]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - kernel/debug/kdb/kdb_main.c
sched/headers: Prepare for new header dependencies before moving code to <linux/sched...
[mirror_ubuntu-bionic-kernel.git] / kernel / debug / kdb / kdb_main.c
CommitLineData
5d5314d6
JW
1/*
2 * Kernel Debugger Architecture Independent Main Code
3 *
4 * This file is subject to the terms and conditions of the GNU General Public
5 * License. See the file "COPYING" in the main directory of this archive
6 * for more details.
7 *
8 * Copyright (C) 1999-2004 Silicon Graphics, Inc. All Rights Reserved.
9 * Copyright (C) 2000 Stephane Eranian <eranian@hpl.hp.com>
10 * Xscale (R) modifications copyright (C) 2003 Intel Corporation.
11 * Copyright (c) 2009 Wind River Systems, Inc. All Rights Reserved.
12 */
13
14#include <linux/ctype.h>
420c2b1b 15#include <linux/types.h>
5d5314d6
JW
16#include <linux/string.h>
17#include <linux/kernel.h>
bc792e61 18#include <linux/kmsg_dump.h>
5d5314d6
JW
19#include <linux/reboot.h>
20#include <linux/sched.h>
4f17722c 21#include <linux/sched/loadavg.h>
03441a34 22#include <linux/sched/stat.h>
b17b0153 23#include <linux/sched/debug.h>
5d5314d6
JW
24#include <linux/sysrq.h>
25#include <linux/smp.h>
26#include <linux/utsname.h>
27#include <linux/vmalloc.h>
ad394f66 28#include <linux/atomic.h>
5d5314d6 29#include <linux/module.h>
420c2b1b 30#include <linux/moduleparam.h>
5d5314d6
JW
31#include <linux/mm.h>
32#include <linux/init.h>
33#include <linux/kallsyms.h>
34#include <linux/kgdb.h>
35#include <linux/kdb.h>
36#include <linux/notifier.h>
37#include <linux/interrupt.h>
38#include <linux/delay.h>
39#include <linux/nmi.h>
40#include <linux/time.h>
41#include <linux/ptrace.h>
42#include <linux/sysctl.h>
43#include <linux/cpu.h>
44#include <linux/kdebug.h>
45#include <linux/proc_fs.h>
46#include <linux/uaccess.h>
47#include <linux/slab.h>
48#include "kdb_private.h"
49
420c2b1b
AV
50#undef MODULE_PARAM_PREFIX
51#define MODULE_PARAM_PREFIX "kdb."
52
b8017177 53static int kdb_cmd_enabled = CONFIG_KDB_DEFAULT_ENABLE;
420c2b1b
AV
54module_param_named(cmd_enable, kdb_cmd_enabled, int, 0600);
55
fb6daa75 56char kdb_grep_string[KDB_GREP_STRLEN];
5d5314d6
JW
57int kdb_grepping_flag;
58EXPORT_SYMBOL(kdb_grepping_flag);
59int kdb_grep_leading;
60int kdb_grep_trailing;
61
62/*
63 * Kernel debugger state flags
64 */
65int kdb_flags;
5d5314d6
JW
66
67/*
68 * kdb_lock protects updates to kdb_initial_cpu. Used to
69 * single thread processors through the kernel debugger.
70 */
71int kdb_initial_cpu = -1; /* cpu number that owns kdb */
72int kdb_nextline = 1;
73int kdb_state; /* General KDB state */
74
75struct task_struct *kdb_current_task;
76EXPORT_SYMBOL(kdb_current_task);
77struct pt_regs *kdb_current_regs;
78
79const char *kdb_diemsg;
80static int kdb_go_count;
81#ifdef CONFIG_KDB_CONTINUE_CATASTROPHIC
82static unsigned int kdb_continue_catastrophic =
83 CONFIG_KDB_CONTINUE_CATASTROPHIC;
84#else
85static unsigned int kdb_continue_catastrophic;
86#endif
87
88/* kdb_commands describes the available commands. */
89static kdbtab_t *kdb_commands;
90#define KDB_BASE_CMD_MAX 50
91static int kdb_max_commands = KDB_BASE_CMD_MAX;
27029c33 92static kdbtab_t kdb_base_commands[KDB_BASE_CMD_MAX];
5d5314d6
JW
93#define for_each_kdbcmd(cmd, num) \
94 for ((cmd) = kdb_base_commands, (num) = 0; \
95 num < kdb_max_commands; \
5450d904 96 num++, num == KDB_BASE_CMD_MAX ? cmd = kdb_commands : cmd++)
5d5314d6
JW
97
98typedef struct _kdbmsg {
99 int km_diag; /* kdb diagnostic */
100 char *km_msg; /* Corresponding message text */
101} kdbmsg_t;
102
103#define KDBMSG(msgnum, text) \
104 { KDB_##msgnum, text }
105
106static kdbmsg_t kdbmsgs[] = {
107 KDBMSG(NOTFOUND, "Command Not Found"),
108 KDBMSG(ARGCOUNT, "Improper argument count, see usage."),
109 KDBMSG(BADWIDTH, "Illegal value for BYTESPERWORD use 1, 2, 4 or 8, "
110 "8 is only allowed on 64 bit systems"),
111 KDBMSG(BADRADIX, "Illegal value for RADIX use 8, 10 or 16"),
112 KDBMSG(NOTENV, "Cannot find environment variable"),
113 KDBMSG(NOENVVALUE, "Environment variable should have value"),
114 KDBMSG(NOTIMP, "Command not implemented"),
115 KDBMSG(ENVFULL, "Environment full"),
116 KDBMSG(ENVBUFFULL, "Environment buffer full"),
117 KDBMSG(TOOMANYBPT, "Too many breakpoints defined"),
118#ifdef CONFIG_CPU_XSCALE
119 KDBMSG(TOOMANYDBREGS, "More breakpoints than ibcr registers defined"),
120#else
121 KDBMSG(TOOMANYDBREGS, "More breakpoints than db registers defined"),
122#endif
123 KDBMSG(DUPBPT, "Duplicate breakpoint address"),
124 KDBMSG(BPTNOTFOUND, "Breakpoint not found"),
125 KDBMSG(BADMODE, "Invalid IDMODE"),
126 KDBMSG(BADINT, "Illegal numeric value"),
127 KDBMSG(INVADDRFMT, "Invalid symbolic address format"),
128 KDBMSG(BADREG, "Invalid register name"),
129 KDBMSG(BADCPUNUM, "Invalid cpu number"),
130 KDBMSG(BADLENGTH, "Invalid length field"),
131 KDBMSG(NOBP, "No Breakpoint exists"),
132 KDBMSG(BADADDR, "Invalid address"),
420c2b1b 133 KDBMSG(NOPERM, "Permission denied"),
5d5314d6
JW
134};
135#undef KDBMSG
136
5f784f79 137static const int __nkdb_err = ARRAY_SIZE(kdbmsgs);
5d5314d6
JW
138
139
140/*
141 * Initial environment. This is all kept static and local to
142 * this file. We don't want to rely on the memory allocation
143 * mechanisms in the kernel, so we use a very limited allocate-only
144 * heap for new and altered environment variables. The entire
145 * environment is limited to a fixed number of entries (add more
146 * to __env[] if required) and a fixed amount of heap (add more to
147 * KDB_ENVBUFSIZE if required).
148 */
149
150static char *__env[] = {
151#if defined(CONFIG_SMP)
152 "PROMPT=[%d]kdb> ",
5d5314d6
JW
153#else
154 "PROMPT=kdb> ",
5d5314d6 155#endif
0f26d0e0 156 "MOREPROMPT=more> ",
5d5314d6
JW
157 "RADIX=16",
158 "MDCOUNT=8", /* lines of md output */
5d5314d6
JW
159 KDB_PLATFORM_ENV,
160 "DTABCOUNT=30",
161 "NOSECT=1",
162 (char *)0,
163 (char *)0,
164 (char *)0,
165 (char *)0,
166 (char *)0,
167 (char *)0,
168 (char *)0,
169 (char *)0,
170 (char *)0,
171 (char *)0,
172 (char *)0,
173 (char *)0,
174 (char *)0,
175 (char *)0,
3bdb65ec 176 (char *)0,
5d5314d6
JW
177 (char *)0,
178 (char *)0,
179 (char *)0,
180 (char *)0,
181 (char *)0,
182 (char *)0,
183 (char *)0,
184 (char *)0,
185 (char *)0,
186};
187
5f784f79 188static const int __nenv = ARRAY_SIZE(__env);
5d5314d6
JW
189
190struct task_struct *kdb_curr_task(int cpu)
191{
192 struct task_struct *p = curr_task(cpu);
193#ifdef _TIF_MCA_INIT
194 if ((task_thread_info(p)->flags & _TIF_MCA_INIT) && KDB_TSK(cpu))
195 p = krp->p;
196#endif
197 return p;
198}
199
9452e977
DT
200/*
201 * Check whether the flags of the current command and the permissions
202 * of the kdb console has allow a command to be run.
203 */
204static inline bool kdb_check_flags(kdb_cmdflags_t flags, int permissions,
205 bool no_args)
206{
207 /* permissions comes from userspace so needs massaging slightly */
208 permissions &= KDB_ENABLE_MASK;
209 permissions |= KDB_ENABLE_ALWAYS_SAFE;
210
211 /* some commands change group when launched with no arguments */
212 if (no_args)
213 permissions |= permissions << KDB_ENABLE_NO_ARGS_SHIFT;
214
215 flags |= KDB_ENABLE_ALL;
216
217 return permissions & flags;
218}
219
5d5314d6
JW
220/*
221 * kdbgetenv - This function will return the character string value of
222 * an environment variable.
223 * Parameters:
224 * match A character string representing an environment variable.
225 * Returns:
226 * NULL No environment variable matches 'match'
227 * char* Pointer to string value of environment variable.
228 */
229char *kdbgetenv(const char *match)
230{
231 char **ep = __env;
232 int matchlen = strlen(match);
233 int i;
234
235 for (i = 0; i < __nenv; i++) {
236 char *e = *ep++;
237
238 if (!e)
239 continue;
240
241 if ((strncmp(match, e, matchlen) == 0)
242 && ((e[matchlen] == '\0')
243 || (e[matchlen] == '='))) {
244 char *cp = strchr(e, '=');
245 return cp ? ++cp : "";
246 }
247 }
248 return NULL;
249}
250
251/*
252 * kdballocenv - This function is used to allocate bytes for
253 * environment entries.
254 * Parameters:
255 * match A character string representing a numeric value
256 * Outputs:
257 * *value the unsigned long representation of the env variable 'match'
258 * Returns:
259 * Zero on success, a kdb diagnostic on failure.
260 * Remarks:
261 * We use a static environment buffer (envbuffer) to hold the values
262 * of dynamically generated environment variables (see kdb_set). Buffer
263 * space once allocated is never free'd, so over time, the amount of space
264 * (currently 512 bytes) will be exhausted if env variables are changed
265 * frequently.
266 */
267static char *kdballocenv(size_t bytes)
268{
269#define KDB_ENVBUFSIZE 512
270 static char envbuffer[KDB_ENVBUFSIZE];
271 static int envbufsize;
272 char *ep = NULL;
273
274 if ((KDB_ENVBUFSIZE - envbufsize) >= bytes) {
275 ep = &envbuffer[envbufsize];
276 envbufsize += bytes;
277 }
278 return ep;
279}
280
281/*
282 * kdbgetulenv - This function will return the value of an unsigned
283 * long-valued environment variable.
284 * Parameters:
285 * match A character string representing a numeric value
286 * Outputs:
287 * *value the unsigned long represntation of the env variable 'match'
288 * Returns:
289 * Zero on success, a kdb diagnostic on failure.
290 */
291static int kdbgetulenv(const char *match, unsigned long *value)
292{
293 char *ep;
294
295 ep = kdbgetenv(match);
296 if (!ep)
297 return KDB_NOTENV;
298 if (strlen(ep) == 0)
299 return KDB_NOENVVALUE;
300
301 *value = simple_strtoul(ep, NULL, 0);
302
303 return 0;
304}
305
306/*
307 * kdbgetintenv - This function will return the value of an
308 * integer-valued environment variable.
309 * Parameters:
310 * match A character string representing an integer-valued env variable
311 * Outputs:
312 * *value the integer representation of the environment variable 'match'
313 * Returns:
314 * Zero on success, a kdb diagnostic on failure.
315 */
316int kdbgetintenv(const char *match, int *value)
317{
318 unsigned long val;
319 int diag;
320
321 diag = kdbgetulenv(match, &val);
322 if (!diag)
323 *value = (int) val;
324 return diag;
325}
326
327/*
328 * kdbgetularg - This function will convert a numeric string into an
329 * unsigned long value.
330 * Parameters:
331 * arg A character string representing a numeric value
332 * Outputs:
333 * *value the unsigned long represntation of arg.
334 * Returns:
335 * Zero on success, a kdb diagnostic on failure.
336 */
337int kdbgetularg(const char *arg, unsigned long *value)
338{
339 char *endp;
340 unsigned long val;
341
342 val = simple_strtoul(arg, &endp, 0);
343
344 if (endp == arg) {
345 /*
534af108 346 * Also try base 16, for us folks too lazy to type the
5d5314d6
JW
347 * leading 0x...
348 */
349 val = simple_strtoul(arg, &endp, 16);
350 if (endp == arg)
351 return KDB_BADINT;
352 }
353
354 *value = val;
355
356 return 0;
357}
358
534af108
JW
359int kdbgetu64arg(const char *arg, u64 *value)
360{
361 char *endp;
362 u64 val;
363
364 val = simple_strtoull(arg, &endp, 0);
365
366 if (endp == arg) {
367
368 val = simple_strtoull(arg, &endp, 16);
369 if (endp == arg)
370 return KDB_BADINT;
371 }
372
373 *value = val;
374
375 return 0;
376}
377
5d5314d6
JW
378/*
379 * kdb_set - This function implements the 'set' command. Alter an
380 * existing environment variable or create a new one.
