]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - kernel/cgroup.c
cgroup: make cgroup_is_removed() static
[mirror_ubuntu-artful-kernel.git] / kernel / cgroup.c
CommitLineData
ddbcc7e8 1/*
ddbcc7e8
PM
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
0dea1168
KS
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
ddbcc7e8
PM
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29#include <linux/cgroup.h>
2ce9738b 30#include <linux/cred.h>
c6d57f33 31#include <linux/ctype.h>
ddbcc7e8 32#include <linux/errno.h>
2ce9738b 33#include <linux/init_task.h>
ddbcc7e8
PM
34#include <linux/kernel.h>
35#include <linux/list.h>
36#include <linux/mm.h>
37#include <linux/mutex.h>
38#include <linux/mount.h>
39#include <linux/pagemap.h>
a424316c 40#include <linux/proc_fs.h>
ddbcc7e8
PM
41#include <linux/rcupdate.h>
42#include <linux/sched.h>
817929ec 43#include <linux/backing-dev.h>
ddbcc7e8
PM
44#include <linux/seq_file.h>
45#include <linux/slab.h>
46#include <linux/magic.h>
47#include <linux/spinlock.h>
48#include <linux/string.h>
bbcb81d0 49#include <linux/sort.h>
81a6a5cd 50#include <linux/kmod.h>
e6a1105b 51#include <linux/module.h>
846c7bb0
BS
52#include <linux/delayacct.h>
53#include <linux/cgroupstats.h>
0ac801fe 54#include <linux/hashtable.h>
3f8206d4 55#include <linux/namei.h>
096b7fe0 56#include <linux/pid_namespace.h>
2c6ab6d2 57#include <linux/idr.h>
d1d9fd33 58#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
0dea1168
KS
59#include <linux/eventfd.h>
60#include <linux/poll.h>
081aa458 61#include <linux/flex_array.h> /* used in cgroup_attach_task */
c4c27fbd 62#include <linux/kthread.h>
846c7bb0 63
60063497 64#include <linux/atomic.h>
ddbcc7e8 65
28b4c27b
TH
66/* css deactivation bias, makes css->refcnt negative to deny new trygets */
67#define CSS_DEACT_BIAS INT_MIN
68
e25e2cbb
TH
69/*
70 * cgroup_mutex is the master lock. Any modification to cgroup or its
71 * hierarchy must be performed while holding it.
72 *
73 * cgroup_root_mutex nests inside cgroup_mutex and should be held to modify
74 * cgroupfs_root of any cgroup hierarchy - subsys list, flags,
75 * release_agent_path and so on. Modifying requires both cgroup_mutex and
76 * cgroup_root_mutex. Readers can acquire either of the two. This is to
77 * break the following locking order cycle.
78 *
79 * A. cgroup_mutex -> cred_guard_mutex -> s_type->i_mutex_key -> namespace_sem
80 * B. namespace_sem -> cgroup_mutex
81 *
82 * B happens only through cgroup_show_options() and using cgroup_root_mutex
83 * breaks it.
84 */
2219449a
TH
85#ifdef CONFIG_PROVE_RCU
86DEFINE_MUTEX(cgroup_mutex);
87EXPORT_SYMBOL_GPL(cgroup_mutex); /* only for task_subsys_state_check() */
88#else
81a6a5cd 89static DEFINE_MUTEX(cgroup_mutex);
2219449a
TH
90#endif
91
e25e2cbb 92static DEFINE_MUTEX(cgroup_root_mutex);
81a6a5cd 93
aae8aab4
BB
94/*
95 * Generate an array of cgroup subsystem pointers. At boot time, this is
be45c900 96 * populated with the built in subsystems, and modular subsystems are
aae8aab4
BB
97 * registered after that. The mutable section of this array is protected by
98 * cgroup_mutex.
99 */
80f4c877 100#define SUBSYS(_x) [_x ## _subsys_id] = &_x ## _subsys,
5fc0b025 101#define IS_SUBSYS_ENABLED(option) IS_BUILTIN(option)
aae8aab4 102static struct cgroup_subsys *subsys[CGROUP_SUBSYS_COUNT] = {
ddbcc7e8
PM
103#include <linux/cgroup_subsys.h>
104};
105
ddbcc7e8
PM
106/*
107 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
108 * subsystems that are otherwise unattached - it never has more than a
109 * single cgroup, and all tasks are part of that cgroup.
110 */
111static struct cgroupfs_root rootnode;
112
05ef1d7c
TH
113/*
114 * cgroupfs file entry, pointed to from leaf dentry->d_fsdata.
115 */
116struct cfent {
117 struct list_head node;
118 struct dentry *dentry;
119 struct cftype *type;
712317ad
LZ
120
121 /* file xattrs */
122 struct simple_xattrs xattrs;
05ef1d7c
TH
123};
124
38460b48
KH
125/*
126 * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
127 * cgroup_subsys->use_id != 0.
128 */
129#define CSS_ID_MAX (65535)
130struct css_id {
131 /*
132 * The css to which this ID points. This pointer is set to valid value
133 * after cgroup is populated. If cgroup is removed, this will be NULL.
134 * This pointer is expected to be RCU-safe because destroy()
e9316080
TH
135 * is called after synchronize_rcu(). But for safe use, css_tryget()
136 * should be used for avoiding race.
38460b48 137 */
2c392b8c 138 struct cgroup_subsys_state __rcu *css;
38460b48
KH
139 /*
140 * ID of this css.
141 */
142 unsigned short id;
143 /*
144 * Depth in hierarchy which this ID belongs to.
145 */
146 unsigned short depth;
147 /*
148 * ID is freed by RCU. (and lookup routine is RCU safe.)
149 */
150 struct rcu_head rcu_head;
151 /*
152 * Hierarchy of CSS ID belongs to.
153 */
154 unsigned short stack[0]; /* Array of Length (depth+1) */
155};
156
0dea1168 157/*
25985edc 158 * cgroup_event represents events which userspace want to receive.
0dea1168
KS
159 */
160struct cgroup_event {
161 /*
162 * Cgroup which the event belongs to.
163 */
164 struct cgroup *cgrp;
165 /*
166 * Control file which the event associated.
167 */
168 struct cftype *cft;
169 /*
170 * eventfd to signal userspace about the event.
171 */
172 struct eventfd_ctx *eventfd;
173 /*
174 * Each of these stored in a list by the cgroup.
175 */
176 struct list_head list;
177 /*
178 * All fields below needed to unregister event when
179 * userspace closes eventfd.
180 */
181 poll_table pt;
182 wait_queue_head_t *wqh;
183 wait_queue_t wait;
184 struct work_struct remove;
185};
38460b48 186
ddbcc7e8
PM
187/* The list of hierarchy roots */
188
189static LIST_HEAD(roots);
817929ec 190static int root_count;
ddbcc7e8 191
54e7b4eb
TH
192/*
193 * Hierarchy ID allocation and mapping. It follows the same exclusion
194 * rules as other root ops - both cgroup_mutex and cgroup_root_mutex for
195 * writes, either for reads.
196 */
1a574231 197static DEFINE_IDR(cgroup_hierarchy_idr);
2c6ab6d2 198
ddbcc7e8
PM
199/* dummytop is a shorthand for the dummy hierarchy's top cgroup */
200#define dummytop (&rootnode.top_cgroup)
201
65dff759
LZ
202static struct cgroup_name root_cgroup_name = { .name = "/" };
203
ddbcc7e8 204/* This flag indicates whether tasks in the fork and exit paths should
a043e3b2
LZ
205 * check for fork/exit handlers to call. This avoids us having to do
206 * extra work in the fork/exit path if none of the subsystems need to
207 * be called.
ddbcc7e8 208 */
8947f9d5 209static int need_forkexit_callback __read_mostly;
ddbcc7e8 210
42809dd4 211static int cgroup_destroy_locked(struct cgroup *cgrp);
879a3d9d
G
212static int cgroup_addrm_files(struct cgroup *cgrp, struct cgroup_subsys *subsys,
213 struct cftype cfts[], bool is_add);
42809dd4 214
8e3bbf42
SQ
215static int css_unbias_refcnt(int refcnt)
216{
217 return refcnt >= 0 ? refcnt : refcnt - CSS_DEACT_BIAS;
218}
219
28b4c27b
TH
220/* the current nr of refs, always >= 0 whether @css is deactivated or not */
221static int css_refcnt(struct cgroup_subsys_state *css)
222{
223 int v = atomic_read(&css->refcnt);
224
8e3bbf42 225 return css_unbias_refcnt(v);
28b4c27b
TH
226}
227
ddbcc7e8 228/* convenient tests for these bits */
bdc7119f 229static inline bool cgroup_is_removed(const struct cgroup *cgrp)
ddbcc7e8 230{
bd89aabc 231 return test_bit(CGRP_REMOVED, &cgrp->flags);
ddbcc7e8
PM
232}
233
78574cf9
LZ
234/**
235 * cgroup_is_descendant - test ancestry
236 * @cgrp: the cgroup to be tested
237 * @ancestor: possible ancestor of @cgrp
238 *
239 * Test whether @cgrp is a descendant of @ancestor. It also returns %true
240 * if @cgrp == @ancestor. This function is safe to call as long as @cgrp
241 * and @ancestor are accessible.
242 */
243bool cgroup_is_descendant(struct cgroup *cgrp, struct cgroup *ancestor)
244{
245 while (cgrp) {
246 if (cgrp == ancestor)
247 return true;
248 cgrp = cgrp->parent;
249 }
250 return false;
251}
252EXPORT_SYMBOL_GPL(cgroup_is_descendant);
ddbcc7e8 253
e9685a03 254static int cgroup_is_releasable(const struct cgroup *cgrp)
81a6a5cd
PM
255{
256 const int bits =
bd89aabc
PM
257 (1 << CGRP_RELEASABLE) |
258 (1 << CGRP_NOTIFY_ON_RELEASE);
259 return (cgrp->flags & bits) == bits;
81a6a5cd
PM
260}
261
e9685a03 262static int notify_on_release(const struct cgroup *cgrp)
81a6a5cd 263{
bd89aabc 264 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
81a6a5cd
PM
265}
266
ddbcc7e8
PM
267/*
268 * for_each_subsys() allows you to iterate on each subsystem attached to
269 * an active hierarchy
270 */
271#define for_each_subsys(_root, _ss) \
272list_for_each_entry(_ss, &_root->subsys_list, sibling)
273
e5f6a860
LZ
274/* for_each_active_root() allows you to iterate across the active hierarchies */
275#define for_each_active_root(_root) \
ddbcc7e8
PM
276list_for_each_entry(_root, &roots, root_list)
277
f6ea9372
TH
278static inline struct cgroup *__d_cgrp(struct dentry *dentry)
279{
280 return dentry->d_fsdata;
281}
282
05ef1d7c 283static inline struct cfent *__d_cfe(struct dentry *dentry)
f6ea9372
TH
284{
285 return dentry->d_fsdata;
286}
287
05ef1d7c
TH
288static inline struct cftype *__d_cft(struct dentry *dentry)
289{
290 return __d_cfe(dentry)->type;
291}
292
7ae1bad9
TH
293/**
294 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
295 * @cgrp: the cgroup to be checked for liveness
296 *
47cfcd09
TH
297 * On success, returns true; the mutex should be later unlocked. On
298 * failure returns false with no lock held.
7ae1bad9 299 */
b9777cf8 300static bool cgroup_lock_live_group(struct cgroup *cgrp)
7ae1bad9
TH
301{
302 mutex_lock(&cgroup_mutex);
303 if (cgroup_is_removed(cgrp)) {
304 mutex_unlock(&cgroup_mutex);
305 return false;
306 }
307 return true;
308}
7ae1bad9 309
81a6a5cd
PM
310/* the list of cgroups eligible for automatic release. Protected by
311 * release_list_lock */
312static LIST_HEAD(release_list);
cdcc136f 313static DEFINE_RAW_SPINLOCK(release_list_lock);
81a6a5cd
PM
314static void cgroup_release_agent(struct work_struct *work);
315static DECLARE_WORK(release_agent_work, cgroup_release_agent);
bd89aabc 316static void check_for_release(struct cgroup *cgrp);
81a6a5cd 317
817929ec
PM
318/* Link structure for associating css_set objects with cgroups */
319struct cg_cgroup_link {
320 /*
321 * List running through cg_cgroup_links associated with a
322 * cgroup, anchored on cgroup->css_sets
323 */
bd89aabc 324 struct list_head cgrp_link_list;
7717f7ba 325 struct cgroup *cgrp;
817929ec
PM
326 /*
327 * List running through cg_cgroup_links pointing at a
328 * single css_set object, anchored on css_set->cg_links
329 */
330 struct list_head cg_link_list;
331 struct css_set *cg;
332};
333
334/* The default css_set - used by init and its children prior to any
335 * hierarchies being mounted. It contains a pointer to the root state
336 * for each subsystem. Also used to anchor the list of css_sets. Not
337 * reference-counted, to improve performance when child cgroups
338 * haven't been created.
339 */
340
341static struct css_set init_css_set;
342static struct cg_cgroup_link init_css_set_link;
343
e6a1105b
BB
344static int cgroup_init_idr(struct cgroup_subsys *ss,
345 struct cgroup_subsys_state *css);
38460b48 346
817929ec
PM
347/* css_set_lock protects the list of css_set objects, and the
348 * chain of tasks off each css_set. Nests outside task->alloc_lock
349 * due to cgroup_iter_start() */
350static DEFINE_RWLOCK(css_set_lock);
351static int css_set_count;
352
7717f7ba
PM
353/*
354 * hash table for cgroup groups. This improves the performance to find
355 * an existing css_set. This hash doesn't (currently) take into
356 * account cgroups in empty hierarchies.
357 */
472b1053 358#define CSS_SET_HASH_BITS 7
0ac801fe 359static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
472b1053 360
0ac801fe 361static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
472b1053
LZ
362{
363 int i;
0ac801fe 364 unsigned long key = 0UL;
472b1053
LZ
365
366 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++)
0ac801fe
LZ
367 key += (unsigned long)css[i];
368 key = (key >> 16) ^ key;
472b1053 369
0ac801fe 370 return key;
472b1053
LZ
371}
372
817929ec
PM
373/* We don't maintain the lists running through each css_set to its
374 * task until after the first call to cgroup_iter_start(). This
375 * reduces the fork()/exit() overhead for people who have cgroups
376 * compiled into their kernel but not actually in use */
8947f9d5 377static int use_task_css_set_links __read_mostly;
817929ec 378
2c6ab6d2 379static void __put_css_set(struct css_set *cg, int taskexit)
b4f48b63 380{
71cbb949
KM
381 struct cg_cgroup_link *link;
382 struct cg_cgroup_link *saved_link;
146aa1bd
LJ
383 /*
384 * Ensure that the refcount doesn't hit zero while any readers
385 * can see it. Similar to atomic_dec_and_lock(), but for an
386 * rwlock
387 */
388 if (atomic_add_unless(&cg->refcount, -1, 1))
389 return;
390 write_lock(&css_set_lock);
391 if (!atomic_dec_and_test(&cg->refcount)) {
392 write_unlock(&css_set_lock);
393 return;
394 }
81a6a5cd 395
2c6ab6d2 396 /* This css_set is dead. unlink it and release cgroup refcounts */
0ac801fe 397 hash_del(&cg->hlist);
2c6ab6d2
PM
398 css_set_count--;
399
400 list_for_each_entry_safe(link, saved_link, &cg->cg_links,
401 cg_link_list) {
402 struct cgroup *cgrp = link->cgrp;
403 list_del(&link->cg_link_list);
404 list_del(&link->cgrp_link_list);
71b5707e
LZ
405
406 /*
407 * We may not be holding cgroup_mutex, and if cgrp->count is
408 * dropped to 0 the cgroup can be destroyed at any time, hence
409 * rcu_read_lock is used to keep it alive.
410 */
411 rcu_read_lock();
bd89aabc
PM
412 if (atomic_dec_and_test(&cgrp->count) &&
413 notify_on_release(cgrp)) {
81a6a5cd 414 if (taskexit)
bd89aabc
PM
415 set_bit(CGRP_RELEASABLE, &cgrp->flags);
416 check_for_release(cgrp);
81a6a5cd 417 }
71b5707e 418 rcu_read_unlock();
2c6ab6d2
PM
419
420 kfree(link);
81a6a5cd 421 }
2c6ab6d2
PM
422
423 write_unlock(&css_set_lock);
30088ad8 424 kfree_rcu(cg, rcu_head);
b4f48b63
PM
425}
426
817929ec
PM
427/*
428 * refcounted get/put for css_set objects
429 */
430static inline void get_css_set(struct css_set *cg)
431{
146aa1bd 432 atomic_inc(&cg->refcount);
817929ec
PM
433}
434
435static inline void put_css_set(struct css_set *cg)
436{
146aa1bd 437 __put_css_set(cg, 0);
817929ec
PM
438}
439
81a6a5cd
PM
440static inline void put_css_set_taskexit(struct css_set *cg)
441{
146aa1bd 442 __put_css_set(cg, 1);
81a6a5cd
PM
443}
444
7717f7ba
PM
445/*
446 * compare_css_sets - helper function for find_existing_css_set().
447 * @cg: candidate css_set being tested
448 * @old_cg: existing css_set for a task
449 * @new_cgrp: cgroup that's being entered by the task
450 * @template: desired set of css pointers in css_set (pre-calculated)
451 *
452 * Returns true if "cg" matches "old_cg" except for the hierarchy
453 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
454 */
455static bool compare_css_sets(struct css_set *cg,
456 struct css_set *old_cg,
457 struct cgroup *new_cgrp,
458 struct cgroup_subsys_state *template[])
459{
460 struct list_head *l1, *l2;
461
462 if (memcmp(template, cg->subsys, sizeof(cg->subsys))) {
463 /* Not all subsystems matched */
464 return false;
465 }
466
467 /*
468 * Compare cgroup pointers in order to distinguish between
469 * different cgroups in heirarchies with no subsystems. We
470 * could get by with just this check alone (and skip the
471 * memcmp above) but on most setups the memcmp check will
472 * avoid the need for this more expensive check on almost all
473 * candidates.
474 */
475
476 l1 = &cg->cg_links;
477 l2 = &old_cg->cg_links;
478 while (1) {
479 struct cg_cgroup_link *cgl1, *cgl2;
480 struct cgroup *cg1, *cg2;
481
482 l1 = l1->next;
483 l2 = l2->next;
484 /* See if we reached the end - both lists are equal length. */
485 if (l1 == &cg->cg_links) {
486 BUG_ON(l2 != &old_cg->cg_links);
487 break;
488 } else {
489 BUG_ON(l2 == &old_cg->cg_links);
490 }
491 /* Locate the cgroups associated with these links. */
492 cgl1 = list_entry(l1, struct cg_cgroup_link, cg_link_list);
493 cgl2 = list_entry(l2, struct cg_cgroup_link, cg_link_list);
494 cg1 = cgl1->cgrp;
495 cg2 = cgl2->cgrp;
496 /* Hierarchies should be linked in the same order. */
497 BUG_ON(cg1->root != cg2->root);
498
499 /*
500 * If this hierarchy is the hierarchy of the cgroup
501 * that's changing, then we need to check that this
502 * css_set points to the new cgroup; if it's any other
503 * hierarchy, then this css_set should point to the
504 * same cgroup as the old css_set.
505 */
506 if (cg1->root == new_cgrp->root) {
507 if (cg1 != new_cgrp)
508 return false;
509 } else {
510 if (cg1 != cg2)
511 return false;
512 }
513 }
514 return true;
515}
516
817929ec
PM
517/*
518 * find_existing_css_set() is a helper for
519 * find_css_set(), and checks to see whether an existing
472b1053 520 * css_set is suitable.
817929ec
PM
521 *
522 * oldcg: the cgroup group that we're using before the cgroup
523 * transition
524 *
bd89aabc 525 * cgrp: the cgroup that we're moving into
817929ec
PM
526 *
527 * template: location in which to build the desired set of subsystem
528 * state objects for the new cgroup group
529 */
817929ec
PM
530static struct css_set *find_existing_css_set(
531 struct css_set *oldcg,
bd89aabc 532 struct cgroup *cgrp,
817929ec 533 struct cgroup_subsys_state *template[])
b4f48b63
PM
534{
535 int i;
bd89aabc 536 struct cgroupfs_root *root = cgrp->root;
472b1053 537 struct css_set *cg;
0ac801fe 538 unsigned long key;
817929ec 539
aae8aab4
BB
540 /*
541 * Build the set of subsystem state objects that we want to see in the
542 * new css_set. while subsystems can change globally, the entries here
543 * won't change, so no need for locking.
544 */
817929ec 545 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
a1a71b45 546 if (root->subsys_mask & (1UL << i)) {
817929ec
PM
547 /* Subsystem is in this hierarchy. So we want
548 * the subsystem state from the new
549 * cgroup */
bd89aabc 550 template[i] = cgrp->subsys[i];
817929ec
PM
551 } else {
552 /* Subsystem is not in this hierarchy, so we
553 * don't want to change the subsystem state */
554 template[i] = oldcg->subsys[i];
555 }
556 }
557
0ac801fe 558 key = css_set_hash(template);
b67bfe0d 559 hash_for_each_possible(css_set_table, cg, hlist, key) {
7717f7ba
PM
560 if (!compare_css_sets(cg, oldcg, cgrp, template))
561 continue;
562
563 /* This css_set matches what we need */
564 return cg;
472b1053 565 }
817929ec
PM
566
567 /* No existing cgroup group matched */
568 return NULL;
569}
570
36553434
LZ
571static void free_cg_links(struct list_head *tmp)
572{
573 struct cg_cgroup_link *link;
574 struct cg_cgroup_link *saved_link;
575
576 list_for_each_entry_safe(link, saved_link, tmp, cgrp_link_list) {
577 list_del(&link->cgrp_link_list);
578 kfree(link);
579 }
580}
581
817929ec
PM
582/*
583 * allocate_cg_links() allocates "count" cg_cgroup_link structures
bd89aabc 584 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
817929ec
PM
585 * success or a negative error
586 */
817929ec
PM
587static int allocate_cg_links(int count, struct list_head *tmp)
588{
589 struct cg_cgroup_link *link;
590 int i;
591 INIT_LIST_HEAD(tmp);
592 for (i = 0; i < count; i++) {
593 link = kmalloc(sizeof(*link), GFP_KERNEL);
594 if (!link) {
36553434 595 free_cg_links(tmp);
817929ec
PM
596 return -ENOMEM;
597 }
bd89aabc 598 list_add(&link->cgrp_link_list, tmp);
817929ec
PM
599 }
600 return 0;
601}
602
c12f65d4
LZ
603/**
604 * link_css_set - a helper function to link a css_set to a cgroup
605 * @tmp_cg_links: cg_cgroup_link objects allocated by allocate_cg_links()
606 * @cg: the css_set to be linked
607 * @cgrp: the destination cgroup
608 */
609static void link_css_set(struct list_head *tmp_cg_links,
610 struct css_set *cg, struct cgroup *cgrp)
611{
612 struct cg_cgroup_link *link;
613
614 BUG_ON(list_empty(tmp_cg_links));
615 link = list_first_entry(tmp_cg_links, struct cg_cgroup_link,
616 cgrp_link_list);
617 link->cg = cg;
7717f7ba 618 link->cgrp = cgrp;
2c6ab6d2 619 atomic_inc(&cgrp->count);
c12f65d4 620 list_move(&link->cgrp_link_list, &cgrp->css_sets);
7717f7ba
PM
621 /*
622 * Always add links to the tail of the list so that the list
623 * is sorted by order of hierarchy creation
624 */
625 list_add_tail(&link->cg_link_list, &cg->cg_links);
c12f65d4
LZ
626}
627
817929ec
PM
628/*
629 * find_css_set() takes an existing cgroup group and a
630 * cgroup object, and returns a css_set object that's
631 * equivalent to the old group, but with the given cgroup
632 * substituted into the appropriate hierarchy. Must be called with
633 * cgroup_mutex held
634 */
817929ec 635static struct css_set *find_css_set(
bd89aabc 636 struct css_set *oldcg, struct cgroup *cgrp)
817929ec
PM
637{
638 struct css_set *res;
639 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
817929ec
PM
640
641 struct list_head tmp_cg_links;
817929ec 642
7717f7ba 643 struct cg_cgroup_link *link;
0ac801fe 644 unsigned long key;
472b1053 645
817929ec
PM
646 /* First see if we already have a cgroup group that matches
647 * the desired set */
7e9abd89 648 read_lock(&css_set_lock);
bd89aabc 649 res = find_existing_css_set(oldcg, cgrp, template);
817929ec
PM
650 if (res)
651 get_css_set(res);
7e9abd89 652 read_unlock(&css_set_lock);
817929ec
PM
653
654 if (res)
655 return res;
656
657 res = kmalloc(sizeof(*res), GFP_KERNEL);
658 if (!res)
659 return NULL;
660
661 /* Allocate all the cg_cgroup_link objects that we'll need */
662 if (allocate_cg_links(root_count, &tmp_cg_links) < 0) {
663 kfree(res);
664 return NULL;
665 }
666
146aa1bd 667 atomic_set(&res->refcount, 1);
817929ec
PM
668 INIT_LIST_HEAD(&res->cg_links);
669 INIT_LIST_HEAD(&res->tasks);
472b1053 670 INIT_HLIST_NODE(&res->hlist);
817929ec
PM
671
672 /* Copy the set of subsystem state objects generated in
673 * find_existing_css_set() */
674 memcpy(res->subsys, template, sizeof(res->subsys));
675
676 write_lock(&css_set_lock);
677 /* Add reference counts and links from the new css_set. */
7717f7ba
PM
678 list_for_each_entry(link, &oldcg->cg_links, cg_link_list) {
679 struct cgroup *c = link->cgrp;
680 if (c->root == cgrp->root)
681 c = cgrp;
682 link_css_set(&tmp_cg_links, res, c);
683 }
817929ec
PM
684
685 BUG_ON(!list_empty(&tmp_cg_links));
686
817929ec 687 css_set_count++;
472b1053
LZ
688
689 /* Add this cgroup group to the hash table */
0ac801fe
LZ
690 key = css_set_hash(res->subsys);
691 hash_add(css_set_table, &res->hlist, key);
472b1053 692
817929ec
PM
693 write_unlock(&css_set_lock);
694
695 return res;
b4f48b63
PM
696}
697
7717f7ba
PM
698/*
699 * Return the cgroup for "task" from the given hierarchy. Must be
700 * called with cgroup_mutex held.
701 */
702static struct cgroup *task_cgroup_from_root(struct task_struct *task,
703 struct cgroupfs_root *root)
704{
705 struct css_set *css;
706 struct cgroup *res = NULL;
707
708 BUG_ON(!mutex_is_locked(&cgroup_mutex));
709 read_lock(&css_set_lock);
710 /*
711 * No need to lock the task - since we hold cgroup_mutex the
712 * task can't change groups, so the only thing that can happen
713 * is that it exits and its css is set back to init_css_set.
714 */
715 css = task->cgroups;
716 if (css == &init_css_set) {
717 res = &root->top_cgroup;
718 } else {
719 struct cg_cgroup_link *link;
720 list_for_each_entry(link, &css->cg_links, cg_link_list) {
721 struct cgroup *c = link->cgrp;
722 if (c->root == root) {
723 res = c;
724 break;
725 }
726 }
727 }
728 read_unlock(&css_set_lock);
729 BUG_ON(!res);
730 return res;
731}
732
ddbcc7e8
PM
733/*
734 * There is one global cgroup mutex. We also require taking
735 * task_lock() when dereferencing a task's cgroup subsys pointers.
736 * See "The task_lock() exception", at the end of this comment.
