]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - kernel/cgroup.c
cgroup: disallow xattr, release_agent and name if sane_behavior
[mirror_ubuntu-zesty-kernel.git] / kernel / cgroup.c
CommitLineData
ddbcc7e8 1/*
ddbcc7e8
PM
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
0dea1168
KS
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
ddbcc7e8
PM
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29#include <linux/cgroup.h>
2ce9738b 30#include <linux/cred.h>
c6d57f33 31#include <linux/ctype.h>
ddbcc7e8 32#include <linux/errno.h>
2ce9738b 33#include <linux/init_task.h>
ddbcc7e8
PM
34#include <linux/kernel.h>
35#include <linux/list.h>
36#include <linux/mm.h>
37#include <linux/mutex.h>
38#include <linux/mount.h>
39#include <linux/pagemap.h>
a424316c 40#include <linux/proc_fs.h>
ddbcc7e8
PM
41#include <linux/rcupdate.h>
42#include <linux/sched.h>
ddbcc7e8 43#include <linux/slab.h>
ddbcc7e8
PM
44#include <linux/spinlock.h>
45#include <linux/string.h>
bbcb81d0 46#include <linux/sort.h>
81a6a5cd 47#include <linux/kmod.h>
846c7bb0
BS
48#include <linux/delayacct.h>
49#include <linux/cgroupstats.h>
0ac801fe 50#include <linux/hashtable.h>
096b7fe0 51#include <linux/pid_namespace.h>
2c6ab6d2 52#include <linux/idr.h>
d1d9fd33 53#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
081aa458 54#include <linux/flex_array.h> /* used in cgroup_attach_task */
c4c27fbd 55#include <linux/kthread.h>
776f02fa 56#include <linux/delay.h>
846c7bb0 57
60063497 58#include <linux/atomic.h>
ddbcc7e8 59
b1a21367
TH
60/*
61 * pidlists linger the following amount before being destroyed. The goal
62 * is avoiding frequent destruction in the middle of consecutive read calls
63 * Expiring in the middle is a performance problem not a correctness one.
64 * 1 sec should be enough.
65 */
66#define CGROUP_PIDLIST_DESTROY_DELAY HZ
67
8d7e6fb0
TH
68#define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
69 MAX_CFTYPE_NAME + 2)
70
ace2bee8
TH
71/*
72 * cgroup_tree_mutex nests above cgroup_mutex and protects cftypes, file
73 * creation/removal and hierarchy changing operations including cgroup
74 * creation, removal, css association and controller rebinding. This outer
75 * lock is needed mainly to resolve the circular dependency between kernfs
76 * active ref and cgroup_mutex. cgroup_tree_mutex nests above both.
77 */
78static DEFINE_MUTEX(cgroup_tree_mutex);
79
e25e2cbb
TH
80/*
81 * cgroup_mutex is the master lock. Any modification to cgroup or its
82 * hierarchy must be performed while holding it.
e25e2cbb 83 */
2219449a
TH
84#ifdef CONFIG_PROVE_RCU
85DEFINE_MUTEX(cgroup_mutex);
8af01f56 86EXPORT_SYMBOL_GPL(cgroup_mutex); /* only for lockdep */
2219449a 87#else
81a6a5cd 88static DEFINE_MUTEX(cgroup_mutex);
2219449a
TH
89#endif
90
69e943b7
TH
91/*
92 * Protects cgroup_subsys->release_agent_path. Modifying it also requires
93 * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock.
94 */
95static DEFINE_SPINLOCK(release_agent_path_lock);
96
ace2bee8 97#define cgroup_assert_mutexes_or_rcu_locked() \
87fb54f1 98 rcu_lockdep_assert(rcu_read_lock_held() || \
ace2bee8 99 lockdep_is_held(&cgroup_tree_mutex) || \
87fb54f1 100 lockdep_is_held(&cgroup_mutex), \
ace2bee8 101 "cgroup_[tree_]mutex or RCU read lock required");
87fb54f1 102
e5fca243
TH
103/*
104 * cgroup destruction makes heavy use of work items and there can be a lot
105 * of concurrent destructions. Use a separate workqueue so that cgroup
106 * destruction work items don't end up filling up max_active of system_wq
107 * which may lead to deadlock.
108 */
109static struct workqueue_struct *cgroup_destroy_wq;
110
b1a21367
TH
111/*
112 * pidlist destructions need to be flushed on cgroup destruction. Use a
113 * separate workqueue as flush domain.
114 */
115static struct workqueue_struct *cgroup_pidlist_destroy_wq;
116
3ed80a62 117/* generate an array of cgroup subsystem pointers */
073219e9 118#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
3ed80a62 119static struct cgroup_subsys *cgroup_subsys[] = {
ddbcc7e8
PM
120#include <linux/cgroup_subsys.h>
121};
073219e9
TH
122#undef SUBSYS
123
124/* array of cgroup subsystem names */
125#define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
126static const char *cgroup_subsys_name[] = {
127#include <linux/cgroup_subsys.h>
128};
129#undef SUBSYS
ddbcc7e8 130
ddbcc7e8 131/*
9871bf95
TH
132 * The dummy hierarchy, reserved for the subsystems that are otherwise
133 * unattached - it never has more than a single cgroup, and all tasks are
134 * part of that cgroup.
ddbcc7e8 135 */
9871bf95
TH
136static struct cgroupfs_root cgroup_dummy_root;
137
138/* dummy_top is a shorthand for the dummy hierarchy's top cgroup */
139static struct cgroup * const cgroup_dummy_top = &cgroup_dummy_root.top_cgroup;
ddbcc7e8
PM
140
141/* The list of hierarchy roots */
142
9871bf95
TH
143static LIST_HEAD(cgroup_roots);
144static int cgroup_root_count;
ddbcc7e8 145
3417ae1f 146/* hierarchy ID allocation and mapping, protected by cgroup_mutex */
1a574231 147static DEFINE_IDR(cgroup_hierarchy_idr);
2c6ab6d2 148
794611a1
LZ
149/*
150 * Assign a monotonically increasing serial number to cgroups. It
151 * guarantees cgroups with bigger numbers are newer than those with smaller
152 * numbers. Also, as cgroups are always appended to the parent's
153 * ->children list, it guarantees that sibling cgroups are always sorted in
00356bd5
TH
154 * the ascending serial number order on the list. Protected by
155 * cgroup_mutex.
794611a1 156 */
00356bd5 157static u64 cgroup_serial_nr_next = 1;
794611a1 158
ddbcc7e8 159/* This flag indicates whether tasks in the fork and exit paths should
a043e3b2
LZ
160 * check for fork/exit handlers to call. This avoids us having to do
161 * extra work in the fork/exit path if none of the subsystems need to
162 * be called.
ddbcc7e8 163 */
8947f9d5 164static int need_forkexit_callback __read_mostly;
ddbcc7e8 165
628f7cd4
TH
166static struct cftype cgroup_base_files[];
167
59f5296b 168static void cgroup_put(struct cgroup *cgrp);
f2e85d57
TH
169static int rebind_subsystems(struct cgroupfs_root *root,
170 unsigned long added_mask, unsigned removed_mask);
f20104de 171static void cgroup_destroy_css_killed(struct cgroup *cgrp);
42809dd4 172static int cgroup_destroy_locked(struct cgroup *cgrp);
2bb566cb
TH
173static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
174 bool is_add);
b1a21367 175static void cgroup_pidlist_destroy_all(struct cgroup *cgrp);
42809dd4 176
95109b62
TH
177/**
178 * cgroup_css - obtain a cgroup's css for the specified subsystem
179 * @cgrp: the cgroup of interest
ca8bdcaf 180 * @ss: the subsystem of interest (%NULL returns the dummy_css)
95109b62 181 *
ca8bdcaf
TH
182 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
183 * function must be called either under cgroup_mutex or rcu_read_lock() and
184 * the caller is responsible for pinning the returned css if it wants to
185 * keep accessing it outside the said locks. This function may return
186 * %NULL if @cgrp doesn't have @subsys_id enabled.
95109b62
TH
187 */
188static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
ca8bdcaf 189 struct cgroup_subsys *ss)
95109b62 190{
ca8bdcaf 191 if (ss)
aec25020 192 return rcu_dereference_check(cgrp->subsys[ss->id],
ace2bee8
TH
193 lockdep_is_held(&cgroup_tree_mutex) ||
194 lockdep_is_held(&cgroup_mutex));
ca8bdcaf
TH
195 else
196 return &cgrp->dummy_css;
95109b62 197}
42809dd4 198
ddbcc7e8 199/* convenient tests for these bits */
54766d4a 200static inline bool cgroup_is_dead(const struct cgroup *cgrp)
ddbcc7e8 201{
54766d4a 202 return test_bit(CGRP_DEAD, &cgrp->flags);
ddbcc7e8
PM
203}
204
59f5296b
TH
205struct cgroup_subsys_state *seq_css(struct seq_file *seq)
206{
2bd59d48
TH
207 struct kernfs_open_file *of = seq->private;
208 struct cgroup *cgrp = of->kn->parent->priv;
209 struct cftype *cft = seq_cft(seq);
210
211 /*
212 * This is open and unprotected implementation of cgroup_css().
213 * seq_css() is only called from a kernfs file operation which has
214 * an active reference on the file. Because all the subsystem
215 * files are drained before a css is disassociated with a cgroup,
216 * the matching css from the cgroup's subsys table is guaranteed to
217 * be and stay valid until the enclosing operation is complete.
218 */
219 if (cft->ss)
220 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
221 else
222 return &cgrp->dummy_css;
59f5296b
TH
223}
224EXPORT_SYMBOL_GPL(seq_css);
225
78574cf9
LZ
226/**
227 * cgroup_is_descendant - test ancestry
228 * @cgrp: the cgroup to be tested
229 * @ancestor: possible ancestor of @cgrp
230 *
231 * Test whether @cgrp is a descendant of @ancestor. It also returns %true
232 * if @cgrp == @ancestor. This function is safe to call as long as @cgrp
233 * and @ancestor are accessible.
234 */
235bool cgroup_is_descendant(struct cgroup *cgrp, struct cgroup *ancestor)
236{
237 while (cgrp) {
238 if (cgrp == ancestor)
239 return true;
240 cgrp = cgrp->parent;
241 }
242 return false;
243}
244EXPORT_SYMBOL_GPL(cgroup_is_descendant);
ddbcc7e8 245
e9685a03 246static int cgroup_is_releasable(const struct cgroup *cgrp)
81a6a5cd
PM
247{
248 const int bits =
bd89aabc
PM
249 (1 << CGRP_RELEASABLE) |
250 (1 << CGRP_NOTIFY_ON_RELEASE);
251 return (cgrp->flags & bits) == bits;
81a6a5cd
PM
252}
253
e9685a03 254static int notify_on_release(const struct cgroup *cgrp)
81a6a5cd 255{
bd89aabc 256 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
81a6a5cd
PM
257}
258
1c6727af
TH
259/**
260 * for_each_css - iterate all css's of a cgroup
261 * @css: the iteration cursor
262 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
263 * @cgrp: the target cgroup to iterate css's of
264 *
265 * Should be called under cgroup_mutex.
266 */
267#define for_each_css(css, ssid, cgrp) \
268 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
269 if (!((css) = rcu_dereference_check( \
270 (cgrp)->subsys[(ssid)], \
ace2bee8 271 lockdep_is_held(&cgroup_tree_mutex) || \
1c6727af
TH
272 lockdep_is_held(&cgroup_mutex)))) { } \
273 else
274
30159ec7 275/**
3ed80a62 276 * for_each_subsys - iterate all enabled cgroup subsystems
30159ec7 277 * @ss: the iteration cursor
780cd8b3 278 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
30159ec7 279 */
780cd8b3 280#define for_each_subsys(ss, ssid) \
3ed80a62
TH
281 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT && \
282 (((ss) = cgroup_subsys[ssid]) || true); (ssid)++)
30159ec7 283
5549c497
TH
284/* iterate across the active hierarchies */
285#define for_each_active_root(root) \
286 list_for_each_entry((root), &cgroup_roots, root_list)
ddbcc7e8 287
7ae1bad9
TH
288/**
289 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
290 * @cgrp: the cgroup to be checked for liveness
291 *
47cfcd09
TH
292 * On success, returns true; the mutex should be later unlocked. On
293 * failure returns false with no lock held.
7ae1bad9 294 */
b9777cf8 295static bool cgroup_lock_live_group(struct cgroup *cgrp)
7ae1bad9
TH
296{
297 mutex_lock(&cgroup_mutex);
54766d4a 298 if (cgroup_is_dead(cgrp)) {
7ae1bad9
TH
299 mutex_unlock(&cgroup_mutex);
300 return false;
301 }
302 return true;
303}
7ae1bad9 304
81a6a5cd
PM
305/* the list of cgroups eligible for automatic release. Protected by
306 * release_list_lock */
307static LIST_HEAD(release_list);
cdcc136f 308static DEFINE_RAW_SPINLOCK(release_list_lock);
81a6a5cd
PM
309static void cgroup_release_agent(struct work_struct *work);
310static DECLARE_WORK(release_agent_work, cgroup_release_agent);
bd89aabc 311static void check_for_release(struct cgroup *cgrp);
81a6a5cd 312
69d0206c
TH
313/*
314 * A cgroup can be associated with multiple css_sets as different tasks may
315 * belong to different cgroups on different hierarchies. In the other
316 * direction, a css_set is naturally associated with multiple cgroups.
317 * This M:N relationship is represented by the following link structure
318 * which exists for each association and allows traversing the associations
319 * from both sides.
320 */
321struct cgrp_cset_link {
322 /* the cgroup and css_set this link associates */
323 struct cgroup *cgrp;
324 struct css_set *cset;
325
326 /* list of cgrp_cset_links anchored at cgrp->cset_links */
327 struct list_head cset_link;
328
329 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
330 struct list_head cgrp_link;
817929ec
PM
331};
332
333/* The default css_set - used by init and its children prior to any
334 * hierarchies being mounted. It contains a pointer to the root state
335 * for each subsystem. Also used to anchor the list of css_sets. Not
336 * reference-counted, to improve performance when child cgroups
337 * haven't been created.
338 */
339
340static struct css_set init_css_set;
69d0206c 341static struct cgrp_cset_link init_cgrp_cset_link;
817929ec 342
0942eeee
TH
343/*
344 * css_set_lock protects the list of css_set objects, and the chain of
345 * tasks off each css_set. Nests outside task->alloc_lock due to
72ec7029 346 * css_task_iter_start().
0942eeee 347 */
817929ec
PM
348static DEFINE_RWLOCK(css_set_lock);
349static int css_set_count;
350
7717f7ba
PM
351/*
352 * hash table for cgroup groups. This improves the performance to find
353 * an existing css_set. This hash doesn't (currently) take into
354 * account cgroups in empty hierarchies.
355 */
472b1053 356#define CSS_SET_HASH_BITS 7
0ac801fe 357static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
472b1053 358
0ac801fe 359static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
472b1053 360{
0ac801fe 361 unsigned long key = 0UL;
30159ec7
TH
362 struct cgroup_subsys *ss;
363 int i;
472b1053 364
30159ec7 365 for_each_subsys(ss, i)
0ac801fe
LZ
366 key += (unsigned long)css[i];
367 key = (key >> 16) ^ key;
472b1053 368
0ac801fe 369 return key;
472b1053
LZ
370}
371
0942eeee
TH
372/*
373 * We don't maintain the lists running through each css_set to its task
72ec7029
TH
374 * until after the first call to css_task_iter_start(). This reduces the
375 * fork()/exit() overhead for people who have cgroups compiled into their
376 * kernel but not actually in use.
0942eeee 377 */
8947f9d5 378static int use_task_css_set_links __read_mostly;
817929ec 379
5abb8855 380static void __put_css_set(struct css_set *cset, int taskexit)
b4f48b63 381{
69d0206c 382 struct cgrp_cset_link *link, *tmp_link;
5abb8855 383
146aa1bd
LJ
384 /*
385 * Ensure that the refcount doesn't hit zero while any readers
386 * can see it. Similar to atomic_dec_and_lock(), but for an
387 * rwlock
388 */
5abb8855 389 if (atomic_add_unless(&cset->refcount, -1, 1))
146aa1bd
LJ
390 return;
391 write_lock(&css_set_lock);
5abb8855 392 if (!atomic_dec_and_test(&cset->refcount)) {
146aa1bd
LJ
393 write_unlock(&css_set_lock);
394 return;
395 }
81a6a5cd 396
2c6ab6d2 397 /* This css_set is dead. unlink it and release cgroup refcounts */
5abb8855 398 hash_del(&cset->hlist);
2c6ab6d2
PM
399 css_set_count--;
400
69d0206c 401 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
2c6ab6d2 402 struct cgroup *cgrp = link->cgrp;
5abb8855 403
69d0206c
TH
404 list_del(&link->cset_link);
405 list_del(&link->cgrp_link);
71b5707e 406
ddd69148 407 /* @cgrp can't go away while we're holding css_set_lock */
6f3d828f 408 if (list_empty(&cgrp->cset_links) && notify_on_release(cgrp)) {
81a6a5cd 409 if (taskexit)
bd89aabc
PM
410 set_bit(CGRP_RELEASABLE, &cgrp->flags);
411 check_for_release(cgrp);
81a6a5cd 412 }
2c6ab6d2
PM
413
414 kfree(link);
81a6a5cd 415 }
2c6ab6d2
PM
416
417 write_unlock(&css_set_lock);
5abb8855 418 kfree_rcu(cset, rcu_head);
b4f48b63
PM
419}
420
817929ec
PM
421/*
422 * refcounted get/put for css_set objects
423 */
5abb8855 424static inline void get_css_set(struct css_set *cset)
817929ec 425{
5abb8855 426 atomic_inc(&cset->refcount);
817929ec
PM
427}
428
5abb8855 429static inline void put_css_set(struct css_set *cset)
817929ec 430{
5abb8855 431 __put_css_set(cset, 0);
817929ec
PM
432}
433
5abb8855 434static inline void put_css_set_taskexit(struct css_set *cset)
81a6a5cd 435{
5abb8855 436 __put_css_set(cset, 1);
81a6a5cd
PM
437}
438
b326f9d0 439/**
7717f7ba 440 * compare_css_sets - helper function for find_existing_css_set().
5abb8855
TH
441 * @cset: candidate css_set being tested
442 * @old_cset: existing css_set for a task
7717f7ba
PM
443 * @new_cgrp: cgroup that's being entered by the task
444 * @template: desired set of css pointers in css_set (pre-calculated)
445 *
6f4b7e63 446 * Returns true if "cset" matches "old_cset" except for the hierarchy
7717f7ba
PM
447 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
448 */
5abb8855
TH
449static bool compare_css_sets(struct css_set *cset,
450 struct css_set *old_cset,
7717f7ba
PM
451 struct cgroup *new_cgrp,
452 struct cgroup_subsys_state *template[])
453{
454 struct list_head *l1, *l2;
455
5abb8855 456 if (memcmp(template, cset->subsys, sizeof(cset->subsys))) {
7717f7ba
PM
457 /* Not all subsystems matched */
458 return false;
459 }
460
461 /*
462 * Compare cgroup pointers in order to distinguish between
463 * different cgroups in heirarchies with no subsystems. We
464 * could get by with just this check alone (and skip the
465 * memcmp above) but on most setups the memcmp check will
466 * avoid the need for this more expensive check on almost all
467 * candidates.
468 */
469
69d0206c
TH
470 l1 = &cset->cgrp_links;
471 l2 = &old_cset->cgrp_links;
7717f7ba 472 while (1) {
69d0206c 473 struct cgrp_cset_link *link1, *link2;
5abb8855 474 struct cgroup *cgrp1, *cgrp2;
7717f7ba
PM
475
476 l1 = l1->next;
477 l2 = l2->next;
478 /* See if we reached the end - both lists are equal length. */
69d0206c
TH
479 if (l1 == &cset->cgrp_links) {
480 BUG_ON(l2 != &old_cset->cgrp_links);
7717f7ba
PM
481 break;
482 } else {
69d0206c 483 BUG_ON(l2 == &old_cset->cgrp_links);
7717f7ba
PM
484 }
485 /* Locate the cgroups associated with these links. */
69d0206c
TH
486 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
487 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
488 cgrp1 = link1->cgrp;
489 cgrp2 = link2->cgrp;
7717f7ba 490 /* Hierarchies should be linked in the same order. */
5abb8855 491 BUG_ON(cgrp1->root != cgrp2->root);
7717f7ba
PM
492
493 /*
494 * If this hierarchy is the hierarchy of the cgroup
495 * that's changing, then we need to check that this
496 * css_set points to the new cgroup; if it's any other
497 * hierarchy, then this css_set should point to the
498 * same cgroup as the old css_set.
499 */
5abb8855
TH
500 if (cgrp1->root == new_cgrp->root) {
501 if (cgrp1 != new_cgrp)
7717f7ba
PM
502 return false;
503 } else {
5abb8855 504 if (cgrp1 != cgrp2)
7717f7ba
PM
505 return false;
506 }
507 }
508 return true;
509}
510
b326f9d0
TH
511/**
512 * find_existing_css_set - init css array and find the matching css_set
513 * @old_cset: the css_set that we're using before the cgroup transition
514 * @cgrp: the cgroup that we're moving into
515 * @template: out param for the new set of csses, should be clear on entry
817929ec 516 */
5abb8855
TH
517static struct css_set *find_existing_css_set(struct css_set *old_cset,
518 struct cgroup *cgrp,
519 struct cgroup_subsys_state *template[])
b4f48b63 520{
bd89aabc 521 struct cgroupfs_root *root = cgrp->root;
30159ec7 522 struct cgroup_subsys *ss;
5abb8855 523 struct css_set *cset;
0ac801fe 524 unsigned long key;
b326f9d0 525 int i;
817929ec 526
aae8aab4
BB
527 /*
528 * Build the set of subsystem state objects that we want to see in the
529 * new css_set. while subsystems can change globally, the entries here
530 * won't change, so no need for locking.
531 */
30159ec7 532 for_each_subsys(ss, i) {
a1a71b45 533 if (root->subsys_mask & (1UL << i)) {
817929ec
PM
534 /* Subsystem is in this hierarchy. So we want
535 * the subsystem state from the new
536 * cgroup */
ca8bdcaf 537 template[i] = cgroup_css(cgrp, ss);
817929ec
PM
538 } else {
539 /* Subsystem is not in this hierarchy, so we
540 * don't want to change the subsystem state */
5abb8855 541 template[i] = old_cset->subsys[i];
817929ec
PM
542 }
543 }
544
0ac801fe 545 key = css_set_hash(template);
5abb8855
TH
546 hash_for_each_possible(css_set_table, cset, hlist, key) {
547 if (!compare_css_sets(cset, old_cset, cgrp, template))
7717f7ba
PM
548 continue;
549
550 /* This css_set matches what we need */
5abb8855 551 return cset;
472b1053 552 }
817929ec
PM
553
554 /* No existing cgroup group matched */
555 return NULL;
556}
557
69d0206c 558static void free_cgrp_cset_links(struct list_head *links_to_free)
36553434 559{
69d0206c 560 struct cgrp_cset_link *link, *tmp_link;
36553434 561
69d0206c
TH
562 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
563 list_del(&link->cset_link);
36553434
LZ
564 kfree(link);
565 }
566}
567
69d0206c
TH
568/**
569 * allocate_cgrp_cset_links - allocate cgrp_cset_links
570 * @count: the number of links to allocate
571 * @tmp_links: list_head the allocated links are put on
572 *
573 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
574 * through ->cset_link. Returns 0 on success or -errno.
817929ec 575 */
69d0206c 576static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
817929ec 577{
69d0206c 578 struct cgrp_cset_link *link;
817929ec 579 int i;
69d0206c
TH
580
581 INIT_LIST_HEAD(tmp_links);
582
817929ec 583 for (i = 0; i < count; i++) {
f4f4be2b 584 link = kzalloc(sizeof(*link), GFP_KERNEL);
817929ec 585 if (!link) {
69d0206c 586 free_cgrp_cset_links(tmp_links);
817929ec
PM
587 return -ENOMEM;
588 }
69d0206c 589 list_add(&link->cset_link, tmp_links);
817929ec
PM
590 }
591 return 0;
592}
593
c12f65d4
LZ
594/**
595 * link_css_set - a helper function to link a css_set to a cgroup
69d0206c 596 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
5abb8855 597 * @cset: the css_set to be linked
c12f65d4
LZ
598 * @cgrp: the destination cgroup
599 */
69d0206c
TH
600static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
601 struct cgroup *cgrp)
c12f65d4 602{
69d0206c 603 struct cgrp_cset_link *link;
c12f65d4 604
69d0206c
TH
605 BUG_ON(list_empty(tmp_links));
606 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
607 link->cset = cset;
7717f7ba 608 link->cgrp = cgrp;
69d0206c 609 list_move(&link->cset_link, &cgrp->cset_links);
7717f7ba
PM
610 /*
611 * Always add links to the tail of the list so that the list
612 * is sorted by order of hierarchy creation
613 */
69d0206c 614 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
c12f65d4
LZ
615}
616
b326f9d0
TH
617/**
618 * find_css_set - return a new css_set with one cgroup updated
619 * @old_cset: the baseline css_set
620 * @cgrp: the cgroup to be updated
621 *
622 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
623 * substituted into the appropriate hierarchy.