381 */
382int kdb_set(int argc, const char **argv)
383{
384 int i;
385 char *ep;
386 size_t varlen, vallen;
387
388 /*
389 * we can be invoked two ways:
390 * set var=value argv[1]="var", argv[2]="value"
391 * set var = value argv[1]="var", argv[2]="=", argv[3]="value"
392 * - if the latter, shift 'em down.
393 */
394 if (argc == 3) {
395 argv[2] = argv[3];
396 argc--;
397 }
398
399 if (argc != 2)
400 return KDB_ARGCOUNT;
401
402 /*
403 * Check for internal variables
404 */
405 if (strcmp(argv[1], "KDBDEBUG") == 0) {
406 unsigned int debugflags;
407 char *cp;
408
409 debugflags = simple_strtoul(argv[2], &cp, 0);
410 if (cp == argv[2] || debugflags & ~KDB_DEBUG_FLAG_MASK) {
411 kdb_printf("kdb: illegal debug flags '%s'\n",
412 argv[2]);
413 return 0;
414 }
415 kdb_flags = (kdb_flags &
416 ~(KDB_DEBUG_FLAG_MASK << KDB_DEBUG_FLAG_SHIFT))
417 | (debugflags << KDB_DEBUG_FLAG_SHIFT);
418
419 return 0;
420 }
421
422 /*
423 * Tokenizer squashed the '=' sign. argv[1] is variable
424 * name, argv[2] = value.
425 */
426 varlen = strlen(argv[1]);
427 vallen = strlen(argv[2]);
428 ep = kdballocenv(varlen + vallen + 2);
429 if (ep == (char *)0)
430 return KDB_ENVBUFFULL;
431
432 sprintf(ep, "%s=%s", argv[1], argv[2]);
433
434 ep[varlen+vallen+1] = '\0';
435
436 for (i = 0; i < __nenv; i++) {
437 if (__env[i]
438 && ((strncmp(__env[i], argv[1], varlen) == 0)
439 && ((__env[i][varlen] == '\0')
440 || (__env[i][varlen] == '=')))) {
441 __env[i] = ep;
442 return 0;
443 }
444 }
445
446 /*
447 * Wasn't existing variable. Fit into slot.
448 */
449 for (i = 0; i < __nenv-1; i++) {
450 if (__env[i] == (char *)0) {
451 __env[i] = ep;
452 return 0;
453 }
454 }
455
456 return KDB_ENVFULL;
457}
458
459static int kdb_check_regs(void)
460{
461 if (!kdb_current_regs) {
462 kdb_printf("No current kdb registers."
463 " You may need to select another task\n");
464 return KDB_BADREG;
465 }
466 return 0;
467}
468
469/*
470 * kdbgetaddrarg - This function is responsible for parsing an
471 * address-expression and returning the value of the expression,
472 * symbol name, and offset to the caller.
473 *
474 * The argument may consist of a numeric value (decimal or
25985edc 475 * hexidecimal), a symbol name, a register name (preceded by the
5d5314d6 476 * percent sign), an environment variable with a numeric value
25985edc 477 * (preceded by a dollar sign) or a simple arithmetic expression
5d5314d6
JW
478 * consisting of a symbol name, +/-, and a numeric constant value
479 * (offset).
480 * Parameters:
481 * argc - count of arguments in argv
482 * argv - argument vector
483 * *nextarg - index to next unparsed argument in argv[]
484 * regs - Register state at time of KDB entry
485 * Outputs:
486 * *value - receives the value of the address-expression
487 * *offset - receives the offset specified, if any
488 * *name - receives the symbol name, if any
489 * *nextarg - index to next unparsed argument in argv[]
490 * Returns:
491 * zero is returned on success, a kdb diagnostic code is
492 * returned on error.
493 */
494int kdbgetaddrarg(int argc, const char **argv, int *nextarg,
495 unsigned long *value, long *offset,
496 char **name)
497{
498 unsigned long addr;
499 unsigned long off = 0;
500 int positive;
501 int diag;
502 int found = 0;
503 char *symname;
504 char symbol = '\0';
505 char *cp;
506 kdb_symtab_t symtab;
507
420c2b1b
AV
508 /*
509 * If the enable flags prohibit both arbitrary memory access
510 * and flow control then there are no reasonable grounds to
511 * provide symbol lookup.
512 */
513 if (!kdb_check_flags(KDB_ENABLE_MEM_READ | KDB_ENABLE_FLOW_CTRL,
514 kdb_cmd_enabled, false))
515 return KDB_NOPERM;
516
5d5314d6
JW
517 /*
518 * Process arguments which follow the following syntax:
519 *
520 * symbol | numeric-address [+/- numeric-offset]
521 * %register
522 * $environment-variable
523 */
524
525 if (*nextarg > argc)
526 return KDB_ARGCOUNT;
527
528 symname = (char *)argv[*nextarg];
529
530 /*
531 * If there is no whitespace between the symbol
532 * or address and the '+' or '-' symbols, we
533 * remember the character and replace it with a
534 * null so the symbol/value can be properly parsed
535 */
536 cp = strpbrk(symname, "+-");
537 if (cp != NULL) {
538 symbol = *cp;
539 *cp++ = '\0';
540 }
541
542 if (symname[0] == '$') {
543 diag = kdbgetulenv(&symname[1], &addr);
544 if (diag)
545 return diag;
546 } else if (symname[0] == '%') {
547 diag = kdb_check_regs();
548 if (diag)
549 return diag;
550 /* Implement register values with % at a later time as it is
551 * arch optional.
552 */
553 return KDB_NOTIMP;
554 } else {
555 found = kdbgetsymval(symname, &symtab);
556 if (found) {
557 addr = symtab.sym_start;
558 } else {
559 diag = kdbgetularg(argv[*nextarg], &addr);
560 if (diag)
561 return diag;
562 }
563 }
564
565 if (!found)
566 found = kdbnearsym(addr, &symtab);
567
568 (*nextarg)++;
569
570 if (name)
571 *name = symname;
572 if (value)
573 *value = addr;
574 if (offset && name && *name)
575 *offset = addr - symtab.sym_start;
576
577 if ((*nextarg > argc)
578 && (symbol == '\0'))
579 return 0;
580
581 /*
582 * check for +/- and offset
583 */
584
585 if (symbol == '\0') {
586 if ((argv[*nextarg][0] != '+')
587 && (argv[*nextarg][0] != '-')) {
588 /*
589 * Not our argument. Return.
590 */
591 return 0;
592 } else {
593 positive = (argv[*nextarg][0] == '+');
594 (*nextarg)++;
595 }
596 } else
597 positive = (symbol == '+');
598
599 /*
600 * Now there must be an offset!
601 */
602 if ((*nextarg > argc)
603 && (symbol == '\0')) {
604 return KDB_INVADDRFMT;
605 }
606
607 if (!symbol) {
608 cp = (char *)argv[*nextarg];
609 (*nextarg)++;
610 }
611
612 diag = kdbgetularg(cp, &off);
613 if (diag)
614 return diag;
615
616 if (!positive)
617 off = -off;
618
619 if (offset)
620 *offset += off;
621
622 if (value)
623 *value += off;
624
625 return 0;
626}
627
628static void kdb_cmderror(int diag)
629{
630 int i;
631
632 if (diag >= 0) {
633 kdb_printf("no error detected (diagnostic is %d)\n", diag);
634 return;
635 }
636
637 for (i = 0; i < __nkdb_err; i++) {
638 if (kdbmsgs[i].km_diag == diag) {
639 kdb_printf("diag: %d: %s\n", diag, kdbmsgs[i].km_msg);
640 return;
641 }
642 }
643
644 kdb_printf("Unknown diag %d\n", -diag);
645}
646
647/*
648 * kdb_defcmd, kdb_defcmd2 - This function implements the 'defcmd'
649 * command which defines one command as a set of other commands,
650 * terminated by endefcmd. kdb_defcmd processes the initial
651 * 'defcmd' command, kdb_defcmd2 is invoked from kdb_parse for
652 * the following commands until 'endefcmd'.
653 * Inputs:
654 * argc argument count
655 * argv argument vector
656 * Returns:
657 * zero for success, a kdb diagnostic if error
658 */
659struct defcmd_set {
660 int count;
661 int usable;
662 char *name;
663 char *usage;
664 char *help;
665 char **command;
666};
667static struct defcmd_set *defcmd_set;
668static int defcmd_set_count;
669static int defcmd_in_progress;
670
671/* Forward references */
672static int kdb_exec_defcmd(int argc, const char **argv);
673
674static int kdb_defcmd2(const char *cmdstr, const char *argv0)
675{
676 struct defcmd_set *s = defcmd_set + defcmd_set_count - 1;
677 char **save_command = s->command;
678 if (strcmp(argv0, "endefcmd") == 0) {
679 defcmd_in_progress = 0;
680 if (!s->count)
681 s->usable = 0;
682 if (s->usable)
9452e977
DT
683 /* macros are always safe because when executed each
684 * internal command re-enters kdb_parse() and is
685 * safety checked individually.
686 */
687 kdb_register_flags(s->name, kdb_exec_defcmd, s->usage,
688 s->help, 0,
689 KDB_ENABLE_ALWAYS_SAFE);
5d5314d6
JW
690 return 0;
691 }
692 if (!s->usable)
693 return KDB_NOTIMP;
5450d904 694 s->command = kzalloc((s->count + 1) * sizeof(*(s->command)), GFP_KDB);
5d5314d6
JW
695 if (!s->command) {
696 kdb_printf("Could not allocate new kdb_defcmd table for %s\n",
697 cmdstr);
698 s->usable = 0;
699 return KDB_NOTIMP;
700 }
701 memcpy(s->command, save_command, s->count * sizeof(*(s->command)));
702 s->command[s->count++] = kdb_strdup(cmdstr, GFP_KDB);
703 kfree(save_command);
704 return 0;
705}
706
707static int kdb_defcmd(int argc, const char **argv)
708{
709 struct defcmd_set *save_defcmd_set = defcmd_set, *s;
710 if (defcmd_in_progress) {
711 kdb_printf("kdb: nested defcmd detected, assuming missing "
712 "endefcmd\n");
713 kdb_defcmd2("endefcmd", "endefcmd");
714 }
715 if (argc == 0) {
716 int i;
717 for (s = defcmd_set; s < defcmd_set + defcmd_set_count; ++s) {
718 kdb_printf("defcmd %s \"%s\" \"%s\"\n", s->name,
719 s->usage, s->help);
720 for (i = 0; i < s->count; ++i)
721 kdb_printf("%s", s->command[i]);
722 kdb_printf("endefcmd\n");
723 }
724 return 0;
725 }
726 if (argc != 3)
727 return KDB_ARGCOUNT;
a37372f6
JW
728 if (in_dbg_master()) {
729 kdb_printf("Command only available during kdb_init()\n");
730 return KDB_NOTIMP;
731 }
5d5314d6
JW
732 defcmd_set = kmalloc((defcmd_set_count + 1) * sizeof(*defcmd_set),
733 GFP_KDB);
4eb7a66d
JW
734 if (!defcmd_set)
735 goto fail_defcmd;
5d5314d6
JW
736 memcpy(defcmd_set, save_defcmd_set,
737 defcmd_set_count * sizeof(*defcmd_set));
5d5314d6
JW
738 s = defcmd_set + defcmd_set_count;
739 memset(s, 0, sizeof(*s));
740 s->usable = 1;
741 s->name = kdb_strdup(argv[1], GFP_KDB);
4eb7a66d
JW
742 if (!s->name)
743 goto fail_name;
5d5314d6 744 s->usage = kdb_strdup(argv[2], GFP_KDB);
4eb7a66d
JW
745 if (!s->usage)
746 goto fail_usage;
5d5314d6 747 s->help = kdb_strdup(argv[3], GFP_KDB);
4eb7a66d
JW
748 if (!s->help)
749 goto fail_help;
5d5314d6 750 if (s->usage[0] == '"') {
4eb7a66d 751 strcpy(s->usage, argv[2]+1);
5d5314d6
JW
752 s->usage[strlen(s->usage)-1] = '\0';
753 }
754 if (s->help[0] == '"') {
4eb7a66d 755 strcpy(s->help, argv[3]+1);
5d5314d6
JW
756 s->help[strlen(s->help)-1] = '\0';
757 }
758 ++defcmd_set_count;
759 defcmd_in_progress = 1;
4eb7a66d 760 kfree(save_defcmd_set);
5d5314d6 761 return 0;
4eb7a66d
JW
762fail_help:
763 kfree(s->usage);
764fail_usage:
765 kfree(s->name);
766fail_name:
767 kfree(defcmd_set);
768fail_defcmd:
769 kdb_printf("Could not allocate new defcmd_set entry for %s\n", argv[1]);
770 defcmd_set = save_defcmd_set;
771 return KDB_NOTIMP;
5d5314d6
JW
772}
773
774/*
775 * kdb_exec_defcmd - Execute the set of commands associated with this
776 * defcmd name.
