]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - kernel/cpuset.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mszeredi...
[mirror_ubuntu-artful-kernel.git] / kernel / cpuset.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/cpuset.c
3 *
4 * Processor and Memory placement constraints for sets of tasks.
5 *
6 * Copyright (C) 2003 BULL SA.
029190c5 7 * Copyright (C) 2004-2007 Silicon Graphics, Inc.
8793d854 8 * Copyright (C) 2006 Google, Inc
1da177e4
LT
9 *
10 * Portions derived from Patrick Mochel's sysfs code.
11 * sysfs is Copyright (c) 2001-3 Patrick Mochel
1da177e4 12 *
825a46af 13 * 2003-10-10 Written by Simon Derr.
1da177e4 14 * 2003-10-22 Updates by Stephen Hemminger.
825a46af 15 * 2004 May-July Rework by Paul Jackson.
8793d854 16 * 2006 Rework by Paul Menage to use generic cgroups
cf417141
MK
17 * 2008 Rework of the scheduler domains and CPU hotplug handling
18 * by Max Krasnyansky
1da177e4
LT
19 *
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
23 */
24
1da177e4
LT
25#include <linux/cpu.h>
26#include <linux/cpumask.h>
27#include <linux/cpuset.h>
28#include <linux/err.h>
29#include <linux/errno.h>
30#include <linux/file.h>
31#include <linux/fs.h>
32#include <linux/init.h>
33#include <linux/interrupt.h>
34#include <linux/kernel.h>
35#include <linux/kmod.h>
36#include <linux/list.h>
68860ec1 37#include <linux/mempolicy.h>
1da177e4 38#include <linux/mm.h>
f481891f 39#include <linux/memory.h>
9984de1a 40#include <linux/export.h>
1da177e4
LT
41#include <linux/mount.h>
42#include <linux/namei.h>
43#include <linux/pagemap.h>
44#include <linux/proc_fs.h>
6b9c2603 45#include <linux/rcupdate.h>
1da177e4
LT
46#include <linux/sched.h>
47#include <linux/seq_file.h>
22fb52dd 48#include <linux/security.h>
1da177e4 49#include <linux/slab.h>
1da177e4
LT
50#include <linux/spinlock.h>
51#include <linux/stat.h>
52#include <linux/string.h>
53#include <linux/time.h>
d2b43658 54#include <linux/time64.h>
1da177e4
LT
55#include <linux/backing-dev.h>
56#include <linux/sort.h>
57
58#include <asm/uaccess.h>
60063497 59#include <linux/atomic.h>
3d3f26a7 60#include <linux/mutex.h>
956db3ca 61#include <linux/cgroup.h>
e44193d3 62#include <linux/wait.h>
1da177e4 63
002f2906 64DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key);
202f72d5 65
3e0d98b9
PJ
66/* See "Frequency meter" comments, below. */
67
68struct fmeter {
69 int cnt; /* unprocessed events count */
70 int val; /* most recent output value */
d2b43658 71 time64_t time; /* clock (secs) when val computed */
3e0d98b9
PJ
72 spinlock_t lock; /* guards read or write of above */
73};
74
1da177e4 75struct cpuset {
8793d854
PM
76 struct cgroup_subsys_state css;
77
1da177e4 78 unsigned long flags; /* "unsigned long" so bitops work */
e2b9a3d7 79
7e88291b
LZ
80 /*
81 * On default hierarchy:
82 *
83 * The user-configured masks can only be changed by writing to
84 * cpuset.cpus and cpuset.mems, and won't be limited by the
85 * parent masks.
86 *
87 * The effective masks is the real masks that apply to the tasks
88 * in the cpuset. They may be changed if the configured masks are
89 * changed or hotplug happens.
90 *
91 * effective_mask == configured_mask & parent's effective_mask,
92 * and if it ends up empty, it will inherit the parent's mask.
93 *
94 *
95 * On legacy hierachy:
96 *
97 * The user-configured masks are always the same with effective masks.
98 */
99
e2b9a3d7
LZ
100 /* user-configured CPUs and Memory Nodes allow to tasks */
101 cpumask_var_t cpus_allowed;
102 nodemask_t mems_allowed;
103
104 /* effective CPUs and Memory Nodes allow to tasks */
105 cpumask_var_t effective_cpus;
106 nodemask_t effective_mems;
1da177e4 107
33ad801d
LZ
108 /*
109 * This is old Memory Nodes tasks took on.
110 *
111 * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
112 * - A new cpuset's old_mems_allowed is initialized when some
113 * task is moved into it.
114 * - old_mems_allowed is used in cpuset_migrate_mm() when we change
115 * cpuset.mems_allowed and have tasks' nodemask updated, and
116 * then old_mems_allowed is updated to mems_allowed.
117 */
118 nodemask_t old_mems_allowed;
119
3e0d98b9 120 struct fmeter fmeter; /* memory_pressure filter */
029190c5 121
452477fa
TH
122 /*
123 * Tasks are being attached to this cpuset. Used to prevent
124 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
125 */
126 int attach_in_progress;
127
029190c5
PJ
128 /* partition number for rebuild_sched_domains() */
129 int pn;
956db3ca 130
1d3504fc
HS
131 /* for custom sched domain */
132 int relax_domain_level;
1da177e4
LT
133};
134
a7c6d554 135static inline struct cpuset *css_cs(struct cgroup_subsys_state *css)
8793d854 136{
a7c6d554 137 return css ? container_of(css, struct cpuset, css) : NULL;
8793d854
PM
138}
139
140/* Retrieve the cpuset for a task */
141static inline struct cpuset *task_cs(struct task_struct *task)
142{
073219e9 143 return css_cs(task_css(task, cpuset_cgrp_id));
8793d854 144}
8793d854 145
c9710d80 146static inline struct cpuset *parent_cs(struct cpuset *cs)
c431069f 147{
5c9d535b 148 return css_cs(cs->css.parent);
c431069f
TH
149}
150
b246272e
DR
151#ifdef CONFIG_NUMA
152static inline bool task_has_mempolicy(struct task_struct *task)
153{
154 return task->mempolicy;
155}
156#else
157static inline bool task_has_mempolicy(struct task_struct *task)
158{
159 return false;
160}
161#endif
162
163
1da177e4
LT
164/* bits in struct cpuset flags field */
165typedef enum {
efeb77b2 166 CS_ONLINE,
1da177e4
LT
167 CS_CPU_EXCLUSIVE,
168 CS_MEM_EXCLUSIVE,
78608366 169 CS_MEM_HARDWALL,
45b07ef3 170 CS_MEMORY_MIGRATE,
029190c5 171 CS_SCHED_LOAD_BALANCE,
825a46af
PJ
172 CS_SPREAD_PAGE,
173 CS_SPREAD_SLAB,
1da177e4
LT
174} cpuset_flagbits_t;
175
176/* convenient tests for these bits */
efeb77b2
TH
177static inline bool is_cpuset_online(const struct cpuset *cs)
178{
179 return test_bit(CS_ONLINE, &cs->flags);
180}
181
1da177e4
LT
182static inline int is_cpu_exclusive(const struct cpuset *cs)
183{
7b5b9ef0 184 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
1da177e4
LT
185}
186
187static inline int is_mem_exclusive(const struct cpuset *cs)
188{
7b5b9ef0 189 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
1da177e4
LT
190}
191
78608366
PM
192static inline int is_mem_hardwall(const struct cpuset *cs)
193{
194 return test_bit(CS_MEM_HARDWALL, &cs->flags);
195}
196
029190c5
PJ
197static inline int is_sched_load_balance(const struct cpuset *cs)
198{
199 return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
200}
201
45b07ef3
PJ
202static inline int is_memory_migrate(const struct cpuset *cs)
203{
7b5b9ef0 204 return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
45b07ef3
PJ
205}
206
825a46af
PJ
207static inline int is_spread_page(const struct cpuset *cs)
208{
209 return test_bit(CS_SPREAD_PAGE, &cs->flags);
210}
211
212static inline int is_spread_slab(const struct cpuset *cs)
213{
214 return test_bit(CS_SPREAD_SLAB, &cs->flags);
215}
216
1da177e4 217static struct cpuset top_cpuset = {
efeb77b2
TH
218 .flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
219 (1 << CS_MEM_EXCLUSIVE)),
1da177e4
LT
220};
221
ae8086ce
TH
222/**
223 * cpuset_for_each_child - traverse online children of a cpuset
224 * @child_cs: loop cursor pointing to the current child
492eb21b 225 * @pos_css: used for iteration
ae8086ce
TH
226 * @parent_cs: target cpuset to walk children of
227 *
228 * Walk @child_cs through the online children of @parent_cs. Must be used
229 * with RCU read locked.
230 */
492eb21b
TH
231#define cpuset_for_each_child(child_cs, pos_css, parent_cs) \
232 css_for_each_child((pos_css), &(parent_cs)->css) \
233 if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
ae8086ce 234
fc560a26
TH
235/**
236 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
237 * @des_cs: loop cursor pointing to the current descendant
492eb21b 238 * @pos_css: used for iteration
fc560a26
TH
239 * @root_cs: target cpuset to walk ancestor of
240 *
241 * Walk @des_cs through the online descendants of @root_cs. Must be used
492eb21b 242 * with RCU read locked. The caller may modify @pos_css by calling
bd8815a6
TH
243 * css_rightmost_descendant() to skip subtree. @root_cs is included in the
244 * iteration and the first node to be visited.
fc560a26 245 */
492eb21b
TH
246#define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs) \
247 css_for_each_descendant_pre((pos_css), &(root_cs)->css) \
248 if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
fc560a26 249
1da177e4 250/*
8447a0fe
VD
251 * There are two global locks guarding cpuset structures - cpuset_mutex and
252 * callback_lock. We also require taking task_lock() when dereferencing a
253 * task's cpuset pointer. See "The task_lock() exception", at the end of this
254 * comment.
5d21cc2d 255 *
8447a0fe 256 * A task must hold both locks to modify cpusets. If a task holds
5d21cc2d 257 * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
8447a0fe 258 * is the only task able to also acquire callback_lock and be able to
5d21cc2d
TH
259 * modify cpusets. It can perform various checks on the cpuset structure
260 * first, knowing nothing will change. It can also allocate memory while
261 * just holding cpuset_mutex. While it is performing these checks, various
8447a0fe
VD
262 * callback routines can briefly acquire callback_lock to query cpusets.
263 * Once it is ready to make the changes, it takes callback_lock, blocking
5d21cc2d 264 * everyone else.
053199ed
PJ
265 *
266 * Calls to the kernel memory allocator can not be made while holding
8447a0fe 267 * callback_lock, as that would risk double tripping on callback_lock
053199ed
PJ
268 * from one of the callbacks into the cpuset code from within
269 * __alloc_pages().
270 *
8447a0fe 271 * If a task is only holding callback_lock, then it has read-only
053199ed
PJ
272 * access to cpusets.
273 *
58568d2a
MX
274 * Now, the task_struct fields mems_allowed and mempolicy may be changed
275 * by other task, we use alloc_lock in the task_struct fields to protect
276 * them.
053199ed 277 *
8447a0fe 278 * The cpuset_common_file_read() handlers only hold callback_lock across
053199ed
PJ
279 * small pieces of code, such as when reading out possibly multi-word
280 * cpumasks and nodemasks.
281 *
2df167a3
PM
282 * Accessing a task's cpuset should be done in accordance with the
283 * guidelines for accessing subsystem state in kernel/cgroup.c
1da177e4
LT
284 */
285
5d21cc2d 286static DEFINE_MUTEX(cpuset_mutex);
8447a0fe 287static DEFINE_SPINLOCK(callback_lock);
4247bdc6 288
e93ad19d
TH
289static struct workqueue_struct *cpuset_migrate_mm_wq;
290
3a5a6d0c
TH
291/*
292 * CPU / memory hotplug is handled asynchronously.
293 */
294static void cpuset_hotplug_workfn(struct work_struct *work);
3a5a6d0c
TH
295static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);
296
e44193d3
LZ
297static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);
298
cf417141
MK
299/*
300 * This is ugly, but preserves the userspace API for existing cpuset
8793d854 301 * users. If someone tries to mount the "cpuset" filesystem, we
cf417141
MK
302 * silently switch it to mount "cgroup" instead
303 */
f7e83571
AV
304static struct dentry *cpuset_mount(struct file_system_type *fs_type,
305 int flags, const char *unused_dev_name, void *data)
1da177e4 306{
8793d854 307 struct file_system_type *cgroup_fs = get_fs_type("cgroup");
f7e83571 308 struct dentry *ret = ERR_PTR(-ENODEV);
8793d854
PM
309 if (cgroup_fs) {
310 char mountopts[] =
311 "cpuset,noprefix,"
312 "release_agent=/sbin/cpuset_release_agent";
f7e83571
AV
313 ret = cgroup_fs->mount(cgroup_fs, flags,
314 unused_dev_name, mountopts);
8793d854
PM
315 put_filesystem(cgroup_fs);
316 }
317 return ret;
1da177e4
LT
318}
319
320static struct file_system_type cpuset_fs_type = {
321 .name = "cpuset",
f7e83571 322 .mount = cpuset_mount,
1da177e4
LT
323};
324
1da177e4 325/*
300ed6cb 326 * Return in pmask the portion of a cpusets's cpus_allowed that
1da177e4 327 * are online. If none are online, walk up the cpuset hierarchy
40df2deb
LZ
328 * until we find one that does have some online cpus. The top
329 * cpuset always has some cpus online.
1da177e4
LT
330 *
331 * One way or another, we guarantee to return some non-empty subset
5f054e31 332 * of cpu_online_mask.
1da177e4 333 *
8447a0fe 334 * Call with callback_lock or cpuset_mutex held.
1da177e4 335 */
c9710d80 336static void guarantee_online_cpus(struct cpuset *cs, struct cpumask *pmask)
1da177e4 337{
ae1c8023 338 while (!cpumask_intersects(cs->effective_cpus, cpu_online_mask))
c431069f 339 cs = parent_cs(cs);
ae1c8023 340 cpumask_and(pmask, cs->effective_cpus, cpu_online_mask);
1da177e4
LT
341}
342
343/*
344 * Return in *pmask the portion of a cpusets's mems_allowed that
0e1e7c7a
CL
345 * are online, with memory. If none are online with memory, walk
346 * up the cpuset hierarchy until we find one that does have some
40df2deb 347 * online mems. The top cpuset always has some mems online.
