958d2d5
TH
1842 lockdep_assert_held(&cgroup_mutex);
1843
1844 down_write(&css_set_rwsem);
1845 list_for_each_entry_safe(cset, tmp_cset, preloaded_csets, mg_preload_node) {
1846 cset->mg_src_cgrp = NULL;
1847 cset->mg_dst_cset = NULL;
1848 list_del_init(&cset->mg_preload_node);
1849 put_css_set_locked(cset, false);
1850 }
1851 up_write(&css_set_rwsem);
1852}
1853
1854/**
1855 * cgroup_migrate_add_src - add a migration source css_set
1856 * @src_cset: the source css_set to add
1857 * @dst_cgrp: the destination cgroup
1858 * @preloaded_csets: list of preloaded css_sets
1859 *
1860 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
1861 * @src_cset and add it to @preloaded_csets, which should later be cleaned
1862 * up by cgroup_migrate_finish().
1863 *
1864 * This function may be called without holding threadgroup_lock even if the
1865 * target is a process. Threads may be created and destroyed but as long
1866 * as cgroup_mutex is not dropped, no new css_set can be put into play and
1867 * the preloaded css_sets are guaranteed to cover all migrations.
1868 */
1869static void cgroup_migrate_add_src(struct css_set *src_cset,
1870 struct cgroup *dst_cgrp,
1871 struct list_head *preloaded_csets)
1872{
1873 struct cgroup *src_cgrp;
1874
1875 lockdep_assert_held(&cgroup_mutex);
1876 lockdep_assert_held(&css_set_rwsem);
1877
1878 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
1879
1880 /* nothing to do if this cset already belongs to the cgroup */
1881 if (src_cgrp == dst_cgrp)
1882 return;
1883
1884 if (!list_empty(&src_cset->mg_preload_node))
1885 return;
1886
1887 WARN_ON(src_cset->mg_src_cgrp);
1888 WARN_ON(!list_empty(&src_cset->mg_tasks));
1889 WARN_ON(!list_empty(&src_cset->mg_node));
1890
1891 src_cset->mg_src_cgrp = src_cgrp;
1892 get_css_set(src_cset);
1893 list_add(&src_cset->mg_preload_node, preloaded_csets);
1894}
1895
1896/**
1897 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
1898 * @dst_cgrp: the destination cgroup
1899 * @preloaded_csets: list of preloaded source css_sets
1900 *
1901 * Tasks are about to be moved to @dst_cgrp and all the source css_sets
1902 * have been preloaded to @preloaded_csets. This function looks up and
1903 * pins all destination css_sets, links each to its source, and put them on
1904 * @preloaded_csets.
1905 *
1906 * This function must be called after cgroup_migrate_add_src() has been
1907 * called on each migration source css_set. After migration is performed
1908 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
1909 * @preloaded_csets.
1910 */
1911static int cgroup_migrate_prepare_dst(struct cgroup *dst_cgrp,
1912 struct list_head *preloaded_csets)
1913{
1914 LIST_HEAD(csets);
1915 struct css_set *src_cset;
1916
1917 lockdep_assert_held(&cgroup_mutex);
1918
1919 /* look up the dst cset for each src cset and link it to src */
1920 list_for_each_entry(src_cset, preloaded_csets, mg_preload_node) {
1921 struct css_set *dst_cset;
1922
1923 dst_cset = find_css_set(src_cset, dst_cgrp);
1924 if (!dst_cset)
1925 goto err;
1926
1927 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
1928 src_cset->mg_dst_cset = dst_cset;
1929
1930 if (list_empty(&dst_cset->mg_preload_node))
1931 list_add(&dst_cset->mg_preload_node, &csets);
1932 else
1933 put_css_set(dst_cset, false);
1934 }
1935
1936 list_splice(&csets, preloaded_csets);
1937 return 0;
1938err:
1939 cgroup_migrate_finish(&csets);
1940 return -ENOMEM;
1941}
1942
1943/**
1944 * cgroup_migrate - migrate a process or task to a cgroup
1945 * @cgrp: the destination cgroup
1946 * @leader: the leader of the process or the task to migrate
1947 * @threadgroup: whether @leader points to the whole process or a single task
1948 *
1949 * Migrate a process or task denoted by @leader to @cgrp. If migrating a
1950 * process, the caller must be holding threadgroup_lock of @leader. The
1951 * caller is also responsible for invoking cgroup_migrate_add_src() and
1952 * cgroup_migrate_prepare_dst() on the targets before invoking this
1953 * function and following up with cgroup_migrate_finish().
1954 *
1955 * As long as a controller's ->can_attach() doesn't fail, this function is
1956 * guaranteed to succeed. This means that, excluding ->can_attach()
1957 * failure, when migrating multiple targets, the success or failure can be
1958 * decided for all targets by invoking group_migrate_prepare_dst() before
1959 * actually starting migrating.
1960 */
1961static int cgroup_migrate(struct cgroup *cgrp, struct task_struct *leader,
1962 bool threadgroup)
74a1166d 1963{
b3dc094e
TH
1964 struct cgroup_taskset tset = {
1965 .src_csets = LIST_HEAD_INIT(tset.src_csets),
1966 .dst_csets = LIST_HEAD_INIT(tset.dst_csets),
1967 .csets = &tset.src_csets,
1968 };
1c6727af 1969 struct cgroup_subsys_state *css, *failed_css = NULL;
b3dc094e
TH
1970 struct css_set *cset, *tmp_cset;
1971 struct task_struct *task, *tmp_task;
1972 int i, ret;
74a1166d 1973
fb5d2b4c
MSB
1974 /*
1975 * Prevent freeing of tasks while we take a snapshot. Tasks that are
1976 * already PF_EXITING could be freed from underneath us unless we
1977 * take an rcu_read_lock.
1978 */
b3dc094e 1979 down_write(&css_set_rwsem);
fb5d2b4c 1980 rcu_read_lock();
9db8de37 1981 task = leader;
74a1166d 1982 do {
9db8de37
TH
1983 /* @task either already exited or can't exit until the end */
1984 if (task->flags & PF_EXITING)
ea84753c 1985 goto next;
134d3373 1986
eaf797ab
TH
1987 /* leave @task alone if post_fork() hasn't linked it yet */
1988 if (list_empty(&task->cg_list))
ea84753c 1989 goto next;
cd3d0952 1990
b3dc094e 1991 cset = task_css_set(task);
1958d2d5 1992 if (!cset->mg_src_cgrp)
ea84753c 1993 goto next;
b3dc094e 1994
61d1d219 1995 /*
1b9aba49
TH
1996 * cgroup_taskset_first() must always return the leader.
1997 * Take care to avoid disturbing the ordering.
61d1d219 1998 */
1b9aba49
TH
1999 list_move_tail(&task->cg_list, &cset->mg_tasks);
2000 if (list_empty(&cset->mg_node))
2001 list_add_tail(&cset->mg_node, &tset.src_csets);
2002 if (list_empty(&cset->mg_dst_cset->mg_node))
2003 list_move_tail(&cset->mg_dst_cset->mg_node,
2004 &tset.dst_csets);
ea84753c 2005 next:
081aa458
LZ
2006 if (!threadgroup)
2007 break;
9db8de37 2008 } while_each_thread(leader, task);
fb5d2b4c 2009 rcu_read_unlock();
b3dc094e 2010 up_write(&css_set_rwsem);
74a1166d 2011
134d3373 2012 /* methods shouldn't be called if no task is actually migrating */
b3dc094e
TH
2013 if (list_empty(&tset.src_csets))
2014 return 0;
134d3373 2015
1958d2d5 2016 /* check that we can legitimately attach to the cgroup */
aec3dfcb 2017 for_each_e_css(css, i, cgrp) {
1c6727af 2018 if (css->ss->can_attach) {
9db8de37
TH
2019 ret = css->ss->can_attach(css, &tset);
2020 if (ret) {
1c6727af 2021 failed_css = css;
74a1166d
BB
2022 goto out_cancel_attach;
2023 }
2024 }
74a1166d
BB
2025 }
2026
2027 /*
1958d2d5
TH
2028 * Now that we're guaranteed success, proceed to move all tasks to
2029 * the new cgroup. There are no failure cases after here, so this
2030 * is the commit point.
74a1166d 2031 */
cb0f1fe9 2032 down_write(&css_set_rwsem);
b3dc094e
TH
2033 list_for_each_entry(cset, &tset.src_csets, mg_node) {
2034 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list)
2035 cgroup_task_migrate(cset->mg_src_cgrp, task,
2036 cset->mg_dst_cset);
74a1166d 2037 }
cb0f1fe9 2038 up_write(&css_set_rwsem);
74a1166d
BB
2039
2040 /*
1958d2d5
TH
2041 * Migration is committed, all target tasks are now on dst_csets.
2042 * Nothing is sensitive to fork() after this point. Notify
2043 * controllers that migration is complete.
74a1166d 2044 */
1958d2d5 2045 tset.csets = &tset.dst_csets;
74a1166d 2046
aec3dfcb 2047 for_each_e_css(css, i, cgrp)
1c6727af
TH
2048 if (css->ss->attach)
2049 css->ss->attach(css, &tset);
74a1166d 2050
9db8de37 2051 ret = 0;
b3dc094e
TH
2052 goto out_release_tset;
2053
74a1166d 2054out_cancel_attach:
aec3dfcb 2055 for_each_e_css(css, i, cgrp) {
b3dc094e
TH
2056 if (css == failed_css)
2057 break;
2058 if (css->ss->cancel_attach)
2059 css->ss->cancel_attach(css, &tset);
74a1166d 2060 }
b3dc094e
TH
2061out_release_tset:
2062 down_write(&css_set_rwsem);
2063 list_splice_init(&tset.dst_csets, &tset.src_csets);
2064 list_for_each_entry_safe(cset, tmp_cset, &tset.src_csets, mg_node) {
1b9aba49 2065 list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
b3dc094e 2066 list_del_init(&cset->mg_node);
b3dc094e
TH
2067 }
2068 up_write(&css_set_rwsem);
9db8de37 2069 return ret;
74a1166d
BB
2070}
2071
1958d2d5
TH
2072/**
2073 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2074 * @dst_cgrp: the cgroup to attach to
2075 * @leader: the task or the leader of the threadgroup to be attached
2076 * @threadgroup: attach the whole threadgroup?
2077 *
0e1d768f 2078 * Call holding cgroup_mutex and threadgroup_lock of @leader.
1958d2d5
TH
2079 */
2080static int cgroup_attach_task(struct cgroup *dst_cgrp,
2081 struct task_struct *leader, bool threadgroup)
2082{
2083 LIST_HEAD(preloaded_csets);
2084 struct task_struct *task;
2085 int ret;
2086
2087 /* look up all src csets */
2088 down_read(&css_set_rwsem);
2089 rcu_read_lock();
2090 task = leader;
2091 do {
2092 cgroup_migrate_add_src(task_css_set(task), dst_cgrp,
2093 &preloaded_csets);
2094 if (!threadgroup)
2095 break;
2096 } while_each_thread(leader, task);
2097 rcu_read_unlock();
2098 up_read(&css_set_rwsem);
2099
2100 /* prepare dst csets and commit */
2101 ret = cgroup_migrate_prepare_dst(dst_cgrp, &preloaded_csets);
2102 if (!ret)
2103 ret = cgroup_migrate(dst_cgrp, leader, threadgroup);
2104
2105 cgroup_migrate_finish(&preloaded_csets);
2106 return ret;
74a1166d
BB
2107}
2108
2109/*
2110 * Find the task_struct of the task to attach by vpid and pass it along to the
cd3d0952 2111 * function to attach either it or all tasks in its threadgroup. Will lock
0e1d768f 2112 * cgroup_mutex and threadgroup.
bbcb81d0 2113 */
74a1166d 2114static int attach_task_by_pid(struct cgroup *cgrp, u64 pid, bool threadgroup)
bbcb81d0 2115{
bbcb81d0 2116 struct task_struct *tsk;
c69e8d9c 2117 const struct cred *cred = current_cred(), *tcred;
bbcb81d0
PM
2118 int ret;
2119
74a1166d
BB
2120 if (!cgroup_lock_live_group(cgrp))
2121 return -ENODEV;
2122
b78949eb
MSB
2123retry_find_task:
2124 rcu_read_lock();
bbcb81d0 2125 if (pid) {
73507f33 2126 tsk = find_task_by_vpid(pid);
74a1166d
BB
2127 if (!tsk) {
2128 rcu_read_unlock();
dd4b0a46 2129 ret = -ESRCH;
b78949eb 2130 goto out_unlock_cgroup;
bbcb81d0 2131 }
74a1166d
BB
2132 /*
2133 * even if we're attaching all tasks in the thread group, we
2134 * only need to check permissions on one of them.
2135 */
c69e8d9c 2136 tcred = __task_cred(tsk);
14a590c3
EB
2137 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2138 !uid_eq(cred->euid, tcred->uid) &&
2139 !uid_eq(cred->euid, tcred->suid)) {
c69e8d9c 2140 rcu_read_unlock();
b78949eb
MSB
2141 ret = -EACCES;
2142 goto out_unlock_cgroup;
bbcb81d0 2143 }
b78949eb
MSB
2144 } else
2145 tsk = current;
cd3d0952
TH
2146
2147 if (threadgroup)
b78949eb 2148 tsk = tsk->group_leader;
c4c27fbd
MG
2149
2150 /*
14a40ffc 2151 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
c4c27fbd
MG
2152 * trapped in a cpuset, or RT worker may be born in a cgroup
2153 * with no rt_runtime allocated. Just say no.
2154 */
14a40ffc 2155 if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
c4c27fbd
MG
2156 ret = -EINVAL;
2157 rcu_read_unlock();
2158 goto out_unlock_cgroup;
2159 }
2160
b78949eb
MSB
2161 get_task_struct(tsk);
2162 rcu_read_unlock();
2163
2164 threadgroup_lock(tsk);
2165 if (threadgroup) {
2166 if (!thread_group_leader(tsk)) {
2167 /*
2168 * a race with de_thread from another thread's exec()
2169 * may strip us of our leadership, if this happens,
2170 * there is no choice but to throw this task away and
2171 * try again; this is
2172 * "double-double-toil-and-trouble-check locking".
