]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - kernel/cgroup.c
cgroups: use vmalloc for large cgroups pidlist allocations
[mirror_ubuntu-bionic-kernel.git] / kernel / cgroup.c
CommitLineData
ddbcc7e8 1/*
ddbcc7e8
PM
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
7 * Copyright notices from the original cpuset code:
8 * --------------------------------------------------
9 * Copyright (C) 2003 BULL SA.
10 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
11 *
12 * Portions derived from Patrick Mochel's sysfs code.
13 * sysfs is Copyright (c) 2001-3 Patrick Mochel
14 *
15 * 2003-10-10 Written by Simon Derr.
16 * 2003-10-22 Updates by Stephen Hemminger.
17 * 2004 May-July Rework by Paul Jackson.
18 * ---------------------------------------------------
19 *
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
23 */
24
25#include <linux/cgroup.h>
c6d57f33 26#include <linux/ctype.h>
ddbcc7e8
PM
27#include <linux/errno.h>
28#include <linux/fs.h>
29#include <linux/kernel.h>
30#include <linux/list.h>
31#include <linux/mm.h>
32#include <linux/mutex.h>
33#include <linux/mount.h>
34#include <linux/pagemap.h>
a424316c 35#include <linux/proc_fs.h>
ddbcc7e8
PM
36#include <linux/rcupdate.h>
37#include <linux/sched.h>
817929ec 38#include <linux/backing-dev.h>
ddbcc7e8
PM
39#include <linux/seq_file.h>
40#include <linux/slab.h>
41#include <linux/magic.h>
42#include <linux/spinlock.h>
43#include <linux/string.h>
bbcb81d0 44#include <linux/sort.h>
81a6a5cd 45#include <linux/kmod.h>
846c7bb0
BS
46#include <linux/delayacct.h>
47#include <linux/cgroupstats.h>
472b1053 48#include <linux/hash.h>
3f8206d4 49#include <linux/namei.h>
337eb00a 50#include <linux/smp_lock.h>
096b7fe0 51#include <linux/pid_namespace.h>
2c6ab6d2 52#include <linux/idr.h>
d1d9fd33 53#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
846c7bb0 54
ddbcc7e8
PM
55#include <asm/atomic.h>
56
81a6a5cd
PM
57static DEFINE_MUTEX(cgroup_mutex);
58
ddbcc7e8
PM
59/* Generate an array of cgroup subsystem pointers */
60#define SUBSYS(_x) &_x ## _subsys,
61
62static struct cgroup_subsys *subsys[] = {
63#include <linux/cgroup_subsys.h>
64};
65
c6d57f33
PM
66#define MAX_CGROUP_ROOT_NAMELEN 64
67
ddbcc7e8
PM
68/*
69 * A cgroupfs_root represents the root of a cgroup hierarchy,
70 * and may be associated with a superblock to form an active
71 * hierarchy
72 */
73struct cgroupfs_root {
74 struct super_block *sb;
75
76 /*
77 * The bitmask of subsystems intended to be attached to this
78 * hierarchy
79 */
80 unsigned long subsys_bits;
81
2c6ab6d2
PM
82 /* Unique id for this hierarchy. */
83 int hierarchy_id;
84
ddbcc7e8
PM
85 /* The bitmask of subsystems currently attached to this hierarchy */
86 unsigned long actual_subsys_bits;
87
88 /* A list running through the attached subsystems */
89 struct list_head subsys_list;
90
91 /* The root cgroup for this hierarchy */
92 struct cgroup top_cgroup;
93
94 /* Tracks how many cgroups are currently defined in hierarchy.*/
95 int number_of_cgroups;
96
e5f6a860 97 /* A list running through the active hierarchies */
ddbcc7e8
PM
98 struct list_head root_list;
99
100 /* Hierarchy-specific flags */
101 unsigned long flags;
81a6a5cd 102
e788e066 103 /* The path to use for release notifications. */
81a6a5cd 104 char release_agent_path[PATH_MAX];
c6d57f33
PM
105
106 /* The name for this hierarchy - may be empty */
107 char name[MAX_CGROUP_ROOT_NAMELEN];
ddbcc7e8
PM
108};
109
ddbcc7e8
PM
110/*
111 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
112 * subsystems that are otherwise unattached - it never has more than a
113 * single cgroup, and all tasks are part of that cgroup.
114 */
115static struct cgroupfs_root rootnode;
116
38460b48
KH
117/*
118 * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
119 * cgroup_subsys->use_id != 0.
120 */
121#define CSS_ID_MAX (65535)
122struct css_id {
123 /*
124 * The css to which this ID points. This pointer is set to valid value
125 * after cgroup is populated. If cgroup is removed, this will be NULL.
126 * This pointer is expected to be RCU-safe because destroy()
127 * is called after synchronize_rcu(). But for safe use, css_is_removed()
128 * css_tryget() should be used for avoiding race.
129 */
130 struct cgroup_subsys_state *css;
131 /*
132 * ID of this css.
133 */
134 unsigned short id;
135 /*
136 * Depth in hierarchy which this ID belongs to.
137 */
138 unsigned short depth;
139 /*
140 * ID is freed by RCU. (and lookup routine is RCU safe.)
141 */
142 struct rcu_head rcu_head;
143 /*
144 * Hierarchy of CSS ID belongs to.
145 */
146 unsigned short stack[0]; /* Array of Length (depth+1) */
147};
148
149
ddbcc7e8
PM
150/* The list of hierarchy roots */
151
152static LIST_HEAD(roots);
817929ec 153static int root_count;
ddbcc7e8 154
2c6ab6d2
PM
155static DEFINE_IDA(hierarchy_ida);
156static int next_hierarchy_id;
157static DEFINE_SPINLOCK(hierarchy_id_lock);
158
ddbcc7e8
PM
159/* dummytop is a shorthand for the dummy hierarchy's top cgroup */
160#define dummytop (&rootnode.top_cgroup)
161
162/* This flag indicates whether tasks in the fork and exit paths should
a043e3b2
LZ
163 * check for fork/exit handlers to call. This avoids us having to do
164 * extra work in the fork/exit path if none of the subsystems need to
165 * be called.
ddbcc7e8 166 */
8947f9d5 167static int need_forkexit_callback __read_mostly;
ddbcc7e8 168
ddbcc7e8 169/* convenient tests for these bits */
bd89aabc 170inline int cgroup_is_removed(const struct cgroup *cgrp)
ddbcc7e8 171{
bd89aabc 172 return test_bit(CGRP_REMOVED, &cgrp->flags);
ddbcc7e8
PM
173}
174
175/* bits in struct cgroupfs_root flags field */
176enum {
177 ROOT_NOPREFIX, /* mounted subsystems have no named prefix */
178};
179
e9685a03 180static int cgroup_is_releasable(const struct cgroup *cgrp)
81a6a5cd
PM
181{
182 const int bits =
bd89aabc
PM
183 (1 << CGRP_RELEASABLE) |
184 (1 << CGRP_NOTIFY_ON_RELEASE);
185 return (cgrp->flags & bits) == bits;
81a6a5cd
PM
186}
187
e9685a03 188static int notify_on_release(const struct cgroup *cgrp)
81a6a5cd 189{
bd89aabc 190 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
81a6a5cd
PM
191}
192
ddbcc7e8
PM
193/*
194 * for_each_subsys() allows you to iterate on each subsystem attached to
195 * an active hierarchy
196 */
197#define for_each_subsys(_root, _ss) \
198list_for_each_entry(_ss, &_root->subsys_list, sibling)
199
e5f6a860
LZ
200/* for_each_active_root() allows you to iterate across the active hierarchies */
201#define for_each_active_root(_root) \
ddbcc7e8
PM
202list_for_each_entry(_root, &roots, root_list)
203
81a6a5cd
PM
204/* the list of cgroups eligible for automatic release. Protected by
205 * release_list_lock */
206static LIST_HEAD(release_list);
207static DEFINE_SPINLOCK(release_list_lock);
208static void cgroup_release_agent(struct work_struct *work);
209static DECLARE_WORK(release_agent_work, cgroup_release_agent);
bd89aabc 210static void check_for_release(struct cgroup *cgrp);
81a6a5cd 211
817929ec
PM
212/* Link structure for associating css_set objects with cgroups */
213struct cg_cgroup_link {
214 /*
215 * List running through cg_cgroup_links associated with a
216 * cgroup, anchored on cgroup->css_sets
217 */
bd89aabc 218 struct list_head cgrp_link_list;
7717f7ba 219 struct cgroup *cgrp;
817929ec
PM
220 /*
221 * List running through cg_cgroup_links pointing at a
222 * single css_set object, anchored on css_set->cg_links
223 */
224 struct list_head cg_link_list;
225 struct css_set *cg;
226};
227
228/* The default css_set - used by init and its children prior to any
229 * hierarchies being mounted. It contains a pointer to the root state
230 * for each subsystem. Also used to anchor the list of css_sets. Not
231 * reference-counted, to improve performance when child cgroups
232 * haven't been created.
233 */
234
235static struct css_set init_css_set;
236static struct cg_cgroup_link init_css_set_link;
237
38460b48
KH
238static int cgroup_subsys_init_idr(struct cgroup_subsys *ss);
239
817929ec
PM
240/* css_set_lock protects the list of css_set objects, and the
241 * chain of tasks off each css_set. Nests outside task->alloc_lock
242 * due to cgroup_iter_start() */
243static DEFINE_RWLOCK(css_set_lock);
244static int css_set_count;
245
7717f7ba
PM
246/*
247 * hash table for cgroup groups. This improves the performance to find
248 * an existing css_set. This hash doesn't (currently) take into
249 * account cgroups in empty hierarchies.
250 */
472b1053
LZ
251#define CSS_SET_HASH_BITS 7
252#define CSS_SET_TABLE_SIZE (1 << CSS_SET_HASH_BITS)
253static struct hlist_head css_set_table[CSS_SET_TABLE_SIZE];
254
255static struct hlist_head *css_set_hash(struct cgroup_subsys_state *css[])
256{
257 int i;
258 int index;
259 unsigned long tmp = 0UL;
260
261 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++)
262 tmp += (unsigned long)css[i];
263 tmp = (tmp >> 16) ^ tmp;
264
265 index = hash_long(tmp, CSS_SET_HASH_BITS);
266
267 return &css_set_table[index];
268}
269
817929ec
PM
270/* We don't maintain the lists running through each css_set to its
271 * task until after the first call to cgroup_iter_start(). This
272 * reduces the fork()/exit() overhead for people who have cgroups
273 * compiled into their kernel but not actually in use */
8947f9d5 274static int use_task_css_set_links __read_mostly;
817929ec 275
2c6ab6d2 276static void __put_css_set(struct css_set *cg, int taskexit)
b4f48b63 277{
71cbb949
KM
278 struct cg_cgroup_link *link;
279 struct cg_cgroup_link *saved_link;
146aa1bd
LJ
280 /*
281 * Ensure that the refcount doesn't hit zero while any readers
282 * can see it. Similar to atomic_dec_and_lock(), but for an
283 * rwlock
284 */
285 if (atomic_add_unless(&cg->refcount, -1, 1))
286 return;
287 write_lock(&css_set_lock);
288 if (!atomic_dec_and_test(&cg->refcount)) {
289 write_unlock(&css_set_lock);
290 return;
291 }
81a6a5cd 292
2c6ab6d2
PM
293 /* This css_set is dead. unlink it and release cgroup refcounts */
294 hlist_del(&cg->hlist);
295 css_set_count--;
296
297 list_for_each_entry_safe(link, saved_link, &cg->cg_links,
298 cg_link_list) {
299 struct cgroup *cgrp = link->cgrp;
300 list_del(&link->cg_link_list);
301 list_del(&link->cgrp_link_list);
bd89aabc
PM
302 if (atomic_dec_and_test(&cgrp->count) &&
303 notify_on_release(cgrp)) {
81a6a5cd 304 if (taskexit)
bd89aabc
PM
305 set_bit(CGRP_RELEASABLE, &cgrp->flags);
306 check_for_release(cgrp);
81a6a5cd 307 }
2c6ab6d2
PM
308
309 kfree(link);
81a6a5cd 310 }
2c6ab6d2
PM
311
312 write_unlock(&css_set_lock);
817929ec 313 kfree(cg);
b4f48b63
PM
314}
315
817929ec
PM
316/*
317 * refcounted get/put for css_set objects
318 */
319static inline void get_css_set(struct css_set *cg)
320{
146aa1bd 321 atomic_inc(&cg->refcount);
817929ec
PM
322}
323
324static inline void put_css_set(struct css_set *cg)
325{
146aa1bd 326 __put_css_set(cg, 0);
817929ec
PM
327}
328
81a6a5cd
PM
329static inline void put_css_set_taskexit(struct css_set *cg)
330{
146aa1bd 331 __put_css_set(cg, 1);
81a6a5cd
PM
332}
333
7717f7ba
PM
334/*
335 * compare_css_sets - helper function for find_existing_css_set().
336 * @cg: candidate css_set being tested
337 * @old_cg: existing css_set for a task
338 * @new_cgrp: cgroup that's being entered by the task
339 * @template: desired set of css pointers in css_set (pre-calculated)
340 *
341 * Returns true if "cg" matches "old_cg" except for the hierarchy
342 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
343 */
344static bool compare_css_sets(struct css_set *cg,
345 struct css_set *old_cg,
346 struct cgroup *new_cgrp,
347 struct cgroup_subsys_state *template[])
348{
349 struct list_head *l1, *l2;
350
351 if (memcmp(template, cg->subsys, sizeof(cg->subsys))) {
352 /* Not all subsystems matched */
353 return false;
354 }
355
356 /*
357 * Compare cgroup pointers in order to distinguish between
358 * different cgroups in heirarchies with no subsystems. We
359 * could get by with just this check alone (and skip the
360 * memcmp above) but on most setups the memcmp check will
361 * avoid the need for this more expensive check on almost all
362 * candidates.
363 */
364
365 l1 = &cg->cg_links;
366 l2 = &old_cg->cg_links;
367 while (1) {
368 struct cg_cgroup_link *cgl1, *cgl2;
369 struct cgroup *cg1, *cg2;
370
371 l1 = l1->next;
372 l2 = l2->next;
373 /* See if we reached the end - both lists are equal length. */
374 if (l1 == &cg->cg_links) {
375 BUG_ON(l2 != &old_cg->cg_links);
376 break;
377 } else {
378 BUG_ON(l2 == &old_cg->cg_links);
379 }
380 /* Locate the cgroups associated with these links. */
381 cgl1 = list_entry(l1, struct cg_cgroup_link, cg_link_list);
382 cgl2 = list_entry(l2, struct cg_cgroup_link, cg_link_list);
383 cg1 = cgl1->cgrp;
384 cg2 = cgl2->cgrp;
385 /* Hierarchies should be linked in the same order. */
386 BUG_ON(cg1->root != cg2->root);
387
388 /*
389 * If this hierarchy is the hierarchy of the cgroup
390 * that's changing, then we need to check that this
391 * css_set points to the new cgroup; if it's any other
392 * hierarchy, then this css_set should point to the
393 * same cgroup as the old css_set.
394 */
395 if (cg1->root == new_cgrp->root) {
396 if (cg1 != new_cgrp)
397 return false;
398 } else {
399 if (cg1 != cg2)
400 return false;
401 }
402 }
403 return true;
404}
405
817929ec
PM
406/*
407 * find_existing_css_set() is a helper for
408 * find_css_set(), and checks to see whether an existing
472b1053 409 * css_set is suitable.
817929ec
PM
410 *
411 * oldcg: the cgroup group that we're using before the cgroup
412 * transition
413 *
bd89aabc 414 * cgrp: the cgroup that we're moving into
817929ec
PM
415 *
416 * template: location in which to build the desired set of subsystem
417 * state objects for the new cgroup group
418 */
817929ec
PM
419static struct css_set *find_existing_css_set(
420 struct css_set *oldcg,
bd89aabc 421 struct cgroup *cgrp,
817929ec 422 struct cgroup_subsys_state *template[])
b4f48b63
PM
423{
424 int i;
bd89aabc 425 struct cgroupfs_root *root = cgrp->root;
472b1053
LZ
426 struct hlist_head *hhead;
427 struct hlist_node *node;
428 struct css_set *cg;
817929ec
PM
429
430 /* Built the set of subsystem state objects that we want to
431 * see in the new css_set */
432 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
8d53d55d 433 if (root->subsys_bits & (1UL << i)) {
817929ec
PM
434 /* Subsystem is in this hierarchy. So we want
435 * the subsystem state from the new
436 * cgroup */
bd89aabc 437 template[i] = cgrp->subsys[i];
817929ec
PM
438 } else {
439 /* Subsystem is not in this hierarchy, so we
440 * don't want to change the subsystem state */
441 template[i] = oldcg->subsys[i];
442 }
443 }
444
472b1053
LZ
445 hhead = css_set_hash(template);
446 hlist_for_each_entry(cg, node, hhead, hlist) {
7717f7ba
PM
447 if (!compare_css_sets(cg, oldcg, cgrp, template))
448 continue;
449
450 /* This css_set matches what we need */
451 return cg;
472b1053 452 }
817929ec
PM
453
454 /* No existing cgroup group matched */
455 return NULL;
456}
457
36553434
LZ
458static void free_cg_links(struct list_head *tmp)
459{
460 struct cg_cgroup_link *link;
461 struct cg_cgroup_link *saved_link;
462
463 list_for_each_entry_safe(link, saved_link, tmp, cgrp_link_list) {
464 list_del(&link->cgrp_link_list);
465 kfree(link);
466 }
467}
468
817929ec
PM
469/*
470 * allocate_cg_links() allocates "count" cg_cgroup_link structures
bd89aabc 471 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
817929ec
PM
472 * success or a negative error
473 */
817929ec
PM
474static int allocate_cg_links(int count, struct list_head *tmp)
475{
476 struct cg_cgroup_link *link;
477 int i;
478 INIT_LIST_HEAD(tmp);
479 for (i = 0; i < count; i++) {
480 link = kmalloc(sizeof(*link), GFP_KERNEL);
481 if (!link) {
36553434 482 free_cg_links(tmp);
817929ec
PM
483 return -ENOMEM;
484 }
bd89aabc 485 list_add(&link->cgrp_link_list, tmp);
817929ec
PM
486 }
487 return 0;
488}
489
c12f65d4
LZ
490/**
491 * link_css_set - a helper function to link a css_set to a cgroup
492 * @tmp_cg_links: cg_cgroup_link objects allocated by allocate_cg_links()
493 * @cg: the css_set to be linked
494 * @cgrp: the destination cgroup
495 */
496static void link_css_set(struct list_head *tmp_cg_links,
497 struct css_set *cg, struct cgroup *cgrp)
498{
499 struct cg_cgroup_link *link;
500
501 BUG_ON(list_empty(tmp_cg_links));
502 link = list_first_entry(tmp_cg_links, struct cg_cgroup_link,
503 cgrp_link_list);
504 link->cg = cg;
7717f7ba 505 link->cgrp = cgrp;
2c6ab6d2 506 atomic_inc(&cgrp->count);
c12f65d4 507 list_move(&link->cgrp_link_list, &cgrp->css_sets);
7717f7ba
PM
508 /*
509 * Always add links to the tail of the list so that the list
510 * is sorted by order of hierarchy creation
511 */
512 list_add_tail(&link->cg_link_list, &cg->cg_links);
c12f65d4
LZ
513}
514
817929ec
PM
515/*
516 * find_css_set() takes an existing cgroup group and a
517 * cgroup object, and returns a css_set object that's
518 * equivalent to the old group, but with the given cgroup
519 * substituted into the appropriate hierarchy. Must be called with
520 * cgroup_mutex held
521 */
817929ec 522static struct css_set *find_css_set(
bd89aabc 523 struct css_set *oldcg, struct cgroup *cgrp)
817929ec
PM
524{
525 struct css_set *res;
526 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
817929ec
PM
527
528 struct list_head tmp_cg_links;
817929ec 529
472b1053 530 struct hlist_head *hhead;
7717f7ba 531 struct cg_cgroup_link *link;
472b1053 532
817929ec
PM
533 /* First see if we already have a cgroup group that matches
534 * the desired set */
7e9abd89 535 read_lock(&css_set_lock);
bd89aabc 536 res = find_existing_css_set(oldcg, cgrp, template);
817929ec
PM
537 if (res)
538 get_css_set(res);
7e9abd89 539 read_unlock(&css_set_lock);
817929ec
PM
540
541 if (res)
542 return res;
543
544 res = kmalloc(sizeof(*res), GFP_KERNEL);
545 if (!res)
546 return NULL;
547
548 /* Allocate all the cg_cgroup_link objects that we'll need */
549 if (allocate_cg_links(root_count, &tmp_cg_links) < 0) {
550 kfree(res);
551 return NULL;
552 }
553
146aa1bd 554 atomic_set(&res->refcount, 1);
817929ec
PM
555 INIT_LIST_HEAD(&res->cg_links);
556 INIT_LIST_HEAD(&res->tasks);
472b1053 557 INIT_HLIST_NODE(&res->hlist);
817929ec
PM
558
559 /* Copy the set of subsystem state objects generated in
560 * find_existing_css_set() */
561 memcpy(res->subsys, template, sizeof(res->subsys));
562
563 write_lock(&css_set_lock);
564 /* Add reference counts and links from the new css_set. */
7717f7ba
PM
565 list_for_each_entry(link, &oldcg->cg_links, cg_link_list) {
566 struct cgroup *c = link->cgrp;
567 if (c->root == cgrp->root)
568 c = cgrp;
569 link_css_set(&tmp_cg_links, res, c);
570 }
817929ec
PM
571
572 BUG_ON(!list_empty(&tmp_cg_links));
573
817929ec 574 css_set_count++;
472b1053
LZ
575
576 /* Add this cgroup group to the hash table */
577 hhead = css_set_hash(res->subsys);
578 hlist_add_head(&res->hlist, hhead);
579
817929ec
PM
580 write_unlock(&css_set_lock);
581
582 return res;
b4f48b63
PM
583}
584
7717f7ba
PM
585/*
586 * Return the cgroup for "task" from the given hierarchy. Must be
587 * called with cgroup_mutex held.
