]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - kernel/debug/kdb/kdb_main.c
kdb: Remove the ll command
[mirror_ubuntu-bionic-kernel.git] / kernel / debug / kdb / kdb_main.c
CommitLineData
5d5314d6
JW
1/*
2 * Kernel Debugger Architecture Independent Main Code
3 *
4 * This file is subject to the terms and conditions of the GNU General Public
5 * License. See the file "COPYING" in the main directory of this archive
6 * for more details.
7 *
8 * Copyright (C) 1999-2004 Silicon Graphics, Inc. All Rights Reserved.
9 * Copyright (C) 2000 Stephane Eranian <eranian@hpl.hp.com>
10 * Xscale (R) modifications copyright (C) 2003 Intel Corporation.
11 * Copyright (c) 2009 Wind River Systems, Inc. All Rights Reserved.
12 */
13
14#include <linux/ctype.h>
15#include <linux/string.h>
16#include <linux/kernel.h>
bc792e61 17#include <linux/kmsg_dump.h>
5d5314d6
JW
18#include <linux/reboot.h>
19#include <linux/sched.h>
20#include <linux/sysrq.h>
21#include <linux/smp.h>
22#include <linux/utsname.h>
23#include <linux/vmalloc.h>
ad394f66 24#include <linux/atomic.h>
5d5314d6
JW
25#include <linux/module.h>
26#include <linux/mm.h>
27#include <linux/init.h>
28#include <linux/kallsyms.h>
29#include <linux/kgdb.h>
30#include <linux/kdb.h>
31#include <linux/notifier.h>
32#include <linux/interrupt.h>
33#include <linux/delay.h>
34#include <linux/nmi.h>
35#include <linux/time.h>
36#include <linux/ptrace.h>
37#include <linux/sysctl.h>
38#include <linux/cpu.h>
39#include <linux/kdebug.h>
40#include <linux/proc_fs.h>
41#include <linux/uaccess.h>
42#include <linux/slab.h>
43#include "kdb_private.h"
44
45#define GREP_LEN 256
46char kdb_grep_string[GREP_LEN];
47int kdb_grepping_flag;
48EXPORT_SYMBOL(kdb_grepping_flag);
49int kdb_grep_leading;
50int kdb_grep_trailing;
51
52/*
53 * Kernel debugger state flags
54 */
55int kdb_flags;
56atomic_t kdb_event;
57
58/*
59 * kdb_lock protects updates to kdb_initial_cpu. Used to
60 * single thread processors through the kernel debugger.
61 */
62int kdb_initial_cpu = -1; /* cpu number that owns kdb */
63int kdb_nextline = 1;
64int kdb_state; /* General KDB state */
65
66struct task_struct *kdb_current_task;
67EXPORT_SYMBOL(kdb_current_task);
68struct pt_regs *kdb_current_regs;
69
70const char *kdb_diemsg;
71static int kdb_go_count;
72#ifdef CONFIG_KDB_CONTINUE_CATASTROPHIC
73static unsigned int kdb_continue_catastrophic =
74 CONFIG_KDB_CONTINUE_CATASTROPHIC;
75#else
76static unsigned int kdb_continue_catastrophic;
77#endif
78
79/* kdb_commands describes the available commands. */
80static kdbtab_t *kdb_commands;
81#define KDB_BASE_CMD_MAX 50
82static int kdb_max_commands = KDB_BASE_CMD_MAX;
27029c33 83static kdbtab_t kdb_base_commands[KDB_BASE_CMD_MAX];
5d5314d6
JW
84#define for_each_kdbcmd(cmd, num) \
85 for ((cmd) = kdb_base_commands, (num) = 0; \
86 num < kdb_max_commands; \
5450d904 87 num++, num == KDB_BASE_CMD_MAX ? cmd = kdb_commands : cmd++)
5d5314d6
JW
88
89typedef struct _kdbmsg {
90 int km_diag; /* kdb diagnostic */
91 char *km_msg; /* Corresponding message text */
92} kdbmsg_t;
93
94#define KDBMSG(msgnum, text) \
95 { KDB_##msgnum, text }
96
97static kdbmsg_t kdbmsgs[] = {
98 KDBMSG(NOTFOUND, "Command Not Found"),
99 KDBMSG(ARGCOUNT, "Improper argument count, see usage."),
100 KDBMSG(BADWIDTH, "Illegal value for BYTESPERWORD use 1, 2, 4 or 8, "
101 "8 is only allowed on 64 bit systems"),
102 KDBMSG(BADRADIX, "Illegal value for RADIX use 8, 10 or 16"),
103 KDBMSG(NOTENV, "Cannot find environment variable"),
104 KDBMSG(NOENVVALUE, "Environment variable should have value"),
105 KDBMSG(NOTIMP, "Command not implemented"),
106 KDBMSG(ENVFULL, "Environment full"),
107 KDBMSG(ENVBUFFULL, "Environment buffer full"),
108 KDBMSG(TOOMANYBPT, "Too many breakpoints defined"),
109#ifdef CONFIG_CPU_XSCALE
110 KDBMSG(TOOMANYDBREGS, "More breakpoints than ibcr registers defined"),
111#else
112 KDBMSG(TOOMANYDBREGS, "More breakpoints than db registers defined"),
113#endif
114 KDBMSG(DUPBPT, "Duplicate breakpoint address"),
115 KDBMSG(BPTNOTFOUND, "Breakpoint not found"),
116 KDBMSG(BADMODE, "Invalid IDMODE"),
117 KDBMSG(BADINT, "Illegal numeric value"),
118 KDBMSG(INVADDRFMT, "Invalid symbolic address format"),
119 KDBMSG(BADREG, "Invalid register name"),
120 KDBMSG(BADCPUNUM, "Invalid cpu number"),
121 KDBMSG(BADLENGTH, "Invalid length field"),
122 KDBMSG(NOBP, "No Breakpoint exists"),
123 KDBMSG(BADADDR, "Invalid address"),
124};
125#undef KDBMSG
126
5f784f79 127static const int __nkdb_err = ARRAY_SIZE(kdbmsgs);
5d5314d6
JW
128
129
130/*
131 * Initial environment. This is all kept static and local to
132 * this file. We don't want to rely on the memory allocation
133 * mechanisms in the kernel, so we use a very limited allocate-only
134 * heap for new and altered environment variables. The entire
135 * environment is limited to a fixed number of entries (add more
136 * to __env[] if required) and a fixed amount of heap (add more to
137 * KDB_ENVBUFSIZE if required).
138 */
139
140static char *__env[] = {
141#if defined(CONFIG_SMP)
142 "PROMPT=[%d]kdb> ",
5d5314d6
JW
143#else
144 "PROMPT=kdb> ",
5d5314d6 145#endif
0f26d0e0 146 "MOREPROMPT=more> ",
5d5314d6
JW
147 "RADIX=16",
148 "MDCOUNT=8", /* lines of md output */
5d5314d6
JW
149 KDB_PLATFORM_ENV,
150 "DTABCOUNT=30",
151 "NOSECT=1",
152 (char *)0,
153 (char *)0,
154 (char *)0,
155 (char *)0,
156 (char *)0,
157 (char *)0,
158 (char *)0,
159 (char *)0,
160 (char *)0,
161 (char *)0,
162 (char *)0,
163 (char *)0,
164 (char *)0,
165 (char *)0,
3bdb65ec 166 (char *)0,
5d5314d6
JW
167 (char *)0,
168 (char *)0,
169 (char *)0,
170 (char *)0,
171 (char *)0,
172 (char *)0,
173 (char *)0,
174 (char *)0,
175 (char *)0,
176};
177
5f784f79 178static const int __nenv = ARRAY_SIZE(__env);
5d5314d6
JW
179
180struct task_struct *kdb_curr_task(int cpu)
181{
182 struct task_struct *p = curr_task(cpu);
183#ifdef _TIF_MCA_INIT
184 if ((task_thread_info(p)->flags & _TIF_MCA_INIT) && KDB_TSK(cpu))
185 p = krp->p;
186#endif
187 return p;
188}
189
190/*
191 * kdbgetenv - This function will return the character string value of
192 * an environment variable.
193 * Parameters:
194 * match A character string representing an environment variable.
195 * Returns:
196 * NULL No environment variable matches 'match'
197 * char* Pointer to string value of environment variable.
198 */
199char *kdbgetenv(const char *match)
200{
201 char **ep = __env;
202 int matchlen = strlen(match);
203 int i;
204
205 for (i = 0; i < __nenv; i++) {
206 char *e = *ep++;
207
208 if (!e)
209 continue;
210
211 if ((strncmp(match, e, matchlen) == 0)
212 && ((e[matchlen] == '\0')
213 || (e[matchlen] == '='))) {
214 char *cp = strchr(e, '=');
215 return cp ? ++cp : "";
216 }
217 }
218 return NULL;
219}
220
221/*
222 * kdballocenv - This function is used to allocate bytes for
223 * environment entries.
224 * Parameters:
225 * match A character string representing a numeric value
226 * Outputs:
227 * *value the unsigned long representation of the env variable 'match'
228 * Returns:
229 * Zero on success, a kdb diagnostic on failure.
230 * Remarks:
231 * We use a static environment buffer (envbuffer) to hold the values
232 * of dynamically generated environment variables (see kdb_set). Buffer
233 * space once allocated is never free'd, so over time, the amount of space
234 * (currently 512 bytes) will be exhausted if env variables are changed
235 * frequently.
236 */
237static char *kdballocenv(size_t bytes)
238{
239#define KDB_ENVBUFSIZE 512
240 static char envbuffer[KDB_ENVBUFSIZE];
241 static int envbufsize;
242 char *ep = NULL;
243
244 if ((KDB_ENVBUFSIZE - envbufsize) >= bytes) {
245 ep = &envbuffer[envbufsize];
246 envbufsize += bytes;
247 }
248 return ep;
249}
250
251/*
252 * kdbgetulenv - This function will return the value of an unsigned
253 * long-valued environment variable.
254 * Parameters:
255 * match A character string representing a numeric value
256 * Outputs:
257 * *value the unsigned long represntation of the env variable 'match'
258 * Returns:
259 * Zero on success, a kdb diagnostic on failure.
260 */
261static int kdbgetulenv(const char *match, unsigned long *value)
262{
263 char *ep;
264
265 ep = kdbgetenv(match);
266 if (!ep)
267 return KDB_NOTENV;
268 if (strlen(ep) == 0)
269 return KDB_NOENVVALUE;
270
271 *value = simple_strtoul(ep, NULL, 0);
272
273 return 0;
274}
275
276/*
277 * kdbgetintenv - This function will return the value of an
278 * integer-valued environment variable.
279 * Parameters:
280 * match A character string representing an integer-valued env variable
281 * Outputs:
282 * *value the integer representation of the environment variable 'match'
283 * Returns:
284 * Zero on success, a kdb diagnostic on failure.
285 */
286int kdbgetintenv(const char *match, int *value)
287{
288 unsigned long val;
289 int diag;
290
291 diag = kdbgetulenv(match, &val);
292 if (!diag)
293 *value = (int) val;
294 return diag;
295}
296
297/*
298 * kdbgetularg - This function will convert a numeric string into an
299 * unsigned long value.
300 * Parameters:
301 * arg A character string representing a numeric value
302 * Outputs:
303 * *value the unsigned long represntation of arg.
304 * Returns:
305 * Zero on success, a kdb diagnostic on failure.
306 */
307int kdbgetularg(const char *arg, unsigned long *value)
308{
309 char *endp;
310 unsigned long val;
311
312 val = simple_strtoul(arg, &endp, 0);
313
314 if (endp == arg) {
315 /*
534af108 316 * Also try base 16, for us folks too lazy to type the
5d5314d6
JW
317 * leading 0x...
318 */
319 val = simple_strtoul(arg, &endp, 16);
320 if (endp == arg)
321 return KDB_BADINT;
322 }
323
324 *value = val;
325
326 return 0;
327}
328
534af108
JW
329int kdbgetu64arg(const char *arg, u64 *value)
330{
331 char *endp;
332 u64 val;
333
334 val = simple_strtoull(arg, &endp, 0);
335
336 if (endp == arg) {
337
338 val = simple_strtoull(arg, &endp, 16);
339 if (endp == arg)
340 return KDB_BADINT;
341 }
342
343 *value = val;
344
345 return 0;
346}
347
5d5314d6
JW
348/*
349 * kdb_set - This function implements the 'set' command. Alter an
350 * existing environment variable or create a new one.
351 */
352int kdb_set(int argc, const char **argv)
353{
354 int i;
355 char *ep;
356 size_t varlen, vallen;
357
358 /*
359 * we can be invoked two ways:
360 * set var=value argv[1]="var", argv[2]="value"
361 * set var = value argv[1]="var", argv[2]="=", argv[3]="value"
362 * - if the latter, shift 'em down.
