]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blame - kernel/cgroup.c
cgroup: implement cftype->write()
[mirror_ubuntu-focal-kernel.git] / kernel / cgroup.c
CommitLineData
ddbcc7e8 1/*
ddbcc7e8
PM
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
0dea1168
KS
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
ddbcc7e8
PM
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
ed3d261b
JP
29#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
ddbcc7e8 31#include <linux/cgroup.h>
2ce9738b 32#include <linux/cred.h>
c6d57f33 33#include <linux/ctype.h>
ddbcc7e8 34#include <linux/errno.h>
2ce9738b 35#include <linux/init_task.h>
ddbcc7e8
PM
36#include <linux/kernel.h>
37#include <linux/list.h>
38#include <linux/mm.h>
39#include <linux/mutex.h>
40#include <linux/mount.h>
41#include <linux/pagemap.h>
a424316c 42#include <linux/proc_fs.h>
ddbcc7e8
PM
43#include <linux/rcupdate.h>
44#include <linux/sched.h>
ddbcc7e8 45#include <linux/slab.h>
ddbcc7e8 46#include <linux/spinlock.h>
96d365e0 47#include <linux/rwsem.h>
ddbcc7e8 48#include <linux/string.h>
bbcb81d0 49#include <linux/sort.h>
81a6a5cd 50#include <linux/kmod.h>
846c7bb0
BS
51#include <linux/delayacct.h>
52#include <linux/cgroupstats.h>
0ac801fe 53#include <linux/hashtable.h>
096b7fe0 54#include <linux/pid_namespace.h>
2c6ab6d2 55#include <linux/idr.h>
d1d9fd33 56#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
c4c27fbd 57#include <linux/kthread.h>
776f02fa 58#include <linux/delay.h>
846c7bb0 59
60063497 60#include <linux/atomic.h>
ddbcc7e8 61
b1a21367
TH
62/*
63 * pidlists linger the following amount before being destroyed. The goal
64 * is avoiding frequent destruction in the middle of consecutive read calls
65 * Expiring in the middle is a performance problem not a correctness one.
66 * 1 sec should be enough.
67 */
68#define CGROUP_PIDLIST_DESTROY_DELAY HZ
69
8d7e6fb0
TH
70#define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
71 MAX_CFTYPE_NAME + 2)
72
ace2bee8
TH
73/*
74 * cgroup_tree_mutex nests above cgroup_mutex and protects cftypes, file
75 * creation/removal and hierarchy changing operations including cgroup
76 * creation, removal, css association and controller rebinding. This outer
77 * lock is needed mainly to resolve the circular dependency between kernfs
78 * active ref and cgroup_mutex. cgroup_tree_mutex nests above both.
79 */
80static DEFINE_MUTEX(cgroup_tree_mutex);
81
e25e2cbb
TH
82/*
83 * cgroup_mutex is the master lock. Any modification to cgroup or its
84 * hierarchy must be performed while holding it.
85 *
0e1d768f
TH
86 * css_set_rwsem protects task->cgroups pointer, the list of css_set
87 * objects, and the chain of tasks off each css_set.
e25e2cbb 88 *
0e1d768f
TH
89 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
90 * cgroup.h can use them for lockdep annotations.
e25e2cbb 91 */
2219449a
TH
92#ifdef CONFIG_PROVE_RCU
93DEFINE_MUTEX(cgroup_mutex);
0e1d768f
TH
94DECLARE_RWSEM(css_set_rwsem);
95EXPORT_SYMBOL_GPL(cgroup_mutex);
96EXPORT_SYMBOL_GPL(css_set_rwsem);
2219449a 97#else
81a6a5cd 98static DEFINE_MUTEX(cgroup_mutex);
0e1d768f 99static DECLARE_RWSEM(css_set_rwsem);
2219449a
TH
100#endif
101
6fa4918d 102/*
15a4c835
TH
103 * Protects cgroup_idr and css_idr so that IDs can be released without
104 * grabbing cgroup_mutex.
6fa4918d
TH
105 */
106static DEFINE_SPINLOCK(cgroup_idr_lock);
107
69e943b7
TH
108/*
109 * Protects cgroup_subsys->release_agent_path. Modifying it also requires
110 * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock.
111 */
112static DEFINE_SPINLOCK(release_agent_path_lock);
81a6a5cd 113
ace2bee8 114#define cgroup_assert_mutexes_or_rcu_locked() \
87fb54f1 115 rcu_lockdep_assert(rcu_read_lock_held() || \
ace2bee8 116 lockdep_is_held(&cgroup_tree_mutex) || \
87fb54f1 117 lockdep_is_held(&cgroup_mutex), \
ace2bee8 118 "cgroup_[tree_]mutex or RCU read lock required");
780cd8b3 119
e5fca243
TH
120/*
121 * cgroup destruction makes heavy use of work items and there can be a lot
122 * of concurrent destructions. Use a separate workqueue so that cgroup
123 * destruction work items don't end up filling up max_active of system_wq
124 * which may lead to deadlock.
125 */
126static struct workqueue_struct *cgroup_destroy_wq;
127
b1a21367
TH
128/*
129 * pidlist destructions need to be flushed on cgroup destruction. Use a
130 * separate workqueue as flush domain.
131 */
132static struct workqueue_struct *cgroup_pidlist_destroy_wq;
133
3ed80a62 134/* generate an array of cgroup subsystem pointers */
073219e9 135#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
3ed80a62 136static struct cgroup_subsys *cgroup_subsys[] = {
ddbcc7e8
PM
137#include <linux/cgroup_subsys.h>
138};
073219e9
TH
139#undef SUBSYS
140
141/* array of cgroup subsystem names */
142#define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
143static const char *cgroup_subsys_name[] = {
ddbcc7e8
PM
144#include <linux/cgroup_subsys.h>
145};
073219e9 146#undef SUBSYS
ddbcc7e8 147
ddbcc7e8 148/*
3dd06ffa 149 * The default hierarchy, reserved for the subsystems that are otherwise
9871bf95
TH
150 * unattached - it never has more than a single cgroup, and all tasks are
151 * part of that cgroup.
ddbcc7e8 152 */
a2dd4247 153struct cgroup_root cgrp_dfl_root;
9871bf95 154
a2dd4247
TH
155/*
156 * The default hierarchy always exists but is hidden until mounted for the
157 * first time. This is for backward compatibility.
158 */
159static bool cgrp_dfl_root_visible;
ddbcc7e8
PM
160
161/* The list of hierarchy roots */
162
9871bf95
TH
163static LIST_HEAD(cgroup_roots);
164static int cgroup_root_count;
ddbcc7e8 165
3417ae1f 166/* hierarchy ID allocation and mapping, protected by cgroup_mutex */
1a574231 167static DEFINE_IDR(cgroup_hierarchy_idr);
2c6ab6d2 168
794611a1
LZ
169/*
170 * Assign a monotonically increasing serial number to cgroups. It
171 * guarantees cgroups with bigger numbers are newer than those with smaller
172 * numbers. Also, as cgroups are always appended to the parent's
173 * ->children list, it guarantees that sibling cgroups are always sorted in
00356bd5
TH
174 * the ascending serial number order on the list. Protected by
175 * cgroup_mutex.
794611a1 176 */
00356bd5 177static u64 cgroup_serial_nr_next = 1;
794611a1 178
ddbcc7e8 179/* This flag indicates whether tasks in the fork and exit paths should
a043e3b2
LZ
180 * check for fork/exit handlers to call. This avoids us having to do
181 * extra work in the fork/exit path if none of the subsystems need to
182 * be called.
ddbcc7e8 183 */
8947f9d5 184static int need_forkexit_callback __read_mostly;
ddbcc7e8 185
628f7cd4
TH
186static struct cftype cgroup_base_files[];
187
59f5296b 188static void cgroup_put(struct cgroup *cgrp);
3dd06ffa 189static int rebind_subsystems(struct cgroup_root *dst_root,
69dfa00c 190 unsigned int ss_mask);
f20104de 191static void cgroup_destroy_css_killed(struct cgroup *cgrp);
42809dd4 192static int cgroup_destroy_locked(struct cgroup *cgrp);
f8f22e53
TH
193static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss);
194static void kill_css(struct cgroup_subsys_state *css);
2bb566cb
TH
195static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
196 bool is_add);
b1a21367 197static void cgroup_pidlist_destroy_all(struct cgroup *cgrp);
42809dd4 198
6fa4918d
TH
199/* IDR wrappers which synchronize using cgroup_idr_lock */
200static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
201 gfp_t gfp_mask)
202{
203 int ret;
204
205 idr_preload(gfp_mask);
54504e97 206 spin_lock_bh(&cgroup_idr_lock);
6fa4918d 207 ret = idr_alloc(idr, ptr, start, end, gfp_mask);
54504e97 208 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
209 idr_preload_end();
210 return ret;
211}
212
213static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
214{
215 void *ret;
216
54504e97 217 spin_lock_bh(&cgroup_idr_lock);
6fa4918d 218 ret = idr_replace(idr, ptr, id);
54504e97 219 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
220 return ret;
221}
222
223static void cgroup_idr_remove(struct idr *idr, int id)
224{
54504e97 225 spin_lock_bh(&cgroup_idr_lock);
6fa4918d 226 idr_remove(idr, id);
54504e97 227 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
228}
229
95109b62
TH
230/**
231 * cgroup_css - obtain a cgroup's css for the specified subsystem
232 * @cgrp: the cgroup of interest
ca8bdcaf 233 * @ss: the subsystem of interest (%NULL returns the dummy_css)
95109b62 234 *
ca8bdcaf
TH
235 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
236 * function must be called either under cgroup_mutex or rcu_read_lock() and
237 * the caller is responsible for pinning the returned css if it wants to
238 * keep accessing it outside the said locks. This function may return
239 * %NULL if @cgrp doesn't have @subsys_id enabled.
95109b62
TH
240 */
241static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
ca8bdcaf 242 struct cgroup_subsys *ss)
95109b62 243{
ca8bdcaf 244 if (ss)
aec25020 245 return rcu_dereference_check(cgrp->subsys[ss->id],
ace2bee8
TH
246 lockdep_is_held(&cgroup_tree_mutex) ||
247 lockdep_is_held(&cgroup_mutex));
ca8bdcaf
TH
248 else
249 return &cgrp->dummy_css;
95109b62 250}
42809dd4 251
aec3dfcb
TH
252/**
253 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
254 * @cgrp: the cgroup of interest
255 * @ss: the subsystem of interest (%NULL returns the dummy_css)
256 *
257 * Similar to cgroup_css() but returns the effctive css, which is defined
258 * as the matching css of the nearest ancestor including self which has @ss
259 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
260 * function is guaranteed to return non-NULL css.
261 */
262static struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
263 struct cgroup_subsys *ss)
264{
265 lockdep_assert_held(&cgroup_mutex);
266
267 if (!ss)
268 return &cgrp->dummy_css;
269
270 if (!(cgrp->root->subsys_mask & (1 << ss->id)))
271 return NULL;
272
273 while (cgrp->parent &&
274 !(cgrp->parent->child_subsys_mask & (1 << ss->id)))
275 cgrp = cgrp->parent;
276
277 return cgroup_css(cgrp, ss);
278}
279
ddbcc7e8 280/* convenient tests for these bits */
54766d4a 281static inline bool cgroup_is_dead(const struct cgroup *cgrp)
ddbcc7e8 282{
54766d4a 283 return test_bit(CGRP_DEAD, &cgrp->flags);
ddbcc7e8
PM
284}
285
b4168640 286struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
59f5296b 287{
2bd59d48 288 struct cgroup *cgrp = of->kn->parent->priv;
b4168640 289 struct cftype *cft = of_cft(of);
2bd59d48
TH
290
291 /*
292 * This is open and unprotected implementation of cgroup_css().
293 * seq_css() is only called from a kernfs file operation which has
294 * an active reference on the file. Because all the subsystem
295 * files are drained before a css is disassociated with a cgroup,
296 * the matching css from the cgroup's subsys table is guaranteed to
297 * be and stay valid until the enclosing operation is complete.
298 */
299 if (cft->ss)
300 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
301 else
302 return &cgrp->dummy_css;
59f5296b 303}
b4168640 304EXPORT_SYMBOL_GPL(of_css);
59f5296b 305
78574cf9
LZ
306/**
307 * cgroup_is_descendant - test ancestry
308 * @cgrp: the cgroup to be tested
309 * @ancestor: possible ancestor of @cgrp
310 *
311 * Test whether @cgrp is a descendant of @ancestor. It also returns %true
312 * if @cgrp == @ancestor. This function is safe to call as long as @cgrp
313 * and @ancestor are accessible.
314 */
315bool cgroup_is_descendant(struct cgroup *cgrp, struct cgroup *ancestor)
316{
317 while (cgrp) {
318 if (cgrp == ancestor)
319 return true;
320 cgrp = cgrp->parent;
321 }
322 return false;
323}
ddbcc7e8 324
e9685a03 325static int cgroup_is_releasable(const struct cgroup *cgrp)
81a6a5cd
PM
326{
327 const int bits =
bd89aabc
PM
328 (1 << CGRP_RELEASABLE) |
329 (1 << CGRP_NOTIFY_ON_RELEASE);
330 return (cgrp->flags & bits) == bits;
81a6a5cd
PM
331}
332
e9685a03 333static int notify_on_release(const struct cgroup *cgrp)
81a6a5cd 334{
bd89aabc 335 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
81a6a5cd
PM
336}
337
1c6727af
TH
338/**
339 * for_each_css - iterate all css's of a cgroup
340 * @css: the iteration cursor
341 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
342 * @cgrp: the target cgroup to iterate css's of
343 *
aec3dfcb 344 * Should be called under cgroup_[tree_]mutex.
1c6727af
TH
345 */
346#define for_each_css(css, ssid, cgrp) \
347 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
348 if (!((css) = rcu_dereference_check( \
349 (cgrp)->subsys[(ssid)], \
ace2bee8 350 lockdep_is_held(&cgroup_tree_mutex) || \
1c6727af
TH
351 lockdep_is_held(&cgroup_mutex)))) { } \
352 else
353
aec3dfcb
TH
354/**
355 * for_each_e_css - iterate all effective css's of a cgroup
356 * @css: the iteration cursor
357 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
358 * @cgrp: the target cgroup to iterate css's of
359 *
360 * Should be called under cgroup_[tree_]mutex.
361 */
362#define for_each_e_css(css, ssid, cgrp) \
363 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
364 if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \
365 ; \
366 else
367
30159ec7 368/**
3ed80a62 369 * for_each_subsys - iterate all enabled cgroup subsystems
30159ec7 370 * @ss: the iteration cursor
780cd8b3 371 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
30159ec7 372 */
780cd8b3 373#define for_each_subsys(ss, ssid) \
3ed80a62
TH
374 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT && \
375 (((ss) = cgroup_subsys[ssid]) || true); (ssid)++)
30159ec7 376
985ed670
TH
377/* iterate across the hierarchies */
378#define for_each_root(root) \
5549c497 379 list_for_each_entry((root), &cgroup_roots, root_list)
ddbcc7e8 380
f8f22e53
TH
381/* iterate over child cgrps, lock should be held throughout iteration */
382#define cgroup_for_each_live_child(child, cgrp) \
383 list_for_each_entry((child), &(cgrp)->children, sibling) \
384 if (({ lockdep_assert_held(&cgroup_tree_mutex); \
385 cgroup_is_dead(child); })) \
386 ; \
387 else
388
7ae1bad9
TH
389/**
390 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
391 * @cgrp: the cgroup to be checked for liveness
392 *
47cfcd09
TH
393 * On success, returns true; the mutex should be later unlocked. On
394 * failure returns false with no lock held.
7ae1bad9 395 */
b9777cf8 396static bool cgroup_lock_live_group(struct cgroup *cgrp)
7ae1bad9
TH
397{
398 mutex_lock(&cgroup_mutex);
54766d4a 399 if (cgroup_is_dead(cgrp)) {
7ae1bad9
TH
400 mutex_unlock(&cgroup_mutex);
401 return false;
402 }
403 return true;
404}
7ae1bad9 405
81a6a5cd
PM
406/* the list of cgroups eligible for automatic release. Protected by
407 * release_list_lock */
408static LIST_HEAD(release_list);
cdcc136f 409static DEFINE_RAW_SPINLOCK(release_list_lock);
81a6a5cd
PM
410static void cgroup_release_agent(struct work_struct *work);
411static DECLARE_WORK(release_agent_work, cgroup_release_agent);
bd89aabc 412static void check_for_release(struct cgroup *cgrp);
81a6a5cd 413
69d0206c
TH
414/*
415 * A cgroup can be associated with multiple css_sets as different tasks may
416 * belong to different cgroups on different hierarchies. In the other
417 * direction, a css_set is naturally associated with multiple cgroups.
418 * This M:N relationship is represented by the following link structure
419 * which exists for each association and allows traversing the associations
420 * from both sides.
421 */
422struct cgrp_cset_link {
423 /* the cgroup and css_set this link associates */
424 struct cgroup *cgrp;
425 struct css_set *cset;
426
427 /* list of cgrp_cset_links anchored at cgrp->cset_links */
428 struct list_head cset_link;
429
430 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
431 struct list_head cgrp_link;
817929ec
PM
432};
433
172a2c06
TH
434/*
435 * The default css_set - used by init and its children prior to any
817929ec
PM
436 * hierarchies being mounted. It contains a pointer to the root state
437 * for each subsystem. Also used to anchor the list of css_sets. Not
438 * reference-counted, to improve performance when child cgroups
439 * haven't been created.
440 */
5024ae29 441struct css_set init_css_set = {
172a2c06
TH
442 .refcount = ATOMIC_INIT(1),
443 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links),
444 .tasks = LIST_HEAD_INIT(init_css_set.tasks),
445 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks),
446 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node),
447 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node),
448};
817929ec 449
172a2c06 450static int css_set_count = 1; /* 1 for init_css_set */
817929ec 451
842b597e
TH
452/**
453 * cgroup_update_populated - updated populated count of a cgroup
454 * @cgrp: the target cgroup
455 * @populated: inc or dec populated count
456 *
457 * @cgrp is either getting the first task (css_set) or losing the last.
458 * Update @cgrp->populated_cnt accordingly. The count is propagated
459 * towards root so that a given cgroup's populated_cnt is zero iff the
460 * cgroup and all its descendants are empty.
461 *
462 * @cgrp's interface file "cgroup.populated" is zero if
463 * @cgrp->populated_cnt is zero and 1 otherwise. When @cgrp->populated_cnt
464 * changes from or to zero, userland is notified that the content of the
465 * interface file has changed. This can be used to detect when @cgrp and
466 * its descendants become populated or empty.
467 */
468static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
469{
470 lockdep_assert_held(&css_set_rwsem);
471
472 do {
473 bool trigger;
474
475 if (populated)
476 trigger = !cgrp->populated_cnt++;
477 else
478 trigger = !--cgrp->populated_cnt;
479
480 if (!trigger)
481 break;
482
483 if (cgrp->populated_kn)
484 kernfs_notify(cgrp->populated_kn);
485 cgrp = cgrp->parent;
486 } while (cgrp);
487}
488
7717f7ba
PM
489/*
490 * hash table for cgroup groups. This improves the performance to find
491 * an existing css_set. This hash doesn't (currently) take into
492 * account cgroups in empty hierarchies.
493 */
472b1053 494#define CSS_SET_HASH_BITS 7
0ac801fe 495static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
472b1053 496
0ac801fe 497static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
472b1053 498{
0ac801fe 499 unsigned long key = 0UL;
30159ec7
TH
500 struct cgroup_subsys *ss;
501 int i;
472b1053 502
30159ec7 503 for_each_subsys(ss, i)
0ac801fe
LZ
504 key += (unsigned long)css[i];
505 key = (key >> 16) ^ key;
472b1053 506
0ac801fe 507 return key;
472b1053
LZ
508}
509
89c5509b 510static void put_css_set_locked(struct css_set *cset, bool taskexit)
b4f48b63 511{
69d0206c 512 struct cgrp_cset_link *link, *tmp_link;
2d8f243a
TH
513 struct cgroup_subsys *ss;
514 int ssid;
5abb8855 515
89c5509b
TH
516 lockdep_assert_held(&css_set_rwsem);
517
518 if (!atomic_dec_and_test(&cset->refcount))
146aa1bd 519 return;
81a6a5cd 520
2c6ab6d2 521 /* This css_set is dead. unlink it and release cgroup refcounts */
2d8f243a
TH
522 for_each_subsys(ss, ssid)
523 list_del(&cset->e_cset_node[ssid]);
5abb8855 524 hash_del(&cset->hlist);
2c6ab6d2
PM
525 css_set_count--;
526
69d0206c 527 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
2c6ab6d2 528 struct cgroup *cgrp = link->cgrp;
5abb8855 529
69d0206c
TH
530 list_del(&link->cset_link);
531 list_del(&link->cgrp_link);
71b5707e 532
96d365e0 533 /* @cgrp can't go away while we're holding css_set_rwsem */
842b597e
TH
534 if (list_empty(&cgrp->cset_links)) {
535 cgroup_update_populated(cgrp, false);
536 if (notify_on_release(cgrp)) {
537 if (taskexit)
538 set_bit(CGRP_RELEASABLE, &cgrp->flags);
539 check_for_release(cgrp);
540 }
81a6a5cd 541 }
2c6ab6d2
PM
542
543 kfree(link);
81a6a5cd 544 }
2c6ab6d2 545
5abb8855 546 kfree_rcu(cset, rcu_head);
b4f48b63
PM
547}
548
89c5509b
TH
549static void put_css_set(struct css_set *cset, bool taskexit)
550{
551 /*
552 * Ensure that the refcount doesn't hit zero while any readers
553 * can see it. Similar to atomic_dec_and_lock(), but for an
554 * rwlock
555 */
556 if (atomic_add_unless(&cset->refcount, -1, 1))
557 return;
558
559 down_write(&css_set_rwsem);
560 put_css_set_locked(cset, taskexit);
561 up_write(&css_set_rwsem);
562}
563
817929ec
PM
564/*
565 * refcounted get/put for css_set objects
566 */
5abb8855 567static inline void get_css_set(struct css_set *cset)
817929ec 568{
5abb8855 569 atomic_inc(&cset->refcount);
817929ec
PM
570}
571
b326f9d0 572/**
7717f7ba 573 * compare_css_sets - helper function for find_existing_css_set().
5abb8855
TH
574 * @cset: candidate css_set being tested
575 * @old_cset: existing css_set for a task
7717f7ba
PM
576 * @new_cgrp: cgroup that's being entered by the task
577 * @template: desired set of css pointers in css_set (pre-calculated)
578 *
6f4b7e63 579 * Returns true if "cset" matches "old_cset" except for the hierarchy
7717f7ba
PM
580 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
581 */
5abb8855
TH
582static bool compare_css_sets(struct css_set *cset,
583 struct css_set *old_cset,
7717f7ba
PM
584 struct cgroup *new_cgrp,
585 struct cgroup_subsys_state *template[])
586{
587 struct list_head *l1, *l2;
588
aec3dfcb
TH
589 /*
590 * On the default hierarchy, there can be csets which are
591 * associated with the same set of cgroups but different csses.
592 * Let's first ensure that csses match.
593 */
594 if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
7717f7ba 595 return false;
7717f7ba
PM
596
597 /*
598 * Compare cgroup pointers in order to distinguish between
aec3dfcb
TH
599 * different cgroups in hierarchies. As different cgroups may
600 * share the same effective css, this comparison is always
601 * necessary.
7717f7ba 602 */
69d0206c
TH
603 l1 = &cset->cgrp_links;
604 l2 = &old_cset->cgrp_links;
7717f7ba 605 while (1) {
69d0206c 606 struct cgrp_cset_link *link1, *link2;
5abb8855 607 struct cgroup *cgrp1, *cgrp2;
7717f7ba
PM
608
609 l1 = l1->next;
610 l2 = l2->next;
611 /* See if we reached the end - both lists are equal length. */
69d0206c
TH
612 if (l1 == &cset->cgrp_links) {
613 BUG_ON(l2 != &old_cset->cgrp_links);
7717f7ba
PM
614 break;
615 } else {
69d0206c 616 BUG_ON(l2 == &old_cset->cgrp_links);
7717f7ba
PM
617 }
618 /* Locate the cgroups associated with these links. */
69d0206c
TH
619 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
620 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
621 cgrp1 = link1->cgrp;
622 cgrp2 = link2->cgrp;
7717f7ba 623 /* Hierarchies should be linked in the same order. */
5abb8855 624 BUG_ON(cgrp1->root != cgrp2->root);
7717f7ba
PM
625
626 /*
627 * If this hierarchy is the hierarchy of the cgroup
628 * that's changing, then we need to check that this
629 * css_set points to the new cgroup; if it's any other
630 * hierarchy, then this css_set should point to the
631 * same cgroup as the old css_set.
632 */
5abb8855
TH
633 if (cgrp1->root == new_cgrp->root) {
634 if (cgrp1 != new_cgrp)
7717f7ba
PM
635 return false;
636 } else {
5abb8855 637 if (cgrp1 != cgrp2)
7717f7ba
PM
638 return false;
639 }
640 }
641 return true;
642}
643
b326f9d0
TH
644/**
645 * find_existing_css_set - init css array and find the matching css_set
646 * @old_cset: the css_set that we're using before the cgroup transition
647 * @cgrp: the cgroup that we're moving into
648 * @template: out param for the new set of csses, should be clear on entry
817929ec 649 */
5abb8855
TH
650static struct css_set *find_existing_css_set(struct css_set *old_cset,
651 struct cgroup *cgrp,
652 struct cgroup_subsys_state *template[])
b4f48b63 653{
3dd06ffa 654 struct cgroup_root *root = cgrp->root;
30159ec7 655 struct cgroup_subsys *ss;
5abb8855 656 struct css_set *cset;
0ac801fe 657 unsigned long key;
b326f9d0 658 int i;
817929ec 659
aae8aab4
BB
660 /*
661 * Build the set of subsystem state objects that we want to see in the
662 * new css_set. while subsystems can change globally, the entries here
663 * won't change, so no need for locking.
664 */
30159ec7 665 for_each_subsys(ss, i) {
f392e51c 666 if (root->subsys_mask & (1UL << i)) {
aec3dfcb
TH
667 /*
668 * @ss is in this hierarchy, so we want the
669 * effective css from @cgrp.
670 */
671 template[i] = cgroup_e_css(cgrp, ss);
817929ec 672 } else {
aec3dfcb
TH
673 /*
674 * @ss is not in this hierarchy, so we don't want
675 * to change the css.
676 */
5abb8855 677 template[i] = old_cset->subsys[i];
817929ec
PM
678 }
679 }
680
0ac801fe 681 key = css_set_hash(template);
5abb8855
TH
682 hash_for_each_possible(css_set_table, cset, hlist, key) {
683 if (!compare_css_sets(cset, old_cset, cgrp, template))
7717f7ba
PM
684 continue;
685
686 /* This css_set matches what we need */
5abb8855 687 return cset;
472b1053 688 }
817929ec
PM
689
690 /* No existing cgroup group matched */
691 return NULL;
692}
693
69d0206c 694static void free_cgrp_cset_links(struct list_head *links_to_free)
36553434 695{
69d0206c 696 struct cgrp_cset_link *link, *tmp_link;
36553434 697
69d0206c
TH
698 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
699 list_del(&link->cset_link);
36553434
LZ
700 kfree(link);
701 }
702}
703
69d0206c
TH
704/**
705 * allocate_cgrp_cset_links - allocate cgrp_cset_links
706 * @count: the number of links to allocate
707 * @tmp_links: list_head the allocated links are put on
708 *
709 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
710 * through ->cset_link. Returns 0 on success or -errno.
