]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - kernel/cgroup.c
cgroup: move cgroup_clear_directory() call out of cgroup_populate_dir()
[mirror_ubuntu-hirsute-kernel.git] / kernel / cgroup.c
CommitLineData
ddbcc7e8 1/*
ddbcc7e8
PM
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
0dea1168
KS
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
ddbcc7e8
PM
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29#include <linux/cgroup.h>
2ce9738b 30#include <linux/cred.h>
c6d57f33 31#include <linux/ctype.h>
ddbcc7e8
PM
32#include <linux/errno.h>
33#include <linux/fs.h>
2ce9738b 34#include <linux/init_task.h>
ddbcc7e8
PM
35#include <linux/kernel.h>
36#include <linux/list.h>
37#include <linux/mm.h>
38#include <linux/mutex.h>
39#include <linux/mount.h>
40#include <linux/pagemap.h>
a424316c 41#include <linux/proc_fs.h>
ddbcc7e8
PM
42#include <linux/rcupdate.h>
43#include <linux/sched.h>
817929ec 44#include <linux/backing-dev.h>
ddbcc7e8
PM
45#include <linux/seq_file.h>
46#include <linux/slab.h>
47#include <linux/magic.h>
48#include <linux/spinlock.h>
49#include <linux/string.h>
bbcb81d0 50#include <linux/sort.h>
81a6a5cd 51#include <linux/kmod.h>
e6a1105b 52#include <linux/module.h>
846c7bb0
BS
53#include <linux/delayacct.h>
54#include <linux/cgroupstats.h>
472b1053 55#include <linux/hash.h>
3f8206d4 56#include <linux/namei.h>
096b7fe0 57#include <linux/pid_namespace.h>
2c6ab6d2 58#include <linux/idr.h>
d1d9fd33 59#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
0dea1168
KS
60#include <linux/eventfd.h>
61#include <linux/poll.h>
d846687d 62#include <linux/flex_array.h> /* used in cgroup_attach_proc */
846c7bb0 63
60063497 64#include <linux/atomic.h>
ddbcc7e8 65
e25e2cbb
TH
66/*
67 * cgroup_mutex is the master lock. Any modification to cgroup or its
68 * hierarchy must be performed while holding it.
69 *
70 * cgroup_root_mutex nests inside cgroup_mutex and should be held to modify
71 * cgroupfs_root of any cgroup hierarchy - subsys list, flags,
72 * release_agent_path and so on. Modifying requires both cgroup_mutex and
73 * cgroup_root_mutex. Readers can acquire either of the two. This is to
74 * break the following locking order cycle.
75 *
76 * A. cgroup_mutex -> cred_guard_mutex -> s_type->i_mutex_key -> namespace_sem
77 * B. namespace_sem -> cgroup_mutex
78 *
79 * B happens only through cgroup_show_options() and using cgroup_root_mutex
80 * breaks it.
81 */
81a6a5cd 82static DEFINE_MUTEX(cgroup_mutex);
e25e2cbb 83static DEFINE_MUTEX(cgroup_root_mutex);
81a6a5cd 84
aae8aab4
BB
85/*
86 * Generate an array of cgroup subsystem pointers. At boot time, this is
87 * populated up to CGROUP_BUILTIN_SUBSYS_COUNT, and modular subsystems are
88 * registered after that. The mutable section of this array is protected by
89 * cgroup_mutex.
90 */
ddbcc7e8 91#define SUBSYS(_x) &_x ## _subsys,
aae8aab4 92static struct cgroup_subsys *subsys[CGROUP_SUBSYS_COUNT] = {
ddbcc7e8
PM
93#include <linux/cgroup_subsys.h>
94};
95
c6d57f33
PM
96#define MAX_CGROUP_ROOT_NAMELEN 64
97
ddbcc7e8
PM
98/*
99 * A cgroupfs_root represents the root of a cgroup hierarchy,
100 * and may be associated with a superblock to form an active
101 * hierarchy
102 */
103struct cgroupfs_root {
104 struct super_block *sb;
105
106 /*
107 * The bitmask of subsystems intended to be attached to this
108 * hierarchy
109 */
110 unsigned long subsys_bits;
111
2c6ab6d2
PM
112 /* Unique id for this hierarchy. */
113 int hierarchy_id;
114
ddbcc7e8
PM
115 /* The bitmask of subsystems currently attached to this hierarchy */
116 unsigned long actual_subsys_bits;
117
118 /* A list running through the attached subsystems */
119 struct list_head subsys_list;
120
121 /* The root cgroup for this hierarchy */
122 struct cgroup top_cgroup;
123
124 /* Tracks how many cgroups are currently defined in hierarchy.*/
125 int number_of_cgroups;
126
e5f6a860 127 /* A list running through the active hierarchies */
ddbcc7e8
PM
128 struct list_head root_list;
129
130 /* Hierarchy-specific flags */
131 unsigned long flags;
81a6a5cd 132
e788e066 133 /* The path to use for release notifications. */
81a6a5cd 134 char release_agent_path[PATH_MAX];
c6d57f33
PM
135
136 /* The name for this hierarchy - may be empty */
137 char name[MAX_CGROUP_ROOT_NAMELEN];
ddbcc7e8
PM
138};
139
ddbcc7e8
PM
140/*
141 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
142 * subsystems that are otherwise unattached - it never has more than a
143 * single cgroup, and all tasks are part of that cgroup.
144 */
145static struct cgroupfs_root rootnode;
146
38460b48
KH
147/*
148 * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
149 * cgroup_subsys->use_id != 0.
150 */
151#define CSS_ID_MAX (65535)
152struct css_id {
153 /*
154 * The css to which this ID points. This pointer is set to valid value
155 * after cgroup is populated. If cgroup is removed, this will be NULL.
156 * This pointer is expected to be RCU-safe because destroy()
157 * is called after synchronize_rcu(). But for safe use, css_is_removed()
158 * css_tryget() should be used for avoiding race.
159 */
2c392b8c 160 struct cgroup_subsys_state __rcu *css;
38460b48
KH
161 /*
162 * ID of this css.
163 */
164 unsigned short id;
165 /*
166 * Depth in hierarchy which this ID belongs to.
167 */
168 unsigned short depth;
169 /*
170 * ID is freed by RCU. (and lookup routine is RCU safe.)
171 */
172 struct rcu_head rcu_head;
173 /*
174 * Hierarchy of CSS ID belongs to.
175 */
176 unsigned short stack[0]; /* Array of Length (depth+1) */
177};
178
0dea1168 179/*
25985edc 180 * cgroup_event represents events which userspace want to receive.
0dea1168
KS
181 */
182struct cgroup_event {
183 /*
184 * Cgroup which the event belongs to.
185 */
186 struct cgroup *cgrp;
187 /*
188 * Control file which the event associated.
189 */
190 struct cftype *cft;
191 /*
192 * eventfd to signal userspace about the event.
193 */
194 struct eventfd_ctx *eventfd;
195 /*
196 * Each of these stored in a list by the cgroup.
197 */
198 struct list_head list;
199 /*
200 * All fields below needed to unregister event when
201 * userspace closes eventfd.
202 */
203 poll_table pt;
204 wait_queue_head_t *wqh;
205 wait_queue_t wait;
206 struct work_struct remove;
207};
38460b48 208
ddbcc7e8
PM
209/* The list of hierarchy roots */
210
211static LIST_HEAD(roots);
817929ec 212static int root_count;
ddbcc7e8 213
2c6ab6d2
PM
214static DEFINE_IDA(hierarchy_ida);
215static int next_hierarchy_id;
216static DEFINE_SPINLOCK(hierarchy_id_lock);
217
ddbcc7e8
PM
218/* dummytop is a shorthand for the dummy hierarchy's top cgroup */
219#define dummytop (&rootnode.top_cgroup)
220
221/* This flag indicates whether tasks in the fork and exit paths should
a043e3b2
LZ
222 * check for fork/exit handlers to call. This avoids us having to do
223 * extra work in the fork/exit path if none of the subsystems need to
224 * be called.
ddbcc7e8 225 */
8947f9d5 226static int need_forkexit_callback __read_mostly;
ddbcc7e8 227
d11c563d
PM
228#ifdef CONFIG_PROVE_LOCKING
229int cgroup_lock_is_held(void)
230{
231 return lockdep_is_held(&cgroup_mutex);
232}
233#else /* #ifdef CONFIG_PROVE_LOCKING */
234int cgroup_lock_is_held(void)
235{
236 return mutex_is_locked(&cgroup_mutex);
237}
238#endif /* #else #ifdef CONFIG_PROVE_LOCKING */
239
240EXPORT_SYMBOL_GPL(cgroup_lock_is_held);
241
ddbcc7e8 242/* convenient tests for these bits */
bd89aabc 243inline int cgroup_is_removed(const struct cgroup *cgrp)
ddbcc7e8 244{
bd89aabc 245 return test_bit(CGRP_REMOVED, &cgrp->flags);
ddbcc7e8
PM
246}
247
248/* bits in struct cgroupfs_root flags field */
249enum {
250 ROOT_NOPREFIX, /* mounted subsystems have no named prefix */
251};
252
e9685a03 253static int cgroup_is_releasable(const struct cgroup *cgrp)
81a6a5cd
PM
254{
255 const int bits =
bd89aabc
PM
256 (1 << CGRP_RELEASABLE) |
257 (1 << CGRP_NOTIFY_ON_RELEASE);
258 return (cgrp->flags & bits) == bits;
81a6a5cd
PM
259}
260
e9685a03 261static int notify_on_release(const struct cgroup *cgrp)
81a6a5cd 262{
bd89aabc 263 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
81a6a5cd
PM
264}
265
97978e6d
DL
266static int clone_children(const struct cgroup *cgrp)
267{
268 return test_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
269}
270
ddbcc7e8
PM
271/*
272 * for_each_subsys() allows you to iterate on each subsystem attached to
273 * an active hierarchy
274 */
275#define for_each_subsys(_root, _ss) \
276list_for_each_entry(_ss, &_root->subsys_list, sibling)
277
e5f6a860
LZ
278/* for_each_active_root() allows you to iterate across the active hierarchies */
279#define for_each_active_root(_root) \
ddbcc7e8
PM
280list_for_each_entry(_root, &roots, root_list)
281
81a6a5cd
PM
282/* the list of cgroups eligible for automatic release. Protected by
283 * release_list_lock */
284static LIST_HEAD(release_list);
cdcc136f 285static DEFINE_RAW_SPINLOCK(release_list_lock);
81a6a5cd
PM
286static void cgroup_release_agent(struct work_struct *work);
287static DECLARE_WORK(release_agent_work, cgroup_release_agent);
bd89aabc 288static void check_for_release(struct cgroup *cgrp);
81a6a5cd 289
817929ec
PM
290/* Link structure for associating css_set objects with cgroups */
291struct cg_cgroup_link {
292 /*
293 * List running through cg_cgroup_links associated with a
294 * cgroup, anchored on cgroup->css_sets
295 */
bd89aabc 296 struct list_head cgrp_link_list;
7717f7ba 297 struct cgroup *cgrp;
817929ec
PM
298 /*
299 * List running through cg_cgroup_links pointing at a
300 * single css_set object, anchored on css_set->cg_links
301 */
302 struct list_head cg_link_list;
303 struct css_set *cg;
304};
305
306/* The default css_set - used by init and its children prior to any
307 * hierarchies being mounted. It contains a pointer to the root state
308 * for each subsystem. Also used to anchor the list of css_sets. Not
309 * reference-counted, to improve performance when child cgroups
310 * haven't been created.
311 */
312
313static struct css_set init_css_set;
314static struct cg_cgroup_link init_css_set_link;
315
e6a1105b
BB
316static int cgroup_init_idr(struct cgroup_subsys *ss,
317 struct cgroup_subsys_state *css);
38460b48 318
817929ec
PM
319/* css_set_lock protects the list of css_set objects, and the
320 * chain of tasks off each css_set. Nests outside task->alloc_lock
321 * due to cgroup_iter_start() */
322static DEFINE_RWLOCK(css_set_lock);
323static int css_set_count;
324
7717f7ba
PM
325/*
326 * hash table for cgroup groups. This improves the performance to find
327 * an existing css_set. This hash doesn't (currently) take into
328 * account cgroups in empty hierarchies.
329 */
472b1053
LZ
330#define CSS_SET_HASH_BITS 7
331#define CSS_SET_TABLE_SIZE (1 << CSS_SET_HASH_BITS)
332static struct hlist_head css_set_table[CSS_SET_TABLE_SIZE];
333
334static struct hlist_head *css_set_hash(struct cgroup_subsys_state *css[])
335{
336 int i;
337 int index;
338 unsigned long tmp = 0UL;
339
340 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++)
341 tmp += (unsigned long)css[i];
342 tmp = (tmp >> 16) ^ tmp;
343
344 index = hash_long(tmp, CSS_SET_HASH_BITS);
345
346 return &css_set_table[index];
347}
348
817929ec
PM
349/* We don't maintain the lists running through each css_set to its
350 * task until after the first call to cgroup_iter_start(). This
351 * reduces the fork()/exit() overhead for people who have cgroups
352 * compiled into their kernel but not actually in use */
8947f9d5 353static int use_task_css_set_links __read_mostly;
817929ec 354
2c6ab6d2 355static void __put_css_set(struct css_set *cg, int taskexit)
b4f48b63 356{
71cbb949
KM
357 struct cg_cgroup_link *link;
358 struct cg_cgroup_link *saved_link;
146aa1bd
LJ
359 /*
360 * Ensure that the refcount doesn't hit zero while any readers
361 * can see it. Similar to atomic_dec_and_lock(), but for an
362 * rwlock
363 */
364 if (atomic_add_unless(&cg->refcount, -1, 1))
365 return;
366 write_lock(&css_set_lock);
367 if (!atomic_dec_and_test(&cg->refcount)) {
368 write_unlock(&css_set_lock);
369 return;
370 }
81a6a5cd 371
2c6ab6d2
PM
372 /* This css_set is dead. unlink it and release cgroup refcounts */
373 hlist_del(&cg->hlist);
374 css_set_count--;
375
376 list_for_each_entry_safe(link, saved_link, &cg->cg_links,
377 cg_link_list) {
378 struct cgroup *cgrp = link->cgrp;
379 list_del(&link->cg_link_list);
380 list_del(&link->cgrp_link_list);
bd89aabc
PM
381 if (atomic_dec_and_test(&cgrp->count) &&
382 notify_on_release(cgrp)) {
81a6a5cd 383 if (taskexit)
bd89aabc
PM
384 set_bit(CGRP_RELEASABLE, &cgrp->flags);
385 check_for_release(cgrp);
81a6a5cd 386 }
2c6ab6d2
PM
387
388 kfree(link);
81a6a5cd 389 }
2c6ab6d2
PM
390
391 write_unlock(&css_set_lock);
30088ad8 392 kfree_rcu(cg, rcu_head);
b4f48b63
PM
393}
394
817929ec
PM
395/*
396 * refcounted get/put for css_set objects
397 */
398static inline void get_css_set(struct css_set *cg)
399{
146aa1bd 400 atomic_inc(&cg->refcount);
817929ec
PM
401}
402
403static inline void put_css_set(struct css_set *cg)
404{
146aa1bd 405 __put_css_set(cg, 0);
817929ec
PM
406}
407
81a6a5cd
PM
408static inline void put_css_set_taskexit(struct css_set *cg)
409{
146aa1bd 410 __put_css_set(cg, 1);
81a6a5cd
PM
411}
412
7717f7ba
PM
413/*
414 * compare_css_sets - helper function for find_existing_css_set().
415 * @cg: candidate css_set being tested
416 * @old_cg: existing css_set for a task
417 * @new_cgrp: cgroup that's being entered by the task
418 * @template: desired set of css pointers in css_set (pre-calculated)
419 *
420 * Returns true if "cg" matches "old_cg" except for the hierarchy
421 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
422 */
423static bool compare_css_sets(struct css_set *cg,
424 struct css_set *old_cg,
425 struct cgroup *new_cgrp,
426 struct cgroup_subsys_state *template[])
427{
428 struct list_head *l1, *l2;
429
430 if (memcmp(template, cg->subsys, sizeof(cg->subsys))) {
431 /* Not all subsystems matched */
432 return false;
433 }
434
435 /*
436 * Compare cgroup pointers in order to distinguish between
437 * different cgroups in heirarchies with no subsystems. We
438 * could get by with just this check alone (and skip the
439 * memcmp above) but on most setups the memcmp check will
440 * avoid the need for this more expensive check on almost all
441 * candidates.
442 */
443
444 l1 = &cg->cg_links;
445 l2 = &old_cg->cg_links;
446 while (1) {
447 struct cg_cgroup_link *cgl1, *cgl2;
448 struct cgroup *cg1, *cg2;
449
450 l1 = l1->next;
451 l2 = l2->next;
452 /* See if we reached the end - both lists are equal length. */
453 if (l1 == &cg->cg_links) {
454 BUG_ON(l2 != &old_cg->cg_links);
455 break;
456 } else {
457 BUG_ON(l2 == &old_cg->cg_links);
458 }
459 /* Locate the cgroups associated with these links. */
460 cgl1 = list_entry(l1, struct cg_cgroup_link, cg_link_list);
461 cgl2 = list_entry(l2, struct cg_cgroup_link, cg_link_list);
462 cg1 = cgl1->cgrp;
463 cg2 = cgl2->cgrp;
464 /* Hierarchies should be linked in the same order. */
465 BUG_ON(cg1->root != cg2->root);
466
467 /*
468 * If this hierarchy is the hierarchy of the cgroup
469 * that's changing, then we need to check that this
470 * css_set points to the new cgroup; if it's any other
471 * hierarchy, then this css_set should point to the
472 * same cgroup as the old css_set.
473 */
474 if (cg1->root == new_cgrp->root) {
475 if (cg1 != new_cgrp)
476 return false;
477 } else {
478 if (cg1 != cg2)
479 return false;
480 }
481 }
482 return true;
483}
484
817929ec
PM
485/*
486 * find_existing_css_set() is a helper for
487 * find_css_set(), and checks to see whether an existing
472b1053 488 * css_set is suitable.
817929ec
PM
489 *
490 * oldcg: the cgroup group that we're using before the cgroup
491 * transition
492 *
bd89aabc 493 * cgrp: the cgroup that we're moving into
817929ec
PM
494 *
495 * template: location in which to build the desired set of subsystem
496 * state objects for the new cgroup group
497 */
817929ec
PM
498static struct css_set *find_existing_css_set(
499 struct css_set *oldcg,
bd89aabc 500 struct cgroup *cgrp,
817929ec 501 struct cgroup_subsys_state *template[])
b4f48b63
PM
502{
503 int i;
bd89aabc 504 struct cgroupfs_root *root = cgrp->root;
472b1053
LZ
505 struct hlist_head *hhead;
506 struct hlist_node *node;
507 struct css_set *cg;
817929ec 508
aae8aab4
BB
509 /*
510 * Build the set of subsystem state objects that we want to see in the
511 * new css_set. while subsystems can change globally, the entries here
512 * won't change, so no need for locking.
513 */
817929ec 514 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
8d53d55d 515 if (root->subsys_bits & (1UL << i)) {
817929ec
PM
516 /* Subsystem is in this hierarchy. So we want
517 * the subsystem state from the new
518 * cgroup */
bd89aabc 519 template[i] = cgrp->subsys[i];
817929ec
PM
520 } else {
521 /* Subsystem is not in this hierarchy, so we
522 * don't want to change the subsystem state */
523 template[i] = oldcg->subsys[i];
524 }
525 }
526
472b1053
LZ
527 hhead = css_set_hash(template);
528 hlist_for_each_entry(cg, node, hhead, hlist) {
7717f7ba
PM
529 if (!compare_css_sets(cg, oldcg, cgrp, template))
530 continue;
531
532 /* This css_set matches what we need */
533 return cg;
472b1053 534 }
817929ec
PM
535
536 /* No existing cgroup group matched */
537 return NULL;
538}
539
36553434
LZ
540static void free_cg_links(struct list_head *tmp)
541{
542 struct cg_cgroup_link *link;
543 struct cg_cgroup_link *saved_link;
544
545 list_for_each_entry_safe(link, saved_link, tmp, cgrp_link_list) {
546 list_del(&link->cgrp_link_list);
547 kfree(link);
548 }
549}
550
817929ec
PM
551/*
552 * allocate_cg_links() allocates "count" cg_cgroup_link structures
bd89aabc 553 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
817929ec
PM
554 * success or a negative error
555 */
817929ec
PM
556static int allocate_cg_links(int count, struct list_head *tmp)
557{
558 struct cg_cgroup_link *link;
559 int i;
560 INIT_LIST_HEAD(tmp);
561 for (i = 0; i < count; i++) {
562 link = kmalloc(sizeof(*link), GFP_KERNEL);
563 if (!link) {
36553434 564 free_cg_links(tmp);
817929ec
PM
565 return -ENOMEM;
566 }
bd89aabc 567 list_add(&link->cgrp_link_list, tmp);
817929ec
PM
568 }
569 return 0;
570}
571
c12f65d4
LZ
572/**
573 * link_css_set - a helper function to link a css_set to a cgroup
574 * @tmp_cg_links: cg_cgroup_link objects allocated by allocate_cg_links()
575 * @cg: the css_set to be linked
576 * @cgrp: the destination cgroup
577 */
578static void link_css_set(struct list_head *tmp_cg_links,
579 struct css_set *cg, struct cgroup *cgrp)
580{
581 struct cg_cgroup_link *link;
582
583 BUG_ON(list_empty(tmp_cg_links));
584 link = list_first_entry(tmp_cg_links, struct cg_cgroup_link,
585 cgrp_link_list);
586 link->cg = cg;
7717f7ba 587 link->cgrp = cgrp;
2c6ab6d2 588 atomic_inc(&cgrp->count);
c12f65d4 589 list_move(&link->cgrp_link_list, &cgrp->css_sets);
7717f7ba
PM
590 /*
591 * Always add links to the tail of the list so that the list
592 * is sorted by order of hierarchy creation
593 */
594 list_add_tail(&link->cg_link_list, &cg->cg_links);
c12f65d4
LZ
595}
596
817929ec
PM
597/*
598 * find_css_set() takes an existing cgroup group and a
599 * cgroup object, and returns a css_set object that's
600 * equivalent to the old group, but with the given cgroup
601 * substituted into the appropriate hierarchy. Must be called with
602 * cgroup_mutex held
603 */
817929ec 604static struct css_set *find_css_set(
bd89aabc 605 struct css_set *oldcg, struct cgroup *cgrp)
817929ec
PM
606{
607 struct css_set *res;
608 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
817929ec
PM
609
610 struct list_head tmp_cg_links;
817929ec 611
472b1053 612 struct hlist_head *hhead;
7717f7ba 613 struct cg_cgroup_link *link;
472b1053 614
817929ec
PM
615 /* First see if we already have a cgroup group that matches
616 * the desired set */
7e9abd89 617 read_lock(&css_set_lock);
bd89aabc 618 res = find_existing_css_set(oldcg, cgrp, template);
817929ec
PM
619 if (res)
620 get_css_set(res);
7e9abd89 621 read_unlock(&css_set_lock);
817929ec
PM
622
623 if (res)
624 return res;
625
626 res = kmalloc(sizeof(*res), GFP_KERNEL);
627 if (!res)
628 return NULL;
629
630 /* Allocate all the cg_cgroup_link objects that we'll need */
631 if (allocate_cg_links(root_count, &tmp_cg_links) < 0) {
632 kfree(res);
633 return NULL;
634 }
635
146aa1bd 636 atomic_set(&res->refcount, 1);
817929ec
PM
637 INIT_LIST_HEAD(&res->cg_links);
638 INIT_LIST_HEAD(&res->tasks);
472b1053 639 INIT_HLIST_NODE(&res->hlist);
817929ec
PM
640
641 /* Copy the set of subsystem state objects generated in
642 * find_existing_css_set() */
643 memcpy(res->subsys, template, sizeof(res->subsys));
644
645 write_lock(&css_set_lock);
646 /* Add reference counts and links from the new css_set. */
7717f7ba
PM
647 list_for_each_entry(link, &oldcg->cg_links, cg_link_list) {
648 struct cgroup *c = link->cgrp;
649 if (c->root == cgrp->root)
650 c = cgrp;
651 link_css_set(&tmp_cg_links, res, c);
652 }
817929ec
PM
653
654 BUG_ON(!list_empty(&tmp_cg_links));
655
817929ec 656 css_set_count++;
472b1053
LZ
657
658 /* Add this cgroup group to the hash table */
659 hhead = css_set_hash(res->subsys);
660 hlist_add_head(&res->hlist, hhead);
661
817929ec
PM
662 write_unlock(&css_set_lock);
663
664 return res;
b4f48b63
PM
665}
666
7717f7ba
PM
667/*
668 * Return the cgroup for "task" from the given hierarchy. Must be
669 * called with cgroup_mutex held.
670 */
671static struct cgroup *task_cgroup_from_root(struct task_struct *task,
672 struct cgroupfs_root *root)
673{
674 struct css_set *css;
675 struct cgroup *res = NULL;
676
677 BUG_ON(!mutex_is_locked(&cgroup_mutex));
678 read_lock(&css_set_lock);
679 /*
680 * No need to lock the task - since we hold cgroup_mutex the
681 * task can't change groups, so the only thing that can happen
682 * is that it exits and its css is set back to init_css_set.
683 */
684 css = task->cgroups;
685 if (css == &init_css_set) {
686 res = &root->top_cgroup;
687 } else {
688 struct cg_cgroup_link *link;
689 list_for_each_entry(link, &css->cg_links, cg_link_list) {
690 struct cgroup *c = link->cgrp;
691 if (c->root == root) {
692 res = c;
693 break;
694 }
695 }
696 }
697 read_unlock(&css_set_lock);
698 BUG_ON(!res);
699 return res;
700}
701
ddbcc7e8
PM
702/*
703 * There is one global cgroup mutex. We also require taking
704 * task_lock() when dereferencing a task's cgroup subsys pointers.