737 *
738 * A task must hold cgroup_mutex to modify cgroups.
739 *
740 * Any task can increment and decrement the count field without lock.
741 * So in general, code holding cgroup_mutex can't rely on the count
742 * field not changing. However, if the count goes to zero, then only
956db3ca 743 * cgroup_attach_task() can increment it again. Because a count of zero
ddbcc7e8
PM
744 * means that no tasks are currently attached, therefore there is no
745 * way a task attached to that cgroup can fork (the other way to
746 * increment the count). So code holding cgroup_mutex can safely
747 * assume that if the count is zero, it will stay zero. Similarly, if
748 * a task holds cgroup_mutex on a cgroup with zero count, it
749 * knows that the cgroup won't be removed, as cgroup_rmdir()
750 * needs that mutex.
751 *
ddbcc7e8
PM
752 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
753 * (usually) take cgroup_mutex. These are the two most performance
754 * critical pieces of code here. The exception occurs on cgroup_exit(),
755 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
756 * is taken, and if the cgroup count is zero, a usermode call made
a043e3b2
LZ
757 * to the release agent with the name of the cgroup (path relative to
758 * the root of cgroup file system) as the argument.
ddbcc7e8
PM
759 *
760 * A cgroup can only be deleted if both its 'count' of using tasks
761 * is zero, and its list of 'children' cgroups is empty. Since all
762 * tasks in the system use _some_ cgroup, and since there is always at
763 * least one task in the system (init, pid == 1), therefore, top_cgroup
764 * always has either children cgroups and/or using tasks. So we don't
765 * need a special hack to ensure that top_cgroup cannot be deleted.
766 *
767 * The task_lock() exception
768 *
769 * The need for this exception arises from the action of
d0b2fdd2 770 * cgroup_attach_task(), which overwrites one task's cgroup pointer with
a043e3b2 771 * another. It does so using cgroup_mutex, however there are
ddbcc7e8
PM
772 * several performance critical places that need to reference
773 * task->cgroup without the expense of grabbing a system global
774 * mutex. Therefore except as noted below, when dereferencing or, as
d0b2fdd2 775 * in cgroup_attach_task(), modifying a task's cgroup pointer we use
ddbcc7e8
PM
776 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
777 * the task_struct routinely used for such matters.
778 *
779 * P.S. One more locking exception. RCU is used to guard the
956db3ca 780 * update of a tasks cgroup pointer by cgroup_attach_task()
ddbcc7e8
PM
781 */
782
ddbcc7e8
PM
783/*
784 * A couple of forward declarations required, due to cyclic reference loop:
785 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
786 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
787 * -> cgroup_mkdir.
788 */
789
18bb1db3 790static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode);
00cd8dd3 791static struct dentry *cgroup_lookup(struct inode *, struct dentry *, unsigned int);
ddbcc7e8 792static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
13af07df
AR
793static int cgroup_populate_dir(struct cgroup *cgrp, bool base_files,
794 unsigned long subsys_mask);
6e1d5dcc 795static const struct inode_operations cgroup_dir_inode_operations;
828c0950 796static const struct file_operations proc_cgroupstats_operations;
a424316c
PM
797
798static struct backing_dev_info cgroup_backing_dev_info = {
d993831f 799 .name = "cgroup",
e4ad08fe 800 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK,
a424316c 801};
ddbcc7e8 802
38460b48
KH
803static int alloc_css_id(struct cgroup_subsys *ss,
804 struct cgroup *parent, struct cgroup *child);
805
a5e7ed32 806static struct inode *cgroup_new_inode(umode_t mode, struct super_block *sb)
ddbcc7e8
PM
807{
808 struct inode *inode = new_inode(sb);
ddbcc7e8
PM
809
810 if (inode) {
85fe4025 811 inode->i_ino = get_next_ino();
ddbcc7e8 812 inode->i_mode = mode;
76aac0e9
DH
813 inode->i_uid = current_fsuid();
814 inode->i_gid = current_fsgid();
ddbcc7e8
PM
815 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
816 inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
817 }
818 return inode;
819}
820
65dff759
LZ
821static struct cgroup_name *cgroup_alloc_name(struct dentry *dentry)
822{
823 struct cgroup_name *name;
824
825 name = kmalloc(sizeof(*name) + dentry->d_name.len + 1, GFP_KERNEL);
826 if (!name)
827 return NULL;
828 strcpy(name->name, dentry->d_name.name);
829 return name;
830}
831
be445626
LZ
832static void cgroup_free_fn(struct work_struct *work)
833{
834 struct cgroup *cgrp = container_of(work, struct cgroup, free_work);
835 struct cgroup_subsys *ss;
836
837 mutex_lock(&cgroup_mutex);
838 /*
839 * Release the subsystem state objects.
840 */
841 for_each_subsys(cgrp->root, ss)
842 ss->css_free(cgrp);
843
844 cgrp->root->number_of_cgroups--;
845 mutex_unlock(&cgroup_mutex);
846
415cf07a
LZ
847 /*
848 * We get a ref to the parent's dentry, and put the ref when
849 * this cgroup is being freed, so it's guaranteed that the
850 * parent won't be destroyed before its children.
851 */
852 dput(cgrp->parent->dentry);
853
cc20e01c
LZ
854 ida_simple_remove(&cgrp->root->cgroup_ida, cgrp->id);
855
be445626
LZ
856 /*
857 * Drop the active superblock reference that we took when we
cc20e01c
LZ
858 * created the cgroup. This will free cgrp->root, if we are
859 * holding the last reference to @sb.
be445626
LZ
860 */
861 deactivate_super(cgrp->root->sb);
862
863 /*
864 * if we're getting rid of the cgroup, refcount should ensure
865 * that there are no pidlists left.
866 */
867 BUG_ON(!list_empty(&cgrp->pidlists));
868
869 simple_xattrs_free(&cgrp->xattrs);
870
65dff759 871 kfree(rcu_dereference_raw(cgrp->name));
be445626
LZ
872 kfree(cgrp);
873}
874
875static void cgroup_free_rcu(struct rcu_head *head)
876{
877 struct cgroup *cgrp = container_of(head, struct cgroup, rcu_head);
878
879 schedule_work(&cgrp->free_work);
880}
881
ddbcc7e8
PM
882static void cgroup_diput(struct dentry *dentry, struct inode *inode)
883{
884 /* is dentry a directory ? if so, kfree() associated cgroup */
885 if (S_ISDIR(inode->i_mode)) {
bd89aabc 886 struct cgroup *cgrp = dentry->d_fsdata;
be445626 887
bd89aabc 888 BUG_ON(!(cgroup_is_removed(cgrp)));
be445626 889 call_rcu(&cgrp->rcu_head, cgroup_free_rcu);
05ef1d7c
TH
890 } else {
891 struct cfent *cfe = __d_cfe(dentry);
892 struct cgroup *cgrp = dentry->d_parent->d_fsdata;
893
894 WARN_ONCE(!list_empty(&cfe->node) &&
895 cgrp != &cgrp->root->top_cgroup,
896 "cfe still linked for %s\n", cfe->type->name);
712317ad 897 simple_xattrs_free(&cfe->xattrs);
05ef1d7c 898 kfree(cfe);
ddbcc7e8
PM
899 }
900 iput(inode);
901}
902
c72a04e3
AV
903static int cgroup_delete(const struct dentry *d)
904{
905 return 1;
906}
907
ddbcc7e8
PM
908static void remove_dir(struct dentry *d)
909{
910 struct dentry *parent = dget(d->d_parent);
911
912 d_delete(d);
913 simple_rmdir(parent->d_inode, d);
914 dput(parent);
915}
916
2739d3cc 917static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
05ef1d7c
TH
918{
919 struct cfent *cfe;
920
921 lockdep_assert_held(&cgrp->dentry->d_inode->i_mutex);
922 lockdep_assert_held(&cgroup_mutex);
923
2739d3cc
LZ
924 /*
925 * If we're doing cleanup due to failure of cgroup_create(),
926 * the corresponding @cfe may not exist.
927 */
05ef1d7c
TH
928 list_for_each_entry(cfe, &cgrp->files, node) {
929 struct dentry *d = cfe->dentry;
930
931 if (cft && cfe->type != cft)
932 continue;
933
934 dget(d);
935 d_delete(d);
ce27e317 936 simple_unlink(cgrp->dentry->d_inode, d);
05ef1d7c
TH
937 list_del_init(&cfe->node);
938 dput(d);
939
2739d3cc 940 break;
ddbcc7e8 941 }
05ef1d7c
TH
942}
943
13af07df
AR
944/**
945 * cgroup_clear_directory - selective removal of base and subsystem files
946 * @dir: directory containing the files
947 * @base_files: true if the base files should be removed
948 * @subsys_mask: mask of the subsystem ids whose files should be removed
949 */
950static void cgroup_clear_directory(struct dentry *dir, bool base_files,
951 unsigned long subsys_mask)
05ef1d7c
TH
952{
953 struct cgroup *cgrp = __d_cgrp(dir);
13af07df 954 struct cgroup_subsys *ss;
05ef1d7c 955
13af07df
AR
956 for_each_subsys(cgrp->root, ss) {
957 struct cftype_set *set;
958 if (!test_bit(ss->subsys_id, &subsys_mask))
959 continue;
960 list_for_each_entry(set, &ss->cftsets, node)
879a3d9d 961 cgroup_addrm_files(cgrp, NULL, set->cfts, false);
13af07df
AR
962 }
963 if (base_files) {
964 while (!list_empty(&cgrp->files))
965 cgroup_rm_file(cgrp, NULL);
966 }
ddbcc7e8
PM
967}
968
969/*
970 * NOTE : the dentry must have been dget()'ed
971 */
972static void cgroup_d_remove_dir(struct dentry *dentry)
973{
2fd6b7f5 974 struct dentry *parent;
13af07df 975 struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
2fd6b7f5 976
a1a71b45 977 cgroup_clear_directory(dentry, true, root->subsys_mask);
ddbcc7e8 978
2fd6b7f5
NP
979 parent = dentry->d_parent;
980 spin_lock(&parent->d_lock);
3ec762ad 981 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
ddbcc7e8 982 list_del_init(&dentry->d_u.d_child);
2fd6b7f5
NP
983 spin_unlock(&dentry->d_lock);
984 spin_unlock(&parent->d_lock);
ddbcc7e8
PM
985 remove_dir(dentry);
986}
987
aae8aab4 988/*
cf5d5941
BB
989 * Call with cgroup_mutex held. Drops reference counts on modules, including
990 * any duplicate ones that parse_cgroupfs_options took. If this function
991 * returns an error, no reference counts are touched.
aae8aab4 992 */
ddbcc7e8 993static int rebind_subsystems(struct cgroupfs_root *root,
a1a71b45 994 unsigned long final_subsys_mask)
ddbcc7e8 995{
a1a71b45 996 unsigned long added_mask, removed_mask;
bd89aabc 997 struct cgroup *cgrp = &root->top_cgroup;
ddbcc7e8
PM
998 int i;
999
aae8aab4 1000 BUG_ON(!mutex_is_locked(&cgroup_mutex));
e25e2cbb 1001 BUG_ON(!mutex_is_locked(&cgroup_root_mutex));
aae8aab4 1002
a1a71b45
AR
1003 removed_mask = root->actual_subsys_mask & ~final_subsys_mask;
1004 added_mask = final_subsys_mask & ~root->actual_subsys_mask;
ddbcc7e8
PM
1005 /* Check that any added subsystems are currently free */
1006 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
8d53d55d 1007 unsigned long bit = 1UL << i;
ddbcc7e8 1008 struct cgroup_subsys *ss = subsys[i];
a1a71b45 1009 if (!(bit & added_mask))
ddbcc7e8 1010 continue;
aae8aab4
BB
1011 /*
1012 * Nobody should tell us to do a subsys that doesn't exist:
1013 * parse_cgroupfs_options should catch that case and refcounts
1014 * ensure that subsystems won't disappear once selected.
1015 */
1016 BUG_ON(ss == NULL);
ddbcc7e8
PM
1017 if (ss->root != &rootnode) {
1018 /* Subsystem isn't free */
1019 return -EBUSY;
1020 }
1021 }
1022
1023 /* Currently we don't handle adding/removing subsystems when
1024 * any child cgroups exist. This is theoretically supportable
1025 * but involves complex error handling, so it's being left until
1026 * later */
307257cf 1027 if (root->number_of_cgroups > 1)
ddbcc7e8
PM
1028 return -EBUSY;
1029
1030 /* Process each subsystem */
1031 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1032 struct cgroup_subsys *ss = subsys[i];
1033 unsigned long bit = 1UL << i;
a1a71b45 1034 if (bit & added_mask) {
ddbcc7e8 1035 /* We're binding this subsystem to this hierarchy */
aae8aab4 1036 BUG_ON(ss == NULL);
bd89aabc 1037 BUG_ON(cgrp->subsys[i]);
ddbcc7e8
PM
1038 BUG_ON(!dummytop->subsys[i]);
1039 BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
bd89aabc
PM
1040 cgrp->subsys[i] = dummytop->subsys[i];
1041 cgrp->subsys[i]->cgroup = cgrp;
33a68ac1 1042 list_move(&ss->sibling, &root->subsys_list);
b2aa30f7 1043 ss->root = root;
ddbcc7e8 1044 if (ss->bind)
761b3ef5 1045 ss->bind(cgrp);
cf5d5941 1046 /* refcount was already taken, and we're keeping it */
a1a71b45 1047 } else if (bit & removed_mask) {
ddbcc7e8 1048 /* We're removing this subsystem */
aae8aab4 1049 BUG_ON(ss == NULL);
bd89aabc
PM
1050 BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
1051 BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
ddbcc7e8 1052 if (ss->bind)
761b3ef5 1053 ss->bind(dummytop);
ddbcc7e8 1054 dummytop->subsys[i]->cgroup = dummytop;
bd89aabc 1055 cgrp->subsys[i] = NULL;
b2aa30f7 1056 subsys[i]->root = &rootnode;
33a68ac1 1057 list_move(&ss->sibling, &rootnode.subsys_list);
cf5d5941
BB
1058 /* subsystem is now free - drop reference on module */
1059 module_put(ss->module);
a1a71b45 1060 } else if (bit & final_subsys_mask) {
ddbcc7e8 1061 /* Subsystem state should already exist */
aae8aab4 1062 BUG_ON(ss == NULL);
bd89aabc 1063 BUG_ON(!cgrp->subsys[i]);
cf5d5941
BB
1064 /*
1065 * a refcount was taken, but we already had one, so
1066 * drop the extra reference.
1067 */
1068 module_put(ss->module);
1069#ifdef CONFIG_MODULE_UNLOAD
1070 BUG_ON(ss->module && !module_refcount(ss->module));
1071#endif
ddbcc7e8
PM
1072 } else {
1073 /* Subsystem state shouldn't exist */
bd89aabc 1074 BUG_ON(cgrp->subsys[i]);
ddbcc7e8
PM
1075 }
1076 }
a1a71b45 1077 root->subsys_mask = root->actual_subsys_mask = final_subsys_mask;
ddbcc7e8
PM
1078
1079 return 0;
1080}
1081
34c80b1d 1082static int cgroup_show_options(struct seq_file *seq, struct dentry *dentry)
ddbcc7e8 1083{
34c80b1d 1084 struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
ddbcc7e8
PM
1085 struct cgroup_subsys *ss;
1086
e25e2cbb 1087 mutex_lock(&cgroup_root_mutex);
ddbcc7e8
PM
1088 for_each_subsys(root, ss)
1089 seq_printf(seq, ",%s", ss->name);
873fe09e
TH
1090 if (root->flags & CGRP_ROOT_SANE_BEHAVIOR)
1091 seq_puts(seq, ",sane_behavior");
93438629 1092 if (root->flags & CGRP_ROOT_NOPREFIX)
ddbcc7e8 1093 seq_puts(seq, ",noprefix");
93438629 1094 if (root->flags & CGRP_ROOT_XATTR)
03b1cde6 1095 seq_puts(seq, ",xattr");
81a6a5cd
PM
1096 if (strlen(root->release_agent_path))
1097 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
2260e7fc 1098 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->top_cgroup.flags))
97978e6d 1099 seq_puts(seq, ",clone_children");
c6d57f33
PM
1100 if (strlen(root->name))
1101 seq_printf(seq, ",name=%s", root->name);
e25e2cbb 1102 mutex_unlock(&cgroup_root_mutex);
ddbcc7e8
PM
1103 return 0;
1104}
1105
1106struct cgroup_sb_opts {
a1a71b45 1107 unsigned long subsys_mask;
ddbcc7e8 1108 unsigned long flags;
81a6a5cd 1109 char *release_agent;
2260e7fc 1110 bool cpuset_clone_children;
c6d57f33 1111 char *name;
2c6ab6d2
PM
1112 /* User explicitly requested empty subsystem */
1113 bool none;
c6d57f33
PM
1114
1115 struct cgroupfs_root *new_root;
2c6ab6d2 1116
ddbcc7e8
PM
1117};
1118
aae8aab4
BB
1119/*
1120 * Convert a hierarchy specifier into a bitmask of subsystems and flags. Call
cf5d5941
BB
1121 * with cgroup_mutex held to protect the subsys[] array. This function takes
1122 * refcounts on subsystems to be used, unless it returns error, in which case
1123 * no refcounts are taken.
aae8aab4 1124 */
cf5d5941 1125static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
ddbcc7e8 1126{
32a8cf23
DL
1127 char *token, *o = data;
1128 bool all_ss = false, one_ss = false;
f9ab5b5b 1129 unsigned long mask = (unsigned long)-1;
cf5d5941
BB
1130 int i;
1131 bool module_pin_failed = false;
f9ab5b5b 1132
aae8aab4
BB
1133 BUG_ON(!mutex_is_locked(&cgroup_mutex));
1134
f9ab5b5b
LZ
1135#ifdef CONFIG_CPUSETS
1136 mask = ~(1UL << cpuset_subsys_id);
1137#endif
ddbcc7e8 1138
c6d57f33 1139 memset(opts, 0, sizeof(*opts));
ddbcc7e8
PM
1140
1141 while ((token = strsep(&o, ",")) != NULL) {
1142 if (!*token)
1143 return -EINVAL;
32a8cf23 1144 if (!strcmp(token, "none")) {
2c6ab6d2
PM
1145 /* Explicitly have no subsystems */
1146 opts->none = true;
32a8cf23
DL
1147 continue;
1148 }
1149 if (!strcmp(token, "all")) {
1150 /* Mutually exclusive option 'all' + subsystem name */
1151 if (one_ss)
1152 return -EINVAL;
1153 all_ss = true;
1154 continue;
1155 }
873fe09e
TH
1156 if (!strcmp(token, "__DEVEL__sane_behavior")) {
1157 opts->flags |= CGRP_ROOT_SANE_BEHAVIOR;
1158 continue;
1159 }
32a8cf23 1160 if (!strcmp(token, "noprefix")) {
93438629 1161 opts->flags |= CGRP_ROOT_NOPREFIX;
32a8cf23
DL
1162 continue;
1163 }
1164 if (!strcmp(token, "clone_children")) {
2260e7fc 1165 opts->cpuset_clone_children = true;
32a8cf23
DL
1166 continue;
1167 }
03b1cde6 1168 if (!strcmp(token, "xattr")) {
93438629 1169 opts->flags |= CGRP_ROOT_XATTR;
03b1cde6
AR
1170 continue;
1171 }
32a8cf23 1172 if (!strncmp(token, "release_agent=", 14)) {
81a6a5cd
PM
1173 /* Specifying two release agents is forbidden */
1174 if (opts->release_agent)
1175 return -EINVAL;
c6d57f33 1176 opts->release_agent =
e400c285 1177 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
81a6a5cd
PM
1178 if (!opts->release_agent)
1179 return -ENOMEM;
32a8cf23
DL
1180 continue;
1181 }
1182 if (!strncmp(token, "name=", 5)) {
c6d57f33
PM
1183 const char *name = token + 5;
1184 /* Can't specify an empty name */
1185 if (!strlen(name))
1186 return -EINVAL;
1187 /* Must match [\w.-]+ */
1188 for (i = 0; i < strlen(name); i++) {
1189 char c = name[i];
1190 if (isalnum(c))
1191 continue;
1192 if ((c == '.') || (c == '-') || (c == '_'))
1193 continue;
1194 return -EINVAL;
1195 }
1196 /* Specifying two names is forbidden */
1197 if (opts->name)
1198 return -EINVAL;
1199 opts->name = kstrndup(name,
e400c285 1200 MAX_CGROUP_ROOT_NAMELEN - 1,
c6d57f33
PM
1201 GFP_KERNEL);
1202 if (!opts->name)
1203 return -ENOMEM;
32a8cf23
DL
1204
1205 continue;
1206 }
1207
1208 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1209 struct cgroup_subsys *ss = subsys[i];
1210 if (ss == NULL)
1211 continue;
1212 if (strcmp(token, ss->name))
1213 continue;
1214 if (ss->disabled)
1215 continue;
1216
1217 /* Mutually exclusive option 'all' + subsystem name */
1218 if (all_ss)
1219 return -EINVAL;
a1a71b45 1220 set_bit(i, &opts->subsys_mask);
32a8cf23
DL
1221 one_ss = true;
1222
1223 break;
1224 }
1225 if (i == CGROUP_SUBSYS_COUNT)
1226 return -ENOENT;
1227 }
1228
1229 /*
1230 * If the 'all' option was specified select all the subsystems,
0d19ea86
LZ
1231 * otherwise if 'none', 'name=' and a subsystem name options
1232 * were not specified, let's default to 'all'
32a8cf23 1233 */
0d19ea86 1234 if (all_ss || (!one_ss && !opts->none && !opts->name)) {
32a8cf23
DL
1235 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1236 struct cgroup_subsys *ss = subsys[i];
1237 if (ss == NULL)
1238 continue;
1239 if (ss->disabled)
1240 continue;
a1a71b45 1241 set_bit(i, &opts->subsys_mask);
ddbcc7e8
PM
1242 }
1243 }
1244
2c6ab6d2
PM
1245 /* Consistency checks */
1246
873fe09e
TH
1247 if (opts->flags & CGRP_ROOT_SANE_BEHAVIOR) {
1248 pr_warning("cgroup: sane_behavior: this is still under development and its behaviors will change, proceed at your own risk\n");
1249
1250 if (opts->flags & CGRP_ROOT_NOPREFIX) {
1251 pr_err("cgroup: sane_behavior: noprefix is not allowed\n");
1252 return -EINVAL;
1253 }
1254
1255 if (opts->cpuset_clone_children) {
1256 pr_err("cgroup: sane_behavior: clone_children is not allowed\n");
1257 return -EINVAL;
1258 }
1259 }
1260
f9ab5b5b
LZ
1261 /*
1262 * Option noprefix was introduced just for backward compatibility
1263 * with the old cpuset, so we allow noprefix only if mounting just
1264 * the cpuset subsystem.
1265 */
93438629 1266 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
f9ab5b5b
LZ
1267 return -EINVAL;
1268
2c6ab6d2
PM
1269
1270 /* Can't specify "none" and some subsystems */
a1a71b45 1271 if (opts->subsys_mask && opts->none)
2c6ab6d2
PM
1272 return -EINVAL;
1273
1274 /*
1275 * We either have to specify by name or by subsystems. (So all
1276 * empty hierarchies must have a name).
1277 */
a1a71b45 1278 if (!opts->subsys_mask && !opts->name)
ddbcc7e8
PM
1279 return -EINVAL;
1280
cf5d5941
BB
1281 /*
1282 * Grab references on all the modules we'll need, so the subsystems
1283 * don't dance around before rebind_subsystems attaches them. This may
1284 * take duplicate reference counts on a subsystem that's already used,
1285 * but rebind_subsystems handles this case.
1286 */
be45c900 1287 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
cf5d5941
BB
1288 unsigned long bit = 1UL << i;
1289
a1a71b45 1290 if (!(bit & opts->subsys_mask))
cf5d5941
BB
1291 continue;
1292 if (!try_module_get(subsys[i]->module)) {
1293 module_pin_failed = true;
1294 break;
1295 }
1296 }
1297 if (module_pin_failed) {
1298 /*
1299 * oops, one of the modules was going away. this means that we
1300 * raced with a module_delete call, and to the user this is
1301 * essentially a "subsystem doesn't exist" case.
1302 */
be45c900 1303 for (i--; i >= 0; i--) {
cf5d5941
BB
1304 /* drop refcounts only on the ones we took */
1305 unsigned long bit = 1UL << i;
1306
a1a71b45 1307 if (!(bit & opts->subsys_mask))
cf5d5941
BB
1308 continue;
1309 module_put(subsys[i]->module);
1310 }
1311 return -ENOENT;
1312 }
1313
ddbcc7e8
PM
1314 return 0;
1315}
1316
a1a71b45 1317static void drop_parsed_module_refcounts(unsigned long subsys_mask)
cf5d5941
BB
1318{
1319 int i;
be45c900 1320 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
cf5d5941
BB
1321 unsigned long bit = 1UL << i;
1322
a1a71b45 1323 if (!(bit & subsys_mask))
cf5d5941
BB
1324 continue;
1325 module_put(subsys[i]->module);
1326 }
1327}
1328
ddbcc7e8
PM
1329static int cgroup_remount(struct super_block *sb, int *flags, char *data)
1330{
1331 int ret = 0;
1332 struct cgroupfs_root *root = sb->s_fs_info;
bd89aabc 1333 struct cgroup *cgrp = &root->top_cgroup;
ddbcc7e8 1334 struct cgroup_sb_opts opts;
a1a71b45 1335 unsigned long added_mask, removed_mask;
ddbcc7e8 1336
873fe09e
TH
1337 if (root->flags & CGRP_ROOT_SANE_BEHAVIOR) {
1338 pr_err("cgroup: sane_behavior: remount is not allowed\n");
1339 return -EINVAL;
1340 }
1341
bd89aabc 1342 mutex_lock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8 1343 mutex_lock(&cgroup_mutex);
e25e2cbb 1344 mutex_lock(&cgroup_root_mutex);
ddbcc7e8
PM
1345
1346 /* See what subsystems are wanted */
1347 ret = parse_cgroupfs_options(data, &opts);
1348 if (ret)
1349 goto out_unlock;
1350
a1a71b45 1351 if (opts.subsys_mask != root->actual_subsys_mask || opts.release_agent)
8b5a5a9d
TH
1352 pr_warning("cgroup: option changes via remount are deprecated (pid=%d comm=%s)\n",
1353 task_tgid_nr(current), current->comm);
1354
a1a71b45
AR
1355 added_mask = opts.subsys_mask & ~root->subsys_mask;
1356 removed_mask = root->subsys_mask & ~opts.subsys_mask;
13af07df 1357
cf5d5941
BB
1358 /* Don't allow flags or name to change at remount */
1359 if (opts.flags != root->flags ||
1360 (opts.name && strcmp(opts.name, root->name))) {
c6d57f33 1361 ret = -EINVAL;
a1a71b45 1362 drop_parsed_module_refcounts(opts.subsys_mask);
c6d57f33
PM
1363 goto out_unlock;
1364 }
1365
7083d037
G
1366 /*
1367 * Clear out the files of subsystems that should be removed, do
1368 * this before rebind_subsystems, since rebind_subsystems may
1369 * change this hierarchy's subsys_list.
