]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - kernel/cpuset.c
cpuset: drop async_rebuild_sched_domains()
[mirror_ubuntu-hirsute-kernel.git] / kernel / cpuset.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/cpuset.c
3 *
4 * Processor and Memory placement constraints for sets of tasks.
5 *
6 * Copyright (C) 2003 BULL SA.
029190c5 7 * Copyright (C) 2004-2007 Silicon Graphics, Inc.
8793d854 8 * Copyright (C) 2006 Google, Inc
1da177e4
LT
9 *
10 * Portions derived from Patrick Mochel's sysfs code.
11 * sysfs is Copyright (c) 2001-3 Patrick Mochel
1da177e4 12 *
825a46af 13 * 2003-10-10 Written by Simon Derr.
1da177e4 14 * 2003-10-22 Updates by Stephen Hemminger.
825a46af 15 * 2004 May-July Rework by Paul Jackson.
8793d854 16 * 2006 Rework by Paul Menage to use generic cgroups
cf417141
MK
17 * 2008 Rework of the scheduler domains and CPU hotplug handling
18 * by Max Krasnyansky
1da177e4
LT
19 *
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
23 */
24
1da177e4
LT
25#include <linux/cpu.h>
26#include <linux/cpumask.h>
27#include <linux/cpuset.h>
28#include <linux/err.h>
29#include <linux/errno.h>
30#include <linux/file.h>
31#include <linux/fs.h>
32#include <linux/init.h>
33#include <linux/interrupt.h>
34#include <linux/kernel.h>
35#include <linux/kmod.h>
36#include <linux/list.h>
68860ec1 37#include <linux/mempolicy.h>
1da177e4 38#include <linux/mm.h>
f481891f 39#include <linux/memory.h>
9984de1a 40#include <linux/export.h>
1da177e4
LT
41#include <linux/mount.h>
42#include <linux/namei.h>
43#include <linux/pagemap.h>
44#include <linux/proc_fs.h>
6b9c2603 45#include <linux/rcupdate.h>
1da177e4
LT
46#include <linux/sched.h>
47#include <linux/seq_file.h>
22fb52dd 48#include <linux/security.h>
1da177e4 49#include <linux/slab.h>
1da177e4
LT
50#include <linux/spinlock.h>
51#include <linux/stat.h>
52#include <linux/string.h>
53#include <linux/time.h>
54#include <linux/backing-dev.h>
55#include <linux/sort.h>
56
57#include <asm/uaccess.h>
60063497 58#include <linux/atomic.h>
3d3f26a7 59#include <linux/mutex.h>
956db3ca
CW
60#include <linux/workqueue.h>
61#include <linux/cgroup.h>
1da177e4 62
202f72d5
PJ
63/*
64 * Tracks how many cpusets are currently defined in system.
65 * When there is only one cpuset (the root cpuset) we can
66 * short circuit some hooks.
67 */
7edc5962 68int number_of_cpusets __read_mostly;
202f72d5 69
2df167a3 70/* Forward declare cgroup structures */
8793d854
PM
71struct cgroup_subsys cpuset_subsys;
72struct cpuset;
73
3e0d98b9
PJ
74/* See "Frequency meter" comments, below. */
75
76struct fmeter {
77 int cnt; /* unprocessed events count */
78 int val; /* most recent output value */
79 time_t time; /* clock (secs) when val computed */
80 spinlock_t lock; /* guards read or write of above */
81};
82
1da177e4 83struct cpuset {
8793d854
PM
84 struct cgroup_subsys_state css;
85
1da177e4 86 unsigned long flags; /* "unsigned long" so bitops work */
300ed6cb 87 cpumask_var_t cpus_allowed; /* CPUs allowed to tasks in cpuset */
1da177e4
LT
88 nodemask_t mems_allowed; /* Memory Nodes allowed to tasks */
89
1da177e4 90 struct cpuset *parent; /* my parent */
1da177e4 91
3e0d98b9 92 struct fmeter fmeter; /* memory_pressure filter */
029190c5
PJ
93
94 /* partition number for rebuild_sched_domains() */
95 int pn;
956db3ca 96
1d3504fc
HS
97 /* for custom sched domain */
98 int relax_domain_level;
99
732bee7a 100 /* used for walking a cpuset hierarchy */
956db3ca 101 struct list_head stack_list;
1da177e4
LT
102};
103
8793d854
PM
104/* Retrieve the cpuset for a cgroup */
105static inline struct cpuset *cgroup_cs(struct cgroup *cont)
106{
107 return container_of(cgroup_subsys_state(cont, cpuset_subsys_id),
108 struct cpuset, css);
109}
110
111/* Retrieve the cpuset for a task */
112static inline struct cpuset *task_cs(struct task_struct *task)
113{
114 return container_of(task_subsys_state(task, cpuset_subsys_id),
115 struct cpuset, css);
116}
8793d854 117
b246272e
DR
118#ifdef CONFIG_NUMA
119static inline bool task_has_mempolicy(struct task_struct *task)
120{
121 return task->mempolicy;
122}
123#else
124static inline bool task_has_mempolicy(struct task_struct *task)
125{
126 return false;
127}
128#endif
129
130
1da177e4
LT
131/* bits in struct cpuset flags field */
132typedef enum {
efeb77b2 133 CS_ONLINE,
1da177e4
LT
134 CS_CPU_EXCLUSIVE,
135 CS_MEM_EXCLUSIVE,
78608366 136 CS_MEM_HARDWALL,
45b07ef3 137 CS_MEMORY_MIGRATE,
029190c5 138 CS_SCHED_LOAD_BALANCE,
825a46af
PJ
139 CS_SPREAD_PAGE,
140 CS_SPREAD_SLAB,
1da177e4
LT
141} cpuset_flagbits_t;
142
143/* convenient tests for these bits */
efeb77b2
TH
144static inline bool is_cpuset_online(const struct cpuset *cs)
145{
146 return test_bit(CS_ONLINE, &cs->flags);
147}
148
1da177e4
LT
149static inline int is_cpu_exclusive(const struct cpuset *cs)
150{
7b5b9ef0 151 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
1da177e4
LT
152}
153
154static inline int is_mem_exclusive(const struct cpuset *cs)
155{
7b5b9ef0 156 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
1da177e4
LT
157}
158
78608366
PM
159static inline int is_mem_hardwall(const struct cpuset *cs)
160{
161 return test_bit(CS_MEM_HARDWALL, &cs->flags);
162}
163
029190c5
PJ
164static inline int is_sched_load_balance(const struct cpuset *cs)
165{
166 return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
167}
168
45b07ef3
PJ
169static inline int is_memory_migrate(const struct cpuset *cs)
170{
7b5b9ef0 171 return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
45b07ef3
PJ
172}
173
825a46af
PJ
174static inline int is_spread_page(const struct cpuset *cs)
175{
176 return test_bit(CS_SPREAD_PAGE, &cs->flags);
177}
178
179static inline int is_spread_slab(const struct cpuset *cs)
180{
181 return test_bit(CS_SPREAD_SLAB, &cs->flags);
182}
183
1da177e4 184static struct cpuset top_cpuset = {
efeb77b2
TH
185 .flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
186 (1 << CS_MEM_EXCLUSIVE)),
1da177e4
LT
187};
188
ae8086ce
TH
189/**
190 * cpuset_for_each_child - traverse online children of a cpuset
191 * @child_cs: loop cursor pointing to the current child
192 * @pos_cgrp: used for iteration
193 * @parent_cs: target cpuset to walk children of
194 *
195 * Walk @child_cs through the online children of @parent_cs. Must be used
196 * with RCU read locked.
197 */
198#define cpuset_for_each_child(child_cs, pos_cgrp, parent_cs) \
199 cgroup_for_each_child((pos_cgrp), (parent_cs)->css.cgroup) \
200 if (is_cpuset_online(((child_cs) = cgroup_cs((pos_cgrp)))))
201
1da177e4 202/*
2df167a3
PM
203 * There are two global mutexes guarding cpuset structures. The first
204 * is the main control groups cgroup_mutex, accessed via
205 * cgroup_lock()/cgroup_unlock(). The second is the cpuset-specific
206 * callback_mutex, below. They can nest. It is ok to first take
207 * cgroup_mutex, then nest callback_mutex. We also require taking
208 * task_lock() when dereferencing a task's cpuset pointer. See "The
209 * task_lock() exception", at the end of this comment.
053199ed 210 *
3d3f26a7 211 * A task must hold both mutexes to modify cpusets. If a task
2df167a3 212 * holds cgroup_mutex, then it blocks others wanting that mutex,
3d3f26a7 213 * ensuring that it is the only task able to also acquire callback_mutex
053199ed
PJ
214 * and be able to modify cpusets. It can perform various checks on
215 * the cpuset structure first, knowing nothing will change. It can
2df167a3 216 * also allocate memory while just holding cgroup_mutex. While it is
053199ed 217 * performing these checks, various callback routines can briefly
3d3f26a7
IM
218 * acquire callback_mutex to query cpusets. Once it is ready to make
219 * the changes, it takes callback_mutex, blocking everyone else.
053199ed
PJ
220 *
221 * Calls to the kernel memory allocator can not be made while holding
3d3f26a7 222 * callback_mutex, as that would risk double tripping on callback_mutex
053199ed
PJ
223 * from one of the callbacks into the cpuset code from within
224 * __alloc_pages().
225 *
3d3f26a7 226 * If a task is only holding callback_mutex, then it has read-only
053199ed
PJ
227 * access to cpusets.
228 *
58568d2a
MX
229 * Now, the task_struct fields mems_allowed and mempolicy may be changed
230 * by other task, we use alloc_lock in the task_struct fields to protect
231 * them.
053199ed 232 *
3d3f26a7 233 * The cpuset_common_file_read() handlers only hold callback_mutex across
053199ed
PJ
234 * small pieces of code, such as when reading out possibly multi-word
235 * cpumasks and nodemasks.
236 *
2df167a3
PM
237 * Accessing a task's cpuset should be done in accordance with the
238 * guidelines for accessing subsystem state in kernel/cgroup.c
1da177e4
LT
239 */
240
3d3f26a7 241static DEFINE_MUTEX(callback_mutex);
4247bdc6 242
75aa1994
DR
243/*
244 * cpuset_buffer_lock protects both the cpuset_name and cpuset_nodelist
245 * buffers. They are statically allocated to prevent using excess stack
246 * when calling cpuset_print_task_mems_allowed().
247 */
248#define CPUSET_NAME_LEN (128)
249#define CPUSET_NODELIST_LEN (256)
250static char cpuset_name[CPUSET_NAME_LEN];
251static char cpuset_nodelist[CPUSET_NODELIST_LEN];
252static DEFINE_SPINLOCK(cpuset_buffer_lock);
253
3a5a6d0c
TH
254/*
255 * CPU / memory hotplug is handled asynchronously.
256 */
257static void cpuset_hotplug_workfn(struct work_struct *work);
258
259static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);
260
cf417141
MK
261/*
262 * This is ugly, but preserves the userspace API for existing cpuset
8793d854 263 * users. If someone tries to mount the "cpuset" filesystem, we
cf417141
MK
264 * silently switch it to mount "cgroup" instead
265 */
f7e83571
AV
266static struct dentry *cpuset_mount(struct file_system_type *fs_type,
267 int flags, const char *unused_dev_name, void *data)
1da177e4 268{
8793d854 269 struct file_system_type *cgroup_fs = get_fs_type("cgroup");
f7e83571 270 struct dentry *ret = ERR_PTR(-ENODEV);
8793d854
PM
271 if (cgroup_fs) {
272 char mountopts[] =
273 "cpuset,noprefix,"
274 "release_agent=/sbin/cpuset_release_agent";
f7e83571
AV
275 ret = cgroup_fs->mount(cgroup_fs, flags,
276 unused_dev_name, mountopts);
8793d854
PM
277 put_filesystem(cgroup_fs);
278 }
279 return ret;
1da177e4
LT
280}
281
282static struct file_system_type cpuset_fs_type = {
283 .name = "cpuset",
f7e83571 284 .mount = cpuset_mount,
1da177e4
LT
285};
286
1da177e4 287/*
300ed6cb 288 * Return in pmask the portion of a cpusets's cpus_allowed that
1da177e4
LT
289 * are online. If none are online, walk up the cpuset hierarchy
290 * until we find one that does have some online cpus. If we get
291 * all the way to the top and still haven't found any online cpus,
5f054e31
RR
292 * return cpu_online_mask. Or if passed a NULL cs from an exit'ing
293 * task, return cpu_online_mask.
1da177e4
LT
294 *
295 * One way or another, we guarantee to return some non-empty subset
5f054e31 296 * of cpu_online_mask.
1da177e4 297 *
3d3f26a7 298 * Call with callback_mutex held.
1da177e4
LT
299 */
300
6af866af
LZ
301static void guarantee_online_cpus(const struct cpuset *cs,
302 struct cpumask *pmask)
1da177e4 303{
300ed6cb 304 while (cs && !cpumask_intersects(cs->cpus_allowed, cpu_online_mask))
1da177e4
LT
305 cs = cs->parent;
306 if (cs)
300ed6cb 307 cpumask_and(pmask, cs->cpus_allowed, cpu_online_mask);
1da177e4 308 else
300ed6cb
LZ
309 cpumask_copy(pmask, cpu_online_mask);
310 BUG_ON(!cpumask_intersects(pmask, cpu_online_mask));
1da177e4
LT
311}
312
313/*
314 * Return in *pmask the portion of a cpusets's mems_allowed that
0e1e7c7a
CL
315 * are online, with memory. If none are online with memory, walk
316 * up the cpuset hierarchy until we find one that does have some
317 * online mems. If we get all the way to the top and still haven't
38d7bee9 318 * found any online mems, return node_states[N_MEMORY].