1da177e4
LT
348 *
349 * One way or another, we guarantee to return some non-empty subset
38d7bee9 350 * of node_states[N_MEMORY].
1da177e4 351 *
8447a0fe 352 * Call with callback_lock or cpuset_mutex held.
1da177e4 353 */
c9710d80 354static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
1da177e4 355{
ae1c8023 356 while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY]))
c431069f 357 cs = parent_cs(cs);
ae1c8023 358 nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]);
1da177e4
LT
359}
360
f3b39d47
MX
361/*
362 * update task's spread flag if cpuset's page/slab spread flag is set
363 *
8447a0fe 364 * Call with callback_lock or cpuset_mutex held.
f3b39d47
MX
365 */
366static void cpuset_update_task_spread_flag(struct cpuset *cs,
367 struct task_struct *tsk)
368{
369 if (is_spread_page(cs))
2ad654bc 370 task_set_spread_page(tsk);
f3b39d47 371 else
2ad654bc
ZL
372 task_clear_spread_page(tsk);
373
f3b39d47 374 if (is_spread_slab(cs))
2ad654bc 375 task_set_spread_slab(tsk);
f3b39d47 376 else
2ad654bc 377 task_clear_spread_slab(tsk);
f3b39d47
MX
378}
379
1da177e4
LT
380/*
381 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
382 *
383 * One cpuset is a subset of another if all its allowed CPUs and
384 * Memory Nodes are a subset of the other, and its exclusive flags
5d21cc2d 385 * are only set if the other's are set. Call holding cpuset_mutex.
1da177e4
LT
386 */
387
388static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
389{
300ed6cb 390 return cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
1da177e4
LT
391 nodes_subset(p->mems_allowed, q->mems_allowed) &&
392 is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
393 is_mem_exclusive(p) <= is_mem_exclusive(q);
394}
395
645fcc9d
LZ
396/**
397 * alloc_trial_cpuset - allocate a trial cpuset
398 * @cs: the cpuset that the trial cpuset duplicates
399 */
c9710d80 400static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
645fcc9d 401{
300ed6cb
LZ
402 struct cpuset *trial;
403
404 trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
405 if (!trial)
406 return NULL;
407
e2b9a3d7
LZ
408 if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL))
409 goto free_cs;
410 if (!alloc_cpumask_var(&trial->effective_cpus, GFP_KERNEL))
411 goto free_cpus;
300ed6cb 412
e2b9a3d7
LZ
413 cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
414 cpumask_copy(trial->effective_cpus, cs->effective_cpus);
300ed6cb 415 return trial;
e2b9a3d7
LZ
416
417free_cpus:
418 free_cpumask_var(trial->cpus_allowed);
419free_cs:
420 kfree(trial);
421 return NULL;
645fcc9d
LZ
422}
423
424/**
425 * free_trial_cpuset - free the trial cpuset
426 * @trial: the trial cpuset to be freed
427 */
428static void free_trial_cpuset(struct cpuset *trial)
429{
e2b9a3d7 430 free_cpumask_var(trial->effective_cpus);
300ed6cb 431 free_cpumask_var(trial->cpus_allowed);
645fcc9d
LZ
432 kfree(trial);
433}
434
1da177e4
LT
435/*
436 * validate_change() - Used to validate that any proposed cpuset change
437 * follows the structural rules for cpusets.
438 *
439 * If we replaced the flag and mask values of the current cpuset
440 * (cur) with those values in the trial cpuset (trial), would
441 * our various subset and exclusive rules still be valid? Presumes
5d21cc2d 442 * cpuset_mutex held.
1da177e4
LT
443 *
444 * 'cur' is the address of an actual, in-use cpuset. Operations
445 * such as list traversal that depend on the actual address of the
446 * cpuset in the list must use cur below, not trial.
447 *
448 * 'trial' is the address of bulk structure copy of cur, with
449 * perhaps one or more of the fields cpus_allowed, mems_allowed,
450 * or flags changed to new, trial values.
451 *
452 * Return 0 if valid, -errno if not.
453 */
454
c9710d80 455static int validate_change(struct cpuset *cur, struct cpuset *trial)
1da177e4 456{
492eb21b 457 struct cgroup_subsys_state *css;
1da177e4 458 struct cpuset *c, *par;
ae8086ce
TH
459 int ret;
460
461 rcu_read_lock();
1da177e4
LT
462
463 /* Each of our child cpusets must be a subset of us */
ae8086ce 464 ret = -EBUSY;
492eb21b 465 cpuset_for_each_child(c, css, cur)
ae8086ce
TH
466 if (!is_cpuset_subset(c, trial))
467 goto out;
1da177e4
LT
468
469 /* Remaining checks don't apply to root cpuset */
ae8086ce 470 ret = 0;
69604067 471 if (cur == &top_cpuset)
ae8086ce 472 goto out;
1da177e4 473
c431069f 474 par = parent_cs(cur);
69604067 475
7e88291b 476 /* On legacy hiearchy, we must be a subset of our parent cpuset. */
ae8086ce 477 ret = -EACCES;
9e10a130
TH
478 if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
479 !is_cpuset_subset(trial, par))
ae8086ce 480 goto out;
1da177e4 481
2df167a3
PM
482 /*
483 * If either I or some sibling (!= me) is exclusive, we can't
484 * overlap
485 */
ae8086ce 486 ret = -EINVAL;
492eb21b 487 cpuset_for_each_child(c, css, par) {
1da177e4
LT
488 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
489 c != cur &&
300ed6cb 490 cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
ae8086ce 491 goto out;
1da177e4
LT
492 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
493 c != cur &&
494 nodes_intersects(trial->mems_allowed, c->mems_allowed))
ae8086ce 495 goto out;
1da177e4
LT
496 }
497
452477fa
TH
498 /*
499 * Cpusets with tasks - existing or newly being attached - can't
1c09b195 500 * be changed to have empty cpus_allowed or mems_allowed.
452477fa 501 */
ae8086ce 502 ret = -ENOSPC;
27bd4dbb 503 if ((cgroup_is_populated(cur->css.cgroup) || cur->attach_in_progress)) {
1c09b195
LZ
504 if (!cpumask_empty(cur->cpus_allowed) &&
505 cpumask_empty(trial->cpus_allowed))
506 goto out;
507 if (!nodes_empty(cur->mems_allowed) &&
508 nodes_empty(trial->mems_allowed))
509 goto out;
510 }
020958b6 511
f82f8042
JL
512 /*
513 * We can't shrink if we won't have enough room for SCHED_DEADLINE
514 * tasks.
515 */
516 ret = -EBUSY;
517 if (is_cpu_exclusive(cur) &&
518 !cpuset_cpumask_can_shrink(cur->cpus_allowed,
519 trial->cpus_allowed))
520 goto out;
521
ae8086ce
TH
522 ret = 0;
523out:
524 rcu_read_unlock();
525 return ret;
1da177e4
LT
526}
527
db7f47cf 528#ifdef CONFIG_SMP
029190c5 529/*
cf417141 530 * Helper routine for generate_sched_domains().
8b5f1c52 531 * Do cpusets a, b have overlapping effective cpus_allowed masks?
029190c5 532 */
029190c5
PJ
533static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
534{
8b5f1c52 535 return cpumask_intersects(a->effective_cpus, b->effective_cpus);
029190c5
PJ
536}
537
1d3504fc
HS
538static void
539update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
540{
1d3504fc
HS
541 if (dattr->relax_domain_level < c->relax_domain_level)
542 dattr->relax_domain_level = c->relax_domain_level;
543 return;
544}
545
fc560a26
TH
546static void update_domain_attr_tree(struct sched_domain_attr *dattr,
547 struct cpuset *root_cs)
f5393693 548{
fc560a26 549 struct cpuset *cp;
492eb21b 550 struct cgroup_subsys_state *pos_css;
f5393693 551
fc560a26 552 rcu_read_lock();
492eb21b 553 cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
fc560a26
TH
554 /* skip the whole subtree if @cp doesn't have any CPU */
555 if (cpumask_empty(cp->cpus_allowed)) {
492eb21b 556 pos_css = css_rightmost_descendant(pos_css);
f5393693 557 continue;
fc560a26 558 }
f5393693
LJ
559
560 if (is_sched_load_balance(cp))
561 update_domain_attr(dattr, cp);
f5393693 562 }
fc560a26 563 rcu_read_unlock();
f5393693
LJ
564}
565
029190c5 566/*
cf417141
MK
567 * generate_sched_domains()
568 *
569 * This function builds a partial partition of the systems CPUs
570 * A 'partial partition' is a set of non-overlapping subsets whose
571 * union is a subset of that set.
0a0fca9d 572 * The output of this function needs to be passed to kernel/sched/core.c
cf417141
MK
573 * partition_sched_domains() routine, which will rebuild the scheduler's
574 * load balancing domains (sched domains) as specified by that partial
575 * partition.
029190c5 576 *
45ce80fb 577 * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
029190c5
PJ
578 * for a background explanation of this.
579 *
580 * Does not return errors, on the theory that the callers of this
581 * routine would rather not worry about failures to rebuild sched
582 * domains when operating in the severe memory shortage situations
583 * that could cause allocation failures below.
584 *
5d21cc2d 585 * Must be called with cpuset_mutex held.
029190c5
PJ
586 *
587 * The three key local variables below are:
aeed6824 588 * q - a linked-list queue of cpuset pointers, used to implement a
029190c5
PJ
589 * top-down scan of all cpusets. This scan loads a pointer
590 * to each cpuset marked is_sched_load_balance into the
591 * array 'csa'. For our purposes, rebuilding the schedulers
592 * sched domains, we can ignore !is_sched_load_balance cpusets.
593 * csa - (for CpuSet Array) Array of pointers to all the cpusets
594 * that need to be load balanced, for convenient iterative
595 * access by the subsequent code that finds the best partition,
596 * i.e the set of domains (subsets) of CPUs such that the
597 * cpus_allowed of every cpuset marked is_sched_load_balance
598 * is a subset of one of these domains, while there are as
599 * many such domains as possible, each as small as possible.
600 * doms - Conversion of 'csa' to an array of cpumasks, for passing to
0a0fca9d 601 * the kernel/sched/core.c routine partition_sched_domains() in a
029190c5
PJ
602 * convenient format, that can be easily compared to the prior
603 * value to determine what partition elements (sched domains)
604 * were changed (added or removed.)
605 *
606 * Finding the best partition (set of domains):
607 * The triple nested loops below over i, j, k scan over the
608 * load balanced cpusets (using the array of cpuset pointers in
609 * csa[]) looking for pairs of cpusets that have overlapping
610 * cpus_allowed, but which don't have the same 'pn' partition
611 * number and gives them in the same partition number. It keeps
612 * looping on the 'restart' label until it can no longer find
613 * any such pairs.
614 *
615 * The union of the cpus_allowed masks from the set of
616 * all cpusets having the same 'pn' value then form the one
617 * element of the partition (one sched domain) to be passed to
618 * partition_sched_domains().
619 */
acc3f5d7 620static int generate_sched_domains(cpumask_var_t **domains,
cf417141 621 struct sched_domain_attr **attributes)
029190c5 622{
029190c5
PJ
623 struct cpuset *cp; /* scans q */
624 struct cpuset **csa; /* array of all cpuset ptrs */
625 int csn; /* how many cpuset ptrs in csa so far */
626 int i, j, k; /* indices for partition finding loops */
acc3f5d7 627 cpumask_var_t *doms; /* resulting partition; i.e. sched domains */
47b8ea71 628 cpumask_var_t non_isolated_cpus; /* load balanced CPUs */
1d3504fc 629 struct sched_domain_attr *dattr; /* attributes for custom domains */
1583715d 630 int ndoms = 0; /* number of sched domains in result */
6af866af 631 int nslot; /* next empty doms[] struct cpumask slot */
492eb21b 632 struct cgroup_subsys_state *pos_css;
029190c5 633
029190c5 634 doms = NULL;
1d3504fc 635 dattr = NULL;
cf417141 636 csa = NULL;
029190c5 637
47b8ea71
RR
638 if (!alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL))
639 goto done;
640 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
641
029190c5
PJ
642 /* Special case for the 99% of systems with one, full, sched domain */
643 if (is_sched_load_balance(&top_cpuset)) {
acc3f5d7
RR
644 ndoms = 1;
645 doms = alloc_sched_domains(ndoms);
029190c5 646 if (!doms)
cf417141
MK
647 goto done;
648
1d3504fc
HS
649 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
650 if (dattr) {
651 *dattr = SD_ATTR_INIT;
93a65575 652 update_domain_attr_tree(dattr, &top_cpuset);
1d3504fc 653 }
47b8ea71
RR
654 cpumask_and(doms[0], top_cpuset.effective_cpus,
655 non_isolated_cpus);
cf417141 656
cf417141 657 goto done;
029190c5
PJ
658 }
659
664eedde 660 csa = kmalloc(nr_cpusets() * sizeof(cp), GFP_KERNEL);
029190c5
PJ
661 if (!csa)
662 goto done;
663 csn = 0;
664
fc560a26 665 rcu_read_lock();
492eb21b 666 cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
bd8815a6
TH
667 if (cp == &top_cpuset)
668 continue;
f5393693 669 /*
fc560a26
TH
670 * Continue traversing beyond @cp iff @cp has some CPUs and
671 * isn't load balancing. The former is obvious. The
672 * latter: All child cpusets contain a subset of the
673 * parent's cpus, so just skip them, and then we call
674 * update_domain_attr_tree() to calc relax_domain_level of
675 * the corresponding sched domain.
f5393693 676 */
fc560a26 677 if (!cpumask_empty(cp->cpus_allowed) &&
47b8ea71
RR
678 !(is_sched_load_balance(cp) &&
679 cpumask_intersects(cp->cpus_allowed, non_isolated_cpus)))
f5393693 680 continue;
489a5393 681
fc560a26
TH
682 if (is_sched_load_balance(cp))
683 csa[csn++] = cp;
684
685 /* skip @cp's subtree */
492eb21b 686 pos_css = css_rightmost_descendant(pos_css);
fc560a26
TH
687 }
688 rcu_read_unlock();
029190c5
PJ
689
690 for (i = 0; i < csn; i++)
691 csa[i]->pn = i;
692 ndoms = csn;
693
694restart:
695 /* Find the best partition (set of sched domains) */
696 for (i = 0; i < csn; i++) {
697 struct cpuset *a = csa[i];
698 int apn = a->pn;
699
700 for (j = 0; j < csn; j++) {
701 struct cpuset *b = csa[j];
702 int bpn = b->pn;
703
704 if (apn != bpn && cpusets_overlap(a, b)) {
705 for (k = 0; k < csn; k++) {
706 struct cpuset *c = csa[k];
707
708 if (c->pn == bpn)
709 c->pn = apn;
710 }
711 ndoms--; /* one less element */
712 goto restart;
713 }
714 }
715 }
716
cf417141
MK
717 /*
718 * Now we know how many domains to create.
