]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - kernel/cpuset.c
sched/deadline: Fix bandwidth check/update when migrating tasks between exclusive...
[mirror_ubuntu-artful-kernel.git] / kernel / cpuset.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/cpuset.c
3 *
4 * Processor and Memory placement constraints for sets of tasks.
5 *
6 * Copyright (C) 2003 BULL SA.
029190c5 7 * Copyright (C) 2004-2007 Silicon Graphics, Inc.
8793d854 8 * Copyright (C) 2006 Google, Inc
1da177e4
LT
9 *
10 * Portions derived from Patrick Mochel's sysfs code.
11 * sysfs is Copyright (c) 2001-3 Patrick Mochel
1da177e4 12 *
825a46af 13 * 2003-10-10 Written by Simon Derr.
1da177e4 14 * 2003-10-22 Updates by Stephen Hemminger.
825a46af 15 * 2004 May-July Rework by Paul Jackson.
8793d854 16 * 2006 Rework by Paul Menage to use generic cgroups
cf417141
MK
17 * 2008 Rework of the scheduler domains and CPU hotplug handling
18 * by Max Krasnyansky
1da177e4
LT
19 *
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
23 */
24
1da177e4
LT
25#include <linux/cpu.h>
26#include <linux/cpumask.h>
27#include <linux/cpuset.h>
28#include <linux/err.h>
29#include <linux/errno.h>
30#include <linux/file.h>
31#include <linux/fs.h>
32#include <linux/init.h>
33#include <linux/interrupt.h>
34#include <linux/kernel.h>
35#include <linux/kmod.h>
36#include <linux/list.h>
68860ec1 37#include <linux/mempolicy.h>
1da177e4 38#include <linux/mm.h>
f481891f 39#include <linux/memory.h>
9984de1a 40#include <linux/export.h>
1da177e4
LT
41#include <linux/mount.h>
42#include <linux/namei.h>
43#include <linux/pagemap.h>
44#include <linux/proc_fs.h>
6b9c2603 45#include <linux/rcupdate.h>
1da177e4
LT
46#include <linux/sched.h>
47#include <linux/seq_file.h>
22fb52dd 48#include <linux/security.h>
1da177e4 49#include <linux/slab.h>
1da177e4
LT
50#include <linux/spinlock.h>
51#include <linux/stat.h>
52#include <linux/string.h>
53#include <linux/time.h>
54#include <linux/backing-dev.h>
55#include <linux/sort.h>
56
57#include <asm/uaccess.h>
60063497 58#include <linux/atomic.h>
3d3f26a7 59#include <linux/mutex.h>
956db3ca
CW
60#include <linux/workqueue.h>
61#include <linux/cgroup.h>
e44193d3 62#include <linux/wait.h>
1da177e4 63
664eedde 64struct static_key cpusets_enabled_key __read_mostly = STATIC_KEY_INIT_FALSE;
202f72d5 65
3e0d98b9
PJ
66/* See "Frequency meter" comments, below. */
67
68struct fmeter {
69 int cnt; /* unprocessed events count */
70 int val; /* most recent output value */
71 time_t time; /* clock (secs) when val computed */
72 spinlock_t lock; /* guards read or write of above */
73};
74
1da177e4 75struct cpuset {
8793d854
PM
76 struct cgroup_subsys_state css;
77
1da177e4 78 unsigned long flags; /* "unsigned long" so bitops work */
e2b9a3d7 79
7e88291b
LZ
80 /*
81 * On default hierarchy:
82 *
83 * The user-configured masks can only be changed by writing to
84 * cpuset.cpus and cpuset.mems, and won't be limited by the
85 * parent masks.
86 *
87 * The effective masks is the real masks that apply to the tasks
88 * in the cpuset. They may be changed if the configured masks are
89 * changed or hotplug happens.
90 *
91 * effective_mask == configured_mask & parent's effective_mask,
92 * and if it ends up empty, it will inherit the parent's mask.
93 *
94 *
95 * On legacy hierachy:
96 *
97 * The user-configured masks are always the same with effective masks.
98 */
99
e2b9a3d7
LZ
100 /* user-configured CPUs and Memory Nodes allow to tasks */
101 cpumask_var_t cpus_allowed;
102 nodemask_t mems_allowed;
103
104 /* effective CPUs and Memory Nodes allow to tasks */
105 cpumask_var_t effective_cpus;
106 nodemask_t effective_mems;
1da177e4 107
33ad801d
LZ
108 /*
109 * This is old Memory Nodes tasks took on.
110 *
111 * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
112 * - A new cpuset's old_mems_allowed is initialized when some
113 * task is moved into it.
114 * - old_mems_allowed is used in cpuset_migrate_mm() when we change
115 * cpuset.mems_allowed and have tasks' nodemask updated, and
116 * then old_mems_allowed is updated to mems_allowed.
117 */
118 nodemask_t old_mems_allowed;
119
3e0d98b9 120 struct fmeter fmeter; /* memory_pressure filter */
029190c5 121
452477fa
TH
122 /*
123 * Tasks are being attached to this cpuset. Used to prevent
124 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
125 */
126 int attach_in_progress;
127
029190c5
PJ
128 /* partition number for rebuild_sched_domains() */
129 int pn;
956db3ca 130
1d3504fc
HS
131 /* for custom sched domain */
132 int relax_domain_level;
1da177e4
LT
133};
134
a7c6d554 135static inline struct cpuset *css_cs(struct cgroup_subsys_state *css)
8793d854 136{
a7c6d554 137 return css ? container_of(css, struct cpuset, css) : NULL;
8793d854
PM
138}
139
140/* Retrieve the cpuset for a task */
141static inline struct cpuset *task_cs(struct task_struct *task)
142{
073219e9 143 return css_cs(task_css(task, cpuset_cgrp_id));
8793d854 144}
8793d854 145
c9710d80 146static inline struct cpuset *parent_cs(struct cpuset *cs)
c431069f 147{
5c9d535b 148 return css_cs(cs->css.parent);
c431069f
TH
149}
150
b246272e
DR
151#ifdef CONFIG_NUMA
152static inline bool task_has_mempolicy(struct task_struct *task)
153{
154 return task->mempolicy;
155}
156#else
157static inline bool task_has_mempolicy(struct task_struct *task)
158{
159 return false;
160}
161#endif
162
163
1da177e4
LT
164/* bits in struct cpuset flags field */
165typedef enum {
efeb77b2 166 CS_ONLINE,
1da177e4
LT
167 CS_CPU_EXCLUSIVE,
168 CS_MEM_EXCLUSIVE,
78608366 169 CS_MEM_HARDWALL,
45b07ef3 170 CS_MEMORY_MIGRATE,
029190c5 171 CS_SCHED_LOAD_BALANCE,
825a46af
PJ
172 CS_SPREAD_PAGE,
173 CS_SPREAD_SLAB,
1da177e4
LT
174} cpuset_flagbits_t;
175
176/* convenient tests for these bits */
efeb77b2
TH
177static inline bool is_cpuset_online(const struct cpuset *cs)
178{
179 return test_bit(CS_ONLINE, &cs->flags);
180}
181
1da177e4
LT
182static inline int is_cpu_exclusive(const struct cpuset *cs)
183{
7b5b9ef0 184 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
1da177e4
LT
185}
186
187static inline int is_mem_exclusive(const struct cpuset *cs)
188{
7b5b9ef0 189 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
1da177e4
LT
190}
191
78608366
PM
192static inline int is_mem_hardwall(const struct cpuset *cs)
193{
194 return test_bit(CS_MEM_HARDWALL, &cs->flags);
195}
196
029190c5
PJ
197static inline int is_sched_load_balance(const struct cpuset *cs)
198{
199 return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
200}
201
45b07ef3
PJ
202static inline int is_memory_migrate(const struct cpuset *cs)
203{
7b5b9ef0 204 return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
45b07ef3
PJ
205}
206
825a46af
PJ
207static inline int is_spread_page(const struct cpuset *cs)
208{
209 return test_bit(CS_SPREAD_PAGE, &cs->flags);
210}
211
212static inline int is_spread_slab(const struct cpuset *cs)
213{
214 return test_bit(CS_SPREAD_SLAB, &cs->flags);
215}
216
1da177e4 217static struct cpuset top_cpuset = {
efeb77b2
TH
218 .flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
219 (1 << CS_MEM_EXCLUSIVE)),
1da177e4
LT
220};
221
ae8086ce
TH
222/**
223 * cpuset_for_each_child - traverse online children of a cpuset
224 * @child_cs: loop cursor pointing to the current child
492eb21b 225 * @pos_css: used for iteration
ae8086ce
TH
226 * @parent_cs: target cpuset to walk children of
227 *
228 * Walk @child_cs through the online children of @parent_cs. Must be used
229 * with RCU read locked.
230 */
492eb21b
TH
231#define cpuset_for_each_child(child_cs, pos_css, parent_cs) \
232 css_for_each_child((pos_css), &(parent_cs)->css) \
233 if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
ae8086ce 234
fc560a26
TH
235/**
236 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
237 * @des_cs: loop cursor pointing to the current descendant
492eb21b 238 * @pos_css: used for iteration
fc560a26
TH
239 * @root_cs: target cpuset to walk ancestor of
240 *
241 * Walk @des_cs through the online descendants of @root_cs. Must be used
492eb21b 242 * with RCU read locked. The caller may modify @pos_css by calling
bd8815a6
TH
243 * css_rightmost_descendant() to skip subtree. @root_cs is included in the
244 * iteration and the first node to be visited.
fc560a26 245 */
492eb21b
TH
246#define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs) \
247 css_for_each_descendant_pre((pos_css), &(root_cs)->css) \
248 if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
fc560a26 249
1da177e4 250/*
5d21cc2d
TH
251 * There are two global mutexes guarding cpuset structures - cpuset_mutex
252 * and callback_mutex. The latter may nest inside the former. We also
253 * require taking task_lock() when dereferencing a task's cpuset pointer.
254 * See "The task_lock() exception", at the end of this comment.
255 *
256 * A task must hold both mutexes to modify cpusets. If a task holds
257 * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
258 * is the only task able to also acquire callback_mutex and be able to
259 * modify cpusets. It can perform various checks on the cpuset structure
260 * first, knowing nothing will change. It can also allocate memory while
261 * just holding cpuset_mutex. While it is performing these checks, various
262 * callback routines can briefly acquire callback_mutex to query cpusets.
263 * Once it is ready to make the changes, it takes callback_mutex, blocking
264 * everyone else.
053199ed
PJ
265 *
266 * Calls to the kernel memory allocator can not be made while holding
3d3f26a7 267 * callback_mutex, as that would risk double tripping on callback_mutex
053199ed
PJ
268 * from one of the callbacks into the cpuset code from within
269 * __alloc_pages().
270 *
3d3f26a7 271 * If a task is only holding callback_mutex, then it has read-only
053199ed
PJ
272 * access to cpusets.
273 *
58568d2a
MX
274 * Now, the task_struct fields mems_allowed and mempolicy may be changed
275 * by other task, we use alloc_lock in the task_struct fields to protect
276 * them.
053199ed 277 *
3d3f26a7 278 * The cpuset_common_file_read() handlers only hold callback_mutex across
053199ed
PJ
279 * small pieces of code, such as when reading out possibly multi-word
280 * cpumasks and nodemasks.
281 *
2df167a3
PM
282 * Accessing a task's cpuset should be done in accordance with the
283 * guidelines for accessing subsystem state in kernel/cgroup.c
1da177e4
LT
284 */
285
5d21cc2d 286static DEFINE_MUTEX(cpuset_mutex);
3d3f26a7 287static DEFINE_MUTEX(callback_mutex);
4247bdc6 288
3a5a6d0c
TH
289/*
290 * CPU / memory hotplug is handled asynchronously.
291 */
292static void cpuset_hotplug_workfn(struct work_struct *work);
3a5a6d0c
TH
293static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);
294
e44193d3
LZ
295static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);
296
cf417141
MK
297/*
298 * This is ugly, but preserves the userspace API for existing cpuset
8793d854 299 * users. If someone tries to mount the "cpuset" filesystem, we
cf417141
MK
300 * silently switch it to mount "cgroup" instead
301 */
f7e83571
AV
302static struct dentry *cpuset_mount(struct file_system_type *fs_type,
303 int flags, const char *unused_dev_name, void *data)
1da177e4 304{
8793d854 305 struct file_system_type *cgroup_fs = get_fs_type("cgroup");
f7e83571 306 struct dentry *ret = ERR_PTR(-ENODEV);
8793d854
PM
307 if (cgroup_fs) {
308 char mountopts[] =
309 "cpuset,noprefix,"
310 "release_agent=/sbin/cpuset_release_agent";
f7e83571
AV
311 ret = cgroup_fs->mount(cgroup_fs, flags,
312 unused_dev_name, mountopts);
8793d854
PM
313 put_filesystem(cgroup_fs);
314 }
315 return ret;
1da177e4
LT
316}
317
318static struct file_system_type cpuset_fs_type = {
319 .name = "cpuset",
f7e83571 320 .mount = cpuset_mount,
1da177e4
LT
321};
322
1da177e4 323/*
300ed6cb 324 * Return in pmask the portion of a cpusets's cpus_allowed that
1da177e4 325 * are online. If none are online, walk up the cpuset hierarchy
40df2deb
LZ
326 * until we find one that does have some online cpus. The top
327 * cpuset always has some cpus online.
1da177e4
LT
328 *
329 * One way or another, we guarantee to return some non-empty subset
5f054e31 330 * of cpu_online_mask.
1da177e4 331 *
3d3f26a7 332 * Call with callback_mutex held.
1da177e4 333 */
c9710d80 334static void guarantee_online_cpus(struct cpuset *cs, struct cpumask *pmask)
1da177e4 335{
ae1c8023 336 while (!cpumask_intersects(cs->effective_cpus, cpu_online_mask))
c431069f 337 cs = parent_cs(cs);
ae1c8023 338 cpumask_and(pmask, cs->effective_cpus, cpu_online_mask);
1da177e4
LT
339}
340
341/*
342 * Return in *pmask the portion of a cpusets's mems_allowed that
0e1e7c7a
CL
343 * are online, with memory. If none are online with memory, walk
344 * up the cpuset hierarchy until we find one that does have some
40df2deb 345 * online mems. The top cpuset always has some mems online.
1da177e4
LT
346 *
347 * One way or another, we guarantee to return some non-empty subset
38d7bee9 348 * of node_states[N_MEMORY].
1da177e4 349 *
3d3f26a7 350 * Call with callback_mutex held.