1370 */
1371 cgroup_clear_directory(cgrp->dentry, false, removed_mask);
1372
a1a71b45 1373 ret = rebind_subsystems(root, opts.subsys_mask);
cf5d5941 1374 if (ret) {
7083d037
G
1375 /* rebind_subsystems failed, re-populate the removed files */
1376 cgroup_populate_dir(cgrp, false, removed_mask);
a1a71b45 1377 drop_parsed_module_refcounts(opts.subsys_mask);
0670e08b 1378 goto out_unlock;
cf5d5941 1379 }
ddbcc7e8 1380
13af07df 1381 /* re-populate subsystem files */
a1a71b45 1382 cgroup_populate_dir(cgrp, false, added_mask);
ddbcc7e8 1383
81a6a5cd
PM
1384 if (opts.release_agent)
1385 strcpy(root->release_agent_path, opts.release_agent);
ddbcc7e8 1386 out_unlock:
66bdc9cf 1387 kfree(opts.release_agent);
c6d57f33 1388 kfree(opts.name);
e25e2cbb 1389 mutex_unlock(&cgroup_root_mutex);
ddbcc7e8 1390 mutex_unlock(&cgroup_mutex);
bd89aabc 1391 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8
PM
1392 return ret;
1393}
1394
b87221de 1395static const struct super_operations cgroup_ops = {
ddbcc7e8
PM
1396 .statfs = simple_statfs,
1397 .drop_inode = generic_delete_inode,
1398 .show_options = cgroup_show_options,
1399 .remount_fs = cgroup_remount,
1400};
1401
cc31edce
PM
1402static void init_cgroup_housekeeping(struct cgroup *cgrp)
1403{
1404 INIT_LIST_HEAD(&cgrp->sibling);
1405 INIT_LIST_HEAD(&cgrp->children);
05ef1d7c 1406 INIT_LIST_HEAD(&cgrp->files);
cc31edce 1407 INIT_LIST_HEAD(&cgrp->css_sets);
2243076a 1408 INIT_LIST_HEAD(&cgrp->allcg_node);
cc31edce 1409 INIT_LIST_HEAD(&cgrp->release_list);
72a8cb30 1410 INIT_LIST_HEAD(&cgrp->pidlists);
be445626 1411 INIT_WORK(&cgrp->free_work, cgroup_free_fn);
72a8cb30 1412 mutex_init(&cgrp->pidlist_mutex);
0dea1168
KS
1413 INIT_LIST_HEAD(&cgrp->event_list);
1414 spin_lock_init(&cgrp->event_list_lock);
03b1cde6 1415 simple_xattrs_init(&cgrp->xattrs);
cc31edce 1416}
c6d57f33 1417
ddbcc7e8
PM
1418static void init_cgroup_root(struct cgroupfs_root *root)
1419{
bd89aabc 1420 struct cgroup *cgrp = &root->top_cgroup;
b0ca5a84 1421
ddbcc7e8
PM
1422 INIT_LIST_HEAD(&root->subsys_list);
1423 INIT_LIST_HEAD(&root->root_list);
b0ca5a84 1424 INIT_LIST_HEAD(&root->allcg_list);
ddbcc7e8 1425 root->number_of_cgroups = 1;
bd89aabc 1426 cgrp->root = root;
65dff759 1427 cgrp->name = &root_cgroup_name;
cc31edce 1428 init_cgroup_housekeeping(cgrp);
fddfb02a 1429 list_add_tail(&cgrp->allcg_node, &root->allcg_list);
ddbcc7e8
PM
1430}
1431
fa3ca07e 1432static int cgroup_init_root_id(struct cgroupfs_root *root)
2c6ab6d2 1433{
1a574231 1434 int id;
2c6ab6d2 1435
54e7b4eb
TH
1436 lockdep_assert_held(&cgroup_mutex);
1437 lockdep_assert_held(&cgroup_root_mutex);
1438
1a574231
TH
1439 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 2, 0, GFP_KERNEL);
1440 if (id < 0)
1441 return id;
1442
1443 root->hierarchy_id = id;
fa3ca07e
TH
1444 return 0;
1445}
1446
1447static void cgroup_exit_root_id(struct cgroupfs_root *root)
1448{
54e7b4eb
TH
1449 lockdep_assert_held(&cgroup_mutex);
1450 lockdep_assert_held(&cgroup_root_mutex);
1451
fa3ca07e 1452 if (root->hierarchy_id) {
1a574231 1453 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
fa3ca07e
TH
1454 root->hierarchy_id = 0;
1455 }
2c6ab6d2
PM
1456}
1457
ddbcc7e8
PM
1458static int cgroup_test_super(struct super_block *sb, void *data)
1459{
c6d57f33 1460 struct cgroup_sb_opts *opts = data;
ddbcc7e8
PM
1461 struct cgroupfs_root *root = sb->s_fs_info;
1462
c6d57f33
PM
1463 /* If we asked for a name then it must match */
1464 if (opts->name && strcmp(opts->name, root->name))
1465 return 0;
ddbcc7e8 1466
2c6ab6d2
PM
1467 /*
1468 * If we asked for subsystems (or explicitly for no
1469 * subsystems) then they must match
1470 */
a1a71b45
AR
1471 if ((opts->subsys_mask || opts->none)
1472 && (opts->subsys_mask != root->subsys_mask))
ddbcc7e8
PM
1473 return 0;
1474
1475 return 1;
1476}
1477
c6d57f33
PM
1478static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts)
1479{
1480 struct cgroupfs_root *root;
1481
a1a71b45 1482 if (!opts->subsys_mask && !opts->none)
c6d57f33
PM
1483 return NULL;
1484
1485 root = kzalloc(sizeof(*root), GFP_KERNEL);
1486 if (!root)
1487 return ERR_PTR(-ENOMEM);
1488
1489 init_cgroup_root(root);
2c6ab6d2 1490
a1a71b45 1491 root->subsys_mask = opts->subsys_mask;
c6d57f33 1492 root->flags = opts->flags;
0a950f65 1493 ida_init(&root->cgroup_ida);
c6d57f33
PM
1494 if (opts->release_agent)
1495 strcpy(root->release_agent_path, opts->release_agent);
1496 if (opts->name)
1497 strcpy(root->name, opts->name);
2260e7fc
TH
1498 if (opts->cpuset_clone_children)
1499 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->top_cgroup.flags);
c6d57f33
PM
1500 return root;
1501}
1502
fa3ca07e 1503static void cgroup_free_root(struct cgroupfs_root *root)
2c6ab6d2 1504{
fa3ca07e
TH
1505 if (root) {
1506 /* hierarhcy ID shoulid already have been released */
1507 WARN_ON_ONCE(root->hierarchy_id);
2c6ab6d2 1508
fa3ca07e
TH
1509 ida_destroy(&root->cgroup_ida);
1510 kfree(root);
1511 }
2c6ab6d2
PM
1512}
1513
ddbcc7e8
PM
1514static int cgroup_set_super(struct super_block *sb, void *data)
1515{
1516 int ret;
c6d57f33
PM
1517 struct cgroup_sb_opts *opts = data;
1518
1519 /* If we don't have a new root, we can't set up a new sb */
1520 if (!opts->new_root)
1521 return -EINVAL;
1522
a1a71b45 1523 BUG_ON(!opts->subsys_mask && !opts->none);
ddbcc7e8
PM
1524
1525 ret = set_anon_super(sb, NULL);
1526 if (ret)
1527 return ret;
1528
c6d57f33
PM
1529 sb->s_fs_info = opts->new_root;
1530 opts->new_root->sb = sb;
ddbcc7e8
PM
1531
1532 sb->s_blocksize = PAGE_CACHE_SIZE;
1533 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
1534 sb->s_magic = CGROUP_SUPER_MAGIC;
1535 sb->s_op = &cgroup_ops;
1536
1537 return 0;
1538}
1539
1540static int cgroup_get_rootdir(struct super_block *sb)
1541{
0df6a63f
AV
1542 static const struct dentry_operations cgroup_dops = {
1543 .d_iput = cgroup_diput,
c72a04e3 1544 .d_delete = cgroup_delete,
0df6a63f
AV
1545 };
1546
ddbcc7e8
PM
1547 struct inode *inode =
1548 cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
ddbcc7e8
PM
1549
1550 if (!inode)
1551 return -ENOMEM;
1552
ddbcc7e8
PM
1553 inode->i_fop = &simple_dir_operations;
1554 inode->i_op = &cgroup_dir_inode_operations;
1555 /* directories start off with i_nlink == 2 (for "." entry) */
1556 inc_nlink(inode);
48fde701
AV
1557 sb->s_root = d_make_root(inode);
1558 if (!sb->s_root)
ddbcc7e8 1559 return -ENOMEM;
0df6a63f
AV
1560 /* for everything else we want ->d_op set */
1561 sb->s_d_op = &cgroup_dops;
ddbcc7e8
PM
1562 return 0;
1563}
1564
f7e83571 1565static struct dentry *cgroup_mount(struct file_system_type *fs_type,
ddbcc7e8 1566 int flags, const char *unused_dev_name,
f7e83571 1567 void *data)
ddbcc7e8
PM
1568{
1569 struct cgroup_sb_opts opts;
c6d57f33 1570 struct cgroupfs_root *root;
ddbcc7e8
PM
1571 int ret = 0;
1572 struct super_block *sb;
c6d57f33 1573 struct cgroupfs_root *new_root;
e25e2cbb 1574 struct inode *inode;
ddbcc7e8
PM
1575
1576 /* First find the desired set of subsystems */
aae8aab4 1577 mutex_lock(&cgroup_mutex);
ddbcc7e8 1578 ret = parse_cgroupfs_options(data, &opts);
aae8aab4 1579 mutex_unlock(&cgroup_mutex);
c6d57f33
PM
1580 if (ret)
1581 goto out_err;
ddbcc7e8 1582
c6d57f33
PM
1583 /*
1584 * Allocate a new cgroup root. We may not need it if we're
1585 * reusing an existing hierarchy.
1586 */
1587 new_root = cgroup_root_from_opts(&opts);
1588 if (IS_ERR(new_root)) {
1589 ret = PTR_ERR(new_root);
cf5d5941 1590 goto drop_modules;
81a6a5cd 1591 }
c6d57f33 1592 opts.new_root = new_root;
ddbcc7e8 1593
c6d57f33 1594 /* Locate an existing or new sb for this hierarchy */
9249e17f 1595 sb = sget(fs_type, cgroup_test_super, cgroup_set_super, 0, &opts);
ddbcc7e8 1596 if (IS_ERR(sb)) {
c6d57f33 1597 ret = PTR_ERR(sb);
fa3ca07e 1598 cgroup_free_root(opts.new_root);
cf5d5941 1599 goto drop_modules;
ddbcc7e8
PM
1600 }
1601
c6d57f33
PM
1602 root = sb->s_fs_info;
1603 BUG_ON(!root);
1604 if (root == opts.new_root) {
1605 /* We used the new root structure, so this is a new hierarchy */
1606 struct list_head tmp_cg_links;
c12f65d4 1607 struct cgroup *root_cgrp = &root->top_cgroup;
c6d57f33 1608 struct cgroupfs_root *existing_root;
2ce9738b 1609 const struct cred *cred;
28fd5dfc 1610 int i;
0ac801fe 1611 struct css_set *cg;
ddbcc7e8
PM
1612
1613 BUG_ON(sb->s_root != NULL);
1614
1615 ret = cgroup_get_rootdir(sb);
1616 if (ret)
1617 goto drop_new_super;
817929ec 1618 inode = sb->s_root->d_inode;
ddbcc7e8 1619
817929ec 1620 mutex_lock(&inode->i_mutex);
ddbcc7e8 1621 mutex_lock(&cgroup_mutex);
e25e2cbb 1622 mutex_lock(&cgroup_root_mutex);
ddbcc7e8 1623
e25e2cbb
TH
1624 /* Check for name clashes with existing mounts */
1625 ret = -EBUSY;
1626 if (strlen(root->name))
1627 for_each_active_root(existing_root)
1628 if (!strcmp(existing_root->name, root->name))
1629 goto unlock_drop;
c6d57f33 1630
817929ec
PM
1631 /*
1632 * We're accessing css_set_count without locking
1633 * css_set_lock here, but that's OK - it can only be
1634 * increased by someone holding cgroup_lock, and
1635 * that's us. The worst that can happen is that we
1636 * have some link structures left over
1637 */
1638 ret = allocate_cg_links(css_set_count, &tmp_cg_links);
e25e2cbb
TH
1639 if (ret)
1640 goto unlock_drop;
817929ec 1641
fa3ca07e
TH
1642 ret = cgroup_init_root_id(root);
1643 if (ret)
1644 goto unlock_drop;
1645
a1a71b45 1646 ret = rebind_subsystems(root, root->subsys_mask);
ddbcc7e8 1647 if (ret == -EBUSY) {
c6d57f33 1648 free_cg_links(&tmp_cg_links);
e25e2cbb 1649 goto unlock_drop;
ddbcc7e8 1650 }
cf5d5941
BB
1651 /*
1652 * There must be no failure case after here, since rebinding
1653 * takes care of subsystems' refcounts, which are explicitly
1654 * dropped in the failure exit path.
1655 */
ddbcc7e8
PM
1656
1657 /* EBUSY should be the only error here */
1658 BUG_ON(ret);
1659
1660 list_add(&root->root_list, &roots);
817929ec 1661 root_count++;
ddbcc7e8 1662
c12f65d4 1663 sb->s_root->d_fsdata = root_cgrp;
ddbcc7e8
PM
1664 root->top_cgroup.dentry = sb->s_root;
1665
817929ec
PM
1666 /* Link the top cgroup in this hierarchy into all
1667 * the css_set objects */
1668 write_lock(&css_set_lock);
b67bfe0d 1669 hash_for_each(css_set_table, i, cg, hlist)
0ac801fe 1670 link_css_set(&tmp_cg_links, cg, root_cgrp);
817929ec
PM
1671 write_unlock(&css_set_lock);
1672
1673 free_cg_links(&tmp_cg_links);
1674
c12f65d4 1675 BUG_ON(!list_empty(&root_cgrp->children));
ddbcc7e8
PM
1676 BUG_ON(root->number_of_cgroups != 1);
1677
2ce9738b 1678 cred = override_creds(&init_cred);
a1a71b45 1679 cgroup_populate_dir(root_cgrp, true, root->subsys_mask);
2ce9738b 1680 revert_creds(cred);
e25e2cbb 1681 mutex_unlock(&cgroup_root_mutex);
ddbcc7e8 1682 mutex_unlock(&cgroup_mutex);
34f77a90 1683 mutex_unlock(&inode->i_mutex);
c6d57f33
PM
1684 } else {
1685 /*
1686 * We re-used an existing hierarchy - the new root (if
1687 * any) is not needed
1688 */
fa3ca07e 1689 cgroup_free_root(opts.new_root);
873fe09e
TH
1690
1691 if (((root->flags | opts.flags) & CGRP_ROOT_SANE_BEHAVIOR) &&
1692 root->flags != opts.flags) {
1693 pr_err("cgroup: sane_behavior: new mount options should match the existing superblock\n");
1694 ret = -EINVAL;
1695 goto drop_new_super;
1696 }
1697
cf5d5941 1698 /* no subsys rebinding, so refcounts don't change */
a1a71b45 1699 drop_parsed_module_refcounts(opts.subsys_mask);
ddbcc7e8
PM
1700 }
1701
c6d57f33
PM
1702 kfree(opts.release_agent);
1703 kfree(opts.name);
f7e83571 1704 return dget(sb->s_root);
ddbcc7e8 1705
e25e2cbb 1706 unlock_drop:
fa3ca07e 1707 cgroup_exit_root_id(root);
e25e2cbb
TH
1708 mutex_unlock(&cgroup_root_mutex);
1709 mutex_unlock(&cgroup_mutex);
1710 mutex_unlock(&inode->i_mutex);
ddbcc7e8 1711 drop_new_super:
6f5bbff9 1712 deactivate_locked_super(sb);
cf5d5941 1713 drop_modules:
a1a71b45 1714 drop_parsed_module_refcounts(opts.subsys_mask);
c6d57f33
PM
1715 out_err:
1716 kfree(opts.release_agent);
1717 kfree(opts.name);
f7e83571 1718 return ERR_PTR(ret);
ddbcc7e8
PM
1719}
1720
1721static void cgroup_kill_sb(struct super_block *sb) {
1722 struct cgroupfs_root *root = sb->s_fs_info;
bd89aabc 1723 struct cgroup *cgrp = &root->top_cgroup;
ddbcc7e8 1724 int ret;
71cbb949
KM
1725 struct cg_cgroup_link *link;
1726 struct cg_cgroup_link *saved_link;
ddbcc7e8
PM
1727
1728 BUG_ON(!root);
1729
1730 BUG_ON(root->number_of_cgroups != 1);
bd89aabc 1731 BUG_ON(!list_empty(&cgrp->children));
ddbcc7e8
PM
1732
1733 mutex_lock(&cgroup_mutex);
e25e2cbb 1734 mutex_lock(&cgroup_root_mutex);
ddbcc7e8
PM
1735
1736 /* Rebind all subsystems back to the default hierarchy */
1737 ret = rebind_subsystems(root, 0);
1738 /* Shouldn't be able to fail ... */
1739 BUG_ON(ret);
1740
817929ec
PM
1741 /*
1742 * Release all the links from css_sets to this hierarchy's
1743 * root cgroup
1744 */
1745 write_lock(&css_set_lock);
71cbb949
KM
1746
1747 list_for_each_entry_safe(link, saved_link, &cgrp->css_sets,
1748 cgrp_link_list) {
817929ec 1749 list_del(&link->cg_link_list);
bd89aabc 1750 list_del(&link->cgrp_link_list);
817929ec
PM
1751 kfree(link);
1752 }
1753 write_unlock(&css_set_lock);
1754
839ec545
PM
1755 if (!list_empty(&root->root_list)) {
1756 list_del(&root->root_list);
1757 root_count--;
1758 }
e5f6a860 1759
fa3ca07e
TH
1760 cgroup_exit_root_id(root);
1761
e25e2cbb 1762 mutex_unlock(&cgroup_root_mutex);
ddbcc7e8
PM
1763 mutex_unlock(&cgroup_mutex);
1764
03b1cde6
AR
1765 simple_xattrs_free(&cgrp->xattrs);
1766
ddbcc7e8 1767 kill_litter_super(sb);
fa3ca07e 1768 cgroup_free_root(root);
ddbcc7e8
PM
1769}
1770
1771static struct file_system_type cgroup_fs_type = {
1772 .name = "cgroup",
f7e83571 1773 .mount = cgroup_mount,
ddbcc7e8
PM
1774 .kill_sb = cgroup_kill_sb,
1775};
1776
676db4af
GKH
1777static struct kobject *cgroup_kobj;
1778
a043e3b2
LZ
1779/**
1780 * cgroup_path - generate the path of a cgroup
1781 * @cgrp: the cgroup in question
1782 * @buf: the buffer to write the path into
1783 * @buflen: the length of the buffer
1784 *
65dff759
LZ
1785 * Writes path of cgroup into buf. Returns 0 on success, -errno on error.
1786 *
1787 * We can't generate cgroup path using dentry->d_name, as accessing
1788 * dentry->name must be protected by irq-unsafe dentry->d_lock or parent
1789 * inode's i_mutex, while on the other hand cgroup_path() can be called
1790 * with some irq-safe spinlocks held.
ddbcc7e8 1791 */
bd89aabc 1792int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
ddbcc7e8 1793{
65dff759 1794 int ret = -ENAMETOOLONG;
ddbcc7e8 1795 char *start;
febfcef6 1796
da1f296f
TH
1797 if (!cgrp->parent) {
1798 if (strlcpy(buf, "/", buflen) >= buflen)
1799 return -ENAMETOOLONG;
ddbcc7e8
PM
1800 return 0;
1801 }
1802
316eb661 1803 start = buf + buflen - 1;
316eb661 1804 *start = '\0';
9a9686b6 1805
65dff759 1806 rcu_read_lock();
da1f296f 1807 do {
65dff759
LZ
1808 const char *name = cgroup_name(cgrp);
1809 int len;
1810
1811 len = strlen(name);
ddbcc7e8 1812 if ((start -= len) < buf)
65dff759
LZ
1813 goto out;
1814 memcpy(start, name, len);
9a9686b6 1815
ddbcc7e8 1816 if (--start < buf)
65dff759 1817 goto out;
ddbcc7e8 1818 *start = '/';
65dff759
LZ
1819
1820 cgrp = cgrp->parent;
da1f296f 1821 } while (cgrp->parent);
65dff759 1822 ret = 0;
ddbcc7e8 1823 memmove(buf, start, buf + buflen - start);
65dff759
LZ
1824out:
1825 rcu_read_unlock();
1826 return ret;
ddbcc7e8 1827}
67523c48 1828EXPORT_SYMBOL_GPL(cgroup_path);
ddbcc7e8 1829
857a2beb
TH
1830/**
1831 * task_cgroup_path_from_hierarchy - cgroup path of a task on a hierarchy
1832 * @task: target task
1833 * @hierarchy_id: the hierarchy to look up @task's cgroup from
1834 * @buf: the buffer to write the path into
1835 * @buflen: the length of the buffer
1836 *
1837 * Determine @task's cgroup on the hierarchy specified by @hierarchy_id and
1838 * copy its path into @buf. This function grabs cgroup_mutex and shouldn't
1839 * be used inside locks used by cgroup controller callbacks.
1840 */
1841int task_cgroup_path_from_hierarchy(struct task_struct *task, int hierarchy_id,
1842 char *buf, size_t buflen)
1843{
1844 struct cgroupfs_root *root;
1845 struct cgroup *cgrp = NULL;
1846 int ret = -ENOENT;
1847
1848 mutex_lock(&cgroup_mutex);
1849
1850 root = idr_find(&cgroup_hierarchy_idr, hierarchy_id);
1851 if (root) {
1852 cgrp = task_cgroup_from_root(task, root);
1853 ret = cgroup_path(cgrp, buf, buflen);
1854 }
1855
1856 mutex_unlock(&cgroup_mutex);
1857
1858 return ret;
1859}
1860EXPORT_SYMBOL_GPL(task_cgroup_path_from_hierarchy);
1861
2f7ee569
TH
1862/*
1863 * Control Group taskset
1864 */
134d3373
TH
1865struct task_and_cgroup {
1866 struct task_struct *task;
1867 struct cgroup *cgrp;
61d1d219 1868 struct css_set *cg;
134d3373
TH
1869};
1870
2f7ee569
TH
1871struct cgroup_taskset {
1872 struct task_and_cgroup single;
1873 struct flex_array *tc_array;
1874 int tc_array_len;
1875 int idx;
1876 struct cgroup *cur_cgrp;
1877};
1878
1879/**
1880 * cgroup_taskset_first - reset taskset and return the first task
1881 * @tset: taskset of interest
1882 *
1883 * @tset iteration is initialized and the first task is returned.
1884 */
1885struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
1886{
1887 if (tset->tc_array) {
1888 tset->idx = 0;
1889 return cgroup_taskset_next(tset);
1890 } else {
1891 tset->cur_cgrp = tset->single.cgrp;
1892 return tset->single.task;
1893 }
1894}
1895EXPORT_SYMBOL_GPL(cgroup_taskset_first);
1896
1897/**
1898 * cgroup_taskset_next - iterate to the next task in taskset
1899 * @tset: taskset of interest
1900 *
1901 * Return the next task in @tset. Iteration must have been initialized
1902 * with cgroup_taskset_first().
1903 */
1904struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
1905{
1906 struct task_and_cgroup *tc;
1907
1908 if (!tset->tc_array || tset->idx >= tset->tc_array_len)
1909 return NULL;
1910
1911 tc = flex_array_get(tset->tc_array, tset->idx++);
1912 tset->cur_cgrp = tc->cgrp;
1913 return tc->task;
1914}
1915EXPORT_SYMBOL_GPL(cgroup_taskset_next);
1916
1917/**
1918 * cgroup_taskset_cur_cgroup - return the matching cgroup for the current task
1919 * @tset: taskset of interest
1920 *
1921 * Return the cgroup for the current (last returned) task of @tset. This
1922 * function must be preceded by either cgroup_taskset_first() or
1923 * cgroup_taskset_next().
1924 */
1925struct cgroup *cgroup_taskset_cur_cgroup(struct cgroup_taskset *tset)
1926{
1927 return tset->cur_cgrp;
1928}
1929EXPORT_SYMBOL_GPL(cgroup_taskset_cur_cgroup);
1930
1931/**
1932 * cgroup_taskset_size - return the number of tasks in taskset
1933 * @tset: taskset of interest
1934 */
1935int cgroup_taskset_size(struct cgroup_taskset *tset)
1936{
1937 return tset->tc_array ? tset->tc_array_len : 1;
1938}
1939EXPORT_SYMBOL_GPL(cgroup_taskset_size);
1940
1941
74a1166d
BB
1942/*
1943 * cgroup_task_migrate - move a task from one cgroup to another.
1944 *
d0b2fdd2 1945 * Must be called with cgroup_mutex and threadgroup locked.
74a1166d 1946 */
1e2ccd1c 1947static void cgroup_task_migrate(struct cgroup *oldcgrp,
61d1d219 1948 struct task_struct *tsk, struct css_set *newcg)
74a1166d
BB
1949{
1950 struct css_set *oldcg;
74a1166d
BB
1951
1952 /*
026085ef
MSB
1953 * We are synchronized through threadgroup_lock() against PF_EXITING
1954 * setting such that we can't race against cgroup_exit() changing the
1955 * css_set to init_css_set and dropping the old one.
74a1166d 1956 */
c84cdf75 1957 WARN_ON_ONCE(tsk->flags & PF_EXITING);
74a1166d 1958 oldcg = tsk->cgroups;
74a1166d 1959
74a1166d 1960 task_lock(tsk);
74a1166d
BB
1961 rcu_assign_pointer(tsk->cgroups, newcg);
1962 task_unlock(tsk);
1963
1964 /* Update the css_set linked lists if we're using them */
1965 write_lock(&css_set_lock);
1966 if (!list_empty(&tsk->cg_list))
1967 list_move(&tsk->cg_list, &newcg->tasks);
1968 write_unlock(&css_set_lock);
1969
1970 /*
1971 * We just gained a reference on oldcg by taking it from the task. As
1972 * trading it for newcg is protected by cgroup_mutex, we're safe to drop
1973 * it here; it will be freed under RCU.
1974 */
74a1166d 1975 set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
1f5320d5 1976 put_css_set(oldcg);
74a1166d
BB
1977}
1978
a043e3b2 1979/**
081aa458 1980 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
74a1166d 1981 * @cgrp: the cgroup to attach to
081aa458
LZ
1982 * @tsk: the task or the leader of the threadgroup to be attached
1983 * @threadgroup: attach the whole threadgroup?
74a1166d 1984 *
257058ae 1985 * Call holding cgroup_mutex and the group_rwsem of the leader. Will take
081aa458 1986 * task_lock of @tsk or each thread in the threadgroup individually in turn.
74a1166d 1987 */
47cfcd09
TH
1988static int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk,
1989 bool threadgroup)
74a1166d
BB
1990{
1991 int retval, i, group_size;
1992 struct cgroup_subsys *ss, *failed_ss = NULL;
74a1166d
BB
1993 struct cgroupfs_root *root = cgrp->root;
1994 /* threadgroup list cursor and array */
081aa458 1995 struct task_struct *leader = tsk;
134d3373 1996 struct task_and_cgroup *tc;
d846687d 1997 struct flex_array *group;
2f7ee569 1998 struct cgroup_taskset tset = { };
74a1166d
BB
1999
2000 /*
2001 * step 0: in order to do expensive, possibly blocking operations for
2002 * every thread, we cannot iterate the thread group list, since it needs
2003 * rcu or tasklist locked. instead, build an array of all threads in the
257058ae
TH
2004 * group - group_rwsem prevents new threads from appearing, and if
2005 * threads exit, this will just be an over-estimate.