817929ec 711 */
69d0206c 712static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
817929ec 713{
69d0206c 714 struct cgrp_cset_link *link;
817929ec 715 int i;
69d0206c
TH
716
717 INIT_LIST_HEAD(tmp_links);
718
817929ec 719 for (i = 0; i < count; i++) {
f4f4be2b 720 link = kzalloc(sizeof(*link), GFP_KERNEL);
817929ec 721 if (!link) {
69d0206c 722 free_cgrp_cset_links(tmp_links);
817929ec
PM
723 return -ENOMEM;
724 }
69d0206c 725 list_add(&link->cset_link, tmp_links);
817929ec
PM
726 }
727 return 0;
728}
729
c12f65d4
LZ
730/**
731 * link_css_set - a helper function to link a css_set to a cgroup
69d0206c 732 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
5abb8855 733 * @cset: the css_set to be linked
c12f65d4
LZ
734 * @cgrp: the destination cgroup
735 */
69d0206c
TH
736static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
737 struct cgroup *cgrp)
c12f65d4 738{
69d0206c 739 struct cgrp_cset_link *link;
c12f65d4 740
69d0206c 741 BUG_ON(list_empty(tmp_links));
6803c006
TH
742
743 if (cgroup_on_dfl(cgrp))
744 cset->dfl_cgrp = cgrp;
745
69d0206c
TH
746 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
747 link->cset = cset;
7717f7ba 748 link->cgrp = cgrp;
842b597e
TH
749
750 if (list_empty(&cgrp->cset_links))
751 cgroup_update_populated(cgrp, true);
69d0206c 752 list_move(&link->cset_link, &cgrp->cset_links);
842b597e 753
7717f7ba
PM
754 /*
755 * Always add links to the tail of the list so that the list
756 * is sorted by order of hierarchy creation
757 */
69d0206c 758 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
c12f65d4
LZ
759}
760
b326f9d0
TH
761/**
762 * find_css_set - return a new css_set with one cgroup updated
763 * @old_cset: the baseline css_set
764 * @cgrp: the cgroup to be updated
765 *
766 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
767 * substituted into the appropriate hierarchy.
817929ec 768 */
5abb8855
TH
769static struct css_set *find_css_set(struct css_set *old_cset,
770 struct cgroup *cgrp)
817929ec 771{
b326f9d0 772 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
5abb8855 773 struct css_set *cset;
69d0206c
TH
774 struct list_head tmp_links;
775 struct cgrp_cset_link *link;
2d8f243a 776 struct cgroup_subsys *ss;
0ac801fe 777 unsigned long key;
2d8f243a 778 int ssid;
472b1053 779
b326f9d0
TH
780 lockdep_assert_held(&cgroup_mutex);
781
817929ec
PM
782 /* First see if we already have a cgroup group that matches
783 * the desired set */
96d365e0 784 down_read(&css_set_rwsem);
5abb8855
TH
785 cset = find_existing_css_set(old_cset, cgrp, template);
786 if (cset)
787 get_css_set(cset);
96d365e0 788 up_read(&css_set_rwsem);
817929ec 789
5abb8855
TH
790 if (cset)
791 return cset;
817929ec 792
f4f4be2b 793 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
5abb8855 794 if (!cset)
817929ec
PM
795 return NULL;
796
69d0206c 797 /* Allocate all the cgrp_cset_link objects that we'll need */
9871bf95 798 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
5abb8855 799 kfree(cset);
817929ec
PM
800 return NULL;
801 }
802
5abb8855 803 atomic_set(&cset->refcount, 1);
69d0206c 804 INIT_LIST_HEAD(&cset->cgrp_links);
5abb8855 805 INIT_LIST_HEAD(&cset->tasks);
c7561128 806 INIT_LIST_HEAD(&cset->mg_tasks);
1958d2d5 807 INIT_LIST_HEAD(&cset->mg_preload_node);
b3dc094e 808 INIT_LIST_HEAD(&cset->mg_node);
5abb8855 809 INIT_HLIST_NODE(&cset->hlist);
817929ec
PM
810
811 /* Copy the set of subsystem state objects generated in
812 * find_existing_css_set() */
5abb8855 813 memcpy(cset->subsys, template, sizeof(cset->subsys));
817929ec 814
96d365e0 815 down_write(&css_set_rwsem);
817929ec 816 /* Add reference counts and links from the new css_set. */
69d0206c 817 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
7717f7ba 818 struct cgroup *c = link->cgrp;
69d0206c 819
7717f7ba
PM
820 if (c->root == cgrp->root)
821 c = cgrp;
69d0206c 822 link_css_set(&tmp_links, cset, c);
7717f7ba 823 }
817929ec 824
69d0206c 825 BUG_ON(!list_empty(&tmp_links));
817929ec 826
817929ec 827 css_set_count++;
472b1053 828
2d8f243a 829 /* Add @cset to the hash table */
5abb8855
TH
830 key = css_set_hash(cset->subsys);
831 hash_add(css_set_table, &cset->hlist, key);
472b1053 832
2d8f243a
TH
833 for_each_subsys(ss, ssid)
834 list_add_tail(&cset->e_cset_node[ssid],
835 &cset->subsys[ssid]->cgroup->e_csets[ssid]);
836
96d365e0 837 up_write(&css_set_rwsem);
817929ec 838
5abb8855 839 return cset;
b4f48b63
PM
840}
841
3dd06ffa 842static struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
7717f7ba 843{
3dd06ffa 844 struct cgroup *root_cgrp = kf_root->kn->priv;
2bd59d48 845
3dd06ffa 846 return root_cgrp->root;
2bd59d48
TH
847}
848
3dd06ffa 849static int cgroup_init_root_id(struct cgroup_root *root)
f2e85d57
TH
850{
851 int id;
852
853 lockdep_assert_held(&cgroup_mutex);
854
985ed670 855 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
f2e85d57
TH
856 if (id < 0)
857 return id;
858
859 root->hierarchy_id = id;
860 return 0;
861}
862
3dd06ffa 863static void cgroup_exit_root_id(struct cgroup_root *root)
f2e85d57
TH
864{
865 lockdep_assert_held(&cgroup_mutex);
866
867 if (root->hierarchy_id) {
868 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
869 root->hierarchy_id = 0;
870 }
871}
872
3dd06ffa 873static void cgroup_free_root(struct cgroup_root *root)
f2e85d57
TH
874{
875 if (root) {
876 /* hierarhcy ID shoulid already have been released */
877 WARN_ON_ONCE(root->hierarchy_id);
878
879 idr_destroy(&root->cgroup_idr);
880 kfree(root);
881 }
882}
883
3dd06ffa 884static void cgroup_destroy_root(struct cgroup_root *root)
59f5296b 885{
3dd06ffa 886 struct cgroup *cgrp = &root->cgrp;
f2e85d57 887 struct cgrp_cset_link *link, *tmp_link;
f2e85d57 888
2bd59d48 889 mutex_lock(&cgroup_tree_mutex);
2bd59d48 890 mutex_lock(&cgroup_mutex);
f2e85d57 891
776f02fa 892 BUG_ON(atomic_read(&root->nr_cgrps));
f2e85d57
TH
893 BUG_ON(!list_empty(&cgrp->children));
894
f2e85d57 895 /* Rebind all subsystems back to the default hierarchy */
f392e51c 896 rebind_subsystems(&cgrp_dfl_root, root->subsys_mask);
7717f7ba 897
7717f7ba 898 /*
f2e85d57
TH
899 * Release all the links from cset_links to this hierarchy's
900 * root cgroup
7717f7ba 901 */
96d365e0 902 down_write(&css_set_rwsem);
f2e85d57
TH
903
904 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
905 list_del(&link->cset_link);
906 list_del(&link->cgrp_link);
907 kfree(link);
908 }
96d365e0 909 up_write(&css_set_rwsem);
f2e85d57
TH
910
911 if (!list_empty(&root->root_list)) {
912 list_del(&root->root_list);
913 cgroup_root_count--;
914 }
915
916 cgroup_exit_root_id(root);
917
918 mutex_unlock(&cgroup_mutex);
919 mutex_unlock(&cgroup_tree_mutex);
f2e85d57 920
2bd59d48 921 kernfs_destroy_root(root->kf_root);
f2e85d57
TH
922 cgroup_free_root(root);
923}
924
ceb6a081
TH
925/* look up cgroup associated with given css_set on the specified hierarchy */
926static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
3dd06ffa 927 struct cgroup_root *root)
7717f7ba 928{
7717f7ba
PM
929 struct cgroup *res = NULL;
930
96d365e0
TH
931 lockdep_assert_held(&cgroup_mutex);
932 lockdep_assert_held(&css_set_rwsem);
933
5abb8855 934 if (cset == &init_css_set) {
3dd06ffa 935 res = &root->cgrp;
7717f7ba 936 } else {
69d0206c
TH
937 struct cgrp_cset_link *link;
938
939 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 940 struct cgroup *c = link->cgrp;
69d0206c 941
7717f7ba
PM
942 if (c->root == root) {
943 res = c;
944 break;
945 }
946 }
947 }
96d365e0 948
7717f7ba
PM
949 BUG_ON(!res);
950 return res;
951}
952
ddbcc7e8 953/*
ceb6a081
TH
954 * Return the cgroup for "task" from the given hierarchy. Must be
955 * called with cgroup_mutex and css_set_rwsem held.
956 */
957static struct cgroup *task_cgroup_from_root(struct task_struct *task,
3dd06ffa 958 struct cgroup_root *root)
ceb6a081
TH
959{
960 /*
961 * No need to lock the task - since we hold cgroup_mutex the
962 * task can't change groups, so the only thing that can happen
963 * is that it exits and its css is set back to init_css_set.
964 */
965 return cset_cgroup_from_root(task_css_set(task), root);
966}
967
ddbcc7e8 968/*
ddbcc7e8
PM
969 * A task must hold cgroup_mutex to modify cgroups.
970 *
971 * Any task can increment and decrement the count field without lock.
972 * So in general, code holding cgroup_mutex can't rely on the count
973 * field not changing. However, if the count goes to zero, then only
956db3ca 974 * cgroup_attach_task() can increment it again. Because a count of zero
ddbcc7e8
PM
975 * means that no tasks are currently attached, therefore there is no
976 * way a task attached to that cgroup can fork (the other way to
977 * increment the count). So code holding cgroup_mutex can safely
978 * assume that if the count is zero, it will stay zero. Similarly, if
979 * a task holds cgroup_mutex on a cgroup with zero count, it
980 * knows that the cgroup won't be removed, as cgroup_rmdir()
981 * needs that mutex.
982 *
ddbcc7e8
PM
983 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
984 * (usually) take cgroup_mutex. These are the two most performance
985 * critical pieces of code here. The exception occurs on cgroup_exit(),
986 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
987 * is taken, and if the cgroup count is zero, a usermode call made
a043e3b2
LZ
988 * to the release agent with the name of the cgroup (path relative to
989 * the root of cgroup file system) as the argument.
ddbcc7e8
PM
990 *
991 * A cgroup can only be deleted if both its 'count' of using tasks
992 * is zero, and its list of 'children' cgroups is empty. Since all
993 * tasks in the system use _some_ cgroup, and since there is always at
3dd06ffa 994 * least one task in the system (init, pid == 1), therefore, root cgroup
ddbcc7e8 995 * always has either children cgroups and/or using tasks. So we don't
3dd06ffa 996 * need a special hack to ensure that root cgroup cannot be deleted.
ddbcc7e8
PM
997 *
998 * P.S. One more locking exception. RCU is used to guard the
956db3ca 999 * update of a tasks cgroup pointer by cgroup_attach_task()
ddbcc7e8
PM
1000 */
1001
69dfa00c 1002static int cgroup_populate_dir(struct cgroup *cgrp, unsigned int subsys_mask);
2bd59d48 1003static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
828c0950 1004static const struct file_operations proc_cgroupstats_operations;
a424316c 1005
8d7e6fb0
TH
1006static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1007 char *buf)
ddbcc7e8 1008{
8d7e6fb0
TH
1009 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1010 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
1011 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
1012 cft->ss->name, cft->name);
1013 else
1014 strncpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1015 return buf;
ddbcc7e8
PM
1016}
1017
f2e85d57
TH
1018/**
1019 * cgroup_file_mode - deduce file mode of a control file
1020 * @cft: the control file in question
1021 *
1022 * returns cft->mode if ->mode is not 0
1023 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
1024 * returns S_IRUGO if it has only a read handler
1025 * returns S_IWUSR if it has only a write hander
1026 */
1027static umode_t cgroup_file_mode(const struct cftype *cft)
65dff759 1028{
f2e85d57 1029 umode_t mode = 0;
65dff759 1030
f2e85d57
TH
1031 if (cft->mode)
1032 return cft->mode;
1033
1034 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1035 mode |= S_IRUGO;
1036
b4168640
TH
1037 if (cft->write_u64 || cft->write_s64 || cft->write ||
1038 cft->write_string || cft->trigger)
f2e85d57
TH
1039 mode |= S_IWUSR;
1040
1041 return mode;
65dff759
LZ
1042}
1043
be445626
LZ
1044static void cgroup_free_fn(struct work_struct *work)
1045{
ea15f8cc 1046 struct cgroup *cgrp = container_of(work, struct cgroup, destroy_work);
be445626 1047
3c9c825b 1048 atomic_dec(&cgrp->root->nr_cgrps);
b1a21367 1049 cgroup_pidlist_destroy_all(cgrp);
be445626 1050
776f02fa
TH
1051 if (cgrp->parent) {
1052 /*
1053 * We get a ref to the parent, and put the ref when this
1054 * cgroup is being freed, so it's guaranteed that the
1055 * parent won't be destroyed before its children.
1056 */
1057 cgroup_put(cgrp->parent);
1058 kernfs_put(cgrp->kn);
1059 kfree(cgrp);
1060 } else {
1061 /*
3dd06ffa 1062 * This is root cgroup's refcnt reaching zero, which
776f02fa
TH
1063 * indicates that the root should be released.
1064 */
1065 cgroup_destroy_root(cgrp->root);
1066 }
be445626
LZ
1067}
1068
1069static void cgroup_free_rcu(struct rcu_head *head)
1070{
1071 struct cgroup *cgrp = container_of(head, struct cgroup, rcu_head);
1072
ea15f8cc 1073 INIT_WORK(&cgrp->destroy_work, cgroup_free_fn);
e5fca243 1074 queue_work(cgroup_destroy_wq, &cgrp->destroy_work);
be445626
LZ
1075}
1076
59f5296b 1077static void cgroup_get(struct cgroup *cgrp)
ddbcc7e8 1078{
2bd59d48
TH
1079 WARN_ON_ONCE(cgroup_is_dead(cgrp));
1080 WARN_ON_ONCE(atomic_read(&cgrp->refcnt) <= 0);
1081 atomic_inc(&cgrp->refcnt);
ddbcc7e8
PM
1082}
1083
59f5296b 1084static void cgroup_put(struct cgroup *cgrp)
05ef1d7c 1085{
2bd59d48
TH
1086 if (!atomic_dec_and_test(&cgrp->refcnt))
1087 return;
776f02fa 1088 if (WARN_ON_ONCE(cgrp->parent && !cgroup_is_dead(cgrp)))
2bd59d48 1089 return;
05ef1d7c 1090
6fa4918d 1091 cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
2bd59d48 1092 cgrp->id = -1;
05ef1d7c 1093
2bd59d48 1094 call_rcu(&cgrp->rcu_head, cgroup_free_rcu);
ddbcc7e8 1095}
05ef1d7c 1096
2739d3cc 1097static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
05ef1d7c 1098{
2bd59d48 1099 char name[CGROUP_FILE_NAME_MAX];
05ef1d7c 1100
ace2bee8 1101 lockdep_assert_held(&cgroup_tree_mutex);
2bd59d48 1102 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
05ef1d7c
TH
1103}
1104
13af07df 1105/**
628f7cd4 1106 * cgroup_clear_dir - remove subsys files in a cgroup directory
8f89140a 1107 * @cgrp: target cgroup
13af07df
AR
1108 * @subsys_mask: mask of the subsystem ids whose files should be removed
1109 */
69dfa00c 1110static void cgroup_clear_dir(struct cgroup *cgrp, unsigned int subsys_mask)
05ef1d7c 1111{
13af07df 1112 struct cgroup_subsys *ss;
b420ba7d 1113 int i;
05ef1d7c 1114
b420ba7d 1115 for_each_subsys(ss, i) {
0adb0704 1116 struct cftype *cfts;
b420ba7d 1117
69dfa00c 1118 if (!(subsys_mask & (1 << i)))
13af07df 1119 continue;
0adb0704
TH
1120 list_for_each_entry(cfts, &ss->cfts, node)
1121 cgroup_addrm_files(cgrp, cfts, false);
13af07df 1122 }
ddbcc7e8
PM
1123}
1124
69dfa00c 1125static int rebind_subsystems(struct cgroup_root *dst_root, unsigned int ss_mask)
ddbcc7e8 1126{
30159ec7 1127 struct cgroup_subsys *ss;
2d8f243a 1128 int ssid, i, ret;
ddbcc7e8 1129
ace2bee8
TH
1130 lockdep_assert_held(&cgroup_tree_mutex);
1131 lockdep_assert_held(&cgroup_mutex);
ddbcc7e8 1132
5df36032
TH
1133 for_each_subsys(ss, ssid) {
1134 if (!(ss_mask & (1 << ssid)))
1135 continue;
aae8aab4 1136
7fd8c565
TH
1137 /* if @ss has non-root csses attached to it, can't move */
1138 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)))
3ed80a62 1139 return -EBUSY;
1d5be6b2 1140
5df36032 1141 /* can't move between two non-dummy roots either */
7fd8c565 1142 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
5df36032 1143 return -EBUSY;
ddbcc7e8
PM
1144 }
1145
a2dd4247
TH
1146 ret = cgroup_populate_dir(&dst_root->cgrp, ss_mask);
1147 if (ret) {
1148 if (dst_root != &cgrp_dfl_root)
5df36032 1149 return ret;
ddbcc7e8 1150
a2dd4247
TH
1151 /*
1152 * Rebinding back to the default root is not allowed to
1153 * fail. Using both default and non-default roots should
1154 * be rare. Moving subsystems back and forth even more so.
1155 * Just warn about it and continue.
1156 */
1157 if (cgrp_dfl_root_visible) {
69dfa00c 1158 pr_warn("failed to create files (%d) while rebinding 0x%x to default root\n",
a2a1f9ea 1159 ret, ss_mask);
ed3d261b 1160 pr_warn("you may retry by moving them to a different hierarchy and unbinding\n");
a2dd4247 1161 }
5df36032 1162 }
3126121f
TH
1163
1164 /*
1165 * Nothing can fail from this point on. Remove files for the
1166 * removed subsystems and rebind each subsystem.
1167 */
4ac06017 1168 mutex_unlock(&cgroup_mutex);
5df36032 1169 for_each_subsys(ss, ssid)
a2dd4247 1170 if (ss_mask & (1 << ssid))
3dd06ffa 1171 cgroup_clear_dir(&ss->root->cgrp, 1 << ssid);
4ac06017 1172 mutex_lock(&cgroup_mutex);
a8a648c4 1173
5df36032 1174 for_each_subsys(ss, ssid) {
3dd06ffa 1175 struct cgroup_root *src_root;
5df36032 1176 struct cgroup_subsys_state *css;
2d8f243a 1177 struct css_set *cset;
a8a648c4 1178
5df36032
TH
1179 if (!(ss_mask & (1 << ssid)))
1180 continue;
a8a648c4 1181
5df36032 1182 src_root = ss->root;
3dd06ffa 1183 css = cgroup_css(&src_root->cgrp, ss);
a8a648c4 1184
3dd06ffa 1185 WARN_ON(!css || cgroup_css(&dst_root->cgrp, ss));
73e80ed8 1186
3dd06ffa
TH
1187 RCU_INIT_POINTER(src_root->cgrp.subsys[ssid], NULL);
1188 rcu_assign_pointer(dst_root->cgrp.subsys[ssid], css);
5df36032 1189 ss->root = dst_root;
3dd06ffa 1190 css->cgroup = &dst_root->cgrp;
73e80ed8 1191
2d8f243a
TH
1192 down_write(&css_set_rwsem);
1193 hash_for_each(css_set_table, i, cset, hlist)
1194 list_move_tail(&cset->e_cset_node[ss->id],
1195 &dst_root->cgrp.e_csets[ss->id]);
1196 up_write(&css_set_rwsem);
1197
f392e51c
TH
1198 src_root->subsys_mask &= ~(1 << ssid);
1199 src_root->cgrp.child_subsys_mask &= ~(1 << ssid);
1200
bd53d617 1201 /* default hierarchy doesn't enable controllers by default */
f392e51c 1202 dst_root->subsys_mask |= 1 << ssid;
bd53d617
TH
1203 if (dst_root != &cgrp_dfl_root)
1204 dst_root->cgrp.child_subsys_mask |= 1 << ssid;
a8a648c4 1205
5df36032
TH
1206 if (ss->bind)
1207 ss->bind(css);
ddbcc7e8 1208 }
ddbcc7e8 1209
a2dd4247 1210 kernfs_activate(dst_root->cgrp.kn);
ddbcc7e8
PM
1211 return 0;
1212}
1213
2bd59d48
TH
1214static int cgroup_show_options(struct seq_file *seq,
1215 struct kernfs_root *kf_root)
ddbcc7e8 1216{
3dd06ffa 1217 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
ddbcc7e8 1218 struct cgroup_subsys *ss;
b85d2040 1219 int ssid;
ddbcc7e8 1220
b85d2040 1221 for_each_subsys(ss, ssid)
f392e51c 1222 if (root->subsys_mask & (1 << ssid))
b85d2040 1223 seq_printf(seq, ",%s", ss->name);
873fe09e
TH
1224 if (root->flags & CGRP_ROOT_SANE_BEHAVIOR)
1225 seq_puts(seq, ",sane_behavior");
93438629 1226 if (root->flags & CGRP_ROOT_NOPREFIX)
ddbcc7e8 1227 seq_puts(seq, ",noprefix");
93438629 1228 if (root->flags & CGRP_ROOT_XATTR)
03b1cde6 1229 seq_puts(seq, ",xattr");
69e943b7
TH
1230
1231 spin_lock(&release_agent_path_lock);
81a6a5cd
PM
1232 if (strlen(root->release_agent_path))
1233 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
69e943b7
TH
1234 spin_unlock(&release_agent_path_lock);
1235
3dd06ffa 1236 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
97978e6d 1237 seq_puts(seq, ",clone_children");
c6d57f33
PM
1238 if (strlen(root->name))
1239 seq_printf(seq, ",name=%s", root->name);
ddbcc7e8
PM
1240 return 0;
1241}
1242
1243struct cgroup_sb_opts {
69dfa00c
TH
1244 unsigned int subsys_mask;
1245 unsigned int flags;
81a6a5cd 1246 char *release_agent;
2260e7fc 1247 bool cpuset_clone_children;
c6d57f33 1248 char *name;
2c6ab6d2
PM
1249 /* User explicitly requested empty subsystem */
1250 bool none;
ddbcc7e8
PM
1251};
1252
cf5d5941 1253static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
ddbcc7e8 1254{
32a8cf23
DL
1255 char *token, *o = data;
1256 bool all_ss = false, one_ss = false;
69dfa00c 1257 unsigned int mask = -1U;
30159ec7
TH
1258 struct cgroup_subsys *ss;
1259 int i;
f9ab5b5b
LZ
1260
1261#ifdef CONFIG_CPUSETS
69dfa00c 1262 mask = ~(1U << cpuset_cgrp_id);
f9ab5b5b 1263#endif
ddbcc7e8 1264
c6d57f33 1265 memset(opts, 0, sizeof(*opts));
ddbcc7e8
PM
1266
1267 while ((token = strsep(&o, ",")) != NULL) {
1268 if (!*token)
1269 return -EINVAL;
32a8cf23 1270 if (!strcmp(token, "none")) {
2c6ab6d2
PM
1271 /* Explicitly have no subsystems */
1272 opts->none = true;
32a8cf23
DL
1273 continue;
1274 }
1275 if (!strcmp(token, "all")) {
1276 /* Mutually exclusive option 'all' + subsystem name */
1277 if (one_ss)
1278 return -EINVAL;
1279 all_ss = true;
1280 continue;
1281 }
873fe09e
TH
1282 if (!strcmp(token, "__DEVEL__sane_behavior")) {
1283 opts->flags |= CGRP_ROOT_SANE_BEHAVIOR;
1284 continue;
1285 }
32a8cf23 1286 if (!strcmp(token, "noprefix")) {
93438629 1287 opts->flags |= CGRP_ROOT_NOPREFIX;
32a8cf23
DL
1288 continue;
1289 }
1290 if (!strcmp(token, "clone_children")) {
2260e7fc 1291 opts->cpuset_clone_children = true;
32a8cf23
DL
1292 continue;
1293 }
03b1cde6 1294 if (!strcmp(token, "xattr")) {
93438629 1295 opts->flags |= CGRP_ROOT_XATTR;
03b1cde6
AR
1296 continue;
1297 }
32a8cf23 1298 if (!strncmp(token, "release_agent=", 14)) {
81a6a5cd
PM
1299 /* Specifying two release agents is forbidden */
1300 if (opts->release_agent)
1301 return -EINVAL;
c6d57f33 1302 opts->release_agent =
e400c285 1303 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
81a6a5cd
PM
1304 if (!opts->release_agent)
1305 return -ENOMEM;
32a8cf23
DL
1306 continue;
1307 }
1308 if (!strncmp(token, "name=", 5)) {
c6d57f33
PM
1309 const char *name = token + 5;
1310 /* Can't specify an empty name */
1311 if (!strlen(name))
1312 return -EINVAL;
1313 /* Must match [\w.-]+ */
1314 for (i = 0; i < strlen(name); i++) {
1315 char c = name[i];
1316 if (isalnum(c))
1317 continue;
1318 if ((c == '.') || (c == '-') || (c == '_'))
1319 continue;
1320 return -EINVAL;
1321 }
1322 /* Specifying two names is forbidden */
1323 if (opts->name)
1324 return -EINVAL;
1325 opts->name = kstrndup(name,
e400c285 1326 MAX_CGROUP_ROOT_NAMELEN - 1,
c6d57f33
PM
1327 GFP_KERNEL);
1328 if (!opts->name)
1329 return -ENOMEM;
32a8cf23
DL
1330
1331 continue;
1332 }
1333
30159ec7 1334 for_each_subsys(ss, i) {
32a8cf23
DL
1335 if (strcmp(token, ss->name))
1336 continue;
1337 if (ss->disabled)
1338 continue;
1339
1340 /* Mutually exclusive option 'all' + subsystem name */
1341 if (all_ss)
1342 return -EINVAL;
69dfa00c 1343 opts->subsys_mask |= (1 << i);
32a8cf23
DL
1344 one_ss = true;
1345
1346 break;
1347 }
1348 if (i == CGROUP_SUBSYS_COUNT)
1349 return -ENOENT;
1350 }
1351
2c6ab6d2
PM
1352 /* Consistency checks */
1353
873fe09e 1354 if (opts->flags & CGRP_ROOT_SANE_BEHAVIOR) {
ed3d261b 1355 pr_warn("sane_behavior: this is still under development and its behaviors will change, proceed at your own risk\n");
873fe09e 1356
d3ba07c3
TH
1357 if ((opts->flags & (CGRP_ROOT_NOPREFIX | CGRP_ROOT_XATTR)) ||
1358 opts->cpuset_clone_children || opts->release_agent ||
1359 opts->name) {
ed3d261b 1360 pr_err("sane_behavior: noprefix, xattr, clone_children, release_agent and name are not allowed\n");
873fe09e
TH
1361 return -EINVAL;
1362 }
a2dd4247
TH
1363 } else {
1364 /*
1365 * If the 'all' option was specified select all the
1366 * subsystems, otherwise if 'none', 'name=' and a subsystem
1367 * name options were not specified, let's default to 'all'
1368 */
1369 if (all_ss || (!one_ss && !opts->none && !opts->name))
1370 for_each_subsys(ss, i)
1371 if (!ss->disabled)
69dfa00c 1372 opts->subsys_mask |= (1 << i);
873fe09e 1373
a2dd4247
TH
1374 /*
1375 * We either have to specify by name or by subsystems. (So
1376 * all empty hierarchies must have a name).
1377 */
1378 if (!opts->subsys_mask && !opts->name)
873fe09e 1379 return -EINVAL;
873fe09e
TH
1380 }
1381
f9ab5b5b
LZ
1382 /*
1383 * Option noprefix was introduced just for backward compatibility
1384 * with the old cpuset, so we allow noprefix only if mounting just
1385 * the cpuset subsystem.