777 * Inputs:
778 * argc argument count
779 * argv argument vector
780 * Returns:
781 * zero for success, a kdb diagnostic if error
782 */
783static int kdb_exec_defcmd(int argc, const char **argv)
784{
785 int i, ret;
786 struct defcmd_set *s;
787 if (argc != 0)
788 return KDB_ARGCOUNT;
789 for (s = defcmd_set, i = 0; i < defcmd_set_count; ++i, ++s) {
790 if (strcmp(s->name, argv[0]) == 0)
791 break;
792 }
793 if (i == defcmd_set_count) {
794 kdb_printf("kdb_exec_defcmd: could not find commands for %s\n",
795 argv[0]);
796 return KDB_NOTIMP;
797 }
798 for (i = 0; i < s->count; ++i) {
799 /* Recursive use of kdb_parse, do not use argv after
800 * this point */
801 argv = NULL;
802 kdb_printf("[%s]kdb> %s\n", s->name, s->command[i]);
803 ret = kdb_parse(s->command[i]);
804 if (ret)
805 return ret;
806 }
807 return 0;
808}
809
810/* Command history */
811#define KDB_CMD_HISTORY_COUNT 32
812#define CMD_BUFLEN 200 /* kdb_printf: max printline
813 * size == 256 */
814static unsigned int cmd_head, cmd_tail;
815static unsigned int cmdptr;
816static char cmd_hist[KDB_CMD_HISTORY_COUNT][CMD_BUFLEN];
817static char cmd_cur[CMD_BUFLEN];
818
819/*
820 * The "str" argument may point to something like | grep xyz
821 */
822static void parse_grep(const char *str)
823{
824 int len;
825 char *cp = (char *)str, *cp2;
826
827 /* sanity check: we should have been called with the \ first */
828 if (*cp != '|')
829 return;
830 cp++;
831 while (isspace(*cp))
832 cp++;
833 if (strncmp(cp, "grep ", 5)) {
834 kdb_printf("invalid 'pipe', see grephelp\n");
835 return;
836 }
837 cp += 5;
838 while (isspace(*cp))
839 cp++;
840 cp2 = strchr(cp, '\n');
841 if (cp2)
842 *cp2 = '\0'; /* remove the trailing newline */
843 len = strlen(cp);
844 if (len == 0) {
845 kdb_printf("invalid 'pipe', see grephelp\n");
846 return;
847 }
848 /* now cp points to a nonzero length search string */
849 if (*cp == '"') {
850 /* allow it be "x y z" by removing the "'s - there must
851 be two of them */
852 cp++;
853 cp2 = strchr(cp, '"');
854 if (!cp2) {
855 kdb_printf("invalid quoted string, see grephelp\n");
856 return;
857 }
858 *cp2 = '\0'; /* end the string where the 2nd " was */
859 }
860 kdb_grep_leading = 0;
861 if (*cp == '^') {
862 kdb_grep_leading = 1;
863 cp++;
864 }
865 len = strlen(cp);
866 kdb_grep_trailing = 0;
867 if (*(cp+len-1) == '$') {
868 kdb_grep_trailing = 1;
869 *(cp+len-1) = '\0';
870 }
871 len = strlen(cp);
872 if (!len)
873 return;
fb6daa75 874 if (len >= KDB_GREP_STRLEN) {
5d5314d6
JW
875 kdb_printf("search string too long\n");
876 return;
877 }
878 strcpy(kdb_grep_string, cp);
879 kdb_grepping_flag++;
880 return;
881}
882
883/*
884 * kdb_parse - Parse the command line, search the command table for a
885 * matching command and invoke the command function. This
886 * function may be called recursively, if it is, the second call
887 * will overwrite argv and cbuf. It is the caller's
888 * responsibility to save their argv if they recursively call
889 * kdb_parse().
890 * Parameters:
891 * cmdstr The input command line to be parsed.
892 * regs The registers at the time kdb was entered.
893 * Returns:
894 * Zero for success, a kdb diagnostic if failure.
895 * Remarks:
896 * Limited to 20 tokens.
897 *
898 * Real rudimentary tokenization. Basically only whitespace
899 * is considered a token delimeter (but special consideration
900 * is taken of the '=' sign as used by the 'set' command).
901 *
902 * The algorithm used to tokenize the input string relies on
903 * there being at least one whitespace (or otherwise useless)
904 * character between tokens as the character immediately following
905 * the token is altered in-place to a null-byte to terminate the
906 * token string.
907 */
908
909#define MAXARGC 20
910
911int kdb_parse(const char *cmdstr)
912{
913 static char *argv[MAXARGC];
914 static int argc;
915 static char cbuf[CMD_BUFLEN+2];
916 char *cp;
917 char *cpp, quoted;
918 kdbtab_t *tp;
ab08e464 919 int i, escaped, ignore_errors = 0, check_grep = 0;
5d5314d6
JW
920
921 /*
922 * First tokenize the command string.
923 */
924 cp = (char *)cmdstr;
5d5314d6
JW
925
926 if (KDB_FLAG(CMD_INTERRUPT)) {
927 /* Previous command was interrupted, newline must not
928 * repeat the command */
929 KDB_FLAG_CLEAR(CMD_INTERRUPT);
930 KDB_STATE_SET(PAGER);
931 argc = 0; /* no repeat */
932 }
933
934 if (*cp != '\n' && *cp != '\0') {
935 argc = 0;
936 cpp = cbuf;
937 while (*cp) {
938 /* skip whitespace */
939 while (isspace(*cp))
940 cp++;
941 if ((*cp == '\0') || (*cp == '\n') ||
942 (*cp == '#' && !defcmd_in_progress))
943 break;
944 /* special case: check for | grep pattern */
945 if (*cp == '|') {
946 check_grep++;
947 break;
948 }
949 if (cpp >= cbuf + CMD_BUFLEN) {
950 kdb_printf("kdb_parse: command buffer "
951 "overflow, command ignored\n%s\n",
952 cmdstr);
953 return KDB_NOTFOUND;
954 }
955 if (argc >= MAXARGC - 1) {
956 kdb_printf("kdb_parse: too many arguments, "
957 "command ignored\n%s\n", cmdstr);
958 return KDB_NOTFOUND;
959 }
960 argv[argc++] = cpp;
961 escaped = 0;
962 quoted = '\0';
963 /* Copy to next unquoted and unescaped
964 * whitespace or '=' */
965 while (*cp && *cp != '\n' &&
966 (escaped || quoted || !isspace(*cp))) {
967 if (cpp >= cbuf + CMD_BUFLEN)
968 break;
969 if (escaped) {
970 escaped = 0;
971 *cpp++ = *cp++;
972 continue;
973 }
974 if (*cp == '\\') {
975 escaped = 1;
976 ++cp;
977 continue;
978 }
979 if (*cp == quoted)
980 quoted = '\0';
981 else if (*cp == '\'' || *cp == '"')
982 quoted = *cp;
983 *cpp = *cp++;
984 if (*cpp == '=' && !quoted)
985 break;
986 ++cpp;
987 }
988 *cpp++ = '\0'; /* Squash a ws or '=' character */
989 }
990 }
991 if (!argc)
992 return 0;
993 if (check_grep)
994 parse_grep(cp);
995 if (defcmd_in_progress) {
996 int result = kdb_defcmd2(cmdstr, argv[0]);
997 if (!defcmd_in_progress) {
998 argc = 0; /* avoid repeat on endefcmd */
999 *(argv[0]) = '\0';
1000 }
1001 return result;
1002 }
1003 if (argv[0][0] == '-' && argv[0][1] &&
1004 (argv[0][1] < '0' || argv[0][1] > '9')) {
1005 ignore_errors = 1;
1006 ++argv[0];
1007 }
1008
1009 for_each_kdbcmd(tp, i) {
1010 if (tp->cmd_name) {
1011 /*
1012 * If this command is allowed to be abbreviated,
1013 * check to see if this is it.
1014 */
1015
1016 if (tp->cmd_minlen
1017 && (strlen(argv[0]) <= tp->cmd_minlen)) {
1018 if (strncmp(argv[0],
1019 tp->cmd_name,
1020 tp->cmd_minlen) == 0) {
1021 break;
1022 }
1023 }
1024
1025 if (strcmp(argv[0], tp->cmd_name) == 0)
1026 break;
1027 }
1028 }
1029
1030 /*
1031 * If we don't find a command by this name, see if the first
1032 * few characters of this match any of the known commands.
1033 * e.g., md1c20 should match md.
1034 */
1035 if (i == kdb_max_commands) {
1036 for_each_kdbcmd(tp, i) {
1037 if (tp->cmd_name) {
1038 if (strncmp(argv[0],
1039 tp->cmd_name,
1040 strlen(tp->cmd_name)) == 0) {
1041 break;
1042 }
1043 }
1044 }
1045 }
1046
1047 if (i < kdb_max_commands) {
1048 int result;
420c2b1b
AV
1049
1050 if (!kdb_check_flags(tp->cmd_flags, kdb_cmd_enabled, argc <= 1))
1051 return KDB_NOPERM;
1052
5d5314d6
JW
1053 KDB_STATE_SET(CMD);
1054 result = (*tp->cmd_func)(argc-1, (const char **)argv);
1055 if (result && ignore_errors && result > KDB_CMD_GO)
1056 result = 0;
1057 KDB_STATE_CLEAR(CMD);
04bb171e
AV
1058
1059 if (tp->cmd_flags & KDB_REPEAT_WITH_ARGS)
1060 return result;
1061
1062 argc = tp->cmd_flags & KDB_REPEAT_NO_ARGS ? 1 : 0;
1063 if (argv[argc])
1064 *(argv[argc]) = '\0';
5d5314d6
JW
1065 return result;
1066 }
1067
1068 /*
1069 * If the input with which we were presented does not
1070 * map to an existing command, attempt to parse it as an
1071 * address argument and display the result. Useful for
1072 * obtaining the address of a variable, or the nearest symbol
1073 * to an address contained in a register.
1074 */
1075 {
1076 unsigned long value;
1077 char *name = NULL;
1078 long offset;
1079 int nextarg = 0;
1080
1081 if (kdbgetaddrarg(0, (const char **)argv, &nextarg,
1082 &value, &offset, &name)) {
1083 return KDB_NOTFOUND;
1084 }
1085
1086 kdb_printf("%s = ", argv[0]);
1087 kdb_symbol_print(value, NULL, KDB_SP_DEFAULT);
1088 kdb_printf("\n");
1089 return 0;
1090 }
1091}
1092
1093
1094static int handle_ctrl_cmd(char *cmd)
1095{
1096#define CTRL_P 16
1097#define CTRL_N 14
1098
1099 /* initial situation */
1100 if (cmd_head == cmd_tail)
1101 return 0;
1102 switch (*cmd) {
1103 case CTRL_P:
1104 if (cmdptr != cmd_tail)
1105 cmdptr = (cmdptr-1) % KDB_CMD_HISTORY_COUNT;
1106 strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1107 return 1;
1108 case CTRL_N:
1109 if (cmdptr != cmd_head)
1110 cmdptr = (cmdptr+1) % KDB_CMD_HISTORY_COUNT;
1111 strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1112 return 1;
1113 }
1114 return 0;
1115}
1116
1117/*
1118 * kdb_reboot - This function implements the 'reboot' command. Reboot
1119 * the system immediately, or loop for ever on failure.
1120 */
1121static int kdb_reboot(int argc, const char **argv)
1122{
1123 emergency_restart();
1124 kdb_printf("Hmm, kdb_reboot did not reboot, spinning here\n");
1125 while (1)
1126 cpu_relax();
1127 /* NOTREACHED */
1128 return 0;
1129}
1130
1131static void kdb_dumpregs(struct pt_regs *regs)
1132{
1133 int old_lvl = console_loglevel;
a8fe19eb 1134 console_loglevel = CONSOLE_LOGLEVEL_MOTORMOUTH;
d37d39ae 1135 kdb_trap_printk++;
5d5314d6 1136 show_regs(regs);
d37d39ae 1137 kdb_trap_printk--;
5d5314d6
JW
1138 kdb_printf("\n");
1139 console_loglevel = old_lvl;
1140}
1141
1142void kdb_set_current_task(struct task_struct *p)
1143{
1144 kdb_current_task = p;
1145
1146 if (kdb_task_has_cpu(p)) {
1147 kdb_current_regs = KDB_TSKREGS(kdb_process_cpu(p));
1148 return;
1149 }
1150 kdb_current_regs = NULL;
1151}
1152
1153/*
1154 * kdb_local - The main code for kdb. This routine is invoked on a
1155 * specific processor, it is not global. The main kdb() routine
1156 * ensures that only one processor at a time is in this routine.
1157 * This code is called with the real reason code on the first
1158 * entry to a kdb session, thereafter it is called with reason
1159 * SWITCH, even if the user goes back to the original cpu.
1160 * Inputs:
1161 * reason The reason KDB was invoked
1162 * error The hardware-defined error code
1163 * regs The exception frame at time of fault/breakpoint.
1164 * db_result Result code from the break or debug point.
1165 * Returns:
1166 * 0 KDB was invoked for an event which it wasn't responsible
1167 * 1 KDB handled the event for which it was invoked.
1168 * KDB_CMD_GO User typed 'go'.
1169 * KDB_CMD_CPU User switched to another cpu.
1170 * KDB_CMD_SS Single step.
5d5314d6
JW
1171 */
1172static int kdb_local(kdb_reason_t reason, int error, struct pt_regs *regs,
1173 kdb_dbtrap_t db_result)
1174{
1175 char *cmdbuf;
1176 int diag;
1177 struct task_struct *kdb_current =
1178 kdb_curr_task(raw_smp_processor_id());
1179
1180 KDB_DEBUG_STATE("kdb_local 1", reason);
1181 kdb_go_count = 0;
1182 if (reason == KDB_REASON_DEBUG) {
1183 /* special case below */
1184 } else {
1185 kdb_printf("\nEntering kdb (current=0x%p, pid %d) ",
578bd4df 1186 kdb_current, kdb_current ? kdb_current->pid : 0);
5d5314d6
JW
1187#if defined(CONFIG_SMP)
1188 kdb_printf("on processor %d ", raw_smp_processor_id());
1189#endif
1190 }
1191
1192 switch (reason) {
1193 case KDB_REASON_DEBUG:
1194 {
1195 /*
1196 * If re-entering kdb after a single step
1197 * command, don't print the message.
