]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - kernel/cpuset.c
cpuset: use effective cpumask to build sched domains
[mirror_ubuntu-artful-kernel.git] / kernel / cpuset.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/cpuset.c
3 *
4 * Processor and Memory placement constraints for sets of tasks.
5 *
6 * Copyright (C) 2003 BULL SA.
029190c5 7 * Copyright (C) 2004-2007 Silicon Graphics, Inc.
8793d854 8 * Copyright (C) 2006 Google, Inc
1da177e4
LT
9 *
10 * Portions derived from Patrick Mochel's sysfs code.
11 * sysfs is Copyright (c) 2001-3 Patrick Mochel
1da177e4 12 *
825a46af 13 * 2003-10-10 Written by Simon Derr.
1da177e4 14 * 2003-10-22 Updates by Stephen Hemminger.
825a46af 15 * 2004 May-July Rework by Paul Jackson.
8793d854 16 * 2006 Rework by Paul Menage to use generic cgroups
cf417141
MK
17 * 2008 Rework of the scheduler domains and CPU hotplug handling
18 * by Max Krasnyansky
1da177e4
LT
19 *
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
23 */
24
1da177e4
LT
25#include <linux/cpu.h>
26#include <linux/cpumask.h>
27#include <linux/cpuset.h>
28#include <linux/err.h>
29#include <linux/errno.h>
30#include <linux/file.h>
31#include <linux/fs.h>
32#include <linux/init.h>
33#include <linux/interrupt.h>
34#include <linux/kernel.h>
35#include <linux/kmod.h>
36#include <linux/list.h>
68860ec1 37#include <linux/mempolicy.h>
1da177e4 38#include <linux/mm.h>
f481891f 39#include <linux/memory.h>
9984de1a 40#include <linux/export.h>
1da177e4
LT
41#include <linux/mount.h>
42#include <linux/namei.h>
43#include <linux/pagemap.h>
44#include <linux/proc_fs.h>
6b9c2603 45#include <linux/rcupdate.h>
1da177e4
LT
46#include <linux/sched.h>
47#include <linux/seq_file.h>
22fb52dd 48#include <linux/security.h>
1da177e4 49#include <linux/slab.h>
1da177e4
LT
50#include <linux/spinlock.h>
51#include <linux/stat.h>
52#include <linux/string.h>
53#include <linux/time.h>
54#include <linux/backing-dev.h>
55#include <linux/sort.h>
56
57#include <asm/uaccess.h>
60063497 58#include <linux/atomic.h>
3d3f26a7 59#include <linux/mutex.h>
956db3ca
CW
60#include <linux/workqueue.h>
61#include <linux/cgroup.h>
e44193d3 62#include <linux/wait.h>
1da177e4 63
664eedde 64struct static_key cpusets_enabled_key __read_mostly = STATIC_KEY_INIT_FALSE;
202f72d5 65
3e0d98b9
PJ
66/* See "Frequency meter" comments, below. */
67
68struct fmeter {
69 int cnt; /* unprocessed events count */
70 int val; /* most recent output value */
71 time_t time; /* clock (secs) when val computed */
72 spinlock_t lock; /* guards read or write of above */
73};
74
1da177e4 75struct cpuset {
8793d854
PM
76 struct cgroup_subsys_state css;
77
1da177e4 78 unsigned long flags; /* "unsigned long" so bitops work */
e2b9a3d7
LZ
79
80 /* user-configured CPUs and Memory Nodes allow to tasks */
81 cpumask_var_t cpus_allowed;
82 nodemask_t mems_allowed;
83
84 /* effective CPUs and Memory Nodes allow to tasks */
85 cpumask_var_t effective_cpus;
86 nodemask_t effective_mems;
1da177e4 87
33ad801d
LZ
88 /*
89 * This is old Memory Nodes tasks took on.
90 *
91 * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
92 * - A new cpuset's old_mems_allowed is initialized when some
93 * task is moved into it.
94 * - old_mems_allowed is used in cpuset_migrate_mm() when we change
95 * cpuset.mems_allowed and have tasks' nodemask updated, and
96 * then old_mems_allowed is updated to mems_allowed.
97 */
98 nodemask_t old_mems_allowed;
99
3e0d98b9 100 struct fmeter fmeter; /* memory_pressure filter */
029190c5 101
452477fa
TH
102 /*
103 * Tasks are being attached to this cpuset. Used to prevent
104 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
105 */
106 int attach_in_progress;
107
029190c5
PJ
108 /* partition number for rebuild_sched_domains() */
109 int pn;
956db3ca 110
1d3504fc
HS
111 /* for custom sched domain */
112 int relax_domain_level;
1da177e4
LT
113};
114
a7c6d554 115static inline struct cpuset *css_cs(struct cgroup_subsys_state *css)
8793d854 116{
a7c6d554 117 return css ? container_of(css, struct cpuset, css) : NULL;
8793d854
PM
118}
119
120/* Retrieve the cpuset for a task */
121static inline struct cpuset *task_cs(struct task_struct *task)
122{
073219e9 123 return css_cs(task_css(task, cpuset_cgrp_id));
8793d854 124}
8793d854 125
c9710d80 126static inline struct cpuset *parent_cs(struct cpuset *cs)
c431069f 127{
5c9d535b 128 return css_cs(cs->css.parent);
c431069f
TH
129}
130
b246272e
DR
131#ifdef CONFIG_NUMA
132static inline bool task_has_mempolicy(struct task_struct *task)
133{
134 return task->mempolicy;
135}
136#else
137static inline bool task_has_mempolicy(struct task_struct *task)
138{
139 return false;
140}
141#endif
142
143
1da177e4
LT
144/* bits in struct cpuset flags field */
145typedef enum {
efeb77b2 146 CS_ONLINE,
1da177e4
LT
147 CS_CPU_EXCLUSIVE,
148 CS_MEM_EXCLUSIVE,
78608366 149 CS_MEM_HARDWALL,
45b07ef3 150 CS_MEMORY_MIGRATE,
029190c5 151 CS_SCHED_LOAD_BALANCE,
825a46af
PJ
152 CS_SPREAD_PAGE,
153 CS_SPREAD_SLAB,
1da177e4
LT
154} cpuset_flagbits_t;
155
156/* convenient tests for these bits */
efeb77b2
TH
157static inline bool is_cpuset_online(const struct cpuset *cs)
158{
159 return test_bit(CS_ONLINE, &cs->flags);
160}
161
1da177e4
LT
162static inline int is_cpu_exclusive(const struct cpuset *cs)
163{
7b5b9ef0 164 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
1da177e4
LT
165}
166
167static inline int is_mem_exclusive(const struct cpuset *cs)
168{
7b5b9ef0 169 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
1da177e4
LT
170}
171
78608366
PM
172static inline int is_mem_hardwall(const struct cpuset *cs)
173{
174 return test_bit(CS_MEM_HARDWALL, &cs->flags);
175}
176
029190c5
PJ
177static inline int is_sched_load_balance(const struct cpuset *cs)
178{
179 return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
180}
181
45b07ef3
PJ
182static inline int is_memory_migrate(const struct cpuset *cs)
183{
7b5b9ef0 184 return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
45b07ef3
PJ
185}
186
825a46af
PJ
187static inline int is_spread_page(const struct cpuset *cs)
188{
189 return test_bit(CS_SPREAD_PAGE, &cs->flags);
190}
191
192static inline int is_spread_slab(const struct cpuset *cs)
193{
194 return test_bit(CS_SPREAD_SLAB, &cs->flags);
195}
196
1da177e4 197static struct cpuset top_cpuset = {
efeb77b2
TH
198 .flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
199 (1 << CS_MEM_EXCLUSIVE)),
1da177e4
LT
200};
201
ae8086ce
TH
202/**
203 * cpuset_for_each_child - traverse online children of a cpuset
204 * @child_cs: loop cursor pointing to the current child
492eb21b 205 * @pos_css: used for iteration
ae8086ce
TH
206 * @parent_cs: target cpuset to walk children of
207 *
208 * Walk @child_cs through the online children of @parent_cs. Must be used
209 * with RCU read locked.
210 */
492eb21b
TH
211#define cpuset_for_each_child(child_cs, pos_css, parent_cs) \
212 css_for_each_child((pos_css), &(parent_cs)->css) \
213 if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
ae8086ce 214
fc560a26
TH
215/**
216 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
217 * @des_cs: loop cursor pointing to the current descendant
492eb21b 218 * @pos_css: used for iteration
fc560a26
TH
219 * @root_cs: target cpuset to walk ancestor of
220 *
221 * Walk @des_cs through the online descendants of @root_cs. Must be used
492eb21b 222 * with RCU read locked. The caller may modify @pos_css by calling
bd8815a6
TH
223 * css_rightmost_descendant() to skip subtree. @root_cs is included in the
224 * iteration and the first node to be visited.
fc560a26 225 */
492eb21b
TH
226#define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs) \
227 css_for_each_descendant_pre((pos_css), &(root_cs)->css) \
228 if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
fc560a26 229
1da177e4 230/*
5d21cc2d
TH
231 * There are two global mutexes guarding cpuset structures - cpuset_mutex
232 * and callback_mutex. The latter may nest inside the former. We also
233 * require taking task_lock() when dereferencing a task's cpuset pointer.
234 * See "The task_lock() exception", at the end of this comment.
235 *
236 * A task must hold both mutexes to modify cpusets. If a task holds
237 * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
238 * is the only task able to also acquire callback_mutex and be able to
239 * modify cpusets. It can perform various checks on the cpuset structure
240 * first, knowing nothing will change. It can also allocate memory while
241 * just holding cpuset_mutex. While it is performing these checks, various
242 * callback routines can briefly acquire callback_mutex to query cpusets.
243 * Once it is ready to make the changes, it takes callback_mutex, blocking
244 * everyone else.
053199ed
PJ
245 *
246 * Calls to the kernel memory allocator can not be made while holding
3d3f26a7 247 * callback_mutex, as that would risk double tripping on callback_mutex
053199ed
PJ
248 * from one of the callbacks into the cpuset code from within
249 * __alloc_pages().
250 *
3d3f26a7 251 * If a task is only holding callback_mutex, then it has read-only
053199ed
PJ
252 * access to cpusets.
253 *
58568d2a
MX
254 * Now, the task_struct fields mems_allowed and mempolicy may be changed
255 * by other task, we use alloc_lock in the task_struct fields to protect
256 * them.
053199ed 257 *
3d3f26a7 258 * The cpuset_common_file_read() handlers only hold callback_mutex across
053199ed
PJ
259 * small pieces of code, such as when reading out possibly multi-word
260 * cpumasks and nodemasks.
261 *
2df167a3
PM
262 * Accessing a task's cpuset should be done in accordance with the
263 * guidelines for accessing subsystem state in kernel/cgroup.c
1da177e4
LT
264 */
265
5d21cc2d 266static DEFINE_MUTEX(cpuset_mutex);
3d3f26a7 267static DEFINE_MUTEX(callback_mutex);
4247bdc6 268
3a5a6d0c
TH
269/*
270 * CPU / memory hotplug is handled asynchronously.
271 */
272static void cpuset_hotplug_workfn(struct work_struct *work);
3a5a6d0c
TH
273static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);
274
e44193d3
LZ
275static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);
276
cf417141
MK
277/*
278 * This is ugly, but preserves the userspace API for existing cpuset
8793d854 279 * users. If someone tries to mount the "cpuset" filesystem, we
cf417141
MK
280 * silently switch it to mount "cgroup" instead
281 */
f7e83571
AV
282static struct dentry *cpuset_mount(struct file_system_type *fs_type,
283 int flags, const char *unused_dev_name, void *data)
1da177e4 284{
8793d854 285 struct file_system_type *cgroup_fs = get_fs_type("cgroup");
f7e83571 286 struct dentry *ret = ERR_PTR(-ENODEV);
8793d854
PM
287 if (cgroup_fs) {
288 char mountopts[] =
289 "cpuset,noprefix,"
290 "release_agent=/sbin/cpuset_release_agent";
f7e83571
AV
291 ret = cgroup_fs->mount(cgroup_fs, flags,
292 unused_dev_name, mountopts);
8793d854
PM
293 put_filesystem(cgroup_fs);
294 }
295 return ret;
1da177e4
LT
296}
297
298static struct file_system_type cpuset_fs_type = {
299 .name = "cpuset",
f7e83571 300 .mount = cpuset_mount,
1da177e4
LT
301};
302
1da177e4 303/*
300ed6cb 304 * Return in pmask the portion of a cpusets's cpus_allowed that
1da177e4 305 * are online. If none are online, walk up the cpuset hierarchy
40df2deb
LZ
306 * until we find one that does have some online cpus. The top
307 * cpuset always has some cpus online.
1da177e4
LT
308 *
309 * One way or another, we guarantee to return some non-empty subset
5f054e31 310 * of cpu_online_mask.
1da177e4 311 *
3d3f26a7 312 * Call with callback_mutex held.
1da177e4 313 */
c9710d80 314static void guarantee_online_cpus(struct cpuset *cs, struct cpumask *pmask)
1da177e4 315{
40df2deb 316 while (!cpumask_intersects(cs->cpus_allowed, cpu_online_mask))
c431069f 317 cs = parent_cs(cs);
40df2deb 318 cpumask_and(pmask, cs->cpus_allowed, cpu_online_mask);
1da177e4
LT
319}
320
321/*
322 * Return in *pmask the portion of a cpusets's mems_allowed that
0e1e7c7a
CL
323 * are online, with memory. If none are online with memory, walk
324 * up the cpuset hierarchy until we find one that does have some
40df2deb 325 * online mems. The top cpuset always has some mems online.
1da177e4
LT
326 *
327 * One way or another, we guarantee to return some non-empty subset
38d7bee9 328 * of node_states[N_MEMORY].
1da177e4 329 *
3d3f26a7 330 * Call with callback_mutex held.
1da177e4 331 */
c9710d80 332static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
1da177e4 333{
40df2deb 334 while (!nodes_intersects(cs->mems_allowed, node_states[N_MEMORY]))
c431069f 335 cs = parent_cs(cs);
40df2deb 336 nodes_and(*pmask, cs->mems_allowed, node_states[N_MEMORY]);
1da177e4
LT
337}
338
f3b39d47
MX
339/*
340 * update task's spread flag if cpuset's page/slab spread flag is set
341 *
5d21cc2d 342 * Called with callback_mutex/cpuset_mutex held
f3b39d47
MX
343 */
344static void cpuset_update_task_spread_flag(struct cpuset *cs,
345 struct task_struct *tsk)
346{
347 if (is_spread_page(cs))
348 tsk->flags |= PF_SPREAD_PAGE;
349 else
350 tsk->flags &= ~PF_SPREAD_PAGE;
351 if (is_spread_slab(cs))
352 tsk->flags |= PF_SPREAD_SLAB;
353 else
354 tsk->flags &= ~PF_SPREAD_SLAB;
355}
356
1da177e4
LT
357/*
358 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
359 *
360 * One cpuset is a subset of another if all its allowed CPUs and
361 * Memory Nodes are a subset of the other, and its exclusive flags
5d21cc2d 362 * are only set if the other's are set. Call holding cpuset_mutex.