1386 */
93438629 1387 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
f9ab5b5b
LZ
1388 return -EINVAL;
1389
2c6ab6d2
PM
1390
1391 /* Can't specify "none" and some subsystems */
a1a71b45 1392 if (opts->subsys_mask && opts->none)
2c6ab6d2
PM
1393 return -EINVAL;
1394
ddbcc7e8
PM
1395 return 0;
1396}
1397
2bd59d48 1398static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
ddbcc7e8
PM
1399{
1400 int ret = 0;
3dd06ffa 1401 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
ddbcc7e8 1402 struct cgroup_sb_opts opts;
69dfa00c 1403 unsigned int added_mask, removed_mask;
ddbcc7e8 1404
873fe09e 1405 if (root->flags & CGRP_ROOT_SANE_BEHAVIOR) {
ed3d261b 1406 pr_err("sane_behavior: remount is not allowed\n");
873fe09e
TH
1407 return -EINVAL;
1408 }
1409
ace2bee8 1410 mutex_lock(&cgroup_tree_mutex);
ddbcc7e8
PM
1411 mutex_lock(&cgroup_mutex);
1412
1413 /* See what subsystems are wanted */
1414 ret = parse_cgroupfs_options(data, &opts);
1415 if (ret)
1416 goto out_unlock;
1417
f392e51c 1418 if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
ed3d261b 1419 pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
a2a1f9ea 1420 task_tgid_nr(current), current->comm);
8b5a5a9d 1421
f392e51c
TH
1422 added_mask = opts.subsys_mask & ~root->subsys_mask;
1423 removed_mask = root->subsys_mask & ~opts.subsys_mask;
13af07df 1424
cf5d5941 1425 /* Don't allow flags or name to change at remount */
0ce6cba3 1426 if (((opts.flags ^ root->flags) & CGRP_ROOT_OPTION_MASK) ||
cf5d5941 1427 (opts.name && strcmp(opts.name, root->name))) {
69dfa00c 1428 pr_err("option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"\n",
0ce6cba3
TH
1429 opts.flags & CGRP_ROOT_OPTION_MASK, opts.name ?: "",
1430 root->flags & CGRP_ROOT_OPTION_MASK, root->name);
c6d57f33
PM
1431 ret = -EINVAL;
1432 goto out_unlock;
1433 }
1434
f172e67c 1435 /* remounting is not allowed for populated hierarchies */
3dd06ffa 1436 if (!list_empty(&root->cgrp.children)) {
f172e67c 1437 ret = -EBUSY;
0670e08b 1438 goto out_unlock;
cf5d5941 1439 }
ddbcc7e8 1440
5df36032 1441 ret = rebind_subsystems(root, added_mask);
3126121f 1442 if (ret)
0670e08b 1443 goto out_unlock;
ddbcc7e8 1444
3dd06ffa 1445 rebind_subsystems(&cgrp_dfl_root, removed_mask);
5df36032 1446
69e943b7
TH
1447 if (opts.release_agent) {
1448 spin_lock(&release_agent_path_lock);
81a6a5cd 1449 strcpy(root->release_agent_path, opts.release_agent);
69e943b7
TH
1450 spin_unlock(&release_agent_path_lock);
1451 }
ddbcc7e8 1452 out_unlock:
66bdc9cf 1453 kfree(opts.release_agent);
c6d57f33 1454 kfree(opts.name);
ddbcc7e8 1455 mutex_unlock(&cgroup_mutex);
ace2bee8 1456 mutex_unlock(&cgroup_tree_mutex);
ddbcc7e8
PM
1457 return ret;
1458}
1459
afeb0f9f
TH
1460/*
1461 * To reduce the fork() overhead for systems that are not actually using
1462 * their cgroups capability, we don't maintain the lists running through
1463 * each css_set to its tasks until we see the list actually used - in other
1464 * words after the first mount.
1465 */
1466static bool use_task_css_set_links __read_mostly;
1467
1468static void cgroup_enable_task_cg_lists(void)
1469{
1470 struct task_struct *p, *g;
1471
96d365e0 1472 down_write(&css_set_rwsem);
afeb0f9f
TH
1473
1474 if (use_task_css_set_links)
1475 goto out_unlock;
1476
1477 use_task_css_set_links = true;
1478
1479 /*
1480 * We need tasklist_lock because RCU is not safe against
1481 * while_each_thread(). Besides, a forking task that has passed
1482 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1483 * is not guaranteed to have its child immediately visible in the
1484 * tasklist if we walk through it with RCU.
1485 */
1486 read_lock(&tasklist_lock);
1487 do_each_thread(g, p) {
afeb0f9f
TH
1488 WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1489 task_css_set(p) != &init_css_set);
1490
1491 /*
1492 * We should check if the process is exiting, otherwise
1493 * it will race with cgroup_exit() in that the list
1494 * entry won't be deleted though the process has exited.
f153ad11
TH
1495 * Do it while holding siglock so that we don't end up
1496 * racing against cgroup_exit().
afeb0f9f 1497 */
f153ad11 1498 spin_lock_irq(&p->sighand->siglock);
eaf797ab
TH
1499 if (!(p->flags & PF_EXITING)) {
1500 struct css_set *cset = task_css_set(p);
1501
1502 list_add(&p->cg_list, &cset->tasks);
1503 get_css_set(cset);
1504 }
f153ad11 1505 spin_unlock_irq(&p->sighand->siglock);
afeb0f9f
TH
1506 } while_each_thread(g, p);
1507 read_unlock(&tasklist_lock);
1508out_unlock:
96d365e0 1509 up_write(&css_set_rwsem);
afeb0f9f 1510}
ddbcc7e8 1511
cc31edce
PM
1512static void init_cgroup_housekeeping(struct cgroup *cgrp)
1513{
2d8f243a
TH
1514 struct cgroup_subsys *ss;
1515 int ssid;
1516
2bd59d48 1517 atomic_set(&cgrp->refcnt, 1);
cc31edce
PM
1518 INIT_LIST_HEAD(&cgrp->sibling);
1519 INIT_LIST_HEAD(&cgrp->children);
69d0206c 1520 INIT_LIST_HEAD(&cgrp->cset_links);
cc31edce 1521 INIT_LIST_HEAD(&cgrp->release_list);
72a8cb30
BB
1522 INIT_LIST_HEAD(&cgrp->pidlists);
1523 mutex_init(&cgrp->pidlist_mutex);
67f4c36f 1524 cgrp->dummy_css.cgroup = cgrp;
2d8f243a
TH
1525
1526 for_each_subsys(ss, ssid)
1527 INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
f8f22e53
TH
1528
1529 init_waitqueue_head(&cgrp->offline_waitq);
cc31edce 1530}
c6d57f33 1531
3dd06ffa 1532static void init_cgroup_root(struct cgroup_root *root,
172a2c06 1533 struct cgroup_sb_opts *opts)
ddbcc7e8 1534{
3dd06ffa 1535 struct cgroup *cgrp = &root->cgrp;
b0ca5a84 1536
ddbcc7e8 1537 INIT_LIST_HEAD(&root->root_list);
3c9c825b 1538 atomic_set(&root->nr_cgrps, 1);
bd89aabc 1539 cgrp->root = root;
cc31edce 1540 init_cgroup_housekeeping(cgrp);
4e96ee8e 1541 idr_init(&root->cgroup_idr);
c6d57f33 1542
c6d57f33
PM
1543 root->flags = opts->flags;
1544 if (opts->release_agent)
1545 strcpy(root->release_agent_path, opts->release_agent);
1546 if (opts->name)
1547 strcpy(root->name, opts->name);
2260e7fc 1548 if (opts->cpuset_clone_children)
3dd06ffa 1549 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
c6d57f33
PM
1550}
1551
69dfa00c 1552static int cgroup_setup_root(struct cgroup_root *root, unsigned int ss_mask)
2c6ab6d2 1553{
d427dfeb 1554 LIST_HEAD(tmp_links);
3dd06ffa 1555 struct cgroup *root_cgrp = &root->cgrp;
d427dfeb 1556 struct css_set *cset;
d427dfeb 1557 int i, ret;
2c6ab6d2 1558
d427dfeb
TH
1559 lockdep_assert_held(&cgroup_tree_mutex);
1560 lockdep_assert_held(&cgroup_mutex);
c6d57f33 1561
6fa4918d 1562 ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_NOWAIT);
d427dfeb 1563 if (ret < 0)
2bd59d48 1564 goto out;
d427dfeb 1565 root_cgrp->id = ret;
c6d57f33 1566
d427dfeb 1567 /*
96d365e0 1568 * We're accessing css_set_count without locking css_set_rwsem here,
d427dfeb
TH
1569 * but that's OK - it can only be increased by someone holding
1570 * cgroup_lock, and that's us. The worst that can happen is that we
1571 * have some link structures left over
1572 */
1573 ret = allocate_cgrp_cset_links(css_set_count, &tmp_links);
1574 if (ret)
2bd59d48 1575 goto out;
ddbcc7e8 1576
985ed670 1577 ret = cgroup_init_root_id(root);
ddbcc7e8 1578 if (ret)
2bd59d48 1579 goto out;
ddbcc7e8 1580
2bd59d48
TH
1581 root->kf_root = kernfs_create_root(&cgroup_kf_syscall_ops,
1582 KERNFS_ROOT_CREATE_DEACTIVATED,
1583 root_cgrp);
1584 if (IS_ERR(root->kf_root)) {
1585 ret = PTR_ERR(root->kf_root);
1586 goto exit_root_id;
1587 }
1588 root_cgrp->kn = root->kf_root->kn;
ddbcc7e8 1589
d427dfeb
TH
1590 ret = cgroup_addrm_files(root_cgrp, cgroup_base_files, true);
1591 if (ret)
2bd59d48 1592 goto destroy_root;
ddbcc7e8 1593
5df36032 1594 ret = rebind_subsystems(root, ss_mask);
d427dfeb 1595 if (ret)
2bd59d48 1596 goto destroy_root;
ddbcc7e8 1597
d427dfeb
TH
1598 /*
1599 * There must be no failure case after here, since rebinding takes
1600 * care of subsystems' refcounts, which are explicitly dropped in
1601 * the failure exit path.
1602 */
1603 list_add(&root->root_list, &cgroup_roots);
1604 cgroup_root_count++;
0df6a63f 1605
d427dfeb 1606 /*
3dd06ffa 1607 * Link the root cgroup in this hierarchy into all the css_set
d427dfeb
TH
1608 * objects.
1609 */
96d365e0 1610 down_write(&css_set_rwsem);
d427dfeb
TH
1611 hash_for_each(css_set_table, i, cset, hlist)
1612 link_css_set(&tmp_links, cset, root_cgrp);
96d365e0 1613 up_write(&css_set_rwsem);
ddbcc7e8 1614
d427dfeb 1615 BUG_ON(!list_empty(&root_cgrp->children));
3c9c825b 1616 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
ddbcc7e8 1617
2bd59d48 1618 kernfs_activate(root_cgrp->kn);
d427dfeb 1619 ret = 0;
2bd59d48 1620 goto out;
d427dfeb 1621
2bd59d48
TH
1622destroy_root:
1623 kernfs_destroy_root(root->kf_root);
1624 root->kf_root = NULL;
1625exit_root_id:
d427dfeb 1626 cgroup_exit_root_id(root);
2bd59d48 1627out:
d427dfeb
TH
1628 free_cgrp_cset_links(&tmp_links);
1629 return ret;
ddbcc7e8
PM
1630}
1631
f7e83571 1632static struct dentry *cgroup_mount(struct file_system_type *fs_type,
ddbcc7e8 1633 int flags, const char *unused_dev_name,
f7e83571 1634 void *data)
ddbcc7e8 1635{
3dd06ffa 1636 struct cgroup_root *root;
ddbcc7e8 1637 struct cgroup_sb_opts opts;
2bd59d48 1638 struct dentry *dentry;
8e30e2b8 1639 int ret;
c6b3d5bc 1640 bool new_sb;
ddbcc7e8 1641
56fde9e0
TH
1642 /*
1643 * The first time anyone tries to mount a cgroup, enable the list
1644 * linking each css_set to its tasks and fix up all existing tasks.
1645 */
1646 if (!use_task_css_set_links)
1647 cgroup_enable_task_cg_lists();
e37a06f1 1648
8e30e2b8 1649 mutex_lock(&cgroup_tree_mutex);
aae8aab4 1650 mutex_lock(&cgroup_mutex);
8e30e2b8
TH
1651
1652 /* First find the desired set of subsystems */
ddbcc7e8 1653 ret = parse_cgroupfs_options(data, &opts);
c6d57f33 1654 if (ret)
8e30e2b8 1655 goto out_unlock;
e37a06f1 1656retry:
2bd59d48 1657 /* look for a matching existing root */
a2dd4247
TH
1658 if (!opts.subsys_mask && !opts.none && !opts.name) {
1659 cgrp_dfl_root_visible = true;
1660 root = &cgrp_dfl_root;
1661 cgroup_get(&root->cgrp);
1662 ret = 0;
1663 goto out_unlock;
ddbcc7e8
PM
1664 }
1665
985ed670 1666 for_each_root(root) {
2bd59d48 1667 bool name_match = false;
3126121f 1668
3dd06ffa 1669 if (root == &cgrp_dfl_root)
985ed670 1670 continue;
3126121f 1671
cf5d5941 1672 /*
2bd59d48
TH
1673 * If we asked for a name then it must match. Also, if
1674 * name matches but sybsys_mask doesn't, we should fail.
1675 * Remember whether name matched.
cf5d5941 1676 */
2bd59d48
TH
1677 if (opts.name) {
1678 if (strcmp(opts.name, root->name))
1679 continue;
1680 name_match = true;
1681 }
ddbcc7e8 1682
c6d57f33 1683 /*
2bd59d48
TH
1684 * If we asked for subsystems (or explicitly for no
1685 * subsystems) then they must match.
c6d57f33 1686 */
2bd59d48 1687 if ((opts.subsys_mask || opts.none) &&
f392e51c 1688 (opts.subsys_mask != root->subsys_mask)) {
2bd59d48
TH
1689 if (!name_match)
1690 continue;
1691 ret = -EBUSY;
1692 goto out_unlock;
1693 }
873fe09e 1694
c7ba8287 1695 if ((root->flags ^ opts.flags) & CGRP_ROOT_OPTION_MASK) {
2a0ff3fb 1696 if ((root->flags | opts.flags) & CGRP_ROOT_SANE_BEHAVIOR) {
ed3d261b 1697 pr_err("sane_behavior: new mount options should match the existing superblock\n");
2a0ff3fb 1698 ret = -EINVAL;
8e30e2b8 1699 goto out_unlock;
2a0ff3fb 1700 } else {
ed3d261b 1701 pr_warn("new mount options do not match the existing superblock, will be ignored\n");
2a0ff3fb 1702 }
873fe09e 1703 }
ddbcc7e8 1704
776f02fa 1705 /*
3dd06ffa 1706 * A root's lifetime is governed by its root cgroup. Zero
776f02fa
TH
1707 * ref indicate that the root is being destroyed. Wait for
1708 * destruction to complete so that the subsystems are free.
1709 * We can use wait_queue for the wait but this path is
1710 * super cold. Let's just sleep for a bit and retry.
1711 */
3dd06ffa 1712 if (!atomic_inc_not_zero(&root->cgrp.refcnt)) {
776f02fa
TH
1713 mutex_unlock(&cgroup_mutex);
1714 mutex_unlock(&cgroup_tree_mutex);
1715 msleep(10);
e37a06f1
LZ
1716 mutex_lock(&cgroup_tree_mutex);
1717 mutex_lock(&cgroup_mutex);
776f02fa
TH
1718 goto retry;
1719 }
ddbcc7e8 1720
776f02fa 1721 ret = 0;
2bd59d48 1722 goto out_unlock;
ddbcc7e8 1723 }
ddbcc7e8 1724
817929ec 1725 /*
172a2c06
TH
1726 * No such thing, create a new one. name= matching without subsys
1727 * specification is allowed for already existing hierarchies but we
1728 * can't create new one without subsys specification.
817929ec 1729 */
172a2c06
TH
1730 if (!opts.subsys_mask && !opts.none) {
1731 ret = -EINVAL;
1732 goto out_unlock;
817929ec 1733 }
817929ec 1734
172a2c06
TH
1735 root = kzalloc(sizeof(*root), GFP_KERNEL);
1736 if (!root) {
1737 ret = -ENOMEM;
2bd59d48 1738 goto out_unlock;
839ec545 1739 }
e5f6a860 1740
172a2c06
TH
1741 init_cgroup_root(root, &opts);
1742
35585573 1743 ret = cgroup_setup_root(root, opts.subsys_mask);
2bd59d48
TH
1744 if (ret)
1745 cgroup_free_root(root);
fa3ca07e 1746
8e30e2b8 1747out_unlock:
ddbcc7e8 1748 mutex_unlock(&cgroup_mutex);
ace2bee8 1749 mutex_unlock(&cgroup_tree_mutex);
ddbcc7e8 1750
c6d57f33
PM
1751 kfree(opts.release_agent);
1752 kfree(opts.name);
03b1cde6 1753
2bd59d48 1754 if (ret)
8e30e2b8 1755 return ERR_PTR(ret);
2bd59d48 1756
c6b3d5bc
LZ
1757 dentry = kernfs_mount(fs_type, flags, root->kf_root, &new_sb);
1758 if (IS_ERR(dentry) || !new_sb)
3dd06ffa 1759 cgroup_put(&root->cgrp);
2bd59d48
TH
1760 return dentry;
1761}
1762
1763static void cgroup_kill_sb(struct super_block *sb)
1764{
1765 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
3dd06ffa 1766 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2bd59d48 1767
3dd06ffa 1768 cgroup_put(&root->cgrp);
2bd59d48 1769 kernfs_kill_sb(sb);
ddbcc7e8
PM
1770}
1771
1772static struct file_system_type cgroup_fs_type = {
1773 .name = "cgroup",
f7e83571 1774 .mount = cgroup_mount,
ddbcc7e8
PM
1775 .kill_sb = cgroup_kill_sb,
1776};
1777
676db4af
GKH
1778static struct kobject *cgroup_kobj;
1779
857a2beb 1780/**
913ffdb5 1781 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
857a2beb 1782 * @task: target task
857a2beb
TH
1783 * @buf: the buffer to write the path into
1784 * @buflen: the length of the buffer
1785 *
913ffdb5
TH
1786 * Determine @task's cgroup on the first (the one with the lowest non-zero
1787 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
1788 * function grabs cgroup_mutex and shouldn't be used inside locks used by
1789 * cgroup controller callbacks.
1790 *
e61734c5 1791 * Return value is the same as kernfs_path().
857a2beb 1792 */
e61734c5 1793char *task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
857a2beb 1794{
3dd06ffa 1795 struct cgroup_root *root;
913ffdb5 1796 struct cgroup *cgrp;
e61734c5
TH
1797 int hierarchy_id = 1;
1798 char *path = NULL;
857a2beb
TH
1799
1800 mutex_lock(&cgroup_mutex);
96d365e0 1801 down_read(&css_set_rwsem);
857a2beb 1802
913ffdb5
TH
1803 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
1804
857a2beb
TH
1805 if (root) {
1806 cgrp = task_cgroup_from_root(task, root);
e61734c5 1807 path = cgroup_path(cgrp, buf, buflen);
913ffdb5
TH
1808 } else {
1809 /* if no hierarchy exists, everyone is in "/" */
e61734c5
TH
1810 if (strlcpy(buf, "/", buflen) < buflen)
1811 path = buf;
857a2beb
TH
1812 }
1813
96d365e0 1814 up_read(&css_set_rwsem);
857a2beb 1815 mutex_unlock(&cgroup_mutex);
e61734c5 1816 return path;
857a2beb 1817}
913ffdb5 1818EXPORT_SYMBOL_GPL(task_cgroup_path);
857a2beb 1819
b3dc094e 1820/* used to track tasks and other necessary states during migration */
2f7ee569 1821struct cgroup_taskset {
b3dc094e
TH
1822 /* the src and dst cset list running through cset->mg_node */
1823 struct list_head src_csets;
1824 struct list_head dst_csets;
1825
1826 /*
1827 * Fields for cgroup_taskset_*() iteration.
1828 *
1829 * Before migration is committed, the target migration tasks are on
1830 * ->mg_tasks of the csets on ->src_csets. After, on ->mg_tasks of
1831 * the csets on ->dst_csets. ->csets point to either ->src_csets
1832 * or ->dst_csets depending on whether migration is committed.
1833 *
1834 * ->cur_csets and ->cur_task point to the current task position
1835 * during iteration.
1836 */
1837 struct list_head *csets;
1838 struct css_set *cur_cset;
1839 struct task_struct *cur_task;
2f7ee569
TH
1840};
1841
1842/**
1843 * cgroup_taskset_first - reset taskset and return the first task
1844 * @tset: taskset of interest
1845 *
1846 * @tset iteration is initialized and the first task is returned.
1847 */
1848struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
1849{
b3dc094e
TH
1850 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
1851 tset->cur_task = NULL;
1852
1853 return cgroup_taskset_next(tset);
2f7ee569 1854}
2f7ee569
TH
1855
1856/**
1857 * cgroup_taskset_next - iterate to the next task in taskset
1858 * @tset: taskset of interest
1859 *
1860 * Return the next task in @tset. Iteration must have been initialized
1861 * with cgroup_taskset_first().
1862 */
1863struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
1864{
b3dc094e
TH
1865 struct css_set *cset = tset->cur_cset;
1866 struct task_struct *task = tset->cur_task;
2f7ee569 1867
b3dc094e
TH
1868 while (&cset->mg_node != tset->csets) {
1869 if (!task)
1870 task = list_first_entry(&cset->mg_tasks,
1871 struct task_struct, cg_list);
1872 else
1873 task = list_next_entry(task, cg_list);
2f7ee569 1874
b3dc094e
TH
1875 if (&task->cg_list != &cset->mg_tasks) {
1876 tset->cur_cset = cset;
1877 tset->cur_task = task;
1878 return task;
1879 }
2f7ee569 1880
b3dc094e
TH
1881 cset = list_next_entry(cset, mg_node);
1882 task = NULL;
1883 }
2f7ee569 1884
b3dc094e 1885 return NULL;
2f7ee569 1886}
2f7ee569 1887
cb0f1fe9 1888/**
74a1166d 1889 * cgroup_task_migrate - move a task from one cgroup to another.
60106946 1890 * @old_cgrp: the cgroup @tsk is being migrated from
cb0f1fe9
TH
1891 * @tsk: the task being migrated
1892 * @new_cset: the new css_set @tsk is being attached to
74a1166d 1893 *
cb0f1fe9 1894 * Must be called with cgroup_mutex, threadgroup and css_set_rwsem locked.
74a1166d 1895 */
5abb8855
TH
1896static void cgroup_task_migrate(struct cgroup *old_cgrp,
1897 struct task_struct *tsk,
1898 struct css_set *new_cset)
74a1166d 1899{
5abb8855 1900 struct css_set *old_cset;
74a1166d 1901
cb0f1fe9
TH
1902 lockdep_assert_held(&cgroup_mutex);
1903 lockdep_assert_held(&css_set_rwsem);
1904
74a1166d 1905 /*
026085ef
MSB
1906 * We are synchronized through threadgroup_lock() against PF_EXITING
1907 * setting such that we can't race against cgroup_exit() changing the
1908 * css_set to init_css_set and dropping the old one.
74a1166d 1909 */
c84cdf75 1910 WARN_ON_ONCE(tsk->flags & PF_EXITING);
a8ad805c 1911 old_cset = task_css_set(tsk);
74a1166d 1912
b3dc094e 1913 get_css_set(new_cset);
5abb8855 1914 rcu_assign_pointer(tsk->cgroups, new_cset);
74a1166d 1915
1b9aba49
TH
1916 /*
1917 * Use move_tail so that cgroup_taskset_first() still returns the
1918 * leader after migration. This works because cgroup_migrate()
1919 * ensures that the dst_cset of the leader is the first on the
1920 * tset's dst_csets list.
1921 */
1922 list_move_tail(&tsk->cg_list, &new_cset->mg_tasks);
74a1166d
BB
1923
1924 /*
5abb8855
TH
1925 * We just gained a reference on old_cset by taking it from the
1926 * task. As trading it for new_cset is protected by cgroup_mutex,
1927 * we're safe to drop it here; it will be freed under RCU.
74a1166d 1928 */
5abb8855 1929 set_bit(CGRP_RELEASABLE, &old_cgrp->flags);
cb0f1fe9 1930 put_css_set_locked(old_cset, false);
74a1166d
BB
1931}
1932
a043e3b2 1933/**
1958d2d5
TH
1934 * cgroup_migrate_finish - cleanup after attach
1935 * @preloaded_csets: list of preloaded css_sets
74a1166d 1936 *
1958d2d5
TH
1937 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
1938 * those functions for details.
74a1166d 1939 */
1958d2d5 1940static void cgroup_migrate_finish(struct list_head *preloaded_csets)
74a1166d 1941{
1958d2d5 1942 struct css_set *cset, *tmp_cset;
74a1166d 1943
1958d2d5
TH
1944 lockdep_assert_held(&cgroup_mutex);
1945
1946 down_write(&css_set_rwsem);
1947 list_for_each_entry_safe(cset, tmp_cset, preloaded_csets, mg_preload_node) {
1948 cset->mg_src_cgrp = NULL;
1949 cset->mg_dst_cset = NULL;
1950 list_del_init(&cset->mg_preload_node);
1951 put_css_set_locked(cset, false);
1952 }
1953 up_write(&css_set_rwsem);
1954}
1955
1956/**
1957 * cgroup_migrate_add_src - add a migration source css_set
1958 * @src_cset: the source css_set to add
1959 * @dst_cgrp: the destination cgroup
1960 * @preloaded_csets: list of preloaded css_sets
1961 *
1962 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
1963 * @src_cset and add it to @preloaded_csets, which should later be cleaned
1964 * up by cgroup_migrate_finish().
1965 *
1966 * This function may be called without holding threadgroup_lock even if the
1967 * target is a process. Threads may be created and destroyed but as long
1968 * as cgroup_mutex is not dropped, no new css_set can be put into play and
1969 * the preloaded css_sets are guaranteed to cover all migrations.
1970 */
1971static void cgroup_migrate_add_src(struct css_set *src_cset,
1972 struct cgroup *dst_cgrp,
1973 struct list_head *preloaded_csets)
1974{
1975 struct cgroup *src_cgrp;
1976
1977 lockdep_assert_held(&cgroup_mutex);
1978 lockdep_assert_held(&css_set_rwsem);
1979
1980 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
1981
1958d2d5
TH
1982 if (!list_empty(&src_cset->mg_preload_node))
1983 return;
1984
1985 WARN_ON(src_cset->mg_src_cgrp);
1986 WARN_ON(!list_empty(&src_cset->mg_tasks));
1987 WARN_ON(!list_empty(&src_cset->mg_node));
1988
1989 src_cset->mg_src_cgrp = src_cgrp;
1990 get_css_set(src_cset);
1991 list_add(&src_cset->mg_preload_node, preloaded_csets);
1992}
1993
1994/**
1995 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
f817de98 1996 * @dst_cgrp: the destination cgroup (may be %NULL)
1958d2d5
TH
1997 * @preloaded_csets: list of preloaded source css_sets
1998 *
1999 * Tasks are about to be moved to @dst_cgrp and all the source css_sets
2000 * have been preloaded to @preloaded_csets. This function looks up and
f817de98
TH
2001 * pins all destination css_sets, links each to its source, and append them
2002 * to @preloaded_csets. If @dst_cgrp is %NULL, the destination of each
2003 * source css_set is assumed to be its cgroup on the default hierarchy.
1958d2d5
TH
2004 *
2005 * This function must be called after cgroup_migrate_add_src() has been
2006 * called on each migration source css_set. After migration is performed
2007 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2008 * @preloaded_csets.
