]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - kernel/cgroup.c
cgroup: relocate __d_cgrp() and __d_cft()
[mirror_ubuntu-zesty-kernel.git] / kernel / cgroup.c
CommitLineData
ddbcc7e8 1/*
ddbcc7e8
PM
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
0dea1168
KS
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
ddbcc7e8
PM
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29#include <linux/cgroup.h>
2ce9738b 30#include <linux/cred.h>
c6d57f33 31#include <linux/ctype.h>
ddbcc7e8
PM
32#include <linux/errno.h>
33#include <linux/fs.h>
2ce9738b 34#include <linux/init_task.h>
ddbcc7e8
PM
35#include <linux/kernel.h>
36#include <linux/list.h>
37#include <linux/mm.h>
38#include <linux/mutex.h>
39#include <linux/mount.h>
40#include <linux/pagemap.h>
a424316c 41#include <linux/proc_fs.h>
ddbcc7e8
PM
42#include <linux/rcupdate.h>
43#include <linux/sched.h>
817929ec 44#include <linux/backing-dev.h>
ddbcc7e8
PM
45#include <linux/seq_file.h>
46#include <linux/slab.h>
47#include <linux/magic.h>
48#include <linux/spinlock.h>
49#include <linux/string.h>
bbcb81d0 50#include <linux/sort.h>
81a6a5cd 51#include <linux/kmod.h>
e6a1105b 52#include <linux/module.h>
846c7bb0
BS
53#include <linux/delayacct.h>
54#include <linux/cgroupstats.h>
472b1053 55#include <linux/hash.h>
3f8206d4 56#include <linux/namei.h>
096b7fe0 57#include <linux/pid_namespace.h>
2c6ab6d2 58#include <linux/idr.h>
d1d9fd33 59#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
0dea1168
KS
60#include <linux/eventfd.h>
61#include <linux/poll.h>
d846687d 62#include <linux/flex_array.h> /* used in cgroup_attach_proc */
846c7bb0 63
60063497 64#include <linux/atomic.h>
ddbcc7e8 65
e25e2cbb
TH
66/*
67 * cgroup_mutex is the master lock. Any modification to cgroup or its
68 * hierarchy must be performed while holding it.
69 *
70 * cgroup_root_mutex nests inside cgroup_mutex and should be held to modify
71 * cgroupfs_root of any cgroup hierarchy - subsys list, flags,
72 * release_agent_path and so on. Modifying requires both cgroup_mutex and
73 * cgroup_root_mutex. Readers can acquire either of the two. This is to
74 * break the following locking order cycle.
75 *
76 * A. cgroup_mutex -> cred_guard_mutex -> s_type->i_mutex_key -> namespace_sem
77 * B. namespace_sem -> cgroup_mutex
78 *
79 * B happens only through cgroup_show_options() and using cgroup_root_mutex
80 * breaks it.
81 */
81a6a5cd 82static DEFINE_MUTEX(cgroup_mutex);
e25e2cbb 83static DEFINE_MUTEX(cgroup_root_mutex);
81a6a5cd 84
aae8aab4
BB
85/*
86 * Generate an array of cgroup subsystem pointers. At boot time, this is
87 * populated up to CGROUP_BUILTIN_SUBSYS_COUNT, and modular subsystems are
88 * registered after that. The mutable section of this array is protected by
89 * cgroup_mutex.
90 */
ddbcc7e8 91#define SUBSYS(_x) &_x ## _subsys,
aae8aab4 92static struct cgroup_subsys *subsys[CGROUP_SUBSYS_COUNT] = {
ddbcc7e8
PM
93#include <linux/cgroup_subsys.h>
94};
95
c6d57f33
PM
96#define MAX_CGROUP_ROOT_NAMELEN 64
97
ddbcc7e8
PM
98/*
99 * A cgroupfs_root represents the root of a cgroup hierarchy,
100 * and may be associated with a superblock to form an active
101 * hierarchy
102 */
103struct cgroupfs_root {
104 struct super_block *sb;
105
106 /*
107 * The bitmask of subsystems intended to be attached to this
108 * hierarchy
109 */
110 unsigned long subsys_bits;
111
2c6ab6d2
PM
112 /* Unique id for this hierarchy. */
113 int hierarchy_id;
114
ddbcc7e8
PM
115 /* The bitmask of subsystems currently attached to this hierarchy */
116 unsigned long actual_subsys_bits;
117
118 /* A list running through the attached subsystems */
119 struct list_head subsys_list;
120
121 /* The root cgroup for this hierarchy */
122 struct cgroup top_cgroup;
123
124 /* Tracks how many cgroups are currently defined in hierarchy.*/
125 int number_of_cgroups;
126
e5f6a860 127 /* A list running through the active hierarchies */
ddbcc7e8
PM
128 struct list_head root_list;
129
b0ca5a84
TH
130 /* All cgroups on this root, cgroup_mutex protected */
131 struct list_head allcg_list;
132
ddbcc7e8
PM
133 /* Hierarchy-specific flags */
134 unsigned long flags;
81a6a5cd 135
e788e066 136 /* The path to use for release notifications. */
81a6a5cd 137 char release_agent_path[PATH_MAX];
c6d57f33
PM
138
139 /* The name for this hierarchy - may be empty */
140 char name[MAX_CGROUP_ROOT_NAMELEN];
ddbcc7e8
PM
141};
142
ddbcc7e8
PM
143/*
144 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
145 * subsystems that are otherwise unattached - it never has more than a
146 * single cgroup, and all tasks are part of that cgroup.
147 */
148static struct cgroupfs_root rootnode;
149
38460b48
KH
150/*
151 * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
152 * cgroup_subsys->use_id != 0.
153 */
154#define CSS_ID_MAX (65535)
155struct css_id {
156 /*
157 * The css to which this ID points. This pointer is set to valid value
158 * after cgroup is populated. If cgroup is removed, this will be NULL.
159 * This pointer is expected to be RCU-safe because destroy()
160 * is called after synchronize_rcu(). But for safe use, css_is_removed()
161 * css_tryget() should be used for avoiding race.
162 */
2c392b8c 163 struct cgroup_subsys_state __rcu *css;
38460b48
KH
164 /*
165 * ID of this css.
166 */
167 unsigned short id;
168 /*
169 * Depth in hierarchy which this ID belongs to.
170 */
171 unsigned short depth;
172 /*
173 * ID is freed by RCU. (and lookup routine is RCU safe.)
174 */
175 struct rcu_head rcu_head;
176 /*
177 * Hierarchy of CSS ID belongs to.
178 */
179 unsigned short stack[0]; /* Array of Length (depth+1) */
180};
181
0dea1168 182/*
25985edc 183 * cgroup_event represents events which userspace want to receive.
0dea1168
KS
184 */
185struct cgroup_event {
186 /*
187 * Cgroup which the event belongs to.
188 */
189 struct cgroup *cgrp;
190 /*
191 * Control file which the event associated.
192 */
193 struct cftype *cft;
194 /*
195 * eventfd to signal userspace about the event.
196 */
197 struct eventfd_ctx *eventfd;
198 /*
199 * Each of these stored in a list by the cgroup.
200 */
201 struct list_head list;
202 /*
203 * All fields below needed to unregister event when
204 * userspace closes eventfd.
205 */
206 poll_table pt;
207 wait_queue_head_t *wqh;
208 wait_queue_t wait;
209 struct work_struct remove;
210};
38460b48 211
ddbcc7e8
PM
212/* The list of hierarchy roots */
213
214static LIST_HEAD(roots);
817929ec 215static int root_count;
ddbcc7e8 216
2c6ab6d2
PM
217static DEFINE_IDA(hierarchy_ida);
218static int next_hierarchy_id;
219static DEFINE_SPINLOCK(hierarchy_id_lock);
220
ddbcc7e8
PM
221/* dummytop is a shorthand for the dummy hierarchy's top cgroup */
222#define dummytop (&rootnode.top_cgroup)
223
224/* This flag indicates whether tasks in the fork and exit paths should
a043e3b2
LZ
225 * check for fork/exit handlers to call. This avoids us having to do
226 * extra work in the fork/exit path if none of the subsystems need to
227 * be called.
ddbcc7e8 228 */
8947f9d5 229static int need_forkexit_callback __read_mostly;
ddbcc7e8 230
d11c563d
PM
231#ifdef CONFIG_PROVE_LOCKING
232int cgroup_lock_is_held(void)
233{
234 return lockdep_is_held(&cgroup_mutex);
235}
236#else /* #ifdef CONFIG_PROVE_LOCKING */
237int cgroup_lock_is_held(void)
238{
239 return mutex_is_locked(&cgroup_mutex);
240}
241#endif /* #else #ifdef CONFIG_PROVE_LOCKING */
242
243EXPORT_SYMBOL_GPL(cgroup_lock_is_held);
244
ddbcc7e8 245/* convenient tests for these bits */
bd89aabc 246inline int cgroup_is_removed(const struct cgroup *cgrp)
ddbcc7e8 247{
bd89aabc 248 return test_bit(CGRP_REMOVED, &cgrp->flags);
ddbcc7e8
PM
249}
250
251/* bits in struct cgroupfs_root flags field */
252enum {
253 ROOT_NOPREFIX, /* mounted subsystems have no named prefix */
254};
255
e9685a03 256static int cgroup_is_releasable(const struct cgroup *cgrp)
81a6a5cd
PM
257{
258 const int bits =
bd89aabc
PM
259 (1 << CGRP_RELEASABLE) |
260 (1 << CGRP_NOTIFY_ON_RELEASE);
261 return (cgrp->flags & bits) == bits;
81a6a5cd
PM
262}
263
e9685a03 264static int notify_on_release(const struct cgroup *cgrp)
81a6a5cd 265{
bd89aabc 266 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
81a6a5cd
PM
267}
268
97978e6d
DL
269static int clone_children(const struct cgroup *cgrp)
270{
271 return test_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
272}
273
ddbcc7e8
PM
274/*
275 * for_each_subsys() allows you to iterate on each subsystem attached to
276 * an active hierarchy
277 */
278#define for_each_subsys(_root, _ss) \
279list_for_each_entry(_ss, &_root->subsys_list, sibling)
280
e5f6a860
LZ
281/* for_each_active_root() allows you to iterate across the active hierarchies */
282#define for_each_active_root(_root) \
ddbcc7e8
PM
283list_for_each_entry(_root, &roots, root_list)
284
f6ea9372
TH
285static inline struct cgroup *__d_cgrp(struct dentry *dentry)
286{
287 return dentry->d_fsdata;
288}
289
290static inline struct cftype *__d_cft(struct dentry *dentry)
291{
292 return dentry->d_fsdata;
293}
294
81a6a5cd
PM
295/* the list of cgroups eligible for automatic release. Protected by
296 * release_list_lock */
297static LIST_HEAD(release_list);
cdcc136f 298static DEFINE_RAW_SPINLOCK(release_list_lock);
81a6a5cd
PM
299static void cgroup_release_agent(struct work_struct *work);
300static DECLARE_WORK(release_agent_work, cgroup_release_agent);
bd89aabc 301static void check_for_release(struct cgroup *cgrp);
81a6a5cd 302
817929ec
PM
303/* Link structure for associating css_set objects with cgroups */
304struct cg_cgroup_link {
305 /*
306 * List running through cg_cgroup_links associated with a
307 * cgroup, anchored on cgroup->css_sets
308 */
bd89aabc 309 struct list_head cgrp_link_list;
7717f7ba 310 struct cgroup *cgrp;
817929ec
PM
311 /*
312 * List running through cg_cgroup_links pointing at a
313 * single css_set object, anchored on css_set->cg_links
314 */
315 struct list_head cg_link_list;
316 struct css_set *cg;
317};
318
319/* The default css_set - used by init and its children prior to any
320 * hierarchies being mounted. It contains a pointer to the root state
321 * for each subsystem. Also used to anchor the list of css_sets. Not
322 * reference-counted, to improve performance when child cgroups
323 * haven't been created.
324 */
325
326static struct css_set init_css_set;
327static struct cg_cgroup_link init_css_set_link;
328
e6a1105b
BB
329static int cgroup_init_idr(struct cgroup_subsys *ss,
330 struct cgroup_subsys_state *css);
38460b48 331
817929ec
PM
332/* css_set_lock protects the list of css_set objects, and the
333 * chain of tasks off each css_set. Nests outside task->alloc_lock
334 * due to cgroup_iter_start() */
335static DEFINE_RWLOCK(css_set_lock);
336static int css_set_count;
337
7717f7ba
PM
338/*
339 * hash table for cgroup groups. This improves the performance to find
340 * an existing css_set. This hash doesn't (currently) take into
341 * account cgroups in empty hierarchies.
342 */
472b1053
LZ
343#define CSS_SET_HASH_BITS 7
344#define CSS_SET_TABLE_SIZE (1 << CSS_SET_HASH_BITS)
345static struct hlist_head css_set_table[CSS_SET_TABLE_SIZE];
346
347static struct hlist_head *css_set_hash(struct cgroup_subsys_state *css[])
348{
349 int i;
350 int index;
351 unsigned long tmp = 0UL;
352
353 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++)
354 tmp += (unsigned long)css[i];
355 tmp = (tmp >> 16) ^ tmp;
356
357 index = hash_long(tmp, CSS_SET_HASH_BITS);
358
359 return &css_set_table[index];
360}
361
817929ec
PM
362/* We don't maintain the lists running through each css_set to its
363 * task until after the first call to cgroup_iter_start(). This
364 * reduces the fork()/exit() overhead for people who have cgroups
365 * compiled into their kernel but not actually in use */
8947f9d5 366static int use_task_css_set_links __read_mostly;
817929ec 367
2c6ab6d2 368static void __put_css_set(struct css_set *cg, int taskexit)
b4f48b63 369{
71cbb949
KM
370 struct cg_cgroup_link *link;
371 struct cg_cgroup_link *saved_link;
146aa1bd
LJ
372 /*
373 * Ensure that the refcount doesn't hit zero while any readers
374 * can see it. Similar to atomic_dec_and_lock(), but for an
375 * rwlock
376 */
377 if (atomic_add_unless(&cg->refcount, -1, 1))
378 return;
379 write_lock(&css_set_lock);
380 if (!atomic_dec_and_test(&cg->refcount)) {
381 write_unlock(&css_set_lock);
382 return;
383 }
81a6a5cd 384
2c6ab6d2
PM
385 /* This css_set is dead. unlink it and release cgroup refcounts */
386 hlist_del(&cg->hlist);
387 css_set_count--;
388
389 list_for_each_entry_safe(link, saved_link, &cg->cg_links,
390 cg_link_list) {
391 struct cgroup *cgrp = link->cgrp;
392 list_del(&link->cg_link_list);
393 list_del(&link->cgrp_link_list);
bd89aabc
PM
394 if (atomic_dec_and_test(&cgrp->count) &&
395 notify_on_release(cgrp)) {
81a6a5cd 396 if (taskexit)
bd89aabc
PM
397 set_bit(CGRP_RELEASABLE, &cgrp->flags);
398 check_for_release(cgrp);
81a6a5cd 399 }
2c6ab6d2
PM
400
401 kfree(link);
81a6a5cd 402 }
2c6ab6d2
PM
403
404 write_unlock(&css_set_lock);
30088ad8 405 kfree_rcu(cg, rcu_head);
b4f48b63
PM
406}
407
817929ec
PM
408/*
409 * refcounted get/put for css_set objects
410 */
411static inline void get_css_set(struct css_set *cg)
412{
146aa1bd 413 atomic_inc(&cg->refcount);
817929ec
PM
414}
415
416static inline void put_css_set(struct css_set *cg)
417{
146aa1bd 418 __put_css_set(cg, 0);
817929ec
PM
419}
420
81a6a5cd
PM
421static inline void put_css_set_taskexit(struct css_set *cg)
422{
146aa1bd 423 __put_css_set(cg, 1);
81a6a5cd
PM
424}
425
7717f7ba
PM
426/*
427 * compare_css_sets - helper function for find_existing_css_set().
428 * @cg: candidate css_set being tested
429 * @old_cg: existing css_set for a task
430 * @new_cgrp: cgroup that's being entered by the task
431 * @template: desired set of css pointers in css_set (pre-calculated)
432 *
433 * Returns true if "cg" matches "old_cg" except for the hierarchy
434 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
435 */
436static bool compare_css_sets(struct css_set *cg,
437 struct css_set *old_cg,
438 struct cgroup *new_cgrp,
439 struct cgroup_subsys_state *template[])
440{
441 struct list_head *l1, *l2;
442
443 if (memcmp(template, cg->subsys, sizeof(cg->subsys))) {
444 /* Not all subsystems matched */
445 return false;
446 }
447
448 /*
449 * Compare cgroup pointers in order to distinguish between
450 * different cgroups in heirarchies with no subsystems. We
451 * could get by with just this check alone (and skip the
452 * memcmp above) but on most setups the memcmp check will
453 * avoid the need for this more expensive check on almost all
454 * candidates.
455 */
456
457 l1 = &cg->cg_links;
458 l2 = &old_cg->cg_links;
459 while (1) {
460 struct cg_cgroup_link *cgl1, *cgl2;
461 struct cgroup *cg1, *cg2;
462
463 l1 = l1->next;
464 l2 = l2->next;
465 /* See if we reached the end - both lists are equal length. */
466 if (l1 == &cg->cg_links) {
467 BUG_ON(l2 != &old_cg->cg_links);
468 break;
469 } else {
470 BUG_ON(l2 == &old_cg->cg_links);
471 }
472 /* Locate the cgroups associated with these links. */
473 cgl1 = list_entry(l1, struct cg_cgroup_link, cg_link_list);
474 cgl2 = list_entry(l2, struct cg_cgroup_link, cg_link_list);
475 cg1 = cgl1->cgrp;
476 cg2 = cgl2->cgrp;
477 /* Hierarchies should be linked in the same order. */
478 BUG_ON(cg1->root != cg2->root);
479
480 /*
481 * If this hierarchy is the hierarchy of the cgroup
482 * that's changing, then we need to check that this
483 * css_set points to the new cgroup; if it's any other
484 * hierarchy, then this css_set should point to the
485 * same cgroup as the old css_set.
486 */
487 if (cg1->root == new_cgrp->root) {
488 if (cg1 != new_cgrp)
489 return false;
490 } else {
491 if (cg1 != cg2)
492 return false;
493 }
494 }
495 return true;
496}
497
817929ec
PM
498/*
499 * find_existing_css_set() is a helper for
500 * find_css_set(), and checks to see whether an existing
472b1053 501 * css_set is suitable.
817929ec
PM
502 *
503 * oldcg: the cgroup group that we're using before the cgroup
504 * transition
505 *
bd89aabc 506 * cgrp: the cgroup that we're moving into
817929ec
PM
507 *
508 * template: location in which to build the desired set of subsystem
509 * state objects for the new cgroup group
510 */
817929ec
PM
511static struct css_set *find_existing_css_set(
512 struct css_set *oldcg,
bd89aabc 513 struct cgroup *cgrp,
817929ec 514 struct cgroup_subsys_state *template[])
b4f48b63
PM
515{
516 int i;
bd89aabc 517 struct cgroupfs_root *root = cgrp->root;
472b1053
LZ
518 struct hlist_head *hhead;
519 struct hlist_node *node;
520 struct css_set *cg;
817929ec 521
aae8aab4
BB
522 /*
523 * Build the set of subsystem state objects that we want to see in the
524 * new css_set. while subsystems can change globally, the entries here
525 * won't change, so no need for locking.
526 */
817929ec 527 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
8d53d55d 528 if (root->subsys_bits & (1UL << i)) {
817929ec
PM
529 /* Subsystem is in this hierarchy. So we want
530 * the subsystem state from the new
531 * cgroup */
bd89aabc 532 template[i] = cgrp->subsys[i];
817929ec
PM
533 } else {
534 /* Subsystem is not in this hierarchy, so we
535 * don't want to change the subsystem state */
536 template[i] = oldcg->subsys[i];
537 }
538 }
539
472b1053
LZ
540 hhead = css_set_hash(template);
541 hlist_for_each_entry(cg, node, hhead, hlist) {
7717f7ba
PM
542 if (!compare_css_sets(cg, oldcg, cgrp, template))
543 continue;
544
545 /* This css_set matches what we need */
546 return cg;
472b1053 547 }
817929ec
PM
548
549 /* No existing cgroup group matched */
550 return NULL;
551}
552
36553434
LZ
553static void free_cg_links(struct list_head *tmp)
554{
555 struct cg_cgroup_link *link;
556 struct cg_cgroup_link *saved_link;
557
558 list_for_each_entry_safe(link, saved_link, tmp, cgrp_link_list) {
559 list_del(&link->cgrp_link_list);
560 kfree(link);
561 }
562}
563
817929ec
PM
564/*
565 * allocate_cg_links() allocates "count" cg_cgroup_link structures
bd89aabc 566 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
817929ec
PM
567 * success or a negative error
568 */
817929ec
PM
569static int allocate_cg_links(int count, struct list_head *tmp)
570{
571 struct cg_cgroup_link *link;
572 int i;
573 INIT_LIST_HEAD(tmp);
574 for (i = 0; i < count; i++) {
575 link = kmalloc(sizeof(*link), GFP_KERNEL);
576 if (!link) {
36553434 577 free_cg_links(tmp);
817929ec
PM
578 return -ENOMEM;
579 }
bd89aabc 580 list_add(&link->cgrp_link_list, tmp);
817929ec
PM
581 }
582 return 0;
583}
584
c12f65d4
LZ
585/**
586 * link_css_set - a helper function to link a css_set to a cgroup
587 * @tmp_cg_links: cg_cgroup_link objects allocated by allocate_cg_links()
588 * @cg: the css_set to be linked
589 * @cgrp: the destination cgroup
590 */
591static void link_css_set(struct list_head *tmp_cg_links,
592 struct css_set *cg, struct cgroup *cgrp)
593{
594 struct cg_cgroup_link *link;
595
596 BUG_ON(list_empty(tmp_cg_links));
597 link = list_first_entry(tmp_cg_links, struct cg_cgroup_link,
598 cgrp_link_list);
599 link->cg = cg;
7717f7ba 600 link->cgrp = cgrp;
2c6ab6d2 601 atomic_inc(&cgrp->count);
c12f65d4 602 list_move(&link->cgrp_link_list, &cgrp->css_sets);
7717f7ba
PM
603 /*
604 * Always add links to the tail of the list so that the list
605 * is sorted by order of hierarchy creation
606 */
607 list_add_tail(&link->cg_link_list, &cg->cg_links);
c12f65d4
LZ
608}
609
817929ec
PM
610/*
611 * find_css_set() takes an existing cgroup group and a
612 * cgroup object, and returns a css_set object that's
613 * equivalent to the old group, but with the given cgroup
614 * substituted into the appropriate hierarchy. Must be called with
615 * cgroup_mutex held
616 */
817929ec 617static struct css_set *find_css_set(
bd89aabc 618 struct css_set *oldcg, struct cgroup *cgrp)
817929ec
PM
619{
620 struct css_set *res;
621 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
817929ec
PM
622
623 struct list_head tmp_cg_links;
817929ec 624
472b1053 625 struct hlist_head *hhead;
7717f7ba 626 struct cg_cgroup_link *link;
472b1053 627
817929ec
PM
628 /* First see if we already have a cgroup group that matches
629 * the desired set */
7e9abd89 630 read_lock(&css_set_lock);
bd89aabc 631 res = find_existing_css_set(oldcg, cgrp, template);
817929ec
PM
632 if (res)
633 get_css_set(res);
7e9abd89 634 read_unlock(&css_set_lock);
817929ec
PM
635
636 if (res)
637 return res;
638
639 res = kmalloc(sizeof(*res), GFP_KERNEL);
640 if (!res)
641 return NULL;
642
643 /* Allocate all the cg_cgroup_link objects that we'll need */
644 if (allocate_cg_links(root_count, &tmp_cg_links) < 0) {
645 kfree(res);
646 return NULL;
647 }
648
146aa1bd 649 atomic_set(&res->refcount, 1);
817929ec
PM
650 INIT_LIST_HEAD(&res->cg_links);
651 INIT_LIST_HEAD(&res->tasks);
472b1053 652 INIT_HLIST_NODE(&res->hlist);
817929ec
PM
653
654 /* Copy the set of subsystem state objects generated in
655 * find_existing_css_set() */
656 memcpy(res->subsys, template, sizeof(res->subsys));
657
658 write_lock(&css_set_lock);
659 /* Add reference counts and links from the new css_set. */
7717f7ba
PM
660 list_for_each_entry(link, &oldcg->cg_links, cg_link_list) {
661 struct cgroup *c = link->cgrp;
662 if (c->root == cgrp->root)
663 c = cgrp;
664 link_css_set(&tmp_cg_links, res, c);
665 }
817929ec
PM
666
667 BUG_ON(!list_empty(&tmp_cg_links));
668
817929ec 669 css_set_count++;
472b1053
LZ
670
671 /* Add this cgroup group to the hash table */
672 hhead = css_set_hash(res->subsys);
673 hlist_add_head(&res->hlist, hhead);
674
817929ec
PM
675 write_unlock(&css_set_lock);
676
677 return res;
b4f48b63
PM
678}
679
7717f7ba
PM
680/*
681 * Return the cgroup for "task" from the given hierarchy. Must be
682 * called with cgroup_mutex held.
683 */
684static struct cgroup *task_cgroup_from_root(struct task_struct *task,
685 struct cgroupfs_root *root)
686{
687 struct css_set *css;
688 struct cgroup *res = NULL;
689
690 BUG_ON(!mutex_is_locked(&cgroup_mutex));
691 read_lock(&css_set_lock);
692 /*
693 * No need to lock the task - since we hold cgroup_mutex the
694 * task can't change groups, so the only thing that can happen
695 * is that it exits and its css is set back to init_css_set.
696 */
697 css = task->cgroups;
698 if (css == &init_css_set) {
699 res = &root->top_cgroup;
700 } else {
701 struct cg_cgroup_link *link;
702 list_for_each_entry(link, &css->cg_links, cg_link_list) {
703 struct cgroup *c = link->cgrp;
704 if (c->root == root) {
705 res = c;
706 break;
707 }
708 }
709 }
710 read_unlock(&css_set_lock);
711 BUG_ON(!res);
712 return res;
713}
714
ddbcc7e8
PM
715/*
716 * There is one global cgroup mutex. We also require taking
717 * task_lock() when dereferencing a task's cgroup subsys pointers.
718 * See "The task_lock() exception", at the end of this comment.
719 *
720 * A task must hold cgroup_mutex to modify cgroups.
721 *
722 * Any task can increment and decrement the count field without lock.
