]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - kernel/cgroup.c
cpuset: remove an unncessary forward declaration
[mirror_ubuntu-bionic-kernel.git] / kernel / cgroup.c
CommitLineData
ddbcc7e8 1/*
ddbcc7e8
PM
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
0dea1168
KS
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
ddbcc7e8
PM
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29#include <linux/cgroup.h>
2ce9738b 30#include <linux/cred.h>
c6d57f33 31#include <linux/ctype.h>
ddbcc7e8 32#include <linux/errno.h>
2ce9738b 33#include <linux/init_task.h>
ddbcc7e8
PM
34#include <linux/kernel.h>
35#include <linux/list.h>
36#include <linux/mm.h>
37#include <linux/mutex.h>
38#include <linux/mount.h>
39#include <linux/pagemap.h>
a424316c 40#include <linux/proc_fs.h>
ddbcc7e8
PM
41#include <linux/rcupdate.h>
42#include <linux/sched.h>
817929ec 43#include <linux/backing-dev.h>
ddbcc7e8
PM
44#include <linux/seq_file.h>
45#include <linux/slab.h>
46#include <linux/magic.h>
47#include <linux/spinlock.h>
48#include <linux/string.h>
bbcb81d0 49#include <linux/sort.h>
81a6a5cd 50#include <linux/kmod.h>
e6a1105b 51#include <linux/module.h>
846c7bb0
BS
52#include <linux/delayacct.h>
53#include <linux/cgroupstats.h>
0ac801fe 54#include <linux/hashtable.h>
3f8206d4 55#include <linux/namei.h>
096b7fe0 56#include <linux/pid_namespace.h>
2c6ab6d2 57#include <linux/idr.h>
d1d9fd33 58#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
0dea1168
KS
59#include <linux/eventfd.h>
60#include <linux/poll.h>
081aa458 61#include <linux/flex_array.h> /* used in cgroup_attach_task */
c4c27fbd 62#include <linux/kthread.h>
846c7bb0 63
60063497 64#include <linux/atomic.h>
ddbcc7e8 65
e25e2cbb
TH
66/*
67 * cgroup_mutex is the master lock. Any modification to cgroup or its
68 * hierarchy must be performed while holding it.
69 *
70 * cgroup_root_mutex nests inside cgroup_mutex and should be held to modify
71 * cgroupfs_root of any cgroup hierarchy - subsys list, flags,
72 * release_agent_path and so on. Modifying requires both cgroup_mutex and
73 * cgroup_root_mutex. Readers can acquire either of the two. This is to
74 * break the following locking order cycle.
75 *
76 * A. cgroup_mutex -> cred_guard_mutex -> s_type->i_mutex_key -> namespace_sem
77 * B. namespace_sem -> cgroup_mutex
78 *
79 * B happens only through cgroup_show_options() and using cgroup_root_mutex
80 * breaks it.
81 */
2219449a
TH
82#ifdef CONFIG_PROVE_RCU
83DEFINE_MUTEX(cgroup_mutex);
8af01f56 84EXPORT_SYMBOL_GPL(cgroup_mutex); /* only for lockdep */
2219449a 85#else
81a6a5cd 86static DEFINE_MUTEX(cgroup_mutex);
2219449a
TH
87#endif
88
e25e2cbb 89static DEFINE_MUTEX(cgroup_root_mutex);
81a6a5cd 90
aae8aab4
BB
91/*
92 * Generate an array of cgroup subsystem pointers. At boot time, this is
be45c900 93 * populated with the built in subsystems, and modular subsystems are
aae8aab4
BB
94 * registered after that. The mutable section of this array is protected by
95 * cgroup_mutex.
96 */
80f4c877 97#define SUBSYS(_x) [_x ## _subsys_id] = &_x ## _subsys,
5fc0b025 98#define IS_SUBSYS_ENABLED(option) IS_BUILTIN(option)
9871bf95 99static struct cgroup_subsys *cgroup_subsys[CGROUP_SUBSYS_COUNT] = {
ddbcc7e8
PM
100#include <linux/cgroup_subsys.h>
101};
102
ddbcc7e8 103/*
9871bf95
TH
104 * The dummy hierarchy, reserved for the subsystems that are otherwise
105 * unattached - it never has more than a single cgroup, and all tasks are
106 * part of that cgroup.
ddbcc7e8 107 */
9871bf95
TH
108static struct cgroupfs_root cgroup_dummy_root;
109
110/* dummy_top is a shorthand for the dummy hierarchy's top cgroup */
111static struct cgroup * const cgroup_dummy_top = &cgroup_dummy_root.top_cgroup;
ddbcc7e8 112
05ef1d7c
TH
113/*
114 * cgroupfs file entry, pointed to from leaf dentry->d_fsdata.
115 */
116struct cfent {
117 struct list_head node;
118 struct dentry *dentry;
119 struct cftype *type;
105347ba 120 struct cgroup_subsys_state *css;
712317ad
LZ
121
122 /* file xattrs */
123 struct simple_xattrs xattrs;
05ef1d7c
TH
124};
125
38460b48
KH
126/*
127 * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
128 * cgroup_subsys->use_id != 0.
129 */
130#define CSS_ID_MAX (65535)
131struct css_id {
132 /*
133 * The css to which this ID points. This pointer is set to valid value
134 * after cgroup is populated. If cgroup is removed, this will be NULL.
135 * This pointer is expected to be RCU-safe because destroy()
e9316080
TH
136 * is called after synchronize_rcu(). But for safe use, css_tryget()
137 * should be used for avoiding race.
38460b48 138 */
2c392b8c 139 struct cgroup_subsys_state __rcu *css;
38460b48
KH
140 /*
141 * ID of this css.
142 */
143 unsigned short id;
144 /*
145 * Depth in hierarchy which this ID belongs to.
146 */
147 unsigned short depth;
148 /*
149 * ID is freed by RCU. (and lookup routine is RCU safe.)
150 */
151 struct rcu_head rcu_head;
152 /*
153 * Hierarchy of CSS ID belongs to.
154 */
155 unsigned short stack[0]; /* Array of Length (depth+1) */
156};
157
0dea1168 158/*
25985edc 159 * cgroup_event represents events which userspace want to receive.
0dea1168
KS
160 */
161struct cgroup_event {
162 /*
81eeaf04 163 * css which the event belongs to.
0dea1168 164 */
81eeaf04 165 struct cgroup_subsys_state *css;
0dea1168
KS
166 /*
167 * Control file which the event associated.
168 */
169 struct cftype *cft;
170 /*
171 * eventfd to signal userspace about the event.
172 */
173 struct eventfd_ctx *eventfd;
174 /*
175 * Each of these stored in a list by the cgroup.
176 */
177 struct list_head list;
178 /*
179 * All fields below needed to unregister event when
180 * userspace closes eventfd.
181 */
182 poll_table pt;
183 wait_queue_head_t *wqh;
184 wait_queue_t wait;
185 struct work_struct remove;
186};
38460b48 187
ddbcc7e8
PM
188/* The list of hierarchy roots */
189
9871bf95
TH
190static LIST_HEAD(cgroup_roots);
191static int cgroup_root_count;
ddbcc7e8 192
54e7b4eb
TH
193/*
194 * Hierarchy ID allocation and mapping. It follows the same exclusion
195 * rules as other root ops - both cgroup_mutex and cgroup_root_mutex for
196 * writes, either for reads.
197 */
1a574231 198static DEFINE_IDR(cgroup_hierarchy_idr);
2c6ab6d2 199
65dff759
LZ
200static struct cgroup_name root_cgroup_name = { .name = "/" };
201
794611a1
LZ
202/*
203 * Assign a monotonically increasing serial number to cgroups. It
204 * guarantees cgroups with bigger numbers are newer than those with smaller
205 * numbers. Also, as cgroups are always appended to the parent's
206 * ->children list, it guarantees that sibling cgroups are always sorted in
00356bd5
TH
207 * the ascending serial number order on the list. Protected by
208 * cgroup_mutex.
794611a1 209 */
00356bd5 210static u64 cgroup_serial_nr_next = 1;
794611a1 211
ddbcc7e8 212/* This flag indicates whether tasks in the fork and exit paths should
a043e3b2
LZ
213 * check for fork/exit handlers to call. This avoids us having to do
214 * extra work in the fork/exit path if none of the subsystems need to
215 * be called.
ddbcc7e8 216 */
8947f9d5 217static int need_forkexit_callback __read_mostly;
ddbcc7e8 218
628f7cd4
TH
219static struct cftype cgroup_base_files[];
220
f20104de 221static void cgroup_destroy_css_killed(struct cgroup *cgrp);
42809dd4 222static int cgroup_destroy_locked(struct cgroup *cgrp);
2bb566cb
TH
223static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
224 bool is_add);
42809dd4 225
95109b62
TH
226/**
227 * cgroup_css - obtain a cgroup's css for the specified subsystem
228 * @cgrp: the cgroup of interest
229 * @subsys_id: the subsystem of interest
230 *
231 * Return @cgrp's css (cgroup_subsys_state) associated with @subsys_id.
73e80ed8
TH
232 * This function must be called either under cgroup_mutex or
233 * rcu_read_lock() and the caller is responsible for pinning the returned
234 * css if it wants to keep accessing it outside the said locks. This
235 * function may return %NULL if @cgrp doesn't have @subsys_id enabled.
95109b62
TH
236 */
237static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
238 int subsys_id)
239{
73e80ed8
TH
240 return rcu_dereference_check(cgrp->subsys[subsys_id],
241 lockdep_is_held(&cgroup_mutex));
95109b62
TH
242}
243
ddbcc7e8 244/* convenient tests for these bits */
54766d4a 245static inline bool cgroup_is_dead(const struct cgroup *cgrp)
ddbcc7e8 246{
54766d4a 247 return test_bit(CGRP_DEAD, &cgrp->flags);
ddbcc7e8
PM
248}
249
78574cf9
LZ
250/**
251 * cgroup_is_descendant - test ancestry
252 * @cgrp: the cgroup to be tested
253 * @ancestor: possible ancestor of @cgrp
254 *
255 * Test whether @cgrp is a descendant of @ancestor. It also returns %true
256 * if @cgrp == @ancestor. This function is safe to call as long as @cgrp
257 * and @ancestor are accessible.
258 */
259bool cgroup_is_descendant(struct cgroup *cgrp, struct cgroup *ancestor)
260{
261 while (cgrp) {
262 if (cgrp == ancestor)
263 return true;
264 cgrp = cgrp->parent;
265 }
266 return false;
267}
268EXPORT_SYMBOL_GPL(cgroup_is_descendant);
ddbcc7e8 269
e9685a03 270static int cgroup_is_releasable(const struct cgroup *cgrp)
81a6a5cd
PM
271{
272 const int bits =
bd89aabc
PM
273 (1 << CGRP_RELEASABLE) |
274 (1 << CGRP_NOTIFY_ON_RELEASE);
275 return (cgrp->flags & bits) == bits;
81a6a5cd
PM
276}
277
e9685a03 278static int notify_on_release(const struct cgroup *cgrp)
81a6a5cd 279{
bd89aabc 280 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
81a6a5cd
PM
281}
282
30159ec7
TH
283/**
284 * for_each_subsys - iterate all loaded cgroup subsystems
285 * @ss: the iteration cursor
286 * @i: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
287 *
288 * Should be called under cgroup_mutex.
289 */
290#define for_each_subsys(ss, i) \
291 for ((i) = 0; (i) < CGROUP_SUBSYS_COUNT; (i)++) \
292 if (({ lockdep_assert_held(&cgroup_mutex); \
293 !((ss) = cgroup_subsys[i]); })) { } \
294 else
295
296/**
297 * for_each_builtin_subsys - iterate all built-in cgroup subsystems
298 * @ss: the iteration cursor
299 * @i: the index of @ss, CGROUP_BUILTIN_SUBSYS_COUNT after reaching the end
300 *
301 * Bulit-in subsystems are always present and iteration itself doesn't
302 * require any synchronization.
303 */
304#define for_each_builtin_subsys(ss, i) \
305 for ((i) = 0; (i) < CGROUP_BUILTIN_SUBSYS_COUNT && \
306 (((ss) = cgroup_subsys[i]) || true); (i)++)
307
5549c497
TH
308/* iterate each subsystem attached to a hierarchy */
309#define for_each_root_subsys(root, ss) \
310 list_for_each_entry((ss), &(root)->subsys_list, sibling)
ddbcc7e8 311
5549c497
TH
312/* iterate across the active hierarchies */
313#define for_each_active_root(root) \
314 list_for_each_entry((root), &cgroup_roots, root_list)
ddbcc7e8 315
f6ea9372
TH
316static inline struct cgroup *__d_cgrp(struct dentry *dentry)
317{
318 return dentry->d_fsdata;
319}
320
05ef1d7c 321static inline struct cfent *__d_cfe(struct dentry *dentry)
f6ea9372
TH
322{
323 return dentry->d_fsdata;
324}
325
05ef1d7c
TH
326static inline struct cftype *__d_cft(struct dentry *dentry)
327{
328 return __d_cfe(dentry)->type;
329}
330
7ae1bad9
TH
331/**
332 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
333 * @cgrp: the cgroup to be checked for liveness
334 *
47cfcd09
TH
335 * On success, returns true; the mutex should be later unlocked. On
336 * failure returns false with no lock held.
7ae1bad9 337 */
b9777cf8 338static bool cgroup_lock_live_group(struct cgroup *cgrp)
7ae1bad9
TH
339{
340 mutex_lock(&cgroup_mutex);
54766d4a 341 if (cgroup_is_dead(cgrp)) {
7ae1bad9
TH
342 mutex_unlock(&cgroup_mutex);
343 return false;
344 }
345 return true;
346}
7ae1bad9 347
81a6a5cd
PM
348/* the list of cgroups eligible for automatic release. Protected by
349 * release_list_lock */
350static LIST_HEAD(release_list);
cdcc136f 351static DEFINE_RAW_SPINLOCK(release_list_lock);
81a6a5cd
PM
352static void cgroup_release_agent(struct work_struct *work);
353static DECLARE_WORK(release_agent_work, cgroup_release_agent);
bd89aabc 354static void check_for_release(struct cgroup *cgrp);
81a6a5cd 355
69d0206c
TH
356/*
357 * A cgroup can be associated with multiple css_sets as different tasks may
358 * belong to different cgroups on different hierarchies. In the other
359 * direction, a css_set is naturally associated with multiple cgroups.
360 * This M:N relationship is represented by the following link structure
361 * which exists for each association and allows traversing the associations
362 * from both sides.
363 */
364struct cgrp_cset_link {
365 /* the cgroup and css_set this link associates */
366 struct cgroup *cgrp;
367 struct css_set *cset;
368
369 /* list of cgrp_cset_links anchored at cgrp->cset_links */
370 struct list_head cset_link;
371
372 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
373 struct list_head cgrp_link;
817929ec
PM
374};
375
376/* The default css_set - used by init and its children prior to any
377 * hierarchies being mounted. It contains a pointer to the root state
378 * for each subsystem. Also used to anchor the list of css_sets. Not
379 * reference-counted, to improve performance when child cgroups
380 * haven't been created.
381 */
382
383static struct css_set init_css_set;
69d0206c 384static struct cgrp_cset_link init_cgrp_cset_link;
817929ec 385
e6a1105b
BB
386static int cgroup_init_idr(struct cgroup_subsys *ss,
387 struct cgroup_subsys_state *css);
38460b48 388
0942eeee
TH
389/*
390 * css_set_lock protects the list of css_set objects, and the chain of
391 * tasks off each css_set. Nests outside task->alloc_lock due to
72ec7029 392 * css_task_iter_start().
0942eeee 393 */
817929ec
PM
394static DEFINE_RWLOCK(css_set_lock);
395static int css_set_count;
396
7717f7ba
PM
397/*
398 * hash table for cgroup groups. This improves the performance to find
399 * an existing css_set. This hash doesn't (currently) take into
400 * account cgroups in empty hierarchies.
401 */
472b1053 402#define CSS_SET_HASH_BITS 7
0ac801fe 403static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
472b1053 404
0ac801fe 405static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
472b1053 406{
0ac801fe 407 unsigned long key = 0UL;
30159ec7
TH
408 struct cgroup_subsys *ss;
409 int i;
472b1053 410
30159ec7 411 for_each_subsys(ss, i)
0ac801fe
LZ
412 key += (unsigned long)css[i];
413 key = (key >> 16) ^ key;
472b1053 414
0ac801fe 415 return key;
472b1053
LZ
416}
417
0942eeee
TH
418/*
419 * We don't maintain the lists running through each css_set to its task
72ec7029
TH
420 * until after the first call to css_task_iter_start(). This reduces the
421 * fork()/exit() overhead for people who have cgroups compiled into their
422 * kernel but not actually in use.
0942eeee 423 */
8947f9d5 424static int use_task_css_set_links __read_mostly;
817929ec 425
5abb8855 426static void __put_css_set(struct css_set *cset, int taskexit)
b4f48b63 427{
69d0206c 428 struct cgrp_cset_link *link, *tmp_link;
5abb8855 429
146aa1bd
LJ
430 /*
431 * Ensure that the refcount doesn't hit zero while any readers
432 * can see it. Similar to atomic_dec_and_lock(), but for an
433 * rwlock
434 */
5abb8855 435 if (atomic_add_unless(&cset->refcount, -1, 1))
146aa1bd
LJ
436 return;
437 write_lock(&css_set_lock);
5abb8855 438 if (!atomic_dec_and_test(&cset->refcount)) {
146aa1bd
LJ
439 write_unlock(&css_set_lock);
440 return;
441 }
81a6a5cd 442
2c6ab6d2 443 /* This css_set is dead. unlink it and release cgroup refcounts */
5abb8855 444 hash_del(&cset->hlist);
2c6ab6d2
PM
445 css_set_count--;
446
69d0206c 447 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
2c6ab6d2 448 struct cgroup *cgrp = link->cgrp;
5abb8855 449
69d0206c
TH
450 list_del(&link->cset_link);
451 list_del(&link->cgrp_link);
71b5707e 452
ddd69148 453 /* @cgrp can't go away while we're holding css_set_lock */
6f3d828f 454 if (list_empty(&cgrp->cset_links) && notify_on_release(cgrp)) {
81a6a5cd 455 if (taskexit)
bd89aabc
PM
456 set_bit(CGRP_RELEASABLE, &cgrp->flags);
457 check_for_release(cgrp);
81a6a5cd 458 }
2c6ab6d2
PM
459
460 kfree(link);
81a6a5cd 461 }
2c6ab6d2
PM
462
463 write_unlock(&css_set_lock);
5abb8855 464 kfree_rcu(cset, rcu_head);
b4f48b63
PM
465}
466
817929ec
PM
467/*
468 * refcounted get/put for css_set objects
469 */
5abb8855 470static inline void get_css_set(struct css_set *cset)
817929ec 471{
5abb8855 472 atomic_inc(&cset->refcount);
817929ec
PM
473}
474
5abb8855 475static inline void put_css_set(struct css_set *cset)
817929ec 476{
5abb8855 477 __put_css_set(cset, 0);
817929ec
PM
478}
479
5abb8855 480static inline void put_css_set_taskexit(struct css_set *cset)
81a6a5cd 481{
5abb8855 482 __put_css_set(cset, 1);
81a6a5cd
PM
483}
484
b326f9d0 485/**
7717f7ba 486 * compare_css_sets - helper function for find_existing_css_set().
5abb8855
TH
487 * @cset: candidate css_set being tested
488 * @old_cset: existing css_set for a task
7717f7ba
PM
489 * @new_cgrp: cgroup that's being entered by the task
490 * @template: desired set of css pointers in css_set (pre-calculated)
491 *
6f4b7e63 492 * Returns true if "cset" matches "old_cset" except for the hierarchy
7717f7ba
PM
493 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
494 */
5abb8855
TH
495static bool compare_css_sets(struct css_set *cset,
496 struct css_set *old_cset,
7717f7ba
PM
497 struct cgroup *new_cgrp,
498 struct cgroup_subsys_state *template[])
499{
500 struct list_head *l1, *l2;
501
5abb8855 502 if (memcmp(template, cset->subsys, sizeof(cset->subsys))) {
7717f7ba
PM
503 /* Not all subsystems matched */
504 return false;
505 }
506
507 /*
508 * Compare cgroup pointers in order to distinguish between
509 * different cgroups in heirarchies with no subsystems. We
510 * could get by with just this check alone (and skip the
511 * memcmp above) but on most setups the memcmp check will
512 * avoid the need for this more expensive check on almost all
513 * candidates.
514 */
515
69d0206c
TH
516 l1 = &cset->cgrp_links;
517 l2 = &old_cset->cgrp_links;
7717f7ba 518 while (1) {
69d0206c 519 struct cgrp_cset_link *link1, *link2;
5abb8855 520 struct cgroup *cgrp1, *cgrp2;
7717f7ba
PM
521
522 l1 = l1->next;
523 l2 = l2->next;
524 /* See if we reached the end - both lists are equal length. */
69d0206c
TH
525 if (l1 == &cset->cgrp_links) {
526 BUG_ON(l2 != &old_cset->cgrp_links);
7717f7ba
PM
527 break;
528 } else {
69d0206c 529 BUG_ON(l2 == &old_cset->cgrp_links);
7717f7ba
PM
530 }
531 /* Locate the cgroups associated with these links. */
69d0206c
TH
532 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
533 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
534 cgrp1 = link1->cgrp;
535 cgrp2 = link2->cgrp;
7717f7ba 536 /* Hierarchies should be linked in the same order. */
5abb8855 537 BUG_ON(cgrp1->root != cgrp2->root);
7717f7ba
PM
538
539 /*
540 * If this hierarchy is the hierarchy of the cgroup
541 * that's changing, then we need to check that this
542 * css_set points to the new cgroup; if it's any other
543 * hierarchy, then this css_set should point to the
544 * same cgroup as the old css_set.
545 */
5abb8855
TH
546 if (cgrp1->root == new_cgrp->root) {
547 if (cgrp1 != new_cgrp)
7717f7ba
PM
548 return false;
549 } else {
5abb8855 550 if (cgrp1 != cgrp2)
7717f7ba
PM
551 return false;
552 }
553 }
554 return true;
555}
556
b326f9d0
TH
557/**
558 * find_existing_css_set - init css array and find the matching css_set
559 * @old_cset: the css_set that we're using before the cgroup transition
560 * @cgrp: the cgroup that we're moving into
561 * @template: out param for the new set of csses, should be clear on entry
817929ec 562 */
5abb8855
TH
563static struct css_set *find_existing_css_set(struct css_set *old_cset,
564 struct cgroup *cgrp,
565 struct cgroup_subsys_state *template[])
b4f48b63 566{
bd89aabc 567 struct cgroupfs_root *root = cgrp->root;
30159ec7 568 struct cgroup_subsys *ss;
5abb8855 569 struct css_set *cset;
0ac801fe 570 unsigned long key;
b326f9d0 571 int i;
817929ec 572
aae8aab4
BB
573 /*
574 * Build the set of subsystem state objects that we want to see in the
575 * new css_set. while subsystems can change globally, the entries here
576 * won't change, so no need for locking.
577 */
30159ec7 578 for_each_subsys(ss, i) {
a1a71b45 579 if (root->subsys_mask & (1UL << i)) {
817929ec
PM
580 /* Subsystem is in this hierarchy. So we want
581 * the subsystem state from the new
582 * cgroup */
40e93b39 583 template[i] = cgroup_css(cgrp, i);
817929ec
PM
584 } else {
585 /* Subsystem is not in this hierarchy, so we
586 * don't want to change the subsystem state */
5abb8855 587 template[i] = old_cset->subsys[i];
817929ec
PM
588 }
589 }
590
0ac801fe 591 key = css_set_hash(template);
5abb8855
TH
592 hash_for_each_possible(css_set_table, cset, hlist, key) {
593 if (!compare_css_sets(cset, old_cset, cgrp, template))
7717f7ba
PM
594 continue;
595
596 /* This css_set matches what we need */
5abb8855 597 return cset;
472b1053 598 }
817929ec
PM
599
600 /* No existing cgroup group matched */
601 return NULL;
602}
603
69d0206c 604static void free_cgrp_cset_links(struct list_head *links_to_free)
36553434 605{
69d0206c 606 struct cgrp_cset_link *link, *tmp_link;
36553434 607
69d0206c
TH
608 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
609 list_del(&link->cset_link);
36553434
LZ
610 kfree(link);
611 }
612}
613
69d0206c
TH
614/**
615 * allocate_cgrp_cset_links - allocate cgrp_cset_links
616 * @count: the number of links to allocate
617 * @tmp_links: list_head the allocated links are put on
618 *
619 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
620 * through ->cset_link. Returns 0 on success or -errno.
817929ec 621 */
69d0206c 622static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
817929ec 623{
69d0206c 624 struct cgrp_cset_link *link;
817929ec 625 int i;
69d0206c
TH
626
627 INIT_LIST_HEAD(tmp_links);
628
817929ec 629 for (i = 0; i < count; i++) {
f4f4be2b 630 link = kzalloc(sizeof(*link), GFP_KERNEL);
817929ec 631 if (!link) {
69d0206c 632 free_cgrp_cset_links(tmp_links);
817929ec
PM
633 return -ENOMEM;
634 }
69d0206c 635 list_add(&link->cset_link, tmp_links);
817929ec
PM
636 }
637 return 0;
638}
639
c12f65d4
LZ
640/**
641 * link_css_set - a helper function to link a css_set to a cgroup
69d0206c 642 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
5abb8855 643 * @cset: the css_set to be linked
c12f65d4
LZ
644 * @cgrp: the destination cgroup
645 */
69d0206c
TH
646static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
647 struct cgroup *cgrp)
c12f65d4 648{
69d0206c 649 struct cgrp_cset_link *link;
c12f65d4 650
69d0206c
TH
651 BUG_ON(list_empty(tmp_links));
652 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
653 link->cset = cset;
7717f7ba 654 link->cgrp = cgrp;
69d0206c 655 list_move(&link->cset_link, &cgrp->cset_links);
7717f7ba
PM
656 /*
657 * Always add links to the tail of the list so that the list
658 * is sorted by order of hierarchy creation
659 */
69d0206c 660 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
c12f65d4
LZ
661}
662
b326f9d0
TH
663/**
664 * find_css_set - return a new css_set with one cgroup updated
665 * @old_cset: the baseline css_set
666 * @cgrp: the cgroup to be updated
667 *
668 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
669 * substituted into the appropriate hierarchy.
817929ec 670 */
5abb8855
TH
671static struct css_set *find_css_set(struct css_set *old_cset,
672 struct cgroup *cgrp)
817929ec 673{
b326f9d0 674 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
5abb8855 675 struct css_set *cset;
69d0206c
TH
676 struct list_head tmp_links;
677 struct cgrp_cset_link *link;
0ac801fe 678 unsigned long key;
472b1053 679
b326f9d0
TH
680 lockdep_assert_held(&cgroup_mutex);
681
817929ec
PM
682 /* First see if we already have a cgroup group that matches
683 * the desired set */
7e9abd89 684 read_lock(&css_set_lock);
5abb8855
TH
685 cset = find_existing_css_set(old_cset, cgrp, template);
686 if (cset)
687 get_css_set(cset);
7e9abd89 688 read_unlock(&css_set_lock);
817929ec 689
5abb8855
TH
690 if (cset)
691 return cset;
817929ec 692
f4f4be2b 693 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
5abb8855 694 if (!cset)
817929ec
PM
695 return NULL;
696
69d0206c 697 /* Allocate all the cgrp_cset_link objects that we'll need */
9871bf95 698 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
5abb8855 699 kfree(cset);
817929ec
PM
700 return NULL;
701 }
702
5abb8855 703 atomic_set(&cset->refcount, 1);
69d0206c 704 INIT_LIST_HEAD(&cset->cgrp_links);
5abb8855
TH
705 INIT_LIST_HEAD(&cset->tasks);
706 INIT_HLIST_NODE(&cset->hlist);
817929ec
PM
707
708 /* Copy the set of subsystem state objects generated in
709 * find_existing_css_set() */
5abb8855 710 memcpy(cset->subsys, template, sizeof(cset->subsys));
817929ec
PM
711
712 write_lock(&css_set_lock);
713 /* Add reference counts and links from the new css_set. */
69d0206c 714 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
7717f7ba 715 struct cgroup *c = link->cgrp;
69d0206c 716
7717f7ba
PM
717 if (c->root == cgrp->root)
718 c = cgrp;
69d0206c 719 link_css_set(&tmp_links, cset, c);
7717f7ba 720 }
817929ec 721
69d0206c 722 BUG_ON(!list_empty(&tmp_links));
817929ec 723
817929ec 724 css_set_count++;
472b1053
LZ
725
726 /* Add this cgroup group to the hash table */
5abb8855
TH
727 key = css_set_hash(cset->subsys);
728 hash_add(css_set_table, &cset->hlist, key);
472b1053 729
817929ec
PM
730 write_unlock(&css_set_lock);
731
5abb8855 732 return cset;
b4f48b63
PM
733}
734
7717f7ba
PM
735/*
736 * Return the cgroup for "task" from the given hierarchy. Must be
737 * called with cgroup_mutex held.
738 */
739static struct cgroup *task_cgroup_from_root(struct task_struct *task,
740 struct cgroupfs_root *root)
741{
5abb8855 742 struct css_set *cset;
7717f7ba
PM
743 struct cgroup *res = NULL;
744
745 BUG_ON(!mutex_is_locked(&cgroup_mutex));
746 read_lock(&css_set_lock);
747 /*
748 * No need to lock the task - since we hold cgroup_mutex the
749 * task can't change groups, so the only thing that can happen
750 * is that it exits and its css is set back to init_css_set.
751 */
a8ad805c 752 cset = task_css_set(task);
5abb8855 753 if (cset == &init_css_set) {
7717f7ba
PM
754 res = &root->top_cgroup;
755 } else {
69d0206c
TH
756 struct cgrp_cset_link *link;
757
758 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 759 struct cgroup *c = link->cgrp;
69d0206c 760
7717f7ba
PM
761 if (c->root == root) {
762 res = c;
763 break;
764 }
765 }
766 }
767 read_unlock(&css_set_lock);
768 BUG_ON(!res);
769 return res;
770}
771
ddbcc7e8
PM
772/*
773 * There is one global cgroup mutex. We also require taking
774 * task_lock() when dereferencing a task's cgroup subsys pointers.
775 * See "The task_lock() exception", at the end of this comment.
776 *
777 * A task must hold cgroup_mutex to modify cgroups.
778 *
779 * Any task can increment and decrement the count field without lock.
780 * So in general, code holding cgroup_mutex can't rely on the count
781 * field not changing. However, if the count goes to zero, then only
956db3ca 782 * cgroup_attach_task() can increment it again. Because a count of zero
ddbcc7e8
PM
783 * means that no tasks are currently attached, therefore there is no
784 * way a task attached to that cgroup can fork (the other way to
785 * increment the count). So code holding cgroup_mutex can safely
786 * assume that if the count is zero, it will stay zero. Similarly, if
787 * a task holds cgroup_mutex on a cgroup with zero count, it
788 * knows that the cgroup won't be removed, as cgroup_rmdir()
789 * needs that mutex.
