]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - kernel/cgroup.c
cgroup: add sparse annotation to cgroup_iter_start() and cgroup_iter_end()
[mirror_ubuntu-artful-kernel.git] / kernel / cgroup.c
CommitLineData
ddbcc7e8 1/*
ddbcc7e8
PM
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
0dea1168
KS
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
ddbcc7e8
PM
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29#include <linux/cgroup.h>
2ce9738b 30#include <linux/cred.h>
c6d57f33 31#include <linux/ctype.h>
ddbcc7e8
PM
32#include <linux/errno.h>
33#include <linux/fs.h>
2ce9738b 34#include <linux/init_task.h>
ddbcc7e8
PM
35#include <linux/kernel.h>
36#include <linux/list.h>
37#include <linux/mm.h>
38#include <linux/mutex.h>
39#include <linux/mount.h>
40#include <linux/pagemap.h>
a424316c 41#include <linux/proc_fs.h>
ddbcc7e8
PM
42#include <linux/rcupdate.h>
43#include <linux/sched.h>
817929ec 44#include <linux/backing-dev.h>
ddbcc7e8
PM
45#include <linux/seq_file.h>
46#include <linux/slab.h>
47#include <linux/magic.h>
48#include <linux/spinlock.h>
49#include <linux/string.h>
bbcb81d0 50#include <linux/sort.h>
81a6a5cd 51#include <linux/kmod.h>
e6a1105b 52#include <linux/module.h>
846c7bb0
BS
53#include <linux/delayacct.h>
54#include <linux/cgroupstats.h>
472b1053 55#include <linux/hash.h>
3f8206d4 56#include <linux/namei.h>
096b7fe0 57#include <linux/pid_namespace.h>
2c6ab6d2 58#include <linux/idr.h>
d1d9fd33 59#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
0dea1168
KS
60#include <linux/eventfd.h>
61#include <linux/poll.h>
d846687d 62#include <linux/flex_array.h> /* used in cgroup_attach_proc */
846c7bb0 63
60063497 64#include <linux/atomic.h>
ddbcc7e8 65
e25e2cbb
TH
66/*
67 * cgroup_mutex is the master lock. Any modification to cgroup or its
68 * hierarchy must be performed while holding it.
69 *
70 * cgroup_root_mutex nests inside cgroup_mutex and should be held to modify
71 * cgroupfs_root of any cgroup hierarchy - subsys list, flags,
72 * release_agent_path and so on. Modifying requires both cgroup_mutex and
73 * cgroup_root_mutex. Readers can acquire either of the two. This is to
74 * break the following locking order cycle.
75 *
76 * A. cgroup_mutex -> cred_guard_mutex -> s_type->i_mutex_key -> namespace_sem
77 * B. namespace_sem -> cgroup_mutex
78 *
79 * B happens only through cgroup_show_options() and using cgroup_root_mutex
80 * breaks it.
81 */
81a6a5cd 82static DEFINE_MUTEX(cgroup_mutex);
e25e2cbb 83static DEFINE_MUTEX(cgroup_root_mutex);
81a6a5cd 84
aae8aab4
BB
85/*
86 * Generate an array of cgroup subsystem pointers. At boot time, this is
87 * populated up to CGROUP_BUILTIN_SUBSYS_COUNT, and modular subsystems are
88 * registered after that. The mutable section of this array is protected by
89 * cgroup_mutex.
90 */
ddbcc7e8 91#define SUBSYS(_x) &_x ## _subsys,
aae8aab4 92static struct cgroup_subsys *subsys[CGROUP_SUBSYS_COUNT] = {
ddbcc7e8
PM
93#include <linux/cgroup_subsys.h>
94};
95
c6d57f33
PM
96#define MAX_CGROUP_ROOT_NAMELEN 64
97
ddbcc7e8
PM
98/*
99 * A cgroupfs_root represents the root of a cgroup hierarchy,
100 * and may be associated with a superblock to form an active
101 * hierarchy
102 */
103struct cgroupfs_root {
104 struct super_block *sb;
105
106 /*
107 * The bitmask of subsystems intended to be attached to this
108 * hierarchy
109 */
110 unsigned long subsys_bits;
111
2c6ab6d2
PM
112 /* Unique id for this hierarchy. */
113 int hierarchy_id;
114
ddbcc7e8
PM
115 /* The bitmask of subsystems currently attached to this hierarchy */
116 unsigned long actual_subsys_bits;
117
118 /* A list running through the attached subsystems */
119 struct list_head subsys_list;
120
121 /* The root cgroup for this hierarchy */
122 struct cgroup top_cgroup;
123
124 /* Tracks how many cgroups are currently defined in hierarchy.*/
125 int number_of_cgroups;
126
e5f6a860 127 /* A list running through the active hierarchies */
ddbcc7e8
PM
128 struct list_head root_list;
129
130 /* Hierarchy-specific flags */
131 unsigned long flags;
81a6a5cd 132
e788e066 133 /* The path to use for release notifications. */
81a6a5cd 134 char release_agent_path[PATH_MAX];
c6d57f33
PM
135
136 /* The name for this hierarchy - may be empty */
137 char name[MAX_CGROUP_ROOT_NAMELEN];
ddbcc7e8
PM
138};
139
ddbcc7e8
PM
140/*
141 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
142 * subsystems that are otherwise unattached - it never has more than a
143 * single cgroup, and all tasks are part of that cgroup.
144 */
145static struct cgroupfs_root rootnode;
146
38460b48
KH
147/*
148 * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
149 * cgroup_subsys->use_id != 0.
150 */
151#define CSS_ID_MAX (65535)
152struct css_id {
153 /*
154 * The css to which this ID points. This pointer is set to valid value
155 * after cgroup is populated. If cgroup is removed, this will be NULL.
156 * This pointer is expected to be RCU-safe because destroy()
157 * is called after synchronize_rcu(). But for safe use, css_is_removed()
158 * css_tryget() should be used for avoiding race.
159 */
2c392b8c 160 struct cgroup_subsys_state __rcu *css;
38460b48
KH
161 /*
162 * ID of this css.
163 */
164 unsigned short id;
165 /*
166 * Depth in hierarchy which this ID belongs to.
167 */
168 unsigned short depth;
169 /*
170 * ID is freed by RCU. (and lookup routine is RCU safe.)
171 */
172 struct rcu_head rcu_head;
173 /*
174 * Hierarchy of CSS ID belongs to.
175 */
176 unsigned short stack[0]; /* Array of Length (depth+1) */
177};
178
0dea1168 179/*
25985edc 180 * cgroup_event represents events which userspace want to receive.
0dea1168
KS
181 */
182struct cgroup_event {
183 /*
184 * Cgroup which the event belongs to.
185 */
186 struct cgroup *cgrp;
187 /*
188 * Control file which the event associated.
189 */
190 struct cftype *cft;
191 /*
192 * eventfd to signal userspace about the event.
193 */
194 struct eventfd_ctx *eventfd;
195 /*
196 * Each of these stored in a list by the cgroup.
197 */
198 struct list_head list;
199 /*
200 * All fields below needed to unregister event when
201 * userspace closes eventfd.
202 */
203 poll_table pt;
204 wait_queue_head_t *wqh;
205 wait_queue_t wait;
206 struct work_struct remove;
207};
38460b48 208
ddbcc7e8
PM
209/* The list of hierarchy roots */
210
211static LIST_HEAD(roots);
817929ec 212static int root_count;
ddbcc7e8 213
2c6ab6d2
PM
214static DEFINE_IDA(hierarchy_ida);
215static int next_hierarchy_id;
216static DEFINE_SPINLOCK(hierarchy_id_lock);
217
ddbcc7e8
PM
218/* dummytop is a shorthand for the dummy hierarchy's top cgroup */
219#define dummytop (&rootnode.top_cgroup)
220
221/* This flag indicates whether tasks in the fork and exit paths should
a043e3b2
LZ
222 * check for fork/exit handlers to call. This avoids us having to do
223 * extra work in the fork/exit path if none of the subsystems need to
224 * be called.
ddbcc7e8 225 */
8947f9d5 226static int need_forkexit_callback __read_mostly;
ddbcc7e8 227
d11c563d
PM
228#ifdef CONFIG_PROVE_LOCKING
229int cgroup_lock_is_held(void)
230{
231 return lockdep_is_held(&cgroup_mutex);
232}
233#else /* #ifdef CONFIG_PROVE_LOCKING */
234int cgroup_lock_is_held(void)
235{
236 return mutex_is_locked(&cgroup_mutex);
237}
238#endif /* #else #ifdef CONFIG_PROVE_LOCKING */
239
240EXPORT_SYMBOL_GPL(cgroup_lock_is_held);
241
ddbcc7e8 242/* convenient tests for these bits */
bd89aabc 243inline int cgroup_is_removed(const struct cgroup *cgrp)
ddbcc7e8 244{
bd89aabc 245 return test_bit(CGRP_REMOVED, &cgrp->flags);
ddbcc7e8
PM
246}
247
248/* bits in struct cgroupfs_root flags field */
249enum {
250 ROOT_NOPREFIX, /* mounted subsystems have no named prefix */
251};
252
e9685a03 253static int cgroup_is_releasable(const struct cgroup *cgrp)
81a6a5cd
PM
254{
255 const int bits =
bd89aabc
PM
256 (1 << CGRP_RELEASABLE) |
257 (1 << CGRP_NOTIFY_ON_RELEASE);
258 return (cgrp->flags & bits) == bits;
81a6a5cd
PM
259}
260
e9685a03 261static int notify_on_release(const struct cgroup *cgrp)
81a6a5cd 262{
bd89aabc 263 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
81a6a5cd
PM
264}
265
97978e6d
DL
266static int clone_children(const struct cgroup *cgrp)
267{
268 return test_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
269}
270
ddbcc7e8
PM
271/*
272 * for_each_subsys() allows you to iterate on each subsystem attached to
273 * an active hierarchy
274 */
275#define for_each_subsys(_root, _ss) \
276list_for_each_entry(_ss, &_root->subsys_list, sibling)
277
e5f6a860
LZ
278/* for_each_active_root() allows you to iterate across the active hierarchies */
279#define for_each_active_root(_root) \
ddbcc7e8
PM
280list_for_each_entry(_root, &roots, root_list)
281
81a6a5cd
PM
282/* the list of cgroups eligible for automatic release. Protected by
283 * release_list_lock */
284static LIST_HEAD(release_list);
cdcc136f 285static DEFINE_RAW_SPINLOCK(release_list_lock);
81a6a5cd
PM
286static void cgroup_release_agent(struct work_struct *work);
287static DECLARE_WORK(release_agent_work, cgroup_release_agent);
bd89aabc 288static void check_for_release(struct cgroup *cgrp);
81a6a5cd 289
817929ec
PM
290/* Link structure for associating css_set objects with cgroups */
291struct cg_cgroup_link {
292 /*
293 * List running through cg_cgroup_links associated with a
294 * cgroup, anchored on cgroup->css_sets
295 */
bd89aabc 296 struct list_head cgrp_link_list;
7717f7ba 297 struct cgroup *cgrp;
817929ec
PM
298 /*
299 * List running through cg_cgroup_links pointing at a
300 * single css_set object, anchored on css_set->cg_links
301 */
302 struct list_head cg_link_list;
303 struct css_set *cg;
304};
305
306/* The default css_set - used by init and its children prior to any
307 * hierarchies being mounted. It contains a pointer to the root state
308 * for each subsystem. Also used to anchor the list of css_sets. Not
309 * reference-counted, to improve performance when child cgroups
310 * haven't been created.
311 */
312
313static struct css_set init_css_set;
314static struct cg_cgroup_link init_css_set_link;
315
e6a1105b
BB
316static int cgroup_init_idr(struct cgroup_subsys *ss,
317 struct cgroup_subsys_state *css);
38460b48 318
817929ec
PM
319/* css_set_lock protects the list of css_set objects, and the
320 * chain of tasks off each css_set. Nests outside task->alloc_lock
321 * due to cgroup_iter_start() */
322static DEFINE_RWLOCK(css_set_lock);
323static int css_set_count;
324
7717f7ba
PM
325/*
326 * hash table for cgroup groups. This improves the performance to find
327 * an existing css_set. This hash doesn't (currently) take into
328 * account cgroups in empty hierarchies.
329 */
472b1053
LZ
330#define CSS_SET_HASH_BITS 7
331#define CSS_SET_TABLE_SIZE (1 << CSS_SET_HASH_BITS)
332static struct hlist_head css_set_table[CSS_SET_TABLE_SIZE];
333
334static struct hlist_head *css_set_hash(struct cgroup_subsys_state *css[])
335{
336 int i;
337 int index;
338 unsigned long tmp = 0UL;
339
340 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++)
341 tmp += (unsigned long)css[i];
342 tmp = (tmp >> 16) ^ tmp;
343
344 index = hash_long(tmp, CSS_SET_HASH_BITS);
345
346 return &css_set_table[index];
347}
348
817929ec
PM
349/* We don't maintain the lists running through each css_set to its
350 * task until after the first call to cgroup_iter_start(). This
351 * reduces the fork()/exit() overhead for people who have cgroups
352 * compiled into their kernel but not actually in use */
8947f9d5 353static int use_task_css_set_links __read_mostly;
817929ec 354
2c6ab6d2 355static void __put_css_set(struct css_set *cg, int taskexit)
b4f48b63 356{
71cbb949
KM
357 struct cg_cgroup_link *link;
358 struct cg_cgroup_link *saved_link;
146aa1bd
LJ
359 /*
360 * Ensure that the refcount doesn't hit zero while any readers
361 * can see it. Similar to atomic_dec_and_lock(), but for an
362 * rwlock
363 */
364 if (atomic_add_unless(&cg->refcount, -1, 1))
365 return;
366 write_lock(&css_set_lock);
367 if (!atomic_dec_and_test(&cg->refcount)) {
368 write_unlock(&css_set_lock);
369 return;
370 }
81a6a5cd 371
2c6ab6d2
PM
372 /* This css_set is dead. unlink it and release cgroup refcounts */
373 hlist_del(&cg->hlist);
374 css_set_count--;
375
376 list_for_each_entry_safe(link, saved_link, &cg->cg_links,
377 cg_link_list) {
378 struct cgroup *cgrp = link->cgrp;
379 list_del(&link->cg_link_list);
380 list_del(&link->cgrp_link_list);
bd89aabc
PM
381 if (atomic_dec_and_test(&cgrp->count) &&
382 notify_on_release(cgrp)) {
81a6a5cd 383 if (taskexit)
bd89aabc
PM
384 set_bit(CGRP_RELEASABLE, &cgrp->flags);
385 check_for_release(cgrp);
81a6a5cd 386 }
2c6ab6d2
PM
387
388 kfree(link);
81a6a5cd 389 }
2c6ab6d2
PM
390
391 write_unlock(&css_set_lock);
30088ad8 392 kfree_rcu(cg, rcu_head);
b4f48b63
PM
393}
394
817929ec
PM
395/*
396 * refcounted get/put for css_set objects
397 */
398static inline void get_css_set(struct css_set *cg)
399{
146aa1bd 400 atomic_inc(&cg->refcount);
817929ec
PM
401}
402
403static inline void put_css_set(struct css_set *cg)
404{
146aa1bd 405 __put_css_set(cg, 0);
817929ec
PM
406}
407
81a6a5cd
PM
408static inline void put_css_set_taskexit(struct css_set *cg)
409{
146aa1bd 410 __put_css_set(cg, 1);
81a6a5cd
PM
411}
412
7717f7ba
PM
413/*
414 * compare_css_sets - helper function for find_existing_css_set().
415 * @cg: candidate css_set being tested
416 * @old_cg: existing css_set for a task
417 * @new_cgrp: cgroup that's being entered by the task
418 * @template: desired set of css pointers in css_set (pre-calculated)
419 *
420 * Returns true if "cg" matches "old_cg" except for the hierarchy
421 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
422 */
423static bool compare_css_sets(struct css_set *cg,
424 struct css_set *old_cg,
425 struct cgroup *new_cgrp,
426 struct cgroup_subsys_state *template[])
427{
428 struct list_head *l1, *l2;
429
430 if (memcmp(template, cg->subsys, sizeof(cg->subsys))) {
431 /* Not all subsystems matched */
432 return false;
433 }
434
435 /*
436 * Compare cgroup pointers in order to distinguish between
437 * different cgroups in heirarchies with no subsystems. We
438 * could get by with just this check alone (and skip the
439 * memcmp above) but on most setups the memcmp check will
440 * avoid the need for this more expensive check on almost all
441 * candidates.
442 */
443
444 l1 = &cg->cg_links;
445 l2 = &old_cg->cg_links;
446 while (1) {
447 struct cg_cgroup_link *cgl1, *cgl2;
448 struct cgroup *cg1, *cg2;
449
450 l1 = l1->next;
451 l2 = l2->next;
452 /* See if we reached the end - both lists are equal length. */
453 if (l1 == &cg->cg_links) {
454 BUG_ON(l2 != &old_cg->cg_links);
455 break;
456 } else {
457 BUG_ON(l2 == &old_cg->cg_links);
458 }
459 /* Locate the cgroups associated with these links. */
460 cgl1 = list_entry(l1, struct cg_cgroup_link, cg_link_list);
461 cgl2 = list_entry(l2, struct cg_cgroup_link, cg_link_list);
462 cg1 = cgl1->cgrp;
463 cg2 = cgl2->cgrp;
464 /* Hierarchies should be linked in the same order. */
465 BUG_ON(cg1->root != cg2->root);
466
467 /*
468 * If this hierarchy is the hierarchy of the cgroup
469 * that's changing, then we need to check that this
470 * css_set points to the new cgroup; if it's any other
471 * hierarchy, then this css_set should point to the
472 * same cgroup as the old css_set.
473 */
474 if (cg1->root == new_cgrp->root) {
475 if (cg1 != new_cgrp)
476 return false;
477 } else {
478 if (cg1 != cg2)
479 return false;
480 }
481 }
482 return true;
483}
484
817929ec
PM
485/*
486 * find_existing_css_set() is a helper for
487 * find_css_set(), and checks to see whether an existing
472b1053 488 * css_set is suitable.
817929ec
PM
489 *
490 * oldcg: the cgroup group that we're using before the cgroup
491 * transition
492 *
bd89aabc 493 * cgrp: the cgroup that we're moving into
817929ec
PM
494 *
495 * template: location in which to build the desired set of subsystem
496 * state objects for the new cgroup group
497 */
817929ec
PM
498static struct css_set *find_existing_css_set(
499 struct css_set *oldcg,
bd89aabc 500 struct cgroup *cgrp,
817929ec 501 struct cgroup_subsys_state *template[])
b4f48b63
PM
502{
503 int i;
bd89aabc 504 struct cgroupfs_root *root = cgrp->root;
472b1053
LZ
505 struct hlist_head *hhead;
506 struct hlist_node *node;
507 struct css_set *cg;
817929ec 508
aae8aab4
BB
509 /*
510 * Build the set of subsystem state objects that we want to see in the
511 * new css_set. while subsystems can change globally, the entries here
512 * won't change, so no need for locking.
513 */
817929ec 514 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
8d53d55d 515 if (root->subsys_bits & (1UL << i)) {
817929ec
PM
516 /* Subsystem is in this hierarchy. So we want
517 * the subsystem state from the new
518 * cgroup */
bd89aabc 519 template[i] = cgrp->subsys[i];
817929ec
PM
520 } else {
521 /* Subsystem is not in this hierarchy, so we
522 * don't want to change the subsystem state */
523 template[i] = oldcg->subsys[i];
524 }
525 }
526
472b1053
LZ
527 hhead = css_set_hash(template);
528 hlist_for_each_entry(cg, node, hhead, hlist) {
7717f7ba
PM
529 if (!compare_css_sets(cg, oldcg, cgrp, template))
530 continue;
531
532 /* This css_set matches what we need */
533 return cg;
472b1053 534 }
817929ec
PM
535
536 /* No existing cgroup group matched */
537 return NULL;
538}
539
36553434
LZ
540static void free_cg_links(struct list_head *tmp)
541{
542 struct cg_cgroup_link *link;
543 struct cg_cgroup_link *saved_link;
544
545 list_for_each_entry_safe(link, saved_link, tmp, cgrp_link_list) {
546 list_del(&link->cgrp_link_list);
547 kfree(link);
548 }
549}
550
817929ec
PM
551/*
552 * allocate_cg_links() allocates "count" cg_cgroup_link structures
bd89aabc 553 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
817929ec
PM
554 * success or a negative error
555 */
817929ec
PM
556static int allocate_cg_links(int count, struct list_head *tmp)
557{
558 struct cg_cgroup_link *link;
559 int i;
560 INIT_LIST_HEAD(tmp);
561 for (i = 0; i < count; i++) {
562 link = kmalloc(sizeof(*link), GFP_KERNEL);
563 if (!link) {
36553434 564 free_cg_links(tmp);
817929ec
PM
565 return -ENOMEM;
566 }
bd89aabc 567 list_add(&link->cgrp_link_list, tmp);
817929ec
PM
568 }
569 return 0;
570}
571
c12f65d4
LZ
572/**
573 * link_css_set - a helper function to link a css_set to a cgroup
574 * @tmp_cg_links: cg_cgroup_link objects allocated by allocate_cg_links()
575 * @cg: the css_set to be linked
576 * @cgrp: the destination cgroup
577 */
578static void link_css_set(struct list_head *tmp_cg_links,
579 struct css_set *cg, struct cgroup *cgrp)
580{
581 struct cg_cgroup_link *link;
582
583 BUG_ON(list_empty(tmp_cg_links));
584 link = list_first_entry(tmp_cg_links, struct cg_cgroup_link,
585 cgrp_link_list);
586 link->cg = cg;
7717f7ba 587 link->cgrp = cgrp;
2c6ab6d2 588 atomic_inc(&cgrp->count);
c12f65d4 589 list_move(&link->cgrp_link_list, &cgrp->css_sets);
7717f7ba
PM
590 /*
591 * Always add links to the tail of the list so that the list
592 * is sorted by order of hierarchy creation
593 */
594 list_add_tail(&link->cg_link_list, &cg->cg_links);
c12f65d4
LZ
595}
596
817929ec
PM
597/*
598 * find_css_set() takes an existing cgroup group and a
599 * cgroup object, and returns a css_set object that's
600 * equivalent to the old group, but with the given cgroup
601 * substituted into the appropriate hierarchy. Must be called with
602 * cgroup_mutex held
603 */
817929ec 604static struct css_set *find_css_set(
bd89aabc 605 struct css_set *oldcg, struct cgroup *cgrp)
817929ec
PM
606{
607 struct css_set *res;
608 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
817929ec
PM
609
610 struct list_head tmp_cg_links;
817929ec 611
472b1053 612 struct hlist_head *hhead;
7717f7ba 613 struct cg_cgroup_link *link;
472b1053 614
817929ec
PM
615 /* First see if we already have a cgroup group that matches
616 * the desired set */
7e9abd89 617 read_lock(&css_set_lock);
bd89aabc 618 res = find_existing_css_set(oldcg, cgrp, template);
817929ec
PM
619 if (res)
620 get_css_set(res);
7e9abd89 621 read_unlock(&css_set_lock);
817929ec
PM
622
623 if (res)
624 return res;
625
626 res = kmalloc(sizeof(*res), GFP_KERNEL);
627 if (!res)
628 return NULL;
629
630 /* Allocate all the cg_cgroup_link objects that we'll need */
631 if (allocate_cg_links(root_count, &tmp_cg_links) < 0) {
632 kfree(res);
633 return NULL;
634 }
635
146aa1bd 636 atomic_set(&res->refcount, 1);
817929ec
PM
637 INIT_LIST_HEAD(&res->cg_links);
638 INIT_LIST_HEAD(&res->tasks);
472b1053 639 INIT_HLIST_NODE(&res->hlist);
817929ec
PM
640
641 /* Copy the set of subsystem state objects generated in
642 * find_existing_css_set() */
643 memcpy(res->subsys, template, sizeof(res->subsys));
644
645 write_lock(&css_set_lock);
646 /* Add reference counts and links from the new css_set. */
7717f7ba
PM
647 list_for_each_entry(link, &oldcg->cg_links, cg_link_list) {
648 struct cgroup *c = link->cgrp;
649 if (c->root == cgrp->root)
650 c = cgrp;
651 link_css_set(&tmp_cg_links, res, c);
652 }
817929ec
PM
653
654 BUG_ON(!list_empty(&tmp_cg_links));
655
817929ec 656 css_set_count++;
472b1053
LZ
657
658 /* Add this cgroup group to the hash table */
659 hhead = css_set_hash(res->subsys);
660 hlist_add_head(&res->hlist, hhead);
661
817929ec
PM
662 write_unlock(&css_set_lock);
663
664 return res;
b4f48b63
PM
665}
666
7717f7ba
PM
667/*
668 * Return the cgroup for "task" from the given hierarchy. Must be
669 * called with cgroup_mutex held.
670 */
671static struct cgroup *task_cgroup_from_root(struct task_struct *task,
672 struct cgroupfs_root *root)
673{
674 struct css_set *css;
675 struct cgroup *res = NULL;
676
677 BUG_ON(!mutex_is_locked(&cgroup_mutex));
678 read_lock(&css_set_lock);
679 /*
680 * No need to lock the task - since we hold cgroup_mutex the
681 * task can't change groups, so the only thing that can happen
682 * is that it exits and its css is set back to init_css_set.
683 */
684 css = task->cgroups;
685 if (css == &init_css_set) {
686 res = &root->top_cgroup;
687 } else {
688 struct cg_cgroup_link *link;
689 list_for_each_entry(link, &css->cg_links, cg_link_list) {
690 struct cgroup *c = link->cgrp;
691 if (c->root == root) {
692 res = c;
693 break;
694 }
695 }
696 }
697 read_unlock(&css_set_lock);
698 BUG_ON(!res);
699 return res;
700}
701
ddbcc7e8
PM
702/*
703 * There is one global cgroup mutex. We also require taking
704 * task_lock() when dereferencing a task's cgroup subsys pointers.
705 * See "The task_lock() exception", at the end of this comment.
706 *
707 * A task must hold cgroup_mutex to modify cgroups.