1198 */
1199 switch (db_result) {
1200 case KDB_DB_BPT:
1201 kdb_printf("\nEntering kdb (0x%p, pid %d) ",
1202 kdb_current, kdb_current->pid);
1203#if defined(CONFIG_SMP)
1204 kdb_printf("on processor %d ", raw_smp_processor_id());
1205#endif
1206 kdb_printf("due to Debug @ " kdb_machreg_fmt "\n",
1207 instruction_pointer(regs));
1208 break;
5d5314d6
JW
1209 case KDB_DB_SS:
1210 break;
1211 case KDB_DB_SSBPT:
1212 KDB_DEBUG_STATE("kdb_local 4", reason);
1213 return 1; /* kdba_db_trap did the work */
1214 default:
1215 kdb_printf("kdb: Bad result from kdba_db_trap: %d\n",
1216 db_result);
1217 break;
1218 }
1219
1220 }
1221 break;
1222 case KDB_REASON_ENTER:
1223 if (KDB_STATE(KEYBOARD))
1224 kdb_printf("due to Keyboard Entry\n");
1225 else
1226 kdb_printf("due to KDB_ENTER()\n");
1227 break;
1228 case KDB_REASON_KEYBOARD:
1229 KDB_STATE_SET(KEYBOARD);
1230 kdb_printf("due to Keyboard Entry\n");
1231 break;
1232 case KDB_REASON_ENTER_SLAVE:
1233 /* drop through, slaves only get released via cpu switch */
1234 case KDB_REASON_SWITCH:
1235 kdb_printf("due to cpu switch\n");
1236 break;
1237 case KDB_REASON_OOPS:
1238 kdb_printf("Oops: %s\n", kdb_diemsg);
1239 kdb_printf("due to oops @ " kdb_machreg_fmt "\n",
1240 instruction_pointer(regs));
1241 kdb_dumpregs(regs);
1242 break;
8daaa5f8
MT
1243 case KDB_REASON_SYSTEM_NMI:
1244 kdb_printf("due to System NonMaskable Interrupt\n");
1245 break;
5d5314d6
JW
1246 case KDB_REASON_NMI:
1247 kdb_printf("due to NonMaskable Interrupt @ "
1248 kdb_machreg_fmt "\n",
1249 instruction_pointer(regs));
5d5314d6
JW
1250 break;
1251 case KDB_REASON_SSTEP:
1252 case KDB_REASON_BREAK:
1253 kdb_printf("due to %s @ " kdb_machreg_fmt "\n",
1254 reason == KDB_REASON_BREAK ?
1255 "Breakpoint" : "SS trap", instruction_pointer(regs));
1256 /*
1257 * Determine if this breakpoint is one that we
1258 * are interested in.
1259 */
1260 if (db_result != KDB_DB_BPT) {
1261 kdb_printf("kdb: error return from kdba_bp_trap: %d\n",
1262 db_result);
1263 KDB_DEBUG_STATE("kdb_local 6", reason);
1264 return 0; /* Not for us, dismiss it */
1265 }
1266 break;
1267 case KDB_REASON_RECURSE:
1268 kdb_printf("due to Recursion @ " kdb_machreg_fmt "\n",
1269 instruction_pointer(regs));
1270 break;
1271 default:
1272 kdb_printf("kdb: unexpected reason code: %d\n", reason);
1273 KDB_DEBUG_STATE("kdb_local 8", reason);
1274 return 0; /* Not for us, dismiss it */
1275 }
1276
1277 while (1) {
1278 /*
1279 * Initialize pager context.
1280 */
1281 kdb_nextline = 1;
1282 KDB_STATE_CLEAR(SUPPRESS);
ab08e464 1283 kdb_grepping_flag = 0;
fb6daa75
DT
1284 /* ensure the old search does not leak into '/' commands */
1285 kdb_grep_string[0] = '\0';
5d5314d6
JW
1286
1287 cmdbuf = cmd_cur;
1288 *cmdbuf = '\0';
1289 *(cmd_hist[cmd_head]) = '\0';
1290
5d5314d6
JW
1291do_full_getstr:
1292#if defined(CONFIG_SMP)
1293 snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"),
1294 raw_smp_processor_id());
1295#else
1296 snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"));
1297#endif
1298 if (defcmd_in_progress)
1299 strncat(kdb_prompt_str, "[defcmd]", CMD_BUFLEN);
1300
1301 /*
1302 * Fetch command from keyboard
1303 */
1304 cmdbuf = kdb_getstr(cmdbuf, CMD_BUFLEN, kdb_prompt_str);
1305 if (*cmdbuf != '\n') {
1306 if (*cmdbuf < 32) {
1307 if (cmdptr == cmd_head) {
1308 strncpy(cmd_hist[cmd_head], cmd_cur,
1309 CMD_BUFLEN);
1310 *(cmd_hist[cmd_head] +
1311 strlen(cmd_hist[cmd_head])-1) = '\0';
1312 }
1313 if (!handle_ctrl_cmd(cmdbuf))
1314 *(cmd_cur+strlen(cmd_cur)-1) = '\0';
1315 cmdbuf = cmd_cur;
1316 goto do_full_getstr;
1317 } else {
1318 strncpy(cmd_hist[cmd_head], cmd_cur,
1319 CMD_BUFLEN);
1320 }
1321
1322 cmd_head = (cmd_head+1) % KDB_CMD_HISTORY_COUNT;
1323 if (cmd_head == cmd_tail)
1324 cmd_tail = (cmd_tail+1) % KDB_CMD_HISTORY_COUNT;
1325 }
1326
1327 cmdptr = cmd_head;
1328 diag = kdb_parse(cmdbuf);
1329 if (diag == KDB_NOTFOUND) {
1330 kdb_printf("Unknown kdb command: '%s'\n", cmdbuf);
1331 diag = 0;
1332 }
1333 if (diag == KDB_CMD_GO
1334 || diag == KDB_CMD_CPU
1335 || diag == KDB_CMD_SS
5d5314d6
JW
1336 || diag == KDB_CMD_KGDB)
1337 break;
1338
1339 if (diag)
1340 kdb_cmderror(diag);
1341 }
1342 KDB_DEBUG_STATE("kdb_local 9", diag);
1343 return diag;
1344}
1345
1346
1347/*
1348 * kdb_print_state - Print the state data for the current processor
1349 * for debugging.
1350 * Inputs:
1351 * text Identifies the debug point
1352 * value Any integer value to be printed, e.g. reason code.
1353 */
1354void kdb_print_state(const char *text, int value)
1355{
1356 kdb_printf("state: %s cpu %d value %d initial %d state %x\n",
1357 text, raw_smp_processor_id(), value, kdb_initial_cpu,
1358 kdb_state);
1359}
1360
1361/*
1362 * kdb_main_loop - After initial setup and assignment of the
1363 * controlling cpu, all cpus are in this loop. One cpu is in
1364 * control and will issue the kdb prompt, the others will spin
1365 * until 'go' or cpu switch.
1366 *
1367 * To get a consistent view of the kernel stacks for all
1368 * processes, this routine is invoked from the main kdb code via
1369 * an architecture specific routine. kdba_main_loop is
1370 * responsible for making the kernel stacks consistent for all
1371 * processes, there should be no difference between a blocked
1372 * process and a running process as far as kdb is concerned.
1373 * Inputs:
1374 * reason The reason KDB was invoked
1375 * error The hardware-defined error code
1376 * reason2 kdb's current reason code.
1377 * Initially error but can change
25985edc 1378 * according to kdb state.
5d5314d6
JW
1379 * db_result Result code from break or debug point.
1380 * regs The exception frame at time of fault/breakpoint.
1381 * should always be valid.
1382 * Returns:
1383 * 0 KDB was invoked for an event which it wasn't responsible
1384 * 1 KDB handled the event for which it was invoked.
1385 */
1386int kdb_main_loop(kdb_reason_t reason, kdb_reason_t reason2, int error,
1387 kdb_dbtrap_t db_result, struct pt_regs *regs)
1388{
1389 int result = 1;
1390 /* Stay in kdb() until 'go', 'ss[b]' or an error */
1391 while (1) {
1392 /*
1393 * All processors except the one that is in control
1394 * will spin here.
1395 */
1396 KDB_DEBUG_STATE("kdb_main_loop 1", reason);
1397 while (KDB_STATE(HOLD_CPU)) {
1398 /* state KDB is turned off by kdb_cpu to see if the
1399 * other cpus are still live, each cpu in this loop
1400 * turns it back on.
1401 */
1402 if (!KDB_STATE(KDB))
1403 KDB_STATE_SET(KDB);
1404 }
1405
1406 KDB_STATE_CLEAR(SUPPRESS);
1407 KDB_DEBUG_STATE("kdb_main_loop 2", reason);
1408 if (KDB_STATE(LEAVING))
1409 break; /* Another cpu said 'go' */
1410 /* Still using kdb, this processor is in control */
1411 result = kdb_local(reason2, error, regs, db_result);
1412 KDB_DEBUG_STATE("kdb_main_loop 3", result);
1413
1414 if (result == KDB_CMD_CPU)
1415 break;
1416
1417 if (result == KDB_CMD_SS) {
1418 KDB_STATE_SET(DOING_SS);
1419 break;
1420 }
1421
5d5314d6 1422 if (result == KDB_CMD_KGDB) {
d613d828 1423 if (!KDB_STATE(DOING_KGDB))
5d5314d6
JW
1424 kdb_printf("Entering please attach debugger "
1425 "or use $D#44+ or $3#33\n");
1426 break;
1427 }
1428 if (result && result != 1 && result != KDB_CMD_GO)
1429 kdb_printf("\nUnexpected kdb_local return code %d\n",
1430 result);
1431 KDB_DEBUG_STATE("kdb_main_loop 4", reason);
1432 break;
1433 }
1434 if (KDB_STATE(DOING_SS))
1435 KDB_STATE_CLEAR(SSBPT);
1436
8f30d411
AW
1437 /* Clean up any keyboard devices before leaving */
1438 kdb_kbd_cleanup_state();
1439
5d5314d6
JW
1440 return result;
1441}
1442
1443/*
1444 * kdb_mdr - This function implements the guts of the 'mdr', memory
1445 * read command.
1446 * mdr <addr arg>,<byte count>
1447 * Inputs:
1448 * addr Start address
1449 * count Number of bytes
1450 * Returns:
1451 * Always 0. Any errors are detected and printed by kdb_getarea.
1452 */
1453static int kdb_mdr(unsigned long addr, unsigned int count)
1454{
1455 unsigned char c;
1456 while (count--) {
1457 if (kdb_getarea(c, addr))
1458 return 0;
1459 kdb_printf("%02x", c);
1460 addr++;
1461 }
1462 kdb_printf("\n");
1463 return 0;
1464}
1465
1466/*
1467 * kdb_md - This function implements the 'md', 'md1', 'md2', 'md4',
1468 * 'md8' 'mdr' and 'mds' commands.
1469 *
1470 * md|mds [<addr arg> [<line count> [<radix>]]]
1471 * mdWcN [<addr arg> [<line count> [<radix>]]]
1472 * where W = is the width (1, 2, 4 or 8) and N is the count.
1473 * for eg., md1c20 reads 20 bytes, 1 at a time.