1da177e4 351 */
c9710d80 352static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
1da177e4 353{
ae1c8023 354 while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY]))
c431069f 355 cs = parent_cs(cs);
ae1c8023 356 nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]);
1da177e4
LT
357}
358
f3b39d47
MX
359/*
360 * update task's spread flag if cpuset's page/slab spread flag is set
361 *
5d21cc2d 362 * Called with callback_mutex/cpuset_mutex held
f3b39d47
MX
363 */
364static void cpuset_update_task_spread_flag(struct cpuset *cs,
365 struct task_struct *tsk)
366{
367 if (is_spread_page(cs))
2ad654bc 368 task_set_spread_page(tsk);
f3b39d47 369 else
2ad654bc
ZL
370 task_clear_spread_page(tsk);
371
f3b39d47 372 if (is_spread_slab(cs))
2ad654bc 373 task_set_spread_slab(tsk);
f3b39d47 374 else
2ad654bc 375 task_clear_spread_slab(tsk);
f3b39d47
MX
376}
377
1da177e4
LT
378/*
379 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
380 *
381 * One cpuset is a subset of another if all its allowed CPUs and
382 * Memory Nodes are a subset of the other, and its exclusive flags
5d21cc2d 383 * are only set if the other's are set. Call holding cpuset_mutex.
1da177e4
LT
384 */
385
386static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
387{
300ed6cb 388 return cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
1da177e4
LT
389 nodes_subset(p->mems_allowed, q->mems_allowed) &&
390 is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
391 is_mem_exclusive(p) <= is_mem_exclusive(q);
392}
393
645fcc9d
LZ
394/**
395 * alloc_trial_cpuset - allocate a trial cpuset
396 * @cs: the cpuset that the trial cpuset duplicates
397 */
c9710d80 398static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
645fcc9d 399{
300ed6cb
LZ
400 struct cpuset *trial;
401
402 trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
403 if (!trial)
404 return NULL;
405
e2b9a3d7
LZ
406 if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL))
407 goto free_cs;
408 if (!alloc_cpumask_var(&trial->effective_cpus, GFP_KERNEL))
409 goto free_cpus;
300ed6cb 410
e2b9a3d7
LZ
411 cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
412 cpumask_copy(trial->effective_cpus, cs->effective_cpus);
300ed6cb 413 return trial;
e2b9a3d7
LZ
414
415free_cpus:
416 free_cpumask_var(trial->cpus_allowed);
417free_cs:
418 kfree(trial);
419 return NULL;
645fcc9d
LZ
420}
421
422/**
423 * free_trial_cpuset - free the trial cpuset
424 * @trial: the trial cpuset to be freed
425 */
426static void free_trial_cpuset(struct cpuset *trial)
427{
e2b9a3d7 428 free_cpumask_var(trial->effective_cpus);
300ed6cb 429 free_cpumask_var(trial->cpus_allowed);
645fcc9d
LZ
430 kfree(trial);
431}
432
1da177e4
LT
433/*
434 * validate_change() - Used to validate that any proposed cpuset change
435 * follows the structural rules for cpusets.
436 *
437 * If we replaced the flag and mask values of the current cpuset
438 * (cur) with those values in the trial cpuset (trial), would
439 * our various subset and exclusive rules still be valid? Presumes
5d21cc2d 440 * cpuset_mutex held.
1da177e4
LT
441 *
442 * 'cur' is the address of an actual, in-use cpuset. Operations
443 * such as list traversal that depend on the actual address of the
444 * cpuset in the list must use cur below, not trial.
445 *
446 * 'trial' is the address of bulk structure copy of cur, with
447 * perhaps one or more of the fields cpus_allowed, mems_allowed,
448 * or flags changed to new, trial values.
449 *
450 * Return 0 if valid, -errno if not.
451 */
452
c9710d80 453static int validate_change(struct cpuset *cur, struct cpuset *trial)
1da177e4 454{
492eb21b 455 struct cgroup_subsys_state *css;
1da177e4 456 struct cpuset *c, *par;
ae8086ce
TH
457 int ret;
458
459 rcu_read_lock();
1da177e4
LT
460
461 /* Each of our child cpusets must be a subset of us */
ae8086ce 462 ret = -EBUSY;
492eb21b 463 cpuset_for_each_child(c, css, cur)
ae8086ce
TH
464 if (!is_cpuset_subset(c, trial))
465 goto out;
1da177e4
LT
466
467 /* Remaining checks don't apply to root cpuset */
ae8086ce 468 ret = 0;
69604067 469 if (cur == &top_cpuset)
ae8086ce 470 goto out;
1da177e4 471
c431069f 472 par = parent_cs(cur);
69604067 473
7e88291b 474 /* On legacy hiearchy, we must be a subset of our parent cpuset. */
ae8086ce 475 ret = -EACCES;
7e88291b 476 if (!cgroup_on_dfl(cur->css.cgroup) && !is_cpuset_subset(trial, par))
ae8086ce 477 goto out;
1da177e4 478
2df167a3
PM
479 /*
480 * If either I or some sibling (!= me) is exclusive, we can't
481 * overlap
482 */
ae8086ce 483 ret = -EINVAL;
492eb21b 484 cpuset_for_each_child(c, css, par) {
1da177e4
LT
485 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
486 c != cur &&
300ed6cb 487 cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
ae8086ce 488 goto out;
1da177e4
LT
489 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
490 c != cur &&
491 nodes_intersects(trial->mems_allowed, c->mems_allowed))
ae8086ce 492 goto out;
1da177e4
LT
493 }
494
452477fa
TH
495 /*
496 * Cpusets with tasks - existing or newly being attached - can't
1c09b195 497 * be changed to have empty cpus_allowed or mems_allowed.
452477fa 498 */
ae8086ce 499 ret = -ENOSPC;
07bc356e 500 if ((cgroup_has_tasks(cur->css.cgroup) || cur->attach_in_progress)) {
1c09b195
LZ
501 if (!cpumask_empty(cur->cpus_allowed) &&
502 cpumask_empty(trial->cpus_allowed))
503 goto out;
504 if (!nodes_empty(cur->mems_allowed) &&
505 nodes_empty(trial->mems_allowed))
506 goto out;
507 }
020958b6 508
ae8086ce
TH
509 ret = 0;
510out:
511 rcu_read_unlock();
512 return ret;
1da177e4
LT
513}
514
db7f47cf 515#ifdef CONFIG_SMP
029190c5 516/*
cf417141 517 * Helper routine for generate_sched_domains().
8b5f1c52 518 * Do cpusets a, b have overlapping effective cpus_allowed masks?
029190c5 519 */
029190c5
PJ
520static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
521{
8b5f1c52 522 return cpumask_intersects(a->effective_cpus, b->effective_cpus);
029190c5
PJ
523}
524
1d3504fc
HS
525static void
526update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
527{
1d3504fc
HS
528 if (dattr->relax_domain_level < c->relax_domain_level)
529 dattr->relax_domain_level = c->relax_domain_level;
530 return;
531}
532
fc560a26
TH
533static void update_domain_attr_tree(struct sched_domain_attr *dattr,
534 struct cpuset *root_cs)
f5393693 535{
fc560a26 536 struct cpuset *cp;
492eb21b 537 struct cgroup_subsys_state *pos_css;
f5393693 538
fc560a26 539 rcu_read_lock();
492eb21b 540 cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
bd8815a6
TH
541 if (cp == root_cs)
542 continue;
543
fc560a26
TH
544 /* skip the whole subtree if @cp doesn't have any CPU */
545 if (cpumask_empty(cp->cpus_allowed)) {
492eb21b 546 pos_css = css_rightmost_descendant(pos_css);
f5393693 547 continue;
fc560a26 548 }
f5393693
LJ
549
550 if (is_sched_load_balance(cp))
551 update_domain_attr(dattr, cp);
f5393693 552 }
fc560a26 553 rcu_read_unlock();
f5393693
LJ
554}
555
029190c5 556/*
cf417141
MK
557 * generate_sched_domains()
558 *
559 * This function builds a partial partition of the systems CPUs
560 * A 'partial partition' is a set of non-overlapping subsets whose
561 * union is a subset of that set.
0a0fca9d 562 * The output of this function needs to be passed to kernel/sched/core.c
cf417141
MK
563 * partition_sched_domains() routine, which will rebuild the scheduler's
564 * load balancing domains (sched domains) as specified by that partial
565 * partition.
029190c5 566 *
45ce80fb 567 * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
029190c5
PJ
568 * for a background explanation of this.
569 *
570 * Does not return errors, on the theory that the callers of this
571 * routine would rather not worry about failures to rebuild sched
572 * domains when operating in the severe memory shortage situations
573 * that could cause allocation failures below.
574 *
5d21cc2d 575 * Must be called with cpuset_mutex held.
029190c5
PJ
576 *
577 * The three key local variables below are:
aeed6824 578 * q - a linked-list queue of cpuset pointers, used to implement a
029190c5
PJ
579 * top-down scan of all cpusets. This scan loads a pointer
580 * to each cpuset marked is_sched_load_balance into the
581 * array 'csa'. For our purposes, rebuilding the schedulers
582 * sched domains, we can ignore !is_sched_load_balance cpusets.
583 * csa - (for CpuSet Array) Array of pointers to all the cpusets
584 * that need to be load balanced, for convenient iterative
585 * access by the subsequent code that finds the best partition,
586 * i.e the set of domains (subsets) of CPUs such that the
587 * cpus_allowed of every cpuset marked is_sched_load_balance
588 * is a subset of one of these domains, while there are as
589 * many such domains as possible, each as small as possible.
590 * doms - Conversion of 'csa' to an array of cpumasks, for passing to
0a0fca9d 591 * the kernel/sched/core.c routine partition_sched_domains() in a
029190c5
PJ
592 * convenient format, that can be easily compared to the prior
593 * value to determine what partition elements (sched domains)
594 * were changed (added or removed.)
595 *
596 * Finding the best partition (set of domains):
597 * The triple nested loops below over i, j, k scan over the
598 * load balanced cpusets (using the array of cpuset pointers in
599 * csa[]) looking for pairs of cpusets that have overlapping
600 * cpus_allowed, but which don't have the same 'pn' partition
601 * number and gives them in the same partition number. It keeps
602 * looping on the 'restart' label until it can no longer find
603 * any such pairs.
604 *
605 * The union of the cpus_allowed masks from the set of
606 * all cpusets having the same 'pn' value then form the one
607 * element of the partition (one sched domain) to be passed to
608 * partition_sched_domains().
609 */
acc3f5d7 610static int generate_sched_domains(cpumask_var_t **domains,
cf417141 611 struct sched_domain_attr **attributes)
029190c5 612{
029190c5
PJ
613 struct cpuset *cp; /* scans q */
614 struct cpuset **csa; /* array of all cpuset ptrs */
615 int csn; /* how many cpuset ptrs in csa so far */
616 int i, j, k; /* indices for partition finding loops */
acc3f5d7 617 cpumask_var_t *doms; /* resulting partition; i.e. sched domains */
1d3504fc 618 struct sched_domain_attr *dattr; /* attributes for custom domains */
1583715d 619 int ndoms = 0; /* number of sched domains in result */
6af866af 620 int nslot; /* next empty doms[] struct cpumask slot */
492eb21b 621 struct cgroup_subsys_state *pos_css;
029190c5 622
029190c5 623 doms = NULL;
1d3504fc 624 dattr = NULL;
cf417141 625 csa = NULL;
029190c5
PJ
626
627 /* Special case for the 99% of systems with one, full, sched domain */
628 if (is_sched_load_balance(&top_cpuset)) {
acc3f5d7
RR
629 ndoms = 1;
630 doms = alloc_sched_domains(ndoms);
029190c5 631 if (!doms)
cf417141
MK
632 goto done;
633
1d3504fc
HS
634 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
635 if (dattr) {
636 *dattr = SD_ATTR_INIT;
93a65575 637 update_domain_attr_tree(dattr, &top_cpuset);
1d3504fc 638 }
8b5f1c52 639 cpumask_copy(doms[0], top_cpuset.effective_cpus);
cf417141 640
cf417141 641 goto done;
029190c5
PJ
642 }
643
664eedde 644 csa = kmalloc(nr_cpusets() * sizeof(cp), GFP_KERNEL);
029190c5
PJ
645 if (!csa)
646 goto done;
647 csn = 0;
648
fc560a26 649 rcu_read_lock();
492eb21b 650 cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
bd8815a6
TH
651 if (cp == &top_cpuset)
652 continue;
f5393693 653 /*
fc560a26
TH
654 * Continue traversing beyond @cp iff @cp has some CPUs and
655 * isn't load balancing. The former is obvious. The
656 * latter: All child cpusets contain a subset of the
657 * parent's cpus, so just skip them, and then we call
658 * update_domain_attr_tree() to calc relax_domain_level of
659 * the corresponding sched domain.
f5393693 660 */
fc560a26
TH
661 if (!cpumask_empty(cp->cpus_allowed) &&
662 !is_sched_load_balance(cp))
f5393693 663 continue;
489a5393 664
fc560a26
TH
665 if (is_sched_load_balance(cp))
666 csa[csn++] = cp;
667
668 /* skip @cp's subtree */
492eb21b 669 pos_css = css_rightmost_descendant(pos_css);
fc560a26
TH
670 }
671 rcu_read_unlock();
029190c5
PJ
672
673 for (i = 0; i < csn; i++)
674 csa[i]->pn = i;
675 ndoms = csn;
676
677restart:
678 /* Find the best partition (set of sched domains) */
679 for (i = 0; i < csn; i++) {
680 struct cpuset *a = csa[i];
681 int apn = a->pn;
682
683 for (j = 0; j < csn; j++) {
684 struct cpuset *b = csa[j];
685 int bpn = b->pn;
686
687 if (apn != bpn && cpusets_overlap(a, b)) {
688 for (k = 0; k < csn; k++) {
689 struct cpuset *c = csa[k];
690
691 if (c->pn == bpn)
692 c->pn = apn;
693 }
694 ndoms--; /* one less element */
695 goto restart;
696 }
697 }
698 }
699
cf417141
MK
700 /*
701 * Now we know how many domains to create.
702 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
703 */
acc3f5d7 704 doms = alloc_sched_domains(ndoms);
700018e0 705 if (!doms)
cf417141 706 goto done;
cf417141
MK
707
708 /*
709 * The rest of the code, including the scheduler, can deal with
710 * dattr==NULL case. No need to abort if alloc fails.