2009 */
2010static int cgroup_migrate_prepare_dst(struct cgroup *dst_cgrp,
2011 struct list_head *preloaded_csets)
2012{
2013 LIST_HEAD(csets);
f817de98 2014 struct css_set *src_cset, *tmp_cset;
1958d2d5
TH
2015
2016 lockdep_assert_held(&cgroup_mutex);
2017
f8f22e53
TH
2018 /*
2019 * Except for the root, child_subsys_mask must be zero for a cgroup
2020 * with tasks so that child cgroups don't compete against tasks.
2021 */
2022 if (dst_cgrp && cgroup_on_dfl(dst_cgrp) && dst_cgrp->parent &&
2023 dst_cgrp->child_subsys_mask)
2024 return -EBUSY;
2025
1958d2d5 2026 /* look up the dst cset for each src cset and link it to src */
f817de98 2027 list_for_each_entry_safe(src_cset, tmp_cset, preloaded_csets, mg_preload_node) {
1958d2d5
TH
2028 struct css_set *dst_cset;
2029
f817de98
TH
2030 dst_cset = find_css_set(src_cset,
2031 dst_cgrp ?: src_cset->dfl_cgrp);
1958d2d5
TH
2032 if (!dst_cset)
2033 goto err;
2034
2035 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
f817de98
TH
2036
2037 /*
2038 * If src cset equals dst, it's noop. Drop the src.
2039 * cgroup_migrate() will skip the cset too. Note that we
2040 * can't handle src == dst as some nodes are used by both.
2041 */
2042 if (src_cset == dst_cset) {
2043 src_cset->mg_src_cgrp = NULL;
2044 list_del_init(&src_cset->mg_preload_node);
2045 put_css_set(src_cset, false);
2046 put_css_set(dst_cset, false);
2047 continue;
2048 }
2049
1958d2d5
TH
2050 src_cset->mg_dst_cset = dst_cset;
2051
2052 if (list_empty(&dst_cset->mg_preload_node))
2053 list_add(&dst_cset->mg_preload_node, &csets);
2054 else
2055 put_css_set(dst_cset, false);
2056 }
2057
f817de98 2058 list_splice_tail(&csets, preloaded_csets);
1958d2d5
TH
2059 return 0;
2060err:
2061 cgroup_migrate_finish(&csets);
2062 return -ENOMEM;
2063}
2064
2065/**
2066 * cgroup_migrate - migrate a process or task to a cgroup
2067 * @cgrp: the destination cgroup
2068 * @leader: the leader of the process or the task to migrate
2069 * @threadgroup: whether @leader points to the whole process or a single task
2070 *
2071 * Migrate a process or task denoted by @leader to @cgrp. If migrating a
2072 * process, the caller must be holding threadgroup_lock of @leader. The
2073 * caller is also responsible for invoking cgroup_migrate_add_src() and
2074 * cgroup_migrate_prepare_dst() on the targets before invoking this
2075 * function and following up with cgroup_migrate_finish().
2076 *
2077 * As long as a controller's ->can_attach() doesn't fail, this function is
2078 * guaranteed to succeed. This means that, excluding ->can_attach()
2079 * failure, when migrating multiple targets, the success or failure can be
2080 * decided for all targets by invoking group_migrate_prepare_dst() before
2081 * actually starting migrating.
2082 */
2083static int cgroup_migrate(struct cgroup *cgrp, struct task_struct *leader,
2084 bool threadgroup)
74a1166d 2085{
b3dc094e
TH
2086 struct cgroup_taskset tset = {
2087 .src_csets = LIST_HEAD_INIT(tset.src_csets),
2088 .dst_csets = LIST_HEAD_INIT(tset.dst_csets),
2089 .csets = &tset.src_csets,
2090 };
1c6727af 2091 struct cgroup_subsys_state *css, *failed_css = NULL;
b3dc094e
TH
2092 struct css_set *cset, *tmp_cset;
2093 struct task_struct *task, *tmp_task;
2094 int i, ret;
74a1166d 2095
fb5d2b4c
MSB
2096 /*
2097 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2098 * already PF_EXITING could be freed from underneath us unless we
2099 * take an rcu_read_lock.
2100 */
b3dc094e 2101 down_write(&css_set_rwsem);
fb5d2b4c 2102 rcu_read_lock();
9db8de37 2103 task = leader;
74a1166d 2104 do {
9db8de37
TH
2105 /* @task either already exited or can't exit until the end */
2106 if (task->flags & PF_EXITING)
ea84753c 2107 goto next;
134d3373 2108
eaf797ab
TH
2109 /* leave @task alone if post_fork() hasn't linked it yet */
2110 if (list_empty(&task->cg_list))
ea84753c 2111 goto next;
cd3d0952 2112
b3dc094e 2113 cset = task_css_set(task);
1958d2d5 2114 if (!cset->mg_src_cgrp)
ea84753c 2115 goto next;
b3dc094e 2116
61d1d219 2117 /*
1b9aba49
TH
2118 * cgroup_taskset_first() must always return the leader.
2119 * Take care to avoid disturbing the ordering.
61d1d219 2120 */
1b9aba49
TH
2121 list_move_tail(&task->cg_list, &cset->mg_tasks);
2122 if (list_empty(&cset->mg_node))
2123 list_add_tail(&cset->mg_node, &tset.src_csets);
2124 if (list_empty(&cset->mg_dst_cset->mg_node))
2125 list_move_tail(&cset->mg_dst_cset->mg_node,
2126 &tset.dst_csets);
ea84753c 2127 next:
081aa458
LZ
2128 if (!threadgroup)
2129 break;
9db8de37 2130 } while_each_thread(leader, task);
fb5d2b4c 2131 rcu_read_unlock();
b3dc094e 2132 up_write(&css_set_rwsem);
74a1166d 2133
134d3373 2134 /* methods shouldn't be called if no task is actually migrating */
b3dc094e
TH
2135 if (list_empty(&tset.src_csets))
2136 return 0;
134d3373 2137
1958d2d5 2138 /* check that we can legitimately attach to the cgroup */
aec3dfcb 2139 for_each_e_css(css, i, cgrp) {
1c6727af 2140 if (css->ss->can_attach) {
9db8de37
TH
2141 ret = css->ss->can_attach(css, &tset);
2142 if (ret) {
1c6727af 2143 failed_css = css;
74a1166d
BB
2144 goto out_cancel_attach;
2145 }
2146 }
74a1166d
BB
2147 }
2148
2149 /*
1958d2d5
TH
2150 * Now that we're guaranteed success, proceed to move all tasks to
2151 * the new cgroup. There are no failure cases after here, so this
2152 * is the commit point.
74a1166d 2153 */
cb0f1fe9 2154 down_write(&css_set_rwsem);
b3dc094e
TH
2155 list_for_each_entry(cset, &tset.src_csets, mg_node) {
2156 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list)
2157 cgroup_task_migrate(cset->mg_src_cgrp, task,
2158 cset->mg_dst_cset);
74a1166d 2159 }
cb0f1fe9 2160 up_write(&css_set_rwsem);
74a1166d
BB
2161
2162 /*
1958d2d5
TH
2163 * Migration is committed, all target tasks are now on dst_csets.
2164 * Nothing is sensitive to fork() after this point. Notify
2165 * controllers that migration is complete.
74a1166d 2166 */
1958d2d5 2167 tset.csets = &tset.dst_csets;
74a1166d 2168
aec3dfcb 2169 for_each_e_css(css, i, cgrp)
1c6727af
TH
2170 if (css->ss->attach)
2171 css->ss->attach(css, &tset);
74a1166d 2172
9db8de37 2173 ret = 0;
b3dc094e
TH
2174 goto out_release_tset;
2175
74a1166d 2176out_cancel_attach:
aec3dfcb 2177 for_each_e_css(css, i, cgrp) {
b3dc094e
TH
2178 if (css == failed_css)
2179 break;
2180 if (css->ss->cancel_attach)
2181 css->ss->cancel_attach(css, &tset);
74a1166d 2182 }
b3dc094e
TH
2183out_release_tset:
2184 down_write(&css_set_rwsem);
2185 list_splice_init(&tset.dst_csets, &tset.src_csets);
2186 list_for_each_entry_safe(cset, tmp_cset, &tset.src_csets, mg_node) {
1b9aba49 2187 list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
b3dc094e 2188 list_del_init(&cset->mg_node);
b3dc094e
TH
2189 }
2190 up_write(&css_set_rwsem);
9db8de37 2191 return ret;
74a1166d
BB
2192}
2193
1958d2d5
TH
2194/**
2195 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2196 * @dst_cgrp: the cgroup to attach to
2197 * @leader: the task or the leader of the threadgroup to be attached
2198 * @threadgroup: attach the whole threadgroup?
2199 *
0e1d768f 2200 * Call holding cgroup_mutex and threadgroup_lock of @leader.
1958d2d5
TH
2201 */
2202static int cgroup_attach_task(struct cgroup *dst_cgrp,
2203 struct task_struct *leader, bool threadgroup)
2204{
2205 LIST_HEAD(preloaded_csets);
2206 struct task_struct *task;
2207 int ret;
2208
2209 /* look up all src csets */
2210 down_read(&css_set_rwsem);
2211 rcu_read_lock();
2212 task = leader;
2213 do {
2214 cgroup_migrate_add_src(task_css_set(task), dst_cgrp,
2215 &preloaded_csets);
2216 if (!threadgroup)
2217 break;
2218 } while_each_thread(leader, task);
2219 rcu_read_unlock();
2220 up_read(&css_set_rwsem);
2221
2222 /* prepare dst csets and commit */
2223 ret = cgroup_migrate_prepare_dst(dst_cgrp, &preloaded_csets);
2224 if (!ret)
2225 ret = cgroup_migrate(dst_cgrp, leader, threadgroup);
2226
2227 cgroup_migrate_finish(&preloaded_csets);
2228 return ret;
74a1166d
BB
2229}
2230
2231/*
2232 * Find the task_struct of the task to attach by vpid and pass it along to the
cd3d0952 2233 * function to attach either it or all tasks in its threadgroup. Will lock
0e1d768f 2234 * cgroup_mutex and threadgroup.
bbcb81d0 2235 */
74a1166d 2236static int attach_task_by_pid(struct cgroup *cgrp, u64 pid, bool threadgroup)
bbcb81d0 2237{
bbcb81d0 2238 struct task_struct *tsk;
c69e8d9c 2239 const struct cred *cred = current_cred(), *tcred;
bbcb81d0
PM
2240 int ret;
2241
74a1166d
BB
2242 if (!cgroup_lock_live_group(cgrp))
2243 return -ENODEV;
2244
b78949eb
MSB
2245retry_find_task:
2246 rcu_read_lock();
bbcb81d0 2247 if (pid) {
73507f33 2248 tsk = find_task_by_vpid(pid);
74a1166d
BB
2249 if (!tsk) {
2250 rcu_read_unlock();
dd4b0a46 2251 ret = -ESRCH;
b78949eb 2252 goto out_unlock_cgroup;
bbcb81d0 2253 }
74a1166d
BB
2254 /*
2255 * even if we're attaching all tasks in the thread group, we
2256 * only need to check permissions on one of them.
2257 */
c69e8d9c 2258 tcred = __task_cred(tsk);
14a590c3
EB
2259 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2260 !uid_eq(cred->euid, tcred->uid) &&
2261 !uid_eq(cred->euid, tcred->suid)) {
c69e8d9c 2262 rcu_read_unlock();
b78949eb
MSB
2263 ret = -EACCES;
2264 goto out_unlock_cgroup;
bbcb81d0 2265 }
b78949eb
MSB
2266 } else
2267 tsk = current;
cd3d0952
TH
2268
2269 if (threadgroup)
b78949eb 2270 tsk = tsk->group_leader;
c4c27fbd
MG
2271
2272 /*
14a40ffc 2273 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
c4c27fbd
MG
2274 * trapped in a cpuset, or RT worker may be born in a cgroup
2275 * with no rt_runtime allocated. Just say no.
2276 */
14a40ffc 2277 if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
c4c27fbd
MG
2278 ret = -EINVAL;
2279 rcu_read_unlock();
2280 goto out_unlock_cgroup;
2281 }
2282
b78949eb
MSB
2283 get_task_struct(tsk);
2284 rcu_read_unlock();
2285
2286 threadgroup_lock(tsk);
2287 if (threadgroup) {
2288 if (!thread_group_leader(tsk)) {
2289 /*
2290 * a race with de_thread from another thread's exec()
2291 * may strip us of our leadership, if this happens,
2292 * there is no choice but to throw this task away and
2293 * try again; this is
2294 * "double-double-toil-and-trouble-check locking".
2295 */
2296 threadgroup_unlock(tsk);
2297 put_task_struct(tsk);
2298 goto retry_find_task;
2299 }
081aa458
LZ
2300 }
2301
2302 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
2303
cd3d0952
TH
2304 threadgroup_unlock(tsk);
2305
bbcb81d0 2306 put_task_struct(tsk);
b78949eb 2307out_unlock_cgroup:
47cfcd09 2308 mutex_unlock(&cgroup_mutex);
bbcb81d0
PM
2309 return ret;
2310}
2311
7ae1bad9
TH
2312/**
2313 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2314 * @from: attach to all cgroups of a given task
2315 * @tsk: the task to be attached
2316 */
2317int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2318{
3dd06ffa 2319 struct cgroup_root *root;
7ae1bad9
TH
2320 int retval = 0;
2321
47cfcd09 2322 mutex_lock(&cgroup_mutex);
985ed670 2323 for_each_root(root) {
96d365e0
TH
2324 struct cgroup *from_cgrp;
2325
3dd06ffa 2326 if (root == &cgrp_dfl_root)
985ed670
TH
2327 continue;
2328
96d365e0
TH
2329 down_read(&css_set_rwsem);
2330 from_cgrp = task_cgroup_from_root(from, root);
2331 up_read(&css_set_rwsem);
7ae1bad9 2332
6f4b7e63 2333 retval = cgroup_attach_task(from_cgrp, tsk, false);
7ae1bad9
TH
2334 if (retval)
2335 break;
2336 }
47cfcd09 2337 mutex_unlock(&cgroup_mutex);
7ae1bad9
TH
2338
2339 return retval;
2340}
2341EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2342
182446d0
TH
2343static int cgroup_tasks_write(struct cgroup_subsys_state *css,
2344 struct cftype *cft, u64 pid)
74a1166d 2345{
182446d0 2346 return attach_task_by_pid(css->cgroup, pid, false);
74a1166d
BB
2347}
2348
182446d0
TH
2349static int cgroup_procs_write(struct cgroup_subsys_state *css,
2350 struct cftype *cft, u64 tgid)
af351026 2351{
182446d0 2352 return attach_task_by_pid(css->cgroup, tgid, true);
af351026
PM
2353}
2354
182446d0 2355static int cgroup_release_agent_write(struct cgroup_subsys_state *css,
4d3bb511 2356 struct cftype *cft, char *buffer)
e788e066 2357{
3dd06ffa 2358 struct cgroup_root *root = css->cgroup->root;
5f469907
TH
2359
2360 BUILD_BUG_ON(sizeof(root->release_agent_path) < PATH_MAX);
182446d0 2361 if (!cgroup_lock_live_group(css->cgroup))
e788e066 2362 return -ENODEV;
69e943b7 2363 spin_lock(&release_agent_path_lock);
5f469907
TH
2364 strlcpy(root->release_agent_path, buffer,
2365 sizeof(root->release_agent_path));
69e943b7 2366 spin_unlock(&release_agent_path_lock);
47cfcd09 2367 mutex_unlock(&cgroup_mutex);
e788e066
PM
2368 return 0;
2369}
2370
2da8ca82 2371static int cgroup_release_agent_show(struct seq_file *seq, void *v)
e788e066 2372{
2da8ca82 2373 struct cgroup *cgrp = seq_css(seq)->cgroup;
182446d0 2374
46cfeb04 2375 spin_lock(&release_agent_path_lock);
e788e066 2376 seq_puts(seq, cgrp->root->release_agent_path);
46cfeb04 2377 spin_unlock(&release_agent_path_lock);
e788e066 2378 seq_putc(seq, '\n');
e788e066
PM
2379 return 0;
2380}
2381
2da8ca82 2382static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
873fe09e 2383{
2da8ca82
TH
2384 struct cgroup *cgrp = seq_css(seq)->cgroup;
2385
2386 seq_printf(seq, "%d\n", cgroup_sane_behavior(cgrp));
e788e066
PM
2387 return 0;
2388}
2389
f8f22e53
TH
2390static void cgroup_print_ss_mask(struct seq_file *seq, unsigned int ss_mask)
2391{
2392 struct cgroup_subsys *ss;
2393 bool printed = false;
2394 int ssid;
2395
2396 for_each_subsys(ss, ssid) {
2397 if (ss_mask & (1 << ssid)) {
2398 if (printed)
2399 seq_putc(seq, ' ');
2400 seq_printf(seq, "%s", ss->name);
2401 printed = true;
2402 }
2403 }
2404 if (printed)
2405 seq_putc(seq, '\n');
2406}
2407
2408/* show controllers which are currently attached to the default hierarchy */
2409static int cgroup_root_controllers_show(struct seq_file *seq, void *v)
2410{
2411 struct cgroup *cgrp = seq_css(seq)->cgroup;
2412
2413 cgroup_print_ss_mask(seq, cgrp->root->subsys_mask);
2414 return 0;
2415}
2416
2417/* show controllers which are enabled from the parent */
2418static int cgroup_controllers_show(struct seq_file *seq, void *v)
2419{
2420 struct cgroup *cgrp = seq_css(seq)->cgroup;
2421
2422 cgroup_print_ss_mask(seq, cgrp->parent->child_subsys_mask);
2423 return 0;
2424}
2425
2426/* show controllers which are enabled for a given cgroup's children */
2427static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
2428{
2429 struct cgroup *cgrp = seq_css(seq)->cgroup;
2430
2431 cgroup_print_ss_mask(seq, cgrp->child_subsys_mask);
2432 return 0;
2433}
2434
2435/**
2436 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2437 * @cgrp: root of the subtree to update csses for
2438 *
2439 * @cgrp's child_subsys_mask has changed and its subtree's (self excluded)
2440 * css associations need to be updated accordingly. This function looks up
2441 * all css_sets which are attached to the subtree, creates the matching
2442 * updated css_sets and migrates the tasks to the new ones.
2443 */
2444static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2445{
2446 LIST_HEAD(preloaded_csets);
2447 struct cgroup_subsys_state *css;
2448 struct css_set *src_cset;
2449 int ret;
2450
2451 lockdep_assert_held(&cgroup_tree_mutex);
2452 lockdep_assert_held(&cgroup_mutex);
2453
2454 /* look up all csses currently attached to @cgrp's subtree */
2455 down_read(&css_set_rwsem);
2456 css_for_each_descendant_pre(css, cgroup_css(cgrp, NULL)) {
2457 struct cgrp_cset_link *link;
2458
2459 /* self is not affected by child_subsys_mask change */
2460 if (css->cgroup == cgrp)
2461 continue;
2462
2463 list_for_each_entry(link, &css->cgroup->cset_links, cset_link)
2464 cgroup_migrate_add_src(link->cset, cgrp,
2465 &preloaded_csets);
2466 }
2467 up_read(&css_set_rwsem);
2468
2469 /* NULL dst indicates self on default hierarchy */
2470 ret = cgroup_migrate_prepare_dst(NULL, &preloaded_csets);
2471 if (ret)
2472 goto out_finish;
2473
2474 list_for_each_entry(src_cset, &preloaded_csets, mg_preload_node) {
2475 struct task_struct *last_task = NULL, *task;
2476
2477 /* src_csets precede dst_csets, break on the first dst_cset */
2478 if (!src_cset->mg_src_cgrp)
2479 break;
2480
2481 /*
2482 * All tasks in src_cset need to be migrated to the
2483 * matching dst_cset. Empty it process by process. We
2484 * walk tasks but migrate processes. The leader might even
2485 * belong to a different cset but such src_cset would also
2486 * be among the target src_csets because the default
2487 * hierarchy enforces per-process membership.
2488 */
2489 while (true) {
2490 down_read(&css_set_rwsem);
2491 task = list_first_entry_or_null(&src_cset->tasks,
2492 struct task_struct, cg_list);
2493 if (task) {
2494 task = task->group_leader;
2495 WARN_ON_ONCE(!task_css_set(task)->mg_src_cgrp);
2496 get_task_struct(task);
2497 }
2498 up_read(&css_set_rwsem);
2499
2500 if (!task)
2501 break;
2502
2503 /* guard against possible infinite loop */
2504 if (WARN(last_task == task,
2505 "cgroup: update_dfl_csses failed to make progress, aborting in inconsistent state\n"))
2506 goto out_finish;
2507 last_task = task;
2508
2509 threadgroup_lock(task);
2510 /* raced against de_thread() from another thread? */
2511 if (!thread_group_leader(task)) {
2512 threadgroup_unlock(task);
2513 put_task_struct(task);
2514 continue;
2515 }
2516
2517 ret = cgroup_migrate(src_cset->dfl_cgrp, task, true);
2518
2519 threadgroup_unlock(task);
2520 put_task_struct(task);
2521
2522 if (WARN(ret, "cgroup: failed to update controllers for the default hierarchy (%d), further operations may crash or hang\n", ret))
2523 goto out_finish;
2524 }
2525 }
2526
2527out_finish:
2528 cgroup_migrate_finish(&preloaded_csets);
2529 return ret;
2530}
2531
2532/* change the enabled child controllers for a cgroup in the default hierarchy */
2533static int cgroup_subtree_control_write(struct cgroup_subsys_state *dummy_css,
2534 struct cftype *cft, char *buffer)
2535{
7d331fa9 2536 unsigned int enable = 0, disable = 0;
f8f22e53
TH
2537 struct cgroup *cgrp = dummy_css->cgroup, *child;
2538 struct cgroup_subsys *ss;
2539 char *tok, *p;
2540 int ssid, ret;
2541
2542 /*
d37167ab
TH
2543 * Parse input - space separated list of subsystem names prefixed
2544 * with either + or -.
f8f22e53
TH
2545 */
2546 p = buffer;
d37167ab
TH
2547 while ((tok = strsep(&p, " "))) {
2548 if (tok[0] == '\0')
2549 continue;
f8f22e53
TH
2550 for_each_subsys(ss, ssid) {
2551 if (ss->disabled || strcmp(tok + 1, ss->name))
2552 continue;
2553
2554 if (*tok == '+') {
7d331fa9
TH
2555 enable |= 1 << ssid;
2556 disable &= ~(1 << ssid);
f8f22e53 2557 } else if (*tok == '-') {
7d331fa9
TH
2558 disable |= 1 << ssid;
2559 enable &= ~(1 << ssid);
f8f22e53
TH
2560 } else {
2561 return -EINVAL;
2562 }
2563 break;
2564 }
2565 if (ssid == CGROUP_SUBSYS_COUNT)
2566 return -EINVAL;
2567 }
2568
2569 /*
2570 * We're gonna grab cgroup_tree_mutex which nests outside kernfs
2571 * active_ref. cgroup_lock_live_group() already provides enough
2572 * protection. Ensure @cgrp stays accessible and break the
2573 * active_ref protection.
2574 */
2575 cgroup_get(cgrp);
2576 kernfs_break_active_protection(cgrp->control_kn);
f8f22e53
TH
2577
2578 mutex_lock(&cgroup_tree_mutex);
2579
2580 for_each_subsys(ss, ssid) {
2581 if (enable & (1 << ssid)) {
2582 if (cgrp->child_subsys_mask & (1 << ssid)) {
2583 enable &= ~(1 << ssid);
2584 continue;
2585 }
2586
2587 /*
2588 * Because css offlining is asynchronous, userland
2589 * might try to re-enable the same controller while
2590 * the previous instance is still around. In such
2591 * cases, wait till it's gone using offline_waitq.
2592 */
2593 cgroup_for_each_live_child(child, cgrp) {
0cee8b77 2594 DEFINE_WAIT(wait);
f8f22e53
TH
2595
2596 if (!cgroup_css(child, ss))
2597 continue;
2598
0cee8b77 2599 cgroup_get(child);
f8f22e53
TH
2600 prepare_to_wait(&child->offline_waitq, &wait,
2601 TASK_UNINTERRUPTIBLE);
2602 mutex_unlock(&cgroup_tree_mutex);
2603 schedule();
2604 finish_wait(&child->offline_waitq, &wait);
0cee8b77 2605 cgroup_put(child);
7d331fa9
TH
2606
2607 ret = restart_syscall();
2608 goto out_unbreak;
f8f22e53
TH
2609 }
2610
2611 /* unavailable or not enabled on the parent? */
2612 if (!(cgrp_dfl_root.subsys_mask & (1 << ssid)) ||
2613 (cgrp->parent &&
2614 !(cgrp->parent->child_subsys_mask & (1 << ssid)))) {
2615 ret = -ENOENT;
2616 goto out_unlock_tree;
2617 }
2618 } else if (disable & (1 << ssid)) {
2619 if (!(cgrp->child_subsys_mask & (1 << ssid))) {
2620 disable &= ~(1 << ssid);
2621 continue;
2622 }
2623
2624 /* a child has it enabled? */
2625 cgroup_for_each_live_child(child, cgrp) {
2626 if (child->child_subsys_mask & (1 << ssid)) {
2627 ret = -EBUSY;
2628 goto out_unlock_tree;
2629 }
2630 }
2631 }
2632 }
2633
2634 if (!enable && !disable) {
2635 ret = 0;
2636 goto out_unlock_tree;
2637 }
2638
2639 if (!cgroup_lock_live_group(cgrp)) {
2640 ret = -ENODEV;
2641 goto out_unlock_tree;
2642 }
2643
2644 /*
2645 * Except for the root, child_subsys_mask must be zero for a cgroup
2646 * with tasks so that child cgroups don't compete against tasks.
2647 */
2648 if (enable && cgrp->parent && !list_empty(&cgrp->cset_links)) {
2649 ret = -EBUSY;
2650 goto out_unlock;
2651 }
2652
2653 /*
2654 * Create csses for enables and update child_subsys_mask. This
2655 * changes cgroup_e_css() results which in turn makes the
2656 * subsequent cgroup_update_dfl_csses() associate all tasks in the
2657 * subtree to the updated csses.
2658 */
2659 for_each_subsys(ss, ssid) {
2660 if (!(enable & (1 << ssid)))
2661 continue;
2662
2663 cgroup_for_each_live_child(child, cgrp) {
2664 ret = create_css(child, ss);
2665 if (ret)
2666 goto err_undo_css;
2667 }
2668 }
2669
2670 cgrp->child_subsys_mask |= enable;
2671 cgrp->child_subsys_mask &= ~disable;
2672
2673 ret = cgroup_update_dfl_csses(cgrp);
2674 if (ret)
2675 goto err_undo_css;
2676
2677 /* all tasks are now migrated away from the old csses, kill them */
2678 for_each_subsys(ss, ssid) {
2679 if (!(disable & (1 << ssid)))
2680 continue;
2681
2682 cgroup_for_each_live_child(child, cgrp)
2683 kill_css(cgroup_css(child, ss));
2684 }
2685
2686 kernfs_activate(cgrp->kn);
2687 ret = 0;
2688out_unlock:
2689 mutex_unlock(&cgroup_mutex);
2690out_unlock_tree:
2691 mutex_unlock(&cgroup_tree_mutex);
7d331fa9 2692out_unbreak:
f8f22e53
TH
2693 kernfs_unbreak_active_protection(cgrp->control_kn);
2694 cgroup_put(cgrp);
2695 return ret;
2696
2697err_undo_css:
2698 cgrp->child_subsys_mask &= ~enable;
2699 cgrp->child_subsys_mask |= disable;
2700
2701 for_each_subsys(ss, ssid) {
2702 if (!(enable & (1 << ssid)))
2703 continue;
2704
2705 cgroup_for_each_live_child(child, cgrp) {
2706 struct cgroup_subsys_state *css = cgroup_css(child, ss);
2707 if (css)
2708 kill_css(css);
2709 }
2710 }
2711 goto out_unlock;
2712}
2713
842b597e
TH
2714static int cgroup_populated_show(struct seq_file *seq, void *v)
2715{
2716 seq_printf(seq, "%d\n", (bool)seq_css(seq)->cgroup->populated_cnt);
2717 return 0;
2718}
2719
2bd59d48
TH
2720static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
2721 size_t nbytes, loff_t off)
355e0c48 2722{
2bd59d48
TH
2723 struct cgroup *cgrp = of->kn->parent->priv;
2724 struct cftype *cft = of->kn->priv;
2725 struct cgroup_subsys_state *css;
a742c59d 2726 int ret;
355e0c48 2727
b4168640
TH
2728 if (cft->write)
2729 return cft->write(of, buf, nbytes, off);
2730
2bd59d48
TH
2731 /*
2732 * kernfs guarantees that a file isn't deleted with operations in
2733 * flight, which means that the matching css is and stays alive and
2734 * doesn't need to be pinned. The RCU locking is not necessary
2735 * either. It's just for the convenience of using cgroup_css().