705 * See "The task_lock() exception", at the end of this comment.
706 *
707 * A task must hold cgroup_mutex to modify cgroups.
708 *
709 * Any task can increment and decrement the count field without lock.
710 * So in general, code holding cgroup_mutex can't rely on the count
711 * field not changing. However, if the count goes to zero, then only
956db3ca 712 * cgroup_attach_task() can increment it again. Because a count of zero
ddbcc7e8
PM
713 * means that no tasks are currently attached, therefore there is no
714 * way a task attached to that cgroup can fork (the other way to
715 * increment the count). So code holding cgroup_mutex can safely
716 * assume that if the count is zero, it will stay zero. Similarly, if
717 * a task holds cgroup_mutex on a cgroup with zero count, it
718 * knows that the cgroup won't be removed, as cgroup_rmdir()
719 * needs that mutex.
720 *
ddbcc7e8
PM
721 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
722 * (usually) take cgroup_mutex. These are the two most performance
723 * critical pieces of code here. The exception occurs on cgroup_exit(),
724 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
725 * is taken, and if the cgroup count is zero, a usermode call made
a043e3b2
LZ
726 * to the release agent with the name of the cgroup (path relative to
727 * the root of cgroup file system) as the argument.
ddbcc7e8
PM
728 *
729 * A cgroup can only be deleted if both its 'count' of using tasks
730 * is zero, and its list of 'children' cgroups is empty. Since all
731 * tasks in the system use _some_ cgroup, and since there is always at
732 * least one task in the system (init, pid == 1), therefore, top_cgroup
733 * always has either children cgroups and/or using tasks. So we don't
734 * need a special hack to ensure that top_cgroup cannot be deleted.
735 *
736 * The task_lock() exception
737 *
738 * The need for this exception arises from the action of
956db3ca 739 * cgroup_attach_task(), which overwrites one tasks cgroup pointer with
a043e3b2 740 * another. It does so using cgroup_mutex, however there are
ddbcc7e8
PM
741 * several performance critical places that need to reference
742 * task->cgroup without the expense of grabbing a system global
743 * mutex. Therefore except as noted below, when dereferencing or, as
956db3ca 744 * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use
ddbcc7e8
PM
745 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
746 * the task_struct routinely used for such matters.
747 *
748 * P.S. One more locking exception. RCU is used to guard the
956db3ca 749 * update of a tasks cgroup pointer by cgroup_attach_task()
ddbcc7e8
PM
750 */
751
ddbcc7e8
PM
752/**
753 * cgroup_lock - lock out any changes to cgroup structures
754 *
755 */
ddbcc7e8
PM
756void cgroup_lock(void)
757{
758 mutex_lock(&cgroup_mutex);
759}
67523c48 760EXPORT_SYMBOL_GPL(cgroup_lock);
ddbcc7e8
PM
761
762/**
763 * cgroup_unlock - release lock on cgroup changes
764 *
765 * Undo the lock taken in a previous cgroup_lock() call.
766 */
ddbcc7e8
PM
767void cgroup_unlock(void)
768{
769 mutex_unlock(&cgroup_mutex);
770}
67523c48 771EXPORT_SYMBOL_GPL(cgroup_unlock);
ddbcc7e8
PM
772
773/*
774 * A couple of forward declarations required, due to cyclic reference loop:
775 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
776 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
777 * -> cgroup_mkdir.
778 */
779
18bb1db3 780static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode);
c72a04e3 781static struct dentry *cgroup_lookup(struct inode *, struct dentry *, struct nameidata *);
ddbcc7e8 782static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
bd89aabc 783static int cgroup_populate_dir(struct cgroup *cgrp);
6e1d5dcc 784static const struct inode_operations cgroup_dir_inode_operations;
828c0950 785static const struct file_operations proc_cgroupstats_operations;
a424316c
PM
786
787static struct backing_dev_info cgroup_backing_dev_info = {
d993831f 788 .name = "cgroup",
e4ad08fe 789 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK,
a424316c 790};
ddbcc7e8 791
38460b48
KH
792static int alloc_css_id(struct cgroup_subsys *ss,
793 struct cgroup *parent, struct cgroup *child);
794
a5e7ed32 795static struct inode *cgroup_new_inode(umode_t mode, struct super_block *sb)
ddbcc7e8
PM
796{
797 struct inode *inode = new_inode(sb);
ddbcc7e8
PM
798
799 if (inode) {
85fe4025 800 inode->i_ino = get_next_ino();
ddbcc7e8 801 inode->i_mode = mode;
76aac0e9
DH
802 inode->i_uid = current_fsuid();
803 inode->i_gid = current_fsgid();
ddbcc7e8
PM
804 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
805 inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
806 }
807 return inode;
808}
809
4fca88c8
KH
810/*
811 * Call subsys's pre_destroy handler.
812 * This is called before css refcnt check.
813 */
ec64f515 814static int cgroup_call_pre_destroy(struct cgroup *cgrp)
4fca88c8
KH
815{
816 struct cgroup_subsys *ss;
ec64f515
KH
817 int ret = 0;
818
4fca88c8 819 for_each_subsys(cgrp->root, ss)
ec64f515 820 if (ss->pre_destroy) {
761b3ef5 821 ret = ss->pre_destroy(cgrp);
ec64f515 822 if (ret)
4ab78683 823 break;
ec64f515 824 }
0dea1168 825
ec64f515 826 return ret;
4fca88c8
KH
827}
828
ddbcc7e8
PM
829static void cgroup_diput(struct dentry *dentry, struct inode *inode)
830{
831 /* is dentry a directory ? if so, kfree() associated cgroup */
832 if (S_ISDIR(inode->i_mode)) {
bd89aabc 833 struct cgroup *cgrp = dentry->d_fsdata;
8dc4f3e1 834 struct cgroup_subsys *ss;
bd89aabc 835 BUG_ON(!(cgroup_is_removed(cgrp)));
81a6a5cd
PM
836 /* It's possible for external users to be holding css
837 * reference counts on a cgroup; css_put() needs to
838 * be able to access the cgroup after decrementing
839 * the reference count in order to know if it needs to
840 * queue the cgroup to be handled by the release
841 * agent */
842 synchronize_rcu();
8dc4f3e1
PM
843
844 mutex_lock(&cgroup_mutex);
845 /*
846 * Release the subsystem state objects.
847 */
75139b82 848 for_each_subsys(cgrp->root, ss)
761b3ef5 849 ss->destroy(cgrp);
8dc4f3e1
PM
850
851 cgrp->root->number_of_cgroups--;
852 mutex_unlock(&cgroup_mutex);
853
a47295e6
PM
854 /*
855 * Drop the active superblock reference that we took when we
856 * created the cgroup
857 */
8dc4f3e1
PM
858 deactivate_super(cgrp->root->sb);
859
72a8cb30
BB
860 /*
861 * if we're getting rid of the cgroup, refcount should ensure
862 * that there are no pidlists left.
863 */
864 BUG_ON(!list_empty(&cgrp->pidlists));
865
f2da1c40 866 kfree_rcu(cgrp, rcu_head);
ddbcc7e8
PM
867 }
868 iput(inode);
869}
870
c72a04e3
AV
871static int cgroup_delete(const struct dentry *d)
872{
873 return 1;
874}
875
ddbcc7e8
PM
876static void remove_dir(struct dentry *d)
877{
878 struct dentry *parent = dget(d->d_parent);
879
880 d_delete(d);
881 simple_rmdir(parent->d_inode, d);
882 dput(parent);
883}
884
885static void cgroup_clear_directory(struct dentry *dentry)
886{
887 struct list_head *node;
888
889 BUG_ON(!mutex_is_locked(&dentry->d_inode->i_mutex));
2fd6b7f5 890 spin_lock(&dentry->d_lock);
ddbcc7e8
PM
891 node = dentry->d_subdirs.next;
892 while (node != &dentry->d_subdirs) {
893 struct dentry *d = list_entry(node, struct dentry, d_u.d_child);
2fd6b7f5
NP
894
895 spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
ddbcc7e8
PM
896 list_del_init(node);
897 if (d->d_inode) {
898 /* This should never be called on a cgroup
899 * directory with child cgroups */
900 BUG_ON(d->d_inode->i_mode & S_IFDIR);
dc0474be 901 dget_dlock(d);
2fd6b7f5
NP
902 spin_unlock(&d->d_lock);
903 spin_unlock(&dentry->d_lock);
ddbcc7e8
PM
904 d_delete(d);
905 simple_unlink(dentry->d_inode, d);
906 dput(d);
2fd6b7f5
NP
907 spin_lock(&dentry->d_lock);
908 } else
909 spin_unlock(&d->d_lock);
ddbcc7e8
PM
910 node = dentry->d_subdirs.next;
911 }
2fd6b7f5 912 spin_unlock(&dentry->d_lock);
ddbcc7e8
PM
913}
914
915/*
916 * NOTE : the dentry must have been dget()'ed
917 */
918static void cgroup_d_remove_dir(struct dentry *dentry)
919{
2fd6b7f5
NP
920 struct dentry *parent;
921
ddbcc7e8
PM
922 cgroup_clear_directory(dentry);
923
2fd6b7f5
NP
924 parent = dentry->d_parent;
925 spin_lock(&parent->d_lock);
3ec762ad 926 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
ddbcc7e8 927 list_del_init(&dentry->d_u.d_child);
2fd6b7f5
NP
928 spin_unlock(&dentry->d_lock);
929 spin_unlock(&parent->d_lock);
ddbcc7e8
PM
930 remove_dir(dentry);
931}
932
ec64f515
KH
933/*
934 * A queue for waiters to do rmdir() cgroup. A tasks will sleep when
935 * cgroup->count == 0 && list_empty(&cgroup->children) && subsys has some
936 * reference to css->refcnt. In general, this refcnt is expected to goes down
937 * to zero, soon.
938 *
88703267 939 * CGRP_WAIT_ON_RMDIR flag is set under cgroup's inode->i_mutex;
ec64f515 940 */
1c6c3fad 941static DECLARE_WAIT_QUEUE_HEAD(cgroup_rmdir_waitq);
ec64f515 942
88703267 943static void cgroup_wakeup_rmdir_waiter(struct cgroup *cgrp)
ec64f515 944{
88703267 945 if (unlikely(test_and_clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags)))
ec64f515
KH
946 wake_up_all(&cgroup_rmdir_waitq);
947}
948
88703267
KH
949void cgroup_exclude_rmdir(struct cgroup_subsys_state *css)
950{
951 css_get(css);
952}
953
954void cgroup_release_and_wakeup_rmdir(struct cgroup_subsys_state *css)
955{
956 cgroup_wakeup_rmdir_waiter(css->cgroup);
957 css_put(css);
958}
959
aae8aab4 960/*
cf5d5941
BB
961 * Call with cgroup_mutex held. Drops reference counts on modules, including
962 * any duplicate ones that parse_cgroupfs_options took. If this function
963 * returns an error, no reference counts are touched.
aae8aab4 964 */
ddbcc7e8
PM
965static int rebind_subsystems(struct cgroupfs_root *root,
966 unsigned long final_bits)
967{
968 unsigned long added_bits, removed_bits;
bd89aabc 969 struct cgroup *cgrp = &root->top_cgroup;
ddbcc7e8
PM
970 int i;
971
aae8aab4 972 BUG_ON(!mutex_is_locked(&cgroup_mutex));
e25e2cbb 973 BUG_ON(!mutex_is_locked(&cgroup_root_mutex));
aae8aab4 974
ddbcc7e8
PM
975 removed_bits = root->actual_subsys_bits & ~final_bits;
976 added_bits = final_bits & ~root->actual_subsys_bits;
977 /* Check that any added subsystems are currently free */
978 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
8d53d55d 979 unsigned long bit = 1UL << i;
ddbcc7e8
PM
980 struct cgroup_subsys *ss = subsys[i];
981 if (!(bit & added_bits))
982 continue;
aae8aab4
BB
983 /*
984 * Nobody should tell us to do a subsys that doesn't exist:
985 * parse_cgroupfs_options should catch that case and refcounts
986 * ensure that subsystems won't disappear once selected.
987 */
988 BUG_ON(ss == NULL);
ddbcc7e8
PM
989 if (ss->root != &rootnode) {
990 /* Subsystem isn't free */
991 return -EBUSY;
992 }
993 }
994
995 /* Currently we don't handle adding/removing subsystems when
996 * any child cgroups exist. This is theoretically supportable
997 * but involves complex error handling, so it's being left until
998 * later */
307257cf 999 if (root->number_of_cgroups > 1)
ddbcc7e8
PM
1000 return -EBUSY;
1001
1002 /* Process each subsystem */
1003 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1004 struct cgroup_subsys *ss = subsys[i];
1005 unsigned long bit = 1UL << i;
1006 if (bit & added_bits) {
1007 /* We're binding this subsystem to this hierarchy */
aae8aab4 1008 BUG_ON(ss == NULL);
bd89aabc 1009 BUG_ON(cgrp->subsys[i]);
ddbcc7e8
PM
1010 BUG_ON(!dummytop->subsys[i]);
1011 BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
999cd8a4 1012 mutex_lock(&ss->hierarchy_mutex);
bd89aabc
PM
1013 cgrp->subsys[i] = dummytop->subsys[i];
1014 cgrp->subsys[i]->cgroup = cgrp;
33a68ac1 1015 list_move(&ss->sibling, &root->subsys_list);
b2aa30f7 1016 ss->root = root;
ddbcc7e8 1017 if (ss->bind)
761b3ef5 1018 ss->bind(cgrp);
999cd8a4 1019 mutex_unlock(&ss->hierarchy_mutex);
cf5d5941 1020 /* refcount was already taken, and we're keeping it */
ddbcc7e8
PM
1021 } else if (bit & removed_bits) {
1022 /* We're removing this subsystem */
aae8aab4 1023 BUG_ON(ss == NULL);
bd89aabc
PM
1024 BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
1025 BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
999cd8a4 1026 mutex_lock(&ss->hierarchy_mutex);
ddbcc7e8 1027 if (ss->bind)
761b3ef5 1028 ss->bind(dummytop);
ddbcc7e8 1029 dummytop->subsys[i]->cgroup = dummytop;
bd89aabc 1030 cgrp->subsys[i] = NULL;
b2aa30f7 1031 subsys[i]->root = &rootnode;
33a68ac1 1032 list_move(&ss->sibling, &rootnode.subsys_list);
999cd8a4 1033 mutex_unlock(&ss->hierarchy_mutex);
cf5d5941
BB
1034 /* subsystem is now free - drop reference on module */
1035 module_put(ss->module);
ddbcc7e8
PM
1036 } else if (bit & final_bits) {
1037 /* Subsystem state should already exist */
aae8aab4 1038 BUG_ON(ss == NULL);
bd89aabc 1039 BUG_ON(!cgrp->subsys[i]);
cf5d5941
BB
1040 /*
1041 * a refcount was taken, but we already had one, so
1042 * drop the extra reference.
1043 */
1044 module_put(ss->module);
1045#ifdef CONFIG_MODULE_UNLOAD
1046 BUG_ON(ss->module && !module_refcount(ss->module));
1047#endif
ddbcc7e8
PM
1048 } else {
1049 /* Subsystem state shouldn't exist */
bd89aabc 1050 BUG_ON(cgrp->subsys[i]);
ddbcc7e8
PM
1051 }
1052 }
1053 root->subsys_bits = root->actual_subsys_bits = final_bits;
1054 synchronize_rcu();
1055
1056 return 0;
1057}
1058
34c80b1d 1059static int cgroup_show_options(struct seq_file *seq, struct dentry *dentry)
ddbcc7e8 1060{
34c80b1d 1061 struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
ddbcc7e8
PM
1062 struct cgroup_subsys *ss;
1063
e25e2cbb 1064 mutex_lock(&cgroup_root_mutex);
ddbcc7e8
PM
1065 for_each_subsys(root, ss)
1066 seq_printf(seq, ",%s", ss->name);
1067 if (test_bit(ROOT_NOPREFIX, &root->flags))
1068 seq_puts(seq, ",noprefix");
81a6a5cd
PM
1069 if (strlen(root->release_agent_path))
1070 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
97978e6d
DL
1071 if (clone_children(&root->top_cgroup))
1072 seq_puts(seq, ",clone_children");
c6d57f33
PM
1073 if (strlen(root->name))
1074 seq_printf(seq, ",name=%s", root->name);
e25e2cbb 1075 mutex_unlock(&cgroup_root_mutex);
ddbcc7e8
PM
1076 return 0;
1077}
1078
1079struct cgroup_sb_opts {
1080 unsigned long subsys_bits;
1081 unsigned long flags;
81a6a5cd 1082 char *release_agent;
97978e6d 1083 bool clone_children;
c6d57f33 1084 char *name;
2c6ab6d2
PM
1085 /* User explicitly requested empty subsystem */
1086 bool none;
c6d57f33
PM
1087
1088 struct cgroupfs_root *new_root;
2c6ab6d2 1089
ddbcc7e8
PM
1090};
1091
aae8aab4
BB
1092/*
1093 * Convert a hierarchy specifier into a bitmask of subsystems and flags. Call
cf5d5941
BB
1094 * with cgroup_mutex held to protect the subsys[] array. This function takes
1095 * refcounts on subsystems to be used, unless it returns error, in which case
1096 * no refcounts are taken.
aae8aab4 1097 */
cf5d5941 1098static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
ddbcc7e8 1099{
32a8cf23
DL
1100 char *token, *o = data;
1101 bool all_ss = false, one_ss = false;
f9ab5b5b 1102 unsigned long mask = (unsigned long)-1;
cf5d5941
BB
1103 int i;
1104 bool module_pin_failed = false;
f9ab5b5b 1105
aae8aab4
BB
1106 BUG_ON(!mutex_is_locked(&cgroup_mutex));
1107
f9ab5b5b
LZ
1108#ifdef CONFIG_CPUSETS
1109 mask = ~(1UL << cpuset_subsys_id);
1110#endif
ddbcc7e8 1111
c6d57f33 1112 memset(opts, 0, sizeof(*opts));
ddbcc7e8
PM
1113
1114 while ((token = strsep(&o, ",")) != NULL) {
1115 if (!*token)
1116 return -EINVAL;
32a8cf23 1117 if (!strcmp(token, "none")) {
2c6ab6d2
PM
1118 /* Explicitly have no subsystems */
1119 opts->none = true;
32a8cf23
DL
1120 continue;
1121 }
1122 if (!strcmp(token, "all")) {
1123 /* Mutually exclusive option 'all' + subsystem name */
1124 if (one_ss)
1125 return -EINVAL;
1126 all_ss = true;
1127 continue;
1128 }
1129 if (!strcmp(token, "noprefix")) {
ddbcc7e8 1130 set_bit(ROOT_NOPREFIX, &opts->flags);
32a8cf23
DL
1131 continue;
1132 }
1133 if (!strcmp(token, "clone_children")) {
97978e6d 1134 opts->clone_children = true;
32a8cf23
DL
1135 continue;
1136 }
1137 if (!strncmp(token, "release_agent=", 14)) {
81a6a5cd
PM
1138 /* Specifying two release agents is forbidden */
1139 if (opts->release_agent)
1140 return -EINVAL;
c6d57f33 1141 opts->release_agent =
e400c285 1142 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
81a6a5cd
PM
1143 if (!opts->release_agent)
1144 return -ENOMEM;
32a8cf23
DL
1145 continue;
1146 }
1147 if (!strncmp(token, "name=", 5)) {
c6d57f33
PM
1148 const char *name = token + 5;
1149 /* Can't specify an empty name */
1150 if (!strlen(name))
1151 return -EINVAL;
1152 /* Must match [\w.-]+ */
1153 for (i = 0; i < strlen(name); i++) {
1154 char c = name[i];
1155 if (isalnum(c))
1156 continue;
1157 if ((c == '.') || (c == '-') || (c == '_'))
1158 continue;
1159 return -EINVAL;
1160 }
1161 /* Specifying two names is forbidden */
1162 if (opts->name)
1163 return -EINVAL;
1164 opts->name = kstrndup(name,
e400c285 1165 MAX_CGROUP_ROOT_NAMELEN - 1,
c6d57f33
PM
1166 GFP_KERNEL);
1167 if (!opts->name)
1168 return -ENOMEM;
32a8cf23
DL
1169
1170 continue;
1171 }
1172
1173 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1174 struct cgroup_subsys *ss = subsys[i];
1175 if (ss == NULL)
1176 continue;
1177 if (strcmp(token, ss->name))
1178 continue;
1179 if (ss->disabled)
1180 continue;
1181
1182 /* Mutually exclusive option 'all' + subsystem name */
1183 if (all_ss)
1184 return -EINVAL;
1185 set_bit(i, &opts->subsys_bits);
1186 one_ss = true;
1187
1188 break;
1189 }
1190 if (i == CGROUP_SUBSYS_COUNT)
1191 return -ENOENT;
1192 }
1193
1194 /*
1195 * If the 'all' option was specified select all the subsystems,
0d19ea86
LZ
1196 * otherwise if 'none', 'name=' and a subsystem name options
1197 * were not specified, let's default to 'all'
32a8cf23 1198 */
0d19ea86 1199 if (all_ss || (!one_ss && !opts->none && !opts->name)) {
32a8cf23
DL
1200 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1201 struct cgroup_subsys *ss = subsys[i];
1202 if (ss == NULL)
1203 continue;
1204 if (ss->disabled)
1205 continue;
1206 set_bit(i, &opts->subsys_bits);
ddbcc7e8
PM
1207 }
1208 }
1209
2c6ab6d2
PM
1210 /* Consistency checks */
1211
f9ab5b5b
LZ
1212 /*
1213 * Option noprefix was introduced just for backward compatibility
1214 * with the old cpuset, so we allow noprefix only if mounting just
1215 * the cpuset subsystem.
1216 */
1217 if (test_bit(ROOT_NOPREFIX, &opts->flags) &&
1218 (opts->subsys_bits & mask))
1219 return -EINVAL;
1220
2c6ab6d2
PM
1221
1222 /* Can't specify "none" and some subsystems */
1223 if (opts->subsys_bits && opts->none)
1224 return -EINVAL;
1225
1226 /*
1227 * We either have to specify by name or by subsystems. (So all
1228 * empty hierarchies must have a name).
1229 */
c6d57f33 1230 if (!opts->subsys_bits && !opts->name)
ddbcc7e8
PM
1231 return -EINVAL;
1232
cf5d5941
BB
1233 /*
1234 * Grab references on all the modules we'll need, so the subsystems
1235 * don't dance around before rebind_subsystems attaches them. This may
1236 * take duplicate reference counts on a subsystem that's already used,
1237 * but rebind_subsystems handles this case.
1238 */
1239 for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
1240 unsigned long bit = 1UL << i;
1241
1242 if (!(bit & opts->subsys_bits))
1243 continue;
1244 if (!try_module_get(subsys[i]->module)) {
1245 module_pin_failed = true;
1246 break;
1247 }
1248 }
1249 if (module_pin_failed) {
1250 /*
1251 * oops, one of the modules was going away. this means that we
1252 * raced with a module_delete call, and to the user this is
1253 * essentially a "subsystem doesn't exist" case.
