]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - kernel/cpuset.c
cgroup: remove struct cgroup_scanner
[mirror_ubuntu-zesty-kernel.git] / kernel / cpuset.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/cpuset.c
3 *
4 * Processor and Memory placement constraints for sets of tasks.
5 *
6 * Copyright (C) 2003 BULL SA.
029190c5 7 * Copyright (C) 2004-2007 Silicon Graphics, Inc.
8793d854 8 * Copyright (C) 2006 Google, Inc
1da177e4
LT
9 *
10 * Portions derived from Patrick Mochel's sysfs code.
11 * sysfs is Copyright (c) 2001-3 Patrick Mochel
1da177e4 12 *
825a46af 13 * 2003-10-10 Written by Simon Derr.
1da177e4 14 * 2003-10-22 Updates by Stephen Hemminger.
825a46af 15 * 2004 May-July Rework by Paul Jackson.
8793d854 16 * 2006 Rework by Paul Menage to use generic cgroups
cf417141
MK
17 * 2008 Rework of the scheduler domains and CPU hotplug handling
18 * by Max Krasnyansky
1da177e4
LT
19 *
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
23 */
24
1da177e4
LT
25#include <linux/cpu.h>
26#include <linux/cpumask.h>
27#include <linux/cpuset.h>
28#include <linux/err.h>
29#include <linux/errno.h>
30#include <linux/file.h>
31#include <linux/fs.h>
32#include <linux/init.h>
33#include <linux/interrupt.h>
34#include <linux/kernel.h>
35#include <linux/kmod.h>
36#include <linux/list.h>
68860ec1 37#include <linux/mempolicy.h>
1da177e4 38#include <linux/mm.h>
f481891f 39#include <linux/memory.h>
9984de1a 40#include <linux/export.h>
1da177e4
LT
41#include <linux/mount.h>
42#include <linux/namei.h>
43#include <linux/pagemap.h>
44#include <linux/proc_fs.h>
6b9c2603 45#include <linux/rcupdate.h>
1da177e4
LT
46#include <linux/sched.h>
47#include <linux/seq_file.h>
22fb52dd 48#include <linux/security.h>
1da177e4 49#include <linux/slab.h>
1da177e4
LT
50#include <linux/spinlock.h>
51#include <linux/stat.h>
52#include <linux/string.h>
53#include <linux/time.h>
54#include <linux/backing-dev.h>
55#include <linux/sort.h>
56
57#include <asm/uaccess.h>
60063497 58#include <linux/atomic.h>
3d3f26a7 59#include <linux/mutex.h>
956db3ca
CW
60#include <linux/workqueue.h>
61#include <linux/cgroup.h>
e44193d3 62#include <linux/wait.h>
1da177e4 63
202f72d5
PJ
64/*
65 * Tracks how many cpusets are currently defined in system.
66 * When there is only one cpuset (the root cpuset) we can
67 * short circuit some hooks.
68 */
7edc5962 69int number_of_cpusets __read_mostly;
202f72d5 70
2df167a3 71/* Forward declare cgroup structures */
8793d854 72struct cgroup_subsys cpuset_subsys;
8793d854 73
3e0d98b9
PJ
74/* See "Frequency meter" comments, below. */
75
76struct fmeter {
77 int cnt; /* unprocessed events count */
78 int val; /* most recent output value */
79 time_t time; /* clock (secs) when val computed */
80 spinlock_t lock; /* guards read or write of above */
81};
82
1da177e4 83struct cpuset {
8793d854
PM
84 struct cgroup_subsys_state css;
85
1da177e4 86 unsigned long flags; /* "unsigned long" so bitops work */
300ed6cb 87 cpumask_var_t cpus_allowed; /* CPUs allowed to tasks in cpuset */
1da177e4
LT
88 nodemask_t mems_allowed; /* Memory Nodes allowed to tasks */
89
33ad801d
LZ
90 /*
91 * This is old Memory Nodes tasks took on.
92 *
93 * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
94 * - A new cpuset's old_mems_allowed is initialized when some
95 * task is moved into it.
96 * - old_mems_allowed is used in cpuset_migrate_mm() when we change
97 * cpuset.mems_allowed and have tasks' nodemask updated, and
98 * then old_mems_allowed is updated to mems_allowed.
99 */
100 nodemask_t old_mems_allowed;
101
3e0d98b9 102 struct fmeter fmeter; /* memory_pressure filter */
029190c5 103
452477fa
TH
104 /*
105 * Tasks are being attached to this cpuset. Used to prevent
106 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
107 */
108 int attach_in_progress;
109
029190c5
PJ
110 /* partition number for rebuild_sched_domains() */
111 int pn;
956db3ca 112
1d3504fc
HS
113 /* for custom sched domain */
114 int relax_domain_level;
1da177e4
LT
115};
116
a7c6d554
TH
117static inline struct cpuset *css_cs(struct cgroup_subsys_state *css)
118{
119 return css ? container_of(css, struct cpuset, css) : NULL;
120}
121
8793d854 122/* Retrieve the cpuset for a cgroup */
c9e5fe66 123static inline struct cpuset *cgroup_cs(struct cgroup *cgrp)
8793d854 124{
a7c6d554 125 return css_cs(cgroup_css(cgrp, cpuset_subsys_id));
8793d854
PM
126}
127
128/* Retrieve the cpuset for a task */
129static inline struct cpuset *task_cs(struct task_struct *task)
130{
a7c6d554 131 return css_cs(task_css(task, cpuset_subsys_id));
8793d854 132}
8793d854 133
c9710d80 134static inline struct cpuset *parent_cs(struct cpuset *cs)
c431069f 135{
63876986 136 return css_cs(css_parent(&cs->css));
c431069f
TH
137}
138
b246272e
DR
139#ifdef CONFIG_NUMA
140static inline bool task_has_mempolicy(struct task_struct *task)
141{
142 return task->mempolicy;
143}
144#else
145static inline bool task_has_mempolicy(struct task_struct *task)
146{
147 return false;
148}
149#endif
150
151
1da177e4
LT
152/* bits in struct cpuset flags field */
153typedef enum {
efeb77b2 154 CS_ONLINE,
1da177e4
LT
155 CS_CPU_EXCLUSIVE,
156 CS_MEM_EXCLUSIVE,
78608366 157 CS_MEM_HARDWALL,
45b07ef3 158 CS_MEMORY_MIGRATE,
029190c5 159 CS_SCHED_LOAD_BALANCE,
825a46af
PJ
160 CS_SPREAD_PAGE,
161 CS_SPREAD_SLAB,
1da177e4
LT
162} cpuset_flagbits_t;
163
164/* convenient tests for these bits */
efeb77b2
TH
165static inline bool is_cpuset_online(const struct cpuset *cs)
166{
167 return test_bit(CS_ONLINE, &cs->flags);
168}
169
1da177e4
LT
170static inline int is_cpu_exclusive(const struct cpuset *cs)
171{
7b5b9ef0 172 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
1da177e4
LT
173}
174
175static inline int is_mem_exclusive(const struct cpuset *cs)
176{
7b5b9ef0 177 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
1da177e4
LT
178}
179
78608366
PM
180static inline int is_mem_hardwall(const struct cpuset *cs)
181{
182 return test_bit(CS_MEM_HARDWALL, &cs->flags);
183}
184
029190c5
PJ
185static inline int is_sched_load_balance(const struct cpuset *cs)
186{
187 return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
188}
189
45b07ef3
PJ
190static inline int is_memory_migrate(const struct cpuset *cs)
191{
7b5b9ef0 192 return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
45b07ef3
PJ
193}
194
825a46af
PJ
195static inline int is_spread_page(const struct cpuset *cs)
196{
197 return test_bit(CS_SPREAD_PAGE, &cs->flags);
198}
199
200static inline int is_spread_slab(const struct cpuset *cs)
201{
202 return test_bit(CS_SPREAD_SLAB, &cs->flags);
203}
204
1da177e4 205static struct cpuset top_cpuset = {
efeb77b2
TH
206 .flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
207 (1 << CS_MEM_EXCLUSIVE)),
1da177e4
LT
208};
209
ae8086ce
TH
210/**
211 * cpuset_for_each_child - traverse online children of a cpuset
212 * @child_cs: loop cursor pointing to the current child
492eb21b 213 * @pos_css: used for iteration
ae8086ce
TH
214 * @parent_cs: target cpuset to walk children of
215 *
216 * Walk @child_cs through the online children of @parent_cs. Must be used
217 * with RCU read locked.
218 */
492eb21b
TH
219#define cpuset_for_each_child(child_cs, pos_css, parent_cs) \
220 css_for_each_child((pos_css), &(parent_cs)->css) \
221 if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
ae8086ce 222
fc560a26
TH
223/**
224 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
225 * @des_cs: loop cursor pointing to the current descendant
492eb21b 226 * @pos_css: used for iteration
fc560a26
TH
227 * @root_cs: target cpuset to walk ancestor of
228 *
229 * Walk @des_cs through the online descendants of @root_cs. Must be used
492eb21b
TH
230 * with RCU read locked. The caller may modify @pos_css by calling
231 * css_rightmost_descendant() to skip subtree.
fc560a26 232 */
492eb21b
TH
233#define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs) \
234 css_for_each_descendant_pre((pos_css), &(root_cs)->css) \
235 if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
fc560a26 236
1da177e4 237/*
5d21cc2d
TH
238 * There are two global mutexes guarding cpuset structures - cpuset_mutex
239 * and callback_mutex. The latter may nest inside the former. We also
240 * require taking task_lock() when dereferencing a task's cpuset pointer.
241 * See "The task_lock() exception", at the end of this comment.
242 *
243 * A task must hold both mutexes to modify cpusets. If a task holds
244 * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
245 * is the only task able to also acquire callback_mutex and be able to
246 * modify cpusets. It can perform various checks on the cpuset structure
247 * first, knowing nothing will change. It can also allocate memory while
248 * just holding cpuset_mutex. While it is performing these checks, various
249 * callback routines can briefly acquire callback_mutex to query cpusets.
250 * Once it is ready to make the changes, it takes callback_mutex, blocking
251 * everyone else.
053199ed
PJ
252 *
253 * Calls to the kernel memory allocator can not be made while holding
3d3f26a7 254 * callback_mutex, as that would risk double tripping on callback_mutex
053199ed
PJ
255 * from one of the callbacks into the cpuset code from within
256 * __alloc_pages().
257 *
3d3f26a7 258 * If a task is only holding callback_mutex, then it has read-only
053199ed
PJ
259 * access to cpusets.
260 *
58568d2a
MX
261 * Now, the task_struct fields mems_allowed and mempolicy may be changed
262 * by other task, we use alloc_lock in the task_struct fields to protect
263 * them.
053199ed 264 *
3d3f26a7 265 * The cpuset_common_file_read() handlers only hold callback_mutex across
053199ed
PJ
266 * small pieces of code, such as when reading out possibly multi-word
267 * cpumasks and nodemasks.
268 *
2df167a3
PM
269 * Accessing a task's cpuset should be done in accordance with the
270 * guidelines for accessing subsystem state in kernel/cgroup.c
1da177e4
LT
271 */
272
5d21cc2d 273static DEFINE_MUTEX(cpuset_mutex);
3d3f26a7 274static DEFINE_MUTEX(callback_mutex);
4247bdc6 275
3a5a6d0c
TH
276/*
277 * CPU / memory hotplug is handled asynchronously.
278 */
279static void cpuset_hotplug_workfn(struct work_struct *work);
3a5a6d0c
TH
280static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);
281
e44193d3
LZ
282static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);
283
cf417141
MK
284/*
285 * This is ugly, but preserves the userspace API for existing cpuset
8793d854 286 * users. If someone tries to mount the "cpuset" filesystem, we
cf417141
MK
287 * silently switch it to mount "cgroup" instead
288 */
f7e83571
AV
289static struct dentry *cpuset_mount(struct file_system_type *fs_type,
290 int flags, const char *unused_dev_name, void *data)
1da177e4 291{
8793d854 292 struct file_system_type *cgroup_fs = get_fs_type("cgroup");
f7e83571 293 struct dentry *ret = ERR_PTR(-ENODEV);
8793d854
PM
294 if (cgroup_fs) {
295 char mountopts[] =
296 "cpuset,noprefix,"
297 "release_agent=/sbin/cpuset_release_agent";
f7e83571
AV
298 ret = cgroup_fs->mount(cgroup_fs, flags,
299 unused_dev_name, mountopts);
8793d854
PM
300 put_filesystem(cgroup_fs);
301 }
302 return ret;
1da177e4
LT
303}
304
305static struct file_system_type cpuset_fs_type = {
306 .name = "cpuset",
f7e83571 307 .mount = cpuset_mount,
1da177e4
LT
308};
309
1da177e4 310/*
300ed6cb 311 * Return in pmask the portion of a cpusets's cpus_allowed that
1da177e4 312 * are online. If none are online, walk up the cpuset hierarchy
40df2deb
LZ
313 * until we find one that does have some online cpus. The top
314 * cpuset always has some cpus online.
1da177e4
LT
315 *
316 * One way or another, we guarantee to return some non-empty subset
5f054e31 317 * of cpu_online_mask.
1da177e4 318 *
3d3f26a7 319 * Call with callback_mutex held.
1da177e4 320 */
c9710d80 321static void guarantee_online_cpus(struct cpuset *cs, struct cpumask *pmask)
1da177e4 322{
40df2deb 323 while (!cpumask_intersects(cs->cpus_allowed, cpu_online_mask))
c431069f 324 cs = parent_cs(cs);
40df2deb 325 cpumask_and(pmask, cs->cpus_allowed, cpu_online_mask);
1da177e4
LT
326}
327
328/*
329 * Return in *pmask the portion of a cpusets's mems_allowed that
0e1e7c7a
CL
330 * are online, with memory. If none are online with memory, walk
331 * up the cpuset hierarchy until we find one that does have some
40df2deb 332 * online mems. The top cpuset always has some mems online.
1da177e4
LT
333 *
334 * One way or another, we guarantee to return some non-empty subset
38d7bee9 335 * of node_states[N_MEMORY].
1da177e4 336 *
3d3f26a7 337 * Call with callback_mutex held.