790 *
ddbcc7e8
PM
791 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
792 * (usually) take cgroup_mutex. These are the two most performance
793 * critical pieces of code here. The exception occurs on cgroup_exit(),
794 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
795 * is taken, and if the cgroup count is zero, a usermode call made
a043e3b2
LZ
796 * to the release agent with the name of the cgroup (path relative to
797 * the root of cgroup file system) as the argument.
ddbcc7e8
PM
798 *
799 * A cgroup can only be deleted if both its 'count' of using tasks
800 * is zero, and its list of 'children' cgroups is empty. Since all
801 * tasks in the system use _some_ cgroup, and since there is always at
802 * least one task in the system (init, pid == 1), therefore, top_cgroup
803 * always has either children cgroups and/or using tasks. So we don't
804 * need a special hack to ensure that top_cgroup cannot be deleted.
805 *
806 * The task_lock() exception
807 *
808 * The need for this exception arises from the action of
d0b2fdd2 809 * cgroup_attach_task(), which overwrites one task's cgroup pointer with
a043e3b2 810 * another. It does so using cgroup_mutex, however there are
ddbcc7e8
PM
811 * several performance critical places that need to reference
812 * task->cgroup without the expense of grabbing a system global
813 * mutex. Therefore except as noted below, when dereferencing or, as
d0b2fdd2 814 * in cgroup_attach_task(), modifying a task's cgroup pointer we use
ddbcc7e8
PM
815 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
816 * the task_struct routinely used for such matters.
817 *
818 * P.S. One more locking exception. RCU is used to guard the
956db3ca 819 * update of a tasks cgroup pointer by cgroup_attach_task()
ddbcc7e8
PM
820 */
821
ddbcc7e8
PM
822/*
823 * A couple of forward declarations required, due to cyclic reference loop:
824 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
825 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
826 * -> cgroup_mkdir.
827 */
828
18bb1db3 829static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode);
00cd8dd3 830static struct dentry *cgroup_lookup(struct inode *, struct dentry *, unsigned int);
ddbcc7e8 831static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
628f7cd4 832static int cgroup_populate_dir(struct cgroup *cgrp, unsigned long subsys_mask);
6e1d5dcc 833static const struct inode_operations cgroup_dir_inode_operations;
828c0950 834static const struct file_operations proc_cgroupstats_operations;
a424316c
PM
835
836static struct backing_dev_info cgroup_backing_dev_info = {
d993831f 837 .name = "cgroup",
e4ad08fe 838 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK,
a424316c 839};
ddbcc7e8 840
623f926b 841static int alloc_css_id(struct cgroup_subsys_state *child_css);
38460b48 842
a5e7ed32 843static struct inode *cgroup_new_inode(umode_t mode, struct super_block *sb)
ddbcc7e8
PM
844{
845 struct inode *inode = new_inode(sb);
ddbcc7e8
PM
846
847 if (inode) {
85fe4025 848 inode->i_ino = get_next_ino();
ddbcc7e8 849 inode->i_mode = mode;
76aac0e9
DH
850 inode->i_uid = current_fsuid();
851 inode->i_gid = current_fsgid();
ddbcc7e8
PM
852 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
853 inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
854 }
855 return inode;
856}
857
65dff759
LZ
858static struct cgroup_name *cgroup_alloc_name(struct dentry *dentry)
859{
860 struct cgroup_name *name;
861
862 name = kmalloc(sizeof(*name) + dentry->d_name.len + 1, GFP_KERNEL);
863 if (!name)
864 return NULL;
865 strcpy(name->name, dentry->d_name.name);
866 return name;
867}
868
be445626
LZ
869static void cgroup_free_fn(struct work_struct *work)
870{
ea15f8cc 871 struct cgroup *cgrp = container_of(work, struct cgroup, destroy_work);
be445626
LZ
872
873 mutex_lock(&cgroup_mutex);
be445626
LZ
874 cgrp->root->number_of_cgroups--;
875 mutex_unlock(&cgroup_mutex);
876
415cf07a
LZ
877 /*
878 * We get a ref to the parent's dentry, and put the ref when
879 * this cgroup is being freed, so it's guaranteed that the
880 * parent won't be destroyed before its children.
881 */
882 dput(cgrp->parent->dentry);
883
be445626
LZ
884 /*
885 * Drop the active superblock reference that we took when we
cc20e01c
LZ
886 * created the cgroup. This will free cgrp->root, if we are
887 * holding the last reference to @sb.
be445626
LZ
888 */
889 deactivate_super(cgrp->root->sb);
890
891 /*
892 * if we're getting rid of the cgroup, refcount should ensure
893 * that there are no pidlists left.
894 */
895 BUG_ON(!list_empty(&cgrp->pidlists));
896
897 simple_xattrs_free(&cgrp->xattrs);
898
65dff759 899 kfree(rcu_dereference_raw(cgrp->name));
be445626
LZ
900 kfree(cgrp);
901}
902
903static void cgroup_free_rcu(struct rcu_head *head)
904{
905 struct cgroup *cgrp = container_of(head, struct cgroup, rcu_head);
906
ea15f8cc
TH
907 INIT_WORK(&cgrp->destroy_work, cgroup_free_fn);
908 schedule_work(&cgrp->destroy_work);
be445626
LZ
909}
910
ddbcc7e8
PM
911static void cgroup_diput(struct dentry *dentry, struct inode *inode)
912{
913 /* is dentry a directory ? if so, kfree() associated cgroup */
914 if (S_ISDIR(inode->i_mode)) {
bd89aabc 915 struct cgroup *cgrp = dentry->d_fsdata;
be445626 916
54766d4a 917 BUG_ON(!(cgroup_is_dead(cgrp)));
be445626 918 call_rcu(&cgrp->rcu_head, cgroup_free_rcu);
05ef1d7c
TH
919 } else {
920 struct cfent *cfe = __d_cfe(dentry);
921 struct cgroup *cgrp = dentry->d_parent->d_fsdata;
922
923 WARN_ONCE(!list_empty(&cfe->node) &&
924 cgrp != &cgrp->root->top_cgroup,
925 "cfe still linked for %s\n", cfe->type->name);
712317ad 926 simple_xattrs_free(&cfe->xattrs);
05ef1d7c 927 kfree(cfe);
ddbcc7e8
PM
928 }
929 iput(inode);
930}
931
c72a04e3
AV
932static int cgroup_delete(const struct dentry *d)
933{
934 return 1;
935}
936
ddbcc7e8
PM
937static void remove_dir(struct dentry *d)
938{
939 struct dentry *parent = dget(d->d_parent);
940
941 d_delete(d);
942 simple_rmdir(parent->d_inode, d);
943 dput(parent);
944}
945
2739d3cc 946static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
05ef1d7c
TH
947{
948 struct cfent *cfe;
949
950 lockdep_assert_held(&cgrp->dentry->d_inode->i_mutex);
951 lockdep_assert_held(&cgroup_mutex);
952
2739d3cc
LZ
953 /*
954 * If we're doing cleanup due to failure of cgroup_create(),
955 * the corresponding @cfe may not exist.
956 */
05ef1d7c
TH
957 list_for_each_entry(cfe, &cgrp->files, node) {
958 struct dentry *d = cfe->dentry;
959
960 if (cft && cfe->type != cft)
961 continue;
962
963 dget(d);
964 d_delete(d);
ce27e317 965 simple_unlink(cgrp->dentry->d_inode, d);
05ef1d7c
TH
966 list_del_init(&cfe->node);
967 dput(d);
968
2739d3cc 969 break;
ddbcc7e8 970 }
05ef1d7c
TH
971}
972
13af07df 973/**
628f7cd4 974 * cgroup_clear_dir - remove subsys files in a cgroup directory
8f89140a 975 * @cgrp: target cgroup
13af07df
AR
976 * @subsys_mask: mask of the subsystem ids whose files should be removed
977 */
628f7cd4 978static void cgroup_clear_dir(struct cgroup *cgrp, unsigned long subsys_mask)
05ef1d7c 979{
13af07df 980 struct cgroup_subsys *ss;
b420ba7d 981 int i;
05ef1d7c 982
b420ba7d 983 for_each_subsys(ss, i) {
13af07df 984 struct cftype_set *set;
b420ba7d
TH
985
986 if (!test_bit(i, &subsys_mask))
13af07df
AR
987 continue;
988 list_for_each_entry(set, &ss->cftsets, node)
2bb566cb 989 cgroup_addrm_files(cgrp, set->cfts, false);
13af07df 990 }
ddbcc7e8
PM
991}
992
993/*
994 * NOTE : the dentry must have been dget()'ed
995 */
996static void cgroup_d_remove_dir(struct dentry *dentry)
997{
2fd6b7f5 998 struct dentry *parent;
ddbcc7e8 999
2fd6b7f5
NP
1000 parent = dentry->d_parent;
1001 spin_lock(&parent->d_lock);
3ec762ad 1002 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
ddbcc7e8 1003 list_del_init(&dentry->d_u.d_child);
2fd6b7f5
NP
1004 spin_unlock(&dentry->d_lock);
1005 spin_unlock(&parent->d_lock);
ddbcc7e8
PM
1006 remove_dir(dentry);
1007}
1008
aae8aab4 1009/*
cf5d5941
BB
1010 * Call with cgroup_mutex held. Drops reference counts on modules, including
1011 * any duplicate ones that parse_cgroupfs_options took. If this function
1012 * returns an error, no reference counts are touched.
aae8aab4 1013 */
ddbcc7e8 1014static int rebind_subsystems(struct cgroupfs_root *root,
a8a648c4 1015 unsigned long added_mask, unsigned removed_mask)
ddbcc7e8 1016{
bd89aabc 1017 struct cgroup *cgrp = &root->top_cgroup;
30159ec7 1018 struct cgroup_subsys *ss;
1d5be6b2 1019 unsigned long pinned = 0;
3126121f 1020 int i, ret;
ddbcc7e8 1021
aae8aab4 1022 BUG_ON(!mutex_is_locked(&cgroup_mutex));
e25e2cbb 1023 BUG_ON(!mutex_is_locked(&cgroup_root_mutex));
aae8aab4 1024
ddbcc7e8 1025 /* Check that any added subsystems are currently free */
30159ec7 1026 for_each_subsys(ss, i) {
1d5be6b2 1027 if (!(added_mask & (1 << i)))
ddbcc7e8 1028 continue;
30159ec7 1029
1d5be6b2 1030 /* is the subsystem mounted elsewhere? */
9871bf95 1031 if (ss->root != &cgroup_dummy_root) {
1d5be6b2
TH
1032 ret = -EBUSY;
1033 goto out_put;
1034 }
1035
1036 /* pin the module */
1037 if (!try_module_get(ss->module)) {
1038 ret = -ENOENT;
1039 goto out_put;
ddbcc7e8 1040 }
1d5be6b2
TH
1041 pinned |= 1 << i;
1042 }
1043
1044 /* subsys could be missing if unloaded between parsing and here */
1045 if (added_mask != pinned) {
1046 ret = -ENOENT;
1047 goto out_put;
ddbcc7e8
PM
1048 }
1049
3126121f
TH
1050 ret = cgroup_populate_dir(cgrp, added_mask);
1051 if (ret)
1d5be6b2 1052 goto out_put;
3126121f
TH
1053
1054 /*
1055 * Nothing can fail from this point on. Remove files for the
1056 * removed subsystems and rebind each subsystem.
1057 */
1058 cgroup_clear_dir(cgrp, removed_mask);
1059
30159ec7 1060 for_each_subsys(ss, i) {
ddbcc7e8 1061 unsigned long bit = 1UL << i;
30159ec7 1062
a1a71b45 1063 if (bit & added_mask) {
ddbcc7e8 1064 /* We're binding this subsystem to this hierarchy */
40e93b39
TH
1065 BUG_ON(cgroup_css(cgrp, i));
1066 BUG_ON(!cgroup_css(cgroup_dummy_top, i));
1067 BUG_ON(cgroup_css(cgroup_dummy_top, i)->cgroup != cgroup_dummy_top);
a8a648c4 1068
73e80ed8
TH
1069 rcu_assign_pointer(cgrp->subsys[i],
1070 cgroup_css(cgroup_dummy_top, i));
40e93b39 1071 cgroup_css(cgrp, i)->cgroup = cgrp;
73e80ed8 1072
33a68ac1 1073 list_move(&ss->sibling, &root->subsys_list);
b2aa30f7 1074 ss->root = root;
ddbcc7e8 1075 if (ss->bind)
40e93b39 1076 ss->bind(cgroup_css(cgrp, i));
a8a648c4 1077
cf5d5941 1078 /* refcount was already taken, and we're keeping it */
a8a648c4 1079 root->subsys_mask |= bit;
a1a71b45 1080 } else if (bit & removed_mask) {
ddbcc7e8 1081 /* We're removing this subsystem */
40e93b39
TH
1082 BUG_ON(cgroup_css(cgrp, i) != cgroup_css(cgroup_dummy_top, i));
1083 BUG_ON(cgroup_css(cgrp, i)->cgroup != cgrp);
a8a648c4 1084
ddbcc7e8 1085 if (ss->bind)
40e93b39 1086 ss->bind(cgroup_css(cgroup_dummy_top, i));
73e80ed8 1087
40e93b39 1088 cgroup_css(cgroup_dummy_top, i)->cgroup = cgroup_dummy_top;
73e80ed8
TH
1089 RCU_INIT_POINTER(cgrp->subsys[i], NULL);
1090
9871bf95
TH
1091 cgroup_subsys[i]->root = &cgroup_dummy_root;
1092 list_move(&ss->sibling, &cgroup_dummy_root.subsys_list);
a8a648c4 1093
cf5d5941
BB
1094 /* subsystem is now free - drop reference on module */
1095 module_put(ss->module);
a8a648c4 1096 root->subsys_mask &= ~bit;
ddbcc7e8
PM
1097 }
1098 }
ddbcc7e8 1099
1672d040
TH
1100 /*
1101 * Mark @root has finished binding subsystems. @root->subsys_mask
1102 * now matches the bound subsystems.
1103 */
1104 root->flags |= CGRP_ROOT_SUBSYS_BOUND;
1105
ddbcc7e8 1106 return 0;
1d5be6b2
TH
1107
1108out_put:
1109 for_each_subsys(ss, i)
1110 if (pinned & (1 << i))
1111 module_put(ss->module);
1112 return ret;
ddbcc7e8
PM
1113}
1114
34c80b1d 1115static int cgroup_show_options(struct seq_file *seq, struct dentry *dentry)
ddbcc7e8 1116{
34c80b1d 1117 struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
ddbcc7e8
PM
1118 struct cgroup_subsys *ss;
1119
e25e2cbb 1120 mutex_lock(&cgroup_root_mutex);
5549c497 1121 for_each_root_subsys(root, ss)
ddbcc7e8 1122 seq_printf(seq, ",%s", ss->name);
873fe09e
TH
1123 if (root->flags & CGRP_ROOT_SANE_BEHAVIOR)
1124 seq_puts(seq, ",sane_behavior");
93438629 1125 if (root->flags & CGRP_ROOT_NOPREFIX)
ddbcc7e8 1126 seq_puts(seq, ",noprefix");
93438629 1127 if (root->flags & CGRP_ROOT_XATTR)
03b1cde6 1128 seq_puts(seq, ",xattr");
81a6a5cd
PM
1129 if (strlen(root->release_agent_path))
1130 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
2260e7fc 1131 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->top_cgroup.flags))
97978e6d 1132 seq_puts(seq, ",clone_children");
c6d57f33
PM
1133 if (strlen(root->name))
1134 seq_printf(seq, ",name=%s", root->name);
e25e2cbb 1135 mutex_unlock(&cgroup_root_mutex);
ddbcc7e8
PM
1136 return 0;
1137}
1138
1139struct cgroup_sb_opts {
a1a71b45 1140 unsigned long subsys_mask;
ddbcc7e8 1141 unsigned long flags;
81a6a5cd 1142 char *release_agent;
2260e7fc 1143 bool cpuset_clone_children;
c6d57f33 1144 char *name;
2c6ab6d2
PM
1145 /* User explicitly requested empty subsystem */
1146 bool none;
c6d57f33
PM
1147
1148 struct cgroupfs_root *new_root;
2c6ab6d2 1149
ddbcc7e8
PM
1150};
1151
aae8aab4 1152/*
9871bf95
TH
1153 * Convert a hierarchy specifier into a bitmask of subsystems and
1154 * flags. Call with cgroup_mutex held to protect the cgroup_subsys[]
1155 * array. This function takes refcounts on subsystems to be used, unless it
1156 * returns error, in which case no refcounts are taken.
aae8aab4 1157 */
cf5d5941 1158static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
ddbcc7e8 1159{
32a8cf23
DL
1160 char *token, *o = data;
1161 bool all_ss = false, one_ss = false;
f9ab5b5b 1162 unsigned long mask = (unsigned long)-1;
30159ec7
TH
1163 struct cgroup_subsys *ss;
1164 int i;
f9ab5b5b 1165
aae8aab4
BB
1166 BUG_ON(!mutex_is_locked(&cgroup_mutex));
1167
f9ab5b5b
LZ
1168#ifdef CONFIG_CPUSETS
1169 mask = ~(1UL << cpuset_subsys_id);
1170#endif
ddbcc7e8 1171
c6d57f33 1172 memset(opts, 0, sizeof(*opts));
ddbcc7e8
PM
1173
1174 while ((token = strsep(&o, ",")) != NULL) {
1175 if (!*token)
1176 return -EINVAL;
32a8cf23 1177 if (!strcmp(token, "none")) {
2c6ab6d2
PM
1178 /* Explicitly have no subsystems */
1179 opts->none = true;
32a8cf23
DL
1180 continue;
1181 }
1182 if (!strcmp(token, "all")) {
1183 /* Mutually exclusive option 'all' + subsystem name */
1184 if (one_ss)
1185 return -EINVAL;
1186 all_ss = true;
1187 continue;
1188 }
873fe09e
TH
1189 if (!strcmp(token, "__DEVEL__sane_behavior")) {
1190 opts->flags |= CGRP_ROOT_SANE_BEHAVIOR;
1191 continue;
1192 }
32a8cf23 1193 if (!strcmp(token, "noprefix")) {
93438629 1194 opts->flags |= CGRP_ROOT_NOPREFIX;
32a8cf23
DL
1195 continue;
1196 }
1197 if (!strcmp(token, "clone_children")) {
2260e7fc 1198 opts->cpuset_clone_children = true;
32a8cf23
DL
1199 continue;
1200 }
03b1cde6 1201 if (!strcmp(token, "xattr")) {
93438629 1202 opts->flags |= CGRP_ROOT_XATTR;
03b1cde6
AR
1203 continue;
1204 }
32a8cf23 1205 if (!strncmp(token, "release_agent=", 14)) {
81a6a5cd
PM
1206 /* Specifying two release agents is forbidden */
1207 if (opts->release_agent)
1208 return -EINVAL;
c6d57f33 1209 opts->release_agent =
e400c285 1210 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
81a6a5cd
PM
1211 if (!opts->release_agent)
1212 return -ENOMEM;
32a8cf23
DL
1213 continue;
1214 }
1215 if (!strncmp(token, "name=", 5)) {
c6d57f33
PM
1216 const char *name = token + 5;
1217 /* Can't specify an empty name */
1218 if (!strlen(name))
1219 return -EINVAL;
1220 /* Must match [\w.-]+ */
1221 for (i = 0; i < strlen(name); i++) {
1222 char c = name[i];
1223 if (isalnum(c))
1224 continue;
1225 if ((c == '.') || (c == '-') || (c == '_'))
1226 continue;
1227 return -EINVAL;
1228 }
1229 /* Specifying two names is forbidden */
1230 if (opts->name)
1231 return -EINVAL;
1232 opts->name = kstrndup(name,
e400c285 1233 MAX_CGROUP_ROOT_NAMELEN - 1,
c6d57f33
PM
1234 GFP_KERNEL);
1235 if (!opts->name)
1236 return -ENOMEM;
32a8cf23
DL
1237
1238 continue;
1239 }
1240
30159ec7 1241 for_each_subsys(ss, i) {
32a8cf23
DL
1242 if (strcmp(token, ss->name))
1243 continue;
1244 if (ss->disabled)
1245 continue;
1246
1247 /* Mutually exclusive option 'all' + subsystem name */
1248 if (all_ss)
1249 return -EINVAL;
a1a71b45 1250 set_bit(i, &opts->subsys_mask);
32a8cf23
DL
1251 one_ss = true;
1252
1253 break;
1254 }
1255 if (i == CGROUP_SUBSYS_COUNT)
1256 return -ENOENT;
1257 }
1258
1259 /*
1260 * If the 'all' option was specified select all the subsystems,
0d19ea86
LZ
1261 * otherwise if 'none', 'name=' and a subsystem name options
1262 * were not specified, let's default to 'all'
32a8cf23 1263 */
30159ec7
TH
1264 if (all_ss || (!one_ss && !opts->none && !opts->name))
1265 for_each_subsys(ss, i)
1266 if (!ss->disabled)
1267 set_bit(i, &opts->subsys_mask);
ddbcc7e8 1268
2c6ab6d2
PM
1269 /* Consistency checks */
1270
873fe09e
TH
1271 if (opts->flags & CGRP_ROOT_SANE_BEHAVIOR) {
1272 pr_warning("cgroup: sane_behavior: this is still under development and its behaviors will change, proceed at your own risk\n");
1273
1274 if (opts->flags & CGRP_ROOT_NOPREFIX) {
1275 pr_err("cgroup: sane_behavior: noprefix is not allowed\n");
1276 return -EINVAL;
1277 }
1278
1279 if (opts->cpuset_clone_children) {
1280 pr_err("cgroup: sane_behavior: clone_children is not allowed\n");
1281 return -EINVAL;
1282 }
1283 }
1284
f9ab5b5b
LZ
1285 /*
1286 * Option noprefix was introduced just for backward compatibility
1287 * with the old cpuset, so we allow noprefix only if mounting just
1288 * the cpuset subsystem.
1289 */
93438629 1290 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
f9ab5b5b
LZ
1291 return -EINVAL;
1292
2c6ab6d2
PM
1293
1294 /* Can't specify "none" and some subsystems */
a1a71b45 1295 if (opts->subsys_mask && opts->none)
2c6ab6d2
PM
1296 return -EINVAL;
1297
1298 /*
1299 * We either have to specify by name or by subsystems. (So all
1300 * empty hierarchies must have a name).
1301 */
a1a71b45 1302 if (!opts->subsys_mask && !opts->name)
ddbcc7e8
PM
1303 return -EINVAL;
1304
1305 return 0;
1306}
1307
1308static int cgroup_remount(struct super_block *sb, int *flags, char *data)
1309{
1310 int ret = 0;
1311 struct cgroupfs_root *root = sb->s_fs_info;
bd89aabc 1312 struct cgroup *cgrp = &root->top_cgroup;
ddbcc7e8 1313 struct cgroup_sb_opts opts;
a1a71b45 1314 unsigned long added_mask, removed_mask;
ddbcc7e8 1315
873fe09e
TH
1316 if (root->flags & CGRP_ROOT_SANE_BEHAVIOR) {
1317 pr_err("cgroup: sane_behavior: remount is not allowed\n");
1318 return -EINVAL;
1319 }
1320
bd89aabc 1321 mutex_lock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8 1322 mutex_lock(&cgroup_mutex);
e25e2cbb 1323 mutex_lock(&cgroup_root_mutex);
ddbcc7e8
PM
1324
1325 /* See what subsystems are wanted */
1326 ret = parse_cgroupfs_options(data, &opts);
1327 if (ret)
1328 goto out_unlock;
1329
a8a648c4 1330 if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
8b5a5a9d
TH
1331 pr_warning("cgroup: option changes via remount are deprecated (pid=%d comm=%s)\n",
1332 task_tgid_nr(current), current->comm);
1333
a1a71b45
AR
1334 added_mask = opts.subsys_mask & ~root->subsys_mask;
1335 removed_mask = root->subsys_mask & ~opts.subsys_mask;
13af07df 1336
cf5d5941 1337 /* Don't allow flags or name to change at remount */
0ce6cba3 1338 if (((opts.flags ^ root->flags) & CGRP_ROOT_OPTION_MASK) ||
cf5d5941 1339 (opts.name && strcmp(opts.name, root->name))) {
0ce6cba3
TH
1340 pr_err("cgroup: option or name mismatch, new: 0x%lx \"%s\", old: 0x%lx \"%s\"\n",
1341 opts.flags & CGRP_ROOT_OPTION_MASK, opts.name ?: "",
1342 root->flags & CGRP_ROOT_OPTION_MASK, root->name);
c6d57f33
PM
1343 ret = -EINVAL;
1344 goto out_unlock;
1345 }
1346
f172e67c
TH
1347 /* remounting is not allowed for populated hierarchies */
1348 if (root->number_of_cgroups > 1) {
1349 ret = -EBUSY;
1350 goto out_unlock;
1351 }
1352
a8a648c4 1353 ret = rebind_subsystems(root, added_mask, removed_mask);
3126121f 1354 if (ret)
0670e08b 1355 goto out_unlock;
ddbcc7e8 1356
81a6a5cd
PM
1357 if (opts.release_agent)
1358 strcpy(root->release_agent_path, opts.release_agent);
ddbcc7e8 1359 out_unlock:
66bdc9cf 1360 kfree(opts.release_agent);
c6d57f33 1361 kfree(opts.name);
e25e2cbb 1362 mutex_unlock(&cgroup_root_mutex);
ddbcc7e8 1363 mutex_unlock(&cgroup_mutex);
bd89aabc 1364 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8
PM
1365 return ret;
1366}
1367
b87221de 1368static const struct super_operations cgroup_ops = {
ddbcc7e8
PM
1369 .statfs = simple_statfs,
1370 .drop_inode = generic_delete_inode,
1371 .show_options = cgroup_show_options,
1372 .remount_fs = cgroup_remount,
1373};
1374
cc31edce
PM
1375static void init_cgroup_housekeeping(struct cgroup *cgrp)
1376{
1377 INIT_LIST_HEAD(&cgrp->sibling);
1378 INIT_LIST_HEAD(&cgrp->children);
05ef1d7c 1379 INIT_LIST_HEAD(&cgrp->files);
69d0206c 1380 INIT_LIST_HEAD(&cgrp->cset_links);
cc31edce 1381 INIT_LIST_HEAD(&cgrp->release_list);
72a8cb30
BB
1382 INIT_LIST_HEAD(&cgrp->pidlists);
1383 mutex_init(&cgrp->pidlist_mutex);
67f4c36f 1384 cgrp->dummy_css.cgroup = cgrp;
0dea1168
KS
1385 INIT_LIST_HEAD(&cgrp->event_list);
1386 spin_lock_init(&cgrp->event_list_lock);
03b1cde6 1387 simple_xattrs_init(&cgrp->xattrs);
cc31edce 1388}
c6d57f33 1389
ddbcc7e8
PM
1390static void init_cgroup_root(struct cgroupfs_root *root)
1391{
bd89aabc 1392 struct cgroup *cgrp = &root->top_cgroup;
b0ca5a84 1393
ddbcc7e8
PM
1394 INIT_LIST_HEAD(&root->subsys_list);
1395 INIT_LIST_HEAD(&root->root_list);
1396 root->number_of_cgroups = 1;
bd89aabc 1397 cgrp->root = root;
a4ea1cc9 1398 RCU_INIT_POINTER(cgrp->name, &root_cgroup_name);
cc31edce 1399 init_cgroup_housekeeping(cgrp);
4e96ee8e 1400 idr_init(&root->cgroup_idr);
ddbcc7e8
PM
1401}
1402
fc76df70 1403static int cgroup_init_root_id(struct cgroupfs_root *root, int start, int end)
2c6ab6d2 1404{
1a574231 1405 int id;
2c6ab6d2 1406
54e7b4eb
TH
1407 lockdep_assert_held(&cgroup_mutex);
1408 lockdep_assert_held(&cgroup_root_mutex);
1409
fc76df70
TH
1410 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, start, end,
1411 GFP_KERNEL);
1a574231
TH
1412 if (id < 0)
1413 return id;
1414
1415 root->hierarchy_id = id;
fa3ca07e
TH
1416 return 0;
1417}
1418
1419static void cgroup_exit_root_id(struct cgroupfs_root *root)
1420{
54e7b4eb
TH
1421 lockdep_assert_held(&cgroup_mutex);
1422 lockdep_assert_held(&cgroup_root_mutex);
1423
fa3ca07e 1424 if (root->hierarchy_id) {
1a574231 1425 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
fa3ca07e
TH
1426 root->hierarchy_id = 0;
1427 }
2c6ab6d2
PM
1428}
1429
ddbcc7e8
PM
1430static int cgroup_test_super(struct super_block *sb, void *data)
1431{
c6d57f33 1432 struct cgroup_sb_opts *opts = data;
ddbcc7e8
PM
1433 struct cgroupfs_root *root = sb->s_fs_info;
1434
c6d57f33
PM
1435 /* If we asked for a name then it must match */
1436 if (opts->name && strcmp(opts->name, root->name))
1437 return 0;
ddbcc7e8 1438
2c6ab6d2
PM
1439 /*
1440 * If we asked for subsystems (or explicitly for no
1441 * subsystems) then they must match
1442 */
a1a71b45
AR
1443 if ((opts->subsys_mask || opts->none)
1444 && (opts->subsys_mask != root->subsys_mask))
ddbcc7e8
PM
1445 return 0;
1446
1447 return 1;
1448}
1449
c6d57f33
PM
1450static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts)
1451{
1452 struct cgroupfs_root *root;
1453
a1a71b45 1454 if (!opts->subsys_mask && !opts->none)
c6d57f33
PM
1455 return NULL;
1456
1457 root = kzalloc(sizeof(*root), GFP_KERNEL);
1458 if (!root)
1459 return ERR_PTR(-ENOMEM);
1460
1461 init_cgroup_root(root);
2c6ab6d2 1462
1672d040
TH
1463 /*
1464 * We need to set @root->subsys_mask now so that @root can be
1465 * matched by cgroup_test_super() before it finishes
1466 * initialization; otherwise, competing mounts with the same
1467 * options may try to bind the same subsystems instead of waiting
1468 * for the first one leading to unexpected mount errors.
1469 * SUBSYS_BOUND will be set once actual binding is complete.
