]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - kernel/cgroup.c
cgroup: clean up find_css_set() and friends
[mirror_ubuntu-zesty-kernel.git] / kernel / cgroup.c
CommitLineData
ddbcc7e8 1/*
ddbcc7e8
PM
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
0dea1168
KS
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
ddbcc7e8
PM
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29#include <linux/cgroup.h>
2ce9738b 30#include <linux/cred.h>
c6d57f33 31#include <linux/ctype.h>
ddbcc7e8 32#include <linux/errno.h>
2ce9738b 33#include <linux/init_task.h>
ddbcc7e8
PM
34#include <linux/kernel.h>
35#include <linux/list.h>
36#include <linux/mm.h>
37#include <linux/mutex.h>
38#include <linux/mount.h>
39#include <linux/pagemap.h>
a424316c 40#include <linux/proc_fs.h>
ddbcc7e8
PM
41#include <linux/rcupdate.h>
42#include <linux/sched.h>
817929ec 43#include <linux/backing-dev.h>
ddbcc7e8
PM
44#include <linux/seq_file.h>
45#include <linux/slab.h>
46#include <linux/magic.h>
47#include <linux/spinlock.h>
48#include <linux/string.h>
bbcb81d0 49#include <linux/sort.h>
81a6a5cd 50#include <linux/kmod.h>
e6a1105b 51#include <linux/module.h>
846c7bb0
BS
52#include <linux/delayacct.h>
53#include <linux/cgroupstats.h>
0ac801fe 54#include <linux/hashtable.h>
3f8206d4 55#include <linux/namei.h>
096b7fe0 56#include <linux/pid_namespace.h>
2c6ab6d2 57#include <linux/idr.h>
d1d9fd33 58#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
0dea1168
KS
59#include <linux/eventfd.h>
60#include <linux/poll.h>
081aa458 61#include <linux/flex_array.h> /* used in cgroup_attach_task */
c4c27fbd 62#include <linux/kthread.h>
846c7bb0 63
60063497 64#include <linux/atomic.h>
ddbcc7e8 65
e25e2cbb
TH
66/*
67 * cgroup_mutex is the master lock. Any modification to cgroup or its
68 * hierarchy must be performed while holding it.
69 *
70 * cgroup_root_mutex nests inside cgroup_mutex and should be held to modify
71 * cgroupfs_root of any cgroup hierarchy - subsys list, flags,
72 * release_agent_path and so on. Modifying requires both cgroup_mutex and
73 * cgroup_root_mutex. Readers can acquire either of the two. This is to
74 * break the following locking order cycle.
75 *
76 * A. cgroup_mutex -> cred_guard_mutex -> s_type->i_mutex_key -> namespace_sem
77 * B. namespace_sem -> cgroup_mutex
78 *
79 * B happens only through cgroup_show_options() and using cgroup_root_mutex
80 * breaks it.
81 */
2219449a
TH
82#ifdef CONFIG_PROVE_RCU
83DEFINE_MUTEX(cgroup_mutex);
84EXPORT_SYMBOL_GPL(cgroup_mutex); /* only for task_subsys_state_check() */
85#else
81a6a5cd 86static DEFINE_MUTEX(cgroup_mutex);
2219449a
TH
87#endif
88
e25e2cbb 89static DEFINE_MUTEX(cgroup_root_mutex);
81a6a5cd 90
aae8aab4
BB
91/*
92 * Generate an array of cgroup subsystem pointers. At boot time, this is
be45c900 93 * populated with the built in subsystems, and modular subsystems are
aae8aab4
BB
94 * registered after that. The mutable section of this array is protected by
95 * cgroup_mutex.
96 */
80f4c877 97#define SUBSYS(_x) [_x ## _subsys_id] = &_x ## _subsys,
5fc0b025 98#define IS_SUBSYS_ENABLED(option) IS_BUILTIN(option)
9871bf95 99static struct cgroup_subsys *cgroup_subsys[CGROUP_SUBSYS_COUNT] = {
ddbcc7e8
PM
100#include <linux/cgroup_subsys.h>
101};
102
ddbcc7e8 103/*
9871bf95
TH
104 * The dummy hierarchy, reserved for the subsystems that are otherwise
105 * unattached - it never has more than a single cgroup, and all tasks are
106 * part of that cgroup.
ddbcc7e8 107 */
9871bf95
TH
108static struct cgroupfs_root cgroup_dummy_root;
109
110/* dummy_top is a shorthand for the dummy hierarchy's top cgroup */
111static struct cgroup * const cgroup_dummy_top = &cgroup_dummy_root.top_cgroup;
ddbcc7e8 112
05ef1d7c
TH
113/*
114 * cgroupfs file entry, pointed to from leaf dentry->d_fsdata.
115 */
116struct cfent {
117 struct list_head node;
118 struct dentry *dentry;
119 struct cftype *type;
712317ad
LZ
120
121 /* file xattrs */
122 struct simple_xattrs xattrs;
05ef1d7c
TH
123};
124
38460b48
KH
125/*
126 * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
127 * cgroup_subsys->use_id != 0.
128 */
129#define CSS_ID_MAX (65535)
130struct css_id {
131 /*
132 * The css to which this ID points. This pointer is set to valid value
133 * after cgroup is populated. If cgroup is removed, this will be NULL.
134 * This pointer is expected to be RCU-safe because destroy()
e9316080
TH
135 * is called after synchronize_rcu(). But for safe use, css_tryget()
136 * should be used for avoiding race.
38460b48 137 */
2c392b8c 138 struct cgroup_subsys_state __rcu *css;
38460b48
KH
139 /*
140 * ID of this css.
141 */
142 unsigned short id;
143 /*
144 * Depth in hierarchy which this ID belongs to.
145 */
146 unsigned short depth;
147 /*
148 * ID is freed by RCU. (and lookup routine is RCU safe.)
149 */
150 struct rcu_head rcu_head;
151 /*
152 * Hierarchy of CSS ID belongs to.
153 */
154 unsigned short stack[0]; /* Array of Length (depth+1) */
155};
156
0dea1168 157/*
25985edc 158 * cgroup_event represents events which userspace want to receive.
0dea1168
KS
159 */
160struct cgroup_event {
161 /*
162 * Cgroup which the event belongs to.
163 */
164 struct cgroup *cgrp;
165 /*
166 * Control file which the event associated.
167 */
168 struct cftype *cft;
169 /*
170 * eventfd to signal userspace about the event.
171 */
172 struct eventfd_ctx *eventfd;
173 /*
174 * Each of these stored in a list by the cgroup.
175 */
176 struct list_head list;
177 /*
178 * All fields below needed to unregister event when
179 * userspace closes eventfd.
180 */
181 poll_table pt;
182 wait_queue_head_t *wqh;
183 wait_queue_t wait;
184 struct work_struct remove;
185};
38460b48 186
ddbcc7e8
PM
187/* The list of hierarchy roots */
188
9871bf95
TH
189static LIST_HEAD(cgroup_roots);
190static int cgroup_root_count;
ddbcc7e8 191
54e7b4eb
TH
192/*
193 * Hierarchy ID allocation and mapping. It follows the same exclusion
194 * rules as other root ops - both cgroup_mutex and cgroup_root_mutex for
195 * writes, either for reads.
196 */
1a574231 197static DEFINE_IDR(cgroup_hierarchy_idr);
2c6ab6d2 198
65dff759
LZ
199static struct cgroup_name root_cgroup_name = { .name = "/" };
200
794611a1
LZ
201/*
202 * Assign a monotonically increasing serial number to cgroups. It
203 * guarantees cgroups with bigger numbers are newer than those with smaller
204 * numbers. Also, as cgroups are always appended to the parent's
205 * ->children list, it guarantees that sibling cgroups are always sorted in
00356bd5
TH
206 * the ascending serial number order on the list. Protected by
207 * cgroup_mutex.
794611a1 208 */
00356bd5 209static u64 cgroup_serial_nr_next = 1;
794611a1 210
ddbcc7e8 211/* This flag indicates whether tasks in the fork and exit paths should
a043e3b2
LZ
212 * check for fork/exit handlers to call. This avoids us having to do
213 * extra work in the fork/exit path if none of the subsystems need to
214 * be called.
ddbcc7e8 215 */
8947f9d5 216static int need_forkexit_callback __read_mostly;
ddbcc7e8 217
ea15f8cc 218static void cgroup_offline_fn(struct work_struct *work);
42809dd4 219static int cgroup_destroy_locked(struct cgroup *cgrp);
879a3d9d
G
220static int cgroup_addrm_files(struct cgroup *cgrp, struct cgroup_subsys *subsys,
221 struct cftype cfts[], bool is_add);
42809dd4 222
ddbcc7e8 223/* convenient tests for these bits */
54766d4a 224static inline bool cgroup_is_dead(const struct cgroup *cgrp)
ddbcc7e8 225{
54766d4a 226 return test_bit(CGRP_DEAD, &cgrp->flags);
ddbcc7e8
PM
227}
228
78574cf9
LZ
229/**
230 * cgroup_is_descendant - test ancestry
231 * @cgrp: the cgroup to be tested
232 * @ancestor: possible ancestor of @cgrp
233 *
234 * Test whether @cgrp is a descendant of @ancestor. It also returns %true
235 * if @cgrp == @ancestor. This function is safe to call as long as @cgrp
236 * and @ancestor are accessible.
237 */
238bool cgroup_is_descendant(struct cgroup *cgrp, struct cgroup *ancestor)
239{
240 while (cgrp) {
241 if (cgrp == ancestor)
242 return true;
243 cgrp = cgrp->parent;
244 }
245 return false;
246}
247EXPORT_SYMBOL_GPL(cgroup_is_descendant);
ddbcc7e8 248
e9685a03 249static int cgroup_is_releasable(const struct cgroup *cgrp)
81a6a5cd
PM
250{
251 const int bits =
bd89aabc
PM
252 (1 << CGRP_RELEASABLE) |
253 (1 << CGRP_NOTIFY_ON_RELEASE);
254 return (cgrp->flags & bits) == bits;
81a6a5cd
PM
255}
256
e9685a03 257static int notify_on_release(const struct cgroup *cgrp)
81a6a5cd 258{
bd89aabc 259 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
81a6a5cd
PM
260}
261
ddbcc7e8
PM
262/*
263 * for_each_subsys() allows you to iterate on each subsystem attached to
264 * an active hierarchy
265 */
266#define for_each_subsys(_root, _ss) \
267list_for_each_entry(_ss, &_root->subsys_list, sibling)
268
e5f6a860
LZ
269/* for_each_active_root() allows you to iterate across the active hierarchies */
270#define for_each_active_root(_root) \
9871bf95 271list_for_each_entry(_root, &cgroup_roots, root_list)
ddbcc7e8 272
f6ea9372
TH
273static inline struct cgroup *__d_cgrp(struct dentry *dentry)
274{
275 return dentry->d_fsdata;
276}
277
05ef1d7c 278static inline struct cfent *__d_cfe(struct dentry *dentry)
f6ea9372
TH
279{
280 return dentry->d_fsdata;
281}
282
05ef1d7c
TH
283static inline struct cftype *__d_cft(struct dentry *dentry)
284{
285 return __d_cfe(dentry)->type;
286}
287
7ae1bad9
TH
288/**
289 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
290 * @cgrp: the cgroup to be checked for liveness
291 *
47cfcd09
TH
292 * On success, returns true; the mutex should be later unlocked. On
293 * failure returns false with no lock held.
7ae1bad9 294 */
b9777cf8 295static bool cgroup_lock_live_group(struct cgroup *cgrp)
7ae1bad9
TH
296{
297 mutex_lock(&cgroup_mutex);
54766d4a 298 if (cgroup_is_dead(cgrp)) {
7ae1bad9
TH
299 mutex_unlock(&cgroup_mutex);
300 return false;
301 }
302 return true;
303}
7ae1bad9 304
81a6a5cd
PM
305/* the list of cgroups eligible for automatic release. Protected by
306 * release_list_lock */
307static LIST_HEAD(release_list);
cdcc136f 308static DEFINE_RAW_SPINLOCK(release_list_lock);
81a6a5cd
PM
309static void cgroup_release_agent(struct work_struct *work);
310static DECLARE_WORK(release_agent_work, cgroup_release_agent);
bd89aabc 311static void check_for_release(struct cgroup *cgrp);
81a6a5cd 312
69d0206c
TH
313/*
314 * A cgroup can be associated with multiple css_sets as different tasks may
315 * belong to different cgroups on different hierarchies. In the other
316 * direction, a css_set is naturally associated with multiple cgroups.
317 * This M:N relationship is represented by the following link structure
318 * which exists for each association and allows traversing the associations
319 * from both sides.
320 */
321struct cgrp_cset_link {
322 /* the cgroup and css_set this link associates */
323 struct cgroup *cgrp;
324 struct css_set *cset;
325
326 /* list of cgrp_cset_links anchored at cgrp->cset_links */
327 struct list_head cset_link;
328
329 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
330 struct list_head cgrp_link;
817929ec
PM
331};
332
333/* The default css_set - used by init and its children prior to any
334 * hierarchies being mounted. It contains a pointer to the root state
335 * for each subsystem. Also used to anchor the list of css_sets. Not
336 * reference-counted, to improve performance when child cgroups
337 * haven't been created.
338 */
339
340static struct css_set init_css_set;
69d0206c 341static struct cgrp_cset_link init_cgrp_cset_link;
817929ec 342
e6a1105b
BB
343static int cgroup_init_idr(struct cgroup_subsys *ss,
344 struct cgroup_subsys_state *css);
38460b48 345
817929ec
PM
346/* css_set_lock protects the list of css_set objects, and the
347 * chain of tasks off each css_set. Nests outside task->alloc_lock
348 * due to cgroup_iter_start() */
349static DEFINE_RWLOCK(css_set_lock);
350static int css_set_count;
351
7717f7ba
PM
352/*
353 * hash table for cgroup groups. This improves the performance to find
354 * an existing css_set. This hash doesn't (currently) take into
355 * account cgroups in empty hierarchies.
356 */
472b1053 357#define CSS_SET_HASH_BITS 7
0ac801fe 358static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
472b1053 359
0ac801fe 360static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
472b1053
LZ
361{
362 int i;
0ac801fe 363 unsigned long key = 0UL;
472b1053
LZ
364
365 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++)
0ac801fe
LZ
366 key += (unsigned long)css[i];
367 key = (key >> 16) ^ key;
472b1053 368
0ac801fe 369 return key;
472b1053
LZ
370}
371
817929ec
PM
372/* We don't maintain the lists running through each css_set to its
373 * task until after the first call to cgroup_iter_start(). This
374 * reduces the fork()/exit() overhead for people who have cgroups
375 * compiled into their kernel but not actually in use */
8947f9d5 376static int use_task_css_set_links __read_mostly;
817929ec 377
5abb8855 378static void __put_css_set(struct css_set *cset, int taskexit)
b4f48b63 379{
69d0206c 380 struct cgrp_cset_link *link, *tmp_link;
5abb8855 381
146aa1bd
LJ
382 /*
383 * Ensure that the refcount doesn't hit zero while any readers
384 * can see it. Similar to atomic_dec_and_lock(), but for an
385 * rwlock
386 */
5abb8855 387 if (atomic_add_unless(&cset->refcount, -1, 1))
146aa1bd
LJ
388 return;
389 write_lock(&css_set_lock);
5abb8855 390 if (!atomic_dec_and_test(&cset->refcount)) {
146aa1bd
LJ
391 write_unlock(&css_set_lock);
392 return;
393 }
81a6a5cd 394
2c6ab6d2 395 /* This css_set is dead. unlink it and release cgroup refcounts */
5abb8855 396 hash_del(&cset->hlist);
2c6ab6d2
PM
397 css_set_count--;
398
69d0206c 399 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
2c6ab6d2 400 struct cgroup *cgrp = link->cgrp;
5abb8855 401
69d0206c
TH
402 list_del(&link->cset_link);
403 list_del(&link->cgrp_link);
71b5707e 404
ddd69148 405 /* @cgrp can't go away while we're holding css_set_lock */
6f3d828f 406 if (list_empty(&cgrp->cset_links) && notify_on_release(cgrp)) {
81a6a5cd 407 if (taskexit)
bd89aabc
PM
408 set_bit(CGRP_RELEASABLE, &cgrp->flags);
409 check_for_release(cgrp);
81a6a5cd 410 }
2c6ab6d2
PM
411
412 kfree(link);
81a6a5cd 413 }
2c6ab6d2
PM
414
415 write_unlock(&css_set_lock);
5abb8855 416 kfree_rcu(cset, rcu_head);
b4f48b63
PM
417}
418
817929ec
PM
419/*
420 * refcounted get/put for css_set objects
421 */
5abb8855 422static inline void get_css_set(struct css_set *cset)
817929ec 423{
5abb8855 424 atomic_inc(&cset->refcount);
817929ec
PM
425}
426
5abb8855 427static inline void put_css_set(struct css_set *cset)
817929ec 428{
5abb8855 429 __put_css_set(cset, 0);
817929ec
PM
430}
431
5abb8855 432static inline void put_css_set_taskexit(struct css_set *cset)
81a6a5cd 433{
5abb8855 434 __put_css_set(cset, 1);
81a6a5cd
PM
435}
436
b326f9d0 437/**
7717f7ba 438 * compare_css_sets - helper function for find_existing_css_set().
5abb8855
TH
439 * @cset: candidate css_set being tested
440 * @old_cset: existing css_set for a task
7717f7ba
PM
441 * @new_cgrp: cgroup that's being entered by the task
442 * @template: desired set of css pointers in css_set (pre-calculated)
443 *
444 * Returns true if "cg" matches "old_cg" except for the hierarchy
445 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
446 */
5abb8855
TH
447static bool compare_css_sets(struct css_set *cset,
448 struct css_set *old_cset,
7717f7ba
PM
449 struct cgroup *new_cgrp,
450 struct cgroup_subsys_state *template[])
451{
452 struct list_head *l1, *l2;
453
5abb8855 454 if (memcmp(template, cset->subsys, sizeof(cset->subsys))) {
7717f7ba
PM
455 /* Not all subsystems matched */
456 return false;
457 }
458
459 /*
460 * Compare cgroup pointers in order to distinguish between
461 * different cgroups in heirarchies with no subsystems. We
462 * could get by with just this check alone (and skip the
463 * memcmp above) but on most setups the memcmp check will
464 * avoid the need for this more expensive check on almost all
465 * candidates.
466 */
467
69d0206c
TH
468 l1 = &cset->cgrp_links;
469 l2 = &old_cset->cgrp_links;
7717f7ba 470 while (1) {
69d0206c 471 struct cgrp_cset_link *link1, *link2;
5abb8855 472 struct cgroup *cgrp1, *cgrp2;
7717f7ba
PM
473
474 l1 = l1->next;
475 l2 = l2->next;
476 /* See if we reached the end - both lists are equal length. */
69d0206c
TH
477 if (l1 == &cset->cgrp_links) {
478 BUG_ON(l2 != &old_cset->cgrp_links);
7717f7ba
PM
479 break;
480 } else {
69d0206c 481 BUG_ON(l2 == &old_cset->cgrp_links);
7717f7ba
PM
482 }
483 /* Locate the cgroups associated with these links. */
69d0206c
TH
484 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
485 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
486 cgrp1 = link1->cgrp;
487 cgrp2 = link2->cgrp;
7717f7ba 488 /* Hierarchies should be linked in the same order. */
5abb8855 489 BUG_ON(cgrp1->root != cgrp2->root);
7717f7ba
PM
490
491 /*
492 * If this hierarchy is the hierarchy of the cgroup
493 * that's changing, then we need to check that this
494 * css_set points to the new cgroup; if it's any other
495 * hierarchy, then this css_set should point to the
496 * same cgroup as the old css_set.
497 */
5abb8855
TH
498 if (cgrp1->root == new_cgrp->root) {
499 if (cgrp1 != new_cgrp)
7717f7ba
PM
500 return false;
501 } else {
5abb8855 502 if (cgrp1 != cgrp2)
7717f7ba
PM
503 return false;
504 }
505 }
506 return true;
507}
508
b326f9d0
TH
509/**
510 * find_existing_css_set - init css array and find the matching css_set
511 * @old_cset: the css_set that we're using before the cgroup transition
512 * @cgrp: the cgroup that we're moving into
513 * @template: out param for the new set of csses, should be clear on entry
817929ec 514 */
5abb8855
TH
515static struct css_set *find_existing_css_set(struct css_set *old_cset,
516 struct cgroup *cgrp,
517 struct cgroup_subsys_state *template[])
b4f48b63 518{
bd89aabc 519 struct cgroupfs_root *root = cgrp->root;
5abb8855 520 struct css_set *cset;
0ac801fe 521 unsigned long key;
b326f9d0 522 int i;
817929ec 523
aae8aab4
BB
524 /*
525 * Build the set of subsystem state objects that we want to see in the
526 * new css_set. while subsystems can change globally, the entries here
527 * won't change, so no need for locking.
528 */
817929ec 529 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
a1a71b45 530 if (root->subsys_mask & (1UL << i)) {
817929ec
PM
531 /* Subsystem is in this hierarchy. So we want
532 * the subsystem state from the new
533 * cgroup */
bd89aabc 534 template[i] = cgrp->subsys[i];
817929ec
PM
535 } else {
536 /* Subsystem is not in this hierarchy, so we
537 * don't want to change the subsystem state */
5abb8855 538 template[i] = old_cset->subsys[i];
817929ec
PM
539 }
540 }
541
0ac801fe 542 key = css_set_hash(template);
5abb8855
TH
543 hash_for_each_possible(css_set_table, cset, hlist, key) {
544 if (!compare_css_sets(cset, old_cset, cgrp, template))
7717f7ba
PM
545 continue;
546
547 /* This css_set matches what we need */
5abb8855 548 return cset;
472b1053 549 }
817929ec
PM
550
551 /* No existing cgroup group matched */
552 return NULL;
553}
554
69d0206c 555static void free_cgrp_cset_links(struct list_head *links_to_free)
36553434 556{
69d0206c 557 struct cgrp_cset_link *link, *tmp_link;
36553434 558
69d0206c
TH
559 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
560 list_del(&link->cset_link);
36553434
LZ
561 kfree(link);
562 }
563}
564
69d0206c
TH
565/**
566 * allocate_cgrp_cset_links - allocate cgrp_cset_links
567 * @count: the number of links to allocate
568 * @tmp_links: list_head the allocated links are put on
569 *
570 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
571 * through ->cset_link. Returns 0 on success or -errno.
817929ec 572 */
69d0206c 573static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
817929ec 574{
69d0206c 575 struct cgrp_cset_link *link;
817929ec 576 int i;
69d0206c
TH
577
578 INIT_LIST_HEAD(tmp_links);
579
817929ec 580 for (i = 0; i < count; i++) {
f4f4be2b 581 link = kzalloc(sizeof(*link), GFP_KERNEL);
817929ec 582 if (!link) {
69d0206c 583 free_cgrp_cset_links(tmp_links);
817929ec
PM
584 return -ENOMEM;
585 }
69d0206c 586 list_add(&link->cset_link, tmp_links);
817929ec
PM
587 }
588 return 0;
589}
590
c12f65d4
LZ
591/**
592 * link_css_set - a helper function to link a css_set to a cgroup
69d0206c 593 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
5abb8855 594 * @cset: the css_set to be linked
c12f65d4
LZ
595 * @cgrp: the destination cgroup
596 */
69d0206c
TH
597static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
598 struct cgroup *cgrp)
c12f65d4 599{
69d0206c 600 struct cgrp_cset_link *link;
c12f65d4 601
69d0206c
TH
602 BUG_ON(list_empty(tmp_links));
603 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
604 link->cset = cset;
7717f7ba 605 link->cgrp = cgrp;
69d0206c 606 list_move(&link->cset_link, &cgrp->cset_links);
7717f7ba
PM
607 /*
608 * Always add links to the tail of the list so that the list
609 * is sorted by order of hierarchy creation
610 */
69d0206c 611 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
c12f65d4
LZ
612}
613
b326f9d0
TH
614/**
615 * find_css_set - return a new css_set with one cgroup updated
616 * @old_cset: the baseline css_set
617 * @cgrp: the cgroup to be updated
618 *
619 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
620 * substituted into the appropriate hierarchy.
817929ec 621 */
5abb8855
TH
622static struct css_set *find_css_set(struct css_set *old_cset,
623 struct cgroup *cgrp)
817929ec 624{
b326f9d0 625 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
5abb8855 626 struct css_set *cset;
69d0206c
TH
627 struct list_head tmp_links;
628 struct cgrp_cset_link *link;
0ac801fe 629 unsigned long key;
472b1053 630
b326f9d0
TH
631 lockdep_assert_held(&cgroup_mutex);
632
817929ec
PM
633 /* First see if we already have a cgroup group that matches
634 * the desired set */
7e9abd89 635 read_lock(&css_set_lock);
5abb8855
TH
636 cset = find_existing_css_set(old_cset, cgrp, template);
637 if (cset)
638 get_css_set(cset);
7e9abd89 639 read_unlock(&css_set_lock);
817929ec 640
5abb8855
TH
641 if (cset)
642 return cset;
817929ec 643
f4f4be2b 644 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
5abb8855 645 if (!cset)
817929ec
PM
646 return NULL;
647
69d0206c 648 /* Allocate all the cgrp_cset_link objects that we'll need */
9871bf95 649 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
5abb8855 650 kfree(cset);
817929ec
PM
651 return NULL;
652 }
653
5abb8855 654 atomic_set(&cset->refcount, 1);
69d0206c 655 INIT_LIST_HEAD(&cset->cgrp_links);
5abb8855
TH
656 INIT_LIST_HEAD(&cset->tasks);
657 INIT_HLIST_NODE(&cset->hlist);
817929ec
PM
658
659 /* Copy the set of subsystem state objects generated in
660 * find_existing_css_set() */
5abb8855 661 memcpy(cset->subsys, template, sizeof(cset->subsys));
817929ec
PM
662
663 write_lock(&css_set_lock);
664 /* Add reference counts and links from the new css_set. */
69d0206c 665 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
7717f7ba 666 struct cgroup *c = link->cgrp;
69d0206c 667
7717f7ba
PM
668 if (c->root == cgrp->root)
669 c = cgrp;
69d0206c 670 link_css_set(&tmp_links, cset, c);
7717f7ba 671 }
817929ec 672
69d0206c 673 BUG_ON(!list_empty(&tmp_links));
817929ec 674
817929ec 675 css_set_count++;
472b1053
LZ
676
677 /* Add this cgroup group to the hash table */
5abb8855
TH
678 key = css_set_hash(cset->subsys);
679 hash_add(css_set_table, &cset->hlist, key);
472b1053 680
817929ec
PM
681 write_unlock(&css_set_lock);
682
5abb8855 683 return cset;
b4f48b63
PM
684}
685
7717f7ba
PM
686/*
687 * Return the cgroup for "task" from the given hierarchy. Must be
688 * called with cgroup_mutex held.
689 */
690static struct cgroup *task_cgroup_from_root(struct task_struct *task,
691 struct cgroupfs_root *root)
692{
5abb8855 693 struct css_set *cset;
7717f7ba
PM
694 struct cgroup *res = NULL;
695
696 BUG_ON(!mutex_is_locked(&cgroup_mutex));
697 read_lock(&css_set_lock);
698 /*
699 * No need to lock the task - since we hold cgroup_mutex the
700 * task can't change groups, so the only thing that can happen
701 * is that it exits and its css is set back to init_css_set.
702 */
5abb8855
TH
703 cset = task->cgroups;
704 if (cset == &init_css_set) {
7717f7ba
PM
705 res = &root->top_cgroup;
706 } else {
69d0206c
TH
707 struct cgrp_cset_link *link;
708
709 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 710 struct cgroup *c = link->cgrp;
69d0206c 711
7717f7ba
PM
712 if (c->root == root) {
713 res = c;
714 break;
715 }
716 }
717 }
718 read_unlock(&css_set_lock);
719 BUG_ON(!res);
720 return res;
721}
722
ddbcc7e8
PM
723/*
724 * There is one global cgroup mutex. We also require taking
725 * task_lock() when dereferencing a task's cgroup subsys pointers.
726 * See "The task_lock() exception", at the end of this comment.
727 *
728 * A task must hold cgroup_mutex to modify cgroups.
729 *
730 * Any task can increment and decrement the count field without lock.
731 * So in general, code holding cgroup_mutex can't rely on the count
732 * field not changing. However, if the count goes to zero, then only
956db3ca 733 * cgroup_attach_task() can increment it again. Because a count of zero
ddbcc7e8
PM
734 * means that no tasks are currently attached, therefore there is no
735 * way a task attached to that cgroup can fork (the other way to
736 * increment the count). So code holding cgroup_mutex can safely
737 * assume that if the count is zero, it will stay zero. Similarly, if
738 * a task holds cgroup_mutex on a cgroup with zero count, it
739 * knows that the cgroup won't be removed, as cgroup_rmdir()
740 * needs that mutex.