817929ec 624 */
5abb8855
TH
625static struct css_set *find_css_set(struct css_set *old_cset,
626 struct cgroup *cgrp)
817929ec 627{
b326f9d0 628 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
5abb8855 629 struct css_set *cset;
69d0206c
TH
630 struct list_head tmp_links;
631 struct cgrp_cset_link *link;
0ac801fe 632 unsigned long key;
472b1053 633
b326f9d0
TH
634 lockdep_assert_held(&cgroup_mutex);
635
817929ec
PM
636 /* First see if we already have a cgroup group that matches
637 * the desired set */
7e9abd89 638 read_lock(&css_set_lock);
5abb8855
TH
639 cset = find_existing_css_set(old_cset, cgrp, template);
640 if (cset)
641 get_css_set(cset);
7e9abd89 642 read_unlock(&css_set_lock);
817929ec 643
5abb8855
TH
644 if (cset)
645 return cset;
817929ec 646
f4f4be2b 647 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
5abb8855 648 if (!cset)
817929ec
PM
649 return NULL;
650
69d0206c 651 /* Allocate all the cgrp_cset_link objects that we'll need */
9871bf95 652 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
5abb8855 653 kfree(cset);
817929ec
PM
654 return NULL;
655 }
656
5abb8855 657 atomic_set(&cset->refcount, 1);
69d0206c 658 INIT_LIST_HEAD(&cset->cgrp_links);
5abb8855
TH
659 INIT_LIST_HEAD(&cset->tasks);
660 INIT_HLIST_NODE(&cset->hlist);
817929ec
PM
661
662 /* Copy the set of subsystem state objects generated in
663 * find_existing_css_set() */
5abb8855 664 memcpy(cset->subsys, template, sizeof(cset->subsys));
817929ec
PM
665
666 write_lock(&css_set_lock);
667 /* Add reference counts and links from the new css_set. */
69d0206c 668 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
7717f7ba 669 struct cgroup *c = link->cgrp;
69d0206c 670
7717f7ba
PM
671 if (c->root == cgrp->root)
672 c = cgrp;
69d0206c 673 link_css_set(&tmp_links, cset, c);
7717f7ba 674 }
817929ec 675
69d0206c 676 BUG_ON(!list_empty(&tmp_links));
817929ec 677
817929ec 678 css_set_count++;
472b1053
LZ
679
680 /* Add this cgroup group to the hash table */
5abb8855
TH
681 key = css_set_hash(cset->subsys);
682 hash_add(css_set_table, &cset->hlist, key);
472b1053 683
817929ec
PM
684 write_unlock(&css_set_lock);
685
5abb8855 686 return cset;
b4f48b63
PM
687}
688
2bd59d48
TH
689static struct cgroupfs_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
690{
691 struct cgroup *top_cgrp = kf_root->kn->priv;
692
693 return top_cgrp->root;
694}
695
f2e85d57
TH
696static int cgroup_init_root_id(struct cgroupfs_root *root, int start, int end)
697{
698 int id;
699
700 lockdep_assert_held(&cgroup_mutex);
701
702 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, start, end,
703 GFP_KERNEL);
704 if (id < 0)
705 return id;
706
707 root->hierarchy_id = id;
708 return 0;
709}
710
711static void cgroup_exit_root_id(struct cgroupfs_root *root)
712{
713 lockdep_assert_held(&cgroup_mutex);
714
715 if (root->hierarchy_id) {
716 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
717 root->hierarchy_id = 0;
718 }
719}
720
721static void cgroup_free_root(struct cgroupfs_root *root)
722{
723 if (root) {
724 /* hierarhcy ID shoulid already have been released */
725 WARN_ON_ONCE(root->hierarchy_id);
726
727 idr_destroy(&root->cgroup_idr);
728 kfree(root);
729 }
730}
731
776f02fa 732static void cgroup_destroy_root(struct cgroupfs_root *root)
59f5296b 733{
f2e85d57
TH
734 struct cgroup *cgrp = &root->top_cgroup;
735 struct cgrp_cset_link *link, *tmp_link;
736 int ret;
737
2bd59d48 738 mutex_lock(&cgroup_tree_mutex);
2bd59d48 739 mutex_lock(&cgroup_mutex);
f2e85d57 740
776f02fa 741 BUG_ON(atomic_read(&root->nr_cgrps));
f2e85d57
TH
742 BUG_ON(!list_empty(&cgrp->children));
743
f2e85d57
TH
744 /* Rebind all subsystems back to the default hierarchy */
745 if (root->flags & CGRP_ROOT_SUBSYS_BOUND) {
746 ret = rebind_subsystems(root, 0, root->subsys_mask);
747 /* Shouldn't be able to fail ... */
748 BUG_ON(ret);
749 }
750
751 /*
752 * Release all the links from cset_links to this hierarchy's
753 * root cgroup
754 */
755 write_lock(&css_set_lock);
756
757 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
758 list_del(&link->cset_link);
759 list_del(&link->cgrp_link);
760 kfree(link);
761 }
762 write_unlock(&css_set_lock);
763
764 if (!list_empty(&root->root_list)) {
765 list_del(&root->root_list);
766 cgroup_root_count--;
767 }
768
769 cgroup_exit_root_id(root);
770
771 mutex_unlock(&cgroup_mutex);
772 mutex_unlock(&cgroup_tree_mutex);
f2e85d57 773
2bd59d48 774 kernfs_destroy_root(root->kf_root);
f2e85d57
TH
775 cgroup_free_root(root);
776}
777
7717f7ba
PM
778/*
779 * Return the cgroup for "task" from the given hierarchy. Must be
780 * called with cgroup_mutex held.
781 */
782static struct cgroup *task_cgroup_from_root(struct task_struct *task,
783 struct cgroupfs_root *root)
784{
5abb8855 785 struct css_set *cset;
7717f7ba
PM
786 struct cgroup *res = NULL;
787
788 BUG_ON(!mutex_is_locked(&cgroup_mutex));
789 read_lock(&css_set_lock);
790 /*
791 * No need to lock the task - since we hold cgroup_mutex the
792 * task can't change groups, so the only thing that can happen
793 * is that it exits and its css is set back to init_css_set.
794 */
a8ad805c 795 cset = task_css_set(task);
5abb8855 796 if (cset == &init_css_set) {
7717f7ba
PM
797 res = &root->top_cgroup;
798 } else {
69d0206c
TH
799 struct cgrp_cset_link *link;
800
801 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 802 struct cgroup *c = link->cgrp;
69d0206c 803
7717f7ba
PM
804 if (c->root == root) {
805 res = c;
806 break;
807 }
808 }
809 }
810 read_unlock(&css_set_lock);
811 BUG_ON(!res);
812 return res;
813}
814
ddbcc7e8
PM
815/*
816 * There is one global cgroup mutex. We also require taking
817 * task_lock() when dereferencing a task's cgroup subsys pointers.
818 * See "The task_lock() exception", at the end of this comment.
819 *
820 * A task must hold cgroup_mutex to modify cgroups.
821 *
822 * Any task can increment and decrement the count field without lock.
823 * So in general, code holding cgroup_mutex can't rely on the count
824 * field not changing. However, if the count goes to zero, then only
956db3ca 825 * cgroup_attach_task() can increment it again. Because a count of zero
ddbcc7e8
PM
826 * means that no tasks are currently attached, therefore there is no
827 * way a task attached to that cgroup can fork (the other way to
828 * increment the count). So code holding cgroup_mutex can safely
829 * assume that if the count is zero, it will stay zero. Similarly, if
830 * a task holds cgroup_mutex on a cgroup with zero count, it
831 * knows that the cgroup won't be removed, as cgroup_rmdir()
832 * needs that mutex.
833 *
ddbcc7e8
PM
834 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
835 * (usually) take cgroup_mutex. These are the two most performance
836 * critical pieces of code here. The exception occurs on cgroup_exit(),
837 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
838 * is taken, and if the cgroup count is zero, a usermode call made
a043e3b2
LZ
839 * to the release agent with the name of the cgroup (path relative to
840 * the root of cgroup file system) as the argument.
ddbcc7e8
PM
841 *
842 * A cgroup can only be deleted if both its 'count' of using tasks
843 * is zero, and its list of 'children' cgroups is empty. Since all
844 * tasks in the system use _some_ cgroup, and since there is always at
845 * least one task in the system (init, pid == 1), therefore, top_cgroup
846 * always has either children cgroups and/or using tasks. So we don't
847 * need a special hack to ensure that top_cgroup cannot be deleted.
848 *
849 * The task_lock() exception
850 *
851 * The need for this exception arises from the action of
d0b2fdd2 852 * cgroup_attach_task(), which overwrites one task's cgroup pointer with
a043e3b2 853 * another. It does so using cgroup_mutex, however there are
ddbcc7e8
PM
854 * several performance critical places that need to reference
855 * task->cgroup without the expense of grabbing a system global
856 * mutex. Therefore except as noted below, when dereferencing or, as
d0b2fdd2 857 * in cgroup_attach_task(), modifying a task's cgroup pointer we use
ddbcc7e8
PM
858 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
859 * the task_struct routinely used for such matters.
860 *
861 * P.S. One more locking exception. RCU is used to guard the
956db3ca 862 * update of a tasks cgroup pointer by cgroup_attach_task()
ddbcc7e8
PM
863 */
864
628f7cd4 865static int cgroup_populate_dir(struct cgroup *cgrp, unsigned long subsys_mask);
2bd59d48 866static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
828c0950 867static const struct file_operations proc_cgroupstats_operations;
a424316c 868
8d7e6fb0
TH
869static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
870 char *buf)
871{
872 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
873 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
874 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
875 cft->ss->name, cft->name);
876 else
877 strncpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
878 return buf;
879}
880
f2e85d57
TH
881/**
882 * cgroup_file_mode - deduce file mode of a control file
883 * @cft: the control file in question
884 *
885 * returns cft->mode if ->mode is not 0
886 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
887 * returns S_IRUGO if it has only a read handler
888 * returns S_IWUSR if it has only a write hander
889 */
890static umode_t cgroup_file_mode(const struct cftype *cft)
891{
892 umode_t mode = 0;
893
894 if (cft->mode)
895 return cft->mode;
896
897 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
898 mode |= S_IRUGO;
899
900 if (cft->write_u64 || cft->write_s64 || cft->write_string ||
901 cft->trigger)
902 mode |= S_IWUSR;
903
904 return mode;
905}
906
be445626
LZ
907static void cgroup_free_fn(struct work_struct *work)
908{
ea15f8cc 909 struct cgroup *cgrp = container_of(work, struct cgroup, destroy_work);
be445626 910
3c9c825b 911 atomic_dec(&cgrp->root->nr_cgrps);
b1a21367 912 cgroup_pidlist_destroy_all(cgrp);
be445626 913
776f02fa
TH
914 if (cgrp->parent) {
915 /*
916 * We get a ref to the parent, and put the ref when this
917 * cgroup is being freed, so it's guaranteed that the
918 * parent won't be destroyed before its children.
919 */
920 cgroup_put(cgrp->parent);
921 kernfs_put(cgrp->kn);
922 kfree(cgrp);
923 } else {
924 /*
925 * This is top cgroup's refcnt reaching zero, which
926 * indicates that the root should be released.
927 */
928 cgroup_destroy_root(cgrp->root);
929 }
be445626
LZ
930}
931
932static void cgroup_free_rcu(struct rcu_head *head)
933{
934 struct cgroup *cgrp = container_of(head, struct cgroup, rcu_head);
935
ea15f8cc 936 INIT_WORK(&cgrp->destroy_work, cgroup_free_fn);
e5fca243 937 queue_work(cgroup_destroy_wq, &cgrp->destroy_work);
be445626
LZ
938}
939
59f5296b
TH
940static void cgroup_get(struct cgroup *cgrp)
941{
2bd59d48
TH
942 WARN_ON_ONCE(cgroup_is_dead(cgrp));
943 WARN_ON_ONCE(atomic_read(&cgrp->refcnt) <= 0);
944 atomic_inc(&cgrp->refcnt);
ddbcc7e8
PM
945}
946
59f5296b
TH
947static void cgroup_put(struct cgroup *cgrp)
948{
2bd59d48
TH
949 if (!atomic_dec_and_test(&cgrp->refcnt))
950 return;
776f02fa 951 if (WARN_ON_ONCE(cgrp->parent && !cgroup_is_dead(cgrp)))
2bd59d48 952 return;
59f5296b 953
2bd59d48
TH
954 /*
955 * XXX: cgrp->id is only used to look up css's. As cgroup and
956 * css's lifetimes will be decoupled, it should be made
957 * per-subsystem and moved to css->id so that lookups are
958 * successful until the target css is released.
959 */
960 mutex_lock(&cgroup_mutex);
961 idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
962 mutex_unlock(&cgroup_mutex);
963 cgrp->id = -1;
ddbcc7e8 964
2bd59d48 965 call_rcu(&cgrp->rcu_head, cgroup_free_rcu);
ddbcc7e8
PM
966}
967
2739d3cc 968static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
05ef1d7c 969{
2bd59d48 970 char name[CGROUP_FILE_NAME_MAX];
05ef1d7c 971
ace2bee8 972 lockdep_assert_held(&cgroup_tree_mutex);
2bd59d48 973 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
05ef1d7c
TH
974}
975
13af07df 976/**
628f7cd4 977 * cgroup_clear_dir - remove subsys files in a cgroup directory
8f89140a 978 * @cgrp: target cgroup
13af07df
AR
979 * @subsys_mask: mask of the subsystem ids whose files should be removed
980 */
628f7cd4 981static void cgroup_clear_dir(struct cgroup *cgrp, unsigned long subsys_mask)
05ef1d7c 982{
13af07df 983 struct cgroup_subsys *ss;
b420ba7d 984 int i;
05ef1d7c 985
b420ba7d 986 for_each_subsys(ss, i) {
0adb0704 987 struct cftype *cfts;
b420ba7d
TH
988
989 if (!test_bit(i, &subsys_mask))
13af07df 990 continue;
0adb0704
TH
991 list_for_each_entry(cfts, &ss->cfts, node)
992 cgroup_addrm_files(cgrp, cfts, false);
13af07df 993 }
ddbcc7e8
PM
994}
995
ddbcc7e8 996static int rebind_subsystems(struct cgroupfs_root *root,
a8a648c4 997 unsigned long added_mask, unsigned removed_mask)
ddbcc7e8 998{
bd89aabc 999 struct cgroup *cgrp = &root->top_cgroup;
30159ec7 1000 struct cgroup_subsys *ss;
3126121f 1001 int i, ret;
ddbcc7e8 1002
ace2bee8
TH
1003 lockdep_assert_held(&cgroup_tree_mutex);
1004 lockdep_assert_held(&cgroup_mutex);
aae8aab4 1005
ddbcc7e8 1006 /* Check that any added subsystems are currently free */
3ed80a62
TH
1007 for_each_subsys(ss, i)
1008 if ((added_mask & (1 << i)) && ss->root != &cgroup_dummy_root)
1009 return -EBUSY;
ddbcc7e8 1010
3126121f
TH
1011 ret = cgroup_populate_dir(cgrp, added_mask);
1012 if (ret)
3ed80a62 1013 return ret;
3126121f
TH
1014
1015 /*
1016 * Nothing can fail from this point on. Remove files for the
1017 * removed subsystems and rebind each subsystem.
1018 */
4ac06017 1019 mutex_unlock(&cgroup_mutex);
3126121f 1020 cgroup_clear_dir(cgrp, removed_mask);
4ac06017 1021 mutex_lock(&cgroup_mutex);
ddbcc7e8 1022
30159ec7 1023 for_each_subsys(ss, i) {
ddbcc7e8 1024 unsigned long bit = 1UL << i;
30159ec7 1025
a1a71b45 1026 if (bit & added_mask) {
ddbcc7e8 1027 /* We're binding this subsystem to this hierarchy */
ca8bdcaf
TH
1028 BUG_ON(cgroup_css(cgrp, ss));
1029 BUG_ON(!cgroup_css(cgroup_dummy_top, ss));
1030 BUG_ON(cgroup_css(cgroup_dummy_top, ss)->cgroup != cgroup_dummy_top);
a8a648c4 1031
73e80ed8 1032 rcu_assign_pointer(cgrp->subsys[i],
ca8bdcaf
TH
1033 cgroup_css(cgroup_dummy_top, ss));
1034 cgroup_css(cgrp, ss)->cgroup = cgrp;
a8a648c4 1035
b2aa30f7 1036 ss->root = root;
ddbcc7e8 1037 if (ss->bind)
ca8bdcaf 1038 ss->bind(cgroup_css(cgrp, ss));
a8a648c4 1039
cf5d5941 1040 /* refcount was already taken, and we're keeping it */
a8a648c4 1041 root->subsys_mask |= bit;
a1a71b45 1042 } else if (bit & removed_mask) {
ddbcc7e8 1043 /* We're removing this subsystem */
ca8bdcaf
TH
1044 BUG_ON(cgroup_css(cgrp, ss) != cgroup_css(cgroup_dummy_top, ss));
1045 BUG_ON(cgroup_css(cgrp, ss)->cgroup != cgrp);
a8a648c4 1046
ddbcc7e8 1047 if (ss->bind)
ca8bdcaf 1048 ss->bind(cgroup_css(cgroup_dummy_top, ss));
73e80ed8 1049
ca8bdcaf 1050 cgroup_css(cgroup_dummy_top, ss)->cgroup = cgroup_dummy_top;
73e80ed8
TH
1051 RCU_INIT_POINTER(cgrp->subsys[i], NULL);
1052
9871bf95 1053 cgroup_subsys[i]->root = &cgroup_dummy_root;
a8a648c4 1054 root->subsys_mask &= ~bit;
ddbcc7e8
PM
1055 }
1056 }
ddbcc7e8 1057
1672d040
TH
1058 /*
1059 * Mark @root has finished binding subsystems. @root->subsys_mask
1060 * now matches the bound subsystems.
1061 */
1062 root->flags |= CGRP_ROOT_SUBSYS_BOUND;
2bd59d48 1063 kernfs_activate(cgrp->kn);
1672d040 1064
ddbcc7e8
PM
1065 return 0;
1066}
1067
2bd59d48
TH
1068static int cgroup_show_options(struct seq_file *seq,
1069 struct kernfs_root *kf_root)
ddbcc7e8 1070{
2bd59d48 1071 struct cgroupfs_root *root = cgroup_root_from_kf(kf_root);
ddbcc7e8 1072 struct cgroup_subsys *ss;
b85d2040 1073 int ssid;
ddbcc7e8 1074
b85d2040
TH
1075 for_each_subsys(ss, ssid)
1076 if (root->subsys_mask & (1 << ssid))
1077 seq_printf(seq, ",%s", ss->name);
873fe09e
TH
1078 if (root->flags & CGRP_ROOT_SANE_BEHAVIOR)
1079 seq_puts(seq, ",sane_behavior");
93438629 1080 if (root->flags & CGRP_ROOT_NOPREFIX)
ddbcc7e8 1081 seq_puts(seq, ",noprefix");
93438629 1082 if (root->flags & CGRP_ROOT_XATTR)
03b1cde6 1083 seq_puts(seq, ",xattr");
69e943b7
TH
1084
1085 spin_lock(&release_agent_path_lock);
81a6a5cd
PM
1086 if (strlen(root->release_agent_path))
1087 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
69e943b7
TH
1088 spin_unlock(&release_agent_path_lock);
1089
2260e7fc 1090 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->top_cgroup.flags))
97978e6d 1091 seq_puts(seq, ",clone_children");
c6d57f33
PM
1092 if (strlen(root->name))
1093 seq_printf(seq, ",name=%s", root->name);
ddbcc7e8
PM
1094 return 0;
1095}
1096
1097struct cgroup_sb_opts {
a1a71b45 1098 unsigned long subsys_mask;
ddbcc7e8 1099 unsigned long flags;
81a6a5cd 1100 char *release_agent;
2260e7fc 1101 bool cpuset_clone_children;
c6d57f33 1102 char *name;
2c6ab6d2
PM
1103 /* User explicitly requested empty subsystem */
1104 bool none;
ddbcc7e8
PM
1105};
1106
aae8aab4 1107/*
9871bf95
TH
1108 * Convert a hierarchy specifier into a bitmask of subsystems and
1109 * flags. Call with cgroup_mutex held to protect the cgroup_subsys[]
1110 * array. This function takes refcounts on subsystems to be used, unless it
1111 * returns error, in which case no refcounts are taken.
aae8aab4 1112 */
cf5d5941 1113static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
ddbcc7e8 1114{
32a8cf23
DL
1115 char *token, *o = data;
1116 bool all_ss = false, one_ss = false;
f9ab5b5b 1117 unsigned long mask = (unsigned long)-1;
30159ec7
TH
1118 struct cgroup_subsys *ss;
1119 int i;
f9ab5b5b 1120
aae8aab4
BB
1121 BUG_ON(!mutex_is_locked(&cgroup_mutex));
1122
f9ab5b5b 1123#ifdef CONFIG_CPUSETS
073219e9 1124 mask = ~(1UL << cpuset_cgrp_id);
f9ab5b5b 1125#endif
ddbcc7e8 1126
c6d57f33 1127 memset(opts, 0, sizeof(*opts));
ddbcc7e8
PM
1128
1129 while ((token = strsep(&o, ",")) != NULL) {
1130 if (!*token)
1131 return -EINVAL;
32a8cf23 1132 if (!strcmp(token, "none")) {
2c6ab6d2
PM
1133 /* Explicitly have no subsystems */
1134 opts->none = true;
32a8cf23
DL
1135 continue;
1136 }
1137 if (!strcmp(token, "all")) {
1138 /* Mutually exclusive option 'all' + subsystem name */
1139 if (one_ss)
1140 return -EINVAL;
1141 all_ss = true;
1142 continue;
1143 }
873fe09e
TH
1144 if (!strcmp(token, "__DEVEL__sane_behavior")) {
1145 opts->flags |= CGRP_ROOT_SANE_BEHAVIOR;
1146 continue;
1147 }
32a8cf23 1148 if (!strcmp(token, "noprefix")) {
93438629 1149 opts->flags |= CGRP_ROOT_NOPREFIX;
32a8cf23
DL
1150 continue;
1151 }
1152 if (!strcmp(token, "clone_children")) {
2260e7fc 1153 opts->cpuset_clone_children = true;
32a8cf23
DL
1154 continue;
1155 }
03b1cde6 1156 if (!strcmp(token, "xattr")) {
93438629 1157 opts->flags |= CGRP_ROOT_XATTR;
03b1cde6
AR
1158 continue;
1159 }
32a8cf23 1160 if (!strncmp(token, "release_agent=", 14)) {
81a6a5cd
PM
1161 /* Specifying two release agents is forbidden */
1162 if (opts->release_agent)
1163 return -EINVAL;
c6d57f33 1164 opts->release_agent =
e400c285 1165 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
81a6a5cd
PM
1166 if (!opts->release_agent)
1167 return -ENOMEM;
32a8cf23
DL
1168 continue;
1169 }
1170 if (!strncmp(token, "name=", 5)) {
c6d57f33
PM
1171 const char *name = token + 5;
1172 /* Can't specify an empty name */
1173 if (!strlen(name))
1174 return -EINVAL;
1175 /* Must match [\w.-]+ */
1176 for (i = 0; i < strlen(name); i++) {
1177 char c = name[i];
1178 if (isalnum(c))
1179 continue;
1180 if ((c == '.') || (c == '-') || (c == '_'))
1181 continue;
1182 return -EINVAL;
1183 }
1184 /* Specifying two names is forbidden */
1185 if (opts->name)
1186 return -EINVAL;
1187 opts->name = kstrndup(name,
e400c285 1188 MAX_CGROUP_ROOT_NAMELEN - 1,
c6d57f33
PM
1189 GFP_KERNEL);
1190 if (!opts->name)
1191 return -ENOMEM;
32a8cf23
DL
1192
1193 continue;
1194 }
1195
30159ec7 1196 for_each_subsys(ss, i) {
32a8cf23
DL
1197 if (strcmp(token, ss->name))
1198 continue;
1199 if (ss->disabled)
1200 continue;
1201
1202 /* Mutually exclusive option 'all' + subsystem name */
1203 if (all_ss)
1204 return -EINVAL;
a1a71b45 1205 set_bit(i, &opts->subsys_mask);
32a8cf23
DL
1206 one_ss = true;
1207
1208 break;
1209 }
1210 if (i == CGROUP_SUBSYS_COUNT)
1211 return -ENOENT;
1212 }
1213
1214 /*
1215 * If the 'all' option was specified select all the subsystems,
0d19ea86
LZ
1216 * otherwise if 'none', 'name=' and a subsystem name options
1217 * were not specified, let's default to 'all'
32a8cf23 1218 */
30159ec7
TH
1219 if (all_ss || (!one_ss && !opts->none && !opts->name))
1220 for_each_subsys(ss, i)
1221 if (!ss->disabled)
1222 set_bit(i, &opts->subsys_mask);
ddbcc7e8 1223
2c6ab6d2
PM
1224 /* Consistency checks */
1225
873fe09e
TH
1226 if (opts->flags & CGRP_ROOT_SANE_BEHAVIOR) {
1227 pr_warning("cgroup: sane_behavior: this is still under development and its behaviors will change, proceed at your own risk\n");
1228
d3ba07c3
TH
1229 if ((opts->flags & (CGRP_ROOT_NOPREFIX | CGRP_ROOT_XATTR)) ||
1230 opts->cpuset_clone_children || opts->release_agent ||
1231 opts->name) {
1232 pr_err("cgroup: sane_behavior: noprefix, xattr, clone_children, release_agent and name are not allowed\n");
873fe09e
TH
1233 return -EINVAL;
1234 }
873fe09e
TH
1235 }
1236
f9ab5b5b
LZ
1237 /*
1238 * Option noprefix was introduced just for backward compatibility
1239 * with the old cpuset, so we allow noprefix only if mounting just
1240 * the cpuset subsystem.