1474 * mdr <addr arg>,<byte count>
1475 */
1476static void kdb_md_line(const char *fmtstr, unsigned long addr,
1477 int symbolic, int nosect, int bytesperword,
1478 int num, int repeat, int phys)
1479{
1480 /* print just one line of data */
1481 kdb_symtab_t symtab;
1482 char cbuf[32];
1483 char *c = cbuf;
1484 int i;
1485 unsigned long word;
1486
1487 memset(cbuf, '\0', sizeof(cbuf));
1488 if (phys)
1489 kdb_printf("phys " kdb_machreg_fmt0 " ", addr);
1490 else
1491 kdb_printf(kdb_machreg_fmt0 " ", addr);
1492
1493 for (i = 0; i < num && repeat--; i++) {
1494 if (phys) {
1495 if (kdb_getphysword(&word, addr, bytesperword))
1496 break;
1497 } else if (kdb_getword(&word, addr, bytesperword))
1498 break;
1499 kdb_printf(fmtstr, word);
1500 if (symbolic)
1501 kdbnearsym(word, &symtab);
1502 else
1503 memset(&symtab, 0, sizeof(symtab));
1504 if (symtab.sym_name) {
1505 kdb_symbol_print(word, &symtab, 0);
1506 if (!nosect) {
1507 kdb_printf("\n");
1508 kdb_printf(" %s %s "
1509 kdb_machreg_fmt " "
1510 kdb_machreg_fmt " "
1511 kdb_machreg_fmt, symtab.mod_name,
1512 symtab.sec_name, symtab.sec_start,
1513 symtab.sym_start, symtab.sym_end);
1514 }
1515 addr += bytesperword;
1516 } else {
1517 union {
1518 u64 word;
1519 unsigned char c[8];
1520 } wc;
1521 unsigned char *cp;
1522#ifdef __BIG_ENDIAN
1523 cp = wc.c + 8 - bytesperword;
1524#else
1525 cp = wc.c;
1526#endif
1527 wc.word = word;
1528#define printable_char(c) \
1529 ({unsigned char __c = c; isascii(__c) && isprint(__c) ? __c : '.'; })
1530 switch (bytesperword) {
1531 case 8:
1532 *c++ = printable_char(*cp++);
1533 *c++ = printable_char(*cp++);
1534 *c++ = printable_char(*cp++);
1535 *c++ = printable_char(*cp++);
1536 addr += 4;
1537 case 4:
1538 *c++ = printable_char(*cp++);
1539 *c++ = printable_char(*cp++);
1540 addr += 2;
1541 case 2:
1542 *c++ = printable_char(*cp++);
1543 addr++;
1544 case 1:
1545 *c++ = printable_char(*cp++);
1546 addr++;
1547 break;
1548 }
1549#undef printable_char
1550 }
1551 }
1552 kdb_printf("%*s %s\n", (int)((num-i)*(2*bytesperword + 1)+1),
1553 " ", cbuf);
1554}
1555
1556static int kdb_md(int argc, const char **argv)
1557{
1558 static unsigned long last_addr;
1559 static int last_radix, last_bytesperword, last_repeat;
1560 int radix = 16, mdcount = 8, bytesperword = KDB_WORD_SIZE, repeat;
1561 int nosect = 0;
1562 char fmtchar, fmtstr[64];
1563 unsigned long addr;
1564 unsigned long word;
1565 long offset = 0;
1566 int symbolic = 0;
1567 int valid = 0;
1568 int phys = 0;
1569
1570 kdbgetintenv("MDCOUNT", &mdcount);
1571 kdbgetintenv("RADIX", &radix);
1572 kdbgetintenv("BYTESPERWORD", &bytesperword);
1573
1574 /* Assume 'md <addr>' and start with environment values */
1575 repeat = mdcount * 16 / bytesperword;
1576
1577 if (strcmp(argv[0], "mdr") == 0) {
1578 if (argc != 2)
1579 return KDB_ARGCOUNT;
1580 valid = 1;
1581 } else if (isdigit(argv[0][2])) {
1582 bytesperword = (int)(argv[0][2] - '0');
1583 if (bytesperword == 0) {
1584 bytesperword = last_bytesperword;
1585 if (bytesperword == 0)
1586 bytesperword = 4;
1587 }
1588 last_bytesperword = bytesperword;
1589 repeat = mdcount * 16 / bytesperword;
1590 if (!argv[0][3])
1591 valid = 1;
1592 else if (argv[0][3] == 'c' && argv[0][4]) {
1593 char *p;
1594 repeat = simple_strtoul(argv[0] + 4, &p, 10);
1595 mdcount = ((repeat * bytesperword) + 15) / 16;
1596 valid = !*p;
1597 }
1598 last_repeat = repeat;
1599 } else if (strcmp(argv[0], "md") == 0)
1600 valid = 1;
1601 else if (strcmp(argv[0], "mds") == 0)
1602 valid = 1;
1603 else if (strcmp(argv[0], "mdp") == 0) {
1604 phys = valid = 1;
1605 }
1606 if (!valid)
1607 return KDB_NOTFOUND;
1608
1609 if (argc == 0) {
1610 if (last_addr == 0)
1611 return KDB_ARGCOUNT;
1612 addr = last_addr;
1613 radix = last_radix;
1614 bytesperword = last_bytesperword;
1615 repeat = last_repeat;
1616 mdcount = ((repeat * bytesperword) + 15) / 16;
1617 }
1618
1619 if (argc) {
1620 unsigned long val;
1621 int diag, nextarg = 1;
1622 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr,
1623 &offset, NULL);
1624 if (diag)
1625 return diag;
1626 if (argc > nextarg+2)
1627 return KDB_ARGCOUNT;
1628
1629 if (argc >= nextarg) {
1630 diag = kdbgetularg(argv[nextarg], &val);
1631 if (!diag) {
1632 mdcount = (int) val;
1633 repeat = mdcount * 16 / bytesperword;
1634 }
1635 }
1636 if (argc >= nextarg+1) {
1637 diag = kdbgetularg(argv[nextarg+1], &val);
1638 if (!diag)
1639 radix = (int) val;
1640 }
1641 }
1642
1643 if (strcmp(argv[0], "mdr") == 0)
1644 return kdb_mdr(addr, mdcount);
1645
1646 switch (radix) {
1647 case 10:
1648 fmtchar = 'd';
1649 break;
1650 case 16:
1651 fmtchar = 'x';
1652 break;
1653 case 8:
1654 fmtchar = 'o';
1655 break;
1656 default:
1657 return KDB_BADRADIX;
1658 }
1659
1660 last_radix = radix;
1661
1662 if (bytesperword > KDB_WORD_SIZE)
1663 return KDB_BADWIDTH;
1664
1665 switch (bytesperword) {
1666 case 8:
1667 sprintf(fmtstr, "%%16.16l%c ", fmtchar);
1668 break;
1669 case 4:
1670 sprintf(fmtstr, "%%8.8l%c ", fmtchar);
1671 break;
1672 case 2:
1673 sprintf(fmtstr, "%%4.4l%c ", fmtchar);
1674 break;
1675 case 1:
1676 sprintf(fmtstr, "%%2.2l%c ", fmtchar);
1677 break;
1678 default:
1679 return KDB_BADWIDTH;
1680 }
1681
1682 last_repeat = repeat;
1683 last_bytesperword = bytesperword;
1684
1685 if (strcmp(argv[0], "mds") == 0) {
1686 symbolic = 1;
1687 /* Do not save these changes as last_*, they are temporary mds
1688 * overrides.
1689 */
1690 bytesperword = KDB_WORD_SIZE;
1691 repeat = mdcount;
1692 kdbgetintenv("NOSECT", &nosect);
1693 }
1694
1695 /* Round address down modulo BYTESPERWORD */
1696
1697 addr &= ~(bytesperword-1);
1698
1699 while (repeat > 0) {
1700 unsigned long a;
1701 int n, z, num = (symbolic ? 1 : (16 / bytesperword));
1702
1703 if (KDB_FLAG(CMD_INTERRUPT))
1704 return 0;
1705 for (a = addr, z = 0; z < repeat; a += bytesperword, ++z) {
1706 if (phys) {
1707 if (kdb_getphysword(&word, a, bytesperword)
1708 || word)
1709 break;
1710 } else if (kdb_getword(&word, a, bytesperword) || word)
1711 break;
1712 }
1713 n = min(num, repeat);
1714 kdb_md_line(fmtstr, addr, symbolic, nosect, bytesperword,
1715 num, repeat, phys);
1716 addr += bytesperword * n;
1717 repeat -= n;
1718 z = (z + num - 1) / num;
1719 if (z > 2) {
1720 int s = num * (z-2);
1721 kdb_printf(kdb_machreg_fmt0 "-" kdb_machreg_fmt0
1722 " zero suppressed\n",
1723 addr, addr + bytesperword * s - 1);
1724 addr += bytesperword * s;
1725 repeat -= s;
1726 }
1727 }
1728 last_addr = addr;
1729
1730 return 0;
1731}
1732
1733/*
1734 * kdb_mm - This function implements the 'mm' command.
1735 * mm address-expression new-value
1736 * Remarks:
1737 * mm works on machine words, mmW works on bytes.
1738 */
1739static int kdb_mm(int argc, const char **argv)
1740{
1741 int diag;
1742 unsigned long addr;
1743 long offset = 0;
1744 unsigned long contents;
1745 int nextarg;
1746 int width;
1747
1748 if (argv[0][2] && !isdigit(argv[0][2]))
1749 return KDB_NOTFOUND;
1750
1751 if (argc < 2)
1752 return KDB_ARGCOUNT;
1753
1754 nextarg = 1;
1755 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1756 if (diag)
1757 return diag;
1758
1759 if (nextarg > argc)
1760 return KDB_ARGCOUNT;
1761 diag = kdbgetaddrarg(argc, argv, &nextarg, &contents, NULL, NULL);
1762 if (diag)
1763 return diag;
1764
1765 if (nextarg != argc + 1)
1766 return KDB_ARGCOUNT;
1767
1768 width = argv[0][2] ? (argv[0][2] - '0') : (KDB_WORD_SIZE);
1769 diag = kdb_putword(addr, contents, width);
1770 if (diag)
1771 return diag;
1772
1773 kdb_printf(kdb_machreg_fmt " = " kdb_machreg_fmt "\n", addr, contents);
1774
1775 return 0;
1776}
1777
1778/*
1779 * kdb_go - This function implements the 'go' command.
1780 * go [address-expression]
1781 */
1782static int kdb_go(int argc, const char **argv)
1783{
1784 unsigned long addr;
1785 int diag;
1786 int nextarg;
1787 long offset;
1788
495363d3
JW
1789 if (raw_smp_processor_id() != kdb_initial_cpu) {
1790 kdb_printf("go must execute on the entry cpu, "
1791 "please use \"cpu %d\" and then execute go\n",
1792 kdb_initial_cpu);
1793 return KDB_BADCPUNUM;
1794 }
5d5314d6 1795 if (argc == 1) {
5d5314d6
JW
1796 nextarg = 1;
1797 diag = kdbgetaddrarg(argc, argv, &nextarg,
1798 &addr, &offset, NULL);
1799 if (diag)
1800 return diag;
1801 } else if (argc) {
1802 return KDB_ARGCOUNT;
1803 }
1804
1805 diag = KDB_CMD_GO;
1806 if (KDB_FLAG(CATASTROPHIC)) {
1807 kdb_printf("Catastrophic error detected\n");
1808 kdb_printf("kdb_continue_catastrophic=%d, ",
1809 kdb_continue_catastrophic);
1810 if (kdb_continue_catastrophic == 0 && kdb_go_count++ == 0) {
1811 kdb_printf("type go a second time if you really want "
1812 "to continue\n");
1813 return 0;
1814 }
1815 if (kdb_continue_catastrophic == 2) {
1816 kdb_printf("forcing reboot\n");
1817 kdb_reboot(0, NULL);
1818 }
1819 kdb_printf("attempting to continue\n");
1820 }
1821 return diag;
1822}
1823
1824/*
1825 * kdb_rd - This function implements the 'rd' command.
1826 */
1827static int kdb_rd(int argc, const char **argv)
1828{
534af108
JW
1829 int len = kdb_check_regs();
1830#if DBG_MAX_REG_NUM > 0
1831 int i;
1832 char *rname;
1833 int rsize;
1834 u64 reg64;
1835 u32 reg32;
1836 u16 reg16;
1837 u8 reg8;
1838
1839 if (len)
1840 return len;
1841
1842 for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1843 rsize = dbg_reg_def[i].size * 2;
1844 if (rsize > 16)
1845 rsize = 2;
1846 if (len + strlen(dbg_reg_def[i].name) + 4 + rsize > 80) {
1847 len = 0;
1848 kdb_printf("\n");
1849 }
1850 if (len)
1851 len += kdb_printf(" ");
1852 switch(dbg_reg_def[i].size * 8) {
1853 case 8:
1854 rname = dbg_get_reg(i, &reg8, kdb_current_regs);
1855 if (!rname)
1856 break;
1857 len += kdb_printf("%s: %02x", rname, reg8);
1858 break;
1859 case 16:
1860 rname = dbg_get_reg(i, &reg16, kdb_current_regs);
1861 if (!rname)
1862 break;
1863 len += kdb_printf("%s: %04x", rname, reg16);
1864 break;
1865 case 32:
1866 rname = dbg_get_reg(i, &reg32, kdb_current_regs);
1867 if (!rname)
1868 break;
1869 len += kdb_printf("%s: %08x", rname, reg32);
1870 break;
1871 case 64:
1872 rname = dbg_get_reg(i, &reg64, kdb_current_regs);
1873 if (!rname)
1874 break;
1875 len += kdb_printf("%s: %016llx", rname, reg64);
1876 break;
1877 default:
1878 len += kdb_printf("%s: ??", dbg_reg_def[i].name);
1879 }
1880 }
1881 kdb_printf("\n");
1882#else
1883 if (len)
1884 return len;
5d5314d6
JW
1885
1886 kdb_dumpregs(kdb_current_regs);
534af108 1887#endif
5d5314d6
JW
1888 return 0;
1889}
1890
1891/*
1892 * kdb_rm - This function implements the 'rm' (register modify) command.
1893 * rm register-name new-contents
1894 * Remarks:
534af108 1895 * Allows register modification with the same restrictions as gdb
5d5314d6
JW
1896 */
1897static int kdb_rm(int argc, const char **argv)
1898{
534af108 1899#if DBG_MAX_REG_NUM > 0
5d5314d6 1900 int diag;
534af108
JW
1901 const char *rname;
1902 int i;
1903 u64 reg64;
1904 u32 reg32;
1905 u16 reg16;
1906 u8 reg8;
5d5314d6
JW
1907
1908 if (argc != 2)
1909 return KDB_ARGCOUNT;
1910 /*
1911 * Allow presence or absence of leading '%' symbol.
1912 */
534af108
JW
1913 rname = argv[1];
1914 if (*rname == '%')
1915 rname++;
5d5314d6 1916
534af108 1917 diag = kdbgetu64arg(argv[2], &reg64);
5d5314d6
JW
1918 if (diag)
1919 return diag;
1920
1921 diag = kdb_check_regs();
1922 if (diag)
1923 return diag;
534af108
JW
1924
1925 diag = KDB_BADREG;
1926 for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1927 if (strcmp(rname, dbg_reg_def[i].name) == 0) {
1928 diag = 0;
1929 break;
1930 }
1931 }
1932 if (!diag) {
1933 switch(dbg_reg_def[i].size * 8) {
1934 case 8:
1935 reg8 = reg64;
1936 dbg_set_reg(i, &reg8, kdb_current_regs);
1937 break;
1938 case 16:
1939 reg16 = reg64;
1940 dbg_set_reg(i, &reg16, kdb_current_regs);
1941 break;
1942 case 32:
1943 reg32 = reg64;
1944 dbg_set_reg(i, &reg32, kdb_current_regs);
1945 break;
1946 case 64:
1947 dbg_set_reg(i, &reg64, kdb_current_regs);
1948 break;
1949 }
1950 }
1951 return diag;
1952#else
5d5314d6 1953 kdb_printf("ERROR: Register set currently not implemented\n");
534af108
JW
1954 return 0;
1955#endif
5d5314d6
JW
1956}
1957
1958#if defined(CONFIG_MAGIC_SYSRQ)
1959/*
1960 * kdb_sr - This function implements the 'sr' (SYSRQ key) command
1961 * which interfaces to the soi-disant MAGIC SYSRQ functionality.