2736 */
2737 rcu_read_lock();
2738 css = cgroup_css(cgrp, cft->ss);
2739 rcu_read_unlock();
a742c59d
TH
2740
2741 if (cft->write_string) {
2742 ret = cft->write_string(css, cft, strstrip(buf));
2743 } else if (cft->write_u64) {
2744 unsigned long long v;
2745 ret = kstrtoull(buf, 0, &v);
2746 if (!ret)
2747 ret = cft->write_u64(css, cft, v);
2748 } else if (cft->write_s64) {
2749 long long v;
2750 ret = kstrtoll(buf, 0, &v);
2751 if (!ret)
2752 ret = cft->write_s64(css, cft, v);
2753 } else if (cft->trigger) {
2754 ret = cft->trigger(css, (unsigned int)cft->private);
e73d2c61 2755 } else {
a742c59d 2756 ret = -EINVAL;
e73d2c61 2757 }
2bd59d48 2758
a742c59d 2759 return ret ?: nbytes;
355e0c48
PM
2760}
2761
6612f05b 2762static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
db3b1497 2763{
2bd59d48 2764 return seq_cft(seq)->seq_start(seq, ppos);
db3b1497
PM
2765}
2766
6612f05b 2767static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
ddbcc7e8 2768{
2bd59d48 2769 return seq_cft(seq)->seq_next(seq, v, ppos);
ddbcc7e8
PM
2770}
2771
6612f05b 2772static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
ddbcc7e8 2773{
2bd59d48 2774 seq_cft(seq)->seq_stop(seq, v);
ddbcc7e8
PM
2775}
2776
91796569 2777static int cgroup_seqfile_show(struct seq_file *m, void *arg)
e73d2c61 2778{
7da11279
TH
2779 struct cftype *cft = seq_cft(m);
2780 struct cgroup_subsys_state *css = seq_css(m);
e73d2c61 2781
2da8ca82
TH
2782 if (cft->seq_show)
2783 return cft->seq_show(m, arg);
e73d2c61 2784
f4c753b7 2785 if (cft->read_u64)
896f5199
TH
2786 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
2787 else if (cft->read_s64)
2788 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
2789 else
2790 return -EINVAL;
2791 return 0;
91796569
PM
2792}
2793
2bd59d48
TH
2794static struct kernfs_ops cgroup_kf_single_ops = {
2795 .atomic_write_len = PAGE_SIZE,
2796 .write = cgroup_file_write,
2797 .seq_show = cgroup_seqfile_show,
91796569
PM
2798};
2799
2bd59d48
TH
2800static struct kernfs_ops cgroup_kf_ops = {
2801 .atomic_write_len = PAGE_SIZE,
2802 .write = cgroup_file_write,
2803 .seq_start = cgroup_seqfile_start,
2804 .seq_next = cgroup_seqfile_next,
2805 .seq_stop = cgroup_seqfile_stop,
2806 .seq_show = cgroup_seqfile_show,
2807};
ddbcc7e8
PM
2808
2809/*
2810 * cgroup_rename - Only allow simple rename of directories in place.
2811 */
2bd59d48
TH
2812static int cgroup_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
2813 const char *new_name_str)
ddbcc7e8 2814{
2bd59d48 2815 struct cgroup *cgrp = kn->priv;
65dff759 2816 int ret;
65dff759 2817
2bd59d48 2818 if (kernfs_type(kn) != KERNFS_DIR)
ddbcc7e8 2819 return -ENOTDIR;
2bd59d48 2820 if (kn->parent != new_parent)
ddbcc7e8 2821 return -EIO;
65dff759 2822
6db8e85c
TH
2823 /*
2824 * This isn't a proper migration and its usefulness is very
2825 * limited. Disallow if sane_behavior.
2826 */
2827 if (cgroup_sane_behavior(cgrp))
2828 return -EPERM;
099fca32 2829
e1b2dc17
TH
2830 /*
2831 * We're gonna grab cgroup_tree_mutex which nests outside kernfs
2832 * active_ref. kernfs_rename() doesn't require active_ref
2833 * protection. Break them before grabbing cgroup_tree_mutex.
2834 */
2835 kernfs_break_active_protection(new_parent);
2836 kernfs_break_active_protection(kn);
099fca32 2837
2bd59d48
TH
2838 mutex_lock(&cgroup_tree_mutex);
2839 mutex_lock(&cgroup_mutex);
099fca32 2840
2bd59d48 2841 ret = kernfs_rename(kn, new_parent, new_name_str);
099fca32 2842
2bd59d48
TH
2843 mutex_unlock(&cgroup_mutex);
2844 mutex_unlock(&cgroup_tree_mutex);
e1b2dc17
TH
2845
2846 kernfs_unbreak_active_protection(kn);
2847 kernfs_unbreak_active_protection(new_parent);
2bd59d48 2848 return ret;
099fca32
LZ
2849}
2850
49957f8e
TH
2851/* set uid and gid of cgroup dirs and files to that of the creator */
2852static int cgroup_kn_set_ugid(struct kernfs_node *kn)
2853{
2854 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
2855 .ia_uid = current_fsuid(),
2856 .ia_gid = current_fsgid(), };
2857
2858 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
2859 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
2860 return 0;
2861
2862 return kernfs_setattr(kn, &iattr);
2863}
2864
2bb566cb 2865static int cgroup_add_file(struct cgroup *cgrp, struct cftype *cft)
ddbcc7e8 2866{
8d7e6fb0 2867 char name[CGROUP_FILE_NAME_MAX];
2bd59d48
TH
2868 struct kernfs_node *kn;
2869 struct lock_class_key *key = NULL;
49957f8e 2870 int ret;
05ef1d7c 2871
2bd59d48
TH
2872#ifdef CONFIG_DEBUG_LOCK_ALLOC
2873 key = &cft->lockdep_key;
2874#endif
2875 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
2876 cgroup_file_mode(cft), 0, cft->kf_ops, cft,
2877 NULL, false, key);
49957f8e
TH
2878 if (IS_ERR(kn))
2879 return PTR_ERR(kn);
2880
2881 ret = cgroup_kn_set_ugid(kn);
f8f22e53 2882 if (ret) {
49957f8e 2883 kernfs_remove(kn);
f8f22e53
TH
2884 return ret;
2885 }
2886
2887 if (cft->seq_show == cgroup_subtree_control_show)
2888 cgrp->control_kn = kn;
842b597e
TH
2889 else if (cft->seq_show == cgroup_populated_show)
2890 cgrp->populated_kn = kn;
f8f22e53 2891 return 0;
ddbcc7e8
PM
2892}
2893
b1f28d31
TH
2894/**
2895 * cgroup_addrm_files - add or remove files to a cgroup directory
2896 * @cgrp: the target cgroup
b1f28d31
TH
2897 * @cfts: array of cftypes to be added
2898 * @is_add: whether to add or remove
2899 *
2900 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
2bb566cb
TH
2901 * For removals, this function never fails. If addition fails, this
2902 * function doesn't remove files already added. The caller is responsible
2903 * for cleaning up.
b1f28d31 2904 */
2bb566cb
TH
2905static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
2906 bool is_add)
ddbcc7e8 2907{
03b1cde6 2908 struct cftype *cft;
b1f28d31
TH
2909 int ret;
2910
ace2bee8 2911 lockdep_assert_held(&cgroup_tree_mutex);
db0416b6
TH
2912
2913 for (cft = cfts; cft->name[0] != '\0'; cft++) {
f33fddc2 2914 /* does cft->flags tell us to skip this file on @cgrp? */
8cbbf2c9
TH
2915 if ((cft->flags & CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
2916 continue;
873fe09e
TH
2917 if ((cft->flags & CFTYPE_INSANE) && cgroup_sane_behavior(cgrp))
2918 continue;
f33fddc2
G
2919 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgrp->parent)
2920 continue;
2921 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgrp->parent)
2922 continue;
2923
2739d3cc 2924 if (is_add) {
2bb566cb 2925 ret = cgroup_add_file(cgrp, cft);
b1f28d31 2926 if (ret) {
ed3d261b
JP
2927 pr_warn("%s: failed to add %s, err=%d\n",
2928 __func__, cft->name, ret);
b1f28d31
TH
2929 return ret;
2930 }
2739d3cc
LZ
2931 } else {
2932 cgroup_rm_file(cgrp, cft);
db0416b6 2933 }
ddbcc7e8 2934 }
b1f28d31 2935 return 0;
ddbcc7e8
PM
2936}
2937
21a2d343 2938static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
8e3f6541
TH
2939{
2940 LIST_HEAD(pending);
2bb566cb 2941 struct cgroup_subsys *ss = cfts[0].ss;
3dd06ffa 2942 struct cgroup *root = &ss->root->cgrp;
492eb21b 2943 struct cgroup_subsys_state *css;
9ccece80 2944 int ret = 0;
8e3f6541 2945
21a2d343 2946 lockdep_assert_held(&cgroup_tree_mutex);
8e3f6541 2947
e8c82d20 2948 /* add/rm files for all cgroups created before */
ca8bdcaf 2949 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
492eb21b
TH
2950 struct cgroup *cgrp = css->cgroup;
2951
e8c82d20
LZ
2952 if (cgroup_is_dead(cgrp))
2953 continue;
2954
21a2d343 2955 ret = cgroup_addrm_files(cgrp, cfts, is_add);
9ccece80
TH
2956 if (ret)
2957 break;
8e3f6541 2958 }
21a2d343
TH
2959
2960 if (is_add && !ret)
2961 kernfs_activate(root->kn);
9ccece80 2962 return ret;
8e3f6541
TH
2963}
2964
2da440a2 2965static void cgroup_exit_cftypes(struct cftype *cfts)
8e3f6541 2966{
2bb566cb 2967 struct cftype *cft;
8e3f6541 2968
2bd59d48
TH
2969 for (cft = cfts; cft->name[0] != '\0'; cft++) {
2970 /* free copy for custom atomic_write_len, see init_cftypes() */
2971 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
2972 kfree(cft->kf_ops);
2973 cft->kf_ops = NULL;
2da440a2 2974 cft->ss = NULL;
2bd59d48 2975 }
2da440a2
TH
2976}
2977
2bd59d48 2978static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
2da440a2
TH
2979{
2980 struct cftype *cft;
2981
2bd59d48
TH
2982 for (cft = cfts; cft->name[0] != '\0'; cft++) {
2983 struct kernfs_ops *kf_ops;
2984
0adb0704
TH
2985 WARN_ON(cft->ss || cft->kf_ops);
2986
2bd59d48
TH
2987 if (cft->seq_start)
2988 kf_ops = &cgroup_kf_ops;
2989 else
2990 kf_ops = &cgroup_kf_single_ops;
2991
2992 /*
2993 * Ugh... if @cft wants a custom max_write_len, we need to
2994 * make a copy of kf_ops to set its atomic_write_len.
2995 */
2996 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
2997 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
2998 if (!kf_ops) {
2999 cgroup_exit_cftypes(cfts);
3000 return -ENOMEM;
3001 }
3002 kf_ops->atomic_write_len = cft->max_write_len;
3003 }
8e3f6541 3004
2bd59d48 3005 cft->kf_ops = kf_ops;
2bb566cb 3006 cft->ss = ss;
2bd59d48 3007 }
2bb566cb 3008
2bd59d48 3009 return 0;
2da440a2
TH
3010}
3011
21a2d343
TH
3012static int cgroup_rm_cftypes_locked(struct cftype *cfts)
3013{
3014 lockdep_assert_held(&cgroup_tree_mutex);
3015
3016 if (!cfts || !cfts[0].ss)
3017 return -ENOENT;
3018
3019 list_del(&cfts->node);
3020 cgroup_apply_cftypes(cfts, false);
3021 cgroup_exit_cftypes(cfts);
3022 return 0;
8e3f6541 3023}
8e3f6541 3024
79578621
TH
3025/**
3026 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
79578621
TH
3027 * @cfts: zero-length name terminated array of cftypes
3028 *
2bb566cb
TH
3029 * Unregister @cfts. Files described by @cfts are removed from all
3030 * existing cgroups and all future cgroups won't have them either. This
3031 * function can be called anytime whether @cfts' subsys is attached or not.
79578621
TH
3032 *
3033 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
2bb566cb 3034 * registered.
79578621 3035 */
2bb566cb 3036int cgroup_rm_cftypes(struct cftype *cfts)
79578621 3037{
21a2d343 3038 int ret;
79578621 3039
21a2d343
TH
3040 mutex_lock(&cgroup_tree_mutex);
3041 ret = cgroup_rm_cftypes_locked(cfts);
3042 mutex_unlock(&cgroup_tree_mutex);
3043 return ret;
80b13586
TH
3044}
3045
8e3f6541
TH
3046/**
3047 * cgroup_add_cftypes - add an array of cftypes to a subsystem
3048 * @ss: target cgroup subsystem
3049 * @cfts: zero-length name terminated array of cftypes
3050 *
3051 * Register @cfts to @ss. Files described by @cfts are created for all
3052 * existing cgroups to which @ss is attached and all future cgroups will
3053 * have them too. This function can be called anytime whether @ss is
3054 * attached or not.
3055 *
3056 * Returns 0 on successful registration, -errno on failure. Note that this
3057 * function currently returns 0 as long as @cfts registration is successful
3058 * even if some file creation attempts on existing cgroups fail.
3059 */
03b1cde6 3060int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
8e3f6541 3061{
9ccece80 3062 int ret;
8e3f6541 3063
dc5736ed
LZ
3064 if (!cfts || cfts[0].name[0] == '\0')
3065 return 0;
2bb566cb 3066
2bd59d48
TH
3067 ret = cgroup_init_cftypes(ss, cfts);
3068 if (ret)
3069 return ret;
79578621 3070
21a2d343
TH
3071 mutex_lock(&cgroup_tree_mutex);
3072
0adb0704 3073 list_add_tail(&cfts->node, &ss->cfts);
21a2d343 3074 ret = cgroup_apply_cftypes(cfts, true);
9ccece80 3075 if (ret)
21a2d343 3076 cgroup_rm_cftypes_locked(cfts);
79578621 3077
21a2d343 3078 mutex_unlock(&cgroup_tree_mutex);
9ccece80 3079 return ret;
79578621
TH
3080}
3081
a043e3b2
LZ
3082/**
3083 * cgroup_task_count - count the number of tasks in a cgroup.
3084 * @cgrp: the cgroup in question
3085 *
3086 * Return the number of tasks in the cgroup.
3087 */
07bc356e 3088static int cgroup_task_count(const struct cgroup *cgrp)
bbcb81d0
PM
3089{
3090 int count = 0;
69d0206c 3091 struct cgrp_cset_link *link;
817929ec 3092
96d365e0 3093 down_read(&css_set_rwsem);
69d0206c
TH
3094 list_for_each_entry(link, &cgrp->cset_links, cset_link)
3095 count += atomic_read(&link->cset->refcount);
96d365e0 3096 up_read(&css_set_rwsem);
bbcb81d0
PM
3097 return count;
3098}
3099
53fa5261 3100/**
492eb21b
TH
3101 * css_next_child - find the next child of a given css
3102 * @pos_css: the current position (%NULL to initiate traversal)
3103 * @parent_css: css whose children to walk
53fa5261 3104 *
492eb21b 3105 * This function returns the next child of @parent_css and should be called
87fb54f1
TH
3106 * under either cgroup_mutex or RCU read lock. The only requirement is
3107 * that @parent_css and @pos_css are accessible. The next sibling is
3108 * guaranteed to be returned regardless of their states.
53fa5261 3109 */
492eb21b
TH
3110struct cgroup_subsys_state *
3111css_next_child(struct cgroup_subsys_state *pos_css,
3112 struct cgroup_subsys_state *parent_css)
53fa5261 3113{
492eb21b
TH
3114 struct cgroup *pos = pos_css ? pos_css->cgroup : NULL;
3115 struct cgroup *cgrp = parent_css->cgroup;
53fa5261
TH
3116 struct cgroup *next;
3117
ace2bee8 3118 cgroup_assert_mutexes_or_rcu_locked();
53fa5261
TH
3119
3120 /*
3121 * @pos could already have been removed. Once a cgroup is removed,
3122 * its ->sibling.next is no longer updated when its next sibling
ea15f8cc
TH
3123 * changes. As CGRP_DEAD assertion is serialized and happens
3124 * before the cgroup is taken off the ->sibling list, if we see it
3125 * unasserted, it's guaranteed that the next sibling hasn't
3126 * finished its grace period even if it's already removed, and thus
3127 * safe to dereference from this RCU critical section. If
3128 * ->sibling.next is inaccessible, cgroup_is_dead() is guaranteed
3129 * to be visible as %true here.
3b287a50
TH
3130 *
3131 * If @pos is dead, its next pointer can't be dereferenced;
3132 * however, as each cgroup is given a monotonically increasing
3133 * unique serial number and always appended to the sibling list,
3134 * the next one can be found by walking the parent's children until
3135 * we see a cgroup with higher serial number than @pos's. While
3136 * this path can be slower, it's taken only when either the current
3137 * cgroup is removed or iteration and removal race.
53fa5261 3138 */
3b287a50
TH
3139 if (!pos) {
3140 next = list_entry_rcu(cgrp->children.next, struct cgroup, sibling);
3141 } else if (likely(!cgroup_is_dead(pos))) {
53fa5261 3142 next = list_entry_rcu(pos->sibling.next, struct cgroup, sibling);
3b287a50
TH
3143 } else {
3144 list_for_each_entry_rcu(next, &cgrp->children, sibling)
3145 if (next->serial_nr > pos->serial_nr)
3146 break;
53fa5261
TH
3147 }
3148
3b281afb
TH
3149 /*
3150 * @next, if not pointing to the head, can be dereferenced and is
3151 * the next sibling; however, it might have @ss disabled. If so,
3152 * fast-forward to the next enabled one.
3153 */
3154 while (&next->sibling != &cgrp->children) {
3155 struct cgroup_subsys_state *next_css = cgroup_css(next, parent_css->ss);
492eb21b 3156
3b281afb
TH
3157 if (next_css)
3158 return next_css;
3159 next = list_entry_rcu(next->sibling.next, struct cgroup, sibling);
3160 }
3161 return NULL;
53fa5261 3162}
53fa5261 3163
574bd9f7 3164/**
492eb21b 3165 * css_next_descendant_pre - find the next descendant for pre-order walk
574bd9f7 3166 * @pos: the current position (%NULL to initiate traversal)
492eb21b 3167 * @root: css whose descendants to walk
574bd9f7 3168 *
492eb21b 3169 * To be used by css_for_each_descendant_pre(). Find the next descendant
bd8815a6
TH
3170 * to visit for pre-order traversal of @root's descendants. @root is
3171 * included in the iteration and the first node to be visited.
75501a6d 3172 *
87fb54f1
TH
3173 * While this function requires cgroup_mutex or RCU read locking, it
3174 * doesn't require the whole traversal to be contained in a single critical
3175 * section. This function will return the correct next descendant as long
3176 * as both @pos and @root are accessible and @pos is a descendant of @root.
574bd9f7 3177 */
492eb21b
TH
3178struct cgroup_subsys_state *
3179css_next_descendant_pre(struct cgroup_subsys_state *pos,
3180 struct cgroup_subsys_state *root)
574bd9f7 3181{
492eb21b 3182 struct cgroup_subsys_state *next;
574bd9f7 3183
ace2bee8 3184 cgroup_assert_mutexes_or_rcu_locked();
574bd9f7 3185
bd8815a6 3186 /* if first iteration, visit @root */
7805d000 3187 if (!pos)
bd8815a6 3188 return root;
574bd9f7
TH
3189
3190 /* visit the first child if exists */
492eb21b 3191 next = css_next_child(NULL, pos);
574bd9f7
TH
3192 if (next)
3193 return next;
3194
3195 /* no child, visit my or the closest ancestor's next sibling */
492eb21b
TH
3196 while (pos != root) {
3197 next = css_next_child(pos, css_parent(pos));
75501a6d 3198 if (next)
574bd9f7 3199 return next;
492eb21b 3200 pos = css_parent(pos);
7805d000 3201 }
574bd9f7
TH
3202
3203 return NULL;
3204}
574bd9f7 3205
12a9d2fe 3206/**
492eb21b
TH
3207 * css_rightmost_descendant - return the rightmost descendant of a css
3208 * @pos: css of interest
12a9d2fe 3209 *
492eb21b
TH
3210 * Return the rightmost descendant of @pos. If there's no descendant, @pos
3211 * is returned. This can be used during pre-order traversal to skip
12a9d2fe 3212 * subtree of @pos.
75501a6d 3213 *
87fb54f1
TH
3214 * While this function requires cgroup_mutex or RCU read locking, it
3215 * doesn't require the whole traversal to be contained in a single critical
3216 * section. This function will return the correct rightmost descendant as
3217 * long as @pos is accessible.
12a9d2fe 3218 */
492eb21b
TH
3219struct cgroup_subsys_state *
3220css_rightmost_descendant(struct cgroup_subsys_state *pos)
12a9d2fe 3221{
492eb21b 3222 struct cgroup_subsys_state *last, *tmp;
12a9d2fe 3223
ace2bee8 3224 cgroup_assert_mutexes_or_rcu_locked();
12a9d2fe
TH
3225
3226 do {
3227 last = pos;
3228 /* ->prev isn't RCU safe, walk ->next till the end */
3229 pos = NULL;
492eb21b 3230 css_for_each_child(tmp, last)
12a9d2fe
TH
3231 pos = tmp;
3232 } while (pos);
3233
3234 return last;
3235}
12a9d2fe 3236
492eb21b
TH
3237static struct cgroup_subsys_state *
3238css_leftmost_descendant(struct cgroup_subsys_state *pos)
574bd9f7 3239{
492eb21b 3240 struct cgroup_subsys_state *last;
574bd9f7
TH
3241
3242 do {
3243 last = pos;
492eb21b 3244 pos = css_next_child(NULL, pos);
574bd9f7
TH
3245 } while (pos);
3246
3247 return last;
3248}
3249
3250/**
492eb21b 3251 * css_next_descendant_post - find the next descendant for post-order walk
574bd9f7 3252 * @pos: the current position (%NULL to initiate traversal)
492eb21b 3253 * @root: css whose descendants to walk
574bd9f7 3254 *
492eb21b 3255 * To be used by css_for_each_descendant_post(). Find the next descendant
bd8815a6
TH
3256 * to visit for post-order traversal of @root's descendants. @root is
3257 * included in the iteration and the last node to be visited.
75501a6d 3258 *
87fb54f1
TH
3259 * While this function requires cgroup_mutex or RCU read locking, it
3260 * doesn't require the whole traversal to be contained in a single critical
3261 * section. This function will return the correct next descendant as long
3262 * as both @pos and @cgroup are accessible and @pos is a descendant of
3263 * @cgroup.
574bd9f7 3264 */
492eb21b
TH
3265struct cgroup_subsys_state *
3266css_next_descendant_post(struct cgroup_subsys_state *pos,
3267 struct cgroup_subsys_state *root)
574bd9f7 3268{
492eb21b 3269 struct cgroup_subsys_state *next;
574bd9f7 3270
ace2bee8 3271 cgroup_assert_mutexes_or_rcu_locked();
574bd9f7 3272
58b79a91
TH
3273 /* if first iteration, visit leftmost descendant which may be @root */
3274 if (!pos)
3275 return css_leftmost_descendant(root);
574bd9f7 3276
bd8815a6
TH
3277 /* if we visited @root, we're done */
3278 if (pos == root)
3279 return NULL;
3280
574bd9f7 3281 /* if there's an unvisited sibling, visit its leftmost descendant */
492eb21b 3282 next = css_next_child(pos, css_parent(pos));
75501a6d 3283 if (next)
492eb21b 3284 return css_leftmost_descendant(next);
574bd9f7
TH
3285
3286 /* no sibling left, visit parent */
bd8815a6 3287 return css_parent(pos);
574bd9f7 3288}
574bd9f7 3289
0942eeee 3290/**
72ec7029 3291 * css_advance_task_iter - advance a task itererator to the next css_set
0942eeee
TH
3292 * @it: the iterator to advance
3293 *
3294 * Advance @it to the next css_set to walk.
d515876e 3295 */
72ec7029 3296static void css_advance_task_iter(struct css_task_iter *it)
d515876e 3297{
0f0a2b4f 3298 struct list_head *l = it->cset_pos;
d515876e
TH
3299 struct cgrp_cset_link *link;
3300 struct css_set *cset;
3301
3302 /* Advance to the next non-empty css_set */
3303 do {
3304 l = l->next;
0f0a2b4f
TH
3305 if (l == it->cset_head) {
3306 it->cset_pos = NULL;
d515876e
TH
3307 return;
3308 }
3ebb2b6e
TH
3309
3310 if (it->ss) {
3311 cset = container_of(l, struct css_set,
3312 e_cset_node[it->ss->id]);
3313 } else {
3314 link = list_entry(l, struct cgrp_cset_link, cset_link);
3315 cset = link->cset;
3316 }
c7561128
TH
3317 } while (list_empty(&cset->tasks) && list_empty(&cset->mg_tasks));
3318
0f0a2b4f 3319 it->cset_pos = l;
c7561128
TH
3320
3321 if (!list_empty(&cset->tasks))
0f0a2b4f 3322 it->task_pos = cset->tasks.next;
c7561128 3323 else
0f0a2b4f
TH
3324 it->task_pos = cset->mg_tasks.next;
3325
3326 it->tasks_head = &cset->tasks;
3327 it->mg_tasks_head = &cset->mg_tasks;
d515876e
TH
3328}
3329
0942eeee 3330/**
72ec7029
TH
3331 * css_task_iter_start - initiate task iteration
3332 * @css: the css to walk tasks of
0942eeee
TH
3333 * @it: the task iterator to use
3334 *
72ec7029
TH
3335 * Initiate iteration through the tasks of @css. The caller can call
3336 * css_task_iter_next() to walk through the tasks until the function
3337 * returns NULL. On completion of iteration, css_task_iter_end() must be
3338 * called.
0942eeee
TH
3339 *
3340 * Note that this function acquires a lock which is released when the
3341 * iteration finishes. The caller can't sleep while iteration is in
3342 * progress.
3343 */
72ec7029
TH
3344void css_task_iter_start(struct cgroup_subsys_state *css,
3345 struct css_task_iter *it)
96d365e0 3346 __acquires(css_set_rwsem)
817929ec 3347{
56fde9e0
TH
3348 /* no one should try to iterate before mounting cgroups */
3349 WARN_ON_ONCE(!use_task_css_set_links);
31a7df01 3350
96d365e0 3351 down_read(&css_set_rwsem);
c59cd3d8 3352
3ebb2b6e
TH
3353 it->ss = css->ss;
3354
3355 if (it->ss)
3356 it->cset_pos = &css->cgroup->e_csets[css->ss->id];
3357 else
3358 it->cset_pos = &css->cgroup->cset_links;
3359
0f0a2b4f 3360 it->cset_head = it->cset_pos;
c59cd3d8 3361
72ec7029 3362 css_advance_task_iter(it);
817929ec
PM
3363}
3364
0942eeee 3365/**
72ec7029 3366 * css_task_iter_next - return the next task for the iterator
0942eeee
TH
3367 * @it: the task iterator being iterated
3368 *
3369 * The "next" function for task iteration. @it should have been
72ec7029
TH
3370 * initialized via css_task_iter_start(). Returns NULL when the iteration
3371 * reaches the end.