1241 */
93438629 1242 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
f9ab5b5b
LZ
1243 return -EINVAL;
1244
2c6ab6d2
PM
1245
1246 /* Can't specify "none" and some subsystems */
a1a71b45 1247 if (opts->subsys_mask && opts->none)
2c6ab6d2
PM
1248 return -EINVAL;
1249
1250 /*
1251 * We either have to specify by name or by subsystems. (So all
1252 * empty hierarchies must have a name).
1253 */
a1a71b45 1254 if (!opts->subsys_mask && !opts->name)
ddbcc7e8
PM
1255 return -EINVAL;
1256
1257 return 0;
1258}
1259
2bd59d48 1260static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
ddbcc7e8
PM
1261{
1262 int ret = 0;
2bd59d48 1263 struct cgroupfs_root *root = cgroup_root_from_kf(kf_root);
ddbcc7e8 1264 struct cgroup_sb_opts opts;
a1a71b45 1265 unsigned long added_mask, removed_mask;
ddbcc7e8 1266
873fe09e
TH
1267 if (root->flags & CGRP_ROOT_SANE_BEHAVIOR) {
1268 pr_err("cgroup: sane_behavior: remount is not allowed\n");
1269 return -EINVAL;
1270 }
1271
ace2bee8 1272 mutex_lock(&cgroup_tree_mutex);
ddbcc7e8
PM
1273 mutex_lock(&cgroup_mutex);
1274
1275 /* See what subsystems are wanted */
1276 ret = parse_cgroupfs_options(data, &opts);
1277 if (ret)
1278 goto out_unlock;
1279
a8a648c4 1280 if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
8b5a5a9d
TH
1281 pr_warning("cgroup: option changes via remount are deprecated (pid=%d comm=%s)\n",
1282 task_tgid_nr(current), current->comm);
1283
a1a71b45
AR
1284 added_mask = opts.subsys_mask & ~root->subsys_mask;
1285 removed_mask = root->subsys_mask & ~opts.subsys_mask;
13af07df 1286
cf5d5941 1287 /* Don't allow flags or name to change at remount */
0ce6cba3 1288 if (((opts.flags ^ root->flags) & CGRP_ROOT_OPTION_MASK) ||
cf5d5941 1289 (opts.name && strcmp(opts.name, root->name))) {
0ce6cba3
TH
1290 pr_err("cgroup: option or name mismatch, new: 0x%lx \"%s\", old: 0x%lx \"%s\"\n",
1291 opts.flags & CGRP_ROOT_OPTION_MASK, opts.name ?: "",
1292 root->flags & CGRP_ROOT_OPTION_MASK, root->name);
c6d57f33
PM
1293 ret = -EINVAL;
1294 goto out_unlock;
1295 }
1296
f172e67c 1297 /* remounting is not allowed for populated hierarchies */
3c9c825b 1298 if (!list_empty(&root->top_cgroup.children)) {
f172e67c 1299 ret = -EBUSY;
0670e08b 1300 goto out_unlock;
cf5d5941 1301 }
ddbcc7e8 1302
a8a648c4 1303 ret = rebind_subsystems(root, added_mask, removed_mask);
3126121f 1304 if (ret)
0670e08b 1305 goto out_unlock;
ddbcc7e8 1306
69e943b7
TH
1307 if (opts.release_agent) {
1308 spin_lock(&release_agent_path_lock);
81a6a5cd 1309 strcpy(root->release_agent_path, opts.release_agent);
69e943b7
TH
1310 spin_unlock(&release_agent_path_lock);
1311 }
ddbcc7e8 1312 out_unlock:
66bdc9cf 1313 kfree(opts.release_agent);
c6d57f33 1314 kfree(opts.name);
ddbcc7e8 1315 mutex_unlock(&cgroup_mutex);
ace2bee8 1316 mutex_unlock(&cgroup_tree_mutex);
ddbcc7e8
PM
1317 return ret;
1318}
1319
cc31edce
PM
1320static void init_cgroup_housekeeping(struct cgroup *cgrp)
1321{
2bd59d48 1322 atomic_set(&cgrp->refcnt, 1);
cc31edce
PM
1323 INIT_LIST_HEAD(&cgrp->sibling);
1324 INIT_LIST_HEAD(&cgrp->children);
69d0206c 1325 INIT_LIST_HEAD(&cgrp->cset_links);
cc31edce 1326 INIT_LIST_HEAD(&cgrp->release_list);
72a8cb30
BB
1327 INIT_LIST_HEAD(&cgrp->pidlists);
1328 mutex_init(&cgrp->pidlist_mutex);
67f4c36f 1329 cgrp->dummy_css.cgroup = cgrp;
cc31edce 1330}
c6d57f33 1331
ddbcc7e8
PM
1332static void init_cgroup_root(struct cgroupfs_root *root)
1333{
bd89aabc 1334 struct cgroup *cgrp = &root->top_cgroup;
b0ca5a84 1335
ddbcc7e8 1336 INIT_LIST_HEAD(&root->root_list);
3c9c825b 1337 atomic_set(&root->nr_cgrps, 1);
bd89aabc 1338 cgrp->root = root;
cc31edce 1339 init_cgroup_housekeeping(cgrp);
4e96ee8e 1340 idr_init(&root->cgroup_idr);
ddbcc7e8
PM
1341}
1342
c6d57f33
PM
1343static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts)
1344{
1345 struct cgroupfs_root *root;
1346
a1a71b45 1347 if (!opts->subsys_mask && !opts->none)
2bd59d48 1348 return ERR_PTR(-EINVAL);
c6d57f33
PM
1349
1350 root = kzalloc(sizeof(*root), GFP_KERNEL);
1351 if (!root)
1352 return ERR_PTR(-ENOMEM);
1353
1354 init_cgroup_root(root);
2c6ab6d2 1355
1672d040
TH
1356 /*
1357 * We need to set @root->subsys_mask now so that @root can be
1358 * matched by cgroup_test_super() before it finishes
1359 * initialization; otherwise, competing mounts with the same
1360 * options may try to bind the same subsystems instead of waiting
1361 * for the first one leading to unexpected mount errors.
1362 * SUBSYS_BOUND will be set once actual binding is complete.
1363 */
a1a71b45 1364 root->subsys_mask = opts->subsys_mask;
c6d57f33
PM
1365 root->flags = opts->flags;
1366 if (opts->release_agent)
1367 strcpy(root->release_agent_path, opts->release_agent);
1368 if (opts->name)
1369 strcpy(root->name, opts->name);
2260e7fc
TH
1370 if (opts->cpuset_clone_children)
1371 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->top_cgroup.flags);
c6d57f33
PM
1372 return root;
1373}
1374
d427dfeb
TH
1375static int cgroup_setup_root(struct cgroupfs_root *root)
1376{
1377 LIST_HEAD(tmp_links);
d427dfeb 1378 struct cgroup *root_cgrp = &root->top_cgroup;
d427dfeb 1379 struct css_set *cset;
d427dfeb
TH
1380 int i, ret;
1381
1382 lockdep_assert_held(&cgroup_tree_mutex);
1383 lockdep_assert_held(&cgroup_mutex);
d427dfeb
TH
1384
1385 ret = idr_alloc(&root->cgroup_idr, root_cgrp, 0, 1, GFP_KERNEL);
1386 if (ret < 0)
2bd59d48 1387 goto out;
d427dfeb
TH
1388 root_cgrp->id = ret;
1389
d427dfeb
TH
1390 /*
1391 * We're accessing css_set_count without locking css_set_lock here,
1392 * but that's OK - it can only be increased by someone holding
1393 * cgroup_lock, and that's us. The worst that can happen is that we
1394 * have some link structures left over
1395 */
1396 ret = allocate_cgrp_cset_links(css_set_count, &tmp_links);
1397 if (ret)
2bd59d48 1398 goto out;
d427dfeb
TH
1399
1400 /* ID 0 is reserved for dummy root, 1 for unified hierarchy */
1401 ret = cgroup_init_root_id(root, 2, 0);
1402 if (ret)
2bd59d48 1403 goto out;
d427dfeb 1404
2bd59d48
TH
1405 root->kf_root = kernfs_create_root(&cgroup_kf_syscall_ops,
1406 KERNFS_ROOT_CREATE_DEACTIVATED,
1407 root_cgrp);
1408 if (IS_ERR(root->kf_root)) {
1409 ret = PTR_ERR(root->kf_root);
1410 goto exit_root_id;
1411 }
1412 root_cgrp->kn = root->kf_root->kn;
d427dfeb
TH
1413
1414 ret = cgroup_addrm_files(root_cgrp, cgroup_base_files, true);
1415 if (ret)
2bd59d48 1416 goto destroy_root;
d427dfeb
TH
1417
1418 ret = rebind_subsystems(root, root->subsys_mask, 0);
1419 if (ret)
2bd59d48 1420 goto destroy_root;
d427dfeb
TH
1421
1422 /*
1423 * There must be no failure case after here, since rebinding takes
1424 * care of subsystems' refcounts, which are explicitly dropped in
1425 * the failure exit path.
1426 */
1427 list_add(&root->root_list, &cgroup_roots);
1428 cgroup_root_count++;
1429
1430 /*
1431 * Link the top cgroup in this hierarchy into all the css_set
1432 * objects.
1433 */
1434 write_lock(&css_set_lock);
1435 hash_for_each(css_set_table, i, cset, hlist)
1436 link_css_set(&tmp_links, cset, root_cgrp);
1437 write_unlock(&css_set_lock);
1438
1439 BUG_ON(!list_empty(&root_cgrp->children));
3c9c825b 1440 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
d427dfeb 1441
2bd59d48 1442 kernfs_activate(root_cgrp->kn);
d427dfeb 1443 ret = 0;
2bd59d48 1444 goto out;
d427dfeb 1445
2bd59d48
TH
1446destroy_root:
1447 kernfs_destroy_root(root->kf_root);
1448 root->kf_root = NULL;
1449exit_root_id:
d427dfeb 1450 cgroup_exit_root_id(root);
2bd59d48 1451out:
d427dfeb
TH
1452 free_cgrp_cset_links(&tmp_links);
1453 return ret;
1454}
1455
f7e83571 1456static struct dentry *cgroup_mount(struct file_system_type *fs_type,
ddbcc7e8 1457 int flags, const char *unused_dev_name,
f7e83571 1458 void *data)
ddbcc7e8 1459{
2bd59d48 1460 struct cgroupfs_root *root;
ddbcc7e8 1461 struct cgroup_sb_opts opts;
2bd59d48 1462 struct dentry *dentry;
8e30e2b8 1463 int ret;
776f02fa 1464retry:
8e30e2b8 1465 mutex_lock(&cgroup_tree_mutex);
aae8aab4 1466 mutex_lock(&cgroup_mutex);
8e30e2b8
TH
1467
1468 /* First find the desired set of subsystems */
ddbcc7e8 1469 ret = parse_cgroupfs_options(data, &opts);
c6d57f33 1470 if (ret)
8e30e2b8 1471 goto out_unlock;
ddbcc7e8 1472
2bd59d48
TH
1473 /* look for a matching existing root */
1474 for_each_active_root(root) {
1475 bool name_match = false;
ddbcc7e8 1476
2bd59d48
TH
1477 /*
1478 * If we asked for a name then it must match. Also, if
1479 * name matches but sybsys_mask doesn't, we should fail.
1480 * Remember whether name matched.
1481 */
1482 if (opts.name) {
1483 if (strcmp(opts.name, root->name))
1484 continue;
1485 name_match = true;
1486 }
ddbcc7e8 1487
c6d57f33 1488 /*
2bd59d48
TH
1489 * If we asked for subsystems (or explicitly for no
1490 * subsystems) then they must match.
c6d57f33 1491 */
2bd59d48
TH
1492 if ((opts.subsys_mask || opts.none) &&
1493 (opts.subsys_mask != root->subsys_mask)) {
1494 if (!name_match)
1495 continue;
1496 ret = -EBUSY;
1497 goto out_unlock;
1498 }
873fe09e 1499
c7ba8287 1500 if ((root->flags ^ opts.flags) & CGRP_ROOT_OPTION_MASK) {
2a0ff3fb
JL
1501 if ((root->flags | opts.flags) & CGRP_ROOT_SANE_BEHAVIOR) {
1502 pr_err("cgroup: sane_behavior: new mount options should match the existing superblock\n");
1503 ret = -EINVAL;
8e30e2b8 1504 goto out_unlock;
2a0ff3fb
JL
1505 } else {
1506 pr_warning("cgroup: new mount options do not match the existing superblock, will be ignored\n");
1507 }
873fe09e 1508 }
2bd59d48 1509
776f02fa
TH
1510 /*
1511 * A root's lifetime is governed by its top cgroup. Zero
1512 * ref indicate that the root is being destroyed. Wait for
1513 * destruction to complete so that the subsystems are free.
1514 * We can use wait_queue for the wait but this path is
1515 * super cold. Let's just sleep for a bit and retry.
1516 */
1517 if (!atomic_inc_not_zero(&root->top_cgroup.refcnt)) {
1518 mutex_unlock(&cgroup_mutex);
1519 mutex_unlock(&cgroup_tree_mutex);
1520 msleep(10);
1521 goto retry;
1522 }
1523
1524 ret = 0;
2bd59d48 1525 goto out_unlock;
ddbcc7e8
PM
1526 }
1527
2bd59d48
TH
1528 /* no such thing, create a new one */
1529 root = cgroup_root_from_opts(&opts);
1530 if (IS_ERR(root)) {
1531 ret = PTR_ERR(root);
1532 goto out_unlock;
1533 }
1534
1535 ret = cgroup_setup_root(root);
1536 if (ret)
1537 cgroup_free_root(root);
1538
8e30e2b8 1539out_unlock:
e25e2cbb 1540 mutex_unlock(&cgroup_mutex);
ace2bee8 1541 mutex_unlock(&cgroup_tree_mutex);
8e30e2b8 1542
c6d57f33
PM
1543 kfree(opts.release_agent);
1544 kfree(opts.name);
8e30e2b8 1545
2bd59d48 1546 if (ret)
8e30e2b8 1547 return ERR_PTR(ret);
2bd59d48
TH
1548
1549 dentry = kernfs_mount(fs_type, flags, root->kf_root);
1550 if (IS_ERR(dentry))
776f02fa 1551 cgroup_put(&root->top_cgroup);
2bd59d48
TH
1552 return dentry;
1553}
1554
1555static void cgroup_kill_sb(struct super_block *sb)
1556{
1557 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
1558 struct cgroupfs_root *root = cgroup_root_from_kf(kf_root);
1559
776f02fa 1560 cgroup_put(&root->top_cgroup);
2bd59d48 1561 kernfs_kill_sb(sb);
ddbcc7e8
PM
1562}
1563
ddbcc7e8
PM
1564static struct file_system_type cgroup_fs_type = {
1565 .name = "cgroup",
f7e83571 1566 .mount = cgroup_mount,
ddbcc7e8
PM
1567 .kill_sb = cgroup_kill_sb,
1568};
1569
676db4af
GKH
1570static struct kobject *cgroup_kobj;
1571
857a2beb 1572/**
913ffdb5 1573 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
857a2beb 1574 * @task: target task
857a2beb
TH
1575 * @buf: the buffer to write the path into
1576 * @buflen: the length of the buffer
1577 *
913ffdb5
TH
1578 * Determine @task's cgroup on the first (the one with the lowest non-zero
1579 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
1580 * function grabs cgroup_mutex and shouldn't be used inside locks used by
1581 * cgroup controller callbacks.
1582 *
e61734c5 1583 * Return value is the same as kernfs_path().
857a2beb 1584 */
e61734c5 1585char *task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
857a2beb
TH
1586{
1587 struct cgroupfs_root *root;
913ffdb5 1588 struct cgroup *cgrp;
e61734c5
TH
1589 int hierarchy_id = 1;
1590 char *path = NULL;
857a2beb
TH
1591
1592 mutex_lock(&cgroup_mutex);
1593
913ffdb5
TH
1594 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
1595
857a2beb
TH
1596 if (root) {
1597 cgrp = task_cgroup_from_root(task, root);
e61734c5 1598 path = cgroup_path(cgrp, buf, buflen);
913ffdb5
TH
1599 } else {
1600 /* if no hierarchy exists, everyone is in "/" */
e61734c5
TH
1601 if (strlcpy(buf, "/", buflen) < buflen)
1602 path = buf;
857a2beb
TH
1603 }
1604
1605 mutex_unlock(&cgroup_mutex);
e61734c5 1606 return path;
857a2beb 1607}
913ffdb5 1608EXPORT_SYMBOL_GPL(task_cgroup_path);
857a2beb 1609
2f7ee569
TH
1610/*
1611 * Control Group taskset
1612 */
134d3373
TH
1613struct task_and_cgroup {
1614 struct task_struct *task;
1615 struct cgroup *cgrp;
6f4b7e63 1616 struct css_set *cset;
134d3373
TH
1617};
1618
2f7ee569
TH
1619struct cgroup_taskset {
1620 struct task_and_cgroup single;
1621 struct flex_array *tc_array;
1622 int tc_array_len;
1623 int idx;
1624 struct cgroup *cur_cgrp;
1625};
1626
1627/**
1628 * cgroup_taskset_first - reset taskset and return the first task
1629 * @tset: taskset of interest
1630 *
1631 * @tset iteration is initialized and the first task is returned.
1632 */
1633struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
1634{
1635 if (tset->tc_array) {
1636 tset->idx = 0;
1637 return cgroup_taskset_next(tset);
1638 } else {
1639 tset->cur_cgrp = tset->single.cgrp;
1640 return tset->single.task;
1641 }
1642}
1643EXPORT_SYMBOL_GPL(cgroup_taskset_first);
1644
1645/**
1646 * cgroup_taskset_next - iterate to the next task in taskset
1647 * @tset: taskset of interest
1648 *
1649 * Return the next task in @tset. Iteration must have been initialized
1650 * with cgroup_taskset_first().
1651 */
1652struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
1653{
1654 struct task_and_cgroup *tc;
1655
1656 if (!tset->tc_array || tset->idx >= tset->tc_array_len)
1657 return NULL;
1658
1659 tc = flex_array_get(tset->tc_array, tset->idx++);
1660 tset->cur_cgrp = tc->cgrp;
1661 return tc->task;
1662}
1663EXPORT_SYMBOL_GPL(cgroup_taskset_next);
1664
1665/**
d99c8727 1666 * cgroup_taskset_cur_css - return the matching css for the current task
2f7ee569 1667 * @tset: taskset of interest
d99c8727 1668 * @subsys_id: the ID of the target subsystem
2f7ee569 1669 *
d99c8727
TH
1670 * Return the css for the current (last returned) task of @tset for
1671 * subsystem specified by @subsys_id. This function must be preceded by
1672 * either cgroup_taskset_first() or cgroup_taskset_next().
2f7ee569 1673 */
d99c8727
TH
1674struct cgroup_subsys_state *cgroup_taskset_cur_css(struct cgroup_taskset *tset,
1675 int subsys_id)
2f7ee569 1676{
ca8bdcaf 1677 return cgroup_css(tset->cur_cgrp, cgroup_subsys[subsys_id]);
2f7ee569 1678}
d99c8727 1679EXPORT_SYMBOL_GPL(cgroup_taskset_cur_css);
2f7ee569
TH
1680
1681/**
1682 * cgroup_taskset_size - return the number of tasks in taskset
1683 * @tset: taskset of interest
1684 */
1685int cgroup_taskset_size(struct cgroup_taskset *tset)
1686{
1687 return tset->tc_array ? tset->tc_array_len : 1;
1688}
1689EXPORT_SYMBOL_GPL(cgroup_taskset_size);
1690
1691
74a1166d
BB
1692/*
1693 * cgroup_task_migrate - move a task from one cgroup to another.
1694 *
d0b2fdd2 1695 * Must be called with cgroup_mutex and threadgroup locked.
74a1166d 1696 */
5abb8855
TH
1697static void cgroup_task_migrate(struct cgroup *old_cgrp,
1698 struct task_struct *tsk,
1699 struct css_set *new_cset)
74a1166d 1700{
5abb8855 1701 struct css_set *old_cset;
74a1166d
BB
1702
1703 /*
026085ef
MSB
1704 * We are synchronized through threadgroup_lock() against PF_EXITING
1705 * setting such that we can't race against cgroup_exit() changing the
1706 * css_set to init_css_set and dropping the old one.
74a1166d 1707 */
c84cdf75 1708 WARN_ON_ONCE(tsk->flags & PF_EXITING);
a8ad805c 1709 old_cset = task_css_set(tsk);
74a1166d 1710
74a1166d 1711 task_lock(tsk);
5abb8855 1712 rcu_assign_pointer(tsk->cgroups, new_cset);
74a1166d
BB
1713 task_unlock(tsk);
1714
1715 /* Update the css_set linked lists if we're using them */
1716 write_lock(&css_set_lock);
1717 if (!list_empty(&tsk->cg_list))
5abb8855 1718 list_move(&tsk->cg_list, &new_cset->tasks);
74a1166d
BB
1719 write_unlock(&css_set_lock);
1720
1721 /*
5abb8855
TH
1722 * We just gained a reference on old_cset by taking it from the
1723 * task. As trading it for new_cset is protected by cgroup_mutex,
1724 * we're safe to drop it here; it will be freed under RCU.
74a1166d 1725 */
5abb8855
TH
1726 set_bit(CGRP_RELEASABLE, &old_cgrp->flags);
1727 put_css_set(old_cset);
74a1166d
BB
1728}
1729
a043e3b2 1730/**
081aa458 1731 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
74a1166d 1732 * @cgrp: the cgroup to attach to
081aa458
LZ
1733 * @tsk: the task or the leader of the threadgroup to be attached
1734 * @threadgroup: attach the whole threadgroup?
74a1166d 1735 *
257058ae 1736 * Call holding cgroup_mutex and the group_rwsem of the leader. Will take
081aa458 1737 * task_lock of @tsk or each thread in the threadgroup individually in turn.
74a1166d 1738 */
47cfcd09
TH
1739static int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk,
1740 bool threadgroup)
74a1166d
BB
1741{
1742 int retval, i, group_size;
74a1166d 1743 struct cgroupfs_root *root = cgrp->root;
1c6727af 1744 struct cgroup_subsys_state *css, *failed_css = NULL;
74a1166d 1745 /* threadgroup list cursor and array */
081aa458 1746 struct task_struct *leader = tsk;
134d3373 1747 struct task_and_cgroup *tc;
d846687d 1748 struct flex_array *group;
2f7ee569 1749 struct cgroup_taskset tset = { };
74a1166d
BB
1750
1751 /*
1752 * step 0: in order to do expensive, possibly blocking operations for
1753 * every thread, we cannot iterate the thread group list, since it needs
1754 * rcu or tasklist locked. instead, build an array of all threads in the
257058ae
TH
1755 * group - group_rwsem prevents new threads from appearing, and if
1756 * threads exit, this will just be an over-estimate.
74a1166d 1757 */
081aa458
LZ
1758 if (threadgroup)
1759 group_size = get_nr_threads(tsk);
1760 else
1761 group_size = 1;
d846687d 1762 /* flex_array supports very large thread-groups better than kmalloc. */
134d3373 1763 group = flex_array_alloc(sizeof(*tc), group_size, GFP_KERNEL);
74a1166d
BB
1764 if (!group)
1765 return -ENOMEM;
d846687d 1766 /* pre-allocate to guarantee space while iterating in rcu read-side. */
3ac1707a 1767 retval = flex_array_prealloc(group, 0, group_size, GFP_KERNEL);
d846687d
BB
1768 if (retval)
1769 goto out_free_group_list;
74a1166d 1770
74a1166d 1771 i = 0;
fb5d2b4c
MSB
1772 /*
1773 * Prevent freeing of tasks while we take a snapshot. Tasks that are
1774 * already PF_EXITING could be freed from underneath us unless we
1775 * take an rcu_read_lock.