1254 */
1255 for (i--; i >= CGROUP_BUILTIN_SUBSYS_COUNT; i--) {
1256 /* drop refcounts only on the ones we took */
1257 unsigned long bit = 1UL << i;
1258
1259 if (!(bit & opts->subsys_bits))
1260 continue;
1261 module_put(subsys[i]->module);
1262 }
1263 return -ENOENT;
1264 }
1265
ddbcc7e8
PM
1266 return 0;
1267}
1268
cf5d5941
BB
1269static void drop_parsed_module_refcounts(unsigned long subsys_bits)
1270{
1271 int i;
1272 for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
1273 unsigned long bit = 1UL << i;
1274
1275 if (!(bit & subsys_bits))
1276 continue;
1277 module_put(subsys[i]->module);
1278 }
1279}
1280
ddbcc7e8
PM
1281static int cgroup_remount(struct super_block *sb, int *flags, char *data)
1282{
1283 int ret = 0;
1284 struct cgroupfs_root *root = sb->s_fs_info;
bd89aabc 1285 struct cgroup *cgrp = &root->top_cgroup;
ddbcc7e8
PM
1286 struct cgroup_sb_opts opts;
1287
bd89aabc 1288 mutex_lock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8 1289 mutex_lock(&cgroup_mutex);
e25e2cbb 1290 mutex_lock(&cgroup_root_mutex);
ddbcc7e8
PM
1291
1292 /* See what subsystems are wanted */
1293 ret = parse_cgroupfs_options(data, &opts);
1294 if (ret)
1295 goto out_unlock;
1296
8b5a5a9d
TH
1297 /* See feature-removal-schedule.txt */
1298 if (opts.subsys_bits != root->actual_subsys_bits || opts.release_agent)
1299 pr_warning("cgroup: option changes via remount are deprecated (pid=%d comm=%s)\n",
1300 task_tgid_nr(current), current->comm);
1301
cf5d5941
BB
1302 /* Don't allow flags or name to change at remount */
1303 if (opts.flags != root->flags ||
1304 (opts.name && strcmp(opts.name, root->name))) {
c6d57f33 1305 ret = -EINVAL;
cf5d5941 1306 drop_parsed_module_refcounts(opts.subsys_bits);
c6d57f33
PM
1307 goto out_unlock;
1308 }
1309
ddbcc7e8 1310 ret = rebind_subsystems(root, opts.subsys_bits);
cf5d5941
BB
1311 if (ret) {
1312 drop_parsed_module_refcounts(opts.subsys_bits);
0670e08b 1313 goto out_unlock;
cf5d5941 1314 }
ddbcc7e8 1315
ff4c8d50
TH
1316 /* clear out any existing files and repopulate subsystem files */
1317 cgroup_clear_directory(cgrp->dentry);
0670e08b 1318 cgroup_populate_dir(cgrp);
ddbcc7e8 1319
81a6a5cd
PM
1320 if (opts.release_agent)
1321 strcpy(root->release_agent_path, opts.release_agent);
ddbcc7e8 1322 out_unlock:
66bdc9cf 1323 kfree(opts.release_agent);
c6d57f33 1324 kfree(opts.name);
e25e2cbb 1325 mutex_unlock(&cgroup_root_mutex);
ddbcc7e8 1326 mutex_unlock(&cgroup_mutex);
bd89aabc 1327 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8
PM
1328 return ret;
1329}
1330
b87221de 1331static const struct super_operations cgroup_ops = {
ddbcc7e8
PM
1332 .statfs = simple_statfs,
1333 .drop_inode = generic_delete_inode,
1334 .show_options = cgroup_show_options,
1335 .remount_fs = cgroup_remount,
1336};
1337
cc31edce
PM
1338static void init_cgroup_housekeeping(struct cgroup *cgrp)
1339{
1340 INIT_LIST_HEAD(&cgrp->sibling);
1341 INIT_LIST_HEAD(&cgrp->children);
1342 INIT_LIST_HEAD(&cgrp->css_sets);
1343 INIT_LIST_HEAD(&cgrp->release_list);
72a8cb30
BB
1344 INIT_LIST_HEAD(&cgrp->pidlists);
1345 mutex_init(&cgrp->pidlist_mutex);
0dea1168
KS
1346 INIT_LIST_HEAD(&cgrp->event_list);
1347 spin_lock_init(&cgrp->event_list_lock);
cc31edce 1348}
c6d57f33 1349
ddbcc7e8
PM
1350static void init_cgroup_root(struct cgroupfs_root *root)
1351{
bd89aabc 1352 struct cgroup *cgrp = &root->top_cgroup;
ddbcc7e8
PM
1353 INIT_LIST_HEAD(&root->subsys_list);
1354 INIT_LIST_HEAD(&root->root_list);
1355 root->number_of_cgroups = 1;
bd89aabc
PM
1356 cgrp->root = root;
1357 cgrp->top_cgroup = cgrp;
cc31edce 1358 init_cgroup_housekeeping(cgrp);
ddbcc7e8
PM
1359}
1360
2c6ab6d2
PM
1361static bool init_root_id(struct cgroupfs_root *root)
1362{
1363 int ret = 0;
1364
1365 do {
1366 if (!ida_pre_get(&hierarchy_ida, GFP_KERNEL))
1367 return false;
1368 spin_lock(&hierarchy_id_lock);
1369 /* Try to allocate the next unused ID */
1370 ret = ida_get_new_above(&hierarchy_ida, next_hierarchy_id,
1371 &root->hierarchy_id);
1372 if (ret == -ENOSPC)
1373 /* Try again starting from 0 */
1374 ret = ida_get_new(&hierarchy_ida, &root->hierarchy_id);
1375 if (!ret) {
1376 next_hierarchy_id = root->hierarchy_id + 1;
1377 } else if (ret != -EAGAIN) {
1378 /* Can only get here if the 31-bit IDR is full ... */
1379 BUG_ON(ret);
1380 }
1381 spin_unlock(&hierarchy_id_lock);
1382 } while (ret);
1383 return true;
1384}
1385
ddbcc7e8
PM
1386static int cgroup_test_super(struct super_block *sb, void *data)
1387{
c6d57f33 1388 struct cgroup_sb_opts *opts = data;
ddbcc7e8
PM
1389 struct cgroupfs_root *root = sb->s_fs_info;
1390
c6d57f33
PM
1391 /* If we asked for a name then it must match */
1392 if (opts->name && strcmp(opts->name, root->name))
1393 return 0;
ddbcc7e8 1394
2c6ab6d2
PM
1395 /*
1396 * If we asked for subsystems (or explicitly for no
1397 * subsystems) then they must match
1398 */
1399 if ((opts->subsys_bits || opts->none)
1400 && (opts->subsys_bits != root->subsys_bits))
ddbcc7e8
PM
1401 return 0;
1402
1403 return 1;
1404}
1405
c6d57f33
PM
1406static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts)
1407{
1408 struct cgroupfs_root *root;
1409
2c6ab6d2 1410 if (!opts->subsys_bits && !opts->none)
c6d57f33
PM
1411 return NULL;
1412
1413 root = kzalloc(sizeof(*root), GFP_KERNEL);
1414 if (!root)
1415 return ERR_PTR(-ENOMEM);
1416
2c6ab6d2
PM
1417 if (!init_root_id(root)) {
1418 kfree(root);
1419 return ERR_PTR(-ENOMEM);
1420 }
c6d57f33 1421 init_cgroup_root(root);
2c6ab6d2 1422
c6d57f33
PM
1423 root->subsys_bits = opts->subsys_bits;
1424 root->flags = opts->flags;
1425 if (opts->release_agent)
1426 strcpy(root->release_agent_path, opts->release_agent);
1427 if (opts->name)
1428 strcpy(root->name, opts->name);
97978e6d
DL
1429 if (opts->clone_children)
1430 set_bit(CGRP_CLONE_CHILDREN, &root->top_cgroup.flags);
c6d57f33
PM
1431 return root;
1432}
1433
2c6ab6d2
PM
1434static void cgroup_drop_root(struct cgroupfs_root *root)
1435{
1436 if (!root)
1437 return;
1438
1439 BUG_ON(!root->hierarchy_id);
1440 spin_lock(&hierarchy_id_lock);
1441 ida_remove(&hierarchy_ida, root->hierarchy_id);
1442 spin_unlock(&hierarchy_id_lock);
1443 kfree(root);
1444}
1445
ddbcc7e8
PM
1446static int cgroup_set_super(struct super_block *sb, void *data)
1447{
1448 int ret;
c6d57f33
PM
1449 struct cgroup_sb_opts *opts = data;
1450
1451 /* If we don't have a new root, we can't set up a new sb */
1452 if (!opts->new_root)
1453 return -EINVAL;
1454
2c6ab6d2 1455 BUG_ON(!opts->subsys_bits && !opts->none);
ddbcc7e8
PM
1456
1457 ret = set_anon_super(sb, NULL);
1458 if (ret)
1459 return ret;
1460
c6d57f33
PM
1461 sb->s_fs_info = opts->new_root;
1462 opts->new_root->sb = sb;
ddbcc7e8
PM
1463
1464 sb->s_blocksize = PAGE_CACHE_SIZE;
1465 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
1466 sb->s_magic = CGROUP_SUPER_MAGIC;
1467 sb->s_op = &cgroup_ops;
1468
1469 return 0;
1470}
1471
1472static int cgroup_get_rootdir(struct super_block *sb)
1473{
0df6a63f
AV
1474 static const struct dentry_operations cgroup_dops = {
1475 .d_iput = cgroup_diput,
c72a04e3 1476 .d_delete = cgroup_delete,
0df6a63f
AV
1477 };
1478
ddbcc7e8
PM
1479 struct inode *inode =
1480 cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
ddbcc7e8
PM
1481
1482 if (!inode)
1483 return -ENOMEM;
1484
ddbcc7e8
PM
1485 inode->i_fop = &simple_dir_operations;
1486 inode->i_op = &cgroup_dir_inode_operations;
1487 /* directories start off with i_nlink == 2 (for "." entry) */
1488 inc_nlink(inode);
48fde701
AV
1489 sb->s_root = d_make_root(inode);
1490 if (!sb->s_root)
ddbcc7e8 1491 return -ENOMEM;
0df6a63f
AV
1492 /* for everything else we want ->d_op set */
1493 sb->s_d_op = &cgroup_dops;
ddbcc7e8
PM
1494 return 0;
1495}
1496
f7e83571 1497static struct dentry *cgroup_mount(struct file_system_type *fs_type,
ddbcc7e8 1498 int flags, const char *unused_dev_name,
f7e83571 1499 void *data)
ddbcc7e8
PM
1500{
1501 struct cgroup_sb_opts opts;
c6d57f33 1502 struct cgroupfs_root *root;
ddbcc7e8
PM
1503 int ret = 0;
1504 struct super_block *sb;
c6d57f33 1505 struct cgroupfs_root *new_root;
e25e2cbb 1506 struct inode *inode;
ddbcc7e8
PM
1507
1508 /* First find the desired set of subsystems */
aae8aab4 1509 mutex_lock(&cgroup_mutex);
ddbcc7e8 1510 ret = parse_cgroupfs_options(data, &opts);
aae8aab4 1511 mutex_unlock(&cgroup_mutex);
c6d57f33
PM
1512 if (ret)
1513 goto out_err;
ddbcc7e8 1514
c6d57f33
PM
1515 /*
1516 * Allocate a new cgroup root. We may not need it if we're
1517 * reusing an existing hierarchy.
1518 */
1519 new_root = cgroup_root_from_opts(&opts);
1520 if (IS_ERR(new_root)) {
1521 ret = PTR_ERR(new_root);
cf5d5941 1522 goto drop_modules;
81a6a5cd 1523 }
c6d57f33 1524 opts.new_root = new_root;
ddbcc7e8 1525
c6d57f33
PM
1526 /* Locate an existing or new sb for this hierarchy */
1527 sb = sget(fs_type, cgroup_test_super, cgroup_set_super, &opts);
ddbcc7e8 1528 if (IS_ERR(sb)) {
c6d57f33 1529 ret = PTR_ERR(sb);
2c6ab6d2 1530 cgroup_drop_root(opts.new_root);
cf5d5941 1531 goto drop_modules;
ddbcc7e8
PM
1532 }
1533
c6d57f33
PM
1534 root = sb->s_fs_info;
1535 BUG_ON(!root);
1536 if (root == opts.new_root) {
1537 /* We used the new root structure, so this is a new hierarchy */
1538 struct list_head tmp_cg_links;
c12f65d4 1539 struct cgroup *root_cgrp = &root->top_cgroup;
c6d57f33 1540 struct cgroupfs_root *existing_root;
2ce9738b 1541 const struct cred *cred;
28fd5dfc 1542 int i;
ddbcc7e8
PM
1543
1544 BUG_ON(sb->s_root != NULL);
1545
1546 ret = cgroup_get_rootdir(sb);
1547 if (ret)
1548 goto drop_new_super;
817929ec 1549 inode = sb->s_root->d_inode;
ddbcc7e8 1550
817929ec 1551 mutex_lock(&inode->i_mutex);
ddbcc7e8 1552 mutex_lock(&cgroup_mutex);
e25e2cbb 1553 mutex_lock(&cgroup_root_mutex);
ddbcc7e8 1554
e25e2cbb
TH
1555 /* Check for name clashes with existing mounts */
1556 ret = -EBUSY;
1557 if (strlen(root->name))
1558 for_each_active_root(existing_root)
1559 if (!strcmp(existing_root->name, root->name))
1560 goto unlock_drop;
c6d57f33 1561
817929ec
PM
1562 /*
1563 * We're accessing css_set_count without locking
1564 * css_set_lock here, but that's OK - it can only be
1565 * increased by someone holding cgroup_lock, and
1566 * that's us. The worst that can happen is that we
1567 * have some link structures left over
1568 */
1569 ret = allocate_cg_links(css_set_count, &tmp_cg_links);
e25e2cbb
TH
1570 if (ret)
1571 goto unlock_drop;
817929ec 1572
ddbcc7e8
PM
1573 ret = rebind_subsystems(root, root->subsys_bits);
1574 if (ret == -EBUSY) {
c6d57f33 1575 free_cg_links(&tmp_cg_links);
e25e2cbb 1576 goto unlock_drop;
ddbcc7e8 1577 }
cf5d5941
BB
1578 /*
1579 * There must be no failure case after here, since rebinding
1580 * takes care of subsystems' refcounts, which are explicitly
1581 * dropped in the failure exit path.
1582 */
ddbcc7e8
PM
1583
1584 /* EBUSY should be the only error here */
1585 BUG_ON(ret);
1586
1587 list_add(&root->root_list, &roots);
817929ec 1588 root_count++;
ddbcc7e8 1589
c12f65d4 1590 sb->s_root->d_fsdata = root_cgrp;
ddbcc7e8
PM
1591 root->top_cgroup.dentry = sb->s_root;
1592
817929ec
PM
1593 /* Link the top cgroup in this hierarchy into all
1594 * the css_set objects */
1595 write_lock(&css_set_lock);
28fd5dfc
LZ
1596 for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
1597 struct hlist_head *hhead = &css_set_table[i];
1598 struct hlist_node *node;
817929ec 1599 struct css_set *cg;
28fd5dfc 1600
c12f65d4
LZ
1601 hlist_for_each_entry(cg, node, hhead, hlist)
1602 link_css_set(&tmp_cg_links, cg, root_cgrp);
28fd5dfc 1603 }
817929ec
PM
1604 write_unlock(&css_set_lock);
1605
1606 free_cg_links(&tmp_cg_links);
1607
c12f65d4
LZ
1608 BUG_ON(!list_empty(&root_cgrp->sibling));
1609 BUG_ON(!list_empty(&root_cgrp->children));
ddbcc7e8
PM
1610 BUG_ON(root->number_of_cgroups != 1);
1611
2ce9738b 1612 cred = override_creds(&init_cred);
c12f65d4 1613 cgroup_populate_dir(root_cgrp);
2ce9738b 1614 revert_creds(cred);
e25e2cbb 1615 mutex_unlock(&cgroup_root_mutex);
ddbcc7e8 1616 mutex_unlock(&cgroup_mutex);
34f77a90 1617 mutex_unlock(&inode->i_mutex);
c6d57f33
PM
1618 } else {
1619 /*
1620 * We re-used an existing hierarchy - the new root (if
1621 * any) is not needed
1622 */
2c6ab6d2 1623 cgroup_drop_root(opts.new_root);
cf5d5941
BB
1624 /* no subsys rebinding, so refcounts don't change */
1625 drop_parsed_module_refcounts(opts.subsys_bits);
ddbcc7e8
PM
1626 }
1627
c6d57f33
PM
1628 kfree(opts.release_agent);
1629 kfree(opts.name);
f7e83571 1630 return dget(sb->s_root);
ddbcc7e8 1631
e25e2cbb
TH
1632 unlock_drop:
1633 mutex_unlock(&cgroup_root_mutex);
1634 mutex_unlock(&cgroup_mutex);
1635 mutex_unlock(&inode->i_mutex);
ddbcc7e8 1636 drop_new_super:
6f5bbff9 1637 deactivate_locked_super(sb);
cf5d5941
BB
1638 drop_modules:
1639 drop_parsed_module_refcounts(opts.subsys_bits);
c6d57f33
PM
1640 out_err:
1641 kfree(opts.release_agent);
1642 kfree(opts.name);
f7e83571 1643 return ERR_PTR(ret);
ddbcc7e8
PM
1644}
1645
1646static void cgroup_kill_sb(struct super_block *sb) {
1647 struct cgroupfs_root *root = sb->s_fs_info;
bd89aabc 1648 struct cgroup *cgrp = &root->top_cgroup;
ddbcc7e8 1649 int ret;
71cbb949
KM
1650 struct cg_cgroup_link *link;
1651 struct cg_cgroup_link *saved_link;
ddbcc7e8
PM
1652
1653 BUG_ON(!root);
1654
1655 BUG_ON(root->number_of_cgroups != 1);
bd89aabc
PM
1656 BUG_ON(!list_empty(&cgrp->children));
1657 BUG_ON(!list_empty(&cgrp->sibling));
ddbcc7e8
PM
1658
1659 mutex_lock(&cgroup_mutex);
e25e2cbb 1660 mutex_lock(&cgroup_root_mutex);
ddbcc7e8
PM
1661
1662 /* Rebind all subsystems back to the default hierarchy */
1663 ret = rebind_subsystems(root, 0);
1664 /* Shouldn't be able to fail ... */
1665 BUG_ON(ret);
1666
817929ec
PM
1667 /*
1668 * Release all the links from css_sets to this hierarchy's
1669 * root cgroup
1670 */
1671 write_lock(&css_set_lock);
71cbb949
KM
1672
1673 list_for_each_entry_safe(link, saved_link, &cgrp->css_sets,
1674 cgrp_link_list) {
817929ec 1675 list_del(&link->cg_link_list);
bd89aabc 1676 list_del(&link->cgrp_link_list);
817929ec
PM
1677 kfree(link);
1678 }
1679 write_unlock(&css_set_lock);
1680
839ec545
PM
1681 if (!list_empty(&root->root_list)) {
1682 list_del(&root->root_list);
1683 root_count--;
1684 }
e5f6a860 1685
e25e2cbb 1686 mutex_unlock(&cgroup_root_mutex);
ddbcc7e8
PM
1687 mutex_unlock(&cgroup_mutex);
1688
ddbcc7e8 1689 kill_litter_super(sb);
2c6ab6d2 1690 cgroup_drop_root(root);
ddbcc7e8
PM
1691}
1692
1693static struct file_system_type cgroup_fs_type = {
1694 .name = "cgroup",
f7e83571 1695 .mount = cgroup_mount,
ddbcc7e8
PM
1696 .kill_sb = cgroup_kill_sb,
1697};
1698
676db4af
GKH
1699static struct kobject *cgroup_kobj;
1700
bd89aabc 1701static inline struct cgroup *__d_cgrp(struct dentry *dentry)
ddbcc7e8
PM
1702{
1703 return dentry->d_fsdata;
1704}
1705
1706static inline struct cftype *__d_cft(struct dentry *dentry)
1707{
1708 return dentry->d_fsdata;
1709}
1710
a043e3b2
LZ
1711/**
1712 * cgroup_path - generate the path of a cgroup
1713 * @cgrp: the cgroup in question
1714 * @buf: the buffer to write the path into
1715 * @buflen: the length of the buffer
1716 *
a47295e6
PM
1717 * Called with cgroup_mutex held or else with an RCU-protected cgroup
1718 * reference. Writes path of cgroup into buf. Returns 0 on success,
1719 * -errno on error.
ddbcc7e8 1720 */
bd89aabc 1721int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
ddbcc7e8
PM
1722{
1723 char *start;
9a9686b6 1724 struct dentry *dentry = rcu_dereference_check(cgrp->dentry,
9a9686b6 1725 cgroup_lock_is_held());
ddbcc7e8 1726
a47295e6 1727 if (!dentry || cgrp == dummytop) {
ddbcc7e8
PM
1728 /*
1729 * Inactive subsystems have no dentry for their root
1730 * cgroup
1731 */
1732 strcpy(buf, "/");
1733 return 0;
1734 }
1735
1736 start = buf + buflen;
1737
1738 *--start = '\0';
1739 for (;;) {
a47295e6 1740 int len = dentry->d_name.len;
9a9686b6 1741
ddbcc7e8
PM
1742 if ((start -= len) < buf)
1743 return -ENAMETOOLONG;
9a9686b6 1744 memcpy(start, dentry->d_name.name, len);
bd89aabc
PM
1745 cgrp = cgrp->parent;
1746 if (!cgrp)
ddbcc7e8 1747 break;
9a9686b6
LZ
1748
1749 dentry = rcu_dereference_check(cgrp->dentry,
9a9686b6 1750 cgroup_lock_is_held());
bd89aabc 1751 if (!cgrp->parent)
ddbcc7e8
PM
1752 continue;
1753 if (--start < buf)
1754 return -ENAMETOOLONG;
1755 *start = '/';
1756 }
1757 memmove(buf, start, buf + buflen - start);
1758 return 0;
1759}
67523c48 1760EXPORT_SYMBOL_GPL(cgroup_path);
ddbcc7e8 1761
2f7ee569
TH
1762/*
1763 * Control Group taskset
1764 */
134d3373
TH
1765struct task_and_cgroup {
1766 struct task_struct *task;
1767 struct cgroup *cgrp;
61d1d219 1768 struct css_set *cg;
134d3373
TH
1769};
1770
2f7ee569
TH
1771struct cgroup_taskset {
1772 struct task_and_cgroup single;
1773 struct flex_array *tc_array;
1774 int tc_array_len;
1775 int idx;
1776 struct cgroup *cur_cgrp;
1777};
1778
1779/**
1780 * cgroup_taskset_first - reset taskset and return the first task
1781 * @tset: taskset of interest
1782 *
1783 * @tset iteration is initialized and the first task is returned.
1784 */
1785struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
1786{
1787 if (tset->tc_array) {
1788 tset->idx = 0;
1789 return cgroup_taskset_next(tset);
1790 } else {
1791 tset->cur_cgrp = tset->single.cgrp;
1792 return tset->single.task;
1793 }
1794}
1795EXPORT_SYMBOL_GPL(cgroup_taskset_first);
1796
1797/**
1798 * cgroup_taskset_next - iterate to the next task in taskset
1799 * @tset: taskset of interest
1800 *
1801 * Return the next task in @tset. Iteration must have been initialized
1802 * with cgroup_taskset_first().
1803 */
1804struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
1805{
1806 struct task_and_cgroup *tc;
1807
1808 if (!tset->tc_array || tset->idx >= tset->tc_array_len)
1809 return NULL;
1810
1811 tc = flex_array_get(tset->tc_array, tset->idx++);
1812 tset->cur_cgrp = tc->cgrp;
1813 return tc->task;
1814}
1815EXPORT_SYMBOL_GPL(cgroup_taskset_next);
1816
1817/**
1818 * cgroup_taskset_cur_cgroup - return the matching cgroup for the current task
1819 * @tset: taskset of interest
1820 *
1821 * Return the cgroup for the current (last returned) task of @tset. This
1822 * function must be preceded by either cgroup_taskset_first() or
1823 * cgroup_taskset_next().
1824 */
1825struct cgroup *cgroup_taskset_cur_cgroup(struct cgroup_taskset *tset)
1826{
1827 return tset->cur_cgrp;
1828}
1829EXPORT_SYMBOL_GPL(cgroup_taskset_cur_cgroup);
1830
1831/**
1832 * cgroup_taskset_size - return the number of tasks in taskset
1833 * @tset: taskset of interest
1834 */
1835int cgroup_taskset_size(struct cgroup_taskset *tset)
1836{
1837 return tset->tc_array ? tset->tc_array_len : 1;
1838}
1839EXPORT_SYMBOL_GPL(cgroup_taskset_size);
1840
1841
74a1166d
BB
1842/*
1843 * cgroup_task_migrate - move a task from one cgroup to another.
1844 *
1845 * 'guarantee' is set if the caller promises that a new css_set for the task
1846 * will already exist. If not set, this function might sleep, and can fail with
cd3d0952 1847 * -ENOMEM. Must be called with cgroup_mutex and threadgroup locked.
74a1166d 1848 */
61d1d219
MSB
1849static void cgroup_task_migrate(struct cgroup *cgrp, struct cgroup *oldcgrp,
1850 struct task_struct *tsk, struct css_set *newcg)
74a1166d
BB
1851{
1852 struct css_set *oldcg;
74a1166d
BB
1853
1854 /*
026085ef
MSB
1855 * We are synchronized through threadgroup_lock() against PF_EXITING
1856 * setting such that we can't race against cgroup_exit() changing the
1857 * css_set to init_css_set and dropping the old one.
74a1166d 1858 */
c84cdf75 1859 WARN_ON_ONCE(tsk->flags & PF_EXITING);
74a1166d 1860 oldcg = tsk->cgroups;
74a1166d 1861
74a1166d 1862 task_lock(tsk);
74a1166d
BB
1863 rcu_assign_pointer(tsk->cgroups, newcg);
1864 task_unlock(tsk);
1865
1866 /* Update the css_set linked lists if we're using them */
1867 write_lock(&css_set_lock);
1868 if (!list_empty(&tsk->cg_list))
1869 list_move(&tsk->cg_list, &newcg->tasks);
1870 write_unlock(&css_set_lock);
1871
1872 /*
1873 * We just gained a reference on oldcg by taking it from the task. As
1874 * trading it for newcg is protected by cgroup_mutex, we're safe to drop
1875 * it here; it will be freed under RCU.
1876 */
1877 put_css_set(oldcg);
1878
1879 set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
74a1166d
BB
1880}
1881
a043e3b2
LZ
1882/**
1883 * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp'
1884 * @cgrp: the cgroup the task is attaching to
1885 * @tsk: the task to be attached
bbcb81d0 1886 *
cd3d0952
TH
1887 * Call with cgroup_mutex and threadgroup locked. May take task_lock of
1888 * @tsk during call.
bbcb81d0 1889 */
956db3ca 1890int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
bbcb81d0 1891{
8f121918 1892 int retval = 0;
2468c723 1893 struct cgroup_subsys *ss, *failed_ss = NULL;
bd89aabc 1894 struct cgroup *oldcgrp;
bd89aabc 1895 struct cgroupfs_root *root = cgrp->root;
2f7ee569 1896 struct cgroup_taskset tset = { };
61d1d219 1897 struct css_set *newcg;
bbcb81d0 1898
cd3d0952
TH
1899 /* @tsk either already exited or can't exit until the end */
1900 if (tsk->flags & PF_EXITING)
1901 return -ESRCH;
bbcb81d0
PM
1902
1903 /* Nothing to do if the task is already in that cgroup */
7717f7ba 1904 oldcgrp = task_cgroup_from_root(tsk, root);
bd89aabc 1905 if (cgrp == oldcgrp)
bbcb81d0
PM
1906 return 0;
1907
2f7ee569
TH
1908 tset.single.task = tsk;
1909 tset.single.cgrp = oldcgrp;
1910
bbcb81d0
PM
1911 for_each_subsys(root, ss) {
1912 if (ss->can_attach) {
761b3ef5 1913 retval = ss->can_attach(cgrp, &tset);
2468c723
DN
1914 if (retval) {
1915 /*
1916 * Remember on which subsystem the can_attach()
1917 * failed, so that we only call cancel_attach()
1918 * against the subsystems whose can_attach()
1919 * succeeded. (See below)
1920 */
1921 failed_ss = ss;
1922 goto out;
1923 }
bbcb81d0
PM
1924 }
1925 }
1926
61d1d219
MSB
1927 newcg = find_css_set(tsk->cgroups, cgrp);
1928 if (!newcg) {
1929 retval = -ENOMEM;
2468c723 1930 goto out;
61d1d219
MSB
1931 }
1932
1933 cgroup_task_migrate(cgrp, oldcgrp, tsk, newcg);
817929ec 1934
bbcb81d0 1935 for_each_subsys(root, ss) {
e18f6318 1936 if (ss->attach)
761b3ef5 1937 ss->attach(cgrp, &tset);
bbcb81d0 1938 }
74a1166d 1939
bbcb81d0 1940 synchronize_rcu();
ec64f515
KH
1941
1942 /*
1943 * wake up rmdir() waiter. the rmdir should fail since the cgroup
1944 * is no longer empty.
