]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blame - kernel/dma/mapping.c
x86/dma: Remove the x86_dma_fallback_dev hack
[mirror_ubuntu-eoan-kernel.git] / kernel / dma / mapping.c
CommitLineData
989d42e8 1// SPDX-License-Identifier: GPL-2.0
9ac7849e 2/*
cf65a0f6 3 * arch-independent dma-mapping routines
9ac7849e
TH
4 *
5 * Copyright (c) 2006 SUSE Linux Products GmbH
6 * Copyright (c) 2006 Tejun Heo <teheo@suse.de>
9ac7849e 7 */
05887cb6 8#include <linux/memblock.h> /* for max_pfn */
09515ef5 9#include <linux/acpi.h>
356da6d0 10#include <linux/dma-direct.h>
58b04406 11#include <linux/dma-noncoherent.h>
1b6bc32f 12#include <linux/export.h>
5a0e3ad6 13#include <linux/gfp.h>
09515ef5 14#include <linux/of_device.h>
513510dd
LA
15#include <linux/slab.h>
16#include <linux/vmalloc.h>
9ac7849e
TH
17
18/*
19 * Managed DMA API
20 */
21struct dma_devres {
22 size_t size;
23 void *vaddr;
24 dma_addr_t dma_handle;
63d36c95 25 unsigned long attrs;
9ac7849e
TH
26};
27
63d36c95 28static void dmam_release(struct device *dev, void *res)
9ac7849e
TH
29{
30 struct dma_devres *this = res;
31
63d36c95
CH
32 dma_free_attrs(dev, this->size, this->vaddr, this->dma_handle,
33 this->attrs);
9ac7849e
TH
34}
35
36static int dmam_match(struct device *dev, void *res, void *match_data)
37{
38 struct dma_devres *this = res, *match = match_data;
39
40 if (this->vaddr == match->vaddr) {
41 WARN_ON(this->size != match->size ||
42 this->dma_handle != match->dma_handle);
43 return 1;
44 }
45 return 0;
46}
47
9ac7849e
TH
48/**
49 * dmam_free_coherent - Managed dma_free_coherent()
50 * @dev: Device to free coherent memory for
51 * @size: Size of allocation
52 * @vaddr: Virtual address of the memory to free
53 * @dma_handle: DMA handle of the memory to free
54 *
55 * Managed dma_free_coherent().
56 */
57void dmam_free_coherent(struct device *dev, size_t size, void *vaddr,
58 dma_addr_t dma_handle)
59{
60 struct dma_devres match_data = { size, vaddr, dma_handle };
61
62 dma_free_coherent(dev, size, vaddr, dma_handle);
63d36c95 63 WARN_ON(devres_destroy(dev, dmam_release, dmam_match, &match_data));
9ac7849e
TH
64}
65EXPORT_SYMBOL(dmam_free_coherent);
66
67/**
63d36c95 68 * dmam_alloc_attrs - Managed dma_alloc_attrs()
9ac7849e
TH
69 * @dev: Device to allocate non_coherent memory for
70 * @size: Size of allocation
71 * @dma_handle: Out argument for allocated DMA handle
72 * @gfp: Allocation flags
63d36c95 73 * @attrs: Flags in the DMA_ATTR_* namespace.
9ac7849e 74 *
63d36c95
CH
75 * Managed dma_alloc_attrs(). Memory allocated using this function will be
76 * automatically released on driver detach.
9ac7849e
TH
77 *
78 * RETURNS:
79 * Pointer to allocated memory on success, NULL on failure.
