]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - kernel/cpuset.c
cpuset: cleanup guarantee_online_{cpus|mems}()
[mirror_ubuntu-bionic-kernel.git] / kernel / cpuset.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/cpuset.c
3 *
4 * Processor and Memory placement constraints for sets of tasks.
5 *
6 * Copyright (C) 2003 BULL SA.
029190c5 7 * Copyright (C) 2004-2007 Silicon Graphics, Inc.
8793d854 8 * Copyright (C) 2006 Google, Inc
1da177e4
LT
9 *
10 * Portions derived from Patrick Mochel's sysfs code.
11 * sysfs is Copyright (c) 2001-3 Patrick Mochel
1da177e4 12 *
825a46af 13 * 2003-10-10 Written by Simon Derr.
1da177e4 14 * 2003-10-22 Updates by Stephen Hemminger.
825a46af 15 * 2004 May-July Rework by Paul Jackson.
8793d854 16 * 2006 Rework by Paul Menage to use generic cgroups
cf417141
MK
17 * 2008 Rework of the scheduler domains and CPU hotplug handling
18 * by Max Krasnyansky
1da177e4
LT
19 *
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
23 */
24
1da177e4
LT
25#include <linux/cpu.h>
26#include <linux/cpumask.h>
27#include <linux/cpuset.h>
28#include <linux/err.h>
29#include <linux/errno.h>
30#include <linux/file.h>
31#include <linux/fs.h>
32#include <linux/init.h>
33#include <linux/interrupt.h>
34#include <linux/kernel.h>
35#include <linux/kmod.h>
36#include <linux/list.h>
68860ec1 37#include <linux/mempolicy.h>
1da177e4 38#include <linux/mm.h>
f481891f 39#include <linux/memory.h>
9984de1a 40#include <linux/export.h>
1da177e4
LT
41#include <linux/mount.h>
42#include <linux/namei.h>
43#include <linux/pagemap.h>
44#include <linux/proc_fs.h>
6b9c2603 45#include <linux/rcupdate.h>
1da177e4
LT
46#include <linux/sched.h>
47#include <linux/seq_file.h>
22fb52dd 48#include <linux/security.h>
1da177e4 49#include <linux/slab.h>
1da177e4
LT
50#include <linux/spinlock.h>
51#include <linux/stat.h>
52#include <linux/string.h>
53#include <linux/time.h>
54#include <linux/backing-dev.h>
55#include <linux/sort.h>
56
57#include <asm/uaccess.h>
60063497 58#include <linux/atomic.h>
3d3f26a7 59#include <linux/mutex.h>
956db3ca
CW
60#include <linux/workqueue.h>
61#include <linux/cgroup.h>
1da177e4 62
202f72d5
PJ
63/*
64 * Tracks how many cpusets are currently defined in system.
65 * When there is only one cpuset (the root cpuset) we can
66 * short circuit some hooks.
67 */
7edc5962 68int number_of_cpusets __read_mostly;
202f72d5 69
2df167a3 70/* Forward declare cgroup structures */
8793d854
PM
71struct cgroup_subsys cpuset_subsys;
72struct cpuset;
73
3e0d98b9
PJ
74/* See "Frequency meter" comments, below. */
75
76struct fmeter {
77 int cnt; /* unprocessed events count */
78 int val; /* most recent output value */
79 time_t time; /* clock (secs) when val computed */
80 spinlock_t lock; /* guards read or write of above */
81};
82
1da177e4 83struct cpuset {
8793d854
PM
84 struct cgroup_subsys_state css;
85
1da177e4 86 unsigned long flags; /* "unsigned long" so bitops work */
300ed6cb 87 cpumask_var_t cpus_allowed; /* CPUs allowed to tasks in cpuset */
1da177e4
LT
88 nodemask_t mems_allowed; /* Memory Nodes allowed to tasks */
89
3e0d98b9 90 struct fmeter fmeter; /* memory_pressure filter */
029190c5 91
452477fa
TH
92 /*
93 * Tasks are being attached to this cpuset. Used to prevent
94 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
95 */
96 int attach_in_progress;
97
029190c5
PJ
98 /* partition number for rebuild_sched_domains() */
99 int pn;
956db3ca 100
1d3504fc
HS
101 /* for custom sched domain */
102 int relax_domain_level;
103
8d033948 104 struct work_struct hotplug_work;
1da177e4
LT
105};
106
8793d854
PM
107/* Retrieve the cpuset for a cgroup */
108static inline struct cpuset *cgroup_cs(struct cgroup *cont)
109{
110 return container_of(cgroup_subsys_state(cont, cpuset_subsys_id),
111 struct cpuset, css);
112}
113
114/* Retrieve the cpuset for a task */
115static inline struct cpuset *task_cs(struct task_struct *task)
116{
117 return container_of(task_subsys_state(task, cpuset_subsys_id),
118 struct cpuset, css);
119}
8793d854 120
c431069f
TH
121static inline struct cpuset *parent_cs(const struct cpuset *cs)
122{
123 struct cgroup *pcgrp = cs->css.cgroup->parent;
124
125 if (pcgrp)
126 return cgroup_cs(pcgrp);
127 return NULL;
128}
129
b246272e
DR
130#ifdef CONFIG_NUMA
131static inline bool task_has_mempolicy(struct task_struct *task)
132{
133 return task->mempolicy;
134}
135#else
136static inline bool task_has_mempolicy(struct task_struct *task)
137{
138 return false;
139}
140#endif
141
142
1da177e4
LT
143/* bits in struct cpuset flags field */
144typedef enum {
efeb77b2 145 CS_ONLINE,
1da177e4
LT
146 CS_CPU_EXCLUSIVE,
147 CS_MEM_EXCLUSIVE,
78608366 148 CS_MEM_HARDWALL,
45b07ef3 149 CS_MEMORY_MIGRATE,
029190c5 150 CS_SCHED_LOAD_BALANCE,
825a46af
PJ
151 CS_SPREAD_PAGE,
152 CS_SPREAD_SLAB,
1da177e4
LT
153} cpuset_flagbits_t;
154
155/* convenient tests for these bits */
efeb77b2
TH
156static inline bool is_cpuset_online(const struct cpuset *cs)
157{
158 return test_bit(CS_ONLINE, &cs->flags);
159}
160
1da177e4
LT
161static inline int is_cpu_exclusive(const struct cpuset *cs)
162{
7b5b9ef0 163 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
1da177e4
LT
164}
165
166static inline int is_mem_exclusive(const struct cpuset *cs)
167{
7b5b9ef0 168 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
1da177e4
LT
169}
170
78608366
PM
171static inline int is_mem_hardwall(const struct cpuset *cs)
172{
173 return test_bit(CS_MEM_HARDWALL, &cs->flags);
174}
175
029190c5
PJ
176static inline int is_sched_load_balance(const struct cpuset *cs)
177{
178 return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
179}
180
45b07ef3
PJ
181static inline int is_memory_migrate(const struct cpuset *cs)
182{
7b5b9ef0 183 return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
45b07ef3
PJ
184}
185
825a46af
PJ
186static inline int is_spread_page(const struct cpuset *cs)
187{
188 return test_bit(CS_SPREAD_PAGE, &cs->flags);
189}
190
191static inline int is_spread_slab(const struct cpuset *cs)
192{
193 return test_bit(CS_SPREAD_SLAB, &cs->flags);
194}
195
1da177e4 196static struct cpuset top_cpuset = {
efeb77b2
TH
197 .flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
198 (1 << CS_MEM_EXCLUSIVE)),
1da177e4
LT
199};
200
ae8086ce
TH
201/**
202 * cpuset_for_each_child - traverse online children of a cpuset
203 * @child_cs: loop cursor pointing to the current child
204 * @pos_cgrp: used for iteration
205 * @parent_cs: target cpuset to walk children of
206 *
207 * Walk @child_cs through the online children of @parent_cs. Must be used
208 * with RCU read locked.
209 */
210#define cpuset_for_each_child(child_cs, pos_cgrp, parent_cs) \
211 cgroup_for_each_child((pos_cgrp), (parent_cs)->css.cgroup) \
212 if (is_cpuset_online(((child_cs) = cgroup_cs((pos_cgrp)))))
213
fc560a26
TH
214/**
215 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
216 * @des_cs: loop cursor pointing to the current descendant
217 * @pos_cgrp: used for iteration
218 * @root_cs: target cpuset to walk ancestor of
219 *
220 * Walk @des_cs through the online descendants of @root_cs. Must be used
221 * with RCU read locked. The caller may modify @pos_cgrp by calling
222 * cgroup_rightmost_descendant() to skip subtree.
223 */
224#define cpuset_for_each_descendant_pre(des_cs, pos_cgrp, root_cs) \
225 cgroup_for_each_descendant_pre((pos_cgrp), (root_cs)->css.cgroup) \
226 if (is_cpuset_online(((des_cs) = cgroup_cs((pos_cgrp)))))
227
1da177e4 228/*
5d21cc2d
TH
229 * There are two global mutexes guarding cpuset structures - cpuset_mutex
230 * and callback_mutex. The latter may nest inside the former. We also
231 * require taking task_lock() when dereferencing a task's cpuset pointer.
232 * See "The task_lock() exception", at the end of this comment.
233 *
234 * A task must hold both mutexes to modify cpusets. If a task holds
235 * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
236 * is the only task able to also acquire callback_mutex and be able to
237 * modify cpusets. It can perform various checks on the cpuset structure
238 * first, knowing nothing will change. It can also allocate memory while
239 * just holding cpuset_mutex. While it is performing these checks, various
240 * callback routines can briefly acquire callback_mutex to query cpusets.
241 * Once it is ready to make the changes, it takes callback_mutex, blocking
242 * everyone else.
053199ed
PJ
243 *
244 * Calls to the kernel memory allocator can not be made while holding
3d3f26a7 245 * callback_mutex, as that would risk double tripping on callback_mutex
053199ed
PJ
246 * from one of the callbacks into the cpuset code from within
247 * __alloc_pages().
248 *
3d3f26a7 249 * If a task is only holding callback_mutex, then it has read-only
053199ed
PJ
250 * access to cpusets.
251 *
58568d2a
MX
252 * Now, the task_struct fields mems_allowed and mempolicy may be changed
253 * by other task, we use alloc_lock in the task_struct fields to protect
254 * them.
053199ed 255 *
3d3f26a7 256 * The cpuset_common_file_read() handlers only hold callback_mutex across
053199ed
PJ
257 * small pieces of code, such as when reading out possibly multi-word
258 * cpumasks and nodemasks.
259 *
2df167a3
PM
260 * Accessing a task's cpuset should be done in accordance with the
261 * guidelines for accessing subsystem state in kernel/cgroup.c
1da177e4
LT
262 */
263
5d21cc2d 264static DEFINE_MUTEX(cpuset_mutex);
3d3f26a7 265static DEFINE_MUTEX(callback_mutex);
4247bdc6 266
3a5a6d0c
TH
267/*
268 * CPU / memory hotplug is handled asynchronously.
269 */
8d033948
TH
270static struct workqueue_struct *cpuset_propagate_hotplug_wq;
271
3a5a6d0c 272static void cpuset_hotplug_workfn(struct work_struct *work);
8d033948 273static void cpuset_propagate_hotplug_workfn(struct work_struct *work);
02bb5863 274static void schedule_cpuset_propagate_hotplug(struct cpuset *cs);
3a5a6d0c
TH
275
276static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);
277
cf417141
MK
278/*
279 * This is ugly, but preserves the userspace API for existing cpuset
8793d854 280 * users. If someone tries to mount the "cpuset" filesystem, we
cf417141
MK
281 * silently switch it to mount "cgroup" instead
282 */
f7e83571
AV
283static struct dentry *cpuset_mount(struct file_system_type *fs_type,
284 int flags, const char *unused_dev_name, void *data)
1da177e4 285{
8793d854 286 struct file_system_type *cgroup_fs = get_fs_type("cgroup");
f7e83571 287 struct dentry *ret = ERR_PTR(-ENODEV);
8793d854
PM
288 if (cgroup_fs) {
289 char mountopts[] =
290 "cpuset,noprefix,"
291 "release_agent=/sbin/cpuset_release_agent";
f7e83571
AV
292 ret = cgroup_fs->mount(cgroup_fs, flags,
293 unused_dev_name, mountopts);
8793d854
PM
294 put_filesystem(cgroup_fs);
295 }
296 return ret;
1da177e4
LT
297}
298
299static struct file_system_type cpuset_fs_type = {
300 .name = "cpuset",
f7e83571 301 .mount = cpuset_mount,
1da177e4
LT
302};
303
1da177e4 304/*
300ed6cb 305 * Return in pmask the portion of a cpusets's cpus_allowed that
1da177e4 306 * are online. If none are online, walk up the cpuset hierarchy
40df2deb
LZ
307 * until we find one that does have some online cpus. The top
308 * cpuset always has some cpus online.
1da177e4
LT
309 *
310 * One way or another, we guarantee to return some non-empty subset
5f054e31 311 * of cpu_online_mask.
1da177e4 312 *
3d3f26a7 313 * Call with callback_mutex held.
1da177e4 314 */
6af866af
LZ
315static void guarantee_online_cpus(const struct cpuset *cs,
316 struct cpumask *pmask)
1da177e4 317{
40df2deb 318 while (!cpumask_intersects(cs->cpus_allowed, cpu_online_mask))
c431069f 319 cs = parent_cs(cs);
40df2deb 320 cpumask_and(pmask, cs->cpus_allowed, cpu_online_mask);
1da177e4
LT
321}
322
323/*
324 * Return in *pmask the portion of a cpusets's mems_allowed that
0e1e7c7a
CL
325 * are online, with memory. If none are online with memory, walk
326 * up the cpuset hierarchy until we find one that does have some
40df2deb 327 * online mems. The top cpuset always has some mems online.
1da177e4
LT
328 *
329 * One way or another, we guarantee to return some non-empty subset
38d7bee9 330 * of node_states[N_MEMORY].