1776 */
1777 rcu_read_lock();
74a1166d 1778 do {
134d3373
TH
1779 struct task_and_cgroup ent;
1780
cd3d0952
TH
1781 /* @tsk either already exited or can't exit until the end */
1782 if (tsk->flags & PF_EXITING)
ea84753c 1783 goto next;
cd3d0952 1784
74a1166d
BB
1785 /* as per above, nr_threads may decrease, but not increase. */
1786 BUG_ON(i >= group_size);
134d3373
TH
1787 ent.task = tsk;
1788 ent.cgrp = task_cgroup_from_root(tsk, root);
892a2b90
MSB
1789 /* nothing to do if this task is already in the cgroup */
1790 if (ent.cgrp == cgrp)
ea84753c 1791 goto next;
61d1d219
MSB
1792 /*
1793 * saying GFP_ATOMIC has no effect here because we did prealloc
1794 * earlier, but it's good form to communicate our expectations.
1795 */
134d3373 1796 retval = flex_array_put(group, i, &ent, GFP_ATOMIC);
d846687d 1797 BUG_ON(retval != 0);
74a1166d 1798 i++;
ea84753c 1799 next:
081aa458
LZ
1800 if (!threadgroup)
1801 break;
74a1166d 1802 } while_each_thread(leader, tsk);
fb5d2b4c 1803 rcu_read_unlock();
74a1166d
BB
1804 /* remember the number of threads in the array for later. */
1805 group_size = i;
2f7ee569
TH
1806 tset.tc_array = group;
1807 tset.tc_array_len = group_size;
74a1166d 1808
134d3373
TH
1809 /* methods shouldn't be called if no task is actually migrating */
1810 retval = 0;
892a2b90 1811 if (!group_size)
b07ef774 1812 goto out_free_group_list;
134d3373 1813
74a1166d
BB
1814 /*
1815 * step 1: check that we can legitimately attach to the cgroup.
1816 */
1c6727af
TH
1817 for_each_css(css, i, cgrp) {
1818 if (css->ss->can_attach) {
1819 retval = css->ss->can_attach(css, &tset);
74a1166d 1820 if (retval) {
1c6727af 1821 failed_css = css;
74a1166d
BB
1822 goto out_cancel_attach;
1823 }
1824 }
74a1166d
BB
1825 }
1826
1827 /*
1828 * step 2: make sure css_sets exist for all threads to be migrated.
1829 * we use find_css_set, which allocates a new one if necessary.
1830 */
74a1166d 1831 for (i = 0; i < group_size; i++) {
a8ad805c
TH
1832 struct css_set *old_cset;
1833
134d3373 1834 tc = flex_array_get(group, i);
a8ad805c 1835 old_cset = task_css_set(tc->task);
6f4b7e63
LZ
1836 tc->cset = find_css_set(old_cset, cgrp);
1837 if (!tc->cset) {
61d1d219
MSB
1838 retval = -ENOMEM;
1839 goto out_put_css_set_refs;
74a1166d
BB
1840 }
1841 }
1842
1843 /*
494c167c
TH
1844 * step 3: now that we're guaranteed success wrt the css_sets,
1845 * proceed to move all tasks to the new cgroup. There are no
1846 * failure cases after here, so this is the commit point.
74a1166d 1847 */
74a1166d 1848 for (i = 0; i < group_size; i++) {
134d3373 1849 tc = flex_array_get(group, i);
6f4b7e63 1850 cgroup_task_migrate(tc->cgrp, tc->task, tc->cset);
74a1166d
BB
1851 }
1852 /* nothing is sensitive to fork() after this point. */
1853
1854 /*
494c167c 1855 * step 4: do subsystem attach callbacks.
74a1166d 1856 */
1c6727af
TH
1857 for_each_css(css, i, cgrp)
1858 if (css->ss->attach)
1859 css->ss->attach(css, &tset);
74a1166d
BB
1860
1861 /*
1862 * step 5: success! and cleanup
1863 */
74a1166d 1864 retval = 0;
61d1d219
MSB
1865out_put_css_set_refs:
1866 if (retval) {
1867 for (i = 0; i < group_size; i++) {
1868 tc = flex_array_get(group, i);
6f4b7e63 1869 if (!tc->cset)
61d1d219 1870 break;
6f4b7e63 1871 put_css_set(tc->cset);
61d1d219 1872 }
74a1166d
BB
1873 }
1874out_cancel_attach:
74a1166d 1875 if (retval) {
1c6727af
TH
1876 for_each_css(css, i, cgrp) {
1877 if (css == failed_css)
74a1166d 1878 break;
1c6727af
TH
1879 if (css->ss->cancel_attach)
1880 css->ss->cancel_attach(css, &tset);
74a1166d
BB
1881 }
1882 }
74a1166d 1883out_free_group_list:
d846687d 1884 flex_array_free(group);
74a1166d
BB
1885 return retval;
1886}
1887
1888/*
1889 * Find the task_struct of the task to attach by vpid and pass it along to the
cd3d0952
TH
1890 * function to attach either it or all tasks in its threadgroup. Will lock
1891 * cgroup_mutex and threadgroup; may take task_lock of task.
bbcb81d0 1892 */
74a1166d 1893static int attach_task_by_pid(struct cgroup *cgrp, u64 pid, bool threadgroup)
bbcb81d0 1894{
bbcb81d0 1895 struct task_struct *tsk;
c69e8d9c 1896 const struct cred *cred = current_cred(), *tcred;
bbcb81d0
PM
1897 int ret;
1898
74a1166d
BB
1899 if (!cgroup_lock_live_group(cgrp))
1900 return -ENODEV;
1901
b78949eb
MSB
1902retry_find_task:
1903 rcu_read_lock();
bbcb81d0 1904 if (pid) {
73507f33 1905 tsk = find_task_by_vpid(pid);
74a1166d
BB
1906 if (!tsk) {
1907 rcu_read_unlock();
dd4b0a46 1908 ret = -ESRCH;
b78949eb 1909 goto out_unlock_cgroup;
bbcb81d0 1910 }
74a1166d
BB
1911 /*
1912 * even if we're attaching all tasks in the thread group, we
1913 * only need to check permissions on one of them.
1914 */
c69e8d9c 1915 tcred = __task_cred(tsk);
14a590c3
EB
1916 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
1917 !uid_eq(cred->euid, tcred->uid) &&
1918 !uid_eq(cred->euid, tcred->suid)) {
c69e8d9c 1919 rcu_read_unlock();
b78949eb
MSB
1920 ret = -EACCES;
1921 goto out_unlock_cgroup;
bbcb81d0 1922 }
b78949eb
MSB
1923 } else
1924 tsk = current;
cd3d0952
TH
1925
1926 if (threadgroup)
b78949eb 1927 tsk = tsk->group_leader;
c4c27fbd
MG
1928
1929 /*
14a40ffc 1930 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
c4c27fbd
MG
1931 * trapped in a cpuset, or RT worker may be born in a cgroup
1932 * with no rt_runtime allocated. Just say no.
1933 */
14a40ffc 1934 if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
c4c27fbd
MG
1935 ret = -EINVAL;
1936 rcu_read_unlock();
1937 goto out_unlock_cgroup;
1938 }
1939
b78949eb
MSB
1940 get_task_struct(tsk);
1941 rcu_read_unlock();
1942
1943 threadgroup_lock(tsk);
1944 if (threadgroup) {
1945 if (!thread_group_leader(tsk)) {
1946 /*
1947 * a race with de_thread from another thread's exec()
1948 * may strip us of our leadership, if this happens,
1949 * there is no choice but to throw this task away and
1950 * try again; this is
1951 * "double-double-toil-and-trouble-check locking".
1952 */
1953 threadgroup_unlock(tsk);
1954 put_task_struct(tsk);
1955 goto retry_find_task;
1956 }
081aa458
LZ
1957 }
1958
1959 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
1960
cd3d0952
TH
1961 threadgroup_unlock(tsk);
1962
bbcb81d0 1963 put_task_struct(tsk);
b78949eb 1964out_unlock_cgroup:
47cfcd09 1965 mutex_unlock(&cgroup_mutex);
bbcb81d0
PM
1966 return ret;
1967}
1968
7ae1bad9
TH
1969/**
1970 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
1971 * @from: attach to all cgroups of a given task
1972 * @tsk: the task to be attached
1973 */
1974int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
1975{
1976 struct cgroupfs_root *root;
1977 int retval = 0;
1978
47cfcd09 1979 mutex_lock(&cgroup_mutex);
7ae1bad9 1980 for_each_active_root(root) {
6f4b7e63 1981 struct cgroup *from_cgrp = task_cgroup_from_root(from, root);
7ae1bad9 1982
6f4b7e63 1983 retval = cgroup_attach_task(from_cgrp, tsk, false);
7ae1bad9
TH
1984 if (retval)
1985 break;
1986 }
47cfcd09 1987 mutex_unlock(&cgroup_mutex);
7ae1bad9
TH
1988
1989 return retval;
1990}
1991EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
1992
182446d0
TH
1993static int cgroup_tasks_write(struct cgroup_subsys_state *css,
1994 struct cftype *cft, u64 pid)
74a1166d 1995{
182446d0 1996 return attach_task_by_pid(css->cgroup, pid, false);
74a1166d
BB
1997}
1998
182446d0
TH
1999static int cgroup_procs_write(struct cgroup_subsys_state *css,
2000 struct cftype *cft, u64 tgid)
af351026 2001{
182446d0 2002 return attach_task_by_pid(css->cgroup, tgid, true);
af351026
PM
2003}
2004
182446d0
TH
2005static int cgroup_release_agent_write(struct cgroup_subsys_state *css,
2006 struct cftype *cft, const char *buffer)
e788e066 2007{
5f469907
TH
2008 struct cgroupfs_root *root = css->cgroup->root;
2009
2010 BUILD_BUG_ON(sizeof(root->release_agent_path) < PATH_MAX);
182446d0 2011 if (!cgroup_lock_live_group(css->cgroup))
e788e066 2012 return -ENODEV;
69e943b7 2013 spin_lock(&release_agent_path_lock);
5f469907
TH
2014 strlcpy(root->release_agent_path, buffer,
2015 sizeof(root->release_agent_path));
69e943b7 2016 spin_unlock(&release_agent_path_lock);
47cfcd09 2017 mutex_unlock(&cgroup_mutex);
e788e066
PM
2018 return 0;
2019}
2020
2da8ca82 2021static int cgroup_release_agent_show(struct seq_file *seq, void *v)
e788e066 2022{
2da8ca82 2023 struct cgroup *cgrp = seq_css(seq)->cgroup;
182446d0 2024
e788e066
PM
2025 if (!cgroup_lock_live_group(cgrp))
2026 return -ENODEV;
2027 seq_puts(seq, cgrp->root->release_agent_path);
2028 seq_putc(seq, '\n');
47cfcd09 2029 mutex_unlock(&cgroup_mutex);
e788e066
PM
2030 return 0;
2031}
2032
2da8ca82 2033static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
873fe09e 2034{
2da8ca82
TH
2035 struct cgroup *cgrp = seq_css(seq)->cgroup;
2036
2037 seq_printf(seq, "%d\n", cgroup_sane_behavior(cgrp));
e788e066
PM
2038 return 0;
2039}
2040
2bd59d48
TH
2041static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
2042 size_t nbytes, loff_t off)
355e0c48 2043{
2bd59d48
TH
2044 struct cgroup *cgrp = of->kn->parent->priv;
2045 struct cftype *cft = of->kn->priv;
2046 struct cgroup_subsys_state *css;
a742c59d 2047 int ret;
355e0c48 2048
2bd59d48
TH
2049 /*
2050 * kernfs guarantees that a file isn't deleted with operations in
2051 * flight, which means that the matching css is and stays alive and
2052 * doesn't need to be pinned. The RCU locking is not necessary
2053 * either. It's just for the convenience of using cgroup_css().
2054 */
2055 rcu_read_lock();
2056 css = cgroup_css(cgrp, cft->ss);
2057 rcu_read_unlock();
a742c59d
TH
2058
2059 if (cft->write_string) {
2060 ret = cft->write_string(css, cft, strstrip(buf));
2061 } else if (cft->write_u64) {
2062 unsigned long long v;
2063 ret = kstrtoull(buf, 0, &v);
2064 if (!ret)
2065 ret = cft->write_u64(css, cft, v);
2066 } else if (cft->write_s64) {
2067 long long v;
2068 ret = kstrtoll(buf, 0, &v);
2069 if (!ret)
2070 ret = cft->write_s64(css, cft, v);
2071 } else if (cft->trigger) {
2072 ret = cft->trigger(css, (unsigned int)cft->private);
e73d2c61 2073 } else {
a742c59d 2074 ret = -EINVAL;
e73d2c61 2075 }
2bd59d48 2076
a742c59d 2077 return ret ?: nbytes;
355e0c48
PM
2078}
2079
6612f05b 2080static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
db3b1497 2081{
2bd59d48 2082 return seq_cft(seq)->seq_start(seq, ppos);
db3b1497
PM
2083}
2084
6612f05b 2085static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
ddbcc7e8 2086{
2bd59d48 2087 return seq_cft(seq)->seq_next(seq, v, ppos);
ddbcc7e8
PM
2088}
2089
6612f05b 2090static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
ddbcc7e8 2091{
2bd59d48 2092 seq_cft(seq)->seq_stop(seq, v);
ddbcc7e8
PM
2093}
2094
91796569 2095static int cgroup_seqfile_show(struct seq_file *m, void *arg)
e73d2c61 2096{
7da11279
TH
2097 struct cftype *cft = seq_cft(m);
2098 struct cgroup_subsys_state *css = seq_css(m);
e73d2c61 2099
2da8ca82
TH
2100 if (cft->seq_show)
2101 return cft->seq_show(m, arg);
e73d2c61 2102
f4c753b7 2103 if (cft->read_u64)
896f5199
TH
2104 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
2105 else if (cft->read_s64)
2106 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
2107 else
2108 return -EINVAL;
2109 return 0;
91796569
PM
2110}
2111
2bd59d48
TH
2112static struct kernfs_ops cgroup_kf_single_ops = {
2113 .atomic_write_len = PAGE_SIZE,
2114 .write = cgroup_file_write,
2115 .seq_show = cgroup_seqfile_show,
91796569
PM
2116};
2117
2bd59d48
TH
2118static struct kernfs_ops cgroup_kf_ops = {
2119 .atomic_write_len = PAGE_SIZE,
2120 .write = cgroup_file_write,
2121 .seq_start = cgroup_seqfile_start,
2122 .seq_next = cgroup_seqfile_next,
2123 .seq_stop = cgroup_seqfile_stop,
2124 .seq_show = cgroup_seqfile_show,
2125};
ddbcc7e8
PM
2126
2127/*
2128 * cgroup_rename - Only allow simple rename of directories in place.
2129 */
2bd59d48
TH
2130static int cgroup_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
2131 const char *new_name_str)
ddbcc7e8 2132{
2bd59d48 2133 struct cgroup *cgrp = kn->priv;
2bd59d48 2134 int ret;
65dff759 2135
2bd59d48 2136 if (kernfs_type(kn) != KERNFS_DIR)
ddbcc7e8 2137 return -ENOTDIR;
2bd59d48 2138 if (kn->parent != new_parent)
ddbcc7e8 2139 return -EIO;
65dff759 2140
6db8e85c
TH
2141 /*
2142 * This isn't a proper migration and its usefulness is very
2143 * limited. Disallow if sane_behavior.
2144 */
2145 if (cgroup_sane_behavior(cgrp))
2146 return -EPERM;
2147
2bd59d48
TH
2148 mutex_lock(&cgroup_tree_mutex);
2149 mutex_lock(&cgroup_mutex);
2150
2151 ret = kernfs_rename(kn, new_parent, new_name_str);
65dff759 2152
2bd59d48
TH
2153 mutex_unlock(&cgroup_mutex);
2154 mutex_unlock(&cgroup_tree_mutex);
2bd59d48 2155 return ret;
ddbcc7e8
PM
2156}
2157
2bb566cb 2158static int cgroup_add_file(struct cgroup *cgrp, struct cftype *cft)
ddbcc7e8 2159{
8d7e6fb0 2160 char name[CGROUP_FILE_NAME_MAX];
2bd59d48
TH
2161 struct kernfs_node *kn;
2162 struct lock_class_key *key = NULL;
05ef1d7c 2163
2bd59d48
TH
2164#ifdef CONFIG_DEBUG_LOCK_ALLOC
2165 key = &cft->lockdep_key;
2166#endif
2167 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
2168 cgroup_file_mode(cft), 0, cft->kf_ops, cft,
2169 NULL, false, key);
2170 if (IS_ERR(kn))
2171 return PTR_ERR(kn);
2172 return 0;
ddbcc7e8
PM
2173}
2174
b1f28d31
TH
2175/**
2176 * cgroup_addrm_files - add or remove files to a cgroup directory
2177 * @cgrp: the target cgroup
b1f28d31
TH
2178 * @cfts: array of cftypes to be added
2179 * @is_add: whether to add or remove
2180 *
2181 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
2bb566cb
TH
2182 * For removals, this function never fails. If addition fails, this
2183 * function doesn't remove files already added. The caller is responsible
2184 * for cleaning up.
b1f28d31 2185 */
2bb566cb
TH
2186static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
2187 bool is_add)
ddbcc7e8 2188{
03b1cde6 2189 struct cftype *cft;
b1f28d31
TH
2190 int ret;
2191
ace2bee8 2192 lockdep_assert_held(&cgroup_tree_mutex);
db0416b6
TH
2193
2194 for (cft = cfts; cft->name[0] != '\0'; cft++) {
f33fddc2 2195 /* does cft->flags tell us to skip this file on @cgrp? */
873fe09e
TH
2196 if ((cft->flags & CFTYPE_INSANE) && cgroup_sane_behavior(cgrp))
2197 continue;
f33fddc2
G
2198 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgrp->parent)
2199 continue;
2200 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgrp->parent)
2201 continue;
2202
2739d3cc 2203 if (is_add) {
2bb566cb 2204 ret = cgroup_add_file(cgrp, cft);
b1f28d31 2205 if (ret) {
2739d3cc 2206 pr_warn("cgroup_addrm_files: failed to add %s, err=%d\n",
b1f28d31
TH
2207 cft->name, ret);
2208 return ret;
2209 }
2739d3cc
LZ
2210 } else {
2211 cgroup_rm_file(cgrp, cft);
db0416b6 2212 }
ddbcc7e8 2213 }
b1f28d31 2214 return 0;
ddbcc7e8
PM
2215}
2216
21a2d343 2217static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
8e3f6541
TH
2218{
2219 LIST_HEAD(pending);
2bb566cb 2220 struct cgroup_subsys *ss = cfts[0].ss;
492eb21b 2221 struct cgroup *root = &ss->root->top_cgroup;
492eb21b 2222 struct cgroup_subsys_state *css;
9ccece80 2223 int ret = 0;
8e3f6541 2224
21a2d343 2225 lockdep_assert_held(&cgroup_tree_mutex);
4ac06017 2226
21a2d343
TH
2227 /* don't bother if @ss isn't attached */
2228 if (ss->root == &cgroup_dummy_root)
9ccece80 2229 return 0;
e8c82d20 2230
e8c82d20 2231 /* add/rm files for all cgroups created before */
ca8bdcaf 2232 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
492eb21b
TH
2233 struct cgroup *cgrp = css->cgroup;
2234
e8c82d20
LZ
2235 if (cgroup_is_dead(cgrp))
2236 continue;
2237
21a2d343 2238 ret = cgroup_addrm_files(cgrp, cfts, is_add);
9ccece80
TH
2239 if (ret)
2240 break;
8e3f6541 2241 }
21a2d343
TH
2242
2243 if (is_add && !ret)
2244 kernfs_activate(root->kn);
9ccece80 2245 return ret;
8e3f6541
TH
2246}
2247
2da440a2
TH
2248static void cgroup_exit_cftypes(struct cftype *cfts)
2249{
2250 struct cftype *cft;
2251
2bd59d48
TH
2252 for (cft = cfts; cft->name[0] != '\0'; cft++) {
2253 /* free copy for custom atomic_write_len, see init_cftypes() */
2254 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
2255 kfree(cft->kf_ops);
2256 cft->kf_ops = NULL;
2da440a2 2257 cft->ss = NULL;
2bd59d48 2258 }
2da440a2
TH
2259}
2260
2bd59d48 2261static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
2da440a2
TH
2262{
2263 struct cftype *cft;
2264
2bd59d48
TH
2265 for (cft = cfts; cft->name[0] != '\0'; cft++) {
2266 struct kernfs_ops *kf_ops;
2267
0adb0704
TH
2268 WARN_ON(cft->ss || cft->kf_ops);
2269
2bd59d48
TH
2270 if (cft->seq_start)
2271 kf_ops = &cgroup_kf_ops;
2272 else
2273 kf_ops = &cgroup_kf_single_ops;
2274
2275 /*
2276 * Ugh... if @cft wants a custom max_write_len, we need to
2277 * make a copy of kf_ops to set its atomic_write_len.
2278 */
2279 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
2280 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
2281 if (!kf_ops) {
2282 cgroup_exit_cftypes(cfts);
2283 return -ENOMEM;
2284 }
2285 kf_ops->atomic_write_len = cft->max_write_len;
2286 }
2287
2288 cft->kf_ops = kf_ops;
2da440a2 2289 cft->ss = ss;
2bd59d48
TH
2290 }
2291
2292 return 0;
2da440a2
TH
2293}
2294
21a2d343
TH
2295static int cgroup_rm_cftypes_locked(struct cftype *cfts)
2296{
2297 lockdep_assert_held(&cgroup_tree_mutex);
2298
2299 if (!cfts || !cfts[0].ss)
2300 return -ENOENT;
2301
2302 list_del(&cfts->node);
2303 cgroup_apply_cftypes(cfts, false);
2304 cgroup_exit_cftypes(cfts);
2305 return 0;
2306}
2307
80b13586
TH
2308/**
2309 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
2310 * @cfts: zero-length name terminated array of cftypes
2311 *
2312 * Unregister @cfts. Files described by @cfts are removed from all
2313 * existing cgroups and all future cgroups won't have them either. This
2314 * function can be called anytime whether @cfts' subsys is attached or not.
2315 *
2316 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
2317 * registered.
2318 */
2319int cgroup_rm_cftypes(struct cftype *cfts)
2320{
21a2d343 2321 int ret;
80b13586 2322
21a2d343
TH
2323 mutex_lock(&cgroup_tree_mutex);
2324 ret = cgroup_rm_cftypes_locked(cfts);
2325 mutex_unlock(&cgroup_tree_mutex);
2326 return ret;
80b13586
TH
2327}
2328
8e3f6541
TH
2329/**
2330 * cgroup_add_cftypes - add an array of cftypes to a subsystem
2331 * @ss: target cgroup subsystem
2332 * @cfts: zero-length name terminated array of cftypes
2333 *
2334 * Register @cfts to @ss. Files described by @cfts are created for all
2335 * existing cgroups to which @ss is attached and all future cgroups will
2336 * have them too. This function can be called anytime whether @ss is
2337 * attached or not.
2338 *
2339 * Returns 0 on successful registration, -errno on failure. Note that this
2340 * function currently returns 0 as long as @cfts registration is successful
2341 * even if some file creation attempts on existing cgroups fail.
2342 */
03b1cde6 2343int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
8e3f6541 2344{
9ccece80 2345 int ret;
8e3f6541 2346
2bd59d48
TH
2347 ret = cgroup_init_cftypes(ss, cfts);
2348 if (ret)
2349 return ret;
2bb566cb 2350
21a2d343
TH
2351 mutex_lock(&cgroup_tree_mutex);
2352
0adb0704 2353 list_add_tail(&cfts->node, &ss->cfts);
21a2d343 2354 ret = cgroup_apply_cftypes(cfts, true);
9ccece80 2355 if (ret)
21a2d343
TH
2356 cgroup_rm_cftypes_locked(cfts);
2357
2358 mutex_unlock(&cgroup_tree_mutex);
9ccece80 2359 return ret;
8e3f6541
TH
2360}
2361EXPORT_SYMBOL_GPL(cgroup_add_cftypes);
2362
a043e3b2
LZ
2363/**
2364 * cgroup_task_count - count the number of tasks in a cgroup.
2365 * @cgrp: the cgroup in question
2366 *
2367 * Return the number of tasks in the cgroup.
2368 */
bd89aabc 2369int cgroup_task_count(const struct cgroup *cgrp)
bbcb81d0
PM
2370{
2371 int count = 0;
69d0206c 2372 struct cgrp_cset_link *link;
817929ec
PM
2373
2374 read_lock(&css_set_lock);
69d0206c
TH
2375 list_for_each_entry(link, &cgrp->cset_links, cset_link)
2376 count += atomic_read(&link->cset->refcount);
817929ec 2377 read_unlock(&css_set_lock);
bbcb81d0
PM
2378 return count;
2379}
2380
817929ec 2381/*
0942eeee
TH
2382 * To reduce the fork() overhead for systems that are not actually using
2383 * their cgroups capability, we don't maintain the lists running through
2384 * each css_set to its tasks until we see the list actually used - in other
72ec7029 2385 * words after the first call to css_task_iter_start().