1da177e4 338 */
c9710d80 339static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
1da177e4 340{
40df2deb 341 while (!nodes_intersects(cs->mems_allowed, node_states[N_MEMORY]))
c431069f 342 cs = parent_cs(cs);
40df2deb 343 nodes_and(*pmask, cs->mems_allowed, node_states[N_MEMORY]);
1da177e4
LT
344}
345
f3b39d47
MX
346/*
347 * update task's spread flag if cpuset's page/slab spread flag is set
348 *
5d21cc2d 349 * Called with callback_mutex/cpuset_mutex held
f3b39d47
MX
350 */
351static void cpuset_update_task_spread_flag(struct cpuset *cs,
352 struct task_struct *tsk)
353{
354 if (is_spread_page(cs))
355 tsk->flags |= PF_SPREAD_PAGE;
356 else
357 tsk->flags &= ~PF_SPREAD_PAGE;
358 if (is_spread_slab(cs))
359 tsk->flags |= PF_SPREAD_SLAB;
360 else
361 tsk->flags &= ~PF_SPREAD_SLAB;
362}
363
1da177e4
LT
364/*
365 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
366 *
367 * One cpuset is a subset of another if all its allowed CPUs and
368 * Memory Nodes are a subset of the other, and its exclusive flags
5d21cc2d 369 * are only set if the other's are set. Call holding cpuset_mutex.
1da177e4
LT
370 */
371
372static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
373{
300ed6cb 374 return cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
1da177e4
LT
375 nodes_subset(p->mems_allowed, q->mems_allowed) &&
376 is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
377 is_mem_exclusive(p) <= is_mem_exclusive(q);
378}
379
645fcc9d
LZ
380/**
381 * alloc_trial_cpuset - allocate a trial cpuset
382 * @cs: the cpuset that the trial cpuset duplicates
383 */
c9710d80 384static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
645fcc9d 385{
300ed6cb
LZ
386 struct cpuset *trial;
387
388 trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
389 if (!trial)
390 return NULL;
391
392 if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL)) {
393 kfree(trial);
394 return NULL;
395 }
396 cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
397
398 return trial;
645fcc9d
LZ
399}
400
401/**
402 * free_trial_cpuset - free the trial cpuset
403 * @trial: the trial cpuset to be freed
404 */
405static void free_trial_cpuset(struct cpuset *trial)
406{
300ed6cb 407 free_cpumask_var(trial->cpus_allowed);
645fcc9d
LZ
408 kfree(trial);
409}
410
1da177e4
LT
411/*
412 * validate_change() - Used to validate that any proposed cpuset change
413 * follows the structural rules for cpusets.
414 *
415 * If we replaced the flag and mask values of the current cpuset
416 * (cur) with those values in the trial cpuset (trial), would
417 * our various subset and exclusive rules still be valid? Presumes
5d21cc2d 418 * cpuset_mutex held.
1da177e4
LT
419 *
420 * 'cur' is the address of an actual, in-use cpuset. Operations
421 * such as list traversal that depend on the actual address of the
422 * cpuset in the list must use cur below, not trial.
423 *
424 * 'trial' is the address of bulk structure copy of cur, with
425 * perhaps one or more of the fields cpus_allowed, mems_allowed,
426 * or flags changed to new, trial values.
427 *
428 * Return 0 if valid, -errno if not.
429 */
430
c9710d80 431static int validate_change(struct cpuset *cur, struct cpuset *trial)
1da177e4 432{
492eb21b 433 struct cgroup_subsys_state *css;
1da177e4 434 struct cpuset *c, *par;
ae8086ce
TH
435 int ret;
436
437 rcu_read_lock();
1da177e4
LT
438
439 /* Each of our child cpusets must be a subset of us */
ae8086ce 440 ret = -EBUSY;
492eb21b 441 cpuset_for_each_child(c, css, cur)
ae8086ce
TH
442 if (!is_cpuset_subset(c, trial))
443 goto out;
1da177e4
LT
444
445 /* Remaining checks don't apply to root cpuset */
ae8086ce 446 ret = 0;
69604067 447 if (cur == &top_cpuset)
ae8086ce 448 goto out;
1da177e4 449
c431069f 450 par = parent_cs(cur);
69604067 451
1da177e4 452 /* We must be a subset of our parent cpuset */
ae8086ce 453 ret = -EACCES;
1da177e4 454 if (!is_cpuset_subset(trial, par))
ae8086ce 455 goto out;
1da177e4 456
2df167a3
PM
457 /*
458 * If either I or some sibling (!= me) is exclusive, we can't
459 * overlap
460 */
ae8086ce 461 ret = -EINVAL;
492eb21b 462 cpuset_for_each_child(c, css, par) {
1da177e4
LT
463 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
464 c != cur &&
300ed6cb 465 cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
ae8086ce 466 goto out;
1da177e4
LT
467 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
468 c != cur &&
469 nodes_intersects(trial->mems_allowed, c->mems_allowed))
ae8086ce 470 goto out;
1da177e4
LT
471 }
472
452477fa
TH
473 /*
474 * Cpusets with tasks - existing or newly being attached - can't
475 * have empty cpus_allowed or mems_allowed.
476 */
ae8086ce 477 ret = -ENOSPC;
452477fa 478 if ((cgroup_task_count(cur->css.cgroup) || cur->attach_in_progress) &&
88fa523b 479 (cpumask_empty(trial->cpus_allowed) &&
ae8086ce
TH
480 nodes_empty(trial->mems_allowed)))
481 goto out;
020958b6 482
ae8086ce
TH
483 ret = 0;
484out:
485 rcu_read_unlock();
486 return ret;
1da177e4
LT
487}
488
db7f47cf 489#ifdef CONFIG_SMP
029190c5 490/*
cf417141 491 * Helper routine for generate_sched_domains().
029190c5
PJ
492 * Do cpusets a, b have overlapping cpus_allowed masks?
493 */
029190c5
PJ
494static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
495{
300ed6cb 496 return cpumask_intersects(a->cpus_allowed, b->cpus_allowed);
029190c5
PJ
497}
498
1d3504fc
HS
499static void
500update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
501{
1d3504fc
HS
502 if (dattr->relax_domain_level < c->relax_domain_level)
503 dattr->relax_domain_level = c->relax_domain_level;
504 return;
505}
506
fc560a26
TH
507static void update_domain_attr_tree(struct sched_domain_attr *dattr,
508 struct cpuset *root_cs)
f5393693 509{
fc560a26 510 struct cpuset *cp;
492eb21b 511 struct cgroup_subsys_state *pos_css;
f5393693 512
fc560a26 513 rcu_read_lock();
492eb21b 514 cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
fc560a26
TH
515 /* skip the whole subtree if @cp doesn't have any CPU */
516 if (cpumask_empty(cp->cpus_allowed)) {
492eb21b 517 pos_css = css_rightmost_descendant(pos_css);
f5393693 518 continue;
fc560a26 519 }
f5393693
LJ
520
521 if (is_sched_load_balance(cp))
522 update_domain_attr(dattr, cp);
f5393693 523 }
fc560a26 524 rcu_read_unlock();
f5393693
LJ
525}
526
029190c5 527/*
cf417141
MK
528 * generate_sched_domains()
529 *
530 * This function builds a partial partition of the systems CPUs
531 * A 'partial partition' is a set of non-overlapping subsets whose
532 * union is a subset of that set.
0a0fca9d 533 * The output of this function needs to be passed to kernel/sched/core.c
cf417141
MK
534 * partition_sched_domains() routine, which will rebuild the scheduler's
535 * load balancing domains (sched domains) as specified by that partial
536 * partition.
029190c5 537 *
45ce80fb 538 * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
029190c5
PJ
539 * for a background explanation of this.
540 *
541 * Does not return errors, on the theory that the callers of this
542 * routine would rather not worry about failures to rebuild sched
543 * domains when operating in the severe memory shortage situations
544 * that could cause allocation failures below.
545 *
5d21cc2d 546 * Must be called with cpuset_mutex held.
029190c5
PJ
547 *
548 * The three key local variables below are:
aeed6824 549 * q - a linked-list queue of cpuset pointers, used to implement a
029190c5
PJ
550 * top-down scan of all cpusets. This scan loads a pointer
551 * to each cpuset marked is_sched_load_balance into the
552 * array 'csa'. For our purposes, rebuilding the schedulers
553 * sched domains, we can ignore !is_sched_load_balance cpusets.
554 * csa - (for CpuSet Array) Array of pointers to all the cpusets
555 * that need to be load balanced, for convenient iterative
556 * access by the subsequent code that finds the best partition,
557 * i.e the set of domains (subsets) of CPUs such that the
558 * cpus_allowed of every cpuset marked is_sched_load_balance
559 * is a subset of one of these domains, while there are as
560 * many such domains as possible, each as small as possible.
561 * doms - Conversion of 'csa' to an array of cpumasks, for passing to
0a0fca9d 562 * the kernel/sched/core.c routine partition_sched_domains() in a
029190c5
PJ
563 * convenient format, that can be easily compared to the prior
564 * value to determine what partition elements (sched domains)
565 * were changed (added or removed.)
566 *
567 * Finding the best partition (set of domains):
568 * The triple nested loops below over i, j, k scan over the
569 * load balanced cpusets (using the array of cpuset pointers in
570 * csa[]) looking for pairs of cpusets that have overlapping
571 * cpus_allowed, but which don't have the same 'pn' partition
572 * number and gives them in the same partition number. It keeps
573 * looping on the 'restart' label until it can no longer find
574 * any such pairs.
575 *
576 * The union of the cpus_allowed masks from the set of
577 * all cpusets having the same 'pn' value then form the one
578 * element of the partition (one sched domain) to be passed to
579 * partition_sched_domains().
580 */
acc3f5d7 581static int generate_sched_domains(cpumask_var_t **domains,
cf417141 582 struct sched_domain_attr **attributes)
029190c5 583{
029190c5
PJ
584 struct cpuset *cp; /* scans q */
585 struct cpuset **csa; /* array of all cpuset ptrs */
586 int csn; /* how many cpuset ptrs in csa so far */
587 int i, j, k; /* indices for partition finding loops */
acc3f5d7 588 cpumask_var_t *doms; /* resulting partition; i.e. sched domains */
1d3504fc 589 struct sched_domain_attr *dattr; /* attributes for custom domains */
1583715d 590 int ndoms = 0; /* number of sched domains in result */
6af866af 591 int nslot; /* next empty doms[] struct cpumask slot */
492eb21b 592 struct cgroup_subsys_state *pos_css;
029190c5 593
029190c5 594 doms = NULL;
1d3504fc 595 dattr = NULL;
cf417141 596 csa = NULL;
029190c5
PJ
597
598 /* Special case for the 99% of systems with one, full, sched domain */
599 if (is_sched_load_balance(&top_cpuset)) {
acc3f5d7
RR
600 ndoms = 1;
601 doms = alloc_sched_domains(ndoms);
029190c5 602 if (!doms)
cf417141
MK
603 goto done;
604
1d3504fc
HS
605 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
606 if (dattr) {
607 *dattr = SD_ATTR_INIT;
93a65575 608 update_domain_attr_tree(dattr, &top_cpuset);
1d3504fc 609 }
acc3f5d7 610 cpumask_copy(doms[0], top_cpuset.cpus_allowed);
cf417141 611
cf417141 612 goto done;
029190c5
PJ
613 }
614
029190c5
PJ
615 csa = kmalloc(number_of_cpusets * sizeof(cp), GFP_KERNEL);
616 if (!csa)
617 goto done;
618 csn = 0;
619
fc560a26 620 rcu_read_lock();
492eb21b 621 cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
f5393693 622 /*
fc560a26
TH
623 * Continue traversing beyond @cp iff @cp has some CPUs and
624 * isn't load balancing. The former is obvious. The
625 * latter: All child cpusets contain a subset of the
626 * parent's cpus, so just skip them, and then we call
627 * update_domain_attr_tree() to calc relax_domain_level of
628 * the corresponding sched domain.
f5393693 629 */
fc560a26
TH
630 if (!cpumask_empty(cp->cpus_allowed) &&
631 !is_sched_load_balance(cp))
f5393693 632 continue;
489a5393 633
fc560a26
TH
634 if (is_sched_load_balance(cp))
635 csa[csn++] = cp;
636
637 /* skip @cp's subtree */
492eb21b 638 pos_css = css_rightmost_descendant(pos_css);
fc560a26
TH
639 }
640 rcu_read_unlock();
029190c5
PJ
641
642 for (i = 0; i < csn; i++)
643 csa[i]->pn = i;
644 ndoms = csn;
645
646restart:
647 /* Find the best partition (set of sched domains) */
648 for (i = 0; i < csn; i++) {
649 struct cpuset *a = csa[i];
650 int apn = a->pn;
651
652 for (j = 0; j < csn; j++) {
653 struct cpuset *b = csa[j];
654 int bpn = b->pn;
655
656 if (apn != bpn && cpusets_overlap(a, b)) {
657 for (k = 0; k < csn; k++) {
658 struct cpuset *c = csa[k];
659
660 if (c->pn == bpn)
661 c->pn = apn;
662 }
663 ndoms--; /* one less element */
664 goto restart;
665 }
666 }
667 }
668
cf417141
MK
669 /*
670 * Now we know how many domains to create.
671 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
672 */
acc3f5d7 673 doms = alloc_sched_domains(ndoms);
700018e0 674 if (!doms)
cf417141 675 goto done;
cf417141
MK
676
677 /*
678 * The rest of the code, including the scheduler, can deal with
679 * dattr==NULL case. No need to abort if alloc fails.
680 */
1d3504fc 681 dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
029190c5
PJ
682
683 for (nslot = 0, i = 0; i < csn; i++) {
684 struct cpuset *a = csa[i];
6af866af 685 struct cpumask *dp;
029190c5
PJ
686 int apn = a->pn;
687
cf417141
MK
688 if (apn < 0) {
689 /* Skip completed partitions */
690 continue;
691 }
692
acc3f5d7 693 dp = doms[nslot];
cf417141
MK
694
695 if (nslot == ndoms) {
696 static int warnings = 10;
697 if (warnings) {
698 printk(KERN_WARNING
699 "rebuild_sched_domains confused:"
700 " nslot %d, ndoms %d, csn %d, i %d,"
701 " apn %d\n",
702 nslot, ndoms, csn, i, apn);
703 warnings--;
029190c5 704 }
cf417141
MK
705 continue;
706 }
029190c5 707
6af866af 708 cpumask_clear(dp);
cf417141
MK
709 if (dattr)
710 *(dattr + nslot) = SD_ATTR_INIT;
711 for (j = i; j < csn; j++) {
712 struct cpuset *b = csa[j];
713
714 if (apn == b->pn) {
300ed6cb 715 cpumask_or(dp, dp, b->cpus_allowed);
cf417141
MK
716 if (dattr)
717 update_domain_attr_tree(dattr + nslot, b);
718
719 /* Done with this partition */
720 b->pn = -1;
029190c5 721 }
029190c5 722 }
cf417141 723 nslot++;
029190c5
PJ
724 }
725 BUG_ON(nslot != ndoms);
726
cf417141
MK
727done:
728 kfree(csa);
729
700018e0
LZ
730 /*
731 * Fallback to the default domain if kmalloc() failed.