74a1166d 2006 */
081aa458
LZ
2007 if (threadgroup)
2008 group_size = get_nr_threads(tsk);
2009 else
2010 group_size = 1;
d846687d 2011 /* flex_array supports very large thread-groups better than kmalloc. */
134d3373 2012 group = flex_array_alloc(sizeof(*tc), group_size, GFP_KERNEL);
74a1166d
BB
2013 if (!group)
2014 return -ENOMEM;
d846687d 2015 /* pre-allocate to guarantee space while iterating in rcu read-side. */
3ac1707a 2016 retval = flex_array_prealloc(group, 0, group_size, GFP_KERNEL);
d846687d
BB
2017 if (retval)
2018 goto out_free_group_list;
74a1166d 2019
74a1166d 2020 i = 0;
fb5d2b4c
MSB
2021 /*
2022 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2023 * already PF_EXITING could be freed from underneath us unless we
2024 * take an rcu_read_lock.
2025 */
2026 rcu_read_lock();
74a1166d 2027 do {
134d3373
TH
2028 struct task_and_cgroup ent;
2029
cd3d0952
TH
2030 /* @tsk either already exited or can't exit until the end */
2031 if (tsk->flags & PF_EXITING)
2032 continue;
2033
74a1166d
BB
2034 /* as per above, nr_threads may decrease, but not increase. */
2035 BUG_ON(i >= group_size);
134d3373
TH
2036 ent.task = tsk;
2037 ent.cgrp = task_cgroup_from_root(tsk, root);
892a2b90
MSB
2038 /* nothing to do if this task is already in the cgroup */
2039 if (ent.cgrp == cgrp)
2040 continue;
61d1d219
MSB
2041 /*
2042 * saying GFP_ATOMIC has no effect here because we did prealloc
2043 * earlier, but it's good form to communicate our expectations.
2044 */
134d3373 2045 retval = flex_array_put(group, i, &ent, GFP_ATOMIC);
d846687d 2046 BUG_ON(retval != 0);
74a1166d 2047 i++;
081aa458
LZ
2048
2049 if (!threadgroup)
2050 break;
74a1166d 2051 } while_each_thread(leader, tsk);
fb5d2b4c 2052 rcu_read_unlock();
74a1166d
BB
2053 /* remember the number of threads in the array for later. */
2054 group_size = i;
2f7ee569
TH
2055 tset.tc_array = group;
2056 tset.tc_array_len = group_size;
74a1166d 2057
134d3373
TH
2058 /* methods shouldn't be called if no task is actually migrating */
2059 retval = 0;
892a2b90 2060 if (!group_size)
b07ef774 2061 goto out_free_group_list;
134d3373 2062
74a1166d
BB
2063 /*
2064 * step 1: check that we can legitimately attach to the cgroup.
2065 */
2066 for_each_subsys(root, ss) {
2067 if (ss->can_attach) {
761b3ef5 2068 retval = ss->can_attach(cgrp, &tset);
74a1166d
BB
2069 if (retval) {
2070 failed_ss = ss;
2071 goto out_cancel_attach;
2072 }
2073 }
74a1166d
BB
2074 }
2075
2076 /*
2077 * step 2: make sure css_sets exist for all threads to be migrated.
2078 * we use find_css_set, which allocates a new one if necessary.
2079 */
74a1166d 2080 for (i = 0; i < group_size; i++) {
134d3373 2081 tc = flex_array_get(group, i);
61d1d219
MSB
2082 tc->cg = find_css_set(tc->task->cgroups, cgrp);
2083 if (!tc->cg) {
2084 retval = -ENOMEM;
2085 goto out_put_css_set_refs;
74a1166d
BB
2086 }
2087 }
2088
2089 /*
494c167c
TH
2090 * step 3: now that we're guaranteed success wrt the css_sets,
2091 * proceed to move all tasks to the new cgroup. There are no
2092 * failure cases after here, so this is the commit point.
74a1166d 2093 */
74a1166d 2094 for (i = 0; i < group_size; i++) {
134d3373 2095 tc = flex_array_get(group, i);
1e2ccd1c 2096 cgroup_task_migrate(tc->cgrp, tc->task, tc->cg);
74a1166d
BB
2097 }
2098 /* nothing is sensitive to fork() after this point. */
2099
2100 /*
494c167c 2101 * step 4: do subsystem attach callbacks.
74a1166d
BB
2102 */
2103 for_each_subsys(root, ss) {
2104 if (ss->attach)
761b3ef5 2105 ss->attach(cgrp, &tset);
74a1166d
BB
2106 }
2107
2108 /*
2109 * step 5: success! and cleanup
2110 */
74a1166d 2111 retval = 0;
61d1d219
MSB
2112out_put_css_set_refs:
2113 if (retval) {
2114 for (i = 0; i < group_size; i++) {
2115 tc = flex_array_get(group, i);
2116 if (!tc->cg)
2117 break;
2118 put_css_set(tc->cg);
2119 }
74a1166d
BB
2120 }
2121out_cancel_attach:
74a1166d
BB
2122 if (retval) {
2123 for_each_subsys(root, ss) {
494c167c 2124 if (ss == failed_ss)
74a1166d 2125 break;
74a1166d 2126 if (ss->cancel_attach)
761b3ef5 2127 ss->cancel_attach(cgrp, &tset);
74a1166d
BB
2128 }
2129 }
74a1166d 2130out_free_group_list:
d846687d 2131 flex_array_free(group);
74a1166d
BB
2132 return retval;
2133}
2134
2135/*
2136 * Find the task_struct of the task to attach by vpid and pass it along to the
cd3d0952
TH
2137 * function to attach either it or all tasks in its threadgroup. Will lock
2138 * cgroup_mutex and threadgroup; may take task_lock of task.
bbcb81d0 2139 */
74a1166d 2140static int attach_task_by_pid(struct cgroup *cgrp, u64 pid, bool threadgroup)
bbcb81d0 2141{
bbcb81d0 2142 struct task_struct *tsk;
c69e8d9c 2143 const struct cred *cred = current_cred(), *tcred;
bbcb81d0
PM
2144 int ret;
2145
74a1166d
BB
2146 if (!cgroup_lock_live_group(cgrp))
2147 return -ENODEV;
2148
b78949eb
MSB
2149retry_find_task:
2150 rcu_read_lock();
bbcb81d0 2151 if (pid) {
73507f33 2152 tsk = find_task_by_vpid(pid);
74a1166d
BB
2153 if (!tsk) {
2154 rcu_read_unlock();
b78949eb
MSB
2155 ret= -ESRCH;
2156 goto out_unlock_cgroup;
bbcb81d0 2157 }
74a1166d
BB
2158 /*
2159 * even if we're attaching all tasks in the thread group, we
2160 * only need to check permissions on one of them.
2161 */
c69e8d9c 2162 tcred = __task_cred(tsk);
14a590c3
EB
2163 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2164 !uid_eq(cred->euid, tcred->uid) &&
2165 !uid_eq(cred->euid, tcred->suid)) {
c69e8d9c 2166 rcu_read_unlock();
b78949eb
MSB
2167 ret = -EACCES;
2168 goto out_unlock_cgroup;
bbcb81d0 2169 }
b78949eb
MSB
2170 } else
2171 tsk = current;
cd3d0952
TH
2172
2173 if (threadgroup)
b78949eb 2174 tsk = tsk->group_leader;
c4c27fbd
MG
2175
2176 /*
14a40ffc 2177 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
c4c27fbd
MG
2178 * trapped in a cpuset, or RT worker may be born in a cgroup
2179 * with no rt_runtime allocated. Just say no.
2180 */
14a40ffc 2181 if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
c4c27fbd
MG
2182 ret = -EINVAL;
2183 rcu_read_unlock();
2184 goto out_unlock_cgroup;
2185 }
2186
b78949eb
MSB
2187 get_task_struct(tsk);
2188 rcu_read_unlock();
2189
2190 threadgroup_lock(tsk);
2191 if (threadgroup) {
2192 if (!thread_group_leader(tsk)) {
2193 /*
2194 * a race with de_thread from another thread's exec()
2195 * may strip us of our leadership, if this happens,
2196 * there is no choice but to throw this task away and
2197 * try again; this is
2198 * "double-double-toil-and-trouble-check locking".
2199 */
2200 threadgroup_unlock(tsk);
2201 put_task_struct(tsk);
2202 goto retry_find_task;
2203 }
081aa458
LZ
2204 }
2205
2206 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
2207
cd3d0952
TH
2208 threadgroup_unlock(tsk);
2209
bbcb81d0 2210 put_task_struct(tsk);
b78949eb 2211out_unlock_cgroup:
47cfcd09 2212 mutex_unlock(&cgroup_mutex);
bbcb81d0
PM
2213 return ret;
2214}
2215
7ae1bad9
TH
2216/**
2217 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2218 * @from: attach to all cgroups of a given task
2219 * @tsk: the task to be attached
2220 */
2221int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2222{
2223 struct cgroupfs_root *root;
2224 int retval = 0;
2225
47cfcd09 2226 mutex_lock(&cgroup_mutex);
7ae1bad9
TH
2227 for_each_active_root(root) {
2228 struct cgroup *from_cg = task_cgroup_from_root(from, root);
2229
2230 retval = cgroup_attach_task(from_cg, tsk, false);
2231 if (retval)
2232 break;
2233 }
47cfcd09 2234 mutex_unlock(&cgroup_mutex);
7ae1bad9
TH
2235
2236 return retval;
2237}
2238EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2239
af351026 2240static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid)
74a1166d
BB
2241{
2242 return attach_task_by_pid(cgrp, pid, false);
2243}
2244
2245static int cgroup_procs_write(struct cgroup *cgrp, struct cftype *cft, u64 tgid)
af351026 2246{
b78949eb 2247 return attach_task_by_pid(cgrp, tgid, true);
af351026
PM
2248}
2249
e788e066
PM
2250static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft,
2251 const char *buffer)
2252{
2253 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
f4a2589f
EK
2254 if (strlen(buffer) >= PATH_MAX)
2255 return -EINVAL;
e788e066
PM
2256 if (!cgroup_lock_live_group(cgrp))
2257 return -ENODEV;
e25e2cbb 2258 mutex_lock(&cgroup_root_mutex);
e788e066 2259 strcpy(cgrp->root->release_agent_path, buffer);
e25e2cbb 2260 mutex_unlock(&cgroup_root_mutex);
47cfcd09 2261 mutex_unlock(&cgroup_mutex);
e788e066
PM
2262 return 0;
2263}
2264
2265static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft,
2266 struct seq_file *seq)
2267{
2268 if (!cgroup_lock_live_group(cgrp))
2269 return -ENODEV;
2270 seq_puts(seq, cgrp->root->release_agent_path);
2271 seq_putc(seq, '\n');
47cfcd09 2272 mutex_unlock(&cgroup_mutex);
e788e066
PM
2273 return 0;
2274}
2275
873fe09e
TH
2276static int cgroup_sane_behavior_show(struct cgroup *cgrp, struct cftype *cft,
2277 struct seq_file *seq)
2278{
2279 seq_printf(seq, "%d\n", cgroup_sane_behavior(cgrp));
e788e066
PM
2280 return 0;
2281}
2282
84eea842
PM
2283/* A buffer size big enough for numbers or short strings */
2284#define CGROUP_LOCAL_BUFFER_SIZE 64
2285
e73d2c61 2286static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
f4c753b7
PM
2287 struct file *file,
2288 const char __user *userbuf,
2289 size_t nbytes, loff_t *unused_ppos)
355e0c48 2290{
84eea842 2291 char buffer[CGROUP_LOCAL_BUFFER_SIZE];
355e0c48 2292 int retval = 0;
355e0c48
PM
2293 char *end;
2294
2295 if (!nbytes)
2296 return -EINVAL;
2297 if (nbytes >= sizeof(buffer))
2298 return -E2BIG;
2299 if (copy_from_user(buffer, userbuf, nbytes))
2300 return -EFAULT;
2301
2302 buffer[nbytes] = 0; /* nul-terminate */
e73d2c61 2303 if (cft->write_u64) {
478988d3 2304 u64 val = simple_strtoull(strstrip(buffer), &end, 0);
e73d2c61
PM
2305 if (*end)
2306 return -EINVAL;
2307 retval = cft->write_u64(cgrp, cft, val);
2308 } else {
478988d3 2309 s64 val = simple_strtoll(strstrip(buffer), &end, 0);
e73d2c61
PM
2310 if (*end)
2311 return -EINVAL;
2312 retval = cft->write_s64(cgrp, cft, val);
2313 }
355e0c48
PM
2314 if (!retval)
2315 retval = nbytes;
2316 return retval;
2317}
2318
db3b1497
PM
2319static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft,
2320 struct file *file,
2321 const char __user *userbuf,
2322 size_t nbytes, loff_t *unused_ppos)
2323{
84eea842 2324 char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
db3b1497
PM
2325 int retval = 0;
2326 size_t max_bytes = cft->max_write_len;
2327 char *buffer = local_buffer;
2328
2329 if (!max_bytes)
2330 max_bytes = sizeof(local_buffer) - 1;
2331 if (nbytes >= max_bytes)
2332 return -E2BIG;
2333 /* Allocate a dynamic buffer if we need one */
2334 if (nbytes >= sizeof(local_buffer)) {
2335 buffer = kmalloc(nbytes + 1, GFP_KERNEL);
2336 if (buffer == NULL)
2337 return -ENOMEM;
2338 }
5a3eb9f6
LZ
2339 if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
2340 retval = -EFAULT;
2341 goto out;
2342 }
db3b1497
PM
2343
2344 buffer[nbytes] = 0; /* nul-terminate */
478988d3 2345 retval = cft->write_string(cgrp, cft, strstrip(buffer));
db3b1497
PM
2346 if (!retval)
2347 retval = nbytes;
5a3eb9f6 2348out:
db3b1497
PM
2349 if (buffer != local_buffer)
2350 kfree(buffer);
2351 return retval;
2352}
2353
ddbcc7e8
PM
2354static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
2355 size_t nbytes, loff_t *ppos)
2356{
2357 struct cftype *cft = __d_cft(file->f_dentry);
bd89aabc 2358 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
ddbcc7e8 2359
75139b82 2360 if (cgroup_is_removed(cgrp))
ddbcc7e8 2361 return -ENODEV;
355e0c48 2362 if (cft->write)
bd89aabc 2363 return cft->write(cgrp, cft, file, buf, nbytes, ppos);
e73d2c61
PM
2364 if (cft->write_u64 || cft->write_s64)
2365 return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
db3b1497
PM
2366 if (cft->write_string)
2367 return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos);
d447ea2f
PE
2368 if (cft->trigger) {
2369 int ret = cft->trigger(cgrp, (unsigned int)cft->private);
2370 return ret ? ret : nbytes;
2371 }
355e0c48 2372 return -EINVAL;
ddbcc7e8
PM
2373}
2374
f4c753b7
PM
2375static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
2376 struct file *file,
2377 char __user *buf, size_t nbytes,
2378 loff_t *ppos)
ddbcc7e8 2379{
84eea842 2380 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
f4c753b7 2381 u64 val = cft->read_u64(cgrp, cft);
ddbcc7e8
PM
2382 int len = sprintf(tmp, "%llu\n", (unsigned long long) val);
2383
2384 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2385}
2386
e73d2c61
PM
2387static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
2388 struct file *file,
2389 char __user *buf, size_t nbytes,
2390 loff_t *ppos)
2391{
84eea842 2392 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
e73d2c61
PM
2393 s64 val = cft->read_s64(cgrp, cft);
2394 int len = sprintf(tmp, "%lld\n", (long long) val);
2395
2396 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2397}
2398
ddbcc7e8
PM
2399static ssize_t cgroup_file_read(struct file *file, char __user *buf,
2400 size_t nbytes, loff_t *ppos)
2401{
2402 struct cftype *cft = __d_cft(file->f_dentry);
bd89aabc 2403 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
ddbcc7e8 2404
75139b82 2405 if (cgroup_is_removed(cgrp))
ddbcc7e8
PM
2406 return -ENODEV;
2407
2408 if (cft->read)
bd89aabc 2409 return cft->read(cgrp, cft, file, buf, nbytes, ppos);
f4c753b7
PM
2410 if (cft->read_u64)
2411 return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
e73d2c61
PM
2412 if (cft->read_s64)
2413 return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
ddbcc7e8
PM
2414 return -EINVAL;
2415}
2416
91796569
PM
2417/*
2418 * seqfile ops/methods for returning structured data. Currently just
2419 * supports string->u64 maps, but can be extended in future.
2420 */
2421
2422struct cgroup_seqfile_state {
2423 struct cftype *cft;
2424 struct cgroup *cgroup;
2425};
2426
2427static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
2428{
2429 struct seq_file *sf = cb->state;
2430 return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
2431}
2432
2433static int cgroup_seqfile_show(struct seq_file *m, void *arg)
2434{
2435 struct cgroup_seqfile_state *state = m->private;
2436 struct cftype *cft = state->cft;
29486df3
SH
2437 if (cft->read_map) {
2438 struct cgroup_map_cb cb = {
2439 .fill = cgroup_map_add,
2440 .state = m,
2441 };
2442 return cft->read_map(state->cgroup, cft, &cb);
2443 }
2444 return cft->read_seq_string(state->cgroup, cft, m);
91796569
PM
2445}
2446
96930a63 2447static int cgroup_seqfile_release(struct inode *inode, struct file *file)
91796569
PM
2448{
2449 struct seq_file *seq = file->private_data;
2450 kfree(seq->private);
2451 return single_release(inode, file);
2452}
2453
828c0950 2454static const struct file_operations cgroup_seqfile_operations = {
91796569 2455 .read = seq_read,
e788e066 2456 .write = cgroup_file_write,
91796569
PM
2457 .llseek = seq_lseek,
2458 .release = cgroup_seqfile_release,
2459};
2460
ddbcc7e8
PM
2461static int cgroup_file_open(struct inode *inode, struct file *file)
2462{
2463 int err;
2464 struct cftype *cft;
2465
2466 err = generic_file_open(inode, file);
2467 if (err)
2468 return err;
ddbcc7e8 2469 cft = __d_cft(file->f_dentry);
75139b82 2470
29486df3 2471 if (cft->read_map || cft->read_seq_string) {
91796569
PM
2472 struct cgroup_seqfile_state *state =
2473 kzalloc(sizeof(*state), GFP_USER);
2474 if (!state)
2475 return -ENOMEM;
2476 state->cft = cft;
2477 state->cgroup = __d_cgrp(file->f_dentry->d_parent);
2478 file->f_op = &cgroup_seqfile_operations;
2479 err = single_open(file, cgroup_seqfile_show, state);
2480 if (err < 0)
2481 kfree(state);
2482 } else if (cft->open)
ddbcc7e8
PM
2483 err = cft->open(inode, file);
2484 else
2485 err = 0;
2486
2487 return err;
2488}
2489
2490static int cgroup_file_release(struct inode *inode, struct file *file)
2491{
2492 struct cftype *cft = __d_cft(file->f_dentry);
2493 if (cft->release)
2494 return cft->release(inode, file);
2495 return 0;
2496}
2497
2498/*
2499 * cgroup_rename - Only allow simple rename of directories in place.
2500 */
2501static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
2502 struct inode *new_dir, struct dentry *new_dentry)
2503{
65dff759
LZ
2504 int ret;
2505 struct cgroup_name *name, *old_name;
2506 struct cgroup *cgrp;
2507
2508 /*
2509 * It's convinient to use parent dir's i_mutex to protected
2510 * cgrp->name.
2511 */
2512 lockdep_assert_held(&old_dir->i_mutex);
2513
ddbcc7e8
PM
2514 if (!S_ISDIR(old_dentry->d_inode->i_mode))
2515 return -ENOTDIR;
2516 if (new_dentry->d_inode)
2517 return -EEXIST;
2518 if (old_dir != new_dir)
2519 return -EIO;
65dff759
LZ
2520
2521 cgrp = __d_cgrp(old_dentry);
2522
2523 name = cgroup_alloc_name(new_dentry);
2524 if (!name)
2525 return -ENOMEM;
2526
2527 ret = simple_rename(old_dir, old_dentry, new_dir, new_dentry);
2528 if (ret) {
2529 kfree(name);
2530 return ret;
2531 }
2532
2533 old_name = cgrp->name;
2534 rcu_assign_pointer(cgrp->name, name);
2535
2536 kfree_rcu(old_name, rcu_head);
2537 return 0;
ddbcc7e8
PM
2538}
2539
03b1cde6
AR
2540static struct simple_xattrs *__d_xattrs(struct dentry *dentry)
2541{
2542 if (S_ISDIR(dentry->d_inode->i_mode))
2543 return &__d_cgrp(dentry)->xattrs;
2544 else
712317ad 2545 return &__d_cfe(dentry)->xattrs;
03b1cde6
AR
2546}
2547
2548static inline int xattr_enabled(struct dentry *dentry)
2549{
2550 struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
93438629 2551 return root->flags & CGRP_ROOT_XATTR;
03b1cde6
AR
2552}
2553
2554static bool is_valid_xattr(const char *name)
2555{
2556 if (!strncmp(name, XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN) ||
2557 !strncmp(name, XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN))
2558 return true;
2559 return false;
2560}
2561
2562static int cgroup_setxattr(struct dentry *dentry, const char *name,
2563 const void *val, size_t size, int flags)
2564{
2565 if (!xattr_enabled(dentry))
2566 return -EOPNOTSUPP;
2567 if (!is_valid_xattr(name))
2568 return -EINVAL;
2569 return simple_xattr_set(__d_xattrs(dentry), name, val, size, flags);
2570}
2571
2572static int cgroup_removexattr(struct dentry *dentry, const char *name)
2573{
2574 if (!xattr_enabled(dentry))
2575 return -EOPNOTSUPP;
2576 if (!is_valid_xattr(name))
2577 return -EINVAL;
2578 return simple_xattr_remove(__d_xattrs(dentry), name);
2579}
2580
2581static ssize_t cgroup_getxattr(struct dentry *dentry, const char *name,
2582 void *buf, size_t size)
2583{
2584 if (!xattr_enabled(dentry))
2585 return -EOPNOTSUPP;
2586 if (!is_valid_xattr(name))
2587 return -EINVAL;
2588 return simple_xattr_get(__d_xattrs(dentry), name, buf, size);
2589}
2590
2591static ssize_t cgroup_listxattr(struct dentry *dentry, char *buf, size_t size)
2592{
2593 if (!xattr_enabled(dentry))
2594 return -EOPNOTSUPP;
2595 return simple_xattr_list(__d_xattrs(dentry), buf, size);
2596}
2597
828c0950 2598static const struct file_operations cgroup_file_operations = {
ddbcc7e8
PM
2599 .read = cgroup_file_read,
2600 .write = cgroup_file_write,
2601 .llseek = generic_file_llseek,
2602 .open = cgroup_file_open,
2603 .release = cgroup_file_release,
2604};
2605
03b1cde6
AR
2606static const struct inode_operations cgroup_file_inode_operations = {
2607 .setxattr = cgroup_setxattr,
2608 .getxattr = cgroup_getxattr,
2609 .listxattr = cgroup_listxattr,
2610 .removexattr = cgroup_removexattr,
2611};
2612
6e1d5dcc 2613static const struct inode_operations cgroup_dir_inode_operations = {
c72a04e3 2614 .lookup = cgroup_lookup,
ddbcc7e8
PM
2615 .mkdir = cgroup_mkdir,
2616 .rmdir = cgroup_rmdir,
2617 .rename = cgroup_rename,
03b1cde6
AR
2618 .setxattr = cgroup_setxattr,
2619 .getxattr = cgroup_getxattr,
2620 .listxattr = cgroup_listxattr,
2621 .removexattr = cgroup_removexattr,
ddbcc7e8
PM
2622};
2623
00cd8dd3 2624static struct dentry *cgroup_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
c72a04e3
AV
2625{
2626 if (dentry->d_name.len > NAME_MAX)
2627 return ERR_PTR(-ENAMETOOLONG);
2628 d_add(dentry, NULL);
2629 return NULL;
2630}
2631
0dea1168
KS
2632/*
2633 * Check if a file is a control file
2634 */
2635static inline struct cftype *__file_cft(struct file *file)
2636{
496ad9aa 2637 if (file_inode(file)->i_fop != &cgroup_file_operations)
0dea1168
KS
2638 return ERR_PTR(-EINVAL);
2639 return __d_cft(file->f_dentry);
2640}
2641
a5e7ed32 2642static int cgroup_create_file(struct dentry *dentry, umode_t mode,
5adcee1d
NP
2643 struct super_block *sb)
2644{
ddbcc7e8
PM
2645 struct inode *inode;
2646
2647 if (!dentry)
2648 return -ENOENT;
2649 if (dentry->d_inode)
2650 return -EEXIST;
2651
2652 inode = cgroup_new_inode(mode, sb);
2653 if (!inode)
2654 return -ENOMEM;
2655
2656 if (S_ISDIR(mode)) {
2657 inode->i_op = &cgroup_dir_inode_operations;
2658 inode->i_fop = &simple_dir_operations;
2659
2660 /* start off with i_nlink == 2 (for "." entry) */
2661 inc_nlink(inode);
28fd6f30 2662 inc_nlink(dentry->d_parent->d_inode);
ddbcc7e8 2663
b8a2df6a
TH
2664 /*
2665 * Control reaches here with cgroup_mutex held.
2666 * @inode->i_mutex should nest outside cgroup_mutex but we
2667 * want to populate it immediately without releasing
2668 * cgroup_mutex. As @inode isn't visible to anyone else
2669 * yet, trylock will always succeed without affecting
2670 * lockdep checks.