1da177e4
LT
363 */
364
365static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
366{
300ed6cb 367 return cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
1da177e4
LT
368 nodes_subset(p->mems_allowed, q->mems_allowed) &&
369 is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
370 is_mem_exclusive(p) <= is_mem_exclusive(q);
371}
372
645fcc9d
LZ
373/**
374 * alloc_trial_cpuset - allocate a trial cpuset
375 * @cs: the cpuset that the trial cpuset duplicates
376 */
c9710d80 377static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
645fcc9d 378{
300ed6cb
LZ
379 struct cpuset *trial;
380
381 trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
382 if (!trial)
383 return NULL;
384
e2b9a3d7
LZ
385 if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL))
386 goto free_cs;
387 if (!alloc_cpumask_var(&trial->effective_cpus, GFP_KERNEL))
388 goto free_cpus;
300ed6cb 389
e2b9a3d7
LZ
390 cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
391 cpumask_copy(trial->effective_cpus, cs->effective_cpus);
300ed6cb 392 return trial;
e2b9a3d7
LZ
393
394free_cpus:
395 free_cpumask_var(trial->cpus_allowed);
396free_cs:
397 kfree(trial);
398 return NULL;
645fcc9d
LZ
399}
400
401/**
402 * free_trial_cpuset - free the trial cpuset
403 * @trial: the trial cpuset to be freed
404 */
405static void free_trial_cpuset(struct cpuset *trial)
406{
e2b9a3d7 407 free_cpumask_var(trial->effective_cpus);
300ed6cb 408 free_cpumask_var(trial->cpus_allowed);
645fcc9d
LZ
409 kfree(trial);
410}
411
1da177e4
LT
412/*
413 * validate_change() - Used to validate that any proposed cpuset change
414 * follows the structural rules for cpusets.
415 *
416 * If we replaced the flag and mask values of the current cpuset
417 * (cur) with those values in the trial cpuset (trial), would
418 * our various subset and exclusive rules still be valid? Presumes
5d21cc2d 419 * cpuset_mutex held.
1da177e4
LT
420 *
421 * 'cur' is the address of an actual, in-use cpuset. Operations
422 * such as list traversal that depend on the actual address of the
423 * cpuset in the list must use cur below, not trial.
424 *
425 * 'trial' is the address of bulk structure copy of cur, with
426 * perhaps one or more of the fields cpus_allowed, mems_allowed,
427 * or flags changed to new, trial values.
428 *
429 * Return 0 if valid, -errno if not.
430 */
431
c9710d80 432static int validate_change(struct cpuset *cur, struct cpuset *trial)
1da177e4 433{
492eb21b 434 struct cgroup_subsys_state *css;
1da177e4 435 struct cpuset *c, *par;
ae8086ce
TH
436 int ret;
437
438 rcu_read_lock();
1da177e4
LT
439
440 /* Each of our child cpusets must be a subset of us */
ae8086ce 441 ret = -EBUSY;
492eb21b 442 cpuset_for_each_child(c, css, cur)
ae8086ce
TH
443 if (!is_cpuset_subset(c, trial))
444 goto out;
1da177e4
LT
445
446 /* Remaining checks don't apply to root cpuset */
ae8086ce 447 ret = 0;
69604067 448 if (cur == &top_cpuset)
ae8086ce 449 goto out;
1da177e4 450
c431069f 451 par = parent_cs(cur);
69604067 452
1da177e4 453 /* We must be a subset of our parent cpuset */
ae8086ce 454 ret = -EACCES;
1da177e4 455 if (!is_cpuset_subset(trial, par))
ae8086ce 456 goto out;
1da177e4 457
2df167a3
PM
458 /*
459 * If either I or some sibling (!= me) is exclusive, we can't
460 * overlap
461 */
ae8086ce 462 ret = -EINVAL;
492eb21b 463 cpuset_for_each_child(c, css, par) {
1da177e4
LT
464 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
465 c != cur &&
300ed6cb 466 cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
ae8086ce 467 goto out;
1da177e4
LT
468 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
469 c != cur &&
470 nodes_intersects(trial->mems_allowed, c->mems_allowed))
ae8086ce 471 goto out;
1da177e4
LT
472 }
473
452477fa
TH
474 /*
475 * Cpusets with tasks - existing or newly being attached - can't
1c09b195 476 * be changed to have empty cpus_allowed or mems_allowed.
452477fa 477 */
ae8086ce 478 ret = -ENOSPC;
07bc356e 479 if ((cgroup_has_tasks(cur->css.cgroup) || cur->attach_in_progress)) {
1c09b195
LZ
480 if (!cpumask_empty(cur->cpus_allowed) &&
481 cpumask_empty(trial->cpus_allowed))
482 goto out;
483 if (!nodes_empty(cur->mems_allowed) &&
484 nodes_empty(trial->mems_allowed))
485 goto out;
486 }
020958b6 487
ae8086ce
TH
488 ret = 0;
489out:
490 rcu_read_unlock();
491 return ret;
1da177e4
LT
492}
493
db7f47cf 494#ifdef CONFIG_SMP
029190c5 495/*
cf417141 496 * Helper routine for generate_sched_domains().
8b5f1c52 497 * Do cpusets a, b have overlapping effective cpus_allowed masks?
029190c5 498 */
029190c5
PJ
499static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
500{
8b5f1c52 501 return cpumask_intersects(a->effective_cpus, b->effective_cpus);
029190c5
PJ
502}
503
1d3504fc
HS
504static void
505update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
506{
1d3504fc
HS
507 if (dattr->relax_domain_level < c->relax_domain_level)
508 dattr->relax_domain_level = c->relax_domain_level;
509 return;
510}
511
fc560a26
TH
512static void update_domain_attr_tree(struct sched_domain_attr *dattr,
513 struct cpuset *root_cs)
f5393693 514{
fc560a26 515 struct cpuset *cp;
492eb21b 516 struct cgroup_subsys_state *pos_css;
f5393693 517
fc560a26 518 rcu_read_lock();
492eb21b 519 cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
bd8815a6
TH
520 if (cp == root_cs)
521 continue;
522
fc560a26
TH
523 /* skip the whole subtree if @cp doesn't have any CPU */
524 if (cpumask_empty(cp->cpus_allowed)) {
492eb21b 525 pos_css = css_rightmost_descendant(pos_css);
f5393693 526 continue;
fc560a26 527 }
f5393693
LJ
528
529 if (is_sched_load_balance(cp))
530 update_domain_attr(dattr, cp);
f5393693 531 }
fc560a26 532 rcu_read_unlock();
f5393693
LJ
533}
534
029190c5 535/*
cf417141
MK
536 * generate_sched_domains()
537 *
538 * This function builds a partial partition of the systems CPUs
539 * A 'partial partition' is a set of non-overlapping subsets whose
540 * union is a subset of that set.
0a0fca9d 541 * The output of this function needs to be passed to kernel/sched/core.c
cf417141
MK
542 * partition_sched_domains() routine, which will rebuild the scheduler's
543 * load balancing domains (sched domains) as specified by that partial
544 * partition.
029190c5 545 *
45ce80fb 546 * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
029190c5
PJ
547 * for a background explanation of this.
548 *
549 * Does not return errors, on the theory that the callers of this
550 * routine would rather not worry about failures to rebuild sched
551 * domains when operating in the severe memory shortage situations
552 * that could cause allocation failures below.
553 *
5d21cc2d 554 * Must be called with cpuset_mutex held.
029190c5
PJ
555 *
556 * The three key local variables below are:
aeed6824 557 * q - a linked-list queue of cpuset pointers, used to implement a
029190c5
PJ
558 * top-down scan of all cpusets. This scan loads a pointer
559 * to each cpuset marked is_sched_load_balance into the
560 * array 'csa'. For our purposes, rebuilding the schedulers
561 * sched domains, we can ignore !is_sched_load_balance cpusets.
562 * csa - (for CpuSet Array) Array of pointers to all the cpusets
563 * that need to be load balanced, for convenient iterative
564 * access by the subsequent code that finds the best partition,
565 * i.e the set of domains (subsets) of CPUs such that the
566 * cpus_allowed of every cpuset marked is_sched_load_balance
567 * is a subset of one of these domains, while there are as
568 * many such domains as possible, each as small as possible.
569 * doms - Conversion of 'csa' to an array of cpumasks, for passing to
0a0fca9d 570 * the kernel/sched/core.c routine partition_sched_domains() in a
029190c5
PJ
571 * convenient format, that can be easily compared to the prior
572 * value to determine what partition elements (sched domains)
573 * were changed (added or removed.)
574 *
575 * Finding the best partition (set of domains):
576 * The triple nested loops below over i, j, k scan over the
577 * load balanced cpusets (using the array of cpuset pointers in
578 * csa[]) looking for pairs of cpusets that have overlapping
579 * cpus_allowed, but which don't have the same 'pn' partition
580 * number and gives them in the same partition number. It keeps
581 * looping on the 'restart' label until it can no longer find
582 * any such pairs.
583 *
584 * The union of the cpus_allowed masks from the set of
585 * all cpusets having the same 'pn' value then form the one
586 * element of the partition (one sched domain) to be passed to
587 * partition_sched_domains().
588 */
acc3f5d7 589static int generate_sched_domains(cpumask_var_t **domains,
cf417141 590 struct sched_domain_attr **attributes)
029190c5 591{
029190c5
PJ
592 struct cpuset *cp; /* scans q */
593 struct cpuset **csa; /* array of all cpuset ptrs */
594 int csn; /* how many cpuset ptrs in csa so far */
595 int i, j, k; /* indices for partition finding loops */
acc3f5d7 596 cpumask_var_t *doms; /* resulting partition; i.e. sched domains */
1d3504fc 597 struct sched_domain_attr *dattr; /* attributes for custom domains */
1583715d 598 int ndoms = 0; /* number of sched domains in result */
6af866af 599 int nslot; /* next empty doms[] struct cpumask slot */
492eb21b 600 struct cgroup_subsys_state *pos_css;
029190c5 601
029190c5 602 doms = NULL;
1d3504fc 603 dattr = NULL;
cf417141 604 csa = NULL;
029190c5
PJ
605
606 /* Special case for the 99% of systems with one, full, sched domain */
607 if (is_sched_load_balance(&top_cpuset)) {
acc3f5d7
RR
608 ndoms = 1;
609 doms = alloc_sched_domains(ndoms);
029190c5 610 if (!doms)
cf417141
MK
611 goto done;
612
1d3504fc
HS
613 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
614 if (dattr) {
615 *dattr = SD_ATTR_INIT;
93a65575 616 update_domain_attr_tree(dattr, &top_cpuset);
1d3504fc 617 }
8b5f1c52 618 cpumask_copy(doms[0], top_cpuset.effective_cpus);
cf417141 619
cf417141 620 goto done;
029190c5
PJ
621 }
622
664eedde 623 csa = kmalloc(nr_cpusets() * sizeof(cp), GFP_KERNEL);
029190c5
PJ
624 if (!csa)
625 goto done;
626 csn = 0;
627
fc560a26 628 rcu_read_lock();
492eb21b 629 cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
bd8815a6
TH
630 if (cp == &top_cpuset)
631 continue;
f5393693 632 /*
fc560a26
TH
633 * Continue traversing beyond @cp iff @cp has some CPUs and
634 * isn't load balancing. The former is obvious. The
635 * latter: All child cpusets contain a subset of the
636 * parent's cpus, so just skip them, and then we call
637 * update_domain_attr_tree() to calc relax_domain_level of
638 * the corresponding sched domain.
f5393693 639 */
fc560a26
TH
640 if (!cpumask_empty(cp->cpus_allowed) &&
641 !is_sched_load_balance(cp))
f5393693 642 continue;
489a5393 643
fc560a26
TH
644 if (is_sched_load_balance(cp))
645 csa[csn++] = cp;
646
647 /* skip @cp's subtree */
492eb21b 648 pos_css = css_rightmost_descendant(pos_css);
fc560a26
TH
649 }
650 rcu_read_unlock();
029190c5
PJ
651
652 for (i = 0; i < csn; i++)
653 csa[i]->pn = i;
654 ndoms = csn;
655
656restart:
657 /* Find the best partition (set of sched domains) */
658 for (i = 0; i < csn; i++) {
659 struct cpuset *a = csa[i];
660 int apn = a->pn;
661
662 for (j = 0; j < csn; j++) {
663 struct cpuset *b = csa[j];
664 int bpn = b->pn;
665
666 if (apn != bpn && cpusets_overlap(a, b)) {
667 for (k = 0; k < csn; k++) {
668 struct cpuset *c = csa[k];
669
670 if (c->pn == bpn)
671 c->pn = apn;
672 }
673 ndoms--; /* one less element */
674 goto restart;
675 }
676 }
677 }
678
cf417141
MK
679 /*
680 * Now we know how many domains to create.
681 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
682 */
acc3f5d7 683 doms = alloc_sched_domains(ndoms);
700018e0 684 if (!doms)
cf417141 685 goto done;
cf417141
MK
686
687 /*
688 * The rest of the code, including the scheduler, can deal with
689 * dattr==NULL case. No need to abort if alloc fails.
690 */
1d3504fc 691 dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
029190c5
PJ
692
693 for (nslot = 0, i = 0; i < csn; i++) {
694 struct cpuset *a = csa[i];
6af866af 695 struct cpumask *dp;
029190c5
PJ
696 int apn = a->pn;
697
cf417141
MK
698 if (apn < 0) {
699 /* Skip completed partitions */
700 continue;
701 }
702
acc3f5d7 703 dp = doms[nslot];
cf417141
MK
704
705 if (nslot == ndoms) {
706 static int warnings = 10;
707 if (warnings) {
12d3089c
FF
708 pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n",
709 nslot, ndoms, csn, i, apn);
cf417141 710 warnings--;
029190c5 711 }
cf417141
MK
712 continue;
713 }
029190c5 714
6af866af 715 cpumask_clear(dp);
cf417141
MK
716 if (dattr)
717 *(dattr + nslot) = SD_ATTR_INIT;
718 for (j = i; j < csn; j++) {
719 struct cpuset *b = csa[j];
720
721 if (apn == b->pn) {
8b5f1c52 722 cpumask_or(dp, dp, b->effective_cpus);
cf417141
MK
723 if (dattr)
724 update_domain_attr_tree(dattr + nslot, b);
725
726 /* Done with this partition */
727 b->pn = -1;
029190c5 728 }
029190c5 729 }
cf417141 730 nslot++;
029190c5
PJ
731 }
732 BUG_ON(nslot != ndoms);
733
cf417141
MK
734done:
735 kfree(csa);
736
700018e0
LZ
737 /*
738 * Fallback to the default domain if kmalloc() failed.