732 * See comments in partition_sched_domains().
733 */
734 if (doms == NULL)
735 ndoms = 1;
736
cf417141
MK
737 *domains = doms;
738 *attributes = dattr;
739 return ndoms;
740}
741
742/*
743 * Rebuild scheduler domains.
744 *
699140ba
TH
745 * If the flag 'sched_load_balance' of any cpuset with non-empty
746 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
747 * which has that flag enabled, or if any cpuset with a non-empty
748 * 'cpus' is removed, then call this routine to rebuild the
749 * scheduler's dynamic sched domains.
cf417141 750 *
5d21cc2d 751 * Call with cpuset_mutex held. Takes get_online_cpus().
cf417141 752 */
699140ba 753static void rebuild_sched_domains_locked(void)
cf417141
MK
754{
755 struct sched_domain_attr *attr;
acc3f5d7 756 cpumask_var_t *doms;
cf417141
MK
757 int ndoms;
758
5d21cc2d 759 lockdep_assert_held(&cpuset_mutex);
86ef5c9a 760 get_online_cpus();
cf417141 761
5b16c2a4
LZ
762 /*
763 * We have raced with CPU hotplug. Don't do anything to avoid
764 * passing doms with offlined cpu to partition_sched_domains().
765 * Anyways, hotplug work item will rebuild sched domains.
766 */
767 if (!cpumask_equal(top_cpuset.cpus_allowed, cpu_active_mask))
768 goto out;
769
cf417141 770 /* Generate domain masks and attrs */
cf417141 771 ndoms = generate_sched_domains(&doms, &attr);
cf417141
MK
772
773 /* Have scheduler rebuild the domains */
774 partition_sched_domains(ndoms, doms, attr);
5b16c2a4 775out:
86ef5c9a 776 put_online_cpus();
cf417141 777}
db7f47cf 778#else /* !CONFIG_SMP */
699140ba 779static void rebuild_sched_domains_locked(void)
db7f47cf
PM
780{
781}
db7f47cf 782#endif /* CONFIG_SMP */
029190c5 783
cf417141
MK
784void rebuild_sched_domains(void)
785{
5d21cc2d 786 mutex_lock(&cpuset_mutex);
699140ba 787 rebuild_sched_domains_locked();
5d21cc2d 788 mutex_unlock(&cpuset_mutex);
029190c5
PJ
789}
790
070b57fc
LZ
791/*
792 * effective_cpumask_cpuset - return nearest ancestor with non-empty cpus
793 * @cs: the cpuset in interest
58f4790b 794 *
070b57fc
LZ
795 * A cpuset's effective cpumask is the cpumask of the nearest ancestor
796 * with non-empty cpus. We use effective cpumask whenever:
797 * - we update tasks' cpus_allowed. (they take on the ancestor's cpumask
798 * if the cpuset they reside in has no cpus)
799 * - we want to retrieve task_cs(tsk)'s cpus_allowed.
800 *
801 * Called with cpuset_mutex held. cpuset_cpus_allowed_fallback() is an
802 * exception. See comments there.
803 */
804static struct cpuset *effective_cpumask_cpuset(struct cpuset *cs)
805{
806 while (cpumask_empty(cs->cpus_allowed))
807 cs = parent_cs(cs);
808 return cs;
809}
810
811/*
812 * effective_nodemask_cpuset - return nearest ancestor with non-empty mems
813 * @cs: the cpuset in interest
814 *
815 * A cpuset's effective nodemask is the nodemask of the nearest ancestor
816 * with non-empty memss. We use effective nodemask whenever:
817 * - we update tasks' mems_allowed. (they take on the ancestor's nodemask
818 * if the cpuset they reside in has no mems)
819 * - we want to retrieve task_cs(tsk)'s mems_allowed.
820 *
821 * Called with cpuset_mutex held.
053199ed 822 */
070b57fc 823static struct cpuset *effective_nodemask_cpuset(struct cpuset *cs)
58f4790b 824{
070b57fc
LZ
825 while (nodes_empty(cs->mems_allowed))
826 cs = parent_cs(cs);
827 return cs;
58f4790b 828}
053199ed 829
58f4790b
CW
830/**
831 * cpuset_change_cpumask - make a task's cpus_allowed the same as its cpuset's
832 * @tsk: task to test
e535837b 833 * @data: cpuset to @tsk belongs to
58f4790b
CW
834 *
835 * Called by cgroup_scan_tasks() for each task in a cgroup whose
836 * cpus_allowed mask needs to be changed.
837 *
838 * We don't need to re-check for the cgroup/cpuset membership, since we're
5d21cc2d 839 * holding cpuset_mutex at this point.
58f4790b 840 */
e535837b 841static void cpuset_change_cpumask(struct task_struct *tsk, void *data)
58f4790b 842{
e535837b
TH
843 struct cpuset *cs = data;
844 struct cpuset *cpus_cs = effective_cpumask_cpuset(cs);
070b57fc 845
070b57fc 846 set_cpus_allowed_ptr(tsk, cpus_cs->cpus_allowed);
58f4790b
CW
847}
848
0b2f630a
MX
849/**
850 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
851 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
4e74339a 852 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
0b2f630a 853 *
5d21cc2d 854 * Called with cpuset_mutex held
0b2f630a
MX
855 *
856 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
857 * calling callback functions for each.
858 *
4e74339a
LZ
859 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
860 * if @heap != NULL.
0b2f630a 861 */
4e74339a 862static void update_tasks_cpumask(struct cpuset *cs, struct ptr_heap *heap)
0b2f630a 863{
e535837b
TH
864 cgroup_scan_tasks(cs->css.cgroup, NULL, cpuset_change_cpumask, cs,
865 heap);
0b2f630a
MX
866}
867
5c5cc623
LZ
868/*
869 * update_tasks_cpumask_hier - Update the cpumasks of tasks in the hierarchy.
870 * @root_cs: the root cpuset of the hierarchy
871 * @update_root: update root cpuset or not?
872 * @heap: the heap used by cgroup_scan_tasks()
873 *
874 * This will update cpumasks of tasks in @root_cs and all other empty cpusets
875 * which take on cpumask of @root_cs.
876 *
877 * Called with cpuset_mutex held
878 */
879static void update_tasks_cpumask_hier(struct cpuset *root_cs,
880 bool update_root, struct ptr_heap *heap)
881{
882 struct cpuset *cp;
492eb21b 883 struct cgroup_subsys_state *pos_css;
5c5cc623
LZ
884
885 if (update_root)
886 update_tasks_cpumask(root_cs, heap);
887
888 rcu_read_lock();
492eb21b 889 cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
5c5cc623
LZ
890 /* skip the whole subtree if @cp have some CPU */
891 if (!cpumask_empty(cp->cpus_allowed)) {
492eb21b 892 pos_css = css_rightmost_descendant(pos_css);
5c5cc623
LZ
893 continue;
894 }
895 if (!css_tryget(&cp->css))
896 continue;
897 rcu_read_unlock();
898
899 update_tasks_cpumask(cp, heap);
900
901 rcu_read_lock();
902 css_put(&cp->css);
903 }
904 rcu_read_unlock();
905}
906
58f4790b
CW
907/**
908 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
909 * @cs: the cpuset to consider
910 * @buf: buffer of cpu numbers written to this cpuset
911 */
645fcc9d
LZ
912static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
913 const char *buf)
1da177e4 914{
4e74339a 915 struct ptr_heap heap;
58f4790b
CW
916 int retval;
917 int is_load_balanced;
1da177e4 918
5f054e31 919 /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
4c4d50f7
PJ
920 if (cs == &top_cpuset)
921 return -EACCES;
922
6f7f02e7 923 /*
c8d9c90c 924 * An empty cpus_allowed is ok only if the cpuset has no tasks.
020958b6
PJ
925 * Since cpulist_parse() fails on an empty mask, we special case
926 * that parsing. The validate_change() call ensures that cpusets
927 * with tasks have cpus.
6f7f02e7 928 */
020958b6 929 if (!*buf) {
300ed6cb 930 cpumask_clear(trialcs->cpus_allowed);
6f7f02e7 931 } else {
300ed6cb 932 retval = cpulist_parse(buf, trialcs->cpus_allowed);
6f7f02e7
DR
933 if (retval < 0)
934 return retval;
37340746 935
6ad4c188 936 if (!cpumask_subset(trialcs->cpus_allowed, cpu_active_mask))
37340746 937 return -EINVAL;
6f7f02e7 938 }
029190c5 939
8707d8b8 940 /* Nothing to do if the cpus didn't change */
300ed6cb 941 if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
8707d8b8 942 return 0;
58f4790b 943
a73456f3
LZ
944 retval = validate_change(cs, trialcs);
945 if (retval < 0)
946 return retval;
947
4e74339a
LZ
948 retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
949 if (retval)
950 return retval;
951
645fcc9d 952 is_load_balanced = is_sched_load_balance(trialcs);
029190c5 953
3d3f26a7 954 mutex_lock(&callback_mutex);
300ed6cb 955 cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
3d3f26a7 956 mutex_unlock(&callback_mutex);
029190c5 957
5c5cc623 958 update_tasks_cpumask_hier(cs, true, &heap);
4e74339a
LZ
959
960 heap_free(&heap);
58f4790b 961
8707d8b8 962 if (is_load_balanced)
699140ba 963 rebuild_sched_domains_locked();
85d7b949 964 return 0;
1da177e4
LT
965}
966
e4e364e8
PJ
967/*
968 * cpuset_migrate_mm
969 *
970 * Migrate memory region from one set of nodes to another.
971 *
972 * Temporarilly set tasks mems_allowed to target nodes of migration,
973 * so that the migration code can allocate pages on these nodes.
974 *
5d21cc2d 975 * Call holding cpuset_mutex, so current's cpuset won't change
c8d9c90c 976 * during this call, as manage_mutex holds off any cpuset_attach()
e4e364e8
PJ
977 * calls. Therefore we don't need to take task_lock around the
978 * call to guarantee_online_mems(), as we know no one is changing
2df167a3 979 * our task's cpuset.
e4e364e8 980 *
e4e364e8
PJ
981 * While the mm_struct we are migrating is typically from some
982 * other task, the task_struct mems_allowed that we are hacking
983 * is for our current task, which must allocate new pages for that
984 * migrating memory region.
e4e364e8
PJ
985 */
986
987static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
988 const nodemask_t *to)
989{
990 struct task_struct *tsk = current;
070b57fc 991 struct cpuset *mems_cs;
e4e364e8 992
e4e364e8 993 tsk->mems_allowed = *to;
e4e364e8
PJ
994
995 do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);
996
070b57fc
LZ
997 mems_cs = effective_nodemask_cpuset(task_cs(tsk));
998 guarantee_online_mems(mems_cs, &tsk->mems_allowed);
e4e364e8
PJ
999}
1000
3b6766fe 1001/*
58568d2a
MX
1002 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
1003 * @tsk: the task to change
1004 * @newmems: new nodes that the task will be set
1005 *
1006 * In order to avoid seeing no nodes if the old and new nodes are disjoint,
1007 * we structure updates as setting all new allowed nodes, then clearing newly
1008 * disallowed ones.
58568d2a
MX
1009 */
1010static void cpuset_change_task_nodemask(struct task_struct *tsk,
1011 nodemask_t *newmems)
1012{
b246272e 1013 bool need_loop;
89e8a244 1014
c0ff7453
MX
1015 /*
1016 * Allow tasks that have access to memory reserves because they have
1017 * been OOM killed to get memory anywhere.
1018 */
1019 if (unlikely(test_thread_flag(TIF_MEMDIE)))
1020 return;
1021 if (current->flags & PF_EXITING) /* Let dying task have memory */
1022 return;
1023
1024 task_lock(tsk);
b246272e
DR
1025 /*
1026 * Determine if a loop is necessary if another thread is doing
1027 * get_mems_allowed(). If at least one node remains unchanged and
1028 * tsk does not have a mempolicy, then an empty nodemask will not be
1029 * possible when mems_allowed is larger than a word.
1030 */
1031 need_loop = task_has_mempolicy(tsk) ||
1032 !nodes_intersects(*newmems, tsk->mems_allowed);
c0ff7453 1033
cc9a6c87
MG
1034 if (need_loop)
1035 write_seqcount_begin(&tsk->mems_allowed_seq);
c0ff7453 1036
cc9a6c87
MG
1037 nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
1038 mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP1);
c0ff7453
MX
1039
1040 mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP2);
58568d2a 1041 tsk->mems_allowed = *newmems;
cc9a6c87
MG
1042
1043 if (need_loop)
1044 write_seqcount_end(&tsk->mems_allowed_seq);
1045
c0ff7453 1046 task_unlock(tsk);
58568d2a
MX
1047}
1048
e535837b
TH
1049struct cpuset_change_nodemask_arg {
1050 struct cpuset *cs;
1051 nodemask_t *newmems;
1052};
1053
58568d2a
MX
1054/*
1055 * Update task's mems_allowed and rebind its mempolicy and vmas' mempolicy
1056 * of it to cpuset's new mems_allowed, and migrate pages to new nodes if
5d21cc2d 1057 * memory_migrate flag is set. Called with cpuset_mutex held.
3b6766fe 1058 */
e535837b 1059static void cpuset_change_nodemask(struct task_struct *p, void *data)
3b6766fe 1060{
e535837b
TH
1061 struct cpuset_change_nodemask_arg *arg = data;
1062 struct cpuset *cs = arg->cs;
3b6766fe 1063 struct mm_struct *mm;
3b6766fe 1064 int migrate;
58568d2a 1065
e535837b 1066 cpuset_change_task_nodemask(p, arg->newmems);
53feb297 1067
3b6766fe
LZ
1068 mm = get_task_mm(p);
1069 if (!mm)
1070 return;
1071
3b6766fe
LZ
1072 migrate = is_memory_migrate(cs);
1073
1074 mpol_rebind_mm(mm, &cs->mems_allowed);
1075 if (migrate)
e535837b 1076 cpuset_migrate_mm(mm, &cs->old_mems_allowed, arg->newmems);
3b6766fe
LZ
1077 mmput(mm);
1078}
1079
8793d854
PM
1080static void *cpuset_being_rebound;
1081
0b2f630a
MX
1082/**
1083 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1084 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
010cfac4 1085 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
0b2f630a 1086 *
5d21cc2d 1087 * Called with cpuset_mutex held
010cfac4
LZ
1088 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
1089 * if @heap != NULL.