708 *
709 * Any task can increment and decrement the count field without lock.
710 * So in general, code holding cgroup_mutex can't rely on the count
711 * field not changing. However, if the count goes to zero, then only
956db3ca 712 * cgroup_attach_task() can increment it again. Because a count of zero
ddbcc7e8
PM
713 * means that no tasks are currently attached, therefore there is no
714 * way a task attached to that cgroup can fork (the other way to
715 * increment the count). So code holding cgroup_mutex can safely
716 * assume that if the count is zero, it will stay zero. Similarly, if
717 * a task holds cgroup_mutex on a cgroup with zero count, it
718 * knows that the cgroup won't be removed, as cgroup_rmdir()
719 * needs that mutex.
720 *
ddbcc7e8
PM
721 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
722 * (usually) take cgroup_mutex. These are the two most performance
723 * critical pieces of code here. The exception occurs on cgroup_exit(),
724 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
725 * is taken, and if the cgroup count is zero, a usermode call made
a043e3b2
LZ
726 * to the release agent with the name of the cgroup (path relative to
727 * the root of cgroup file system) as the argument.
ddbcc7e8
PM
728 *
729 * A cgroup can only be deleted if both its 'count' of using tasks
730 * is zero, and its list of 'children' cgroups is empty. Since all
731 * tasks in the system use _some_ cgroup, and since there is always at
732 * least one task in the system (init, pid == 1), therefore, top_cgroup
733 * always has either children cgroups and/or using tasks. So we don't
734 * need a special hack to ensure that top_cgroup cannot be deleted.
735 *
736 * The task_lock() exception
737 *
738 * The need for this exception arises from the action of
956db3ca 739 * cgroup_attach_task(), which overwrites one tasks cgroup pointer with
a043e3b2 740 * another. It does so using cgroup_mutex, however there are
ddbcc7e8
PM
741 * several performance critical places that need to reference
742 * task->cgroup without the expense of grabbing a system global
743 * mutex. Therefore except as noted below, when dereferencing or, as
956db3ca 744 * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use
ddbcc7e8
PM
745 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
746 * the task_struct routinely used for such matters.
747 *
748 * P.S. One more locking exception. RCU is used to guard the
956db3ca 749 * update of a tasks cgroup pointer by cgroup_attach_task()
ddbcc7e8
PM
750 */
751
ddbcc7e8
PM
752/**
753 * cgroup_lock - lock out any changes to cgroup structures
754 *
755 */
ddbcc7e8
PM
756void cgroup_lock(void)
757{
758 mutex_lock(&cgroup_mutex);
759}
67523c48 760EXPORT_SYMBOL_GPL(cgroup_lock);
ddbcc7e8
PM
761
762/**
763 * cgroup_unlock - release lock on cgroup changes
764 *
765 * Undo the lock taken in a previous cgroup_lock() call.
766 */
ddbcc7e8
PM
767void cgroup_unlock(void)
768{
769 mutex_unlock(&cgroup_mutex);
770}
67523c48 771EXPORT_SYMBOL_GPL(cgroup_unlock);
ddbcc7e8
PM
772
773/*
774 * A couple of forward declarations required, due to cyclic reference loop:
775 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
776 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
777 * -> cgroup_mkdir.
778 */
779
780static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode);
c72a04e3 781static struct dentry *cgroup_lookup(struct inode *, struct dentry *, struct nameidata *);
ddbcc7e8 782static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
bd89aabc 783static int cgroup_populate_dir(struct cgroup *cgrp);
6e1d5dcc 784static const struct inode_operations cgroup_dir_inode_operations;
828c0950 785static const struct file_operations proc_cgroupstats_operations;
a424316c
PM
786
787static struct backing_dev_info cgroup_backing_dev_info = {
d993831f 788 .name = "cgroup",
e4ad08fe 789 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK,
a424316c 790};
ddbcc7e8 791
38460b48
KH
792static int alloc_css_id(struct cgroup_subsys *ss,
793 struct cgroup *parent, struct cgroup *child);
794
ddbcc7e8
PM
795static struct inode *cgroup_new_inode(mode_t mode, struct super_block *sb)
796{
797 struct inode *inode = new_inode(sb);
ddbcc7e8
PM
798
799 if (inode) {
85fe4025 800 inode->i_ino = get_next_ino();
ddbcc7e8 801 inode->i_mode = mode;
76aac0e9
DH
802 inode->i_uid = current_fsuid();
803 inode->i_gid = current_fsgid();
ddbcc7e8
PM
804 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
805 inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
806 }
807 return inode;
808}
809
4fca88c8
KH
810/*
811 * Call subsys's pre_destroy handler.
812 * This is called before css refcnt check.
813 */
ec64f515 814static int cgroup_call_pre_destroy(struct cgroup *cgrp)
4fca88c8
KH
815{
816 struct cgroup_subsys *ss;
ec64f515
KH
817 int ret = 0;
818
4fca88c8 819 for_each_subsys(cgrp->root, ss)
ec64f515
KH
820 if (ss->pre_destroy) {
821 ret = ss->pre_destroy(ss, cgrp);
822 if (ret)
4ab78683 823 break;
ec64f515 824 }
0dea1168 825
ec64f515 826 return ret;
4fca88c8
KH
827}
828
ddbcc7e8
PM
829static void cgroup_diput(struct dentry *dentry, struct inode *inode)
830{
831 /* is dentry a directory ? if so, kfree() associated cgroup */
832 if (S_ISDIR(inode->i_mode)) {
bd89aabc 833 struct cgroup *cgrp = dentry->d_fsdata;
8dc4f3e1 834 struct cgroup_subsys *ss;
bd89aabc 835 BUG_ON(!(cgroup_is_removed(cgrp)));
81a6a5cd
PM
836 /* It's possible for external users to be holding css
837 * reference counts on a cgroup; css_put() needs to
838 * be able to access the cgroup after decrementing
839 * the reference count in order to know if it needs to
840 * queue the cgroup to be handled by the release
841 * agent */
842 synchronize_rcu();
8dc4f3e1
PM
843
844 mutex_lock(&cgroup_mutex);
845 /*
846 * Release the subsystem state objects.
847 */
75139b82
LZ
848 for_each_subsys(cgrp->root, ss)
849 ss->destroy(ss, cgrp);
8dc4f3e1
PM
850
851 cgrp->root->number_of_cgroups--;
852 mutex_unlock(&cgroup_mutex);
853
a47295e6
PM
854 /*
855 * Drop the active superblock reference that we took when we
856 * created the cgroup
857 */
8dc4f3e1
PM
858 deactivate_super(cgrp->root->sb);
859
72a8cb30
BB
860 /*
861 * if we're getting rid of the cgroup, refcount should ensure
862 * that there are no pidlists left.
863 */
864 BUG_ON(!list_empty(&cgrp->pidlists));
865
f2da1c40 866 kfree_rcu(cgrp, rcu_head);
ddbcc7e8
PM
867 }
868 iput(inode);
869}
870
c72a04e3
AV
871static int cgroup_delete(const struct dentry *d)
872{
873 return 1;
874}
875
ddbcc7e8
PM
876static void remove_dir(struct dentry *d)
877{
878 struct dentry *parent = dget(d->d_parent);
879
880 d_delete(d);
881 simple_rmdir(parent->d_inode, d);
882 dput(parent);
883}
884
885static void cgroup_clear_directory(struct dentry *dentry)
886{
887 struct list_head *node;
888
889 BUG_ON(!mutex_is_locked(&dentry->d_inode->i_mutex));
2fd6b7f5 890 spin_lock(&dentry->d_lock);
ddbcc7e8
PM
891 node = dentry->d_subdirs.next;
892 while (node != &dentry->d_subdirs) {
893 struct dentry *d = list_entry(node, struct dentry, d_u.d_child);
2fd6b7f5
NP
894
895 spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
ddbcc7e8
PM
896 list_del_init(node);
897 if (d->d_inode) {
898 /* This should never be called on a cgroup
899 * directory with child cgroups */
900 BUG_ON(d->d_inode->i_mode & S_IFDIR);
dc0474be 901 dget_dlock(d);
2fd6b7f5
NP
902 spin_unlock(&d->d_lock);
903 spin_unlock(&dentry->d_lock);
ddbcc7e8
PM
904 d_delete(d);
905 simple_unlink(dentry->d_inode, d);
906 dput(d);
2fd6b7f5
NP
907 spin_lock(&dentry->d_lock);
908 } else
909 spin_unlock(&d->d_lock);
ddbcc7e8
PM
910 node = dentry->d_subdirs.next;
911 }
2fd6b7f5 912 spin_unlock(&dentry->d_lock);
ddbcc7e8
PM
913}
914
915/*
916 * NOTE : the dentry must have been dget()'ed
917 */
918static void cgroup_d_remove_dir(struct dentry *dentry)
919{
2fd6b7f5
NP
920 struct dentry *parent;
921
ddbcc7e8
PM
922 cgroup_clear_directory(dentry);
923
2fd6b7f5
NP
924 parent = dentry->d_parent;
925 spin_lock(&parent->d_lock);
3ec762ad 926 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
ddbcc7e8 927 list_del_init(&dentry->d_u.d_child);
2fd6b7f5
NP
928 spin_unlock(&dentry->d_lock);
929 spin_unlock(&parent->d_lock);
ddbcc7e8
PM
930 remove_dir(dentry);
931}
932
ec64f515
KH
933/*
934 * A queue for waiters to do rmdir() cgroup. A tasks will sleep when
935 * cgroup->count == 0 && list_empty(&cgroup->children) && subsys has some
936 * reference to css->refcnt. In general, this refcnt is expected to goes down
937 * to zero, soon.
938 *
88703267 939 * CGRP_WAIT_ON_RMDIR flag is set under cgroup's inode->i_mutex;
ec64f515 940 */
1c6c3fad 941static DECLARE_WAIT_QUEUE_HEAD(cgroup_rmdir_waitq);
ec64f515 942
88703267 943static void cgroup_wakeup_rmdir_waiter(struct cgroup *cgrp)
ec64f515 944{
88703267 945 if (unlikely(test_and_clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags)))
ec64f515
KH
946 wake_up_all(&cgroup_rmdir_waitq);
947}
948
88703267
KH
949void cgroup_exclude_rmdir(struct cgroup_subsys_state *css)
950{
951 css_get(css);
952}
953
954void cgroup_release_and_wakeup_rmdir(struct cgroup_subsys_state *css)
955{
956 cgroup_wakeup_rmdir_waiter(css->cgroup);
957 css_put(css);
958}
959
aae8aab4 960/*
cf5d5941
BB
961 * Call with cgroup_mutex held. Drops reference counts on modules, including
962 * any duplicate ones that parse_cgroupfs_options took. If this function
963 * returns an error, no reference counts are touched.
aae8aab4 964 */
ddbcc7e8
PM
965static int rebind_subsystems(struct cgroupfs_root *root,
966 unsigned long final_bits)
967{
968 unsigned long added_bits, removed_bits;
bd89aabc 969 struct cgroup *cgrp = &root->top_cgroup;
ddbcc7e8
PM
970 int i;
971
aae8aab4 972 BUG_ON(!mutex_is_locked(&cgroup_mutex));
e25e2cbb 973 BUG_ON(!mutex_is_locked(&cgroup_root_mutex));
aae8aab4 974
ddbcc7e8
PM
975 removed_bits = root->actual_subsys_bits & ~final_bits;
976 added_bits = final_bits & ~root->actual_subsys_bits;
977 /* Check that any added subsystems are currently free */
978 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
8d53d55d 979 unsigned long bit = 1UL << i;
ddbcc7e8
PM
980 struct cgroup_subsys *ss = subsys[i];
981 if (!(bit & added_bits))
982 continue;
aae8aab4
BB
983 /*
984 * Nobody should tell us to do a subsys that doesn't exist:
985 * parse_cgroupfs_options should catch that case and refcounts
986 * ensure that subsystems won't disappear once selected.
987 */
988 BUG_ON(ss == NULL);
ddbcc7e8
PM
989 if (ss->root != &rootnode) {
990 /* Subsystem isn't free */
991 return -EBUSY;
992 }
993 }
994
995 /* Currently we don't handle adding/removing subsystems when
996 * any child cgroups exist. This is theoretically supportable
997 * but involves complex error handling, so it's being left until
998 * later */
307257cf 999 if (root->number_of_cgroups > 1)
ddbcc7e8
PM
1000 return -EBUSY;
1001
1002 /* Process each subsystem */
1003 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1004 struct cgroup_subsys *ss = subsys[i];
1005 unsigned long bit = 1UL << i;
1006 if (bit & added_bits) {
1007 /* We're binding this subsystem to this hierarchy */
aae8aab4 1008 BUG_ON(ss == NULL);
bd89aabc 1009 BUG_ON(cgrp->subsys[i]);
ddbcc7e8
PM
1010 BUG_ON(!dummytop->subsys[i]);
1011 BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
999cd8a4 1012 mutex_lock(&ss->hierarchy_mutex);
bd89aabc
PM
1013 cgrp->subsys[i] = dummytop->subsys[i];
1014 cgrp->subsys[i]->cgroup = cgrp;
33a68ac1 1015 list_move(&ss->sibling, &root->subsys_list);
b2aa30f7 1016 ss->root = root;
ddbcc7e8 1017 if (ss->bind)
bd89aabc 1018 ss->bind(ss, cgrp);
999cd8a4 1019 mutex_unlock(&ss->hierarchy_mutex);
cf5d5941 1020 /* refcount was already taken, and we're keeping it */
ddbcc7e8
PM
1021 } else if (bit & removed_bits) {
1022 /* We're removing this subsystem */
aae8aab4 1023 BUG_ON(ss == NULL);
bd89aabc
PM
1024 BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
1025 BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
999cd8a4 1026 mutex_lock(&ss->hierarchy_mutex);
ddbcc7e8
PM
1027 if (ss->bind)
1028 ss->bind(ss, dummytop);
1029 dummytop->subsys[i]->cgroup = dummytop;
bd89aabc 1030 cgrp->subsys[i] = NULL;
b2aa30f7 1031 subsys[i]->root = &rootnode;
33a68ac1 1032 list_move(&ss->sibling, &rootnode.subsys_list);
999cd8a4 1033 mutex_unlock(&ss->hierarchy_mutex);
cf5d5941
BB
1034 /* subsystem is now free - drop reference on module */
1035 module_put(ss->module);
ddbcc7e8
PM
1036 } else if (bit & final_bits) {
1037 /* Subsystem state should already exist */
aae8aab4 1038 BUG_ON(ss == NULL);
bd89aabc 1039 BUG_ON(!cgrp->subsys[i]);
cf5d5941
BB
1040 /*
1041 * a refcount was taken, but we already had one, so
1042 * drop the extra reference.
1043 */
1044 module_put(ss->module);
1045#ifdef CONFIG_MODULE_UNLOAD
1046 BUG_ON(ss->module && !module_refcount(ss->module));
1047#endif
ddbcc7e8
PM
1048 } else {
1049 /* Subsystem state shouldn't exist */
bd89aabc 1050 BUG_ON(cgrp->subsys[i]);
ddbcc7e8
PM
1051 }
1052 }
1053 root->subsys_bits = root->actual_subsys_bits = final_bits;
1054 synchronize_rcu();
1055
1056 return 0;
1057}
1058
1059static int cgroup_show_options(struct seq_file *seq, struct vfsmount *vfs)
1060{
1061 struct cgroupfs_root *root = vfs->mnt_sb->s_fs_info;
1062 struct cgroup_subsys *ss;
1063
e25e2cbb 1064 mutex_lock(&cgroup_root_mutex);
ddbcc7e8
PM
1065 for_each_subsys(root, ss)
1066 seq_printf(seq, ",%s", ss->name);
1067 if (test_bit(ROOT_NOPREFIX, &root->flags))
1068 seq_puts(seq, ",noprefix");
81a6a5cd
PM
1069 if (strlen(root->release_agent_path))
1070 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
97978e6d
DL
1071 if (clone_children(&root->top_cgroup))
1072 seq_puts(seq, ",clone_children");
c6d57f33
PM
1073 if (strlen(root->name))
1074 seq_printf(seq, ",name=%s", root->name);
e25e2cbb 1075 mutex_unlock(&cgroup_root_mutex);
ddbcc7e8
PM
1076 return 0;
1077}
1078
1079struct cgroup_sb_opts {
1080 unsigned long subsys_bits;
1081 unsigned long flags;
81a6a5cd 1082 char *release_agent;
97978e6d 1083 bool clone_children;
c6d57f33 1084 char *name;
2c6ab6d2
PM
1085 /* User explicitly requested empty subsystem */
1086 bool none;
c6d57f33
PM
1087
1088 struct cgroupfs_root *new_root;
2c6ab6d2 1089
ddbcc7e8
PM
1090};
1091
aae8aab4
BB
1092/*
1093 * Convert a hierarchy specifier into a bitmask of subsystems and flags. Call
cf5d5941
BB
1094 * with cgroup_mutex held to protect the subsys[] array. This function takes
1095 * refcounts on subsystems to be used, unless it returns error, in which case
1096 * no refcounts are taken.
aae8aab4 1097 */
cf5d5941 1098static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
ddbcc7e8 1099{
32a8cf23
DL
1100 char *token, *o = data;
1101 bool all_ss = false, one_ss = false;
f9ab5b5b 1102 unsigned long mask = (unsigned long)-1;
cf5d5941
BB
1103 int i;
1104 bool module_pin_failed = false;
f9ab5b5b 1105
aae8aab4
BB
1106 BUG_ON(!mutex_is_locked(&cgroup_mutex));
1107
f9ab5b5b
LZ
1108#ifdef CONFIG_CPUSETS
1109 mask = ~(1UL << cpuset_subsys_id);
1110#endif
ddbcc7e8 1111
c6d57f33 1112 memset(opts, 0, sizeof(*opts));
ddbcc7e8
PM
1113
1114 while ((token = strsep(&o, ",")) != NULL) {
1115 if (!*token)
1116 return -EINVAL;
32a8cf23 1117 if (!strcmp(token, "none")) {
2c6ab6d2
PM
1118 /* Explicitly have no subsystems */
1119 opts->none = true;
32a8cf23
DL
1120 continue;
1121 }
1122 if (!strcmp(token, "all")) {
1123 /* Mutually exclusive option 'all' + subsystem name */
1124 if (one_ss)
1125 return -EINVAL;
1126 all_ss = true;
1127 continue;
1128 }
1129 if (!strcmp(token, "noprefix")) {
ddbcc7e8 1130 set_bit(ROOT_NOPREFIX, &opts->flags);
32a8cf23
DL
1131 continue;
1132 }
1133 if (!strcmp(token, "clone_children")) {
97978e6d 1134 opts->clone_children = true;
32a8cf23
DL
1135 continue;
1136 }
1137 if (!strncmp(token, "release_agent=", 14)) {
81a6a5cd
PM
1138 /* Specifying two release agents is forbidden */
1139 if (opts->release_agent)
1140 return -EINVAL;
c6d57f33 1141 opts->release_agent =
e400c285 1142 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
81a6a5cd
PM
1143 if (!opts->release_agent)
1144 return -ENOMEM;
32a8cf23
DL
1145 continue;
1146 }
1147 if (!strncmp(token, "name=", 5)) {
c6d57f33
PM
1148 const char *name = token + 5;
1149 /* Can't specify an empty name */
1150 if (!strlen(name))
1151 return -EINVAL;
1152 /* Must match [\w.-]+ */
1153 for (i = 0; i < strlen(name); i++) {
1154 char c = name[i];
1155 if (isalnum(c))
1156 continue;
1157 if ((c == '.') || (c == '-') || (c == '_'))
1158 continue;
1159 return -EINVAL;
1160 }
1161 /* Specifying two names is forbidden */
1162 if (opts->name)
1163 return -EINVAL;
1164 opts->name = kstrndup(name,
e400c285 1165 MAX_CGROUP_ROOT_NAMELEN - 1,
c6d57f33
PM
1166 GFP_KERNEL);
1167 if (!opts->name)
1168 return -ENOMEM;
32a8cf23
DL
1169
1170 continue;
1171 }
1172
1173 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1174 struct cgroup_subsys *ss = subsys[i];
1175 if (ss == NULL)
1176 continue;
1177 if (strcmp(token, ss->name))
1178 continue;
1179 if (ss->disabled)
1180 continue;
1181
1182 /* Mutually exclusive option 'all' + subsystem name */
1183 if (all_ss)
1184 return -EINVAL;
1185 set_bit(i, &opts->subsys_bits);
1186 one_ss = true;
1187
1188 break;
1189 }
1190 if (i == CGROUP_SUBSYS_COUNT)
1191 return -ENOENT;
1192 }
1193
1194 /*
1195 * If the 'all' option was specified select all the subsystems,
1196 * otherwise 'all, 'none' and a subsystem name options were not
1197 * specified, let's default to 'all'
1198 */
1199 if (all_ss || (!all_ss && !one_ss && !opts->none)) {
1200 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1201 struct cgroup_subsys *ss = subsys[i];
1202 if (ss == NULL)
1203 continue;
1204 if (ss->disabled)
1205 continue;
1206 set_bit(i, &opts->subsys_bits);
ddbcc7e8
PM
1207 }
1208 }
1209
2c6ab6d2
PM
1210 /* Consistency checks */
1211
f9ab5b5b
LZ
1212 /*
1213 * Option noprefix was introduced just for backward compatibility
1214 * with the old cpuset, so we allow noprefix only if mounting just
1215 * the cpuset subsystem.
1216 */
1217 if (test_bit(ROOT_NOPREFIX, &opts->flags) &&
1218 (opts->subsys_bits & mask))
1219 return -EINVAL;
1220
2c6ab6d2
PM
1221
1222 /* Can't specify "none" and some subsystems */
1223 if (opts->subsys_bits && opts->none)
1224 return -EINVAL;
1225
1226 /*
1227 * We either have to specify by name or by subsystems. (So all
1228 * empty hierarchies must have a name).
1229 */
c6d57f33 1230 if (!opts->subsys_bits && !opts->name)
ddbcc7e8
PM
1231 return -EINVAL;
1232
cf5d5941
BB
1233 /*
1234 * Grab references on all the modules we'll need, so the subsystems
1235 * don't dance around before rebind_subsystems attaches them. This may
1236 * take duplicate reference counts on a subsystem that's already used,
1237 * but rebind_subsystems handles this case.
1238 */
1239 for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
1240 unsigned long bit = 1UL << i;
1241
1242 if (!(bit & opts->subsys_bits))
1243 continue;
1244 if (!try_module_get(subsys[i]->module)) {
1245 module_pin_failed = true;
1246 break;
1247 }
1248 }
1249 if (module_pin_failed) {
1250 /*
1251 * oops, one of the modules was going away. this means that we
1252 * raced with a module_delete call, and to the user this is
1253 * essentially a "subsystem doesn't exist" case.