739 * See comments in partition_sched_domains().
740 */
741 if (doms == NULL)
742 ndoms = 1;
743
cf417141
MK
744 *domains = doms;
745 *attributes = dattr;
746 return ndoms;
747}
748
749/*
750 * Rebuild scheduler domains.
751 *
699140ba
TH
752 * If the flag 'sched_load_balance' of any cpuset with non-empty
753 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
754 * which has that flag enabled, or if any cpuset with a non-empty
755 * 'cpus' is removed, then call this routine to rebuild the
756 * scheduler's dynamic sched domains.
cf417141 757 *
5d21cc2d 758 * Call with cpuset_mutex held. Takes get_online_cpus().
cf417141 759 */
699140ba 760static void rebuild_sched_domains_locked(void)
cf417141
MK
761{
762 struct sched_domain_attr *attr;
acc3f5d7 763 cpumask_var_t *doms;
cf417141
MK
764 int ndoms;
765
5d21cc2d 766 lockdep_assert_held(&cpuset_mutex);
86ef5c9a 767 get_online_cpus();
cf417141 768
5b16c2a4
LZ
769 /*
770 * We have raced with CPU hotplug. Don't do anything to avoid
771 * passing doms with offlined cpu to partition_sched_domains().
772 * Anyways, hotplug work item will rebuild sched domains.
773 */
8b5f1c52 774 if (!cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask))
5b16c2a4
LZ
775 goto out;
776
cf417141 777 /* Generate domain masks and attrs */
cf417141 778 ndoms = generate_sched_domains(&doms, &attr);
cf417141
MK
779
780 /* Have scheduler rebuild the domains */
781 partition_sched_domains(ndoms, doms, attr);
5b16c2a4 782out:
86ef5c9a 783 put_online_cpus();
cf417141 784}
db7f47cf 785#else /* !CONFIG_SMP */
699140ba 786static void rebuild_sched_domains_locked(void)
db7f47cf
PM
787{
788}
db7f47cf 789#endif /* CONFIG_SMP */
029190c5 790
cf417141
MK
791void rebuild_sched_domains(void)
792{
5d21cc2d 793 mutex_lock(&cpuset_mutex);
699140ba 794 rebuild_sched_domains_locked();
5d21cc2d 795 mutex_unlock(&cpuset_mutex);
029190c5
PJ
796}
797
070b57fc
LZ
798/*
799 * effective_cpumask_cpuset - return nearest ancestor with non-empty cpus
800 * @cs: the cpuset in interest
58f4790b 801 *
070b57fc
LZ
802 * A cpuset's effective cpumask is the cpumask of the nearest ancestor
803 * with non-empty cpus. We use effective cpumask whenever:
804 * - we update tasks' cpus_allowed. (they take on the ancestor's cpumask
805 * if the cpuset they reside in has no cpus)
806 * - we want to retrieve task_cs(tsk)'s cpus_allowed.
807 *
808 * Called with cpuset_mutex held. cpuset_cpus_allowed_fallback() is an
809 * exception. See comments there.
810 */
811static struct cpuset *effective_cpumask_cpuset(struct cpuset *cs)
812{
813 while (cpumask_empty(cs->cpus_allowed))
814 cs = parent_cs(cs);
815 return cs;
816}
817
818/*
819 * effective_nodemask_cpuset - return nearest ancestor with non-empty mems
820 * @cs: the cpuset in interest
821 *
822 * A cpuset's effective nodemask is the nodemask of the nearest ancestor
823 * with non-empty memss. We use effective nodemask whenever:
824 * - we update tasks' mems_allowed. (they take on the ancestor's nodemask
825 * if the cpuset they reside in has no mems)
826 * - we want to retrieve task_cs(tsk)'s mems_allowed.
827 *
828 * Called with cpuset_mutex held.
053199ed 829 */
070b57fc 830static struct cpuset *effective_nodemask_cpuset(struct cpuset *cs)
58f4790b 831{
070b57fc
LZ
832 while (nodes_empty(cs->mems_allowed))
833 cs = parent_cs(cs);
834 return cs;
58f4790b 835}
053199ed 836
0b2f630a
MX
837/**
838 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
839 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
0b2f630a 840 *
d66393e5
TH
841 * Iterate through each task of @cs updating its cpus_allowed to the
842 * effective cpuset's. As this function is called with cpuset_mutex held,
843 * cpuset membership stays stable.
0b2f630a 844 */
d66393e5 845static void update_tasks_cpumask(struct cpuset *cs)
0b2f630a 846{
d66393e5
TH
847 struct cpuset *cpus_cs = effective_cpumask_cpuset(cs);
848 struct css_task_iter it;
849 struct task_struct *task;
850
851 css_task_iter_start(&cs->css, &it);
852 while ((task = css_task_iter_next(&it)))
853 set_cpus_allowed_ptr(task, cpus_cs->cpus_allowed);
854 css_task_iter_end(&it);
0b2f630a
MX
855}
856
5c5cc623 857/*
734d4513
LZ
858 * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree
859 * @cs: the cpuset to consider
860 * @new_cpus: temp variable for calculating new effective_cpus
861 *
862 * When congifured cpumask is changed, the effective cpumasks of this cpuset
863 * and all its descendants need to be updated.
5c5cc623 864 *
734d4513 865 * On legacy hierachy, effective_cpus will be the same with cpu_allowed.
5c5cc623
LZ
866 *
867 * Called with cpuset_mutex held
868 */
734d4513 869static void update_cpumasks_hier(struct cpuset *cs, struct cpumask *new_cpus)
5c5cc623
LZ
870{
871 struct cpuset *cp;
492eb21b 872 struct cgroup_subsys_state *pos_css;
8b5f1c52 873 bool need_rebuild_sched_domains = false;
5c5cc623
LZ
874
875 rcu_read_lock();
734d4513
LZ
876 cpuset_for_each_descendant_pre(cp, pos_css, cs) {
877 struct cpuset *parent = parent_cs(cp);
878
879 cpumask_and(new_cpus, cp->cpus_allowed, parent->effective_cpus);
880
554b0d1c
LZ
881 /*
882 * If it becomes empty, inherit the effective mask of the
883 * parent, which is guaranteed to have some CPUs.
884 */
885 if (cpumask_empty(new_cpus))
886 cpumask_copy(new_cpus, parent->effective_cpus);
887
734d4513
LZ
888 /* Skip the whole subtree if the cpumask remains the same. */
889 if (cpumask_equal(new_cpus, cp->effective_cpus)) {
890 pos_css = css_rightmost_descendant(pos_css);
891 continue;
5c5cc623 892 }
734d4513 893
ec903c0c 894 if (!css_tryget_online(&cp->css))
5c5cc623
LZ
895 continue;
896 rcu_read_unlock();
897
734d4513
LZ
898 mutex_lock(&callback_mutex);
899 cpumask_copy(cp->effective_cpus, new_cpus);
900 mutex_unlock(&callback_mutex);
901
902 WARN_ON(!cgroup_on_dfl(cp->css.cgroup) &&
903 !cpumask_equal(cp->cpus_allowed, cp->effective_cpus));
904
d66393e5 905 update_tasks_cpumask(cp);
5c5cc623 906
8b5f1c52
LZ
907 /*
908 * If the effective cpumask of any non-empty cpuset is changed,
909 * we need to rebuild sched domains.
910 */
911 if (!cpumask_empty(cp->cpus_allowed) &&
912 is_sched_load_balance(cp))
913 need_rebuild_sched_domains = true;
914
5c5cc623
LZ
915 rcu_read_lock();
916 css_put(&cp->css);
917 }
918 rcu_read_unlock();
8b5f1c52
LZ
919
920 if (need_rebuild_sched_domains)
921 rebuild_sched_domains_locked();
5c5cc623
LZ
922}
923
58f4790b
CW
924/**
925 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
926 * @cs: the cpuset to consider
fc34ac1d 927 * @trialcs: trial cpuset
58f4790b
CW
928 * @buf: buffer of cpu numbers written to this cpuset
929 */
645fcc9d
LZ
930static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
931 const char *buf)
1da177e4 932{
58f4790b 933 int retval;
1da177e4 934
5f054e31 935 /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
4c4d50f7
PJ
936 if (cs == &top_cpuset)
937 return -EACCES;
938
6f7f02e7 939 /*
c8d9c90c 940 * An empty cpus_allowed is ok only if the cpuset has no tasks.
020958b6
PJ
941 * Since cpulist_parse() fails on an empty mask, we special case
942 * that parsing. The validate_change() call ensures that cpusets
943 * with tasks have cpus.
6f7f02e7 944 */
020958b6 945 if (!*buf) {
300ed6cb 946 cpumask_clear(trialcs->cpus_allowed);
6f7f02e7 947 } else {
300ed6cb 948 retval = cpulist_parse(buf, trialcs->cpus_allowed);
6f7f02e7
DR
949 if (retval < 0)
950 return retval;
37340746 951
6ad4c188 952 if (!cpumask_subset(trialcs->cpus_allowed, cpu_active_mask))
37340746 953 return -EINVAL;
6f7f02e7 954 }
029190c5 955
8707d8b8 956 /* Nothing to do if the cpus didn't change */
300ed6cb 957 if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
8707d8b8 958 return 0;
58f4790b 959
a73456f3
LZ
960 retval = validate_change(cs, trialcs);
961 if (retval < 0)
962 return retval;
963
3d3f26a7 964 mutex_lock(&callback_mutex);
300ed6cb 965 cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
3d3f26a7 966 mutex_unlock(&callback_mutex);
029190c5 967
734d4513
LZ
968 /* use trialcs->cpus_allowed as a temp variable */
969 update_cpumasks_hier(cs, trialcs->cpus_allowed);
85d7b949 970 return 0;
1da177e4
LT
971}
972
e4e364e8
PJ
973/*
974 * cpuset_migrate_mm
975 *
976 * Migrate memory region from one set of nodes to another.
977 *
978 * Temporarilly set tasks mems_allowed to target nodes of migration,
979 * so that the migration code can allocate pages on these nodes.
980 *
e4e364e8
PJ
981 * While the mm_struct we are migrating is typically from some
982 * other task, the task_struct mems_allowed that we are hacking
983 * is for our current task, which must allocate new pages for that
984 * migrating memory region.
e4e364e8
PJ
985 */
986
987static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
988 const nodemask_t *to)
989{
990 struct task_struct *tsk = current;
070b57fc 991 struct cpuset *mems_cs;
e4e364e8 992
e4e364e8 993 tsk->mems_allowed = *to;
e4e364e8
PJ
994
995 do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);
996
47295830 997 rcu_read_lock();
070b57fc
LZ
998 mems_cs = effective_nodemask_cpuset(task_cs(tsk));
999 guarantee_online_mems(mems_cs, &tsk->mems_allowed);
47295830 1000 rcu_read_unlock();
e4e364e8
PJ
1001}
1002
3b6766fe 1003/*
58568d2a
MX
1004 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
1005 * @tsk: the task to change
1006 * @newmems: new nodes that the task will be set
1007 *
1008 * In order to avoid seeing no nodes if the old and new nodes are disjoint,
1009 * we structure updates as setting all new allowed nodes, then clearing newly
1010 * disallowed ones.
58568d2a
MX
1011 */
1012static void cpuset_change_task_nodemask(struct task_struct *tsk,
1013 nodemask_t *newmems)
1014{
b246272e 1015 bool need_loop;
89e8a244 1016
c0ff7453
MX
1017 /*
1018 * Allow tasks that have access to memory reserves because they have
1019 * been OOM killed to get memory anywhere.
1020 */
1021 if (unlikely(test_thread_flag(TIF_MEMDIE)))
1022 return;
1023 if (current->flags & PF_EXITING) /* Let dying task have memory */
1024 return;
1025
1026 task_lock(tsk);
b246272e
DR
1027 /*
1028 * Determine if a loop is necessary if another thread is doing
d26914d1 1029 * read_mems_allowed_begin(). If at least one node remains unchanged and
b246272e
DR
1030 * tsk does not have a mempolicy, then an empty nodemask will not be
1031 * possible when mems_allowed is larger than a word.
1032 */
1033 need_loop = task_has_mempolicy(tsk) ||
1034 !nodes_intersects(*newmems, tsk->mems_allowed);
c0ff7453 1035
0fc0287c
PZ
1036 if (need_loop) {
1037 local_irq_disable();
cc9a6c87 1038 write_seqcount_begin(&tsk->mems_allowed_seq);
0fc0287c 1039 }
c0ff7453 1040
cc9a6c87
MG
1041 nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
1042 mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP1);
c0ff7453
MX
1043
1044 mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP2);
58568d2a 1045 tsk->mems_allowed = *newmems;
cc9a6c87 1046
0fc0287c 1047 if (need_loop) {
cc9a6c87 1048 write_seqcount_end(&tsk->mems_allowed_seq);
0fc0287c
PZ
1049 local_irq_enable();
1050 }
cc9a6c87 1051
c0ff7453 1052 task_unlock(tsk);
58568d2a
MX
1053}
1054
8793d854
PM
1055static void *cpuset_being_rebound;
1056
0b2f630a
MX
1057/**
1058 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1059 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
0b2f630a 1060 *
d66393e5
TH
1061 * Iterate through each task of @cs updating its mems_allowed to the
1062 * effective cpuset's. As this function is called with cpuset_mutex held,
1063 * cpuset membership stays stable.
0b2f630a 1064 */
d66393e5 1065static void update_tasks_nodemask(struct cpuset *cs)
1da177e4 1066{
33ad801d 1067 static nodemask_t newmems; /* protected by cpuset_mutex */
070b57fc 1068 struct cpuset *mems_cs = effective_nodemask_cpuset(cs);
d66393e5
TH
1069 struct css_task_iter it;
1070 struct task_struct *task;
59dac16f 1071
846a16bf 1072 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
4225399a 1073
070b57fc 1074 guarantee_online_mems(mems_cs, &newmems);
33ad801d 1075
4225399a 1076 /*
3b6766fe
LZ
1077 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
1078 * take while holding tasklist_lock. Forks can happen - the
1079 * mpol_dup() cpuset_being_rebound check will catch such forks,
1080 * and rebind their vma mempolicies too. Because we still hold
5d21cc2d 1081 * the global cpuset_mutex, we know that no other rebind effort
3b6766fe 1082 * will be contending for the global variable cpuset_being_rebound.