2173 */
2174 threadgroup_unlock(tsk);
2175 put_task_struct(tsk);
2176 goto retry_find_task;
2177 }
081aa458
LZ
2178 }
2179
2180 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
2181
cd3d0952
TH
2182 threadgroup_unlock(tsk);
2183
bbcb81d0 2184 put_task_struct(tsk);
b78949eb 2185out_unlock_cgroup:
47cfcd09 2186 mutex_unlock(&cgroup_mutex);
bbcb81d0
PM
2187 return ret;
2188}
2189
7ae1bad9
TH
2190/**
2191 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2192 * @from: attach to all cgroups of a given task
2193 * @tsk: the task to be attached
2194 */
2195int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2196{
3dd06ffa 2197 struct cgroup_root *root;
7ae1bad9
TH
2198 int retval = 0;
2199
47cfcd09 2200 mutex_lock(&cgroup_mutex);
985ed670 2201 for_each_root(root) {
96d365e0
TH
2202 struct cgroup *from_cgrp;
2203
3dd06ffa 2204 if (root == &cgrp_dfl_root)
985ed670
TH
2205 continue;
2206
96d365e0
TH
2207 down_read(&css_set_rwsem);
2208 from_cgrp = task_cgroup_from_root(from, root);
2209 up_read(&css_set_rwsem);
7ae1bad9 2210
6f4b7e63 2211 retval = cgroup_attach_task(from_cgrp, tsk, false);
7ae1bad9
TH
2212 if (retval)
2213 break;
2214 }
47cfcd09 2215 mutex_unlock(&cgroup_mutex);
7ae1bad9
TH
2216
2217 return retval;
2218}
2219EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2220
182446d0
TH
2221static int cgroup_tasks_write(struct cgroup_subsys_state *css,
2222 struct cftype *cft, u64 pid)
74a1166d 2223{
182446d0 2224 return attach_task_by_pid(css->cgroup, pid, false);
74a1166d
BB
2225}
2226
182446d0
TH
2227static int cgroup_procs_write(struct cgroup_subsys_state *css,
2228 struct cftype *cft, u64 tgid)
af351026 2229{
182446d0 2230 return attach_task_by_pid(css->cgroup, tgid, true);
af351026
PM
2231}
2232
182446d0 2233static int cgroup_release_agent_write(struct cgroup_subsys_state *css,
4d3bb511 2234 struct cftype *cft, char *buffer)
e788e066 2235{
3dd06ffa 2236 struct cgroup_root *root = css->cgroup->root;
5f469907
TH
2237
2238 BUILD_BUG_ON(sizeof(root->release_agent_path) < PATH_MAX);
182446d0 2239 if (!cgroup_lock_live_group(css->cgroup))
e788e066 2240 return -ENODEV;
69e943b7 2241 spin_lock(&release_agent_path_lock);
5f469907
TH
2242 strlcpy(root->release_agent_path, buffer,
2243 sizeof(root->release_agent_path));
69e943b7 2244 spin_unlock(&release_agent_path_lock);
47cfcd09 2245 mutex_unlock(&cgroup_mutex);
e788e066
PM
2246 return 0;
2247}
2248
2da8ca82 2249static int cgroup_release_agent_show(struct seq_file *seq, void *v)
e788e066 2250{
2da8ca82 2251 struct cgroup *cgrp = seq_css(seq)->cgroup;
182446d0 2252
e788e066
PM
2253 if (!cgroup_lock_live_group(cgrp))
2254 return -ENODEV;
2255 seq_puts(seq, cgrp->root->release_agent_path);
2256 seq_putc(seq, '\n');
47cfcd09 2257 mutex_unlock(&cgroup_mutex);
e788e066
PM
2258 return 0;
2259}
2260
2da8ca82 2261static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
873fe09e 2262{
2da8ca82
TH
2263 struct cgroup *cgrp = seq_css(seq)->cgroup;
2264
2265 seq_printf(seq, "%d\n", cgroup_sane_behavior(cgrp));
e788e066
PM
2266 return 0;
2267}
2268
2bd59d48
TH
2269static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
2270 size_t nbytes, loff_t off)
355e0c48 2271{
2bd59d48
TH
2272 struct cgroup *cgrp = of->kn->parent->priv;
2273 struct cftype *cft = of->kn->priv;
2274 struct cgroup_subsys_state *css;
a742c59d 2275 int ret;
355e0c48 2276
2bd59d48
TH
2277 /*
2278 * kernfs guarantees that a file isn't deleted with operations in
2279 * flight, which means that the matching css is and stays alive and
2280 * doesn't need to be pinned. The RCU locking is not necessary
2281 * either. It's just for the convenience of using cgroup_css().
2282 */
2283 rcu_read_lock();
2284 css = cgroup_css(cgrp, cft->ss);
2285 rcu_read_unlock();
a742c59d
TH
2286
2287 if (cft->write_string) {
2288 ret = cft->write_string(css, cft, strstrip(buf));
2289 } else if (cft->write_u64) {
2290 unsigned long long v;
2291 ret = kstrtoull(buf, 0, &v);
2292 if (!ret)
2293 ret = cft->write_u64(css, cft, v);
2294 } else if (cft->write_s64) {
2295 long long v;
2296 ret = kstrtoll(buf, 0, &v);
2297 if (!ret)
2298 ret = cft->write_s64(css, cft, v);
2299 } else if (cft->trigger) {
2300 ret = cft->trigger(css, (unsigned int)cft->private);
e73d2c61 2301 } else {
a742c59d 2302 ret = -EINVAL;
e73d2c61 2303 }
2bd59d48 2304
a742c59d 2305 return ret ?: nbytes;
355e0c48
PM
2306}
2307
6612f05b 2308static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
db3b1497 2309{
2bd59d48 2310 return seq_cft(seq)->seq_start(seq, ppos);
db3b1497
PM
2311}
2312
6612f05b 2313static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
ddbcc7e8 2314{
2bd59d48 2315 return seq_cft(seq)->seq_next(seq, v, ppos);
ddbcc7e8
PM
2316}
2317
6612f05b 2318static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
ddbcc7e8 2319{
2bd59d48 2320 seq_cft(seq)->seq_stop(seq, v);
ddbcc7e8
PM
2321}
2322
91796569 2323static int cgroup_seqfile_show(struct seq_file *m, void *arg)
e73d2c61 2324{
7da11279
TH
2325 struct cftype *cft = seq_cft(m);
2326 struct cgroup_subsys_state *css = seq_css(m);
e73d2c61 2327
2da8ca82
TH
2328 if (cft->seq_show)
2329 return cft->seq_show(m, arg);
e73d2c61 2330
f4c753b7 2331 if (cft->read_u64)
896f5199
TH
2332 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
2333 else if (cft->read_s64)
2334 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
2335 else
2336 return -EINVAL;
2337 return 0;
91796569
PM
2338}
2339
2bd59d48
TH
2340static struct kernfs_ops cgroup_kf_single_ops = {
2341 .atomic_write_len = PAGE_SIZE,
2342 .write = cgroup_file_write,
2343 .seq_show = cgroup_seqfile_show,
91796569
PM
2344};
2345
2bd59d48
TH
2346static struct kernfs_ops cgroup_kf_ops = {
2347 .atomic_write_len = PAGE_SIZE,
2348 .write = cgroup_file_write,
2349 .seq_start = cgroup_seqfile_start,
2350 .seq_next = cgroup_seqfile_next,
2351 .seq_stop = cgroup_seqfile_stop,
2352 .seq_show = cgroup_seqfile_show,
2353};
ddbcc7e8
PM
2354
2355/*
2356 * cgroup_rename - Only allow simple rename of directories in place.
2357 */
2bd59d48
TH
2358static int cgroup_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
2359 const char *new_name_str)
ddbcc7e8 2360{
2bd59d48 2361 struct cgroup *cgrp = kn->priv;
65dff759 2362 int ret;
65dff759 2363
2bd59d48 2364 if (kernfs_type(kn) != KERNFS_DIR)
ddbcc7e8 2365 return -ENOTDIR;
2bd59d48 2366 if (kn->parent != new_parent)
ddbcc7e8 2367 return -EIO;
65dff759 2368
6db8e85c
TH
2369 /*
2370 * This isn't a proper migration and its usefulness is very
2371 * limited. Disallow if sane_behavior.
2372 */
2373 if (cgroup_sane_behavior(cgrp))
2374 return -EPERM;
099fca32 2375
e1b2dc17
TH
2376 /*
2377 * We're gonna grab cgroup_tree_mutex which nests outside kernfs
2378 * active_ref. kernfs_rename() doesn't require active_ref
2379 * protection. Break them before grabbing cgroup_tree_mutex.
2380 */
2381 kernfs_break_active_protection(new_parent);
2382 kernfs_break_active_protection(kn);
099fca32 2383
2bd59d48
TH
2384 mutex_lock(&cgroup_tree_mutex);
2385 mutex_lock(&cgroup_mutex);
099fca32 2386
2bd59d48 2387 ret = kernfs_rename(kn, new_parent, new_name_str);
099fca32 2388
2bd59d48
TH
2389 mutex_unlock(&cgroup_mutex);
2390 mutex_unlock(&cgroup_tree_mutex);
e1b2dc17
TH
2391
2392 kernfs_unbreak_active_protection(kn);
2393 kernfs_unbreak_active_protection(new_parent);
2bd59d48 2394 return ret;
099fca32
LZ
2395}
2396
49957f8e
TH
2397/* set uid and gid of cgroup dirs and files to that of the creator */
2398static int cgroup_kn_set_ugid(struct kernfs_node *kn)
2399{
2400 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
2401 .ia_uid = current_fsuid(),
2402 .ia_gid = current_fsgid(), };
2403
2404 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
2405 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
2406 return 0;
2407
2408 return kernfs_setattr(kn, &iattr);
2409}
2410
2bb566cb 2411static int cgroup_add_file(struct cgroup *cgrp, struct cftype *cft)
ddbcc7e8 2412{
8d7e6fb0 2413 char name[CGROUP_FILE_NAME_MAX];
2bd59d48
TH
2414 struct kernfs_node *kn;
2415 struct lock_class_key *key = NULL;
49957f8e 2416 int ret;
05ef1d7c 2417
2bd59d48
TH
2418#ifdef CONFIG_DEBUG_LOCK_ALLOC
2419 key = &cft->lockdep_key;
2420#endif
2421 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
2422 cgroup_file_mode(cft), 0, cft->kf_ops, cft,
2423 NULL, false, key);
49957f8e
TH
2424 if (IS_ERR(kn))
2425 return PTR_ERR(kn);
2426
2427 ret = cgroup_kn_set_ugid(kn);
2428 if (ret)
2429 kernfs_remove(kn);
2430 return ret;
ddbcc7e8
PM
2431}
2432
b1f28d31
TH
2433/**
2434 * cgroup_addrm_files - add or remove files to a cgroup directory
2435 * @cgrp: the target cgroup
b1f28d31
TH
2436 * @cfts: array of cftypes to be added
2437 * @is_add: whether to add or remove
2438 *
2439 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
2bb566cb
TH
2440 * For removals, this function never fails. If addition fails, this
2441 * function doesn't remove files already added. The caller is responsible
2442 * for cleaning up.
b1f28d31 2443 */
2bb566cb
TH
2444static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
2445 bool is_add)
ddbcc7e8 2446{
03b1cde6 2447 struct cftype *cft;
b1f28d31
TH
2448 int ret;
2449
ace2bee8 2450 lockdep_assert_held(&cgroup_tree_mutex);
db0416b6
TH
2451
2452 for (cft = cfts; cft->name[0] != '\0'; cft++) {
f33fddc2 2453 /* does cft->flags tell us to skip this file on @cgrp? */
8cbbf2c9
TH
2454 if ((cft->flags & CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
2455 continue;
873fe09e
TH
2456 if ((cft->flags & CFTYPE_INSANE) && cgroup_sane_behavior(cgrp))
2457 continue;
f33fddc2
G
2458 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgrp->parent)
2459 continue;
2460 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgrp->parent)
2461 continue;
2462
2739d3cc 2463 if (is_add) {
2bb566cb 2464 ret = cgroup_add_file(cgrp, cft);
b1f28d31 2465 if (ret) {
2739d3cc 2466 pr_warn("cgroup_addrm_files: failed to add %s, err=%d\n",
b1f28d31
TH
2467 cft->name, ret);
2468 return ret;
2469 }
2739d3cc
LZ
2470 } else {
2471 cgroup_rm_file(cgrp, cft);
db0416b6 2472 }
ddbcc7e8 2473 }
b1f28d31 2474 return 0;
ddbcc7e8
PM
2475}
2476
21a2d343 2477static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
8e3f6541
TH
2478{
2479 LIST_HEAD(pending);
2bb566cb 2480 struct cgroup_subsys *ss = cfts[0].ss;
3dd06ffa 2481 struct cgroup *root = &ss->root->cgrp;
492eb21b 2482 struct cgroup_subsys_state *css;
9ccece80 2483 int ret = 0;
8e3f6541 2484
21a2d343 2485 lockdep_assert_held(&cgroup_tree_mutex);
8e3f6541 2486
e8c82d20 2487 /* add/rm files for all cgroups created before */
ca8bdcaf 2488 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
492eb21b
TH
2489 struct cgroup *cgrp = css->cgroup;
2490
e8c82d20
LZ
2491 if (cgroup_is_dead(cgrp))
2492 continue;
2493
21a2d343 2494 ret = cgroup_addrm_files(cgrp, cfts, is_add);
9ccece80
TH
2495 if (ret)
2496 break;
8e3f6541 2497 }
21a2d343
TH
2498
2499 if (is_add && !ret)
2500 kernfs_activate(root->kn);
9ccece80 2501 return ret;
8e3f6541
TH
2502}
2503
2da440a2 2504static void cgroup_exit_cftypes(struct cftype *cfts)
8e3f6541 2505{
2bb566cb 2506 struct cftype *cft;
8e3f6541 2507
2bd59d48
TH
2508 for (cft = cfts; cft->name[0] != '\0'; cft++) {
2509 /* free copy for custom atomic_write_len, see init_cftypes() */
2510 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
2511 kfree(cft->kf_ops);
2512 cft->kf_ops = NULL;
2da440a2 2513 cft->ss = NULL;
2bd59d48 2514 }
2da440a2
TH
2515}
2516
2bd59d48 2517static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
2da440a2
TH
2518{
2519 struct cftype *cft;
2520
2bd59d48
TH
2521 for (cft = cfts; cft->name[0] != '\0'; cft++) {
2522 struct kernfs_ops *kf_ops;
2523
0adb0704
TH
2524 WARN_ON(cft->ss || cft->kf_ops);
2525
2bd59d48
TH
2526 if (cft->seq_start)
2527 kf_ops = &cgroup_kf_ops;
2528 else
2529 kf_ops = &cgroup_kf_single_ops;
2530
2531 /*
2532 * Ugh... if @cft wants a custom max_write_len, we need to
2533 * make a copy of kf_ops to set its atomic_write_len.
2534 */
2535 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
2536 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
2537 if (!kf_ops) {
2538 cgroup_exit_cftypes(cfts);
2539 return -ENOMEM;
2540 }
2541 kf_ops->atomic_write_len = cft->max_write_len;
2542 }
8e3f6541 2543
2bd59d48 2544 cft->kf_ops = kf_ops;
2bb566cb 2545 cft->ss = ss;
2bd59d48 2546 }
2bb566cb 2547
2bd59d48 2548 return 0;
2da440a2
TH
2549}
2550
21a2d343
TH
2551static int cgroup_rm_cftypes_locked(struct cftype *cfts)
2552{
2553 lockdep_assert_held(&cgroup_tree_mutex);
2554
2555 if (!cfts || !cfts[0].ss)
2556 return -ENOENT;
2557
2558 list_del(&cfts->node);
2559 cgroup_apply_cftypes(cfts, false);
2560 cgroup_exit_cftypes(cfts);
2561 return 0;
8e3f6541 2562}
8e3f6541 2563
79578621
TH
2564/**
2565 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
79578621
TH
2566 * @cfts: zero-length name terminated array of cftypes
2567 *
2bb566cb
TH
2568 * Unregister @cfts. Files described by @cfts are removed from all
2569 * existing cgroups and all future cgroups won't have them either. This
2570 * function can be called anytime whether @cfts' subsys is attached or not.
79578621
TH
2571 *
2572 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
2bb566cb 2573 * registered.
79578621 2574 */
2bb566cb 2575int cgroup_rm_cftypes(struct cftype *cfts)
79578621 2576{
21a2d343 2577 int ret;
79578621 2578
21a2d343
TH
2579 mutex_lock(&cgroup_tree_mutex);
2580 ret = cgroup_rm_cftypes_locked(cfts);
2581 mutex_unlock(&cgroup_tree_mutex);
2582 return ret;
80b13586
TH
2583}
2584
8e3f6541
TH
2585/**
2586 * cgroup_add_cftypes - add an array of cftypes to a subsystem
2587 * @ss: target cgroup subsystem
2588 * @cfts: zero-length name terminated array of cftypes
2589 *
2590 * Register @cfts to @ss. Files described by @cfts are created for all
2591 * existing cgroups to which @ss is attached and all future cgroups will
2592 * have them too. This function can be called anytime whether @ss is
2593 * attached or not.
2594 *
2595 * Returns 0 on successful registration, -errno on failure. Note that this
2596 * function currently returns 0 as long as @cfts registration is successful
2597 * even if some file creation attempts on existing cgroups fail.