31a7df01 2386 */
3df91fe3 2387static void cgroup_enable_task_cg_lists(void)
31a7df01
CW
2388{
2389 struct task_struct *p, *g;
2390 write_lock(&css_set_lock);
2391 use_task_css_set_links = 1;
3ce3230a
FW
2392 /*
2393 * We need tasklist_lock because RCU is not safe against
2394 * while_each_thread(). Besides, a forking task that has passed
2395 * cgroup_post_fork() without seeing use_task_css_set_links = 1
2396 * is not guaranteed to have its child immediately visible in the
2397 * tasklist if we walk through it with RCU.
2398 */
2399 read_lock(&tasklist_lock);
31a7df01
CW
2400 do_each_thread(g, p) {
2401 task_lock(p);
0e04388f
LZ
2402 /*
2403 * We should check if the process is exiting, otherwise
2404 * it will race with cgroup_exit() in that the list
2405 * entry won't be deleted though the process has exited.
2406 */
2407 if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
a8ad805c 2408 list_add(&p->cg_list, &task_css_set(p)->tasks);
31a7df01
CW
2409 task_unlock(p);
2410 } while_each_thread(g, p);
3ce3230a 2411 read_unlock(&tasklist_lock);
31a7df01
CW
2412 write_unlock(&css_set_lock);
2413}
2414
53fa5261 2415/**
492eb21b
TH
2416 * css_next_child - find the next child of a given css
2417 * @pos_css: the current position (%NULL to initiate traversal)
2418 * @parent_css: css whose children to walk
53fa5261 2419 *
492eb21b 2420 * This function returns the next child of @parent_css and should be called
87fb54f1
TH
2421 * under either cgroup_mutex or RCU read lock. The only requirement is
2422 * that @parent_css and @pos_css are accessible. The next sibling is
2423 * guaranteed to be returned regardless of their states.
53fa5261 2424 */
492eb21b
TH
2425struct cgroup_subsys_state *
2426css_next_child(struct cgroup_subsys_state *pos_css,
2427 struct cgroup_subsys_state *parent_css)
53fa5261 2428{
492eb21b
TH
2429 struct cgroup *pos = pos_css ? pos_css->cgroup : NULL;
2430 struct cgroup *cgrp = parent_css->cgroup;
53fa5261
TH
2431 struct cgroup *next;
2432
ace2bee8 2433 cgroup_assert_mutexes_or_rcu_locked();
53fa5261
TH
2434
2435 /*
2436 * @pos could already have been removed. Once a cgroup is removed,
2437 * its ->sibling.next is no longer updated when its next sibling
ea15f8cc
TH
2438 * changes. As CGRP_DEAD assertion is serialized and happens
2439 * before the cgroup is taken off the ->sibling list, if we see it
2440 * unasserted, it's guaranteed that the next sibling hasn't
2441 * finished its grace period even if it's already removed, and thus
2442 * safe to dereference from this RCU critical section. If
2443 * ->sibling.next is inaccessible, cgroup_is_dead() is guaranteed
2444 * to be visible as %true here.
3b287a50
TH
2445 *
2446 * If @pos is dead, its next pointer can't be dereferenced;
2447 * however, as each cgroup is given a monotonically increasing
2448 * unique serial number and always appended to the sibling list,
2449 * the next one can be found by walking the parent's children until
2450 * we see a cgroup with higher serial number than @pos's. While
2451 * this path can be slower, it's taken only when either the current
2452 * cgroup is removed or iteration and removal race.
53fa5261 2453 */
3b287a50
TH
2454 if (!pos) {
2455 next = list_entry_rcu(cgrp->children.next, struct cgroup, sibling);
2456 } else if (likely(!cgroup_is_dead(pos))) {
53fa5261 2457 next = list_entry_rcu(pos->sibling.next, struct cgroup, sibling);
3b287a50
TH
2458 } else {
2459 list_for_each_entry_rcu(next, &cgrp->children, sibling)
2460 if (next->serial_nr > pos->serial_nr)
2461 break;
53fa5261
TH
2462 }
2463
492eb21b
TH
2464 if (&next->sibling == &cgrp->children)
2465 return NULL;
2466
ca8bdcaf 2467 return cgroup_css(next, parent_css->ss);
53fa5261 2468}
492eb21b 2469EXPORT_SYMBOL_GPL(css_next_child);
53fa5261 2470
574bd9f7 2471/**
492eb21b 2472 * css_next_descendant_pre - find the next descendant for pre-order walk
574bd9f7 2473 * @pos: the current position (%NULL to initiate traversal)
492eb21b 2474 * @root: css whose descendants to walk
574bd9f7 2475 *
492eb21b 2476 * To be used by css_for_each_descendant_pre(). Find the next descendant
bd8815a6
TH
2477 * to visit for pre-order traversal of @root's descendants. @root is
2478 * included in the iteration and the first node to be visited.
75501a6d 2479 *
87fb54f1
TH
2480 * While this function requires cgroup_mutex or RCU read locking, it
2481 * doesn't require the whole traversal to be contained in a single critical
2482 * section. This function will return the correct next descendant as long
2483 * as both @pos and @root are accessible and @pos is a descendant of @root.
574bd9f7 2484 */
492eb21b
TH
2485struct cgroup_subsys_state *
2486css_next_descendant_pre(struct cgroup_subsys_state *pos,
2487 struct cgroup_subsys_state *root)
574bd9f7 2488{
492eb21b 2489 struct cgroup_subsys_state *next;
574bd9f7 2490
ace2bee8 2491 cgroup_assert_mutexes_or_rcu_locked();
574bd9f7 2492
bd8815a6 2493 /* if first iteration, visit @root */
7805d000 2494 if (!pos)
bd8815a6 2495 return root;
574bd9f7
TH
2496
2497 /* visit the first child if exists */
492eb21b 2498 next = css_next_child(NULL, pos);
574bd9f7
TH
2499 if (next)
2500 return next;
2501
2502 /* no child, visit my or the closest ancestor's next sibling */
492eb21b
TH
2503 while (pos != root) {
2504 next = css_next_child(pos, css_parent(pos));
75501a6d 2505 if (next)
574bd9f7 2506 return next;
492eb21b 2507 pos = css_parent(pos);
7805d000 2508 }
574bd9f7
TH
2509
2510 return NULL;
2511}
492eb21b 2512EXPORT_SYMBOL_GPL(css_next_descendant_pre);
574bd9f7 2513
12a9d2fe 2514/**
492eb21b
TH
2515 * css_rightmost_descendant - return the rightmost descendant of a css
2516 * @pos: css of interest
12a9d2fe 2517 *
492eb21b
TH
2518 * Return the rightmost descendant of @pos. If there's no descendant, @pos
2519 * is returned. This can be used during pre-order traversal to skip
12a9d2fe 2520 * subtree of @pos.
75501a6d 2521 *
87fb54f1
TH
2522 * While this function requires cgroup_mutex or RCU read locking, it
2523 * doesn't require the whole traversal to be contained in a single critical
2524 * section. This function will return the correct rightmost descendant as
2525 * long as @pos is accessible.
12a9d2fe 2526 */
492eb21b
TH
2527struct cgroup_subsys_state *
2528css_rightmost_descendant(struct cgroup_subsys_state *pos)
12a9d2fe 2529{
492eb21b 2530 struct cgroup_subsys_state *last, *tmp;
12a9d2fe 2531
ace2bee8 2532 cgroup_assert_mutexes_or_rcu_locked();
12a9d2fe
TH
2533
2534 do {
2535 last = pos;
2536 /* ->prev isn't RCU safe, walk ->next till the end */
2537 pos = NULL;
492eb21b 2538 css_for_each_child(tmp, last)
12a9d2fe
TH
2539 pos = tmp;
2540 } while (pos);
2541
2542 return last;
2543}
492eb21b 2544EXPORT_SYMBOL_GPL(css_rightmost_descendant);
12a9d2fe 2545
492eb21b
TH
2546static struct cgroup_subsys_state *
2547css_leftmost_descendant(struct cgroup_subsys_state *pos)
574bd9f7 2548{
492eb21b 2549 struct cgroup_subsys_state *last;
574bd9f7
TH
2550
2551 do {
2552 last = pos;
492eb21b 2553 pos = css_next_child(NULL, pos);
574bd9f7
TH
2554 } while (pos);
2555
2556 return last;
2557}
2558
2559/**
492eb21b 2560 * css_next_descendant_post - find the next descendant for post-order walk
574bd9f7 2561 * @pos: the current position (%NULL to initiate traversal)
492eb21b 2562 * @root: css whose descendants to walk
574bd9f7 2563 *
492eb21b 2564 * To be used by css_for_each_descendant_post(). Find the next descendant
bd8815a6
TH
2565 * to visit for post-order traversal of @root's descendants. @root is
2566 * included in the iteration and the last node to be visited.
75501a6d 2567 *
87fb54f1
TH
2568 * While this function requires cgroup_mutex or RCU read locking, it
2569 * doesn't require the whole traversal to be contained in a single critical
2570 * section. This function will return the correct next descendant as long
2571 * as both @pos and @cgroup are accessible and @pos is a descendant of
2572 * @cgroup.
574bd9f7 2573 */
492eb21b
TH
2574struct cgroup_subsys_state *
2575css_next_descendant_post(struct cgroup_subsys_state *pos,
2576 struct cgroup_subsys_state *root)
574bd9f7 2577{
492eb21b 2578 struct cgroup_subsys_state *next;
574bd9f7 2579
ace2bee8 2580 cgroup_assert_mutexes_or_rcu_locked();
574bd9f7 2581
58b79a91
TH
2582 /* if first iteration, visit leftmost descendant which may be @root */
2583 if (!pos)
2584 return css_leftmost_descendant(root);
574bd9f7 2585
bd8815a6
TH
2586 /* if we visited @root, we're done */
2587 if (pos == root)
2588 return NULL;
2589
574bd9f7 2590 /* if there's an unvisited sibling, visit its leftmost descendant */
492eb21b 2591 next = css_next_child(pos, css_parent(pos));
75501a6d 2592 if (next)
492eb21b 2593 return css_leftmost_descendant(next);
574bd9f7
TH
2594
2595 /* no sibling left, visit parent */
bd8815a6 2596 return css_parent(pos);
574bd9f7 2597}
492eb21b 2598EXPORT_SYMBOL_GPL(css_next_descendant_post);
574bd9f7 2599
0942eeee 2600/**
72ec7029 2601 * css_advance_task_iter - advance a task itererator to the next css_set
0942eeee
TH
2602 * @it: the iterator to advance
2603 *
2604 * Advance @it to the next css_set to walk.
d515876e 2605 */
72ec7029 2606static void css_advance_task_iter(struct css_task_iter *it)
d515876e
TH
2607{
2608 struct list_head *l = it->cset_link;
2609 struct cgrp_cset_link *link;
2610 struct css_set *cset;
2611
2612 /* Advance to the next non-empty css_set */
2613 do {
2614 l = l->next;
72ec7029 2615 if (l == &it->origin_css->cgroup->cset_links) {
d515876e
TH
2616 it->cset_link = NULL;
2617 return;
2618 }
2619 link = list_entry(l, struct cgrp_cset_link, cset_link);
2620 cset = link->cset;
2621 } while (list_empty(&cset->tasks));
2622 it->cset_link = l;
2623 it->task = cset->tasks.next;
2624}
2625
0942eeee 2626/**
72ec7029
TH
2627 * css_task_iter_start - initiate task iteration
2628 * @css: the css to walk tasks of
0942eeee
TH
2629 * @it: the task iterator to use
2630 *
72ec7029
TH
2631 * Initiate iteration through the tasks of @css. The caller can call
2632 * css_task_iter_next() to walk through the tasks until the function
2633 * returns NULL. On completion of iteration, css_task_iter_end() must be
2634 * called.
0942eeee
TH
2635 *
2636 * Note that this function acquires a lock which is released when the
2637 * iteration finishes. The caller can't sleep while iteration is in
2638 * progress.
2639 */
72ec7029
TH
2640void css_task_iter_start(struct cgroup_subsys_state *css,
2641 struct css_task_iter *it)
c6ca5750 2642 __acquires(css_set_lock)
817929ec
PM
2643{
2644 /*
72ec7029
TH
2645 * The first time anyone tries to iterate across a css, we need to
2646 * enable the list linking each css_set to its tasks, and fix up
2647 * all existing tasks.
817929ec 2648 */
31a7df01
CW
2649 if (!use_task_css_set_links)
2650 cgroup_enable_task_cg_lists();
2651
817929ec 2652 read_lock(&css_set_lock);
c59cd3d8 2653
72ec7029
TH
2654 it->origin_css = css;
2655 it->cset_link = &css->cgroup->cset_links;
c59cd3d8 2656
72ec7029 2657 css_advance_task_iter(it);
817929ec
PM
2658}
2659
0942eeee 2660/**
72ec7029 2661 * css_task_iter_next - return the next task for the iterator
0942eeee
TH
2662 * @it: the task iterator being iterated
2663 *
2664 * The "next" function for task iteration. @it should have been
72ec7029
TH
2665 * initialized via css_task_iter_start(). Returns NULL when the iteration
2666 * reaches the end.
0942eeee 2667 */
72ec7029 2668struct task_struct *css_task_iter_next(struct css_task_iter *it)
817929ec
PM
2669{
2670 struct task_struct *res;
2671 struct list_head *l = it->task;
69d0206c 2672 struct cgrp_cset_link *link;
817929ec
PM
2673
2674 /* If the iterator cg is NULL, we have no tasks */
69d0206c 2675 if (!it->cset_link)
817929ec
PM
2676 return NULL;
2677 res = list_entry(l, struct task_struct, cg_list);
2678 /* Advance iterator to find next entry */
2679 l = l->next;
69d0206c
TH
2680 link = list_entry(it->cset_link, struct cgrp_cset_link, cset_link);
2681 if (l == &link->cset->tasks) {
0942eeee
TH
2682 /*
2683 * We reached the end of this task list - move on to the
2684 * next cgrp_cset_link.
2685 */
72ec7029 2686 css_advance_task_iter(it);
817929ec
PM
2687 } else {
2688 it->task = l;
2689 }
2690 return res;
2691}
2692
0942eeee 2693/**
72ec7029 2694 * css_task_iter_end - finish task iteration
0942eeee
TH
2695 * @it: the task iterator to finish
2696 *
72ec7029 2697 * Finish task iteration started by css_task_iter_start().
0942eeee 2698 */
72ec7029 2699void css_task_iter_end(struct css_task_iter *it)
c6ca5750 2700 __releases(css_set_lock)
817929ec
PM
2701{
2702 read_unlock(&css_set_lock);
2703}
2704
31a7df01
CW
2705static inline int started_after_time(struct task_struct *t1,
2706 struct timespec *time,
2707 struct task_struct *t2)
2708{
2709 int start_diff = timespec_compare(&t1->start_time, time);
2710 if (start_diff > 0) {
2711 return 1;
2712 } else if (start_diff < 0) {
2713 return 0;
2714 } else {
2715 /*
2716 * Arbitrarily, if two processes started at the same
2717 * time, we'll say that the lower pointer value
2718 * started first. Note that t2 may have exited by now
2719 * so this may not be a valid pointer any longer, but
2720 * that's fine - it still serves to distinguish
2721 * between two tasks started (effectively) simultaneously.
2722 */
2723 return t1 > t2;
2724 }
2725}
2726
2727/*
2728 * This function is a callback from heap_insert() and is used to order
2729 * the heap.
2730 * In this case we order the heap in descending task start time.
2731 */
2732static inline int started_after(void *p1, void *p2)
2733{
2734 struct task_struct *t1 = p1;
2735 struct task_struct *t2 = p2;
2736 return started_after_time(t1, &t2->start_time, t2);
2737}
2738
2739/**
72ec7029
TH
2740 * css_scan_tasks - iterate though all the tasks in a css
2741 * @css: the css to iterate tasks of
e535837b
TH
2742 * @test: optional test callback
2743 * @process: process callback
2744 * @data: data passed to @test and @process
2745 * @heap: optional pre-allocated heap used for task iteration
31a7df01 2746 *
72ec7029
TH
2747 * Iterate through all the tasks in @css, calling @test for each, and if it
2748 * returns %true, call @process for it also.
31a7df01 2749 *
e535837b 2750 * @test may be NULL, meaning always true (select all tasks), which
72ec7029 2751 * effectively duplicates css_task_iter_{start,next,end}() but does not
e535837b
TH
2752 * lock css_set_lock for the call to @process.
2753 *
2754 * It is guaranteed that @process will act on every task that is a member
72ec7029
TH
2755 * of @css for the duration of this call. This function may or may not
2756 * call @process for tasks that exit or move to a different css during the
2757 * call, or are forked or move into the css during the call.
31a7df01 2758 *
e535837b
TH
2759 * Note that @test may be called with locks held, and may in some
2760 * situations be called multiple times for the same task, so it should be
2761 * cheap.
31a7df01 2762 *
e535837b
TH
2763 * If @heap is non-NULL, a heap has been pre-allocated and will be used for
2764 * heap operations (and its "gt" member will be overwritten), else a
2765 * temporary heap will be used (allocation of which may cause this function
2766 * to fail).
31a7df01 2767 */
72ec7029
TH
2768int css_scan_tasks(struct cgroup_subsys_state *css,
2769 bool (*test)(struct task_struct *, void *),
2770 void (*process)(struct task_struct *, void *),
2771 void *data, struct ptr_heap *heap)
31a7df01
CW
2772{
2773 int retval, i;
72ec7029 2774 struct css_task_iter it;
31a7df01
CW
2775 struct task_struct *p, *dropped;
2776 /* Never dereference latest_task, since it's not refcounted */
2777 struct task_struct *latest_task = NULL;
2778 struct ptr_heap tmp_heap;
31a7df01
CW
2779 struct timespec latest_time = { 0, 0 };
2780
e535837b 2781 if (heap) {
31a7df01 2782 /* The caller supplied our heap and pre-allocated its memory */
31a7df01
CW
2783 heap->gt = &started_after;
2784 } else {
2785 /* We need to allocate our own heap memory */
2786 heap = &tmp_heap;
2787 retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
2788 if (retval)
2789 /* cannot allocate the heap */
2790 return retval;
2791 }
2792
2793 again:
2794 /*
72ec7029 2795 * Scan tasks in the css, using the @test callback to determine
e535837b
TH
2796 * which are of interest, and invoking @process callback on the
2797 * ones which need an update. Since we don't want to hold any
2798 * locks during the task updates, gather tasks to be processed in a
2799 * heap structure. The heap is sorted by descending task start
2800 * time. If the statically-sized heap fills up, we overflow tasks
2801 * that started later, and in future iterations only consider tasks
2802 * that started after the latest task in the previous pass. This
31a7df01
CW
2803 * guarantees forward progress and that we don't miss any tasks.
2804 */
2805 heap->size = 0;
72ec7029
TH
2806 css_task_iter_start(css, &it);
2807 while ((p = css_task_iter_next(&it))) {
31a7df01
CW
2808 /*
2809 * Only affect tasks that qualify per the caller's callback,
2810 * if he provided one
2811 */
e535837b 2812 if (test && !test(p, data))
31a7df01
CW
2813 continue;
2814 /*
2815 * Only process tasks that started after the last task
2816 * we processed
2817 */
2818 if (!started_after_time(p, &latest_time, latest_task))
2819 continue;
2820 dropped = heap_insert(heap, p);
2821 if (dropped == NULL) {
2822 /*
2823 * The new task was inserted; the heap wasn't
2824 * previously full
2825 */
2826 get_task_struct(p);
2827 } else if (dropped != p) {
2828 /*
2829 * The new task was inserted, and pushed out a
2830 * different task
2831 */
2832 get_task_struct(p);
2833 put_task_struct(dropped);
2834 }
2835 /*
2836 * Else the new task was newer than anything already in
2837 * the heap and wasn't inserted
2838 */
2839 }
72ec7029 2840 css_task_iter_end(&it);
31a7df01
CW
2841
2842 if (heap->size) {
2843 for (i = 0; i < heap->size; i++) {
4fe91d51 2844 struct task_struct *q = heap->ptrs[i];
31a7df01 2845 if (i == 0) {
4fe91d51
PJ
2846 latest_time = q->start_time;
2847 latest_task = q;
31a7df01
CW
2848 }
2849 /* Process the task per the caller's callback */
e535837b 2850 process(q, data);
4fe91d51 2851 put_task_struct(q);
31a7df01
CW
2852 }
2853 /*
2854 * If we had to process any tasks at all, scan again
2855 * in case some of them were in the middle of forking
2856 * children that didn't get processed.
2857 * Not the most efficient way to do it, but it avoids
2858 * having to take callback_mutex in the fork path
2859 */
2860 goto again;
2861 }
2862 if (heap == &tmp_heap)
2863 heap_free(&tmp_heap);
2864 return 0;
2865}
2866
e535837b 2867static void cgroup_transfer_one_task(struct task_struct *task, void *data)
8cc99345 2868{
e535837b 2869 struct cgroup *new_cgroup = data;
8cc99345 2870
47cfcd09 2871 mutex_lock(&cgroup_mutex);
8cc99345 2872 cgroup_attach_task(new_cgroup, task, false);
47cfcd09 2873 mutex_unlock(&cgroup_mutex);
8cc99345
TH
2874}
2875
2876/**
2877 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
2878 * @to: cgroup to which the tasks will be moved
2879 * @from: cgroup in which the tasks currently reside
2880 */
2881int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
2882{
72ec7029
TH
2883 return css_scan_tasks(&from->dummy_css, NULL, cgroup_transfer_one_task,
2884 to, NULL);
8cc99345
TH
2885}
2886
bbcb81d0 2887/*
102a775e 2888 * Stuff for reading the 'tasks'/'procs' files.
bbcb81d0
PM
2889 *
2890 * Reading this file can return large amounts of data if a cgroup has
2891 * *lots* of attached tasks. So it may need several calls to read(),
2892 * but we cannot guarantee that the information we produce is correct
2893 * unless we produce it entirely atomically.
2894 *
bbcb81d0 2895 */
bbcb81d0 2896
24528255
LZ
2897/* which pidlist file are we talking about? */
2898enum cgroup_filetype {
2899 CGROUP_FILE_PROCS,
2900 CGROUP_FILE_TASKS,
2901};
2902
2903/*
2904 * A pidlist is a list of pids that virtually represents the contents of one
2905 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
2906 * a pair (one each for procs, tasks) for each pid namespace that's relevant
2907 * to the cgroup.
2908 */
2909struct cgroup_pidlist {
2910 /*
2911 * used to find which pidlist is wanted. doesn't change as long as
2912 * this particular list stays in the list.
2913 */
2914 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
2915 /* array of xids */
2916 pid_t *list;
2917 /* how many elements the above list has */
2918 int length;
24528255
LZ
2919 /* each of these stored in a list by its cgroup */
2920 struct list_head links;
2921 /* pointer to the cgroup we belong to, for list removal purposes */
2922 struct cgroup *owner;
b1a21367
TH
2923 /* for delayed destruction */
2924 struct delayed_work destroy_dwork;
24528255
LZ
2925};
2926
d1d9fd33
BB
2927/*
2928 * The following two functions "fix" the issue where there are more pids
2929 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
2930 * TODO: replace with a kernel-wide solution to this problem
2931 */
2932#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
2933static void *pidlist_allocate(int count)
2934{
2935 if (PIDLIST_TOO_LARGE(count))
2936 return vmalloc(count * sizeof(pid_t));
2937 else
2938 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
2939}
b1a21367 2940
d1d9fd33
BB
2941static void pidlist_free(void *p)
2942{
2943 if (is_vmalloc_addr(p))
2944 vfree(p);
2945 else
2946 kfree(p);
2947}
d1d9fd33 2948
b1a21367
TH
2949/*
2950 * Used to destroy all pidlists lingering waiting for destroy timer. None
2951 * should be left afterwards.