719 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
720 */
acc3f5d7 721 doms = alloc_sched_domains(ndoms);
700018e0 722 if (!doms)
cf417141 723 goto done;
cf417141
MK
724
725 /*
726 * The rest of the code, including the scheduler, can deal with
727 * dattr==NULL case. No need to abort if alloc fails.
728 */
1d3504fc 729 dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
029190c5
PJ
730
731 for (nslot = 0, i = 0; i < csn; i++) {
732 struct cpuset *a = csa[i];
6af866af 733 struct cpumask *dp;
029190c5
PJ
734 int apn = a->pn;
735
cf417141
MK
736 if (apn < 0) {
737 /* Skip completed partitions */
738 continue;
739 }
740
acc3f5d7 741 dp = doms[nslot];
cf417141
MK
742
743 if (nslot == ndoms) {
744 static int warnings = 10;
745 if (warnings) {
12d3089c
FF
746 pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n",
747 nslot, ndoms, csn, i, apn);
cf417141 748 warnings--;
029190c5 749 }
cf417141
MK
750 continue;
751 }
029190c5 752
6af866af 753 cpumask_clear(dp);
cf417141
MK
754 if (dattr)
755 *(dattr + nslot) = SD_ATTR_INIT;
756 for (j = i; j < csn; j++) {
757 struct cpuset *b = csa[j];
758
759 if (apn == b->pn) {
8b5f1c52 760 cpumask_or(dp, dp, b->effective_cpus);
47b8ea71 761 cpumask_and(dp, dp, non_isolated_cpus);
cf417141
MK
762 if (dattr)
763 update_domain_attr_tree(dattr + nslot, b);
764
765 /* Done with this partition */
766 b->pn = -1;
029190c5 767 }
029190c5 768 }
cf417141 769 nslot++;
029190c5
PJ
770 }
771 BUG_ON(nslot != ndoms);
772
cf417141 773done:
47b8ea71 774 free_cpumask_var(non_isolated_cpus);
cf417141
MK
775 kfree(csa);
776
700018e0
LZ
777 /*
778 * Fallback to the default domain if kmalloc() failed.
779 * See comments in partition_sched_domains().
780 */
781 if (doms == NULL)
782 ndoms = 1;
783
cf417141
MK
784 *domains = doms;
785 *attributes = dattr;
786 return ndoms;
787}
788
789/*
790 * Rebuild scheduler domains.
791 *
699140ba
TH
792 * If the flag 'sched_load_balance' of any cpuset with non-empty
793 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
794 * which has that flag enabled, or if any cpuset with a non-empty
795 * 'cpus' is removed, then call this routine to rebuild the
796 * scheduler's dynamic sched domains.
cf417141 797 *
5d21cc2d 798 * Call with cpuset_mutex held. Takes get_online_cpus().
cf417141 799 */
699140ba 800static void rebuild_sched_domains_locked(void)
cf417141
MK
801{
802 struct sched_domain_attr *attr;
acc3f5d7 803 cpumask_var_t *doms;
cf417141
MK
804 int ndoms;
805
5d21cc2d 806 lockdep_assert_held(&cpuset_mutex);
86ef5c9a 807 get_online_cpus();
cf417141 808
5b16c2a4
LZ
809 /*
810 * We have raced with CPU hotplug. Don't do anything to avoid
811 * passing doms with offlined cpu to partition_sched_domains().
812 * Anyways, hotplug work item will rebuild sched domains.
813 */
8b5f1c52 814 if (!cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask))
5b16c2a4
LZ
815 goto out;
816
cf417141 817 /* Generate domain masks and attrs */
cf417141 818 ndoms = generate_sched_domains(&doms, &attr);
cf417141
MK
819
820 /* Have scheduler rebuild the domains */
821 partition_sched_domains(ndoms, doms, attr);
5b16c2a4 822out:
86ef5c9a 823 put_online_cpus();
cf417141 824}
db7f47cf 825#else /* !CONFIG_SMP */
699140ba 826static void rebuild_sched_domains_locked(void)
db7f47cf
PM
827{
828}
db7f47cf 829#endif /* CONFIG_SMP */
029190c5 830
cf417141
MK
831void rebuild_sched_domains(void)
832{
5d21cc2d 833 mutex_lock(&cpuset_mutex);
699140ba 834 rebuild_sched_domains_locked();
5d21cc2d 835 mutex_unlock(&cpuset_mutex);
029190c5
PJ
836}
837
0b2f630a
MX
838/**
839 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
840 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
0b2f630a 841 *
d66393e5
TH
842 * Iterate through each task of @cs updating its cpus_allowed to the
843 * effective cpuset's. As this function is called with cpuset_mutex held,
844 * cpuset membership stays stable.
0b2f630a 845 */
d66393e5 846static void update_tasks_cpumask(struct cpuset *cs)
0b2f630a 847{
d66393e5
TH
848 struct css_task_iter it;
849 struct task_struct *task;
850
851 css_task_iter_start(&cs->css, &it);
852 while ((task = css_task_iter_next(&it)))
ae1c8023 853 set_cpus_allowed_ptr(task, cs->effective_cpus);
d66393e5 854 css_task_iter_end(&it);
0b2f630a
MX
855}
856
5c5cc623 857/*
734d4513
LZ
858 * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree
859 * @cs: the cpuset to consider
860 * @new_cpus: temp variable for calculating new effective_cpus
861 *
862 * When congifured cpumask is changed, the effective cpumasks of this cpuset
863 * and all its descendants need to be updated.
5c5cc623 864 *
734d4513 865 * On legacy hierachy, effective_cpus will be the same with cpu_allowed.
5c5cc623
LZ
866 *
867 * Called with cpuset_mutex held
868 */
734d4513 869static void update_cpumasks_hier(struct cpuset *cs, struct cpumask *new_cpus)
5c5cc623
LZ
870{
871 struct cpuset *cp;
492eb21b 872 struct cgroup_subsys_state *pos_css;
8b5f1c52 873 bool need_rebuild_sched_domains = false;
5c5cc623
LZ
874
875 rcu_read_lock();
734d4513
LZ
876 cpuset_for_each_descendant_pre(cp, pos_css, cs) {
877 struct cpuset *parent = parent_cs(cp);
878
879 cpumask_and(new_cpus, cp->cpus_allowed, parent->effective_cpus);
880
554b0d1c
LZ
881 /*
882 * If it becomes empty, inherit the effective mask of the
883 * parent, which is guaranteed to have some CPUs.
884 */
9e10a130
TH
885 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
886 cpumask_empty(new_cpus))
554b0d1c
LZ
887 cpumask_copy(new_cpus, parent->effective_cpus);
888
734d4513
LZ
889 /* Skip the whole subtree if the cpumask remains the same. */
890 if (cpumask_equal(new_cpus, cp->effective_cpus)) {
891 pos_css = css_rightmost_descendant(pos_css);
892 continue;
5c5cc623 893 }
734d4513 894
ec903c0c 895 if (!css_tryget_online(&cp->css))
5c5cc623
LZ
896 continue;
897 rcu_read_unlock();
898
8447a0fe 899 spin_lock_irq(&callback_lock);
734d4513 900 cpumask_copy(cp->effective_cpus, new_cpus);
8447a0fe 901 spin_unlock_irq(&callback_lock);
734d4513 902
9e10a130 903 WARN_ON(!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
734d4513
LZ
904 !cpumask_equal(cp->cpus_allowed, cp->effective_cpus));
905
d66393e5 906 update_tasks_cpumask(cp);
5c5cc623 907
8b5f1c52
LZ
908 /*
909 * If the effective cpumask of any non-empty cpuset is changed,
910 * we need to rebuild sched domains.
911 */
912 if (!cpumask_empty(cp->cpus_allowed) &&
913 is_sched_load_balance(cp))
914 need_rebuild_sched_domains = true;
915
5c5cc623
LZ
916 rcu_read_lock();
917 css_put(&cp->css);
918 }
919 rcu_read_unlock();
8b5f1c52
LZ
920
921 if (need_rebuild_sched_domains)
922 rebuild_sched_domains_locked();
5c5cc623
LZ
923}
924
58f4790b
CW
925/**
926 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
927 * @cs: the cpuset to consider
fc34ac1d 928 * @trialcs: trial cpuset
58f4790b
CW
929 * @buf: buffer of cpu numbers written to this cpuset
930 */
645fcc9d
LZ
931static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
932 const char *buf)
1da177e4 933{
58f4790b 934 int retval;
1da177e4 935
5f054e31 936 /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
4c4d50f7
PJ
937 if (cs == &top_cpuset)
938 return -EACCES;
939
6f7f02e7 940 /*
c8d9c90c 941 * An empty cpus_allowed is ok only if the cpuset has no tasks.
020958b6
PJ
942 * Since cpulist_parse() fails on an empty mask, we special case
943 * that parsing. The validate_change() call ensures that cpusets
944 * with tasks have cpus.
6f7f02e7 945 */
020958b6 946 if (!*buf) {
300ed6cb 947 cpumask_clear(trialcs->cpus_allowed);
6f7f02e7 948 } else {
300ed6cb 949 retval = cpulist_parse(buf, trialcs->cpus_allowed);
6f7f02e7
DR
950 if (retval < 0)
951 return retval;
37340746 952
5d8ba82c
LZ
953 if (!cpumask_subset(trialcs->cpus_allowed,
954 top_cpuset.cpus_allowed))
37340746 955 return -EINVAL;
6f7f02e7 956 }
029190c5 957
8707d8b8 958 /* Nothing to do if the cpus didn't change */
300ed6cb 959 if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
8707d8b8 960 return 0;
58f4790b 961
a73456f3
LZ
962 retval = validate_change(cs, trialcs);
963 if (retval < 0)
964 return retval;
965
8447a0fe 966 spin_lock_irq(&callback_lock);
300ed6cb 967 cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
8447a0fe 968 spin_unlock_irq(&callback_lock);
029190c5 969
734d4513
LZ
970 /* use trialcs->cpus_allowed as a temp variable */
971 update_cpumasks_hier(cs, trialcs->cpus_allowed);
85d7b949 972 return 0;
1da177e4
LT
973}
974
e4e364e8 975/*
e93ad19d
TH
976 * Migrate memory region from one set of nodes to another. This is
977 * performed asynchronously as it can be called from process migration path
978 * holding locks involved in process management. All mm migrations are
979 * performed in the queued order and can be waited for by flushing
980 * cpuset_migrate_mm_wq.
e4e364e8
PJ
981 */
982
e93ad19d
TH
983struct cpuset_migrate_mm_work {
984 struct work_struct work;
985 struct mm_struct *mm;
986 nodemask_t from;
987 nodemask_t to;
988};
989
990static void cpuset_migrate_mm_workfn(struct work_struct *work)
991{
992 struct cpuset_migrate_mm_work *mwork =
993 container_of(work, struct cpuset_migrate_mm_work, work);
994
995 /* on a wq worker, no need to worry about %current's mems_allowed */
996 do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL);
997 mmput(mwork->mm);
998 kfree(mwork);
999}
1000
e4e364e8
PJ
1001static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
1002 const nodemask_t *to)
1003{
e93ad19d 1004 struct cpuset_migrate_mm_work *mwork;
e4e364e8 1005
e93ad19d
TH
1006 mwork = kzalloc(sizeof(*mwork), GFP_KERNEL);
1007 if (mwork) {
1008 mwork->mm = mm;
1009 mwork->from = *from;
1010 mwork->to = *to;
1011 INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn);
1012 queue_work(cpuset_migrate_mm_wq, &mwork->work);
1013 } else {
1014 mmput(mm);
1015 }
1016}
e4e364e8 1017
5cf1cacb 1018static void cpuset_post_attach(void)
e93ad19d
TH
1019{
1020 flush_workqueue(cpuset_migrate_mm_wq);
e4e364e8
PJ
1021}
1022
3b6766fe 1023/*
58568d2a
MX
1024 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
1025 * @tsk: the task to change
1026 * @newmems: new nodes that the task will be set
1027 *
1028 * In order to avoid seeing no nodes if the old and new nodes are disjoint,
1029 * we structure updates as setting all new allowed nodes, then clearing newly
1030 * disallowed ones.
58568d2a
MX
1031 */
1032static void cpuset_change_task_nodemask(struct task_struct *tsk,
1033 nodemask_t *newmems)
1034{
b246272e 1035 bool need_loop;
89e8a244 1036
c0ff7453 1037 task_lock(tsk);
b246272e
DR
1038 /*
1039 * Determine if a loop is necessary if another thread is doing
d26914d1 1040 * read_mems_allowed_begin(). If at least one node remains unchanged and
b246272e
DR
1041 * tsk does not have a mempolicy, then an empty nodemask will not be
1042 * possible when mems_allowed is larger than a word.
1043 */
1044 need_loop = task_has_mempolicy(tsk) ||
1045 !nodes_intersects(*newmems, tsk->mems_allowed);
c0ff7453 1046
0fc0287c
PZ
1047 if (need_loop) {
1048 local_irq_disable();
cc9a6c87 1049 write_seqcount_begin(&tsk->mems_allowed_seq);
0fc0287c 1050 }
c0ff7453 1051
cc9a6c87
MG
1052 nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
1053 mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP1);
c0ff7453
MX
1054
1055 mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP2);
58568d2a 1056 tsk->mems_allowed = *newmems;
cc9a6c87 1057
0fc0287c 1058 if (need_loop) {
cc9a6c87 1059 write_seqcount_end(&tsk->mems_allowed_seq);
0fc0287c
PZ
1060 local_irq_enable();
1061 }
cc9a6c87 1062
c0ff7453 1063 task_unlock(tsk);
58568d2a
MX
1064}
1065
8793d854
PM
1066static void *cpuset_being_rebound;
1067
0b2f630a
MX
1068/**
1069 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1070 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
0b2f630a 1071 *
d66393e5
TH
1072 * Iterate through each task of @cs updating its mems_allowed to the
1073 * effective cpuset's. As this function is called with cpuset_mutex held,
1074 * cpuset membership stays stable.