1470 */
a1a71b45 1471 root->subsys_mask = opts->subsys_mask;
c6d57f33
PM
1472 root->flags = opts->flags;
1473 if (opts->release_agent)
1474 strcpy(root->release_agent_path, opts->release_agent);
1475 if (opts->name)
1476 strcpy(root->name, opts->name);
2260e7fc
TH
1477 if (opts->cpuset_clone_children)
1478 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->top_cgroup.flags);
c6d57f33
PM
1479 return root;
1480}
1481
fa3ca07e 1482static void cgroup_free_root(struct cgroupfs_root *root)
2c6ab6d2 1483{
fa3ca07e
TH
1484 if (root) {
1485 /* hierarhcy ID shoulid already have been released */
1486 WARN_ON_ONCE(root->hierarchy_id);
2c6ab6d2 1487
4e96ee8e 1488 idr_destroy(&root->cgroup_idr);
fa3ca07e
TH
1489 kfree(root);
1490 }
2c6ab6d2
PM
1491}
1492
ddbcc7e8
PM
1493static int cgroup_set_super(struct super_block *sb, void *data)
1494{
1495 int ret;
c6d57f33
PM
1496 struct cgroup_sb_opts *opts = data;
1497
1498 /* If we don't have a new root, we can't set up a new sb */
1499 if (!opts->new_root)
1500 return -EINVAL;
1501
a1a71b45 1502 BUG_ON(!opts->subsys_mask && !opts->none);
ddbcc7e8
PM
1503
1504 ret = set_anon_super(sb, NULL);
1505 if (ret)
1506 return ret;
1507
c6d57f33
PM
1508 sb->s_fs_info = opts->new_root;
1509 opts->new_root->sb = sb;
ddbcc7e8
PM
1510
1511 sb->s_blocksize = PAGE_CACHE_SIZE;
1512 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
1513 sb->s_magic = CGROUP_SUPER_MAGIC;
1514 sb->s_op = &cgroup_ops;
1515
1516 return 0;
1517}
1518
1519static int cgroup_get_rootdir(struct super_block *sb)
1520{
0df6a63f
AV
1521 static const struct dentry_operations cgroup_dops = {
1522 .d_iput = cgroup_diput,
c72a04e3 1523 .d_delete = cgroup_delete,
0df6a63f
AV
1524 };
1525
ddbcc7e8
PM
1526 struct inode *inode =
1527 cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
ddbcc7e8
PM
1528
1529 if (!inode)
1530 return -ENOMEM;
1531
ddbcc7e8
PM
1532 inode->i_fop = &simple_dir_operations;
1533 inode->i_op = &cgroup_dir_inode_operations;
1534 /* directories start off with i_nlink == 2 (for "." entry) */
1535 inc_nlink(inode);
48fde701
AV
1536 sb->s_root = d_make_root(inode);
1537 if (!sb->s_root)
ddbcc7e8 1538 return -ENOMEM;
0df6a63f
AV
1539 /* for everything else we want ->d_op set */
1540 sb->s_d_op = &cgroup_dops;
ddbcc7e8
PM
1541 return 0;
1542}
1543
f7e83571 1544static struct dentry *cgroup_mount(struct file_system_type *fs_type,
ddbcc7e8 1545 int flags, const char *unused_dev_name,
f7e83571 1546 void *data)
ddbcc7e8
PM
1547{
1548 struct cgroup_sb_opts opts;
c6d57f33 1549 struct cgroupfs_root *root;
ddbcc7e8
PM
1550 int ret = 0;
1551 struct super_block *sb;
c6d57f33 1552 struct cgroupfs_root *new_root;
3126121f 1553 struct list_head tmp_links;
e25e2cbb 1554 struct inode *inode;
3126121f 1555 const struct cred *cred;
ddbcc7e8
PM
1556
1557 /* First find the desired set of subsystems */
aae8aab4 1558 mutex_lock(&cgroup_mutex);
ddbcc7e8 1559 ret = parse_cgroupfs_options(data, &opts);
aae8aab4 1560 mutex_unlock(&cgroup_mutex);
c6d57f33
PM
1561 if (ret)
1562 goto out_err;
ddbcc7e8 1563
c6d57f33
PM
1564 /*
1565 * Allocate a new cgroup root. We may not need it if we're
1566 * reusing an existing hierarchy.
1567 */
1568 new_root = cgroup_root_from_opts(&opts);
1569 if (IS_ERR(new_root)) {
1570 ret = PTR_ERR(new_root);
1d5be6b2 1571 goto out_err;
81a6a5cd 1572 }
c6d57f33 1573 opts.new_root = new_root;
ddbcc7e8 1574
c6d57f33 1575 /* Locate an existing or new sb for this hierarchy */
9249e17f 1576 sb = sget(fs_type, cgroup_test_super, cgroup_set_super, 0, &opts);
ddbcc7e8 1577 if (IS_ERR(sb)) {
c6d57f33 1578 ret = PTR_ERR(sb);
fa3ca07e 1579 cgroup_free_root(opts.new_root);
1d5be6b2 1580 goto out_err;
ddbcc7e8
PM
1581 }
1582
c6d57f33
PM
1583 root = sb->s_fs_info;
1584 BUG_ON(!root);
1585 if (root == opts.new_root) {
1586 /* We used the new root structure, so this is a new hierarchy */
c12f65d4 1587 struct cgroup *root_cgrp = &root->top_cgroup;
c6d57f33 1588 struct cgroupfs_root *existing_root;
28fd5dfc 1589 int i;
5abb8855 1590 struct css_set *cset;
ddbcc7e8
PM
1591
1592 BUG_ON(sb->s_root != NULL);
1593
1594 ret = cgroup_get_rootdir(sb);
1595 if (ret)
1596 goto drop_new_super;
817929ec 1597 inode = sb->s_root->d_inode;
ddbcc7e8 1598
817929ec 1599 mutex_lock(&inode->i_mutex);
ddbcc7e8 1600 mutex_lock(&cgroup_mutex);
e25e2cbb 1601 mutex_lock(&cgroup_root_mutex);
ddbcc7e8 1602
4e96ee8e
LZ
1603 root_cgrp->id = idr_alloc(&root->cgroup_idr, root_cgrp,
1604 0, 1, GFP_KERNEL);
1605 if (root_cgrp->id < 0)
1606 goto unlock_drop;
1607
e25e2cbb
TH
1608 /* Check for name clashes with existing mounts */
1609 ret = -EBUSY;
1610 if (strlen(root->name))
1611 for_each_active_root(existing_root)
1612 if (!strcmp(existing_root->name, root->name))
1613 goto unlock_drop;
c6d57f33 1614
817929ec
PM
1615 /*
1616 * We're accessing css_set_count without locking
1617 * css_set_lock here, but that's OK - it can only be
1618 * increased by someone holding cgroup_lock, and
1619 * that's us. The worst that can happen is that we
1620 * have some link structures left over
1621 */
69d0206c 1622 ret = allocate_cgrp_cset_links(css_set_count, &tmp_links);
e25e2cbb
TH
1623 if (ret)
1624 goto unlock_drop;
817929ec 1625
fc76df70
TH
1626 /* ID 0 is reserved for dummy root, 1 for unified hierarchy */
1627 ret = cgroup_init_root_id(root, 2, 0);
fa3ca07e
TH
1628 if (ret)
1629 goto unlock_drop;
1630
3126121f
TH
1631 sb->s_root->d_fsdata = root_cgrp;
1632 root_cgrp->dentry = sb->s_root;
1633
1634 /*
1635 * We're inside get_sb() and will call lookup_one_len() to
1636 * create the root files, which doesn't work if SELinux is
1637 * in use. The following cred dancing somehow works around
1638 * it. See 2ce9738ba ("cgroupfs: use init_cred when
1639 * populating new cgroupfs mount") for more details.
1640 */
1641 cred = override_creds(&init_cred);
1642
2bb566cb 1643 ret = cgroup_addrm_files(root_cgrp, cgroup_base_files, true);
3126121f
TH
1644 if (ret)
1645 goto rm_base_files;
1646
a8a648c4 1647 ret = rebind_subsystems(root, root->subsys_mask, 0);
3126121f
TH
1648 if (ret)
1649 goto rm_base_files;
1650
1651 revert_creds(cred);
1652
cf5d5941
BB
1653 /*
1654 * There must be no failure case after here, since rebinding
1655 * takes care of subsystems' refcounts, which are explicitly
1656 * dropped in the failure exit path.
1657 */
ddbcc7e8 1658
9871bf95
TH
1659 list_add(&root->root_list, &cgroup_roots);
1660 cgroup_root_count++;
ddbcc7e8 1661
817929ec
PM
1662 /* Link the top cgroup in this hierarchy into all
1663 * the css_set objects */
1664 write_lock(&css_set_lock);
5abb8855 1665 hash_for_each(css_set_table, i, cset, hlist)
69d0206c 1666 link_css_set(&tmp_links, cset, root_cgrp);
817929ec
PM
1667 write_unlock(&css_set_lock);
1668
69d0206c 1669 free_cgrp_cset_links(&tmp_links);
817929ec 1670
c12f65d4 1671 BUG_ON(!list_empty(&root_cgrp->children));
ddbcc7e8
PM
1672 BUG_ON(root->number_of_cgroups != 1);
1673
e25e2cbb 1674 mutex_unlock(&cgroup_root_mutex);
ddbcc7e8 1675 mutex_unlock(&cgroup_mutex);
34f77a90 1676 mutex_unlock(&inode->i_mutex);
c6d57f33
PM
1677 } else {
1678 /*
1679 * We re-used an existing hierarchy - the new root (if
1680 * any) is not needed
1681 */
fa3ca07e 1682 cgroup_free_root(opts.new_root);
873fe09e 1683
c7ba8287 1684 if ((root->flags ^ opts.flags) & CGRP_ROOT_OPTION_MASK) {
2a0ff3fb
JL
1685 if ((root->flags | opts.flags) & CGRP_ROOT_SANE_BEHAVIOR) {
1686 pr_err("cgroup: sane_behavior: new mount options should match the existing superblock\n");
1687 ret = -EINVAL;
1688 goto drop_new_super;
1689 } else {
1690 pr_warning("cgroup: new mount options do not match the existing superblock, will be ignored\n");
1691 }
873fe09e 1692 }
ddbcc7e8
PM
1693 }
1694
c6d57f33
PM
1695 kfree(opts.release_agent);
1696 kfree(opts.name);
f7e83571 1697 return dget(sb->s_root);
ddbcc7e8 1698
3126121f
TH
1699 rm_base_files:
1700 free_cgrp_cset_links(&tmp_links);
2bb566cb 1701 cgroup_addrm_files(&root->top_cgroup, cgroup_base_files, false);
3126121f 1702 revert_creds(cred);
e25e2cbb 1703 unlock_drop:
fa3ca07e 1704 cgroup_exit_root_id(root);
e25e2cbb
TH
1705 mutex_unlock(&cgroup_root_mutex);
1706 mutex_unlock(&cgroup_mutex);
1707 mutex_unlock(&inode->i_mutex);
ddbcc7e8 1708 drop_new_super:
6f5bbff9 1709 deactivate_locked_super(sb);
c6d57f33
PM
1710 out_err:
1711 kfree(opts.release_agent);
1712 kfree(opts.name);
f7e83571 1713 return ERR_PTR(ret);
ddbcc7e8
PM
1714}
1715
1716static void cgroup_kill_sb(struct super_block *sb) {
1717 struct cgroupfs_root *root = sb->s_fs_info;
bd89aabc 1718 struct cgroup *cgrp = &root->top_cgroup;
69d0206c 1719 struct cgrp_cset_link *link, *tmp_link;
ddbcc7e8
PM
1720 int ret;
1721
1722 BUG_ON(!root);
1723
1724 BUG_ON(root->number_of_cgroups != 1);
bd89aabc 1725 BUG_ON(!list_empty(&cgrp->children));
ddbcc7e8 1726
3126121f 1727 mutex_lock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8 1728 mutex_lock(&cgroup_mutex);
e25e2cbb 1729 mutex_lock(&cgroup_root_mutex);
ddbcc7e8
PM
1730
1731 /* Rebind all subsystems back to the default hierarchy */
1672d040
TH
1732 if (root->flags & CGRP_ROOT_SUBSYS_BOUND) {
1733 ret = rebind_subsystems(root, 0, root->subsys_mask);
1734 /* Shouldn't be able to fail ... */
1735 BUG_ON(ret);
1736 }
ddbcc7e8 1737
817929ec 1738 /*
69d0206c 1739 * Release all the links from cset_links to this hierarchy's
817929ec
PM
1740 * root cgroup
1741 */
1742 write_lock(&css_set_lock);
71cbb949 1743
69d0206c
TH
1744 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1745 list_del(&link->cset_link);
1746 list_del(&link->cgrp_link);
817929ec
PM
1747 kfree(link);
1748 }
1749 write_unlock(&css_set_lock);
1750
839ec545
PM
1751 if (!list_empty(&root->root_list)) {
1752 list_del(&root->root_list);
9871bf95 1753 cgroup_root_count--;
839ec545 1754 }
e5f6a860 1755
fa3ca07e
TH
1756 cgroup_exit_root_id(root);
1757
e25e2cbb 1758 mutex_unlock(&cgroup_root_mutex);
ddbcc7e8 1759 mutex_unlock(&cgroup_mutex);
3126121f 1760 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8 1761
03b1cde6
AR
1762 simple_xattrs_free(&cgrp->xattrs);
1763
ddbcc7e8 1764 kill_litter_super(sb);
fa3ca07e 1765 cgroup_free_root(root);
ddbcc7e8
PM
1766}
1767
1768static struct file_system_type cgroup_fs_type = {
1769 .name = "cgroup",
f7e83571 1770 .mount = cgroup_mount,
ddbcc7e8
PM
1771 .kill_sb = cgroup_kill_sb,
1772};
1773
676db4af
GKH
1774static struct kobject *cgroup_kobj;
1775
a043e3b2
LZ
1776/**
1777 * cgroup_path - generate the path of a cgroup
1778 * @cgrp: the cgroup in question
1779 * @buf: the buffer to write the path into
1780 * @buflen: the length of the buffer
1781 *
65dff759
LZ
1782 * Writes path of cgroup into buf. Returns 0 on success, -errno on error.
1783 *
1784 * We can't generate cgroup path using dentry->d_name, as accessing
1785 * dentry->name must be protected by irq-unsafe dentry->d_lock or parent
1786 * inode's i_mutex, while on the other hand cgroup_path() can be called
1787 * with some irq-safe spinlocks held.
ddbcc7e8 1788 */
bd89aabc 1789int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
ddbcc7e8 1790{
65dff759 1791 int ret = -ENAMETOOLONG;
ddbcc7e8 1792 char *start;
febfcef6 1793
da1f296f
TH
1794 if (!cgrp->parent) {
1795 if (strlcpy(buf, "/", buflen) >= buflen)
1796 return -ENAMETOOLONG;
ddbcc7e8
PM
1797 return 0;
1798 }
1799
316eb661 1800 start = buf + buflen - 1;
316eb661 1801 *start = '\0';
9a9686b6 1802
65dff759 1803 rcu_read_lock();
da1f296f 1804 do {
65dff759
LZ
1805 const char *name = cgroup_name(cgrp);
1806 int len;
1807
1808 len = strlen(name);
ddbcc7e8 1809 if ((start -= len) < buf)
65dff759
LZ
1810 goto out;
1811 memcpy(start, name, len);
9a9686b6 1812
ddbcc7e8 1813 if (--start < buf)
65dff759 1814 goto out;
ddbcc7e8 1815 *start = '/';
65dff759
LZ
1816
1817 cgrp = cgrp->parent;
da1f296f 1818 } while (cgrp->parent);
65dff759 1819 ret = 0;
ddbcc7e8 1820 memmove(buf, start, buf + buflen - start);
65dff759
LZ
1821out:
1822 rcu_read_unlock();
1823 return ret;
ddbcc7e8 1824}
67523c48 1825EXPORT_SYMBOL_GPL(cgroup_path);
ddbcc7e8 1826
857a2beb 1827/**
913ffdb5 1828 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
857a2beb 1829 * @task: target task
857a2beb
TH
1830 * @buf: the buffer to write the path into
1831 * @buflen: the length of the buffer
1832 *
913ffdb5
TH
1833 * Determine @task's cgroup on the first (the one with the lowest non-zero
1834 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
1835 * function grabs cgroup_mutex and shouldn't be used inside locks used by
1836 * cgroup controller callbacks.
1837 *
1838 * Returns 0 on success, fails with -%ENAMETOOLONG if @buflen is too short.
857a2beb 1839 */
913ffdb5 1840int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
857a2beb
TH
1841{
1842 struct cgroupfs_root *root;
913ffdb5
TH
1843 struct cgroup *cgrp;
1844 int hierarchy_id = 1, ret = 0;
1845
1846 if (buflen < 2)
1847 return -ENAMETOOLONG;
857a2beb
TH
1848
1849 mutex_lock(&cgroup_mutex);
1850
913ffdb5
TH
1851 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
1852
857a2beb
TH
1853 if (root) {
1854 cgrp = task_cgroup_from_root(task, root);
1855 ret = cgroup_path(cgrp, buf, buflen);
913ffdb5
TH
1856 } else {
1857 /* if no hierarchy exists, everyone is in "/" */
1858 memcpy(buf, "/", 2);
857a2beb
TH
1859 }
1860
1861 mutex_unlock(&cgroup_mutex);
857a2beb
TH
1862 return ret;
1863}
913ffdb5 1864EXPORT_SYMBOL_GPL(task_cgroup_path);
857a2beb 1865
2f7ee569
TH
1866/*
1867 * Control Group taskset
1868 */
134d3373
TH
1869struct task_and_cgroup {
1870 struct task_struct *task;
1871 struct cgroup *cgrp;
6f4b7e63 1872 struct css_set *cset;
134d3373
TH
1873};
1874
2f7ee569
TH
1875struct cgroup_taskset {
1876 struct task_and_cgroup single;
1877 struct flex_array *tc_array;
1878 int tc_array_len;
1879 int idx;
1880 struct cgroup *cur_cgrp;
1881};
1882
1883/**
1884 * cgroup_taskset_first - reset taskset and return the first task
1885 * @tset: taskset of interest
1886 *
1887 * @tset iteration is initialized and the first task is returned.
1888 */
1889struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
1890{
1891 if (tset->tc_array) {
1892 tset->idx = 0;
1893 return cgroup_taskset_next(tset);
1894 } else {
1895 tset->cur_cgrp = tset->single.cgrp;
1896 return tset->single.task;
1897 }
1898}
1899EXPORT_SYMBOL_GPL(cgroup_taskset_first);
1900
1901/**
1902 * cgroup_taskset_next - iterate to the next task in taskset
1903 * @tset: taskset of interest
1904 *
1905 * Return the next task in @tset. Iteration must have been initialized
1906 * with cgroup_taskset_first().
1907 */
1908struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
1909{
1910 struct task_and_cgroup *tc;
1911
1912 if (!tset->tc_array || tset->idx >= tset->tc_array_len)
1913 return NULL;
1914
1915 tc = flex_array_get(tset->tc_array, tset->idx++);
1916 tset->cur_cgrp = tc->cgrp;
1917 return tc->task;
1918}
1919EXPORT_SYMBOL_GPL(cgroup_taskset_next);
1920
1921/**
d99c8727 1922 * cgroup_taskset_cur_css - return the matching css for the current task
2f7ee569 1923 * @tset: taskset of interest
d99c8727 1924 * @subsys_id: the ID of the target subsystem
2f7ee569 1925 *
d99c8727
TH
1926 * Return the css for the current (last returned) task of @tset for
1927 * subsystem specified by @subsys_id. This function must be preceded by
1928 * either cgroup_taskset_first() or cgroup_taskset_next().
2f7ee569 1929 */
d99c8727
TH
1930struct cgroup_subsys_state *cgroup_taskset_cur_css(struct cgroup_taskset *tset,
1931 int subsys_id)
2f7ee569 1932{
d99c8727 1933 return cgroup_css(tset->cur_cgrp, subsys_id);
2f7ee569 1934}
d99c8727 1935EXPORT_SYMBOL_GPL(cgroup_taskset_cur_css);
2f7ee569
TH
1936
1937/**
1938 * cgroup_taskset_size - return the number of tasks in taskset
1939 * @tset: taskset of interest
1940 */
1941int cgroup_taskset_size(struct cgroup_taskset *tset)
1942{
1943 return tset->tc_array ? tset->tc_array_len : 1;
1944}
1945EXPORT_SYMBOL_GPL(cgroup_taskset_size);
1946
1947
74a1166d
BB
1948/*
1949 * cgroup_task_migrate - move a task from one cgroup to another.
1950 *
d0b2fdd2 1951 * Must be called with cgroup_mutex and threadgroup locked.
74a1166d 1952 */
5abb8855
TH
1953static void cgroup_task_migrate(struct cgroup *old_cgrp,
1954 struct task_struct *tsk,
1955 struct css_set *new_cset)
74a1166d 1956{
5abb8855 1957 struct css_set *old_cset;
74a1166d
BB
1958
1959 /*
026085ef
MSB
1960 * We are synchronized through threadgroup_lock() against PF_EXITING
1961 * setting such that we can't race against cgroup_exit() changing the
1962 * css_set to init_css_set and dropping the old one.
74a1166d 1963 */
c84cdf75 1964 WARN_ON_ONCE(tsk->flags & PF_EXITING);
a8ad805c 1965 old_cset = task_css_set(tsk);
74a1166d 1966
74a1166d 1967 task_lock(tsk);
5abb8855 1968 rcu_assign_pointer(tsk->cgroups, new_cset);
74a1166d
BB
1969 task_unlock(tsk);
1970
1971 /* Update the css_set linked lists if we're using them */
1972 write_lock(&css_set_lock);
1973 if (!list_empty(&tsk->cg_list))
5abb8855 1974 list_move(&tsk->cg_list, &new_cset->tasks);
74a1166d
BB
1975 write_unlock(&css_set_lock);
1976
1977 /*
5abb8855
TH
1978 * We just gained a reference on old_cset by taking it from the
1979 * task. As trading it for new_cset is protected by cgroup_mutex,
1980 * we're safe to drop it here; it will be freed under RCU.
74a1166d 1981 */
5abb8855
TH
1982 set_bit(CGRP_RELEASABLE, &old_cgrp->flags);
1983 put_css_set(old_cset);
74a1166d
BB
1984}
1985
a043e3b2 1986/**
081aa458 1987 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
74a1166d 1988 * @cgrp: the cgroup to attach to
081aa458
LZ
1989 * @tsk: the task or the leader of the threadgroup to be attached
1990 * @threadgroup: attach the whole threadgroup?
74a1166d 1991 *
257058ae 1992 * Call holding cgroup_mutex and the group_rwsem of the leader. Will take
081aa458 1993 * task_lock of @tsk or each thread in the threadgroup individually in turn.
74a1166d 1994 */
47cfcd09
TH
1995static int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk,
1996 bool threadgroup)
74a1166d
BB
1997{
1998 int retval, i, group_size;
1999 struct cgroup_subsys *ss, *failed_ss = NULL;
74a1166d
BB
2000 struct cgroupfs_root *root = cgrp->root;
2001 /* threadgroup list cursor and array */
081aa458 2002 struct task_struct *leader = tsk;
134d3373 2003 struct task_and_cgroup *tc;
d846687d 2004 struct flex_array *group;
2f7ee569 2005 struct cgroup_taskset tset = { };
74a1166d
BB
2006
2007 /*
2008 * step 0: in order to do expensive, possibly blocking operations for
2009 * every thread, we cannot iterate the thread group list, since it needs
2010 * rcu or tasklist locked. instead, build an array of all threads in the
257058ae
TH
2011 * group - group_rwsem prevents new threads from appearing, and if
2012 * threads exit, this will just be an over-estimate.
74a1166d 2013 */
081aa458
LZ
2014 if (threadgroup)
2015 group_size = get_nr_threads(tsk);
2016 else
2017 group_size = 1;
d846687d 2018 /* flex_array supports very large thread-groups better than kmalloc. */
134d3373 2019 group = flex_array_alloc(sizeof(*tc), group_size, GFP_KERNEL);
74a1166d
BB
2020 if (!group)
2021 return -ENOMEM;
d846687d 2022 /* pre-allocate to guarantee space while iterating in rcu read-side. */
3ac1707a 2023 retval = flex_array_prealloc(group, 0, group_size, GFP_KERNEL);
d846687d
BB
2024 if (retval)
2025 goto out_free_group_list;
74a1166d 2026
74a1166d 2027 i = 0;
fb5d2b4c
MSB
2028 /*
2029 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2030 * already PF_EXITING could be freed from underneath us unless we
2031 * take an rcu_read_lock.
2032 */
2033 rcu_read_lock();
74a1166d 2034 do {
134d3373
TH
2035 struct task_and_cgroup ent;
2036
cd3d0952
TH
2037 /* @tsk either already exited or can't exit until the end */
2038 if (tsk->flags & PF_EXITING)
2039 continue;
2040
74a1166d
BB
2041 /* as per above, nr_threads may decrease, but not increase. */
2042 BUG_ON(i >= group_size);
134d3373
TH
2043 ent.task = tsk;
2044 ent.cgrp = task_cgroup_from_root(tsk, root);
892a2b90
MSB
2045 /* nothing to do if this task is already in the cgroup */
2046 if (ent.cgrp == cgrp)
2047 continue;
61d1d219
MSB
2048 /*
2049 * saying GFP_ATOMIC has no effect here because we did prealloc
2050 * earlier, but it's good form to communicate our expectations.
2051 */
134d3373 2052 retval = flex_array_put(group, i, &ent, GFP_ATOMIC);
d846687d 2053 BUG_ON(retval != 0);
74a1166d 2054 i++;
081aa458
LZ
2055
2056 if (!threadgroup)
2057 break;
74a1166d 2058 } while_each_thread(leader, tsk);
fb5d2b4c 2059 rcu_read_unlock();
74a1166d
BB
2060 /* remember the number of threads in the array for later. */
2061 group_size = i;
2f7ee569
TH
2062 tset.tc_array = group;
2063 tset.tc_array_len = group_size;
74a1166d 2064
134d3373
TH
2065 /* methods shouldn't be called if no task is actually migrating */
2066 retval = 0;
892a2b90 2067 if (!group_size)
b07ef774 2068 goto out_free_group_list;
134d3373 2069
74a1166d
BB
2070 /*
2071 * step 1: check that we can legitimately attach to the cgroup.
2072 */
5549c497 2073 for_each_root_subsys(root, ss) {
40e93b39 2074 struct cgroup_subsys_state *css = cgroup_css(cgrp, ss->subsys_id);
eb95419b 2075
74a1166d 2076 if (ss->can_attach) {
eb95419b 2077 retval = ss->can_attach(css, &tset);
74a1166d
BB
2078 if (retval) {
2079 failed_ss = ss;
2080 goto out_cancel_attach;
2081 }
2082 }
74a1166d
BB
2083 }
2084
2085 /*
2086 * step 2: make sure css_sets exist for all threads to be migrated.
2087 * we use find_css_set, which allocates a new one if necessary.
2088 */
74a1166d 2089 for (i = 0; i < group_size; i++) {
a8ad805c
TH
2090 struct css_set *old_cset;
2091
134d3373 2092 tc = flex_array_get(group, i);
a8ad805c 2093 old_cset = task_css_set(tc->task);
6f4b7e63
LZ
2094 tc->cset = find_css_set(old_cset, cgrp);
2095 if (!tc->cset) {
61d1d219
MSB
2096 retval = -ENOMEM;
2097 goto out_put_css_set_refs;
74a1166d
BB
2098 }
2099 }
2100
2101 /*
494c167c
TH
2102 * step 3: now that we're guaranteed success wrt the css_sets,
2103 * proceed to move all tasks to the new cgroup. There are no
2104 * failure cases after here, so this is the commit point.
74a1166d 2105 */
74a1166d 2106 for (i = 0; i < group_size; i++) {
134d3373 2107 tc = flex_array_get(group, i);
6f4b7e63 2108 cgroup_task_migrate(tc->cgrp, tc->task, tc->cset);
74a1166d
BB
2109 }
2110 /* nothing is sensitive to fork() after this point. */
2111
2112 /*
494c167c 2113 * step 4: do subsystem attach callbacks.
74a1166d 2114 */
5549c497 2115 for_each_root_subsys(root, ss) {
40e93b39 2116 struct cgroup_subsys_state *css = cgroup_css(cgrp, ss->subsys_id);
eb95419b 2117
74a1166d 2118 if (ss->attach)
eb95419b 2119 ss->attach(css, &tset);
74a1166d
BB
2120 }
2121
2122 /*
2123 * step 5: success! and cleanup
2124 */
74a1166d 2125 retval = 0;
61d1d219
MSB
2126out_put_css_set_refs:
2127 if (retval) {
2128 for (i = 0; i < group_size; i++) {
2129 tc = flex_array_get(group, i);
6f4b7e63 2130 if (!tc->cset)
61d1d219 2131 break;
6f4b7e63 2132 put_css_set(tc->cset);
61d1d219 2133 }
74a1166d
BB
2134 }
2135out_cancel_attach:
74a1166d 2136 if (retval) {
5549c497 2137 for_each_root_subsys(root, ss) {
40e93b39 2138 struct cgroup_subsys_state *css = cgroup_css(cgrp, ss->subsys_id);
eb95419b 2139
494c167c 2140 if (ss == failed_ss)
74a1166d 2141 break;
74a1166d 2142 if (ss->cancel_attach)
eb95419b 2143 ss->cancel_attach(css, &tset);
74a1166d
BB
2144 }
2145 }
74a1166d 2146out_free_group_list:
d846687d 2147 flex_array_free(group);
74a1166d
BB
2148 return retval;
2149}
2150
2151/*
2152 * Find the task_struct of the task to attach by vpid and pass it along to the
cd3d0952
TH
2153 * function to attach either it or all tasks in its threadgroup. Will lock
2154 * cgroup_mutex and threadgroup; may take task_lock of task.
bbcb81d0 2155 */
74a1166d 2156static int attach_task_by_pid(struct cgroup *cgrp, u64 pid, bool threadgroup)
bbcb81d0 2157{
bbcb81d0 2158 struct task_struct *tsk;
c69e8d9c 2159 const struct cred *cred = current_cred(), *tcred;
bbcb81d0
PM
2160 int ret;
2161
74a1166d
BB
2162 if (!cgroup_lock_live_group(cgrp))
2163 return -ENODEV;
2164
b78949eb
MSB
2165retry_find_task:
2166 rcu_read_lock();
bbcb81d0 2167 if (pid) {
73507f33 2168 tsk = find_task_by_vpid(pid);
74a1166d
BB
2169 if (!tsk) {
2170 rcu_read_unlock();
b78949eb
MSB
2171 ret= -ESRCH;
2172 goto out_unlock_cgroup;
bbcb81d0 2173 }
74a1166d
BB
2174 /*
2175 * even if we're attaching all tasks in the thread group, we
2176 * only need to check permissions on one of them.