711 */
1d3504fc 712 dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
029190c5
PJ
713
714 for (nslot = 0, i = 0; i < csn; i++) {
715 struct cpuset *a = csa[i];
6af866af 716 struct cpumask *dp;
029190c5
PJ
717 int apn = a->pn;
718
cf417141
MK
719 if (apn < 0) {
720 /* Skip completed partitions */
721 continue;
722 }
723
acc3f5d7 724 dp = doms[nslot];
cf417141
MK
725
726 if (nslot == ndoms) {
727 static int warnings = 10;
728 if (warnings) {
12d3089c
FF
729 pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n",
730 nslot, ndoms, csn, i, apn);
cf417141 731 warnings--;
029190c5 732 }
cf417141
MK
733 continue;
734 }
029190c5 735
6af866af 736 cpumask_clear(dp);
cf417141
MK
737 if (dattr)
738 *(dattr + nslot) = SD_ATTR_INIT;
739 for (j = i; j < csn; j++) {
740 struct cpuset *b = csa[j];
741
742 if (apn == b->pn) {
8b5f1c52 743 cpumask_or(dp, dp, b->effective_cpus);
cf417141
MK
744 if (dattr)
745 update_domain_attr_tree(dattr + nslot, b);
746
747 /* Done with this partition */
748 b->pn = -1;
029190c5 749 }
029190c5 750 }
cf417141 751 nslot++;
029190c5
PJ
752 }
753 BUG_ON(nslot != ndoms);
754
cf417141
MK
755done:
756 kfree(csa);
757
700018e0
LZ
758 /*
759 * Fallback to the default domain if kmalloc() failed.
760 * See comments in partition_sched_domains().
761 */
762 if (doms == NULL)
763 ndoms = 1;
764
cf417141
MK
765 *domains = doms;
766 *attributes = dattr;
767 return ndoms;
768}
769
770/*
771 * Rebuild scheduler domains.
772 *
699140ba
TH
773 * If the flag 'sched_load_balance' of any cpuset with non-empty
774 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
775 * which has that flag enabled, or if any cpuset with a non-empty
776 * 'cpus' is removed, then call this routine to rebuild the
777 * scheduler's dynamic sched domains.
cf417141 778 *
5d21cc2d 779 * Call with cpuset_mutex held. Takes get_online_cpus().
cf417141 780 */
699140ba 781static void rebuild_sched_domains_locked(void)
cf417141
MK
782{
783 struct sched_domain_attr *attr;
acc3f5d7 784 cpumask_var_t *doms;
cf417141
MK
785 int ndoms;
786
5d21cc2d 787 lockdep_assert_held(&cpuset_mutex);
86ef5c9a 788 get_online_cpus();
cf417141 789
5b16c2a4
LZ
790 /*
791 * We have raced with CPU hotplug. Don't do anything to avoid
792 * passing doms with offlined cpu to partition_sched_domains().
793 * Anyways, hotplug work item will rebuild sched domains.
794 */
8b5f1c52 795 if (!cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask))
5b16c2a4
LZ
796 goto out;
797
cf417141 798 /* Generate domain masks and attrs */
cf417141 799 ndoms = generate_sched_domains(&doms, &attr);
cf417141
MK
800
801 /* Have scheduler rebuild the domains */
802 partition_sched_domains(ndoms, doms, attr);
5b16c2a4 803out:
86ef5c9a 804 put_online_cpus();
cf417141 805}
db7f47cf 806#else /* !CONFIG_SMP */
699140ba 807static void rebuild_sched_domains_locked(void)
db7f47cf
PM
808{
809}
db7f47cf 810#endif /* CONFIG_SMP */
029190c5 811
cf417141
MK
812void rebuild_sched_domains(void)
813{
5d21cc2d 814 mutex_lock(&cpuset_mutex);
699140ba 815 rebuild_sched_domains_locked();
5d21cc2d 816 mutex_unlock(&cpuset_mutex);
029190c5
PJ
817}
818
0b2f630a
MX
819/**
820 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
821 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
0b2f630a 822 *
d66393e5
TH
823 * Iterate through each task of @cs updating its cpus_allowed to the
824 * effective cpuset's. As this function is called with cpuset_mutex held,
825 * cpuset membership stays stable.
0b2f630a 826 */
d66393e5 827static void update_tasks_cpumask(struct cpuset *cs)
0b2f630a 828{
d66393e5
TH
829 struct css_task_iter it;
830 struct task_struct *task;
831
832 css_task_iter_start(&cs->css, &it);
833 while ((task = css_task_iter_next(&it)))
ae1c8023 834 set_cpus_allowed_ptr(task, cs->effective_cpus);
d66393e5 835 css_task_iter_end(&it);
0b2f630a
MX
836}
837
5c5cc623 838/*
734d4513
LZ
839 * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree
840 * @cs: the cpuset to consider
841 * @new_cpus: temp variable for calculating new effective_cpus
842 *
843 * When congifured cpumask is changed, the effective cpumasks of this cpuset
844 * and all its descendants need to be updated.
5c5cc623 845 *
734d4513 846 * On legacy hierachy, effective_cpus will be the same with cpu_allowed.
5c5cc623
LZ
847 *
848 * Called with cpuset_mutex held
849 */
734d4513 850static void update_cpumasks_hier(struct cpuset *cs, struct cpumask *new_cpus)
5c5cc623
LZ
851{
852 struct cpuset *cp;
492eb21b 853 struct cgroup_subsys_state *pos_css;
8b5f1c52 854 bool need_rebuild_sched_domains = false;
5c5cc623
LZ
855
856 rcu_read_lock();
734d4513
LZ
857 cpuset_for_each_descendant_pre(cp, pos_css, cs) {
858 struct cpuset *parent = parent_cs(cp);
859
860 cpumask_and(new_cpus, cp->cpus_allowed, parent->effective_cpus);
861
554b0d1c
LZ
862 /*
863 * If it becomes empty, inherit the effective mask of the
864 * parent, which is guaranteed to have some CPUs.
865 */
866 if (cpumask_empty(new_cpus))
867 cpumask_copy(new_cpus, parent->effective_cpus);
868
734d4513
LZ
869 /* Skip the whole subtree if the cpumask remains the same. */
870 if (cpumask_equal(new_cpus, cp->effective_cpus)) {
871 pos_css = css_rightmost_descendant(pos_css);
872 continue;
5c5cc623 873 }
734d4513 874
ec903c0c 875 if (!css_tryget_online(&cp->css))
5c5cc623
LZ
876 continue;
877 rcu_read_unlock();
878
734d4513
LZ
879 mutex_lock(&callback_mutex);
880 cpumask_copy(cp->effective_cpus, new_cpus);
881 mutex_unlock(&callback_mutex);
882
883 WARN_ON(!cgroup_on_dfl(cp->css.cgroup) &&
884 !cpumask_equal(cp->cpus_allowed, cp->effective_cpus));
885
d66393e5 886 update_tasks_cpumask(cp);
5c5cc623 887
8b5f1c52
LZ
888 /*
889 * If the effective cpumask of any non-empty cpuset is changed,
890 * we need to rebuild sched domains.
891 */
892 if (!cpumask_empty(cp->cpus_allowed) &&
893 is_sched_load_balance(cp))
894 need_rebuild_sched_domains = true;
895
5c5cc623
LZ
896 rcu_read_lock();
897 css_put(&cp->css);
898 }
899 rcu_read_unlock();
8b5f1c52
LZ
900
901 if (need_rebuild_sched_domains)
902 rebuild_sched_domains_locked();
5c5cc623
LZ
903}
904
58f4790b
CW
905/**
906 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
907 * @cs: the cpuset to consider
fc34ac1d 908 * @trialcs: trial cpuset
58f4790b
CW
909 * @buf: buffer of cpu numbers written to this cpuset
910 */
645fcc9d
LZ
911static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
912 const char *buf)
1da177e4 913{
58f4790b 914 int retval;
1da177e4 915
5f054e31 916 /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
4c4d50f7
PJ
917 if (cs == &top_cpuset)
918 return -EACCES;
919
6f7f02e7 920 /*
c8d9c90c 921 * An empty cpus_allowed is ok only if the cpuset has no tasks.
020958b6
PJ
922 * Since cpulist_parse() fails on an empty mask, we special case
923 * that parsing. The validate_change() call ensures that cpusets
924 * with tasks have cpus.
6f7f02e7 925 */
020958b6 926 if (!*buf) {
300ed6cb 927 cpumask_clear(trialcs->cpus_allowed);
6f7f02e7 928 } else {
300ed6cb 929 retval = cpulist_parse(buf, trialcs->cpus_allowed);
6f7f02e7
DR
930 if (retval < 0)
931 return retval;
37340746 932
5d8ba82c
LZ
933 if (!cpumask_subset(trialcs->cpus_allowed,
934 top_cpuset.cpus_allowed))
37340746 935 return -EINVAL;
6f7f02e7 936 }
029190c5 937
8707d8b8 938 /* Nothing to do if the cpus didn't change */
300ed6cb 939 if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
8707d8b8 940 return 0;
58f4790b 941
a73456f3
LZ
942 retval = validate_change(cs, trialcs);
943 if (retval < 0)
944 return retval;
945
3d3f26a7 946 mutex_lock(&callback_mutex);
300ed6cb 947 cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
3d3f26a7 948 mutex_unlock(&callback_mutex);
029190c5 949
734d4513
LZ
950 /* use trialcs->cpus_allowed as a temp variable */
951 update_cpumasks_hier(cs, trialcs->cpus_allowed);
85d7b949 952 return 0;
1da177e4
LT
953}
954
e4e364e8
PJ
955/*
956 * cpuset_migrate_mm
957 *
958 * Migrate memory region from one set of nodes to another.
959 *
960 * Temporarilly set tasks mems_allowed to target nodes of migration,
961 * so that the migration code can allocate pages on these nodes.
962 *
e4e364e8
PJ
963 * While the mm_struct we are migrating is typically from some
964 * other task, the task_struct mems_allowed that we are hacking
965 * is for our current task, which must allocate new pages for that
966 * migrating memory region.
e4e364e8
PJ
967 */
968
969static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
970 const nodemask_t *to)
971{
972 struct task_struct *tsk = current;
973
e4e364e8 974 tsk->mems_allowed = *to;
e4e364e8
PJ
975
976 do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);
977
47295830 978 rcu_read_lock();
ae1c8023 979 guarantee_online_mems(task_cs(tsk), &tsk->mems_allowed);
47295830 980 rcu_read_unlock();
e4e364e8
PJ
981}
982
3b6766fe 983/*
58568d2a
MX
984 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
985 * @tsk: the task to change
986 * @newmems: new nodes that the task will be set
987 *
988 * In order to avoid seeing no nodes if the old and new nodes are disjoint,
989 * we structure updates as setting all new allowed nodes, then clearing newly
990 * disallowed ones.
58568d2a
MX
991 */
992static void cpuset_change_task_nodemask(struct task_struct *tsk,
993 nodemask_t *newmems)
994{
b246272e 995 bool need_loop;
89e8a244 996
c0ff7453
MX
997 /*
998 * Allow tasks that have access to memory reserves because they have
999 * been OOM killed to get memory anywhere.
1000 */
1001 if (unlikely(test_thread_flag(TIF_MEMDIE)))
1002 return;
1003 if (current->flags & PF_EXITING) /* Let dying task have memory */
1004 return;
1005
1006 task_lock(tsk);
b246272e
DR
1007 /*
1008 * Determine if a loop is necessary if another thread is doing
d26914d1 1009 * read_mems_allowed_begin(). If at least one node remains unchanged and
b246272e
DR
1010 * tsk does not have a mempolicy, then an empty nodemask will not be
1011 * possible when mems_allowed is larger than a word.
1012 */
1013 need_loop = task_has_mempolicy(tsk) ||
1014 !nodes_intersects(*newmems, tsk->mems_allowed);
c0ff7453 1015
0fc0287c
PZ
1016 if (need_loop) {
1017 local_irq_disable();
cc9a6c87 1018 write_seqcount_begin(&tsk->mems_allowed_seq);
0fc0287c 1019 }
c0ff7453 1020
cc9a6c87
MG
1021 nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
1022 mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP1);
c0ff7453
MX
1023
1024 mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP2);
58568d2a 1025 tsk->mems_allowed = *newmems;
cc9a6c87 1026
0fc0287c 1027 if (need_loop) {
cc9a6c87 1028 write_seqcount_end(&tsk->mems_allowed_seq);
0fc0287c
PZ
1029 local_irq_enable();
1030 }
cc9a6c87 1031
c0ff7453 1032 task_unlock(tsk);
58568d2a
MX
1033}
1034
8793d854
PM
1035static void *cpuset_being_rebound;
1036
0b2f630a
MX
1037/**
1038 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1039 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
0b2f630a 1040 *
d66393e5
TH
1041 * Iterate through each task of @cs updating its mems_allowed to the
1042 * effective cpuset's. As this function is called with cpuset_mutex held,
1043 * cpuset membership stays stable.
0b2f630a 1044 */
d66393e5 1045static void update_tasks_nodemask(struct cpuset *cs)
1da177e4 1046{
33ad801d 1047 static nodemask_t newmems; /* protected by cpuset_mutex */
d66393e5
TH
1048 struct css_task_iter it;
1049 struct task_struct *task;
59dac16f 1050
846a16bf 1051 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
4225399a 1052
ae1c8023 1053 guarantee_online_mems(cs, &newmems);
33ad801d 1054
4225399a 1055 /*
3b6766fe
LZ
1056 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
1057 * take while holding tasklist_lock. Forks can happen - the
1058 * mpol_dup() cpuset_being_rebound check will catch such forks,
1059 * and rebind their vma mempolicies too. Because we still hold
5d21cc2d 1060 * the global cpuset_mutex, we know that no other rebind effort
3b6766fe 1061 * will be contending for the global variable cpuset_being_rebound.
4225399a 1062 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
04c19fa6 1063 * is idempotent. Also migrate pages in each mm to new nodes.
4225399a 1064 */
d66393e5
TH
1065 css_task_iter_start(&cs->css, &it);
1066 while ((task = css_task_iter_next(&it))) {
1067 struct mm_struct *mm;
1068 bool migrate;
1069
1070 cpuset_change_task_nodemask(task, &newmems);
1071
1072 mm = get_task_mm(task);
1073 if (!mm)
1074 continue;
1075
1076 migrate = is_memory_migrate(cs);
1077
1078 mpol_rebind_mm(mm, &cs->mems_allowed);
1079 if (migrate)
1080 cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems);
1081 mmput(mm);
1082 }
1083 css_task_iter_end(&it);
4225399a 1084
33ad801d
LZ
1085 /*
1086 * All the tasks' nodemasks have been updated, update
1087 * cs->old_mems_allowed.