723 * So in general, code holding cgroup_mutex can't rely on the count
724 * field not changing. However, if the count goes to zero, then only
956db3ca 725 * cgroup_attach_task() can increment it again. Because a count of zero
ddbcc7e8
PM
726 * means that no tasks are currently attached, therefore there is no
727 * way a task attached to that cgroup can fork (the other way to
728 * increment the count). So code holding cgroup_mutex can safely
729 * assume that if the count is zero, it will stay zero. Similarly, if
730 * a task holds cgroup_mutex on a cgroup with zero count, it
731 * knows that the cgroup won't be removed, as cgroup_rmdir()
732 * needs that mutex.
733 *
ddbcc7e8
PM
734 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
735 * (usually) take cgroup_mutex. These are the two most performance
736 * critical pieces of code here. The exception occurs on cgroup_exit(),
737 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
738 * is taken, and if the cgroup count is zero, a usermode call made
a043e3b2
LZ
739 * to the release agent with the name of the cgroup (path relative to
740 * the root of cgroup file system) as the argument.
ddbcc7e8
PM
741 *
742 * A cgroup can only be deleted if both its 'count' of using tasks
743 * is zero, and its list of 'children' cgroups is empty. Since all
744 * tasks in the system use _some_ cgroup, and since there is always at
745 * least one task in the system (init, pid == 1), therefore, top_cgroup
746 * always has either children cgroups and/or using tasks. So we don't
747 * need a special hack to ensure that top_cgroup cannot be deleted.
748 *
749 * The task_lock() exception
750 *
751 * The need for this exception arises from the action of
956db3ca 752 * cgroup_attach_task(), which overwrites one tasks cgroup pointer with
a043e3b2 753 * another. It does so using cgroup_mutex, however there are
ddbcc7e8
PM
754 * several performance critical places that need to reference
755 * task->cgroup without the expense of grabbing a system global
756 * mutex. Therefore except as noted below, when dereferencing or, as
956db3ca 757 * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use
ddbcc7e8
PM
758 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
759 * the task_struct routinely used for such matters.
760 *
761 * P.S. One more locking exception. RCU is used to guard the
956db3ca 762 * update of a tasks cgroup pointer by cgroup_attach_task()
ddbcc7e8
PM
763 */
764
ddbcc7e8
PM
765/**
766 * cgroup_lock - lock out any changes to cgroup structures
767 *
768 */
ddbcc7e8
PM
769void cgroup_lock(void)
770{
771 mutex_lock(&cgroup_mutex);
772}
67523c48 773EXPORT_SYMBOL_GPL(cgroup_lock);
ddbcc7e8
PM
774
775/**
776 * cgroup_unlock - release lock on cgroup changes
777 *
778 * Undo the lock taken in a previous cgroup_lock() call.
779 */
ddbcc7e8
PM
780void cgroup_unlock(void)
781{
782 mutex_unlock(&cgroup_mutex);
783}
67523c48 784EXPORT_SYMBOL_GPL(cgroup_unlock);
ddbcc7e8
PM
785
786/*
787 * A couple of forward declarations required, due to cyclic reference loop:
788 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
789 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
790 * -> cgroup_mkdir.
791 */
792
18bb1db3 793static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode);
c72a04e3 794static struct dentry *cgroup_lookup(struct inode *, struct dentry *, struct nameidata *);
ddbcc7e8 795static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
bd89aabc 796static int cgroup_populate_dir(struct cgroup *cgrp);
6e1d5dcc 797static const struct inode_operations cgroup_dir_inode_operations;
828c0950 798static const struct file_operations proc_cgroupstats_operations;
a424316c
PM
799
800static struct backing_dev_info cgroup_backing_dev_info = {
d993831f 801 .name = "cgroup",
e4ad08fe 802 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK,
a424316c 803};
ddbcc7e8 804
38460b48
KH
805static int alloc_css_id(struct cgroup_subsys *ss,
806 struct cgroup *parent, struct cgroup *child);
807
a5e7ed32 808static struct inode *cgroup_new_inode(umode_t mode, struct super_block *sb)
ddbcc7e8
PM
809{
810 struct inode *inode = new_inode(sb);
ddbcc7e8
PM
811
812 if (inode) {
85fe4025 813 inode->i_ino = get_next_ino();
ddbcc7e8 814 inode->i_mode = mode;
76aac0e9
DH
815 inode->i_uid = current_fsuid();
816 inode->i_gid = current_fsgid();
ddbcc7e8
PM
817 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
818 inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
819 }
820 return inode;
821}
822
4fca88c8
KH
823/*
824 * Call subsys's pre_destroy handler.
825 * This is called before css refcnt check.
826 */
ec64f515 827static int cgroup_call_pre_destroy(struct cgroup *cgrp)
4fca88c8
KH
828{
829 struct cgroup_subsys *ss;
ec64f515
KH
830 int ret = 0;
831
4fca88c8 832 for_each_subsys(cgrp->root, ss)
ec64f515 833 if (ss->pre_destroy) {
761b3ef5 834 ret = ss->pre_destroy(cgrp);
ec64f515 835 if (ret)
4ab78683 836 break;
ec64f515 837 }
0dea1168 838
ec64f515 839 return ret;
4fca88c8
KH
840}
841
ddbcc7e8
PM
842static void cgroup_diput(struct dentry *dentry, struct inode *inode)
843{
844 /* is dentry a directory ? if so, kfree() associated cgroup */
845 if (S_ISDIR(inode->i_mode)) {
bd89aabc 846 struct cgroup *cgrp = dentry->d_fsdata;
8dc4f3e1 847 struct cgroup_subsys *ss;
bd89aabc 848 BUG_ON(!(cgroup_is_removed(cgrp)));
81a6a5cd
PM
849 /* It's possible for external users to be holding css
850 * reference counts on a cgroup; css_put() needs to
851 * be able to access the cgroup after decrementing
852 * the reference count in order to know if it needs to
853 * queue the cgroup to be handled by the release
854 * agent */
855 synchronize_rcu();
8dc4f3e1
PM
856
857 mutex_lock(&cgroup_mutex);
858 /*
859 * Release the subsystem state objects.
860 */
75139b82 861 for_each_subsys(cgrp->root, ss)
761b3ef5 862 ss->destroy(cgrp);
8dc4f3e1
PM
863
864 cgrp->root->number_of_cgroups--;
865 mutex_unlock(&cgroup_mutex);
866
a47295e6
PM
867 /*
868 * Drop the active superblock reference that we took when we
869 * created the cgroup
870 */
8dc4f3e1
PM
871 deactivate_super(cgrp->root->sb);
872
72a8cb30
BB
873 /*
874 * if we're getting rid of the cgroup, refcount should ensure
875 * that there are no pidlists left.
876 */
877 BUG_ON(!list_empty(&cgrp->pidlists));
878
f2da1c40 879 kfree_rcu(cgrp, rcu_head);
ddbcc7e8
PM
880 }
881 iput(inode);
882}
883
c72a04e3
AV
884static int cgroup_delete(const struct dentry *d)
885{
886 return 1;
887}
888
ddbcc7e8
PM
889static void remove_dir(struct dentry *d)
890{
891 struct dentry *parent = dget(d->d_parent);
892
893 d_delete(d);
894 simple_rmdir(parent->d_inode, d);
895 dput(parent);
896}
897
898static void cgroup_clear_directory(struct dentry *dentry)
899{
900 struct list_head *node;
901
902 BUG_ON(!mutex_is_locked(&dentry->d_inode->i_mutex));
2fd6b7f5 903 spin_lock(&dentry->d_lock);
ddbcc7e8
PM
904 node = dentry->d_subdirs.next;
905 while (node != &dentry->d_subdirs) {
906 struct dentry *d = list_entry(node, struct dentry, d_u.d_child);
2fd6b7f5
NP
907
908 spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
ddbcc7e8
PM
909 list_del_init(node);
910 if (d->d_inode) {
911 /* This should never be called on a cgroup
912 * directory with child cgroups */
913 BUG_ON(d->d_inode->i_mode & S_IFDIR);
dc0474be 914 dget_dlock(d);
2fd6b7f5
NP
915 spin_unlock(&d->d_lock);
916 spin_unlock(&dentry->d_lock);
ddbcc7e8
PM
917 d_delete(d);
918 simple_unlink(dentry->d_inode, d);
919 dput(d);
2fd6b7f5
NP
920 spin_lock(&dentry->d_lock);
921 } else
922 spin_unlock(&d->d_lock);
ddbcc7e8
PM
923 node = dentry->d_subdirs.next;
924 }
2fd6b7f5 925 spin_unlock(&dentry->d_lock);
ddbcc7e8
PM
926}
927
928/*
929 * NOTE : the dentry must have been dget()'ed
930 */
931static void cgroup_d_remove_dir(struct dentry *dentry)
932{
2fd6b7f5
NP
933 struct dentry *parent;
934
ddbcc7e8
PM
935 cgroup_clear_directory(dentry);
936
2fd6b7f5
NP
937 parent = dentry->d_parent;
938 spin_lock(&parent->d_lock);
3ec762ad 939 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
ddbcc7e8 940 list_del_init(&dentry->d_u.d_child);
2fd6b7f5
NP
941 spin_unlock(&dentry->d_lock);
942 spin_unlock(&parent->d_lock);
ddbcc7e8
PM
943 remove_dir(dentry);
944}
945
ec64f515
KH
946/*
947 * A queue for waiters to do rmdir() cgroup. A tasks will sleep when
948 * cgroup->count == 0 && list_empty(&cgroup->children) && subsys has some
949 * reference to css->refcnt. In general, this refcnt is expected to goes down
950 * to zero, soon.
951 *
88703267 952 * CGRP_WAIT_ON_RMDIR flag is set under cgroup's inode->i_mutex;
ec64f515 953 */
1c6c3fad 954static DECLARE_WAIT_QUEUE_HEAD(cgroup_rmdir_waitq);
ec64f515 955
88703267 956static void cgroup_wakeup_rmdir_waiter(struct cgroup *cgrp)
ec64f515 957{
88703267 958 if (unlikely(test_and_clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags)))
ec64f515
KH
959 wake_up_all(&cgroup_rmdir_waitq);
960}
961
88703267
KH
962void cgroup_exclude_rmdir(struct cgroup_subsys_state *css)
963{
964 css_get(css);
965}
966
967void cgroup_release_and_wakeup_rmdir(struct cgroup_subsys_state *css)
968{
969 cgroup_wakeup_rmdir_waiter(css->cgroup);
970 css_put(css);
971}
972
aae8aab4 973/*
cf5d5941
BB
974 * Call with cgroup_mutex held. Drops reference counts on modules, including
975 * any duplicate ones that parse_cgroupfs_options took. If this function
976 * returns an error, no reference counts are touched.
aae8aab4 977 */
ddbcc7e8
PM
978static int rebind_subsystems(struct cgroupfs_root *root,
979 unsigned long final_bits)
980{
981 unsigned long added_bits, removed_bits;
bd89aabc 982 struct cgroup *cgrp = &root->top_cgroup;
ddbcc7e8
PM
983 int i;
984
aae8aab4 985 BUG_ON(!mutex_is_locked(&cgroup_mutex));
e25e2cbb 986 BUG_ON(!mutex_is_locked(&cgroup_root_mutex));
aae8aab4 987
ddbcc7e8
PM
988 removed_bits = root->actual_subsys_bits & ~final_bits;
989 added_bits = final_bits & ~root->actual_subsys_bits;
990 /* Check that any added subsystems are currently free */
991 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
8d53d55d 992 unsigned long bit = 1UL << i;
ddbcc7e8
PM
993 struct cgroup_subsys *ss = subsys[i];
994 if (!(bit & added_bits))
995 continue;
aae8aab4
BB
996 /*
997 * Nobody should tell us to do a subsys that doesn't exist:
998 * parse_cgroupfs_options should catch that case and refcounts
999 * ensure that subsystems won't disappear once selected.
1000 */
1001 BUG_ON(ss == NULL);
ddbcc7e8
PM
1002 if (ss->root != &rootnode) {
1003 /* Subsystem isn't free */
1004 return -EBUSY;
1005 }
1006 }
1007
1008 /* Currently we don't handle adding/removing subsystems when
1009 * any child cgroups exist. This is theoretically supportable
1010 * but involves complex error handling, so it's being left until
1011 * later */
307257cf 1012 if (root->number_of_cgroups > 1)
ddbcc7e8
PM
1013 return -EBUSY;
1014
1015 /* Process each subsystem */
1016 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1017 struct cgroup_subsys *ss = subsys[i];
1018 unsigned long bit = 1UL << i;
1019 if (bit & added_bits) {
1020 /* We're binding this subsystem to this hierarchy */
aae8aab4 1021 BUG_ON(ss == NULL);
bd89aabc 1022 BUG_ON(cgrp->subsys[i]);
ddbcc7e8
PM
1023 BUG_ON(!dummytop->subsys[i]);
1024 BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
999cd8a4 1025 mutex_lock(&ss->hierarchy_mutex);
bd89aabc
PM
1026 cgrp->subsys[i] = dummytop->subsys[i];
1027 cgrp->subsys[i]->cgroup = cgrp;
33a68ac1 1028 list_move(&ss->sibling, &root->subsys_list);
b2aa30f7 1029 ss->root = root;
ddbcc7e8 1030 if (ss->bind)
761b3ef5 1031 ss->bind(cgrp);
999cd8a4 1032 mutex_unlock(&ss->hierarchy_mutex);
cf5d5941 1033 /* refcount was already taken, and we're keeping it */
ddbcc7e8
PM
1034 } else if (bit & removed_bits) {
1035 /* We're removing this subsystem */
aae8aab4 1036 BUG_ON(ss == NULL);
bd89aabc
PM
1037 BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
1038 BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
999cd8a4 1039 mutex_lock(&ss->hierarchy_mutex);
ddbcc7e8 1040 if (ss->bind)
761b3ef5 1041 ss->bind(dummytop);
ddbcc7e8 1042 dummytop->subsys[i]->cgroup = dummytop;
bd89aabc 1043 cgrp->subsys[i] = NULL;
b2aa30f7 1044 subsys[i]->root = &rootnode;
33a68ac1 1045 list_move(&ss->sibling, &rootnode.subsys_list);
999cd8a4 1046 mutex_unlock(&ss->hierarchy_mutex);
cf5d5941
BB
1047 /* subsystem is now free - drop reference on module */
1048 module_put(ss->module);
ddbcc7e8
PM
1049 } else if (bit & final_bits) {
1050 /* Subsystem state should already exist */
aae8aab4 1051 BUG_ON(ss == NULL);
bd89aabc 1052 BUG_ON(!cgrp->subsys[i]);
cf5d5941
BB
1053 /*
1054 * a refcount was taken, but we already had one, so
1055 * drop the extra reference.
1056 */
1057 module_put(ss->module);
1058#ifdef CONFIG_MODULE_UNLOAD
1059 BUG_ON(ss->module && !module_refcount(ss->module));
1060#endif
ddbcc7e8
PM
1061 } else {
1062 /* Subsystem state shouldn't exist */
bd89aabc 1063 BUG_ON(cgrp->subsys[i]);
ddbcc7e8
PM
1064 }
1065 }
1066 root->subsys_bits = root->actual_subsys_bits = final_bits;
1067 synchronize_rcu();
1068
1069 return 0;
1070}
1071
34c80b1d 1072static int cgroup_show_options(struct seq_file *seq, struct dentry *dentry)
ddbcc7e8 1073{
34c80b1d 1074 struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
ddbcc7e8
PM
1075 struct cgroup_subsys *ss;
1076
e25e2cbb 1077 mutex_lock(&cgroup_root_mutex);
ddbcc7e8
PM
1078 for_each_subsys(root, ss)
1079 seq_printf(seq, ",%s", ss->name);
1080 if (test_bit(ROOT_NOPREFIX, &root->flags))
1081 seq_puts(seq, ",noprefix");
81a6a5cd
PM
1082 if (strlen(root->release_agent_path))
1083 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
97978e6d
DL
1084 if (clone_children(&root->top_cgroup))
1085 seq_puts(seq, ",clone_children");
c6d57f33
PM
1086 if (strlen(root->name))
1087 seq_printf(seq, ",name=%s", root->name);
e25e2cbb 1088 mutex_unlock(&cgroup_root_mutex);
ddbcc7e8
PM
1089 return 0;
1090}
1091
1092struct cgroup_sb_opts {
1093 unsigned long subsys_bits;
1094 unsigned long flags;
81a6a5cd 1095 char *release_agent;
97978e6d 1096 bool clone_children;
c6d57f33 1097 char *name;
2c6ab6d2
PM
1098 /* User explicitly requested empty subsystem */
1099 bool none;
c6d57f33
PM
1100
1101 struct cgroupfs_root *new_root;
2c6ab6d2 1102
ddbcc7e8
PM
1103};
1104
aae8aab4
BB
1105/*
1106 * Convert a hierarchy specifier into a bitmask of subsystems and flags. Call
cf5d5941
BB
1107 * with cgroup_mutex held to protect the subsys[] array. This function takes
1108 * refcounts on subsystems to be used, unless it returns error, in which case
1109 * no refcounts are taken.
aae8aab4 1110 */
cf5d5941 1111static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
ddbcc7e8 1112{
32a8cf23
DL
1113 char *token, *o = data;
1114 bool all_ss = false, one_ss = false;
f9ab5b5b 1115 unsigned long mask = (unsigned long)-1;
cf5d5941
BB
1116 int i;
1117 bool module_pin_failed = false;
f9ab5b5b 1118
aae8aab4
BB
1119 BUG_ON(!mutex_is_locked(&cgroup_mutex));
1120
f9ab5b5b
LZ
1121#ifdef CONFIG_CPUSETS
1122 mask = ~(1UL << cpuset_subsys_id);
1123#endif
ddbcc7e8 1124
c6d57f33 1125 memset(opts, 0, sizeof(*opts));
ddbcc7e8
PM
1126
1127 while ((token = strsep(&o, ",")) != NULL) {
1128 if (!*token)
1129 return -EINVAL;
32a8cf23 1130 if (!strcmp(token, "none")) {
2c6ab6d2
PM
1131 /* Explicitly have no subsystems */
1132 opts->none = true;
32a8cf23
DL
1133 continue;
1134 }
1135 if (!strcmp(token, "all")) {
1136 /* Mutually exclusive option 'all' + subsystem name */
1137 if (one_ss)
1138 return -EINVAL;
1139 all_ss = true;
1140 continue;
1141 }
1142 if (!strcmp(token, "noprefix")) {
ddbcc7e8 1143 set_bit(ROOT_NOPREFIX, &opts->flags);
32a8cf23
DL
1144 continue;
1145 }
1146 if (!strcmp(token, "clone_children")) {
97978e6d 1147 opts->clone_children = true;
32a8cf23
DL
1148 continue;
1149 }
1150 if (!strncmp(token, "release_agent=", 14)) {
81a6a5cd
PM
1151 /* Specifying two release agents is forbidden */
1152 if (opts->release_agent)
1153 return -EINVAL;
c6d57f33 1154 opts->release_agent =
e400c285 1155 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
81a6a5cd
PM
1156 if (!opts->release_agent)
1157 return -ENOMEM;
32a8cf23
DL
1158 continue;
1159 }
1160 if (!strncmp(token, "name=", 5)) {
c6d57f33
PM
1161 const char *name = token + 5;
1162 /* Can't specify an empty name */
1163 if (!strlen(name))
1164 return -EINVAL;
1165 /* Must match [\w.-]+ */
1166 for (i = 0; i < strlen(name); i++) {
1167 char c = name[i];
1168 if (isalnum(c))
1169 continue;
1170 if ((c == '.') || (c == '-') || (c == '_'))
1171 continue;
1172 return -EINVAL;
1173 }
1174 /* Specifying two names is forbidden */
1175 if (opts->name)
1176 return -EINVAL;
1177 opts->name = kstrndup(name,
e400c285 1178 MAX_CGROUP_ROOT_NAMELEN - 1,
c6d57f33
PM
1179 GFP_KERNEL);
1180 if (!opts->name)
1181 return -ENOMEM;
32a8cf23
DL
1182
1183 continue;
1184 }
1185
1186 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1187 struct cgroup_subsys *ss = subsys[i];
1188 if (ss == NULL)
1189 continue;
1190 if (strcmp(token, ss->name))
1191 continue;
1192 if (ss->disabled)
1193 continue;
1194
1195 /* Mutually exclusive option 'all' + subsystem name */
1196 if (all_ss)
1197 return -EINVAL;
1198 set_bit(i, &opts->subsys_bits);
1199 one_ss = true;
1200
1201 break;
1202 }
1203 if (i == CGROUP_SUBSYS_COUNT)
1204 return -ENOENT;
1205 }
1206
1207 /*
1208 * If the 'all' option was specified select all the subsystems,
0d19ea86
LZ
1209 * otherwise if 'none', 'name=' and a subsystem name options
1210 * were not specified, let's default to 'all'
32a8cf23 1211 */
0d19ea86 1212 if (all_ss || (!one_ss && !opts->none && !opts->name)) {
32a8cf23
DL
1213 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1214 struct cgroup_subsys *ss = subsys[i];
1215 if (ss == NULL)
1216 continue;
1217 if (ss->disabled)
1218 continue;
1219 set_bit(i, &opts->subsys_bits);
ddbcc7e8
PM
1220 }
1221 }
1222
2c6ab6d2
PM
1223 /* Consistency checks */
1224
f9ab5b5b
LZ
1225 /*
1226 * Option noprefix was introduced just for backward compatibility
1227 * with the old cpuset, so we allow noprefix only if mounting just
1228 * the cpuset subsystem.
1229 */
1230 if (test_bit(ROOT_NOPREFIX, &opts->flags) &&
1231 (opts->subsys_bits & mask))
1232 return -EINVAL;
1233
2c6ab6d2
PM
1234
1235 /* Can't specify "none" and some subsystems */
1236 if (opts->subsys_bits && opts->none)
1237 return -EINVAL;
1238
1239 /*
1240 * We either have to specify by name or by subsystems. (So all
1241 * empty hierarchies must have a name).
1242 */
c6d57f33 1243 if (!opts->subsys_bits && !opts->name)
ddbcc7e8
PM
1244 return -EINVAL;
1245
cf5d5941
BB
1246 /*
1247 * Grab references on all the modules we'll need, so the subsystems
1248 * don't dance around before rebind_subsystems attaches them. This may
1249 * take duplicate reference counts on a subsystem that's already used,
1250 * but rebind_subsystems handles this case.
1251 */
1252 for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
1253 unsigned long bit = 1UL << i;
1254
1255 if (!(bit & opts->subsys_bits))
1256 continue;
1257 if (!try_module_get(subsys[i]->module)) {
1258 module_pin_failed = true;
1259 break;
1260 }
1261 }
1262 if (module_pin_failed) {
1263 /*
1264 * oops, one of the modules was going away. this means that we
1265 * raced with a module_delete call, and to the user this is
1266 * essentially a "subsystem doesn't exist" case.