2671 */
2672 WARN_ON_ONCE(!mutex_trylock(&inode->i_mutex));
ddbcc7e8
PM
2673 } else if (S_ISREG(mode)) {
2674 inode->i_size = 0;
2675 inode->i_fop = &cgroup_file_operations;
03b1cde6 2676 inode->i_op = &cgroup_file_inode_operations;
ddbcc7e8 2677 }
ddbcc7e8
PM
2678 d_instantiate(dentry, inode);
2679 dget(dentry); /* Extra count - pin the dentry in core */
2680 return 0;
2681}
2682
099fca32
LZ
2683/**
2684 * cgroup_file_mode - deduce file mode of a control file
2685 * @cft: the control file in question
2686 *
2687 * returns cft->mode if ->mode is not 0
2688 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
2689 * returns S_IRUGO if it has only a read handler
2690 * returns S_IWUSR if it has only a write hander
2691 */
a5e7ed32 2692static umode_t cgroup_file_mode(const struct cftype *cft)
099fca32 2693{
a5e7ed32 2694 umode_t mode = 0;
099fca32
LZ
2695
2696 if (cft->mode)
2697 return cft->mode;
2698
2699 if (cft->read || cft->read_u64 || cft->read_s64 ||
2700 cft->read_map || cft->read_seq_string)
2701 mode |= S_IRUGO;
2702
2703 if (cft->write || cft->write_u64 || cft->write_s64 ||
2704 cft->write_string || cft->trigger)
2705 mode |= S_IWUSR;
2706
2707 return mode;
2708}
2709
db0416b6 2710static int cgroup_add_file(struct cgroup *cgrp, struct cgroup_subsys *subsys,
03b1cde6 2711 struct cftype *cft)
ddbcc7e8 2712{
bd89aabc 2713 struct dentry *dir = cgrp->dentry;
05ef1d7c 2714 struct cgroup *parent = __d_cgrp(dir);
ddbcc7e8 2715 struct dentry *dentry;
05ef1d7c 2716 struct cfent *cfe;
ddbcc7e8 2717 int error;
a5e7ed32 2718 umode_t mode;
ddbcc7e8 2719 char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
8e3f6541 2720
93438629 2721 if (subsys && !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) {
ddbcc7e8
PM
2722 strcpy(name, subsys->name);
2723 strcat(name, ".");
2724 }
2725 strcat(name, cft->name);
05ef1d7c 2726
ddbcc7e8 2727 BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
05ef1d7c
TH
2728
2729 cfe = kzalloc(sizeof(*cfe), GFP_KERNEL);
2730 if (!cfe)
2731 return -ENOMEM;
2732
ddbcc7e8 2733 dentry = lookup_one_len(name, dir, strlen(name));
05ef1d7c 2734 if (IS_ERR(dentry)) {
ddbcc7e8 2735 error = PTR_ERR(dentry);
05ef1d7c
TH
2736 goto out;
2737 }
2738
d6cbf35d
LZ
2739 cfe->type = (void *)cft;
2740 cfe->dentry = dentry;
2741 dentry->d_fsdata = cfe;
2742 simple_xattrs_init(&cfe->xattrs);
2743
05ef1d7c
TH
2744 mode = cgroup_file_mode(cft);
2745 error = cgroup_create_file(dentry, mode | S_IFREG, cgrp->root->sb);
2746 if (!error) {
05ef1d7c
TH
2747 list_add_tail(&cfe->node, &parent->files);
2748 cfe = NULL;
2749 }
2750 dput(dentry);
2751out:
2752 kfree(cfe);
ddbcc7e8
PM
2753 return error;
2754}
2755
79578621 2756static int cgroup_addrm_files(struct cgroup *cgrp, struct cgroup_subsys *subsys,
03b1cde6 2757 struct cftype cfts[], bool is_add)
ddbcc7e8 2758{
03b1cde6 2759 struct cftype *cft;
db0416b6
TH
2760 int err, ret = 0;
2761
2762 for (cft = cfts; cft->name[0] != '\0'; cft++) {
f33fddc2 2763 /* does cft->flags tell us to skip this file on @cgrp? */
873fe09e
TH
2764 if ((cft->flags & CFTYPE_INSANE) && cgroup_sane_behavior(cgrp))
2765 continue;
f33fddc2
G
2766 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgrp->parent)
2767 continue;
2768 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgrp->parent)
2769 continue;
2770
2739d3cc 2771 if (is_add) {
79578621 2772 err = cgroup_add_file(cgrp, subsys, cft);
2739d3cc
LZ
2773 if (err)
2774 pr_warn("cgroup_addrm_files: failed to add %s, err=%d\n",
2775 cft->name, err);
db0416b6 2776 ret = err;
2739d3cc
LZ
2777 } else {
2778 cgroup_rm_file(cgrp, cft);
db0416b6 2779 }
ddbcc7e8 2780 }
db0416b6 2781 return ret;
ddbcc7e8
PM
2782}
2783
8e3f6541
TH
2784static DEFINE_MUTEX(cgroup_cft_mutex);
2785
2786static void cgroup_cfts_prepare(void)
2787 __acquires(&cgroup_cft_mutex) __acquires(&cgroup_mutex)
2788{
2789 /*
2790 * Thanks to the entanglement with vfs inode locking, we can't walk
2791 * the existing cgroups under cgroup_mutex and create files.
2792 * Instead, we increment reference on all cgroups and build list of
2793 * them using @cgrp->cft_q_node. Grab cgroup_cft_mutex to ensure
2794 * exclusive access to the field.
2795 */
2796 mutex_lock(&cgroup_cft_mutex);
2797 mutex_lock(&cgroup_mutex);
2798}
2799
2800static void cgroup_cfts_commit(struct cgroup_subsys *ss,
03b1cde6 2801 struct cftype *cfts, bool is_add)
8e3f6541
TH
2802 __releases(&cgroup_mutex) __releases(&cgroup_cft_mutex)
2803{
2804 LIST_HEAD(pending);
2805 struct cgroup *cgrp, *n;
8e3f6541
TH
2806
2807 /* %NULL @cfts indicates abort and don't bother if @ss isn't attached */
2808 if (cfts && ss->root != &rootnode) {
2809 list_for_each_entry(cgrp, &ss->root->allcg_list, allcg_node) {
2810 dget(cgrp->dentry);
2811 list_add_tail(&cgrp->cft_q_node, &pending);
2812 }
2813 }
2814
2815 mutex_unlock(&cgroup_mutex);
2816
2817 /*
2818 * All new cgroups will see @cfts update on @ss->cftsets. Add/rm
2819 * files for all cgroups which were created before.
2820 */
2821 list_for_each_entry_safe(cgrp, n, &pending, cft_q_node) {
2822 struct inode *inode = cgrp->dentry->d_inode;
2823
2824 mutex_lock(&inode->i_mutex);
2825 mutex_lock(&cgroup_mutex);
2826 if (!cgroup_is_removed(cgrp))
79578621 2827 cgroup_addrm_files(cgrp, ss, cfts, is_add);
8e3f6541
TH
2828 mutex_unlock(&cgroup_mutex);
2829 mutex_unlock(&inode->i_mutex);
2830
2831 list_del_init(&cgrp->cft_q_node);
2832 dput(cgrp->dentry);
2833 }
2834
2835 mutex_unlock(&cgroup_cft_mutex);
2836}
2837
2838/**
2839 * cgroup_add_cftypes - add an array of cftypes to a subsystem
2840 * @ss: target cgroup subsystem
2841 * @cfts: zero-length name terminated array of cftypes
2842 *
2843 * Register @cfts to @ss. Files described by @cfts are created for all
2844 * existing cgroups to which @ss is attached and all future cgroups will
2845 * have them too. This function can be called anytime whether @ss is
2846 * attached or not.
2847 *
2848 * Returns 0 on successful registration, -errno on failure. Note that this
2849 * function currently returns 0 as long as @cfts registration is successful
2850 * even if some file creation attempts on existing cgroups fail.
2851 */
03b1cde6 2852int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
8e3f6541
TH
2853{
2854 struct cftype_set *set;
2855
2856 set = kzalloc(sizeof(*set), GFP_KERNEL);
2857 if (!set)
2858 return -ENOMEM;
2859
2860 cgroup_cfts_prepare();
2861 set->cfts = cfts;
2862 list_add_tail(&set->node, &ss->cftsets);
79578621 2863 cgroup_cfts_commit(ss, cfts, true);
8e3f6541
TH
2864
2865 return 0;
2866}
2867EXPORT_SYMBOL_GPL(cgroup_add_cftypes);
2868
79578621
TH
2869/**
2870 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
2871 * @ss: target cgroup subsystem
2872 * @cfts: zero-length name terminated array of cftypes
2873 *
2874 * Unregister @cfts from @ss. Files described by @cfts are removed from
2875 * all existing cgroups to which @ss is attached and all future cgroups
2876 * won't have them either. This function can be called anytime whether @ss
2877 * is attached or not.
2878 *
2879 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
2880 * registered with @ss.
2881 */
03b1cde6 2882int cgroup_rm_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
79578621
TH
2883{
2884 struct cftype_set *set;
2885
2886 cgroup_cfts_prepare();
2887
2888 list_for_each_entry(set, &ss->cftsets, node) {
2889 if (set->cfts == cfts) {
2890 list_del_init(&set->node);
2891 cgroup_cfts_commit(ss, cfts, false);
2892 return 0;
2893 }
2894 }
2895
2896 cgroup_cfts_commit(ss, NULL, false);
2897 return -ENOENT;
2898}
2899
a043e3b2
LZ
2900/**
2901 * cgroup_task_count - count the number of tasks in a cgroup.
2902 * @cgrp: the cgroup in question
2903 *
2904 * Return the number of tasks in the cgroup.
2905 */
bd89aabc 2906int cgroup_task_count(const struct cgroup *cgrp)
bbcb81d0
PM
2907{
2908 int count = 0;
71cbb949 2909 struct cg_cgroup_link *link;
817929ec
PM
2910
2911 read_lock(&css_set_lock);
71cbb949 2912 list_for_each_entry(link, &cgrp->css_sets, cgrp_link_list) {
146aa1bd 2913 count += atomic_read(&link->cg->refcount);
817929ec
PM
2914 }
2915 read_unlock(&css_set_lock);
bbcb81d0
PM
2916 return count;
2917}
2918
817929ec
PM
2919/*
2920 * Advance a list_head iterator. The iterator should be positioned at
2921 * the start of a css_set
2922 */
bd89aabc 2923static void cgroup_advance_iter(struct cgroup *cgrp,
7717f7ba 2924 struct cgroup_iter *it)
817929ec
PM
2925{
2926 struct list_head *l = it->cg_link;
2927 struct cg_cgroup_link *link;
2928 struct css_set *cg;
2929
2930 /* Advance to the next non-empty css_set */
2931 do {
2932 l = l->next;
bd89aabc 2933 if (l == &cgrp->css_sets) {
817929ec
PM
2934 it->cg_link = NULL;
2935 return;
2936 }
bd89aabc 2937 link = list_entry(l, struct cg_cgroup_link, cgrp_link_list);
817929ec
PM
2938 cg = link->cg;
2939 } while (list_empty(&cg->tasks));
2940 it->cg_link = l;
2941 it->task = cg->tasks.next;
2942}
2943
31a7df01
CW
2944/*
2945 * To reduce the fork() overhead for systems that are not actually
2946 * using their cgroups capability, we don't maintain the lists running
2947 * through each css_set to its tasks until we see the list actually
2948 * used - in other words after the first call to cgroup_iter_start().
31a7df01 2949 */
3df91fe3 2950static void cgroup_enable_task_cg_lists(void)
31a7df01
CW
2951{
2952 struct task_struct *p, *g;
2953 write_lock(&css_set_lock);
2954 use_task_css_set_links = 1;
3ce3230a
FW
2955 /*
2956 * We need tasklist_lock because RCU is not safe against
2957 * while_each_thread(). Besides, a forking task that has passed
2958 * cgroup_post_fork() without seeing use_task_css_set_links = 1
2959 * is not guaranteed to have its child immediately visible in the
2960 * tasklist if we walk through it with RCU.
2961 */
2962 read_lock(&tasklist_lock);
31a7df01
CW
2963 do_each_thread(g, p) {
2964 task_lock(p);
0e04388f
LZ
2965 /*
2966 * We should check if the process is exiting, otherwise
2967 * it will race with cgroup_exit() in that the list
2968 * entry won't be deleted though the process has exited.
2969 */
2970 if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
31a7df01
CW
2971 list_add(&p->cg_list, &p->cgroups->tasks);
2972 task_unlock(p);
2973 } while_each_thread(g, p);
3ce3230a 2974 read_unlock(&tasklist_lock);
31a7df01
CW
2975 write_unlock(&css_set_lock);
2976}
2977
574bd9f7
TH
2978/**
2979 * cgroup_next_descendant_pre - find the next descendant for pre-order walk
2980 * @pos: the current position (%NULL to initiate traversal)
2981 * @cgroup: cgroup whose descendants to walk
2982 *
2983 * To be used by cgroup_for_each_descendant_pre(). Find the next
2984 * descendant to visit for pre-order traversal of @cgroup's descendants.
2985 */
2986struct cgroup *cgroup_next_descendant_pre(struct cgroup *pos,
2987 struct cgroup *cgroup)
2988{
2989 struct cgroup *next;
2990
2991 WARN_ON_ONCE(!rcu_read_lock_held());
2992
2993 /* if first iteration, pretend we just visited @cgroup */
7805d000 2994 if (!pos)
574bd9f7 2995 pos = cgroup;
574bd9f7
TH
2996
2997 /* visit the first child if exists */
2998 next = list_first_or_null_rcu(&pos->children, struct cgroup, sibling);
2999 if (next)
3000 return next;
3001
3002 /* no child, visit my or the closest ancestor's next sibling */
7805d000 3003 while (pos != cgroup) {
574bd9f7
TH
3004 next = list_entry_rcu(pos->sibling.next, struct cgroup,
3005 sibling);
3006 if (&next->sibling != &pos->parent->children)
3007 return next;
3008
3009 pos = pos->parent;
7805d000 3010 }
574bd9f7
TH
3011
3012 return NULL;
3013}
3014EXPORT_SYMBOL_GPL(cgroup_next_descendant_pre);
3015
12a9d2fe
TH
3016/**
3017 * cgroup_rightmost_descendant - return the rightmost descendant of a cgroup
3018 * @pos: cgroup of interest
3019 *
3020 * Return the rightmost descendant of @pos. If there's no descendant,
3021 * @pos is returned. This can be used during pre-order traversal to skip
3022 * subtree of @pos.
3023 */
3024struct cgroup *cgroup_rightmost_descendant(struct cgroup *pos)
3025{
3026 struct cgroup *last, *tmp;
3027
3028 WARN_ON_ONCE(!rcu_read_lock_held());
3029
3030 do {
3031 last = pos;
3032 /* ->prev isn't RCU safe, walk ->next till the end */
3033 pos = NULL;
3034 list_for_each_entry_rcu(tmp, &last->children, sibling)
3035 pos = tmp;
3036 } while (pos);
3037
3038 return last;
3039}
3040EXPORT_SYMBOL_GPL(cgroup_rightmost_descendant);
3041
574bd9f7
TH
3042static struct cgroup *cgroup_leftmost_descendant(struct cgroup *pos)
3043{
3044 struct cgroup *last;
3045
3046 do {
3047 last = pos;
3048 pos = list_first_or_null_rcu(&pos->children, struct cgroup,
3049 sibling);
3050 } while (pos);
3051
3052 return last;
3053}
3054
3055/**
3056 * cgroup_next_descendant_post - find the next descendant for post-order walk
3057 * @pos: the current position (%NULL to initiate traversal)
3058 * @cgroup: cgroup whose descendants to walk
3059 *
3060 * To be used by cgroup_for_each_descendant_post(). Find the next
3061 * descendant to visit for post-order traversal of @cgroup's descendants.
3062 */
3063struct cgroup *cgroup_next_descendant_post(struct cgroup *pos,
3064 struct cgroup *cgroup)
3065{
3066 struct cgroup *next;
3067
3068 WARN_ON_ONCE(!rcu_read_lock_held());
3069
3070 /* if first iteration, visit the leftmost descendant */
3071 if (!pos) {
3072 next = cgroup_leftmost_descendant(cgroup);
3073 return next != cgroup ? next : NULL;
3074 }
3075
3076 /* if there's an unvisited sibling, visit its leftmost descendant */
3077 next = list_entry_rcu(pos->sibling.next, struct cgroup, sibling);
3078 if (&next->sibling != &pos->parent->children)
3079 return cgroup_leftmost_descendant(next);
3080
3081 /* no sibling left, visit parent */
3082 next = pos->parent;
3083 return next != cgroup ? next : NULL;
3084}
3085EXPORT_SYMBOL_GPL(cgroup_next_descendant_post);
3086
bd89aabc 3087void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
c6ca5750 3088 __acquires(css_set_lock)
817929ec
PM
3089{
3090 /*
3091 * The first time anyone tries to iterate across a cgroup,
3092 * we need to enable the list linking each css_set to its
3093 * tasks, and fix up all existing tasks.
3094 */
31a7df01
CW
3095 if (!use_task_css_set_links)
3096 cgroup_enable_task_cg_lists();
3097
817929ec 3098 read_lock(&css_set_lock);
bd89aabc
PM
3099 it->cg_link = &cgrp->css_sets;
3100 cgroup_advance_iter(cgrp, it);
817929ec
PM
3101}
3102
bd89aabc 3103struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
817929ec
PM
3104 struct cgroup_iter *it)
3105{
3106 struct task_struct *res;
3107 struct list_head *l = it->task;
2019f634 3108 struct cg_cgroup_link *link;
817929ec
PM
3109
3110 /* If the iterator cg is NULL, we have no tasks */
3111 if (!it->cg_link)
3112 return NULL;
3113 res = list_entry(l, struct task_struct, cg_list);
3114 /* Advance iterator to find next entry */
3115 l = l->next;
2019f634
LJ
3116 link = list_entry(it->cg_link, struct cg_cgroup_link, cgrp_link_list);
3117 if (l == &link->cg->tasks) {
817929ec
PM
3118 /* We reached the end of this task list - move on to
3119 * the next cg_cgroup_link */
bd89aabc 3120 cgroup_advance_iter(cgrp, it);
817929ec
PM
3121 } else {
3122 it->task = l;
3123 }
3124 return res;
3125}
3126
bd89aabc 3127void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
c6ca5750 3128 __releases(css_set_lock)
817929ec
PM
3129{
3130 read_unlock(&css_set_lock);
3131}
3132
31a7df01
CW
3133static inline int started_after_time(struct task_struct *t1,
3134 struct timespec *time,
3135 struct task_struct *t2)
3136{
3137 int start_diff = timespec_compare(&t1->start_time, time);
3138 if (start_diff > 0) {
3139 return 1;
3140 } else if (start_diff < 0) {
3141 return 0;
3142 } else {
3143 /*
3144 * Arbitrarily, if two processes started at the same
3145 * time, we'll say that the lower pointer value
3146 * started first. Note that t2 may have exited by now
3147 * so this may not be a valid pointer any longer, but
3148 * that's fine - it still serves to distinguish
3149 * between two tasks started (effectively) simultaneously.
3150 */
3151 return t1 > t2;
3152 }
3153}
3154
3155/*
3156 * This function is a callback from heap_insert() and is used to order
3157 * the heap.
3158 * In this case we order the heap in descending task start time.
3159 */
3160static inline int started_after(void *p1, void *p2)
3161{
3162 struct task_struct *t1 = p1;
3163 struct task_struct *t2 = p2;
3164 return started_after_time(t1, &t2->start_time, t2);
3165}
3166
3167/**
3168 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
3169 * @scan: struct cgroup_scanner containing arguments for the scan
3170 *
3171 * Arguments include pointers to callback functions test_task() and
3172 * process_task().
3173 * Iterate through all the tasks in a cgroup, calling test_task() for each,
3174 * and if it returns true, call process_task() for it also.
3175 * The test_task pointer may be NULL, meaning always true (select all tasks).
3176 * Effectively duplicates cgroup_iter_{start,next,end}()
3177 * but does not lock css_set_lock for the call to process_task().
3178 * The struct cgroup_scanner may be embedded in any structure of the caller's
3179 * creation.
3180 * It is guaranteed that process_task() will act on every task that
3181 * is a member of the cgroup for the duration of this call. This
3182 * function may or may not call process_task() for tasks that exit
3183 * or move to a different cgroup during the call, or are forked or
3184 * move into the cgroup during the call.
3185 *
3186 * Note that test_task() may be called with locks held, and may in some
3187 * situations be called multiple times for the same task, so it should
3188 * be cheap.
3189 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
3190 * pre-allocated and will be used for heap operations (and its "gt" member will
3191 * be overwritten), else a temporary heap will be used (allocation of which
3192 * may cause this function to fail).
3193 */
3194int cgroup_scan_tasks(struct cgroup_scanner *scan)
3195{
3196 int retval, i;
3197 struct cgroup_iter it;
3198 struct task_struct *p, *dropped;
3199 /* Never dereference latest_task, since it's not refcounted */
3200 struct task_struct *latest_task = NULL;
3201 struct ptr_heap tmp_heap;
3202 struct ptr_heap *heap;
3203 struct timespec latest_time = { 0, 0 };
3204
3205 if (scan->heap) {
3206 /* The caller supplied our heap and pre-allocated its memory */
3207 heap = scan->heap;
3208 heap->gt = &started_after;
3209 } else {
3210 /* We need to allocate our own heap memory */
3211 heap = &tmp_heap;
3212 retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
3213 if (retval)
3214 /* cannot allocate the heap */
3215 return retval;
3216 }
3217
3218 again:
3219 /*
3220 * Scan tasks in the cgroup, using the scanner's "test_task" callback
3221 * to determine which are of interest, and using the scanner's
3222 * "process_task" callback to process any of them that need an update.
3223 * Since we don't want to hold any locks during the task updates,
3224 * gather tasks to be processed in a heap structure.
3225 * The heap is sorted by descending task start time.
3226 * If the statically-sized heap fills up, we overflow tasks that
3227 * started later, and in future iterations only consider tasks that
3228 * started after the latest task in the previous pass. This
3229 * guarantees forward progress and that we don't miss any tasks.
3230 */
3231 heap->size = 0;
3232 cgroup_iter_start(scan->cg, &it);
3233 while ((p = cgroup_iter_next(scan->cg, &it))) {
3234 /*
3235 * Only affect tasks that qualify per the caller's callback,
3236 * if he provided one
3237 */
3238 if (scan->test_task && !scan->test_task(p, scan))
3239 continue;
3240 /*
3241 * Only process tasks that started after the last task
3242 * we processed
3243 */
3244 if (!started_after_time(p, &latest_time, latest_task))
3245 continue;
3246 dropped = heap_insert(heap, p);
3247 if (dropped == NULL) {
3248 /*
3249 * The new task was inserted; the heap wasn't
3250 * previously full
3251 */
3252 get_task_struct(p);
3253 } else if (dropped != p) {
3254 /*
3255 * The new task was inserted, and pushed out a
3256 * different task
3257 */
3258 get_task_struct(p);
3259 put_task_struct(dropped);
3260 }
3261 /*
3262 * Else the new task was newer than anything already in
3263 * the heap and wasn't inserted
3264 */
3265 }
3266 cgroup_iter_end(scan->cg, &it);
3267
3268 if (heap->size) {
3269 for (i = 0; i < heap->size; i++) {
4fe91d51 3270 struct task_struct *q = heap->ptrs[i];
31a7df01 3271 if (i == 0) {
4fe91d51
PJ
3272 latest_time = q->start_time;
3273 latest_task = q;
31a7df01
CW
3274 }
3275 /* Process the task per the caller's callback */
4fe91d51
PJ
3276 scan->process_task(q, scan);
3277 put_task_struct(q);
31a7df01
CW
3278 }
3279 /*
3280 * If we had to process any tasks at all, scan again
3281 * in case some of them were in the middle of forking
3282 * children that didn't get processed.
3283 * Not the most efficient way to do it, but it avoids
3284 * having to take callback_mutex in the fork path
3285 */
3286 goto again;
3287 }
3288 if (heap == &tmp_heap)
3289 heap_free(&tmp_heap);
3290 return 0;
3291}
3292
8cc99345
TH
3293static void cgroup_transfer_one_task(struct task_struct *task,
3294 struct cgroup_scanner *scan)
3295{
3296 struct cgroup *new_cgroup = scan->data;
3297
47cfcd09 3298 mutex_lock(&cgroup_mutex);
8cc99345 3299 cgroup_attach_task(new_cgroup, task, false);
47cfcd09 3300 mutex_unlock(&cgroup_mutex);
8cc99345
TH
3301}
3302
3303/**
3304 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
3305 * @to: cgroup to which the tasks will be moved
3306 * @from: cgroup in which the tasks currently reside
3307 */
3308int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
3309{
3310 struct cgroup_scanner scan;
3311
3312 scan.cg = from;
3313 scan.test_task = NULL; /* select all tasks in cgroup */
3314 scan.process_task = cgroup_transfer_one_task;
3315 scan.heap = NULL;
3316 scan.data = to;
3317
3318 return cgroup_scan_tasks(&scan);
3319}
3320
bbcb81d0 3321/*
102a775e 3322 * Stuff for reading the 'tasks'/'procs' files.
bbcb81d0
PM
3323 *
3324 * Reading this file can return large amounts of data if a cgroup has
3325 * *lots* of attached tasks. So it may need several calls to read(),
3326 * but we cannot guarantee that the information we produce is correct
3327 * unless we produce it entirely atomically.
3328 *
bbcb81d0 3329 */
bbcb81d0 3330
24528255
LZ
3331/* which pidlist file are we talking about? */
3332enum cgroup_filetype {
3333 CGROUP_FILE_PROCS,
3334 CGROUP_FILE_TASKS,
3335};
3336
3337/*
3338 * A pidlist is a list of pids that virtually represents the contents of one
3339 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
3340 * a pair (one each for procs, tasks) for each pid namespace that's relevant
3341 * to the cgroup.
3342 */
3343struct cgroup_pidlist {
3344 /*
3345 * used to find which pidlist is wanted. doesn't change as long as
3346 * this particular list stays in the list.
3347 */
3348 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
3349 /* array of xids */
3350 pid_t *list;
3351 /* how many elements the above list has */
3352 int length;
3353 /* how many files are using the current array */
3354 int use_count;
3355 /* each of these stored in a list by its cgroup */
3356 struct list_head links;
3357 /* pointer to the cgroup we belong to, for list removal purposes */
3358 struct cgroup *owner;
3359 /* protects the other fields */
3360 struct rw_semaphore mutex;
3361};
3362
d1d9fd33
BB
3363/*
3364 * The following two functions "fix" the issue where there are more pids
3365 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
3366 * TODO: replace with a kernel-wide solution to this problem
3367 */
3368#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
3369static void *pidlist_allocate(int count)
3370{
3371 if (PIDLIST_TOO_LARGE(count))
3372 return vmalloc(count * sizeof(pid_t));
3373 else
3374 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
3375}
3376static void pidlist_free(void *p)
3377{
3378 if (is_vmalloc_addr(p))
3379 vfree(p);
3380 else
3381 kfree(p);
3382}
d1d9fd33 3383
bbcb81d0 3384/*
102a775e 3385 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
6ee211ad 3386 * Returns the number of unique elements.
bbcb81d0 3387 */
6ee211ad 3388static int pidlist_uniq(pid_t *list, int length)
bbcb81d0 3389{
102a775e 3390 int src, dest = 1;
102a775e
BB
3391
3392 /*
3393 * we presume the 0th element is unique, so i starts at 1. trivial
3394 * edge cases first; no work needs to be done for either
3395 */
3396 if (length == 0 || length == 1)
3397 return length;
3398 /* src and dest walk down the list; dest counts unique elements */
3399 for (src = 1; src < length; src++) {
3400 /* find next unique element */
3401 while (list[src] == list[src-1]) {
3402 src++;
3403 if (src == length)
3404 goto after;
3405 }
3406 /* dest always points to where the next unique element goes */
3407 list[dest] = list[src];
3408 dest++;
3409 }
3410after:
102a775e
BB
3411 return dest;
3412}
3413
3414static int cmppid(const void *a, const void *b)
3415{
3416 return *(pid_t *)a - *(pid_t *)b;
3417}
3418
72a8cb30
BB
3419/*
3420 * find the appropriate pidlist for our purpose (given procs vs tasks)
3421 * returns with the lock on that pidlist already held, and takes care
3422 * of the use count, or returns NULL with no locks held if we're out of
3423 * memory.
3424 */
3425static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
3426 enum cgroup_filetype type)
3427{
3428 struct cgroup_pidlist *l;
3429 /* don't need task_nsproxy() if we're looking at ourself */
17cf22c3 3430 struct pid_namespace *ns = task_active_pid_ns(current);
b70cc5fd 3431
72a8cb30
BB
3432 /*
3433 * We can't drop the pidlist_mutex before taking the l->mutex in case
3434 * the last ref-holder is trying to remove l from the list at the same
3435 * time. Holding the pidlist_mutex precludes somebody taking whichever
3436 * list we find out from under us - compare release_pid_array().