2177 */
c69e8d9c 2178 tcred = __task_cred(tsk);
14a590c3
EB
2179 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2180 !uid_eq(cred->euid, tcred->uid) &&
2181 !uid_eq(cred->euid, tcred->suid)) {
c69e8d9c 2182 rcu_read_unlock();
b78949eb
MSB
2183 ret = -EACCES;
2184 goto out_unlock_cgroup;
bbcb81d0 2185 }
b78949eb
MSB
2186 } else
2187 tsk = current;
cd3d0952
TH
2188
2189 if (threadgroup)
b78949eb 2190 tsk = tsk->group_leader;
c4c27fbd
MG
2191
2192 /*
14a40ffc 2193 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
c4c27fbd
MG
2194 * trapped in a cpuset, or RT worker may be born in a cgroup
2195 * with no rt_runtime allocated. Just say no.
2196 */
14a40ffc 2197 if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
c4c27fbd
MG
2198 ret = -EINVAL;
2199 rcu_read_unlock();
2200 goto out_unlock_cgroup;
2201 }
2202
b78949eb
MSB
2203 get_task_struct(tsk);
2204 rcu_read_unlock();
2205
2206 threadgroup_lock(tsk);
2207 if (threadgroup) {
2208 if (!thread_group_leader(tsk)) {
2209 /*
2210 * a race with de_thread from another thread's exec()
2211 * may strip us of our leadership, if this happens,
2212 * there is no choice but to throw this task away and
2213 * try again; this is
2214 * "double-double-toil-and-trouble-check locking".
2215 */
2216 threadgroup_unlock(tsk);
2217 put_task_struct(tsk);
2218 goto retry_find_task;
2219 }
081aa458
LZ
2220 }
2221
2222 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
2223
cd3d0952
TH
2224 threadgroup_unlock(tsk);
2225
bbcb81d0 2226 put_task_struct(tsk);
b78949eb 2227out_unlock_cgroup:
47cfcd09 2228 mutex_unlock(&cgroup_mutex);
bbcb81d0
PM
2229 return ret;
2230}
2231
7ae1bad9
TH
2232/**
2233 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2234 * @from: attach to all cgroups of a given task
2235 * @tsk: the task to be attached
2236 */
2237int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2238{
2239 struct cgroupfs_root *root;
2240 int retval = 0;
2241
47cfcd09 2242 mutex_lock(&cgroup_mutex);
7ae1bad9 2243 for_each_active_root(root) {
6f4b7e63 2244 struct cgroup *from_cgrp = task_cgroup_from_root(from, root);
7ae1bad9 2245
6f4b7e63 2246 retval = cgroup_attach_task(from_cgrp, tsk, false);
7ae1bad9
TH
2247 if (retval)
2248 break;
2249 }
47cfcd09 2250 mutex_unlock(&cgroup_mutex);
7ae1bad9
TH
2251
2252 return retval;
2253}
2254EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2255
182446d0
TH
2256static int cgroup_tasks_write(struct cgroup_subsys_state *css,
2257 struct cftype *cft, u64 pid)
74a1166d 2258{
182446d0 2259 return attach_task_by_pid(css->cgroup, pid, false);
74a1166d
BB
2260}
2261
182446d0
TH
2262static int cgroup_procs_write(struct cgroup_subsys_state *css,
2263 struct cftype *cft, u64 tgid)
af351026 2264{
182446d0 2265 return attach_task_by_pid(css->cgroup, tgid, true);
af351026
PM
2266}
2267
182446d0
TH
2268static int cgroup_release_agent_write(struct cgroup_subsys_state *css,
2269 struct cftype *cft, const char *buffer)
e788e066 2270{
182446d0 2271 BUILD_BUG_ON(sizeof(css->cgroup->root->release_agent_path) < PATH_MAX);
f4a2589f
EK
2272 if (strlen(buffer) >= PATH_MAX)
2273 return -EINVAL;
182446d0 2274 if (!cgroup_lock_live_group(css->cgroup))
e788e066 2275 return -ENODEV;
e25e2cbb 2276 mutex_lock(&cgroup_root_mutex);
182446d0 2277 strcpy(css->cgroup->root->release_agent_path, buffer);
e25e2cbb 2278 mutex_unlock(&cgroup_root_mutex);
47cfcd09 2279 mutex_unlock(&cgroup_mutex);
e788e066
PM
2280 return 0;
2281}
2282
182446d0
TH
2283static int cgroup_release_agent_show(struct cgroup_subsys_state *css,
2284 struct cftype *cft, struct seq_file *seq)
e788e066 2285{
182446d0
TH
2286 struct cgroup *cgrp = css->cgroup;
2287
e788e066
PM
2288 if (!cgroup_lock_live_group(cgrp))
2289 return -ENODEV;
2290 seq_puts(seq, cgrp->root->release_agent_path);
2291 seq_putc(seq, '\n');
47cfcd09 2292 mutex_unlock(&cgroup_mutex);
e788e066
PM
2293 return 0;
2294}
2295
182446d0
TH
2296static int cgroup_sane_behavior_show(struct cgroup_subsys_state *css,
2297 struct cftype *cft, struct seq_file *seq)
873fe09e 2298{
182446d0 2299 seq_printf(seq, "%d\n", cgroup_sane_behavior(css->cgroup));
e788e066
PM
2300 return 0;
2301}
2302
84eea842
PM
2303/* A buffer size big enough for numbers or short strings */
2304#define CGROUP_LOCAL_BUFFER_SIZE 64
2305
182446d0
TH
2306static ssize_t cgroup_write_X64(struct cgroup_subsys_state *css,
2307 struct cftype *cft, struct file *file,
2308 const char __user *userbuf, size_t nbytes,
2309 loff_t *unused_ppos)
355e0c48 2310{
84eea842 2311 char buffer[CGROUP_LOCAL_BUFFER_SIZE];
355e0c48 2312 int retval = 0;
355e0c48
PM
2313 char *end;
2314
2315 if (!nbytes)
2316 return -EINVAL;
2317 if (nbytes >= sizeof(buffer))
2318 return -E2BIG;
2319 if (copy_from_user(buffer, userbuf, nbytes))
2320 return -EFAULT;
2321
2322 buffer[nbytes] = 0; /* nul-terminate */
e73d2c61 2323 if (cft->write_u64) {
478988d3 2324 u64 val = simple_strtoull(strstrip(buffer), &end, 0);
e73d2c61
PM
2325 if (*end)
2326 return -EINVAL;
182446d0 2327 retval = cft->write_u64(css, cft, val);
e73d2c61 2328 } else {
478988d3 2329 s64 val = simple_strtoll(strstrip(buffer), &end, 0);
e73d2c61
PM
2330 if (*end)
2331 return -EINVAL;
182446d0 2332 retval = cft->write_s64(css, cft, val);
e73d2c61 2333 }
355e0c48
PM
2334 if (!retval)
2335 retval = nbytes;
2336 return retval;
2337}
2338
182446d0
TH
2339static ssize_t cgroup_write_string(struct cgroup_subsys_state *css,
2340 struct cftype *cft, struct file *file,
2341 const char __user *userbuf, size_t nbytes,
2342 loff_t *unused_ppos)
db3b1497 2343{
84eea842 2344 char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
db3b1497
PM
2345 int retval = 0;
2346 size_t max_bytes = cft->max_write_len;
2347 char *buffer = local_buffer;
2348
2349 if (!max_bytes)
2350 max_bytes = sizeof(local_buffer) - 1;
2351 if (nbytes >= max_bytes)
2352 return -E2BIG;
2353 /* Allocate a dynamic buffer if we need one */
2354 if (nbytes >= sizeof(local_buffer)) {
2355 buffer = kmalloc(nbytes + 1, GFP_KERNEL);
2356 if (buffer == NULL)
2357 return -ENOMEM;
2358 }
5a3eb9f6
LZ
2359 if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
2360 retval = -EFAULT;
2361 goto out;
2362 }
db3b1497
PM
2363
2364 buffer[nbytes] = 0; /* nul-terminate */
182446d0 2365 retval = cft->write_string(css, cft, strstrip(buffer));
db3b1497
PM
2366 if (!retval)
2367 retval = nbytes;
5a3eb9f6 2368out:
db3b1497
PM
2369 if (buffer != local_buffer)
2370 kfree(buffer);
2371 return retval;
2372}
2373
ddbcc7e8 2374static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
182446d0 2375 size_t nbytes, loff_t *ppos)
ddbcc7e8 2376{
182446d0 2377 struct cfent *cfe = __d_cfe(file->f_dentry);
ddbcc7e8 2378 struct cftype *cft = __d_cft(file->f_dentry);
105347ba 2379 struct cgroup_subsys_state *css = cfe->css;
ddbcc7e8 2380
355e0c48 2381 if (cft->write)
182446d0 2382 return cft->write(css, cft, file, buf, nbytes, ppos);
e73d2c61 2383 if (cft->write_u64 || cft->write_s64)
182446d0 2384 return cgroup_write_X64(css, cft, file, buf, nbytes, ppos);
db3b1497 2385 if (cft->write_string)
182446d0 2386 return cgroup_write_string(css, cft, file, buf, nbytes, ppos);
d447ea2f 2387 if (cft->trigger) {
182446d0 2388 int ret = cft->trigger(css, (unsigned int)cft->private);
d447ea2f
PE
2389 return ret ? ret : nbytes;
2390 }
355e0c48 2391 return -EINVAL;
ddbcc7e8
PM
2392}
2393
182446d0
TH
2394static ssize_t cgroup_read_u64(struct cgroup_subsys_state *css,
2395 struct cftype *cft, struct file *file,
2396 char __user *buf, size_t nbytes, loff_t *ppos)
ddbcc7e8 2397{
84eea842 2398 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
182446d0 2399 u64 val = cft->read_u64(css, cft);
ddbcc7e8
PM
2400 int len = sprintf(tmp, "%llu\n", (unsigned long long) val);
2401
2402 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2403}
2404
182446d0
TH
2405static ssize_t cgroup_read_s64(struct cgroup_subsys_state *css,
2406 struct cftype *cft, struct file *file,
2407 char __user *buf, size_t nbytes, loff_t *ppos)
e73d2c61 2408{
84eea842 2409 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
182446d0 2410 s64 val = cft->read_s64(css, cft);
e73d2c61
PM
2411 int len = sprintf(tmp, "%lld\n", (long long) val);
2412
2413 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2414}
2415
ddbcc7e8 2416static ssize_t cgroup_file_read(struct file *file, char __user *buf,
182446d0 2417 size_t nbytes, loff_t *ppos)
ddbcc7e8 2418{
182446d0 2419 struct cfent *cfe = __d_cfe(file->f_dentry);
ddbcc7e8 2420 struct cftype *cft = __d_cft(file->f_dentry);
105347ba 2421 struct cgroup_subsys_state *css = cfe->css;
ddbcc7e8 2422
ddbcc7e8 2423 if (cft->read)
182446d0 2424 return cft->read(css, cft, file, buf, nbytes, ppos);
f4c753b7 2425 if (cft->read_u64)
182446d0 2426 return cgroup_read_u64(css, cft, file, buf, nbytes, ppos);
e73d2c61 2427 if (cft->read_s64)
182446d0 2428 return cgroup_read_s64(css, cft, file, buf, nbytes, ppos);
ddbcc7e8
PM
2429 return -EINVAL;
2430}
2431
91796569
PM
2432/*
2433 * seqfile ops/methods for returning structured data. Currently just
2434 * supports string->u64 maps, but can be extended in future.
2435 */
2436
91796569
PM
2437static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
2438{
2439 struct seq_file *sf = cb->state;
2440 return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
2441}
2442
2443static int cgroup_seqfile_show(struct seq_file *m, void *arg)
2444{
e0798ce2
LZ
2445 struct cfent *cfe = m->private;
2446 struct cftype *cft = cfe->type;
105347ba 2447 struct cgroup_subsys_state *css = cfe->css;
e0798ce2 2448
29486df3
SH
2449 if (cft->read_map) {
2450 struct cgroup_map_cb cb = {
2451 .fill = cgroup_map_add,
2452 .state = m,
2453 };
182446d0 2454 return cft->read_map(css, cft, &cb);
29486df3 2455 }
182446d0 2456 return cft->read_seq_string(css, cft, m);
91796569
PM
2457}
2458
828c0950 2459static const struct file_operations cgroup_seqfile_operations = {
91796569 2460 .read = seq_read,
e788e066 2461 .write = cgroup_file_write,
91796569 2462 .llseek = seq_lseek,
e0798ce2 2463 .release = single_release,
91796569
PM
2464};
2465
ddbcc7e8
PM
2466static int cgroup_file_open(struct inode *inode, struct file *file)
2467{
f7d58818
TH
2468 struct cfent *cfe = __d_cfe(file->f_dentry);
2469 struct cftype *cft = __d_cft(file->f_dentry);
105347ba
TH
2470 struct cgroup *cgrp = __d_cgrp(cfe->dentry->d_parent);
2471 struct cgroup_subsys_state *css;
ddbcc7e8 2472 int err;
ddbcc7e8
PM
2473
2474 err = generic_file_open(inode, file);
2475 if (err)
2476 return err;
f7d58818
TH
2477
2478 /*
2479 * If the file belongs to a subsystem, pin the css. Will be
2480 * unpinned either on open failure or release. This ensures that
2481 * @css stays alive for all file operations.
2482 */
105347ba
TH
2483 rcu_read_lock();
2484 if (cft->ss) {
2485 css = cgroup_css(cgrp, cft->ss->subsys_id);
2486 if (!css_tryget(css))
2487 css = NULL;
2488 } else {
2489 css = &cgrp->dummy_css;
2490 }
2491 rcu_read_unlock();
2492
2493 /* css should match @cfe->css, see cgroup_add_file() for details */
2494 if (!css || WARN_ON_ONCE(css != cfe->css))
f7d58818 2495 return -ENODEV;
75139b82 2496
29486df3 2497 if (cft->read_map || cft->read_seq_string) {
91796569 2498 file->f_op = &cgroup_seqfile_operations;
e0798ce2
LZ
2499 err = single_open(file, cgroup_seqfile_show, cfe);
2500 } else if (cft->open) {
ddbcc7e8 2501 err = cft->open(inode, file);
e0798ce2 2502 }
ddbcc7e8 2503
67f4c36f 2504 if (css->ss && err)
f7d58818 2505 css_put(css);
ddbcc7e8
PM
2506 return err;
2507}
2508
2509static int cgroup_file_release(struct inode *inode, struct file *file)
2510{
f7d58818 2511 struct cfent *cfe = __d_cfe(file->f_dentry);
ddbcc7e8 2512 struct cftype *cft = __d_cft(file->f_dentry);
105347ba 2513 struct cgroup_subsys_state *css = cfe->css;
f7d58818
TH
2514 int ret = 0;
2515
ddbcc7e8 2516 if (cft->release)
f7d58818 2517 ret = cft->release(inode, file);
67f4c36f 2518 if (css->ss)
f7d58818
TH
2519 css_put(css);
2520 return ret;
ddbcc7e8
PM
2521}
2522
2523/*
2524 * cgroup_rename - Only allow simple rename of directories in place.
2525 */
2526static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
2527 struct inode *new_dir, struct dentry *new_dentry)
2528{
65dff759
LZ
2529 int ret;
2530 struct cgroup_name *name, *old_name;
2531 struct cgroup *cgrp;
2532
2533 /*
2534 * It's convinient to use parent dir's i_mutex to protected
2535 * cgrp->name.
2536 */
2537 lockdep_assert_held(&old_dir->i_mutex);
2538
ddbcc7e8
PM
2539 if (!S_ISDIR(old_dentry->d_inode->i_mode))
2540 return -ENOTDIR;
2541 if (new_dentry->d_inode)
2542 return -EEXIST;
2543 if (old_dir != new_dir)
2544 return -EIO;
65dff759
LZ
2545
2546 cgrp = __d_cgrp(old_dentry);
2547
6db8e85c
TH
2548 /*
2549 * This isn't a proper migration and its usefulness is very
2550 * limited. Disallow if sane_behavior.
2551 */
2552 if (cgroup_sane_behavior(cgrp))
2553 return -EPERM;
2554
65dff759
LZ
2555 name = cgroup_alloc_name(new_dentry);
2556 if (!name)
2557 return -ENOMEM;
2558
2559 ret = simple_rename(old_dir, old_dentry, new_dir, new_dentry);
2560 if (ret) {
2561 kfree(name);
2562 return ret;
2563 }
2564
a4ea1cc9 2565 old_name = rcu_dereference_protected(cgrp->name, true);
65dff759
LZ
2566 rcu_assign_pointer(cgrp->name, name);
2567
2568 kfree_rcu(old_name, rcu_head);
2569 return 0;
ddbcc7e8
PM
2570}
2571
03b1cde6
AR
2572static struct simple_xattrs *__d_xattrs(struct dentry *dentry)
2573{
2574 if (S_ISDIR(dentry->d_inode->i_mode))
2575 return &__d_cgrp(dentry)->xattrs;
2576 else
712317ad 2577 return &__d_cfe(dentry)->xattrs;
03b1cde6
AR
2578}
2579
2580static inline int xattr_enabled(struct dentry *dentry)
2581{
2582 struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
93438629 2583 return root->flags & CGRP_ROOT_XATTR;
03b1cde6
AR
2584}
2585
2586static bool is_valid_xattr(const char *name)
2587{
2588 if (!strncmp(name, XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN) ||
2589 !strncmp(name, XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN))
2590 return true;
2591 return false;
2592}
2593
2594static int cgroup_setxattr(struct dentry *dentry, const char *name,
2595 const void *val, size_t size, int flags)
2596{
2597 if (!xattr_enabled(dentry))
2598 return -EOPNOTSUPP;
2599 if (!is_valid_xattr(name))
2600 return -EINVAL;
2601 return simple_xattr_set(__d_xattrs(dentry), name, val, size, flags);
2602}
2603
2604static int cgroup_removexattr(struct dentry *dentry, const char *name)
2605{
2606 if (!xattr_enabled(dentry))
2607 return -EOPNOTSUPP;
2608 if (!is_valid_xattr(name))
2609 return -EINVAL;
2610 return simple_xattr_remove(__d_xattrs(dentry), name);
2611}
2612
2613static ssize_t cgroup_getxattr(struct dentry *dentry, const char *name,
2614 void *buf, size_t size)
2615{
2616 if (!xattr_enabled(dentry))
2617 return -EOPNOTSUPP;
2618 if (!is_valid_xattr(name))
2619 return -EINVAL;
2620 return simple_xattr_get(__d_xattrs(dentry), name, buf, size);
2621}
2622
2623static ssize_t cgroup_listxattr(struct dentry *dentry, char *buf, size_t size)
2624{
2625 if (!xattr_enabled(dentry))
2626 return -EOPNOTSUPP;
2627 return simple_xattr_list(__d_xattrs(dentry), buf, size);
2628}
2629
828c0950 2630static const struct file_operations cgroup_file_operations = {
ddbcc7e8
PM
2631 .read = cgroup_file_read,
2632 .write = cgroup_file_write,
2633 .llseek = generic_file_llseek,
2634 .open = cgroup_file_open,
2635 .release = cgroup_file_release,
2636};
2637
03b1cde6
AR
2638static const struct inode_operations cgroup_file_inode_operations = {
2639 .setxattr = cgroup_setxattr,
2640 .getxattr = cgroup_getxattr,
2641 .listxattr = cgroup_listxattr,
2642 .removexattr = cgroup_removexattr,
2643};
2644
6e1d5dcc 2645static const struct inode_operations cgroup_dir_inode_operations = {
c72a04e3 2646 .lookup = cgroup_lookup,
ddbcc7e8
PM
2647 .mkdir = cgroup_mkdir,
2648 .rmdir = cgroup_rmdir,
2649 .rename = cgroup_rename,
03b1cde6
AR
2650 .setxattr = cgroup_setxattr,
2651 .getxattr = cgroup_getxattr,
2652 .listxattr = cgroup_listxattr,
2653 .removexattr = cgroup_removexattr,
ddbcc7e8
PM
2654};
2655
00cd8dd3 2656static struct dentry *cgroup_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
c72a04e3
AV
2657{
2658 if (dentry->d_name.len > NAME_MAX)
2659 return ERR_PTR(-ENAMETOOLONG);
2660 d_add(dentry, NULL);
2661 return NULL;
2662}
2663
0dea1168
KS
2664/*
2665 * Check if a file is a control file
2666 */
2667static inline struct cftype *__file_cft(struct file *file)
2668{
496ad9aa 2669 if (file_inode(file)->i_fop != &cgroup_file_operations)
0dea1168
KS
2670 return ERR_PTR(-EINVAL);
2671 return __d_cft(file->f_dentry);
2672}
2673
a5e7ed32 2674static int cgroup_create_file(struct dentry *dentry, umode_t mode,
5adcee1d
NP
2675 struct super_block *sb)
2676{
ddbcc7e8
PM
2677 struct inode *inode;
2678
2679 if (!dentry)
2680 return -ENOENT;
2681 if (dentry->d_inode)
2682 return -EEXIST;
2683
2684 inode = cgroup_new_inode(mode, sb);
2685 if (!inode)
2686 return -ENOMEM;
2687
2688 if (S_ISDIR(mode)) {
2689 inode->i_op = &cgroup_dir_inode_operations;
2690 inode->i_fop = &simple_dir_operations;
2691
2692 /* start off with i_nlink == 2 (for "." entry) */
2693 inc_nlink(inode);
28fd6f30 2694 inc_nlink(dentry->d_parent->d_inode);
ddbcc7e8 2695
b8a2df6a
TH
2696 /*
2697 * Control reaches here with cgroup_mutex held.
2698 * @inode->i_mutex should nest outside cgroup_mutex but we
2699 * want to populate it immediately without releasing
2700 * cgroup_mutex. As @inode isn't visible to anyone else
2701 * yet, trylock will always succeed without affecting
2702 * lockdep checks.
2703 */
2704 WARN_ON_ONCE(!mutex_trylock(&inode->i_mutex));
ddbcc7e8
PM
2705 } else if (S_ISREG(mode)) {
2706 inode->i_size = 0;
2707 inode->i_fop = &cgroup_file_operations;
03b1cde6 2708 inode->i_op = &cgroup_file_inode_operations;
ddbcc7e8 2709 }
ddbcc7e8
PM
2710 d_instantiate(dentry, inode);
2711 dget(dentry); /* Extra count - pin the dentry in core */
2712 return 0;
2713}
2714
099fca32
LZ
2715/**
2716 * cgroup_file_mode - deduce file mode of a control file
2717 * @cft: the control file in question
2718 *
2719 * returns cft->mode if ->mode is not 0
2720 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
2721 * returns S_IRUGO if it has only a read handler
2722 * returns S_IWUSR if it has only a write hander
2723 */
a5e7ed32 2724static umode_t cgroup_file_mode(const struct cftype *cft)
099fca32 2725{
a5e7ed32 2726 umode_t mode = 0;
099fca32
LZ
2727
2728 if (cft->mode)
2729 return cft->mode;
2730
2731 if (cft->read || cft->read_u64 || cft->read_s64 ||
2732 cft->read_map || cft->read_seq_string)
2733 mode |= S_IRUGO;
2734
2735 if (cft->write || cft->write_u64 || cft->write_s64 ||
2736 cft->write_string || cft->trigger)
2737 mode |= S_IWUSR;
2738
2739 return mode;
2740}
2741
2bb566cb 2742static int cgroup_add_file(struct cgroup *cgrp, struct cftype *cft)
ddbcc7e8 2743{
bd89aabc 2744 struct dentry *dir = cgrp->dentry;
05ef1d7c 2745 struct cgroup *parent = __d_cgrp(dir);
ddbcc7e8 2746 struct dentry *dentry;
05ef1d7c 2747 struct cfent *cfe;
ddbcc7e8 2748 int error;
a5e7ed32 2749 umode_t mode;
ddbcc7e8 2750 char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
8e3f6541 2751
2bb566cb
TH
2752 if (cft->ss && !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) {
2753 strcpy(name, cft->ss->name);
ddbcc7e8
PM
2754 strcat(name, ".");
2755 }
2756 strcat(name, cft->name);
05ef1d7c 2757
ddbcc7e8 2758 BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
05ef1d7c
TH
2759
2760 cfe = kzalloc(sizeof(*cfe), GFP_KERNEL);
2761 if (!cfe)
2762 return -ENOMEM;
2763
ddbcc7e8 2764 dentry = lookup_one_len(name, dir, strlen(name));
05ef1d7c 2765 if (IS_ERR(dentry)) {
ddbcc7e8 2766 error = PTR_ERR(dentry);
05ef1d7c
TH
2767 goto out;
2768 }
2769
d6cbf35d
LZ
2770 cfe->type = (void *)cft;
2771 cfe->dentry = dentry;
2772 dentry->d_fsdata = cfe;
2773 simple_xattrs_init(&cfe->xattrs);
2774
105347ba
TH
2775 /*
2776 * cfe->css is used by read/write/close to determine the associated
2777 * css. file->private_data would be a better place but that's
2778 * already used by seqfile. Note that open will use the usual
2779 * cgroup_css() and css_tryget() to acquire the css and this
2780 * caching doesn't affect css lifetime management.
2781 */
2782 if (cft->ss)
2783 cfe->css = cgroup_css(cgrp, cft->ss->subsys_id);
2784 else
2785 cfe->css = &cgrp->dummy_css;
2786
05ef1d7c
TH
2787 mode = cgroup_file_mode(cft);
2788 error = cgroup_create_file(dentry, mode | S_IFREG, cgrp->root->sb);
2789 if (!error) {
05ef1d7c
TH
2790 list_add_tail(&cfe->node, &parent->files);
2791 cfe = NULL;
2792 }
2793 dput(dentry);
2794out:
2795 kfree(cfe);
ddbcc7e8
PM
2796 return error;
2797}
2798
b1f28d31
TH
2799/**
2800 * cgroup_addrm_files - add or remove files to a cgroup directory
2801 * @cgrp: the target cgroup
b1f28d31
TH
2802 * @cfts: array of cftypes to be added
2803 * @is_add: whether to add or remove
2804 *
2805 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
2bb566cb
TH
2806 * For removals, this function never fails. If addition fails, this
2807 * function doesn't remove files already added. The caller is responsible
2808 * for cleaning up.
b1f28d31 2809 */
2bb566cb
TH
2810static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
2811 bool is_add)
ddbcc7e8 2812{
03b1cde6 2813 struct cftype *cft;
b1f28d31
TH
2814 int ret;
2815
2816 lockdep_assert_held(&cgrp->dentry->d_inode->i_mutex);
2817 lockdep_assert_held(&cgroup_mutex);
db0416b6
TH
2818
2819 for (cft = cfts; cft->name[0] != '\0'; cft++) {
f33fddc2 2820 /* does cft->flags tell us to skip this file on @cgrp? */
873fe09e
TH
2821 if ((cft->flags & CFTYPE_INSANE) && cgroup_sane_behavior(cgrp))
2822 continue;
f33fddc2
G
2823 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgrp->parent)
2824 continue;
2825 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgrp->parent)
2826 continue;
2827
2739d3cc 2828 if (is_add) {
2bb566cb 2829 ret = cgroup_add_file(cgrp, cft);
b1f28d31 2830 if (ret) {
2739d3cc 2831 pr_warn("cgroup_addrm_files: failed to add %s, err=%d\n",
b1f28d31
TH
2832 cft->name, ret);
2833 return ret;
2834 }
2739d3cc
LZ
2835 } else {
2836 cgroup_rm_file(cgrp, cft);
db0416b6 2837 }
ddbcc7e8 2838 }
b1f28d31 2839 return 0;
ddbcc7e8
PM
2840}
2841
8e3f6541 2842static void cgroup_cfts_prepare(void)
e8c82d20 2843 __acquires(&cgroup_mutex)
8e3f6541
TH
2844{
2845 /*
2846 * Thanks to the entanglement with vfs inode locking, we can't walk
2847 * the existing cgroups under cgroup_mutex and create files.
492eb21b
TH
2848 * Instead, we use css_for_each_descendant_pre() and drop RCU read
2849 * lock before calling cgroup_addrm_files().
8e3f6541 2850 */
8e3f6541
TH
2851 mutex_lock(&cgroup_mutex);
2852}
2853
2bb566cb 2854static int cgroup_cfts_commit(struct cftype *cfts, bool is_add)
e8c82d20 2855 __releases(&cgroup_mutex)
8e3f6541
TH
2856{
2857 LIST_HEAD(pending);
2bb566cb 2858 struct cgroup_subsys *ss = cfts[0].ss;
492eb21b 2859 struct cgroup *root = &ss->root->top_cgroup;
084457f2 2860 struct super_block *sb = ss->root->sb;
e8c82d20
LZ
2861 struct dentry *prev = NULL;
2862 struct inode *inode;
492eb21b 2863 struct cgroup_subsys_state *css;
00356bd5 2864 u64 update_before;
9ccece80 2865 int ret = 0;
8e3f6541
TH
2866
2867 /* %NULL @cfts indicates abort and don't bother if @ss isn't attached */
9871bf95 2868 if (!cfts || ss->root == &cgroup_dummy_root ||
e8c82d20
LZ
2869 !atomic_inc_not_zero(&sb->s_active)) {
2870 mutex_unlock(&cgroup_mutex);
9ccece80 2871 return 0;
8e3f6541
TH
2872 }
2873
8e3f6541 2874 /*
e8c82d20
LZ
2875 * All cgroups which are created after we drop cgroup_mutex will
2876 * have the updated set of files, so we only need to update the
00356bd5 2877 * cgroups created before the current @cgroup_serial_nr_next.
8e3f6541 2878 */
00356bd5 2879 update_before = cgroup_serial_nr_next;
e8c82d20
LZ
2880
2881 mutex_unlock(&cgroup_mutex);
2882
e8c82d20
LZ
2883 /* add/rm files for all cgroups created before */
2884 rcu_read_lock();
492eb21b
TH
2885 css_for_each_descendant_pre(css, cgroup_css(root, ss->subsys_id)) {
2886 struct cgroup *cgrp = css->cgroup;
2887
e8c82d20
LZ
2888 if (cgroup_is_dead(cgrp))
2889 continue;
2890
2891 inode = cgrp->dentry->d_inode;
2892 dget(cgrp->dentry);
2893 rcu_read_unlock();
2894
2895 dput(prev);
2896 prev = cgrp->dentry;
8e3f6541
TH
2897
2898 mutex_lock(&inode->i_mutex);
2899 mutex_lock(&cgroup_mutex);
00356bd5 2900 if (cgrp->serial_nr < update_before && !cgroup_is_dead(cgrp))
2bb566cb 2901 ret = cgroup_addrm_files(cgrp, cfts, is_add);
8e3f6541
TH
2902 mutex_unlock(&cgroup_mutex);
2903 mutex_unlock(&inode->i_mutex);
2904
e8c82d20 2905 rcu_read_lock();
9ccece80
TH
2906 if (ret)
2907 break;
8e3f6541 2908 }
e8c82d20
LZ
2909 rcu_read_unlock();
2910 dput(prev);
2911 deactivate_super(sb);
9ccece80 2912 return ret;
8e3f6541
TH
2913}
2914
2915/**
2916 * cgroup_add_cftypes - add an array of cftypes to a subsystem
2917 * @ss: target cgroup subsystem
2918 * @cfts: zero-length name terminated array of cftypes
2919 *
2920 * Register @cfts to @ss. Files described by @cfts are created for all
2921 * existing cgroups to which @ss is attached and all future cgroups will
2922 * have them too. This function can be called anytime whether @ss is
2923 * attached or not.