741 *
ddbcc7e8
PM
742 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
743 * (usually) take cgroup_mutex. These are the two most performance
744 * critical pieces of code here. The exception occurs on cgroup_exit(),
745 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
746 * is taken, and if the cgroup count is zero, a usermode call made
a043e3b2
LZ
747 * to the release agent with the name of the cgroup (path relative to
748 * the root of cgroup file system) as the argument.
ddbcc7e8
PM
749 *
750 * A cgroup can only be deleted if both its 'count' of using tasks
751 * is zero, and its list of 'children' cgroups is empty. Since all
752 * tasks in the system use _some_ cgroup, and since there is always at
753 * least one task in the system (init, pid == 1), therefore, top_cgroup
754 * always has either children cgroups and/or using tasks. So we don't
755 * need a special hack to ensure that top_cgroup cannot be deleted.
756 *
757 * The task_lock() exception
758 *
759 * The need for this exception arises from the action of
d0b2fdd2 760 * cgroup_attach_task(), which overwrites one task's cgroup pointer with
a043e3b2 761 * another. It does so using cgroup_mutex, however there are
ddbcc7e8
PM
762 * several performance critical places that need to reference
763 * task->cgroup without the expense of grabbing a system global
764 * mutex. Therefore except as noted below, when dereferencing or, as
d0b2fdd2 765 * in cgroup_attach_task(), modifying a task's cgroup pointer we use
ddbcc7e8
PM
766 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
767 * the task_struct routinely used for such matters.
768 *
769 * P.S. One more locking exception. RCU is used to guard the
956db3ca 770 * update of a tasks cgroup pointer by cgroup_attach_task()
ddbcc7e8
PM
771 */
772
ddbcc7e8
PM
773/*
774 * A couple of forward declarations required, due to cyclic reference loop:
775 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
776 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
777 * -> cgroup_mkdir.
778 */
779
18bb1db3 780static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode);
00cd8dd3 781static struct dentry *cgroup_lookup(struct inode *, struct dentry *, unsigned int);
ddbcc7e8 782static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
13af07df
AR
783static int cgroup_populate_dir(struct cgroup *cgrp, bool base_files,
784 unsigned long subsys_mask);
6e1d5dcc 785static const struct inode_operations cgroup_dir_inode_operations;
828c0950 786static const struct file_operations proc_cgroupstats_operations;
a424316c
PM
787
788static struct backing_dev_info cgroup_backing_dev_info = {
d993831f 789 .name = "cgroup",
e4ad08fe 790 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK,
a424316c 791};
ddbcc7e8 792
38460b48
KH
793static int alloc_css_id(struct cgroup_subsys *ss,
794 struct cgroup *parent, struct cgroup *child);
795
a5e7ed32 796static struct inode *cgroup_new_inode(umode_t mode, struct super_block *sb)
ddbcc7e8
PM
797{
798 struct inode *inode = new_inode(sb);
ddbcc7e8
PM
799
800 if (inode) {
85fe4025 801 inode->i_ino = get_next_ino();
ddbcc7e8 802 inode->i_mode = mode;
76aac0e9
DH
803 inode->i_uid = current_fsuid();
804 inode->i_gid = current_fsgid();
ddbcc7e8
PM
805 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
806 inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
807 }
808 return inode;
809}
810
65dff759
LZ
811static struct cgroup_name *cgroup_alloc_name(struct dentry *dentry)
812{
813 struct cgroup_name *name;
814
815 name = kmalloc(sizeof(*name) + dentry->d_name.len + 1, GFP_KERNEL);
816 if (!name)
817 return NULL;
818 strcpy(name->name, dentry->d_name.name);
819 return name;
820}
821
be445626
LZ
822static void cgroup_free_fn(struct work_struct *work)
823{
ea15f8cc 824 struct cgroup *cgrp = container_of(work, struct cgroup, destroy_work);
be445626
LZ
825 struct cgroup_subsys *ss;
826
827 mutex_lock(&cgroup_mutex);
828 /*
829 * Release the subsystem state objects.
830 */
831 for_each_subsys(cgrp->root, ss)
832 ss->css_free(cgrp);
833
834 cgrp->root->number_of_cgroups--;
835 mutex_unlock(&cgroup_mutex);
836
415cf07a
LZ
837 /*
838 * We get a ref to the parent's dentry, and put the ref when
839 * this cgroup is being freed, so it's guaranteed that the
840 * parent won't be destroyed before its children.
841 */
842 dput(cgrp->parent->dentry);
843
cc20e01c
LZ
844 ida_simple_remove(&cgrp->root->cgroup_ida, cgrp->id);
845
be445626
LZ
846 /*
847 * Drop the active superblock reference that we took when we
cc20e01c
LZ
848 * created the cgroup. This will free cgrp->root, if we are
849 * holding the last reference to @sb.
be445626
LZ
850 */
851 deactivate_super(cgrp->root->sb);
852
853 /*
854 * if we're getting rid of the cgroup, refcount should ensure
855 * that there are no pidlists left.
856 */
857 BUG_ON(!list_empty(&cgrp->pidlists));
858
859 simple_xattrs_free(&cgrp->xattrs);
860
65dff759 861 kfree(rcu_dereference_raw(cgrp->name));
be445626
LZ
862 kfree(cgrp);
863}
864
865static void cgroup_free_rcu(struct rcu_head *head)
866{
867 struct cgroup *cgrp = container_of(head, struct cgroup, rcu_head);
868
ea15f8cc
TH
869 INIT_WORK(&cgrp->destroy_work, cgroup_free_fn);
870 schedule_work(&cgrp->destroy_work);
be445626
LZ
871}
872
ddbcc7e8
PM
873static void cgroup_diput(struct dentry *dentry, struct inode *inode)
874{
875 /* is dentry a directory ? if so, kfree() associated cgroup */
876 if (S_ISDIR(inode->i_mode)) {
bd89aabc 877 struct cgroup *cgrp = dentry->d_fsdata;
be445626 878
54766d4a 879 BUG_ON(!(cgroup_is_dead(cgrp)));
be445626 880 call_rcu(&cgrp->rcu_head, cgroup_free_rcu);
05ef1d7c
TH
881 } else {
882 struct cfent *cfe = __d_cfe(dentry);
883 struct cgroup *cgrp = dentry->d_parent->d_fsdata;
884
885 WARN_ONCE(!list_empty(&cfe->node) &&
886 cgrp != &cgrp->root->top_cgroup,
887 "cfe still linked for %s\n", cfe->type->name);
712317ad 888 simple_xattrs_free(&cfe->xattrs);
05ef1d7c 889 kfree(cfe);
ddbcc7e8
PM
890 }
891 iput(inode);
892}
893
c72a04e3
AV
894static int cgroup_delete(const struct dentry *d)
895{
896 return 1;
897}
898
ddbcc7e8
PM
899static void remove_dir(struct dentry *d)
900{
901 struct dentry *parent = dget(d->d_parent);
902
903 d_delete(d);
904 simple_rmdir(parent->d_inode, d);
905 dput(parent);
906}
907
2739d3cc 908static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
05ef1d7c
TH
909{
910 struct cfent *cfe;
911
912 lockdep_assert_held(&cgrp->dentry->d_inode->i_mutex);
913 lockdep_assert_held(&cgroup_mutex);
914
2739d3cc
LZ
915 /*
916 * If we're doing cleanup due to failure of cgroup_create(),
917 * the corresponding @cfe may not exist.
918 */
05ef1d7c
TH
919 list_for_each_entry(cfe, &cgrp->files, node) {
920 struct dentry *d = cfe->dentry;
921
922 if (cft && cfe->type != cft)
923 continue;
924
925 dget(d);
926 d_delete(d);
ce27e317 927 simple_unlink(cgrp->dentry->d_inode, d);
05ef1d7c
TH
928 list_del_init(&cfe->node);
929 dput(d);
930
2739d3cc 931 break;
ddbcc7e8 932 }
05ef1d7c
TH
933}
934
13af07df
AR
935/**
936 * cgroup_clear_directory - selective removal of base and subsystem files
937 * @dir: directory containing the files
938 * @base_files: true if the base files should be removed
939 * @subsys_mask: mask of the subsystem ids whose files should be removed
940 */
941static void cgroup_clear_directory(struct dentry *dir, bool base_files,
942 unsigned long subsys_mask)
05ef1d7c
TH
943{
944 struct cgroup *cgrp = __d_cgrp(dir);
13af07df 945 struct cgroup_subsys *ss;
05ef1d7c 946
13af07df
AR
947 for_each_subsys(cgrp->root, ss) {
948 struct cftype_set *set;
949 if (!test_bit(ss->subsys_id, &subsys_mask))
950 continue;
951 list_for_each_entry(set, &ss->cftsets, node)
879a3d9d 952 cgroup_addrm_files(cgrp, NULL, set->cfts, false);
13af07df
AR
953 }
954 if (base_files) {
955 while (!list_empty(&cgrp->files))
956 cgroup_rm_file(cgrp, NULL);
957 }
ddbcc7e8
PM
958}
959
960/*
961 * NOTE : the dentry must have been dget()'ed
962 */
963static void cgroup_d_remove_dir(struct dentry *dentry)
964{
2fd6b7f5 965 struct dentry *parent;
13af07df 966 struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
2fd6b7f5 967
a1a71b45 968 cgroup_clear_directory(dentry, true, root->subsys_mask);
ddbcc7e8 969
2fd6b7f5
NP
970 parent = dentry->d_parent;
971 spin_lock(&parent->d_lock);
3ec762ad 972 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
ddbcc7e8 973 list_del_init(&dentry->d_u.d_child);
2fd6b7f5
NP
974 spin_unlock(&dentry->d_lock);
975 spin_unlock(&parent->d_lock);
ddbcc7e8
PM
976 remove_dir(dentry);
977}
978
aae8aab4 979/*
cf5d5941
BB
980 * Call with cgroup_mutex held. Drops reference counts on modules, including
981 * any duplicate ones that parse_cgroupfs_options took. If this function
982 * returns an error, no reference counts are touched.
aae8aab4 983 */
ddbcc7e8 984static int rebind_subsystems(struct cgroupfs_root *root,
a8a648c4 985 unsigned long added_mask, unsigned removed_mask)
ddbcc7e8 986{
bd89aabc 987 struct cgroup *cgrp = &root->top_cgroup;
ddbcc7e8
PM
988 int i;
989
aae8aab4 990 BUG_ON(!mutex_is_locked(&cgroup_mutex));
e25e2cbb 991 BUG_ON(!mutex_is_locked(&cgroup_root_mutex));
aae8aab4 992
ddbcc7e8
PM
993 /* Check that any added subsystems are currently free */
994 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
8d53d55d 995 unsigned long bit = 1UL << i;
9871bf95 996 struct cgroup_subsys *ss = cgroup_subsys[i];
a1a71b45 997 if (!(bit & added_mask))
ddbcc7e8 998 continue;
aae8aab4
BB
999 /*
1000 * Nobody should tell us to do a subsys that doesn't exist:
1001 * parse_cgroupfs_options should catch that case and refcounts
1002 * ensure that subsystems won't disappear once selected.
1003 */
1004 BUG_ON(ss == NULL);
9871bf95 1005 if (ss->root != &cgroup_dummy_root) {
ddbcc7e8
PM
1006 /* Subsystem isn't free */
1007 return -EBUSY;
1008 }
1009 }
1010
1011 /* Currently we don't handle adding/removing subsystems when
1012 * any child cgroups exist. This is theoretically supportable
1013 * but involves complex error handling, so it's being left until
1014 * later */
307257cf 1015 if (root->number_of_cgroups > 1)
ddbcc7e8
PM
1016 return -EBUSY;
1017
1018 /* Process each subsystem */
1019 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
9871bf95 1020 struct cgroup_subsys *ss = cgroup_subsys[i];
ddbcc7e8 1021 unsigned long bit = 1UL << i;
a1a71b45 1022 if (bit & added_mask) {
ddbcc7e8 1023 /* We're binding this subsystem to this hierarchy */
aae8aab4 1024 BUG_ON(ss == NULL);
bd89aabc 1025 BUG_ON(cgrp->subsys[i]);
9871bf95
TH
1026 BUG_ON(!cgroup_dummy_top->subsys[i]);
1027 BUG_ON(cgroup_dummy_top->subsys[i]->cgroup != cgroup_dummy_top);
a8a648c4 1028
9871bf95 1029 cgrp->subsys[i] = cgroup_dummy_top->subsys[i];
bd89aabc 1030 cgrp->subsys[i]->cgroup = cgrp;
33a68ac1 1031 list_move(&ss->sibling, &root->subsys_list);
b2aa30f7 1032 ss->root = root;
ddbcc7e8 1033 if (ss->bind)
761b3ef5 1034 ss->bind(cgrp);
a8a648c4 1035
cf5d5941 1036 /* refcount was already taken, and we're keeping it */
a8a648c4 1037 root->subsys_mask |= bit;
a1a71b45 1038 } else if (bit & removed_mask) {
ddbcc7e8 1039 /* We're removing this subsystem */
aae8aab4 1040 BUG_ON(ss == NULL);
9871bf95 1041 BUG_ON(cgrp->subsys[i] != cgroup_dummy_top->subsys[i]);
bd89aabc 1042 BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
a8a648c4 1043
ddbcc7e8 1044 if (ss->bind)
9871bf95
TH
1045 ss->bind(cgroup_dummy_top);
1046 cgroup_dummy_top->subsys[i]->cgroup = cgroup_dummy_top;
bd89aabc 1047 cgrp->subsys[i] = NULL;
9871bf95
TH
1048 cgroup_subsys[i]->root = &cgroup_dummy_root;
1049 list_move(&ss->sibling, &cgroup_dummy_root.subsys_list);
a8a648c4 1050
cf5d5941
BB
1051 /* subsystem is now free - drop reference on module */
1052 module_put(ss->module);
a8a648c4
TH
1053 root->subsys_mask &= ~bit;
1054 } else if (bit & root->subsys_mask) {
ddbcc7e8 1055 /* Subsystem state should already exist */
aae8aab4 1056 BUG_ON(ss == NULL);
bd89aabc 1057 BUG_ON(!cgrp->subsys[i]);
cf5d5941
BB
1058 /*
1059 * a refcount was taken, but we already had one, so
1060 * drop the extra reference.
1061 */
1062 module_put(ss->module);
1063#ifdef CONFIG_MODULE_UNLOAD
1064 BUG_ON(ss->module && !module_refcount(ss->module));
1065#endif
ddbcc7e8
PM
1066 } else {
1067 /* Subsystem state shouldn't exist */
bd89aabc 1068 BUG_ON(cgrp->subsys[i]);
ddbcc7e8
PM
1069 }
1070 }
ddbcc7e8
PM
1071
1072 return 0;
1073}
1074
34c80b1d 1075static int cgroup_show_options(struct seq_file *seq, struct dentry *dentry)
ddbcc7e8 1076{
34c80b1d 1077 struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
ddbcc7e8
PM
1078 struct cgroup_subsys *ss;
1079
e25e2cbb 1080 mutex_lock(&cgroup_root_mutex);
ddbcc7e8
PM
1081 for_each_subsys(root, ss)
1082 seq_printf(seq, ",%s", ss->name);
873fe09e
TH
1083 if (root->flags & CGRP_ROOT_SANE_BEHAVIOR)
1084 seq_puts(seq, ",sane_behavior");
93438629 1085 if (root->flags & CGRP_ROOT_NOPREFIX)
ddbcc7e8 1086 seq_puts(seq, ",noprefix");
93438629 1087 if (root->flags & CGRP_ROOT_XATTR)
03b1cde6 1088 seq_puts(seq, ",xattr");
81a6a5cd
PM
1089 if (strlen(root->release_agent_path))
1090 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
2260e7fc 1091 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->top_cgroup.flags))
97978e6d 1092 seq_puts(seq, ",clone_children");
c6d57f33
PM
1093 if (strlen(root->name))
1094 seq_printf(seq, ",name=%s", root->name);
e25e2cbb 1095 mutex_unlock(&cgroup_root_mutex);
ddbcc7e8
PM
1096 return 0;
1097}
1098
1099struct cgroup_sb_opts {
a1a71b45 1100 unsigned long subsys_mask;
ddbcc7e8 1101 unsigned long flags;
81a6a5cd 1102 char *release_agent;
2260e7fc 1103 bool cpuset_clone_children;
c6d57f33 1104 char *name;
2c6ab6d2
PM
1105 /* User explicitly requested empty subsystem */
1106 bool none;
c6d57f33
PM
1107
1108 struct cgroupfs_root *new_root;
2c6ab6d2 1109
ddbcc7e8
PM
1110};
1111
aae8aab4 1112/*
9871bf95
TH
1113 * Convert a hierarchy specifier into a bitmask of subsystems and
1114 * flags. Call with cgroup_mutex held to protect the cgroup_subsys[]
1115 * array. This function takes refcounts on subsystems to be used, unless it
1116 * returns error, in which case no refcounts are taken.
aae8aab4 1117 */
cf5d5941 1118static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
ddbcc7e8 1119{
32a8cf23
DL
1120 char *token, *o = data;
1121 bool all_ss = false, one_ss = false;
f9ab5b5b 1122 unsigned long mask = (unsigned long)-1;
cf5d5941
BB
1123 int i;
1124 bool module_pin_failed = false;
f9ab5b5b 1125
aae8aab4
BB
1126 BUG_ON(!mutex_is_locked(&cgroup_mutex));
1127
f9ab5b5b
LZ
1128#ifdef CONFIG_CPUSETS
1129 mask = ~(1UL << cpuset_subsys_id);
1130#endif
ddbcc7e8 1131
c6d57f33 1132 memset(opts, 0, sizeof(*opts));
ddbcc7e8
PM
1133
1134 while ((token = strsep(&o, ",")) != NULL) {
1135 if (!*token)
1136 return -EINVAL;
32a8cf23 1137 if (!strcmp(token, "none")) {
2c6ab6d2
PM
1138 /* Explicitly have no subsystems */
1139 opts->none = true;
32a8cf23
DL
1140 continue;
1141 }
1142 if (!strcmp(token, "all")) {
1143 /* Mutually exclusive option 'all' + subsystem name */
1144 if (one_ss)
1145 return -EINVAL;
1146 all_ss = true;
1147 continue;
1148 }
873fe09e
TH
1149 if (!strcmp(token, "__DEVEL__sane_behavior")) {
1150 opts->flags |= CGRP_ROOT_SANE_BEHAVIOR;
1151 continue;
1152 }
32a8cf23 1153 if (!strcmp(token, "noprefix")) {
93438629 1154 opts->flags |= CGRP_ROOT_NOPREFIX;
32a8cf23
DL
1155 continue;
1156 }
1157 if (!strcmp(token, "clone_children")) {
2260e7fc 1158 opts->cpuset_clone_children = true;
32a8cf23
DL
1159 continue;
1160 }
03b1cde6 1161 if (!strcmp(token, "xattr")) {
93438629 1162 opts->flags |= CGRP_ROOT_XATTR;
03b1cde6
AR
1163 continue;
1164 }
32a8cf23 1165 if (!strncmp(token, "release_agent=", 14)) {
81a6a5cd
PM
1166 /* Specifying two release agents is forbidden */
1167 if (opts->release_agent)
1168 return -EINVAL;
c6d57f33 1169 opts->release_agent =
e400c285 1170 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
81a6a5cd
PM
1171 if (!opts->release_agent)
1172 return -ENOMEM;
32a8cf23
DL
1173 continue;
1174 }
1175 if (!strncmp(token, "name=", 5)) {
c6d57f33
PM
1176 const char *name = token + 5;
1177 /* Can't specify an empty name */
1178 if (!strlen(name))
1179 return -EINVAL;
1180 /* Must match [\w.-]+ */
1181 for (i = 0; i < strlen(name); i++) {
1182 char c = name[i];
1183 if (isalnum(c))
1184 continue;
1185 if ((c == '.') || (c == '-') || (c == '_'))
1186 continue;
1187 return -EINVAL;
1188 }
1189 /* Specifying two names is forbidden */
1190 if (opts->name)
1191 return -EINVAL;
1192 opts->name = kstrndup(name,
e400c285 1193 MAX_CGROUP_ROOT_NAMELEN - 1,
c6d57f33
PM
1194 GFP_KERNEL);
1195 if (!opts->name)
1196 return -ENOMEM;
32a8cf23
DL
1197
1198 continue;
1199 }
1200
1201 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
9871bf95 1202 struct cgroup_subsys *ss = cgroup_subsys[i];
32a8cf23
DL
1203 if (ss == NULL)
1204 continue;
1205 if (strcmp(token, ss->name))
1206 continue;
1207 if (ss->disabled)
1208 continue;
1209
1210 /* Mutually exclusive option 'all' + subsystem name */
1211 if (all_ss)
1212 return -EINVAL;
a1a71b45 1213 set_bit(i, &opts->subsys_mask);
32a8cf23
DL
1214 one_ss = true;
1215
1216 break;
1217 }
1218 if (i == CGROUP_SUBSYS_COUNT)
1219 return -ENOENT;
1220 }
1221
1222 /*
1223 * If the 'all' option was specified select all the subsystems,
0d19ea86
LZ
1224 * otherwise if 'none', 'name=' and a subsystem name options
1225 * were not specified, let's default to 'all'
32a8cf23 1226 */
0d19ea86 1227 if (all_ss || (!one_ss && !opts->none && !opts->name)) {
32a8cf23 1228 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
9871bf95 1229 struct cgroup_subsys *ss = cgroup_subsys[i];
32a8cf23
DL
1230 if (ss == NULL)
1231 continue;
1232 if (ss->disabled)
1233 continue;
a1a71b45 1234 set_bit(i, &opts->subsys_mask);
ddbcc7e8
PM
1235 }
1236 }
1237
2c6ab6d2
PM
1238 /* Consistency checks */
1239
873fe09e
TH
1240 if (opts->flags & CGRP_ROOT_SANE_BEHAVIOR) {
1241 pr_warning("cgroup: sane_behavior: this is still under development and its behaviors will change, proceed at your own risk\n");
1242
1243 if (opts->flags & CGRP_ROOT_NOPREFIX) {
1244 pr_err("cgroup: sane_behavior: noprefix is not allowed\n");
1245 return -EINVAL;
1246 }
1247
1248 if (opts->cpuset_clone_children) {
1249 pr_err("cgroup: sane_behavior: clone_children is not allowed\n");
1250 return -EINVAL;
1251 }
1252 }
1253
f9ab5b5b
LZ
1254 /*
1255 * Option noprefix was introduced just for backward compatibility
1256 * with the old cpuset, so we allow noprefix only if mounting just
1257 * the cpuset subsystem.
1258 */
93438629 1259 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
f9ab5b5b
LZ
1260 return -EINVAL;
1261
2c6ab6d2
PM
1262
1263 /* Can't specify "none" and some subsystems */
a1a71b45 1264 if (opts->subsys_mask && opts->none)
2c6ab6d2
PM
1265 return -EINVAL;
1266
1267 /*
1268 * We either have to specify by name or by subsystems. (So all
1269 * empty hierarchies must have a name).
1270 */
a1a71b45 1271 if (!opts->subsys_mask && !opts->name)
ddbcc7e8
PM
1272 return -EINVAL;
1273
cf5d5941
BB
1274 /*
1275 * Grab references on all the modules we'll need, so the subsystems
1276 * don't dance around before rebind_subsystems attaches them. This may
1277 * take duplicate reference counts on a subsystem that's already used,
1278 * but rebind_subsystems handles this case.
1279 */
be45c900 1280 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
cf5d5941
BB
1281 unsigned long bit = 1UL << i;
1282
a1a71b45 1283 if (!(bit & opts->subsys_mask))
cf5d5941 1284 continue;
9871bf95 1285 if (!try_module_get(cgroup_subsys[i]->module)) {
cf5d5941
BB
1286 module_pin_failed = true;
1287 break;
1288 }
1289 }
1290 if (module_pin_failed) {
1291 /*
1292 * oops, one of the modules was going away. this means that we
1293 * raced with a module_delete call, and to the user this is
1294 * essentially a "subsystem doesn't exist" case.
1295 */
be45c900 1296 for (i--; i >= 0; i--) {
cf5d5941
BB
1297 /* drop refcounts only on the ones we took */
1298 unsigned long bit = 1UL << i;
1299
a1a71b45 1300 if (!(bit & opts->subsys_mask))
cf5d5941 1301 continue;
9871bf95 1302 module_put(cgroup_subsys[i]->module);
cf5d5941
BB
1303 }
1304 return -ENOENT;
1305 }
1306
ddbcc7e8
PM
1307 return 0;
1308}
1309
a1a71b45 1310static void drop_parsed_module_refcounts(unsigned long subsys_mask)
cf5d5941
BB
1311{
1312 int i;
be45c900 1313 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
cf5d5941
BB
1314 unsigned long bit = 1UL << i;
1315
a1a71b45 1316 if (!(bit & subsys_mask))
cf5d5941 1317 continue;
9871bf95 1318 module_put(cgroup_subsys[i]->module);
cf5d5941
BB
1319 }
1320}
1321
ddbcc7e8
PM
1322static int cgroup_remount(struct super_block *sb, int *flags, char *data)
1323{
1324 int ret = 0;
1325 struct cgroupfs_root *root = sb->s_fs_info;
bd89aabc 1326 struct cgroup *cgrp = &root->top_cgroup;
ddbcc7e8 1327 struct cgroup_sb_opts opts;
a1a71b45 1328 unsigned long added_mask, removed_mask;
ddbcc7e8 1329
873fe09e
TH
1330 if (root->flags & CGRP_ROOT_SANE_BEHAVIOR) {
1331 pr_err("cgroup: sane_behavior: remount is not allowed\n");
1332 return -EINVAL;
1333 }
1334
bd89aabc 1335 mutex_lock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8 1336 mutex_lock(&cgroup_mutex);
e25e2cbb 1337 mutex_lock(&cgroup_root_mutex);
ddbcc7e8
PM
1338
1339 /* See what subsystems are wanted */
1340 ret = parse_cgroupfs_options(data, &opts);
1341 if (ret)
1342 goto out_unlock;
1343
a8a648c4 1344 if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
8b5a5a9d
TH
1345 pr_warning("cgroup: option changes via remount are deprecated (pid=%d comm=%s)\n",
1346 task_tgid_nr(current), current->comm);
1347
a1a71b45
AR
1348 added_mask = opts.subsys_mask & ~root->subsys_mask;
1349 removed_mask = root->subsys_mask & ~opts.subsys_mask;
13af07df 1350
cf5d5941
BB
1351 /* Don't allow flags or name to change at remount */
1352 if (opts.flags != root->flags ||
1353 (opts.name && strcmp(opts.name, root->name))) {
c6d57f33 1354 ret = -EINVAL;
a1a71b45 1355 drop_parsed_module_refcounts(opts.subsys_mask);
c6d57f33
PM
1356 goto out_unlock;
1357 }
1358
7083d037
G
1359 /*
1360 * Clear out the files of subsystems that should be removed, do
1361 * this before rebind_subsystems, since rebind_subsystems may
1362 * change this hierarchy's subsys_list.