0b2f630a 1075 */
d66393e5 1076static void update_tasks_nodemask(struct cpuset *cs)
1da177e4 1077{
33ad801d 1078 static nodemask_t newmems; /* protected by cpuset_mutex */
d66393e5
TH
1079 struct css_task_iter it;
1080 struct task_struct *task;
59dac16f 1081
846a16bf 1082 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
4225399a 1083
ae1c8023 1084 guarantee_online_mems(cs, &newmems);
33ad801d 1085
4225399a 1086 /*
3b6766fe
LZ
1087 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
1088 * take while holding tasklist_lock. Forks can happen - the
1089 * mpol_dup() cpuset_being_rebound check will catch such forks,
1090 * and rebind their vma mempolicies too. Because we still hold
5d21cc2d 1091 * the global cpuset_mutex, we know that no other rebind effort
3b6766fe 1092 * will be contending for the global variable cpuset_being_rebound.
4225399a 1093 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
04c19fa6 1094 * is idempotent. Also migrate pages in each mm to new nodes.
4225399a 1095 */
d66393e5
TH
1096 css_task_iter_start(&cs->css, &it);
1097 while ((task = css_task_iter_next(&it))) {
1098 struct mm_struct *mm;
1099 bool migrate;
1100
1101 cpuset_change_task_nodemask(task, &newmems);
1102
1103 mm = get_task_mm(task);
1104 if (!mm)
1105 continue;
1106
1107 migrate = is_memory_migrate(cs);
1108
1109 mpol_rebind_mm(mm, &cs->mems_allowed);
1110 if (migrate)
1111 cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems);
e93ad19d
TH
1112 else
1113 mmput(mm);
d66393e5
TH
1114 }
1115 css_task_iter_end(&it);
4225399a 1116
33ad801d
LZ
1117 /*
1118 * All the tasks' nodemasks have been updated, update
1119 * cs->old_mems_allowed.
1120 */
1121 cs->old_mems_allowed = newmems;
1122
2df167a3 1123 /* We're done rebinding vmas to this cpuset's new mems_allowed. */
8793d854 1124 cpuset_being_rebound = NULL;
1da177e4
LT
1125}
1126
5c5cc623 1127/*
734d4513
LZ
1128 * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree
1129 * @cs: the cpuset to consider
1130 * @new_mems: a temp variable for calculating new effective_mems
5c5cc623 1131 *
734d4513
LZ
1132 * When configured nodemask is changed, the effective nodemasks of this cpuset
1133 * and all its descendants need to be updated.
5c5cc623 1134 *
734d4513 1135 * On legacy hiearchy, effective_mems will be the same with mems_allowed.
5c5cc623
LZ
1136 *
1137 * Called with cpuset_mutex held
1138 */
734d4513 1139static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems)
5c5cc623
LZ
1140{
1141 struct cpuset *cp;
492eb21b 1142 struct cgroup_subsys_state *pos_css;
5c5cc623
LZ
1143
1144 rcu_read_lock();
734d4513
LZ
1145 cpuset_for_each_descendant_pre(cp, pos_css, cs) {
1146 struct cpuset *parent = parent_cs(cp);
1147
1148 nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems);
1149
554b0d1c
LZ
1150 /*
1151 * If it becomes empty, inherit the effective mask of the
1152 * parent, which is guaranteed to have some MEMs.
1153 */
9e10a130
TH
1154 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
1155 nodes_empty(*new_mems))
554b0d1c
LZ
1156 *new_mems = parent->effective_mems;
1157
734d4513
LZ
1158 /* Skip the whole subtree if the nodemask remains the same. */
1159 if (nodes_equal(*new_mems, cp->effective_mems)) {
1160 pos_css = css_rightmost_descendant(pos_css);
1161 continue;
5c5cc623 1162 }
734d4513 1163
ec903c0c 1164 if (!css_tryget_online(&cp->css))
5c5cc623
LZ
1165 continue;
1166 rcu_read_unlock();
1167
8447a0fe 1168 spin_lock_irq(&callback_lock);
734d4513 1169 cp->effective_mems = *new_mems;
8447a0fe 1170 spin_unlock_irq(&callback_lock);
734d4513 1171
9e10a130 1172 WARN_ON(!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
a1381268 1173 !nodes_equal(cp->mems_allowed, cp->effective_mems));
734d4513 1174
d66393e5 1175 update_tasks_nodemask(cp);
5c5cc623
LZ
1176
1177 rcu_read_lock();
1178 css_put(&cp->css);
1179 }
1180 rcu_read_unlock();
1181}
1182
0b2f630a
MX
1183/*
1184 * Handle user request to change the 'mems' memory placement
1185 * of a cpuset. Needs to validate the request, update the
58568d2a
MX
1186 * cpusets mems_allowed, and for each task in the cpuset,
1187 * update mems_allowed and rebind task's mempolicy and any vma
1188 * mempolicies and if the cpuset is marked 'memory_migrate',
1189 * migrate the tasks pages to the new memory.
0b2f630a 1190 *
8447a0fe 1191 * Call with cpuset_mutex held. May take callback_lock during call.
0b2f630a
MX
1192 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1193 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
1194 * their mempolicies to the cpusets new mems_allowed.
1195 */
645fcc9d
LZ
1196static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
1197 const char *buf)
0b2f630a 1198{
0b2f630a
MX
1199 int retval;
1200
1201 /*
38d7bee9 1202 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
0b2f630a
MX
1203 * it's read-only
1204 */
53feb297
MX
1205 if (cs == &top_cpuset) {
1206 retval = -EACCES;
1207 goto done;
1208 }
0b2f630a 1209
0b2f630a
MX
1210 /*
1211 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1212 * Since nodelist_parse() fails on an empty mask, we special case
1213 * that parsing. The validate_change() call ensures that cpusets
1214 * with tasks have memory.
1215 */
1216 if (!*buf) {
645fcc9d 1217 nodes_clear(trialcs->mems_allowed);
0b2f630a 1218 } else {
645fcc9d 1219 retval = nodelist_parse(buf, trialcs->mems_allowed);
0b2f630a
MX
1220 if (retval < 0)
1221 goto done;
1222
645fcc9d 1223 if (!nodes_subset(trialcs->mems_allowed,
5d8ba82c
LZ
1224 top_cpuset.mems_allowed)) {
1225 retval = -EINVAL;
53feb297
MX
1226 goto done;
1227 }
0b2f630a 1228 }
33ad801d
LZ
1229
1230 if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
0b2f630a
MX
1231 retval = 0; /* Too easy - nothing to do */
1232 goto done;
1233 }
645fcc9d 1234 retval = validate_change(cs, trialcs);
0b2f630a
MX
1235 if (retval < 0)
1236 goto done;
1237
8447a0fe 1238 spin_lock_irq(&callback_lock);
645fcc9d 1239 cs->mems_allowed = trialcs->mems_allowed;
8447a0fe 1240 spin_unlock_irq(&callback_lock);
0b2f630a 1241
734d4513 1242 /* use trialcs->mems_allowed as a temp variable */
24ee3cf8 1243 update_nodemasks_hier(cs, &trialcs->mems_allowed);
0b2f630a
MX
1244done:
1245 return retval;
1246}
1247
8793d854
PM
1248int current_cpuset_is_being_rebound(void)
1249{
391acf97
GZ
1250 int ret;
1251
1252 rcu_read_lock();
1253 ret = task_cs(current) == cpuset_being_rebound;
1254 rcu_read_unlock();
1255
1256 return ret;
8793d854
PM
1257}
1258
5be7a479 1259static int update_relax_domain_level(struct cpuset *cs, s64 val)
1d3504fc 1260{
db7f47cf 1261#ifdef CONFIG_SMP
60495e77 1262 if (val < -1 || val >= sched_domain_level_max)
30e0e178 1263 return -EINVAL;
db7f47cf 1264#endif
1d3504fc
HS
1265
1266 if (val != cs->relax_domain_level) {
1267 cs->relax_domain_level = val;
300ed6cb
LZ
1268 if (!cpumask_empty(cs->cpus_allowed) &&
1269 is_sched_load_balance(cs))
699140ba 1270 rebuild_sched_domains_locked();
1d3504fc
HS
1271 }
1272
1273 return 0;
1274}
1275
72ec7029 1276/**
950592f7
MX
1277 * update_tasks_flags - update the spread flags of tasks in the cpuset.
1278 * @cs: the cpuset in which each task's spread flags needs to be changed
950592f7 1279 *
d66393e5
TH
1280 * Iterate through each task of @cs updating its spread flags. As this
1281 * function is called with cpuset_mutex held, cpuset membership stays
1282 * stable.
950592f7 1283 */
d66393e5 1284static void update_tasks_flags(struct cpuset *cs)
950592f7 1285{
d66393e5
TH
1286 struct css_task_iter it;
1287 struct task_struct *task;
1288
1289 css_task_iter_start(&cs->css, &it);
1290 while ((task = css_task_iter_next(&it)))
1291 cpuset_update_task_spread_flag(cs, task);
1292 css_task_iter_end(&it);
950592f7
MX
1293}
1294
1da177e4
LT
1295/*
1296 * update_flag - read a 0 or a 1 in a file and update associated flag
78608366
PM
1297 * bit: the bit to update (see cpuset_flagbits_t)
1298 * cs: the cpuset to update
1299 * turning_on: whether the flag is being set or cleared
053199ed 1300 *
5d21cc2d 1301 * Call with cpuset_mutex held.
1da177e4
LT
1302 */
1303
700fe1ab
PM
1304static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1305 int turning_on)
1da177e4 1306{
645fcc9d 1307 struct cpuset *trialcs;
40b6a762 1308 int balance_flag_changed;
950592f7 1309 int spread_flag_changed;
950592f7 1310 int err;
1da177e4 1311
645fcc9d
LZ
1312 trialcs = alloc_trial_cpuset(cs);
1313 if (!trialcs)
1314 return -ENOMEM;
1315
1da177e4 1316 if (turning_on)
645fcc9d 1317 set_bit(bit, &trialcs->flags);
1da177e4 1318 else
645fcc9d 1319 clear_bit(bit, &trialcs->flags);
1da177e4 1320
645fcc9d 1321 err = validate_change(cs, trialcs);
85d7b949 1322 if (err < 0)
645fcc9d 1323 goto out;
029190c5 1324
029190c5 1325 balance_flag_changed = (is_sched_load_balance(cs) !=
645fcc9d 1326 is_sched_load_balance(trialcs));
029190c5 1327
950592f7
MX
1328 spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
1329 || (is_spread_page(cs) != is_spread_page(trialcs)));
1330
8447a0fe 1331 spin_lock_irq(&callback_lock);
645fcc9d 1332 cs->flags = trialcs->flags;
8447a0fe 1333 spin_unlock_irq(&callback_lock);
85d7b949 1334
300ed6cb 1335 if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
699140ba 1336 rebuild_sched_domains_locked();
029190c5 1337
950592f7 1338 if (spread_flag_changed)
d66393e5 1339 update_tasks_flags(cs);
645fcc9d
LZ
1340out:
1341 free_trial_cpuset(trialcs);
1342 return err;
1da177e4
LT
1343}
1344
3e0d98b9 1345/*
80f7228b 1346 * Frequency meter - How fast is some event occurring?
3e0d98b9
PJ
1347 *
1348 * These routines manage a digitally filtered, constant time based,
1349 * event frequency meter. There are four routines:
1350 * fmeter_init() - initialize a frequency meter.
1351 * fmeter_markevent() - called each time the event happens.
1352 * fmeter_getrate() - returns the recent rate of such events.
1353 * fmeter_update() - internal routine used to update fmeter.
1354 *
1355 * A common data structure is passed to each of these routines,
1356 * which is used to keep track of the state required to manage the
1357 * frequency meter and its digital filter.
1358 *
1359 * The filter works on the number of events marked per unit time.
1360 * The filter is single-pole low-pass recursive (IIR). The time unit
1361 * is 1 second. Arithmetic is done using 32-bit integers scaled to
1362 * simulate 3 decimal digits of precision (multiplied by 1000).
1363 *
1364 * With an FM_COEF of 933, and a time base of 1 second, the filter
1365 * has a half-life of 10 seconds, meaning that if the events quit
1366 * happening, then the rate returned from the fmeter_getrate()
1367 * will be cut in half each 10 seconds, until it converges to zero.
1368 *
1369 * It is not worth doing a real infinitely recursive filter. If more
1370 * than FM_MAXTICKS ticks have elapsed since the last filter event,
1371 * just compute FM_MAXTICKS ticks worth, by which point the level
1372 * will be stable.
1373 *
1374 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
1375 * arithmetic overflow in the fmeter_update() routine.
1376 *
1377 * Given the simple 32 bit integer arithmetic used, this meter works
1378 * best for reporting rates between one per millisecond (msec) and
1379 * one per 32 (approx) seconds. At constant rates faster than one
1380 * per msec it maxes out at values just under 1,000,000. At constant
1381 * rates between one per msec, and one per second it will stabilize
1382 * to a value N*1000, where N is the rate of events per second.
1383 * At constant rates between one per second and one per 32 seconds,
1384 * it will be choppy, moving up on the seconds that have an event,
1385 * and then decaying until the next event. At rates slower than
1386 * about one in 32 seconds, it decays all the way back to zero between
1387 * each event.