363 */
364 if (argc == 3) {
365 argv[2] = argv[3];
366 argc--;
367 }
368
369 if (argc != 2)
370 return KDB_ARGCOUNT;
371
372 /*
373 * Check for internal variables
374 */
375 if (strcmp(argv[1], "KDBDEBUG") == 0) {
376 unsigned int debugflags;
377 char *cp;
378
379 debugflags = simple_strtoul(argv[2], &cp, 0);
380 if (cp == argv[2] || debugflags & ~KDB_DEBUG_FLAG_MASK) {
381 kdb_printf("kdb: illegal debug flags '%s'\n",
382 argv[2]);
383 return 0;
384 }
385 kdb_flags = (kdb_flags &
386 ~(KDB_DEBUG_FLAG_MASK << KDB_DEBUG_FLAG_SHIFT))
387 | (debugflags << KDB_DEBUG_FLAG_SHIFT);
388
389 return 0;
390 }
391
392 /*
393 * Tokenizer squashed the '=' sign. argv[1] is variable
394 * name, argv[2] = value.
395 */
396 varlen = strlen(argv[1]);
397 vallen = strlen(argv[2]);
398 ep = kdballocenv(varlen + vallen + 2);
399 if (ep == (char *)0)
400 return KDB_ENVBUFFULL;
401
402 sprintf(ep, "%s=%s", argv[1], argv[2]);
403
404 ep[varlen+vallen+1] = '\0';
405
406 for (i = 0; i < __nenv; i++) {
407 if (__env[i]
408 && ((strncmp(__env[i], argv[1], varlen) == 0)
409 && ((__env[i][varlen] == '\0')
410 || (__env[i][varlen] == '=')))) {
411 __env[i] = ep;
412 return 0;
413 }
414 }
415
416 /*
417 * Wasn't existing variable. Fit into slot.
418 */
419 for (i = 0; i < __nenv-1; i++) {
420 if (__env[i] == (char *)0) {
421 __env[i] = ep;
422 return 0;
423 }
424 }
425
426 return KDB_ENVFULL;
427}
428
429static int kdb_check_regs(void)
430{
431 if (!kdb_current_regs) {
432 kdb_printf("No current kdb registers."
433 " You may need to select another task\n");
434 return KDB_BADREG;
435 }
436 return 0;
437}
438
439/*
440 * kdbgetaddrarg - This function is responsible for parsing an
441 * address-expression and returning the value of the expression,
442 * symbol name, and offset to the caller.
443 *
444 * The argument may consist of a numeric value (decimal or
25985edc 445 * hexidecimal), a symbol name, a register name (preceded by the
5d5314d6 446 * percent sign), an environment variable with a numeric value
25985edc 447 * (preceded by a dollar sign) or a simple arithmetic expression
5d5314d6
JW
448 * consisting of a symbol name, +/-, and a numeric constant value
449 * (offset).
450 * Parameters:
451 * argc - count of arguments in argv
452 * argv - argument vector
453 * *nextarg - index to next unparsed argument in argv[]
454 * regs - Register state at time of KDB entry
455 * Outputs:
456 * *value - receives the value of the address-expression
457 * *offset - receives the offset specified, if any
458 * *name - receives the symbol name, if any
459 * *nextarg - index to next unparsed argument in argv[]
460 * Returns:
461 * zero is returned on success, a kdb diagnostic code is
462 * returned on error.
463 */
464int kdbgetaddrarg(int argc, const char **argv, int *nextarg,
465 unsigned long *value, long *offset,
466 char **name)
467{
468 unsigned long addr;
469 unsigned long off = 0;
470 int positive;
471 int diag;
472 int found = 0;
473 char *symname;
474 char symbol = '\0';
475 char *cp;
476 kdb_symtab_t symtab;
477
478 /*
479 * Process arguments which follow the following syntax:
480 *
481 * symbol | numeric-address [+/- numeric-offset]
482 * %register
483 * $environment-variable
484 */
485
486 if (*nextarg > argc)
487 return KDB_ARGCOUNT;
488
489 symname = (char *)argv[*nextarg];
490
491 /*
492 * If there is no whitespace between the symbol
493 * or address and the '+' or '-' symbols, we
494 * remember the character and replace it with a
495 * null so the symbol/value can be properly parsed
496 */
497 cp = strpbrk(symname, "+-");
498 if (cp != NULL) {
499 symbol = *cp;
500 *cp++ = '\0';
501 }
502
503 if (symname[0] == '$') {
504 diag = kdbgetulenv(&symname[1], &addr);
505 if (diag)
506 return diag;
507 } else if (symname[0] == '%') {
508 diag = kdb_check_regs();
509 if (diag)
510 return diag;
511 /* Implement register values with % at a later time as it is
512 * arch optional.
513 */
514 return KDB_NOTIMP;
515 } else {
516 found = kdbgetsymval(symname, &symtab);
517 if (found) {
518 addr = symtab.sym_start;
519 } else {
520 diag = kdbgetularg(argv[*nextarg], &addr);
521 if (diag)
522 return diag;
523 }
524 }
525
526 if (!found)
527 found = kdbnearsym(addr, &symtab);
528
529 (*nextarg)++;
530
531 if (name)
532 *name = symname;
533 if (value)
534 *value = addr;
535 if (offset && name && *name)
536 *offset = addr - symtab.sym_start;
537
538 if ((*nextarg > argc)
539 && (symbol == '\0'))
540 return 0;
541
542 /*
543 * check for +/- and offset
544 */
545
546 if (symbol == '\0') {
547 if ((argv[*nextarg][0] != '+')
548 && (argv[*nextarg][0] != '-')) {
549 /*
550 * Not our argument. Return.
551 */
552 return 0;
553 } else {
554 positive = (argv[*nextarg][0] == '+');
555 (*nextarg)++;
556 }
557 } else
558 positive = (symbol == '+');
559
560 /*
561 * Now there must be an offset!
562 */
563 if ((*nextarg > argc)
564 && (symbol == '\0')) {
565 return KDB_INVADDRFMT;
566 }
567
568 if (!symbol) {
569 cp = (char *)argv[*nextarg];
570 (*nextarg)++;
571 }
572
573 diag = kdbgetularg(cp, &off);
574 if (diag)
575 return diag;
576
577 if (!positive)
578 off = -off;
579
580 if (offset)
581 *offset += off;
582
583 if (value)
584 *value += off;
585
586 return 0;
587}
588
589static void kdb_cmderror(int diag)
590{
591 int i;
592
593 if (diag >= 0) {
594 kdb_printf("no error detected (diagnostic is %d)\n", diag);
595 return;
596 }
597
598 for (i = 0; i < __nkdb_err; i++) {
599 if (kdbmsgs[i].km_diag == diag) {
600 kdb_printf("diag: %d: %s\n", diag, kdbmsgs[i].km_msg);
601 return;
602 }
603 }
604
605 kdb_printf("Unknown diag %d\n", -diag);
606}
607
608/*
609 * kdb_defcmd, kdb_defcmd2 - This function implements the 'defcmd'
610 * command which defines one command as a set of other commands,
611 * terminated by endefcmd. kdb_defcmd processes the initial
612 * 'defcmd' command, kdb_defcmd2 is invoked from kdb_parse for
613 * the following commands until 'endefcmd'.
614 * Inputs:
615 * argc argument count
616 * argv argument vector
617 * Returns:
618 * zero for success, a kdb diagnostic if error
619 */
620struct defcmd_set {
621 int count;
622 int usable;
623 char *name;
624 char *usage;
625 char *help;
626 char **command;
627};
628static struct defcmd_set *defcmd_set;
629static int defcmd_set_count;
630static int defcmd_in_progress;
631
632/* Forward references */
633static int kdb_exec_defcmd(int argc, const char **argv);
634
635static int kdb_defcmd2(const char *cmdstr, const char *argv0)
636{
637 struct defcmd_set *s = defcmd_set + defcmd_set_count - 1;
638 char **save_command = s->command;
639 if (strcmp(argv0, "endefcmd") == 0) {
640 defcmd_in_progress = 0;
641 if (!s->count)
642 s->usable = 0;
643 if (s->usable)
644 kdb_register(s->name, kdb_exec_defcmd,
645 s->usage, s->help, 0);
646 return 0;
647 }
648 if (!s->usable)
649 return KDB_NOTIMP;
5450d904 650 s->command = kzalloc((s->count + 1) * sizeof(*(s->command)), GFP_KDB);
5d5314d6
JW
651 if (!s->command) {
652 kdb_printf("Could not allocate new kdb_defcmd table for %s\n",
653 cmdstr);
654 s->usable = 0;
655 return KDB_NOTIMP;
656 }
657 memcpy(s->command, save_command, s->count * sizeof(*(s->command)));
658 s->command[s->count++] = kdb_strdup(cmdstr, GFP_KDB);
659 kfree(save_command);
660 return 0;
661}
662
663static int kdb_defcmd(int argc, const char **argv)
664{
665 struct defcmd_set *save_defcmd_set = defcmd_set, *s;
666 if (defcmd_in_progress) {
667 kdb_printf("kdb: nested defcmd detected, assuming missing "
668 "endefcmd\n");
669 kdb_defcmd2("endefcmd", "endefcmd");
670 }
671 if (argc == 0) {
672 int i;
673 for (s = defcmd_set; s < defcmd_set + defcmd_set_count; ++s) {
674 kdb_printf("defcmd %s \"%s\" \"%s\"\n", s->name,
675 s->usage, s->help);
676 for (i = 0; i < s->count; ++i)
677 kdb_printf("%s", s->command[i]);
678 kdb_printf("endefcmd\n");
679 }
680 return 0;
681 }
682 if (argc != 3)
683 return KDB_ARGCOUNT;
684 defcmd_set = kmalloc((defcmd_set_count + 1) * sizeof(*defcmd_set),
685 GFP_KDB);
4eb7a66d
JW
686 if (!defcmd_set)
687 goto fail_defcmd;
5d5314d6
JW
688 memcpy(defcmd_set, save_defcmd_set,
689 defcmd_set_count * sizeof(*defcmd_set));
5d5314d6
JW
690 s = defcmd_set + defcmd_set_count;
691 memset(s, 0, sizeof(*s));
692 s->usable = 1;
693 s->name = kdb_strdup(argv[1], GFP_KDB);
4eb7a66d
JW
694 if (!s->name)
695 goto fail_name;
5d5314d6 696 s->usage = kdb_strdup(argv[2], GFP_KDB);
4eb7a66d
JW
697 if (!s->usage)
698 goto fail_usage;
5d5314d6 699 s->help = kdb_strdup(argv[3], GFP_KDB);
4eb7a66d
JW
700 if (!s->help)
701 goto fail_help;
5d5314d6 702 if (s->usage[0] == '"') {
4eb7a66d 703 strcpy(s->usage, argv[2]+1);
5d5314d6
JW
704 s->usage[strlen(s->usage)-1] = '\0';
705 }
706 if (s->help[0] == '"') {
4eb7a66d 707 strcpy(s->help, argv[3]+1);
5d5314d6
JW
708 s->help[strlen(s->help)-1] = '\0';
709 }
710 ++defcmd_set_count;
711 defcmd_in_progress = 1;
4eb7a66d 712 kfree(save_defcmd_set);
5d5314d6 713 return 0;
4eb7a66d
JW
714fail_help:
715 kfree(s->usage);
716fail_usage:
717 kfree(s->name);
718fail_name:
719 kfree(defcmd_set);
720fail_defcmd:
721 kdb_printf("Could not allocate new defcmd_set entry for %s\n", argv[1]);
722 defcmd_set = save_defcmd_set;
723 return KDB_NOTIMP;
5d5314d6
JW
724}
725
726/*
727 * kdb_exec_defcmd - Execute the set of commands associated with this
728 * defcmd name.