2924 *
2925 * Returns 0 on successful registration, -errno on failure. Note that this
2926 * function currently returns 0 as long as @cfts registration is successful
2927 * even if some file creation attempts on existing cgroups fail.
2928 */
03b1cde6 2929int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
8e3f6541
TH
2930{
2931 struct cftype_set *set;
2bb566cb 2932 struct cftype *cft;
9ccece80 2933 int ret;
8e3f6541
TH
2934
2935 set = kzalloc(sizeof(*set), GFP_KERNEL);
2936 if (!set)
2937 return -ENOMEM;
2938
2bb566cb
TH
2939 for (cft = cfts; cft->name[0] != '\0'; cft++)
2940 cft->ss = ss;
2941
8e3f6541
TH
2942 cgroup_cfts_prepare();
2943 set->cfts = cfts;
2944 list_add_tail(&set->node, &ss->cftsets);
2bb566cb 2945 ret = cgroup_cfts_commit(cfts, true);
9ccece80 2946 if (ret)
2bb566cb 2947 cgroup_rm_cftypes(cfts);
9ccece80 2948 return ret;
8e3f6541
TH
2949}
2950EXPORT_SYMBOL_GPL(cgroup_add_cftypes);
2951
79578621
TH
2952/**
2953 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
79578621
TH
2954 * @cfts: zero-length name terminated array of cftypes
2955 *
2bb566cb
TH
2956 * Unregister @cfts. Files described by @cfts are removed from all
2957 * existing cgroups and all future cgroups won't have them either. This
2958 * function can be called anytime whether @cfts' subsys is attached or not.
79578621
TH
2959 *
2960 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
2bb566cb 2961 * registered.
79578621 2962 */
2bb566cb 2963int cgroup_rm_cftypes(struct cftype *cfts)
79578621
TH
2964{
2965 struct cftype_set *set;
2966
2bb566cb
TH
2967 if (!cfts || !cfts[0].ss)
2968 return -ENOENT;
2969
79578621
TH
2970 cgroup_cfts_prepare();
2971
2bb566cb 2972 list_for_each_entry(set, &cfts[0].ss->cftsets, node) {
79578621 2973 if (set->cfts == cfts) {
f57947d2
LZ
2974 list_del(&set->node);
2975 kfree(set);
2bb566cb 2976 cgroup_cfts_commit(cfts, false);
79578621
TH
2977 return 0;
2978 }
2979 }
2980
2bb566cb 2981 cgroup_cfts_commit(NULL, false);
79578621
TH
2982 return -ENOENT;
2983}
2984
a043e3b2
LZ
2985/**
2986 * cgroup_task_count - count the number of tasks in a cgroup.
2987 * @cgrp: the cgroup in question
2988 *
2989 * Return the number of tasks in the cgroup.
2990 */
bd89aabc 2991int cgroup_task_count(const struct cgroup *cgrp)
bbcb81d0
PM
2992{
2993 int count = 0;
69d0206c 2994 struct cgrp_cset_link *link;
817929ec
PM
2995
2996 read_lock(&css_set_lock);
69d0206c
TH
2997 list_for_each_entry(link, &cgrp->cset_links, cset_link)
2998 count += atomic_read(&link->cset->refcount);
817929ec 2999 read_unlock(&css_set_lock);
bbcb81d0
PM
3000 return count;
3001}
3002
31a7df01 3003/*
0942eeee
TH
3004 * To reduce the fork() overhead for systems that are not actually using
3005 * their cgroups capability, we don't maintain the lists running through
3006 * each css_set to its tasks until we see the list actually used - in other
72ec7029 3007 * words after the first call to css_task_iter_start().
31a7df01 3008 */
3df91fe3 3009static void cgroup_enable_task_cg_lists(void)
31a7df01
CW
3010{
3011 struct task_struct *p, *g;
3012 write_lock(&css_set_lock);
3013 use_task_css_set_links = 1;
3ce3230a
FW
3014 /*
3015 * We need tasklist_lock because RCU is not safe against
3016 * while_each_thread(). Besides, a forking task that has passed
3017 * cgroup_post_fork() without seeing use_task_css_set_links = 1
3018 * is not guaranteed to have its child immediately visible in the
3019 * tasklist if we walk through it with RCU.
3020 */
3021 read_lock(&tasklist_lock);
31a7df01
CW
3022 do_each_thread(g, p) {
3023 task_lock(p);
0e04388f
LZ
3024 /*
3025 * We should check if the process is exiting, otherwise
3026 * it will race with cgroup_exit() in that the list
3027 * entry won't be deleted though the process has exited.
3028 */
3029 if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
a8ad805c 3030 list_add(&p->cg_list, &task_css_set(p)->tasks);
31a7df01
CW
3031 task_unlock(p);
3032 } while_each_thread(g, p);
3ce3230a 3033 read_unlock(&tasklist_lock);
31a7df01
CW
3034 write_unlock(&css_set_lock);
3035}
3036
53fa5261 3037/**
492eb21b
TH
3038 * css_next_child - find the next child of a given css
3039 * @pos_css: the current position (%NULL to initiate traversal)
3040 * @parent_css: css whose children to walk
53fa5261 3041 *
492eb21b
TH
3042 * This function returns the next child of @parent_css and should be called
3043 * under RCU read lock. The only requirement is that @parent_css and
3044 * @pos_css are accessible. The next sibling is guaranteed to be returned
3045 * regardless of their states.
53fa5261 3046 */
492eb21b
TH
3047struct cgroup_subsys_state *
3048css_next_child(struct cgroup_subsys_state *pos_css,
3049 struct cgroup_subsys_state *parent_css)
53fa5261 3050{
492eb21b
TH
3051 struct cgroup *pos = pos_css ? pos_css->cgroup : NULL;
3052 struct cgroup *cgrp = parent_css->cgroup;
53fa5261
TH
3053 struct cgroup *next;
3054
3055 WARN_ON_ONCE(!rcu_read_lock_held());
3056
3057 /*
3058 * @pos could already have been removed. Once a cgroup is removed,
3059 * its ->sibling.next is no longer updated when its next sibling
ea15f8cc
TH
3060 * changes. As CGRP_DEAD assertion is serialized and happens
3061 * before the cgroup is taken off the ->sibling list, if we see it
3062 * unasserted, it's guaranteed that the next sibling hasn't
3063 * finished its grace period even if it's already removed, and thus
3064 * safe to dereference from this RCU critical section. If
3065 * ->sibling.next is inaccessible, cgroup_is_dead() is guaranteed
3066 * to be visible as %true here.
3b287a50
TH
3067 *
3068 * If @pos is dead, its next pointer can't be dereferenced;
3069 * however, as each cgroup is given a monotonically increasing
3070 * unique serial number and always appended to the sibling list,
3071 * the next one can be found by walking the parent's children until
3072 * we see a cgroup with higher serial number than @pos's. While
3073 * this path can be slower, it's taken only when either the current
3074 * cgroup is removed or iteration and removal race.
53fa5261 3075 */
3b287a50
TH
3076 if (!pos) {
3077 next = list_entry_rcu(cgrp->children.next, struct cgroup, sibling);
3078 } else if (likely(!cgroup_is_dead(pos))) {
53fa5261 3079 next = list_entry_rcu(pos->sibling.next, struct cgroup, sibling);
3b287a50
TH
3080 } else {
3081 list_for_each_entry_rcu(next, &cgrp->children, sibling)
3082 if (next->serial_nr > pos->serial_nr)
3083 break;
53fa5261
TH
3084 }
3085
492eb21b
TH
3086 if (&next->sibling == &cgrp->children)
3087 return NULL;
3088
3089 if (parent_css->ss)
3090 return cgroup_css(next, parent_css->ss->subsys_id);
3091 else
3092 return &next->dummy_css;
53fa5261 3093}
492eb21b 3094EXPORT_SYMBOL_GPL(css_next_child);
53fa5261 3095
574bd9f7 3096/**
492eb21b 3097 * css_next_descendant_pre - find the next descendant for pre-order walk
574bd9f7 3098 * @pos: the current position (%NULL to initiate traversal)
492eb21b 3099 * @root: css whose descendants to walk
574bd9f7 3100 *
492eb21b 3101 * To be used by css_for_each_descendant_pre(). Find the next descendant
bd8815a6
TH
3102 * to visit for pre-order traversal of @root's descendants. @root is
3103 * included in the iteration and the first node to be visited.
75501a6d
TH
3104 *
3105 * While this function requires RCU read locking, it doesn't require the
3106 * whole traversal to be contained in a single RCU critical section. This
3107 * function will return the correct next descendant as long as both @pos
492eb21b 3108 * and @root are accessible and @pos is a descendant of @root.
574bd9f7 3109 */
492eb21b
TH
3110struct cgroup_subsys_state *
3111css_next_descendant_pre(struct cgroup_subsys_state *pos,
3112 struct cgroup_subsys_state *root)
574bd9f7 3113{
492eb21b 3114 struct cgroup_subsys_state *next;
574bd9f7
TH
3115
3116 WARN_ON_ONCE(!rcu_read_lock_held());
3117
bd8815a6 3118 /* if first iteration, visit @root */
7805d000 3119 if (!pos)
bd8815a6 3120 return root;
574bd9f7
TH
3121
3122 /* visit the first child if exists */
492eb21b 3123 next = css_next_child(NULL, pos);
574bd9f7
TH
3124 if (next)
3125 return next;
3126
3127 /* no child, visit my or the closest ancestor's next sibling */
492eb21b
TH
3128 while (pos != root) {
3129 next = css_next_child(pos, css_parent(pos));
75501a6d 3130 if (next)
574bd9f7 3131 return next;
492eb21b 3132 pos = css_parent(pos);
7805d000 3133 }
574bd9f7
TH
3134
3135 return NULL;
3136}
492eb21b 3137EXPORT_SYMBOL_GPL(css_next_descendant_pre);
574bd9f7 3138
12a9d2fe 3139/**
492eb21b
TH
3140 * css_rightmost_descendant - return the rightmost descendant of a css
3141 * @pos: css of interest
12a9d2fe 3142 *
492eb21b
TH
3143 * Return the rightmost descendant of @pos. If there's no descendant, @pos
3144 * is returned. This can be used during pre-order traversal to skip
12a9d2fe 3145 * subtree of @pos.
75501a6d
TH
3146 *
3147 * While this function requires RCU read locking, it doesn't require the
3148 * whole traversal to be contained in a single RCU critical section. This
3149 * function will return the correct rightmost descendant as long as @pos is
3150 * accessible.
12a9d2fe 3151 */
492eb21b
TH
3152struct cgroup_subsys_state *
3153css_rightmost_descendant(struct cgroup_subsys_state *pos)
12a9d2fe 3154{
492eb21b 3155 struct cgroup_subsys_state *last, *tmp;
12a9d2fe
TH
3156
3157 WARN_ON_ONCE(!rcu_read_lock_held());
3158
3159 do {
3160 last = pos;
3161 /* ->prev isn't RCU safe, walk ->next till the end */
3162 pos = NULL;
492eb21b 3163 css_for_each_child(tmp, last)
12a9d2fe
TH
3164 pos = tmp;
3165 } while (pos);
3166
3167 return last;
3168}
492eb21b 3169EXPORT_SYMBOL_GPL(css_rightmost_descendant);
12a9d2fe 3170
492eb21b
TH
3171static struct cgroup_subsys_state *
3172css_leftmost_descendant(struct cgroup_subsys_state *pos)
574bd9f7 3173{
492eb21b 3174 struct cgroup_subsys_state *last;
574bd9f7
TH
3175
3176 do {
3177 last = pos;
492eb21b 3178 pos = css_next_child(NULL, pos);
574bd9f7
TH
3179 } while (pos);
3180
3181 return last;
3182}
3183
3184/**
492eb21b 3185 * css_next_descendant_post - find the next descendant for post-order walk
574bd9f7 3186 * @pos: the current position (%NULL to initiate traversal)
492eb21b 3187 * @root: css whose descendants to walk
574bd9f7 3188 *
492eb21b 3189 * To be used by css_for_each_descendant_post(). Find the next descendant
bd8815a6
TH
3190 * to visit for post-order traversal of @root's descendants. @root is
3191 * included in the iteration and the last node to be visited.
75501a6d
TH
3192 *
3193 * While this function requires RCU read locking, it doesn't require the
3194 * whole traversal to be contained in a single RCU critical section. This
3195 * function will return the correct next descendant as long as both @pos
3196 * and @cgroup are accessible and @pos is a descendant of @cgroup.
574bd9f7 3197 */
492eb21b
TH
3198struct cgroup_subsys_state *
3199css_next_descendant_post(struct cgroup_subsys_state *pos,
3200 struct cgroup_subsys_state *root)
574bd9f7 3201{
492eb21b 3202 struct cgroup_subsys_state *next;
574bd9f7
TH
3203
3204 WARN_ON_ONCE(!rcu_read_lock_held());
3205
3206 /* if first iteration, visit the leftmost descendant */
3207 if (!pos) {
492eb21b
TH
3208 next = css_leftmost_descendant(root);
3209 return next != root ? next : NULL;
574bd9f7
TH
3210 }
3211
bd8815a6
TH
3212 /* if we visited @root, we're done */
3213 if (pos == root)
3214 return NULL;
3215
574bd9f7 3216 /* if there's an unvisited sibling, visit its leftmost descendant */
492eb21b 3217 next = css_next_child(pos, css_parent(pos));
75501a6d 3218 if (next)
492eb21b 3219 return css_leftmost_descendant(next);
574bd9f7
TH
3220
3221 /* no sibling left, visit parent */
bd8815a6 3222 return css_parent(pos);
574bd9f7 3223}
492eb21b 3224EXPORT_SYMBOL_GPL(css_next_descendant_post);
574bd9f7 3225
0942eeee 3226/**
72ec7029 3227 * css_advance_task_iter - advance a task itererator to the next css_set
0942eeee
TH
3228 * @it: the iterator to advance
3229 *
3230 * Advance @it to the next css_set to walk.
d515876e 3231 */
72ec7029 3232static void css_advance_task_iter(struct css_task_iter *it)
d515876e
TH
3233{
3234 struct list_head *l = it->cset_link;
3235 struct cgrp_cset_link *link;
3236 struct css_set *cset;
3237
3238 /* Advance to the next non-empty css_set */
3239 do {
3240 l = l->next;
72ec7029 3241 if (l == &it->origin_css->cgroup->cset_links) {
d515876e
TH
3242 it->cset_link = NULL;
3243 return;
3244 }
3245 link = list_entry(l, struct cgrp_cset_link, cset_link);
3246 cset = link->cset;
3247 } while (list_empty(&cset->tasks));
3248 it->cset_link = l;
3249 it->task = cset->tasks.next;
3250}
3251
0942eeee 3252/**
72ec7029
TH
3253 * css_task_iter_start - initiate task iteration
3254 * @css: the css to walk tasks of
0942eeee
TH
3255 * @it: the task iterator to use
3256 *
72ec7029
TH
3257 * Initiate iteration through the tasks of @css. The caller can call
3258 * css_task_iter_next() to walk through the tasks until the function
3259 * returns NULL. On completion of iteration, css_task_iter_end() must be
3260 * called.
0942eeee
TH
3261 *
3262 * Note that this function acquires a lock which is released when the
3263 * iteration finishes. The caller can't sleep while iteration is in
3264 * progress.
3265 */
72ec7029
TH
3266void css_task_iter_start(struct cgroup_subsys_state *css,
3267 struct css_task_iter *it)
c6ca5750 3268 __acquires(css_set_lock)
817929ec
PM
3269{
3270 /*
72ec7029
TH
3271 * The first time anyone tries to iterate across a css, we need to
3272 * enable the list linking each css_set to its tasks, and fix up
3273 * all existing tasks.
817929ec 3274 */
31a7df01
CW
3275 if (!use_task_css_set_links)
3276 cgroup_enable_task_cg_lists();
3277
817929ec 3278 read_lock(&css_set_lock);
c59cd3d8 3279
72ec7029
TH
3280 it->origin_css = css;
3281 it->cset_link = &css->cgroup->cset_links;
c59cd3d8 3282
72ec7029 3283 css_advance_task_iter(it);
817929ec
PM
3284}
3285
0942eeee 3286/**
72ec7029 3287 * css_task_iter_next - return the next task for the iterator
0942eeee
TH
3288 * @it: the task iterator being iterated
3289 *
3290 * The "next" function for task iteration. @it should have been
72ec7029
TH
3291 * initialized via css_task_iter_start(). Returns NULL when the iteration
3292 * reaches the end.
0942eeee 3293 */
72ec7029 3294struct task_struct *css_task_iter_next(struct css_task_iter *it)
817929ec
PM
3295{
3296 struct task_struct *res;
3297 struct list_head *l = it->task;
69d0206c 3298 struct cgrp_cset_link *link;
817929ec
PM
3299
3300 /* If the iterator cg is NULL, we have no tasks */
69d0206c 3301 if (!it->cset_link)
817929ec
PM
3302 return NULL;
3303 res = list_entry(l, struct task_struct, cg_list);
3304 /* Advance iterator to find next entry */
3305 l = l->next;
69d0206c
TH
3306 link = list_entry(it->cset_link, struct cgrp_cset_link, cset_link);
3307 if (l == &link->cset->tasks) {
0942eeee
TH
3308 /*
3309 * We reached the end of this task list - move on to the
3310 * next cgrp_cset_link.
3311 */
72ec7029 3312 css_advance_task_iter(it);
817929ec
PM
3313 } else {
3314 it->task = l;
3315 }
3316 return res;
3317}
3318
0942eeee 3319/**
72ec7029 3320 * css_task_iter_end - finish task iteration
0942eeee
TH
3321 * @it: the task iterator to finish
3322 *
72ec7029 3323 * Finish task iteration started by css_task_iter_start().
0942eeee 3324 */
72ec7029 3325void css_task_iter_end(struct css_task_iter *it)
c6ca5750 3326 __releases(css_set_lock)
817929ec
PM
3327{
3328 read_unlock(&css_set_lock);
3329}
3330
31a7df01
CW
3331static inline int started_after_time(struct task_struct *t1,
3332 struct timespec *time,
3333 struct task_struct *t2)
3334{
3335 int start_diff = timespec_compare(&t1->start_time, time);
3336 if (start_diff > 0) {
3337 return 1;
3338 } else if (start_diff < 0) {
3339 return 0;
3340 } else {
3341 /*
3342 * Arbitrarily, if two processes started at the same
3343 * time, we'll say that the lower pointer value
3344 * started first. Note that t2 may have exited by now
3345 * so this may not be a valid pointer any longer, but
3346 * that's fine - it still serves to distinguish
3347 * between two tasks started (effectively) simultaneously.
3348 */
3349 return t1 > t2;
3350 }
3351}
3352
3353/*
3354 * This function is a callback from heap_insert() and is used to order
3355 * the heap.
3356 * In this case we order the heap in descending task start time.
3357 */
3358static inline int started_after(void *p1, void *p2)
3359{
3360 struct task_struct *t1 = p1;
3361 struct task_struct *t2 = p2;
3362 return started_after_time(t1, &t2->start_time, t2);
3363}
3364
3365/**
72ec7029
TH
3366 * css_scan_tasks - iterate though all the tasks in a css
3367 * @css: the css to iterate tasks of
e535837b
TH
3368 * @test: optional test callback
3369 * @process: process callback
3370 * @data: data passed to @test and @process
3371 * @heap: optional pre-allocated heap used for task iteration
31a7df01 3372 *
72ec7029
TH
3373 * Iterate through all the tasks in @css, calling @test for each, and if it
3374 * returns %true, call @process for it also.
31a7df01 3375 *
e535837b 3376 * @test may be NULL, meaning always true (select all tasks), which
72ec7029 3377 * effectively duplicates css_task_iter_{start,next,end}() but does not
e535837b
TH
3378 * lock css_set_lock for the call to @process.
3379 *
3380 * It is guaranteed that @process will act on every task that is a member
72ec7029
TH
3381 * of @css for the duration of this call. This function may or may not
3382 * call @process for tasks that exit or move to a different css during the
3383 * call, or are forked or move into the css during the call.
e535837b
TH
3384 *
3385 * Note that @test may be called with locks held, and may in some
3386 * situations be called multiple times for the same task, so it should be
3387 * cheap.
3388 *
3389 * If @heap is non-NULL, a heap has been pre-allocated and will be used for
3390 * heap operations (and its "gt" member will be overwritten), else a
3391 * temporary heap will be used (allocation of which may cause this function
3392 * to fail).
31a7df01 3393 */
72ec7029
TH
3394int css_scan_tasks(struct cgroup_subsys_state *css,
3395 bool (*test)(struct task_struct *, void *),
3396 void (*process)(struct task_struct *, void *),
3397 void *data, struct ptr_heap *heap)
31a7df01
CW
3398{
3399 int retval, i;
72ec7029 3400 struct css_task_iter it;
31a7df01
CW
3401 struct task_struct *p, *dropped;
3402 /* Never dereference latest_task, since it's not refcounted */
3403 struct task_struct *latest_task = NULL;
3404 struct ptr_heap tmp_heap;
31a7df01
CW
3405 struct timespec latest_time = { 0, 0 };
3406
e535837b 3407 if (heap) {
31a7df01 3408 /* The caller supplied our heap and pre-allocated its memory */
31a7df01
CW
3409 heap->gt = &started_after;
3410 } else {
3411 /* We need to allocate our own heap memory */
3412 heap = &tmp_heap;
3413 retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
3414 if (retval)
3415 /* cannot allocate the heap */
3416 return retval;
3417 }
3418
3419 again:
3420 /*
72ec7029 3421 * Scan tasks in the css, using the @test callback to determine
e535837b
TH
3422 * which are of interest, and invoking @process callback on the
3423 * ones which need an update. Since we don't want to hold any
3424 * locks during the task updates, gather tasks to be processed in a
3425 * heap structure. The heap is sorted by descending task start
3426 * time. If the statically-sized heap fills up, we overflow tasks
3427 * that started later, and in future iterations only consider tasks
3428 * that started after the latest task in the previous pass. This
31a7df01
CW
3429 * guarantees forward progress and that we don't miss any tasks.
3430 */
3431 heap->size = 0;
72ec7029
TH
3432 css_task_iter_start(css, &it);
3433 while ((p = css_task_iter_next(&it))) {
31a7df01
CW
3434 /*
3435 * Only affect tasks that qualify per the caller's callback,
3436 * if he provided one
3437 */
e535837b 3438 if (test && !test(p, data))
31a7df01
CW
3439 continue;
3440 /*
3441 * Only process tasks that started after the last task
3442 * we processed
3443 */
3444 if (!started_after_time(p, &latest_time, latest_task))
3445 continue;
3446 dropped = heap_insert(heap, p);
3447 if (dropped == NULL) {
3448 /*
3449 * The new task was inserted; the heap wasn't
3450 * previously full
3451 */
3452 get_task_struct(p);
3453 } else if (dropped != p) {
3454 /*
3455 * The new task was inserted, and pushed out a
3456 * different task
3457 */
3458 get_task_struct(p);
3459 put_task_struct(dropped);
3460 }
3461 /*
3462 * Else the new task was newer than anything already in
3463 * the heap and wasn't inserted
3464 */
3465 }
72ec7029 3466 css_task_iter_end(&it);
31a7df01
CW
3467
3468 if (heap->size) {
3469 for (i = 0; i < heap->size; i++) {
4fe91d51 3470 struct task_struct *q = heap->ptrs[i];
31a7df01 3471 if (i == 0) {
4fe91d51
PJ
3472 latest_time = q->start_time;
3473 latest_task = q;
31a7df01
CW
3474 }
3475 /* Process the task per the caller's callback */
e535837b 3476 process(q, data);
4fe91d51 3477 put_task_struct(q);
31a7df01
CW
3478 }
3479 /*
3480 * If we had to process any tasks at all, scan again
3481 * in case some of them were in the middle of forking
3482 * children that didn't get processed.
3483 * Not the most efficient way to do it, but it avoids
3484 * having to take callback_mutex in the fork path
3485 */
3486 goto again;
3487 }
3488 if (heap == &tmp_heap)
3489 heap_free(&tmp_heap);
3490 return 0;
3491}
3492
e535837b 3493static void cgroup_transfer_one_task(struct task_struct *task, void *data)
8cc99345 3494{
e535837b 3495 struct cgroup *new_cgroup = data;
8cc99345 3496
47cfcd09 3497 mutex_lock(&cgroup_mutex);
8cc99345 3498 cgroup_attach_task(new_cgroup, task, false);
47cfcd09 3499 mutex_unlock(&cgroup_mutex);
8cc99345
TH
3500}
3501
3502/**
3503 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
3504 * @to: cgroup to which the tasks will be moved
3505 * @from: cgroup in which the tasks currently reside
3506 */
3507int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
3508{
72ec7029
TH
3509 return css_scan_tasks(&from->dummy_css, NULL, cgroup_transfer_one_task,
3510 to, NULL);
8cc99345
TH
3511}
3512
bbcb81d0 3513/*
102a775e 3514 * Stuff for reading the 'tasks'/'procs' files.
bbcb81d0
PM
3515 *
3516 * Reading this file can return large amounts of data if a cgroup has
3517 * *lots* of attached tasks. So it may need several calls to read(),
3518 * but we cannot guarantee that the information we produce is correct
3519 * unless we produce it entirely atomically.
3520 *
bbcb81d0 3521 */
bbcb81d0 3522
24528255
LZ
3523/* which pidlist file are we talking about? */
3524enum cgroup_filetype {
3525 CGROUP_FILE_PROCS,
3526 CGROUP_FILE_TASKS,
3527};
3528
3529/*
3530 * A pidlist is a list of pids that virtually represents the contents of one
3531 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
3532 * a pair (one each for procs, tasks) for each pid namespace that's relevant
3533 * to the cgroup.
3534 */
3535struct cgroup_pidlist {
3536 /*
3537 * used to find which pidlist is wanted. doesn't change as long as
3538 * this particular list stays in the list.
3539 */
3540 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
3541 /* array of xids */
3542 pid_t *list;
3543 /* how many elements the above list has */
3544 int length;
3545 /* how many files are using the current array */
3546 int use_count;
3547 /* each of these stored in a list by its cgroup */
3548 struct list_head links;
3549 /* pointer to the cgroup we belong to, for list removal purposes */
3550 struct cgroup *owner;
3551 /* protects the other fields */
b395890a 3552 struct rw_semaphore rwsem;
24528255
LZ
3553};
3554
d1d9fd33
BB
3555/*
3556 * The following two functions "fix" the issue where there are more pids
3557 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
3558 * TODO: replace with a kernel-wide solution to this problem
3559 */
3560#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
3561static void *pidlist_allocate(int count)
3562{
3563 if (PIDLIST_TOO_LARGE(count))
3564 return vmalloc(count * sizeof(pid_t));
3565 else
3566 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
3567}
3568static void pidlist_free(void *p)
3569{
3570 if (is_vmalloc_addr(p))
3571 vfree(p);
3572 else
3573 kfree(p);
3574}
d1d9fd33 3575
bbcb81d0 3576/*
102a775e 3577 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
6ee211ad 3578 * Returns the number of unique elements.
bbcb81d0 3579 */
6ee211ad 3580static int pidlist_uniq(pid_t *list, int length)
bbcb81d0 3581{
102a775e 3582 int src, dest = 1;
102a775e
BB
3583
3584 /*
3585 * we presume the 0th element is unique, so i starts at 1. trivial
3586 * edge cases first; no work needs to be done for either
3587 */
3588 if (length == 0 || length == 1)
3589 return length;
3590 /* src and dest walk down the list; dest counts unique elements */
3591 for (src = 1; src < length; src++) {
3592 /* find next unique element */
3593 while (list[src] == list[src-1]) {
3594 src++;
3595 if (src == length)
3596 goto after;
3597 }
3598 /* dest always points to where the next unique element goes */
3599 list[dest] = list[src];
3600 dest++;
3601 }
3602after:
102a775e
BB
3603 return dest;
3604}
3605
3606static int cmppid(const void *a, const void *b)
3607{
3608 return *(pid_t *)a - *(pid_t *)b;
3609}
3610
72a8cb30
BB
3611/*
3612 * find the appropriate pidlist for our purpose (given procs vs tasks)
3613 * returns with the lock on that pidlist already held, and takes care
3614 * of the use count, or returns NULL with no locks held if we're out of
3615 * memory.
3616 */
3617static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
3618 enum cgroup_filetype type)
3619{
3620 struct cgroup_pidlist *l;
3621 /* don't need task_nsproxy() if we're looking at ourself */
17cf22c3 3622 struct pid_namespace *ns = task_active_pid_ns(current);
b70cc5fd 3623
72a8cb30 3624 /*
b395890a 3625 * We can't drop the pidlist_mutex before taking the l->rwsem in case
72a8cb30
BB
3626 * the last ref-holder is trying to remove l from the list at the same
3627 * time. Holding the pidlist_mutex precludes somebody taking whichever
3628 * list we find out from under us - compare release_pid_array().
3629 */
3630 mutex_lock(&cgrp->pidlist_mutex);
3631 list_for_each_entry(l, &cgrp->pidlists, links) {
3632 if (l->key.type == type && l->key.ns == ns) {
72a8cb30 3633 /* make sure l doesn't vanish out from under us */
b395890a 3634 down_write(&l->rwsem);
72a8cb30 3635 mutex_unlock(&cgrp->pidlist_mutex);
72a8cb30
BB
3636 return l;
3637 }
3638 }
3639 /* entry not found; create a new one */
f4f4be2b 3640 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
72a8cb30
BB
3641 if (!l) {
3642 mutex_unlock(&cgrp->pidlist_mutex);
72a8cb30
BB
3643 return l;
3644 }
b395890a
LZ
3645 init_rwsem(&l->rwsem);
3646 down_write(&l->rwsem);
72a8cb30 3647 l->key.type = type;
b70cc5fd 3648 l->key.ns = get_pid_ns(ns);
72a8cb30
BB
3649 l->owner = cgrp;
3650 list_add(&l->links, &cgrp->pidlists);
3651 mutex_unlock(&cgrp->pidlist_mutex);
3652 return l;
3653}
3654
102a775e
BB
3655/*
3656 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
3657 */
72a8cb30
BB
3658static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
3659 struct cgroup_pidlist **lp)
102a775e
BB
3660{
3661 pid_t *array;
3662 int length;
3663 int pid, n = 0; /* used for populating the array */
72ec7029 3664 struct css_task_iter it;
817929ec 3665 struct task_struct *tsk;
102a775e
BB
3666 struct cgroup_pidlist *l;
3667
3668 /*
3669 * If cgroup gets more users after we read count, we won't have
3670 * enough space - tough. This race is indistinguishable to the
3671 * caller from the case that the additional cgroup users didn't
3672 * show up until sometime later on.