0b2f630a 1090 */
33ad801d 1091static void update_tasks_nodemask(struct cpuset *cs, struct ptr_heap *heap)
1da177e4 1092{
33ad801d 1093 static nodemask_t newmems; /* protected by cpuset_mutex */
070b57fc 1094 struct cpuset *mems_cs = effective_nodemask_cpuset(cs);
e535837b
TH
1095 struct cpuset_change_nodemask_arg arg = { .cs = cs,
1096 .newmems = &newmems };
59dac16f 1097
846a16bf 1098 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
4225399a 1099
070b57fc 1100 guarantee_online_mems(mems_cs, &newmems);
33ad801d 1101
4225399a 1102 /*
3b6766fe
LZ
1103 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
1104 * take while holding tasklist_lock. Forks can happen - the
1105 * mpol_dup() cpuset_being_rebound check will catch such forks,
1106 * and rebind their vma mempolicies too. Because we still hold
5d21cc2d 1107 * the global cpuset_mutex, we know that no other rebind effort
3b6766fe 1108 * will be contending for the global variable cpuset_being_rebound.
4225399a 1109 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
04c19fa6 1110 * is idempotent. Also migrate pages in each mm to new nodes.
4225399a 1111 */
e535837b
TH
1112 cgroup_scan_tasks(cs->css.cgroup, NULL, cpuset_change_nodemask, &arg,
1113 heap);
4225399a 1114
33ad801d
LZ
1115 /*
1116 * All the tasks' nodemasks have been updated, update
1117 * cs->old_mems_allowed.
1118 */
1119 cs->old_mems_allowed = newmems;
1120
2df167a3 1121 /* We're done rebinding vmas to this cpuset's new mems_allowed. */
8793d854 1122 cpuset_being_rebound = NULL;
1da177e4
LT
1123}
1124
5c5cc623
LZ
1125/*
1126 * update_tasks_nodemask_hier - Update the nodemasks of tasks in the hierarchy.
1127 * @cs: the root cpuset of the hierarchy
1128 * @update_root: update the root cpuset or not?
1129 * @heap: the heap used by cgroup_scan_tasks()
1130 *
1131 * This will update nodemasks of tasks in @root_cs and all other empty cpusets
1132 * which take on nodemask of @root_cs.
1133 *
1134 * Called with cpuset_mutex held
1135 */
1136static void update_tasks_nodemask_hier(struct cpuset *root_cs,
1137 bool update_root, struct ptr_heap *heap)
1138{
1139 struct cpuset *cp;
492eb21b 1140 struct cgroup_subsys_state *pos_css;
5c5cc623
LZ
1141
1142 if (update_root)
1143 update_tasks_nodemask(root_cs, heap);
1144
1145 rcu_read_lock();
492eb21b 1146 cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
5c5cc623
LZ
1147 /* skip the whole subtree if @cp have some CPU */
1148 if (!nodes_empty(cp->mems_allowed)) {
492eb21b 1149 pos_css = css_rightmost_descendant(pos_css);
5c5cc623
LZ
1150 continue;
1151 }
1152 if (!css_tryget(&cp->css))
1153 continue;
1154 rcu_read_unlock();
1155
1156 update_tasks_nodemask(cp, heap);
1157
1158 rcu_read_lock();
1159 css_put(&cp->css);
1160 }
1161 rcu_read_unlock();
1162}
1163
0b2f630a
MX
1164/*
1165 * Handle user request to change the 'mems' memory placement
1166 * of a cpuset. Needs to validate the request, update the
58568d2a
MX
1167 * cpusets mems_allowed, and for each task in the cpuset,
1168 * update mems_allowed and rebind task's mempolicy and any vma
1169 * mempolicies and if the cpuset is marked 'memory_migrate',
1170 * migrate the tasks pages to the new memory.
0b2f630a 1171 *
5d21cc2d 1172 * Call with cpuset_mutex held. May take callback_mutex during call.
0b2f630a
MX
1173 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1174 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
1175 * their mempolicies to the cpusets new mems_allowed.
1176 */
645fcc9d
LZ
1177static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
1178 const char *buf)
0b2f630a 1179{
0b2f630a 1180 int retval;
010cfac4 1181 struct ptr_heap heap;
0b2f630a
MX
1182
1183 /*
38d7bee9 1184 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
0b2f630a
MX
1185 * it's read-only
1186 */
53feb297
MX
1187 if (cs == &top_cpuset) {
1188 retval = -EACCES;
1189 goto done;
1190 }
0b2f630a 1191
0b2f630a
MX
1192 /*
1193 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1194 * Since nodelist_parse() fails on an empty mask, we special case
1195 * that parsing. The validate_change() call ensures that cpusets
1196 * with tasks have memory.
1197 */
1198 if (!*buf) {
645fcc9d 1199 nodes_clear(trialcs->mems_allowed);
0b2f630a 1200 } else {
645fcc9d 1201 retval = nodelist_parse(buf, trialcs->mems_allowed);
0b2f630a
MX
1202 if (retval < 0)
1203 goto done;
1204
645fcc9d 1205 if (!nodes_subset(trialcs->mems_allowed,
38d7bee9 1206 node_states[N_MEMORY])) {
53feb297
MX
1207 retval = -EINVAL;
1208 goto done;
1209 }
0b2f630a 1210 }
33ad801d
LZ
1211
1212 if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
0b2f630a
MX
1213 retval = 0; /* Too easy - nothing to do */
1214 goto done;
1215 }
645fcc9d 1216 retval = validate_change(cs, trialcs);
0b2f630a
MX
1217 if (retval < 0)
1218 goto done;
1219
010cfac4
LZ
1220 retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
1221 if (retval < 0)
1222 goto done;
1223
0b2f630a 1224 mutex_lock(&callback_mutex);
645fcc9d 1225 cs->mems_allowed = trialcs->mems_allowed;
0b2f630a
MX
1226 mutex_unlock(&callback_mutex);
1227
5c5cc623 1228 update_tasks_nodemask_hier(cs, true, &heap);
010cfac4
LZ
1229
1230 heap_free(&heap);
0b2f630a
MX
1231done:
1232 return retval;
1233}
1234
8793d854
PM
1235int current_cpuset_is_being_rebound(void)
1236{
1237 return task_cs(current) == cpuset_being_rebound;
1238}
1239
5be7a479 1240static int update_relax_domain_level(struct cpuset *cs, s64 val)
1d3504fc 1241{
db7f47cf 1242#ifdef CONFIG_SMP
60495e77 1243 if (val < -1 || val >= sched_domain_level_max)
30e0e178 1244 return -EINVAL;
db7f47cf 1245#endif
1d3504fc
HS
1246
1247 if (val != cs->relax_domain_level) {
1248 cs->relax_domain_level = val;
300ed6cb
LZ
1249 if (!cpumask_empty(cs->cpus_allowed) &&
1250 is_sched_load_balance(cs))
699140ba 1251 rebuild_sched_domains_locked();
1d3504fc
HS
1252 }
1253
1254 return 0;
1255}
1256
950592f7
MX
1257/*
1258 * cpuset_change_flag - make a task's spread flags the same as its cpuset's
1259 * @tsk: task to be updated
e535837b 1260 * @data: cpuset to @tsk belongs to
950592f7
MX
1261 *
1262 * Called by cgroup_scan_tasks() for each task in a cgroup.
1263 *
1264 * We don't need to re-check for the cgroup/cpuset membership, since we're
5d21cc2d 1265 * holding cpuset_mutex at this point.
950592f7 1266 */
e535837b 1267static void cpuset_change_flag(struct task_struct *tsk, void *data)
950592f7 1268{
e535837b
TH
1269 struct cpuset *cs = data;
1270
1271 cpuset_update_task_spread_flag(cs, tsk);
950592f7
MX
1272}
1273
1274/*
1275 * update_tasks_flags - update the spread flags of tasks in the cpuset.
1276 * @cs: the cpuset in which each task's spread flags needs to be changed
1277 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
1278 *
5d21cc2d 1279 * Called with cpuset_mutex held
950592f7
MX
1280 *
1281 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
1282 * calling callback functions for each.
1283 *
1284 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
1285 * if @heap != NULL.
1286 */
1287static void update_tasks_flags(struct cpuset *cs, struct ptr_heap *heap)
1288{
e535837b 1289 cgroup_scan_tasks(cs->css.cgroup, NULL, cpuset_change_flag, cs, heap);
950592f7
MX
1290}
1291
1da177e4
LT
1292/*
1293 * update_flag - read a 0 or a 1 in a file and update associated flag
78608366
PM
1294 * bit: the bit to update (see cpuset_flagbits_t)
1295 * cs: the cpuset to update
1296 * turning_on: whether the flag is being set or cleared
053199ed 1297 *
5d21cc2d 1298 * Call with cpuset_mutex held.
1da177e4
LT
1299 */
1300
700fe1ab
PM
1301static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1302 int turning_on)
1da177e4 1303{
645fcc9d 1304 struct cpuset *trialcs;
40b6a762 1305 int balance_flag_changed;
950592f7
MX
1306 int spread_flag_changed;
1307 struct ptr_heap heap;
1308 int err;
1da177e4 1309
645fcc9d
LZ
1310 trialcs = alloc_trial_cpuset(cs);
1311 if (!trialcs)
1312 return -ENOMEM;
1313
1da177e4 1314 if (turning_on)
645fcc9d 1315 set_bit(bit, &trialcs->flags);
1da177e4 1316 else
645fcc9d 1317 clear_bit(bit, &trialcs->flags);
1da177e4 1318
645fcc9d 1319 err = validate_change(cs, trialcs);
85d7b949 1320 if (err < 0)
645fcc9d 1321 goto out;
029190c5 1322
950592f7
MX
1323 err = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
1324 if (err < 0)
1325 goto out;
1326
029190c5 1327 balance_flag_changed = (is_sched_load_balance(cs) !=
645fcc9d 1328 is_sched_load_balance(trialcs));
029190c5 1329
950592f7
MX
1330 spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
1331 || (is_spread_page(cs) != is_spread_page(trialcs)));
1332
3d3f26a7 1333 mutex_lock(&callback_mutex);
645fcc9d 1334 cs->flags = trialcs->flags;
3d3f26a7 1335 mutex_unlock(&callback_mutex);
85d7b949 1336
300ed6cb 1337 if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
699140ba 1338 rebuild_sched_domains_locked();
029190c5 1339
950592f7
MX
1340 if (spread_flag_changed)
1341 update_tasks_flags(cs, &heap);
1342 heap_free(&heap);
645fcc9d
LZ
1343out:
1344 free_trial_cpuset(trialcs);
1345 return err;
1da177e4
LT
1346}
1347
3e0d98b9 1348/*
80f7228b 1349 * Frequency meter - How fast is some event occurring?
3e0d98b9
PJ
1350 *
1351 * These routines manage a digitally filtered, constant time based,
1352 * event frequency meter. There are four routines:
1353 * fmeter_init() - initialize a frequency meter.
1354 * fmeter_markevent() - called each time the event happens.
1355 * fmeter_getrate() - returns the recent rate of such events.
1356 * fmeter_update() - internal routine used to update fmeter.
1357 *
1358 * A common data structure is passed to each of these routines,
1359 * which is used to keep track of the state required to manage the
1360 * frequency meter and its digital filter.
1361 *
1362 * The filter works on the number of events marked per unit time.
1363 * The filter is single-pole low-pass recursive (IIR). The time unit
1364 * is 1 second. Arithmetic is done using 32-bit integers scaled to
1365 * simulate 3 decimal digits of precision (multiplied by 1000).
1366 *
1367 * With an FM_COEF of 933, and a time base of 1 second, the filter
1368 * has a half-life of 10 seconds, meaning that if the events quit
1369 * happening, then the rate returned from the fmeter_getrate()
1370 * will be cut in half each 10 seconds, until it converges to zero.
1371 *
1372 * It is not worth doing a real infinitely recursive filter. If more
1373 * than FM_MAXTICKS ticks have elapsed since the last filter event,
1374 * just compute FM_MAXTICKS ticks worth, by which point the level
1375 * will be stable.
1376 *
1377 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
1378 * arithmetic overflow in the fmeter_update() routine.
1379 *
1380 * Given the simple 32 bit integer arithmetic used, this meter works
1381 * best for reporting rates between one per millisecond (msec) and
1382 * one per 32 (approx) seconds. At constant rates faster than one
1383 * per msec it maxes out at values just under 1,000,000. At constant
1384 * rates between one per msec, and one per second it will stabilize
1385 * to a value N*1000, where N is the rate of events per second.
1386 * At constant rates between one per second and one per 32 seconds,
1387 * it will be choppy, moving up on the seconds that have an event,
1388 * and then decaying until the next event. At rates slower than
1389 * about one in 32 seconds, it decays all the way back to zero between
1390 * each event.
1391 */
1392
1393#define FM_COEF 933 /* coefficient for half-life of 10 secs */
1394#define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
1395#define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
1396#define FM_SCALE 1000 /* faux fixed point scale */
1397
1398/* Initialize a frequency meter */
1399static void fmeter_init(struct fmeter *fmp)
1400{
1401 fmp->cnt = 0;
1402 fmp->val = 0;
1403 fmp->time = 0;
1404 spin_lock_init(&fmp->lock);
1405}
1406
1407/* Internal meter update - process cnt events and update value */
1408static void fmeter_update(struct fmeter *fmp)
1409{
1410 time_t now = get_seconds();
1411 time_t ticks = now - fmp->time;
1412
1413 if (ticks == 0)
1414 return;
1415
1416 ticks = min(FM_MAXTICKS, ticks);
1417 while (ticks-- > 0)
1418 fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
1419 fmp->time = now;
1420
1421 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
1422 fmp->cnt = 0;
1423}
1424
1425/* Process any previous ticks, then bump cnt by one (times scale). */
1426static void fmeter_markevent(struct fmeter *fmp)
1427{
1428 spin_lock(&fmp->lock);
1429 fmeter_update(fmp);
1430 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
1431 spin_unlock(&fmp->lock);
1432}
1433
1434/* Process any previous ticks, then return current value. */
1435static int fmeter_getrate(struct fmeter *fmp)
1436{
1437 int val;
1438
1439 spin_lock(&fmp->lock);
1440 fmeter_update(fmp);
1441 val = fmp->val;
1442 spin_unlock(&fmp->lock);
1443 return val;
1444}
1445
5d21cc2d 1446/* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
eb95419b
TH
1447static int cpuset_can_attach(struct cgroup_subsys_state *css,
1448 struct cgroup_taskset *tset)
f780bdb7 1449{
eb95419b 1450 struct cpuset *cs = css_cs(css);
bb9d97b6
TH
1451 struct task_struct *task;
1452 int ret;
1da177e4 1453
5d21cc2d
TH
1454 mutex_lock(&cpuset_mutex);
1455
88fa523b
LZ
1456 /*
1457 * We allow to move tasks into an empty cpuset if sane_behavior
1458 * flag is set.