1088 */
1089 cs->old_mems_allowed = newmems;
1090
2df167a3 1091 /* We're done rebinding vmas to this cpuset's new mems_allowed. */
8793d854 1092 cpuset_being_rebound = NULL;
1da177e4
LT
1093}
1094
5c5cc623 1095/*
734d4513
LZ
1096 * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree
1097 * @cs: the cpuset to consider
1098 * @new_mems: a temp variable for calculating new effective_mems
5c5cc623 1099 *
734d4513
LZ
1100 * When configured nodemask is changed, the effective nodemasks of this cpuset
1101 * and all its descendants need to be updated.
5c5cc623 1102 *
734d4513 1103 * On legacy hiearchy, effective_mems will be the same with mems_allowed.
5c5cc623
LZ
1104 *
1105 * Called with cpuset_mutex held
1106 */
734d4513 1107static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems)
5c5cc623
LZ
1108{
1109 struct cpuset *cp;
492eb21b 1110 struct cgroup_subsys_state *pos_css;
5c5cc623
LZ
1111
1112 rcu_read_lock();
734d4513
LZ
1113 cpuset_for_each_descendant_pre(cp, pos_css, cs) {
1114 struct cpuset *parent = parent_cs(cp);
1115
1116 nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems);
1117
554b0d1c
LZ
1118 /*
1119 * If it becomes empty, inherit the effective mask of the
1120 * parent, which is guaranteed to have some MEMs.
1121 */
1122 if (nodes_empty(*new_mems))
1123 *new_mems = parent->effective_mems;
1124
734d4513
LZ
1125 /* Skip the whole subtree if the nodemask remains the same. */
1126 if (nodes_equal(*new_mems, cp->effective_mems)) {
1127 pos_css = css_rightmost_descendant(pos_css);
1128 continue;
5c5cc623 1129 }
734d4513 1130
ec903c0c 1131 if (!css_tryget_online(&cp->css))
5c5cc623
LZ
1132 continue;
1133 rcu_read_unlock();
1134
734d4513
LZ
1135 mutex_lock(&callback_mutex);
1136 cp->effective_mems = *new_mems;
1137 mutex_unlock(&callback_mutex);
1138
1139 WARN_ON(!cgroup_on_dfl(cp->css.cgroup) &&
a1381268 1140 !nodes_equal(cp->mems_allowed, cp->effective_mems));
734d4513 1141
d66393e5 1142 update_tasks_nodemask(cp);
5c5cc623
LZ
1143
1144 rcu_read_lock();
1145 css_put(&cp->css);
1146 }
1147 rcu_read_unlock();
1148}
1149
0b2f630a
MX
1150/*
1151 * Handle user request to change the 'mems' memory placement
1152 * of a cpuset. Needs to validate the request, update the
58568d2a
MX
1153 * cpusets mems_allowed, and for each task in the cpuset,
1154 * update mems_allowed and rebind task's mempolicy and any vma
1155 * mempolicies and if the cpuset is marked 'memory_migrate',
1156 * migrate the tasks pages to the new memory.
0b2f630a 1157 *
5d21cc2d 1158 * Call with cpuset_mutex held. May take callback_mutex during call.
0b2f630a
MX
1159 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1160 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
1161 * their mempolicies to the cpusets new mems_allowed.
1162 */
645fcc9d
LZ
1163static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
1164 const char *buf)
0b2f630a 1165{
0b2f630a
MX
1166 int retval;
1167
1168 /*
38d7bee9 1169 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
0b2f630a
MX
1170 * it's read-only
1171 */
53feb297
MX
1172 if (cs == &top_cpuset) {
1173 retval = -EACCES;
1174 goto done;
1175 }
0b2f630a 1176
0b2f630a
MX
1177 /*
1178 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1179 * Since nodelist_parse() fails on an empty mask, we special case
1180 * that parsing. The validate_change() call ensures that cpusets
1181 * with tasks have memory.
1182 */
1183 if (!*buf) {
645fcc9d 1184 nodes_clear(trialcs->mems_allowed);
0b2f630a 1185 } else {
645fcc9d 1186 retval = nodelist_parse(buf, trialcs->mems_allowed);
0b2f630a
MX
1187 if (retval < 0)
1188 goto done;
1189
645fcc9d 1190 if (!nodes_subset(trialcs->mems_allowed,
5d8ba82c
LZ
1191 top_cpuset.mems_allowed)) {
1192 retval = -EINVAL;
53feb297
MX
1193 goto done;
1194 }
0b2f630a 1195 }
33ad801d
LZ
1196
1197 if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
0b2f630a
MX
1198 retval = 0; /* Too easy - nothing to do */
1199 goto done;
1200 }
645fcc9d 1201 retval = validate_change(cs, trialcs);
0b2f630a
MX
1202 if (retval < 0)
1203 goto done;
1204
1205 mutex_lock(&callback_mutex);
645fcc9d 1206 cs->mems_allowed = trialcs->mems_allowed;
0b2f630a
MX
1207 mutex_unlock(&callback_mutex);
1208
734d4513
LZ
1209 /* use trialcs->mems_allowed as a temp variable */
1210 update_nodemasks_hier(cs, &cs->mems_allowed);
0b2f630a
MX
1211done:
1212 return retval;
1213}
1214
8793d854
PM
1215int current_cpuset_is_being_rebound(void)
1216{
391acf97
GZ
1217 int ret;
1218
1219 rcu_read_lock();
1220 ret = task_cs(current) == cpuset_being_rebound;
1221 rcu_read_unlock();
1222
1223 return ret;
8793d854
PM
1224}
1225
5be7a479 1226static int update_relax_domain_level(struct cpuset *cs, s64 val)
1d3504fc 1227{
db7f47cf 1228#ifdef CONFIG_SMP
60495e77 1229 if (val < -1 || val >= sched_domain_level_max)
30e0e178 1230 return -EINVAL;
db7f47cf 1231#endif
1d3504fc
HS
1232
1233 if (val != cs->relax_domain_level) {
1234 cs->relax_domain_level = val;
300ed6cb
LZ
1235 if (!cpumask_empty(cs->cpus_allowed) &&
1236 is_sched_load_balance(cs))
699140ba 1237 rebuild_sched_domains_locked();
1d3504fc
HS
1238 }
1239
1240 return 0;
1241}
1242
72ec7029 1243/**
950592f7
MX
1244 * update_tasks_flags - update the spread flags of tasks in the cpuset.
1245 * @cs: the cpuset in which each task's spread flags needs to be changed
950592f7 1246 *
d66393e5
TH
1247 * Iterate through each task of @cs updating its spread flags. As this
1248 * function is called with cpuset_mutex held, cpuset membership stays
1249 * stable.
950592f7 1250 */
d66393e5 1251static void update_tasks_flags(struct cpuset *cs)
950592f7 1252{
d66393e5
TH
1253 struct css_task_iter it;
1254 struct task_struct *task;
1255
1256 css_task_iter_start(&cs->css, &it);
1257 while ((task = css_task_iter_next(&it)))
1258 cpuset_update_task_spread_flag(cs, task);
1259 css_task_iter_end(&it);
950592f7
MX
1260}
1261
1da177e4
LT
1262/*
1263 * update_flag - read a 0 or a 1 in a file and update associated flag
78608366
PM
1264 * bit: the bit to update (see cpuset_flagbits_t)
1265 * cs: the cpuset to update
1266 * turning_on: whether the flag is being set or cleared
053199ed 1267 *
5d21cc2d 1268 * Call with cpuset_mutex held.
1da177e4
LT
1269 */
1270
700fe1ab
PM
1271static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1272 int turning_on)
1da177e4 1273{
645fcc9d 1274 struct cpuset *trialcs;
40b6a762 1275 int balance_flag_changed;
950592f7 1276 int spread_flag_changed;
950592f7 1277 int err;
1da177e4 1278
645fcc9d
LZ
1279 trialcs = alloc_trial_cpuset(cs);
1280 if (!trialcs)
1281 return -ENOMEM;
1282
1da177e4 1283 if (turning_on)
645fcc9d 1284 set_bit(bit, &trialcs->flags);
1da177e4 1285 else
645fcc9d 1286 clear_bit(bit, &trialcs->flags);
1da177e4 1287
645fcc9d 1288 err = validate_change(cs, trialcs);
85d7b949 1289 if (err < 0)
645fcc9d 1290 goto out;
029190c5 1291
029190c5 1292 balance_flag_changed = (is_sched_load_balance(cs) !=
645fcc9d 1293 is_sched_load_balance(trialcs));
029190c5 1294
950592f7
MX
1295 spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
1296 || (is_spread_page(cs) != is_spread_page(trialcs)));
1297
3d3f26a7 1298 mutex_lock(&callback_mutex);
645fcc9d 1299 cs->flags = trialcs->flags;
3d3f26a7 1300 mutex_unlock(&callback_mutex);
85d7b949 1301
300ed6cb 1302 if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
699140ba 1303 rebuild_sched_domains_locked();
029190c5 1304
950592f7 1305 if (spread_flag_changed)
d66393e5 1306 update_tasks_flags(cs);
645fcc9d
LZ
1307out:
1308 free_trial_cpuset(trialcs);
1309 return err;
1da177e4
LT
1310}
1311
3e0d98b9 1312/*
80f7228b 1313 * Frequency meter - How fast is some event occurring?
3e0d98b9
PJ
1314 *
1315 * These routines manage a digitally filtered, constant time based,
1316 * event frequency meter. There are four routines:
1317 * fmeter_init() - initialize a frequency meter.
1318 * fmeter_markevent() - called each time the event happens.
1319 * fmeter_getrate() - returns the recent rate of such events.
1320 * fmeter_update() - internal routine used to update fmeter.
1321 *
1322 * A common data structure is passed to each of these routines,
1323 * which is used to keep track of the state required to manage the
1324 * frequency meter and its digital filter.
1325 *
1326 * The filter works on the number of events marked per unit time.
1327 * The filter is single-pole low-pass recursive (IIR). The time unit
1328 * is 1 second. Arithmetic is done using 32-bit integers scaled to
1329 * simulate 3 decimal digits of precision (multiplied by 1000).
1330 *
1331 * With an FM_COEF of 933, and a time base of 1 second, the filter
1332 * has a half-life of 10 seconds, meaning that if the events quit
1333 * happening, then the rate returned from the fmeter_getrate()
1334 * will be cut in half each 10 seconds, until it converges to zero.
1335 *
1336 * It is not worth doing a real infinitely recursive filter. If more
1337 * than FM_MAXTICKS ticks have elapsed since the last filter event,
1338 * just compute FM_MAXTICKS ticks worth, by which point the level
1339 * will be stable.
1340 *
1341 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
1342 * arithmetic overflow in the fmeter_update() routine.
1343 *
1344 * Given the simple 32 bit integer arithmetic used, this meter works
1345 * best for reporting rates between one per millisecond (msec) and
1346 * one per 32 (approx) seconds. At constant rates faster than one
1347 * per msec it maxes out at values just under 1,000,000. At constant
1348 * rates between one per msec, and one per second it will stabilize
1349 * to a value N*1000, where N is the rate of events per second.
1350 * At constant rates between one per second and one per 32 seconds,
1351 * it will be choppy, moving up on the seconds that have an event,
1352 * and then decaying until the next event. At rates slower than
1353 * about one in 32 seconds, it decays all the way back to zero between
1354 * each event.
1355 */
1356
1357#define FM_COEF 933 /* coefficient for half-life of 10 secs */
1358#define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
1359#define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
1360#define FM_SCALE 1000 /* faux fixed point scale */
1361
1362/* Initialize a frequency meter */
1363static void fmeter_init(struct fmeter *fmp)
1364{
1365 fmp->cnt = 0;
1366 fmp->val = 0;
1367 fmp->time = 0;
1368 spin_lock_init(&fmp->lock);
1369}
1370
1371/* Internal meter update - process cnt events and update value */
1372static void fmeter_update(struct fmeter *fmp)
1373{
1374 time_t now = get_seconds();
1375 time_t ticks = now - fmp->time;
1376
1377 if (ticks == 0)
1378 return;
1379
1380 ticks = min(FM_MAXTICKS, ticks);
1381 while (ticks-- > 0)
1382 fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
1383 fmp->time = now;
1384
1385 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
1386 fmp->cnt = 0;
1387}
1388
1389/* Process any previous ticks, then bump cnt by one (times scale). */
1390static void fmeter_markevent(struct fmeter *fmp)
1391{
1392 spin_lock(&fmp->lock);
1393 fmeter_update(fmp);
1394 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
1395 spin_unlock(&fmp->lock);
1396}
1397
1398/* Process any previous ticks, then return current value. */
1399static int fmeter_getrate(struct fmeter *fmp)
1400{
1401 int val;
1402
1403 spin_lock(&fmp->lock);
1404 fmeter_update(fmp);
1405 val = fmp->val;
1406 spin_unlock(&fmp->lock);
1407 return val;
1408}
1409
57fce0a6
TH
1410static struct cpuset *cpuset_attach_old_cs;
1411
5d21cc2d 1412/* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
eb95419b
TH
1413static int cpuset_can_attach(struct cgroup_subsys_state *css,
1414 struct cgroup_taskset *tset)
f780bdb7 1415{
eb95419b 1416 struct cpuset *cs = css_cs(css);
bb9d97b6
TH
1417 struct task_struct *task;
1418 int ret;
1da177e4 1419
57fce0a6
TH
1420 /* used later by cpuset_attach() */
1421 cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset));
1422
5d21cc2d
TH
1423 mutex_lock(&cpuset_mutex);
1424
aa6ec29b 1425 /* allow moving tasks into an empty cpuset if on default hierarchy */
5d21cc2d 1426 ret = -ENOSPC;
aa6ec29b 1427 if (!cgroup_on_dfl(css->cgroup) &&
88fa523b 1428 (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)))
5d21cc2d 1429 goto out_unlock;
9985b0ba 1430
924f0d9a 1431 cgroup_taskset_for_each(task, tset) {
7f51412a
JL
1432 ret = task_can_attach(task, cs->cpus_allowed);
1433 if (ret)
5d21cc2d
TH
1434 goto out_unlock;
1435 ret = security_task_setscheduler(task);
1436 if (ret)
1437 goto out_unlock;
bb9d97b6 1438 }
f780bdb7 1439
452477fa
TH
1440 /*
1441 * Mark attach is in progress. This makes validate_change() fail
1442 * changes which zero cpus/mems_allowed.