2952 */
2953static void cgroup_pidlist_destroy_all(struct cgroup *cgrp)
2954{
2955 struct cgroup_pidlist *l, *tmp_l;
2956
2957 mutex_lock(&cgrp->pidlist_mutex);
2958 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
2959 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
2960 mutex_unlock(&cgrp->pidlist_mutex);
2961
2962 flush_workqueue(cgroup_pidlist_destroy_wq);
2963 BUG_ON(!list_empty(&cgrp->pidlists));
2964}
2965
2966static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
2967{
2968 struct delayed_work *dwork = to_delayed_work(work);
2969 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
2970 destroy_dwork);
2971 struct cgroup_pidlist *tofree = NULL;
2972
2973 mutex_lock(&l->owner->pidlist_mutex);
b1a21367
TH
2974
2975 /*
04502365
TH
2976 * Destroy iff we didn't get queued again. The state won't change
2977 * as destroy_dwork can only be queued while locked.
b1a21367 2978 */
04502365 2979 if (!delayed_work_pending(dwork)) {
b1a21367
TH
2980 list_del(&l->links);
2981 pidlist_free(l->list);
2982 put_pid_ns(l->key.ns);
2983 tofree = l;
2984 }
2985
b1a21367
TH
2986 mutex_unlock(&l->owner->pidlist_mutex);
2987 kfree(tofree);
2988}
2989
bbcb81d0 2990/*
102a775e 2991 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
6ee211ad 2992 * Returns the number of unique elements.
bbcb81d0 2993 */
6ee211ad 2994static int pidlist_uniq(pid_t *list, int length)
bbcb81d0 2995{
102a775e 2996 int src, dest = 1;
102a775e
BB
2997
2998 /*
2999 * we presume the 0th element is unique, so i starts at 1. trivial
3000 * edge cases first; no work needs to be done for either
3001 */
3002 if (length == 0 || length == 1)
3003 return length;
3004 /* src and dest walk down the list; dest counts unique elements */
3005 for (src = 1; src < length; src++) {
3006 /* find next unique element */
3007 while (list[src] == list[src-1]) {
3008 src++;
3009 if (src == length)
3010 goto after;
3011 }
3012 /* dest always points to where the next unique element goes */
3013 list[dest] = list[src];
3014 dest++;
3015 }
3016after:
102a775e
BB
3017 return dest;
3018}
3019
afb2bc14
TH
3020/*
3021 * The two pid files - task and cgroup.procs - guaranteed that the result
3022 * is sorted, which forced this whole pidlist fiasco. As pid order is
3023 * different per namespace, each namespace needs differently sorted list,
3024 * making it impossible to use, for example, single rbtree of member tasks
3025 * sorted by task pointer. As pidlists can be fairly large, allocating one
3026 * per open file is dangerous, so cgroup had to implement shared pool of
3027 * pidlists keyed by cgroup and namespace.
3028 *
3029 * All this extra complexity was caused by the original implementation
3030 * committing to an entirely unnecessary property. In the long term, we
3031 * want to do away with it. Explicitly scramble sort order if
3032 * sane_behavior so that no such expectation exists in the new interface.
3033 *
3034 * Scrambling is done by swapping every two consecutive bits, which is
3035 * non-identity one-to-one mapping which disturbs sort order sufficiently.
3036 */
3037static pid_t pid_fry(pid_t pid)
3038{
3039 unsigned a = pid & 0x55555555;
3040 unsigned b = pid & 0xAAAAAAAA;
3041
3042 return (a << 1) | (b >> 1);
3043}
3044
3045static pid_t cgroup_pid_fry(struct cgroup *cgrp, pid_t pid)
3046{
3047 if (cgroup_sane_behavior(cgrp))
3048 return pid_fry(pid);
3049 else
3050 return pid;
3051}
3052
102a775e
BB
3053static int cmppid(const void *a, const void *b)
3054{
3055 return *(pid_t *)a - *(pid_t *)b;
3056}
3057
afb2bc14
TH
3058static int fried_cmppid(const void *a, const void *b)
3059{
3060 return pid_fry(*(pid_t *)a) - pid_fry(*(pid_t *)b);
3061}
3062
e6b81710
TH
3063static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
3064 enum cgroup_filetype type)
3065{
3066 struct cgroup_pidlist *l;
3067 /* don't need task_nsproxy() if we're looking at ourself */
3068 struct pid_namespace *ns = task_active_pid_ns(current);
3069
3070 lockdep_assert_held(&cgrp->pidlist_mutex);
3071
3072 list_for_each_entry(l, &cgrp->pidlists, links)
3073 if (l->key.type == type && l->key.ns == ns)
3074 return l;
3075 return NULL;
3076}
3077
72a8cb30
BB
3078/*
3079 * find the appropriate pidlist for our purpose (given procs vs tasks)
3080 * returns with the lock on that pidlist already held, and takes care
3081 * of the use count, or returns NULL with no locks held if we're out of
3082 * memory.
3083 */
e6b81710
TH
3084static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
3085 enum cgroup_filetype type)
72a8cb30
BB
3086{
3087 struct cgroup_pidlist *l;
b70cc5fd 3088
e6b81710
TH
3089 lockdep_assert_held(&cgrp->pidlist_mutex);
3090
3091 l = cgroup_pidlist_find(cgrp, type);
3092 if (l)
3093 return l;
3094
72a8cb30 3095 /* entry not found; create a new one */
f4f4be2b 3096 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
e6b81710 3097 if (!l)
72a8cb30 3098 return l;
e6b81710 3099
b1a21367 3100 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
72a8cb30 3101 l->key.type = type;
e6b81710
TH
3102 /* don't need task_nsproxy() if we're looking at ourself */
3103 l->key.ns = get_pid_ns(task_active_pid_ns(current));
72a8cb30
BB
3104 l->owner = cgrp;
3105 list_add(&l->links, &cgrp->pidlists);
72a8cb30
BB
3106 return l;
3107}
3108
102a775e
BB
3109/*
3110 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
3111 */
72a8cb30
BB
3112static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
3113 struct cgroup_pidlist **lp)
102a775e
BB
3114{
3115 pid_t *array;
3116 int length;
3117 int pid, n = 0; /* used for populating the array */
72ec7029 3118 struct css_task_iter it;
817929ec 3119 struct task_struct *tsk;
102a775e
BB
3120 struct cgroup_pidlist *l;
3121
4bac00d1
TH
3122 lockdep_assert_held(&cgrp->pidlist_mutex);
3123
102a775e
BB
3124 /*
3125 * If cgroup gets more users after we read count, we won't have
3126 * enough space - tough. This race is indistinguishable to the
3127 * caller from the case that the additional cgroup users didn't
3128 * show up until sometime later on.
3129 */
3130 length = cgroup_task_count(cgrp);
d1d9fd33 3131 array = pidlist_allocate(length);
102a775e
BB
3132 if (!array)
3133 return -ENOMEM;
3134 /* now, populate the array */
72ec7029
TH
3135 css_task_iter_start(&cgrp->dummy_css, &it);
3136 while ((tsk = css_task_iter_next(&it))) {
102a775e 3137 if (unlikely(n == length))
817929ec 3138 break;
102a775e 3139 /* get tgid or pid for procs or tasks file respectively */
72a8cb30
BB
3140 if (type == CGROUP_FILE_PROCS)
3141 pid = task_tgid_vnr(tsk);
3142 else
3143 pid = task_pid_vnr(tsk);
102a775e
BB
3144 if (pid > 0) /* make sure to only use valid results */
3145 array[n++] = pid;
817929ec 3146 }
72ec7029 3147 css_task_iter_end(&it);
102a775e
BB
3148 length = n;
3149 /* now sort & (if procs) strip out duplicates */
afb2bc14
TH
3150 if (cgroup_sane_behavior(cgrp))
3151 sort(array, length, sizeof(pid_t), fried_cmppid, NULL);
3152 else
3153 sort(array, length, sizeof(pid_t), cmppid, NULL);
72a8cb30 3154 if (type == CGROUP_FILE_PROCS)
6ee211ad 3155 length = pidlist_uniq(array, length);
e6b81710 3156
e6b81710 3157 l = cgroup_pidlist_find_create(cgrp, type);
72a8cb30 3158 if (!l) {
e6b81710 3159 mutex_unlock(&cgrp->pidlist_mutex);
d1d9fd33 3160 pidlist_free(array);
72a8cb30 3161 return -ENOMEM;
102a775e 3162 }
e6b81710
TH
3163
3164 /* store array, freeing old if necessary */
d1d9fd33 3165 pidlist_free(l->list);
102a775e
BB
3166 l->list = array;
3167 l->length = length;
72a8cb30 3168 *lp = l;
102a775e 3169 return 0;
bbcb81d0
PM
3170}
3171
846c7bb0 3172/**
a043e3b2 3173 * cgroupstats_build - build and fill cgroupstats
846c7bb0
BS
3174 * @stats: cgroupstats to fill information into
3175 * @dentry: A dentry entry belonging to the cgroup for which stats have
3176 * been requested.
a043e3b2
LZ
3177 *
3178 * Build and fill cgroupstats so that taskstats can export it to user
3179 * space.
846c7bb0
BS
3180 */
3181int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
3182{
2bd59d48 3183 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
bd89aabc 3184 struct cgroup *cgrp;
72ec7029 3185 struct css_task_iter it;
846c7bb0 3186 struct task_struct *tsk;
33d283be 3187
2bd59d48
TH
3188 /* it should be kernfs_node belonging to cgroupfs and is a directory */
3189 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
3190 kernfs_type(kn) != KERNFS_DIR)
3191 return -EINVAL;
3192
846c7bb0 3193 /*
2bd59d48
TH
3194 * We aren't being called from kernfs and there's no guarantee on
3195 * @kn->priv's validity. For this and css_tryget_from_dir(),
3196 * @kn->priv is RCU safe. Let's do the RCU dancing.
846c7bb0 3197 */
2bd59d48
TH
3198 rcu_read_lock();
3199 cgrp = rcu_dereference(kn->priv);
3200 if (!cgrp) {
3201 rcu_read_unlock();
3202 return -ENOENT;
3203 }
846c7bb0 3204
72ec7029
TH
3205 css_task_iter_start(&cgrp->dummy_css, &it);
3206 while ((tsk = css_task_iter_next(&it))) {
846c7bb0
BS
3207 switch (tsk->state) {
3208 case TASK_RUNNING:
3209 stats->nr_running++;
3210 break;
3211 case TASK_INTERRUPTIBLE:
3212 stats->nr_sleeping++;
3213 break;
3214 case TASK_UNINTERRUPTIBLE:
3215 stats->nr_uninterruptible++;
3216 break;
3217 case TASK_STOPPED:
3218 stats->nr_stopped++;
3219 break;
3220 default:
3221 if (delayacct_is_task_waiting_on_io(tsk))
3222 stats->nr_io_wait++;
3223 break;
3224 }
3225 }
72ec7029 3226 css_task_iter_end(&it);
846c7bb0 3227
2bd59d48
TH
3228 rcu_read_unlock();
3229 return 0;
846c7bb0
BS
3230}
3231
8f3ff208 3232
bbcb81d0 3233/*
102a775e 3234 * seq_file methods for the tasks/procs files. The seq_file position is the
cc31edce 3235 * next pid to display; the seq_file iterator is a pointer to the pid
102a775e 3236 * in the cgroup->l->list array.
bbcb81d0 3237 */
cc31edce 3238
102a775e 3239static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
bbcb81d0 3240{
cc31edce
PM
3241 /*
3242 * Initially we receive a position value that corresponds to
3243 * one more than the last pid shown (or 0 on the first call or
3244 * after a seek to the start). Use a binary-search to find the
3245 * next pid to display, if any
3246 */
2bd59d48 3247 struct kernfs_open_file *of = s->private;
7da11279 3248 struct cgroup *cgrp = seq_css(s)->cgroup;
4bac00d1 3249 struct cgroup_pidlist *l;
7da11279 3250 enum cgroup_filetype type = seq_cft(s)->private;
cc31edce 3251 int index = 0, pid = *pos;
4bac00d1
TH
3252 int *iter, ret;
3253
3254 mutex_lock(&cgrp->pidlist_mutex);
3255
3256 /*
5d22444f 3257 * !NULL @of->priv indicates that this isn't the first start()
4bac00d1 3258 * after open. If the matching pidlist is around, we can use that.
5d22444f 3259 * Look for it. Note that @of->priv can't be used directly. It
4bac00d1
TH
3260 * could already have been destroyed.
3261 */
5d22444f
TH
3262 if (of->priv)
3263 of->priv = cgroup_pidlist_find(cgrp, type);
4bac00d1
TH
3264
3265 /*
3266 * Either this is the first start() after open or the matching
3267 * pidlist has been destroyed inbetween. Create a new one.
3268 */
5d22444f
TH
3269 if (!of->priv) {
3270 ret = pidlist_array_load(cgrp, type,
3271 (struct cgroup_pidlist **)&of->priv);
4bac00d1
TH
3272 if (ret)
3273 return ERR_PTR(ret);
3274 }
5d22444f 3275 l = of->priv;
cc31edce 3276
cc31edce 3277 if (pid) {
102a775e 3278 int end = l->length;
20777766 3279
cc31edce
PM
3280 while (index < end) {
3281 int mid = (index + end) / 2;
afb2bc14 3282 if (cgroup_pid_fry(cgrp, l->list[mid]) == pid) {
cc31edce
PM
3283 index = mid;
3284 break;
afb2bc14 3285 } else if (cgroup_pid_fry(cgrp, l->list[mid]) <= pid)
cc31edce
PM
3286 index = mid + 1;
3287 else
3288 end = mid;
3289 }
3290 }
3291 /* If we're off the end of the array, we're done */
102a775e 3292 if (index >= l->length)
cc31edce
PM
3293 return NULL;
3294 /* Update the abstract position to be the actual pid that we found */
102a775e 3295 iter = l->list + index;
afb2bc14 3296 *pos = cgroup_pid_fry(cgrp, *iter);
cc31edce
PM
3297 return iter;
3298}
3299
102a775e 3300static void cgroup_pidlist_stop(struct seq_file *s, void *v)
cc31edce 3301{
2bd59d48 3302 struct kernfs_open_file *of = s->private;
5d22444f 3303 struct cgroup_pidlist *l = of->priv;
62236858 3304
5d22444f
TH
3305 if (l)
3306 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
04502365 3307 CGROUP_PIDLIST_DESTROY_DELAY);
7da11279 3308 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
cc31edce
PM
3309}
3310
102a775e 3311static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
cc31edce 3312{
2bd59d48 3313 struct kernfs_open_file *of = s->private;
5d22444f 3314 struct cgroup_pidlist *l = of->priv;
102a775e
BB
3315 pid_t *p = v;
3316 pid_t *end = l->list + l->length;
cc31edce
PM
3317 /*
3318 * Advance to the next pid in the array. If this goes off the
3319 * end, we're done
3320 */
3321 p++;
3322 if (p >= end) {
3323 return NULL;
3324 } else {
7da11279 3325 *pos = cgroup_pid_fry(seq_css(s)->cgroup, *p);
cc31edce
PM
3326 return p;
3327 }
3328}
3329
102a775e 3330static int cgroup_pidlist_show(struct seq_file *s, void *v)
cc31edce
PM
3331{
3332 return seq_printf(s, "%d\n", *(int *)v);
3333}
bbcb81d0 3334
102a775e
BB
3335/*
3336 * seq_operations functions for iterating on pidlists through seq_file -
3337 * independent of whether it's tasks or procs
3338 */
3339static const struct seq_operations cgroup_pidlist_seq_operations = {
3340 .start = cgroup_pidlist_start,
3341 .stop = cgroup_pidlist_stop,
3342 .next = cgroup_pidlist_next,
3343 .show = cgroup_pidlist_show,
cc31edce
PM
3344};
3345
182446d0
TH
3346static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
3347 struct cftype *cft)
81a6a5cd 3348{
182446d0 3349 return notify_on_release(css->cgroup);
81a6a5cd
PM
3350}
3351
182446d0
TH
3352static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
3353 struct cftype *cft, u64 val)
6379c106 3354{
182446d0 3355 clear_bit(CGRP_RELEASABLE, &css->cgroup->flags);
6379c106 3356 if (val)
182446d0 3357 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106 3358 else
182446d0 3359 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106
PM
3360 return 0;
3361}
3362
182446d0
TH
3363static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
3364 struct cftype *cft)
97978e6d 3365{
182446d0 3366 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
3367}
3368
182446d0
TH
3369static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
3370 struct cftype *cft, u64 val)
97978e6d
DL
3371{
3372 if (val)
182446d0 3373 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d 3374 else
182446d0 3375 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
3376 return 0;
3377}
3378
d5c56ced 3379static struct cftype cgroup_base_files[] = {
81a6a5cd 3380 {
d5c56ced 3381 .name = "cgroup.procs",
6612f05b
TH
3382 .seq_start = cgroup_pidlist_start,
3383 .seq_next = cgroup_pidlist_next,
3384 .seq_stop = cgroup_pidlist_stop,
3385 .seq_show = cgroup_pidlist_show,
5d22444f 3386 .private = CGROUP_FILE_PROCS,
74a1166d 3387 .write_u64 = cgroup_procs_write,
74a1166d 3388 .mode = S_IRUGO | S_IWUSR,
102a775e 3389 },
97978e6d
DL
3390 {
3391 .name = "cgroup.clone_children",
873fe09e 3392 .flags = CFTYPE_INSANE,
97978e6d
DL
3393 .read_u64 = cgroup_clone_children_read,
3394 .write_u64 = cgroup_clone_children_write,
3395 },
873fe09e
TH
3396 {
3397 .name = "cgroup.sane_behavior",
3398 .flags = CFTYPE_ONLY_ON_ROOT,
2da8ca82 3399 .seq_show = cgroup_sane_behavior_show,
873fe09e 3400 },
d5c56ced
TH
3401
3402 /*
3403 * Historical crazy stuff. These don't have "cgroup." prefix and
3404 * don't exist if sane_behavior. If you're depending on these, be
3405 * prepared to be burned.
3406 */
3407 {
3408 .name = "tasks",
3409 .flags = CFTYPE_INSANE, /* use "procs" instead */
6612f05b
TH
3410 .seq_start = cgroup_pidlist_start,
3411 .seq_next = cgroup_pidlist_next,
3412 .seq_stop = cgroup_pidlist_stop,
3413 .seq_show = cgroup_pidlist_show,
5d22444f 3414 .private = CGROUP_FILE_TASKS,
d5c56ced 3415 .write_u64 = cgroup_tasks_write,
d5c56ced
TH
3416 .mode = S_IRUGO | S_IWUSR,
3417 },
3418 {
3419 .name = "notify_on_release",
3420 .flags = CFTYPE_INSANE,
3421 .read_u64 = cgroup_read_notify_on_release,
3422 .write_u64 = cgroup_write_notify_on_release,
3423 },
6e6ff25b
TH
3424 {
3425 .name = "release_agent",
cc5943a7 3426 .flags = CFTYPE_INSANE | CFTYPE_ONLY_ON_ROOT,
2da8ca82 3427 .seq_show = cgroup_release_agent_show,
6e6ff25b 3428 .write_string = cgroup_release_agent_write,
5f469907 3429 .max_write_len = PATH_MAX - 1,
6e6ff25b 3430 },
db0416b6 3431 { } /* terminate */
bbcb81d0
PM
3432};
3433
13af07df 3434/**
628f7cd4 3435 * cgroup_populate_dir - create subsys files in a cgroup directory
13af07df 3436 * @cgrp: target cgroup
13af07df 3437 * @subsys_mask: mask of the subsystem ids whose files should be added
bee55099
TH
3438 *
3439 * On failure, no file is added.
13af07df 3440 */
628f7cd4 3441static int cgroup_populate_dir(struct cgroup *cgrp, unsigned long subsys_mask)
ddbcc7e8 3442{
ddbcc7e8 3443 struct cgroup_subsys *ss;
b420ba7d 3444 int i, ret = 0;
bbcb81d0 3445
8e3f6541 3446 /* process cftsets of each subsystem */
b420ba7d 3447 for_each_subsys(ss, i) {
0adb0704 3448 struct cftype *cfts;
b420ba7d
TH
3449
3450 if (!test_bit(i, &subsys_mask))
13af07df 3451 continue;
8e3f6541 3452
0adb0704
TH
3453 list_for_each_entry(cfts, &ss->cfts, node) {
3454 ret = cgroup_addrm_files(cgrp, cfts, true);
bee55099
TH
3455 if (ret < 0)
3456 goto err;
3457 }
ddbcc7e8 3458 }
ddbcc7e8 3459 return 0;
bee55099
TH
3460err:
3461 cgroup_clear_dir(cgrp, subsys_mask);
3462 return ret;
ddbcc7e8
PM
3463}
3464
0c21ead1
TH
3465/*
3466 * css destruction is four-stage process.
3467 *
3468 * 1. Destruction starts. Killing of the percpu_ref is initiated.
3469 * Implemented in kill_css().
3470 *
3471 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
3472 * and thus css_tryget() is guaranteed to fail, the css can be offlined
3473 * by invoking offline_css(). After offlining, the base ref is put.
3474 * Implemented in css_killed_work_fn().
3475 *
3476 * 3. When the percpu_ref reaches zero, the only possible remaining
3477 * accessors are inside RCU read sections. css_release() schedules the
3478 * RCU callback.
3479 *
3480 * 4. After the grace period, the css can be freed. Implemented in
3481 * css_free_work_fn().
3482 *
3483 * It is actually hairier because both step 2 and 4 require process context
3484 * and thus involve punting to css->destroy_work adding two additional
3485 * steps to the already complex sequence.
3486 */
35ef10da 3487static void css_free_work_fn(struct work_struct *work)
48ddbe19
TH
3488{
3489 struct cgroup_subsys_state *css =
35ef10da 3490 container_of(work, struct cgroup_subsys_state, destroy_work);
0c21ead1 3491 struct cgroup *cgrp = css->cgroup;
48ddbe19 3492
0ae78e0b
TH
3493 if (css->parent)
3494 css_put(css->parent);
3495
0c21ead1 3496 css->ss->css_free(css);
2bd59d48 3497 cgroup_put(cgrp);
48ddbe19
TH
3498}
3499
0c21ead1 3500static void css_free_rcu_fn(struct rcu_head *rcu_head)
d3daf28d
TH
3501{
3502 struct cgroup_subsys_state *css =
0c21ead1 3503 container_of(rcu_head, struct cgroup_subsys_state, rcu_head);
d3daf28d 3504
35ef10da 3505 INIT_WORK(&css->destroy_work, css_free_work_fn);
e5fca243 3506 queue_work(cgroup_destroy_wq, &css->destroy_work);
48ddbe19
TH
3507}
3508
d3daf28d
TH
3509static void css_release(struct percpu_ref *ref)
3510{
3511 struct cgroup_subsys_state *css =
3512 container_of(ref, struct cgroup_subsys_state, refcnt);
3513
aec25020 3514 rcu_assign_pointer(css->cgroup->subsys[css->ss->id], NULL);
0c21ead1 3515 call_rcu(&css->rcu_head, css_free_rcu_fn);
d3daf28d
TH
3516}
3517
623f926b
TH
3518static void init_css(struct cgroup_subsys_state *css, struct cgroup_subsys *ss,
3519 struct cgroup *cgrp)
ddbcc7e8 3520{
bd89aabc 3521 css->cgroup = cgrp;
72c97e54 3522 css->ss = ss;
ddbcc7e8 3523 css->flags = 0;
0ae78e0b
TH
3524
3525 if (cgrp->parent)
ca8bdcaf 3526 css->parent = cgroup_css(cgrp->parent, ss);
0ae78e0b 3527 else
38b53aba 3528 css->flags |= CSS_ROOT;
48ddbe19 3529
ca8bdcaf 3530 BUG_ON(cgroup_css(cgrp, ss));
ddbcc7e8
PM
3531}
3532
2a4ac633 3533/* invoke ->css_online() on a new CSS and mark it online if successful */
623f926b 3534static int online_css(struct cgroup_subsys_state *css)
a31f2d3f 3535{
623f926b 3536 struct cgroup_subsys *ss = css->ss;
b1929db4
TH
3537 int ret = 0;
3538
ace2bee8 3539 lockdep_assert_held(&cgroup_tree_mutex);
a31f2d3f
TH
3540 lockdep_assert_held(&cgroup_mutex);
3541
92fb9748 3542 if (ss->css_online)
eb95419b 3543 ret = ss->css_online(css);
ae7f164a 3544 if (!ret) {
eb95419b 3545 css->flags |= CSS_ONLINE;
f20104de 3546 css->cgroup->nr_css++;
aec25020 3547 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
ae7f164a 3548 }
b1929db4 3549 return ret;
a31f2d3f
TH
3550}
3551
2a4ac633 3552/* if the CSS is online, invoke ->css_offline() on it and mark it offline */
623f926b 3553static void offline_css(struct cgroup_subsys_state *css)
a31f2d3f 3554{
623f926b 3555 struct cgroup_subsys *ss = css->ss;
a31f2d3f 3556
ace2bee8 3557 lockdep_assert_held(&cgroup_tree_mutex);
a31f2d3f
TH
3558 lockdep_assert_held(&cgroup_mutex);
3559
3560 if (!(css->flags & CSS_ONLINE))
3561 return;
3562
d7eeac19 3563 if (ss->css_offline)
eb95419b 3564 ss->css_offline(css);
a31f2d3f 3565
eb95419b 3566 css->flags &= ~CSS_ONLINE;
09a503ea 3567 css->cgroup->nr_css--;
aec25020 3568 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], css);
a31f2d3f
TH
3569}
3570
c81c925a
TH
3571/**
3572 * create_css - create a cgroup_subsys_state
3573 * @cgrp: the cgroup new css will be associated with
3574 * @ss: the subsys of new css
3575 *
3576 * Create a new css associated with @cgrp - @ss pair. On success, the new
3577 * css is online and installed in @cgrp with all interface files created.