1da177e4
LT
319 *
320 * One way or another, we guarantee to return some non-empty subset
38d7bee9 321 * of node_states[N_MEMORY].
1da177e4 322 *
3d3f26a7 323 * Call with callback_mutex held.
1da177e4
LT
324 */
325
326static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask)
327{
0e1e7c7a 328 while (cs && !nodes_intersects(cs->mems_allowed,
38d7bee9 329 node_states[N_MEMORY]))
1da177e4
LT
330 cs = cs->parent;
331 if (cs)
0e1e7c7a 332 nodes_and(*pmask, cs->mems_allowed,
38d7bee9 333 node_states[N_MEMORY]);
1da177e4 334 else
38d7bee9
LJ
335 *pmask = node_states[N_MEMORY];
336 BUG_ON(!nodes_intersects(*pmask, node_states[N_MEMORY]));
1da177e4
LT
337}
338
f3b39d47
MX
339/*
340 * update task's spread flag if cpuset's page/slab spread flag is set
341 *
342 * Called with callback_mutex/cgroup_mutex held
343 */
344static void cpuset_update_task_spread_flag(struct cpuset *cs,
345 struct task_struct *tsk)
346{
347 if (is_spread_page(cs))
348 tsk->flags |= PF_SPREAD_PAGE;
349 else
350 tsk->flags &= ~PF_SPREAD_PAGE;
351 if (is_spread_slab(cs))
352 tsk->flags |= PF_SPREAD_SLAB;
353 else
354 tsk->flags &= ~PF_SPREAD_SLAB;
355}
356
1da177e4
LT
357/*
358 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
359 *
360 * One cpuset is a subset of another if all its allowed CPUs and
361 * Memory Nodes are a subset of the other, and its exclusive flags
2df167a3 362 * are only set if the other's are set. Call holding cgroup_mutex.
1da177e4
LT
363 */
364
365static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
366{
300ed6cb 367 return cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
1da177e4
LT
368 nodes_subset(p->mems_allowed, q->mems_allowed) &&
369 is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
370 is_mem_exclusive(p) <= is_mem_exclusive(q);
371}
372
645fcc9d
LZ
373/**
374 * alloc_trial_cpuset - allocate a trial cpuset
375 * @cs: the cpuset that the trial cpuset duplicates
376 */
377static struct cpuset *alloc_trial_cpuset(const struct cpuset *cs)
378{
300ed6cb
LZ
379 struct cpuset *trial;
380
381 trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
382 if (!trial)
383 return NULL;
384
385 if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL)) {
386 kfree(trial);
387 return NULL;
388 }
389 cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
390
391 return trial;
645fcc9d
LZ
392}
393
394/**
395 * free_trial_cpuset - free the trial cpuset
396 * @trial: the trial cpuset to be freed
397 */
398static void free_trial_cpuset(struct cpuset *trial)
399{
300ed6cb 400 free_cpumask_var(trial->cpus_allowed);
645fcc9d
LZ
401 kfree(trial);
402}
403
1da177e4
LT
404/*
405 * validate_change() - Used to validate that any proposed cpuset change
406 * follows the structural rules for cpusets.
407 *
408 * If we replaced the flag and mask values of the current cpuset
409 * (cur) with those values in the trial cpuset (trial), would
410 * our various subset and exclusive rules still be valid? Presumes
2df167a3 411 * cgroup_mutex held.
1da177e4
LT
412 *
413 * 'cur' is the address of an actual, in-use cpuset. Operations
414 * such as list traversal that depend on the actual address of the
415 * cpuset in the list must use cur below, not trial.
416 *
417 * 'trial' is the address of bulk structure copy of cur, with
418 * perhaps one or more of the fields cpus_allowed, mems_allowed,
419 * or flags changed to new, trial values.
420 *
421 * Return 0 if valid, -errno if not.
422 */
423
424static int validate_change(const struct cpuset *cur, const struct cpuset *trial)
425{
8793d854 426 struct cgroup *cont;
1da177e4 427 struct cpuset *c, *par;
ae8086ce
TH
428 int ret;
429
430 rcu_read_lock();
1da177e4
LT
431
432 /* Each of our child cpusets must be a subset of us */
ae8086ce
TH
433 ret = -EBUSY;
434 cpuset_for_each_child(c, cont, cur)
435 if (!is_cpuset_subset(c, trial))
436 goto out;
1da177e4
LT
437
438 /* Remaining checks don't apply to root cpuset */
ae8086ce 439 ret = 0;
69604067 440 if (cur == &top_cpuset)
ae8086ce 441 goto out;
1da177e4 442
69604067
PJ
443 par = cur->parent;
444
1da177e4 445 /* We must be a subset of our parent cpuset */
ae8086ce 446 ret = -EACCES;
1da177e4 447 if (!is_cpuset_subset(trial, par))
ae8086ce 448 goto out;
1da177e4 449
2df167a3
PM
450 /*
451 * If either I or some sibling (!= me) is exclusive, we can't
452 * overlap
453 */
ae8086ce
TH
454 ret = -EINVAL;
455 cpuset_for_each_child(c, cont, par) {
1da177e4
LT
456 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
457 c != cur &&
300ed6cb 458 cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
ae8086ce 459 goto out;
1da177e4
LT
460 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
461 c != cur &&
462 nodes_intersects(trial->mems_allowed, c->mems_allowed))
ae8086ce 463 goto out;
1da177e4
LT
464 }
465
020958b6 466 /* Cpusets with tasks can't have empty cpus_allowed or mems_allowed */
ae8086ce
TH
467 ret = -ENOSPC;
468 if (cgroup_task_count(cur->css.cgroup) &&
469 (cpumask_empty(trial->cpus_allowed) ||
470 nodes_empty(trial->mems_allowed)))
471 goto out;
020958b6 472
ae8086ce
TH
473 ret = 0;
474out:
475 rcu_read_unlock();
476 return ret;
1da177e4
LT
477}
478
db7f47cf 479#ifdef CONFIG_SMP
029190c5 480/*
cf417141 481 * Helper routine for generate_sched_domains().
029190c5
PJ
482 * Do cpusets a, b have overlapping cpus_allowed masks?
483 */
029190c5
PJ
484static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
485{
300ed6cb 486 return cpumask_intersects(a->cpus_allowed, b->cpus_allowed);
029190c5
PJ
487}
488
1d3504fc
HS
489static void
490update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
491{
1d3504fc
HS
492 if (dattr->relax_domain_level < c->relax_domain_level)
493 dattr->relax_domain_level = c->relax_domain_level;
494 return;
495}
496
f5393693
LJ
497static void
498update_domain_attr_tree(struct sched_domain_attr *dattr, struct cpuset *c)
499{
500 LIST_HEAD(q);
501
502 list_add(&c->stack_list, &q);
503 while (!list_empty(&q)) {
504 struct cpuset *cp;
505 struct cgroup *cont;
506 struct cpuset *child;
507
508 cp = list_first_entry(&q, struct cpuset, stack_list);
509 list_del(q.next);
510
300ed6cb 511 if (cpumask_empty(cp->cpus_allowed))
f5393693
LJ
512 continue;
513
514 if (is_sched_load_balance(cp))
515 update_domain_attr(dattr, cp);
516
ae8086ce
TH
517 rcu_read_lock();
518 cpuset_for_each_child(child, cont, cp)
f5393693 519 list_add_tail(&child->stack_list, &q);
ae8086ce 520 rcu_read_unlock();
f5393693
LJ
521 }
522}
523
029190c5 524/*
cf417141
MK
525 * generate_sched_domains()
526 *
527 * This function builds a partial partition of the systems CPUs
528 * A 'partial partition' is a set of non-overlapping subsets whose
529 * union is a subset of that set.
530 * The output of this function needs to be passed to kernel/sched.c
531 * partition_sched_domains() routine, which will rebuild the scheduler's
532 * load balancing domains (sched domains) as specified by that partial
533 * partition.
029190c5 534 *
45ce80fb 535 * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
029190c5
PJ
536 * for a background explanation of this.
537 *
538 * Does not return errors, on the theory that the callers of this
539 * routine would rather not worry about failures to rebuild sched
540 * domains when operating in the severe memory shortage situations
541 * that could cause allocation failures below.
542 *
cf417141 543 * Must be called with cgroup_lock held.
029190c5
PJ
544 *
545 * The three key local variables below are:
aeed6824 546 * q - a linked-list queue of cpuset pointers, used to implement a
029190c5
PJ
547 * top-down scan of all cpusets. This scan loads a pointer
548 * to each cpuset marked is_sched_load_balance into the
549 * array 'csa'. For our purposes, rebuilding the schedulers
550 * sched domains, we can ignore !is_sched_load_balance cpusets.
551 * csa - (for CpuSet Array) Array of pointers to all the cpusets
552 * that need to be load balanced, for convenient iterative
553 * access by the subsequent code that finds the best partition,
554 * i.e the set of domains (subsets) of CPUs such that the
555 * cpus_allowed of every cpuset marked is_sched_load_balance
556 * is a subset of one of these domains, while there are as
557 * many such domains as possible, each as small as possible.
558 * doms - Conversion of 'csa' to an array of cpumasks, for passing to
559 * the kernel/sched.c routine partition_sched_domains() in a
560 * convenient format, that can be easily compared to the prior
561 * value to determine what partition elements (sched domains)
562 * were changed (added or removed.)
563 *
564 * Finding the best partition (set of domains):
565 * The triple nested loops below over i, j, k scan over the
566 * load balanced cpusets (using the array of cpuset pointers in
567 * csa[]) looking for pairs of cpusets that have overlapping
568 * cpus_allowed, but which don't have the same 'pn' partition
569 * number and gives them in the same partition number. It keeps
570 * looping on the 'restart' label until it can no longer find
571 * any such pairs.
572 *
573 * The union of the cpus_allowed masks from the set of
574 * all cpusets having the same 'pn' value then form the one
575 * element of the partition (one sched domain) to be passed to
576 * partition_sched_domains().
577 */
acc3f5d7 578static int generate_sched_domains(cpumask_var_t **domains,
cf417141 579 struct sched_domain_attr **attributes)
029190c5 580{
cf417141 581 LIST_HEAD(q); /* queue of cpusets to be scanned */
029190c5
PJ
582 struct cpuset *cp; /* scans q */
583 struct cpuset **csa; /* array of all cpuset ptrs */
584 int csn; /* how many cpuset ptrs in csa so far */
585 int i, j, k; /* indices for partition finding loops */
acc3f5d7 586 cpumask_var_t *doms; /* resulting partition; i.e. sched domains */
1d3504fc 587 struct sched_domain_attr *dattr; /* attributes for custom domains */
1583715d 588 int ndoms = 0; /* number of sched domains in result */
6af866af 589 int nslot; /* next empty doms[] struct cpumask slot */
029190c5 590
029190c5 591 doms = NULL;
1d3504fc 592 dattr = NULL;
cf417141 593 csa = NULL;
029190c5
PJ
594
595 /* Special case for the 99% of systems with one, full, sched domain */
596 if (is_sched_load_balance(&top_cpuset)) {
acc3f5d7
RR
597 ndoms = 1;
598 doms = alloc_sched_domains(ndoms);
029190c5 599 if (!doms)
cf417141
MK
600 goto done;
601
1d3504fc
HS
602 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
603 if (dattr) {
604 *dattr = SD_ATTR_INIT;
93a65575 605 update_domain_attr_tree(dattr, &top_cpuset);
1d3504fc 606 }
acc3f5d7 607 cpumask_copy(doms[0], top_cpuset.cpus_allowed);
cf417141 608
cf417141 609 goto done;
029190c5
PJ
610 }
611
029190c5
PJ
612 csa = kmalloc(number_of_cpusets * sizeof(cp), GFP_KERNEL);
613 if (!csa)
614 goto done;
615 csn = 0;
616
aeed6824
LZ
617 list_add(&top_cpuset.stack_list, &q);
618 while (!list_empty(&q)) {
029190c5
PJ
619 struct cgroup *cont;
620 struct cpuset *child; /* scans child cpusets of cp */
489a5393 621
aeed6824
LZ
622 cp = list_first_entry(&q, struct cpuset, stack_list);
623 list_del(q.next);
624
300ed6cb 625 if (cpumask_empty(cp->cpus_allowed))
489a5393
LJ
626 continue;
627
f5393693
LJ
628 /*
629 * All child cpusets contain a subset of the parent's cpus, so
630 * just skip them, and then we call update_domain_attr_tree()
631 * to calc relax_domain_level of the corresponding sched
632 * domain.
633 */
634 if (is_sched_load_balance(cp)) {
029190c5 635 csa[csn++] = cp;
f5393693
LJ
636 continue;
637 }
489a5393 638
ae8086ce
TH
639 rcu_read_lock();
640 cpuset_for_each_child(child, cont, cp)
aeed6824 641 list_add_tail(&child->stack_list, &q);
ae8086ce 642 rcu_read_unlock();
029190c5
PJ
643 }
644
645 for (i = 0; i < csn; i++)
646 csa[i]->pn = i;
647 ndoms = csn;
648
649restart:
650 /* Find the best partition (set of sched domains) */
651 for (i = 0; i < csn; i++) {
652 struct cpuset *a = csa[i];
653 int apn = a->pn;
654
655 for (j = 0; j < csn; j++) {
656 struct cpuset *b = csa[j];
657 int bpn = b->pn;
658
659 if (apn != bpn && cpusets_overlap(a, b)) {
660 for (k = 0; k < csn; k++) {
661 struct cpuset *c = csa[k];
662
663 if (c->pn == bpn)
664 c->pn = apn;
665 }
666 ndoms--; /* one less element */
667 goto restart;
668 }
669 }
670 }
671
cf417141
MK
672 /*
673 * Now we know how many domains to create.