1443 */
1444 cs->attach_in_progress++;
5d21cc2d
TH
1445 ret = 0;
1446out_unlock:
1447 mutex_unlock(&cpuset_mutex);
1448 return ret;
8793d854 1449}
f780bdb7 1450
eb95419b 1451static void cpuset_cancel_attach(struct cgroup_subsys_state *css,
452477fa
TH
1452 struct cgroup_taskset *tset)
1453{
5d21cc2d 1454 mutex_lock(&cpuset_mutex);
eb95419b 1455 css_cs(css)->attach_in_progress--;
5d21cc2d 1456 mutex_unlock(&cpuset_mutex);
8793d854 1457}
1da177e4 1458
4e4c9a14 1459/*
5d21cc2d 1460 * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach()
4e4c9a14
TH
1461 * but we can't allocate it dynamically there. Define it global and
1462 * allocate from cpuset_init().
1463 */
1464static cpumask_var_t cpus_attach;
1465
eb95419b
TH
1466static void cpuset_attach(struct cgroup_subsys_state *css,
1467 struct cgroup_taskset *tset)
8793d854 1468{
67bd2c59 1469 /* static buf protected by cpuset_mutex */
4e4c9a14 1470 static nodemask_t cpuset_attach_nodemask_to;
8793d854 1471 struct mm_struct *mm;
bb9d97b6
TH
1472 struct task_struct *task;
1473 struct task_struct *leader = cgroup_taskset_first(tset);
eb95419b 1474 struct cpuset *cs = css_cs(css);
57fce0a6 1475 struct cpuset *oldcs = cpuset_attach_old_cs;
22fb52dd 1476
5d21cc2d
TH
1477 mutex_lock(&cpuset_mutex);
1478
4e4c9a14
TH
1479 /* prepare for attach */
1480 if (cs == &top_cpuset)
1481 cpumask_copy(cpus_attach, cpu_possible_mask);
1482 else
ae1c8023 1483 guarantee_online_cpus(cs, cpus_attach);
4e4c9a14 1484
ae1c8023 1485 guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
4e4c9a14 1486
924f0d9a 1487 cgroup_taskset_for_each(task, tset) {
bb9d97b6
TH
1488 /*
1489 * can_attach beforehand should guarantee that this doesn't
1490 * fail. TODO: have a better way to handle failure here
1491 */
1492 WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
1493
1494 cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
1495 cpuset_update_task_spread_flag(cs, task);
1496 }
22fb52dd 1497
f780bdb7
BB
1498 /*
1499 * Change mm, possibly for multiple threads in a threadgroup. This is
1500 * expensive and may sleep.
1501 */
ae1c8023 1502 cpuset_attach_nodemask_to = cs->effective_mems;
bb9d97b6 1503 mm = get_task_mm(leader);
4225399a 1504 if (mm) {
f780bdb7 1505 mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
f047cecf
LZ
1506
1507 /*
1508 * old_mems_allowed is the same with mems_allowed here, except
1509 * if this task is being moved automatically due to hotplug.
1510 * In that case @mems_allowed has been updated and is empty,
1511 * so @old_mems_allowed is the right nodesets that we migrate
1512 * mm from.
1513 */
1514 if (is_memory_migrate(cs)) {
ae1c8023 1515 cpuset_migrate_mm(mm, &oldcs->old_mems_allowed,
f780bdb7 1516 &cpuset_attach_nodemask_to);
f047cecf 1517 }
4225399a
PJ
1518 mmput(mm);
1519 }
452477fa 1520
33ad801d 1521 cs->old_mems_allowed = cpuset_attach_nodemask_to;
02bb5863 1522
452477fa 1523 cs->attach_in_progress--;
e44193d3
LZ
1524 if (!cs->attach_in_progress)
1525 wake_up(&cpuset_attach_wq);
5d21cc2d
TH
1526
1527 mutex_unlock(&cpuset_mutex);
1da177e4
LT
1528}
1529
1530/* The various types of files and directories in a cpuset file system */
1531
1532typedef enum {
45b07ef3 1533 FILE_MEMORY_MIGRATE,
1da177e4
LT
1534 FILE_CPULIST,
1535 FILE_MEMLIST,
afd1a8b3
LZ
1536 FILE_EFFECTIVE_CPULIST,
1537 FILE_EFFECTIVE_MEMLIST,
1da177e4
LT
1538 FILE_CPU_EXCLUSIVE,
1539 FILE_MEM_EXCLUSIVE,
78608366 1540 FILE_MEM_HARDWALL,
029190c5 1541 FILE_SCHED_LOAD_BALANCE,
1d3504fc 1542 FILE_SCHED_RELAX_DOMAIN_LEVEL,
3e0d98b9
PJ
1543 FILE_MEMORY_PRESSURE_ENABLED,
1544 FILE_MEMORY_PRESSURE,
825a46af
PJ
1545 FILE_SPREAD_PAGE,
1546 FILE_SPREAD_SLAB,
1da177e4
LT
1547} cpuset_filetype_t;
1548
182446d0
TH
1549static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft,
1550 u64 val)
700fe1ab 1551{
182446d0 1552 struct cpuset *cs = css_cs(css);
700fe1ab 1553 cpuset_filetype_t type = cft->private;
a903f086 1554 int retval = 0;
700fe1ab 1555
5d21cc2d 1556 mutex_lock(&cpuset_mutex);
a903f086
LZ
1557 if (!is_cpuset_online(cs)) {
1558 retval = -ENODEV;
5d21cc2d 1559 goto out_unlock;
a903f086 1560 }
700fe1ab
PM
1561
1562 switch (type) {
1da177e4 1563 case FILE_CPU_EXCLUSIVE:
700fe1ab 1564 retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
1da177e4
LT
1565 break;
1566 case FILE_MEM_EXCLUSIVE:
700fe1ab 1567 retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
1da177e4 1568 break;
78608366
PM
1569 case FILE_MEM_HARDWALL:
1570 retval = update_flag(CS_MEM_HARDWALL, cs, val);
1571 break;
029190c5 1572 case FILE_SCHED_LOAD_BALANCE:
700fe1ab 1573 retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1d3504fc 1574 break;
45b07ef3 1575 case FILE_MEMORY_MIGRATE:
700fe1ab 1576 retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
45b07ef3 1577 break;
3e0d98b9 1578 case FILE_MEMORY_PRESSURE_ENABLED:
700fe1ab 1579 cpuset_memory_pressure_enabled = !!val;
3e0d98b9
PJ
1580 break;
1581 case FILE_MEMORY_PRESSURE:
1582 retval = -EACCES;
1583 break;
825a46af 1584 case FILE_SPREAD_PAGE:
700fe1ab 1585 retval = update_flag(CS_SPREAD_PAGE, cs, val);
825a46af
PJ
1586 break;
1587 case FILE_SPREAD_SLAB:
700fe1ab 1588 retval = update_flag(CS_SPREAD_SLAB, cs, val);
825a46af 1589 break;
1da177e4
LT
1590 default:
1591 retval = -EINVAL;
700fe1ab 1592 break;
1da177e4 1593 }
5d21cc2d
TH
1594out_unlock:
1595 mutex_unlock(&cpuset_mutex);
1da177e4
LT
1596 return retval;
1597}
1598
182446d0
TH
1599static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft,
1600 s64 val)
5be7a479 1601{
182446d0 1602 struct cpuset *cs = css_cs(css);
5be7a479 1603 cpuset_filetype_t type = cft->private;
5d21cc2d 1604 int retval = -ENODEV;
5be7a479 1605
5d21cc2d
TH
1606 mutex_lock(&cpuset_mutex);
1607 if (!is_cpuset_online(cs))
1608 goto out_unlock;
e3712395 1609
5be7a479
PM
1610 switch (type) {
1611 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1612 retval = update_relax_domain_level(cs, val);
1613 break;
1614 default:
1615 retval = -EINVAL;
1616 break;
1617 }
5d21cc2d
TH
1618out_unlock:
1619 mutex_unlock(&cpuset_mutex);
5be7a479
PM
1620 return retval;
1621}
1622
e3712395
PM
1623/*
1624 * Common handling for a write to a "cpus" or "mems" file.
1625 */
451af504
TH
1626static ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
1627 char *buf, size_t nbytes, loff_t off)
e3712395 1628{
451af504 1629 struct cpuset *cs = css_cs(of_css(of));
645fcc9d 1630 struct cpuset *trialcs;
5d21cc2d 1631 int retval = -ENODEV;
e3712395 1632
451af504
TH
1633 buf = strstrip(buf);
1634
3a5a6d0c
TH
1635 /*
1636 * CPU or memory hotunplug may leave @cs w/o any execution
1637 * resources, in which case the hotplug code asynchronously updates
1638 * configuration and transfers all tasks to the nearest ancestor
1639 * which can execute.
1640 *
1641 * As writes to "cpus" or "mems" may restore @cs's execution
1642 * resources, wait for the previously scheduled operations before
1643 * proceeding, so that we don't end up keep removing tasks added
1644 * after execution capability is restored.
76bb5ab8
TH
1645 *
1646 * cpuset_hotplug_work calls back into cgroup core via
1647 * cgroup_transfer_tasks() and waiting for it from a cgroupfs
1648 * operation like this one can lead to a deadlock through kernfs
1649 * active_ref protection. Let's break the protection. Losing the
1650 * protection is okay as we check whether @cs is online after
1651 * grabbing cpuset_mutex anyway. This only happens on the legacy
1652 * hierarchies.
3a5a6d0c 1653 */
76bb5ab8
TH
1654 css_get(&cs->css);
1655 kernfs_break_active_protection(of->kn);
3a5a6d0c
TH
1656 flush_work(&cpuset_hotplug_work);
1657
5d21cc2d
TH
1658 mutex_lock(&cpuset_mutex);
1659 if (!is_cpuset_online(cs))
1660 goto out_unlock;
e3712395 1661
645fcc9d 1662 trialcs = alloc_trial_cpuset(cs);
b75f38d6
LZ
1663 if (!trialcs) {
1664 retval = -ENOMEM;
5d21cc2d 1665 goto out_unlock;
b75f38d6 1666 }
645fcc9d 1667
451af504 1668 switch (of_cft(of)->private) {
e3712395 1669 case FILE_CPULIST:
645fcc9d 1670 retval = update_cpumask(cs, trialcs, buf);
e3712395
PM
1671 break;
1672 case FILE_MEMLIST:
645fcc9d 1673 retval = update_nodemask(cs, trialcs, buf);
e3712395
PM
1674 break;
1675 default:
1676 retval = -EINVAL;
1677 break;
1678 }
645fcc9d
LZ
1679
1680 free_trial_cpuset(trialcs);
5d21cc2d
TH
1681out_unlock:
1682 mutex_unlock(&cpuset_mutex);
76bb5ab8
TH
1683 kernfs_unbreak_active_protection(of->kn);
1684 css_put(&cs->css);
451af504 1685 return retval ?: nbytes;
e3712395
PM
1686}
1687
1da177e4
LT
1688/*
1689 * These ascii lists should be read in a single call, by using a user
1690 * buffer large enough to hold the entire map. If read in smaller
1691 * chunks, there is no guarantee of atomicity. Since the display format
1692 * used, list of ranges of sequential numbers, is variable length,
1693 * and since these maps can change value dynamically, one could read
1694 * gibberish by doing partial reads while a list was changing.