1459 */
5d21cc2d 1460 ret = -ENOSPC;
eb95419b 1461 if (!cgroup_sane_behavior(css->cgroup) &&
88fa523b 1462 (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)))
5d21cc2d 1463 goto out_unlock;
9985b0ba 1464
eb95419b 1465 cgroup_taskset_for_each(task, css->cgroup, tset) {
bb9d97b6 1466 /*
14a40ffc
TH
1467 * Kthreads which disallow setaffinity shouldn't be moved
1468 * to a new cpuset; we don't want to change their cpu
1469 * affinity and isolating such threads by their set of
1470 * allowed nodes is unnecessary. Thus, cpusets are not
1471 * applicable for such threads. This prevents checking for
1472 * success of set_cpus_allowed_ptr() on all attached tasks
1473 * before cpus_allowed may be changed.
bb9d97b6 1474 */
5d21cc2d 1475 ret = -EINVAL;
14a40ffc 1476 if (task->flags & PF_NO_SETAFFINITY)
5d21cc2d
TH
1477 goto out_unlock;
1478 ret = security_task_setscheduler(task);
1479 if (ret)
1480 goto out_unlock;
bb9d97b6 1481 }
f780bdb7 1482
452477fa
TH
1483 /*
1484 * Mark attach is in progress. This makes validate_change() fail
1485 * changes which zero cpus/mems_allowed.
1486 */
1487 cs->attach_in_progress++;
5d21cc2d
TH
1488 ret = 0;
1489out_unlock:
1490 mutex_unlock(&cpuset_mutex);
1491 return ret;
8793d854 1492}
f780bdb7 1493
eb95419b 1494static void cpuset_cancel_attach(struct cgroup_subsys_state *css,
452477fa
TH
1495 struct cgroup_taskset *tset)
1496{
5d21cc2d 1497 mutex_lock(&cpuset_mutex);
eb95419b 1498 css_cs(css)->attach_in_progress--;
5d21cc2d 1499 mutex_unlock(&cpuset_mutex);
8793d854 1500}
1da177e4 1501
4e4c9a14 1502/*
5d21cc2d 1503 * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach()
4e4c9a14
TH
1504 * but we can't allocate it dynamically there. Define it global and
1505 * allocate from cpuset_init().
1506 */
1507static cpumask_var_t cpus_attach;
1508
eb95419b
TH
1509static void cpuset_attach(struct cgroup_subsys_state *css,
1510 struct cgroup_taskset *tset)
8793d854 1511{
67bd2c59 1512 /* static buf protected by cpuset_mutex */
4e4c9a14 1513 static nodemask_t cpuset_attach_nodemask_to;
8793d854 1514 struct mm_struct *mm;
bb9d97b6
TH
1515 struct task_struct *task;
1516 struct task_struct *leader = cgroup_taskset_first(tset);
2f7ee569 1517 struct cgroup *oldcgrp = cgroup_taskset_cur_cgroup(tset);
eb95419b 1518 struct cpuset *cs = css_cs(css);
2f7ee569 1519 struct cpuset *oldcs = cgroup_cs(oldcgrp);
070b57fc
LZ
1520 struct cpuset *cpus_cs = effective_cpumask_cpuset(cs);
1521 struct cpuset *mems_cs = effective_nodemask_cpuset(cs);
22fb52dd 1522
5d21cc2d
TH
1523 mutex_lock(&cpuset_mutex);
1524
4e4c9a14
TH
1525 /* prepare for attach */
1526 if (cs == &top_cpuset)
1527 cpumask_copy(cpus_attach, cpu_possible_mask);
1528 else
070b57fc 1529 guarantee_online_cpus(cpus_cs, cpus_attach);
4e4c9a14 1530
070b57fc 1531 guarantee_online_mems(mems_cs, &cpuset_attach_nodemask_to);
4e4c9a14 1532
eb95419b 1533 cgroup_taskset_for_each(task, css->cgroup, tset) {
bb9d97b6
TH
1534 /*
1535 * can_attach beforehand should guarantee that this doesn't
1536 * fail. TODO: have a better way to handle failure here
1537 */
1538 WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
1539
1540 cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
1541 cpuset_update_task_spread_flag(cs, task);
1542 }
22fb52dd 1543
f780bdb7
BB
1544 /*
1545 * Change mm, possibly for multiple threads in a threadgroup. This is
1546 * expensive and may sleep.
1547 */
f780bdb7 1548 cpuset_attach_nodemask_to = cs->mems_allowed;
bb9d97b6 1549 mm = get_task_mm(leader);
4225399a 1550 if (mm) {
070b57fc
LZ
1551 struct cpuset *mems_oldcs = effective_nodemask_cpuset(oldcs);
1552
f780bdb7 1553 mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
f047cecf
LZ
1554
1555 /*
1556 * old_mems_allowed is the same with mems_allowed here, except
1557 * if this task is being moved automatically due to hotplug.
1558 * In that case @mems_allowed has been updated and is empty,
1559 * so @old_mems_allowed is the right nodesets that we migrate
1560 * mm from.
1561 */
1562 if (is_memory_migrate(cs)) {
1563 cpuset_migrate_mm(mm, &mems_oldcs->old_mems_allowed,
f780bdb7 1564 &cpuset_attach_nodemask_to);
f047cecf 1565 }
4225399a
PJ
1566 mmput(mm);
1567 }
452477fa 1568
33ad801d 1569 cs->old_mems_allowed = cpuset_attach_nodemask_to;
02bb5863 1570
452477fa 1571 cs->attach_in_progress--;
e44193d3
LZ
1572 if (!cs->attach_in_progress)
1573 wake_up(&cpuset_attach_wq);
5d21cc2d
TH
1574
1575 mutex_unlock(&cpuset_mutex);
1da177e4
LT
1576}
1577
1578/* The various types of files and directories in a cpuset file system */
1579
1580typedef enum {
45b07ef3 1581 FILE_MEMORY_MIGRATE,
1da177e4
LT
1582 FILE_CPULIST,
1583 FILE_MEMLIST,
1584 FILE_CPU_EXCLUSIVE,
1585 FILE_MEM_EXCLUSIVE,
78608366 1586 FILE_MEM_HARDWALL,
029190c5 1587 FILE_SCHED_LOAD_BALANCE,
1d3504fc 1588 FILE_SCHED_RELAX_DOMAIN_LEVEL,
3e0d98b9
PJ
1589 FILE_MEMORY_PRESSURE_ENABLED,
1590 FILE_MEMORY_PRESSURE,
825a46af
PJ
1591 FILE_SPREAD_PAGE,
1592 FILE_SPREAD_SLAB,
1da177e4
LT
1593} cpuset_filetype_t;
1594
182446d0
TH
1595static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft,
1596 u64 val)
700fe1ab 1597{
182446d0 1598 struct cpuset *cs = css_cs(css);
700fe1ab 1599 cpuset_filetype_t type = cft->private;
5d21cc2d 1600 int retval = -ENODEV;
700fe1ab 1601
5d21cc2d
TH
1602 mutex_lock(&cpuset_mutex);
1603 if (!is_cpuset_online(cs))
1604 goto out_unlock;
700fe1ab
PM
1605
1606 switch (type) {
1da177e4 1607 case FILE_CPU_EXCLUSIVE:
700fe1ab 1608 retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
1da177e4
LT
1609 break;
1610 case FILE_MEM_EXCLUSIVE:
700fe1ab 1611 retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
1da177e4 1612 break;
78608366
PM
1613 case FILE_MEM_HARDWALL:
1614 retval = update_flag(CS_MEM_HARDWALL, cs, val);
1615 break;
029190c5 1616 case FILE_SCHED_LOAD_BALANCE:
700fe1ab 1617 retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1d3504fc 1618 break;
45b07ef3 1619 case FILE_MEMORY_MIGRATE:
700fe1ab 1620 retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
45b07ef3 1621 break;
3e0d98b9 1622 case FILE_MEMORY_PRESSURE_ENABLED:
700fe1ab 1623 cpuset_memory_pressure_enabled = !!val;
3e0d98b9
PJ
1624 break;
1625 case FILE_MEMORY_PRESSURE:
1626 retval = -EACCES;
1627 break;
825a46af 1628 case FILE_SPREAD_PAGE:
700fe1ab 1629 retval = update_flag(CS_SPREAD_PAGE, cs, val);
825a46af
PJ
1630 break;
1631 case FILE_SPREAD_SLAB:
700fe1ab 1632 retval = update_flag(CS_SPREAD_SLAB, cs, val);
825a46af 1633 break;
1da177e4
LT
1634 default:
1635 retval = -EINVAL;
700fe1ab 1636 break;
1da177e4 1637 }
5d21cc2d
TH
1638out_unlock:
1639 mutex_unlock(&cpuset_mutex);
1da177e4
LT
1640 return retval;
1641}
1642
182446d0
TH
1643static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft,
1644 s64 val)
5be7a479 1645{
182446d0 1646 struct cpuset *cs = css_cs(css);
5be7a479 1647 cpuset_filetype_t type = cft->private;
5d21cc2d 1648 int retval = -ENODEV;
5be7a479 1649
5d21cc2d
TH
1650 mutex_lock(&cpuset_mutex);
1651 if (!is_cpuset_online(cs))
1652 goto out_unlock;
e3712395 1653
5be7a479
PM
1654 switch (type) {
1655 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1656 retval = update_relax_domain_level(cs, val);
1657 break;
1658 default:
1659 retval = -EINVAL;
1660 break;
1661 }
5d21cc2d
TH
1662out_unlock:
1663 mutex_unlock(&cpuset_mutex);
5be7a479
PM
1664 return retval;
1665}
1666
e3712395
PM
1667/*
1668 * Common handling for a write to a "cpus" or "mems" file.
1669 */
182446d0
TH
1670static int cpuset_write_resmask(struct cgroup_subsys_state *css,
1671 struct cftype *cft, const char *buf)
e3712395 1672{
182446d0 1673 struct cpuset *cs = css_cs(css);
645fcc9d 1674 struct cpuset *trialcs;
5d21cc2d 1675 int retval = -ENODEV;
e3712395 1676
3a5a6d0c
TH
1677 /*
1678 * CPU or memory hotunplug may leave @cs w/o any execution
1679 * resources, in which case the hotplug code asynchronously updates
1680 * configuration and transfers all tasks to the nearest ancestor
1681 * which can execute.
1682 *
1683 * As writes to "cpus" or "mems" may restore @cs's execution
1684 * resources, wait for the previously scheduled operations before
1685 * proceeding, so that we don't end up keep removing tasks added
1686 * after execution capability is restored.
1687 */
1688 flush_work(&cpuset_hotplug_work);
1689
5d21cc2d
TH
1690 mutex_lock(&cpuset_mutex);
1691 if (!is_cpuset_online(cs))
1692 goto out_unlock;
e3712395 1693
645fcc9d 1694 trialcs = alloc_trial_cpuset(cs);
b75f38d6
LZ
1695 if (!trialcs) {
1696 retval = -ENOMEM;
5d21cc2d 1697 goto out_unlock;
b75f38d6 1698 }
645fcc9d 1699
e3712395
PM
1700 switch (cft->private) {
1701 case FILE_CPULIST:
645fcc9d 1702 retval = update_cpumask(cs, trialcs, buf);
e3712395
PM
1703 break;
1704 case FILE_MEMLIST:
645fcc9d 1705 retval = update_nodemask(cs, trialcs, buf);
e3712395
PM
1706 break;
1707 default:
1708 retval = -EINVAL;
1709 break;
1710 }
645fcc9d
LZ
1711
1712 free_trial_cpuset(trialcs);
5d21cc2d
TH
1713out_unlock:
1714 mutex_unlock(&cpuset_mutex);
e3712395
PM
1715 return retval;
1716}
1717
1da177e4
LT
1718/*
1719 * These ascii lists should be read in a single call, by using a user
1720 * buffer large enough to hold the entire map. If read in smaller
1721 * chunks, there is no guarantee of atomicity. Since the display format
1722 * used, list of ranges of sequential numbers, is variable length,
1723 * and since these maps can change value dynamically, one could read
1724 * gibberish by doing partial reads while a list was changing.
1725 * A single large read to a buffer that crosses a page boundary is
1726 * ok, because the result being copied to user land is not recomputed
1727 * across a page fault.