729 * Inputs:
730 * argc argument count
731 * argv argument vector
732 * Returns:
733 * zero for success, a kdb diagnostic if error
734 */
735static int kdb_exec_defcmd(int argc, const char **argv)
736{
737 int i, ret;
738 struct defcmd_set *s;
739 if (argc != 0)
740 return KDB_ARGCOUNT;
741 for (s = defcmd_set, i = 0; i < defcmd_set_count; ++i, ++s) {
742 if (strcmp(s->name, argv[0]) == 0)
743 break;
744 }
745 if (i == defcmd_set_count) {
746 kdb_printf("kdb_exec_defcmd: could not find commands for %s\n",
747 argv[0]);
748 return KDB_NOTIMP;
749 }
750 for (i = 0; i < s->count; ++i) {
751 /* Recursive use of kdb_parse, do not use argv after
752 * this point */
753 argv = NULL;
754 kdb_printf("[%s]kdb> %s\n", s->name, s->command[i]);
755 ret = kdb_parse(s->command[i]);
756 if (ret)
757 return ret;
758 }
759 return 0;
760}
761
762/* Command history */
763#define KDB_CMD_HISTORY_COUNT 32
764#define CMD_BUFLEN 200 /* kdb_printf: max printline
765 * size == 256 */
766static unsigned int cmd_head, cmd_tail;
767static unsigned int cmdptr;
768static char cmd_hist[KDB_CMD_HISTORY_COUNT][CMD_BUFLEN];
769static char cmd_cur[CMD_BUFLEN];
770
771/*
772 * The "str" argument may point to something like | grep xyz
773 */
774static void parse_grep(const char *str)
775{
776 int len;
777 char *cp = (char *)str, *cp2;
778
779 /* sanity check: we should have been called with the \ first */
780 if (*cp != '|')
781 return;
782 cp++;
783 while (isspace(*cp))
784 cp++;
785 if (strncmp(cp, "grep ", 5)) {
786 kdb_printf("invalid 'pipe', see grephelp\n");
787 return;
788 }
789 cp += 5;
790 while (isspace(*cp))
791 cp++;
792 cp2 = strchr(cp, '\n');
793 if (cp2)
794 *cp2 = '\0'; /* remove the trailing newline */
795 len = strlen(cp);
796 if (len == 0) {
797 kdb_printf("invalid 'pipe', see grephelp\n");
798 return;
799 }
800 /* now cp points to a nonzero length search string */
801 if (*cp == '"') {
802 /* allow it be "x y z" by removing the "'s - there must
803 be two of them */
804 cp++;
805 cp2 = strchr(cp, '"');
806 if (!cp2) {
807 kdb_printf("invalid quoted string, see grephelp\n");
808 return;
809 }
810 *cp2 = '\0'; /* end the string where the 2nd " was */
811 }
812 kdb_grep_leading = 0;
813 if (*cp == '^') {
814 kdb_grep_leading = 1;
815 cp++;
816 }
817 len = strlen(cp);
818 kdb_grep_trailing = 0;
819 if (*(cp+len-1) == '$') {
820 kdb_grep_trailing = 1;
821 *(cp+len-1) = '\0';
822 }
823 len = strlen(cp);
824 if (!len)
825 return;
826 if (len >= GREP_LEN) {
827 kdb_printf("search string too long\n");
828 return;
829 }
830 strcpy(kdb_grep_string, cp);
831 kdb_grepping_flag++;
832 return;
833}
834
835/*
836 * kdb_parse - Parse the command line, search the command table for a
837 * matching command and invoke the command function. This
838 * function may be called recursively, if it is, the second call
839 * will overwrite argv and cbuf. It is the caller's
840 * responsibility to save their argv if they recursively call
841 * kdb_parse().
842 * Parameters:
843 * cmdstr The input command line to be parsed.
844 * regs The registers at the time kdb was entered.
845 * Returns:
846 * Zero for success, a kdb diagnostic if failure.
847 * Remarks:
848 * Limited to 20 tokens.
849 *
850 * Real rudimentary tokenization. Basically only whitespace
851 * is considered a token delimeter (but special consideration
852 * is taken of the '=' sign as used by the 'set' command).
853 *
854 * The algorithm used to tokenize the input string relies on
855 * there being at least one whitespace (or otherwise useless)
856 * character between tokens as the character immediately following
857 * the token is altered in-place to a null-byte to terminate the
858 * token string.
859 */
860
861#define MAXARGC 20
862
863int kdb_parse(const char *cmdstr)
864{
865 static char *argv[MAXARGC];
866 static int argc;
867 static char cbuf[CMD_BUFLEN+2];
868 char *cp;
869 char *cpp, quoted;
870 kdbtab_t *tp;
871 int i, escaped, ignore_errors = 0, check_grep;
872
873 /*
874 * First tokenize the command string.
875 */
876 cp = (char *)cmdstr;
877 kdb_grepping_flag = check_grep = 0;
878
879 if (KDB_FLAG(CMD_INTERRUPT)) {
880 /* Previous command was interrupted, newline must not
881 * repeat the command */
882 KDB_FLAG_CLEAR(CMD_INTERRUPT);
883 KDB_STATE_SET(PAGER);
884 argc = 0; /* no repeat */
885 }
886
887 if (*cp != '\n' && *cp != '\0') {
888 argc = 0;
889 cpp = cbuf;
890 while (*cp) {
891 /* skip whitespace */
892 while (isspace(*cp))
893 cp++;
894 if ((*cp == '\0') || (*cp == '\n') ||
895 (*cp == '#' && !defcmd_in_progress))
896 break;
897 /* special case: check for | grep pattern */
898 if (*cp == '|') {
899 check_grep++;
900 break;
901 }
902 if (cpp >= cbuf + CMD_BUFLEN) {
903 kdb_printf("kdb_parse: command buffer "
904 "overflow, command ignored\n%s\n",
905 cmdstr);
906 return KDB_NOTFOUND;
907 }
908 if (argc >= MAXARGC - 1) {
909 kdb_printf("kdb_parse: too many arguments, "
910 "command ignored\n%s\n", cmdstr);
911 return KDB_NOTFOUND;
912 }
913 argv[argc++] = cpp;
914 escaped = 0;
915 quoted = '\0';
916 /* Copy to next unquoted and unescaped
917 * whitespace or '=' */
918 while (*cp && *cp != '\n' &&
919 (escaped || quoted || !isspace(*cp))) {
920 if (cpp >= cbuf + CMD_BUFLEN)
921 break;
922 if (escaped) {
923 escaped = 0;
924 *cpp++ = *cp++;
925 continue;
926 }
927 if (*cp == '\\') {
928 escaped = 1;
929 ++cp;
930 continue;
931 }
932 if (*cp == quoted)
933 quoted = '\0';
934 else if (*cp == '\'' || *cp == '"')
935 quoted = *cp;
936 *cpp = *cp++;
937 if (*cpp == '=' && !quoted)
938 break;
939 ++cpp;
940 }
941 *cpp++ = '\0'; /* Squash a ws or '=' character */
942 }
943 }
944 if (!argc)
945 return 0;
946 if (check_grep)
947 parse_grep(cp);
948 if (defcmd_in_progress) {
949 int result = kdb_defcmd2(cmdstr, argv[0]);
950 if (!defcmd_in_progress) {
951 argc = 0; /* avoid repeat on endefcmd */
952 *(argv[0]) = '\0';
953 }
954 return result;
955 }
956 if (argv[0][0] == '-' && argv[0][1] &&
957 (argv[0][1] < '0' || argv[0][1] > '9')) {
958 ignore_errors = 1;
959 ++argv[0];
960 }
961
962 for_each_kdbcmd(tp, i) {
963 if (tp->cmd_name) {
964 /*
965 * If this command is allowed to be abbreviated,
966 * check to see if this is it.
967 */
968
969 if (tp->cmd_minlen
970 && (strlen(argv[0]) <= tp->cmd_minlen)) {
971 if (strncmp(argv[0],
972 tp->cmd_name,
973 tp->cmd_minlen) == 0) {
974 break;
975 }
976 }
977
978 if (strcmp(argv[0], tp->cmd_name) == 0)
979 break;
980 }
981 }
982
983 /*
984 * If we don't find a command by this name, see if the first
985 * few characters of this match any of the known commands.
986 * e.g., md1c20 should match md.
987 */
988 if (i == kdb_max_commands) {
989 for_each_kdbcmd(tp, i) {
990 if (tp->cmd_name) {
991 if (strncmp(argv[0],
992 tp->cmd_name,
993 strlen(tp->cmd_name)) == 0) {
994 break;
995 }
996 }
997 }
998 }
999
1000 if (i < kdb_max_commands) {
1001 int result;
1002 KDB_STATE_SET(CMD);
1003 result = (*tp->cmd_func)(argc-1, (const char **)argv);
1004 if (result && ignore_errors && result > KDB_CMD_GO)
1005 result = 0;
1006 KDB_STATE_CLEAR(CMD);
1007 switch (tp->cmd_repeat) {
1008 case KDB_REPEAT_NONE:
1009 argc = 0;
1010 if (argv[0])
1011 *(argv[0]) = '\0';
1012 break;
1013 case KDB_REPEAT_NO_ARGS:
1014 argc = 1;
1015 if (argv[1])
1016 *(argv[1]) = '\0';
1017 break;
1018 case KDB_REPEAT_WITH_ARGS:
1019 break;
1020 }
1021 return result;
1022 }
1023
1024 /*
1025 * If the input with which we were presented does not
1026 * map to an existing command, attempt to parse it as an
1027 * address argument and display the result. Useful for
1028 * obtaining the address of a variable, or the nearest symbol
1029 * to an address contained in a register.
1030 */
1031 {
1032 unsigned long value;
1033 char *name = NULL;
1034 long offset;
1035 int nextarg = 0;
1036
1037 if (kdbgetaddrarg(0, (const char **)argv, &nextarg,
1038 &value, &offset, &name)) {
1039 return KDB_NOTFOUND;
1040 }
1041
1042 kdb_printf("%s = ", argv[0]);
1043 kdb_symbol_print(value, NULL, KDB_SP_DEFAULT);
1044 kdb_printf("\n");
1045 return 0;
1046 }
1047}
1048
1049
1050static int handle_ctrl_cmd(char *cmd)
1051{
1052#define CTRL_P 16
1053#define CTRL_N 14
1054
1055 /* initial situation */
1056 if (cmd_head == cmd_tail)
1057 return 0;
1058 switch (*cmd) {
1059 case CTRL_P:
1060 if (cmdptr != cmd_tail)
1061 cmdptr = (cmdptr-1) % KDB_CMD_HISTORY_COUNT;
1062 strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1063 return 1;
1064 case CTRL_N:
1065 if (cmdptr != cmd_head)
1066 cmdptr = (cmdptr+1) % KDB_CMD_HISTORY_COUNT;
1067 strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1068 return 1;
1069 }
1070 return 0;
1071}
1072
1073/*
1074 * kdb_reboot - This function implements the 'reboot' command. Reboot
1075 * the system immediately, or loop for ever on failure.
1076 */
1077static int kdb_reboot(int argc, const char **argv)
1078{
1079 emergency_restart();
1080 kdb_printf("Hmm, kdb_reboot did not reboot, spinning here\n");
1081 while (1)
1082 cpu_relax();
1083 /* NOTREACHED */
1084 return 0;
1085}
1086
1087static void kdb_dumpregs(struct pt_regs *regs)
1088{
1089 int old_lvl = console_loglevel;
1090 console_loglevel = 15;
d37d39ae 1091 kdb_trap_printk++;
5d5314d6 1092 show_regs(regs);
d37d39ae 1093 kdb_trap_printk--;
5d5314d6
JW
1094 kdb_printf("\n");
1095 console_loglevel = old_lvl;
1096}
1097
1098void kdb_set_current_task(struct task_struct *p)
1099{
1100 kdb_current_task = p;
1101
1102 if (kdb_task_has_cpu(p)) {
1103 kdb_current_regs = KDB_TSKREGS(kdb_process_cpu(p));
1104 return;
1105 }
1106 kdb_current_regs = NULL;
1107}
1108
1109/*
1110 * kdb_local - The main code for kdb. This routine is invoked on a
1111 * specific processor, it is not global. The main kdb() routine
1112 * ensures that only one processor at a time is in this routine.
1113 * This code is called with the real reason code on the first
1114 * entry to a kdb session, thereafter it is called with reason
1115 * SWITCH, even if the user goes back to the original cpu.
1116 * Inputs:
1117 * reason The reason KDB was invoked
1118 * error The hardware-defined error code
1119 * regs The exception frame at time of fault/breakpoint.
1120 * db_result Result code from the break or debug point.
1121 * Returns:
1122 * 0 KDB was invoked for an event which it wasn't responsible
1123 * 1 KDB handled the event for which it was invoked.
1124 * KDB_CMD_GO User typed 'go'.
1125 * KDB_CMD_CPU User switched to another cpu.
1126 * KDB_CMD_SS Single step.
1127 * KDB_CMD_SSB Single step until branch.
1128 */
1129static int kdb_local(kdb_reason_t reason, int error, struct pt_regs *regs,
1130 kdb_dbtrap_t db_result)
1131{
1132 char *cmdbuf;
1133 int diag;
1134 struct task_struct *kdb_current =
1135 kdb_curr_task(raw_smp_processor_id());
1136
1137 KDB_DEBUG_STATE("kdb_local 1", reason);
1138 kdb_go_count = 0;
1139 if (reason == KDB_REASON_DEBUG) {
1140 /* special case below */
1141 } else {
1142 kdb_printf("\nEntering kdb (current=0x%p, pid %d) ",
578bd4df 1143 kdb_current, kdb_current ? kdb_current->pid : 0);
5d5314d6
JW
1144#if defined(CONFIG_SMP)
1145 kdb_printf("on processor %d ", raw_smp_processor_id());
1146#endif
1147 }
1148
1149 switch (reason) {
1150 case KDB_REASON_DEBUG:
1151 {
1152 /*
1153 * If re-entering kdb after a single step
1154 * command, don't print the message.
1155 */
1156 switch (db_result) {
1157 case KDB_DB_BPT:
1158 kdb_printf("\nEntering kdb (0x%p, pid %d) ",
1159 kdb_current, kdb_current->pid);
1160#if defined(CONFIG_SMP)
1161 kdb_printf("on processor %d ", raw_smp_processor_id());
1162#endif
1163 kdb_printf("due to Debug @ " kdb_machreg_fmt "\n",
1164 instruction_pointer(regs));
1165 break;
1166 case KDB_DB_SSB:
1167 /*
1168 * In the midst of ssb command. Just return.