588 */
589static struct cgroup *task_cgroup_from_root(struct task_struct *task,
590 struct cgroupfs_root *root)
591{
592 struct css_set *css;
593 struct cgroup *res = NULL;
594
595 BUG_ON(!mutex_is_locked(&cgroup_mutex));
596 read_lock(&css_set_lock);
597 /*
598 * No need to lock the task - since we hold cgroup_mutex the
599 * task can't change groups, so the only thing that can happen
600 * is that it exits and its css is set back to init_css_set.
601 */
602 css = task->cgroups;
603 if (css == &init_css_set) {
604 res = &root->top_cgroup;
605 } else {
606 struct cg_cgroup_link *link;
607 list_for_each_entry(link, &css->cg_links, cg_link_list) {
608 struct cgroup *c = link->cgrp;
609 if (c->root == root) {
610 res = c;
611 break;
612 }
613 }
614 }
615 read_unlock(&css_set_lock);
616 BUG_ON(!res);
617 return res;
618}
619
ddbcc7e8
PM
620/*
621 * There is one global cgroup mutex. We also require taking
622 * task_lock() when dereferencing a task's cgroup subsys pointers.
623 * See "The task_lock() exception", at the end of this comment.
624 *
625 * A task must hold cgroup_mutex to modify cgroups.
626 *
627 * Any task can increment and decrement the count field without lock.
628 * So in general, code holding cgroup_mutex can't rely on the count
629 * field not changing. However, if the count goes to zero, then only
956db3ca 630 * cgroup_attach_task() can increment it again. Because a count of zero
ddbcc7e8
PM
631 * means that no tasks are currently attached, therefore there is no
632 * way a task attached to that cgroup can fork (the other way to
633 * increment the count). So code holding cgroup_mutex can safely
634 * assume that if the count is zero, it will stay zero. Similarly, if
635 * a task holds cgroup_mutex on a cgroup with zero count, it
636 * knows that the cgroup won't be removed, as cgroup_rmdir()
637 * needs that mutex.
638 *
ddbcc7e8
PM
639 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
640 * (usually) take cgroup_mutex. These are the two most performance
641 * critical pieces of code here. The exception occurs on cgroup_exit(),
642 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
643 * is taken, and if the cgroup count is zero, a usermode call made
a043e3b2
LZ
644 * to the release agent with the name of the cgroup (path relative to
645 * the root of cgroup file system) as the argument.
ddbcc7e8
PM
646 *
647 * A cgroup can only be deleted if both its 'count' of using tasks
648 * is zero, and its list of 'children' cgroups is empty. Since all
649 * tasks in the system use _some_ cgroup, and since there is always at
650 * least one task in the system (init, pid == 1), therefore, top_cgroup
651 * always has either children cgroups and/or using tasks. So we don't
652 * need a special hack to ensure that top_cgroup cannot be deleted.
653 *
654 * The task_lock() exception
655 *
656 * The need for this exception arises from the action of
956db3ca 657 * cgroup_attach_task(), which overwrites one tasks cgroup pointer with
a043e3b2 658 * another. It does so using cgroup_mutex, however there are
ddbcc7e8
PM
659 * several performance critical places that need to reference
660 * task->cgroup without the expense of grabbing a system global
661 * mutex. Therefore except as noted below, when dereferencing or, as
956db3ca 662 * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use
ddbcc7e8
PM
663 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
664 * the task_struct routinely used for such matters.
665 *
666 * P.S. One more locking exception. RCU is used to guard the
956db3ca 667 * update of a tasks cgroup pointer by cgroup_attach_task()
ddbcc7e8
PM
668 */
669
ddbcc7e8
PM
670/**
671 * cgroup_lock - lock out any changes to cgroup structures
672 *
673 */
ddbcc7e8
PM
674void cgroup_lock(void)
675{
676 mutex_lock(&cgroup_mutex);
677}
678
679/**
680 * cgroup_unlock - release lock on cgroup changes
681 *
682 * Undo the lock taken in a previous cgroup_lock() call.
683 */
ddbcc7e8
PM
684void cgroup_unlock(void)
685{
686 mutex_unlock(&cgroup_mutex);
687}
688
689/*
690 * A couple of forward declarations required, due to cyclic reference loop:
691 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
692 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
693 * -> cgroup_mkdir.
694 */
695
696static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode);
697static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
bd89aabc 698static int cgroup_populate_dir(struct cgroup *cgrp);
6e1d5dcc 699static const struct inode_operations cgroup_dir_inode_operations;
a424316c
PM
700static struct file_operations proc_cgroupstats_operations;
701
702static struct backing_dev_info cgroup_backing_dev_info = {
d993831f 703 .name = "cgroup",
e4ad08fe 704 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK,
a424316c 705};
ddbcc7e8 706
38460b48
KH
707static int alloc_css_id(struct cgroup_subsys *ss,
708 struct cgroup *parent, struct cgroup *child);
709
ddbcc7e8
PM
710static struct inode *cgroup_new_inode(mode_t mode, struct super_block *sb)
711{
712 struct inode *inode = new_inode(sb);
ddbcc7e8
PM
713
714 if (inode) {
715 inode->i_mode = mode;
76aac0e9
DH
716 inode->i_uid = current_fsuid();
717 inode->i_gid = current_fsgid();
ddbcc7e8
PM
718 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
719 inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
720 }
721 return inode;
722}
723
4fca88c8
KH
724/*
725 * Call subsys's pre_destroy handler.
726 * This is called before css refcnt check.
727 */
ec64f515 728static int cgroup_call_pre_destroy(struct cgroup *cgrp)
4fca88c8
KH
729{
730 struct cgroup_subsys *ss;
ec64f515
KH
731 int ret = 0;
732
4fca88c8 733 for_each_subsys(cgrp->root, ss)
ec64f515
KH
734 if (ss->pre_destroy) {
735 ret = ss->pre_destroy(ss, cgrp);
736 if (ret)
737 break;
738 }
739 return ret;
4fca88c8
KH
740}
741
a47295e6
PM
742static void free_cgroup_rcu(struct rcu_head *obj)
743{
744 struct cgroup *cgrp = container_of(obj, struct cgroup, rcu_head);
745
746 kfree(cgrp);
747}
748
ddbcc7e8
PM
749static void cgroup_diput(struct dentry *dentry, struct inode *inode)
750{
751 /* is dentry a directory ? if so, kfree() associated cgroup */
752 if (S_ISDIR(inode->i_mode)) {
bd89aabc 753 struct cgroup *cgrp = dentry->d_fsdata;
8dc4f3e1 754 struct cgroup_subsys *ss;
bd89aabc 755 BUG_ON(!(cgroup_is_removed(cgrp)));
81a6a5cd
PM
756 /* It's possible for external users to be holding css
757 * reference counts on a cgroup; css_put() needs to
758 * be able to access the cgroup after decrementing
759 * the reference count in order to know if it needs to
760 * queue the cgroup to be handled by the release
761 * agent */
762 synchronize_rcu();
8dc4f3e1
PM
763
764 mutex_lock(&cgroup_mutex);
765 /*
766 * Release the subsystem state objects.
767 */
75139b82
LZ
768 for_each_subsys(cgrp->root, ss)
769 ss->destroy(ss, cgrp);
8dc4f3e1
PM
770
771 cgrp->root->number_of_cgroups--;
772 mutex_unlock(&cgroup_mutex);
773
a47295e6
PM
774 /*
775 * Drop the active superblock reference that we took when we
776 * created the cgroup
777 */
8dc4f3e1
PM
778 deactivate_super(cgrp->root->sb);
779
72a8cb30
BB
780 /*
781 * if we're getting rid of the cgroup, refcount should ensure
782 * that there are no pidlists left.
783 */
784 BUG_ON(!list_empty(&cgrp->pidlists));
785
a47295e6 786 call_rcu(&cgrp->rcu_head, free_cgroup_rcu);
ddbcc7e8
PM
787 }
788 iput(inode);
789}
790
791static void remove_dir(struct dentry *d)
792{
793 struct dentry *parent = dget(d->d_parent);
794
795 d_delete(d);
796 simple_rmdir(parent->d_inode, d);
797 dput(parent);
798}
799
800static void cgroup_clear_directory(struct dentry *dentry)
801{
802 struct list_head *node;
803
804 BUG_ON(!mutex_is_locked(&dentry->d_inode->i_mutex));
805 spin_lock(&dcache_lock);
806 node = dentry->d_subdirs.next;
807 while (node != &dentry->d_subdirs) {
808 struct dentry *d = list_entry(node, struct dentry, d_u.d_child);
809 list_del_init(node);
810 if (d->d_inode) {
811 /* This should never be called on a cgroup
812 * directory with child cgroups */
813 BUG_ON(d->d_inode->i_mode & S_IFDIR);
814 d = dget_locked(d);
815 spin_unlock(&dcache_lock);
816 d_delete(d);
817 simple_unlink(dentry->d_inode, d);
818 dput(d);
819 spin_lock(&dcache_lock);
820 }
821 node = dentry->d_subdirs.next;
822 }
823 spin_unlock(&dcache_lock);
824}
825
826/*
827 * NOTE : the dentry must have been dget()'ed
828 */
829static void cgroup_d_remove_dir(struct dentry *dentry)
830{
831 cgroup_clear_directory(dentry);
832
833 spin_lock(&dcache_lock);
834 list_del_init(&dentry->d_u.d_child);
835 spin_unlock(&dcache_lock);
836 remove_dir(dentry);
837}
838
ec64f515
KH
839/*
840 * A queue for waiters to do rmdir() cgroup. A tasks will sleep when
841 * cgroup->count == 0 && list_empty(&cgroup->children) && subsys has some
842 * reference to css->refcnt. In general, this refcnt is expected to goes down
843 * to zero, soon.
844 *
88703267 845 * CGRP_WAIT_ON_RMDIR flag is set under cgroup's inode->i_mutex;
ec64f515
KH
846 */
847DECLARE_WAIT_QUEUE_HEAD(cgroup_rmdir_waitq);
848
88703267 849static void cgroup_wakeup_rmdir_waiter(struct cgroup *cgrp)
ec64f515 850{
88703267 851 if (unlikely(test_and_clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags)))
ec64f515
KH
852 wake_up_all(&cgroup_rmdir_waitq);
853}
854
88703267
KH
855void cgroup_exclude_rmdir(struct cgroup_subsys_state *css)
856{
857 css_get(css);
858}
859
860void cgroup_release_and_wakeup_rmdir(struct cgroup_subsys_state *css)
861{
862 cgroup_wakeup_rmdir_waiter(css->cgroup);
863 css_put(css);
864}
865
866
ddbcc7e8
PM
867static int rebind_subsystems(struct cgroupfs_root *root,
868 unsigned long final_bits)
869{
870 unsigned long added_bits, removed_bits;
bd89aabc 871 struct cgroup *cgrp = &root->top_cgroup;
ddbcc7e8
PM
872 int i;
873
874 removed_bits = root->actual_subsys_bits & ~final_bits;
875 added_bits = final_bits & ~root->actual_subsys_bits;
876 /* Check that any added subsystems are currently free */
877 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
8d53d55d 878 unsigned long bit = 1UL << i;
ddbcc7e8
PM
879 struct cgroup_subsys *ss = subsys[i];
880 if (!(bit & added_bits))
881 continue;
882 if (ss->root != &rootnode) {
883 /* Subsystem isn't free */
884 return -EBUSY;
885 }
886 }
887
888 /* Currently we don't handle adding/removing subsystems when
889 * any child cgroups exist. This is theoretically supportable
890 * but involves complex error handling, so it's being left until
891 * later */
307257cf 892 if (root->number_of_cgroups > 1)
ddbcc7e8
PM
893 return -EBUSY;
894
895 /* Process each subsystem */
896 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
897 struct cgroup_subsys *ss = subsys[i];
898 unsigned long bit = 1UL << i;
899 if (bit & added_bits) {
900 /* We're binding this subsystem to this hierarchy */
bd89aabc 901 BUG_ON(cgrp->subsys[i]);
ddbcc7e8
PM
902 BUG_ON(!dummytop->subsys[i]);
903 BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
999cd8a4 904 mutex_lock(&ss->hierarchy_mutex);
bd89aabc
PM
905 cgrp->subsys[i] = dummytop->subsys[i];
906 cgrp->subsys[i]->cgroup = cgrp;
33a68ac1 907 list_move(&ss->sibling, &root->subsys_list);
b2aa30f7 908 ss->root = root;
ddbcc7e8 909 if (ss->bind)
bd89aabc 910 ss->bind(ss, cgrp);
999cd8a4 911 mutex_unlock(&ss->hierarchy_mutex);
ddbcc7e8
PM
912 } else if (bit & removed_bits) {
913 /* We're removing this subsystem */
bd89aabc
PM
914 BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
915 BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
999cd8a4 916 mutex_lock(&ss->hierarchy_mutex);
ddbcc7e8
PM
917 if (ss->bind)
918 ss->bind(ss, dummytop);
919 dummytop->subsys[i]->cgroup = dummytop;
bd89aabc 920 cgrp->subsys[i] = NULL;
b2aa30f7 921 subsys[i]->root = &rootnode;
33a68ac1 922 list_move(&ss->sibling, &rootnode.subsys_list);
999cd8a4 923 mutex_unlock(&ss->hierarchy_mutex);
ddbcc7e8
PM
924 } else if (bit & final_bits) {
925 /* Subsystem state should already exist */
bd89aabc 926 BUG_ON(!cgrp->subsys[i]);
ddbcc7e8
PM
927 } else {
928 /* Subsystem state shouldn't exist */
bd89aabc 929 BUG_ON(cgrp->subsys[i]);
ddbcc7e8
PM
930 }
931 }
932 root->subsys_bits = root->actual_subsys_bits = final_bits;
933 synchronize_rcu();
934
935 return 0;
936}
937
938static int cgroup_show_options(struct seq_file *seq, struct vfsmount *vfs)
939{
940 struct cgroupfs_root *root = vfs->mnt_sb->s_fs_info;
941 struct cgroup_subsys *ss;
942
943 mutex_lock(&cgroup_mutex);
944 for_each_subsys(root, ss)
945 seq_printf(seq, ",%s", ss->name);
946 if (test_bit(ROOT_NOPREFIX, &root->flags))
947 seq_puts(seq, ",noprefix");
81a6a5cd
PM
948 if (strlen(root->release_agent_path))
949 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
c6d57f33
PM
950 if (strlen(root->name))
951 seq_printf(seq, ",name=%s", root->name);
ddbcc7e8
PM
952 mutex_unlock(&cgroup_mutex);
953 return 0;
954}
955
956struct cgroup_sb_opts {
957 unsigned long subsys_bits;
958 unsigned long flags;
81a6a5cd 959 char *release_agent;
c6d57f33 960 char *name;
2c6ab6d2
PM
961 /* User explicitly requested empty subsystem */
962 bool none;
c6d57f33
PM
963
964 struct cgroupfs_root *new_root;
2c6ab6d2 965
ddbcc7e8
PM
966};
967
968/* Convert a hierarchy specifier into a bitmask of subsystems and
969 * flags. */
970static int parse_cgroupfs_options(char *data,
971 struct cgroup_sb_opts *opts)
972{
973 char *token, *o = data ?: "all";
f9ab5b5b
LZ
974 unsigned long mask = (unsigned long)-1;
975
976#ifdef CONFIG_CPUSETS
977 mask = ~(1UL << cpuset_subsys_id);
978#endif
ddbcc7e8 979
c6d57f33 980 memset(opts, 0, sizeof(*opts));
ddbcc7e8
PM
981
982 while ((token = strsep(&o, ",")) != NULL) {
983 if (!*token)
984 return -EINVAL;
985 if (!strcmp(token, "all")) {
8bab8dde
PM
986 /* Add all non-disabled subsystems */
987 int i;
988 opts->subsys_bits = 0;
989 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
990 struct cgroup_subsys *ss = subsys[i];
991 if (!ss->disabled)
992 opts->subsys_bits |= 1ul << i;
993 }
2c6ab6d2
PM
994 } else if (!strcmp(token, "none")) {
995 /* Explicitly have no subsystems */
996 opts->none = true;
ddbcc7e8
PM
997 } else if (!strcmp(token, "noprefix")) {
998 set_bit(ROOT_NOPREFIX, &opts->flags);
81a6a5cd
PM
999 } else if (!strncmp(token, "release_agent=", 14)) {
1000 /* Specifying two release agents is forbidden */
1001 if (opts->release_agent)
1002 return -EINVAL;
c6d57f33
PM
1003 opts->release_agent =
1004 kstrndup(token + 14, PATH_MAX, GFP_KERNEL);
81a6a5cd
PM
1005 if (!opts->release_agent)
1006 return -ENOMEM;
c6d57f33
PM
1007 } else if (!strncmp(token, "name=", 5)) {
1008 int i;
1009 const char *name = token + 5;
1010 /* Can't specify an empty name */
1011 if (!strlen(name))
1012 return -EINVAL;
1013 /* Must match [\w.-]+ */
1014 for (i = 0; i < strlen(name); i++) {
1015 char c = name[i];
1016 if (isalnum(c))
1017 continue;
1018 if ((c == '.') || (c == '-') || (c == '_'))
1019 continue;
1020 return -EINVAL;
1021 }
1022 /* Specifying two names is forbidden */
1023 if (opts->name)
1024 return -EINVAL;
1025 opts->name = kstrndup(name,
1026 MAX_CGROUP_ROOT_NAMELEN,
1027 GFP_KERNEL);
1028 if (!opts->name)
1029 return -ENOMEM;
ddbcc7e8
PM
1030 } else {
1031 struct cgroup_subsys *ss;
1032 int i;
1033 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1034 ss = subsys[i];
1035 if (!strcmp(token, ss->name)) {
8bab8dde
PM
1036 if (!ss->disabled)
1037 set_bit(i, &opts->subsys_bits);
ddbcc7e8
PM
1038 break;
1039 }
1040 }
1041 if (i == CGROUP_SUBSYS_COUNT)
1042 return -ENOENT;
1043 }
1044 }
1045
2c6ab6d2
PM
1046 /* Consistency checks */
1047
f9ab5b5b
LZ
1048 /*
1049 * Option noprefix was introduced just for backward compatibility
1050 * with the old cpuset, so we allow noprefix only if mounting just
1051 * the cpuset subsystem.