1388 */
1389
1390#define FM_COEF 933 /* coefficient for half-life of 10 secs */
d2b43658 1391#define FM_MAXTICKS ((u32)99) /* useless computing more ticks than this */
3e0d98b9
PJ
1392#define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
1393#define FM_SCALE 1000 /* faux fixed point scale */
1394
1395/* Initialize a frequency meter */
1396static void fmeter_init(struct fmeter *fmp)
1397{
1398 fmp->cnt = 0;
1399 fmp->val = 0;
1400 fmp->time = 0;
1401 spin_lock_init(&fmp->lock);
1402}
1403
1404/* Internal meter update - process cnt events and update value */
1405static void fmeter_update(struct fmeter *fmp)
1406{
d2b43658
AB
1407 time64_t now;
1408 u32 ticks;
1409
1410 now = ktime_get_seconds();
1411 ticks = now - fmp->time;
3e0d98b9
PJ
1412
1413 if (ticks == 0)
1414 return;
1415
1416 ticks = min(FM_MAXTICKS, ticks);
1417 while (ticks-- > 0)
1418 fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
1419 fmp->time = now;
1420
1421 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
1422 fmp->cnt = 0;
1423}
1424
1425/* Process any previous ticks, then bump cnt by one (times scale). */
1426static void fmeter_markevent(struct fmeter *fmp)
1427{
1428 spin_lock(&fmp->lock);
1429 fmeter_update(fmp);
1430 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
1431 spin_unlock(&fmp->lock);
1432}
1433
1434/* Process any previous ticks, then return current value. */
1435static int fmeter_getrate(struct fmeter *fmp)
1436{
1437 int val;
1438
1439 spin_lock(&fmp->lock);
1440 fmeter_update(fmp);
1441 val = fmp->val;
1442 spin_unlock(&fmp->lock);
1443 return val;
1444}
1445
57fce0a6
TH
1446static struct cpuset *cpuset_attach_old_cs;
1447
5d21cc2d 1448/* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
1f7dd3e5 1449static int cpuset_can_attach(struct cgroup_taskset *tset)
f780bdb7 1450{
1f7dd3e5
TH
1451 struct cgroup_subsys_state *css;
1452 struct cpuset *cs;
bb9d97b6
TH
1453 struct task_struct *task;
1454 int ret;
1da177e4 1455
57fce0a6 1456 /* used later by cpuset_attach() */
1f7dd3e5
TH
1457 cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css));
1458 cs = css_cs(css);
57fce0a6 1459
5d21cc2d
TH
1460 mutex_lock(&cpuset_mutex);
1461
aa6ec29b 1462 /* allow moving tasks into an empty cpuset if on default hierarchy */
5d21cc2d 1463 ret = -ENOSPC;
9e10a130 1464 if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
88fa523b 1465 (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)))
5d21cc2d 1466 goto out_unlock;
9985b0ba 1467
1f7dd3e5 1468 cgroup_taskset_for_each(task, css, tset) {
7f51412a
JL
1469 ret = task_can_attach(task, cs->cpus_allowed);
1470 if (ret)
5d21cc2d
TH
1471 goto out_unlock;
1472 ret = security_task_setscheduler(task);
1473 if (ret)
1474 goto out_unlock;
bb9d97b6 1475 }
f780bdb7 1476
452477fa
TH
1477 /*
1478 * Mark attach is in progress. This makes validate_change() fail
1479 * changes which zero cpus/mems_allowed.
1480 */
1481 cs->attach_in_progress++;
5d21cc2d
TH
1482 ret = 0;
1483out_unlock:
1484 mutex_unlock(&cpuset_mutex);
1485 return ret;
8793d854 1486}
f780bdb7 1487
1f7dd3e5 1488static void cpuset_cancel_attach(struct cgroup_taskset *tset)
452477fa 1489{
1f7dd3e5
TH
1490 struct cgroup_subsys_state *css;
1491 struct cpuset *cs;
1492
1493 cgroup_taskset_first(tset, &css);
1494 cs = css_cs(css);
1495
5d21cc2d 1496 mutex_lock(&cpuset_mutex);
eb95419b 1497 css_cs(css)->attach_in_progress--;
5d21cc2d 1498 mutex_unlock(&cpuset_mutex);
8793d854 1499}
1da177e4 1500
4e4c9a14 1501/*
5d21cc2d 1502 * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach()
4e4c9a14
TH
1503 * but we can't allocate it dynamically there. Define it global and
1504 * allocate from cpuset_init().
1505 */
1506static cpumask_var_t cpus_attach;
1507
1f7dd3e5 1508static void cpuset_attach(struct cgroup_taskset *tset)
8793d854 1509{
67bd2c59 1510 /* static buf protected by cpuset_mutex */
4e4c9a14 1511 static nodemask_t cpuset_attach_nodemask_to;
bb9d97b6 1512 struct task_struct *task;
4530eddb 1513 struct task_struct *leader;
1f7dd3e5
TH
1514 struct cgroup_subsys_state *css;
1515 struct cpuset *cs;
57fce0a6 1516 struct cpuset *oldcs = cpuset_attach_old_cs;
22fb52dd 1517
1f7dd3e5
TH
1518 cgroup_taskset_first(tset, &css);
1519 cs = css_cs(css);
1520
5d21cc2d
TH
1521 mutex_lock(&cpuset_mutex);
1522
4e4c9a14
TH
1523 /* prepare for attach */
1524 if (cs == &top_cpuset)
1525 cpumask_copy(cpus_attach, cpu_possible_mask);
1526 else
ae1c8023 1527 guarantee_online_cpus(cs, cpus_attach);
4e4c9a14 1528
ae1c8023 1529 guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
4e4c9a14 1530
1f7dd3e5 1531 cgroup_taskset_for_each(task, css, tset) {
bb9d97b6
TH
1532 /*
1533 * can_attach beforehand should guarantee that this doesn't
1534 * fail. TODO: have a better way to handle failure here
1535 */
1536 WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
1537
1538 cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
1539 cpuset_update_task_spread_flag(cs, task);
1540 }
22fb52dd 1541
f780bdb7 1542 /*
4530eddb
TH
1543 * Change mm for all threadgroup leaders. This is expensive and may
1544 * sleep and should be moved outside migration path proper.
f780bdb7 1545 */
ae1c8023 1546 cpuset_attach_nodemask_to = cs->effective_mems;
1f7dd3e5 1547 cgroup_taskset_for_each_leader(leader, css, tset) {
3df9ca0a
TH
1548 struct mm_struct *mm = get_task_mm(leader);
1549
1550 if (mm) {
1551 mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
1552
1553 /*
1554 * old_mems_allowed is the same with mems_allowed
1555 * here, except if this task is being moved
1556 * automatically due to hotplug. In that case
1557 * @mems_allowed has been updated and is empty, so
1558 * @old_mems_allowed is the right nodesets that we
1559 * migrate mm from.
1560 */
e93ad19d 1561 if (is_memory_migrate(cs))
3df9ca0a
TH
1562 cpuset_migrate_mm(mm, &oldcs->old_mems_allowed,
1563 &cpuset_attach_nodemask_to);
e93ad19d
TH
1564 else
1565 mmput(mm);
f047cecf 1566 }
4225399a 1567 }
452477fa 1568
33ad801d 1569 cs->old_mems_allowed = cpuset_attach_nodemask_to;
02bb5863 1570
452477fa 1571 cs->attach_in_progress--;
e44193d3
LZ
1572 if (!cs->attach_in_progress)
1573 wake_up(&cpuset_attach_wq);
5d21cc2d
TH
1574
1575 mutex_unlock(&cpuset_mutex);
1da177e4
LT
1576}
1577
1578/* The various types of files and directories in a cpuset file system */
1579
1580typedef enum {
45b07ef3 1581 FILE_MEMORY_MIGRATE,
1da177e4
LT
1582 FILE_CPULIST,
1583 FILE_MEMLIST,
afd1a8b3
LZ
1584 FILE_EFFECTIVE_CPULIST,
1585 FILE_EFFECTIVE_MEMLIST,
1da177e4
LT
1586 FILE_CPU_EXCLUSIVE,
1587 FILE_MEM_EXCLUSIVE,
78608366 1588 FILE_MEM_HARDWALL,
029190c5 1589 FILE_SCHED_LOAD_BALANCE,
1d3504fc 1590 FILE_SCHED_RELAX_DOMAIN_LEVEL,
3e0d98b9
PJ
1591 FILE_MEMORY_PRESSURE_ENABLED,
1592 FILE_MEMORY_PRESSURE,
825a46af
PJ
1593 FILE_SPREAD_PAGE,
1594 FILE_SPREAD_SLAB,
1da177e4
LT
1595} cpuset_filetype_t;
1596
182446d0
TH
1597static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft,
1598 u64 val)
700fe1ab 1599{
182446d0 1600 struct cpuset *cs = css_cs(css);
700fe1ab 1601 cpuset_filetype_t type = cft->private;
a903f086 1602 int retval = 0;
700fe1ab 1603
5d21cc2d 1604 mutex_lock(&cpuset_mutex);
a903f086
LZ
1605 if (!is_cpuset_online(cs)) {
1606 retval = -ENODEV;
5d21cc2d 1607 goto out_unlock;
a903f086 1608 }
700fe1ab
PM
1609
1610 switch (type) {
1da177e4 1611 case FILE_CPU_EXCLUSIVE:
700fe1ab 1612 retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
1da177e4
LT
1613 break;
1614 case FILE_MEM_EXCLUSIVE:
700fe1ab 1615 retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
1da177e4 1616 break;
78608366
PM
1617 case FILE_MEM_HARDWALL:
1618 retval = update_flag(CS_MEM_HARDWALL, cs, val);
1619 break;
029190c5 1620 case FILE_SCHED_LOAD_BALANCE:
700fe1ab 1621 retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1d3504fc 1622 break;
45b07ef3 1623 case FILE_MEMORY_MIGRATE:
700fe1ab 1624 retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
45b07ef3 1625 break;
3e0d98b9 1626 case FILE_MEMORY_PRESSURE_ENABLED:
700fe1ab 1627 cpuset_memory_pressure_enabled = !!val;
3e0d98b9 1628 break;
825a46af 1629 case FILE_SPREAD_PAGE:
700fe1ab 1630 retval = update_flag(CS_SPREAD_PAGE, cs, val);
825a46af
PJ
1631 break;
1632 case FILE_SPREAD_SLAB:
700fe1ab 1633 retval = update_flag(CS_SPREAD_SLAB, cs, val);
825a46af 1634 break;
1da177e4
LT
1635 default:
1636 retval = -EINVAL;
700fe1ab 1637 break;
1da177e4 1638 }
5d21cc2d
TH
1639out_unlock:
1640 mutex_unlock(&cpuset_mutex);
1da177e4
LT
1641 return retval;
1642}
1643
182446d0
TH
1644static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft,
1645 s64 val)
5be7a479 1646{
182446d0 1647 struct cpuset *cs = css_cs(css);
5be7a479 1648 cpuset_filetype_t type = cft->private;
5d21cc2d 1649 int retval = -ENODEV;
5be7a479 1650
5d21cc2d
TH
1651 mutex_lock(&cpuset_mutex);
1652 if (!is_cpuset_online(cs))
1653 goto out_unlock;
e3712395 1654
5be7a479
PM
1655 switch (type) {
1656 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1657 retval = update_relax_domain_level(cs, val);
1658 break;
1659 default:
1660 retval = -EINVAL;
1661 break;
1662 }
5d21cc2d
TH
1663out_unlock:
1664 mutex_unlock(&cpuset_mutex);
5be7a479
PM
1665 return retval;
1666}
1667
e3712395
PM
1668/*
1669 * Common handling for a write to a "cpus" or "mems" file.
1670 */
451af504
TH
1671static ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
1672 char *buf, size_t nbytes, loff_t off)
e3712395 1673{
451af504 1674 struct cpuset *cs = css_cs(of_css(of));
645fcc9d 1675 struct cpuset *trialcs;
5d21cc2d 1676 int retval = -ENODEV;
e3712395 1677
451af504
TH
1678 buf = strstrip(buf);
1679
3a5a6d0c
TH
1680 /*
1681 * CPU or memory hotunplug may leave @cs w/o any execution
1682 * resources, in which case the hotplug code asynchronously updates
1683 * configuration and transfers all tasks to the nearest ancestor
1684 * which can execute.
1685 *
1686 * As writes to "cpus" or "mems" may restore @cs's execution
1687 * resources, wait for the previously scheduled operations before
1688 * proceeding, so that we don't end up keep removing tasks added
1689 * after execution capability is restored.
76bb5ab8
TH
1690 *
1691 * cpuset_hotplug_work calls back into cgroup core via
1692 * cgroup_transfer_tasks() and waiting for it from a cgroupfs
1693 * operation like this one can lead to a deadlock through kernfs
1694 * active_ref protection. Let's break the protection. Losing the
1695 * protection is okay as we check whether @cs is online after
1696 * grabbing cpuset_mutex anyway. This only happens on the legacy
1697 * hierarchies.
3a5a6d0c 1698 */
76bb5ab8
TH
1699 css_get(&cs->css);
1700 kernfs_break_active_protection(of->kn);
3a5a6d0c
TH
1701 flush_work(&cpuset_hotplug_work);
1702
5d21cc2d
TH
1703 mutex_lock(&cpuset_mutex);
1704 if (!is_cpuset_online(cs))
1705 goto out_unlock;
e3712395 1706
645fcc9d 1707 trialcs = alloc_trial_cpuset(cs);
b75f38d6
LZ
1708 if (!trialcs) {
1709 retval = -ENOMEM;
5d21cc2d 1710 goto out_unlock;
b75f38d6 1711 }
645fcc9d 1712
451af504 1713 switch (of_cft(of)->private) {
e3712395 1714 case FILE_CPULIST:
645fcc9d 1715 retval = update_cpumask(cs, trialcs, buf);
e3712395
PM
1716 break;
1717 case FILE_MEMLIST:
645fcc9d 1718 retval = update_nodemask(cs, trialcs, buf);
e3712395
PM
1719 break;
1720 default:
1721 retval = -EINVAL;
1722 break;
1723 }
645fcc9d
LZ
1724
1725 free_trial_cpuset(trialcs);
5d21cc2d
TH
1726out_unlock:
1727 mutex_unlock(&cpuset_mutex);
76bb5ab8
TH
1728 kernfs_unbreak_active_protection(of->kn);
1729 css_put(&cs->css);
e93ad19d 1730 flush_workqueue(cpuset_migrate_mm_wq);
451af504 1731 return retval ?: nbytes;
e3712395
PM
1732}
1733
1da177e4
LT
1734/*
1735 * These ascii lists should be read in a single call, by using a user
1736 * buffer large enough to hold the entire map. If read in smaller
1737 * chunks, there is no guarantee of atomicity. Since the display format
1738 * used, list of ranges of sequential numbers, is variable length,
1739 * and since these maps can change value dynamically, one could read
1740 * gibberish by doing partial reads while a list was changing.