1da177e4 331 *
3d3f26a7 332 * Call with callback_mutex held.
1da177e4 333 */
1da177e4
LT
334static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask)
335{
40df2deb 336 while (!nodes_intersects(cs->mems_allowed, node_states[N_MEMORY]))
c431069f 337 cs = parent_cs(cs);
40df2deb 338 nodes_and(*pmask, cs->mems_allowed, node_states[N_MEMORY]);
1da177e4
LT
339}
340
f3b39d47
MX
341/*
342 * update task's spread flag if cpuset's page/slab spread flag is set
343 *
5d21cc2d 344 * Called with callback_mutex/cpuset_mutex held
f3b39d47
MX
345 */
346static void cpuset_update_task_spread_flag(struct cpuset *cs,
347 struct task_struct *tsk)
348{
349 if (is_spread_page(cs))
350 tsk->flags |= PF_SPREAD_PAGE;
351 else
352 tsk->flags &= ~PF_SPREAD_PAGE;
353 if (is_spread_slab(cs))
354 tsk->flags |= PF_SPREAD_SLAB;
355 else
356 tsk->flags &= ~PF_SPREAD_SLAB;
357}
358
1da177e4
LT
359/*
360 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
361 *
362 * One cpuset is a subset of another if all its allowed CPUs and
363 * Memory Nodes are a subset of the other, and its exclusive flags
5d21cc2d 364 * are only set if the other's are set. Call holding cpuset_mutex.
1da177e4
LT
365 */
366
367static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
368{
300ed6cb 369 return cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
1da177e4
LT
370 nodes_subset(p->mems_allowed, q->mems_allowed) &&
371 is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
372 is_mem_exclusive(p) <= is_mem_exclusive(q);
373}
374
645fcc9d
LZ
375/**
376 * alloc_trial_cpuset - allocate a trial cpuset
377 * @cs: the cpuset that the trial cpuset duplicates
378 */
379static struct cpuset *alloc_trial_cpuset(const struct cpuset *cs)
380{
300ed6cb
LZ
381 struct cpuset *trial;
382
383 trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
384 if (!trial)
385 return NULL;
386
387 if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL)) {
388 kfree(trial);
389 return NULL;
390 }
391 cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
392
393 return trial;
645fcc9d
LZ
394}
395
396/**
397 * free_trial_cpuset - free the trial cpuset
398 * @trial: the trial cpuset to be freed
399 */
400static void free_trial_cpuset(struct cpuset *trial)
401{
300ed6cb 402 free_cpumask_var(trial->cpus_allowed);
645fcc9d
LZ
403 kfree(trial);
404}
405
1da177e4
LT
406/*
407 * validate_change() - Used to validate that any proposed cpuset change
408 * follows the structural rules for cpusets.
409 *
410 * If we replaced the flag and mask values of the current cpuset
411 * (cur) with those values in the trial cpuset (trial), would
412 * our various subset and exclusive rules still be valid? Presumes
5d21cc2d 413 * cpuset_mutex held.
1da177e4
LT
414 *
415 * 'cur' is the address of an actual, in-use cpuset. Operations
416 * such as list traversal that depend on the actual address of the
417 * cpuset in the list must use cur below, not trial.
418 *
419 * 'trial' is the address of bulk structure copy of cur, with
420 * perhaps one or more of the fields cpus_allowed, mems_allowed,
421 * or flags changed to new, trial values.
422 *
423 * Return 0 if valid, -errno if not.
424 */
425
426static int validate_change(const struct cpuset *cur, const struct cpuset *trial)
427{
8793d854 428 struct cgroup *cont;
1da177e4 429 struct cpuset *c, *par;
ae8086ce
TH
430 int ret;
431
432 rcu_read_lock();
1da177e4
LT
433
434 /* Each of our child cpusets must be a subset of us */
ae8086ce
TH
435 ret = -EBUSY;
436 cpuset_for_each_child(c, cont, cur)
437 if (!is_cpuset_subset(c, trial))
438 goto out;
1da177e4
LT
439
440 /* Remaining checks don't apply to root cpuset */
ae8086ce 441 ret = 0;
69604067 442 if (cur == &top_cpuset)
ae8086ce 443 goto out;
1da177e4 444
c431069f 445 par = parent_cs(cur);
69604067 446
1da177e4 447 /* We must be a subset of our parent cpuset */
ae8086ce 448 ret = -EACCES;
1da177e4 449 if (!is_cpuset_subset(trial, par))
ae8086ce 450 goto out;
1da177e4 451
2df167a3
PM
452 /*
453 * If either I or some sibling (!= me) is exclusive, we can't
454 * overlap
455 */
ae8086ce
TH
456 ret = -EINVAL;
457 cpuset_for_each_child(c, cont, par) {
1da177e4
LT
458 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
459 c != cur &&
300ed6cb 460 cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
ae8086ce 461 goto out;
1da177e4
LT
462 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
463 c != cur &&
464 nodes_intersects(trial->mems_allowed, c->mems_allowed))
ae8086ce 465 goto out;
1da177e4
LT
466 }
467
452477fa
TH
468 /*
469 * Cpusets with tasks - existing or newly being attached - can't
470 * have empty cpus_allowed or mems_allowed.
471 */
ae8086ce 472 ret = -ENOSPC;
452477fa 473 if ((cgroup_task_count(cur->css.cgroup) || cur->attach_in_progress) &&
ae8086ce
TH
474 (cpumask_empty(trial->cpus_allowed) ||
475 nodes_empty(trial->mems_allowed)))
476 goto out;
020958b6 477
ae8086ce
TH
478 ret = 0;
479out:
480 rcu_read_unlock();
481 return ret;
1da177e4
LT
482}
483
db7f47cf 484#ifdef CONFIG_SMP
029190c5 485/*
cf417141 486 * Helper routine for generate_sched_domains().
029190c5
PJ
487 * Do cpusets a, b have overlapping cpus_allowed masks?
488 */
029190c5
PJ
489static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
490{
300ed6cb 491 return cpumask_intersects(a->cpus_allowed, b->cpus_allowed);
029190c5
PJ
492}
493
1d3504fc
HS
494static void
495update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
496{
1d3504fc
HS
497 if (dattr->relax_domain_level < c->relax_domain_level)
498 dattr->relax_domain_level = c->relax_domain_level;
499 return;
500}
501
fc560a26
TH
502static void update_domain_attr_tree(struct sched_domain_attr *dattr,
503 struct cpuset *root_cs)
f5393693 504{
fc560a26
TH
505 struct cpuset *cp;
506 struct cgroup *pos_cgrp;
f5393693 507
fc560a26
TH
508 rcu_read_lock();
509 cpuset_for_each_descendant_pre(cp, pos_cgrp, root_cs) {
510 /* skip the whole subtree if @cp doesn't have any CPU */
511 if (cpumask_empty(cp->cpus_allowed)) {
512 pos_cgrp = cgroup_rightmost_descendant(pos_cgrp);
f5393693 513 continue;
fc560a26 514 }
f5393693
LJ
515
516 if (is_sched_load_balance(cp))
517 update_domain_attr(dattr, cp);
f5393693 518 }
fc560a26 519 rcu_read_unlock();
f5393693
LJ
520}
521
029190c5 522/*
cf417141
MK
523 * generate_sched_domains()
524 *
525 * This function builds a partial partition of the systems CPUs
526 * A 'partial partition' is a set of non-overlapping subsets whose
527 * union is a subset of that set.
528 * The output of this function needs to be passed to kernel/sched.c
529 * partition_sched_domains() routine, which will rebuild the scheduler's
530 * load balancing domains (sched domains) as specified by that partial
531 * partition.
029190c5 532 *
45ce80fb 533 * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
029190c5
PJ
534 * for a background explanation of this.
535 *
536 * Does not return errors, on the theory that the callers of this
537 * routine would rather not worry about failures to rebuild sched
538 * domains when operating in the severe memory shortage situations
539 * that could cause allocation failures below.
540 *
5d21cc2d 541 * Must be called with cpuset_mutex held.
029190c5
PJ
542 *
543 * The three key local variables below are:
aeed6824 544 * q - a linked-list queue of cpuset pointers, used to implement a
029190c5
PJ
545 * top-down scan of all cpusets. This scan loads a pointer
546 * to each cpuset marked is_sched_load_balance into the
547 * array 'csa'. For our purposes, rebuilding the schedulers
548 * sched domains, we can ignore !is_sched_load_balance cpusets.
549 * csa - (for CpuSet Array) Array of pointers to all the cpusets
550 * that need to be load balanced, for convenient iterative
551 * access by the subsequent code that finds the best partition,
552 * i.e the set of domains (subsets) of CPUs such that the
553 * cpus_allowed of every cpuset marked is_sched_load_balance
554 * is a subset of one of these domains, while there are as
555 * many such domains as possible, each as small as possible.
556 * doms - Conversion of 'csa' to an array of cpumasks, for passing to
557 * the kernel/sched.c routine partition_sched_domains() in a
558 * convenient format, that can be easily compared to the prior
559 * value to determine what partition elements (sched domains)
560 * were changed (added or removed.)
561 *
562 * Finding the best partition (set of domains):
563 * The triple nested loops below over i, j, k scan over the
564 * load balanced cpusets (using the array of cpuset pointers in
565 * csa[]) looking for pairs of cpusets that have overlapping
566 * cpus_allowed, but which don't have the same 'pn' partition
567 * number and gives them in the same partition number. It keeps
568 * looping on the 'restart' label until it can no longer find
569 * any such pairs.
570 *
571 * The union of the cpus_allowed masks from the set of
572 * all cpusets having the same 'pn' value then form the one
573 * element of the partition (one sched domain) to be passed to
574 * partition_sched_domains().
575 */
acc3f5d7 576static int generate_sched_domains(cpumask_var_t **domains,
cf417141 577 struct sched_domain_attr **attributes)
029190c5 578{
029190c5
PJ
579 struct cpuset *cp; /* scans q */
580 struct cpuset **csa; /* array of all cpuset ptrs */
581 int csn; /* how many cpuset ptrs in csa so far */
582 int i, j, k; /* indices for partition finding loops */
acc3f5d7 583 cpumask_var_t *doms; /* resulting partition; i.e. sched domains */
1d3504fc 584 struct sched_domain_attr *dattr; /* attributes for custom domains */
1583715d 585 int ndoms = 0; /* number of sched domains in result */
6af866af 586 int nslot; /* next empty doms[] struct cpumask slot */
fc560a26 587 struct cgroup *pos_cgrp;
029190c5 588
029190c5 589 doms = NULL;
1d3504fc 590 dattr = NULL;
cf417141 591 csa = NULL;
029190c5
PJ
592
593 /* Special case for the 99% of systems with one, full, sched domain */
594 if (is_sched_load_balance(&top_cpuset)) {
acc3f5d7
RR
595 ndoms = 1;
596 doms = alloc_sched_domains(ndoms);
029190c5 597 if (!doms)
cf417141
MK
598 goto done;
599
1d3504fc
HS
600 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
601 if (dattr) {
602 *dattr = SD_ATTR_INIT;
93a65575 603 update_domain_attr_tree(dattr, &top_cpuset);
1d3504fc 604 }
acc3f5d7 605 cpumask_copy(doms[0], top_cpuset.cpus_allowed);
cf417141 606
cf417141 607 goto done;
029190c5
PJ
608 }
609
029190c5
PJ
610 csa = kmalloc(number_of_cpusets * sizeof(cp), GFP_KERNEL);
611 if (!csa)
612 goto done;
613 csn = 0;
614
fc560a26
TH
615 rcu_read_lock();
616 cpuset_for_each_descendant_pre(cp, pos_cgrp, &top_cpuset) {
f5393693 617 /*
fc560a26
TH
618 * Continue traversing beyond @cp iff @cp has some CPUs and
619 * isn't load balancing. The former is obvious. The
620 * latter: All child cpusets contain a subset of the
621 * parent's cpus, so just skip them, and then we call
622 * update_domain_attr_tree() to calc relax_domain_level of
623 * the corresponding sched domain.
f5393693 624 */
fc560a26
TH
625 if (!cpumask_empty(cp->cpus_allowed) &&
626 !is_sched_load_balance(cp))
f5393693 627 continue;
489a5393 628
fc560a26
TH
629 if (is_sched_load_balance(cp))
630 csa[csn++] = cp;
631
632 /* skip @cp's subtree */
633 pos_cgrp = cgroup_rightmost_descendant(pos_cgrp);
634 }
635 rcu_read_unlock();
029190c5
PJ
636
637 for (i = 0; i < csn; i++)
638 csa[i]->pn = i;
639 ndoms = csn;
640
641restart:
642 /* Find the best partition (set of sched domains) */
643 for (i = 0; i < csn; i++) {
644 struct cpuset *a = csa[i];
645 int apn = a->pn;
646
647 for (j = 0; j < csn; j++) {
648 struct cpuset *b = csa[j];
649 int bpn = b->pn;
650
651 if (apn != bpn && cpusets_overlap(a, b)) {
652 for (k = 0; k < csn; k++) {
653 struct cpuset *c = csa[k];
654
655 if (c->pn == bpn)
656 c->pn = apn;
657 }
658 ndoms--; /* one less element */
659 goto restart;
660 }
661 }
662 }
663
cf417141
MK
664 /*
665 * Now we know how many domains to create.
666 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
667 */
acc3f5d7 668 doms = alloc_sched_domains(ndoms);
700018e0 669 if (!doms)
cf417141 670 goto done;
cf417141
MK
671
672 /*
673 * The rest of the code, including the scheduler, can deal with
674 * dattr==NULL case. No need to abort if alloc fails.