4225399a 1083 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
04c19fa6 1084 * is idempotent. Also migrate pages in each mm to new nodes.
4225399a 1085 */
d66393e5
TH
1086 css_task_iter_start(&cs->css, &it);
1087 while ((task = css_task_iter_next(&it))) {
1088 struct mm_struct *mm;
1089 bool migrate;
1090
1091 cpuset_change_task_nodemask(task, &newmems);
1092
1093 mm = get_task_mm(task);
1094 if (!mm)
1095 continue;
1096
1097 migrate = is_memory_migrate(cs);
1098
1099 mpol_rebind_mm(mm, &cs->mems_allowed);
1100 if (migrate)
1101 cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems);
1102 mmput(mm);
1103 }
1104 css_task_iter_end(&it);
4225399a 1105
33ad801d
LZ
1106 /*
1107 * All the tasks' nodemasks have been updated, update
1108 * cs->old_mems_allowed.
1109 */
1110 cs->old_mems_allowed = newmems;
1111
2df167a3 1112 /* We're done rebinding vmas to this cpuset's new mems_allowed. */
8793d854 1113 cpuset_being_rebound = NULL;
1da177e4
LT
1114}
1115
5c5cc623 1116/*
734d4513
LZ
1117 * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree
1118 * @cs: the cpuset to consider
1119 * @new_mems: a temp variable for calculating new effective_mems
1120 *
1121 * When configured nodemask is changed, the effective nodemasks of this cpuset
1122 * and all its descendants need to be updated.
5c5cc623 1123 *
734d4513 1124 * On legacy hiearchy, effective_mems will be the same with mems_allowed.
5c5cc623
LZ
1125 *
1126 * Called with cpuset_mutex held
1127 */
734d4513 1128static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems)
5c5cc623
LZ
1129{
1130 struct cpuset *cp;
492eb21b 1131 struct cgroup_subsys_state *pos_css;
5c5cc623
LZ
1132
1133 rcu_read_lock();
734d4513
LZ
1134 cpuset_for_each_descendant_pre(cp, pos_css, cs) {
1135 struct cpuset *parent = parent_cs(cp);
1136
1137 nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems);
1138
554b0d1c
LZ
1139 /*
1140 * If it becomes empty, inherit the effective mask of the
1141 * parent, which is guaranteed to have some MEMs.
1142 */
1143 if (nodes_empty(*new_mems))
1144 *new_mems = parent->effective_mems;
1145
734d4513
LZ
1146 /* Skip the whole subtree if the nodemask remains the same. */
1147 if (nodes_equal(*new_mems, cp->effective_mems)) {
1148 pos_css = css_rightmost_descendant(pos_css);
1149 continue;
5c5cc623 1150 }
734d4513 1151
ec903c0c 1152 if (!css_tryget_online(&cp->css))
5c5cc623
LZ
1153 continue;
1154 rcu_read_unlock();
1155
734d4513
LZ
1156 mutex_lock(&callback_mutex);
1157 cp->effective_mems = *new_mems;
1158 mutex_unlock(&callback_mutex);
1159
1160 WARN_ON(!cgroup_on_dfl(cp->css.cgroup) &&
1161 nodes_equal(cp->mems_allowed, cp->effective_mems));
1162
d66393e5 1163 update_tasks_nodemask(cp);
5c5cc623
LZ
1164
1165 rcu_read_lock();
1166 css_put(&cp->css);
1167 }
1168 rcu_read_unlock();
1169}
1170
0b2f630a
MX
1171/*
1172 * Handle user request to change the 'mems' memory placement
1173 * of a cpuset. Needs to validate the request, update the
58568d2a
MX
1174 * cpusets mems_allowed, and for each task in the cpuset,
1175 * update mems_allowed and rebind task's mempolicy and any vma
1176 * mempolicies and if the cpuset is marked 'memory_migrate',
1177 * migrate the tasks pages to the new memory.
0b2f630a 1178 *
5d21cc2d 1179 * Call with cpuset_mutex held. May take callback_mutex during call.
0b2f630a
MX
1180 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1181 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
1182 * their mempolicies to the cpusets new mems_allowed.
1183 */
645fcc9d
LZ
1184static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
1185 const char *buf)
0b2f630a 1186{
0b2f630a
MX
1187 int retval;
1188
1189 /*
38d7bee9 1190 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
0b2f630a
MX
1191 * it's read-only
1192 */
53feb297
MX
1193 if (cs == &top_cpuset) {
1194 retval = -EACCES;
1195 goto done;
1196 }
0b2f630a 1197
0b2f630a
MX
1198 /*
1199 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1200 * Since nodelist_parse() fails on an empty mask, we special case
1201 * that parsing. The validate_change() call ensures that cpusets
1202 * with tasks have memory.
1203 */
1204 if (!*buf) {
645fcc9d 1205 nodes_clear(trialcs->mems_allowed);
0b2f630a 1206 } else {
645fcc9d 1207 retval = nodelist_parse(buf, trialcs->mems_allowed);
0b2f630a
MX
1208 if (retval < 0)
1209 goto done;
1210
645fcc9d 1211 if (!nodes_subset(trialcs->mems_allowed,
38d7bee9 1212 node_states[N_MEMORY])) {
53feb297
MX
1213 retval = -EINVAL;
1214 goto done;
1215 }
0b2f630a 1216 }
33ad801d
LZ
1217
1218 if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
0b2f630a
MX
1219 retval = 0; /* Too easy - nothing to do */
1220 goto done;
1221 }
645fcc9d 1222 retval = validate_change(cs, trialcs);
0b2f630a
MX
1223 if (retval < 0)
1224 goto done;
1225
1226 mutex_lock(&callback_mutex);
645fcc9d 1227 cs->mems_allowed = trialcs->mems_allowed;
0b2f630a
MX
1228 mutex_unlock(&callback_mutex);
1229
734d4513
LZ
1230 /* use trialcs->mems_allowed as a temp variable */
1231 update_nodemasks_hier(cs, &cs->mems_allowed);
0b2f630a
MX
1232done:
1233 return retval;
1234}
1235
8793d854
PM
1236int current_cpuset_is_being_rebound(void)
1237{
1238 return task_cs(current) == cpuset_being_rebound;
1239}
1240
5be7a479 1241static int update_relax_domain_level(struct cpuset *cs, s64 val)
1d3504fc 1242{
db7f47cf 1243#ifdef CONFIG_SMP
60495e77 1244 if (val < -1 || val >= sched_domain_level_max)
30e0e178 1245 return -EINVAL;
db7f47cf 1246#endif
1d3504fc
HS
1247
1248 if (val != cs->relax_domain_level) {
1249 cs->relax_domain_level = val;
300ed6cb
LZ
1250 if (!cpumask_empty(cs->cpus_allowed) &&
1251 is_sched_load_balance(cs))
699140ba 1252 rebuild_sched_domains_locked();
1d3504fc
HS
1253 }
1254
1255 return 0;
1256}
1257
72ec7029 1258/**
950592f7
MX
1259 * update_tasks_flags - update the spread flags of tasks in the cpuset.
1260 * @cs: the cpuset in which each task's spread flags needs to be changed
950592f7 1261 *
d66393e5
TH
1262 * Iterate through each task of @cs updating its spread flags. As this
1263 * function is called with cpuset_mutex held, cpuset membership stays
1264 * stable.
950592f7 1265 */
d66393e5 1266static void update_tasks_flags(struct cpuset *cs)
950592f7 1267{
d66393e5
TH
1268 struct css_task_iter it;
1269 struct task_struct *task;
1270
1271 css_task_iter_start(&cs->css, &it);
1272 while ((task = css_task_iter_next(&it)))
1273 cpuset_update_task_spread_flag(cs, task);
1274 css_task_iter_end(&it);
950592f7
MX
1275}
1276
1da177e4
LT
1277/*
1278 * update_flag - read a 0 or a 1 in a file and update associated flag
78608366
PM
1279 * bit: the bit to update (see cpuset_flagbits_t)
1280 * cs: the cpuset to update
1281 * turning_on: whether the flag is being set or cleared
053199ed 1282 *
5d21cc2d 1283 * Call with cpuset_mutex held.
1da177e4
LT
1284 */
1285
700fe1ab
PM
1286static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1287 int turning_on)
1da177e4 1288{
645fcc9d 1289 struct cpuset *trialcs;
40b6a762 1290 int balance_flag_changed;
950592f7 1291 int spread_flag_changed;
950592f7 1292 int err;
1da177e4 1293
645fcc9d
LZ
1294 trialcs = alloc_trial_cpuset(cs);
1295 if (!trialcs)
1296 return -ENOMEM;
1297
1da177e4 1298 if (turning_on)
645fcc9d 1299 set_bit(bit, &trialcs->flags);
1da177e4 1300 else
645fcc9d 1301 clear_bit(bit, &trialcs->flags);
1da177e4 1302
645fcc9d 1303 err = validate_change(cs, trialcs);
85d7b949 1304 if (err < 0)
645fcc9d 1305 goto out;
029190c5 1306
029190c5 1307 balance_flag_changed = (is_sched_load_balance(cs) !=
645fcc9d 1308 is_sched_load_balance(trialcs));
029190c5 1309
950592f7
MX
1310 spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
1311 || (is_spread_page(cs) != is_spread_page(trialcs)));
1312
3d3f26a7 1313 mutex_lock(&callback_mutex);
645fcc9d 1314 cs->flags = trialcs->flags;
3d3f26a7 1315 mutex_unlock(&callback_mutex);
85d7b949 1316
300ed6cb 1317 if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
699140ba 1318 rebuild_sched_domains_locked();
029190c5 1319
950592f7 1320 if (spread_flag_changed)
d66393e5 1321 update_tasks_flags(cs);
645fcc9d
LZ
1322out:
1323 free_trial_cpuset(trialcs);
1324 return err;
1da177e4
LT
1325}
1326
3e0d98b9 1327/*
80f7228b 1328 * Frequency meter - How fast is some event occurring?
3e0d98b9
PJ
1329 *
1330 * These routines manage a digitally filtered, constant time based,
1331 * event frequency meter. There are four routines:
1332 * fmeter_init() - initialize a frequency meter.
1333 * fmeter_markevent() - called each time the event happens.
1334 * fmeter_getrate() - returns the recent rate of such events.
1335 * fmeter_update() - internal routine used to update fmeter.
1336 *
1337 * A common data structure is passed to each of these routines,
1338 * which is used to keep track of the state required to manage the
1339 * frequency meter and its digital filter.
1340 *
1341 * The filter works on the number of events marked per unit time.
1342 * The filter is single-pole low-pass recursive (IIR). The time unit
1343 * is 1 second. Arithmetic is done using 32-bit integers scaled to
1344 * simulate 3 decimal digits of precision (multiplied by 1000).
1345 *
1346 * With an FM_COEF of 933, and a time base of 1 second, the filter
1347 * has a half-life of 10 seconds, meaning that if the events quit
1348 * happening, then the rate returned from the fmeter_getrate()
1349 * will be cut in half each 10 seconds, until it converges to zero.
1350 *
1351 * It is not worth doing a real infinitely recursive filter. If more
1352 * than FM_MAXTICKS ticks have elapsed since the last filter event,
1353 * just compute FM_MAXTICKS ticks worth, by which point the level
1354 * will be stable.
1355 *
1356 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
1357 * arithmetic overflow in the fmeter_update() routine.
1358 *
1359 * Given the simple 32 bit integer arithmetic used, this meter works
1360 * best for reporting rates between one per millisecond (msec) and
1361 * one per 32 (approx) seconds. At constant rates faster than one
1362 * per msec it maxes out at values just under 1,000,000. At constant
1363 * rates between one per msec, and one per second it will stabilize
1364 * to a value N*1000, where N is the rate of events per second.
1365 * At constant rates between one per second and one per 32 seconds,
1366 * it will be choppy, moving up on the seconds that have an event,
1367 * and then decaying until the next event. At rates slower than
1368 * about one in 32 seconds, it decays all the way back to zero between
1369 * each event.
1370 */
1371
1372#define FM_COEF 933 /* coefficient for half-life of 10 secs */
1373#define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
1374#define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
1375#define FM_SCALE 1000 /* faux fixed point scale */
1376
1377/* Initialize a frequency meter */
1378static void fmeter_init(struct fmeter *fmp)
1379{
1380 fmp->cnt = 0;
1381 fmp->val = 0;
1382 fmp->time = 0;
1383 spin_lock_init(&fmp->lock);
1384}
1385
1386/* Internal meter update - process cnt events and update value */
1387static void fmeter_update(struct fmeter *fmp)
1388{
1389 time_t now = get_seconds();
1390 time_t ticks = now - fmp->time;
1391
1392 if (ticks == 0)
1393 return;
1394
1395 ticks = min(FM_MAXTICKS, ticks);
1396 while (ticks-- > 0)
1397 fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
1398 fmp->time = now;
1399
1400 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
1401 fmp->cnt = 0;
1402}
1403
1404/* Process any previous ticks, then bump cnt by one (times scale). */
1405static void fmeter_markevent(struct fmeter *fmp)
1406{
1407 spin_lock(&fmp->lock);
1408 fmeter_update(fmp);
1409 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
1410 spin_unlock(&fmp->lock);
1411}
1412
1413/* Process any previous ticks, then return current value. */
1414static int fmeter_getrate(struct fmeter *fmp)
1415{
1416 int val;
1417
1418 spin_lock(&fmp->lock);
1419 fmeter_update(fmp);
1420 val = fmp->val;
1421 spin_unlock(&fmp->lock);
1422 return val;
1423}
1424
57fce0a6
TH
1425static struct cpuset *cpuset_attach_old_cs;
1426
5d21cc2d 1427/* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
eb95419b
TH
1428static int cpuset_can_attach(struct cgroup_subsys_state *css,
1429 struct cgroup_taskset *tset)
f780bdb7 1430{
eb95419b 1431 struct cpuset *cs = css_cs(css);
bb9d97b6
TH
1432 struct task_struct *task;
1433 int ret;
1da177e4 1434
57fce0a6
TH
1435 /* used later by cpuset_attach() */
1436 cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset));
1437
5d21cc2d
TH
1438 mutex_lock(&cpuset_mutex);
1439
aa6ec29b 1440 /* allow moving tasks into an empty cpuset if on default hierarchy */
5d21cc2d 1441 ret = -ENOSPC;
aa6ec29b 1442 if (!cgroup_on_dfl(css->cgroup) &&
88fa523b 1443 (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)))
5d21cc2d 1444 goto out_unlock;
9985b0ba 1445
924f0d9a 1446 cgroup_taskset_for_each(task, tset) {
bb9d97b6 1447 /*
14a40ffc
TH
1448 * Kthreads which disallow setaffinity shouldn't be moved
1449 * to a new cpuset; we don't want to change their cpu
1450 * affinity and isolating such threads by their set of
1451 * allowed nodes is unnecessary. Thus, cpusets are not
1452 * applicable for such threads. This prevents checking for
1453 * success of set_cpus_allowed_ptr() on all attached tasks
1454 * before cpus_allowed may be changed.
bb9d97b6 1455 */
5d21cc2d 1456 ret = -EINVAL;
14a40ffc 1457 if (task->flags & PF_NO_SETAFFINITY)
5d21cc2d
TH
1458 goto out_unlock;
1459 ret = security_task_setscheduler(task);
1460 if (ret)
1461 goto out_unlock;
bb9d97b6 1462 }
f780bdb7 1463
452477fa
TH
1464 /*
1465 * Mark attach is in progress. This makes validate_change() fail
1466 * changes which zero cpus/mems_allowed.