1169 */
1170 KDB_DEBUG_STATE("kdb_local 3", reason);
1171 return KDB_CMD_SSB; /* Continue with SSB command */
1172
1173 break;
1174 case KDB_DB_SS:
1175 break;
1176 case KDB_DB_SSBPT:
1177 KDB_DEBUG_STATE("kdb_local 4", reason);
1178 return 1; /* kdba_db_trap did the work */
1179 default:
1180 kdb_printf("kdb: Bad result from kdba_db_trap: %d\n",
1181 db_result);
1182 break;
1183 }
1184
1185 }
1186 break;
1187 case KDB_REASON_ENTER:
1188 if (KDB_STATE(KEYBOARD))
1189 kdb_printf("due to Keyboard Entry\n");
1190 else
1191 kdb_printf("due to KDB_ENTER()\n");
1192 break;
1193 case KDB_REASON_KEYBOARD:
1194 KDB_STATE_SET(KEYBOARD);
1195 kdb_printf("due to Keyboard Entry\n");
1196 break;
1197 case KDB_REASON_ENTER_SLAVE:
1198 /* drop through, slaves only get released via cpu switch */
1199 case KDB_REASON_SWITCH:
1200 kdb_printf("due to cpu switch\n");
1201 break;
1202 case KDB_REASON_OOPS:
1203 kdb_printf("Oops: %s\n", kdb_diemsg);
1204 kdb_printf("due to oops @ " kdb_machreg_fmt "\n",
1205 instruction_pointer(regs));
1206 kdb_dumpregs(regs);
1207 break;
1208 case KDB_REASON_NMI:
1209 kdb_printf("due to NonMaskable Interrupt @ "
1210 kdb_machreg_fmt "\n",
1211 instruction_pointer(regs));
1212 kdb_dumpregs(regs);
1213 break;
1214 case KDB_REASON_SSTEP:
1215 case KDB_REASON_BREAK:
1216 kdb_printf("due to %s @ " kdb_machreg_fmt "\n",
1217 reason == KDB_REASON_BREAK ?
1218 "Breakpoint" : "SS trap", instruction_pointer(regs));
1219 /*
1220 * Determine if this breakpoint is one that we
1221 * are interested in.
1222 */
1223 if (db_result != KDB_DB_BPT) {
1224 kdb_printf("kdb: error return from kdba_bp_trap: %d\n",
1225 db_result);
1226 KDB_DEBUG_STATE("kdb_local 6", reason);
1227 return 0; /* Not for us, dismiss it */
1228 }
1229 break;
1230 case KDB_REASON_RECURSE:
1231 kdb_printf("due to Recursion @ " kdb_machreg_fmt "\n",
1232 instruction_pointer(regs));
1233 break;
1234 default:
1235 kdb_printf("kdb: unexpected reason code: %d\n", reason);
1236 KDB_DEBUG_STATE("kdb_local 8", reason);
1237 return 0; /* Not for us, dismiss it */
1238 }
1239
1240 while (1) {
1241 /*
1242 * Initialize pager context.
1243 */
1244 kdb_nextline = 1;
1245 KDB_STATE_CLEAR(SUPPRESS);
1246
1247 cmdbuf = cmd_cur;
1248 *cmdbuf = '\0';
1249 *(cmd_hist[cmd_head]) = '\0';
1250
5d5314d6
JW
1251do_full_getstr:
1252#if defined(CONFIG_SMP)
1253 snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"),
1254 raw_smp_processor_id());
1255#else
1256 snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"));
1257#endif
1258 if (defcmd_in_progress)
1259 strncat(kdb_prompt_str, "[defcmd]", CMD_BUFLEN);
1260
1261 /*
1262 * Fetch command from keyboard
1263 */
1264 cmdbuf = kdb_getstr(cmdbuf, CMD_BUFLEN, kdb_prompt_str);
1265 if (*cmdbuf != '\n') {
1266 if (*cmdbuf < 32) {
1267 if (cmdptr == cmd_head) {
1268 strncpy(cmd_hist[cmd_head], cmd_cur,
1269 CMD_BUFLEN);
1270 *(cmd_hist[cmd_head] +
1271 strlen(cmd_hist[cmd_head])-1) = '\0';
1272 }
1273 if (!handle_ctrl_cmd(cmdbuf))
1274 *(cmd_cur+strlen(cmd_cur)-1) = '\0';
1275 cmdbuf = cmd_cur;
1276 goto do_full_getstr;
1277 } else {
1278 strncpy(cmd_hist[cmd_head], cmd_cur,
1279 CMD_BUFLEN);
1280 }
1281
1282 cmd_head = (cmd_head+1) % KDB_CMD_HISTORY_COUNT;
1283 if (cmd_head == cmd_tail)
1284 cmd_tail = (cmd_tail+1) % KDB_CMD_HISTORY_COUNT;
1285 }
1286
1287 cmdptr = cmd_head;
1288 diag = kdb_parse(cmdbuf);
1289 if (diag == KDB_NOTFOUND) {
1290 kdb_printf("Unknown kdb command: '%s'\n", cmdbuf);
1291 diag = 0;
1292 }
1293 if (diag == KDB_CMD_GO
1294 || diag == KDB_CMD_CPU
1295 || diag == KDB_CMD_SS
1296 || diag == KDB_CMD_SSB
1297 || diag == KDB_CMD_KGDB)
1298 break;
1299
1300 if (diag)
1301 kdb_cmderror(diag);
1302 }
1303 KDB_DEBUG_STATE("kdb_local 9", diag);
1304 return diag;
1305}
1306
1307
1308/*
1309 * kdb_print_state - Print the state data for the current processor
1310 * for debugging.
1311 * Inputs:
1312 * text Identifies the debug point
1313 * value Any integer value to be printed, e.g. reason code.
1314 */
1315void kdb_print_state(const char *text, int value)
1316{
1317 kdb_printf("state: %s cpu %d value %d initial %d state %x\n",
1318 text, raw_smp_processor_id(), value, kdb_initial_cpu,
1319 kdb_state);
1320}
1321
1322/*
1323 * kdb_main_loop - After initial setup and assignment of the
1324 * controlling cpu, all cpus are in this loop. One cpu is in
1325 * control and will issue the kdb prompt, the others will spin
1326 * until 'go' or cpu switch.
1327 *
1328 * To get a consistent view of the kernel stacks for all
1329 * processes, this routine is invoked from the main kdb code via
1330 * an architecture specific routine. kdba_main_loop is
1331 * responsible for making the kernel stacks consistent for all
1332 * processes, there should be no difference between a blocked
1333 * process and a running process as far as kdb is concerned.
1334 * Inputs:
1335 * reason The reason KDB was invoked
1336 * error The hardware-defined error code
1337 * reason2 kdb's current reason code.
1338 * Initially error but can change
25985edc 1339 * according to kdb state.
5d5314d6
JW
1340 * db_result Result code from break or debug point.
1341 * regs The exception frame at time of fault/breakpoint.
1342 * should always be valid.
1343 * Returns:
1344 * 0 KDB was invoked for an event which it wasn't responsible
1345 * 1 KDB handled the event for which it was invoked.
1346 */
1347int kdb_main_loop(kdb_reason_t reason, kdb_reason_t reason2, int error,
1348 kdb_dbtrap_t db_result, struct pt_regs *regs)
1349{
1350 int result = 1;
1351 /* Stay in kdb() until 'go', 'ss[b]' or an error */
1352 while (1) {
1353 /*
1354 * All processors except the one that is in control
1355 * will spin here.
1356 */
1357 KDB_DEBUG_STATE("kdb_main_loop 1", reason);
1358 while (KDB_STATE(HOLD_CPU)) {
1359 /* state KDB is turned off by kdb_cpu to see if the
1360 * other cpus are still live, each cpu in this loop
1361 * turns it back on.
1362 */
1363 if (!KDB_STATE(KDB))
1364 KDB_STATE_SET(KDB);
1365 }
1366
1367 KDB_STATE_CLEAR(SUPPRESS);
1368 KDB_DEBUG_STATE("kdb_main_loop 2", reason);
1369 if (KDB_STATE(LEAVING))
1370 break; /* Another cpu said 'go' */
1371 /* Still using kdb, this processor is in control */
1372 result = kdb_local(reason2, error, regs, db_result);
1373 KDB_DEBUG_STATE("kdb_main_loop 3", result);
1374
1375 if (result == KDB_CMD_CPU)
1376 break;
1377
1378 if (result == KDB_CMD_SS) {
1379 KDB_STATE_SET(DOING_SS);
1380 break;
1381 }
1382
1383 if (result == KDB_CMD_SSB) {
1384 KDB_STATE_SET(DOING_SS);
1385 KDB_STATE_SET(DOING_SSB);
1386 break;
1387 }
1388
1389 if (result == KDB_CMD_KGDB) {
d613d828 1390 if (!KDB_STATE(DOING_KGDB))
5d5314d6
JW
1391 kdb_printf("Entering please attach debugger "
1392 "or use $D#44+ or $3#33\n");
1393 break;
1394 }
1395 if (result && result != 1 && result != KDB_CMD_GO)
1396 kdb_printf("\nUnexpected kdb_local return code %d\n",
1397 result);
1398 KDB_DEBUG_STATE("kdb_main_loop 4", reason);
1399 break;
1400 }
1401 if (KDB_STATE(DOING_SS))
1402 KDB_STATE_CLEAR(SSBPT);
1403
8f30d411
AW
1404 /* Clean up any keyboard devices before leaving */
1405 kdb_kbd_cleanup_state();
1406
5d5314d6
JW
1407 return result;
1408}
1409
1410/*
1411 * kdb_mdr - This function implements the guts of the 'mdr', memory
1412 * read command.
1413 * mdr <addr arg>,<byte count>
1414 * Inputs:
1415 * addr Start address
1416 * count Number of bytes
1417 * Returns:
1418 * Always 0. Any errors are detected and printed by kdb_getarea.
1419 */
1420static int kdb_mdr(unsigned long addr, unsigned int count)
1421{
1422 unsigned char c;
1423 while (count--) {
1424 if (kdb_getarea(c, addr))
1425 return 0;
1426 kdb_printf("%02x", c);
1427 addr++;
1428 }
1429 kdb_printf("\n");
1430 return 0;
1431}
1432
1433/*
1434 * kdb_md - This function implements the 'md', 'md1', 'md2', 'md4',
1435 * 'md8' 'mdr' and 'mds' commands.
1436 *
1437 * md|mds [<addr arg> [<line count> [<radix>]]]
1438 * mdWcN [<addr arg> [<line count> [<radix>]]]
1439 * where W = is the width (1, 2, 4 or 8) and N is the count.
1440 * for eg., md1c20 reads 20 bytes, 1 at a time.