1363 */
1364 cgroup_clear_directory(cgrp->dentry, false, removed_mask);
1365
a8a648c4 1366 ret = rebind_subsystems(root, added_mask, removed_mask);
cf5d5941 1367 if (ret) {
7083d037
G
1368 /* rebind_subsystems failed, re-populate the removed files */
1369 cgroup_populate_dir(cgrp, false, removed_mask);
a1a71b45 1370 drop_parsed_module_refcounts(opts.subsys_mask);
0670e08b 1371 goto out_unlock;
cf5d5941 1372 }
ddbcc7e8 1373
13af07df 1374 /* re-populate subsystem files */
a1a71b45 1375 cgroup_populate_dir(cgrp, false, added_mask);
ddbcc7e8 1376
81a6a5cd
PM
1377 if (opts.release_agent)
1378 strcpy(root->release_agent_path, opts.release_agent);
ddbcc7e8 1379 out_unlock:
66bdc9cf 1380 kfree(opts.release_agent);
c6d57f33 1381 kfree(opts.name);
e25e2cbb 1382 mutex_unlock(&cgroup_root_mutex);
ddbcc7e8 1383 mutex_unlock(&cgroup_mutex);
bd89aabc 1384 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8
PM
1385 return ret;
1386}
1387
b87221de 1388static const struct super_operations cgroup_ops = {
ddbcc7e8
PM
1389 .statfs = simple_statfs,
1390 .drop_inode = generic_delete_inode,
1391 .show_options = cgroup_show_options,
1392 .remount_fs = cgroup_remount,
1393};
1394
cc31edce
PM
1395static void init_cgroup_housekeeping(struct cgroup *cgrp)
1396{
1397 INIT_LIST_HEAD(&cgrp->sibling);
1398 INIT_LIST_HEAD(&cgrp->children);
05ef1d7c 1399 INIT_LIST_HEAD(&cgrp->files);
69d0206c 1400 INIT_LIST_HEAD(&cgrp->cset_links);
cc31edce 1401 INIT_LIST_HEAD(&cgrp->release_list);
72a8cb30
BB
1402 INIT_LIST_HEAD(&cgrp->pidlists);
1403 mutex_init(&cgrp->pidlist_mutex);
0dea1168
KS
1404 INIT_LIST_HEAD(&cgrp->event_list);
1405 spin_lock_init(&cgrp->event_list_lock);
03b1cde6 1406 simple_xattrs_init(&cgrp->xattrs);
cc31edce 1407}
c6d57f33 1408
ddbcc7e8
PM
1409static void init_cgroup_root(struct cgroupfs_root *root)
1410{
bd89aabc 1411 struct cgroup *cgrp = &root->top_cgroup;
b0ca5a84 1412
ddbcc7e8
PM
1413 INIT_LIST_HEAD(&root->subsys_list);
1414 INIT_LIST_HEAD(&root->root_list);
1415 root->number_of_cgroups = 1;
bd89aabc 1416 cgrp->root = root;
65dff759 1417 cgrp->name = &root_cgroup_name;
cc31edce 1418 init_cgroup_housekeeping(cgrp);
ddbcc7e8
PM
1419}
1420
fa3ca07e 1421static int cgroup_init_root_id(struct cgroupfs_root *root)
2c6ab6d2 1422{
1a574231 1423 int id;
2c6ab6d2 1424
54e7b4eb
TH
1425 lockdep_assert_held(&cgroup_mutex);
1426 lockdep_assert_held(&cgroup_root_mutex);
1427
1a574231
TH
1428 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 2, 0, GFP_KERNEL);
1429 if (id < 0)
1430 return id;
1431
1432 root->hierarchy_id = id;
fa3ca07e
TH
1433 return 0;
1434}
1435
1436static void cgroup_exit_root_id(struct cgroupfs_root *root)
1437{
54e7b4eb
TH
1438 lockdep_assert_held(&cgroup_mutex);
1439 lockdep_assert_held(&cgroup_root_mutex);
1440
fa3ca07e 1441 if (root->hierarchy_id) {
1a574231 1442 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
fa3ca07e
TH
1443 root->hierarchy_id = 0;
1444 }
2c6ab6d2
PM
1445}
1446
ddbcc7e8
PM
1447static int cgroup_test_super(struct super_block *sb, void *data)
1448{
c6d57f33 1449 struct cgroup_sb_opts *opts = data;
ddbcc7e8
PM
1450 struct cgroupfs_root *root = sb->s_fs_info;
1451
c6d57f33
PM
1452 /* If we asked for a name then it must match */
1453 if (opts->name && strcmp(opts->name, root->name))
1454 return 0;
ddbcc7e8 1455
2c6ab6d2
PM
1456 /*
1457 * If we asked for subsystems (or explicitly for no
1458 * subsystems) then they must match
1459 */
a1a71b45
AR
1460 if ((opts->subsys_mask || opts->none)
1461 && (opts->subsys_mask != root->subsys_mask))
ddbcc7e8
PM
1462 return 0;
1463
1464 return 1;
1465}
1466
c6d57f33
PM
1467static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts)
1468{
1469 struct cgroupfs_root *root;
1470
a1a71b45 1471 if (!opts->subsys_mask && !opts->none)
c6d57f33
PM
1472 return NULL;
1473
1474 root = kzalloc(sizeof(*root), GFP_KERNEL);
1475 if (!root)
1476 return ERR_PTR(-ENOMEM);
1477
1478 init_cgroup_root(root);
2c6ab6d2 1479
a1a71b45 1480 root->subsys_mask = opts->subsys_mask;
c6d57f33 1481 root->flags = opts->flags;
0a950f65 1482 ida_init(&root->cgroup_ida);
c6d57f33
PM
1483 if (opts->release_agent)
1484 strcpy(root->release_agent_path, opts->release_agent);
1485 if (opts->name)
1486 strcpy(root->name, opts->name);
2260e7fc
TH
1487 if (opts->cpuset_clone_children)
1488 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->top_cgroup.flags);
c6d57f33
PM
1489 return root;
1490}
1491
fa3ca07e 1492static void cgroup_free_root(struct cgroupfs_root *root)
2c6ab6d2 1493{
fa3ca07e
TH
1494 if (root) {
1495 /* hierarhcy ID shoulid already have been released */
1496 WARN_ON_ONCE(root->hierarchy_id);
2c6ab6d2 1497
fa3ca07e
TH
1498 ida_destroy(&root->cgroup_ida);
1499 kfree(root);
1500 }
2c6ab6d2
PM
1501}
1502
ddbcc7e8
PM
1503static int cgroup_set_super(struct super_block *sb, void *data)
1504{
1505 int ret;
c6d57f33
PM
1506 struct cgroup_sb_opts *opts = data;
1507
1508 /* If we don't have a new root, we can't set up a new sb */
1509 if (!opts->new_root)
1510 return -EINVAL;
1511
a1a71b45 1512 BUG_ON(!opts->subsys_mask && !opts->none);
ddbcc7e8
PM
1513
1514 ret = set_anon_super(sb, NULL);
1515 if (ret)
1516 return ret;
1517
c6d57f33
PM
1518 sb->s_fs_info = opts->new_root;
1519 opts->new_root->sb = sb;
ddbcc7e8
PM
1520
1521 sb->s_blocksize = PAGE_CACHE_SIZE;
1522 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
1523 sb->s_magic = CGROUP_SUPER_MAGIC;
1524 sb->s_op = &cgroup_ops;
1525
1526 return 0;
1527}
1528
1529static int cgroup_get_rootdir(struct super_block *sb)
1530{
0df6a63f
AV
1531 static const struct dentry_operations cgroup_dops = {
1532 .d_iput = cgroup_diput,
c72a04e3 1533 .d_delete = cgroup_delete,
0df6a63f
AV
1534 };
1535
ddbcc7e8
PM
1536 struct inode *inode =
1537 cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
ddbcc7e8
PM
1538
1539 if (!inode)
1540 return -ENOMEM;
1541
ddbcc7e8
PM
1542 inode->i_fop = &simple_dir_operations;
1543 inode->i_op = &cgroup_dir_inode_operations;
1544 /* directories start off with i_nlink == 2 (for "." entry) */
1545 inc_nlink(inode);
48fde701
AV
1546 sb->s_root = d_make_root(inode);
1547 if (!sb->s_root)
ddbcc7e8 1548 return -ENOMEM;
0df6a63f
AV
1549 /* for everything else we want ->d_op set */
1550 sb->s_d_op = &cgroup_dops;
ddbcc7e8
PM
1551 return 0;
1552}
1553
f7e83571 1554static struct dentry *cgroup_mount(struct file_system_type *fs_type,
ddbcc7e8 1555 int flags, const char *unused_dev_name,
f7e83571 1556 void *data)
ddbcc7e8
PM
1557{
1558 struct cgroup_sb_opts opts;
c6d57f33 1559 struct cgroupfs_root *root;
ddbcc7e8
PM
1560 int ret = 0;
1561 struct super_block *sb;
c6d57f33 1562 struct cgroupfs_root *new_root;
e25e2cbb 1563 struct inode *inode;
ddbcc7e8
PM
1564
1565 /* First find the desired set of subsystems */
aae8aab4 1566 mutex_lock(&cgroup_mutex);
ddbcc7e8 1567 ret = parse_cgroupfs_options(data, &opts);
aae8aab4 1568 mutex_unlock(&cgroup_mutex);
c6d57f33
PM
1569 if (ret)
1570 goto out_err;
ddbcc7e8 1571
c6d57f33
PM
1572 /*
1573 * Allocate a new cgroup root. We may not need it if we're
1574 * reusing an existing hierarchy.
1575 */
1576 new_root = cgroup_root_from_opts(&opts);
1577 if (IS_ERR(new_root)) {
1578 ret = PTR_ERR(new_root);
cf5d5941 1579 goto drop_modules;
81a6a5cd 1580 }
c6d57f33 1581 opts.new_root = new_root;
ddbcc7e8 1582
c6d57f33 1583 /* Locate an existing or new sb for this hierarchy */
9249e17f 1584 sb = sget(fs_type, cgroup_test_super, cgroup_set_super, 0, &opts);
ddbcc7e8 1585 if (IS_ERR(sb)) {
c6d57f33 1586 ret = PTR_ERR(sb);
fa3ca07e 1587 cgroup_free_root(opts.new_root);
cf5d5941 1588 goto drop_modules;
ddbcc7e8
PM
1589 }
1590
c6d57f33
PM
1591 root = sb->s_fs_info;
1592 BUG_ON(!root);
1593 if (root == opts.new_root) {
1594 /* We used the new root structure, so this is a new hierarchy */
69d0206c 1595 struct list_head tmp_links;
c12f65d4 1596 struct cgroup *root_cgrp = &root->top_cgroup;
c6d57f33 1597 struct cgroupfs_root *existing_root;
2ce9738b 1598 const struct cred *cred;
28fd5dfc 1599 int i;
5abb8855 1600 struct css_set *cset;
ddbcc7e8
PM
1601
1602 BUG_ON(sb->s_root != NULL);
1603
1604 ret = cgroup_get_rootdir(sb);
1605 if (ret)
1606 goto drop_new_super;
817929ec 1607 inode = sb->s_root->d_inode;
ddbcc7e8 1608
817929ec 1609 mutex_lock(&inode->i_mutex);
ddbcc7e8 1610 mutex_lock(&cgroup_mutex);
e25e2cbb 1611 mutex_lock(&cgroup_root_mutex);
ddbcc7e8 1612
e25e2cbb
TH
1613 /* Check for name clashes with existing mounts */
1614 ret = -EBUSY;
1615 if (strlen(root->name))
1616 for_each_active_root(existing_root)
1617 if (!strcmp(existing_root->name, root->name))
1618 goto unlock_drop;
c6d57f33 1619
817929ec
PM
1620 /*
1621 * We're accessing css_set_count without locking
1622 * css_set_lock here, but that's OK - it can only be
1623 * increased by someone holding cgroup_lock, and
1624 * that's us. The worst that can happen is that we
1625 * have some link structures left over
1626 */
69d0206c 1627 ret = allocate_cgrp_cset_links(css_set_count, &tmp_links);
e25e2cbb
TH
1628 if (ret)
1629 goto unlock_drop;
817929ec 1630
fa3ca07e
TH
1631 ret = cgroup_init_root_id(root);
1632 if (ret)
1633 goto unlock_drop;
1634
a8a648c4 1635 ret = rebind_subsystems(root, root->subsys_mask, 0);
ddbcc7e8 1636 if (ret == -EBUSY) {
69d0206c 1637 free_cgrp_cset_links(&tmp_links);
e25e2cbb 1638 goto unlock_drop;
ddbcc7e8 1639 }
cf5d5941
BB
1640 /*
1641 * There must be no failure case after here, since rebinding
1642 * takes care of subsystems' refcounts, which are explicitly
1643 * dropped in the failure exit path.
1644 */
ddbcc7e8
PM
1645
1646 /* EBUSY should be the only error here */
1647 BUG_ON(ret);
1648
9871bf95
TH
1649 list_add(&root->root_list, &cgroup_roots);
1650 cgroup_root_count++;
ddbcc7e8 1651
c12f65d4 1652 sb->s_root->d_fsdata = root_cgrp;
ddbcc7e8
PM
1653 root->top_cgroup.dentry = sb->s_root;
1654
817929ec
PM
1655 /* Link the top cgroup in this hierarchy into all
1656 * the css_set objects */
1657 write_lock(&css_set_lock);
5abb8855 1658 hash_for_each(css_set_table, i, cset, hlist)
69d0206c 1659 link_css_set(&tmp_links, cset, root_cgrp);
817929ec
PM
1660 write_unlock(&css_set_lock);
1661
69d0206c 1662 free_cgrp_cset_links(&tmp_links);
817929ec 1663
c12f65d4 1664 BUG_ON(!list_empty(&root_cgrp->children));
ddbcc7e8
PM
1665 BUG_ON(root->number_of_cgroups != 1);
1666
2ce9738b 1667 cred = override_creds(&init_cred);
a1a71b45 1668 cgroup_populate_dir(root_cgrp, true, root->subsys_mask);
2ce9738b 1669 revert_creds(cred);
e25e2cbb 1670 mutex_unlock(&cgroup_root_mutex);
ddbcc7e8 1671 mutex_unlock(&cgroup_mutex);
34f77a90 1672 mutex_unlock(&inode->i_mutex);
c6d57f33
PM
1673 } else {
1674 /*
1675 * We re-used an existing hierarchy - the new root (if
1676 * any) is not needed
1677 */
fa3ca07e 1678 cgroup_free_root(opts.new_root);
873fe09e 1679
2a0ff3fb
JL
1680 if (root->flags != opts.flags) {
1681 if ((root->flags | opts.flags) & CGRP_ROOT_SANE_BEHAVIOR) {
1682 pr_err("cgroup: sane_behavior: new mount options should match the existing superblock\n");
1683 ret = -EINVAL;
1684 goto drop_new_super;
1685 } else {
1686 pr_warning("cgroup: new mount options do not match the existing superblock, will be ignored\n");
1687 }
873fe09e
TH
1688 }
1689
cf5d5941 1690 /* no subsys rebinding, so refcounts don't change */
a1a71b45 1691 drop_parsed_module_refcounts(opts.subsys_mask);
ddbcc7e8
PM
1692 }
1693
c6d57f33
PM
1694 kfree(opts.release_agent);
1695 kfree(opts.name);
f7e83571 1696 return dget(sb->s_root);
ddbcc7e8 1697
e25e2cbb 1698 unlock_drop:
fa3ca07e 1699 cgroup_exit_root_id(root);
e25e2cbb
TH
1700 mutex_unlock(&cgroup_root_mutex);
1701 mutex_unlock(&cgroup_mutex);
1702 mutex_unlock(&inode->i_mutex);
ddbcc7e8 1703 drop_new_super:
6f5bbff9 1704 deactivate_locked_super(sb);
cf5d5941 1705 drop_modules:
a1a71b45 1706 drop_parsed_module_refcounts(opts.subsys_mask);
c6d57f33
PM
1707 out_err:
1708 kfree(opts.release_agent);
1709 kfree(opts.name);
f7e83571 1710 return ERR_PTR(ret);
ddbcc7e8
PM
1711}
1712
1713static void cgroup_kill_sb(struct super_block *sb) {
1714 struct cgroupfs_root *root = sb->s_fs_info;
bd89aabc 1715 struct cgroup *cgrp = &root->top_cgroup;
69d0206c 1716 struct cgrp_cset_link *link, *tmp_link;
ddbcc7e8
PM
1717 int ret;
1718
1719 BUG_ON(!root);
1720
1721 BUG_ON(root->number_of_cgroups != 1);
bd89aabc 1722 BUG_ON(!list_empty(&cgrp->children));
ddbcc7e8
PM
1723
1724 mutex_lock(&cgroup_mutex);
e25e2cbb 1725 mutex_lock(&cgroup_root_mutex);
ddbcc7e8
PM
1726
1727 /* Rebind all subsystems back to the default hierarchy */
a8a648c4 1728 ret = rebind_subsystems(root, 0, root->subsys_mask);
ddbcc7e8
PM
1729 /* Shouldn't be able to fail ... */
1730 BUG_ON(ret);
1731
817929ec 1732 /*
69d0206c 1733 * Release all the links from cset_links to this hierarchy's
817929ec
PM
1734 * root cgroup
1735 */
1736 write_lock(&css_set_lock);
71cbb949 1737
69d0206c
TH
1738 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1739 list_del(&link->cset_link);
1740 list_del(&link->cgrp_link);
817929ec
PM
1741 kfree(link);
1742 }
1743 write_unlock(&css_set_lock);
1744
839ec545
PM
1745 if (!list_empty(&root->root_list)) {
1746 list_del(&root->root_list);
9871bf95 1747 cgroup_root_count--;
839ec545 1748 }
e5f6a860 1749
fa3ca07e
TH
1750 cgroup_exit_root_id(root);
1751
e25e2cbb 1752 mutex_unlock(&cgroup_root_mutex);
ddbcc7e8
PM
1753 mutex_unlock(&cgroup_mutex);
1754
03b1cde6
AR
1755 simple_xattrs_free(&cgrp->xattrs);
1756
ddbcc7e8 1757 kill_litter_super(sb);
fa3ca07e 1758 cgroup_free_root(root);
ddbcc7e8
PM
1759}
1760
1761static struct file_system_type cgroup_fs_type = {
1762 .name = "cgroup",
f7e83571 1763 .mount = cgroup_mount,
ddbcc7e8
PM
1764 .kill_sb = cgroup_kill_sb,
1765};
1766
676db4af
GKH
1767static struct kobject *cgroup_kobj;
1768
a043e3b2
LZ
1769/**
1770 * cgroup_path - generate the path of a cgroup
1771 * @cgrp: the cgroup in question
1772 * @buf: the buffer to write the path into
1773 * @buflen: the length of the buffer
1774 *
65dff759
LZ
1775 * Writes path of cgroup into buf. Returns 0 on success, -errno on error.
1776 *
1777 * We can't generate cgroup path using dentry->d_name, as accessing
1778 * dentry->name must be protected by irq-unsafe dentry->d_lock or parent
1779 * inode's i_mutex, while on the other hand cgroup_path() can be called
1780 * with some irq-safe spinlocks held.
ddbcc7e8 1781 */
bd89aabc 1782int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
ddbcc7e8 1783{
65dff759 1784 int ret = -ENAMETOOLONG;
ddbcc7e8 1785 char *start;
febfcef6 1786
da1f296f
TH
1787 if (!cgrp->parent) {
1788 if (strlcpy(buf, "/", buflen) >= buflen)
1789 return -ENAMETOOLONG;
ddbcc7e8
PM
1790 return 0;
1791 }
1792
316eb661 1793 start = buf + buflen - 1;
316eb661 1794 *start = '\0';
9a9686b6 1795
65dff759 1796 rcu_read_lock();
da1f296f 1797 do {
65dff759
LZ
1798 const char *name = cgroup_name(cgrp);
1799 int len;
1800
1801 len = strlen(name);
ddbcc7e8 1802 if ((start -= len) < buf)
65dff759
LZ
1803 goto out;
1804 memcpy(start, name, len);
9a9686b6 1805
ddbcc7e8 1806 if (--start < buf)
65dff759 1807 goto out;
ddbcc7e8 1808 *start = '/';
65dff759
LZ
1809
1810 cgrp = cgrp->parent;
da1f296f 1811 } while (cgrp->parent);
65dff759 1812 ret = 0;
ddbcc7e8 1813 memmove(buf, start, buf + buflen - start);
65dff759
LZ
1814out:
1815 rcu_read_unlock();
1816 return ret;
ddbcc7e8 1817}
67523c48 1818EXPORT_SYMBOL_GPL(cgroup_path);
ddbcc7e8 1819
857a2beb
TH
1820/**
1821 * task_cgroup_path_from_hierarchy - cgroup path of a task on a hierarchy
1822 * @task: target task
1823 * @hierarchy_id: the hierarchy to look up @task's cgroup from
1824 * @buf: the buffer to write the path into
1825 * @buflen: the length of the buffer
1826 *
1827 * Determine @task's cgroup on the hierarchy specified by @hierarchy_id and
1828 * copy its path into @buf. This function grabs cgroup_mutex and shouldn't
1829 * be used inside locks used by cgroup controller callbacks.
1830 */
1831int task_cgroup_path_from_hierarchy(struct task_struct *task, int hierarchy_id,
1832 char *buf, size_t buflen)
1833{
1834 struct cgroupfs_root *root;
1835 struct cgroup *cgrp = NULL;
1836 int ret = -ENOENT;
1837
1838 mutex_lock(&cgroup_mutex);
1839
1840 root = idr_find(&cgroup_hierarchy_idr, hierarchy_id);
1841 if (root) {
1842 cgrp = task_cgroup_from_root(task, root);
1843 ret = cgroup_path(cgrp, buf, buflen);
1844 }
1845
1846 mutex_unlock(&cgroup_mutex);
1847
1848 return ret;
1849}
1850EXPORT_SYMBOL_GPL(task_cgroup_path_from_hierarchy);
1851
2f7ee569
TH
1852/*
1853 * Control Group taskset
1854 */
134d3373
TH
1855struct task_and_cgroup {
1856 struct task_struct *task;
1857 struct cgroup *cgrp;
61d1d219 1858 struct css_set *cg;
134d3373
TH
1859};
1860
2f7ee569
TH
1861struct cgroup_taskset {
1862 struct task_and_cgroup single;
1863 struct flex_array *tc_array;
1864 int tc_array_len;
1865 int idx;
1866 struct cgroup *cur_cgrp;
1867};
1868
1869/**
1870 * cgroup_taskset_first - reset taskset and return the first task
1871 * @tset: taskset of interest
1872 *
1873 * @tset iteration is initialized and the first task is returned.
1874 */
1875struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
1876{
1877 if (tset->tc_array) {
1878 tset->idx = 0;
1879 return cgroup_taskset_next(tset);
1880 } else {
1881 tset->cur_cgrp = tset->single.cgrp;
1882 return tset->single.task;
1883 }
1884}
1885EXPORT_SYMBOL_GPL(cgroup_taskset_first);
1886
1887/**
1888 * cgroup_taskset_next - iterate to the next task in taskset
1889 * @tset: taskset of interest
1890 *
1891 * Return the next task in @tset. Iteration must have been initialized
1892 * with cgroup_taskset_first().
1893 */
1894struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
1895{
1896 struct task_and_cgroup *tc;
1897
1898 if (!tset->tc_array || tset->idx >= tset->tc_array_len)
1899 return NULL;
1900
1901 tc = flex_array_get(tset->tc_array, tset->idx++);
1902 tset->cur_cgrp = tc->cgrp;
1903 return tc->task;
1904}
1905EXPORT_SYMBOL_GPL(cgroup_taskset_next);
1906
1907/**
1908 * cgroup_taskset_cur_cgroup - return the matching cgroup for the current task
1909 * @tset: taskset of interest
1910 *
1911 * Return the cgroup for the current (last returned) task of @tset. This
1912 * function must be preceded by either cgroup_taskset_first() or
1913 * cgroup_taskset_next().
1914 */
1915struct cgroup *cgroup_taskset_cur_cgroup(struct cgroup_taskset *tset)
1916{
1917 return tset->cur_cgrp;
1918}
1919EXPORT_SYMBOL_GPL(cgroup_taskset_cur_cgroup);
1920
1921/**
1922 * cgroup_taskset_size - return the number of tasks in taskset
1923 * @tset: taskset of interest
1924 */
1925int cgroup_taskset_size(struct cgroup_taskset *tset)
1926{
1927 return tset->tc_array ? tset->tc_array_len : 1;
1928}
1929EXPORT_SYMBOL_GPL(cgroup_taskset_size);
1930
1931
74a1166d
BB
1932/*
1933 * cgroup_task_migrate - move a task from one cgroup to another.
1934 *
d0b2fdd2 1935 * Must be called with cgroup_mutex and threadgroup locked.
74a1166d 1936 */
5abb8855
TH
1937static void cgroup_task_migrate(struct cgroup *old_cgrp,
1938 struct task_struct *tsk,
1939 struct css_set *new_cset)
74a1166d 1940{
5abb8855 1941 struct css_set *old_cset;
74a1166d
BB
1942
1943 /*
026085ef
MSB
1944 * We are synchronized through threadgroup_lock() against PF_EXITING
1945 * setting such that we can't race against cgroup_exit() changing the
1946 * css_set to init_css_set and dropping the old one.
74a1166d 1947 */
c84cdf75 1948 WARN_ON_ONCE(tsk->flags & PF_EXITING);
5abb8855 1949 old_cset = tsk->cgroups;
74a1166d 1950
74a1166d 1951 task_lock(tsk);
5abb8855 1952 rcu_assign_pointer(tsk->cgroups, new_cset);
74a1166d
BB
1953 task_unlock(tsk);
1954
1955 /* Update the css_set linked lists if we're using them */
1956 write_lock(&css_set_lock);
1957 if (!list_empty(&tsk->cg_list))
5abb8855 1958 list_move(&tsk->cg_list, &new_cset->tasks);
74a1166d
BB
1959 write_unlock(&css_set_lock);
1960
1961 /*
5abb8855
TH
1962 * We just gained a reference on old_cset by taking it from the
1963 * task. As trading it for new_cset is protected by cgroup_mutex,
1964 * we're safe to drop it here; it will be freed under RCU.
74a1166d 1965 */
5abb8855
TH
1966 set_bit(CGRP_RELEASABLE, &old_cgrp->flags);
1967 put_css_set(old_cset);
74a1166d
BB
1968}
1969
a043e3b2 1970/**
081aa458 1971 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
74a1166d 1972 * @cgrp: the cgroup to attach to
081aa458
LZ
1973 * @tsk: the task or the leader of the threadgroup to be attached
1974 * @threadgroup: attach the whole threadgroup?
74a1166d 1975 *
257058ae 1976 * Call holding cgroup_mutex and the group_rwsem of the leader. Will take
081aa458 1977 * task_lock of @tsk or each thread in the threadgroup individually in turn.
74a1166d 1978 */
47cfcd09
TH
1979static int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk,
1980 bool threadgroup)
74a1166d
BB
1981{
1982 int retval, i, group_size;
1983 struct cgroup_subsys *ss, *failed_ss = NULL;
74a1166d
BB
1984 struct cgroupfs_root *root = cgrp->root;
1985 /* threadgroup list cursor and array */
081aa458 1986 struct task_struct *leader = tsk;
134d3373 1987 struct task_and_cgroup *tc;
d846687d 1988 struct flex_array *group;
2f7ee569 1989 struct cgroup_taskset tset = { };
74a1166d
BB
1990
1991 /*
1992 * step 0: in order to do expensive, possibly blocking operations for
1993 * every thread, we cannot iterate the thread group list, since it needs
1994 * rcu or tasklist locked. instead, build an array of all threads in the
257058ae
TH
1995 * group - group_rwsem prevents new threads from appearing, and if
1996 * threads exit, this will just be an over-estimate.
74a1166d 1997 */
081aa458
LZ
1998 if (threadgroup)
1999 group_size = get_nr_threads(tsk);
2000 else
2001 group_size = 1;
d846687d 2002 /* flex_array supports very large thread-groups better than kmalloc. */
134d3373 2003 group = flex_array_alloc(sizeof(*tc), group_size, GFP_KERNEL);
74a1166d
BB
2004 if (!group)
2005 return -ENOMEM;
d846687d 2006 /* pre-allocate to guarantee space while iterating in rcu read-side. */
3ac1707a 2007 retval = flex_array_prealloc(group, 0, group_size, GFP_KERNEL);
d846687d
BB
2008 if (retval)
2009 goto out_free_group_list;
74a1166d 2010
74a1166d 2011 i = 0;
fb5d2b4c
MSB
2012 /*
2013 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2014 * already PF_EXITING could be freed from underneath us unless we
2015 * take an rcu_read_lock.
2016 */
2017 rcu_read_lock();
74a1166d 2018 do {
134d3373
TH
2019 struct task_and_cgroup ent;
2020
cd3d0952
TH
2021 /* @tsk either already exited or can't exit until the end */
2022 if (tsk->flags & PF_EXITING)
2023 continue;
2024
74a1166d
BB
2025 /* as per above, nr_threads may decrease, but not increase. */
2026 BUG_ON(i >= group_size);
134d3373
TH
2027 ent.task = tsk;
2028 ent.cgrp = task_cgroup_from_root(tsk, root);
892a2b90
MSB
2029 /* nothing to do if this task is already in the cgroup */
2030 if (ent.cgrp == cgrp)
2031 continue;
61d1d219
MSB
2032 /*
2033 * saying GFP_ATOMIC has no effect here because we did prealloc
2034 * earlier, but it's good form to communicate our expectations.
2035 */
134d3373 2036 retval = flex_array_put(group, i, &ent, GFP_ATOMIC);
d846687d 2037 BUG_ON(retval != 0);
74a1166d 2038 i++;
081aa458
LZ
2039
2040 if (!threadgroup)
2041 break;
74a1166d 2042 } while_each_thread(leader, tsk);
fb5d2b4c 2043 rcu_read_unlock();
74a1166d
BB
2044 /* remember the number of threads in the array for later. */
2045 group_size = i;
2f7ee569
TH
2046 tset.tc_array = group;
2047 tset.tc_array_len = group_size;
74a1166d 2048
134d3373
TH
2049 /* methods shouldn't be called if no task is actually migrating */
2050 retval = 0;
892a2b90 2051 if (!group_size)
b07ef774 2052 goto out_free_group_list;
134d3373 2053
74a1166d
BB
2054 /*
2055 * step 1: check that we can legitimately attach to the cgroup.