675 */
1d3504fc 676 dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
029190c5
PJ
677
678 for (nslot = 0, i = 0; i < csn; i++) {
679 struct cpuset *a = csa[i];
6af866af 680 struct cpumask *dp;
029190c5
PJ
681 int apn = a->pn;
682
cf417141
MK
683 if (apn < 0) {
684 /* Skip completed partitions */
685 continue;
686 }
687
acc3f5d7 688 dp = doms[nslot];
cf417141
MK
689
690 if (nslot == ndoms) {
691 static int warnings = 10;
692 if (warnings) {
693 printk(KERN_WARNING
694 "rebuild_sched_domains confused:"
695 " nslot %d, ndoms %d, csn %d, i %d,"
696 " apn %d\n",
697 nslot, ndoms, csn, i, apn);
698 warnings--;
029190c5 699 }
cf417141
MK
700 continue;
701 }
029190c5 702
6af866af 703 cpumask_clear(dp);
cf417141
MK
704 if (dattr)
705 *(dattr + nslot) = SD_ATTR_INIT;
706 for (j = i; j < csn; j++) {
707 struct cpuset *b = csa[j];
708
709 if (apn == b->pn) {
300ed6cb 710 cpumask_or(dp, dp, b->cpus_allowed);
cf417141
MK
711 if (dattr)
712 update_domain_attr_tree(dattr + nslot, b);
713
714 /* Done with this partition */
715 b->pn = -1;
029190c5 716 }
029190c5 717 }
cf417141 718 nslot++;
029190c5
PJ
719 }
720 BUG_ON(nslot != ndoms);
721
cf417141
MK
722done:
723 kfree(csa);
724
700018e0
LZ
725 /*
726 * Fallback to the default domain if kmalloc() failed.
727 * See comments in partition_sched_domains().
728 */
729 if (doms == NULL)
730 ndoms = 1;
731
cf417141
MK
732 *domains = doms;
733 *attributes = dattr;
734 return ndoms;
735}
736
737/*
738 * Rebuild scheduler domains.
739 *
699140ba
TH
740 * If the flag 'sched_load_balance' of any cpuset with non-empty
741 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
742 * which has that flag enabled, or if any cpuset with a non-empty
743 * 'cpus' is removed, then call this routine to rebuild the
744 * scheduler's dynamic sched domains.
cf417141 745 *
5d21cc2d 746 * Call with cpuset_mutex held. Takes get_online_cpus().
cf417141 747 */
699140ba 748static void rebuild_sched_domains_locked(void)
cf417141
MK
749{
750 struct sched_domain_attr *attr;
acc3f5d7 751 cpumask_var_t *doms;
cf417141
MK
752 int ndoms;
753
5d21cc2d 754 lockdep_assert_held(&cpuset_mutex);
86ef5c9a 755 get_online_cpus();
cf417141 756
5b16c2a4
LZ
757 /*
758 * We have raced with CPU hotplug. Don't do anything to avoid
759 * passing doms with offlined cpu to partition_sched_domains().
760 * Anyways, hotplug work item will rebuild sched domains.
761 */
762 if (!cpumask_equal(top_cpuset.cpus_allowed, cpu_active_mask))
763 goto out;
764
cf417141 765 /* Generate domain masks and attrs */
cf417141 766 ndoms = generate_sched_domains(&doms, &attr);
cf417141
MK
767
768 /* Have scheduler rebuild the domains */
769 partition_sched_domains(ndoms, doms, attr);
5b16c2a4 770out:
86ef5c9a 771 put_online_cpus();
cf417141 772}
db7f47cf 773#else /* !CONFIG_SMP */
699140ba 774static void rebuild_sched_domains_locked(void)
db7f47cf
PM
775{
776}
db7f47cf 777#endif /* CONFIG_SMP */
029190c5 778
cf417141
MK
779void rebuild_sched_domains(void)
780{
5d21cc2d 781 mutex_lock(&cpuset_mutex);
699140ba 782 rebuild_sched_domains_locked();
5d21cc2d 783 mutex_unlock(&cpuset_mutex);
029190c5
PJ
784}
785
58f4790b
CW
786/**
787 * cpuset_test_cpumask - test a task's cpus_allowed versus its cpuset's
788 * @tsk: task to test
789 * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
790 *
5d21cc2d 791 * Call with cpuset_mutex held. May take callback_mutex during call.
58f4790b
CW
792 * Called for each task in a cgroup by cgroup_scan_tasks().
793 * Return nonzero if this tasks's cpus_allowed mask should be changed (in other
794 * words, if its mask is not equal to its cpuset's mask).
053199ed 795 */
9e0c914c
AB
796static int cpuset_test_cpumask(struct task_struct *tsk,
797 struct cgroup_scanner *scan)
58f4790b 798{
300ed6cb 799 return !cpumask_equal(&tsk->cpus_allowed,
58f4790b
CW
800 (cgroup_cs(scan->cg))->cpus_allowed);
801}
053199ed 802
58f4790b
CW
803/**
804 * cpuset_change_cpumask - make a task's cpus_allowed the same as its cpuset's
805 * @tsk: task to test
806 * @scan: struct cgroup_scanner containing the cgroup of the task
807 *
808 * Called by cgroup_scan_tasks() for each task in a cgroup whose
809 * cpus_allowed mask needs to be changed.
810 *
811 * We don't need to re-check for the cgroup/cpuset membership, since we're
5d21cc2d 812 * holding cpuset_mutex at this point.
58f4790b 813 */
9e0c914c
AB
814static void cpuset_change_cpumask(struct task_struct *tsk,
815 struct cgroup_scanner *scan)
58f4790b 816{
300ed6cb 817 set_cpus_allowed_ptr(tsk, ((cgroup_cs(scan->cg))->cpus_allowed));
58f4790b
CW
818}
819
0b2f630a
MX
820/**
821 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
822 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
4e74339a 823 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
0b2f630a 824 *
5d21cc2d 825 * Called with cpuset_mutex held
0b2f630a
MX
826 *
827 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
828 * calling callback functions for each.
829 *
4e74339a
LZ
830 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
831 * if @heap != NULL.
0b2f630a 832 */
4e74339a 833static void update_tasks_cpumask(struct cpuset *cs, struct ptr_heap *heap)
0b2f630a
MX
834{
835 struct cgroup_scanner scan;
0b2f630a
MX
836
837 scan.cg = cs->css.cgroup;
838 scan.test_task = cpuset_test_cpumask;
839 scan.process_task = cpuset_change_cpumask;
4e74339a
LZ
840 scan.heap = heap;
841 cgroup_scan_tasks(&scan);
0b2f630a
MX
842}
843
58f4790b
CW
844/**
845 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
846 * @cs: the cpuset to consider
847 * @buf: buffer of cpu numbers written to this cpuset
848 */
645fcc9d
LZ
849static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
850 const char *buf)
1da177e4 851{
4e74339a 852 struct ptr_heap heap;
58f4790b
CW
853 int retval;
854 int is_load_balanced;
1da177e4 855
5f054e31 856 /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
4c4d50f7
PJ
857 if (cs == &top_cpuset)
858 return -EACCES;
859
6f7f02e7 860 /*
c8d9c90c 861 * An empty cpus_allowed is ok only if the cpuset has no tasks.
020958b6
PJ
862 * Since cpulist_parse() fails on an empty mask, we special case
863 * that parsing. The validate_change() call ensures that cpusets
864 * with tasks have cpus.
6f7f02e7 865 */
020958b6 866 if (!*buf) {
300ed6cb 867 cpumask_clear(trialcs->cpus_allowed);
6f7f02e7 868 } else {
300ed6cb 869 retval = cpulist_parse(buf, trialcs->cpus_allowed);
6f7f02e7
DR
870 if (retval < 0)
871 return retval;
37340746 872
6ad4c188 873 if (!cpumask_subset(trialcs->cpus_allowed, cpu_active_mask))
37340746 874 return -EINVAL;
6f7f02e7 875 }
645fcc9d 876 retval = validate_change(cs, trialcs);
85d7b949
DG
877 if (retval < 0)
878 return retval;
029190c5 879
8707d8b8 880 /* Nothing to do if the cpus didn't change */
300ed6cb 881 if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
8707d8b8 882 return 0;
58f4790b 883
4e74339a
LZ
884 retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
885 if (retval)
886 return retval;
887
645fcc9d 888 is_load_balanced = is_sched_load_balance(trialcs);
029190c5 889
3d3f26a7 890 mutex_lock(&callback_mutex);
300ed6cb 891 cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
3d3f26a7 892 mutex_unlock(&callback_mutex);
029190c5 893
8707d8b8
PM
894 /*
895 * Scan tasks in the cpuset, and update the cpumasks of any
58f4790b 896 * that need an update.
8707d8b8 897 */
4e74339a
LZ
898 update_tasks_cpumask(cs, &heap);
899
900 heap_free(&heap);
58f4790b 901
8707d8b8 902 if (is_load_balanced)
699140ba 903 rebuild_sched_domains_locked();
85d7b949 904 return 0;
1da177e4
LT
905}
906
e4e364e8
PJ
907/*
908 * cpuset_migrate_mm
909 *
910 * Migrate memory region from one set of nodes to another.
911 *
912 * Temporarilly set tasks mems_allowed to target nodes of migration,
913 * so that the migration code can allocate pages on these nodes.
914 *
5d21cc2d 915 * Call holding cpuset_mutex, so current's cpuset won't change
c8d9c90c 916 * during this call, as manage_mutex holds off any cpuset_attach()
e4e364e8
PJ
917 * calls. Therefore we don't need to take task_lock around the
918 * call to guarantee_online_mems(), as we know no one is changing
2df167a3 919 * our task's cpuset.
e4e364e8 920 *
e4e364e8
PJ
921 * While the mm_struct we are migrating is typically from some
922 * other task, the task_struct mems_allowed that we are hacking
923 * is for our current task, which must allocate new pages for that
924 * migrating memory region.
e4e364e8
PJ
925 */
926
927static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
928 const nodemask_t *to)
929{
930 struct task_struct *tsk = current;
931
e4e364e8 932 tsk->mems_allowed = *to;
e4e364e8
PJ
933
934 do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);
935
8793d854 936 guarantee_online_mems(task_cs(tsk),&tsk->mems_allowed);
e4e364e8
PJ
937}
938
3b6766fe 939/*
58568d2a
MX
940 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
941 * @tsk: the task to change
942 * @newmems: new nodes that the task will be set
943 *
944 * In order to avoid seeing no nodes if the old and new nodes are disjoint,
945 * we structure updates as setting all new allowed nodes, then clearing newly
946 * disallowed ones.
58568d2a
MX
947 */
948static void cpuset_change_task_nodemask(struct task_struct *tsk,
949 nodemask_t *newmems)
950{
b246272e 951 bool need_loop;
89e8a244 952
c0ff7453
MX
953 /*
954 * Allow tasks that have access to memory reserves because they have
955 * been OOM killed to get memory anywhere.
956 */
957 if (unlikely(test_thread_flag(TIF_MEMDIE)))
958 return;
959 if (current->flags & PF_EXITING) /* Let dying task have memory */
960 return;
961
962 task_lock(tsk);
b246272e
DR
963 /*
964 * Determine if a loop is necessary if another thread is doing
965 * get_mems_allowed(). If at least one node remains unchanged and
966 * tsk does not have a mempolicy, then an empty nodemask will not be
967 * possible when mems_allowed is larger than a word.
968 */
969 need_loop = task_has_mempolicy(tsk) ||
970 !nodes_intersects(*newmems, tsk->mems_allowed);
c0ff7453 971
cc9a6c87
MG
972 if (need_loop)
973 write_seqcount_begin(&tsk->mems_allowed_seq);
c0ff7453 974
cc9a6c87
MG
975 nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
976 mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP1);
c0ff7453
MX
977
978 mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP2);
58568d2a 979 tsk->mems_allowed = *newmems;
cc9a6c87
MG
980
981 if (need_loop)
982 write_seqcount_end(&tsk->mems_allowed_seq);
983
c0ff7453 984 task_unlock(tsk);
58568d2a
MX
985}
986
987/*
988 * Update task's mems_allowed and rebind its mempolicy and vmas' mempolicy
989 * of it to cpuset's new mems_allowed, and migrate pages to new nodes if
5d21cc2d 990 * memory_migrate flag is set. Called with cpuset_mutex held.
3b6766fe
LZ
991 */
992static void cpuset_change_nodemask(struct task_struct *p,
993 struct cgroup_scanner *scan)
994{
995 struct mm_struct *mm;
996 struct cpuset *cs;
997 int migrate;
998 const nodemask_t *oldmem = scan->data;
5d21cc2d 999 static nodemask_t newmems; /* protected by cpuset_mutex */
58568d2a
MX
1000
1001 cs = cgroup_cs(scan->cg);
ee24d379 1002 guarantee_online_mems(cs, &newmems);
58568d2a 1003
ee24d379 1004 cpuset_change_task_nodemask(p, &newmems);
53feb297 1005
3b6766fe
LZ
1006 mm = get_task_mm(p);
1007 if (!mm)
1008 return;
1009
3b6766fe
LZ
1010 migrate = is_memory_migrate(cs);
1011
1012 mpol_rebind_mm(mm, &cs->mems_allowed);
1013 if (migrate)
1014 cpuset_migrate_mm(mm, oldmem, &cs->mems_allowed);
1015 mmput(mm);
1016}
1017
8793d854
PM
1018static void *cpuset_being_rebound;
1019
0b2f630a
MX
1020/**
1021 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1022 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
1023 * @oldmem: old mems_allowed of cpuset cs
010cfac4 1024 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
0b2f630a 1025 *
5d21cc2d 1026 * Called with cpuset_mutex held
010cfac4
LZ
1027 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
1028 * if @heap != NULL.