1441 * mdr <addr arg>,<byte count>
1442 */
1443static void kdb_md_line(const char *fmtstr, unsigned long addr,
1444 int symbolic, int nosect, int bytesperword,
1445 int num, int repeat, int phys)
1446{
1447 /* print just one line of data */
1448 kdb_symtab_t symtab;
1449 char cbuf[32];
1450 char *c = cbuf;
1451 int i;
1452 unsigned long word;
1453
1454 memset(cbuf, '\0', sizeof(cbuf));
1455 if (phys)
1456 kdb_printf("phys " kdb_machreg_fmt0 " ", addr);
1457 else
1458 kdb_printf(kdb_machreg_fmt0 " ", addr);
1459
1460 for (i = 0; i < num && repeat--; i++) {
1461 if (phys) {
1462 if (kdb_getphysword(&word, addr, bytesperword))
1463 break;
1464 } else if (kdb_getword(&word, addr, bytesperword))
1465 break;
1466 kdb_printf(fmtstr, word);
1467 if (symbolic)
1468 kdbnearsym(word, &symtab);
1469 else
1470 memset(&symtab, 0, sizeof(symtab));
1471 if (symtab.sym_name) {
1472 kdb_symbol_print(word, &symtab, 0);
1473 if (!nosect) {
1474 kdb_printf("\n");
1475 kdb_printf(" %s %s "
1476 kdb_machreg_fmt " "
1477 kdb_machreg_fmt " "
1478 kdb_machreg_fmt, symtab.mod_name,
1479 symtab.sec_name, symtab.sec_start,
1480 symtab.sym_start, symtab.sym_end);
1481 }
1482 addr += bytesperword;
1483 } else {
1484 union {
1485 u64 word;
1486 unsigned char c[8];
1487 } wc;
1488 unsigned char *cp;
1489#ifdef __BIG_ENDIAN
1490 cp = wc.c + 8 - bytesperword;
1491#else
1492 cp = wc.c;
1493#endif
1494 wc.word = word;
1495#define printable_char(c) \
1496 ({unsigned char __c = c; isascii(__c) && isprint(__c) ? __c : '.'; })
1497 switch (bytesperword) {
1498 case 8:
1499 *c++ = printable_char(*cp++);
1500 *c++ = printable_char(*cp++);
1501 *c++ = printable_char(*cp++);
1502 *c++ = printable_char(*cp++);
1503 addr += 4;
1504 case 4:
1505 *c++ = printable_char(*cp++);
1506 *c++ = printable_char(*cp++);
1507 addr += 2;
1508 case 2:
1509 *c++ = printable_char(*cp++);
1510 addr++;
1511 case 1:
1512 *c++ = printable_char(*cp++);
1513 addr++;
1514 break;
1515 }
1516#undef printable_char
1517 }
1518 }
1519 kdb_printf("%*s %s\n", (int)((num-i)*(2*bytesperword + 1)+1),
1520 " ", cbuf);
1521}
1522
1523static int kdb_md(int argc, const char **argv)
1524{
1525 static unsigned long last_addr;
1526 static int last_radix, last_bytesperword, last_repeat;
1527 int radix = 16, mdcount = 8, bytesperword = KDB_WORD_SIZE, repeat;
1528 int nosect = 0;
1529 char fmtchar, fmtstr[64];
1530 unsigned long addr;
1531 unsigned long word;
1532 long offset = 0;
1533 int symbolic = 0;
1534 int valid = 0;
1535 int phys = 0;
1536
1537 kdbgetintenv("MDCOUNT", &mdcount);
1538 kdbgetintenv("RADIX", &radix);
1539 kdbgetintenv("BYTESPERWORD", &bytesperword);
1540
1541 /* Assume 'md <addr>' and start with environment values */
1542 repeat = mdcount * 16 / bytesperword;
1543
1544 if (strcmp(argv[0], "mdr") == 0) {
1545 if (argc != 2)
1546 return KDB_ARGCOUNT;
1547 valid = 1;
1548 } else if (isdigit(argv[0][2])) {
1549 bytesperword = (int)(argv[0][2] - '0');
1550 if (bytesperword == 0) {
1551 bytesperword = last_bytesperword;
1552 if (bytesperword == 0)
1553 bytesperword = 4;
1554 }
1555 last_bytesperword = bytesperword;
1556 repeat = mdcount * 16 / bytesperword;
1557 if (!argv[0][3])
1558 valid = 1;
1559 else if (argv[0][3] == 'c' && argv[0][4]) {
1560 char *p;
1561 repeat = simple_strtoul(argv[0] + 4, &p, 10);
1562 mdcount = ((repeat * bytesperword) + 15) / 16;
1563 valid = !*p;
1564 }
1565 last_repeat = repeat;
1566 } else if (strcmp(argv[0], "md") == 0)
1567 valid = 1;
1568 else if (strcmp(argv[0], "mds") == 0)
1569 valid = 1;
1570 else if (strcmp(argv[0], "mdp") == 0) {
1571 phys = valid = 1;
1572 }
1573 if (!valid)
1574 return KDB_NOTFOUND;
1575
1576 if (argc == 0) {
1577 if (last_addr == 0)
1578 return KDB_ARGCOUNT;
1579 addr = last_addr;
1580 radix = last_radix;
1581 bytesperword = last_bytesperword;
1582 repeat = last_repeat;
1583 mdcount = ((repeat * bytesperword) + 15) / 16;
1584 }
1585
1586 if (argc) {
1587 unsigned long val;
1588 int diag, nextarg = 1;
1589 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr,
1590 &offset, NULL);
1591 if (diag)
1592 return diag;
1593 if (argc > nextarg+2)
1594 return KDB_ARGCOUNT;
1595
1596 if (argc >= nextarg) {
1597 diag = kdbgetularg(argv[nextarg], &val);
1598 if (!diag) {
1599 mdcount = (int) val;
1600 repeat = mdcount * 16 / bytesperword;
1601 }
1602 }
1603 if (argc >= nextarg+1) {
1604 diag = kdbgetularg(argv[nextarg+1], &val);
1605 if (!diag)
1606 radix = (int) val;
1607 }
1608 }
1609
1610 if (strcmp(argv[0], "mdr") == 0)
1611 return kdb_mdr(addr, mdcount);
1612
1613 switch (radix) {
1614 case 10:
1615 fmtchar = 'd';
1616 break;
1617 case 16:
1618 fmtchar = 'x';
1619 break;
1620 case 8:
1621 fmtchar = 'o';
1622 break;
1623 default:
1624 return KDB_BADRADIX;
1625 }
1626
1627 last_radix = radix;
1628
1629 if (bytesperword > KDB_WORD_SIZE)
1630 return KDB_BADWIDTH;
1631
1632 switch (bytesperword) {
1633 case 8:
1634 sprintf(fmtstr, "%%16.16l%c ", fmtchar);
1635 break;
1636 case 4:
1637 sprintf(fmtstr, "%%8.8l%c ", fmtchar);
1638 break;
1639 case 2:
1640 sprintf(fmtstr, "%%4.4l%c ", fmtchar);
1641 break;
1642 case 1:
1643 sprintf(fmtstr, "%%2.2l%c ", fmtchar);
1644 break;
1645 default:
1646 return KDB_BADWIDTH;
1647 }
1648
1649 last_repeat = repeat;
1650 last_bytesperword = bytesperword;
1651
1652 if (strcmp(argv[0], "mds") == 0) {
1653 symbolic = 1;
1654 /* Do not save these changes as last_*, they are temporary mds
1655 * overrides.
1656 */
1657 bytesperword = KDB_WORD_SIZE;
1658 repeat = mdcount;
1659 kdbgetintenv("NOSECT", &nosect);
1660 }
1661
1662 /* Round address down modulo BYTESPERWORD */
1663
1664 addr &= ~(bytesperword-1);
1665
1666 while (repeat > 0) {
1667 unsigned long a;
1668 int n, z, num = (symbolic ? 1 : (16 / bytesperword));
1669
1670 if (KDB_FLAG(CMD_INTERRUPT))
1671 return 0;
1672 for (a = addr, z = 0; z < repeat; a += bytesperword, ++z) {
1673 if (phys) {
1674 if (kdb_getphysword(&word, a, bytesperword)
1675 || word)
1676 break;
1677 } else if (kdb_getword(&word, a, bytesperword) || word)
1678 break;
1679 }
1680 n = min(num, repeat);
1681 kdb_md_line(fmtstr, addr, symbolic, nosect, bytesperword,
1682 num, repeat, phys);
1683 addr += bytesperword * n;
1684 repeat -= n;
1685 z = (z + num - 1) / num;
1686 if (z > 2) {
1687 int s = num * (z-2);
1688 kdb_printf(kdb_machreg_fmt0 "-" kdb_machreg_fmt0
1689 " zero suppressed\n",
1690 addr, addr + bytesperword * s - 1);
1691 addr += bytesperword * s;
1692 repeat -= s;
1693 }
1694 }
1695 last_addr = addr;
1696
1697 return 0;
1698}
1699
1700/*
1701 * kdb_mm - This function implements the 'mm' command.
1702 * mm address-expression new-value
1703 * Remarks:
1704 * mm works on machine words, mmW works on bytes.
1705 */
1706static int kdb_mm(int argc, const char **argv)
1707{
1708 int diag;
1709 unsigned long addr;
1710 long offset = 0;
1711 unsigned long contents;
1712 int nextarg;
1713 int width;
1714
1715 if (argv[0][2] && !isdigit(argv[0][2]))
1716 return KDB_NOTFOUND;
1717
1718 if (argc < 2)
1719 return KDB_ARGCOUNT;
1720
1721 nextarg = 1;
1722 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1723 if (diag)
1724 return diag;
1725
1726 if (nextarg > argc)
1727 return KDB_ARGCOUNT;
1728 diag = kdbgetaddrarg(argc, argv, &nextarg, &contents, NULL, NULL);
1729 if (diag)
1730 return diag;
1731
1732 if (nextarg != argc + 1)
1733 return KDB_ARGCOUNT;
1734
1735 width = argv[0][2] ? (argv[0][2] - '0') : (KDB_WORD_SIZE);
1736 diag = kdb_putword(addr, contents, width);
1737 if (diag)
1738 return diag;
1739
1740 kdb_printf(kdb_machreg_fmt " = " kdb_machreg_fmt "\n", addr, contents);
1741
1742 return 0;
1743}
1744
1745/*
1746 * kdb_go - This function implements the 'go' command.
1747 * go [address-expression]
1748 */
1749static int kdb_go(int argc, const char **argv)
1750{
1751 unsigned long addr;
1752 int diag;
1753 int nextarg;
1754 long offset;
1755
495363d3
JW
1756 if (raw_smp_processor_id() != kdb_initial_cpu) {
1757 kdb_printf("go must execute on the entry cpu, "
1758 "please use \"cpu %d\" and then execute go\n",
1759 kdb_initial_cpu);
1760 return KDB_BADCPUNUM;
1761 }
5d5314d6 1762 if (argc == 1) {
5d5314d6
JW
1763 nextarg = 1;
1764 diag = kdbgetaddrarg(argc, argv, &nextarg,
1765 &addr, &offset, NULL);
1766 if (diag)
1767 return diag;
1768 } else if (argc) {
1769 return KDB_ARGCOUNT;
1770 }
1771
1772 diag = KDB_CMD_GO;
1773 if (KDB_FLAG(CATASTROPHIC)) {
1774 kdb_printf("Catastrophic error detected\n");
1775 kdb_printf("kdb_continue_catastrophic=%d, ",
1776 kdb_continue_catastrophic);
1777 if (kdb_continue_catastrophic == 0 && kdb_go_count++ == 0) {
1778 kdb_printf("type go a second time if you really want "
1779 "to continue\n");
1780 return 0;
1781 }
1782 if (kdb_continue_catastrophic == 2) {
1783 kdb_printf("forcing reboot\n");
1784 kdb_reboot(0, NULL);
1785 }
1786 kdb_printf("attempting to continue\n");
1787 }
1788 return diag;
1789}
1790
1791/*
1792 * kdb_rd - This function implements the 'rd' command.
1793 */
1794static int kdb_rd(int argc, const char **argv)
1795{
534af108
JW
1796 int len = kdb_check_regs();
1797#if DBG_MAX_REG_NUM > 0
1798 int i;
1799 char *rname;
1800 int rsize;
1801 u64 reg64;
1802 u32 reg32;
1803 u16 reg16;
1804 u8 reg8;
1805
1806 if (len)
1807 return len;
1808
1809 for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1810 rsize = dbg_reg_def[i].size * 2;
1811 if (rsize > 16)
1812 rsize = 2;
1813 if (len + strlen(dbg_reg_def[i].name) + 4 + rsize > 80) {
1814 len = 0;
1815 kdb_printf("\n");
1816 }
1817 if (len)
1818 len += kdb_printf(" ");
1819 switch(dbg_reg_def[i].size * 8) {
1820 case 8:
1821 rname = dbg_get_reg(i, &reg8, kdb_current_regs);
1822 if (!rname)
1823 break;
1824 len += kdb_printf("%s: %02x", rname, reg8);
1825 break;
1826 case 16:
1827 rname = dbg_get_reg(i, &reg16, kdb_current_regs);
1828 if (!rname)
1829 break;
1830 len += kdb_printf("%s: %04x", rname, reg16);
1831 break;
1832 case 32:
1833 rname = dbg_get_reg(i, &reg32, kdb_current_regs);
1834 if (!rname)
1835 break;
1836 len += kdb_printf("%s: %08x", rname, reg32);
1837 break;
1838 case 64:
1839 rname = dbg_get_reg(i, &reg64, kdb_current_regs);
1840 if (!rname)
1841 break;
1842 len += kdb_printf("%s: %016llx", rname, reg64);
1843 break;
1844 default:
1845 len += kdb_printf("%s: ??", dbg_reg_def[i].name);
1846 }
1847 }
1848 kdb_printf("\n");
1849#else
1850 if (len)
1851 return len;
5d5314d6
JW
1852
1853 kdb_dumpregs(kdb_current_regs);
534af108 1854#endif
5d5314d6
JW
1855 return 0;
1856}
1857
1858/*
1859 * kdb_rm - This function implements the 'rm' (register modify) command.
1860 * rm register-name new-contents
1861 * Remarks:
534af108 1862 * Allows register modification with the same restrictions as gdb
5d5314d6
JW
1863 */
1864static int kdb_rm(int argc, const char **argv)
1865{
534af108 1866#if DBG_MAX_REG_NUM > 0
5d5314d6 1867 int diag;
534af108
JW
1868 const char *rname;
1869 int i;
1870 u64 reg64;
1871 u32 reg32;
1872 u16 reg16;
1873 u8 reg8;
5d5314d6
JW
1874
1875 if (argc != 2)
1876 return KDB_ARGCOUNT;
1877 /*
1878 * Allow presence or absence of leading '%' symbol.
1879 */
534af108
JW
1880 rname = argv[1];
1881 if (*rname == '%')
1882 rname++;
5d5314d6 1883
534af108 1884 diag = kdbgetu64arg(argv[2], &reg64);
5d5314d6
JW
1885 if (diag)
1886 return diag;
1887
1888 diag = kdb_check_regs();
1889 if (diag)
1890 return diag;
534af108
JW
1891
1892 diag = KDB_BADREG;
1893 for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1894 if (strcmp(rname, dbg_reg_def[i].name) == 0) {
1895 diag = 0;
1896 break;
1897 }
1898 }
1899 if (!diag) {
1900 switch(dbg_reg_def[i].size * 8) {
1901 case 8:
1902 reg8 = reg64;
1903 dbg_set_reg(i, &reg8, kdb_current_regs);
1904 break;
1905 case 16:
1906 reg16 = reg64;
1907 dbg_set_reg(i, &reg16, kdb_current_regs);
1908 break;
1909 case 32:
1910 reg32 = reg64;
1911 dbg_set_reg(i, &reg32, kdb_current_regs);
1912 break;
1913 case 64:
1914 dbg_set_reg(i, &reg64, kdb_current_regs);
1915 break;
1916 }
1917 }
1918 return diag;
1919#else
5d5314d6 1920 kdb_printf("ERROR: Register set currently not implemented\n");
534af108
JW
1921 return 0;
1922#endif
5d5314d6
JW
1923}
1924
1925#if defined(CONFIG_MAGIC_SYSRQ)
1926/*
1927 * kdb_sr - This function implements the 'sr' (SYSRQ key) command
1928 * which interfaces to the soi-disant MAGIC SYSRQ functionality.