3437 */
3438 mutex_lock(&cgrp->pidlist_mutex);
3439 list_for_each_entry(l, &cgrp->pidlists, links) {
3440 if (l->key.type == type && l->key.ns == ns) {
72a8cb30
BB
3441 /* make sure l doesn't vanish out from under us */
3442 down_write(&l->mutex);
3443 mutex_unlock(&cgrp->pidlist_mutex);
72a8cb30
BB
3444 return l;
3445 }
3446 }
3447 /* entry not found; create a new one */
3448 l = kmalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
3449 if (!l) {
3450 mutex_unlock(&cgrp->pidlist_mutex);
72a8cb30
BB
3451 return l;
3452 }
3453 init_rwsem(&l->mutex);
3454 down_write(&l->mutex);
3455 l->key.type = type;
b70cc5fd 3456 l->key.ns = get_pid_ns(ns);
72a8cb30
BB
3457 l->use_count = 0; /* don't increment here */
3458 l->list = NULL;
3459 l->owner = cgrp;
3460 list_add(&l->links, &cgrp->pidlists);
3461 mutex_unlock(&cgrp->pidlist_mutex);
3462 return l;
3463}
3464
102a775e
BB
3465/*
3466 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
3467 */
72a8cb30
BB
3468static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
3469 struct cgroup_pidlist **lp)
102a775e
BB
3470{
3471 pid_t *array;
3472 int length;
3473 int pid, n = 0; /* used for populating the array */
817929ec
PM
3474 struct cgroup_iter it;
3475 struct task_struct *tsk;
102a775e
BB
3476 struct cgroup_pidlist *l;
3477
3478 /*
3479 * If cgroup gets more users after we read count, we won't have
3480 * enough space - tough. This race is indistinguishable to the
3481 * caller from the case that the additional cgroup users didn't
3482 * show up until sometime later on.
3483 */
3484 length = cgroup_task_count(cgrp);
d1d9fd33 3485 array = pidlist_allocate(length);
102a775e
BB
3486 if (!array)
3487 return -ENOMEM;
3488 /* now, populate the array */
bd89aabc
PM
3489 cgroup_iter_start(cgrp, &it);
3490 while ((tsk = cgroup_iter_next(cgrp, &it))) {
102a775e 3491 if (unlikely(n == length))
817929ec 3492 break;
102a775e 3493 /* get tgid or pid for procs or tasks file respectively */
72a8cb30
BB
3494 if (type == CGROUP_FILE_PROCS)
3495 pid = task_tgid_vnr(tsk);
3496 else
3497 pid = task_pid_vnr(tsk);
102a775e
BB
3498 if (pid > 0) /* make sure to only use valid results */
3499 array[n++] = pid;
817929ec 3500 }
bd89aabc 3501 cgroup_iter_end(cgrp, &it);
102a775e
BB
3502 length = n;
3503 /* now sort & (if procs) strip out duplicates */
3504 sort(array, length, sizeof(pid_t), cmppid, NULL);
72a8cb30 3505 if (type == CGROUP_FILE_PROCS)
6ee211ad 3506 length = pidlist_uniq(array, length);
72a8cb30
BB
3507 l = cgroup_pidlist_find(cgrp, type);
3508 if (!l) {
d1d9fd33 3509 pidlist_free(array);
72a8cb30 3510 return -ENOMEM;
102a775e 3511 }
72a8cb30 3512 /* store array, freeing old if necessary - lock already held */
d1d9fd33 3513 pidlist_free(l->list);
102a775e
BB
3514 l->list = array;
3515 l->length = length;
3516 l->use_count++;
3517 up_write(&l->mutex);
72a8cb30 3518 *lp = l;
102a775e 3519 return 0;
bbcb81d0
PM
3520}
3521
846c7bb0 3522/**
a043e3b2 3523 * cgroupstats_build - build and fill cgroupstats
846c7bb0
BS
3524 * @stats: cgroupstats to fill information into
3525 * @dentry: A dentry entry belonging to the cgroup for which stats have
3526 * been requested.
a043e3b2
LZ
3527 *
3528 * Build and fill cgroupstats so that taskstats can export it to user
3529 * space.
846c7bb0
BS
3530 */
3531int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
3532{
3533 int ret = -EINVAL;
bd89aabc 3534 struct cgroup *cgrp;
846c7bb0
BS
3535 struct cgroup_iter it;
3536 struct task_struct *tsk;
33d283be 3537
846c7bb0 3538 /*
33d283be
LZ
3539 * Validate dentry by checking the superblock operations,
3540 * and make sure it's a directory.
846c7bb0 3541 */
33d283be
LZ
3542 if (dentry->d_sb->s_op != &cgroup_ops ||
3543 !S_ISDIR(dentry->d_inode->i_mode))
846c7bb0
BS
3544 goto err;
3545
3546 ret = 0;
bd89aabc 3547 cgrp = dentry->d_fsdata;
846c7bb0 3548
bd89aabc
PM
3549 cgroup_iter_start(cgrp, &it);
3550 while ((tsk = cgroup_iter_next(cgrp, &it))) {
846c7bb0
BS
3551 switch (tsk->state) {
3552 case TASK_RUNNING:
3553 stats->nr_running++;
3554 break;
3555 case TASK_INTERRUPTIBLE:
3556 stats->nr_sleeping++;
3557 break;
3558 case TASK_UNINTERRUPTIBLE:
3559 stats->nr_uninterruptible++;
3560 break;
3561 case TASK_STOPPED:
3562 stats->nr_stopped++;
3563 break;
3564 default:
3565 if (delayacct_is_task_waiting_on_io(tsk))
3566 stats->nr_io_wait++;
3567 break;
3568 }
3569 }
bd89aabc 3570 cgroup_iter_end(cgrp, &it);
846c7bb0 3571
846c7bb0
BS
3572err:
3573 return ret;
3574}
3575
8f3ff208 3576
bbcb81d0 3577/*
102a775e 3578 * seq_file methods for the tasks/procs files. The seq_file position is the
cc31edce 3579 * next pid to display; the seq_file iterator is a pointer to the pid
102a775e 3580 * in the cgroup->l->list array.
bbcb81d0 3581 */
cc31edce 3582
102a775e 3583static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
bbcb81d0 3584{
cc31edce
PM
3585 /*
3586 * Initially we receive a position value that corresponds to
3587 * one more than the last pid shown (or 0 on the first call or
3588 * after a seek to the start). Use a binary-search to find the
3589 * next pid to display, if any
3590 */
102a775e 3591 struct cgroup_pidlist *l = s->private;
cc31edce
PM
3592 int index = 0, pid = *pos;
3593 int *iter;
3594
102a775e 3595 down_read(&l->mutex);
cc31edce 3596 if (pid) {
102a775e 3597 int end = l->length;
20777766 3598
cc31edce
PM
3599 while (index < end) {
3600 int mid = (index + end) / 2;
102a775e 3601 if (l->list[mid] == pid) {
cc31edce
PM
3602 index = mid;
3603 break;
102a775e 3604 } else if (l->list[mid] <= pid)
cc31edce
PM
3605 index = mid + 1;
3606 else
3607 end = mid;
3608 }
3609 }
3610 /* If we're off the end of the array, we're done */
102a775e 3611 if (index >= l->length)
cc31edce
PM
3612 return NULL;
3613 /* Update the abstract position to be the actual pid that we found */
102a775e 3614 iter = l->list + index;
cc31edce
PM
3615 *pos = *iter;
3616 return iter;
3617}
3618
102a775e 3619static void cgroup_pidlist_stop(struct seq_file *s, void *v)
cc31edce 3620{
102a775e
BB
3621 struct cgroup_pidlist *l = s->private;
3622 up_read(&l->mutex);
cc31edce
PM
3623}
3624
102a775e 3625static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
cc31edce 3626{
102a775e
BB
3627 struct cgroup_pidlist *l = s->private;
3628 pid_t *p = v;
3629 pid_t *end = l->list + l->length;
cc31edce
PM
3630 /*
3631 * Advance to the next pid in the array. If this goes off the
3632 * end, we're done
3633 */
3634 p++;
3635 if (p >= end) {
3636 return NULL;
3637 } else {
3638 *pos = *p;
3639 return p;
3640 }
3641}
3642
102a775e 3643static int cgroup_pidlist_show(struct seq_file *s, void *v)
cc31edce
PM
3644{
3645 return seq_printf(s, "%d\n", *(int *)v);
3646}
bbcb81d0 3647
102a775e
BB
3648/*
3649 * seq_operations functions for iterating on pidlists through seq_file -
3650 * independent of whether it's tasks or procs
3651 */
3652static const struct seq_operations cgroup_pidlist_seq_operations = {
3653 .start = cgroup_pidlist_start,
3654 .stop = cgroup_pidlist_stop,
3655 .next = cgroup_pidlist_next,
3656 .show = cgroup_pidlist_show,
cc31edce
PM
3657};
3658
102a775e 3659static void cgroup_release_pid_array(struct cgroup_pidlist *l)
cc31edce 3660{
72a8cb30
BB
3661 /*
3662 * the case where we're the last user of this particular pidlist will
3663 * have us remove it from the cgroup's list, which entails taking the
3664 * mutex. since in pidlist_find the pidlist->lock depends on cgroup->
3665 * pidlist_mutex, we have to take pidlist_mutex first.
3666 */
3667 mutex_lock(&l->owner->pidlist_mutex);
102a775e
BB
3668 down_write(&l->mutex);
3669 BUG_ON(!l->use_count);
3670 if (!--l->use_count) {
72a8cb30
BB
3671 /* we're the last user if refcount is 0; remove and free */
3672 list_del(&l->links);
3673 mutex_unlock(&l->owner->pidlist_mutex);
d1d9fd33 3674 pidlist_free(l->list);
72a8cb30
BB
3675 put_pid_ns(l->key.ns);
3676 up_write(&l->mutex);
3677 kfree(l);
3678 return;
cc31edce 3679 }
72a8cb30 3680 mutex_unlock(&l->owner->pidlist_mutex);
102a775e 3681 up_write(&l->mutex);
bbcb81d0
PM
3682}
3683
102a775e 3684static int cgroup_pidlist_release(struct inode *inode, struct file *file)
cc31edce 3685{
102a775e 3686 struct cgroup_pidlist *l;
cc31edce
PM
3687 if (!(file->f_mode & FMODE_READ))
3688 return 0;
102a775e
BB
3689 /*
3690 * the seq_file will only be initialized if the file was opened for
3691 * reading; hence we check if it's not null only in that case.
3692 */
3693 l = ((struct seq_file *)file->private_data)->private;
3694 cgroup_release_pid_array(l);
cc31edce
PM
3695 return seq_release(inode, file);
3696}
3697
102a775e 3698static const struct file_operations cgroup_pidlist_operations = {
cc31edce
PM
3699 .read = seq_read,
3700 .llseek = seq_lseek,
3701 .write = cgroup_file_write,
102a775e 3702 .release = cgroup_pidlist_release,
cc31edce
PM
3703};
3704
bbcb81d0 3705/*
102a775e
BB
3706 * The following functions handle opens on a file that displays a pidlist
3707 * (tasks or procs). Prepare an array of the process/thread IDs of whoever's
3708 * in the cgroup.
bbcb81d0 3709 */
102a775e 3710/* helper function for the two below it */
72a8cb30 3711static int cgroup_pidlist_open(struct file *file, enum cgroup_filetype type)
bbcb81d0 3712{
bd89aabc 3713 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
72a8cb30 3714 struct cgroup_pidlist *l;
cc31edce 3715 int retval;
bbcb81d0 3716
cc31edce 3717 /* Nothing to do for write-only files */
bbcb81d0
PM
3718 if (!(file->f_mode & FMODE_READ))
3719 return 0;
3720
102a775e 3721 /* have the array populated */
72a8cb30 3722 retval = pidlist_array_load(cgrp, type, &l);
102a775e
BB
3723 if (retval)
3724 return retval;
3725 /* configure file information */
3726 file->f_op = &cgroup_pidlist_operations;
cc31edce 3727
102a775e 3728 retval = seq_open(file, &cgroup_pidlist_seq_operations);
cc31edce 3729 if (retval) {
102a775e 3730 cgroup_release_pid_array(l);
cc31edce 3731 return retval;
bbcb81d0 3732 }
102a775e 3733 ((struct seq_file *)file->private_data)->private = l;
bbcb81d0
PM
3734 return 0;
3735}
102a775e
BB
3736static int cgroup_tasks_open(struct inode *unused, struct file *file)
3737{
72a8cb30 3738 return cgroup_pidlist_open(file, CGROUP_FILE_TASKS);
102a775e
BB
3739}
3740static int cgroup_procs_open(struct inode *unused, struct file *file)
3741{
72a8cb30 3742 return cgroup_pidlist_open(file, CGROUP_FILE_PROCS);
102a775e 3743}
bbcb81d0 3744
bd89aabc 3745static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
81a6a5cd
PM
3746 struct cftype *cft)
3747{
bd89aabc 3748 return notify_on_release(cgrp);
81a6a5cd
PM
3749}
3750
6379c106
PM
3751static int cgroup_write_notify_on_release(struct cgroup *cgrp,
3752 struct cftype *cft,
3753 u64 val)
3754{
3755 clear_bit(CGRP_RELEASABLE, &cgrp->flags);
3756 if (val)
3757 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3758 else
3759 clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3760 return 0;
3761}
3762
0dea1168
KS
3763/*
3764 * Unregister event and free resources.
3765 *
3766 * Gets called from workqueue.
3767 */
3768static void cgroup_event_remove(struct work_struct *work)
3769{
3770 struct cgroup_event *event = container_of(work, struct cgroup_event,
3771 remove);
3772 struct cgroup *cgrp = event->cgrp;
3773
810cbee4
LZ
3774 remove_wait_queue(event->wqh, &event->wait);
3775
0dea1168
KS
3776 event->cft->unregister_event(cgrp, event->cft, event->eventfd);
3777
810cbee4
LZ
3778 /* Notify userspace the event is going away. */
3779 eventfd_signal(event->eventfd, 1);
3780
0dea1168 3781 eventfd_ctx_put(event->eventfd);
0dea1168 3782 kfree(event);
a0a4db54 3783 dput(cgrp->dentry);
0dea1168
KS
3784}
3785
3786/*
3787 * Gets called on POLLHUP on eventfd when user closes it.
3788 *
3789 * Called with wqh->lock held and interrupts disabled.
3790 */
3791static int cgroup_event_wake(wait_queue_t *wait, unsigned mode,
3792 int sync, void *key)
3793{
3794 struct cgroup_event *event = container_of(wait,
3795 struct cgroup_event, wait);
3796 struct cgroup *cgrp = event->cgrp;
3797 unsigned long flags = (unsigned long)key;
3798
3799 if (flags & POLLHUP) {
0dea1168 3800 /*
810cbee4
LZ
3801 * If the event has been detached at cgroup removal, we
3802 * can simply return knowing the other side will cleanup
3803 * for us.
3804 *
3805 * We can't race against event freeing since the other
3806 * side will require wqh->lock via remove_wait_queue(),
3807 * which we hold.
0dea1168 3808 */
810cbee4
LZ
3809 spin_lock(&cgrp->event_list_lock);
3810 if (!list_empty(&event->list)) {
3811 list_del_init(&event->list);
3812 /*
3813 * We are in atomic context, but cgroup_event_remove()
3814 * may sleep, so we have to call it in workqueue.
3815 */
3816 schedule_work(&event->remove);
3817 }
3818 spin_unlock(&cgrp->event_list_lock);
0dea1168
KS
3819 }
3820
3821 return 0;
3822}
3823
3824static void cgroup_event_ptable_queue_proc(struct file *file,
3825 wait_queue_head_t *wqh, poll_table *pt)
3826{
3827 struct cgroup_event *event = container_of(pt,
3828 struct cgroup_event, pt);
3829
3830 event->wqh = wqh;
3831 add_wait_queue(wqh, &event->wait);
3832}
3833
3834/*
3835 * Parse input and register new cgroup event handler.
3836 *
3837 * Input must be in format '<event_fd> <control_fd> <args>'.
3838 * Interpretation of args is defined by control file implementation.
3839 */
3840static int cgroup_write_event_control(struct cgroup *cgrp, struct cftype *cft,
3841 const char *buffer)
3842{
3843 struct cgroup_event *event = NULL;
f169007b 3844 struct cgroup *cgrp_cfile;
0dea1168
KS
3845 unsigned int efd, cfd;
3846 struct file *efile = NULL;
3847 struct file *cfile = NULL;
3848 char *endp;
3849 int ret;
3850
3851 efd = simple_strtoul(buffer, &endp, 10);
3852 if (*endp != ' ')
3853 return -EINVAL;
3854 buffer = endp + 1;
3855
3856 cfd = simple_strtoul(buffer, &endp, 10);
3857 if ((*endp != ' ') && (*endp != '\0'))
3858 return -EINVAL;
3859 buffer = endp + 1;
3860
3861 event = kzalloc(sizeof(*event), GFP_KERNEL);
3862 if (!event)
3863 return -ENOMEM;
3864 event->cgrp = cgrp;
3865 INIT_LIST_HEAD(&event->list);
3866 init_poll_funcptr(&event->pt, cgroup_event_ptable_queue_proc);
3867 init_waitqueue_func_entry(&event->wait, cgroup_event_wake);
3868 INIT_WORK(&event->remove, cgroup_event_remove);
3869
3870 efile = eventfd_fget(efd);
3871 if (IS_ERR(efile)) {
3872 ret = PTR_ERR(efile);
3873 goto fail;
3874 }
3875
3876 event->eventfd = eventfd_ctx_fileget(efile);
3877 if (IS_ERR(event->eventfd)) {
3878 ret = PTR_ERR(event->eventfd);
3879 goto fail;
3880 }
3881
3882 cfile = fget(cfd);
3883 if (!cfile) {
3884 ret = -EBADF;
3885 goto fail;
3886 }
3887
3888 /* the process need read permission on control file */
3bfa784a 3889 /* AV: shouldn't we check that it's been opened for read instead? */
496ad9aa 3890 ret = inode_permission(file_inode(cfile), MAY_READ);
0dea1168
KS
3891 if (ret < 0)
3892 goto fail;
3893
3894 event->cft = __file_cft(cfile);
3895 if (IS_ERR(event->cft)) {
3896 ret = PTR_ERR(event->cft);
3897 goto fail;
3898 }
3899
f169007b
LZ
3900 /*
3901 * The file to be monitored must be in the same cgroup as
3902 * cgroup.event_control is.
3903 */
3904 cgrp_cfile = __d_cgrp(cfile->f_dentry->d_parent);
3905 if (cgrp_cfile != cgrp) {
3906 ret = -EINVAL;
3907 goto fail;
3908 }
3909
0dea1168
KS
3910 if (!event->cft->register_event || !event->cft->unregister_event) {
3911 ret = -EINVAL;
3912 goto fail;
3913 }
3914
3915 ret = event->cft->register_event(cgrp, event->cft,
3916 event->eventfd, buffer);
3917 if (ret)
3918 goto fail;
3919
7ef70e48 3920 efile->f_op->poll(efile, &event->pt);
0dea1168 3921
a0a4db54
KS
3922 /*
3923 * Events should be removed after rmdir of cgroup directory, but before
3924 * destroying subsystem state objects. Let's take reference to cgroup
3925 * directory dentry to do that.
3926 */
3927 dget(cgrp->dentry);
3928
0dea1168
KS
3929 spin_lock(&cgrp->event_list_lock);
3930 list_add(&event->list, &cgrp->event_list);
3931 spin_unlock(&cgrp->event_list_lock);
3932
3933 fput(cfile);
3934 fput(efile);
3935
3936 return 0;
3937
3938fail:
3939 if (cfile)
3940 fput(cfile);
3941
3942 if (event && event->eventfd && !IS_ERR(event->eventfd))
3943 eventfd_ctx_put(event->eventfd);
3944
3945 if (!IS_ERR_OR_NULL(efile))
3946 fput(efile);
3947
3948 kfree(event);
3949
3950 return ret;
3951}
3952
97978e6d
DL
3953static u64 cgroup_clone_children_read(struct cgroup *cgrp,
3954 struct cftype *cft)
3955{
2260e7fc 3956 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
97978e6d
DL
3957}
3958
3959static int cgroup_clone_children_write(struct cgroup *cgrp,
3960 struct cftype *cft,
3961 u64 val)
3962{
3963 if (val)
2260e7fc 3964 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
97978e6d 3965 else
2260e7fc 3966 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
97978e6d
DL
3967 return 0;
3968}
3969
bbcb81d0
PM
3970/*
3971 * for the common functions, 'private' gives the type of file
3972 */
102a775e
BB
3973/* for hysterical raisins, we can't put this on the older files */
3974#define CGROUP_FILE_GENERIC_PREFIX "cgroup."
81a6a5cd
PM
3975static struct cftype files[] = {
3976 {
3977 .name = "tasks",
3978 .open = cgroup_tasks_open,
af351026 3979 .write_u64 = cgroup_tasks_write,
102a775e 3980 .release = cgroup_pidlist_release,
099fca32 3981 .mode = S_IRUGO | S_IWUSR,
81a6a5cd 3982 },
102a775e
BB
3983 {
3984 .name = CGROUP_FILE_GENERIC_PREFIX "procs",
3985 .open = cgroup_procs_open,
74a1166d 3986 .write_u64 = cgroup_procs_write,
102a775e 3987 .release = cgroup_pidlist_release,
74a1166d 3988 .mode = S_IRUGO | S_IWUSR,
102a775e 3989 },
81a6a5cd
PM
3990 {
3991 .name = "notify_on_release",
f4c753b7 3992 .read_u64 = cgroup_read_notify_on_release,
6379c106 3993 .write_u64 = cgroup_write_notify_on_release,
81a6a5cd 3994 },
0dea1168
KS
3995 {
3996 .name = CGROUP_FILE_GENERIC_PREFIX "event_control",
3997 .write_string = cgroup_write_event_control,
3998 .mode = S_IWUGO,
3999 },
97978e6d
DL
4000 {
4001 .name = "cgroup.clone_children",
873fe09e 4002 .flags = CFTYPE_INSANE,
97978e6d
DL
4003 .read_u64 = cgroup_clone_children_read,
4004 .write_u64 = cgroup_clone_children_write,
4005 },
873fe09e
TH
4006 {
4007 .name = "cgroup.sane_behavior",
4008 .flags = CFTYPE_ONLY_ON_ROOT,
4009 .read_seq_string = cgroup_sane_behavior_show,
4010 },
6e6ff25b
TH
4011 {
4012 .name = "release_agent",
4013 .flags = CFTYPE_ONLY_ON_ROOT,
4014 .read_seq_string = cgroup_release_agent_show,
4015 .write_string = cgroup_release_agent_write,
4016 .max_write_len = PATH_MAX,
4017 },
db0416b6 4018 { } /* terminate */
bbcb81d0
PM
4019};
4020
13af07df
AR
4021/**
4022 * cgroup_populate_dir - selectively creation of files in a directory
4023 * @cgrp: target cgroup
4024 * @base_files: true if the base files should be added
4025 * @subsys_mask: mask of the subsystem ids whose files should be added
4026 */
4027static int cgroup_populate_dir(struct cgroup *cgrp, bool base_files,
4028 unsigned long subsys_mask)
ddbcc7e8
PM
4029{
4030 int err;
4031 struct cgroup_subsys *ss;
4032
13af07df
AR
4033 if (base_files) {
4034 err = cgroup_addrm_files(cgrp, NULL, files, true);
4035 if (err < 0)
4036 return err;
4037 }
bbcb81d0 4038
8e3f6541 4039 /* process cftsets of each subsystem */
bd89aabc 4040 for_each_subsys(cgrp->root, ss) {
8e3f6541 4041 struct cftype_set *set;
13af07df
AR
4042 if (!test_bit(ss->subsys_id, &subsys_mask))
4043 continue;
8e3f6541 4044
db0416b6 4045 list_for_each_entry(set, &ss->cftsets, node)
79578621 4046 cgroup_addrm_files(cgrp, ss, set->cfts, true);
ddbcc7e8 4047 }
8e3f6541 4048
38460b48
KH
4049 /* This cgroup is ready now */
4050 for_each_subsys(cgrp->root, ss) {
4051 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
4052 /*
4053 * Update id->css pointer and make this css visible from
4054 * CSS ID functions. This pointer will be dereferened
4055 * from RCU-read-side without locks.
4056 */
4057 if (css->id)
4058 rcu_assign_pointer(css->id->css, css);
4059 }
ddbcc7e8
PM
4060
4061 return 0;
4062}
4063
48ddbe19
TH
4064static void css_dput_fn(struct work_struct *work)
4065{
4066 struct cgroup_subsys_state *css =
4067 container_of(work, struct cgroup_subsys_state, dput_work);
5db9a4d9
TH
4068 struct dentry *dentry = css->cgroup->dentry;
4069 struct super_block *sb = dentry->d_sb;
48ddbe19 4070
5db9a4d9
TH
4071 atomic_inc(&sb->s_active);
4072 dput(dentry);
4073 deactivate_super(sb);
48ddbe19
TH
4074}
4075
ddbcc7e8
PM
4076static void init_cgroup_css(struct cgroup_subsys_state *css,
4077 struct cgroup_subsys *ss,
bd89aabc 4078 struct cgroup *cgrp)
ddbcc7e8 4079{
bd89aabc 4080 css->cgroup = cgrp;
e7c5ec91 4081 atomic_set(&css->refcnt, 1);
ddbcc7e8 4082 css->flags = 0;
38460b48 4083 css->id = NULL;
bd89aabc 4084 if (cgrp == dummytop)
38b53aba 4085 css->flags |= CSS_ROOT;
bd89aabc
PM
4086 BUG_ON(cgrp->subsys[ss->subsys_id]);
4087 cgrp->subsys[ss->subsys_id] = css;
48ddbe19
TH
4088
4089 /*
ed957793
TH
4090 * css holds an extra ref to @cgrp->dentry which is put on the last
4091 * css_put(). dput() requires process context, which css_put() may
4092 * be called without. @css->dput_work will be used to invoke
4093 * dput() asynchronously from css_put().
48ddbe19
TH
4094 */
4095 INIT_WORK(&css->dput_work, css_dput_fn);
ddbcc7e8
PM
4096}
4097
b1929db4
TH
4098/* invoke ->post_create() on a new CSS and mark it online if successful */
4099static int online_css(struct cgroup_subsys *ss, struct cgroup *cgrp)
a31f2d3f 4100{
b1929db4
TH
4101 int ret = 0;
4102
a31f2d3f
TH
4103 lockdep_assert_held(&cgroup_mutex);
4104
92fb9748
TH
4105 if (ss->css_online)
4106 ret = ss->css_online(cgrp);
b1929db4
TH
4107 if (!ret)
4108 cgrp->subsys[ss->subsys_id]->flags |= CSS_ONLINE;
4109 return ret;
a31f2d3f
TH
4110}
4111
4112/* if the CSS is online, invoke ->pre_destory() on it and mark it offline */
4113static void offline_css(struct cgroup_subsys *ss, struct cgroup *cgrp)
4114 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
4115{
4116 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
4117
4118 lockdep_assert_held(&cgroup_mutex);
4119
4120 if (!(css->flags & CSS_ONLINE))
4121 return;
4122
d7eeac19 4123 if (ss->css_offline)
92fb9748 4124 ss->css_offline(cgrp);
a31f2d3f
TH
4125
4126 cgrp->subsys[ss->subsys_id]->flags &= ~CSS_ONLINE;
4127}
4128
ddbcc7e8 4129/*
a043e3b2
LZ
4130 * cgroup_create - create a cgroup
4131 * @parent: cgroup that will be parent of the new cgroup
4132 * @dentry: dentry of the new cgroup
4133 * @mode: mode to set on new inode
ddbcc7e8 4134 *
a043e3b2 4135 * Must be called with the mutex on the parent inode held
ddbcc7e8 4136 */
ddbcc7e8 4137static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
a5e7ed32 4138 umode_t mode)
ddbcc7e8 4139{
bd89aabc 4140 struct cgroup *cgrp;
65dff759 4141 struct cgroup_name *name;
ddbcc7e8
PM
4142 struct cgroupfs_root *root = parent->root;
4143 int err = 0;
4144 struct cgroup_subsys *ss;
4145 struct super_block *sb = root->sb;
4146
0a950f65 4147 /* allocate the cgroup and its ID, 0 is reserved for the root */
bd89aabc
PM
4148 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
4149 if (!cgrp)
ddbcc7e8
PM
4150 return -ENOMEM;
4151
65dff759
LZ
4152 name = cgroup_alloc_name(dentry);
4153 if (!name)
4154 goto err_free_cgrp;
4155 rcu_assign_pointer(cgrp->name, name);
4156
0a950f65
TH
4157 cgrp->id = ida_simple_get(&root->cgroup_ida, 1, 0, GFP_KERNEL);
4158 if (cgrp->id < 0)
65dff759 4159 goto err_free_name;
0a950f65 4160
976c06bc
TH
4161 /*
4162 * Only live parents can have children. Note that the liveliness
4163 * check isn't strictly necessary because cgroup_mkdir() and
4164 * cgroup_rmdir() are fully synchronized by i_mutex; however, do it
4165 * anyway so that locking is contained inside cgroup proper and we
4166 * don't get nasty surprises if we ever grow another caller.