0942eeee 3372 */
72ec7029 3373struct task_struct *css_task_iter_next(struct css_task_iter *it)
817929ec
PM
3374{
3375 struct task_struct *res;
0f0a2b4f 3376 struct list_head *l = it->task_pos;
817929ec
PM
3377
3378 /* If the iterator cg is NULL, we have no tasks */
0f0a2b4f 3379 if (!it->cset_pos)
817929ec
PM
3380 return NULL;
3381 res = list_entry(l, struct task_struct, cg_list);
c7561128
TH
3382
3383 /*
3384 * Advance iterator to find next entry. cset->tasks is consumed
3385 * first and then ->mg_tasks. After ->mg_tasks, we move onto the
3386 * next cset.
3387 */
817929ec 3388 l = l->next;
c7561128 3389
0f0a2b4f
TH
3390 if (l == it->tasks_head)
3391 l = it->mg_tasks_head->next;
c7561128 3392
0f0a2b4f 3393 if (l == it->mg_tasks_head)
72ec7029 3394 css_advance_task_iter(it);
c7561128 3395 else
0f0a2b4f 3396 it->task_pos = l;
c7561128 3397
817929ec
PM
3398 return res;
3399}
3400
0942eeee 3401/**
72ec7029 3402 * css_task_iter_end - finish task iteration
0942eeee
TH
3403 * @it: the task iterator to finish
3404 *
72ec7029 3405 * Finish task iteration started by css_task_iter_start().
0942eeee 3406 */
72ec7029 3407void css_task_iter_end(struct css_task_iter *it)
96d365e0 3408 __releases(css_set_rwsem)
31a7df01 3409{
96d365e0 3410 up_read(&css_set_rwsem);
31a7df01
CW
3411}
3412
3413/**
8cc99345
TH
3414 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
3415 * @to: cgroup to which the tasks will be moved
3416 * @from: cgroup in which the tasks currently reside
31a7df01 3417 *
eaf797ab
TH
3418 * Locking rules between cgroup_post_fork() and the migration path
3419 * guarantee that, if a task is forking while being migrated, the new child
3420 * is guaranteed to be either visible in the source cgroup after the
3421 * parent's migration is complete or put into the target cgroup. No task
3422 * can slip out of migration through forking.
31a7df01 3423 */
8cc99345 3424int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
31a7df01 3425{
952aaa12
TH
3426 LIST_HEAD(preloaded_csets);
3427 struct cgrp_cset_link *link;
72ec7029 3428 struct css_task_iter it;
e406d1cf 3429 struct task_struct *task;
952aaa12 3430 int ret;
31a7df01 3431
952aaa12 3432 mutex_lock(&cgroup_mutex);
31a7df01 3433
952aaa12
TH
3434 /* all tasks in @from are being moved, all csets are source */
3435 down_read(&css_set_rwsem);
3436 list_for_each_entry(link, &from->cset_links, cset_link)
3437 cgroup_migrate_add_src(link->cset, to, &preloaded_csets);
3438 up_read(&css_set_rwsem);
31a7df01 3439
952aaa12
TH
3440 ret = cgroup_migrate_prepare_dst(to, &preloaded_csets);
3441 if (ret)
3442 goto out_err;
8cc99345 3443
952aaa12
TH
3444 /*
3445 * Migrate tasks one-by-one until @form is empty. This fails iff
3446 * ->can_attach() fails.
3447 */
e406d1cf
TH
3448 do {
3449 css_task_iter_start(&from->dummy_css, &it);
3450 task = css_task_iter_next(&it);
3451 if (task)
3452 get_task_struct(task);
3453 css_task_iter_end(&it);
3454
3455 if (task) {
952aaa12 3456 ret = cgroup_migrate(to, task, false);
e406d1cf
TH
3457 put_task_struct(task);
3458 }
3459 } while (task && !ret);
952aaa12
TH
3460out_err:
3461 cgroup_migrate_finish(&preloaded_csets);
47cfcd09 3462 mutex_unlock(&cgroup_mutex);
e406d1cf 3463 return ret;
8cc99345
TH
3464}
3465
bbcb81d0 3466/*
102a775e 3467 * Stuff for reading the 'tasks'/'procs' files.
bbcb81d0
PM
3468 *
3469 * Reading this file can return large amounts of data if a cgroup has
3470 * *lots* of attached tasks. So it may need several calls to read(),
3471 * but we cannot guarantee that the information we produce is correct
3472 * unless we produce it entirely atomically.
3473 *
bbcb81d0 3474 */
bbcb81d0 3475
24528255
LZ
3476/* which pidlist file are we talking about? */
3477enum cgroup_filetype {
3478 CGROUP_FILE_PROCS,
3479 CGROUP_FILE_TASKS,
3480};
3481
3482/*
3483 * A pidlist is a list of pids that virtually represents the contents of one
3484 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
3485 * a pair (one each for procs, tasks) for each pid namespace that's relevant
3486 * to the cgroup.
3487 */
3488struct cgroup_pidlist {
3489 /*
3490 * used to find which pidlist is wanted. doesn't change as long as
3491 * this particular list stays in the list.
3492 */
3493 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
3494 /* array of xids */
3495 pid_t *list;
3496 /* how many elements the above list has */
3497 int length;
24528255
LZ
3498 /* each of these stored in a list by its cgroup */
3499 struct list_head links;
3500 /* pointer to the cgroup we belong to, for list removal purposes */
3501 struct cgroup *owner;
b1a21367
TH
3502 /* for delayed destruction */
3503 struct delayed_work destroy_dwork;
24528255
LZ
3504};
3505
d1d9fd33
BB
3506/*
3507 * The following two functions "fix" the issue where there are more pids
3508 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
3509 * TODO: replace with a kernel-wide solution to this problem
3510 */
3511#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
3512static void *pidlist_allocate(int count)
3513{
3514 if (PIDLIST_TOO_LARGE(count))
3515 return vmalloc(count * sizeof(pid_t));
3516 else
3517 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
3518}
b1a21367 3519
d1d9fd33
BB
3520static void pidlist_free(void *p)
3521{
3522 if (is_vmalloc_addr(p))
3523 vfree(p);
3524 else
3525 kfree(p);
3526}
d1d9fd33 3527
b1a21367
TH
3528/*
3529 * Used to destroy all pidlists lingering waiting for destroy timer. None
3530 * should be left afterwards.
3531 */
3532static void cgroup_pidlist_destroy_all(struct cgroup *cgrp)
3533{
3534 struct cgroup_pidlist *l, *tmp_l;
3535
3536 mutex_lock(&cgrp->pidlist_mutex);
3537 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
3538 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
3539 mutex_unlock(&cgrp->pidlist_mutex);
3540
3541 flush_workqueue(cgroup_pidlist_destroy_wq);
3542 BUG_ON(!list_empty(&cgrp->pidlists));
3543}
3544
3545static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
3546{
3547 struct delayed_work *dwork = to_delayed_work(work);
3548 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
3549 destroy_dwork);
3550 struct cgroup_pidlist *tofree = NULL;
3551
3552 mutex_lock(&l->owner->pidlist_mutex);
b1a21367
TH
3553
3554 /*
04502365
TH
3555 * Destroy iff we didn't get queued again. The state won't change
3556 * as destroy_dwork can only be queued while locked.
b1a21367 3557 */
04502365 3558 if (!delayed_work_pending(dwork)) {
b1a21367
TH
3559 list_del(&l->links);
3560 pidlist_free(l->list);
3561 put_pid_ns(l->key.ns);
3562 tofree = l;
3563 }
3564
b1a21367
TH
3565 mutex_unlock(&l->owner->pidlist_mutex);
3566 kfree(tofree);
3567}
3568
bbcb81d0 3569/*
102a775e 3570 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
6ee211ad 3571 * Returns the number of unique elements.
bbcb81d0 3572 */
6ee211ad 3573static int pidlist_uniq(pid_t *list, int length)
bbcb81d0 3574{
102a775e 3575 int src, dest = 1;
102a775e
BB
3576
3577 /*
3578 * we presume the 0th element is unique, so i starts at 1. trivial
3579 * edge cases first; no work needs to be done for either
3580 */
3581 if (length == 0 || length == 1)
3582 return length;
3583 /* src and dest walk down the list; dest counts unique elements */
3584 for (src = 1; src < length; src++) {
3585 /* find next unique element */
3586 while (list[src] == list[src-1]) {
3587 src++;
3588 if (src == length)
3589 goto after;
3590 }
3591 /* dest always points to where the next unique element goes */
3592 list[dest] = list[src];
3593 dest++;
3594 }
3595after:
102a775e
BB
3596 return dest;
3597}
3598
afb2bc14
TH
3599/*
3600 * The two pid files - task and cgroup.procs - guaranteed that the result
3601 * is sorted, which forced this whole pidlist fiasco. As pid order is
3602 * different per namespace, each namespace needs differently sorted list,
3603 * making it impossible to use, for example, single rbtree of member tasks
3604 * sorted by task pointer. As pidlists can be fairly large, allocating one
3605 * per open file is dangerous, so cgroup had to implement shared pool of
3606 * pidlists keyed by cgroup and namespace.
3607 *
3608 * All this extra complexity was caused by the original implementation
3609 * committing to an entirely unnecessary property. In the long term, we
3610 * want to do away with it. Explicitly scramble sort order if
3611 * sane_behavior so that no such expectation exists in the new interface.
3612 *
3613 * Scrambling is done by swapping every two consecutive bits, which is
3614 * non-identity one-to-one mapping which disturbs sort order sufficiently.
3615 */
3616static pid_t pid_fry(pid_t pid)
3617{
3618 unsigned a = pid & 0x55555555;
3619 unsigned b = pid & 0xAAAAAAAA;
3620
3621 return (a << 1) | (b >> 1);
3622}
3623
3624static pid_t cgroup_pid_fry(struct cgroup *cgrp, pid_t pid)
3625{
3626 if (cgroup_sane_behavior(cgrp))
3627 return pid_fry(pid);
3628 else
3629 return pid;
3630}
3631
102a775e
BB
3632static int cmppid(const void *a, const void *b)
3633{
3634 return *(pid_t *)a - *(pid_t *)b;
3635}
3636
afb2bc14
TH
3637static int fried_cmppid(const void *a, const void *b)
3638{
3639 return pid_fry(*(pid_t *)a) - pid_fry(*(pid_t *)b);
3640}
3641
e6b81710
TH
3642static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
3643 enum cgroup_filetype type)
3644{
3645 struct cgroup_pidlist *l;
3646 /* don't need task_nsproxy() if we're looking at ourself */
3647 struct pid_namespace *ns = task_active_pid_ns(current);
3648
3649 lockdep_assert_held(&cgrp->pidlist_mutex);
3650
3651 list_for_each_entry(l, &cgrp->pidlists, links)
3652 if (l->key.type == type && l->key.ns == ns)
3653 return l;
3654 return NULL;
3655}
3656
72a8cb30
BB
3657/*
3658 * find the appropriate pidlist for our purpose (given procs vs tasks)
3659 * returns with the lock on that pidlist already held, and takes care
3660 * of the use count, or returns NULL with no locks held if we're out of
3661 * memory.
3662 */
e6b81710
TH
3663static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
3664 enum cgroup_filetype type)
72a8cb30
BB
3665{
3666 struct cgroup_pidlist *l;
b70cc5fd 3667
e6b81710
TH
3668 lockdep_assert_held(&cgrp->pidlist_mutex);
3669
3670 l = cgroup_pidlist_find(cgrp, type);
3671 if (l)
3672 return l;
3673
72a8cb30 3674 /* entry not found; create a new one */
f4f4be2b 3675 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
e6b81710 3676 if (!l)
72a8cb30 3677 return l;
e6b81710 3678
b1a21367 3679 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
72a8cb30 3680 l->key.type = type;
e6b81710
TH
3681 /* don't need task_nsproxy() if we're looking at ourself */
3682 l->key.ns = get_pid_ns(task_active_pid_ns(current));
72a8cb30
BB
3683 l->owner = cgrp;
3684 list_add(&l->links, &cgrp->pidlists);
72a8cb30
BB
3685 return l;
3686}
3687
102a775e
BB
3688/*
3689 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
3690 */
72a8cb30
BB
3691static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
3692 struct cgroup_pidlist **lp)
102a775e
BB
3693{
3694 pid_t *array;
3695 int length;
3696 int pid, n = 0; /* used for populating the array */
72ec7029 3697 struct css_task_iter it;
817929ec 3698 struct task_struct *tsk;
102a775e
BB
3699 struct cgroup_pidlist *l;
3700
4bac00d1
TH
3701 lockdep_assert_held(&cgrp->pidlist_mutex);
3702
102a775e
BB
3703 /*
3704 * If cgroup gets more users after we read count, we won't have
3705 * enough space - tough. This race is indistinguishable to the
3706 * caller from the case that the additional cgroup users didn't
3707 * show up until sometime later on.
3708 */
3709 length = cgroup_task_count(cgrp);
d1d9fd33 3710 array = pidlist_allocate(length);
102a775e
BB
3711 if (!array)
3712 return -ENOMEM;
3713 /* now, populate the array */
72ec7029
TH
3714 css_task_iter_start(&cgrp->dummy_css, &it);
3715 while ((tsk = css_task_iter_next(&it))) {
102a775e 3716 if (unlikely(n == length))
817929ec 3717 break;
102a775e 3718 /* get tgid or pid for procs or tasks file respectively */
72a8cb30
BB
3719 if (type == CGROUP_FILE_PROCS)
3720 pid = task_tgid_vnr(tsk);
3721 else
3722 pid = task_pid_vnr(tsk);
102a775e
BB
3723 if (pid > 0) /* make sure to only use valid results */
3724 array[n++] = pid;
817929ec 3725 }
72ec7029 3726 css_task_iter_end(&it);
102a775e
BB
3727 length = n;
3728 /* now sort & (if procs) strip out duplicates */
afb2bc14
TH
3729 if (cgroup_sane_behavior(cgrp))
3730 sort(array, length, sizeof(pid_t), fried_cmppid, NULL);
3731 else
3732 sort(array, length, sizeof(pid_t), cmppid, NULL);
72a8cb30 3733 if (type == CGROUP_FILE_PROCS)
6ee211ad 3734 length = pidlist_uniq(array, length);
e6b81710 3735
e6b81710 3736 l = cgroup_pidlist_find_create(cgrp, type);
72a8cb30 3737 if (!l) {
e6b81710 3738 mutex_unlock(&cgrp->pidlist_mutex);
d1d9fd33 3739 pidlist_free(array);
72a8cb30 3740 return -ENOMEM;
102a775e 3741 }
e6b81710
TH
3742
3743 /* store array, freeing old if necessary */
d1d9fd33 3744 pidlist_free(l->list);
102a775e
BB
3745 l->list = array;
3746 l->length = length;
72a8cb30 3747 *lp = l;
102a775e 3748 return 0;
bbcb81d0
PM
3749}
3750
846c7bb0 3751/**
a043e3b2 3752 * cgroupstats_build - build and fill cgroupstats
846c7bb0
BS
3753 * @stats: cgroupstats to fill information into
3754 * @dentry: A dentry entry belonging to the cgroup for which stats have
3755 * been requested.
a043e3b2
LZ
3756 *
3757 * Build and fill cgroupstats so that taskstats can export it to user
3758 * space.
846c7bb0
BS
3759 */
3760int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
3761{
2bd59d48 3762 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
bd89aabc 3763 struct cgroup *cgrp;
72ec7029 3764 struct css_task_iter it;
846c7bb0 3765 struct task_struct *tsk;
33d283be 3766
2bd59d48
TH
3767 /* it should be kernfs_node belonging to cgroupfs and is a directory */
3768 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
3769 kernfs_type(kn) != KERNFS_DIR)
3770 return -EINVAL;
3771
bad34660
LZ
3772 mutex_lock(&cgroup_mutex);
3773
846c7bb0 3774 /*
2bd59d48 3775 * We aren't being called from kernfs and there's no guarantee on
ec903c0c 3776 * @kn->priv's validity. For this and css_tryget_online_from_dir(),
2bd59d48 3777 * @kn->priv is RCU safe. Let's do the RCU dancing.
846c7bb0 3778 */
2bd59d48
TH
3779 rcu_read_lock();
3780 cgrp = rcu_dereference(kn->priv);
bad34660 3781 if (!cgrp || cgroup_is_dead(cgrp)) {
2bd59d48 3782 rcu_read_unlock();
bad34660 3783 mutex_unlock(&cgroup_mutex);
2bd59d48
TH
3784 return -ENOENT;
3785 }
bad34660 3786 rcu_read_unlock();
846c7bb0 3787
72ec7029
TH
3788 css_task_iter_start(&cgrp->dummy_css, &it);
3789 while ((tsk = css_task_iter_next(&it))) {
846c7bb0
BS
3790 switch (tsk->state) {
3791 case TASK_RUNNING:
3792 stats->nr_running++;
3793 break;
3794 case TASK_INTERRUPTIBLE:
3795 stats->nr_sleeping++;
3796 break;
3797 case TASK_UNINTERRUPTIBLE:
3798 stats->nr_uninterruptible++;
3799 break;
3800 case TASK_STOPPED:
3801 stats->nr_stopped++;
3802 break;
3803 default:
3804 if (delayacct_is_task_waiting_on_io(tsk))
3805 stats->nr_io_wait++;
3806 break;
3807 }
3808 }
72ec7029 3809 css_task_iter_end(&it);
846c7bb0 3810
bad34660 3811 mutex_unlock(&cgroup_mutex);
2bd59d48 3812 return 0;
846c7bb0
BS
3813}
3814
8f3ff208 3815
bbcb81d0 3816/*
102a775e 3817 * seq_file methods for the tasks/procs files. The seq_file position is the
cc31edce 3818 * next pid to display; the seq_file iterator is a pointer to the pid
102a775e 3819 * in the cgroup->l->list array.
bbcb81d0 3820 */
cc31edce 3821
102a775e 3822static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
bbcb81d0 3823{
cc31edce
PM
3824 /*
3825 * Initially we receive a position value that corresponds to
3826 * one more than the last pid shown (or 0 on the first call or
3827 * after a seek to the start). Use a binary-search to find the
3828 * next pid to display, if any
3829 */
2bd59d48 3830 struct kernfs_open_file *of = s->private;
7da11279 3831 struct cgroup *cgrp = seq_css(s)->cgroup;
4bac00d1 3832 struct cgroup_pidlist *l;
7da11279 3833 enum cgroup_filetype type = seq_cft(s)->private;
cc31edce 3834 int index = 0, pid = *pos;
4bac00d1
TH
3835 int *iter, ret;
3836
3837 mutex_lock(&cgrp->pidlist_mutex);
3838
3839 /*
5d22444f 3840 * !NULL @of->priv indicates that this isn't the first start()
4bac00d1 3841 * after open. If the matching pidlist is around, we can use that.
5d22444f 3842 * Look for it. Note that @of->priv can't be used directly. It
4bac00d1
TH
3843 * could already have been destroyed.
3844 */
5d22444f
TH
3845 if (of->priv)
3846 of->priv = cgroup_pidlist_find(cgrp, type);
4bac00d1
TH
3847
3848 /*
3849 * Either this is the first start() after open or the matching
3850 * pidlist has been destroyed inbetween. Create a new one.
3851 */
5d22444f
TH
3852 if (!of->priv) {
3853 ret = pidlist_array_load(cgrp, type,
3854 (struct cgroup_pidlist **)&of->priv);
4bac00d1
TH
3855 if (ret)
3856 return ERR_PTR(ret);
3857 }
5d22444f 3858 l = of->priv;
cc31edce 3859
cc31edce 3860 if (pid) {
102a775e 3861 int end = l->length;
20777766 3862
cc31edce
PM
3863 while (index < end) {
3864 int mid = (index + end) / 2;
afb2bc14 3865 if (cgroup_pid_fry(cgrp, l->list[mid]) == pid) {
cc31edce
PM
3866 index = mid;
3867 break;
afb2bc14 3868 } else if (cgroup_pid_fry(cgrp, l->list[mid]) <= pid)
cc31edce
PM
3869 index = mid + 1;
3870 else
3871 end = mid;
3872 }
3873 }
3874 /* If we're off the end of the array, we're done */
102a775e 3875 if (index >= l->length)
cc31edce
PM
3876 return NULL;
3877 /* Update the abstract position to be the actual pid that we found */
102a775e 3878 iter = l->list + index;
afb2bc14 3879 *pos = cgroup_pid_fry(cgrp, *iter);
cc31edce
PM
3880 return iter;
3881}
3882
102a775e 3883static void cgroup_pidlist_stop(struct seq_file *s, void *v)
cc31edce 3884{
2bd59d48 3885 struct kernfs_open_file *of = s->private;
5d22444f 3886 struct cgroup_pidlist *l = of->priv;
62236858 3887
5d22444f
TH
3888 if (l)
3889 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
04502365 3890 CGROUP_PIDLIST_DESTROY_DELAY);
7da11279 3891 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
cc31edce
PM
3892}
3893
102a775e 3894static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
cc31edce 3895{
2bd59d48 3896 struct kernfs_open_file *of = s->private;
5d22444f 3897 struct cgroup_pidlist *l = of->priv;
102a775e
BB
3898 pid_t *p = v;
3899 pid_t *end = l->list + l->length;
cc31edce
PM
3900 /*
3901 * Advance to the next pid in the array. If this goes off the
3902 * end, we're done
3903 */
3904 p++;
3905 if (p >= end) {
3906 return NULL;
3907 } else {
7da11279 3908 *pos = cgroup_pid_fry(seq_css(s)->cgroup, *p);
cc31edce
PM
3909 return p;
3910 }
3911}
3912
102a775e 3913static int cgroup_pidlist_show(struct seq_file *s, void *v)
cc31edce
PM
3914{
3915 return seq_printf(s, "%d\n", *(int *)v);
3916}
bbcb81d0 3917
182446d0
TH
3918static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
3919 struct cftype *cft)
81a6a5cd 3920{
182446d0 3921 return notify_on_release(css->cgroup);
81a6a5cd
PM
3922}
3923
182446d0
TH
3924static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
3925 struct cftype *cft, u64 val)
6379c106 3926{
182446d0 3927 clear_bit(CGRP_RELEASABLE, &css->cgroup->flags);
6379c106 3928 if (val)
182446d0 3929 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106 3930 else
182446d0 3931 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106
PM
3932 return 0;
3933}
3934
182446d0
TH
3935static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
3936 struct cftype *cft)
97978e6d 3937{
182446d0 3938 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
3939}
3940
182446d0
TH
3941static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
3942 struct cftype *cft, u64 val)
97978e6d
DL
3943{
3944 if (val)
182446d0 3945 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d 3946 else
182446d0 3947 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
3948 return 0;
3949}
3950
d5c56ced 3951static struct cftype cgroup_base_files[] = {
81a6a5cd 3952 {
d5c56ced 3953 .name = "cgroup.procs",
6612f05b
TH
3954 .seq_start = cgroup_pidlist_start,
3955 .seq_next = cgroup_pidlist_next,
3956 .seq_stop = cgroup_pidlist_stop,
3957 .seq_show = cgroup_pidlist_show,
5d22444f 3958 .private = CGROUP_FILE_PROCS,
74a1166d 3959 .write_u64 = cgroup_procs_write,
74a1166d 3960 .mode = S_IRUGO | S_IWUSR,
102a775e 3961 },
97978e6d
DL
3962 {
3963 .name = "cgroup.clone_children",
873fe09e 3964 .flags = CFTYPE_INSANE,
97978e6d
DL
3965 .read_u64 = cgroup_clone_children_read,
3966 .write_u64 = cgroup_clone_children_write,
3967 },
873fe09e
TH
3968 {
3969 .name = "cgroup.sane_behavior",
3970 .flags = CFTYPE_ONLY_ON_ROOT,
2da8ca82 3971 .seq_show = cgroup_sane_behavior_show,
873fe09e 3972 },
f8f22e53
TH
3973 {
3974 .name = "cgroup.controllers",
3975 .flags = CFTYPE_ONLY_ON_DFL | CFTYPE_ONLY_ON_ROOT,
3976 .seq_show = cgroup_root_controllers_show,
3977 },
3978 {
3979 .name = "cgroup.controllers",
3980 .flags = CFTYPE_ONLY_ON_DFL | CFTYPE_NOT_ON_ROOT,
3981 .seq_show = cgroup_controllers_show,
3982 },
3983 {
3984 .name = "cgroup.subtree_control",
3985 .flags = CFTYPE_ONLY_ON_DFL,
3986 .seq_show = cgroup_subtree_control_show,
3987 .write_string = cgroup_subtree_control_write,
3988 },
842b597e
TH
3989 {
3990 .name = "cgroup.populated",
3991 .flags = CFTYPE_ONLY_ON_DFL | CFTYPE_NOT_ON_ROOT,
3992 .seq_show = cgroup_populated_show,
3993 },
d5c56ced
TH
3994
3995 /*
3996 * Historical crazy stuff. These don't have "cgroup." prefix and
3997 * don't exist if sane_behavior. If you're depending on these, be
3998 * prepared to be burned.
3999 */
4000 {
4001 .name = "tasks",
4002 .flags = CFTYPE_INSANE, /* use "procs" instead */
6612f05b
TH
4003 .seq_start = cgroup_pidlist_start,
4004 .seq_next = cgroup_pidlist_next,
4005 .seq_stop = cgroup_pidlist_stop,
4006 .seq_show = cgroup_pidlist_show,
5d22444f 4007 .private = CGROUP_FILE_TASKS,
d5c56ced 4008 .write_u64 = cgroup_tasks_write,
d5c56ced
TH
4009 .mode = S_IRUGO | S_IWUSR,
4010 },
4011 {
4012 .name = "notify_on_release",
4013 .flags = CFTYPE_INSANE,
4014 .read_u64 = cgroup_read_notify_on_release,
4015 .write_u64 = cgroup_write_notify_on_release,
4016 },
6e6ff25b
TH
4017 {
4018 .name = "release_agent",
cc5943a7 4019 .flags = CFTYPE_INSANE | CFTYPE_ONLY_ON_ROOT,
2da8ca82 4020 .seq_show = cgroup_release_agent_show,
6e6ff25b 4021 .write_string = cgroup_release_agent_write,
5f469907 4022 .max_write_len = PATH_MAX - 1,
6e6ff25b 4023 },
db0416b6 4024 { } /* terminate */
bbcb81d0
PM
4025};
4026
13af07df 4027/**
628f7cd4 4028 * cgroup_populate_dir - create subsys files in a cgroup directory
13af07df 4029 * @cgrp: target cgroup
13af07df 4030 * @subsys_mask: mask of the subsystem ids whose files should be added
bee55099
TH
4031 *
4032 * On failure, no file is added.
13af07df 4033 */
69dfa00c 4034static int cgroup_populate_dir(struct cgroup *cgrp, unsigned int subsys_mask)
ddbcc7e8 4035{
ddbcc7e8 4036 struct cgroup_subsys *ss;
b420ba7d 4037 int i, ret = 0;
bbcb81d0 4038
8e3f6541 4039 /* process cftsets of each subsystem */
b420ba7d 4040 for_each_subsys(ss, i) {
0adb0704 4041 struct cftype *cfts;
b420ba7d 4042
69dfa00c 4043 if (!(subsys_mask & (1 << i)))
13af07df 4044 continue;
8e3f6541 4045
0adb0704
TH
4046 list_for_each_entry(cfts, &ss->cfts, node) {
4047 ret = cgroup_addrm_files(cgrp, cfts, true);
bee55099
TH
4048 if (ret < 0)
4049 goto err;
4050 }
ddbcc7e8 4051 }
ddbcc7e8 4052 return 0;
bee55099
TH
4053err:
4054 cgroup_clear_dir(cgrp, subsys_mask);
4055 return ret;
ddbcc7e8
PM
4056}
4057
0c21ead1
TH
4058/*
4059 * css destruction is four-stage process.
4060 *
4061 * 1. Destruction starts. Killing of the percpu_ref is initiated.
4062 * Implemented in kill_css().
4063 *
4064 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
ec903c0c
TH
4065 * and thus css_tryget_online() is guaranteed to fail, the css can be
4066 * offlined by invoking offline_css(). After offlining, the base ref is
4067 * put. Implemented in css_killed_work_fn().