3578 * Returns 0 on success, -errno on failure.
3579 */
3580static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss)
3581{
3582 struct cgroup *parent = cgrp->parent;
3583 struct cgroup_subsys_state *css;
3584 int err;
3585
c81c925a
TH
3586 lockdep_assert_held(&cgroup_mutex);
3587
3588 css = ss->css_alloc(cgroup_css(parent, ss));
3589 if (IS_ERR(css))
3590 return PTR_ERR(css);
3591
3592 err = percpu_ref_init(&css->refcnt, css_release);
3593 if (err)
3594 goto err_free;
3595
3596 init_css(css, ss, cgrp);
3597
aec25020 3598 err = cgroup_populate_dir(cgrp, 1 << ss->id);
c81c925a
TH
3599 if (err)
3600 goto err_free;
3601
3602 err = online_css(css);
3603 if (err)
3604 goto err_free;
3605
59f5296b 3606 cgroup_get(cgrp);
c81c925a
TH
3607 css_get(css->parent);
3608
3609 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
3610 parent->parent) {
3611 pr_warning("cgroup: %s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
3612 current->comm, current->pid, ss->name);
3613 if (!strcmp(ss->name, "memory"))
3614 pr_warning("cgroup: \"memory\" requires setting use_hierarchy to 1 on the root.\n");
3615 ss->warned_broken_hierarchy = true;
3616 }
3617
3618 return 0;
3619
3620err_free:
3621 percpu_ref_cancel_init(&css->refcnt);
3622 ss->css_free(css);
3623 return err;
3624}
3625
2bd59d48 3626/**
a043e3b2
LZ
3627 * cgroup_create - create a cgroup
3628 * @parent: cgroup that will be parent of the new cgroup
e61734c5 3629 * @name: name of the new cgroup
2bd59d48 3630 * @mode: mode to set on new cgroup
ddbcc7e8 3631 */
e61734c5 3632static long cgroup_create(struct cgroup *parent, const char *name,
2bd59d48 3633 umode_t mode)
ddbcc7e8 3634{
bd89aabc 3635 struct cgroup *cgrp;
ddbcc7e8 3636 struct cgroupfs_root *root = parent->root;
b58c8998 3637 int ssid, err;
ddbcc7e8 3638 struct cgroup_subsys *ss;
2bd59d48 3639 struct kernfs_node *kn;
ddbcc7e8 3640
0a950f65 3641 /* allocate the cgroup and its ID, 0 is reserved for the root */
bd89aabc
PM
3642 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
3643 if (!cgrp)
ddbcc7e8
PM
3644 return -ENOMEM;
3645
ace2bee8
TH
3646 mutex_lock(&cgroup_tree_mutex);
3647
976c06bc
TH
3648 /*
3649 * Only live parents can have children. Note that the liveliness
3650 * check isn't strictly necessary because cgroup_mkdir() and
3651 * cgroup_rmdir() are fully synchronized by i_mutex; however, do it
3652 * anyway so that locking is contained inside cgroup proper and we
3653 * don't get nasty surprises if we ever grow another caller.
3654 */
3655 if (!cgroup_lock_live_group(parent)) {
3656 err = -ENODEV;
ace2bee8 3657 goto err_unlock_tree;
0ab02ca8
LZ
3658 }
3659
3660 /*
3661 * Temporarily set the pointer to NULL, so idr_find() won't return
3662 * a half-baked cgroup.
3663 */
3664 cgrp->id = idr_alloc(&root->cgroup_idr, NULL, 1, 0, GFP_KERNEL);
3665 if (cgrp->id < 0) {
3666 err = -ENOMEM;
3667 goto err_unlock;
976c06bc
TH
3668 }
3669
cc31edce 3670 init_cgroup_housekeeping(cgrp);
ddbcc7e8 3671
bd89aabc 3672 cgrp->parent = parent;
0ae78e0b 3673 cgrp->dummy_css.parent = &parent->dummy_css;
bd89aabc 3674 cgrp->root = parent->root;
ddbcc7e8 3675
b6abdb0e
LZ
3676 if (notify_on_release(parent))
3677 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3678
2260e7fc
TH
3679 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
3680 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
97978e6d 3681
2bd59d48 3682 /* create the directory */
e61734c5 3683 kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
2bd59d48
TH
3684 if (IS_ERR(kn)) {
3685 err = PTR_ERR(kn);
0ab02ca8 3686 goto err_free_id;
2bd59d48
TH
3687 }
3688 cgrp->kn = kn;
ddbcc7e8 3689
6f30558f
TH
3690 /*
3691 * This extra ref will be put in cgroup_free_fn() and guarantees
3692 * that @cgrp->kn is always accessible.
3693 */
3694 kernfs_get(kn);
3695
00356bd5 3696 cgrp->serial_nr = cgroup_serial_nr_next++;
53fa5261 3697
4e139afc 3698 /* allocation complete, commit to creation */
4e139afc 3699 list_add_tail_rcu(&cgrp->sibling, &cgrp->parent->children);
3c9c825b 3700 atomic_inc(&root->nr_cgrps);
59f5296b 3701 cgroup_get(parent);
415cf07a 3702
0d80255e
TH
3703 /*
3704 * @cgrp is now fully operational. If something fails after this
3705 * point, it'll be released via the normal destruction path.
3706 */
4e96ee8e
LZ
3707 idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
3708
2bb566cb 3709 err = cgroup_addrm_files(cgrp, cgroup_base_files, true);
628f7cd4
TH
3710 if (err)
3711 goto err_destroy;
3712
9d403e99 3713 /* let's create and online css's */
b85d2040
TH
3714 for_each_subsys(ss, ssid) {
3715 if (root->subsys_mask & (1 << ssid)) {
3716 err = create_css(cgrp, ss);
3717 if (err)
3718 goto err_destroy;
3719 }
a8638030 3720 }
ddbcc7e8 3721
2bd59d48
TH
3722 kernfs_activate(kn);
3723
ddbcc7e8 3724 mutex_unlock(&cgroup_mutex);
ace2bee8 3725 mutex_unlock(&cgroup_tree_mutex);
ddbcc7e8
PM
3726
3727 return 0;
3728
0a950f65 3729err_free_id:
4e96ee8e 3730 idr_remove(&root->cgroup_idr, cgrp->id);
0ab02ca8
LZ
3731err_unlock:
3732 mutex_unlock(&cgroup_mutex);
ace2bee8
TH
3733err_unlock_tree:
3734 mutex_unlock(&cgroup_tree_mutex);
bd89aabc 3735 kfree(cgrp);
ddbcc7e8 3736 return err;
4b8b47eb
TH
3737
3738err_destroy:
3739 cgroup_destroy_locked(cgrp);
3740 mutex_unlock(&cgroup_mutex);
ace2bee8 3741 mutex_unlock(&cgroup_tree_mutex);
4b8b47eb 3742 return err;
ddbcc7e8
PM
3743}
3744
2bd59d48
TH
3745static int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
3746 umode_t mode)
ddbcc7e8 3747{
2bd59d48 3748 struct cgroup *parent = parent_kn->priv;
ddbcc7e8 3749
2bd59d48 3750 return cgroup_create(parent, name, mode);
ddbcc7e8
PM
3751}
3752
223dbc38
TH
3753/*
3754 * This is called when the refcnt of a css is confirmed to be killed.
3755 * css_tryget() is now guaranteed to fail.
3756 */
3757static void css_killed_work_fn(struct work_struct *work)
d3daf28d 3758{
223dbc38
TH
3759 struct cgroup_subsys_state *css =
3760 container_of(work, struct cgroup_subsys_state, destroy_work);
3761 struct cgroup *cgrp = css->cgroup;
d3daf28d 3762
ace2bee8 3763 mutex_lock(&cgroup_tree_mutex);
f20104de
TH
3764 mutex_lock(&cgroup_mutex);
3765
09a503ea
TH
3766 /*
3767 * css_tryget() is guaranteed to fail now. Tell subsystems to
3768 * initate destruction.
3769 */
3770 offline_css(css);
3771
f20104de
TH
3772 /*
3773 * If @cgrp is marked dead, it's waiting for refs of all css's to
3774 * be disabled before proceeding to the second phase of cgroup
3775 * destruction. If we are the last one, kick it off.
3776 */
09a503ea 3777 if (!cgrp->nr_css && cgroup_is_dead(cgrp))
f20104de
TH
3778 cgroup_destroy_css_killed(cgrp);
3779
3780 mutex_unlock(&cgroup_mutex);
ace2bee8 3781 mutex_unlock(&cgroup_tree_mutex);
09a503ea
TH
3782
3783 /*
3784 * Put the css refs from kill_css(). Each css holds an extra
3785 * reference to the cgroup's dentry and cgroup removal proceeds
3786 * regardless of css refs. On the last put of each css, whenever
3787 * that may be, the extra dentry ref is put so that dentry
3788 * destruction happens only after all css's are released.
3789 */
3790 css_put(css);
d3daf28d
TH
3791}
3792
223dbc38
TH
3793/* css kill confirmation processing requires process context, bounce */
3794static void css_killed_ref_fn(struct percpu_ref *ref)
d3daf28d
TH
3795{
3796 struct cgroup_subsys_state *css =
3797 container_of(ref, struct cgroup_subsys_state, refcnt);
3798
223dbc38 3799 INIT_WORK(&css->destroy_work, css_killed_work_fn);
e5fca243 3800 queue_work(cgroup_destroy_wq, &css->destroy_work);
d3daf28d
TH
3801}
3802
edae0c33
TH
3803/**
3804 * kill_css - destroy a css
3805 * @css: css to destroy
3806 *
3c14f8b4
TH
3807 * This function initiates destruction of @css by removing cgroup interface
3808 * files and putting its base reference. ->css_offline() will be invoked
3809 * asynchronously once css_tryget() is guaranteed to fail and when the
3810 * reference count reaches zero, @css will be released.
edae0c33
TH
3811 */
3812static void kill_css(struct cgroup_subsys_state *css)
3813{
2bd59d48
TH
3814 /*
3815 * This must happen before css is disassociated with its cgroup.
3816 * See seq_css() for details.
3817 */
aec25020 3818 cgroup_clear_dir(css->cgroup, 1 << css->ss->id);
3c14f8b4 3819
edae0c33
TH
3820 /*
3821 * Killing would put the base ref, but we need to keep it alive
3822 * until after ->css_offline().
3823 */
3824 css_get(css);
3825
3826 /*
3827 * cgroup core guarantees that, by the time ->css_offline() is
3828 * invoked, no new css reference will be given out via
3829 * css_tryget(). We can't simply call percpu_ref_kill() and
3830 * proceed to offlining css's because percpu_ref_kill() doesn't
3831 * guarantee that the ref is seen as killed on all CPUs on return.
3832 *
3833 * Use percpu_ref_kill_and_confirm() to get notifications as each
3834 * css is confirmed to be seen as killed on all CPUs.
3835 */
3836 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
d3daf28d
TH
3837}
3838
3839/**
3840 * cgroup_destroy_locked - the first stage of cgroup destruction
3841 * @cgrp: cgroup to be destroyed
3842 *
3843 * css's make use of percpu refcnts whose killing latency shouldn't be
3844 * exposed to userland and are RCU protected. Also, cgroup core needs to
3845 * guarantee that css_tryget() won't succeed by the time ->css_offline() is
3846 * invoked. To satisfy all the requirements, destruction is implemented in
3847 * the following two steps.
3848 *
3849 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
3850 * userland visible parts and start killing the percpu refcnts of
3851 * css's. Set up so that the next stage will be kicked off once all
3852 * the percpu refcnts are confirmed to be killed.
3853 *
3854 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
3855 * rest of destruction. Once all cgroup references are gone, the
3856 * cgroup is RCU-freed.
3857 *
3858 * This function implements s1. After this step, @cgrp is gone as far as
3859 * the userland is concerned and a new cgroup with the same name may be
3860 * created. As cgroup doesn't care about the names internally, this
3861 * doesn't cause any problem.
3862 */
42809dd4
TH
3863static int cgroup_destroy_locked(struct cgroup *cgrp)
3864 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
ddbcc7e8 3865{
bb78a92f 3866 struct cgroup *child;
2bd59d48 3867 struct cgroup_subsys_state *css;
ddd69148 3868 bool empty;
1c6727af 3869 int ssid;
ddbcc7e8 3870
ace2bee8 3871 lockdep_assert_held(&cgroup_tree_mutex);
42809dd4
TH
3872 lockdep_assert_held(&cgroup_mutex);
3873
ddd69148 3874 /*
6f3d828f
TH
3875 * css_set_lock synchronizes access to ->cset_links and prevents
3876 * @cgrp from being removed while __put_css_set() is in progress.
ddd69148
TH
3877 */
3878 read_lock(&css_set_lock);
bb78a92f 3879 empty = list_empty(&cgrp->cset_links);
ddd69148
TH
3880 read_unlock(&css_set_lock);
3881 if (!empty)
ddbcc7e8 3882 return -EBUSY;
a043e3b2 3883
bb78a92f
HD
3884 /*
3885 * Make sure there's no live children. We can't test ->children
3886 * emptiness as dead children linger on it while being destroyed;
3887 * otherwise, "rmdir parent/child parent" may fail with -EBUSY.
3888 */
3889 empty = true;
3890 rcu_read_lock();
3891 list_for_each_entry_rcu(child, &cgrp->children, sibling) {
3892 empty = cgroup_is_dead(child);
3893 if (!empty)
3894 break;
3895 }
3896 rcu_read_unlock();
3897 if (!empty)
3898 return -EBUSY;
3899
88703267 3900 /*
edae0c33
TH
3901 * Initiate massacre of all css's. cgroup_destroy_css_killed()
3902 * will be invoked to perform the rest of destruction once the
4ac06017
TH
3903 * percpu refs of all css's are confirmed to be killed. This
3904 * involves removing the subsystem's files, drop cgroup_mutex.
88703267 3905 */
4ac06017 3906 mutex_unlock(&cgroup_mutex);
1c6727af
TH
3907 for_each_css(css, ssid, cgrp)
3908 kill_css(css);
4ac06017 3909 mutex_lock(&cgroup_mutex);
455050d2
TH
3910
3911 /*
3912 * Mark @cgrp dead. This prevents further task migration and child
3913 * creation by disabling cgroup_lock_live_group(). Note that
492eb21b 3914 * CGRP_DEAD assertion is depended upon by css_next_child() to
455050d2 3915 * resume iteration after dropping RCU read lock. See
492eb21b 3916 * css_next_child() for details.
455050d2 3917 */
54766d4a 3918 set_bit(CGRP_DEAD, &cgrp->flags);
ddbcc7e8 3919
455050d2
TH
3920 /* CGRP_DEAD is set, remove from ->release_list for the last time */
3921 raw_spin_lock(&release_list_lock);
3922 if (!list_empty(&cgrp->release_list))
3923 list_del_init(&cgrp->release_list);
3924 raw_spin_unlock(&release_list_lock);
3925
3926 /*
f20104de
TH
3927 * If @cgrp has css's attached, the second stage of cgroup
3928 * destruction is kicked off from css_killed_work_fn() after the
3929 * refs of all attached css's are killed. If @cgrp doesn't have
3930 * any css, we kick it off here.
3931 */
3932 if (!cgrp->nr_css)
3933 cgroup_destroy_css_killed(cgrp);
3934
2bd59d48
TH
3935 /* remove @cgrp directory along with the base files */
3936 mutex_unlock(&cgroup_mutex);
3937
455050d2 3938 /*
2bd59d48
TH
3939 * There are two control paths which try to determine cgroup from
3940 * dentry without going through kernfs - cgroupstats_build() and
3941 * css_tryget_from_dir(). Those are supported by RCU protecting
3942 * clearing of cgrp->kn->priv backpointer, which should happen
3943 * after all files under it have been removed.
455050d2 3944 */
6f30558f 3945 kernfs_remove(cgrp->kn); /* @cgrp has an extra ref on its kn */
2bd59d48 3946 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv, NULL);
2bd59d48 3947
4ac06017 3948 mutex_lock(&cgroup_mutex);
455050d2 3949
ea15f8cc
TH
3950 return 0;
3951};
3952
d3daf28d 3953/**
f20104de 3954 * cgroup_destroy_css_killed - the second step of cgroup destruction
d3daf28d
TH
3955 * @work: cgroup->destroy_free_work
3956 *
3957 * This function is invoked from a work item for a cgroup which is being
09a503ea
TH
3958 * destroyed after all css's are offlined and performs the rest of
3959 * destruction. This is the second step of destruction described in the
3960 * comment above cgroup_destroy_locked().
d3daf28d 3961 */
f20104de 3962static void cgroup_destroy_css_killed(struct cgroup *cgrp)
ea15f8cc 3963{
ea15f8cc 3964 struct cgroup *parent = cgrp->parent;
ea15f8cc 3965
ace2bee8 3966 lockdep_assert_held(&cgroup_tree_mutex);
f20104de 3967 lockdep_assert_held(&cgroup_mutex);
ea15f8cc 3968
999cd8a4 3969 /* delete this cgroup from parent->children */
eb6fd504 3970 list_del_rcu(&cgrp->sibling);
ed957793 3971
59f5296b 3972 cgroup_put(cgrp);
ddbcc7e8 3973
bd89aabc 3974 set_bit(CGRP_RELEASABLE, &parent->flags);
81a6a5cd 3975 check_for_release(parent);
ddbcc7e8
PM
3976}
3977
2bd59d48 3978static int cgroup_rmdir(struct kernfs_node *kn)
42809dd4 3979{
2bd59d48
TH
3980 struct cgroup *cgrp = kn->priv;
3981 int ret = 0;
3982
3983 /*
3984 * This is self-destruction but @kn can't be removed while this
3985 * callback is in progress. Let's break active protection. Once
3986 * the protection is broken, @cgrp can be destroyed at any point.
3987 * Pin it so that it stays accessible.
3988 */
3989 cgroup_get(cgrp);
3990 kernfs_break_active_protection(kn);
42809dd4 3991
ace2bee8 3992 mutex_lock(&cgroup_tree_mutex);
42809dd4 3993 mutex_lock(&cgroup_mutex);
2bd59d48
TH
3994
3995 /*
3996 * @cgrp might already have been destroyed while we're trying to
3997 * grab the mutexes.
3998 */
3999 if (!cgroup_is_dead(cgrp))
4000 ret = cgroup_destroy_locked(cgrp);
4001
42809dd4 4002 mutex_unlock(&cgroup_mutex);
ace2bee8 4003 mutex_unlock(&cgroup_tree_mutex);
42809dd4 4004
2bd59d48
TH
4005 kernfs_unbreak_active_protection(kn);
4006 cgroup_put(cgrp);
42809dd4
TH
4007 return ret;
4008}
4009
2bd59d48
TH
4010static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
4011 .remount_fs = cgroup_remount,
4012 .show_options = cgroup_show_options,
4013 .mkdir = cgroup_mkdir,
4014 .rmdir = cgroup_rmdir,
4015 .rename = cgroup_rename,
4016};
4017
06a11920 4018static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
ddbcc7e8 4019{
ddbcc7e8 4020 struct cgroup_subsys_state *css;
cfe36bde
DC
4021
4022 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
ddbcc7e8 4023
ace2bee8 4024 mutex_lock(&cgroup_tree_mutex);
648bb56d
TH
4025 mutex_lock(&cgroup_mutex);
4026
0adb0704 4027 INIT_LIST_HEAD(&ss->cfts);
8e3f6541 4028
ddbcc7e8 4029 /* Create the top cgroup state for this subsystem */
9871bf95 4030 ss->root = &cgroup_dummy_root;
ca8bdcaf 4031 css = ss->css_alloc(cgroup_css(cgroup_dummy_top, ss));
ddbcc7e8
PM
4032 /* We don't handle early failures gracefully */
4033 BUG_ON(IS_ERR(css));
623f926b 4034 init_css(css, ss, cgroup_dummy_top);
ddbcc7e8 4035
e8d55fde 4036 /* Update the init_css_set to contain a subsys
817929ec 4037 * pointer to this state - since the subsystem is
e8d55fde
LZ
4038 * newly registered, all tasks and hence the
4039 * init_css_set is in the subsystem's top cgroup. */
aec25020 4040 init_css_set.subsys[ss->id] = css;
ddbcc7e8
PM
4041
4042 need_forkexit_callback |= ss->fork || ss->exit;
4043
e8d55fde
LZ
4044 /* At system boot, before all subsystems have been
4045 * registered, no tasks have been forked, so we don't
4046 * need to invoke fork callbacks here. */
4047 BUG_ON(!list_empty(&init_task.tasks));
4048
ae7f164a 4049 BUG_ON(online_css(css));
a8638030 4050
648bb56d 4051 mutex_unlock(&cgroup_mutex);
ace2bee8 4052 mutex_unlock(&cgroup_tree_mutex);
e6a1105b
BB
4053}
4054
ddbcc7e8 4055/**
a043e3b2
LZ
4056 * cgroup_init_early - cgroup initialization at system boot
4057 *
4058 * Initialize cgroups at system boot, and initialize any
4059 * subsystems that request early init.
ddbcc7e8
PM
4060 */
4061int __init cgroup_init_early(void)
4062{
30159ec7 4063 struct cgroup_subsys *ss;
ddbcc7e8 4064 int i;
30159ec7 4065
146aa1bd 4066 atomic_set(&init_css_set.refcount, 1);
69d0206c 4067 INIT_LIST_HEAD(&init_css_set.cgrp_links);
817929ec 4068 INIT_LIST_HEAD(&init_css_set.tasks);
472b1053 4069 INIT_HLIST_NODE(&init_css_set.hlist);
817929ec 4070 css_set_count = 1;
9871bf95
TH
4071 init_cgroup_root(&cgroup_dummy_root);
4072 cgroup_root_count = 1;
a4ea1cc9 4073 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
817929ec 4074
69d0206c 4075 init_cgrp_cset_link.cset = &init_css_set;
9871bf95
TH
4076 init_cgrp_cset_link.cgrp = cgroup_dummy_top;
4077 list_add(&init_cgrp_cset_link.cset_link, &cgroup_dummy_top->cset_links);
69d0206c 4078 list_add(&init_cgrp_cset_link.cgrp_link, &init_css_set.cgrp_links);
ddbcc7e8 4079
3ed80a62 4080 for_each_subsys(ss, i) {
aec25020 4081 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
073219e9
TH
4082 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p name:id=%d:%s\n",
4083 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
aec25020 4084 ss->id, ss->name);
073219e9
TH
4085 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
4086 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
4087
aec25020 4088 ss->id = i;
073219e9 4089 ss->name = cgroup_subsys_name[i];
ddbcc7e8
PM
4090
4091 if (ss->early_init)
4092 cgroup_init_subsys(ss);
4093 }
4094 return 0;
4095}
4096
4097/**
a043e3b2
LZ
4098 * cgroup_init - cgroup initialization
4099 *
4100 * Register cgroup filesystem and /proc file, and initialize
4101 * any subsystems that didn't request early init.
ddbcc7e8
PM
4102 */
4103int __init cgroup_init(void)
4104{
30159ec7 4105 struct cgroup_subsys *ss;
0ac801fe 4106 unsigned long key;
30159ec7 4107 int i, err;
a424316c 4108
2bd59d48 4109 BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files));
2da440a2 4110
3ed80a62 4111 for_each_subsys(ss, i) {
ddbcc7e8
PM
4112 if (!ss->early_init)
4113 cgroup_init_subsys(ss);
de00ffa5
TH
4114
4115 /*
4116 * cftype registration needs kmalloc and can't be done
4117 * during early_init. Register base cftypes separately.
4118 */
4119 if (ss->base_cftypes)
4120 WARN_ON(cgroup_add_cftypes(ss, ss->base_cftypes));
ddbcc7e8
PM
4121 }
4122
fa3ca07e 4123 /* allocate id for the dummy hierarchy */
54e7b4eb 4124 mutex_lock(&cgroup_mutex);
54e7b4eb 4125
82fe9b0d
TH
4126 /* Add init_css_set to the hash table */
4127 key = css_set_hash(init_css_set.subsys);
4128 hash_add(css_set_table, &init_css_set.hlist, key);
4129
fc76df70 4130 BUG_ON(cgroup_init_root_id(&cgroup_dummy_root, 0, 1));
676db4af 4131
4e96ee8e
LZ
4132 err = idr_alloc(&cgroup_dummy_root.cgroup_idr, cgroup_dummy_top,
4133 0, 1, GFP_KERNEL);
4134 BUG_ON(err < 0);
4135
54e7b4eb
TH
4136 mutex_unlock(&cgroup_mutex);
4137
676db4af 4138 cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
2bd59d48
TH
4139 if (!cgroup_kobj)
4140 return -ENOMEM;
676db4af 4141
ddbcc7e8 4142 err = register_filesystem(&cgroup_fs_type);
676db4af
GKH
4143 if (err < 0) {
4144 kobject_put(cgroup_kobj);
2bd59d48 4145 return err;
676db4af 4146 }
ddbcc7e8 4147
46ae220b 4148 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
2bd59d48 4149 return 0;
ddbcc7e8 4150}
b4f48b63 4151
e5fca243
TH
4152static int __init cgroup_wq_init(void)
4153{
4154 /*
4155 * There isn't much point in executing destruction path in
4156 * parallel. Good chunk is serialized with cgroup_mutex anyway.
ab3f5faa
HD
4157 *
4158 * XXX: Must be ordered to make sure parent is offlined after
4159 * children. The ordering requirement is for memcg where a
4160 * parent's offline may wait for a child's leading to deadlock. In
4161 * the long term, this should be fixed from memcg side.
e5fca243
TH
4162 *
4163 * We would prefer to do this in cgroup_init() above, but that
4164 * is called before init_workqueues(): so leave this until after.