674 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
675 */
acc3f5d7 676 doms = alloc_sched_domains(ndoms);
700018e0 677 if (!doms)
cf417141 678 goto done;
cf417141
MK
679
680 /*
681 * The rest of the code, including the scheduler, can deal with
682 * dattr==NULL case. No need to abort if alloc fails.
683 */
1d3504fc 684 dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
029190c5
PJ
685
686 for (nslot = 0, i = 0; i < csn; i++) {
687 struct cpuset *a = csa[i];
6af866af 688 struct cpumask *dp;
029190c5
PJ
689 int apn = a->pn;
690
cf417141
MK
691 if (apn < 0) {
692 /* Skip completed partitions */
693 continue;
694 }
695
acc3f5d7 696 dp = doms[nslot];
cf417141
MK
697
698 if (nslot == ndoms) {
699 static int warnings = 10;
700 if (warnings) {
701 printk(KERN_WARNING
702 "rebuild_sched_domains confused:"
703 " nslot %d, ndoms %d, csn %d, i %d,"
704 " apn %d\n",
705 nslot, ndoms, csn, i, apn);
706 warnings--;
029190c5 707 }
cf417141
MK
708 continue;
709 }
029190c5 710
6af866af 711 cpumask_clear(dp);
cf417141
MK
712 if (dattr)
713 *(dattr + nslot) = SD_ATTR_INIT;
714 for (j = i; j < csn; j++) {
715 struct cpuset *b = csa[j];
716
717 if (apn == b->pn) {
300ed6cb 718 cpumask_or(dp, dp, b->cpus_allowed);
cf417141
MK
719 if (dattr)
720 update_domain_attr_tree(dattr + nslot, b);
721
722 /* Done with this partition */
723 b->pn = -1;
029190c5 724 }
029190c5 725 }
cf417141 726 nslot++;
029190c5
PJ
727 }
728 BUG_ON(nslot != ndoms);
729
cf417141
MK
730done:
731 kfree(csa);
732
700018e0
LZ
733 /*
734 * Fallback to the default domain if kmalloc() failed.
735 * See comments in partition_sched_domains().
736 */
737 if (doms == NULL)
738 ndoms = 1;
739
cf417141
MK
740 *domains = doms;
741 *attributes = dattr;
742 return ndoms;
743}
744
745/*
746 * Rebuild scheduler domains.
747 *
699140ba
TH
748 * If the flag 'sched_load_balance' of any cpuset with non-empty
749 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
750 * which has that flag enabled, or if any cpuset with a non-empty
751 * 'cpus' is removed, then call this routine to rebuild the
752 * scheduler's dynamic sched domains.
cf417141 753 *
699140ba 754 * Call with cgroup_mutex held. Takes get_online_cpus().
cf417141 755 */
699140ba 756static void rebuild_sched_domains_locked(void)
cf417141
MK
757{
758 struct sched_domain_attr *attr;
acc3f5d7 759 cpumask_var_t *doms;
cf417141
MK
760 int ndoms;
761
699140ba 762 WARN_ON_ONCE(!cgroup_lock_is_held());
86ef5c9a 763 get_online_cpus();
cf417141
MK
764
765 /* Generate domain masks and attrs */
cf417141 766 ndoms = generate_sched_domains(&doms, &attr);
cf417141
MK
767
768 /* Have scheduler rebuild the domains */
769 partition_sched_domains(ndoms, doms, attr);
770
86ef5c9a 771 put_online_cpus();
cf417141 772}
db7f47cf 773#else /* !CONFIG_SMP */
699140ba 774static void rebuild_sched_domains_locked(void)
db7f47cf
PM
775{
776}
777
e1b8090b 778static int generate_sched_domains(cpumask_var_t **domains,
db7f47cf
PM
779 struct sched_domain_attr **attributes)
780{
781 *domains = NULL;
782 return 1;
783}
784#endif /* CONFIG_SMP */
029190c5 785
cf417141
MK
786void rebuild_sched_domains(void)
787{
699140ba
TH
788 cgroup_lock();
789 rebuild_sched_domains_locked();
790 cgroup_unlock();
029190c5
PJ
791}
792
58f4790b
CW
793/**
794 * cpuset_test_cpumask - test a task's cpus_allowed versus its cpuset's
795 * @tsk: task to test
796 * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
797 *
2df167a3 798 * Call with cgroup_mutex held. May take callback_mutex during call.
58f4790b
CW
799 * Called for each task in a cgroup by cgroup_scan_tasks().
800 * Return nonzero if this tasks's cpus_allowed mask should be changed (in other
801 * words, if its mask is not equal to its cpuset's mask).
053199ed 802 */
9e0c914c
AB
803static int cpuset_test_cpumask(struct task_struct *tsk,
804 struct cgroup_scanner *scan)
58f4790b 805{
300ed6cb 806 return !cpumask_equal(&tsk->cpus_allowed,
58f4790b
CW
807 (cgroup_cs(scan->cg))->cpus_allowed);
808}
053199ed 809
58f4790b
CW
810/**
811 * cpuset_change_cpumask - make a task's cpus_allowed the same as its cpuset's
812 * @tsk: task to test
813 * @scan: struct cgroup_scanner containing the cgroup of the task
814 *
815 * Called by cgroup_scan_tasks() for each task in a cgroup whose
816 * cpus_allowed mask needs to be changed.
817 *
818 * We don't need to re-check for the cgroup/cpuset membership, since we're
819 * holding cgroup_lock() at this point.
820 */
9e0c914c
AB
821static void cpuset_change_cpumask(struct task_struct *tsk,
822 struct cgroup_scanner *scan)
58f4790b 823{
300ed6cb 824 set_cpus_allowed_ptr(tsk, ((cgroup_cs(scan->cg))->cpus_allowed));
58f4790b
CW
825}
826
0b2f630a
MX
827/**
828 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
829 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
4e74339a 830 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
0b2f630a
MX
831 *
832 * Called with cgroup_mutex held
833 *
834 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
835 * calling callback functions for each.
836 *
4e74339a
LZ
837 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
838 * if @heap != NULL.
0b2f630a 839 */
4e74339a 840static void update_tasks_cpumask(struct cpuset *cs, struct ptr_heap *heap)
0b2f630a
MX
841{
842 struct cgroup_scanner scan;
0b2f630a
MX
843
844 scan.cg = cs->css.cgroup;
845 scan.test_task = cpuset_test_cpumask;
846 scan.process_task = cpuset_change_cpumask;
4e74339a
LZ
847 scan.heap = heap;
848 cgroup_scan_tasks(&scan);
0b2f630a
MX
849}
850
58f4790b
CW
851/**
852 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
853 * @cs: the cpuset to consider
854 * @buf: buffer of cpu numbers written to this cpuset
855 */
645fcc9d
LZ
856static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
857 const char *buf)
1da177e4 858{
4e74339a 859 struct ptr_heap heap;
58f4790b
CW
860 int retval;
861 int is_load_balanced;
1da177e4 862
5f054e31 863 /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
4c4d50f7
PJ
864 if (cs == &top_cpuset)
865 return -EACCES;
866
6f7f02e7 867 /*
c8d9c90c 868 * An empty cpus_allowed is ok only if the cpuset has no tasks.
020958b6
PJ
869 * Since cpulist_parse() fails on an empty mask, we special case
870 * that parsing. The validate_change() call ensures that cpusets
871 * with tasks have cpus.
6f7f02e7 872 */
020958b6 873 if (!*buf) {
300ed6cb 874 cpumask_clear(trialcs->cpus_allowed);
6f7f02e7 875 } else {
300ed6cb 876 retval = cpulist_parse(buf, trialcs->cpus_allowed);
6f7f02e7
DR
877 if (retval < 0)
878 return retval;
37340746 879
6ad4c188 880 if (!cpumask_subset(trialcs->cpus_allowed, cpu_active_mask))
37340746 881 return -EINVAL;
6f7f02e7 882 }
645fcc9d 883 retval = validate_change(cs, trialcs);
85d7b949
DG
884 if (retval < 0)
885 return retval;
029190c5 886
8707d8b8 887 /* Nothing to do if the cpus didn't change */
300ed6cb 888 if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
8707d8b8 889 return 0;
58f4790b 890
4e74339a
LZ
891 retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
892 if (retval)
893 return retval;
894
645fcc9d 895 is_load_balanced = is_sched_load_balance(trialcs);
029190c5 896
3d3f26a7 897 mutex_lock(&callback_mutex);
300ed6cb 898 cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
3d3f26a7 899 mutex_unlock(&callback_mutex);
029190c5 900
8707d8b8
PM
901 /*
902 * Scan tasks in the cpuset, and update the cpumasks of any
58f4790b 903 * that need an update.
8707d8b8 904 */
4e74339a
LZ
905 update_tasks_cpumask(cs, &heap);
906
907 heap_free(&heap);
58f4790b 908
8707d8b8 909 if (is_load_balanced)
699140ba 910 rebuild_sched_domains_locked();
85d7b949 911 return 0;
1da177e4
LT
912}
913
e4e364e8
PJ
914/*
915 * cpuset_migrate_mm
916 *
917 * Migrate memory region from one set of nodes to another.
918 *
919 * Temporarilly set tasks mems_allowed to target nodes of migration,
920 * so that the migration code can allocate pages on these nodes.
921 *
2df167a3 922 * Call holding cgroup_mutex, so current's cpuset won't change
c8d9c90c 923 * during this call, as manage_mutex holds off any cpuset_attach()
e4e364e8
PJ
924 * calls. Therefore we don't need to take task_lock around the
925 * call to guarantee_online_mems(), as we know no one is changing
2df167a3 926 * our task's cpuset.
e4e364e8 927 *
e4e364e8
PJ
928 * While the mm_struct we are migrating is typically from some
929 * other task, the task_struct mems_allowed that we are hacking
930 * is for our current task, which must allocate new pages for that
931 * migrating memory region.
e4e364e8
PJ
932 */
933
934static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
935 const nodemask_t *to)
936{
937 struct task_struct *tsk = current;
938
e4e364e8 939 tsk->mems_allowed = *to;
e4e364e8
PJ
940
941 do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);
942
8793d854 943 guarantee_online_mems(task_cs(tsk),&tsk->mems_allowed);
e4e364e8
PJ
944}
945
3b6766fe 946/*
58568d2a
MX
947 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
948 * @tsk: the task to change
949 * @newmems: new nodes that the task will be set
950 *
951 * In order to avoid seeing no nodes if the old and new nodes are disjoint,
952 * we structure updates as setting all new allowed nodes, then clearing newly
953 * disallowed ones.
58568d2a
MX
954 */
955static void cpuset_change_task_nodemask(struct task_struct *tsk,
956 nodemask_t *newmems)
957{
b246272e 958 bool need_loop;
89e8a244 959
c0ff7453
MX
960 /*
961 * Allow tasks that have access to memory reserves because they have
962 * been OOM killed to get memory anywhere.
963 */
964 if (unlikely(test_thread_flag(TIF_MEMDIE)))
965 return;
966 if (current->flags & PF_EXITING) /* Let dying task have memory */
967 return;
968
969 task_lock(tsk);
b246272e
DR
970 /*
971 * Determine if a loop is necessary if another thread is doing
972 * get_mems_allowed(). If at least one node remains unchanged and
973 * tsk does not have a mempolicy, then an empty nodemask will not be
974 * possible when mems_allowed is larger than a word.
975 */
976 need_loop = task_has_mempolicy(tsk) ||
977 !nodes_intersects(*newmems, tsk->mems_allowed);
c0ff7453 978
cc9a6c87
MG
979 if (need_loop)
980 write_seqcount_begin(&tsk->mems_allowed_seq);
c0ff7453 981
cc9a6c87
MG
982 nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
983 mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP1);
c0ff7453
MX
984
985 mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP2);
58568d2a 986 tsk->mems_allowed = *newmems;
cc9a6c87
MG
987
988 if (need_loop)
989 write_seqcount_end(&tsk->mems_allowed_seq);
990
c0ff7453 991 task_unlock(tsk);
58568d2a
MX
992}
993
994/*
995 * Update task's mems_allowed and rebind its mempolicy and vmas' mempolicy
996 * of it to cpuset's new mems_allowed, and migrate pages to new nodes if
997 * memory_migrate flag is set. Called with cgroup_mutex held.
3b6766fe
LZ
998 */
999static void cpuset_change_nodemask(struct task_struct *p,
1000 struct cgroup_scanner *scan)
1001{
1002 struct mm_struct *mm;
1003 struct cpuset *cs;
1004 int migrate;
1005 const nodemask_t *oldmem = scan->data;
ee24d379 1006 static nodemask_t newmems; /* protected by cgroup_mutex */
58568d2a
MX
1007
1008 cs = cgroup_cs(scan->cg);
ee24d379 1009 guarantee_online_mems(cs, &newmems);
58568d2a 1010
ee24d379 1011 cpuset_change_task_nodemask(p, &newmems);
53feb297 1012
3b6766fe
LZ
1013 mm = get_task_mm(p);
1014 if (!mm)
1015 return;
1016
3b6766fe
LZ
1017 migrate = is_memory_migrate(cs);
1018
1019 mpol_rebind_mm(mm, &cs->mems_allowed);
1020 if (migrate)
1021 cpuset_migrate_mm(mm, oldmem, &cs->mems_allowed);
1022 mmput(mm);
1023}
1024
8793d854
PM
1025static void *cpuset_being_rebound;
1026
0b2f630a
MX
1027/**
1028 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1029 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
1030 * @oldmem: old mems_allowed of cpuset cs
010cfac4 1031 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
0b2f630a
MX
1032 *
1033 * Called with cgroup_mutex held
010cfac4
LZ
1034 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
1035 * if @heap != NULL.