1962 * sr <magic-sysrq-code>
1963 */
1964static int kdb_sr(int argc, const char **argv)
1965{
420c2b1b
AV
1966 bool check_mask =
1967 !kdb_check_flags(KDB_ENABLE_ALL, kdb_cmd_enabled, false);
1968
5d5314d6
JW
1969 if (argc != 1)
1970 return KDB_ARGCOUNT;
420c2b1b 1971
d37d39ae 1972 kdb_trap_printk++;
420c2b1b 1973 __handle_sysrq(*argv[1], check_mask);
d37d39ae 1974 kdb_trap_printk--;
5d5314d6
JW
1975
1976 return 0;
1977}
1978#endif /* CONFIG_MAGIC_SYSRQ */
1979
1980/*
1981 * kdb_ef - This function implements the 'regs' (display exception
1982 * frame) command. This command takes an address and expects to
1983 * find an exception frame at that address, formats and prints
1984 * it.
1985 * regs address-expression
1986 * Remarks:
1987 * Not done yet.
1988 */
1989static int kdb_ef(int argc, const char **argv)
1990{
1991 int diag;
1992 unsigned long addr;
1993 long offset;
1994 int nextarg;
1995
1996 if (argc != 1)
1997 return KDB_ARGCOUNT;
1998
1999 nextarg = 1;
2000 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
2001 if (diag)
2002 return diag;
2003 show_regs((struct pt_regs *)addr);
2004 return 0;
2005}
2006
2007#if defined(CONFIG_MODULES)
5d5314d6
JW
2008/*
2009 * kdb_lsmod - This function implements the 'lsmod' command. Lists
2010 * currently loaded kernel modules.
2011 * Mostly taken from userland lsmod.
2012 */
2013static int kdb_lsmod(int argc, const char **argv)
2014{
2015 struct module *mod;
2016
2017 if (argc != 0)
2018 return KDB_ARGCOUNT;
2019
2020 kdb_printf("Module Size modstruct Used by\n");
2021 list_for_each_entry(mod, kdb_modules, list) {
0d21b0e3
RR
2022 if (mod->state == MODULE_STATE_UNFORMED)
2023 continue;
5d5314d6
JW
2024
2025 kdb_printf("%-20s%8u 0x%p ", mod->name,
7523e4dc 2026 mod->core_layout.size, (void *)mod);
5d5314d6 2027#ifdef CONFIG_MODULE_UNLOAD
d5db139a 2028 kdb_printf("%4d ", module_refcount(mod));
5d5314d6
JW
2029#endif
2030 if (mod->state == MODULE_STATE_GOING)
2031 kdb_printf(" (Unloading)");
2032 else if (mod->state == MODULE_STATE_COMING)
2033 kdb_printf(" (Loading)");
2034 else
2035 kdb_printf(" (Live)");
7523e4dc 2036 kdb_printf(" 0x%p", mod->core_layout.base);
5d5314d6
JW
2037
2038#ifdef CONFIG_MODULE_UNLOAD
2039 {
2040 struct module_use *use;
2041 kdb_printf(" [ ");
c8e21ced
RR
2042 list_for_each_entry(use, &mod->source_list,
2043 source_list)
2044 kdb_printf("%s ", use->target->name);
5d5314d6
JW
2045 kdb_printf("]\n");
2046 }
2047#endif
2048 }
2049
2050 return 0;
2051}
2052
2053#endif /* CONFIG_MODULES */
2054
2055/*
2056 * kdb_env - This function implements the 'env' command. Display the
2057 * current environment variables.
2058 */
2059
2060static int kdb_env(int argc, const char **argv)
2061{
2062 int i;
2063
2064 for (i = 0; i < __nenv; i++) {
2065 if (__env[i])
2066 kdb_printf("%s\n", __env[i]);
2067 }
2068
2069 if (KDB_DEBUG(MASK))
2070 kdb_printf("KDBFLAGS=0x%x\n", kdb_flags);
2071
2072 return 0;
2073}
2074
2075#ifdef CONFIG_PRINTK
2076/*
2077 * kdb_dmesg - This function implements the 'dmesg' command to display
2078 * the contents of the syslog buffer.
2079 * dmesg [lines] [adjust]
2080 */
2081static int kdb_dmesg(int argc, const char **argv)
2082{
bc792e61
AV
2083 int diag;
2084 int logging;
2085 int lines = 0;
2086 int adjust = 0;
2087 int n = 0;
2088 int skip = 0;
2089 struct kmsg_dumper dumper = { .active = 1 };
2090 size_t len;
2091 char buf[201];
5d5314d6
JW
2092
2093 if (argc > 2)
2094 return KDB_ARGCOUNT;
2095 if (argc) {
2096 char *cp;
2097 lines = simple_strtol(argv[1], &cp, 0);
2098 if (*cp)
2099 lines = 0;
2100 if (argc > 1) {
2101 adjust = simple_strtoul(argv[2], &cp, 0);
2102 if (*cp || adjust < 0)
2103 adjust = 0;
2104 }
2105 }
2106
2107 /* disable LOGGING if set */
2108 diag = kdbgetintenv("LOGGING", &logging);
2109 if (!diag && logging) {
2110 const char *setargs[] = { "set", "LOGGING", "0" };
2111 kdb_set(2, setargs);
2112 }
2113
c064da47
AV
2114 kmsg_dump_rewind_nolock(&dumper);
2115 while (kmsg_dump_get_line_nolock(&dumper, 1, NULL, 0, NULL))
bc792e61
AV
2116 n++;
2117
5d5314d6
JW
2118 if (lines < 0) {
2119 if (adjust >= n)
2120 kdb_printf("buffer only contains %d lines, nothing "
2121 "printed\n", n);
2122 else if (adjust - lines >= n)
2123 kdb_printf("buffer only contains %d lines, last %d "
2124 "lines printed\n", n, n - adjust);
bc792e61
AV
2125 skip = adjust;
2126 lines = abs(lines);
5d5314d6 2127 } else if (lines > 0) {
bc792e61
AV
2128 skip = n - lines - adjust;
2129 lines = abs(lines);
5d5314d6
JW
2130 if (adjust >= n) {
2131 kdb_printf("buffer only contains %d lines, "
2132 "nothing printed\n", n);
2133 skip = n;
2134 } else if (skip < 0) {
2135 lines += skip;
2136 skip = 0;
2137 kdb_printf("buffer only contains %d lines, first "
2138 "%d lines printed\n", n, lines);
2139 }
bc792e61
AV
2140 } else {
2141 lines = n;
5d5314d6 2142 }
bc792e61
AV
2143
2144 if (skip >= n || skip < 0)
2145 return 0;
2146
c064da47
AV
2147 kmsg_dump_rewind_nolock(&dumper);
2148 while (kmsg_dump_get_line_nolock(&dumper, 1, buf, sizeof(buf), &len)) {
bc792e61
AV
2149 if (skip) {
2150 skip--;
2151 continue;
5d5314d6 2152 }
bc792e61
AV
2153 if (!lines--)
2154 break;
d1871b38
JW
2155 if (KDB_FLAG(CMD_INTERRUPT))
2156 return 0;
bc792e61
AV
2157
2158 kdb_printf("%.*s\n", (int)len - 1, buf);
5d5314d6 2159 }
5d5314d6
JW
2160
2161 return 0;
2162}
2163#endif /* CONFIG_PRINTK */
ad394f66
AV
2164
2165/* Make sure we balance enable/disable calls, must disable first. */
2166static atomic_t kdb_nmi_disabled;
2167
2168static int kdb_disable_nmi(int argc, const char *argv[])
2169{
2170 if (atomic_read(&kdb_nmi_disabled))
2171 return 0;
2172 atomic_set(&kdb_nmi_disabled, 1);
2173 arch_kgdb_ops.enable_nmi(0);
2174 return 0;
2175}
2176
2177static int kdb_param_enable_nmi(const char *val, const struct kernel_param *kp)
2178{
2179 if (!atomic_add_unless(&kdb_nmi_disabled, -1, 0))
2180 return -EINVAL;
2181 arch_kgdb_ops.enable_nmi(1);
2182 return 0;
2183}
2184
2185static const struct kernel_param_ops kdb_param_ops_enable_nmi = {
2186 .set = kdb_param_enable_nmi,
2187};
2188module_param_cb(enable_nmi, &kdb_param_ops_enable_nmi, NULL, 0600);
2189
5d5314d6
JW
2190/*
2191 * kdb_cpu - This function implements the 'cpu' command.
2192 * cpu [<cpunum>]
2193 * Returns:
2194 * KDB_CMD_CPU for success, a kdb diagnostic if error
2195 */
2196static void kdb_cpu_status(void)
2197{
2198 int i, start_cpu, first_print = 1;
2199 char state, prev_state = '?';
2200
2201 kdb_printf("Currently on cpu %d\n", raw_smp_processor_id());
2202 kdb_printf("Available cpus: ");
2203 for (start_cpu = -1, i = 0; i < NR_CPUS; i++) {
2204 if (!cpu_online(i)) {
2205 state = 'F'; /* cpu is offline */
a1465d2f
DT
2206 } else if (!kgdb_info[i].enter_kgdb) {
2207 state = 'D'; /* cpu is online but unresponsive */
5d5314d6
JW
2208 } else {
2209 state = ' '; /* cpu is responding to kdb */
2210 if (kdb_task_state_char(KDB_TSK(i)) == 'I')
2211 state = 'I'; /* idle task */
2212 }
2213 if (state != prev_state) {
2214 if (prev_state != '?') {
2215 if (!first_print)
2216 kdb_printf(", ");
2217 first_print = 0;
2218 kdb_printf("%d", start_cpu);
2219 if (start_cpu < i-1)
2220 kdb_printf("-%d", i-1);
2221 if (prev_state != ' ')
2222 kdb_printf("(%c)", prev_state);
2223 }
2224 prev_state = state;
2225 start_cpu = i;
2226 }
2227 }
2228 /* print the trailing cpus, ignoring them if they are all offline */
2229 if (prev_state != 'F') {
2230 if (!first_print)
2231 kdb_printf(", ");
2232 kdb_printf("%d", start_cpu);
2233 if (start_cpu < i-1)
2234 kdb_printf("-%d", i-1);
2235 if (prev_state != ' ')
2236 kdb_printf("(%c)", prev_state);
2237 }
2238 kdb_printf("\n");
2239}
2240
2241static int kdb_cpu(int argc, const char **argv)
2242{
2243 unsigned long cpunum;
2244 int diag;
2245
2246 if (argc == 0) {
2247 kdb_cpu_status();
2248 return 0;
2249 }
2250
2251 if (argc != 1)
2252 return KDB_ARGCOUNT;
2253
2254 diag = kdbgetularg(argv[1], &cpunum);
2255 if (diag)
2256 return diag;
2257
2258 /*
2259 * Validate cpunum
2260 */
df0036d1 2261 if ((cpunum >= CONFIG_NR_CPUS) || !kgdb_info[cpunum].enter_kgdb)
5d5314d6
JW
2262 return KDB_BADCPUNUM;
2263
2264 dbg_switch_cpu = cpunum;
2265
2266 /*
2267 * Switch to other cpu
2268 */
2269 return KDB_CMD_CPU;
2270}
2271
2272/* The user may not realize that ps/bta with no parameters does not print idle
2273 * or sleeping system daemon processes, so tell them how many were suppressed.
2274 */
2275void kdb_ps_suppressed(void)
2276{
2277 int idle = 0, daemon = 0;
2278 unsigned long mask_I = kdb_task_state_string("I"),
2279 mask_M = kdb_task_state_string("M");
2280 unsigned long cpu;
2281 const struct task_struct *p, *g;
2282 for_each_online_cpu(cpu) {
2283 p = kdb_curr_task(cpu);
2284 if (kdb_task_state(p, mask_I))
2285 ++idle;
2286 }
2287 kdb_do_each_thread(g, p) {
2288 if (kdb_task_state(p, mask_M))
2289 ++daemon;
2290 } kdb_while_each_thread(g, p);
2291 if (idle || daemon) {
2292 if (idle)
2293 kdb_printf("%d idle process%s (state I)%s\n",
2294 idle, idle == 1 ? "" : "es",
2295 daemon ? " and " : "");
2296 if (daemon)
2297 kdb_printf("%d sleeping system daemon (state M) "
2298 "process%s", daemon,
2299 daemon == 1 ? "" : "es");
2300 kdb_printf(" suppressed,\nuse 'ps A' to see all.\n");
2301 }
2302}
2303
2304/*
2305 * kdb_ps - This function implements the 'ps' command which shows a
2306 * list of the active processes.