1945 */
88703267 1946 cgroup_wakeup_rmdir_waiter(cgrp);
2468c723
DN
1947out:
1948 if (retval) {
1949 for_each_subsys(root, ss) {
1950 if (ss == failed_ss)
1951 /*
1952 * This subsystem was the one that failed the
1953 * can_attach() check earlier, so we don't need
1954 * to call cancel_attach() against it or any
1955 * remaining subsystems.
1956 */
1957 break;
1958 if (ss->cancel_attach)
761b3ef5 1959 ss->cancel_attach(cgrp, &tset);
2468c723
DN
1960 }
1961 }
1962 return retval;
bbcb81d0
PM
1963}
1964
d7926ee3 1965/**
31583bb0
MT
1966 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
1967 * @from: attach to all cgroups of a given task
d7926ee3
SS
1968 * @tsk: the task to be attached
1969 */
31583bb0 1970int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
d7926ee3
SS
1971{
1972 struct cgroupfs_root *root;
d7926ee3
SS
1973 int retval = 0;
1974
1975 cgroup_lock();
1976 for_each_active_root(root) {
31583bb0
MT
1977 struct cgroup *from_cg = task_cgroup_from_root(from, root);
1978
1979 retval = cgroup_attach_task(from_cg, tsk);
d7926ee3
SS
1980 if (retval)
1981 break;
1982 }
1983 cgroup_unlock();
1984
1985 return retval;
1986}
31583bb0 1987EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
d7926ee3 1988
74a1166d
BB
1989/**
1990 * cgroup_attach_proc - attach all threads in a threadgroup to a cgroup
1991 * @cgrp: the cgroup to attach to
1992 * @leader: the threadgroup leader task_struct of the group to be attached
1993 *
257058ae
TH
1994 * Call holding cgroup_mutex and the group_rwsem of the leader. Will take
1995 * task_lock of each thread in leader's threadgroup individually in turn.
74a1166d 1996 */
1c6c3fad 1997static int cgroup_attach_proc(struct cgroup *cgrp, struct task_struct *leader)
74a1166d
BB
1998{
1999 int retval, i, group_size;
2000 struct cgroup_subsys *ss, *failed_ss = NULL;
74a1166d 2001 /* guaranteed to be initialized later, but the compiler needs this */
74a1166d
BB
2002 struct cgroupfs_root *root = cgrp->root;
2003 /* threadgroup list cursor and array */
2004 struct task_struct *tsk;
134d3373 2005 struct task_and_cgroup *tc;
d846687d 2006 struct flex_array *group;
2f7ee569 2007 struct cgroup_taskset tset = { };
74a1166d
BB
2008
2009 /*
2010 * step 0: in order to do expensive, possibly blocking operations for
2011 * every thread, we cannot iterate the thread group list, since it needs
2012 * rcu or tasklist locked. instead, build an array of all threads in the
257058ae
TH
2013 * group - group_rwsem prevents new threads from appearing, and if
2014 * threads exit, this will just be an over-estimate.
74a1166d
BB
2015 */
2016 group_size = get_nr_threads(leader);
d846687d 2017 /* flex_array supports very large thread-groups better than kmalloc. */
134d3373 2018 group = flex_array_alloc(sizeof(*tc), group_size, GFP_KERNEL);
74a1166d
BB
2019 if (!group)
2020 return -ENOMEM;
d846687d
BB
2021 /* pre-allocate to guarantee space while iterating in rcu read-side. */
2022 retval = flex_array_prealloc(group, 0, group_size - 1, GFP_KERNEL);
2023 if (retval)
2024 goto out_free_group_list;
74a1166d 2025
74a1166d
BB
2026 tsk = leader;
2027 i = 0;
fb5d2b4c
MSB
2028 /*
2029 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2030 * already PF_EXITING could be freed from underneath us unless we
2031 * take an rcu_read_lock.
2032 */
2033 rcu_read_lock();
74a1166d 2034 do {
134d3373
TH
2035 struct task_and_cgroup ent;
2036
cd3d0952
TH
2037 /* @tsk either already exited or can't exit until the end */
2038 if (tsk->flags & PF_EXITING)
2039 continue;
2040
74a1166d
BB
2041 /* as per above, nr_threads may decrease, but not increase. */
2042 BUG_ON(i >= group_size);
134d3373
TH
2043 ent.task = tsk;
2044 ent.cgrp = task_cgroup_from_root(tsk, root);
892a2b90
MSB
2045 /* nothing to do if this task is already in the cgroup */
2046 if (ent.cgrp == cgrp)
2047 continue;
61d1d219
MSB
2048 /*
2049 * saying GFP_ATOMIC has no effect here because we did prealloc
2050 * earlier, but it's good form to communicate our expectations.
2051 */
134d3373 2052 retval = flex_array_put(group, i, &ent, GFP_ATOMIC);
d846687d 2053 BUG_ON(retval != 0);
74a1166d
BB
2054 i++;
2055 } while_each_thread(leader, tsk);
fb5d2b4c 2056 rcu_read_unlock();
74a1166d
BB
2057 /* remember the number of threads in the array for later. */
2058 group_size = i;
2f7ee569
TH
2059 tset.tc_array = group;
2060 tset.tc_array_len = group_size;
74a1166d 2061
134d3373
TH
2062 /* methods shouldn't be called if no task is actually migrating */
2063 retval = 0;
892a2b90 2064 if (!group_size)
b07ef774 2065 goto out_free_group_list;
134d3373 2066
74a1166d
BB
2067 /*
2068 * step 1: check that we can legitimately attach to the cgroup.
2069 */
2070 for_each_subsys(root, ss) {
2071 if (ss->can_attach) {
761b3ef5 2072 retval = ss->can_attach(cgrp, &tset);
74a1166d
BB
2073 if (retval) {
2074 failed_ss = ss;
2075 goto out_cancel_attach;
2076 }
2077 }
74a1166d
BB
2078 }
2079
2080 /*
2081 * step 2: make sure css_sets exist for all threads to be migrated.
2082 * we use find_css_set, which allocates a new one if necessary.
2083 */
74a1166d 2084 for (i = 0; i < group_size; i++) {
134d3373 2085 tc = flex_array_get(group, i);
61d1d219
MSB
2086 tc->cg = find_css_set(tc->task->cgroups, cgrp);
2087 if (!tc->cg) {
2088 retval = -ENOMEM;
2089 goto out_put_css_set_refs;
74a1166d
BB
2090 }
2091 }
2092
2093 /*
494c167c
TH
2094 * step 3: now that we're guaranteed success wrt the css_sets,
2095 * proceed to move all tasks to the new cgroup. There are no
2096 * failure cases after here, so this is the commit point.
74a1166d 2097 */
74a1166d 2098 for (i = 0; i < group_size; i++) {
134d3373 2099 tc = flex_array_get(group, i);
61d1d219 2100 cgroup_task_migrate(cgrp, tc->cgrp, tc->task, tc->cg);
74a1166d
BB
2101 }
2102 /* nothing is sensitive to fork() after this point. */
2103
2104 /*
494c167c 2105 * step 4: do subsystem attach callbacks.
74a1166d
BB
2106 */
2107 for_each_subsys(root, ss) {
2108 if (ss->attach)
761b3ef5 2109 ss->attach(cgrp, &tset);
74a1166d
BB
2110 }
2111
2112 /*
2113 * step 5: success! and cleanup
2114 */
2115 synchronize_rcu();
2116 cgroup_wakeup_rmdir_waiter(cgrp);
2117 retval = 0;
61d1d219
MSB
2118out_put_css_set_refs:
2119 if (retval) {
2120 for (i = 0; i < group_size; i++) {
2121 tc = flex_array_get(group, i);
2122 if (!tc->cg)
2123 break;
2124 put_css_set(tc->cg);
2125 }
74a1166d
BB
2126 }
2127out_cancel_attach:
74a1166d
BB
2128 if (retval) {
2129 for_each_subsys(root, ss) {
494c167c 2130 if (ss == failed_ss)
74a1166d 2131 break;
74a1166d 2132 if (ss->cancel_attach)
761b3ef5 2133 ss->cancel_attach(cgrp, &tset);
74a1166d
BB
2134 }
2135 }
74a1166d 2136out_free_group_list:
d846687d 2137 flex_array_free(group);
74a1166d
BB
2138 return retval;
2139}
2140
2141/*
2142 * Find the task_struct of the task to attach by vpid and pass it along to the
cd3d0952
TH
2143 * function to attach either it or all tasks in its threadgroup. Will lock
2144 * cgroup_mutex and threadgroup; may take task_lock of task.
bbcb81d0 2145 */
74a1166d 2146static int attach_task_by_pid(struct cgroup *cgrp, u64 pid, bool threadgroup)
bbcb81d0 2147{
bbcb81d0 2148 struct task_struct *tsk;
c69e8d9c 2149 const struct cred *cred = current_cred(), *tcred;
bbcb81d0
PM
2150 int ret;
2151
74a1166d
BB
2152 if (!cgroup_lock_live_group(cgrp))
2153 return -ENODEV;
2154
b78949eb
MSB
2155retry_find_task:
2156 rcu_read_lock();
bbcb81d0 2157 if (pid) {
73507f33 2158 tsk = find_task_by_vpid(pid);
74a1166d
BB
2159 if (!tsk) {
2160 rcu_read_unlock();
b78949eb
MSB
2161 ret= -ESRCH;
2162 goto out_unlock_cgroup;
bbcb81d0 2163 }
74a1166d
BB
2164 /*
2165 * even if we're attaching all tasks in the thread group, we
2166 * only need to check permissions on one of them.
2167 */
c69e8d9c
DH
2168 tcred = __task_cred(tsk);
2169 if (cred->euid &&
2170 cred->euid != tcred->uid &&
2171 cred->euid != tcred->suid) {
2172 rcu_read_unlock();
b78949eb
MSB
2173 ret = -EACCES;
2174 goto out_unlock_cgroup;
bbcb81d0 2175 }
b78949eb
MSB
2176 } else
2177 tsk = current;
cd3d0952
TH
2178
2179 if (threadgroup)
b78949eb
MSB
2180 tsk = tsk->group_leader;
2181 get_task_struct(tsk);
2182 rcu_read_unlock();
2183
2184 threadgroup_lock(tsk);
2185 if (threadgroup) {
2186 if (!thread_group_leader(tsk)) {
2187 /*
2188 * a race with de_thread from another thread's exec()
2189 * may strip us of our leadership, if this happens,
2190 * there is no choice but to throw this task away and
2191 * try again; this is
2192 * "double-double-toil-and-trouble-check locking".
2193 */
2194 threadgroup_unlock(tsk);
2195 put_task_struct(tsk);
2196 goto retry_find_task;
2197 }
74a1166d 2198 ret = cgroup_attach_proc(cgrp, tsk);
b78949eb 2199 } else
74a1166d 2200 ret = cgroup_attach_task(cgrp, tsk);
cd3d0952
TH
2201 threadgroup_unlock(tsk);
2202
bbcb81d0 2203 put_task_struct(tsk);
b78949eb 2204out_unlock_cgroup:
74a1166d 2205 cgroup_unlock();
bbcb81d0
PM
2206 return ret;
2207}
2208
af351026 2209static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid)
74a1166d
BB
2210{
2211 return attach_task_by_pid(cgrp, pid, false);
2212}
2213
2214static int cgroup_procs_write(struct cgroup *cgrp, struct cftype *cft, u64 tgid)
af351026 2215{
b78949eb 2216 return attach_task_by_pid(cgrp, tgid, true);
af351026
PM
2217}
2218
e788e066
PM
2219/**
2220 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
2221 * @cgrp: the cgroup to be checked for liveness
2222 *
84eea842
PM
2223 * On success, returns true; the lock should be later released with
2224 * cgroup_unlock(). On failure returns false with no lock held.
e788e066 2225 */
84eea842 2226bool cgroup_lock_live_group(struct cgroup *cgrp)
e788e066
PM
2227{
2228 mutex_lock(&cgroup_mutex);
2229 if (cgroup_is_removed(cgrp)) {
2230 mutex_unlock(&cgroup_mutex);
2231 return false;
2232 }
2233 return true;
2234}
67523c48 2235EXPORT_SYMBOL_GPL(cgroup_lock_live_group);
e788e066
PM
2236
2237static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft,
2238 const char *buffer)
2239{
2240 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
f4a2589f
EK
2241 if (strlen(buffer) >= PATH_MAX)
2242 return -EINVAL;
e788e066
PM
2243 if (!cgroup_lock_live_group(cgrp))
2244 return -ENODEV;
e25e2cbb 2245 mutex_lock(&cgroup_root_mutex);
e788e066 2246 strcpy(cgrp->root->release_agent_path, buffer);
e25e2cbb 2247 mutex_unlock(&cgroup_root_mutex);
84eea842 2248 cgroup_unlock();
e788e066
PM
2249 return 0;
2250}
2251
2252static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft,
2253 struct seq_file *seq)
2254{
2255 if (!cgroup_lock_live_group(cgrp))
2256 return -ENODEV;
2257 seq_puts(seq, cgrp->root->release_agent_path);
2258 seq_putc(seq, '\n');
84eea842 2259 cgroup_unlock();
e788e066
PM
2260 return 0;
2261}
2262
84eea842
PM
2263/* A buffer size big enough for numbers or short strings */
2264#define CGROUP_LOCAL_BUFFER_SIZE 64
2265
e73d2c61 2266static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
f4c753b7
PM
2267 struct file *file,
2268 const char __user *userbuf,
2269 size_t nbytes, loff_t *unused_ppos)
355e0c48 2270{
84eea842 2271 char buffer[CGROUP_LOCAL_BUFFER_SIZE];
355e0c48 2272 int retval = 0;
355e0c48
PM
2273 char *end;
2274
2275 if (!nbytes)
2276 return -EINVAL;
2277 if (nbytes >= sizeof(buffer))
2278 return -E2BIG;
2279 if (copy_from_user(buffer, userbuf, nbytes))
2280 return -EFAULT;
2281
2282 buffer[nbytes] = 0; /* nul-terminate */
e73d2c61 2283 if (cft->write_u64) {
478988d3 2284 u64 val = simple_strtoull(strstrip(buffer), &end, 0);
e73d2c61
PM
2285 if (*end)
2286 return -EINVAL;
2287 retval = cft->write_u64(cgrp, cft, val);
2288 } else {
478988d3 2289 s64 val = simple_strtoll(strstrip(buffer), &end, 0);
e73d2c61
PM
2290 if (*end)
2291 return -EINVAL;
2292 retval = cft->write_s64(cgrp, cft, val);
2293 }
355e0c48
PM
2294 if (!retval)
2295 retval = nbytes;
2296 return retval;
2297}
2298
db3b1497
PM
2299static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft,
2300 struct file *file,
2301 const char __user *userbuf,
2302 size_t nbytes, loff_t *unused_ppos)
2303{
84eea842 2304 char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
db3b1497
PM
2305 int retval = 0;
2306 size_t max_bytes = cft->max_write_len;
2307 char *buffer = local_buffer;
2308
2309 if (!max_bytes)
2310 max_bytes = sizeof(local_buffer) - 1;
2311 if (nbytes >= max_bytes)
2312 return -E2BIG;
2313 /* Allocate a dynamic buffer if we need one */
2314 if (nbytes >= sizeof(local_buffer)) {
2315 buffer = kmalloc(nbytes + 1, GFP_KERNEL);
2316 if (buffer == NULL)
2317 return -ENOMEM;
2318 }
5a3eb9f6
LZ
2319 if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
2320 retval = -EFAULT;
2321 goto out;
2322 }
db3b1497
PM
2323
2324 buffer[nbytes] = 0; /* nul-terminate */
478988d3 2325 retval = cft->write_string(cgrp, cft, strstrip(buffer));
db3b1497
PM
2326 if (!retval)
2327 retval = nbytes;
5a3eb9f6 2328out:
db3b1497
PM
2329 if (buffer != local_buffer)
2330 kfree(buffer);
2331 return retval;
2332}
2333
ddbcc7e8
PM
2334static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
2335 size_t nbytes, loff_t *ppos)
2336{
2337 struct cftype *cft = __d_cft(file->f_dentry);
bd89aabc 2338 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
ddbcc7e8 2339
75139b82 2340 if (cgroup_is_removed(cgrp))
ddbcc7e8 2341 return -ENODEV;
355e0c48 2342 if (cft->write)
bd89aabc 2343 return cft->write(cgrp, cft, file, buf, nbytes, ppos);
e73d2c61
PM
2344 if (cft->write_u64 || cft->write_s64)
2345 return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
db3b1497
PM
2346 if (cft->write_string)
2347 return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos);
d447ea2f
PE
2348 if (cft->trigger) {
2349 int ret = cft->trigger(cgrp, (unsigned int)cft->private);
2350 return ret ? ret : nbytes;
2351 }
355e0c48 2352 return -EINVAL;
ddbcc7e8
PM
2353}
2354
f4c753b7
PM
2355static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
2356 struct file *file,
2357 char __user *buf, size_t nbytes,
2358 loff_t *ppos)
ddbcc7e8 2359{
84eea842 2360 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
f4c753b7 2361 u64 val = cft->read_u64(cgrp, cft);
ddbcc7e8
PM
2362 int len = sprintf(tmp, "%llu\n", (unsigned long long) val);
2363
2364 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2365}
2366
e73d2c61
PM
2367static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
2368 struct file *file,
2369 char __user *buf, size_t nbytes,
2370 loff_t *ppos)
2371{
84eea842 2372 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
e73d2c61
PM
2373 s64 val = cft->read_s64(cgrp, cft);
2374 int len = sprintf(tmp, "%lld\n", (long long) val);
2375
2376 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2377}
2378
ddbcc7e8
PM
2379static ssize_t cgroup_file_read(struct file *file, char __user *buf,
2380 size_t nbytes, loff_t *ppos)
2381{
2382 struct cftype *cft = __d_cft(file->f_dentry);
bd89aabc 2383 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
ddbcc7e8 2384
75139b82 2385 if (cgroup_is_removed(cgrp))
ddbcc7e8
PM
2386 return -ENODEV;
2387
2388 if (cft->read)
bd89aabc 2389 return cft->read(cgrp, cft, file, buf, nbytes, ppos);
f4c753b7
PM
2390 if (cft->read_u64)
2391 return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
e73d2c61
PM
2392 if (cft->read_s64)
2393 return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
ddbcc7e8
PM
2394 return -EINVAL;
2395}
2396
91796569
PM
2397/*
2398 * seqfile ops/methods for returning structured data. Currently just
2399 * supports string->u64 maps, but can be extended in future.
2400 */
2401
2402struct cgroup_seqfile_state {
2403 struct cftype *cft;
2404 struct cgroup *cgroup;
2405};
2406
2407static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
2408{
2409 struct seq_file *sf = cb->state;
2410 return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
2411}
2412
2413static int cgroup_seqfile_show(struct seq_file *m, void *arg)
2414{
2415 struct cgroup_seqfile_state *state = m->private;
2416 struct cftype *cft = state->cft;
29486df3
SH
2417 if (cft->read_map) {
2418 struct cgroup_map_cb cb = {
2419 .fill = cgroup_map_add,
2420 .state = m,
2421 };
2422 return cft->read_map(state->cgroup, cft, &cb);
2423 }
2424 return cft->read_seq_string(state->cgroup, cft, m);
91796569
PM
2425}
2426
96930a63 2427static int cgroup_seqfile_release(struct inode *inode, struct file *file)
91796569
PM
2428{
2429 struct seq_file *seq = file->private_data;
2430 kfree(seq->private);
2431 return single_release(inode, file);
2432}
2433
828c0950 2434static const struct file_operations cgroup_seqfile_operations = {
91796569 2435 .read = seq_read,
e788e066 2436 .write = cgroup_file_write,
91796569
PM
2437 .llseek = seq_lseek,
2438 .release = cgroup_seqfile_release,
2439};
2440
ddbcc7e8
PM
2441static int cgroup_file_open(struct inode *inode, struct file *file)
2442{
2443 int err;
2444 struct cftype *cft;
2445
2446 err = generic_file_open(inode, file);
2447 if (err)
2448 return err;
ddbcc7e8 2449 cft = __d_cft(file->f_dentry);
75139b82 2450
29486df3 2451 if (cft->read_map || cft->read_seq_string) {
91796569
PM
2452 struct cgroup_seqfile_state *state =
2453 kzalloc(sizeof(*state), GFP_USER);
2454 if (!state)
2455 return -ENOMEM;
2456 state->cft = cft;
2457 state->cgroup = __d_cgrp(file->f_dentry->d_parent);
2458 file->f_op = &cgroup_seqfile_operations;
2459 err = single_open(file, cgroup_seqfile_show, state);
2460 if (err < 0)
2461 kfree(state);
2462 } else if (cft->open)
ddbcc7e8
PM
2463 err = cft->open(inode, file);
2464 else
2465 err = 0;
2466
2467 return err;
2468}
2469
2470static int cgroup_file_release(struct inode *inode, struct file *file)
2471{
2472 struct cftype *cft = __d_cft(file->f_dentry);
2473 if (cft->release)
2474 return cft->release(inode, file);
2475 return 0;
2476}
2477
2478/*
2479 * cgroup_rename - Only allow simple rename of directories in place.
2480 */
2481static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
2482 struct inode *new_dir, struct dentry *new_dentry)
2483{
2484 if (!S_ISDIR(old_dentry->d_inode->i_mode))
2485 return -ENOTDIR;
2486 if (new_dentry->d_inode)
2487 return -EEXIST;
2488 if (old_dir != new_dir)
2489 return -EIO;
2490 return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
2491}
2492
828c0950 2493static const struct file_operations cgroup_file_operations = {
ddbcc7e8
PM
2494 .read = cgroup_file_read,
2495 .write = cgroup_file_write,
2496 .llseek = generic_file_llseek,
2497 .open = cgroup_file_open,
2498 .release = cgroup_file_release,
2499};
2500
6e1d5dcc 2501static const struct inode_operations cgroup_dir_inode_operations = {
c72a04e3 2502 .lookup = cgroup_lookup,
ddbcc7e8
PM
2503 .mkdir = cgroup_mkdir,
2504 .rmdir = cgroup_rmdir,
2505 .rename = cgroup_rename,
2506};
2507
c72a04e3
AV
2508static struct dentry *cgroup_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
2509{
2510 if (dentry->d_name.len > NAME_MAX)
2511 return ERR_PTR(-ENAMETOOLONG);
2512 d_add(dentry, NULL);
2513 return NULL;
2514}
2515
0dea1168
KS
2516/*
2517 * Check if a file is a control file
2518 */
2519static inline struct cftype *__file_cft(struct file *file)
2520{
2521 if (file->f_dentry->d_inode->i_fop != &cgroup_file_operations)
2522 return ERR_PTR(-EINVAL);
2523 return __d_cft(file->f_dentry);
2524}
2525
a5e7ed32 2526static int cgroup_create_file(struct dentry *dentry, umode_t mode,
5adcee1d
NP
2527 struct super_block *sb)
2528{
ddbcc7e8
PM
2529 struct inode *inode;
2530
2531 if (!dentry)
2532 return -ENOENT;
2533 if (dentry->d_inode)
2534 return -EEXIST;
2535
2536 inode = cgroup_new_inode(mode, sb);
2537 if (!inode)
2538 return -ENOMEM;
2539
2540 if (S_ISDIR(mode)) {
2541 inode->i_op = &cgroup_dir_inode_operations;
2542 inode->i_fop = &simple_dir_operations;
2543
2544 /* start off with i_nlink == 2 (for "." entry) */
2545 inc_nlink(inode);
2546
2547 /* start with the directory inode held, so that we can
2548 * populate it without racing with another mkdir */
817929ec 2549 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
ddbcc7e8
PM
2550 } else if (S_ISREG(mode)) {
2551 inode->i_size = 0;
2552 inode->i_fop = &cgroup_file_operations;
2553 }
ddbcc7e8
PM
2554 d_instantiate(dentry, inode);
2555 dget(dentry); /* Extra count - pin the dentry in core */
2556 return 0;
2557}
2558
2559/*
a043e3b2
LZ
2560 * cgroup_create_dir - create a directory for an object.
2561 * @cgrp: the cgroup we create the directory for. It must have a valid
2562 * ->parent field. And we are going to fill its ->dentry field.