4165 */
ab3f5faa 4166 cgroup_destroy_wq = alloc_ordered_workqueue("cgroup_destroy", 0);
e5fca243 4167 BUG_ON(!cgroup_destroy_wq);
b1a21367
TH
4168
4169 /*
4170 * Used to destroy pidlists and separate to serve as flush domain.
4171 * Cap @max_active to 1 too.
4172 */
4173 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
4174 0, 1);
4175 BUG_ON(!cgroup_pidlist_destroy_wq);
4176
e5fca243
TH
4177 return 0;
4178}
4179core_initcall(cgroup_wq_init);
4180
a424316c
PM
4181/*
4182 * proc_cgroup_show()
4183 * - Print task's cgroup paths into seq_file, one line for each hierarchy
4184 * - Used for /proc/<pid>/cgroup.
4185 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
4186 * doesn't really matter if tsk->cgroup changes after we read it,
956db3ca 4187 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
a424316c
PM
4188 * anyway. No need to check that tsk->cgroup != NULL, thanks to
4189 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
4190 * cgroup to top_cgroup.
4191 */
4192
4193/* TODO: Use a proper seq_file iterator */
8d8b97ba 4194int proc_cgroup_show(struct seq_file *m, void *v)
a424316c
PM
4195{
4196 struct pid *pid;
4197 struct task_struct *tsk;
e61734c5 4198 char *buf, *path;
a424316c
PM
4199 int retval;
4200 struct cgroupfs_root *root;
4201
4202 retval = -ENOMEM;
e61734c5 4203 buf = kmalloc(PATH_MAX, GFP_KERNEL);
a424316c
PM
4204 if (!buf)
4205 goto out;
4206
4207 retval = -ESRCH;
4208 pid = m->private;
4209 tsk = get_pid_task(pid, PIDTYPE_PID);
4210 if (!tsk)
4211 goto out_free;
4212
4213 retval = 0;
4214
4215 mutex_lock(&cgroup_mutex);
4216
e5f6a860 4217 for_each_active_root(root) {
a424316c 4218 struct cgroup_subsys *ss;
bd89aabc 4219 struct cgroup *cgrp;
b85d2040 4220 int ssid, count = 0;
a424316c 4221
2c6ab6d2 4222 seq_printf(m, "%d:", root->hierarchy_id);
b85d2040
TH
4223 for_each_subsys(ss, ssid)
4224 if (root->subsys_mask & (1 << ssid))
4225 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
c6d57f33
PM
4226 if (strlen(root->name))
4227 seq_printf(m, "%sname=%s", count ? "," : "",
4228 root->name);
a424316c 4229 seq_putc(m, ':');
7717f7ba 4230 cgrp = task_cgroup_from_root(tsk, root);
e61734c5
TH
4231 path = cgroup_path(cgrp, buf, PATH_MAX);
4232 if (!path) {
4233 retval = -ENAMETOOLONG;
a424316c 4234 goto out_unlock;
e61734c5
TH
4235 }
4236 seq_puts(m, path);
a424316c
PM
4237 seq_putc(m, '\n');
4238 }
4239
4240out_unlock:
4241 mutex_unlock(&cgroup_mutex);
4242 put_task_struct(tsk);
4243out_free:
4244 kfree(buf);
4245out:
4246 return retval;
4247}
4248
a424316c
PM
4249/* Display information about each subsystem and each hierarchy */
4250static int proc_cgroupstats_show(struct seq_file *m, void *v)
4251{
30159ec7 4252 struct cgroup_subsys *ss;
a424316c 4253 int i;
a424316c 4254
8bab8dde 4255 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
aae8aab4
BB
4256 /*
4257 * ideally we don't want subsystems moving around while we do this.
4258 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
4259 * subsys/hierarchy state.
4260 */
a424316c 4261 mutex_lock(&cgroup_mutex);
30159ec7
TH
4262
4263 for_each_subsys(ss, i)
2c6ab6d2
PM
4264 seq_printf(m, "%s\t%d\t%d\t%d\n",
4265 ss->name, ss->root->hierarchy_id,
3c9c825b 4266 atomic_read(&ss->root->nr_cgrps), !ss->disabled);
30159ec7 4267
a424316c
PM
4268 mutex_unlock(&cgroup_mutex);
4269 return 0;
4270}
4271
4272static int cgroupstats_open(struct inode *inode, struct file *file)
4273{
9dce07f1 4274 return single_open(file, proc_cgroupstats_show, NULL);
a424316c
PM
4275}
4276
828c0950 4277static const struct file_operations proc_cgroupstats_operations = {
a424316c
PM
4278 .open = cgroupstats_open,
4279 .read = seq_read,
4280 .llseek = seq_lseek,
4281 .release = single_release,
4282};
4283
b4f48b63
PM
4284/**
4285 * cgroup_fork - attach newly forked task to its parents cgroup.
a043e3b2 4286 * @child: pointer to task_struct of forking parent process.
b4f48b63
PM
4287 *
4288 * Description: A task inherits its parent's cgroup at fork().
4289 *
4290 * A pointer to the shared css_set was automatically copied in
4291 * fork.c by dup_task_struct(). However, we ignore that copy, since
9bb71308
TH
4292 * it was not made under the protection of RCU or cgroup_mutex, so
4293 * might no longer be a valid cgroup pointer. cgroup_attach_task() might
4294 * have already changed current->cgroups, allowing the previously
4295 * referenced cgroup group to be removed and freed.
b4f48b63
PM
4296 *
4297 * At the point that cgroup_fork() is called, 'current' is the parent
4298 * task, and the passed argument 'child' points to the child task.
4299 */
4300void cgroup_fork(struct task_struct *child)
4301{
9bb71308 4302 task_lock(current);
a8ad805c 4303 get_css_set(task_css_set(current));
817929ec 4304 child->cgroups = current->cgroups;
9bb71308 4305 task_unlock(current);
817929ec 4306 INIT_LIST_HEAD(&child->cg_list);
b4f48b63
PM
4307}
4308
817929ec 4309/**
a043e3b2
LZ
4310 * cgroup_post_fork - called on a new task after adding it to the task list
4311 * @child: the task in question
4312 *
5edee61e
TH
4313 * Adds the task to the list running through its css_set if necessary and
4314 * call the subsystem fork() callbacks. Has to be after the task is
4315 * visible on the task list in case we race with the first call to
0942eeee 4316 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5edee61e 4317 * list.
a043e3b2 4318 */
817929ec
PM
4319void cgroup_post_fork(struct task_struct *child)
4320{
30159ec7 4321 struct cgroup_subsys *ss;
5edee61e
TH
4322 int i;
4323
3ce3230a
FW
4324 /*
4325 * use_task_css_set_links is set to 1 before we walk the tasklist
4326 * under the tasklist_lock and we read it here after we added the child
4327 * to the tasklist under the tasklist_lock as well. If the child wasn't
4328 * yet in the tasklist when we walked through it from
4329 * cgroup_enable_task_cg_lists(), then use_task_css_set_links value
4330 * should be visible now due to the paired locking and barriers implied
4331 * by LOCK/UNLOCK: it is written before the tasklist_lock unlock
4332 * in cgroup_enable_task_cg_lists() and read here after the tasklist_lock
4333 * lock on fork.
4334 */
817929ec
PM
4335 if (use_task_css_set_links) {
4336 write_lock(&css_set_lock);
d8783832
TH
4337 task_lock(child);
4338 if (list_empty(&child->cg_list))
a8ad805c 4339 list_add(&child->cg_list, &task_css_set(child)->tasks);
d8783832 4340 task_unlock(child);
817929ec
PM
4341 write_unlock(&css_set_lock);
4342 }
5edee61e
TH
4343
4344 /*
4345 * Call ss->fork(). This must happen after @child is linked on
4346 * css_set; otherwise, @child might change state between ->fork()
4347 * and addition to css_set.
4348 */
4349 if (need_forkexit_callback) {
3ed80a62 4350 for_each_subsys(ss, i)
5edee61e
TH
4351 if (ss->fork)
4352 ss->fork(child);
5edee61e 4353 }
817929ec 4354}
5edee61e 4355
b4f48b63
PM
4356/**
4357 * cgroup_exit - detach cgroup from exiting task
4358 * @tsk: pointer to task_struct of exiting process
a043e3b2 4359 * @run_callback: run exit callbacks?
b4f48b63
PM
4360 *
4361 * Description: Detach cgroup from @tsk and release it.
4362 *
4363 * Note that cgroups marked notify_on_release force every task in
4364 * them to take the global cgroup_mutex mutex when exiting.
4365 * This could impact scaling on very large systems. Be reluctant to
4366 * use notify_on_release cgroups where very high task exit scaling
4367 * is required on large systems.
4368 *
4369 * the_top_cgroup_hack:
4370 *
4371 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
4372 *
4373 * We call cgroup_exit() while the task is still competent to
4374 * handle notify_on_release(), then leave the task attached to the
4375 * root cgroup in each hierarchy for the remainder of its exit.
4376 *
4377 * To do this properly, we would increment the reference count on
4378 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
4379 * code we would add a second cgroup function call, to drop that
4380 * reference. This would just create an unnecessary hot spot on
4381 * the top_cgroup reference count, to no avail.
4382 *
4383 * Normally, holding a reference to a cgroup without bumping its
4384 * count is unsafe. The cgroup could go away, or someone could
4385 * attach us to a different cgroup, decrementing the count on
4386 * the first cgroup that we never incremented. But in this case,
4387 * top_cgroup isn't going away, and either task has PF_EXITING set,
956db3ca
CW
4388 * which wards off any cgroup_attach_task() attempts, or task is a failed
4389 * fork, never visible to cgroup_attach_task.
b4f48b63
PM
4390 */
4391void cgroup_exit(struct task_struct *tsk, int run_callbacks)
4392{
30159ec7 4393 struct cgroup_subsys *ss;
5abb8855 4394 struct css_set *cset;
d41d5a01 4395 int i;
817929ec
PM
4396
4397 /*
4398 * Unlink from the css_set task list if necessary.
4399 * Optimistically check cg_list before taking
4400 * css_set_lock
4401 */
4402 if (!list_empty(&tsk->cg_list)) {
4403 write_lock(&css_set_lock);
4404 if (!list_empty(&tsk->cg_list))
8d258797 4405 list_del_init(&tsk->cg_list);
817929ec
PM
4406 write_unlock(&css_set_lock);
4407 }
4408
b4f48b63
PM
4409 /* Reassign the task to the init_css_set. */
4410 task_lock(tsk);
a8ad805c
TH
4411 cset = task_css_set(tsk);
4412 RCU_INIT_POINTER(tsk->cgroups, &init_css_set);
d41d5a01
PZ
4413
4414 if (run_callbacks && need_forkexit_callback) {
3ed80a62
TH
4415 /* see cgroup_post_fork() for details */
4416 for_each_subsys(ss, i) {
d41d5a01 4417 if (ss->exit) {
eb95419b
TH
4418 struct cgroup_subsys_state *old_css = cset->subsys[i];
4419 struct cgroup_subsys_state *css = task_css(tsk, i);
30159ec7 4420
eb95419b 4421 ss->exit(css, old_css, tsk);
d41d5a01
PZ
4422 }
4423 }
4424 }
b4f48b63 4425 task_unlock(tsk);
d41d5a01 4426
5abb8855 4427 put_css_set_taskexit(cset);
b4f48b63 4428}
697f4161 4429
bd89aabc 4430static void check_for_release(struct cgroup *cgrp)
81a6a5cd 4431{
f50daa70 4432 if (cgroup_is_releasable(cgrp) &&
6f3d828f 4433 list_empty(&cgrp->cset_links) && list_empty(&cgrp->children)) {
f50daa70
LZ
4434 /*
4435 * Control Group is currently removeable. If it's not
81a6a5cd 4436 * already queued for a userspace notification, queue
f50daa70
LZ
4437 * it now
4438 */
81a6a5cd 4439 int need_schedule_work = 0;
f50daa70 4440
cdcc136f 4441 raw_spin_lock(&release_list_lock);
54766d4a 4442 if (!cgroup_is_dead(cgrp) &&
bd89aabc
PM
4443 list_empty(&cgrp->release_list)) {
4444 list_add(&cgrp->release_list, &release_list);
81a6a5cd
PM
4445 need_schedule_work = 1;
4446 }
cdcc136f 4447 raw_spin_unlock(&release_list_lock);
81a6a5cd
PM
4448 if (need_schedule_work)
4449 schedule_work(&release_agent_work);
4450 }
4451}
4452
81a6a5cd
PM
4453/*
4454 * Notify userspace when a cgroup is released, by running the
4455 * configured release agent with the name of the cgroup (path
4456 * relative to the root of cgroup file system) as the argument.
4457 *
4458 * Most likely, this user command will try to rmdir this cgroup.
4459 *
4460 * This races with the possibility that some other task will be
4461 * attached to this cgroup before it is removed, or that some other
4462 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
4463 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
4464 * unused, and this cgroup will be reprieved from its death sentence,
4465 * to continue to serve a useful existence. Next time it's released,
4466 * we will get notified again, if it still has 'notify_on_release' set.
4467 *
4468 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
4469 * means only wait until the task is successfully execve()'d. The
4470 * separate release agent task is forked by call_usermodehelper(),
4471 * then control in this thread returns here, without waiting for the
4472 * release agent task. We don't bother to wait because the caller of
4473 * this routine has no use for the exit status of the release agent
4474 * task, so no sense holding our caller up for that.
81a6a5cd 4475 */
81a6a5cd
PM
4476static void cgroup_release_agent(struct work_struct *work)
4477{
4478 BUG_ON(work != &release_agent_work);
4479 mutex_lock(&cgroup_mutex);
cdcc136f 4480 raw_spin_lock(&release_list_lock);
81a6a5cd
PM
4481 while (!list_empty(&release_list)) {
4482 char *argv[3], *envp[3];
4483 int i;
e61734c5 4484 char *pathbuf = NULL, *agentbuf = NULL, *path;
bd89aabc 4485 struct cgroup *cgrp = list_entry(release_list.next,
81a6a5cd
PM
4486 struct cgroup,
4487 release_list);
bd89aabc 4488 list_del_init(&cgrp->release_list);
cdcc136f 4489 raw_spin_unlock(&release_list_lock);
e61734c5 4490 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
e788e066
PM
4491 if (!pathbuf)
4492 goto continue_free;
e61734c5
TH
4493 path = cgroup_path(cgrp, pathbuf, PATH_MAX);
4494 if (!path)
e788e066
PM
4495 goto continue_free;
4496 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
4497 if (!agentbuf)
4498 goto continue_free;
81a6a5cd
PM
4499
4500 i = 0;
e788e066 4501 argv[i++] = agentbuf;
e61734c5 4502 argv[i++] = path;
81a6a5cd
PM
4503 argv[i] = NULL;
4504
4505 i = 0;
4506 /* minimal command environment */
4507 envp[i++] = "HOME=/";
4508 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
4509 envp[i] = NULL;
4510
4511 /* Drop the lock while we invoke the usermode helper,
4512 * since the exec could involve hitting disk and hence
4513 * be a slow process */
4514 mutex_unlock(&cgroup_mutex);
4515 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
81a6a5cd 4516 mutex_lock(&cgroup_mutex);
e788e066
PM
4517 continue_free:
4518 kfree(pathbuf);
4519 kfree(agentbuf);
cdcc136f 4520 raw_spin_lock(&release_list_lock);
81a6a5cd 4521 }
cdcc136f 4522 raw_spin_unlock(&release_list_lock);
81a6a5cd
PM
4523 mutex_unlock(&cgroup_mutex);
4524}
8bab8dde
PM
4525
4526static int __init cgroup_disable(char *str)
4527{
30159ec7 4528 struct cgroup_subsys *ss;
8bab8dde 4529 char *token;
30159ec7 4530 int i;
8bab8dde
PM
4531
4532 while ((token = strsep(&str, ",")) != NULL) {
4533 if (!*token)
4534 continue;
be45c900 4535
3ed80a62 4536 for_each_subsys(ss, i) {
8bab8dde
PM
4537 if (!strcmp(token, ss->name)) {
4538 ss->disabled = 1;
4539 printk(KERN_INFO "Disabling %s control group"
4540 " subsystem\n", ss->name);
4541 break;
4542 }
4543 }
4544 }
4545 return 1;
4546}
4547__setup("cgroup_disable=", cgroup_disable);
38460b48 4548
b77d7b60 4549/**
5a17f543 4550 * css_tryget_from_dir - get corresponding css from the dentry of a cgroup dir
35cf0836
TH
4551 * @dentry: directory dentry of interest
4552 * @ss: subsystem of interest
b77d7b60 4553 *
5a17f543
TH
4554 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
4555 * to get the corresponding css and return it. If such css doesn't exist
4556 * or can't be pinned, an ERR_PTR value is returned.
e5d1367f 4557 */
5a17f543
TH
4558struct cgroup_subsys_state *css_tryget_from_dir(struct dentry *dentry,
4559 struct cgroup_subsys *ss)
e5d1367f 4560{
2bd59d48
TH
4561 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
4562 struct cgroup_subsys_state *css = NULL;
e5d1367f 4563 struct cgroup *cgrp;
b77d7b60 4564
35cf0836 4565 /* is @dentry a cgroup dir? */
2bd59d48
TH
4566 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
4567 kernfs_type(kn) != KERNFS_DIR)
e5d1367f
SE
4568 return ERR_PTR(-EBADF);
4569
5a17f543
TH
4570 rcu_read_lock();
4571
2bd59d48
TH
4572 /*
4573 * This path doesn't originate from kernfs and @kn could already
4574 * have been or be removed at any point. @kn->priv is RCU
4575 * protected for this access. See destroy_locked() for details.
4576 */
4577 cgrp = rcu_dereference(kn->priv);
4578 if (cgrp)
4579 css = cgroup_css(cgrp, ss);
5a17f543
TH
4580
4581 if (!css || !css_tryget(css))
4582 css = ERR_PTR(-ENOENT);
4583
4584 rcu_read_unlock();
4585 return css;
e5d1367f 4586}
e5d1367f 4587
1cb650b9
LZ
4588/**
4589 * css_from_id - lookup css by id
4590 * @id: the cgroup id
4591 * @ss: cgroup subsys to be looked into
4592 *
4593 * Returns the css if there's valid one with @id, otherwise returns NULL.
4594 * Should be called under rcu_read_lock().
4595 */
4596struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
4597{
4598 struct cgroup *cgrp;
4599
ace2bee8 4600 cgroup_assert_mutexes_or_rcu_locked();
1cb650b9
LZ
4601
4602 cgrp = idr_find(&ss->root->cgroup_idr, id);
4603 if (cgrp)
d1625964 4604 return cgroup_css(cgrp, ss);
1cb650b9 4605 return NULL;
e5d1367f
SE
4606}
4607
fe693435 4608#ifdef CONFIG_CGROUP_DEBUG
eb95419b
TH
4609static struct cgroup_subsys_state *
4610debug_css_alloc(struct cgroup_subsys_state *parent_css)
fe693435
PM
4611{
4612 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
4613
4614 if (!css)
4615 return ERR_PTR(-ENOMEM);
4616
4617 return css;
4618}
4619
eb95419b 4620static void debug_css_free(struct cgroup_subsys_state *css)
fe693435 4621{
eb95419b 4622 kfree(css);
fe693435
PM
4623}
4624
182446d0
TH
4625static u64 debug_taskcount_read(struct cgroup_subsys_state *css,
4626 struct cftype *cft)
fe693435 4627{
182446d0 4628 return cgroup_task_count(css->cgroup);
fe693435
PM
4629}
4630
182446d0
TH
4631static u64 current_css_set_read(struct cgroup_subsys_state *css,
4632 struct cftype *cft)
fe693435
PM
4633{
4634 return (u64)(unsigned long)current->cgroups;
4635}
4636
182446d0 4637static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css,
03c78cbe 4638 struct cftype *cft)
fe693435
PM
4639{
4640 u64 count;
4641
4642 rcu_read_lock();
a8ad805c 4643 count = atomic_read(&task_css_set(current)->refcount);
fe693435
PM
4644 rcu_read_unlock();
4645 return count;
4646}
4647
2da8ca82 4648static int current_css_set_cg_links_read(struct seq_file *seq, void *v)
7717f7ba 4649{
69d0206c 4650 struct cgrp_cset_link *link;
5abb8855 4651 struct css_set *cset;
e61734c5
TH
4652 char *name_buf;
4653
4654 name_buf = kmalloc(NAME_MAX + 1, GFP_KERNEL);
4655 if (!name_buf)
4656 return -ENOMEM;
7717f7ba
PM
4657
4658 read_lock(&css_set_lock);
4659 rcu_read_lock();
5abb8855 4660 cset = rcu_dereference(current->cgroups);
69d0206c 4661 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 4662 struct cgroup *c = link->cgrp;
59f5296b
TH
4663 const char *name = "?";
4664
e61734c5
TH
4665 if (c != cgroup_dummy_top) {
4666 cgroup_name(c, name_buf, NAME_MAX + 1);
4667 name = name_buf;
4668 }
7717f7ba 4669
2c6ab6d2
PM
4670 seq_printf(seq, "Root %d group %s\n",
4671 c->root->hierarchy_id, name);
7717f7ba
PM
4672 }
4673 rcu_read_unlock();
4674 read_unlock(&css_set_lock);
e61734c5 4675 kfree(name_buf);
7717f7ba
PM
4676 return 0;
4677}
4678
4679#define MAX_TASKS_SHOWN_PER_CSS 25
2da8ca82 4680static int cgroup_css_links_read(struct seq_file *seq, void *v)
7717f7ba 4681{
2da8ca82 4682 struct cgroup_subsys_state *css = seq_css(seq);
69d0206c 4683 struct cgrp_cset_link *link;
7717f7ba
PM
4684
4685 read_lock(&css_set_lock);
182446d0 4686 list_for_each_entry(link, &css->cgroup->cset_links, cset_link) {
69d0206c 4687 struct css_set *cset = link->cset;
7717f7ba
PM
4688 struct task_struct *task;
4689 int count = 0;
5abb8855
TH
4690 seq_printf(seq, "css_set %p\n", cset);
4691 list_for_each_entry(task, &cset->tasks, cg_list) {
7717f7ba
PM
4692 if (count++ > MAX_TASKS_SHOWN_PER_CSS) {
4693 seq_puts(seq, " ...\n");
4694 break;
4695 } else {
4696 seq_printf(seq, " task %d\n",
4697 task_pid_vnr(task));
4698 }
4699 }
4700 }
4701 read_unlock(&css_set_lock);
4702 return 0;
4703}
4704
182446d0 4705static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft)
fe693435 4706{
182446d0 4707 return test_bit(CGRP_RELEASABLE, &css->cgroup->flags);
fe693435
PM
4708}
4709
4710static struct cftype debug_files[] = {
fe693435
PM
4711 {
4712 .name = "taskcount",
4713 .read_u64 = debug_taskcount_read,
4714 },
4715
4716 {
4717 .name = "current_css_set",
4718 .read_u64 = current_css_set_read,
4719 },
4720
4721 {
4722 .name = "current_css_set_refcount",
4723 .read_u64 = current_css_set_refcount_read,
4724 },
4725
7717f7ba
PM
4726 {
4727 .name = "current_css_set_cg_links",
2da8ca82 4728 .seq_show = current_css_set_cg_links_read,
7717f7ba
PM
4729 },
4730
4731 {
4732 .name = "cgroup_css_links",
2da8ca82 4733 .seq_show = cgroup_css_links_read,
7717f7ba
PM
4734 },
4735
fe693435
PM
4736 {
4737 .name = "releasable",
4738 .read_u64 = releasable_read,
4739 },
fe693435 4740
4baf6e33
TH
4741 { } /* terminate */
4742};
fe693435 4743
073219e9 4744struct cgroup_subsys debug_cgrp_subsys = {
92fb9748
TH
4745 .css_alloc = debug_css_alloc,
4746 .css_free = debug_css_free,
4baf6e33 4747 .base_cftypes = debug_files,
fe693435
PM
4748};
4749#endif /* CONFIG_CGROUP_DEBUG */