2307 * ps [DRSTCZEUIMA] All processes, optionally filtered by state
2308 */
2309void kdb_ps1(const struct task_struct *p)
2310{
2311 int cpu;
2312 unsigned long tmp;
2313
2314 if (!p || probe_kernel_read(&tmp, (char *)p, sizeof(unsigned long)))
2315 return;
2316
2317 cpu = kdb_process_cpu(p);
2318 kdb_printf("0x%p %8d %8d %d %4d %c 0x%p %c%s\n",
2319 (void *)p, p->pid, p->parent->pid,
2320 kdb_task_has_cpu(p), kdb_process_cpu(p),
2321 kdb_task_state_char(p),
2322 (void *)(&p->thread),
2323 p == kdb_curr_task(raw_smp_processor_id()) ? '*' : ' ',
2324 p->comm);
2325 if (kdb_task_has_cpu(p)) {
2326 if (!KDB_TSK(cpu)) {
2327 kdb_printf(" Error: no saved data for this cpu\n");
2328 } else {
2329 if (KDB_TSK(cpu) != p)
2330 kdb_printf(" Error: does not match running "
2331 "process table (0x%p)\n", KDB_TSK(cpu));
2332 }
2333 }
2334}
2335
2336static int kdb_ps(int argc, const char **argv)
2337{
2338 struct task_struct *g, *p;
2339 unsigned long mask, cpu;
2340
2341 if (argc == 0)
2342 kdb_ps_suppressed();
2343 kdb_printf("%-*s Pid Parent [*] cpu State %-*s Command\n",
2344 (int)(2*sizeof(void *))+2, "Task Addr",
2345 (int)(2*sizeof(void *))+2, "Thread");
2346 mask = kdb_task_state_string(argc ? argv[1] : NULL);
2347 /* Run the active tasks first */
2348 for_each_online_cpu(cpu) {
2349 if (KDB_FLAG(CMD_INTERRUPT))
2350 return 0;
2351 p = kdb_curr_task(cpu);
2352 if (kdb_task_state(p, mask))
2353 kdb_ps1(p);
2354 }
2355 kdb_printf("\n");
2356 /* Now the real tasks */
2357 kdb_do_each_thread(g, p) {
2358 if (KDB_FLAG(CMD_INTERRUPT))
2359 return 0;
2360 if (kdb_task_state(p, mask))
2361 kdb_ps1(p);
2362 } kdb_while_each_thread(g, p);
2363
2364 return 0;
2365}
2366
2367/*
2368 * kdb_pid - This function implements the 'pid' command which switches
2369 * the currently active process.
2370 * pid [<pid> | R]
2371 */
2372static int kdb_pid(int argc, const char **argv)
2373{
2374 struct task_struct *p;
2375 unsigned long val;
2376 int diag;
2377
2378 if (argc > 1)
2379 return KDB_ARGCOUNT;
2380
2381 if (argc) {
2382 if (strcmp(argv[1], "R") == 0) {
2383 p = KDB_TSK(kdb_initial_cpu);
2384 } else {
2385 diag = kdbgetularg(argv[1], &val);
2386 if (diag)
2387 return KDB_BADINT;
2388
2389 p = find_task_by_pid_ns((pid_t)val, &init_pid_ns);
2390 if (!p) {
2391 kdb_printf("No task with pid=%d\n", (pid_t)val);
2392 return 0;
2393 }
2394 }
2395 kdb_set_current_task(p);
2396 }
2397 kdb_printf("KDB current process is %s(pid=%d)\n",
2398 kdb_current_task->comm,
2399 kdb_current_task->pid);
2400
2401 return 0;
2402}
2403
5d5314d6
JW
2404static int kdb_kgdb(int argc, const char **argv)
2405{
2406 return KDB_CMD_KGDB;
2407}
2408
2409/*
2410 * kdb_help - This function implements the 'help' and '?' commands.
2411 */
2412static int kdb_help(int argc, const char **argv)
2413{
2414 kdbtab_t *kt;
2415 int i;
2416
2417 kdb_printf("%-15.15s %-20.20s %s\n", "Command", "Usage", "Description");
2418 kdb_printf("-----------------------------"
2419 "-----------------------------\n");
2420 for_each_kdbcmd(kt, i) {
074604af 2421 char *space = "";
5d5314d6
JW
2422 if (KDB_FLAG(CMD_INTERRUPT))
2423 return 0;
074604af
JW
2424 if (!kt->cmd_name)
2425 continue;
420c2b1b
AV
2426 if (!kdb_check_flags(kt->cmd_flags, kdb_cmd_enabled, true))
2427 continue;
074604af
JW
2428 if (strlen(kt->cmd_usage) > 20)
2429 space = "\n ";
2430 kdb_printf("%-15.15s %-20s%s%s\n", kt->cmd_name,
2431 kt->cmd_usage, space, kt->cmd_help);
5d5314d6
JW
2432 }
2433 return 0;
2434}
2435
2436/*
2437 * kdb_kill - This function implements the 'kill' commands.
2438 */
2439static int kdb_kill(int argc, const char **argv)
2440{
2441 long sig, pid;
2442 char *endp;
2443 struct task_struct *p;
2444 struct siginfo info;
2445
2446 if (argc != 2)
2447 return KDB_ARGCOUNT;
2448
2449 sig = simple_strtol(argv[1], &endp, 0);
2450 if (*endp)
2451 return KDB_BADINT;
2452 if (sig >= 0) {
2453 kdb_printf("Invalid signal parameter.<-signal>\n");
2454 return 0;
2455 }
2456 sig = -sig;
2457
2458 pid = simple_strtol(argv[2], &endp, 0);
2459 if (*endp)
2460 return KDB_BADINT;
2461 if (pid <= 0) {
2462 kdb_printf("Process ID must be large than 0.\n");
2463 return 0;
2464 }
2465
2466 /* Find the process. */
2467 p = find_task_by_pid_ns(pid, &init_pid_ns);
2468 if (!p) {
2469 kdb_printf("The specified process isn't found.\n");
2470 return 0;
2471 }
2472 p = p->group_leader;
2473 info.si_signo = sig;
2474 info.si_errno = 0;
2475 info.si_code = SI_USER;
2476 info.si_pid = pid; /* same capabilities as process being signalled */
2477 info.si_uid = 0; /* kdb has root authority */
2478 kdb_send_sig_info(p, &info);
2479 return 0;
2480}
2481
2482struct kdb_tm {
2483 int tm_sec; /* seconds */
2484 int tm_min; /* minutes */
2485 int tm_hour; /* hours */
2486 int tm_mday; /* day of the month */
2487 int tm_mon; /* month */
2488 int tm_year; /* year */
2489};
2490
2491static void kdb_gmtime(struct timespec *tv, struct kdb_tm *tm)
2492{
2493 /* This will work from 1970-2099, 2100 is not a leap year */
2494 static int mon_day[] = { 31, 29, 31, 30, 31, 30, 31,
2495 31, 30, 31, 30, 31 };
2496 memset(tm, 0, sizeof(*tm));
2497 tm->tm_sec = tv->tv_sec % (24 * 60 * 60);
2498 tm->tm_mday = tv->tv_sec / (24 * 60 * 60) +
2499 (2 * 365 + 1); /* shift base from 1970 to 1968 */
2500 tm->tm_min = tm->tm_sec / 60 % 60;
2501 tm->tm_hour = tm->tm_sec / 60 / 60;
2502 tm->tm_sec = tm->tm_sec % 60;
2503 tm->tm_year = 68 + 4*(tm->tm_mday / (4*365+1));
2504 tm->tm_mday %= (4*365+1);
2505 mon_day[1] = 29;
2506 while (tm->tm_mday >= mon_day[tm->tm_mon]) {
2507 tm->tm_mday -= mon_day[tm->tm_mon];
2508 if (++tm->tm_mon == 12) {
2509 tm->tm_mon = 0;
2510 ++tm->tm_year;
2511 mon_day[1] = 28;
2512 }
2513 }
2514 ++tm->tm_mday;
2515}
2516
2517/*
2518 * Most of this code has been lifted from kernel/timer.c::sys_sysinfo().
2519 * I cannot call that code directly from kdb, it has an unconditional
2520 * cli()/sti() and calls routines that take locks which can stop the debugger.
2521 */
2522static void kdb_sysinfo(struct sysinfo *val)
2523{
2524 struct timespec uptime;
a9821c74 2525 ktime_get_ts(&uptime);
5d5314d6
JW
2526 memset(val, 0, sizeof(*val));
2527 val->uptime = uptime.tv_sec;
2528 val->loads[0] = avenrun[0];
2529 val->loads[1] = avenrun[1];
2530 val->loads[2] = avenrun[2];
2531 val->procs = nr_threads-1;
2532 si_meminfo(val);
2533
2534 return;
2535}
2536
2537/*
2538 * kdb_summary - This function implements the 'summary' command.
2539 */
2540static int kdb_summary(int argc, const char **argv)
2541{
157b1a23 2542 struct timespec now;
5d5314d6
JW
2543 struct kdb_tm tm;
2544 struct sysinfo val;
2545
2546 if (argc)
2547 return KDB_ARGCOUNT;
2548
2549 kdb_printf("sysname %s\n", init_uts_ns.name.sysname);
2550 kdb_printf("release %s\n", init_uts_ns.name.release);
2551 kdb_printf("version %s\n", init_uts_ns.name.version);
2552 kdb_printf("machine %s\n", init_uts_ns.name.machine);
2553 kdb_printf("nodename %s\n", init_uts_ns.name.nodename);
2554 kdb_printf("domainname %s\n", init_uts_ns.name.domainname);
2555 kdb_printf("ccversion %s\n", __stringify(CCVERSION));
2556
157b1a23
TG
2557 now = __current_kernel_time();
2558 kdb_gmtime(&now, &tm);
5d5314d6
JW
2559 kdb_printf("date %04d-%02d-%02d %02d:%02d:%02d "
2560 "tz_minuteswest %d\n",
2561 1900+tm.tm_year, tm.tm_mon+1, tm.tm_mday,
2562 tm.tm_hour, tm.tm_min, tm.tm_sec,
2563 sys_tz.tz_minuteswest);
2564
2565 kdb_sysinfo(&val);
2566 kdb_printf("uptime ");
2567 if (val.uptime > (24*60*60)) {
2568 int days = val.uptime / (24*60*60);
2569 val.uptime %= (24*60*60);
2570 kdb_printf("%d day%s ", days, days == 1 ? "" : "s");
2571 }
2572 kdb_printf("%02ld:%02ld\n", val.uptime/(60*60), (val.uptime/60)%60);
2573
2574 /* lifted from fs/proc/proc_misc.c::loadavg_read_proc() */
2575
2576#define LOAD_INT(x) ((x) >> FSHIFT)
2577#define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100)
2578 kdb_printf("load avg %ld.%02ld %ld.%02ld %ld.%02ld\n",
2579 LOAD_INT(val.loads[0]), LOAD_FRAC(val.loads[0]),
2580 LOAD_INT(val.loads[1]), LOAD_FRAC(val.loads[1]),
2581 LOAD_INT(val.loads[2]), LOAD_FRAC(val.loads[2]));
2582#undef LOAD_INT
2583#undef LOAD_FRAC
2584 /* Display in kilobytes */
2585#define K(x) ((x) << (PAGE_SHIFT - 10))
2586 kdb_printf("\nMemTotal: %8lu kB\nMemFree: %8lu kB\n"
2587 "Buffers: %8lu kB\n",
14675592 2588 K(val.totalram), K(val.freeram), K(val.bufferram));
5d5314d6
JW
2589 return 0;
2590}
2591
2592/*
2593 * kdb_per_cpu - This function implements the 'per_cpu' command.
2594 */
2595static int kdb_per_cpu(int argc, const char **argv)
2596{
931ea248
JW
2597 char fmtstr[64];
2598 int cpu, diag, nextarg = 1;
2599 unsigned long addr, symaddr, val, bytesperword = 0, whichcpu = ~0UL;
5d5314d6
JW
2600
2601 if (argc < 1 || argc > 3)
2602 return KDB_ARGCOUNT;
2603
931ea248
JW
2604 diag = kdbgetaddrarg(argc, argv, &nextarg, &symaddr, NULL, NULL);
2605 if (diag)
2606 return diag;
2607
5d5314d6
JW
2608 if (argc >= 2) {
2609 diag = kdbgetularg(argv[2], &bytesperword);
2610 if (diag)
2611 return diag;
2612 }
2613 if (!bytesperword)
2614 bytesperword = KDB_WORD_SIZE;
2615 else if (bytesperword > KDB_WORD_SIZE)
2616 return KDB_BADWIDTH;
2617 sprintf(fmtstr, "%%0%dlx ", (int)(2*bytesperword));
2618 if (argc >= 3) {
2619 diag = kdbgetularg(argv[3], &whichcpu);
2620 if (diag)
2621 return diag;
2622 if (!cpu_online(whichcpu)) {
2623 kdb_printf("cpu %ld is not online\n", whichcpu);
2624 return KDB_BADCPUNUM;
2625 }
2626 }
2627
2628 /* Most architectures use __per_cpu_offset[cpu], some use
2629 * __per_cpu_offset(cpu), smp has no __per_cpu_offset.
2630 */
2631#ifdef __per_cpu_offset
2632#define KDB_PCU(cpu) __per_cpu_offset(cpu)
2633#else
2634#ifdef CONFIG_SMP
2635#define KDB_PCU(cpu) __per_cpu_offset[cpu]
2636#else
2637#define KDB_PCU(cpu) 0
2638#endif
2639#endif
5d5314d6 2640 for_each_online_cpu(cpu) {
931ea248
JW
2641 if (KDB_FLAG(CMD_INTERRUPT))
2642 return 0;
2643
5d5314d6
JW
2644 if (whichcpu != ~0UL && whichcpu != cpu)
2645 continue;
931ea248 2646 addr = symaddr + KDB_PCU(cpu);
5d5314d6
JW
2647 diag = kdb_getword(&val, addr, bytesperword);
2648 if (diag) {
2649 kdb_printf("%5d " kdb_bfd_vma_fmt0 " - unable to "
2650 "read, diag=%d\n", cpu, addr, diag);
2651 continue;
2652 }
5d5314d6
JW
2653 kdb_printf("%5d ", cpu);
2654 kdb_md_line(fmtstr, addr,
2655 bytesperword == KDB_WORD_SIZE,
2656 1, bytesperword, 1, 1, 0);
2657 }
5d5314d6 2658#undef KDB_PCU
5d5314d6
JW
2659 return 0;
2660}
2661
2662/*
2663 * display help for the use of cmd | grep pattern
2664 */
2665static int kdb_grep_help(int argc, const char **argv)
2666{
2667 kdb_printf("Usage of cmd args | grep pattern:\n");
2668 kdb_printf(" Any command's output may be filtered through an ");
2669 kdb_printf("emulated 'pipe'.\n");
2670 kdb_printf(" 'grep' is just a key word.\n");
2671 kdb_printf(" The pattern may include a very limited set of "
2672 "metacharacters:\n");
2673 kdb_printf(" pattern or ^pattern or pattern$ or ^pattern$\n");
2674 kdb_printf(" And if there are spaces in the pattern, you may "
2675 "quote it:\n");
2676 kdb_printf(" \"pat tern\" or \"^pat tern\" or \"pat tern$\""
2677 " or \"^pat tern$\"\n");
2678 return 0;
2679}
2680
2681/*
42c884c1 2682 * kdb_register_flags - This function is used to register a kernel
5d5314d6
JW
2683 * debugger command.