1467 */
1468 cs->attach_in_progress++;
5d21cc2d
TH
1469 ret = 0;
1470out_unlock:
1471 mutex_unlock(&cpuset_mutex);
1472 return ret;
8793d854 1473}
f780bdb7 1474
eb95419b 1475static void cpuset_cancel_attach(struct cgroup_subsys_state *css,
452477fa
TH
1476 struct cgroup_taskset *tset)
1477{
5d21cc2d 1478 mutex_lock(&cpuset_mutex);
eb95419b 1479 css_cs(css)->attach_in_progress--;
5d21cc2d 1480 mutex_unlock(&cpuset_mutex);
8793d854 1481}
1da177e4 1482
4e4c9a14 1483/*
5d21cc2d 1484 * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach()
4e4c9a14
TH
1485 * but we can't allocate it dynamically there. Define it global and
1486 * allocate from cpuset_init().
1487 */
1488static cpumask_var_t cpus_attach;
1489
eb95419b
TH
1490static void cpuset_attach(struct cgroup_subsys_state *css,
1491 struct cgroup_taskset *tset)
8793d854 1492{
67bd2c59 1493 /* static buf protected by cpuset_mutex */
4e4c9a14 1494 static nodemask_t cpuset_attach_nodemask_to;
8793d854 1495 struct mm_struct *mm;
bb9d97b6
TH
1496 struct task_struct *task;
1497 struct task_struct *leader = cgroup_taskset_first(tset);
eb95419b 1498 struct cpuset *cs = css_cs(css);
57fce0a6 1499 struct cpuset *oldcs = cpuset_attach_old_cs;
070b57fc
LZ
1500 struct cpuset *cpus_cs = effective_cpumask_cpuset(cs);
1501 struct cpuset *mems_cs = effective_nodemask_cpuset(cs);
22fb52dd 1502
5d21cc2d
TH
1503 mutex_lock(&cpuset_mutex);
1504
4e4c9a14
TH
1505 /* prepare for attach */
1506 if (cs == &top_cpuset)
1507 cpumask_copy(cpus_attach, cpu_possible_mask);
1508 else
070b57fc 1509 guarantee_online_cpus(cpus_cs, cpus_attach);
4e4c9a14 1510
070b57fc 1511 guarantee_online_mems(mems_cs, &cpuset_attach_nodemask_to);
4e4c9a14 1512
924f0d9a 1513 cgroup_taskset_for_each(task, tset) {
bb9d97b6
TH
1514 /*
1515 * can_attach beforehand should guarantee that this doesn't
1516 * fail. TODO: have a better way to handle failure here
1517 */
1518 WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
1519
1520 cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
1521 cpuset_update_task_spread_flag(cs, task);
1522 }
22fb52dd 1523
f780bdb7
BB
1524 /*
1525 * Change mm, possibly for multiple threads in a threadgroup. This is
1526 * expensive and may sleep.
1527 */
f780bdb7 1528 cpuset_attach_nodemask_to = cs->mems_allowed;
bb9d97b6 1529 mm = get_task_mm(leader);
4225399a 1530 if (mm) {
070b57fc
LZ
1531 struct cpuset *mems_oldcs = effective_nodemask_cpuset(oldcs);
1532
f780bdb7 1533 mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
f047cecf
LZ
1534
1535 /*
1536 * old_mems_allowed is the same with mems_allowed here, except
1537 * if this task is being moved automatically due to hotplug.
1538 * In that case @mems_allowed has been updated and is empty,
1539 * so @old_mems_allowed is the right nodesets that we migrate
1540 * mm from.
1541 */
1542 if (is_memory_migrate(cs)) {
1543 cpuset_migrate_mm(mm, &mems_oldcs->old_mems_allowed,
f780bdb7 1544 &cpuset_attach_nodemask_to);
f047cecf 1545 }
4225399a
PJ
1546 mmput(mm);
1547 }
452477fa 1548
33ad801d 1549 cs->old_mems_allowed = cpuset_attach_nodemask_to;
02bb5863 1550
452477fa 1551 cs->attach_in_progress--;
e44193d3
LZ
1552 if (!cs->attach_in_progress)
1553 wake_up(&cpuset_attach_wq);
5d21cc2d
TH
1554
1555 mutex_unlock(&cpuset_mutex);
1da177e4
LT
1556}
1557
1558/* The various types of files and directories in a cpuset file system */
1559
1560typedef enum {
45b07ef3 1561 FILE_MEMORY_MIGRATE,
1da177e4
LT
1562 FILE_CPULIST,
1563 FILE_MEMLIST,
1564 FILE_CPU_EXCLUSIVE,
1565 FILE_MEM_EXCLUSIVE,
78608366 1566 FILE_MEM_HARDWALL,
029190c5 1567 FILE_SCHED_LOAD_BALANCE,
1d3504fc 1568 FILE_SCHED_RELAX_DOMAIN_LEVEL,
3e0d98b9
PJ
1569 FILE_MEMORY_PRESSURE_ENABLED,
1570 FILE_MEMORY_PRESSURE,
825a46af
PJ
1571 FILE_SPREAD_PAGE,
1572 FILE_SPREAD_SLAB,
1da177e4
LT
1573} cpuset_filetype_t;
1574
182446d0
TH
1575static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft,
1576 u64 val)
700fe1ab 1577{
182446d0 1578 struct cpuset *cs = css_cs(css);
700fe1ab 1579 cpuset_filetype_t type = cft->private;
a903f086 1580 int retval = 0;
700fe1ab 1581
5d21cc2d 1582 mutex_lock(&cpuset_mutex);
a903f086
LZ
1583 if (!is_cpuset_online(cs)) {
1584 retval = -ENODEV;
5d21cc2d 1585 goto out_unlock;
a903f086 1586 }
700fe1ab
PM
1587
1588 switch (type) {
1da177e4 1589 case FILE_CPU_EXCLUSIVE:
700fe1ab 1590 retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
1da177e4
LT
1591 break;
1592 case FILE_MEM_EXCLUSIVE:
700fe1ab 1593 retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
1da177e4 1594 break;
78608366
PM
1595 case FILE_MEM_HARDWALL:
1596 retval = update_flag(CS_MEM_HARDWALL, cs, val);
1597 break;
029190c5 1598 case FILE_SCHED_LOAD_BALANCE:
700fe1ab 1599 retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1d3504fc 1600 break;
45b07ef3 1601 case FILE_MEMORY_MIGRATE:
700fe1ab 1602 retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
45b07ef3 1603 break;
3e0d98b9 1604 case FILE_MEMORY_PRESSURE_ENABLED:
700fe1ab 1605 cpuset_memory_pressure_enabled = !!val;
3e0d98b9
PJ
1606 break;
1607 case FILE_MEMORY_PRESSURE:
1608 retval = -EACCES;
1609 break;
825a46af 1610 case FILE_SPREAD_PAGE:
700fe1ab 1611 retval = update_flag(CS_SPREAD_PAGE, cs, val);
825a46af
PJ
1612 break;
1613 case FILE_SPREAD_SLAB:
700fe1ab 1614 retval = update_flag(CS_SPREAD_SLAB, cs, val);
825a46af 1615 break;
1da177e4
LT
1616 default:
1617 retval = -EINVAL;
700fe1ab 1618 break;
1da177e4 1619 }
5d21cc2d
TH
1620out_unlock:
1621 mutex_unlock(&cpuset_mutex);
1da177e4
LT
1622 return retval;
1623}
1624
182446d0
TH
1625static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft,
1626 s64 val)
5be7a479 1627{
182446d0 1628 struct cpuset *cs = css_cs(css);
5be7a479 1629 cpuset_filetype_t type = cft->private;
5d21cc2d 1630 int retval = -ENODEV;
5be7a479 1631
5d21cc2d
TH
1632 mutex_lock(&cpuset_mutex);
1633 if (!is_cpuset_online(cs))
1634 goto out_unlock;
e3712395 1635
5be7a479
PM
1636 switch (type) {
1637 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1638 retval = update_relax_domain_level(cs, val);
1639 break;
1640 default:
1641 retval = -EINVAL;
1642 break;
1643 }
5d21cc2d
TH
1644out_unlock:
1645 mutex_unlock(&cpuset_mutex);
5be7a479
PM
1646 return retval;
1647}
1648
e3712395
PM
1649/*
1650 * Common handling for a write to a "cpus" or "mems" file.
1651 */
451af504
TH
1652static ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
1653 char *buf, size_t nbytes, loff_t off)
e3712395 1654{
451af504 1655 struct cpuset *cs = css_cs(of_css(of));
645fcc9d 1656 struct cpuset *trialcs;
5d21cc2d 1657 int retval = -ENODEV;
e3712395 1658
451af504
TH
1659 buf = strstrip(buf);
1660
3a5a6d0c
TH
1661 /*
1662 * CPU or memory hotunplug may leave @cs w/o any execution
1663 * resources, in which case the hotplug code asynchronously updates
1664 * configuration and transfers all tasks to the nearest ancestor
1665 * which can execute.
1666 *
1667 * As writes to "cpus" or "mems" may restore @cs's execution
1668 * resources, wait for the previously scheduled operations before
1669 * proceeding, so that we don't end up keep removing tasks added
1670 * after execution capability is restored.
1671 */
1672 flush_work(&cpuset_hotplug_work);
1673
5d21cc2d
TH
1674 mutex_lock(&cpuset_mutex);
1675 if (!is_cpuset_online(cs))
1676 goto out_unlock;
e3712395 1677
645fcc9d 1678 trialcs = alloc_trial_cpuset(cs);
b75f38d6
LZ
1679 if (!trialcs) {
1680 retval = -ENOMEM;
5d21cc2d 1681 goto out_unlock;
b75f38d6 1682 }
645fcc9d 1683
451af504 1684 switch (of_cft(of)->private) {
e3712395 1685 case FILE_CPULIST:
645fcc9d 1686 retval = update_cpumask(cs, trialcs, buf);
e3712395
PM
1687 break;
1688 case FILE_MEMLIST:
645fcc9d 1689 retval = update_nodemask(cs, trialcs, buf);
e3712395
PM
1690 break;
1691 default:
1692 retval = -EINVAL;
1693 break;
1694 }
645fcc9d
LZ
1695
1696 free_trial_cpuset(trialcs);
5d21cc2d
TH
1697out_unlock:
1698 mutex_unlock(&cpuset_mutex);
451af504 1699 return retval ?: nbytes;
e3712395
PM
1700}
1701
1da177e4
LT
1702/*
1703 * These ascii lists should be read in a single call, by using a user
1704 * buffer large enough to hold the entire map. If read in smaller
1705 * chunks, there is no guarantee of atomicity. Since the display format
1706 * used, list of ranges of sequential numbers, is variable length,
1707 * and since these maps can change value dynamically, one could read
1708 * gibberish by doing partial reads while a list was changing.