1254 */
1255 for (i--; i >= CGROUP_BUILTIN_SUBSYS_COUNT; i--) {
1256 /* drop refcounts only on the ones we took */
1257 unsigned long bit = 1UL << i;
1258
1259 if (!(bit & opts->subsys_bits))
1260 continue;
1261 module_put(subsys[i]->module);
1262 }
1263 return -ENOENT;
1264 }
1265
ddbcc7e8
PM
1266 return 0;
1267}
1268
cf5d5941
BB
1269static void drop_parsed_module_refcounts(unsigned long subsys_bits)
1270{
1271 int i;
1272 for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
1273 unsigned long bit = 1UL << i;
1274
1275 if (!(bit & subsys_bits))
1276 continue;
1277 module_put(subsys[i]->module);
1278 }
1279}
1280
ddbcc7e8
PM
1281static int cgroup_remount(struct super_block *sb, int *flags, char *data)
1282{
1283 int ret = 0;
1284 struct cgroupfs_root *root = sb->s_fs_info;
bd89aabc 1285 struct cgroup *cgrp = &root->top_cgroup;
ddbcc7e8
PM
1286 struct cgroup_sb_opts opts;
1287
bd89aabc 1288 mutex_lock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8 1289 mutex_lock(&cgroup_mutex);
e25e2cbb 1290 mutex_lock(&cgroup_root_mutex);
ddbcc7e8
PM
1291
1292 /* See what subsystems are wanted */
1293 ret = parse_cgroupfs_options(data, &opts);
1294 if (ret)
1295 goto out_unlock;
1296
cf5d5941
BB
1297 /* Don't allow flags or name to change at remount */
1298 if (opts.flags != root->flags ||
1299 (opts.name && strcmp(opts.name, root->name))) {
c6d57f33 1300 ret = -EINVAL;
cf5d5941 1301 drop_parsed_module_refcounts(opts.subsys_bits);
c6d57f33
PM
1302 goto out_unlock;
1303 }
1304
ddbcc7e8 1305 ret = rebind_subsystems(root, opts.subsys_bits);
cf5d5941
BB
1306 if (ret) {
1307 drop_parsed_module_refcounts(opts.subsys_bits);
0670e08b 1308 goto out_unlock;
cf5d5941 1309 }
ddbcc7e8
PM
1310
1311 /* (re)populate subsystem files */
0670e08b 1312 cgroup_populate_dir(cgrp);
ddbcc7e8 1313
81a6a5cd
PM
1314 if (opts.release_agent)
1315 strcpy(root->release_agent_path, opts.release_agent);
ddbcc7e8 1316 out_unlock:
66bdc9cf 1317 kfree(opts.release_agent);
c6d57f33 1318 kfree(opts.name);
e25e2cbb 1319 mutex_unlock(&cgroup_root_mutex);
ddbcc7e8 1320 mutex_unlock(&cgroup_mutex);
bd89aabc 1321 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8
PM
1322 return ret;
1323}
1324
b87221de 1325static const struct super_operations cgroup_ops = {
ddbcc7e8
PM
1326 .statfs = simple_statfs,
1327 .drop_inode = generic_delete_inode,
1328 .show_options = cgroup_show_options,
1329 .remount_fs = cgroup_remount,
1330};
1331
cc31edce
PM
1332static void init_cgroup_housekeeping(struct cgroup *cgrp)
1333{
1334 INIT_LIST_HEAD(&cgrp->sibling);
1335 INIT_LIST_HEAD(&cgrp->children);
1336 INIT_LIST_HEAD(&cgrp->css_sets);
1337 INIT_LIST_HEAD(&cgrp->release_list);
72a8cb30
BB
1338 INIT_LIST_HEAD(&cgrp->pidlists);
1339 mutex_init(&cgrp->pidlist_mutex);
0dea1168
KS
1340 INIT_LIST_HEAD(&cgrp->event_list);
1341 spin_lock_init(&cgrp->event_list_lock);
cc31edce 1342}
c6d57f33 1343
ddbcc7e8
PM
1344static void init_cgroup_root(struct cgroupfs_root *root)
1345{
bd89aabc 1346 struct cgroup *cgrp = &root->top_cgroup;
ddbcc7e8
PM
1347 INIT_LIST_HEAD(&root->subsys_list);
1348 INIT_LIST_HEAD(&root->root_list);
1349 root->number_of_cgroups = 1;
bd89aabc
PM
1350 cgrp->root = root;
1351 cgrp->top_cgroup = cgrp;
cc31edce 1352 init_cgroup_housekeeping(cgrp);
ddbcc7e8
PM
1353}
1354
2c6ab6d2
PM
1355static bool init_root_id(struct cgroupfs_root *root)
1356{
1357 int ret = 0;
1358
1359 do {
1360 if (!ida_pre_get(&hierarchy_ida, GFP_KERNEL))
1361 return false;
1362 spin_lock(&hierarchy_id_lock);
1363 /* Try to allocate the next unused ID */
1364 ret = ida_get_new_above(&hierarchy_ida, next_hierarchy_id,
1365 &root->hierarchy_id);
1366 if (ret == -ENOSPC)
1367 /* Try again starting from 0 */
1368 ret = ida_get_new(&hierarchy_ida, &root->hierarchy_id);
1369 if (!ret) {
1370 next_hierarchy_id = root->hierarchy_id + 1;
1371 } else if (ret != -EAGAIN) {
1372 /* Can only get here if the 31-bit IDR is full ... */
1373 BUG_ON(ret);
1374 }
1375 spin_unlock(&hierarchy_id_lock);
1376 } while (ret);
1377 return true;
1378}
1379
ddbcc7e8
PM
1380static int cgroup_test_super(struct super_block *sb, void *data)
1381{
c6d57f33 1382 struct cgroup_sb_opts *opts = data;
ddbcc7e8
PM
1383 struct cgroupfs_root *root = sb->s_fs_info;
1384
c6d57f33
PM
1385 /* If we asked for a name then it must match */
1386 if (opts->name && strcmp(opts->name, root->name))
1387 return 0;
ddbcc7e8 1388
2c6ab6d2
PM
1389 /*
1390 * If we asked for subsystems (or explicitly for no
1391 * subsystems) then they must match
1392 */
1393 if ((opts->subsys_bits || opts->none)
1394 && (opts->subsys_bits != root->subsys_bits))
ddbcc7e8
PM
1395 return 0;
1396
1397 return 1;
1398}
1399
c6d57f33
PM
1400static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts)
1401{
1402 struct cgroupfs_root *root;
1403
2c6ab6d2 1404 if (!opts->subsys_bits && !opts->none)
c6d57f33
PM
1405 return NULL;
1406
1407 root = kzalloc(sizeof(*root), GFP_KERNEL);
1408 if (!root)
1409 return ERR_PTR(-ENOMEM);
1410
2c6ab6d2
PM
1411 if (!init_root_id(root)) {
1412 kfree(root);
1413 return ERR_PTR(-ENOMEM);
1414 }
c6d57f33 1415 init_cgroup_root(root);
2c6ab6d2 1416
c6d57f33
PM
1417 root->subsys_bits = opts->subsys_bits;
1418 root->flags = opts->flags;
1419 if (opts->release_agent)
1420 strcpy(root->release_agent_path, opts->release_agent);
1421 if (opts->name)
1422 strcpy(root->name, opts->name);
97978e6d
DL
1423 if (opts->clone_children)
1424 set_bit(CGRP_CLONE_CHILDREN, &root->top_cgroup.flags);
c6d57f33
PM
1425 return root;
1426}
1427
2c6ab6d2
PM
1428static void cgroup_drop_root(struct cgroupfs_root *root)
1429{
1430 if (!root)
1431 return;
1432
1433 BUG_ON(!root->hierarchy_id);
1434 spin_lock(&hierarchy_id_lock);
1435 ida_remove(&hierarchy_ida, root->hierarchy_id);
1436 spin_unlock(&hierarchy_id_lock);
1437 kfree(root);
1438}
1439
ddbcc7e8
PM
1440static int cgroup_set_super(struct super_block *sb, void *data)
1441{
1442 int ret;
c6d57f33
PM
1443 struct cgroup_sb_opts *opts = data;
1444
1445 /* If we don't have a new root, we can't set up a new sb */
1446 if (!opts->new_root)
1447 return -EINVAL;
1448
2c6ab6d2 1449 BUG_ON(!opts->subsys_bits && !opts->none);
ddbcc7e8
PM
1450
1451 ret = set_anon_super(sb, NULL);
1452 if (ret)
1453 return ret;
1454
c6d57f33
PM
1455 sb->s_fs_info = opts->new_root;
1456 opts->new_root->sb = sb;
ddbcc7e8
PM
1457
1458 sb->s_blocksize = PAGE_CACHE_SIZE;
1459 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
1460 sb->s_magic = CGROUP_SUPER_MAGIC;
1461 sb->s_op = &cgroup_ops;
1462
1463 return 0;
1464}
1465
1466static int cgroup_get_rootdir(struct super_block *sb)
1467{
0df6a63f
AV
1468 static const struct dentry_operations cgroup_dops = {
1469 .d_iput = cgroup_diput,
c72a04e3 1470 .d_delete = cgroup_delete,
0df6a63f
AV
1471 };
1472
ddbcc7e8
PM
1473 struct inode *inode =
1474 cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
1475 struct dentry *dentry;
1476
1477 if (!inode)
1478 return -ENOMEM;
1479
ddbcc7e8
PM
1480 inode->i_fop = &simple_dir_operations;
1481 inode->i_op = &cgroup_dir_inode_operations;
1482 /* directories start off with i_nlink == 2 (for "." entry) */
1483 inc_nlink(inode);
1484 dentry = d_alloc_root(inode);
1485 if (!dentry) {
1486 iput(inode);
1487 return -ENOMEM;
1488 }
1489 sb->s_root = dentry;
0df6a63f
AV
1490 /* for everything else we want ->d_op set */
1491 sb->s_d_op = &cgroup_dops;
ddbcc7e8
PM
1492 return 0;
1493}
1494
f7e83571 1495static struct dentry *cgroup_mount(struct file_system_type *fs_type,
ddbcc7e8 1496 int flags, const char *unused_dev_name,
f7e83571 1497 void *data)
ddbcc7e8
PM
1498{
1499 struct cgroup_sb_opts opts;
c6d57f33 1500 struct cgroupfs_root *root;
ddbcc7e8
PM
1501 int ret = 0;
1502 struct super_block *sb;
c6d57f33 1503 struct cgroupfs_root *new_root;
e25e2cbb 1504 struct inode *inode;
ddbcc7e8
PM
1505
1506 /* First find the desired set of subsystems */
aae8aab4 1507 mutex_lock(&cgroup_mutex);
ddbcc7e8 1508 ret = parse_cgroupfs_options(data, &opts);
aae8aab4 1509 mutex_unlock(&cgroup_mutex);
c6d57f33
PM
1510 if (ret)
1511 goto out_err;
ddbcc7e8 1512
c6d57f33
PM
1513 /*
1514 * Allocate a new cgroup root. We may not need it if we're
1515 * reusing an existing hierarchy.
1516 */
1517 new_root = cgroup_root_from_opts(&opts);
1518 if (IS_ERR(new_root)) {
1519 ret = PTR_ERR(new_root);
cf5d5941 1520 goto drop_modules;
81a6a5cd 1521 }
c6d57f33 1522 opts.new_root = new_root;
ddbcc7e8 1523
c6d57f33
PM
1524 /* Locate an existing or new sb for this hierarchy */
1525 sb = sget(fs_type, cgroup_test_super, cgroup_set_super, &opts);
ddbcc7e8 1526 if (IS_ERR(sb)) {
c6d57f33 1527 ret = PTR_ERR(sb);
2c6ab6d2 1528 cgroup_drop_root(opts.new_root);
cf5d5941 1529 goto drop_modules;
ddbcc7e8
PM
1530 }
1531
c6d57f33
PM
1532 root = sb->s_fs_info;
1533 BUG_ON(!root);
1534 if (root == opts.new_root) {
1535 /* We used the new root structure, so this is a new hierarchy */
1536 struct list_head tmp_cg_links;
c12f65d4 1537 struct cgroup *root_cgrp = &root->top_cgroup;
c6d57f33 1538 struct cgroupfs_root *existing_root;
2ce9738b 1539 const struct cred *cred;
28fd5dfc 1540 int i;
ddbcc7e8
PM
1541
1542 BUG_ON(sb->s_root != NULL);
1543
1544 ret = cgroup_get_rootdir(sb);
1545 if (ret)
1546 goto drop_new_super;
817929ec 1547 inode = sb->s_root->d_inode;
ddbcc7e8 1548
817929ec 1549 mutex_lock(&inode->i_mutex);
ddbcc7e8 1550 mutex_lock(&cgroup_mutex);
e25e2cbb 1551 mutex_lock(&cgroup_root_mutex);
ddbcc7e8 1552
e25e2cbb
TH
1553 /* Check for name clashes with existing mounts */
1554 ret = -EBUSY;
1555 if (strlen(root->name))
1556 for_each_active_root(existing_root)
1557 if (!strcmp(existing_root->name, root->name))
1558 goto unlock_drop;
c6d57f33 1559
817929ec
PM
1560 /*
1561 * We're accessing css_set_count without locking
1562 * css_set_lock here, but that's OK - it can only be
1563 * increased by someone holding cgroup_lock, and
1564 * that's us. The worst that can happen is that we
1565 * have some link structures left over
1566 */
1567 ret = allocate_cg_links(css_set_count, &tmp_cg_links);
e25e2cbb
TH
1568 if (ret)
1569 goto unlock_drop;
817929ec 1570
ddbcc7e8
PM
1571 ret = rebind_subsystems(root, root->subsys_bits);
1572 if (ret == -EBUSY) {
c6d57f33 1573 free_cg_links(&tmp_cg_links);
e25e2cbb 1574 goto unlock_drop;
ddbcc7e8 1575 }
cf5d5941
BB
1576 /*
1577 * There must be no failure case after here, since rebinding
1578 * takes care of subsystems' refcounts, which are explicitly
1579 * dropped in the failure exit path.
1580 */
ddbcc7e8
PM
1581
1582 /* EBUSY should be the only error here */
1583 BUG_ON(ret);
1584
1585 list_add(&root->root_list, &roots);
817929ec 1586 root_count++;
ddbcc7e8 1587
c12f65d4 1588 sb->s_root->d_fsdata = root_cgrp;
ddbcc7e8
PM
1589 root->top_cgroup.dentry = sb->s_root;
1590
817929ec
PM
1591 /* Link the top cgroup in this hierarchy into all
1592 * the css_set objects */
1593 write_lock(&css_set_lock);
28fd5dfc
LZ
1594 for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
1595 struct hlist_head *hhead = &css_set_table[i];
1596 struct hlist_node *node;
817929ec 1597 struct css_set *cg;
28fd5dfc 1598
c12f65d4
LZ
1599 hlist_for_each_entry(cg, node, hhead, hlist)
1600 link_css_set(&tmp_cg_links, cg, root_cgrp);
28fd5dfc 1601 }
817929ec
PM
1602 write_unlock(&css_set_lock);
1603
1604 free_cg_links(&tmp_cg_links);
1605
c12f65d4
LZ
1606 BUG_ON(!list_empty(&root_cgrp->sibling));
1607 BUG_ON(!list_empty(&root_cgrp->children));
ddbcc7e8
PM
1608 BUG_ON(root->number_of_cgroups != 1);
1609
2ce9738b 1610 cred = override_creds(&init_cred);
c12f65d4 1611 cgroup_populate_dir(root_cgrp);
2ce9738b 1612 revert_creds(cred);
e25e2cbb 1613 mutex_unlock(&cgroup_root_mutex);
ddbcc7e8 1614 mutex_unlock(&cgroup_mutex);
34f77a90 1615 mutex_unlock(&inode->i_mutex);
c6d57f33
PM
1616 } else {
1617 /*
1618 * We re-used an existing hierarchy - the new root (if
1619 * any) is not needed
1620 */
2c6ab6d2 1621 cgroup_drop_root(opts.new_root);
cf5d5941
BB
1622 /* no subsys rebinding, so refcounts don't change */
1623 drop_parsed_module_refcounts(opts.subsys_bits);
ddbcc7e8
PM
1624 }
1625
c6d57f33
PM
1626 kfree(opts.release_agent);
1627 kfree(opts.name);
f7e83571 1628 return dget(sb->s_root);
ddbcc7e8 1629
e25e2cbb
TH
1630 unlock_drop:
1631 mutex_unlock(&cgroup_root_mutex);
1632 mutex_unlock(&cgroup_mutex);
1633 mutex_unlock(&inode->i_mutex);
ddbcc7e8 1634 drop_new_super:
6f5bbff9 1635 deactivate_locked_super(sb);
cf5d5941
BB
1636 drop_modules:
1637 drop_parsed_module_refcounts(opts.subsys_bits);
c6d57f33
PM
1638 out_err:
1639 kfree(opts.release_agent);
1640 kfree(opts.name);
f7e83571 1641 return ERR_PTR(ret);
ddbcc7e8
PM
1642}
1643
1644static void cgroup_kill_sb(struct super_block *sb) {
1645 struct cgroupfs_root *root = sb->s_fs_info;
bd89aabc 1646 struct cgroup *cgrp = &root->top_cgroup;
ddbcc7e8 1647 int ret;
71cbb949
KM
1648 struct cg_cgroup_link *link;
1649 struct cg_cgroup_link *saved_link;
ddbcc7e8
PM
1650
1651 BUG_ON(!root);
1652
1653 BUG_ON(root->number_of_cgroups != 1);
bd89aabc
PM
1654 BUG_ON(!list_empty(&cgrp->children));
1655 BUG_ON(!list_empty(&cgrp->sibling));
ddbcc7e8
PM
1656
1657 mutex_lock(&cgroup_mutex);
e25e2cbb 1658 mutex_lock(&cgroup_root_mutex);
ddbcc7e8
PM
1659
1660 /* Rebind all subsystems back to the default hierarchy */
1661 ret = rebind_subsystems(root, 0);
1662 /* Shouldn't be able to fail ... */
1663 BUG_ON(ret);
1664
817929ec
PM
1665 /*
1666 * Release all the links from css_sets to this hierarchy's
1667 * root cgroup
1668 */
1669 write_lock(&css_set_lock);
71cbb949
KM
1670
1671 list_for_each_entry_safe(link, saved_link, &cgrp->css_sets,
1672 cgrp_link_list) {
817929ec 1673 list_del(&link->cg_link_list);
bd89aabc 1674 list_del(&link->cgrp_link_list);
817929ec
PM
1675 kfree(link);
1676 }
1677 write_unlock(&css_set_lock);
1678
839ec545
PM
1679 if (!list_empty(&root->root_list)) {
1680 list_del(&root->root_list);
1681 root_count--;
1682 }
e5f6a860 1683
e25e2cbb 1684 mutex_unlock(&cgroup_root_mutex);
ddbcc7e8
PM
1685 mutex_unlock(&cgroup_mutex);
1686
ddbcc7e8 1687 kill_litter_super(sb);
2c6ab6d2 1688 cgroup_drop_root(root);
ddbcc7e8
PM
1689}
1690
1691static struct file_system_type cgroup_fs_type = {
1692 .name = "cgroup",
f7e83571 1693 .mount = cgroup_mount,
ddbcc7e8
PM
1694 .kill_sb = cgroup_kill_sb,
1695};
1696
676db4af
GKH
1697static struct kobject *cgroup_kobj;
1698
bd89aabc 1699static inline struct cgroup *__d_cgrp(struct dentry *dentry)
ddbcc7e8
PM
1700{
1701 return dentry->d_fsdata;
1702}
1703
1704static inline struct cftype *__d_cft(struct dentry *dentry)
1705{
1706 return dentry->d_fsdata;
1707}
1708
a043e3b2
LZ
1709/**
1710 * cgroup_path - generate the path of a cgroup
1711 * @cgrp: the cgroup in question
1712 * @buf: the buffer to write the path into
1713 * @buflen: the length of the buffer
1714 *
a47295e6
PM
1715 * Called with cgroup_mutex held or else with an RCU-protected cgroup
1716 * reference. Writes path of cgroup into buf. Returns 0 on success,
1717 * -errno on error.
ddbcc7e8 1718 */
bd89aabc 1719int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
ddbcc7e8
PM
1720{
1721 char *start;
9a9686b6 1722 struct dentry *dentry = rcu_dereference_check(cgrp->dentry,
9a9686b6 1723 cgroup_lock_is_held());
ddbcc7e8 1724
a47295e6 1725 if (!dentry || cgrp == dummytop) {
ddbcc7e8
PM
1726 /*
1727 * Inactive subsystems have no dentry for their root
1728 * cgroup
1729 */
1730 strcpy(buf, "/");
1731 return 0;
1732 }
1733
1734 start = buf + buflen;
1735
1736 *--start = '\0';
1737 for (;;) {
a47295e6 1738 int len = dentry->d_name.len;
9a9686b6 1739
ddbcc7e8
PM
1740 if ((start -= len) < buf)
1741 return -ENAMETOOLONG;
9a9686b6 1742 memcpy(start, dentry->d_name.name, len);
bd89aabc
PM
1743 cgrp = cgrp->parent;
1744 if (!cgrp)
ddbcc7e8 1745 break;
9a9686b6
LZ
1746
1747 dentry = rcu_dereference_check(cgrp->dentry,
9a9686b6 1748 cgroup_lock_is_held());
bd89aabc 1749 if (!cgrp->parent)
ddbcc7e8
PM
1750 continue;
1751 if (--start < buf)
1752 return -ENAMETOOLONG;
1753 *start = '/';
1754 }
1755 memmove(buf, start, buf + buflen - start);
1756 return 0;
1757}
67523c48 1758EXPORT_SYMBOL_GPL(cgroup_path);
ddbcc7e8 1759
2f7ee569
TH
1760/*
1761 * Control Group taskset
1762 */
134d3373
TH
1763struct task_and_cgroup {
1764 struct task_struct *task;
1765 struct cgroup *cgrp;
1766};
1767
2f7ee569
TH
1768struct cgroup_taskset {
1769 struct task_and_cgroup single;
1770 struct flex_array *tc_array;
1771 int tc_array_len;
1772 int idx;
1773 struct cgroup *cur_cgrp;
1774};
1775
1776/**
1777 * cgroup_taskset_first - reset taskset and return the first task
1778 * @tset: taskset of interest
1779 *
1780 * @tset iteration is initialized and the first task is returned.
1781 */
1782struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
1783{
1784 if (tset->tc_array) {
1785 tset->idx = 0;
1786 return cgroup_taskset_next(tset);
1787 } else {
1788 tset->cur_cgrp = tset->single.cgrp;
1789 return tset->single.task;
1790 }
1791}
1792EXPORT_SYMBOL_GPL(cgroup_taskset_first);
1793
1794/**
1795 * cgroup_taskset_next - iterate to the next task in taskset
1796 * @tset: taskset of interest
1797 *
1798 * Return the next task in @tset. Iteration must have been initialized
1799 * with cgroup_taskset_first().
1800 */
1801struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
1802{
1803 struct task_and_cgroup *tc;
1804
1805 if (!tset->tc_array || tset->idx >= tset->tc_array_len)
1806 return NULL;
1807
1808 tc = flex_array_get(tset->tc_array, tset->idx++);
1809 tset->cur_cgrp = tc->cgrp;
1810 return tc->task;
1811}
1812EXPORT_SYMBOL_GPL(cgroup_taskset_next);
1813
1814/**
1815 * cgroup_taskset_cur_cgroup - return the matching cgroup for the current task
1816 * @tset: taskset of interest
1817 *
1818 * Return the cgroup for the current (last returned) task of @tset. This
1819 * function must be preceded by either cgroup_taskset_first() or
1820 * cgroup_taskset_next().
1821 */
1822struct cgroup *cgroup_taskset_cur_cgroup(struct cgroup_taskset *tset)
1823{
1824 return tset->cur_cgrp;
1825}
1826EXPORT_SYMBOL_GPL(cgroup_taskset_cur_cgroup);
1827
1828/**
1829 * cgroup_taskset_size - return the number of tasks in taskset
1830 * @tset: taskset of interest
1831 */
1832int cgroup_taskset_size(struct cgroup_taskset *tset)
1833{
1834 return tset->tc_array ? tset->tc_array_len : 1;
1835}
1836EXPORT_SYMBOL_GPL(cgroup_taskset_size);
1837
1838
74a1166d
BB
1839/*
1840 * cgroup_task_migrate - move a task from one cgroup to another.
1841 *
1842 * 'guarantee' is set if the caller promises that a new css_set for the task
1843 * will already exist. If not set, this function might sleep, and can fail with
cd3d0952 1844 * -ENOMEM. Must be called with cgroup_mutex and threadgroup locked.
74a1166d
BB
1845 */
1846static int cgroup_task_migrate(struct cgroup *cgrp, struct cgroup *oldcgrp,
1847 struct task_struct *tsk, bool guarantee)
1848{
1849 struct css_set *oldcg;
1850 struct css_set *newcg;
1851
1852 /*
026085ef
MSB
1853 * We are synchronized through threadgroup_lock() against PF_EXITING
1854 * setting such that we can't race against cgroup_exit() changing the
1855 * css_set to init_css_set and dropping the old one.
74a1166d 1856 */
c84cdf75 1857 WARN_ON_ONCE(tsk->flags & PF_EXITING);
74a1166d 1858 oldcg = tsk->cgroups;
74a1166d
BB
1859
1860 /* locate or allocate a new css_set for this task. */
1861 if (guarantee) {
1862 /* we know the css_set we want already exists. */
1863 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
1864 read_lock(&css_set_lock);
1865 newcg = find_existing_css_set(oldcg, cgrp, template);
1866 BUG_ON(!newcg);
1867 get_css_set(newcg);
1868 read_unlock(&css_set_lock);
1869 } else {
1870 might_sleep();
1871 /* find_css_set will give us newcg already referenced. */
1872 newcg = find_css_set(oldcg, cgrp);
026085ef 1873 if (!newcg)
74a1166d 1874 return -ENOMEM;
74a1166d 1875 }
74a1166d 1876
74a1166d 1877 task_lock(tsk);
74a1166d
BB
1878 rcu_assign_pointer(tsk->cgroups, newcg);
1879 task_unlock(tsk);
1880
1881 /* Update the css_set linked lists if we're using them */
1882 write_lock(&css_set_lock);
1883 if (!list_empty(&tsk->cg_list))
1884 list_move(&tsk->cg_list, &newcg->tasks);
1885 write_unlock(&css_set_lock);
1886
1887 /*
1888 * We just gained a reference on oldcg by taking it from the task. As
1889 * trading it for newcg is protected by cgroup_mutex, we're safe to drop
1890 * it here; it will be freed under RCU.
1891 */
1892 put_css_set(oldcg);
1893
1894 set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
1895 return 0;
1896}
1897
a043e3b2
LZ
1898/**
1899 * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp'
1900 * @cgrp: the cgroup the task is attaching to
1901 * @tsk: the task to be attached
bbcb81d0 1902 *
cd3d0952
TH
1903 * Call with cgroup_mutex and threadgroup locked. May take task_lock of
1904 * @tsk during call.
bbcb81d0 1905 */
956db3ca 1906int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
bbcb81d0 1907{
74a1166d 1908 int retval;
2468c723 1909 struct cgroup_subsys *ss, *failed_ss = NULL;
bd89aabc 1910 struct cgroup *oldcgrp;
bd89aabc 1911 struct cgroupfs_root *root = cgrp->root;
2f7ee569 1912 struct cgroup_taskset tset = { };
bbcb81d0 1913
cd3d0952
TH
1914 /* @tsk either already exited or can't exit until the end */
1915 if (tsk->flags & PF_EXITING)
1916 return -ESRCH;
1917
bbcb81d0 1918 /* Nothing to do if the task is already in that cgroup */
7717f7ba 1919 oldcgrp = task_cgroup_from_root(tsk, root);
bd89aabc 1920 if (cgrp == oldcgrp)
bbcb81d0
PM
1921 return 0;
1922
2f7ee569
TH
1923 tset.single.task = tsk;
1924 tset.single.cgrp = oldcgrp;
1925
bbcb81d0
PM
1926 for_each_subsys(root, ss) {
1927 if (ss->can_attach) {
2f7ee569 1928 retval = ss->can_attach(ss, cgrp, &tset);
2468c723
DN
1929 if (retval) {
1930 /*
1931 * Remember on which subsystem the can_attach()
1932 * failed, so that we only call cancel_attach()
1933 * against the subsystems whose can_attach()
1934 * succeeded. (See below)
1935 */
1936 failed_ss = ss;
1937 goto out;
1938 }
bbcb81d0
PM
1939 }
1940 }
1941
74a1166d
BB
1942 retval = cgroup_task_migrate(cgrp, oldcgrp, tsk, false);
1943 if (retval)
2468c723 1944 goto out;
817929ec 1945
bbcb81d0 1946 for_each_subsys(root, ss) {
e18f6318 1947 if (ss->attach)
2f7ee569 1948 ss->attach(ss, cgrp, &tset);
bbcb81d0 1949 }
74a1166d 1950
bbcb81d0 1951 synchronize_rcu();
ec64f515
KH
1952
1953 /*
1954 * wake up rmdir() waiter. the rmdir should fail since the cgroup
1955 * is no longer empty.