3673 */
3674 length = cgroup_task_count(cgrp);
d1d9fd33 3675 array = pidlist_allocate(length);
102a775e
BB
3676 if (!array)
3677 return -ENOMEM;
3678 /* now, populate the array */
72ec7029
TH
3679 css_task_iter_start(&cgrp->dummy_css, &it);
3680 while ((tsk = css_task_iter_next(&it))) {
102a775e 3681 if (unlikely(n == length))
817929ec 3682 break;
102a775e 3683 /* get tgid or pid for procs or tasks file respectively */
72a8cb30
BB
3684 if (type == CGROUP_FILE_PROCS)
3685 pid = task_tgid_vnr(tsk);
3686 else
3687 pid = task_pid_vnr(tsk);
102a775e
BB
3688 if (pid > 0) /* make sure to only use valid results */
3689 array[n++] = pid;
817929ec 3690 }
72ec7029 3691 css_task_iter_end(&it);
102a775e
BB
3692 length = n;
3693 /* now sort & (if procs) strip out duplicates */
3694 sort(array, length, sizeof(pid_t), cmppid, NULL);
72a8cb30 3695 if (type == CGROUP_FILE_PROCS)
6ee211ad 3696 length = pidlist_uniq(array, length);
72a8cb30
BB
3697 l = cgroup_pidlist_find(cgrp, type);
3698 if (!l) {
d1d9fd33 3699 pidlist_free(array);
72a8cb30 3700 return -ENOMEM;
102a775e 3701 }
72a8cb30 3702 /* store array, freeing old if necessary - lock already held */
d1d9fd33 3703 pidlist_free(l->list);
102a775e
BB
3704 l->list = array;
3705 l->length = length;
3706 l->use_count++;
b395890a 3707 up_write(&l->rwsem);
72a8cb30 3708 *lp = l;
102a775e 3709 return 0;
bbcb81d0
PM
3710}
3711
846c7bb0 3712/**
a043e3b2 3713 * cgroupstats_build - build and fill cgroupstats
846c7bb0
BS
3714 * @stats: cgroupstats to fill information into
3715 * @dentry: A dentry entry belonging to the cgroup for which stats have
3716 * been requested.
a043e3b2
LZ
3717 *
3718 * Build and fill cgroupstats so that taskstats can export it to user
3719 * space.
846c7bb0
BS
3720 */
3721int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
3722{
3723 int ret = -EINVAL;
bd89aabc 3724 struct cgroup *cgrp;
72ec7029 3725 struct css_task_iter it;
846c7bb0 3726 struct task_struct *tsk;
33d283be 3727
846c7bb0 3728 /*
33d283be
LZ
3729 * Validate dentry by checking the superblock operations,
3730 * and make sure it's a directory.
846c7bb0 3731 */
33d283be
LZ
3732 if (dentry->d_sb->s_op != &cgroup_ops ||
3733 !S_ISDIR(dentry->d_inode->i_mode))
846c7bb0
BS
3734 goto err;
3735
3736 ret = 0;
bd89aabc 3737 cgrp = dentry->d_fsdata;
846c7bb0 3738
72ec7029
TH
3739 css_task_iter_start(&cgrp->dummy_css, &it);
3740 while ((tsk = css_task_iter_next(&it))) {
846c7bb0
BS
3741 switch (tsk->state) {
3742 case TASK_RUNNING:
3743 stats->nr_running++;
3744 break;
3745 case TASK_INTERRUPTIBLE:
3746 stats->nr_sleeping++;
3747 break;
3748 case TASK_UNINTERRUPTIBLE:
3749 stats->nr_uninterruptible++;
3750 break;
3751 case TASK_STOPPED:
3752 stats->nr_stopped++;
3753 break;
3754 default:
3755 if (delayacct_is_task_waiting_on_io(tsk))
3756 stats->nr_io_wait++;
3757 break;
3758 }
3759 }
72ec7029 3760 css_task_iter_end(&it);
846c7bb0 3761
846c7bb0
BS
3762err:
3763 return ret;
3764}
3765
8f3ff208 3766
bbcb81d0 3767/*
102a775e 3768 * seq_file methods for the tasks/procs files. The seq_file position is the
cc31edce 3769 * next pid to display; the seq_file iterator is a pointer to the pid
102a775e 3770 * in the cgroup->l->list array.
bbcb81d0 3771 */
cc31edce 3772
102a775e 3773static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
bbcb81d0 3774{
cc31edce
PM
3775 /*
3776 * Initially we receive a position value that corresponds to
3777 * one more than the last pid shown (or 0 on the first call or
3778 * after a seek to the start). Use a binary-search to find the
3779 * next pid to display, if any
3780 */
102a775e 3781 struct cgroup_pidlist *l = s->private;
cc31edce
PM
3782 int index = 0, pid = *pos;
3783 int *iter;
3784
b395890a 3785 down_read(&l->rwsem);
cc31edce 3786 if (pid) {
102a775e 3787 int end = l->length;
20777766 3788
cc31edce
PM
3789 while (index < end) {
3790 int mid = (index + end) / 2;
102a775e 3791 if (l->list[mid] == pid) {
cc31edce
PM
3792 index = mid;
3793 break;
102a775e 3794 } else if (l->list[mid] <= pid)
cc31edce
PM
3795 index = mid + 1;
3796 else
3797 end = mid;
3798 }
3799 }
3800 /* If we're off the end of the array, we're done */
102a775e 3801 if (index >= l->length)
cc31edce
PM
3802 return NULL;
3803 /* Update the abstract position to be the actual pid that we found */
102a775e 3804 iter = l->list + index;
cc31edce
PM
3805 *pos = *iter;
3806 return iter;
3807}
3808
102a775e 3809static void cgroup_pidlist_stop(struct seq_file *s, void *v)
cc31edce 3810{
102a775e 3811 struct cgroup_pidlist *l = s->private;
b395890a 3812 up_read(&l->rwsem);
cc31edce
PM
3813}
3814
102a775e 3815static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
cc31edce 3816{
102a775e
BB
3817 struct cgroup_pidlist *l = s->private;
3818 pid_t *p = v;
3819 pid_t *end = l->list + l->length;
cc31edce
PM
3820 /*
3821 * Advance to the next pid in the array. If this goes off the
3822 * end, we're done
3823 */
3824 p++;
3825 if (p >= end) {
3826 return NULL;
3827 } else {
3828 *pos = *p;
3829 return p;
3830 }
3831}
3832
102a775e 3833static int cgroup_pidlist_show(struct seq_file *s, void *v)
cc31edce
PM
3834{
3835 return seq_printf(s, "%d\n", *(int *)v);
3836}
bbcb81d0 3837
102a775e
BB
3838/*
3839 * seq_operations functions for iterating on pidlists through seq_file -
3840 * independent of whether it's tasks or procs
3841 */
3842static const struct seq_operations cgroup_pidlist_seq_operations = {
3843 .start = cgroup_pidlist_start,
3844 .stop = cgroup_pidlist_stop,
3845 .next = cgroup_pidlist_next,
3846 .show = cgroup_pidlist_show,
cc31edce
PM
3847};
3848
102a775e 3849static void cgroup_release_pid_array(struct cgroup_pidlist *l)
cc31edce 3850{
72a8cb30
BB
3851 /*
3852 * the case where we're the last user of this particular pidlist will
3853 * have us remove it from the cgroup's list, which entails taking the
3854 * mutex. since in pidlist_find the pidlist->lock depends on cgroup->
3855 * pidlist_mutex, we have to take pidlist_mutex first.
3856 */
3857 mutex_lock(&l->owner->pidlist_mutex);
b395890a 3858 down_write(&l->rwsem);
102a775e
BB
3859 BUG_ON(!l->use_count);
3860 if (!--l->use_count) {
72a8cb30
BB
3861 /* we're the last user if refcount is 0; remove and free */
3862 list_del(&l->links);
3863 mutex_unlock(&l->owner->pidlist_mutex);
d1d9fd33 3864 pidlist_free(l->list);
72a8cb30 3865 put_pid_ns(l->key.ns);
b395890a 3866 up_write(&l->rwsem);
72a8cb30
BB
3867 kfree(l);
3868 return;
cc31edce 3869 }
72a8cb30 3870 mutex_unlock(&l->owner->pidlist_mutex);
b395890a 3871 up_write(&l->rwsem);
bbcb81d0
PM
3872}
3873
102a775e 3874static int cgroup_pidlist_release(struct inode *inode, struct file *file)
cc31edce 3875{
102a775e 3876 struct cgroup_pidlist *l;
cc31edce
PM
3877 if (!(file->f_mode & FMODE_READ))
3878 return 0;
102a775e
BB
3879 /*
3880 * the seq_file will only be initialized if the file was opened for
3881 * reading; hence we check if it's not null only in that case.
3882 */
3883 l = ((struct seq_file *)file->private_data)->private;
3884 cgroup_release_pid_array(l);
cc31edce
PM
3885 return seq_release(inode, file);
3886}
3887
102a775e 3888static const struct file_operations cgroup_pidlist_operations = {
cc31edce
PM
3889 .read = seq_read,
3890 .llseek = seq_lseek,
3891 .write = cgroup_file_write,
102a775e 3892 .release = cgroup_pidlist_release,
cc31edce
PM
3893};
3894
bbcb81d0 3895/*
102a775e
BB
3896 * The following functions handle opens on a file that displays a pidlist
3897 * (tasks or procs). Prepare an array of the process/thread IDs of whoever's
3898 * in the cgroup.
bbcb81d0 3899 */
102a775e 3900/* helper function for the two below it */
72a8cb30 3901static int cgroup_pidlist_open(struct file *file, enum cgroup_filetype type)
bbcb81d0 3902{
bd89aabc 3903 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
72a8cb30 3904 struct cgroup_pidlist *l;
cc31edce 3905 int retval;
bbcb81d0 3906
cc31edce 3907 /* Nothing to do for write-only files */
bbcb81d0
PM
3908 if (!(file->f_mode & FMODE_READ))
3909 return 0;
3910
102a775e 3911 /* have the array populated */
72a8cb30 3912 retval = pidlist_array_load(cgrp, type, &l);
102a775e
BB
3913 if (retval)
3914 return retval;
3915 /* configure file information */
3916 file->f_op = &cgroup_pidlist_operations;
cc31edce 3917
102a775e 3918 retval = seq_open(file, &cgroup_pidlist_seq_operations);
cc31edce 3919 if (retval) {
102a775e 3920 cgroup_release_pid_array(l);
cc31edce 3921 return retval;
bbcb81d0 3922 }
102a775e 3923 ((struct seq_file *)file->private_data)->private = l;
bbcb81d0
PM
3924 return 0;
3925}
102a775e
BB
3926static int cgroup_tasks_open(struct inode *unused, struct file *file)
3927{
72a8cb30 3928 return cgroup_pidlist_open(file, CGROUP_FILE_TASKS);
102a775e
BB
3929}
3930static int cgroup_procs_open(struct inode *unused, struct file *file)
3931{
72a8cb30 3932 return cgroup_pidlist_open(file, CGROUP_FILE_PROCS);
102a775e 3933}
bbcb81d0 3934
182446d0
TH
3935static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
3936 struct cftype *cft)
81a6a5cd 3937{
182446d0 3938 return notify_on_release(css->cgroup);
81a6a5cd
PM
3939}
3940
182446d0
TH
3941static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
3942 struct cftype *cft, u64 val)
6379c106 3943{
182446d0 3944 clear_bit(CGRP_RELEASABLE, &css->cgroup->flags);
6379c106 3945 if (val)
182446d0 3946 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106 3947 else
182446d0 3948 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106
PM
3949 return 0;
3950}
3951
1c8158ee
LZ
3952/*
3953 * When dput() is called asynchronously, if umount has been done and
3954 * then deactivate_super() in cgroup_free_fn() kills the superblock,
3955 * there's a small window that vfs will see the root dentry with non-zero
3956 * refcnt and trigger BUG().
3957 *
3958 * That's why we hold a reference before dput() and drop it right after.
3959 */
3960static void cgroup_dput(struct cgroup *cgrp)
3961{
3962 struct super_block *sb = cgrp->root->sb;
3963
3964 atomic_inc(&sb->s_active);
3965 dput(cgrp->dentry);
3966 deactivate_super(sb);
3967}
3968
0dea1168
KS
3969/*
3970 * Unregister event and free resources.
3971 *
3972 * Gets called from workqueue.
3973 */
3974static void cgroup_event_remove(struct work_struct *work)
3975{
3976 struct cgroup_event *event = container_of(work, struct cgroup_event,
3977 remove);
81eeaf04
TH
3978 struct cgroup_subsys_state *css = event->css;
3979 struct cgroup *cgrp = css->cgroup;
0dea1168 3980
810cbee4
LZ
3981 remove_wait_queue(event->wqh, &event->wait);
3982
81eeaf04 3983 event->cft->unregister_event(css, event->cft, event->eventfd);
0dea1168 3984
810cbee4
LZ
3985 /* Notify userspace the event is going away. */
3986 eventfd_signal(event->eventfd, 1);
3987
0dea1168 3988 eventfd_ctx_put(event->eventfd);
0dea1168 3989 kfree(event);
1c8158ee 3990 cgroup_dput(cgrp);
0dea1168
KS
3991}
3992
3993/*
3994 * Gets called on POLLHUP on eventfd when user closes it.
3995 *
3996 * Called with wqh->lock held and interrupts disabled.
3997 */
3998static int cgroup_event_wake(wait_queue_t *wait, unsigned mode,
3999 int sync, void *key)
4000{
4001 struct cgroup_event *event = container_of(wait,
4002 struct cgroup_event, wait);
81eeaf04 4003 struct cgroup *cgrp = event->css->cgroup;
0dea1168
KS
4004 unsigned long flags = (unsigned long)key;
4005
4006 if (flags & POLLHUP) {
0dea1168 4007 /*
810cbee4
LZ
4008 * If the event has been detached at cgroup removal, we
4009 * can simply return knowing the other side will cleanup
4010 * for us.
4011 *
4012 * We can't race against event freeing since the other
4013 * side will require wqh->lock via remove_wait_queue(),
4014 * which we hold.
0dea1168 4015 */
810cbee4
LZ
4016 spin_lock(&cgrp->event_list_lock);
4017 if (!list_empty(&event->list)) {
4018 list_del_init(&event->list);
4019 /*
4020 * We are in atomic context, but cgroup_event_remove()
4021 * may sleep, so we have to call it in workqueue.
4022 */
4023 schedule_work(&event->remove);
4024 }
4025 spin_unlock(&cgrp->event_list_lock);
0dea1168
KS
4026 }
4027
4028 return 0;
4029}
4030
4031static void cgroup_event_ptable_queue_proc(struct file *file,
4032 wait_queue_head_t *wqh, poll_table *pt)
4033{
4034 struct cgroup_event *event = container_of(pt,
4035 struct cgroup_event, pt);
4036
4037 event->wqh = wqh;
4038 add_wait_queue(wqh, &event->wait);
4039}
4040
4041/*
4042 * Parse input and register new cgroup event handler.
4043 *
4044 * Input must be in format '<event_fd> <control_fd> <args>'.
4045 * Interpretation of args is defined by control file implementation.
4046 */
182446d0
TH
4047static int cgroup_write_event_control(struct cgroup_subsys_state *css,
4048 struct cftype *cft, const char *buffer)
0dea1168 4049{
182446d0 4050 struct cgroup *cgrp = css->cgroup;
876ede8b 4051 struct cgroup_event *event;
f169007b 4052 struct cgroup *cgrp_cfile;
0dea1168 4053 unsigned int efd, cfd;
876ede8b
LZ
4054 struct file *efile;
4055 struct file *cfile;
0dea1168
KS
4056 char *endp;
4057 int ret;
4058
4059 efd = simple_strtoul(buffer, &endp, 10);
4060 if (*endp != ' ')
4061 return -EINVAL;
4062 buffer = endp + 1;
4063
4064 cfd = simple_strtoul(buffer, &endp, 10);
4065 if ((*endp != ' ') && (*endp != '\0'))
4066 return -EINVAL;
4067 buffer = endp + 1;
4068
4069 event = kzalloc(sizeof(*event), GFP_KERNEL);
4070 if (!event)
4071 return -ENOMEM;
81eeaf04 4072 event->css = css;
0dea1168
KS
4073 INIT_LIST_HEAD(&event->list);
4074 init_poll_funcptr(&event->pt, cgroup_event_ptable_queue_proc);
4075 init_waitqueue_func_entry(&event->wait, cgroup_event_wake);
4076 INIT_WORK(&event->remove, cgroup_event_remove);
4077
4078 efile = eventfd_fget(efd);
4079 if (IS_ERR(efile)) {
4080 ret = PTR_ERR(efile);
876ede8b 4081 goto out_kfree;
0dea1168
KS
4082 }
4083
4084 event->eventfd = eventfd_ctx_fileget(efile);
4085 if (IS_ERR(event->eventfd)) {
4086 ret = PTR_ERR(event->eventfd);
876ede8b 4087 goto out_put_efile;
0dea1168
KS
4088 }
4089
4090 cfile = fget(cfd);
4091 if (!cfile) {
4092 ret = -EBADF;
876ede8b 4093 goto out_put_eventfd;
0dea1168
KS
4094 }
4095
4096 /* the process need read permission on control file */
3bfa784a 4097 /* AV: shouldn't we check that it's been opened for read instead? */
496ad9aa 4098 ret = inode_permission(file_inode(cfile), MAY_READ);
0dea1168 4099 if (ret < 0)
876ede8b 4100 goto out_put_cfile;
0dea1168
KS
4101
4102 event->cft = __file_cft(cfile);
4103 if (IS_ERR(event->cft)) {
4104 ret = PTR_ERR(event->cft);
876ede8b 4105 goto out_put_cfile;
0dea1168
KS
4106 }
4107
f169007b
LZ
4108 /*
4109 * The file to be monitored must be in the same cgroup as
4110 * cgroup.event_control is.
4111 */
4112 cgrp_cfile = __d_cgrp(cfile->f_dentry->d_parent);
4113 if (cgrp_cfile != cgrp) {
4114 ret = -EINVAL;
876ede8b 4115 goto out_put_cfile;
f169007b
LZ
4116 }
4117
0dea1168
KS
4118 if (!event->cft->register_event || !event->cft->unregister_event) {
4119 ret = -EINVAL;
876ede8b 4120 goto out_put_cfile;
0dea1168
KS
4121 }
4122
81eeaf04 4123 ret = event->cft->register_event(css, event->cft,
0dea1168
KS
4124 event->eventfd, buffer);
4125 if (ret)
876ede8b 4126 goto out_put_cfile;
0dea1168 4127
7ef70e48 4128 efile->f_op->poll(efile, &event->pt);
0dea1168 4129
a0a4db54
KS
4130 /*
4131 * Events should be removed after rmdir of cgroup directory, but before
4132 * destroying subsystem state objects. Let's take reference to cgroup
4133 * directory dentry to do that.
4134 */
4135 dget(cgrp->dentry);
4136
0dea1168
KS
4137 spin_lock(&cgrp->event_list_lock);
4138 list_add(&event->list, &cgrp->event_list);
4139 spin_unlock(&cgrp->event_list_lock);
4140
4141 fput(cfile);
4142 fput(efile);
4143
4144 return 0;
4145
876ede8b
LZ
4146out_put_cfile:
4147 fput(cfile);
4148out_put_eventfd:
4149 eventfd_ctx_put(event->eventfd);
4150out_put_efile:
4151 fput(efile);
4152out_kfree:
0dea1168
KS
4153 kfree(event);
4154
4155 return ret;
4156}
4157
182446d0
TH
4158static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
4159 struct cftype *cft)
97978e6d 4160{
182446d0 4161 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
4162}
4163
182446d0
TH
4164static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
4165 struct cftype *cft, u64 val)
97978e6d
DL
4166{
4167 if (val)
182446d0 4168 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d 4169 else
182446d0 4170 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
4171 return 0;
4172}
4173
d5c56ced 4174static struct cftype cgroup_base_files[] = {
81a6a5cd 4175 {
d5c56ced 4176 .name = "cgroup.procs",
102a775e 4177 .open = cgroup_procs_open,
74a1166d 4178 .write_u64 = cgroup_procs_write,
102a775e 4179 .release = cgroup_pidlist_release,
74a1166d 4180 .mode = S_IRUGO | S_IWUSR,
102a775e 4181 },
81a6a5cd 4182 {
d5c56ced 4183 .name = "cgroup.event_control",
0dea1168
KS
4184 .write_string = cgroup_write_event_control,
4185 .mode = S_IWUGO,
4186 },
97978e6d
DL
4187 {
4188 .name = "cgroup.clone_children",
873fe09e 4189 .flags = CFTYPE_INSANE,
97978e6d
DL
4190 .read_u64 = cgroup_clone_children_read,
4191 .write_u64 = cgroup_clone_children_write,
4192 },
873fe09e
TH
4193 {
4194 .name = "cgroup.sane_behavior",
4195 .flags = CFTYPE_ONLY_ON_ROOT,
4196 .read_seq_string = cgroup_sane_behavior_show,
4197 },
d5c56ced
TH
4198
4199 /*
4200 * Historical crazy stuff. These don't have "cgroup." prefix and
4201 * don't exist if sane_behavior. If you're depending on these, be
4202 * prepared to be burned.
4203 */
4204 {
4205 .name = "tasks",
4206 .flags = CFTYPE_INSANE, /* use "procs" instead */
4207 .open = cgroup_tasks_open,
4208 .write_u64 = cgroup_tasks_write,
4209 .release = cgroup_pidlist_release,
4210 .mode = S_IRUGO | S_IWUSR,
4211 },
4212 {
4213 .name = "notify_on_release",
4214 .flags = CFTYPE_INSANE,
4215 .read_u64 = cgroup_read_notify_on_release,
4216 .write_u64 = cgroup_write_notify_on_release,
4217 },
6e6ff25b
TH
4218 {
4219 .name = "release_agent",
cc5943a7 4220 .flags = CFTYPE_INSANE | CFTYPE_ONLY_ON_ROOT,
6e6ff25b
TH
4221 .read_seq_string = cgroup_release_agent_show,
4222 .write_string = cgroup_release_agent_write,
4223 .max_write_len = PATH_MAX,
4224 },
db0416b6 4225 { } /* terminate */
bbcb81d0
PM
4226};
4227
13af07df 4228/**
628f7cd4 4229 * cgroup_populate_dir - create subsys files in a cgroup directory
13af07df 4230 * @cgrp: target cgroup
13af07df 4231 * @subsys_mask: mask of the subsystem ids whose files should be added
bee55099
TH
4232 *
4233 * On failure, no file is added.
13af07df 4234 */
628f7cd4 4235static int cgroup_populate_dir(struct cgroup *cgrp, unsigned long subsys_mask)
ddbcc7e8 4236{
ddbcc7e8 4237 struct cgroup_subsys *ss;
b420ba7d 4238 int i, ret = 0;
ddbcc7e8 4239
8e3f6541 4240 /* process cftsets of each subsystem */
b420ba7d 4241 for_each_subsys(ss, i) {
8e3f6541 4242 struct cftype_set *set;
b420ba7d
TH
4243
4244 if (!test_bit(i, &subsys_mask))
13af07df 4245 continue;
8e3f6541 4246
bee55099 4247 list_for_each_entry(set, &ss->cftsets, node) {
2bb566cb 4248 ret = cgroup_addrm_files(cgrp, set->cfts, true);
bee55099
TH
4249 if (ret < 0)
4250 goto err;
4251 }
ddbcc7e8 4252 }
8e3f6541 4253
38460b48 4254 /* This cgroup is ready now */
5549c497 4255 for_each_root_subsys(cgrp->root, ss) {
40e93b39 4256 struct cgroup_subsys_state *css = cgroup_css(cgrp, ss->subsys_id);
a4ea1cc9
TH
4257 struct css_id *id = rcu_dereference_protected(css->id, true);
4258
38460b48
KH
4259 /*
4260 * Update id->css pointer and make this css visible from
4261 * CSS ID functions. This pointer will be dereferened
4262 * from RCU-read-side without locks.
4263 */
a4ea1cc9
TH
4264 if (id)
4265 rcu_assign_pointer(id->css, css);
38460b48 4266 }
ddbcc7e8
PM
4267
4268 return 0;
bee55099
TH
4269err:
4270 cgroup_clear_dir(cgrp, subsys_mask);
4271 return ret;
ddbcc7e8
PM
4272}
4273
0c21ead1
TH
4274/*
4275 * css destruction is four-stage process.
4276 *
4277 * 1. Destruction starts. Killing of the percpu_ref is initiated.
4278 * Implemented in kill_css().
4279 *
4280 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
4281 * and thus css_tryget() is guaranteed to fail, the css can be offlined
4282 * by invoking offline_css(). After offlining, the base ref is put.
4283 * Implemented in css_killed_work_fn().
4284 *
4285 * 3. When the percpu_ref reaches zero, the only possible remaining
4286 * accessors are inside RCU read sections. css_release() schedules the
4287 * RCU callback.
4288 *
4289 * 4. After the grace period, the css can be freed. Implemented in
4290 * css_free_work_fn().
4291 *
4292 * It is actually hairier because both step 2 and 4 require process context
4293 * and thus involve punting to css->destroy_work adding two additional
4294 * steps to the already complex sequence.
4295 */
35ef10da 4296static void css_free_work_fn(struct work_struct *work)
48ddbe19
TH
4297{
4298 struct cgroup_subsys_state *css =
35ef10da 4299 container_of(work, struct cgroup_subsys_state, destroy_work);
0c21ead1 4300 struct cgroup *cgrp = css->cgroup;
48ddbe19 4301
0ae78e0b
TH
4302 if (css->parent)
4303 css_put(css->parent);
4304
0c21ead1
TH
4305 css->ss->css_free(css);
4306 cgroup_dput(cgrp);
48ddbe19
TH
4307}
4308
0c21ead1 4309static void css_free_rcu_fn(struct rcu_head *rcu_head)
d3daf28d
TH
4310{
4311 struct cgroup_subsys_state *css =
0c21ead1 4312 container_of(rcu_head, struct cgroup_subsys_state, rcu_head);
d3daf28d 4313
35ef10da
TH
4314 /*
4315 * css holds an extra ref to @cgrp->dentry which is put on the last
0c21ead1 4316 * css_put(). dput() requires process context which we don't have.
35ef10da
TH
4317 */
4318 INIT_WORK(&css->destroy_work, css_free_work_fn);
4319 schedule_work(&css->destroy_work);
d3daf28d
TH
4320}
4321
0c21ead1
TH
4322static void css_release(struct percpu_ref *ref)
4323{
4324 struct cgroup_subsys_state *css =
4325 container_of(ref, struct cgroup_subsys_state, refcnt);
4326
4327 call_rcu(&css->rcu_head, css_free_rcu_fn);
4328}
4329
623f926b
TH
4330static void init_css(struct cgroup_subsys_state *css, struct cgroup_subsys *ss,
4331 struct cgroup *cgrp)
ddbcc7e8 4332{
bd89aabc 4333 css->cgroup = cgrp;
72c97e54 4334 css->ss = ss;
ddbcc7e8 4335 css->flags = 0;
38460b48 4336 css->id = NULL;
0ae78e0b
TH
4337
4338 if (cgrp->parent)
4339 css->parent = cgroup_css(cgrp->parent, ss->subsys_id);
4340 else
38b53aba 4341 css->flags |= CSS_ROOT;
0ae78e0b 4342
40e93b39 4343 BUG_ON(cgroup_css(cgrp, ss->subsys_id));
ddbcc7e8
PM
4344}
4345
2a4ac633 4346/* invoke ->css_online() on a new CSS and mark it online if successful */
623f926b 4347static int online_css(struct cgroup_subsys_state *css)
a31f2d3f 4348{
623f926b 4349 struct cgroup_subsys *ss = css->ss;
b1929db4
TH
4350 int ret = 0;
4351
a31f2d3f
TH
4352 lockdep_assert_held(&cgroup_mutex);
4353
92fb9748 4354 if (ss->css_online)
eb95419b 4355 ret = ss->css_online(css);
ae7f164a 4356 if (!ret) {
eb95419b 4357 css->flags |= CSS_ONLINE;
f20104de 4358 css->cgroup->nr_css++;
ae7f164a
TH
4359 rcu_assign_pointer(css->cgroup->subsys[ss->subsys_id], css);
4360 }
b1929db4 4361 return ret;
a31f2d3f
TH
4362}
4363
2a4ac633 4364/* if the CSS is online, invoke ->css_offline() on it and mark it offline */
623f926b 4365static void offline_css(struct cgroup_subsys_state *css)
a31f2d3f 4366{
623f926b 4367 struct cgroup_subsys *ss = css->ss;
a31f2d3f
TH
4368
4369 lockdep_assert_held(&cgroup_mutex);
4370
4371 if (!(css->flags & CSS_ONLINE))
4372 return;
4373
d7eeac19 4374 if (ss->css_offline)
eb95419b 4375 ss->css_offline(css);
a31f2d3f 4376
eb95419b 4377 css->flags &= ~CSS_ONLINE;
09a503ea 4378 css->cgroup->nr_css--;
0c21ead1 4379 RCU_INIT_POINTER(css->cgroup->subsys[ss->subsys_id], css);
a31f2d3f
TH
4380}
4381
ddbcc7e8 4382/*
a043e3b2
LZ
4383 * cgroup_create - create a cgroup
4384 * @parent: cgroup that will be parent of the new cgroup
4385 * @dentry: dentry of the new cgroup
4386 * @mode: mode to set on new inode
ddbcc7e8 4387 *
a043e3b2 4388 * Must be called with the mutex on the parent inode held
ddbcc7e8 4389 */
ddbcc7e8 4390static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
a5e7ed32 4391 umode_t mode)
ddbcc7e8 4392{
ae7f164a 4393 struct cgroup_subsys_state *css_ar[CGROUP_SUBSYS_COUNT] = { };
bd89aabc 4394 struct cgroup *cgrp;
65dff759 4395 struct cgroup_name *name;
ddbcc7e8
PM
4396 struct cgroupfs_root *root = parent->root;
4397 int err = 0;
4398 struct cgroup_subsys *ss;
4399 struct super_block *sb = root->sb;
4400
0a950f65 4401 /* allocate the cgroup and its ID, 0 is reserved for the root */
bd89aabc
PM
4402 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
4403 if (!cgrp)
ddbcc7e8
PM
4404 return -ENOMEM;
4405
65dff759
LZ
4406 name = cgroup_alloc_name(dentry);
4407 if (!name)
4408 goto err_free_cgrp;
4409 rcu_assign_pointer(cgrp->name, name);
4410
4e96ee8e
LZ
4411 /*
4412 * Temporarily set the pointer to NULL, so idr_find() won't return
4413 * a half-baked cgroup.