1da177e4 1709 */
2da8ca82 1710static int cpuset_common_seq_show(struct seq_file *sf, void *v)
1da177e4 1711{
2da8ca82
TH
1712 struct cpuset *cs = css_cs(seq_css(sf));
1713 cpuset_filetype_t type = seq_cft(sf)->private;
51ffe411
TH
1714 ssize_t count;
1715 char *buf, *s;
1716 int ret = 0;
1da177e4 1717
51ffe411
TH
1718 count = seq_get_buf(sf, &buf);
1719 s = buf;
1da177e4 1720
51ffe411 1721 mutex_lock(&callback_mutex);
1da177e4
LT
1722
1723 switch (type) {
1724 case FILE_CPULIST:
51ffe411 1725 s += cpulist_scnprintf(s, count, cs->cpus_allowed);
1da177e4
LT
1726 break;
1727 case FILE_MEMLIST:
51ffe411 1728 s += nodelist_scnprintf(s, count, cs->mems_allowed);
1da177e4 1729 break;
1da177e4 1730 default:
51ffe411
TH
1731 ret = -EINVAL;
1732 goto out_unlock;
1da177e4 1733 }
1da177e4 1734
51ffe411
TH
1735 if (s < buf + count - 1) {
1736 *s++ = '\n';
1737 seq_commit(sf, s - buf);
1738 } else {
1739 seq_commit(sf, -1);
1740 }
1741out_unlock:
1742 mutex_unlock(&callback_mutex);
1743 return ret;
1da177e4
LT
1744}
1745
182446d0 1746static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft)
700fe1ab 1747{
182446d0 1748 struct cpuset *cs = css_cs(css);
700fe1ab
PM
1749 cpuset_filetype_t type = cft->private;
1750 switch (type) {
1751 case FILE_CPU_EXCLUSIVE:
1752 return is_cpu_exclusive(cs);
1753 case FILE_MEM_EXCLUSIVE:
1754 return is_mem_exclusive(cs);
78608366
PM
1755 case FILE_MEM_HARDWALL:
1756 return is_mem_hardwall(cs);
700fe1ab
PM
1757 case FILE_SCHED_LOAD_BALANCE:
1758 return is_sched_load_balance(cs);
1759 case FILE_MEMORY_MIGRATE:
1760 return is_memory_migrate(cs);
1761 case FILE_MEMORY_PRESSURE_ENABLED:
1762 return cpuset_memory_pressure_enabled;
1763 case FILE_MEMORY_PRESSURE:
1764 return fmeter_getrate(&cs->fmeter);
1765 case FILE_SPREAD_PAGE:
1766 return is_spread_page(cs);
1767 case FILE_SPREAD_SLAB:
1768 return is_spread_slab(cs);
1769 default:
1770 BUG();
1771 }
cf417141
MK
1772
1773 /* Unreachable but makes gcc happy */
1774 return 0;
700fe1ab 1775}
1da177e4 1776
182446d0 1777static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft)
5be7a479 1778{
182446d0 1779 struct cpuset *cs = css_cs(css);
5be7a479
PM
1780 cpuset_filetype_t type = cft->private;
1781 switch (type) {
1782 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1783 return cs->relax_domain_level;
1784 default:
1785 BUG();
1786 }
cf417141
MK
1787
1788 /* Unrechable but makes gcc happy */
1789 return 0;
5be7a479
PM
1790}
1791
1da177e4
LT
1792
1793/*
1794 * for the common functions, 'private' gives the type of file
1795 */
1796
addf2c73
PM
1797static struct cftype files[] = {
1798 {
1799 .name = "cpus",
2da8ca82 1800 .seq_show = cpuset_common_seq_show,
451af504 1801 .write = cpuset_write_resmask,
e3712395 1802 .max_write_len = (100U + 6 * NR_CPUS),
addf2c73
PM
1803 .private = FILE_CPULIST,
1804 },
1805
1806 {
1807 .name = "mems",
2da8ca82 1808 .seq_show = cpuset_common_seq_show,
451af504 1809 .write = cpuset_write_resmask,
e3712395 1810 .max_write_len = (100U + 6 * MAX_NUMNODES),
addf2c73
PM
1811 .private = FILE_MEMLIST,
1812 },
1813
1814 {
1815 .name = "cpu_exclusive",
1816 .read_u64 = cpuset_read_u64,
1817 .write_u64 = cpuset_write_u64,
1818 .private = FILE_CPU_EXCLUSIVE,
1819 },
1820
1821 {
1822 .name = "mem_exclusive",
1823 .read_u64 = cpuset_read_u64,
1824 .write_u64 = cpuset_write_u64,
1825 .private = FILE_MEM_EXCLUSIVE,
1826 },
1827
78608366
PM
1828 {
1829 .name = "mem_hardwall",
1830 .read_u64 = cpuset_read_u64,
1831 .write_u64 = cpuset_write_u64,
1832 .private = FILE_MEM_HARDWALL,
1833 },
1834
addf2c73
PM
1835 {
1836 .name = "sched_load_balance",
1837 .read_u64 = cpuset_read_u64,
1838 .write_u64 = cpuset_write_u64,
1839 .private = FILE_SCHED_LOAD_BALANCE,
1840 },
1841
1842 {
1843 .name = "sched_relax_domain_level",
5be7a479
PM
1844 .read_s64 = cpuset_read_s64,
1845 .write_s64 = cpuset_write_s64,
addf2c73
PM
1846 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
1847 },
1848
1849 {
1850 .name = "memory_migrate",
1851 .read_u64 = cpuset_read_u64,
1852 .write_u64 = cpuset_write_u64,
1853 .private = FILE_MEMORY_MIGRATE,
1854 },
1855
1856 {
1857 .name = "memory_pressure",
1858 .read_u64 = cpuset_read_u64,
1859 .write_u64 = cpuset_write_u64,
1860 .private = FILE_MEMORY_PRESSURE,
099fca32 1861 .mode = S_IRUGO,
addf2c73
PM
1862 },
1863
1864 {
1865 .name = "memory_spread_page",
1866 .read_u64 = cpuset_read_u64,
1867 .write_u64 = cpuset_write_u64,
1868 .private = FILE_SPREAD_PAGE,
1869 },
1870
1871 {
1872 .name = "memory_spread_slab",
1873 .read_u64 = cpuset_read_u64,
1874 .write_u64 = cpuset_write_u64,
1875 .private = FILE_SPREAD_SLAB,
1876 },
3e0d98b9 1877
4baf6e33
TH
1878 {
1879 .name = "memory_pressure_enabled",
1880 .flags = CFTYPE_ONLY_ON_ROOT,
1881 .read_u64 = cpuset_read_u64,
1882 .write_u64 = cpuset_write_u64,
1883 .private = FILE_MEMORY_PRESSURE_ENABLED,
1884 },
1da177e4 1885
4baf6e33
TH
1886 { } /* terminate */
1887};
1da177e4
LT
1888
1889/*
92fb9748 1890 * cpuset_css_alloc - allocate a cpuset css
c9e5fe66 1891 * cgrp: control group that the new cpuset will be part of
1da177e4
LT
1892 */
1893
eb95419b
TH
1894static struct cgroup_subsys_state *
1895cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
1da177e4 1896{
c8f699bb 1897 struct cpuset *cs;
1da177e4 1898
eb95419b 1899 if (!parent_css)
8793d854 1900 return &top_cpuset.css;
033fa1c5 1901
c8f699bb 1902 cs = kzalloc(sizeof(*cs), GFP_KERNEL);
1da177e4 1903 if (!cs)
8793d854 1904 return ERR_PTR(-ENOMEM);
e2b9a3d7
LZ
1905 if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL))
1906 goto free_cs;
1907 if (!alloc_cpumask_var(&cs->effective_cpus, GFP_KERNEL))
1908 goto free_cpus;
1da177e4 1909
029190c5 1910 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
300ed6cb 1911 cpumask_clear(cs->cpus_allowed);
f9a86fcb 1912 nodes_clear(cs->mems_allowed);
e2b9a3d7
LZ
1913 cpumask_clear(cs->effective_cpus);
1914 nodes_clear(cs->effective_mems);
3e0d98b9 1915 fmeter_init(&cs->fmeter);
1d3504fc 1916 cs->relax_domain_level = -1;
1da177e4 1917
c8f699bb 1918 return &cs->css;
e2b9a3d7
LZ
1919
1920free_cpus:
1921 free_cpumask_var(cs->cpus_allowed);
1922free_cs:
1923 kfree(cs);
1924 return ERR_PTR(-ENOMEM);
c8f699bb
TH
1925}
1926
eb95419b 1927static int cpuset_css_online(struct cgroup_subsys_state *css)
c8f699bb 1928{
eb95419b 1929 struct cpuset *cs = css_cs(css);
c431069f 1930 struct cpuset *parent = parent_cs(cs);
ae8086ce 1931 struct cpuset *tmp_cs;
492eb21b 1932 struct cgroup_subsys_state *pos_css;
c8f699bb
TH
1933
1934 if (!parent)
1935 return 0;
1936
5d21cc2d
TH
1937 mutex_lock(&cpuset_mutex);
1938
efeb77b2 1939 set_bit(CS_ONLINE, &cs->flags);
c8f699bb
TH
1940 if (is_spread_page(parent))
1941 set_bit(CS_SPREAD_PAGE, &cs->flags);
1942 if (is_spread_slab(parent))
1943 set_bit(CS_SPREAD_SLAB, &cs->flags);
1da177e4 1944
664eedde 1945 cpuset_inc();
033fa1c5 1946
e2b9a3d7
LZ
1947 mutex_lock(&callback_mutex);
1948 if (cgroup_on_dfl(cs->css.cgroup)) {
1949 cpumask_copy(cs->effective_cpus, parent->effective_cpus);
1950 cs->effective_mems = parent->effective_mems;
1951 }
1952 mutex_unlock(&callback_mutex);
1953
eb95419b 1954 if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
5d21cc2d 1955 goto out_unlock;
033fa1c5
TH
1956
1957 /*
1958 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
1959 * set. This flag handling is implemented in cgroup core for
1960 * histrical reasons - the flag may be specified during mount.
1961 *
1962 * Currently, if any sibling cpusets have exclusive cpus or mem, we
1963 * refuse to clone the configuration - thereby refusing the task to
1964 * be entered, and as a result refusing the sys_unshare() or
1965 * clone() which initiated it. If this becomes a problem for some
1966 * users who wish to allow that scenario, then this could be
1967 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
1968 * (and likewise for mems) to the new cgroup.
1969 */
ae8086ce 1970 rcu_read_lock();
492eb21b 1971 cpuset_for_each_child(tmp_cs, pos_css, parent) {
ae8086ce
TH
1972 if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
1973 rcu_read_unlock();
5d21cc2d 1974 goto out_unlock;
ae8086ce 1975 }
033fa1c5 1976 }
ae8086ce 1977 rcu_read_unlock();
033fa1c5
TH
1978
1979 mutex_lock(&callback_mutex);
1980 cs->mems_allowed = parent->mems_allowed;
1981 cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
1982 mutex_unlock(&callback_mutex);
5d21cc2d
TH
1983out_unlock:
1984 mutex_unlock(&cpuset_mutex);
c8f699bb
TH
1985 return 0;
1986}
1987
0b9e6965
ZH
1988/*
1989 * If the cpuset being removed has its flag 'sched_load_balance'
1990 * enabled, then simulate turning sched_load_balance off, which
1991 * will call rebuild_sched_domains_locked().
1992 */
1993
eb95419b 1994static void cpuset_css_offline(struct cgroup_subsys_state *css)
c8f699bb 1995{
eb95419b 1996 struct cpuset *cs = css_cs(css);
c8f699bb 1997
5d21cc2d 1998 mutex_lock(&cpuset_mutex);
c8f699bb
TH
1999
2000 if (is_sched_load_balance(cs))
2001 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
2002
664eedde 2003 cpuset_dec();
efeb77b2 2004 clear_bit(CS_ONLINE, &cs->flags);
c8f699bb 2005
5d21cc2d 2006 mutex_unlock(&cpuset_mutex);
1da177e4
LT
2007}
2008
eb95419b 2009static void cpuset_css_free(struct cgroup_subsys_state *css)
1da177e4 2010{
eb95419b 2011 struct cpuset *cs = css_cs(css);
1da177e4 2012
e2b9a3d7 2013 free_cpumask_var(cs->effective_cpus);
300ed6cb 2014 free_cpumask_var(cs->cpus_allowed);
8793d854 2015 kfree(cs);
1da177e4
LT
2016}
2017
073219e9 2018struct cgroup_subsys cpuset_cgrp_subsys = {
92fb9748 2019 .css_alloc = cpuset_css_alloc,
c8f699bb
TH
2020 .css_online = cpuset_css_online,
2021 .css_offline = cpuset_css_offline,
92fb9748 2022 .css_free = cpuset_css_free,
8793d854 2023 .can_attach = cpuset_can_attach,
452477fa 2024 .cancel_attach = cpuset_cancel_attach,
8793d854 2025 .attach = cpuset_attach,
4baf6e33 2026 .base_cftypes = files,
8793d854
PM
2027 .early_init = 1,
2028};
2029
1da177e4
LT
2030/**
2031 * cpuset_init - initialize cpusets at system boot
2032 *
2033 * Description: Initialize top_cpuset and the cpuset internal file system,
2034 **/
2035
2036int __init cpuset_init(void)
2037{
8793d854 2038 int err = 0;
1da177e4 2039
58568d2a
MX
2040 if (!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL))
2041 BUG();
e2b9a3d7
LZ
2042 if (!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL))
2043 BUG();
58568d2a 2044
300ed6cb 2045 cpumask_setall(top_cpuset.cpus_allowed);
f9a86fcb 2046 nodes_setall(top_cpuset.mems_allowed);
e2b9a3d7
LZ
2047 cpumask_setall(top_cpuset.effective_cpus);
2048 nodes_setall(top_cpuset.effective_mems);
1da177e4 2049
3e0d98b9 2050 fmeter_init(&top_cpuset.fmeter);
029190c5 2051 set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
1d3504fc 2052 top_cpuset.relax_domain_level = -1;
1da177e4 2053
1da177e4
LT
2054 err = register_filesystem(&cpuset_fs_type);
2055 if (err < 0)
8793d854
PM
2056 return err;
2057
2341d1b6
LZ
2058 if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL))
2059 BUG();
2060
8793d854 2061 return 0;
1da177e4
LT
2062}
2063
b1aac8bb 2064/*
cf417141 2065 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
b1aac8bb
PJ
2066 * or memory nodes, we need to walk over the cpuset hierarchy,
2067 * removing that CPU or node from all cpusets. If this removes the
956db3ca
CW
2068 * last CPU or node from a cpuset, then move the tasks in the empty
2069 * cpuset to its next-highest non-empty parent.
b1aac8bb 2070 */
956db3ca
CW
2071static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
2072{
2073 struct cpuset *parent;
2074
956db3ca
CW
2075 /*
2076 * Find its next-highest non-empty parent, (top cpuset
2077 * has online cpus, so can't be empty).
2078 */
c431069f 2079 parent = parent_cs(cs);
300ed6cb 2080 while (cpumask_empty(parent->cpus_allowed) ||
b4501295 2081 nodes_empty(parent->mems_allowed))
c431069f 2082 parent = parent_cs(parent);
956db3ca 2083
8cc99345 2084 if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
12d3089c 2085 pr_err("cpuset: failed to transfer tasks out of empty cpuset ");
e61734c5
TH
2086 pr_cont_cgroup_name(cs->css.cgroup);
2087 pr_cont("\n");
8cc99345 2088 }
956db3ca
CW
2089}
2090
deb7aa30 2091/**
388afd85 2092 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
deb7aa30 2093 * @cs: cpuset in interest
956db3ca 2094 *
deb7aa30
TH
2095 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
2096 * offline, update @cs accordingly. If @cs ends up with no CPU or memory,
2097 * all its tasks are moved to the nearest ancestor with both resources.
80d1fa64 2098 */
388afd85 2099static void cpuset_hotplug_update_tasks(struct cpuset *cs)
80d1fa64 2100{
deb7aa30 2101 static cpumask_t off_cpus;
33ad801d 2102 static nodemask_t off_mems;
5d21cc2d 2103 bool is_empty;
aa6ec29b 2104 bool on_dfl = cgroup_on_dfl(cs->css.cgroup);
80d1fa64 2105
e44193d3
LZ
2106retry:
2107 wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
80d1fa64 2108
5d21cc2d 2109 mutex_lock(&cpuset_mutex);
7ddf96b0 2110
e44193d3
LZ
2111 /*
2112 * We have raced with task attaching. We wait until attaching
2113 * is finished, so we won't attach a task to an empty cpuset.