2563 * @dentry: dentry of the new cgroup
2564 * @mode: mode to set on new directory.
ddbcc7e8 2565 */
bd89aabc 2566static int cgroup_create_dir(struct cgroup *cgrp, struct dentry *dentry,
a5e7ed32 2567 umode_t mode)
ddbcc7e8
PM
2568{
2569 struct dentry *parent;
2570 int error = 0;
2571
bd89aabc
PM
2572 parent = cgrp->parent->dentry;
2573 error = cgroup_create_file(dentry, S_IFDIR | mode, cgrp->root->sb);
ddbcc7e8 2574 if (!error) {
bd89aabc 2575 dentry->d_fsdata = cgrp;
ddbcc7e8 2576 inc_nlink(parent->d_inode);
a47295e6 2577 rcu_assign_pointer(cgrp->dentry, dentry);
ddbcc7e8
PM
2578 dget(dentry);
2579 }
2580 dput(dentry);
2581
2582 return error;
2583}
2584
099fca32
LZ
2585/**
2586 * cgroup_file_mode - deduce file mode of a control file
2587 * @cft: the control file in question
2588 *
2589 * returns cft->mode if ->mode is not 0
2590 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
2591 * returns S_IRUGO if it has only a read handler
2592 * returns S_IWUSR if it has only a write hander
2593 */
a5e7ed32 2594static umode_t cgroup_file_mode(const struct cftype *cft)
099fca32 2595{
a5e7ed32 2596 umode_t mode = 0;
099fca32
LZ
2597
2598 if (cft->mode)
2599 return cft->mode;
2600
2601 if (cft->read || cft->read_u64 || cft->read_s64 ||
2602 cft->read_map || cft->read_seq_string)
2603 mode |= S_IRUGO;
2604
2605 if (cft->write || cft->write_u64 || cft->write_s64 ||
2606 cft->write_string || cft->trigger)
2607 mode |= S_IWUSR;
2608
2609 return mode;
2610}
2611
bd89aabc 2612int cgroup_add_file(struct cgroup *cgrp,
ddbcc7e8
PM
2613 struct cgroup_subsys *subsys,
2614 const struct cftype *cft)
2615{
bd89aabc 2616 struct dentry *dir = cgrp->dentry;
ddbcc7e8
PM
2617 struct dentry *dentry;
2618 int error;
a5e7ed32 2619 umode_t mode;
ddbcc7e8
PM
2620
2621 char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
bd89aabc 2622 if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) {
ddbcc7e8
PM
2623 strcpy(name, subsys->name);
2624 strcat(name, ".");
2625 }
2626 strcat(name, cft->name);
2627 BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
2628 dentry = lookup_one_len(name, dir, strlen(name));
2629 if (!IS_ERR(dentry)) {
099fca32
LZ
2630 mode = cgroup_file_mode(cft);
2631 error = cgroup_create_file(dentry, mode | S_IFREG,
bd89aabc 2632 cgrp->root->sb);
ddbcc7e8
PM
2633 if (!error)
2634 dentry->d_fsdata = (void *)cft;
2635 dput(dentry);
2636 } else
2637 error = PTR_ERR(dentry);
2638 return error;
2639}
e6a1105b 2640EXPORT_SYMBOL_GPL(cgroup_add_file);
ddbcc7e8 2641
bd89aabc 2642int cgroup_add_files(struct cgroup *cgrp,
ddbcc7e8
PM
2643 struct cgroup_subsys *subsys,
2644 const struct cftype cft[],
2645 int count)
2646{
2647 int i, err;
2648 for (i = 0; i < count; i++) {
bd89aabc 2649 err = cgroup_add_file(cgrp, subsys, &cft[i]);
ddbcc7e8
PM
2650 if (err)
2651 return err;
2652 }
2653 return 0;
2654}
e6a1105b 2655EXPORT_SYMBOL_GPL(cgroup_add_files);
ddbcc7e8 2656
a043e3b2
LZ
2657/**
2658 * cgroup_task_count - count the number of tasks in a cgroup.
2659 * @cgrp: the cgroup in question
2660 *
2661 * Return the number of tasks in the cgroup.
2662 */
bd89aabc 2663int cgroup_task_count(const struct cgroup *cgrp)
bbcb81d0
PM
2664{
2665 int count = 0;
71cbb949 2666 struct cg_cgroup_link *link;
817929ec
PM
2667
2668 read_lock(&css_set_lock);
71cbb949 2669 list_for_each_entry(link, &cgrp->css_sets, cgrp_link_list) {
146aa1bd 2670 count += atomic_read(&link->cg->refcount);
817929ec
PM
2671 }
2672 read_unlock(&css_set_lock);
bbcb81d0
PM
2673 return count;
2674}
2675
817929ec
PM
2676/*
2677 * Advance a list_head iterator. The iterator should be positioned at
2678 * the start of a css_set
2679 */
bd89aabc 2680static void cgroup_advance_iter(struct cgroup *cgrp,
7717f7ba 2681 struct cgroup_iter *it)
817929ec
PM
2682{
2683 struct list_head *l = it->cg_link;
2684 struct cg_cgroup_link *link;
2685 struct css_set *cg;
2686
2687 /* Advance to the next non-empty css_set */
2688 do {
2689 l = l->next;
bd89aabc 2690 if (l == &cgrp->css_sets) {
817929ec
PM
2691 it->cg_link = NULL;
2692 return;
2693 }
bd89aabc 2694 link = list_entry(l, struct cg_cgroup_link, cgrp_link_list);
817929ec
PM
2695 cg = link->cg;
2696 } while (list_empty(&cg->tasks));
2697 it->cg_link = l;
2698 it->task = cg->tasks.next;
2699}
2700
31a7df01
CW
2701/*
2702 * To reduce the fork() overhead for systems that are not actually
2703 * using their cgroups capability, we don't maintain the lists running
2704 * through each css_set to its tasks until we see the list actually
2705 * used - in other words after the first call to cgroup_iter_start().
31a7df01 2706 */
3df91fe3 2707static void cgroup_enable_task_cg_lists(void)
31a7df01
CW
2708{
2709 struct task_struct *p, *g;
2710 write_lock(&css_set_lock);
2711 use_task_css_set_links = 1;
3ce3230a
FW
2712 /*
2713 * We need tasklist_lock because RCU is not safe against
2714 * while_each_thread(). Besides, a forking task that has passed
2715 * cgroup_post_fork() without seeing use_task_css_set_links = 1
2716 * is not guaranteed to have its child immediately visible in the
2717 * tasklist if we walk through it with RCU.
2718 */
2719 read_lock(&tasklist_lock);
31a7df01
CW
2720 do_each_thread(g, p) {
2721 task_lock(p);
0e04388f
LZ
2722 /*
2723 * We should check if the process is exiting, otherwise
2724 * it will race with cgroup_exit() in that the list
2725 * entry won't be deleted though the process has exited.
2726 */
2727 if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
31a7df01
CW
2728 list_add(&p->cg_list, &p->cgroups->tasks);
2729 task_unlock(p);
2730 } while_each_thread(g, p);
3ce3230a 2731 read_unlock(&tasklist_lock);
31a7df01
CW
2732 write_unlock(&css_set_lock);
2733}
2734
bd89aabc 2735void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
c6ca5750 2736 __acquires(css_set_lock)
817929ec
PM
2737{
2738 /*
2739 * The first time anyone tries to iterate across a cgroup,
2740 * we need to enable the list linking each css_set to its
2741 * tasks, and fix up all existing tasks.
2742 */
31a7df01
CW
2743 if (!use_task_css_set_links)
2744 cgroup_enable_task_cg_lists();
2745
817929ec 2746 read_lock(&css_set_lock);
bd89aabc
PM
2747 it->cg_link = &cgrp->css_sets;
2748 cgroup_advance_iter(cgrp, it);
817929ec
PM
2749}
2750
bd89aabc 2751struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
817929ec
PM
2752 struct cgroup_iter *it)
2753{
2754 struct task_struct *res;
2755 struct list_head *l = it->task;
2019f634 2756 struct cg_cgroup_link *link;
817929ec
PM
2757
2758 /* If the iterator cg is NULL, we have no tasks */
2759 if (!it->cg_link)
2760 return NULL;
2761 res = list_entry(l, struct task_struct, cg_list);
2762 /* Advance iterator to find next entry */
2763 l = l->next;
2019f634
LJ
2764 link = list_entry(it->cg_link, struct cg_cgroup_link, cgrp_link_list);
2765 if (l == &link->cg->tasks) {
817929ec
PM
2766 /* We reached the end of this task list - move on to
2767 * the next cg_cgroup_link */
bd89aabc 2768 cgroup_advance_iter(cgrp, it);
817929ec
PM
2769 } else {
2770 it->task = l;
2771 }
2772 return res;
2773}
2774
bd89aabc 2775void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
c6ca5750 2776 __releases(css_set_lock)
817929ec
PM
2777{
2778 read_unlock(&css_set_lock);
2779}
2780
31a7df01
CW
2781static inline int started_after_time(struct task_struct *t1,
2782 struct timespec *time,
2783 struct task_struct *t2)
2784{
2785 int start_diff = timespec_compare(&t1->start_time, time);
2786 if (start_diff > 0) {
2787 return 1;
2788 } else if (start_diff < 0) {
2789 return 0;
2790 } else {
2791 /*
2792 * Arbitrarily, if two processes started at the same
2793 * time, we'll say that the lower pointer value
2794 * started first. Note that t2 may have exited by now
2795 * so this may not be a valid pointer any longer, but
2796 * that's fine - it still serves to distinguish
2797 * between two tasks started (effectively) simultaneously.
2798 */
2799 return t1 > t2;
2800 }
2801}
2802
2803/*
2804 * This function is a callback from heap_insert() and is used to order
2805 * the heap.
2806 * In this case we order the heap in descending task start time.
2807 */
2808static inline int started_after(void *p1, void *p2)
2809{
2810 struct task_struct *t1 = p1;
2811 struct task_struct *t2 = p2;
2812 return started_after_time(t1, &t2->start_time, t2);
2813}
2814
2815/**
2816 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
2817 * @scan: struct cgroup_scanner containing arguments for the scan
2818 *
2819 * Arguments include pointers to callback functions test_task() and
2820 * process_task().
2821 * Iterate through all the tasks in a cgroup, calling test_task() for each,
2822 * and if it returns true, call process_task() for it also.
2823 * The test_task pointer may be NULL, meaning always true (select all tasks).
2824 * Effectively duplicates cgroup_iter_{start,next,end}()
2825 * but does not lock css_set_lock for the call to process_task().
2826 * The struct cgroup_scanner may be embedded in any structure of the caller's
2827 * creation.
2828 * It is guaranteed that process_task() will act on every task that
2829 * is a member of the cgroup for the duration of this call. This
2830 * function may or may not call process_task() for tasks that exit
2831 * or move to a different cgroup during the call, or are forked or
2832 * move into the cgroup during the call.
2833 *
2834 * Note that test_task() may be called with locks held, and may in some
2835 * situations be called multiple times for the same task, so it should
2836 * be cheap.
2837 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
2838 * pre-allocated and will be used for heap operations (and its "gt" member will
2839 * be overwritten), else a temporary heap will be used (allocation of which
2840 * may cause this function to fail).
2841 */
2842int cgroup_scan_tasks(struct cgroup_scanner *scan)
2843{
2844 int retval, i;
2845 struct cgroup_iter it;
2846 struct task_struct *p, *dropped;
2847 /* Never dereference latest_task, since it's not refcounted */
2848 struct task_struct *latest_task = NULL;
2849 struct ptr_heap tmp_heap;
2850 struct ptr_heap *heap;
2851 struct timespec latest_time = { 0, 0 };
2852
2853 if (scan->heap) {
2854 /* The caller supplied our heap and pre-allocated its memory */
2855 heap = scan->heap;
2856 heap->gt = &started_after;
2857 } else {
2858 /* We need to allocate our own heap memory */
2859 heap = &tmp_heap;
2860 retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
2861 if (retval)
2862 /* cannot allocate the heap */
2863 return retval;
2864 }
2865
2866 again:
2867 /*
2868 * Scan tasks in the cgroup, using the scanner's "test_task" callback
2869 * to determine which are of interest, and using the scanner's
2870 * "process_task" callback to process any of them that need an update.
2871 * Since we don't want to hold any locks during the task updates,
2872 * gather tasks to be processed in a heap structure.
2873 * The heap is sorted by descending task start time.
2874 * If the statically-sized heap fills up, we overflow tasks that
2875 * started later, and in future iterations only consider tasks that
2876 * started after the latest task in the previous pass. This
2877 * guarantees forward progress and that we don't miss any tasks.
2878 */
2879 heap->size = 0;
2880 cgroup_iter_start(scan->cg, &it);
2881 while ((p = cgroup_iter_next(scan->cg, &it))) {
2882 /*
2883 * Only affect tasks that qualify per the caller's callback,
2884 * if he provided one
2885 */
2886 if (scan->test_task && !scan->test_task(p, scan))
2887 continue;
2888 /*
2889 * Only process tasks that started after the last task
2890 * we processed
2891 */
2892 if (!started_after_time(p, &latest_time, latest_task))
2893 continue;
2894 dropped = heap_insert(heap, p);
2895 if (dropped == NULL) {
2896 /*
2897 * The new task was inserted; the heap wasn't
2898 * previously full
2899 */
2900 get_task_struct(p);
2901 } else if (dropped != p) {
2902 /*
2903 * The new task was inserted, and pushed out a
2904 * different task
2905 */
2906 get_task_struct(p);
2907 put_task_struct(dropped);
2908 }
2909 /*
2910 * Else the new task was newer than anything already in
2911 * the heap and wasn't inserted
2912 */
2913 }
2914 cgroup_iter_end(scan->cg, &it);
2915
2916 if (heap->size) {
2917 for (i = 0; i < heap->size; i++) {
4fe91d51 2918 struct task_struct *q = heap->ptrs[i];
31a7df01 2919 if (i == 0) {
4fe91d51
PJ
2920 latest_time = q->start_time;
2921 latest_task = q;
31a7df01
CW
2922 }
2923 /* Process the task per the caller's callback */
4fe91d51
PJ
2924 scan->process_task(q, scan);
2925 put_task_struct(q);
31a7df01
CW
2926 }
2927 /*
2928 * If we had to process any tasks at all, scan again
2929 * in case some of them were in the middle of forking
2930 * children that didn't get processed.
2931 * Not the most efficient way to do it, but it avoids
2932 * having to take callback_mutex in the fork path
2933 */
2934 goto again;
2935 }
2936 if (heap == &tmp_heap)
2937 heap_free(&tmp_heap);
2938 return 0;
2939}
2940
bbcb81d0 2941/*
102a775e 2942 * Stuff for reading the 'tasks'/'procs' files.
bbcb81d0
PM
2943 *
2944 * Reading this file can return large amounts of data if a cgroup has
2945 * *lots* of attached tasks. So it may need several calls to read(),
2946 * but we cannot guarantee that the information we produce is correct
2947 * unless we produce it entirely atomically.
2948 *
bbcb81d0 2949 */
bbcb81d0 2950
24528255
LZ
2951/* which pidlist file are we talking about? */
2952enum cgroup_filetype {
2953 CGROUP_FILE_PROCS,
2954 CGROUP_FILE_TASKS,
2955};
2956
2957/*
2958 * A pidlist is a list of pids that virtually represents the contents of one
2959 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
2960 * a pair (one each for procs, tasks) for each pid namespace that's relevant
2961 * to the cgroup.
2962 */
2963struct cgroup_pidlist {
2964 /*
2965 * used to find which pidlist is wanted. doesn't change as long as
2966 * this particular list stays in the list.
2967 */
2968 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
2969 /* array of xids */
2970 pid_t *list;
2971 /* how many elements the above list has */
2972 int length;
2973 /* how many files are using the current array */
2974 int use_count;
2975 /* each of these stored in a list by its cgroup */
2976 struct list_head links;
2977 /* pointer to the cgroup we belong to, for list removal purposes */
2978 struct cgroup *owner;
2979 /* protects the other fields */
2980 struct rw_semaphore mutex;
2981};
2982
d1d9fd33
BB
2983/*
2984 * The following two functions "fix" the issue where there are more pids
2985 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
2986 * TODO: replace with a kernel-wide solution to this problem
2987 */
2988#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
2989static void *pidlist_allocate(int count)
2990{
2991 if (PIDLIST_TOO_LARGE(count))
2992 return vmalloc(count * sizeof(pid_t));
2993 else
2994 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
2995}
2996static void pidlist_free(void *p)
2997{
2998 if (is_vmalloc_addr(p))
2999 vfree(p);
3000 else
3001 kfree(p);
3002}
3003static void *pidlist_resize(void *p, int newcount)
3004{
3005 void *newlist;
3006 /* note: if new alloc fails, old p will still be valid either way */
3007 if (is_vmalloc_addr(p)) {
3008 newlist = vmalloc(newcount * sizeof(pid_t));
3009 if (!newlist)
3010 return NULL;
3011 memcpy(newlist, p, newcount * sizeof(pid_t));
3012 vfree(p);
3013 } else {
3014 newlist = krealloc(p, newcount * sizeof(pid_t), GFP_KERNEL);
3015 }
3016 return newlist;
3017}
3018
bbcb81d0 3019/*
102a775e
BB
3020 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
3021 * If the new stripped list is sufficiently smaller and there's enough memory
3022 * to allocate a new buffer, will let go of the unneeded memory. Returns the
3023 * number of unique elements.
bbcb81d0 3024 */
102a775e
BB
3025/* is the size difference enough that we should re-allocate the array? */
3026#define PIDLIST_REALLOC_DIFFERENCE(old, new) ((old) - PAGE_SIZE >= (new))
3027static int pidlist_uniq(pid_t **p, int length)
bbcb81d0 3028{
102a775e
BB
3029 int src, dest = 1;
3030 pid_t *list = *p;
3031 pid_t *newlist;
3032
3033 /*
3034 * we presume the 0th element is unique, so i starts at 1. trivial
3035 * edge cases first; no work needs to be done for either
3036 */
3037 if (length == 0 || length == 1)
3038 return length;
3039 /* src and dest walk down the list; dest counts unique elements */
3040 for (src = 1; src < length; src++) {
3041 /* find next unique element */
3042 while (list[src] == list[src-1]) {
3043 src++;
3044 if (src == length)
3045 goto after;
3046 }
3047 /* dest always points to where the next unique element goes */
3048 list[dest] = list[src];
3049 dest++;
3050 }
3051after:
3052 /*
3053 * if the length difference is large enough, we want to allocate a
3054 * smaller buffer to save memory. if this fails due to out of memory,
3055 * we'll just stay with what we've got.
3056 */
3057 if (PIDLIST_REALLOC_DIFFERENCE(length, dest)) {
d1d9fd33 3058 newlist = pidlist_resize(list, dest);
102a775e
BB
3059 if (newlist)
3060 *p = newlist;
3061 }
3062 return dest;
3063}
3064
3065static int cmppid(const void *a, const void *b)
3066{
3067 return *(pid_t *)a - *(pid_t *)b;
3068}
3069
72a8cb30
BB
3070/*
3071 * find the appropriate pidlist for our purpose (given procs vs tasks)
3072 * returns with the lock on that pidlist already held, and takes care
3073 * of the use count, or returns NULL with no locks held if we're out of
3074 * memory.
3075 */
3076static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
3077 enum cgroup_filetype type)
3078{
3079 struct cgroup_pidlist *l;
3080 /* don't need task_nsproxy() if we're looking at ourself */
b70cc5fd
LZ
3081 struct pid_namespace *ns = current->nsproxy->pid_ns;
3082
72a8cb30
BB
3083 /*
3084 * We can't drop the pidlist_mutex before taking the l->mutex in case
3085 * the last ref-holder is trying to remove l from the list at the same
3086 * time. Holding the pidlist_mutex precludes somebody taking whichever
3087 * list we find out from under us - compare release_pid_array().
3088 */
3089 mutex_lock(&cgrp->pidlist_mutex);
3090 list_for_each_entry(l, &cgrp->pidlists, links) {
3091 if (l->key.type == type && l->key.ns == ns) {
72a8cb30
BB
3092 /* make sure l doesn't vanish out from under us */
3093 down_write(&l->mutex);
3094 mutex_unlock(&cgrp->pidlist_mutex);
72a8cb30
BB
3095 return l;
3096 }
3097 }
3098 /* entry not found; create a new one */
3099 l = kmalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
3100 if (!l) {
3101 mutex_unlock(&cgrp->pidlist_mutex);
72a8cb30
BB
3102 return l;
3103 }
3104 init_rwsem(&l->mutex);
3105 down_write(&l->mutex);
3106 l->key.type = type;
b70cc5fd 3107 l->key.ns = get_pid_ns(ns);
72a8cb30
BB
3108 l->use_count = 0; /* don't increment here */
3109 l->list = NULL;
3110 l->owner = cgrp;
3111 list_add(&l->links, &cgrp->pidlists);
3112 mutex_unlock(&cgrp->pidlist_mutex);
3113 return l;
3114}
3115
102a775e
BB
3116/*
3117 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
3118 */
72a8cb30
BB
3119static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
3120 struct cgroup_pidlist **lp)
102a775e
BB
3121{
3122 pid_t *array;
3123 int length;
3124 int pid, n = 0; /* used for populating the array */
817929ec
PM
3125 struct cgroup_iter it;
3126 struct task_struct *tsk;
102a775e
BB
3127 struct cgroup_pidlist *l;
3128
3129 /*
3130 * If cgroup gets more users after we read count, we won't have
3131 * enough space - tough. This race is indistinguishable to the
3132 * caller from the case that the additional cgroup users didn't
3133 * show up until sometime later on.
3134 */
3135 length = cgroup_task_count(cgrp);
d1d9fd33 3136 array = pidlist_allocate(length);
102a775e
BB
3137 if (!array)
3138 return -ENOMEM;
3139 /* now, populate the array */
bd89aabc
PM
3140 cgroup_iter_start(cgrp, &it);
3141 while ((tsk = cgroup_iter_next(cgrp, &it))) {
102a775e 3142 if (unlikely(n == length))
817929ec 3143 break;
102a775e 3144 /* get tgid or pid for procs or tasks file respectively */
72a8cb30
BB
3145 if (type == CGROUP_FILE_PROCS)
3146 pid = task_tgid_vnr(tsk);
3147 else
3148 pid = task_pid_vnr(tsk);
102a775e
BB
3149 if (pid > 0) /* make sure to only use valid results */
3150 array[n++] = pid;
817929ec 3151 }
bd89aabc 3152 cgroup_iter_end(cgrp, &it);
102a775e
BB
3153 length = n;
3154 /* now sort & (if procs) strip out duplicates */
3155 sort(array, length, sizeof(pid_t), cmppid, NULL);
72a8cb30 3156 if (type == CGROUP_FILE_PROCS)
102a775e 3157 length = pidlist_uniq(&array, length);
72a8cb30
BB
3158 l = cgroup_pidlist_find(cgrp, type);
3159 if (!l) {
d1d9fd33 3160 pidlist_free(array);
72a8cb30 3161 return -ENOMEM;
102a775e 3162 }
72a8cb30 3163 /* store array, freeing old if necessary - lock already held */
d1d9fd33 3164 pidlist_free(l->list);
102a775e
BB
3165 l->list = array;
3166 l->length = length;
3167 l->use_count++;
3168 up_write(&l->mutex);
72a8cb30 3169 *lp = l;
102a775e 3170 return 0;
bbcb81d0
PM
3171}
3172
846c7bb0 3173/**
a043e3b2 3174 * cgroupstats_build - build and fill cgroupstats
846c7bb0
BS
3175 * @stats: cgroupstats to fill information into
3176 * @dentry: A dentry entry belonging to the cgroup for which stats have
3177 * been requested.
a043e3b2
LZ
3178 *
3179 * Build and fill cgroupstats so that taskstats can export it to user
3180 * space.
846c7bb0
BS
3181 */
3182int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
3183{
3184 int ret = -EINVAL;
bd89aabc 3185 struct cgroup *cgrp;
846c7bb0
BS
3186 struct cgroup_iter it;
3187 struct task_struct *tsk;
33d283be 3188
846c7bb0 3189 /*
33d283be
LZ
3190 * Validate dentry by checking the superblock operations,
3191 * and make sure it's a directory.
846c7bb0 3192 */
33d283be
LZ
3193 if (dentry->d_sb->s_op != &cgroup_ops ||
3194 !S_ISDIR(dentry->d_inode->i_mode))
846c7bb0
BS
3195 goto err;
3196
3197 ret = 0;
bd89aabc 3198 cgrp = dentry->d_fsdata;
846c7bb0 3199
bd89aabc
PM
3200 cgroup_iter_start(cgrp, &it);
3201 while ((tsk = cgroup_iter_next(cgrp, &it))) {
846c7bb0
BS
3202 switch (tsk->state) {
3203 case TASK_RUNNING:
3204 stats->nr_running++;
3205 break;
3206 case TASK_INTERRUPTIBLE:
3207 stats->nr_sleeping++;
3208 break;
3209 case TASK_UNINTERRUPTIBLE:
3210 stats->nr_uninterruptible++;
3211 break;
3212 case TASK_STOPPED:
3213 stats->nr_stopped++;
3214 break;
3215 default:
3216 if (delayacct_is_task_waiting_on_io(tsk))
3217 stats->nr_io_wait++;
3218 break;
3219 }
3220 }
bd89aabc 3221 cgroup_iter_end(cgrp, &it);
846c7bb0 3222
846c7bb0
BS
3223err:
3224 return ret;
3225}
3226
8f3ff208 3227
bbcb81d0 3228/*
102a775e 3229 * seq_file methods for the tasks/procs files. The seq_file position is the
cc31edce 3230 * next pid to display; the seq_file iterator is a pointer to the pid
102a775e 3231 * in the cgroup->l->list array.
bbcb81d0 3232 */
cc31edce 3233
102a775e 3234static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
bbcb81d0 3235{
cc31edce
PM
3236 /*
3237 * Initially we receive a position value that corresponds to
3238 * one more than the last pid shown (or 0 on the first call or
3239 * after a seek to the start). Use a binary-search to find the
3240 * next pid to display, if any
3241 */
102a775e 3242 struct cgroup_pidlist *l = s->private;
cc31edce
PM
3243 int index = 0, pid = *pos;
3244 int *iter;
3245
102a775e 3246 down_read(&l->mutex);
cc31edce 3247 if (pid) {
102a775e 3248 int end = l->length;
20777766 3249
cc31edce
PM
3250 while (index < end) {
3251 int mid = (index + end) / 2;
102a775e 3252 if (l->list[mid] == pid) {
cc31edce
PM
3253 index = mid;
3254 break;
102a775e 3255 } else if (l->list[mid] <= pid)
cc31edce
PM
3256 index = mid + 1;
3257 else
3258 end = mid;
3259 }
3260 }
3261 /* If we're off the end of the array, we're done */
102a775e 3262 if (index >= l->length)
cc31edce
PM
3263 return NULL;
3264 /* Update the abstract position to be the actual pid that we found */
102a775e 3265 iter = l->list + index;
cc31edce
PM
3266 *pos = *iter;
3267 return iter;
3268}
3269
102a775e 3270static void cgroup_pidlist_stop(struct seq_file *s, void *v)
cc31edce 3271{
102a775e
BB
3272 struct cgroup_pidlist *l = s->private;
3273 up_read(&l->mutex);
cc31edce
PM
3274}
3275
102a775e 3276static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
cc31edce 3277{
102a775e
BB
3278 struct cgroup_pidlist *l = s->private;
3279 pid_t *p = v;
3280 pid_t *end = l->list + l->length;
cc31edce
PM
3281 /*
3282 * Advance to the next pid in the array. If this goes off the
3283 * end, we're done
3284 */
3285 p++;
3286 if (p >= end) {
3287 return NULL;
3288 } else {
3289 *pos = *p;
3290 return p;
3291 }
3292}
3293
102a775e 3294static int cgroup_pidlist_show(struct seq_file *s, void *v)
cc31edce
PM
3295{
3296 return seq_printf(s, "%d\n", *(int *)v);
3297}
bbcb81d0 3298
102a775e
BB
3299/*
3300 * seq_operations functions for iterating on pidlists through seq_file -
3301 * independent of whether it's tasks or procs
3302 */
3303static const struct seq_operations cgroup_pidlist_seq_operations = {
3304 .start = cgroup_pidlist_start,
3305 .stop = cgroup_pidlist_stop,
3306 .next = cgroup_pidlist_next,
3307 .show = cgroup_pidlist_show,
cc31edce
PM
3308};
3309
102a775e 3310static void cgroup_release_pid_array(struct cgroup_pidlist *l)
cc31edce 3311{
72a8cb30
BB
3312 /*
3313 * the case where we're the last user of this particular pidlist will
3314 * have us remove it from the cgroup's list, which entails taking the
3315 * mutex. since in pidlist_find the pidlist->lock depends on cgroup->
3316 * pidlist_mutex, we have to take pidlist_mutex first.