2684 * Inputs:
2685 * cmd Command name
2686 * func Function to execute the command
2687 * usage A simple usage string showing arguments
2688 * help A simple help string describing command
2689 * repeat Does the command auto repeat on enter?
2690 * Returns:
2691 * zero for success, one if a duplicate command.
2692 */
2693#define kdb_command_extend 50 /* arbitrary */
42c884c1
AV
2694int kdb_register_flags(char *cmd,
2695 kdb_func_t func,
2696 char *usage,
2697 char *help,
2698 short minlen,
2699 kdb_cmdflags_t flags)
5d5314d6
JW
2700{
2701 int i;
2702 kdbtab_t *kp;
2703
2704 /*
2705 * Brute force method to determine duplicates
2706 */
2707 for_each_kdbcmd(kp, i) {
2708 if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2709 kdb_printf("Duplicate kdb command registered: "
2710 "%s, func %p help %s\n", cmd, func, help);
2711 return 1;
2712 }
2713 }
2714
2715 /*
2716 * Insert command into first available location in table
2717 */
2718 for_each_kdbcmd(kp, i) {
2719 if (kp->cmd_name == NULL)
2720 break;
2721 }
2722
2723 if (i >= kdb_max_commands) {
2724 kdbtab_t *new = kmalloc((kdb_max_commands - KDB_BASE_CMD_MAX +
2725 kdb_command_extend) * sizeof(*new), GFP_KDB);
2726 if (!new) {
2727 kdb_printf("Could not allocate new kdb_command "
2728 "table\n");
2729 return 1;
2730 }
2731 if (kdb_commands) {
2732 memcpy(new, kdb_commands,
5450d904 2733 (kdb_max_commands - KDB_BASE_CMD_MAX) * sizeof(*new));
5d5314d6
JW
2734 kfree(kdb_commands);
2735 }
f7c82d5a 2736 memset(new + kdb_max_commands - KDB_BASE_CMD_MAX, 0,
5d5314d6
JW
2737 kdb_command_extend * sizeof(*new));
2738 kdb_commands = new;
5450d904 2739 kp = kdb_commands + kdb_max_commands - KDB_BASE_CMD_MAX;
5d5314d6
JW
2740 kdb_max_commands += kdb_command_extend;
2741 }
2742
2743 kp->cmd_name = cmd;
2744 kp->cmd_func = func;
2745 kp->cmd_usage = usage;
2746 kp->cmd_help = help;
5d5314d6 2747 kp->cmd_minlen = minlen;
15a42a9b 2748 kp->cmd_flags = flags;
5d5314d6
JW
2749
2750 return 0;
2751}
42c884c1 2752EXPORT_SYMBOL_GPL(kdb_register_flags);
f7030bbc 2753
5d5314d6
JW
2754
2755/*
2756 * kdb_register - Compatibility register function for commands that do
2757 * not need to specify a repeat state. Equivalent to
e8ab24d9 2758 * kdb_register_flags with flags set to 0.
5d5314d6
JW
2759 * Inputs:
2760 * cmd Command name
2761 * func Function to execute the command
2762 * usage A simple usage string showing arguments
2763 * help A simple help string describing command
2764 * Returns:
2765 * zero for success, one if a duplicate command.
2766 */
2767int kdb_register(char *cmd,
2768 kdb_func_t func,
2769 char *usage,
2770 char *help,
2771 short minlen)
2772{
e8ab24d9 2773 return kdb_register_flags(cmd, func, usage, help, minlen, 0);
5d5314d6 2774}
f7030bbc 2775EXPORT_SYMBOL_GPL(kdb_register);
5d5314d6
JW
2776
2777/*
2778 * kdb_unregister - This function is used to unregister a kernel
2779 * debugger command. It is generally called when a module which
2780 * implements kdb commands is unloaded.
2781 * Inputs:
2782 * cmd Command name
2783 * Returns:
2784 * zero for success, one command not registered.
2785 */
2786int kdb_unregister(char *cmd)
2787{
2788 int i;
2789 kdbtab_t *kp;
2790
2791 /*
2792 * find the command.
2793 */
75d14ede 2794 for_each_kdbcmd(kp, i) {
5d5314d6
JW
2795 if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2796 kp->cmd_name = NULL;
2797 return 0;
2798 }
2799 }
2800
2801 /* Couldn't find it. */
2802 return 1;
2803}
f7030bbc 2804EXPORT_SYMBOL_GPL(kdb_unregister);
5d5314d6
JW
2805
2806/* Initialize the kdb command table. */
2807static void __init kdb_inittab(void)
2808{
2809 int i;
2810 kdbtab_t *kp;
2811
2812 for_each_kdbcmd(kp, i)
2813 kp->cmd_name = NULL;
2814
42c884c1 2815 kdb_register_flags("md", kdb_md, "<vaddr>",
5d5314d6 2816 "Display Memory Contents, also mdWcN, e.g. md8c1", 1,
9452e977 2817 KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
42c884c1 2818 kdb_register_flags("mdr", kdb_md, "<vaddr> <bytes>",
9452e977
DT
2819 "Display Raw Memory", 0,
2820 KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
42c884c1 2821 kdb_register_flags("mdp", kdb_md, "<paddr> <bytes>",
9452e977
DT
2822 "Display Physical Memory", 0,
2823 KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
42c884c1 2824 kdb_register_flags("mds", kdb_md, "<vaddr>",
9452e977
DT
2825 "Display Memory Symbolically", 0,
2826 KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
42c884c1 2827 kdb_register_flags("mm", kdb_mm, "<vaddr> <contents>",
9452e977
DT
2828 "Modify Memory Contents", 0,
2829 KDB_ENABLE_MEM_WRITE | KDB_REPEAT_NO_ARGS);
42c884c1 2830 kdb_register_flags("go", kdb_go, "[<vaddr>]",
9452e977
DT
2831 "Continue Execution", 1,
2832 KDB_ENABLE_REG_WRITE | KDB_ENABLE_ALWAYS_SAFE_NO_ARGS);
42c884c1 2833 kdb_register_flags("rd", kdb_rd, "",
9452e977
DT
2834 "Display Registers", 0,
2835 KDB_ENABLE_REG_READ);
42c884c1 2836 kdb_register_flags("rm", kdb_rm, "<reg> <contents>",
9452e977
DT
2837 "Modify Registers", 0,
2838 KDB_ENABLE_REG_WRITE);
42c884c1 2839 kdb_register_flags("ef", kdb_ef, "<vaddr>",
9452e977
DT
2840 "Display exception frame", 0,
2841 KDB_ENABLE_MEM_READ);
42c884c1 2842 kdb_register_flags("bt", kdb_bt, "[<vaddr>]",
9452e977
DT
2843 "Stack traceback", 1,
2844 KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS);
42c884c1 2845 kdb_register_flags("btp", kdb_bt, "<pid>",
9452e977
DT
2846 "Display stack for process <pid>", 0,
2847 KDB_ENABLE_INSPECT);
42c884c1 2848 kdb_register_flags("bta", kdb_bt, "[D|R|S|T|C|Z|E|U|I|M|A]",
9452e977
DT
2849 "Backtrace all processes matching state flag", 0,
2850 KDB_ENABLE_INSPECT);
42c884c1 2851 kdb_register_flags("btc", kdb_bt, "",
9452e977
DT
2852 "Backtrace current process on each cpu", 0,
2853 KDB_ENABLE_INSPECT);
42c884c1 2854 kdb_register_flags("btt", kdb_bt, "<vaddr>",
5d5314d6 2855 "Backtrace process given its struct task address", 0,
9452e977 2856 KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS);
42c884c1 2857 kdb_register_flags("env", kdb_env, "",
9452e977
DT
2858 "Show environment variables", 0,
2859 KDB_ENABLE_ALWAYS_SAFE);
42c884c1 2860 kdb_register_flags("set", kdb_set, "",
9452e977
DT
2861 "Set environment variables", 0,
2862 KDB_ENABLE_ALWAYS_SAFE);
42c884c1 2863 kdb_register_flags("help", kdb_help, "",
9452e977
DT
2864 "Display Help Message", 1,
2865 KDB_ENABLE_ALWAYS_SAFE);
42c884c1 2866 kdb_register_flags("?", kdb_help, "",
9452e977
DT
2867 "Display Help Message", 0,
2868 KDB_ENABLE_ALWAYS_SAFE);
42c884c1 2869 kdb_register_flags("cpu", kdb_cpu, "<cpunum>",
9452e977
DT
2870 "Switch to new cpu", 0,
2871 KDB_ENABLE_ALWAYS_SAFE_NO_ARGS);
42c884c1 2872 kdb_register_flags("kgdb", kdb_kgdb, "",
e8ab24d9 2873 "Enter kgdb mode", 0, 0);
42c884c1 2874 kdb_register_flags("ps", kdb_ps, "[<flags>|A]",
9452e977
DT
2875 "Display active task list", 0,
2876 KDB_ENABLE_INSPECT);
42c884c1 2877 kdb_register_flags("pid", kdb_pid, "<pidnum>",
9452e977
DT
2878 "Switch to another task", 0,
2879 KDB_ENABLE_INSPECT);
42c884c1 2880 kdb_register_flags("reboot", kdb_reboot, "",
9452e977
DT
2881 "Reboot the machine immediately", 0,
2882 KDB_ENABLE_REBOOT);
5d5314d6 2883#if defined(CONFIG_MODULES)
42c884c1 2884 kdb_register_flags("lsmod", kdb_lsmod, "",
9452e977
DT
2885 "List loaded kernel modules", 0,
2886 KDB_ENABLE_INSPECT);
5d5314d6
JW
2887#endif
2888#if defined(CONFIG_MAGIC_SYSRQ)
42c884c1 2889 kdb_register_flags("sr", kdb_sr, "<key>",
9452e977
DT
2890 "Magic SysRq key", 0,
2891 KDB_ENABLE_ALWAYS_SAFE);
5d5314d6
JW
2892#endif
2893#if defined(CONFIG_PRINTK)
42c884c1 2894 kdb_register_flags("dmesg", kdb_dmesg, "[lines]",
9452e977
DT
2895 "Display syslog buffer", 0,
2896 KDB_ENABLE_ALWAYS_SAFE);
5d5314d6 2897#endif
ad394f66 2898 if (arch_kgdb_ops.enable_nmi) {
42c884c1 2899 kdb_register_flags("disable_nmi", kdb_disable_nmi, "",
9452e977
DT
2900 "Disable NMI entry to KDB", 0,
2901 KDB_ENABLE_ALWAYS_SAFE);
ad394f66 2902 }
42c884c1 2903 kdb_register_flags("defcmd", kdb_defcmd, "name \"usage\" \"help\"",
9452e977
DT
2904 "Define a set of commands, down to endefcmd", 0,
2905 KDB_ENABLE_ALWAYS_SAFE);
42c884c1 2906 kdb_register_flags("kill", kdb_kill, "<-signal> <pid>",
9452e977
DT
2907 "Send a signal to a process", 0,
2908 KDB_ENABLE_SIGNAL);
42c884c1 2909 kdb_register_flags("summary", kdb_summary, "",
9452e977
DT
2910 "Summarize the system", 4,
2911 KDB_ENABLE_ALWAYS_SAFE);
42c884c1 2912 kdb_register_flags("per_cpu", kdb_per_cpu, "<sym> [<bytes>] [<cpu>]",
9452e977
DT
2913 "Display per_cpu variables", 3,
2914 KDB_ENABLE_MEM_READ);
42c884c1 2915 kdb_register_flags("grephelp", kdb_grep_help, "",
9452e977
DT
2916 "Display help on | grep", 0,
2917 KDB_ENABLE_ALWAYS_SAFE);
5d5314d6
JW
2918}
2919
2920/* Execute any commands defined in kdb_cmds. */
2921static void __init kdb_cmd_init(void)
2922{
2923 int i, diag;
2924 for (i = 0; kdb_cmds[i]; ++i) {
2925 diag = kdb_parse(kdb_cmds[i]);
2926 if (diag)
2927 kdb_printf("kdb command %s failed, kdb diag %d\n",
2928 kdb_cmds[i], diag);
2929 }
2930 if (defcmd_in_progress) {
2931 kdb_printf("Incomplete 'defcmd' set, forcing endefcmd\n");
2932 kdb_parse("endefcmd");
2933 }
2934}
2935
b595076a 2936/* Initialize kdb_printf, breakpoint tables and kdb state */
5d5314d6
JW
2937void __init kdb_init(int lvl)
2938{
2939 static int kdb_init_lvl = KDB_NOT_INITIALIZED;
2940 int i;
2941
2942 if (kdb_init_lvl == KDB_INIT_FULL || lvl <= kdb_init_lvl)
2943 return;
2944 for (i = kdb_init_lvl; i < lvl; i++) {
2945 switch (i) {
2946 case KDB_NOT_INITIALIZED:
2947 kdb_inittab(); /* Initialize Command Table */
2948 kdb_initbptab(); /* Initialize Breakpoints */
2949 break;
2950 case KDB_INIT_EARLY:
2951 kdb_cmd_init(); /* Build kdb_cmds tables */
2952 break;
2953 }
2954 }
2955 kdb_init_lvl = lvl;
2956}