2114 */
2115 if (cs->attach_in_progress) {
2116 mutex_unlock(&cpuset_mutex);
2117 goto retry;
2118 }
2119
deb7aa30
TH
2120 cpumask_andnot(&off_cpus, cs->cpus_allowed, top_cpuset.cpus_allowed);
2121 nodes_andnot(off_mems, cs->mems_allowed, top_cpuset.mems_allowed);
80d1fa64 2122
5c5cc623
LZ
2123 mutex_lock(&callback_mutex);
2124 cpumask_andnot(cs->cpus_allowed, cs->cpus_allowed, &off_cpus);
554b0d1c
LZ
2125
2126 /* Inherit the effective mask of the parent, if it becomes empty. */
1344ab9c 2127 cpumask_andnot(cs->effective_cpus, cs->effective_cpus, &off_cpus);
554b0d1c
LZ
2128 if (on_dfl && cpumask_empty(cs->effective_cpus))
2129 cpumask_copy(cs->effective_cpus, parent_cs(cs)->effective_cpus);
5c5cc623
LZ
2130 mutex_unlock(&callback_mutex);
2131
2132 /*
aa6ec29b
TH
2133 * If on_dfl, we need to update tasks' cpumask for empty cpuset to
2134 * take on ancestor's cpumask. Otherwise, don't call
2135 * update_tasks_cpumask() if the cpuset becomes empty, as the tasks
2136 * in it will be migrated to an ancestor.
5c5cc623 2137 */
aa6ec29b 2138 if ((on_dfl && cpumask_empty(cs->cpus_allowed)) ||
f047cecf 2139 (!cpumask_empty(&off_cpus) && !cpumask_empty(cs->cpus_allowed)))
d66393e5 2140 update_tasks_cpumask(cs);
80d1fa64 2141
5c5cc623
LZ
2142 mutex_lock(&callback_mutex);
2143 nodes_andnot(cs->mems_allowed, cs->mems_allowed, off_mems);
554b0d1c
LZ
2144
2145 /* Inherit the effective mask of the parent, if it becomes empty */
1344ab9c 2146 nodes_andnot(cs->effective_mems, cs->effective_mems, off_mems);
554b0d1c
LZ
2147 if (on_dfl && nodes_empty(cs->effective_mems))
2148 cs->effective_mems = parent_cs(cs)->effective_mems;
5c5cc623
LZ
2149 mutex_unlock(&callback_mutex);
2150
2151 /*
aa6ec29b
TH
2152 * If on_dfl, we need to update tasks' nodemask for empty cpuset to
2153 * take on ancestor's nodemask. Otherwise, don't call
2154 * update_tasks_nodemask() if the cpuset becomes empty, as the
2155 * tasks in it will be migratd to an ancestor.
5c5cc623 2156 */
aa6ec29b 2157 if ((on_dfl && nodes_empty(cs->mems_allowed)) ||
f047cecf 2158 (!nodes_empty(off_mems) && !nodes_empty(cs->mems_allowed)))
d66393e5 2159 update_tasks_nodemask(cs);
deb7aa30 2160
5d21cc2d
TH
2161 is_empty = cpumask_empty(cs->cpus_allowed) ||
2162 nodes_empty(cs->mems_allowed);
8d033948 2163
5d21cc2d
TH
2164 mutex_unlock(&cpuset_mutex);
2165
2166 /*
aa6ec29b 2167 * If on_dfl, we'll keep tasks in empty cpusets.
5c5cc623
LZ
2168 *
2169 * Otherwise move tasks to the nearest ancestor with execution
2170 * resources. This is full cgroup operation which will
5d21cc2d
TH
2171 * also call back into cpuset. Should be done outside any lock.
2172 */
aa6ec29b 2173 if (!on_dfl && is_empty)
5d21cc2d 2174 remove_tasks_in_empty_cpuset(cs);
b1aac8bb
PJ
2175}
2176
deb7aa30 2177/**
3a5a6d0c 2178 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
956db3ca 2179 *
deb7aa30
TH
2180 * This function is called after either CPU or memory configuration has
2181 * changed and updates cpuset accordingly. The top_cpuset is always
2182 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
2183 * order to make cpusets transparent (of no affect) on systems that are
2184 * actively using CPU hotplug but making no active use of cpusets.
956db3ca 2185 *
deb7aa30 2186 * Non-root cpusets are only affected by offlining. If any CPUs or memory
388afd85
LZ
2187 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
2188 * all descendants.
956db3ca 2189 *
deb7aa30
TH
2190 * Note that CPU offlining during suspend is ignored. We don't modify
2191 * cpusets across suspend/resume cycles at all.
956db3ca 2192 */
3a5a6d0c 2193static void cpuset_hotplug_workfn(struct work_struct *work)
b1aac8bb 2194{
5c5cc623
LZ
2195 static cpumask_t new_cpus;
2196 static nodemask_t new_mems;
deb7aa30 2197 bool cpus_updated, mems_updated;
b1aac8bb 2198
5d21cc2d 2199 mutex_lock(&cpuset_mutex);
956db3ca 2200
deb7aa30
TH
2201 /* fetch the available cpus/mems and find out which changed how */
2202 cpumask_copy(&new_cpus, cpu_active_mask);
2203 new_mems = node_states[N_MEMORY];
7ddf96b0 2204
deb7aa30 2205 cpus_updated = !cpumask_equal(top_cpuset.cpus_allowed, &new_cpus);
deb7aa30 2206 mems_updated = !nodes_equal(top_cpuset.mems_allowed, new_mems);
7ddf96b0 2207
deb7aa30
TH
2208 /* synchronize cpus_allowed to cpu_active_mask */
2209 if (cpus_updated) {
2210 mutex_lock(&callback_mutex);
2211 cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
1344ab9c 2212 cpumask_copy(top_cpuset.effective_cpus, &new_cpus);
deb7aa30
TH
2213 mutex_unlock(&callback_mutex);
2214 /* we don't mess with cpumasks of tasks in top_cpuset */
2215 }
b4501295 2216
deb7aa30
TH
2217 /* synchronize mems_allowed to N_MEMORY */
2218 if (mems_updated) {
deb7aa30
TH
2219 mutex_lock(&callback_mutex);
2220 top_cpuset.mems_allowed = new_mems;
1344ab9c 2221 top_cpuset.effective_mems = new_mems;
deb7aa30 2222 mutex_unlock(&callback_mutex);
d66393e5 2223 update_tasks_nodemask(&top_cpuset);
deb7aa30 2224 }
b4501295 2225
388afd85
LZ
2226 mutex_unlock(&cpuset_mutex);
2227
5c5cc623
LZ
2228 /* if cpus or mems changed, we need to propagate to descendants */
2229 if (cpus_updated || mems_updated) {
deb7aa30 2230 struct cpuset *cs;
492eb21b 2231 struct cgroup_subsys_state *pos_css;
f9b4fb8d 2232
fc560a26 2233 rcu_read_lock();
492eb21b 2234 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
ec903c0c 2235 if (cs == &top_cpuset || !css_tryget_online(&cs->css))
388afd85
LZ
2236 continue;
2237 rcu_read_unlock();
7ddf96b0 2238
388afd85 2239 cpuset_hotplug_update_tasks(cs);
b4501295 2240
388afd85
LZ
2241 rcu_read_lock();
2242 css_put(&cs->css);
2243 }
2244 rcu_read_unlock();
2245 }
8d033948 2246
deb7aa30 2247 /* rebuild sched domains if cpus_allowed has changed */
e0e80a02
LZ
2248 if (cpus_updated)
2249 rebuild_sched_domains();
b1aac8bb
PJ
2250}
2251
7ddf96b0 2252void cpuset_update_active_cpus(bool cpu_online)
4c4d50f7 2253{
3a5a6d0c
TH
2254 /*
2255 * We're inside cpu hotplug critical region which usually nests
2256 * inside cgroup synchronization. Bounce actual hotplug processing
2257 * to a work item to avoid reverse locking order.
2258 *
2259 * We still need to do partition_sched_domains() synchronously;
2260 * otherwise, the scheduler will get confused and put tasks to the
2261 * dead CPU. Fall back to the default single domain.
2262 * cpuset_hotplug_workfn() will rebuild it as necessary.
2263 */
2264 partition_sched_domains(1, NULL, NULL);
2265 schedule_work(&cpuset_hotplug_work);
4c4d50f7 2266}
4c4d50f7 2267
38837fc7 2268/*
38d7bee9
LJ
2269 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
2270 * Call this routine anytime after node_states[N_MEMORY] changes.
a1cd2b13 2271 * See cpuset_update_active_cpus() for CPU hotplug handling.
38837fc7 2272 */
f481891f
MX
2273static int cpuset_track_online_nodes(struct notifier_block *self,
2274 unsigned long action, void *arg)
38837fc7 2275{
3a5a6d0c 2276 schedule_work(&cpuset_hotplug_work);
f481891f 2277 return NOTIFY_OK;
38837fc7 2278}
d8f10cb3
AM
2279
2280static struct notifier_block cpuset_track_online_nodes_nb = {
2281 .notifier_call = cpuset_track_online_nodes,
2282 .priority = 10, /* ??! */
2283};
38837fc7 2284
1da177e4
LT
2285/**
2286 * cpuset_init_smp - initialize cpus_allowed
2287 *
2288 * Description: Finish top cpuset after cpu, node maps are initialized
d8f10cb3 2289 */
1da177e4
LT
2290void __init cpuset_init_smp(void)
2291{
6ad4c188 2292 cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
38d7bee9 2293 top_cpuset.mems_allowed = node_states[N_MEMORY];
33ad801d 2294 top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
4c4d50f7 2295
e2b9a3d7
LZ
2296 cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask);
2297 top_cpuset.effective_mems = node_states[N_MEMORY];
2298
d8f10cb3 2299 register_hotmemory_notifier(&cpuset_track_online_nodes_nb);
1da177e4
LT
2300}
2301
2302/**
1da177e4
LT
2303 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
2304 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
6af866af 2305 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
1da177e4 2306 *
300ed6cb 2307 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
1da177e4 2308 * attached to the specified @tsk. Guaranteed to return some non-empty
5f054e31 2309 * subset of cpu_online_mask, even if this means going outside the
1da177e4
LT
2310 * tasks cpuset.
2311 **/
2312
6af866af 2313void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
1da177e4 2314{
070b57fc
LZ
2315 struct cpuset *cpus_cs;
2316
3d3f26a7 2317 mutex_lock(&callback_mutex);
b8dadcb5 2318 rcu_read_lock();
070b57fc
LZ
2319 cpus_cs = effective_cpumask_cpuset(task_cs(tsk));
2320 guarantee_online_cpus(cpus_cs, pmask);
b8dadcb5 2321 rcu_read_unlock();
897f0b3c 2322 mutex_unlock(&callback_mutex);
1da177e4
LT
2323}
2324
2baab4e9 2325void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
9084bb82 2326{
c9710d80 2327 struct cpuset *cpus_cs;
9084bb82
ON
2328
2329 rcu_read_lock();
070b57fc
LZ
2330 cpus_cs = effective_cpumask_cpuset(task_cs(tsk));
2331 do_set_cpus_allowed(tsk, cpus_cs->cpus_allowed);
9084bb82
ON
2332 rcu_read_unlock();
2333
2334 /*
2335 * We own tsk->cpus_allowed, nobody can change it under us.
2336 *
2337 * But we used cs && cs->cpus_allowed lockless and thus can
2338 * race with cgroup_attach_task() or update_cpumask() and get
2339 * the wrong tsk->cpus_allowed. However, both cases imply the
2340 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
2341 * which takes task_rq_lock().
2342 *
2343 * If we are called after it dropped the lock we must see all
2344 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
2345 * set any mask even if it is not right from task_cs() pov,
2346 * the pending set_cpus_allowed_ptr() will fix things.
2baab4e9
PZ
2347 *
2348 * select_fallback_rq() will fix things ups and set cpu_possible_mask
2349 * if required.
9084bb82 2350 */
9084bb82
ON
2351}
2352
1da177e4
LT
2353void cpuset_init_current_mems_allowed(void)
2354{
f9a86fcb 2355 nodes_setall(current->mems_allowed);
1da177e4
LT
2356}
2357
909d75a3
PJ
2358/**
2359 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
2360 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
2361 *
2362 * Description: Returns the nodemask_t mems_allowed of the cpuset
2363 * attached to the specified @tsk. Guaranteed to return some non-empty
38d7bee9 2364 * subset of node_states[N_MEMORY], even if this means going outside the
909d75a3
PJ
2365 * tasks cpuset.
2366 **/
2367
2368nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
2369{
070b57fc 2370 struct cpuset *mems_cs;
909d75a3
PJ
2371 nodemask_t mask;
2372
3d3f26a7 2373 mutex_lock(&callback_mutex);
b8dadcb5 2374 rcu_read_lock();
070b57fc
LZ
2375 mems_cs = effective_nodemask_cpuset(task_cs(tsk));
2376 guarantee_online_mems(mems_cs, &mask);
b8dadcb5 2377 rcu_read_unlock();
3d3f26a7 2378 mutex_unlock(&callback_mutex);
909d75a3
PJ
2379
2380 return mask;
2381}
2382
d9fd8a6d 2383/**
19770b32
MG
2384 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
2385 * @nodemask: the nodemask to be checked
d9fd8a6d 2386 *
19770b32 2387 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
1da177e4 2388 */
19770b32 2389int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
1da177e4 2390{
19770b32 2391 return nodes_intersects(*nodemask, current->mems_allowed);
1da177e4
LT
2392}
2393
9bf2229f 2394/*
78608366
PM
2395 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
2396 * mem_hardwall ancestor to the specified cpuset. Call holding
2397 * callback_mutex. If no ancestor is mem_exclusive or mem_hardwall
2398 * (an unusual configuration), then returns the root cpuset.
9bf2229f 2399 */
c9710d80 2400static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
9bf2229f 2401{
c431069f
TH
2402 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
2403 cs = parent_cs(cs);
9bf2229f
PJ
2404 return cs;
2405}
2406
d9fd8a6d 2407/**
a1bc5a4e
DR
2408 * cpuset_node_allowed_softwall - Can we allocate on a memory node?
2409 * @node: is this an allowed node?
02a0e53d 2410 * @gfp_mask: memory allocation flags
d9fd8a6d 2411 *
a1bc5a4e
DR
2412 * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
2413 * set, yes, we can always allocate. If node is in our task's mems_allowed,
2414 * yes. If it's not a __GFP_HARDWALL request and this node is in the nearest
2415 * hardwalled cpuset ancestor to this task's cpuset, yes. If the task has been
2416 * OOM killed and has access to memory reserves as specified by the TIF_MEMDIE
2417 * flag, yes.
9bf2229f
PJ
2418 * Otherwise, no.