0b2f630a 1029 */
010cfac4
LZ
1030static void update_tasks_nodemask(struct cpuset *cs, const nodemask_t *oldmem,
1031 struct ptr_heap *heap)
1da177e4 1032{
3b6766fe 1033 struct cgroup_scanner scan;
59dac16f 1034
846a16bf 1035 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
4225399a 1036
3b6766fe
LZ
1037 scan.cg = cs->css.cgroup;
1038 scan.test_task = NULL;
1039 scan.process_task = cpuset_change_nodemask;
010cfac4 1040 scan.heap = heap;
3b6766fe 1041 scan.data = (nodemask_t *)oldmem;
4225399a
PJ
1042
1043 /*
3b6766fe
LZ
1044 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
1045 * take while holding tasklist_lock. Forks can happen - the
1046 * mpol_dup() cpuset_being_rebound check will catch such forks,
1047 * and rebind their vma mempolicies too. Because we still hold
5d21cc2d 1048 * the global cpuset_mutex, we know that no other rebind effort
3b6766fe 1049 * will be contending for the global variable cpuset_being_rebound.
4225399a 1050 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
04c19fa6 1051 * is idempotent. Also migrate pages in each mm to new nodes.
4225399a 1052 */
010cfac4 1053 cgroup_scan_tasks(&scan);
4225399a 1054
2df167a3 1055 /* We're done rebinding vmas to this cpuset's new mems_allowed. */
8793d854 1056 cpuset_being_rebound = NULL;
1da177e4
LT
1057}
1058
0b2f630a
MX
1059/*
1060 * Handle user request to change the 'mems' memory placement
1061 * of a cpuset. Needs to validate the request, update the
58568d2a
MX
1062 * cpusets mems_allowed, and for each task in the cpuset,
1063 * update mems_allowed and rebind task's mempolicy and any vma
1064 * mempolicies and if the cpuset is marked 'memory_migrate',
1065 * migrate the tasks pages to the new memory.
0b2f630a 1066 *
5d21cc2d 1067 * Call with cpuset_mutex held. May take callback_mutex during call.
0b2f630a
MX
1068 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1069 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
1070 * their mempolicies to the cpusets new mems_allowed.
1071 */
645fcc9d
LZ
1072static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
1073 const char *buf)
0b2f630a 1074{
53feb297 1075 NODEMASK_ALLOC(nodemask_t, oldmem, GFP_KERNEL);
0b2f630a 1076 int retval;
010cfac4 1077 struct ptr_heap heap;
0b2f630a 1078
53feb297
MX
1079 if (!oldmem)
1080 return -ENOMEM;
1081
0b2f630a 1082 /*
38d7bee9 1083 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
0b2f630a
MX
1084 * it's read-only
1085 */
53feb297
MX
1086 if (cs == &top_cpuset) {
1087 retval = -EACCES;
1088 goto done;
1089 }
0b2f630a 1090
0b2f630a
MX
1091 /*
1092 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1093 * Since nodelist_parse() fails on an empty mask, we special case
1094 * that parsing. The validate_change() call ensures that cpusets
1095 * with tasks have memory.
1096 */
1097 if (!*buf) {
645fcc9d 1098 nodes_clear(trialcs->mems_allowed);
0b2f630a 1099 } else {
645fcc9d 1100 retval = nodelist_parse(buf, trialcs->mems_allowed);
0b2f630a
MX
1101 if (retval < 0)
1102 goto done;
1103
645fcc9d 1104 if (!nodes_subset(trialcs->mems_allowed,
38d7bee9 1105 node_states[N_MEMORY])) {
53feb297
MX
1106 retval = -EINVAL;
1107 goto done;
1108 }
0b2f630a 1109 }
53feb297
MX
1110 *oldmem = cs->mems_allowed;
1111 if (nodes_equal(*oldmem, trialcs->mems_allowed)) {
0b2f630a
MX
1112 retval = 0; /* Too easy - nothing to do */
1113 goto done;
1114 }
645fcc9d 1115 retval = validate_change(cs, trialcs);
0b2f630a
MX
1116 if (retval < 0)
1117 goto done;
1118
010cfac4
LZ
1119 retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
1120 if (retval < 0)
1121 goto done;
1122
0b2f630a 1123 mutex_lock(&callback_mutex);
645fcc9d 1124 cs->mems_allowed = trialcs->mems_allowed;
0b2f630a
MX
1125 mutex_unlock(&callback_mutex);
1126
53feb297 1127 update_tasks_nodemask(cs, oldmem, &heap);
010cfac4
LZ
1128
1129 heap_free(&heap);
0b2f630a 1130done:
53feb297 1131 NODEMASK_FREE(oldmem);
0b2f630a
MX
1132 return retval;
1133}
1134
8793d854
PM
1135int current_cpuset_is_being_rebound(void)
1136{
1137 return task_cs(current) == cpuset_being_rebound;
1138}
1139
5be7a479 1140static int update_relax_domain_level(struct cpuset *cs, s64 val)
1d3504fc 1141{
db7f47cf 1142#ifdef CONFIG_SMP
60495e77 1143 if (val < -1 || val >= sched_domain_level_max)
30e0e178 1144 return -EINVAL;
db7f47cf 1145#endif
1d3504fc
HS
1146
1147 if (val != cs->relax_domain_level) {
1148 cs->relax_domain_level = val;
300ed6cb
LZ
1149 if (!cpumask_empty(cs->cpus_allowed) &&
1150 is_sched_load_balance(cs))
699140ba 1151 rebuild_sched_domains_locked();
1d3504fc
HS
1152 }
1153
1154 return 0;
1155}
1156
950592f7
MX
1157/*
1158 * cpuset_change_flag - make a task's spread flags the same as its cpuset's
1159 * @tsk: task to be updated
1160 * @scan: struct cgroup_scanner containing the cgroup of the task
1161 *
1162 * Called by cgroup_scan_tasks() for each task in a cgroup.
1163 *
1164 * We don't need to re-check for the cgroup/cpuset membership, since we're
5d21cc2d 1165 * holding cpuset_mutex at this point.
950592f7
MX
1166 */
1167static void cpuset_change_flag(struct task_struct *tsk,
1168 struct cgroup_scanner *scan)
1169{
1170 cpuset_update_task_spread_flag(cgroup_cs(scan->cg), tsk);
1171}
1172
1173/*
1174 * update_tasks_flags - update the spread flags of tasks in the cpuset.
1175 * @cs: the cpuset in which each task's spread flags needs to be changed
1176 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
1177 *
5d21cc2d 1178 * Called with cpuset_mutex held
950592f7
MX
1179 *
1180 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
1181 * calling callback functions for each.
1182 *
1183 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
1184 * if @heap != NULL.
1185 */
1186static void update_tasks_flags(struct cpuset *cs, struct ptr_heap *heap)
1187{
1188 struct cgroup_scanner scan;
1189
1190 scan.cg = cs->css.cgroup;
1191 scan.test_task = NULL;
1192 scan.process_task = cpuset_change_flag;
1193 scan.heap = heap;
1194 cgroup_scan_tasks(&scan);
1195}
1196
1da177e4
LT
1197/*
1198 * update_flag - read a 0 or a 1 in a file and update associated flag
78608366
PM
1199 * bit: the bit to update (see cpuset_flagbits_t)
1200 * cs: the cpuset to update
1201 * turning_on: whether the flag is being set or cleared
053199ed 1202 *
5d21cc2d 1203 * Call with cpuset_mutex held.
1da177e4
LT
1204 */
1205
700fe1ab
PM
1206static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1207 int turning_on)
1da177e4 1208{
645fcc9d 1209 struct cpuset *trialcs;
40b6a762 1210 int balance_flag_changed;
950592f7
MX
1211 int spread_flag_changed;
1212 struct ptr_heap heap;
1213 int err;
1da177e4 1214
645fcc9d
LZ
1215 trialcs = alloc_trial_cpuset(cs);
1216 if (!trialcs)
1217 return -ENOMEM;
1218
1da177e4 1219 if (turning_on)
645fcc9d 1220 set_bit(bit, &trialcs->flags);
1da177e4 1221 else
645fcc9d 1222 clear_bit(bit, &trialcs->flags);
1da177e4 1223
645fcc9d 1224 err = validate_change(cs, trialcs);
85d7b949 1225 if (err < 0)
645fcc9d 1226 goto out;
029190c5 1227
950592f7
MX
1228 err = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
1229 if (err < 0)
1230 goto out;
1231
029190c5 1232 balance_flag_changed = (is_sched_load_balance(cs) !=
645fcc9d 1233 is_sched_load_balance(trialcs));
029190c5 1234
950592f7
MX
1235 spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
1236 || (is_spread_page(cs) != is_spread_page(trialcs)));
1237
3d3f26a7 1238 mutex_lock(&callback_mutex);
645fcc9d 1239 cs->flags = trialcs->flags;
3d3f26a7 1240 mutex_unlock(&callback_mutex);
85d7b949 1241
300ed6cb 1242 if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
699140ba 1243 rebuild_sched_domains_locked();
029190c5 1244
950592f7
MX
1245 if (spread_flag_changed)
1246 update_tasks_flags(cs, &heap);
1247 heap_free(&heap);
645fcc9d
LZ
1248out:
1249 free_trial_cpuset(trialcs);
1250 return err;
1da177e4
LT
1251}
1252
3e0d98b9 1253/*
80f7228b 1254 * Frequency meter - How fast is some event occurring?
3e0d98b9
PJ
1255 *
1256 * These routines manage a digitally filtered, constant time based,
1257 * event frequency meter. There are four routines:
1258 * fmeter_init() - initialize a frequency meter.
1259 * fmeter_markevent() - called each time the event happens.
1260 * fmeter_getrate() - returns the recent rate of such events.
1261 * fmeter_update() - internal routine used to update fmeter.
1262 *
1263 * A common data structure is passed to each of these routines,
1264 * which is used to keep track of the state required to manage the
1265 * frequency meter and its digital filter.
1266 *
1267 * The filter works on the number of events marked per unit time.
1268 * The filter is single-pole low-pass recursive (IIR). The time unit
1269 * is 1 second. Arithmetic is done using 32-bit integers scaled to
1270 * simulate 3 decimal digits of precision (multiplied by 1000).
1271 *
1272 * With an FM_COEF of 933, and a time base of 1 second, the filter
1273 * has a half-life of 10 seconds, meaning that if the events quit
1274 * happening, then the rate returned from the fmeter_getrate()
1275 * will be cut in half each 10 seconds, until it converges to zero.
1276 *
1277 * It is not worth doing a real infinitely recursive filter. If more
1278 * than FM_MAXTICKS ticks have elapsed since the last filter event,
1279 * just compute FM_MAXTICKS ticks worth, by which point the level
1280 * will be stable.
1281 *
1282 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
1283 * arithmetic overflow in the fmeter_update() routine.
1284 *
1285 * Given the simple 32 bit integer arithmetic used, this meter works
1286 * best for reporting rates between one per millisecond (msec) and
1287 * one per 32 (approx) seconds. At constant rates faster than one
1288 * per msec it maxes out at values just under 1,000,000. At constant
1289 * rates between one per msec, and one per second it will stabilize
1290 * to a value N*1000, where N is the rate of events per second.
1291 * At constant rates between one per second and one per 32 seconds,
1292 * it will be choppy, moving up on the seconds that have an event,
1293 * and then decaying until the next event. At rates slower than
1294 * about one in 32 seconds, it decays all the way back to zero between
1295 * each event.
1296 */
1297
1298#define FM_COEF 933 /* coefficient for half-life of 10 secs */
1299#define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
1300#define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
1301#define FM_SCALE 1000 /* faux fixed point scale */
1302
1303/* Initialize a frequency meter */
1304static void fmeter_init(struct fmeter *fmp)
1305{
1306 fmp->cnt = 0;
1307 fmp->val = 0;
1308 fmp->time = 0;
1309 spin_lock_init(&fmp->lock);
1310}
1311
1312/* Internal meter update - process cnt events and update value */
1313static void fmeter_update(struct fmeter *fmp)
1314{
1315 time_t now = get_seconds();
1316 time_t ticks = now - fmp->time;
1317
1318 if (ticks == 0)
1319 return;
1320
1321 ticks = min(FM_MAXTICKS, ticks);
1322 while (ticks-- > 0)
1323 fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
1324 fmp->time = now;
1325
1326 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
1327 fmp->cnt = 0;
1328}
1329
1330/* Process any previous ticks, then bump cnt by one (times scale). */
1331static void fmeter_markevent(struct fmeter *fmp)
1332{
1333 spin_lock(&fmp->lock);
1334 fmeter_update(fmp);
1335 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
1336 spin_unlock(&fmp->lock);
1337}
1338
1339/* Process any previous ticks, then return current value. */
1340static int fmeter_getrate(struct fmeter *fmp)
1341{
1342 int val;
1343
1344 spin_lock(&fmp->lock);
1345 fmeter_update(fmp);
1346 val = fmp->val;
1347 spin_unlock(&fmp->lock);
1348 return val;
1349}
1350
5d21cc2d 1351/* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
761b3ef5 1352static int cpuset_can_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
f780bdb7 1353{
2f7ee569 1354 struct cpuset *cs = cgroup_cs(cgrp);
bb9d97b6
TH
1355 struct task_struct *task;
1356 int ret;
1da177e4 1357
5d21cc2d
TH
1358 mutex_lock(&cpuset_mutex);
1359
1360 ret = -ENOSPC;
300ed6cb 1361 if (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
5d21cc2d 1362 goto out_unlock;
9985b0ba 1363
bb9d97b6
TH
1364 cgroup_taskset_for_each(task, cgrp, tset) {
1365 /*
14a40ffc
TH
1366 * Kthreads which disallow setaffinity shouldn't be moved
1367 * to a new cpuset; we don't want to change their cpu
1368 * affinity and isolating such threads by their set of
1369 * allowed nodes is unnecessary. Thus, cpusets are not
1370 * applicable for such threads. This prevents checking for
1371 * success of set_cpus_allowed_ptr() on all attached tasks
1372 * before cpus_allowed may be changed.
bb9d97b6 1373 */
5d21cc2d 1374 ret = -EINVAL;
14a40ffc 1375 if (task->flags & PF_NO_SETAFFINITY)
5d21cc2d
TH
1376 goto out_unlock;
1377 ret = security_task_setscheduler(task);
1378 if (ret)
1379 goto out_unlock;
bb9d97b6 1380 }
f780bdb7 1381
452477fa
TH
1382 /*
1383 * Mark attach is in progress. This makes validate_change() fail
1384 * changes which zero cpus/mems_allowed.