2598 */
03b1cde6 2599int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
8e3f6541 2600{
9ccece80 2601 int ret;
8e3f6541 2602
dc5736ed
LZ
2603 if (!cfts || cfts[0].name[0] == '\0')
2604 return 0;
2bb566cb 2605
2bd59d48
TH
2606 ret = cgroup_init_cftypes(ss, cfts);
2607 if (ret)
2608 return ret;
79578621 2609
21a2d343
TH
2610 mutex_lock(&cgroup_tree_mutex);
2611
0adb0704 2612 list_add_tail(&cfts->node, &ss->cfts);
21a2d343 2613 ret = cgroup_apply_cftypes(cfts, true);
9ccece80 2614 if (ret)
21a2d343 2615 cgroup_rm_cftypes_locked(cfts);
79578621 2616
21a2d343 2617 mutex_unlock(&cgroup_tree_mutex);
9ccece80 2618 return ret;
79578621
TH
2619}
2620
a043e3b2
LZ
2621/**
2622 * cgroup_task_count - count the number of tasks in a cgroup.
2623 * @cgrp: the cgroup in question
2624 *
2625 * Return the number of tasks in the cgroup.
2626 */
07bc356e 2627static int cgroup_task_count(const struct cgroup *cgrp)
bbcb81d0
PM
2628{
2629 int count = 0;
69d0206c 2630 struct cgrp_cset_link *link;
817929ec 2631
96d365e0 2632 down_read(&css_set_rwsem);
69d0206c
TH
2633 list_for_each_entry(link, &cgrp->cset_links, cset_link)
2634 count += atomic_read(&link->cset->refcount);
96d365e0 2635 up_read(&css_set_rwsem);
bbcb81d0
PM
2636 return count;
2637}
2638
53fa5261 2639/**
492eb21b
TH
2640 * css_next_child - find the next child of a given css
2641 * @pos_css: the current position (%NULL to initiate traversal)
2642 * @parent_css: css whose children to walk
53fa5261 2643 *
492eb21b 2644 * This function returns the next child of @parent_css and should be called
87fb54f1
TH
2645 * under either cgroup_mutex or RCU read lock. The only requirement is
2646 * that @parent_css and @pos_css are accessible. The next sibling is
2647 * guaranteed to be returned regardless of their states.
53fa5261 2648 */
492eb21b
TH
2649struct cgroup_subsys_state *
2650css_next_child(struct cgroup_subsys_state *pos_css,
2651 struct cgroup_subsys_state *parent_css)
53fa5261 2652{
492eb21b
TH
2653 struct cgroup *pos = pos_css ? pos_css->cgroup : NULL;
2654 struct cgroup *cgrp = parent_css->cgroup;
53fa5261
TH
2655 struct cgroup *next;
2656
ace2bee8 2657 cgroup_assert_mutexes_or_rcu_locked();
53fa5261
TH
2658
2659 /*
2660 * @pos could already have been removed. Once a cgroup is removed,
2661 * its ->sibling.next is no longer updated when its next sibling
ea15f8cc
TH
2662 * changes. As CGRP_DEAD assertion is serialized and happens
2663 * before the cgroup is taken off the ->sibling list, if we see it
2664 * unasserted, it's guaranteed that the next sibling hasn't
2665 * finished its grace period even if it's already removed, and thus
2666 * safe to dereference from this RCU critical section. If
2667 * ->sibling.next is inaccessible, cgroup_is_dead() is guaranteed
2668 * to be visible as %true here.
3b287a50
TH
2669 *
2670 * If @pos is dead, its next pointer can't be dereferenced;
2671 * however, as each cgroup is given a monotonically increasing
2672 * unique serial number and always appended to the sibling list,
2673 * the next one can be found by walking the parent's children until
2674 * we see a cgroup with higher serial number than @pos's. While
2675 * this path can be slower, it's taken only when either the current
2676 * cgroup is removed or iteration and removal race.
53fa5261 2677 */
3b287a50
TH
2678 if (!pos) {
2679 next = list_entry_rcu(cgrp->children.next, struct cgroup, sibling);
2680 } else if (likely(!cgroup_is_dead(pos))) {
53fa5261 2681 next = list_entry_rcu(pos->sibling.next, struct cgroup, sibling);
3b287a50
TH
2682 } else {
2683 list_for_each_entry_rcu(next, &cgrp->children, sibling)
2684 if (next->serial_nr > pos->serial_nr)
2685 break;
53fa5261
TH
2686 }
2687
492eb21b
TH
2688 if (&next->sibling == &cgrp->children)
2689 return NULL;
2690
ca8bdcaf 2691 return cgroup_css(next, parent_css->ss);
53fa5261 2692}
53fa5261 2693
574bd9f7 2694/**
492eb21b 2695 * css_next_descendant_pre - find the next descendant for pre-order walk
574bd9f7 2696 * @pos: the current position (%NULL to initiate traversal)
492eb21b 2697 * @root: css whose descendants to walk
574bd9f7 2698 *
492eb21b 2699 * To be used by css_for_each_descendant_pre(). Find the next descendant
bd8815a6
TH
2700 * to visit for pre-order traversal of @root's descendants. @root is
2701 * included in the iteration and the first node to be visited.
75501a6d 2702 *
87fb54f1
TH
2703 * While this function requires cgroup_mutex or RCU read locking, it
2704 * doesn't require the whole traversal to be contained in a single critical
2705 * section. This function will return the correct next descendant as long
2706 * as both @pos and @root are accessible and @pos is a descendant of @root.
574bd9f7 2707 */
492eb21b
TH
2708struct cgroup_subsys_state *
2709css_next_descendant_pre(struct cgroup_subsys_state *pos,
2710 struct cgroup_subsys_state *root)
574bd9f7 2711{
492eb21b 2712 struct cgroup_subsys_state *next;
574bd9f7 2713
ace2bee8 2714 cgroup_assert_mutexes_or_rcu_locked();
574bd9f7 2715
bd8815a6 2716 /* if first iteration, visit @root */
7805d000 2717 if (!pos)
bd8815a6 2718 return root;
574bd9f7
TH
2719
2720 /* visit the first child if exists */
492eb21b 2721 next = css_next_child(NULL, pos);
574bd9f7
TH
2722 if (next)
2723 return next;
2724
2725 /* no child, visit my or the closest ancestor's next sibling */
492eb21b
TH
2726 while (pos != root) {
2727 next = css_next_child(pos, css_parent(pos));
75501a6d 2728 if (next)
574bd9f7 2729 return next;
492eb21b 2730 pos = css_parent(pos);
7805d000 2731 }
574bd9f7
TH
2732
2733 return NULL;
2734}
574bd9f7 2735
12a9d2fe 2736/**
492eb21b
TH
2737 * css_rightmost_descendant - return the rightmost descendant of a css
2738 * @pos: css of interest
12a9d2fe 2739 *
492eb21b
TH
2740 * Return the rightmost descendant of @pos. If there's no descendant, @pos
2741 * is returned. This can be used during pre-order traversal to skip
12a9d2fe 2742 * subtree of @pos.
75501a6d 2743 *
87fb54f1
TH
2744 * While this function requires cgroup_mutex or RCU read locking, it
2745 * doesn't require the whole traversal to be contained in a single critical
2746 * section. This function will return the correct rightmost descendant as
2747 * long as @pos is accessible.
12a9d2fe 2748 */
492eb21b
TH
2749struct cgroup_subsys_state *
2750css_rightmost_descendant(struct cgroup_subsys_state *pos)
12a9d2fe 2751{
492eb21b 2752 struct cgroup_subsys_state *last, *tmp;
12a9d2fe 2753
ace2bee8 2754 cgroup_assert_mutexes_or_rcu_locked();
12a9d2fe
TH
2755
2756 do {
2757 last = pos;
2758 /* ->prev isn't RCU safe, walk ->next till the end */
2759 pos = NULL;
492eb21b 2760 css_for_each_child(tmp, last)
12a9d2fe
TH
2761 pos = tmp;
2762 } while (pos);
2763
2764 return last;
2765}
12a9d2fe 2766
492eb21b
TH
2767static struct cgroup_subsys_state *
2768css_leftmost_descendant(struct cgroup_subsys_state *pos)
574bd9f7 2769{
492eb21b 2770 struct cgroup_subsys_state *last;
574bd9f7
TH
2771
2772 do {
2773 last = pos;
492eb21b 2774 pos = css_next_child(NULL, pos);
574bd9f7
TH
2775 } while (pos);
2776
2777 return last;
2778}
2779
2780/**
492eb21b 2781 * css_next_descendant_post - find the next descendant for post-order walk
574bd9f7 2782 * @pos: the current position (%NULL to initiate traversal)
492eb21b 2783 * @root: css whose descendants to walk
574bd9f7 2784 *
492eb21b 2785 * To be used by css_for_each_descendant_post(). Find the next descendant
bd8815a6
TH
2786 * to visit for post-order traversal of @root's descendants. @root is
2787 * included in the iteration and the last node to be visited.
75501a6d 2788 *
87fb54f1
TH
2789 * While this function requires cgroup_mutex or RCU read locking, it
2790 * doesn't require the whole traversal to be contained in a single critical
2791 * section. This function will return the correct next descendant as long
2792 * as both @pos and @cgroup are accessible and @pos is a descendant of
2793 * @cgroup.
574bd9f7 2794 */
492eb21b
TH
2795struct cgroup_subsys_state *
2796css_next_descendant_post(struct cgroup_subsys_state *pos,
2797 struct cgroup_subsys_state *root)
574bd9f7 2798{
492eb21b 2799 struct cgroup_subsys_state *next;
574bd9f7 2800
ace2bee8 2801 cgroup_assert_mutexes_or_rcu_locked();
574bd9f7 2802
58b79a91
TH
2803 /* if first iteration, visit leftmost descendant which may be @root */
2804 if (!pos)
2805 return css_leftmost_descendant(root);
574bd9f7 2806
bd8815a6
TH
2807 /* if we visited @root, we're done */
2808 if (pos == root)
2809 return NULL;
2810
574bd9f7 2811 /* if there's an unvisited sibling, visit its leftmost descendant */
492eb21b 2812 next = css_next_child(pos, css_parent(pos));
75501a6d 2813 if (next)
492eb21b 2814 return css_leftmost_descendant(next);
574bd9f7
TH
2815
2816 /* no sibling left, visit parent */
bd8815a6 2817 return css_parent(pos);
574bd9f7 2818}
574bd9f7 2819
0942eeee 2820/**
72ec7029 2821 * css_advance_task_iter - advance a task itererator to the next css_set
0942eeee
TH
2822 * @it: the iterator to advance
2823 *
2824 * Advance @it to the next css_set to walk.
d515876e 2825 */
72ec7029 2826static void css_advance_task_iter(struct css_task_iter *it)
d515876e
TH
2827{
2828 struct list_head *l = it->cset_link;
2829 struct cgrp_cset_link *link;
2830 struct css_set *cset;
2831
2832 /* Advance to the next non-empty css_set */
2833 do {
2834 l = l->next;
72ec7029 2835 if (l == &it->origin_css->cgroup->cset_links) {
d515876e
TH
2836 it->cset_link = NULL;
2837 return;
2838 }
2839 link = list_entry(l, struct cgrp_cset_link, cset_link);
2840 cset = link->cset;
c7561128
TH
2841 } while (list_empty(&cset->tasks) && list_empty(&cset->mg_tasks));
2842
d515876e 2843 it->cset_link = l;
c7561128
TH
2844
2845 if (!list_empty(&cset->tasks))
2846 it->task = cset->tasks.next;
2847 else
2848 it->task = cset->mg_tasks.next;
d515876e
TH
2849}
2850
0942eeee 2851/**
72ec7029
TH
2852 * css_task_iter_start - initiate task iteration
2853 * @css: the css to walk tasks of
0942eeee
TH
2854 * @it: the task iterator to use
2855 *
72ec7029
TH
2856 * Initiate iteration through the tasks of @css. The caller can call
2857 * css_task_iter_next() to walk through the tasks until the function
2858 * returns NULL. On completion of iteration, css_task_iter_end() must be
2859 * called.
0942eeee
TH
2860 *
2861 * Note that this function acquires a lock which is released when the
2862 * iteration finishes. The caller can't sleep while iteration is in
2863 * progress.
2864 */
72ec7029
TH
2865void css_task_iter_start(struct cgroup_subsys_state *css,
2866 struct css_task_iter *it)
96d365e0 2867 __acquires(css_set_rwsem)
817929ec 2868{
56fde9e0
TH
2869 /* no one should try to iterate before mounting cgroups */
2870 WARN_ON_ONCE(!use_task_css_set_links);
31a7df01 2871
96d365e0 2872 down_read(&css_set_rwsem);
c59cd3d8 2873
72ec7029
TH
2874 it->origin_css = css;
2875 it->cset_link = &css->cgroup->cset_links;
c59cd3d8 2876
72ec7029 2877 css_advance_task_iter(it);
817929ec
PM
2878}
2879
0942eeee 2880/**
72ec7029 2881 * css_task_iter_next - return the next task for the iterator
0942eeee
TH
2882 * @it: the task iterator being iterated
2883 *
2884 * The "next" function for task iteration. @it should have been
72ec7029
TH
2885 * initialized via css_task_iter_start(). Returns NULL when the iteration
2886 * reaches the end.
0942eeee 2887 */
72ec7029 2888struct task_struct *css_task_iter_next(struct css_task_iter *it)
817929ec
PM
2889{
2890 struct task_struct *res;
2891 struct list_head *l = it->task;
c7561128
TH
2892 struct cgrp_cset_link *link = list_entry(it->cset_link,
2893 struct cgrp_cset_link, cset_link);
817929ec
PM
2894
2895 /* If the iterator cg is NULL, we have no tasks */
69d0206c 2896 if (!it->cset_link)
817929ec
PM
2897 return NULL;
2898 res = list_entry(l, struct task_struct, cg_list);
c7561128
TH
2899
2900 /*
2901 * Advance iterator to find next entry. cset->tasks is consumed
2902 * first and then ->mg_tasks. After ->mg_tasks, we move onto the
2903 * next cset.
2904 */
817929ec 2905 l = l->next;
c7561128
TH
2906
2907 if (l == &link->cset->tasks)
2908 l = link->cset->mg_tasks.next;
2909
2910 if (l == &link->cset->mg_tasks)
72ec7029 2911 css_advance_task_iter(it);
c7561128 2912 else
817929ec 2913 it->task = l;
c7561128 2914
817929ec
PM
2915 return res;
2916}
2917
0942eeee 2918/**
72ec7029 2919 * css_task_iter_end - finish task iteration
0942eeee
TH
2920 * @it: the task iterator to finish
2921 *
72ec7029 2922 * Finish task iteration started by css_task_iter_start().
0942eeee 2923 */
72ec7029 2924void css_task_iter_end(struct css_task_iter *it)
96d365e0 2925 __releases(css_set_rwsem)
31a7df01 2926{
96d365e0 2927 up_read(&css_set_rwsem);
31a7df01
CW
2928}
2929
2930/**
8cc99345
TH
2931 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
2932 * @to: cgroup to which the tasks will be moved
2933 * @from: cgroup in which the tasks currently reside
31a7df01 2934 *
eaf797ab
TH
2935 * Locking rules between cgroup_post_fork() and the migration path
2936 * guarantee that, if a task is forking while being migrated, the new child
2937 * is guaranteed to be either visible in the source cgroup after the
2938 * parent's migration is complete or put into the target cgroup. No task
2939 * can slip out of migration through forking.
31a7df01 2940 */
8cc99345 2941int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
31a7df01 2942{
952aaa12
TH
2943 LIST_HEAD(preloaded_csets);
2944 struct cgrp_cset_link *link;
72ec7029 2945 struct css_task_iter it;
e406d1cf 2946 struct task_struct *task;
952aaa12 2947 int ret;
31a7df01 2948
952aaa12 2949 mutex_lock(&cgroup_mutex);
31a7df01 2950
952aaa12
TH
2951 /* all tasks in @from are being moved, all csets are source */
2952 down_read(&css_set_rwsem);
2953 list_for_each_entry(link, &from->cset_links, cset_link)
2954 cgroup_migrate_add_src(link->cset, to, &preloaded_csets);
2955 up_read(&css_set_rwsem);
31a7df01 2956
952aaa12
TH
2957 ret = cgroup_migrate_prepare_dst(to, &preloaded_csets);
2958 if (ret)
2959 goto out_err;
8cc99345 2960
952aaa12
TH
2961 /*
2962 * Migrate tasks one-by-one until @form is empty. This fails iff
2963 * ->can_attach() fails.