1929 * sr <magic-sysrq-code>
1930 */
1931static int kdb_sr(int argc, const char **argv)
1932{
1933 if (argc != 1)
1934 return KDB_ARGCOUNT;
d37d39ae 1935 kdb_trap_printk++;
f335397d 1936 __handle_sysrq(*argv[1], false);
d37d39ae 1937 kdb_trap_printk--;
5d5314d6
JW
1938
1939 return 0;
1940}
1941#endif /* CONFIG_MAGIC_SYSRQ */
1942
1943/*
1944 * kdb_ef - This function implements the 'regs' (display exception
1945 * frame) command. This command takes an address and expects to
1946 * find an exception frame at that address, formats and prints
1947 * it.
1948 * regs address-expression
1949 * Remarks:
1950 * Not done yet.
1951 */
1952static int kdb_ef(int argc, const char **argv)
1953{
1954 int diag;
1955 unsigned long addr;
1956 long offset;
1957 int nextarg;
1958
1959 if (argc != 1)
1960 return KDB_ARGCOUNT;
1961
1962 nextarg = 1;
1963 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1964 if (diag)
1965 return diag;
1966 show_regs((struct pt_regs *)addr);
1967 return 0;
1968}
1969
1970#if defined(CONFIG_MODULES)
5d5314d6
JW
1971/*
1972 * kdb_lsmod - This function implements the 'lsmod' command. Lists
1973 * currently loaded kernel modules.
1974 * Mostly taken from userland lsmod.
1975 */
1976static int kdb_lsmod(int argc, const char **argv)
1977{
1978 struct module *mod;
1979
1980 if (argc != 0)
1981 return KDB_ARGCOUNT;
1982
1983 kdb_printf("Module Size modstruct Used by\n");
1984 list_for_each_entry(mod, kdb_modules, list) {
0d21b0e3
RR
1985 if (mod->state == MODULE_STATE_UNFORMED)
1986 continue;
5d5314d6
JW
1987
1988 kdb_printf("%-20s%8u 0x%p ", mod->name,
1989 mod->core_size, (void *)mod);
1990#ifdef CONFIG_MODULE_UNLOAD
bd77c047 1991 kdb_printf("%4ld ", module_refcount(mod));
5d5314d6
JW
1992#endif
1993 if (mod->state == MODULE_STATE_GOING)
1994 kdb_printf(" (Unloading)");
1995 else if (mod->state == MODULE_STATE_COMING)
1996 kdb_printf(" (Loading)");
1997 else
1998 kdb_printf(" (Live)");
9e8b624f 1999 kdb_printf(" 0x%p", mod->module_core);
5d5314d6
JW
2000
2001#ifdef CONFIG_MODULE_UNLOAD
2002 {
2003 struct module_use *use;
2004 kdb_printf(" [ ");
c8e21ced
RR
2005 list_for_each_entry(use, &mod->source_list,
2006 source_list)
2007 kdb_printf("%s ", use->target->name);
5d5314d6
JW
2008 kdb_printf("]\n");
2009 }
2010#endif
2011 }
2012
2013 return 0;
2014}
2015
2016#endif /* CONFIG_MODULES */
2017
2018/*
2019 * kdb_env - This function implements the 'env' command. Display the
2020 * current environment variables.
2021 */
2022
2023static int kdb_env(int argc, const char **argv)
2024{
2025 int i;
2026
2027 for (i = 0; i < __nenv; i++) {
2028 if (__env[i])
2029 kdb_printf("%s\n", __env[i]);
2030 }
2031
2032 if (KDB_DEBUG(MASK))
2033 kdb_printf("KDBFLAGS=0x%x\n", kdb_flags);
2034
2035 return 0;
2036}
2037
2038#ifdef CONFIG_PRINTK
2039/*
2040 * kdb_dmesg - This function implements the 'dmesg' command to display
2041 * the contents of the syslog buffer.
2042 * dmesg [lines] [adjust]
2043 */
2044static int kdb_dmesg(int argc, const char **argv)
2045{
bc792e61
AV
2046 int diag;
2047 int logging;
2048 int lines = 0;
2049 int adjust = 0;
2050 int n = 0;
2051 int skip = 0;
2052 struct kmsg_dumper dumper = { .active = 1 };
2053 size_t len;
2054 char buf[201];
5d5314d6
JW
2055
2056 if (argc > 2)
2057 return KDB_ARGCOUNT;
2058 if (argc) {
2059 char *cp;
2060 lines = simple_strtol(argv[1], &cp, 0);
2061 if (*cp)
2062 lines = 0;
2063 if (argc > 1) {
2064 adjust = simple_strtoul(argv[2], &cp, 0);
2065 if (*cp || adjust < 0)
2066 adjust = 0;
2067 }
2068 }
2069
2070 /* disable LOGGING if set */
2071 diag = kdbgetintenv("LOGGING", &logging);
2072 if (!diag && logging) {
2073 const char *setargs[] = { "set", "LOGGING", "0" };
2074 kdb_set(2, setargs);
2075 }
2076
c064da47
AV
2077 kmsg_dump_rewind_nolock(&dumper);
2078 while (kmsg_dump_get_line_nolock(&dumper, 1, NULL, 0, NULL))
bc792e61
AV
2079 n++;
2080
5d5314d6
JW
2081 if (lines < 0) {
2082 if (adjust >= n)
2083 kdb_printf("buffer only contains %d lines, nothing "
2084 "printed\n", n);
2085 else if (adjust - lines >= n)
2086 kdb_printf("buffer only contains %d lines, last %d "
2087 "lines printed\n", n, n - adjust);
bc792e61
AV
2088 skip = adjust;
2089 lines = abs(lines);
5d5314d6 2090 } else if (lines > 0) {
bc792e61
AV
2091 skip = n - lines - adjust;
2092 lines = abs(lines);
5d5314d6
JW
2093 if (adjust >= n) {
2094 kdb_printf("buffer only contains %d lines, "
2095 "nothing printed\n", n);
2096 skip = n;
2097 } else if (skip < 0) {
2098 lines += skip;
2099 skip = 0;
2100 kdb_printf("buffer only contains %d lines, first "
2101 "%d lines printed\n", n, lines);
2102 }
bc792e61
AV
2103 } else {
2104 lines = n;
5d5314d6 2105 }
bc792e61
AV
2106
2107 if (skip >= n || skip < 0)
2108 return 0;
2109
c064da47
AV
2110 kmsg_dump_rewind_nolock(&dumper);
2111 while (kmsg_dump_get_line_nolock(&dumper, 1, buf, sizeof(buf), &len)) {
bc792e61
AV
2112 if (skip) {
2113 skip--;
2114 continue;
5d5314d6 2115 }
bc792e61
AV
2116 if (!lines--)
2117 break;
d1871b38
JW
2118 if (KDB_FLAG(CMD_INTERRUPT))
2119 return 0;
bc792e61
AV
2120
2121 kdb_printf("%.*s\n", (int)len - 1, buf);
5d5314d6 2122 }
5d5314d6
JW
2123
2124 return 0;
2125}
2126#endif /* CONFIG_PRINTK */
ad394f66
AV
2127
2128/* Make sure we balance enable/disable calls, must disable first. */
2129static atomic_t kdb_nmi_disabled;
2130
2131static int kdb_disable_nmi(int argc, const char *argv[])
2132{
2133 if (atomic_read(&kdb_nmi_disabled))
2134 return 0;
2135 atomic_set(&kdb_nmi_disabled, 1);
2136 arch_kgdb_ops.enable_nmi(0);
2137 return 0;
2138}
2139
2140static int kdb_param_enable_nmi(const char *val, const struct kernel_param *kp)
2141{
2142 if (!atomic_add_unless(&kdb_nmi_disabled, -1, 0))
2143 return -EINVAL;
2144 arch_kgdb_ops.enable_nmi(1);
2145 return 0;
2146}
2147
2148static const struct kernel_param_ops kdb_param_ops_enable_nmi = {
2149 .set = kdb_param_enable_nmi,
2150};
2151module_param_cb(enable_nmi, &kdb_param_ops_enable_nmi, NULL, 0600);
2152
5d5314d6
JW
2153/*
2154 * kdb_cpu - This function implements the 'cpu' command.
2155 * cpu [<cpunum>]
2156 * Returns:
2157 * KDB_CMD_CPU for success, a kdb diagnostic if error
2158 */
2159static void kdb_cpu_status(void)
2160{
2161 int i, start_cpu, first_print = 1;
2162 char state, prev_state = '?';
2163
2164 kdb_printf("Currently on cpu %d\n", raw_smp_processor_id());
2165 kdb_printf("Available cpus: ");
2166 for (start_cpu = -1, i = 0; i < NR_CPUS; i++) {
2167 if (!cpu_online(i)) {
2168 state = 'F'; /* cpu is offline */
2169 } else {
2170 state = ' '; /* cpu is responding to kdb */
2171 if (kdb_task_state_char(KDB_TSK(i)) == 'I')
2172 state = 'I'; /* idle task */
2173 }
2174 if (state != prev_state) {
2175 if (prev_state != '?') {
2176 if (!first_print)
2177 kdb_printf(", ");
2178 first_print = 0;
2179 kdb_printf("%d", start_cpu);
2180 if (start_cpu < i-1)
2181 kdb_printf("-%d", i-1);
2182 if (prev_state != ' ')
2183 kdb_printf("(%c)", prev_state);
2184 }
2185 prev_state = state;
2186 start_cpu = i;
2187 }
2188 }
2189 /* print the trailing cpus, ignoring them if they are all offline */
2190 if (prev_state != 'F') {
2191 if (!first_print)
2192 kdb_printf(", ");
2193 kdb_printf("%d", start_cpu);
2194 if (start_cpu < i-1)
2195 kdb_printf("-%d", i-1);
2196 if (prev_state != ' ')
2197 kdb_printf("(%c)", prev_state);
2198 }
2199 kdb_printf("\n");
2200}
2201
2202static int kdb_cpu(int argc, const char **argv)
2203{
2204 unsigned long cpunum;
2205 int diag;
2206
2207 if (argc == 0) {
2208 kdb_cpu_status();
2209 return 0;
2210 }
2211
2212 if (argc != 1)
2213 return KDB_ARGCOUNT;
2214
2215 diag = kdbgetularg(argv[1], &cpunum);
2216 if (diag)
2217 return diag;
2218
2219 /*
2220 * Validate cpunum
2221 */
2222 if ((cpunum > NR_CPUS) || !cpu_online(cpunum))
2223 return KDB_BADCPUNUM;
2224
2225 dbg_switch_cpu = cpunum;
2226
2227 /*
2228 * Switch to other cpu
2229 */
2230 return KDB_CMD_CPU;
2231}
2232
2233/* The user may not realize that ps/bta with no parameters does not print idle
2234 * or sleeping system daemon processes, so tell them how many were suppressed.
2235 */
2236void kdb_ps_suppressed(void)
2237{
2238 int idle = 0, daemon = 0;
2239 unsigned long mask_I = kdb_task_state_string("I"),
2240 mask_M = kdb_task_state_string("M");
2241 unsigned long cpu;
2242 const struct task_struct *p, *g;
2243 for_each_online_cpu(cpu) {
2244 p = kdb_curr_task(cpu);
2245 if (kdb_task_state(p, mask_I))
2246 ++idle;
2247 }
2248 kdb_do_each_thread(g, p) {
2249 if (kdb_task_state(p, mask_M))
2250 ++daemon;
2251 } kdb_while_each_thread(g, p);
2252 if (idle || daemon) {
2253 if (idle)
2254 kdb_printf("%d idle process%s (state I)%s\n",
2255 idle, idle == 1 ? "" : "es",
2256 daemon ? " and " : "");
2257 if (daemon)
2258 kdb_printf("%d sleeping system daemon (state M) "
2259 "process%s", daemon,
2260 daemon == 1 ? "" : "es");
2261 kdb_printf(" suppressed,\nuse 'ps A' to see all.\n");
2262 }
2263}
2264
2265/*
2266 * kdb_ps - This function implements the 'ps' command which shows a
2267 * list of the active processes.