1385 */
1386 cs->attach_in_progress++;
5d21cc2d
TH
1387 ret = 0;
1388out_unlock:
1389 mutex_unlock(&cpuset_mutex);
1390 return ret;
8793d854 1391}
f780bdb7 1392
452477fa
TH
1393static void cpuset_cancel_attach(struct cgroup *cgrp,
1394 struct cgroup_taskset *tset)
1395{
5d21cc2d 1396 mutex_lock(&cpuset_mutex);
452477fa 1397 cgroup_cs(cgrp)->attach_in_progress--;
5d21cc2d 1398 mutex_unlock(&cpuset_mutex);
8793d854 1399}
1da177e4 1400
4e4c9a14 1401/*
5d21cc2d 1402 * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach()
4e4c9a14
TH
1403 * but we can't allocate it dynamically there. Define it global and
1404 * allocate from cpuset_init().
1405 */
1406static cpumask_var_t cpus_attach;
1407
761b3ef5 1408static void cpuset_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
8793d854 1409{
5d21cc2d 1410 /* static bufs protected by cpuset_mutex */
4e4c9a14
TH
1411 static nodemask_t cpuset_attach_nodemask_from;
1412 static nodemask_t cpuset_attach_nodemask_to;
8793d854 1413 struct mm_struct *mm;
bb9d97b6
TH
1414 struct task_struct *task;
1415 struct task_struct *leader = cgroup_taskset_first(tset);
2f7ee569
TH
1416 struct cgroup *oldcgrp = cgroup_taskset_cur_cgroup(tset);
1417 struct cpuset *cs = cgroup_cs(cgrp);
1418 struct cpuset *oldcs = cgroup_cs(oldcgrp);
22fb52dd 1419
5d21cc2d
TH
1420 mutex_lock(&cpuset_mutex);
1421
4e4c9a14
TH
1422 /* prepare for attach */
1423 if (cs == &top_cpuset)
1424 cpumask_copy(cpus_attach, cpu_possible_mask);
1425 else
1426 guarantee_online_cpus(cs, cpus_attach);
1427
1428 guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
1429
bb9d97b6
TH
1430 cgroup_taskset_for_each(task, cgrp, tset) {
1431 /*
1432 * can_attach beforehand should guarantee that this doesn't
1433 * fail. TODO: have a better way to handle failure here
1434 */
1435 WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
1436
1437 cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
1438 cpuset_update_task_spread_flag(cs, task);
1439 }
22fb52dd 1440
f780bdb7
BB
1441 /*
1442 * Change mm, possibly for multiple threads in a threadgroup. This is
1443 * expensive and may sleep.
1444 */
1445 cpuset_attach_nodemask_from = oldcs->mems_allowed;
1446 cpuset_attach_nodemask_to = cs->mems_allowed;
bb9d97b6 1447 mm = get_task_mm(leader);
4225399a 1448 if (mm) {
f780bdb7 1449 mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
2741a559 1450 if (is_memory_migrate(cs))
f780bdb7
BB
1451 cpuset_migrate_mm(mm, &cpuset_attach_nodemask_from,
1452 &cpuset_attach_nodemask_to);
4225399a
PJ
1453 mmput(mm);
1454 }
452477fa
TH
1455
1456 cs->attach_in_progress--;
02bb5863
TH
1457
1458 /*
1459 * We may have raced with CPU/memory hotunplug. Trigger hotplug
1460 * propagation if @cs doesn't have any CPU or memory. It will move
1461 * the newly added tasks to the nearest parent which can execute.
1462 */
1463 if (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
1464 schedule_cpuset_propagate_hotplug(cs);
5d21cc2d
TH
1465
1466 mutex_unlock(&cpuset_mutex);
1da177e4
LT
1467}
1468
1469/* The various types of files and directories in a cpuset file system */
1470
1471typedef enum {
45b07ef3 1472 FILE_MEMORY_MIGRATE,
1da177e4
LT
1473 FILE_CPULIST,
1474 FILE_MEMLIST,
1475 FILE_CPU_EXCLUSIVE,
1476 FILE_MEM_EXCLUSIVE,
78608366 1477 FILE_MEM_HARDWALL,
029190c5 1478 FILE_SCHED_LOAD_BALANCE,
1d3504fc 1479 FILE_SCHED_RELAX_DOMAIN_LEVEL,
3e0d98b9
PJ
1480 FILE_MEMORY_PRESSURE_ENABLED,
1481 FILE_MEMORY_PRESSURE,
825a46af
PJ
1482 FILE_SPREAD_PAGE,
1483 FILE_SPREAD_SLAB,
1da177e4
LT
1484} cpuset_filetype_t;
1485
700fe1ab
PM
1486static int cpuset_write_u64(struct cgroup *cgrp, struct cftype *cft, u64 val)
1487{
700fe1ab
PM
1488 struct cpuset *cs = cgroup_cs(cgrp);
1489 cpuset_filetype_t type = cft->private;
5d21cc2d 1490 int retval = -ENODEV;
700fe1ab 1491
5d21cc2d
TH
1492 mutex_lock(&cpuset_mutex);
1493 if (!is_cpuset_online(cs))
1494 goto out_unlock;
700fe1ab
PM
1495
1496 switch (type) {
1da177e4 1497 case FILE_CPU_EXCLUSIVE:
700fe1ab 1498 retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
1da177e4
LT
1499 break;
1500 case FILE_MEM_EXCLUSIVE:
700fe1ab 1501 retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
1da177e4 1502 break;
78608366
PM
1503 case FILE_MEM_HARDWALL:
1504 retval = update_flag(CS_MEM_HARDWALL, cs, val);
1505 break;
029190c5 1506 case FILE_SCHED_LOAD_BALANCE:
700fe1ab 1507 retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1d3504fc 1508 break;
45b07ef3 1509 case FILE_MEMORY_MIGRATE:
700fe1ab 1510 retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
45b07ef3 1511 break;
3e0d98b9 1512 case FILE_MEMORY_PRESSURE_ENABLED:
700fe1ab 1513 cpuset_memory_pressure_enabled = !!val;
3e0d98b9
PJ
1514 break;
1515 case FILE_MEMORY_PRESSURE:
1516 retval = -EACCES;
1517 break;
825a46af 1518 case FILE_SPREAD_PAGE:
700fe1ab 1519 retval = update_flag(CS_SPREAD_PAGE, cs, val);
825a46af
PJ
1520 break;
1521 case FILE_SPREAD_SLAB:
700fe1ab 1522 retval = update_flag(CS_SPREAD_SLAB, cs, val);
825a46af 1523 break;
1da177e4
LT
1524 default:
1525 retval = -EINVAL;
700fe1ab 1526 break;
1da177e4 1527 }
5d21cc2d
TH
1528out_unlock:
1529 mutex_unlock(&cpuset_mutex);
1da177e4
LT
1530 return retval;
1531}
1532
5be7a479
PM
1533static int cpuset_write_s64(struct cgroup *cgrp, struct cftype *cft, s64 val)
1534{
5be7a479
PM
1535 struct cpuset *cs = cgroup_cs(cgrp);
1536 cpuset_filetype_t type = cft->private;
5d21cc2d 1537 int retval = -ENODEV;
5be7a479 1538
5d21cc2d
TH
1539 mutex_lock(&cpuset_mutex);
1540 if (!is_cpuset_online(cs))
1541 goto out_unlock;
e3712395 1542
5be7a479
PM
1543 switch (type) {
1544 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1545 retval = update_relax_domain_level(cs, val);
1546 break;
1547 default:
1548 retval = -EINVAL;
1549 break;
1550 }
5d21cc2d
TH
1551out_unlock:
1552 mutex_unlock(&cpuset_mutex);
5be7a479
PM
1553 return retval;
1554}
1555
e3712395
PM
1556/*
1557 * Common handling for a write to a "cpus" or "mems" file.
1558 */
1559static int cpuset_write_resmask(struct cgroup *cgrp, struct cftype *cft,
1560 const char *buf)
1561{
645fcc9d
LZ
1562 struct cpuset *cs = cgroup_cs(cgrp);
1563 struct cpuset *trialcs;
5d21cc2d 1564 int retval = -ENODEV;
e3712395 1565
3a5a6d0c
TH
1566 /*
1567 * CPU or memory hotunplug may leave @cs w/o any execution
1568 * resources, in which case the hotplug code asynchronously updates
1569 * configuration and transfers all tasks to the nearest ancestor
1570 * which can execute.
1571 *
1572 * As writes to "cpus" or "mems" may restore @cs's execution
1573 * resources, wait for the previously scheduled operations before
1574 * proceeding, so that we don't end up keep removing tasks added
1575 * after execution capability is restored.
02bb5863
TH
1576 *
1577 * Flushing cpuset_hotplug_work is enough to synchronize against
1578 * hotplug hanlding; however, cpuset_attach() may schedule
1579 * propagation work directly. Flush the workqueue too.
3a5a6d0c
TH
1580 */
1581 flush_work(&cpuset_hotplug_work);
02bb5863 1582 flush_workqueue(cpuset_propagate_hotplug_wq);
3a5a6d0c 1583
5d21cc2d
TH
1584 mutex_lock(&cpuset_mutex);
1585 if (!is_cpuset_online(cs))
1586 goto out_unlock;
e3712395 1587
645fcc9d 1588 trialcs = alloc_trial_cpuset(cs);
b75f38d6
LZ
1589 if (!trialcs) {
1590 retval = -ENOMEM;
5d21cc2d 1591 goto out_unlock;
b75f38d6 1592 }
645fcc9d 1593
e3712395
PM
1594 switch (cft->private) {
1595 case FILE_CPULIST:
645fcc9d 1596 retval = update_cpumask(cs, trialcs, buf);
e3712395
PM
1597 break;
1598 case FILE_MEMLIST:
645fcc9d 1599 retval = update_nodemask(cs, trialcs, buf);
e3712395
PM
1600 break;
1601 default:
1602 retval = -EINVAL;
1603 break;
1604 }
645fcc9d
LZ
1605
1606 free_trial_cpuset(trialcs);
5d21cc2d
TH
1607out_unlock:
1608 mutex_unlock(&cpuset_mutex);
e3712395
PM
1609 return retval;
1610}
1611
1da177e4
LT
1612/*
1613 * These ascii lists should be read in a single call, by using a user
1614 * buffer large enough to hold the entire map. If read in smaller
1615 * chunks, there is no guarantee of atomicity. Since the display format
1616 * used, list of ranges of sequential numbers, is variable length,
1617 * and since these maps can change value dynamically, one could read
1618 * gibberish by doing partial reads while a list was changing.
1619 * A single large read to a buffer that crosses a page boundary is
1620 * ok, because the result being copied to user land is not recomputed
1621 * across a page fault.