0b2f630a 1036 */
010cfac4
LZ
1037static void update_tasks_nodemask(struct cpuset *cs, const nodemask_t *oldmem,
1038 struct ptr_heap *heap)
1da177e4 1039{
3b6766fe 1040 struct cgroup_scanner scan;
59dac16f 1041
846a16bf 1042 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
4225399a 1043
3b6766fe
LZ
1044 scan.cg = cs->css.cgroup;
1045 scan.test_task = NULL;
1046 scan.process_task = cpuset_change_nodemask;
010cfac4 1047 scan.heap = heap;
3b6766fe 1048 scan.data = (nodemask_t *)oldmem;
4225399a
PJ
1049
1050 /*
3b6766fe
LZ
1051 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
1052 * take while holding tasklist_lock. Forks can happen - the
1053 * mpol_dup() cpuset_being_rebound check will catch such forks,
1054 * and rebind their vma mempolicies too. Because we still hold
1055 * the global cgroup_mutex, we know that no other rebind effort
1056 * will be contending for the global variable cpuset_being_rebound.
4225399a 1057 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
04c19fa6 1058 * is idempotent. Also migrate pages in each mm to new nodes.
4225399a 1059 */
010cfac4 1060 cgroup_scan_tasks(&scan);
4225399a 1061
2df167a3 1062 /* We're done rebinding vmas to this cpuset's new mems_allowed. */
8793d854 1063 cpuset_being_rebound = NULL;
1da177e4
LT
1064}
1065
0b2f630a
MX
1066/*
1067 * Handle user request to change the 'mems' memory placement
1068 * of a cpuset. Needs to validate the request, update the
58568d2a
MX
1069 * cpusets mems_allowed, and for each task in the cpuset,
1070 * update mems_allowed and rebind task's mempolicy and any vma
1071 * mempolicies and if the cpuset is marked 'memory_migrate',
1072 * migrate the tasks pages to the new memory.
0b2f630a
MX
1073 *
1074 * Call with cgroup_mutex held. May take callback_mutex during call.
1075 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1076 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
1077 * their mempolicies to the cpusets new mems_allowed.
1078 */
645fcc9d
LZ
1079static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
1080 const char *buf)
0b2f630a 1081{
53feb297 1082 NODEMASK_ALLOC(nodemask_t, oldmem, GFP_KERNEL);
0b2f630a 1083 int retval;
010cfac4 1084 struct ptr_heap heap;
0b2f630a 1085
53feb297
MX
1086 if (!oldmem)
1087 return -ENOMEM;
1088
0b2f630a 1089 /*
38d7bee9 1090 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
0b2f630a
MX
1091 * it's read-only
1092 */
53feb297
MX
1093 if (cs == &top_cpuset) {
1094 retval = -EACCES;
1095 goto done;
1096 }
0b2f630a 1097
0b2f630a
MX
1098 /*
1099 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1100 * Since nodelist_parse() fails on an empty mask, we special case
1101 * that parsing. The validate_change() call ensures that cpusets
1102 * with tasks have memory.
1103 */
1104 if (!*buf) {
645fcc9d 1105 nodes_clear(trialcs->mems_allowed);
0b2f630a 1106 } else {
645fcc9d 1107 retval = nodelist_parse(buf, trialcs->mems_allowed);
0b2f630a
MX
1108 if (retval < 0)
1109 goto done;
1110
645fcc9d 1111 if (!nodes_subset(trialcs->mems_allowed,
38d7bee9 1112 node_states[N_MEMORY])) {
53feb297
MX
1113 retval = -EINVAL;
1114 goto done;
1115 }
0b2f630a 1116 }
53feb297
MX
1117 *oldmem = cs->mems_allowed;
1118 if (nodes_equal(*oldmem, trialcs->mems_allowed)) {
0b2f630a
MX
1119 retval = 0; /* Too easy - nothing to do */
1120 goto done;
1121 }
645fcc9d 1122 retval = validate_change(cs, trialcs);
0b2f630a
MX
1123 if (retval < 0)
1124 goto done;
1125
010cfac4
LZ
1126 retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
1127 if (retval < 0)
1128 goto done;
1129
0b2f630a 1130 mutex_lock(&callback_mutex);
645fcc9d 1131 cs->mems_allowed = trialcs->mems_allowed;
0b2f630a
MX
1132 mutex_unlock(&callback_mutex);
1133
53feb297 1134 update_tasks_nodemask(cs, oldmem, &heap);
010cfac4
LZ
1135
1136 heap_free(&heap);
0b2f630a 1137done:
53feb297 1138 NODEMASK_FREE(oldmem);
0b2f630a
MX
1139 return retval;
1140}
1141
8793d854
PM
1142int current_cpuset_is_being_rebound(void)
1143{
1144 return task_cs(current) == cpuset_being_rebound;
1145}
1146
5be7a479 1147static int update_relax_domain_level(struct cpuset *cs, s64 val)
1d3504fc 1148{
db7f47cf 1149#ifdef CONFIG_SMP
60495e77 1150 if (val < -1 || val >= sched_domain_level_max)
30e0e178 1151 return -EINVAL;
db7f47cf 1152#endif
1d3504fc
HS
1153
1154 if (val != cs->relax_domain_level) {
1155 cs->relax_domain_level = val;
300ed6cb
LZ
1156 if (!cpumask_empty(cs->cpus_allowed) &&
1157 is_sched_load_balance(cs))
699140ba 1158 rebuild_sched_domains_locked();
1d3504fc
HS
1159 }
1160
1161 return 0;
1162}
1163
950592f7
MX
1164/*
1165 * cpuset_change_flag - make a task's spread flags the same as its cpuset's
1166 * @tsk: task to be updated
1167 * @scan: struct cgroup_scanner containing the cgroup of the task
1168 *
1169 * Called by cgroup_scan_tasks() for each task in a cgroup.
1170 *
1171 * We don't need to re-check for the cgroup/cpuset membership, since we're
1172 * holding cgroup_lock() at this point.
1173 */
1174static void cpuset_change_flag(struct task_struct *tsk,
1175 struct cgroup_scanner *scan)
1176{
1177 cpuset_update_task_spread_flag(cgroup_cs(scan->cg), tsk);
1178}
1179
1180/*
1181 * update_tasks_flags - update the spread flags of tasks in the cpuset.
1182 * @cs: the cpuset in which each task's spread flags needs to be changed
1183 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
1184 *
1185 * Called with cgroup_mutex held
1186 *
1187 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
1188 * calling callback functions for each.
1189 *
1190 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
1191 * if @heap != NULL.
1192 */
1193static void update_tasks_flags(struct cpuset *cs, struct ptr_heap *heap)
1194{
1195 struct cgroup_scanner scan;
1196
1197 scan.cg = cs->css.cgroup;
1198 scan.test_task = NULL;
1199 scan.process_task = cpuset_change_flag;
1200 scan.heap = heap;
1201 cgroup_scan_tasks(&scan);
1202}
1203
1da177e4
LT
1204/*
1205 * update_flag - read a 0 or a 1 in a file and update associated flag
78608366
PM
1206 * bit: the bit to update (see cpuset_flagbits_t)
1207 * cs: the cpuset to update
1208 * turning_on: whether the flag is being set or cleared
053199ed 1209 *
2df167a3 1210 * Call with cgroup_mutex held.
1da177e4
LT
1211 */
1212
700fe1ab
PM
1213static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1214 int turning_on)
1da177e4 1215{
645fcc9d 1216 struct cpuset *trialcs;
40b6a762 1217 int balance_flag_changed;
950592f7
MX
1218 int spread_flag_changed;
1219 struct ptr_heap heap;
1220 int err;
1da177e4 1221
645fcc9d
LZ
1222 trialcs = alloc_trial_cpuset(cs);
1223 if (!trialcs)
1224 return -ENOMEM;
1225
1da177e4 1226 if (turning_on)
645fcc9d 1227 set_bit(bit, &trialcs->flags);
1da177e4 1228 else
645fcc9d 1229 clear_bit(bit, &trialcs->flags);
1da177e4 1230
645fcc9d 1231 err = validate_change(cs, trialcs);
85d7b949 1232 if (err < 0)
645fcc9d 1233 goto out;
029190c5 1234
950592f7
MX
1235 err = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
1236 if (err < 0)
1237 goto out;
1238
029190c5 1239 balance_flag_changed = (is_sched_load_balance(cs) !=
645fcc9d 1240 is_sched_load_balance(trialcs));
029190c5 1241
950592f7
MX
1242 spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
1243 || (is_spread_page(cs) != is_spread_page(trialcs)));
1244
3d3f26a7 1245 mutex_lock(&callback_mutex);
645fcc9d 1246 cs->flags = trialcs->flags;
3d3f26a7 1247 mutex_unlock(&callback_mutex);
85d7b949 1248
300ed6cb 1249 if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
699140ba 1250 rebuild_sched_domains_locked();
029190c5 1251
950592f7
MX
1252 if (spread_flag_changed)
1253 update_tasks_flags(cs, &heap);
1254 heap_free(&heap);
645fcc9d
LZ
1255out:
1256 free_trial_cpuset(trialcs);
1257 return err;
1da177e4
LT
1258}
1259
3e0d98b9 1260/*
80f7228b 1261 * Frequency meter - How fast is some event occurring?
3e0d98b9
PJ
1262 *
1263 * These routines manage a digitally filtered, constant time based,
1264 * event frequency meter. There are four routines:
1265 * fmeter_init() - initialize a frequency meter.
1266 * fmeter_markevent() - called each time the event happens.
1267 * fmeter_getrate() - returns the recent rate of such events.
1268 * fmeter_update() - internal routine used to update fmeter.
1269 *
1270 * A common data structure is passed to each of these routines,
1271 * which is used to keep track of the state required to manage the
1272 * frequency meter and its digital filter.
1273 *
1274 * The filter works on the number of events marked per unit time.
1275 * The filter is single-pole low-pass recursive (IIR). The time unit
1276 * is 1 second. Arithmetic is done using 32-bit integers scaled to
1277 * simulate 3 decimal digits of precision (multiplied by 1000).
1278 *
1279 * With an FM_COEF of 933, and a time base of 1 second, the filter
1280 * has a half-life of 10 seconds, meaning that if the events quit
1281 * happening, then the rate returned from the fmeter_getrate()
1282 * will be cut in half each 10 seconds, until it converges to zero.
1283 *
1284 * It is not worth doing a real infinitely recursive filter. If more
1285 * than FM_MAXTICKS ticks have elapsed since the last filter event,
1286 * just compute FM_MAXTICKS ticks worth, by which point the level
1287 * will be stable.
1288 *
1289 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
1290 * arithmetic overflow in the fmeter_update() routine.
1291 *
1292 * Given the simple 32 bit integer arithmetic used, this meter works
1293 * best for reporting rates between one per millisecond (msec) and
1294 * one per 32 (approx) seconds. At constant rates faster than one
1295 * per msec it maxes out at values just under 1,000,000. At constant
1296 * rates between one per msec, and one per second it will stabilize
1297 * to a value N*1000, where N is the rate of events per second.
1298 * At constant rates between one per second and one per 32 seconds,
1299 * it will be choppy, moving up on the seconds that have an event,
1300 * and then decaying until the next event. At rates slower than
1301 * about one in 32 seconds, it decays all the way back to zero between
1302 * each event.
1303 */
1304
1305#define FM_COEF 933 /* coefficient for half-life of 10 secs */
1306#define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
1307#define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
1308#define FM_SCALE 1000 /* faux fixed point scale */
1309
1310/* Initialize a frequency meter */
1311static void fmeter_init(struct fmeter *fmp)
1312{
1313 fmp->cnt = 0;
1314 fmp->val = 0;
1315 fmp->time = 0;
1316 spin_lock_init(&fmp->lock);
1317}
1318
1319/* Internal meter update - process cnt events and update value */
1320static void fmeter_update(struct fmeter *fmp)
1321{
1322 time_t now = get_seconds();
1323 time_t ticks = now - fmp->time;
1324
1325 if (ticks == 0)
1326 return;
1327
1328 ticks = min(FM_MAXTICKS, ticks);
1329 while (ticks-- > 0)
1330 fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
1331 fmp->time = now;
1332
1333 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
1334 fmp->cnt = 0;
1335}
1336
1337/* Process any previous ticks, then bump cnt by one (times scale). */
1338static void fmeter_markevent(struct fmeter *fmp)
1339{
1340 spin_lock(&fmp->lock);
1341 fmeter_update(fmp);
1342 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
1343 spin_unlock(&fmp->lock);
1344}
1345
1346/* Process any previous ticks, then return current value. */
1347static int fmeter_getrate(struct fmeter *fmp)
1348{
1349 int val;
1350
1351 spin_lock(&fmp->lock);
1352 fmeter_update(fmp);
1353 val = fmp->val;
1354 spin_unlock(&fmp->lock);
1355 return val;
1356}
1357
2df167a3 1358/* Called by cgroups to determine if a cpuset is usable; cgroup_mutex held */
761b3ef5 1359static int cpuset_can_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
f780bdb7 1360{
2f7ee569 1361 struct cpuset *cs = cgroup_cs(cgrp);
bb9d97b6
TH
1362 struct task_struct *task;
1363 int ret;
1da177e4 1364
300ed6cb 1365 if (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
1da177e4 1366 return -ENOSPC;
9985b0ba 1367
bb9d97b6
TH
1368 cgroup_taskset_for_each(task, cgrp, tset) {
1369 /*
1370 * Kthreads bound to specific cpus cannot be moved to a new
1371 * cpuset; we cannot change their cpu affinity and
1372 * isolating such threads by their set of allowed nodes is
1373 * unnecessary. Thus, cpusets are not applicable for such
1374 * threads. This prevents checking for success of
1375 * set_cpus_allowed_ptr() on all attached tasks before
1376 * cpus_allowed may be changed.