1956 */
88703267 1957 cgroup_wakeup_rmdir_waiter(cgrp);
2468c723
DN
1958out:
1959 if (retval) {
1960 for_each_subsys(root, ss) {
1961 if (ss == failed_ss)
1962 /*
1963 * This subsystem was the one that failed the
1964 * can_attach() check earlier, so we don't need
1965 * to call cancel_attach() against it or any
1966 * remaining subsystems.
1967 */
1968 break;
1969 if (ss->cancel_attach)
2f7ee569 1970 ss->cancel_attach(ss, cgrp, &tset);
2468c723
DN
1971 }
1972 }
1973 return retval;
bbcb81d0
PM
1974}
1975
d7926ee3 1976/**
31583bb0
MT
1977 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
1978 * @from: attach to all cgroups of a given task
d7926ee3
SS
1979 * @tsk: the task to be attached
1980 */
31583bb0 1981int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
d7926ee3
SS
1982{
1983 struct cgroupfs_root *root;
d7926ee3
SS
1984 int retval = 0;
1985
1986 cgroup_lock();
1987 for_each_active_root(root) {
31583bb0
MT
1988 struct cgroup *from_cg = task_cgroup_from_root(from, root);
1989
1990 retval = cgroup_attach_task(from_cg, tsk);
d7926ee3
SS
1991 if (retval)
1992 break;
1993 }
1994 cgroup_unlock();
1995
1996 return retval;
1997}
31583bb0 1998EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
d7926ee3 1999
bbcb81d0 2000/*
74a1166d
BB
2001 * cgroup_attach_proc works in two stages, the first of which prefetches all
2002 * new css_sets needed (to make sure we have enough memory before committing
2003 * to the move) and stores them in a list of entries of the following type.
2004 * TODO: possible optimization: use css_set->rcu_head for chaining instead
2005 */
2006struct cg_list_entry {
2007 struct css_set *cg;
2008 struct list_head links;
2009};
2010
2011static bool css_set_check_fetched(struct cgroup *cgrp,
2012 struct task_struct *tsk, struct css_set *cg,
2013 struct list_head *newcg_list)
2014{
2015 struct css_set *newcg;
2016 struct cg_list_entry *cg_entry;
2017 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
2018
2019 read_lock(&css_set_lock);
2020 newcg = find_existing_css_set(cg, cgrp, template);
74a1166d
BB
2021 read_unlock(&css_set_lock);
2022
2023 /* doesn't exist at all? */
2024 if (!newcg)
2025 return false;
2026 /* see if it's already in the list */
29e21368
MSB
2027 list_for_each_entry(cg_entry, newcg_list, links)
2028 if (cg_entry->cg == newcg)
74a1166d 2029 return true;
74a1166d
BB
2030
2031 /* not found */
74a1166d
BB
2032 return false;
2033}
2034
2035/*
2036 * Find the new css_set and store it in the list in preparation for moving the
2037 * given task to the given cgroup. Returns 0 or -ENOMEM.
2038 */
2039static int css_set_prefetch(struct cgroup *cgrp, struct css_set *cg,
2040 struct list_head *newcg_list)
2041{
2042 struct css_set *newcg;
2043 struct cg_list_entry *cg_entry;
2044
2045 /* ensure a new css_set will exist for this thread */
2046 newcg = find_css_set(cg, cgrp);
2047 if (!newcg)
2048 return -ENOMEM;
2049 /* add it to the list */
2050 cg_entry = kmalloc(sizeof(struct cg_list_entry), GFP_KERNEL);
2051 if (!cg_entry) {
2052 put_css_set(newcg);
2053 return -ENOMEM;
2054 }
2055 cg_entry->cg = newcg;
2056 list_add(&cg_entry->links, newcg_list);
2057 return 0;
2058}
2059
2060/**
2061 * cgroup_attach_proc - attach all threads in a threadgroup to a cgroup
2062 * @cgrp: the cgroup to attach to
2063 * @leader: the threadgroup leader task_struct of the group to be attached
2064 *
257058ae
TH
2065 * Call holding cgroup_mutex and the group_rwsem of the leader. Will take
2066 * task_lock of each thread in leader's threadgroup individually in turn.
74a1166d 2067 */
1c6c3fad 2068static int cgroup_attach_proc(struct cgroup *cgrp, struct task_struct *leader)
74a1166d 2069{
892a2b90 2070 int retval, i, group_size;
74a1166d 2071 struct cgroup_subsys *ss, *failed_ss = NULL;
74a1166d 2072 /* guaranteed to be initialized later, but the compiler needs this */
74a1166d
BB
2073 struct css_set *oldcg;
2074 struct cgroupfs_root *root = cgrp->root;
2075 /* threadgroup list cursor and array */
2076 struct task_struct *tsk;
134d3373 2077 struct task_and_cgroup *tc;
d846687d 2078 struct flex_array *group;
2f7ee569 2079 struct cgroup_taskset tset = { };
74a1166d
BB
2080 /*
2081 * we need to make sure we have css_sets for all the tasks we're
2082 * going to move -before- we actually start moving them, so that in
2083 * case we get an ENOMEM we can bail out before making any changes.
2084 */
2085 struct list_head newcg_list;
2086 struct cg_list_entry *cg_entry, *temp_nobe;
2087
2088 /*
2089 * step 0: in order to do expensive, possibly blocking operations for
2090 * every thread, we cannot iterate the thread group list, since it needs
2091 * rcu or tasklist locked. instead, build an array of all threads in the
257058ae
TH
2092 * group - group_rwsem prevents new threads from appearing, and if
2093 * threads exit, this will just be an over-estimate.
74a1166d
BB
2094 */
2095 group_size = get_nr_threads(leader);
d846687d 2096 /* flex_array supports very large thread-groups better than kmalloc. */
134d3373 2097 group = flex_array_alloc(sizeof(*tc), group_size, GFP_KERNEL);
74a1166d
BB
2098 if (!group)
2099 return -ENOMEM;
d846687d
BB
2100 /* pre-allocate to guarantee space while iterating in rcu read-side. */
2101 retval = flex_array_prealloc(group, 0, group_size - 1, GFP_KERNEL);
2102 if (retval)
2103 goto out_free_group_list;
74a1166d
BB
2104
2105 /* prevent changes to the threadgroup list while we take a snapshot. */
33ef6b69 2106 read_lock(&tasklist_lock);
74a1166d
BB
2107 if (!thread_group_leader(leader)) {
2108 /*
2109 * a race with de_thread from another thread's exec() may strip
2110 * us of our leadership, making while_each_thread unsafe to use
2111 * on this task. if this happens, there is no choice but to
2112 * throw this task away and try again (from cgroup_procs_write);
2113 * this is "double-double-toil-and-trouble-check locking".
2114 */
33ef6b69 2115 read_unlock(&tasklist_lock);
74a1166d
BB
2116 retval = -EAGAIN;
2117 goto out_free_group_list;
2118 }
b07ef774 2119
74a1166d 2120 tsk = leader;
892a2b90 2121 i = 0;
74a1166d 2122 do {
134d3373
TH
2123 struct task_and_cgroup ent;
2124
cd3d0952
TH
2125 /* @tsk either already exited or can't exit until the end */
2126 if (tsk->flags & PF_EXITING)
2127 continue;
2128
74a1166d
BB
2129 /* as per above, nr_threads may decrease, but not increase. */
2130 BUG_ON(i >= group_size);
d846687d
BB
2131 /*
2132 * saying GFP_ATOMIC has no effect here because we did prealloc
2133 * earlier, but it's good form to communicate our expectations.
2134 */
134d3373
TH
2135 ent.task = tsk;
2136 ent.cgrp = task_cgroup_from_root(tsk, root);
892a2b90
MSB
2137 /* nothing to do if this task is already in the cgroup */
2138 if (ent.cgrp == cgrp)
2139 continue;
134d3373 2140 retval = flex_array_put(group, i, &ent, GFP_ATOMIC);
d846687d 2141 BUG_ON(retval != 0);
74a1166d
BB
2142 i++;
2143 } while_each_thread(leader, tsk);
2144 /* remember the number of threads in the array for later. */
2145 group_size = i;
2f7ee569
TH
2146 tset.tc_array = group;
2147 tset.tc_array_len = group_size;
33ef6b69 2148 read_unlock(&tasklist_lock);
74a1166d 2149
134d3373
TH
2150 /* methods shouldn't be called if no task is actually migrating */
2151 retval = 0;
892a2b90 2152 if (!group_size)
b07ef774 2153 goto out_free_group_list;
134d3373 2154
74a1166d
BB
2155 /*
2156 * step 1: check that we can legitimately attach to the cgroup.
2157 */
2158 for_each_subsys(root, ss) {
2159 if (ss->can_attach) {
2f7ee569 2160 retval = ss->can_attach(ss, cgrp, &tset);
74a1166d
BB
2161 if (retval) {
2162 failed_ss = ss;
2163 goto out_cancel_attach;
2164 }
2165 }
74a1166d
BB
2166 }
2167
2168 /*
2169 * step 2: make sure css_sets exist for all threads to be migrated.
2170 * we use find_css_set, which allocates a new one if necessary.
2171 */
2172 INIT_LIST_HEAD(&newcg_list);
2173 for (i = 0; i < group_size; i++) {
134d3373 2174 tc = flex_array_get(group, i);
134d3373 2175 oldcg = tc->task->cgroups;
026085ef
MSB
2176
2177 /* if we don't already have it in the list get a new one */
2178 if (!css_set_check_fetched(cgrp, tc->task, oldcg, &newcg_list))
2179 if (retval = css_set_prefetch(cgrp, oldcg, &newcg_list))
74a1166d 2180 goto out_list_teardown;
74a1166d
BB
2181 }
2182
2183 /*
494c167c
TH
2184 * step 3: now that we're guaranteed success wrt the css_sets,
2185 * proceed to move all tasks to the new cgroup. There are no
2186 * failure cases after here, so this is the commit point.
74a1166d 2187 */
74a1166d 2188 for (i = 0; i < group_size; i++) {
134d3373 2189 tc = flex_array_get(group, i);
134d3373 2190 retval = cgroup_task_migrate(cgrp, tc->cgrp, tc->task, true);
cd3d0952 2191 BUG_ON(retval);
74a1166d
BB
2192 }
2193 /* nothing is sensitive to fork() after this point. */
2194
2195 /*
494c167c 2196 * step 4: do subsystem attach callbacks.
74a1166d
BB
2197 */
2198 for_each_subsys(root, ss) {
2f7ee569
TH
2199 if (ss->attach)
2200 ss->attach(ss, cgrp, &tset);
74a1166d
BB
2201 }
2202
2203 /*
2204 * step 5: success! and cleanup
2205 */
2206 synchronize_rcu();
2207 cgroup_wakeup_rmdir_waiter(cgrp);
2208 retval = 0;
2209out_list_teardown:
2210 /* clean up the list of prefetched css_sets. */
2211 list_for_each_entry_safe(cg_entry, temp_nobe, &newcg_list, links) {
2212 list_del(&cg_entry->links);
2213 put_css_set(cg_entry->cg);
2214 kfree(cg_entry);
2215 }
2216out_cancel_attach:
2217 /* same deal as in cgroup_attach_task */
2218 if (retval) {
2219 for_each_subsys(root, ss) {
494c167c 2220 if (ss == failed_ss)
74a1166d 2221 break;
74a1166d 2222 if (ss->cancel_attach)
2f7ee569 2223 ss->cancel_attach(ss, cgrp, &tset);
74a1166d
BB
2224 }
2225 }
74a1166d 2226out_free_group_list:
d846687d 2227 flex_array_free(group);
74a1166d
BB
2228 return retval;
2229}
2230
2231/*
2232 * Find the task_struct of the task to attach by vpid and pass it along to the
cd3d0952
TH
2233 * function to attach either it or all tasks in its threadgroup. Will lock
2234 * cgroup_mutex and threadgroup; may take task_lock of task.
bbcb81d0 2235 */
74a1166d 2236static int attach_task_by_pid(struct cgroup *cgrp, u64 pid, bool threadgroup)
bbcb81d0 2237{
bbcb81d0 2238 struct task_struct *tsk;
c69e8d9c 2239 const struct cred *cred = current_cred(), *tcred;
bbcb81d0
PM
2240 int ret;
2241
74a1166d
BB
2242 if (!cgroup_lock_live_group(cgrp))
2243 return -ENODEV;
2244
bbcb81d0
PM
2245 if (pid) {
2246 rcu_read_lock();
73507f33 2247 tsk = find_task_by_vpid(pid);
74a1166d
BB
2248 if (!tsk) {
2249 rcu_read_unlock();
2250 cgroup_unlock();
2251 return -ESRCH;
2252 }
2253 if (threadgroup) {
2254 /*
2255 * RCU protects this access, since tsk was found in the
2256 * tid map. a race with de_thread may cause group_leader
2257 * to stop being the leader, but cgroup_attach_proc will
2258 * detect it later.
2259 */
2260 tsk = tsk->group_leader;
bbcb81d0 2261 }
74a1166d
BB
2262 /*
2263 * even if we're attaching all tasks in the thread group, we
2264 * only need to check permissions on one of them.
2265 */
c69e8d9c
DH
2266 tcred = __task_cred(tsk);
2267 if (cred->euid &&
2268 cred->euid != tcred->uid &&
2269 cred->euid != tcred->suid) {
2270 rcu_read_unlock();
74a1166d 2271 cgroup_unlock();
bbcb81d0
PM
2272 return -EACCES;
2273 }
c69e8d9c
DH
2274 get_task_struct(tsk);
2275 rcu_read_unlock();
bbcb81d0 2276 } else {
74a1166d
BB
2277 if (threadgroup)
2278 tsk = current->group_leader;
2279 else
2280 tsk = current;
bbcb81d0
PM
2281 get_task_struct(tsk);
2282 }
2283
cd3d0952
TH
2284 threadgroup_lock(tsk);
2285
2286 if (threadgroup)
74a1166d 2287 ret = cgroup_attach_proc(cgrp, tsk);
cd3d0952 2288 else
74a1166d 2289 ret = cgroup_attach_task(cgrp, tsk);
cd3d0952
TH
2290
2291 threadgroup_unlock(tsk);
2292
bbcb81d0 2293 put_task_struct(tsk);
74a1166d 2294 cgroup_unlock();
bbcb81d0
PM
2295 return ret;
2296}
2297
af351026 2298static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid)
74a1166d
BB
2299{
2300 return attach_task_by_pid(cgrp, pid, false);
2301}
2302
2303static int cgroup_procs_write(struct cgroup *cgrp, struct cftype *cft, u64 tgid)
af351026
PM
2304{
2305 int ret;
74a1166d
BB
2306 do {
2307 /*
2308 * attach_proc fails with -EAGAIN if threadgroup leadership
2309 * changes in the middle of the operation, in which case we need
2310 * to find the task_struct for the new leader and start over.
2311 */
2312 ret = attach_task_by_pid(cgrp, tgid, true);
2313 } while (ret == -EAGAIN);
af351026
PM
2314 return ret;
2315}
2316
e788e066
PM
2317/**
2318 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
2319 * @cgrp: the cgroup to be checked for liveness
2320 *
84eea842
PM
2321 * On success, returns true; the lock should be later released with
2322 * cgroup_unlock(). On failure returns false with no lock held.
e788e066 2323 */
84eea842 2324bool cgroup_lock_live_group(struct cgroup *cgrp)
e788e066
PM
2325{
2326 mutex_lock(&cgroup_mutex);
2327 if (cgroup_is_removed(cgrp)) {
2328 mutex_unlock(&cgroup_mutex);
2329 return false;
2330 }
2331 return true;
2332}
67523c48 2333EXPORT_SYMBOL_GPL(cgroup_lock_live_group);
e788e066
PM
2334
2335static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft,
2336 const char *buffer)
2337{
2338 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
f4a2589f
EK
2339 if (strlen(buffer) >= PATH_MAX)
2340 return -EINVAL;
e788e066
PM
2341 if (!cgroup_lock_live_group(cgrp))
2342 return -ENODEV;
e25e2cbb 2343 mutex_lock(&cgroup_root_mutex);
e788e066 2344 strcpy(cgrp->root->release_agent_path, buffer);
e25e2cbb 2345 mutex_unlock(&cgroup_root_mutex);
84eea842 2346 cgroup_unlock();
e788e066
PM
2347 return 0;
2348}
2349
2350static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft,
2351 struct seq_file *seq)
2352{
2353 if (!cgroup_lock_live_group(cgrp))
2354 return -ENODEV;
2355 seq_puts(seq, cgrp->root->release_agent_path);
2356 seq_putc(seq, '\n');
84eea842 2357 cgroup_unlock();
e788e066
PM
2358 return 0;
2359}
2360
84eea842
PM
2361/* A buffer size big enough for numbers or short strings */
2362#define CGROUP_LOCAL_BUFFER_SIZE 64
2363
e73d2c61 2364static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
f4c753b7
PM
2365 struct file *file,
2366 const char __user *userbuf,
2367 size_t nbytes, loff_t *unused_ppos)
355e0c48 2368{
84eea842 2369 char buffer[CGROUP_LOCAL_BUFFER_SIZE];
355e0c48 2370 int retval = 0;
355e0c48
PM
2371 char *end;
2372
2373 if (!nbytes)
2374 return -EINVAL;
2375 if (nbytes >= sizeof(buffer))
2376 return -E2BIG;
2377 if (copy_from_user(buffer, userbuf, nbytes))
2378 return -EFAULT;
2379
2380 buffer[nbytes] = 0; /* nul-terminate */
e73d2c61 2381 if (cft->write_u64) {
478988d3 2382 u64 val = simple_strtoull(strstrip(buffer), &end, 0);
e73d2c61
PM
2383 if (*end)
2384 return -EINVAL;
2385 retval = cft->write_u64(cgrp, cft, val);
2386 } else {
478988d3 2387 s64 val = simple_strtoll(strstrip(buffer), &end, 0);
e73d2c61
PM
2388 if (*end)
2389 return -EINVAL;
2390 retval = cft->write_s64(cgrp, cft, val);
2391 }
355e0c48
PM
2392 if (!retval)
2393 retval = nbytes;
2394 return retval;
2395}
2396
db3b1497
PM
2397static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft,
2398 struct file *file,
2399 const char __user *userbuf,
2400 size_t nbytes, loff_t *unused_ppos)
2401{
84eea842 2402 char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
db3b1497
PM
2403 int retval = 0;
2404 size_t max_bytes = cft->max_write_len;
2405 char *buffer = local_buffer;
2406
2407 if (!max_bytes)
2408 max_bytes = sizeof(local_buffer) - 1;
2409 if (nbytes >= max_bytes)
2410 return -E2BIG;
2411 /* Allocate a dynamic buffer if we need one */
2412 if (nbytes >= sizeof(local_buffer)) {
2413 buffer = kmalloc(nbytes + 1, GFP_KERNEL);
2414 if (buffer == NULL)
2415 return -ENOMEM;
2416 }
5a3eb9f6
LZ
2417 if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
2418 retval = -EFAULT;
2419 goto out;
2420 }
db3b1497
PM
2421
2422 buffer[nbytes] = 0; /* nul-terminate */
478988d3 2423 retval = cft->write_string(cgrp, cft, strstrip(buffer));
db3b1497
PM
2424 if (!retval)
2425 retval = nbytes;
5a3eb9f6 2426out:
db3b1497
PM
2427 if (buffer != local_buffer)
2428 kfree(buffer);
2429 return retval;
2430}
2431
ddbcc7e8
PM
2432static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
2433 size_t nbytes, loff_t *ppos)
2434{
2435 struct cftype *cft = __d_cft(file->f_dentry);
bd89aabc 2436 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
ddbcc7e8 2437
75139b82 2438 if (cgroup_is_removed(cgrp))
ddbcc7e8 2439 return -ENODEV;
355e0c48 2440 if (cft->write)
bd89aabc 2441 return cft->write(cgrp, cft, file, buf, nbytes, ppos);
e73d2c61
PM
2442 if (cft->write_u64 || cft->write_s64)
2443 return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
db3b1497
PM
2444 if (cft->write_string)
2445 return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos);
d447ea2f
PE
2446 if (cft->trigger) {
2447 int ret = cft->trigger(cgrp, (unsigned int)cft->private);
2448 return ret ? ret : nbytes;
2449 }
355e0c48 2450 return -EINVAL;
ddbcc7e8
PM
2451}
2452
f4c753b7
PM
2453static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
2454 struct file *file,
2455 char __user *buf, size_t nbytes,
2456 loff_t *ppos)
ddbcc7e8 2457{
84eea842 2458 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
f4c753b7 2459 u64 val = cft->read_u64(cgrp, cft);
ddbcc7e8
PM
2460 int len = sprintf(tmp, "%llu\n", (unsigned long long) val);
2461
2462 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2463}
2464
e73d2c61
PM
2465static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
2466 struct file *file,
2467 char __user *buf, size_t nbytes,
2468 loff_t *ppos)
2469{
84eea842 2470 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
e73d2c61
PM
2471 s64 val = cft->read_s64(cgrp, cft);
2472 int len = sprintf(tmp, "%lld\n", (long long) val);
2473
2474 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2475}
2476
ddbcc7e8
PM
2477static ssize_t cgroup_file_read(struct file *file, char __user *buf,
2478 size_t nbytes, loff_t *ppos)
2479{
2480 struct cftype *cft = __d_cft(file->f_dentry);
bd89aabc 2481 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
ddbcc7e8 2482
75139b82 2483 if (cgroup_is_removed(cgrp))
ddbcc7e8
PM
2484 return -ENODEV;
2485
2486 if (cft->read)
bd89aabc 2487 return cft->read(cgrp, cft, file, buf, nbytes, ppos);
f4c753b7
PM
2488 if (cft->read_u64)
2489 return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
e73d2c61
PM
2490 if (cft->read_s64)
2491 return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
ddbcc7e8
PM
2492 return -EINVAL;
2493}
2494
91796569
PM
2495/*
2496 * seqfile ops/methods for returning structured data. Currently just
2497 * supports string->u64 maps, but can be extended in future.
2498 */
2499
2500struct cgroup_seqfile_state {
2501 struct cftype *cft;
2502 struct cgroup *cgroup;
2503};
2504
2505static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
2506{
2507 struct seq_file *sf = cb->state;
2508 return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
2509}
2510
2511static int cgroup_seqfile_show(struct seq_file *m, void *arg)
2512{
2513 struct cgroup_seqfile_state *state = m->private;
2514 struct cftype *cft = state->cft;
29486df3
SH
2515 if (cft->read_map) {
2516 struct cgroup_map_cb cb = {
2517 .fill = cgroup_map_add,
2518 .state = m,
2519 };
2520 return cft->read_map(state->cgroup, cft, &cb);
2521 }
2522 return cft->read_seq_string(state->cgroup, cft, m);
91796569
PM
2523}
2524
96930a63 2525static int cgroup_seqfile_release(struct inode *inode, struct file *file)
91796569
PM
2526{
2527 struct seq_file *seq = file->private_data;
2528 kfree(seq->private);
2529 return single_release(inode, file);
2530}
2531
828c0950 2532static const struct file_operations cgroup_seqfile_operations = {
91796569 2533 .read = seq_read,
e788e066 2534 .write = cgroup_file_write,
91796569
PM
2535 .llseek = seq_lseek,
2536 .release = cgroup_seqfile_release,
2537};
2538
ddbcc7e8
PM
2539static int cgroup_file_open(struct inode *inode, struct file *file)
2540{
2541 int err;
2542 struct cftype *cft;
2543
2544 err = generic_file_open(inode, file);
2545 if (err)
2546 return err;
ddbcc7e8 2547 cft = __d_cft(file->f_dentry);
75139b82 2548
29486df3 2549 if (cft->read_map || cft->read_seq_string) {
91796569
PM
2550 struct cgroup_seqfile_state *state =
2551 kzalloc(sizeof(*state), GFP_USER);
2552 if (!state)
2553 return -ENOMEM;
2554 state->cft = cft;
2555 state->cgroup = __d_cgrp(file->f_dentry->d_parent);
2556 file->f_op = &cgroup_seqfile_operations;
2557 err = single_open(file, cgroup_seqfile_show, state);
2558 if (err < 0)
2559 kfree(state);
2560 } else if (cft->open)
ddbcc7e8
PM
2561 err = cft->open(inode, file);
2562 else
2563 err = 0;
2564
2565 return err;
2566}
2567
2568static int cgroup_file_release(struct inode *inode, struct file *file)
2569{
2570 struct cftype *cft = __d_cft(file->f_dentry);
2571 if (cft->release)
2572 return cft->release(inode, file);
2573 return 0;
2574}
2575
2576/*
2577 * cgroup_rename - Only allow simple rename of directories in place.
2578 */
2579static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
2580 struct inode *new_dir, struct dentry *new_dentry)
2581{
2582 if (!S_ISDIR(old_dentry->d_inode->i_mode))
2583 return -ENOTDIR;
2584 if (new_dentry->d_inode)
2585 return -EEXIST;
2586 if (old_dir != new_dir)
2587 return -EIO;
2588 return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
2589}
2590
828c0950 2591static const struct file_operations cgroup_file_operations = {
ddbcc7e8
PM
2592 .read = cgroup_file_read,
2593 .write = cgroup_file_write,
2594 .llseek = generic_file_llseek,
2595 .open = cgroup_file_open,
2596 .release = cgroup_file_release,
2597};
2598
6e1d5dcc 2599static const struct inode_operations cgroup_dir_inode_operations = {
c72a04e3 2600 .lookup = cgroup_lookup,
ddbcc7e8
PM
2601 .mkdir = cgroup_mkdir,
2602 .rmdir = cgroup_rmdir,
2603 .rename = cgroup_rename,
2604};
2605
c72a04e3
AV
2606static struct dentry *cgroup_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
2607{
2608 if (dentry->d_name.len > NAME_MAX)
2609 return ERR_PTR(-ENAMETOOLONG);
2610 d_add(dentry, NULL);
2611 return NULL;
2612}
2613
0dea1168
KS
2614/*
2615 * Check if a file is a control file
2616 */
2617static inline struct cftype *__file_cft(struct file *file)
2618{
2619 if (file->f_dentry->d_inode->i_fop != &cgroup_file_operations)
2620 return ERR_PTR(-EINVAL);
2621 return __d_cft(file->f_dentry);
2622}
2623
5adcee1d
NP
2624static int cgroup_create_file(struct dentry *dentry, mode_t mode,
2625 struct super_block *sb)
2626{
ddbcc7e8
PM
2627 struct inode *inode;
2628
2629 if (!dentry)
2630 return -ENOENT;
2631 if (dentry->d_inode)
2632 return -EEXIST;
2633
2634 inode = cgroup_new_inode(mode, sb);
2635 if (!inode)
2636 return -ENOMEM;
2637
2638 if (S_ISDIR(mode)) {
2639 inode->i_op = &cgroup_dir_inode_operations;
2640 inode->i_fop = &simple_dir_operations;
2641
2642 /* start off with i_nlink == 2 (for "." entry) */
2643 inc_nlink(inode);
2644
2645 /* start with the directory inode held, so that we can
2646 * populate it without racing with another mkdir */
817929ec 2647 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
ddbcc7e8
PM
2648 } else if (S_ISREG(mode)) {
2649 inode->i_size = 0;
2650 inode->i_fop = &cgroup_file_operations;
2651 }
ddbcc7e8
PM
2652 d_instantiate(dentry, inode);
2653 dget(dentry); /* Extra count - pin the dentry in core */
2654 return 0;
2655}
2656
2657/*
a043e3b2
LZ
2658 * cgroup_create_dir - create a directory for an object.