2964 */
e406d1cf
TH
2965 do {
2966 css_task_iter_start(&from->dummy_css, &it);
2967 task = css_task_iter_next(&it);
2968 if (task)
2969 get_task_struct(task);
2970 css_task_iter_end(&it);
2971
2972 if (task) {
952aaa12 2973 ret = cgroup_migrate(to, task, false);
e406d1cf
TH
2974 put_task_struct(task);
2975 }
2976 } while (task && !ret);
952aaa12
TH
2977out_err:
2978 cgroup_migrate_finish(&preloaded_csets);
47cfcd09 2979 mutex_unlock(&cgroup_mutex);
e406d1cf 2980 return ret;
8cc99345
TH
2981}
2982
bbcb81d0 2983/*
102a775e 2984 * Stuff for reading the 'tasks'/'procs' files.
bbcb81d0
PM
2985 *
2986 * Reading this file can return large amounts of data if a cgroup has
2987 * *lots* of attached tasks. So it may need several calls to read(),
2988 * but we cannot guarantee that the information we produce is correct
2989 * unless we produce it entirely atomically.
2990 *
bbcb81d0 2991 */
bbcb81d0 2992
24528255
LZ
2993/* which pidlist file are we talking about? */
2994enum cgroup_filetype {
2995 CGROUP_FILE_PROCS,
2996 CGROUP_FILE_TASKS,
2997};
2998
2999/*
3000 * A pidlist is a list of pids that virtually represents the contents of one
3001 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
3002 * a pair (one each for procs, tasks) for each pid namespace that's relevant
3003 * to the cgroup.
3004 */
3005struct cgroup_pidlist {
3006 /*
3007 * used to find which pidlist is wanted. doesn't change as long as
3008 * this particular list stays in the list.
3009 */
3010 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
3011 /* array of xids */
3012 pid_t *list;
3013 /* how many elements the above list has */
3014 int length;
24528255
LZ
3015 /* each of these stored in a list by its cgroup */
3016 struct list_head links;
3017 /* pointer to the cgroup we belong to, for list removal purposes */
3018 struct cgroup *owner;
b1a21367
TH
3019 /* for delayed destruction */
3020 struct delayed_work destroy_dwork;
24528255
LZ
3021};
3022
d1d9fd33
BB
3023/*
3024 * The following two functions "fix" the issue where there are more pids
3025 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
3026 * TODO: replace with a kernel-wide solution to this problem
3027 */
3028#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
3029static void *pidlist_allocate(int count)
3030{
3031 if (PIDLIST_TOO_LARGE(count))
3032 return vmalloc(count * sizeof(pid_t));
3033 else
3034 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
3035}
b1a21367 3036
d1d9fd33
BB
3037static void pidlist_free(void *p)
3038{
3039 if (is_vmalloc_addr(p))
3040 vfree(p);
3041 else
3042 kfree(p);
3043}
d1d9fd33 3044
b1a21367
TH
3045/*
3046 * Used to destroy all pidlists lingering waiting for destroy timer. None
3047 * should be left afterwards.
3048 */
3049static void cgroup_pidlist_destroy_all(struct cgroup *cgrp)
3050{
3051 struct cgroup_pidlist *l, *tmp_l;
3052
3053 mutex_lock(&cgrp->pidlist_mutex);
3054 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
3055 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
3056 mutex_unlock(&cgrp->pidlist_mutex);
3057
3058 flush_workqueue(cgroup_pidlist_destroy_wq);
3059 BUG_ON(!list_empty(&cgrp->pidlists));
3060}
3061
3062static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
3063{
3064 struct delayed_work *dwork = to_delayed_work(work);
3065 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
3066 destroy_dwork);
3067 struct cgroup_pidlist *tofree = NULL;
3068
3069 mutex_lock(&l->owner->pidlist_mutex);
b1a21367
TH
3070
3071 /*
04502365
TH
3072 * Destroy iff we didn't get queued again. The state won't change
3073 * as destroy_dwork can only be queued while locked.
b1a21367 3074 */
04502365 3075 if (!delayed_work_pending(dwork)) {
b1a21367
TH
3076 list_del(&l->links);
3077 pidlist_free(l->list);
3078 put_pid_ns(l->key.ns);
3079 tofree = l;
3080 }
3081
b1a21367
TH
3082 mutex_unlock(&l->owner->pidlist_mutex);
3083 kfree(tofree);
3084}
3085
bbcb81d0 3086/*
102a775e 3087 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
6ee211ad 3088 * Returns the number of unique elements.
bbcb81d0 3089 */
6ee211ad 3090static int pidlist_uniq(pid_t *list, int length)
bbcb81d0 3091{
102a775e 3092 int src, dest = 1;
102a775e
BB
3093
3094 /*
3095 * we presume the 0th element is unique, so i starts at 1. trivial
3096 * edge cases first; no work needs to be done for either
3097 */
3098 if (length == 0 || length == 1)
3099 return length;
3100 /* src and dest walk down the list; dest counts unique elements */
3101 for (src = 1; src < length; src++) {
3102 /* find next unique element */
3103 while (list[src] == list[src-1]) {
3104 src++;
3105 if (src == length)
3106 goto after;
3107 }
3108 /* dest always points to where the next unique element goes */
3109 list[dest] = list[src];
3110 dest++;
3111 }
3112after:
102a775e
BB
3113 return dest;
3114}
3115
afb2bc14
TH
3116/*
3117 * The two pid files - task and cgroup.procs - guaranteed that the result
3118 * is sorted, which forced this whole pidlist fiasco. As pid order is
3119 * different per namespace, each namespace needs differently sorted list,
3120 * making it impossible to use, for example, single rbtree of member tasks
3121 * sorted by task pointer. As pidlists can be fairly large, allocating one
3122 * per open file is dangerous, so cgroup had to implement shared pool of
3123 * pidlists keyed by cgroup and namespace.
3124 *
3125 * All this extra complexity was caused by the original implementation
3126 * committing to an entirely unnecessary property. In the long term, we
3127 * want to do away with it. Explicitly scramble sort order if
3128 * sane_behavior so that no such expectation exists in the new interface.
3129 *
3130 * Scrambling is done by swapping every two consecutive bits, which is
3131 * non-identity one-to-one mapping which disturbs sort order sufficiently.
3132 */
3133static pid_t pid_fry(pid_t pid)
3134{
3135 unsigned a = pid & 0x55555555;
3136 unsigned b = pid & 0xAAAAAAAA;
3137
3138 return (a << 1) | (b >> 1);
3139}
3140
3141static pid_t cgroup_pid_fry(struct cgroup *cgrp, pid_t pid)
3142{
3143 if (cgroup_sane_behavior(cgrp))
3144 return pid_fry(pid);
3145 else
3146 return pid;
3147}
3148
102a775e
BB
3149static int cmppid(const void *a, const void *b)
3150{
3151 return *(pid_t *)a - *(pid_t *)b;
3152}
3153
afb2bc14
TH
3154static int fried_cmppid(const void *a, const void *b)
3155{
3156 return pid_fry(*(pid_t *)a) - pid_fry(*(pid_t *)b);
3157}
3158
e6b81710
TH
3159static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
3160 enum cgroup_filetype type)
3161{
3162 struct cgroup_pidlist *l;
3163 /* don't need task_nsproxy() if we're looking at ourself */
3164 struct pid_namespace *ns = task_active_pid_ns(current);
3165
3166 lockdep_assert_held(&cgrp->pidlist_mutex);
3167
3168 list_for_each_entry(l, &cgrp->pidlists, links)
3169 if (l->key.type == type && l->key.ns == ns)
3170 return l;
3171 return NULL;
3172}
3173
72a8cb30
BB
3174/*
3175 * find the appropriate pidlist for our purpose (given procs vs tasks)
3176 * returns with the lock on that pidlist already held, and takes care
3177 * of the use count, or returns NULL with no locks held if we're out of
3178 * memory.
3179 */
e6b81710
TH
3180static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
3181 enum cgroup_filetype type)
72a8cb30
BB
3182{
3183 struct cgroup_pidlist *l;
b70cc5fd 3184
e6b81710
TH
3185 lockdep_assert_held(&cgrp->pidlist_mutex);
3186
3187 l = cgroup_pidlist_find(cgrp, type);
3188 if (l)
3189 return l;
3190
72a8cb30 3191 /* entry not found; create a new one */
f4f4be2b 3192 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
e6b81710 3193 if (!l)
72a8cb30 3194 return l;
e6b81710 3195
b1a21367 3196 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
72a8cb30 3197 l->key.type = type;
e6b81710
TH
3198 /* don't need task_nsproxy() if we're looking at ourself */
3199 l->key.ns = get_pid_ns(task_active_pid_ns(current));
72a8cb30
BB
3200 l->owner = cgrp;
3201 list_add(&l->links, &cgrp->pidlists);
72a8cb30
BB
3202 return l;
3203}
3204
102a775e
BB
3205/*
3206 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
3207 */
72a8cb30
BB
3208static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
3209 struct cgroup_pidlist **lp)
102a775e
BB
3210{
3211 pid_t *array;
3212 int length;
3213 int pid, n = 0; /* used for populating the array */
72ec7029 3214 struct css_task_iter it;
817929ec 3215 struct task_struct *tsk;
102a775e
BB
3216 struct cgroup_pidlist *l;
3217
4bac00d1
TH
3218 lockdep_assert_held(&cgrp->pidlist_mutex);
3219
102a775e
BB
3220 /*
3221 * If cgroup gets more users after we read count, we won't have
3222 * enough space - tough. This race is indistinguishable to the
3223 * caller from the case that the additional cgroup users didn't
3224 * show up until sometime later on.
3225 */
3226 length = cgroup_task_count(cgrp);
d1d9fd33 3227 array = pidlist_allocate(length);
102a775e
BB
3228 if (!array)
3229 return -ENOMEM;
3230 /* now, populate the array */
72ec7029
TH
3231 css_task_iter_start(&cgrp->dummy_css, &it);
3232 while ((tsk = css_task_iter_next(&it))) {
102a775e 3233 if (unlikely(n == length))
817929ec 3234 break;
102a775e 3235 /* get tgid or pid for procs or tasks file respectively */
72a8cb30
BB
3236 if (type == CGROUP_FILE_PROCS)
3237 pid = task_tgid_vnr(tsk);
3238 else
3239 pid = task_pid_vnr(tsk);
102a775e
BB
3240 if (pid > 0) /* make sure to only use valid results */
3241 array[n++] = pid;
817929ec 3242 }
72ec7029 3243 css_task_iter_end(&it);
102a775e
BB
3244 length = n;
3245 /* now sort & (if procs) strip out duplicates */
afb2bc14
TH
3246 if (cgroup_sane_behavior(cgrp))
3247 sort(array, length, sizeof(pid_t), fried_cmppid, NULL);
3248 else
3249 sort(array, length, sizeof(pid_t), cmppid, NULL);
72a8cb30 3250 if (type == CGROUP_FILE_PROCS)
6ee211ad 3251 length = pidlist_uniq(array, length);
e6b81710 3252
e6b81710 3253 l = cgroup_pidlist_find_create(cgrp, type);
72a8cb30 3254 if (!l) {
e6b81710 3255 mutex_unlock(&cgrp->pidlist_mutex);
d1d9fd33 3256 pidlist_free(array);
72a8cb30 3257 return -ENOMEM;
102a775e 3258 }
e6b81710
TH
3259
3260 /* store array, freeing old if necessary */
d1d9fd33 3261 pidlist_free(l->list);
102a775e
BB
3262 l->list = array;
3263 l->length = length;
72a8cb30 3264 *lp = l;
102a775e 3265 return 0;
bbcb81d0
PM
3266}
3267
846c7bb0 3268/**
a043e3b2 3269 * cgroupstats_build - build and fill cgroupstats
846c7bb0
BS
3270 * @stats: cgroupstats to fill information into
3271 * @dentry: A dentry entry belonging to the cgroup for which stats have
3272 * been requested.
a043e3b2
LZ
3273 *
3274 * Build and fill cgroupstats so that taskstats can export it to user
3275 * space.
846c7bb0
BS
3276 */
3277int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
3278{
2bd59d48 3279 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
bd89aabc 3280 struct cgroup *cgrp;
72ec7029 3281 struct css_task_iter it;
846c7bb0 3282 struct task_struct *tsk;
33d283be 3283
2bd59d48
TH
3284 /* it should be kernfs_node belonging to cgroupfs and is a directory */
3285 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
3286 kernfs_type(kn) != KERNFS_DIR)
3287 return -EINVAL;
3288
bad34660
LZ
3289 mutex_lock(&cgroup_mutex);
3290
846c7bb0 3291 /*
2bd59d48
TH
3292 * We aren't being called from kernfs and there's no guarantee on
3293 * @kn->priv's validity. For this and css_tryget_from_dir(),
3294 * @kn->priv is RCU safe. Let's do the RCU dancing.
846c7bb0 3295 */
2bd59d48
TH
3296 rcu_read_lock();
3297 cgrp = rcu_dereference(kn->priv);
bad34660 3298 if (!cgrp || cgroup_is_dead(cgrp)) {
2bd59d48 3299 rcu_read_unlock();
bad34660 3300 mutex_unlock(&cgroup_mutex);
2bd59d48
TH
3301 return -ENOENT;
3302 }
bad34660 3303 rcu_read_unlock();
846c7bb0 3304
72ec7029
TH
3305 css_task_iter_start(&cgrp->dummy_css, &it);
3306 while ((tsk = css_task_iter_next(&it))) {
846c7bb0
BS
3307 switch (tsk->state) {
3308 case TASK_RUNNING:
3309 stats->nr_running++;
3310 break;
3311 case TASK_INTERRUPTIBLE:
3312 stats->nr_sleeping++;
3313 break;
3314 case TASK_UNINTERRUPTIBLE:
3315 stats->nr_uninterruptible++;
3316 break;
3317 case TASK_STOPPED:
3318 stats->nr_stopped++;
3319 break;
3320 default:
3321 if (delayacct_is_task_waiting_on_io(tsk))
3322 stats->nr_io_wait++;
3323 break;
3324 }
3325 }
72ec7029 3326 css_task_iter_end(&it);
846c7bb0 3327
bad34660 3328 mutex_unlock(&cgroup_mutex);
2bd59d48 3329 return 0;
846c7bb0
BS
3330}
3331
8f3ff208 3332
bbcb81d0 3333/*
102a775e 3334 * seq_file methods for the tasks/procs files. The seq_file position is the
cc31edce 3335 * next pid to display; the seq_file iterator is a pointer to the pid
102a775e 3336 * in the cgroup->l->list array.
bbcb81d0 3337 */
cc31edce 3338
102a775e 3339static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
bbcb81d0 3340{
cc31edce
PM
3341 /*
3342 * Initially we receive a position value that corresponds to
3343 * one more than the last pid shown (or 0 on the first call or
3344 * after a seek to the start). Use a binary-search to find the
3345 * next pid to display, if any
3346 */
2bd59d48 3347 struct kernfs_open_file *of = s->private;
7da11279 3348 struct cgroup *cgrp = seq_css(s)->cgroup;
4bac00d1 3349 struct cgroup_pidlist *l;
7da11279 3350 enum cgroup_filetype type = seq_cft(s)->private;
cc31edce 3351 int index = 0, pid = *pos;
4bac00d1
TH
3352 int *iter, ret;
3353
3354 mutex_lock(&cgrp->pidlist_mutex);
3355
3356 /*
5d22444f 3357 * !NULL @of->priv indicates that this isn't the first start()
4bac00d1 3358 * after open. If the matching pidlist is around, we can use that.
5d22444f 3359 * Look for it. Note that @of->priv can't be used directly. It
4bac00d1
TH
3360 * could already have been destroyed.