4414 */
4415 cgrp->id = idr_alloc(&root->cgroup_idr, NULL, 1, 0, GFP_KERNEL);
0a950f65 4416 if (cgrp->id < 0)
65dff759 4417 goto err_free_name;
0a950f65 4418
976c06bc
TH
4419 /*
4420 * Only live parents can have children. Note that the liveliness
4421 * check isn't strictly necessary because cgroup_mkdir() and
4422 * cgroup_rmdir() are fully synchronized by i_mutex; however, do it
4423 * anyway so that locking is contained inside cgroup proper and we
4424 * don't get nasty surprises if we ever grow another caller.
4425 */
4426 if (!cgroup_lock_live_group(parent)) {
4427 err = -ENODEV;
0a950f65 4428 goto err_free_id;
976c06bc
TH
4429 }
4430
ddbcc7e8
PM
4431 /* Grab a reference on the superblock so the hierarchy doesn't
4432 * get deleted on unmount if there are child cgroups. This
4433 * can be done outside cgroup_mutex, since the sb can't
4434 * disappear while someone has an open control file on the
4435 * fs */
4436 atomic_inc(&sb->s_active);
4437
cc31edce 4438 init_cgroup_housekeeping(cgrp);
ddbcc7e8 4439
fe1c06ca
LZ
4440 dentry->d_fsdata = cgrp;
4441 cgrp->dentry = dentry;
4442
bd89aabc 4443 cgrp->parent = parent;
0ae78e0b 4444 cgrp->dummy_css.parent = &parent->dummy_css;
bd89aabc 4445 cgrp->root = parent->root;
ddbcc7e8 4446
b6abdb0e
LZ
4447 if (notify_on_release(parent))
4448 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
4449
2260e7fc
TH
4450 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
4451 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
97978e6d 4452
5549c497 4453 for_each_root_subsys(root, ss) {
8c7f6edb 4454 struct cgroup_subsys_state *css;
4528fd05 4455
40e93b39 4456 css = ss->css_alloc(cgroup_css(parent, ss->subsys_id));
ddbcc7e8
PM
4457 if (IS_ERR(css)) {
4458 err = PTR_ERR(css);
4b8b47eb 4459 goto err_free_all;
ddbcc7e8 4460 }
ae7f164a 4461 css_ar[ss->subsys_id] = css;
d3daf28d
TH
4462
4463 err = percpu_ref_init(&css->refcnt, css_release);
ae7f164a 4464 if (err)
d3daf28d
TH
4465 goto err_free_all;
4466
623f926b 4467 init_css(css, ss, cgrp);
d3daf28d 4468
4528fd05 4469 if (ss->use_id) {
623f926b 4470 err = alloc_css_id(css);
4528fd05 4471 if (err)
4b8b47eb 4472 goto err_free_all;
4528fd05 4473 }
ddbcc7e8
PM
4474 }
4475
4e139afc
TH
4476 /*
4477 * Create directory. cgroup_create_file() returns with the new
4478 * directory locked on success so that it can be populated without
4479 * dropping cgroup_mutex.
4480 */
28fd6f30 4481 err = cgroup_create_file(dentry, S_IFDIR | mode, sb);
ddbcc7e8 4482 if (err < 0)
4b8b47eb 4483 goto err_free_all;
4e139afc 4484 lockdep_assert_held(&dentry->d_inode->i_mutex);
ddbcc7e8 4485
00356bd5 4486 cgrp->serial_nr = cgroup_serial_nr_next++;
53fa5261 4487
4e139afc 4488 /* allocation complete, commit to creation */
4e139afc
TH
4489 list_add_tail_rcu(&cgrp->sibling, &cgrp->parent->children);
4490 root->number_of_cgroups++;
28fd6f30 4491
0ae78e0b
TH
4492 /* each css holds a ref to the cgroup's dentry and the parent css */
4493 for_each_root_subsys(root, ss) {
ae7f164a 4494 struct cgroup_subsys_state *css = css_ar[ss->subsys_id];
0ae78e0b 4495
ed957793 4496 dget(dentry);
0ae78e0b
TH
4497 percpu_ref_get(&css->parent->refcnt);
4498 }
48ddbe19 4499
415cf07a
LZ
4500 /* hold a ref to the parent's dentry */
4501 dget(parent->dentry);
4502
b1929db4 4503 /* creation succeeded, notify subsystems */
5549c497 4504 for_each_root_subsys(root, ss) {
ae7f164a 4505 struct cgroup_subsys_state *css = css_ar[ss->subsys_id];
623f926b
TH
4506
4507 err = online_css(css);
b1929db4
TH
4508 if (err)
4509 goto err_destroy;
1f869e87
GC
4510
4511 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
4512 parent->parent) {
4513 pr_warning("cgroup: %s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
4514 current->comm, current->pid, ss->name);
4515 if (!strcmp(ss->name, "memory"))
4516 pr_warning("cgroup: \"memory\" requires setting use_hierarchy to 1 on the root.\n");
4517 ss->warned_broken_hierarchy = true;
4518 }
a8638030
TH
4519 }
4520
4e96ee8e
LZ
4521 idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
4522
2bb566cb 4523 err = cgroup_addrm_files(cgrp, cgroup_base_files, true);
628f7cd4
TH
4524 if (err)
4525 goto err_destroy;
4526
4527 err = cgroup_populate_dir(cgrp, root->subsys_mask);
4b8b47eb
TH
4528 if (err)
4529 goto err_destroy;
ddbcc7e8
PM
4530
4531 mutex_unlock(&cgroup_mutex);
bd89aabc 4532 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8
PM
4533
4534 return 0;
4535
4b8b47eb 4536err_free_all:
5549c497 4537 for_each_root_subsys(root, ss) {
ae7f164a 4538 struct cgroup_subsys_state *css = css_ar[ss->subsys_id];
d3daf28d
TH
4539
4540 if (css) {
4541 percpu_ref_cancel_init(&css->refcnt);
eb95419b 4542 ss->css_free(css);
d3daf28d 4543 }
ddbcc7e8 4544 }
ddbcc7e8 4545 mutex_unlock(&cgroup_mutex);
ddbcc7e8
PM
4546 /* Release the reference count that we took on the superblock */
4547 deactivate_super(sb);
0a950f65 4548err_free_id:
4e96ee8e 4549 idr_remove(&root->cgroup_idr, cgrp->id);
65dff759
LZ
4550err_free_name:
4551 kfree(rcu_dereference_raw(cgrp->name));
4b8b47eb 4552err_free_cgrp:
bd89aabc 4553 kfree(cgrp);
ddbcc7e8 4554 return err;
4b8b47eb
TH
4555
4556err_destroy:
4557 cgroup_destroy_locked(cgrp);
4558 mutex_unlock(&cgroup_mutex);
4559 mutex_unlock(&dentry->d_inode->i_mutex);
4560 return err;
ddbcc7e8
PM
4561}
4562
18bb1db3 4563static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
ddbcc7e8
PM
4564{
4565 struct cgroup *c_parent = dentry->d_parent->d_fsdata;
4566
4567 /* the vfs holds inode->i_mutex already */
4568 return cgroup_create(c_parent, dentry, mode | S_IFDIR);
4569}
4570
223dbc38
TH
4571/*
4572 * This is called when the refcnt of a css is confirmed to be killed.
4573 * css_tryget() is now guaranteed to fail.
4574 */
4575static void css_killed_work_fn(struct work_struct *work)
4576{
4577 struct cgroup_subsys_state *css =
4578 container_of(work, struct cgroup_subsys_state, destroy_work);
4579 struct cgroup *cgrp = css->cgroup;
4580
f20104de
TH
4581 mutex_lock(&cgroup_mutex);
4582
09a503ea
TH
4583 /*
4584 * css_tryget() is guaranteed to fail now. Tell subsystems to
4585 * initate destruction.
4586 */
4587 offline_css(css);
4588
f20104de
TH
4589 /*
4590 * If @cgrp is marked dead, it's waiting for refs of all css's to
4591 * be disabled before proceeding to the second phase of cgroup
4592 * destruction. If we are the last one, kick it off.
4593 */
09a503ea 4594 if (!cgrp->nr_css && cgroup_is_dead(cgrp))
f20104de
TH
4595 cgroup_destroy_css_killed(cgrp);
4596
4597 mutex_unlock(&cgroup_mutex);
09a503ea
TH
4598
4599 /*
4600 * Put the css refs from kill_css(). Each css holds an extra
4601 * reference to the cgroup's dentry and cgroup removal proceeds
4602 * regardless of css refs. On the last put of each css, whenever
4603 * that may be, the extra dentry ref is put so that dentry
4604 * destruction happens only after all css's are released.
4605 */
4606 css_put(css);
223dbc38
TH
4607}
4608
4609/* css kill confirmation processing requires process context, bounce */
4610static void css_killed_ref_fn(struct percpu_ref *ref)
d3daf28d
TH
4611{
4612 struct cgroup_subsys_state *css =
4613 container_of(ref, struct cgroup_subsys_state, refcnt);
4614
223dbc38
TH
4615 INIT_WORK(&css->destroy_work, css_killed_work_fn);
4616 schedule_work(&css->destroy_work);
d3daf28d
TH
4617}
4618
edae0c33
TH
4619/**
4620 * kill_css - destroy a css
4621 * @css: css to destroy
4622 *
3c14f8b4
TH
4623 * This function initiates destruction of @css by removing cgroup interface
4624 * files and putting its base reference. ->css_offline() will be invoked
4625 * asynchronously once css_tryget() is guaranteed to fail and when the
4626 * reference count reaches zero, @css will be released.
edae0c33
TH
4627 */
4628static void kill_css(struct cgroup_subsys_state *css)
4629{
3c14f8b4
TH
4630 cgroup_clear_dir(css->cgroup, 1 << css->ss->subsys_id);
4631
edae0c33
TH
4632 /*
4633 * Killing would put the base ref, but we need to keep it alive
4634 * until after ->css_offline().
4635 */
4636 css_get(css);
4637
4638 /*
4639 * cgroup core guarantees that, by the time ->css_offline() is
4640 * invoked, no new css reference will be given out via
4641 * css_tryget(). We can't simply call percpu_ref_kill() and
4642 * proceed to offlining css's because percpu_ref_kill() doesn't
4643 * guarantee that the ref is seen as killed on all CPUs on return.
4644 *
4645 * Use percpu_ref_kill_and_confirm() to get notifications as each
4646 * css is confirmed to be seen as killed on all CPUs.
4647 */
4648 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
4649}
4650
d3daf28d
TH
4651/**
4652 * cgroup_destroy_locked - the first stage of cgroup destruction
4653 * @cgrp: cgroup to be destroyed
4654 *
4655 * css's make use of percpu refcnts whose killing latency shouldn't be
4656 * exposed to userland and are RCU protected. Also, cgroup core needs to
4657 * guarantee that css_tryget() won't succeed by the time ->css_offline() is
4658 * invoked. To satisfy all the requirements, destruction is implemented in
4659 * the following two steps.
4660 *
4661 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
4662 * userland visible parts and start killing the percpu refcnts of
4663 * css's. Set up so that the next stage will be kicked off once all
4664 * the percpu refcnts are confirmed to be killed.
4665 *
4666 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
4667 * rest of destruction. Once all cgroup references are gone, the
4668 * cgroup is RCU-freed.
4669 *
4670 * This function implements s1. After this step, @cgrp is gone as far as
4671 * the userland is concerned and a new cgroup with the same name may be
4672 * created. As cgroup doesn't care about the names internally, this
4673 * doesn't cause any problem.
4674 */
42809dd4
TH
4675static int cgroup_destroy_locked(struct cgroup *cgrp)
4676 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
ddbcc7e8 4677{
42809dd4 4678 struct dentry *d = cgrp->dentry;
4ab78683 4679 struct cgroup_event *event, *tmp;
ed957793 4680 struct cgroup_subsys *ss;
ddd69148 4681 bool empty;
ddbcc7e8 4682
42809dd4
TH
4683 lockdep_assert_held(&d->d_inode->i_mutex);
4684 lockdep_assert_held(&cgroup_mutex);
4685
ddd69148 4686 /*
6f3d828f
TH
4687 * css_set_lock synchronizes access to ->cset_links and prevents
4688 * @cgrp from being removed while __put_css_set() is in progress.
ddd69148
TH
4689 */
4690 read_lock(&css_set_lock);
6f3d828f 4691 empty = list_empty(&cgrp->cset_links) && list_empty(&cgrp->children);
ddd69148
TH
4692 read_unlock(&css_set_lock);
4693 if (!empty)
ddbcc7e8 4694 return -EBUSY;
a043e3b2 4695
88703267 4696 /*
edae0c33
TH
4697 * Initiate massacre of all css's. cgroup_destroy_css_killed()
4698 * will be invoked to perform the rest of destruction once the
4699 * percpu refs of all css's are confirmed to be killed.
88703267 4700 */
edae0c33
TH
4701 for_each_root_subsys(cgrp->root, ss)
4702 kill_css(cgroup_css(cgrp, ss->subsys_id));
455050d2
TH
4703
4704 /*
4705 * Mark @cgrp dead. This prevents further task migration and child
4706 * creation by disabling cgroup_lock_live_group(). Note that
492eb21b 4707 * CGRP_DEAD assertion is depended upon by css_next_child() to
455050d2 4708 * resume iteration after dropping RCU read lock. See
492eb21b 4709 * css_next_child() for details.
455050d2 4710 */
54766d4a 4711 set_bit(CGRP_DEAD, &cgrp->flags);
ddbcc7e8 4712
455050d2
TH
4713 /* CGRP_DEAD is set, remove from ->release_list for the last time */
4714 raw_spin_lock(&release_list_lock);
4715 if (!list_empty(&cgrp->release_list))
4716 list_del_init(&cgrp->release_list);
4717 raw_spin_unlock(&release_list_lock);
4718
f20104de
TH
4719 /*
4720 * If @cgrp has css's attached, the second stage of cgroup
4721 * destruction is kicked off from css_killed_work_fn() after the
4722 * refs of all attached css's are killed. If @cgrp doesn't have
4723 * any css, we kick it off here.
4724 */
4725 if (!cgrp->nr_css)
4726 cgroup_destroy_css_killed(cgrp);
4727
455050d2 4728 /*
3c14f8b4
TH
4729 * Clear the base files and remove @cgrp directory. The removal
4730 * puts the base ref but we aren't quite done with @cgrp yet, so
4731 * hold onto it.
455050d2 4732 */
2bb566cb 4733 cgroup_addrm_files(cgrp, cgroup_base_files, false);
455050d2
TH
4734 dget(d);
4735 cgroup_d_remove_dir(d);
4736
4737 /*
4738 * Unregister events and notify userspace.
4739 * Notify userspace about cgroup removing only after rmdir of cgroup
4740 * directory to avoid race between userspace and kernelspace.
4741 */
4742 spin_lock(&cgrp->event_list_lock);
4743 list_for_each_entry_safe(event, tmp, &cgrp->event_list, list) {
4744 list_del_init(&event->list);
4745 schedule_work(&event->remove);
4746 }
4747 spin_unlock(&cgrp->event_list_lock);
4748
ea15f8cc
TH
4749 return 0;
4750};
4751
d3daf28d 4752/**
f20104de 4753 * cgroup_destroy_css_killed - the second step of cgroup destruction
d3daf28d
TH
4754 * @work: cgroup->destroy_free_work
4755 *
4756 * This function is invoked from a work item for a cgroup which is being
09a503ea
TH
4757 * destroyed after all css's are offlined and performs the rest of
4758 * destruction. This is the second step of destruction described in the
4759 * comment above cgroup_destroy_locked().
d3daf28d 4760 */
f20104de 4761static void cgroup_destroy_css_killed(struct cgroup *cgrp)
ea15f8cc 4762{
ea15f8cc
TH
4763 struct cgroup *parent = cgrp->parent;
4764 struct dentry *d = cgrp->dentry;
ea15f8cc 4765
f20104de 4766 lockdep_assert_held(&cgroup_mutex);
ea15f8cc 4767
999cd8a4 4768 /* delete this cgroup from parent->children */
eb6fd504 4769 list_del_rcu(&cgrp->sibling);
b0ca5a84 4770
4e96ee8e
LZ
4771 /*
4772 * We should remove the cgroup object from idr before its grace
4773 * period starts, so we won't be looking up a cgroup while the
4774 * cgroup is being freed.
4775 */
4776 idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
4777 cgrp->id = -1;
4778
ddbcc7e8 4779 dput(d);
ddbcc7e8 4780
bd89aabc 4781 set_bit(CGRP_RELEASABLE, &parent->flags);
81a6a5cd 4782 check_for_release(parent);
ddbcc7e8
PM
4783}
4784
42809dd4
TH
4785static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
4786{
4787 int ret;
4788
4789 mutex_lock(&cgroup_mutex);
4790 ret = cgroup_destroy_locked(dentry->d_fsdata);
4791 mutex_unlock(&cgroup_mutex);
4792
4793 return ret;
4794}
4795
8e3f6541
TH
4796static void __init_or_module cgroup_init_cftsets(struct cgroup_subsys *ss)
4797{
4798 INIT_LIST_HEAD(&ss->cftsets);
4799
4800 /*
4801 * base_cftset is embedded in subsys itself, no need to worry about
4802 * deregistration.
4803 */
4804 if (ss->base_cftypes) {
2bb566cb
TH
4805 struct cftype *cft;
4806
4807 for (cft = ss->base_cftypes; cft->name[0] != '\0'; cft++)
4808 cft->ss = ss;
4809
8e3f6541
TH
4810 ss->base_cftset.cfts = ss->base_cftypes;
4811 list_add_tail(&ss->base_cftset.node, &ss->cftsets);
4812 }
4813}
4814
06a11920 4815static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
ddbcc7e8 4816{
ddbcc7e8 4817 struct cgroup_subsys_state *css;
cfe36bde
DC
4818
4819 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
ddbcc7e8 4820
648bb56d
TH
4821 mutex_lock(&cgroup_mutex);
4822
8e3f6541
TH
4823 /* init base cftset */
4824 cgroup_init_cftsets(ss);
4825
ddbcc7e8 4826 /* Create the top cgroup state for this subsystem */
9871bf95
TH
4827 list_add(&ss->sibling, &cgroup_dummy_root.subsys_list);
4828 ss->root = &cgroup_dummy_root;
40e93b39 4829 css = ss->css_alloc(cgroup_css(cgroup_dummy_top, ss->subsys_id));
ddbcc7e8
PM
4830 /* We don't handle early failures gracefully */
4831 BUG_ON(IS_ERR(css));
623f926b 4832 init_css(css, ss, cgroup_dummy_top);
ddbcc7e8 4833
e8d55fde 4834 /* Update the init_css_set to contain a subsys
817929ec 4835 * pointer to this state - since the subsystem is
e8d55fde
LZ
4836 * newly registered, all tasks and hence the
4837 * init_css_set is in the subsystem's top cgroup. */
b48c6a80 4838 init_css_set.subsys[ss->subsys_id] = css;
ddbcc7e8
PM
4839
4840 need_forkexit_callback |= ss->fork || ss->exit;
4841
e8d55fde
LZ
4842 /* At system boot, before all subsystems have been
4843 * registered, no tasks have been forked, so we don't
4844 * need to invoke fork callbacks here. */
4845 BUG_ON(!list_empty(&init_task.tasks));
4846
ae7f164a 4847 BUG_ON(online_css(css));
a8638030 4848
648bb56d
TH
4849 mutex_unlock(&cgroup_mutex);
4850
e6a1105b
BB
4851 /* this function shouldn't be used with modular subsystems, since they
4852 * need to register a subsys_id, among other things */
4853 BUG_ON(ss->module);
4854}
4855
4856/**
4857 * cgroup_load_subsys: load and register a modular subsystem at runtime
4858 * @ss: the subsystem to load
4859 *
4860 * This function should be called in a modular subsystem's initcall. If the
88393161 4861 * subsystem is built as a module, it will be assigned a new subsys_id and set
e6a1105b
BB
4862 * up for use. If the subsystem is built-in anyway, work is delegated to the
4863 * simpler cgroup_init_subsys.
4864 */
4865int __init_or_module cgroup_load_subsys(struct cgroup_subsys *ss)
4866{
e6a1105b 4867 struct cgroup_subsys_state *css;
d19e19de 4868 int i, ret;
b67bfe0d 4869 struct hlist_node *tmp;
5abb8855 4870 struct css_set *cset;
0ac801fe 4871 unsigned long key;
e6a1105b
BB
4872
4873 /* check name and function validity */
4874 if (ss->name == NULL || strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN ||
92fb9748 4875 ss->css_alloc == NULL || ss->css_free == NULL)
e6a1105b
BB
4876 return -EINVAL;
4877
4878 /*
4879 * we don't support callbacks in modular subsystems. this check is
4880 * before the ss->module check for consistency; a subsystem that could
4881 * be a module should still have no callbacks even if the user isn't
4882 * compiling it as one.
4883 */
4884 if (ss->fork || ss->exit)
4885 return -EINVAL;
4886
4887 /*
4888 * an optionally modular subsystem is built-in: we want to do nothing,
4889 * since cgroup_init_subsys will have already taken care of it.
4890 */
4891 if (ss->module == NULL) {
be45c900 4892 /* a sanity check */
9871bf95 4893 BUG_ON(cgroup_subsys[ss->subsys_id] != ss);
e6a1105b
BB
4894 return 0;
4895 }
4896
8e3f6541
TH
4897 /* init base cftset */
4898 cgroup_init_cftsets(ss);
4899
e6a1105b 4900 mutex_lock(&cgroup_mutex);
9871bf95 4901 cgroup_subsys[ss->subsys_id] = ss;
e6a1105b
BB
4902
4903 /*
92fb9748 4904 * no ss->css_alloc seems to need anything important in the ss
9871bf95 4905 * struct, so this can happen first (i.e. before the dummy root
92fb9748 4906 * attachment).
e6a1105b 4907 */
40e93b39 4908 css = ss->css_alloc(cgroup_css(cgroup_dummy_top, ss->subsys_id));
e6a1105b 4909 if (IS_ERR(css)) {
9871bf95
TH
4910 /* failure case - need to deassign the cgroup_subsys[] slot. */
4911 cgroup_subsys[ss->subsys_id] = NULL;
e6a1105b
BB
4912 mutex_unlock(&cgroup_mutex);
4913 return PTR_ERR(css);
4914 }
4915
9871bf95
TH
4916 list_add(&ss->sibling, &cgroup_dummy_root.subsys_list);
4917 ss->root = &cgroup_dummy_root;
e6a1105b
BB
4918
4919 /* our new subsystem will be attached to the dummy hierarchy. */
623f926b
TH
4920 init_css(css, ss, cgroup_dummy_top);
4921 /* init_idr must be after init_css() because it sets css->id. */
e6a1105b 4922 if (ss->use_id) {
d19e19de
TH
4923 ret = cgroup_init_idr(ss, css);
4924 if (ret)
4925 goto err_unload;
e6a1105b
BB
4926 }
4927
4928 /*
4929 * Now we need to entangle the css into the existing css_sets. unlike
4930 * in cgroup_init_subsys, there are now multiple css_sets, so each one
4931 * will need a new pointer to it; done by iterating the css_set_table.
4932 * furthermore, modifying the existing css_sets will corrupt the hash
4933 * table state, so each changed css_set will need its hash recomputed.
4934 * this is all done under the css_set_lock.
4935 */
4936 write_lock(&css_set_lock);
5abb8855 4937 hash_for_each_safe(css_set_table, i, tmp, cset, hlist) {
0ac801fe 4938 /* skip entries that we already rehashed */
5abb8855 4939 if (cset->subsys[ss->subsys_id])
0ac801fe
LZ
4940 continue;
4941 /* remove existing entry */
5abb8855 4942 hash_del(&cset->hlist);
0ac801fe 4943 /* set new value */
5abb8855 4944 cset->subsys[ss->subsys_id] = css;
0ac801fe 4945 /* recompute hash and restore entry */
5abb8855
TH
4946 key = css_set_hash(cset->subsys);
4947 hash_add(css_set_table, &cset->hlist, key);
e6a1105b
BB
4948 }
4949 write_unlock(&css_set_lock);
4950
ae7f164a 4951 ret = online_css(css);
b1929db4
TH
4952 if (ret)
4953 goto err_unload;
a8638030 4954
e6a1105b
BB
4955 /* success! */
4956 mutex_unlock(&cgroup_mutex);
4957 return 0;
d19e19de
TH
4958
4959err_unload:
4960 mutex_unlock(&cgroup_mutex);
4961 /* @ss can't be mounted here as try_module_get() would fail */
4962 cgroup_unload_subsys(ss);
4963 return ret;
ddbcc7e8 4964}
e6a1105b 4965EXPORT_SYMBOL_GPL(cgroup_load_subsys);
ddbcc7e8 4966
cf5d5941
BB
4967/**
4968 * cgroup_unload_subsys: unload a modular subsystem
4969 * @ss: the subsystem to unload
4970 *
4971 * This function should be called in a modular subsystem's exitcall. When this
4972 * function is invoked, the refcount on the subsystem's module will be 0, so
4973 * the subsystem will not be attached to any hierarchy.
4974 */
4975void cgroup_unload_subsys(struct cgroup_subsys *ss)
4976{
69d0206c 4977 struct cgrp_cset_link *link;
cf5d5941
BB
4978
4979 BUG_ON(ss->module == NULL);
4980
4981 /*
4982 * we shouldn't be called if the subsystem is in use, and the use of
1d5be6b2 4983 * try_module_get() in rebind_subsystems() should ensure that it
cf5d5941
BB
4984 * doesn't start being used while we're killing it off.
4985 */
9871bf95 4986 BUG_ON(ss->root != &cgroup_dummy_root);
cf5d5941
BB
4987
4988 mutex_lock(&cgroup_mutex);
02ae7486 4989
623f926b 4990 offline_css(cgroup_css(cgroup_dummy_top, ss->subsys_id));
02ae7486 4991
c897ff68 4992 if (ss->use_id)
02ae7486 4993 idr_destroy(&ss->idr);
02ae7486 4994
cf5d5941 4995 /* deassign the subsys_id */
9871bf95 4996 cgroup_subsys[ss->subsys_id] = NULL;
cf5d5941 4997
9871bf95 4998 /* remove subsystem from the dummy root's list of subsystems */
8d258797 4999 list_del_init(&ss->sibling);
cf5d5941
BB
5000
5001 /*
9871bf95
TH
5002 * disentangle the css from all css_sets attached to the dummy
5003 * top. as in loading, we need to pay our respects to the hashtable
5004 * gods.
cf5d5941
BB
5005 */
5006 write_lock(&css_set_lock);
9871bf95 5007 list_for_each_entry(link, &cgroup_dummy_top->cset_links, cset_link) {
69d0206c 5008 struct css_set *cset = link->cset;
0ac801fe 5009 unsigned long key;
cf5d5941 5010
5abb8855
TH
5011 hash_del(&cset->hlist);
5012 cset->subsys[ss->subsys_id] = NULL;
5013 key = css_set_hash(cset->subsys);
5014 hash_add(css_set_table, &cset->hlist, key);
cf5d5941
BB
5015 }
5016 write_unlock(&css_set_lock);
5017
5018 /*
9871bf95
TH
5019 * remove subsystem's css from the cgroup_dummy_top and free it -
5020 * need to free before marking as null because ss->css_free needs
5021 * the cgrp->subsys pointer to find their state. note that this
5022 * also takes care of freeing the css_id.
cf5d5941 5023 */
40e93b39 5024 ss->css_free(cgroup_css(cgroup_dummy_top, ss->subsys_id));
73e80ed8 5025 RCU_INIT_POINTER(cgroup_dummy_top->subsys[ss->subsys_id], NULL);
cf5d5941
BB
5026
5027 mutex_unlock(&cgroup_mutex);
5028}
5029EXPORT_SYMBOL_GPL(cgroup_unload_subsys);
5030
ddbcc7e8 5031/**
a043e3b2
LZ
5032 * cgroup_init_early - cgroup initialization at system boot
5033 *
5034 * Initialize cgroups at system boot, and initialize any
5035 * subsystems that request early init.
ddbcc7e8
PM
5036 */
5037int __init cgroup_init_early(void)
5038{
30159ec7 5039 struct cgroup_subsys *ss;
ddbcc7e8 5040 int i;
30159ec7 5041
146aa1bd 5042 atomic_set(&init_css_set.refcount, 1);
69d0206c 5043 INIT_LIST_HEAD(&init_css_set.cgrp_links);
817929ec 5044 INIT_LIST_HEAD(&init_css_set.tasks);
472b1053 5045 INIT_HLIST_NODE(&init_css_set.hlist);
817929ec 5046 css_set_count = 1;
9871bf95
TH
5047 init_cgroup_root(&cgroup_dummy_root);
5048 cgroup_root_count = 1;
a4ea1cc9 5049 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
817929ec 5050
69d0206c 5051 init_cgrp_cset_link.cset = &init_css_set;
9871bf95
TH
5052 init_cgrp_cset_link.cgrp = cgroup_dummy_top;
5053 list_add(&init_cgrp_cset_link.cset_link, &cgroup_dummy_top->cset_links);
69d0206c 5054 list_add(&init_cgrp_cset_link.cgrp_link, &init_css_set.cgrp_links);
ddbcc7e8 5055
30159ec7
TH
5056 /* at bootup time, we don't worry about modular subsystems */
5057 for_each_builtin_subsys(ss, i) {
ddbcc7e8
PM
5058 BUG_ON(!ss->name);
5059 BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
92fb9748
TH
5060 BUG_ON(!ss->css_alloc);
5061 BUG_ON(!ss->css_free);
ddbcc7e8 5062 if (ss->subsys_id != i) {
cfe36bde 5063 printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
ddbcc7e8
PM
5064 ss->name, ss->subsys_id);
5065 BUG();
5066 }
5067
5068 if (ss->early_init)
5069 cgroup_init_subsys(ss);
5070 }
5071 return 0;
5072}
5073
5074/**
a043e3b2
LZ
5075 * cgroup_init - cgroup initialization
5076 *
5077 * Register cgroup filesystem and /proc file, and initialize
5078 * any subsystems that didn't request early init.
ddbcc7e8
PM
5079 */
5080int __init cgroup_init(void)
5081{
30159ec7 5082 struct cgroup_subsys *ss;
0ac801fe 5083 unsigned long key;
30159ec7 5084 int i, err;
a424316c
PM
5085
5086 err = bdi_init(&cgroup_backing_dev_info);
5087 if (err)
5088 return err;
ddbcc7e8 5089
30159ec7 5090 for_each_builtin_subsys(ss, i) {
ddbcc7e8
PM
5091 if (!ss->early_init)
5092 cgroup_init_subsys(ss);
38460b48 5093 if (ss->use_id)
e6a1105b 5094 cgroup_init_idr(ss, init_css_set.subsys[ss->subsys_id]);
ddbcc7e8
PM
5095 }
5096
fa3ca07e 5097 /* allocate id for the dummy hierarchy */
54e7b4eb
TH
5098 mutex_lock(&cgroup_mutex);
5099 mutex_lock(&cgroup_root_mutex);
5100
82fe9b0d
TH
5101 /* Add init_css_set to the hash table */
5102 key = css_set_hash(init_css_set.subsys);
5103 hash_add(css_set_table, &init_css_set.hlist, key);
5104
fc76df70 5105 BUG_ON(cgroup_init_root_id(&cgroup_dummy_root, 0, 1));
676db4af 5106
4e96ee8e
LZ
5107 err = idr_alloc(&cgroup_dummy_root.cgroup_idr, cgroup_dummy_top,
5108 0, 1, GFP_KERNEL);
5109 BUG_ON(err < 0);
5110
54e7b4eb
TH
5111 mutex_unlock(&cgroup_root_mutex);
5112 mutex_unlock(&cgroup_mutex);
5113
676db4af
GKH
5114 cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
5115 if (!cgroup_kobj) {
5116 err = -ENOMEM;
5117 goto out;
5118 }
5119
ddbcc7e8 5120 err = register_filesystem(&cgroup_fs_type);
676db4af
GKH
5121 if (err < 0) {
5122 kobject_put(cgroup_kobj);
ddbcc7e8 5123 goto out;
676db4af 5124 }
ddbcc7e8 5125
46ae220b 5126 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
a424316c 5127
ddbcc7e8 5128out:
a424316c
PM
5129 if (err)
5130 bdi_destroy(&cgroup_backing_dev_info);
5131
ddbcc7e8
PM
5132 return err;
5133}
b4f48b63 5134
a424316c
PM
5135/*
5136 * proc_cgroup_show()
5137 * - Print task's cgroup paths into seq_file, one line for each hierarchy
5138 * - Used for /proc/<pid>/cgroup.