2056 */
2057 for_each_subsys(root, ss) {
2058 if (ss->can_attach) {
761b3ef5 2059 retval = ss->can_attach(cgrp, &tset);
74a1166d
BB
2060 if (retval) {
2061 failed_ss = ss;
2062 goto out_cancel_attach;
2063 }
2064 }
74a1166d
BB
2065 }
2066
2067 /*
2068 * step 2: make sure css_sets exist for all threads to be migrated.
2069 * we use find_css_set, which allocates a new one if necessary.
2070 */
74a1166d 2071 for (i = 0; i < group_size; i++) {
134d3373 2072 tc = flex_array_get(group, i);
61d1d219
MSB
2073 tc->cg = find_css_set(tc->task->cgroups, cgrp);
2074 if (!tc->cg) {
2075 retval = -ENOMEM;
2076 goto out_put_css_set_refs;
74a1166d
BB
2077 }
2078 }
2079
2080 /*
494c167c
TH
2081 * step 3: now that we're guaranteed success wrt the css_sets,
2082 * proceed to move all tasks to the new cgroup. There are no
2083 * failure cases after here, so this is the commit point.
74a1166d 2084 */
74a1166d 2085 for (i = 0; i < group_size; i++) {
134d3373 2086 tc = flex_array_get(group, i);
1e2ccd1c 2087 cgroup_task_migrate(tc->cgrp, tc->task, tc->cg);
74a1166d
BB
2088 }
2089 /* nothing is sensitive to fork() after this point. */
2090
2091 /*
494c167c 2092 * step 4: do subsystem attach callbacks.
74a1166d
BB
2093 */
2094 for_each_subsys(root, ss) {
2095 if (ss->attach)
761b3ef5 2096 ss->attach(cgrp, &tset);
74a1166d
BB
2097 }
2098
2099 /*
2100 * step 5: success! and cleanup
2101 */
74a1166d 2102 retval = 0;
61d1d219
MSB
2103out_put_css_set_refs:
2104 if (retval) {
2105 for (i = 0; i < group_size; i++) {
2106 tc = flex_array_get(group, i);
2107 if (!tc->cg)
2108 break;
2109 put_css_set(tc->cg);
2110 }
74a1166d
BB
2111 }
2112out_cancel_attach:
74a1166d
BB
2113 if (retval) {
2114 for_each_subsys(root, ss) {
494c167c 2115 if (ss == failed_ss)
74a1166d 2116 break;
74a1166d 2117 if (ss->cancel_attach)
761b3ef5 2118 ss->cancel_attach(cgrp, &tset);
74a1166d
BB
2119 }
2120 }
74a1166d 2121out_free_group_list:
d846687d 2122 flex_array_free(group);
74a1166d
BB
2123 return retval;
2124}
2125
2126/*
2127 * Find the task_struct of the task to attach by vpid and pass it along to the
cd3d0952
TH
2128 * function to attach either it or all tasks in its threadgroup. Will lock
2129 * cgroup_mutex and threadgroup; may take task_lock of task.
bbcb81d0 2130 */
74a1166d 2131static int attach_task_by_pid(struct cgroup *cgrp, u64 pid, bool threadgroup)
bbcb81d0 2132{
bbcb81d0 2133 struct task_struct *tsk;
c69e8d9c 2134 const struct cred *cred = current_cred(), *tcred;
bbcb81d0
PM
2135 int ret;
2136
74a1166d
BB
2137 if (!cgroup_lock_live_group(cgrp))
2138 return -ENODEV;
2139
b78949eb
MSB
2140retry_find_task:
2141 rcu_read_lock();
bbcb81d0 2142 if (pid) {
73507f33 2143 tsk = find_task_by_vpid(pid);
74a1166d
BB
2144 if (!tsk) {
2145 rcu_read_unlock();
b78949eb
MSB
2146 ret= -ESRCH;
2147 goto out_unlock_cgroup;
bbcb81d0 2148 }
74a1166d
BB
2149 /*
2150 * even if we're attaching all tasks in the thread group, we
2151 * only need to check permissions on one of them.
2152 */
c69e8d9c 2153 tcred = __task_cred(tsk);
14a590c3
EB
2154 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2155 !uid_eq(cred->euid, tcred->uid) &&
2156 !uid_eq(cred->euid, tcred->suid)) {
c69e8d9c 2157 rcu_read_unlock();
b78949eb
MSB
2158 ret = -EACCES;
2159 goto out_unlock_cgroup;
bbcb81d0 2160 }
b78949eb
MSB
2161 } else
2162 tsk = current;
cd3d0952
TH
2163
2164 if (threadgroup)
b78949eb 2165 tsk = tsk->group_leader;
c4c27fbd
MG
2166
2167 /*
14a40ffc 2168 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
c4c27fbd
MG
2169 * trapped in a cpuset, or RT worker may be born in a cgroup
2170 * with no rt_runtime allocated. Just say no.
2171 */
14a40ffc 2172 if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
c4c27fbd
MG
2173 ret = -EINVAL;
2174 rcu_read_unlock();
2175 goto out_unlock_cgroup;
2176 }
2177
b78949eb
MSB
2178 get_task_struct(tsk);
2179 rcu_read_unlock();
2180
2181 threadgroup_lock(tsk);
2182 if (threadgroup) {
2183 if (!thread_group_leader(tsk)) {
2184 /*
2185 * a race with de_thread from another thread's exec()
2186 * may strip us of our leadership, if this happens,
2187 * there is no choice but to throw this task away and
2188 * try again; this is
2189 * "double-double-toil-and-trouble-check locking".
2190 */
2191 threadgroup_unlock(tsk);
2192 put_task_struct(tsk);
2193 goto retry_find_task;
2194 }
081aa458
LZ
2195 }
2196
2197 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
2198
cd3d0952
TH
2199 threadgroup_unlock(tsk);
2200
bbcb81d0 2201 put_task_struct(tsk);
b78949eb 2202out_unlock_cgroup:
47cfcd09 2203 mutex_unlock(&cgroup_mutex);
bbcb81d0
PM
2204 return ret;
2205}
2206
7ae1bad9
TH
2207/**
2208 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2209 * @from: attach to all cgroups of a given task
2210 * @tsk: the task to be attached
2211 */
2212int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2213{
2214 struct cgroupfs_root *root;
2215 int retval = 0;
2216
47cfcd09 2217 mutex_lock(&cgroup_mutex);
7ae1bad9
TH
2218 for_each_active_root(root) {
2219 struct cgroup *from_cg = task_cgroup_from_root(from, root);
2220
2221 retval = cgroup_attach_task(from_cg, tsk, false);
2222 if (retval)
2223 break;
2224 }
47cfcd09 2225 mutex_unlock(&cgroup_mutex);
7ae1bad9
TH
2226
2227 return retval;
2228}
2229EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2230
af351026 2231static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid)
74a1166d
BB
2232{
2233 return attach_task_by_pid(cgrp, pid, false);
2234}
2235
2236static int cgroup_procs_write(struct cgroup *cgrp, struct cftype *cft, u64 tgid)
af351026 2237{
b78949eb 2238 return attach_task_by_pid(cgrp, tgid, true);
af351026
PM
2239}
2240
e788e066
PM
2241static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft,
2242 const char *buffer)
2243{
2244 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
f4a2589f
EK
2245 if (strlen(buffer) >= PATH_MAX)
2246 return -EINVAL;
e788e066
PM
2247 if (!cgroup_lock_live_group(cgrp))
2248 return -ENODEV;
e25e2cbb 2249 mutex_lock(&cgroup_root_mutex);
e788e066 2250 strcpy(cgrp->root->release_agent_path, buffer);
e25e2cbb 2251 mutex_unlock(&cgroup_root_mutex);
47cfcd09 2252 mutex_unlock(&cgroup_mutex);
e788e066
PM
2253 return 0;
2254}
2255
2256static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft,
2257 struct seq_file *seq)
2258{
2259 if (!cgroup_lock_live_group(cgrp))
2260 return -ENODEV;
2261 seq_puts(seq, cgrp->root->release_agent_path);
2262 seq_putc(seq, '\n');
47cfcd09 2263 mutex_unlock(&cgroup_mutex);
e788e066
PM
2264 return 0;
2265}
2266
873fe09e
TH
2267static int cgroup_sane_behavior_show(struct cgroup *cgrp, struct cftype *cft,
2268 struct seq_file *seq)
2269{
2270 seq_printf(seq, "%d\n", cgroup_sane_behavior(cgrp));
e788e066
PM
2271 return 0;
2272}
2273
84eea842
PM
2274/* A buffer size big enough for numbers or short strings */
2275#define CGROUP_LOCAL_BUFFER_SIZE 64
2276
e73d2c61 2277static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
f4c753b7
PM
2278 struct file *file,
2279 const char __user *userbuf,
2280 size_t nbytes, loff_t *unused_ppos)
355e0c48 2281{
84eea842 2282 char buffer[CGROUP_LOCAL_BUFFER_SIZE];
355e0c48 2283 int retval = 0;
355e0c48
PM
2284 char *end;
2285
2286 if (!nbytes)
2287 return -EINVAL;
2288 if (nbytes >= sizeof(buffer))
2289 return -E2BIG;
2290 if (copy_from_user(buffer, userbuf, nbytes))
2291 return -EFAULT;
2292
2293 buffer[nbytes] = 0; /* nul-terminate */
e73d2c61 2294 if (cft->write_u64) {
478988d3 2295 u64 val = simple_strtoull(strstrip(buffer), &end, 0);
e73d2c61
PM
2296 if (*end)
2297 return -EINVAL;
2298 retval = cft->write_u64(cgrp, cft, val);
2299 } else {
478988d3 2300 s64 val = simple_strtoll(strstrip(buffer), &end, 0);
e73d2c61
PM
2301 if (*end)
2302 return -EINVAL;
2303 retval = cft->write_s64(cgrp, cft, val);
2304 }
355e0c48
PM
2305 if (!retval)
2306 retval = nbytes;
2307 return retval;
2308}
2309
db3b1497
PM
2310static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft,
2311 struct file *file,
2312 const char __user *userbuf,
2313 size_t nbytes, loff_t *unused_ppos)
2314{
84eea842 2315 char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
db3b1497
PM
2316 int retval = 0;
2317 size_t max_bytes = cft->max_write_len;
2318 char *buffer = local_buffer;
2319
2320 if (!max_bytes)
2321 max_bytes = sizeof(local_buffer) - 1;
2322 if (nbytes >= max_bytes)
2323 return -E2BIG;
2324 /* Allocate a dynamic buffer if we need one */
2325 if (nbytes >= sizeof(local_buffer)) {
2326 buffer = kmalloc(nbytes + 1, GFP_KERNEL);
2327 if (buffer == NULL)
2328 return -ENOMEM;
2329 }
5a3eb9f6
LZ
2330 if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
2331 retval = -EFAULT;
2332 goto out;
2333 }
db3b1497
PM
2334
2335 buffer[nbytes] = 0; /* nul-terminate */
478988d3 2336 retval = cft->write_string(cgrp, cft, strstrip(buffer));
db3b1497
PM
2337 if (!retval)
2338 retval = nbytes;
5a3eb9f6 2339out:
db3b1497
PM
2340 if (buffer != local_buffer)
2341 kfree(buffer);
2342 return retval;
2343}
2344
ddbcc7e8
PM
2345static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
2346 size_t nbytes, loff_t *ppos)
2347{
2348 struct cftype *cft = __d_cft(file->f_dentry);
bd89aabc 2349 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
ddbcc7e8 2350
54766d4a 2351 if (cgroup_is_dead(cgrp))
ddbcc7e8 2352 return -ENODEV;
355e0c48 2353 if (cft->write)
bd89aabc 2354 return cft->write(cgrp, cft, file, buf, nbytes, ppos);
e73d2c61
PM
2355 if (cft->write_u64 || cft->write_s64)
2356 return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
db3b1497
PM
2357 if (cft->write_string)
2358 return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos);
d447ea2f
PE
2359 if (cft->trigger) {
2360 int ret = cft->trigger(cgrp, (unsigned int)cft->private);
2361 return ret ? ret : nbytes;
2362 }
355e0c48 2363 return -EINVAL;
ddbcc7e8
PM
2364}
2365
f4c753b7
PM
2366static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
2367 struct file *file,
2368 char __user *buf, size_t nbytes,
2369 loff_t *ppos)
ddbcc7e8 2370{
84eea842 2371 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
f4c753b7 2372 u64 val = cft->read_u64(cgrp, cft);
ddbcc7e8
PM
2373 int len = sprintf(tmp, "%llu\n", (unsigned long long) val);
2374
2375 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2376}
2377
e73d2c61
PM
2378static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
2379 struct file *file,
2380 char __user *buf, size_t nbytes,
2381 loff_t *ppos)
2382{
84eea842 2383 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
e73d2c61
PM
2384 s64 val = cft->read_s64(cgrp, cft);
2385 int len = sprintf(tmp, "%lld\n", (long long) val);
2386
2387 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2388}
2389
ddbcc7e8
PM
2390static ssize_t cgroup_file_read(struct file *file, char __user *buf,
2391 size_t nbytes, loff_t *ppos)
2392{
2393 struct cftype *cft = __d_cft(file->f_dentry);
bd89aabc 2394 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
ddbcc7e8 2395
54766d4a 2396 if (cgroup_is_dead(cgrp))
ddbcc7e8
PM
2397 return -ENODEV;
2398
2399 if (cft->read)
bd89aabc 2400 return cft->read(cgrp, cft, file, buf, nbytes, ppos);
f4c753b7
PM
2401 if (cft->read_u64)
2402 return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
e73d2c61
PM
2403 if (cft->read_s64)
2404 return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
ddbcc7e8
PM
2405 return -EINVAL;
2406}
2407
91796569
PM
2408/*
2409 * seqfile ops/methods for returning structured data. Currently just
2410 * supports string->u64 maps, but can be extended in future.
2411 */
2412
2413struct cgroup_seqfile_state {
2414 struct cftype *cft;
2415 struct cgroup *cgroup;
2416};
2417
2418static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
2419{
2420 struct seq_file *sf = cb->state;
2421 return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
2422}
2423
2424static int cgroup_seqfile_show(struct seq_file *m, void *arg)
2425{
2426 struct cgroup_seqfile_state *state = m->private;
2427 struct cftype *cft = state->cft;
29486df3
SH
2428 if (cft->read_map) {
2429 struct cgroup_map_cb cb = {
2430 .fill = cgroup_map_add,
2431 .state = m,
2432 };
2433 return cft->read_map(state->cgroup, cft, &cb);
2434 }
2435 return cft->read_seq_string(state->cgroup, cft, m);
91796569
PM
2436}
2437
96930a63 2438static int cgroup_seqfile_release(struct inode *inode, struct file *file)
91796569
PM
2439{
2440 struct seq_file *seq = file->private_data;
2441 kfree(seq->private);
2442 return single_release(inode, file);
2443}
2444
828c0950 2445static const struct file_operations cgroup_seqfile_operations = {
91796569 2446 .read = seq_read,
e788e066 2447 .write = cgroup_file_write,
91796569
PM
2448 .llseek = seq_lseek,
2449 .release = cgroup_seqfile_release,
2450};
2451
ddbcc7e8
PM
2452static int cgroup_file_open(struct inode *inode, struct file *file)
2453{
2454 int err;
2455 struct cftype *cft;
2456
2457 err = generic_file_open(inode, file);
2458 if (err)
2459 return err;
ddbcc7e8 2460 cft = __d_cft(file->f_dentry);
75139b82 2461
29486df3 2462 if (cft->read_map || cft->read_seq_string) {
f4f4be2b
TH
2463 struct cgroup_seqfile_state *state;
2464
2465 state = kzalloc(sizeof(*state), GFP_USER);
91796569
PM
2466 if (!state)
2467 return -ENOMEM;
f4f4be2b 2468
91796569
PM
2469 state->cft = cft;
2470 state->cgroup = __d_cgrp(file->f_dentry->d_parent);
2471 file->f_op = &cgroup_seqfile_operations;
2472 err = single_open(file, cgroup_seqfile_show, state);
2473 if (err < 0)
2474 kfree(state);
2475 } else if (cft->open)
ddbcc7e8
PM
2476 err = cft->open(inode, file);
2477 else
2478 err = 0;
2479
2480 return err;
2481}
2482
2483static int cgroup_file_release(struct inode *inode, struct file *file)
2484{
2485 struct cftype *cft = __d_cft(file->f_dentry);
2486 if (cft->release)
2487 return cft->release(inode, file);
2488 return 0;
2489}
2490
2491/*
2492 * cgroup_rename - Only allow simple rename of directories in place.
2493 */
2494static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
2495 struct inode *new_dir, struct dentry *new_dentry)
2496{
65dff759
LZ
2497 int ret;
2498 struct cgroup_name *name, *old_name;
2499 struct cgroup *cgrp;
2500
2501 /*
2502 * It's convinient to use parent dir's i_mutex to protected
2503 * cgrp->name.
2504 */
2505 lockdep_assert_held(&old_dir->i_mutex);
2506
ddbcc7e8
PM
2507 if (!S_ISDIR(old_dentry->d_inode->i_mode))
2508 return -ENOTDIR;
2509 if (new_dentry->d_inode)
2510 return -EEXIST;
2511 if (old_dir != new_dir)
2512 return -EIO;
65dff759
LZ
2513
2514 cgrp = __d_cgrp(old_dentry);
2515
6db8e85c
TH
2516 /*
2517 * This isn't a proper migration and its usefulness is very
2518 * limited. Disallow if sane_behavior.
2519 */
2520 if (cgroup_sane_behavior(cgrp))
2521 return -EPERM;
2522
65dff759
LZ
2523 name = cgroup_alloc_name(new_dentry);
2524 if (!name)
2525 return -ENOMEM;
2526
2527 ret = simple_rename(old_dir, old_dentry, new_dir, new_dentry);
2528 if (ret) {
2529 kfree(name);
2530 return ret;
2531 }
2532
2533 old_name = cgrp->name;
2534 rcu_assign_pointer(cgrp->name, name);
2535
2536 kfree_rcu(old_name, rcu_head);
2537 return 0;
ddbcc7e8
PM
2538}
2539
03b1cde6
AR
2540static struct simple_xattrs *__d_xattrs(struct dentry *dentry)
2541{
2542 if (S_ISDIR(dentry->d_inode->i_mode))
2543 return &__d_cgrp(dentry)->xattrs;
2544 else
712317ad 2545 return &__d_cfe(dentry)->xattrs;
03b1cde6
AR
2546}
2547
2548static inline int xattr_enabled(struct dentry *dentry)
2549{
2550 struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
93438629 2551 return root->flags & CGRP_ROOT_XATTR;
03b1cde6
AR
2552}
2553
2554static bool is_valid_xattr(const char *name)
2555{
2556 if (!strncmp(name, XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN) ||
2557 !strncmp(name, XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN))
2558 return true;
2559 return false;
2560}
2561
2562static int cgroup_setxattr(struct dentry *dentry, const char *name,
2563 const void *val, size_t size, int flags)
2564{
2565 if (!xattr_enabled(dentry))
2566 return -EOPNOTSUPP;
2567 if (!is_valid_xattr(name))
2568 return -EINVAL;
2569 return simple_xattr_set(__d_xattrs(dentry), name, val, size, flags);
2570}
2571
2572static int cgroup_removexattr(struct dentry *dentry, const char *name)
2573{
2574 if (!xattr_enabled(dentry))
2575 return -EOPNOTSUPP;
2576 if (!is_valid_xattr(name))
2577 return -EINVAL;
2578 return simple_xattr_remove(__d_xattrs(dentry), name);
2579}
2580
2581static ssize_t cgroup_getxattr(struct dentry *dentry, const char *name,
2582 void *buf, size_t size)
2583{
2584 if (!xattr_enabled(dentry))
2585 return -EOPNOTSUPP;
2586 if (!is_valid_xattr(name))
2587 return -EINVAL;
2588 return simple_xattr_get(__d_xattrs(dentry), name, buf, size);
2589}
2590
2591static ssize_t cgroup_listxattr(struct dentry *dentry, char *buf, size_t size)
2592{
2593 if (!xattr_enabled(dentry))
2594 return -EOPNOTSUPP;
2595 return simple_xattr_list(__d_xattrs(dentry), buf, size);
2596}
2597
828c0950 2598static const struct file_operations cgroup_file_operations = {
ddbcc7e8
PM
2599 .read = cgroup_file_read,
2600 .write = cgroup_file_write,
2601 .llseek = generic_file_llseek,
2602 .open = cgroup_file_open,
2603 .release = cgroup_file_release,
2604};
2605
03b1cde6
AR
2606static const struct inode_operations cgroup_file_inode_operations = {
2607 .setxattr = cgroup_setxattr,
2608 .getxattr = cgroup_getxattr,
2609 .listxattr = cgroup_listxattr,
2610 .removexattr = cgroup_removexattr,
2611};
2612
6e1d5dcc 2613static const struct inode_operations cgroup_dir_inode_operations = {
c72a04e3 2614 .lookup = cgroup_lookup,
ddbcc7e8
PM
2615 .mkdir = cgroup_mkdir,
2616 .rmdir = cgroup_rmdir,
2617 .rename = cgroup_rename,
03b1cde6
AR
2618 .setxattr = cgroup_setxattr,
2619 .getxattr = cgroup_getxattr,
2620 .listxattr = cgroup_listxattr,
2621 .removexattr = cgroup_removexattr,
ddbcc7e8
PM
2622};
2623
00cd8dd3 2624static struct dentry *cgroup_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
c72a04e3
AV
2625{
2626 if (dentry->d_name.len > NAME_MAX)
2627 return ERR_PTR(-ENAMETOOLONG);
2628 d_add(dentry, NULL);
2629 return NULL;
2630}
2631
0dea1168
KS
2632/*
2633 * Check if a file is a control file
2634 */
2635static inline struct cftype *__file_cft(struct file *file)
2636{
496ad9aa 2637 if (file_inode(file)->i_fop != &cgroup_file_operations)
0dea1168
KS
2638 return ERR_PTR(-EINVAL);
2639 return __d_cft(file->f_dentry);
2640}
2641
a5e7ed32 2642static int cgroup_create_file(struct dentry *dentry, umode_t mode,
5adcee1d
NP
2643 struct super_block *sb)
2644{
ddbcc7e8
PM
2645 struct inode *inode;
2646
2647 if (!dentry)
2648 return -ENOENT;
2649 if (dentry->d_inode)
2650 return -EEXIST;
2651
2652 inode = cgroup_new_inode(mode, sb);
2653 if (!inode)
2654 return -ENOMEM;
2655
2656 if (S_ISDIR(mode)) {
2657 inode->i_op = &cgroup_dir_inode_operations;
2658 inode->i_fop = &simple_dir_operations;
2659
2660 /* start off with i_nlink == 2 (for "." entry) */
2661 inc_nlink(inode);
28fd6f30 2662 inc_nlink(dentry->d_parent->d_inode);
ddbcc7e8 2663
b8a2df6a
TH
2664 /*
2665 * Control reaches here with cgroup_mutex held.
2666 * @inode->i_mutex should nest outside cgroup_mutex but we
2667 * want to populate it immediately without releasing
2668 * cgroup_mutex. As @inode isn't visible to anyone else
2669 * yet, trylock will always succeed without affecting
2670 * lockdep checks.
2671 */
2672 WARN_ON_ONCE(!mutex_trylock(&inode->i_mutex));
ddbcc7e8
PM
2673 } else if (S_ISREG(mode)) {
2674 inode->i_size = 0;
2675 inode->i_fop = &cgroup_file_operations;
03b1cde6 2676 inode->i_op = &cgroup_file_inode_operations;
ddbcc7e8 2677 }
ddbcc7e8
PM
2678 d_instantiate(dentry, inode);
2679 dget(dentry); /* Extra count - pin the dentry in core */
2680 return 0;
2681}
2682
099fca32
LZ
2683/**
2684 * cgroup_file_mode - deduce file mode of a control file
2685 * @cft: the control file in question
2686 *
2687 * returns cft->mode if ->mode is not 0
2688 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
2689 * returns S_IRUGO if it has only a read handler
2690 * returns S_IWUSR if it has only a write hander
2691 */
a5e7ed32 2692static umode_t cgroup_file_mode(const struct cftype *cft)
099fca32 2693{
a5e7ed32 2694 umode_t mode = 0;
099fca32
LZ
2695
2696 if (cft->mode)
2697 return cft->mode;
2698
2699 if (cft->read || cft->read_u64 || cft->read_s64 ||
2700 cft->read_map || cft->read_seq_string)
2701 mode |= S_IRUGO;
2702
2703 if (cft->write || cft->write_u64 || cft->write_s64 ||
2704 cft->write_string || cft->trigger)
2705 mode |= S_IWUSR;
2706
2707 return mode;
2708}
2709
db0416b6 2710static int cgroup_add_file(struct cgroup *cgrp, struct cgroup_subsys *subsys,
03b1cde6 2711 struct cftype *cft)
ddbcc7e8 2712{
bd89aabc 2713 struct dentry *dir = cgrp->dentry;
05ef1d7c 2714 struct cgroup *parent = __d_cgrp(dir);
ddbcc7e8 2715 struct dentry *dentry;
05ef1d7c 2716 struct cfent *cfe;
ddbcc7e8 2717 int error;
a5e7ed32 2718 umode_t mode;
ddbcc7e8 2719 char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
8e3f6541 2720
93438629 2721 if (subsys && !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) {
ddbcc7e8
PM
2722 strcpy(name, subsys->name);
2723 strcat(name, ".");
2724 }
2725 strcat(name, cft->name);
05ef1d7c 2726
ddbcc7e8 2727 BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
05ef1d7c
TH
2728
2729 cfe = kzalloc(sizeof(*cfe), GFP_KERNEL);
2730 if (!cfe)
2731 return -ENOMEM;
2732
ddbcc7e8 2733 dentry = lookup_one_len(name, dir, strlen(name));
05ef1d7c 2734 if (IS_ERR(dentry)) {
ddbcc7e8 2735 error = PTR_ERR(dentry);
05ef1d7c
TH
2736 goto out;
2737 }
2738
d6cbf35d
LZ
2739 cfe->type = (void *)cft;
2740 cfe->dentry = dentry;
2741 dentry->d_fsdata = cfe;
2742 simple_xattrs_init(&cfe->xattrs);
2743
05ef1d7c
TH
2744 mode = cgroup_file_mode(cft);
2745 error = cgroup_create_file(dentry, mode | S_IFREG, cgrp->root->sb);
2746 if (!error) {
05ef1d7c
TH
2747 list_add_tail(&cfe->node, &parent->files);
2748 cfe = NULL;
2749 }
2750 dput(dentry);
2751out:
2752 kfree(cfe);
ddbcc7e8
PM
2753 return error;
2754}
2755
79578621 2756static int cgroup_addrm_files(struct cgroup *cgrp, struct cgroup_subsys *subsys,
03b1cde6 2757 struct cftype cfts[], bool is_add)
ddbcc7e8 2758{
03b1cde6 2759 struct cftype *cft;
db0416b6
TH
2760 int err, ret = 0;
2761
2762 for (cft = cfts; cft->name[0] != '\0'; cft++) {
f33fddc2 2763 /* does cft->flags tell us to skip this file on @cgrp? */
873fe09e
TH
2764 if ((cft->flags & CFTYPE_INSANE) && cgroup_sane_behavior(cgrp))
2765 continue;
f33fddc2
G
2766 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgrp->parent)
2767 continue;
2768 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgrp->parent)
2769 continue;
2770
2739d3cc 2771 if (is_add) {
79578621 2772 err = cgroup_add_file(cgrp, subsys, cft);
2739d3cc
LZ
2773 if (err)
2774 pr_warn("cgroup_addrm_files: failed to add %s, err=%d\n",
2775 cft->name, err);
db0416b6 2776 ret = err;
2739d3cc
LZ
2777 } else {
2778 cgroup_rm_file(cgrp, cft);
db0416b6 2779 }
ddbcc7e8 2780 }
db0416b6 2781 return ret;
ddbcc7e8
PM
2782}
2783
8e3f6541 2784static void cgroup_cfts_prepare(void)
e8c82d20 2785 __acquires(&cgroup_mutex)
8e3f6541
TH
2786{
2787 /*
2788 * Thanks to the entanglement with vfs inode locking, we can't walk
2789 * the existing cgroups under cgroup_mutex and create files.
e8c82d20
LZ
2790 * Instead, we use cgroup_for_each_descendant_pre() and drop RCU
2791 * read lock before calling cgroup_addrm_files().