1377 */
1378 if (task->flags & PF_THREAD_BOUND)
1379 return -EINVAL;
1380 if ((ret = security_task_setscheduler(task)))
1381 return ret;
1382 }
f780bdb7 1383
94196f51 1384 return 0;
8793d854 1385}
1da177e4 1386
4e4c9a14
TH
1387/*
1388 * Protected by cgroup_mutex. cpus_attach is used only by cpuset_attach()
1389 * but we can't allocate it dynamically there. Define it global and
1390 * allocate from cpuset_init().
1391 */
1392static cpumask_var_t cpus_attach;
1393
761b3ef5 1394static void cpuset_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
8793d854 1395{
4e4c9a14
TH
1396 /* static bufs protected by cgroup_mutex */
1397 static nodemask_t cpuset_attach_nodemask_from;
1398 static nodemask_t cpuset_attach_nodemask_to;
8793d854 1399 struct mm_struct *mm;
bb9d97b6
TH
1400 struct task_struct *task;
1401 struct task_struct *leader = cgroup_taskset_first(tset);
2f7ee569
TH
1402 struct cgroup *oldcgrp = cgroup_taskset_cur_cgroup(tset);
1403 struct cpuset *cs = cgroup_cs(cgrp);
1404 struct cpuset *oldcs = cgroup_cs(oldcgrp);
22fb52dd 1405
4e4c9a14
TH
1406 /* prepare for attach */
1407 if (cs == &top_cpuset)
1408 cpumask_copy(cpus_attach, cpu_possible_mask);
1409 else
1410 guarantee_online_cpus(cs, cpus_attach);
1411
1412 guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
1413
bb9d97b6
TH
1414 cgroup_taskset_for_each(task, cgrp, tset) {
1415 /*
1416 * can_attach beforehand should guarantee that this doesn't
1417 * fail. TODO: have a better way to handle failure here
1418 */
1419 WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
1420
1421 cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
1422 cpuset_update_task_spread_flag(cs, task);
1423 }
22fb52dd 1424
f780bdb7
BB
1425 /*
1426 * Change mm, possibly for multiple threads in a threadgroup. This is
1427 * expensive and may sleep.
1428 */
1429 cpuset_attach_nodemask_from = oldcs->mems_allowed;
1430 cpuset_attach_nodemask_to = cs->mems_allowed;
bb9d97b6 1431 mm = get_task_mm(leader);
4225399a 1432 if (mm) {
f780bdb7 1433 mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
2741a559 1434 if (is_memory_migrate(cs))
f780bdb7
BB
1435 cpuset_migrate_mm(mm, &cpuset_attach_nodemask_from,
1436 &cpuset_attach_nodemask_to);
4225399a
PJ
1437 mmput(mm);
1438 }
1da177e4
LT
1439}
1440
1441/* The various types of files and directories in a cpuset file system */
1442
1443typedef enum {
45b07ef3 1444 FILE_MEMORY_MIGRATE,
1da177e4
LT
1445 FILE_CPULIST,
1446 FILE_MEMLIST,
1447 FILE_CPU_EXCLUSIVE,
1448 FILE_MEM_EXCLUSIVE,
78608366 1449 FILE_MEM_HARDWALL,
029190c5 1450 FILE_SCHED_LOAD_BALANCE,
1d3504fc 1451 FILE_SCHED_RELAX_DOMAIN_LEVEL,
3e0d98b9
PJ
1452 FILE_MEMORY_PRESSURE_ENABLED,
1453 FILE_MEMORY_PRESSURE,
825a46af
PJ
1454 FILE_SPREAD_PAGE,
1455 FILE_SPREAD_SLAB,
1da177e4
LT
1456} cpuset_filetype_t;
1457
700fe1ab
PM
1458static int cpuset_write_u64(struct cgroup *cgrp, struct cftype *cft, u64 val)
1459{
1460 int retval = 0;
1461 struct cpuset *cs = cgroup_cs(cgrp);
1462 cpuset_filetype_t type = cft->private;
1463
e3712395 1464 if (!cgroup_lock_live_group(cgrp))
700fe1ab 1465 return -ENODEV;
700fe1ab
PM
1466
1467 switch (type) {
1da177e4 1468 case FILE_CPU_EXCLUSIVE:
700fe1ab 1469 retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
1da177e4
LT
1470 break;
1471 case FILE_MEM_EXCLUSIVE:
700fe1ab 1472 retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
1da177e4 1473 break;
78608366
PM
1474 case FILE_MEM_HARDWALL:
1475 retval = update_flag(CS_MEM_HARDWALL, cs, val);
1476 break;
029190c5 1477 case FILE_SCHED_LOAD_BALANCE:
700fe1ab 1478 retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1d3504fc 1479 break;
45b07ef3 1480 case FILE_MEMORY_MIGRATE:
700fe1ab 1481 retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
45b07ef3 1482 break;
3e0d98b9 1483 case FILE_MEMORY_PRESSURE_ENABLED:
700fe1ab 1484 cpuset_memory_pressure_enabled = !!val;
3e0d98b9
PJ
1485 break;
1486 case FILE_MEMORY_PRESSURE:
1487 retval = -EACCES;
1488 break;
825a46af 1489 case FILE_SPREAD_PAGE:
700fe1ab 1490 retval = update_flag(CS_SPREAD_PAGE, cs, val);
825a46af
PJ
1491 break;
1492 case FILE_SPREAD_SLAB:
700fe1ab 1493 retval = update_flag(CS_SPREAD_SLAB, cs, val);
825a46af 1494 break;
1da177e4
LT
1495 default:
1496 retval = -EINVAL;
700fe1ab 1497 break;
1da177e4 1498 }
8793d854 1499 cgroup_unlock();
1da177e4
LT
1500 return retval;
1501}
1502
5be7a479
PM
1503static int cpuset_write_s64(struct cgroup *cgrp, struct cftype *cft, s64 val)
1504{
1505 int retval = 0;
1506 struct cpuset *cs = cgroup_cs(cgrp);
1507 cpuset_filetype_t type = cft->private;
1508
e3712395 1509 if (!cgroup_lock_live_group(cgrp))
5be7a479 1510 return -ENODEV;
e3712395 1511
5be7a479
PM
1512 switch (type) {
1513 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1514 retval = update_relax_domain_level(cs, val);
1515 break;
1516 default:
1517 retval = -EINVAL;
1518 break;
1519 }
1520 cgroup_unlock();
1521 return retval;
1522}
1523
e3712395
PM
1524/*
1525 * Common handling for a write to a "cpus" or "mems" file.
1526 */
1527static int cpuset_write_resmask(struct cgroup *cgrp, struct cftype *cft,
1528 const char *buf)
1529{
1530 int retval = 0;
645fcc9d
LZ
1531 struct cpuset *cs = cgroup_cs(cgrp);
1532 struct cpuset *trialcs;
e3712395 1533
3a5a6d0c
TH
1534 /*
1535 * CPU or memory hotunplug may leave @cs w/o any execution
1536 * resources, in which case the hotplug code asynchronously updates
1537 * configuration and transfers all tasks to the nearest ancestor
1538 * which can execute.
1539 *
1540 * As writes to "cpus" or "mems" may restore @cs's execution
1541 * resources, wait for the previously scheduled operations before
1542 * proceeding, so that we don't end up keep removing tasks added
1543 * after execution capability is restored.
1544 */
1545 flush_work(&cpuset_hotplug_work);
1546
e3712395
PM
1547 if (!cgroup_lock_live_group(cgrp))
1548 return -ENODEV;
1549
645fcc9d 1550 trialcs = alloc_trial_cpuset(cs);
b75f38d6
LZ
1551 if (!trialcs) {
1552 retval = -ENOMEM;
1553 goto out;
1554 }
645fcc9d 1555
e3712395
PM
1556 switch (cft->private) {
1557 case FILE_CPULIST:
645fcc9d 1558 retval = update_cpumask(cs, trialcs, buf);
e3712395
PM
1559 break;
1560 case FILE_MEMLIST:
645fcc9d 1561 retval = update_nodemask(cs, trialcs, buf);
e3712395
PM
1562 break;
1563 default:
1564 retval = -EINVAL;
1565 break;
1566 }
645fcc9d
LZ
1567
1568 free_trial_cpuset(trialcs);
b75f38d6 1569out:
e3712395
PM
1570 cgroup_unlock();
1571 return retval;
1572}
1573
1da177e4
LT
1574/*
1575 * These ascii lists should be read in a single call, by using a user
1576 * buffer large enough to hold the entire map. If read in smaller
1577 * chunks, there is no guarantee of atomicity. Since the display format
1578 * used, list of ranges of sequential numbers, is variable length,
1579 * and since these maps can change value dynamically, one could read
1580 * gibberish by doing partial reads while a list was changing.
1581 * A single large read to a buffer that crosses a page boundary is
1582 * ok, because the result being copied to user land is not recomputed
1583 * across a page fault.