2419 *
a1bc5a4e
DR
2420 * If __GFP_HARDWALL is set, cpuset_node_allowed_softwall() reduces to
2421 * cpuset_node_allowed_hardwall(). Otherwise, cpuset_node_allowed_softwall()
2422 * might sleep, and might allow a node from an enclosing cpuset.
02a0e53d 2423 *
a1bc5a4e
DR
2424 * cpuset_node_allowed_hardwall() only handles the simpler case of hardwall
2425 * cpusets, and never sleeps.
02a0e53d
PJ
2426 *
2427 * The __GFP_THISNODE placement logic is really handled elsewhere,
2428 * by forcibly using a zonelist starting at a specified node, and by
2429 * (in get_page_from_freelist()) refusing to consider the zones for
2430 * any node on the zonelist except the first. By the time any such
2431 * calls get to this routine, we should just shut up and say 'yes'.
2432 *
9bf2229f 2433 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
c596d9f3
DR
2434 * and do not allow allocations outside the current tasks cpuset
2435 * unless the task has been OOM killed as is marked TIF_MEMDIE.
9bf2229f 2436 * GFP_KERNEL allocations are not so marked, so can escape to the
78608366 2437 * nearest enclosing hardwalled ancestor cpuset.
9bf2229f 2438 *
02a0e53d
PJ
2439 * Scanning up parent cpusets requires callback_mutex. The
2440 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
2441 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
2442 * current tasks mems_allowed came up empty on the first pass over
2443 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
2444 * cpuset are short of memory, might require taking the callback_mutex
2445 * mutex.
9bf2229f 2446 *
36be57ff 2447 * The first call here from mm/page_alloc:get_page_from_freelist()
02a0e53d
PJ
2448 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
2449 * so no allocation on a node outside the cpuset is allowed (unless
2450 * in interrupt, of course).
36be57ff
PJ
2451 *
2452 * The second pass through get_page_from_freelist() doesn't even call
2453 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
2454 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
2455 * in alloc_flags. That logic and the checks below have the combined
2456 * affect that:
9bf2229f
PJ
2457 * in_interrupt - any node ok (current task context irrelevant)
2458 * GFP_ATOMIC - any node ok
c596d9f3 2459 * TIF_MEMDIE - any node ok
78608366 2460 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
9bf2229f 2461 * GFP_USER - only nodes in current tasks mems allowed ok.
36be57ff
PJ
2462 *
2463 * Rule:
a1bc5a4e 2464 * Don't call cpuset_node_allowed_softwall if you can't sleep, unless you
36be57ff
PJ
2465 * pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
2466 * the code that might scan up ancestor cpusets and sleep.
02a0e53d 2467 */
a1bc5a4e 2468int __cpuset_node_allowed_softwall(int node, gfp_t gfp_mask)
1da177e4 2469{
c9710d80 2470 struct cpuset *cs; /* current cpuset ancestors */
29afd49b 2471 int allowed; /* is allocation in zone z allowed? */
9bf2229f 2472
9b819d20 2473 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
9bf2229f 2474 return 1;
92d1dbd2 2475 might_sleep_if(!(gfp_mask & __GFP_HARDWALL));
9bf2229f
PJ
2476 if (node_isset(node, current->mems_allowed))
2477 return 1;
c596d9f3
DR
2478 /*
2479 * Allow tasks that have access to memory reserves because they have
2480 * been OOM killed to get memory anywhere.
2481 */
2482 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2483 return 1;
9bf2229f
PJ
2484 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
2485 return 0;
2486
5563e770
BP
2487 if (current->flags & PF_EXITING) /* Let dying task have memory */
2488 return 1;
2489
9bf2229f 2490 /* Not hardwall and node outside mems_allowed: scan up cpusets */
3d3f26a7 2491 mutex_lock(&callback_mutex);
053199ed 2492
b8dadcb5 2493 rcu_read_lock();
78608366 2494 cs = nearest_hardwall_ancestor(task_cs(current));
99afb0fd 2495 allowed = node_isset(node, cs->mems_allowed);
b8dadcb5 2496 rcu_read_unlock();
053199ed 2497
3d3f26a7 2498 mutex_unlock(&callback_mutex);
9bf2229f 2499 return allowed;
1da177e4
LT
2500}
2501
02a0e53d 2502/*
a1bc5a4e
DR
2503 * cpuset_node_allowed_hardwall - Can we allocate on a memory node?
2504 * @node: is this an allowed node?
02a0e53d
PJ
2505 * @gfp_mask: memory allocation flags
2506 *
a1bc5a4e
DR
2507 * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
2508 * set, yes, we can always allocate. If node is in our task's mems_allowed,
2509 * yes. If the task has been OOM killed and has access to memory reserves as
2510 * specified by the TIF_MEMDIE flag, yes.
2511 * Otherwise, no.
02a0e53d
PJ
2512 *
2513 * The __GFP_THISNODE placement logic is really handled elsewhere,
2514 * by forcibly using a zonelist starting at a specified node, and by
2515 * (in get_page_from_freelist()) refusing to consider the zones for
2516 * any node on the zonelist except the first. By the time any such
2517 * calls get to this routine, we should just shut up and say 'yes'.
2518 *
a1bc5a4e
DR
2519 * Unlike the cpuset_node_allowed_softwall() variant, above,
2520 * this variant requires that the node be in the current task's
02a0e53d
PJ
2521 * mems_allowed or that we're in interrupt. It does not scan up the
2522 * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
2523 * It never sleeps.
2524 */
a1bc5a4e 2525int __cpuset_node_allowed_hardwall(int node, gfp_t gfp_mask)
02a0e53d 2526{
02a0e53d
PJ
2527 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2528 return 1;
02a0e53d
PJ
2529 if (node_isset(node, current->mems_allowed))
2530 return 1;
dedf8b79
DW
2531 /*
2532 * Allow tasks that have access to memory reserves because they have
2533 * been OOM killed to get memory anywhere.
2534 */
2535 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2536 return 1;
02a0e53d
PJ
2537 return 0;
2538}
2539
825a46af 2540/**
6adef3eb
JS
2541 * cpuset_mem_spread_node() - On which node to begin search for a file page
2542 * cpuset_slab_spread_node() - On which node to begin search for a slab page
825a46af
PJ
2543 *
2544 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
2545 * tasks in a cpuset with is_spread_page or is_spread_slab set),
2546 * and if the memory allocation used cpuset_mem_spread_node()
2547 * to determine on which node to start looking, as it will for
2548 * certain page cache or slab cache pages such as used for file
2549 * system buffers and inode caches, then instead of starting on the
2550 * local node to look for a free page, rather spread the starting
2551 * node around the tasks mems_allowed nodes.
2552 *
2553 * We don't have to worry about the returned node being offline
2554 * because "it can't happen", and even if it did, it would be ok.
2555 *
2556 * The routines calling guarantee_online_mems() are careful to
2557 * only set nodes in task->mems_allowed that are online. So it
2558 * should not be possible for the following code to return an
2559 * offline node. But if it did, that would be ok, as this routine
2560 * is not returning the node where the allocation must be, only
2561 * the node where the search should start. The zonelist passed to
2562 * __alloc_pages() will include all nodes. If the slab allocator
2563 * is passed an offline node, it will fall back to the local node.
2564 * See kmem_cache_alloc_node().
2565 */
2566
6adef3eb 2567static int cpuset_spread_node(int *rotor)
825a46af
PJ
2568{
2569 int node;
2570
6adef3eb 2571 node = next_node(*rotor, current->mems_allowed);
825a46af
PJ
2572 if (node == MAX_NUMNODES)
2573 node = first_node(current->mems_allowed);
6adef3eb 2574 *rotor = node;
825a46af
PJ
2575 return node;
2576}
6adef3eb
JS
2577
2578int cpuset_mem_spread_node(void)
2579{
778d3b0f
MH
2580 if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
2581 current->cpuset_mem_spread_rotor =
2582 node_random(&current->mems_allowed);
2583
6adef3eb
JS
2584 return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
2585}
2586
2587int cpuset_slab_spread_node(void)
2588{
778d3b0f
MH
2589 if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
2590 current->cpuset_slab_spread_rotor =
2591 node_random(&current->mems_allowed);
2592
6adef3eb
JS
2593 return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
2594}
2595
825a46af
PJ
2596EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
2597
ef08e3b4 2598/**
bbe373f2
DR
2599 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
2600 * @tsk1: pointer to task_struct of some task.
2601 * @tsk2: pointer to task_struct of some other task.
2602 *
2603 * Description: Return true if @tsk1's mems_allowed intersects the
2604 * mems_allowed of @tsk2. Used by the OOM killer to determine if
2605 * one of the task's memory usage might impact the memory available
2606 * to the other.
ef08e3b4
PJ
2607 **/
2608
bbe373f2
DR
2609int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
2610 const struct task_struct *tsk2)
ef08e3b4 2611{
bbe373f2 2612 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
ef08e3b4
PJ
2613}
2614
f440d98f
LZ
2615#define CPUSET_NODELIST_LEN (256)
2616
75aa1994
DR
2617/**
2618 * cpuset_print_task_mems_allowed - prints task's cpuset and mems_allowed
fc34ac1d 2619 * @tsk: pointer to task_struct of some task.
75aa1994
DR
2620 *
2621 * Description: Prints @task's name, cpuset name, and cached copy of its
b8dadcb5 2622 * mems_allowed to the kernel log.
75aa1994
DR
2623 */
2624void cpuset_print_task_mems_allowed(struct task_struct *tsk)
2625{
f440d98f
LZ
2626 /* Statically allocated to prevent using excess stack. */
2627 static char cpuset_nodelist[CPUSET_NODELIST_LEN];
2628 static DEFINE_SPINLOCK(cpuset_buffer_lock);
b8dadcb5 2629 struct cgroup *cgrp;
75aa1994 2630
f440d98f 2631 spin_lock(&cpuset_buffer_lock);
b8dadcb5 2632 rcu_read_lock();
63f43f55 2633
b8dadcb5 2634 cgrp = task_cs(tsk)->css.cgroup;
75aa1994
DR
2635 nodelist_scnprintf(cpuset_nodelist, CPUSET_NODELIST_LEN,
2636 tsk->mems_allowed);
12d3089c 2637 pr_info("%s cpuset=", tsk->comm);
e61734c5
TH
2638 pr_cont_cgroup_name(cgrp);
2639 pr_cont(" mems_allowed=%s\n", cpuset_nodelist);
f440d98f 2640
cfb5966b 2641 rcu_read_unlock();
75aa1994
DR
2642 spin_unlock(&cpuset_buffer_lock);
2643}
2644
3e0d98b9
PJ
2645/*
2646 * Collection of memory_pressure is suppressed unless
2647 * this flag is enabled by writing "1" to the special
2648 * cpuset file 'memory_pressure_enabled' in the root cpuset.
2649 */
2650
c5b2aff8 2651int cpuset_memory_pressure_enabled __read_mostly;
3e0d98b9
PJ
2652
2653/**
2654 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
2655 *
2656 * Keep a running average of the rate of synchronous (direct)
2657 * page reclaim efforts initiated by tasks in each cpuset.
2658 *
2659 * This represents the rate at which some task in the cpuset
2660 * ran low on memory on all nodes it was allowed to use, and
2661 * had to enter the kernels page reclaim code in an effort to
2662 * create more free memory by tossing clean pages or swapping
2663 * or writing dirty pages.
2664 *
2665 * Display to user space in the per-cpuset read-only file
2666 * "memory_pressure". Value displayed is an integer
2667 * representing the recent rate of entry into the synchronous
2668 * (direct) page reclaim by any task attached to the cpuset.
2669 **/
2670
2671void __cpuset_memory_pressure_bump(void)
2672{
b8dadcb5 2673 rcu_read_lock();
8793d854 2674 fmeter_markevent(&task_cs(current)->fmeter);
b8dadcb5 2675 rcu_read_unlock();
3e0d98b9
PJ
2676}
2677
8793d854 2678#ifdef CONFIG_PROC_PID_CPUSET
1da177e4
LT
2679/*
2680 * proc_cpuset_show()
2681 * - Print tasks cpuset path into seq_file.
2682 * - Used for /proc/<pid>/cpuset.
053199ed
PJ
2683 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
2684 * doesn't really matter if tsk->cpuset changes after we read it,
5d21cc2d 2685 * and we take cpuset_mutex, keeping cpuset_attach() from changing it
2df167a3 2686 * anyway.
1da177e4 2687 */
8d8b97ba 2688int proc_cpuset_show(struct seq_file *m, void *unused_v)
1da177e4 2689{
13b41b09 2690 struct pid *pid;
1da177e4 2691 struct task_struct *tsk;
e61734c5 2692 char *buf, *p;
8793d854 2693 struct cgroup_subsys_state *css;
99f89551 2694 int retval;
1da177e4 2695
99f89551 2696 retval = -ENOMEM;
e61734c5 2697 buf = kmalloc(PATH_MAX, GFP_KERNEL);
1da177e4 2698 if (!buf)
99f89551
EB
2699 goto out;
2700
2701 retval = -ESRCH;
13b41b09
EB
2702 pid = m->private;
2703 tsk = get_pid_task(pid, PIDTYPE_PID);
99f89551
EB
2704 if (!tsk)
2705 goto out_free;
1da177e4 2706
e61734c5 2707 retval = -ENAMETOOLONG;
27e89ae5 2708 rcu_read_lock();
073219e9 2709 css = task_css(tsk, cpuset_cgrp_id);
e61734c5 2710 p = cgroup_path(css->cgroup, buf, PATH_MAX);
27e89ae5 2711 rcu_read_unlock();
e61734c5 2712 if (!p)
27e89ae5 2713 goto out_put_task;
e61734c5 2714 seq_puts(m, p);
1da177e4 2715 seq_putc(m, '\n');
e61734c5 2716 retval = 0;
27e89ae5 2717out_put_task:
99f89551
EB
2718 put_task_struct(tsk);
2719out_free:
1da177e4 2720 kfree(buf);
99f89551 2721out:
1da177e4
LT
2722 return retval;
2723}
8793d854 2724#endif /* CONFIG_PROC_PID_CPUSET */
1da177e4 2725
d01d4827 2726/* Display task mems_allowed in /proc/<pid>/status file. */
df5f8314
EB
2727void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
2728{
fc34ac1d 2729 seq_puts(m, "Mems_allowed:\t");
30e8e136 2730 seq_nodemask(m, &task->mems_allowed);
fc34ac1d
FF
2731 seq_puts(m, "\n");
2732 seq_puts(m, "Mems_allowed_list:\t");
30e8e136 2733 seq_nodemask_list(m, &task->mems_allowed);
fc34ac1d 2734 seq_puts(m, "\n");
1da177e4 2735}