3317 */
3318 mutex_lock(&l->owner->pidlist_mutex);
102a775e
BB
3319 down_write(&l->mutex);
3320 BUG_ON(!l->use_count);
3321 if (!--l->use_count) {
72a8cb30
BB
3322 /* we're the last user if refcount is 0; remove and free */
3323 list_del(&l->links);
3324 mutex_unlock(&l->owner->pidlist_mutex);
d1d9fd33 3325 pidlist_free(l->list);
72a8cb30
BB
3326 put_pid_ns(l->key.ns);
3327 up_write(&l->mutex);
3328 kfree(l);
3329 return;
cc31edce 3330 }
72a8cb30 3331 mutex_unlock(&l->owner->pidlist_mutex);
102a775e 3332 up_write(&l->mutex);
bbcb81d0
PM
3333}
3334
102a775e 3335static int cgroup_pidlist_release(struct inode *inode, struct file *file)
cc31edce 3336{
102a775e 3337 struct cgroup_pidlist *l;
cc31edce
PM
3338 if (!(file->f_mode & FMODE_READ))
3339 return 0;
102a775e
BB
3340 /*
3341 * the seq_file will only be initialized if the file was opened for
3342 * reading; hence we check if it's not null only in that case.
3343 */
3344 l = ((struct seq_file *)file->private_data)->private;
3345 cgroup_release_pid_array(l);
cc31edce
PM
3346 return seq_release(inode, file);
3347}
3348
102a775e 3349static const struct file_operations cgroup_pidlist_operations = {
cc31edce
PM
3350 .read = seq_read,
3351 .llseek = seq_lseek,
3352 .write = cgroup_file_write,
102a775e 3353 .release = cgroup_pidlist_release,
cc31edce
PM
3354};
3355
bbcb81d0 3356/*
102a775e
BB
3357 * The following functions handle opens on a file that displays a pidlist
3358 * (tasks or procs). Prepare an array of the process/thread IDs of whoever's
3359 * in the cgroup.
bbcb81d0 3360 */
102a775e 3361/* helper function for the two below it */
72a8cb30 3362static int cgroup_pidlist_open(struct file *file, enum cgroup_filetype type)
bbcb81d0 3363{
bd89aabc 3364 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
72a8cb30 3365 struct cgroup_pidlist *l;
cc31edce 3366 int retval;
bbcb81d0 3367
cc31edce 3368 /* Nothing to do for write-only files */
bbcb81d0
PM
3369 if (!(file->f_mode & FMODE_READ))
3370 return 0;
3371
102a775e 3372 /* have the array populated */
72a8cb30 3373 retval = pidlist_array_load(cgrp, type, &l);
102a775e
BB
3374 if (retval)
3375 return retval;
3376 /* configure file information */
3377 file->f_op = &cgroup_pidlist_operations;
cc31edce 3378
102a775e 3379 retval = seq_open(file, &cgroup_pidlist_seq_operations);
cc31edce 3380 if (retval) {
102a775e 3381 cgroup_release_pid_array(l);
cc31edce 3382 return retval;
bbcb81d0 3383 }
102a775e 3384 ((struct seq_file *)file->private_data)->private = l;
bbcb81d0
PM
3385 return 0;
3386}
102a775e
BB
3387static int cgroup_tasks_open(struct inode *unused, struct file *file)
3388{
72a8cb30 3389 return cgroup_pidlist_open(file, CGROUP_FILE_TASKS);
102a775e
BB
3390}
3391static int cgroup_procs_open(struct inode *unused, struct file *file)
3392{
72a8cb30 3393 return cgroup_pidlist_open(file, CGROUP_FILE_PROCS);
102a775e 3394}
bbcb81d0 3395
bd89aabc 3396static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
81a6a5cd
PM
3397 struct cftype *cft)
3398{
bd89aabc 3399 return notify_on_release(cgrp);
81a6a5cd
PM
3400}
3401
6379c106
PM
3402static int cgroup_write_notify_on_release(struct cgroup *cgrp,
3403 struct cftype *cft,
3404 u64 val)
3405{
3406 clear_bit(CGRP_RELEASABLE, &cgrp->flags);
3407 if (val)
3408 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3409 else
3410 clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3411 return 0;
3412}
3413
0dea1168
KS
3414/*
3415 * Unregister event and free resources.
3416 *
3417 * Gets called from workqueue.
3418 */
3419static void cgroup_event_remove(struct work_struct *work)
3420{
3421 struct cgroup_event *event = container_of(work, struct cgroup_event,
3422 remove);
3423 struct cgroup *cgrp = event->cgrp;
3424
0dea1168
KS
3425 event->cft->unregister_event(cgrp, event->cft, event->eventfd);
3426
3427 eventfd_ctx_put(event->eventfd);
0dea1168 3428 kfree(event);
a0a4db54 3429 dput(cgrp->dentry);
0dea1168
KS
3430}
3431
3432/*
3433 * Gets called on POLLHUP on eventfd when user closes it.
3434 *
3435 * Called with wqh->lock held and interrupts disabled.
3436 */
3437static int cgroup_event_wake(wait_queue_t *wait, unsigned mode,
3438 int sync, void *key)
3439{
3440 struct cgroup_event *event = container_of(wait,
3441 struct cgroup_event, wait);
3442 struct cgroup *cgrp = event->cgrp;
3443 unsigned long flags = (unsigned long)key;
3444
3445 if (flags & POLLHUP) {
a93d2f17 3446 __remove_wait_queue(event->wqh, &event->wait);
0dea1168
KS
3447 spin_lock(&cgrp->event_list_lock);
3448 list_del(&event->list);
3449 spin_unlock(&cgrp->event_list_lock);
3450 /*
3451 * We are in atomic context, but cgroup_event_remove() may
3452 * sleep, so we have to call it in workqueue.
3453 */
3454 schedule_work(&event->remove);
3455 }
3456
3457 return 0;
3458}
3459
3460static void cgroup_event_ptable_queue_proc(struct file *file,
3461 wait_queue_head_t *wqh, poll_table *pt)
3462{
3463 struct cgroup_event *event = container_of(pt,
3464 struct cgroup_event, pt);
3465
3466 event->wqh = wqh;
3467 add_wait_queue(wqh, &event->wait);
3468}
3469
3470/*
3471 * Parse input and register new cgroup event handler.
3472 *
3473 * Input must be in format '<event_fd> <control_fd> <args>'.
3474 * Interpretation of args is defined by control file implementation.
3475 */
3476static int cgroup_write_event_control(struct cgroup *cgrp, struct cftype *cft,
3477 const char *buffer)
3478{
3479 struct cgroup_event *event = NULL;
3480 unsigned int efd, cfd;
3481 struct file *efile = NULL;
3482 struct file *cfile = NULL;
3483 char *endp;
3484 int ret;
3485
3486 efd = simple_strtoul(buffer, &endp, 10);
3487 if (*endp != ' ')
3488 return -EINVAL;
3489 buffer = endp + 1;
3490
3491 cfd = simple_strtoul(buffer, &endp, 10);
3492 if ((*endp != ' ') && (*endp != '\0'))
3493 return -EINVAL;
3494 buffer = endp + 1;
3495
3496 event = kzalloc(sizeof(*event), GFP_KERNEL);
3497 if (!event)
3498 return -ENOMEM;
3499 event->cgrp = cgrp;
3500 INIT_LIST_HEAD(&event->list);
3501 init_poll_funcptr(&event->pt, cgroup_event_ptable_queue_proc);
3502 init_waitqueue_func_entry(&event->wait, cgroup_event_wake);
3503 INIT_WORK(&event->remove, cgroup_event_remove);
3504
3505 efile = eventfd_fget(efd);
3506 if (IS_ERR(efile)) {
3507 ret = PTR_ERR(efile);
3508 goto fail;
3509 }
3510
3511 event->eventfd = eventfd_ctx_fileget(efile);
3512 if (IS_ERR(event->eventfd)) {
3513 ret = PTR_ERR(event->eventfd);
3514 goto fail;
3515 }
3516
3517 cfile = fget(cfd);
3518 if (!cfile) {
3519 ret = -EBADF;
3520 goto fail;
3521 }
3522
3523 /* the process need read permission on control file */
3bfa784a
AV
3524 /* AV: shouldn't we check that it's been opened for read instead? */
3525 ret = inode_permission(cfile->f_path.dentry->d_inode, MAY_READ);
0dea1168
KS
3526 if (ret < 0)
3527 goto fail;
3528
3529 event->cft = __file_cft(cfile);
3530 if (IS_ERR(event->cft)) {
3531 ret = PTR_ERR(event->cft);
3532 goto fail;
3533 }
3534
3535 if (!event->cft->register_event || !event->cft->unregister_event) {
3536 ret = -EINVAL;
3537 goto fail;
3538 }
3539
3540 ret = event->cft->register_event(cgrp, event->cft,
3541 event->eventfd, buffer);
3542 if (ret)
3543 goto fail;
3544
3545 if (efile->f_op->poll(efile, &event->pt) & POLLHUP) {
3546 event->cft->unregister_event(cgrp, event->cft, event->eventfd);
3547 ret = 0;
3548 goto fail;
3549 }
3550
a0a4db54
KS
3551 /*
3552 * Events should be removed after rmdir of cgroup directory, but before
3553 * destroying subsystem state objects. Let's take reference to cgroup
3554 * directory dentry to do that.
3555 */
3556 dget(cgrp->dentry);
3557
0dea1168
KS
3558 spin_lock(&cgrp->event_list_lock);
3559 list_add(&event->list, &cgrp->event_list);
3560 spin_unlock(&cgrp->event_list_lock);
3561
3562 fput(cfile);
3563 fput(efile);
3564
3565 return 0;
3566
3567fail:
3568 if (cfile)
3569 fput(cfile);
3570
3571 if (event && event->eventfd && !IS_ERR(event->eventfd))
3572 eventfd_ctx_put(event->eventfd);
3573
3574 if (!IS_ERR_OR_NULL(efile))
3575 fput(efile);
3576
3577 kfree(event);
3578
3579 return ret;
3580}
3581
97978e6d
DL
3582static u64 cgroup_clone_children_read(struct cgroup *cgrp,
3583 struct cftype *cft)
3584{
3585 return clone_children(cgrp);
3586}
3587
3588static int cgroup_clone_children_write(struct cgroup *cgrp,
3589 struct cftype *cft,
3590 u64 val)
3591{
3592 if (val)
3593 set_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
3594 else
3595 clear_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
3596 return 0;
3597}
3598
bbcb81d0
PM
3599/*
3600 * for the common functions, 'private' gives the type of file
3601 */
102a775e
BB
3602/* for hysterical raisins, we can't put this on the older files */
3603#define CGROUP_FILE_GENERIC_PREFIX "cgroup."
81a6a5cd
PM
3604static struct cftype files[] = {
3605 {
3606 .name = "tasks",
3607 .open = cgroup_tasks_open,
af351026 3608 .write_u64 = cgroup_tasks_write,
102a775e 3609 .release = cgroup_pidlist_release,
099fca32 3610 .mode = S_IRUGO | S_IWUSR,
81a6a5cd 3611 },
102a775e
BB
3612 {
3613 .name = CGROUP_FILE_GENERIC_PREFIX "procs",
3614 .open = cgroup_procs_open,
74a1166d 3615 .write_u64 = cgroup_procs_write,
102a775e 3616 .release = cgroup_pidlist_release,
74a1166d 3617 .mode = S_IRUGO | S_IWUSR,
102a775e 3618 },
81a6a5cd
PM
3619 {
3620 .name = "notify_on_release",
f4c753b7 3621 .read_u64 = cgroup_read_notify_on_release,
6379c106 3622 .write_u64 = cgroup_write_notify_on_release,
81a6a5cd 3623 },
0dea1168
KS
3624 {
3625 .name = CGROUP_FILE_GENERIC_PREFIX "event_control",
3626 .write_string = cgroup_write_event_control,
3627 .mode = S_IWUGO,
3628 },
97978e6d
DL
3629 {
3630 .name = "cgroup.clone_children",
3631 .read_u64 = cgroup_clone_children_read,
3632 .write_u64 = cgroup_clone_children_write,
3633 },
81a6a5cd
PM
3634};
3635
3636static struct cftype cft_release_agent = {
3637 .name = "release_agent",
e788e066
PM
3638 .read_seq_string = cgroup_release_agent_show,
3639 .write_string = cgroup_release_agent_write,
3640 .max_write_len = PATH_MAX,
bbcb81d0
PM
3641};
3642
bd89aabc 3643static int cgroup_populate_dir(struct cgroup *cgrp)
ddbcc7e8
PM
3644{
3645 int err;
3646 struct cgroup_subsys *ss;
3647
bd89aabc 3648 err = cgroup_add_files(cgrp, NULL, files, ARRAY_SIZE(files));
bbcb81d0
PM
3649 if (err < 0)
3650 return err;
3651
bd89aabc
PM
3652 if (cgrp == cgrp->top_cgroup) {
3653 if ((err = cgroup_add_file(cgrp, NULL, &cft_release_agent)) < 0)
81a6a5cd
PM
3654 return err;
3655 }
3656
bd89aabc
PM
3657 for_each_subsys(cgrp->root, ss) {
3658 if (ss->populate && (err = ss->populate(ss, cgrp)) < 0)
ddbcc7e8
PM
3659 return err;
3660 }
38460b48
KH
3661 /* This cgroup is ready now */
3662 for_each_subsys(cgrp->root, ss) {
3663 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
3664 /*
3665 * Update id->css pointer and make this css visible from
3666 * CSS ID functions. This pointer will be dereferened
3667 * from RCU-read-side without locks.
3668 */
3669 if (css->id)
3670 rcu_assign_pointer(css->id->css, css);
3671 }
ddbcc7e8
PM
3672
3673 return 0;
3674}
3675
3676static void init_cgroup_css(struct cgroup_subsys_state *css,
3677 struct cgroup_subsys *ss,
bd89aabc 3678 struct cgroup *cgrp)
ddbcc7e8 3679{
bd89aabc 3680 css->cgroup = cgrp;
e7c5ec91 3681 atomic_set(&css->refcnt, 1);
ddbcc7e8 3682 css->flags = 0;
38460b48 3683 css->id = NULL;
bd89aabc 3684 if (cgrp == dummytop)
ddbcc7e8 3685 set_bit(CSS_ROOT, &css->flags);
bd89aabc
PM
3686 BUG_ON(cgrp->subsys[ss->subsys_id]);
3687 cgrp->subsys[ss->subsys_id] = css;
ddbcc7e8
PM
3688}
3689
999cd8a4
PM
3690static void cgroup_lock_hierarchy(struct cgroupfs_root *root)
3691{
3692 /* We need to take each hierarchy_mutex in a consistent order */
3693 int i;
3694
aae8aab4
BB
3695 /*
3696 * No worry about a race with rebind_subsystems that might mess up the
3697 * locking order, since both parties are under cgroup_mutex.
3698 */
999cd8a4
PM
3699 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3700 struct cgroup_subsys *ss = subsys[i];
aae8aab4
BB
3701 if (ss == NULL)
3702 continue;
999cd8a4 3703 if (ss->root == root)
cfebe563 3704 mutex_lock(&ss->hierarchy_mutex);
999cd8a4
PM
3705 }
3706}
3707
3708static void cgroup_unlock_hierarchy(struct cgroupfs_root *root)
3709{
3710 int i;
3711
3712 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3713 struct cgroup_subsys *ss = subsys[i];
aae8aab4
BB
3714 if (ss == NULL)
3715 continue;
999cd8a4
PM
3716 if (ss->root == root)
3717 mutex_unlock(&ss->hierarchy_mutex);
3718 }
3719}
3720
ddbcc7e8 3721/*
a043e3b2
LZ
3722 * cgroup_create - create a cgroup
3723 * @parent: cgroup that will be parent of the new cgroup
3724 * @dentry: dentry of the new cgroup
3725 * @mode: mode to set on new inode
ddbcc7e8 3726 *
a043e3b2 3727 * Must be called with the mutex on the parent inode held
ddbcc7e8 3728 */
ddbcc7e8 3729static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
a5e7ed32 3730 umode_t mode)
ddbcc7e8 3731{
bd89aabc 3732 struct cgroup *cgrp;
ddbcc7e8
PM
3733 struct cgroupfs_root *root = parent->root;
3734 int err = 0;
3735 struct cgroup_subsys *ss;
3736 struct super_block *sb = root->sb;
3737
bd89aabc
PM
3738 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
3739 if (!cgrp)
ddbcc7e8
PM
3740 return -ENOMEM;
3741
3742 /* Grab a reference on the superblock so the hierarchy doesn't
3743 * get deleted on unmount if there are child cgroups. This
3744 * can be done outside cgroup_mutex, since the sb can't
3745 * disappear while someone has an open control file on the
3746 * fs */
3747 atomic_inc(&sb->s_active);
3748
3749 mutex_lock(&cgroup_mutex);
3750
cc31edce 3751 init_cgroup_housekeeping(cgrp);
ddbcc7e8 3752
bd89aabc
PM
3753 cgrp->parent = parent;
3754 cgrp->root = parent->root;
3755 cgrp->top_cgroup = parent->top_cgroup;
ddbcc7e8 3756
b6abdb0e
LZ
3757 if (notify_on_release(parent))
3758 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3759
97978e6d
DL
3760 if (clone_children(parent))
3761 set_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
3762
ddbcc7e8 3763 for_each_subsys(root, ss) {
761b3ef5 3764 struct cgroup_subsys_state *css = ss->create(cgrp);
4528fd05 3765
ddbcc7e8
PM
3766 if (IS_ERR(css)) {
3767 err = PTR_ERR(css);
3768 goto err_destroy;
3769 }
bd89aabc 3770 init_cgroup_css(css, ss, cgrp);
4528fd05
LZ
3771 if (ss->use_id) {
3772 err = alloc_css_id(ss, parent, cgrp);
3773 if (err)
38460b48 3774 goto err_destroy;
4528fd05 3775 }
38460b48 3776 /* At error, ->destroy() callback has to free assigned ID. */
97978e6d 3777 if (clone_children(parent) && ss->post_clone)
761b3ef5 3778 ss->post_clone(cgrp);
ddbcc7e8
PM
3779 }
3780
999cd8a4 3781 cgroup_lock_hierarchy(root);
bd89aabc 3782 list_add(&cgrp->sibling, &cgrp->parent->children);
999cd8a4 3783 cgroup_unlock_hierarchy(root);
ddbcc7e8
PM
3784 root->number_of_cgroups++;
3785
bd89aabc 3786 err = cgroup_create_dir(cgrp, dentry, mode);
ddbcc7e8
PM
3787 if (err < 0)
3788 goto err_remove;
3789
3790 /* The cgroup directory was pre-locked for us */
bd89aabc 3791 BUG_ON(!mutex_is_locked(&cgrp->dentry->d_inode->i_mutex));
ddbcc7e8 3792
bd89aabc 3793 err = cgroup_populate_dir(cgrp);
ddbcc7e8
PM
3794 /* If err < 0, we have a half-filled directory - oh well ;) */
3795
3796 mutex_unlock(&cgroup_mutex);
bd89aabc 3797 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8
PM
3798
3799 return 0;
3800
3801 err_remove:
3802
baef99a0 3803 cgroup_lock_hierarchy(root);
bd89aabc 3804 list_del(&cgrp->sibling);
baef99a0 3805 cgroup_unlock_hierarchy(root);
ddbcc7e8
PM
3806 root->number_of_cgroups--;
3807
3808 err_destroy:
3809
3810 for_each_subsys(root, ss) {
bd89aabc 3811 if (cgrp->subsys[ss->subsys_id])
761b3ef5 3812 ss->destroy(cgrp);
ddbcc7e8
PM
3813 }
3814
3815 mutex_unlock(&cgroup_mutex);
3816
3817 /* Release the reference count that we took on the superblock */
3818 deactivate_super(sb);
3819
bd89aabc 3820 kfree(cgrp);
ddbcc7e8
PM
3821 return err;
3822}
3823
18bb1db3 3824static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
ddbcc7e8
PM
3825{
3826 struct cgroup *c_parent = dentry->d_parent->d_fsdata;
3827
3828 /* the vfs holds inode->i_mutex already */
3829 return cgroup_create(c_parent, dentry, mode | S_IFDIR);
3830}
3831
55b6fd01 3832static int cgroup_has_css_refs(struct cgroup *cgrp)
81a6a5cd
PM
3833{
3834 /* Check the reference count on each subsystem. Since we
3835 * already established that there are no tasks in the
e7c5ec91 3836 * cgroup, if the css refcount is also 1, then there should
81a6a5cd
PM
3837 * be no outstanding references, so the subsystem is safe to
3838 * destroy. We scan across all subsystems rather than using
3839 * the per-hierarchy linked list of mounted subsystems since
3840 * we can be called via check_for_release() with no
3841 * synchronization other than RCU, and the subsystem linked
3842 * list isn't RCU-safe */
3843 int i;
aae8aab4
BB
3844 /*
3845 * We won't need to lock the subsys array, because the subsystems
3846 * we're concerned about aren't going anywhere since our cgroup root
3847 * has a reference on them.
3848 */
81a6a5cd
PM
3849 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3850 struct cgroup_subsys *ss = subsys[i];
3851 struct cgroup_subsys_state *css;
aae8aab4
BB
3852 /* Skip subsystems not present or not in this hierarchy */
3853 if (ss == NULL || ss->root != cgrp->root)
81a6a5cd 3854 continue;
bd89aabc 3855 css = cgrp->subsys[ss->subsys_id];
81a6a5cd
PM
3856 /* When called from check_for_release() it's possible
3857 * that by this point the cgroup has been removed
3858 * and the css deleted. But a false-positive doesn't
3859 * matter, since it can only happen if the cgroup
3860 * has been deleted and hence no longer needs the
3861 * release agent to be called anyway. */
e7c5ec91 3862 if (css && (atomic_read(&css->refcnt) > 1))
81a6a5cd 3863 return 1;
81a6a5cd
PM
3864 }
3865 return 0;
3866}
3867
e7c5ec91
PM
3868/*
3869 * Atomically mark all (or else none) of the cgroup's CSS objects as
3870 * CSS_REMOVED. Return true on success, or false if the cgroup has
3871 * busy subsystems. Call with cgroup_mutex held
3872 */
3873
3874static int cgroup_clear_css_refs(struct cgroup *cgrp)
3875{
3876 struct cgroup_subsys *ss;
3877 unsigned long flags;
3878 bool failed = false;
3879 local_irq_save(flags);
3880 for_each_subsys(cgrp->root, ss) {
3881 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
3882 int refcnt;
804b3c28 3883 while (1) {
e7c5ec91
PM
3884 /* We can only remove a CSS with a refcnt==1 */
3885 refcnt = atomic_read(&css->refcnt);
3886 if (refcnt > 1) {
3887 failed = true;
3888 goto done;
3889 }
3890 BUG_ON(!refcnt);
3891 /*
3892 * Drop the refcnt to 0 while we check other
3893 * subsystems. This will cause any racing
3894 * css_tryget() to spin until we set the
3895 * CSS_REMOVED bits or abort
3896 */
804b3c28
PM
3897 if (atomic_cmpxchg(&css->refcnt, refcnt, 0) == refcnt)
3898 break;
3899 cpu_relax();
3900 }
e7c5ec91
PM
3901 }
3902 done:
3903 for_each_subsys(cgrp->root, ss) {
3904 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
3905 if (failed) {
3906 /*
3907 * Restore old refcnt if we previously managed
3908 * to clear it from 1 to 0
3909 */
3910 if (!atomic_read(&css->refcnt))
3911 atomic_set(&css->refcnt, 1);
3912 } else {
3913 /* Commit the fact that the CSS is removed */
3914 set_bit(CSS_REMOVED, &css->flags);
3915 }
3916 }
3917 local_irq_restore(flags);
3918 return !failed;
3919}
3920
ddbcc7e8
PM
3921static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
3922{
bd89aabc 3923 struct cgroup *cgrp = dentry->d_fsdata;
ddbcc7e8
PM
3924 struct dentry *d;
3925 struct cgroup *parent;
ec64f515 3926 DEFINE_WAIT(wait);
4ab78683 3927 struct cgroup_event *event, *tmp;
ec64f515 3928 int ret;
ddbcc7e8
PM
3929
3930 /* the vfs holds both inode->i_mutex already */
ec64f515 3931again:
ddbcc7e8 3932 mutex_lock(&cgroup_mutex);
bd89aabc 3933 if (atomic_read(&cgrp->count) != 0) {
ddbcc7e8
PM
3934 mutex_unlock(&cgroup_mutex);
3935 return -EBUSY;
3936 }
bd89aabc 3937 if (!list_empty(&cgrp->children)) {
ddbcc7e8
PM
3938 mutex_unlock(&cgroup_mutex);
3939 return -EBUSY;
3940 }
3fa59dfb 3941 mutex_unlock(&cgroup_mutex);
a043e3b2 3942
88703267
KH
3943 /*
3944 * In general, subsystem has no css->refcnt after pre_destroy(). But
3945 * in racy cases, subsystem may have to get css->refcnt after
3946 * pre_destroy() and it makes rmdir return with -EBUSY. This sometimes
3947 * make rmdir return -EBUSY too often. To avoid that, we use waitqueue
3948 * for cgroup's rmdir. CGRP_WAIT_ON_RMDIR is for synchronizing rmdir
3949 * and subsystem's reference count handling. Please see css_get/put
3950 * and css_tryget() and cgroup_wakeup_rmdir_waiter() implementation.