2659 * @cgrp: the cgroup we create the directory for. It must have a valid
2660 * ->parent field. And we are going to fill its ->dentry field.
2661 * @dentry: dentry of the new cgroup
2662 * @mode: mode to set on new directory.
ddbcc7e8 2663 */
bd89aabc 2664static int cgroup_create_dir(struct cgroup *cgrp, struct dentry *dentry,
099fca32 2665 mode_t mode)
ddbcc7e8
PM
2666{
2667 struct dentry *parent;
2668 int error = 0;
2669
bd89aabc
PM
2670 parent = cgrp->parent->dentry;
2671 error = cgroup_create_file(dentry, S_IFDIR | mode, cgrp->root->sb);
ddbcc7e8 2672 if (!error) {
bd89aabc 2673 dentry->d_fsdata = cgrp;
ddbcc7e8 2674 inc_nlink(parent->d_inode);
a47295e6 2675 rcu_assign_pointer(cgrp->dentry, dentry);
ddbcc7e8
PM
2676 dget(dentry);
2677 }
2678 dput(dentry);
2679
2680 return error;
2681}
2682
099fca32
LZ
2683/**
2684 * cgroup_file_mode - deduce file mode of a control file
2685 * @cft: the control file in question
2686 *
2687 * returns cft->mode if ->mode is not 0
2688 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
2689 * returns S_IRUGO if it has only a read handler
2690 * returns S_IWUSR if it has only a write hander
2691 */
2692static mode_t cgroup_file_mode(const struct cftype *cft)
2693{
2694 mode_t mode = 0;
2695
2696 if (cft->mode)
2697 return cft->mode;
2698
2699 if (cft->read || cft->read_u64 || cft->read_s64 ||
2700 cft->read_map || cft->read_seq_string)
2701 mode |= S_IRUGO;
2702
2703 if (cft->write || cft->write_u64 || cft->write_s64 ||
2704 cft->write_string || cft->trigger)
2705 mode |= S_IWUSR;
2706
2707 return mode;
2708}
2709
bd89aabc 2710int cgroup_add_file(struct cgroup *cgrp,
ddbcc7e8
PM
2711 struct cgroup_subsys *subsys,
2712 const struct cftype *cft)
2713{
bd89aabc 2714 struct dentry *dir = cgrp->dentry;
ddbcc7e8
PM
2715 struct dentry *dentry;
2716 int error;
099fca32 2717 mode_t mode;
ddbcc7e8
PM
2718
2719 char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
bd89aabc 2720 if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) {
ddbcc7e8
PM
2721 strcpy(name, subsys->name);
2722 strcat(name, ".");
2723 }
2724 strcat(name, cft->name);
2725 BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
2726 dentry = lookup_one_len(name, dir, strlen(name));
2727 if (!IS_ERR(dentry)) {
099fca32
LZ
2728 mode = cgroup_file_mode(cft);
2729 error = cgroup_create_file(dentry, mode | S_IFREG,
bd89aabc 2730 cgrp->root->sb);
ddbcc7e8
PM
2731 if (!error)
2732 dentry->d_fsdata = (void *)cft;
2733 dput(dentry);
2734 } else
2735 error = PTR_ERR(dentry);
2736 return error;
2737}
e6a1105b 2738EXPORT_SYMBOL_GPL(cgroup_add_file);
ddbcc7e8 2739
bd89aabc 2740int cgroup_add_files(struct cgroup *cgrp,
ddbcc7e8
PM
2741 struct cgroup_subsys *subsys,
2742 const struct cftype cft[],
2743 int count)
2744{
2745 int i, err;
2746 for (i = 0; i < count; i++) {
bd89aabc 2747 err = cgroup_add_file(cgrp, subsys, &cft[i]);
ddbcc7e8
PM
2748 if (err)
2749 return err;
2750 }
2751 return 0;
2752}
e6a1105b 2753EXPORT_SYMBOL_GPL(cgroup_add_files);
ddbcc7e8 2754
a043e3b2
LZ
2755/**
2756 * cgroup_task_count - count the number of tasks in a cgroup.
2757 * @cgrp: the cgroup in question
2758 *
2759 * Return the number of tasks in the cgroup.
2760 */
bd89aabc 2761int cgroup_task_count(const struct cgroup *cgrp)
bbcb81d0
PM
2762{
2763 int count = 0;
71cbb949 2764 struct cg_cgroup_link *link;
817929ec
PM
2765
2766 read_lock(&css_set_lock);
71cbb949 2767 list_for_each_entry(link, &cgrp->css_sets, cgrp_link_list) {
146aa1bd 2768 count += atomic_read(&link->cg->refcount);
817929ec
PM
2769 }
2770 read_unlock(&css_set_lock);
bbcb81d0
PM
2771 return count;
2772}
2773
817929ec
PM
2774/*
2775 * Advance a list_head iterator. The iterator should be positioned at
2776 * the start of a css_set
2777 */
bd89aabc 2778static void cgroup_advance_iter(struct cgroup *cgrp,
7717f7ba 2779 struct cgroup_iter *it)
817929ec
PM
2780{
2781 struct list_head *l = it->cg_link;
2782 struct cg_cgroup_link *link;
2783 struct css_set *cg;
2784
2785 /* Advance to the next non-empty css_set */
2786 do {
2787 l = l->next;
bd89aabc 2788 if (l == &cgrp->css_sets) {
817929ec
PM
2789 it->cg_link = NULL;
2790 return;
2791 }
bd89aabc 2792 link = list_entry(l, struct cg_cgroup_link, cgrp_link_list);
817929ec
PM
2793 cg = link->cg;
2794 } while (list_empty(&cg->tasks));
2795 it->cg_link = l;
2796 it->task = cg->tasks.next;
2797}
2798
31a7df01
CW
2799/*
2800 * To reduce the fork() overhead for systems that are not actually
2801 * using their cgroups capability, we don't maintain the lists running
2802 * through each css_set to its tasks until we see the list actually
2803 * used - in other words after the first call to cgroup_iter_start().
2804 *
2805 * The tasklist_lock is not held here, as do_each_thread() and
2806 * while_each_thread() are protected by RCU.
2807 */
3df91fe3 2808static void cgroup_enable_task_cg_lists(void)
31a7df01
CW
2809{
2810 struct task_struct *p, *g;
2811 write_lock(&css_set_lock);
2812 use_task_css_set_links = 1;
2813 do_each_thread(g, p) {
2814 task_lock(p);
0e04388f
LZ
2815 /*
2816 * We should check if the process is exiting, otherwise
2817 * it will race with cgroup_exit() in that the list
2818 * entry won't be deleted though the process has exited.
2819 */
2820 if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
31a7df01
CW
2821 list_add(&p->cg_list, &p->cgroups->tasks);
2822 task_unlock(p);
2823 } while_each_thread(g, p);
2824 write_unlock(&css_set_lock);
2825}
2826
bd89aabc 2827void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
c6ca5750 2828 __acquires(css_set_lock)
817929ec
PM
2829{
2830 /*
2831 * The first time anyone tries to iterate across a cgroup,
2832 * we need to enable the list linking each css_set to its
2833 * tasks, and fix up all existing tasks.
2834 */
31a7df01
CW
2835 if (!use_task_css_set_links)
2836 cgroup_enable_task_cg_lists();
2837
817929ec 2838 read_lock(&css_set_lock);
bd89aabc
PM
2839 it->cg_link = &cgrp->css_sets;
2840 cgroup_advance_iter(cgrp, it);
817929ec
PM
2841}
2842
bd89aabc 2843struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
817929ec
PM
2844 struct cgroup_iter *it)
2845{
2846 struct task_struct *res;
2847 struct list_head *l = it->task;
2019f634 2848 struct cg_cgroup_link *link;
817929ec
PM
2849
2850 /* If the iterator cg is NULL, we have no tasks */
2851 if (!it->cg_link)
2852 return NULL;
2853 res = list_entry(l, struct task_struct, cg_list);
2854 /* Advance iterator to find next entry */
2855 l = l->next;
2019f634
LJ
2856 link = list_entry(it->cg_link, struct cg_cgroup_link, cgrp_link_list);
2857 if (l == &link->cg->tasks) {
817929ec
PM
2858 /* We reached the end of this task list - move on to
2859 * the next cg_cgroup_link */
bd89aabc 2860 cgroup_advance_iter(cgrp, it);
817929ec
PM
2861 } else {
2862 it->task = l;
2863 }
2864 return res;
2865}
2866
bd89aabc 2867void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
c6ca5750 2868 __releases(css_set_lock)
817929ec
PM
2869{
2870 read_unlock(&css_set_lock);
2871}
2872
31a7df01
CW
2873static inline int started_after_time(struct task_struct *t1,
2874 struct timespec *time,
2875 struct task_struct *t2)
2876{
2877 int start_diff = timespec_compare(&t1->start_time, time);
2878 if (start_diff > 0) {
2879 return 1;
2880 } else if (start_diff < 0) {
2881 return 0;
2882 } else {
2883 /*
2884 * Arbitrarily, if two processes started at the same
2885 * time, we'll say that the lower pointer value
2886 * started first. Note that t2 may have exited by now
2887 * so this may not be a valid pointer any longer, but
2888 * that's fine - it still serves to distinguish
2889 * between two tasks started (effectively) simultaneously.
2890 */
2891 return t1 > t2;
2892 }
2893}
2894
2895/*
2896 * This function is a callback from heap_insert() and is used to order
2897 * the heap.
2898 * In this case we order the heap in descending task start time.
2899 */
2900static inline int started_after(void *p1, void *p2)
2901{
2902 struct task_struct *t1 = p1;
2903 struct task_struct *t2 = p2;
2904 return started_after_time(t1, &t2->start_time, t2);
2905}
2906
2907/**
2908 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
2909 * @scan: struct cgroup_scanner containing arguments for the scan
2910 *
2911 * Arguments include pointers to callback functions test_task() and
2912 * process_task().
2913 * Iterate through all the tasks in a cgroup, calling test_task() for each,
2914 * and if it returns true, call process_task() for it also.
2915 * The test_task pointer may be NULL, meaning always true (select all tasks).
2916 * Effectively duplicates cgroup_iter_{start,next,end}()
2917 * but does not lock css_set_lock for the call to process_task().
2918 * The struct cgroup_scanner may be embedded in any structure of the caller's
2919 * creation.
2920 * It is guaranteed that process_task() will act on every task that
2921 * is a member of the cgroup for the duration of this call. This
2922 * function may or may not call process_task() for tasks that exit
2923 * or move to a different cgroup during the call, or are forked or
2924 * move into the cgroup during the call.
2925 *
2926 * Note that test_task() may be called with locks held, and may in some
2927 * situations be called multiple times for the same task, so it should
2928 * be cheap.
2929 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
2930 * pre-allocated and will be used for heap operations (and its "gt" member will
2931 * be overwritten), else a temporary heap will be used (allocation of which
2932 * may cause this function to fail).
2933 */
2934int cgroup_scan_tasks(struct cgroup_scanner *scan)
2935{
2936 int retval, i;
2937 struct cgroup_iter it;
2938 struct task_struct *p, *dropped;
2939 /* Never dereference latest_task, since it's not refcounted */
2940 struct task_struct *latest_task = NULL;
2941 struct ptr_heap tmp_heap;
2942 struct ptr_heap *heap;
2943 struct timespec latest_time = { 0, 0 };
2944
2945 if (scan->heap) {
2946 /* The caller supplied our heap and pre-allocated its memory */
2947 heap = scan->heap;
2948 heap->gt = &started_after;
2949 } else {
2950 /* We need to allocate our own heap memory */
2951 heap = &tmp_heap;
2952 retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
2953 if (retval)
2954 /* cannot allocate the heap */
2955 return retval;
2956 }
2957
2958 again:
2959 /*
2960 * Scan tasks in the cgroup, using the scanner's "test_task" callback
2961 * to determine which are of interest, and using the scanner's
2962 * "process_task" callback to process any of them that need an update.
2963 * Since we don't want to hold any locks during the task updates,
2964 * gather tasks to be processed in a heap structure.
2965 * The heap is sorted by descending task start time.
2966 * If the statically-sized heap fills up, we overflow tasks that
2967 * started later, and in future iterations only consider tasks that
2968 * started after the latest task in the previous pass. This
2969 * guarantees forward progress and that we don't miss any tasks.
2970 */
2971 heap->size = 0;
2972 cgroup_iter_start(scan->cg, &it);
2973 while ((p = cgroup_iter_next(scan->cg, &it))) {
2974 /*
2975 * Only affect tasks that qualify per the caller's callback,
2976 * if he provided one
2977 */
2978 if (scan->test_task && !scan->test_task(p, scan))
2979 continue;
2980 /*
2981 * Only process tasks that started after the last task
2982 * we processed
2983 */
2984 if (!started_after_time(p, &latest_time, latest_task))
2985 continue;
2986 dropped = heap_insert(heap, p);
2987 if (dropped == NULL) {
2988 /*
2989 * The new task was inserted; the heap wasn't
2990 * previously full
2991 */
2992 get_task_struct(p);
2993 } else if (dropped != p) {
2994 /*
2995 * The new task was inserted, and pushed out a
2996 * different task
2997 */
2998 get_task_struct(p);
2999 put_task_struct(dropped);
3000 }
3001 /*
3002 * Else the new task was newer than anything already in
3003 * the heap and wasn't inserted
3004 */
3005 }
3006 cgroup_iter_end(scan->cg, &it);
3007
3008 if (heap->size) {
3009 for (i = 0; i < heap->size; i++) {
4fe91d51 3010 struct task_struct *q = heap->ptrs[i];
31a7df01 3011 if (i == 0) {
4fe91d51
PJ
3012 latest_time = q->start_time;
3013 latest_task = q;
31a7df01
CW
3014 }
3015 /* Process the task per the caller's callback */
4fe91d51
PJ
3016 scan->process_task(q, scan);
3017 put_task_struct(q);
31a7df01
CW
3018 }
3019 /*
3020 * If we had to process any tasks at all, scan again
3021 * in case some of them were in the middle of forking
3022 * children that didn't get processed.
3023 * Not the most efficient way to do it, but it avoids
3024 * having to take callback_mutex in the fork path
3025 */
3026 goto again;
3027 }
3028 if (heap == &tmp_heap)
3029 heap_free(&tmp_heap);
3030 return 0;
3031}
3032
bbcb81d0 3033/*
102a775e 3034 * Stuff for reading the 'tasks'/'procs' files.
bbcb81d0
PM
3035 *
3036 * Reading this file can return large amounts of data if a cgroup has
3037 * *lots* of attached tasks. So it may need several calls to read(),
3038 * but we cannot guarantee that the information we produce is correct
3039 * unless we produce it entirely atomically.
3040 *
bbcb81d0 3041 */
bbcb81d0 3042
d1d9fd33
BB
3043/*
3044 * The following two functions "fix" the issue where there are more pids
3045 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
3046 * TODO: replace with a kernel-wide solution to this problem
3047 */
3048#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
3049static void *pidlist_allocate(int count)
3050{
3051 if (PIDLIST_TOO_LARGE(count))
3052 return vmalloc(count * sizeof(pid_t));
3053 else
3054 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
3055}
3056static void pidlist_free(void *p)
3057{
3058 if (is_vmalloc_addr(p))
3059 vfree(p);
3060 else
3061 kfree(p);
3062}
3063static void *pidlist_resize(void *p, int newcount)
3064{
3065 void *newlist;
3066 /* note: if new alloc fails, old p will still be valid either way */
3067 if (is_vmalloc_addr(p)) {
3068 newlist = vmalloc(newcount * sizeof(pid_t));
3069 if (!newlist)
3070 return NULL;
3071 memcpy(newlist, p, newcount * sizeof(pid_t));
3072 vfree(p);
3073 } else {
3074 newlist = krealloc(p, newcount * sizeof(pid_t), GFP_KERNEL);
3075 }
3076 return newlist;
3077}
3078
bbcb81d0 3079/*
102a775e
BB
3080 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
3081 * If the new stripped list is sufficiently smaller and there's enough memory
3082 * to allocate a new buffer, will let go of the unneeded memory. Returns the
3083 * number of unique elements.
bbcb81d0 3084 */
102a775e
BB
3085/* is the size difference enough that we should re-allocate the array? */
3086#define PIDLIST_REALLOC_DIFFERENCE(old, new) ((old) - PAGE_SIZE >= (new))
3087static int pidlist_uniq(pid_t **p, int length)
bbcb81d0 3088{
102a775e
BB
3089 int src, dest = 1;
3090 pid_t *list = *p;
3091 pid_t *newlist;
3092
3093 /*
3094 * we presume the 0th element is unique, so i starts at 1. trivial
3095 * edge cases first; no work needs to be done for either
3096 */
3097 if (length == 0 || length == 1)
3098 return length;
3099 /* src and dest walk down the list; dest counts unique elements */
3100 for (src = 1; src < length; src++) {
3101 /* find next unique element */
3102 while (list[src] == list[src-1]) {
3103 src++;
3104 if (src == length)
3105 goto after;
3106 }
3107 /* dest always points to where the next unique element goes */
3108 list[dest] = list[src];
3109 dest++;
3110 }
3111after:
3112 /*
3113 * if the length difference is large enough, we want to allocate a
3114 * smaller buffer to save memory. if this fails due to out of memory,
3115 * we'll just stay with what we've got.
3116 */
3117 if (PIDLIST_REALLOC_DIFFERENCE(length, dest)) {
d1d9fd33 3118 newlist = pidlist_resize(list, dest);
102a775e
BB
3119 if (newlist)
3120 *p = newlist;
3121 }
3122 return dest;
3123}
3124
3125static int cmppid(const void *a, const void *b)
3126{
3127 return *(pid_t *)a - *(pid_t *)b;
3128}
3129
72a8cb30
BB
3130/*
3131 * find the appropriate pidlist for our purpose (given procs vs tasks)
3132 * returns with the lock on that pidlist already held, and takes care
3133 * of the use count, or returns NULL with no locks held if we're out of
3134 * memory.
3135 */
3136static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
3137 enum cgroup_filetype type)
3138{
3139 struct cgroup_pidlist *l;
3140 /* don't need task_nsproxy() if we're looking at ourself */
b70cc5fd
LZ
3141 struct pid_namespace *ns = current->nsproxy->pid_ns;
3142
72a8cb30
BB
3143 /*
3144 * We can't drop the pidlist_mutex before taking the l->mutex in case
3145 * the last ref-holder is trying to remove l from the list at the same
3146 * time. Holding the pidlist_mutex precludes somebody taking whichever
3147 * list we find out from under us - compare release_pid_array().
3148 */
3149 mutex_lock(&cgrp->pidlist_mutex);
3150 list_for_each_entry(l, &cgrp->pidlists, links) {
3151 if (l->key.type == type && l->key.ns == ns) {
72a8cb30
BB
3152 /* make sure l doesn't vanish out from under us */
3153 down_write(&l->mutex);
3154 mutex_unlock(&cgrp->pidlist_mutex);
72a8cb30
BB
3155 return l;
3156 }
3157 }
3158 /* entry not found; create a new one */
3159 l = kmalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
3160 if (!l) {
3161 mutex_unlock(&cgrp->pidlist_mutex);
72a8cb30
BB
3162 return l;
3163 }
3164 init_rwsem(&l->mutex);
3165 down_write(&l->mutex);
3166 l->key.type = type;
b70cc5fd 3167 l->key.ns = get_pid_ns(ns);
72a8cb30
BB
3168 l->use_count = 0; /* don't increment here */
3169 l->list = NULL;
3170 l->owner = cgrp;
3171 list_add(&l->links, &cgrp->pidlists);
3172 mutex_unlock(&cgrp->pidlist_mutex);
3173 return l;
3174}
3175
102a775e
BB
3176/*
3177 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
3178 */
72a8cb30
BB
3179static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
3180 struct cgroup_pidlist **lp)
102a775e
BB
3181{
3182 pid_t *array;
3183 int length;
3184 int pid, n = 0; /* used for populating the array */
817929ec
PM
3185 struct cgroup_iter it;
3186 struct task_struct *tsk;
102a775e
BB
3187 struct cgroup_pidlist *l;
3188
3189 /*
3190 * If cgroup gets more users after we read count, we won't have
3191 * enough space - tough. This race is indistinguishable to the
3192 * caller from the case that the additional cgroup users didn't
3193 * show up until sometime later on.
3194 */
3195 length = cgroup_task_count(cgrp);
d1d9fd33 3196 array = pidlist_allocate(length);
102a775e
BB
3197 if (!array)
3198 return -ENOMEM;
3199 /* now, populate the array */
bd89aabc
PM
3200 cgroup_iter_start(cgrp, &it);
3201 while ((tsk = cgroup_iter_next(cgrp, &it))) {
102a775e 3202 if (unlikely(n == length))
817929ec 3203 break;
102a775e 3204 /* get tgid or pid for procs or tasks file respectively */
72a8cb30
BB
3205 if (type == CGROUP_FILE_PROCS)
3206 pid = task_tgid_vnr(tsk);
3207 else
3208 pid = task_pid_vnr(tsk);
102a775e
BB
3209 if (pid > 0) /* make sure to only use valid results */
3210 array[n++] = pid;
817929ec 3211 }
bd89aabc 3212 cgroup_iter_end(cgrp, &it);
102a775e
BB
3213 length = n;
3214 /* now sort & (if procs) strip out duplicates */
3215 sort(array, length, sizeof(pid_t), cmppid, NULL);
72a8cb30 3216 if (type == CGROUP_FILE_PROCS)
102a775e 3217 length = pidlist_uniq(&array, length);
72a8cb30
BB
3218 l = cgroup_pidlist_find(cgrp, type);
3219 if (!l) {
d1d9fd33 3220 pidlist_free(array);
72a8cb30 3221 return -ENOMEM;
102a775e 3222 }
72a8cb30 3223 /* store array, freeing old if necessary - lock already held */
d1d9fd33 3224 pidlist_free(l->list);
102a775e
BB
3225 l->list = array;
3226 l->length = length;
3227 l->use_count++;
3228 up_write(&l->mutex);
72a8cb30 3229 *lp = l;
102a775e 3230 return 0;
bbcb81d0
PM
3231}
3232
846c7bb0 3233/**
a043e3b2 3234 * cgroupstats_build - build and fill cgroupstats
846c7bb0
BS
3235 * @stats: cgroupstats to fill information into
3236 * @dentry: A dentry entry belonging to the cgroup for which stats have
3237 * been requested.
a043e3b2
LZ
3238 *
3239 * Build and fill cgroupstats so that taskstats can export it to user
3240 * space.
846c7bb0
BS
3241 */
3242int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
3243{
3244 int ret = -EINVAL;
bd89aabc 3245 struct cgroup *cgrp;
846c7bb0
BS
3246 struct cgroup_iter it;
3247 struct task_struct *tsk;
33d283be 3248
846c7bb0 3249 /*
33d283be
LZ
3250 * Validate dentry by checking the superblock operations,
3251 * and make sure it's a directory.