8e3f6541 2792 */
8e3f6541
TH
2793 mutex_lock(&cgroup_mutex);
2794}
2795
2796static void cgroup_cfts_commit(struct cgroup_subsys *ss,
03b1cde6 2797 struct cftype *cfts, bool is_add)
e8c82d20 2798 __releases(&cgroup_mutex)
8e3f6541
TH
2799{
2800 LIST_HEAD(pending);
e8c82d20 2801 struct cgroup *cgrp, *root = &ss->root->top_cgroup;
084457f2 2802 struct super_block *sb = ss->root->sb;
e8c82d20
LZ
2803 struct dentry *prev = NULL;
2804 struct inode *inode;
00356bd5 2805 u64 update_before;
8e3f6541
TH
2806
2807 /* %NULL @cfts indicates abort and don't bother if @ss isn't attached */
9871bf95 2808 if (!cfts || ss->root == &cgroup_dummy_root ||
e8c82d20
LZ
2809 !atomic_inc_not_zero(&sb->s_active)) {
2810 mutex_unlock(&cgroup_mutex);
2811 return;
8e3f6541
TH
2812 }
2813
8e3f6541 2814 /*
e8c82d20
LZ
2815 * All cgroups which are created after we drop cgroup_mutex will
2816 * have the updated set of files, so we only need to update the
00356bd5 2817 * cgroups created before the current @cgroup_serial_nr_next.
8e3f6541 2818 */
00356bd5 2819 update_before = cgroup_serial_nr_next;
e8c82d20
LZ
2820
2821 mutex_unlock(&cgroup_mutex);
2822
2823 /* @root always needs to be updated */
2824 inode = root->dentry->d_inode;
2825 mutex_lock(&inode->i_mutex);
2826 mutex_lock(&cgroup_mutex);
2827 cgroup_addrm_files(root, ss, cfts, is_add);
2828 mutex_unlock(&cgroup_mutex);
2829 mutex_unlock(&inode->i_mutex);
2830
2831 /* add/rm files for all cgroups created before */
2832 rcu_read_lock();
2833 cgroup_for_each_descendant_pre(cgrp, root) {
2834 if (cgroup_is_dead(cgrp))
2835 continue;
2836
2837 inode = cgrp->dentry->d_inode;
2838 dget(cgrp->dentry);
2839 rcu_read_unlock();
2840
2841 dput(prev);
2842 prev = cgrp->dentry;
8e3f6541
TH
2843
2844 mutex_lock(&inode->i_mutex);
2845 mutex_lock(&cgroup_mutex);
00356bd5 2846 if (cgrp->serial_nr < update_before && !cgroup_is_dead(cgrp))
79578621 2847 cgroup_addrm_files(cgrp, ss, cfts, is_add);
8e3f6541
TH
2848 mutex_unlock(&cgroup_mutex);
2849 mutex_unlock(&inode->i_mutex);
2850
e8c82d20 2851 rcu_read_lock();
8e3f6541 2852 }
e8c82d20
LZ
2853 rcu_read_unlock();
2854 dput(prev);
2855 deactivate_super(sb);
8e3f6541
TH
2856}
2857
2858/**
2859 * cgroup_add_cftypes - add an array of cftypes to a subsystem
2860 * @ss: target cgroup subsystem
2861 * @cfts: zero-length name terminated array of cftypes
2862 *
2863 * Register @cfts to @ss. Files described by @cfts are created for all
2864 * existing cgroups to which @ss is attached and all future cgroups will
2865 * have them too. This function can be called anytime whether @ss is
2866 * attached or not.
2867 *
2868 * Returns 0 on successful registration, -errno on failure. Note that this
2869 * function currently returns 0 as long as @cfts registration is successful
2870 * even if some file creation attempts on existing cgroups fail.
2871 */
03b1cde6 2872int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
8e3f6541
TH
2873{
2874 struct cftype_set *set;
2875
2876 set = kzalloc(sizeof(*set), GFP_KERNEL);
2877 if (!set)
2878 return -ENOMEM;
2879
2880 cgroup_cfts_prepare();
2881 set->cfts = cfts;
2882 list_add_tail(&set->node, &ss->cftsets);
79578621 2883 cgroup_cfts_commit(ss, cfts, true);
8e3f6541
TH
2884
2885 return 0;
2886}
2887EXPORT_SYMBOL_GPL(cgroup_add_cftypes);
2888
79578621
TH
2889/**
2890 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
2891 * @ss: target cgroup subsystem
2892 * @cfts: zero-length name terminated array of cftypes
2893 *
2894 * Unregister @cfts from @ss. Files described by @cfts are removed from
2895 * all existing cgroups to which @ss is attached and all future cgroups
2896 * won't have them either. This function can be called anytime whether @ss
2897 * is attached or not.
2898 *
2899 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
2900 * registered with @ss.
2901 */
03b1cde6 2902int cgroup_rm_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
79578621
TH
2903{
2904 struct cftype_set *set;
2905
2906 cgroup_cfts_prepare();
2907
2908 list_for_each_entry(set, &ss->cftsets, node) {
2909 if (set->cfts == cfts) {
f57947d2
LZ
2910 list_del(&set->node);
2911 kfree(set);
79578621
TH
2912 cgroup_cfts_commit(ss, cfts, false);
2913 return 0;
2914 }
2915 }
2916
2917 cgroup_cfts_commit(ss, NULL, false);
2918 return -ENOENT;
2919}
2920
a043e3b2
LZ
2921/**
2922 * cgroup_task_count - count the number of tasks in a cgroup.
2923 * @cgrp: the cgroup in question
2924 *
2925 * Return the number of tasks in the cgroup.
2926 */
bd89aabc 2927int cgroup_task_count(const struct cgroup *cgrp)
bbcb81d0
PM
2928{
2929 int count = 0;
69d0206c 2930 struct cgrp_cset_link *link;
817929ec
PM
2931
2932 read_lock(&css_set_lock);
69d0206c
TH
2933 list_for_each_entry(link, &cgrp->cset_links, cset_link)
2934 count += atomic_read(&link->cset->refcount);
817929ec 2935 read_unlock(&css_set_lock);
bbcb81d0
PM
2936 return count;
2937}
2938
817929ec
PM
2939/*
2940 * Advance a list_head iterator. The iterator should be positioned at
2941 * the start of a css_set
2942 */
69d0206c 2943static void cgroup_advance_iter(struct cgroup *cgrp, struct cgroup_iter *it)
817929ec 2944{
69d0206c
TH
2945 struct list_head *l = it->cset_link;
2946 struct cgrp_cset_link *link;
5abb8855 2947 struct css_set *cset;
817929ec
PM
2948
2949 /* Advance to the next non-empty css_set */
2950 do {
2951 l = l->next;
69d0206c
TH
2952 if (l == &cgrp->cset_links) {
2953 it->cset_link = NULL;
817929ec
PM
2954 return;
2955 }
69d0206c
TH
2956 link = list_entry(l, struct cgrp_cset_link, cset_link);
2957 cset = link->cset;
5abb8855 2958 } while (list_empty(&cset->tasks));
69d0206c 2959 it->cset_link = l;
5abb8855 2960 it->task = cset->tasks.next;
817929ec
PM
2961}
2962
31a7df01
CW
2963/*
2964 * To reduce the fork() overhead for systems that are not actually
2965 * using their cgroups capability, we don't maintain the lists running
2966 * through each css_set to its tasks until we see the list actually
2967 * used - in other words after the first call to cgroup_iter_start().
31a7df01 2968 */
3df91fe3 2969static void cgroup_enable_task_cg_lists(void)
31a7df01
CW
2970{
2971 struct task_struct *p, *g;
2972 write_lock(&css_set_lock);
2973 use_task_css_set_links = 1;
3ce3230a
FW
2974 /*
2975 * We need tasklist_lock because RCU is not safe against
2976 * while_each_thread(). Besides, a forking task that has passed
2977 * cgroup_post_fork() without seeing use_task_css_set_links = 1
2978 * is not guaranteed to have its child immediately visible in the
2979 * tasklist if we walk through it with RCU.
2980 */
2981 read_lock(&tasklist_lock);
31a7df01
CW
2982 do_each_thread(g, p) {
2983 task_lock(p);
0e04388f
LZ
2984 /*
2985 * We should check if the process is exiting, otherwise
2986 * it will race with cgroup_exit() in that the list
2987 * entry won't be deleted though the process has exited.
2988 */
2989 if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
31a7df01
CW
2990 list_add(&p->cg_list, &p->cgroups->tasks);
2991 task_unlock(p);
2992 } while_each_thread(g, p);
3ce3230a 2993 read_unlock(&tasklist_lock);
31a7df01
CW
2994 write_unlock(&css_set_lock);
2995}
2996
53fa5261
TH
2997/**
2998 * cgroup_next_sibling - find the next sibling of a given cgroup
2999 * @pos: the current cgroup
3000 *
3001 * This function returns the next sibling of @pos and should be called
3002 * under RCU read lock. The only requirement is that @pos is accessible.
3003 * The next sibling is guaranteed to be returned regardless of @pos's
3004 * state.
3005 */
3006struct cgroup *cgroup_next_sibling(struct cgroup *pos)
3007{
3008 struct cgroup *next;
3009
3010 WARN_ON_ONCE(!rcu_read_lock_held());
3011
3012 /*
3013 * @pos could already have been removed. Once a cgroup is removed,
3014 * its ->sibling.next is no longer updated when its next sibling
ea15f8cc
TH
3015 * changes. As CGRP_DEAD assertion is serialized and happens
3016 * before the cgroup is taken off the ->sibling list, if we see it
3017 * unasserted, it's guaranteed that the next sibling hasn't
3018 * finished its grace period even if it's already removed, and thus
3019 * safe to dereference from this RCU critical section. If
3020 * ->sibling.next is inaccessible, cgroup_is_dead() is guaranteed
3021 * to be visible as %true here.
53fa5261 3022 */
54766d4a 3023 if (likely(!cgroup_is_dead(pos))) {
53fa5261
TH
3024 next = list_entry_rcu(pos->sibling.next, struct cgroup, sibling);
3025 if (&next->sibling != &pos->parent->children)
3026 return next;
3027 return NULL;
3028 }
3029
3030 /*
3031 * Can't dereference the next pointer. Each cgroup is given a
3032 * monotonically increasing unique serial number and always
3033 * appended to the sibling list, so the next one can be found by
3034 * walking the parent's children until we see a cgroup with higher
3035 * serial number than @pos's.
3036 *
3037 * While this path can be slow, it's taken only when either the
3038 * current cgroup is removed or iteration and removal race.
3039 */
3040 list_for_each_entry_rcu(next, &pos->parent->children, sibling)
3041 if (next->serial_nr > pos->serial_nr)
3042 return next;
3043 return NULL;
3044}
3045EXPORT_SYMBOL_GPL(cgroup_next_sibling);
3046
574bd9f7
TH
3047/**
3048 * cgroup_next_descendant_pre - find the next descendant for pre-order walk
3049 * @pos: the current position (%NULL to initiate traversal)
3050 * @cgroup: cgroup whose descendants to walk
3051 *
3052 * To be used by cgroup_for_each_descendant_pre(). Find the next
3053 * descendant to visit for pre-order traversal of @cgroup's descendants.
75501a6d
TH
3054 *
3055 * While this function requires RCU read locking, it doesn't require the
3056 * whole traversal to be contained in a single RCU critical section. This
3057 * function will return the correct next descendant as long as both @pos
3058 * and @cgroup are accessible and @pos is a descendant of @cgroup.
574bd9f7
TH
3059 */
3060struct cgroup *cgroup_next_descendant_pre(struct cgroup *pos,
3061 struct cgroup *cgroup)
3062{
3063 struct cgroup *next;
3064
3065 WARN_ON_ONCE(!rcu_read_lock_held());
3066
3067 /* if first iteration, pretend we just visited @cgroup */
7805d000 3068 if (!pos)
574bd9f7 3069 pos = cgroup;
574bd9f7
TH
3070
3071 /* visit the first child if exists */
3072 next = list_first_or_null_rcu(&pos->children, struct cgroup, sibling);
3073 if (next)
3074 return next;
3075
3076 /* no child, visit my or the closest ancestor's next sibling */
7805d000 3077 while (pos != cgroup) {
75501a6d
TH
3078 next = cgroup_next_sibling(pos);
3079 if (next)
574bd9f7 3080 return next;
574bd9f7 3081 pos = pos->parent;
7805d000 3082 }
574bd9f7
TH
3083
3084 return NULL;
3085}
3086EXPORT_SYMBOL_GPL(cgroup_next_descendant_pre);
3087
12a9d2fe
TH
3088/**
3089 * cgroup_rightmost_descendant - return the rightmost descendant of a cgroup
3090 * @pos: cgroup of interest
3091 *
3092 * Return the rightmost descendant of @pos. If there's no descendant,
3093 * @pos is returned. This can be used during pre-order traversal to skip
3094 * subtree of @pos.
75501a6d
TH
3095 *
3096 * While this function requires RCU read locking, it doesn't require the
3097 * whole traversal to be contained in a single RCU critical section. This
3098 * function will return the correct rightmost descendant as long as @pos is
3099 * accessible.
12a9d2fe
TH
3100 */
3101struct cgroup *cgroup_rightmost_descendant(struct cgroup *pos)
3102{
3103 struct cgroup *last, *tmp;
3104
3105 WARN_ON_ONCE(!rcu_read_lock_held());
3106
3107 do {
3108 last = pos;
3109 /* ->prev isn't RCU safe, walk ->next till the end */
3110 pos = NULL;
3111 list_for_each_entry_rcu(tmp, &last->children, sibling)
3112 pos = tmp;
3113 } while (pos);
3114
3115 return last;
3116}
3117EXPORT_SYMBOL_GPL(cgroup_rightmost_descendant);
3118
574bd9f7
TH
3119static struct cgroup *cgroup_leftmost_descendant(struct cgroup *pos)
3120{
3121 struct cgroup *last;
3122
3123 do {
3124 last = pos;
3125 pos = list_first_or_null_rcu(&pos->children, struct cgroup,
3126 sibling);
3127 } while (pos);
3128
3129 return last;
3130}
3131
3132/**
3133 * cgroup_next_descendant_post - find the next descendant for post-order walk
3134 * @pos: the current position (%NULL to initiate traversal)
3135 * @cgroup: cgroup whose descendants to walk
3136 *
3137 * To be used by cgroup_for_each_descendant_post(). Find the next
3138 * descendant to visit for post-order traversal of @cgroup's descendants.
75501a6d
TH
3139 *
3140 * While this function requires RCU read locking, it doesn't require the
3141 * whole traversal to be contained in a single RCU critical section. This
3142 * function will return the correct next descendant as long as both @pos
3143 * and @cgroup are accessible and @pos is a descendant of @cgroup.
574bd9f7
TH
3144 */
3145struct cgroup *cgroup_next_descendant_post(struct cgroup *pos,
3146 struct cgroup *cgroup)
3147{
3148 struct cgroup *next;
3149
3150 WARN_ON_ONCE(!rcu_read_lock_held());
3151
3152 /* if first iteration, visit the leftmost descendant */
3153 if (!pos) {
3154 next = cgroup_leftmost_descendant(cgroup);
3155 return next != cgroup ? next : NULL;
3156 }
3157
3158 /* if there's an unvisited sibling, visit its leftmost descendant */
75501a6d
TH
3159 next = cgroup_next_sibling(pos);
3160 if (next)
574bd9f7
TH
3161 return cgroup_leftmost_descendant(next);
3162
3163 /* no sibling left, visit parent */
3164 next = pos->parent;
3165 return next != cgroup ? next : NULL;
3166}
3167EXPORT_SYMBOL_GPL(cgroup_next_descendant_post);
3168
bd89aabc 3169void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
c6ca5750 3170 __acquires(css_set_lock)
817929ec
PM
3171{
3172 /*
3173 * The first time anyone tries to iterate across a cgroup,
3174 * we need to enable the list linking each css_set to its
3175 * tasks, and fix up all existing tasks.
3176 */
31a7df01
CW
3177 if (!use_task_css_set_links)
3178 cgroup_enable_task_cg_lists();
3179
817929ec 3180 read_lock(&css_set_lock);
69d0206c 3181 it->cset_link = &cgrp->cset_links;
bd89aabc 3182 cgroup_advance_iter(cgrp, it);
817929ec
PM
3183}
3184
bd89aabc 3185struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
817929ec
PM
3186 struct cgroup_iter *it)
3187{
3188 struct task_struct *res;
3189 struct list_head *l = it->task;
69d0206c 3190 struct cgrp_cset_link *link;
817929ec
PM
3191
3192 /* If the iterator cg is NULL, we have no tasks */
69d0206c 3193 if (!it->cset_link)
817929ec
PM
3194 return NULL;
3195 res = list_entry(l, struct task_struct, cg_list);
3196 /* Advance iterator to find next entry */
3197 l = l->next;
69d0206c
TH
3198 link = list_entry(it->cset_link, struct cgrp_cset_link, cset_link);
3199 if (l == &link->cset->tasks) {
817929ec
PM
3200 /* We reached the end of this task list - move on to
3201 * the next cg_cgroup_link */
bd89aabc 3202 cgroup_advance_iter(cgrp, it);
817929ec
PM
3203 } else {
3204 it->task = l;
3205 }
3206 return res;
3207}
3208
bd89aabc 3209void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
c6ca5750 3210 __releases(css_set_lock)
817929ec
PM
3211{
3212 read_unlock(&css_set_lock);
3213}
3214
31a7df01
CW
3215static inline int started_after_time(struct task_struct *t1,
3216 struct timespec *time,
3217 struct task_struct *t2)
3218{
3219 int start_diff = timespec_compare(&t1->start_time, time);
3220 if (start_diff > 0) {
3221 return 1;
3222 } else if (start_diff < 0) {
3223 return 0;
3224 } else {
3225 /*
3226 * Arbitrarily, if two processes started at the same
3227 * time, we'll say that the lower pointer value
3228 * started first. Note that t2 may have exited by now
3229 * so this may not be a valid pointer any longer, but
3230 * that's fine - it still serves to distinguish
3231 * between two tasks started (effectively) simultaneously.
3232 */
3233 return t1 > t2;
3234 }
3235}
3236
3237/*
3238 * This function is a callback from heap_insert() and is used to order
3239 * the heap.
3240 * In this case we order the heap in descending task start time.
3241 */
3242static inline int started_after(void *p1, void *p2)
3243{
3244 struct task_struct *t1 = p1;
3245 struct task_struct *t2 = p2;
3246 return started_after_time(t1, &t2->start_time, t2);
3247}
3248
3249/**
3250 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
3251 * @scan: struct cgroup_scanner containing arguments for the scan
3252 *
3253 * Arguments include pointers to callback functions test_task() and
3254 * process_task().
3255 * Iterate through all the tasks in a cgroup, calling test_task() for each,
3256 * and if it returns true, call process_task() for it also.
3257 * The test_task pointer may be NULL, meaning always true (select all tasks).
3258 * Effectively duplicates cgroup_iter_{start,next,end}()
3259 * but does not lock css_set_lock for the call to process_task().
3260 * The struct cgroup_scanner may be embedded in any structure of the caller's
3261 * creation.
3262 * It is guaranteed that process_task() will act on every task that
3263 * is a member of the cgroup for the duration of this call. This
3264 * function may or may not call process_task() for tasks that exit
3265 * or move to a different cgroup during the call, or are forked or
3266 * move into the cgroup during the call.
3267 *
3268 * Note that test_task() may be called with locks held, and may in some
3269 * situations be called multiple times for the same task, so it should
3270 * be cheap.
3271 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
3272 * pre-allocated and will be used for heap operations (and its "gt" member will
3273 * be overwritten), else a temporary heap will be used (allocation of which
3274 * may cause this function to fail).
3275 */
3276int cgroup_scan_tasks(struct cgroup_scanner *scan)
3277{
3278 int retval, i;
3279 struct cgroup_iter it;
3280 struct task_struct *p, *dropped;
3281 /* Never dereference latest_task, since it's not refcounted */
3282 struct task_struct *latest_task = NULL;
3283 struct ptr_heap tmp_heap;
3284 struct ptr_heap *heap;
3285 struct timespec latest_time = { 0, 0 };
3286
3287 if (scan->heap) {
3288 /* The caller supplied our heap and pre-allocated its memory */
3289 heap = scan->heap;
3290 heap->gt = &started_after;
3291 } else {
3292 /* We need to allocate our own heap memory */
3293 heap = &tmp_heap;
3294 retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
3295 if (retval)
3296 /* cannot allocate the heap */
3297 return retval;
3298 }
3299
3300 again:
3301 /*
3302 * Scan tasks in the cgroup, using the scanner's "test_task" callback
3303 * to determine which are of interest, and using the scanner's
3304 * "process_task" callback to process any of them that need an update.
3305 * Since we don't want to hold any locks during the task updates,
3306 * gather tasks to be processed in a heap structure.
3307 * The heap is sorted by descending task start time.
3308 * If the statically-sized heap fills up, we overflow tasks that
3309 * started later, and in future iterations only consider tasks that
3310 * started after the latest task in the previous pass. This
3311 * guarantees forward progress and that we don't miss any tasks.
3312 */
3313 heap->size = 0;
3314 cgroup_iter_start(scan->cg, &it);
3315 while ((p = cgroup_iter_next(scan->cg, &it))) {
3316 /*
3317 * Only affect tasks that qualify per the caller's callback,
3318 * if he provided one
3319 */
3320 if (scan->test_task && !scan->test_task(p, scan))
3321 continue;
3322 /*
3323 * Only process tasks that started after the last task
3324 * we processed
3325 */
3326 if (!started_after_time(p, &latest_time, latest_task))
3327 continue;
3328 dropped = heap_insert(heap, p);
3329 if (dropped == NULL) {
3330 /*
3331 * The new task was inserted; the heap wasn't
3332 * previously full
3333 */
3334 get_task_struct(p);
3335 } else if (dropped != p) {
3336 /*
3337 * The new task was inserted, and pushed out a
3338 * different task
3339 */
3340 get_task_struct(p);
3341 put_task_struct(dropped);
3342 }
3343 /*
3344 * Else the new task was newer than anything already in
3345 * the heap and wasn't inserted
3346 */
3347 }
3348 cgroup_iter_end(scan->cg, &it);
3349
3350 if (heap->size) {
3351 for (i = 0; i < heap->size; i++) {
4fe91d51 3352 struct task_struct *q = heap->ptrs[i];
31a7df01 3353 if (i == 0) {
4fe91d51
PJ
3354 latest_time = q->start_time;
3355 latest_task = q;
31a7df01
CW
3356 }
3357 /* Process the task per the caller's callback */
4fe91d51
PJ
3358 scan->process_task(q, scan);
3359 put_task_struct(q);
31a7df01
CW
3360 }
3361 /*
3362 * If we had to process any tasks at all, scan again
3363 * in case some of them were in the middle of forking
3364 * children that didn't get processed.
3365 * Not the most efficient way to do it, but it avoids
3366 * having to take callback_mutex in the fork path
3367 */
3368 goto again;
3369 }
3370 if (heap == &tmp_heap)
3371 heap_free(&tmp_heap);
3372 return 0;
3373}
3374
8cc99345
TH
3375static void cgroup_transfer_one_task(struct task_struct *task,
3376 struct cgroup_scanner *scan)
3377{
3378 struct cgroup *new_cgroup = scan->data;
3379
47cfcd09 3380 mutex_lock(&cgroup_mutex);
8cc99345 3381 cgroup_attach_task(new_cgroup, task, false);
47cfcd09 3382 mutex_unlock(&cgroup_mutex);
8cc99345
TH
3383}
3384
3385/**
3386 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
3387 * @to: cgroup to which the tasks will be moved
3388 * @from: cgroup in which the tasks currently reside
3389 */
3390int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
3391{
3392 struct cgroup_scanner scan;
3393
3394 scan.cg = from;
3395 scan.test_task = NULL; /* select all tasks in cgroup */
3396 scan.process_task = cgroup_transfer_one_task;
3397 scan.heap = NULL;
3398 scan.data = to;
3399
3400 return cgroup_scan_tasks(&scan);
3401}
3402
bbcb81d0 3403/*
102a775e 3404 * Stuff for reading the 'tasks'/'procs' files.
bbcb81d0
PM
3405 *
3406 * Reading this file can return large amounts of data if a cgroup has
3407 * *lots* of attached tasks. So it may need several calls to read(),
3408 * but we cannot guarantee that the information we produce is correct
3409 * unless we produce it entirely atomically.
3410 *
bbcb81d0 3411 */
bbcb81d0 3412
24528255
LZ
3413/* which pidlist file are we talking about? */
3414enum cgroup_filetype {
3415 CGROUP_FILE_PROCS,
3416 CGROUP_FILE_TASKS,
3417};
3418
3419/*
3420 * A pidlist is a list of pids that virtually represents the contents of one
3421 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
3422 * a pair (one each for procs, tasks) for each pid namespace that's relevant
3423 * to the cgroup.
3424 */
3425struct cgroup_pidlist {
3426 /*
3427 * used to find which pidlist is wanted. doesn't change as long as
3428 * this particular list stays in the list.
3429 */
3430 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
3431 /* array of xids */
3432 pid_t *list;
3433 /* how many elements the above list has */
3434 int length;
3435 /* how many files are using the current array */
3436 int use_count;
3437 /* each of these stored in a list by its cgroup */
3438 struct list_head links;
3439 /* pointer to the cgroup we belong to, for list removal purposes */
3440 struct cgroup *owner;
3441 /* protects the other fields */
3442 struct rw_semaphore mutex;
3443};
3444
d1d9fd33
BB
3445/*
3446 * The following two functions "fix" the issue where there are more pids
3447 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
3448 * TODO: replace with a kernel-wide solution to this problem
3449 */
3450#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
3451static void *pidlist_allocate(int count)
3452{
3453 if (PIDLIST_TOO_LARGE(count))
3454 return vmalloc(count * sizeof(pid_t));
3455 else
3456 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
3457}
3458static void pidlist_free(void *p)
3459{
3460 if (is_vmalloc_addr(p))
3461 vfree(p);
3462 else
3463 kfree(p);
3464}
d1d9fd33 3465
bbcb81d0 3466/*
102a775e 3467 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
6ee211ad 3468 * Returns the number of unique elements.
bbcb81d0 3469 */
6ee211ad 3470static int pidlist_uniq(pid_t *list, int length)
bbcb81d0 3471{
102a775e 3472 int src, dest = 1;
102a775e
BB
3473
3474 /*
3475 * we presume the 0th element is unique, so i starts at 1. trivial
3476 * edge cases first; no work needs to be done for either
3477 */
3478 if (length == 0 || length == 1)
3479 return length;
3480 /* src and dest walk down the list; dest counts unique elements */
3481 for (src = 1; src < length; src++) {
3482 /* find next unique element */
3483 while (list[src] == list[src-1]) {
3484 src++;
3485 if (src == length)
3486 goto after;
3487 }
3488 /* dest always points to where the next unique element goes */
3489 list[dest] = list[src];
3490 dest++;
3491 }
3492after:
102a775e
BB
3493 return dest;
3494}
3495
3496static int cmppid(const void *a, const void *b)
3497{
3498 return *(pid_t *)a - *(pid_t *)b;
3499}
3500
72a8cb30
BB
3501/*
3502 * find the appropriate pidlist for our purpose (given procs vs tasks)
3503 * returns with the lock on that pidlist already held, and takes care
3504 * of the use count, or returns NULL with no locks held if we're out of
3505 * memory.
3506 */
3507static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
3508 enum cgroup_filetype type)
3509{
3510 struct cgroup_pidlist *l;
3511 /* don't need task_nsproxy() if we're looking at ourself */
17cf22c3 3512 struct pid_namespace *ns = task_active_pid_ns(current);
b70cc5fd 3513
72a8cb30
BB
3514 /*
3515 * We can't drop the pidlist_mutex before taking the l->mutex in case
3516 * the last ref-holder is trying to remove l from the list at the same
3517 * time. Holding the pidlist_mutex precludes somebody taking whichever
3518 * list we find out from under us - compare release_pid_array().
3519 */
3520 mutex_lock(&cgrp->pidlist_mutex);
3521 list_for_each_entry(l, &cgrp->pidlists, links) {
3522 if (l->key.type == type && l->key.ns == ns) {
72a8cb30
BB
3523 /* make sure l doesn't vanish out from under us */
3524 down_write(&l->mutex);
3525 mutex_unlock(&cgrp->pidlist_mutex);
72a8cb30
BB
3526 return l;
3527 }
3528 }
3529 /* entry not found; create a new one */
f4f4be2b 3530 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
72a8cb30
BB
3531 if (!l) {
3532 mutex_unlock(&cgrp->pidlist_mutex);
72a8cb30
BB
3533 return l;
3534 }
3535 init_rwsem(&l->mutex);
3536 down_write(&l->mutex);
3537 l->key.type = type;
b70cc5fd 3538 l->key.ns = get_pid_ns(ns);
72a8cb30
BB
3539 l->owner = cgrp;
3540 list_add(&l->links, &cgrp->pidlists);
3541 mutex_unlock(&cgrp->pidlist_mutex);
3542 return l;
3543}
3544
102a775e
BB
3545/*
3546 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
3547 */
72a8cb30
BB
3548static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
3549 struct cgroup_pidlist **lp)
102a775e
BB
3550{
3551 pid_t *array;
3552 int length;
3553 int pid, n = 0; /* used for populating the array */
817929ec
PM
3554 struct cgroup_iter it;
3555 struct task_struct *tsk;
102a775e
BB
3556 struct cgroup_pidlist *l;
3557
3558 /*
3559 * If cgroup gets more users after we read count, we won't have
3560 * enough space - tough. This race is indistinguishable to the
3561 * caller from the case that the additional cgroup users didn't
3562 * show up until sometime later on.