2268 * ps [DRSTCZEUIMA] All processes, optionally filtered by state
2269 */
2270void kdb_ps1(const struct task_struct *p)
2271{
2272 int cpu;
2273 unsigned long tmp;
2274
2275 if (!p || probe_kernel_read(&tmp, (char *)p, sizeof(unsigned long)))
2276 return;
2277
2278 cpu = kdb_process_cpu(p);
2279 kdb_printf("0x%p %8d %8d %d %4d %c 0x%p %c%s\n",
2280 (void *)p, p->pid, p->parent->pid,
2281 kdb_task_has_cpu(p), kdb_process_cpu(p),
2282 kdb_task_state_char(p),
2283 (void *)(&p->thread),
2284 p == kdb_curr_task(raw_smp_processor_id()) ? '*' : ' ',
2285 p->comm);
2286 if (kdb_task_has_cpu(p)) {
2287 if (!KDB_TSK(cpu)) {
2288 kdb_printf(" Error: no saved data for this cpu\n");
2289 } else {
2290 if (KDB_TSK(cpu) != p)
2291 kdb_printf(" Error: does not match running "
2292 "process table (0x%p)\n", KDB_TSK(cpu));
2293 }
2294 }
2295}
2296
2297static int kdb_ps(int argc, const char **argv)
2298{
2299 struct task_struct *g, *p;
2300 unsigned long mask, cpu;
2301
2302 if (argc == 0)
2303 kdb_ps_suppressed();
2304 kdb_printf("%-*s Pid Parent [*] cpu State %-*s Command\n",
2305 (int)(2*sizeof(void *))+2, "Task Addr",
2306 (int)(2*sizeof(void *))+2, "Thread");
2307 mask = kdb_task_state_string(argc ? argv[1] : NULL);
2308 /* Run the active tasks first */
2309 for_each_online_cpu(cpu) {
2310 if (KDB_FLAG(CMD_INTERRUPT))
2311 return 0;
2312 p = kdb_curr_task(cpu);
2313 if (kdb_task_state(p, mask))
2314 kdb_ps1(p);
2315 }
2316 kdb_printf("\n");
2317 /* Now the real tasks */
2318 kdb_do_each_thread(g, p) {
2319 if (KDB_FLAG(CMD_INTERRUPT))
2320 return 0;
2321 if (kdb_task_state(p, mask))
2322 kdb_ps1(p);
2323 } kdb_while_each_thread(g, p);
2324
2325 return 0;
2326}
2327
2328/*
2329 * kdb_pid - This function implements the 'pid' command which switches
2330 * the currently active process.
2331 * pid [<pid> | R]
2332 */
2333static int kdb_pid(int argc, const char **argv)
2334{
2335 struct task_struct *p;
2336 unsigned long val;
2337 int diag;
2338
2339 if (argc > 1)
2340 return KDB_ARGCOUNT;
2341
2342 if (argc) {
2343 if (strcmp(argv[1], "R") == 0) {
2344 p = KDB_TSK(kdb_initial_cpu);
2345 } else {
2346 diag = kdbgetularg(argv[1], &val);
2347 if (diag)
2348 return KDB_BADINT;
2349
2350 p = find_task_by_pid_ns((pid_t)val, &init_pid_ns);
2351 if (!p) {
2352 kdb_printf("No task with pid=%d\n", (pid_t)val);
2353 return 0;
2354 }
2355 }
2356 kdb_set_current_task(p);
2357 }
2358 kdb_printf("KDB current process is %s(pid=%d)\n",
2359 kdb_current_task->comm,
2360 kdb_current_task->pid);
2361
2362 return 0;
2363}
2364
5d5314d6
JW
2365static int kdb_kgdb(int argc, const char **argv)
2366{
2367 return KDB_CMD_KGDB;
2368}
2369
2370/*
2371 * kdb_help - This function implements the 'help' and '?' commands.
2372 */
2373static int kdb_help(int argc, const char **argv)
2374{
2375 kdbtab_t *kt;
2376 int i;
2377
2378 kdb_printf("%-15.15s %-20.20s %s\n", "Command", "Usage", "Description");
2379 kdb_printf("-----------------------------"
2380 "-----------------------------\n");
2381 for_each_kdbcmd(kt, i) {
074604af 2382 char *space = "";
5d5314d6
JW
2383 if (KDB_FLAG(CMD_INTERRUPT))
2384 return 0;
074604af
JW
2385 if (!kt->cmd_name)
2386 continue;
2387 if (strlen(kt->cmd_usage) > 20)
2388 space = "\n ";
2389 kdb_printf("%-15.15s %-20s%s%s\n", kt->cmd_name,
2390 kt->cmd_usage, space, kt->cmd_help);
5d5314d6
JW
2391 }
2392 return 0;
2393}
2394
2395/*
2396 * kdb_kill - This function implements the 'kill' commands.
2397 */
2398static int kdb_kill(int argc, const char **argv)
2399{
2400 long sig, pid;
2401 char *endp;
2402 struct task_struct *p;
2403 struct siginfo info;
2404
2405 if (argc != 2)
2406 return KDB_ARGCOUNT;
2407
2408 sig = simple_strtol(argv[1], &endp, 0);
2409 if (*endp)
2410 return KDB_BADINT;
2411 if (sig >= 0) {
2412 kdb_printf("Invalid signal parameter.<-signal>\n");
2413 return 0;
2414 }
2415 sig = -sig;
2416
2417 pid = simple_strtol(argv[2], &endp, 0);
2418 if (*endp)
2419 return KDB_BADINT;
2420 if (pid <= 0) {
2421 kdb_printf("Process ID must be large than 0.\n");
2422 return 0;
2423 }
2424
2425 /* Find the process. */
2426 p = find_task_by_pid_ns(pid, &init_pid_ns);
2427 if (!p) {
2428 kdb_printf("The specified process isn't found.\n");
2429 return 0;
2430 }
2431 p = p->group_leader;
2432 info.si_signo = sig;
2433 info.si_errno = 0;
2434 info.si_code = SI_USER;
2435 info.si_pid = pid; /* same capabilities as process being signalled */
2436 info.si_uid = 0; /* kdb has root authority */
2437 kdb_send_sig_info(p, &info);
2438 return 0;
2439}
2440
2441struct kdb_tm {
2442 int tm_sec; /* seconds */
2443 int tm_min; /* minutes */
2444 int tm_hour; /* hours */
2445 int tm_mday; /* day of the month */
2446 int tm_mon; /* month */
2447 int tm_year; /* year */
2448};
2449
2450static void kdb_gmtime(struct timespec *tv, struct kdb_tm *tm)
2451{
2452 /* This will work from 1970-2099, 2100 is not a leap year */
2453 static int mon_day[] = { 31, 29, 31, 30, 31, 30, 31,
2454 31, 30, 31, 30, 31 };
2455 memset(tm, 0, sizeof(*tm));
2456 tm->tm_sec = tv->tv_sec % (24 * 60 * 60);
2457 tm->tm_mday = tv->tv_sec / (24 * 60 * 60) +
2458 (2 * 365 + 1); /* shift base from 1970 to 1968 */
2459 tm->tm_min = tm->tm_sec / 60 % 60;
2460 tm->tm_hour = tm->tm_sec / 60 / 60;
2461 tm->tm_sec = tm->tm_sec % 60;
2462 tm->tm_year = 68 + 4*(tm->tm_mday / (4*365+1));
2463 tm->tm_mday %= (4*365+1);
2464 mon_day[1] = 29;
2465 while (tm->tm_mday >= mon_day[tm->tm_mon]) {
2466 tm->tm_mday -= mon_day[tm->tm_mon];
2467 if (++tm->tm_mon == 12) {
2468 tm->tm_mon = 0;
2469 ++tm->tm_year;
2470 mon_day[1] = 28;
2471 }
2472 }
2473 ++tm->tm_mday;
2474}
2475
2476/*
2477 * Most of this code has been lifted from kernel/timer.c::sys_sysinfo().
2478 * I cannot call that code directly from kdb, it has an unconditional
2479 * cli()/sti() and calls routines that take locks which can stop the debugger.
2480 */
2481static void kdb_sysinfo(struct sysinfo *val)
2482{
2483 struct timespec uptime;
2484 do_posix_clock_monotonic_gettime(&uptime);
2485 memset(val, 0, sizeof(*val));
2486 val->uptime = uptime.tv_sec;
2487 val->loads[0] = avenrun[0];
2488 val->loads[1] = avenrun[1];
2489 val->loads[2] = avenrun[2];
2490 val->procs = nr_threads-1;
2491 si_meminfo(val);
2492
2493 return;
2494}
2495
2496/*
2497 * kdb_summary - This function implements the 'summary' command.
2498 */
2499static int kdb_summary(int argc, const char **argv)
2500{
157b1a23 2501 struct timespec now;
5d5314d6
JW
2502 struct kdb_tm tm;
2503 struct sysinfo val;
2504
2505 if (argc)
2506 return KDB_ARGCOUNT;
2507
2508 kdb_printf("sysname %s\n", init_uts_ns.name.sysname);
2509 kdb_printf("release %s\n", init_uts_ns.name.release);
2510 kdb_printf("version %s\n", init_uts_ns.name.version);
2511 kdb_printf("machine %s\n", init_uts_ns.name.machine);
2512 kdb_printf("nodename %s\n", init_uts_ns.name.nodename);
2513 kdb_printf("domainname %s\n", init_uts_ns.name.domainname);
2514 kdb_printf("ccversion %s\n", __stringify(CCVERSION));
2515
157b1a23
TG
2516 now = __current_kernel_time();
2517 kdb_gmtime(&now, &tm);
5d5314d6
JW
2518 kdb_printf("date %04d-%02d-%02d %02d:%02d:%02d "
2519 "tz_minuteswest %d\n",
2520 1900+tm.tm_year, tm.tm_mon+1, tm.tm_mday,
2521 tm.tm_hour, tm.tm_min, tm.tm_sec,
2522 sys_tz.tz_minuteswest);
2523
2524 kdb_sysinfo(&val);
2525 kdb_printf("uptime ");
2526 if (val.uptime > (24*60*60)) {
2527 int days = val.uptime / (24*60*60);
2528 val.uptime %= (24*60*60);
2529 kdb_printf("%d day%s ", days, days == 1 ? "" : "s");
2530 }
2531 kdb_printf("%02ld:%02ld\n", val.uptime/(60*60), (val.uptime/60)%60);
2532
2533 /* lifted from fs/proc/proc_misc.c::loadavg_read_proc() */
2534
2535#define LOAD_INT(x) ((x) >> FSHIFT)
2536#define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100)
2537 kdb_printf("load avg %ld.%02ld %ld.%02ld %ld.%02ld\n",
2538 LOAD_INT(val.loads[0]), LOAD_FRAC(val.loads[0]),
2539 LOAD_INT(val.loads[1]), LOAD_FRAC(val.loads[1]),
2540 LOAD_INT(val.loads[2]), LOAD_FRAC(val.loads[2]));
2541#undef LOAD_INT
2542#undef LOAD_FRAC
2543 /* Display in kilobytes */
2544#define K(x) ((x) << (PAGE_SHIFT - 10))
2545 kdb_printf("\nMemTotal: %8lu kB\nMemFree: %8lu kB\n"
2546 "Buffers: %8lu kB\n",
2547 val.totalram, val.freeram, val.bufferram);
2548 return 0;
2549}
2550
2551/*
2552 * kdb_per_cpu - This function implements the 'per_cpu' command.
2553 */
2554static int kdb_per_cpu(int argc, const char **argv)
2555{
931ea248
JW
2556 char fmtstr[64];
2557 int cpu, diag, nextarg = 1;
2558 unsigned long addr, symaddr, val, bytesperword = 0, whichcpu = ~0UL;
5d5314d6
JW
2559
2560 if (argc < 1 || argc > 3)
2561 return KDB_ARGCOUNT;
2562
931ea248
JW
2563 diag = kdbgetaddrarg(argc, argv, &nextarg, &symaddr, NULL, NULL);
2564 if (diag)
2565 return diag;
2566
5d5314d6
JW
2567 if (argc >= 2) {
2568 diag = kdbgetularg(argv[2], &bytesperword);
2569 if (diag)
2570 return diag;
2571 }
2572 if (!bytesperword)
2573 bytesperword = KDB_WORD_SIZE;
2574 else if (bytesperword > KDB_WORD_SIZE)
2575 return KDB_BADWIDTH;
2576 sprintf(fmtstr, "%%0%dlx ", (int)(2*bytesperword));
2577 if (argc >= 3) {
2578 diag = kdbgetularg(argv[3], &whichcpu);
2579 if (diag)
2580 return diag;
2581 if (!cpu_online(whichcpu)) {
2582 kdb_printf("cpu %ld is not online\n", whichcpu);
2583 return KDB_BADCPUNUM;
2584 }
2585 }
2586
2587 /* Most architectures use __per_cpu_offset[cpu], some use
2588 * __per_cpu_offset(cpu), smp has no __per_cpu_offset.