846c7bb0 3252 */
33d283be
LZ
3253 if (dentry->d_sb->s_op != &cgroup_ops ||
3254 !S_ISDIR(dentry->d_inode->i_mode))
846c7bb0
BS
3255 goto err;
3256
3257 ret = 0;
bd89aabc 3258 cgrp = dentry->d_fsdata;
846c7bb0 3259
bd89aabc
PM
3260 cgroup_iter_start(cgrp, &it);
3261 while ((tsk = cgroup_iter_next(cgrp, &it))) {
846c7bb0
BS
3262 switch (tsk->state) {
3263 case TASK_RUNNING:
3264 stats->nr_running++;
3265 break;
3266 case TASK_INTERRUPTIBLE:
3267 stats->nr_sleeping++;
3268 break;
3269 case TASK_UNINTERRUPTIBLE:
3270 stats->nr_uninterruptible++;
3271 break;
3272 case TASK_STOPPED:
3273 stats->nr_stopped++;
3274 break;
3275 default:
3276 if (delayacct_is_task_waiting_on_io(tsk))
3277 stats->nr_io_wait++;
3278 break;
3279 }
3280 }
bd89aabc 3281 cgroup_iter_end(cgrp, &it);
846c7bb0 3282
846c7bb0
BS
3283err:
3284 return ret;
3285}
3286
8f3ff208 3287
bbcb81d0 3288/*
102a775e 3289 * seq_file methods for the tasks/procs files. The seq_file position is the
cc31edce 3290 * next pid to display; the seq_file iterator is a pointer to the pid
102a775e 3291 * in the cgroup->l->list array.
bbcb81d0 3292 */
cc31edce 3293
102a775e 3294static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
bbcb81d0 3295{
cc31edce
PM
3296 /*
3297 * Initially we receive a position value that corresponds to
3298 * one more than the last pid shown (or 0 on the first call or
3299 * after a seek to the start). Use a binary-search to find the
3300 * next pid to display, if any
3301 */
102a775e 3302 struct cgroup_pidlist *l = s->private;
cc31edce
PM
3303 int index = 0, pid = *pos;
3304 int *iter;
3305
102a775e 3306 down_read(&l->mutex);
cc31edce 3307 if (pid) {
102a775e 3308 int end = l->length;
20777766 3309
cc31edce
PM
3310 while (index < end) {
3311 int mid = (index + end) / 2;
102a775e 3312 if (l->list[mid] == pid) {
cc31edce
PM
3313 index = mid;
3314 break;
102a775e 3315 } else if (l->list[mid] <= pid)
cc31edce
PM
3316 index = mid + 1;
3317 else
3318 end = mid;
3319 }
3320 }
3321 /* If we're off the end of the array, we're done */
102a775e 3322 if (index >= l->length)
cc31edce
PM
3323 return NULL;
3324 /* Update the abstract position to be the actual pid that we found */
102a775e 3325 iter = l->list + index;
cc31edce
PM
3326 *pos = *iter;
3327 return iter;
3328}
3329
102a775e 3330static void cgroup_pidlist_stop(struct seq_file *s, void *v)
cc31edce 3331{
102a775e
BB
3332 struct cgroup_pidlist *l = s->private;
3333 up_read(&l->mutex);
cc31edce
PM
3334}
3335
102a775e 3336static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
cc31edce 3337{
102a775e
BB
3338 struct cgroup_pidlist *l = s->private;
3339 pid_t *p = v;
3340 pid_t *end = l->list + l->length;
cc31edce
PM
3341 /*
3342 * Advance to the next pid in the array. If this goes off the
3343 * end, we're done
3344 */
3345 p++;
3346 if (p >= end) {
3347 return NULL;
3348 } else {
3349 *pos = *p;
3350 return p;
3351 }
3352}
3353
102a775e 3354static int cgroup_pidlist_show(struct seq_file *s, void *v)
cc31edce
PM
3355{
3356 return seq_printf(s, "%d\n", *(int *)v);
3357}
bbcb81d0 3358
102a775e
BB
3359/*
3360 * seq_operations functions for iterating on pidlists through seq_file -
3361 * independent of whether it's tasks or procs
3362 */
3363static const struct seq_operations cgroup_pidlist_seq_operations = {
3364 .start = cgroup_pidlist_start,
3365 .stop = cgroup_pidlist_stop,
3366 .next = cgroup_pidlist_next,
3367 .show = cgroup_pidlist_show,
cc31edce
PM
3368};
3369
102a775e 3370static void cgroup_release_pid_array(struct cgroup_pidlist *l)
cc31edce 3371{
72a8cb30
BB
3372 /*
3373 * the case where we're the last user of this particular pidlist will
3374 * have us remove it from the cgroup's list, which entails taking the
3375 * mutex. since in pidlist_find the pidlist->lock depends on cgroup->
3376 * pidlist_mutex, we have to take pidlist_mutex first.
3377 */
3378 mutex_lock(&l->owner->pidlist_mutex);
102a775e
BB
3379 down_write(&l->mutex);
3380 BUG_ON(!l->use_count);
3381 if (!--l->use_count) {
72a8cb30
BB
3382 /* we're the last user if refcount is 0; remove and free */
3383 list_del(&l->links);
3384 mutex_unlock(&l->owner->pidlist_mutex);
d1d9fd33 3385 pidlist_free(l->list);
72a8cb30
BB
3386 put_pid_ns(l->key.ns);
3387 up_write(&l->mutex);
3388 kfree(l);
3389 return;
cc31edce 3390 }
72a8cb30 3391 mutex_unlock(&l->owner->pidlist_mutex);
102a775e 3392 up_write(&l->mutex);
bbcb81d0
PM
3393}
3394
102a775e 3395static int cgroup_pidlist_release(struct inode *inode, struct file *file)
cc31edce 3396{
102a775e 3397 struct cgroup_pidlist *l;
cc31edce
PM
3398 if (!(file->f_mode & FMODE_READ))
3399 return 0;
102a775e
BB
3400 /*
3401 * the seq_file will only be initialized if the file was opened for
3402 * reading; hence we check if it's not null only in that case.
3403 */
3404 l = ((struct seq_file *)file->private_data)->private;
3405 cgroup_release_pid_array(l);
cc31edce
PM
3406 return seq_release(inode, file);
3407}
3408
102a775e 3409static const struct file_operations cgroup_pidlist_operations = {
cc31edce
PM
3410 .read = seq_read,
3411 .llseek = seq_lseek,
3412 .write = cgroup_file_write,
102a775e 3413 .release = cgroup_pidlist_release,
cc31edce
PM
3414};
3415
bbcb81d0 3416/*
102a775e
BB
3417 * The following functions handle opens on a file that displays a pidlist
3418 * (tasks or procs). Prepare an array of the process/thread IDs of whoever's
3419 * in the cgroup.
bbcb81d0 3420 */
102a775e 3421/* helper function for the two below it */
72a8cb30 3422static int cgroup_pidlist_open(struct file *file, enum cgroup_filetype type)
bbcb81d0 3423{
bd89aabc 3424 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
72a8cb30 3425 struct cgroup_pidlist *l;
cc31edce 3426 int retval;
bbcb81d0 3427
cc31edce 3428 /* Nothing to do for write-only files */
bbcb81d0
PM
3429 if (!(file->f_mode & FMODE_READ))
3430 return 0;
3431
102a775e 3432 /* have the array populated */
72a8cb30 3433 retval = pidlist_array_load(cgrp, type, &l);
102a775e
BB
3434 if (retval)
3435 return retval;
3436 /* configure file information */
3437 file->f_op = &cgroup_pidlist_operations;
cc31edce 3438
102a775e 3439 retval = seq_open(file, &cgroup_pidlist_seq_operations);
cc31edce 3440 if (retval) {
102a775e 3441 cgroup_release_pid_array(l);
cc31edce 3442 return retval;
bbcb81d0 3443 }
102a775e 3444 ((struct seq_file *)file->private_data)->private = l;
bbcb81d0
PM
3445 return 0;
3446}
102a775e
BB
3447static int cgroup_tasks_open(struct inode *unused, struct file *file)
3448{
72a8cb30 3449 return cgroup_pidlist_open(file, CGROUP_FILE_TASKS);
102a775e
BB
3450}
3451static int cgroup_procs_open(struct inode *unused, struct file *file)
3452{
72a8cb30 3453 return cgroup_pidlist_open(file, CGROUP_FILE_PROCS);
102a775e 3454}
bbcb81d0 3455
bd89aabc 3456static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
81a6a5cd
PM
3457 struct cftype *cft)
3458{
bd89aabc 3459 return notify_on_release(cgrp);
81a6a5cd
PM
3460}
3461
6379c106
PM
3462static int cgroup_write_notify_on_release(struct cgroup *cgrp,
3463 struct cftype *cft,
3464 u64 val)
3465{
3466 clear_bit(CGRP_RELEASABLE, &cgrp->flags);
3467 if (val)
3468 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3469 else
3470 clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3471 return 0;
3472}
3473
0dea1168
KS
3474/*
3475 * Unregister event and free resources.
3476 *
3477 * Gets called from workqueue.
3478 */
3479static void cgroup_event_remove(struct work_struct *work)
3480{
3481 struct cgroup_event *event = container_of(work, struct cgroup_event,
3482 remove);
3483 struct cgroup *cgrp = event->cgrp;
3484
0dea1168
KS
3485 event->cft->unregister_event(cgrp, event->cft, event->eventfd);
3486
3487 eventfd_ctx_put(event->eventfd);
0dea1168 3488 kfree(event);
a0a4db54 3489 dput(cgrp->dentry);
0dea1168
KS
3490}
3491
3492/*
3493 * Gets called on POLLHUP on eventfd when user closes it.
3494 *
3495 * Called with wqh->lock held and interrupts disabled.
3496 */
3497static int cgroup_event_wake(wait_queue_t *wait, unsigned mode,
3498 int sync, void *key)
3499{
3500 struct cgroup_event *event = container_of(wait,
3501 struct cgroup_event, wait);
3502 struct cgroup *cgrp = event->cgrp;
3503 unsigned long flags = (unsigned long)key;
3504
3505 if (flags & POLLHUP) {
a93d2f17 3506 __remove_wait_queue(event->wqh, &event->wait);
0dea1168
KS
3507 spin_lock(&cgrp->event_list_lock);
3508 list_del(&event->list);
3509 spin_unlock(&cgrp->event_list_lock);
3510 /*
3511 * We are in atomic context, but cgroup_event_remove() may
3512 * sleep, so we have to call it in workqueue.
3513 */
3514 schedule_work(&event->remove);
3515 }
3516
3517 return 0;
3518}
3519
3520static void cgroup_event_ptable_queue_proc(struct file *file,
3521 wait_queue_head_t *wqh, poll_table *pt)
3522{
3523 struct cgroup_event *event = container_of(pt,
3524 struct cgroup_event, pt);
3525
3526 event->wqh = wqh;
3527 add_wait_queue(wqh, &event->wait);
3528}
3529
3530/*
3531 * Parse input and register new cgroup event handler.
3532 *
3533 * Input must be in format '<event_fd> <control_fd> <args>'.
3534 * Interpretation of args is defined by control file implementation.
3535 */
3536static int cgroup_write_event_control(struct cgroup *cgrp, struct cftype *cft,
3537 const char *buffer)
3538{
3539 struct cgroup_event *event = NULL;
3540 unsigned int efd, cfd;
3541 struct file *efile = NULL;
3542 struct file *cfile = NULL;
3543 char *endp;
3544 int ret;
3545
3546 efd = simple_strtoul(buffer, &endp, 10);
3547 if (*endp != ' ')
3548 return -EINVAL;
3549 buffer = endp + 1;
3550
3551 cfd = simple_strtoul(buffer, &endp, 10);
3552 if ((*endp != ' ') && (*endp != '\0'))
3553 return -EINVAL;
3554 buffer = endp + 1;
3555
3556 event = kzalloc(sizeof(*event), GFP_KERNEL);
3557 if (!event)
3558 return -ENOMEM;
3559 event->cgrp = cgrp;
3560 INIT_LIST_HEAD(&event->list);
3561 init_poll_funcptr(&event->pt, cgroup_event_ptable_queue_proc);
3562 init_waitqueue_func_entry(&event->wait, cgroup_event_wake);
3563 INIT_WORK(&event->remove, cgroup_event_remove);
3564
3565 efile = eventfd_fget(efd);
3566 if (IS_ERR(efile)) {
3567 ret = PTR_ERR(efile);
3568 goto fail;
3569 }
3570
3571 event->eventfd = eventfd_ctx_fileget(efile);
3572 if (IS_ERR(event->eventfd)) {
3573 ret = PTR_ERR(event->eventfd);
3574 goto fail;
3575 }
3576
3577 cfile = fget(cfd);
3578 if (!cfile) {
3579 ret = -EBADF;
3580 goto fail;
3581 }
3582
3583 /* the process need read permission on control file */
3bfa784a
AV
3584 /* AV: shouldn't we check that it's been opened for read instead? */
3585 ret = inode_permission(cfile->f_path.dentry->d_inode, MAY_READ);
0dea1168
KS
3586 if (ret < 0)
3587 goto fail;
3588
3589 event->cft = __file_cft(cfile);
3590 if (IS_ERR(event->cft)) {
3591 ret = PTR_ERR(event->cft);
3592 goto fail;
3593 }
3594
3595 if (!event->cft->register_event || !event->cft->unregister_event) {
3596 ret = -EINVAL;
3597 goto fail;
3598 }
3599
3600 ret = event->cft->register_event(cgrp, event->cft,
3601 event->eventfd, buffer);
3602 if (ret)
3603 goto fail;
3604
3605 if (efile->f_op->poll(efile, &event->pt) & POLLHUP) {
3606 event->cft->unregister_event(cgrp, event->cft, event->eventfd);
3607 ret = 0;
3608 goto fail;
3609 }
3610
a0a4db54
KS
3611 /*
3612 * Events should be removed after rmdir of cgroup directory, but before
3613 * destroying subsystem state objects. Let's take reference to cgroup
3614 * directory dentry to do that.
3615 */
3616 dget(cgrp->dentry);
3617
0dea1168
KS
3618 spin_lock(&cgrp->event_list_lock);
3619 list_add(&event->list, &cgrp->event_list);
3620 spin_unlock(&cgrp->event_list_lock);
3621
3622 fput(cfile);
3623 fput(efile);
3624
3625 return 0;
3626
3627fail:
3628 if (cfile)
3629 fput(cfile);
3630
3631 if (event && event->eventfd && !IS_ERR(event->eventfd))
3632 eventfd_ctx_put(event->eventfd);
3633
3634 if (!IS_ERR_OR_NULL(efile))
3635 fput(efile);
3636
3637 kfree(event);
3638
3639 return ret;
3640}
3641
97978e6d
DL
3642static u64 cgroup_clone_children_read(struct cgroup *cgrp,
3643 struct cftype *cft)
3644{
3645 return clone_children(cgrp);
3646}
3647
3648static int cgroup_clone_children_write(struct cgroup *cgrp,
3649 struct cftype *cft,
3650 u64 val)
3651{
3652 if (val)
3653 set_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
3654 else
3655 clear_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
3656 return 0;
3657}
3658
bbcb81d0
PM
3659/*
3660 * for the common functions, 'private' gives the type of file
3661 */
102a775e
BB
3662/* for hysterical raisins, we can't put this on the older files */
3663#define CGROUP_FILE_GENERIC_PREFIX "cgroup."
81a6a5cd
PM
3664static struct cftype files[] = {
3665 {
3666 .name = "tasks",
3667 .open = cgroup_tasks_open,
af351026 3668 .write_u64 = cgroup_tasks_write,
102a775e 3669 .release = cgroup_pidlist_release,
099fca32 3670 .mode = S_IRUGO | S_IWUSR,
81a6a5cd 3671 },
102a775e
BB
3672 {
3673 .name = CGROUP_FILE_GENERIC_PREFIX "procs",
3674 .open = cgroup_procs_open,
74a1166d 3675 .write_u64 = cgroup_procs_write,
102a775e 3676 .release = cgroup_pidlist_release,
74a1166d 3677 .mode = S_IRUGO | S_IWUSR,
102a775e 3678 },
81a6a5cd
PM
3679 {
3680 .name = "notify_on_release",
f4c753b7 3681 .read_u64 = cgroup_read_notify_on_release,
6379c106 3682 .write_u64 = cgroup_write_notify_on_release,
81a6a5cd 3683 },
0dea1168
KS
3684 {
3685 .name = CGROUP_FILE_GENERIC_PREFIX "event_control",
3686 .write_string = cgroup_write_event_control,
3687 .mode = S_IWUGO,
3688 },
97978e6d
DL
3689 {
3690 .name = "cgroup.clone_children",
3691 .read_u64 = cgroup_clone_children_read,
3692 .write_u64 = cgroup_clone_children_write,
3693 },
81a6a5cd
PM
3694};
3695
3696static struct cftype cft_release_agent = {
3697 .name = "release_agent",
e788e066
PM
3698 .read_seq_string = cgroup_release_agent_show,
3699 .write_string = cgroup_release_agent_write,
3700 .max_write_len = PATH_MAX,
bbcb81d0
PM
3701};
3702
bd89aabc 3703static int cgroup_populate_dir(struct cgroup *cgrp)
ddbcc7e8
PM
3704{
3705 int err;
3706 struct cgroup_subsys *ss;
3707
3708 /* First clear out any existing files */
bd89aabc 3709 cgroup_clear_directory(cgrp->dentry);
ddbcc7e8 3710
bd89aabc 3711 err = cgroup_add_files(cgrp, NULL, files, ARRAY_SIZE(files));
bbcb81d0
PM
3712 if (err < 0)
3713 return err;
3714
bd89aabc
PM
3715 if (cgrp == cgrp->top_cgroup) {
3716 if ((err = cgroup_add_file(cgrp, NULL, &cft_release_agent)) < 0)
81a6a5cd
PM
3717 return err;
3718 }
3719
bd89aabc
PM
3720 for_each_subsys(cgrp->root, ss) {
3721 if (ss->populate && (err = ss->populate(ss, cgrp)) < 0)
ddbcc7e8
PM
3722 return err;
3723 }
38460b48
KH
3724 /* This cgroup is ready now */
3725 for_each_subsys(cgrp->root, ss) {
3726 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
3727 /*
3728 * Update id->css pointer and make this css visible from
3729 * CSS ID functions. This pointer will be dereferened
3730 * from RCU-read-side without locks.
3731 */
3732 if (css->id)
3733 rcu_assign_pointer(css->id->css, css);
3734 }
ddbcc7e8
PM
3735
3736 return 0;
3737}
3738
3739static void init_cgroup_css(struct cgroup_subsys_state *css,
3740 struct cgroup_subsys *ss,
bd89aabc 3741 struct cgroup *cgrp)
ddbcc7e8 3742{
bd89aabc 3743 css->cgroup = cgrp;
e7c5ec91 3744 atomic_set(&css->refcnt, 1);
ddbcc7e8 3745 css->flags = 0;
38460b48 3746 css->id = NULL;
bd89aabc 3747 if (cgrp == dummytop)
ddbcc7e8 3748 set_bit(CSS_ROOT, &css->flags);
bd89aabc
PM
3749 BUG_ON(cgrp->subsys[ss->subsys_id]);
3750 cgrp->subsys[ss->subsys_id] = css;
ddbcc7e8
PM
3751}
3752
999cd8a4
PM
3753static void cgroup_lock_hierarchy(struct cgroupfs_root *root)
3754{
3755 /* We need to take each hierarchy_mutex in a consistent order */
3756 int i;
3757
aae8aab4
BB
3758 /*
3759 * No worry about a race with rebind_subsystems that might mess up the
3760 * locking order, since both parties are under cgroup_mutex.
3761 */
999cd8a4
PM
3762 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3763 struct cgroup_subsys *ss = subsys[i];
aae8aab4
BB
3764 if (ss == NULL)
3765 continue;
999cd8a4 3766 if (ss->root == root)
cfebe563 3767 mutex_lock(&ss->hierarchy_mutex);
999cd8a4
PM
3768 }
3769}
3770
3771static void cgroup_unlock_hierarchy(struct cgroupfs_root *root)
3772{
3773 int i;
3774
3775 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3776 struct cgroup_subsys *ss = subsys[i];
aae8aab4
BB
3777 if (ss == NULL)
3778 continue;
999cd8a4
PM
3779 if (ss->root == root)
3780 mutex_unlock(&ss->hierarchy_mutex);
3781 }
3782}
3783
ddbcc7e8 3784/*
a043e3b2
LZ
3785 * cgroup_create - create a cgroup
3786 * @parent: cgroup that will be parent of the new cgroup
3787 * @dentry: dentry of the new cgroup
3788 * @mode: mode to set on new inode
ddbcc7e8 3789 *
a043e3b2 3790 * Must be called with the mutex on the parent inode held
ddbcc7e8 3791 */
ddbcc7e8 3792static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
099fca32 3793 mode_t mode)
ddbcc7e8 3794{
bd89aabc 3795 struct cgroup *cgrp;
ddbcc7e8
PM
3796 struct cgroupfs_root *root = parent->root;
3797 int err = 0;
3798 struct cgroup_subsys *ss;
3799 struct super_block *sb = root->sb;
3800
bd89aabc
PM
3801 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
3802 if (!cgrp)
ddbcc7e8
PM
3803 return -ENOMEM;
3804
3805 /* Grab a reference on the superblock so the hierarchy doesn't
3806 * get deleted on unmount if there are child cgroups. This
3807 * can be done outside cgroup_mutex, since the sb can't
3808 * disappear while someone has an open control file on the
3809 * fs */
3810 atomic_inc(&sb->s_active);
3811
3812 mutex_lock(&cgroup_mutex);
3813
cc31edce 3814 init_cgroup_housekeeping(cgrp);
ddbcc7e8 3815
bd89aabc
PM
3816 cgrp->parent = parent;
3817 cgrp->root = parent->root;
3818 cgrp->top_cgroup = parent->top_cgroup;
ddbcc7e8 3819
b6abdb0e
LZ
3820 if (notify_on_release(parent))
3821 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3822
97978e6d
DL
3823 if (clone_children(parent))
3824 set_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
3825
ddbcc7e8 3826 for_each_subsys(root, ss) {
bd89aabc 3827 struct cgroup_subsys_state *css = ss->create(ss, cgrp);
4528fd05 3828
ddbcc7e8
PM
3829 if (IS_ERR(css)) {
3830 err = PTR_ERR(css);
3831 goto err_destroy;
3832 }
bd89aabc 3833 init_cgroup_css(css, ss, cgrp);
4528fd05
LZ
3834 if (ss->use_id) {
3835 err = alloc_css_id(ss, parent, cgrp);
3836 if (err)
38460b48 3837 goto err_destroy;
4528fd05 3838 }
38460b48 3839 /* At error, ->destroy() callback has to free assigned ID. */
97978e6d
DL
3840 if (clone_children(parent) && ss->post_clone)
3841 ss->post_clone(ss, cgrp);
ddbcc7e8
PM
3842 }
3843
999cd8a4 3844 cgroup_lock_hierarchy(root);
bd89aabc 3845 list_add(&cgrp->sibling, &cgrp->parent->children);
999cd8a4 3846 cgroup_unlock_hierarchy(root);
ddbcc7e8
PM
3847 root->number_of_cgroups++;
3848
bd89aabc 3849 err = cgroup_create_dir(cgrp, dentry, mode);
ddbcc7e8
PM
3850 if (err < 0)
3851 goto err_remove;
3852
3853 /* The cgroup directory was pre-locked for us */
bd89aabc 3854 BUG_ON(!mutex_is_locked(&cgrp->dentry->d_inode->i_mutex));
ddbcc7e8 3855
bd89aabc 3856 err = cgroup_populate_dir(cgrp);
ddbcc7e8
PM
3857 /* If err < 0, we have a half-filled directory - oh well ;) */
3858
3859 mutex_unlock(&cgroup_mutex);
bd89aabc 3860 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8
PM
3861
3862 return 0;
3863
3864 err_remove:
3865
baef99a0 3866 cgroup_lock_hierarchy(root);
bd89aabc 3867 list_del(&cgrp->sibling);
baef99a0 3868 cgroup_unlock_hierarchy(root);
ddbcc7e8
PM
3869 root->number_of_cgroups--;
3870
3871 err_destroy:
3872
3873 for_each_subsys(root, ss) {
bd89aabc
PM
3874 if (cgrp->subsys[ss->subsys_id])
3875 ss->destroy(ss, cgrp);
ddbcc7e8
PM
3876 }
3877
3878 mutex_unlock(&cgroup_mutex);
3879
3880 /* Release the reference count that we took on the superblock */
3881 deactivate_super(sb);
3882
bd89aabc 3883 kfree(cgrp);
ddbcc7e8
PM
3884 return err;
3885}
3886
3887static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode)
3888{
3889 struct cgroup *c_parent = dentry->d_parent->d_fsdata;
3890
3891 /* the vfs holds inode->i_mutex already */
3892 return cgroup_create(c_parent, dentry, mode | S_IFDIR);
3893}
3894
55b6fd01 3895static int cgroup_has_css_refs(struct cgroup *cgrp)
81a6a5cd
PM
3896{
3897 /* Check the reference count on each subsystem. Since we
3898 * already established that there are no tasks in the
e7c5ec91 3899 * cgroup, if the css refcount is also 1, then there should
81a6a5cd
PM
3900 * be no outstanding references, so the subsystem is safe to
3901 * destroy. We scan across all subsystems rather than using
3902 * the per-hierarchy linked list of mounted subsystems since
3903 * we can be called via check_for_release() with no
3904 * synchronization other than RCU, and the subsystem linked
3905 * list isn't RCU-safe */
3906 int i;
aae8aab4
BB
3907 /*
3908 * We won't need to lock the subsys array, because the subsystems
3909 * we're concerned about aren't going anywhere since our cgroup root
3910 * has a reference on them.