1da177e4 1695 */
2da8ca82 1696static int cpuset_common_seq_show(struct seq_file *sf, void *v)
1da177e4 1697{
2da8ca82
TH
1698 struct cpuset *cs = css_cs(seq_css(sf));
1699 cpuset_filetype_t type = seq_cft(sf)->private;
51ffe411
TH
1700 ssize_t count;
1701 char *buf, *s;
1702 int ret = 0;
1da177e4 1703
51ffe411
TH
1704 count = seq_get_buf(sf, &buf);
1705 s = buf;
1da177e4 1706
51ffe411 1707 mutex_lock(&callback_mutex);
1da177e4
LT
1708
1709 switch (type) {
1710 case FILE_CPULIST:
51ffe411 1711 s += cpulist_scnprintf(s, count, cs->cpus_allowed);
1da177e4
LT
1712 break;
1713 case FILE_MEMLIST:
51ffe411 1714 s += nodelist_scnprintf(s, count, cs->mems_allowed);
1da177e4 1715 break;
afd1a8b3
LZ
1716 case FILE_EFFECTIVE_CPULIST:
1717 s += cpulist_scnprintf(s, count, cs->effective_cpus);
1718 break;
1719 case FILE_EFFECTIVE_MEMLIST:
1720 s += nodelist_scnprintf(s, count, cs->effective_mems);
1721 break;
1da177e4 1722 default:
51ffe411
TH
1723 ret = -EINVAL;
1724 goto out_unlock;
1da177e4 1725 }
1da177e4 1726
51ffe411
TH
1727 if (s < buf + count - 1) {
1728 *s++ = '\n';
1729 seq_commit(sf, s - buf);
1730 } else {
1731 seq_commit(sf, -1);
1732 }
1733out_unlock:
1734 mutex_unlock(&callback_mutex);
1735 return ret;
1da177e4
LT
1736}
1737
182446d0 1738static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft)
700fe1ab 1739{
182446d0 1740 struct cpuset *cs = css_cs(css);
700fe1ab
PM
1741 cpuset_filetype_t type = cft->private;
1742 switch (type) {
1743 case FILE_CPU_EXCLUSIVE:
1744 return is_cpu_exclusive(cs);
1745 case FILE_MEM_EXCLUSIVE:
1746 return is_mem_exclusive(cs);
78608366
PM
1747 case FILE_MEM_HARDWALL:
1748 return is_mem_hardwall(cs);
700fe1ab
PM
1749 case FILE_SCHED_LOAD_BALANCE:
1750 return is_sched_load_balance(cs);
1751 case FILE_MEMORY_MIGRATE:
1752 return is_memory_migrate(cs);
1753 case FILE_MEMORY_PRESSURE_ENABLED:
1754 return cpuset_memory_pressure_enabled;
1755 case FILE_MEMORY_PRESSURE:
1756 return fmeter_getrate(&cs->fmeter);
1757 case FILE_SPREAD_PAGE:
1758 return is_spread_page(cs);
1759 case FILE_SPREAD_SLAB:
1760 return is_spread_slab(cs);
1761 default:
1762 BUG();
1763 }
cf417141
MK
1764
1765 /* Unreachable but makes gcc happy */
1766 return 0;
700fe1ab 1767}
1da177e4 1768
182446d0 1769static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft)
5be7a479 1770{
182446d0 1771 struct cpuset *cs = css_cs(css);
5be7a479
PM
1772 cpuset_filetype_t type = cft->private;
1773 switch (type) {
1774 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1775 return cs->relax_domain_level;
1776 default:
1777 BUG();
1778 }
cf417141
MK
1779
1780 /* Unrechable but makes gcc happy */
1781 return 0;
5be7a479
PM
1782}
1783
1da177e4
LT
1784
1785/*
1786 * for the common functions, 'private' gives the type of file
1787 */
1788
addf2c73
PM
1789static struct cftype files[] = {
1790 {
1791 .name = "cpus",
2da8ca82 1792 .seq_show = cpuset_common_seq_show,
451af504 1793 .write = cpuset_write_resmask,
e3712395 1794 .max_write_len = (100U + 6 * NR_CPUS),
addf2c73
PM
1795 .private = FILE_CPULIST,
1796 },
1797
1798 {
1799 .name = "mems",
2da8ca82 1800 .seq_show = cpuset_common_seq_show,
451af504 1801 .write = cpuset_write_resmask,
e3712395 1802 .max_write_len = (100U + 6 * MAX_NUMNODES),
addf2c73
PM
1803 .private = FILE_MEMLIST,
1804 },
1805
afd1a8b3
LZ
1806 {
1807 .name = "effective_cpus",
1808 .seq_show = cpuset_common_seq_show,
1809 .private = FILE_EFFECTIVE_CPULIST,
1810 },
1811
1812 {
1813 .name = "effective_mems",
1814 .seq_show = cpuset_common_seq_show,
1815 .private = FILE_EFFECTIVE_MEMLIST,
1816 },
1817
addf2c73
PM
1818 {
1819 .name = "cpu_exclusive",
1820 .read_u64 = cpuset_read_u64,
1821 .write_u64 = cpuset_write_u64,
1822 .private = FILE_CPU_EXCLUSIVE,
1823 },
1824
1825 {
1826 .name = "mem_exclusive",
1827 .read_u64 = cpuset_read_u64,
1828 .write_u64 = cpuset_write_u64,
1829 .private = FILE_MEM_EXCLUSIVE,
1830 },
1831
78608366
PM
1832 {
1833 .name = "mem_hardwall",
1834 .read_u64 = cpuset_read_u64,
1835 .write_u64 = cpuset_write_u64,
1836 .private = FILE_MEM_HARDWALL,
1837 },
1838
addf2c73
PM
1839 {
1840 .name = "sched_load_balance",
1841 .read_u64 = cpuset_read_u64,
1842 .write_u64 = cpuset_write_u64,
1843 .private = FILE_SCHED_LOAD_BALANCE,
1844 },
1845
1846 {
1847 .name = "sched_relax_domain_level",
5be7a479
PM
1848 .read_s64 = cpuset_read_s64,
1849 .write_s64 = cpuset_write_s64,
addf2c73
PM
1850 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
1851 },
1852
1853 {
1854 .name = "memory_migrate",
1855 .read_u64 = cpuset_read_u64,
1856 .write_u64 = cpuset_write_u64,
1857 .private = FILE_MEMORY_MIGRATE,
1858 },
1859
1860 {
1861 .name = "memory_pressure",
1862 .read_u64 = cpuset_read_u64,
1863 .write_u64 = cpuset_write_u64,
1864 .private = FILE_MEMORY_PRESSURE,
099fca32 1865 .mode = S_IRUGO,
addf2c73
PM
1866 },
1867
1868 {
1869 .name = "memory_spread_page",
1870 .read_u64 = cpuset_read_u64,
1871 .write_u64 = cpuset_write_u64,
1872 .private = FILE_SPREAD_PAGE,
1873 },
1874
1875 {
1876 .name = "memory_spread_slab",
1877 .read_u64 = cpuset_read_u64,
1878 .write_u64 = cpuset_write_u64,
1879 .private = FILE_SPREAD_SLAB,
1880 },
3e0d98b9 1881
4baf6e33
TH
1882 {
1883 .name = "memory_pressure_enabled",
1884 .flags = CFTYPE_ONLY_ON_ROOT,
1885 .read_u64 = cpuset_read_u64,
1886 .write_u64 = cpuset_write_u64,
1887 .private = FILE_MEMORY_PRESSURE_ENABLED,
1888 },
1da177e4 1889
4baf6e33
TH
1890 { } /* terminate */
1891};
1da177e4
LT
1892
1893/*
92fb9748 1894 * cpuset_css_alloc - allocate a cpuset css
c9e5fe66 1895 * cgrp: control group that the new cpuset will be part of
1da177e4
LT
1896 */
1897
eb95419b
TH
1898static struct cgroup_subsys_state *
1899cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
1da177e4 1900{
c8f699bb 1901 struct cpuset *cs;
1da177e4 1902
eb95419b 1903 if (!parent_css)
8793d854 1904 return &top_cpuset.css;
033fa1c5 1905
c8f699bb 1906 cs = kzalloc(sizeof(*cs), GFP_KERNEL);
1da177e4 1907 if (!cs)
8793d854 1908 return ERR_PTR(-ENOMEM);
e2b9a3d7
LZ
1909 if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL))
1910 goto free_cs;
1911 if (!alloc_cpumask_var(&cs->effective_cpus, GFP_KERNEL))
1912 goto free_cpus;
1da177e4 1913
029190c5 1914 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
300ed6cb 1915 cpumask_clear(cs->cpus_allowed);
f9a86fcb 1916 nodes_clear(cs->mems_allowed);
e2b9a3d7
LZ
1917 cpumask_clear(cs->effective_cpus);
1918 nodes_clear(cs->effective_mems);
3e0d98b9 1919 fmeter_init(&cs->fmeter);
1d3504fc 1920 cs->relax_domain_level = -1;
1da177e4 1921
c8f699bb 1922 return &cs->css;
e2b9a3d7
LZ
1923
1924free_cpus:
1925 free_cpumask_var(cs->cpus_allowed);
1926free_cs:
1927 kfree(cs);
1928 return ERR_PTR(-ENOMEM);
c8f699bb
TH
1929}
1930
eb95419b 1931static int cpuset_css_online(struct cgroup_subsys_state *css)
c8f699bb 1932{
eb95419b 1933 struct cpuset *cs = css_cs(css);
c431069f 1934 struct cpuset *parent = parent_cs(cs);
ae8086ce 1935 struct cpuset *tmp_cs;
492eb21b 1936 struct cgroup_subsys_state *pos_css;
c8f699bb
TH
1937
1938 if (!parent)
1939 return 0;
1940
5d21cc2d
TH
1941 mutex_lock(&cpuset_mutex);
1942
efeb77b2 1943 set_bit(CS_ONLINE, &cs->flags);
c8f699bb
TH
1944 if (is_spread_page(parent))
1945 set_bit(CS_SPREAD_PAGE, &cs->flags);
1946 if (is_spread_slab(parent))
1947 set_bit(CS_SPREAD_SLAB, &cs->flags);
1da177e4 1948
664eedde 1949 cpuset_inc();
033fa1c5 1950
e2b9a3d7
LZ
1951 mutex_lock(&callback_mutex);
1952 if (cgroup_on_dfl(cs->css.cgroup)) {
1953 cpumask_copy(cs->effective_cpus, parent->effective_cpus);
1954 cs->effective_mems = parent->effective_mems;
1955 }
1956 mutex_unlock(&callback_mutex);
1957
eb95419b 1958 if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
5d21cc2d 1959 goto out_unlock;
033fa1c5
TH
1960
1961 /*
1962 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
1963 * set. This flag handling is implemented in cgroup core for
1964 * histrical reasons - the flag may be specified during mount.
1965 *
1966 * Currently, if any sibling cpusets have exclusive cpus or mem, we
1967 * refuse to clone the configuration - thereby refusing the task to
1968 * be entered, and as a result refusing the sys_unshare() or
1969 * clone() which initiated it. If this becomes a problem for some
1970 * users who wish to allow that scenario, then this could be
1971 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
1972 * (and likewise for mems) to the new cgroup.
1973 */
ae8086ce 1974 rcu_read_lock();
492eb21b 1975 cpuset_for_each_child(tmp_cs, pos_css, parent) {
ae8086ce
TH
1976 if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
1977 rcu_read_unlock();
5d21cc2d 1978 goto out_unlock;
ae8086ce 1979 }
033fa1c5 1980 }
ae8086ce 1981 rcu_read_unlock();
033fa1c5
TH
1982
1983 mutex_lock(&callback_mutex);
1984 cs->mems_allowed = parent->mems_allowed;
1985 cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
1986 mutex_unlock(&callback_mutex);
5d21cc2d
TH
1987out_unlock:
1988 mutex_unlock(&cpuset_mutex);
c8f699bb
TH
1989 return 0;
1990}
1991
0b9e6965
ZH
1992/*
1993 * If the cpuset being removed has its flag 'sched_load_balance'
1994 * enabled, then simulate turning sched_load_balance off, which
1995 * will call rebuild_sched_domains_locked().
1996 */
1997
eb95419b 1998static void cpuset_css_offline(struct cgroup_subsys_state *css)
c8f699bb 1999{
eb95419b 2000 struct cpuset *cs = css_cs(css);
c8f699bb 2001
5d21cc2d 2002 mutex_lock(&cpuset_mutex);
c8f699bb
TH
2003
2004 if (is_sched_load_balance(cs))
2005 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
2006
664eedde 2007 cpuset_dec();
efeb77b2 2008 clear_bit(CS_ONLINE, &cs->flags);
c8f699bb 2009
5d21cc2d 2010 mutex_unlock(&cpuset_mutex);
1da177e4
LT
2011}
2012
eb95419b 2013static void cpuset_css_free(struct cgroup_subsys_state *css)
1da177e4 2014{
eb95419b 2015 struct cpuset *cs = css_cs(css);
1da177e4 2016
e2b9a3d7 2017 free_cpumask_var(cs->effective_cpus);
300ed6cb 2018 free_cpumask_var(cs->cpus_allowed);
8793d854 2019 kfree(cs);
1da177e4
LT
2020}
2021
39bd0d15
LZ
2022static void cpuset_bind(struct cgroup_subsys_state *root_css)
2023{
2024 mutex_lock(&cpuset_mutex);
2025 mutex_lock(&callback_mutex);
2026
2027 if (cgroup_on_dfl(root_css->cgroup)) {
2028 cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask);
2029 top_cpuset.mems_allowed = node_possible_map;
2030 } else {
2031 cpumask_copy(top_cpuset.cpus_allowed,
2032 top_cpuset.effective_cpus);
2033 top_cpuset.mems_allowed = top_cpuset.effective_mems;
2034 }
2035
2036 mutex_unlock(&callback_mutex);
2037 mutex_unlock(&cpuset_mutex);
2038}
2039
073219e9 2040struct cgroup_subsys cpuset_cgrp_subsys = {
39bd0d15
LZ
2041 .css_alloc = cpuset_css_alloc,
2042 .css_online = cpuset_css_online,
2043 .css_offline = cpuset_css_offline,
2044 .css_free = cpuset_css_free,
2045 .can_attach = cpuset_can_attach,
2046 .cancel_attach = cpuset_cancel_attach,
2047 .attach = cpuset_attach,
2048 .bind = cpuset_bind,
5577964e 2049 .legacy_cftypes = files,
39bd0d15 2050 .early_init = 1,
8793d854
PM
2051};
2052
1da177e4
LT
2053/**
2054 * cpuset_init - initialize cpusets at system boot
2055 *
2056 * Description: Initialize top_cpuset and the cpuset internal file system,
2057 **/
2058
2059int __init cpuset_init(void)
2060{
8793d854 2061 int err = 0;
1da177e4 2062
58568d2a
MX
2063 if (!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL))
2064 BUG();
e2b9a3d7
LZ
2065 if (!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL))
2066 BUG();
58568d2a 2067
300ed6cb 2068 cpumask_setall(top_cpuset.cpus_allowed);
f9a86fcb 2069 nodes_setall(top_cpuset.mems_allowed);
e2b9a3d7
LZ
2070 cpumask_setall(top_cpuset.effective_cpus);
2071 nodes_setall(top_cpuset.effective_mems);
1da177e4 2072
3e0d98b9 2073 fmeter_init(&top_cpuset.fmeter);
029190c5 2074 set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
1d3504fc 2075 top_cpuset.relax_domain_level = -1;
1da177e4 2076
1da177e4
LT
2077 err = register_filesystem(&cpuset_fs_type);
2078 if (err < 0)
8793d854
PM
2079 return err;
2080
2341d1b6
LZ
2081 if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL))
2082 BUG();
2083
8793d854 2084 return 0;
1da177e4
LT
2085}
2086
b1aac8bb 2087/*
cf417141 2088 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
b1aac8bb
PJ
2089 * or memory nodes, we need to walk over the cpuset hierarchy,
2090 * removing that CPU or node from all cpusets. If this removes the
956db3ca
CW
2091 * last CPU or node from a cpuset, then move the tasks in the empty
2092 * cpuset to its next-highest non-empty parent.
b1aac8bb 2093 */
956db3ca
CW
2094static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
2095{
2096 struct cpuset *parent;
2097
956db3ca
CW
2098 /*
2099 * Find its next-highest non-empty parent, (top cpuset
2100 * has online cpus, so can't be empty).
2101 */
c431069f 2102 parent = parent_cs(cs);
300ed6cb 2103 while (cpumask_empty(parent->cpus_allowed) ||
b4501295 2104 nodes_empty(parent->mems_allowed))
c431069f 2105 parent = parent_cs(parent);
956db3ca 2106
8cc99345 2107 if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
12d3089c 2108 pr_err("cpuset: failed to transfer tasks out of empty cpuset ");
e61734c5
TH
2109 pr_cont_cgroup_name(cs->css.cgroup);
2110 pr_cont("\n");
8cc99345 2111 }
956db3ca
CW
2112}
2113
be4c9dd7
LZ
2114static void
2115hotplug_update_tasks_legacy(struct cpuset *cs,
2116 struct cpumask *new_cpus, nodemask_t *new_mems,
2117 bool cpus_updated, bool mems_updated)
390a36aa
LZ
2118{
2119 bool is_empty;
2120
2121 mutex_lock(&callback_mutex);
be4c9dd7
LZ
2122 cpumask_copy(cs->cpus_allowed, new_cpus);
2123 cpumask_copy(cs->effective_cpus, new_cpus);
2124 cs->mems_allowed = *new_mems;
2125 cs->effective_mems = *new_mems;
390a36aa
LZ
2126 mutex_unlock(&callback_mutex);
2127
2128 /*
2129 * Don't call update_tasks_cpumask() if the cpuset becomes empty,
2130 * as the tasks will be migratecd to an ancestor.