1622 */
1623
9303e0c4 1624static size_t cpuset_sprintf_cpulist(char *page, struct cpuset *cs)
1da177e4 1625{
9303e0c4 1626 size_t count;
1da177e4 1627
3d3f26a7 1628 mutex_lock(&callback_mutex);
9303e0c4 1629 count = cpulist_scnprintf(page, PAGE_SIZE, cs->cpus_allowed);
3d3f26a7 1630 mutex_unlock(&callback_mutex);
1da177e4 1631
9303e0c4 1632 return count;
1da177e4
LT
1633}
1634
9303e0c4 1635static size_t cpuset_sprintf_memlist(char *page, struct cpuset *cs)
1da177e4 1636{
9303e0c4 1637 size_t count;
1da177e4 1638
3d3f26a7 1639 mutex_lock(&callback_mutex);
9303e0c4 1640 count = nodelist_scnprintf(page, PAGE_SIZE, cs->mems_allowed);
3d3f26a7 1641 mutex_unlock(&callback_mutex);
1da177e4 1642
9303e0c4 1643 return count;
1da177e4
LT
1644}
1645
8793d854
PM
1646static ssize_t cpuset_common_file_read(struct cgroup *cont,
1647 struct cftype *cft,
1648 struct file *file,
1649 char __user *buf,
1650 size_t nbytes, loff_t *ppos)
1da177e4 1651{
8793d854 1652 struct cpuset *cs = cgroup_cs(cont);
1da177e4
LT
1653 cpuset_filetype_t type = cft->private;
1654 char *page;
1655 ssize_t retval = 0;
1656 char *s;
1da177e4 1657
e12ba74d 1658 if (!(page = (char *)__get_free_page(GFP_TEMPORARY)))
1da177e4
LT
1659 return -ENOMEM;
1660
1661 s = page;
1662
1663 switch (type) {
1664 case FILE_CPULIST:
1665 s += cpuset_sprintf_cpulist(s, cs);
1666 break;
1667 case FILE_MEMLIST:
1668 s += cpuset_sprintf_memlist(s, cs);
1669 break;
1da177e4
LT
1670 default:
1671 retval = -EINVAL;
1672 goto out;
1673 }
1674 *s++ = '\n';
1da177e4 1675
eacaa1f5 1676 retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
1da177e4
LT
1677out:
1678 free_page((unsigned long)page);
1679 return retval;
1680}
1681
700fe1ab
PM
1682static u64 cpuset_read_u64(struct cgroup *cont, struct cftype *cft)
1683{
1684 struct cpuset *cs = cgroup_cs(cont);
1685 cpuset_filetype_t type = cft->private;
1686 switch (type) {
1687 case FILE_CPU_EXCLUSIVE:
1688 return is_cpu_exclusive(cs);
1689 case FILE_MEM_EXCLUSIVE:
1690 return is_mem_exclusive(cs);
78608366
PM
1691 case FILE_MEM_HARDWALL:
1692 return is_mem_hardwall(cs);
700fe1ab
PM
1693 case FILE_SCHED_LOAD_BALANCE:
1694 return is_sched_load_balance(cs);
1695 case FILE_MEMORY_MIGRATE:
1696 return is_memory_migrate(cs);
1697 case FILE_MEMORY_PRESSURE_ENABLED:
1698 return cpuset_memory_pressure_enabled;
1699 case FILE_MEMORY_PRESSURE:
1700 return fmeter_getrate(&cs->fmeter);
1701 case FILE_SPREAD_PAGE:
1702 return is_spread_page(cs);
1703 case FILE_SPREAD_SLAB:
1704 return is_spread_slab(cs);
1705 default:
1706 BUG();
1707 }
cf417141
MK
1708
1709 /* Unreachable but makes gcc happy */
1710 return 0;
700fe1ab 1711}
1da177e4 1712
5be7a479
PM
1713static s64 cpuset_read_s64(struct cgroup *cont, struct cftype *cft)
1714{
1715 struct cpuset *cs = cgroup_cs(cont);
1716 cpuset_filetype_t type = cft->private;
1717 switch (type) {
1718 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1719 return cs->relax_domain_level;
1720 default:
1721 BUG();
1722 }
cf417141
MK
1723
1724 /* Unrechable but makes gcc happy */
1725 return 0;
5be7a479
PM
1726}
1727
1da177e4
LT
1728
1729/*
1730 * for the common functions, 'private' gives the type of file
1731 */
1732
addf2c73
PM
1733static struct cftype files[] = {
1734 {
1735 .name = "cpus",
1736 .read = cpuset_common_file_read,
e3712395
PM
1737 .write_string = cpuset_write_resmask,
1738 .max_write_len = (100U + 6 * NR_CPUS),
addf2c73
PM
1739 .private = FILE_CPULIST,
1740 },
1741
1742 {
1743 .name = "mems",
1744 .read = cpuset_common_file_read,
e3712395
PM
1745 .write_string = cpuset_write_resmask,
1746 .max_write_len = (100U + 6 * MAX_NUMNODES),
addf2c73
PM
1747 .private = FILE_MEMLIST,
1748 },
1749
1750 {
1751 .name = "cpu_exclusive",
1752 .read_u64 = cpuset_read_u64,
1753 .write_u64 = cpuset_write_u64,
1754 .private = FILE_CPU_EXCLUSIVE,
1755 },
1756
1757 {
1758 .name = "mem_exclusive",
1759 .read_u64 = cpuset_read_u64,
1760 .write_u64 = cpuset_write_u64,
1761 .private = FILE_MEM_EXCLUSIVE,
1762 },
1763
78608366
PM
1764 {
1765 .name = "mem_hardwall",
1766 .read_u64 = cpuset_read_u64,
1767 .write_u64 = cpuset_write_u64,
1768 .private = FILE_MEM_HARDWALL,
1769 },
1770
addf2c73
PM
1771 {
1772 .name = "sched_load_balance",
1773 .read_u64 = cpuset_read_u64,
1774 .write_u64 = cpuset_write_u64,
1775 .private = FILE_SCHED_LOAD_BALANCE,
1776 },
1777
1778 {
1779 .name = "sched_relax_domain_level",
5be7a479
PM
1780 .read_s64 = cpuset_read_s64,
1781 .write_s64 = cpuset_write_s64,
addf2c73
PM
1782 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
1783 },
1784
1785 {
1786 .name = "memory_migrate",
1787 .read_u64 = cpuset_read_u64,
1788 .write_u64 = cpuset_write_u64,
1789 .private = FILE_MEMORY_MIGRATE,
1790 },
1791
1792 {
1793 .name = "memory_pressure",
1794 .read_u64 = cpuset_read_u64,
1795 .write_u64 = cpuset_write_u64,
1796 .private = FILE_MEMORY_PRESSURE,
099fca32 1797 .mode = S_IRUGO,
addf2c73
PM
1798 },
1799
1800 {
1801 .name = "memory_spread_page",
1802 .read_u64 = cpuset_read_u64,
1803 .write_u64 = cpuset_write_u64,
1804 .private = FILE_SPREAD_PAGE,
1805 },
1806
1807 {
1808 .name = "memory_spread_slab",
1809 .read_u64 = cpuset_read_u64,
1810 .write_u64 = cpuset_write_u64,
1811 .private = FILE_SPREAD_SLAB,
1812 },
3e0d98b9 1813
4baf6e33
TH
1814 {
1815 .name = "memory_pressure_enabled",
1816 .flags = CFTYPE_ONLY_ON_ROOT,
1817 .read_u64 = cpuset_read_u64,
1818 .write_u64 = cpuset_write_u64,
1819 .private = FILE_MEMORY_PRESSURE_ENABLED,
1820 },
1da177e4 1821
4baf6e33
TH
1822 { } /* terminate */
1823};
1da177e4
LT
1824
1825/*
92fb9748 1826 * cpuset_css_alloc - allocate a cpuset css
2df167a3 1827 * cont: control group that the new cpuset will be part of
1da177e4
LT
1828 */
1829
92fb9748 1830static struct cgroup_subsys_state *cpuset_css_alloc(struct cgroup *cont)
1da177e4 1831{
c8f699bb 1832 struct cpuset *cs;
1da177e4 1833
c8f699bb 1834 if (!cont->parent)
8793d854 1835 return &top_cpuset.css;
033fa1c5 1836
c8f699bb 1837 cs = kzalloc(sizeof(*cs), GFP_KERNEL);
1da177e4 1838 if (!cs)
8793d854 1839 return ERR_PTR(-ENOMEM);
300ed6cb
LZ
1840 if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL)) {
1841 kfree(cs);
1842 return ERR_PTR(-ENOMEM);
1843 }
1da177e4 1844
029190c5 1845 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
300ed6cb 1846 cpumask_clear(cs->cpus_allowed);
f9a86fcb 1847 nodes_clear(cs->mems_allowed);
3e0d98b9 1848 fmeter_init(&cs->fmeter);
8d033948 1849 INIT_WORK(&cs->hotplug_work, cpuset_propagate_hotplug_workfn);
1d3504fc 1850 cs->relax_domain_level = -1;
1da177e4 1851
c8f699bb
TH
1852 return &cs->css;
1853}
1854
1855static int cpuset_css_online(struct cgroup *cgrp)
1856{
1857 struct cpuset *cs = cgroup_cs(cgrp);
c431069f 1858 struct cpuset *parent = parent_cs(cs);
ae8086ce
TH
1859 struct cpuset *tmp_cs;
1860 struct cgroup *pos_cg;
c8f699bb
TH
1861
1862 if (!parent)
1863 return 0;
1864
5d21cc2d
TH
1865 mutex_lock(&cpuset_mutex);
1866
efeb77b2 1867 set_bit(CS_ONLINE, &cs->flags);
c8f699bb
TH
1868 if (is_spread_page(parent))
1869 set_bit(CS_SPREAD_PAGE, &cs->flags);
1870 if (is_spread_slab(parent))
1871 set_bit(CS_SPREAD_SLAB, &cs->flags);
1da177e4 1872
202f72d5 1873 number_of_cpusets++;
033fa1c5 1874
c8f699bb 1875 if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags))
5d21cc2d 1876 goto out_unlock;
033fa1c5
TH
1877
1878 /*
1879 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
1880 * set. This flag handling is implemented in cgroup core for
1881 * histrical reasons - the flag may be specified during mount.
1882 *
1883 * Currently, if any sibling cpusets have exclusive cpus or mem, we
1884 * refuse to clone the configuration - thereby refusing the task to
1885 * be entered, and as a result refusing the sys_unshare() or
1886 * clone() which initiated it. If this becomes a problem for some
1887 * users who wish to allow that scenario, then this could be
1888 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
1889 * (and likewise for mems) to the new cgroup.
1890 */
ae8086ce
TH
1891 rcu_read_lock();
1892 cpuset_for_each_child(tmp_cs, pos_cg, parent) {
1893 if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
1894 rcu_read_unlock();
5d21cc2d 1895 goto out_unlock;
ae8086ce 1896 }
033fa1c5 1897 }
ae8086ce 1898 rcu_read_unlock();
033fa1c5
TH
1899
1900 mutex_lock(&callback_mutex);
1901 cs->mems_allowed = parent->mems_allowed;
1902 cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
1903 mutex_unlock(&callback_mutex);
5d21cc2d
TH
1904out_unlock:
1905 mutex_unlock(&cpuset_mutex);
c8f699bb
TH
1906 return 0;
1907}
1908
1909static void cpuset_css_offline(struct cgroup *cgrp)
1910{
1911 struct cpuset *cs = cgroup_cs(cgrp);
1912
5d21cc2d 1913 mutex_lock(&cpuset_mutex);
c8f699bb
TH
1914
1915 if (is_sched_load_balance(cs))
1916 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
1917
1918 number_of_cpusets--;
efeb77b2 1919 clear_bit(CS_ONLINE, &cs->flags);
c8f699bb 1920
5d21cc2d 1921 mutex_unlock(&cpuset_mutex);
1da177e4
LT
1922}
1923
029190c5 1924/*
029190c5
PJ
1925 * If the cpuset being removed has its flag 'sched_load_balance'
1926 * enabled, then simulate turning sched_load_balance off, which
699140ba 1927 * will call rebuild_sched_domains_locked().
029190c5
PJ
1928 */
1929
92fb9748 1930static void cpuset_css_free(struct cgroup *cont)
1da177e4 1931{
8793d854 1932 struct cpuset *cs = cgroup_cs(cont);
1da177e4 1933
300ed6cb 1934 free_cpumask_var(cs->cpus_allowed);
8793d854 1935 kfree(cs);
1da177e4
LT
1936}
1937
8793d854
PM
1938struct cgroup_subsys cpuset_subsys = {
1939 .name = "cpuset",
92fb9748 1940 .css_alloc = cpuset_css_alloc,
c8f699bb
TH
1941 .css_online = cpuset_css_online,
1942 .css_offline = cpuset_css_offline,
92fb9748 1943 .css_free = cpuset_css_free,
8793d854 1944 .can_attach = cpuset_can_attach,
452477fa 1945 .cancel_attach = cpuset_cancel_attach,
8793d854 1946 .attach = cpuset_attach,
8793d854 1947 .subsys_id = cpuset_subsys_id,
4baf6e33 1948 .base_cftypes = files,
8793d854
PM
1949 .early_init = 1,
1950};
1951
1da177e4
LT
1952/**
1953 * cpuset_init - initialize cpusets at system boot
1954 *
1955 * Description: Initialize top_cpuset and the cpuset internal file system,
1956 **/
1957
1958int __init cpuset_init(void)
1959{
8793d854 1960 int err = 0;
1da177e4 1961
58568d2a
MX
1962 if (!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL))
1963 BUG();
1964
300ed6cb 1965 cpumask_setall(top_cpuset.cpus_allowed);
f9a86fcb 1966 nodes_setall(top_cpuset.mems_allowed);
1da177e4 1967
3e0d98b9 1968 fmeter_init(&top_cpuset.fmeter);
029190c5 1969 set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
1d3504fc 1970 top_cpuset.relax_domain_level = -1;
1da177e4 1971
1da177e4
LT
1972 err = register_filesystem(&cpuset_fs_type);
1973 if (err < 0)
8793d854
PM
1974 return err;
1975
2341d1b6
LZ
1976 if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL))
1977 BUG();
1978
202f72d5 1979 number_of_cpusets = 1;
8793d854 1980 return 0;
1da177e4
LT
1981}
1982
b1aac8bb 1983/*
cf417141 1984 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
b1aac8bb
PJ
1985 * or memory nodes, we need to walk over the cpuset hierarchy,
1986 * removing that CPU or node from all cpusets. If this removes the
956db3ca
CW
1987 * last CPU or node from a cpuset, then move the tasks in the empty
1988 * cpuset to its next-highest non-empty parent.
b1aac8bb 1989 */
956db3ca
CW
1990static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
1991{
1992 struct cpuset *parent;
1993
956db3ca
CW
1994 /*
1995 * Find its next-highest non-empty parent, (top cpuset
1996 * has online cpus, so can't be empty).
1997 */
c431069f 1998 parent = parent_cs(cs);
300ed6cb 1999 while (cpumask_empty(parent->cpus_allowed) ||
b4501295 2000 nodes_empty(parent->mems_allowed))
c431069f 2001 parent = parent_cs(parent);
956db3ca 2002
8cc99345
TH
2003 if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
2004 rcu_read_lock();
2005 printk(KERN_ERR "cpuset: failed to transfer tasks out of empty cpuset %s\n",
2006 cgroup_name(cs->css.cgroup));
2007 rcu_read_unlock();
2008 }
956db3ca
CW
2009}
2010
deb7aa30 2011/**
8d033948 2012 * cpuset_propagate_hotplug_workfn - propagate CPU/memory hotplug to a cpuset
deb7aa30 2013 * @cs: cpuset in interest
956db3ca 2014 *
deb7aa30
TH
2015 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
2016 * offline, update @cs accordingly. If @cs ends up with no CPU or memory,
2017 * all its tasks are moved to the nearest ancestor with both resources.