3361 */
5d22444f
TH
3362 if (of->priv)
3363 of->priv = cgroup_pidlist_find(cgrp, type);
4bac00d1
TH
3364
3365 /*
3366 * Either this is the first start() after open or the matching
3367 * pidlist has been destroyed inbetween. Create a new one.
3368 */
5d22444f
TH
3369 if (!of->priv) {
3370 ret = pidlist_array_load(cgrp, type,
3371 (struct cgroup_pidlist **)&of->priv);
4bac00d1
TH
3372 if (ret)
3373 return ERR_PTR(ret);
3374 }
5d22444f 3375 l = of->priv;
cc31edce 3376
cc31edce 3377 if (pid) {
102a775e 3378 int end = l->length;
20777766 3379
cc31edce
PM
3380 while (index < end) {
3381 int mid = (index + end) / 2;
afb2bc14 3382 if (cgroup_pid_fry(cgrp, l->list[mid]) == pid) {
cc31edce
PM
3383 index = mid;
3384 break;
afb2bc14 3385 } else if (cgroup_pid_fry(cgrp, l->list[mid]) <= pid)
cc31edce
PM
3386 index = mid + 1;
3387 else
3388 end = mid;
3389 }
3390 }
3391 /* If we're off the end of the array, we're done */
102a775e 3392 if (index >= l->length)
cc31edce
PM
3393 return NULL;
3394 /* Update the abstract position to be the actual pid that we found */
102a775e 3395 iter = l->list + index;
afb2bc14 3396 *pos = cgroup_pid_fry(cgrp, *iter);
cc31edce
PM
3397 return iter;
3398}
3399
102a775e 3400static void cgroup_pidlist_stop(struct seq_file *s, void *v)
cc31edce 3401{
2bd59d48 3402 struct kernfs_open_file *of = s->private;
5d22444f 3403 struct cgroup_pidlist *l = of->priv;
62236858 3404
5d22444f
TH
3405 if (l)
3406 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
04502365 3407 CGROUP_PIDLIST_DESTROY_DELAY);
7da11279 3408 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
cc31edce
PM
3409}
3410
102a775e 3411static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
cc31edce 3412{
2bd59d48 3413 struct kernfs_open_file *of = s->private;
5d22444f 3414 struct cgroup_pidlist *l = of->priv;
102a775e
BB
3415 pid_t *p = v;
3416 pid_t *end = l->list + l->length;
cc31edce
PM
3417 /*
3418 * Advance to the next pid in the array. If this goes off the
3419 * end, we're done
3420 */
3421 p++;
3422 if (p >= end) {
3423 return NULL;
3424 } else {
7da11279 3425 *pos = cgroup_pid_fry(seq_css(s)->cgroup, *p);
cc31edce
PM
3426 return p;
3427 }
3428}
3429
102a775e 3430static int cgroup_pidlist_show(struct seq_file *s, void *v)
cc31edce
PM
3431{
3432 return seq_printf(s, "%d\n", *(int *)v);
3433}
bbcb81d0 3434
102a775e
BB
3435/*
3436 * seq_operations functions for iterating on pidlists through seq_file -
3437 * independent of whether it's tasks or procs
3438 */
3439static const struct seq_operations cgroup_pidlist_seq_operations = {
3440 .start = cgroup_pidlist_start,
3441 .stop = cgroup_pidlist_stop,
3442 .next = cgroup_pidlist_next,
3443 .show = cgroup_pidlist_show,
cc31edce
PM
3444};
3445
182446d0
TH
3446static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
3447 struct cftype *cft)
81a6a5cd 3448{
182446d0 3449 return notify_on_release(css->cgroup);
81a6a5cd
PM
3450}
3451
182446d0
TH
3452static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
3453 struct cftype *cft, u64 val)
6379c106 3454{
182446d0 3455 clear_bit(CGRP_RELEASABLE, &css->cgroup->flags);
6379c106 3456 if (val)
182446d0 3457 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106 3458 else
182446d0 3459 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106
PM
3460 return 0;
3461}
3462
182446d0
TH
3463static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
3464 struct cftype *cft)
97978e6d 3465{
182446d0 3466 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
3467}
3468
182446d0
TH
3469static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
3470 struct cftype *cft, u64 val)
97978e6d
DL
3471{
3472 if (val)
182446d0 3473 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d 3474 else
182446d0 3475 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
3476 return 0;
3477}
3478
d5c56ced 3479static struct cftype cgroup_base_files[] = {
81a6a5cd 3480 {
d5c56ced 3481 .name = "cgroup.procs",
6612f05b
TH
3482 .seq_start = cgroup_pidlist_start,
3483 .seq_next = cgroup_pidlist_next,
3484 .seq_stop = cgroup_pidlist_stop,
3485 .seq_show = cgroup_pidlist_show,
5d22444f 3486 .private = CGROUP_FILE_PROCS,
74a1166d 3487 .write_u64 = cgroup_procs_write,
74a1166d 3488 .mode = S_IRUGO | S_IWUSR,
102a775e 3489 },
97978e6d
DL
3490 {
3491 .name = "cgroup.clone_children",
873fe09e 3492 .flags = CFTYPE_INSANE,
97978e6d
DL
3493 .read_u64 = cgroup_clone_children_read,
3494 .write_u64 = cgroup_clone_children_write,
3495 },
873fe09e
TH
3496 {
3497 .name = "cgroup.sane_behavior",
3498 .flags = CFTYPE_ONLY_ON_ROOT,
2da8ca82 3499 .seq_show = cgroup_sane_behavior_show,
873fe09e 3500 },
d5c56ced
TH
3501
3502 /*
3503 * Historical crazy stuff. These don't have "cgroup." prefix and
3504 * don't exist if sane_behavior. If you're depending on these, be
3505 * prepared to be burned.
3506 */
3507 {
3508 .name = "tasks",
3509 .flags = CFTYPE_INSANE, /* use "procs" instead */
6612f05b
TH
3510 .seq_start = cgroup_pidlist_start,
3511 .seq_next = cgroup_pidlist_next,
3512 .seq_stop = cgroup_pidlist_stop,
3513 .seq_show = cgroup_pidlist_show,
5d22444f 3514 .private = CGROUP_FILE_TASKS,
d5c56ced 3515 .write_u64 = cgroup_tasks_write,
d5c56ced
TH
3516 .mode = S_IRUGO | S_IWUSR,
3517 },
3518 {
3519 .name = "notify_on_release",
3520 .flags = CFTYPE_INSANE,
3521 .read_u64 = cgroup_read_notify_on_release,
3522 .write_u64 = cgroup_write_notify_on_release,
3523 },
6e6ff25b
TH
3524 {
3525 .name = "release_agent",
cc5943a7 3526 .flags = CFTYPE_INSANE | CFTYPE_ONLY_ON_ROOT,
2da8ca82 3527 .seq_show = cgroup_release_agent_show,
6e6ff25b 3528 .write_string = cgroup_release_agent_write,
5f469907 3529 .max_write_len = PATH_MAX - 1,
6e6ff25b 3530 },
db0416b6 3531 { } /* terminate */
bbcb81d0
PM
3532};
3533
13af07df 3534/**
628f7cd4 3535 * cgroup_populate_dir - create subsys files in a cgroup directory
13af07df 3536 * @cgrp: target cgroup
13af07df 3537 * @subsys_mask: mask of the subsystem ids whose files should be added
bee55099
TH
3538 *
3539 * On failure, no file is added.
13af07df 3540 */
628f7cd4 3541static int cgroup_populate_dir(struct cgroup *cgrp, unsigned long subsys_mask)
ddbcc7e8 3542{
ddbcc7e8 3543 struct cgroup_subsys *ss;
b420ba7d 3544 int i, ret = 0;
bbcb81d0 3545
8e3f6541 3546 /* process cftsets of each subsystem */
b420ba7d 3547 for_each_subsys(ss, i) {
0adb0704 3548 struct cftype *cfts;
b420ba7d
TH
3549
3550 if (!test_bit(i, &subsys_mask))
13af07df 3551 continue;
8e3f6541 3552
0adb0704
TH
3553 list_for_each_entry(cfts, &ss->cfts, node) {
3554 ret = cgroup_addrm_files(cgrp, cfts, true);
bee55099
TH
3555 if (ret < 0)
3556 goto err;
3557 }
ddbcc7e8 3558 }
ddbcc7e8 3559 return 0;
bee55099
TH
3560err:
3561 cgroup_clear_dir(cgrp, subsys_mask);
3562 return ret;
ddbcc7e8
PM
3563}
3564
0c21ead1
TH
3565/*
3566 * css destruction is four-stage process.
3567 *
3568 * 1. Destruction starts. Killing of the percpu_ref is initiated.
3569 * Implemented in kill_css().
3570 *
3571 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
3572 * and thus css_tryget() is guaranteed to fail, the css can be offlined
3573 * by invoking offline_css(). After offlining, the base ref is put.
3574 * Implemented in css_killed_work_fn().
3575 *
3576 * 3. When the percpu_ref reaches zero, the only possible remaining
3577 * accessors are inside RCU read sections. css_release() schedules the
3578 * RCU callback.
3579 *
3580 * 4. After the grace period, the css can be freed. Implemented in
3581 * css_free_work_fn().
3582 *
3583 * It is actually hairier because both step 2 and 4 require process context
3584 * and thus involve punting to css->destroy_work adding two additional
3585 * steps to the already complex sequence.
3586 */
35ef10da 3587static void css_free_work_fn(struct work_struct *work)
48ddbe19
TH
3588{
3589 struct cgroup_subsys_state *css =
35ef10da 3590 container_of(work, struct cgroup_subsys_state, destroy_work);
0c21ead1 3591 struct cgroup *cgrp = css->cgroup;
48ddbe19 3592
0ae78e0b
TH
3593 if (css->parent)
3594 css_put(css->parent);
3595
0c21ead1 3596 css->ss->css_free(css);
2bd59d48 3597 cgroup_put(cgrp);
48ddbe19
TH
3598}
3599
0c21ead1 3600static void css_free_rcu_fn(struct rcu_head *rcu_head)
d3daf28d
TH
3601{
3602 struct cgroup_subsys_state *css =
0c21ead1 3603 container_of(rcu_head, struct cgroup_subsys_state, rcu_head);
d3daf28d 3604
35ef10da 3605 INIT_WORK(&css->destroy_work, css_free_work_fn);
e5fca243 3606 queue_work(cgroup_destroy_wq, &css->destroy_work);
48ddbe19
TH
3607}
3608
d3daf28d
TH
3609static void css_release(struct percpu_ref *ref)
3610{
3611 struct cgroup_subsys_state *css =
3612 container_of(ref, struct cgroup_subsys_state, refcnt);
3613
01a97140 3614 RCU_INIT_POINTER(css->cgroup->subsys[css->ss->id], NULL);
0c21ead1 3615 call_rcu(&css->rcu_head, css_free_rcu_fn);
d3daf28d
TH
3616}
3617
623f926b
TH
3618static void init_css(struct cgroup_subsys_state *css, struct cgroup_subsys *ss,
3619 struct cgroup *cgrp)
ddbcc7e8 3620{
bd89aabc 3621 css->cgroup = cgrp;
72c97e54 3622 css->ss = ss;
ddbcc7e8 3623 css->flags = 0;
0ae78e0b
TH
3624
3625 if (cgrp->parent)
ca8bdcaf 3626 css->parent = cgroup_css(cgrp->parent, ss);
0ae78e0b 3627 else
38b53aba 3628 css->flags |= CSS_ROOT;
48ddbe19 3629
ca8bdcaf 3630 BUG_ON(cgroup_css(cgrp, ss));
ddbcc7e8
PM
3631}
3632
2a4ac633 3633/* invoke ->css_online() on a new CSS and mark it online if successful */
623f926b 3634static int online_css(struct cgroup_subsys_state *css)
a31f2d3f 3635{
623f926b 3636 struct cgroup_subsys *ss = css->ss;
b1929db4
TH
3637 int ret = 0;
3638
ace2bee8 3639 lockdep_assert_held(&cgroup_tree_mutex);
a31f2d3f
TH
3640 lockdep_assert_held(&cgroup_mutex);
3641
92fb9748 3642 if (ss->css_online)
eb95419b 3643 ret = ss->css_online(css);
ae7f164a 3644 if (!ret) {
eb95419b 3645 css->flags |= CSS_ONLINE;
f20104de 3646 css->cgroup->nr_css++;
aec25020 3647 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
ae7f164a 3648 }
b1929db4 3649 return ret;
a31f2d3f
TH
3650}
3651
2a4ac633 3652/* if the CSS is online, invoke ->css_offline() on it and mark it offline */
623f926b 3653static void offline_css(struct cgroup_subsys_state *css)
a31f2d3f 3654{
623f926b 3655 struct cgroup_subsys *ss = css->ss;
a31f2d3f 3656
ace2bee8 3657 lockdep_assert_held(&cgroup_tree_mutex);
a31f2d3f
TH
3658 lockdep_assert_held(&cgroup_mutex);
3659
3660 if (!(css->flags & CSS_ONLINE))
3661 return;
3662
d7eeac19 3663 if (ss->css_offline)
eb95419b 3664 ss->css_offline(css);
a31f2d3f 3665
eb95419b 3666 css->flags &= ~CSS_ONLINE;
09a503ea 3667 css->cgroup->nr_css--;
aec25020 3668 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], css);
a31f2d3f
TH
3669}
3670
c81c925a
TH
3671/**
3672 * create_css - create a cgroup_subsys_state
3673 * @cgrp: the cgroup new css will be associated with
3674 * @ss: the subsys of new css
3675 *
3676 * Create a new css associated with @cgrp - @ss pair. On success, the new
3677 * css is online and installed in @cgrp with all interface files created.
3678 * Returns 0 on success, -errno on failure.
3679 */
3680static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss)
3681{
3682 struct cgroup *parent = cgrp->parent;
3683 struct cgroup_subsys_state *css;
3684 int err;
3685
c81c925a
TH
3686 lockdep_assert_held(&cgroup_mutex);
3687
3688 css = ss->css_alloc(cgroup_css(parent, ss));
3689 if (IS_ERR(css))
3690 return PTR_ERR(css);
3691
3692 err = percpu_ref_init(&css->refcnt, css_release);
3693 if (err)
3eb59ec6 3694 goto err_free_css;
c81c925a
TH
3695
3696 init_css(css, ss, cgrp);
3697
aec25020 3698 err = cgroup_populate_dir(cgrp, 1 << ss->id);
c81c925a 3699 if (err)
3eb59ec6 3700 goto err_free_percpu_ref;
c81c925a
TH
3701
3702 err = online_css(css);
3703 if (err)
3eb59ec6 3704 goto err_clear_dir;
c81c925a 3705
59f5296b 3706 cgroup_get(cgrp);
c81c925a
TH
3707 css_get(css->parent);
3708
3709 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
3710 parent->parent) {
3711 pr_warning("cgroup: %s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
3712 current->comm, current->pid, ss->name);
3713 if (!strcmp(ss->name, "memory"))
3714 pr_warning("cgroup: \"memory\" requires setting use_hierarchy to 1 on the root.\n");
3715 ss->warned_broken_hierarchy = true;
3716 }
3717
3718 return 0;
3719
3eb59ec6 3720err_clear_dir:
32d01dc7 3721 cgroup_clear_dir(css->cgroup, 1 << css->ss->id);
3eb59ec6 3722err_free_percpu_ref:
c81c925a 3723 percpu_ref_cancel_init(&css->refcnt);
3eb59ec6 3724err_free_css:
c81c925a
TH
3725 ss->css_free(css);
3726 return err;
3727}
3728
2bd59d48 3729/**
a043e3b2
LZ
3730 * cgroup_create - create a cgroup
3731 * @parent: cgroup that will be parent of the new cgroup
e61734c5 3732 * @name: name of the new cgroup
2bd59d48 3733 * @mode: mode to set on new cgroup
ddbcc7e8 3734 */
e61734c5 3735static long cgroup_create(struct cgroup *parent, const char *name,
2bd59d48 3736 umode_t mode)
ddbcc7e8 3737{
bd89aabc 3738 struct cgroup *cgrp;
3dd06ffa 3739 struct cgroup_root *root = parent->root;
b58c8998 3740 int ssid, err;
ddbcc7e8 3741 struct cgroup_subsys *ss;
2bd59d48 3742 struct kernfs_node *kn;
ddbcc7e8 3743
a2dd4247
TH
3744 /*
3745 * XXX: The default hierarchy isn't fully implemented yet. Block
3746 * !root cgroup creation on it for now.