3911 */
81a6a5cd
PM
3912 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3913 struct cgroup_subsys *ss = subsys[i];
3914 struct cgroup_subsys_state *css;
aae8aab4
BB
3915 /* Skip subsystems not present or not in this hierarchy */
3916 if (ss == NULL || ss->root != cgrp->root)
81a6a5cd 3917 continue;
bd89aabc 3918 css = cgrp->subsys[ss->subsys_id];
81a6a5cd
PM
3919 /* When called from check_for_release() it's possible
3920 * that by this point the cgroup has been removed
3921 * and the css deleted. But a false-positive doesn't
3922 * matter, since it can only happen if the cgroup
3923 * has been deleted and hence no longer needs the
3924 * release agent to be called anyway. */
e7c5ec91 3925 if (css && (atomic_read(&css->refcnt) > 1))
81a6a5cd 3926 return 1;
81a6a5cd
PM
3927 }
3928 return 0;
3929}
3930
e7c5ec91
PM
3931/*
3932 * Atomically mark all (or else none) of the cgroup's CSS objects as
3933 * CSS_REMOVED. Return true on success, or false if the cgroup has
3934 * busy subsystems. Call with cgroup_mutex held
3935 */
3936
3937static int cgroup_clear_css_refs(struct cgroup *cgrp)
3938{
3939 struct cgroup_subsys *ss;
3940 unsigned long flags;
3941 bool failed = false;
3942 local_irq_save(flags);
3943 for_each_subsys(cgrp->root, ss) {
3944 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
3945 int refcnt;
804b3c28 3946 while (1) {
e7c5ec91
PM
3947 /* We can only remove a CSS with a refcnt==1 */
3948 refcnt = atomic_read(&css->refcnt);
3949 if (refcnt > 1) {
3950 failed = true;
3951 goto done;
3952 }
3953 BUG_ON(!refcnt);
3954 /*
3955 * Drop the refcnt to 0 while we check other
3956 * subsystems. This will cause any racing
3957 * css_tryget() to spin until we set the
3958 * CSS_REMOVED bits or abort
3959 */
804b3c28
PM
3960 if (atomic_cmpxchg(&css->refcnt, refcnt, 0) == refcnt)
3961 break;
3962 cpu_relax();
3963 }
e7c5ec91
PM
3964 }
3965 done:
3966 for_each_subsys(cgrp->root, ss) {
3967 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
3968 if (failed) {
3969 /*
3970 * Restore old refcnt if we previously managed
3971 * to clear it from 1 to 0
3972 */
3973 if (!atomic_read(&css->refcnt))
3974 atomic_set(&css->refcnt, 1);
3975 } else {
3976 /* Commit the fact that the CSS is removed */
3977 set_bit(CSS_REMOVED, &css->flags);
3978 }
3979 }
3980 local_irq_restore(flags);
3981 return !failed;
3982}
3983
ddbcc7e8
PM
3984static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
3985{
bd89aabc 3986 struct cgroup *cgrp = dentry->d_fsdata;
ddbcc7e8
PM
3987 struct dentry *d;
3988 struct cgroup *parent;
ec64f515 3989 DEFINE_WAIT(wait);
4ab78683 3990 struct cgroup_event *event, *tmp;
ec64f515 3991 int ret;
ddbcc7e8
PM
3992
3993 /* the vfs holds both inode->i_mutex already */
ec64f515 3994again:
ddbcc7e8 3995 mutex_lock(&cgroup_mutex);
bd89aabc 3996 if (atomic_read(&cgrp->count) != 0) {
ddbcc7e8
PM
3997 mutex_unlock(&cgroup_mutex);
3998 return -EBUSY;
3999 }
bd89aabc 4000 if (!list_empty(&cgrp->children)) {
ddbcc7e8
PM
4001 mutex_unlock(&cgroup_mutex);
4002 return -EBUSY;
4003 }
3fa59dfb 4004 mutex_unlock(&cgroup_mutex);
a043e3b2 4005
88703267
KH
4006 /*
4007 * In general, subsystem has no css->refcnt after pre_destroy(). But
4008 * in racy cases, subsystem may have to get css->refcnt after
4009 * pre_destroy() and it makes rmdir return with -EBUSY. This sometimes
4010 * make rmdir return -EBUSY too often. To avoid that, we use waitqueue
4011 * for cgroup's rmdir. CGRP_WAIT_ON_RMDIR is for synchronizing rmdir
4012 * and subsystem's reference count handling. Please see css_get/put
4013 * and css_tryget() and cgroup_wakeup_rmdir_waiter() implementation.
4014 */
4015 set_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
4016
4fca88c8 4017 /*
a043e3b2
LZ
4018 * Call pre_destroy handlers of subsys. Notify subsystems
4019 * that rmdir() request comes.
4fca88c8 4020 */
ec64f515 4021 ret = cgroup_call_pre_destroy(cgrp);
88703267
KH
4022 if (ret) {
4023 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
ec64f515 4024 return ret;
88703267 4025 }
ddbcc7e8 4026
3fa59dfb
KH
4027 mutex_lock(&cgroup_mutex);
4028 parent = cgrp->parent;
ec64f515 4029 if (atomic_read(&cgrp->count) || !list_empty(&cgrp->children)) {
88703267 4030 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
ddbcc7e8
PM
4031 mutex_unlock(&cgroup_mutex);
4032 return -EBUSY;
4033 }
ec64f515 4034 prepare_to_wait(&cgroup_rmdir_waitq, &wait, TASK_INTERRUPTIBLE);
ec64f515
KH
4035 if (!cgroup_clear_css_refs(cgrp)) {
4036 mutex_unlock(&cgroup_mutex);
88703267
KH
4037 /*
4038 * Because someone may call cgroup_wakeup_rmdir_waiter() before
4039 * prepare_to_wait(), we need to check this flag.
4040 */
4041 if (test_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags))
4042 schedule();
ec64f515
KH
4043 finish_wait(&cgroup_rmdir_waitq, &wait);
4044 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
4045 if (signal_pending(current))
4046 return -EINTR;
4047 goto again;
4048 }
4049 /* NO css_tryget() can success after here. */
4050 finish_wait(&cgroup_rmdir_waitq, &wait);
4051 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
ddbcc7e8 4052
cdcc136f 4053 raw_spin_lock(&release_list_lock);
bd89aabc
PM
4054 set_bit(CGRP_REMOVED, &cgrp->flags);
4055 if (!list_empty(&cgrp->release_list))
8d258797 4056 list_del_init(&cgrp->release_list);
cdcc136f 4057 raw_spin_unlock(&release_list_lock);
999cd8a4
PM
4058
4059 cgroup_lock_hierarchy(cgrp->root);
4060 /* delete this cgroup from parent->children */
8d258797 4061 list_del_init(&cgrp->sibling);
999cd8a4
PM
4062 cgroup_unlock_hierarchy(cgrp->root);
4063
bd89aabc 4064 d = dget(cgrp->dentry);
ddbcc7e8
PM
4065
4066 cgroup_d_remove_dir(d);
4067 dput(d);
ddbcc7e8 4068
bd89aabc 4069 set_bit(CGRP_RELEASABLE, &parent->flags);
81a6a5cd
PM
4070 check_for_release(parent);
4071
4ab78683
KS
4072 /*
4073 * Unregister events and notify userspace.
4074 * Notify userspace about cgroup removing only after rmdir of cgroup
4075 * directory to avoid race between userspace and kernelspace
4076 */
4077 spin_lock(&cgrp->event_list_lock);
4078 list_for_each_entry_safe(event, tmp, &cgrp->event_list, list) {
4079 list_del(&event->list);
4080 remove_wait_queue(event->wqh, &event->wait);
4081 eventfd_signal(event->eventfd, 1);
4082 schedule_work(&event->remove);
4083 }
4084 spin_unlock(&cgrp->event_list_lock);
4085
ddbcc7e8 4086 mutex_unlock(&cgroup_mutex);
ddbcc7e8
PM
4087 return 0;
4088}
4089
06a11920 4090static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
ddbcc7e8 4091{
ddbcc7e8 4092 struct cgroup_subsys_state *css;
cfe36bde
DC
4093
4094 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
ddbcc7e8
PM
4095
4096 /* Create the top cgroup state for this subsystem */
33a68ac1 4097 list_add(&ss->sibling, &rootnode.subsys_list);
ddbcc7e8
PM
4098 ss->root = &rootnode;
4099 css = ss->create(ss, dummytop);
4100 /* We don't handle early failures gracefully */
4101 BUG_ON(IS_ERR(css));
4102 init_cgroup_css(css, ss, dummytop);
4103
e8d55fde 4104 /* Update the init_css_set to contain a subsys
817929ec 4105 * pointer to this state - since the subsystem is
e8d55fde
LZ
4106 * newly registered, all tasks and hence the
4107 * init_css_set is in the subsystem's top cgroup. */
4108 init_css_set.subsys[ss->subsys_id] = dummytop->subsys[ss->subsys_id];
ddbcc7e8
PM
4109
4110 need_forkexit_callback |= ss->fork || ss->exit;
4111
e8d55fde
LZ
4112 /* At system boot, before all subsystems have been
4113 * registered, no tasks have been forked, so we don't
4114 * need to invoke fork callbacks here. */
4115 BUG_ON(!list_empty(&init_task.tasks));
4116
999cd8a4 4117 mutex_init(&ss->hierarchy_mutex);
cfebe563 4118 lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key);
ddbcc7e8 4119 ss->active = 1;
e6a1105b
BB
4120
4121 /* this function shouldn't be used with modular subsystems, since they
4122 * need to register a subsys_id, among other things */
4123 BUG_ON(ss->module);
4124}
4125
4126/**
4127 * cgroup_load_subsys: load and register a modular subsystem at runtime
4128 * @ss: the subsystem to load
4129 *
4130 * This function should be called in a modular subsystem's initcall. If the
88393161 4131 * subsystem is built as a module, it will be assigned a new subsys_id and set
e6a1105b
BB
4132 * up for use. If the subsystem is built-in anyway, work is delegated to the
4133 * simpler cgroup_init_subsys.
4134 */
4135int __init_or_module cgroup_load_subsys(struct cgroup_subsys *ss)
4136{
4137 int i;
4138 struct cgroup_subsys_state *css;
4139
4140 /* check name and function validity */
4141 if (ss->name == NULL || strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN ||
4142 ss->create == NULL || ss->destroy == NULL)
4143 return -EINVAL;
4144
4145 /*
4146 * we don't support callbacks in modular subsystems. this check is
4147 * before the ss->module check for consistency; a subsystem that could
4148 * be a module should still have no callbacks even if the user isn't
4149 * compiling it as one.
4150 */
4151 if (ss->fork || ss->exit)
4152 return -EINVAL;
4153
4154 /*
4155 * an optionally modular subsystem is built-in: we want to do nothing,
4156 * since cgroup_init_subsys will have already taken care of it.
4157 */
4158 if (ss->module == NULL) {
4159 /* a few sanity checks */
4160 BUG_ON(ss->subsys_id >= CGROUP_BUILTIN_SUBSYS_COUNT);
4161 BUG_ON(subsys[ss->subsys_id] != ss);
4162 return 0;
4163 }
4164
4165 /*
4166 * need to register a subsys id before anything else - for example,
4167 * init_cgroup_css needs it.
4168 */
4169 mutex_lock(&cgroup_mutex);
4170 /* find the first empty slot in the array */
4171 for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
4172 if (subsys[i] == NULL)
4173 break;
4174 }
4175 if (i == CGROUP_SUBSYS_COUNT) {
4176 /* maximum number of subsystems already registered! */
4177 mutex_unlock(&cgroup_mutex);
4178 return -EBUSY;
4179 }
4180 /* assign ourselves the subsys_id */
4181 ss->subsys_id = i;
4182 subsys[i] = ss;
4183
4184 /*
4185 * no ss->create seems to need anything important in the ss struct, so
4186 * this can happen first (i.e. before the rootnode attachment).
4187 */
4188 css = ss->create(ss, dummytop);
4189 if (IS_ERR(css)) {
4190 /* failure case - need to deassign the subsys[] slot. */
4191 subsys[i] = NULL;
4192 mutex_unlock(&cgroup_mutex);
4193 return PTR_ERR(css);
4194 }
4195
4196 list_add(&ss->sibling, &rootnode.subsys_list);
4197 ss->root = &rootnode;
4198
4199 /* our new subsystem will be attached to the dummy hierarchy. */
4200 init_cgroup_css(css, ss, dummytop);
4201 /* init_idr must be after init_cgroup_css because it sets css->id. */
4202 if (ss->use_id) {
4203 int ret = cgroup_init_idr(ss, css);
4204 if (ret) {
4205 dummytop->subsys[ss->subsys_id] = NULL;
4206 ss->destroy(ss, dummytop);
4207 subsys[i] = NULL;
4208 mutex_unlock(&cgroup_mutex);
4209 return ret;
4210 }
4211 }
4212
4213 /*
4214 * Now we need to entangle the css into the existing css_sets. unlike
4215 * in cgroup_init_subsys, there are now multiple css_sets, so each one
4216 * will need a new pointer to it; done by iterating the css_set_table.
4217 * furthermore, modifying the existing css_sets will corrupt the hash
4218 * table state, so each changed css_set will need its hash recomputed.
4219 * this is all done under the css_set_lock.
4220 */
4221 write_lock(&css_set_lock);
4222 for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
4223 struct css_set *cg;
4224 struct hlist_node *node, *tmp;
4225 struct hlist_head *bucket = &css_set_table[i], *new_bucket;
4226
4227 hlist_for_each_entry_safe(cg, node, tmp, bucket, hlist) {
4228 /* skip entries that we already rehashed */
4229 if (cg->subsys[ss->subsys_id])
4230 continue;
4231 /* remove existing entry */
4232 hlist_del(&cg->hlist);
4233 /* set new value */
4234 cg->subsys[ss->subsys_id] = css;
4235 /* recompute hash and restore entry */
4236 new_bucket = css_set_hash(cg->subsys);
4237 hlist_add_head(&cg->hlist, new_bucket);
4238 }
4239 }
4240 write_unlock(&css_set_lock);
4241
4242 mutex_init(&ss->hierarchy_mutex);
4243 lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key);
4244 ss->active = 1;
4245
e6a1105b
BB
4246 /* success! */
4247 mutex_unlock(&cgroup_mutex);
4248 return 0;
ddbcc7e8 4249}
e6a1105b 4250EXPORT_SYMBOL_GPL(cgroup_load_subsys);
ddbcc7e8 4251
cf5d5941
BB
4252/**
4253 * cgroup_unload_subsys: unload a modular subsystem
4254 * @ss: the subsystem to unload
4255 *
4256 * This function should be called in a modular subsystem's exitcall. When this
4257 * function is invoked, the refcount on the subsystem's module will be 0, so
4258 * the subsystem will not be attached to any hierarchy.
4259 */
4260void cgroup_unload_subsys(struct cgroup_subsys *ss)
4261{
4262 struct cg_cgroup_link *link;
4263 struct hlist_head *hhead;
4264
4265 BUG_ON(ss->module == NULL);
4266
4267 /*
4268 * we shouldn't be called if the subsystem is in use, and the use of
4269 * try_module_get in parse_cgroupfs_options should ensure that it
4270 * doesn't start being used while we're killing it off.
4271 */
4272 BUG_ON(ss->root != &rootnode);
4273
4274 mutex_lock(&cgroup_mutex);
4275 /* deassign the subsys_id */
4276 BUG_ON(ss->subsys_id < CGROUP_BUILTIN_SUBSYS_COUNT);
4277 subsys[ss->subsys_id] = NULL;
4278
4279 /* remove subsystem from rootnode's list of subsystems */
8d258797 4280 list_del_init(&ss->sibling);
cf5d5941
BB
4281
4282 /*
4283 * disentangle the css from all css_sets attached to the dummytop. as
4284 * in loading, we need to pay our respects to the hashtable gods.
4285 */
4286 write_lock(&css_set_lock);
4287 list_for_each_entry(link, &dummytop->css_sets, cgrp_link_list) {
4288 struct css_set *cg = link->cg;
4289
4290 hlist_del(&cg->hlist);
4291 BUG_ON(!cg->subsys[ss->subsys_id]);
4292 cg->subsys[ss->subsys_id] = NULL;
4293 hhead = css_set_hash(cg->subsys);
4294 hlist_add_head(&cg->hlist, hhead);
4295 }
4296 write_unlock(&css_set_lock);
4297
4298 /*
4299 * remove subsystem's css from the dummytop and free it - need to free
4300 * before marking as null because ss->destroy needs the cgrp->subsys
4301 * pointer to find their state. note that this also takes care of
4302 * freeing the css_id.
4303 */
4304 ss->destroy(ss, dummytop);
4305 dummytop->subsys[ss->subsys_id] = NULL;
4306
4307 mutex_unlock(&cgroup_mutex);
4308}
4309EXPORT_SYMBOL_GPL(cgroup_unload_subsys);
4310
ddbcc7e8 4311/**
a043e3b2
LZ
4312 * cgroup_init_early - cgroup initialization at system boot
4313 *
4314 * Initialize cgroups at system boot, and initialize any
4315 * subsystems that request early init.
ddbcc7e8
PM
4316 */
4317int __init cgroup_init_early(void)
4318{
4319 int i;
146aa1bd 4320 atomic_set(&init_css_set.refcount, 1);
817929ec
PM
4321 INIT_LIST_HEAD(&init_css_set.cg_links);
4322 INIT_LIST_HEAD(&init_css_set.tasks);
472b1053 4323 INIT_HLIST_NODE(&init_css_set.hlist);
817929ec 4324 css_set_count = 1;
ddbcc7e8 4325 init_cgroup_root(&rootnode);
817929ec
PM
4326 root_count = 1;
4327 init_task.cgroups = &init_css_set;
4328
4329 init_css_set_link.cg = &init_css_set;
7717f7ba 4330 init_css_set_link.cgrp = dummytop;
bd89aabc 4331 list_add(&init_css_set_link.cgrp_link_list,
817929ec
PM
4332 &rootnode.top_cgroup.css_sets);
4333 list_add(&init_css_set_link.cg_link_list,
4334 &init_css_set.cg_links);
ddbcc7e8 4335
472b1053
LZ
4336 for (i = 0; i < CSS_SET_TABLE_SIZE; i++)
4337 INIT_HLIST_HEAD(&css_set_table[i]);
4338
aae8aab4
BB
4339 /* at bootup time, we don't worry about modular subsystems */
4340 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
ddbcc7e8
PM
4341 struct cgroup_subsys *ss = subsys[i];
4342
4343 BUG_ON(!ss->name);
4344 BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
4345 BUG_ON(!ss->create);
4346 BUG_ON(!ss->destroy);
4347 if (ss->subsys_id != i) {
cfe36bde 4348 printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
ddbcc7e8
PM
4349 ss->name, ss->subsys_id);
4350 BUG();
4351 }
4352
4353 if (ss->early_init)
4354 cgroup_init_subsys(ss);
4355 }
4356 return 0;
4357}
4358
4359/**
a043e3b2
LZ
4360 * cgroup_init - cgroup initialization
4361 *
4362 * Register cgroup filesystem and /proc file, and initialize
4363 * any subsystems that didn't request early init.
ddbcc7e8
PM
4364 */
4365int __init cgroup_init(void)
4366{
4367 int err;
4368 int i;
472b1053 4369 struct hlist_head *hhead;
a424316c
PM
4370
4371 err = bdi_init(&cgroup_backing_dev_info);
4372 if (err)
4373 return err;
ddbcc7e8 4374
aae8aab4
BB
4375 /* at bootup time, we don't worry about modular subsystems */
4376 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
ddbcc7e8
PM
4377 struct cgroup_subsys *ss = subsys[i];
4378 if (!ss->early_init)
4379 cgroup_init_subsys(ss);
38460b48 4380 if (ss->use_id)
e6a1105b 4381 cgroup_init_idr(ss, init_css_set.subsys[ss->subsys_id]);
ddbcc7e8
PM
4382 }
4383
472b1053
LZ
4384 /* Add init_css_set to the hash table */
4385 hhead = css_set_hash(init_css_set.subsys);
4386 hlist_add_head(&init_css_set.hlist, hhead);
2c6ab6d2 4387 BUG_ON(!init_root_id(&rootnode));
676db4af
GKH
4388
4389 cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
4390 if (!cgroup_kobj) {
4391 err = -ENOMEM;
4392 goto out;
4393 }
4394
ddbcc7e8 4395 err = register_filesystem(&cgroup_fs_type);
676db4af
GKH
4396 if (err < 0) {
4397 kobject_put(cgroup_kobj);
ddbcc7e8 4398 goto out;
676db4af 4399 }
ddbcc7e8 4400
46ae220b 4401 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
a424316c 4402
ddbcc7e8 4403out:
a424316c
PM
4404 if (err)
4405 bdi_destroy(&cgroup_backing_dev_info);
4406
ddbcc7e8
PM
4407 return err;
4408}
b4f48b63 4409
a424316c
PM
4410/*
4411 * proc_cgroup_show()
4412 * - Print task's cgroup paths into seq_file, one line for each hierarchy
4413 * - Used for /proc/<pid>/cgroup.
4414 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
4415 * doesn't really matter if tsk->cgroup changes after we read it,
956db3ca 4416 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
a424316c
PM
4417 * anyway. No need to check that tsk->cgroup != NULL, thanks to
4418 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
4419 * cgroup to top_cgroup.
4420 */
4421
4422/* TODO: Use a proper seq_file iterator */
4423static int proc_cgroup_show(struct seq_file *m, void *v)
4424{
4425 struct pid *pid;
4426 struct task_struct *tsk;
4427 char *buf;
4428 int retval;
4429 struct cgroupfs_root *root;
4430
4431 retval = -ENOMEM;
4432 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4433 if (!buf)
4434 goto out;
4435
4436 retval = -ESRCH;
4437 pid = m->private;
4438 tsk = get_pid_task(pid, PIDTYPE_PID);
4439 if (!tsk)
4440 goto out_free;
4441
4442 retval = 0;
4443
4444 mutex_lock(&cgroup_mutex);
4445
e5f6a860 4446 for_each_active_root(root) {
a424316c 4447 struct cgroup_subsys *ss;
bd89aabc 4448 struct cgroup *cgrp;
a424316c
PM
4449 int count = 0;
4450
2c6ab6d2 4451 seq_printf(m, "%d:", root->hierarchy_id);
a424316c
PM
4452 for_each_subsys(root, ss)
4453 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
c6d57f33
PM
4454 if (strlen(root->name))
4455 seq_printf(m, "%sname=%s", count ? "," : "",
4456 root->name);
a424316c 4457 seq_putc(m, ':');
7717f7ba 4458 cgrp = task_cgroup_from_root(tsk, root);
bd89aabc 4459 retval = cgroup_path(cgrp, buf, PAGE_SIZE);
a424316c
PM
4460 if (retval < 0)
4461 goto out_unlock;
4462 seq_puts(m, buf);
4463 seq_putc(m, '\n');
4464 }
4465
4466out_unlock:
4467 mutex_unlock(&cgroup_mutex);
4468 put_task_struct(tsk);
4469out_free:
4470 kfree(buf);
4471out:
4472 return retval;
4473}
4474
4475static int cgroup_open(struct inode *inode, struct file *file)
4476{
4477 struct pid *pid = PROC_I(inode)->pid;
4478 return single_open(file, proc_cgroup_show, pid);
4479}
4480
828c0950 4481const struct file_operations proc_cgroup_operations = {
a424316c
PM
4482 .open = cgroup_open,
4483 .read = seq_read,
4484 .llseek = seq_lseek,
4485 .release = single_release,
4486};
4487
4488/* Display information about each subsystem and each hierarchy */
4489static int proc_cgroupstats_show(struct seq_file *m, void *v)
4490{
4491 int i;
a424316c 4492
8bab8dde 4493 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
aae8aab4
BB
4494 /*
4495 * ideally we don't want subsystems moving around while we do this.
4496 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
4497 * subsys/hierarchy state.
4498 */
a424316c 4499 mutex_lock(&cgroup_mutex);
a424316c
PM
4500 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
4501 struct cgroup_subsys *ss = subsys[i];
aae8aab4
BB
4502 if (ss == NULL)
4503 continue;
2c6ab6d2
PM
4504 seq_printf(m, "%s\t%d\t%d\t%d\n",
4505 ss->name, ss->root->hierarchy_id,
8bab8dde 4506 ss->root->number_of_cgroups, !ss->disabled);
a424316c
PM
4507 }
4508 mutex_unlock(&cgroup_mutex);
4509 return 0;
4510}
4511
4512static int cgroupstats_open(struct inode *inode, struct file *file)
4513{
9dce07f1 4514 return single_open(file, proc_cgroupstats_show, NULL);
a424316c
PM
4515}
4516
828c0950 4517static const struct file_operations proc_cgroupstats_operations = {
a424316c
PM
4518 .open = cgroupstats_open,
4519 .read = seq_read,
4520 .llseek = seq_lseek,
4521 .release = single_release,
4522};
4523
b4f48b63
PM
4524/**
4525 * cgroup_fork - attach newly forked task to its parents cgroup.
a043e3b2 4526 * @child: pointer to task_struct of forking parent process.
b4f48b63
PM
4527 *
4528 * Description: A task inherits its parent's cgroup at fork().
4529 *
4530 * A pointer to the shared css_set was automatically copied in
4531 * fork.c by dup_task_struct(). However, we ignore that copy, since
7e381b0e
FW
4532 * it was not made under the protection of RCU, cgroup_mutex or
4533 * threadgroup_change_begin(), so it might no longer be a valid
4534 * cgroup pointer. cgroup_attach_task() might have already changed
4535 * current->cgroups, allowing the previously referenced cgroup
4536 * group to be removed and freed.
4537 *
4538 * Outside the pointer validity we also need to process the css_set
4539 * inheritance between threadgoup_change_begin() and
4540 * threadgoup_change_end(), this way there is no leak in any process
4541 * wide migration performed by cgroup_attach_proc() that could otherwise
4542 * miss a thread because it is too early or too late in the fork stage.
b4f48b63
PM
4543 *
4544 * At the point that cgroup_fork() is called, 'current' is the parent
4545 * task, and the passed argument 'child' points to the child task.
4546 */
4547void cgroup_fork(struct task_struct *child)
4548{
7e381b0e
FW
4549 /*
4550 * We don't need to task_lock() current because current->cgroups
4551 * can't be changed concurrently here. The parent obviously hasn't
4552 * exited and called cgroup_exit(), and we are synchronized against
4553 * cgroup migration through threadgroup_change_begin().
4554 */
817929ec
PM
4555 child->cgroups = current->cgroups;
4556 get_css_set(child->cgroups);
817929ec 4557 INIT_LIST_HEAD(&child->cg_list);
b4f48b63
PM
4558}
4559
4560/**
a043e3b2
LZ
4561 * cgroup_fork_callbacks - run fork callbacks
4562 * @child: the new task
4563 *
4564 * Called on a new task very soon before adding it to the
4565 * tasklist. No need to take any locks since no-one can
4566 * be operating on this task.
b4f48b63
PM
4567 */
4568void cgroup_fork_callbacks(struct task_struct *child)
4569{
4570 if (need_forkexit_callback) {
4571 int i;
aae8aab4
BB
4572 /*
4573 * forkexit callbacks are only supported for builtin
4574 * subsystems, and the builtin section of the subsys array is
4575 * immutable, so we don't need to lock the subsys array here.
4576 */
4577 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
b4f48b63
PM
4578 struct cgroup_subsys *ss = subsys[i];
4579 if (ss->fork)
4580 ss->fork(ss, child);
4581 }
4582 }
4583}
4584
817929ec 4585/**
a043e3b2
LZ
4586 * cgroup_post_fork - called on a new task after adding it to the task list
4587 * @child: the task in question
4588 *
4589 * Adds the task to the list running through its css_set if necessary.
4590 * Has to be after the task is visible on the task list in case we race
4591 * with the first call to cgroup_iter_start() - to guarantee that the
4592 * new task ends up on its list.