80d1fa64 2018 */
8d033948 2019static void cpuset_propagate_hotplug_workfn(struct work_struct *work)
80d1fa64 2020{
deb7aa30
TH
2021 static cpumask_t off_cpus;
2022 static nodemask_t off_mems, tmp_mems;
8d033948 2023 struct cpuset *cs = container_of(work, struct cpuset, hotplug_work);
5d21cc2d 2024 bool is_empty;
80d1fa64 2025
5d21cc2d 2026 mutex_lock(&cpuset_mutex);
7ddf96b0 2027
deb7aa30
TH
2028 cpumask_andnot(&off_cpus, cs->cpus_allowed, top_cpuset.cpus_allowed);
2029 nodes_andnot(off_mems, cs->mems_allowed, top_cpuset.mems_allowed);
80d1fa64 2030
deb7aa30
TH
2031 /* remove offline cpus from @cs */
2032 if (!cpumask_empty(&off_cpus)) {
2033 mutex_lock(&callback_mutex);
2034 cpumask_andnot(cs->cpus_allowed, cs->cpus_allowed, &off_cpus);
2035 mutex_unlock(&callback_mutex);
2036 update_tasks_cpumask(cs, NULL);
80d1fa64
SB
2037 }
2038
deb7aa30
TH
2039 /* remove offline mems from @cs */
2040 if (!nodes_empty(off_mems)) {
2041 tmp_mems = cs->mems_allowed;
2042 mutex_lock(&callback_mutex);
2043 nodes_andnot(cs->mems_allowed, cs->mems_allowed, off_mems);
2044 mutex_unlock(&callback_mutex);
2045 update_tasks_nodemask(cs, &tmp_mems, NULL);
b1aac8bb 2046 }
deb7aa30 2047
5d21cc2d
TH
2048 is_empty = cpumask_empty(cs->cpus_allowed) ||
2049 nodes_empty(cs->mems_allowed);
8d033948 2050
5d21cc2d
TH
2051 mutex_unlock(&cpuset_mutex);
2052
2053 /*
2054 * If @cs became empty, move tasks to the nearest ancestor with
2055 * execution resources. This is full cgroup operation which will
2056 * also call back into cpuset. Should be done outside any lock.
2057 */
2058 if (is_empty)
2059 remove_tasks_in_empty_cpuset(cs);
8d033948
TH
2060
2061 /* the following may free @cs, should be the last operation */
2062 css_put(&cs->css);
80d1fa64
SB
2063}
2064
8d033948
TH
2065/**
2066 * schedule_cpuset_propagate_hotplug - schedule hotplug propagation to a cpuset
2067 * @cs: cpuset of interest
2068 *
2069 * Schedule cpuset_propagate_hotplug_workfn() which will update CPU and
2070 * memory masks according to top_cpuset.
2071 */
2072static void schedule_cpuset_propagate_hotplug(struct cpuset *cs)
2073{
2074 /*
2075 * Pin @cs. The refcnt will be released when the work item
2076 * finishes executing.
2077 */
2078 if (!css_tryget(&cs->css))
2079 return;
80d1fa64 2080
8d033948
TH
2081 /*
2082 * Queue @cs->hotplug_work. If already pending, lose the css ref.
2083 * cpuset_propagate_hotplug_wq is ordered and propagation will
2084 * happen in the order this function is called.
2085 */
2086 if (!queue_work(cpuset_propagate_hotplug_wq, &cs->hotplug_work))
2087 css_put(&cs->css);
b1aac8bb
PJ
2088}
2089
deb7aa30 2090/**
3a5a6d0c 2091 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
956db3ca 2092 *
deb7aa30
TH
2093 * This function is called after either CPU or memory configuration has
2094 * changed and updates cpuset accordingly. The top_cpuset is always
2095 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
2096 * order to make cpusets transparent (of no affect) on systems that are
2097 * actively using CPU hotplug but making no active use of cpusets.
956db3ca 2098 *
deb7aa30
TH
2099 * Non-root cpusets are only affected by offlining. If any CPUs or memory
2100 * nodes have been taken down, cpuset_propagate_hotplug() is invoked on all
2101 * descendants.
956db3ca 2102 *
deb7aa30
TH
2103 * Note that CPU offlining during suspend is ignored. We don't modify
2104 * cpusets across suspend/resume cycles at all.
956db3ca 2105 */
3a5a6d0c 2106static void cpuset_hotplug_workfn(struct work_struct *work)
b1aac8bb 2107{
deb7aa30
TH
2108 static cpumask_t new_cpus, tmp_cpus;
2109 static nodemask_t new_mems, tmp_mems;
2110 bool cpus_updated, mems_updated;
2111 bool cpus_offlined, mems_offlined;
b1aac8bb 2112
5d21cc2d 2113 mutex_lock(&cpuset_mutex);
956db3ca 2114
deb7aa30
TH
2115 /* fetch the available cpus/mems and find out which changed how */
2116 cpumask_copy(&new_cpus, cpu_active_mask);
2117 new_mems = node_states[N_MEMORY];
7ddf96b0 2118
deb7aa30
TH
2119 cpus_updated = !cpumask_equal(top_cpuset.cpus_allowed, &new_cpus);
2120 cpus_offlined = cpumask_andnot(&tmp_cpus, top_cpuset.cpus_allowed,
2121 &new_cpus);
7ddf96b0 2122
deb7aa30
TH
2123 mems_updated = !nodes_equal(top_cpuset.mems_allowed, new_mems);
2124 nodes_andnot(tmp_mems, top_cpuset.mems_allowed, new_mems);
2125 mems_offlined = !nodes_empty(tmp_mems);
7ddf96b0 2126
deb7aa30
TH
2127 /* synchronize cpus_allowed to cpu_active_mask */
2128 if (cpus_updated) {
2129 mutex_lock(&callback_mutex);
2130 cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
2131 mutex_unlock(&callback_mutex);
2132 /* we don't mess with cpumasks of tasks in top_cpuset */
2133 }
b4501295 2134
deb7aa30
TH
2135 /* synchronize mems_allowed to N_MEMORY */
2136 if (mems_updated) {
2137 tmp_mems = top_cpuset.mems_allowed;
2138 mutex_lock(&callback_mutex);
2139 top_cpuset.mems_allowed = new_mems;
2140 mutex_unlock(&callback_mutex);
2141 update_tasks_nodemask(&top_cpuset, &tmp_mems, NULL);
2142 }
b4501295 2143
deb7aa30
TH
2144 /* if cpus or mems went down, we need to propagate to descendants */
2145 if (cpus_offlined || mems_offlined) {
2146 struct cpuset *cs;
fc560a26 2147 struct cgroup *pos_cgrp;
f9b4fb8d 2148
fc560a26
TH
2149 rcu_read_lock();
2150 cpuset_for_each_descendant_pre(cs, pos_cgrp, &top_cpuset)
2151 schedule_cpuset_propagate_hotplug(cs);
2152 rcu_read_unlock();
deb7aa30 2153 }
7ddf96b0 2154
5d21cc2d 2155 mutex_unlock(&cpuset_mutex);
b4501295 2156
8d033948
TH
2157 /* wait for propagations to finish */
2158 flush_workqueue(cpuset_propagate_hotplug_wq);
2159
deb7aa30 2160 /* rebuild sched domains if cpus_allowed has changed */
e0e80a02
LZ
2161 if (cpus_updated)
2162 rebuild_sched_domains();
b1aac8bb
PJ
2163}
2164
7ddf96b0 2165void cpuset_update_active_cpus(bool cpu_online)
4c4d50f7 2166{
3a5a6d0c
TH
2167 /*
2168 * We're inside cpu hotplug critical region which usually nests
2169 * inside cgroup synchronization. Bounce actual hotplug processing
2170 * to a work item to avoid reverse locking order.
2171 *
2172 * We still need to do partition_sched_domains() synchronously;
2173 * otherwise, the scheduler will get confused and put tasks to the
2174 * dead CPU. Fall back to the default single domain.
2175 * cpuset_hotplug_workfn() will rebuild it as necessary.
2176 */
2177 partition_sched_domains(1, NULL, NULL);
2178 schedule_work(&cpuset_hotplug_work);
4c4d50f7 2179}
4c4d50f7 2180
38837fc7 2181/*
38d7bee9
LJ
2182 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
2183 * Call this routine anytime after node_states[N_MEMORY] changes.
a1cd2b13 2184 * See cpuset_update_active_cpus() for CPU hotplug handling.
38837fc7 2185 */
f481891f
MX
2186static int cpuset_track_online_nodes(struct notifier_block *self,
2187 unsigned long action, void *arg)
38837fc7 2188{
3a5a6d0c 2189 schedule_work(&cpuset_hotplug_work);
f481891f 2190 return NOTIFY_OK;
38837fc7 2191}
d8f10cb3
AM
2192
2193static struct notifier_block cpuset_track_online_nodes_nb = {
2194 .notifier_call = cpuset_track_online_nodes,
2195 .priority = 10, /* ??! */
2196};
38837fc7 2197
1da177e4
LT
2198/**
2199 * cpuset_init_smp - initialize cpus_allowed
2200 *
2201 * Description: Finish top cpuset after cpu, node maps are initialized
d8f10cb3 2202 */
1da177e4
LT
2203void __init cpuset_init_smp(void)
2204{
6ad4c188 2205 cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
38d7bee9 2206 top_cpuset.mems_allowed = node_states[N_MEMORY];
4c4d50f7 2207
d8f10cb3 2208 register_hotmemory_notifier(&cpuset_track_online_nodes_nb);
f90d4118 2209
8d033948
TH
2210 cpuset_propagate_hotplug_wq =
2211 alloc_ordered_workqueue("cpuset_hotplug", 0);
2212 BUG_ON(!cpuset_propagate_hotplug_wq);
1da177e4
LT
2213}
2214
2215/**
1da177e4
LT
2216 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
2217 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
6af866af 2218 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
1da177e4 2219 *
300ed6cb 2220 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
1da177e4 2221 * attached to the specified @tsk. Guaranteed to return some non-empty
5f054e31 2222 * subset of cpu_online_mask, even if this means going outside the
1da177e4
LT
2223 * tasks cpuset.
2224 **/
2225
6af866af 2226void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
1da177e4 2227{
3d3f26a7 2228 mutex_lock(&callback_mutex);
909d75a3 2229 task_lock(tsk);
f9a86fcb 2230 guarantee_online_cpus(task_cs(tsk), pmask);
909d75a3 2231 task_unlock(tsk);
897f0b3c 2232 mutex_unlock(&callback_mutex);
1da177e4
LT
2233}
2234
2baab4e9 2235void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
9084bb82
ON
2236{
2237 const struct cpuset *cs;
9084bb82
ON
2238
2239 rcu_read_lock();
2240 cs = task_cs(tsk);
06d6b3cb 2241 do_set_cpus_allowed(tsk, cs->cpus_allowed);
9084bb82
ON
2242 rcu_read_unlock();
2243
2244 /*
2245 * We own tsk->cpus_allowed, nobody can change it under us.
2246 *
2247 * But we used cs && cs->cpus_allowed lockless and thus can
2248 * race with cgroup_attach_task() or update_cpumask() and get
2249 * the wrong tsk->cpus_allowed. However, both cases imply the
2250 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
2251 * which takes task_rq_lock().
2252 *
2253 * If we are called after it dropped the lock we must see all
2254 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
2255 * set any mask even if it is not right from task_cs() pov,
2256 * the pending set_cpus_allowed_ptr() will fix things.
2baab4e9
PZ
2257 *
2258 * select_fallback_rq() will fix things ups and set cpu_possible_mask
2259 * if required.
9084bb82 2260 */
9084bb82
ON
2261}
2262
1da177e4
LT
2263void cpuset_init_current_mems_allowed(void)
2264{
f9a86fcb 2265 nodes_setall(current->mems_allowed);
1da177e4
LT
2266}
2267
909d75a3
PJ
2268/**
2269 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
2270 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
2271 *
2272 * Description: Returns the nodemask_t mems_allowed of the cpuset
2273 * attached to the specified @tsk. Guaranteed to return some non-empty
38d7bee9 2274 * subset of node_states[N_MEMORY], even if this means going outside the
909d75a3
PJ
2275 * tasks cpuset.
2276 **/
2277
2278nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
2279{
2280 nodemask_t mask;
2281
3d3f26a7 2282 mutex_lock(&callback_mutex);
909d75a3 2283 task_lock(tsk);
8793d854 2284 guarantee_online_mems(task_cs(tsk), &mask);
909d75a3 2285 task_unlock(tsk);
3d3f26a7 2286 mutex_unlock(&callback_mutex);
909d75a3
PJ
2287
2288 return mask;
2289}
2290
d9fd8a6d 2291/**
19770b32
MG
2292 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
2293 * @nodemask: the nodemask to be checked
d9fd8a6d 2294 *
19770b32 2295 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
1da177e4 2296 */
19770b32 2297int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
1da177e4 2298{
19770b32 2299 return nodes_intersects(*nodemask, current->mems_allowed);
1da177e4
LT
2300}
2301
9bf2229f 2302/*
78608366
PM
2303 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
2304 * mem_hardwall ancestor to the specified cpuset. Call holding
2305 * callback_mutex. If no ancestor is mem_exclusive or mem_hardwall
2306 * (an unusual configuration), then returns the root cpuset.
9bf2229f 2307 */
78608366 2308static const struct cpuset *nearest_hardwall_ancestor(const struct cpuset *cs)
9bf2229f 2309{
c431069f
TH
2310 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
2311 cs = parent_cs(cs);
9bf2229f
PJ
2312 return cs;
2313}
2314
d9fd8a6d 2315/**
a1bc5a4e
DR
2316 * cpuset_node_allowed_softwall - Can we allocate on a memory node?
2317 * @node: is this an allowed node?
02a0e53d 2318 * @gfp_mask: memory allocation flags
d9fd8a6d 2319 *
a1bc5a4e
DR
2320 * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
2321 * set, yes, we can always allocate. If node is in our task's mems_allowed,
2322 * yes. If it's not a __GFP_HARDWALL request and this node is in the nearest
2323 * hardwalled cpuset ancestor to this task's cpuset, yes. If the task has been
2324 * OOM killed and has access to memory reserves as specified by the TIF_MEMDIE
2325 * flag, yes.
9bf2229f
PJ
2326 * Otherwise, no.
2327 *
a1bc5a4e
DR
2328 * If __GFP_HARDWALL is set, cpuset_node_allowed_softwall() reduces to
2329 * cpuset_node_allowed_hardwall(). Otherwise, cpuset_node_allowed_softwall()
2330 * might sleep, and might allow a node from an enclosing cpuset.
02a0e53d 2331 *
a1bc5a4e
DR
2332 * cpuset_node_allowed_hardwall() only handles the simpler case of hardwall
2333 * cpusets, and never sleeps.