80 */
63d36c95
CH
81void *dmam_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
82 gfp_t gfp, unsigned long attrs)
9ac7849e
TH
83{
84 struct dma_devres *dr;
85 void *vaddr;
86
63d36c95 87 dr = devres_alloc(dmam_release, sizeof(*dr), gfp);
9ac7849e
TH
88 if (!dr)
89 return NULL;
90
63d36c95 91 vaddr = dma_alloc_attrs(dev, size, dma_handle, gfp, attrs);
9ac7849e
TH
92 if (!vaddr) {
93 devres_free(dr);
94 return NULL;
95 }
96
97 dr->vaddr = vaddr;
98 dr->dma_handle = *dma_handle;
99 dr->size = size;
63d36c95 100 dr->attrs = attrs;
9ac7849e
TH
101
102 devres_add(dev, dr);
103
104 return vaddr;
105}
63d36c95 106EXPORT_SYMBOL(dmam_alloc_attrs);
9ac7849e 107
d2b7428e
MS
108/*
109 * Create scatter-list for the already allocated DMA buffer.
110 */
111int dma_common_get_sgtable(struct device *dev, struct sg_table *sgt,
9406a49f
CH
112 void *cpu_addr, dma_addr_t dma_addr, size_t size,
113 unsigned long attrs)
d2b7428e 114{
9406a49f 115 struct page *page;
d2b7428e
MS
116 int ret;
117
9406a49f
CH
118 if (!dev_is_dma_coherent(dev)) {
119 if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_COHERENT_TO_PFN))
120 return -ENXIO;
d2b7428e 121
9406a49f
CH
122 page = pfn_to_page(arch_dma_coherent_to_pfn(dev, cpu_addr,
123 dma_addr));
124 } else {
125 page = virt_to_page(cpu_addr);
126 }
127
128 ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
129 if (!ret)
130 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
131 return ret;
d2b7428e 132}
7249c1a5
CH
133
134int dma_get_sgtable_attrs(struct device *dev, struct sg_table *sgt,
135 void *cpu_addr, dma_addr_t dma_addr, size_t size,
136 unsigned long attrs)
137{
138 const struct dma_map_ops *ops = get_dma_ops(dev);
356da6d0
CH
139
140 if (!dma_is_direct(ops) && ops->get_sgtable)
7249c1a5
CH
141 return ops->get_sgtable(dev, sgt, cpu_addr, dma_addr, size,
142 attrs);
143 return dma_common_get_sgtable(dev, sgt, cpu_addr, dma_addr, size,
144 attrs);
145}
146EXPORT_SYMBOL(dma_get_sgtable_attrs);
d2b7428e 147
64ccc9c0
MS
148/*
149 * Create userspace mapping for the DMA-coherent memory.
150 */
151int dma_common_mmap(struct device *dev, struct vm_area_struct *vma,
58b04406
CH
152 void *cpu_addr, dma_addr_t dma_addr, size_t size,
153 unsigned long attrs)
64ccc9c0 154{
07c75d7a 155#ifndef CONFIG_ARCH_NO_COHERENT_DMA_MMAP
95da00e3 156 unsigned long user_count = vma_pages(vma);
64ccc9c0 157 unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
64ccc9c0 158 unsigned long off = vma->vm_pgoff;
58b04406
CH
159 unsigned long pfn;
160 int ret = -ENXIO;
64ccc9c0 161
58b04406 162 vma->vm_page_prot = arch_dma_mmap_pgprot(dev, vma->vm_page_prot, attrs);
64ccc9c0 163
43fc509c 164 if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
64ccc9c0
MS
165 return ret;
166
58b04406
CH
167 if (off >= count || user_count > count - off)
168 return -ENXIO;
169
170 if (!dev_is_dma_coherent(dev)) {
171 if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_COHERENT_TO_PFN))
172 return -ENXIO;
173 pfn = arch_dma_coherent_to_pfn(dev, cpu_addr, dma_addr);
174 } else {
175 pfn = page_to_pfn(virt_to_page(cpu_addr));
176 }
64ccc9c0 177
58b04406
CH
178 return remap_pfn_range(vma, vma->vm_start, pfn + vma->vm_pgoff,
179 user_count << PAGE_SHIFT, vma->vm_page_prot);
180#else
181 return -ENXIO;
182#endif /* !CONFIG_ARCH_NO_COHERENT_DMA_MMAP */
64ccc9c0 183}
7249c1a5
CH
184
185/**
186 * dma_mmap_attrs - map a coherent DMA allocation into user space
187 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
188 * @vma: vm_area_struct describing requested user mapping
189 * @cpu_addr: kernel CPU-view address returned from dma_alloc_attrs
190 * @dma_addr: device-view address returned from dma_alloc_attrs
191 * @size: size of memory originally requested in dma_alloc_attrs
192 * @attrs: attributes of mapping properties requested in dma_alloc_attrs
193 *
194 * Map a coherent DMA buffer previously allocated by dma_alloc_attrs into user
195 * space. The coherent DMA buffer must not be freed by the driver until the
196 * user space mapping has been released.