1052 */
1053 if (test_bit(ROOT_NOPREFIX, &opts->flags) &&
1054 (opts->subsys_bits & mask))
1055 return -EINVAL;
1056
2c6ab6d2
PM
1057
1058 /* Can't specify "none" and some subsystems */
1059 if (opts->subsys_bits && opts->none)
1060 return -EINVAL;
1061
1062 /*
1063 * We either have to specify by name or by subsystems. (So all
1064 * empty hierarchies must have a name).
1065 */
c6d57f33 1066 if (!opts->subsys_bits && !opts->name)
ddbcc7e8
PM
1067 return -EINVAL;
1068
1069 return 0;
1070}
1071
1072static int cgroup_remount(struct super_block *sb, int *flags, char *data)
1073{
1074 int ret = 0;
1075 struct cgroupfs_root *root = sb->s_fs_info;
bd89aabc 1076 struct cgroup *cgrp = &root->top_cgroup;
ddbcc7e8
PM
1077 struct cgroup_sb_opts opts;
1078
337eb00a 1079 lock_kernel();
bd89aabc 1080 mutex_lock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8
PM
1081 mutex_lock(&cgroup_mutex);
1082
1083 /* See what subsystems are wanted */
1084 ret = parse_cgroupfs_options(data, &opts);
1085 if (ret)
1086 goto out_unlock;
1087
1088 /* Don't allow flags to change at remount */
1089 if (opts.flags != root->flags) {
1090 ret = -EINVAL;
1091 goto out_unlock;
1092 }
1093
c6d57f33
PM
1094 /* Don't allow name to change at remount */
1095 if (opts.name && strcmp(opts.name, root->name)) {
1096 ret = -EINVAL;
1097 goto out_unlock;
1098 }
1099
ddbcc7e8 1100 ret = rebind_subsystems(root, opts.subsys_bits);
0670e08b
LZ
1101 if (ret)
1102 goto out_unlock;
ddbcc7e8
PM
1103
1104 /* (re)populate subsystem files */
0670e08b 1105 cgroup_populate_dir(cgrp);
ddbcc7e8 1106
81a6a5cd
PM
1107 if (opts.release_agent)
1108 strcpy(root->release_agent_path, opts.release_agent);
ddbcc7e8 1109 out_unlock:
66bdc9cf 1110 kfree(opts.release_agent);
c6d57f33 1111 kfree(opts.name);
ddbcc7e8 1112 mutex_unlock(&cgroup_mutex);
bd89aabc 1113 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
337eb00a 1114 unlock_kernel();
ddbcc7e8
PM
1115 return ret;
1116}
1117
b87221de 1118static const struct super_operations cgroup_ops = {
ddbcc7e8
PM
1119 .statfs = simple_statfs,
1120 .drop_inode = generic_delete_inode,
1121 .show_options = cgroup_show_options,
1122 .remount_fs = cgroup_remount,
1123};
1124
cc31edce
PM
1125static void init_cgroup_housekeeping(struct cgroup *cgrp)
1126{
1127 INIT_LIST_HEAD(&cgrp->sibling);
1128 INIT_LIST_HEAD(&cgrp->children);
1129 INIT_LIST_HEAD(&cgrp->css_sets);
1130 INIT_LIST_HEAD(&cgrp->release_list);
72a8cb30
BB
1131 INIT_LIST_HEAD(&cgrp->pidlists);
1132 mutex_init(&cgrp->pidlist_mutex);
cc31edce 1133}
c6d57f33 1134
ddbcc7e8
PM
1135static void init_cgroup_root(struct cgroupfs_root *root)
1136{
bd89aabc 1137 struct cgroup *cgrp = &root->top_cgroup;
ddbcc7e8
PM
1138 INIT_LIST_HEAD(&root->subsys_list);
1139 INIT_LIST_HEAD(&root->root_list);
1140 root->number_of_cgroups = 1;
bd89aabc
PM
1141 cgrp->root = root;
1142 cgrp->top_cgroup = cgrp;
cc31edce 1143 init_cgroup_housekeeping(cgrp);
ddbcc7e8
PM
1144}
1145
2c6ab6d2
PM
1146static bool init_root_id(struct cgroupfs_root *root)
1147{
1148 int ret = 0;
1149
1150 do {
1151 if (!ida_pre_get(&hierarchy_ida, GFP_KERNEL))
1152 return false;
1153 spin_lock(&hierarchy_id_lock);
1154 /* Try to allocate the next unused ID */
1155 ret = ida_get_new_above(&hierarchy_ida, next_hierarchy_id,
1156 &root->hierarchy_id);
1157 if (ret == -ENOSPC)
1158 /* Try again starting from 0 */
1159 ret = ida_get_new(&hierarchy_ida, &root->hierarchy_id);
1160 if (!ret) {
1161 next_hierarchy_id = root->hierarchy_id + 1;
1162 } else if (ret != -EAGAIN) {
1163 /* Can only get here if the 31-bit IDR is full ... */
1164 BUG_ON(ret);
1165 }
1166 spin_unlock(&hierarchy_id_lock);
1167 } while (ret);
1168 return true;
1169}
1170
ddbcc7e8
PM
1171static int cgroup_test_super(struct super_block *sb, void *data)
1172{
c6d57f33 1173 struct cgroup_sb_opts *opts = data;
ddbcc7e8
PM
1174 struct cgroupfs_root *root = sb->s_fs_info;
1175
c6d57f33
PM
1176 /* If we asked for a name then it must match */
1177 if (opts->name && strcmp(opts->name, root->name))
1178 return 0;
ddbcc7e8 1179
2c6ab6d2
PM
1180 /*
1181 * If we asked for subsystems (or explicitly for no
1182 * subsystems) then they must match
1183 */
1184 if ((opts->subsys_bits || opts->none)
1185 && (opts->subsys_bits != root->subsys_bits))
ddbcc7e8
PM
1186 return 0;
1187
1188 return 1;
1189}
1190
c6d57f33
PM
1191static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts)
1192{
1193 struct cgroupfs_root *root;
1194
2c6ab6d2 1195 if (!opts->subsys_bits && !opts->none)
c6d57f33
PM
1196 return NULL;
1197
1198 root = kzalloc(sizeof(*root), GFP_KERNEL);
1199 if (!root)
1200 return ERR_PTR(-ENOMEM);
1201
2c6ab6d2
PM
1202 if (!init_root_id(root)) {
1203 kfree(root);
1204 return ERR_PTR(-ENOMEM);
1205 }
c6d57f33 1206 init_cgroup_root(root);
2c6ab6d2 1207
c6d57f33
PM
1208 root->subsys_bits = opts->subsys_bits;
1209 root->flags = opts->flags;
1210 if (opts->release_agent)
1211 strcpy(root->release_agent_path, opts->release_agent);
1212 if (opts->name)
1213 strcpy(root->name, opts->name);
1214 return root;
1215}
1216
2c6ab6d2
PM
1217static void cgroup_drop_root(struct cgroupfs_root *root)
1218{
1219 if (!root)
1220 return;
1221
1222 BUG_ON(!root->hierarchy_id);
1223 spin_lock(&hierarchy_id_lock);
1224 ida_remove(&hierarchy_ida, root->hierarchy_id);
1225 spin_unlock(&hierarchy_id_lock);
1226 kfree(root);
1227}
1228
ddbcc7e8
PM
1229static int cgroup_set_super(struct super_block *sb, void *data)
1230{
1231 int ret;
c6d57f33
PM
1232 struct cgroup_sb_opts *opts = data;
1233
1234 /* If we don't have a new root, we can't set up a new sb */
1235 if (!opts->new_root)
1236 return -EINVAL;
1237
2c6ab6d2 1238 BUG_ON(!opts->subsys_bits && !opts->none);
ddbcc7e8
PM
1239
1240 ret = set_anon_super(sb, NULL);
1241 if (ret)
1242 return ret;
1243
c6d57f33
PM
1244 sb->s_fs_info = opts->new_root;
1245 opts->new_root->sb = sb;
ddbcc7e8
PM
1246
1247 sb->s_blocksize = PAGE_CACHE_SIZE;
1248 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
1249 sb->s_magic = CGROUP_SUPER_MAGIC;
1250 sb->s_op = &cgroup_ops;
1251
1252 return 0;
1253}
1254
1255static int cgroup_get_rootdir(struct super_block *sb)
1256{
1257 struct inode *inode =
1258 cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
1259 struct dentry *dentry;
1260
1261 if (!inode)
1262 return -ENOMEM;
1263
ddbcc7e8
PM
1264 inode->i_fop = &simple_dir_operations;
1265 inode->i_op = &cgroup_dir_inode_operations;
1266 /* directories start off with i_nlink == 2 (for "." entry) */
1267 inc_nlink(inode);
1268 dentry = d_alloc_root(inode);
1269 if (!dentry) {
1270 iput(inode);
1271 return -ENOMEM;
1272 }
1273 sb->s_root = dentry;
1274 return 0;
1275}
1276
1277static int cgroup_get_sb(struct file_system_type *fs_type,
1278 int flags, const char *unused_dev_name,
1279 void *data, struct vfsmount *mnt)
1280{
1281 struct cgroup_sb_opts opts;
c6d57f33 1282 struct cgroupfs_root *root;
ddbcc7e8
PM
1283 int ret = 0;
1284 struct super_block *sb;
c6d57f33 1285 struct cgroupfs_root *new_root;
ddbcc7e8
PM
1286
1287 /* First find the desired set of subsystems */
1288 ret = parse_cgroupfs_options(data, &opts);
c6d57f33
PM
1289 if (ret)
1290 goto out_err;
ddbcc7e8 1291
c6d57f33
PM
1292 /*
1293 * Allocate a new cgroup root. We may not need it if we're
1294 * reusing an existing hierarchy.
1295 */
1296 new_root = cgroup_root_from_opts(&opts);
1297 if (IS_ERR(new_root)) {
1298 ret = PTR_ERR(new_root);
1299 goto out_err;
81a6a5cd 1300 }
c6d57f33 1301 opts.new_root = new_root;
ddbcc7e8 1302
c6d57f33
PM
1303 /* Locate an existing or new sb for this hierarchy */
1304 sb = sget(fs_type, cgroup_test_super, cgroup_set_super, &opts);
ddbcc7e8 1305 if (IS_ERR(sb)) {
c6d57f33 1306 ret = PTR_ERR(sb);
2c6ab6d2 1307 cgroup_drop_root(opts.new_root);
c6d57f33 1308 goto out_err;
ddbcc7e8
PM
1309 }
1310
c6d57f33
PM
1311 root = sb->s_fs_info;
1312 BUG_ON(!root);
1313 if (root == opts.new_root) {
1314 /* We used the new root structure, so this is a new hierarchy */
1315 struct list_head tmp_cg_links;
c12f65d4 1316 struct cgroup *root_cgrp = &root->top_cgroup;
817929ec 1317 struct inode *inode;
c6d57f33 1318 struct cgroupfs_root *existing_root;
28fd5dfc 1319 int i;
ddbcc7e8
PM
1320
1321 BUG_ON(sb->s_root != NULL);
1322
1323 ret = cgroup_get_rootdir(sb);
1324 if (ret)
1325 goto drop_new_super;
817929ec 1326 inode = sb->s_root->d_inode;
ddbcc7e8 1327
817929ec 1328 mutex_lock(&inode->i_mutex);
ddbcc7e8
PM
1329 mutex_lock(&cgroup_mutex);
1330
c6d57f33
PM
1331 if (strlen(root->name)) {
1332 /* Check for name clashes with existing mounts */
1333 for_each_active_root(existing_root) {
1334 if (!strcmp(existing_root->name, root->name)) {
1335 ret = -EBUSY;
1336 mutex_unlock(&cgroup_mutex);
1337 mutex_unlock(&inode->i_mutex);
1338 goto drop_new_super;
1339 }
1340 }
1341 }
1342
817929ec
PM
1343 /*
1344 * We're accessing css_set_count without locking
1345 * css_set_lock here, but that's OK - it can only be
1346 * increased by someone holding cgroup_lock, and
1347 * that's us. The worst that can happen is that we
1348 * have some link structures left over
1349 */
1350 ret = allocate_cg_links(css_set_count, &tmp_cg_links);
1351 if (ret) {
1352 mutex_unlock(&cgroup_mutex);
1353 mutex_unlock(&inode->i_mutex);
1354 goto drop_new_super;
1355 }
1356
ddbcc7e8
PM
1357 ret = rebind_subsystems(root, root->subsys_bits);
1358 if (ret == -EBUSY) {
1359 mutex_unlock(&cgroup_mutex);
817929ec 1360 mutex_unlock(&inode->i_mutex);
c6d57f33
PM
1361 free_cg_links(&tmp_cg_links);
1362 goto drop_new_super;
ddbcc7e8
PM
1363 }
1364
1365 /* EBUSY should be the only error here */
1366 BUG_ON(ret);
1367
1368 list_add(&root->root_list, &roots);
817929ec 1369 root_count++;
ddbcc7e8 1370
c12f65d4 1371 sb->s_root->d_fsdata = root_cgrp;
ddbcc7e8
PM
1372 root->top_cgroup.dentry = sb->s_root;
1373
817929ec
PM
1374 /* Link the top cgroup in this hierarchy into all
1375 * the css_set objects */
1376 write_lock(&css_set_lock);
28fd5dfc
LZ
1377 for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
1378 struct hlist_head *hhead = &css_set_table[i];
1379 struct hlist_node *node;
817929ec 1380 struct css_set *cg;
28fd5dfc 1381
c12f65d4
LZ
1382 hlist_for_each_entry(cg, node, hhead, hlist)
1383 link_css_set(&tmp_cg_links, cg, root_cgrp);
28fd5dfc 1384 }
817929ec
PM
1385 write_unlock(&css_set_lock);
1386
1387 free_cg_links(&tmp_cg_links);
1388
c12f65d4
LZ
1389 BUG_ON(!list_empty(&root_cgrp->sibling));
1390 BUG_ON(!list_empty(&root_cgrp->children));
ddbcc7e8
PM
1391 BUG_ON(root->number_of_cgroups != 1);
1392
c12f65d4 1393 cgroup_populate_dir(root_cgrp);
ddbcc7e8 1394 mutex_unlock(&cgroup_mutex);
34f77a90 1395 mutex_unlock(&inode->i_mutex);
c6d57f33
PM
1396 } else {
1397 /*
1398 * We re-used an existing hierarchy - the new root (if
1399 * any) is not needed
1400 */
2c6ab6d2 1401 cgroup_drop_root(opts.new_root);
ddbcc7e8
PM
1402 }
1403
a3ec947c 1404 simple_set_mnt(mnt, sb);
c6d57f33
PM
1405 kfree(opts.release_agent);
1406 kfree(opts.name);
a3ec947c 1407 return 0;
ddbcc7e8
PM
1408
1409 drop_new_super:
6f5bbff9 1410 deactivate_locked_super(sb);
c6d57f33
PM
1411 out_err:
1412 kfree(opts.release_agent);
1413 kfree(opts.name);
1414
ddbcc7e8
PM
1415 return ret;
1416}
1417
1418static void cgroup_kill_sb(struct super_block *sb) {
1419 struct cgroupfs_root *root = sb->s_fs_info;
bd89aabc 1420 struct cgroup *cgrp = &root->top_cgroup;
ddbcc7e8 1421 int ret;
71cbb949
KM
1422 struct cg_cgroup_link *link;
1423 struct cg_cgroup_link *saved_link;
ddbcc7e8
PM
1424
1425 BUG_ON(!root);
1426
1427 BUG_ON(root->number_of_cgroups != 1);
bd89aabc
PM
1428 BUG_ON(!list_empty(&cgrp->children));
1429 BUG_ON(!list_empty(&cgrp->sibling));
ddbcc7e8
PM
1430
1431 mutex_lock(&cgroup_mutex);
1432
1433 /* Rebind all subsystems back to the default hierarchy */
1434 ret = rebind_subsystems(root, 0);
1435 /* Shouldn't be able to fail ... */
1436 BUG_ON(ret);
1437
817929ec
PM
1438 /*
1439 * Release all the links from css_sets to this hierarchy's
1440 * root cgroup
1441 */
1442 write_lock(&css_set_lock);
71cbb949
KM
1443
1444 list_for_each_entry_safe(link, saved_link, &cgrp->css_sets,
1445 cgrp_link_list) {
817929ec 1446 list_del(&link->cg_link_list);
bd89aabc 1447 list_del(&link->cgrp_link_list);
817929ec
PM
1448 kfree(link);
1449 }
1450 write_unlock(&css_set_lock);
1451
839ec545
PM
1452 if (!list_empty(&root->root_list)) {
1453 list_del(&root->root_list);
1454 root_count--;
1455 }
e5f6a860 1456
ddbcc7e8
PM
1457 mutex_unlock(&cgroup_mutex);
1458
ddbcc7e8 1459 kill_litter_super(sb);
2c6ab6d2 1460 cgroup_drop_root(root);
ddbcc7e8
PM
1461}
1462
1463static struct file_system_type cgroup_fs_type = {
1464 .name = "cgroup",
1465 .get_sb = cgroup_get_sb,
1466 .kill_sb = cgroup_kill_sb,
1467};
1468
bd89aabc 1469static inline struct cgroup *__d_cgrp(struct dentry *dentry)
ddbcc7e8
PM
1470{
1471 return dentry->d_fsdata;
1472}
1473
1474static inline struct cftype *__d_cft(struct dentry *dentry)
1475{
1476 return dentry->d_fsdata;
1477}
1478
a043e3b2
LZ
1479/**
1480 * cgroup_path - generate the path of a cgroup
1481 * @cgrp: the cgroup in question
1482 * @buf: the buffer to write the path into
1483 * @buflen: the length of the buffer
1484 *
a47295e6
PM
1485 * Called with cgroup_mutex held or else with an RCU-protected cgroup
1486 * reference. Writes path of cgroup into buf. Returns 0 on success,
1487 * -errno on error.
ddbcc7e8 1488 */
bd89aabc 1489int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
ddbcc7e8
PM
1490{
1491 char *start;
a47295e6 1492 struct dentry *dentry = rcu_dereference(cgrp->dentry);
ddbcc7e8 1493
a47295e6 1494 if (!dentry || cgrp == dummytop) {
ddbcc7e8
PM
1495 /*
1496 * Inactive subsystems have no dentry for their root
1497 * cgroup
1498 */
1499 strcpy(buf, "/");
1500 return 0;
1501 }
1502
1503 start = buf + buflen;
1504
1505 *--start = '\0';
1506 for (;;) {
a47295e6 1507 int len = dentry->d_name.len;
ddbcc7e8
PM
1508 if ((start -= len) < buf)
1509 return -ENAMETOOLONG;
bd89aabc
PM
1510 memcpy(start, cgrp->dentry->d_name.name, len);
1511 cgrp = cgrp->parent;
1512 if (!cgrp)
ddbcc7e8 1513 break;
a47295e6 1514 dentry = rcu_dereference(cgrp->dentry);
bd89aabc 1515 if (!cgrp->parent)
ddbcc7e8
PM
1516 continue;
1517 if (--start < buf)
1518 return -ENAMETOOLONG;
1519 *start = '/';
1520 }
1521 memmove(buf, start, buf + buflen - start);
1522 return 0;
1523}
1524
a043e3b2
LZ
1525/**
1526 * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp'
1527 * @cgrp: the cgroup the task is attaching to
1528 * @tsk: the task to be attached
bbcb81d0 1529 *
a043e3b2
LZ
1530 * Call holding cgroup_mutex. May take task_lock of
1531 * the task 'tsk' during call.
bbcb81d0 1532 */
956db3ca 1533int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
bbcb81d0
PM
1534{
1535 int retval = 0;
1536 struct cgroup_subsys *ss;
bd89aabc 1537 struct cgroup *oldcgrp;
77efecd9 1538 struct css_set *cg;
817929ec 1539 struct css_set *newcg;
bd89aabc 1540 struct cgroupfs_root *root = cgrp->root;
bbcb81d0
PM
1541
1542 /* Nothing to do if the task is already in that cgroup */
7717f7ba 1543 oldcgrp = task_cgroup_from_root(tsk, root);
bd89aabc 1544 if (cgrp == oldcgrp)
bbcb81d0
PM
1545 return 0;
1546
1547 for_each_subsys(root, ss) {
1548 if (ss->can_attach) {
bd89aabc 1549 retval = ss->can_attach(ss, cgrp, tsk);
e18f6318 1550 if (retval)
bbcb81d0 1551 return retval;
bbcb81d0
PM
1552 }
1553 }
1554
77efecd9
LJ
1555 task_lock(tsk);
1556 cg = tsk->cgroups;
1557 get_css_set(cg);
1558 task_unlock(tsk);
817929ec
PM
1559 /*
1560 * Locate or allocate a new css_set for this task,
1561 * based on its final set of cgroups
1562 */
bd89aabc 1563 newcg = find_css_set(cg, cgrp);
77efecd9 1564 put_css_set(cg);
e18f6318 1565 if (!newcg)
817929ec 1566 return -ENOMEM;
817929ec 1567
bbcb81d0
PM
1568 task_lock(tsk);
1569 if (tsk->flags & PF_EXITING) {
1570 task_unlock(tsk);
817929ec 1571 put_css_set(newcg);
bbcb81d0
PM
1572 return -ESRCH;
1573 }
817929ec 1574 rcu_assign_pointer(tsk->cgroups, newcg);
bbcb81d0
PM
1575 task_unlock(tsk);
1576
817929ec
PM
1577 /* Update the css_set linked lists if we're using them */
1578 write_lock(&css_set_lock);
1579 if (!list_empty(&tsk->cg_list)) {
1580 list_del(&tsk->cg_list);
1581 list_add(&tsk->cg_list, &newcg->tasks);
1582 }
1583 write_unlock(&css_set_lock);
1584
bbcb81d0 1585 for_each_subsys(root, ss) {
e18f6318 1586 if (ss->attach)
bd89aabc 1587 ss->attach(ss, cgrp, oldcgrp, tsk);
bbcb81d0 1588 }
bd89aabc 1589 set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
bbcb81d0 1590 synchronize_rcu();
817929ec 1591 put_css_set(cg);
ec64f515
KH
1592
1593 /*
1594 * wake up rmdir() waiter. the rmdir should fail since the cgroup
1595 * is no longer empty.