02a0e53d
PJ
2334 *
2335 * The __GFP_THISNODE placement logic is really handled elsewhere,
2336 * by forcibly using a zonelist starting at a specified node, and by
2337 * (in get_page_from_freelist()) refusing to consider the zones for
2338 * any node on the zonelist except the first. By the time any such
2339 * calls get to this routine, we should just shut up and say 'yes'.
2340 *
9bf2229f 2341 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
c596d9f3
DR
2342 * and do not allow allocations outside the current tasks cpuset
2343 * unless the task has been OOM killed as is marked TIF_MEMDIE.
9bf2229f 2344 * GFP_KERNEL allocations are not so marked, so can escape to the
78608366 2345 * nearest enclosing hardwalled ancestor cpuset.
9bf2229f 2346 *
02a0e53d
PJ
2347 * Scanning up parent cpusets requires callback_mutex. The
2348 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
2349 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
2350 * current tasks mems_allowed came up empty on the first pass over
2351 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
2352 * cpuset are short of memory, might require taking the callback_mutex
2353 * mutex.
9bf2229f 2354 *
36be57ff 2355 * The first call here from mm/page_alloc:get_page_from_freelist()
02a0e53d
PJ
2356 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
2357 * so no allocation on a node outside the cpuset is allowed (unless
2358 * in interrupt, of course).
36be57ff
PJ
2359 *
2360 * The second pass through get_page_from_freelist() doesn't even call
2361 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
2362 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
2363 * in alloc_flags. That logic and the checks below have the combined
2364 * affect that:
9bf2229f
PJ
2365 * in_interrupt - any node ok (current task context irrelevant)
2366 * GFP_ATOMIC - any node ok
c596d9f3 2367 * TIF_MEMDIE - any node ok
78608366 2368 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
9bf2229f 2369 * GFP_USER - only nodes in current tasks mems allowed ok.
36be57ff
PJ
2370 *
2371 * Rule:
a1bc5a4e 2372 * Don't call cpuset_node_allowed_softwall if you can't sleep, unless you
36be57ff
PJ
2373 * pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
2374 * the code that might scan up ancestor cpusets and sleep.
02a0e53d 2375 */
a1bc5a4e 2376int __cpuset_node_allowed_softwall(int node, gfp_t gfp_mask)
1da177e4 2377{
9bf2229f 2378 const struct cpuset *cs; /* current cpuset ancestors */
29afd49b 2379 int allowed; /* is allocation in zone z allowed? */
9bf2229f 2380
9b819d20 2381 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
9bf2229f 2382 return 1;
92d1dbd2 2383 might_sleep_if(!(gfp_mask & __GFP_HARDWALL));
9bf2229f
PJ
2384 if (node_isset(node, current->mems_allowed))
2385 return 1;
c596d9f3
DR
2386 /*
2387 * Allow tasks that have access to memory reserves because they have
2388 * been OOM killed to get memory anywhere.
2389 */
2390 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2391 return 1;
9bf2229f
PJ
2392 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
2393 return 0;
2394
5563e770
BP
2395 if (current->flags & PF_EXITING) /* Let dying task have memory */
2396 return 1;
2397
9bf2229f 2398 /* Not hardwall and node outside mems_allowed: scan up cpusets */
3d3f26a7 2399 mutex_lock(&callback_mutex);
053199ed 2400
053199ed 2401 task_lock(current);
78608366 2402 cs = nearest_hardwall_ancestor(task_cs(current));
053199ed
PJ
2403 task_unlock(current);
2404
9bf2229f 2405 allowed = node_isset(node, cs->mems_allowed);
3d3f26a7 2406 mutex_unlock(&callback_mutex);
9bf2229f 2407 return allowed;
1da177e4
LT
2408}
2409
02a0e53d 2410/*
a1bc5a4e
DR
2411 * cpuset_node_allowed_hardwall - Can we allocate on a memory node?
2412 * @node: is this an allowed node?
02a0e53d
PJ
2413 * @gfp_mask: memory allocation flags
2414 *
a1bc5a4e
DR
2415 * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
2416 * set, yes, we can always allocate. If node is in our task's mems_allowed,
2417 * yes. If the task has been OOM killed and has access to memory reserves as
2418 * specified by the TIF_MEMDIE flag, yes.
2419 * Otherwise, no.
02a0e53d
PJ
2420 *
2421 * The __GFP_THISNODE placement logic is really handled elsewhere,
2422 * by forcibly using a zonelist starting at a specified node, and by
2423 * (in get_page_from_freelist()) refusing to consider the zones for
2424 * any node on the zonelist except the first. By the time any such
2425 * calls get to this routine, we should just shut up and say 'yes'.
2426 *
a1bc5a4e
DR
2427 * Unlike the cpuset_node_allowed_softwall() variant, above,
2428 * this variant requires that the node be in the current task's
02a0e53d
PJ
2429 * mems_allowed or that we're in interrupt. It does not scan up the
2430 * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
2431 * It never sleeps.
2432 */
a1bc5a4e 2433int __cpuset_node_allowed_hardwall(int node, gfp_t gfp_mask)
02a0e53d 2434{
02a0e53d
PJ
2435 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2436 return 1;
02a0e53d
PJ
2437 if (node_isset(node, current->mems_allowed))
2438 return 1;
dedf8b79
DW
2439 /*
2440 * Allow tasks that have access to memory reserves because they have
2441 * been OOM killed to get memory anywhere.
2442 */
2443 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2444 return 1;
02a0e53d
PJ
2445 return 0;
2446}
2447
825a46af 2448/**
6adef3eb
JS
2449 * cpuset_mem_spread_node() - On which node to begin search for a file page
2450 * cpuset_slab_spread_node() - On which node to begin search for a slab page
825a46af
PJ
2451 *
2452 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
2453 * tasks in a cpuset with is_spread_page or is_spread_slab set),
2454 * and if the memory allocation used cpuset_mem_spread_node()
2455 * to determine on which node to start looking, as it will for
2456 * certain page cache or slab cache pages such as used for file
2457 * system buffers and inode caches, then instead of starting on the
2458 * local node to look for a free page, rather spread the starting
2459 * node around the tasks mems_allowed nodes.
2460 *
2461 * We don't have to worry about the returned node being offline
2462 * because "it can't happen", and even if it did, it would be ok.
2463 *
2464 * The routines calling guarantee_online_mems() are careful to
2465 * only set nodes in task->mems_allowed that are online. So it
2466 * should not be possible for the following code to return an
2467 * offline node. But if it did, that would be ok, as this routine
2468 * is not returning the node where the allocation must be, only
2469 * the node where the search should start. The zonelist passed to
2470 * __alloc_pages() will include all nodes. If the slab allocator
2471 * is passed an offline node, it will fall back to the local node.
2472 * See kmem_cache_alloc_node().
2473 */
2474
6adef3eb 2475static int cpuset_spread_node(int *rotor)
825a46af
PJ
2476{
2477 int node;
2478
6adef3eb 2479 node = next_node(*rotor, current->mems_allowed);
825a46af
PJ
2480 if (node == MAX_NUMNODES)
2481 node = first_node(current->mems_allowed);
6adef3eb 2482 *rotor = node;
825a46af
PJ
2483 return node;
2484}
6adef3eb
JS
2485
2486int cpuset_mem_spread_node(void)
2487{
778d3b0f
MH
2488 if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
2489 current->cpuset_mem_spread_rotor =
2490 node_random(&current->mems_allowed);
2491
6adef3eb
JS
2492 return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
2493}
2494
2495int cpuset_slab_spread_node(void)
2496{
778d3b0f
MH
2497 if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
2498 current->cpuset_slab_spread_rotor =
2499 node_random(&current->mems_allowed);
2500
6adef3eb
JS
2501 return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
2502}
2503
825a46af
PJ
2504EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
2505
ef08e3b4 2506/**
bbe373f2
DR
2507 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
2508 * @tsk1: pointer to task_struct of some task.
2509 * @tsk2: pointer to task_struct of some other task.
2510 *
2511 * Description: Return true if @tsk1's mems_allowed intersects the
2512 * mems_allowed of @tsk2. Used by the OOM killer to determine if
2513 * one of the task's memory usage might impact the memory available
2514 * to the other.
ef08e3b4
PJ
2515 **/
2516
bbe373f2
DR
2517int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
2518 const struct task_struct *tsk2)
ef08e3b4 2519{
bbe373f2 2520 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
ef08e3b4
PJ
2521}
2522
f440d98f
LZ
2523#define CPUSET_NODELIST_LEN (256)
2524
75aa1994
DR
2525/**
2526 * cpuset_print_task_mems_allowed - prints task's cpuset and mems_allowed
2527 * @task: pointer to task_struct of some task.
2528 *
2529 * Description: Prints @task's name, cpuset name, and cached copy of its
2530 * mems_allowed to the kernel log. Must hold task_lock(task) to allow
2531 * dereferencing task_cs(task).
2532 */
2533void cpuset_print_task_mems_allowed(struct task_struct *tsk)
2534{
f440d98f
LZ
2535 /* Statically allocated to prevent using excess stack. */
2536 static char cpuset_nodelist[CPUSET_NODELIST_LEN];
2537 static DEFINE_SPINLOCK(cpuset_buffer_lock);
75aa1994 2538
f440d98f 2539 struct cgroup *cgrp = task_cs(tsk)->css.cgroup;
63f43f55 2540
cfb5966b 2541 rcu_read_lock();
f440d98f 2542 spin_lock(&cpuset_buffer_lock);
63f43f55 2543
75aa1994
DR
2544 nodelist_scnprintf(cpuset_nodelist, CPUSET_NODELIST_LEN,
2545 tsk->mems_allowed);
2546 printk(KERN_INFO "%s cpuset=%s mems_allowed=%s\n",
f440d98f
LZ
2547 tsk->comm, cgroup_name(cgrp), cpuset_nodelist);
2548
75aa1994 2549 spin_unlock(&cpuset_buffer_lock);
cfb5966b 2550 rcu_read_unlock();
75aa1994
DR
2551}
2552
3e0d98b9
PJ
2553/*
2554 * Collection of memory_pressure is suppressed unless
2555 * this flag is enabled by writing "1" to the special
2556 * cpuset file 'memory_pressure_enabled' in the root cpuset.
2557 */
2558
c5b2aff8 2559int cpuset_memory_pressure_enabled __read_mostly;
3e0d98b9
PJ
2560
2561/**
2562 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
2563 *
2564 * Keep a running average of the rate of synchronous (direct)
2565 * page reclaim efforts initiated by tasks in each cpuset.
2566 *
2567 * This represents the rate at which some task in the cpuset
2568 * ran low on memory on all nodes it was allowed to use, and
2569 * had to enter the kernels page reclaim code in an effort to
2570 * create more free memory by tossing clean pages or swapping
2571 * or writing dirty pages.
2572 *
2573 * Display to user space in the per-cpuset read-only file
2574 * "memory_pressure". Value displayed is an integer
2575 * representing the recent rate of entry into the synchronous
2576 * (direct) page reclaim by any task attached to the cpuset.
2577 **/
2578
2579void __cpuset_memory_pressure_bump(void)
2580{
3e0d98b9 2581 task_lock(current);
8793d854 2582 fmeter_markevent(&task_cs(current)->fmeter);
3e0d98b9
PJ
2583 task_unlock(current);
2584}
2585
8793d854 2586#ifdef CONFIG_PROC_PID_CPUSET
1da177e4
LT
2587/*
2588 * proc_cpuset_show()
2589 * - Print tasks cpuset path into seq_file.
2590 * - Used for /proc/<pid>/cpuset.
053199ed
PJ
2591 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
2592 * doesn't really matter if tsk->cpuset changes after we read it,
5d21cc2d 2593 * and we take cpuset_mutex, keeping cpuset_attach() from changing it
2df167a3 2594 * anyway.
1da177e4 2595 */
8d8b97ba 2596int proc_cpuset_show(struct seq_file *m, void *unused_v)
1da177e4 2597{
13b41b09 2598 struct pid *pid;
1da177e4
LT
2599 struct task_struct *tsk;
2600 char *buf;
8793d854 2601 struct cgroup_subsys_state *css;
99f89551 2602 int retval;
1da177e4 2603
99f89551 2604 retval = -ENOMEM;
1da177e4
LT
2605 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
2606 if (!buf)
99f89551
EB
2607 goto out;
2608
2609 retval = -ESRCH;
13b41b09
EB
2610 pid = m->private;
2611 tsk = get_pid_task(pid, PIDTYPE_PID);
99f89551
EB
2612 if (!tsk)
2613 goto out_free;
1da177e4 2614
27e89ae5 2615 rcu_read_lock();
8793d854
PM
2616 css = task_subsys_state(tsk, cpuset_subsys_id);
2617 retval = cgroup_path(css->cgroup, buf, PAGE_SIZE);
27e89ae5 2618 rcu_read_unlock();
1da177e4 2619 if (retval < 0)
27e89ae5 2620 goto out_put_task;
1da177e4
LT
2621 seq_puts(m, buf);
2622 seq_putc(m, '\n');
27e89ae5 2623out_put_task:
99f89551
EB
2624 put_task_struct(tsk);
2625out_free:
1da177e4 2626 kfree(buf);
99f89551 2627out:
1da177e4
LT
2628 return retval;
2629}
8793d854 2630#endif /* CONFIG_PROC_PID_CPUSET */
1da177e4 2631
d01d4827 2632/* Display task mems_allowed in /proc/<pid>/status file. */
df5f8314
EB
2633void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
2634{
df5f8314 2635 seq_printf(m, "Mems_allowed:\t");
30e8e136 2636 seq_nodemask(m, &task->mems_allowed);
df5f8314 2637 seq_printf(m, "\n");
39106dcf 2638 seq_printf(m, "Mems_allowed_list:\t");
30e8e136 2639 seq_nodemask_list(m, &task->mems_allowed);
39106dcf 2640 seq_printf(m, "\n");
1da177e4 2641}