197 */
198int dma_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
199 void *cpu_addr, dma_addr_t dma_addr, size_t size,
200 unsigned long attrs)
201{
202 const struct dma_map_ops *ops = get_dma_ops(dev);
356da6d0
CH
203
204 if (!dma_is_direct(ops) && ops->mmap)
7249c1a5
CH
205 return ops->mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
206 return dma_common_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
207}
208EXPORT_SYMBOL(dma_mmap_attrs);
05887cb6 209
05887cb6
CH
210static u64 dma_default_get_required_mask(struct device *dev)
211{
212 u32 low_totalram = ((max_pfn - 1) << PAGE_SHIFT);
213 u32 high_totalram = ((max_pfn - 1) >> (32 - PAGE_SHIFT));
214 u64 mask;
215
216 if (!high_totalram) {
217 /* convert to mask just covering totalram */
218 low_totalram = (1 << (fls(low_totalram) - 1));
219 low_totalram += low_totalram - 1;
220 mask = low_totalram;
221 } else {
222 high_totalram = (1 << (fls(high_totalram) - 1));
223 high_totalram += high_totalram - 1;
224 mask = (((u64)high_totalram) << 32) + 0xffffffff;
225 }
226 return mask;
227}
228
229u64 dma_get_required_mask(struct device *dev)
230{
231 const struct dma_map_ops *ops = get_dma_ops(dev);
232
356da6d0
CH
233 if (dma_is_direct(ops))
234 return dma_direct_get_required_mask(dev);
05887cb6
CH
235 if (ops->get_required_mask)
236 return ops->get_required_mask(dev);
237 return dma_default_get_required_mask(dev);
238}
239EXPORT_SYMBOL_GPL(dma_get_required_mask);
05887cb6 240
7249c1a5
CH
241void *dma_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
242 gfp_t flag, unsigned long attrs)
243{
244 const struct dma_map_ops *ops = get_dma_ops(dev);
245 void *cpu_addr;
246
7249c1a5
CH
247 WARN_ON_ONCE(dev && !dev->coherent_dma_mask);
248
249 if (dma_alloc_from_dev_coherent(dev, size, dma_handle, &cpu_addr))
250 return cpu_addr;
251
252 /* let the implementation decide on the zone to allocate from: */
253 flag &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM);
254
356da6d0
CH
255 if (dma_is_direct(ops))
256 cpu_addr = dma_direct_alloc(dev, size, dma_handle, flag, attrs);
257 else if (ops->alloc)
258 cpu_addr = ops->alloc(dev, size, dma_handle, flag, attrs);
259 else
7249c1a5
CH
260 return NULL;
261
7249c1a5
CH
262 debug_dma_alloc_coherent(dev, size, *dma_handle, cpu_addr);
263 return cpu_addr;
264}
265EXPORT_SYMBOL(dma_alloc_attrs);
266
267void dma_free_attrs(struct device *dev, size_t size, void *cpu_addr,
268 dma_addr_t dma_handle, unsigned long attrs)
269{
270 const struct dma_map_ops *ops = get_dma_ops(dev);
271
7249c1a5
CH
272 if (dma_release_from_dev_coherent(dev, get_order(size), cpu_addr))
273 return;
274 /*
275 * On non-coherent platforms which implement DMA-coherent buffers via
276 * non-cacheable remaps, ops->free() may call vunmap(). Thus getting
277 * this far in IRQ context is a) at risk of a BUG_ON() or trying to
278 * sleep on some machines, and b) an indication that the driver is
279 * probably misusing the coherent API anyway.