1596 */
88703267 1597 cgroup_wakeup_rmdir_waiter(cgrp);
bbcb81d0
PM
1598 return 0;
1599}
1600
1601/*
af351026
PM
1602 * Attach task with pid 'pid' to cgroup 'cgrp'. Call with cgroup_mutex
1603 * held. May take task_lock of task
bbcb81d0 1604 */
af351026 1605static int attach_task_by_pid(struct cgroup *cgrp, u64 pid)
bbcb81d0 1606{
bbcb81d0 1607 struct task_struct *tsk;
c69e8d9c 1608 const struct cred *cred = current_cred(), *tcred;
bbcb81d0
PM
1609 int ret;
1610
bbcb81d0
PM
1611 if (pid) {
1612 rcu_read_lock();
73507f33 1613 tsk = find_task_by_vpid(pid);
bbcb81d0
PM
1614 if (!tsk || tsk->flags & PF_EXITING) {
1615 rcu_read_unlock();
1616 return -ESRCH;
1617 }
bbcb81d0 1618
c69e8d9c
DH
1619 tcred = __task_cred(tsk);
1620 if (cred->euid &&
1621 cred->euid != tcred->uid &&
1622 cred->euid != tcred->suid) {
1623 rcu_read_unlock();
bbcb81d0
PM
1624 return -EACCES;
1625 }
c69e8d9c
DH
1626 get_task_struct(tsk);
1627 rcu_read_unlock();
bbcb81d0
PM
1628 } else {
1629 tsk = current;
1630 get_task_struct(tsk);
1631 }
1632
956db3ca 1633 ret = cgroup_attach_task(cgrp, tsk);
bbcb81d0
PM
1634 put_task_struct(tsk);
1635 return ret;
1636}
1637
af351026
PM
1638static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid)
1639{
1640 int ret;
1641 if (!cgroup_lock_live_group(cgrp))
1642 return -ENODEV;
1643 ret = attach_task_by_pid(cgrp, pid);
1644 cgroup_unlock();
1645 return ret;
1646}
1647
e788e066
PM
1648/**
1649 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
1650 * @cgrp: the cgroup to be checked for liveness
1651 *
84eea842
PM
1652 * On success, returns true; the lock should be later released with
1653 * cgroup_unlock(). On failure returns false with no lock held.
e788e066 1654 */
84eea842 1655bool cgroup_lock_live_group(struct cgroup *cgrp)
e788e066
PM
1656{
1657 mutex_lock(&cgroup_mutex);
1658 if (cgroup_is_removed(cgrp)) {
1659 mutex_unlock(&cgroup_mutex);
1660 return false;
1661 }
1662 return true;
1663}
1664
1665static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft,
1666 const char *buffer)
1667{
1668 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
1669 if (!cgroup_lock_live_group(cgrp))
1670 return -ENODEV;
1671 strcpy(cgrp->root->release_agent_path, buffer);
84eea842 1672 cgroup_unlock();
e788e066
PM
1673 return 0;
1674}
1675
1676static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft,
1677 struct seq_file *seq)
1678{
1679 if (!cgroup_lock_live_group(cgrp))
1680 return -ENODEV;
1681 seq_puts(seq, cgrp->root->release_agent_path);
1682 seq_putc(seq, '\n');
84eea842 1683 cgroup_unlock();
e788e066
PM
1684 return 0;
1685}
1686
84eea842
PM
1687/* A buffer size big enough for numbers or short strings */
1688#define CGROUP_LOCAL_BUFFER_SIZE 64
1689
e73d2c61 1690static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
f4c753b7
PM
1691 struct file *file,
1692 const char __user *userbuf,
1693 size_t nbytes, loff_t *unused_ppos)
355e0c48 1694{
84eea842 1695 char buffer[CGROUP_LOCAL_BUFFER_SIZE];
355e0c48 1696 int retval = 0;
355e0c48
PM
1697 char *end;
1698
1699 if (!nbytes)
1700 return -EINVAL;
1701 if (nbytes >= sizeof(buffer))
1702 return -E2BIG;
1703 if (copy_from_user(buffer, userbuf, nbytes))
1704 return -EFAULT;
1705
1706 buffer[nbytes] = 0; /* nul-terminate */
b7269dfc 1707 strstrip(buffer);
e73d2c61
PM
1708 if (cft->write_u64) {
1709 u64 val = simple_strtoull(buffer, &end, 0);
1710 if (*end)
1711 return -EINVAL;
1712 retval = cft->write_u64(cgrp, cft, val);
1713 } else {
1714 s64 val = simple_strtoll(buffer, &end, 0);
1715 if (*end)
1716 return -EINVAL;
1717 retval = cft->write_s64(cgrp, cft, val);
1718 }
355e0c48
PM
1719 if (!retval)
1720 retval = nbytes;
1721 return retval;
1722}
1723
db3b1497
PM
1724static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft,
1725 struct file *file,
1726 const char __user *userbuf,
1727 size_t nbytes, loff_t *unused_ppos)
1728{
84eea842 1729 char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
db3b1497
PM
1730 int retval = 0;
1731 size_t max_bytes = cft->max_write_len;
1732 char *buffer = local_buffer;
1733
1734 if (!max_bytes)
1735 max_bytes = sizeof(local_buffer) - 1;
1736 if (nbytes >= max_bytes)
1737 return -E2BIG;
1738 /* Allocate a dynamic buffer if we need one */
1739 if (nbytes >= sizeof(local_buffer)) {
1740 buffer = kmalloc(nbytes + 1, GFP_KERNEL);
1741 if (buffer == NULL)
1742 return -ENOMEM;
1743 }
5a3eb9f6
LZ
1744 if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
1745 retval = -EFAULT;
1746 goto out;
1747 }
db3b1497
PM
1748
1749 buffer[nbytes] = 0; /* nul-terminate */
1750 strstrip(buffer);
1751 retval = cft->write_string(cgrp, cft, buffer);
1752 if (!retval)
1753 retval = nbytes;
5a3eb9f6 1754out:
db3b1497
PM
1755 if (buffer != local_buffer)
1756 kfree(buffer);
1757 return retval;
1758}
1759
ddbcc7e8
PM
1760static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
1761 size_t nbytes, loff_t *ppos)
1762{
1763 struct cftype *cft = __d_cft(file->f_dentry);
bd89aabc 1764 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
ddbcc7e8 1765
75139b82 1766 if (cgroup_is_removed(cgrp))
ddbcc7e8 1767 return -ENODEV;
355e0c48 1768 if (cft->write)
bd89aabc 1769 return cft->write(cgrp, cft, file, buf, nbytes, ppos);
e73d2c61
PM
1770 if (cft->write_u64 || cft->write_s64)
1771 return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
db3b1497
PM
1772 if (cft->write_string)
1773 return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos);
d447ea2f
PE
1774 if (cft->trigger) {
1775 int ret = cft->trigger(cgrp, (unsigned int)cft->private);
1776 return ret ? ret : nbytes;
1777 }
355e0c48 1778 return -EINVAL;
ddbcc7e8
PM
1779}
1780
f4c753b7
PM
1781static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
1782 struct file *file,
1783 char __user *buf, size_t nbytes,
1784 loff_t *ppos)
ddbcc7e8 1785{
84eea842 1786 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
f4c753b7 1787 u64 val = cft->read_u64(cgrp, cft);
ddbcc7e8
PM
1788 int len = sprintf(tmp, "%llu\n", (unsigned long long) val);
1789
1790 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
1791}
1792
e73d2c61
PM
1793static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
1794 struct file *file,
1795 char __user *buf, size_t nbytes,
1796 loff_t *ppos)
1797{
84eea842 1798 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
e73d2c61
PM
1799 s64 val = cft->read_s64(cgrp, cft);
1800 int len = sprintf(tmp, "%lld\n", (long long) val);
1801
1802 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
1803}
1804
ddbcc7e8
PM
1805static ssize_t cgroup_file_read(struct file *file, char __user *buf,
1806 size_t nbytes, loff_t *ppos)
1807{
1808 struct cftype *cft = __d_cft(file->f_dentry);
bd89aabc 1809 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
ddbcc7e8 1810
75139b82 1811 if (cgroup_is_removed(cgrp))
ddbcc7e8
PM
1812 return -ENODEV;
1813
1814 if (cft->read)
bd89aabc 1815 return cft->read(cgrp, cft, file, buf, nbytes, ppos);
f4c753b7
PM
1816 if (cft->read_u64)
1817 return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
e73d2c61
PM
1818 if (cft->read_s64)
1819 return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
ddbcc7e8
PM
1820 return -EINVAL;
1821}
1822
91796569
PM
1823/*
1824 * seqfile ops/methods for returning structured data. Currently just
1825 * supports string->u64 maps, but can be extended in future.
1826 */
1827
1828struct cgroup_seqfile_state {
1829 struct cftype *cft;
1830 struct cgroup *cgroup;
1831};
1832
1833static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
1834{
1835 struct seq_file *sf = cb->state;
1836 return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
1837}
1838
1839static int cgroup_seqfile_show(struct seq_file *m, void *arg)
1840{
1841 struct cgroup_seqfile_state *state = m->private;
1842 struct cftype *cft = state->cft;
29486df3
SH
1843 if (cft->read_map) {
1844 struct cgroup_map_cb cb = {
1845 .fill = cgroup_map_add,
1846 .state = m,
1847 };
1848 return cft->read_map(state->cgroup, cft, &cb);
1849 }
1850 return cft->read_seq_string(state->cgroup, cft, m);
91796569
PM
1851}
1852
96930a63 1853static int cgroup_seqfile_release(struct inode *inode, struct file *file)
91796569
PM
1854{
1855 struct seq_file *seq = file->private_data;
1856 kfree(seq->private);
1857 return single_release(inode, file);
1858}
1859
1860static struct file_operations cgroup_seqfile_operations = {
1861 .read = seq_read,
e788e066 1862 .write = cgroup_file_write,
91796569
PM
1863 .llseek = seq_lseek,
1864 .release = cgroup_seqfile_release,
1865};
1866
ddbcc7e8
PM
1867static int cgroup_file_open(struct inode *inode, struct file *file)
1868{
1869 int err;
1870 struct cftype *cft;
1871
1872 err = generic_file_open(inode, file);
1873 if (err)
1874 return err;
ddbcc7e8 1875 cft = __d_cft(file->f_dentry);
75139b82 1876
29486df3 1877 if (cft->read_map || cft->read_seq_string) {
91796569
PM
1878 struct cgroup_seqfile_state *state =
1879 kzalloc(sizeof(*state), GFP_USER);
1880 if (!state)
1881 return -ENOMEM;
1882 state->cft = cft;
1883 state->cgroup = __d_cgrp(file->f_dentry->d_parent);
1884 file->f_op = &cgroup_seqfile_operations;
1885 err = single_open(file, cgroup_seqfile_show, state);
1886 if (err < 0)
1887 kfree(state);
1888 } else if (cft->open)
ddbcc7e8
PM
1889 err = cft->open(inode, file);
1890 else
1891 err = 0;
1892
1893 return err;
1894}
1895
1896static int cgroup_file_release(struct inode *inode, struct file *file)
1897{
1898 struct cftype *cft = __d_cft(file->f_dentry);
1899 if (cft->release)
1900 return cft->release(inode, file);
1901 return 0;
1902}
1903
1904/*
1905 * cgroup_rename - Only allow simple rename of directories in place.
1906 */
1907static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
1908 struct inode *new_dir, struct dentry *new_dentry)
1909{
1910 if (!S_ISDIR(old_dentry->d_inode->i_mode))
1911 return -ENOTDIR;
1912 if (new_dentry->d_inode)
1913 return -EEXIST;
1914 if (old_dir != new_dir)
1915 return -EIO;
1916 return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
1917}
1918
1919static struct file_operations cgroup_file_operations = {
1920 .read = cgroup_file_read,
1921 .write = cgroup_file_write,
1922 .llseek = generic_file_llseek,
1923 .open = cgroup_file_open,
1924 .release = cgroup_file_release,
1925};
1926
6e1d5dcc 1927static const struct inode_operations cgroup_dir_inode_operations = {
ddbcc7e8
PM
1928 .lookup = simple_lookup,
1929 .mkdir = cgroup_mkdir,
1930 .rmdir = cgroup_rmdir,
1931 .rename = cgroup_rename,
1932};
1933
099fca32 1934static int cgroup_create_file(struct dentry *dentry, mode_t mode,
ddbcc7e8
PM
1935 struct super_block *sb)
1936{
3ba13d17 1937 static const struct dentry_operations cgroup_dops = {
ddbcc7e8
PM
1938 .d_iput = cgroup_diput,
1939 };
1940
1941 struct inode *inode;
1942
1943 if (!dentry)
1944 return -ENOENT;
1945 if (dentry->d_inode)
1946 return -EEXIST;
1947
1948 inode = cgroup_new_inode(mode, sb);
1949 if (!inode)
1950 return -ENOMEM;
1951
1952 if (S_ISDIR(mode)) {
1953 inode->i_op = &cgroup_dir_inode_operations;
1954 inode->i_fop = &simple_dir_operations;
1955
1956 /* start off with i_nlink == 2 (for "." entry) */
1957 inc_nlink(inode);
1958
1959 /* start with the directory inode held, so that we can
1960 * populate it without racing with another mkdir */
817929ec 1961 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
ddbcc7e8
PM
1962 } else if (S_ISREG(mode)) {
1963 inode->i_size = 0;
1964 inode->i_fop = &cgroup_file_operations;
1965 }
1966 dentry->d_op = &cgroup_dops;
1967 d_instantiate(dentry, inode);
1968 dget(dentry); /* Extra count - pin the dentry in core */
1969 return 0;
1970}
1971
1972/*
a043e3b2
LZ
1973 * cgroup_create_dir - create a directory for an object.
1974 * @cgrp: the cgroup we create the directory for. It must have a valid
1975 * ->parent field. And we are going to fill its ->dentry field.
1976 * @dentry: dentry of the new cgroup
1977 * @mode: mode to set on new directory.
ddbcc7e8 1978 */
bd89aabc 1979static int cgroup_create_dir(struct cgroup *cgrp, struct dentry *dentry,
099fca32 1980 mode_t mode)
ddbcc7e8
PM
1981{
1982 struct dentry *parent;
1983 int error = 0;
1984
bd89aabc
PM
1985 parent = cgrp->parent->dentry;
1986 error = cgroup_create_file(dentry, S_IFDIR | mode, cgrp->root->sb);
ddbcc7e8 1987 if (!error) {
bd89aabc 1988 dentry->d_fsdata = cgrp;
ddbcc7e8 1989 inc_nlink(parent->d_inode);
a47295e6 1990 rcu_assign_pointer(cgrp->dentry, dentry);
ddbcc7e8
PM
1991 dget(dentry);
1992 }
1993 dput(dentry);
1994
1995 return error;
1996}
1997
099fca32
LZ
1998/**
1999 * cgroup_file_mode - deduce file mode of a control file
2000 * @cft: the control file in question
2001 *
2002 * returns cft->mode if ->mode is not 0
2003 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
2004 * returns S_IRUGO if it has only a read handler
2005 * returns S_IWUSR if it has only a write hander
2006 */
2007static mode_t cgroup_file_mode(const struct cftype *cft)
2008{
2009 mode_t mode = 0;
2010
2011 if (cft->mode)
2012 return cft->mode;
2013
2014 if (cft->read || cft->read_u64 || cft->read_s64 ||
2015 cft->read_map || cft->read_seq_string)
2016 mode |= S_IRUGO;
2017
2018 if (cft->write || cft->write_u64 || cft->write_s64 ||
2019 cft->write_string || cft->trigger)
2020 mode |= S_IWUSR;
2021
2022 return mode;
2023}
2024
bd89aabc 2025int cgroup_add_file(struct cgroup *cgrp,
ddbcc7e8
PM
2026 struct cgroup_subsys *subsys,
2027 const struct cftype *cft)
2028{
bd89aabc 2029 struct dentry *dir = cgrp->dentry;
ddbcc7e8
PM
2030 struct dentry *dentry;
2031 int error;
099fca32 2032 mode_t mode;
ddbcc7e8
PM
2033
2034 char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
bd89aabc 2035 if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) {
ddbcc7e8
PM
2036 strcpy(name, subsys->name);
2037 strcat(name, ".");
2038 }
2039 strcat(name, cft->name);
2040 BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
2041 dentry = lookup_one_len(name, dir, strlen(name));
2042 if (!IS_ERR(dentry)) {
099fca32
LZ
2043 mode = cgroup_file_mode(cft);
2044 error = cgroup_create_file(dentry, mode | S_IFREG,
bd89aabc 2045 cgrp->root->sb);
ddbcc7e8
PM
2046 if (!error)
2047 dentry->d_fsdata = (void *)cft;
2048 dput(dentry);
2049 } else
2050 error = PTR_ERR(dentry);
2051 return error;
2052}
2053
bd89aabc 2054int cgroup_add_files(struct cgroup *cgrp,
ddbcc7e8
PM
2055 struct cgroup_subsys *subsys,
2056 const struct cftype cft[],
2057 int count)
2058{
2059 int i, err;
2060 for (i = 0; i < count; i++) {
bd89aabc 2061 err = cgroup_add_file(cgrp, subsys, &cft[i]);
ddbcc7e8
PM
2062 if (err)
2063 return err;
2064 }
2065 return 0;
2066}
2067
a043e3b2
LZ
2068/**
2069 * cgroup_task_count - count the number of tasks in a cgroup.
2070 * @cgrp: the cgroup in question
2071 *
2072 * Return the number of tasks in the cgroup.
2073 */
bd89aabc 2074int cgroup_task_count(const struct cgroup *cgrp)
bbcb81d0
PM
2075{
2076 int count = 0;
71cbb949 2077 struct cg_cgroup_link *link;
817929ec
PM
2078
2079 read_lock(&css_set_lock);
71cbb949 2080 list_for_each_entry(link, &cgrp->css_sets, cgrp_link_list) {
146aa1bd 2081 count += atomic_read(&link->cg->refcount);
817929ec
PM
2082 }
2083 read_unlock(&css_set_lock);
bbcb81d0
PM
2084 return count;
2085}
2086
817929ec
PM
2087/*
2088 * Advance a list_head iterator. The iterator should be positioned at
2089 * the start of a css_set
2090 */
bd89aabc 2091static void cgroup_advance_iter(struct cgroup *cgrp,
7717f7ba 2092 struct cgroup_iter *it)
817929ec
PM
2093{
2094 struct list_head *l = it->cg_link;
2095 struct cg_cgroup_link *link;
2096 struct css_set *cg;
2097
2098 /* Advance to the next non-empty css_set */
2099 do {
2100 l = l->next;
bd89aabc 2101 if (l == &cgrp->css_sets) {
817929ec
PM
2102 it->cg_link = NULL;
2103 return;
2104 }
bd89aabc 2105 link = list_entry(l, struct cg_cgroup_link, cgrp_link_list);
817929ec
PM
2106 cg = link->cg;
2107 } while (list_empty(&cg->tasks));
2108 it->cg_link = l;
2109 it->task = cg->tasks.next;
2110}
2111
31a7df01
CW
2112/*
2113 * To reduce the fork() overhead for systems that are not actually
2114 * using their cgroups capability, we don't maintain the lists running
2115 * through each css_set to its tasks until we see the list actually
2116 * used - in other words after the first call to cgroup_iter_start().