5139 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
5140 * doesn't really matter if tsk->cgroup changes after we read it,
956db3ca 5141 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
a424316c
PM
5142 * anyway. No need to check that tsk->cgroup != NULL, thanks to
5143 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
5144 * cgroup to top_cgroup.
5145 */
5146
5147/* TODO: Use a proper seq_file iterator */
8d8b97ba 5148int proc_cgroup_show(struct seq_file *m, void *v)
a424316c
PM
5149{
5150 struct pid *pid;
5151 struct task_struct *tsk;
5152 char *buf;
5153 int retval;
5154 struct cgroupfs_root *root;
5155
5156 retval = -ENOMEM;
5157 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
5158 if (!buf)
5159 goto out;
5160
5161 retval = -ESRCH;
5162 pid = m->private;
5163 tsk = get_pid_task(pid, PIDTYPE_PID);
5164 if (!tsk)
5165 goto out_free;
5166
5167 retval = 0;
5168
5169 mutex_lock(&cgroup_mutex);
5170
e5f6a860 5171 for_each_active_root(root) {
a424316c 5172 struct cgroup_subsys *ss;
bd89aabc 5173 struct cgroup *cgrp;
a424316c
PM
5174 int count = 0;
5175
2c6ab6d2 5176 seq_printf(m, "%d:", root->hierarchy_id);
5549c497 5177 for_each_root_subsys(root, ss)
a424316c 5178 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
c6d57f33
PM
5179 if (strlen(root->name))
5180 seq_printf(m, "%sname=%s", count ? "," : "",
5181 root->name);
a424316c 5182 seq_putc(m, ':');
7717f7ba 5183 cgrp = task_cgroup_from_root(tsk, root);
bd89aabc 5184 retval = cgroup_path(cgrp, buf, PAGE_SIZE);
a424316c
PM
5185 if (retval < 0)
5186 goto out_unlock;
5187 seq_puts(m, buf);
5188 seq_putc(m, '\n');
5189 }
5190
5191out_unlock:
5192 mutex_unlock(&cgroup_mutex);
5193 put_task_struct(tsk);
5194out_free:
5195 kfree(buf);
5196out:
5197 return retval;
5198}
5199
a424316c
PM
5200/* Display information about each subsystem and each hierarchy */
5201static int proc_cgroupstats_show(struct seq_file *m, void *v)
5202{
30159ec7 5203 struct cgroup_subsys *ss;
a424316c 5204 int i;
a424316c 5205
8bab8dde 5206 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
aae8aab4
BB
5207 /*
5208 * ideally we don't want subsystems moving around while we do this.
5209 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
5210 * subsys/hierarchy state.
5211 */
a424316c 5212 mutex_lock(&cgroup_mutex);
30159ec7
TH
5213
5214 for_each_subsys(ss, i)
2c6ab6d2
PM
5215 seq_printf(m, "%s\t%d\t%d\t%d\n",
5216 ss->name, ss->root->hierarchy_id,
8bab8dde 5217 ss->root->number_of_cgroups, !ss->disabled);
30159ec7 5218
a424316c
PM
5219 mutex_unlock(&cgroup_mutex);
5220 return 0;
5221}
5222
5223static int cgroupstats_open(struct inode *inode, struct file *file)
5224{
9dce07f1 5225 return single_open(file, proc_cgroupstats_show, NULL);
a424316c
PM
5226}
5227
828c0950 5228static const struct file_operations proc_cgroupstats_operations = {
a424316c
PM
5229 .open = cgroupstats_open,
5230 .read = seq_read,
5231 .llseek = seq_lseek,
5232 .release = single_release,
5233};
5234
b4f48b63
PM
5235/**
5236 * cgroup_fork - attach newly forked task to its parents cgroup.
a043e3b2 5237 * @child: pointer to task_struct of forking parent process.
b4f48b63
PM
5238 *
5239 * Description: A task inherits its parent's cgroup at fork().
5240 *
5241 * A pointer to the shared css_set was automatically copied in
5242 * fork.c by dup_task_struct(). However, we ignore that copy, since
9bb71308
TH
5243 * it was not made under the protection of RCU or cgroup_mutex, so
5244 * might no longer be a valid cgroup pointer. cgroup_attach_task() might
5245 * have already changed current->cgroups, allowing the previously
5246 * referenced cgroup group to be removed and freed.
b4f48b63
PM
5247 *
5248 * At the point that cgroup_fork() is called, 'current' is the parent
5249 * task, and the passed argument 'child' points to the child task.
5250 */
5251void cgroup_fork(struct task_struct *child)
5252{
9bb71308 5253 task_lock(current);
a8ad805c 5254 get_css_set(task_css_set(current));
817929ec 5255 child->cgroups = current->cgroups;
9bb71308 5256 task_unlock(current);
817929ec 5257 INIT_LIST_HEAD(&child->cg_list);
b4f48b63
PM
5258}
5259
817929ec 5260/**
a043e3b2
LZ
5261 * cgroup_post_fork - called on a new task after adding it to the task list
5262 * @child: the task in question
5263 *
5edee61e
TH
5264 * Adds the task to the list running through its css_set if necessary and
5265 * call the subsystem fork() callbacks. Has to be after the task is
5266 * visible on the task list in case we race with the first call to
0942eeee 5267 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5edee61e 5268 * list.
a043e3b2 5269 */
817929ec
PM
5270void cgroup_post_fork(struct task_struct *child)
5271{
30159ec7 5272 struct cgroup_subsys *ss;
5edee61e
TH
5273 int i;
5274
3ce3230a
FW
5275 /*
5276 * use_task_css_set_links is set to 1 before we walk the tasklist
5277 * under the tasklist_lock and we read it here after we added the child
5278 * to the tasklist under the tasklist_lock as well. If the child wasn't
5279 * yet in the tasklist when we walked through it from
5280 * cgroup_enable_task_cg_lists(), then use_task_css_set_links value
5281 * should be visible now due to the paired locking and barriers implied
5282 * by LOCK/UNLOCK: it is written before the tasklist_lock unlock
5283 * in cgroup_enable_task_cg_lists() and read here after the tasklist_lock
5284 * lock on fork.
5285 */
817929ec
PM
5286 if (use_task_css_set_links) {
5287 write_lock(&css_set_lock);
d8783832
TH
5288 task_lock(child);
5289 if (list_empty(&child->cg_list))
a8ad805c 5290 list_add(&child->cg_list, &task_css_set(child)->tasks);
d8783832 5291 task_unlock(child);
817929ec
PM
5292 write_unlock(&css_set_lock);
5293 }
5edee61e
TH
5294
5295 /*
5296 * Call ss->fork(). This must happen after @child is linked on
5297 * css_set; otherwise, @child might change state between ->fork()
5298 * and addition to css_set.
5299 */
5300 if (need_forkexit_callback) {
7d8e0bf5
LZ
5301 /*
5302 * fork/exit callbacks are supported only for builtin
5303 * subsystems, and the builtin section of the subsys
5304 * array is immutable, so we don't need to lock the
5305 * subsys array here. On the other hand, modular section
5306 * of the array can be freed at module unload, so we
5307 * can't touch that.
5308 */
30159ec7 5309 for_each_builtin_subsys(ss, i)
5edee61e
TH
5310 if (ss->fork)
5311 ss->fork(child);
5edee61e 5312 }
817929ec 5313}
5edee61e 5314
b4f48b63
PM
5315/**
5316 * cgroup_exit - detach cgroup from exiting task
5317 * @tsk: pointer to task_struct of exiting process
a043e3b2 5318 * @run_callback: run exit callbacks?
b4f48b63
PM
5319 *
5320 * Description: Detach cgroup from @tsk and release it.
5321 *
5322 * Note that cgroups marked notify_on_release force every task in
5323 * them to take the global cgroup_mutex mutex when exiting.
5324 * This could impact scaling on very large systems. Be reluctant to
5325 * use notify_on_release cgroups where very high task exit scaling
5326 * is required on large systems.
5327 *
5328 * the_top_cgroup_hack:
5329 *
5330 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
5331 *
5332 * We call cgroup_exit() while the task is still competent to
5333 * handle notify_on_release(), then leave the task attached to the
5334 * root cgroup in each hierarchy for the remainder of its exit.
5335 *
5336 * To do this properly, we would increment the reference count on
5337 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
5338 * code we would add a second cgroup function call, to drop that
5339 * reference. This would just create an unnecessary hot spot on
5340 * the top_cgroup reference count, to no avail.
5341 *
5342 * Normally, holding a reference to a cgroup without bumping its
5343 * count is unsafe. The cgroup could go away, or someone could
5344 * attach us to a different cgroup, decrementing the count on
5345 * the first cgroup that we never incremented. But in this case,
5346 * top_cgroup isn't going away, and either task has PF_EXITING set,
956db3ca
CW
5347 * which wards off any cgroup_attach_task() attempts, or task is a failed
5348 * fork, never visible to cgroup_attach_task.
b4f48b63
PM
5349 */
5350void cgroup_exit(struct task_struct *tsk, int run_callbacks)
5351{
30159ec7 5352 struct cgroup_subsys *ss;
5abb8855 5353 struct css_set *cset;
d41d5a01 5354 int i;
817929ec
PM
5355
5356 /*
5357 * Unlink from the css_set task list if necessary.
5358 * Optimistically check cg_list before taking
5359 * css_set_lock
5360 */
5361 if (!list_empty(&tsk->cg_list)) {
5362 write_lock(&css_set_lock);
5363 if (!list_empty(&tsk->cg_list))
8d258797 5364 list_del_init(&tsk->cg_list);
817929ec
PM
5365 write_unlock(&css_set_lock);
5366 }
5367
b4f48b63
PM
5368 /* Reassign the task to the init_css_set. */
5369 task_lock(tsk);
a8ad805c
TH
5370 cset = task_css_set(tsk);
5371 RCU_INIT_POINTER(tsk->cgroups, &init_css_set);
d41d5a01
PZ
5372
5373 if (run_callbacks && need_forkexit_callback) {
7d8e0bf5
LZ
5374 /*
5375 * fork/exit callbacks are supported only for builtin
5376 * subsystems, see cgroup_post_fork() for details.
5377 */
30159ec7 5378 for_each_builtin_subsys(ss, i) {
d41d5a01 5379 if (ss->exit) {
eb95419b
TH
5380 struct cgroup_subsys_state *old_css = cset->subsys[i];
5381 struct cgroup_subsys_state *css = task_css(tsk, i);
30159ec7 5382
eb95419b 5383 ss->exit(css, old_css, tsk);
d41d5a01
PZ
5384 }
5385 }
5386 }
b4f48b63 5387 task_unlock(tsk);
d41d5a01 5388
5abb8855 5389 put_css_set_taskexit(cset);
b4f48b63 5390}
697f4161 5391
bd89aabc 5392static void check_for_release(struct cgroup *cgrp)
81a6a5cd 5393{
f50daa70 5394 if (cgroup_is_releasable(cgrp) &&
6f3d828f 5395 list_empty(&cgrp->cset_links) && list_empty(&cgrp->children)) {
f50daa70
LZ
5396 /*
5397 * Control Group is currently removeable. If it's not
81a6a5cd 5398 * already queued for a userspace notification, queue
f50daa70
LZ
5399 * it now
5400 */
81a6a5cd 5401 int need_schedule_work = 0;
f50daa70 5402
cdcc136f 5403 raw_spin_lock(&release_list_lock);
54766d4a 5404 if (!cgroup_is_dead(cgrp) &&
bd89aabc
PM
5405 list_empty(&cgrp->release_list)) {
5406 list_add(&cgrp->release_list, &release_list);
81a6a5cd
PM
5407 need_schedule_work = 1;
5408 }
cdcc136f 5409 raw_spin_unlock(&release_list_lock);
81a6a5cd
PM
5410 if (need_schedule_work)
5411 schedule_work(&release_agent_work);
5412 }
5413}
5414
81a6a5cd
PM
5415/*
5416 * Notify userspace when a cgroup is released, by running the
5417 * configured release agent with the name of the cgroup (path
5418 * relative to the root of cgroup file system) as the argument.
5419 *
5420 * Most likely, this user command will try to rmdir this cgroup.
5421 *
5422 * This races with the possibility that some other task will be
5423 * attached to this cgroup before it is removed, or that some other
5424 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
5425 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
5426 * unused, and this cgroup will be reprieved from its death sentence,
5427 * to continue to serve a useful existence. Next time it's released,
5428 * we will get notified again, if it still has 'notify_on_release' set.
5429 *
5430 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
5431 * means only wait until the task is successfully execve()'d. The
5432 * separate release agent task is forked by call_usermodehelper(),
5433 * then control in this thread returns here, without waiting for the
5434 * release agent task. We don't bother to wait because the caller of
5435 * this routine has no use for the exit status of the release agent
5436 * task, so no sense holding our caller up for that.
81a6a5cd 5437 */
81a6a5cd
PM
5438static void cgroup_release_agent(struct work_struct *work)
5439{
5440 BUG_ON(work != &release_agent_work);
5441 mutex_lock(&cgroup_mutex);
cdcc136f 5442 raw_spin_lock(&release_list_lock);
81a6a5cd
PM
5443 while (!list_empty(&release_list)) {
5444 char *argv[3], *envp[3];
5445 int i;
e788e066 5446 char *pathbuf = NULL, *agentbuf = NULL;
bd89aabc 5447 struct cgroup *cgrp = list_entry(release_list.next,
81a6a5cd
PM
5448 struct cgroup,
5449 release_list);
bd89aabc 5450 list_del_init(&cgrp->release_list);
cdcc136f 5451 raw_spin_unlock(&release_list_lock);
81a6a5cd 5452 pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
e788e066
PM
5453 if (!pathbuf)
5454 goto continue_free;
5455 if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
5456 goto continue_free;
5457 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
5458 if (!agentbuf)
5459 goto continue_free;
81a6a5cd
PM
5460
5461 i = 0;
e788e066
PM
5462 argv[i++] = agentbuf;
5463 argv[i++] = pathbuf;
81a6a5cd
PM
5464 argv[i] = NULL;
5465
5466 i = 0;
5467 /* minimal command environment */
5468 envp[i++] = "HOME=/";
5469 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
5470 envp[i] = NULL;
5471
5472 /* Drop the lock while we invoke the usermode helper,
5473 * since the exec could involve hitting disk and hence
5474 * be a slow process */
5475 mutex_unlock(&cgroup_mutex);
5476 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
81a6a5cd 5477 mutex_lock(&cgroup_mutex);
e788e066
PM
5478 continue_free:
5479 kfree(pathbuf);
5480 kfree(agentbuf);
cdcc136f 5481 raw_spin_lock(&release_list_lock);
81a6a5cd 5482 }
cdcc136f 5483 raw_spin_unlock(&release_list_lock);
81a6a5cd
PM
5484 mutex_unlock(&cgroup_mutex);
5485}
8bab8dde
PM
5486
5487static int __init cgroup_disable(char *str)
5488{
30159ec7 5489 struct cgroup_subsys *ss;
8bab8dde 5490 char *token;
30159ec7 5491 int i;
8bab8dde
PM
5492
5493 while ((token = strsep(&str, ",")) != NULL) {
5494 if (!*token)
5495 continue;
be45c900 5496
30159ec7
TH
5497 /*
5498 * cgroup_disable, being at boot time, can't know about
5499 * module subsystems, so we don't worry about them.
5500 */
5501 for_each_builtin_subsys(ss, i) {
8bab8dde
PM
5502 if (!strcmp(token, ss->name)) {
5503 ss->disabled = 1;
5504 printk(KERN_INFO "Disabling %s control group"
5505 " subsystem\n", ss->name);
5506 break;
5507 }
5508 }
5509 }
5510 return 1;
5511}
5512__setup("cgroup_disable=", cgroup_disable);
38460b48
KH
5513
5514/*
5515 * Functons for CSS ID.
5516 */
5517
54766d4a 5518/* to get ID other than 0, this should be called when !cgroup_is_dead() */
38460b48
KH
5519unsigned short css_id(struct cgroup_subsys_state *css)
5520{
7f0f1546
KH
5521 struct css_id *cssid;
5522
5523 /*
5524 * This css_id() can return correct value when somone has refcnt
5525 * on this or this is under rcu_read_lock(). Once css->id is allocated,
5526 * it's unchanged until freed.
5527 */
d3daf28d 5528 cssid = rcu_dereference_raw(css->id);
38460b48
KH
5529
5530 if (cssid)
5531 return cssid->id;
5532 return 0;
5533}
67523c48 5534EXPORT_SYMBOL_GPL(css_id);
38460b48 5535
747388d7
KH
5536/**
5537 * css_is_ancestor - test "root" css is an ancestor of "child"
5538 * @child: the css to be tested.
5539 * @root: the css supporsed to be an ancestor of the child.
5540 *
5541 * Returns true if "root" is an ancestor of "child" in its hierarchy. Because
91c63734 5542 * this function reads css->id, the caller must hold rcu_read_lock().
747388d7
KH
5543 * But, considering usual usage, the csses should be valid objects after test.
5544 * Assuming that the caller will do some action to the child if this returns
5545 * returns true, the caller must take "child";s reference count.
5546 * If "child" is valid object and this returns true, "root" is valid, too.
5547 */
5548
38460b48 5549bool css_is_ancestor(struct cgroup_subsys_state *child,
0b7f569e 5550 const struct cgroup_subsys_state *root)
38460b48 5551{
747388d7
KH
5552 struct css_id *child_id;
5553 struct css_id *root_id;
38460b48 5554
747388d7 5555 child_id = rcu_dereference(child->id);
91c63734
JW
5556 if (!child_id)
5557 return false;
747388d7 5558 root_id = rcu_dereference(root->id);
91c63734
JW
5559 if (!root_id)
5560 return false;
5561 if (child_id->depth < root_id->depth)
5562 return false;
5563 if (child_id->stack[root_id->depth] != root_id->id)
5564 return false;
5565 return true;
38460b48
KH
5566}
5567
38460b48
KH
5568void free_css_id(struct cgroup_subsys *ss, struct cgroup_subsys_state *css)
5569{
a4ea1cc9
TH
5570 struct css_id *id = rcu_dereference_protected(css->id, true);
5571
38460b48
KH
5572 /* When this is called before css_id initialization, id can be NULL */
5573 if (!id)
5574 return;
5575
5576 BUG_ON(!ss->use_id);
5577
5578 rcu_assign_pointer(id->css, NULL);
5579 rcu_assign_pointer(css->id, NULL);
42aee6c4 5580 spin_lock(&ss->id_lock);
38460b48 5581 idr_remove(&ss->idr, id->id);
42aee6c4 5582 spin_unlock(&ss->id_lock);
025cea99 5583 kfree_rcu(id, rcu_head);
38460b48 5584}
67523c48 5585EXPORT_SYMBOL_GPL(free_css_id);
38460b48
KH
5586
5587/*
5588 * This is called by init or create(). Then, calls to this function are
5589 * always serialized (By cgroup_mutex() at create()).
5590 */
5591
5592static struct css_id *get_new_cssid(struct cgroup_subsys *ss, int depth)
5593{
5594 struct css_id *newid;
d228d9ec 5595 int ret, size;
38460b48
KH
5596
5597 BUG_ON(!ss->use_id);
5598
5599 size = sizeof(*newid) + sizeof(unsigned short) * (depth + 1);
5600 newid = kzalloc(size, GFP_KERNEL);
5601 if (!newid)
5602 return ERR_PTR(-ENOMEM);
d228d9ec
TH
5603
5604 idr_preload(GFP_KERNEL);
42aee6c4 5605 spin_lock(&ss->id_lock);
38460b48 5606 /* Don't use 0. allocates an ID of 1-65535 */
d228d9ec 5607 ret = idr_alloc(&ss->idr, newid, 1, CSS_ID_MAX + 1, GFP_NOWAIT);
42aee6c4 5608 spin_unlock(&ss->id_lock);
d228d9ec 5609 idr_preload_end();
38460b48
KH
5610
5611 /* Returns error when there are no free spaces for new ID.*/
d228d9ec 5612 if (ret < 0)
38460b48 5613 goto err_out;
38460b48 5614
d228d9ec 5615 newid->id = ret;
38460b48
KH
5616 newid->depth = depth;
5617 return newid;
38460b48
KH
5618err_out:
5619 kfree(newid);
d228d9ec 5620 return ERR_PTR(ret);
38460b48
KH
5621
5622}
5623
e6a1105b
BB
5624static int __init_or_module cgroup_init_idr(struct cgroup_subsys *ss,
5625 struct cgroup_subsys_state *rootcss)
38460b48
KH
5626{
5627 struct css_id *newid;
38460b48 5628
42aee6c4 5629 spin_lock_init(&ss->id_lock);
38460b48
KH
5630 idr_init(&ss->idr);
5631
38460b48
KH
5632 newid = get_new_cssid(ss, 0);
5633 if (IS_ERR(newid))
5634 return PTR_ERR(newid);
5635
5636 newid->stack[0] = newid->id;
a4ea1cc9
TH
5637 RCU_INIT_POINTER(newid->css, rootcss);
5638 RCU_INIT_POINTER(rootcss->id, newid);
38460b48
KH
5639 return 0;
5640}
5641
623f926b 5642static int alloc_css_id(struct cgroup_subsys_state *child_css)
38460b48 5643{
623f926b 5644 struct cgroup_subsys_state *parent_css = css_parent(child_css);
fae9c791 5645 struct css_id *child_id, *parent_id;
623f926b 5646 int i, depth;
38460b48 5647
a4ea1cc9 5648 parent_id = rcu_dereference_protected(parent_css->id, true);
94b3dd0f 5649 depth = parent_id->depth + 1;
38460b48 5650
623f926b 5651 child_id = get_new_cssid(child_css->ss, depth);
38460b48
KH
5652 if (IS_ERR(child_id))
5653 return PTR_ERR(child_id);
5654
5655 for (i = 0; i < depth; i++)
5656 child_id->stack[i] = parent_id->stack[i];
5657 child_id->stack[depth] = child_id->id;
5658 /*
5659 * child_id->css pointer will be set after this cgroup is available
5660 * see cgroup_populate_dir()
5661 */
5662 rcu_assign_pointer(child_css->id, child_id);
5663
5664 return 0;
5665}
5666
5667/**
5668 * css_lookup - lookup css by id
5669 * @ss: cgroup subsys to be looked into.
5670 * @id: the id
5671 *
5672 * Returns pointer to cgroup_subsys_state if there is valid one with id.
5673 * NULL if not. Should be called under rcu_read_lock()
5674 */
5675struct cgroup_subsys_state *css_lookup(struct cgroup_subsys *ss, int id)
5676{
5677 struct css_id *cssid = NULL;
5678
5679 BUG_ON(!ss->use_id);
5680 cssid = idr_find(&ss->idr, id);
5681
5682 if (unlikely(!cssid))
5683 return NULL;
5684
5685 return rcu_dereference(cssid->css);
5686}
67523c48 5687EXPORT_SYMBOL_GPL(css_lookup);
38460b48 5688
b77d7b60
TH
5689/**
5690 * cgroup_css_from_dir - get corresponding css from file open on cgroup dir
5691 * @f: directory file of interest
5692 * @id: subsystem id of interest
5693 *
5694 * Must be called under RCU read lock. The caller is responsible for
5695 * pinning the returned css if it needs to be accessed outside the RCU
5696 * critical section.
e5d1367f
SE
5697 */
5698struct cgroup_subsys_state *cgroup_css_from_dir(struct file *f, int id)
5699{
5700 struct cgroup *cgrp;
5701 struct inode *inode;
5702 struct cgroup_subsys_state *css;
5703
b77d7b60
TH
5704 WARN_ON_ONCE(!rcu_read_lock_held());
5705
496ad9aa 5706 inode = file_inode(f);
e5d1367f
SE
5707 /* check in cgroup filesystem dir */
5708 if (inode->i_op != &cgroup_dir_inode_operations)
5709 return ERR_PTR(-EBADF);
5710
5711 if (id < 0 || id >= CGROUP_SUBSYS_COUNT)
5712 return ERR_PTR(-EINVAL);
5713
5714 /* get cgroup */
5715 cgrp = __d_cgrp(f->f_dentry);
40e93b39 5716 css = cgroup_css(cgrp, id);
e5d1367f
SE
5717 return css ? css : ERR_PTR(-ENOENT);
5718}
5719
fe693435 5720#ifdef CONFIG_CGROUP_DEBUG
eb95419b
TH
5721static struct cgroup_subsys_state *
5722debug_css_alloc(struct cgroup_subsys_state *parent_css)
fe693435
PM
5723{
5724 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5725
5726 if (!css)
5727 return ERR_PTR(-ENOMEM);
5728
5729 return css;
5730}
5731
eb95419b 5732static void debug_css_free(struct cgroup_subsys_state *css)
fe693435 5733{
eb95419b 5734 kfree(css);
fe693435
PM
5735}
5736
182446d0
TH
5737static u64 debug_taskcount_read(struct cgroup_subsys_state *css,
5738 struct cftype *cft)
fe693435 5739{
182446d0 5740 return cgroup_task_count(css->cgroup);
fe693435
PM
5741}
5742
182446d0
TH
5743static u64 current_css_set_read(struct cgroup_subsys_state *css,
5744 struct cftype *cft)
fe693435
PM
5745{
5746 return (u64)(unsigned long)current->cgroups;
5747}
5748
182446d0 5749static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css,
03c78cbe 5750 struct cftype *cft)
fe693435
PM
5751{
5752 u64 count;
5753
5754 rcu_read_lock();
a8ad805c 5755 count = atomic_read(&task_css_set(current)->refcount);
fe693435
PM
5756 rcu_read_unlock();
5757 return count;
5758}
5759
182446d0 5760static int current_css_set_cg_links_read(struct cgroup_subsys_state *css,
7717f7ba
PM
5761 struct cftype *cft,
5762 struct seq_file *seq)
5763{
69d0206c 5764 struct cgrp_cset_link *link;
5abb8855 5765 struct css_set *cset;
7717f7ba
PM
5766
5767 read_lock(&css_set_lock);
5768 rcu_read_lock();
5abb8855 5769 cset = rcu_dereference(current->cgroups);
69d0206c 5770 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba
PM
5771 struct cgroup *c = link->cgrp;
5772 const char *name;
5773
5774 if (c->dentry)
5775 name = c->dentry->d_name.name;
5776 else
5777 name = "?";
2c6ab6d2
PM
5778 seq_printf(seq, "Root %d group %s\n",
5779 c->root->hierarchy_id, name);
7717f7ba
PM
5780 }
5781 rcu_read_unlock();
5782 read_unlock(&css_set_lock);
5783 return 0;
5784}
5785
5786#define MAX_TASKS_SHOWN_PER_CSS 25
182446d0
TH
5787static int cgroup_css_links_read(struct cgroup_subsys_state *css,
5788 struct cftype *cft, struct seq_file *seq)
7717f7ba 5789{
69d0206c 5790 struct cgrp_cset_link *link;
7717f7ba
PM
5791
5792 read_lock(&css_set_lock);
182446d0 5793 list_for_each_entry(link, &css->cgroup->cset_links, cset_link) {
69d0206c 5794 struct css_set *cset = link->cset;
7717f7ba
PM
5795 struct task_struct *task;
5796 int count = 0;
5abb8855
TH
5797 seq_printf(seq, "css_set %p\n", cset);
5798 list_for_each_entry(task, &cset->tasks, cg_list) {
7717f7ba
PM
5799 if (count++ > MAX_TASKS_SHOWN_PER_CSS) {
5800 seq_puts(seq, " ...\n");
5801 break;
5802 } else {
5803 seq_printf(seq, " task %d\n",
5804 task_pid_vnr(task));
5805 }
5806 }
5807 }
5808 read_unlock(&css_set_lock);
5809 return 0;
5810}
5811
182446d0 5812static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft)
fe693435 5813{
182446d0 5814 return test_bit(CGRP_RELEASABLE, &css->cgroup->flags);
fe693435
PM
5815}
5816
5817static struct cftype debug_files[] = {
fe693435
PM
5818 {
5819 .name = "taskcount",
5820 .read_u64 = debug_taskcount_read,
5821 },
5822
5823 {
5824 .name = "current_css_set",
5825 .read_u64 = current_css_set_read,
5826 },
5827
5828 {
5829 .name = "current_css_set_refcount",
5830 .read_u64 = current_css_set_refcount_read,
5831 },
5832
7717f7ba
PM
5833 {
5834 .name = "current_css_set_cg_links",
5835 .read_seq_string = current_css_set_cg_links_read,
5836 },
5837
5838 {
5839 .name = "cgroup_css_links",
5840 .read_seq_string = cgroup_css_links_read,
5841 },
5842
fe693435
PM
5843 {
5844 .name = "releasable",
5845 .read_u64 = releasable_read,
5846 },
fe693435 5847
4baf6e33
TH
5848 { } /* terminate */
5849};
fe693435
PM
5850
5851struct cgroup_subsys debug_subsys = {
5852 .name = "debug",
92fb9748
TH
5853 .css_alloc = debug_css_alloc,
5854 .css_free = debug_css_free,
fe693435 5855 .subsys_id = debug_subsys_id,
4baf6e33 5856 .base_cftypes = debug_files,
fe693435
PM
5857};
5858#endif /* CONFIG_CGROUP_DEBUG */