4593 */
817929ec
PM
4594void cgroup_post_fork(struct task_struct *child)
4595{
4596 if (use_task_css_set_links) {
4597 write_lock(&css_set_lock);
b12b533f 4598 task_lock(child);
817929ec
PM
4599 if (list_empty(&child->cg_list))
4600 list_add(&child->cg_list, &child->cgroups->tasks);
b12b533f 4601 task_unlock(child);
817929ec
PM
4602 write_unlock(&css_set_lock);
4603 }
4604}
b4f48b63
PM
4605/**
4606 * cgroup_exit - detach cgroup from exiting task
4607 * @tsk: pointer to task_struct of exiting process
a043e3b2 4608 * @run_callback: run exit callbacks?
b4f48b63
PM
4609 *
4610 * Description: Detach cgroup from @tsk and release it.
4611 *
4612 * Note that cgroups marked notify_on_release force every task in
4613 * them to take the global cgroup_mutex mutex when exiting.
4614 * This could impact scaling on very large systems. Be reluctant to
4615 * use notify_on_release cgroups where very high task exit scaling
4616 * is required on large systems.
4617 *
4618 * the_top_cgroup_hack:
4619 *
4620 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
4621 *
4622 * We call cgroup_exit() while the task is still competent to
4623 * handle notify_on_release(), then leave the task attached to the
4624 * root cgroup in each hierarchy for the remainder of its exit.
4625 *
4626 * To do this properly, we would increment the reference count on
4627 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
4628 * code we would add a second cgroup function call, to drop that
4629 * reference. This would just create an unnecessary hot spot on
4630 * the top_cgroup reference count, to no avail.
4631 *
4632 * Normally, holding a reference to a cgroup without bumping its
4633 * count is unsafe. The cgroup could go away, or someone could
4634 * attach us to a different cgroup, decrementing the count on
4635 * the first cgroup that we never incremented. But in this case,
4636 * top_cgroup isn't going away, and either task has PF_EXITING set,
956db3ca
CW
4637 * which wards off any cgroup_attach_task() attempts, or task is a failed
4638 * fork, never visible to cgroup_attach_task.
b4f48b63
PM
4639 */
4640void cgroup_exit(struct task_struct *tsk, int run_callbacks)
4641{
817929ec 4642 struct css_set *cg;
d41d5a01 4643 int i;
817929ec
PM
4644
4645 /*
4646 * Unlink from the css_set task list if necessary.
4647 * Optimistically check cg_list before taking
4648 * css_set_lock
4649 */
4650 if (!list_empty(&tsk->cg_list)) {
4651 write_lock(&css_set_lock);
4652 if (!list_empty(&tsk->cg_list))
8d258797 4653 list_del_init(&tsk->cg_list);
817929ec
PM
4654 write_unlock(&css_set_lock);
4655 }
4656
b4f48b63
PM
4657 /* Reassign the task to the init_css_set. */
4658 task_lock(tsk);
817929ec
PM
4659 cg = tsk->cgroups;
4660 tsk->cgroups = &init_css_set;
d41d5a01
PZ
4661
4662 if (run_callbacks && need_forkexit_callback) {
4663 /*
4664 * modular subsystems can't use callbacks, so no need to lock
4665 * the subsys array
4666 */
4667 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4668 struct cgroup_subsys *ss = subsys[i];
4669 if (ss->exit) {
4670 struct cgroup *old_cgrp =
4671 rcu_dereference_raw(cg->subsys[i])->cgroup;
4672 struct cgroup *cgrp = task_cgroup(tsk, i);
4673 ss->exit(ss, cgrp, old_cgrp, tsk);
4674 }
4675 }
4676 }
b4f48b63 4677 task_unlock(tsk);
d41d5a01 4678
817929ec 4679 if (cg)
81a6a5cd 4680 put_css_set_taskexit(cg);
b4f48b63 4681}
697f4161 4682
a043e3b2 4683/**
313e924c 4684 * cgroup_is_descendant - see if @cgrp is a descendant of @task's cgrp
a043e3b2 4685 * @cgrp: the cgroup in question
313e924c 4686 * @task: the task in question
a043e3b2 4687 *
313e924c
GN
4688 * See if @cgrp is a descendant of @task's cgroup in the appropriate
4689 * hierarchy.
697f4161
PM
4690 *
4691 * If we are sending in dummytop, then presumably we are creating
4692 * the top cgroup in the subsystem.
4693 *
4694 * Called only by the ns (nsproxy) cgroup.
4695 */
313e924c 4696int cgroup_is_descendant(const struct cgroup *cgrp, struct task_struct *task)
697f4161
PM
4697{
4698 int ret;
4699 struct cgroup *target;
697f4161 4700
bd89aabc 4701 if (cgrp == dummytop)
697f4161
PM
4702 return 1;
4703
7717f7ba 4704 target = task_cgroup_from_root(task, cgrp->root);
bd89aabc
PM
4705 while (cgrp != target && cgrp!= cgrp->top_cgroup)
4706 cgrp = cgrp->parent;
4707 ret = (cgrp == target);
697f4161
PM
4708 return ret;
4709}
81a6a5cd 4710
bd89aabc 4711static void check_for_release(struct cgroup *cgrp)
81a6a5cd
PM
4712{
4713 /* All of these checks rely on RCU to keep the cgroup
4714 * structure alive */
bd89aabc
PM
4715 if (cgroup_is_releasable(cgrp) && !atomic_read(&cgrp->count)
4716 && list_empty(&cgrp->children) && !cgroup_has_css_refs(cgrp)) {
81a6a5cd
PM
4717 /* Control Group is currently removeable. If it's not
4718 * already queued for a userspace notification, queue
4719 * it now */
4720 int need_schedule_work = 0;
cdcc136f 4721 raw_spin_lock(&release_list_lock);
bd89aabc
PM
4722 if (!cgroup_is_removed(cgrp) &&
4723 list_empty(&cgrp->release_list)) {
4724 list_add(&cgrp->release_list, &release_list);
81a6a5cd
PM
4725 need_schedule_work = 1;
4726 }
cdcc136f 4727 raw_spin_unlock(&release_list_lock);
81a6a5cd
PM
4728 if (need_schedule_work)
4729 schedule_work(&release_agent_work);
4730 }
4731}
4732
d7b9fff7
DN
4733/* Caller must verify that the css is not for root cgroup */
4734void __css_put(struct cgroup_subsys_state *css, int count)
81a6a5cd 4735{
bd89aabc 4736 struct cgroup *cgrp = css->cgroup;
3dece834 4737 int val;
81a6a5cd 4738 rcu_read_lock();
d7b9fff7 4739 val = atomic_sub_return(count, &css->refcnt);
3dece834 4740 if (val == 1) {
ec64f515
KH
4741 if (notify_on_release(cgrp)) {
4742 set_bit(CGRP_RELEASABLE, &cgrp->flags);
4743 check_for_release(cgrp);
4744 }
88703267 4745 cgroup_wakeup_rmdir_waiter(cgrp);
81a6a5cd
PM
4746 }
4747 rcu_read_unlock();
3dece834 4748 WARN_ON_ONCE(val < 1);
81a6a5cd 4749}
67523c48 4750EXPORT_SYMBOL_GPL(__css_put);
81a6a5cd
PM
4751
4752/*
4753 * Notify userspace when a cgroup is released, by running the
4754 * configured release agent with the name of the cgroup (path
4755 * relative to the root of cgroup file system) as the argument.
4756 *
4757 * Most likely, this user command will try to rmdir this cgroup.
4758 *
4759 * This races with the possibility that some other task will be
4760 * attached to this cgroup before it is removed, or that some other
4761 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
4762 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
4763 * unused, and this cgroup will be reprieved from its death sentence,
4764 * to continue to serve a useful existence. Next time it's released,
4765 * we will get notified again, if it still has 'notify_on_release' set.
4766 *
4767 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
4768 * means only wait until the task is successfully execve()'d. The
4769 * separate release agent task is forked by call_usermodehelper(),
4770 * then control in this thread returns here, without waiting for the
4771 * release agent task. We don't bother to wait because the caller of
4772 * this routine has no use for the exit status of the release agent
4773 * task, so no sense holding our caller up for that.
81a6a5cd 4774 */
81a6a5cd
PM
4775static void cgroup_release_agent(struct work_struct *work)
4776{
4777 BUG_ON(work != &release_agent_work);
4778 mutex_lock(&cgroup_mutex);
cdcc136f 4779 raw_spin_lock(&release_list_lock);
81a6a5cd
PM
4780 while (!list_empty(&release_list)) {
4781 char *argv[3], *envp[3];
4782 int i;
e788e066 4783 char *pathbuf = NULL, *agentbuf = NULL;
bd89aabc 4784 struct cgroup *cgrp = list_entry(release_list.next,
81a6a5cd
PM
4785 struct cgroup,
4786 release_list);
bd89aabc 4787 list_del_init(&cgrp->release_list);
cdcc136f 4788 raw_spin_unlock(&release_list_lock);
81a6a5cd 4789 pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
e788e066
PM
4790 if (!pathbuf)
4791 goto continue_free;
4792 if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
4793 goto continue_free;
4794 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
4795 if (!agentbuf)
4796 goto continue_free;
81a6a5cd
PM
4797
4798 i = 0;
e788e066
PM
4799 argv[i++] = agentbuf;
4800 argv[i++] = pathbuf;
81a6a5cd
PM
4801 argv[i] = NULL;
4802
4803 i = 0;
4804 /* minimal command environment */
4805 envp[i++] = "HOME=/";
4806 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
4807 envp[i] = NULL;
4808
4809 /* Drop the lock while we invoke the usermode helper,
4810 * since the exec could involve hitting disk and hence
4811 * be a slow process */
4812 mutex_unlock(&cgroup_mutex);
4813 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
81a6a5cd 4814 mutex_lock(&cgroup_mutex);
e788e066
PM
4815 continue_free:
4816 kfree(pathbuf);
4817 kfree(agentbuf);
cdcc136f 4818 raw_spin_lock(&release_list_lock);
81a6a5cd 4819 }
cdcc136f 4820 raw_spin_unlock(&release_list_lock);
81a6a5cd
PM
4821 mutex_unlock(&cgroup_mutex);
4822}
8bab8dde
PM
4823
4824static int __init cgroup_disable(char *str)
4825{
4826 int i;
4827 char *token;
4828
4829 while ((token = strsep(&str, ",")) != NULL) {
4830 if (!*token)
4831 continue;
aae8aab4
BB
4832 /*
4833 * cgroup_disable, being at boot time, can't know about module
4834 * subsystems, so we don't worry about them.
4835 */
4836 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
8bab8dde
PM
4837 struct cgroup_subsys *ss = subsys[i];
4838
4839 if (!strcmp(token, ss->name)) {
4840 ss->disabled = 1;
4841 printk(KERN_INFO "Disabling %s control group"
4842 " subsystem\n", ss->name);
4843 break;
4844 }
4845 }
4846 }
4847 return 1;
4848}
4849__setup("cgroup_disable=", cgroup_disable);
38460b48
KH
4850
4851/*
4852 * Functons for CSS ID.
4853 */
4854
4855/*
4856 *To get ID other than 0, this should be called when !cgroup_is_removed().
4857 */
4858unsigned short css_id(struct cgroup_subsys_state *css)
4859{
7f0f1546
KH
4860 struct css_id *cssid;
4861
4862 /*
4863 * This css_id() can return correct value when somone has refcnt
4864 * on this or this is under rcu_read_lock(). Once css->id is allocated,
4865 * it's unchanged until freed.
4866 */
d8bf4ca9 4867 cssid = rcu_dereference_check(css->id, atomic_read(&css->refcnt));
38460b48
KH
4868
4869 if (cssid)
4870 return cssid->id;
4871 return 0;
4872}
67523c48 4873EXPORT_SYMBOL_GPL(css_id);
38460b48
KH
4874
4875unsigned short css_depth(struct cgroup_subsys_state *css)
4876{
7f0f1546
KH
4877 struct css_id *cssid;
4878
d8bf4ca9 4879 cssid = rcu_dereference_check(css->id, atomic_read(&css->refcnt));
38460b48
KH
4880
4881 if (cssid)
4882 return cssid->depth;
4883 return 0;
4884}
67523c48 4885EXPORT_SYMBOL_GPL(css_depth);
38460b48 4886
747388d7
KH
4887/**
4888 * css_is_ancestor - test "root" css is an ancestor of "child"
4889 * @child: the css to be tested.
4890 * @root: the css supporsed to be an ancestor of the child.
4891 *
4892 * Returns true if "root" is an ancestor of "child" in its hierarchy. Because
4893 * this function reads css->id, this use rcu_dereference() and rcu_read_lock().
4894 * But, considering usual usage, the csses should be valid objects after test.
4895 * Assuming that the caller will do some action to the child if this returns
4896 * returns true, the caller must take "child";s reference count.
4897 * If "child" is valid object and this returns true, "root" is valid, too.
4898 */
4899
38460b48 4900bool css_is_ancestor(struct cgroup_subsys_state *child,
0b7f569e 4901 const struct cgroup_subsys_state *root)
38460b48 4902{
747388d7
KH
4903 struct css_id *child_id;
4904 struct css_id *root_id;
4905 bool ret = true;
38460b48 4906
747388d7
KH
4907 rcu_read_lock();
4908 child_id = rcu_dereference(child->id);
4909 root_id = rcu_dereference(root->id);
4910 if (!child_id
4911 || !root_id
4912 || (child_id->depth < root_id->depth)
4913 || (child_id->stack[root_id->depth] != root_id->id))
4914 ret = false;
4915 rcu_read_unlock();
4916 return ret;
38460b48
KH
4917}
4918
38460b48
KH
4919void free_css_id(struct cgroup_subsys *ss, struct cgroup_subsys_state *css)
4920{
4921 struct css_id *id = css->id;
4922 /* When this is called before css_id initialization, id can be NULL */
4923 if (!id)
4924 return;
4925
4926 BUG_ON(!ss->use_id);
4927
4928 rcu_assign_pointer(id->css, NULL);
4929 rcu_assign_pointer(css->id, NULL);
c1e2ee2d 4930 write_lock(&ss->id_lock);
38460b48 4931 idr_remove(&ss->idr, id->id);
c1e2ee2d 4932 write_unlock(&ss->id_lock);
025cea99 4933 kfree_rcu(id, rcu_head);
38460b48 4934}
67523c48 4935EXPORT_SYMBOL_GPL(free_css_id);
38460b48
KH
4936
4937/*
4938 * This is called by init or create(). Then, calls to this function are
4939 * always serialized (By cgroup_mutex() at create()).
4940 */
4941
4942static struct css_id *get_new_cssid(struct cgroup_subsys *ss, int depth)
4943{
4944 struct css_id *newid;
4945 int myid, error, size;
4946
4947 BUG_ON(!ss->use_id);
4948
4949 size = sizeof(*newid) + sizeof(unsigned short) * (depth + 1);
4950 newid = kzalloc(size, GFP_KERNEL);
4951 if (!newid)
4952 return ERR_PTR(-ENOMEM);
4953 /* get id */
4954 if (unlikely(!idr_pre_get(&ss->idr, GFP_KERNEL))) {
4955 error = -ENOMEM;
4956 goto err_out;
4957 }
c1e2ee2d 4958 write_lock(&ss->id_lock);
38460b48
KH
4959 /* Don't use 0. allocates an ID of 1-65535 */
4960 error = idr_get_new_above(&ss->idr, newid, 1, &myid);
c1e2ee2d 4961 write_unlock(&ss->id_lock);
38460b48
KH
4962
4963 /* Returns error when there are no free spaces for new ID.*/
4964 if (error) {
4965 error = -ENOSPC;
4966 goto err_out;
4967 }
4968 if (myid > CSS_ID_MAX)
4969 goto remove_idr;
4970
4971 newid->id = myid;
4972 newid->depth = depth;
4973 return newid;
4974remove_idr:
4975 error = -ENOSPC;
c1e2ee2d 4976 write_lock(&ss->id_lock);
38460b48 4977 idr_remove(&ss->idr, myid);
c1e2ee2d 4978 write_unlock(&ss->id_lock);
38460b48
KH
4979err_out:
4980 kfree(newid);
4981 return ERR_PTR(error);
4982
4983}
4984
e6a1105b
BB
4985static int __init_or_module cgroup_init_idr(struct cgroup_subsys *ss,
4986 struct cgroup_subsys_state *rootcss)
38460b48
KH
4987{
4988 struct css_id *newid;
38460b48 4989
c1e2ee2d 4990 rwlock_init(&ss->id_lock);
38460b48
KH
4991 idr_init(&ss->idr);
4992
38460b48
KH
4993 newid = get_new_cssid(ss, 0);
4994 if (IS_ERR(newid))
4995 return PTR_ERR(newid);
4996
4997 newid->stack[0] = newid->id;
4998 newid->css = rootcss;
4999 rootcss->id = newid;
5000 return 0;
5001}
5002
5003static int alloc_css_id(struct cgroup_subsys *ss, struct cgroup *parent,
5004 struct cgroup *child)
5005{
5006 int subsys_id, i, depth = 0;
5007 struct cgroup_subsys_state *parent_css, *child_css;
fae9c791 5008 struct css_id *child_id, *parent_id;
38460b48
KH
5009
5010 subsys_id = ss->subsys_id;
5011 parent_css = parent->subsys[subsys_id];
5012 child_css = child->subsys[subsys_id];
38460b48 5013 parent_id = parent_css->id;
94b3dd0f 5014 depth = parent_id->depth + 1;
38460b48
KH
5015
5016 child_id = get_new_cssid(ss, depth);
5017 if (IS_ERR(child_id))
5018 return PTR_ERR(child_id);
5019
5020 for (i = 0; i < depth; i++)
5021 child_id->stack[i] = parent_id->stack[i];
5022 child_id->stack[depth] = child_id->id;
5023 /*
5024 * child_id->css pointer will be set after this cgroup is available
5025 * see cgroup_populate_dir()
5026 */
5027 rcu_assign_pointer(child_css->id, child_id);
5028
5029 return 0;
5030}
5031
5032/**
5033 * css_lookup - lookup css by id
5034 * @ss: cgroup subsys to be looked into.
5035 * @id: the id
5036 *
5037 * Returns pointer to cgroup_subsys_state if there is valid one with id.
5038 * NULL if not. Should be called under rcu_read_lock()
5039 */
5040struct cgroup_subsys_state *css_lookup(struct cgroup_subsys *ss, int id)
5041{
5042 struct css_id *cssid = NULL;
5043
5044 BUG_ON(!ss->use_id);
5045 cssid = idr_find(&ss->idr, id);
5046
5047 if (unlikely(!cssid))
5048 return NULL;
5049
5050 return rcu_dereference(cssid->css);
5051}
67523c48 5052EXPORT_SYMBOL_GPL(css_lookup);
38460b48
KH
5053
5054/**
5055 * css_get_next - lookup next cgroup under specified hierarchy.
5056 * @ss: pointer to subsystem
5057 * @id: current position of iteration.
5058 * @root: pointer to css. search tree under this.
5059 * @foundid: position of found object.
5060 *
5061 * Search next css under the specified hierarchy of rootid. Calling under
5062 * rcu_read_lock() is necessary. Returns NULL if it reaches the end.
5063 */
5064struct cgroup_subsys_state *
5065css_get_next(struct cgroup_subsys *ss, int id,
5066 struct cgroup_subsys_state *root, int *foundid)
5067{
5068 struct cgroup_subsys_state *ret = NULL;
5069 struct css_id *tmp;
5070 int tmpid;
5071 int rootid = css_id(root);
5072 int depth = css_depth(root);
5073
5074 if (!rootid)
5075 return NULL;
5076
5077 BUG_ON(!ss->use_id);
5078 /* fill start point for scan */
5079 tmpid = id;
5080 while (1) {
5081 /*
5082 * scan next entry from bitmap(tree), tmpid is updated after
5083 * idr_get_next().
5084 */
c1e2ee2d 5085 read_lock(&ss->id_lock);
38460b48 5086 tmp = idr_get_next(&ss->idr, &tmpid);
c1e2ee2d 5087 read_unlock(&ss->id_lock);
38460b48
KH
5088
5089 if (!tmp)
5090 break;
5091 if (tmp->depth >= depth && tmp->stack[depth] == rootid) {
5092 ret = rcu_dereference(tmp->css);
5093 if (ret) {
5094 *foundid = tmpid;
5095 break;
5096 }
5097 }
5098 /* continue to scan from next id */
5099 tmpid = tmpid + 1;
5100 }
5101 return ret;
5102}
5103
e5d1367f
SE
5104/*
5105 * get corresponding css from file open on cgroupfs directory
5106 */
5107struct cgroup_subsys_state *cgroup_css_from_dir(struct file *f, int id)
5108{
5109 struct cgroup *cgrp;
5110 struct inode *inode;
5111 struct cgroup_subsys_state *css;
5112
5113 inode = f->f_dentry->d_inode;
5114 /* check in cgroup filesystem dir */
5115 if (inode->i_op != &cgroup_dir_inode_operations)
5116 return ERR_PTR(-EBADF);
5117
5118 if (id < 0 || id >= CGROUP_SUBSYS_COUNT)
5119 return ERR_PTR(-EINVAL);
5120
5121 /* get cgroup */
5122 cgrp = __d_cgrp(f->f_dentry);
5123 css = cgrp->subsys[id];
5124 return css ? css : ERR_PTR(-ENOENT);
5125}
5126
fe693435
PM
5127#ifdef CONFIG_CGROUP_DEBUG
5128static struct cgroup_subsys_state *debug_create(struct cgroup_subsys *ss,
5129 struct cgroup *cont)
5130{
5131 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5132
5133 if (!css)
5134 return ERR_PTR(-ENOMEM);
5135
5136 return css;
5137}
5138
5139static void debug_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
5140{
5141 kfree(cont->subsys[debug_subsys_id]);
5142}
5143
5144static u64 cgroup_refcount_read(struct cgroup *cont, struct cftype *cft)
5145{
5146 return atomic_read(&cont->count);
5147}
5148
5149static u64 debug_taskcount_read(struct cgroup *cont, struct cftype *cft)
5150{
5151 return cgroup_task_count(cont);
5152}
5153
5154static u64 current_css_set_read(struct cgroup *cont, struct cftype *cft)
5155{
5156 return (u64)(unsigned long)current->cgroups;
5157}
5158
5159static u64 current_css_set_refcount_read(struct cgroup *cont,
5160 struct cftype *cft)
5161{
5162 u64 count;
5163
5164 rcu_read_lock();
5165 count = atomic_read(&current->cgroups->refcount);
5166 rcu_read_unlock();
5167 return count;
5168}
5169
7717f7ba
PM
5170static int current_css_set_cg_links_read(struct cgroup *cont,
5171 struct cftype *cft,
5172 struct seq_file *seq)
5173{
5174 struct cg_cgroup_link *link;
5175 struct css_set *cg;
5176
5177 read_lock(&css_set_lock);
5178 rcu_read_lock();
5179 cg = rcu_dereference(current->cgroups);
5180 list_for_each_entry(link, &cg->cg_links, cg_link_list) {
5181 struct cgroup *c = link->cgrp;
5182 const char *name;
5183
5184 if (c->dentry)
5185 name = c->dentry->d_name.name;
5186 else
5187 name = "?";
2c6ab6d2
PM
5188 seq_printf(seq, "Root %d group %s\n",
5189 c->root->hierarchy_id, name);
7717f7ba
PM
5190 }
5191 rcu_read_unlock();
5192 read_unlock(&css_set_lock);
5193 return 0;
5194}
5195
5196#define MAX_TASKS_SHOWN_PER_CSS 25
5197static int cgroup_css_links_read(struct cgroup *cont,
5198 struct cftype *cft,
5199 struct seq_file *seq)
5200{
5201 struct cg_cgroup_link *link;
5202
5203 read_lock(&css_set_lock);
5204 list_for_each_entry(link, &cont->css_sets, cgrp_link_list) {
5205 struct css_set *cg = link->cg;
5206 struct task_struct *task;
5207 int count = 0;
5208 seq_printf(seq, "css_set %p\n", cg);
5209 list_for_each_entry(task, &cg->tasks, cg_list) {
5210 if (count++ > MAX_TASKS_SHOWN_PER_CSS) {
5211 seq_puts(seq, " ...\n");
5212 break;
5213 } else {
5214 seq_printf(seq, " task %d\n",
5215 task_pid_vnr(task));
5216 }
5217 }
5218 }
5219 read_unlock(&css_set_lock);
5220 return 0;
5221}
5222
fe693435
PM
5223static u64 releasable_read(struct cgroup *cgrp, struct cftype *cft)
5224{
5225 return test_bit(CGRP_RELEASABLE, &cgrp->flags);
5226}
5227
5228static struct cftype debug_files[] = {
5229 {
5230 .name = "cgroup_refcount",
5231 .read_u64 = cgroup_refcount_read,
5232 },
5233 {
5234 .name = "taskcount",
5235 .read_u64 = debug_taskcount_read,
5236 },
5237
5238 {
5239 .name = "current_css_set",
5240 .read_u64 = current_css_set_read,
5241 },
5242
5243 {
5244 .name = "current_css_set_refcount",
5245 .read_u64 = current_css_set_refcount_read,
5246 },
5247
7717f7ba
PM
5248 {
5249 .name = "current_css_set_cg_links",
5250 .read_seq_string = current_css_set_cg_links_read,
5251 },
5252
5253 {
5254 .name = "cgroup_css_links",
5255 .read_seq_string = cgroup_css_links_read,
5256 },
5257
fe693435
PM
5258 {
5259 .name = "releasable",
5260 .read_u64 = releasable_read,
5261 },
5262};
5263
5264static int debug_populate(struct cgroup_subsys *ss, struct cgroup *cont)
5265{
5266 return cgroup_add_files(cont, ss, debug_files,
5267 ARRAY_SIZE(debug_files));
5268}
5269
5270struct cgroup_subsys debug_subsys = {
5271 .name = "debug",
5272 .create = debug_create,
5273 .destroy = debug_destroy,
5274 .populate = debug_populate,
5275 .subsys_id = debug_subsys_id,
5276};
5277#endif /* CONFIG_CGROUP_DEBUG */