2117 *
2118 * The tasklist_lock is not held here, as do_each_thread() and
2119 * while_each_thread() are protected by RCU.
2120 */
3df91fe3 2121static void cgroup_enable_task_cg_lists(void)
31a7df01
CW
2122{
2123 struct task_struct *p, *g;
2124 write_lock(&css_set_lock);
2125 use_task_css_set_links = 1;
2126 do_each_thread(g, p) {
2127 task_lock(p);
0e04388f
LZ
2128 /*
2129 * We should check if the process is exiting, otherwise
2130 * it will race with cgroup_exit() in that the list
2131 * entry won't be deleted though the process has exited.
2132 */
2133 if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
31a7df01
CW
2134 list_add(&p->cg_list, &p->cgroups->tasks);
2135 task_unlock(p);
2136 } while_each_thread(g, p);
2137 write_unlock(&css_set_lock);
2138}
2139
bd89aabc 2140void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
817929ec
PM
2141{
2142 /*
2143 * The first time anyone tries to iterate across a cgroup,
2144 * we need to enable the list linking each css_set to its
2145 * tasks, and fix up all existing tasks.
2146 */
31a7df01
CW
2147 if (!use_task_css_set_links)
2148 cgroup_enable_task_cg_lists();
2149
817929ec 2150 read_lock(&css_set_lock);
bd89aabc
PM
2151 it->cg_link = &cgrp->css_sets;
2152 cgroup_advance_iter(cgrp, it);
817929ec
PM
2153}
2154
bd89aabc 2155struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
817929ec
PM
2156 struct cgroup_iter *it)
2157{
2158 struct task_struct *res;
2159 struct list_head *l = it->task;
2019f634 2160 struct cg_cgroup_link *link;
817929ec
PM
2161
2162 /* If the iterator cg is NULL, we have no tasks */
2163 if (!it->cg_link)
2164 return NULL;
2165 res = list_entry(l, struct task_struct, cg_list);
2166 /* Advance iterator to find next entry */
2167 l = l->next;
2019f634
LJ
2168 link = list_entry(it->cg_link, struct cg_cgroup_link, cgrp_link_list);
2169 if (l == &link->cg->tasks) {
817929ec
PM
2170 /* We reached the end of this task list - move on to
2171 * the next cg_cgroup_link */
bd89aabc 2172 cgroup_advance_iter(cgrp, it);
817929ec
PM
2173 } else {
2174 it->task = l;
2175 }
2176 return res;
2177}
2178
bd89aabc 2179void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
817929ec
PM
2180{
2181 read_unlock(&css_set_lock);
2182}
2183
31a7df01
CW
2184static inline int started_after_time(struct task_struct *t1,
2185 struct timespec *time,
2186 struct task_struct *t2)
2187{
2188 int start_diff = timespec_compare(&t1->start_time, time);
2189 if (start_diff > 0) {
2190 return 1;
2191 } else if (start_diff < 0) {
2192 return 0;
2193 } else {
2194 /*
2195 * Arbitrarily, if two processes started at the same
2196 * time, we'll say that the lower pointer value
2197 * started first. Note that t2 may have exited by now
2198 * so this may not be a valid pointer any longer, but
2199 * that's fine - it still serves to distinguish
2200 * between two tasks started (effectively) simultaneously.
2201 */
2202 return t1 > t2;
2203 }
2204}
2205
2206/*
2207 * This function is a callback from heap_insert() and is used to order
2208 * the heap.
2209 * In this case we order the heap in descending task start time.
2210 */
2211static inline int started_after(void *p1, void *p2)
2212{
2213 struct task_struct *t1 = p1;
2214 struct task_struct *t2 = p2;
2215 return started_after_time(t1, &t2->start_time, t2);
2216}
2217
2218/**
2219 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
2220 * @scan: struct cgroup_scanner containing arguments for the scan
2221 *
2222 * Arguments include pointers to callback functions test_task() and
2223 * process_task().
2224 * Iterate through all the tasks in a cgroup, calling test_task() for each,
2225 * and if it returns true, call process_task() for it also.
2226 * The test_task pointer may be NULL, meaning always true (select all tasks).
2227 * Effectively duplicates cgroup_iter_{start,next,end}()
2228 * but does not lock css_set_lock for the call to process_task().
2229 * The struct cgroup_scanner may be embedded in any structure of the caller's
2230 * creation.
2231 * It is guaranteed that process_task() will act on every task that
2232 * is a member of the cgroup for the duration of this call. This
2233 * function may or may not call process_task() for tasks that exit
2234 * or move to a different cgroup during the call, or are forked or
2235 * move into the cgroup during the call.
2236 *
2237 * Note that test_task() may be called with locks held, and may in some
2238 * situations be called multiple times for the same task, so it should
2239 * be cheap.
2240 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
2241 * pre-allocated and will be used for heap operations (and its "gt" member will
2242 * be overwritten), else a temporary heap will be used (allocation of which
2243 * may cause this function to fail).
2244 */
2245int cgroup_scan_tasks(struct cgroup_scanner *scan)
2246{
2247 int retval, i;
2248 struct cgroup_iter it;
2249 struct task_struct *p, *dropped;
2250 /* Never dereference latest_task, since it's not refcounted */
2251 struct task_struct *latest_task = NULL;
2252 struct ptr_heap tmp_heap;
2253 struct ptr_heap *heap;
2254 struct timespec latest_time = { 0, 0 };
2255
2256 if (scan->heap) {
2257 /* The caller supplied our heap and pre-allocated its memory */
2258 heap = scan->heap;
2259 heap->gt = &started_after;
2260 } else {
2261 /* We need to allocate our own heap memory */
2262 heap = &tmp_heap;
2263 retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
2264 if (retval)
2265 /* cannot allocate the heap */
2266 return retval;
2267 }
2268
2269 again:
2270 /*
2271 * Scan tasks in the cgroup, using the scanner's "test_task" callback
2272 * to determine which are of interest, and using the scanner's
2273 * "process_task" callback to process any of them that need an update.
2274 * Since we don't want to hold any locks during the task updates,
2275 * gather tasks to be processed in a heap structure.
2276 * The heap is sorted by descending task start time.
2277 * If the statically-sized heap fills up, we overflow tasks that
2278 * started later, and in future iterations only consider tasks that
2279 * started after the latest task in the previous pass. This
2280 * guarantees forward progress and that we don't miss any tasks.
2281 */
2282 heap->size = 0;
2283 cgroup_iter_start(scan->cg, &it);
2284 while ((p = cgroup_iter_next(scan->cg, &it))) {
2285 /*
2286 * Only affect tasks that qualify per the caller's callback,
2287 * if he provided one
2288 */
2289 if (scan->test_task && !scan->test_task(p, scan))
2290 continue;
2291 /*
2292 * Only process tasks that started after the last task
2293 * we processed
2294 */
2295 if (!started_after_time(p, &latest_time, latest_task))
2296 continue;
2297 dropped = heap_insert(heap, p);
2298 if (dropped == NULL) {
2299 /*
2300 * The new task was inserted; the heap wasn't
2301 * previously full
2302 */
2303 get_task_struct(p);
2304 } else if (dropped != p) {
2305 /*
2306 * The new task was inserted, and pushed out a
2307 * different task
2308 */
2309 get_task_struct(p);
2310 put_task_struct(dropped);
2311 }
2312 /*
2313 * Else the new task was newer than anything already in
2314 * the heap and wasn't inserted
2315 */
2316 }
2317 cgroup_iter_end(scan->cg, &it);
2318
2319 if (heap->size) {
2320 for (i = 0; i < heap->size; i++) {
4fe91d51 2321 struct task_struct *q = heap->ptrs[i];
31a7df01 2322 if (i == 0) {
4fe91d51
PJ
2323 latest_time = q->start_time;
2324 latest_task = q;
31a7df01
CW
2325 }
2326 /* Process the task per the caller's callback */
4fe91d51
PJ
2327 scan->process_task(q, scan);
2328 put_task_struct(q);
31a7df01
CW
2329 }
2330 /*
2331 * If we had to process any tasks at all, scan again
2332 * in case some of them were in the middle of forking
2333 * children that didn't get processed.
2334 * Not the most efficient way to do it, but it avoids
2335 * having to take callback_mutex in the fork path
2336 */
2337 goto again;
2338 }
2339 if (heap == &tmp_heap)
2340 heap_free(&tmp_heap);
2341 return 0;
2342}
2343
bbcb81d0 2344/*
102a775e 2345 * Stuff for reading the 'tasks'/'procs' files.
bbcb81d0
PM
2346 *
2347 * Reading this file can return large amounts of data if a cgroup has
2348 * *lots* of attached tasks. So it may need several calls to read(),
2349 * but we cannot guarantee that the information we produce is correct
2350 * unless we produce it entirely atomically.
2351 *
bbcb81d0 2352 */
bbcb81d0 2353
d1d9fd33
BB
2354/*
2355 * The following two functions "fix" the issue where there are more pids
2356 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
2357 * TODO: replace with a kernel-wide solution to this problem
2358 */
2359#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
2360static void *pidlist_allocate(int count)
2361{
2362 if (PIDLIST_TOO_LARGE(count))
2363 return vmalloc(count * sizeof(pid_t));
2364 else
2365 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
2366}
2367static void pidlist_free(void *p)
2368{
2369 if (is_vmalloc_addr(p))
2370 vfree(p);
2371 else
2372 kfree(p);
2373}
2374static void *pidlist_resize(void *p, int newcount)
2375{
2376 void *newlist;
2377 /* note: if new alloc fails, old p will still be valid either way */
2378 if (is_vmalloc_addr(p)) {
2379 newlist = vmalloc(newcount * sizeof(pid_t));
2380 if (!newlist)
2381 return NULL;
2382 memcpy(newlist, p, newcount * sizeof(pid_t));
2383 vfree(p);
2384 } else {
2385 newlist = krealloc(p, newcount * sizeof(pid_t), GFP_KERNEL);
2386 }
2387 return newlist;
2388}
2389
bbcb81d0 2390/*
102a775e
BB
2391 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
2392 * If the new stripped list is sufficiently smaller and there's enough memory
2393 * to allocate a new buffer, will let go of the unneeded memory. Returns the
2394 * number of unique elements.
bbcb81d0 2395 */
102a775e
BB
2396/* is the size difference enough that we should re-allocate the array? */
2397#define PIDLIST_REALLOC_DIFFERENCE(old, new) ((old) - PAGE_SIZE >= (new))
2398static int pidlist_uniq(pid_t **p, int length)
bbcb81d0 2399{
102a775e
BB
2400 int src, dest = 1;
2401 pid_t *list = *p;
2402 pid_t *newlist;
2403
2404 /*
2405 * we presume the 0th element is unique, so i starts at 1. trivial
2406 * edge cases first; no work needs to be done for either
2407 */
2408 if (length == 0 || length == 1)
2409 return length;
2410 /* src and dest walk down the list; dest counts unique elements */
2411 for (src = 1; src < length; src++) {
2412 /* find next unique element */
2413 while (list[src] == list[src-1]) {
2414 src++;
2415 if (src == length)
2416 goto after;
2417 }
2418 /* dest always points to where the next unique element goes */
2419 list[dest] = list[src];
2420 dest++;
2421 }
2422after:
2423 /*
2424 * if the length difference is large enough, we want to allocate a
2425 * smaller buffer to save memory. if this fails due to out of memory,
2426 * we'll just stay with what we've got.
2427 */
2428 if (PIDLIST_REALLOC_DIFFERENCE(length, dest)) {
d1d9fd33 2429 newlist = pidlist_resize(list, dest);
102a775e
BB
2430 if (newlist)
2431 *p = newlist;
2432 }
2433 return dest;
2434}
2435
2436static int cmppid(const void *a, const void *b)
2437{
2438 return *(pid_t *)a - *(pid_t *)b;
2439}
2440
72a8cb30
BB
2441/*
2442 * find the appropriate pidlist for our purpose (given procs vs tasks)
2443 * returns with the lock on that pidlist already held, and takes care
2444 * of the use count, or returns NULL with no locks held if we're out of
2445 * memory.
2446 */
2447static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
2448 enum cgroup_filetype type)
2449{
2450 struct cgroup_pidlist *l;
2451 /* don't need task_nsproxy() if we're looking at ourself */
2452 struct pid_namespace *ns = get_pid_ns(current->nsproxy->pid_ns);
2453 /*
2454 * We can't drop the pidlist_mutex before taking the l->mutex in case
2455 * the last ref-holder is trying to remove l from the list at the same
2456 * time. Holding the pidlist_mutex precludes somebody taking whichever
2457 * list we find out from under us - compare release_pid_array().
2458 */
2459 mutex_lock(&cgrp->pidlist_mutex);
2460 list_for_each_entry(l, &cgrp->pidlists, links) {
2461 if (l->key.type == type && l->key.ns == ns) {
2462 /* found a matching list - drop the extra refcount */
2463 put_pid_ns(ns);
2464 /* make sure l doesn't vanish out from under us */
2465 down_write(&l->mutex);
2466 mutex_unlock(&cgrp->pidlist_mutex);
2467 l->use_count++;
2468 return l;
2469 }
2470 }
2471 /* entry not found; create a new one */
2472 l = kmalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
2473 if (!l) {
2474 mutex_unlock(&cgrp->pidlist_mutex);
2475 put_pid_ns(ns);
2476 return l;
2477 }
2478 init_rwsem(&l->mutex);
2479 down_write(&l->mutex);
2480 l->key.type = type;
2481 l->key.ns = ns;
2482 l->use_count = 0; /* don't increment here */
2483 l->list = NULL;
2484 l->owner = cgrp;
2485 list_add(&l->links, &cgrp->pidlists);
2486 mutex_unlock(&cgrp->pidlist_mutex);
2487 return l;
2488}
2489
102a775e
BB
2490/*
2491 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
2492 */
72a8cb30
BB
2493static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
2494 struct cgroup_pidlist **lp)
102a775e
BB
2495{
2496 pid_t *array;
2497 int length;
2498 int pid, n = 0; /* used for populating the array */
817929ec
PM
2499 struct cgroup_iter it;
2500 struct task_struct *tsk;
102a775e
BB
2501 struct cgroup_pidlist *l;
2502
2503 /*
2504 * If cgroup gets more users after we read count, we won't have
2505 * enough space - tough. This race is indistinguishable to the
2506 * caller from the case that the additional cgroup users didn't
2507 * show up until sometime later on.
2508 */
2509 length = cgroup_task_count(cgrp);
d1d9fd33 2510 array = pidlist_allocate(length);
102a775e
BB
2511 if (!array)
2512 return -ENOMEM;
2513 /* now, populate the array */
bd89aabc
PM
2514 cgroup_iter_start(cgrp, &it);
2515 while ((tsk = cgroup_iter_next(cgrp, &it))) {
102a775e 2516 if (unlikely(n == length))
817929ec 2517 break;
102a775e 2518 /* get tgid or pid for procs or tasks file respectively */
72a8cb30
BB
2519 if (type == CGROUP_FILE_PROCS)
2520 pid = task_tgid_vnr(tsk);
2521 else
2522 pid = task_pid_vnr(tsk);
102a775e
BB
2523 if (pid > 0) /* make sure to only use valid results */
2524 array[n++] = pid;
817929ec 2525 }
bd89aabc 2526 cgroup_iter_end(cgrp, &it);
102a775e
BB
2527 length = n;
2528 /* now sort & (if procs) strip out duplicates */
2529 sort(array, length, sizeof(pid_t), cmppid, NULL);
72a8cb30 2530 if (type == CGROUP_FILE_PROCS)
102a775e 2531 length = pidlist_uniq(&array, length);
72a8cb30
BB
2532 l = cgroup_pidlist_find(cgrp, type);
2533 if (!l) {
d1d9fd33 2534 pidlist_free(array);
72a8cb30 2535 return -ENOMEM;
102a775e 2536 }
72a8cb30 2537 /* store array, freeing old if necessary - lock already held */
d1d9fd33 2538 pidlist_free(l->list);
102a775e
BB
2539 l->list = array;
2540 l->length = length;
2541 l->use_count++;
2542 up_write(&l->mutex);
72a8cb30 2543 *lp = l;
102a775e 2544 return 0;
bbcb81d0
PM
2545}
2546
846c7bb0 2547/**
a043e3b2 2548 * cgroupstats_build - build and fill cgroupstats
846c7bb0
BS
2549 * @stats: cgroupstats to fill information into
2550 * @dentry: A dentry entry belonging to the cgroup for which stats have
2551 * been requested.
a043e3b2
LZ
2552 *
2553 * Build and fill cgroupstats so that taskstats can export it to user
2554 * space.
846c7bb0
BS
2555 */
2556int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
2557{
2558 int ret = -EINVAL;
bd89aabc 2559 struct cgroup *cgrp;
846c7bb0
BS
2560 struct cgroup_iter it;
2561 struct task_struct *tsk;
33d283be 2562
846c7bb0 2563 /*
33d283be
LZ
2564 * Validate dentry by checking the superblock operations,
2565 * and make sure it's a directory.
846c7bb0 2566 */
33d283be
LZ
2567 if (dentry->d_sb->s_op != &cgroup_ops ||
2568 !S_ISDIR(dentry->d_inode->i_mode))
846c7bb0
BS
2569 goto err;
2570
2571 ret = 0;
bd89aabc 2572 cgrp = dentry->d_fsdata;
846c7bb0 2573
bd89aabc
PM
2574 cgroup_iter_start(cgrp, &it);
2575 while ((tsk = cgroup_iter_next(cgrp, &it))) {
846c7bb0
BS
2576 switch (tsk->state) {
2577 case TASK_RUNNING:
2578 stats->nr_running++;
2579 break;
2580 case TASK_INTERRUPTIBLE:
2581 stats->nr_sleeping++;
2582 break;
2583 case TASK_UNINTERRUPTIBLE:
2584 stats->nr_uninterruptible++;
2585 break;
2586 case TASK_STOPPED:
2587 stats->nr_stopped++;
2588 break;
2589 default:
2590 if (delayacct_is_task_waiting_on_io(tsk))
2591 stats->nr_io_wait++;
2592 break;
2593 }
2594 }
bd89aabc 2595 cgroup_iter_end(cgrp, &it);
846c7bb0 2596
846c7bb0
BS
2597err:
2598 return ret;
2599}
2600
8f3ff208 2601
bbcb81d0 2602/*
102a775e 2603 * seq_file methods for the tasks/procs files. The seq_file position is the
cc31edce 2604 * next pid to display; the seq_file iterator is a pointer to the pid
102a775e 2605 * in the cgroup->l->list array.
bbcb81d0 2606 */
cc31edce 2607
102a775e 2608static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
bbcb81d0 2609{
cc31edce
PM
2610 /*
2611 * Initially we receive a position value that corresponds to
2612 * one more than the last pid shown (or 0 on the first call or
2613 * after a seek to the start). Use a binary-search to find the
2614 * next pid to display, if any
2615 */
102a775e 2616 struct cgroup_pidlist *l = s->private;
cc31edce
PM
2617 int index = 0, pid = *pos;
2618 int *iter;
2619
102a775e 2620 down_read(&l->mutex);
cc31edce 2621 if (pid) {
102a775e 2622 int end = l->length;
20777766 2623
cc31edce
PM
2624 while (index < end) {
2625 int mid = (index + end) / 2;
102a775e 2626 if (l->list[mid] == pid) {
cc31edce
PM
2627 index = mid;
2628 break;
102a775e 2629 } else if (l->list[mid] <= pid)
cc31edce
PM
2630 index = mid + 1;
2631 else
2632 end = mid;
2633 }
2634 }
2635 /* If we're off the end of the array, we're done */
102a775e 2636 if (index >= l->length)
cc31edce
PM
2637 return NULL;
2638 /* Update the abstract position to be the actual pid that we found */
102a775e 2639 iter = l->list + index;
cc31edce
PM
2640 *pos = *iter;
2641 return iter;
2642}
2643
102a775e 2644static void cgroup_pidlist_stop(struct seq_file *s, void *v)
cc31edce 2645{
102a775e
BB
2646 struct cgroup_pidlist *l = s->private;
2647 up_read(&l->mutex);
cc31edce
PM
2648}
2649
102a775e 2650static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
cc31edce 2651{
102a775e
BB
2652 struct cgroup_pidlist *l = s->private;
2653 pid_t *p = v;
2654 pid_t *end = l->list + l->length;
cc31edce
PM
2655 /*
2656 * Advance to the next pid in the array. If this goes off the
2657 * end, we're done
2658 */
2659 p++;
2660 if (p >= end) {
2661 return NULL;
2662 } else {
2663 *pos = *p;
2664 return p;
2665 }
2666}
2667
102a775e 2668static int cgroup_pidlist_show(struct seq_file *s, void *v)
cc31edce
PM
2669{
2670 return seq_printf(s, "%d\n", *(int *)v);
2671}
bbcb81d0 2672
102a775e
BB
2673/*
2674 * seq_operations functions for iterating on pidlists through seq_file -
2675 * independent of whether it's tasks or procs
2676 */
2677static const struct seq_operations cgroup_pidlist_seq_operations = {
2678 .start = cgroup_pidlist_start,
2679 .stop = cgroup_pidlist_stop,
2680 .next = cgroup_pidlist_next,
2681 .show = cgroup_pidlist_show,
cc31edce
PM
2682};
2683
102a775e 2684static void cgroup_release_pid_array(struct cgroup_pidlist *l)
cc31edce 2685{
72a8cb30
BB
2686 /*
2687 * the case where we're the last user of this particular pidlist will
2688 * have us remove it from the cgroup's list, which entails taking the
2689 * mutex. since in pidlist_find the pidlist->lock depends on cgroup->
2690 * pidlist_mutex, we have to take pidlist_mutex first.