1728 */
1729
9303e0c4 1730static size_t cpuset_sprintf_cpulist(char *page, struct cpuset *cs)
1da177e4 1731{
9303e0c4 1732 size_t count;
1da177e4 1733
3d3f26a7 1734 mutex_lock(&callback_mutex);
9303e0c4 1735 count = cpulist_scnprintf(page, PAGE_SIZE, cs->cpus_allowed);
3d3f26a7 1736 mutex_unlock(&callback_mutex);
1da177e4 1737
9303e0c4 1738 return count;
1da177e4
LT
1739}
1740
9303e0c4 1741static size_t cpuset_sprintf_memlist(char *page, struct cpuset *cs)
1da177e4 1742{
9303e0c4 1743 size_t count;
1da177e4 1744
3d3f26a7 1745 mutex_lock(&callback_mutex);
9303e0c4 1746 count = nodelist_scnprintf(page, PAGE_SIZE, cs->mems_allowed);
3d3f26a7 1747 mutex_unlock(&callback_mutex);
1da177e4 1748
9303e0c4 1749 return count;
1da177e4
LT
1750}
1751
182446d0
TH
1752static ssize_t cpuset_common_file_read(struct cgroup_subsys_state *css,
1753 struct cftype *cft, struct file *file,
1754 char __user *buf, size_t nbytes,
1755 loff_t *ppos)
1da177e4 1756{
182446d0 1757 struct cpuset *cs = css_cs(css);
1da177e4
LT
1758 cpuset_filetype_t type = cft->private;
1759 char *page;
1760 ssize_t retval = 0;
1761 char *s;
1da177e4 1762
e12ba74d 1763 if (!(page = (char *)__get_free_page(GFP_TEMPORARY)))
1da177e4
LT
1764 return -ENOMEM;
1765
1766 s = page;
1767
1768 switch (type) {
1769 case FILE_CPULIST:
1770 s += cpuset_sprintf_cpulist(s, cs);
1771 break;
1772 case FILE_MEMLIST:
1773 s += cpuset_sprintf_memlist(s, cs);
1774 break;
1da177e4
LT
1775 default:
1776 retval = -EINVAL;
1777 goto out;
1778 }
1779 *s++ = '\n';
1da177e4 1780
eacaa1f5 1781 retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
1da177e4
LT
1782out:
1783 free_page((unsigned long)page);
1784 return retval;
1785}
1786
182446d0 1787static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft)
700fe1ab 1788{
182446d0 1789 struct cpuset *cs = css_cs(css);
700fe1ab
PM
1790 cpuset_filetype_t type = cft->private;
1791 switch (type) {
1792 case FILE_CPU_EXCLUSIVE:
1793 return is_cpu_exclusive(cs);
1794 case FILE_MEM_EXCLUSIVE:
1795 return is_mem_exclusive(cs);
78608366
PM
1796 case FILE_MEM_HARDWALL:
1797 return is_mem_hardwall(cs);
700fe1ab
PM
1798 case FILE_SCHED_LOAD_BALANCE:
1799 return is_sched_load_balance(cs);
1800 case FILE_MEMORY_MIGRATE:
1801 return is_memory_migrate(cs);
1802 case FILE_MEMORY_PRESSURE_ENABLED:
1803 return cpuset_memory_pressure_enabled;
1804 case FILE_MEMORY_PRESSURE:
1805 return fmeter_getrate(&cs->fmeter);
1806 case FILE_SPREAD_PAGE:
1807 return is_spread_page(cs);
1808 case FILE_SPREAD_SLAB:
1809 return is_spread_slab(cs);
1810 default:
1811 BUG();
1812 }
cf417141
MK
1813
1814 /* Unreachable but makes gcc happy */
1815 return 0;
700fe1ab 1816}
1da177e4 1817
182446d0 1818static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft)
5be7a479 1819{
182446d0 1820 struct cpuset *cs = css_cs(css);
5be7a479
PM
1821 cpuset_filetype_t type = cft->private;
1822 switch (type) {
1823 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1824 return cs->relax_domain_level;
1825 default:
1826 BUG();
1827 }
cf417141
MK
1828
1829 /* Unrechable but makes gcc happy */
1830 return 0;
5be7a479
PM
1831}
1832
1da177e4
LT
1833
1834/*
1835 * for the common functions, 'private' gives the type of file
1836 */
1837
addf2c73
PM
1838static struct cftype files[] = {
1839 {
1840 .name = "cpus",
1841 .read = cpuset_common_file_read,
e3712395
PM
1842 .write_string = cpuset_write_resmask,
1843 .max_write_len = (100U + 6 * NR_CPUS),
addf2c73
PM
1844 .private = FILE_CPULIST,
1845 },
1846
1847 {
1848 .name = "mems",
1849 .read = cpuset_common_file_read,
e3712395
PM
1850 .write_string = cpuset_write_resmask,
1851 .max_write_len = (100U + 6 * MAX_NUMNODES),
addf2c73
PM
1852 .private = FILE_MEMLIST,
1853 },
1854
1855 {
1856 .name = "cpu_exclusive",
1857 .read_u64 = cpuset_read_u64,
1858 .write_u64 = cpuset_write_u64,
1859 .private = FILE_CPU_EXCLUSIVE,
1860 },
1861
1862 {
1863 .name = "mem_exclusive",
1864 .read_u64 = cpuset_read_u64,
1865 .write_u64 = cpuset_write_u64,
1866 .private = FILE_MEM_EXCLUSIVE,
1867 },
1868
78608366
PM
1869 {
1870 .name = "mem_hardwall",
1871 .read_u64 = cpuset_read_u64,
1872 .write_u64 = cpuset_write_u64,
1873 .private = FILE_MEM_HARDWALL,
1874 },
1875
addf2c73
PM
1876 {
1877 .name = "sched_load_balance",
1878 .read_u64 = cpuset_read_u64,
1879 .write_u64 = cpuset_write_u64,
1880 .private = FILE_SCHED_LOAD_BALANCE,
1881 },
1882
1883 {
1884 .name = "sched_relax_domain_level",
5be7a479
PM
1885 .read_s64 = cpuset_read_s64,
1886 .write_s64 = cpuset_write_s64,
addf2c73
PM
1887 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
1888 },
1889
1890 {
1891 .name = "memory_migrate",
1892 .read_u64 = cpuset_read_u64,
1893 .write_u64 = cpuset_write_u64,
1894 .private = FILE_MEMORY_MIGRATE,
1895 },
1896
1897 {
1898 .name = "memory_pressure",
1899 .read_u64 = cpuset_read_u64,
1900 .write_u64 = cpuset_write_u64,
1901 .private = FILE_MEMORY_PRESSURE,
099fca32 1902 .mode = S_IRUGO,
addf2c73
PM
1903 },
1904
1905 {
1906 .name = "memory_spread_page",
1907 .read_u64 = cpuset_read_u64,
1908 .write_u64 = cpuset_write_u64,
1909 .private = FILE_SPREAD_PAGE,
1910 },
1911
1912 {
1913 .name = "memory_spread_slab",
1914 .read_u64 = cpuset_read_u64,
1915 .write_u64 = cpuset_write_u64,
1916 .private = FILE_SPREAD_SLAB,
1917 },
3e0d98b9 1918
4baf6e33
TH
1919 {
1920 .name = "memory_pressure_enabled",
1921 .flags = CFTYPE_ONLY_ON_ROOT,
1922 .read_u64 = cpuset_read_u64,
1923 .write_u64 = cpuset_write_u64,
1924 .private = FILE_MEMORY_PRESSURE_ENABLED,
1925 },
1da177e4 1926
4baf6e33
TH
1927 { } /* terminate */
1928};
1da177e4
LT
1929
1930/*
92fb9748 1931 * cpuset_css_alloc - allocate a cpuset css
c9e5fe66 1932 * cgrp: control group that the new cpuset will be part of
1da177e4
LT
1933 */
1934
eb95419b
TH
1935static struct cgroup_subsys_state *
1936cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
1da177e4 1937{
c8f699bb 1938 struct cpuset *cs;
1da177e4 1939
eb95419b 1940 if (!parent_css)
8793d854 1941 return &top_cpuset.css;
033fa1c5 1942
c8f699bb 1943 cs = kzalloc(sizeof(*cs), GFP_KERNEL);
1da177e4 1944 if (!cs)
8793d854 1945 return ERR_PTR(-ENOMEM);
300ed6cb
LZ
1946 if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL)) {
1947 kfree(cs);
1948 return ERR_PTR(-ENOMEM);
1949 }
1da177e4 1950
029190c5 1951 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
300ed6cb 1952 cpumask_clear(cs->cpus_allowed);
f9a86fcb 1953 nodes_clear(cs->mems_allowed);
3e0d98b9 1954 fmeter_init(&cs->fmeter);
1d3504fc 1955 cs->relax_domain_level = -1;
1da177e4 1956
c8f699bb
TH
1957 return &cs->css;
1958}
1959
eb95419b 1960static int cpuset_css_online(struct cgroup_subsys_state *css)
c8f699bb 1961{
eb95419b 1962 struct cpuset *cs = css_cs(css);
c431069f 1963 struct cpuset *parent = parent_cs(cs);
ae8086ce 1964 struct cpuset *tmp_cs;
492eb21b 1965 struct cgroup_subsys_state *pos_css;
c8f699bb
TH
1966
1967 if (!parent)
1968 return 0;
1969
5d21cc2d
TH
1970 mutex_lock(&cpuset_mutex);
1971
efeb77b2 1972 set_bit(CS_ONLINE, &cs->flags);
c8f699bb
TH
1973 if (is_spread_page(parent))
1974 set_bit(CS_SPREAD_PAGE, &cs->flags);
1975 if (is_spread_slab(parent))
1976 set_bit(CS_SPREAD_SLAB, &cs->flags);
1da177e4 1977
202f72d5 1978 number_of_cpusets++;
033fa1c5 1979
eb95419b 1980 if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
5d21cc2d 1981 goto out_unlock;
033fa1c5
TH
1982
1983 /*
1984 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
1985 * set. This flag handling is implemented in cgroup core for
1986 * histrical reasons - the flag may be specified during mount.
1987 *
1988 * Currently, if any sibling cpusets have exclusive cpus or mem, we
1989 * refuse to clone the configuration - thereby refusing the task to
1990 * be entered, and as a result refusing the sys_unshare() or
1991 * clone() which initiated it. If this becomes a problem for some
1992 * users who wish to allow that scenario, then this could be
1993 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
1994 * (and likewise for mems) to the new cgroup.
1995 */
ae8086ce 1996 rcu_read_lock();
492eb21b 1997 cpuset_for_each_child(tmp_cs, pos_css, parent) {
ae8086ce
TH
1998 if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
1999 rcu_read_unlock();
5d21cc2d 2000 goto out_unlock;
ae8086ce 2001 }
033fa1c5 2002 }
ae8086ce 2003 rcu_read_unlock();
033fa1c5
TH
2004
2005 mutex_lock(&callback_mutex);
2006 cs->mems_allowed = parent->mems_allowed;
2007 cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
2008 mutex_unlock(&callback_mutex);
5d21cc2d
TH
2009out_unlock:
2010 mutex_unlock(&cpuset_mutex);
c8f699bb
TH
2011 return 0;
2012}
2013
0b9e6965
ZH
2014/*
2015 * If the cpuset being removed has its flag 'sched_load_balance'
2016 * enabled, then simulate turning sched_load_balance off, which
2017 * will call rebuild_sched_domains_locked().
2018 */
2019
eb95419b 2020static void cpuset_css_offline(struct cgroup_subsys_state *css)
c8f699bb 2021{
eb95419b 2022 struct cpuset *cs = css_cs(css);
c8f699bb 2023
5d21cc2d 2024 mutex_lock(&cpuset_mutex);
c8f699bb
TH
2025
2026 if (is_sched_load_balance(cs))
2027 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
2028
2029 number_of_cpusets--;
efeb77b2 2030 clear_bit(CS_ONLINE, &cs->flags);
c8f699bb 2031
5d21cc2d 2032 mutex_unlock(&cpuset_mutex);
1da177e4
LT
2033}
2034
eb95419b 2035static void cpuset_css_free(struct cgroup_subsys_state *css)
1da177e4 2036{
eb95419b 2037 struct cpuset *cs = css_cs(css);
1da177e4 2038
300ed6cb 2039 free_cpumask_var(cs->cpus_allowed);
8793d854 2040 kfree(cs);
1da177e4
LT
2041}
2042
8793d854
PM
2043struct cgroup_subsys cpuset_subsys = {
2044 .name = "cpuset",
92fb9748 2045 .css_alloc = cpuset_css_alloc,
c8f699bb
TH
2046 .css_online = cpuset_css_online,
2047 .css_offline = cpuset_css_offline,
92fb9748 2048 .css_free = cpuset_css_free,
8793d854 2049 .can_attach = cpuset_can_attach,
452477fa 2050 .cancel_attach = cpuset_cancel_attach,
8793d854 2051 .attach = cpuset_attach,
8793d854 2052 .subsys_id = cpuset_subsys_id,
4baf6e33 2053 .base_cftypes = files,
8793d854
PM
2054 .early_init = 1,
2055};
2056
1da177e4
LT
2057/**
2058 * cpuset_init - initialize cpusets at system boot
2059 *
2060 * Description: Initialize top_cpuset and the cpuset internal file system,
2061 **/
2062
2063int __init cpuset_init(void)
2064{
8793d854 2065 int err = 0;
1da177e4 2066
58568d2a
MX
2067 if (!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL))
2068 BUG();
2069
300ed6cb 2070 cpumask_setall(top_cpuset.cpus_allowed);
f9a86fcb 2071 nodes_setall(top_cpuset.mems_allowed);
1da177e4 2072
3e0d98b9 2073 fmeter_init(&top_cpuset.fmeter);
029190c5 2074 set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
1d3504fc 2075 top_cpuset.relax_domain_level = -1;
1da177e4 2076
1da177e4
LT
2077 err = register_filesystem(&cpuset_fs_type);
2078 if (err < 0)
8793d854
PM
2079 return err;
2080
2341d1b6
LZ
2081 if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL))
2082 BUG();
2083
202f72d5 2084 number_of_cpusets = 1;
8793d854 2085 return 0;
1da177e4
LT
2086}
2087
b1aac8bb 2088/*
cf417141 2089 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
b1aac8bb
PJ
2090 * or memory nodes, we need to walk over the cpuset hierarchy,
2091 * removing that CPU or node from all cpusets. If this removes the
956db3ca
CW
2092 * last CPU or node from a cpuset, then move the tasks in the empty
2093 * cpuset to its next-highest non-empty parent.
b1aac8bb 2094 */
956db3ca
CW
2095static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
2096{
2097 struct cpuset *parent;
2098
956db3ca
CW
2099 /*
2100 * Find its next-highest non-empty parent, (top cpuset
2101 * has online cpus, so can't be empty).
2102 */
c431069f 2103 parent = parent_cs(cs);
300ed6cb 2104 while (cpumask_empty(parent->cpus_allowed) ||
b4501295 2105 nodes_empty(parent->mems_allowed))
c431069f 2106 parent = parent_cs(parent);
956db3ca 2107
8cc99345
TH
2108 if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
2109 rcu_read_lock();
2110 printk(KERN_ERR "cpuset: failed to transfer tasks out of empty cpuset %s\n",
2111 cgroup_name(cs->css.cgroup));
2112 rcu_read_unlock();
2113 }
956db3ca
CW
2114}
2115
deb7aa30 2116/**
388afd85 2117 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
deb7aa30 2118 * @cs: cpuset in interest
956db3ca 2119 *
deb7aa30
TH
2120 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
2121 * offline, update @cs accordingly. If @cs ends up with no CPU or memory,
2122 * all its tasks are moved to the nearest ancestor with both resources.