1267 */
1268 for (i--; i >= CGROUP_BUILTIN_SUBSYS_COUNT; i--) {
1269 /* drop refcounts only on the ones we took */
1270 unsigned long bit = 1UL << i;
1271
1272 if (!(bit & opts->subsys_bits))
1273 continue;
1274 module_put(subsys[i]->module);
1275 }
1276 return -ENOENT;
1277 }
1278
ddbcc7e8
PM
1279 return 0;
1280}
1281
cf5d5941
BB
1282static void drop_parsed_module_refcounts(unsigned long subsys_bits)
1283{
1284 int i;
1285 for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
1286 unsigned long bit = 1UL << i;
1287
1288 if (!(bit & subsys_bits))
1289 continue;
1290 module_put(subsys[i]->module);
1291 }
1292}
1293
ddbcc7e8
PM
1294static int cgroup_remount(struct super_block *sb, int *flags, char *data)
1295{
1296 int ret = 0;
1297 struct cgroupfs_root *root = sb->s_fs_info;
bd89aabc 1298 struct cgroup *cgrp = &root->top_cgroup;
ddbcc7e8
PM
1299 struct cgroup_sb_opts opts;
1300
bd89aabc 1301 mutex_lock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8 1302 mutex_lock(&cgroup_mutex);
e25e2cbb 1303 mutex_lock(&cgroup_root_mutex);
ddbcc7e8
PM
1304
1305 /* See what subsystems are wanted */
1306 ret = parse_cgroupfs_options(data, &opts);
1307 if (ret)
1308 goto out_unlock;
1309
8b5a5a9d
TH
1310 /* See feature-removal-schedule.txt */
1311 if (opts.subsys_bits != root->actual_subsys_bits || opts.release_agent)
1312 pr_warning("cgroup: option changes via remount are deprecated (pid=%d comm=%s)\n",
1313 task_tgid_nr(current), current->comm);
1314
cf5d5941
BB
1315 /* Don't allow flags or name to change at remount */
1316 if (opts.flags != root->flags ||
1317 (opts.name && strcmp(opts.name, root->name))) {
c6d57f33 1318 ret = -EINVAL;
cf5d5941 1319 drop_parsed_module_refcounts(opts.subsys_bits);
c6d57f33
PM
1320 goto out_unlock;
1321 }
1322
ddbcc7e8 1323 ret = rebind_subsystems(root, opts.subsys_bits);
cf5d5941
BB
1324 if (ret) {
1325 drop_parsed_module_refcounts(opts.subsys_bits);
0670e08b 1326 goto out_unlock;
cf5d5941 1327 }
ddbcc7e8 1328
ff4c8d50
TH
1329 /* clear out any existing files and repopulate subsystem files */
1330 cgroup_clear_directory(cgrp->dentry);
0670e08b 1331 cgroup_populate_dir(cgrp);
ddbcc7e8 1332
81a6a5cd
PM
1333 if (opts.release_agent)
1334 strcpy(root->release_agent_path, opts.release_agent);
ddbcc7e8 1335 out_unlock:
66bdc9cf 1336 kfree(opts.release_agent);
c6d57f33 1337 kfree(opts.name);
e25e2cbb 1338 mutex_unlock(&cgroup_root_mutex);
ddbcc7e8 1339 mutex_unlock(&cgroup_mutex);
bd89aabc 1340 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8
PM
1341 return ret;
1342}
1343
b87221de 1344static const struct super_operations cgroup_ops = {
ddbcc7e8
PM
1345 .statfs = simple_statfs,
1346 .drop_inode = generic_delete_inode,
1347 .show_options = cgroup_show_options,
1348 .remount_fs = cgroup_remount,
1349};
1350
cc31edce
PM
1351static void init_cgroup_housekeeping(struct cgroup *cgrp)
1352{
1353 INIT_LIST_HEAD(&cgrp->sibling);
1354 INIT_LIST_HEAD(&cgrp->children);
1355 INIT_LIST_HEAD(&cgrp->css_sets);
1356 INIT_LIST_HEAD(&cgrp->release_list);
72a8cb30
BB
1357 INIT_LIST_HEAD(&cgrp->pidlists);
1358 mutex_init(&cgrp->pidlist_mutex);
0dea1168
KS
1359 INIT_LIST_HEAD(&cgrp->event_list);
1360 spin_lock_init(&cgrp->event_list_lock);
cc31edce 1361}
c6d57f33 1362
ddbcc7e8
PM
1363static void init_cgroup_root(struct cgroupfs_root *root)
1364{
bd89aabc 1365 struct cgroup *cgrp = &root->top_cgroup;
b0ca5a84 1366
ddbcc7e8
PM
1367 INIT_LIST_HEAD(&root->subsys_list);
1368 INIT_LIST_HEAD(&root->root_list);
b0ca5a84 1369 INIT_LIST_HEAD(&root->allcg_list);
ddbcc7e8 1370 root->number_of_cgroups = 1;
bd89aabc
PM
1371 cgrp->root = root;
1372 cgrp->top_cgroup = cgrp;
b0ca5a84 1373 list_add_tail(&cgrp->allcg_node, &root->allcg_list);
cc31edce 1374 init_cgroup_housekeeping(cgrp);
ddbcc7e8
PM
1375}
1376
2c6ab6d2
PM
1377static bool init_root_id(struct cgroupfs_root *root)
1378{
1379 int ret = 0;
1380
1381 do {
1382 if (!ida_pre_get(&hierarchy_ida, GFP_KERNEL))
1383 return false;
1384 spin_lock(&hierarchy_id_lock);
1385 /* Try to allocate the next unused ID */
1386 ret = ida_get_new_above(&hierarchy_ida, next_hierarchy_id,
1387 &root->hierarchy_id);
1388 if (ret == -ENOSPC)
1389 /* Try again starting from 0 */
1390 ret = ida_get_new(&hierarchy_ida, &root->hierarchy_id);
1391 if (!ret) {
1392 next_hierarchy_id = root->hierarchy_id + 1;
1393 } else if (ret != -EAGAIN) {
1394 /* Can only get here if the 31-bit IDR is full ... */
1395 BUG_ON(ret);
1396 }
1397 spin_unlock(&hierarchy_id_lock);
1398 } while (ret);
1399 return true;
1400}
1401
ddbcc7e8
PM
1402static int cgroup_test_super(struct super_block *sb, void *data)
1403{
c6d57f33 1404 struct cgroup_sb_opts *opts = data;
ddbcc7e8
PM
1405 struct cgroupfs_root *root = sb->s_fs_info;
1406
c6d57f33
PM
1407 /* If we asked for a name then it must match */
1408 if (opts->name && strcmp(opts->name, root->name))
1409 return 0;
ddbcc7e8 1410
2c6ab6d2
PM
1411 /*
1412 * If we asked for subsystems (or explicitly for no
1413 * subsystems) then they must match
1414 */
1415 if ((opts->subsys_bits || opts->none)
1416 && (opts->subsys_bits != root->subsys_bits))
ddbcc7e8
PM
1417 return 0;
1418
1419 return 1;
1420}
1421
c6d57f33
PM
1422static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts)
1423{
1424 struct cgroupfs_root *root;
1425
2c6ab6d2 1426 if (!opts->subsys_bits && !opts->none)
c6d57f33
PM
1427 return NULL;
1428
1429 root = kzalloc(sizeof(*root), GFP_KERNEL);
1430 if (!root)
1431 return ERR_PTR(-ENOMEM);
1432
2c6ab6d2
PM
1433 if (!init_root_id(root)) {
1434 kfree(root);
1435 return ERR_PTR(-ENOMEM);
1436 }
c6d57f33 1437 init_cgroup_root(root);
2c6ab6d2 1438
c6d57f33
PM
1439 root->subsys_bits = opts->subsys_bits;
1440 root->flags = opts->flags;
1441 if (opts->release_agent)
1442 strcpy(root->release_agent_path, opts->release_agent);
1443 if (opts->name)
1444 strcpy(root->name, opts->name);
97978e6d
DL
1445 if (opts->clone_children)
1446 set_bit(CGRP_CLONE_CHILDREN, &root->top_cgroup.flags);
c6d57f33
PM
1447 return root;
1448}
1449
2c6ab6d2
PM
1450static void cgroup_drop_root(struct cgroupfs_root *root)
1451{
1452 if (!root)
1453 return;
1454
1455 BUG_ON(!root->hierarchy_id);
1456 spin_lock(&hierarchy_id_lock);
1457 ida_remove(&hierarchy_ida, root->hierarchy_id);
1458 spin_unlock(&hierarchy_id_lock);
1459 kfree(root);
1460}
1461
ddbcc7e8
PM
1462static int cgroup_set_super(struct super_block *sb, void *data)
1463{
1464 int ret;
c6d57f33
PM
1465 struct cgroup_sb_opts *opts = data;
1466
1467 /* If we don't have a new root, we can't set up a new sb */
1468 if (!opts->new_root)
1469 return -EINVAL;
1470
2c6ab6d2 1471 BUG_ON(!opts->subsys_bits && !opts->none);
ddbcc7e8
PM
1472
1473 ret = set_anon_super(sb, NULL);
1474 if (ret)
1475 return ret;
1476
c6d57f33
PM
1477 sb->s_fs_info = opts->new_root;
1478 opts->new_root->sb = sb;
ddbcc7e8
PM
1479
1480 sb->s_blocksize = PAGE_CACHE_SIZE;
1481 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
1482 sb->s_magic = CGROUP_SUPER_MAGIC;
1483 sb->s_op = &cgroup_ops;
1484
1485 return 0;
1486}
1487
1488static int cgroup_get_rootdir(struct super_block *sb)
1489{
0df6a63f
AV
1490 static const struct dentry_operations cgroup_dops = {
1491 .d_iput = cgroup_diput,
c72a04e3 1492 .d_delete = cgroup_delete,
0df6a63f
AV
1493 };
1494
ddbcc7e8
PM
1495 struct inode *inode =
1496 cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
ddbcc7e8
PM
1497
1498 if (!inode)
1499 return -ENOMEM;
1500
ddbcc7e8
PM
1501 inode->i_fop = &simple_dir_operations;
1502 inode->i_op = &cgroup_dir_inode_operations;
1503 /* directories start off with i_nlink == 2 (for "." entry) */
1504 inc_nlink(inode);
48fde701
AV
1505 sb->s_root = d_make_root(inode);
1506 if (!sb->s_root)
ddbcc7e8 1507 return -ENOMEM;
0df6a63f
AV
1508 /* for everything else we want ->d_op set */
1509 sb->s_d_op = &cgroup_dops;
ddbcc7e8
PM
1510 return 0;
1511}
1512
f7e83571 1513static struct dentry *cgroup_mount(struct file_system_type *fs_type,
ddbcc7e8 1514 int flags, const char *unused_dev_name,
f7e83571 1515 void *data)
ddbcc7e8
PM
1516{
1517 struct cgroup_sb_opts opts;
c6d57f33 1518 struct cgroupfs_root *root;
ddbcc7e8
PM
1519 int ret = 0;
1520 struct super_block *sb;
c6d57f33 1521 struct cgroupfs_root *new_root;
e25e2cbb 1522 struct inode *inode;
ddbcc7e8
PM
1523
1524 /* First find the desired set of subsystems */
aae8aab4 1525 mutex_lock(&cgroup_mutex);
ddbcc7e8 1526 ret = parse_cgroupfs_options(data, &opts);
aae8aab4 1527 mutex_unlock(&cgroup_mutex);
c6d57f33
PM
1528 if (ret)
1529 goto out_err;
ddbcc7e8 1530
c6d57f33
PM
1531 /*
1532 * Allocate a new cgroup root. We may not need it if we're
1533 * reusing an existing hierarchy.
1534 */
1535 new_root = cgroup_root_from_opts(&opts);
1536 if (IS_ERR(new_root)) {
1537 ret = PTR_ERR(new_root);
cf5d5941 1538 goto drop_modules;
81a6a5cd 1539 }
c6d57f33 1540 opts.new_root = new_root;
ddbcc7e8 1541
c6d57f33
PM
1542 /* Locate an existing or new sb for this hierarchy */
1543 sb = sget(fs_type, cgroup_test_super, cgroup_set_super, &opts);
ddbcc7e8 1544 if (IS_ERR(sb)) {
c6d57f33 1545 ret = PTR_ERR(sb);
2c6ab6d2 1546 cgroup_drop_root(opts.new_root);
cf5d5941 1547 goto drop_modules;
ddbcc7e8
PM
1548 }
1549
c6d57f33
PM
1550 root = sb->s_fs_info;
1551 BUG_ON(!root);
1552 if (root == opts.new_root) {
1553 /* We used the new root structure, so this is a new hierarchy */
1554 struct list_head tmp_cg_links;
c12f65d4 1555 struct cgroup *root_cgrp = &root->top_cgroup;
c6d57f33 1556 struct cgroupfs_root *existing_root;
2ce9738b 1557 const struct cred *cred;
28fd5dfc 1558 int i;
ddbcc7e8
PM
1559
1560 BUG_ON(sb->s_root != NULL);
1561
1562 ret = cgroup_get_rootdir(sb);
1563 if (ret)
1564 goto drop_new_super;
817929ec 1565 inode = sb->s_root->d_inode;
ddbcc7e8 1566
817929ec 1567 mutex_lock(&inode->i_mutex);
ddbcc7e8 1568 mutex_lock(&cgroup_mutex);
e25e2cbb 1569 mutex_lock(&cgroup_root_mutex);
ddbcc7e8 1570
e25e2cbb
TH
1571 /* Check for name clashes with existing mounts */
1572 ret = -EBUSY;
1573 if (strlen(root->name))
1574 for_each_active_root(existing_root)
1575 if (!strcmp(existing_root->name, root->name))
1576 goto unlock_drop;
c6d57f33 1577
817929ec
PM
1578 /*
1579 * We're accessing css_set_count without locking
1580 * css_set_lock here, but that's OK - it can only be
1581 * increased by someone holding cgroup_lock, and
1582 * that's us. The worst that can happen is that we
1583 * have some link structures left over
1584 */
1585 ret = allocate_cg_links(css_set_count, &tmp_cg_links);
e25e2cbb
TH
1586 if (ret)
1587 goto unlock_drop;
817929ec 1588
ddbcc7e8
PM
1589 ret = rebind_subsystems(root, root->subsys_bits);
1590 if (ret == -EBUSY) {
c6d57f33 1591 free_cg_links(&tmp_cg_links);
e25e2cbb 1592 goto unlock_drop;
ddbcc7e8 1593 }
cf5d5941
BB
1594 /*
1595 * There must be no failure case after here, since rebinding
1596 * takes care of subsystems' refcounts, which are explicitly
1597 * dropped in the failure exit path.
1598 */
ddbcc7e8
PM
1599
1600 /* EBUSY should be the only error here */
1601 BUG_ON(ret);
1602
1603 list_add(&root->root_list, &roots);
817929ec 1604 root_count++;
ddbcc7e8 1605
c12f65d4 1606 sb->s_root->d_fsdata = root_cgrp;
ddbcc7e8
PM
1607 root->top_cgroup.dentry = sb->s_root;
1608
817929ec
PM
1609 /* Link the top cgroup in this hierarchy into all
1610 * the css_set objects */
1611 write_lock(&css_set_lock);
28fd5dfc
LZ
1612 for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
1613 struct hlist_head *hhead = &css_set_table[i];
1614 struct hlist_node *node;
817929ec 1615 struct css_set *cg;
28fd5dfc 1616
c12f65d4
LZ
1617 hlist_for_each_entry(cg, node, hhead, hlist)
1618 link_css_set(&tmp_cg_links, cg, root_cgrp);
28fd5dfc 1619 }
817929ec
PM
1620 write_unlock(&css_set_lock);
1621
1622 free_cg_links(&tmp_cg_links);
1623
c12f65d4
LZ
1624 BUG_ON(!list_empty(&root_cgrp->sibling));
1625 BUG_ON(!list_empty(&root_cgrp->children));
ddbcc7e8
PM
1626 BUG_ON(root->number_of_cgroups != 1);
1627
2ce9738b 1628 cred = override_creds(&init_cred);
c12f65d4 1629 cgroup_populate_dir(root_cgrp);
2ce9738b 1630 revert_creds(cred);
e25e2cbb 1631 mutex_unlock(&cgroup_root_mutex);
ddbcc7e8 1632 mutex_unlock(&cgroup_mutex);
34f77a90 1633 mutex_unlock(&inode->i_mutex);
c6d57f33
PM
1634 } else {
1635 /*
1636 * We re-used an existing hierarchy - the new root (if
1637 * any) is not needed
1638 */
2c6ab6d2 1639 cgroup_drop_root(opts.new_root);
cf5d5941
BB
1640 /* no subsys rebinding, so refcounts don't change */
1641 drop_parsed_module_refcounts(opts.subsys_bits);
ddbcc7e8
PM
1642 }
1643
c6d57f33
PM
1644 kfree(opts.release_agent);
1645 kfree(opts.name);
f7e83571 1646 return dget(sb->s_root);
ddbcc7e8 1647
e25e2cbb
TH
1648 unlock_drop:
1649 mutex_unlock(&cgroup_root_mutex);
1650 mutex_unlock(&cgroup_mutex);
1651 mutex_unlock(&inode->i_mutex);
ddbcc7e8 1652 drop_new_super:
6f5bbff9 1653 deactivate_locked_super(sb);
cf5d5941
BB
1654 drop_modules:
1655 drop_parsed_module_refcounts(opts.subsys_bits);
c6d57f33
PM
1656 out_err:
1657 kfree(opts.release_agent);
1658 kfree(opts.name);
f7e83571 1659 return ERR_PTR(ret);
ddbcc7e8
PM
1660}
1661
1662static void cgroup_kill_sb(struct super_block *sb) {
1663 struct cgroupfs_root *root = sb->s_fs_info;
bd89aabc 1664 struct cgroup *cgrp = &root->top_cgroup;
ddbcc7e8 1665 int ret;
71cbb949
KM
1666 struct cg_cgroup_link *link;
1667 struct cg_cgroup_link *saved_link;
ddbcc7e8
PM
1668
1669 BUG_ON(!root);
1670
1671 BUG_ON(root->number_of_cgroups != 1);
bd89aabc
PM
1672 BUG_ON(!list_empty(&cgrp->children));
1673 BUG_ON(!list_empty(&cgrp->sibling));
ddbcc7e8
PM
1674
1675 mutex_lock(&cgroup_mutex);
e25e2cbb 1676 mutex_lock(&cgroup_root_mutex);
ddbcc7e8
PM
1677
1678 /* Rebind all subsystems back to the default hierarchy */
1679 ret = rebind_subsystems(root, 0);
1680 /* Shouldn't be able to fail ... */
1681 BUG_ON(ret);
1682
817929ec
PM
1683 /*
1684 * Release all the links from css_sets to this hierarchy's
1685 * root cgroup
1686 */
1687 write_lock(&css_set_lock);
71cbb949
KM
1688
1689 list_for_each_entry_safe(link, saved_link, &cgrp->css_sets,
1690 cgrp_link_list) {
817929ec 1691 list_del(&link->cg_link_list);
bd89aabc 1692 list_del(&link->cgrp_link_list);
817929ec
PM
1693 kfree(link);
1694 }
1695 write_unlock(&css_set_lock);
1696
839ec545
PM
1697 if (!list_empty(&root->root_list)) {
1698 list_del(&root->root_list);
1699 root_count--;
1700 }
e5f6a860 1701
e25e2cbb 1702 mutex_unlock(&cgroup_root_mutex);
ddbcc7e8
PM
1703 mutex_unlock(&cgroup_mutex);
1704
ddbcc7e8 1705 kill_litter_super(sb);
2c6ab6d2 1706 cgroup_drop_root(root);
ddbcc7e8
PM
1707}
1708
1709static struct file_system_type cgroup_fs_type = {
1710 .name = "cgroup",
f7e83571 1711 .mount = cgroup_mount,
ddbcc7e8
PM
1712 .kill_sb = cgroup_kill_sb,
1713};
1714
676db4af
GKH
1715static struct kobject *cgroup_kobj;
1716
a043e3b2
LZ
1717/**
1718 * cgroup_path - generate the path of a cgroup
1719 * @cgrp: the cgroup in question
1720 * @buf: the buffer to write the path into
1721 * @buflen: the length of the buffer
1722 *
a47295e6
PM
1723 * Called with cgroup_mutex held or else with an RCU-protected cgroup
1724 * reference. Writes path of cgroup into buf. Returns 0 on success,
1725 * -errno on error.
ddbcc7e8 1726 */
bd89aabc 1727int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
ddbcc7e8
PM
1728{
1729 char *start;
9a9686b6 1730 struct dentry *dentry = rcu_dereference_check(cgrp->dentry,
9a9686b6 1731 cgroup_lock_is_held());
ddbcc7e8 1732
a47295e6 1733 if (!dentry || cgrp == dummytop) {
ddbcc7e8
PM
1734 /*
1735 * Inactive subsystems have no dentry for their root
1736 * cgroup
1737 */
1738 strcpy(buf, "/");
1739 return 0;
1740 }
1741
1742 start = buf + buflen;
1743
1744 *--start = '\0';
1745 for (;;) {
a47295e6 1746 int len = dentry->d_name.len;
9a9686b6 1747
ddbcc7e8
PM
1748 if ((start -= len) < buf)
1749 return -ENAMETOOLONG;
9a9686b6 1750 memcpy(start, dentry->d_name.name, len);
bd89aabc
PM
1751 cgrp = cgrp->parent;
1752 if (!cgrp)
ddbcc7e8 1753 break;
9a9686b6
LZ
1754
1755 dentry = rcu_dereference_check(cgrp->dentry,
9a9686b6 1756 cgroup_lock_is_held());
bd89aabc 1757 if (!cgrp->parent)
ddbcc7e8
PM
1758 continue;
1759 if (--start < buf)
1760 return -ENAMETOOLONG;
1761 *start = '/';
1762 }
1763 memmove(buf, start, buf + buflen - start);
1764 return 0;
1765}
67523c48 1766EXPORT_SYMBOL_GPL(cgroup_path);
ddbcc7e8 1767
2f7ee569
TH
1768/*
1769 * Control Group taskset
1770 */
134d3373
TH
1771struct task_and_cgroup {
1772 struct task_struct *task;
1773 struct cgroup *cgrp;
61d1d219 1774 struct css_set *cg;
134d3373
TH
1775};
1776
2f7ee569
TH
1777struct cgroup_taskset {
1778 struct task_and_cgroup single;
1779 struct flex_array *tc_array;
1780 int tc_array_len;
1781 int idx;
1782 struct cgroup *cur_cgrp;
1783};
1784
1785/**
1786 * cgroup_taskset_first - reset taskset and return the first task
1787 * @tset: taskset of interest
1788 *
1789 * @tset iteration is initialized and the first task is returned.
1790 */
1791struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
1792{
1793 if (tset->tc_array) {
1794 tset->idx = 0;
1795 return cgroup_taskset_next(tset);
1796 } else {
1797 tset->cur_cgrp = tset->single.cgrp;
1798 return tset->single.task;
1799 }
1800}
1801EXPORT_SYMBOL_GPL(cgroup_taskset_first);
1802
1803/**
1804 * cgroup_taskset_next - iterate to the next task in taskset
1805 * @tset: taskset of interest
1806 *
1807 * Return the next task in @tset. Iteration must have been initialized
1808 * with cgroup_taskset_first().
1809 */
1810struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
1811{
1812 struct task_and_cgroup *tc;
1813
1814 if (!tset->tc_array || tset->idx >= tset->tc_array_len)
1815 return NULL;
1816
1817 tc = flex_array_get(tset->tc_array, tset->idx++);
1818 tset->cur_cgrp = tc->cgrp;
1819 return tc->task;
1820}
1821EXPORT_SYMBOL_GPL(cgroup_taskset_next);
1822
1823/**
1824 * cgroup_taskset_cur_cgroup - return the matching cgroup for the current task
1825 * @tset: taskset of interest
1826 *
1827 * Return the cgroup for the current (last returned) task of @tset. This
1828 * function must be preceded by either cgroup_taskset_first() or
1829 * cgroup_taskset_next().
1830 */
1831struct cgroup *cgroup_taskset_cur_cgroup(struct cgroup_taskset *tset)
1832{
1833 return tset->cur_cgrp;
1834}
1835EXPORT_SYMBOL_GPL(cgroup_taskset_cur_cgroup);
1836
1837/**
1838 * cgroup_taskset_size - return the number of tasks in taskset
1839 * @tset: taskset of interest
1840 */
1841int cgroup_taskset_size(struct cgroup_taskset *tset)
1842{
1843 return tset->tc_array ? tset->tc_array_len : 1;
1844}
1845EXPORT_SYMBOL_GPL(cgroup_taskset_size);
1846
1847
74a1166d
BB
1848/*
1849 * cgroup_task_migrate - move a task from one cgroup to another.
1850 *
1851 * 'guarantee' is set if the caller promises that a new css_set for the task
1852 * will already exist. If not set, this function might sleep, and can fail with
cd3d0952 1853 * -ENOMEM. Must be called with cgroup_mutex and threadgroup locked.
74a1166d 1854 */
61d1d219
MSB
1855static void cgroup_task_migrate(struct cgroup *cgrp, struct cgroup *oldcgrp,
1856 struct task_struct *tsk, struct css_set *newcg)
74a1166d
BB
1857{
1858 struct css_set *oldcg;
74a1166d
BB
1859
1860 /*
026085ef
MSB
1861 * We are synchronized through threadgroup_lock() against PF_EXITING
1862 * setting such that we can't race against cgroup_exit() changing the
1863 * css_set to init_css_set and dropping the old one.
74a1166d 1864 */
c84cdf75 1865 WARN_ON_ONCE(tsk->flags & PF_EXITING);
74a1166d 1866 oldcg = tsk->cgroups;
74a1166d 1867
74a1166d 1868 task_lock(tsk);
74a1166d
BB
1869 rcu_assign_pointer(tsk->cgroups, newcg);
1870 task_unlock(tsk);
1871
1872 /* Update the css_set linked lists if we're using them */
1873 write_lock(&css_set_lock);
1874 if (!list_empty(&tsk->cg_list))
1875 list_move(&tsk->cg_list, &newcg->tasks);
1876 write_unlock(&css_set_lock);
1877
1878 /*
1879 * We just gained a reference on oldcg by taking it from the task. As
1880 * trading it for newcg is protected by cgroup_mutex, we're safe to drop
1881 * it here; it will be freed under RCU.
1882 */
1883 put_css_set(oldcg);
1884
1885 set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
74a1166d
BB
1886}
1887
a043e3b2
LZ
1888/**
1889 * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp'
1890 * @cgrp: the cgroup the task is attaching to
1891 * @tsk: the task to be attached
bbcb81d0 1892 *
cd3d0952
TH
1893 * Call with cgroup_mutex and threadgroup locked. May take task_lock of
1894 * @tsk during call.
bbcb81d0 1895 */
956db3ca 1896int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
bbcb81d0 1897{
8f121918 1898 int retval = 0;
2468c723 1899 struct cgroup_subsys *ss, *failed_ss = NULL;
bd89aabc 1900 struct cgroup *oldcgrp;
bd89aabc 1901 struct cgroupfs_root *root = cgrp->root;
2f7ee569 1902 struct cgroup_taskset tset = { };
61d1d219 1903 struct css_set *newcg;
bbcb81d0 1904
cd3d0952
TH
1905 /* @tsk either already exited or can't exit until the end */
1906 if (tsk->flags & PF_EXITING)
1907 return -ESRCH;
bbcb81d0
PM
1908
1909 /* Nothing to do if the task is already in that cgroup */
7717f7ba 1910 oldcgrp = task_cgroup_from_root(tsk, root);
bd89aabc 1911 if (cgrp == oldcgrp)
bbcb81d0
PM
1912 return 0;
1913
2f7ee569
TH
1914 tset.single.task = tsk;
1915 tset.single.cgrp = oldcgrp;
1916
bbcb81d0
PM
1917 for_each_subsys(root, ss) {
1918 if (ss->can_attach) {
761b3ef5 1919 retval = ss->can_attach(cgrp, &tset);
2468c723
DN
1920 if (retval) {
1921 /*
1922 * Remember on which subsystem the can_attach()
1923 * failed, so that we only call cancel_attach()
1924 * against the subsystems whose can_attach()
1925 * succeeded. (See below)
1926 */
1927 failed_ss = ss;
1928 goto out;
1929 }
bbcb81d0
PM
1930 }
1931 }
1932
61d1d219
MSB
1933 newcg = find_css_set(tsk->cgroups, cgrp);
1934 if (!newcg) {
1935 retval = -ENOMEM;
2468c723 1936 goto out;
61d1d219
MSB
1937 }
1938
1939 cgroup_task_migrate(cgrp, oldcgrp, tsk, newcg);
817929ec 1940
bbcb81d0 1941 for_each_subsys(root, ss) {
e18f6318 1942 if (ss->attach)
761b3ef5 1943 ss->attach(cgrp, &tset);
bbcb81d0 1944 }
74a1166d 1945
bbcb81d0 1946 synchronize_rcu();
ec64f515
KH
1947
1948 /*
1949 * wake up rmdir() waiter. the rmdir should fail since the cgroup
1950 * is no longer empty.
1951 */
88703267 1952 cgroup_wakeup_rmdir_waiter(cgrp);
2468c723
DN
1953out:
1954 if (retval) {
1955 for_each_subsys(root, ss) {
1956 if (ss == failed_ss)
1957 /*
1958 * This subsystem was the one that failed the
1959 * can_attach() check earlier, so we don't need
1960 * to call cancel_attach() against it or any
1961 * remaining subsystems.
1962 */
1963 break;
1964 if (ss->cancel_attach)
761b3ef5 1965 ss->cancel_attach(cgrp, &tset);
2468c723
DN
1966 }
1967 }
1968 return retval;
bbcb81d0
PM
1969}
1970
d7926ee3 1971/**
31583bb0
MT
1972 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
1973 * @from: attach to all cgroups of a given task
d7926ee3
SS
1974 * @tsk: the task to be attached
1975 */
31583bb0 1976int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
d7926ee3
SS
1977{
1978 struct cgroupfs_root *root;
d7926ee3
SS
1979 int retval = 0;
1980
1981 cgroup_lock();
1982 for_each_active_root(root) {
31583bb0
MT
1983 struct cgroup *from_cg = task_cgroup_from_root(from, root);
1984
1985 retval = cgroup_attach_task(from_cg, tsk);
d7926ee3
SS
1986 if (retval)
1987 break;
1988 }
1989 cgroup_unlock();
1990
1991 return retval;
1992}
31583bb0 1993EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
d7926ee3 1994
74a1166d
BB
1995/**
1996 * cgroup_attach_proc - attach all threads in a threadgroup to a cgroup
1997 * @cgrp: the cgroup to attach to
1998 * @leader: the threadgroup leader task_struct of the group to be attached
1999 *
257058ae
TH
2000 * Call holding cgroup_mutex and the group_rwsem of the leader. Will take
2001 * task_lock of each thread in leader's threadgroup individually in turn.