280 */
281 WARN_ON(irqs_disabled());
282
356da6d0 283 if (!cpu_addr)
7249c1a5
CH
284 return;
285
286 debug_dma_free_coherent(dev, size, cpu_addr, dma_handle);
356da6d0
CH
287 if (dma_is_direct(ops))
288 dma_direct_free(dev, size, cpu_addr, dma_handle, attrs);
289 else if (ops->free)
290 ops->free(dev, size, cpu_addr, dma_handle, attrs);
7249c1a5
CH
291}
292EXPORT_SYMBOL(dma_free_attrs);
293
294static inline void dma_check_mask(struct device *dev, u64 mask)
295{
296 if (sme_active() && (mask < (((u64)sme_get_me_mask() << 1) - 1)))
297 dev_warn(dev, "SME is active, device will require DMA bounce buffers\n");
298}
299
300int dma_supported(struct device *dev, u64 mask)
301{
302 const struct dma_map_ops *ops = get_dma_ops(dev);
303
356da6d0
CH
304 if (dma_is_direct(ops))
305 return dma_direct_supported(dev, mask);
8b1cce9f 306 if (!ops->dma_supported)
7249c1a5
CH
307 return 1;
308 return ops->dma_supported(dev, mask);
309}
310EXPORT_SYMBOL(dma_supported);
311
11ddce15
CH
312#ifdef CONFIG_ARCH_HAS_DMA_SET_MASK
313void arch_dma_set_mask(struct device *dev, u64 mask);
314#else
315#define arch_dma_set_mask(dev, mask) do { } while (0)
316#endif
317
7249c1a5
CH
318int dma_set_mask(struct device *dev, u64 mask)
319{
320 if (!dev->dma_mask || !dma_supported(dev, mask))
321 return -EIO;
322
11ddce15 323 arch_dma_set_mask(dev, mask);
7249c1a5
CH
324 dma_check_mask(dev, mask);
325 *dev->dma_mask = mask;
326 return 0;
327}
328EXPORT_SYMBOL(dma_set_mask);
7249c1a5
CH
329
330#ifndef CONFIG_ARCH_HAS_DMA_SET_COHERENT_MASK
331int dma_set_coherent_mask(struct device *dev, u64 mask)
332{
333 if (!dma_supported(dev, mask))
334 return -EIO;
335
336 dma_check_mask(dev, mask);
337 dev->coherent_dma_mask = mask;
338 return 0;
339}
340EXPORT_SYMBOL(dma_set_coherent_mask);
341#endif
8ddbe594
CH
342
343void dma_cache_sync(struct device *dev, void *vaddr, size_t size,
344 enum dma_data_direction dir)
345{
346 const struct dma_map_ops *ops = get_dma_ops(dev);
347
348 BUG_ON(!valid_dma_direction(dir));
356da6d0
CH
349
350 if (dma_is_direct(ops))
351 arch_dma_cache_sync(dev, vaddr, size, dir);
352 else if (ops->cache_sync)
8ddbe594
CH
353 ops->cache_sync(dev, vaddr, size, dir);
354}
355EXPORT_SYMBOL(dma_cache_sync);
133d624b
JR
356
357size_t dma_max_mapping_size(struct device *dev)
358{
359 const struct dma_map_ops *ops = get_dma_ops(dev);
360 size_t size = SIZE_MAX;
361
362 if (dma_is_direct(ops))
363 size = dma_direct_max_mapping_size(dev);
364 else if (ops && ops->max_mapping_size)
365 size = ops->max_mapping_size(dev);
366
367 return size;
368}
369EXPORT_SYMBOL_GPL(dma_max_mapping_size);