2691 */
2692 mutex_lock(&l->owner->pidlist_mutex);
102a775e
BB
2693 down_write(&l->mutex);
2694 BUG_ON(!l->use_count);
2695 if (!--l->use_count) {
72a8cb30
BB
2696 /* we're the last user if refcount is 0; remove and free */
2697 list_del(&l->links);
2698 mutex_unlock(&l->owner->pidlist_mutex);
d1d9fd33 2699 pidlist_free(l->list);
72a8cb30
BB
2700 put_pid_ns(l->key.ns);
2701 up_write(&l->mutex);
2702 kfree(l);
2703 return;
cc31edce 2704 }
72a8cb30 2705 mutex_unlock(&l->owner->pidlist_mutex);
102a775e 2706 up_write(&l->mutex);
bbcb81d0
PM
2707}
2708
102a775e 2709static int cgroup_pidlist_release(struct inode *inode, struct file *file)
cc31edce 2710{
102a775e 2711 struct cgroup_pidlist *l;
cc31edce
PM
2712 if (!(file->f_mode & FMODE_READ))
2713 return 0;
102a775e
BB
2714 /*
2715 * the seq_file will only be initialized if the file was opened for
2716 * reading; hence we check if it's not null only in that case.
2717 */
2718 l = ((struct seq_file *)file->private_data)->private;
2719 cgroup_release_pid_array(l);
cc31edce
PM
2720 return seq_release(inode, file);
2721}
2722
102a775e 2723static const struct file_operations cgroup_pidlist_operations = {
cc31edce
PM
2724 .read = seq_read,
2725 .llseek = seq_lseek,
2726 .write = cgroup_file_write,
102a775e 2727 .release = cgroup_pidlist_release,
cc31edce
PM
2728};
2729
bbcb81d0 2730/*
102a775e
BB
2731 * The following functions handle opens on a file that displays a pidlist
2732 * (tasks or procs). Prepare an array of the process/thread IDs of whoever's
2733 * in the cgroup.
bbcb81d0 2734 */
102a775e 2735/* helper function for the two below it */
72a8cb30 2736static int cgroup_pidlist_open(struct file *file, enum cgroup_filetype type)
bbcb81d0 2737{
bd89aabc 2738 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
72a8cb30 2739 struct cgroup_pidlist *l;
cc31edce 2740 int retval;
bbcb81d0 2741
cc31edce 2742 /* Nothing to do for write-only files */
bbcb81d0
PM
2743 if (!(file->f_mode & FMODE_READ))
2744 return 0;
2745
102a775e 2746 /* have the array populated */
72a8cb30 2747 retval = pidlist_array_load(cgrp, type, &l);
102a775e
BB
2748 if (retval)
2749 return retval;
2750 /* configure file information */
2751 file->f_op = &cgroup_pidlist_operations;
cc31edce 2752
102a775e 2753 retval = seq_open(file, &cgroup_pidlist_seq_operations);
cc31edce 2754 if (retval) {
102a775e 2755 cgroup_release_pid_array(l);
cc31edce 2756 return retval;
bbcb81d0 2757 }
102a775e 2758 ((struct seq_file *)file->private_data)->private = l;
bbcb81d0
PM
2759 return 0;
2760}
102a775e
BB
2761static int cgroup_tasks_open(struct inode *unused, struct file *file)
2762{
72a8cb30 2763 return cgroup_pidlist_open(file, CGROUP_FILE_TASKS);
102a775e
BB
2764}
2765static int cgroup_procs_open(struct inode *unused, struct file *file)
2766{
72a8cb30 2767 return cgroup_pidlist_open(file, CGROUP_FILE_PROCS);
102a775e 2768}
bbcb81d0 2769
bd89aabc 2770static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
81a6a5cd
PM
2771 struct cftype *cft)
2772{
bd89aabc 2773 return notify_on_release(cgrp);
81a6a5cd
PM
2774}
2775
6379c106
PM
2776static int cgroup_write_notify_on_release(struct cgroup *cgrp,
2777 struct cftype *cft,
2778 u64 val)
2779{
2780 clear_bit(CGRP_RELEASABLE, &cgrp->flags);
2781 if (val)
2782 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
2783 else
2784 clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
2785 return 0;
2786}
2787
bbcb81d0
PM
2788/*
2789 * for the common functions, 'private' gives the type of file
2790 */
102a775e
BB
2791/* for hysterical raisins, we can't put this on the older files */
2792#define CGROUP_FILE_GENERIC_PREFIX "cgroup."
81a6a5cd
PM
2793static struct cftype files[] = {
2794 {
2795 .name = "tasks",
2796 .open = cgroup_tasks_open,
af351026 2797 .write_u64 = cgroup_tasks_write,
102a775e 2798 .release = cgroup_pidlist_release,
099fca32 2799 .mode = S_IRUGO | S_IWUSR,
81a6a5cd 2800 },
102a775e
BB
2801 {
2802 .name = CGROUP_FILE_GENERIC_PREFIX "procs",
2803 .open = cgroup_procs_open,
2804 /* .write_u64 = cgroup_procs_write, TODO */
2805 .release = cgroup_pidlist_release,
2806 .mode = S_IRUGO,
2807 },
81a6a5cd
PM
2808 {
2809 .name = "notify_on_release",
f4c753b7 2810 .read_u64 = cgroup_read_notify_on_release,
6379c106 2811 .write_u64 = cgroup_write_notify_on_release,
81a6a5cd 2812 },
81a6a5cd
PM
2813};
2814
2815static struct cftype cft_release_agent = {
2816 .name = "release_agent",
e788e066
PM
2817 .read_seq_string = cgroup_release_agent_show,
2818 .write_string = cgroup_release_agent_write,
2819 .max_write_len = PATH_MAX,
bbcb81d0
PM
2820};
2821
bd89aabc 2822static int cgroup_populate_dir(struct cgroup *cgrp)
ddbcc7e8
PM
2823{
2824 int err;
2825 struct cgroup_subsys *ss;
2826
2827 /* First clear out any existing files */
bd89aabc 2828 cgroup_clear_directory(cgrp->dentry);
ddbcc7e8 2829
bd89aabc 2830 err = cgroup_add_files(cgrp, NULL, files, ARRAY_SIZE(files));
bbcb81d0
PM
2831 if (err < 0)
2832 return err;
2833
bd89aabc
PM
2834 if (cgrp == cgrp->top_cgroup) {
2835 if ((err = cgroup_add_file(cgrp, NULL, &cft_release_agent)) < 0)
81a6a5cd
PM
2836 return err;
2837 }
2838
bd89aabc
PM
2839 for_each_subsys(cgrp->root, ss) {
2840 if (ss->populate && (err = ss->populate(ss, cgrp)) < 0)
ddbcc7e8
PM
2841 return err;
2842 }
38460b48
KH
2843 /* This cgroup is ready now */
2844 for_each_subsys(cgrp->root, ss) {
2845 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
2846 /*
2847 * Update id->css pointer and make this css visible from
2848 * CSS ID functions. This pointer will be dereferened
2849 * from RCU-read-side without locks.
2850 */
2851 if (css->id)
2852 rcu_assign_pointer(css->id->css, css);
2853 }
ddbcc7e8
PM
2854
2855 return 0;
2856}
2857
2858static void init_cgroup_css(struct cgroup_subsys_state *css,
2859 struct cgroup_subsys *ss,
bd89aabc 2860 struct cgroup *cgrp)
ddbcc7e8 2861{
bd89aabc 2862 css->cgroup = cgrp;
e7c5ec91 2863 atomic_set(&css->refcnt, 1);
ddbcc7e8 2864 css->flags = 0;
38460b48 2865 css->id = NULL;
bd89aabc 2866 if (cgrp == dummytop)
ddbcc7e8 2867 set_bit(CSS_ROOT, &css->flags);
bd89aabc
PM
2868 BUG_ON(cgrp->subsys[ss->subsys_id]);
2869 cgrp->subsys[ss->subsys_id] = css;
ddbcc7e8
PM
2870}
2871
999cd8a4
PM
2872static void cgroup_lock_hierarchy(struct cgroupfs_root *root)
2873{
2874 /* We need to take each hierarchy_mutex in a consistent order */
2875 int i;
2876
2877 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2878 struct cgroup_subsys *ss = subsys[i];
2879 if (ss->root == root)
cfebe563 2880 mutex_lock(&ss->hierarchy_mutex);
999cd8a4
PM
2881 }
2882}
2883
2884static void cgroup_unlock_hierarchy(struct cgroupfs_root *root)
2885{
2886 int i;
2887
2888 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2889 struct cgroup_subsys *ss = subsys[i];
2890 if (ss->root == root)
2891 mutex_unlock(&ss->hierarchy_mutex);
2892 }
2893}
2894
ddbcc7e8 2895/*
a043e3b2
LZ
2896 * cgroup_create - create a cgroup
2897 * @parent: cgroup that will be parent of the new cgroup
2898 * @dentry: dentry of the new cgroup
2899 * @mode: mode to set on new inode
ddbcc7e8 2900 *
a043e3b2 2901 * Must be called with the mutex on the parent inode held
ddbcc7e8 2902 */
ddbcc7e8 2903static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
099fca32 2904 mode_t mode)
ddbcc7e8 2905{
bd89aabc 2906 struct cgroup *cgrp;
ddbcc7e8
PM
2907 struct cgroupfs_root *root = parent->root;
2908 int err = 0;
2909 struct cgroup_subsys *ss;
2910 struct super_block *sb = root->sb;
2911
bd89aabc
PM
2912 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
2913 if (!cgrp)
ddbcc7e8
PM
2914 return -ENOMEM;
2915
2916 /* Grab a reference on the superblock so the hierarchy doesn't
2917 * get deleted on unmount if there are child cgroups. This
2918 * can be done outside cgroup_mutex, since the sb can't
2919 * disappear while someone has an open control file on the
2920 * fs */
2921 atomic_inc(&sb->s_active);
2922
2923 mutex_lock(&cgroup_mutex);
2924
cc31edce 2925 init_cgroup_housekeeping(cgrp);
ddbcc7e8 2926
bd89aabc
PM
2927 cgrp->parent = parent;
2928 cgrp->root = parent->root;
2929 cgrp->top_cgroup = parent->top_cgroup;
ddbcc7e8 2930
b6abdb0e
LZ
2931 if (notify_on_release(parent))
2932 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
2933
ddbcc7e8 2934 for_each_subsys(root, ss) {
bd89aabc 2935 struct cgroup_subsys_state *css = ss->create(ss, cgrp);
ddbcc7e8
PM
2936 if (IS_ERR(css)) {
2937 err = PTR_ERR(css);
2938 goto err_destroy;
2939 }
bd89aabc 2940 init_cgroup_css(css, ss, cgrp);
38460b48
KH
2941 if (ss->use_id)
2942 if (alloc_css_id(ss, parent, cgrp))
2943 goto err_destroy;
2944 /* At error, ->destroy() callback has to free assigned ID. */
ddbcc7e8
PM
2945 }
2946
999cd8a4 2947 cgroup_lock_hierarchy(root);
bd89aabc 2948 list_add(&cgrp->sibling, &cgrp->parent->children);
999cd8a4 2949 cgroup_unlock_hierarchy(root);
ddbcc7e8
PM
2950 root->number_of_cgroups++;
2951
bd89aabc 2952 err = cgroup_create_dir(cgrp, dentry, mode);
ddbcc7e8
PM
2953 if (err < 0)
2954 goto err_remove;
2955
2956 /* The cgroup directory was pre-locked for us */
bd89aabc 2957 BUG_ON(!mutex_is_locked(&cgrp->dentry->d_inode->i_mutex));
ddbcc7e8 2958
bd89aabc 2959 err = cgroup_populate_dir(cgrp);
ddbcc7e8
PM
2960 /* If err < 0, we have a half-filled directory - oh well ;) */
2961
2962 mutex_unlock(&cgroup_mutex);
bd89aabc 2963 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8
PM
2964
2965 return 0;
2966
2967 err_remove:
2968
baef99a0 2969 cgroup_lock_hierarchy(root);
bd89aabc 2970 list_del(&cgrp->sibling);
baef99a0 2971 cgroup_unlock_hierarchy(root);
ddbcc7e8
PM
2972 root->number_of_cgroups--;
2973
2974 err_destroy:
2975
2976 for_each_subsys(root, ss) {
bd89aabc
PM
2977 if (cgrp->subsys[ss->subsys_id])
2978 ss->destroy(ss, cgrp);
ddbcc7e8
PM
2979 }
2980
2981 mutex_unlock(&cgroup_mutex);
2982
2983 /* Release the reference count that we took on the superblock */
2984 deactivate_super(sb);
2985
bd89aabc 2986 kfree(cgrp);
ddbcc7e8
PM
2987 return err;
2988}
2989
2990static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode)
2991{
2992 struct cgroup *c_parent = dentry->d_parent->d_fsdata;
2993
2994 /* the vfs holds inode->i_mutex already */
2995 return cgroup_create(c_parent, dentry, mode | S_IFDIR);
2996}
2997
55b6fd01 2998static int cgroup_has_css_refs(struct cgroup *cgrp)
81a6a5cd
PM
2999{
3000 /* Check the reference count on each subsystem. Since we
3001 * already established that there are no tasks in the
e7c5ec91 3002 * cgroup, if the css refcount is also 1, then there should
81a6a5cd
PM
3003 * be no outstanding references, so the subsystem is safe to
3004 * destroy. We scan across all subsystems rather than using
3005 * the per-hierarchy linked list of mounted subsystems since
3006 * we can be called via check_for_release() with no
3007 * synchronization other than RCU, and the subsystem linked
3008 * list isn't RCU-safe */
3009 int i;
3010 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3011 struct cgroup_subsys *ss = subsys[i];
3012 struct cgroup_subsys_state *css;
3013 /* Skip subsystems not in this hierarchy */
bd89aabc 3014 if (ss->root != cgrp->root)
81a6a5cd 3015 continue;
bd89aabc 3016 css = cgrp->subsys[ss->subsys_id];
81a6a5cd
PM
3017 /* When called from check_for_release() it's possible
3018 * that by this point the cgroup has been removed
3019 * and the css deleted. But a false-positive doesn't
3020 * matter, since it can only happen if the cgroup
3021 * has been deleted and hence no longer needs the
3022 * release agent to be called anyway. */
e7c5ec91 3023 if (css && (atomic_read(&css->refcnt) > 1))
81a6a5cd 3024 return 1;
81a6a5cd
PM
3025 }
3026 return 0;
3027}
3028
e7c5ec91
PM
3029/*
3030 * Atomically mark all (or else none) of the cgroup's CSS objects as
3031 * CSS_REMOVED. Return true on success, or false if the cgroup has
3032 * busy subsystems. Call with cgroup_mutex held
3033 */
3034
3035static int cgroup_clear_css_refs(struct cgroup *cgrp)
3036{
3037 struct cgroup_subsys *ss;
3038 unsigned long flags;
3039 bool failed = false;
3040 local_irq_save(flags);
3041 for_each_subsys(cgrp->root, ss) {
3042 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
3043 int refcnt;
804b3c28 3044 while (1) {
e7c5ec91
PM
3045 /* We can only remove a CSS with a refcnt==1 */
3046 refcnt = atomic_read(&css->refcnt);
3047 if (refcnt > 1) {
3048 failed = true;
3049 goto done;
3050 }
3051 BUG_ON(!refcnt);
3052 /*
3053 * Drop the refcnt to 0 while we check other
3054 * subsystems. This will cause any racing
3055 * css_tryget() to spin until we set the
3056 * CSS_REMOVED bits or abort
3057 */
804b3c28
PM
3058 if (atomic_cmpxchg(&css->refcnt, refcnt, 0) == refcnt)
3059 break;
3060 cpu_relax();
3061 }
e7c5ec91
PM
3062 }
3063 done:
3064 for_each_subsys(cgrp->root, ss) {
3065 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
3066 if (failed) {
3067 /*
3068 * Restore old refcnt if we previously managed
3069 * to clear it from 1 to 0
3070 */
3071 if (!atomic_read(&css->refcnt))
3072 atomic_set(&css->refcnt, 1);
3073 } else {
3074 /* Commit the fact that the CSS is removed */
3075 set_bit(CSS_REMOVED, &css->flags);
3076 }
3077 }
3078 local_irq_restore(flags);
3079 return !failed;
3080}
3081
ddbcc7e8
PM
3082static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
3083{
bd89aabc 3084 struct cgroup *cgrp = dentry->d_fsdata;
ddbcc7e8
PM
3085 struct dentry *d;
3086 struct cgroup *parent;
ec64f515
KH
3087 DEFINE_WAIT(wait);
3088 int ret;
ddbcc7e8
PM
3089
3090 /* the vfs holds both inode->i_mutex already */
ec64f515 3091again:
ddbcc7e8 3092 mutex_lock(&cgroup_mutex);
bd89aabc 3093 if (atomic_read(&cgrp->count) != 0) {
ddbcc7e8
PM
3094 mutex_unlock(&cgroup_mutex);
3095 return -EBUSY;
3096 }
bd89aabc 3097 if (!list_empty(&cgrp->children)) {
ddbcc7e8
PM
3098 mutex_unlock(&cgroup_mutex);
3099 return -EBUSY;
3100 }
3fa59dfb 3101 mutex_unlock(&cgroup_mutex);
a043e3b2 3102
88703267
KH
3103 /*
3104 * In general, subsystem has no css->refcnt after pre_destroy(). But
3105 * in racy cases, subsystem may have to get css->refcnt after
3106 * pre_destroy() and it makes rmdir return with -EBUSY. This sometimes
3107 * make rmdir return -EBUSY too often. To avoid that, we use waitqueue
3108 * for cgroup's rmdir. CGRP_WAIT_ON_RMDIR is for synchronizing rmdir
3109 * and subsystem's reference count handling. Please see css_get/put
3110 * and css_tryget() and cgroup_wakeup_rmdir_waiter() implementation.
3111 */
3112 set_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3113
4fca88c8 3114 /*
a043e3b2
LZ
3115 * Call pre_destroy handlers of subsys. Notify subsystems
3116 * that rmdir() request comes.