74a1166d 2002 */
1c6c3fad 2003static int cgroup_attach_proc(struct cgroup *cgrp, struct task_struct *leader)
74a1166d
BB
2004{
2005 int retval, i, group_size;
2006 struct cgroup_subsys *ss, *failed_ss = NULL;
74a1166d 2007 /* guaranteed to be initialized later, but the compiler needs this */
74a1166d
BB
2008 struct cgroupfs_root *root = cgrp->root;
2009 /* threadgroup list cursor and array */
2010 struct task_struct *tsk;
134d3373 2011 struct task_and_cgroup *tc;
d846687d 2012 struct flex_array *group;
2f7ee569 2013 struct cgroup_taskset tset = { };
74a1166d
BB
2014
2015 /*
2016 * step 0: in order to do expensive, possibly blocking operations for
2017 * every thread, we cannot iterate the thread group list, since it needs
2018 * rcu or tasklist locked. instead, build an array of all threads in the
257058ae
TH
2019 * group - group_rwsem prevents new threads from appearing, and if
2020 * threads exit, this will just be an over-estimate.
74a1166d
BB
2021 */
2022 group_size = get_nr_threads(leader);
d846687d 2023 /* flex_array supports very large thread-groups better than kmalloc. */
134d3373 2024 group = flex_array_alloc(sizeof(*tc), group_size, GFP_KERNEL);
74a1166d
BB
2025 if (!group)
2026 return -ENOMEM;
d846687d
BB
2027 /* pre-allocate to guarantee space while iterating in rcu read-side. */
2028 retval = flex_array_prealloc(group, 0, group_size - 1, GFP_KERNEL);
2029 if (retval)
2030 goto out_free_group_list;
74a1166d 2031
74a1166d
BB
2032 tsk = leader;
2033 i = 0;
fb5d2b4c
MSB
2034 /*
2035 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2036 * already PF_EXITING could be freed from underneath us unless we
2037 * take an rcu_read_lock.
2038 */
2039 rcu_read_lock();
74a1166d 2040 do {
134d3373
TH
2041 struct task_and_cgroup ent;
2042
cd3d0952
TH
2043 /* @tsk either already exited or can't exit until the end */
2044 if (tsk->flags & PF_EXITING)
2045 continue;
2046
74a1166d
BB
2047 /* as per above, nr_threads may decrease, but not increase. */
2048 BUG_ON(i >= group_size);
134d3373
TH
2049 ent.task = tsk;
2050 ent.cgrp = task_cgroup_from_root(tsk, root);
892a2b90
MSB
2051 /* nothing to do if this task is already in the cgroup */
2052 if (ent.cgrp == cgrp)
2053 continue;
61d1d219
MSB
2054 /*
2055 * saying GFP_ATOMIC has no effect here because we did prealloc
2056 * earlier, but it's good form to communicate our expectations.
2057 */
134d3373 2058 retval = flex_array_put(group, i, &ent, GFP_ATOMIC);
d846687d 2059 BUG_ON(retval != 0);
74a1166d
BB
2060 i++;
2061 } while_each_thread(leader, tsk);
fb5d2b4c 2062 rcu_read_unlock();
74a1166d
BB
2063 /* remember the number of threads in the array for later. */
2064 group_size = i;
2f7ee569
TH
2065 tset.tc_array = group;
2066 tset.tc_array_len = group_size;
74a1166d 2067
134d3373
TH
2068 /* methods shouldn't be called if no task is actually migrating */
2069 retval = 0;
892a2b90 2070 if (!group_size)
b07ef774 2071 goto out_free_group_list;
134d3373 2072
74a1166d
BB
2073 /*
2074 * step 1: check that we can legitimately attach to the cgroup.
2075 */
2076 for_each_subsys(root, ss) {
2077 if (ss->can_attach) {
761b3ef5 2078 retval = ss->can_attach(cgrp, &tset);
74a1166d
BB
2079 if (retval) {
2080 failed_ss = ss;
2081 goto out_cancel_attach;
2082 }
2083 }
74a1166d
BB
2084 }
2085
2086 /*
2087 * step 2: make sure css_sets exist for all threads to be migrated.
2088 * we use find_css_set, which allocates a new one if necessary.
2089 */
74a1166d 2090 for (i = 0; i < group_size; i++) {
134d3373 2091 tc = flex_array_get(group, i);
61d1d219
MSB
2092 tc->cg = find_css_set(tc->task->cgroups, cgrp);
2093 if (!tc->cg) {
2094 retval = -ENOMEM;
2095 goto out_put_css_set_refs;
74a1166d
BB
2096 }
2097 }
2098
2099 /*
494c167c
TH
2100 * step 3: now that we're guaranteed success wrt the css_sets,
2101 * proceed to move all tasks to the new cgroup. There are no
2102 * failure cases after here, so this is the commit point.
74a1166d 2103 */
74a1166d 2104 for (i = 0; i < group_size; i++) {
134d3373 2105 tc = flex_array_get(group, i);
61d1d219 2106 cgroup_task_migrate(cgrp, tc->cgrp, tc->task, tc->cg);
74a1166d
BB
2107 }
2108 /* nothing is sensitive to fork() after this point. */
2109
2110 /*
494c167c 2111 * step 4: do subsystem attach callbacks.
74a1166d
BB
2112 */
2113 for_each_subsys(root, ss) {
2114 if (ss->attach)
761b3ef5 2115 ss->attach(cgrp, &tset);
74a1166d
BB
2116 }
2117
2118 /*
2119 * step 5: success! and cleanup
2120 */
2121 synchronize_rcu();
2122 cgroup_wakeup_rmdir_waiter(cgrp);
2123 retval = 0;
61d1d219
MSB
2124out_put_css_set_refs:
2125 if (retval) {
2126 for (i = 0; i < group_size; i++) {
2127 tc = flex_array_get(group, i);
2128 if (!tc->cg)
2129 break;
2130 put_css_set(tc->cg);
2131 }
74a1166d
BB
2132 }
2133out_cancel_attach:
74a1166d
BB
2134 if (retval) {
2135 for_each_subsys(root, ss) {
494c167c 2136 if (ss == failed_ss)
74a1166d 2137 break;
74a1166d 2138 if (ss->cancel_attach)
761b3ef5 2139 ss->cancel_attach(cgrp, &tset);
74a1166d
BB
2140 }
2141 }
74a1166d 2142out_free_group_list:
d846687d 2143 flex_array_free(group);
74a1166d
BB
2144 return retval;
2145}
2146
2147/*
2148 * Find the task_struct of the task to attach by vpid and pass it along to the
cd3d0952
TH
2149 * function to attach either it or all tasks in its threadgroup. Will lock
2150 * cgroup_mutex and threadgroup; may take task_lock of task.
bbcb81d0 2151 */
74a1166d 2152static int attach_task_by_pid(struct cgroup *cgrp, u64 pid, bool threadgroup)
bbcb81d0 2153{
bbcb81d0 2154 struct task_struct *tsk;
c69e8d9c 2155 const struct cred *cred = current_cred(), *tcred;
bbcb81d0
PM
2156 int ret;
2157
74a1166d
BB
2158 if (!cgroup_lock_live_group(cgrp))
2159 return -ENODEV;
2160
b78949eb
MSB
2161retry_find_task:
2162 rcu_read_lock();
bbcb81d0 2163 if (pid) {
73507f33 2164 tsk = find_task_by_vpid(pid);
74a1166d
BB
2165 if (!tsk) {
2166 rcu_read_unlock();
b78949eb
MSB
2167 ret= -ESRCH;
2168 goto out_unlock_cgroup;
bbcb81d0 2169 }
74a1166d
BB
2170 /*
2171 * even if we're attaching all tasks in the thread group, we
2172 * only need to check permissions on one of them.
2173 */
c69e8d9c
DH
2174 tcred = __task_cred(tsk);
2175 if (cred->euid &&
2176 cred->euid != tcred->uid &&
2177 cred->euid != tcred->suid) {
2178 rcu_read_unlock();
b78949eb
MSB
2179 ret = -EACCES;
2180 goto out_unlock_cgroup;
bbcb81d0 2181 }
b78949eb
MSB
2182 } else
2183 tsk = current;
cd3d0952
TH
2184
2185 if (threadgroup)
b78949eb
MSB
2186 tsk = tsk->group_leader;
2187 get_task_struct(tsk);
2188 rcu_read_unlock();
2189
2190 threadgroup_lock(tsk);
2191 if (threadgroup) {
2192 if (!thread_group_leader(tsk)) {
2193 /*
2194 * a race with de_thread from another thread's exec()
2195 * may strip us of our leadership, if this happens,
2196 * there is no choice but to throw this task away and
2197 * try again; this is
2198 * "double-double-toil-and-trouble-check locking".
2199 */
2200 threadgroup_unlock(tsk);
2201 put_task_struct(tsk);
2202 goto retry_find_task;
2203 }
74a1166d 2204 ret = cgroup_attach_proc(cgrp, tsk);
b78949eb 2205 } else
74a1166d 2206 ret = cgroup_attach_task(cgrp, tsk);
cd3d0952
TH
2207 threadgroup_unlock(tsk);
2208
bbcb81d0 2209 put_task_struct(tsk);
b78949eb 2210out_unlock_cgroup:
74a1166d 2211 cgroup_unlock();
bbcb81d0
PM
2212 return ret;
2213}
2214
af351026 2215static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid)
74a1166d
BB
2216{
2217 return attach_task_by_pid(cgrp, pid, false);
2218}
2219
2220static int cgroup_procs_write(struct cgroup *cgrp, struct cftype *cft, u64 tgid)
af351026 2221{
b78949eb 2222 return attach_task_by_pid(cgrp, tgid, true);
af351026
PM
2223}
2224
e788e066
PM
2225/**
2226 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
2227 * @cgrp: the cgroup to be checked for liveness
2228 *
84eea842
PM
2229 * On success, returns true; the lock should be later released with
2230 * cgroup_unlock(). On failure returns false with no lock held.
e788e066 2231 */
84eea842 2232bool cgroup_lock_live_group(struct cgroup *cgrp)
e788e066
PM
2233{
2234 mutex_lock(&cgroup_mutex);
2235 if (cgroup_is_removed(cgrp)) {
2236 mutex_unlock(&cgroup_mutex);
2237 return false;
2238 }
2239 return true;
2240}
67523c48 2241EXPORT_SYMBOL_GPL(cgroup_lock_live_group);
e788e066
PM
2242
2243static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft,
2244 const char *buffer)
2245{
2246 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
f4a2589f
EK
2247 if (strlen(buffer) >= PATH_MAX)
2248 return -EINVAL;
e788e066
PM
2249 if (!cgroup_lock_live_group(cgrp))
2250 return -ENODEV;
e25e2cbb 2251 mutex_lock(&cgroup_root_mutex);
e788e066 2252 strcpy(cgrp->root->release_agent_path, buffer);
e25e2cbb 2253 mutex_unlock(&cgroup_root_mutex);
84eea842 2254 cgroup_unlock();
e788e066
PM
2255 return 0;
2256}
2257
2258static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft,
2259 struct seq_file *seq)
2260{
2261 if (!cgroup_lock_live_group(cgrp))
2262 return -ENODEV;
2263 seq_puts(seq, cgrp->root->release_agent_path);
2264 seq_putc(seq, '\n');
84eea842 2265 cgroup_unlock();
e788e066
PM
2266 return 0;
2267}
2268
84eea842
PM
2269/* A buffer size big enough for numbers or short strings */
2270#define CGROUP_LOCAL_BUFFER_SIZE 64
2271
e73d2c61 2272static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
f4c753b7
PM
2273 struct file *file,
2274 const char __user *userbuf,
2275 size_t nbytes, loff_t *unused_ppos)
355e0c48 2276{
84eea842 2277 char buffer[CGROUP_LOCAL_BUFFER_SIZE];
355e0c48 2278 int retval = 0;
355e0c48
PM
2279 char *end;
2280
2281 if (!nbytes)
2282 return -EINVAL;
2283 if (nbytes >= sizeof(buffer))
2284 return -E2BIG;
2285 if (copy_from_user(buffer, userbuf, nbytes))
2286 return -EFAULT;
2287
2288 buffer[nbytes] = 0; /* nul-terminate */
e73d2c61 2289 if (cft->write_u64) {
478988d3 2290 u64 val = simple_strtoull(strstrip(buffer), &end, 0);
e73d2c61
PM
2291 if (*end)
2292 return -EINVAL;
2293 retval = cft->write_u64(cgrp, cft, val);
2294 } else {
478988d3 2295 s64 val = simple_strtoll(strstrip(buffer), &end, 0);
e73d2c61
PM
2296 if (*end)
2297 return -EINVAL;
2298 retval = cft->write_s64(cgrp, cft, val);
2299 }
355e0c48
PM
2300 if (!retval)
2301 retval = nbytes;
2302 return retval;
2303}
2304
db3b1497
PM
2305static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft,
2306 struct file *file,
2307 const char __user *userbuf,
2308 size_t nbytes, loff_t *unused_ppos)
2309{
84eea842 2310 char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
db3b1497
PM
2311 int retval = 0;
2312 size_t max_bytes = cft->max_write_len;
2313 char *buffer = local_buffer;
2314
2315 if (!max_bytes)
2316 max_bytes = sizeof(local_buffer) - 1;
2317 if (nbytes >= max_bytes)
2318 return -E2BIG;
2319 /* Allocate a dynamic buffer if we need one */
2320 if (nbytes >= sizeof(local_buffer)) {
2321 buffer = kmalloc(nbytes + 1, GFP_KERNEL);
2322 if (buffer == NULL)
2323 return -ENOMEM;
2324 }
5a3eb9f6
LZ
2325 if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
2326 retval = -EFAULT;
2327 goto out;
2328 }
db3b1497
PM
2329
2330 buffer[nbytes] = 0; /* nul-terminate */
478988d3 2331 retval = cft->write_string(cgrp, cft, strstrip(buffer));
db3b1497
PM
2332 if (!retval)
2333 retval = nbytes;
5a3eb9f6 2334out:
db3b1497
PM
2335 if (buffer != local_buffer)
2336 kfree(buffer);
2337 return retval;
2338}
2339
ddbcc7e8
PM
2340static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
2341 size_t nbytes, loff_t *ppos)
2342{
2343 struct cftype *cft = __d_cft(file->f_dentry);
bd89aabc 2344 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
ddbcc7e8 2345
75139b82 2346 if (cgroup_is_removed(cgrp))
ddbcc7e8 2347 return -ENODEV;
355e0c48 2348 if (cft->write)
bd89aabc 2349 return cft->write(cgrp, cft, file, buf, nbytes, ppos);
e73d2c61
PM
2350 if (cft->write_u64 || cft->write_s64)
2351 return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
db3b1497
PM
2352 if (cft->write_string)
2353 return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos);
d447ea2f
PE
2354 if (cft->trigger) {
2355 int ret = cft->trigger(cgrp, (unsigned int)cft->private);
2356 return ret ? ret : nbytes;
2357 }
355e0c48 2358 return -EINVAL;
ddbcc7e8
PM
2359}
2360
f4c753b7
PM
2361static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
2362 struct file *file,
2363 char __user *buf, size_t nbytes,
2364 loff_t *ppos)
ddbcc7e8 2365{
84eea842 2366 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
f4c753b7 2367 u64 val = cft->read_u64(cgrp, cft);
ddbcc7e8
PM
2368 int len = sprintf(tmp, "%llu\n", (unsigned long long) val);
2369
2370 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2371}
2372
e73d2c61
PM
2373static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
2374 struct file *file,
2375 char __user *buf, size_t nbytes,
2376 loff_t *ppos)
2377{
84eea842 2378 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
e73d2c61
PM
2379 s64 val = cft->read_s64(cgrp, cft);
2380 int len = sprintf(tmp, "%lld\n", (long long) val);
2381
2382 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2383}
2384
ddbcc7e8
PM
2385static ssize_t cgroup_file_read(struct file *file, char __user *buf,
2386 size_t nbytes, loff_t *ppos)
2387{
2388 struct cftype *cft = __d_cft(file->f_dentry);
bd89aabc 2389 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
ddbcc7e8 2390
75139b82 2391 if (cgroup_is_removed(cgrp))
ddbcc7e8
PM
2392 return -ENODEV;
2393
2394 if (cft->read)
bd89aabc 2395 return cft->read(cgrp, cft, file, buf, nbytes, ppos);
f4c753b7
PM
2396 if (cft->read_u64)
2397 return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
e73d2c61
PM
2398 if (cft->read_s64)
2399 return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
ddbcc7e8
PM
2400 return -EINVAL;
2401}
2402
91796569
PM
2403/*
2404 * seqfile ops/methods for returning structured data. Currently just
2405 * supports string->u64 maps, but can be extended in future.
2406 */
2407
2408struct cgroup_seqfile_state {
2409 struct cftype *cft;
2410 struct cgroup *cgroup;
2411};
2412
2413static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
2414{
2415 struct seq_file *sf = cb->state;
2416 return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
2417}
2418
2419static int cgroup_seqfile_show(struct seq_file *m, void *arg)
2420{
2421 struct cgroup_seqfile_state *state = m->private;
2422 struct cftype *cft = state->cft;
29486df3
SH
2423 if (cft->read_map) {
2424 struct cgroup_map_cb cb = {
2425 .fill = cgroup_map_add,
2426 .state = m,
2427 };
2428 return cft->read_map(state->cgroup, cft, &cb);
2429 }
2430 return cft->read_seq_string(state->cgroup, cft, m);
91796569
PM
2431}
2432
96930a63 2433static int cgroup_seqfile_release(struct inode *inode, struct file *file)
91796569
PM
2434{
2435 struct seq_file *seq = file->private_data;
2436 kfree(seq->private);
2437 return single_release(inode, file);
2438}
2439
828c0950 2440static const struct file_operations cgroup_seqfile_operations = {
91796569 2441 .read = seq_read,
e788e066 2442 .write = cgroup_file_write,
91796569
PM
2443 .llseek = seq_lseek,
2444 .release = cgroup_seqfile_release,
2445};
2446
ddbcc7e8
PM
2447static int cgroup_file_open(struct inode *inode, struct file *file)
2448{
2449 int err;
2450 struct cftype *cft;
2451
2452 err = generic_file_open(inode, file);
2453 if (err)
2454 return err;
ddbcc7e8 2455 cft = __d_cft(file->f_dentry);
75139b82 2456
29486df3 2457 if (cft->read_map || cft->read_seq_string) {
91796569
PM
2458 struct cgroup_seqfile_state *state =
2459 kzalloc(sizeof(*state), GFP_USER);
2460 if (!state)
2461 return -ENOMEM;
2462 state->cft = cft;
2463 state->cgroup = __d_cgrp(file->f_dentry->d_parent);
2464 file->f_op = &cgroup_seqfile_operations;
2465 err = single_open(file, cgroup_seqfile_show, state);
2466 if (err < 0)
2467 kfree(state);
2468 } else if (cft->open)
ddbcc7e8
PM
2469 err = cft->open(inode, file);
2470 else
2471 err = 0;
2472
2473 return err;
2474}
2475
2476static int cgroup_file_release(struct inode *inode, struct file *file)
2477{
2478 struct cftype *cft = __d_cft(file->f_dentry);
2479 if (cft->release)
2480 return cft->release(inode, file);
2481 return 0;
2482}
2483
2484/*
2485 * cgroup_rename - Only allow simple rename of directories in place.
2486 */
2487static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
2488 struct inode *new_dir, struct dentry *new_dentry)
2489{
2490 if (!S_ISDIR(old_dentry->d_inode->i_mode))
2491 return -ENOTDIR;
2492 if (new_dentry->d_inode)
2493 return -EEXIST;
2494 if (old_dir != new_dir)
2495 return -EIO;
2496 return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
2497}
2498
828c0950 2499static const struct file_operations cgroup_file_operations = {
ddbcc7e8
PM
2500 .read = cgroup_file_read,
2501 .write = cgroup_file_write,
2502 .llseek = generic_file_llseek,
2503 .open = cgroup_file_open,
2504 .release = cgroup_file_release,
2505};
2506
6e1d5dcc 2507static const struct inode_operations cgroup_dir_inode_operations = {
c72a04e3 2508 .lookup = cgroup_lookup,
ddbcc7e8
PM
2509 .mkdir = cgroup_mkdir,
2510 .rmdir = cgroup_rmdir,
2511 .rename = cgroup_rename,
2512};
2513
c72a04e3
AV
2514static struct dentry *cgroup_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
2515{
2516 if (dentry->d_name.len > NAME_MAX)
2517 return ERR_PTR(-ENAMETOOLONG);
2518 d_add(dentry, NULL);
2519 return NULL;
2520}
2521
0dea1168
KS
2522/*
2523 * Check if a file is a control file
2524 */
2525static inline struct cftype *__file_cft(struct file *file)
2526{
2527 if (file->f_dentry->d_inode->i_fop != &cgroup_file_operations)
2528 return ERR_PTR(-EINVAL);
2529 return __d_cft(file->f_dentry);
2530}
2531
a5e7ed32 2532static int cgroup_create_file(struct dentry *dentry, umode_t mode,
5adcee1d
NP
2533 struct super_block *sb)
2534{
ddbcc7e8
PM
2535 struct inode *inode;
2536
2537 if (!dentry)
2538 return -ENOENT;
2539 if (dentry->d_inode)
2540 return -EEXIST;
2541
2542 inode = cgroup_new_inode(mode, sb);
2543 if (!inode)
2544 return -ENOMEM;
2545
2546 if (S_ISDIR(mode)) {
2547 inode->i_op = &cgroup_dir_inode_operations;
2548 inode->i_fop = &simple_dir_operations;
2549
2550 /* start off with i_nlink == 2 (for "." entry) */
2551 inc_nlink(inode);
2552
2553 /* start with the directory inode held, so that we can
2554 * populate it without racing with another mkdir */
817929ec 2555 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
ddbcc7e8
PM
2556 } else if (S_ISREG(mode)) {
2557 inode->i_size = 0;
2558 inode->i_fop = &cgroup_file_operations;
2559 }
ddbcc7e8
PM
2560 d_instantiate(dentry, inode);
2561 dget(dentry); /* Extra count - pin the dentry in core */
2562 return 0;
2563}
2564
2565/*
a043e3b2
LZ
2566 * cgroup_create_dir - create a directory for an object.
2567 * @cgrp: the cgroup we create the directory for. It must have a valid
2568 * ->parent field. And we are going to fill its ->dentry field.
2569 * @dentry: dentry of the new cgroup
2570 * @mode: mode to set on new directory.
ddbcc7e8 2571 */
bd89aabc 2572static int cgroup_create_dir(struct cgroup *cgrp, struct dentry *dentry,
a5e7ed32 2573 umode_t mode)
ddbcc7e8
PM
2574{
2575 struct dentry *parent;
2576 int error = 0;
2577
bd89aabc
PM
2578 parent = cgrp->parent->dentry;
2579 error = cgroup_create_file(dentry, S_IFDIR | mode, cgrp->root->sb);
ddbcc7e8 2580 if (!error) {
bd89aabc 2581 dentry->d_fsdata = cgrp;
ddbcc7e8 2582 inc_nlink(parent->d_inode);
a47295e6 2583 rcu_assign_pointer(cgrp->dentry, dentry);
ddbcc7e8
PM
2584 dget(dentry);
2585 }
2586 dput(dentry);
2587
2588 return error;
2589}
2590
099fca32
LZ
2591/**
2592 * cgroup_file_mode - deduce file mode of a control file
2593 * @cft: the control file in question
2594 *
2595 * returns cft->mode if ->mode is not 0
2596 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
2597 * returns S_IRUGO if it has only a read handler
2598 * returns S_IWUSR if it has only a write hander
2599 */
a5e7ed32 2600static umode_t cgroup_file_mode(const struct cftype *cft)
099fca32 2601{
a5e7ed32 2602 umode_t mode = 0;
099fca32
LZ
2603
2604 if (cft->mode)
2605 return cft->mode;
2606
2607 if (cft->read || cft->read_u64 || cft->read_s64 ||
2608 cft->read_map || cft->read_seq_string)
2609 mode |= S_IRUGO;
2610
2611 if (cft->write || cft->write_u64 || cft->write_s64 ||
2612 cft->write_string || cft->trigger)
2613 mode |= S_IWUSR;
2614
2615 return mode;
2616}
2617
db0416b6
TH
2618static int cgroup_add_file(struct cgroup *cgrp, struct cgroup_subsys *subsys,
2619 const struct cftype *cft)
ddbcc7e8 2620{
bd89aabc 2621 struct dentry *dir = cgrp->dentry;
ddbcc7e8
PM
2622 struct dentry *dentry;
2623 int error;
a5e7ed32 2624 umode_t mode;
ddbcc7e8 2625 char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
8e3f6541
TH
2626
2627 /* does @cft->flags tell us to skip creation on @cgrp? */
2628 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgrp->parent)
2629 return 0;
2630 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgrp->parent)
2631 return 0;
2632
bd89aabc 2633 if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) {
ddbcc7e8
PM
2634 strcpy(name, subsys->name);
2635 strcat(name, ".");
2636 }
2637 strcat(name, cft->name);
2638 BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
2639 dentry = lookup_one_len(name, dir, strlen(name));
2640 if (!IS_ERR(dentry)) {
099fca32
LZ
2641 mode = cgroup_file_mode(cft);
2642 error = cgroup_create_file(dentry, mode | S_IFREG,
bd89aabc 2643 cgrp->root->sb);
ddbcc7e8
PM
2644 if (!error)
2645 dentry->d_fsdata = (void *)cft;
2646 dput(dentry);
2647 } else
2648 error = PTR_ERR(dentry);
2649 return error;
2650}
2651
db0416b6
TH
2652static int cgroup_add_files(struct cgroup *cgrp, struct cgroup_subsys *subsys,
2653 const struct cftype cfts[])
ddbcc7e8 2654{
db0416b6
TH
2655 const struct cftype *cft;
2656 int err, ret = 0;
2657
2658 for (cft = cfts; cft->name[0] != '\0'; cft++) {
2659 err = cgroup_add_file(cgrp, subsys, cft);
2660 if (err) {
2661 pr_warning("cgroup_add_files: failed to create %s, err=%d\n",
2662 cft->name, err);
2663 ret = err;
2664 }
ddbcc7e8 2665 }
db0416b6 2666 return ret;
ddbcc7e8
PM
2667}
2668
8e3f6541
TH
2669static DEFINE_MUTEX(cgroup_cft_mutex);
2670
2671static void cgroup_cfts_prepare(void)
2672 __acquires(&cgroup_cft_mutex) __acquires(&cgroup_mutex)
2673{
2674 /*
2675 * Thanks to the entanglement with vfs inode locking, we can't walk
2676 * the existing cgroups under cgroup_mutex and create files.