2131 */
be4c9dd7 2132 if (cpus_updated && !cpumask_empty(cs->cpus_allowed))
390a36aa 2133 update_tasks_cpumask(cs);
be4c9dd7 2134 if (mems_updated && !nodes_empty(cs->mems_allowed))
390a36aa
LZ
2135 update_tasks_nodemask(cs);
2136
2137 is_empty = cpumask_empty(cs->cpus_allowed) ||
2138 nodes_empty(cs->mems_allowed);
2139
2140 mutex_unlock(&cpuset_mutex);
2141
2142 /*
2143 * Move tasks to the nearest ancestor with execution resources,
2144 * This is full cgroup operation which will also call back into
2145 * cpuset. Should be done outside any lock.
2146 */
2147 if (is_empty)
2148 remove_tasks_in_empty_cpuset(cs);
2149
2150 mutex_lock(&cpuset_mutex);
2151}
2152
be4c9dd7
LZ
2153static void
2154hotplug_update_tasks(struct cpuset *cs,
2155 struct cpumask *new_cpus, nodemask_t *new_mems,
2156 bool cpus_updated, bool mems_updated)
390a36aa 2157{
be4c9dd7
LZ
2158 if (cpumask_empty(new_cpus))
2159 cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus);
2160 if (nodes_empty(*new_mems))
2161 *new_mems = parent_cs(cs)->effective_mems;
2162
390a36aa 2163 mutex_lock(&callback_mutex);
be4c9dd7
LZ
2164 cpumask_copy(cs->effective_cpus, new_cpus);
2165 cs->effective_mems = *new_mems;
390a36aa
LZ
2166 mutex_unlock(&callback_mutex);
2167
be4c9dd7 2168 if (cpus_updated)
390a36aa 2169 update_tasks_cpumask(cs);
be4c9dd7 2170 if (mems_updated)
390a36aa
LZ
2171 update_tasks_nodemask(cs);
2172}
2173
deb7aa30 2174/**
388afd85 2175 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
deb7aa30 2176 * @cs: cpuset in interest
956db3ca 2177 *
deb7aa30
TH
2178 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
2179 * offline, update @cs accordingly. If @cs ends up with no CPU or memory,
2180 * all its tasks are moved to the nearest ancestor with both resources.
80d1fa64 2181 */
388afd85 2182static void cpuset_hotplug_update_tasks(struct cpuset *cs)
80d1fa64 2183{
be4c9dd7
LZ
2184 static cpumask_t new_cpus;
2185 static nodemask_t new_mems;
2186 bool cpus_updated;
2187 bool mems_updated;
e44193d3
LZ
2188retry:
2189 wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
80d1fa64 2190
5d21cc2d 2191 mutex_lock(&cpuset_mutex);
7ddf96b0 2192
e44193d3
LZ
2193 /*
2194 * We have raced with task attaching. We wait until attaching
2195 * is finished, so we won't attach a task to an empty cpuset.
2196 */
2197 if (cs->attach_in_progress) {
2198 mutex_unlock(&cpuset_mutex);
2199 goto retry;
2200 }
2201
be4c9dd7
LZ
2202 cpumask_and(&new_cpus, cs->cpus_allowed, parent_cs(cs)->effective_cpus);
2203 nodes_and(new_mems, cs->mems_allowed, parent_cs(cs)->effective_mems);
80d1fa64 2204
be4c9dd7
LZ
2205 cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus);
2206 mems_updated = !nodes_equal(new_mems, cs->effective_mems);
deb7aa30 2207
390a36aa 2208 if (cgroup_on_dfl(cs->css.cgroup))
be4c9dd7
LZ
2209 hotplug_update_tasks(cs, &new_cpus, &new_mems,
2210 cpus_updated, mems_updated);
390a36aa 2211 else
be4c9dd7
LZ
2212 hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems,
2213 cpus_updated, mems_updated);
8d033948 2214
5d21cc2d 2215 mutex_unlock(&cpuset_mutex);
b1aac8bb
PJ
2216}
2217
deb7aa30 2218/**
3a5a6d0c 2219 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
956db3ca 2220 *
deb7aa30
TH
2221 * This function is called after either CPU or memory configuration has
2222 * changed and updates cpuset accordingly. The top_cpuset is always
2223 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
2224 * order to make cpusets transparent (of no affect) on systems that are
2225 * actively using CPU hotplug but making no active use of cpusets.
956db3ca 2226 *
deb7aa30 2227 * Non-root cpusets are only affected by offlining. If any CPUs or memory
388afd85
LZ
2228 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
2229 * all descendants.
956db3ca 2230 *
deb7aa30
TH
2231 * Note that CPU offlining during suspend is ignored. We don't modify
2232 * cpusets across suspend/resume cycles at all.
956db3ca 2233 */
3a5a6d0c 2234static void cpuset_hotplug_workfn(struct work_struct *work)
b1aac8bb 2235{
5c5cc623
LZ
2236 static cpumask_t new_cpus;
2237 static nodemask_t new_mems;
deb7aa30 2238 bool cpus_updated, mems_updated;
7e88291b 2239 bool on_dfl = cgroup_on_dfl(top_cpuset.css.cgroup);
b1aac8bb 2240
5d21cc2d 2241 mutex_lock(&cpuset_mutex);
956db3ca 2242
deb7aa30
TH
2243 /* fetch the available cpus/mems and find out which changed how */
2244 cpumask_copy(&new_cpus, cpu_active_mask);
2245 new_mems = node_states[N_MEMORY];
7ddf96b0 2246
7e88291b
LZ
2247 cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus);
2248 mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems);
7ddf96b0 2249
deb7aa30
TH
2250 /* synchronize cpus_allowed to cpu_active_mask */
2251 if (cpus_updated) {
2252 mutex_lock(&callback_mutex);
7e88291b
LZ
2253 if (!on_dfl)
2254 cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
1344ab9c 2255 cpumask_copy(top_cpuset.effective_cpus, &new_cpus);
deb7aa30
TH
2256 mutex_unlock(&callback_mutex);
2257 /* we don't mess with cpumasks of tasks in top_cpuset */
2258 }
b4501295 2259
deb7aa30
TH
2260 /* synchronize mems_allowed to N_MEMORY */
2261 if (mems_updated) {
deb7aa30 2262 mutex_lock(&callback_mutex);
7e88291b
LZ
2263 if (!on_dfl)
2264 top_cpuset.mems_allowed = new_mems;
1344ab9c 2265 top_cpuset.effective_mems = new_mems;
deb7aa30 2266 mutex_unlock(&callback_mutex);
d66393e5 2267 update_tasks_nodemask(&top_cpuset);
deb7aa30 2268 }
b4501295 2269
388afd85
LZ
2270 mutex_unlock(&cpuset_mutex);
2271
5c5cc623
LZ
2272 /* if cpus or mems changed, we need to propagate to descendants */
2273 if (cpus_updated || mems_updated) {
deb7aa30 2274 struct cpuset *cs;
492eb21b 2275 struct cgroup_subsys_state *pos_css;
f9b4fb8d 2276
fc560a26 2277 rcu_read_lock();
492eb21b 2278 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
ec903c0c 2279 if (cs == &top_cpuset || !css_tryget_online(&cs->css))
388afd85
LZ
2280 continue;
2281 rcu_read_unlock();
7ddf96b0 2282
388afd85 2283 cpuset_hotplug_update_tasks(cs);
b4501295 2284
388afd85
LZ
2285 rcu_read_lock();
2286 css_put(&cs->css);
2287 }
2288 rcu_read_unlock();
2289 }
8d033948 2290
deb7aa30 2291 /* rebuild sched domains if cpus_allowed has changed */
e0e80a02
LZ
2292 if (cpus_updated)
2293 rebuild_sched_domains();
b1aac8bb
PJ
2294}
2295
7ddf96b0 2296void cpuset_update_active_cpus(bool cpu_online)
4c4d50f7 2297{
3a5a6d0c
TH
2298 /*
2299 * We're inside cpu hotplug critical region which usually nests
2300 * inside cgroup synchronization. Bounce actual hotplug processing
2301 * to a work item to avoid reverse locking order.
2302 *
2303 * We still need to do partition_sched_domains() synchronously;
2304 * otherwise, the scheduler will get confused and put tasks to the
2305 * dead CPU. Fall back to the default single domain.
2306 * cpuset_hotplug_workfn() will rebuild it as necessary.
2307 */
2308 partition_sched_domains(1, NULL, NULL);
2309 schedule_work(&cpuset_hotplug_work);
4c4d50f7 2310}
4c4d50f7 2311
38837fc7 2312/*
38d7bee9
LJ
2313 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
2314 * Call this routine anytime after node_states[N_MEMORY] changes.
a1cd2b13 2315 * See cpuset_update_active_cpus() for CPU hotplug handling.
38837fc7 2316 */
f481891f
MX
2317static int cpuset_track_online_nodes(struct notifier_block *self,
2318 unsigned long action, void *arg)
38837fc7 2319{
3a5a6d0c 2320 schedule_work(&cpuset_hotplug_work);
f481891f 2321 return NOTIFY_OK;
38837fc7 2322}
d8f10cb3
AM
2323
2324static struct notifier_block cpuset_track_online_nodes_nb = {
2325 .notifier_call = cpuset_track_online_nodes,
2326 .priority = 10, /* ??! */
2327};
38837fc7 2328
1da177e4
LT
2329/**
2330 * cpuset_init_smp - initialize cpus_allowed
2331 *
2332 * Description: Finish top cpuset after cpu, node maps are initialized
d8f10cb3 2333 */
1da177e4
LT
2334void __init cpuset_init_smp(void)
2335{
6ad4c188 2336 cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
38d7bee9 2337 top_cpuset.mems_allowed = node_states[N_MEMORY];
33ad801d 2338 top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
4c4d50f7 2339
e2b9a3d7
LZ
2340 cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask);
2341 top_cpuset.effective_mems = node_states[N_MEMORY];
2342
d8f10cb3 2343 register_hotmemory_notifier(&cpuset_track_online_nodes_nb);
1da177e4
LT
2344}
2345
2346/**
1da177e4
LT
2347 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
2348 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
6af866af 2349 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
1da177e4 2350 *
300ed6cb 2351 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
1da177e4 2352 * attached to the specified @tsk. Guaranteed to return some non-empty
5f054e31 2353 * subset of cpu_online_mask, even if this means going outside the
1da177e4
LT
2354 * tasks cpuset.
2355 **/
2356
6af866af 2357void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
1da177e4 2358{
3d3f26a7 2359 mutex_lock(&callback_mutex);
b8dadcb5 2360 rcu_read_lock();
ae1c8023 2361 guarantee_online_cpus(task_cs(tsk), pmask);
b8dadcb5 2362 rcu_read_unlock();
897f0b3c 2363 mutex_unlock(&callback_mutex);
1da177e4
LT
2364}
2365
2baab4e9 2366void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
9084bb82 2367{
9084bb82 2368 rcu_read_lock();
ae1c8023 2369 do_set_cpus_allowed(tsk, task_cs(tsk)->effective_cpus);
9084bb82
ON
2370 rcu_read_unlock();
2371
2372 /*
2373 * We own tsk->cpus_allowed, nobody can change it under us.
2374 *
2375 * But we used cs && cs->cpus_allowed lockless and thus can
2376 * race with cgroup_attach_task() or update_cpumask() and get
2377 * the wrong tsk->cpus_allowed. However, both cases imply the
2378 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
2379 * which takes task_rq_lock().
2380 *
2381 * If we are called after it dropped the lock we must see all
2382 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
2383 * set any mask even if it is not right from task_cs() pov,
2384 * the pending set_cpus_allowed_ptr() will fix things.
2baab4e9
PZ
2385 *
2386 * select_fallback_rq() will fix things ups and set cpu_possible_mask
2387 * if required.
9084bb82 2388 */
9084bb82
ON
2389}
2390
1da177e4
LT
2391void cpuset_init_current_mems_allowed(void)
2392{
f9a86fcb 2393 nodes_setall(current->mems_allowed);
1da177e4
LT
2394}
2395
909d75a3
PJ
2396/**
2397 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
2398 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
2399 *
2400 * Description: Returns the nodemask_t mems_allowed of the cpuset
2401 * attached to the specified @tsk. Guaranteed to return some non-empty
38d7bee9 2402 * subset of node_states[N_MEMORY], even if this means going outside the
909d75a3
PJ
2403 * tasks cpuset.
2404 **/
2405
2406nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
2407{
2408 nodemask_t mask;
2409
3d3f26a7 2410 mutex_lock(&callback_mutex);
b8dadcb5 2411 rcu_read_lock();
ae1c8023 2412 guarantee_online_mems(task_cs(tsk), &mask);
b8dadcb5 2413 rcu_read_unlock();
3d3f26a7 2414 mutex_unlock(&callback_mutex);
909d75a3
PJ
2415
2416 return mask;
2417}
2418
d9fd8a6d 2419/**
19770b32
MG
2420 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
2421 * @nodemask: the nodemask to be checked
d9fd8a6d 2422 *
19770b32 2423 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
1da177e4 2424 */
19770b32 2425int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
1da177e4 2426{
19770b32 2427 return nodes_intersects(*nodemask, current->mems_allowed);
1da177e4
LT
2428}
2429
9bf2229f 2430/*
78608366
PM
2431 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
2432 * mem_hardwall ancestor to the specified cpuset. Call holding
2433 * callback_mutex. If no ancestor is mem_exclusive or mem_hardwall
2434 * (an unusual configuration), then returns the root cpuset.
9bf2229f 2435 */
c9710d80 2436static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
9bf2229f 2437{
c431069f
TH
2438 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
2439 cs = parent_cs(cs);
9bf2229f
PJ
2440 return cs;
2441}
2442
d9fd8a6d 2443/**
a1bc5a4e
DR
2444 * cpuset_node_allowed_softwall - Can we allocate on a memory node?
2445 * @node: is this an allowed node?
02a0e53d 2446 * @gfp_mask: memory allocation flags
d9fd8a6d 2447 *
a1bc5a4e
DR
2448 * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
2449 * set, yes, we can always allocate. If node is in our task's mems_allowed,
2450 * yes. If it's not a __GFP_HARDWALL request and this node is in the nearest
2451 * hardwalled cpuset ancestor to this task's cpuset, yes. If the task has been
2452 * OOM killed and has access to memory reserves as specified by the TIF_MEMDIE
2453 * flag, yes.