4fca88c8 3117 */
ec64f515 3118 ret = cgroup_call_pre_destroy(cgrp);
88703267
KH
3119 if (ret) {
3120 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
ec64f515 3121 return ret;
88703267 3122 }
ddbcc7e8 3123
3fa59dfb
KH
3124 mutex_lock(&cgroup_mutex);
3125 parent = cgrp->parent;
ec64f515 3126 if (atomic_read(&cgrp->count) || !list_empty(&cgrp->children)) {
88703267 3127 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
ddbcc7e8
PM
3128 mutex_unlock(&cgroup_mutex);
3129 return -EBUSY;
3130 }
ec64f515 3131 prepare_to_wait(&cgroup_rmdir_waitq, &wait, TASK_INTERRUPTIBLE);
ec64f515
KH
3132 if (!cgroup_clear_css_refs(cgrp)) {
3133 mutex_unlock(&cgroup_mutex);
88703267
KH
3134 /*
3135 * Because someone may call cgroup_wakeup_rmdir_waiter() before
3136 * prepare_to_wait(), we need to check this flag.
3137 */
3138 if (test_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags))
3139 schedule();
ec64f515
KH
3140 finish_wait(&cgroup_rmdir_waitq, &wait);
3141 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3142 if (signal_pending(current))
3143 return -EINTR;
3144 goto again;
3145 }
3146 /* NO css_tryget() can success after here. */
3147 finish_wait(&cgroup_rmdir_waitq, &wait);
3148 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
ddbcc7e8 3149
81a6a5cd 3150 spin_lock(&release_list_lock);
bd89aabc
PM
3151 set_bit(CGRP_REMOVED, &cgrp->flags);
3152 if (!list_empty(&cgrp->release_list))
3153 list_del(&cgrp->release_list);
81a6a5cd 3154 spin_unlock(&release_list_lock);
999cd8a4
PM
3155
3156 cgroup_lock_hierarchy(cgrp->root);
3157 /* delete this cgroup from parent->children */
bd89aabc 3158 list_del(&cgrp->sibling);
999cd8a4
PM
3159 cgroup_unlock_hierarchy(cgrp->root);
3160
bd89aabc
PM
3161 spin_lock(&cgrp->dentry->d_lock);
3162 d = dget(cgrp->dentry);
ddbcc7e8
PM
3163 spin_unlock(&d->d_lock);
3164
3165 cgroup_d_remove_dir(d);
3166 dput(d);
ddbcc7e8 3167
bd89aabc 3168 set_bit(CGRP_RELEASABLE, &parent->flags);
81a6a5cd
PM
3169 check_for_release(parent);
3170
ddbcc7e8 3171 mutex_unlock(&cgroup_mutex);
ddbcc7e8
PM
3172 return 0;
3173}
3174
06a11920 3175static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
ddbcc7e8 3176{
ddbcc7e8 3177 struct cgroup_subsys_state *css;
cfe36bde
DC
3178
3179 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
ddbcc7e8
PM
3180
3181 /* Create the top cgroup state for this subsystem */
33a68ac1 3182 list_add(&ss->sibling, &rootnode.subsys_list);
ddbcc7e8
PM
3183 ss->root = &rootnode;
3184 css = ss->create(ss, dummytop);
3185 /* We don't handle early failures gracefully */
3186 BUG_ON(IS_ERR(css));
3187 init_cgroup_css(css, ss, dummytop);
3188
e8d55fde 3189 /* Update the init_css_set to contain a subsys
817929ec 3190 * pointer to this state - since the subsystem is
e8d55fde
LZ
3191 * newly registered, all tasks and hence the
3192 * init_css_set is in the subsystem's top cgroup. */
3193 init_css_set.subsys[ss->subsys_id] = dummytop->subsys[ss->subsys_id];
ddbcc7e8
PM
3194
3195 need_forkexit_callback |= ss->fork || ss->exit;
3196
e8d55fde
LZ
3197 /* At system boot, before all subsystems have been
3198 * registered, no tasks have been forked, so we don't
3199 * need to invoke fork callbacks here. */
3200 BUG_ON(!list_empty(&init_task.tasks));
3201
999cd8a4 3202 mutex_init(&ss->hierarchy_mutex);
cfebe563 3203 lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key);
ddbcc7e8
PM
3204 ss->active = 1;
3205}
3206
3207/**
a043e3b2
LZ
3208 * cgroup_init_early - cgroup initialization at system boot
3209 *
3210 * Initialize cgroups at system boot, and initialize any
3211 * subsystems that request early init.
ddbcc7e8
PM
3212 */
3213int __init cgroup_init_early(void)
3214{
3215 int i;
146aa1bd 3216 atomic_set(&init_css_set.refcount, 1);
817929ec
PM
3217 INIT_LIST_HEAD(&init_css_set.cg_links);
3218 INIT_LIST_HEAD(&init_css_set.tasks);
472b1053 3219 INIT_HLIST_NODE(&init_css_set.hlist);
817929ec 3220 css_set_count = 1;
ddbcc7e8 3221 init_cgroup_root(&rootnode);
817929ec
PM
3222 root_count = 1;
3223 init_task.cgroups = &init_css_set;
3224
3225 init_css_set_link.cg = &init_css_set;
7717f7ba 3226 init_css_set_link.cgrp = dummytop;
bd89aabc 3227 list_add(&init_css_set_link.cgrp_link_list,
817929ec
PM
3228 &rootnode.top_cgroup.css_sets);
3229 list_add(&init_css_set_link.cg_link_list,
3230 &init_css_set.cg_links);
ddbcc7e8 3231
472b1053
LZ
3232 for (i = 0; i < CSS_SET_TABLE_SIZE; i++)
3233 INIT_HLIST_HEAD(&css_set_table[i]);
3234
ddbcc7e8
PM
3235 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3236 struct cgroup_subsys *ss = subsys[i];
3237
3238 BUG_ON(!ss->name);
3239 BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
3240 BUG_ON(!ss->create);
3241 BUG_ON(!ss->destroy);
3242 if (ss->subsys_id != i) {
cfe36bde 3243 printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
ddbcc7e8
PM
3244 ss->name, ss->subsys_id);
3245 BUG();
3246 }
3247
3248 if (ss->early_init)
3249 cgroup_init_subsys(ss);
3250 }
3251 return 0;
3252}
3253
3254/**
a043e3b2
LZ
3255 * cgroup_init - cgroup initialization
3256 *
3257 * Register cgroup filesystem and /proc file, and initialize
3258 * any subsystems that didn't request early init.
ddbcc7e8
PM
3259 */
3260int __init cgroup_init(void)
3261{
3262 int err;
3263 int i;
472b1053 3264 struct hlist_head *hhead;
a424316c
PM
3265
3266 err = bdi_init(&cgroup_backing_dev_info);
3267 if (err)
3268 return err;
ddbcc7e8
PM
3269
3270 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3271 struct cgroup_subsys *ss = subsys[i];
3272 if (!ss->early_init)
3273 cgroup_init_subsys(ss);
38460b48
KH
3274 if (ss->use_id)
3275 cgroup_subsys_init_idr(ss);
ddbcc7e8
PM
3276 }
3277
472b1053
LZ
3278 /* Add init_css_set to the hash table */
3279 hhead = css_set_hash(init_css_set.subsys);
3280 hlist_add_head(&init_css_set.hlist, hhead);
2c6ab6d2 3281 BUG_ON(!init_root_id(&rootnode));
ddbcc7e8
PM
3282 err = register_filesystem(&cgroup_fs_type);
3283 if (err < 0)
3284 goto out;
3285
46ae220b 3286 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
a424316c 3287
ddbcc7e8 3288out:
a424316c
PM
3289 if (err)
3290 bdi_destroy(&cgroup_backing_dev_info);
3291
ddbcc7e8
PM
3292 return err;
3293}
b4f48b63 3294
a424316c
PM
3295/*
3296 * proc_cgroup_show()
3297 * - Print task's cgroup paths into seq_file, one line for each hierarchy
3298 * - Used for /proc/<pid>/cgroup.
3299 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
3300 * doesn't really matter if tsk->cgroup changes after we read it,
956db3ca 3301 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
a424316c
PM
3302 * anyway. No need to check that tsk->cgroup != NULL, thanks to
3303 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
3304 * cgroup to top_cgroup.
3305 */
3306
3307/* TODO: Use a proper seq_file iterator */
3308static int proc_cgroup_show(struct seq_file *m, void *v)
3309{
3310 struct pid *pid;
3311 struct task_struct *tsk;
3312 char *buf;
3313 int retval;
3314 struct cgroupfs_root *root;
3315
3316 retval = -ENOMEM;
3317 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3318 if (!buf)
3319 goto out;
3320
3321 retval = -ESRCH;
3322 pid = m->private;
3323 tsk = get_pid_task(pid, PIDTYPE_PID);
3324 if (!tsk)
3325 goto out_free;
3326
3327 retval = 0;
3328
3329 mutex_lock(&cgroup_mutex);
3330
e5f6a860 3331 for_each_active_root(root) {
a424316c 3332 struct cgroup_subsys *ss;
bd89aabc 3333 struct cgroup *cgrp;
a424316c
PM
3334 int count = 0;
3335
2c6ab6d2 3336 seq_printf(m, "%d:", root->hierarchy_id);
a424316c
PM
3337 for_each_subsys(root, ss)
3338 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
c6d57f33
PM
3339 if (strlen(root->name))
3340 seq_printf(m, "%sname=%s", count ? "," : "",
3341 root->name);
a424316c 3342 seq_putc(m, ':');
7717f7ba 3343 cgrp = task_cgroup_from_root(tsk, root);
bd89aabc 3344 retval = cgroup_path(cgrp, buf, PAGE_SIZE);
a424316c
PM
3345 if (retval < 0)
3346 goto out_unlock;
3347 seq_puts(m, buf);
3348 seq_putc(m, '\n');
3349 }
3350
3351out_unlock:
3352 mutex_unlock(&cgroup_mutex);
3353 put_task_struct(tsk);
3354out_free:
3355 kfree(buf);
3356out:
3357 return retval;
3358}
3359
3360static int cgroup_open(struct inode *inode, struct file *file)
3361{
3362 struct pid *pid = PROC_I(inode)->pid;
3363 return single_open(file, proc_cgroup_show, pid);
3364}
3365
3366struct file_operations proc_cgroup_operations = {
3367 .open = cgroup_open,
3368 .read = seq_read,
3369 .llseek = seq_lseek,
3370 .release = single_release,
3371};
3372
3373/* Display information about each subsystem and each hierarchy */
3374static int proc_cgroupstats_show(struct seq_file *m, void *v)
3375{
3376 int i;
a424316c 3377
8bab8dde 3378 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
a424316c 3379 mutex_lock(&cgroup_mutex);
a424316c
PM
3380 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3381 struct cgroup_subsys *ss = subsys[i];
2c6ab6d2
PM
3382 seq_printf(m, "%s\t%d\t%d\t%d\n",
3383 ss->name, ss->root->hierarchy_id,
8bab8dde 3384 ss->root->number_of_cgroups, !ss->disabled);
a424316c
PM
3385 }
3386 mutex_unlock(&cgroup_mutex);
3387 return 0;
3388}
3389
3390static int cgroupstats_open(struct inode *inode, struct file *file)
3391{
9dce07f1 3392 return single_open(file, proc_cgroupstats_show, NULL);
a424316c
PM
3393}
3394
3395static struct file_operations proc_cgroupstats_operations = {
3396 .open = cgroupstats_open,
3397 .read = seq_read,
3398 .llseek = seq_lseek,
3399 .release = single_release,
3400};
3401
b4f48b63
PM
3402/**
3403 * cgroup_fork - attach newly forked task to its parents cgroup.
a043e3b2 3404 * @child: pointer to task_struct of forking parent process.
b4f48b63
PM
3405 *
3406 * Description: A task inherits its parent's cgroup at fork().
3407 *
3408 * A pointer to the shared css_set was automatically copied in
3409 * fork.c by dup_task_struct(). However, we ignore that copy, since
3410 * it was not made under the protection of RCU or cgroup_mutex, so
956db3ca 3411 * might no longer be a valid cgroup pointer. cgroup_attach_task() might
817929ec
PM
3412 * have already changed current->cgroups, allowing the previously
3413 * referenced cgroup group to be removed and freed.
b4f48b63
PM
3414 *
3415 * At the point that cgroup_fork() is called, 'current' is the parent
3416 * task, and the passed argument 'child' points to the child task.
3417 */
3418void cgroup_fork(struct task_struct *child)
3419{
817929ec
PM
3420 task_lock(current);
3421 child->cgroups = current->cgroups;
3422 get_css_set(child->cgroups);
3423 task_unlock(current);
3424 INIT_LIST_HEAD(&child->cg_list);
b4f48b63
PM
3425}
3426
3427/**
a043e3b2
LZ
3428 * cgroup_fork_callbacks - run fork callbacks
3429 * @child: the new task
3430 *
3431 * Called on a new task very soon before adding it to the
3432 * tasklist. No need to take any locks since no-one can
3433 * be operating on this task.
b4f48b63
PM
3434 */
3435void cgroup_fork_callbacks(struct task_struct *child)
3436{
3437 if (need_forkexit_callback) {
3438 int i;
3439 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3440 struct cgroup_subsys *ss = subsys[i];
3441 if (ss->fork)
3442 ss->fork(ss, child);
3443 }
3444 }
3445}
3446
817929ec 3447/**
a043e3b2
LZ
3448 * cgroup_post_fork - called on a new task after adding it to the task list
3449 * @child: the task in question
3450 *
3451 * Adds the task to the list running through its css_set if necessary.
3452 * Has to be after the task is visible on the task list in case we race
3453 * with the first call to cgroup_iter_start() - to guarantee that the
3454 * new task ends up on its list.
3455 */
817929ec
PM
3456void cgroup_post_fork(struct task_struct *child)
3457{
3458 if (use_task_css_set_links) {
3459 write_lock(&css_set_lock);
b12b533f 3460 task_lock(child);
817929ec
PM
3461 if (list_empty(&child->cg_list))
3462 list_add(&child->cg_list, &child->cgroups->tasks);
b12b533f 3463 task_unlock(child);
817929ec
PM
3464 write_unlock(&css_set_lock);
3465 }
3466}
b4f48b63
PM
3467/**
3468 * cgroup_exit - detach cgroup from exiting task
3469 * @tsk: pointer to task_struct of exiting process
a043e3b2 3470 * @run_callback: run exit callbacks?
b4f48b63
PM
3471 *
3472 * Description: Detach cgroup from @tsk and release it.
3473 *
3474 * Note that cgroups marked notify_on_release force every task in
3475 * them to take the global cgroup_mutex mutex when exiting.
3476 * This could impact scaling on very large systems. Be reluctant to
3477 * use notify_on_release cgroups where very high task exit scaling
3478 * is required on large systems.
3479 *
3480 * the_top_cgroup_hack:
3481 *
3482 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
3483 *
3484 * We call cgroup_exit() while the task is still competent to
3485 * handle notify_on_release(), then leave the task attached to the
3486 * root cgroup in each hierarchy for the remainder of its exit.
3487 *
3488 * To do this properly, we would increment the reference count on
3489 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
3490 * code we would add a second cgroup function call, to drop that
3491 * reference. This would just create an unnecessary hot spot on
3492 * the top_cgroup reference count, to no avail.
3493 *
3494 * Normally, holding a reference to a cgroup without bumping its
3495 * count is unsafe. The cgroup could go away, or someone could
3496 * attach us to a different cgroup, decrementing the count on
3497 * the first cgroup that we never incremented. But in this case,
3498 * top_cgroup isn't going away, and either task has PF_EXITING set,
956db3ca
CW
3499 * which wards off any cgroup_attach_task() attempts, or task is a failed
3500 * fork, never visible to cgroup_attach_task.
b4f48b63
PM
3501 */
3502void cgroup_exit(struct task_struct *tsk, int run_callbacks)
3503{
3504 int i;
817929ec 3505 struct css_set *cg;
b4f48b63
PM
3506
3507 if (run_callbacks && need_forkexit_callback) {
3508 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3509 struct cgroup_subsys *ss = subsys[i];
3510 if (ss->exit)
3511 ss->exit(ss, tsk);
3512 }
3513 }
817929ec
PM
3514
3515 /*
3516 * Unlink from the css_set task list if necessary.
3517 * Optimistically check cg_list before taking
3518 * css_set_lock
3519 */
3520 if (!list_empty(&tsk->cg_list)) {
3521 write_lock(&css_set_lock);
3522 if (!list_empty(&tsk->cg_list))
3523 list_del(&tsk->cg_list);
3524 write_unlock(&css_set_lock);
3525 }
3526
b4f48b63
PM
3527 /* Reassign the task to the init_css_set. */
3528 task_lock(tsk);
817929ec
PM
3529 cg = tsk->cgroups;
3530 tsk->cgroups = &init_css_set;
b4f48b63 3531 task_unlock(tsk);
817929ec 3532 if (cg)
81a6a5cd 3533 put_css_set_taskexit(cg);
b4f48b63 3534}
697f4161
PM
3535
3536/**
a043e3b2
LZ
3537 * cgroup_clone - clone the cgroup the given subsystem is attached to
3538 * @tsk: the task to be moved
3539 * @subsys: the given subsystem
e885dcde 3540 * @nodename: the name for the new cgroup
a043e3b2
LZ
3541 *
3542 * Duplicate the current cgroup in the hierarchy that the given
3543 * subsystem is attached to, and move this task into the new
3544 * child.
697f4161 3545 */
e885dcde
SH
3546int cgroup_clone(struct task_struct *tsk, struct cgroup_subsys *subsys,
3547 char *nodename)
697f4161
PM
3548{
3549 struct dentry *dentry;
3550 int ret = 0;
697f4161
PM
3551 struct cgroup *parent, *child;
3552 struct inode *inode;
3553 struct css_set *cg;
3554 struct cgroupfs_root *root;
3555 struct cgroup_subsys *ss;
3556
3557 /* We shouldn't be called by an unregistered subsystem */
3558 BUG_ON(!subsys->active);
3559
3560 /* First figure out what hierarchy and cgroup we're dealing
3561 * with, and pin them so we can drop cgroup_mutex */
3562 mutex_lock(&cgroup_mutex);
3563 again:
3564 root = subsys->root;
3565 if (root == &rootnode) {
697f4161
PM
3566 mutex_unlock(&cgroup_mutex);
3567 return 0;
3568 }
697f4161 3569
697f4161 3570 /* Pin the hierarchy */
1404f065 3571 if (!atomic_inc_not_zero(&root->sb->s_active)) {
7b574b7b
LZ
3572 /* We race with the final deactivate_super() */
3573 mutex_unlock(&cgroup_mutex);
3574 return 0;
3575 }
697f4161 3576
817929ec 3577 /* Keep the cgroup alive */
1404f065
LZ
3578 task_lock(tsk);
3579 parent = task_cgroup(tsk, subsys->subsys_id);
3580 cg = tsk->cgroups;
817929ec 3581 get_css_set(cg);
104cbd55 3582 task_unlock(tsk);
1404f065 3583
697f4161
PM
3584 mutex_unlock(&cgroup_mutex);
3585
3586 /* Now do the VFS work to create a cgroup */
3587 inode = parent->dentry->d_inode;
3588
3589 /* Hold the parent directory mutex across this operation to
3590 * stop anyone else deleting the new cgroup */
3591 mutex_lock(&inode->i_mutex);
3592 dentry = lookup_one_len(nodename, parent->dentry, strlen(nodename));
3593 if (IS_ERR(dentry)) {
3594 printk(KERN_INFO
cfe36bde 3595 "cgroup: Couldn't allocate dentry for %s: %ld\n", nodename,
697f4161
PM
3596 PTR_ERR(dentry));
3597 ret = PTR_ERR(dentry);
3598 goto out_release;
3599 }
3600
3601 /* Create the cgroup directory, which also creates the cgroup */
75139b82 3602 ret = vfs_mkdir(inode, dentry, 0755);
bd89aabc 3603 child = __d_cgrp(dentry);
697f4161
PM
3604 dput(dentry);
3605 if (ret) {
3606 printk(KERN_INFO
3607 "Failed to create cgroup %s: %d\n", nodename,
3608 ret);
3609 goto out_release;
3610 }
3611
697f4161
PM
3612 /* The cgroup now exists. Retake cgroup_mutex and check
3613 * that we're still in the same state that we thought we
3614 * were. */
3615 mutex_lock(&cgroup_mutex);
3616 if ((root != subsys->root) ||
3617 (parent != task_cgroup(tsk, subsys->subsys_id))) {
3618 /* Aargh, we raced ... */
3619 mutex_unlock(&inode->i_mutex);
817929ec 3620 put_css_set(cg);
697f4161 3621
1404f065 3622 deactivate_super(root->sb);
697f4161
PM
3623 /* The cgroup is still accessible in the VFS, but
3624 * we're not going to try to rmdir() it at this
3625 * point. */
3626 printk(KERN_INFO
3627 "Race in cgroup_clone() - leaking cgroup %s\n",
3628 nodename);
3629 goto again;
3630 }
3631
3632 /* do any required auto-setup */
3633 for_each_subsys(root, ss) {
3634 if (ss->post_clone)
3635 ss->post_clone(ss, child);
3636 }
3637
3638 /* All seems fine. Finish by moving the task into the new cgroup */
956db3ca 3639 ret = cgroup_attach_task(child, tsk);
697f4161
PM
3640 mutex_unlock(&cgroup_mutex);
3641
3642 out_release:
3643 mutex_unlock(&inode->i_mutex);
81a6a5cd
PM
3644
3645 mutex_lock(&cgroup_mutex);
817929ec 3646 put_css_set(cg);
81a6a5cd 3647 mutex_unlock(&cgroup_mutex);
1404f065 3648 deactivate_super(root->sb);
697f4161
PM
3649 return ret;
3650}
3651
a043e3b2 3652/**
313e924c 3653 * cgroup_is_descendant - see if @cgrp is a descendant of @task's cgrp
a043e3b2 3654 * @cgrp: the cgroup in question
313e924c 3655 * @task: the task in question
a043e3b2 3656 *
313e924c
GN
3657 * See if @cgrp is a descendant of @task's cgroup in the appropriate
3658 * hierarchy.