2677 * Instead, we increment reference on all cgroups and build list of
2678 * them using @cgrp->cft_q_node. Grab cgroup_cft_mutex to ensure
2679 * exclusive access to the field.
2680 */
2681 mutex_lock(&cgroup_cft_mutex);
2682 mutex_lock(&cgroup_mutex);
2683}
2684
2685static void cgroup_cfts_commit(struct cgroup_subsys *ss,
2686 const struct cftype *cfts)
2687 __releases(&cgroup_mutex) __releases(&cgroup_cft_mutex)
2688{
2689 LIST_HEAD(pending);
2690 struct cgroup *cgrp, *n;
8e3f6541
TH
2691
2692 /* %NULL @cfts indicates abort and don't bother if @ss isn't attached */
2693 if (cfts && ss->root != &rootnode) {
2694 list_for_each_entry(cgrp, &ss->root->allcg_list, allcg_node) {
2695 dget(cgrp->dentry);
2696 list_add_tail(&cgrp->cft_q_node, &pending);
2697 }
2698 }
2699
2700 mutex_unlock(&cgroup_mutex);
2701
2702 /*
2703 * All new cgroups will see @cfts update on @ss->cftsets. Add/rm
2704 * files for all cgroups which were created before.
2705 */
2706 list_for_each_entry_safe(cgrp, n, &pending, cft_q_node) {
2707 struct inode *inode = cgrp->dentry->d_inode;
2708
2709 mutex_lock(&inode->i_mutex);
2710 mutex_lock(&cgroup_mutex);
2711 if (!cgroup_is_removed(cgrp))
db0416b6 2712 cgroup_add_files(cgrp, ss, cfts);
8e3f6541
TH
2713 mutex_unlock(&cgroup_mutex);
2714 mutex_unlock(&inode->i_mutex);
2715
2716 list_del_init(&cgrp->cft_q_node);
2717 dput(cgrp->dentry);
2718 }
2719
2720 mutex_unlock(&cgroup_cft_mutex);
2721}
2722
2723/**
2724 * cgroup_add_cftypes - add an array of cftypes to a subsystem
2725 * @ss: target cgroup subsystem
2726 * @cfts: zero-length name terminated array of cftypes
2727 *
2728 * Register @cfts to @ss. Files described by @cfts are created for all
2729 * existing cgroups to which @ss is attached and all future cgroups will
2730 * have them too. This function can be called anytime whether @ss is
2731 * attached or not.
2732 *
2733 * Returns 0 on successful registration, -errno on failure. Note that this
2734 * function currently returns 0 as long as @cfts registration is successful
2735 * even if some file creation attempts on existing cgroups fail.
2736 */
2737int cgroup_add_cftypes(struct cgroup_subsys *ss, const struct cftype *cfts)
2738{
2739 struct cftype_set *set;
2740
2741 set = kzalloc(sizeof(*set), GFP_KERNEL);
2742 if (!set)
2743 return -ENOMEM;
2744
2745 cgroup_cfts_prepare();
2746 set->cfts = cfts;
2747 list_add_tail(&set->node, &ss->cftsets);
2748 cgroup_cfts_commit(ss, cfts);
2749
2750 return 0;
2751}
2752EXPORT_SYMBOL_GPL(cgroup_add_cftypes);
2753
a043e3b2
LZ
2754/**
2755 * cgroup_task_count - count the number of tasks in a cgroup.
2756 * @cgrp: the cgroup in question
2757 *
2758 * Return the number of tasks in the cgroup.
2759 */
bd89aabc 2760int cgroup_task_count(const struct cgroup *cgrp)
bbcb81d0
PM
2761{
2762 int count = 0;
71cbb949 2763 struct cg_cgroup_link *link;
817929ec
PM
2764
2765 read_lock(&css_set_lock);
71cbb949 2766 list_for_each_entry(link, &cgrp->css_sets, cgrp_link_list) {
146aa1bd 2767 count += atomic_read(&link->cg->refcount);
817929ec
PM
2768 }
2769 read_unlock(&css_set_lock);
bbcb81d0
PM
2770 return count;
2771}
2772
817929ec
PM
2773/*
2774 * Advance a list_head iterator. The iterator should be positioned at
2775 * the start of a css_set
2776 */
bd89aabc 2777static void cgroup_advance_iter(struct cgroup *cgrp,
7717f7ba 2778 struct cgroup_iter *it)
817929ec
PM
2779{
2780 struct list_head *l = it->cg_link;
2781 struct cg_cgroup_link *link;
2782 struct css_set *cg;
2783
2784 /* Advance to the next non-empty css_set */
2785 do {
2786 l = l->next;
bd89aabc 2787 if (l == &cgrp->css_sets) {
817929ec
PM
2788 it->cg_link = NULL;
2789 return;
2790 }
bd89aabc 2791 link = list_entry(l, struct cg_cgroup_link, cgrp_link_list);
817929ec
PM
2792 cg = link->cg;
2793 } while (list_empty(&cg->tasks));
2794 it->cg_link = l;
2795 it->task = cg->tasks.next;
2796}
2797
31a7df01
CW
2798/*
2799 * To reduce the fork() overhead for systems that are not actually
2800 * using their cgroups capability, we don't maintain the lists running
2801 * through each css_set to its tasks until we see the list actually
2802 * used - in other words after the first call to cgroup_iter_start().
31a7df01 2803 */
3df91fe3 2804static void cgroup_enable_task_cg_lists(void)
31a7df01
CW
2805{
2806 struct task_struct *p, *g;
2807 write_lock(&css_set_lock);
2808 use_task_css_set_links = 1;
3ce3230a
FW
2809 /*
2810 * We need tasklist_lock because RCU is not safe against
2811 * while_each_thread(). Besides, a forking task that has passed
2812 * cgroup_post_fork() without seeing use_task_css_set_links = 1
2813 * is not guaranteed to have its child immediately visible in the
2814 * tasklist if we walk through it with RCU.
2815 */
2816 read_lock(&tasklist_lock);
31a7df01
CW
2817 do_each_thread(g, p) {
2818 task_lock(p);
0e04388f
LZ
2819 /*
2820 * We should check if the process is exiting, otherwise
2821 * it will race with cgroup_exit() in that the list
2822 * entry won't be deleted though the process has exited.
2823 */
2824 if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
31a7df01
CW
2825 list_add(&p->cg_list, &p->cgroups->tasks);
2826 task_unlock(p);
2827 } while_each_thread(g, p);
3ce3230a 2828 read_unlock(&tasklist_lock);
31a7df01
CW
2829 write_unlock(&css_set_lock);
2830}
2831
bd89aabc 2832void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
c6ca5750 2833 __acquires(css_set_lock)
817929ec
PM
2834{
2835 /*
2836 * The first time anyone tries to iterate across a cgroup,
2837 * we need to enable the list linking each css_set to its
2838 * tasks, and fix up all existing tasks.
2839 */
31a7df01
CW
2840 if (!use_task_css_set_links)
2841 cgroup_enable_task_cg_lists();
2842
817929ec 2843 read_lock(&css_set_lock);
bd89aabc
PM
2844 it->cg_link = &cgrp->css_sets;
2845 cgroup_advance_iter(cgrp, it);
817929ec
PM
2846}
2847
bd89aabc 2848struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
817929ec
PM
2849 struct cgroup_iter *it)
2850{
2851 struct task_struct *res;
2852 struct list_head *l = it->task;
2019f634 2853 struct cg_cgroup_link *link;
817929ec
PM
2854
2855 /* If the iterator cg is NULL, we have no tasks */
2856 if (!it->cg_link)
2857 return NULL;
2858 res = list_entry(l, struct task_struct, cg_list);
2859 /* Advance iterator to find next entry */
2860 l = l->next;
2019f634
LJ
2861 link = list_entry(it->cg_link, struct cg_cgroup_link, cgrp_link_list);
2862 if (l == &link->cg->tasks) {
817929ec
PM
2863 /* We reached the end of this task list - move on to
2864 * the next cg_cgroup_link */
bd89aabc 2865 cgroup_advance_iter(cgrp, it);
817929ec
PM
2866 } else {
2867 it->task = l;
2868 }
2869 return res;
2870}
2871
bd89aabc 2872void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
c6ca5750 2873 __releases(css_set_lock)
817929ec
PM
2874{
2875 read_unlock(&css_set_lock);
2876}
2877
31a7df01
CW
2878static inline int started_after_time(struct task_struct *t1,
2879 struct timespec *time,
2880 struct task_struct *t2)
2881{
2882 int start_diff = timespec_compare(&t1->start_time, time);
2883 if (start_diff > 0) {
2884 return 1;
2885 } else if (start_diff < 0) {
2886 return 0;
2887 } else {
2888 /*
2889 * Arbitrarily, if two processes started at the same
2890 * time, we'll say that the lower pointer value
2891 * started first. Note that t2 may have exited by now
2892 * so this may not be a valid pointer any longer, but
2893 * that's fine - it still serves to distinguish
2894 * between two tasks started (effectively) simultaneously.
2895 */
2896 return t1 > t2;
2897 }
2898}
2899
2900/*
2901 * This function is a callback from heap_insert() and is used to order
2902 * the heap.
2903 * In this case we order the heap in descending task start time.
2904 */
2905static inline int started_after(void *p1, void *p2)
2906{
2907 struct task_struct *t1 = p1;
2908 struct task_struct *t2 = p2;
2909 return started_after_time(t1, &t2->start_time, t2);
2910}
2911
2912/**
2913 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
2914 * @scan: struct cgroup_scanner containing arguments for the scan
2915 *
2916 * Arguments include pointers to callback functions test_task() and
2917 * process_task().
2918 * Iterate through all the tasks in a cgroup, calling test_task() for each,
2919 * and if it returns true, call process_task() for it also.
2920 * The test_task pointer may be NULL, meaning always true (select all tasks).
2921 * Effectively duplicates cgroup_iter_{start,next,end}()
2922 * but does not lock css_set_lock for the call to process_task().
2923 * The struct cgroup_scanner may be embedded in any structure of the caller's
2924 * creation.
2925 * It is guaranteed that process_task() will act on every task that
2926 * is a member of the cgroup for the duration of this call. This
2927 * function may or may not call process_task() for tasks that exit
2928 * or move to a different cgroup during the call, or are forked or
2929 * move into the cgroup during the call.
2930 *
2931 * Note that test_task() may be called with locks held, and may in some
2932 * situations be called multiple times for the same task, so it should
2933 * be cheap.
2934 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
2935 * pre-allocated and will be used for heap operations (and its "gt" member will
2936 * be overwritten), else a temporary heap will be used (allocation of which
2937 * may cause this function to fail).
2938 */
2939int cgroup_scan_tasks(struct cgroup_scanner *scan)
2940{
2941 int retval, i;
2942 struct cgroup_iter it;
2943 struct task_struct *p, *dropped;
2944 /* Never dereference latest_task, since it's not refcounted */
2945 struct task_struct *latest_task = NULL;
2946 struct ptr_heap tmp_heap;
2947 struct ptr_heap *heap;
2948 struct timespec latest_time = { 0, 0 };
2949
2950 if (scan->heap) {
2951 /* The caller supplied our heap and pre-allocated its memory */
2952 heap = scan->heap;
2953 heap->gt = &started_after;
2954 } else {
2955 /* We need to allocate our own heap memory */
2956 heap = &tmp_heap;
2957 retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
2958 if (retval)
2959 /* cannot allocate the heap */
2960 return retval;
2961 }
2962
2963 again:
2964 /*
2965 * Scan tasks in the cgroup, using the scanner's "test_task" callback
2966 * to determine which are of interest, and using the scanner's
2967 * "process_task" callback to process any of them that need an update.
2968 * Since we don't want to hold any locks during the task updates,
2969 * gather tasks to be processed in a heap structure.
2970 * The heap is sorted by descending task start time.
2971 * If the statically-sized heap fills up, we overflow tasks that
2972 * started later, and in future iterations only consider tasks that
2973 * started after the latest task in the previous pass. This
2974 * guarantees forward progress and that we don't miss any tasks.
2975 */
2976 heap->size = 0;
2977 cgroup_iter_start(scan->cg, &it);
2978 while ((p = cgroup_iter_next(scan->cg, &it))) {
2979 /*
2980 * Only affect tasks that qualify per the caller's callback,
2981 * if he provided one
2982 */
2983 if (scan->test_task && !scan->test_task(p, scan))
2984 continue;
2985 /*
2986 * Only process tasks that started after the last task
2987 * we processed
2988 */
2989 if (!started_after_time(p, &latest_time, latest_task))
2990 continue;
2991 dropped = heap_insert(heap, p);
2992 if (dropped == NULL) {
2993 /*
2994 * The new task was inserted; the heap wasn't
2995 * previously full
2996 */
2997 get_task_struct(p);
2998 } else if (dropped != p) {
2999 /*
3000 * The new task was inserted, and pushed out a
3001 * different task
3002 */
3003 get_task_struct(p);
3004 put_task_struct(dropped);
3005 }
3006 /*
3007 * Else the new task was newer than anything already in
3008 * the heap and wasn't inserted
3009 */
3010 }
3011 cgroup_iter_end(scan->cg, &it);
3012
3013 if (heap->size) {
3014 for (i = 0; i < heap->size; i++) {
4fe91d51 3015 struct task_struct *q = heap->ptrs[i];
31a7df01 3016 if (i == 0) {
4fe91d51
PJ
3017 latest_time = q->start_time;
3018 latest_task = q;
31a7df01
CW
3019 }
3020 /* Process the task per the caller's callback */
4fe91d51
PJ
3021 scan->process_task(q, scan);
3022 put_task_struct(q);
31a7df01
CW
3023 }
3024 /*
3025 * If we had to process any tasks at all, scan again
3026 * in case some of them were in the middle of forking
3027 * children that didn't get processed.
3028 * Not the most efficient way to do it, but it avoids
3029 * having to take callback_mutex in the fork path
3030 */
3031 goto again;
3032 }
3033 if (heap == &tmp_heap)
3034 heap_free(&tmp_heap);
3035 return 0;
3036}
3037
bbcb81d0 3038/*
102a775e 3039 * Stuff for reading the 'tasks'/'procs' files.
bbcb81d0
PM
3040 *
3041 * Reading this file can return large amounts of data if a cgroup has
3042 * *lots* of attached tasks. So it may need several calls to read(),
3043 * but we cannot guarantee that the information we produce is correct
3044 * unless we produce it entirely atomically.
3045 *
bbcb81d0 3046 */
bbcb81d0 3047
24528255
LZ
3048/* which pidlist file are we talking about? */
3049enum cgroup_filetype {
3050 CGROUP_FILE_PROCS,
3051 CGROUP_FILE_TASKS,
3052};
3053
3054/*
3055 * A pidlist is a list of pids that virtually represents the contents of one
3056 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
3057 * a pair (one each for procs, tasks) for each pid namespace that's relevant
3058 * to the cgroup.
3059 */
3060struct cgroup_pidlist {
3061 /*
3062 * used to find which pidlist is wanted. doesn't change as long as
3063 * this particular list stays in the list.
3064 */
3065 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
3066 /* array of xids */
3067 pid_t *list;
3068 /* how many elements the above list has */
3069 int length;
3070 /* how many files are using the current array */
3071 int use_count;
3072 /* each of these stored in a list by its cgroup */
3073 struct list_head links;
3074 /* pointer to the cgroup we belong to, for list removal purposes */
3075 struct cgroup *owner;
3076 /* protects the other fields */
3077 struct rw_semaphore mutex;
3078};
3079
d1d9fd33
BB
3080/*
3081 * The following two functions "fix" the issue where there are more pids
3082 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
3083 * TODO: replace with a kernel-wide solution to this problem
3084 */
3085#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
3086static void *pidlist_allocate(int count)
3087{
3088 if (PIDLIST_TOO_LARGE(count))
3089 return vmalloc(count * sizeof(pid_t));
3090 else
3091 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
3092}
3093static void pidlist_free(void *p)
3094{
3095 if (is_vmalloc_addr(p))
3096 vfree(p);
3097 else
3098 kfree(p);
3099}
3100static void *pidlist_resize(void *p, int newcount)
3101{
3102 void *newlist;
3103 /* note: if new alloc fails, old p will still be valid either way */
3104 if (is_vmalloc_addr(p)) {
3105 newlist = vmalloc(newcount * sizeof(pid_t));
3106 if (!newlist)
3107 return NULL;
3108 memcpy(newlist, p, newcount * sizeof(pid_t));
3109 vfree(p);
3110 } else {
3111 newlist = krealloc(p, newcount * sizeof(pid_t), GFP_KERNEL);
3112 }
3113 return newlist;
3114}
3115
bbcb81d0 3116/*
102a775e
BB
3117 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
3118 * If the new stripped list is sufficiently smaller and there's enough memory
3119 * to allocate a new buffer, will let go of the unneeded memory. Returns the
3120 * number of unique elements.
bbcb81d0 3121 */
102a775e
BB
3122/* is the size difference enough that we should re-allocate the array? */
3123#define PIDLIST_REALLOC_DIFFERENCE(old, new) ((old) - PAGE_SIZE >= (new))
3124static int pidlist_uniq(pid_t **p, int length)
bbcb81d0 3125{
102a775e
BB
3126 int src, dest = 1;
3127 pid_t *list = *p;
3128 pid_t *newlist;
3129
3130 /*
3131 * we presume the 0th element is unique, so i starts at 1. trivial
3132 * edge cases first; no work needs to be done for either
3133 */
3134 if (length == 0 || length == 1)
3135 return length;
3136 /* src and dest walk down the list; dest counts unique elements */
3137 for (src = 1; src < length; src++) {
3138 /* find next unique element */
3139 while (list[src] == list[src-1]) {
3140 src++;
3141 if (src == length)
3142 goto after;
3143 }
3144 /* dest always points to where the next unique element goes */
3145 list[dest] = list[src];
3146 dest++;
3147 }
3148after:
3149 /*
3150 * if the length difference is large enough, we want to allocate a
3151 * smaller buffer to save memory. if this fails due to out of memory,
3152 * we'll just stay with what we've got.
3153 */
3154 if (PIDLIST_REALLOC_DIFFERENCE(length, dest)) {
d1d9fd33 3155 newlist = pidlist_resize(list, dest);
102a775e
BB
3156 if (newlist)
3157 *p = newlist;
3158 }
3159 return dest;
3160}
3161
3162static int cmppid(const void *a, const void *b)
3163{
3164 return *(pid_t *)a - *(pid_t *)b;
3165}
3166
72a8cb30
BB
3167/*
3168 * find the appropriate pidlist for our purpose (given procs vs tasks)
3169 * returns with the lock on that pidlist already held, and takes care
3170 * of the use count, or returns NULL with no locks held if we're out of
3171 * memory.
3172 */
3173static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
3174 enum cgroup_filetype type)
3175{
3176 struct cgroup_pidlist *l;
3177 /* don't need task_nsproxy() if we're looking at ourself */
b70cc5fd
LZ
3178 struct pid_namespace *ns = current->nsproxy->pid_ns;
3179
72a8cb30
BB
3180 /*
3181 * We can't drop the pidlist_mutex before taking the l->mutex in case
3182 * the last ref-holder is trying to remove l from the list at the same
3183 * time. Holding the pidlist_mutex precludes somebody taking whichever
3184 * list we find out from under us - compare release_pid_array().
3185 */
3186 mutex_lock(&cgrp->pidlist_mutex);
3187 list_for_each_entry(l, &cgrp->pidlists, links) {
3188 if (l->key.type == type && l->key.ns == ns) {
72a8cb30
BB
3189 /* make sure l doesn't vanish out from under us */
3190 down_write(&l->mutex);
3191 mutex_unlock(&cgrp->pidlist_mutex);
72a8cb30
BB
3192 return l;
3193 }
3194 }
3195 /* entry not found; create a new one */
3196 l = kmalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
3197 if (!l) {
3198 mutex_unlock(&cgrp->pidlist_mutex);
72a8cb30
BB
3199 return l;
3200 }
3201 init_rwsem(&l->mutex);
3202 down_write(&l->mutex);
3203 l->key.type = type;
b70cc5fd 3204 l->key.ns = get_pid_ns(ns);
72a8cb30
BB
3205 l->use_count = 0; /* don't increment here */
3206 l->list = NULL;
3207 l->owner = cgrp;
3208 list_add(&l->links, &cgrp->pidlists);
3209 mutex_unlock(&cgrp->pidlist_mutex);
3210 return l;
3211}
3212
102a775e
BB
3213/*
3214 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
3215 */
72a8cb30
BB
3216static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
3217 struct cgroup_pidlist **lp)
102a775e
BB
3218{
3219 pid_t *array;
3220 int length;
3221 int pid, n = 0; /* used for populating the array */
817929ec
PM
3222 struct cgroup_iter it;
3223 struct task_struct *tsk;
102a775e
BB
3224 struct cgroup_pidlist *l;
3225
3226 /*
3227 * If cgroup gets more users after we read count, we won't have
3228 * enough space - tough. This race is indistinguishable to the
3229 * caller from the case that the additional cgroup users didn't
3230 * show up until sometime later on.
3231 */
3232 length = cgroup_task_count(cgrp);
d1d9fd33 3233 array = pidlist_allocate(length);
102a775e
BB
3234 if (!array)
3235 return -ENOMEM;
3236 /* now, populate the array */
bd89aabc
PM
3237 cgroup_iter_start(cgrp, &it);
3238 while ((tsk = cgroup_iter_next(cgrp, &it))) {
102a775e 3239 if (unlikely(n == length))
817929ec 3240 break;
102a775e 3241 /* get tgid or pid for procs or tasks file respectively */
72a8cb30
BB
3242 if (type == CGROUP_FILE_PROCS)
3243 pid = task_tgid_vnr(tsk);
3244 else
3245 pid = task_pid_vnr(tsk);
102a775e
BB
3246 if (pid > 0) /* make sure to only use valid results */
3247 array[n++] = pid;
817929ec 3248 }
bd89aabc 3249 cgroup_iter_end(cgrp, &it);
102a775e
BB
3250 length = n;
3251 /* now sort & (if procs) strip out duplicates */
3252 sort(array, length, sizeof(pid_t), cmppid, NULL);
72a8cb30 3253 if (type == CGROUP_FILE_PROCS)
102a775e 3254 length = pidlist_uniq(&array, length);
72a8cb30
BB
3255 l = cgroup_pidlist_find(cgrp, type);
3256 if (!l) {
d1d9fd33 3257 pidlist_free(array);
72a8cb30 3258 return -ENOMEM;
102a775e 3259 }
72a8cb30 3260 /* store array, freeing old if necessary - lock already held */
d1d9fd33 3261 pidlist_free(l->list);
102a775e
BB
3262 l->list = array;
3263 l->length = length;
3264 l->use_count++;
3265 up_write(&l->mutex);
72a8cb30 3266 *lp = l;
102a775e 3267 return 0;
bbcb81d0
PM
3268}
3269
846c7bb0 3270/**
a043e3b2 3271 * cgroupstats_build - build and fill cgroupstats
846c7bb0
BS
3272 * @stats: cgroupstats to fill information into
3273 * @dentry: A dentry entry belonging to the cgroup for which stats have
3274 * been requested.
a043e3b2
LZ
3275 *
3276 * Build and fill cgroupstats so that taskstats can export it to user
3277 * space.
846c7bb0
BS
3278 */
3279int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
3280{
3281 int ret = -EINVAL;
bd89aabc 3282 struct cgroup *cgrp;
846c7bb0
BS
3283 struct cgroup_iter it;
3284 struct task_struct *tsk;
33d283be 3285
846c7bb0 3286 /*
33d283be
LZ
3287 * Validate dentry by checking the superblock operations,
3288 * and make sure it's a directory.