80d1fa64 2123 */
388afd85 2124static void cpuset_hotplug_update_tasks(struct cpuset *cs)
80d1fa64 2125{
deb7aa30 2126 static cpumask_t off_cpus;
33ad801d 2127 static nodemask_t off_mems;
5d21cc2d 2128 bool is_empty;
5c5cc623 2129 bool sane = cgroup_sane_behavior(cs->css.cgroup);
80d1fa64 2130
e44193d3
LZ
2131retry:
2132 wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
80d1fa64 2133
5d21cc2d 2134 mutex_lock(&cpuset_mutex);
7ddf96b0 2135
e44193d3
LZ
2136 /*
2137 * We have raced with task attaching. We wait until attaching
2138 * is finished, so we won't attach a task to an empty cpuset.
2139 */
2140 if (cs->attach_in_progress) {
2141 mutex_unlock(&cpuset_mutex);
2142 goto retry;
2143 }
2144
deb7aa30
TH
2145 cpumask_andnot(&off_cpus, cs->cpus_allowed, top_cpuset.cpus_allowed);
2146 nodes_andnot(off_mems, cs->mems_allowed, top_cpuset.mems_allowed);
80d1fa64 2147
5c5cc623
LZ
2148 mutex_lock(&callback_mutex);
2149 cpumask_andnot(cs->cpus_allowed, cs->cpus_allowed, &off_cpus);
2150 mutex_unlock(&callback_mutex);
2151
2152 /*
2153 * If sane_behavior flag is set, we need to update tasks' cpumask
f047cecf
LZ
2154 * for empty cpuset to take on ancestor's cpumask. Otherwise, don't
2155 * call update_tasks_cpumask() if the cpuset becomes empty, as
2156 * the tasks in it will be migrated to an ancestor.
5c5cc623
LZ
2157 */
2158 if ((sane && cpumask_empty(cs->cpus_allowed)) ||
f047cecf 2159 (!cpumask_empty(&off_cpus) && !cpumask_empty(cs->cpus_allowed)))
deb7aa30 2160 update_tasks_cpumask(cs, NULL);
80d1fa64 2161
5c5cc623
LZ
2162 mutex_lock(&callback_mutex);
2163 nodes_andnot(cs->mems_allowed, cs->mems_allowed, off_mems);
2164 mutex_unlock(&callback_mutex);
2165
2166 /*
2167 * If sane_behavior flag is set, we need to update tasks' nodemask
f047cecf
LZ
2168 * for empty cpuset to take on ancestor's nodemask. Otherwise, don't
2169 * call update_tasks_nodemask() if the cpuset becomes empty, as
2170 * the tasks in it will be migratd to an ancestor.
5c5cc623
LZ
2171 */
2172 if ((sane && nodes_empty(cs->mems_allowed)) ||
f047cecf 2173 (!nodes_empty(off_mems) && !nodes_empty(cs->mems_allowed)))
33ad801d 2174 update_tasks_nodemask(cs, NULL);
deb7aa30 2175
5d21cc2d
TH
2176 is_empty = cpumask_empty(cs->cpus_allowed) ||
2177 nodes_empty(cs->mems_allowed);
8d033948 2178
5d21cc2d
TH
2179 mutex_unlock(&cpuset_mutex);
2180
2181 /*
5c5cc623
LZ
2182 * If sane_behavior flag is set, we'll keep tasks in empty cpusets.
2183 *
2184 * Otherwise move tasks to the nearest ancestor with execution
2185 * resources. This is full cgroup operation which will
5d21cc2d
TH
2186 * also call back into cpuset. Should be done outside any lock.
2187 */
5c5cc623 2188 if (!sane && is_empty)
5d21cc2d 2189 remove_tasks_in_empty_cpuset(cs);
b1aac8bb
PJ
2190}
2191
deb7aa30 2192/**
3a5a6d0c 2193 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
956db3ca 2194 *
deb7aa30
TH
2195 * This function is called after either CPU or memory configuration has
2196 * changed and updates cpuset accordingly. The top_cpuset is always
2197 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
2198 * order to make cpusets transparent (of no affect) on systems that are
2199 * actively using CPU hotplug but making no active use of cpusets.
956db3ca 2200 *
deb7aa30 2201 * Non-root cpusets are only affected by offlining. If any CPUs or memory
388afd85
LZ
2202 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
2203 * all descendants.
956db3ca 2204 *
deb7aa30
TH
2205 * Note that CPU offlining during suspend is ignored. We don't modify
2206 * cpusets across suspend/resume cycles at all.
956db3ca 2207 */
3a5a6d0c 2208static void cpuset_hotplug_workfn(struct work_struct *work)
b1aac8bb 2209{
5c5cc623
LZ
2210 static cpumask_t new_cpus;
2211 static nodemask_t new_mems;
deb7aa30 2212 bool cpus_updated, mems_updated;
b1aac8bb 2213
5d21cc2d 2214 mutex_lock(&cpuset_mutex);
956db3ca 2215
deb7aa30
TH
2216 /* fetch the available cpus/mems and find out which changed how */
2217 cpumask_copy(&new_cpus, cpu_active_mask);
2218 new_mems = node_states[N_MEMORY];
7ddf96b0 2219
deb7aa30 2220 cpus_updated = !cpumask_equal(top_cpuset.cpus_allowed, &new_cpus);
deb7aa30 2221 mems_updated = !nodes_equal(top_cpuset.mems_allowed, new_mems);
7ddf96b0 2222
deb7aa30
TH
2223 /* synchronize cpus_allowed to cpu_active_mask */
2224 if (cpus_updated) {
2225 mutex_lock(&callback_mutex);
2226 cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
2227 mutex_unlock(&callback_mutex);
2228 /* we don't mess with cpumasks of tasks in top_cpuset */
2229 }
b4501295 2230
deb7aa30
TH
2231 /* synchronize mems_allowed to N_MEMORY */
2232 if (mems_updated) {
deb7aa30
TH
2233 mutex_lock(&callback_mutex);
2234 top_cpuset.mems_allowed = new_mems;
2235 mutex_unlock(&callback_mutex);
33ad801d 2236 update_tasks_nodemask(&top_cpuset, NULL);
deb7aa30 2237 }
b4501295 2238
388afd85
LZ
2239 mutex_unlock(&cpuset_mutex);
2240
5c5cc623
LZ
2241 /* if cpus or mems changed, we need to propagate to descendants */
2242 if (cpus_updated || mems_updated) {
deb7aa30 2243 struct cpuset *cs;
492eb21b 2244 struct cgroup_subsys_state *pos_css;
f9b4fb8d 2245
fc560a26 2246 rcu_read_lock();
492eb21b 2247 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
388afd85
LZ
2248 if (!css_tryget(&cs->css))
2249 continue;
2250 rcu_read_unlock();
7ddf96b0 2251
388afd85 2252 cpuset_hotplug_update_tasks(cs);
b4501295 2253
388afd85
LZ
2254 rcu_read_lock();
2255 css_put(&cs->css);
2256 }
2257 rcu_read_unlock();
2258 }
8d033948 2259
deb7aa30 2260 /* rebuild sched domains if cpus_allowed has changed */
e0e80a02
LZ
2261 if (cpus_updated)
2262 rebuild_sched_domains();
b1aac8bb
PJ
2263}
2264
7ddf96b0 2265void cpuset_update_active_cpus(bool cpu_online)
4c4d50f7 2266{
3a5a6d0c
TH
2267 /*
2268 * We're inside cpu hotplug critical region which usually nests
2269 * inside cgroup synchronization. Bounce actual hotplug processing
2270 * to a work item to avoid reverse locking order.
2271 *
2272 * We still need to do partition_sched_domains() synchronously;
2273 * otherwise, the scheduler will get confused and put tasks to the
2274 * dead CPU. Fall back to the default single domain.
2275 * cpuset_hotplug_workfn() will rebuild it as necessary.
2276 */
2277 partition_sched_domains(1, NULL, NULL);
2278 schedule_work(&cpuset_hotplug_work);
4c4d50f7 2279}
4c4d50f7 2280
38837fc7 2281/*
38d7bee9
LJ
2282 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
2283 * Call this routine anytime after node_states[N_MEMORY] changes.
a1cd2b13 2284 * See cpuset_update_active_cpus() for CPU hotplug handling.
38837fc7 2285 */
f481891f
MX
2286static int cpuset_track_online_nodes(struct notifier_block *self,
2287 unsigned long action, void *arg)
38837fc7 2288{
3a5a6d0c 2289 schedule_work(&cpuset_hotplug_work);
f481891f 2290 return NOTIFY_OK;
38837fc7 2291}
d8f10cb3
AM
2292
2293static struct notifier_block cpuset_track_online_nodes_nb = {
2294 .notifier_call = cpuset_track_online_nodes,
2295 .priority = 10, /* ??! */
2296};
38837fc7 2297
1da177e4
LT
2298/**
2299 * cpuset_init_smp - initialize cpus_allowed
2300 *
2301 * Description: Finish top cpuset after cpu, node maps are initialized
d8f10cb3 2302 */
1da177e4
LT
2303void __init cpuset_init_smp(void)
2304{
6ad4c188 2305 cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
38d7bee9 2306 top_cpuset.mems_allowed = node_states[N_MEMORY];
33ad801d 2307 top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
4c4d50f7 2308
d8f10cb3 2309 register_hotmemory_notifier(&cpuset_track_online_nodes_nb);
1da177e4
LT
2310}
2311
2312/**
1da177e4
LT
2313 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
2314 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
6af866af 2315 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
1da177e4 2316 *
300ed6cb 2317 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
1da177e4 2318 * attached to the specified @tsk. Guaranteed to return some non-empty
5f054e31 2319 * subset of cpu_online_mask, even if this means going outside the
1da177e4
LT
2320 * tasks cpuset.
2321 **/
2322
6af866af 2323void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
1da177e4 2324{
070b57fc
LZ
2325 struct cpuset *cpus_cs;
2326
3d3f26a7 2327 mutex_lock(&callback_mutex);
909d75a3 2328 task_lock(tsk);
070b57fc
LZ
2329 cpus_cs = effective_cpumask_cpuset(task_cs(tsk));
2330 guarantee_online_cpus(cpus_cs, pmask);
909d75a3 2331 task_unlock(tsk);
897f0b3c 2332 mutex_unlock(&callback_mutex);
1da177e4
LT
2333}
2334
2baab4e9 2335void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
9084bb82 2336{
c9710d80 2337 struct cpuset *cpus_cs;
9084bb82
ON
2338
2339 rcu_read_lock();
070b57fc
LZ
2340 cpus_cs = effective_cpumask_cpuset(task_cs(tsk));
2341 do_set_cpus_allowed(tsk, cpus_cs->cpus_allowed);
9084bb82
ON
2342 rcu_read_unlock();
2343
2344 /*
2345 * We own tsk->cpus_allowed, nobody can change it under us.
2346 *
2347 * But we used cs && cs->cpus_allowed lockless and thus can
2348 * race with cgroup_attach_task() or update_cpumask() and get
2349 * the wrong tsk->cpus_allowed. However, both cases imply the
2350 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
2351 * which takes task_rq_lock().
2352 *
2353 * If we are called after it dropped the lock we must see all
2354 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
2355 * set any mask even if it is not right from task_cs() pov,
2356 * the pending set_cpus_allowed_ptr() will fix things.
2baab4e9
PZ
2357 *
2358 * select_fallback_rq() will fix things ups and set cpu_possible_mask
2359 * if required.
9084bb82 2360 */
9084bb82
ON
2361}
2362
1da177e4
LT
2363void cpuset_init_current_mems_allowed(void)
2364{
f9a86fcb 2365 nodes_setall(current->mems_allowed);
1da177e4
LT
2366}
2367
909d75a3
PJ
2368/**
2369 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
2370 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
2371 *
2372 * Description: Returns the nodemask_t mems_allowed of the cpuset
2373 * attached to the specified @tsk. Guaranteed to return some non-empty
38d7bee9 2374 * subset of node_states[N_MEMORY], even if this means going outside the
909d75a3
PJ
2375 * tasks cpuset.
2376 **/
2377
2378nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
2379{
070b57fc 2380 struct cpuset *mems_cs;
909d75a3
PJ
2381 nodemask_t mask;
2382
3d3f26a7 2383 mutex_lock(&callback_mutex);
909d75a3 2384 task_lock(tsk);
070b57fc
LZ
2385 mems_cs = effective_nodemask_cpuset(task_cs(tsk));
2386 guarantee_online_mems(mems_cs, &mask);
909d75a3 2387 task_unlock(tsk);
3d3f26a7 2388 mutex_unlock(&callback_mutex);
909d75a3
PJ
2389
2390 return mask;
2391}
2392
d9fd8a6d 2393/**
19770b32
MG
2394 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
2395 * @nodemask: the nodemask to be checked
d9fd8a6d 2396 *
19770b32 2397 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
1da177e4 2398 */
19770b32 2399int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
1da177e4 2400{
19770b32 2401 return nodes_intersects(*nodemask, current->mems_allowed);
1da177e4
LT
2402}
2403
9bf2229f 2404/*
78608366
PM
2405 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
2406 * mem_hardwall ancestor to the specified cpuset. Call holding
2407 * callback_mutex. If no ancestor is mem_exclusive or mem_hardwall
2408 * (an unusual configuration), then returns the root cpuset.
9bf2229f 2409 */
c9710d80 2410static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
9bf2229f 2411{
c431069f
TH
2412 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
2413 cs = parent_cs(cs);
9bf2229f
PJ
2414 return cs;
2415}
2416
d9fd8a6d 2417/**
a1bc5a4e
DR
2418 * cpuset_node_allowed_softwall - Can we allocate on a memory node?
2419 * @node: is this an allowed node?
02a0e53d 2420 * @gfp_mask: memory allocation flags
d9fd8a6d 2421 *
a1bc5a4e
DR
2422 * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
2423 * set, yes, we can always allocate. If node is in our task's mems_allowed,
2424 * yes. If it's not a __GFP_HARDWALL request and this node is in the nearest
2425 * hardwalled cpuset ancestor to this task's cpuset, yes. If the task has been
2426 * OOM killed and has access to memory reserves as specified by the TIF_MEMDIE
2427 * flag, yes.