3747 */
3748 if (root == &cgrp_dfl_root)
3749 return -EINVAL;
ddbcc7e8 3750
0a950f65 3751 /* allocate the cgroup and its ID, 0 is reserved for the root */
bd89aabc
PM
3752 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
3753 if (!cgrp)
ddbcc7e8
PM
3754 return -ENOMEM;
3755
ace2bee8 3756 mutex_lock(&cgroup_tree_mutex);
65dff759 3757
976c06bc
TH
3758 /*
3759 * Only live parents can have children. Note that the liveliness
3760 * check isn't strictly necessary because cgroup_mkdir() and
3761 * cgroup_rmdir() are fully synchronized by i_mutex; however, do it
3762 * anyway so that locking is contained inside cgroup proper and we
3763 * don't get nasty surprises if we ever grow another caller.
3764 */
3765 if (!cgroup_lock_live_group(parent)) {
3766 err = -ENODEV;
ace2bee8 3767 goto err_unlock_tree;
0ab02ca8
LZ
3768 }
3769
3770 /*
3771 * Temporarily set the pointer to NULL, so idr_find() won't return
3772 * a half-baked cgroup.
3773 */
3774 cgrp->id = idr_alloc(&root->cgroup_idr, NULL, 1, 0, GFP_KERNEL);
3775 if (cgrp->id < 0) {
3776 err = -ENOMEM;
3777 goto err_unlock;
976c06bc
TH
3778 }
3779
cc31edce 3780 init_cgroup_housekeeping(cgrp);
ddbcc7e8 3781
bd89aabc 3782 cgrp->parent = parent;
0ae78e0b 3783 cgrp->dummy_css.parent = &parent->dummy_css;
bd89aabc 3784 cgrp->root = parent->root;
ddbcc7e8 3785
b6abdb0e
LZ
3786 if (notify_on_release(parent))
3787 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3788
2260e7fc
TH
3789 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
3790 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
97978e6d 3791
2bd59d48 3792 /* create the directory */
e61734c5 3793 kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
2bd59d48
TH
3794 if (IS_ERR(kn)) {
3795 err = PTR_ERR(kn);
0ab02ca8 3796 goto err_free_id;
2bd59d48
TH
3797 }
3798 cgrp->kn = kn;
ddbcc7e8 3799
4e139afc 3800 /*
6f30558f
TH
3801 * This extra ref will be put in cgroup_free_fn() and guarantees
3802 * that @cgrp->kn is always accessible.
4e139afc 3803 */
6f30558f 3804 kernfs_get(kn);
ddbcc7e8 3805
00356bd5 3806 cgrp->serial_nr = cgroup_serial_nr_next++;
53fa5261 3807
4e139afc 3808 /* allocation complete, commit to creation */
4e139afc 3809 list_add_tail_rcu(&cgrp->sibling, &cgrp->parent->children);
3c9c825b 3810 atomic_inc(&root->nr_cgrps);
59f5296b 3811 cgroup_get(parent);
415cf07a 3812
0d80255e
TH
3813 /*
3814 * @cgrp is now fully operational. If something fails after this
3815 * point, it'll be released via the normal destruction path.
3816 */
4e96ee8e
LZ
3817 idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
3818
49957f8e
TH
3819 err = cgroup_kn_set_ugid(kn);
3820 if (err)
3821 goto err_destroy;
3822
2bb566cb 3823 err = cgroup_addrm_files(cgrp, cgroup_base_files, true);
628f7cd4
TH
3824 if (err)
3825 goto err_destroy;
3826
9d403e99 3827 /* let's create and online css's */
b85d2040 3828 for_each_subsys(ss, ssid) {
f392e51c 3829 if (parent->child_subsys_mask & (1 << ssid)) {
b85d2040
TH
3830 err = create_css(cgrp, ss);
3831 if (err)
3832 goto err_destroy;
3833 }
a8638030 3834 }
ddbcc7e8 3835
f392e51c
TH
3836 cgrp->child_subsys_mask = parent->child_subsys_mask;
3837
2bd59d48
TH
3838 kernfs_activate(kn);
3839
ddbcc7e8 3840 mutex_unlock(&cgroup_mutex);
ace2bee8 3841 mutex_unlock(&cgroup_tree_mutex);
ddbcc7e8
PM
3842
3843 return 0;
3844
0a950f65 3845err_free_id:
4e96ee8e 3846 idr_remove(&root->cgroup_idr, cgrp->id);
0ab02ca8
LZ
3847err_unlock:
3848 mutex_unlock(&cgroup_mutex);
ace2bee8
TH
3849err_unlock_tree:
3850 mutex_unlock(&cgroup_tree_mutex);
bd89aabc 3851 kfree(cgrp);
ddbcc7e8 3852 return err;
4b8b47eb
TH
3853
3854err_destroy:
3855 cgroup_destroy_locked(cgrp);
3856 mutex_unlock(&cgroup_mutex);
ace2bee8 3857 mutex_unlock(&cgroup_tree_mutex);
4b8b47eb 3858 return err;
ddbcc7e8
PM
3859}
3860
2bd59d48
TH
3861static int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
3862 umode_t mode)
ddbcc7e8 3863{
2bd59d48 3864 struct cgroup *parent = parent_kn->priv;
e1b2dc17 3865 int ret;
ddbcc7e8 3866
e1b2dc17
TH
3867 /*
3868 * cgroup_create() grabs cgroup_tree_mutex which nests outside
3869 * kernfs active_ref and cgroup_create() already synchronizes
3870 * properly against removal through cgroup_lock_live_group().
3871 * Break it before calling cgroup_create().
3872 */
3873 cgroup_get(parent);
3874 kernfs_break_active_protection(parent_kn);
ddbcc7e8 3875
e1b2dc17
TH
3876 ret = cgroup_create(parent, name, mode);
3877
3878 kernfs_unbreak_active_protection(parent_kn);
3879 cgroup_put(parent);
3880 return ret;
ddbcc7e8
PM
3881}
3882
223dbc38
TH
3883/*
3884 * This is called when the refcnt of a css is confirmed to be killed.
3885 * css_tryget() is now guaranteed to fail.
3886 */
3887static void css_killed_work_fn(struct work_struct *work)
d3daf28d 3888{
223dbc38
TH
3889 struct cgroup_subsys_state *css =
3890 container_of(work, struct cgroup_subsys_state, destroy_work);
3891 struct cgroup *cgrp = css->cgroup;
d3daf28d 3892
ace2bee8 3893 mutex_lock(&cgroup_tree_mutex);
f20104de
TH
3894 mutex_lock(&cgroup_mutex);
3895
09a503ea
TH
3896 /*
3897 * css_tryget() is guaranteed to fail now. Tell subsystems to
3898 * initate destruction.
3899 */
3900 offline_css(css);
3901
f20104de
TH
3902 /*
3903 * If @cgrp is marked dead, it's waiting for refs of all css's to
3904 * be disabled before proceeding to the second phase of cgroup
3905 * destruction. If we are the last one, kick it off.
3906 */
09a503ea 3907 if (!cgrp->nr_css && cgroup_is_dead(cgrp))
f20104de
TH
3908 cgroup_destroy_css_killed(cgrp);
3909
3910 mutex_unlock(&cgroup_mutex);
ace2bee8 3911 mutex_unlock(&cgroup_tree_mutex);
09a503ea
TH
3912
3913 /*
3914 * Put the css refs from kill_css(). Each css holds an extra
3915 * reference to the cgroup's dentry and cgroup removal proceeds
3916 * regardless of css refs. On the last put of each css, whenever
3917 * that may be, the extra dentry ref is put so that dentry
3918 * destruction happens only after all css's are released.
3919 */
3920 css_put(css);
d3daf28d
TH
3921}
3922
223dbc38
TH
3923/* css kill confirmation processing requires process context, bounce */
3924static void css_killed_ref_fn(struct percpu_ref *ref)
d3daf28d
TH
3925{
3926 struct cgroup_subsys_state *css =
3927 container_of(ref, struct cgroup_subsys_state, refcnt);
3928
223dbc38 3929 INIT_WORK(&css->destroy_work, css_killed_work_fn);
e5fca243 3930 queue_work(cgroup_destroy_wq, &css->destroy_work);
d3daf28d
TH
3931}
3932
f392e51c
TH
3933/**
3934 * kill_css - destroy a css
3935 * @css: css to destroy
3936 *
3937 * This function initiates destruction of @css by removing cgroup interface
3938 * files and putting its base reference. ->css_offline() will be invoked
3939 * asynchronously once css_tryget() is guaranteed to fail and when the
3940 * reference count reaches zero, @css will be released.
3941 */
3942static void kill_css(struct cgroup_subsys_state *css)
edae0c33 3943{
94419627
TH
3944 lockdep_assert_held(&cgroup_tree_mutex);
3945
2bd59d48
TH
3946 /*
3947 * This must happen before css is disassociated with its cgroup.
3948 * See seq_css() for details.
3949 */
aec25020 3950 cgroup_clear_dir(css->cgroup, 1 << css->ss->id);
3c14f8b4 3951
edae0c33
TH
3952 /*
3953 * Killing would put the base ref, but we need to keep it alive
3954 * until after ->css_offline().
3955 */
3956 css_get(css);
3957
3958 /*
3959 * cgroup core guarantees that, by the time ->css_offline() is
3960 * invoked, no new css reference will be given out via
3961 * css_tryget(). We can't simply call percpu_ref_kill() and
3962 * proceed to offlining css's because percpu_ref_kill() doesn't
3963 * guarantee that the ref is seen as killed on all CPUs on return.
3964 *
3965 * Use percpu_ref_kill_and_confirm() to get notifications as each
3966 * css is confirmed to be seen as killed on all CPUs.
3967 */
3968 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
d3daf28d
TH
3969}
3970
3971/**
3972 * cgroup_destroy_locked - the first stage of cgroup destruction
3973 * @cgrp: cgroup to be destroyed
3974 *
3975 * css's make use of percpu refcnts whose killing latency shouldn't be
3976 * exposed to userland and are RCU protected. Also, cgroup core needs to
3977 * guarantee that css_tryget() won't succeed by the time ->css_offline() is
3978 * invoked. To satisfy all the requirements, destruction is implemented in
3979 * the following two steps.
3980 *
3981 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
3982 * userland visible parts and start killing the percpu refcnts of
3983 * css's. Set up so that the next stage will be kicked off once all
3984 * the percpu refcnts are confirmed to be killed.
3985 *
3986 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
3987 * rest of destruction. Once all cgroup references are gone, the
3988 * cgroup is RCU-freed.
3989 *
3990 * This function implements s1. After this step, @cgrp is gone as far as
3991 * the userland is concerned and a new cgroup with the same name may be
3992 * created. As cgroup doesn't care about the names internally, this
3993 * doesn't cause any problem.
3994 */
42809dd4
TH
3995static int cgroup_destroy_locked(struct cgroup *cgrp)
3996 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
ddbcc7e8 3997{
bb78a92f 3998 struct cgroup *child;
2bd59d48 3999 struct cgroup_subsys_state *css;
ddd69148 4000 bool empty;
1c6727af 4001 int ssid;
ddbcc7e8 4002
ace2bee8 4003 lockdep_assert_held(&cgroup_tree_mutex);
42809dd4
TH
4004 lockdep_assert_held(&cgroup_mutex);
4005
ddd69148 4006 /*
96d365e0 4007 * css_set_rwsem synchronizes access to ->cset_links and prevents
89c5509b 4008 * @cgrp from being removed while put_css_set() is in progress.
ddd69148 4009 */
96d365e0 4010 down_read(&css_set_rwsem);
bb78a92f 4011 empty = list_empty(&cgrp->cset_links);
96d365e0 4012 up_read(&css_set_rwsem);
ddd69148 4013 if (!empty)
ddbcc7e8 4014 return -EBUSY;
a043e3b2 4015
bb78a92f
HD
4016 /*
4017 * Make sure there's no live children. We can't test ->children
4018 * emptiness as dead children linger on it while being destroyed;
4019 * otherwise, "rmdir parent/child parent" may fail with -EBUSY.
4020 */
4021 empty = true;
4022 rcu_read_lock();
4023 list_for_each_entry_rcu(child, &cgrp->children, sibling) {
4024 empty = cgroup_is_dead(child);
4025 if (!empty)
4026 break;
4027 }
4028 rcu_read_unlock();
4029 if (!empty)
4030 return -EBUSY;
4031
455050d2
TH
4032 /*
4033 * Mark @cgrp dead. This prevents further task migration and child
4034 * creation by disabling cgroup_lock_live_group(). Note that
492eb21b 4035 * CGRP_DEAD assertion is depended upon by css_next_child() to
455050d2 4036 * resume iteration after dropping RCU read lock. See
492eb21b 4037 * css_next_child() for details.
455050d2 4038 */
54766d4a 4039 set_bit(CGRP_DEAD, &cgrp->flags);
ddbcc7e8 4040
88703267 4041 /*
edae0c33
TH
4042 * Initiate massacre of all css's. cgroup_destroy_css_killed()
4043 * will be invoked to perform the rest of destruction once the
4ac06017
TH
4044 * percpu refs of all css's are confirmed to be killed. This
4045 * involves removing the subsystem's files, drop cgroup_mutex.
88703267 4046 */
4ac06017 4047 mutex_unlock(&cgroup_mutex);
1c6727af
TH
4048 for_each_css(css, ssid, cgrp)
4049 kill_css(css);
4ac06017 4050 mutex_lock(&cgroup_mutex);
455050d2 4051
455050d2
TH
4052 /* CGRP_DEAD is set, remove from ->release_list for the last time */
4053 raw_spin_lock(&release_list_lock);
4054 if (!list_empty(&cgrp->release_list))
4055 list_del_init(&cgrp->release_list);
4056 raw_spin_unlock(&release_list_lock);
4057
4058 /*
f20104de
TH
4059 * If @cgrp has css's attached, the second stage of cgroup
4060 * destruction is kicked off from css_killed_work_fn() after the
4061 * refs of all attached css's are killed. If @cgrp doesn't have
4062 * any css, we kick it off here.
4063 */
4064 if (!cgrp->nr_css)
4065 cgroup_destroy_css_killed(cgrp);
4066
2bd59d48
TH
4067 /* remove @cgrp directory along with the base files */
4068 mutex_unlock(&cgroup_mutex);
4069
455050d2 4070 /*
2bd59d48
TH
4071 * There are two control paths which try to determine cgroup from
4072 * dentry without going through kernfs - cgroupstats_build() and
4073 * css_tryget_from_dir(). Those are supported by RCU protecting
4074 * clearing of cgrp->kn->priv backpointer, which should happen
4075 * after all files under it have been removed.