4167 */
4168 if (!cgroup_lock_live_group(parent)) {
4169 err = -ENODEV;
0a950f65 4170 goto err_free_id;
976c06bc
TH
4171 }
4172
ddbcc7e8
PM
4173 /* Grab a reference on the superblock so the hierarchy doesn't
4174 * get deleted on unmount if there are child cgroups. This
4175 * can be done outside cgroup_mutex, since the sb can't
4176 * disappear while someone has an open control file on the
4177 * fs */
4178 atomic_inc(&sb->s_active);
4179
cc31edce 4180 init_cgroup_housekeeping(cgrp);
ddbcc7e8 4181
fe1c06ca
LZ
4182 dentry->d_fsdata = cgrp;
4183 cgrp->dentry = dentry;
4184
bd89aabc
PM
4185 cgrp->parent = parent;
4186 cgrp->root = parent->root;
ddbcc7e8 4187
b6abdb0e
LZ
4188 if (notify_on_release(parent))
4189 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
4190
2260e7fc
TH
4191 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
4192 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
97978e6d 4193
ddbcc7e8 4194 for_each_subsys(root, ss) {
8c7f6edb 4195 struct cgroup_subsys_state *css;
4528fd05 4196
92fb9748 4197 css = ss->css_alloc(cgrp);
ddbcc7e8
PM
4198 if (IS_ERR(css)) {
4199 err = PTR_ERR(css);
4b8b47eb 4200 goto err_free_all;
ddbcc7e8 4201 }
bd89aabc 4202 init_cgroup_css(css, ss, cgrp);
4528fd05
LZ
4203 if (ss->use_id) {
4204 err = alloc_css_id(ss, parent, cgrp);
4205 if (err)
4b8b47eb 4206 goto err_free_all;
4528fd05 4207 }
ddbcc7e8
PM
4208 }
4209
4e139afc
TH
4210 /*
4211 * Create directory. cgroup_create_file() returns with the new
4212 * directory locked on success so that it can be populated without
4213 * dropping cgroup_mutex.
4214 */
28fd6f30 4215 err = cgroup_create_file(dentry, S_IFDIR | mode, sb);
ddbcc7e8 4216 if (err < 0)
4b8b47eb 4217 goto err_free_all;
4e139afc 4218 lockdep_assert_held(&dentry->d_inode->i_mutex);
ddbcc7e8 4219
4e139afc 4220 /* allocation complete, commit to creation */
4e139afc
TH
4221 list_add_tail(&cgrp->allcg_node, &root->allcg_list);
4222 list_add_tail_rcu(&cgrp->sibling, &cgrp->parent->children);
4223 root->number_of_cgroups++;
28fd6f30 4224
b1929db4
TH
4225 /* each css holds a ref to the cgroup's dentry */
4226 for_each_subsys(root, ss)
ed957793 4227 dget(dentry);
48ddbe19 4228
415cf07a
LZ
4229 /* hold a ref to the parent's dentry */
4230 dget(parent->dentry);
4231
b1929db4
TH
4232 /* creation succeeded, notify subsystems */
4233 for_each_subsys(root, ss) {
4234 err = online_css(ss, cgrp);
4235 if (err)
4236 goto err_destroy;
1f869e87
GC
4237
4238 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
4239 parent->parent) {
4240 pr_warning("cgroup: %s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
4241 current->comm, current->pid, ss->name);
4242 if (!strcmp(ss->name, "memory"))
4243 pr_warning("cgroup: \"memory\" requires setting use_hierarchy to 1 on the root.\n");
4244 ss->warned_broken_hierarchy = true;
4245 }
a8638030
TH
4246 }
4247
a1a71b45 4248 err = cgroup_populate_dir(cgrp, true, root->subsys_mask);
4b8b47eb
TH
4249 if (err)
4250 goto err_destroy;
ddbcc7e8
PM
4251
4252 mutex_unlock(&cgroup_mutex);
bd89aabc 4253 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8
PM
4254
4255 return 0;
4256
4b8b47eb 4257err_free_all:
ddbcc7e8 4258 for_each_subsys(root, ss) {
bd89aabc 4259 if (cgrp->subsys[ss->subsys_id])
92fb9748 4260 ss->css_free(cgrp);
ddbcc7e8 4261 }
ddbcc7e8 4262 mutex_unlock(&cgroup_mutex);
ddbcc7e8
PM
4263 /* Release the reference count that we took on the superblock */
4264 deactivate_super(sb);
0a950f65
TH
4265err_free_id:
4266 ida_simple_remove(&root->cgroup_ida, cgrp->id);
65dff759
LZ
4267err_free_name:
4268 kfree(rcu_dereference_raw(cgrp->name));
4b8b47eb 4269err_free_cgrp:
bd89aabc 4270 kfree(cgrp);
ddbcc7e8 4271 return err;
4b8b47eb
TH
4272
4273err_destroy:
4274 cgroup_destroy_locked(cgrp);
4275 mutex_unlock(&cgroup_mutex);
4276 mutex_unlock(&dentry->d_inode->i_mutex);
4277 return err;
ddbcc7e8
PM
4278}
4279
18bb1db3 4280static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
ddbcc7e8
PM
4281{
4282 struct cgroup *c_parent = dentry->d_parent->d_fsdata;
4283
4284 /* the vfs holds inode->i_mutex already */
4285 return cgroup_create(c_parent, dentry, mode | S_IFDIR);
4286}
4287
42809dd4
TH
4288static int cgroup_destroy_locked(struct cgroup *cgrp)
4289 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
ddbcc7e8 4290{
42809dd4
TH
4291 struct dentry *d = cgrp->dentry;
4292 struct cgroup *parent = cgrp->parent;
4ab78683 4293 struct cgroup_event *event, *tmp;
ed957793 4294 struct cgroup_subsys *ss;
ddbcc7e8 4295
42809dd4
TH
4296 lockdep_assert_held(&d->d_inode->i_mutex);
4297 lockdep_assert_held(&cgroup_mutex);
4298
4299 if (atomic_read(&cgrp->count) || !list_empty(&cgrp->children))
ddbcc7e8 4300 return -EBUSY;
a043e3b2 4301
88703267 4302 /*
1a90dd50
TH
4303 * Block new css_tryget() by deactivating refcnt and mark @cgrp
4304 * removed. This makes future css_tryget() and child creation
4305 * attempts fail thus maintaining the removal conditions verified
4306 * above.
88703267 4307 */
ed957793
TH
4308 for_each_subsys(cgrp->root, ss) {
4309 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
88703267 4310
ed957793
TH
4311 WARN_ON(atomic_read(&css->refcnt) < 0);
4312 atomic_add(CSS_DEACT_BIAS, &css->refcnt);
88703267 4313 }
1a90dd50 4314 set_bit(CGRP_REMOVED, &cgrp->flags);
ddbcc7e8 4315
a31f2d3f 4316 /* tell subsystems to initate destruction */
1a90dd50 4317 for_each_subsys(cgrp->root, ss)
a31f2d3f 4318 offline_css(ss, cgrp);
ed957793
TH
4319
4320 /*
ed957793
TH
4321 * Put all the base refs. Each css holds an extra reference to the
4322 * cgroup's dentry and cgroup removal proceeds regardless of css
4323 * refs. On the last put of each css, whenever that may be, the
4324 * extra dentry ref is put so that dentry destruction happens only
4325 * after all css's are released.
4326 */
e9316080
TH
4327 for_each_subsys(cgrp->root, ss)
4328 css_put(cgrp->subsys[ss->subsys_id]);
ddbcc7e8 4329
cdcc136f 4330 raw_spin_lock(&release_list_lock);
bd89aabc 4331 if (!list_empty(&cgrp->release_list))
8d258797 4332 list_del_init(&cgrp->release_list);
cdcc136f 4333 raw_spin_unlock(&release_list_lock);
999cd8a4 4334
999cd8a4 4335 /* delete this cgroup from parent->children */
eb6fd504 4336 list_del_rcu(&cgrp->sibling);
b0ca5a84
TH
4337 list_del_init(&cgrp->allcg_node);
4338
42809dd4 4339 dget(d);
ddbcc7e8
PM
4340 cgroup_d_remove_dir(d);
4341 dput(d);
ddbcc7e8 4342
bd89aabc 4343 set_bit(CGRP_RELEASABLE, &parent->flags);
81a6a5cd
PM
4344 check_for_release(parent);
4345
4ab78683
KS
4346 /*
4347 * Unregister events and notify userspace.
4348 * Notify userspace about cgroup removing only after rmdir of cgroup
810cbee4 4349 * directory to avoid race between userspace and kernelspace.
4ab78683
KS
4350 */
4351 spin_lock(&cgrp->event_list_lock);
810cbee4 4352 list_for_each_entry_safe(event, tmp, &cgrp->event_list, list) {
9718ceb3 4353 list_del_init(&event->list);
4ab78683
KS
4354 schedule_work(&event->remove);
4355 }
810cbee4 4356 spin_unlock(&cgrp->event_list_lock);
4ab78683 4357
ddbcc7e8
PM
4358 return 0;
4359}
4360
42809dd4
TH
4361static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
4362{
4363 int ret;
4364
4365 mutex_lock(&cgroup_mutex);
4366 ret = cgroup_destroy_locked(dentry->d_fsdata);
4367 mutex_unlock(&cgroup_mutex);
4368
4369 return ret;
4370}
4371
8e3f6541
TH
4372static void __init_or_module cgroup_init_cftsets(struct cgroup_subsys *ss)
4373{
4374 INIT_LIST_HEAD(&ss->cftsets);
4375
4376 /*
4377 * base_cftset is embedded in subsys itself, no need to worry about
4378 * deregistration.
4379 */
4380 if (ss->base_cftypes) {
4381 ss->base_cftset.cfts = ss->base_cftypes;
4382 list_add_tail(&ss->base_cftset.node, &ss->cftsets);
4383 }
4384}
4385
06a11920 4386static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
ddbcc7e8 4387{
ddbcc7e8 4388 struct cgroup_subsys_state *css;
cfe36bde
DC
4389
4390 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
ddbcc7e8 4391
648bb56d
TH
4392 mutex_lock(&cgroup_mutex);
4393
8e3f6541
TH
4394 /* init base cftset */
4395 cgroup_init_cftsets(ss);
4396
ddbcc7e8 4397 /* Create the top cgroup state for this subsystem */
33a68ac1 4398 list_add(&ss->sibling, &rootnode.subsys_list);
ddbcc7e8 4399 ss->root = &rootnode;
92fb9748 4400 css = ss->css_alloc(dummytop);
ddbcc7e8
PM
4401 /* We don't handle early failures gracefully */
4402 BUG_ON(IS_ERR(css));
4403 init_cgroup_css(css, ss, dummytop);
4404
e8d55fde 4405 /* Update the init_css_set to contain a subsys
817929ec 4406 * pointer to this state - since the subsystem is
e8d55fde
LZ
4407 * newly registered, all tasks and hence the
4408 * init_css_set is in the subsystem's top cgroup. */
b48c6a80 4409 init_css_set.subsys[ss->subsys_id] = css;
ddbcc7e8
PM
4410
4411 need_forkexit_callback |= ss->fork || ss->exit;
4412
e8d55fde
LZ
4413 /* At system boot, before all subsystems have been
4414 * registered, no tasks have been forked, so we don't
4415 * need to invoke fork callbacks here. */
4416 BUG_ON(!list_empty(&init_task.tasks));
4417
b1929db4 4418 BUG_ON(online_css(ss, dummytop));
a8638030 4419
648bb56d
TH
4420 mutex_unlock(&cgroup_mutex);
4421
e6a1105b
BB
4422 /* this function shouldn't be used with modular subsystems, since they
4423 * need to register a subsys_id, among other things */
4424 BUG_ON(ss->module);
4425}
4426
4427/**
4428 * cgroup_load_subsys: load and register a modular subsystem at runtime
4429 * @ss: the subsystem to load
4430 *
4431 * This function should be called in a modular subsystem's initcall. If the
88393161 4432 * subsystem is built as a module, it will be assigned a new subsys_id and set
e6a1105b
BB
4433 * up for use. If the subsystem is built-in anyway, work is delegated to the
4434 * simpler cgroup_init_subsys.
4435 */
4436int __init_or_module cgroup_load_subsys(struct cgroup_subsys *ss)
4437{
e6a1105b 4438 struct cgroup_subsys_state *css;
d19e19de 4439 int i, ret;
b67bfe0d 4440 struct hlist_node *tmp;
0ac801fe
LZ
4441 struct css_set *cg;
4442 unsigned long key;
e6a1105b
BB
4443
4444 /* check name and function validity */
4445 if (ss->name == NULL || strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN ||
92fb9748 4446 ss->css_alloc == NULL || ss->css_free == NULL)
e6a1105b
BB
4447 return -EINVAL;
4448
4449 /*
4450 * we don't support callbacks in modular subsystems. this check is
4451 * before the ss->module check for consistency; a subsystem that could
4452 * be a module should still have no callbacks even if the user isn't
4453 * compiling it as one.
4454 */
4455 if (ss->fork || ss->exit)
4456 return -EINVAL;
4457
4458 /*
4459 * an optionally modular subsystem is built-in: we want to do nothing,
4460 * since cgroup_init_subsys will have already taken care of it.
4461 */
4462 if (ss->module == NULL) {
be45c900 4463 /* a sanity check */
e6a1105b
BB
4464 BUG_ON(subsys[ss->subsys_id] != ss);
4465 return 0;
4466 }
4467
8e3f6541
TH
4468 /* init base cftset */
4469 cgroup_init_cftsets(ss);
4470
e6a1105b 4471 mutex_lock(&cgroup_mutex);
8a8e04df 4472 subsys[ss->subsys_id] = ss;
e6a1105b
BB
4473
4474 /*
92fb9748
TH
4475 * no ss->css_alloc seems to need anything important in the ss
4476 * struct, so this can happen first (i.e. before the rootnode
4477 * attachment).
e6a1105b 4478 */
92fb9748 4479 css = ss->css_alloc(dummytop);
e6a1105b
BB
4480 if (IS_ERR(css)) {
4481 /* failure case - need to deassign the subsys[] slot. */
8a8e04df 4482 subsys[ss->subsys_id] = NULL;
e6a1105b
BB
4483 mutex_unlock(&cgroup_mutex);
4484 return PTR_ERR(css);
4485 }
4486
4487 list_add(&ss->sibling, &rootnode.subsys_list);
4488 ss->root = &rootnode;
4489
4490 /* our new subsystem will be attached to the dummy hierarchy. */
4491 init_cgroup_css(css, ss, dummytop);
4492 /* init_idr must be after init_cgroup_css because it sets css->id. */
4493 if (ss->use_id) {
d19e19de
TH
4494 ret = cgroup_init_idr(ss, css);
4495 if (ret)
4496 goto err_unload;
e6a1105b
BB
4497 }
4498
4499 /*
4500 * Now we need to entangle the css into the existing css_sets. unlike
4501 * in cgroup_init_subsys, there are now multiple css_sets, so each one
4502 * will need a new pointer to it; done by iterating the css_set_table.
4503 * furthermore, modifying the existing css_sets will corrupt the hash
4504 * table state, so each changed css_set will need its hash recomputed.
4505 * this is all done under the css_set_lock.
4506 */
4507 write_lock(&css_set_lock);
b67bfe0d 4508 hash_for_each_safe(css_set_table, i, tmp, cg, hlist) {
0ac801fe
LZ
4509 /* skip entries that we already rehashed */
4510 if (cg->subsys[ss->subsys_id])
4511 continue;
4512 /* remove existing entry */
4513 hash_del(&cg->hlist);
4514 /* set new value */
4515 cg->subsys[ss->subsys_id] = css;
4516 /* recompute hash and restore entry */
4517 key = css_set_hash(cg->subsys);
b67bfe0d 4518 hash_add(css_set_table, &cg->hlist, key);
e6a1105b
BB
4519 }
4520 write_unlock(&css_set_lock);
4521
b1929db4
TH
4522 ret = online_css(ss, dummytop);
4523 if (ret)
4524 goto err_unload;
a8638030 4525
e6a1105b
BB
4526 /* success! */
4527 mutex_unlock(&cgroup_mutex);
4528 return 0;
d19e19de
TH
4529
4530err_unload:
4531 mutex_unlock(&cgroup_mutex);
4532 /* @ss can't be mounted here as try_module_get() would fail */
4533 cgroup_unload_subsys(ss);
4534 return ret;
ddbcc7e8 4535}
e6a1105b 4536EXPORT_SYMBOL_GPL(cgroup_load_subsys);
ddbcc7e8 4537
cf5d5941
BB
4538/**
4539 * cgroup_unload_subsys: unload a modular subsystem
4540 * @ss: the subsystem to unload
4541 *
4542 * This function should be called in a modular subsystem's exitcall. When this
4543 * function is invoked, the refcount on the subsystem's module will be 0, so
4544 * the subsystem will not be attached to any hierarchy.
4545 */
4546void cgroup_unload_subsys(struct cgroup_subsys *ss)
4547{
4548 struct cg_cgroup_link *link;
cf5d5941
BB
4549
4550 BUG_ON(ss->module == NULL);
4551
4552 /*
4553 * we shouldn't be called if the subsystem is in use, and the use of
4554 * try_module_get in parse_cgroupfs_options should ensure that it
4555 * doesn't start being used while we're killing it off.
4556 */
4557 BUG_ON(ss->root != &rootnode);
4558
4559 mutex_lock(&cgroup_mutex);
02ae7486 4560
a31f2d3f 4561 offline_css(ss, dummytop);
02ae7486 4562
c897ff68 4563 if (ss->use_id)
02ae7486 4564 idr_destroy(&ss->idr);
02ae7486 4565
cf5d5941 4566 /* deassign the subsys_id */
cf5d5941
BB
4567 subsys[ss->subsys_id] = NULL;
4568
4569 /* remove subsystem from rootnode's list of subsystems */
8d258797 4570 list_del_init(&ss->sibling);
cf5d5941
BB
4571
4572 /*
4573 * disentangle the css from all css_sets attached to the dummytop. as
4574 * in loading, we need to pay our respects to the hashtable gods.
4575 */
4576 write_lock(&css_set_lock);
4577 list_for_each_entry(link, &dummytop->css_sets, cgrp_link_list) {
4578 struct css_set *cg = link->cg;
0ac801fe 4579 unsigned long key;
cf5d5941 4580
0ac801fe 4581 hash_del(&cg->hlist);
cf5d5941 4582 cg->subsys[ss->subsys_id] = NULL;
0ac801fe
LZ
4583 key = css_set_hash(cg->subsys);
4584 hash_add(css_set_table, &cg->hlist, key);
cf5d5941
BB
4585 }
4586 write_unlock(&css_set_lock);
4587
4588 /*
92fb9748
TH
4589 * remove subsystem's css from the dummytop and free it - need to
4590 * free before marking as null because ss->css_free needs the
4591 * cgrp->subsys pointer to find their state. note that this also
4592 * takes care of freeing the css_id.
cf5d5941 4593 */
92fb9748 4594 ss->css_free(dummytop);
cf5d5941
BB
4595 dummytop->subsys[ss->subsys_id] = NULL;
4596
4597 mutex_unlock(&cgroup_mutex);
4598}
4599EXPORT_SYMBOL_GPL(cgroup_unload_subsys);
4600
ddbcc7e8 4601/**
a043e3b2
LZ
4602 * cgroup_init_early - cgroup initialization at system boot
4603 *
4604 * Initialize cgroups at system boot, and initialize any
4605 * subsystems that request early init.
ddbcc7e8
PM
4606 */
4607int __init cgroup_init_early(void)
4608{
4609 int i;
146aa1bd 4610 atomic_set(&init_css_set.refcount, 1);
817929ec
PM
4611 INIT_LIST_HEAD(&init_css_set.cg_links);
4612 INIT_LIST_HEAD(&init_css_set.tasks);
472b1053 4613 INIT_HLIST_NODE(&init_css_set.hlist);
817929ec 4614 css_set_count = 1;
ddbcc7e8 4615 init_cgroup_root(&rootnode);
817929ec
PM
4616 root_count = 1;
4617 init_task.cgroups = &init_css_set;
4618
4619 init_css_set_link.cg = &init_css_set;
7717f7ba 4620 init_css_set_link.cgrp = dummytop;
bd89aabc 4621 list_add(&init_css_set_link.cgrp_link_list,
817929ec
PM
4622 &rootnode.top_cgroup.css_sets);
4623 list_add(&init_css_set_link.cg_link_list,
4624 &init_css_set.cg_links);
ddbcc7e8 4625
be45c900 4626 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
ddbcc7e8
PM
4627 struct cgroup_subsys *ss = subsys[i];
4628
be45c900
DW
4629 /* at bootup time, we don't worry about modular subsystems */
4630 if (!ss || ss->module)
4631 continue;
4632
ddbcc7e8
PM
4633 BUG_ON(!ss->name);
4634 BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
92fb9748
TH
4635 BUG_ON(!ss->css_alloc);
4636 BUG_ON(!ss->css_free);
ddbcc7e8 4637 if (ss->subsys_id != i) {
cfe36bde 4638 printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
ddbcc7e8
PM
4639 ss->name, ss->subsys_id);
4640 BUG();
4641 }
4642
4643 if (ss->early_init)
4644 cgroup_init_subsys(ss);
4645 }
4646 return 0;
4647}
4648
4649/**
a043e3b2
LZ
4650 * cgroup_init - cgroup initialization
4651 *
4652 * Register cgroup filesystem and /proc file, and initialize
4653 * any subsystems that didn't request early init.
ddbcc7e8
PM
4654 */
4655int __init cgroup_init(void)
4656{
4657 int err;
4658 int i;
0ac801fe 4659 unsigned long key;
a424316c
PM
4660
4661 err = bdi_init(&cgroup_backing_dev_info);
4662 if (err)
4663 return err;
ddbcc7e8 4664
be45c900 4665 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
ddbcc7e8 4666 struct cgroup_subsys *ss = subsys[i];
be45c900
DW
4667
4668 /* at bootup time, we don't worry about modular subsystems */
4669 if (!ss || ss->module)
4670 continue;
ddbcc7e8
PM
4671 if (!ss->early_init)
4672 cgroup_init_subsys(ss);
38460b48 4673 if (ss->use_id)
e6a1105b 4674 cgroup_init_idr(ss, init_css_set.subsys[ss->subsys_id]);
ddbcc7e8
PM
4675 }
4676
472b1053 4677 /* Add init_css_set to the hash table */
0ac801fe
LZ
4678 key = css_set_hash(init_css_set.subsys);
4679 hash_add(css_set_table, &init_css_set.hlist, key);
fa3ca07e
TH
4680
4681 /* allocate id for the dummy hierarchy */
54e7b4eb
TH
4682 mutex_lock(&cgroup_mutex);
4683 mutex_lock(&cgroup_root_mutex);
4684
fa3ca07e 4685 BUG_ON(cgroup_init_root_id(&rootnode));
676db4af 4686
54e7b4eb
TH
4687 mutex_unlock(&cgroup_root_mutex);
4688 mutex_unlock(&cgroup_mutex);
4689
676db4af
GKH
4690 cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
4691 if (!cgroup_kobj) {
4692 err = -ENOMEM;
4693 goto out;
4694 }
4695
ddbcc7e8 4696 err = register_filesystem(&cgroup_fs_type);
676db4af
GKH
4697 if (err < 0) {
4698 kobject_put(cgroup_kobj);
ddbcc7e8 4699 goto out;
676db4af 4700 }
ddbcc7e8 4701
46ae220b 4702 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
a424316c 4703
ddbcc7e8 4704out:
a424316c
PM
4705 if (err)
4706 bdi_destroy(&cgroup_backing_dev_info);
4707
ddbcc7e8
PM
4708 return err;
4709}
b4f48b63 4710
a424316c
PM
4711/*
4712 * proc_cgroup_show()
4713 * - Print task's cgroup paths into seq_file, one line for each hierarchy
4714 * - Used for /proc/<pid>/cgroup.
4715 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
4716 * doesn't really matter if tsk->cgroup changes after we read it,
956db3ca 4717 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
a424316c
PM
4718 * anyway. No need to check that tsk->cgroup != NULL, thanks to
4719 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
4720 * cgroup to top_cgroup.
4721 */
4722
4723/* TODO: Use a proper seq_file iterator */
8d8b97ba 4724int proc_cgroup_show(struct seq_file *m, void *v)
a424316c
PM
4725{
4726 struct pid *pid;
4727 struct task_struct *tsk;
4728 char *buf;
4729 int retval;
4730 struct cgroupfs_root *root;
4731
4732 retval = -ENOMEM;
4733 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4734 if (!buf)
4735 goto out;
4736
4737 retval = -ESRCH;
4738 pid = m->private;
4739 tsk = get_pid_task(pid, PIDTYPE_PID);
4740 if (!tsk)
4741 goto out_free;
4742
4743 retval = 0;
4744
4745 mutex_lock(&cgroup_mutex);
4746
e5f6a860 4747 for_each_active_root(root) {
a424316c 4748 struct cgroup_subsys *ss;
bd89aabc 4749 struct cgroup *cgrp;
a424316c
PM
4750 int count = 0;
4751
2c6ab6d2 4752 seq_printf(m, "%d:", root->hierarchy_id);
a424316c
PM
4753 for_each_subsys(root, ss)
4754 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
c6d57f33
PM
4755 if (strlen(root->name))
4756 seq_printf(m, "%sname=%s", count ? "," : "",
4757 root->name);
a424316c 4758 seq_putc(m, ':');
7717f7ba 4759 cgrp = task_cgroup_from_root(tsk, root);
bd89aabc 4760 retval = cgroup_path(cgrp, buf, PAGE_SIZE);
a424316c
PM
4761 if (retval < 0)
4762 goto out_unlock;
4763 seq_puts(m, buf);
4764 seq_putc(m, '\n');
4765 }
4766
4767out_unlock:
4768 mutex_unlock(&cgroup_mutex);
4769 put_task_struct(tsk);
4770out_free:
4771 kfree(buf);
4772out:
4773 return retval;
4774}
4775
a424316c
PM
4776/* Display information about each subsystem and each hierarchy */
4777static int proc_cgroupstats_show(struct seq_file *m, void *v)
4778{
4779 int i;
a424316c 4780
8bab8dde 4781 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
aae8aab4
BB
4782 /*
4783 * ideally we don't want subsystems moving around while we do this.
4784 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
4785 * subsys/hierarchy state.