1da177e4 1741 */
2da8ca82 1742static int cpuset_common_seq_show(struct seq_file *sf, void *v)
1da177e4 1743{
2da8ca82
TH
1744 struct cpuset *cs = css_cs(seq_css(sf));
1745 cpuset_filetype_t type = seq_cft(sf)->private;
51ffe411 1746 int ret = 0;
1da177e4 1747
8447a0fe 1748 spin_lock_irq(&callback_lock);
1da177e4
LT
1749
1750 switch (type) {
1751 case FILE_CPULIST:
e8e6d97c 1752 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_allowed));
1da177e4
LT
1753 break;
1754 case FILE_MEMLIST:
e8e6d97c 1755 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed));
1da177e4 1756 break;
afd1a8b3 1757 case FILE_EFFECTIVE_CPULIST:
e8e6d97c 1758 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus));
afd1a8b3
LZ
1759 break;
1760 case FILE_EFFECTIVE_MEMLIST:
e8e6d97c 1761 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems));
afd1a8b3 1762 break;
1da177e4 1763 default:
51ffe411 1764 ret = -EINVAL;
1da177e4 1765 }
1da177e4 1766
8447a0fe 1767 spin_unlock_irq(&callback_lock);
51ffe411 1768 return ret;
1da177e4
LT
1769}
1770
182446d0 1771static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft)
700fe1ab 1772{
182446d0 1773 struct cpuset *cs = css_cs(css);
700fe1ab
PM
1774 cpuset_filetype_t type = cft->private;
1775 switch (type) {
1776 case FILE_CPU_EXCLUSIVE:
1777 return is_cpu_exclusive(cs);
1778 case FILE_MEM_EXCLUSIVE:
1779 return is_mem_exclusive(cs);
78608366
PM
1780 case FILE_MEM_HARDWALL:
1781 return is_mem_hardwall(cs);
700fe1ab
PM
1782 case FILE_SCHED_LOAD_BALANCE:
1783 return is_sched_load_balance(cs);
1784 case FILE_MEMORY_MIGRATE:
1785 return is_memory_migrate(cs);
1786 case FILE_MEMORY_PRESSURE_ENABLED:
1787 return cpuset_memory_pressure_enabled;
1788 case FILE_MEMORY_PRESSURE:
1789 return fmeter_getrate(&cs->fmeter);
1790 case FILE_SPREAD_PAGE:
1791 return is_spread_page(cs);
1792 case FILE_SPREAD_SLAB:
1793 return is_spread_slab(cs);
1794 default:
1795 BUG();
1796 }
cf417141
MK
1797
1798 /* Unreachable but makes gcc happy */
1799 return 0;
700fe1ab 1800}
1da177e4 1801
182446d0 1802static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft)
5be7a479 1803{
182446d0 1804 struct cpuset *cs = css_cs(css);
5be7a479
PM
1805 cpuset_filetype_t type = cft->private;
1806 switch (type) {
1807 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1808 return cs->relax_domain_level;
1809 default:
1810 BUG();
1811 }
cf417141
MK
1812
1813 /* Unrechable but makes gcc happy */
1814 return 0;
5be7a479
PM
1815}
1816
1da177e4
LT
1817
1818/*
1819 * for the common functions, 'private' gives the type of file
1820 */
1821
addf2c73
PM
1822static struct cftype files[] = {
1823 {
1824 .name = "cpus",
2da8ca82 1825 .seq_show = cpuset_common_seq_show,
451af504 1826 .write = cpuset_write_resmask,
e3712395 1827 .max_write_len = (100U + 6 * NR_CPUS),
addf2c73
PM
1828 .private = FILE_CPULIST,
1829 },
1830
1831 {
1832 .name = "mems",
2da8ca82 1833 .seq_show = cpuset_common_seq_show,
451af504 1834 .write = cpuset_write_resmask,
e3712395 1835 .max_write_len = (100U + 6 * MAX_NUMNODES),
addf2c73
PM
1836 .private = FILE_MEMLIST,
1837 },
1838
afd1a8b3
LZ
1839 {
1840 .name = "effective_cpus",
1841 .seq_show = cpuset_common_seq_show,
1842 .private = FILE_EFFECTIVE_CPULIST,
1843 },
1844
1845 {
1846 .name = "effective_mems",
1847 .seq_show = cpuset_common_seq_show,
1848 .private = FILE_EFFECTIVE_MEMLIST,
1849 },
1850
addf2c73
PM
1851 {
1852 .name = "cpu_exclusive",
1853 .read_u64 = cpuset_read_u64,
1854 .write_u64 = cpuset_write_u64,
1855 .private = FILE_CPU_EXCLUSIVE,
1856 },
1857
1858 {
1859 .name = "mem_exclusive",
1860 .read_u64 = cpuset_read_u64,
1861 .write_u64 = cpuset_write_u64,
1862 .private = FILE_MEM_EXCLUSIVE,
1863 },
1864
78608366
PM
1865 {
1866 .name = "mem_hardwall",
1867 .read_u64 = cpuset_read_u64,
1868 .write_u64 = cpuset_write_u64,
1869 .private = FILE_MEM_HARDWALL,
1870 },
1871
addf2c73
PM
1872 {
1873 .name = "sched_load_balance",
1874 .read_u64 = cpuset_read_u64,
1875 .write_u64 = cpuset_write_u64,
1876 .private = FILE_SCHED_LOAD_BALANCE,
1877 },
1878
1879 {
1880 .name = "sched_relax_domain_level",
5be7a479
PM
1881 .read_s64 = cpuset_read_s64,
1882 .write_s64 = cpuset_write_s64,
addf2c73
PM
1883 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
1884 },
1885
1886 {
1887 .name = "memory_migrate",
1888 .read_u64 = cpuset_read_u64,
1889 .write_u64 = cpuset_write_u64,
1890 .private = FILE_MEMORY_MIGRATE,
1891 },
1892
1893 {
1894 .name = "memory_pressure",
1895 .read_u64 = cpuset_read_u64,
addf2c73
PM
1896 },
1897
1898 {
1899 .name = "memory_spread_page",
1900 .read_u64 = cpuset_read_u64,
1901 .write_u64 = cpuset_write_u64,
1902 .private = FILE_SPREAD_PAGE,
1903 },
1904
1905 {
1906 .name = "memory_spread_slab",
1907 .read_u64 = cpuset_read_u64,
1908 .write_u64 = cpuset_write_u64,
1909 .private = FILE_SPREAD_SLAB,
1910 },
3e0d98b9 1911
4baf6e33
TH
1912 {
1913 .name = "memory_pressure_enabled",
1914 .flags = CFTYPE_ONLY_ON_ROOT,
1915 .read_u64 = cpuset_read_u64,
1916 .write_u64 = cpuset_write_u64,
1917 .private = FILE_MEMORY_PRESSURE_ENABLED,
1918 },
1da177e4 1919
4baf6e33
TH
1920 { } /* terminate */
1921};
1da177e4
LT
1922
1923/*
92fb9748 1924 * cpuset_css_alloc - allocate a cpuset css
c9e5fe66 1925 * cgrp: control group that the new cpuset will be part of
1da177e4
LT
1926 */
1927
eb95419b
TH
1928static struct cgroup_subsys_state *
1929cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
1da177e4 1930{
c8f699bb 1931 struct cpuset *cs;
1da177e4 1932
eb95419b 1933 if (!parent_css)
8793d854 1934 return &top_cpuset.css;
033fa1c5 1935
c8f699bb 1936 cs = kzalloc(sizeof(*cs), GFP_KERNEL);
1da177e4 1937 if (!cs)
8793d854 1938 return ERR_PTR(-ENOMEM);
e2b9a3d7
LZ
1939 if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL))
1940 goto free_cs;
1941 if (!alloc_cpumask_var(&cs->effective_cpus, GFP_KERNEL))
1942 goto free_cpus;
1da177e4 1943
029190c5 1944 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
300ed6cb 1945 cpumask_clear(cs->cpus_allowed);
f9a86fcb 1946 nodes_clear(cs->mems_allowed);
e2b9a3d7
LZ
1947 cpumask_clear(cs->effective_cpus);
1948 nodes_clear(cs->effective_mems);
3e0d98b9 1949 fmeter_init(&cs->fmeter);
1d3504fc 1950 cs->relax_domain_level = -1;
1da177e4 1951
c8f699bb 1952 return &cs->css;
e2b9a3d7
LZ
1953
1954free_cpus:
1955 free_cpumask_var(cs->cpus_allowed);
1956free_cs:
1957 kfree(cs);
1958 return ERR_PTR(-ENOMEM);
c8f699bb
TH
1959}
1960
eb95419b 1961static int cpuset_css_online(struct cgroup_subsys_state *css)
c8f699bb 1962{
eb95419b 1963 struct cpuset *cs = css_cs(css);
c431069f 1964 struct cpuset *parent = parent_cs(cs);
ae8086ce 1965 struct cpuset *tmp_cs;
492eb21b 1966 struct cgroup_subsys_state *pos_css;
c8f699bb
TH
1967
1968 if (!parent)
1969 return 0;
1970
5d21cc2d
TH
1971 mutex_lock(&cpuset_mutex);
1972
efeb77b2 1973 set_bit(CS_ONLINE, &cs->flags);
c8f699bb
TH
1974 if (is_spread_page(parent))
1975 set_bit(CS_SPREAD_PAGE, &cs->flags);
1976 if (is_spread_slab(parent))
1977 set_bit(CS_SPREAD_SLAB, &cs->flags);
1da177e4 1978
664eedde 1979 cpuset_inc();
033fa1c5 1980
8447a0fe 1981 spin_lock_irq(&callback_lock);
9e10a130 1982 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) {
e2b9a3d7
LZ
1983 cpumask_copy(cs->effective_cpus, parent->effective_cpus);
1984 cs->effective_mems = parent->effective_mems;
1985 }
8447a0fe 1986 spin_unlock_irq(&callback_lock);
e2b9a3d7 1987
eb95419b 1988 if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
5d21cc2d 1989 goto out_unlock;
033fa1c5
TH
1990
1991 /*
1992 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
1993 * set. This flag handling is implemented in cgroup core for
1994 * histrical reasons - the flag may be specified during mount.
1995 *
1996 * Currently, if any sibling cpusets have exclusive cpus or mem, we
1997 * refuse to clone the configuration - thereby refusing the task to
1998 * be entered, and as a result refusing the sys_unshare() or
1999 * clone() which initiated it. If this becomes a problem for some
2000 * users who wish to allow that scenario, then this could be
2001 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
2002 * (and likewise for mems) to the new cgroup.
2003 */
ae8086ce 2004 rcu_read_lock();
492eb21b 2005 cpuset_for_each_child(tmp_cs, pos_css, parent) {
ae8086ce
TH
2006 if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
2007 rcu_read_unlock();
5d21cc2d 2008 goto out_unlock;
ae8086ce 2009 }
033fa1c5 2010 }
ae8086ce 2011 rcu_read_unlock();
033fa1c5 2012
8447a0fe 2013 spin_lock_irq(&callback_lock);
033fa1c5 2014 cs->mems_allowed = parent->mems_allowed;
790317e1 2015 cs->effective_mems = parent->mems_allowed;
033fa1c5 2016 cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
790317e1 2017 cpumask_copy(cs->effective_cpus, parent->cpus_allowed);
cea74465 2018 spin_unlock_irq(&callback_lock);
5d21cc2d
TH
2019out_unlock:
2020 mutex_unlock(&cpuset_mutex);
c8f699bb
TH
2021 return 0;
2022}
2023
0b9e6965
ZH
2024/*
2025 * If the cpuset being removed has its flag 'sched_load_balance'
2026 * enabled, then simulate turning sched_load_balance off, which
2027 * will call rebuild_sched_domains_locked().
2028 */
2029
eb95419b 2030static void cpuset_css_offline(struct cgroup_subsys_state *css)
c8f699bb 2031{
eb95419b 2032 struct cpuset *cs = css_cs(css);
c8f699bb 2033
5d21cc2d 2034 mutex_lock(&cpuset_mutex);
c8f699bb
TH
2035
2036 if (is_sched_load_balance(cs))
2037 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
2038
664eedde 2039 cpuset_dec();
efeb77b2 2040 clear_bit(CS_ONLINE, &cs->flags);
c8f699bb 2041
5d21cc2d 2042 mutex_unlock(&cpuset_mutex);
1da177e4
LT
2043}
2044
eb95419b 2045static void cpuset_css_free(struct cgroup_subsys_state *css)
1da177e4 2046{
eb95419b 2047 struct cpuset *cs = css_cs(css);
1da177e4 2048
e2b9a3d7 2049 free_cpumask_var(cs->effective_cpus);
300ed6cb 2050 free_cpumask_var(cs->cpus_allowed);
8793d854 2051 kfree(cs);
1da177e4
LT
2052}
2053
39bd0d15
LZ
2054static void cpuset_bind(struct cgroup_subsys_state *root_css)
2055{
2056 mutex_lock(&cpuset_mutex);
8447a0fe 2057 spin_lock_irq(&callback_lock);
39bd0d15 2058
9e10a130 2059 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) {
39bd0d15
LZ
2060 cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask);
2061 top_cpuset.mems_allowed = node_possible_map;
2062 } else {
2063 cpumask_copy(top_cpuset.cpus_allowed,
2064 top_cpuset.effective_cpus);
2065 top_cpuset.mems_allowed = top_cpuset.effective_mems;
2066 }
2067
8447a0fe 2068 spin_unlock_irq(&callback_lock);
39bd0d15
LZ
2069 mutex_unlock(&cpuset_mutex);
2070}
2071
073219e9 2072struct cgroup_subsys cpuset_cgrp_subsys = {
39bd0d15
LZ
2073 .css_alloc = cpuset_css_alloc,
2074 .css_online = cpuset_css_online,
2075 .css_offline = cpuset_css_offline,
2076 .css_free = cpuset_css_free,
2077 .can_attach = cpuset_can_attach,
2078 .cancel_attach = cpuset_cancel_attach,
2079 .attach = cpuset_attach,
5cf1cacb 2080 .post_attach = cpuset_post_attach,
39bd0d15 2081 .bind = cpuset_bind,
5577964e 2082 .legacy_cftypes = files,
b38e42e9 2083 .early_init = true,
8793d854
PM
2084};
2085
1da177e4
LT
2086/**
2087 * cpuset_init - initialize cpusets at system boot
2088 *
2089 * Description: Initialize top_cpuset and the cpuset internal file system,
2090 **/
2091
2092int __init cpuset_init(void)
2093{
8793d854 2094 int err = 0;
1da177e4 2095
58568d2a
MX
2096 if (!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL))
2097 BUG();
e2b9a3d7
LZ
2098 if (!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL))
2099 BUG();
58568d2a 2100
300ed6cb 2101 cpumask_setall(top_cpuset.cpus_allowed);
f9a86fcb 2102 nodes_setall(top_cpuset.mems_allowed);
e2b9a3d7
LZ
2103 cpumask_setall(top_cpuset.effective_cpus);
2104 nodes_setall(top_cpuset.effective_mems);
1da177e4 2105
3e0d98b9 2106 fmeter_init(&top_cpuset.fmeter);
029190c5 2107 set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
1d3504fc 2108 top_cpuset.relax_domain_level = -1;
1da177e4 2109
1da177e4
LT
2110 err = register_filesystem(&cpuset_fs_type);
2111 if (err < 0)
8793d854
PM
2112 return err;
2113
2341d1b6
LZ
2114 if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL))
2115 BUG();
2116
8793d854 2117 return 0;
1da177e4
LT
2118}
2119
b1aac8bb 2120/*
cf417141 2121 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
b1aac8bb
PJ
2122 * or memory nodes, we need to walk over the cpuset hierarchy,
2123 * removing that CPU or node from all cpusets. If this removes the
956db3ca
CW
2124 * last CPU or node from a cpuset, then move the tasks in the empty
2125 * cpuset to its next-highest non-empty parent.
b1aac8bb 2126 */
956db3ca
CW
2127static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
2128{
2129 struct cpuset *parent;
2130
956db3ca
CW
2131 /*
2132 * Find its next-highest non-empty parent, (top cpuset
2133 * has online cpus, so can't be empty).