3951 */
3952 set_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3953
4fca88c8 3954 /*
a043e3b2
LZ
3955 * Call pre_destroy handlers of subsys. Notify subsystems
3956 * that rmdir() request comes.
4fca88c8 3957 */
ec64f515 3958 ret = cgroup_call_pre_destroy(cgrp);
88703267
KH
3959 if (ret) {
3960 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
ec64f515 3961 return ret;
88703267 3962 }
ddbcc7e8 3963
3fa59dfb
KH
3964 mutex_lock(&cgroup_mutex);
3965 parent = cgrp->parent;
ec64f515 3966 if (atomic_read(&cgrp->count) || !list_empty(&cgrp->children)) {
88703267 3967 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
ddbcc7e8
PM
3968 mutex_unlock(&cgroup_mutex);
3969 return -EBUSY;
3970 }
ec64f515 3971 prepare_to_wait(&cgroup_rmdir_waitq, &wait, TASK_INTERRUPTIBLE);
ec64f515
KH
3972 if (!cgroup_clear_css_refs(cgrp)) {
3973 mutex_unlock(&cgroup_mutex);
88703267
KH
3974 /*
3975 * Because someone may call cgroup_wakeup_rmdir_waiter() before
3976 * prepare_to_wait(), we need to check this flag.
3977 */
3978 if (test_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags))
3979 schedule();
ec64f515
KH
3980 finish_wait(&cgroup_rmdir_waitq, &wait);
3981 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3982 if (signal_pending(current))
3983 return -EINTR;
3984 goto again;
3985 }
3986 /* NO css_tryget() can success after here. */
3987 finish_wait(&cgroup_rmdir_waitq, &wait);
3988 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
ddbcc7e8 3989
cdcc136f 3990 raw_spin_lock(&release_list_lock);
bd89aabc
PM
3991 set_bit(CGRP_REMOVED, &cgrp->flags);
3992 if (!list_empty(&cgrp->release_list))
8d258797 3993 list_del_init(&cgrp->release_list);
cdcc136f 3994 raw_spin_unlock(&release_list_lock);
999cd8a4
PM
3995
3996 cgroup_lock_hierarchy(cgrp->root);
3997 /* delete this cgroup from parent->children */
8d258797 3998 list_del_init(&cgrp->sibling);
999cd8a4
PM
3999 cgroup_unlock_hierarchy(cgrp->root);
4000
bd89aabc 4001 d = dget(cgrp->dentry);
ddbcc7e8
PM
4002
4003 cgroup_d_remove_dir(d);
4004 dput(d);
ddbcc7e8 4005
bd89aabc 4006 set_bit(CGRP_RELEASABLE, &parent->flags);
81a6a5cd
PM
4007 check_for_release(parent);
4008
4ab78683
KS
4009 /*
4010 * Unregister events and notify userspace.
4011 * Notify userspace about cgroup removing only after rmdir of cgroup
4012 * directory to avoid race between userspace and kernelspace
4013 */
4014 spin_lock(&cgrp->event_list_lock);
4015 list_for_each_entry_safe(event, tmp, &cgrp->event_list, list) {
4016 list_del(&event->list);
4017 remove_wait_queue(event->wqh, &event->wait);
4018 eventfd_signal(event->eventfd, 1);
4019 schedule_work(&event->remove);
4020 }
4021 spin_unlock(&cgrp->event_list_lock);
4022
ddbcc7e8 4023 mutex_unlock(&cgroup_mutex);
ddbcc7e8
PM
4024 return 0;
4025}
4026
06a11920 4027static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
ddbcc7e8 4028{
ddbcc7e8 4029 struct cgroup_subsys_state *css;
cfe36bde
DC
4030
4031 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
ddbcc7e8
PM
4032
4033 /* Create the top cgroup state for this subsystem */
33a68ac1 4034 list_add(&ss->sibling, &rootnode.subsys_list);
ddbcc7e8 4035 ss->root = &rootnode;
761b3ef5 4036 css = ss->create(dummytop);
ddbcc7e8
PM
4037 /* We don't handle early failures gracefully */
4038 BUG_ON(IS_ERR(css));
4039 init_cgroup_css(css, ss, dummytop);
4040
e8d55fde 4041 /* Update the init_css_set to contain a subsys
817929ec 4042 * pointer to this state - since the subsystem is
e8d55fde
LZ
4043 * newly registered, all tasks and hence the
4044 * init_css_set is in the subsystem's top cgroup. */
4045 init_css_set.subsys[ss->subsys_id] = dummytop->subsys[ss->subsys_id];
ddbcc7e8
PM
4046
4047 need_forkexit_callback |= ss->fork || ss->exit;
4048
e8d55fde
LZ
4049 /* At system boot, before all subsystems have been
4050 * registered, no tasks have been forked, so we don't
4051 * need to invoke fork callbacks here. */
4052 BUG_ON(!list_empty(&init_task.tasks));
4053
999cd8a4 4054 mutex_init(&ss->hierarchy_mutex);
cfebe563 4055 lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key);
ddbcc7e8 4056 ss->active = 1;
e6a1105b
BB
4057
4058 /* this function shouldn't be used with modular subsystems, since they
4059 * need to register a subsys_id, among other things */
4060 BUG_ON(ss->module);
4061}
4062
4063/**
4064 * cgroup_load_subsys: load and register a modular subsystem at runtime
4065 * @ss: the subsystem to load
4066 *
4067 * This function should be called in a modular subsystem's initcall. If the
88393161 4068 * subsystem is built as a module, it will be assigned a new subsys_id and set
e6a1105b
BB
4069 * up for use. If the subsystem is built-in anyway, work is delegated to the
4070 * simpler cgroup_init_subsys.
4071 */
4072int __init_or_module cgroup_load_subsys(struct cgroup_subsys *ss)
4073{
4074 int i;
4075 struct cgroup_subsys_state *css;
4076
4077 /* check name and function validity */
4078 if (ss->name == NULL || strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN ||
4079 ss->create == NULL || ss->destroy == NULL)
4080 return -EINVAL;
4081
4082 /*
4083 * we don't support callbacks in modular subsystems. this check is
4084 * before the ss->module check for consistency; a subsystem that could
4085 * be a module should still have no callbacks even if the user isn't
4086 * compiling it as one.
4087 */
4088 if (ss->fork || ss->exit)
4089 return -EINVAL;
4090
4091 /*
4092 * an optionally modular subsystem is built-in: we want to do nothing,
4093 * since cgroup_init_subsys will have already taken care of it.
4094 */
4095 if (ss->module == NULL) {
4096 /* a few sanity checks */
4097 BUG_ON(ss->subsys_id >= CGROUP_BUILTIN_SUBSYS_COUNT);
4098 BUG_ON(subsys[ss->subsys_id] != ss);
4099 return 0;
4100 }
4101
4102 /*
4103 * need to register a subsys id before anything else - for example,
4104 * init_cgroup_css needs it.
4105 */
4106 mutex_lock(&cgroup_mutex);
4107 /* find the first empty slot in the array */
4108 for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
4109 if (subsys[i] == NULL)
4110 break;
4111 }
4112 if (i == CGROUP_SUBSYS_COUNT) {
4113 /* maximum number of subsystems already registered! */
4114 mutex_unlock(&cgroup_mutex);
4115 return -EBUSY;
4116 }
4117 /* assign ourselves the subsys_id */
4118 ss->subsys_id = i;
4119 subsys[i] = ss;
4120
4121 /*
4122 * no ss->create seems to need anything important in the ss struct, so
4123 * this can happen first (i.e. before the rootnode attachment).
4124 */
761b3ef5 4125 css = ss->create(dummytop);
e6a1105b
BB
4126 if (IS_ERR(css)) {
4127 /* failure case - need to deassign the subsys[] slot. */
4128 subsys[i] = NULL;
4129 mutex_unlock(&cgroup_mutex);
4130 return PTR_ERR(css);
4131 }
4132
4133 list_add(&ss->sibling, &rootnode.subsys_list);
4134 ss->root = &rootnode;
4135
4136 /* our new subsystem will be attached to the dummy hierarchy. */
4137 init_cgroup_css(css, ss, dummytop);
4138 /* init_idr must be after init_cgroup_css because it sets css->id. */
4139 if (ss->use_id) {
4140 int ret = cgroup_init_idr(ss, css);
4141 if (ret) {
4142 dummytop->subsys[ss->subsys_id] = NULL;
761b3ef5 4143 ss->destroy(dummytop);
e6a1105b
BB
4144 subsys[i] = NULL;
4145 mutex_unlock(&cgroup_mutex);
4146 return ret;
4147 }
4148 }
4149
4150 /*
4151 * Now we need to entangle the css into the existing css_sets. unlike
4152 * in cgroup_init_subsys, there are now multiple css_sets, so each one
4153 * will need a new pointer to it; done by iterating the css_set_table.
4154 * furthermore, modifying the existing css_sets will corrupt the hash
4155 * table state, so each changed css_set will need its hash recomputed.
4156 * this is all done under the css_set_lock.
4157 */
4158 write_lock(&css_set_lock);
4159 for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
4160 struct css_set *cg;
4161 struct hlist_node *node, *tmp;
4162 struct hlist_head *bucket = &css_set_table[i], *new_bucket;
4163
4164 hlist_for_each_entry_safe(cg, node, tmp, bucket, hlist) {
4165 /* skip entries that we already rehashed */
4166 if (cg->subsys[ss->subsys_id])
4167 continue;
4168 /* remove existing entry */
4169 hlist_del(&cg->hlist);
4170 /* set new value */
4171 cg->subsys[ss->subsys_id] = css;
4172 /* recompute hash and restore entry */
4173 new_bucket = css_set_hash(cg->subsys);
4174 hlist_add_head(&cg->hlist, new_bucket);
4175 }
4176 }
4177 write_unlock(&css_set_lock);
4178
4179 mutex_init(&ss->hierarchy_mutex);
4180 lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key);
4181 ss->active = 1;
4182
e6a1105b
BB
4183 /* success! */
4184 mutex_unlock(&cgroup_mutex);
4185 return 0;
ddbcc7e8 4186}
e6a1105b 4187EXPORT_SYMBOL_GPL(cgroup_load_subsys);
ddbcc7e8 4188
cf5d5941
BB
4189/**
4190 * cgroup_unload_subsys: unload a modular subsystem
4191 * @ss: the subsystem to unload
4192 *
4193 * This function should be called in a modular subsystem's exitcall. When this
4194 * function is invoked, the refcount on the subsystem's module will be 0, so
4195 * the subsystem will not be attached to any hierarchy.
4196 */
4197void cgroup_unload_subsys(struct cgroup_subsys *ss)
4198{
4199 struct cg_cgroup_link *link;
4200 struct hlist_head *hhead;
4201
4202 BUG_ON(ss->module == NULL);
4203
4204 /*
4205 * we shouldn't be called if the subsystem is in use, and the use of
4206 * try_module_get in parse_cgroupfs_options should ensure that it
4207 * doesn't start being used while we're killing it off.
4208 */
4209 BUG_ON(ss->root != &rootnode);
4210
4211 mutex_lock(&cgroup_mutex);
4212 /* deassign the subsys_id */
4213 BUG_ON(ss->subsys_id < CGROUP_BUILTIN_SUBSYS_COUNT);
4214 subsys[ss->subsys_id] = NULL;
4215
4216 /* remove subsystem from rootnode's list of subsystems */
8d258797 4217 list_del_init(&ss->sibling);
cf5d5941
BB
4218
4219 /*
4220 * disentangle the css from all css_sets attached to the dummytop. as
4221 * in loading, we need to pay our respects to the hashtable gods.
4222 */
4223 write_lock(&css_set_lock);
4224 list_for_each_entry(link, &dummytop->css_sets, cgrp_link_list) {
4225 struct css_set *cg = link->cg;
4226
4227 hlist_del(&cg->hlist);
4228 BUG_ON(!cg->subsys[ss->subsys_id]);
4229 cg->subsys[ss->subsys_id] = NULL;
4230 hhead = css_set_hash(cg->subsys);
4231 hlist_add_head(&cg->hlist, hhead);
4232 }
4233 write_unlock(&css_set_lock);
4234
4235 /*
4236 * remove subsystem's css from the dummytop and free it - need to free
4237 * before marking as null because ss->destroy needs the cgrp->subsys
4238 * pointer to find their state. note that this also takes care of
4239 * freeing the css_id.
4240 */
761b3ef5 4241 ss->destroy(dummytop);
cf5d5941
BB
4242 dummytop->subsys[ss->subsys_id] = NULL;
4243
4244 mutex_unlock(&cgroup_mutex);
4245}
4246EXPORT_SYMBOL_GPL(cgroup_unload_subsys);
4247
ddbcc7e8 4248/**
a043e3b2
LZ
4249 * cgroup_init_early - cgroup initialization at system boot
4250 *
4251 * Initialize cgroups at system boot, and initialize any
4252 * subsystems that request early init.
ddbcc7e8
PM
4253 */
4254int __init cgroup_init_early(void)
4255{
4256 int i;
146aa1bd 4257 atomic_set(&init_css_set.refcount, 1);
817929ec
PM
4258 INIT_LIST_HEAD(&init_css_set.cg_links);
4259 INIT_LIST_HEAD(&init_css_set.tasks);
472b1053 4260 INIT_HLIST_NODE(&init_css_set.hlist);
817929ec 4261 css_set_count = 1;
ddbcc7e8 4262 init_cgroup_root(&rootnode);
817929ec
PM
4263 root_count = 1;
4264 init_task.cgroups = &init_css_set;
4265
4266 init_css_set_link.cg = &init_css_set;
7717f7ba 4267 init_css_set_link.cgrp = dummytop;
bd89aabc 4268 list_add(&init_css_set_link.cgrp_link_list,
817929ec
PM
4269 &rootnode.top_cgroup.css_sets);
4270 list_add(&init_css_set_link.cg_link_list,
4271 &init_css_set.cg_links);
ddbcc7e8 4272
472b1053
LZ
4273 for (i = 0; i < CSS_SET_TABLE_SIZE; i++)
4274 INIT_HLIST_HEAD(&css_set_table[i]);
4275
aae8aab4
BB
4276 /* at bootup time, we don't worry about modular subsystems */
4277 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
ddbcc7e8
PM
4278 struct cgroup_subsys *ss = subsys[i];
4279
4280 BUG_ON(!ss->name);
4281 BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
4282 BUG_ON(!ss->create);
4283 BUG_ON(!ss->destroy);
4284 if (ss->subsys_id != i) {
cfe36bde 4285 printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
ddbcc7e8
PM
4286 ss->name, ss->subsys_id);
4287 BUG();
4288 }
4289
4290 if (ss->early_init)
4291 cgroup_init_subsys(ss);
4292 }
4293 return 0;
4294}
4295
4296/**
a043e3b2
LZ
4297 * cgroup_init - cgroup initialization
4298 *
4299 * Register cgroup filesystem and /proc file, and initialize
4300 * any subsystems that didn't request early init.
ddbcc7e8
PM
4301 */
4302int __init cgroup_init(void)
4303{
4304 int err;
4305 int i;
472b1053 4306 struct hlist_head *hhead;
a424316c
PM
4307
4308 err = bdi_init(&cgroup_backing_dev_info);
4309 if (err)
4310 return err;
ddbcc7e8 4311
aae8aab4
BB
4312 /* at bootup time, we don't worry about modular subsystems */
4313 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
ddbcc7e8
PM
4314 struct cgroup_subsys *ss = subsys[i];
4315 if (!ss->early_init)
4316 cgroup_init_subsys(ss);
38460b48 4317 if (ss->use_id)
e6a1105b 4318 cgroup_init_idr(ss, init_css_set.subsys[ss->subsys_id]);
ddbcc7e8
PM
4319 }
4320
472b1053
LZ
4321 /* Add init_css_set to the hash table */
4322 hhead = css_set_hash(init_css_set.subsys);
4323 hlist_add_head(&init_css_set.hlist, hhead);
2c6ab6d2 4324 BUG_ON(!init_root_id(&rootnode));
676db4af
GKH
4325
4326 cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
4327 if (!cgroup_kobj) {
4328 err = -ENOMEM;
4329 goto out;
4330 }
4331
ddbcc7e8 4332 err = register_filesystem(&cgroup_fs_type);
676db4af
GKH
4333 if (err < 0) {
4334 kobject_put(cgroup_kobj);
ddbcc7e8 4335 goto out;
676db4af 4336 }
ddbcc7e8 4337
46ae220b 4338 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
a424316c 4339
ddbcc7e8 4340out:
a424316c
PM
4341 if (err)
4342 bdi_destroy(&cgroup_backing_dev_info);
4343
ddbcc7e8
PM
4344 return err;
4345}
b4f48b63 4346
a424316c
PM
4347/*
4348 * proc_cgroup_show()
4349 * - Print task's cgroup paths into seq_file, one line for each hierarchy
4350 * - Used for /proc/<pid>/cgroup.
4351 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
4352 * doesn't really matter if tsk->cgroup changes after we read it,
956db3ca 4353 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
a424316c
PM
4354 * anyway. No need to check that tsk->cgroup != NULL, thanks to
4355 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
4356 * cgroup to top_cgroup.
4357 */
4358
4359/* TODO: Use a proper seq_file iterator */
4360static int proc_cgroup_show(struct seq_file *m, void *v)
4361{
4362 struct pid *pid;
4363 struct task_struct *tsk;
4364 char *buf;
4365 int retval;
4366 struct cgroupfs_root *root;
4367
4368 retval = -ENOMEM;
4369 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4370 if (!buf)
4371 goto out;
4372
4373 retval = -ESRCH;
4374 pid = m->private;
4375 tsk = get_pid_task(pid, PIDTYPE_PID);
4376 if (!tsk)
4377 goto out_free;
4378
4379 retval = 0;
4380
4381 mutex_lock(&cgroup_mutex);
4382
e5f6a860 4383 for_each_active_root(root) {
a424316c 4384 struct cgroup_subsys *ss;
bd89aabc 4385 struct cgroup *cgrp;
a424316c
PM
4386 int count = 0;
4387
2c6ab6d2 4388 seq_printf(m, "%d:", root->hierarchy_id);
a424316c
PM
4389 for_each_subsys(root, ss)
4390 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
c6d57f33
PM
4391 if (strlen(root->name))
4392 seq_printf(m, "%sname=%s", count ? "," : "",
4393 root->name);
a424316c 4394 seq_putc(m, ':');
7717f7ba 4395 cgrp = task_cgroup_from_root(tsk, root);
bd89aabc 4396 retval = cgroup_path(cgrp, buf, PAGE_SIZE);
a424316c
PM
4397 if (retval < 0)
4398 goto out_unlock;
4399 seq_puts(m, buf);
4400 seq_putc(m, '\n');
4401 }
4402
4403out_unlock:
4404 mutex_unlock(&cgroup_mutex);
4405 put_task_struct(tsk);
4406out_free:
4407 kfree(buf);
4408out:
4409 return retval;
4410}
4411
4412static int cgroup_open(struct inode *inode, struct file *file)
4413{
4414 struct pid *pid = PROC_I(inode)->pid;
4415 return single_open(file, proc_cgroup_show, pid);
4416}
4417
828c0950 4418const struct file_operations proc_cgroup_operations = {
a424316c
PM
4419 .open = cgroup_open,
4420 .read = seq_read,
4421 .llseek = seq_lseek,
4422 .release = single_release,
4423};
4424
4425/* Display information about each subsystem and each hierarchy */
4426static int proc_cgroupstats_show(struct seq_file *m, void *v)
4427{
4428 int i;
a424316c 4429
8bab8dde 4430 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
aae8aab4
BB
4431 /*
4432 * ideally we don't want subsystems moving around while we do this.
4433 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
4434 * subsys/hierarchy state.
4435 */
a424316c 4436 mutex_lock(&cgroup_mutex);
a424316c
PM
4437 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
4438 struct cgroup_subsys *ss = subsys[i];
aae8aab4
BB
4439 if (ss == NULL)
4440 continue;
2c6ab6d2
PM
4441 seq_printf(m, "%s\t%d\t%d\t%d\n",
4442 ss->name, ss->root->hierarchy_id,
8bab8dde 4443 ss->root->number_of_cgroups, !ss->disabled);
a424316c
PM
4444 }
4445 mutex_unlock(&cgroup_mutex);
4446 return 0;
4447}
4448
4449static int cgroupstats_open(struct inode *inode, struct file *file)
4450{
9dce07f1 4451 return single_open(file, proc_cgroupstats_show, NULL);
a424316c
PM
4452}
4453
828c0950 4454static const struct file_operations proc_cgroupstats_operations = {
a424316c
PM
4455 .open = cgroupstats_open,
4456 .read = seq_read,
4457 .llseek = seq_lseek,
4458 .release = single_release,
4459};
4460
b4f48b63
PM
4461/**
4462 * cgroup_fork - attach newly forked task to its parents cgroup.
a043e3b2 4463 * @child: pointer to task_struct of forking parent process.
b4f48b63
PM
4464 *
4465 * Description: A task inherits its parent's cgroup at fork().
4466 *
4467 * A pointer to the shared css_set was automatically copied in
4468 * fork.c by dup_task_struct(). However, we ignore that copy, since
7e381b0e
FW
4469 * it was not made under the protection of RCU, cgroup_mutex or
4470 * threadgroup_change_begin(), so it might no longer be a valid
4471 * cgroup pointer. cgroup_attach_task() might have already changed
4472 * current->cgroups, allowing the previously referenced cgroup
4473 * group to be removed and freed.
4474 *
4475 * Outside the pointer validity we also need to process the css_set
4476 * inheritance between threadgoup_change_begin() and
4477 * threadgoup_change_end(), this way there is no leak in any process
4478 * wide migration performed by cgroup_attach_proc() that could otherwise
4479 * miss a thread because it is too early or too late in the fork stage.
b4f48b63
PM
4480 *
4481 * At the point that cgroup_fork() is called, 'current' is the parent
4482 * task, and the passed argument 'child' points to the child task.
4483 */
4484void cgroup_fork(struct task_struct *child)
4485{
7e381b0e
FW
4486 /*
4487 * We don't need to task_lock() current because current->cgroups
4488 * can't be changed concurrently here. The parent obviously hasn't
4489 * exited and called cgroup_exit(), and we are synchronized against
4490 * cgroup migration through threadgroup_change_begin().
4491 */
817929ec
PM
4492 child->cgroups = current->cgroups;
4493 get_css_set(child->cgroups);
817929ec 4494 INIT_LIST_HEAD(&child->cg_list);
b4f48b63
PM
4495}
4496
4497/**
a043e3b2
LZ
4498 * cgroup_fork_callbacks - run fork callbacks
4499 * @child: the new task
4500 *
4501 * Called on a new task very soon before adding it to the
4502 * tasklist. No need to take any locks since no-one can
4503 * be operating on this task.
b4f48b63
PM
4504 */
4505void cgroup_fork_callbacks(struct task_struct *child)
4506{
4507 if (need_forkexit_callback) {
4508 int i;
aae8aab4
BB
4509 /*
4510 * forkexit callbacks are only supported for builtin
4511 * subsystems, and the builtin section of the subsys array is
4512 * immutable, so we don't need to lock the subsys array here.
4513 */
4514 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
b4f48b63
PM
4515 struct cgroup_subsys *ss = subsys[i];
4516 if (ss->fork)
761b3ef5 4517 ss->fork(child);
b4f48b63
PM
4518 }
4519 }
4520}
4521
817929ec 4522/**
a043e3b2
LZ
4523 * cgroup_post_fork - called on a new task after adding it to the task list
4524 * @child: the task in question
4525 *
4526 * Adds the task to the list running through its css_set if necessary.
4527 * Has to be after the task is visible on the task list in case we race
4528 * with the first call to cgroup_iter_start() - to guarantee that the
4529 * new task ends up on its list.
4530 */
817929ec
PM
4531void cgroup_post_fork(struct task_struct *child)
4532{
3ce3230a
FW
4533 /*
4534 * use_task_css_set_links is set to 1 before we walk the tasklist
4535 * under the tasklist_lock and we read it here after we added the child
4536 * to the tasklist under the tasklist_lock as well. If the child wasn't
4537 * yet in the tasklist when we walked through it from
4538 * cgroup_enable_task_cg_lists(), then use_task_css_set_links value
4539 * should be visible now due to the paired locking and barriers implied
4540 * by LOCK/UNLOCK: it is written before the tasklist_lock unlock
4541 * in cgroup_enable_task_cg_lists() and read here after the tasklist_lock
4542 * lock on fork.
4543 */
817929ec
PM
4544 if (use_task_css_set_links) {
4545 write_lock(&css_set_lock);
7e3aa30a
FW
4546 if (list_empty(&child->cg_list)) {
4547 /*
4548 * It's safe to use child->cgroups without task_lock()
4549 * here because we are protected through
4550 * threadgroup_change_begin() against concurrent
4551 * css_set change in cgroup_task_migrate(). Also
4552 * the task can't exit at that point until
4553 * wake_up_new_task() is called, so we are protected
4554 * against cgroup_exit() setting child->cgroup to
4555 * init_css_set.