4786 */
a424316c 4787 mutex_lock(&cgroup_mutex);
a424316c
PM
4788 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
4789 struct cgroup_subsys *ss = subsys[i];
aae8aab4
BB
4790 if (ss == NULL)
4791 continue;
2c6ab6d2
PM
4792 seq_printf(m, "%s\t%d\t%d\t%d\n",
4793 ss->name, ss->root->hierarchy_id,
8bab8dde 4794 ss->root->number_of_cgroups, !ss->disabled);
a424316c
PM
4795 }
4796 mutex_unlock(&cgroup_mutex);
4797 return 0;
4798}
4799
4800static int cgroupstats_open(struct inode *inode, struct file *file)
4801{
9dce07f1 4802 return single_open(file, proc_cgroupstats_show, NULL);
a424316c
PM
4803}
4804
828c0950 4805static const struct file_operations proc_cgroupstats_operations = {
a424316c
PM
4806 .open = cgroupstats_open,
4807 .read = seq_read,
4808 .llseek = seq_lseek,
4809 .release = single_release,
4810};
4811
b4f48b63
PM
4812/**
4813 * cgroup_fork - attach newly forked task to its parents cgroup.
a043e3b2 4814 * @child: pointer to task_struct of forking parent process.
b4f48b63
PM
4815 *
4816 * Description: A task inherits its parent's cgroup at fork().
4817 *
4818 * A pointer to the shared css_set was automatically copied in
4819 * fork.c by dup_task_struct(). However, we ignore that copy, since
9bb71308
TH
4820 * it was not made under the protection of RCU or cgroup_mutex, so
4821 * might no longer be a valid cgroup pointer. cgroup_attach_task() might
4822 * have already changed current->cgroups, allowing the previously
4823 * referenced cgroup group to be removed and freed.
b4f48b63
PM
4824 *
4825 * At the point that cgroup_fork() is called, 'current' is the parent
4826 * task, and the passed argument 'child' points to the child task.
4827 */
4828void cgroup_fork(struct task_struct *child)
4829{
9bb71308 4830 task_lock(current);
817929ec
PM
4831 child->cgroups = current->cgroups;
4832 get_css_set(child->cgroups);
9bb71308 4833 task_unlock(current);
817929ec 4834 INIT_LIST_HEAD(&child->cg_list);
b4f48b63
PM
4835}
4836
817929ec 4837/**
a043e3b2
LZ
4838 * cgroup_post_fork - called on a new task after adding it to the task list
4839 * @child: the task in question
4840 *
5edee61e
TH
4841 * Adds the task to the list running through its css_set if necessary and
4842 * call the subsystem fork() callbacks. Has to be after the task is
4843 * visible on the task list in case we race with the first call to
4844 * cgroup_iter_start() - to guarantee that the new task ends up on its
4845 * list.
a043e3b2 4846 */
817929ec
PM
4847void cgroup_post_fork(struct task_struct *child)
4848{
5edee61e
TH
4849 int i;
4850
3ce3230a
FW
4851 /*
4852 * use_task_css_set_links is set to 1 before we walk the tasklist
4853 * under the tasklist_lock and we read it here after we added the child
4854 * to the tasklist under the tasklist_lock as well. If the child wasn't
4855 * yet in the tasklist when we walked through it from
4856 * cgroup_enable_task_cg_lists(), then use_task_css_set_links value
4857 * should be visible now due to the paired locking and barriers implied
4858 * by LOCK/UNLOCK: it is written before the tasklist_lock unlock
4859 * in cgroup_enable_task_cg_lists() and read here after the tasklist_lock
4860 * lock on fork.
4861 */
817929ec
PM
4862 if (use_task_css_set_links) {
4863 write_lock(&css_set_lock);
d8783832
TH
4864 task_lock(child);
4865 if (list_empty(&child->cg_list))
817929ec 4866 list_add(&child->cg_list, &child->cgroups->tasks);
d8783832 4867 task_unlock(child);
817929ec
PM
4868 write_unlock(&css_set_lock);
4869 }
5edee61e
TH
4870
4871 /*
4872 * Call ss->fork(). This must happen after @child is linked on
4873 * css_set; otherwise, @child might change state between ->fork()
4874 * and addition to css_set.
4875 */
4876 if (need_forkexit_callback) {
7d8e0bf5
LZ
4877 /*
4878 * fork/exit callbacks are supported only for builtin
4879 * subsystems, and the builtin section of the subsys
4880 * array is immutable, so we don't need to lock the
4881 * subsys array here. On the other hand, modular section
4882 * of the array can be freed at module unload, so we
4883 * can't touch that.
4884 */
4885 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
5edee61e
TH
4886 struct cgroup_subsys *ss = subsys[i];
4887
5edee61e
TH
4888 if (ss->fork)
4889 ss->fork(child);
4890 }
4891 }
817929ec 4892}
5edee61e 4893
b4f48b63
PM
4894/**
4895 * cgroup_exit - detach cgroup from exiting task
4896 * @tsk: pointer to task_struct of exiting process
a043e3b2 4897 * @run_callback: run exit callbacks?
b4f48b63
PM
4898 *
4899 * Description: Detach cgroup from @tsk and release it.
4900 *
4901 * Note that cgroups marked notify_on_release force every task in
4902 * them to take the global cgroup_mutex mutex when exiting.
4903 * This could impact scaling on very large systems. Be reluctant to
4904 * use notify_on_release cgroups where very high task exit scaling
4905 * is required on large systems.
4906 *
4907 * the_top_cgroup_hack:
4908 *
4909 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
4910 *
4911 * We call cgroup_exit() while the task is still competent to
4912 * handle notify_on_release(), then leave the task attached to the
4913 * root cgroup in each hierarchy for the remainder of its exit.
4914 *
4915 * To do this properly, we would increment the reference count on
4916 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
4917 * code we would add a second cgroup function call, to drop that
4918 * reference. This would just create an unnecessary hot spot on
4919 * the top_cgroup reference count, to no avail.
4920 *
4921 * Normally, holding a reference to a cgroup without bumping its
4922 * count is unsafe. The cgroup could go away, or someone could
4923 * attach us to a different cgroup, decrementing the count on
4924 * the first cgroup that we never incremented. But in this case,
4925 * top_cgroup isn't going away, and either task has PF_EXITING set,
956db3ca
CW
4926 * which wards off any cgroup_attach_task() attempts, or task is a failed
4927 * fork, never visible to cgroup_attach_task.
b4f48b63
PM
4928 */
4929void cgroup_exit(struct task_struct *tsk, int run_callbacks)
4930{
817929ec 4931 struct css_set *cg;
d41d5a01 4932 int i;
817929ec
PM
4933
4934 /*
4935 * Unlink from the css_set task list if necessary.
4936 * Optimistically check cg_list before taking
4937 * css_set_lock
4938 */
4939 if (!list_empty(&tsk->cg_list)) {
4940 write_lock(&css_set_lock);
4941 if (!list_empty(&tsk->cg_list))
8d258797 4942 list_del_init(&tsk->cg_list);
817929ec
PM
4943 write_unlock(&css_set_lock);
4944 }
4945
b4f48b63
PM
4946 /* Reassign the task to the init_css_set. */
4947 task_lock(tsk);
817929ec
PM
4948 cg = tsk->cgroups;
4949 tsk->cgroups = &init_css_set;
d41d5a01
PZ
4950
4951 if (run_callbacks && need_forkexit_callback) {
7d8e0bf5
LZ
4952 /*
4953 * fork/exit callbacks are supported only for builtin
4954 * subsystems, see cgroup_post_fork() for details.
4955 */
4956 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
d41d5a01 4957 struct cgroup_subsys *ss = subsys[i];
be45c900 4958
d41d5a01
PZ
4959 if (ss->exit) {
4960 struct cgroup *old_cgrp =
4961 rcu_dereference_raw(cg->subsys[i])->cgroup;
4962 struct cgroup *cgrp = task_cgroup(tsk, i);
761b3ef5 4963 ss->exit(cgrp, old_cgrp, tsk);
d41d5a01
PZ
4964 }
4965 }
4966 }
b4f48b63 4967 task_unlock(tsk);
d41d5a01 4968
b5d646f5 4969 put_css_set_taskexit(cg);
b4f48b63 4970}
697f4161 4971
bd89aabc 4972static void check_for_release(struct cgroup *cgrp)
81a6a5cd
PM
4973{
4974 /* All of these checks rely on RCU to keep the cgroup
4975 * structure alive */
f50daa70
LZ
4976 if (cgroup_is_releasable(cgrp) &&
4977 !atomic_read(&cgrp->count) && list_empty(&cgrp->children)) {
4978 /*
4979 * Control Group is currently removeable. If it's not
81a6a5cd 4980 * already queued for a userspace notification, queue
f50daa70
LZ
4981 * it now
4982 */
81a6a5cd 4983 int need_schedule_work = 0;
f50daa70 4984
cdcc136f 4985 raw_spin_lock(&release_list_lock);
bd89aabc
PM
4986 if (!cgroup_is_removed(cgrp) &&
4987 list_empty(&cgrp->release_list)) {
4988 list_add(&cgrp->release_list, &release_list);
81a6a5cd
PM
4989 need_schedule_work = 1;
4990 }
cdcc136f 4991 raw_spin_unlock(&release_list_lock);
81a6a5cd
PM
4992 if (need_schedule_work)
4993 schedule_work(&release_agent_work);
4994 }
4995}
4996
d7b9fff7 4997/* Caller must verify that the css is not for root cgroup */
28b4c27b
TH
4998bool __css_tryget(struct cgroup_subsys_state *css)
4999{
e9316080
TH
5000 while (true) {
5001 int t, v;
28b4c27b 5002
e9316080
TH
5003 v = css_refcnt(css);
5004 t = atomic_cmpxchg(&css->refcnt, v, v + 1);
5005 if (likely(t == v))
28b4c27b 5006 return true;
e9316080
TH
5007 else if (t < 0)
5008 return false;
28b4c27b 5009 cpu_relax();
e9316080 5010 }
28b4c27b
TH
5011}
5012EXPORT_SYMBOL_GPL(__css_tryget);
5013
5014/* Caller must verify that the css is not for root cgroup */
5015void __css_put(struct cgroup_subsys_state *css)
81a6a5cd 5016{
8e3bbf42 5017 int v;
28b4c27b 5018
8e3bbf42 5019 v = css_unbias_refcnt(atomic_dec_return(&css->refcnt));
f50daa70 5020 if (v == 0)
ed957793 5021 schedule_work(&css->dput_work);
81a6a5cd 5022}
67523c48 5023EXPORT_SYMBOL_GPL(__css_put);
81a6a5cd
PM
5024
5025/*
5026 * Notify userspace when a cgroup is released, by running the
5027 * configured release agent with the name of the cgroup (path
5028 * relative to the root of cgroup file system) as the argument.
5029 *
5030 * Most likely, this user command will try to rmdir this cgroup.
5031 *
5032 * This races with the possibility that some other task will be
5033 * attached to this cgroup before it is removed, or that some other
5034 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
5035 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
5036 * unused, and this cgroup will be reprieved from its death sentence,
5037 * to continue to serve a useful existence. Next time it's released,
5038 * we will get notified again, if it still has 'notify_on_release' set.
5039 *
5040 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
5041 * means only wait until the task is successfully execve()'d. The
5042 * separate release agent task is forked by call_usermodehelper(),
5043 * then control in this thread returns here, without waiting for the
5044 * release agent task. We don't bother to wait because the caller of
5045 * this routine has no use for the exit status of the release agent
5046 * task, so no sense holding our caller up for that.
81a6a5cd 5047 */
81a6a5cd
PM
5048static void cgroup_release_agent(struct work_struct *work)
5049{
5050 BUG_ON(work != &release_agent_work);
5051 mutex_lock(&cgroup_mutex);
cdcc136f 5052 raw_spin_lock(&release_list_lock);
81a6a5cd
PM
5053 while (!list_empty(&release_list)) {
5054 char *argv[3], *envp[3];
5055 int i;
e788e066 5056 char *pathbuf = NULL, *agentbuf = NULL;
bd89aabc 5057 struct cgroup *cgrp = list_entry(release_list.next,
81a6a5cd
PM
5058 struct cgroup,
5059 release_list);
bd89aabc 5060 list_del_init(&cgrp->release_list);
cdcc136f 5061 raw_spin_unlock(&release_list_lock);
81a6a5cd 5062 pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
e788e066
PM
5063 if (!pathbuf)
5064 goto continue_free;
5065 if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
5066 goto continue_free;
5067 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
5068 if (!agentbuf)
5069 goto continue_free;
81a6a5cd
PM
5070
5071 i = 0;
e788e066
PM
5072 argv[i++] = agentbuf;
5073 argv[i++] = pathbuf;
81a6a5cd
PM
5074 argv[i] = NULL;
5075
5076 i = 0;
5077 /* minimal command environment */
5078 envp[i++] = "HOME=/";
5079 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
5080 envp[i] = NULL;
5081
5082 /* Drop the lock while we invoke the usermode helper,
5083 * since the exec could involve hitting disk and hence
5084 * be a slow process */
5085 mutex_unlock(&cgroup_mutex);
5086 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
81a6a5cd 5087 mutex_lock(&cgroup_mutex);
e788e066
PM
5088 continue_free:
5089 kfree(pathbuf);
5090 kfree(agentbuf);
cdcc136f 5091 raw_spin_lock(&release_list_lock);
81a6a5cd 5092 }
cdcc136f 5093 raw_spin_unlock(&release_list_lock);
81a6a5cd
PM
5094 mutex_unlock(&cgroup_mutex);
5095}
8bab8dde
PM
5096
5097static int __init cgroup_disable(char *str)
5098{
5099 int i;
5100 char *token;
5101
5102 while ((token = strsep(&str, ",")) != NULL) {
5103 if (!*token)
5104 continue;
be45c900 5105 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
8bab8dde
PM
5106 struct cgroup_subsys *ss = subsys[i];
5107
be45c900
DW
5108 /*
5109 * cgroup_disable, being at boot time, can't
5110 * know about module subsystems, so we don't
5111 * worry about them.
5112 */
5113 if (!ss || ss->module)
5114 continue;
5115
8bab8dde
PM
5116 if (!strcmp(token, ss->name)) {
5117 ss->disabled = 1;
5118 printk(KERN_INFO "Disabling %s control group"
5119 " subsystem\n", ss->name);
5120 break;
5121 }
5122 }
5123 }
5124 return 1;
5125}
5126__setup("cgroup_disable=", cgroup_disable);
38460b48
KH
5127
5128/*
5129 * Functons for CSS ID.
5130 */
5131
5132/*
5133 *To get ID other than 0, this should be called when !cgroup_is_removed().
5134 */
5135unsigned short css_id(struct cgroup_subsys_state *css)
5136{
7f0f1546
KH
5137 struct css_id *cssid;
5138
5139 /*
5140 * This css_id() can return correct value when somone has refcnt
5141 * on this or this is under rcu_read_lock(). Once css->id is allocated,
5142 * it's unchanged until freed.
5143 */
28b4c27b 5144 cssid = rcu_dereference_check(css->id, css_refcnt(css));
38460b48
KH
5145
5146 if (cssid)
5147 return cssid->id;
5148 return 0;
5149}
67523c48 5150EXPORT_SYMBOL_GPL(css_id);
38460b48
KH
5151
5152unsigned short css_depth(struct cgroup_subsys_state *css)
5153{
7f0f1546
KH
5154 struct css_id *cssid;
5155
28b4c27b 5156 cssid = rcu_dereference_check(css->id, css_refcnt(css));
38460b48
KH
5157
5158 if (cssid)
5159 return cssid->depth;
5160 return 0;
5161}
67523c48 5162EXPORT_SYMBOL_GPL(css_depth);
38460b48 5163
747388d7
KH
5164/**
5165 * css_is_ancestor - test "root" css is an ancestor of "child"
5166 * @child: the css to be tested.
5167 * @root: the css supporsed to be an ancestor of the child.
5168 *
5169 * Returns true if "root" is an ancestor of "child" in its hierarchy. Because
91c63734 5170 * this function reads css->id, the caller must hold rcu_read_lock().
747388d7
KH
5171 * But, considering usual usage, the csses should be valid objects after test.
5172 * Assuming that the caller will do some action to the child if this returns
5173 * returns true, the caller must take "child";s reference count.
5174 * If "child" is valid object and this returns true, "root" is valid, too.
5175 */
5176
38460b48 5177bool css_is_ancestor(struct cgroup_subsys_state *child,
0b7f569e 5178 const struct cgroup_subsys_state *root)
38460b48 5179{
747388d7
KH
5180 struct css_id *child_id;
5181 struct css_id *root_id;
38460b48 5182
747388d7 5183 child_id = rcu_dereference(child->id);
91c63734
JW
5184 if (!child_id)
5185 return false;
747388d7 5186 root_id = rcu_dereference(root->id);
91c63734
JW
5187 if (!root_id)
5188 return false;
5189 if (child_id->depth < root_id->depth)
5190 return false;
5191 if (child_id->stack[root_id->depth] != root_id->id)
5192 return false;
5193 return true;
38460b48
KH
5194}
5195
38460b48
KH
5196void free_css_id(struct cgroup_subsys *ss, struct cgroup_subsys_state *css)
5197{
5198 struct css_id *id = css->id;
5199 /* When this is called before css_id initialization, id can be NULL */
5200 if (!id)
5201 return;
5202
5203 BUG_ON(!ss->use_id);
5204
5205 rcu_assign_pointer(id->css, NULL);
5206 rcu_assign_pointer(css->id, NULL);
42aee6c4 5207 spin_lock(&ss->id_lock);
38460b48 5208 idr_remove(&ss->idr, id->id);
42aee6c4 5209 spin_unlock(&ss->id_lock);
025cea99 5210 kfree_rcu(id, rcu_head);
38460b48 5211}
67523c48 5212EXPORT_SYMBOL_GPL(free_css_id);
38460b48
KH
5213
5214/*
5215 * This is called by init or create(). Then, calls to this function are
5216 * always serialized (By cgroup_mutex() at create()).
5217 */
5218
5219static struct css_id *get_new_cssid(struct cgroup_subsys *ss, int depth)
5220{
5221 struct css_id *newid;
d228d9ec 5222 int ret, size;
38460b48
KH
5223
5224 BUG_ON(!ss->use_id);
5225
5226 size = sizeof(*newid) + sizeof(unsigned short) * (depth + 1);
5227 newid = kzalloc(size, GFP_KERNEL);
5228 if (!newid)
5229 return ERR_PTR(-ENOMEM);
d228d9ec
TH
5230
5231 idr_preload(GFP_KERNEL);
42aee6c4 5232 spin_lock(&ss->id_lock);
38460b48 5233 /* Don't use 0. allocates an ID of 1-65535 */
d228d9ec 5234 ret = idr_alloc(&ss->idr, newid, 1, CSS_ID_MAX + 1, GFP_NOWAIT);
42aee6c4 5235 spin_unlock(&ss->id_lock);
d228d9ec 5236 idr_preload_end();
38460b48
KH
5237
5238 /* Returns error when there are no free spaces for new ID.*/
d228d9ec 5239 if (ret < 0)
38460b48 5240 goto err_out;
38460b48 5241
d228d9ec 5242 newid->id = ret;
38460b48
KH
5243 newid->depth = depth;
5244 return newid;
38460b48
KH
5245err_out:
5246 kfree(newid);
d228d9ec 5247 return ERR_PTR(ret);
38460b48
KH
5248
5249}
5250
e6a1105b
BB
5251static int __init_or_module cgroup_init_idr(struct cgroup_subsys *ss,
5252 struct cgroup_subsys_state *rootcss)
38460b48
KH
5253{
5254 struct css_id *newid;
38460b48 5255
42aee6c4 5256 spin_lock_init(&ss->id_lock);
38460b48
KH
5257 idr_init(&ss->idr);
5258
38460b48
KH
5259 newid = get_new_cssid(ss, 0);
5260 if (IS_ERR(newid))
5261 return PTR_ERR(newid);
5262
5263 newid->stack[0] = newid->id;
5264 newid->css = rootcss;
5265 rootcss->id = newid;
5266 return 0;
5267}
5268
5269static int alloc_css_id(struct cgroup_subsys *ss, struct cgroup *parent,
5270 struct cgroup *child)
5271{
5272 int subsys_id, i, depth = 0;
5273 struct cgroup_subsys_state *parent_css, *child_css;
fae9c791 5274 struct css_id *child_id, *parent_id;
38460b48
KH
5275
5276 subsys_id = ss->subsys_id;
5277 parent_css = parent->subsys[subsys_id];
5278 child_css = child->subsys[subsys_id];
38460b48 5279 parent_id = parent_css->id;
94b3dd0f 5280 depth = parent_id->depth + 1;
38460b48
KH
5281
5282 child_id = get_new_cssid(ss, depth);
5283 if (IS_ERR(child_id))
5284 return PTR_ERR(child_id);
5285
5286 for (i = 0; i < depth; i++)
5287 child_id->stack[i] = parent_id->stack[i];
5288 child_id->stack[depth] = child_id->id;
5289 /*
5290 * child_id->css pointer will be set after this cgroup is available
5291 * see cgroup_populate_dir()
5292 */
5293 rcu_assign_pointer(child_css->id, child_id);
5294
5295 return 0;
5296}
5297
5298/**
5299 * css_lookup - lookup css by id
5300 * @ss: cgroup subsys to be looked into.
5301 * @id: the id
5302 *
5303 * Returns pointer to cgroup_subsys_state if there is valid one with id.
5304 * NULL if not. Should be called under rcu_read_lock()
5305 */
5306struct cgroup_subsys_state *css_lookup(struct cgroup_subsys *ss, int id)
5307{
5308 struct css_id *cssid = NULL;
5309
5310 BUG_ON(!ss->use_id);
5311 cssid = idr_find(&ss->idr, id);
5312
5313 if (unlikely(!cssid))
5314 return NULL;
5315
5316 return rcu_dereference(cssid->css);
5317}
67523c48 5318EXPORT_SYMBOL_GPL(css_lookup);
38460b48 5319
e5d1367f
SE
5320/*
5321 * get corresponding css from file open on cgroupfs directory
5322 */
5323struct cgroup_subsys_state *cgroup_css_from_dir(struct file *f, int id)
5324{
5325 struct cgroup *cgrp;
5326 struct inode *inode;
5327 struct cgroup_subsys_state *css;
5328
496ad9aa 5329 inode = file_inode(f);
e5d1367f
SE
5330 /* check in cgroup filesystem dir */
5331 if (inode->i_op != &cgroup_dir_inode_operations)
5332 return ERR_PTR(-EBADF);
5333
5334 if (id < 0 || id >= CGROUP_SUBSYS_COUNT)
5335 return ERR_PTR(-EINVAL);
5336
5337 /* get cgroup */
5338 cgrp = __d_cgrp(f->f_dentry);
5339 css = cgrp->subsys[id];
5340 return css ? css : ERR_PTR(-ENOENT);
5341}
5342
fe693435 5343#ifdef CONFIG_CGROUP_DEBUG
92fb9748 5344static struct cgroup_subsys_state *debug_css_alloc(struct cgroup *cont)
fe693435
PM
5345{
5346 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5347
5348 if (!css)
5349 return ERR_PTR(-ENOMEM);
5350
5351 return css;
5352}
5353
92fb9748 5354static void debug_css_free(struct cgroup *cont)
fe693435
PM
5355{
5356 kfree(cont->subsys[debug_subsys_id]);
5357}
5358
5359static u64 cgroup_refcount_read(struct cgroup *cont, struct cftype *cft)
5360{
5361 return atomic_read(&cont->count);
5362}
5363
5364static u64 debug_taskcount_read(struct cgroup *cont, struct cftype *cft)
5365{
5366 return cgroup_task_count(cont);
5367}
5368
5369static u64 current_css_set_read(struct cgroup *cont, struct cftype *cft)
5370{
5371 return (u64)(unsigned long)current->cgroups;
5372}
5373
5374static u64 current_css_set_refcount_read(struct cgroup *cont,
5375 struct cftype *cft)
5376{
5377 u64 count;
5378
5379 rcu_read_lock();
5380 count = atomic_read(&current->cgroups->refcount);
5381 rcu_read_unlock();
5382 return count;
5383}
5384
7717f7ba
PM
5385static int current_css_set_cg_links_read(struct cgroup *cont,
5386 struct cftype *cft,
5387 struct seq_file *seq)
5388{
5389 struct cg_cgroup_link *link;
5390 struct css_set *cg;
5391
5392 read_lock(&css_set_lock);
5393 rcu_read_lock();
5394 cg = rcu_dereference(current->cgroups);
5395 list_for_each_entry(link, &cg->cg_links, cg_link_list) {
5396 struct cgroup *c = link->cgrp;
5397 const char *name;
5398
5399 if (c->dentry)
5400 name = c->dentry->d_name.name;
5401 else
5402 name = "?";
2c6ab6d2
PM
5403 seq_printf(seq, "Root %d group %s\n",
5404 c->root->hierarchy_id, name);
7717f7ba
PM
5405 }
5406 rcu_read_unlock();
5407 read_unlock(&css_set_lock);
5408 return 0;
5409}
5410
5411#define MAX_TASKS_SHOWN_PER_CSS 25
5412static int cgroup_css_links_read(struct cgroup *cont,
5413 struct cftype *cft,
5414 struct seq_file *seq)
5415{
5416 struct cg_cgroup_link *link;
5417
5418 read_lock(&css_set_lock);
5419 list_for_each_entry(link, &cont->css_sets, cgrp_link_list) {
5420 struct css_set *cg = link->cg;
5421 struct task_struct *task;
5422 int count = 0;
5423 seq_printf(seq, "css_set %p\n", cg);
5424 list_for_each_entry(task, &cg->tasks, cg_list) {
5425 if (count++ > MAX_TASKS_SHOWN_PER_CSS) {
5426 seq_puts(seq, " ...\n");
5427 break;
5428 } else {
5429 seq_printf(seq, " task %d\n",
5430 task_pid_vnr(task));
5431 }
5432 }
5433 }
5434 read_unlock(&css_set_lock);
5435 return 0;
5436}
5437
fe693435
PM
5438static u64 releasable_read(struct cgroup *cgrp, struct cftype *cft)
5439{
5440 return test_bit(CGRP_RELEASABLE, &cgrp->flags);
5441}
5442
5443static struct cftype debug_files[] = {
5444 {
5445 .name = "cgroup_refcount",
5446 .read_u64 = cgroup_refcount_read,
5447 },
5448 {
5449 .name = "taskcount",
5450 .read_u64 = debug_taskcount_read,
5451 },
5452
5453 {
5454 .name = "current_css_set",
5455 .read_u64 = current_css_set_read,
5456 },
5457
5458 {
5459 .name = "current_css_set_refcount",
5460 .read_u64 = current_css_set_refcount_read,
5461 },
5462
7717f7ba
PM
5463 {
5464 .name = "current_css_set_cg_links",
5465 .read_seq_string = current_css_set_cg_links_read,
5466 },
5467
5468 {
5469 .name = "cgroup_css_links",
5470 .read_seq_string = cgroup_css_links_read,
5471 },
5472
fe693435
PM
5473 {
5474 .name = "releasable",
5475 .read_u64 = releasable_read,
5476 },
fe693435 5477
4baf6e33
TH
5478 { } /* terminate */
5479};
fe693435
PM
5480
5481struct cgroup_subsys debug_subsys = {
5482 .name = "debug",
92fb9748
TH
5483 .css_alloc = debug_css_alloc,
5484 .css_free = debug_css_free,
fe693435 5485 .subsys_id = debug_subsys_id,
4baf6e33 5486 .base_cftypes = debug_files,
fe693435
PM
5487};
5488#endif /* CONFIG_CGROUP_DEBUG */