846c7bb0 3289 */
33d283be
LZ
3290 if (dentry->d_sb->s_op != &cgroup_ops ||
3291 !S_ISDIR(dentry->d_inode->i_mode))
846c7bb0
BS
3292 goto err;
3293
3294 ret = 0;
bd89aabc 3295 cgrp = dentry->d_fsdata;
846c7bb0 3296
bd89aabc
PM
3297 cgroup_iter_start(cgrp, &it);
3298 while ((tsk = cgroup_iter_next(cgrp, &it))) {
846c7bb0
BS
3299 switch (tsk->state) {
3300 case TASK_RUNNING:
3301 stats->nr_running++;
3302 break;
3303 case TASK_INTERRUPTIBLE:
3304 stats->nr_sleeping++;
3305 break;
3306 case TASK_UNINTERRUPTIBLE:
3307 stats->nr_uninterruptible++;
3308 break;
3309 case TASK_STOPPED:
3310 stats->nr_stopped++;
3311 break;
3312 default:
3313 if (delayacct_is_task_waiting_on_io(tsk))
3314 stats->nr_io_wait++;
3315 break;
3316 }
3317 }
bd89aabc 3318 cgroup_iter_end(cgrp, &it);
846c7bb0 3319
846c7bb0
BS
3320err:
3321 return ret;
3322}
3323
8f3ff208 3324
bbcb81d0 3325/*
102a775e 3326 * seq_file methods for the tasks/procs files. The seq_file position is the
cc31edce 3327 * next pid to display; the seq_file iterator is a pointer to the pid
102a775e 3328 * in the cgroup->l->list array.
bbcb81d0 3329 */
cc31edce 3330
102a775e 3331static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
bbcb81d0 3332{
cc31edce
PM
3333 /*
3334 * Initially we receive a position value that corresponds to
3335 * one more than the last pid shown (or 0 on the first call or
3336 * after a seek to the start). Use a binary-search to find the
3337 * next pid to display, if any
3338 */
102a775e 3339 struct cgroup_pidlist *l = s->private;
cc31edce
PM
3340 int index = 0, pid = *pos;
3341 int *iter;
3342
102a775e 3343 down_read(&l->mutex);
cc31edce 3344 if (pid) {
102a775e 3345 int end = l->length;
20777766 3346
cc31edce
PM
3347 while (index < end) {
3348 int mid = (index + end) / 2;
102a775e 3349 if (l->list[mid] == pid) {
cc31edce
PM
3350 index = mid;
3351 break;
102a775e 3352 } else if (l->list[mid] <= pid)
cc31edce
PM
3353 index = mid + 1;
3354 else
3355 end = mid;
3356 }
3357 }
3358 /* If we're off the end of the array, we're done */
102a775e 3359 if (index >= l->length)
cc31edce
PM
3360 return NULL;
3361 /* Update the abstract position to be the actual pid that we found */
102a775e 3362 iter = l->list + index;
cc31edce
PM
3363 *pos = *iter;
3364 return iter;
3365}
3366
102a775e 3367static void cgroup_pidlist_stop(struct seq_file *s, void *v)
cc31edce 3368{
102a775e
BB
3369 struct cgroup_pidlist *l = s->private;
3370 up_read(&l->mutex);
cc31edce
PM
3371}
3372
102a775e 3373static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
cc31edce 3374{
102a775e
BB
3375 struct cgroup_pidlist *l = s->private;
3376 pid_t *p = v;
3377 pid_t *end = l->list + l->length;
cc31edce
PM
3378 /*
3379 * Advance to the next pid in the array. If this goes off the
3380 * end, we're done
3381 */
3382 p++;
3383 if (p >= end) {
3384 return NULL;
3385 } else {
3386 *pos = *p;
3387 return p;
3388 }
3389}
3390
102a775e 3391static int cgroup_pidlist_show(struct seq_file *s, void *v)
cc31edce
PM
3392{
3393 return seq_printf(s, "%d\n", *(int *)v);
3394}
bbcb81d0 3395
102a775e
BB
3396/*
3397 * seq_operations functions for iterating on pidlists through seq_file -
3398 * independent of whether it's tasks or procs
3399 */
3400static const struct seq_operations cgroup_pidlist_seq_operations = {
3401 .start = cgroup_pidlist_start,
3402 .stop = cgroup_pidlist_stop,
3403 .next = cgroup_pidlist_next,
3404 .show = cgroup_pidlist_show,
cc31edce
PM
3405};
3406
102a775e 3407static void cgroup_release_pid_array(struct cgroup_pidlist *l)
cc31edce 3408{
72a8cb30
BB
3409 /*
3410 * the case where we're the last user of this particular pidlist will
3411 * have us remove it from the cgroup's list, which entails taking the
3412 * mutex. since in pidlist_find the pidlist->lock depends on cgroup->
3413 * pidlist_mutex, we have to take pidlist_mutex first.
3414 */
3415 mutex_lock(&l->owner->pidlist_mutex);
102a775e
BB
3416 down_write(&l->mutex);
3417 BUG_ON(!l->use_count);
3418 if (!--l->use_count) {
72a8cb30
BB
3419 /* we're the last user if refcount is 0; remove and free */
3420 list_del(&l->links);
3421 mutex_unlock(&l->owner->pidlist_mutex);
d1d9fd33 3422 pidlist_free(l->list);
72a8cb30
BB
3423 put_pid_ns(l->key.ns);
3424 up_write(&l->mutex);
3425 kfree(l);
3426 return;
cc31edce 3427 }
72a8cb30 3428 mutex_unlock(&l->owner->pidlist_mutex);
102a775e 3429 up_write(&l->mutex);
bbcb81d0
PM
3430}
3431
102a775e 3432static int cgroup_pidlist_release(struct inode *inode, struct file *file)
cc31edce 3433{
102a775e 3434 struct cgroup_pidlist *l;
cc31edce
PM
3435 if (!(file->f_mode & FMODE_READ))
3436 return 0;
102a775e
BB
3437 /*
3438 * the seq_file will only be initialized if the file was opened for
3439 * reading; hence we check if it's not null only in that case.
3440 */
3441 l = ((struct seq_file *)file->private_data)->private;
3442 cgroup_release_pid_array(l);
cc31edce
PM
3443 return seq_release(inode, file);
3444}
3445
102a775e 3446static const struct file_operations cgroup_pidlist_operations = {
cc31edce
PM
3447 .read = seq_read,
3448 .llseek = seq_lseek,
3449 .write = cgroup_file_write,
102a775e 3450 .release = cgroup_pidlist_release,
cc31edce
PM
3451};
3452
bbcb81d0 3453/*
102a775e
BB
3454 * The following functions handle opens on a file that displays a pidlist
3455 * (tasks or procs). Prepare an array of the process/thread IDs of whoever's
3456 * in the cgroup.
bbcb81d0 3457 */
102a775e 3458/* helper function for the two below it */
72a8cb30 3459static int cgroup_pidlist_open(struct file *file, enum cgroup_filetype type)
bbcb81d0 3460{
bd89aabc 3461 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
72a8cb30 3462 struct cgroup_pidlist *l;
cc31edce 3463 int retval;
bbcb81d0 3464
cc31edce 3465 /* Nothing to do for write-only files */
bbcb81d0
PM
3466 if (!(file->f_mode & FMODE_READ))
3467 return 0;
3468
102a775e 3469 /* have the array populated */
72a8cb30 3470 retval = pidlist_array_load(cgrp, type, &l);
102a775e
BB
3471 if (retval)
3472 return retval;
3473 /* configure file information */
3474 file->f_op = &cgroup_pidlist_operations;
cc31edce 3475
102a775e 3476 retval = seq_open(file, &cgroup_pidlist_seq_operations);
cc31edce 3477 if (retval) {
102a775e 3478 cgroup_release_pid_array(l);
cc31edce 3479 return retval;
bbcb81d0 3480 }
102a775e 3481 ((struct seq_file *)file->private_data)->private = l;
bbcb81d0
PM
3482 return 0;
3483}
102a775e
BB
3484static int cgroup_tasks_open(struct inode *unused, struct file *file)
3485{
72a8cb30 3486 return cgroup_pidlist_open(file, CGROUP_FILE_TASKS);
102a775e
BB
3487}
3488static int cgroup_procs_open(struct inode *unused, struct file *file)
3489{
72a8cb30 3490 return cgroup_pidlist_open(file, CGROUP_FILE_PROCS);
102a775e 3491}
bbcb81d0 3492
bd89aabc 3493static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
81a6a5cd
PM
3494 struct cftype *cft)
3495{
bd89aabc 3496 return notify_on_release(cgrp);
81a6a5cd
PM
3497}
3498
6379c106
PM
3499static int cgroup_write_notify_on_release(struct cgroup *cgrp,
3500 struct cftype *cft,
3501 u64 val)
3502{
3503 clear_bit(CGRP_RELEASABLE, &cgrp->flags);
3504 if (val)
3505 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3506 else
3507 clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3508 return 0;
3509}
3510
0dea1168
KS
3511/*
3512 * Unregister event and free resources.
3513 *
3514 * Gets called from workqueue.
3515 */
3516static void cgroup_event_remove(struct work_struct *work)
3517{
3518 struct cgroup_event *event = container_of(work, struct cgroup_event,
3519 remove);
3520 struct cgroup *cgrp = event->cgrp;
3521
0dea1168
KS
3522 event->cft->unregister_event(cgrp, event->cft, event->eventfd);
3523
3524 eventfd_ctx_put(event->eventfd);
0dea1168 3525 kfree(event);
a0a4db54 3526 dput(cgrp->dentry);
0dea1168
KS
3527}
3528
3529/*
3530 * Gets called on POLLHUP on eventfd when user closes it.
3531 *
3532 * Called with wqh->lock held and interrupts disabled.
3533 */
3534static int cgroup_event_wake(wait_queue_t *wait, unsigned mode,
3535 int sync, void *key)
3536{
3537 struct cgroup_event *event = container_of(wait,
3538 struct cgroup_event, wait);
3539 struct cgroup *cgrp = event->cgrp;
3540 unsigned long flags = (unsigned long)key;
3541
3542 if (flags & POLLHUP) {
a93d2f17 3543 __remove_wait_queue(event->wqh, &event->wait);
0dea1168
KS
3544 spin_lock(&cgrp->event_list_lock);
3545 list_del(&event->list);
3546 spin_unlock(&cgrp->event_list_lock);
3547 /*
3548 * We are in atomic context, but cgroup_event_remove() may
3549 * sleep, so we have to call it in workqueue.
3550 */
3551 schedule_work(&event->remove);
3552 }
3553
3554 return 0;
3555}
3556
3557static void cgroup_event_ptable_queue_proc(struct file *file,
3558 wait_queue_head_t *wqh, poll_table *pt)
3559{
3560 struct cgroup_event *event = container_of(pt,
3561 struct cgroup_event, pt);
3562
3563 event->wqh = wqh;
3564 add_wait_queue(wqh, &event->wait);
3565}
3566
3567/*
3568 * Parse input and register new cgroup event handler.
3569 *
3570 * Input must be in format '<event_fd> <control_fd> <args>'.
3571 * Interpretation of args is defined by control file implementation.
3572 */
3573static int cgroup_write_event_control(struct cgroup *cgrp, struct cftype *cft,
3574 const char *buffer)
3575{
3576 struct cgroup_event *event = NULL;
3577 unsigned int efd, cfd;
3578 struct file *efile = NULL;
3579 struct file *cfile = NULL;
3580 char *endp;
3581 int ret;
3582
3583 efd = simple_strtoul(buffer, &endp, 10);
3584 if (*endp != ' ')
3585 return -EINVAL;
3586 buffer = endp + 1;
3587
3588 cfd = simple_strtoul(buffer, &endp, 10);
3589 if ((*endp != ' ') && (*endp != '\0'))
3590 return -EINVAL;
3591 buffer = endp + 1;
3592
3593 event = kzalloc(sizeof(*event), GFP_KERNEL);
3594 if (!event)
3595 return -ENOMEM;
3596 event->cgrp = cgrp;
3597 INIT_LIST_HEAD(&event->list);
3598 init_poll_funcptr(&event->pt, cgroup_event_ptable_queue_proc);
3599 init_waitqueue_func_entry(&event->wait, cgroup_event_wake);
3600 INIT_WORK(&event->remove, cgroup_event_remove);
3601
3602 efile = eventfd_fget(efd);
3603 if (IS_ERR(efile)) {
3604 ret = PTR_ERR(efile);
3605 goto fail;
3606 }
3607
3608 event->eventfd = eventfd_ctx_fileget(efile);
3609 if (IS_ERR(event->eventfd)) {
3610 ret = PTR_ERR(event->eventfd);
3611 goto fail;
3612 }
3613
3614 cfile = fget(cfd);
3615 if (!cfile) {
3616 ret = -EBADF;
3617 goto fail;
3618 }
3619
3620 /* the process need read permission on control file */
3bfa784a
AV
3621 /* AV: shouldn't we check that it's been opened for read instead? */
3622 ret = inode_permission(cfile->f_path.dentry->d_inode, MAY_READ);
0dea1168
KS
3623 if (ret < 0)
3624 goto fail;
3625
3626 event->cft = __file_cft(cfile);
3627 if (IS_ERR(event->cft)) {
3628 ret = PTR_ERR(event->cft);
3629 goto fail;
3630 }
3631
3632 if (!event->cft->register_event || !event->cft->unregister_event) {
3633 ret = -EINVAL;
3634 goto fail;
3635 }
3636
3637 ret = event->cft->register_event(cgrp, event->cft,
3638 event->eventfd, buffer);
3639 if (ret)
3640 goto fail;
3641
3642 if (efile->f_op->poll(efile, &event->pt) & POLLHUP) {
3643 event->cft->unregister_event(cgrp, event->cft, event->eventfd);
3644 ret = 0;
3645 goto fail;
3646 }
3647
a0a4db54
KS
3648 /*
3649 * Events should be removed after rmdir of cgroup directory, but before
3650 * destroying subsystem state objects. Let's take reference to cgroup
3651 * directory dentry to do that.
3652 */
3653 dget(cgrp->dentry);
3654
0dea1168
KS
3655 spin_lock(&cgrp->event_list_lock);
3656 list_add(&event->list, &cgrp->event_list);
3657 spin_unlock(&cgrp->event_list_lock);
3658
3659 fput(cfile);
3660 fput(efile);
3661
3662 return 0;
3663
3664fail:
3665 if (cfile)
3666 fput(cfile);
3667
3668 if (event && event->eventfd && !IS_ERR(event->eventfd))
3669 eventfd_ctx_put(event->eventfd);
3670
3671 if (!IS_ERR_OR_NULL(efile))
3672 fput(efile);
3673
3674 kfree(event);
3675
3676 return ret;
3677}
3678
97978e6d
DL
3679static u64 cgroup_clone_children_read(struct cgroup *cgrp,
3680 struct cftype *cft)
3681{
3682 return clone_children(cgrp);
3683}
3684
3685static int cgroup_clone_children_write(struct cgroup *cgrp,
3686 struct cftype *cft,
3687 u64 val)
3688{
3689 if (val)
3690 set_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
3691 else
3692 clear_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
3693 return 0;
3694}
3695
bbcb81d0
PM
3696/*
3697 * for the common functions, 'private' gives the type of file
3698 */
102a775e
BB
3699/* for hysterical raisins, we can't put this on the older files */
3700#define CGROUP_FILE_GENERIC_PREFIX "cgroup."
81a6a5cd
PM
3701static struct cftype files[] = {
3702 {
3703 .name = "tasks",
3704 .open = cgroup_tasks_open,
af351026 3705 .write_u64 = cgroup_tasks_write,
102a775e 3706 .release = cgroup_pidlist_release,
099fca32 3707 .mode = S_IRUGO | S_IWUSR,
81a6a5cd 3708 },
102a775e
BB
3709 {
3710 .name = CGROUP_FILE_GENERIC_PREFIX "procs",
3711 .open = cgroup_procs_open,
74a1166d 3712 .write_u64 = cgroup_procs_write,
102a775e 3713 .release = cgroup_pidlist_release,
74a1166d 3714 .mode = S_IRUGO | S_IWUSR,
102a775e 3715 },
81a6a5cd
PM
3716 {
3717 .name = "notify_on_release",
f4c753b7 3718 .read_u64 = cgroup_read_notify_on_release,
6379c106 3719 .write_u64 = cgroup_write_notify_on_release,
81a6a5cd 3720 },
0dea1168
KS
3721 {
3722 .name = CGROUP_FILE_GENERIC_PREFIX "event_control",
3723 .write_string = cgroup_write_event_control,
3724 .mode = S_IWUGO,
3725 },
97978e6d
DL
3726 {
3727 .name = "cgroup.clone_children",
3728 .read_u64 = cgroup_clone_children_read,
3729 .write_u64 = cgroup_clone_children_write,
3730 },
6e6ff25b
TH
3731 {
3732 .name = "release_agent",
3733 .flags = CFTYPE_ONLY_ON_ROOT,
3734 .read_seq_string = cgroup_release_agent_show,
3735 .write_string = cgroup_release_agent_write,
3736 .max_write_len = PATH_MAX,
3737 },
db0416b6 3738 { } /* terminate */
bbcb81d0
PM
3739};
3740
bd89aabc 3741static int cgroup_populate_dir(struct cgroup *cgrp)
ddbcc7e8
PM
3742{
3743 int err;
3744 struct cgroup_subsys *ss;
3745
db0416b6 3746 err = cgroup_add_files(cgrp, NULL, files);
bbcb81d0
PM
3747 if (err < 0)
3748 return err;
3749
8e3f6541 3750 /* process cftsets of each subsystem */
bd89aabc 3751 for_each_subsys(cgrp->root, ss) {
8e3f6541
TH
3752 struct cftype_set *set;
3753
bd89aabc 3754 if (ss->populate && (err = ss->populate(ss, cgrp)) < 0)
ddbcc7e8 3755 return err;
8e3f6541 3756
db0416b6
TH
3757 list_for_each_entry(set, &ss->cftsets, node)
3758 cgroup_add_files(cgrp, ss, set->cfts);
ddbcc7e8 3759 }
8e3f6541 3760
38460b48
KH
3761 /* This cgroup is ready now */
3762 for_each_subsys(cgrp->root, ss) {
3763 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
3764 /*
3765 * Update id->css pointer and make this css visible from
3766 * CSS ID functions. This pointer will be dereferened
3767 * from RCU-read-side without locks.
3768 */
3769 if (css->id)
3770 rcu_assign_pointer(css->id->css, css);
3771 }
ddbcc7e8
PM
3772
3773 return 0;
3774}
3775
3776static void init_cgroup_css(struct cgroup_subsys_state *css,
3777 struct cgroup_subsys *ss,
bd89aabc 3778 struct cgroup *cgrp)
ddbcc7e8 3779{
bd89aabc 3780 css->cgroup = cgrp;
e7c5ec91 3781 atomic_set(&css->refcnt, 1);
ddbcc7e8 3782 css->flags = 0;
38460b48 3783 css->id = NULL;
bd89aabc 3784 if (cgrp == dummytop)
ddbcc7e8 3785 set_bit(CSS_ROOT, &css->flags);
bd89aabc
PM
3786 BUG_ON(cgrp->subsys[ss->subsys_id]);
3787 cgrp->subsys[ss->subsys_id] = css;
ddbcc7e8
PM
3788}
3789
999cd8a4
PM
3790static void cgroup_lock_hierarchy(struct cgroupfs_root *root)
3791{
3792 /* We need to take each hierarchy_mutex in a consistent order */
3793 int i;
3794
aae8aab4
BB
3795 /*
3796 * No worry about a race with rebind_subsystems that might mess up the
3797 * locking order, since both parties are under cgroup_mutex.
3798 */
999cd8a4
PM
3799 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3800 struct cgroup_subsys *ss = subsys[i];
aae8aab4
BB
3801 if (ss == NULL)
3802 continue;
999cd8a4 3803 if (ss->root == root)
cfebe563 3804 mutex_lock(&ss->hierarchy_mutex);
999cd8a4
PM
3805 }
3806}
3807
3808static void cgroup_unlock_hierarchy(struct cgroupfs_root *root)
3809{
3810 int i;
3811
3812 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3813 struct cgroup_subsys *ss = subsys[i];
aae8aab4
BB
3814 if (ss == NULL)
3815 continue;
999cd8a4
PM
3816 if (ss->root == root)
3817 mutex_unlock(&ss->hierarchy_mutex);
3818 }
3819}
3820
ddbcc7e8 3821/*
a043e3b2
LZ
3822 * cgroup_create - create a cgroup
3823 * @parent: cgroup that will be parent of the new cgroup
3824 * @dentry: dentry of the new cgroup
3825 * @mode: mode to set on new inode
ddbcc7e8 3826 *
a043e3b2 3827 * Must be called with the mutex on the parent inode held
ddbcc7e8 3828 */
ddbcc7e8 3829static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
a5e7ed32 3830 umode_t mode)
ddbcc7e8 3831{
bd89aabc 3832 struct cgroup *cgrp;
ddbcc7e8
PM
3833 struct cgroupfs_root *root = parent->root;
3834 int err = 0;
3835 struct cgroup_subsys *ss;
3836 struct super_block *sb = root->sb;
3837
bd89aabc
PM
3838 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
3839 if (!cgrp)
ddbcc7e8
PM
3840 return -ENOMEM;
3841
3842 /* Grab a reference on the superblock so the hierarchy doesn't
3843 * get deleted on unmount if there are child cgroups. This
3844 * can be done outside cgroup_mutex, since the sb can't
3845 * disappear while someone has an open control file on the
3846 * fs */
3847 atomic_inc(&sb->s_active);
3848
3849 mutex_lock(&cgroup_mutex);
3850
cc31edce 3851 init_cgroup_housekeeping(cgrp);
ddbcc7e8 3852
bd89aabc
PM
3853 cgrp->parent = parent;
3854 cgrp->root = parent->root;
3855 cgrp->top_cgroup = parent->top_cgroup;
ddbcc7e8 3856
b6abdb0e
LZ
3857 if (notify_on_release(parent))
3858 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3859
97978e6d
DL
3860 if (clone_children(parent))
3861 set_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
3862
ddbcc7e8 3863 for_each_subsys(root, ss) {
761b3ef5 3864 struct cgroup_subsys_state *css = ss->create(cgrp);
4528fd05 3865
ddbcc7e8
PM
3866 if (IS_ERR(css)) {
3867 err = PTR_ERR(css);
3868 goto err_destroy;
3869 }
bd89aabc 3870 init_cgroup_css(css, ss, cgrp);
4528fd05
LZ
3871 if (ss->use_id) {
3872 err = alloc_css_id(ss, parent, cgrp);
3873 if (err)
38460b48 3874 goto err_destroy;
4528fd05 3875 }
38460b48 3876 /* At error, ->destroy() callback has to free assigned ID. */
97978e6d 3877 if (clone_children(parent) && ss->post_clone)
761b3ef5 3878 ss->post_clone(cgrp);
ddbcc7e8
PM
3879 }
3880
999cd8a4 3881 cgroup_lock_hierarchy(root);
bd89aabc 3882 list_add(&cgrp->sibling, &cgrp->parent->children);
999cd8a4 3883 cgroup_unlock_hierarchy(root);
ddbcc7e8
PM
3884 root->number_of_cgroups++;
3885
bd89aabc 3886 err = cgroup_create_dir(cgrp, dentry, mode);
ddbcc7e8
PM
3887 if (err < 0)
3888 goto err_remove;
3889
3890 /* The cgroup directory was pre-locked for us */
bd89aabc 3891 BUG_ON(!mutex_is_locked(&cgrp->dentry->d_inode->i_mutex));
ddbcc7e8 3892
b0ca5a84
TH
3893 list_add_tail(&cgrp->allcg_node, &root->allcg_list);
3894
bd89aabc 3895 err = cgroup_populate_dir(cgrp);
ddbcc7e8
PM
3896 /* If err < 0, we have a half-filled directory - oh well ;) */
3897
3898 mutex_unlock(&cgroup_mutex);
bd89aabc 3899 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8
PM
3900
3901 return 0;
3902
3903 err_remove:
3904
baef99a0 3905 cgroup_lock_hierarchy(root);
bd89aabc 3906 list_del(&cgrp->sibling);
baef99a0 3907 cgroup_unlock_hierarchy(root);
ddbcc7e8
PM
3908 root->number_of_cgroups--;
3909
3910 err_destroy:
3911
3912 for_each_subsys(root, ss) {
bd89aabc 3913 if (cgrp->subsys[ss->subsys_id])
761b3ef5 3914 ss->destroy(cgrp);
ddbcc7e8
PM
3915 }
3916
3917 mutex_unlock(&cgroup_mutex);
3918
3919 /* Release the reference count that we took on the superblock */
3920 deactivate_super(sb);
3921
bd89aabc 3922 kfree(cgrp);
ddbcc7e8
PM
3923 return err;
3924}
3925
18bb1db3 3926static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
ddbcc7e8
PM
3927{
3928 struct cgroup *c_parent = dentry->d_parent->d_fsdata;
3929
3930 /* the vfs holds inode->i_mutex already */
3931 return cgroup_create(c_parent, dentry, mode | S_IFDIR);
3932}
3933
55b6fd01 3934static int cgroup_has_css_refs(struct cgroup *cgrp)
81a6a5cd
PM
3935{
3936 /* Check the reference count on each subsystem. Since we
3937 * already established that there are no tasks in the
e7c5ec91 3938 * cgroup, if the css refcount is also 1, then there should
81a6a5cd
PM
3939 * be no outstanding references, so the subsystem is safe to
3940 * destroy. We scan across all subsystems rather than using
3941 * the per-hierarchy linked list of mounted subsystems since
3942 * we can be called via check_for_release() with no
3943 * synchronization other than RCU, and the subsystem linked
3944 * list isn't RCU-safe */
3945 int i;
aae8aab4
BB
3946 /*
3947 * We won't need to lock the subsys array, because the subsystems
3948 * we're concerned about aren't going anywhere since our cgroup root
3949 * has a reference on them.
3950 */
81a6a5cd
PM
3951 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3952 struct cgroup_subsys *ss = subsys[i];
3953 struct cgroup_subsys_state *css;
aae8aab4
BB
3954 /* Skip subsystems not present or not in this hierarchy */
3955 if (ss == NULL || ss->root != cgrp->root)
81a6a5cd 3956 continue;
bd89aabc 3957 css = cgrp->subsys[ss->subsys_id];
81a6a5cd
PM
3958 /* When called from check_for_release() it's possible
3959 * that by this point the cgroup has been removed
3960 * and the css deleted. But a false-positive doesn't
3961 * matter, since it can only happen if the cgroup
3962 * has been deleted and hence no longer needs the
3963 * release agent to be called anyway. */
e7c5ec91 3964 if (css && (atomic_read(&css->refcnt) > 1))
81a6a5cd 3965 return 1;
81a6a5cd
PM
3966 }
3967 return 0;
3968}
3969
e7c5ec91
PM
3970/*
3971 * Atomically mark all (or else none) of the cgroup's CSS objects as
3972 * CSS_REMOVED. Return true on success, or false if the cgroup has
3973 * busy subsystems. Call with cgroup_mutex held
3974 */
3975
3976static int cgroup_clear_css_refs(struct cgroup *cgrp)
3977{
3978 struct cgroup_subsys *ss;
3979 unsigned long flags;
3980 bool failed = false;
3981 local_irq_save(flags);
3982 for_each_subsys(cgrp->root, ss) {
3983 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
3984 int refcnt;
804b3c28 3985 while (1) {
e7c5ec91
PM
3986 /* We can only remove a CSS with a refcnt==1 */
3987 refcnt = atomic_read(&css->refcnt);
3988 if (refcnt > 1) {
3989 failed = true;
3990 goto done;
3991 }
3992 BUG_ON(!refcnt);
3993 /*
3994 * Drop the refcnt to 0 while we check other
3995 * subsystems. This will cause any racing
3996 * css_tryget() to spin until we set the
3997 * CSS_REMOVED bits or abort
3998 */
804b3c28
PM
3999 if (atomic_cmpxchg(&css->refcnt, refcnt, 0) == refcnt)
4000 break;
4001 cpu_relax();
4002 }
e7c5ec91
PM
4003 }
4004 done:
4005 for_each_subsys(cgrp->root, ss) {
4006 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
4007 if (failed) {
4008 /*
4009 * Restore old refcnt if we previously managed
4010 * to clear it from 1 to 0
4011 */
4012 if (!atomic_read(&css->refcnt))
4013 atomic_set(&css->refcnt, 1);
4014 } else {
4015 /* Commit the fact that the CSS is removed */
4016 set_bit(CSS_REMOVED, &css->flags);
4017 }
4018 }
4019 local_irq_restore(flags);
4020 return !failed;
4021}
4022
ddbcc7e8
PM
4023static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
4024{
bd89aabc 4025 struct cgroup *cgrp = dentry->d_fsdata;
ddbcc7e8
PM
4026 struct dentry *d;
4027 struct cgroup *parent;
ec64f515 4028 DEFINE_WAIT(wait);
4ab78683 4029 struct cgroup_event *event, *tmp;
ec64f515 4030 int ret;
ddbcc7e8
PM
4031
4032 /* the vfs holds both inode->i_mutex already */
ec64f515 4033again:
ddbcc7e8 4034 mutex_lock(&cgroup_mutex);
bd89aabc 4035 if (atomic_read(&cgrp->count) != 0) {
ddbcc7e8
PM
4036 mutex_unlock(&cgroup_mutex);
4037 return -EBUSY;
4038 }
bd89aabc 4039 if (!list_empty(&cgrp->children)) {
ddbcc7e8
PM
4040 mutex_unlock(&cgroup_mutex);
4041 return -EBUSY;
4042 }
3fa59dfb 4043 mutex_unlock(&cgroup_mutex);
a043e3b2 4044
88703267
KH
4045 /*
4046 * In general, subsystem has no css->refcnt after pre_destroy(). But
4047 * in racy cases, subsystem may have to get css->refcnt after
4048 * pre_destroy() and it makes rmdir return with -EBUSY. This sometimes
4049 * make rmdir return -EBUSY too often. To avoid that, we use waitqueue
4050 * for cgroup's rmdir. CGRP_WAIT_ON_RMDIR is for synchronizing rmdir
4051 * and subsystem's reference count handling. Please see css_get/put
4052 * and css_tryget() and cgroup_wakeup_rmdir_waiter() implementation.