455050d2 4076 */
6f30558f 4077 kernfs_remove(cgrp->kn); /* @cgrp has an extra ref on its kn */
2bd59d48 4078 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv, NULL);
2bd59d48 4079
4ac06017 4080 mutex_lock(&cgroup_mutex);
455050d2 4081
ea15f8cc
TH
4082 return 0;
4083};
4084
d3daf28d 4085/**
f20104de 4086 * cgroup_destroy_css_killed - the second step of cgroup destruction
d3daf28d
TH
4087 * @work: cgroup->destroy_free_work
4088 *
4089 * This function is invoked from a work item for a cgroup which is being
09a503ea
TH
4090 * destroyed after all css's are offlined and performs the rest of
4091 * destruction. This is the second step of destruction described in the
4092 * comment above cgroup_destroy_locked().
d3daf28d 4093 */
f20104de 4094static void cgroup_destroy_css_killed(struct cgroup *cgrp)
ea15f8cc 4095{
ea15f8cc 4096 struct cgroup *parent = cgrp->parent;
ea15f8cc 4097
ace2bee8 4098 lockdep_assert_held(&cgroup_tree_mutex);
f20104de 4099 lockdep_assert_held(&cgroup_mutex);
ea15f8cc 4100
999cd8a4 4101 /* delete this cgroup from parent->children */
eb6fd504 4102 list_del_rcu(&cgrp->sibling);
ed957793 4103
59f5296b 4104 cgroup_put(cgrp);
ddbcc7e8 4105
bd89aabc 4106 set_bit(CGRP_RELEASABLE, &parent->flags);
81a6a5cd 4107 check_for_release(parent);
ddbcc7e8
PM
4108}
4109
2bd59d48 4110static int cgroup_rmdir(struct kernfs_node *kn)
42809dd4 4111{
2bd59d48
TH
4112 struct cgroup *cgrp = kn->priv;
4113 int ret = 0;
42809dd4 4114
2bd59d48
TH
4115 /*
4116 * This is self-destruction but @kn can't be removed while this
4117 * callback is in progress. Let's break active protection. Once
4118 * the protection is broken, @cgrp can be destroyed at any point.
4119 * Pin it so that it stays accessible.
4120 */
4121 cgroup_get(cgrp);
4122 kernfs_break_active_protection(kn);
42809dd4 4123
ace2bee8 4124 mutex_lock(&cgroup_tree_mutex);
42809dd4 4125 mutex_lock(&cgroup_mutex);
8e3f6541
TH
4126
4127 /*
2bd59d48
TH
4128 * @cgrp might already have been destroyed while we're trying to
4129 * grab the mutexes.
8e3f6541 4130 */
2bd59d48
TH
4131 if (!cgroup_is_dead(cgrp))
4132 ret = cgroup_destroy_locked(cgrp);
2bb566cb 4133
42809dd4 4134 mutex_unlock(&cgroup_mutex);
ace2bee8 4135 mutex_unlock(&cgroup_tree_mutex);
2bb566cb 4136
2bd59d48
TH
4137 kernfs_unbreak_active_protection(kn);
4138 cgroup_put(cgrp);
42809dd4 4139 return ret;
8e3f6541
TH
4140}
4141
2bd59d48
TH
4142static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
4143 .remount_fs = cgroup_remount,
4144 .show_options = cgroup_show_options,
4145 .mkdir = cgroup_mkdir,
4146 .rmdir = cgroup_rmdir,
4147 .rename = cgroup_rename,
4148};
4149
06a11920 4150static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
ddbcc7e8 4151{
ddbcc7e8 4152 struct cgroup_subsys_state *css;
cfe36bde
DC
4153
4154 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
ddbcc7e8 4155
ace2bee8 4156 mutex_lock(&cgroup_tree_mutex);
648bb56d
TH
4157 mutex_lock(&cgroup_mutex);
4158
0adb0704 4159 INIT_LIST_HEAD(&ss->cfts);
8e3f6541 4160
3dd06ffa
TH
4161 /* Create the root cgroup state for this subsystem */
4162 ss->root = &cgrp_dfl_root;
4163 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
ddbcc7e8
PM
4164 /* We don't handle early failures gracefully */
4165 BUG_ON(IS_ERR(css));
3dd06ffa 4166 init_css(css, ss, &cgrp_dfl_root.cgrp);
ddbcc7e8 4167
e8d55fde 4168 /* Update the init_css_set to contain a subsys
817929ec 4169 * pointer to this state - since the subsystem is
e8d55fde 4170 * newly registered, all tasks and hence the
3dd06ffa 4171 * init_css_set is in the subsystem's root cgroup. */
aec25020 4172 init_css_set.subsys[ss->id] = css;
ddbcc7e8
PM
4173
4174 need_forkexit_callback |= ss->fork || ss->exit;
4175
e8d55fde
LZ
4176 /* At system boot, before all subsystems have been
4177 * registered, no tasks have been forked, so we don't
4178 * need to invoke fork callbacks here. */
4179 BUG_ON(!list_empty(&init_task.tasks));
4180
ae7f164a 4181 BUG_ON(online_css(css));
a8638030 4182
f392e51c 4183 cgrp_dfl_root.subsys_mask |= 1 << ss->id;
cf5d5941
BB
4184
4185 mutex_unlock(&cgroup_mutex);
ace2bee8 4186 mutex_unlock(&cgroup_tree_mutex);
cf5d5941 4187}
cf5d5941 4188
ddbcc7e8 4189/**
a043e3b2
LZ
4190 * cgroup_init_early - cgroup initialization at system boot
4191 *
4192 * Initialize cgroups at system boot, and initialize any
4193 * subsystems that request early init.
ddbcc7e8
PM
4194 */
4195int __init cgroup_init_early(void)
4196{
a2dd4247
TH
4197 static struct cgroup_sb_opts __initdata opts =
4198 { .flags = CGRP_ROOT_SANE_BEHAVIOR };
30159ec7 4199 struct cgroup_subsys *ss;
ddbcc7e8 4200 int i;
30159ec7 4201
3dd06ffa 4202 init_cgroup_root(&cgrp_dfl_root, &opts);
a4ea1cc9 4203 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
817929ec 4204
3ed80a62 4205 for_each_subsys(ss, i) {
aec25020 4206 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
073219e9
TH
4207 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p name:id=%d:%s\n",
4208 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
aec25020 4209 ss->id, ss->name);
073219e9
TH
4210 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
4211 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
4212
aec25020 4213 ss->id = i;
073219e9 4214 ss->name = cgroup_subsys_name[i];
ddbcc7e8
PM
4215
4216 if (ss->early_init)
4217 cgroup_init_subsys(ss);
4218 }
4219 return 0;
4220}
4221
4222/**
a043e3b2
LZ
4223 * cgroup_init - cgroup initialization
4224 *
4225 * Register cgroup filesystem and /proc file, and initialize
4226 * any subsystems that didn't request early init.
ddbcc7e8
PM
4227 */
4228int __init cgroup_init(void)
4229{
30159ec7 4230 struct cgroup_subsys *ss;
0ac801fe 4231 unsigned long key;
172a2c06 4232 int ssid, err;
ddbcc7e8 4233
2bd59d48 4234 BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files));
ddbcc7e8 4235
985ed670 4236 mutex_lock(&cgroup_tree_mutex);
54e7b4eb 4237 mutex_lock(&cgroup_mutex);
54e7b4eb 4238
82fe9b0d
TH
4239 /* Add init_css_set to the hash table */
4240 key = css_set_hash(init_css_set.subsys);
4241 hash_add(css_set_table, &init_css_set.hlist, key);
4242
3dd06ffa 4243 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
4e96ee8e 4244
54e7b4eb 4245 mutex_unlock(&cgroup_mutex);
985ed670 4246 mutex_unlock(&cgroup_tree_mutex);
54e7b4eb 4247
172a2c06
TH
4248 for_each_subsys(ss, ssid) {
4249 if (!ss->early_init)
4250 cgroup_init_subsys(ss);
4251
4252 /*
4253 * cftype registration needs kmalloc and can't be done
4254 * during early_init. Register base cftypes separately.
4255 */
4256 if (ss->base_cftypes)
4257 WARN_ON(cgroup_add_cftypes(ss, ss->base_cftypes));
676db4af
GKH
4258 }
4259
676db4af 4260 cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
2bd59d48
TH
4261 if (!cgroup_kobj)
4262 return -ENOMEM;
676db4af 4263
ddbcc7e8 4264 err = register_filesystem(&cgroup_fs_type);
676db4af
GKH
4265 if (err < 0) {
4266 kobject_put(cgroup_kobj);
2bd59d48 4267 return err;
676db4af 4268 }
ddbcc7e8 4269
46ae220b 4270 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
2bd59d48 4271 return 0;
ddbcc7e8 4272}
b4f48b63 4273
e5fca243
TH
4274static int __init cgroup_wq_init(void)
4275{
4276 /*
4277 * There isn't much point in executing destruction path in
4278 * parallel. Good chunk is serialized with cgroup_mutex anyway.
1a11533f 4279 * Use 1 for @max_active.
e5fca243
TH
4280 *
4281 * We would prefer to do this in cgroup_init() above, but that
4282 * is called before init_workqueues(): so leave this until after.
4283 */
1a11533f 4284 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
e5fca243 4285 BUG_ON(!cgroup_destroy_wq);
b1a21367
TH
4286
4287 /*
4288 * Used to destroy pidlists and separate to serve as flush domain.
4289 * Cap @max_active to 1 too.
4290 */
4291 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
4292 0, 1);
4293 BUG_ON(!cgroup_pidlist_destroy_wq);
4294
e5fca243
TH
4295 return 0;
4296}
4297core_initcall(cgroup_wq_init);
4298
a424316c
PM
4299/*
4300 * proc_cgroup_show()
4301 * - Print task's cgroup paths into seq_file, one line for each hierarchy
4302 * - Used for /proc/<pid>/cgroup.
a424316c
PM
4303 */
4304
4305/* TODO: Use a proper seq_file iterator */
8d8b97ba 4306int proc_cgroup_show(struct seq_file *m, void *v)
a424316c
PM
4307{
4308 struct pid *pid;
4309 struct task_struct *tsk;
e61734c5 4310 char *buf, *path;
a424316c 4311 int retval;
3dd06ffa 4312 struct cgroup_root *root;
a424316c
PM
4313
4314 retval = -ENOMEM;
e61734c5 4315 buf = kmalloc(PATH_MAX, GFP_KERNEL);
a424316c
PM
4316 if (!buf)
4317 goto out;
4318
4319 retval = -ESRCH;
4320 pid = m->private;
4321 tsk = get_pid_task(pid, PIDTYPE_PID);
4322 if (!tsk)
4323 goto out_free;
4324
4325 retval = 0;
4326
4327 mutex_lock(&cgroup_mutex);
96d365e0 4328 down_read(&css_set_rwsem);
a424316c 4329
985ed670 4330 for_each_root(root) {
a424316c 4331 struct cgroup_subsys *ss;
bd89aabc 4332 struct cgroup *cgrp;
b85d2040 4333 int ssid, count = 0;
a424316c 4334
a2dd4247 4335 if (root == &cgrp_dfl_root && !cgrp_dfl_root_visible)
985ed670
TH
4336 continue;
4337
2c6ab6d2 4338 seq_printf(m, "%d:", root->hierarchy_id);
b85d2040 4339 for_each_subsys(ss, ssid)
f392e51c 4340 if (root->subsys_mask & (1 << ssid))
b85d2040 4341 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
c6d57f33
PM
4342 if (strlen(root->name))
4343 seq_printf(m, "%sname=%s", count ? "," : "",
4344 root->name);
a424316c 4345 seq_putc(m, ':');
7717f7ba 4346 cgrp = task_cgroup_from_root(tsk, root);
e61734c5
TH
4347 path = cgroup_path(cgrp, buf, PATH_MAX);
4348 if (!path) {
4349 retval = -ENAMETOOLONG;
a424316c 4350 goto out_unlock;
e61734c5
TH
4351 }
4352 seq_puts(m, path);
a424316c
PM
4353 seq_putc(m, '\n');
4354 }
4355
4356out_unlock:
96d365e0 4357 up_read(&css_set_rwsem);
a424316c
PM
4358 mutex_unlock(&cgroup_mutex);
4359 put_task_struct(tsk);
4360out_free:
4361 kfree(buf);
4362out:
4363 return retval;
4364}
4365
a424316c
PM
4366/* Display information about each subsystem and each hierarchy */
4367static int proc_cgroupstats_show(struct seq_file *m, void *v)
4368{
30159ec7 4369 struct cgroup_subsys *ss;
a424316c 4370 int i;
a424316c 4371
8bab8dde 4372 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
aae8aab4
BB
4373 /*
4374 * ideally we don't want subsystems moving around while we do this.
4375 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
4376 * subsys/hierarchy state.
4377 */
a424316c 4378 mutex_lock(&cgroup_mutex);
30159ec7
TH
4379
4380 for_each_subsys(ss, i)
2c6ab6d2
PM
4381 seq_printf(m, "%s\t%d\t%d\t%d\n",
4382 ss->name, ss->root->hierarchy_id,
3c9c825b 4383 atomic_read(&ss->root->nr_cgrps), !ss->disabled);
30159ec7 4384
a424316c
PM
4385 mutex_unlock(&cgroup_mutex);
4386 return 0;
4387}
4388
4389static int cgroupstats_open(struct inode *inode, struct file *file)
4390{
9dce07f1 4391 return single_open(file, proc_cgroupstats_show, NULL);
a424316c
PM
4392}
4393
828c0950 4394static const struct file_operations proc_cgroupstats_operations = {
a424316c
PM
4395 .open = cgroupstats_open,
4396 .read = seq_read,
4397 .llseek = seq_lseek,
4398 .release = single_release,
4399};
4400
b4f48b63 4401/**
eaf797ab 4402 * cgroup_fork - initialize cgroup related fields during copy_process()
a043e3b2 4403 * @child: pointer to task_struct of forking parent process.
b4f48b63 4404 *
eaf797ab
TH
4405 * A task is associated with the init_css_set until cgroup_post_fork()
4406 * attaches it to the parent's css_set. Empty cg_list indicates that
4407 * @child isn't holding reference to its css_set.
b4f48b63
PM
4408 */
4409void cgroup_fork(struct task_struct *child)
4410{
eaf797ab 4411 RCU_INIT_POINTER(child->cgroups, &init_css_set);
817929ec 4412 INIT_LIST_HEAD(&child->cg_list);
b4f48b63
PM
4413}
4414
817929ec 4415/**
a043e3b2
LZ
4416 * cgroup_post_fork - called on a new task after adding it to the task list
4417 * @child: the task in question
4418 *
5edee61e
TH
4419 * Adds the task to the list running through its css_set if necessary and
4420 * call the subsystem fork() callbacks. Has to be after the task is
4421 * visible on the task list in case we race with the first call to
0942eeee 4422 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5edee61e 4423 * list.
a043e3b2 4424 */
817929ec
PM
4425void cgroup_post_fork(struct task_struct *child)
4426{
30159ec7 4427 struct cgroup_subsys *ss;
5edee61e
TH
4428 int i;
4429
3ce3230a 4430 /*
eaf797ab
TH
4431 * This may race against cgroup_enable_task_cg_links(). As that
4432 * function sets use_task_css_set_links before grabbing
4433 * tasklist_lock and we just went through tasklist_lock to add
4434 * @child, it's guaranteed that either we see the set
4435 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
4436 * @child during its iteration.
4437 *
4438 * If we won the race, @child is associated with %current's
4439 * css_set. Grabbing css_set_rwsem guarantees both that the
4440 * association is stable, and, on completion of the parent's
4441 * migration, @child is visible in the source of migration or
4442 * already in the destination cgroup. This guarantee is necessary
4443 * when implementing operations which need to migrate all tasks of
4444 * a cgroup to another.
4445 *
4446 * Note that if we lose to cgroup_enable_task_cg_links(), @child
4447 * will remain in init_css_set. This is safe because all tasks are
4448 * in the init_css_set before cg_links is enabled and there's no
4449 * operation which transfers all tasks out of init_css_set.
3ce3230a 4450 */
817929ec 4451 if (use_task_css_set_links) {
eaf797ab
TH
4452 struct css_set *cset;
4453
96d365e0 4454 down_write(&css_set_rwsem);
0e1d768f 4455 cset = task_css_set(current);
eaf797ab
TH
4456 if (list_empty(&child->cg_list)) {
4457 rcu_assign_pointer(child->cgroups, cset);
4458 list_add(&child->cg_list, &cset->tasks);
4459 get_css_set(cset);
4460 }
96d365e0 4461 up_write(&css_set_rwsem);
817929ec 4462 }
5edee61e
TH
4463
4464 /*
4465 * Call ss->fork(). This must happen after @child is linked on
4466 * css_set; otherwise, @child might change state between ->fork()
4467 * and addition to css_set.