697f4161
PM
3659 *
3660 * If we are sending in dummytop, then presumably we are creating
3661 * the top cgroup in the subsystem.
3662 *
3663 * Called only by the ns (nsproxy) cgroup.
3664 */
313e924c 3665int cgroup_is_descendant(const struct cgroup *cgrp, struct task_struct *task)
697f4161
PM
3666{
3667 int ret;
3668 struct cgroup *target;
697f4161 3669
bd89aabc 3670 if (cgrp == dummytop)
697f4161
PM
3671 return 1;
3672
7717f7ba 3673 target = task_cgroup_from_root(task, cgrp->root);
bd89aabc
PM
3674 while (cgrp != target && cgrp!= cgrp->top_cgroup)
3675 cgrp = cgrp->parent;
3676 ret = (cgrp == target);
697f4161
PM
3677 return ret;
3678}
81a6a5cd 3679
bd89aabc 3680static void check_for_release(struct cgroup *cgrp)
81a6a5cd
PM
3681{
3682 /* All of these checks rely on RCU to keep the cgroup
3683 * structure alive */
bd89aabc
PM
3684 if (cgroup_is_releasable(cgrp) && !atomic_read(&cgrp->count)
3685 && list_empty(&cgrp->children) && !cgroup_has_css_refs(cgrp)) {
81a6a5cd
PM
3686 /* Control Group is currently removeable. If it's not
3687 * already queued for a userspace notification, queue
3688 * it now */
3689 int need_schedule_work = 0;
3690 spin_lock(&release_list_lock);
bd89aabc
PM
3691 if (!cgroup_is_removed(cgrp) &&
3692 list_empty(&cgrp->release_list)) {
3693 list_add(&cgrp->release_list, &release_list);
81a6a5cd
PM
3694 need_schedule_work = 1;
3695 }
3696 spin_unlock(&release_list_lock);
3697 if (need_schedule_work)
3698 schedule_work(&release_agent_work);
3699 }
3700}
3701
3702void __css_put(struct cgroup_subsys_state *css)
3703{
bd89aabc 3704 struct cgroup *cgrp = css->cgroup;
81a6a5cd 3705 rcu_read_lock();
ec64f515
KH
3706 if (atomic_dec_return(&css->refcnt) == 1) {
3707 if (notify_on_release(cgrp)) {
3708 set_bit(CGRP_RELEASABLE, &cgrp->flags);
3709 check_for_release(cgrp);
3710 }
88703267 3711 cgroup_wakeup_rmdir_waiter(cgrp);
81a6a5cd
PM
3712 }
3713 rcu_read_unlock();
3714}
3715
3716/*
3717 * Notify userspace when a cgroup is released, by running the
3718 * configured release agent with the name of the cgroup (path
3719 * relative to the root of cgroup file system) as the argument.
3720 *
3721 * Most likely, this user command will try to rmdir this cgroup.
3722 *
3723 * This races with the possibility that some other task will be
3724 * attached to this cgroup before it is removed, or that some other
3725 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
3726 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
3727 * unused, and this cgroup will be reprieved from its death sentence,
3728 * to continue to serve a useful existence. Next time it's released,
3729 * we will get notified again, if it still has 'notify_on_release' set.
3730 *
3731 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
3732 * means only wait until the task is successfully execve()'d. The
3733 * separate release agent task is forked by call_usermodehelper(),
3734 * then control in this thread returns here, without waiting for the
3735 * release agent task. We don't bother to wait because the caller of
3736 * this routine has no use for the exit status of the release agent
3737 * task, so no sense holding our caller up for that.
81a6a5cd 3738 */
81a6a5cd
PM
3739static void cgroup_release_agent(struct work_struct *work)
3740{
3741 BUG_ON(work != &release_agent_work);
3742 mutex_lock(&cgroup_mutex);
3743 spin_lock(&release_list_lock);
3744 while (!list_empty(&release_list)) {
3745 char *argv[3], *envp[3];
3746 int i;
e788e066 3747 char *pathbuf = NULL, *agentbuf = NULL;
bd89aabc 3748 struct cgroup *cgrp = list_entry(release_list.next,
81a6a5cd
PM
3749 struct cgroup,
3750 release_list);
bd89aabc 3751 list_del_init(&cgrp->release_list);
81a6a5cd
PM
3752 spin_unlock(&release_list_lock);
3753 pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
e788e066
PM
3754 if (!pathbuf)
3755 goto continue_free;
3756 if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
3757 goto continue_free;
3758 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
3759 if (!agentbuf)
3760 goto continue_free;
81a6a5cd
PM
3761
3762 i = 0;
e788e066
PM
3763 argv[i++] = agentbuf;
3764 argv[i++] = pathbuf;
81a6a5cd
PM
3765 argv[i] = NULL;
3766
3767 i = 0;
3768 /* minimal command environment */
3769 envp[i++] = "HOME=/";
3770 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
3771 envp[i] = NULL;
3772
3773 /* Drop the lock while we invoke the usermode helper,
3774 * since the exec could involve hitting disk and hence
3775 * be a slow process */
3776 mutex_unlock(&cgroup_mutex);
3777 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
81a6a5cd 3778 mutex_lock(&cgroup_mutex);
e788e066
PM
3779 continue_free:
3780 kfree(pathbuf);
3781 kfree(agentbuf);
81a6a5cd
PM
3782 spin_lock(&release_list_lock);
3783 }
3784 spin_unlock(&release_list_lock);
3785 mutex_unlock(&cgroup_mutex);
3786}
8bab8dde
PM
3787
3788static int __init cgroup_disable(char *str)
3789{
3790 int i;
3791 char *token;
3792
3793 while ((token = strsep(&str, ",")) != NULL) {
3794 if (!*token)
3795 continue;
3796
3797 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3798 struct cgroup_subsys *ss = subsys[i];
3799
3800 if (!strcmp(token, ss->name)) {
3801 ss->disabled = 1;
3802 printk(KERN_INFO "Disabling %s control group"
3803 " subsystem\n", ss->name);
3804 break;
3805 }
3806 }
3807 }
3808 return 1;
3809}
3810__setup("cgroup_disable=", cgroup_disable);
38460b48
KH
3811
3812/*
3813 * Functons for CSS ID.
3814 */
3815
3816/*
3817 *To get ID other than 0, this should be called when !cgroup_is_removed().
3818 */
3819unsigned short css_id(struct cgroup_subsys_state *css)
3820{
3821 struct css_id *cssid = rcu_dereference(css->id);
3822
3823 if (cssid)
3824 return cssid->id;
3825 return 0;
3826}
3827
3828unsigned short css_depth(struct cgroup_subsys_state *css)
3829{
3830 struct css_id *cssid = rcu_dereference(css->id);
3831
3832 if (cssid)
3833 return cssid->depth;
3834 return 0;
3835}
3836
3837bool css_is_ancestor(struct cgroup_subsys_state *child,
0b7f569e 3838 const struct cgroup_subsys_state *root)
38460b48
KH
3839{
3840 struct css_id *child_id = rcu_dereference(child->id);
3841 struct css_id *root_id = rcu_dereference(root->id);
3842
3843 if (!child_id || !root_id || (child_id->depth < root_id->depth))
3844 return false;
3845 return child_id->stack[root_id->depth] == root_id->id;
3846}
3847
3848static void __free_css_id_cb(struct rcu_head *head)
3849{
3850 struct css_id *id;
3851
3852 id = container_of(head, struct css_id, rcu_head);
3853 kfree(id);
3854}
3855
3856void free_css_id(struct cgroup_subsys *ss, struct cgroup_subsys_state *css)
3857{
3858 struct css_id *id = css->id;
3859 /* When this is called before css_id initialization, id can be NULL */
3860 if (!id)
3861 return;
3862
3863 BUG_ON(!ss->use_id);
3864
3865 rcu_assign_pointer(id->css, NULL);
3866 rcu_assign_pointer(css->id, NULL);
3867 spin_lock(&ss->id_lock);
3868 idr_remove(&ss->idr, id->id);
3869 spin_unlock(&ss->id_lock);
3870 call_rcu(&id->rcu_head, __free_css_id_cb);
3871}
3872
3873/*
3874 * This is called by init or create(). Then, calls to this function are
3875 * always serialized (By cgroup_mutex() at create()).
3876 */
3877
3878static struct css_id *get_new_cssid(struct cgroup_subsys *ss, int depth)
3879{
3880 struct css_id *newid;
3881 int myid, error, size;
3882
3883 BUG_ON(!ss->use_id);
3884
3885 size = sizeof(*newid) + sizeof(unsigned short) * (depth + 1);
3886 newid = kzalloc(size, GFP_KERNEL);
3887 if (!newid)
3888 return ERR_PTR(-ENOMEM);
3889 /* get id */
3890 if (unlikely(!idr_pre_get(&ss->idr, GFP_KERNEL))) {
3891 error = -ENOMEM;
3892 goto err_out;
3893 }
3894 spin_lock(&ss->id_lock);
3895 /* Don't use 0. allocates an ID of 1-65535 */
3896 error = idr_get_new_above(&ss->idr, newid, 1, &myid);
3897 spin_unlock(&ss->id_lock);
3898
3899 /* Returns error when there are no free spaces for new ID.*/
3900 if (error) {
3901 error = -ENOSPC;
3902 goto err_out;
3903 }
3904 if (myid > CSS_ID_MAX)
3905 goto remove_idr;
3906
3907 newid->id = myid;
3908 newid->depth = depth;
3909 return newid;
3910remove_idr:
3911 error = -ENOSPC;
3912 spin_lock(&ss->id_lock);
3913 idr_remove(&ss->idr, myid);
3914 spin_unlock(&ss->id_lock);
3915err_out:
3916 kfree(newid);
3917 return ERR_PTR(error);
3918
3919}
3920
3921static int __init cgroup_subsys_init_idr(struct cgroup_subsys *ss)
3922{
3923 struct css_id *newid;
3924 struct cgroup_subsys_state *rootcss;
3925
3926 spin_lock_init(&ss->id_lock);
3927 idr_init(&ss->idr);
3928
3929 rootcss = init_css_set.subsys[ss->subsys_id];
3930 newid = get_new_cssid(ss, 0);
3931 if (IS_ERR(newid))
3932 return PTR_ERR(newid);
3933
3934 newid->stack[0] = newid->id;
3935 newid->css = rootcss;
3936 rootcss->id = newid;
3937 return 0;
3938}
3939
3940static int alloc_css_id(struct cgroup_subsys *ss, struct cgroup *parent,
3941 struct cgroup *child)
3942{
3943 int subsys_id, i, depth = 0;
3944 struct cgroup_subsys_state *parent_css, *child_css;
3945 struct css_id *child_id, *parent_id = NULL;
3946
3947 subsys_id = ss->subsys_id;
3948 parent_css = parent->subsys[subsys_id];
3949 child_css = child->subsys[subsys_id];
3950 depth = css_depth(parent_css) + 1;
3951 parent_id = parent_css->id;
3952
3953 child_id = get_new_cssid(ss, depth);
3954 if (IS_ERR(child_id))
3955 return PTR_ERR(child_id);
3956
3957 for (i = 0; i < depth; i++)
3958 child_id->stack[i] = parent_id->stack[i];
3959 child_id->stack[depth] = child_id->id;
3960 /*
3961 * child_id->css pointer will be set after this cgroup is available
3962 * see cgroup_populate_dir()
3963 */
3964 rcu_assign_pointer(child_css->id, child_id);
3965
3966 return 0;
3967}
3968
3969/**
3970 * css_lookup - lookup css by id
3971 * @ss: cgroup subsys to be looked into.
3972 * @id: the id
3973 *
3974 * Returns pointer to cgroup_subsys_state if there is valid one with id.
3975 * NULL if not. Should be called under rcu_read_lock()
3976 */
3977struct cgroup_subsys_state *css_lookup(struct cgroup_subsys *ss, int id)
3978{
3979 struct css_id *cssid = NULL;
3980
3981 BUG_ON(!ss->use_id);
3982 cssid = idr_find(&ss->idr, id);
3983
3984 if (unlikely(!cssid))
3985 return NULL;
3986
3987 return rcu_dereference(cssid->css);
3988}
3989
3990/**
3991 * css_get_next - lookup next cgroup under specified hierarchy.
3992 * @ss: pointer to subsystem
3993 * @id: current position of iteration.
3994 * @root: pointer to css. search tree under this.
3995 * @foundid: position of found object.
3996 *
3997 * Search next css under the specified hierarchy of rootid. Calling under
3998 * rcu_read_lock() is necessary. Returns NULL if it reaches the end.
3999 */
4000struct cgroup_subsys_state *
4001css_get_next(struct cgroup_subsys *ss, int id,
4002 struct cgroup_subsys_state *root, int *foundid)
4003{
4004 struct cgroup_subsys_state *ret = NULL;
4005 struct css_id *tmp;
4006 int tmpid;
4007 int rootid = css_id(root);
4008 int depth = css_depth(root);
4009
4010 if (!rootid)
4011 return NULL;
4012
4013 BUG_ON(!ss->use_id);
4014 /* fill start point for scan */
4015 tmpid = id;
4016 while (1) {
4017 /*
4018 * scan next entry from bitmap(tree), tmpid is updated after
4019 * idr_get_next().
4020 */
4021 spin_lock(&ss->id_lock);
4022 tmp = idr_get_next(&ss->idr, &tmpid);
4023 spin_unlock(&ss->id_lock);
4024
4025 if (!tmp)
4026 break;
4027 if (tmp->depth >= depth && tmp->stack[depth] == rootid) {
4028 ret = rcu_dereference(tmp->css);
4029 if (ret) {
4030 *foundid = tmpid;
4031 break;
4032 }
4033 }
4034 /* continue to scan from next id */
4035 tmpid = tmpid + 1;
4036 }
4037 return ret;
4038}
4039
fe693435
PM
4040#ifdef CONFIG_CGROUP_DEBUG
4041static struct cgroup_subsys_state *debug_create(struct cgroup_subsys *ss,
4042 struct cgroup *cont)
4043{
4044 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
4045
4046 if (!css)
4047 return ERR_PTR(-ENOMEM);
4048
4049 return css;
4050}
4051
4052static void debug_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
4053{
4054 kfree(cont->subsys[debug_subsys_id]);
4055}
4056
4057static u64 cgroup_refcount_read(struct cgroup *cont, struct cftype *cft)
4058{
4059 return atomic_read(&cont->count);
4060}
4061
4062static u64 debug_taskcount_read(struct cgroup *cont, struct cftype *cft)
4063{
4064 return cgroup_task_count(cont);
4065}
4066
4067static u64 current_css_set_read(struct cgroup *cont, struct cftype *cft)
4068{
4069 return (u64)(unsigned long)current->cgroups;
4070}
4071
4072static u64 current_css_set_refcount_read(struct cgroup *cont,
4073 struct cftype *cft)
4074{
4075 u64 count;
4076
4077 rcu_read_lock();
4078 count = atomic_read(&current->cgroups->refcount);
4079 rcu_read_unlock();
4080 return count;
4081}
4082
7717f7ba
PM
4083static int current_css_set_cg_links_read(struct cgroup *cont,
4084 struct cftype *cft,
4085 struct seq_file *seq)
4086{
4087 struct cg_cgroup_link *link;
4088 struct css_set *cg;
4089
4090 read_lock(&css_set_lock);
4091 rcu_read_lock();
4092 cg = rcu_dereference(current->cgroups);
4093 list_for_each_entry(link, &cg->cg_links, cg_link_list) {
4094 struct cgroup *c = link->cgrp;
4095 const char *name;
4096
4097 if (c->dentry)
4098 name = c->dentry->d_name.name;
4099 else
4100 name = "?";
2c6ab6d2
PM
4101 seq_printf(seq, "Root %d group %s\n",
4102 c->root->hierarchy_id, name);
7717f7ba
PM
4103 }
4104 rcu_read_unlock();
4105 read_unlock(&css_set_lock);
4106 return 0;
4107}
4108
4109#define MAX_TASKS_SHOWN_PER_CSS 25
4110static int cgroup_css_links_read(struct cgroup *cont,
4111 struct cftype *cft,
4112 struct seq_file *seq)
4113{
4114 struct cg_cgroup_link *link;
4115
4116 read_lock(&css_set_lock);
4117 list_for_each_entry(link, &cont->css_sets, cgrp_link_list) {
4118 struct css_set *cg = link->cg;
4119 struct task_struct *task;
4120 int count = 0;
4121 seq_printf(seq, "css_set %p\n", cg);
4122 list_for_each_entry(task, &cg->tasks, cg_list) {
4123 if (count++ > MAX_TASKS_SHOWN_PER_CSS) {
4124 seq_puts(seq, " ...\n");
4125 break;
4126 } else {
4127 seq_printf(seq, " task %d\n",
4128 task_pid_vnr(task));
4129 }
4130 }
4131 }
4132 read_unlock(&css_set_lock);
4133 return 0;
4134}
4135
fe693435
PM
4136static u64 releasable_read(struct cgroup *cgrp, struct cftype *cft)
4137{
4138 return test_bit(CGRP_RELEASABLE, &cgrp->flags);
4139}
4140
4141static struct cftype debug_files[] = {
4142 {
4143 .name = "cgroup_refcount",
4144 .read_u64 = cgroup_refcount_read,
4145 },
4146 {
4147 .name = "taskcount",
4148 .read_u64 = debug_taskcount_read,
4149 },
4150
4151 {
4152 .name = "current_css_set",
4153 .read_u64 = current_css_set_read,
4154 },
4155
4156 {
4157 .name = "current_css_set_refcount",
4158 .read_u64 = current_css_set_refcount_read,
4159 },
4160
7717f7ba
PM
4161 {
4162 .name = "current_css_set_cg_links",
4163 .read_seq_string = current_css_set_cg_links_read,
4164 },
4165
4166 {
4167 .name = "cgroup_css_links",
4168 .read_seq_string = cgroup_css_links_read,
4169 },
4170
fe693435
PM
4171 {
4172 .name = "releasable",
4173 .read_u64 = releasable_read,
4174 },
4175};
4176
4177static int debug_populate(struct cgroup_subsys *ss, struct cgroup *cont)
4178{
4179 return cgroup_add_files(cont, ss, debug_files,
4180 ARRAY_SIZE(debug_files));
4181}
4182
4183struct cgroup_subsys debug_subsys = {
4184 .name = "debug",
4185 .create = debug_create,
4186 .destroy = debug_destroy,
4187 .populate = debug_populate,
4188 .subsys_id = debug_subsys_id,
4189};
4190#endif /* CONFIG_CGROUP_DEBUG */