4053 */
4054 set_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
4055
4fca88c8 4056 /*
a043e3b2
LZ
4057 * Call pre_destroy handlers of subsys. Notify subsystems
4058 * that rmdir() request comes.
4fca88c8 4059 */
ec64f515 4060 ret = cgroup_call_pre_destroy(cgrp);
88703267
KH
4061 if (ret) {
4062 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
ec64f515 4063 return ret;
88703267 4064 }
ddbcc7e8 4065
3fa59dfb
KH
4066 mutex_lock(&cgroup_mutex);
4067 parent = cgrp->parent;
ec64f515 4068 if (atomic_read(&cgrp->count) || !list_empty(&cgrp->children)) {
88703267 4069 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
ddbcc7e8
PM
4070 mutex_unlock(&cgroup_mutex);
4071 return -EBUSY;
4072 }
ec64f515 4073 prepare_to_wait(&cgroup_rmdir_waitq, &wait, TASK_INTERRUPTIBLE);
ec64f515
KH
4074 if (!cgroup_clear_css_refs(cgrp)) {
4075 mutex_unlock(&cgroup_mutex);
88703267
KH
4076 /*
4077 * Because someone may call cgroup_wakeup_rmdir_waiter() before
4078 * prepare_to_wait(), we need to check this flag.
4079 */
4080 if (test_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags))
4081 schedule();
ec64f515
KH
4082 finish_wait(&cgroup_rmdir_waitq, &wait);
4083 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
4084 if (signal_pending(current))
4085 return -EINTR;
4086 goto again;
4087 }
4088 /* NO css_tryget() can success after here. */
4089 finish_wait(&cgroup_rmdir_waitq, &wait);
4090 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
ddbcc7e8 4091
cdcc136f 4092 raw_spin_lock(&release_list_lock);
bd89aabc
PM
4093 set_bit(CGRP_REMOVED, &cgrp->flags);
4094 if (!list_empty(&cgrp->release_list))
8d258797 4095 list_del_init(&cgrp->release_list);
cdcc136f 4096 raw_spin_unlock(&release_list_lock);
999cd8a4
PM
4097
4098 cgroup_lock_hierarchy(cgrp->root);
4099 /* delete this cgroup from parent->children */
8d258797 4100 list_del_init(&cgrp->sibling);
999cd8a4
PM
4101 cgroup_unlock_hierarchy(cgrp->root);
4102
b0ca5a84
TH
4103 list_del_init(&cgrp->allcg_node);
4104
bd89aabc 4105 d = dget(cgrp->dentry);
ddbcc7e8
PM
4106
4107 cgroup_d_remove_dir(d);
4108 dput(d);
ddbcc7e8 4109
bd89aabc 4110 set_bit(CGRP_RELEASABLE, &parent->flags);
81a6a5cd
PM
4111 check_for_release(parent);
4112
4ab78683
KS
4113 /*
4114 * Unregister events and notify userspace.
4115 * Notify userspace about cgroup removing only after rmdir of cgroup
4116 * directory to avoid race between userspace and kernelspace
4117 */
4118 spin_lock(&cgrp->event_list_lock);
4119 list_for_each_entry_safe(event, tmp, &cgrp->event_list, list) {
4120 list_del(&event->list);
4121 remove_wait_queue(event->wqh, &event->wait);
4122 eventfd_signal(event->eventfd, 1);
4123 schedule_work(&event->remove);
4124 }
4125 spin_unlock(&cgrp->event_list_lock);
4126
ddbcc7e8 4127 mutex_unlock(&cgroup_mutex);
ddbcc7e8
PM
4128 return 0;
4129}
4130
8e3f6541
TH
4131static void __init_or_module cgroup_init_cftsets(struct cgroup_subsys *ss)
4132{
4133 INIT_LIST_HEAD(&ss->cftsets);
4134
4135 /*
4136 * base_cftset is embedded in subsys itself, no need to worry about
4137 * deregistration.
4138 */
4139 if (ss->base_cftypes) {
4140 ss->base_cftset.cfts = ss->base_cftypes;
4141 list_add_tail(&ss->base_cftset.node, &ss->cftsets);
4142 }
4143}
4144
06a11920 4145static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
ddbcc7e8 4146{
ddbcc7e8 4147 struct cgroup_subsys_state *css;
cfe36bde
DC
4148
4149 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
ddbcc7e8 4150
8e3f6541
TH
4151 /* init base cftset */
4152 cgroup_init_cftsets(ss);
4153
ddbcc7e8 4154 /* Create the top cgroup state for this subsystem */
33a68ac1 4155 list_add(&ss->sibling, &rootnode.subsys_list);
ddbcc7e8 4156 ss->root = &rootnode;
761b3ef5 4157 css = ss->create(dummytop);
ddbcc7e8
PM
4158 /* We don't handle early failures gracefully */
4159 BUG_ON(IS_ERR(css));
4160 init_cgroup_css(css, ss, dummytop);
4161
e8d55fde 4162 /* Update the init_css_set to contain a subsys
817929ec 4163 * pointer to this state - since the subsystem is
e8d55fde
LZ
4164 * newly registered, all tasks and hence the
4165 * init_css_set is in the subsystem's top cgroup. */
4166 init_css_set.subsys[ss->subsys_id] = dummytop->subsys[ss->subsys_id];
ddbcc7e8
PM
4167
4168 need_forkexit_callback |= ss->fork || ss->exit;
4169
e8d55fde
LZ
4170 /* At system boot, before all subsystems have been
4171 * registered, no tasks have been forked, so we don't
4172 * need to invoke fork callbacks here. */
4173 BUG_ON(!list_empty(&init_task.tasks));
4174
999cd8a4 4175 mutex_init(&ss->hierarchy_mutex);
cfebe563 4176 lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key);
ddbcc7e8 4177 ss->active = 1;
e6a1105b
BB
4178
4179 /* this function shouldn't be used with modular subsystems, since they
4180 * need to register a subsys_id, among other things */
4181 BUG_ON(ss->module);
4182}
4183
4184/**
4185 * cgroup_load_subsys: load and register a modular subsystem at runtime
4186 * @ss: the subsystem to load
4187 *
4188 * This function should be called in a modular subsystem's initcall. If the
88393161 4189 * subsystem is built as a module, it will be assigned a new subsys_id and set
e6a1105b
BB
4190 * up for use. If the subsystem is built-in anyway, work is delegated to the
4191 * simpler cgroup_init_subsys.
4192 */
4193int __init_or_module cgroup_load_subsys(struct cgroup_subsys *ss)
4194{
4195 int i;
4196 struct cgroup_subsys_state *css;
4197
4198 /* check name and function validity */
4199 if (ss->name == NULL || strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN ||
4200 ss->create == NULL || ss->destroy == NULL)
4201 return -EINVAL;
4202
4203 /*
4204 * we don't support callbacks in modular subsystems. this check is
4205 * before the ss->module check for consistency; a subsystem that could
4206 * be a module should still have no callbacks even if the user isn't
4207 * compiling it as one.
4208 */
4209 if (ss->fork || ss->exit)
4210 return -EINVAL;
4211
4212 /*
4213 * an optionally modular subsystem is built-in: we want to do nothing,
4214 * since cgroup_init_subsys will have already taken care of it.
4215 */
4216 if (ss->module == NULL) {
4217 /* a few sanity checks */
4218 BUG_ON(ss->subsys_id >= CGROUP_BUILTIN_SUBSYS_COUNT);
4219 BUG_ON(subsys[ss->subsys_id] != ss);
4220 return 0;
4221 }
4222
8e3f6541
TH
4223 /* init base cftset */
4224 cgroup_init_cftsets(ss);
4225
e6a1105b
BB
4226 /*
4227 * need to register a subsys id before anything else - for example,
4228 * init_cgroup_css needs it.
4229 */
4230 mutex_lock(&cgroup_mutex);
4231 /* find the first empty slot in the array */
4232 for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
4233 if (subsys[i] == NULL)
4234 break;
4235 }
4236 if (i == CGROUP_SUBSYS_COUNT) {
4237 /* maximum number of subsystems already registered! */
4238 mutex_unlock(&cgroup_mutex);
4239 return -EBUSY;
4240 }
4241 /* assign ourselves the subsys_id */
4242 ss->subsys_id = i;
4243 subsys[i] = ss;
4244
4245 /*
4246 * no ss->create seems to need anything important in the ss struct, so
4247 * this can happen first (i.e. before the rootnode attachment).
4248 */
761b3ef5 4249 css = ss->create(dummytop);
e6a1105b
BB
4250 if (IS_ERR(css)) {
4251 /* failure case - need to deassign the subsys[] slot. */
4252 subsys[i] = NULL;
4253 mutex_unlock(&cgroup_mutex);
4254 return PTR_ERR(css);
4255 }
4256
4257 list_add(&ss->sibling, &rootnode.subsys_list);
4258 ss->root = &rootnode;
4259
4260 /* our new subsystem will be attached to the dummy hierarchy. */
4261 init_cgroup_css(css, ss, dummytop);
4262 /* init_idr must be after init_cgroup_css because it sets css->id. */
4263 if (ss->use_id) {
4264 int ret = cgroup_init_idr(ss, css);
4265 if (ret) {
4266 dummytop->subsys[ss->subsys_id] = NULL;
761b3ef5 4267 ss->destroy(dummytop);
e6a1105b
BB
4268 subsys[i] = NULL;
4269 mutex_unlock(&cgroup_mutex);
4270 return ret;
4271 }
4272 }
4273
4274 /*
4275 * Now we need to entangle the css into the existing css_sets. unlike
4276 * in cgroup_init_subsys, there are now multiple css_sets, so each one
4277 * will need a new pointer to it; done by iterating the css_set_table.
4278 * furthermore, modifying the existing css_sets will corrupt the hash
4279 * table state, so each changed css_set will need its hash recomputed.
4280 * this is all done under the css_set_lock.
4281 */
4282 write_lock(&css_set_lock);
4283 for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
4284 struct css_set *cg;
4285 struct hlist_node *node, *tmp;
4286 struct hlist_head *bucket = &css_set_table[i], *new_bucket;
4287
4288 hlist_for_each_entry_safe(cg, node, tmp, bucket, hlist) {
4289 /* skip entries that we already rehashed */
4290 if (cg->subsys[ss->subsys_id])
4291 continue;
4292 /* remove existing entry */
4293 hlist_del(&cg->hlist);
4294 /* set new value */
4295 cg->subsys[ss->subsys_id] = css;
4296 /* recompute hash and restore entry */
4297 new_bucket = css_set_hash(cg->subsys);
4298 hlist_add_head(&cg->hlist, new_bucket);
4299 }
4300 }
4301 write_unlock(&css_set_lock);
4302
4303 mutex_init(&ss->hierarchy_mutex);
4304 lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key);
4305 ss->active = 1;
4306
e6a1105b
BB
4307 /* success! */
4308 mutex_unlock(&cgroup_mutex);
4309 return 0;
ddbcc7e8 4310}
e6a1105b 4311EXPORT_SYMBOL_GPL(cgroup_load_subsys);
ddbcc7e8 4312
cf5d5941
BB
4313/**
4314 * cgroup_unload_subsys: unload a modular subsystem
4315 * @ss: the subsystem to unload
4316 *
4317 * This function should be called in a modular subsystem's exitcall. When this
4318 * function is invoked, the refcount on the subsystem's module will be 0, so
4319 * the subsystem will not be attached to any hierarchy.
4320 */
4321void cgroup_unload_subsys(struct cgroup_subsys *ss)
4322{
4323 struct cg_cgroup_link *link;
4324 struct hlist_head *hhead;
4325
4326 BUG_ON(ss->module == NULL);
4327
4328 /*
4329 * we shouldn't be called if the subsystem is in use, and the use of
4330 * try_module_get in parse_cgroupfs_options should ensure that it
4331 * doesn't start being used while we're killing it off.
4332 */
4333 BUG_ON(ss->root != &rootnode);
4334
4335 mutex_lock(&cgroup_mutex);
4336 /* deassign the subsys_id */
4337 BUG_ON(ss->subsys_id < CGROUP_BUILTIN_SUBSYS_COUNT);
4338 subsys[ss->subsys_id] = NULL;
4339
4340 /* remove subsystem from rootnode's list of subsystems */
8d258797 4341 list_del_init(&ss->sibling);
cf5d5941
BB
4342
4343 /*
4344 * disentangle the css from all css_sets attached to the dummytop. as
4345 * in loading, we need to pay our respects to the hashtable gods.
4346 */
4347 write_lock(&css_set_lock);
4348 list_for_each_entry(link, &dummytop->css_sets, cgrp_link_list) {
4349 struct css_set *cg = link->cg;
4350
4351 hlist_del(&cg->hlist);
4352 BUG_ON(!cg->subsys[ss->subsys_id]);
4353 cg->subsys[ss->subsys_id] = NULL;
4354 hhead = css_set_hash(cg->subsys);
4355 hlist_add_head(&cg->hlist, hhead);
4356 }
4357 write_unlock(&css_set_lock);
4358
4359 /*
4360 * remove subsystem's css from the dummytop and free it - need to free
4361 * before marking as null because ss->destroy needs the cgrp->subsys
4362 * pointer to find their state. note that this also takes care of
4363 * freeing the css_id.
4364 */
761b3ef5 4365 ss->destroy(dummytop);
cf5d5941
BB
4366 dummytop->subsys[ss->subsys_id] = NULL;
4367
4368 mutex_unlock(&cgroup_mutex);
4369}
4370EXPORT_SYMBOL_GPL(cgroup_unload_subsys);
4371
ddbcc7e8 4372/**
a043e3b2
LZ
4373 * cgroup_init_early - cgroup initialization at system boot
4374 *
4375 * Initialize cgroups at system boot, and initialize any
4376 * subsystems that request early init.
ddbcc7e8
PM
4377 */
4378int __init cgroup_init_early(void)
4379{
4380 int i;
146aa1bd 4381 atomic_set(&init_css_set.refcount, 1);
817929ec
PM
4382 INIT_LIST_HEAD(&init_css_set.cg_links);
4383 INIT_LIST_HEAD(&init_css_set.tasks);
472b1053 4384 INIT_HLIST_NODE(&init_css_set.hlist);
817929ec 4385 css_set_count = 1;
ddbcc7e8 4386 init_cgroup_root(&rootnode);
817929ec
PM
4387 root_count = 1;
4388 init_task.cgroups = &init_css_set;
4389
4390 init_css_set_link.cg = &init_css_set;
7717f7ba 4391 init_css_set_link.cgrp = dummytop;
bd89aabc 4392 list_add(&init_css_set_link.cgrp_link_list,
817929ec
PM
4393 &rootnode.top_cgroup.css_sets);
4394 list_add(&init_css_set_link.cg_link_list,
4395 &init_css_set.cg_links);
ddbcc7e8 4396
472b1053
LZ
4397 for (i = 0; i < CSS_SET_TABLE_SIZE; i++)
4398 INIT_HLIST_HEAD(&css_set_table[i]);
4399
aae8aab4
BB
4400 /* at bootup time, we don't worry about modular subsystems */
4401 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
ddbcc7e8
PM
4402 struct cgroup_subsys *ss = subsys[i];
4403
4404 BUG_ON(!ss->name);
4405 BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
4406 BUG_ON(!ss->create);
4407 BUG_ON(!ss->destroy);
4408 if (ss->subsys_id != i) {
cfe36bde 4409 printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
ddbcc7e8
PM
4410 ss->name, ss->subsys_id);
4411 BUG();
4412 }
4413
4414 if (ss->early_init)
4415 cgroup_init_subsys(ss);
4416 }
4417 return 0;
4418}
4419
4420/**
a043e3b2
LZ
4421 * cgroup_init - cgroup initialization
4422 *
4423 * Register cgroup filesystem and /proc file, and initialize
4424 * any subsystems that didn't request early init.
ddbcc7e8
PM
4425 */
4426int __init cgroup_init(void)
4427{
4428 int err;
4429 int i;
472b1053 4430 struct hlist_head *hhead;
a424316c
PM
4431
4432 err = bdi_init(&cgroup_backing_dev_info);
4433 if (err)
4434 return err;
ddbcc7e8 4435
aae8aab4
BB
4436 /* at bootup time, we don't worry about modular subsystems */
4437 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
ddbcc7e8
PM
4438 struct cgroup_subsys *ss = subsys[i];
4439 if (!ss->early_init)
4440 cgroup_init_subsys(ss);
38460b48 4441 if (ss->use_id)
e6a1105b 4442 cgroup_init_idr(ss, init_css_set.subsys[ss->subsys_id]);
ddbcc7e8
PM
4443 }
4444
472b1053
LZ
4445 /* Add init_css_set to the hash table */
4446 hhead = css_set_hash(init_css_set.subsys);
4447 hlist_add_head(&init_css_set.hlist, hhead);
2c6ab6d2 4448 BUG_ON(!init_root_id(&rootnode));
676db4af
GKH
4449
4450 cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
4451 if (!cgroup_kobj) {
4452 err = -ENOMEM;
4453 goto out;
4454 }
4455
ddbcc7e8 4456 err = register_filesystem(&cgroup_fs_type);
676db4af
GKH
4457 if (err < 0) {
4458 kobject_put(cgroup_kobj);
ddbcc7e8 4459 goto out;
676db4af 4460 }
ddbcc7e8 4461
46ae220b 4462 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
a424316c 4463
ddbcc7e8 4464out:
a424316c
PM
4465 if (err)
4466 bdi_destroy(&cgroup_backing_dev_info);
4467
ddbcc7e8
PM
4468 return err;
4469}
b4f48b63 4470
a424316c
PM
4471/*
4472 * proc_cgroup_show()
4473 * - Print task's cgroup paths into seq_file, one line for each hierarchy
4474 * - Used for /proc/<pid>/cgroup.
4475 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
4476 * doesn't really matter if tsk->cgroup changes after we read it,
956db3ca 4477 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
a424316c
PM
4478 * anyway. No need to check that tsk->cgroup != NULL, thanks to
4479 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
4480 * cgroup to top_cgroup.
4481 */
4482
4483/* TODO: Use a proper seq_file iterator */
4484static int proc_cgroup_show(struct seq_file *m, void *v)
4485{
4486 struct pid *pid;
4487 struct task_struct *tsk;
4488 char *buf;
4489 int retval;
4490 struct cgroupfs_root *root;
4491
4492 retval = -ENOMEM;
4493 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4494 if (!buf)
4495 goto out;
4496
4497 retval = -ESRCH;
4498 pid = m->private;
4499 tsk = get_pid_task(pid, PIDTYPE_PID);
4500 if (!tsk)
4501 goto out_free;
4502
4503 retval = 0;
4504
4505 mutex_lock(&cgroup_mutex);
4506
e5f6a860 4507 for_each_active_root(root) {
a424316c 4508 struct cgroup_subsys *ss;
bd89aabc 4509 struct cgroup *cgrp;
a424316c
PM
4510 int count = 0;
4511
2c6ab6d2 4512 seq_printf(m, "%d:", root->hierarchy_id);
a424316c
PM
4513 for_each_subsys(root, ss)
4514 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
c6d57f33
PM
4515 if (strlen(root->name))
4516 seq_printf(m, "%sname=%s", count ? "," : "",
4517 root->name);
a424316c 4518 seq_putc(m, ':');
7717f7ba 4519 cgrp = task_cgroup_from_root(tsk, root);
bd89aabc 4520 retval = cgroup_path(cgrp, buf, PAGE_SIZE);
a424316c
PM
4521 if (retval < 0)
4522 goto out_unlock;
4523 seq_puts(m, buf);
4524 seq_putc(m, '\n');
4525 }
4526
4527out_unlock:
4528 mutex_unlock(&cgroup_mutex);
4529 put_task_struct(tsk);
4530out_free:
4531 kfree(buf);
4532out:
4533 return retval;
4534}
4535
4536static int cgroup_open(struct inode *inode, struct file *file)
4537{
4538 struct pid *pid = PROC_I(inode)->pid;
4539 return single_open(file, proc_cgroup_show, pid);
4540}
4541
828c0950 4542const struct file_operations proc_cgroup_operations = {
a424316c
PM
4543 .open = cgroup_open,
4544 .read = seq_read,
4545 .llseek = seq_lseek,
4546 .release = single_release,
4547};
4548
4549/* Display information about each subsystem and each hierarchy */
4550static int proc_cgroupstats_show(struct seq_file *m, void *v)
4551{
4552 int i;
a424316c 4553
8bab8dde 4554 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
aae8aab4
BB
4555 /*
4556 * ideally we don't want subsystems moving around while we do this.
4557 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
4558 * subsys/hierarchy state.
4559 */
a424316c 4560 mutex_lock(&cgroup_mutex);
a424316c
PM
4561 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
4562 struct cgroup_subsys *ss = subsys[i];
aae8aab4
BB
4563 if (ss == NULL)
4564 continue;
2c6ab6d2
PM
4565 seq_printf(m, "%s\t%d\t%d\t%d\n",
4566 ss->name, ss->root->hierarchy_id,
8bab8dde 4567 ss->root->number_of_cgroups, !ss->disabled);
a424316c
PM
4568 }
4569 mutex_unlock(&cgroup_mutex);
4570 return 0;
4571}
4572
4573static int cgroupstats_open(struct inode *inode, struct file *file)
4574{
9dce07f1 4575 return single_open(file, proc_cgroupstats_show, NULL);
a424316c
PM
4576}
4577
828c0950 4578static const struct file_operations proc_cgroupstats_operations = {
a424316c
PM
4579 .open = cgroupstats_open,
4580 .read = seq_read,
4581 .llseek = seq_lseek,
4582 .release = single_release,
4583};
4584
b4f48b63
PM
4585/**
4586 * cgroup_fork - attach newly forked task to its parents cgroup.
a043e3b2 4587 * @child: pointer to task_struct of forking parent process.
b4f48b63
PM
4588 *
4589 * Description: A task inherits its parent's cgroup at fork().
4590 *
4591 * A pointer to the shared css_set was automatically copied in
4592 * fork.c by dup_task_struct(). However, we ignore that copy, since
7e381b0e
FW
4593 * it was not made under the protection of RCU, cgroup_mutex or
4594 * threadgroup_change_begin(), so it might no longer be a valid
4595 * cgroup pointer. cgroup_attach_task() might have already changed
4596 * current->cgroups, allowing the previously referenced cgroup
4597 * group to be removed and freed.
4598 *
4599 * Outside the pointer validity we also need to process the css_set
4600 * inheritance between threadgoup_change_begin() and
4601 * threadgoup_change_end(), this way there is no leak in any process
4602 * wide migration performed by cgroup_attach_proc() that could otherwise
4603 * miss a thread because it is too early or too late in the fork stage.
b4f48b63
PM
4604 *
4605 * At the point that cgroup_fork() is called, 'current' is the parent
4606 * task, and the passed argument 'child' points to the child task.
4607 */
4608void cgroup_fork(struct task_struct *child)
4609{
7e381b0e
FW
4610 /*
4611 * We don't need to task_lock() current because current->cgroups
4612 * can't be changed concurrently here. The parent obviously hasn't
4613 * exited and called cgroup_exit(), and we are synchronized against
4614 * cgroup migration through threadgroup_change_begin().
4615 */
817929ec
PM
4616 child->cgroups = current->cgroups;
4617 get_css_set(child->cgroups);
817929ec 4618 INIT_LIST_HEAD(&child->cg_list);
b4f48b63
PM
4619}
4620
4621/**
a043e3b2
LZ
4622 * cgroup_fork_callbacks - run fork callbacks
4623 * @child: the new task
4624 *
4625 * Called on a new task very soon before adding it to the
4626 * tasklist. No need to take any locks since no-one can
4627 * be operating on this task.
b4f48b63
PM
4628 */
4629void cgroup_fork_callbacks(struct task_struct *child)
4630{
4631 if (need_forkexit_callback) {
4632 int i;
aae8aab4
BB
4633 /*
4634 * forkexit callbacks are only supported for builtin
4635 * subsystems, and the builtin section of the subsys array is
4636 * immutable, so we don't need to lock the subsys array here.
4637 */
4638 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
b4f48b63
PM
4639 struct cgroup_subsys *ss = subsys[i];
4640 if (ss->fork)
761b3ef5 4641 ss->fork(child);
b4f48b63
PM
4642 }
4643 }
4644}
4645
817929ec 4646/**
a043e3b2
LZ
4647 * cgroup_post_fork - called on a new task after adding it to the task list
4648 * @child: the task in question
4649 *
4650 * Adds the task to the list running through its css_set if necessary.
4651 * Has to be after the task is visible on the task list in case we race
4652 * with the first call to cgroup_iter_start() - to guarantee that the
4653 * new task ends up on its list.
4654 */
817929ec
PM
4655void cgroup_post_fork(struct task_struct *child)
4656{
3ce3230a
FW
4657 /*
4658 * use_task_css_set_links is set to 1 before we walk the tasklist
4659 * under the tasklist_lock and we read it here after we added the child
4660 * to the tasklist under the tasklist_lock as well. If the child wasn't
4661 * yet in the tasklist when we walked through it from
4662 * cgroup_enable_task_cg_lists(), then use_task_css_set_links value
4663 * should be visible now due to the paired locking and barriers implied
4664 * by LOCK/UNLOCK: it is written before the tasklist_lock unlock
4665 * in cgroup_enable_task_cg_lists() and read here after the tasklist_lock
4666 * lock on fork.