3563 */
3564 length = cgroup_task_count(cgrp);
d1d9fd33 3565 array = pidlist_allocate(length);
102a775e
BB
3566 if (!array)
3567 return -ENOMEM;
3568 /* now, populate the array */
bd89aabc
PM
3569 cgroup_iter_start(cgrp, &it);
3570 while ((tsk = cgroup_iter_next(cgrp, &it))) {
102a775e 3571 if (unlikely(n == length))
817929ec 3572 break;
102a775e 3573 /* get tgid or pid for procs or tasks file respectively */
72a8cb30
BB
3574 if (type == CGROUP_FILE_PROCS)
3575 pid = task_tgid_vnr(tsk);
3576 else
3577 pid = task_pid_vnr(tsk);
102a775e
BB
3578 if (pid > 0) /* make sure to only use valid results */
3579 array[n++] = pid;
817929ec 3580 }
bd89aabc 3581 cgroup_iter_end(cgrp, &it);
102a775e
BB
3582 length = n;
3583 /* now sort & (if procs) strip out duplicates */
3584 sort(array, length, sizeof(pid_t), cmppid, NULL);
72a8cb30 3585 if (type == CGROUP_FILE_PROCS)
6ee211ad 3586 length = pidlist_uniq(array, length);
72a8cb30
BB
3587 l = cgroup_pidlist_find(cgrp, type);
3588 if (!l) {
d1d9fd33 3589 pidlist_free(array);
72a8cb30 3590 return -ENOMEM;
102a775e 3591 }
72a8cb30 3592 /* store array, freeing old if necessary - lock already held */
d1d9fd33 3593 pidlist_free(l->list);
102a775e
BB
3594 l->list = array;
3595 l->length = length;
3596 l->use_count++;
3597 up_write(&l->mutex);
72a8cb30 3598 *lp = l;
102a775e 3599 return 0;
bbcb81d0
PM
3600}
3601
846c7bb0 3602/**
a043e3b2 3603 * cgroupstats_build - build and fill cgroupstats
846c7bb0
BS
3604 * @stats: cgroupstats to fill information into
3605 * @dentry: A dentry entry belonging to the cgroup for which stats have
3606 * been requested.
a043e3b2
LZ
3607 *
3608 * Build and fill cgroupstats so that taskstats can export it to user
3609 * space.
846c7bb0
BS
3610 */
3611int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
3612{
3613 int ret = -EINVAL;
bd89aabc 3614 struct cgroup *cgrp;
846c7bb0
BS
3615 struct cgroup_iter it;
3616 struct task_struct *tsk;
33d283be 3617
846c7bb0 3618 /*
33d283be
LZ
3619 * Validate dentry by checking the superblock operations,
3620 * and make sure it's a directory.
846c7bb0 3621 */
33d283be
LZ
3622 if (dentry->d_sb->s_op != &cgroup_ops ||
3623 !S_ISDIR(dentry->d_inode->i_mode))
846c7bb0
BS
3624 goto err;
3625
3626 ret = 0;
bd89aabc 3627 cgrp = dentry->d_fsdata;
846c7bb0 3628
bd89aabc
PM
3629 cgroup_iter_start(cgrp, &it);
3630 while ((tsk = cgroup_iter_next(cgrp, &it))) {
846c7bb0
BS
3631 switch (tsk->state) {
3632 case TASK_RUNNING:
3633 stats->nr_running++;
3634 break;
3635 case TASK_INTERRUPTIBLE:
3636 stats->nr_sleeping++;
3637 break;
3638 case TASK_UNINTERRUPTIBLE:
3639 stats->nr_uninterruptible++;
3640 break;
3641 case TASK_STOPPED:
3642 stats->nr_stopped++;
3643 break;
3644 default:
3645 if (delayacct_is_task_waiting_on_io(tsk))
3646 stats->nr_io_wait++;
3647 break;
3648 }
3649 }
bd89aabc 3650 cgroup_iter_end(cgrp, &it);
846c7bb0 3651
846c7bb0
BS
3652err:
3653 return ret;
3654}
3655
8f3ff208 3656
bbcb81d0 3657/*
102a775e 3658 * seq_file methods for the tasks/procs files. The seq_file position is the
cc31edce 3659 * next pid to display; the seq_file iterator is a pointer to the pid
102a775e 3660 * in the cgroup->l->list array.
bbcb81d0 3661 */
cc31edce 3662
102a775e 3663static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
bbcb81d0 3664{
cc31edce
PM
3665 /*
3666 * Initially we receive a position value that corresponds to
3667 * one more than the last pid shown (or 0 on the first call or
3668 * after a seek to the start). Use a binary-search to find the
3669 * next pid to display, if any
3670 */
102a775e 3671 struct cgroup_pidlist *l = s->private;
cc31edce
PM
3672 int index = 0, pid = *pos;
3673 int *iter;
3674
102a775e 3675 down_read(&l->mutex);
cc31edce 3676 if (pid) {
102a775e 3677 int end = l->length;
20777766 3678
cc31edce
PM
3679 while (index < end) {
3680 int mid = (index + end) / 2;
102a775e 3681 if (l->list[mid] == pid) {
cc31edce
PM
3682 index = mid;
3683 break;
102a775e 3684 } else if (l->list[mid] <= pid)
cc31edce
PM
3685 index = mid + 1;
3686 else
3687 end = mid;
3688 }
3689 }
3690 /* If we're off the end of the array, we're done */
102a775e 3691 if (index >= l->length)
cc31edce
PM
3692 return NULL;
3693 /* Update the abstract position to be the actual pid that we found */
102a775e 3694 iter = l->list + index;
cc31edce
PM
3695 *pos = *iter;
3696 return iter;
3697}
3698
102a775e 3699static void cgroup_pidlist_stop(struct seq_file *s, void *v)
cc31edce 3700{
102a775e
BB
3701 struct cgroup_pidlist *l = s->private;
3702 up_read(&l->mutex);
cc31edce
PM
3703}
3704
102a775e 3705static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
cc31edce 3706{
102a775e
BB
3707 struct cgroup_pidlist *l = s->private;
3708 pid_t *p = v;
3709 pid_t *end = l->list + l->length;
cc31edce
PM
3710 /*
3711 * Advance to the next pid in the array. If this goes off the
3712 * end, we're done
3713 */
3714 p++;
3715 if (p >= end) {
3716 return NULL;
3717 } else {
3718 *pos = *p;
3719 return p;
3720 }
3721}
3722
102a775e 3723static int cgroup_pidlist_show(struct seq_file *s, void *v)
cc31edce
PM
3724{
3725 return seq_printf(s, "%d\n", *(int *)v);
3726}
bbcb81d0 3727
102a775e
BB
3728/*
3729 * seq_operations functions for iterating on pidlists through seq_file -
3730 * independent of whether it's tasks or procs
3731 */
3732static const struct seq_operations cgroup_pidlist_seq_operations = {
3733 .start = cgroup_pidlist_start,
3734 .stop = cgroup_pidlist_stop,
3735 .next = cgroup_pidlist_next,
3736 .show = cgroup_pidlist_show,
cc31edce
PM
3737};
3738
102a775e 3739static void cgroup_release_pid_array(struct cgroup_pidlist *l)
cc31edce 3740{
72a8cb30
BB
3741 /*
3742 * the case where we're the last user of this particular pidlist will
3743 * have us remove it from the cgroup's list, which entails taking the
3744 * mutex. since in pidlist_find the pidlist->lock depends on cgroup->
3745 * pidlist_mutex, we have to take pidlist_mutex first.
3746 */
3747 mutex_lock(&l->owner->pidlist_mutex);
102a775e
BB
3748 down_write(&l->mutex);
3749 BUG_ON(!l->use_count);
3750 if (!--l->use_count) {
72a8cb30
BB
3751 /* we're the last user if refcount is 0; remove and free */
3752 list_del(&l->links);
3753 mutex_unlock(&l->owner->pidlist_mutex);
d1d9fd33 3754 pidlist_free(l->list);
72a8cb30
BB
3755 put_pid_ns(l->key.ns);
3756 up_write(&l->mutex);
3757 kfree(l);
3758 return;
cc31edce 3759 }
72a8cb30 3760 mutex_unlock(&l->owner->pidlist_mutex);
102a775e 3761 up_write(&l->mutex);
bbcb81d0
PM
3762}
3763
102a775e 3764static int cgroup_pidlist_release(struct inode *inode, struct file *file)
cc31edce 3765{
102a775e 3766 struct cgroup_pidlist *l;
cc31edce
PM
3767 if (!(file->f_mode & FMODE_READ))
3768 return 0;
102a775e
BB
3769 /*
3770 * the seq_file will only be initialized if the file was opened for
3771 * reading; hence we check if it's not null only in that case.
3772 */
3773 l = ((struct seq_file *)file->private_data)->private;
3774 cgroup_release_pid_array(l);
cc31edce
PM
3775 return seq_release(inode, file);
3776}
3777
102a775e 3778static const struct file_operations cgroup_pidlist_operations = {
cc31edce
PM
3779 .read = seq_read,
3780 .llseek = seq_lseek,
3781 .write = cgroup_file_write,
102a775e 3782 .release = cgroup_pidlist_release,
cc31edce
PM
3783};
3784
bbcb81d0 3785/*
102a775e
BB
3786 * The following functions handle opens on a file that displays a pidlist
3787 * (tasks or procs). Prepare an array of the process/thread IDs of whoever's
3788 * in the cgroup.
bbcb81d0 3789 */
102a775e 3790/* helper function for the two below it */
72a8cb30 3791static int cgroup_pidlist_open(struct file *file, enum cgroup_filetype type)
bbcb81d0 3792{
bd89aabc 3793 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
72a8cb30 3794 struct cgroup_pidlist *l;
cc31edce 3795 int retval;
bbcb81d0 3796
cc31edce 3797 /* Nothing to do for write-only files */
bbcb81d0
PM
3798 if (!(file->f_mode & FMODE_READ))
3799 return 0;
3800
102a775e 3801 /* have the array populated */
72a8cb30 3802 retval = pidlist_array_load(cgrp, type, &l);
102a775e
BB
3803 if (retval)
3804 return retval;
3805 /* configure file information */
3806 file->f_op = &cgroup_pidlist_operations;
cc31edce 3807
102a775e 3808 retval = seq_open(file, &cgroup_pidlist_seq_operations);
cc31edce 3809 if (retval) {
102a775e 3810 cgroup_release_pid_array(l);
cc31edce 3811 return retval;
bbcb81d0 3812 }
102a775e 3813 ((struct seq_file *)file->private_data)->private = l;
bbcb81d0
PM
3814 return 0;
3815}
102a775e
BB
3816static int cgroup_tasks_open(struct inode *unused, struct file *file)
3817{
72a8cb30 3818 return cgroup_pidlist_open(file, CGROUP_FILE_TASKS);
102a775e
BB
3819}
3820static int cgroup_procs_open(struct inode *unused, struct file *file)
3821{
72a8cb30 3822 return cgroup_pidlist_open(file, CGROUP_FILE_PROCS);
102a775e 3823}
bbcb81d0 3824
bd89aabc 3825static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
81a6a5cd
PM
3826 struct cftype *cft)
3827{
bd89aabc 3828 return notify_on_release(cgrp);
81a6a5cd
PM
3829}
3830
6379c106
PM
3831static int cgroup_write_notify_on_release(struct cgroup *cgrp,
3832 struct cftype *cft,
3833 u64 val)
3834{
3835 clear_bit(CGRP_RELEASABLE, &cgrp->flags);
3836 if (val)
3837 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3838 else
3839 clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3840 return 0;
3841}
3842
1c8158ee
LZ
3843/*
3844 * When dput() is called asynchronously, if umount has been done and
3845 * then deactivate_super() in cgroup_free_fn() kills the superblock,
3846 * there's a small window that vfs will see the root dentry with non-zero
3847 * refcnt and trigger BUG().
3848 *
3849 * That's why we hold a reference before dput() and drop it right after.
3850 */
3851static void cgroup_dput(struct cgroup *cgrp)
3852{
3853 struct super_block *sb = cgrp->root->sb;
3854
3855 atomic_inc(&sb->s_active);
3856 dput(cgrp->dentry);
3857 deactivate_super(sb);
3858}
3859
0dea1168
KS
3860/*
3861 * Unregister event and free resources.
3862 *
3863 * Gets called from workqueue.
3864 */
3865static void cgroup_event_remove(struct work_struct *work)
3866{
3867 struct cgroup_event *event = container_of(work, struct cgroup_event,
3868 remove);
3869 struct cgroup *cgrp = event->cgrp;
3870
810cbee4
LZ
3871 remove_wait_queue(event->wqh, &event->wait);
3872
0dea1168
KS
3873 event->cft->unregister_event(cgrp, event->cft, event->eventfd);
3874
810cbee4
LZ
3875 /* Notify userspace the event is going away. */
3876 eventfd_signal(event->eventfd, 1);
3877
0dea1168 3878 eventfd_ctx_put(event->eventfd);
0dea1168 3879 kfree(event);
1c8158ee 3880 cgroup_dput(cgrp);
0dea1168
KS
3881}
3882
3883/*
3884 * Gets called on POLLHUP on eventfd when user closes it.
3885 *
3886 * Called with wqh->lock held and interrupts disabled.
3887 */
3888static int cgroup_event_wake(wait_queue_t *wait, unsigned mode,
3889 int sync, void *key)
3890{
3891 struct cgroup_event *event = container_of(wait,
3892 struct cgroup_event, wait);
3893 struct cgroup *cgrp = event->cgrp;
3894 unsigned long flags = (unsigned long)key;
3895
3896 if (flags & POLLHUP) {
0dea1168 3897 /*
810cbee4
LZ
3898 * If the event has been detached at cgroup removal, we
3899 * can simply return knowing the other side will cleanup
3900 * for us.
3901 *
3902 * We can't race against event freeing since the other
3903 * side will require wqh->lock via remove_wait_queue(),
3904 * which we hold.
0dea1168 3905 */
810cbee4
LZ
3906 spin_lock(&cgrp->event_list_lock);
3907 if (!list_empty(&event->list)) {
3908 list_del_init(&event->list);
3909 /*
3910 * We are in atomic context, but cgroup_event_remove()
3911 * may sleep, so we have to call it in workqueue.
3912 */
3913 schedule_work(&event->remove);
3914 }
3915 spin_unlock(&cgrp->event_list_lock);
0dea1168
KS
3916 }
3917
3918 return 0;
3919}
3920
3921static void cgroup_event_ptable_queue_proc(struct file *file,
3922 wait_queue_head_t *wqh, poll_table *pt)
3923{
3924 struct cgroup_event *event = container_of(pt,
3925 struct cgroup_event, pt);
3926
3927 event->wqh = wqh;
3928 add_wait_queue(wqh, &event->wait);
3929}
3930
3931/*
3932 * Parse input and register new cgroup event handler.
3933 *
3934 * Input must be in format '<event_fd> <control_fd> <args>'.
3935 * Interpretation of args is defined by control file implementation.
3936 */
3937static int cgroup_write_event_control(struct cgroup *cgrp, struct cftype *cft,
3938 const char *buffer)
3939{
3940 struct cgroup_event *event = NULL;
f169007b 3941 struct cgroup *cgrp_cfile;
0dea1168
KS
3942 unsigned int efd, cfd;
3943 struct file *efile = NULL;
3944 struct file *cfile = NULL;
3945 char *endp;
3946 int ret;
3947
3948 efd = simple_strtoul(buffer, &endp, 10);
3949 if (*endp != ' ')
3950 return -EINVAL;
3951 buffer = endp + 1;
3952
3953 cfd = simple_strtoul(buffer, &endp, 10);
3954 if ((*endp != ' ') && (*endp != '\0'))
3955 return -EINVAL;
3956 buffer = endp + 1;
3957
3958 event = kzalloc(sizeof(*event), GFP_KERNEL);
3959 if (!event)
3960 return -ENOMEM;
3961 event->cgrp = cgrp;
3962 INIT_LIST_HEAD(&event->list);
3963 init_poll_funcptr(&event->pt, cgroup_event_ptable_queue_proc);
3964 init_waitqueue_func_entry(&event->wait, cgroup_event_wake);
3965 INIT_WORK(&event->remove, cgroup_event_remove);
3966
3967 efile = eventfd_fget(efd);
3968 if (IS_ERR(efile)) {
3969 ret = PTR_ERR(efile);
3970 goto fail;
3971 }
3972
3973 event->eventfd = eventfd_ctx_fileget(efile);
3974 if (IS_ERR(event->eventfd)) {
3975 ret = PTR_ERR(event->eventfd);
3976 goto fail;
3977 }
3978
3979 cfile = fget(cfd);
3980 if (!cfile) {
3981 ret = -EBADF;
3982 goto fail;
3983 }
3984
3985 /* the process need read permission on control file */
3bfa784a 3986 /* AV: shouldn't we check that it's been opened for read instead? */
496ad9aa 3987 ret = inode_permission(file_inode(cfile), MAY_READ);
0dea1168
KS
3988 if (ret < 0)
3989 goto fail;
3990
3991 event->cft = __file_cft(cfile);
3992 if (IS_ERR(event->cft)) {
3993 ret = PTR_ERR(event->cft);
3994 goto fail;
3995 }
3996
f169007b
LZ
3997 /*
3998 * The file to be monitored must be in the same cgroup as
3999 * cgroup.event_control is.
4000 */
4001 cgrp_cfile = __d_cgrp(cfile->f_dentry->d_parent);
4002 if (cgrp_cfile != cgrp) {
4003 ret = -EINVAL;
4004 goto fail;
4005 }
4006
0dea1168
KS
4007 if (!event->cft->register_event || !event->cft->unregister_event) {
4008 ret = -EINVAL;
4009 goto fail;
4010 }
4011
4012 ret = event->cft->register_event(cgrp, event->cft,
4013 event->eventfd, buffer);
4014 if (ret)
4015 goto fail;
4016
7ef70e48 4017 efile->f_op->poll(efile, &event->pt);
0dea1168 4018
a0a4db54
KS
4019 /*
4020 * Events should be removed after rmdir of cgroup directory, but before
4021 * destroying subsystem state objects. Let's take reference to cgroup
4022 * directory dentry to do that.
4023 */
4024 dget(cgrp->dentry);
4025
0dea1168
KS
4026 spin_lock(&cgrp->event_list_lock);
4027 list_add(&event->list, &cgrp->event_list);
4028 spin_unlock(&cgrp->event_list_lock);
4029
4030 fput(cfile);
4031 fput(efile);
4032
4033 return 0;
4034
4035fail:
4036 if (cfile)
4037 fput(cfile);
4038
4039 if (event && event->eventfd && !IS_ERR(event->eventfd))
4040 eventfd_ctx_put(event->eventfd);
4041
4042 if (!IS_ERR_OR_NULL(efile))
4043 fput(efile);
4044
4045 kfree(event);
4046
4047 return ret;
4048}
4049
97978e6d
DL
4050static u64 cgroup_clone_children_read(struct cgroup *cgrp,
4051 struct cftype *cft)
4052{
2260e7fc 4053 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
97978e6d
DL
4054}
4055
4056static int cgroup_clone_children_write(struct cgroup *cgrp,
4057 struct cftype *cft,
4058 u64 val)
4059{
4060 if (val)
2260e7fc 4061 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
97978e6d 4062 else
2260e7fc 4063 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
97978e6d
DL
4064 return 0;
4065}
4066
d5c56ced 4067static struct cftype cgroup_base_files[] = {
81a6a5cd 4068 {
d5c56ced 4069 .name = "cgroup.procs",
102a775e 4070 .open = cgroup_procs_open,
74a1166d 4071 .write_u64 = cgroup_procs_write,
102a775e 4072 .release = cgroup_pidlist_release,
74a1166d 4073 .mode = S_IRUGO | S_IWUSR,
102a775e 4074 },
81a6a5cd 4075 {
d5c56ced 4076 .name = "cgroup.event_control",
0dea1168
KS
4077 .write_string = cgroup_write_event_control,
4078 .mode = S_IWUGO,
4079 },
97978e6d
DL
4080 {
4081 .name = "cgroup.clone_children",
873fe09e 4082 .flags = CFTYPE_INSANE,
97978e6d
DL
4083 .read_u64 = cgroup_clone_children_read,
4084 .write_u64 = cgroup_clone_children_write,
4085 },
873fe09e
TH
4086 {
4087 .name = "cgroup.sane_behavior",
4088 .flags = CFTYPE_ONLY_ON_ROOT,
4089 .read_seq_string = cgroup_sane_behavior_show,
4090 },
d5c56ced
TH
4091
4092 /*
4093 * Historical crazy stuff. These don't have "cgroup." prefix and
4094 * don't exist if sane_behavior. If you're depending on these, be
4095 * prepared to be burned.
4096 */
4097 {
4098 .name = "tasks",
4099 .flags = CFTYPE_INSANE, /* use "procs" instead */
4100 .open = cgroup_tasks_open,
4101 .write_u64 = cgroup_tasks_write,
4102 .release = cgroup_pidlist_release,
4103 .mode = S_IRUGO | S_IWUSR,
4104 },
4105 {
4106 .name = "notify_on_release",
4107 .flags = CFTYPE_INSANE,
4108 .read_u64 = cgroup_read_notify_on_release,
4109 .write_u64 = cgroup_write_notify_on_release,
4110 },
6e6ff25b
TH
4111 {
4112 .name = "release_agent",
cc5943a7 4113 .flags = CFTYPE_INSANE | CFTYPE_ONLY_ON_ROOT,
6e6ff25b
TH
4114 .read_seq_string = cgroup_release_agent_show,
4115 .write_string = cgroup_release_agent_write,
4116 .max_write_len = PATH_MAX,
4117 },
db0416b6 4118 { } /* terminate */
bbcb81d0
PM
4119};
4120
13af07df
AR
4121/**
4122 * cgroup_populate_dir - selectively creation of files in a directory
4123 * @cgrp: target cgroup
4124 * @base_files: true if the base files should be added
4125 * @subsys_mask: mask of the subsystem ids whose files should be added
4126 */
4127static int cgroup_populate_dir(struct cgroup *cgrp, bool base_files,
4128 unsigned long subsys_mask)
ddbcc7e8
PM
4129{
4130 int err;
4131 struct cgroup_subsys *ss;
4132
13af07df 4133 if (base_files) {
d5c56ced 4134 err = cgroup_addrm_files(cgrp, NULL, cgroup_base_files, true);
13af07df
AR
4135 if (err < 0)
4136 return err;
4137 }
bbcb81d0 4138
8e3f6541 4139 /* process cftsets of each subsystem */
bd89aabc 4140 for_each_subsys(cgrp->root, ss) {
8e3f6541 4141 struct cftype_set *set;
13af07df
AR
4142 if (!test_bit(ss->subsys_id, &subsys_mask))
4143 continue;
8e3f6541 4144
db0416b6 4145 list_for_each_entry(set, &ss->cftsets, node)
79578621 4146 cgroup_addrm_files(cgrp, ss, set->cfts, true);
ddbcc7e8 4147 }
8e3f6541 4148
38460b48
KH
4149 /* This cgroup is ready now */
4150 for_each_subsys(cgrp->root, ss) {
4151 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
4152 /*
4153 * Update id->css pointer and make this css visible from
4154 * CSS ID functions. This pointer will be dereferened
4155 * from RCU-read-side without locks.
4156 */
4157 if (css->id)
4158 rcu_assign_pointer(css->id->css, css);
4159 }
ddbcc7e8
PM
4160
4161 return 0;
4162}
4163
48ddbe19
TH
4164static void css_dput_fn(struct work_struct *work)
4165{
4166 struct cgroup_subsys_state *css =
4167 container_of(work, struct cgroup_subsys_state, dput_work);
4168
1c8158ee 4169 cgroup_dput(css->cgroup);
48ddbe19
TH
4170}
4171
d3daf28d
TH
4172static void css_release(struct percpu_ref *ref)
4173{
4174 struct cgroup_subsys_state *css =
4175 container_of(ref, struct cgroup_subsys_state, refcnt);
4176
4177 schedule_work(&css->dput_work);
4178}
4179
ddbcc7e8
PM
4180static void init_cgroup_css(struct cgroup_subsys_state *css,
4181 struct cgroup_subsys *ss,
bd89aabc 4182 struct cgroup *cgrp)
ddbcc7e8 4183{
bd89aabc 4184 css->cgroup = cgrp;
ddbcc7e8 4185 css->flags = 0;
38460b48 4186 css->id = NULL;
9871bf95 4187 if (cgrp == cgroup_dummy_top)
38b53aba 4188 css->flags |= CSS_ROOT;
bd89aabc
PM
4189 BUG_ON(cgrp->subsys[ss->subsys_id]);
4190 cgrp->subsys[ss->subsys_id] = css;
48ddbe19
TH
4191
4192 /*
ed957793
TH
4193 * css holds an extra ref to @cgrp->dentry which is put on the last
4194 * css_put(). dput() requires process context, which css_put() may
4195 * be called without. @css->dput_work will be used to invoke
4196 * dput() asynchronously from css_put().
48ddbe19
TH
4197 */
4198 INIT_WORK(&css->dput_work, css_dput_fn);
ddbcc7e8
PM
4199}
4200
b1929db4
TH
4201/* invoke ->post_create() on a new CSS and mark it online if successful */
4202static int online_css(struct cgroup_subsys *ss, struct cgroup *cgrp)
a31f2d3f 4203{
b1929db4
TH
4204 int ret = 0;
4205
a31f2d3f
TH
4206 lockdep_assert_held(&cgroup_mutex);
4207
92fb9748
TH
4208 if (ss->css_online)
4209 ret = ss->css_online(cgrp);
b1929db4
TH
4210 if (!ret)
4211 cgrp->subsys[ss->subsys_id]->flags |= CSS_ONLINE;
4212 return ret;
a31f2d3f
TH
4213}
4214
4215/* if the CSS is online, invoke ->pre_destory() on it and mark it offline */
4216static void offline_css(struct cgroup_subsys *ss, struct cgroup *cgrp)
4217 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
4218{
4219 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
4220
4221 lockdep_assert_held(&cgroup_mutex);
4222
4223 if (!(css->flags & CSS_ONLINE))
4224 return;
4225
d7eeac19 4226 if (ss->css_offline)
92fb9748 4227 ss->css_offline(cgrp);
a31f2d3f
TH
4228
4229 cgrp->subsys[ss->subsys_id]->flags &= ~CSS_ONLINE;
4230}
4231
ddbcc7e8 4232/*
a043e3b2
LZ
4233 * cgroup_create - create a cgroup
4234 * @parent: cgroup that will be parent of the new cgroup
4235 * @dentry: dentry of the new cgroup
4236 * @mode: mode to set on new inode
ddbcc7e8 4237 *
a043e3b2 4238 * Must be called with the mutex on the parent inode held
ddbcc7e8 4239 */
ddbcc7e8 4240static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
a5e7ed32 4241 umode_t mode)
ddbcc7e8 4242{
bd89aabc 4243 struct cgroup *cgrp;
65dff759 4244 struct cgroup_name *name;
ddbcc7e8
PM
4245 struct cgroupfs_root *root = parent->root;
4246 int err = 0;
4247 struct cgroup_subsys *ss;
4248 struct super_block *sb = root->sb;
4249
0a950f65 4250 /* allocate the cgroup and its ID, 0 is reserved for the root */
bd89aabc
PM
4251 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
4252 if (!cgrp)
ddbcc7e8
PM
4253 return -ENOMEM;
4254
65dff759
LZ
4255 name = cgroup_alloc_name(dentry);
4256 if (!name)
4257 goto err_free_cgrp;
4258 rcu_assign_pointer(cgrp->name, name);
4259
0a950f65
TH
4260 cgrp->id = ida_simple_get(&root->cgroup_ida, 1, 0, GFP_KERNEL);
4261 if (cgrp->id < 0)
65dff759 4262 goto err_free_name;
0a950f65 4263
976c06bc
TH
4264 /*
4265 * Only live parents can have children. Note that the liveliness
4266 * check isn't strictly necessary because cgroup_mkdir() and
4267 * cgroup_rmdir() are fully synchronized by i_mutex; however, do it
4268 * anyway so that locking is contained inside cgroup proper and we
4269 * don't get nasty surprises if we ever grow another caller.