0c21ead1
TH
4068 *
4069 * 3. When the percpu_ref reaches zero, the only possible remaining
4070 * accessors are inside RCU read sections. css_release() schedules the
4071 * RCU callback.
4072 *
4073 * 4. After the grace period, the css can be freed. Implemented in
4074 * css_free_work_fn().
4075 *
4076 * It is actually hairier because both step 2 and 4 require process context
4077 * and thus involve punting to css->destroy_work adding two additional
4078 * steps to the already complex sequence.
4079 */
35ef10da 4080static void css_free_work_fn(struct work_struct *work)
48ddbe19
TH
4081{
4082 struct cgroup_subsys_state *css =
35ef10da 4083 container_of(work, struct cgroup_subsys_state, destroy_work);
0c21ead1 4084 struct cgroup *cgrp = css->cgroup;
48ddbe19 4085
0ae78e0b
TH
4086 if (css->parent)
4087 css_put(css->parent);
4088
0c21ead1 4089 css->ss->css_free(css);
2bd59d48 4090 cgroup_put(cgrp);
48ddbe19
TH
4091}
4092
0c21ead1 4093static void css_free_rcu_fn(struct rcu_head *rcu_head)
d3daf28d
TH
4094{
4095 struct cgroup_subsys_state *css =
0c21ead1 4096 container_of(rcu_head, struct cgroup_subsys_state, rcu_head);
d3daf28d 4097
35ef10da 4098 INIT_WORK(&css->destroy_work, css_free_work_fn);
e5fca243 4099 queue_work(cgroup_destroy_wq, &css->destroy_work);
48ddbe19
TH
4100}
4101
d3daf28d
TH
4102static void css_release(struct percpu_ref *ref)
4103{
4104 struct cgroup_subsys_state *css =
4105 container_of(ref, struct cgroup_subsys_state, refcnt);
15a4c835
TH
4106 struct cgroup_subsys *ss = css->ss;
4107
15a4c835 4108 cgroup_idr_remove(&ss->css_idr, css->id);
d3daf28d 4109
0c21ead1 4110 call_rcu(&css->rcu_head, css_free_rcu_fn);
d3daf28d
TH
4111}
4112
ddfcadab
TH
4113static void init_and_link_css(struct cgroup_subsys_state *css,
4114 struct cgroup_subsys *ss, struct cgroup *cgrp)
ddbcc7e8 4115{
ddfcadab
TH
4116 cgroup_get(cgrp);
4117
bd89aabc 4118 css->cgroup = cgrp;
72c97e54 4119 css->ss = ss;
ddbcc7e8 4120 css->flags = 0;
0ae78e0b 4121
ddfcadab 4122 if (cgrp->parent) {
ca8bdcaf 4123 css->parent = cgroup_css(cgrp->parent, ss);
ddfcadab
TH
4124 css_get(css->parent);
4125 } else {
38b53aba 4126 css->flags |= CSS_ROOT;
ddfcadab 4127 }
48ddbe19 4128
ca8bdcaf 4129 BUG_ON(cgroup_css(cgrp, ss));
ddbcc7e8
PM
4130}
4131
2a4ac633 4132/* invoke ->css_online() on a new CSS and mark it online if successful */
623f926b 4133static int online_css(struct cgroup_subsys_state *css)
a31f2d3f 4134{
623f926b 4135 struct cgroup_subsys *ss = css->ss;
b1929db4
TH
4136 int ret = 0;
4137
ace2bee8 4138 lockdep_assert_held(&cgroup_tree_mutex);
a31f2d3f
TH
4139 lockdep_assert_held(&cgroup_mutex);
4140
92fb9748 4141 if (ss->css_online)
eb95419b 4142 ret = ss->css_online(css);
ae7f164a 4143 if (!ret) {
eb95419b 4144 css->flags |= CSS_ONLINE;
f20104de 4145 css->cgroup->nr_css++;
aec25020 4146 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
ae7f164a 4147 }
b1929db4 4148 return ret;
a31f2d3f
TH
4149}
4150
2a4ac633 4151/* if the CSS is online, invoke ->css_offline() on it and mark it offline */
623f926b 4152static void offline_css(struct cgroup_subsys_state *css)
a31f2d3f 4153{
623f926b 4154 struct cgroup_subsys *ss = css->ss;
a31f2d3f 4155
ace2bee8 4156 lockdep_assert_held(&cgroup_tree_mutex);
a31f2d3f
TH
4157 lockdep_assert_held(&cgroup_mutex);
4158
4159 if (!(css->flags & CSS_ONLINE))
4160 return;
4161
d7eeac19 4162 if (ss->css_offline)
eb95419b 4163 ss->css_offline(css);
a31f2d3f 4164
eb95419b 4165 css->flags &= ~CSS_ONLINE;
09a503ea 4166 css->cgroup->nr_css--;
e3297803 4167 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
f8f22e53
TH
4168
4169 wake_up_all(&css->cgroup->offline_waitq);
a31f2d3f
TH
4170}
4171
c81c925a
TH
4172/**
4173 * create_css - create a cgroup_subsys_state
4174 * @cgrp: the cgroup new css will be associated with
4175 * @ss: the subsys of new css
4176 *
4177 * Create a new css associated with @cgrp - @ss pair. On success, the new
4178 * css is online and installed in @cgrp with all interface files created.
4179 * Returns 0 on success, -errno on failure.
4180 */
4181static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss)
4182{
4183 struct cgroup *parent = cgrp->parent;
4184 struct cgroup_subsys_state *css;
4185 int err;
4186
c81c925a
TH
4187 lockdep_assert_held(&cgroup_mutex);
4188
4189 css = ss->css_alloc(cgroup_css(parent, ss));
4190 if (IS_ERR(css))
4191 return PTR_ERR(css);
4192
ddfcadab 4193 init_and_link_css(css, ss, cgrp);
a2bed820 4194
c81c925a
TH
4195 err = percpu_ref_init(&css->refcnt, css_release);
4196 if (err)
3eb59ec6 4197 goto err_free_css;
c81c925a 4198
15a4c835
TH
4199 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_NOWAIT);
4200 if (err < 0)
4201 goto err_free_percpu_ref;
4202 css->id = err;
4203
aec25020 4204 err = cgroup_populate_dir(cgrp, 1 << ss->id);
c81c925a 4205 if (err)
15a4c835
TH
4206 goto err_free_id;
4207
4208 /* @css is ready to be brought online now, make it visible */
4209 cgroup_idr_replace(&ss->css_idr, css, css->id);
c81c925a
TH
4210
4211 err = online_css(css);
4212 if (err)
3eb59ec6 4213 goto err_clear_dir;
c81c925a 4214
c81c925a
TH
4215 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
4216 parent->parent) {
ed3d261b 4217 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
a2a1f9ea 4218 current->comm, current->pid, ss->name);
c81c925a 4219 if (!strcmp(ss->name, "memory"))
ed3d261b 4220 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
c81c925a
TH
4221 ss->warned_broken_hierarchy = true;
4222 }
4223
4224 return 0;
4225
3eb59ec6 4226err_clear_dir:
32d01dc7 4227 cgroup_clear_dir(css->cgroup, 1 << css->ss->id);
15a4c835
TH
4228err_free_id:
4229 cgroup_idr_remove(&ss->css_idr, css->id);
3eb59ec6 4230err_free_percpu_ref:
c81c925a 4231 percpu_ref_cancel_init(&css->refcnt);
3eb59ec6 4232err_free_css:
a2bed820 4233 call_rcu(&css->rcu_head, css_free_rcu_fn);
c81c925a
TH
4234 return err;
4235}
4236
2bd59d48 4237/**
a043e3b2
LZ
4238 * cgroup_create - create a cgroup
4239 * @parent: cgroup that will be parent of the new cgroup
e61734c5 4240 * @name: name of the new cgroup
2bd59d48 4241 * @mode: mode to set on new cgroup
ddbcc7e8 4242 */
e61734c5 4243static long cgroup_create(struct cgroup *parent, const char *name,
2bd59d48 4244 umode_t mode)
ddbcc7e8 4245{
bd89aabc 4246 struct cgroup *cgrp;
3dd06ffa 4247 struct cgroup_root *root = parent->root;
b58c8998 4248 int ssid, err;
ddbcc7e8 4249 struct cgroup_subsys *ss;
2bd59d48 4250 struct kernfs_node *kn;
ddbcc7e8 4251
0a950f65 4252 /* allocate the cgroup and its ID, 0 is reserved for the root */
bd89aabc
PM
4253 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
4254 if (!cgrp)
ddbcc7e8
PM
4255 return -ENOMEM;
4256
ace2bee8 4257 mutex_lock(&cgroup_tree_mutex);
65dff759 4258
976c06bc
TH
4259 /*
4260 * Only live parents can have children. Note that the liveliness
4261 * check isn't strictly necessary because cgroup_mkdir() and
4262 * cgroup_rmdir() are fully synchronized by i_mutex; however, do it
4263 * anyway so that locking is contained inside cgroup proper and we
4264 * don't get nasty surprises if we ever grow another caller.
4265 */
4266 if (!cgroup_lock_live_group(parent)) {
4267 err = -ENODEV;
ace2bee8 4268 goto err_unlock_tree;
0ab02ca8
LZ
4269 }
4270
4271 /*
4272 * Temporarily set the pointer to NULL, so idr_find() won't return
4273 * a half-baked cgroup.
4274 */
6fa4918d 4275 cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_NOWAIT);
0ab02ca8
LZ
4276 if (cgrp->id < 0) {
4277 err = -ENOMEM;
4278 goto err_unlock;
976c06bc
TH
4279 }
4280
cc31edce 4281 init_cgroup_housekeeping(cgrp);
ddbcc7e8 4282
bd89aabc 4283 cgrp->parent = parent;
0ae78e0b 4284 cgrp->dummy_css.parent = &parent->dummy_css;
bd89aabc 4285 cgrp->root = parent->root;
ddbcc7e8 4286
b6abdb0e
LZ
4287 if (notify_on_release(parent))
4288 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
4289
2260e7fc
TH
4290 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
4291 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
97978e6d 4292
2bd59d48 4293 /* create the directory */
e61734c5 4294 kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
2bd59d48
TH
4295 if (IS_ERR(kn)) {
4296 err = PTR_ERR(kn);
0ab02ca8 4297 goto err_free_id;
2bd59d48
TH
4298 }
4299 cgrp->kn = kn;
ddbcc7e8 4300
4e139afc 4301 /*
6f30558f
TH
4302 * This extra ref will be put in cgroup_free_fn() and guarantees
4303 * that @cgrp->kn is always accessible.
4e139afc 4304 */
6f30558f 4305 kernfs_get(kn);
ddbcc7e8 4306
00356bd5 4307 cgrp->serial_nr = cgroup_serial_nr_next++;
53fa5261 4308
4e139afc 4309 /* allocation complete, commit to creation */
4e139afc 4310 list_add_tail_rcu(&cgrp->sibling, &cgrp->parent->children);
3c9c825b 4311 atomic_inc(&root->nr_cgrps);
59f5296b 4312 cgroup_get(parent);
415cf07a 4313
0d80255e
TH
4314 /*
4315 * @cgrp is now fully operational. If something fails after this
4316 * point, it'll be released via the normal destruction path.
4317 */
6fa4918d 4318 cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
4e96ee8e 4319
49957f8e
TH
4320 err = cgroup_kn_set_ugid(kn);
4321 if (err)
4322 goto err_destroy;
4323
2bb566cb 4324 err = cgroup_addrm_files(cgrp, cgroup_base_files, true);
628f7cd4
TH
4325 if (err)
4326 goto err_destroy;
4327
9d403e99 4328 /* let's create and online css's */
b85d2040 4329 for_each_subsys(ss, ssid) {
f392e51c 4330 if (parent->child_subsys_mask & (1 << ssid)) {
b85d2040
TH
4331 err = create_css(cgrp, ss);
4332 if (err)
4333 goto err_destroy;
4334 }
a8638030 4335 }
ddbcc7e8 4336
bd53d617
TH
4337 /*
4338 * On the default hierarchy, a child doesn't automatically inherit
4339 * child_subsys_mask from the parent. Each is configured manually.
4340 */
4341 if (!cgroup_on_dfl(cgrp))
4342 cgrp->child_subsys_mask = parent->child_subsys_mask;
f392e51c 4343
2bd59d48
TH
4344 kernfs_activate(kn);
4345
ddbcc7e8 4346 mutex_unlock(&cgroup_mutex);
ace2bee8 4347 mutex_unlock(&cgroup_tree_mutex);
ddbcc7e8
PM
4348
4349 return 0;
4350
0a950f65 4351err_free_id:
6fa4918d 4352 cgroup_idr_remove(&root->cgroup_idr, cgrp->id);
0ab02ca8
LZ
4353err_unlock:
4354 mutex_unlock(&cgroup_mutex);
ace2bee8
TH
4355err_unlock_tree:
4356 mutex_unlock(&cgroup_tree_mutex);
bd89aabc 4357 kfree(cgrp);
ddbcc7e8 4358 return err;
4b8b47eb
TH
4359
4360err_destroy:
4361 cgroup_destroy_locked(cgrp);
4362 mutex_unlock(&cgroup_mutex);
ace2bee8 4363 mutex_unlock(&cgroup_tree_mutex);
4b8b47eb 4364 return err;
ddbcc7e8
PM
4365}
4366
2bd59d48
TH
4367static int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
4368 umode_t mode)
ddbcc7e8 4369{
2bd59d48 4370 struct cgroup *parent = parent_kn->priv;
e1b2dc17 4371 int ret;
ddbcc7e8 4372
e1b2dc17
TH
4373 /*
4374 * cgroup_create() grabs cgroup_tree_mutex which nests outside
4375 * kernfs active_ref and cgroup_create() already synchronizes
4376 * properly against removal through cgroup_lock_live_group().
4377 * Break it before calling cgroup_create().
4378 */
4379 cgroup_get(parent);
4380 kernfs_break_active_protection(parent_kn);
ddbcc7e8 4381
e1b2dc17
TH
4382 ret = cgroup_create(parent, name, mode);
4383
4384 kernfs_unbreak_active_protection(parent_kn);
4385 cgroup_put(parent);
4386 return ret;
ddbcc7e8
PM
4387}
4388
223dbc38
TH
4389/*
4390 * This is called when the refcnt of a css is confirmed to be killed.
ec903c0c 4391 * css_tryget_online() is now guaranteed to fail.
223dbc38
TH
4392 */
4393static void css_killed_work_fn(struct work_struct *work)
d3daf28d 4394{
223dbc38
TH
4395 struct cgroup_subsys_state *css =
4396 container_of(work, struct cgroup_subsys_state, destroy_work);
4397 struct cgroup *cgrp = css->cgroup;
d3daf28d 4398
ace2bee8 4399 mutex_lock(&cgroup_tree_mutex);
f20104de
TH
4400 mutex_lock(&cgroup_mutex);
4401
09a503ea 4402 /*
ec903c0c
TH
4403 * css_tryget_online() is guaranteed to fail now. Tell subsystems
4404 * to initate destruction.
09a503ea
TH
4405 */
4406 offline_css(css);
4407
f20104de
TH
4408 /*
4409 * If @cgrp is marked dead, it's waiting for refs of all css's to
4410 * be disabled before proceeding to the second phase of cgroup
4411 * destruction. If we are the last one, kick it off.
4412 */
09a503ea 4413 if (!cgrp->nr_css && cgroup_is_dead(cgrp))
f20104de
TH
4414 cgroup_destroy_css_killed(cgrp);
4415
4416 mutex_unlock(&cgroup_mutex);
ace2bee8 4417 mutex_unlock(&cgroup_tree_mutex);
09a503ea
TH
4418
4419 /*
4420 * Put the css refs from kill_css(). Each css holds an extra
4421 * reference to the cgroup's dentry and cgroup removal proceeds
4422 * regardless of css refs. On the last put of each css, whenever
4423 * that may be, the extra dentry ref is put so that dentry
4424 * destruction happens only after all css's are released.
4425 */
4426 css_put(css);
d3daf28d
TH
4427}
4428
223dbc38
TH
4429/* css kill confirmation processing requires process context, bounce */
4430static void css_killed_ref_fn(struct percpu_ref *ref)
d3daf28d
TH
4431{
4432 struct cgroup_subsys_state *css =
4433 container_of(ref, struct cgroup_subsys_state, refcnt);
4434
223dbc38 4435 INIT_WORK(&css->destroy_work, css_killed_work_fn);
e5fca243 4436 queue_work(cgroup_destroy_wq, &css->destroy_work);
d3daf28d
TH
4437}
4438
f392e51c
TH
4439/**
4440 * kill_css - destroy a css
4441 * @css: css to destroy
4442 *
4443 * This function initiates destruction of @css by removing cgroup interface
4444 * files and putting its base reference. ->css_offline() will be invoked
ec903c0c
TH
4445 * asynchronously once css_tryget_online() is guaranteed to fail and when
4446 * the reference count reaches zero, @css will be released.
f392e51c
TH
4447 */
4448static void kill_css(struct cgroup_subsys_state *css)
edae0c33 4449{
94419627
TH
4450 lockdep_assert_held(&cgroup_tree_mutex);
4451
2bd59d48
TH
4452 /*
4453 * This must happen before css is disassociated with its cgroup.
4454 * See seq_css() for details.
4455 */
aec25020 4456 cgroup_clear_dir(css->cgroup, 1 << css->ss->id);
3c14f8b4 4457
edae0c33
TH
4458 /*
4459 * Killing would put the base ref, but we need to keep it alive
4460 * until after ->css_offline().
4461 */
4462 css_get(css);
4463
4464 /*
4465 * cgroup core guarantees that, by the time ->css_offline() is
4466 * invoked, no new css reference will be given out via
ec903c0c 4467 * css_tryget_online(). We can't simply call percpu_ref_kill() and
edae0c33
TH
4468 * proceed to offlining css's because percpu_ref_kill() doesn't
4469 * guarantee that the ref is seen as killed on all CPUs on return.
4470 *
4471 * Use percpu_ref_kill_and_confirm() to get notifications as each
4472 * css is confirmed to be seen as killed on all CPUs.
4473 */
4474 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
d3daf28d
TH
4475}
4476
4477/**
4478 * cgroup_destroy_locked - the first stage of cgroup destruction
4479 * @cgrp: cgroup to be destroyed
4480 *
4481 * css's make use of percpu refcnts whose killing latency shouldn't be
4482 * exposed to userland and are RCU protected. Also, cgroup core needs to
ec903c0c
TH
4483 * guarantee that css_tryget_online() won't succeed by the time
4484 * ->css_offline() is invoked. To satisfy all the requirements,
4485 * destruction is implemented in the following two steps.
d3daf28d
TH
4486 *
4487 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
4488 * userland visible parts and start killing the percpu refcnts of
4489 * css's. Set up so that the next stage will be kicked off once all
4490 * the percpu refcnts are confirmed to be killed.
4491 *
4492 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
4493 * rest of destruction. Once all cgroup references are gone, the
4494 * cgroup is RCU-freed.
4495 *
4496 * This function implements s1. After this step, @cgrp is gone as far as
4497 * the userland is concerned and a new cgroup with the same name may be
4498 * created. As cgroup doesn't care about the names internally, this
4499 * doesn't cause any problem.
4500 */
42809dd4
TH
4501static int cgroup_destroy_locked(struct cgroup *cgrp)
4502 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
ddbcc7e8 4503{
bb78a92f 4504 struct cgroup *child;
2bd59d48 4505 struct cgroup_subsys_state *css;
ddd69148 4506 bool empty;
1c6727af 4507 int ssid;
ddbcc7e8 4508
ace2bee8 4509 lockdep_assert_held(&cgroup_tree_mutex);
42809dd4
TH
4510 lockdep_assert_held(&cgroup_mutex);
4511
ddd69148 4512 /*
96d365e0 4513 * css_set_rwsem synchronizes access to ->cset_links and prevents
89c5509b 4514 * @cgrp from being removed while put_css_set() is in progress.
ddd69148 4515 */
96d365e0 4516 down_read(&css_set_rwsem);
bb78a92f 4517 empty = list_empty(&cgrp->cset_links);
96d365e0 4518 up_read(&css_set_rwsem);
ddd69148 4519 if (!empty)
ddbcc7e8 4520 return -EBUSY;
a043e3b2 4521
bb78a92f
HD
4522 /*
4523 * Make sure there's no live children. We can't test ->children
4524 * emptiness as dead children linger on it while being destroyed;
4525 * otherwise, "rmdir parent/child parent" may fail with -EBUSY.
4526 */
4527 empty = true;
4528 rcu_read_lock();
4529 list_for_each_entry_rcu(child, &cgrp->children, sibling) {
4530 empty = cgroup_is_dead(child);
4531 if (!empty)
4532 break;
4533 }
4534 rcu_read_unlock();
4535 if (!empty)
4536 return -EBUSY;
4537
455050d2
TH
4538 /*
4539 * Mark @cgrp dead. This prevents further task migration and child
4540 * creation by disabling cgroup_lock_live_group(). Note that
492eb21b 4541 * CGRP_DEAD assertion is depended upon by css_next_child() to
455050d2 4542 * resume iteration after dropping RCU read lock. See
492eb21b 4543 * css_next_child() for details.
455050d2 4544 */
54766d4a 4545 set_bit(CGRP_DEAD, &cgrp->flags);
ddbcc7e8 4546
88703267 4547 /*
edae0c33
TH
4548 * Initiate massacre of all css's. cgroup_destroy_css_killed()
4549 * will be invoked to perform the rest of destruction once the
4ac06017
TH
4550 * percpu refs of all css's are confirmed to be killed. This
4551 * involves removing the subsystem's files, drop cgroup_mutex.
88703267 4552 */
4ac06017 4553 mutex_unlock(&cgroup_mutex);
1c6727af
TH
4554 for_each_css(css, ssid, cgrp)
4555 kill_css(css);
4ac06017 4556 mutex_lock(&cgroup_mutex);
455050d2 4557
455050d2
TH
4558 /* CGRP_DEAD is set, remove from ->release_list for the last time */
4559 raw_spin_lock(&release_list_lock);
4560 if (!list_empty(&cgrp->release_list))
4561 list_del_init(&cgrp->release_list);
4562 raw_spin_unlock(&release_list_lock);
4563
4564 /*
f20104de
TH
4565 * If @cgrp has css's attached, the second stage of cgroup
4566 * destruction is kicked off from css_killed_work_fn() after the
4567 * refs of all attached css's are killed. If @cgrp doesn't have
4568 * any css, we kick it off here.
4569 */
4570 if (!cgrp->nr_css)
4571 cgroup_destroy_css_killed(cgrp);
4572
2bd59d48
TH
4573 /* remove @cgrp directory along with the base files */
4574 mutex_unlock(&cgroup_mutex);
4575
455050d2 4576 /*
2bd59d48
TH
4577 * There are two control paths which try to determine cgroup from
4578 * dentry without going through kernfs - cgroupstats_build() and
ec903c0c
TH
4579 * css_tryget_online_from_dir(). Those are supported by RCU
4580 * protecting clearing of cgrp->kn->priv backpointer, which should
4581 * happen after all files under it have been removed.
455050d2 4582 */
6f30558f 4583 kernfs_remove(cgrp->kn); /* @cgrp has an extra ref on its kn */
2bd59d48 4584 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv, NULL);
2bd59d48 4585
4ac06017 4586 mutex_lock(&cgroup_mutex);
455050d2 4587
ea15f8cc
TH
4588 return 0;
4589};
4590
d3daf28d 4591/**
f20104de 4592 * cgroup_destroy_css_killed - the second step of cgroup destruction
60106946 4593 * @cgrp: the cgroup whose csses have just finished offlining
d3daf28d
TH
4594 *
4595 * This function is invoked from a work item for a cgroup which is being
09a503ea
TH
4596 * destroyed after all css's are offlined and performs the rest of
4597 * destruction. This is the second step of destruction described in the
4598 * comment above cgroup_destroy_locked().
d3daf28d 4599 */
f20104de 4600static void cgroup_destroy_css_killed(struct cgroup *cgrp)
ea15f8cc 4601{
ea15f8cc 4602 struct cgroup *parent = cgrp->parent;
ea15f8cc 4603
ace2bee8 4604 lockdep_assert_held(&cgroup_tree_mutex);
f20104de 4605 lockdep_assert_held(&cgroup_mutex);
ea15f8cc 4606
999cd8a4 4607 /* delete this cgroup from parent->children */
eb6fd504 4608 list_del_rcu(&cgrp->sibling);
ed957793 4609
59f5296b 4610 cgroup_put(cgrp);
ddbcc7e8 4611
bd89aabc 4612 set_bit(CGRP_RELEASABLE, &parent->flags);
81a6a5cd 4613 check_for_release(parent);
ddbcc7e8
PM
4614}
4615
2bd59d48 4616static int cgroup_rmdir(struct kernfs_node *kn)
42809dd4 4617{
2bd59d48
TH
4618 struct cgroup *cgrp = kn->priv;
4619 int ret = 0;
42809dd4 4620
2bd59d48
TH
4621 /*
4622 * This is self-destruction but @kn can't be removed while this
4623 * callback is in progress. Let's break active protection. Once
4624 * the protection is broken, @cgrp can be destroyed at any point.
4625 * Pin it so that it stays accessible.
4626 */
4627 cgroup_get(cgrp);
4628 kernfs_break_active_protection(kn);
42809dd4 4629
ace2bee8 4630 mutex_lock(&cgroup_tree_mutex);
42809dd4 4631 mutex_lock(&cgroup_mutex);
8e3f6541
TH
4632
4633 /*
2bd59d48
TH
4634 * @cgrp might already have been destroyed while we're trying to
4635 * grab the mutexes.