4667 */
817929ec
PM
4668 if (use_task_css_set_links) {
4669 write_lock(&css_set_lock);
7e3aa30a
FW
4670 if (list_empty(&child->cg_list)) {
4671 /*
4672 * It's safe to use child->cgroups without task_lock()
4673 * here because we are protected through
4674 * threadgroup_change_begin() against concurrent
4675 * css_set change in cgroup_task_migrate(). Also
4676 * the task can't exit at that point until
4677 * wake_up_new_task() is called, so we are protected
4678 * against cgroup_exit() setting child->cgroup to
4679 * init_css_set.
4680 */
817929ec 4681 list_add(&child->cg_list, &child->cgroups->tasks);
7e3aa30a 4682 }
817929ec
PM
4683 write_unlock(&css_set_lock);
4684 }
4685}
b4f48b63
PM
4686/**
4687 * cgroup_exit - detach cgroup from exiting task
4688 * @tsk: pointer to task_struct of exiting process
a043e3b2 4689 * @run_callback: run exit callbacks?
b4f48b63
PM
4690 *
4691 * Description: Detach cgroup from @tsk and release it.
4692 *
4693 * Note that cgroups marked notify_on_release force every task in
4694 * them to take the global cgroup_mutex mutex when exiting.
4695 * This could impact scaling on very large systems. Be reluctant to
4696 * use notify_on_release cgroups where very high task exit scaling
4697 * is required on large systems.
4698 *
4699 * the_top_cgroup_hack:
4700 *
4701 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
4702 *
4703 * We call cgroup_exit() while the task is still competent to
4704 * handle notify_on_release(), then leave the task attached to the
4705 * root cgroup in each hierarchy for the remainder of its exit.
4706 *
4707 * To do this properly, we would increment the reference count on
4708 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
4709 * code we would add a second cgroup function call, to drop that
4710 * reference. This would just create an unnecessary hot spot on
4711 * the top_cgroup reference count, to no avail.
4712 *
4713 * Normally, holding a reference to a cgroup without bumping its
4714 * count is unsafe. The cgroup could go away, or someone could
4715 * attach us to a different cgroup, decrementing the count on
4716 * the first cgroup that we never incremented. But in this case,
4717 * top_cgroup isn't going away, and either task has PF_EXITING set,
956db3ca
CW
4718 * which wards off any cgroup_attach_task() attempts, or task is a failed
4719 * fork, never visible to cgroup_attach_task.
b4f48b63
PM
4720 */
4721void cgroup_exit(struct task_struct *tsk, int run_callbacks)
4722{
817929ec 4723 struct css_set *cg;
d41d5a01 4724 int i;
817929ec
PM
4725
4726 /*
4727 * Unlink from the css_set task list if necessary.
4728 * Optimistically check cg_list before taking
4729 * css_set_lock
4730 */
4731 if (!list_empty(&tsk->cg_list)) {
4732 write_lock(&css_set_lock);
4733 if (!list_empty(&tsk->cg_list))
8d258797 4734 list_del_init(&tsk->cg_list);
817929ec
PM
4735 write_unlock(&css_set_lock);
4736 }
4737
b4f48b63
PM
4738 /* Reassign the task to the init_css_set. */
4739 task_lock(tsk);
817929ec
PM
4740 cg = tsk->cgroups;
4741 tsk->cgroups = &init_css_set;
d41d5a01
PZ
4742
4743 if (run_callbacks && need_forkexit_callback) {
4744 /*
4745 * modular subsystems can't use callbacks, so no need to lock
4746 * the subsys array
4747 */
4748 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4749 struct cgroup_subsys *ss = subsys[i];
4750 if (ss->exit) {
4751 struct cgroup *old_cgrp =
4752 rcu_dereference_raw(cg->subsys[i])->cgroup;
4753 struct cgroup *cgrp = task_cgroup(tsk, i);
761b3ef5 4754 ss->exit(cgrp, old_cgrp, tsk);
d41d5a01
PZ
4755 }
4756 }
4757 }
b4f48b63 4758 task_unlock(tsk);
d41d5a01 4759
817929ec 4760 if (cg)
81a6a5cd 4761 put_css_set_taskexit(cg);
b4f48b63 4762}
697f4161 4763
a043e3b2 4764/**
313e924c 4765 * cgroup_is_descendant - see if @cgrp is a descendant of @task's cgrp
a043e3b2 4766 * @cgrp: the cgroup in question
313e924c 4767 * @task: the task in question
a043e3b2 4768 *
313e924c
GN
4769 * See if @cgrp is a descendant of @task's cgroup in the appropriate
4770 * hierarchy.
697f4161
PM
4771 *
4772 * If we are sending in dummytop, then presumably we are creating
4773 * the top cgroup in the subsystem.
4774 *
4775 * Called only by the ns (nsproxy) cgroup.
4776 */
313e924c 4777int cgroup_is_descendant(const struct cgroup *cgrp, struct task_struct *task)
697f4161
PM
4778{
4779 int ret;
4780 struct cgroup *target;
697f4161 4781
bd89aabc 4782 if (cgrp == dummytop)
697f4161
PM
4783 return 1;
4784
7717f7ba 4785 target = task_cgroup_from_root(task, cgrp->root);
bd89aabc
PM
4786 while (cgrp != target && cgrp!= cgrp->top_cgroup)
4787 cgrp = cgrp->parent;
4788 ret = (cgrp == target);
697f4161
PM
4789 return ret;
4790}
81a6a5cd 4791
bd89aabc 4792static void check_for_release(struct cgroup *cgrp)
81a6a5cd
PM
4793{
4794 /* All of these checks rely on RCU to keep the cgroup
4795 * structure alive */
bd89aabc
PM
4796 if (cgroup_is_releasable(cgrp) && !atomic_read(&cgrp->count)
4797 && list_empty(&cgrp->children) && !cgroup_has_css_refs(cgrp)) {
81a6a5cd
PM
4798 /* Control Group is currently removeable. If it's not
4799 * already queued for a userspace notification, queue
4800 * it now */
4801 int need_schedule_work = 0;
cdcc136f 4802 raw_spin_lock(&release_list_lock);
bd89aabc
PM
4803 if (!cgroup_is_removed(cgrp) &&
4804 list_empty(&cgrp->release_list)) {
4805 list_add(&cgrp->release_list, &release_list);
81a6a5cd
PM
4806 need_schedule_work = 1;
4807 }
cdcc136f 4808 raw_spin_unlock(&release_list_lock);
81a6a5cd
PM
4809 if (need_schedule_work)
4810 schedule_work(&release_agent_work);
4811 }
4812}
4813
d7b9fff7
DN
4814/* Caller must verify that the css is not for root cgroup */
4815void __css_put(struct cgroup_subsys_state *css, int count)
81a6a5cd 4816{
bd89aabc 4817 struct cgroup *cgrp = css->cgroup;
3dece834 4818 int val;
81a6a5cd 4819 rcu_read_lock();
d7b9fff7 4820 val = atomic_sub_return(count, &css->refcnt);
3dece834 4821 if (val == 1) {
ec64f515
KH
4822 if (notify_on_release(cgrp)) {
4823 set_bit(CGRP_RELEASABLE, &cgrp->flags);
4824 check_for_release(cgrp);
4825 }
88703267 4826 cgroup_wakeup_rmdir_waiter(cgrp);
81a6a5cd
PM
4827 }
4828 rcu_read_unlock();
3dece834 4829 WARN_ON_ONCE(val < 1);
81a6a5cd 4830}
67523c48 4831EXPORT_SYMBOL_GPL(__css_put);
81a6a5cd
PM
4832
4833/*
4834 * Notify userspace when a cgroup is released, by running the
4835 * configured release agent with the name of the cgroup (path
4836 * relative to the root of cgroup file system) as the argument.
4837 *
4838 * Most likely, this user command will try to rmdir this cgroup.
4839 *
4840 * This races with the possibility that some other task will be
4841 * attached to this cgroup before it is removed, or that some other
4842 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
4843 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
4844 * unused, and this cgroup will be reprieved from its death sentence,
4845 * to continue to serve a useful existence. Next time it's released,
4846 * we will get notified again, if it still has 'notify_on_release' set.
4847 *
4848 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
4849 * means only wait until the task is successfully execve()'d. The
4850 * separate release agent task is forked by call_usermodehelper(),
4851 * then control in this thread returns here, without waiting for the
4852 * release agent task. We don't bother to wait because the caller of
4853 * this routine has no use for the exit status of the release agent
4854 * task, so no sense holding our caller up for that.
81a6a5cd 4855 */
81a6a5cd
PM
4856static void cgroup_release_agent(struct work_struct *work)
4857{
4858 BUG_ON(work != &release_agent_work);
4859 mutex_lock(&cgroup_mutex);
cdcc136f 4860 raw_spin_lock(&release_list_lock);
81a6a5cd
PM
4861 while (!list_empty(&release_list)) {
4862 char *argv[3], *envp[3];
4863 int i;
e788e066 4864 char *pathbuf = NULL, *agentbuf = NULL;
bd89aabc 4865 struct cgroup *cgrp = list_entry(release_list.next,
81a6a5cd
PM
4866 struct cgroup,
4867 release_list);
bd89aabc 4868 list_del_init(&cgrp->release_list);
cdcc136f 4869 raw_spin_unlock(&release_list_lock);
81a6a5cd 4870 pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
e788e066
PM
4871 if (!pathbuf)
4872 goto continue_free;
4873 if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
4874 goto continue_free;
4875 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
4876 if (!agentbuf)
4877 goto continue_free;
81a6a5cd
PM
4878
4879 i = 0;
e788e066
PM
4880 argv[i++] = agentbuf;
4881 argv[i++] = pathbuf;
81a6a5cd
PM
4882 argv[i] = NULL;
4883
4884 i = 0;
4885 /* minimal command environment */
4886 envp[i++] = "HOME=/";
4887 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
4888 envp[i] = NULL;
4889
4890 /* Drop the lock while we invoke the usermode helper,
4891 * since the exec could involve hitting disk and hence
4892 * be a slow process */
4893 mutex_unlock(&cgroup_mutex);
4894 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
81a6a5cd 4895 mutex_lock(&cgroup_mutex);
e788e066
PM
4896 continue_free:
4897 kfree(pathbuf);
4898 kfree(agentbuf);
cdcc136f 4899 raw_spin_lock(&release_list_lock);
81a6a5cd 4900 }
cdcc136f 4901 raw_spin_unlock(&release_list_lock);
81a6a5cd
PM
4902 mutex_unlock(&cgroup_mutex);
4903}
8bab8dde
PM
4904
4905static int __init cgroup_disable(char *str)
4906{
4907 int i;
4908 char *token;
4909
4910 while ((token = strsep(&str, ",")) != NULL) {
4911 if (!*token)
4912 continue;
aae8aab4
BB
4913 /*
4914 * cgroup_disable, being at boot time, can't know about module
4915 * subsystems, so we don't worry about them.
4916 */
4917 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
8bab8dde
PM
4918 struct cgroup_subsys *ss = subsys[i];
4919
4920 if (!strcmp(token, ss->name)) {
4921 ss->disabled = 1;
4922 printk(KERN_INFO "Disabling %s control group"
4923 " subsystem\n", ss->name);
4924 break;
4925 }
4926 }
4927 }
4928 return 1;
4929}
4930__setup("cgroup_disable=", cgroup_disable);
38460b48
KH
4931
4932/*
4933 * Functons for CSS ID.
4934 */
4935
4936/*
4937 *To get ID other than 0, this should be called when !cgroup_is_removed().
4938 */
4939unsigned short css_id(struct cgroup_subsys_state *css)
4940{
7f0f1546
KH
4941 struct css_id *cssid;
4942
4943 /*
4944 * This css_id() can return correct value when somone has refcnt
4945 * on this or this is under rcu_read_lock(). Once css->id is allocated,
4946 * it's unchanged until freed.
4947 */
d8bf4ca9 4948 cssid = rcu_dereference_check(css->id, atomic_read(&css->refcnt));
38460b48
KH
4949
4950 if (cssid)
4951 return cssid->id;
4952 return 0;
4953}
67523c48 4954EXPORT_SYMBOL_GPL(css_id);
38460b48
KH
4955
4956unsigned short css_depth(struct cgroup_subsys_state *css)
4957{
7f0f1546
KH
4958 struct css_id *cssid;
4959
d8bf4ca9 4960 cssid = rcu_dereference_check(css->id, atomic_read(&css->refcnt));
38460b48
KH
4961
4962 if (cssid)
4963 return cssid->depth;
4964 return 0;
4965}
67523c48 4966EXPORT_SYMBOL_GPL(css_depth);
38460b48 4967
747388d7
KH
4968/**
4969 * css_is_ancestor - test "root" css is an ancestor of "child"
4970 * @child: the css to be tested.
4971 * @root: the css supporsed to be an ancestor of the child.
4972 *
4973 * Returns true if "root" is an ancestor of "child" in its hierarchy. Because
4974 * this function reads css->id, this use rcu_dereference() and rcu_read_lock().
4975 * But, considering usual usage, the csses should be valid objects after test.
4976 * Assuming that the caller will do some action to the child if this returns
4977 * returns true, the caller must take "child";s reference count.
4978 * If "child" is valid object and this returns true, "root" is valid, too.
4979 */
4980
38460b48 4981bool css_is_ancestor(struct cgroup_subsys_state *child,
0b7f569e 4982 const struct cgroup_subsys_state *root)
38460b48 4983{
747388d7
KH
4984 struct css_id *child_id;
4985 struct css_id *root_id;
4986 bool ret = true;
38460b48 4987
747388d7
KH
4988 rcu_read_lock();
4989 child_id = rcu_dereference(child->id);
4990 root_id = rcu_dereference(root->id);
4991 if (!child_id
4992 || !root_id
4993 || (child_id->depth < root_id->depth)
4994 || (child_id->stack[root_id->depth] != root_id->id))
4995 ret = false;
4996 rcu_read_unlock();
4997 return ret;
38460b48
KH
4998}
4999
38460b48
KH
5000void free_css_id(struct cgroup_subsys *ss, struct cgroup_subsys_state *css)
5001{
5002 struct css_id *id = css->id;
5003 /* When this is called before css_id initialization, id can be NULL */
5004 if (!id)
5005 return;
5006
5007 BUG_ON(!ss->use_id);
5008
5009 rcu_assign_pointer(id->css, NULL);
5010 rcu_assign_pointer(css->id, NULL);
42aee6c4 5011 spin_lock(&ss->id_lock);
38460b48 5012 idr_remove(&ss->idr, id->id);
42aee6c4 5013 spin_unlock(&ss->id_lock);
025cea99 5014 kfree_rcu(id, rcu_head);
38460b48 5015}
67523c48 5016EXPORT_SYMBOL_GPL(free_css_id);
38460b48
KH
5017
5018/*
5019 * This is called by init or create(). Then, calls to this function are
5020 * always serialized (By cgroup_mutex() at create()).
5021 */
5022
5023static struct css_id *get_new_cssid(struct cgroup_subsys *ss, int depth)
5024{
5025 struct css_id *newid;
5026 int myid, error, size;
5027
5028 BUG_ON(!ss->use_id);
5029
5030 size = sizeof(*newid) + sizeof(unsigned short) * (depth + 1);
5031 newid = kzalloc(size, GFP_KERNEL);
5032 if (!newid)
5033 return ERR_PTR(-ENOMEM);
5034 /* get id */
5035 if (unlikely(!idr_pre_get(&ss->idr, GFP_KERNEL))) {
5036 error = -ENOMEM;
5037 goto err_out;
5038 }
42aee6c4 5039 spin_lock(&ss->id_lock);
38460b48
KH
5040 /* Don't use 0. allocates an ID of 1-65535 */
5041 error = idr_get_new_above(&ss->idr, newid, 1, &myid);
42aee6c4 5042 spin_unlock(&ss->id_lock);
38460b48
KH
5043
5044 /* Returns error when there are no free spaces for new ID.*/
5045 if (error) {
5046 error = -ENOSPC;
5047 goto err_out;
5048 }
5049 if (myid > CSS_ID_MAX)
5050 goto remove_idr;
5051
5052 newid->id = myid;
5053 newid->depth = depth;
5054 return newid;
5055remove_idr:
5056 error = -ENOSPC;
42aee6c4 5057 spin_lock(&ss->id_lock);
38460b48 5058 idr_remove(&ss->idr, myid);
42aee6c4 5059 spin_unlock(&ss->id_lock);
38460b48
KH
5060err_out:
5061 kfree(newid);
5062 return ERR_PTR(error);
5063
5064}
5065
e6a1105b
BB
5066static int __init_or_module cgroup_init_idr(struct cgroup_subsys *ss,
5067 struct cgroup_subsys_state *rootcss)
38460b48
KH
5068{
5069 struct css_id *newid;
38460b48 5070
42aee6c4 5071 spin_lock_init(&ss->id_lock);
38460b48
KH
5072 idr_init(&ss->idr);
5073
38460b48
KH
5074 newid = get_new_cssid(ss, 0);
5075 if (IS_ERR(newid))
5076 return PTR_ERR(newid);
5077
5078 newid->stack[0] = newid->id;
5079 newid->css = rootcss;
5080 rootcss->id = newid;
5081 return 0;
5082}
5083
5084static int alloc_css_id(struct cgroup_subsys *ss, struct cgroup *parent,
5085 struct cgroup *child)
5086{
5087 int subsys_id, i, depth = 0;
5088 struct cgroup_subsys_state *parent_css, *child_css;
fae9c791 5089 struct css_id *child_id, *parent_id;
38460b48
KH
5090
5091 subsys_id = ss->subsys_id;
5092 parent_css = parent->subsys[subsys_id];
5093 child_css = child->subsys[subsys_id];
38460b48 5094 parent_id = parent_css->id;
94b3dd0f 5095 depth = parent_id->depth + 1;
38460b48
KH
5096
5097 child_id = get_new_cssid(ss, depth);
5098 if (IS_ERR(child_id))
5099 return PTR_ERR(child_id);
5100
5101 for (i = 0; i < depth; i++)
5102 child_id->stack[i] = parent_id->stack[i];
5103 child_id->stack[depth] = child_id->id;
5104 /*
5105 * child_id->css pointer will be set after this cgroup is available
5106 * see cgroup_populate_dir()
5107 */
5108 rcu_assign_pointer(child_css->id, child_id);
5109
5110 return 0;
5111}
5112
5113/**
5114 * css_lookup - lookup css by id
5115 * @ss: cgroup subsys to be looked into.
5116 * @id: the id
5117 *
5118 * Returns pointer to cgroup_subsys_state if there is valid one with id.
5119 * NULL if not. Should be called under rcu_read_lock()
5120 */
5121struct cgroup_subsys_state *css_lookup(struct cgroup_subsys *ss, int id)
5122{
5123 struct css_id *cssid = NULL;
5124
5125 BUG_ON(!ss->use_id);
5126 cssid = idr_find(&ss->idr, id);
5127
5128 if (unlikely(!cssid))
5129 return NULL;
5130
5131 return rcu_dereference(cssid->css);
5132}
67523c48 5133EXPORT_SYMBOL_GPL(css_lookup);
38460b48
KH
5134
5135/**
5136 * css_get_next - lookup next cgroup under specified hierarchy.
5137 * @ss: pointer to subsystem
5138 * @id: current position of iteration.
5139 * @root: pointer to css. search tree under this.
5140 * @foundid: position of found object.
5141 *
5142 * Search next css under the specified hierarchy of rootid. Calling under
5143 * rcu_read_lock() is necessary. Returns NULL if it reaches the end.
5144 */
5145struct cgroup_subsys_state *
5146css_get_next(struct cgroup_subsys *ss, int id,
5147 struct cgroup_subsys_state *root, int *foundid)
5148{
5149 struct cgroup_subsys_state *ret = NULL;
5150 struct css_id *tmp;
5151 int tmpid;
5152 int rootid = css_id(root);
5153 int depth = css_depth(root);
5154
5155 if (!rootid)
5156 return NULL;
5157
5158 BUG_ON(!ss->use_id);
ca464d69
HD
5159 WARN_ON_ONCE(!rcu_read_lock_held());
5160
38460b48
KH
5161 /* fill start point for scan */
5162 tmpid = id;
5163 while (1) {
5164 /*
5165 * scan next entry from bitmap(tree), tmpid is updated after
5166 * idr_get_next().
5167 */
38460b48 5168 tmp = idr_get_next(&ss->idr, &tmpid);
38460b48
KH
5169 if (!tmp)
5170 break;
5171 if (tmp->depth >= depth && tmp->stack[depth] == rootid) {
5172 ret = rcu_dereference(tmp->css);
5173 if (ret) {
5174 *foundid = tmpid;
5175 break;
5176 }
5177 }
5178 /* continue to scan from next id */
5179 tmpid = tmpid + 1;
5180 }
5181 return ret;
5182}
5183
e5d1367f
SE
5184/*
5185 * get corresponding css from file open on cgroupfs directory
5186 */
5187struct cgroup_subsys_state *cgroup_css_from_dir(struct file *f, int id)
5188{
5189 struct cgroup *cgrp;
5190 struct inode *inode;
5191 struct cgroup_subsys_state *css;
5192
5193 inode = f->f_dentry->d_inode;
5194 /* check in cgroup filesystem dir */
5195 if (inode->i_op != &cgroup_dir_inode_operations)
5196 return ERR_PTR(-EBADF);
5197
5198 if (id < 0 || id >= CGROUP_SUBSYS_COUNT)
5199 return ERR_PTR(-EINVAL);
5200
5201 /* get cgroup */
5202 cgrp = __d_cgrp(f->f_dentry);
5203 css = cgrp->subsys[id];
5204 return css ? css : ERR_PTR(-ENOENT);
5205}
5206
fe693435 5207#ifdef CONFIG_CGROUP_DEBUG
761b3ef5 5208static struct cgroup_subsys_state *debug_create(struct cgroup *cont)
fe693435
PM
5209{
5210 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5211
5212 if (!css)
5213 return ERR_PTR(-ENOMEM);
5214
5215 return css;
5216}
5217
761b3ef5 5218static void debug_destroy(struct cgroup *cont)
fe693435
PM
5219{
5220 kfree(cont->subsys[debug_subsys_id]);
5221}
5222
5223static u64 cgroup_refcount_read(struct cgroup *cont, struct cftype *cft)
5224{
5225 return atomic_read(&cont->count);
5226}
5227
5228static u64 debug_taskcount_read(struct cgroup *cont, struct cftype *cft)
5229{
5230 return cgroup_task_count(cont);
5231}
5232
5233static u64 current_css_set_read(struct cgroup *cont, struct cftype *cft)
5234{
5235 return (u64)(unsigned long)current->cgroups;
5236}
5237
5238static u64 current_css_set_refcount_read(struct cgroup *cont,
5239 struct cftype *cft)
5240{
5241 u64 count;
5242
5243 rcu_read_lock();
5244 count = atomic_read(&current->cgroups->refcount);
5245 rcu_read_unlock();
5246 return count;
5247}
5248
7717f7ba
PM
5249static int current_css_set_cg_links_read(struct cgroup *cont,
5250 struct cftype *cft,
5251 struct seq_file *seq)
5252{
5253 struct cg_cgroup_link *link;
5254 struct css_set *cg;
5255
5256 read_lock(&css_set_lock);
5257 rcu_read_lock();
5258 cg = rcu_dereference(current->cgroups);
5259 list_for_each_entry(link, &cg->cg_links, cg_link_list) {
5260 struct cgroup *c = link->cgrp;
5261 const char *name;
5262
5263 if (c->dentry)
5264 name = c->dentry->d_name.name;
5265 else
5266 name = "?";
2c6ab6d2
PM
5267 seq_printf(seq, "Root %d group %s\n",
5268 c->root->hierarchy_id, name);
7717f7ba
PM
5269 }
5270 rcu_read_unlock();
5271 read_unlock(&css_set_lock);
5272 return 0;
5273}
5274
5275#define MAX_TASKS_SHOWN_PER_CSS 25
5276static int cgroup_css_links_read(struct cgroup *cont,
5277 struct cftype *cft,
5278 struct seq_file *seq)
5279{
5280 struct cg_cgroup_link *link;
5281
5282 read_lock(&css_set_lock);
5283 list_for_each_entry(link, &cont->css_sets, cgrp_link_list) {
5284 struct css_set *cg = link->cg;
5285 struct task_struct *task;
5286 int count = 0;
5287 seq_printf(seq, "css_set %p\n", cg);
5288 list_for_each_entry(task, &cg->tasks, cg_list) {
5289 if (count++ > MAX_TASKS_SHOWN_PER_CSS) {
5290 seq_puts(seq, " ...\n");
5291 break;
5292 } else {
5293 seq_printf(seq, " task %d\n",
5294 task_pid_vnr(task));
5295 }
5296 }
5297 }
5298 read_unlock(&css_set_lock);
5299 return 0;
5300}
5301
fe693435
PM
5302static u64 releasable_read(struct cgroup *cgrp, struct cftype *cft)
5303{
5304 return test_bit(CGRP_RELEASABLE, &cgrp->flags);
5305}
5306
5307static struct cftype debug_files[] = {
5308 {
5309 .name = "cgroup_refcount",
5310 .read_u64 = cgroup_refcount_read,
5311 },
5312 {
5313 .name = "taskcount",
5314 .read_u64 = debug_taskcount_read,
5315 },
5316
5317 {
5318 .name = "current_css_set",
5319 .read_u64 = current_css_set_read,
5320 },
5321
5322 {
5323 .name = "current_css_set_refcount",
5324 .read_u64 = current_css_set_refcount_read,
5325 },
5326
7717f7ba
PM
5327 {
5328 .name = "current_css_set_cg_links",
5329 .read_seq_string = current_css_set_cg_links_read,
5330 },
5331
5332 {
5333 .name = "cgroup_css_links",
5334 .read_seq_string = cgroup_css_links_read,
5335 },
5336
fe693435
PM
5337 {
5338 .name = "releasable",
5339 .read_u64 = releasable_read,
5340 },
fe693435 5341
4baf6e33
TH
5342 { } /* terminate */
5343};
fe693435
PM
5344
5345struct cgroup_subsys debug_subsys = {
5346 .name = "debug",
5347 .create = debug_create,
5348 .destroy = debug_destroy,
fe693435 5349 .subsys_id = debug_subsys_id,
4baf6e33 5350 .base_cftypes = debug_files,
fe693435
PM
5351};
5352#endif /* CONFIG_CGROUP_DEBUG */