1584 */
1585
9303e0c4 1586static size_t cpuset_sprintf_cpulist(char *page, struct cpuset *cs)
1da177e4 1587{
9303e0c4 1588 size_t count;
1da177e4 1589
3d3f26a7 1590 mutex_lock(&callback_mutex);
9303e0c4 1591 count = cpulist_scnprintf(page, PAGE_SIZE, cs->cpus_allowed);
3d3f26a7 1592 mutex_unlock(&callback_mutex);
1da177e4 1593
9303e0c4 1594 return count;
1da177e4
LT
1595}
1596
9303e0c4 1597static size_t cpuset_sprintf_memlist(char *page, struct cpuset *cs)
1da177e4 1598{
9303e0c4 1599 size_t count;
1da177e4 1600
3d3f26a7 1601 mutex_lock(&callback_mutex);
9303e0c4 1602 count = nodelist_scnprintf(page, PAGE_SIZE, cs->mems_allowed);
3d3f26a7 1603 mutex_unlock(&callback_mutex);
1da177e4 1604
9303e0c4 1605 return count;
1da177e4
LT
1606}
1607
8793d854
PM
1608static ssize_t cpuset_common_file_read(struct cgroup *cont,
1609 struct cftype *cft,
1610 struct file *file,
1611 char __user *buf,
1612 size_t nbytes, loff_t *ppos)
1da177e4 1613{
8793d854 1614 struct cpuset *cs = cgroup_cs(cont);
1da177e4
LT
1615 cpuset_filetype_t type = cft->private;
1616 char *page;
1617 ssize_t retval = 0;
1618 char *s;
1da177e4 1619
e12ba74d 1620 if (!(page = (char *)__get_free_page(GFP_TEMPORARY)))
1da177e4
LT
1621 return -ENOMEM;
1622
1623 s = page;
1624
1625 switch (type) {
1626 case FILE_CPULIST:
1627 s += cpuset_sprintf_cpulist(s, cs);
1628 break;
1629 case FILE_MEMLIST:
1630 s += cpuset_sprintf_memlist(s, cs);
1631 break;
1da177e4
LT
1632 default:
1633 retval = -EINVAL;
1634 goto out;
1635 }
1636 *s++ = '\n';
1da177e4 1637
eacaa1f5 1638 retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
1da177e4
LT
1639out:
1640 free_page((unsigned long)page);
1641 return retval;
1642}
1643
700fe1ab
PM
1644static u64 cpuset_read_u64(struct cgroup *cont, struct cftype *cft)
1645{
1646 struct cpuset *cs = cgroup_cs(cont);
1647 cpuset_filetype_t type = cft->private;
1648 switch (type) {
1649 case FILE_CPU_EXCLUSIVE:
1650 return is_cpu_exclusive(cs);
1651 case FILE_MEM_EXCLUSIVE:
1652 return is_mem_exclusive(cs);
78608366
PM
1653 case FILE_MEM_HARDWALL:
1654 return is_mem_hardwall(cs);
700fe1ab
PM
1655 case FILE_SCHED_LOAD_BALANCE:
1656 return is_sched_load_balance(cs);
1657 case FILE_MEMORY_MIGRATE:
1658 return is_memory_migrate(cs);
1659 case FILE_MEMORY_PRESSURE_ENABLED:
1660 return cpuset_memory_pressure_enabled;
1661 case FILE_MEMORY_PRESSURE:
1662 return fmeter_getrate(&cs->fmeter);
1663 case FILE_SPREAD_PAGE:
1664 return is_spread_page(cs);
1665 case FILE_SPREAD_SLAB:
1666 return is_spread_slab(cs);
1667 default:
1668 BUG();
1669 }
cf417141
MK
1670
1671 /* Unreachable but makes gcc happy */
1672 return 0;
700fe1ab 1673}
1da177e4 1674
5be7a479
PM
1675static s64 cpuset_read_s64(struct cgroup *cont, struct cftype *cft)
1676{
1677 struct cpuset *cs = cgroup_cs(cont);
1678 cpuset_filetype_t type = cft->private;
1679 switch (type) {
1680 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1681 return cs->relax_domain_level;
1682 default:
1683 BUG();
1684 }
cf417141
MK
1685
1686 /* Unrechable but makes gcc happy */
1687 return 0;
5be7a479
PM
1688}
1689
1da177e4
LT
1690
1691/*
1692 * for the common functions, 'private' gives the type of file
1693 */
1694
addf2c73
PM
1695static struct cftype files[] = {
1696 {
1697 .name = "cpus",
1698 .read = cpuset_common_file_read,
e3712395
PM
1699 .write_string = cpuset_write_resmask,
1700 .max_write_len = (100U + 6 * NR_CPUS),
addf2c73
PM
1701 .private = FILE_CPULIST,
1702 },
1703
1704 {
1705 .name = "mems",
1706 .read = cpuset_common_file_read,
e3712395
PM
1707 .write_string = cpuset_write_resmask,
1708 .max_write_len = (100U + 6 * MAX_NUMNODES),
addf2c73
PM
1709 .private = FILE_MEMLIST,
1710 },
1711
1712 {
1713 .name = "cpu_exclusive",
1714 .read_u64 = cpuset_read_u64,
1715 .write_u64 = cpuset_write_u64,
1716 .private = FILE_CPU_EXCLUSIVE,
1717 },
1718
1719 {
1720 .name = "mem_exclusive",
1721 .read_u64 = cpuset_read_u64,
1722 .write_u64 = cpuset_write_u64,
1723 .private = FILE_MEM_EXCLUSIVE,
1724 },
1725
78608366
PM
1726 {
1727 .name = "mem_hardwall",
1728 .read_u64 = cpuset_read_u64,
1729 .write_u64 = cpuset_write_u64,
1730 .private = FILE_MEM_HARDWALL,
1731 },
1732
addf2c73
PM
1733 {
1734 .name = "sched_load_balance",
1735 .read_u64 = cpuset_read_u64,
1736 .write_u64 = cpuset_write_u64,
1737 .private = FILE_SCHED_LOAD_BALANCE,
1738 },
1739
1740 {
1741 .name = "sched_relax_domain_level",
5be7a479
PM
1742 .read_s64 = cpuset_read_s64,
1743 .write_s64 = cpuset_write_s64,
addf2c73
PM
1744 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
1745 },
1746
1747 {
1748 .name = "memory_migrate",
1749 .read_u64 = cpuset_read_u64,
1750 .write_u64 = cpuset_write_u64,
1751 .private = FILE_MEMORY_MIGRATE,
1752 },
1753
1754 {
1755 .name = "memory_pressure",
1756 .read_u64 = cpuset_read_u64,
1757 .write_u64 = cpuset_write_u64,
1758 .private = FILE_MEMORY_PRESSURE,
099fca32 1759 .mode = S_IRUGO,
addf2c73
PM
1760 },
1761
1762 {
1763 .name = "memory_spread_page",
1764 .read_u64 = cpuset_read_u64,
1765 .write_u64 = cpuset_write_u64,
1766 .private = FILE_SPREAD_PAGE,
1767 },
1768
1769 {
1770 .name = "memory_spread_slab",
1771 .read_u64 = cpuset_read_u64,
1772 .write_u64 = cpuset_write_u64,
1773 .private = FILE_SPREAD_SLAB,
1774 },
3e0d98b9 1775
4baf6e33
TH
1776 {
1777 .name = "memory_pressure_enabled",
1778 .flags = CFTYPE_ONLY_ON_ROOT,
1779 .read_u64 = cpuset_read_u64,
1780 .write_u64 = cpuset_write_u64,
1781 .private = FILE_MEMORY_PRESSURE_ENABLED,
1782 },
1da177e4 1783
4baf6e33
TH
1784 { } /* terminate */
1785};
1da177e4
LT
1786
1787/*
92fb9748 1788 * cpuset_css_alloc - allocate a cpuset css
2df167a3 1789 * cont: control group that the new cpuset will be part of
1da177e4
LT
1790 */
1791
92fb9748 1792static struct cgroup_subsys_state *cpuset_css_alloc(struct cgroup *cont)
1da177e4 1793{
c8f699bb 1794 struct cpuset *cs;
1da177e4 1795
c8f699bb 1796 if (!cont->parent)
8793d854 1797 return &top_cpuset.css;
033fa1c5 1798
c8f699bb 1799 cs = kzalloc(sizeof(*cs), GFP_KERNEL);
1da177e4 1800 if (!cs)
8793d854 1801 return ERR_PTR(-ENOMEM);
300ed6cb
LZ
1802 if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL)) {
1803 kfree(cs);
1804 return ERR_PTR(-ENOMEM);
1805 }
1da177e4 1806
029190c5 1807 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
300ed6cb 1808 cpumask_clear(cs->cpus_allowed);
f9a86fcb 1809 nodes_clear(cs->mems_allowed);
3e0d98b9 1810 fmeter_init(&cs->fmeter);
1d3504fc 1811 cs->relax_domain_level = -1;
c8f699bb
TH
1812 cs->parent = cgroup_cs(cont->parent);
1813
1814 return &cs->css;
1815}
1816
1817static int cpuset_css_online(struct cgroup *cgrp)
1818{
1819 struct cpuset *cs = cgroup_cs(cgrp);
1820 struct cpuset *parent = cs->parent;
ae8086ce
TH
1821 struct cpuset *tmp_cs;
1822 struct cgroup *pos_cg;
c8f699bb
TH
1823
1824 if (!parent)
1825 return 0;
1826
efeb77b2 1827 set_bit(CS_ONLINE, &cs->flags);
c8f699bb
TH
1828 if (is_spread_page(parent))
1829 set_bit(CS_SPREAD_PAGE, &cs->flags);
1830 if (is_spread_slab(parent))
1831 set_bit(CS_SPREAD_SLAB, &cs->flags);
1da177e4 1832
202f72d5 1833 number_of_cpusets++;
033fa1c5 1834
c8f699bb
TH
1835 if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags))
1836 return 0;
033fa1c5
TH
1837
1838 /*
1839 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
1840 * set. This flag handling is implemented in cgroup core for
1841 * histrical reasons - the flag may be specified during mount.
1842 *
1843 * Currently, if any sibling cpusets have exclusive cpus or mem, we
1844 * refuse to clone the configuration - thereby refusing the task to
1845 * be entered, and as a result refusing the sys_unshare() or
1846 * clone() which initiated it. If this becomes a problem for some
1847 * users who wish to allow that scenario, then this could be
1848 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
1849 * (and likewise for mems) to the new cgroup.
1850 */
ae8086ce
TH
1851 rcu_read_lock();
1852 cpuset_for_each_child(tmp_cs, pos_cg, parent) {
1853 if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
1854 rcu_read_unlock();
c8f699bb 1855 return 0;
ae8086ce 1856 }
033fa1c5 1857 }
ae8086ce 1858 rcu_read_unlock();
033fa1c5
TH
1859
1860 mutex_lock(&callback_mutex);
1861 cs->mems_allowed = parent->mems_allowed;
1862 cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
1863 mutex_unlock(&callback_mutex);
c8f699bb
TH
1864
1865 return 0;
1866}
1867
1868static void cpuset_css_offline(struct cgroup *cgrp)
1869{
1870 struct cpuset *cs = cgroup_cs(cgrp);
1871
1872 /* css_offline is called w/o cgroup_mutex, grab it */
1873 cgroup_lock();
1874
1875 if (is_sched_load_balance(cs))
1876 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
1877
1878 number_of_cpusets--;
efeb77b2 1879 clear_bit(CS_ONLINE, &cs->flags);
c8f699bb
TH
1880
1881 cgroup_unlock();
1da177e4
LT
1882}
1883
029190c5 1884/*
029190c5
PJ
1885 * If the cpuset being removed has its flag 'sched_load_balance'
1886 * enabled, then simulate turning sched_load_balance off, which
699140ba 1887 * will call rebuild_sched_domains_locked().
029190c5
PJ
1888 */
1889
92fb9748 1890static void cpuset_css_free(struct cgroup *cont)
1da177e4 1891{
8793d854 1892 struct cpuset *cs = cgroup_cs(cont);
1da177e4 1893
300ed6cb 1894 free_cpumask_var(cs->cpus_allowed);
8793d854 1895 kfree(cs);
1da177e4
LT
1896}
1897
8793d854
PM
1898struct cgroup_subsys cpuset_subsys = {
1899 .name = "cpuset",
92fb9748 1900 .css_alloc = cpuset_css_alloc,
c8f699bb
TH
1901 .css_online = cpuset_css_online,
1902 .css_offline = cpuset_css_offline,
92fb9748 1903 .css_free = cpuset_css_free,
8793d854
PM
1904 .can_attach = cpuset_can_attach,
1905 .attach = cpuset_attach,
8793d854 1906 .subsys_id = cpuset_subsys_id,
4baf6e33 1907 .base_cftypes = files,
8793d854
PM
1908 .early_init = 1,
1909};
1910
1da177e4
LT
1911/**
1912 * cpuset_init - initialize cpusets at system boot
1913 *
1914 * Description: Initialize top_cpuset and the cpuset internal file system,
1915 **/
1916
1917int __init cpuset_init(void)
1918{
8793d854 1919 int err = 0;
1da177e4 1920
58568d2a
MX
1921 if (!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL))
1922 BUG();
1923
300ed6cb 1924 cpumask_setall(top_cpuset.cpus_allowed);
f9a86fcb 1925 nodes_setall(top_cpuset.mems_allowed);
1da177e4 1926
3e0d98b9 1927 fmeter_init(&top_cpuset.fmeter);
029190c5 1928 set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
1d3504fc 1929 top_cpuset.relax_domain_level = -1;
1da177e4 1930
1da177e4
LT
1931 err = register_filesystem(&cpuset_fs_type);
1932 if (err < 0)
8793d854
PM
1933 return err;
1934
2341d1b6
LZ
1935 if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL))
1936 BUG();
1937
202f72d5 1938 number_of_cpusets = 1;
8793d854 1939 return 0;
1da177e4
LT
1940}
1941
956db3ca
CW
1942/**
1943 * cpuset_do_move_task - move a given task to another cpuset
1944 * @tsk: pointer to task_struct the task to move
1945 * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
1946 *
1947 * Called by cgroup_scan_tasks() for each task in a cgroup.
1948 * Return nonzero to stop the walk through the tasks.
1949 */
9e0c914c
AB
1950static void cpuset_do_move_task(struct task_struct *tsk,
1951 struct cgroup_scanner *scan)
956db3ca 1952{
7f81b1ae 1953 struct cgroup *new_cgroup = scan->data;
956db3ca 1954
7f81b1ae 1955 cgroup_attach_task(new_cgroup, tsk);
956db3ca
CW
1956}
1957
1958/**
1959 * move_member_tasks_to_cpuset - move tasks from one cpuset to another
1960 * @from: cpuset in which the tasks currently reside
1961 * @to: cpuset to which the tasks will be moved
1962 *
c8d9c90c
PJ
1963 * Called with cgroup_mutex held
1964 * callback_mutex must not be held, as cpuset_attach() will take it.
956db3ca
CW
1965 *
1966 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
1967 * calling callback functions for each.
1968 */
1969static void move_member_tasks_to_cpuset(struct cpuset *from, struct cpuset *to)
1970{
7f81b1ae 1971 struct cgroup_scanner scan;
956db3ca 1972
7f81b1ae
LZ
1973 scan.cg = from->css.cgroup;
1974 scan.test_task = NULL; /* select all tasks in cgroup */
1975 scan.process_task = cpuset_do_move_task;
1976 scan.heap = NULL;
1977 scan.data = to->css.cgroup;
956db3ca 1978
7f81b1ae 1979 if (cgroup_scan_tasks(&scan))
956db3ca
CW
1980 printk(KERN_ERR "move_member_tasks_to_cpuset: "
1981 "cgroup_scan_tasks failed\n");
1982}
1983
b1aac8bb 1984/*
cf417141 1985 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
b1aac8bb
PJ
1986 * or memory nodes, we need to walk over the cpuset hierarchy,
1987 * removing that CPU or node from all cpusets. If this removes the
956db3ca
CW
1988 * last CPU or node from a cpuset, then move the tasks in the empty
1989 * cpuset to its next-highest non-empty parent.
b1aac8bb 1990 *
c8d9c90c
PJ
1991 * Called with cgroup_mutex held
1992 * callback_mutex must not be held, as cpuset_attach() will take it.
b1aac8bb 1993 */
956db3ca
CW
1994static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
1995{
1996 struct cpuset *parent;
1997
956db3ca
CW
1998 /*
1999 * Find its next-highest non-empty parent, (top cpuset
2000 * has online cpus, so can't be empty).
2001 */
2002 parent = cs->parent;
300ed6cb 2003 while (cpumask_empty(parent->cpus_allowed) ||
b4501295 2004 nodes_empty(parent->mems_allowed))
956db3ca 2005 parent = parent->parent;
956db3ca
CW
2006
2007 move_member_tasks_to_cpuset(cs, parent);
2008}
2009
80d1fa64
SB
2010/*
2011 * Helper function to traverse cpusets.
2012 * It can be used to walk the cpuset tree from top to bottom, completing
2013 * one layer before dropping down to the next (thus always processing a
2014 * node before any of its children).