9bf2229f
PJ
2454 * Otherwise, no.
2455 *
a1bc5a4e
DR
2456 * If __GFP_HARDWALL is set, cpuset_node_allowed_softwall() reduces to
2457 * cpuset_node_allowed_hardwall(). Otherwise, cpuset_node_allowed_softwall()
2458 * might sleep, and might allow a node from an enclosing cpuset.
02a0e53d 2459 *
a1bc5a4e
DR
2460 * cpuset_node_allowed_hardwall() only handles the simpler case of hardwall
2461 * cpusets, and never sleeps.
02a0e53d
PJ
2462 *
2463 * The __GFP_THISNODE placement logic is really handled elsewhere,
2464 * by forcibly using a zonelist starting at a specified node, and by
2465 * (in get_page_from_freelist()) refusing to consider the zones for
2466 * any node on the zonelist except the first. By the time any such
2467 * calls get to this routine, we should just shut up and say 'yes'.
2468 *
9bf2229f 2469 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
c596d9f3
DR
2470 * and do not allow allocations outside the current tasks cpuset
2471 * unless the task has been OOM killed as is marked TIF_MEMDIE.
9bf2229f 2472 * GFP_KERNEL allocations are not so marked, so can escape to the
78608366 2473 * nearest enclosing hardwalled ancestor cpuset.
9bf2229f 2474 *
02a0e53d
PJ
2475 * Scanning up parent cpusets requires callback_mutex. The
2476 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
2477 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
2478 * current tasks mems_allowed came up empty on the first pass over
2479 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
2480 * cpuset are short of memory, might require taking the callback_mutex
2481 * mutex.
9bf2229f 2482 *
36be57ff 2483 * The first call here from mm/page_alloc:get_page_from_freelist()
02a0e53d
PJ
2484 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
2485 * so no allocation on a node outside the cpuset is allowed (unless
2486 * in interrupt, of course).
36be57ff
PJ
2487 *
2488 * The second pass through get_page_from_freelist() doesn't even call
2489 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
2490 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
2491 * in alloc_flags. That logic and the checks below have the combined
2492 * affect that:
9bf2229f
PJ
2493 * in_interrupt - any node ok (current task context irrelevant)
2494 * GFP_ATOMIC - any node ok
c596d9f3 2495 * TIF_MEMDIE - any node ok
78608366 2496 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
9bf2229f 2497 * GFP_USER - only nodes in current tasks mems allowed ok.
36be57ff
PJ
2498 *
2499 * Rule:
a1bc5a4e 2500 * Don't call cpuset_node_allowed_softwall if you can't sleep, unless you
36be57ff
PJ
2501 * pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
2502 * the code that might scan up ancestor cpusets and sleep.
02a0e53d 2503 */
a1bc5a4e 2504int __cpuset_node_allowed_softwall(int node, gfp_t gfp_mask)
1da177e4 2505{
c9710d80 2506 struct cpuset *cs; /* current cpuset ancestors */
29afd49b 2507 int allowed; /* is allocation in zone z allowed? */
9bf2229f 2508
9b819d20 2509 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
9bf2229f 2510 return 1;
92d1dbd2 2511 might_sleep_if(!(gfp_mask & __GFP_HARDWALL));
9bf2229f
PJ
2512 if (node_isset(node, current->mems_allowed))
2513 return 1;
c596d9f3
DR
2514 /*
2515 * Allow tasks that have access to memory reserves because they have
2516 * been OOM killed to get memory anywhere.
2517 */
2518 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2519 return 1;
9bf2229f
PJ
2520 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
2521 return 0;
2522
5563e770
BP
2523 if (current->flags & PF_EXITING) /* Let dying task have memory */
2524 return 1;
2525
9bf2229f 2526 /* Not hardwall and node outside mems_allowed: scan up cpusets */
3d3f26a7 2527 mutex_lock(&callback_mutex);
053199ed 2528
b8dadcb5 2529 rcu_read_lock();
78608366 2530 cs = nearest_hardwall_ancestor(task_cs(current));
99afb0fd 2531 allowed = node_isset(node, cs->mems_allowed);
b8dadcb5 2532 rcu_read_unlock();
053199ed 2533
3d3f26a7 2534 mutex_unlock(&callback_mutex);
9bf2229f 2535 return allowed;
1da177e4
LT
2536}
2537
02a0e53d 2538/*
a1bc5a4e
DR
2539 * cpuset_node_allowed_hardwall - Can we allocate on a memory node?
2540 * @node: is this an allowed node?
02a0e53d
PJ
2541 * @gfp_mask: memory allocation flags
2542 *
a1bc5a4e
DR
2543 * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
2544 * set, yes, we can always allocate. If node is in our task's mems_allowed,
2545 * yes. If the task has been OOM killed and has access to memory reserves as
2546 * specified by the TIF_MEMDIE flag, yes.
2547 * Otherwise, no.
02a0e53d
PJ
2548 *
2549 * The __GFP_THISNODE placement logic is really handled elsewhere,
2550 * by forcibly using a zonelist starting at a specified node, and by
2551 * (in get_page_from_freelist()) refusing to consider the zones for
2552 * any node on the zonelist except the first. By the time any such
2553 * calls get to this routine, we should just shut up and say 'yes'.
2554 *
a1bc5a4e
DR
2555 * Unlike the cpuset_node_allowed_softwall() variant, above,
2556 * this variant requires that the node be in the current task's
02a0e53d
PJ
2557 * mems_allowed or that we're in interrupt. It does not scan up the
2558 * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
2559 * It never sleeps.
2560 */
a1bc5a4e 2561int __cpuset_node_allowed_hardwall(int node, gfp_t gfp_mask)
02a0e53d 2562{
02a0e53d
PJ
2563 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2564 return 1;
02a0e53d
PJ
2565 if (node_isset(node, current->mems_allowed))
2566 return 1;
dedf8b79
DW
2567 /*
2568 * Allow tasks that have access to memory reserves because they have
2569 * been OOM killed to get memory anywhere.
2570 */
2571 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2572 return 1;
02a0e53d
PJ
2573 return 0;
2574}
2575
825a46af 2576/**
6adef3eb
JS
2577 * cpuset_mem_spread_node() - On which node to begin search for a file page
2578 * cpuset_slab_spread_node() - On which node to begin search for a slab page
825a46af
PJ
2579 *
2580 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
2581 * tasks in a cpuset with is_spread_page or is_spread_slab set),
2582 * and if the memory allocation used cpuset_mem_spread_node()
2583 * to determine on which node to start looking, as it will for
2584 * certain page cache or slab cache pages such as used for file
2585 * system buffers and inode caches, then instead of starting on the
2586 * local node to look for a free page, rather spread the starting
2587 * node around the tasks mems_allowed nodes.
2588 *
2589 * We don't have to worry about the returned node being offline
2590 * because "it can't happen", and even if it did, it would be ok.
2591 *
2592 * The routines calling guarantee_online_mems() are careful to
2593 * only set nodes in task->mems_allowed that are online. So it
2594 * should not be possible for the following code to return an
2595 * offline node. But if it did, that would be ok, as this routine
2596 * is not returning the node where the allocation must be, only
2597 * the node where the search should start. The zonelist passed to
2598 * __alloc_pages() will include all nodes. If the slab allocator
2599 * is passed an offline node, it will fall back to the local node.
2600 * See kmem_cache_alloc_node().
2601 */
2602
6adef3eb 2603static int cpuset_spread_node(int *rotor)
825a46af
PJ
2604{
2605 int node;
2606
6adef3eb 2607 node = next_node(*rotor, current->mems_allowed);
825a46af
PJ
2608 if (node == MAX_NUMNODES)
2609 node = first_node(current->mems_allowed);
6adef3eb 2610 *rotor = node;
825a46af
PJ
2611 return node;
2612}
6adef3eb
JS
2613
2614int cpuset_mem_spread_node(void)
2615{
778d3b0f
MH
2616 if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
2617 current->cpuset_mem_spread_rotor =
2618 node_random(&current->mems_allowed);
2619
6adef3eb
JS
2620 return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
2621}
2622
2623int cpuset_slab_spread_node(void)
2624{
778d3b0f
MH
2625 if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
2626 current->cpuset_slab_spread_rotor =
2627 node_random(&current->mems_allowed);
2628
6adef3eb
JS
2629 return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
2630}
2631
825a46af
PJ
2632EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
2633
ef08e3b4 2634/**
bbe373f2
DR
2635 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
2636 * @tsk1: pointer to task_struct of some task.
2637 * @tsk2: pointer to task_struct of some other task.
2638 *
2639 * Description: Return true if @tsk1's mems_allowed intersects the
2640 * mems_allowed of @tsk2. Used by the OOM killer to determine if
2641 * one of the task's memory usage might impact the memory available
2642 * to the other.
ef08e3b4
PJ
2643 **/
2644
bbe373f2
DR
2645int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
2646 const struct task_struct *tsk2)
ef08e3b4 2647{
bbe373f2 2648 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
ef08e3b4
PJ
2649}
2650
f440d98f
LZ
2651#define CPUSET_NODELIST_LEN (256)
2652
75aa1994
DR
2653/**
2654 * cpuset_print_task_mems_allowed - prints task's cpuset and mems_allowed
fc34ac1d 2655 * @tsk: pointer to task_struct of some task.
75aa1994
DR
2656 *
2657 * Description: Prints @task's name, cpuset name, and cached copy of its
b8dadcb5 2658 * mems_allowed to the kernel log.
75aa1994
DR
2659 */
2660void cpuset_print_task_mems_allowed(struct task_struct *tsk)
2661{
f440d98f
LZ
2662 /* Statically allocated to prevent using excess stack. */
2663 static char cpuset_nodelist[CPUSET_NODELIST_LEN];
2664 static DEFINE_SPINLOCK(cpuset_buffer_lock);
b8dadcb5 2665 struct cgroup *cgrp;
75aa1994 2666
f440d98f 2667 spin_lock(&cpuset_buffer_lock);
b8dadcb5 2668 rcu_read_lock();
63f43f55 2669
b8dadcb5 2670 cgrp = task_cs(tsk)->css.cgroup;
75aa1994
DR
2671 nodelist_scnprintf(cpuset_nodelist, CPUSET_NODELIST_LEN,
2672 tsk->mems_allowed);
12d3089c 2673 pr_info("%s cpuset=", tsk->comm);
e61734c5
TH
2674 pr_cont_cgroup_name(cgrp);
2675 pr_cont(" mems_allowed=%s\n", cpuset_nodelist);
f440d98f 2676
cfb5966b 2677 rcu_read_unlock();
75aa1994
DR
2678 spin_unlock(&cpuset_buffer_lock);
2679}
2680
3e0d98b9
PJ
2681/*
2682 * Collection of memory_pressure is suppressed unless
2683 * this flag is enabled by writing "1" to the special
2684 * cpuset file 'memory_pressure_enabled' in the root cpuset.
2685 */
2686
c5b2aff8 2687int cpuset_memory_pressure_enabled __read_mostly;
3e0d98b9
PJ
2688
2689/**
2690 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
2691 *
2692 * Keep a running average of the rate of synchronous (direct)
2693 * page reclaim efforts initiated by tasks in each cpuset.
2694 *
2695 * This represents the rate at which some task in the cpuset
2696 * ran low on memory on all nodes it was allowed to use, and
2697 * had to enter the kernels page reclaim code in an effort to
2698 * create more free memory by tossing clean pages or swapping
2699 * or writing dirty pages.
2700 *
2701 * Display to user space in the per-cpuset read-only file
2702 * "memory_pressure". Value displayed is an integer
2703 * representing the recent rate of entry into the synchronous
2704 * (direct) page reclaim by any task attached to the cpuset.
2705 **/
2706
2707void __cpuset_memory_pressure_bump(void)
2708{
b8dadcb5 2709 rcu_read_lock();
8793d854 2710 fmeter_markevent(&task_cs(current)->fmeter);
b8dadcb5 2711 rcu_read_unlock();
3e0d98b9
PJ
2712}
2713
8793d854 2714#ifdef CONFIG_PROC_PID_CPUSET
1da177e4
LT
2715/*
2716 * proc_cpuset_show()
2717 * - Print tasks cpuset path into seq_file.
2718 * - Used for /proc/<pid>/cpuset.
053199ed
PJ
2719 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
2720 * doesn't really matter if tsk->cpuset changes after we read it,
5d21cc2d 2721 * and we take cpuset_mutex, keeping cpuset_attach() from changing it
2df167a3 2722 * anyway.
1da177e4 2723 */
52de4779
ZL
2724int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns,
2725 struct pid *pid, struct task_struct *tsk)
1da177e4 2726{
e61734c5 2727 char *buf, *p;
8793d854 2728 struct cgroup_subsys_state *css;
99f89551 2729 int retval;
1da177e4 2730
99f89551 2731 retval = -ENOMEM;
e61734c5 2732 buf = kmalloc(PATH_MAX, GFP_KERNEL);
1da177e4 2733 if (!buf)
99f89551
EB
2734 goto out;
2735
e61734c5 2736 retval = -ENAMETOOLONG;
27e89ae5 2737 rcu_read_lock();
073219e9 2738 css = task_css(tsk, cpuset_cgrp_id);
e61734c5 2739 p = cgroup_path(css->cgroup, buf, PATH_MAX);
27e89ae5 2740 rcu_read_unlock();
e61734c5 2741 if (!p)
52de4779 2742 goto out_free;
e61734c5 2743 seq_puts(m, p);
1da177e4 2744 seq_putc(m, '\n');
e61734c5 2745 retval = 0;
99f89551 2746out_free:
1da177e4 2747 kfree(buf);
99f89551 2748out:
1da177e4
LT
2749 return retval;
2750}
8793d854 2751#endif /* CONFIG_PROC_PID_CPUSET */
1da177e4 2752
d01d4827 2753/* Display task mems_allowed in /proc/<pid>/status file. */
df5f8314
EB
2754void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
2755{
fc34ac1d 2756 seq_puts(m, "Mems_allowed:\t");
30e8e136 2757 seq_nodemask(m, &task->mems_allowed);
fc34ac1d
FF
2758 seq_puts(m, "\n");
2759 seq_puts(m, "Mems_allowed_list:\t");
30e8e136 2760 seq_nodemask_list(m, &task->mems_allowed);
fc34ac1d 2761 seq_puts(m, "\n");
1da177e4 2762}