4468 */
4469 if (need_forkexit_callback) {
3ed80a62 4470 for_each_subsys(ss, i)
5edee61e
TH
4471 if (ss->fork)
4472 ss->fork(child);
5edee61e 4473 }
817929ec 4474}
5edee61e 4475
b4f48b63
PM
4476/**
4477 * cgroup_exit - detach cgroup from exiting task
4478 * @tsk: pointer to task_struct of exiting process
4479 *
4480 * Description: Detach cgroup from @tsk and release it.
4481 *
4482 * Note that cgroups marked notify_on_release force every task in
4483 * them to take the global cgroup_mutex mutex when exiting.
4484 * This could impact scaling on very large systems. Be reluctant to
4485 * use notify_on_release cgroups where very high task exit scaling
4486 * is required on large systems.
4487 *
0e1d768f
TH
4488 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We
4489 * call cgroup_exit() while the task is still competent to handle
4490 * notify_on_release(), then leave the task attached to the root cgroup in
4491 * each hierarchy for the remainder of its exit. No need to bother with
4492 * init_css_set refcnting. init_css_set never goes away and we can't race
e8604cb4 4493 * with migration path - PF_EXITING is visible to migration path.
b4f48b63 4494 */
1ec41830 4495void cgroup_exit(struct task_struct *tsk)
b4f48b63 4496{
30159ec7 4497 struct cgroup_subsys *ss;
5abb8855 4498 struct css_set *cset;
eaf797ab 4499 bool put_cset = false;
d41d5a01 4500 int i;
817929ec
PM
4501
4502 /*
0e1d768f
TH
4503 * Unlink from @tsk from its css_set. As migration path can't race
4504 * with us, we can check cg_list without grabbing css_set_rwsem.
817929ec
PM
4505 */
4506 if (!list_empty(&tsk->cg_list)) {
96d365e0 4507 down_write(&css_set_rwsem);
0e1d768f 4508 list_del_init(&tsk->cg_list);
96d365e0 4509 up_write(&css_set_rwsem);
0e1d768f 4510 put_cset = true;
817929ec
PM
4511 }
4512
b4f48b63 4513 /* Reassign the task to the init_css_set. */
a8ad805c
TH
4514 cset = task_css_set(tsk);
4515 RCU_INIT_POINTER(tsk->cgroups, &init_css_set);
d41d5a01 4516
1ec41830 4517 if (need_forkexit_callback) {
3ed80a62
TH
4518 /* see cgroup_post_fork() for details */
4519 for_each_subsys(ss, i) {
d41d5a01 4520 if (ss->exit) {
eb95419b
TH
4521 struct cgroup_subsys_state *old_css = cset->subsys[i];
4522 struct cgroup_subsys_state *css = task_css(tsk, i);
30159ec7 4523
eb95419b 4524 ss->exit(css, old_css, tsk);
d41d5a01
PZ
4525 }
4526 }
4527 }
d41d5a01 4528
eaf797ab
TH
4529 if (put_cset)
4530 put_css_set(cset, true);
b4f48b63 4531}
697f4161 4532
bd89aabc 4533static void check_for_release(struct cgroup *cgrp)
81a6a5cd 4534{
f50daa70 4535 if (cgroup_is_releasable(cgrp) &&
6f3d828f 4536 list_empty(&cgrp->cset_links) && list_empty(&cgrp->children)) {
f50daa70
LZ
4537 /*
4538 * Control Group is currently removeable. If it's not
81a6a5cd 4539 * already queued for a userspace notification, queue
f50daa70
LZ
4540 * it now
4541 */
81a6a5cd 4542 int need_schedule_work = 0;
f50daa70 4543
cdcc136f 4544 raw_spin_lock(&release_list_lock);
54766d4a 4545 if (!cgroup_is_dead(cgrp) &&
bd89aabc
PM
4546 list_empty(&cgrp->release_list)) {
4547 list_add(&cgrp->release_list, &release_list);
81a6a5cd
PM
4548 need_schedule_work = 1;
4549 }
cdcc136f 4550 raw_spin_unlock(&release_list_lock);
81a6a5cd
PM
4551 if (need_schedule_work)
4552 schedule_work(&release_agent_work);
4553 }
4554}
4555
81a6a5cd
PM
4556/*
4557 * Notify userspace when a cgroup is released, by running the
4558 * configured release agent with the name of the cgroup (path
4559 * relative to the root of cgroup file system) as the argument.
4560 *
4561 * Most likely, this user command will try to rmdir this cgroup.
4562 *
4563 * This races with the possibility that some other task will be
4564 * attached to this cgroup before it is removed, or that some other
4565 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
4566 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
4567 * unused, and this cgroup will be reprieved from its death sentence,
4568 * to continue to serve a useful existence. Next time it's released,
4569 * we will get notified again, if it still has 'notify_on_release' set.
4570 *
4571 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
4572 * means only wait until the task is successfully execve()'d. The
4573 * separate release agent task is forked by call_usermodehelper(),
4574 * then control in this thread returns here, without waiting for the
4575 * release agent task. We don't bother to wait because the caller of
4576 * this routine has no use for the exit status of the release agent
4577 * task, so no sense holding our caller up for that.
81a6a5cd 4578 */
81a6a5cd
PM
4579static void cgroup_release_agent(struct work_struct *work)
4580{
4581 BUG_ON(work != &release_agent_work);
4582 mutex_lock(&cgroup_mutex);
cdcc136f 4583 raw_spin_lock(&release_list_lock);
81a6a5cd
PM
4584 while (!list_empty(&release_list)) {
4585 char *argv[3], *envp[3];
4586 int i;
e61734c5 4587 char *pathbuf = NULL, *agentbuf = NULL, *path;
bd89aabc 4588 struct cgroup *cgrp = list_entry(release_list.next,
81a6a5cd
PM
4589 struct cgroup,
4590 release_list);
bd89aabc 4591 list_del_init(&cgrp->release_list);
cdcc136f 4592 raw_spin_unlock(&release_list_lock);
e61734c5 4593 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
e788e066
PM
4594 if (!pathbuf)
4595 goto continue_free;
e61734c5
TH
4596 path = cgroup_path(cgrp, pathbuf, PATH_MAX);
4597 if (!path)
e788e066
PM
4598 goto continue_free;
4599 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
4600 if (!agentbuf)
4601 goto continue_free;
81a6a5cd
PM
4602
4603 i = 0;
e788e066 4604 argv[i++] = agentbuf;
e61734c5 4605 argv[i++] = path;
81a6a5cd
PM
4606 argv[i] = NULL;
4607
4608 i = 0;
4609 /* minimal command environment */
4610 envp[i++] = "HOME=/";
4611 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
4612 envp[i] = NULL;
4613
4614 /* Drop the lock while we invoke the usermode helper,
4615 * since the exec could involve hitting disk and hence
4616 * be a slow process */
4617 mutex_unlock(&cgroup_mutex);
4618 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
81a6a5cd 4619 mutex_lock(&cgroup_mutex);
e788e066
PM
4620 continue_free:
4621 kfree(pathbuf);
4622 kfree(agentbuf);
cdcc136f 4623 raw_spin_lock(&release_list_lock);
81a6a5cd 4624 }
cdcc136f 4625 raw_spin_unlock(&release_list_lock);
81a6a5cd
PM
4626 mutex_unlock(&cgroup_mutex);
4627}
8bab8dde
PM
4628
4629static int __init cgroup_disable(char *str)
4630{
30159ec7 4631 struct cgroup_subsys *ss;
8bab8dde 4632 char *token;
30159ec7 4633 int i;
8bab8dde
PM
4634
4635 while ((token = strsep(&str, ",")) != NULL) {
4636 if (!*token)
4637 continue;
be45c900 4638
3ed80a62 4639 for_each_subsys(ss, i) {
8bab8dde
PM
4640 if (!strcmp(token, ss->name)) {
4641 ss->disabled = 1;
4642 printk(KERN_INFO "Disabling %s control group"
4643 " subsystem\n", ss->name);
4644 break;
4645 }
4646 }
4647 }
4648 return 1;
4649}
4650__setup("cgroup_disable=", cgroup_disable);
38460b48 4651
b77d7b60 4652/**
5a17f543 4653 * css_tryget_from_dir - get corresponding css from the dentry of a cgroup dir
35cf0836
TH
4654 * @dentry: directory dentry of interest
4655 * @ss: subsystem of interest
b77d7b60 4656 *
5a17f543
TH
4657 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
4658 * to get the corresponding css and return it. If such css doesn't exist
4659 * or can't be pinned, an ERR_PTR value is returned.
e5d1367f 4660 */
5a17f543
TH
4661struct cgroup_subsys_state *css_tryget_from_dir(struct dentry *dentry,
4662 struct cgroup_subsys *ss)
e5d1367f 4663{
2bd59d48
TH
4664 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
4665 struct cgroup_subsys_state *css = NULL;
e5d1367f 4666 struct cgroup *cgrp;
e5d1367f 4667
35cf0836 4668 /* is @dentry a cgroup dir? */
2bd59d48
TH
4669 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
4670 kernfs_type(kn) != KERNFS_DIR)
e5d1367f
SE
4671 return ERR_PTR(-EBADF);
4672
5a17f543
TH
4673 rcu_read_lock();
4674
2bd59d48
TH
4675 /*
4676 * This path doesn't originate from kernfs and @kn could already
4677 * have been or be removed at any point. @kn->priv is RCU
4678 * protected for this access. See destroy_locked() for details.
4679 */
4680 cgrp = rcu_dereference(kn->priv);
4681 if (cgrp)
4682 css = cgroup_css(cgrp, ss);
5a17f543
TH
4683
4684 if (!css || !css_tryget(css))
4685 css = ERR_PTR(-ENOENT);
4686
4687 rcu_read_unlock();
4688 return css;
e5d1367f 4689}
e5d1367f 4690
1cb650b9
LZ
4691/**
4692 * css_from_id - lookup css by id
4693 * @id: the cgroup id
4694 * @ss: cgroup subsys to be looked into
4695 *
4696 * Returns the css if there's valid one with @id, otherwise returns NULL.
4697 * Should be called under rcu_read_lock().
4698 */
4699struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
4700{
4701 struct cgroup *cgrp;
4702
ace2bee8 4703 cgroup_assert_mutexes_or_rcu_locked();
1cb650b9
LZ
4704
4705 cgrp = idr_find(&ss->root->cgroup_idr, id);
4706 if (cgrp)
d1625964 4707 return cgroup_css(cgrp, ss);
1cb650b9 4708 return NULL;
e5d1367f
SE
4709}
4710
fe693435 4711#ifdef CONFIG_CGROUP_DEBUG
eb95419b
TH
4712static struct cgroup_subsys_state *
4713debug_css_alloc(struct cgroup_subsys_state *parent_css)
fe693435
PM
4714{
4715 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
4716
4717 if (!css)
4718 return ERR_PTR(-ENOMEM);
4719
4720 return css;
4721}
4722
eb95419b 4723static void debug_css_free(struct cgroup_subsys_state *css)
fe693435 4724{
eb95419b 4725 kfree(css);
fe693435
PM
4726}
4727
182446d0
TH
4728static u64 debug_taskcount_read(struct cgroup_subsys_state *css,
4729 struct cftype *cft)
fe693435 4730{
182446d0 4731 return cgroup_task_count(css->cgroup);
fe693435
PM
4732}
4733
182446d0
TH
4734static u64 current_css_set_read(struct cgroup_subsys_state *css,
4735 struct cftype *cft)
fe693435
PM
4736{
4737 return (u64)(unsigned long)current->cgroups;
4738}
4739
182446d0 4740static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css,
03c78cbe 4741 struct cftype *cft)
fe693435
PM
4742{
4743 u64 count;
4744
4745 rcu_read_lock();
a8ad805c 4746 count = atomic_read(&task_css_set(current)->refcount);
fe693435
PM
4747 rcu_read_unlock();
4748 return count;
4749}
4750
2da8ca82 4751static int current_css_set_cg_links_read(struct seq_file *seq, void *v)
7717f7ba 4752{
69d0206c 4753 struct cgrp_cset_link *link;
5abb8855 4754 struct css_set *cset;
e61734c5
TH
4755 char *name_buf;
4756
4757 name_buf = kmalloc(NAME_MAX + 1, GFP_KERNEL);
4758 if (!name_buf)
4759 return -ENOMEM;
7717f7ba 4760
96d365e0 4761 down_read(&css_set_rwsem);
7717f7ba 4762 rcu_read_lock();
5abb8855 4763 cset = rcu_dereference(current->cgroups);
69d0206c 4764 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 4765 struct cgroup *c = link->cgrp;
7717f7ba 4766
a2dd4247 4767 cgroup_name(c, name_buf, NAME_MAX + 1);
2c6ab6d2 4768 seq_printf(seq, "Root %d group %s\n",
a2dd4247 4769 c->root->hierarchy_id, name_buf);
7717f7ba
PM
4770 }
4771 rcu_read_unlock();
96d365e0 4772 up_read(&css_set_rwsem);
e61734c5 4773 kfree(name_buf);
7717f7ba
PM
4774 return 0;
4775}
4776
4777#define MAX_TASKS_SHOWN_PER_CSS 25
2da8ca82 4778static int cgroup_css_links_read(struct seq_file *seq, void *v)
7717f7ba 4779{
2da8ca82 4780 struct cgroup_subsys_state *css = seq_css(seq);
69d0206c 4781 struct cgrp_cset_link *link;
7717f7ba 4782
96d365e0 4783 down_read(&css_set_rwsem);
182446d0 4784 list_for_each_entry(link, &css->cgroup->cset_links, cset_link) {
69d0206c 4785 struct css_set *cset = link->cset;
7717f7ba
PM
4786 struct task_struct *task;
4787 int count = 0;
c7561128 4788
5abb8855 4789 seq_printf(seq, "css_set %p\n", cset);
c7561128 4790
5abb8855 4791 list_for_each_entry(task, &cset->tasks, cg_list) {
c7561128
TH
4792 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
4793 goto overflow;
4794 seq_printf(seq, " task %d\n", task_pid_vnr(task));
4795 }
4796
4797 list_for_each_entry(task, &cset->mg_tasks, cg_list) {
4798 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
4799 goto overflow;
4800 seq_printf(seq, " task %d\n", task_pid_vnr(task));
7717f7ba 4801 }
c7561128
TH
4802 continue;
4803 overflow:
4804 seq_puts(seq, " ...\n");
7717f7ba 4805 }
96d365e0 4806 up_read(&css_set_rwsem);
7717f7ba
PM
4807 return 0;
4808}
4809
182446d0 4810static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft)
fe693435 4811{
182446d0 4812 return test_bit(CGRP_RELEASABLE, &css->cgroup->flags);
fe693435
PM
4813}
4814
4815static struct cftype debug_files[] = {
fe693435
PM
4816 {
4817 .name = "taskcount",
4818 .read_u64 = debug_taskcount_read,
4819 },
4820
4821 {
4822 .name = "current_css_set",
4823 .read_u64 = current_css_set_read,
4824 },
4825
4826 {
4827 .name = "current_css_set_refcount",
4828 .read_u64 = current_css_set_refcount_read,
4829 },
4830
7717f7ba
PM
4831 {
4832 .name = "current_css_set_cg_links",
2da8ca82 4833 .seq_show = current_css_set_cg_links_read,
7717f7ba
PM
4834 },
4835
4836 {
4837 .name = "cgroup_css_links",
2da8ca82 4838 .seq_show = cgroup_css_links_read,
7717f7ba
PM
4839 },
4840
fe693435
PM
4841 {
4842 .name = "releasable",
4843 .read_u64 = releasable_read,
4844 },
fe693435 4845
4baf6e33
TH
4846 { } /* terminate */
4847};
fe693435 4848
073219e9 4849struct cgroup_subsys debug_cgrp_subsys = {
92fb9748
TH
4850 .css_alloc = debug_css_alloc,
4851 .css_free = debug_css_free,
4baf6e33 4852 .base_cftypes = debug_files,
fe693435
PM
4853};
4854#endif /* CONFIG_CGROUP_DEBUG */