2015 */
2016static struct cpuset *cpuset_next(struct list_head *queue)
2017{
2018 struct cpuset *cp;
2019 struct cpuset *child; /* scans child cpusets of cp */
2020 struct cgroup *cont;
2021
2022 if (list_empty(queue))
2023 return NULL;
2024
2025 cp = list_first_entry(queue, struct cpuset, stack_list);
2026 list_del(queue->next);
ae8086ce
TH
2027 rcu_read_lock();
2028 cpuset_for_each_child(child, cont, cp)
80d1fa64 2029 list_add_tail(&child->stack_list, queue);
ae8086ce 2030 rcu_read_unlock();
80d1fa64
SB
2031
2032 return cp;
2033}
2034
deb7aa30
TH
2035/**
2036 * cpuset_propagate_hotplug - propagate CPU/memory hotplug to a cpuset
2037 * @cs: cpuset in interest
956db3ca 2038 *
deb7aa30
TH
2039 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
2040 * offline, update @cs accordingly. If @cs ends up with no CPU or memory,
2041 * all its tasks are moved to the nearest ancestor with both resources.
956db3ca 2042 *
deb7aa30 2043 * Should be called with cgroup_mutex held.
956db3ca 2044 */
deb7aa30 2045static void cpuset_propagate_hotplug(struct cpuset *cs)
b1aac8bb 2046{
deb7aa30
TH
2047 static cpumask_t off_cpus;
2048 static nodemask_t off_mems, tmp_mems;
7ddf96b0 2049
deb7aa30 2050 WARN_ON_ONCE(!cgroup_lock_is_held());
7ddf96b0 2051
deb7aa30
TH
2052 cpumask_andnot(&off_cpus, cs->cpus_allowed, top_cpuset.cpus_allowed);
2053 nodes_andnot(off_mems, cs->mems_allowed, top_cpuset.mems_allowed);
7ddf96b0 2054
deb7aa30
TH
2055 /* remove offline cpus from @cs */
2056 if (!cpumask_empty(&off_cpus)) {
2057 mutex_lock(&callback_mutex);
2058 cpumask_andnot(cs->cpus_allowed, cs->cpus_allowed, &off_cpus);
2059 mutex_unlock(&callback_mutex);
2060 update_tasks_cpumask(cs, NULL);
2061 }
b4501295 2062
deb7aa30
TH
2063 /* remove offline mems from @cs */
2064 if (!nodes_empty(off_mems)) {
2065 tmp_mems = cs->mems_allowed;
2066 mutex_lock(&callback_mutex);
2067 nodes_andnot(cs->mems_allowed, cs->mems_allowed, off_mems);
2068 mutex_unlock(&callback_mutex);
2069 update_tasks_nodemask(cs, &tmp_mems, NULL);
b1aac8bb 2070 }
deb7aa30
TH
2071
2072 if (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
2073 remove_tasks_in_empty_cpuset(cs);
b1aac8bb
PJ
2074}
2075
deb7aa30 2076/**
3a5a6d0c 2077 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
d35be8ba 2078 *
deb7aa30
TH
2079 * This function is called after either CPU or memory configuration has
2080 * changed and updates cpuset accordingly. The top_cpuset is always
2081 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
2082 * order to make cpusets transparent (of no affect) on systems that are
2083 * actively using CPU hotplug but making no active use of cpusets.
cf417141 2084 *
deb7aa30
TH
2085 * Non-root cpusets are only affected by offlining. If any CPUs or memory
2086 * nodes have been taken down, cpuset_propagate_hotplug() is invoked on all
2087 * descendants.
7ddf96b0 2088 *
deb7aa30
TH
2089 * Note that CPU offlining during suspend is ignored. We don't modify
2090 * cpusets across suspend/resume cycles at all.
4c4d50f7 2091 */
3a5a6d0c 2092static void cpuset_hotplug_workfn(struct work_struct *work)
4c4d50f7 2093{
deb7aa30
TH
2094 static cpumask_t new_cpus, tmp_cpus;
2095 static nodemask_t new_mems, tmp_mems;
2096 bool cpus_updated, mems_updated;
2097 bool cpus_offlined, mems_offlined;
cf417141 2098
cf417141 2099 cgroup_lock();
7ddf96b0 2100
deb7aa30
TH
2101 /* fetch the available cpus/mems and find out which changed how */
2102 cpumask_copy(&new_cpus, cpu_active_mask);
2103 new_mems = node_states[N_MEMORY];
2104
2105 cpus_updated = !cpumask_equal(top_cpuset.cpus_allowed, &new_cpus);
2106 cpus_offlined = cpumask_andnot(&tmp_cpus, top_cpuset.cpus_allowed,
2107 &new_cpus);
2108
2109 mems_updated = !nodes_equal(top_cpuset.mems_allowed, new_mems);
2110 nodes_andnot(tmp_mems, top_cpuset.mems_allowed, new_mems);
2111 mems_offlined = !nodes_empty(tmp_mems);
2112
2113 /* synchronize cpus_allowed to cpu_active_mask */
2114 if (cpus_updated) {
2115 mutex_lock(&callback_mutex);
2116 cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
2117 mutex_unlock(&callback_mutex);
2118 /* we don't mess with cpumasks of tasks in top_cpuset */
2119 }
2120
2121 /* synchronize mems_allowed to N_MEMORY */
2122 if (mems_updated) {
2123 tmp_mems = top_cpuset.mems_allowed;
2124 mutex_lock(&callback_mutex);
2125 top_cpuset.mems_allowed = new_mems;
2126 mutex_unlock(&callback_mutex);
2127 update_tasks_nodemask(&top_cpuset, &tmp_mems, NULL);
2128 }
2129
2130 /* if cpus or mems went down, we need to propagate to descendants */
2131 if (cpus_offlined || mems_offlined) {
2132 struct cpuset *cs;
2133 LIST_HEAD(queue);
2134
2135 list_add_tail(&top_cpuset.stack_list, &queue);
2136 while ((cs = cpuset_next(&queue)))
2137 if (cs != &top_cpuset)
2138 cpuset_propagate_hotplug(cs);
2139 }
7ddf96b0 2140
cf417141
MK
2141 cgroup_unlock();
2142
deb7aa30
TH
2143 /* rebuild sched domains if cpus_allowed has changed */
2144 if (cpus_updated) {
2145 struct sched_domain_attr *attr;
2146 cpumask_var_t *doms;
2147 int ndoms;
2148
2149 cgroup_lock();
2150 ndoms = generate_sched_domains(&doms, &attr);
2151 cgroup_unlock();
2152
2153 partition_sched_domains(ndoms, doms, attr);
2154 }
2155}
2156
2157void cpuset_update_active_cpus(bool cpu_online)
2158{
3a5a6d0c
TH
2159 /*
2160 * We're inside cpu hotplug critical region which usually nests
2161 * inside cgroup synchronization. Bounce actual hotplug processing
2162 * to a work item to avoid reverse locking order.
2163 *
2164 * We still need to do partition_sched_domains() synchronously;
2165 * otherwise, the scheduler will get confused and put tasks to the
2166 * dead CPU. Fall back to the default single domain.
2167 * cpuset_hotplug_workfn() will rebuild it as necessary.
2168 */
2169 partition_sched_domains(1, NULL, NULL);
2170 schedule_work(&cpuset_hotplug_work);
4c4d50f7 2171}
4c4d50f7 2172
b1aac8bb 2173#ifdef CONFIG_MEMORY_HOTPLUG
38837fc7 2174/*
38d7bee9
LJ
2175 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
2176 * Call this routine anytime after node_states[N_MEMORY] changes.
a1cd2b13 2177 * See cpuset_update_active_cpus() for CPU hotplug handling.
38837fc7 2178 */
f481891f
MX
2179static int cpuset_track_online_nodes(struct notifier_block *self,
2180 unsigned long action, void *arg)
38837fc7 2181{
3a5a6d0c 2182 schedule_work(&cpuset_hotplug_work);
f481891f 2183 return NOTIFY_OK;
38837fc7
PJ
2184}
2185#endif
2186
1da177e4
LT
2187/**
2188 * cpuset_init_smp - initialize cpus_allowed
2189 *
2190 * Description: Finish top cpuset after cpu, node maps are initialized
2191 **/
2192
2193void __init cpuset_init_smp(void)
2194{
6ad4c188 2195 cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
38d7bee9 2196 top_cpuset.mems_allowed = node_states[N_MEMORY];
4c4d50f7 2197
f481891f 2198 hotplug_memory_notifier(cpuset_track_online_nodes, 10);
1da177e4
LT
2199}
2200
2201/**
1da177e4
LT
2202 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
2203 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
6af866af 2204 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
1da177e4 2205 *
300ed6cb 2206 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
1da177e4 2207 * attached to the specified @tsk. Guaranteed to return some non-empty
5f054e31 2208 * subset of cpu_online_mask, even if this means going outside the
1da177e4
LT
2209 * tasks cpuset.
2210 **/
2211
6af866af 2212void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
1da177e4 2213{
3d3f26a7 2214 mutex_lock(&callback_mutex);
909d75a3 2215 task_lock(tsk);
f9a86fcb 2216 guarantee_online_cpus(task_cs(tsk), pmask);
909d75a3 2217 task_unlock(tsk);
897f0b3c 2218 mutex_unlock(&callback_mutex);
1da177e4
LT
2219}
2220
2baab4e9 2221void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
9084bb82
ON
2222{
2223 const struct cpuset *cs;
9084bb82
ON
2224
2225 rcu_read_lock();
2226 cs = task_cs(tsk);
2227 if (cs)
1e1b6c51 2228 do_set_cpus_allowed(tsk, cs->cpus_allowed);
9084bb82
ON
2229 rcu_read_unlock();
2230
2231 /*
2232 * We own tsk->cpus_allowed, nobody can change it under us.
2233 *
2234 * But we used cs && cs->cpus_allowed lockless and thus can
2235 * race with cgroup_attach_task() or update_cpumask() and get
2236 * the wrong tsk->cpus_allowed. However, both cases imply the
2237 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
2238 * which takes task_rq_lock().
2239 *
2240 * If we are called after it dropped the lock we must see all
2241 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
2242 * set any mask even if it is not right from task_cs() pov,
2243 * the pending set_cpus_allowed_ptr() will fix things.
2baab4e9
PZ
2244 *
2245 * select_fallback_rq() will fix things ups and set cpu_possible_mask
2246 * if required.
9084bb82 2247 */
9084bb82
ON
2248}
2249
1da177e4
LT
2250void cpuset_init_current_mems_allowed(void)
2251{
f9a86fcb 2252 nodes_setall(current->mems_allowed);
1da177e4
LT
2253}
2254
909d75a3
PJ
2255/**
2256 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
2257 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
2258 *
2259 * Description: Returns the nodemask_t mems_allowed of the cpuset
2260 * attached to the specified @tsk. Guaranteed to return some non-empty
38d7bee9 2261 * subset of node_states[N_MEMORY], even if this means going outside the
909d75a3
PJ
2262 * tasks cpuset.
2263 **/
2264
2265nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
2266{
2267 nodemask_t mask;
2268
3d3f26a7 2269 mutex_lock(&callback_mutex);
909d75a3 2270 task_lock(tsk);
8793d854 2271 guarantee_online_mems(task_cs(tsk), &mask);
909d75a3 2272 task_unlock(tsk);
3d3f26a7 2273 mutex_unlock(&callback_mutex);
909d75a3
PJ
2274
2275 return mask;
2276}
2277
d9fd8a6d 2278/**
19770b32
MG
2279 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
2280 * @nodemask: the nodemask to be checked
d9fd8a6d 2281 *
19770b32 2282 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
1da177e4 2283 */
19770b32 2284int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
1da177e4 2285{
19770b32 2286 return nodes_intersects(*nodemask, current->mems_allowed);
1da177e4
LT
2287}
2288
9bf2229f 2289/*
78608366
PM
2290 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
2291 * mem_hardwall ancestor to the specified cpuset. Call holding
2292 * callback_mutex. If no ancestor is mem_exclusive or mem_hardwall
2293 * (an unusual configuration), then returns the root cpuset.
9bf2229f 2294 */
78608366 2295static const struct cpuset *nearest_hardwall_ancestor(const struct cpuset *cs)
9bf2229f 2296{
78608366 2297 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && cs->parent)
9bf2229f
PJ
2298 cs = cs->parent;
2299 return cs;
2300}
2301
d9fd8a6d 2302/**
a1bc5a4e
DR
2303 * cpuset_node_allowed_softwall - Can we allocate on a memory node?
2304 * @node: is this an allowed node?
02a0e53d 2305 * @gfp_mask: memory allocation flags
d9fd8a6d 2306 *
a1bc5a4e
DR
2307 * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
2308 * set, yes, we can always allocate. If node is in our task's mems_allowed,
2309 * yes. If it's not a __GFP_HARDWALL request and this node is in the nearest
2310 * hardwalled cpuset ancestor to this task's cpuset, yes. If the task has been
2311 * OOM killed and has access to memory reserves as specified by the TIF_MEMDIE
2312 * flag, yes.
9bf2229f
PJ
2313 * Otherwise, no.
2314 *
a1bc5a4e
DR
2315 * If __GFP_HARDWALL is set, cpuset_node_allowed_softwall() reduces to
2316 * cpuset_node_allowed_hardwall(). Otherwise, cpuset_node_allowed_softwall()
2317 * might sleep, and might allow a node from an enclosing cpuset.
02a0e53d 2318 *
a1bc5a4e
DR
2319 * cpuset_node_allowed_hardwall() only handles the simpler case of hardwall
2320 * cpusets, and never sleeps.
02a0e53d
PJ
2321 *
2322 * The __GFP_THISNODE placement logic is really handled elsewhere,
2323 * by forcibly using a zonelist starting at a specified node, and by
2324 * (in get_page_from_freelist()) refusing to consider the zones for
2325 * any node on the zonelist except the first. By the time any such
2326 * calls get to this routine, we should just shut up and say 'yes'.