4270 */
4271 if (!cgroup_lock_live_group(parent)) {
4272 err = -ENODEV;
0a950f65 4273 goto err_free_id;
976c06bc
TH
4274 }
4275
ddbcc7e8
PM
4276 /* Grab a reference on the superblock so the hierarchy doesn't
4277 * get deleted on unmount if there are child cgroups. This
4278 * can be done outside cgroup_mutex, since the sb can't
4279 * disappear while someone has an open control file on the
4280 * fs */
4281 atomic_inc(&sb->s_active);
4282
cc31edce 4283 init_cgroup_housekeeping(cgrp);
ddbcc7e8 4284
fe1c06ca
LZ
4285 dentry->d_fsdata = cgrp;
4286 cgrp->dentry = dentry;
4287
bd89aabc
PM
4288 cgrp->parent = parent;
4289 cgrp->root = parent->root;
ddbcc7e8 4290
b6abdb0e
LZ
4291 if (notify_on_release(parent))
4292 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
4293
2260e7fc
TH
4294 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
4295 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
97978e6d 4296
ddbcc7e8 4297 for_each_subsys(root, ss) {
8c7f6edb 4298 struct cgroup_subsys_state *css;
4528fd05 4299
92fb9748 4300 css = ss->css_alloc(cgrp);
ddbcc7e8
PM
4301 if (IS_ERR(css)) {
4302 err = PTR_ERR(css);
4b8b47eb 4303 goto err_free_all;
ddbcc7e8 4304 }
d3daf28d
TH
4305
4306 err = percpu_ref_init(&css->refcnt, css_release);
4307 if (err)
4308 goto err_free_all;
4309
bd89aabc 4310 init_cgroup_css(css, ss, cgrp);
d3daf28d 4311
4528fd05
LZ
4312 if (ss->use_id) {
4313 err = alloc_css_id(ss, parent, cgrp);
4314 if (err)
4b8b47eb 4315 goto err_free_all;
4528fd05 4316 }
ddbcc7e8
PM
4317 }
4318
4e139afc
TH
4319 /*
4320 * Create directory. cgroup_create_file() returns with the new
4321 * directory locked on success so that it can be populated without
4322 * dropping cgroup_mutex.
4323 */
28fd6f30 4324 err = cgroup_create_file(dentry, S_IFDIR | mode, sb);
ddbcc7e8 4325 if (err < 0)
4b8b47eb 4326 goto err_free_all;
4e139afc 4327 lockdep_assert_held(&dentry->d_inode->i_mutex);
ddbcc7e8 4328
00356bd5 4329 cgrp->serial_nr = cgroup_serial_nr_next++;
53fa5261 4330
4e139afc 4331 /* allocation complete, commit to creation */
4e139afc
TH
4332 list_add_tail_rcu(&cgrp->sibling, &cgrp->parent->children);
4333 root->number_of_cgroups++;
28fd6f30 4334
b1929db4
TH
4335 /* each css holds a ref to the cgroup's dentry */
4336 for_each_subsys(root, ss)
ed957793 4337 dget(dentry);
48ddbe19 4338
415cf07a
LZ
4339 /* hold a ref to the parent's dentry */
4340 dget(parent->dentry);
4341
b1929db4
TH
4342 /* creation succeeded, notify subsystems */
4343 for_each_subsys(root, ss) {
4344 err = online_css(ss, cgrp);
4345 if (err)
4346 goto err_destroy;
1f869e87
GC
4347
4348 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
4349 parent->parent) {
4350 pr_warning("cgroup: %s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
4351 current->comm, current->pid, ss->name);
4352 if (!strcmp(ss->name, "memory"))
4353 pr_warning("cgroup: \"memory\" requires setting use_hierarchy to 1 on the root.\n");
4354 ss->warned_broken_hierarchy = true;
4355 }
a8638030
TH
4356 }
4357
a1a71b45 4358 err = cgroup_populate_dir(cgrp, true, root->subsys_mask);
4b8b47eb
TH
4359 if (err)
4360 goto err_destroy;
ddbcc7e8
PM
4361
4362 mutex_unlock(&cgroup_mutex);
bd89aabc 4363 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8
PM
4364
4365 return 0;
4366
4b8b47eb 4367err_free_all:
ddbcc7e8 4368 for_each_subsys(root, ss) {
d3daf28d
TH
4369 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
4370
4371 if (css) {
4372 percpu_ref_cancel_init(&css->refcnt);
92fb9748 4373 ss->css_free(cgrp);
d3daf28d 4374 }
ddbcc7e8 4375 }
ddbcc7e8 4376 mutex_unlock(&cgroup_mutex);
ddbcc7e8
PM
4377 /* Release the reference count that we took on the superblock */
4378 deactivate_super(sb);
0a950f65
TH
4379err_free_id:
4380 ida_simple_remove(&root->cgroup_ida, cgrp->id);
65dff759
LZ
4381err_free_name:
4382 kfree(rcu_dereference_raw(cgrp->name));
4b8b47eb 4383err_free_cgrp:
bd89aabc 4384 kfree(cgrp);
ddbcc7e8 4385 return err;
4b8b47eb
TH
4386
4387err_destroy:
4388 cgroup_destroy_locked(cgrp);
4389 mutex_unlock(&cgroup_mutex);
4390 mutex_unlock(&dentry->d_inode->i_mutex);
4391 return err;
ddbcc7e8
PM
4392}
4393
18bb1db3 4394static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
ddbcc7e8
PM
4395{
4396 struct cgroup *c_parent = dentry->d_parent->d_fsdata;
4397
4398 /* the vfs holds inode->i_mutex already */
4399 return cgroup_create(c_parent, dentry, mode | S_IFDIR);
4400}
4401
d3daf28d
TH
4402static void cgroup_css_killed(struct cgroup *cgrp)
4403{
4404 if (!atomic_dec_and_test(&cgrp->css_kill_cnt))
4405 return;
4406
4407 /* percpu ref's of all css's are killed, kick off the next step */
4408 INIT_WORK(&cgrp->destroy_work, cgroup_offline_fn);
4409 schedule_work(&cgrp->destroy_work);
4410}
4411
4412static void css_ref_killed_fn(struct percpu_ref *ref)
4413{
4414 struct cgroup_subsys_state *css =
4415 container_of(ref, struct cgroup_subsys_state, refcnt);
4416
4417 cgroup_css_killed(css->cgroup);
4418}
4419
4420/**
4421 * cgroup_destroy_locked - the first stage of cgroup destruction
4422 * @cgrp: cgroup to be destroyed
4423 *
4424 * css's make use of percpu refcnts whose killing latency shouldn't be
4425 * exposed to userland and are RCU protected. Also, cgroup core needs to
4426 * guarantee that css_tryget() won't succeed by the time ->css_offline() is
4427 * invoked. To satisfy all the requirements, destruction is implemented in
4428 * the following two steps.
4429 *
4430 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
4431 * userland visible parts and start killing the percpu refcnts of
4432 * css's. Set up so that the next stage will be kicked off once all
4433 * the percpu refcnts are confirmed to be killed.
4434 *
4435 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
4436 * rest of destruction. Once all cgroup references are gone, the
4437 * cgroup is RCU-freed.
4438 *
4439 * This function implements s1. After this step, @cgrp is gone as far as
4440 * the userland is concerned and a new cgroup with the same name may be
4441 * created. As cgroup doesn't care about the names internally, this
4442 * doesn't cause any problem.
4443 */
42809dd4
TH
4444static int cgroup_destroy_locked(struct cgroup *cgrp)
4445 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
ddbcc7e8 4446{
42809dd4 4447 struct dentry *d = cgrp->dentry;
4ab78683 4448 struct cgroup_event *event, *tmp;
ed957793 4449 struct cgroup_subsys *ss;
ddd69148 4450 bool empty;
ddbcc7e8 4451
42809dd4
TH
4452 lockdep_assert_held(&d->d_inode->i_mutex);
4453 lockdep_assert_held(&cgroup_mutex);
4454
ddd69148 4455 /*
6f3d828f
TH
4456 * css_set_lock synchronizes access to ->cset_links and prevents
4457 * @cgrp from being removed while __put_css_set() is in progress.
ddd69148
TH
4458 */
4459 read_lock(&css_set_lock);
6f3d828f 4460 empty = list_empty(&cgrp->cset_links) && list_empty(&cgrp->children);
ddd69148
TH
4461 read_unlock(&css_set_lock);
4462 if (!empty)
ddbcc7e8 4463 return -EBUSY;
a043e3b2 4464
88703267 4465 /*
d3daf28d
TH
4466 * Block new css_tryget() by killing css refcnts. cgroup core
4467 * guarantees that, by the time ->css_offline() is invoked, no new
4468 * css reference will be given out via css_tryget(). We can't
4469 * simply call percpu_ref_kill() and proceed to offlining css's
4470 * because percpu_ref_kill() doesn't guarantee that the ref is seen
4471 * as killed on all CPUs on return.
4472 *
4473 * Use percpu_ref_kill_and_confirm() to get notifications as each
4474 * css is confirmed to be seen as killed on all CPUs. The
4475 * notification callback keeps track of the number of css's to be
4476 * killed and schedules cgroup_offline_fn() to perform the rest of
4477 * destruction once the percpu refs of all css's are confirmed to
4478 * be killed.
88703267 4479 */
d3daf28d 4480 atomic_set(&cgrp->css_kill_cnt, 1);
ed957793
TH
4481 for_each_subsys(cgrp->root, ss) {
4482 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
88703267 4483
d3daf28d
TH
4484 /*
4485 * Killing would put the base ref, but we need to keep it
4486 * alive until after ->css_offline.
4487 */
4488 percpu_ref_get(&css->refcnt);
4489
4490 atomic_inc(&cgrp->css_kill_cnt);
4491 percpu_ref_kill_and_confirm(&css->refcnt, css_ref_killed_fn);
88703267 4492 }
d3daf28d 4493 cgroup_css_killed(cgrp);
455050d2
TH
4494
4495 /*
4496 * Mark @cgrp dead. This prevents further task migration and child
4497 * creation by disabling cgroup_lock_live_group(). Note that
4498 * CGRP_DEAD assertion is depended upon by cgroup_next_sibling() to
4499 * resume iteration after dropping RCU read lock. See
4500 * cgroup_next_sibling() for details.
4501 */
54766d4a 4502 set_bit(CGRP_DEAD, &cgrp->flags);
ddbcc7e8 4503
455050d2
TH
4504 /* CGRP_DEAD is set, remove from ->release_list for the last time */
4505 raw_spin_lock(&release_list_lock);
4506 if (!list_empty(&cgrp->release_list))
4507 list_del_init(&cgrp->release_list);
4508 raw_spin_unlock(&release_list_lock);
4509
4510 /*
4511 * Remove @cgrp directory. The removal puts the base ref but we
4512 * aren't quite done with @cgrp yet, so hold onto it.
4513 */
4514 dget(d);
4515 cgroup_d_remove_dir(d);
4516
4517 /*
4518 * Unregister events and notify userspace.
4519 * Notify userspace about cgroup removing only after rmdir of cgroup
4520 * directory to avoid race between userspace and kernelspace.
4521 */
4522 spin_lock(&cgrp->event_list_lock);
4523 list_for_each_entry_safe(event, tmp, &cgrp->event_list, list) {
4524 list_del_init(&event->list);
4525 schedule_work(&event->remove);
4526 }
4527 spin_unlock(&cgrp->event_list_lock);
4528
ea15f8cc
TH
4529 return 0;
4530};
4531
d3daf28d
TH
4532/**
4533 * cgroup_offline_fn - the second step of cgroup destruction
4534 * @work: cgroup->destroy_free_work
4535 *
4536 * This function is invoked from a work item for a cgroup which is being
4537 * destroyed after the percpu refcnts of all css's are guaranteed to be
4538 * seen as killed on all CPUs, and performs the rest of destruction. This
4539 * is the second step of destruction described in the comment above
4540 * cgroup_destroy_locked().
4541 */
ea15f8cc
TH
4542static void cgroup_offline_fn(struct work_struct *work)
4543{
4544 struct cgroup *cgrp = container_of(work, struct cgroup, destroy_work);
4545 struct cgroup *parent = cgrp->parent;
4546 struct dentry *d = cgrp->dentry;
4547 struct cgroup_subsys *ss;
4548
4549 mutex_lock(&cgroup_mutex);
4550
d3daf28d
TH
4551 /*
4552 * css_tryget() is guaranteed to fail now. Tell subsystems to
4553 * initate destruction.
4554 */
1a90dd50 4555 for_each_subsys(cgrp->root, ss)
a31f2d3f 4556 offline_css(ss, cgrp);
ed957793
TH
4557
4558 /*
d3daf28d
TH
4559 * Put the css refs from cgroup_destroy_locked(). Each css holds
4560 * an extra reference to the cgroup's dentry and cgroup removal
4561 * proceeds regardless of css refs. On the last put of each css,
4562 * whenever that may be, the extra dentry ref is put so that dentry
4563 * destruction happens only after all css's are released.
ed957793 4564 */
e9316080
TH
4565 for_each_subsys(cgrp->root, ss)
4566 css_put(cgrp->subsys[ss->subsys_id]);
ddbcc7e8 4567
999cd8a4 4568 /* delete this cgroup from parent->children */
eb6fd504 4569 list_del_rcu(&cgrp->sibling);
b0ca5a84 4570
ddbcc7e8 4571 dput(d);
ddbcc7e8 4572
bd89aabc 4573 set_bit(CGRP_RELEASABLE, &parent->flags);
81a6a5cd
PM
4574 check_for_release(parent);
4575
ea15f8cc 4576 mutex_unlock(&cgroup_mutex);
ddbcc7e8
PM
4577}
4578
42809dd4
TH
4579static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
4580{
4581 int ret;
4582
4583 mutex_lock(&cgroup_mutex);
4584 ret = cgroup_destroy_locked(dentry->d_fsdata);
4585 mutex_unlock(&cgroup_mutex);
4586
4587 return ret;
4588}
4589
8e3f6541
TH
4590static void __init_or_module cgroup_init_cftsets(struct cgroup_subsys *ss)
4591{
4592 INIT_LIST_HEAD(&ss->cftsets);
4593
4594 /*
4595 * base_cftset is embedded in subsys itself, no need to worry about
4596 * deregistration.
4597 */
4598 if (ss->base_cftypes) {
4599 ss->base_cftset.cfts = ss->base_cftypes;
4600 list_add_tail(&ss->base_cftset.node, &ss->cftsets);
4601 }
4602}
4603
06a11920 4604static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
ddbcc7e8 4605{
ddbcc7e8 4606 struct cgroup_subsys_state *css;
cfe36bde
DC
4607
4608 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
ddbcc7e8 4609
648bb56d
TH
4610 mutex_lock(&cgroup_mutex);
4611
8e3f6541
TH
4612 /* init base cftset */
4613 cgroup_init_cftsets(ss);
4614
ddbcc7e8 4615 /* Create the top cgroup state for this subsystem */
9871bf95
TH
4616 list_add(&ss->sibling, &cgroup_dummy_root.subsys_list);
4617 ss->root = &cgroup_dummy_root;
4618 css = ss->css_alloc(cgroup_dummy_top);
ddbcc7e8
PM
4619 /* We don't handle early failures gracefully */
4620 BUG_ON(IS_ERR(css));
9871bf95 4621 init_cgroup_css(css, ss, cgroup_dummy_top);
ddbcc7e8 4622
e8d55fde 4623 /* Update the init_css_set to contain a subsys
817929ec 4624 * pointer to this state - since the subsystem is
e8d55fde
LZ
4625 * newly registered, all tasks and hence the
4626 * init_css_set is in the subsystem's top cgroup. */
b48c6a80 4627 init_css_set.subsys[ss->subsys_id] = css;
ddbcc7e8
PM
4628
4629 need_forkexit_callback |= ss->fork || ss->exit;
4630
e8d55fde
LZ
4631 /* At system boot, before all subsystems have been
4632 * registered, no tasks have been forked, so we don't
4633 * need to invoke fork callbacks here. */
4634 BUG_ON(!list_empty(&init_task.tasks));
4635
9871bf95 4636 BUG_ON(online_css(ss, cgroup_dummy_top));
a8638030 4637
648bb56d
TH
4638 mutex_unlock(&cgroup_mutex);
4639
e6a1105b
BB
4640 /* this function shouldn't be used with modular subsystems, since they
4641 * need to register a subsys_id, among other things */
4642 BUG_ON(ss->module);
4643}
4644
4645/**
4646 * cgroup_load_subsys: load and register a modular subsystem at runtime
4647 * @ss: the subsystem to load
4648 *
4649 * This function should be called in a modular subsystem's initcall. If the
88393161 4650 * subsystem is built as a module, it will be assigned a new subsys_id and set
e6a1105b
BB
4651 * up for use. If the subsystem is built-in anyway, work is delegated to the
4652 * simpler cgroup_init_subsys.
4653 */
4654int __init_or_module cgroup_load_subsys(struct cgroup_subsys *ss)
4655{
e6a1105b 4656 struct cgroup_subsys_state *css;
d19e19de 4657 int i, ret;
b67bfe0d 4658 struct hlist_node *tmp;
5abb8855 4659 struct css_set *cset;
0ac801fe 4660 unsigned long key;
e6a1105b
BB
4661
4662 /* check name and function validity */
4663 if (ss->name == NULL || strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN ||
92fb9748 4664 ss->css_alloc == NULL || ss->css_free == NULL)
e6a1105b
BB
4665 return -EINVAL;
4666
4667 /*
4668 * we don't support callbacks in modular subsystems. this check is
4669 * before the ss->module check for consistency; a subsystem that could
4670 * be a module should still have no callbacks even if the user isn't
4671 * compiling it as one.
4672 */
4673 if (ss->fork || ss->exit)
4674 return -EINVAL;
4675
4676 /*
4677 * an optionally modular subsystem is built-in: we want to do nothing,
4678 * since cgroup_init_subsys will have already taken care of it.
4679 */
4680 if (ss->module == NULL) {
be45c900 4681 /* a sanity check */
9871bf95 4682 BUG_ON(cgroup_subsys[ss->subsys_id] != ss);
e6a1105b
BB
4683 return 0;
4684 }
4685
8e3f6541
TH
4686 /* init base cftset */
4687 cgroup_init_cftsets(ss);
4688
e6a1105b 4689 mutex_lock(&cgroup_mutex);
9871bf95 4690 cgroup_subsys[ss->subsys_id] = ss;
e6a1105b
BB
4691
4692 /*
92fb9748 4693 * no ss->css_alloc seems to need anything important in the ss
9871bf95 4694 * struct, so this can happen first (i.e. before the dummy root
92fb9748 4695 * attachment).
e6a1105b 4696 */
9871bf95 4697 css = ss->css_alloc(cgroup_dummy_top);
e6a1105b 4698 if (IS_ERR(css)) {
9871bf95
TH
4699 /* failure case - need to deassign the cgroup_subsys[] slot. */
4700 cgroup_subsys[ss->subsys_id] = NULL;
e6a1105b
BB
4701 mutex_unlock(&cgroup_mutex);
4702 return PTR_ERR(css);
4703 }
4704
9871bf95
TH
4705 list_add(&ss->sibling, &cgroup_dummy_root.subsys_list);
4706 ss->root = &cgroup_dummy_root;
e6a1105b
BB
4707
4708 /* our new subsystem will be attached to the dummy hierarchy. */
9871bf95 4709 init_cgroup_css(css, ss, cgroup_dummy_top);
e6a1105b
BB
4710 /* init_idr must be after init_cgroup_css because it sets css->id. */
4711 if (ss->use_id) {
d19e19de
TH
4712 ret = cgroup_init_idr(ss, css);
4713 if (ret)
4714 goto err_unload;
e6a1105b
BB
4715 }
4716
4717 /*
4718 * Now we need to entangle the css into the existing css_sets. unlike
4719 * in cgroup_init_subsys, there are now multiple css_sets, so each one
4720 * will need a new pointer to it; done by iterating the css_set_table.
4721 * furthermore, modifying the existing css_sets will corrupt the hash
4722 * table state, so each changed css_set will need its hash recomputed.
4723 * this is all done under the css_set_lock.
4724 */
4725 write_lock(&css_set_lock);
5abb8855 4726 hash_for_each_safe(css_set_table, i, tmp, cset, hlist) {
0ac801fe 4727 /* skip entries that we already rehashed */
5abb8855 4728 if (cset->subsys[ss->subsys_id])
0ac801fe
LZ
4729 continue;
4730 /* remove existing entry */
5abb8855 4731 hash_del(&cset->hlist);
0ac801fe 4732 /* set new value */
5abb8855 4733 cset->subsys[ss->subsys_id] = css;
0ac801fe 4734 /* recompute hash and restore entry */
5abb8855
TH
4735 key = css_set_hash(cset->subsys);
4736 hash_add(css_set_table, &cset->hlist, key);
e6a1105b
BB
4737 }
4738 write_unlock(&css_set_lock);
4739
9871bf95 4740 ret = online_css(ss, cgroup_dummy_top);
b1929db4
TH
4741 if (ret)
4742 goto err_unload;
a8638030 4743
e6a1105b
BB
4744 /* success! */
4745 mutex_unlock(&cgroup_mutex);
4746 return 0;
d19e19de
TH
4747
4748err_unload:
4749 mutex_unlock(&cgroup_mutex);
4750 /* @ss can't be mounted here as try_module_get() would fail */
4751 cgroup_unload_subsys(ss);
4752 return ret;
ddbcc7e8 4753}
e6a1105b 4754EXPORT_SYMBOL_GPL(cgroup_load_subsys);
ddbcc7e8 4755
cf5d5941
BB
4756/**
4757 * cgroup_unload_subsys: unload a modular subsystem
4758 * @ss: the subsystem to unload
4759 *
4760 * This function should be called in a modular subsystem's exitcall. When this
4761 * function is invoked, the refcount on the subsystem's module will be 0, so
4762 * the subsystem will not be attached to any hierarchy.
4763 */
4764void cgroup_unload_subsys(struct cgroup_subsys *ss)
4765{
69d0206c 4766 struct cgrp_cset_link *link;
cf5d5941
BB
4767
4768 BUG_ON(ss->module == NULL);
4769
4770 /*
4771 * we shouldn't be called if the subsystem is in use, and the use of
4772 * try_module_get in parse_cgroupfs_options should ensure that it
4773 * doesn't start being used while we're killing it off.
4774 */
9871bf95 4775 BUG_ON(ss->root != &cgroup_dummy_root);
cf5d5941
BB
4776
4777 mutex_lock(&cgroup_mutex);
02ae7486 4778
9871bf95 4779 offline_css(ss, cgroup_dummy_top);
02ae7486 4780
c897ff68 4781 if (ss->use_id)
02ae7486 4782 idr_destroy(&ss->idr);
02ae7486 4783
cf5d5941 4784 /* deassign the subsys_id */
9871bf95 4785 cgroup_subsys[ss->subsys_id] = NULL;
cf5d5941 4786
9871bf95 4787 /* remove subsystem from the dummy root's list of subsystems */
8d258797 4788 list_del_init(&ss->sibling);
cf5d5941
BB
4789
4790 /*
9871bf95
TH
4791 * disentangle the css from all css_sets attached to the dummy
4792 * top. as in loading, we need to pay our respects to the hashtable
4793 * gods.
cf5d5941
BB
4794 */
4795 write_lock(&css_set_lock);
9871bf95 4796 list_for_each_entry(link, &cgroup_dummy_top->cset_links, cset_link) {
69d0206c 4797 struct css_set *cset = link->cset;
0ac801fe 4798 unsigned long key;
cf5d5941 4799
5abb8855
TH
4800 hash_del(&cset->hlist);
4801 cset->subsys[ss->subsys_id] = NULL;
4802 key = css_set_hash(cset->subsys);
4803 hash_add(css_set_table, &cset->hlist, key);
cf5d5941
BB
4804 }
4805 write_unlock(&css_set_lock);
4806
4807 /*
9871bf95
TH
4808 * remove subsystem's css from the cgroup_dummy_top and free it -
4809 * need to free before marking as null because ss->css_free needs
4810 * the cgrp->subsys pointer to find their state. note that this
4811 * also takes care of freeing the css_id.
cf5d5941 4812 */
9871bf95
TH
4813 ss->css_free(cgroup_dummy_top);
4814 cgroup_dummy_top->subsys[ss->subsys_id] = NULL;
cf5d5941
BB
4815
4816 mutex_unlock(&cgroup_mutex);
4817}
4818EXPORT_SYMBOL_GPL(cgroup_unload_subsys);
4819
ddbcc7e8 4820/**
a043e3b2
LZ
4821 * cgroup_init_early - cgroup initialization at system boot
4822 *
4823 * Initialize cgroups at system boot, and initialize any
4824 * subsystems that request early init.
ddbcc7e8
PM
4825 */
4826int __init cgroup_init_early(void)
4827{
4828 int i;
146aa1bd 4829 atomic_set(&init_css_set.refcount, 1);
69d0206c 4830 INIT_LIST_HEAD(&init_css_set.cgrp_links);
817929ec 4831 INIT_LIST_HEAD(&init_css_set.tasks);
472b1053 4832 INIT_HLIST_NODE(&init_css_set.hlist);
817929ec 4833 css_set_count = 1;
9871bf95
TH
4834 init_cgroup_root(&cgroup_dummy_root);
4835 cgroup_root_count = 1;
817929ec
PM
4836 init_task.cgroups = &init_css_set;
4837
69d0206c 4838 init_cgrp_cset_link.cset = &init_css_set;
9871bf95
TH
4839 init_cgrp_cset_link.cgrp = cgroup_dummy_top;
4840 list_add(&init_cgrp_cset_link.cset_link, &cgroup_dummy_top->cset_links);
69d0206c 4841 list_add(&init_cgrp_cset_link.cgrp_link, &init_css_set.cgrp_links);
ddbcc7e8 4842
be45c900 4843 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
9871bf95 4844 struct cgroup_subsys *ss = cgroup_subsys[i];
ddbcc7e8 4845
be45c900
DW
4846 /* at bootup time, we don't worry about modular subsystems */
4847 if (!ss || ss->module)
4848 continue;
4849
ddbcc7e8
PM
4850 BUG_ON(!ss->name);
4851 BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
92fb9748
TH
4852 BUG_ON(!ss->css_alloc);
4853 BUG_ON(!ss->css_free);
ddbcc7e8 4854 if (ss->subsys_id != i) {
cfe36bde 4855 printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
ddbcc7e8
PM
4856 ss->name, ss->subsys_id);
4857 BUG();
4858 }
4859
4860 if (ss->early_init)
4861 cgroup_init_subsys(ss);
4862 }
4863 return 0;
4864}
4865
4866/**
a043e3b2
LZ
4867 * cgroup_init - cgroup initialization
4868 *
4869 * Register cgroup filesystem and /proc file, and initialize
4870 * any subsystems that didn't request early init.
ddbcc7e8
PM
4871 */
4872int __init cgroup_init(void)
4873{
4874 int err;
4875 int i;
0ac801fe 4876 unsigned long key;
a424316c
PM
4877
4878 err = bdi_init(&cgroup_backing_dev_info);
4879 if (err)
4880 return err;
ddbcc7e8 4881
be45c900 4882 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
9871bf95 4883 struct cgroup_subsys *ss = cgroup_subsys[i];
be45c900
DW
4884
4885 /* at bootup time, we don't worry about modular subsystems */
4886 if (!ss || ss->module)
4887 continue;
ddbcc7e8
PM
4888 if (!ss->early_init)
4889 cgroup_init_subsys(ss);
38460b48 4890 if (ss->use_id)
e6a1105b 4891 cgroup_init_idr(ss, init_css_set.subsys[ss->subsys_id]);
ddbcc7e8
PM
4892 }
4893
472b1053 4894 /* Add init_css_set to the hash table */
0ac801fe
LZ
4895 key = css_set_hash(init_css_set.subsys);
4896 hash_add(css_set_table, &init_css_set.hlist, key);
fa3ca07e
TH
4897
4898 /* allocate id for the dummy hierarchy */
54e7b4eb
TH
4899 mutex_lock(&cgroup_mutex);
4900 mutex_lock(&cgroup_root_mutex);
4901
9871bf95 4902 BUG_ON(cgroup_init_root_id(&cgroup_dummy_root));
676db4af 4903
54e7b4eb
TH
4904 mutex_unlock(&cgroup_root_mutex);
4905 mutex_unlock(&cgroup_mutex);
4906
676db4af
GKH
4907 cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
4908 if (!cgroup_kobj) {
4909 err = -ENOMEM;
4910 goto out;
4911 }
4912
ddbcc7e8 4913 err = register_filesystem(&cgroup_fs_type);
676db4af
GKH
4914 if (err < 0) {
4915 kobject_put(cgroup_kobj);
ddbcc7e8 4916 goto out;
676db4af 4917 }
ddbcc7e8 4918
46ae220b 4919 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
a424316c 4920
ddbcc7e8 4921out:
a424316c
PM
4922 if (err)
4923 bdi_destroy(&cgroup_backing_dev_info);
4924
ddbcc7e8
PM
4925 return err;
4926}
b4f48b63 4927
a424316c
PM
4928/*
4929 * proc_cgroup_show()
4930 * - Print task's cgroup paths into seq_file, one line for each hierarchy
4931 * - Used for /proc/<pid>/cgroup.