2134 */
c431069f 2135 parent = parent_cs(cs);
300ed6cb 2136 while (cpumask_empty(parent->cpus_allowed) ||
b4501295 2137 nodes_empty(parent->mems_allowed))
c431069f 2138 parent = parent_cs(parent);
956db3ca 2139
8cc99345 2140 if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
12d3089c 2141 pr_err("cpuset: failed to transfer tasks out of empty cpuset ");
e61734c5
TH
2142 pr_cont_cgroup_name(cs->css.cgroup);
2143 pr_cont("\n");
8cc99345 2144 }
956db3ca
CW
2145}
2146
be4c9dd7
LZ
2147static void
2148hotplug_update_tasks_legacy(struct cpuset *cs,
2149 struct cpumask *new_cpus, nodemask_t *new_mems,
2150 bool cpus_updated, bool mems_updated)
390a36aa
LZ
2151{
2152 bool is_empty;
2153
8447a0fe 2154 spin_lock_irq(&callback_lock);
be4c9dd7
LZ
2155 cpumask_copy(cs->cpus_allowed, new_cpus);
2156 cpumask_copy(cs->effective_cpus, new_cpus);
2157 cs->mems_allowed = *new_mems;
2158 cs->effective_mems = *new_mems;
8447a0fe 2159 spin_unlock_irq(&callback_lock);
390a36aa
LZ
2160
2161 /*
2162 * Don't call update_tasks_cpumask() if the cpuset becomes empty,
2163 * as the tasks will be migratecd to an ancestor.
2164 */
be4c9dd7 2165 if (cpus_updated && !cpumask_empty(cs->cpus_allowed))
390a36aa 2166 update_tasks_cpumask(cs);
be4c9dd7 2167 if (mems_updated && !nodes_empty(cs->mems_allowed))
390a36aa
LZ
2168 update_tasks_nodemask(cs);
2169
2170 is_empty = cpumask_empty(cs->cpus_allowed) ||
2171 nodes_empty(cs->mems_allowed);
2172
2173 mutex_unlock(&cpuset_mutex);
2174
2175 /*
2176 * Move tasks to the nearest ancestor with execution resources,
2177 * This is full cgroup operation which will also call back into
2178 * cpuset. Should be done outside any lock.
2179 */
2180 if (is_empty)
2181 remove_tasks_in_empty_cpuset(cs);
2182
2183 mutex_lock(&cpuset_mutex);
2184}
2185
be4c9dd7
LZ
2186static void
2187hotplug_update_tasks(struct cpuset *cs,
2188 struct cpumask *new_cpus, nodemask_t *new_mems,
2189 bool cpus_updated, bool mems_updated)
390a36aa 2190{
be4c9dd7
LZ
2191 if (cpumask_empty(new_cpus))
2192 cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus);
2193 if (nodes_empty(*new_mems))
2194 *new_mems = parent_cs(cs)->effective_mems;
2195
8447a0fe 2196 spin_lock_irq(&callback_lock);
be4c9dd7
LZ
2197 cpumask_copy(cs->effective_cpus, new_cpus);
2198 cs->effective_mems = *new_mems;
8447a0fe 2199 spin_unlock_irq(&callback_lock);
390a36aa 2200
be4c9dd7 2201 if (cpus_updated)
390a36aa 2202 update_tasks_cpumask(cs);
be4c9dd7 2203 if (mems_updated)
390a36aa
LZ
2204 update_tasks_nodemask(cs);
2205}
2206
deb7aa30 2207/**
388afd85 2208 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
deb7aa30 2209 * @cs: cpuset in interest
956db3ca 2210 *
deb7aa30
TH
2211 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
2212 * offline, update @cs accordingly. If @cs ends up with no CPU or memory,
2213 * all its tasks are moved to the nearest ancestor with both resources.
80d1fa64 2214 */
388afd85 2215static void cpuset_hotplug_update_tasks(struct cpuset *cs)
80d1fa64 2216{
be4c9dd7
LZ
2217 static cpumask_t new_cpus;
2218 static nodemask_t new_mems;
2219 bool cpus_updated;
2220 bool mems_updated;
e44193d3
LZ
2221retry:
2222 wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
80d1fa64 2223
5d21cc2d 2224 mutex_lock(&cpuset_mutex);
7ddf96b0 2225
e44193d3
LZ
2226 /*
2227 * We have raced with task attaching. We wait until attaching
2228 * is finished, so we won't attach a task to an empty cpuset.
2229 */
2230 if (cs->attach_in_progress) {
2231 mutex_unlock(&cpuset_mutex);
2232 goto retry;
2233 }
2234
be4c9dd7
LZ
2235 cpumask_and(&new_cpus, cs->cpus_allowed, parent_cs(cs)->effective_cpus);
2236 nodes_and(new_mems, cs->mems_allowed, parent_cs(cs)->effective_mems);
80d1fa64 2237
be4c9dd7
LZ
2238 cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus);
2239 mems_updated = !nodes_equal(new_mems, cs->effective_mems);
deb7aa30 2240
9e10a130 2241 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys))
be4c9dd7
LZ
2242 hotplug_update_tasks(cs, &new_cpus, &new_mems,
2243 cpus_updated, mems_updated);
390a36aa 2244 else
be4c9dd7
LZ
2245 hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems,
2246 cpus_updated, mems_updated);
8d033948 2247
5d21cc2d 2248 mutex_unlock(&cpuset_mutex);
b1aac8bb
PJ
2249}
2250
deb7aa30 2251/**
3a5a6d0c 2252 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
956db3ca 2253 *
deb7aa30
TH
2254 * This function is called after either CPU or memory configuration has
2255 * changed and updates cpuset accordingly. The top_cpuset is always
2256 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
2257 * order to make cpusets transparent (of no affect) on systems that are
2258 * actively using CPU hotplug but making no active use of cpusets.
956db3ca 2259 *
deb7aa30 2260 * Non-root cpusets are only affected by offlining. If any CPUs or memory
388afd85
LZ
2261 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
2262 * all descendants.
956db3ca 2263 *
deb7aa30
TH
2264 * Note that CPU offlining during suspend is ignored. We don't modify
2265 * cpusets across suspend/resume cycles at all.
956db3ca 2266 */
3a5a6d0c 2267static void cpuset_hotplug_workfn(struct work_struct *work)
b1aac8bb 2268{
5c5cc623
LZ
2269 static cpumask_t new_cpus;
2270 static nodemask_t new_mems;
deb7aa30 2271 bool cpus_updated, mems_updated;
9e10a130 2272 bool on_dfl = cgroup_subsys_on_dfl(cpuset_cgrp_subsys);
b1aac8bb 2273
5d21cc2d 2274 mutex_lock(&cpuset_mutex);
956db3ca 2275
deb7aa30
TH
2276 /* fetch the available cpus/mems and find out which changed how */
2277 cpumask_copy(&new_cpus, cpu_active_mask);
2278 new_mems = node_states[N_MEMORY];
7ddf96b0 2279
7e88291b
LZ
2280 cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus);
2281 mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems);
7ddf96b0 2282
deb7aa30
TH
2283 /* synchronize cpus_allowed to cpu_active_mask */
2284 if (cpus_updated) {
8447a0fe 2285 spin_lock_irq(&callback_lock);
7e88291b
LZ
2286 if (!on_dfl)
2287 cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
1344ab9c 2288 cpumask_copy(top_cpuset.effective_cpus, &new_cpus);
8447a0fe 2289 spin_unlock_irq(&callback_lock);
deb7aa30
TH
2290 /* we don't mess with cpumasks of tasks in top_cpuset */
2291 }
b4501295 2292
deb7aa30
TH
2293 /* synchronize mems_allowed to N_MEMORY */
2294 if (mems_updated) {
8447a0fe 2295 spin_lock_irq(&callback_lock);
7e88291b
LZ
2296 if (!on_dfl)
2297 top_cpuset.mems_allowed = new_mems;
1344ab9c 2298 top_cpuset.effective_mems = new_mems;
8447a0fe 2299 spin_unlock_irq(&callback_lock);
d66393e5 2300 update_tasks_nodemask(&top_cpuset);
deb7aa30 2301 }
b4501295 2302
388afd85
LZ
2303 mutex_unlock(&cpuset_mutex);
2304
5c5cc623
LZ
2305 /* if cpus or mems changed, we need to propagate to descendants */
2306 if (cpus_updated || mems_updated) {
deb7aa30 2307 struct cpuset *cs;
492eb21b 2308 struct cgroup_subsys_state *pos_css;
f9b4fb8d 2309
fc560a26 2310 rcu_read_lock();
492eb21b 2311 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
ec903c0c 2312 if (cs == &top_cpuset || !css_tryget_online(&cs->css))
388afd85
LZ
2313 continue;
2314 rcu_read_unlock();
7ddf96b0 2315
388afd85 2316 cpuset_hotplug_update_tasks(cs);
b4501295 2317
388afd85
LZ
2318 rcu_read_lock();
2319 css_put(&cs->css);
2320 }
2321 rcu_read_unlock();
2322 }
8d033948 2323
deb7aa30 2324 /* rebuild sched domains if cpus_allowed has changed */
e0e80a02
LZ
2325 if (cpus_updated)
2326 rebuild_sched_domains();
b1aac8bb
PJ
2327}
2328
7ddf96b0 2329void cpuset_update_active_cpus(bool cpu_online)
4c4d50f7 2330{
3a5a6d0c
TH
2331 /*
2332 * We're inside cpu hotplug critical region which usually nests
2333 * inside cgroup synchronization. Bounce actual hotplug processing
2334 * to a work item to avoid reverse locking order.
2335 *
2336 * We still need to do partition_sched_domains() synchronously;
2337 * otherwise, the scheduler will get confused and put tasks to the
2338 * dead CPU. Fall back to the default single domain.
2339 * cpuset_hotplug_workfn() will rebuild it as necessary.
2340 */
2341 partition_sched_domains(1, NULL, NULL);
2342 schedule_work(&cpuset_hotplug_work);
4c4d50f7 2343}
4c4d50f7 2344
38837fc7 2345/*
38d7bee9
LJ
2346 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
2347 * Call this routine anytime after node_states[N_MEMORY] changes.
a1cd2b13 2348 * See cpuset_update_active_cpus() for CPU hotplug handling.
38837fc7 2349 */
f481891f
MX
2350static int cpuset_track_online_nodes(struct notifier_block *self,
2351 unsigned long action, void *arg)
38837fc7 2352{
3a5a6d0c 2353 schedule_work(&cpuset_hotplug_work);
f481891f 2354 return NOTIFY_OK;
38837fc7 2355}
d8f10cb3
AM
2356
2357static struct notifier_block cpuset_track_online_nodes_nb = {
2358 .notifier_call = cpuset_track_online_nodes,
2359 .priority = 10, /* ??! */
2360};
38837fc7 2361
1da177e4
LT
2362/**
2363 * cpuset_init_smp - initialize cpus_allowed
2364 *
2365 * Description: Finish top cpuset after cpu, node maps are initialized
d8f10cb3 2366 */
1da177e4
LT
2367void __init cpuset_init_smp(void)
2368{
6ad4c188 2369 cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
38d7bee9 2370 top_cpuset.mems_allowed = node_states[N_MEMORY];
33ad801d 2371 top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
4c4d50f7 2372
e2b9a3d7
LZ
2373 cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask);
2374 top_cpuset.effective_mems = node_states[N_MEMORY];
2375
d8f10cb3 2376 register_hotmemory_notifier(&cpuset_track_online_nodes_nb);
e93ad19d
TH
2377
2378 cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0);
2379 BUG_ON(!cpuset_migrate_mm_wq);
1da177e4
LT
2380}
2381
2382/**
1da177e4
LT
2383 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
2384 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
6af866af 2385 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
1da177e4 2386 *
300ed6cb 2387 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
1da177e4 2388 * attached to the specified @tsk. Guaranteed to return some non-empty
5f054e31 2389 * subset of cpu_online_mask, even if this means going outside the
1da177e4
LT
2390 * tasks cpuset.