2327 *
9bf2229f 2328 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
c596d9f3
DR
2329 * and do not allow allocations outside the current tasks cpuset
2330 * unless the task has been OOM killed as is marked TIF_MEMDIE.
9bf2229f 2331 * GFP_KERNEL allocations are not so marked, so can escape to the
78608366 2332 * nearest enclosing hardwalled ancestor cpuset.
9bf2229f 2333 *
02a0e53d
PJ
2334 * Scanning up parent cpusets requires callback_mutex. The
2335 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
2336 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
2337 * current tasks mems_allowed came up empty on the first pass over
2338 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
2339 * cpuset are short of memory, might require taking the callback_mutex
2340 * mutex.
9bf2229f 2341 *
36be57ff 2342 * The first call here from mm/page_alloc:get_page_from_freelist()
02a0e53d
PJ
2343 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
2344 * so no allocation on a node outside the cpuset is allowed (unless
2345 * in interrupt, of course).
36be57ff
PJ
2346 *
2347 * The second pass through get_page_from_freelist() doesn't even call
2348 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
2349 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
2350 * in alloc_flags. That logic and the checks below have the combined
2351 * affect that:
9bf2229f
PJ
2352 * in_interrupt - any node ok (current task context irrelevant)
2353 * GFP_ATOMIC - any node ok
c596d9f3 2354 * TIF_MEMDIE - any node ok
78608366 2355 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
9bf2229f 2356 * GFP_USER - only nodes in current tasks mems allowed ok.
36be57ff
PJ
2357 *
2358 * Rule:
a1bc5a4e 2359 * Don't call cpuset_node_allowed_softwall if you can't sleep, unless you
36be57ff
PJ
2360 * pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
2361 * the code that might scan up ancestor cpusets and sleep.
02a0e53d 2362 */
a1bc5a4e 2363int __cpuset_node_allowed_softwall(int node, gfp_t gfp_mask)
1da177e4 2364{
9bf2229f 2365 const struct cpuset *cs; /* current cpuset ancestors */
29afd49b 2366 int allowed; /* is allocation in zone z allowed? */
9bf2229f 2367
9b819d20 2368 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
9bf2229f 2369 return 1;
92d1dbd2 2370 might_sleep_if(!(gfp_mask & __GFP_HARDWALL));
9bf2229f
PJ
2371 if (node_isset(node, current->mems_allowed))
2372 return 1;
c596d9f3
DR
2373 /*
2374 * Allow tasks that have access to memory reserves because they have
2375 * been OOM killed to get memory anywhere.
2376 */
2377 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2378 return 1;
9bf2229f
PJ
2379 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
2380 return 0;
2381
5563e770
BP
2382 if (current->flags & PF_EXITING) /* Let dying task have memory */
2383 return 1;
2384
9bf2229f 2385 /* Not hardwall and node outside mems_allowed: scan up cpusets */
3d3f26a7 2386 mutex_lock(&callback_mutex);
053199ed 2387
053199ed 2388 task_lock(current);
78608366 2389 cs = nearest_hardwall_ancestor(task_cs(current));
053199ed
PJ
2390 task_unlock(current);
2391
9bf2229f 2392 allowed = node_isset(node, cs->mems_allowed);
3d3f26a7 2393 mutex_unlock(&callback_mutex);
9bf2229f 2394 return allowed;
1da177e4
LT
2395}
2396
02a0e53d 2397/*
a1bc5a4e
DR
2398 * cpuset_node_allowed_hardwall - Can we allocate on a memory node?
2399 * @node: is this an allowed node?
02a0e53d
PJ
2400 * @gfp_mask: memory allocation flags
2401 *
a1bc5a4e
DR
2402 * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
2403 * set, yes, we can always allocate. If node is in our task's mems_allowed,
2404 * yes. If the task has been OOM killed and has access to memory reserves as
2405 * specified by the TIF_MEMDIE flag, yes.
2406 * Otherwise, no.
02a0e53d
PJ
2407 *
2408 * The __GFP_THISNODE placement logic is really handled elsewhere,
2409 * by forcibly using a zonelist starting at a specified node, and by
2410 * (in get_page_from_freelist()) refusing to consider the zones for
2411 * any node on the zonelist except the first. By the time any such
2412 * calls get to this routine, we should just shut up and say 'yes'.
2413 *
a1bc5a4e
DR
2414 * Unlike the cpuset_node_allowed_softwall() variant, above,
2415 * this variant requires that the node be in the current task's
02a0e53d
PJ
2416 * mems_allowed or that we're in interrupt. It does not scan up the
2417 * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
2418 * It never sleeps.
2419 */
a1bc5a4e 2420int __cpuset_node_allowed_hardwall(int node, gfp_t gfp_mask)
02a0e53d 2421{
02a0e53d
PJ
2422 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2423 return 1;
02a0e53d
PJ
2424 if (node_isset(node, current->mems_allowed))
2425 return 1;
dedf8b79
DW
2426 /*
2427 * Allow tasks that have access to memory reserves because they have
2428 * been OOM killed to get memory anywhere.
2429 */
2430 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2431 return 1;
02a0e53d
PJ
2432 return 0;
2433}
2434
825a46af 2435/**
6adef3eb
JS
2436 * cpuset_mem_spread_node() - On which node to begin search for a file page
2437 * cpuset_slab_spread_node() - On which node to begin search for a slab page
825a46af
PJ
2438 *
2439 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
2440 * tasks in a cpuset with is_spread_page or is_spread_slab set),
2441 * and if the memory allocation used cpuset_mem_spread_node()
2442 * to determine on which node to start looking, as it will for
2443 * certain page cache or slab cache pages such as used for file
2444 * system buffers and inode caches, then instead of starting on the
2445 * local node to look for a free page, rather spread the starting
2446 * node around the tasks mems_allowed nodes.
2447 *
2448 * We don't have to worry about the returned node being offline
2449 * because "it can't happen", and even if it did, it would be ok.
2450 *
2451 * The routines calling guarantee_online_mems() are careful to
2452 * only set nodes in task->mems_allowed that are online. So it
2453 * should not be possible for the following code to return an
2454 * offline node. But if it did, that would be ok, as this routine
2455 * is not returning the node where the allocation must be, only
2456 * the node where the search should start. The zonelist passed to
2457 * __alloc_pages() will include all nodes. If the slab allocator
2458 * is passed an offline node, it will fall back to the local node.
2459 * See kmem_cache_alloc_node().
2460 */
2461
6adef3eb 2462static int cpuset_spread_node(int *rotor)
825a46af
PJ
2463{
2464 int node;
2465
6adef3eb 2466 node = next_node(*rotor, current->mems_allowed);
825a46af
PJ
2467 if (node == MAX_NUMNODES)
2468 node = first_node(current->mems_allowed);
6adef3eb 2469 *rotor = node;
825a46af
PJ
2470 return node;
2471}
6adef3eb
JS
2472
2473int cpuset_mem_spread_node(void)
2474{
778d3b0f
MH
2475 if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
2476 current->cpuset_mem_spread_rotor =
2477 node_random(&current->mems_allowed);
2478
6adef3eb
JS
2479 return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
2480}
2481
2482int cpuset_slab_spread_node(void)
2483{
778d3b0f
MH
2484 if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
2485 current->cpuset_slab_spread_rotor =
2486 node_random(&current->mems_allowed);
2487
6adef3eb
JS
2488 return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
2489}
2490
825a46af
PJ
2491EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
2492
ef08e3b4 2493/**
bbe373f2
DR
2494 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
2495 * @tsk1: pointer to task_struct of some task.
2496 * @tsk2: pointer to task_struct of some other task.
2497 *
2498 * Description: Return true if @tsk1's mems_allowed intersects the
2499 * mems_allowed of @tsk2. Used by the OOM killer to determine if
2500 * one of the task's memory usage might impact the memory available
2501 * to the other.
ef08e3b4
PJ
2502 **/
2503
bbe373f2
DR
2504int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
2505 const struct task_struct *tsk2)
ef08e3b4 2506{
bbe373f2 2507 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
ef08e3b4
PJ
2508}
2509
75aa1994
DR
2510/**
2511 * cpuset_print_task_mems_allowed - prints task's cpuset and mems_allowed
2512 * @task: pointer to task_struct of some task.
2513 *
2514 * Description: Prints @task's name, cpuset name, and cached copy of its
2515 * mems_allowed to the kernel log. Must hold task_lock(task) to allow
2516 * dereferencing task_cs(task).
2517 */
2518void cpuset_print_task_mems_allowed(struct task_struct *tsk)
2519{
2520 struct dentry *dentry;
2521
2522 dentry = task_cs(tsk)->css.cgroup->dentry;
2523 spin_lock(&cpuset_buffer_lock);
2524 snprintf(cpuset_name, CPUSET_NAME_LEN,
2525 dentry ? (const char *)dentry->d_name.name : "/");
2526 nodelist_scnprintf(cpuset_nodelist, CPUSET_NODELIST_LEN,
2527 tsk->mems_allowed);
2528 printk(KERN_INFO "%s cpuset=%s mems_allowed=%s\n",
2529 tsk->comm, cpuset_name, cpuset_nodelist);
2530 spin_unlock(&cpuset_buffer_lock);
2531}
2532
3e0d98b9
PJ
2533/*
2534 * Collection of memory_pressure is suppressed unless
2535 * this flag is enabled by writing "1" to the special
2536 * cpuset file 'memory_pressure_enabled' in the root cpuset.
2537 */
2538
c5b2aff8 2539int cpuset_memory_pressure_enabled __read_mostly;
3e0d98b9
PJ
2540
2541/**
2542 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
2543 *
2544 * Keep a running average of the rate of synchronous (direct)
2545 * page reclaim efforts initiated by tasks in each cpuset.
2546 *
2547 * This represents the rate at which some task in the cpuset
2548 * ran low on memory on all nodes it was allowed to use, and
2549 * had to enter the kernels page reclaim code in an effort to
2550 * create more free memory by tossing clean pages or swapping
2551 * or writing dirty pages.
2552 *
2553 * Display to user space in the per-cpuset read-only file
2554 * "memory_pressure". Value displayed is an integer
2555 * representing the recent rate of entry into the synchronous
2556 * (direct) page reclaim by any task attached to the cpuset.
2557 **/
2558
2559void __cpuset_memory_pressure_bump(void)
2560{
3e0d98b9 2561 task_lock(current);
8793d854 2562 fmeter_markevent(&task_cs(current)->fmeter);
3e0d98b9
PJ
2563 task_unlock(current);
2564}
2565
8793d854 2566#ifdef CONFIG_PROC_PID_CPUSET
1da177e4
LT
2567/*
2568 * proc_cpuset_show()
2569 * - Print tasks cpuset path into seq_file.
2570 * - Used for /proc/<pid>/cpuset.
053199ed
PJ
2571 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
2572 * doesn't really matter if tsk->cpuset changes after we read it,
c8d9c90c 2573 * and we take cgroup_mutex, keeping cpuset_attach() from changing it
2df167a3 2574 * anyway.
1da177e4 2575 */
029190c5 2576static int proc_cpuset_show(struct seq_file *m, void *unused_v)
1da177e4 2577{
13b41b09 2578 struct pid *pid;
1da177e4
LT
2579 struct task_struct *tsk;
2580 char *buf;
8793d854 2581 struct cgroup_subsys_state *css;
99f89551 2582 int retval;
1da177e4 2583
99f89551 2584 retval = -ENOMEM;
1da177e4
LT
2585 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
2586 if (!buf)
99f89551
EB
2587 goto out;
2588
2589 retval = -ESRCH;
13b41b09
EB
2590 pid = m->private;
2591 tsk = get_pid_task(pid, PIDTYPE_PID);
99f89551
EB
2592 if (!tsk)
2593 goto out_free;
1da177e4 2594
99f89551 2595 retval = -EINVAL;
8793d854
PM
2596 cgroup_lock();
2597 css = task_subsys_state(tsk, cpuset_subsys_id);
2598 retval = cgroup_path(css->cgroup, buf, PAGE_SIZE);
1da177e4 2599 if (retval < 0)
99f89551 2600 goto out_unlock;
1da177e4
LT
2601 seq_puts(m, buf);
2602 seq_putc(m, '\n');
99f89551 2603out_unlock:
8793d854 2604 cgroup_unlock();
99f89551
EB
2605 put_task_struct(tsk);
2606out_free:
1da177e4 2607 kfree(buf);
99f89551 2608out:
1da177e4
LT
2609 return retval;
2610}
2611
2612static int cpuset_open(struct inode *inode, struct file *file)
2613{
13b41b09
EB
2614 struct pid *pid = PROC_I(inode)->pid;
2615 return single_open(file, proc_cpuset_show, pid);
1da177e4
LT
2616}
2617
9a32144e 2618const struct file_operations proc_cpuset_operations = {
1da177e4
LT
2619 .open = cpuset_open,
2620 .read = seq_read,
2621 .llseek = seq_lseek,
2622 .release = single_release,
2623};
8793d854 2624#endif /* CONFIG_PROC_PID_CPUSET */
1da177e4 2625
d01d4827 2626/* Display task mems_allowed in /proc/<pid>/status file. */
df5f8314
EB
2627void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
2628{
df5f8314 2629 seq_printf(m, "Mems_allowed:\t");
30e8e136 2630 seq_nodemask(m, &task->mems_allowed);
df5f8314 2631 seq_printf(m, "\n");
39106dcf 2632 seq_printf(m, "Mems_allowed_list:\t");
30e8e136 2633 seq_nodemask_list(m, &task->mems_allowed);
39106dcf 2634 seq_printf(m, "\n");
1da177e4 2635}