4932 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
4933 * doesn't really matter if tsk->cgroup changes after we read it,
956db3ca 4934 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
a424316c
PM
4935 * anyway. No need to check that tsk->cgroup != NULL, thanks to
4936 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
4937 * cgroup to top_cgroup.
4938 */
4939
4940/* TODO: Use a proper seq_file iterator */
8d8b97ba 4941int proc_cgroup_show(struct seq_file *m, void *v)
a424316c
PM
4942{
4943 struct pid *pid;
4944 struct task_struct *tsk;
4945 char *buf;
4946 int retval;
4947 struct cgroupfs_root *root;
4948
4949 retval = -ENOMEM;
4950 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4951 if (!buf)
4952 goto out;
4953
4954 retval = -ESRCH;
4955 pid = m->private;
4956 tsk = get_pid_task(pid, PIDTYPE_PID);
4957 if (!tsk)
4958 goto out_free;
4959
4960 retval = 0;
4961
4962 mutex_lock(&cgroup_mutex);
4963
e5f6a860 4964 for_each_active_root(root) {
a424316c 4965 struct cgroup_subsys *ss;
bd89aabc 4966 struct cgroup *cgrp;
a424316c
PM
4967 int count = 0;
4968
2c6ab6d2 4969 seq_printf(m, "%d:", root->hierarchy_id);
a424316c
PM
4970 for_each_subsys(root, ss)
4971 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
c6d57f33
PM
4972 if (strlen(root->name))
4973 seq_printf(m, "%sname=%s", count ? "," : "",
4974 root->name);
a424316c 4975 seq_putc(m, ':');
7717f7ba 4976 cgrp = task_cgroup_from_root(tsk, root);
bd89aabc 4977 retval = cgroup_path(cgrp, buf, PAGE_SIZE);
a424316c
PM
4978 if (retval < 0)
4979 goto out_unlock;
4980 seq_puts(m, buf);
4981 seq_putc(m, '\n');
4982 }
4983
4984out_unlock:
4985 mutex_unlock(&cgroup_mutex);
4986 put_task_struct(tsk);
4987out_free:
4988 kfree(buf);
4989out:
4990 return retval;
4991}
4992
a424316c
PM
4993/* Display information about each subsystem and each hierarchy */
4994static int proc_cgroupstats_show(struct seq_file *m, void *v)
4995{
4996 int i;
a424316c 4997
8bab8dde 4998 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
aae8aab4
BB
4999 /*
5000 * ideally we don't want subsystems moving around while we do this.
5001 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
5002 * subsys/hierarchy state.
5003 */
a424316c 5004 mutex_lock(&cgroup_mutex);
a424316c 5005 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
9871bf95 5006 struct cgroup_subsys *ss = cgroup_subsys[i];
aae8aab4
BB
5007 if (ss == NULL)
5008 continue;
2c6ab6d2
PM
5009 seq_printf(m, "%s\t%d\t%d\t%d\n",
5010 ss->name, ss->root->hierarchy_id,
8bab8dde 5011 ss->root->number_of_cgroups, !ss->disabled);
a424316c
PM
5012 }
5013 mutex_unlock(&cgroup_mutex);
5014 return 0;
5015}
5016
5017static int cgroupstats_open(struct inode *inode, struct file *file)
5018{
9dce07f1 5019 return single_open(file, proc_cgroupstats_show, NULL);
a424316c
PM
5020}
5021
828c0950 5022static const struct file_operations proc_cgroupstats_operations = {
a424316c
PM
5023 .open = cgroupstats_open,
5024 .read = seq_read,
5025 .llseek = seq_lseek,
5026 .release = single_release,
5027};
5028
b4f48b63
PM
5029/**
5030 * cgroup_fork - attach newly forked task to its parents cgroup.
a043e3b2 5031 * @child: pointer to task_struct of forking parent process.
b4f48b63
PM
5032 *
5033 * Description: A task inherits its parent's cgroup at fork().
5034 *
5035 * A pointer to the shared css_set was automatically copied in
5036 * fork.c by dup_task_struct(). However, we ignore that copy, since
9bb71308
TH
5037 * it was not made under the protection of RCU or cgroup_mutex, so
5038 * might no longer be a valid cgroup pointer. cgroup_attach_task() might
5039 * have already changed current->cgroups, allowing the previously
5040 * referenced cgroup group to be removed and freed.
b4f48b63
PM
5041 *
5042 * At the point that cgroup_fork() is called, 'current' is the parent
5043 * task, and the passed argument 'child' points to the child task.
5044 */
5045void cgroup_fork(struct task_struct *child)
5046{
9bb71308 5047 task_lock(current);
817929ec
PM
5048 child->cgroups = current->cgroups;
5049 get_css_set(child->cgroups);
9bb71308 5050 task_unlock(current);
817929ec 5051 INIT_LIST_HEAD(&child->cg_list);
b4f48b63
PM
5052}
5053
817929ec 5054/**
a043e3b2
LZ
5055 * cgroup_post_fork - called on a new task after adding it to the task list
5056 * @child: the task in question
5057 *
5edee61e
TH
5058 * Adds the task to the list running through its css_set if necessary and
5059 * call the subsystem fork() callbacks. Has to be after the task is
5060 * visible on the task list in case we race with the first call to
5061 * cgroup_iter_start() - to guarantee that the new task ends up on its
5062 * list.
a043e3b2 5063 */
817929ec
PM
5064void cgroup_post_fork(struct task_struct *child)
5065{
5edee61e
TH
5066 int i;
5067
3ce3230a
FW
5068 /*
5069 * use_task_css_set_links is set to 1 before we walk the tasklist
5070 * under the tasklist_lock and we read it here after we added the child
5071 * to the tasklist under the tasklist_lock as well. If the child wasn't
5072 * yet in the tasklist when we walked through it from
5073 * cgroup_enable_task_cg_lists(), then use_task_css_set_links value
5074 * should be visible now due to the paired locking and barriers implied
5075 * by LOCK/UNLOCK: it is written before the tasklist_lock unlock
5076 * in cgroup_enable_task_cg_lists() and read here after the tasklist_lock
5077 * lock on fork.
5078 */
817929ec
PM
5079 if (use_task_css_set_links) {
5080 write_lock(&css_set_lock);
d8783832
TH
5081 task_lock(child);
5082 if (list_empty(&child->cg_list))
817929ec 5083 list_add(&child->cg_list, &child->cgroups->tasks);
d8783832 5084 task_unlock(child);
817929ec
PM
5085 write_unlock(&css_set_lock);
5086 }
5edee61e
TH
5087
5088 /*
5089 * Call ss->fork(). This must happen after @child is linked on
5090 * css_set; otherwise, @child might change state between ->fork()
5091 * and addition to css_set.
5092 */
5093 if (need_forkexit_callback) {
7d8e0bf5
LZ
5094 /*
5095 * fork/exit callbacks are supported only for builtin
5096 * subsystems, and the builtin section of the subsys
5097 * array is immutable, so we don't need to lock the
5098 * subsys array here. On the other hand, modular section
5099 * of the array can be freed at module unload, so we
5100 * can't touch that.
5101 */
5102 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
9871bf95 5103 struct cgroup_subsys *ss = cgroup_subsys[i];
5edee61e 5104
5edee61e
TH
5105 if (ss->fork)
5106 ss->fork(child);
5107 }
5108 }
817929ec 5109}
5edee61e 5110
b4f48b63
PM
5111/**
5112 * cgroup_exit - detach cgroup from exiting task
5113 * @tsk: pointer to task_struct of exiting process
a043e3b2 5114 * @run_callback: run exit callbacks?
b4f48b63
PM
5115 *
5116 * Description: Detach cgroup from @tsk and release it.
5117 *
5118 * Note that cgroups marked notify_on_release force every task in
5119 * them to take the global cgroup_mutex mutex when exiting.
5120 * This could impact scaling on very large systems. Be reluctant to
5121 * use notify_on_release cgroups where very high task exit scaling
5122 * is required on large systems.
5123 *
5124 * the_top_cgroup_hack:
5125 *
5126 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
5127 *
5128 * We call cgroup_exit() while the task is still competent to
5129 * handle notify_on_release(), then leave the task attached to the
5130 * root cgroup in each hierarchy for the remainder of its exit.
5131 *
5132 * To do this properly, we would increment the reference count on
5133 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
5134 * code we would add a second cgroup function call, to drop that
5135 * reference. This would just create an unnecessary hot spot on
5136 * the top_cgroup reference count, to no avail.
5137 *
5138 * Normally, holding a reference to a cgroup without bumping its
5139 * count is unsafe. The cgroup could go away, or someone could
5140 * attach us to a different cgroup, decrementing the count on
5141 * the first cgroup that we never incremented. But in this case,
5142 * top_cgroup isn't going away, and either task has PF_EXITING set,
956db3ca
CW
5143 * which wards off any cgroup_attach_task() attempts, or task is a failed
5144 * fork, never visible to cgroup_attach_task.
b4f48b63
PM
5145 */
5146void cgroup_exit(struct task_struct *tsk, int run_callbacks)
5147{
5abb8855 5148 struct css_set *cset;
d41d5a01 5149 int i;
817929ec
PM
5150
5151 /*
5152 * Unlink from the css_set task list if necessary.
5153 * Optimistically check cg_list before taking
5154 * css_set_lock
5155 */
5156 if (!list_empty(&tsk->cg_list)) {
5157 write_lock(&css_set_lock);
5158 if (!list_empty(&tsk->cg_list))
8d258797 5159 list_del_init(&tsk->cg_list);
817929ec
PM
5160 write_unlock(&css_set_lock);
5161 }
5162
b4f48b63
PM
5163 /* Reassign the task to the init_css_set. */
5164 task_lock(tsk);
5abb8855 5165 cset = tsk->cgroups;
817929ec 5166 tsk->cgroups = &init_css_set;
d41d5a01
PZ
5167
5168 if (run_callbacks && need_forkexit_callback) {
7d8e0bf5
LZ
5169 /*
5170 * fork/exit callbacks are supported only for builtin
5171 * subsystems, see cgroup_post_fork() for details.
5172 */
5173 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
9871bf95 5174 struct cgroup_subsys *ss = cgroup_subsys[i];
be45c900 5175
d41d5a01
PZ
5176 if (ss->exit) {
5177 struct cgroup *old_cgrp =
5abb8855 5178 rcu_dereference_raw(cset->subsys[i])->cgroup;
d41d5a01 5179 struct cgroup *cgrp = task_cgroup(tsk, i);
761b3ef5 5180 ss->exit(cgrp, old_cgrp, tsk);
d41d5a01
PZ
5181 }
5182 }
5183 }
b4f48b63 5184 task_unlock(tsk);
d41d5a01 5185
5abb8855 5186 put_css_set_taskexit(cset);
b4f48b63 5187}
697f4161 5188
bd89aabc 5189static void check_for_release(struct cgroup *cgrp)
81a6a5cd 5190{
f50daa70 5191 if (cgroup_is_releasable(cgrp) &&
6f3d828f 5192 list_empty(&cgrp->cset_links) && list_empty(&cgrp->children)) {
f50daa70
LZ
5193 /*
5194 * Control Group is currently removeable. If it's not
81a6a5cd 5195 * already queued for a userspace notification, queue
f50daa70
LZ
5196 * it now
5197 */
81a6a5cd 5198 int need_schedule_work = 0;
f50daa70 5199
cdcc136f 5200 raw_spin_lock(&release_list_lock);
54766d4a 5201 if (!cgroup_is_dead(cgrp) &&
bd89aabc
PM
5202 list_empty(&cgrp->release_list)) {
5203 list_add(&cgrp->release_list, &release_list);
81a6a5cd
PM
5204 need_schedule_work = 1;
5205 }
cdcc136f 5206 raw_spin_unlock(&release_list_lock);
81a6a5cd
PM
5207 if (need_schedule_work)
5208 schedule_work(&release_agent_work);
5209 }
5210}
5211
81a6a5cd
PM
5212/*
5213 * Notify userspace when a cgroup is released, by running the
5214 * configured release agent with the name of the cgroup (path
5215 * relative to the root of cgroup file system) as the argument.
5216 *
5217 * Most likely, this user command will try to rmdir this cgroup.
5218 *
5219 * This races with the possibility that some other task will be
5220 * attached to this cgroup before it is removed, or that some other
5221 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
5222 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
5223 * unused, and this cgroup will be reprieved from its death sentence,
5224 * to continue to serve a useful existence. Next time it's released,
5225 * we will get notified again, if it still has 'notify_on_release' set.
5226 *
5227 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
5228 * means only wait until the task is successfully execve()'d. The
5229 * separate release agent task is forked by call_usermodehelper(),
5230 * then control in this thread returns here, without waiting for the
5231 * release agent task. We don't bother to wait because the caller of
5232 * this routine has no use for the exit status of the release agent
5233 * task, so no sense holding our caller up for that.
81a6a5cd 5234 */
81a6a5cd
PM
5235static void cgroup_release_agent(struct work_struct *work)
5236{
5237 BUG_ON(work != &release_agent_work);
5238 mutex_lock(&cgroup_mutex);
cdcc136f 5239 raw_spin_lock(&release_list_lock);
81a6a5cd
PM
5240 while (!list_empty(&release_list)) {
5241 char *argv[3], *envp[3];
5242 int i;
e788e066 5243 char *pathbuf = NULL, *agentbuf = NULL;
bd89aabc 5244 struct cgroup *cgrp = list_entry(release_list.next,
81a6a5cd
PM
5245 struct cgroup,
5246 release_list);
bd89aabc 5247 list_del_init(&cgrp->release_list);
cdcc136f 5248 raw_spin_unlock(&release_list_lock);
81a6a5cd 5249 pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
e788e066
PM
5250 if (!pathbuf)
5251 goto continue_free;
5252 if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
5253 goto continue_free;
5254 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
5255 if (!agentbuf)
5256 goto continue_free;
81a6a5cd
PM
5257
5258 i = 0;
e788e066
PM
5259 argv[i++] = agentbuf;
5260 argv[i++] = pathbuf;
81a6a5cd
PM
5261 argv[i] = NULL;
5262
5263 i = 0;
5264 /* minimal command environment */
5265 envp[i++] = "HOME=/";
5266 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
5267 envp[i] = NULL;
5268
5269 /* Drop the lock while we invoke the usermode helper,
5270 * since the exec could involve hitting disk and hence
5271 * be a slow process */
5272 mutex_unlock(&cgroup_mutex);
5273 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
81a6a5cd 5274 mutex_lock(&cgroup_mutex);
e788e066
PM
5275 continue_free:
5276 kfree(pathbuf);
5277 kfree(agentbuf);
cdcc136f 5278 raw_spin_lock(&release_list_lock);
81a6a5cd 5279 }
cdcc136f 5280 raw_spin_unlock(&release_list_lock);
81a6a5cd
PM
5281 mutex_unlock(&cgroup_mutex);
5282}
8bab8dde
PM
5283
5284static int __init cgroup_disable(char *str)
5285{
5286 int i;
5287 char *token;
5288
5289 while ((token = strsep(&str, ",")) != NULL) {
5290 if (!*token)
5291 continue;
be45c900 5292 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
9871bf95 5293 struct cgroup_subsys *ss = cgroup_subsys[i];
8bab8dde 5294
be45c900
DW
5295 /*
5296 * cgroup_disable, being at boot time, can't
5297 * know about module subsystems, so we don't
5298 * worry about them.
5299 */
5300 if (!ss || ss->module)
5301 continue;
5302
8bab8dde
PM
5303 if (!strcmp(token, ss->name)) {
5304 ss->disabled = 1;
5305 printk(KERN_INFO "Disabling %s control group"
5306 " subsystem\n", ss->name);
5307 break;
5308 }
5309 }
5310 }
5311 return 1;
5312}
5313__setup("cgroup_disable=", cgroup_disable);
38460b48
KH
5314
5315/*
5316 * Functons for CSS ID.
5317 */
5318
54766d4a 5319/* to get ID other than 0, this should be called when !cgroup_is_dead() */
38460b48
KH
5320unsigned short css_id(struct cgroup_subsys_state *css)
5321{
7f0f1546
KH
5322 struct css_id *cssid;
5323
5324 /*
5325 * This css_id() can return correct value when somone has refcnt
5326 * on this or this is under rcu_read_lock(). Once css->id is allocated,
5327 * it's unchanged until freed.
5328 */
d3daf28d 5329 cssid = rcu_dereference_raw(css->id);
38460b48
KH
5330
5331 if (cssid)
5332 return cssid->id;
5333 return 0;
5334}
67523c48 5335EXPORT_SYMBOL_GPL(css_id);
38460b48 5336
747388d7
KH
5337/**
5338 * css_is_ancestor - test "root" css is an ancestor of "child"
5339 * @child: the css to be tested.
5340 * @root: the css supporsed to be an ancestor of the child.
5341 *
5342 * Returns true if "root" is an ancestor of "child" in its hierarchy. Because
91c63734 5343 * this function reads css->id, the caller must hold rcu_read_lock().
747388d7
KH
5344 * But, considering usual usage, the csses should be valid objects after test.
5345 * Assuming that the caller will do some action to the child if this returns
5346 * returns true, the caller must take "child";s reference count.
5347 * If "child" is valid object and this returns true, "root" is valid, too.
5348 */
5349
38460b48 5350bool css_is_ancestor(struct cgroup_subsys_state *child,
0b7f569e 5351 const struct cgroup_subsys_state *root)
38460b48 5352{
747388d7
KH
5353 struct css_id *child_id;
5354 struct css_id *root_id;
38460b48 5355
747388d7 5356 child_id = rcu_dereference(child->id);
91c63734
JW
5357 if (!child_id)
5358 return false;
747388d7 5359 root_id = rcu_dereference(root->id);
91c63734
JW
5360 if (!root_id)
5361 return false;
5362 if (child_id->depth < root_id->depth)
5363 return false;
5364 if (child_id->stack[root_id->depth] != root_id->id)
5365 return false;
5366 return true;
38460b48
KH
5367}
5368
38460b48
KH
5369void free_css_id(struct cgroup_subsys *ss, struct cgroup_subsys_state *css)
5370{
5371 struct css_id *id = css->id;
5372 /* When this is called before css_id initialization, id can be NULL */
5373 if (!id)
5374 return;
5375
5376 BUG_ON(!ss->use_id);
5377
5378 rcu_assign_pointer(id->css, NULL);
5379 rcu_assign_pointer(css->id, NULL);
42aee6c4 5380 spin_lock(&ss->id_lock);
38460b48 5381 idr_remove(&ss->idr, id->id);
42aee6c4 5382 spin_unlock(&ss->id_lock);
025cea99 5383 kfree_rcu(id, rcu_head);
38460b48 5384}
67523c48 5385EXPORT_SYMBOL_GPL(free_css_id);
38460b48
KH
5386
5387/*
5388 * This is called by init or create(). Then, calls to this function are
5389 * always serialized (By cgroup_mutex() at create()).
5390 */
5391
5392static struct css_id *get_new_cssid(struct cgroup_subsys *ss, int depth)
5393{
5394 struct css_id *newid;
d228d9ec 5395 int ret, size;
38460b48
KH
5396
5397 BUG_ON(!ss->use_id);
5398
5399 size = sizeof(*newid) + sizeof(unsigned short) * (depth + 1);
5400 newid = kzalloc(size, GFP_KERNEL);
5401 if (!newid)
5402 return ERR_PTR(-ENOMEM);
d228d9ec
TH
5403
5404 idr_preload(GFP_KERNEL);
42aee6c4 5405 spin_lock(&ss->id_lock);
38460b48 5406 /* Don't use 0. allocates an ID of 1-65535 */
d228d9ec 5407 ret = idr_alloc(&ss->idr, newid, 1, CSS_ID_MAX + 1, GFP_NOWAIT);
42aee6c4 5408 spin_unlock(&ss->id_lock);
d228d9ec 5409 idr_preload_end();
38460b48
KH
5410
5411 /* Returns error when there are no free spaces for new ID.*/
d228d9ec 5412 if (ret < 0)
38460b48 5413 goto err_out;
38460b48 5414
d228d9ec 5415 newid->id = ret;
38460b48
KH
5416 newid->depth = depth;
5417 return newid;
38460b48
KH
5418err_out:
5419 kfree(newid);
d228d9ec 5420 return ERR_PTR(ret);
38460b48
KH
5421
5422}
5423
e6a1105b
BB
5424static int __init_or_module cgroup_init_idr(struct cgroup_subsys *ss,
5425 struct cgroup_subsys_state *rootcss)
38460b48
KH
5426{
5427 struct css_id *newid;
38460b48 5428
42aee6c4 5429 spin_lock_init(&ss->id_lock);
38460b48
KH
5430 idr_init(&ss->idr);
5431
38460b48
KH
5432 newid = get_new_cssid(ss, 0);
5433 if (IS_ERR(newid))
5434 return PTR_ERR(newid);
5435
5436 newid->stack[0] = newid->id;
5437 newid->css = rootcss;
5438 rootcss->id = newid;
5439 return 0;
5440}
5441
5442static int alloc_css_id(struct cgroup_subsys *ss, struct cgroup *parent,
5443 struct cgroup *child)
5444{
5445 int subsys_id, i, depth = 0;
5446 struct cgroup_subsys_state *parent_css, *child_css;
fae9c791 5447 struct css_id *child_id, *parent_id;
38460b48
KH
5448
5449 subsys_id = ss->subsys_id;
5450 parent_css = parent->subsys[subsys_id];
5451 child_css = child->subsys[subsys_id];
38460b48 5452 parent_id = parent_css->id;
94b3dd0f 5453 depth = parent_id->depth + 1;
38460b48
KH
5454
5455 child_id = get_new_cssid(ss, depth);
5456 if (IS_ERR(child_id))
5457 return PTR_ERR(child_id);
5458
5459 for (i = 0; i < depth; i++)
5460 child_id->stack[i] = parent_id->stack[i];
5461 child_id->stack[depth] = child_id->id;
5462 /*
5463 * child_id->css pointer will be set after this cgroup is available
5464 * see cgroup_populate_dir()
5465 */
5466 rcu_assign_pointer(child_css->id, child_id);
5467
5468 return 0;
5469}
5470
5471/**
5472 * css_lookup - lookup css by id
5473 * @ss: cgroup subsys to be looked into.
5474 * @id: the id
5475 *
5476 * Returns pointer to cgroup_subsys_state if there is valid one with id.
5477 * NULL if not. Should be called under rcu_read_lock()
5478 */
5479struct cgroup_subsys_state *css_lookup(struct cgroup_subsys *ss, int id)
5480{
5481 struct css_id *cssid = NULL;
5482
5483 BUG_ON(!ss->use_id);
5484 cssid = idr_find(&ss->idr, id);
5485
5486 if (unlikely(!cssid))
5487 return NULL;
5488
5489 return rcu_dereference(cssid->css);
5490}
67523c48 5491EXPORT_SYMBOL_GPL(css_lookup);
38460b48 5492
e5d1367f
SE
5493/*
5494 * get corresponding css from file open on cgroupfs directory
5495 */
5496struct cgroup_subsys_state *cgroup_css_from_dir(struct file *f, int id)
5497{
5498 struct cgroup *cgrp;
5499 struct inode *inode;
5500 struct cgroup_subsys_state *css;
5501
496ad9aa 5502 inode = file_inode(f);
e5d1367f
SE
5503 /* check in cgroup filesystem dir */
5504 if (inode->i_op != &cgroup_dir_inode_operations)
5505 return ERR_PTR(-EBADF);
5506
5507 if (id < 0 || id >= CGROUP_SUBSYS_COUNT)
5508 return ERR_PTR(-EINVAL);
5509
5510 /* get cgroup */
5511 cgrp = __d_cgrp(f->f_dentry);
5512 css = cgrp->subsys[id];
5513 return css ? css : ERR_PTR(-ENOENT);
5514}
5515
fe693435 5516#ifdef CONFIG_CGROUP_DEBUG
03c78cbe 5517static struct cgroup_subsys_state *debug_css_alloc(struct cgroup *cgrp)
fe693435
PM
5518{
5519 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5520
5521 if (!css)
5522 return ERR_PTR(-ENOMEM);
5523
5524 return css;
5525}
5526
03c78cbe 5527static void debug_css_free(struct cgroup *cgrp)
fe693435 5528{
03c78cbe 5529 kfree(cgrp->subsys[debug_subsys_id]);
fe693435
PM
5530}
5531
03c78cbe 5532static u64 debug_taskcount_read(struct cgroup *cgrp, struct cftype *cft)
fe693435 5533{
03c78cbe 5534 return cgroup_task_count(cgrp);
fe693435
PM
5535}
5536
03c78cbe 5537static u64 current_css_set_read(struct cgroup *cgrp, struct cftype *cft)
fe693435
PM
5538{
5539 return (u64)(unsigned long)current->cgroups;
5540}
5541
03c78cbe
LZ
5542static u64 current_css_set_refcount_read(struct cgroup *cgrp,
5543 struct cftype *cft)
fe693435
PM
5544{
5545 u64 count;
5546
5547 rcu_read_lock();
5548 count = atomic_read(&current->cgroups->refcount);
5549 rcu_read_unlock();
5550 return count;
5551}
5552
03c78cbe 5553static int current_css_set_cg_links_read(struct cgroup *cgrp,
7717f7ba
PM
5554 struct cftype *cft,
5555 struct seq_file *seq)
5556{
69d0206c 5557 struct cgrp_cset_link *link;
5abb8855 5558 struct css_set *cset;
7717f7ba
PM
5559
5560 read_lock(&css_set_lock);
5561 rcu_read_lock();
5abb8855 5562 cset = rcu_dereference(current->cgroups);
69d0206c 5563 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba
PM
5564 struct cgroup *c = link->cgrp;
5565 const char *name;
5566
5567 if (c->dentry)
5568 name = c->dentry->d_name.name;
5569 else
5570 name = "?";
2c6ab6d2
PM
5571 seq_printf(seq, "Root %d group %s\n",
5572 c->root->hierarchy_id, name);
7717f7ba
PM
5573 }
5574 rcu_read_unlock();
5575 read_unlock(&css_set_lock);
5576 return 0;
5577}
5578
5579#define MAX_TASKS_SHOWN_PER_CSS 25
03c78cbe 5580static int cgroup_css_links_read(struct cgroup *cgrp,
7717f7ba
PM
5581 struct cftype *cft,
5582 struct seq_file *seq)
5583{
69d0206c 5584 struct cgrp_cset_link *link;
7717f7ba
PM
5585
5586 read_lock(&css_set_lock);
03c78cbe 5587 list_for_each_entry(link, &cgrp->cset_links, cset_link) {
69d0206c 5588 struct css_set *cset = link->cset;
7717f7ba
PM
5589 struct task_struct *task;
5590 int count = 0;
5abb8855
TH
5591 seq_printf(seq, "css_set %p\n", cset);
5592 list_for_each_entry(task, &cset->tasks, cg_list) {
7717f7ba
PM
5593 if (count++ > MAX_TASKS_SHOWN_PER_CSS) {
5594 seq_puts(seq, " ...\n");
5595 break;
5596 } else {
5597 seq_printf(seq, " task %d\n",
5598 task_pid_vnr(task));
5599 }
5600 }
5601 }
5602 read_unlock(&css_set_lock);
5603 return 0;
5604}
5605
fe693435
PM
5606static u64 releasable_read(struct cgroup *cgrp, struct cftype *cft)
5607{
5608 return test_bit(CGRP_RELEASABLE, &cgrp->flags);
5609}
5610
5611static struct cftype debug_files[] = {
fe693435
PM
5612 {
5613 .name = "taskcount",
5614 .read_u64 = debug_taskcount_read,
5615 },
5616
5617 {
5618 .name = "current_css_set",
5619 .read_u64 = current_css_set_read,
5620 },
5621
5622 {
5623 .name = "current_css_set_refcount",
5624 .read_u64 = current_css_set_refcount_read,
5625 },
5626
7717f7ba
PM
5627 {
5628 .name = "current_css_set_cg_links",
5629 .read_seq_string = current_css_set_cg_links_read,
5630 },
5631
5632 {
5633 .name = "cgroup_css_links",
5634 .read_seq_string = cgroup_css_links_read,
5635 },
5636
fe693435
PM
5637 {
5638 .name = "releasable",
5639 .read_u64 = releasable_read,
5640 },
fe693435 5641
4baf6e33
TH
5642 { } /* terminate */
5643};
fe693435
PM
5644
5645struct cgroup_subsys debug_subsys = {
5646 .name = "debug",
92fb9748
TH
5647 .css_alloc = debug_css_alloc,
5648 .css_free = debug_css_free,
fe693435 5649 .subsys_id = debug_subsys_id,
4baf6e33 5650 .base_cftypes = debug_files,
fe693435
PM
5651};
5652#endif /* CONFIG_CGROUP_DEBUG */