9bf2229f
PJ
2428 * Otherwise, no.
2429 *
a1bc5a4e
DR
2430 * If __GFP_HARDWALL is set, cpuset_node_allowed_softwall() reduces to
2431 * cpuset_node_allowed_hardwall(). Otherwise, cpuset_node_allowed_softwall()
2432 * might sleep, and might allow a node from an enclosing cpuset.
02a0e53d 2433 *
a1bc5a4e
DR
2434 * cpuset_node_allowed_hardwall() only handles the simpler case of hardwall
2435 * cpusets, and never sleeps.
02a0e53d
PJ
2436 *
2437 * The __GFP_THISNODE placement logic is really handled elsewhere,
2438 * by forcibly using a zonelist starting at a specified node, and by
2439 * (in get_page_from_freelist()) refusing to consider the zones for
2440 * any node on the zonelist except the first. By the time any such
2441 * calls get to this routine, we should just shut up and say 'yes'.
2442 *
9bf2229f 2443 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
c596d9f3
DR
2444 * and do not allow allocations outside the current tasks cpuset
2445 * unless the task has been OOM killed as is marked TIF_MEMDIE.
9bf2229f 2446 * GFP_KERNEL allocations are not so marked, so can escape to the
78608366 2447 * nearest enclosing hardwalled ancestor cpuset.
9bf2229f 2448 *
02a0e53d
PJ
2449 * Scanning up parent cpusets requires callback_mutex. The
2450 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
2451 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
2452 * current tasks mems_allowed came up empty on the first pass over
2453 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
2454 * cpuset are short of memory, might require taking the callback_mutex
2455 * mutex.
9bf2229f 2456 *
36be57ff 2457 * The first call here from mm/page_alloc:get_page_from_freelist()
02a0e53d
PJ
2458 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
2459 * so no allocation on a node outside the cpuset is allowed (unless
2460 * in interrupt, of course).
36be57ff
PJ
2461 *
2462 * The second pass through get_page_from_freelist() doesn't even call
2463 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
2464 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
2465 * in alloc_flags. That logic and the checks below have the combined
2466 * affect that:
9bf2229f
PJ
2467 * in_interrupt - any node ok (current task context irrelevant)
2468 * GFP_ATOMIC - any node ok
c596d9f3 2469 * TIF_MEMDIE - any node ok
78608366 2470 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
9bf2229f 2471 * GFP_USER - only nodes in current tasks mems allowed ok.
36be57ff
PJ
2472 *
2473 * Rule:
a1bc5a4e 2474 * Don't call cpuset_node_allowed_softwall if you can't sleep, unless you
36be57ff
PJ
2475 * pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
2476 * the code that might scan up ancestor cpusets and sleep.
02a0e53d 2477 */
a1bc5a4e 2478int __cpuset_node_allowed_softwall(int node, gfp_t gfp_mask)
1da177e4 2479{
c9710d80 2480 struct cpuset *cs; /* current cpuset ancestors */
29afd49b 2481 int allowed; /* is allocation in zone z allowed? */
9bf2229f 2482
9b819d20 2483 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
9bf2229f 2484 return 1;
92d1dbd2 2485 might_sleep_if(!(gfp_mask & __GFP_HARDWALL));
9bf2229f
PJ
2486 if (node_isset(node, current->mems_allowed))
2487 return 1;
c596d9f3
DR
2488 /*
2489 * Allow tasks that have access to memory reserves because they have
2490 * been OOM killed to get memory anywhere.
2491 */
2492 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2493 return 1;
9bf2229f
PJ
2494 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
2495 return 0;
2496
5563e770
BP
2497 if (current->flags & PF_EXITING) /* Let dying task have memory */
2498 return 1;
2499
9bf2229f 2500 /* Not hardwall and node outside mems_allowed: scan up cpusets */
3d3f26a7 2501 mutex_lock(&callback_mutex);
053199ed 2502
053199ed 2503 task_lock(current);
78608366 2504 cs = nearest_hardwall_ancestor(task_cs(current));
053199ed
PJ
2505 task_unlock(current);
2506
9bf2229f 2507 allowed = node_isset(node, cs->mems_allowed);
3d3f26a7 2508 mutex_unlock(&callback_mutex);
9bf2229f 2509 return allowed;
1da177e4
LT
2510}
2511
02a0e53d 2512/*
a1bc5a4e
DR
2513 * cpuset_node_allowed_hardwall - Can we allocate on a memory node?
2514 * @node: is this an allowed node?
02a0e53d
PJ
2515 * @gfp_mask: memory allocation flags
2516 *
a1bc5a4e
DR
2517 * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
2518 * set, yes, we can always allocate. If node is in our task's mems_allowed,
2519 * yes. If the task has been OOM killed and has access to memory reserves as
2520 * specified by the TIF_MEMDIE flag, yes.
2521 * Otherwise, no.
02a0e53d
PJ
2522 *
2523 * The __GFP_THISNODE placement logic is really handled elsewhere,
2524 * by forcibly using a zonelist starting at a specified node, and by
2525 * (in get_page_from_freelist()) refusing to consider the zones for
2526 * any node on the zonelist except the first. By the time any such
2527 * calls get to this routine, we should just shut up and say 'yes'.
2528 *
a1bc5a4e
DR
2529 * Unlike the cpuset_node_allowed_softwall() variant, above,
2530 * this variant requires that the node be in the current task's
02a0e53d
PJ
2531 * mems_allowed or that we're in interrupt. It does not scan up the
2532 * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
2533 * It never sleeps.
2534 */
a1bc5a4e 2535int __cpuset_node_allowed_hardwall(int node, gfp_t gfp_mask)
02a0e53d 2536{
02a0e53d
PJ
2537 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2538 return 1;
02a0e53d
PJ
2539 if (node_isset(node, current->mems_allowed))
2540 return 1;
dedf8b79
DW
2541 /*
2542 * Allow tasks that have access to memory reserves because they have
2543 * been OOM killed to get memory anywhere.
2544 */
2545 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2546 return 1;
02a0e53d
PJ
2547 return 0;
2548}
2549
825a46af 2550/**
6adef3eb
JS
2551 * cpuset_mem_spread_node() - On which node to begin search for a file page
2552 * cpuset_slab_spread_node() - On which node to begin search for a slab page
825a46af
PJ
2553 *
2554 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
2555 * tasks in a cpuset with is_spread_page or is_spread_slab set),
2556 * and if the memory allocation used cpuset_mem_spread_node()
2557 * to determine on which node to start looking, as it will for
2558 * certain page cache or slab cache pages such as used for file
2559 * system buffers and inode caches, then instead of starting on the
2560 * local node to look for a free page, rather spread the starting
2561 * node around the tasks mems_allowed nodes.
2562 *
2563 * We don't have to worry about the returned node being offline
2564 * because "it can't happen", and even if it did, it would be ok.
2565 *
2566 * The routines calling guarantee_online_mems() are careful to
2567 * only set nodes in task->mems_allowed that are online. So it
2568 * should not be possible for the following code to return an
2569 * offline node. But if it did, that would be ok, as this routine
2570 * is not returning the node where the allocation must be, only
2571 * the node where the search should start. The zonelist passed to
2572 * __alloc_pages() will include all nodes. If the slab allocator
2573 * is passed an offline node, it will fall back to the local node.
2574 * See kmem_cache_alloc_node().
2575 */
2576
6adef3eb 2577static int cpuset_spread_node(int *rotor)
825a46af
PJ
2578{
2579 int node;
2580
6adef3eb 2581 node = next_node(*rotor, current->mems_allowed);
825a46af
PJ
2582 if (node == MAX_NUMNODES)
2583 node = first_node(current->mems_allowed);
6adef3eb 2584 *rotor = node;
825a46af
PJ
2585 return node;
2586}
6adef3eb
JS
2587
2588int cpuset_mem_spread_node(void)
2589{
778d3b0f
MH
2590 if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
2591 current->cpuset_mem_spread_rotor =
2592 node_random(&current->mems_allowed);
2593
6adef3eb
JS
2594 return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
2595}
2596
2597int cpuset_slab_spread_node(void)
2598{
778d3b0f
MH
2599 if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
2600 current->cpuset_slab_spread_rotor =
2601 node_random(&current->mems_allowed);
2602
6adef3eb
JS
2603 return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
2604}
2605
825a46af
PJ
2606EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
2607
ef08e3b4 2608/**
bbe373f2
DR
2609 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
2610 * @tsk1: pointer to task_struct of some task.
2611 * @tsk2: pointer to task_struct of some other task.
2612 *
2613 * Description: Return true if @tsk1's mems_allowed intersects the
2614 * mems_allowed of @tsk2. Used by the OOM killer to determine if
2615 * one of the task's memory usage might impact the memory available
2616 * to the other.
ef08e3b4
PJ
2617 **/
2618
bbe373f2
DR
2619int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
2620 const struct task_struct *tsk2)
ef08e3b4 2621{
bbe373f2 2622 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
ef08e3b4
PJ
2623}
2624
f440d98f
LZ
2625#define CPUSET_NODELIST_LEN (256)
2626
75aa1994
DR
2627/**
2628 * cpuset_print_task_mems_allowed - prints task's cpuset and mems_allowed
2629 * @task: pointer to task_struct of some task.
2630 *
2631 * Description: Prints @task's name, cpuset name, and cached copy of its
2632 * mems_allowed to the kernel log. Must hold task_lock(task) to allow
2633 * dereferencing task_cs(task).
2634 */
2635void cpuset_print_task_mems_allowed(struct task_struct *tsk)
2636{
f440d98f
LZ
2637 /* Statically allocated to prevent using excess stack. */
2638 static char cpuset_nodelist[CPUSET_NODELIST_LEN];
2639 static DEFINE_SPINLOCK(cpuset_buffer_lock);
75aa1994 2640
f440d98f 2641 struct cgroup *cgrp = task_cs(tsk)->css.cgroup;
63f43f55 2642
cfb5966b 2643 rcu_read_lock();
f440d98f 2644 spin_lock(&cpuset_buffer_lock);
63f43f55 2645
75aa1994
DR
2646 nodelist_scnprintf(cpuset_nodelist, CPUSET_NODELIST_LEN,
2647 tsk->mems_allowed);
2648 printk(KERN_INFO "%s cpuset=%s mems_allowed=%s\n",
f440d98f
LZ
2649 tsk->comm, cgroup_name(cgrp), cpuset_nodelist);
2650
75aa1994 2651 spin_unlock(&cpuset_buffer_lock);
cfb5966b 2652 rcu_read_unlock();
75aa1994
DR
2653}
2654
3e0d98b9
PJ
2655/*
2656 * Collection of memory_pressure is suppressed unless
2657 * this flag is enabled by writing "1" to the special
2658 * cpuset file 'memory_pressure_enabled' in the root cpuset.
2659 */
2660
c5b2aff8 2661int cpuset_memory_pressure_enabled __read_mostly;
3e0d98b9
PJ
2662
2663/**
2664 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
2665 *
2666 * Keep a running average of the rate of synchronous (direct)
2667 * page reclaim efforts initiated by tasks in each cpuset.
2668 *
2669 * This represents the rate at which some task in the cpuset
2670 * ran low on memory on all nodes it was allowed to use, and
2671 * had to enter the kernels page reclaim code in an effort to
2672 * create more free memory by tossing clean pages or swapping
2673 * or writing dirty pages.
2674 *
2675 * Display to user space in the per-cpuset read-only file
2676 * "memory_pressure". Value displayed is an integer
2677 * representing the recent rate of entry into the synchronous
2678 * (direct) page reclaim by any task attached to the cpuset.
2679 **/
2680
2681void __cpuset_memory_pressure_bump(void)
2682{
3e0d98b9 2683 task_lock(current);
8793d854 2684 fmeter_markevent(&task_cs(current)->fmeter);
3e0d98b9
PJ
2685 task_unlock(current);
2686}
2687
8793d854 2688#ifdef CONFIG_PROC_PID_CPUSET
1da177e4
LT
2689/*
2690 * proc_cpuset_show()
2691 * - Print tasks cpuset path into seq_file.
2692 * - Used for /proc/<pid>/cpuset.
053199ed
PJ
2693 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
2694 * doesn't really matter if tsk->cpuset changes after we read it,
5d21cc2d 2695 * and we take cpuset_mutex, keeping cpuset_attach() from changing it
2df167a3 2696 * anyway.
1da177e4 2697 */
8d8b97ba 2698int proc_cpuset_show(struct seq_file *m, void *unused_v)
1da177e4 2699{
13b41b09 2700 struct pid *pid;
1da177e4
LT
2701 struct task_struct *tsk;
2702 char *buf;
8793d854 2703 struct cgroup_subsys_state *css;
99f89551 2704 int retval;
1da177e4 2705
99f89551 2706 retval = -ENOMEM;
1da177e4
LT
2707 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
2708 if (!buf)
99f89551
EB
2709 goto out;
2710
2711 retval = -ESRCH;
13b41b09
EB
2712 pid = m->private;
2713 tsk = get_pid_task(pid, PIDTYPE_PID);
99f89551
EB
2714 if (!tsk)
2715 goto out_free;
1da177e4 2716
27e89ae5 2717 rcu_read_lock();
8af01f56 2718 css = task_css(tsk, cpuset_subsys_id);
8793d854 2719 retval = cgroup_path(css->cgroup, buf, PAGE_SIZE);
27e89ae5 2720 rcu_read_unlock();
1da177e4 2721 if (retval < 0)
27e89ae5 2722 goto out_put_task;
1da177e4
LT
2723 seq_puts(m, buf);
2724 seq_putc(m, '\n');
27e89ae5 2725out_put_task:
99f89551
EB
2726 put_task_struct(tsk);
2727out_free:
1da177e4 2728 kfree(buf);
99f89551 2729out:
1da177e4
LT
2730 return retval;
2731}
8793d854 2732#endif /* CONFIG_PROC_PID_CPUSET */
1da177e4 2733
d01d4827 2734/* Display task mems_allowed in /proc/<pid>/status file. */
df5f8314
EB
2735void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
2736{
df5f8314 2737 seq_printf(m, "Mems_allowed:\t");
30e8e136 2738 seq_nodemask(m, &task->mems_allowed);
df5f8314 2739 seq_printf(m, "\n");
39106dcf 2740 seq_printf(m, "Mems_allowed_list:\t");
30e8e136 2741 seq_nodemask_list(m, &task->mems_allowed);
39106dcf 2742 seq_printf(m, "\n");
1da177e4 2743}