4556 */
817929ec 4557 list_add(&child->cg_list, &child->cgroups->tasks);
7e3aa30a 4558 }
817929ec
PM
4559 write_unlock(&css_set_lock);
4560 }
4561}
b4f48b63
PM
4562/**
4563 * cgroup_exit - detach cgroup from exiting task
4564 * @tsk: pointer to task_struct of exiting process
a043e3b2 4565 * @run_callback: run exit callbacks?
b4f48b63
PM
4566 *
4567 * Description: Detach cgroup from @tsk and release it.
4568 *
4569 * Note that cgroups marked notify_on_release force every task in
4570 * them to take the global cgroup_mutex mutex when exiting.
4571 * This could impact scaling on very large systems. Be reluctant to
4572 * use notify_on_release cgroups where very high task exit scaling
4573 * is required on large systems.
4574 *
4575 * the_top_cgroup_hack:
4576 *
4577 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
4578 *
4579 * We call cgroup_exit() while the task is still competent to
4580 * handle notify_on_release(), then leave the task attached to the
4581 * root cgroup in each hierarchy for the remainder of its exit.
4582 *
4583 * To do this properly, we would increment the reference count on
4584 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
4585 * code we would add a second cgroup function call, to drop that
4586 * reference. This would just create an unnecessary hot spot on
4587 * the top_cgroup reference count, to no avail.
4588 *
4589 * Normally, holding a reference to a cgroup without bumping its
4590 * count is unsafe. The cgroup could go away, or someone could
4591 * attach us to a different cgroup, decrementing the count on
4592 * the first cgroup that we never incremented. But in this case,
4593 * top_cgroup isn't going away, and either task has PF_EXITING set,
956db3ca
CW
4594 * which wards off any cgroup_attach_task() attempts, or task is a failed
4595 * fork, never visible to cgroup_attach_task.
b4f48b63
PM
4596 */
4597void cgroup_exit(struct task_struct *tsk, int run_callbacks)
4598{
817929ec 4599 struct css_set *cg;
d41d5a01 4600 int i;
817929ec
PM
4601
4602 /*
4603 * Unlink from the css_set task list if necessary.
4604 * Optimistically check cg_list before taking
4605 * css_set_lock
4606 */
4607 if (!list_empty(&tsk->cg_list)) {
4608 write_lock(&css_set_lock);
4609 if (!list_empty(&tsk->cg_list))
8d258797 4610 list_del_init(&tsk->cg_list);
817929ec
PM
4611 write_unlock(&css_set_lock);
4612 }
4613
b4f48b63
PM
4614 /* Reassign the task to the init_css_set. */
4615 task_lock(tsk);
817929ec
PM
4616 cg = tsk->cgroups;
4617 tsk->cgroups = &init_css_set;
d41d5a01
PZ
4618
4619 if (run_callbacks && need_forkexit_callback) {
4620 /*
4621 * modular subsystems can't use callbacks, so no need to lock
4622 * the subsys array
4623 */
4624 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4625 struct cgroup_subsys *ss = subsys[i];
4626 if (ss->exit) {
4627 struct cgroup *old_cgrp =
4628 rcu_dereference_raw(cg->subsys[i])->cgroup;
4629 struct cgroup *cgrp = task_cgroup(tsk, i);
761b3ef5 4630 ss->exit(cgrp, old_cgrp, tsk);
d41d5a01
PZ
4631 }
4632 }
4633 }
b4f48b63 4634 task_unlock(tsk);
d41d5a01 4635
817929ec 4636 if (cg)
81a6a5cd 4637 put_css_set_taskexit(cg);
b4f48b63 4638}
697f4161 4639
a043e3b2 4640/**
313e924c 4641 * cgroup_is_descendant - see if @cgrp is a descendant of @task's cgrp
a043e3b2 4642 * @cgrp: the cgroup in question
313e924c 4643 * @task: the task in question
a043e3b2 4644 *
313e924c
GN
4645 * See if @cgrp is a descendant of @task's cgroup in the appropriate
4646 * hierarchy.
697f4161
PM
4647 *
4648 * If we are sending in dummytop, then presumably we are creating
4649 * the top cgroup in the subsystem.
4650 *
4651 * Called only by the ns (nsproxy) cgroup.
4652 */
313e924c 4653int cgroup_is_descendant(const struct cgroup *cgrp, struct task_struct *task)
697f4161
PM
4654{
4655 int ret;
4656 struct cgroup *target;
697f4161 4657
bd89aabc 4658 if (cgrp == dummytop)
697f4161
PM
4659 return 1;
4660
7717f7ba 4661 target = task_cgroup_from_root(task, cgrp->root);
bd89aabc
PM
4662 while (cgrp != target && cgrp!= cgrp->top_cgroup)
4663 cgrp = cgrp->parent;
4664 ret = (cgrp == target);
697f4161
PM
4665 return ret;
4666}
81a6a5cd 4667
bd89aabc 4668static void check_for_release(struct cgroup *cgrp)
81a6a5cd
PM
4669{
4670 /* All of these checks rely on RCU to keep the cgroup
4671 * structure alive */
bd89aabc
PM
4672 if (cgroup_is_releasable(cgrp) && !atomic_read(&cgrp->count)
4673 && list_empty(&cgrp->children) && !cgroup_has_css_refs(cgrp)) {
81a6a5cd
PM
4674 /* Control Group is currently removeable. If it's not
4675 * already queued for a userspace notification, queue
4676 * it now */
4677 int need_schedule_work = 0;
cdcc136f 4678 raw_spin_lock(&release_list_lock);
bd89aabc
PM
4679 if (!cgroup_is_removed(cgrp) &&
4680 list_empty(&cgrp->release_list)) {
4681 list_add(&cgrp->release_list, &release_list);
81a6a5cd
PM
4682 need_schedule_work = 1;
4683 }
cdcc136f 4684 raw_spin_unlock(&release_list_lock);
81a6a5cd
PM
4685 if (need_schedule_work)
4686 schedule_work(&release_agent_work);
4687 }
4688}
4689
d7b9fff7
DN
4690/* Caller must verify that the css is not for root cgroup */
4691void __css_put(struct cgroup_subsys_state *css, int count)
81a6a5cd 4692{
bd89aabc 4693 struct cgroup *cgrp = css->cgroup;
3dece834 4694 int val;
81a6a5cd 4695 rcu_read_lock();
d7b9fff7 4696 val = atomic_sub_return(count, &css->refcnt);
3dece834 4697 if (val == 1) {
ec64f515
KH
4698 if (notify_on_release(cgrp)) {
4699 set_bit(CGRP_RELEASABLE, &cgrp->flags);
4700 check_for_release(cgrp);
4701 }
88703267 4702 cgroup_wakeup_rmdir_waiter(cgrp);
81a6a5cd
PM
4703 }
4704 rcu_read_unlock();
3dece834 4705 WARN_ON_ONCE(val < 1);
81a6a5cd 4706}
67523c48 4707EXPORT_SYMBOL_GPL(__css_put);
81a6a5cd
PM
4708
4709/*
4710 * Notify userspace when a cgroup is released, by running the
4711 * configured release agent with the name of the cgroup (path
4712 * relative to the root of cgroup file system) as the argument.
4713 *
4714 * Most likely, this user command will try to rmdir this cgroup.
4715 *
4716 * This races with the possibility that some other task will be
4717 * attached to this cgroup before it is removed, or that some other
4718 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
4719 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
4720 * unused, and this cgroup will be reprieved from its death sentence,
4721 * to continue to serve a useful existence. Next time it's released,
4722 * we will get notified again, if it still has 'notify_on_release' set.
4723 *
4724 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
4725 * means only wait until the task is successfully execve()'d. The
4726 * separate release agent task is forked by call_usermodehelper(),
4727 * then control in this thread returns here, without waiting for the
4728 * release agent task. We don't bother to wait because the caller of
4729 * this routine has no use for the exit status of the release agent
4730 * task, so no sense holding our caller up for that.
81a6a5cd 4731 */
81a6a5cd
PM
4732static void cgroup_release_agent(struct work_struct *work)
4733{
4734 BUG_ON(work != &release_agent_work);
4735 mutex_lock(&cgroup_mutex);
cdcc136f 4736 raw_spin_lock(&release_list_lock);
81a6a5cd
PM
4737 while (!list_empty(&release_list)) {
4738 char *argv[3], *envp[3];
4739 int i;
e788e066 4740 char *pathbuf = NULL, *agentbuf = NULL;
bd89aabc 4741 struct cgroup *cgrp = list_entry(release_list.next,
81a6a5cd
PM
4742 struct cgroup,
4743 release_list);
bd89aabc 4744 list_del_init(&cgrp->release_list);
cdcc136f 4745 raw_spin_unlock(&release_list_lock);
81a6a5cd 4746 pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
e788e066
PM
4747 if (!pathbuf)
4748 goto continue_free;
4749 if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
4750 goto continue_free;
4751 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
4752 if (!agentbuf)
4753 goto continue_free;
81a6a5cd
PM
4754
4755 i = 0;
e788e066
PM
4756 argv[i++] = agentbuf;
4757 argv[i++] = pathbuf;
81a6a5cd
PM
4758 argv[i] = NULL;
4759
4760 i = 0;
4761 /* minimal command environment */
4762 envp[i++] = "HOME=/";
4763 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
4764 envp[i] = NULL;
4765
4766 /* Drop the lock while we invoke the usermode helper,
4767 * since the exec could involve hitting disk and hence
4768 * be a slow process */
4769 mutex_unlock(&cgroup_mutex);
4770 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
81a6a5cd 4771 mutex_lock(&cgroup_mutex);
e788e066
PM
4772 continue_free:
4773 kfree(pathbuf);
4774 kfree(agentbuf);
cdcc136f 4775 raw_spin_lock(&release_list_lock);
81a6a5cd 4776 }
cdcc136f 4777 raw_spin_unlock(&release_list_lock);
81a6a5cd
PM
4778 mutex_unlock(&cgroup_mutex);
4779}
8bab8dde
PM
4780
4781static int __init cgroup_disable(char *str)
4782{
4783 int i;
4784 char *token;
4785
4786 while ((token = strsep(&str, ",")) != NULL) {
4787 if (!*token)
4788 continue;
aae8aab4
BB
4789 /*
4790 * cgroup_disable, being at boot time, can't know about module
4791 * subsystems, so we don't worry about them.
4792 */
4793 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
8bab8dde
PM
4794 struct cgroup_subsys *ss = subsys[i];
4795
4796 if (!strcmp(token, ss->name)) {
4797 ss->disabled = 1;
4798 printk(KERN_INFO "Disabling %s control group"
4799 " subsystem\n", ss->name);
4800 break;
4801 }
4802 }
4803 }
4804 return 1;
4805}
4806__setup("cgroup_disable=", cgroup_disable);
38460b48
KH
4807
4808/*
4809 * Functons for CSS ID.
4810 */
4811
4812/*
4813 *To get ID other than 0, this should be called when !cgroup_is_removed().
4814 */
4815unsigned short css_id(struct cgroup_subsys_state *css)
4816{
7f0f1546
KH
4817 struct css_id *cssid;
4818
4819 /*
4820 * This css_id() can return correct value when somone has refcnt
4821 * on this or this is under rcu_read_lock(). Once css->id is allocated,
4822 * it's unchanged until freed.
4823 */
d8bf4ca9 4824 cssid = rcu_dereference_check(css->id, atomic_read(&css->refcnt));
38460b48
KH
4825
4826 if (cssid)
4827 return cssid->id;
4828 return 0;
4829}
67523c48 4830EXPORT_SYMBOL_GPL(css_id);
38460b48
KH
4831
4832unsigned short css_depth(struct cgroup_subsys_state *css)
4833{
7f0f1546
KH
4834 struct css_id *cssid;
4835
d8bf4ca9 4836 cssid = rcu_dereference_check(css->id, atomic_read(&css->refcnt));
38460b48
KH
4837
4838 if (cssid)
4839 return cssid->depth;
4840 return 0;
4841}
67523c48 4842EXPORT_SYMBOL_GPL(css_depth);
38460b48 4843
747388d7
KH
4844/**
4845 * css_is_ancestor - test "root" css is an ancestor of "child"
4846 * @child: the css to be tested.
4847 * @root: the css supporsed to be an ancestor of the child.
4848 *
4849 * Returns true if "root" is an ancestor of "child" in its hierarchy. Because
4850 * this function reads css->id, this use rcu_dereference() and rcu_read_lock().
4851 * But, considering usual usage, the csses should be valid objects after test.
4852 * Assuming that the caller will do some action to the child if this returns
4853 * returns true, the caller must take "child";s reference count.
4854 * If "child" is valid object and this returns true, "root" is valid, too.
4855 */
4856
38460b48 4857bool css_is_ancestor(struct cgroup_subsys_state *child,
0b7f569e 4858 const struct cgroup_subsys_state *root)
38460b48 4859{
747388d7
KH
4860 struct css_id *child_id;
4861 struct css_id *root_id;
4862 bool ret = true;
38460b48 4863
747388d7
KH
4864 rcu_read_lock();
4865 child_id = rcu_dereference(child->id);
4866 root_id = rcu_dereference(root->id);
4867 if (!child_id
4868 || !root_id
4869 || (child_id->depth < root_id->depth)
4870 || (child_id->stack[root_id->depth] != root_id->id))
4871 ret = false;
4872 rcu_read_unlock();
4873 return ret;
38460b48
KH
4874}
4875
38460b48
KH
4876void free_css_id(struct cgroup_subsys *ss, struct cgroup_subsys_state *css)
4877{
4878 struct css_id *id = css->id;
4879 /* When this is called before css_id initialization, id can be NULL */
4880 if (!id)
4881 return;
4882
4883 BUG_ON(!ss->use_id);
4884
4885 rcu_assign_pointer(id->css, NULL);
4886 rcu_assign_pointer(css->id, NULL);
42aee6c4 4887 spin_lock(&ss->id_lock);
38460b48 4888 idr_remove(&ss->idr, id->id);
42aee6c4 4889 spin_unlock(&ss->id_lock);
025cea99 4890 kfree_rcu(id, rcu_head);
38460b48 4891}
67523c48 4892EXPORT_SYMBOL_GPL(free_css_id);
38460b48
KH
4893
4894/*
4895 * This is called by init or create(). Then, calls to this function are
4896 * always serialized (By cgroup_mutex() at create()).
4897 */
4898
4899static struct css_id *get_new_cssid(struct cgroup_subsys *ss, int depth)
4900{
4901 struct css_id *newid;
4902 int myid, error, size;
4903
4904 BUG_ON(!ss->use_id);
4905
4906 size = sizeof(*newid) + sizeof(unsigned short) * (depth + 1);
4907 newid = kzalloc(size, GFP_KERNEL);
4908 if (!newid)
4909 return ERR_PTR(-ENOMEM);
4910 /* get id */
4911 if (unlikely(!idr_pre_get(&ss->idr, GFP_KERNEL))) {
4912 error = -ENOMEM;
4913 goto err_out;
4914 }
42aee6c4 4915 spin_lock(&ss->id_lock);
38460b48
KH
4916 /* Don't use 0. allocates an ID of 1-65535 */
4917 error = idr_get_new_above(&ss->idr, newid, 1, &myid);
42aee6c4 4918 spin_unlock(&ss->id_lock);
38460b48
KH
4919
4920 /* Returns error when there are no free spaces for new ID.*/
4921 if (error) {
4922 error = -ENOSPC;
4923 goto err_out;
4924 }
4925 if (myid > CSS_ID_MAX)
4926 goto remove_idr;
4927
4928 newid->id = myid;
4929 newid->depth = depth;
4930 return newid;
4931remove_idr:
4932 error = -ENOSPC;
42aee6c4 4933 spin_lock(&ss->id_lock);
38460b48 4934 idr_remove(&ss->idr, myid);
42aee6c4 4935 spin_unlock(&ss->id_lock);
38460b48
KH
4936err_out:
4937 kfree(newid);
4938 return ERR_PTR(error);
4939
4940}
4941
e6a1105b
BB
4942static int __init_or_module cgroup_init_idr(struct cgroup_subsys *ss,
4943 struct cgroup_subsys_state *rootcss)
38460b48
KH
4944{
4945 struct css_id *newid;
38460b48 4946
42aee6c4 4947 spin_lock_init(&ss->id_lock);
38460b48
KH
4948 idr_init(&ss->idr);
4949
38460b48
KH
4950 newid = get_new_cssid(ss, 0);
4951 if (IS_ERR(newid))
4952 return PTR_ERR(newid);
4953
4954 newid->stack[0] = newid->id;
4955 newid->css = rootcss;
4956 rootcss->id = newid;
4957 return 0;
4958}
4959
4960static int alloc_css_id(struct cgroup_subsys *ss, struct cgroup *parent,
4961 struct cgroup *child)
4962{
4963 int subsys_id, i, depth = 0;
4964 struct cgroup_subsys_state *parent_css, *child_css;
fae9c791 4965 struct css_id *child_id, *parent_id;
38460b48
KH
4966
4967 subsys_id = ss->subsys_id;
4968 parent_css = parent->subsys[subsys_id];
4969 child_css = child->subsys[subsys_id];
38460b48 4970 parent_id = parent_css->id;
94b3dd0f 4971 depth = parent_id->depth + 1;
38460b48
KH
4972
4973 child_id = get_new_cssid(ss, depth);
4974 if (IS_ERR(child_id))
4975 return PTR_ERR(child_id);
4976
4977 for (i = 0; i < depth; i++)
4978 child_id->stack[i] = parent_id->stack[i];
4979 child_id->stack[depth] = child_id->id;
4980 /*
4981 * child_id->css pointer will be set after this cgroup is available
4982 * see cgroup_populate_dir()
4983 */
4984 rcu_assign_pointer(child_css->id, child_id);
4985
4986 return 0;
4987}
4988
4989/**
4990 * css_lookup - lookup css by id
4991 * @ss: cgroup subsys to be looked into.
4992 * @id: the id
4993 *
4994 * Returns pointer to cgroup_subsys_state if there is valid one with id.
4995 * NULL if not. Should be called under rcu_read_lock()
4996 */
4997struct cgroup_subsys_state *css_lookup(struct cgroup_subsys *ss, int id)
4998{
4999 struct css_id *cssid = NULL;
5000
5001 BUG_ON(!ss->use_id);
5002 cssid = idr_find(&ss->idr, id);
5003
5004 if (unlikely(!cssid))
5005 return NULL;
5006
5007 return rcu_dereference(cssid->css);
5008}
67523c48 5009EXPORT_SYMBOL_GPL(css_lookup);
38460b48
KH
5010
5011/**
5012 * css_get_next - lookup next cgroup under specified hierarchy.
5013 * @ss: pointer to subsystem
5014 * @id: current position of iteration.
5015 * @root: pointer to css. search tree under this.
5016 * @foundid: position of found object.
5017 *
5018 * Search next css under the specified hierarchy of rootid. Calling under
5019 * rcu_read_lock() is necessary. Returns NULL if it reaches the end.
5020 */
5021struct cgroup_subsys_state *
5022css_get_next(struct cgroup_subsys *ss, int id,
5023 struct cgroup_subsys_state *root, int *foundid)
5024{
5025 struct cgroup_subsys_state *ret = NULL;
5026 struct css_id *tmp;
5027 int tmpid;
5028 int rootid = css_id(root);
5029 int depth = css_depth(root);
5030
5031 if (!rootid)
5032 return NULL;
5033
5034 BUG_ON(!ss->use_id);
ca464d69
HD
5035 WARN_ON_ONCE(!rcu_read_lock_held());
5036
38460b48
KH
5037 /* fill start point for scan */
5038 tmpid = id;
5039 while (1) {
5040 /*
5041 * scan next entry from bitmap(tree), tmpid is updated after
5042 * idr_get_next().
5043 */
38460b48 5044 tmp = idr_get_next(&ss->idr, &tmpid);
38460b48
KH
5045 if (!tmp)
5046 break;
5047 if (tmp->depth >= depth && tmp->stack[depth] == rootid) {
5048 ret = rcu_dereference(tmp->css);
5049 if (ret) {
5050 *foundid = tmpid;
5051 break;
5052 }
5053 }
5054 /* continue to scan from next id */
5055 tmpid = tmpid + 1;
5056 }
5057 return ret;
5058}
5059
e5d1367f
SE
5060/*
5061 * get corresponding css from file open on cgroupfs directory
5062 */
5063struct cgroup_subsys_state *cgroup_css_from_dir(struct file *f, int id)
5064{
5065 struct cgroup *cgrp;
5066 struct inode *inode;
5067 struct cgroup_subsys_state *css;
5068
5069 inode = f->f_dentry->d_inode;
5070 /* check in cgroup filesystem dir */
5071 if (inode->i_op != &cgroup_dir_inode_operations)
5072 return ERR_PTR(-EBADF);
5073
5074 if (id < 0 || id >= CGROUP_SUBSYS_COUNT)
5075 return ERR_PTR(-EINVAL);
5076
5077 /* get cgroup */
5078 cgrp = __d_cgrp(f->f_dentry);
5079 css = cgrp->subsys[id];
5080 return css ? css : ERR_PTR(-ENOENT);
5081}
5082
fe693435 5083#ifdef CONFIG_CGROUP_DEBUG
761b3ef5 5084static struct cgroup_subsys_state *debug_create(struct cgroup *cont)
fe693435
PM
5085{
5086 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5087
5088 if (!css)
5089 return ERR_PTR(-ENOMEM);
5090
5091 return css;
5092}
5093
761b3ef5 5094static void debug_destroy(struct cgroup *cont)
fe693435
PM
5095{
5096 kfree(cont->subsys[debug_subsys_id]);
5097}
5098
5099static u64 cgroup_refcount_read(struct cgroup *cont, struct cftype *cft)
5100{
5101 return atomic_read(&cont->count);
5102}
5103
5104static u64 debug_taskcount_read(struct cgroup *cont, struct cftype *cft)
5105{
5106 return cgroup_task_count(cont);
5107}
5108
5109static u64 current_css_set_read(struct cgroup *cont, struct cftype *cft)
5110{
5111 return (u64)(unsigned long)current->cgroups;
5112}
5113
5114static u64 current_css_set_refcount_read(struct cgroup *cont,
5115 struct cftype *cft)
5116{
5117 u64 count;
5118
5119 rcu_read_lock();
5120 count = atomic_read(&current->cgroups->refcount);
5121 rcu_read_unlock();
5122 return count;
5123}
5124
7717f7ba
PM
5125static int current_css_set_cg_links_read(struct cgroup *cont,
5126 struct cftype *cft,
5127 struct seq_file *seq)
5128{
5129 struct cg_cgroup_link *link;
5130 struct css_set *cg;
5131
5132 read_lock(&css_set_lock);
5133 rcu_read_lock();
5134 cg = rcu_dereference(current->cgroups);
5135 list_for_each_entry(link, &cg->cg_links, cg_link_list) {
5136 struct cgroup *c = link->cgrp;
5137 const char *name;
5138
5139 if (c->dentry)
5140 name = c->dentry->d_name.name;
5141 else
5142 name = "?";
2c6ab6d2
PM
5143 seq_printf(seq, "Root %d group %s\n",
5144 c->root->hierarchy_id, name);
7717f7ba
PM
5145 }
5146 rcu_read_unlock();
5147 read_unlock(&css_set_lock);
5148 return 0;
5149}
5150
5151#define MAX_TASKS_SHOWN_PER_CSS 25
5152static int cgroup_css_links_read(struct cgroup *cont,
5153 struct cftype *cft,
5154 struct seq_file *seq)
5155{
5156 struct cg_cgroup_link *link;
5157
5158 read_lock(&css_set_lock);
5159 list_for_each_entry(link, &cont->css_sets, cgrp_link_list) {
5160 struct css_set *cg = link->cg;
5161 struct task_struct *task;
5162 int count = 0;
5163 seq_printf(seq, "css_set %p\n", cg);
5164 list_for_each_entry(task, &cg->tasks, cg_list) {
5165 if (count++ > MAX_TASKS_SHOWN_PER_CSS) {
5166 seq_puts(seq, " ...\n");
5167 break;
5168 } else {
5169 seq_printf(seq, " task %d\n",
5170 task_pid_vnr(task));
5171 }
5172 }
5173 }
5174 read_unlock(&css_set_lock);
5175 return 0;
5176}
5177
fe693435
PM
5178static u64 releasable_read(struct cgroup *cgrp, struct cftype *cft)
5179{
5180 return test_bit(CGRP_RELEASABLE, &cgrp->flags);
5181}
5182
5183static struct cftype debug_files[] = {
5184 {
5185 .name = "cgroup_refcount",
5186 .read_u64 = cgroup_refcount_read,
5187 },
5188 {
5189 .name = "taskcount",
5190 .read_u64 = debug_taskcount_read,
5191 },
5192
5193 {
5194 .name = "current_css_set",
5195 .read_u64 = current_css_set_read,
5196 },
5197
5198 {
5199 .name = "current_css_set_refcount",
5200 .read_u64 = current_css_set_refcount_read,
5201 },
5202
7717f7ba
PM
5203 {
5204 .name = "current_css_set_cg_links",
5205 .read_seq_string = current_css_set_cg_links_read,
5206 },
5207
5208 {
5209 .name = "cgroup_css_links",
5210 .read_seq_string = cgroup_css_links_read,
5211 },
5212
fe693435
PM
5213 {
5214 .name = "releasable",
5215 .read_u64 = releasable_read,
5216 },
5217};
5218
5219static int debug_populate(struct cgroup_subsys *ss, struct cgroup *cont)
5220{
5221 return cgroup_add_files(cont, ss, debug_files,
5222 ARRAY_SIZE(debug_files));
5223}
5224
5225struct cgroup_subsys debug_subsys = {
5226 .name = "debug",
5227 .create = debug_create,
5228 .destroy = debug_destroy,
5229 .populate = debug_populate,
5230 .subsys_id = debug_subsys_id,
5231};
5232#endif /* CONFIG_CGROUP_DEBUG */