2589 */
2590#ifdef __per_cpu_offset
2591#define KDB_PCU(cpu) __per_cpu_offset(cpu)
2592#else
2593#ifdef CONFIG_SMP
2594#define KDB_PCU(cpu) __per_cpu_offset[cpu]
2595#else
2596#define KDB_PCU(cpu) 0
2597#endif
2598#endif
5d5314d6 2599 for_each_online_cpu(cpu) {
931ea248
JW
2600 if (KDB_FLAG(CMD_INTERRUPT))
2601 return 0;
2602
5d5314d6
JW
2603 if (whichcpu != ~0UL && whichcpu != cpu)
2604 continue;
931ea248 2605 addr = symaddr + KDB_PCU(cpu);
5d5314d6
JW
2606 diag = kdb_getword(&val, addr, bytesperword);
2607 if (diag) {
2608 kdb_printf("%5d " kdb_bfd_vma_fmt0 " - unable to "
2609 "read, diag=%d\n", cpu, addr, diag);
2610 continue;
2611 }
5d5314d6
JW
2612 kdb_printf("%5d ", cpu);
2613 kdb_md_line(fmtstr, addr,
2614 bytesperword == KDB_WORD_SIZE,
2615 1, bytesperword, 1, 1, 0);
2616 }
5d5314d6 2617#undef KDB_PCU
5d5314d6
JW
2618 return 0;
2619}
2620
2621/*
2622 * display help for the use of cmd | grep pattern
2623 */
2624static int kdb_grep_help(int argc, const char **argv)
2625{
2626 kdb_printf("Usage of cmd args | grep pattern:\n");
2627 kdb_printf(" Any command's output may be filtered through an ");
2628 kdb_printf("emulated 'pipe'.\n");
2629 kdb_printf(" 'grep' is just a key word.\n");
2630 kdb_printf(" The pattern may include a very limited set of "
2631 "metacharacters:\n");
2632 kdb_printf(" pattern or ^pattern or pattern$ or ^pattern$\n");
2633 kdb_printf(" And if there are spaces in the pattern, you may "
2634 "quote it:\n");
2635 kdb_printf(" \"pat tern\" or \"^pat tern\" or \"pat tern$\""
2636 " or \"^pat tern$\"\n");
2637 return 0;
2638}
2639
2640/*
2641 * kdb_register_repeat - This function is used to register a kernel
2642 * debugger command.
2643 * Inputs:
2644 * cmd Command name
2645 * func Function to execute the command
2646 * usage A simple usage string showing arguments
2647 * help A simple help string describing command
2648 * repeat Does the command auto repeat on enter?
2649 * Returns:
2650 * zero for success, one if a duplicate command.
2651 */
2652#define kdb_command_extend 50 /* arbitrary */
2653int kdb_register_repeat(char *cmd,
2654 kdb_func_t func,
2655 char *usage,
2656 char *help,
2657 short minlen,
2658 kdb_repeat_t repeat)
2659{
2660 int i;
2661 kdbtab_t *kp;
2662
2663 /*
2664 * Brute force method to determine duplicates
2665 */
2666 for_each_kdbcmd(kp, i) {
2667 if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2668 kdb_printf("Duplicate kdb command registered: "
2669 "%s, func %p help %s\n", cmd, func, help);
2670 return 1;
2671 }
2672 }
2673
2674 /*
2675 * Insert command into first available location in table
2676 */
2677 for_each_kdbcmd(kp, i) {
2678 if (kp->cmd_name == NULL)
2679 break;
2680 }
2681
2682 if (i >= kdb_max_commands) {
2683 kdbtab_t *new = kmalloc((kdb_max_commands - KDB_BASE_CMD_MAX +
2684 kdb_command_extend) * sizeof(*new), GFP_KDB);
2685 if (!new) {
2686 kdb_printf("Could not allocate new kdb_command "
2687 "table\n");
2688 return 1;
2689 }
2690 if (kdb_commands) {
2691 memcpy(new, kdb_commands,
5450d904 2692 (kdb_max_commands - KDB_BASE_CMD_MAX) * sizeof(*new));
5d5314d6
JW
2693 kfree(kdb_commands);
2694 }
f7c82d5a 2695 memset(new + kdb_max_commands - KDB_BASE_CMD_MAX, 0,
5d5314d6
JW
2696 kdb_command_extend * sizeof(*new));
2697 kdb_commands = new;
5450d904 2698 kp = kdb_commands + kdb_max_commands - KDB_BASE_CMD_MAX;
5d5314d6
JW
2699 kdb_max_commands += kdb_command_extend;
2700 }
2701
2702 kp->cmd_name = cmd;
2703 kp->cmd_func = func;
2704 kp->cmd_usage = usage;
2705 kp->cmd_help = help;
2706 kp->cmd_flags = 0;
2707 kp->cmd_minlen = minlen;
2708 kp->cmd_repeat = repeat;
2709
2710 return 0;
2711}
f7030bbc
JW
2712EXPORT_SYMBOL_GPL(kdb_register_repeat);
2713
5d5314d6
JW
2714
2715/*
2716 * kdb_register - Compatibility register function for commands that do
2717 * not need to specify a repeat state. Equivalent to
2718 * kdb_register_repeat with KDB_REPEAT_NONE.
2719 * Inputs:
2720 * cmd Command name
2721 * func Function to execute the command
2722 * usage A simple usage string showing arguments
2723 * help A simple help string describing command
2724 * Returns:
2725 * zero for success, one if a duplicate command.
2726 */
2727int kdb_register(char *cmd,
2728 kdb_func_t func,
2729 char *usage,
2730 char *help,
2731 short minlen)
2732{
2733 return kdb_register_repeat(cmd, func, usage, help, minlen,
2734 KDB_REPEAT_NONE);
2735}
f7030bbc 2736EXPORT_SYMBOL_GPL(kdb_register);
5d5314d6
JW
2737
2738/*
2739 * kdb_unregister - This function is used to unregister a kernel
2740 * debugger command. It is generally called when a module which
2741 * implements kdb commands is unloaded.
2742 * Inputs:
2743 * cmd Command name
2744 * Returns:
2745 * zero for success, one command not registered.
2746 */
2747int kdb_unregister(char *cmd)
2748{
2749 int i;
2750 kdbtab_t *kp;
2751
2752 /*
2753 * find the command.
2754 */
75d14ede 2755 for_each_kdbcmd(kp, i) {
5d5314d6
JW
2756 if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2757 kp->cmd_name = NULL;
2758 return 0;
2759 }
2760 }
2761
2762 /* Couldn't find it. */
2763 return 1;
2764}
f7030bbc 2765EXPORT_SYMBOL_GPL(kdb_unregister);
5d5314d6
JW
2766
2767/* Initialize the kdb command table. */
2768static void __init kdb_inittab(void)
2769{
2770 int i;
2771 kdbtab_t *kp;
2772
2773 for_each_kdbcmd(kp, i)
2774 kp->cmd_name = NULL;
2775
2776 kdb_register_repeat("md", kdb_md, "<vaddr>",
2777 "Display Memory Contents, also mdWcN, e.g. md8c1", 1,
2778 KDB_REPEAT_NO_ARGS);
2779 kdb_register_repeat("mdr", kdb_md, "<vaddr> <bytes>",
2780 "Display Raw Memory", 0, KDB_REPEAT_NO_ARGS);
2781 kdb_register_repeat("mdp", kdb_md, "<paddr> <bytes>",
2782 "Display Physical Memory", 0, KDB_REPEAT_NO_ARGS);
2783 kdb_register_repeat("mds", kdb_md, "<vaddr>",
2784 "Display Memory Symbolically", 0, KDB_REPEAT_NO_ARGS);
2785 kdb_register_repeat("mm", kdb_mm, "<vaddr> <contents>",
2786 "Modify Memory Contents", 0, KDB_REPEAT_NO_ARGS);
2787 kdb_register_repeat("go", kdb_go, "[<vaddr>]",
2788 "Continue Execution", 1, KDB_REPEAT_NONE);
2789 kdb_register_repeat("rd", kdb_rd, "",
2790 "Display Registers", 0, KDB_REPEAT_NONE);
2791 kdb_register_repeat("rm", kdb_rm, "<reg> <contents>",
2792 "Modify Registers", 0, KDB_REPEAT_NONE);
2793 kdb_register_repeat("ef", kdb_ef, "<vaddr>",
2794 "Display exception frame", 0, KDB_REPEAT_NONE);
2795 kdb_register_repeat("bt", kdb_bt, "[<vaddr>]",
2796 "Stack traceback", 1, KDB_REPEAT_NONE);
2797 kdb_register_repeat("btp", kdb_bt, "<pid>",
2798 "Display stack for process <pid>", 0, KDB_REPEAT_NONE);
2799 kdb_register_repeat("bta", kdb_bt, "[DRSTCZEUIMA]",
2800 "Display stack all processes", 0, KDB_REPEAT_NONE);
2801 kdb_register_repeat("btc", kdb_bt, "",
2802 "Backtrace current process on each cpu", 0, KDB_REPEAT_NONE);
2803 kdb_register_repeat("btt", kdb_bt, "<vaddr>",
2804 "Backtrace process given its struct task address", 0,
2805 KDB_REPEAT_NONE);
5d5314d6
JW
2806 kdb_register_repeat("env", kdb_env, "",
2807 "Show environment variables", 0, KDB_REPEAT_NONE);
2808 kdb_register_repeat("set", kdb_set, "",
2809 "Set environment variables", 0, KDB_REPEAT_NONE);
2810 kdb_register_repeat("help", kdb_help, "",
2811 "Display Help Message", 1, KDB_REPEAT_NONE);
2812 kdb_register_repeat("?", kdb_help, "",
2813 "Display Help Message", 0, KDB_REPEAT_NONE);
2814 kdb_register_repeat("cpu", kdb_cpu, "<cpunum>",
2815 "Switch to new cpu", 0, KDB_REPEAT_NONE);
2816 kdb_register_repeat("kgdb", kdb_kgdb, "",
2817 "Enter kgdb mode", 0, KDB_REPEAT_NONE);
2818 kdb_register_repeat("ps", kdb_ps, "[<flags>|A]",
2819 "Display active task list", 0, KDB_REPEAT_NONE);
2820 kdb_register_repeat("pid", kdb_pid, "<pidnum>",
2821 "Switch to another task", 0, KDB_REPEAT_NONE);
2822 kdb_register_repeat("reboot", kdb_reboot, "",
2823 "Reboot the machine immediately", 0, KDB_REPEAT_NONE);
2824#if defined(CONFIG_MODULES)
2825 kdb_register_repeat("lsmod", kdb_lsmod, "",
2826 "List loaded kernel modules", 0, KDB_REPEAT_NONE);
2827#endif
2828#if defined(CONFIG_MAGIC_SYSRQ)
2829 kdb_register_repeat("sr", kdb_sr, "<key>",
2830 "Magic SysRq key", 0, KDB_REPEAT_NONE);
2831#endif
2832#if defined(CONFIG_PRINTK)
2833 kdb_register_repeat("dmesg", kdb_dmesg, "[lines]",
2834 "Display syslog buffer", 0, KDB_REPEAT_NONE);
2835#endif
ad394f66
AV
2836 if (arch_kgdb_ops.enable_nmi) {
2837 kdb_register_repeat("disable_nmi", kdb_disable_nmi, "",
2838 "Disable NMI entry to KDB", 0, KDB_REPEAT_NONE);
2839 }
5d5314d6
JW
2840 kdb_register_repeat("defcmd", kdb_defcmd, "name \"usage\" \"help\"",
2841 "Define a set of commands, down to endefcmd", 0, KDB_REPEAT_NONE);
2842 kdb_register_repeat("kill", kdb_kill, "<-signal> <pid>",
2843 "Send a signal to a process", 0, KDB_REPEAT_NONE);
2844 kdb_register_repeat("summary", kdb_summary, "",
2845 "Summarize the system", 4, KDB_REPEAT_NONE);
0d3db28d 2846 kdb_register_repeat("per_cpu", kdb_per_cpu, "<sym> [<bytes>] [<cpu>]",
5d5314d6
JW
2847 "Display per_cpu variables", 3, KDB_REPEAT_NONE);
2848 kdb_register_repeat("grephelp", kdb_grep_help, "",
2849 "Display help on | grep", 0, KDB_REPEAT_NONE);
2850}
2851
2852/* Execute any commands defined in kdb_cmds. */
2853static void __init kdb_cmd_init(void)
2854{
2855 int i, diag;
2856 for (i = 0; kdb_cmds[i]; ++i) {
2857 diag = kdb_parse(kdb_cmds[i]);
2858 if (diag)
2859 kdb_printf("kdb command %s failed, kdb diag %d\n",
2860 kdb_cmds[i], diag);
2861 }
2862 if (defcmd_in_progress) {
2863 kdb_printf("Incomplete 'defcmd' set, forcing endefcmd\n");
2864 kdb_parse("endefcmd");
2865 }
2866}
2867
b595076a 2868/* Initialize kdb_printf, breakpoint tables and kdb state */
5d5314d6
JW
2869void __init kdb_init(int lvl)
2870{
2871 static int kdb_init_lvl = KDB_NOT_INITIALIZED;
2872 int i;
2873
2874 if (kdb_init_lvl == KDB_INIT_FULL || lvl <= kdb_init_lvl)
2875 return;
2876 for (i = kdb_init_lvl; i < lvl; i++) {
2877 switch (i) {
2878 case KDB_NOT_INITIALIZED:
2879 kdb_inittab(); /* Initialize Command Table */
2880 kdb_initbptab(); /* Initialize Breakpoints */
2881 break;
2882 case KDB_INIT_EARLY:
2883 kdb_cmd_init(); /* Build kdb_cmds tables */
2884 break;
2885 }
2886 }
2887 kdb_init_lvl = lvl;
2888}