2391 **/
2392
6af866af 2393void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
1da177e4 2394{
8447a0fe
VD
2395 unsigned long flags;
2396
2397 spin_lock_irqsave(&callback_lock, flags);
b8dadcb5 2398 rcu_read_lock();
ae1c8023 2399 guarantee_online_cpus(task_cs(tsk), pmask);
b8dadcb5 2400 rcu_read_unlock();
8447a0fe 2401 spin_unlock_irqrestore(&callback_lock, flags);
1da177e4
LT
2402}
2403
2baab4e9 2404void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
9084bb82 2405{
9084bb82 2406 rcu_read_lock();
ae1c8023 2407 do_set_cpus_allowed(tsk, task_cs(tsk)->effective_cpus);
9084bb82
ON
2408 rcu_read_unlock();
2409
2410 /*
2411 * We own tsk->cpus_allowed, nobody can change it under us.
2412 *
2413 * But we used cs && cs->cpus_allowed lockless and thus can
2414 * race with cgroup_attach_task() or update_cpumask() and get
2415 * the wrong tsk->cpus_allowed. However, both cases imply the
2416 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
2417 * which takes task_rq_lock().
2418 *
2419 * If we are called after it dropped the lock we must see all
2420 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
2421 * set any mask even if it is not right from task_cs() pov,
2422 * the pending set_cpus_allowed_ptr() will fix things.
2baab4e9
PZ
2423 *
2424 * select_fallback_rq() will fix things ups and set cpu_possible_mask
2425 * if required.
9084bb82 2426 */
9084bb82
ON
2427}
2428
8f4ab07f 2429void __init cpuset_init_current_mems_allowed(void)
1da177e4 2430{
f9a86fcb 2431 nodes_setall(current->mems_allowed);
1da177e4
LT
2432}
2433
909d75a3
PJ
2434/**
2435 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
2436 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
2437 *
2438 * Description: Returns the nodemask_t mems_allowed of the cpuset
2439 * attached to the specified @tsk. Guaranteed to return some non-empty
38d7bee9 2440 * subset of node_states[N_MEMORY], even if this means going outside the
909d75a3
PJ
2441 * tasks cpuset.
2442 **/
2443
2444nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
2445{
2446 nodemask_t mask;
8447a0fe 2447 unsigned long flags;
909d75a3 2448
8447a0fe 2449 spin_lock_irqsave(&callback_lock, flags);
b8dadcb5 2450 rcu_read_lock();
ae1c8023 2451 guarantee_online_mems(task_cs(tsk), &mask);
b8dadcb5 2452 rcu_read_unlock();
8447a0fe 2453 spin_unlock_irqrestore(&callback_lock, flags);
909d75a3
PJ
2454
2455 return mask;
2456}
2457
d9fd8a6d 2458/**
19770b32
MG
2459 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
2460 * @nodemask: the nodemask to be checked
d9fd8a6d 2461 *
19770b32 2462 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
1da177e4 2463 */
19770b32 2464int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
1da177e4 2465{
19770b32 2466 return nodes_intersects(*nodemask, current->mems_allowed);
1da177e4
LT
2467}
2468
9bf2229f 2469/*
78608366
PM
2470 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
2471 * mem_hardwall ancestor to the specified cpuset. Call holding
8447a0fe 2472 * callback_lock. If no ancestor is mem_exclusive or mem_hardwall
78608366 2473 * (an unusual configuration), then returns the root cpuset.
9bf2229f 2474 */
c9710d80 2475static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
9bf2229f 2476{
c431069f
TH
2477 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
2478 cs = parent_cs(cs);
9bf2229f
PJ
2479 return cs;
2480}
2481
d9fd8a6d 2482/**
344736f2 2483 * cpuset_node_allowed - Can we allocate on a memory node?
a1bc5a4e 2484 * @node: is this an allowed node?
02a0e53d 2485 * @gfp_mask: memory allocation flags
d9fd8a6d 2486 *
6e276d2a
DR
2487 * If we're in interrupt, yes, we can always allocate. If @node is set in
2488 * current's mems_allowed, yes. If it's not a __GFP_HARDWALL request and this
2489 * node is set in the nearest hardwalled cpuset ancestor to current's cpuset,
2490 * yes. If current has access to memory reserves due to TIF_MEMDIE, yes.
9bf2229f
PJ
2491 * Otherwise, no.
2492 *
2493 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
c596d9f3
DR
2494 * and do not allow allocations outside the current tasks cpuset
2495 * unless the task has been OOM killed as is marked TIF_MEMDIE.
9bf2229f 2496 * GFP_KERNEL allocations are not so marked, so can escape to the
78608366 2497 * nearest enclosing hardwalled ancestor cpuset.
9bf2229f 2498 *
8447a0fe 2499 * Scanning up parent cpusets requires callback_lock. The
02a0e53d
PJ
2500 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
2501 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
2502 * current tasks mems_allowed came up empty on the first pass over
2503 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
8447a0fe 2504 * cpuset are short of memory, might require taking the callback_lock.
9bf2229f 2505 *
36be57ff 2506 * The first call here from mm/page_alloc:get_page_from_freelist()
02a0e53d
PJ
2507 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
2508 * so no allocation on a node outside the cpuset is allowed (unless
2509 * in interrupt, of course).
36be57ff
PJ
2510 *
2511 * The second pass through get_page_from_freelist() doesn't even call
2512 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
2513 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
2514 * in alloc_flags. That logic and the checks below have the combined
2515 * affect that:
9bf2229f
PJ
2516 * in_interrupt - any node ok (current task context irrelevant)
2517 * GFP_ATOMIC - any node ok
c596d9f3 2518 * TIF_MEMDIE - any node ok
78608366 2519 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
9bf2229f 2520 * GFP_USER - only nodes in current tasks mems allowed ok.
02a0e53d 2521 */
002f2906 2522bool __cpuset_node_allowed(int node, gfp_t gfp_mask)
1da177e4 2523{
c9710d80 2524 struct cpuset *cs; /* current cpuset ancestors */
29afd49b 2525 int allowed; /* is allocation in zone z allowed? */
8447a0fe 2526 unsigned long flags;
9bf2229f 2527
6e276d2a 2528 if (in_interrupt())
002f2906 2529 return true;
9bf2229f 2530 if (node_isset(node, current->mems_allowed))
002f2906 2531 return true;
c596d9f3
DR
2532 /*
2533 * Allow tasks that have access to memory reserves because they have
2534 * been OOM killed to get memory anywhere.
2535 */
2536 if (unlikely(test_thread_flag(TIF_MEMDIE)))
002f2906 2537 return true;
9bf2229f 2538 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
002f2906 2539 return false;
9bf2229f 2540
5563e770 2541 if (current->flags & PF_EXITING) /* Let dying task have memory */
002f2906 2542 return true;
5563e770 2543
9bf2229f 2544 /* Not hardwall and node outside mems_allowed: scan up cpusets */
8447a0fe 2545 spin_lock_irqsave(&callback_lock, flags);
053199ed 2546
b8dadcb5 2547 rcu_read_lock();
78608366 2548 cs = nearest_hardwall_ancestor(task_cs(current));
99afb0fd 2549 allowed = node_isset(node, cs->mems_allowed);
b8dadcb5 2550 rcu_read_unlock();
053199ed 2551
8447a0fe 2552 spin_unlock_irqrestore(&callback_lock, flags);
9bf2229f 2553 return allowed;
1da177e4
LT
2554}
2555
825a46af 2556/**
6adef3eb
JS
2557 * cpuset_mem_spread_node() - On which node to begin search for a file page
2558 * cpuset_slab_spread_node() - On which node to begin search for a slab page
825a46af
PJ
2559 *
2560 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
2561 * tasks in a cpuset with is_spread_page or is_spread_slab set),
2562 * and if the memory allocation used cpuset_mem_spread_node()
2563 * to determine on which node to start looking, as it will for
2564 * certain page cache or slab cache pages such as used for file
2565 * system buffers and inode caches, then instead of starting on the
2566 * local node to look for a free page, rather spread the starting
2567 * node around the tasks mems_allowed nodes.
2568 *
2569 * We don't have to worry about the returned node being offline
2570 * because "it can't happen", and even if it did, it would be ok.
2571 *
2572 * The routines calling guarantee_online_mems() are careful to
2573 * only set nodes in task->mems_allowed that are online. So it
2574 * should not be possible for the following code to return an
2575 * offline node. But if it did, that would be ok, as this routine
2576 * is not returning the node where the allocation must be, only
2577 * the node where the search should start. The zonelist passed to
2578 * __alloc_pages() will include all nodes. If the slab allocator
2579 * is passed an offline node, it will fall back to the local node.
2580 * See kmem_cache_alloc_node().
2581 */
2582
6adef3eb 2583static int cpuset_spread_node(int *rotor)
825a46af 2584{
0edaf86c 2585 return *rotor = next_node_in(*rotor, current->mems_allowed);
825a46af 2586}
6adef3eb
JS
2587
2588int cpuset_mem_spread_node(void)
2589{
778d3b0f
MH
2590 if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
2591 current->cpuset_mem_spread_rotor =
2592 node_random(&current->mems_allowed);
2593
6adef3eb
JS
2594 return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
2595}
2596
2597int cpuset_slab_spread_node(void)
2598{
778d3b0f
MH
2599 if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
2600 current->cpuset_slab_spread_rotor =
2601 node_random(&current->mems_allowed);
2602
6adef3eb
JS
2603 return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
2604}
2605
825a46af
PJ
2606EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
2607
ef08e3b4 2608/**
bbe373f2
DR
2609 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
2610 * @tsk1: pointer to task_struct of some task.
2611 * @tsk2: pointer to task_struct of some other task.
2612 *
2613 * Description: Return true if @tsk1's mems_allowed intersects the
2614 * mems_allowed of @tsk2. Used by the OOM killer to determine if
2615 * one of the task's memory usage might impact the memory available
2616 * to the other.
ef08e3b4
PJ
2617 **/
2618
bbe373f2
DR
2619int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
2620 const struct task_struct *tsk2)
ef08e3b4 2621{
bbe373f2 2622 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
ef08e3b4
PJ
2623}
2624
75aa1994 2625/**
da39da3a 2626 * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed
75aa1994 2627 *
da39da3a 2628 * Description: Prints current's name, cpuset name, and cached copy of its
b8dadcb5 2629 * mems_allowed to the kernel log.
75aa1994 2630 */
da39da3a 2631void cpuset_print_current_mems_allowed(void)
75aa1994 2632{
b8dadcb5 2633 struct cgroup *cgrp;
75aa1994 2634
b8dadcb5 2635 rcu_read_lock();
63f43f55 2636
da39da3a
DR
2637 cgrp = task_cs(current)->css.cgroup;
2638 pr_info("%s cpuset=", current->comm);
e61734c5 2639 pr_cont_cgroup_name(cgrp);
da39da3a
DR
2640 pr_cont(" mems_allowed=%*pbl\n",
2641 nodemask_pr_args(&current->mems_allowed));
f440d98f 2642
cfb5966b 2643 rcu_read_unlock();
75aa1994
DR
2644}
2645
3e0d98b9
PJ
2646/*
2647 * Collection of memory_pressure is suppressed unless
2648 * this flag is enabled by writing "1" to the special
2649 * cpuset file 'memory_pressure_enabled' in the root cpuset.
2650 */
2651
c5b2aff8 2652int cpuset_memory_pressure_enabled __read_mostly;
3e0d98b9
PJ
2653
2654/**
2655 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
2656 *
2657 * Keep a running average of the rate of synchronous (direct)
2658 * page reclaim efforts initiated by tasks in each cpuset.
2659 *
2660 * This represents the rate at which some task in the cpuset
2661 * ran low on memory on all nodes it was allowed to use, and
2662 * had to enter the kernels page reclaim code in an effort to
2663 * create more free memory by tossing clean pages or swapping
2664 * or writing dirty pages.
2665 *
2666 * Display to user space in the per-cpuset read-only file
2667 * "memory_pressure". Value displayed is an integer
2668 * representing the recent rate of entry into the synchronous
2669 * (direct) page reclaim by any task attached to the cpuset.
2670 **/
2671
2672void __cpuset_memory_pressure_bump(void)
2673{
b8dadcb5 2674 rcu_read_lock();
8793d854 2675 fmeter_markevent(&task_cs(current)->fmeter);
b8dadcb5 2676 rcu_read_unlock();
3e0d98b9
PJ
2677}
2678
8793d854 2679#ifdef CONFIG_PROC_PID_CPUSET
1da177e4
LT
2680/*
2681 * proc_cpuset_show()
2682 * - Print tasks cpuset path into seq_file.
2683 * - Used for /proc/<pid>/cpuset.
053199ed
PJ
2684 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
2685 * doesn't really matter if tsk->cpuset changes after we read it,
5d21cc2d 2686 * and we take cpuset_mutex, keeping cpuset_attach() from changing it
2df167a3 2687 * anyway.
1da177e4 2688 */
52de4779
ZL
2689int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns,
2690 struct pid *pid, struct task_struct *tsk)
1da177e4 2691{
e61734c5 2692 char *buf, *p;
8793d854 2693 struct cgroup_subsys_state *css;
99f89551 2694 int retval;
1da177e4 2695
99f89551 2696 retval = -ENOMEM;
e61734c5 2697 buf = kmalloc(PATH_MAX, GFP_KERNEL);
1da177e4 2698 if (!buf)
99f89551
EB
2699 goto out;
2700
e61734c5 2701 retval = -ENAMETOOLONG;
a79a908f
AK
2702 css = task_get_css(tsk, cpuset_cgrp_id);
2703 p = cgroup_path_ns(css->cgroup, buf, PATH_MAX,
2704 current->nsproxy->cgroup_ns);
2705 css_put(css);
e61734c5 2706 if (!p)
52de4779 2707 goto out_free;
e61734c5 2708 seq_puts(m, p);
1da177e4 2709 seq_putc(m, '\n');
e61734c5 2710 retval = 0;
99f89551 2711out_free:
1da177e4 2712 kfree(buf);
99f89551 2713out:
1da177e4
LT
2714 return retval;
2715}
8793d854 2716#endif /* CONFIG_PROC_PID_CPUSET */
1da177e4 2717
d01d4827 2718/* Display task mems_allowed in /proc/<pid>/status file. */
df5f8314
EB
2719void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
2720{
e8e6d97c
TH
2721 seq_printf(m, "Mems_allowed:\t%*pb\n",
2722 nodemask_pr_args(&task->mems_allowed));
2723 seq_printf(m, "Mems_allowed_list:\t%*pbl\n",
2724 nodemask_pr_args(&task->mems_allowed));
1da177e4 2725}