8e3f6541 4636 */
2bd59d48
TH
4637 if (!cgroup_is_dead(cgrp))
4638 ret = cgroup_destroy_locked(cgrp);
2bb566cb 4639
42809dd4 4640 mutex_unlock(&cgroup_mutex);
ace2bee8 4641 mutex_unlock(&cgroup_tree_mutex);
2bb566cb 4642
2bd59d48
TH
4643 kernfs_unbreak_active_protection(kn);
4644 cgroup_put(cgrp);
42809dd4 4645 return ret;
8e3f6541
TH
4646}
4647
2bd59d48
TH
4648static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
4649 .remount_fs = cgroup_remount,
4650 .show_options = cgroup_show_options,
4651 .mkdir = cgroup_mkdir,
4652 .rmdir = cgroup_rmdir,
4653 .rename = cgroup_rename,
4654};
4655
15a4c835 4656static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
ddbcc7e8 4657{
ddbcc7e8 4658 struct cgroup_subsys_state *css;
cfe36bde
DC
4659
4660 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
ddbcc7e8 4661
ace2bee8 4662 mutex_lock(&cgroup_tree_mutex);
648bb56d
TH
4663 mutex_lock(&cgroup_mutex);
4664
15a4c835 4665 idr_init(&ss->css_idr);
0adb0704 4666 INIT_LIST_HEAD(&ss->cfts);
8e3f6541 4667
3dd06ffa
TH
4668 /* Create the root cgroup state for this subsystem */
4669 ss->root = &cgrp_dfl_root;
4670 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
ddbcc7e8
PM
4671 /* We don't handle early failures gracefully */
4672 BUG_ON(IS_ERR(css));
ddfcadab 4673 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
15a4c835
TH
4674 if (early) {
4675 /* idr_alloc() can't be called safely during early init */
4676 css->id = 1;
4677 } else {
4678 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
4679 BUG_ON(css->id < 0);
4680 }
ddbcc7e8 4681
e8d55fde 4682 /* Update the init_css_set to contain a subsys
817929ec 4683 * pointer to this state - since the subsystem is
e8d55fde 4684 * newly registered, all tasks and hence the
3dd06ffa 4685 * init_css_set is in the subsystem's root cgroup. */
aec25020 4686 init_css_set.subsys[ss->id] = css;
ddbcc7e8
PM
4687
4688 need_forkexit_callback |= ss->fork || ss->exit;
4689
e8d55fde
LZ
4690 /* At system boot, before all subsystems have been
4691 * registered, no tasks have been forked, so we don't
4692 * need to invoke fork callbacks here. */
4693 BUG_ON(!list_empty(&init_task.tasks));
4694
ae7f164a 4695 BUG_ON(online_css(css));
a8638030 4696
f392e51c 4697 cgrp_dfl_root.subsys_mask |= 1 << ss->id;
cf5d5941
BB
4698
4699 mutex_unlock(&cgroup_mutex);
ace2bee8 4700 mutex_unlock(&cgroup_tree_mutex);
cf5d5941 4701}
cf5d5941 4702
ddbcc7e8 4703/**
a043e3b2
LZ
4704 * cgroup_init_early - cgroup initialization at system boot
4705 *
4706 * Initialize cgroups at system boot, and initialize any
4707 * subsystems that request early init.
ddbcc7e8
PM
4708 */
4709int __init cgroup_init_early(void)
4710{
a2dd4247
TH
4711 static struct cgroup_sb_opts __initdata opts =
4712 { .flags = CGRP_ROOT_SANE_BEHAVIOR };
30159ec7 4713 struct cgroup_subsys *ss;
ddbcc7e8 4714 int i;
30159ec7 4715
3dd06ffa 4716 init_cgroup_root(&cgrp_dfl_root, &opts);
a4ea1cc9 4717 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
817929ec 4718
3ed80a62 4719 for_each_subsys(ss, i) {
aec25020 4720 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
073219e9
TH
4721 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p name:id=%d:%s\n",
4722 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
aec25020 4723 ss->id, ss->name);
073219e9
TH
4724 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
4725 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
4726
aec25020 4727 ss->id = i;
073219e9 4728 ss->name = cgroup_subsys_name[i];
ddbcc7e8
PM
4729
4730 if (ss->early_init)
15a4c835 4731 cgroup_init_subsys(ss, true);
ddbcc7e8
PM
4732 }
4733 return 0;
4734}
4735
4736/**
a043e3b2
LZ
4737 * cgroup_init - cgroup initialization
4738 *
4739 * Register cgroup filesystem and /proc file, and initialize
4740 * any subsystems that didn't request early init.
ddbcc7e8
PM
4741 */
4742int __init cgroup_init(void)
4743{
30159ec7 4744 struct cgroup_subsys *ss;
0ac801fe 4745 unsigned long key;
172a2c06 4746 int ssid, err;
ddbcc7e8 4747
2bd59d48 4748 BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files));
ddbcc7e8 4749
985ed670 4750 mutex_lock(&cgroup_tree_mutex);
54e7b4eb 4751 mutex_lock(&cgroup_mutex);
54e7b4eb 4752
82fe9b0d
TH
4753 /* Add init_css_set to the hash table */
4754 key = css_set_hash(init_css_set.subsys);
4755 hash_add(css_set_table, &init_css_set.hlist, key);
4756
3dd06ffa 4757 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
4e96ee8e 4758
54e7b4eb 4759 mutex_unlock(&cgroup_mutex);
985ed670 4760 mutex_unlock(&cgroup_tree_mutex);
54e7b4eb 4761
172a2c06 4762 for_each_subsys(ss, ssid) {
15a4c835
TH
4763 if (ss->early_init) {
4764 struct cgroup_subsys_state *css =
4765 init_css_set.subsys[ss->id];
4766
4767 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
4768 GFP_KERNEL);
4769 BUG_ON(css->id < 0);
4770 } else {
4771 cgroup_init_subsys(ss, false);
4772 }
172a2c06 4773
2d8f243a
TH
4774 list_add_tail(&init_css_set.e_cset_node[ssid],
4775 &cgrp_dfl_root.cgrp.e_csets[ssid]);
4776
172a2c06
TH
4777 /*
4778 * cftype registration needs kmalloc and can't be done
4779 * during early_init. Register base cftypes separately.
4780 */
4781 if (ss->base_cftypes)
4782 WARN_ON(cgroup_add_cftypes(ss, ss->base_cftypes));
676db4af
GKH
4783 }
4784
676db4af 4785 cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
2bd59d48
TH
4786 if (!cgroup_kobj)
4787 return -ENOMEM;
676db4af 4788
ddbcc7e8 4789 err = register_filesystem(&cgroup_fs_type);
676db4af
GKH
4790 if (err < 0) {
4791 kobject_put(cgroup_kobj);
2bd59d48 4792 return err;
676db4af 4793 }
ddbcc7e8 4794
46ae220b 4795 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
2bd59d48 4796 return 0;
ddbcc7e8 4797}
b4f48b63 4798
e5fca243
TH
4799static int __init cgroup_wq_init(void)
4800{
4801 /*
4802 * There isn't much point in executing destruction path in
4803 * parallel. Good chunk is serialized with cgroup_mutex anyway.
1a11533f 4804 * Use 1 for @max_active.
e5fca243
TH
4805 *
4806 * We would prefer to do this in cgroup_init() above, but that
4807 * is called before init_workqueues(): so leave this until after.
4808 */
1a11533f 4809 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
e5fca243 4810 BUG_ON(!cgroup_destroy_wq);
b1a21367
TH
4811
4812 /*
4813 * Used to destroy pidlists and separate to serve as flush domain.
4814 * Cap @max_active to 1 too.
4815 */
4816 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
4817 0, 1);
4818 BUG_ON(!cgroup_pidlist_destroy_wq);
4819
e5fca243
TH
4820 return 0;
4821}
4822core_initcall(cgroup_wq_init);
4823
a424316c
PM
4824/*
4825 * proc_cgroup_show()
4826 * - Print task's cgroup paths into seq_file, one line for each hierarchy
4827 * - Used for /proc/<pid>/cgroup.
a424316c
PM
4828 */
4829
4830/* TODO: Use a proper seq_file iterator */
8d8b97ba 4831int proc_cgroup_show(struct seq_file *m, void *v)
a424316c
PM
4832{
4833 struct pid *pid;
4834 struct task_struct *tsk;
e61734c5 4835 char *buf, *path;
a424316c 4836 int retval;
3dd06ffa 4837 struct cgroup_root *root;
a424316c
PM
4838
4839 retval = -ENOMEM;
e61734c5 4840 buf = kmalloc(PATH_MAX, GFP_KERNEL);
a424316c
PM
4841 if (!buf)
4842 goto out;
4843
4844 retval = -ESRCH;
4845 pid = m->private;
4846 tsk = get_pid_task(pid, PIDTYPE_PID);
4847 if (!tsk)
4848 goto out_free;
4849
4850 retval = 0;
4851
4852 mutex_lock(&cgroup_mutex);
96d365e0 4853 down_read(&css_set_rwsem);
a424316c 4854
985ed670 4855 for_each_root(root) {
a424316c 4856 struct cgroup_subsys *ss;
bd89aabc 4857 struct cgroup *cgrp;
b85d2040 4858 int ssid, count = 0;
a424316c 4859
a2dd4247 4860 if (root == &cgrp_dfl_root && !cgrp_dfl_root_visible)
985ed670
TH
4861 continue;
4862
2c6ab6d2 4863 seq_printf(m, "%d:", root->hierarchy_id);
b85d2040 4864 for_each_subsys(ss, ssid)
f392e51c 4865 if (root->subsys_mask & (1 << ssid))
b85d2040 4866 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
c6d57f33
PM
4867 if (strlen(root->name))
4868 seq_printf(m, "%sname=%s", count ? "," : "",
4869 root->name);
a424316c 4870 seq_putc(m, ':');
7717f7ba 4871 cgrp = task_cgroup_from_root(tsk, root);
e61734c5
TH
4872 path = cgroup_path(cgrp, buf, PATH_MAX);
4873 if (!path) {
4874 retval = -ENAMETOOLONG;
a424316c 4875 goto out_unlock;
e61734c5
TH
4876 }
4877 seq_puts(m, path);
a424316c
PM
4878 seq_putc(m, '\n');
4879 }
4880
4881out_unlock:
96d365e0 4882 up_read(&css_set_rwsem);
a424316c
PM
4883 mutex_unlock(&cgroup_mutex);
4884 put_task_struct(tsk);
4885out_free:
4886 kfree(buf);
4887out:
4888 return retval;
4889}
4890
a424316c
PM
4891/* Display information about each subsystem and each hierarchy */
4892static int proc_cgroupstats_show(struct seq_file *m, void *v)
4893{
30159ec7 4894 struct cgroup_subsys *ss;
a424316c 4895 int i;
a424316c 4896
8bab8dde 4897 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
aae8aab4
BB
4898 /*
4899 * ideally we don't want subsystems moving around while we do this.
4900 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
4901 * subsys/hierarchy state.
4902 */
a424316c 4903 mutex_lock(&cgroup_mutex);
30159ec7
TH
4904
4905 for_each_subsys(ss, i)
2c6ab6d2
PM
4906 seq_printf(m, "%s\t%d\t%d\t%d\n",
4907 ss->name, ss->root->hierarchy_id,
3c9c825b 4908 atomic_read(&ss->root->nr_cgrps), !ss->disabled);
30159ec7 4909
a424316c
PM
4910 mutex_unlock(&cgroup_mutex);
4911 return 0;
4912}
4913
4914static int cgroupstats_open(struct inode *inode, struct file *file)
4915{
9dce07f1 4916 return single_open(file, proc_cgroupstats_show, NULL);
a424316c
PM
4917}
4918
828c0950 4919static const struct file_operations proc_cgroupstats_operations = {
a424316c
PM
4920 .open = cgroupstats_open,
4921 .read = seq_read,
4922 .llseek = seq_lseek,
4923 .release = single_release,
4924};
4925
b4f48b63 4926/**
eaf797ab 4927 * cgroup_fork - initialize cgroup related fields during copy_process()
a043e3b2 4928 * @child: pointer to task_struct of forking parent process.
b4f48b63 4929 *
eaf797ab
TH
4930 * A task is associated with the init_css_set until cgroup_post_fork()
4931 * attaches it to the parent's css_set. Empty cg_list indicates that
4932 * @child isn't holding reference to its css_set.
b4f48b63
PM
4933 */
4934void cgroup_fork(struct task_struct *child)
4935{
eaf797ab 4936 RCU_INIT_POINTER(child->cgroups, &init_css_set);
817929ec 4937 INIT_LIST_HEAD(&child->cg_list);
b4f48b63
PM
4938}
4939
817929ec 4940/**
a043e3b2
LZ
4941 * cgroup_post_fork - called on a new task after adding it to the task list
4942 * @child: the task in question
4943 *
5edee61e
TH
4944 * Adds the task to the list running through its css_set if necessary and
4945 * call the subsystem fork() callbacks. Has to be after the task is
4946 * visible on the task list in case we race with the first call to
0942eeee 4947 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5edee61e 4948 * list.
a043e3b2 4949 */
817929ec
PM
4950void cgroup_post_fork(struct task_struct *child)
4951{
30159ec7 4952 struct cgroup_subsys *ss;
5edee61e
TH
4953 int i;
4954
3ce3230a 4955 /*
eaf797ab
TH
4956 * This may race against cgroup_enable_task_cg_links(). As that
4957 * function sets use_task_css_set_links before grabbing
4958 * tasklist_lock and we just went through tasklist_lock to add
4959 * @child, it's guaranteed that either we see the set
4960 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
4961 * @child during its iteration.
4962 *
4963 * If we won the race, @child is associated with %current's
4964 * css_set. Grabbing css_set_rwsem guarantees both that the
4965 * association is stable, and, on completion of the parent's
4966 * migration, @child is visible in the source of migration or
4967 * already in the destination cgroup. This guarantee is necessary
4968 * when implementing operations which need to migrate all tasks of
4969 * a cgroup to another.
4970 *
4971 * Note that if we lose to cgroup_enable_task_cg_links(), @child
4972 * will remain in init_css_set. This is safe because all tasks are
4973 * in the init_css_set before cg_links is enabled and there's no
4974 * operation which transfers all tasks out of init_css_set.
3ce3230a 4975 */
817929ec 4976 if (use_task_css_set_links) {
eaf797ab
TH
4977 struct css_set *cset;
4978
96d365e0 4979 down_write(&css_set_rwsem);
0e1d768f 4980 cset = task_css_set(current);
eaf797ab
TH
4981 if (list_empty(&child->cg_list)) {
4982 rcu_assign_pointer(child->cgroups, cset);
4983 list_add(&child->cg_list, &cset->tasks);
4984 get_css_set(cset);
4985 }
96d365e0 4986 up_write(&css_set_rwsem);
817929ec 4987 }
5edee61e
TH
4988
4989 /*
4990 * Call ss->fork(). This must happen after @child is linked on
4991 * css_set; otherwise, @child might change state between ->fork()
4992 * and addition to css_set.
4993 */
4994 if (need_forkexit_callback) {
3ed80a62 4995 for_each_subsys(ss, i)
5edee61e
TH
4996 if (ss->fork)
4997 ss->fork(child);
5edee61e 4998 }
817929ec 4999}
5edee61e 5000
b4f48b63
PM
5001/**
5002 * cgroup_exit - detach cgroup from exiting task
5003 * @tsk: pointer to task_struct of exiting process
5004 *
5005 * Description: Detach cgroup from @tsk and release it.
5006 *
5007 * Note that cgroups marked notify_on_release force every task in
5008 * them to take the global cgroup_mutex mutex when exiting.
5009 * This could impact scaling on very large systems. Be reluctant to
5010 * use notify_on_release cgroups where very high task exit scaling
5011 * is required on large systems.
5012 *
0e1d768f
TH
5013 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We
5014 * call cgroup_exit() while the task is still competent to handle
5015 * notify_on_release(), then leave the task attached to the root cgroup in
5016 * each hierarchy for the remainder of its exit. No need to bother with
5017 * init_css_set refcnting. init_css_set never goes away and we can't race
e8604cb4 5018 * with migration path - PF_EXITING is visible to migration path.
b4f48b63 5019 */
1ec41830 5020void cgroup_exit(struct task_struct *tsk)
b4f48b63 5021{
30159ec7 5022 struct cgroup_subsys *ss;
5abb8855 5023 struct css_set *cset;
eaf797ab 5024 bool put_cset = false;
d41d5a01 5025 int i;
817929ec
PM
5026
5027 /*
0e1d768f
TH
5028 * Unlink from @tsk from its css_set. As migration path can't race
5029 * with us, we can check cg_list without grabbing css_set_rwsem.
817929ec
PM
5030 */
5031 if (!list_empty(&tsk->cg_list)) {
96d365e0 5032 down_write(&css_set_rwsem);
0e1d768f 5033 list_del_init(&tsk->cg_list);
96d365e0 5034 up_write(&css_set_rwsem);
0e1d768f 5035 put_cset = true;
817929ec
PM
5036 }
5037
b4f48b63 5038 /* Reassign the task to the init_css_set. */
a8ad805c
TH
5039 cset = task_css_set(tsk);
5040 RCU_INIT_POINTER(tsk->cgroups, &init_css_set);
d41d5a01 5041
1ec41830 5042 if (need_forkexit_callback) {
3ed80a62
TH
5043 /* see cgroup_post_fork() for details */
5044 for_each_subsys(ss, i) {
d41d5a01 5045 if (ss->exit) {
eb95419b
TH
5046 struct cgroup_subsys_state *old_css = cset->subsys[i];
5047 struct cgroup_subsys_state *css = task_css(tsk, i);
30159ec7 5048
eb95419b 5049 ss->exit(css, old_css, tsk);
d41d5a01
PZ
5050 }
5051 }
5052 }
d41d5a01 5053
eaf797ab
TH
5054 if (put_cset)
5055 put_css_set(cset, true);
b4f48b63 5056}
697f4161 5057
bd89aabc 5058static void check_for_release(struct cgroup *cgrp)
81a6a5cd 5059{
f50daa70 5060 if (cgroup_is_releasable(cgrp) &&
6f3d828f 5061 list_empty(&cgrp->cset_links) && list_empty(&cgrp->children)) {
f50daa70
LZ
5062 /*
5063 * Control Group is currently removeable. If it's not
81a6a5cd 5064 * already queued for a userspace notification, queue
f50daa70
LZ
5065 * it now
5066 */
81a6a5cd 5067 int need_schedule_work = 0;
f50daa70 5068
cdcc136f 5069 raw_spin_lock(&release_list_lock);
54766d4a 5070 if (!cgroup_is_dead(cgrp) &&
bd89aabc
PM
5071 list_empty(&cgrp->release_list)) {
5072 list_add(&cgrp->release_list, &release_list);
81a6a5cd
PM
5073 need_schedule_work = 1;
5074 }
cdcc136f 5075 raw_spin_unlock(&release_list_lock);
81a6a5cd
PM
5076 if (need_schedule_work)
5077 schedule_work(&release_agent_work);
5078 }
5079}
5080
81a6a5cd
PM
5081/*
5082 * Notify userspace when a cgroup is released, by running the
5083 * configured release agent with the name of the cgroup (path
5084 * relative to the root of cgroup file system) as the argument.
5085 *
5086 * Most likely, this user command will try to rmdir this cgroup.
5087 *
5088 * This races with the possibility that some other task will be
5089 * attached to this cgroup before it is removed, or that some other
5090 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
5091 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
5092 * unused, and this cgroup will be reprieved from its death sentence,
5093 * to continue to serve a useful existence. Next time it's released,
5094 * we will get notified again, if it still has 'notify_on_release' set.
5095 *
5096 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
5097 * means only wait until the task is successfully execve()'d. The
5098 * separate release agent task is forked by call_usermodehelper(),
5099 * then control in this thread returns here, without waiting for the
5100 * release agent task. We don't bother to wait because the caller of
5101 * this routine has no use for the exit status of the release agent
5102 * task, so no sense holding our caller up for that.
81a6a5cd 5103 */
81a6a5cd
PM
5104static void cgroup_release_agent(struct work_struct *work)
5105{
5106 BUG_ON(work != &release_agent_work);
5107 mutex_lock(&cgroup_mutex);
cdcc136f 5108 raw_spin_lock(&release_list_lock);
81a6a5cd
PM
5109 while (!list_empty(&release_list)) {
5110 char *argv[3], *envp[3];
5111 int i;
e61734c5 5112 char *pathbuf = NULL, *agentbuf = NULL, *path;
bd89aabc 5113 struct cgroup *cgrp = list_entry(release_list.next,
81a6a5cd
PM
5114 struct cgroup,
5115 release_list);
bd89aabc 5116 list_del_init(&cgrp->release_list);
cdcc136f 5117 raw_spin_unlock(&release_list_lock);
e61734c5 5118 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
e788e066
PM
5119 if (!pathbuf)
5120 goto continue_free;
e61734c5
TH
5121 path = cgroup_path(cgrp, pathbuf, PATH_MAX);
5122 if (!path)
e788e066
PM
5123 goto continue_free;
5124 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
5125 if (!agentbuf)
5126 goto continue_free;
81a6a5cd
PM
5127
5128 i = 0;
e788e066 5129 argv[i++] = agentbuf;
e61734c5 5130 argv[i++] = path;
81a6a5cd
PM
5131 argv[i] = NULL;
5132
5133 i = 0;
5134 /* minimal command environment */
5135 envp[i++] = "HOME=/";
5136 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
5137 envp[i] = NULL;
5138
5139 /* Drop the lock while we invoke the usermode helper,
5140 * since the exec could involve hitting disk and hence
5141 * be a slow process */
5142 mutex_unlock(&cgroup_mutex);
5143 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
81a6a5cd 5144 mutex_lock(&cgroup_mutex);
e788e066
PM
5145 continue_free:
5146 kfree(pathbuf);
5147 kfree(agentbuf);
cdcc136f 5148 raw_spin_lock(&release_list_lock);
81a6a5cd 5149 }
cdcc136f 5150 raw_spin_unlock(&release_list_lock);
81a6a5cd
PM
5151 mutex_unlock(&cgroup_mutex);
5152}
8bab8dde
PM
5153
5154static int __init cgroup_disable(char *str)
5155{
30159ec7 5156 struct cgroup_subsys *ss;
8bab8dde 5157 char *token;
30159ec7 5158 int i;
8bab8dde
PM
5159
5160 while ((token = strsep(&str, ",")) != NULL) {
5161 if (!*token)
5162 continue;
be45c900 5163
3ed80a62 5164 for_each_subsys(ss, i) {
8bab8dde
PM
5165 if (!strcmp(token, ss->name)) {
5166 ss->disabled = 1;
5167 printk(KERN_INFO "Disabling %s control group"
5168 " subsystem\n", ss->name);
5169 break;
5170 }
5171 }
5172 }
5173 return 1;
5174}
5175__setup("cgroup_disable=", cgroup_disable);
38460b48 5176
b77d7b60 5177/**
ec903c0c 5178 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
35cf0836
TH
5179 * @dentry: directory dentry of interest
5180 * @ss: subsystem of interest
b77d7b60 5181 *
5a17f543
TH
5182 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
5183 * to get the corresponding css and return it. If such css doesn't exist
5184 * or can't be pinned, an ERR_PTR value is returned.
e5d1367f 5185 */
ec903c0c
TH
5186struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
5187 struct cgroup_subsys *ss)
e5d1367f 5188{
2bd59d48
TH
5189 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
5190 struct cgroup_subsys_state *css = NULL;
e5d1367f 5191 struct cgroup *cgrp;
e5d1367f 5192
35cf0836 5193 /* is @dentry a cgroup dir? */
2bd59d48
TH
5194 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
5195 kernfs_type(kn) != KERNFS_DIR)
e5d1367f
SE
5196 return ERR_PTR(-EBADF);
5197
5a17f543
TH
5198 rcu_read_lock();
5199
2bd59d48
TH
5200 /*
5201 * This path doesn't originate from kernfs and @kn could already
5202 * have been or be removed at any point. @kn->priv is RCU
5203 * protected for this access. See destroy_locked() for details.
5204 */
5205 cgrp = rcu_dereference(kn->priv);
5206 if (cgrp)
5207 css = cgroup_css(cgrp, ss);
5a17f543 5208
ec903c0c 5209 if (!css || !css_tryget_online(css))
5a17f543
TH
5210 css = ERR_PTR(-ENOENT);
5211
5212 rcu_read_unlock();
5213 return css;
e5d1367f 5214}
e5d1367f 5215
1cb650b9
LZ
5216/**
5217 * css_from_id - lookup css by id
5218 * @id: the cgroup id
5219 * @ss: cgroup subsys to be looked into
5220 *
5221 * Returns the css if there's valid one with @id, otherwise returns NULL.
5222 * Should be called under rcu_read_lock().
5223 */
5224struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
5225{
6fa4918d 5226 WARN_ON_ONCE(!rcu_read_lock_held());
15a4c835 5227 return idr_find(&ss->css_idr, id);
e5d1367f
SE
5228}
5229
fe693435 5230#ifdef CONFIG_CGROUP_DEBUG
eb95419b
TH
5231static struct cgroup_subsys_state *
5232debug_css_alloc(struct cgroup_subsys_state *parent_css)
fe693435
PM
5233{
5234 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5235
5236 if (!css)
5237 return ERR_PTR(-ENOMEM);
5238
5239 return css;
5240}
5241
eb95419b 5242static void debug_css_free(struct cgroup_subsys_state *css)
fe693435 5243{
eb95419b 5244 kfree(css);
fe693435
PM
5245}
5246
182446d0
TH
5247static u64 debug_taskcount_read(struct cgroup_subsys_state *css,
5248 struct cftype *cft)
fe693435 5249{
182446d0 5250 return cgroup_task_count(css->cgroup);
fe693435
PM
5251}
5252
182446d0
TH
5253static u64 current_css_set_read(struct cgroup_subsys_state *css,
5254 struct cftype *cft)
fe693435
PM
5255{
5256 return (u64)(unsigned long)current->cgroups;
5257}
5258
182446d0 5259static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css,
03c78cbe 5260 struct cftype *cft)
fe693435
PM
5261{
5262 u64 count;
5263
5264 rcu_read_lock();
a8ad805c 5265 count = atomic_read(&task_css_set(current)->refcount);
fe693435
PM
5266 rcu_read_unlock();
5267 return count;
5268}
5269
2da8ca82 5270static int current_css_set_cg_links_read(struct seq_file *seq, void *v)
7717f7ba 5271{
69d0206c 5272 struct cgrp_cset_link *link;
5abb8855 5273 struct css_set *cset;
e61734c5
TH
5274 char *name_buf;
5275
5276 name_buf = kmalloc(NAME_MAX + 1, GFP_KERNEL);
5277 if (!name_buf)
5278 return -ENOMEM;
7717f7ba 5279
96d365e0 5280 down_read(&css_set_rwsem);
7717f7ba 5281 rcu_read_lock();
5abb8855 5282 cset = rcu_dereference(current->cgroups);
69d0206c 5283 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 5284 struct cgroup *c = link->cgrp;
7717f7ba 5285
a2dd4247 5286 cgroup_name(c, name_buf, NAME_MAX + 1);
2c6ab6d2 5287 seq_printf(seq, "Root %d group %s\n",
a2dd4247 5288 c->root->hierarchy_id, name_buf);
7717f7ba
PM
5289 }
5290 rcu_read_unlock();
96d365e0 5291 up_read(&css_set_rwsem);
e61734c5 5292 kfree(name_buf);
7717f7ba
PM
5293 return 0;
5294}
5295
5296#define MAX_TASKS_SHOWN_PER_CSS 25
2da8ca82 5297static int cgroup_css_links_read(struct seq_file *seq, void *v)
7717f7ba 5298{
2da8ca82 5299 struct cgroup_subsys_state *css = seq_css(seq);
69d0206c 5300 struct cgrp_cset_link *link;
7717f7ba 5301
96d365e0 5302 down_read(&css_set_rwsem);
182446d0 5303 list_for_each_entry(link, &css->cgroup->cset_links, cset_link) {
69d0206c 5304 struct css_set *cset = link->cset;
7717f7ba
PM
5305 struct task_struct *task;
5306 int count = 0;
c7561128 5307
5abb8855 5308 seq_printf(seq, "css_set %p\n", cset);
c7561128 5309
5abb8855 5310 list_for_each_entry(task, &cset->tasks, cg_list) {
c7561128
TH
5311 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
5312 goto overflow;
5313 seq_printf(seq, " task %d\n", task_pid_vnr(task));
5314 }
5315
5316 list_for_each_entry(task, &cset->mg_tasks, cg_list) {
5317 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
5318 goto overflow;
5319 seq_printf(seq, " task %d\n", task_pid_vnr(task));
7717f7ba 5320 }
c7561128
TH
5321 continue;
5322 overflow:
5323 seq_puts(seq, " ...\n");
7717f7ba 5324 }
96d365e0 5325 up_read(&css_set_rwsem);
7717f7ba
PM
5326 return 0;
5327}
5328
182446d0 5329static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft)
fe693435 5330{
182446d0 5331 return test_bit(CGRP_RELEASABLE, &css->cgroup->flags);
fe693435
PM
5332}
5333
5334static struct cftype debug_files[] = {
fe693435
PM
5335 {
5336 .name = "taskcount",
5337 .read_u64 = debug_taskcount_read,
5338 },
5339
5340 {
5341 .name = "current_css_set",
5342 .read_u64 = current_css_set_read,
5343 },
5344
5345 {
5346 .name = "current_css_set_refcount",
5347 .read_u64 = current_css_set_refcount_read,
5348 },
5349
7717f7ba
PM
5350 {
5351 .name = "current_css_set_cg_links",
2da8ca82 5352 .seq_show = current_css_set_cg_links_read,
7717f7ba
PM
5353 },
5354
5355 {
5356 .name = "cgroup_css_links",
2da8ca82 5357 .seq_show = cgroup_css_links_read,
7717f7ba
PM
5358 },
5359
fe693435
PM
5360 {
5361 .name = "releasable",
5362 .read_u64 = releasable_read,
5363 },
fe693435 5364
4baf6e33
TH
5365 { } /* terminate */
5366};
fe693435 5367
073219e9 5368struct cgroup_subsys debug_cgrp_subsys = {
92fb9748
TH
5369 .css_alloc = debug_css_alloc,
5370 .css_free = debug_css_free,
4baf6e33 5371 .base_cftypes = debug_files,
fe693435
PM
5372};
5373#endif /* CONFIG_CGROUP_DEBUG */